

About	This	E-Book

EPUB	is	an	open,	industry-standard	format	for	e-books.	However,	support	for	EPUB
and	its	many	features	varies	across	reading	devices	and	applications.	Use	your	device	or
app	settings	to	customize	the	presentation	to	your	liking.	Settings	that	you	can	customize
often	include	font,	font	size,	single	or	double	column,	landscape	or	portrait	mode,	and
figures	that	you	can	click	or	tap	to	enlarge.	For	additional	information	about	the	settings
and	features	on	your	reading	device	or	app,	visit	the	device	manufacturer’s	Web	site.

Many	titles	include	programming	code	or	configuration	examples.	To	optimize	the
presentation	of	these	elements,	view	the	e-book	in	single-column,	landscape	mode	and
adjust	the	font	size	to	the	smallest	setting.	In	addition	to	presenting	code	and
configurations	in	the	reflowable	text	format,	we	have	included	images	of	the	code	that
mimic	the	presentation	found	in	the	print	book;	therefore,	where	the	reflowable	format
may	compromise	the	presentation	of	the	code	listing,	you	will	see	a	“Click	here	to	view
code	image”	link.	Click	the	link	to	view	the	print-fidelity	code	image.	To	return	to	the
previous	page	viewed,	click	the	Back	button	on	your	device	or	app.

Navigating	Network
Complexity

Next-generation	Routing	with	SDN,
Service	Virtualization,	and

Service	Chaining
Russ	White
Jeff	Tantsura

800	East	96th	Street
Indianapolis,	Indiana	46240	USA

Navigating	Network	Complexity

Next-generation	Routing	with	SDN,	Service	Virtualization,	and	Service	Chaining

Copyright	©	2016	Pearson	Education,	Inc.

Published	by:	Addison	Wesley

All	rights	reserved.	Printed	in	the	United	States	of	America.	This	publication	is	protected
by	copyright,	and	permission	must	be	obtained	from	the	publisher	prior	to	any	prohibited
reproduction,	storage	in	a	retrieval	system,	or	transmission	in	any	form	or	by	any	means,
electronic,	mechanical,	photocopying,	recording,	or	likewise.	To	obtain	permission	to	use
material	from	this	work,	please	submit	a	written	request	to	Pearson	Education,	Inc.,
Permissions	Department,	200	Old	Tappan	Road,	Old	Tappan,	New	Jersey	07675,	or	you
may	fax	your	request	to	(201)	236-3290.

Text	printed	in	the	United	States	on	recycled	paper	at	RR	Donnelley,	Crawfordsville,	IN

First	Printing	November	2015

Library	of	Congress	Cataloging-in-Publication	Number:	2015950654

ISBN-13:	978-0-13-398935-9
ISBN-10:	0-13-398935-6

Publisher
Paul	Boger

Associate	Publisher
David	Dusthimer

Executive	Editor
Brett	Bartow

Senior	Development	Editor
Christopher	Cleveland

Managing	Editor
Sandra	Schroeder

Project	Editor
Mandie	Frank

Copy	Editor
Cenveo®	Publisher	Services

Technical	Editors
Ignas	Bagdonas
Jon	Mitchell

Editorial	Assistant
Vanessa	Evans

Cover	Designer
Alan	Clements

Composition

Cenveo®	Publisher	Services

Indexer
Cenveo®	Publisher	Services

Trademarks

Many	of	the	designations	used	by	manufacturers	and	sellers	to	distinguish	their	products
are	claimed	as	trademarks.	Where	those	designations	appear	in	this	book,	and	the
publisher	was	aware	of	a	trademark	claim,	the	designations	have	been	printed	with	initial
capital	letters	or	in	all	capitals.

Warning	and	Disclaimer

The	author	and	publisher	have	taken	care	in	the	preparation	of	this	book,	but	make	no
expressed	or	implied	warranty	of	any	kind	and	assume	no	responsibility	for	errors	or
omissions.	No	liability	is	assumed	for	incidental	or	consequential	damages	in	connection
with	or	arising	out	of	the	use	of	the	information	or	programs	contained	herein.

Special	Sales

For	information	about	buying	this	title	in	bulk	quantities,	or	for	special	sales	opportunities
(which	may	include	electronic	versions;	custom	cover	designs;	and	content	particular	to
your	business,	training	goals,	marketing	focus,	or	branding	interests),	please	contact	our
corporate	sales	department	at	corpsales@pearsoned.com	or	(800)	382-3419.

For	government	sales	inquiries,	please	contact	governmentsales@pearsoned.com.

For	questions	about	sales	outside	the	U.S.,	please	contact	international@pearsoned.com.

Visit	us	on	the	Web:	informit.com/aw

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:international@pearsoned.com
http://informit.com/aw

About	the	Authors

Russ	White	began	his	network	engineering	career	installing	terminal	emulation	cards	and
inverse	multiplexers	in	the	United	States	Air	Force.	In	1996,	he	moved	to	Raleigh,	N.C.,
to	join	Cisco	Systems	in	the	Technical	Assistance	Center	(TAC)	routing	protocols	team.
From	TAC,	Russ	moved	to	the	global	escalation	team,	and	then	into	engineering,	and
finally	into	sales	as	a	Distinguished	Architect.	He	is	currently	a	network	architect	working
in	the	area	of	network	complexity	and	large	scale	design,	a	member	of	the	IETF	Routing
Area	Directorate,	an	active	speaker	and	writer,	and	active	in	the	Internet	Society.	He	holds
CCIE	#2637,	CCDE	2007:001,	the	CCAr,	a	Masters	in	Information	Technology	from
Capella	University,	and	a	Masters	in	Christian	Ministry	from	Shepherds	Theological
Seminary.	He	lives	in	Oak	Island,	N.C.,	with	his	wife	and	two	children,	and	is	currently	a
P.h.D	student	at	Southeastern	Baptist	Theological	Seminary.

Jeff	Tantsura	started	his	network	engineering	career	in	early	1990s	at	a	small	ISP	as
system/network	administrator,	later	working	for	bigger	ISPs	where	he	was	responsible	for
network	design	and	architecture,	vendor	selection.

Currently	Jeff	is	heading	Technology	Strategy	Routing	at	Ericsson	as	well	as	chairing
IETF	Routing	Working	Group.

Jeff	holds	MSc	in	Computer	Science	and	Systems	Analysis	from	University	of	Georgia
and	Executive	Certificate	of	Business	Excellence	from	Haas	School	of	Business,	Berkeley.

He	also	holds	CCIE	R&S	#11416	and	Ericsson	Certified	Expert	IP	Networking	#8

Jeff	lives	in	Palo	Alto,	CA,	with	his	wife	and	youngest	child.

About	the	Technical	Reviewers

Ignas	Bagdonas

Ignas	Bagdonas	has	been	involved	in	the	network	engineering	field	for	last	two	decades,
covering	operations,	deployment,	design,	architecture,	development,	and	standardization
aspects.	He	has	worked	on	multiple	large	SP	and	enterprise	networks	worldwide,
participated	in	many	of	the	world’s	first	technology	deployments,	and	has	been	involved
with	building	community	awareness	via	conferences,	seminars,	and	workshops.	His
current	focus	covers	end-to-end	network	architecture	evolution	and	new	emerging
technologies.	Ignas	holds	Cisco	CCDE	and	CCIE	certifications.

Jon	Mitchell

Jon	Mitchell,	CCIE	No.	15953,	is	a	network	engineer	in	Google’s	Technical	Infrastructure
organization	where	he	works	on	their	global	backbone.	Prior	to	Google,	Jon	has	worked	in
roles	of	network	architecture	at	Microsoft,	systems	engineering	at	Cisco	Systems,	network
architecture	and	engineering	at	AOL,	and	network	engineering	at	Loudcloud	for	the	last
15	years	that	he	has	been	in	the	networking	industry.	He	is	also	an	active	IETF	participant
in	various	routing	area	working	groups.	Through	all	of	these	roles,	Jon	has	always	had	a
passion	for	working	on	large-scale	problems	and	solving	them	through	simplification	and
automation.	When	Jon	is	not	thinking	about	networking,	he	enjoys	many	other	passions
such	as	hiking,	running,	supporting	clean	water,	microbreweries,	and	spending	time	with
his	wife	and	four	children.

Dedications

Russ	White:	This	book	is	dedicated	to	Bekah
and	Hannah.	Thank	you	for	sticking	with	your

grumpy	old	dad	through	thick	and	thin.

Jeff	Tantsura:	This	book	is	dedicated	to	my
family:	Marina,	Ilia,	Miriam,	and	Davy—thank

you	for	your	support!

Acknowledgments

Russ	White:

I	would	like	to	thank	the	many	people	who	have	taught	me	networking	through	the
years,	including	Denise	Fishburne,	Don	Slice,	Alvaro	Retana,	Robert	Raszuk,	and	a	host
of	others—too	many	to	name.	I	would	also	like	to	thank	Dr.	Doug	Bookman	for	driving
me	to	be	a	better	thinker,	Dr.	Will	Coberly	for	driving	me	to	be	a	better	writer,	and	Dr.
Larry	Pettegrew	for	driving	me	just	to	be	a	better	person.	Finally,	I’d	like	to	thank	Greg
Ferro	and	Ethan	Banks	for	inspiring	me	to	start	writing	again.

Jeff	Tantsura:

I	would	like	to	thank	the	people	who	taught	and	helped	me	through	the	years	to
understand	networking	better:	Acee	Lindem,	Tony	Przygienda,	Tony	Li,	Jakob	Heitz	and
many	others,	too	many	to	help.

Special	thanks	to	my	co-author	Russ	for	inspiring	me!

Contents	at	a	Glance

Introduction

Chapter	1:	Defining	Complexity

Chapter	2:	Components	of	Complexity

Chapter	3:	Measuring	Network	Complexity

Chapter	4:	Operational	Complexity

Chapter	5:	Design	Complexity

Chapter	6:	Managing	Design	Complexity

Chapter	7:	Protocol	Complexity

Chapter	8:	How	Complex	Systems	Fail

Chapter	9:	Programmable	Networks

Chapter	10:	Programmable	Network	Complexity

Chapter	11:	Service	Virtualization	and	Service	Chaining

Chapter	12:	Virtualization	and	Complexity

Chapter	13:	Complexity	and	the	Cloud

Chapter	14:	A	Simple	Ending

Index

Contents

Introduction

How	This	Book	Is	Organized

Chapter	1:	Defining	Complexity

What	Is	Complexity?

Anything	I	Don’t	Understand

Anything	with	a	Lot	of	Parts

Anything	for	Which	There	Is	More	State	Than	Required	to	Achieve	a	Goal

Unintended	Consequences

Why	So	Much	Complexity?

Future	Extensions	versus	New	Protocols

Unexpected	Errors

Why	Not	Build	Infinitely	Complex	Systems?

Quick,	Cheap,	and	High	Quality:	Choose	Two

Consistency,	Availability,	and	Partition	Tolerance:	Choose	Two

Journey	into	the	Center	of	Complexity

Chapter	2:	Components	of	Complexity

Network	Convergence

Path	Vector:	A	BGP	Example

Distance	Vector:	An	EIGRP	Example

Link	State:	OSPF	and	IS-IS	Convergence

State

Amount	of	Information

An	Example	of	State	Failure	in	the	Real	World

Final	Thoughts	on	State

Speed

The	Network	That	Never	Converges

The	Flapping	Link

Final	Thoughts	on	Speed

Surface

The	Hourglass	Model

Optimization

A	Final	Thought

Chapter	3:	Measuring	Network	Complexity

Some	Measures	of	Network	Complexity

Network	Complexity	Index

Modeling	Design	Complexity

NetComplex

Organized	Complexity

Is	This	a	Waste	of	Time?

A	Final	Thought

Chapter	4:	Operational	Complexity

Exploring	the	Problem	Space

The	Cost	of	Human	Interaction	with	the	System

Policy	Dispersion	versus	Optimal	Traffic	Handling

Solving	the	Management	Complexity	Problem

Automation	as	a	Solution	to	Management	Complexity

Modularity	as	a	Solution	to	Management	Complexity

Protocol	Complexity	versus	Management	Complexity

A	Final	Thought

Chapter	5:	Design	Complexity

Control	Plane	State	versus	Stretch

Aggregation	versus	Stretch

Traffic	Engineering

State	versus	Stretch:	Some	Final	Thoughts

Topology	versus	Speed	of	Convergence

Ring	Topology	Convergence

Redundancy	versus	Resilience

Topology	versus	Speed	of	Convergence:	Some	Final	Thoughts

Fast	Convergence	versus	Complexity

Improving	Convergence	with	Intelligent	Timers:	Talk	Faster

Removing	Timers	from	Convergence:	Precompute

Working	around	Topology:	Tunneling	to	the	Loop-Free	Alternate

Some	Final	Thoughts	on	Fast	Convergence

Virtualization	versus	Design	Complexity

Functional	Separation

Forwarding	Plane	Complexity

Control	Plane	Complexity

Shared	Fate	Risk	Groups

A	Final	Thought

Chapter	6:	Managing	Design	Complexity

Modularity

Uniformity

Interchangeable	Modules

How	Modularity	Attacks	the	Complexity	Problem

Information	Hiding

Aggregation

Failure	Domains	and	Information	Hiding

Final	Thoughts	on	Information	Hiding

Models

Waterfall

Places	in	the	Network

Hierarchical

UML

A	Final	Thought

Chapter	7:	Protocol	Complexity

Flexibility	versus	Complexity:	OSPF	versus	IS-IS

Layering	versus	Protocol	Complexity

The	Seven-Layer	Model

The	Four-Layer	Model

The	Iterative	Model

Protocol	Stacks	and	Design

Protocol	Complexity	versus	Design	Complexity

Microloops	and	Fast	Reroute

EIGRP	and	the	Design	Conundrum

Final	Thoughts	on	Protocol	Complexity

Chapter	8:	How	Complex	Systems	Fail

Feedback	Loops

Positive	Feedback	Loops	in	Network	Engineering

Speed,	State,	and	Surface:	Stability	in	the	Network	Control	Plane

Shared	Fate

Virtual	Circuits

TCP	Synchronization	as	a	Shared	Fate	Problem

A	Final	Thought

Thoughts	on	Root	Cause	Analysis

Engineering	Skills	and	Failure	Management

Chapter	9:	Programmable	Networks

Drivers	and	Definition

Business	Drivers

The	Ebb	and	Flow	of	Centralization

Defining	Network	Programmability

Use	Cases	for	Programmable	Networks

Bandwidth	Calendaring

Software-Defined	Perimeter

Programmable	Network	Interfaces

The	Programmable	Network	Landscape

OpenFlow

YANG

Path	Computation	Element	Protocol

Interface	to	the	Routing	System

A	Final	Thought

Chapter	10:	Programmable	Network	Complexity

The	Subsidiarity	Principle

Policy	Management

Policy	Dispersion

Policy	Consistency

Policy	Complexity

Surface	and	the	Programmable	Network

Impact	on	Failure	Domains

Wide	Area	Failure	Domains

Data	Center	Failure	Domains

Application	to	Control	Plane	Failure	Domain

Controller	to	Controller	Failure	Domain

Final	Thoughts	on	Failure	Domains

A	Final	Thought

Chapter	11:	Service	Virtualization	and	Service	Chaining

Network	Function	Virtualization

NFV:	A	Use	Case

Service	Chaining

Service	Function	Chaining

Segment	Routing

A	Final	Thought

Chapter	12:	Virtualization	and	Complexity

Policy	Dispersion	and	Network	Virtualization

State	and	Service	Chaining

State	and	Optimization

Surface	and	Policy	Interaction

Surface	and	Policy	Proxies

Other	Design	Considerations

Coupling	and	Failure	Domains

Troubleshooting

The	Orchestration	Effect

Managing	Complexity

A	Final	Thought

Chapter	13:	Complexity	and	the	Cloud

Where	Does	the	Complexity	Live?

Cloud	Centric

Vendor	Centric

Network	Centric

Is	There	a	“Right	Way?”

Centralize	What?

Cloudy	Complications

Security

Data	Portability

A	Final	Thought

Chapter	14:	A	Simple	Ending

Defining	Complexity

Difficult	to	Understand

Unintended	Consequences

Large	Numbers	of	Interacting	Parts

What	Makes	Something	“Too	Complex”?

Complexity	Is	a	Tradeoff

Modeling	Complexity

Managing	Complexity	in	the	Real	World

Don’t	Ignore	Complexity

Find	a	Model	to	Contain	the	Complexity

A	Final	Thought

Index

Introduction

Every	engineer,	no	matter	what	type	of	engineering	they	do,	face	complexity	almost
constantly.	The	faster,	cheaper,	higher	quality	triad	are	the	constant	companion	of
everything	the	engineer	does.	Sometimes,	though,	the	complexity	isn’t	so	obvious.	For
instance,	how	long	will	the	software	project	take?	Two	hours,	two	weeks,	or	too	long	is
the	common	reply—another	encounter	with	complexity.

While	research	into	complexity	theory	has	proceeded	apace	in	the	scientific	and
mathematical	worlds,	the	application	of	the	theories	and	ideas	to	more	practical
engineering	problems,	particularly	in	a	way	that	the	“average	engineer”	can	read	and
understand,	simply	hasn’t	kept	pace.	This	book	aims	to	fill	that	gap	for	network
engineering.

In	a	move	that	will	probably	be	disappointing	to	readers	with	a	math	degree,	this	book
is	devoid	of	the	elegant	mathematical	models	complexity	theorists	are	working	with.
Rather,	the	focus	is	on	the	practical	application	of	the	theoretical	constructs	of	complexity.
Instead	of	being	focused	on	the	“pure	theory”	and	math,	this	book	is	focused	on	the
practical	application	of	the	ideas	being	investigated	by	complexity	theorists.

This	book,	then,	is	targeted	at	the	“average”	network	engineer	who	wants	to	gain	an
understanding	of	why	particular	common	constructs	work	the	way	they	do,	such	as
hierarchical	design,	aggregation,	and	protocol	layering.	By	getting	behind	these	widely
accepted	ways	of	designing	a	network,	exposing	the	reasons	for	the	tradeoffs	designed	into
the	system	in	each	case,	the	authors	hope	the	reader	learns	to	take	lessons	learned	in	one
area	and	apply	them	to	other	areas.	After	reading	this	book,	network	engineers	should
begin	to	understand	why	hierarchical	design	and	layering,	for	instance,	work,	and	how	to
see	and	change	the	tradeoffs	in	more	specific	situations.

How	This	Book	Is	Organized
This	book	begins,	in	the	first	chapter,	with	a	high	level	view	of	complexity	theory.	This	is
not	deep	theory,	but	it	is	rather	designed	to	provide	a	hands-on	view	of	complexity	without
diving	into	heavy	math	(or	any	math	at	all).	The	second	chapter	provides	an	overview	of
various	attempts	at	measuring	complexity	in	a	network,	including	some	of	the	problems
plauging	each	attempt.	The	third	chapter	proposes	a	model	of	complexity	that	will	be	used
throughout	the	rest	of	the	book.

Chapter	4	through	7	consider	examples	of	complexity	in	network	and	protocol	design.
The	point	these	chapters	attempt	to	drive	home	is	how	the	models	and	concepts	in	the	first
three	chapters.	Chapter	8	is	something	of	an	important	detour	into	the	world	of	complex
system	failure	in	network	engineering	terms.	The	rest	of	the	book	is	dedicated	to	first
providing	an	overview	of	three	new	technologies	network	engineers	face	at	the	time	of
writing,	and	then	an	analysis	of	each	one	in	terms	of	complexity	tradeoffs.

Note,	Documents	referenced	with	the	form	draft-xxx	are	IETF	works	in	progress,	and
therefore	do	not	have	stable	document	names	or	uniform	resource	locators	(URLs).
Because	of	these	limitations,	explicit	references	have	not	been	given,	but	rather	just	the
title	of	the	document	and	the	document	name.	To	find	these	documents,	please	perform	a

document	search	at	the	IETF	website	(ietf.org).

http://ietf.org

Chapter	1.	Defining	Complexity

Computer	networks	are	complex.

But	what	does	“computer	networks	are	complex”	mean?	Can	you	put	a	network	on	a
scale	and	have	the	needle	point	to	“complex”?	Is	there	a	mathematical	model	into	which
you	can	plug	the	configurations	and	topology	of	a	set	of	network	devices	that	will,	in	turn,
produce	a	“complexity	index”?	How	do	the	concepts	of	scale,	resilience,	brittleness,	and
elegance,	relate	to	complexity?	The	answers	to	these	questions	are—unfortunately—
complex.	In	fact,	the	most	difficult	issue	involved	in	answering	these	questions	is	deciding
where	to	begin.

The	best	place	to	begin	is	at	the	beginning—in	this	case	a	few	definitions	of	complexity,
from	“everything	I	don’t	understand,”	to	“that	which	involves	a	lot	of	unintentional
consequences.”	There	is	at	least	some	truth	in	each	of	these	answers;	some	part	of	each	of
these	answers	is	helpful	in	building	a	picture	of	complexity	in	general,	and	complexity	in
network	design	and	architecture.

Once	the	meaning	of	complexity	has	been	examined,	this	book	will	turn	to	asking	why
computer	networks	must	be	complex	in	the	first	place.	Wouldn’t	things	be	a	lot	simpler	if
engineers	just	avoided	all	complexity	from	protocol	design	to	network	management?
Can’t	complexity	be	“managed	out”	in	some	way?	The	second	section	of	this	chapter
provides	an	overview	of	research	in	the	field	of	complexity.	As	it	turns	out,	complexity	is
a	necessary	tradeoff	in	the	real	world.	Getting	there	will	require	winding	through	some
rather—pardon	the	pun—complex	material.	It’s	going	to	be	necessary	to	look	at	the
components	of	complexity	and	to	dissect	a	broad	idea	into	a	set	of	components	that	can
actually	be	understood	in	a	useful	way.

Chapter	2,	“Components	of	Complexity,”	will	begin	investigating	the	intersection
between	complexity	and	network	engineering,	considering	various	reactions	to
complexity.	Network	engineers	tend	to	have	one	of	five	reactions	to	complexity,	three	of
which	can	be	shaped	into	positive	responses	and	two	are	generally	destructive.	The	three
positive	responses	are	as	follows:

1.	Abstract	the	complexity	away,	to	build	a	black	box	around	each	part	of	the	system,
so	each	piece	and	the	interactions	between	these	pieces	are	more	immediately
understandable.

2.	Toss	the	complexity	over	the	cubicle	wall—to	move	the	problem	out	of	the
networking	realm	into	the	realm	of	applications,	or	coding,	or	a	protocol.	As
RFC1925	says,	“It	is	easier	to	move	a	problem	around	(e.g.,	by	moving	the	problem
to	a	different	part	of	the	overall	network	architecture)	than	it	is	to	solve	it.”1

1.	Ross	Callon,	ed.,	“The	Twelve	Networking	Truths”	(IETF,	April	1996),	https://www.rfc-editor.org/rfc/rfc1925.txt.

3.	Add	another	layer	on	top,	to	treat	all	the	complexity	as	a	black	box	by	putting
another	protocol	or	tunnel	on	top	of	what’s	already	there.	Returning	to	RFC1925,	“It
is	always	possible	to	add	another	level	of	indirection.”2

2.	Ibid.

https://www.rfc-editor.org/rfc/rfc1925.txt

The	two	generally	negative	responses	are	as	follows:

1.	Become	overwhelmed	with	the	complexity,	label	what	exists	as	“legacy,”	and	chase
some	new	shiny	thing	that	will	solve	all	the	problems	in	what	is	perceived	as	a	much
less	complex	way.

2.	Ignoring	the	problem	and	hoping	it	will	go	away.	Arguing	for	an	exception	“just	this
once,”	so	a	particular	business	goal	can	be	met,	or	some	problem	fixed,	within	a
very	tight	schedule,	with	the	promise	that	the	complexity	issue	will	be	dealt	with
“later,”	is	a	good	example.

These	reactions	show	up	as	solutions	to	complexity	in	many	different	realms	of	network
design,	including	operational	complexity,	design	complexity,	and	protocol	complexity;
each	of	these	areas	will	be	examined	in	more	detail	in	individual	chapters	to	gain	a	better
understanding	of	the	costs	and	benefits	of	adding	complexity	in	each	one.

Once	all	this	background	material	is	covered,	it	will	be	time	to	turn	to	some	more
practical	examples.	The	basic	operation	and/or	concepts	behind	different	technologies	that
promise	to	help	tame	the	complexity	monster	in	our	networks	will	be	considered,
including	an	examination	of	where	each	one	reduces	and	increases	complexity.

The	final	chapter	will	bring	it	all	together.	The	final	goal	is	to	build	a	generalized	view
of	complexity	in	network	systems	that	can	be	applied	to	making	real	decisions	about
operations,	design,	and	protocols.	While	it	will	take	some	theory	to	get	from	here	to	there,
the	final	goal	is	imminently	practical:	to	learn	how	to	recognize	and	mange	complexity	in
the	real	world	of	computer	networks.

What	Is	Complexity?
When	confronted	with	the	question,	“what	is	complexity,”	you	might	reply,	“Complexity
—like	beauty—is	in	the	eye	of	the	beholder.”	It’s	harder	to	live	with	this	definition,
however,	because	it	internalizes	complexity.	Making	complexity	into	an	internal	state	of
mind,	or	an	impression,	leaves	complexity	with	no	corresponding	reality,	and	hence	leaves
engineers	with	no	tools	or	models	with	which	to	understand,	control,	or	manage
complexity.	On	the	other	hand,	there	is	real	value	in	confronting	the	perception	of
complexity,	as	the	perception	can	help	you	see,	and	understand,	the	reality	of	complexity
in	networks.

A	useful	place	to	begin	is	defining	complexity	with	two	broad	perceptions:	complexity
is	anything	I	don’t	understand,	and	complexity	is	anything	with	a	lot	of	(moving)	parts.
Moving	beyond	these,	it’s	important	to	consider	complexity	as	state	versus	intent,	and
then,	finally,	complexity	and	the	law	of	unintended	consequences.

Anything	I	Don’t	Understand
What	is	complex	for	one	person	might	be	simple	for	another.	Or,	as	Clarke’s	third	law
says,	“Any	sufficiently	advanced	technology	is	indistinguishable	from	magic.”3	From
these	observations,	you	could	conclude	that	complexity	is	anything	you	don’t	understand.
A	few	definitions	from	a	coder’s	point	of	view	illustrate	this	state	of	mind:

3.	Arthur	C.	Clarke,	Profiles	of	the	Future:	An	Inquiry	into	the	Limits	of	the	Possible	(London:	Phoenix,	2000),	n.p.

•	A	clean	solution	is	a	solution	that	works,	and	that	I	understand.

•	A	complex	solution	is	a	solution	that	works,	and	that	I	don’t	understand.

•	Obscure	code	is	code	that	I	don’t	understand,	and	isn’t	commented.

•	Self-documenting	code	is	code	that	I	wrote,	and	therefore	I	can	understand	without
comments.

•	A	hack	is	a	piece	of	code	that	doesn’t	work,	I	didn’t	write,	and	I	don’t	understand.

•	A	temporary	workaround	is	a	piece	of	code	that	I	did	write	and	I	do	understand.

But	is	“anything	I	don’t	understand”	a	workable	definition	in	the	real	world?	Several
points	should	illustrate	the	fallacy	of	settling	on	this	as	a	final	definition	of	complexity:

•	There	are	a	number	of	complex	systems	in	the	real	world	that	no	one	understands	in
their	entirety.	In	fact,	there	are	a	number	of	networks	in	the	real	world	that	no	one
understands	in	their	entirety.	It	might,	for	instance,	be	possible	for	a	network
operator	to	understand	one	specific	piece	of	the	Internet,	or	a	general	outline	of	how
the	Internet	really	works,	but	for	someone	to	claim	that	they	know	how	every	part
and	piece	of	the	Internet	works	would	be	absurd.

•	Increased	understanding	necessarily	means	reduced	complexity	if	this	definition	is
true.	For	any	given	phenomenon,	once	it	is	“understood”	in	purely	materialistic
terms,	it	can	be	declared	“not	complex.”	For	instance,	no	one	in	the	early	1900s
understood	the	complex	operation	of	a	biological	system	such	as	the	eye.	Since	that
time,	the	operation	of	the	eye	has	been	researched	and	documented	(at	least	to	some
degree).	Does	this	mean	the	eye	is	now	less	complex	than	it	once	was?

•	In	the	same	way,	understanding	the	intent	of	a	designer	might	make	a	design	appear
less	complex	without	actually	changing	the	design	itself.	For	instance,	using	Type-
Length-Value	(TLV)	constructions	in	a	protocol	might	seem	to	increase	the	overall
complexity	for	very	little	gain—but	when	future	proofing	a	protocol	against	new
functionality	is	taken	into	account,	using	more	complex	structures	might	make
perfect	sense.

In	short,	the	connection	between	complexity	and	understanding	is	tenuous	at	best—
gaining	a	better	understanding	of	any	given	system	doesn’t	really	make	it	less	complex,	it
just	makes	it	more	understandable.	Don’t	underestimate	the	underlying	premise	of	this
definition,	though.	Why	does	gaining	a	better	understanding	of	a	system	make	it	appear
less	complex?	Several	points	can	be	mentioned	here,	each	of	which	will	be	developed
more	fully	through	the	rest	of	this	book:

•	Understanding	how	a	system	works	allows	you	to	comprehend	and	account	for	the
interactions	between	the	various	parts.	One	of	the	steps	you	can	use	to	manage
complexity,	then,	is	to	discover	the	interactions	between	the	parts	of	the	system.

•	Understanding	how	a	system	works	allows	you	to	predict	the	output	based	on	a	set
of	given	inputs,	or	rather	to	construct	a	mental	model	of	the	system’s	output	based
on	inputs.	Another	step	you	can	use	to	manage	complexity	is	to	abstract	any	given
system	into	a	set	of	inputs	and	outputs	that	can	be	used	as	a	proxy	for	that	system
within	a	larger	context	(or	system).

•	A	mental	model	of	the	system	also	allows	you	to	recognize	when	the	system	isn’t
operating	correctly,	and	to	work	around	these	unplanned	outputs,	discover	why	the
system	is	acting	the	way	it	is	and	repair	the	fault,	or	determine	why	the	inputs	don’t
match	your	expectations	(and	correct	them).

While	defining	complexity	as	“anything	I	don’t	understand”	isn’t	a	full	definition,	it
does	help	scope	the	definition	in	some	very	important	ways.	Exploring	things	perceived	as
being	“hard	to	understand”	can	lead	to	a	fuller	definition—a	definition	that	will	be	more
useful	in	the	real	world.

Anything	with	a	Lot	of	Parts
In	designing	large-scale	solutions,	one	recurring	refrain	is	to	“use	the	minimum	possible
number	of	moving	parts.”	In	general,	anything	with	a	lot	of	parts	or	lots	of	different	parts
is	seen	as	complex,	from	large-scale	networks	to	complex	crystal	structures.	But	is	the
number	of	parts,	or	the	number	of	moving	parts,	or	even	the	number	of	different	parts,
really	a	proxy	for	complexity?	Not	necessarily.	Two	specific	examples	provide	counters	to
the	idea	that	the	number	of	moving	parts	is	a	good	determinate	of	complexity.

The	first	of	these	is	illustrated	in	Figure	1.1—a	three-dimensional	Mandelbulb	fractal
taken	at	a	high	resolution.4

4.	“File:Mandelbulb140a.JPG—Wikimedia	Commons,”	n.p.,	accessed	July	8,	2014,
https://commons.wikimedia.org/wiki/File:Mandelbulb140a.JPG.

Figure	1.1	A	Three-Dimensional	Mandelbulb

While	there	is	a	lot	of	apparent	complexity	in	the	illustration,	it	is	all	actually	created	by
iteratively	running	the	same	algorithm—so,	in	reality,	there	is	only	one	“moving	piece.”	A
second	example,	from	the	networking	world,	is	the	interaction	of	two	routing	protocols,

https://commons.wikimedia.org/wiki/File:Mandelbulb140a.JPG

such	as	Open	Shortest	Path	First	(OSPF)	and	the	Border	Gateway	Protocol	(BGP).	While
both	of	these	protocols	are	fairly	simple	in	their	design	and	construction,	deploying	either
one	in	a	large-scale	network	actually	involves	a	good	deal	of	complexity.	Layering	BGP
on	top	of	OSPF	adds	a	much	larger	amount	of	complexity	than	someone	unfamiliar	with
network	design	might	expect.	There	are	a	number	of	unexpected	interactions	between
these	two	protocols,	from	calculating	the	best	path	to	determining	the	next	hop	to	use
toward	a	specific	destination.	Their	interaction	while	converging	(in	reaction	to	a	change
in	the	network	topology)	can	be	especially	entertaining.

That	complex	patterns	can	result	from	simple	rule	sets	should	remind	you	not	to
confuse	the	appearance	of	complexity	with	complexity	itself.	Simply	because	something
looks	complex	does	not	mean	it	actually	is	complex;	instead	you	must	reach	beyond
appearances	to	get	a	true	understanding	of	complexity.	Something	with	a	lot	of	moving
parts	isn’t	necessarily	complex,	any	more	than	something	with	just	a	few	moving	parts	is
necessarily	simple.	What	really	matters	is	the	interaction	between	the	moving	parts.

•	The	more	often	each	piece	of	a	system	interacts	with	others,	and	the	more	pieces	any
given	piece	of	a	system	interacts	with,	the	more	complex	the	system	itself	will	be.
The	number	of	interactions	between	the	various	parts	of	a	system	can	be	called	the
interaction	plane;	the	larger	the	plane	of	interaction,	the	more	the	parts	of	the	system
interact	with	one	another.	Likewise,	the	smaller	the	plane	of	interaction,	the	less	the
parts	of	the	system	interact	with	one	another.

•	The	deeper	the	relationship	between	the	various	parts	of	a	system,	the	more	complex
the	system	will	be.

Figure	1.2	illustrates	these	concepts	in	a	more	visual	way.

Figure	1.2	Illustration	of	Interaction	Surface	and	Depth

To	give	a	more	concrete	example,	consider	an	application	designed	to	run	across	a
network.	Four	possibilities	are	provided	in	order	of	increasing	complexity,	parallel	to	the
illustration	in	Figure	1.2:

•	One	instance	of	the	application	transmits	blocks	of	information	using	the
Transmission	Control	Protocol	(TCP),	while	a	second	instance	receives	this
information.	The	application	relies	on	TCP	and	the	underlying	network	to	deliver
these	blocks	of	information	without	error,	but	doesn’t	possess	any	information	about
the	TCP	process’	current	state	or	implementation.	This	would	be	a	shallow,	narrow
interaction	surface;	the	application	interacts	with	TCP	in	multiple	places,	but	knows
little	about	TCP’s	internal	state.

•	One	instance	of	the	application	transmits	blocks	of	information	using	TCP,	while	a
second	instance	receives	this	information.	Because	the	information	being	transmitted
can	sometimes	be	time	sensitive,	the	application	examines	the	state	of	the	TCP
queue	from	time	to	time,	adjusting	the	rate	at	which	it	is	sending	blocks,	and	can
request	the	TCP	process	to	push	a	block,	rather	than	waiting	for	the	TCP	buffer	to
fill	up.	This	is	a	deeper	interaction	surface	because	the	application	must	now
understand	something	about	the	way	TCP	works,	and	interact	with	how	TCP	works
intelligently.	The	interaction	surface	is	still	narrow,	however,	as	it	is	only	between
TCP	and	the	application	at	multiple	points.

•	One	instance	of	the	application	transmits	blocks	of	information	using	TCP,	while	a
second	instance	receives	this	information.	As	in	the	first	example,	the	application
doesn’t	interact	with	TCP’s	state	in	any	way;	it	simply	places	blocks	of	data	into
TCP’s	buffer	and	assumes	TCP	will	deliver	it	correctly	across	the	network.	The
application	is,	however,	time	sensitive,	and	therefore	also	reads	the	clock,	which	is
dependent	on	Network	Time	Protocol	(NTP)	for	accuracy,	on	a	regular	basis.	This
interaction	surface	can	be	considered	a	bit	broader,	as	the	application	is	now
interacting	with	two	different	network	protocols,	but	both	interactions	are	rather
shallow.

•	One	instance	of	the	application	transmits	blocks	of	information	using	TCP,	while	a
second	instance	receives	this	information.	Because	the	information	being	transmitted
is	time	sensitive,	the	application	examines	the	state	of	the	TCP	queue	from	time	to
time,	adjusting	the	rate	at	which	it	is	sending	blocks,	and	can	request	the	TCP
process	to	push	a	block,	rather	than	waiting	for	the	TCP	buffer	to	fill	up.	To	time
these	push	requests,	the	application	monitors	the	local	time,	which	it	assumes	is	kept
synchronized	among	multiple	devices	using	NTP	(or	some	similar	solution).	The
interaction	surface	in	this	example	is	both	broader	and	deeper,	in	that	the	application
again	needs	to	know	the	inner	workings	of	TCP’s	data	transmission.	It	is	also
broader,	in	that	the	application	is	interacting	with	two	protocols	(or	systems,	in	the
larger	sense),	rather	than	one.	In	fact,	in	this	example,	the	state	of	NTP	is	now	tied	to
the	internal	state	of	TCP	through	the	application—and	neither	protocol	knows	about
this	connection.

The	interaction	surface,	then,	is	simply	the	number	of	places	where	two	systems	interact
and	the	depth	of	those	interactions;	each	additional	Application	Programming	Interface
(API),	socket,	or	other	point	of	contact	increases	the	interaction	surface.	It’s	clear	that	as

the	amount	and	level	of	interaction	between	two	subsystems	within	a	system	increases,	the
complexity	level	is	driven	up.

These	concepts	will	be	related	to	network	design	and	architecture	more	fully	as	this
book	works	through	various	examples,	but	consider	this:	OSPF	and	Intermediate	System-
to-Intermediate	System	(IS-IS),	for	instance,	run	as	“ships	in	the	night”	routing	protocols.
They	both	rely	on	the	same	information	about	IP	addresses,	link	states,	metrics,	and	other
information	drawn	directly	from	the	network	topology.	OSPF	and	IS-IS,	even	if	they’re
running	on	the	same	network,	don’t	interact	unless	they	are	configured	to	interact	(through
redistribution,	for	instance).	Do	OSPF	and	BGP	interact	in	the	same	way?	No,	because
BGP	relies	on	the	underlying	IGP	to	provide	IP	reachability	for	building	peering
relationships	and	next	hop	information.	Using	the	model	described	here,	the	interaction
surface	is	larger	between	OSPF	and	BGP	than	it	is	between	OSPF	and	IS-IS,	and	the	APIs
are	fairly	opaque.

Anything	for	Which	There	Is	More	State	Than	Required	to	Achieve	a
Goal
Virtually	anyone	in	the	engineering	world	has	seen	a	cartoon	of	a	Rube	Goldberg
Machine,	such	as	the	one	in	Figure	1.3.5

5.	Public	domain;	taken	from:	“Professor_Lucifer_Butts.gif	(428	×	302),”	n.p.,	accessed	July	7,	2014,
https://upload.wikimedia.org/wikipedia/commons/a/a6/Professor_Lucifer_Butts.gif.

Figure	1.3	A	Rube	Goldberg	Machine

Quite	often	these	contraptions	were	labeled	as	a	simple	way	to	solve	some	problem,
from	using	a	napkin	during	a	meal	(as	in	Figure	1.3)	to	jacking	a	car	up	to	replace	the	tire
(an	elephant	atop	the	car	is	induced	to	move	onto	a	platform	that	levers	one	end	of	the	car

https://upload.wikimedia.org/wikipedia/commons/a/a6/Professor_Lucifer_Butts.gif

up	into	the	air).	Simple	is	the	key	word,	because	these	machines	were	obviously	anything
other	than	simple.	But	why	are	such	machines	considered	complex—even	to	the	point	of
being	humorously	complex?	Because	they	illustrate	two	specific	points	about	the	nature	of
complexity.

Rube	Goldberg’s	contraptions	are	always	multistep	solutions	for	a	simple	problem.	The
automatic	napkin	machine	shown	in	Figure	1.3,	for	instance,	replaces	the	simple	action	of
picking	the	napkin	up	and	wiping	your	mouth	with	it.	It’s	absurd	to	use	such	a	machine
when	you	obviously	have	one	hand	free	that	could	be	used	for	the	same	task—and	even	if
your	other	hand	isn’t	free,	it’s	simpler	to	put	a	fork	down	on	the	table	and	pick	up	a	napkin
than	to	build	this	crazy	machine	to	do	the	same	thing.	Your	perception	of	complexity,	then,
is	related	to	the	relationship	between	the	problem	being	solved	and	the	solution	offered.
Any	system	that	adds	unnecessary	steps,	interactions,	or	parts	to	solve	a	specific	problem
is	seen	as	complex,	no	matter	how	simple	the	problem	or	the	solution	when	viewed
objectively.

Rube	Goldberg’s	contraptions	always	focus	on	the	problem	at	hand	to	the	exclusion	of
the	side	effects	of	the	solution	proposed.	The	automatic	napkin	requires	a	rocket	that	must
be	replaced	each	time	it	is	used,	a	bird	that	must	be	fed,	a	clock	that	must	be	wound	and
maintained,	and	a	biscuit	that	must	be	replaced	after	each	use.	Is	the	solution	really
simpler	than	picking	a	napkin	up?	The	elephant	used	to	lever	the	car	up	so	the	tire	can	be
replaced	must	be	carried	and	fed.	What	should	the	owner	of	the	car	do	when	the	elephant
is	asleep	and	the	tire	needs	to	be	replaced?

The	comic	genius	of	Rube	Goldberg	and	his	fabulous	machines	teaches	us:

•	The	complexity	of	the	solution	must	be	directly	related	to	the	problem	being	solved.
If	there	is	a	simpler	solution	available,	engineers	will	(and	should)	gravitate	to	that
solution.	Call	this	the	“Occam’s	Razor”	of	complexity	in	engineering:	if	two
solutions	have	been	proposed	to	resolve	a	problem,	the	simpler	solution	should
always	be	preferred,	given	both	solutions	solve	the	problem	equally	well.

•	It	is	easy	to	create	unnecessary	complexity	by	narrowing	the	focus	too	far.	A	simpler
solution	might	actually	seem	simpler	until	it	meets	the	test	of	the	future,	or	engages
with	reality.	It	might	seem	easier	to	design	a	protocol	with	just	the	encodings
needed,	and	without	messy	constructions	like	TLVs—at	least	until	you	need	to
modify	the	protocol	to	address	some	problem	you	didn’t	think	of	when	doing	the
initial	design	work.	To	put	this	another	way,	there	is	often	an	unexpected	brittleness
to	the	(apparently)	cleanest	and	simplest	design	available.	In	the	same	way,	not	all
the	problems	with	a	particular	solution	are	obvious	until	the	solution	is	actually
deployed.

Examples	of	these	two	principles	will	crop	up	on	a	regular	basis	as	you	consider
specific	instances	of	complexity	in	the	real	worlds	of	network	architecture	and	network
protocol	design.

Unintended	Consequences
In	1996,	websites	discussing	the	Super	Bowl,	the	most	famous	football	game	in	the	world,
were	being	blocked	by	various	search	engines.	Why	would	any	search	engine	on	the
Internet	block	sites	related	to	football?	Because	each	Super	Bowl	is	numbered	sequentially
starting	in	1967	with	the	first	game,	Super	Bowl	I.	The	numbers	in	the	name	have	always
been	in	roman	numerals.	The	1996	Super	Bowl	was	game	number	30,	so	it	was
appropriately	called	Super	Bowl	XXX.	But	XXX	also	represents	a	particular	type	of
material	widely	available	on	the	Internet	that	many	people	don’t	want	to	see	in	their	search
results.	Hence,	Super	Bowl	XXX,	because	of	the	“XXX,”	was	blocked	from	many	search
engines.6

6.	“E-Rate	and	Filtering:	A	Review	of	the	Children’s	Internet	Protection	Act”	(General.	Energy	and	Commerce,
Subcommittee	on	Telecommunications	and	the	Internet,	April	4,	2001),	n.p.,	accessed	July	8,	2014,
http://www.gpo.gov/fdsys/pkg/CHRG-107hhrg72836/pdf/CHRG-107hhrg72836.pdf.

This	(perhaps	amusing)	story	is	one	of	a	long	chain	of	such	incidents	in	the	history	of
attempting	to	censor	content	on	the	Internet—but	it	makes	a	larger	point	about	the	power
of	unintended	consequences.	In	1996,	Robert	K.	Merton	listed	five	sources	of	unintended
consequences.7	Three	of	these	directly	apply	to	large	computer	network	systems:

7.	Robert	K.	Merton,	“The	Unanticipated	Consequences	of	Purposive	Social	Action,”	American	Sociological	Review
1,	no.	6	(December	1,	1936):	894–904,	accessed	September	15,	2015,	http://www.jstor.org/stable/2084615.

•	Ignorance,	making	it	impossible	to	anticipate	everything,	thereby	leading	to
incomplete	analysis

•	Errors	in	analysis	of	the	problem	or	following	habits	that	worked	in	the	past	but	may
not	apply	to	the	current	situation

•	Immediate	interests	overriding	long-term	interests

How	does	the	concept	of	unintended	consequences	apply	to	the	complexity	of	a
network?	As	a	system	becomes	more	complex,	it	becomes	more	difficult	to	predict	the
output	based	on	any	given	input.	As	an	example,	a	lot	of	research	is	done	into	the	real
results	of	various	inputs	into	the	Internet	routing	system—how	long	does	it	take	for	an
update	in	topology	or	reachability	to	propagate	throughout	the	Internet	as	a	whole,	how
does	one	provider	changing	or	implementing	a	specific	policy	impact	other	providers,	and
how	do	seemingly	straightforward	ideas,	such	as	route	flap	dampening	work	in	the	real
world?	That	research	must	be	undertaken	to	discover	the	answers	to	these	questions
implies	that	the	Internet,	at	large,	is	a	complex	system.	Given	a	specific	input,	you	can
guess	at	a	likely	outcome,	but	there’s	no	assurance	that	the	outcome	will	be	what	you
expect.

Large	complex	systems	with	a	lot	of	interconnected	parts	are	difficult	to	analyze,
leading	to	incomplete	analysis,	and	hence	unintended	consequences	through	ignorance.	In
a	large	enough	system,	with	enough	components	that	have	transparent	interactions	and
large	interaction	surfaces,	it’s	almost	impossible	to	know	all	the	ways	in	which	a	single
change	will	affect	the	system.

In	the	same	way,	large	complex	systems	tend	to	be	managed	more	by	experience	(seat
of	the	pants	flying)	and	rule	of	thumb—the	cost	to	do	a	full	analysis	is	often	perceived	to

http://www.gpo.gov/fdsys/pkg/CHRG-107hhrg72836/pdf/CHRG-107hhrg72836.pdf
http://www.jstor.org/stable/2084615

be	much	higher	than	the	cost	of	a	failure	if	the	rule	of	thumb	is	wrong.	This	again	relates
to	the	problem	of	complexity	through	the	scale	and	subsystem	interaction.	The	more
complex	a	system,	the	more	likely	errors	in	analysis	are	to	creep	into	everyday	operational
models.

Note

Before	pilots	had	instruments	that	could	tell	them	the	angle	of	the	airplane
(called	yaw,	pitch,	and	roll),	they	would	“fly	by	the	seat	of	their	pants.”	This
literally	means	that	they	would	judge	the	speed	of	the	plane	in	relation	to	the
sharpness	of	a	turn	by	whether	or	not	they	slid	in	their	seat	when	making	the
turn.	If	you	were	sliding	in	your	seat,	you	weren’t	flying	fast	enough	for	the
turn—the	centrifugal	force	of	the	speed	of	the	plane	in	the	turn	should	keep
the	pilot	in	place	in	the	seat.

The	final	problem	is	one	every	network	engineer	knows	well—it’s	the	two-in-the-
morning	phone	call,	the	application	that’s	down	and	will	cost	the	company	millions	if	it’s
not	“up—right	now,”	and	the	shortcut	taken	to	get	things	back	working.	We	always	tell
ourselves	we’ll	look	at	it	in	the	morning,	or	we’ll	put	it	on	the	to-do	list	to	fix	sometime
later,	but	the	tyranny	of	the	immediate	takes	over	soon	enough,	and	the	hack	stays	in	as
part	of	the	normal	operational	profile	of	the	network.	A	single	hack	in	a	network	of	a
thousand	routers	might	not	seem	like	it	will	have	many	negative	consequences.	In	reality,
however,	a	single	hack	can	quickly	bring	down	a	thousand-router	network,	and	a	thousand
hacks	in	a	network	of	ten	thousand	routers,	however,	are	a	disaster	just	waiting	to	happen.

Note

Another	term	for	the	concept	of	building	in	complexity	simply	to	address	a
problem	at	hand,	without	considering	the	future	impact,	is	technical	debt.8

8.	“Technical	Debt,”	Wikipedia,	the	Free	Encyclopedia,	September	2,	2015,	accessed	September	15,	2015,
https://en.wikipedia.org/w/index.php?title=Technical_debt&oldid=679133748.

The	power	of	unintended	consequences	teaches	that	to	better	understand,	and	manage,
network	complexity,	engineers	need	to	focus	on	the	ability	to	analyze	and	understand	the
various	states	and	interactions	between	the	various	components	used	to	build	a	functioning
network.	The	more	tools	and	concepts	you	can	apply	to	understanding	the	various	states
into	which	a	network	can	fall—such	as	models	and	measurement	tools—the	better	you
will	be	able	to	deal	with	complexity	in	the	real	world.	At	the	same	time,	there	is	a	limit	to
human	understanding,	and	therefore	a	limit	to	the	number	of	side	effects	anyone	can
foresee.

https://en.wikipedia.org/w/index.php?title=Technical_debt&oldid=679133748

Why	So	Much	Complexity?
If	complexity	is	so—complex—then	why	not	just	design	networks	and	protocols	that	are
simpler?	To	put	the	question	another	way,	why	does	every	attempt	to	make	anything
simpler	in	the	networking	world	end	up	apparently	making	things	more	complex	in	the
long	run?	For	instance,	by	tunneling	on	top	of	(or	through)	IP,	the	control	plane’s
complexity	is	reduced,	and	the	network	is	made	simpler	overall.	Why	is	it,	then,	that
tunneled	overlays	end	up	containing	so	much	complexity?

There	are	two	answers	to	this	question.	The	first	is	that	human	nature	being	what	it	is,
engineers	will	always	invent	ten	different	ways	to	solve	the	same	problem.	This	is
especially	true	in	the	virtual	world,	where	new	solutions	are	(relatively)	easy	to	deploy,	it’s
(relatively)	easy	to	find	a	problem	with	the	last	set	of	proposed	solutions,	and	it’s
(relatively)	easy	to	move	some	bits	around	to	create	a	new	solution	that	is	“better	than	the
old	one.”	The	virtual	space,	in	other	words,	is	partially	so	messy	because	it’s	so	easy	to
build	something	new	there.

The	second	answer,	however,	lies	in	a	more	fundamental	problem:	complexity	is
necessary	to	deal	with	the	uncertainty	involved	in	difficult	to	solve	problems.	Alderson
and	Doyle	state:

In	our	view,	however,	complexity	is	most	succinctly	discussed	in	terms	of
functionality	and	its	robustness.	Specifically,	we	argue	that	complexity	in
highly	organized	systems	arises	primarily	from	design	strategies	intended	to
create	robustness	to	uncertainty	in	their	environments	and	component	parts.9

9.	David	L.	Alderson	and	John	C.	Doyle,	“Contrasting	Views	of	Complexity	and	Their	Implications	for	Network-
Centric	Infrastructures,”	IEEE	Transactions	on	Systems,	Man,	and	Cybernetics	40,	no.	4	(July	2010):	840.

This	statement	can	be	expressed	in	a	chart	as	shown	in	Figure	1.4.

Figure	1.4	Complexity,	Robustness,	and	Solution	Effectiveness

This	is	counterintuitive—in	fact,	it’s	almost	the	opposite	of	most	discussions	around
network	engineering.	Engineers	often	assume	that	increasing	simplicity	leads	to	increasing
robustness—but	this	is	not	true.	Instead,	increasing	complexity	increases	robustness	until
the	solution	moves	beyond	the	peak	on	the	robustness	curve.	Why	should	this	be?	Because
of	uncertainty.	As	a	simple	example,	let’s	return	to	TLV	encodings	often	used	in	network

protocols.	Which	is	better?

•	Designing	a	protocol	that	can	handle	a	large	number	of	situations	in	its	original
format,	and	also	support	many	different	extensions	that	hadn’t	been	thought	of	when
the	protocol	was	designed.

•	Designing	a	protocol	that	will	support,	using	the	minimal	set	of	information
possible,	the	requirements	laid	out	at	the	very	beginning	of	the	design	phase.

There	is	a	strong	argument	to	be	made,	in	the	single	protocol	case,	for	the	second	option
—designing	the	protocol	to	support	the	requirements	presented	at	the	beginning	of	the
design	phase	with	the	minimal	amount	of	information	required.	There	are	two	specific
reasons;	the	second	might	appear	to	be	the	most	optimal.

The	on-the-wire	profile	of	an	optimally	designed	protocol	will	always	be	smaller	than
one	designed	with	flexible	additions.	For	any	TLV,	there	must	be	a	TLV	header—
something	must	describe	the	type	and	length	of	the	value.	On	the	other	hand,	any	protocol
that	is	designed	to	optimally	carry	just	a	specific	set	of	information	doesn’t	need	to	carry
any	information	about	what	the	carried	information	is.	To	put	this	in	other	terms,	the
metadata,	or	data	description,	must	be	carried	with	the	data	if	the	protocol	is	to	be	flexible
enough	to	add	new	data	types	in	the	future.	If	the	protocol	is	“closed,”	however,	the
metadata	is	part	of	the	protocol	description,	and	need	not	be	carried	on	the	wire	with	the
data.	The	metadata	in	a	flexible	protocol	is	internalized,	or	carried	in	line	with	the	data
itself	to	create	flexibility;	it	is	externalized,	or	located	in	the	protocol	implementation,	to
create	optimal	use	of	bits	on	the	wire.

The	processing	profile	of	an	optimally	designed	protocol	will	always	be	better	than	one
designed	with	flexible	additions.	In	the	same	way,	a	protocol	designed	around	TLVs,	or
any	other	format	that	allows	more	types	of	information	to	be	carried	in	the	future,	will
require	more	complex	processing.	Offsets	into	the	packet	cannot	be	used	to	find	any	piece
of	information	contained	anywhere	in	the	packet—instead,	the	data	stream	must	be
“walked,”	to	find	the	next	TLV	header,	and	the	TLV	must	be	processed	according	to	a	set
of	per	TLV	rules.	See	Figure	1.5	for	an	illustration	of	this	concept.

Figure	1.5	TLV	versus	Optimally	Structured	Packet	Formats

Compare	the	processing	required	to	find	the	octet	containing	the	value	of	X	in	both
cases.	For	the	optimally	formatted	packet:

•	Count	off	14	octets.

•	Read	the	value	of	X	from	the	contents	of	the	14th	octet.

For	the	TLV	formatted	packet:

•	Read	the	first	TLV	header.

•	This	is	a	Y	TLV;	find	the	length	and	skip	to	the	end	of	the	TLV	in	the	packet.

•	Read	the	second	TLV	header.

•	This	is	a	Z	TLV,	find	the	length	and	skip	to	the	end	of	the	TLV	in	the	packet.

•	Read	the	third	TLV	header.

•	This	is	an	X	TLV.

•	Jump	into	the	X	TLV,	based	on	the	format	of	this	particular	TLV,	and	read	the	value
of	X.

The	processing	for	the	optimally	formatted	packet	is	much	simpler;	processing	TLVs
requires	more	bits	to	be	moved	into	and	out	of	memory,	examined,	etc.	Protocols
optimized	to	carry	very	specific	pieces	of	data	can	have	that	data	organized	to	make
processing	easier,	and	hence	to	reduce	processor	utilization.	This	is	particularly	important
in	the	area	of	packet	switching,	where	customized	hardware	is	used	to	switch	packets	at	a
very	high	rate,	and	other	places	where	hardware	is	used	to	process	packets	in	near	real
time.

On	the	other	side	of	this	equation,	however,	there	is	the	unexpected	(or	unpredicted).
Using	the	TLV	example	allows	you	to	see	this	in	two	ways:	future	extensions	and	error
handling.

Future	Extensions	versus	New	Protocols
Assume	you’ve	designed	some	new	protocol	that	is	perfectly	optimized	both	on	the	wire
and	in	terms	of	processing	requirements	to	transport	information	about	the	number	of
widgets	being	produced	on	a	daily	basis	in	each	factory	at	a	large	company.	Soon	enough,
the	company	sees	an	opportunity	in	offering	loans	for	anyone	who	wants	to	buy	one	of
these	widgets,	and	a	new	requirement	arises:	the	ability	to	transport	information	about
loans	for	widgets	across	the	network.	In	the	spirit	of	perfectly	optimized	network
performance,	you	design	a	new	protocol	to	transport	loan	information	across	the	network
—again,	the	protocol	is	designed	to	minimize	bandwidth	utilization	and	processing
requirements	throughout	the	network.	As	the	loan	business	expands,	the	company	decides
high	finance	is	a	good	business	to	be	in,	so	they	decide	to	expand	their	outlets	to	sell	not
just	widgets,	but	five	or	six	other	items,	and	to	provide	financing	for	each	of	those	items	as
well.	The	question	quickly	becomes—should	you	continue	designing	and	deploying
individual	protocols	to	manage	each	new	requirement	separately,	or	should	you	have
designed	a	single,	flexible	protocol	that	could	manage	a	wider	range	of	requirements	in	the
first	place?

In	the	TLV	format	example	discussed	previously,	TLV	formatted	packets	require	more
on-the-wire	bandwidth,	and	more	power	to	process,	but	they	also	allow	for	a	single
protocol	to	be	used	for	counting	widgets,	loans	for	widgets,	loans	in	general,	and	other
products	in	general.	If	a	protocol	is	designed	to	manage	a	broad	range	of	data	types	within
a	single	set	of	goals,	then	the	system	actually	ends	up	being	simpler	than	one	in	which
each	goal	is	met	with	a	separate	protocol.

This	example	might	be	a	little	stretched,	but	as	you	get	into	the	more	practical	sections
of	this	book	it	will	become	ever	more	apparent	just	how	it	is	a	real	question	designers	and
architects	face	on	a	regular	basis.	There	is	always	a	temptation	to	extend	the	network	by
simply	putting	a	new	protocol	“over	the	top,”	but	without	some	solid	ideas	about	goals,
functional	separation,	and	domain	separation,	“over	the	top,”	quickly	becomes	a
euphemism	for	“spaghetti	on	top	of	the	plate.”	Another	example	of	this	phenomenon	is
putting	a	protocol	designed	for	one	purpose	into	a	completely	different	role.	For	instance,
the	Resource	Reservation	Protocol	(RSVP)	was	originally	designed	to	reserve	queue	and
processing	space	along	a	path	for	a	particular	flow	of	packets.	The	most	common	use	for
RSVP	today	is	the	signaling	of	traffic	engineering	paths	through	a	network—a	purpose	far
outside	the	original	design	of	the	protocol.

Unexpected	Errors
Another	source	of	uncertainty	in	the	real	world	is	errors;	for	whatever	reason,	things	don’t
always	go	as	planned.	How	a	protocol	or	network	reacts	to	these	unexpected	events	is	a
crucial	consideration,	especially	as	networks	become	a	“normal”	part	of	life,	relied	on	for
everything	from	gaming	to	financial	transactions	to	medical	procedures.

An	example	of	added	complexity	for	added	robustness	in	the	area	of	handling	network
errors	is	the	error	detection	or	correction	code	found	in	many	protocols.	Figure	1.6
illustrates	a	simple	parity-based	scheme.

Figure	1.6	The	Parity	Bit	and	Error	Detection

The	parity	bit	is	a	simple	example	of	an	error	detection	code.	When	the	packet	is	built,
the	total	number	of	binary	1s	is	counted	to	determine	if	there	is	an	even	or	odd	number	of
1s.	If	the	number	of	1s	is	odd,	then	the	parity	bit	is	set	to	1	to	make	the	number	of	1s	even.
If	a	packet	is	received	where	the	total	number	of	1s,	including	the	parity	bit,	is	odd,	the
receiver	knows	that	the	packet	must	have	been	corrupted	during	transmission	in	some
way.	This	doesn’t	tell	the	receiver	what	the	correct	information	is,	but	it	does	let	the
receiver	know	it	needs	to	ask	for	another	copy	of	the	data.

Adding	a	parity	bit	increases	the	complexity	of	packet	processing.	Each	packet	must	be
stored	in	a	buffer	someplace	while	the	number	of	1s	in	the	packet	are	counted,	ignoring
the	parity	bit	itself.	If	the	number	of	1s	is	odd,	then	the	parity	bit	must	be	set	before	the

packet	is	transmitted.	The	receiver	must	likewise	take	the	extra	step	of	counting	the
number	of	1s	in	the	packet	before	accepting	the	data,	and	the	protocol	must	have	some
mechanism	built	in	for	the	receiver	to	ask	for	another	copy	of	the	information.	Is	this
added	complexity	worth	it?	It	all	depends	on	how	often	failures	that	can	be	detected
through	such	a	system	happen	in	normal	operation,	or	how	catastrophic	a	single	failure
would	be.	As	the	complexity	of	the	error	detection	or	correction	mechanism	ramps	up,	the
ability	of	the	application	to	recover	from	malformed	transmissions	is	also	increased.	The
cost	is	additional	packet	processing,	along	with	the	errors	potentially	introduced	through
the	addition	of	the	error	correction	code	itself.

Why	Not	Build	Infinitely	Complex	Systems?
Adding	complexity,	then,	allows	a	network	to	handle	future	requirements	and	unexpected
events	more	easily,	as	well	as	provides	more	services	over	a	smaller	set	of	base	functions.
If	this	is	the	case,	why	not	simply	build	a	single	protocol	running	on	a	single	network	that
can	handle	all	the	requirements	potentially	thrown	at	it,	and	can	handle	any	sequence	of
events	you	can	imagine?	A	single	network	running	a	single	protocol	would	certainly
reduce	the	number	of	moving	parts	network	engineers	need	to	deal	with,	making	all	our
lives	simpler,	right?

Maybe	not.	At	some	point,	any	complex	system	becomes	brittle—robust	yet	fragile	is
one	phrase	you	can	use	to	describe	this	condition.	A	system	is	robust	yet	fragile	when	it	is
able	to	react	resiliently	to	an	expected	set	of	circumstances,	but	an	unexpected	set	of
circumstances	will	cause	it	to	fail.	To	give	an	example	from	the	real	world—knife	blades
are	required	to	have	a	somewhat	unique	combination	of	characteristics.	They	must	be	hard
enough	to	hold	an	edge	and	cut,	and	yet	flexible	enough	to	bend	slightly	in	use,	returning
to	their	original	shape	without	any	evidence	of	damage,	and	they	must	not	shatter	when
dropped.	It	has	taken	years	of	research	and	experience	to	find	the	right	metal	to	make	a
knife	blade	from,	and	there	are	still	long	and	deeply	technical	discussions	about	which
material	is	right	for	specific	properties,	under	what	conditions,	etc.

There	is	one	specific	stage	of	making	a	knife	blade	of	particular	interest	in	the	quest	to
understand	complexity:	the	tempering	process.	To	temper	a	knife	blade,	the	blade	is	first
heated	to	a	very	high	temperature,	and	then	allowed	to	cool.	Repeating	this	process	several
times	aligns	the	molecules	of	the	steel	so	it	forms	a	grain	within	the	steel,	as	shown	in
Figure	1.7.10

10.	Image	taken	from	http://practicalmaintenance.net/wp-content/uploads/High-carbon-AISI-1095-Steel.jpg.

http://practicalmaintenance.net/wp-content/uploads/High-carbon-AISI-1095-Steel.jpg

Figure	1.7	Grain	in	Hardened	Steel

This	graining	acts	just	like	the	grain	in	wood,	creating	dimensional	strength,	thus
making	the	resulting	piece	of	steel	very	hard—in	fact,	steel	can	become	so	hard	through
this	process	that	it	can	shatter	if	dropped	on	a	hard	surface,	such	as	a	concrete	or	tile	floor.
The	blade,	at	this	point,	is	robust	yet	fragile;	it	is	able	to	achieve	its	primary	design
(cutting	material)	very	well,	but	it	doesn’t	react	well	to	unexpected	events	(being	dropped
on	a	hard	surface,	or	having	torsion	applied).	To	make	the	knife	useable,	the	blade	must	be
“detempered,”	before	it	is	actually	used.	To	do	this,	the	steel	is	heated	(normally	to	a
slightly	lower	temperature	than	used	in	hardening	the	steel),	and	then	quenched	in	a	bath
of	oil.	This	process	destabilizes	the	graining	the	hardening	process	has	created,	making	the
steel	slightly	softer—but	in	the	process,	the	steel	also	becomes	much	more	flexible.	The
end	result	of	the	process	is	a	blade	that	holds	an	edge,	is	hard	enough	to	cut,	and	yet	is
flexible	enough	for	everyday	use.

The	grain	created	through	the	hardening	process	represents	the	complexity	put	into
networks	and	protocols	in	various	ways,	such	as	adding	metadata	into	the	packet	format
by	adding	TLVs,	or	adding	more	paths	between	the	source	and	destination,	or	even
automating	a	process	that	is	normally	handled	by	humans	to	reduce	the	number	of
mistakes	made	in	handling	changes	to	the	network.	The	distempering	process	is	also
needed,	as	well,	in	the	form	of	layering	protocols,	setting	general	(and	often	narrow)	goals
for	different	parts	of	the	network,	breaking	up	failure	domains,	etc.

Complexity,	then,	can	be	seen	as	a	tradeoff.	If	you	go	too	far	down	the	scale	in	one
direction,	you	wind	up	with	a	network	that	isn’t	resilient	because	there	is	no	redundancy,
or	there	is	a	single	failure	domain,	etc.	If	you	go	down	the	scale	in	the	other	direction,	you
wind	up	with	a	network	that	isn’t	resilient	because	the	protocols	and	systems	cannot	cope
with	a	rapid	change.	There	is	no	“perfect	point”	on	this	scale—just	as	with	steel,	it	all
depends	on	the	goals	the	network	engineer	sets	out	to	meet.	Two	more	illustrations,	taken
from	the	technical	world,	will	help	to	cement	this	concept.

Quick,	Cheap,	and	High	Quality:	Choose	Two
Just	about	everyone	knows	this,	but	it	bears	repeating	on	a	regular	basis.	Faced	with	just
about	any	decision,	you	will	have	three	goals:	quick,	cheap,	and	high	quality.	Of	those
three,	you	can	choose	any	two—but	never	all	three.	If	you	choose	a	solution	that	is	cheap
and	quick,	you	will	almost	certainly	not	end	up	with	a	quality	solution.	If	you	choose	a
solution	that	is	high	quality	and	cheap,	it	will	take	a	long	time	to	implement.	You	can
visualize	this	three-way	tradeoff	in	a	somewhat	unusual	way,	as	shown	in	Figure	1.8.

Figure	1.8	The	Quick,	Cheap,	Quality	Conundrum

In	Figure	1.8,	the	darker	shaded	area	is	what	might	be	called	“the	realm	of	reality.”	The
larger,	more	lightly	shaded	triangle	is	what	might	be	called	“the	realm	of	goals.”	While	the
goals	contain	all	three	possibilities,	reality	is	structured	so	you	can	only	fill	some	part	of
the	goals	given.	You	can	choose,	as	on	the	far	left,	to	balance	all	three	goals	equally.	In	the
next	illustration,	the	focus	has	been	moved	to	quick,	with	a	resulting	movement	away	from
cheap	and	high	quality.

Consistency,	Availability,	and	Partition	Tolerance:	Choose	Two
At	the	Association	for	Computing	Machinery’s	Symposium	on	the	Principles	of
Distributed	Computing	in	2000,	Eric	Brewer	presented	a	paper	titled	“Towards	Robust
Distributed	Systems.”11	In	this	paper,	Brewer	noted	that	distributed	systems	don’t	work
well	because	applications	demand	that	the	information	be	consistent	among	all	copies	of	a
distributed	database.	Brewer	argued	that	to	get	to	true	distributed	computing,	application
designers	must	give	up	consistency.	In	2002,	Brewer’s	theorem	was	proven	correct,	and	it
is	now	known	as	the	CAP	theorem.	The	CAP	theorem	briefly	states	that	you	cannot	have	a
database	that	is	consistent,	available,	and	exhibits	partition	tolerance—you	can	only
choose	two	of	the	three	properties.	To	better	understand	the	CAP	theorem	in	its	native
environment,	let’s	look	at	the	three	terms	involved	in	a	little	more	detail.

11.	Eric	Brewer,	“Towards	Robust	Distributed	Systems,”	July	19,	2000,	n.p.,	accessed	July	11,	2014,
http://wisecracked/~brewer/cs262b-2004/PODC-keynote.pdf.

http://wisecracked/~brewer/cs262b-2004/PODC-keynote.pdf

•	A	database	is	consistent	when	any	user	of	a	database	will	read	the	same	information
no	matter	when	and	where	the	read	takes	place.	For	instance,	if	you	put	an	item	in
your	shopping	cart	at	an	online	retailer,	every	other	user	on	that	same	site	should	see
the	inventory	reduced	by	the	item	in	your	cart.	If	the	database	is	not	consistent,	then
two	people	can	order	the	same	item	while	only	one	shows	as	being	in	inventory.
Consistency	is	often	called	atomicity;	atomic	operations	always	leave	a	database	in	a
state	where	all	users	have	the	same	view	of	the	data	after	every	operation.

•	A	database	is	accessible	when	no	user	is	refused	access	to	the	database	for	read	(or
often	write)	operations.	While	the	definition	of	accessibility	is	often	variable,	in
general,	it	means	that	the	database	is	never	inaccessible	for	longer	than	an	outside
process	or	user	that	relies	on	the	database	can	tolerate.

•	A	database	tolerates	partitions	when	it	can	be	spread	across	multiple	devices	and
processes	separated	by	a	network	without	impacting	the	overall	operation	of	the
database	itself.	Distributed	databases	are,	by	definition,	partitioned	across	each	of
the	machines	that	contain	some	part	of	the	database—and	partitioning	is	often
required	to	support	the	performance	and	resilience	requirements	of	databases	in	the
real	world.

The	diagram	shown	in	Figure	1.8,	by	simply	replacing	the	labels	with	consistent,
accessible,	and	partitionable,	can	be	used	to	illustrate	the	CAP	theorem.

Note

One	direct	application	of	the	CAP	theorem	to	network	engineering	lies	in	the
observation	that	routing	protocols	are	simply	distributed	real-time	database
systems.

Journey	into	the	Center	of	Complexity
What	we’ve	learned	about	complexity	to	this	point	can	be	summarized	in	a	few
statements:

•	Complexity	has	a	range	of	definitions	centering	around	the	concept	of
comprehensibility	(including	unintended	consequences),	surface	interactions,	and
the	relationship	of	the	problem	to	the	system	being	used	to	solve	the	problem.

•	Complexity	is	a	reaction	to	the	twin	uncertainties	of	the	future	and	the	real	world.

•	Complexity	is	required	to	build	systems	supporting	a	lot	of	capabilities	and
functions	within	a	restricted	physical	or	virtual	space.

•	Complexity	is	a	set	of	impossibly	opposed	tradeoffs,	rather	than	a	single	“thing.”

To	carry	this	last	point	further,	the	quality/speed/cost	conundrum	and	the	CAP	theorem
can	be	looked	at	in	pairs	rather	than	threes,	as	well.	In	any	pair	of	related	items,	there	is	a
curve	between	the	two	items	that	can	be	described	using	the	formula	C	≤	1/R,	illustrated	in
Figure	1.9,	as	a	tradeoff	between	cost	and	fragility.	This	curve	is	often	referred	to	as	the
Turing	curve.

Figure	1.9	C	≤	1/R	Shown	as	a	Tradeoff	between	Increasing	Fragility	and	Increasing
Cost

There	is	a	range	of	“sweet	spots,”	along	this	curve;	the	job	of	the	engineer	is	to	choose
which	spot	along	the	curve	makes	sense	for	every	tradeoff—consciously	or	unconsciously,
wisely	or	unwisely.

The	next	two	chapters	investigate	several	more	aspects	of	complexity	in	greater	detail,
particularly	in	relation	to	computer	networks.	They	begin	by	examining	the	components	of
complexity	in	the	next	chapter—the	moving	parts	that	make	up	a	network,	and	how	they
interact.	Chapter	3,	“Measuring	Network	Complexity,”	will	investigate	various	attempts	at
measuring	complexity	in	a	network	to	examine	the	tools	available	in	this	space.	Following
those	two	chapters,	the	book	will	turn	to	more	practical	matters,	with	the	aim	of	making
network	engineers	conscious	of	the	complexity	tradeoffs	they	are	handling	in	designing
and	deploying	protocols,	and	designing	and	deploying	networks.	This	exercise	should	lead
to	more	wisdom	in	engineering	choices	as	you	journey	to	the	center	of	complexity.

Chapter	2.	Components	of	Complexity

Working	on	broken	networks	is	always	an	exciting	business	to	be	in—particularly	if	you
work	for	a	large	vendor	where	large	broken	networks	are	brought	to	your	door	every	day.
To	survive	the	constant	onslaught,	you	eventually	develop	a	set	of	simple	and	quick
patches	or	changes	you	can	always	rely	on	to	settle	a	network	down	so	you	can	start	the
process	of	actually	troubleshooting	the	problem.	For	example,	one	set	of	steps	network
engineers	dealing	with	failures	in	a	distance-vector	control	plane	might	take	to	stabilize
the	network	could	be:

•	Look	at	the	routing	protocol	topology	database.

•	Determine	how	many	paths,	on	average,	there	are	to	any	given	destination	in	the
table.

•	Configure	interfaces	as	passive	(so	they	won’t	exchange	reachability	information)
until	the	average	number	of	parallel	paths	is	less	than	4.

Let’s	take	another	example:	assume	that	you’re	examining	a	network	that	won’t
converge,	and	you	notice	a	lot	of	external	routes	in	the	protocol	tables—say	75%	or	more
of	the	routes	in	the	table	are	externals,	and	they	all	seem	to	have	a	very	short	age.	What’s
the	first	step	you’re	likely	to	take	in	stabilizing	the	network?	Find	the	redistribution	points
and	replace	any	dynamic	redistribution	between	protocols	with	redistribution	of	static
routes.

But	why	should	either	of	these	techniques	work	as	an	initial	step	in	getting	a	failed
network	up	and	running	so	further	troubleshooting	and	design	remediation	steps	can	be
taken?	Because	they	attack	all	three	of	the	major	components	of	complexity	in	a	large-
scale	network:	the	amount	of	state,	the	rate	of	state	change,	and	the	scope	of	interaction
surfaces.

To	build	and	manage	resilient	networks	at	scale	engineers	are	going	to	manage
complexity.	While	this	is	easy	enough	to	say,	it’s	hard	to	do.	As	with	any	engineering
problem,	the	first	step	is	to	decide	how	to	set	the	problem	up.	How	can	the	problem	be
broken	into	a	few	smaller	pieces,	so	each	one	can	be	managed	separately?	How	do	these
pieces	interact?	Examining	the	problem	of	complexity	with	these	three	components	of
complexity	in	mind—state,	speed,	and	surfaces—will	help	network	designers	and
architects	address	complexity	in	an	effective	and	balanced	way.	While	there	are	a	number
of	places	you	could	begin	looking	at	the	complexity	in	this	space,	control	plane
convergence	is	a	good	place	to	begin,	because	it	touches	many	of	the	issues,	and	many	of
the	other	network	systems.

Network	Convergence
Network	convergence	is	a	prototypical	example	from	which	to	draw	the	various
components	of	network	complexity.	It’s	an	area	of	network	engineering	almost	everyone
who	works	in	the	networking	field	has	encountered	in	some	way,	and	the	various
components	of	complexity	are	fairly	easy	to	tease	out	and	understand	as	individual
concepts	within	the	realm	of	complexity.

Path	Vector:	A	BGP	Example
In	the	case	of	Border	Gateway	Protocol	(BGP)	convergence,	the	major	components	in
convergence	time	include:

•	The	Minimum	Route	Advertisement	Interval	(MRAI):	This	timer	is	designed	to
prevent	state	changes	from	overwhelming	the	system,	particularly	in	preventing
positive	feedback	loops	from	forming	(see	Chapter	8,	“How	Complex	Systems
Fail”).

•	The	amount	of	time	it	takes	to	process	and	complete	the	best	path	calculations,
particularly	in	route	servers,	route	reflectors,	and	other	devices	that	handle	a	larger
than	normal	set	of	BGP	paths.

•	The	amount	of	time	the	BGP	process	on	any	particular	speaker	spends	interacting
with	other	processes	in	the	device,	such	as	the	Routing	Information	Base	(RIB)	and
other	protocol	processes.

Figure	2.1	illustrates	BGP	convergence.

Figure	2.1	BGP	Convergence

In	this	network,	when	the	link	from	Router	F	to	2001:db8:0:2::/64	fails:

•	Router	F	sends	a	withdraw	to	Routers	D,	E,	and	B.	Router	B,	because	this	is	its	best
path	to	2001:db8:0:2::/64,	will	examine	its	available	paths	to	this	destination.
Through	the	best	path	process,	Router	B	will	choose	the	path	through	Router	D	as
the	new	best	path,	and	send	an	advertisement	with	an	explicit	withdraw	toward
Router	A.

•	Routers	D	and	E	finish	processing	the	loss	of	the	path	to	2001:db8:0:2::/64	next.
Router	D	sends	a	withdraw	to	Router	B;	Router	E	sends	a	withdraw	to	Router	C.

•	Router	B,	on	receiving	the	withdraw	from	Router	D,	examines	its	table	and
determines	that	the	best	path	is	now	along	the	path	[C,E,F]—note	that	Router	C	is
still	processing	the	withdraw	it	received	from	Router	E	at	this	point,	so	Router	B	still
believes	that	the	path	through	Router	C	is	available.	Router	B	determines	that	it
should	send	a	new	update	with	an	implicit	withdraw	to	Router	A,	but	it	must	now

wait	for	the	MRAI	to	time	out	before	it	can.

•	Router	C	now	finishes	processing	the	withdraw	it	received	from	Router	E,	and	sends
a	withdraw	toward	Router	B.

•	Router	B	examines	its	local	table,	and	finds	that	it	has	no	path	toward
2001:db8:0:2::/64.	It	now	transmits	a	withdraw	to	Router	A,	finishing	the
convergence	process.

This	example	shows	how	BGP	effectively	works	from	the	shortest	path	to	the	longest
when	converging.	The	same	situation	occurs	when	BGP	learns	a	new	destination.1

1.	Shivani	Deshpande	and	Biplab	Sikdar,	“On	the	Impact	of	Route	Processing	and	MRAI	Timers	on	BGP
Convergence	Times,”	April	27,	2012,	n.p.,	accessed	July	8,	2015,
http://www.ecse.rpi.edu/homepages/sikdar/papers/gbcom04s.pdf.

The	MRAI	increases	the	time	required	to	converge	by	one	MRAI	timer	for	each	“cycle”
of	increasing	or	decreasing	the	autonomous	system	(AS)	Path.	The	processing	time	of
running	best	path	can	also	have	a	major	impact	on	the	time	required	for	BGP	to	converge,
especially	in	cases	where	the	BGP	speaker	must	process	a	large	number	of	routes	(such	as
a	route	server	or	route	reflector).	The	time	to	run	best	path	is	also	impacted	by	the
interaction	of	the	BGP	process	with	other	processes	running	on	the	router,	such	as	the	RIB
process.	Building	a	solid	BGP	implementation	is	not	an	easy	task—there	are	only	a
handful	of	solid,	widely	used,	BGP	implementations	in	the	world.

Distance	Vector:	An	EIGRP	Example
While	Enhanced	Interior	Gateway	Protocol	(EIGRP)	isn’t	as	widely	used	as	it	once	was,
it’s	still	worth	looking	at	the	EIGRP	convergence	process	to	gain	a	solid	understanding	of
the	way	distributed	control	planes	converge.	Figure	2.2	illustrates	a	network	used	for
discussing	EIGRP	convergence.

Figure	2.2	EIGRP	Convergence	Processing

This	process	is	fairly	simple:

1.	Router	D	discovers	that	it	has	lost	its	link	to	2001:db8:0:2::/64	and	examines	its
local	table	for	an	alternate	route.	Finding	none,	it	sends	a	query	to	Router	C,	to
discover	if	Router	C	has	an	alternate	route.	Router	D	places	the	route	to
2001:db8:0:2::/64	in	the	active	state	while	it	awaits	the	response	to	this	query.

2.	Router	C	receives	this	query	and	examines	its	local	table	to	determine	if	it	has	an
alternate	route	(other	than	through	Router	D).	Finding	none,	it	will	then	send	a	query

http://www.ecse.rpi.edu/homepages/sikdar/papers/gbcom04s.pdf

to	Router	B,	and	place	the	route	to	2001:db8:0:2::/64	into	the	active	state	while	it
waits	for	the	response	to	this	query.

3.	Router	B	receives	this	query	and	examines	its	local	table	to	determine	if	it	has	an
alternate	route	(other	than	through	Router	C).	Finding	none,	it	will	then	send	a	query
to	Router	A,	and	place	the	route	to	2001:db8:0:2::/64	into	the	active	state	while	it
waits	for	the	response	to	this	query.

4.	Router	A	receives	this	query	and,	finding	no	alternate	route,	nor	any	other	neighbors
that	it	can	ask	about	this	destination,	removes	the	route	from	its	local	routing	table
and	sends	a	reply	to	Router	B.

5.	Router	B	receives	this	reply,	removes	the	destination	from	its	local	routing	table,
and	sends	a	reply	to	Router	C.

6.	Router	C	receives	the	reply	from	Router	B,	removes	the	destination	from	its	local
routing	table,	and	sends	a	reply	to	Router	D.

7.	Router	D	receives	the	reply	from	Router	C	and	removes	2001:db8:0:2::/64	from	its
local	routing	table.

This	might	seem	like	a	lot	of	work	(and	the	worst	possible	case	has	intentionally	been	to
illustrate	the	process	from	a	speed	of	processing	perspective),	but	each	router	can	process
the	query	or	reply	fairly	rapidly,	because	there	is	little	to	do	for	each	step.	In	fact,	in
typical	EIGRP	networks	running	“in	the	wild,”	the	average	amount	of	time	required	to
converge	per	query	hop	is	around	200	milliseconds.

Nonetheless,	it	is	easy	to	see	how	the	amount	of	state	being	processed	could	have	a
major	impact	on	the	time	it	takes	to	converge,	and	hence	the	stability	of	the	network,	as
each	router	must	process	information	about	modifications	in	the	network’s	topology	in	a
serial	way.	Router	A	cannot,	for	instance,	fully	process	the	information	it	has	about	the
loss	of	connection	to	2001:db8:0:2::/64	until	every	other	router	within	the	scope	of	the
query	has	already	processed	this	information.

While	each	router	might	only	need	200	milliseconds	to	process	the	topology	change,	a
single	event	with	hundreds	or	thousands	of	changes	will	cause	each	router	in	the	query
path	to	process	the	change	for	each	reachable	destination	separately	(much	like	BGP).
Hence	a	large-scale	change	in	reachability	can	put	a	good	deal	of	stress	on	the	processor
and	storage	for	every	device	impacted	by	the	query.

Link	State:	OSPF	and	IS-IS	Convergence
Link	state	protocols,	such	as	OSPF	and	IS-IS,	have	a	different	set	of	convergence
attributes;	Figure	2.3	illustrates	this	process.

Figure	2.3	Link	State	Convergence	Processing

The	steps	illustrated	are:

1.	Router	D	discovers	that	2001:db8:0:2::/64	is	no	longer	reachable.	In	response	to	this
change	in	the	network	topology,	it	will	build	a	Link	State	Advertisement	(LSA,	for
OSPF),	or	rebuild	its	Link	State	Protocol	Data	Unit	(PDU;	an	LSP	is	a	Link	State
Packet,	which	is	similar	to	an	LSA	in	OSPF),	and	advertise	this	new	information
toward	Router	C.

2.	Router	C,	on	receiving	this	new	information,	will	simply	forward	a	copy	along	to	its
neighbor,	Router	B,	without	processing	the	information.	Router	C	will	eventually
process	this	information,	but	link	state	protocols	typically	flood	first,	and	process
later,	to	increase	the	speed	at	which	the	databases	of	all	the	devices	participating	in
the	control	plane	will	be	synchronized.

3.	Router	B,	on	receiving	this	new	information,	will	simply	forward	a	copy	along	to	its
neighbor,	Router	A,	without	processing	the	information.

4.	At	some	point	later	in	time	(set	by	a	timer	within	the	link	state	protocol),	Router	D
will	run	a	local	Shortest	Path	First	(SPF)	computation	to	determine	what	needs	to	be
changed	in	the	local	routing	table.	The	result	will	be	Router	D	removing
2001:db8:0:2::/64	from	its	local	routing	table.

5.	Shortly	after	Router	D	computes	a	new	Shortest	Path	Tree	(SPT),	Router	C	will	do
likewise,	adjusting	its	local	routing	table	by	removing	2001:db8:0:2::/64.

6.	Shortly	after	Router	C,	Router	B	will	perform	the	same	computation,	with	the	same
results.

7.	Finally,	Router	A	will	perform	the	same	computation,	with	the	same	results.

Note

This	is	a	somewhat	simplified	view	of	the	processing	required	to	converge	a
link	state	control	plane;	more	detail	will	be	considered	in	the	context	of
complexity	later	in	this	book.	Readers	can	also	look	at	books	such	as	IS-IS
for	IP	Networks2	to	understand	link	state	processing	more	deeply.

2.	Russ	White	and	Alvaro	Retana,	IS-IS:	Deployment	in	IP	Networks,	1st	edition.	(Boston:	Addison-Wesley,
2003).

In	this	case,	the	amount	of	state	being	carried	in	the	packet	impacts	the	processing	time

for	a	network	topology	change	in:

•	The	amount	of	time	it	takes	to	transmit	the	link	state	information	from	router	to
router	in	the	network.	This	would	include	serializing	the	packet	onto	the	wire,
clocking	the	packet	off	the	wire,	queuing	the	packet,	etc.	Any	network	topology
update	that	requires	more	than	one	packet	to	flood	in	this	way	across	the	network
will	necessarily	take	longer.	The	more	state	required	to	describe	the	changes	in	the
network	topology,	the	larger	the	number	of	packets	required	to	carry	that
information.

•	The	amount	of	time,	processing	power,	and	memory	it	takes	to	process	the	changes
to	the	network	topology	will	depend	on	the	number	of	changes,	or	the	amount	of
existing	state.	There	are,	of	course,	ways	to	optimize	this	processing	(such	as	partial
SPFs),	almost	to	the	point	that	the	additional	state	can	often	only	have	a	trivial	effect
on	the	time	it	takes	to	converge.

For	link	state	protocols,	there	is	still	a	connection	between	the	sheer	amount	of	state
carried	in	the	protocol	and	the	time	required	for	the	routing	protocol	to	converge	when	a
change	in	the	network	topology	occurs.

State
In	large-scale	systems,	the	sheer	amount	of	state	can	be	overwhelming—not	only	for	the
people	working	on	the	system,	but	also	for	the	protocols	and	computer	systems	that	must
manage	and	process	the	information.	Let’s	look	at	some	of	the	reasons	why	the	amount	of
state	matters.

Amount	of	Information
The	first	of	these	factors	is	the	amount	of	information	that	needs	to	be	transferred	across
the	network	to	converge.

Consider,	for	a	moment,	the	amount	of	information	contained	in	encapsulating	a	single
BGP	update.	Based	on	packet	format	and	historical	information,	assume	that	a	single	BGP
update	consumes	about	1500	bytes	(octets)	of	memory.	At	the	time	of	this	writing,	the
current	full	table	size	is	over	a	half	a	million	destinations,	which	will	require	at	least
795MB	that	must	be	passed	around	between	the	routers	in	the	network.	This	doesn’t
include	TCP	overhead,	TLVs	for	formatting	the	data,	and	other	transport	requirements.

795MB	of	data	might	not	seem	like	a	lot	in	a	world	of	5GB	presentations,	but	remember
this	is	a	distributed	database	running	on	a	very	large	number	of	routers.	How	many?	There
are	around	48,000	AS	connected	to	the	Internet	at	the	time	of	this	writing.3	The	number	of
BGP	speakers	in	any	given	AS	can	be	between	ten	and	thousands;	given	there’s	no	real
way	to	know	what	the	average	number	of	speakers	in	a	single	AS	is,	let’s	use	a
conservative	estimate,	and	call	it	10	routers	per	AS.	With	these	numbers,	this	795MB	table
is	being	synchronized	between	some	480,000	devices.	Doesn’t	sound	so	small	now,	does
it?

3.	“Team	Cymru	Internet	Monitor—BGP	Unique	ASN	Count,”	n.p.,	accessed	August	24,	2014,
http://www.cymru.com/BGP/unique_asns.html.

http://www.cymru.com/BGP/unique_asns.html

This	might	all	be	impressive,	but	the	average	network	isn’t	the	Internet.	Even	so,	a
network	of	1000	routers	is	keeping	a	multi-megabyte	table	synchronized	across	those
1000	routers	in	near	real	time—in	seconds	or	milliseconds,	rather	than	minutes,	hours,	or
days.

For	distance-vector	protocols,	the	amount	of	information	carried	in	the	updates	is	also	a
factor,	but	in	a	different	way.	For	instance,	each	parallel	link	in	a	network	running	a
distance-vector	protocol	represents	a	completely	new	copy	of	the	reachability	information
being	carried	between	the	two	devices	connected	by	these	parallel	links.	These	additional
copies	of	the	information	can	sometimes	become	desynchronized,	or	encounter	other
problems	that	cause	an	inconsistent	view	of	reachability.	These	additional	parallel	links
also	represent	potential	feedback	loops	that	can	cause	the	network	to	never	converge.
Hence,	in	the	example	above,	the	network	engineer	might	shut	down	parallel	links	to
stabilize	a	distance-vector	control	plane.	This	can	remove	enough	additional	state	from	the
network	to	allow	the	control	plane	to	fully	converge,	bringing	the	network	back	into
operation	while	a	deeper	analysis	of	the	problems	that	brought	the	failure	about	can	be
investigated.

The	amount	of	information	carried	in	link	state	updates	impacts	the	operation	of	a	link
state	protocol	in	much	the	same	way.	Not	only	does	it	take	longer	for	the	information	to	be
flooded	through	the	network,	it	also	builds	a	bigger	database	across	which	the	SPF
algorithm	needs	to	be	run	to	construct	a	consistent	view	of	the	network	topology.	If	the
additional	information	is	in	nodes	through	which	shortest	paths	pass,	rather	than	just
leaves	along	the	edge	of	the	network,	the	additional	information	can	impact	the	speed	at
which	SPF	runs	directly.

An	Example	of	State	Failure	in	the	Real	World
Most	network	failures	are	not	pure	“state-driven”	events;	there	is	almost	always	some
combination	of	state,	speed,	and	surface	involved.	There	are	a	few,	however,	that	are
almost	purely	state	driven,	such	as	network	meltdowns	caused	by	a	link	bounce	in	a	large-
scale	hub-and-spoke	network.	Figure	2.4	provides	a	basic	network	for	discussion.

Figure	2.4	Hub	and	Spoke	Network	Failure	Example

This	network	starts	out	with	just	a	few	spokes	or	remote	sites,	and	grows	over	time.	As
new	spokes	are	added,	the	amount	of	state	climbs;	so	long	as	the	amount	of	state	climbs
slowly,	the	control	plane	has	ample	opportunity	to	adjust	to	the	small	changes	in
reachability.	A	failure	of	the	multipoint	link	at	Router	A,	however,	causes	the	entire
distributed	database	to	be	revised	at	once—often	overwhelming	the	ability	of	the	control
plane	to	cope.	Consider	the	following	sequence	of	events:

•	The	link	at	Router	A	fails,	causing	all	the	neighbor	adjacencies	to	fail	at	the	same
time.

•	The	link	is	recovered,	causing	all	of	the	routers	connected	to	the	hub	and	spoke
network	to	attempt	building	an	adjacency	with	Router	A,	the	hub	router.

•	Some	number	of	spoke	routers	successfully	begin	to	form	an	adjacency	with	Router
A.

•	The	spoke	routers	that	have	begun	to	successfully	form	an	adjacency	with	Router	A
send	their	complete	routing	tables	toward	the	hub	to	complete	the	formation	of	these
adjacencies.	This	information	overwhelms	the	input	queue	at	Router	A,	causing
hello	and	other	adjacency	formation	packets	to	be	dropped.

•	These	dropped	packets	cause	the	adjacency	formation	process	to	abort,	restarting	the
cycle.

One	possible	way	to	resolve	this	constant	attempt	at	forming	a	large	number	of
adjacencies	that	cause	all	the	adjacencies	to	fail,	causing	another	round	of	attempting	to
form	a	large	number	of	adjacencies	in	a	short	period	of	time,	is	to	slow	the	process	down.
Start	by	allowing	only	a	small	number	of	spoke	routers	to	form	an	adjacency.	Once	one	set
of	adjacencies	is	formed	successfully,	allow	another	set	of	spoke	routers	to	form	an
adjacency.	Breaking	the	set	of	spoke	routers	allowed	to	form	an	adjacency	into	small
groups	controls	the	information	flow	across	the	network,	keeping	it	below	the	level	the
hub	router	can	process.	Note	that	breaking	the	adjacency	formation	down	into	small

groups	emulates	the	process	by	which	the	network	was	built	in	the	first	place—in	smaller
chunks,	over	time.

Final	Thoughts	on	State
If	the	routing	protocol	is	viewed	as	a	distributed,	near	real-time	database,	then	the	amount
of	time	it	takes	for	the	database	to	converge	is	actually	the	amount	of	time	the	database	is
inconsistent.	The	example	from	EIGRP	is	particularly	poignant:	the	EIGRP	active	timer	is
the	amount	of	time	you’re	willing	to	allow	your	network	to	remain	unconverged,	and
hence	(in	the	specific	case	of	EIGRP),	how	long	you’re	willing	to	allow	packets	to	be
dropped	rather	than	forwarded	to	their	final	destination.	BGP	is	similar	to	this,	although
traffic	is	more	often	routed	suboptimally	rather	than	dropped,	with	the	expected	results	on
jitter	and	delay.	For	a	link	state	protocol,	the	amount	of	time	the	distributed	database
called	the	control	plane	remains	inconsistent	is	the	amount	of	time	traffic	can	either	be
looped	or	dropped	(depending	on	the	type	of	topology	change	and	the	order	of
processing).	State	can	be	broken	up	into	smaller	chunks	to	be	dealt	with	more	efficiently,
as	shown	in	the	example	of	the	hub	and	spoke	network	failure.

Speed
The	speed	of	change	is,	in	most	cases,	actually	a	stronger	predictor	of	network	failure	than
the	sheer	amount	of	state	in	the	system.	So	long	as	the	state	is	relatively	static,	it	isn’t
costing	“on	the	wire”	or	processing	on	the	network	nodes;	the	static	state	is	mostly	a	cost
in	the	forwarding	(or	data)	plane	rather	than	in	the	control	plane.	Let’s	look	at	two
examples	of	speed	of	state	change	having	a	major	impact	on	network	convergence.

The	Network	That	Never	Converges
Let’s	begin	with	a	simple	question:	how	long	does	it	take	for	the	global	Internet	to
converge?	In	other	words,	if	you	remove	a	route	from	some	random	edge	peering	point,
from	an	upstream	provider’s	network,	how	long	will	it	for	“the	rest	of	the	Internet”	to
discover	that	this	destination	is	no	longer	reachable?	To	make	the	problem	simpler,	let’s
assume	that	this	route	is	removed	at	the	edge	of	a	tier	3	provider,	rather	than	a	tier	1
provider,	so	the	route	must	propagate	across	four	AS	to	be	removed	“everywhere”	(in
reality,	the	hop	count	would	be	longer	than	this	because	of	the	long	tail	distribution	of	AS
hop	count,	but	this	example	will	stick	with	four	hops	here	because	it’s	a	round	number
close	to	the	average).

The	convergence	time	question	becomes,	then—“how	long	does	a	BGP	route	take	to
propagate	through	four	autonomous	systems?”	The	answer	is	actually	fairly	simple,	based
on	a	lot	of	research	and	lab	work:	given	no	route	dampening,	BGP	(roughly)	converges
based	on	the	formula:

Convergence	=	(Max	AS	Path	Length	–	Min	AS	Path	Length)*MRAI

where	MRAI	is	the	minimum	route	advertisement	interval,	or	the	amount	of	time	after
advertising	information	about	a	particular	destination	before	advertising	more	recent
information	about	that	same	destination.	If	the	route	originally	had	an	AS	Path	of	4	hops,
and	the	route	is	now	unreachable,	and	the	MRAI	is	30	seconds,	then	it	will	take,	as	a	rule

of	thumb,	around	2	minutes	to	remove	the	route	from	the	global	table.

What	if	the	route	is	injected	instead	of	being	removed?	This	case	deals	with	the	time	it
takes	for	each	BGP	speaker—both	internal	and	external,	end	to	end	in	the	entire	global
Internet—to	receive	the	new	routing	information,	process	it,	and	then	send	it	on	to	its
peers.	The	MRAI	impacts	this	process	as	illustrated	in	Figure	2.5.

Figure	2.5	BGP	Convergence	for	Propagating	a	New	Destination

In	this	network,	assuming	the	worst	possible	ordering	of	BGP	advertisements,	when
2001:db8:0:2::/64	is	first	connected	to	Router	F:

1.	Router	F	advertises	the	new	destination	to	Router	E,	which	then	advertises	this	new
route	to	Router	C.	Router	C	advertises	this	route	to	Router	B,	which	then	advertises
the	route	to	Router	A.	At	this	point,	Router	B	sets	the	MRAI	for	this	destination.

2.	Router	F	also	advertises	this	new	destination	to	Router	D,	which	then	advertises	the
same	destination	to	Router	B.	This	advertisement	arrives	just	a	few	moments	after
the	advertisement	from	Router	C,	and	wins	the	best	path	calculation	at	Router	B.
Router	B,	however,	cannot	advertise	this	new	route	to	Router	A	until	the	MRAI
timer	expires.	Once	the	MRAI	timer	expires,	Router	B	advertises	this	shorter	path	to
Router	A.

3.	Router	F	also	advertises	2001:db8:0:2::/64	to	Router	B	directly.	This	advertisement
reaches	Router	B	just	moments	after	the	MRAI	timer	expires,	Router	B	has
advertised	the	path	through	Router	D	to	Router	A,	and	has	reset	the	MRAI	timer.
Router	B	must	now	wait	until	the	MRAI	timer	expires	(again)	before	it	can	advertise
the	new	(and	shorter)	path	to	Router	A.

This	sequence	of	events	has	been	observed	in	live	networks	(such	as	the	global
Internet).	The	MRAI,	in	this	instance,	causes	the	advertisement	of	newly	reachable
destinations	to	take	minutes,	rather	than	seconds.

Now,	on	the	other	side,	how	often	do	changes	happen	on	the	global	Internet?	Figure	2.6
is	a	chart	taken	from	potaroo.net,	a	site	that	measures	the	state	of	the	global	routing	table,
at	the	time	of	writing.4

4.	“The	BGP	Instability	Report,”	n.p.,	accessed	August	24,	2014,

http://potaroo.net

http://bgpupdates.potaroo.net/instability/bgpupd.html.

Figure	2.6	Rate	of	Routing	Table	Change	in	the	Global	Internet

Several	observations	are	in	order:

•	The	vertical	axis	represents	the	rate	of	change	in	the	global	(default	free	zone)
Internet	routing	table	per	second.	The	average	seems	to	be	between	15	and	30
changes	per	second,	with	peaks	that	reach	as	high	as	50	changes	per	second.

•	The	horizontal	axis	represents	time,	and	is	split	up	in	this	rendition	of	the	data	as
occurring	across	days.	Examining	the	information	available	across	years	of
measurements	indicates	that	this	pattern	exists	across	many	years.

From	the	same	data,	it’s	apparent	that	the	rate	of	convergence	for	any	particular	change
in	the	global	Internet	table	is	measured	in	seconds	or	minutes	(70	to	80	seconds	would
seem	to	be	the	average).

It’s	difficult	to	call	a	network	with	15	to	50	changes	per	second	in	its	routing	table
converged	in	any	meaningful	sense	of	the	word.	In	fact,	the	Internet	doesn’t	ever	really
converge—and	it	hasn’t	really	converged	in	years.	How,	then	can	the	Internet	control
plane	provide	reachability	information	reliable	enough	to	make	the	Internet	itself	work?
Why	doesn’t	the	Internet’s	control	plane	“crash,”	as	might	be	expected	in	any	normal
network?	Primarily	the	stability	of	the	Internet’s	control	plane	is	due	to	the	relative
stability	of	the	“core,”	which	moves	most	state	changes	to	the	edges	of	the	network,	and
the	strong	division	between	internal	and	external	routing	information	in	any	specific	AS.
This	latter	point	is	considered	in	the	section,	“Surfaces,”	in	a	few	pages.

The	Flapping	Link
Flapping	links	are	not	as	common	as	they	used	to	be,	particularly	wide	area	links,	but	they
can	be	devastating	in	their	impact	on	convergence.	Figure	2.7	illustrates	a	network	for
reference.

Figure	2.7	Link	Flaps	and	Speed-Based	Network	Failure

http://bgpupdates.potaroo.net/instability/bgpupd.html

For	each	flap	of	the	link	between	Routers	A	and	B,	Routers	B,	C,	D,	and	E	receive
thousands	of	updates.	Router	F,	however,	consistently	receives	three	times	as	many
updates	in	the	same	time	period—one	of	the	many	downfalls	of	massively	parallel
topologies	with	distributed	control	planes.	In	real-world	situations,	Router	F	could	fail	in	a
way	that	prevents	the	network	from	ever	converging.	Depending	on	the	configuration	and
scope	of	the	failure	domains	in	this	network,	Router	F’s	failure	(or	even	its	inability	to
keep	up	with	this	constant	flow	of	updated	topology	information)	could	bleed	into	the
network	beyond	Router	F,	causing	a	general	control	plane	failure.

The	combination	of	the	speed	of	a	flapping	link	and	parallel	links	that	multiply	the
speed	of	topology	updates	can	be	fatal	to	a	routing	protocol.

Final	Thoughts	on	Speed
It’s	not	so	much	the	speed	of	change	that	kills	control	planes,	it’s	the	unpredictability	of
the	speed	at	which	information	changes	combined	with	the	amount	of	information
changing	in	each	time	slice.	The	more	random	the	rate	of	change,	and	the	more	random
the	amount	of	information	changing,	the	harder	it	is	to	plan	around	the	changes.	Most
network	engineers,	when	designing	a	network,	consider	the	way	in	which	things	should	be
interconnected,	where	services	should	be	placed,	and	how	to	make	things	“simpler”	for	the
human	operator.	What	isn’t	often	considered	is	the	stability	of	the	control	plane;	it’s	just	a
“given.”

Speed	is	a	crucial	point	to	consider	when	dealing	with	network	complexity;	faster
generally	means	more	complex.

Surface
There	is	one	more	idea	that	mixes	with	the	amount	of	state	and	the	speed	of	change,	either
amplifying	or	dampening	both,	and	hence	impacting	control	plane	stability:	the	surfaces
across	which	different	components	or	systems	are	interacting.	Three	basic	concepts	are
involved	in	understanding	interaction	surfaces	in	complex	systems;	Figure	2.8	illustrates
the	first	two.

Figure	2.8	Interaction	Surfaces

There	are	two	basic	concepts	in	interaction	surfaces:

•	Interaction	Depth.	The	depth	of	interaction	can	be	seen	as	how	strongly	the	two
systems	or	components	interact.	For	instance,	if	one	component	relies	on	another
component	formatting	data	in	a	specific	way,	the	two	components	must	change	in
terms	of	the	way	that	specific	piece	of	data	is	formatted,	in	parallel.	As	the

component	that	formats	the	data	is	changed,	the	component	that	needs	to	know	how
the	data	is	formatted	must	also	change.	In	the	world	of	network	architecture,	this	can
be	seen	as	the	interaction	between	two	different	control	planes,	or	the	formatting	of
packets	being	inspected	as	they	flow	through	the	network.	A	single	packet	change
format	can	cause	hundreds	or	thousands	of	devices	to	require	updates	to	read	the
new	packet	format	correctly.	Points	A	and	C	in	Figure	2.8	illustrate	deep	interaction
between	the	two	components	shown.

•	Interaction	Breadth.	The	number	of	places	where	two	systems	or	components
“touch”	can	be	called	the	breadth	of	the	interaction	surface.	The	more	places	two
systems	or	components	interact,	the	more	they	will	form	a	single,	more	complex
system.	In	Figure	2.8,	there	are	three	points	at	which	the	two	illustrated	systems
touch;	one	of	these	(point	C)	is	wider	than	the	other	two,	representing	a	number	of
interfaces	located	along	a	single	task	(or	set	of	tasks).

A	single	example	can	be	used	to	illustrate	both	concepts:	two	routing	protocols
configured	on	a	set	of	routers	throughout	a	network.

•	Each	protocol	configured	on	a	single	router	interacts	with	any	other	protocols	on
that	same	router	through	shared	resources,	such	as	memory	and	processor.	Multiple
protocols	installed	on	a	single	router	also	share	a	common	RIB	(or	set	of	RIBs),	so
that	the	removal	of	a	route	by	one	protocol	can	cause	a	reaction	in	the	second
protocol—perhaps	advertising	a	replacement	route,	or	removing	reachability	to	a
destination	that	was	only	reachable	through	the	(now	removed)	destination.	The	first
set	of	interactions—competition	for	shared	resources—can	generally	be	considered	a
narrowly	scoped	shallow	interaction	surface.	The	second	set	of	interactions—shared
and	interactive	reachability	information	through	a	shared	RIB—can	be	considered	a
slightly	broader,	but	still	shallow,	interaction	surface.

•	Configuring	both	routing	protocols	on	every	router	in	the	network	broadens	the
interaction	surface,	as	there	are	more	instances	where	the	two	protocols	share
processor	and	memory,	as	well	as	interacting	through	shared	reachability
information.	This	might	not	appear	to	be	a	large	increase	in	complexity,	but	with
every	router	in	the	network	running	both	protocols,	the	opportunities	for	a	single
failure	in	either	protocol	to	cause	a	large-scale	outage	is	increased.

•	Redistributing	the	two	protocols	to	redistribute	reachability	information	at	one	point
in	the	network	(on	one	router)	increases	the	depth	of	interaction	on	that	one	router,
increasing	the	complexity	by	some	small	amount.

•	Redistributing	the	two	protocols	to	redistribute	reachability	information	on	every
router	in	the	network	increases	the	depth	of	interaction	across	the	entire	breadth	of
the	interaction	surface.	This	represents	a	large	increase	in	the	amount	of	complexity
through	the	interaction	surface	between	the	two	protocols.

The	more	the	routing	protocols	rely	on	one	another,	or	interact,	the	deeper	the
interaction	surface.	The	more	places	the	routing	protocols	interact,	the	broader	the
interaction	surface.

Figure	2.9	illustrates	the	third	basic	concept	involved	in	interaction	surfaces:
overlapping	interactions.

Figure	2.9	Overlapping	Interactions

In	Figure	2.9,	set	A	illustrates	two	components	or	systems	that	overlap,	or	interact,
while	set	B	illustrates	three.	As	more	components	or	systems	interact	in	a	single	set	of
interfaces,	the	overall	system	becomes	more	complex.	An	example	of	this	in	network
engineering	is,	again,	the	interaction	between	devices	that	send	packets	and	devices	that
process	packets	as	they	pass	through	the	network.

•	If	a	packet	is	simply	forwarded	based	on	the	destination	address,	then	each	of	the
routers	along	the	path	is	actually	interacting	with	the	sending	and	receiving	hosts,
but	only	in	a	very	shallow	way.	Hence,	the	interaction	overlap	is	high,	but	the	depth
of	interaction	is	very	shallow.	The	breadth	of	interaction	would	depend	on	the
number	of	hops	through	which	the	packet	must	pass	to	travel	from	the	source	to	the
destination.

•	If	a	packet	is	inspected	by	one	device	that	requires	state	maintained	between
packets,	and	about	return	traffic,	the	interaction	depth	is	fairly	high	between	the
sender,	receiver,	and	control	plane	(as	any	packet	format	changes,	or	any	network
path	changes,	will	need	to	be	accounted	for	by	the	stateful	packet	inspection	device).
But	if	there	is	only	one	place	in	the	network	where	this	interaction	is	taking	place,
then	there	are	only	the	three	systems	intersecting.

•	Each	point	at	which	stateful	packet	inspection	is	added	in	the	network	increases	the
number	of	systems	interacting,	and	hence	the	overlapping	interactions.

The	more	overlapping	components	or	systems,	the	more	complex	the	overall	system	is.

The	Hourglass	Model
Complexity	is	necessary	to	provide	the	underlying	robustness	in	real-world	conditions—to
repeat	a	statement	by	Alderson	and	Doyle	first	encountered	in	Chapter	1,	“Defining
Complexity”:

Specifically,	we	argue	that	complexity	in	highly	organized	systems	arises
primarily	from	design	strategies	intended	to	create	robustness	to	uncertainty	in
their	environments	and	component	parts.5

5.	David	L.	Alderson	and	John	C.	Doyle,	“Contrasting	Views	of	Complexity	and	Their	Implications	for	Network-
Centric	Infrastructures,”	IEEE	Transactions	on	Systems,	Man,	and	Cybernetics	40,	no.	4	(July	2010):	840.

Engineers	are	left	with	the	problem	of	managing	complexity.	There	is	a	simple	model

that	is	ubiquitous	throughout	the	natural	world,	and	is	widely	mimicked	in	the	engineering
world.	While	engineers	don’t	often	consciously	apply	this	model,	it’s	actually	used	all	the
time.	What	is	this	model?	Figure	2.10	illustrates	the	hourglass	model.

Figure	2.10	The	Hourglass	Model

As	an	example,	consider	the	four-layer	model	used	so	widely	in	the	networking	world.
Figure	2.11	compares	the	commonly	used	four-layer	model	for	network	protocols	to	the
hourglass	model	shown	in	Figure	2.10.

Figure	2.11	The	Hourglass	Model	Compared	to	the	Four-Layer	Network	Model

At	the	bottom	layer,	the	physical	transport	system,	there	are	a	wide	array	of	protocols,
from	Ethernet	to	Satellite.	At	the	top	layer,	where	information	is	marshalled	and	presented
to	applications,	there	are	a	wide	array	of	protocols,	from	HTTP	to	TELNET	(and
thousands	of	others	besides).	However,	a	funny	thing	happens	when	you	move	toward	the
middle	of	the	stack:	the	number	of	protocols	decreases,	creating	an	hourglass.	Why	does
this	work	to	control	complexity?	Going	back	through	the	three	components	of	complexity
—state,	speed,	and	surface—exposes	the	relationship	between	the	hourglass	and
complexity.

•	State	is	divided	by	the	hourglass	into	two	distinct	types	of	state:	information	about
the	network,	and	information	about	the	data	being	transported	across	the	network.
While	the	upper	layers	are	concerned	with	marshalling	and	presenting	information	in
a	usable	way,	the	lower	layers	are	concerned	with	discovering	what	connectivity
exists	and	what	the	properties	of	that	connectivity	actually	are.	The	lower	layers
don’t	need	to	know	how	to	format	an	FTP	frame,	and	the	upper	layers	don’t	need	to

know	how	to	carry	a	packet	over	Ethernet—state	is	reduced	at	both	ends	of	the
model.

•	Speed	is	controlled	by	hiding	information	between	layers.	Just	as	parallel	copies	of
the	same	information	can	be	a	“speed	multiplier,”	hiding	information	can	be	a
“speed	reducer,”	or	perhaps	a	set	of	brakes.	If	information	can	be	handled	at	in	one
layer	without	involving	the	state	of	another	layer,	then	the	speed	at	which	a	new
state	is	presented	to	any	particular	layer	is	reduced.	For	instance,	an	error	in	the	data
presented	to	an	FTP	client	doesn’t	cause	a	change	of	state	in	the	state	of	TCP,	much
less	in	the	state	of	the	Ethernet	link.

•	Surfaces	are	controlled	by	reducing	the	number	of	interaction	points	between	the
various	components	to	precisely	one—IP.	This	single	interaction	point	can	be	well
defined	through	a	standard	process,	with	changes	in	the	one	interaction	point	closely
regulated	to	prevent	massive	rapid	changes	that	will	reflect	up	and	down	the
protocol	stack.

The	layering	of	a	stacked	network	model	is,	then,	a	direct	attempt	to	control	the
complexity	of	the	various	interacting	components	of	a	network.

The	Seven-Layer	Model	Is	Dead

The	seven-layer	model	is	taught	and	used	almost	universally	within	the	network
engineering	world——but	its	usefulness	has	been	steadily	decreasing	over	time.
Two	different	problems	plague	the	usefulness	of	the	seven-layer	model.	First,	the
model	is	increasingly	beset	by	the	tendency	to	overlay	protocol	on	top	of	protocol,
and	to	avoid	interaction	with	middle	boxes	by	pushing	ever	greater	amounts	of
information	through	a	narrower	channel.	QUIC	running	over	IPv6	running	over
Ethernet	running	over	Virtual	Extensible	Local	Area	Network	(VXLAN)	running
over	IPv4	is	difficult,	at	best,	to	describe	using	the	seven-layer	model;	is	Ethernet
running	on	top	of	the	VXLAN	tunnel	layer	2	in	the	model,	or	Layer	4?	Should
multiple	seven-layer	models	be	laid	on	top	of	one	another	to	describe	this	situation?
Is	Multiprotocol	Label	Switching	(MPLS)	a	Layer	2	protocol,	or	a	Layer	3
protocol?	Is	it	a	tunnel,	or	not?	These	questions	are	difficult,	if	not	impossible,	to
answer	within	the	context	of	the	seven-layer	model.	Second,	to	avoid	deep
interactions	with	middle	boxes,	many	applications	simply	run	over	ports	known	to
be	“open”	for	most	security	devices	and/or	services.	For	instance,	a	large	amount	of
the	traffic	crossing	the	Internet	is	passed	through	the	HTTP	protocol,	using	TCP
port	80,	even	though	the	application	may	not	be	a	website.

Both	of	these	problems	can	be	traced	back	to	two	sources.	First,	the	seven-layer
model	overspecifies	the	data	transport	problem	space.	Rather	than	focusing	purely
on	functionality,	the	seven-layer	model	also	tries	to	carry	in	interaction	points	and
locality.	Layer	1	is	not	only	a	set	of	functionality,	but	also	a	location—a	single
physical	link.	Layer	3	is	not	only	a	set	of	functionality,	but	also	a	location—end-to-
end	(in	theory).	Second,	the	seven-layer	model	was	really	designed	for	a	specific	set
of	transport	protocols—protocols	that	are	no	longer	in	wide	use.	Instead,	the	seven-
layer	model	is	used	to	describe	a	four-layer	protocol	stack,	the	TCP/IP	suite	of
protocols.

Should	engineers	simply	abandon	network	models,	then?	No—a	better	idea
would	be	to	rethink	the	set	of	models	engineers	use	to	describe	the	network.	Rather
than	focusing	on	a	host,	or	network	device,	centric	view	of	the	network	transport
system,	it	is	better	to	break	the	system	up	using	multiple	models.	One	model	can	be
used	to	describe	transport,	another	to	describe	network	devices,	a	third	used	to
describe	a	host’s	interaction	with	the	network,	and	a	fourth	used	to	describe	the
various	types	of	control	planes	used	to	provide	reachability	information	throughout
the	network.	For	transport	models,	a	better	focus	would	be	the	functions	needed	to
provide	a	set	of	services,	with	iterative	layers	used	at	each	locality.	This	would	be
more	descriptive	of	the	problems	being	brought	to	bear	to	solve	specific	problems
in	each	case.

For	more	information	on	network	models,	see	Chapter	4,	“Models,”	in	the	Cisco	Press
title,	The	Art	of	Network	Architecture.

Optimization
While	state,	speed,	and	surface	will	be	used	to	describe	complexity	throughout	this	book,
there	is	a	fourth	component	engineers	often	need	to	take	into	account—optimization.
Quite	often,	complexity	is	a	tradeoff	against	optimization;	increasing	complexity	increases
the	optimization	of	the	network,	and	reducing	complexity	reduces	the	optimization	of	the
network.	An	illustration	of	this	principle	can	be	found	in	examining	the	choice	between
event-driven	reactions	and	timer-driven	reactions	to	changes	in	the	network.	Figure	2.12
illustrates	timer-	and	event-driven	detection.

Figure	2.12	Timer-	and	Event-Driven	Detection

In	Figure	2.12,	a	timeline	is	shown	from	left	to	right.	Over	time,	two	OSPF	processes
are	exchanging	periodic	hello	packets—a	classic	example	of	a	timer-driven	detection
system.	If	the	link	between	the	two	OSPF	processes	fails,	the	two	processes	will	recognize
the	failure	through	a	loss	of	three	hello	packets,	causing	the	adjacency	to	fail	and	the
routes	learned	through	the	lost	neighbor	to	be	removed	from	the	local	database	and	routing
table.	A	second	detection	process	is	also	shown	through	the	link	carrier,	interface	driver,
routing	table,	and	into	OSPF	Process	1.	This	is	an	event-driven	detection	chain:

•	If	the	link	fails,	carrier	detection	on	the	physical	interface	will	fail.	This	will	cause
the	physical	interface	to	signal	the	interface	driver	that	the	failure	has	occurred.

•	When	the	interface	driver	is	notified,	it	will	then	signal	the	routing	subsystem,	which
will	remove	any	routes	reachable	through	the	now	failed	interface	from	any
impacted	RIB.

•	When	the	RIB	removes	the	effected	routes,	including	the	connected	interface	route,
it	will	signal	OSPF	Process	1	of	the	failure.	This	will	cause	the	OSPF	process	to
remove	any	neighbors	reachable	through	that	interface	from	its	local	tables,	and	any
link	state	database	entries	learned	from	this	neighbor	from	its	local	tables.

Event-driven	detection	is	more	complex	in	this	example,	as	the	event	must	pass	through

multiple	interfaces	to	reach	OSPF	Process	1.	Each	of	these	interfaces	implies	an
interaction	surface	that	must	be	managed;	this	interaction	surface	may,	in	fact,	be	deep,	as
the	OSPF	process	may	need	to	react	differently	depending	on	the	link	type,	the	type	of
failure,	or	other	information	provided	from	the	lower	layers.	Event-driven	detection	also
increases	the	speed	of	state	change	in	the	control	plane;	each	link	flap	may	be	individually
recorded	in	the	OSPF	process	running	over	the	link,	and	these	flaps	could	well	be
transmitted	throughout	the	control	plane	in	the	form	of	topology	updates.	The	timer-based
system	is	much	simpler;	the	OSPF	processes	don’t	have	a	lot	of	knowledge	about	the
underlying	network	being	used	to	transport	the	hello	packets,	and	the	state	of	the
adjacency	is	changed	only	at	fixed	intervals,	dampening	any	potential	feedback	loops,	and
slowing	down	the	rate	of	change	in	the	control	plane	(speed).

The	optimization	tradeoff	should	be	clear	in	this	example,	as	well.	The	event-driven
detection	process	will	discover	the	downlink	much	faster,	allowing	the	control	plane	to
react	to	the	failure	by	routing	around	the	link—for	instance—very	quickly.	This	reduces
the	Mean	Time	to	Repair	(MTTR),	and	hence	increases	the	overall	network	availability.	In
this	case,	then,	the	more	complex	event-driven	process	increases	optimization,	while
opting	for	reduced	complexity	also	incurs	a	reduction	in	network	optimization.

It	isn’t	always	going	to	be	the	case	that	increasing	optimization	will	require	increasing
complexity,	or	attempts	to	reduce	complexity	will	always	decrease	optimization—but	it	is
quite	common.	Examples	of	this	tradeoff	are	scattered	throughout	this	book.

A	Final	Thought
State,	speed,	and	surface,	and	optimization—if	you	can	get	your	thinking	around	these
four	components,	you	can	get	a	solid	grip	on	the	problems	involved	in	network
complexity.	Networks	that	never	truly	converge	are	becoming	the	norm	rather	than	the
exception;	the	traditional	models	are	breaking	down.	The	hourglass	model	provides	a	way
forward	through	the	complexity	morass,	if	engineers	can	learn	how	to	recognize
complexity	and	manage	it	in	all	the	various	pieces	of	the	network	engineering	puzzle.

Chapter	3.	Measuring	Network	Complexity

Given	these	four	fundamental	aspects	of	complexity—state,	speed,	surface,	and
optimization—it	only	makes	sense	to	measure	these	four	points	and	generate	a	single
number	describing	the	overall	complexity	of	a	given	design	and	deployment	structure.	It
would	be	nice	if	there	were	some	way	to	examine	a	proposed	network	design,	or	a
proposed	change	to	a	network	design,	and	be	able	to	assign	actual	numbers	to	the
complexity	of	each	component	so	the	complexity	can	be	compared	to	any	potential	gain	in
performance,	or	the	loss	of	complexity	in	one	area	can	be	compared	to	the	gain	in
complexity	in	another.	If	it	were	only	that	simple.

As	it	turns	out,	the	effort	to	measure	complexity	is,	itself,	quite	complex.

Two	problems	rise	to	the	surface	when	examining	the	problem	of	measuring	and
quantifying	a	network	toward	gaining	an	understanding	of	the	overall	system	complexity.
First,	there	is	the	sheer	amount	of	information	available.	Given	the	current	push	toward
big	data	analytics,	and	the	ability	to	measure	thousands	to	millions	of	interactions	and	data
mining	to	discover	important	trends	and	artifacts,	shouldn’t	something	the	size	of	an
average	network	be	an	easy	problem?	Consider	some	of	the	various	points	of
measurement	just	in	trying	to	understand	the	interaction	between	the	data	flowing	through
each	point	in	the	network	and	the	queuing	mechanisms	used	to	handle	that	traffic.	This
might	include	things	such	as:

•	The	amount	of	data	flowing	through	each	point	in	the	network,	including	the	input
and	output	queue	of	each	forwarding	device.

•	The	depth	and	state	of	each	queue	of	each	forwarding	device	in	the	network.

•	The	source,	destination,	and	other	header	information	of	each	packet	forwarded
through	the	network.

•	The	number	of	packets	dropped	by	each	forwarding	device,	including	the	reason
why	they	were	dropped	(tail	drop,	packet	error,	filtered,	filtering	rule,	etc.).

Considering	that	the	measurements	themselves	must	pass	through	the	network—and	the
measurements	can	easily	contain	more	traffic	than	the	measured	traffic—the	problems
with	measuring	everything	should	quickly	become	apparent.	How	can	you	separate	the
measurement	from	the	measured	if	the	measurement	is	being	carried	on	the	same	channel
as	what	you	are	measuring?	Added	to	this	challenge	are	the	states	of	each	individual
control	plane	system,	and	the	components	of	those	systems—things	like	the	memory	and
processor	utilization	of	each	forwarding	device,	the	state	of	each	adjacency	between	each
pair	of	devices	participating	in	the	control	plane,	and	the	flow	of	each	reachability
advertisement	within	the	control	plane.	To	make	measuring	the	system	complexity	even
more	complex,	the	interactions	between	the	systems	must	also	somehow	be	taken	into
account—things	like	the	impact	of	reachability	information	on	the	distribution	and
application	of	policy,	any	interdependencies	between	parallel	control	planes	in	terms	of
reachability	information	and	system	resources,	and	interactions	between	overlay	and
underlay	control	planes.	Measuring	not	only	the	systems	but	also	the	interactions	between
the	systems	quickly	becomes	an	intractable	problem.

When	measuring	a	system	to	understand	its	complexity	level,	some	sort	of	sampling
must	take	place.	Sampling	necessarily	means	that	some	information	must	be	left	out—
which,	in	turn,	means	that	any	measurement	of	complexity	along	these	lines	is	necessarily
an	abstract	representation	of	the	complexity,	rather	than	a	measure	of	the	complexity	itself.

To	top	all	of	this	complexity	off,	there	is	very	little	agreement	on	the	set	of	things	to
measure	to	create	even	an	accurate	abstract	representation	of	the	complexity	of	a	network.

There	is	a	second	problem	looming	on	the	horizon	just	past	this	first	one—a	problem
that’s	not	so	obvious,	and	actually	makes	the	problem	of	measuring	network	complexity
intractable.	Network	design	represents	ordered	(or	intentional	or	organized—these	three
terms	are	often	used	interchangeably)	complexity,	rather	than	unordered	complexity.
While	data	analytics	deals	with	unordered	data	well	enough,	ordered	complexity	is	an
entirely	different	problem	set.

Let’s	begin	by	examining	some	methods	proposed	to	measure	network	complexity,	and
then	consider	ordered	versus	unordered	complexity.	Finally,	several	realms	of	complexity
will	be	examined	that	will	lead	to	practical	applications.

Some	Measures	of	Network	Complexity
The	difficulty	of	the	task	hasn’t	stopped	researchers	from	attempting	to	measure	network
complexity.	Quite	the	opposite—there	are	a	number	of	methods	that	have	been	tried	over
the	years.	Each	of	these	methods	has	contributed	useful	thinking	to	the	problem	space,	and
can	actually	be	used	to	provide	some	insight	into	what	network	complexity	looks	like.
Overall,	though,	none	of	these	measurements	will	truly	provide	a	complete	view	of	the
complexity	of	a	network.

Let’s	look	at	three	examples	of	network	complexity	measurements	to	get	a	feel	for	the
space.

Network	Complexity	Index
The	Network	Complexity	Index	is	described	in	“A	Network	Complexity	Index	for
Networks	of	Networks”1	by	Bailey	and	Grossman	(commonly	called	the	NCI).	The
general	idea	is	to	tackle	describing	network	complexity	in	two	steps:

1.	Stewart	Bailey	and	Robert	L.	Grossman,	“A	Network	Complexity	Index	for	Networks	of	Networks”	(Infoblox,
2013),	n.p.,	https://web.archive.org/web/20131001093751/http://flowforwarding.org/docs/Bailey%20-
%20Grossman%20article%20on%20network%20complexity.pdf.

•	Break	the	network	down	into	subnetworks.	As	described	in	the	original	paper:

Given	a	network	N,	we	first	divide	the	network	into	smaller	sub-networks
C[1],	…,	C[j],	…	,	C[p]	with	the	property	that	two	nodes	selected	at	random
from	the	sub-network	C[i]	are	more	likely	to	be	connected	to	each	other	than
two	nodes	selected	at	random	from	outside	the	sub-network	(N\C).

•	Compute	the	complexity	based	on	the	size	and	number	of	the	subnetworks.	Again,
as	described	in	the	original	paper:

Given	the	sub-communities	of	the	network	N,	let	X[j]	denote	the	size	of	the	j
largest	sub-community,	so	that	the	sequence	X[1],	…	,	X[p]	is	in	decreasing

https://web.archive.org/web/20131001093751/http://flowforwarding.org/docs/Bailey%20-%20Grossman%20article%20on%20network%20complexity.pdf

order.	In	general,	different	communities	may	have	the	same	size.	We	define	the
network	complexity	index	B(N)	of	the	network	N	as	the	solution	of	the
following	equation:	B(N)	=	Max	j,	X[j]	j

The	equation	given	is	a	standard	statistic	used	in	evaluating	the	importance	of	scientific
research	known	as	the	H-index.	The	H-index	determines	the	impact	of	a	particular	piece	of
research	by	evaluating	the	number	of	citations	of	the	work	in	a	way	that	is	similar	to	a	web
page	search	index	using	the	number	of	links	to	a	page	to	determine	the	importance	or
relevance	of	that	page.

Seen	this	way,	the	NCI	attempts	to	combine	the	connectivity	within	a	network	with	the
number	of	nodes	within	a	network:

•	The	more	the	subcommunities,	the	more	connection	points	there	must	be	between
these	subcommunities,	and	hence	the	more	complex	the	connection	graph	must	be.

•	The	larger	the	subcommunities,	the	more	nodes	there	are	within	the	network;	this
again	impacts	the	implied	connectivity	graph	of	the	network

The	size	and	scope	of	the	connectivity	graph,	in	turn,	impacts	the	way	information
flows	within	the	network,	which	also	relates	to	the	complexity	of	the	network.

What	the	NCI	Does	Well

The	NCI	does	a	good	job	of	producing	a	single	number	that	describes	the	size	and	shape
of	a	network	in	terms	of	nodes	and	communities,	in	turn	implying	the	scope	and
complexity	of	the	network	interconnections.	This	single	number,	computed	over	time,	can
help	network	managers	and	designers	understand	the	growth	of	a	network	in	terms	other
than	sheer	size.

What	the	NCI	Doesn’t	Do

From	a	network	engineer’s	perspective,	there	are	several	practical	problems	with	using	the
NCI	as	a	single	measure	of	network	complexity.	First,	this	isn’t	something	you’re	going	to
compute	on	a	napkin	while	you’re	eating	dinner,	or	do	rough	calculations	in	your	head
around.2	This	is	a	math	heavy	computation	that	requires	automated	tools	to	compute.
Second,	other	than	measuring	the	growth	and	interconnectedness	of	a	topology,	it’s	hard	to
see	how	and	where	the	NCI	is	useful	in	the	real	world.	There’s	no	obvious	way	to	reduce
network	complexity	as	measured	by	the	NCI	other	than	reducing	the	number	and	size	of
the	subcommunities	in	the	network.

2.	In	fact,	an	entire	project	called	Tapestry	was	built	around	measuring	the	NCI	by	gathering	configurations
automatically	and	running	them	through	a	processor.	The	project	can	be	found	on	GitHub	at
https://github.com/FlowForwarding/tapestry.

This	second	objection,	however,	leads	to	another	shortcoming	of	the	NCI:	it	doesn’t
really	measure	the	complexity	network	operators	interact	with.	It’s	quite	common,	in	the
real	world,	to	find	very	large	networks	supporting	only	a	few	workloads	that	have	been
heavily	optimized	for	that	workload,	and	hence	are	not	very	complex	from	an	engineer’s
point	of	view.	It’s	also	quite	common,	in	the	real	world,	to	find	small	networks	with	a	very
diverse	workload,	and	hence	cannot	be	optimized	for	a	single	workload.	These	networks
are	more	complex	than	their	size	indicates—the	NCI	would	likely	underestimate	the

https://github.com/FlowForwarding/tapestry

complexity	of	these	networks.

So	what	does	the	NCI	miss?	Just	those	pieces	of	network	architecture	that	designers
deal	with	most	of	the	time,	such	as:

•	Policy,	expressed	through	configuration,	metrics,	protocols,	and	other	methods

•	Resilience,	expressed	through	the	amount	of	redundancy,	fast	convergence
mechanisms,	and	other	highly	complex	design	components

So	while	the	NCI	is	useful,	it	doesn’t	capture	all	the	complexity	of	a	single	network	in	a
way	that	can	be	usefully	applied	to	real-world	networks.

Modeling	Design	Complexity
In	a	set	of	slides	presented	to	the	Internet	Research	Task	Force’s	Network	Complexity
Research	Group,	a	group	of	researchers	described	a	model	for	measuring	and	describing
the	complexity	of	enterprise	routing	design.3	The	process	of	measurement	is	as	follows:

3.	Xin	Sun,	Sanjay	G.	Rao,	and	G.Xie	Geoffrey,	“Modeling	Complexity	of	Enterprise	Routing	Design”	(IRTF	NCRG,
November	5,	2012),	n.p.,	accessed	October	5,	2014,	http://www.ietf.org/proceedings/85/slides/slides-85-ncrg-0.pdf.

1.	Decompose	the	network	design	into	individual	pieces,	implemented	as	individual
configuration	components	(across	all	devices	in	the	network).

2.	Build	a	network	of	connections	between	these	individual	components.

3.	Measure	this	network	to	determine	the	complexity	of	the	configuration.

Figure	3.1	is	taken	from	these	slides,4	illustrating	the	linkages	between	the	various
configuration	components.

4.	Ibid.

Figure	3.1	Evaluating	Linkages	in	a	Network	Configuration

The	more	items	configured,	and	the	more	dense	the	interconnection	between	the
configurations	(particularly	between	boxes),	the	more	complex	the	design	is	determined	to
be.	By	examining	these	factors,	the	process	yields	a	single	number	describing	the
complexity	of	the	design.	The	presentation	and	the	papers	written	by	the	same	authors
extend	this	concept	to	determining	if	the	implemented	design	matches	the	design	intent,

http://www.ietf.org/proceedings/85/slides/slides-85-ncrg-0.pdf

given	the	design	intent	is	stated	in	a	way	amenable	to	the	process.

What	Modeling	Design	Complexity	Does	Well

The	concept	of	measuring	not	just	the	lines	of	configuration,	but	the	interconnections
between	the	lines	of	configuration,	is	extremely	powerful.	There	is	little	doubt	that	much
of	complexity	comes	from	the	interrelated	configurations	spread	throughout	a	network
required	to	implement	a	single	policy	or	to	make	a	single	protocol	or	process	work.
Looking	at	the	interactions,	or	network	of	configurations,	also	takes	the	number	of	lines	of
configuration	somewhat	out	of	the	picture	as	a	measure	of	complexity.	Because	some
devices	can	express	a	policy	in	a	few	simple	lines,	while	others	require	a	lot	of
configuration	to	express	the	same	policy,	this	is	a	useful	outcome.

What	Modeling	Design	Complexity	Doesn’t	Do

At	the	same	time,	however,	the	interconnections	between	lines	of	configuration	can	fall
prey	to	the	same	problems	just	counting	the	number	of	lines	of	configuration	can	fall	prey
to—an	entire	policy	might	be	represented	by	a	single	line	of	configuration	on	one	device,
while	requiring	a	number	of	lines	of	policy	on	another.	For	instance,	on	Cisco	IOS
Software,	the	command	remove-private-as	is	used	to	remove	any	private	AS	numbers	in	a
BGP	route	advertisement.	This	single	command	essentially	replaces	a	set	of	configuration
commands	that	would	necessarily	be	interconnected,	such	as	a	filter	and	an	application	of
that	filter	to	a	particular	set	of	BGP	peers.	Both	configurations	are	valid	and	perform	the
same	set	of	actions,	but	they	would	appear	to	have	completely	different	complexity	levels
according	to	the	measure	as	it’s	described.	Further	complicating	the	situation,	different
BGP	implementations	might	use	different	sets	of	command	to	perform	the	same	action,
making	one	configuration	appear	more	complex	than	another,	although	they’re	both
implementing	the	same	policy.

Another	failing	of	the	measure	described	above	is	that	it’s	not	always	obvious	what
pieces	fit	together	to	make	a	policy.	For	instance,	a	configuration	removing	private	AS
numbers	on	every	eBGP	speaker	in	an	AS	might	not	appear	to	be	related	within	the
measurement;	there	is	no	specific	point	at	which	these	multiple	configurations	overlap	or
interact	in	a	way	that’s	obvious,	unless	you	know	the	intent	of	the	configuration.	Thus
some	policies	might	easily	be	missed	as	they	consist	of	configurations	with	no	obvious
point	at	which	they	tie	together.

Finally,	it’s	difficult	to	assess	how	a	single	configuration	used	to	implement	multiple
policies	would	be	managed	in	this	measure	of	network	complexity—and	yet,	this	is	one	of
the	thorniest	problems	to	manage	from	a	complexity	standpoint,	as	this	is	precisely	one	of
those	difficult	to	manage	interaction	surfaces	between	otherwise	unrelated	policy
implementations.	How	do	the	various	policies	measured	interact?	On	this	point,	modeling
design	complexity	is	silent.

NetComplex
As	previously	discussed,	the	NCI	measures	complexity	based	on	scale	and	perceived
subcomponents;	modeling	design	rates	complexity	on	the	network	of	interconnected	lines
of	configuration.	What	about	measuring	complexity	based	on	the	amount	of	work	needed
to	keep	the	distributed	database	that	represents	the	network	topology	synchronized	across
all	the	devices	participating	in	the	control	plane?	This	is	precisely	what	NetComplex	does.
As	Chun,	Ratnasamy,	and	Kohler	state:

We	conjecture	that	the	complexity	particular	to	networked	systems	arises	from
the	need	to	ensure	state	is	kept	in	sync	with	its	distributed	dependencies.	The
metric	we	develop	in	this	paper	reflects	this	viewpoint	and	we	illustrate	several
systems	for	which	this	dependency	centric	approach	appears	to	appropriately
reflect	system	complexity.5

5.	Byung-Gon	Chun,	Sylvia	Ratnasamy,	and	Eddie	Kohler,	“NetComplex:	A	Complexity	Metric	for	Networked
System	Designs”	(5th	Usenix	Symposium	on	Networked	Systems	Design	and	Implementation	NSDI	2008,	April
2008),	n.p.,	accessed	October	5,	2014,	http://berkeley.intel-research.net/sylvia/netcomp.pdf.

NetComplex	evaluates	the	chain	of	dependent	states	in	the	network,	assigns	a	metric	to
each	dependency,	and	then	calculates	a	single	complexity	measure	based	on	these	assigned
metrics.	Figure	3.2	illustrates	dependency	and	complexity	in	NetComplex.

Figure	3.2	Dependency	and	Complexity	in	NetComplex

In	this	figure:

•	Routers	C	and	D	depend	on	E	to	obtain	a	correct	view	of	the	network	beyond	Router
E.

•	Router	B	depends	on	Routers	C,	D,	and	E	to	obtain	a	correct	view	of	the	network
beyond	Router	E.

•	Router	A	depends	on	Routers	B,	C,	D,	and	E	to	obtain	a	correct	view	of	the	network
beyond	Router	E.

Hence,	Router	A	“accumulates”	the	complexity	of	synchronization	of	information
originating	beyond	E	through	the	entire	network.	Through	these	dependencies,	Router	A	is
said	to	be	linked	to	the	remaining	routers	in	the	network.	By	examining	these	links,	and
combining	them	with	the	local	state,	the	complexity	of	keeping	the	entire	control	plane
synchronized	can	be	given	a	single	metric.

http://berkeley.intel-research.net/sylvia/netcomp.pdf

What	NetComplex	Does	Well

By	focusing	on	the	amount	of	state	and	the	way	state	is	carried	through	the	network,
NetComplex	does	a	good	job	of	describing	the	complexity	of	a	control	plane.	Based	on
this,	NetComplex	is	useful	for	determining	the	additional	complexity	required	to	carry
source	routing	information	through	the	network,	and	forward	based	on	this	source	routing
information.	Another	place	where	Netcomplex	would	be	useful	is	in	putting	a	metric	on
the	additional	state	information	required	to	forward	traffic	on	a	per	flow,	rather	than	per
destination/virtual	topology	basis.

What	NetComplex	Doesn’t	Do

NetComplex,	however,	is	focused	on	the	control	plane	within	a	single	administrative	or
failure	domain.	There	is	no	way,	for	instance,	to	account	for	the	information	hidden
through	route	aggregation,	nor	to	differentiate	between	topology	information	and
reachability	(such	as	what	happens	at	a	link	state	flooding	domain	boundary).	NetComplex
doesn’t	work	with	policies,	nor	policy	implementation;	nor	does	it	deal	with	traffic	flows,
subnetwork	scale,	or	network	density.

Organized	Complexity
Three	different	measures	of	network	complexity	have	been	examined	at	this	point:	NCI,
modeling	design	complexity,	and	NetComplex.	Each	of	these	attempts	to	measure,	in
some	way,	at	least	some	component	of	the	four	realms	of	network	complexity—state,
speed,	surface,	and	optimization.	None	of	them,	however,	measure	everything	in	any	one
of	these	three	domains,	and	none	of	them	even	come	close	to	measuring	overall	network
complexity.	Why?	The	problem	isn’t	just	the	ability	to	measure	and	process	all	the
information	needed	to	produce	a	single	complexity	number,	it’s	embedded	in	the	problem
of	network	complexity	itself.

Imagine,	for	a	moment,	a	pool	table	with	a	set	of	balls	on	it.	These	specific	balls	are	(at
least	nearly)	perfect	in	their	resilience,	so	they	lose	only	infinitely	small	amounts	of
energy	when	they	strike	another	object,	and	the	bumpers	on	the	sides	of	the	table	are
designed	in	much	the	same	way.	There	are	no	pockets	in	this	table,	either,	so	there	is	no
place	for	the	balls	to	leave	the	table.	Now,	place	the	balls	on	the	table	in	some	random
distribution,	and	then	strike	one	so	it	starts	a	chain	reaction.	The	result	will	be	a
statistically	random	set	of	movements,	each	ball	moving	about	the	table,	striking	another
ball	or	a	bumper,	retaining	most	of	its	energy,	and	then	moving	in	a	straight	line	in	some
other	direction.

This	particular	problem	is	ripe	for	statistical	regression	analysis,	or	any	other	form	of
analysis	data	science	can	provide.	The	data	scientist	can	tell	you,	based	on	a	set	of	derived
formulas,	how	often	one	ball	will	strike	another,	how	long	the	system	will	take	to	run	out
of	energy,	what	patterns	will	form	in	the	randomly	moving	balls	at	what	time—and	many
other	things.	Data	science	excels	at	finding	patterns	in	seemingly	random	bits	of	data.	In
fact,	it	is	often	found	that	the	data	set	must	be	larger	to	make	an	accurate	prediction;	the
larger	the	data	set,	the	more	accurate	characterization	of	it	can	be	made,	and	the	more
accurate	the	predictions	about	the	state	of	that	data	at	some	specific	point	in	the	future	will
be.

But	let’s	change	the	situation	somewhat.	Let’s	take	the	same	pool	table,	the	same	balls
—all	the	same	physical	conditions.	Only	this	time,	someone	has	preplanned	the	position
and	movement	of	every	ball	such	that	no	two	balls	strike	one	another,	even	though	they
are	all	in	motion.	In	fact,	the	movement	of	every	ball	is	identical	throughout	the	entire
time	the	balls	are	in	motion.

What	can	data	science	tell	us	about	this	particular	situation?	Nothing.

Simple	observation	can	tell	us	which	ball	will	be	where	at	any	point	in	time.	Simple
observation	might	even	be	able	to	provide	a	formula	telling	us	where	there	will	be	clumps
of	balls	on	the	table,	or	near	misses.	But	statistical	analysis	cannot	go	much	beyond	a	few
simple	facts	here.	What’s	more	interesting	is	that	statistical	analysis	cannot	tell	us	what	the
point	is	in	having	these	balls	arranged	just	this	way.

This	is	the	problem	of	organized	complexity.

As	Warren	Weaver	noted	in	1948:

This	new	method	of	dealing	with	disorganized	complexity,	so	powerful	an
advance	over	the	earlier	two-variable	methods,	leaves	a	great	field	untouched.
One	is	tempted	to	oversimplify,	and	say	that	scientific	methodology	went	from
one	extreme	to	the	other—from	two	variables	to	an	astronomical	number—and
left	untouched	a	great	middle	region.	The	importance	of	this	middle	region,
moreover,	does	not	depend	primarily	on	the	fact	that	the	number	of	variables
involved	is	moderate—large	compared	to	two,	but	small	compared	to	the
number	of	atoms	in	a	pinch	of	salt.	The	problems	in	this	middle	region,	in	fact,
will	often	involve	a	considerable	number	of	variables.	The	really	important
characteristic	of	the	problems	of	this	middle	region,	which	science	has	as	yet
little	explored	or	conquered,	lies	in	the	fact	that	these	problems,	as	contrasted
with	the	disorganized	situations	with	which	statistics	can	cope,	show	the
essential	feature	of	organization.	In	fact,	one	can	refer	to	this	group	of
problems	as	those	of	organized	complexity.6

6.	Warren	Weaver,	“Science	and	Complexity,”	American	Scientist	36	(1948):	539.

This	field	of	organized	complexity	exactly	describes	the	situation	engineers	face	in
looking	at	computer	networks.	No	matter	what	angle	a	computer	network	is	approached
from,	the	problem	is	both	complex	and	organized.

•	Protocols	are	designed	with	a	specific	set	of	goals	in	mind,	a	specific	mindset	about
how	the	problems	approached	should	be	solved,	and	a	set	of	tradeoffs	between
current	optimal	use,	future	flexibility,	supportability,	and	ease	of	implementation.

•	Applications	that	run	on	top	of	a	network	are	designed	with	a	specific	set	of	goals	in
mind.

•	Control	planes	that	provide	the	metadata	that	make	a	computer	network	work	are
designed	with	a	specific	set	of	goals	in	mind.

•	Protocols	that	carry	information	through	the	network,	at	every	level,	are	designed
with	a	specific	set	of	goals	in	mind.

No	matter	which	system	within	computer	network	is	considered—from	protocols	to

design	to	applications	to	metadata—each	one	was	designed	with	a	specific	set	of	goals,	a
specific	mindset	about	how	to	solve	the	problems	at	hand,	and	a	specific	set	of	tradeoffs.
Some	of	these	might	be	implicit,	rather	than	explicit,	but	they	are,	nonetheless,	intentional
goals	or	targets.

A	network	is	not	just	a	single	system	that	exhibits	organized	complexity,	but	a	lot	of
different	interlocking	systems,	each	of	which	exhibits	organized	complexity,	and	all	of
which	combined	exhibit	a	set	of	goals	as	well	(perhaps	a	more	ephemeral	set	of	goals,
such	as	“making	the	business	grow,”	but	a	set	of	goals	nonetheless).

A	Philosophical	Aside

Within	the	realm	of	philosophy,	there	are	those	who	believe	that	there	is	no	such
thing	as	organized	complexity.	Instead,	what	appears	to	be	organized	complexity	is
simply	the	result	of	emergence	within	any	physical	system	once	it	becomes
complex	enough—that	organization	is	somehow	“built	in”	to	the	natural	order,	or
into	the	way	matter	itself	is	formed	and	interacts.	This	school	of	thought	believes
that	any	and	all	actions	can	be	traced	back	to	some	physical	cause	(for	instance,	that
humans	do	not	actually	make	decisions	as	much	as	decisions	happen	to	humans).
Whatever	the	reader’s	stand	on	this	topic	(and	it	is	outside	the	scope	of	this	book	to
argue	the	philosophical	questions	here),	the	practical	result,	in	terms	of	network
architecture,	is:	it	doesn’t	matter.	Networks	are	designed	by	people	to	solve	a
particular	set	of	problems;	no	matter	what	is	“behind”	these	designs,	we	must,	to
understand	computer	networks	and	their	designs,	get	to	the	“why.”	Why	did
someone	design	this	in	this	particular	way?	Why	did	someone	make	that	particular
tradeoff?

Network	complexity,	then,	cannot	simply	be	measured,	computed,	and	“solved,”	in	the
traditional	sense.	Even	everything	could	be	measured	in	a	single	network,	and	even	if	all
the	information	gathered	through	such	measurement	could	be	processed	in	a	way	that
made	some	sense,	it	would	still	not	be	possible	to	fully	express	the	complexity	of	a
computer	network	in	all	its	myriad	parts—in	essence	because	there	is	no	way	to	measure
or	express	intent.

Is	This	a	Waste	of	Time?
None	of	this	means	it	is	wasting	time	to	attempt	to	measure	network	complexity.	What	it
does	mean,	however,	is	that	the	problem	must	be	approached	with	a	large	dose	of	humility.
Engineers	need	to	be	very	careful	about	understanding	the	tradeoffs	being	made	in	every
part	of	the	design,	and	very	intentional	in	remembering	that	there	are	limits	to	accurately
predicting	the	outcome	of	any	particular	design	decision.

Instead	of	“giving	up,”	engineers	should	do	everything	possible	to	understand	the
complexity,	to	contain	it,	to	minimize	it,	and	to	make	intelligent	tradeoffs—but	there	isn’t,
and	won’t	ever	be	a	silver	bullet	for	complexity.	As	explained	in	Chapter	1,	“Defining
Complexity,”	there	are	sets	of	three	out	of	which	only	two	can	be	chosen,	and	there	are
curves	where	increasing	complexity	in	one	axis	to	solve	a	particular	problem	actually
causes	problems	in	another	axis.

Measuring	and	managing	complexity	is	not	wasting	time	unless	you	believe	you	can
actually	solve	the	problem—because	the	“problem”	cannot	be	“solved.”

A	Final	Thought
This	investigation	of	complexity	has	so	far	concluded:

•	Complexity	is	necessary	to	solve	difficult	problems,	particularly	in	the	area	of	robust
design.

•	Complexity	beyond	a	certain	level	actually	causes	brittleness—robust	yet	fragile.

•	Complexity	is	difficult	(or	perhaps	impossible)	to	measure	in	any	meaningful	way	at
the	systemic	level.

•	There	are	a	number	of	classes	of	problems	where	it	is	impossible	to	resolve	for	more
than	two	of	three	goals	(such	as	fast,	cheap,	high	quality).

Given	this	set	of	points,	it	might	seem	like	this	is	the	end	of	the	road.	Network
engineers	are	reliant	on	something	that	cannot	be	effectively	measured—and	measurement
is	always	the	first	step	in	controlling	and	managing	a	problem	set.	There	will	never,	in	the
end,	be	a	single	number	or	formula	that	can	describe	network	complexity.	Should	we
simply	put	on	our	pirate	hats	and	proclaim,	“Abandon	hope	all	ye	who	enter	here”?	Or	is
there	some	way	out	of	this	corner?

There	is,	in	fact,	a	reasonable	way	to	approach	complexity	in	the	real	world.	Rather	than
trying	to	find	an	absolute	“measure	of	complexity,”	or	find	some	algorithm	that	will
“solve”	complexity,	it’s	possible	to	construct	a	heuristic,	or	a	method	of	looking	at	the
problem	set	that	will	enable	a	path	to	a	solution.	The	heuristic,	in	this	case,	is	a	two-part
process.

First,	expose	the	complexity	tradeoffs	inherent	in	network	design.	Exposing	these
tradeoffs	will	help	engineers	make	intelligent	choices	about	what	is	being	gained,	and
what	is	being	lost,	when	choosing	any	particular	solution	to	a	particular	problem	set.
Every	problem	cannot	be	solved	equally	well;	any	solution	applied	at	one	point	will
increase	complexity	somewhere	else.

To	put	it	in	other	terms,	network	engineers	need	to	learn	to	be	intentional	about
complexity.

The	next	chapter	will	begin	looking	at	three	specific	realms	of	complexity—
operational,	design,	and	protocol.	In	each	of	these	cases,	several	places	where	designers
must	make	tradeoffs	to	illustrate	the	process	of	bringing	complexity	out	into	the	open	will
be	considered.	The	closer	engineers	get	to	making	intentional	decisions	about	complexity
when	designing	and	managing	networks,	the	more	likely	meeting	the	real-world	demands
placed	on	networks	will	be	possible.

Chapter	4.	Operational	Complexity

This	chapter	addresses	operational	complexity	in	two	stages.	The	first	section	explores	the
problem	space;	the	second	considers	the	various	solutions,	how	they	address	the
complexity	issues,	and	tradeoffs	involved	in	each	one.	While	these	sections	will	not	be
exhaustive,	they	will	provide	an	overview	of	where	to	look	for	complexity	in	operations,
and	case	studies	of	how	to	think	through	the	various	solutions	available.

Exploring	the	Problem	Space
This	section	considers	two	larger	topics,	each	with	two	more	specific	use	cases	or	areas	of
investigation.	The	first	is	the	cost	of	human	interaction	with	the	network	as	a	system.	The
interaction	between	people	and	the	network	reaches	beyond	the	simple	user	interface	piece
of	the	puzzle,	and	into	the	way	in	which	engineers	can	understand	the	network	through	a
set	of	mental	models,	protocol	operations,	business	and	policy	concepts,	and	other	areas.
Policy,	in	particular,	comes	to	the	fore	in	the	second	topic,	an	area	rarely	considered	in
network	design,	policy	dispersion	versus	optimal	traffic	flow	through	the	network.

The	examples	here	are	not	an	“end	all,	be	all,”	description	of	the	various	sets	of
problems	in	this	space,	but	rather	an	attempt	to	describe	a	minimal	set	of	use	cases	that
describe	the	space	adequately.

The	Cost	of	Human	Interaction	with	the	System
Humans	interact	with	networks	through	a	number	of	different	workflows,	including
design,	deployment,	management,	and	troubleshooting.	While	each	of	these	workflows	is
intended	to	result	in	one	thing—the	deployment	of	a	new	service	or	application	on	the
network—they	all	must	actually	be	completed	through	interaction	with	a	large	number	of
devices	scattered	throughout	the	network.	A	number	of	key	principles	can	be	inferred:

1.	The	number	of	devices	that	need	to	be	touched	by	a	human	to	perform	an	outcome
correlates	to	the	operational	complexity	of	that	network.

2.	This	operational	complexity	directly	translates	into	Operational	Expenditures
(OPEX).

3.	Reducing	the	operational	complexity	will	result	in	leaner,	more	productive,	higher
Return	on	Investment	(ROI)	networks.

4.	The	number	of	devices	affecting	operational	complexity	includes	both	devices
directly	“touched”	and	devices	“referenced”	(as	for	example	in	a	policy	definition).

It	will	be	useful	to	dive	deeper	into	a	couple	of	key	cases	to	understand	the	root	cause	of
this	operational	complexity	that	has	the	symptom	of	increased	number	of	human
interaction	times.

Applying	a	Policy	in	the	Network

For	the	first	use	case,	consider	an	operator	implementing	a	policy	across	all	the	edge
devices	in	a	network.	The	simplest	way	to	understand	this	problem	is	to	consider	that	the
operator	must	touch	each	of	the	devices	along	the	network	edge.	There	are	(at	least)	four
major	problems	with	such	an	approach	to	deploying	this	new	policy	manually:

•	To	deploy	the	new	policy	manually,	the	operator	would	need	to	touch	each	edge
device	in	the	network—potentially	thousands	of	them.	This	could	take	thousands	of
hours	of	network	engineering	work,	time	that	engineers	could	be	thinking	about
more	productive	things,	like	the	next	wave	of	new	equipment	or	design	challenges.

•	Over	the	time	required	to	deploy	this	new	policy,	requirements	(and	hence	the
policy)	could	change.	This	isn’t	always	an	obvious	result,	but	there	are	real-life
situations	in	which	multiple	rollouts	of	new	policies	(or	other	network	changes)
were	stopped	midstream	to	manage	the	“tyranny	of	the	immediate,”	and	then	never
finished.	The	result	is	a	network	with	a	mishmash	of	policies	deployed	in	a
seemingly	random	fashion	throughout	the	network.

•	Even	if	the	new	policy	is	fully	deployed	over	some	period	of	time,	the	network	will
be	in	an	inconsistent	state	during	the	deployment.	This	can	make	it	difficult	to
troubleshoot	network	failures,	lead	to	conflicting	policies	causing	positive	harm
(such	as	the	release	of	confidential	information	about	customers),	and	cause	many
other	unintended	side	effects.

•	It’s	common	enough	for	humans	to	make	a	mistake	when	configuring	a	large
number	of	devices	over	a	long	period	of	time.	The	amount	of	time	between	mistakes
woven	into	the	configuration	of	network	devices	causing	a	network	outage	can	be
called	the	Mean	Time	Between	Mistakes	(MTBM).	The	MTBM	can,	just	like	the
MTBF	and	MTTR,	be	tracked	and	managed—but	manually	configuring	devices	on	a
large	scale	will	always	result	in	mistakes	creeping	into	configurations	over	time.

The	Complexity	of	Large-Scale	Manual	Deployments

The	scale	of	applying	a	policy,	or	some	other	new	configuration,	within	large-scale
network	can	be	daunting—as	an	example,	consider	the	following	situation.	A	large
enterprise	has,	over	a	number	of	years,	attempted	to	convert	from	one	routing
protocol	(IGRP)	to	another	(EIGRP)	on	a	locally	contained	campus	network.
However,	this	campus	network	is	extremely	dense;	while	it	contains	only	around	a
hundred	routers,	it	also	happens	to	contain	about	a	thousand	low-speed	links
interconnecting	those	routers.	Some	parts	of	the	network	are	traditional	circuits
(such	as	T1s),	others	are	Frame	Relay,	while	others	are	switched	Token	Ring
segments,	and	still	others	are	short-run	Ethernet	segments.

As	IGRP	and	EIGRP	aren’t	as	well	known	as	they	once	were,	it’s	important	to
note	a	singular	point:	when	EIGRP	and	IGRP	processes	are	configured	on	a	single
router	with	the	same	autonomous	system	number,	the	two	processes	automatically
redistribute	between	themselves,	converting	the	metrics	and	other	information
between	the	two	protocols	such	that	all	the	routes	redistributed	appear	to	be
internally	learned.	When	the	network	engineering	group	first	attempted	to	switch

between	the	two	protocols,	they	used	this	feature	by	simply	configuring	a	number
of	routers	with	EIGRP	and	IGRP	in	the	same	AS.

At	some	point	in	this	process,	the	network	crashed.	On	recovering,	the	network
engineering	team	left	the	network	in	the	half-deployed	state,	with	part	of	the
network	running	both	EIGRP	and	IGRP	in	the	same	AS.	At	this	point,	they	decided
to	try	a	different	path	to	conversion,	configuring	EIGRP	alongside	and	intermingled
with	IGRP	on	a	different	set	of	routers,	in	different	AS,	and	manually	redistributing
between	them.

Again,	at	some	point	in	this	process	(the	second	conversion	attempt),	the	network
crashed.	On	recovering,	the	network	engineering	team	again	left	the	network	in	the
half-deployed	state.	Now	all	the	routers	are	running	IGRP	in	a	single	AS,	some	of
the	routers	are	configured	with	a	different	EIGRP	AS	on	top	of	IGRP,	and	some
other	set	of	routers	are	configured	with	EIGRP	in	the	same	AS.	In	a	final	attempt	to
convert	the	network,	the	network	engineering	staff	removed	IGRP	from	yet	another
set	of	routers	in	the	network,	replacing	it	with	EIGRP	in	a	completely	different	AS
from	that	deployed	anyplace	else	in	the	network	during	short	interval	planned
outages.	Along	the	border	between	the	EIGRP	and	IGRP	sections	of	the	network,
they	configured	redistribution	between	the	two	protocols	to	maintain	reachability
during	the	conversion	process.

Again,	the	network	failed;	the	control	plane	simply	would	not	converge.	At	this
point	things	were	dire.	There	were	four	sections	in	the	network,	one	running	IGRP,
another	running	EIGRP	alongside	IGRP	(routing	across	the	same	links	for	the	same
destinations)	in	the	same	AS,	another	running	EIGRP	alongside	IGRP	in	a	different
AS,	and	another	running	EIGRP	in	a	completely	different	AS	with	mutual
redistribution.	To	add	to	the	confusion	(as	if	this	weren’t	enough),	the	original
network	plan	was	laid	out	with	multiple	IGRP	AS,	each	mutually	redistributed	into
one	another,	rather	than	a	single	IGRP	AS.	At	some	point,	the	network	ended	up
with	each	router	having	a	close	to	unique	configuration—because	of	three	failed
attempts	to	deploy	a	new,	consistent	routing	protocol	throughout.

The	solution?	Telnetting	hop-by-hop	through	the	network,	a	group	of	engineers
removed	every	routing	process	on	every	router	in	the	network.	Once	all	dynamic
routing	had	been	removed,	the	network	was	rebuilt,	again	using	Telnet	hop-by-hop,
configuring	EIGRP	in	a	single,	common,	AS	throughout	the	entire	network.

The	lesson	is	this:	manual	deployments	at	scale	are	hard.	When	the	deployment
hits	the	wall	and	the	network	fails,	suddenly	the	tyranny	of	the	immediate	kicks	in.
The	doors	must	open,	and	the	business	must	bring	in	revenue,	so	the	network	is
stabilized	enough	to	get	mission	critical	applications	running	again,	and	the	attempt
is	abandoned	for	a	few	more	days	(which	can	easily	turn	into	months	and	years).
The	end	result	is	often	a	mess	of	failed	deployments,	difficult	to	manage	and
impossible	to	troubleshoot.	Sometimes	the	only	solution	is	simply	to	“start	over.”

Troubleshooting	a	Network

A	second	use	case	of	interest	is	troubleshooting	a	network	failure,	which	directly	impacts
one	of	the	measures	of	network	availability,	the	MTTR.	The	process	of	troubleshooting	a
large-scale	system	is	often	as	much	an	art	as	it	is	an	engineering	skill,	including	multiple
phases	or	areas	of	work:

•	Problem	identification,	which	normally	involves	some	form	of	half	splitting	and
comparison	of	expected	(or	ideal)	state	with	actual	state.	Identifying	the	problem
often	consumes	more	than	half	the	troubleshooting	process	(it’s	not	knowing	what	to
strike	with	the	hammer,	it’s	knowing	where	to	strike	it	that	matters).

•	Problem	remediation,	which	normally	involves	replacing	or	reconfiguring	the
device.	Often	this	is	undertaken	in	a	way	that	provides	a	temporary,	rather	than
permanent,	fix.	Note	that	while	a	temporary	fix	is	in	place,	the	network	is	subject	to
the	same	problems	described	above	in	the	policy	deployment	scenario—if	the
tyranny	of	the	immediate	takes	over,	and	the	temporary	fix	is	never	replaced	or
verified,	the	network	can	build	up	a	“layer	of	fixes”	or	technical	debt	that	causes	a
large	number	of	problems	later	on.

•	Root	cause	analysis,	which	normally	involves	taking	a	deeper	look	at	the	problem
symptoms,	the	temporary	fix,	and	any	further	information	gathered	off	the	network
to	go	deeper	than	“this	is	the	problem.”	Root	cause	analysis	looks	for	when	changes
that	caused	problems	were	made,	and	why	any	change	management	process	didn’t
catch	the	error.	The	point	of	root	cause	analysis	is	to	verify	that	the	temp	fix	is	the
correct	solution	or	replace	it	with	a	more	permanent	solution,	and	to	try	and	ensure
the	problem	doesn’t	occur	again	in	the	future.

Where	to	Strike:	The	Apocryphal	Story	of	the	Engineer	and	the	Hammer

For	readers	unfamiliar	with	the	apocryphal	story	of	the	engineer	and	the	hammer
from	the	first	bullet	point	above,	one	form	is	repeated	here.	There	was	once	an
engineer	who	worked	on	a	particular	piece	of	machinery	for	twenty	years,	and	then
decided	to	retire.	The	machine	worked	without	him	fine	for	some	time,	but	then	one
day	developed	some	sort	of	problem	no	one	could	diagnose	or	repair.	Many	top
experts	were	brought	in,	until	finally	the	company	gave	up	and	hired	the	retiree
back	in	as	a	consultant.	On	arriving	at	the	site,	he	listened	for	a	moment	to	the	noise
the	machine	was	making,	picked	up	a	hammer,	and	whacked	it	once.	The	noise
went	away,	and	the	machine	began	operating	properly.	A	few	days	later	the
company	received	a	bill	for	$10,000.	The	accounting	department	objects,	sending
him	an	email	stating	they	need	to	understand	how	picking	up	a	hammer	to	hit	the
machine	is	really	worth	this	amount	of	money.	The	retiree	sends	back	a	new	bill,
this	time	itemized.	It	says,	“$1:	hitting	machine	with	hammer.	$9,999:	knowing
where	to	hit	machine	with	hammer.”

Several	points	come	into	play	when	troubleshooting	a	network	problem	in	regard	to
complexity,	including:

•	The	number	of	devices	the	operator	must	touch	to	troubleshoot	the	problem.	This	is

similar	in	scope	and	concept	as	the	number	of	devices	the	operator	must	touch	to
deploy	a	policy.

•	The	number	of	places	measurements	can	be	taken	in	the	network,	and	how	difficult
it	is	to	take	those	measurements.

•	The	amount	of	information	available	to	define	what	the	network	normally	looks	like,
and	hence	answer	the	question,	“what’s	changed?”

To	put	these	into	perspective,	consider	a	specific	use	case.	Consider	a	flat	IP	network	in
which	a	source	node	loses	connectivity	to	a	destination	node.	In	this	example,	assume
there	are	a	few	devices	between	source	and	destination.	The	engineer	tasked	with
troubleshooting	this	problem	could	potentially	access	each	device	(say	by	accessing	each
device	hop-by-hop	through	the	routers	along	the	path	through	which	the	traffic	should
travel,	starting	with	the	default	gateway)	and	issue	a	number	of	commands	to	understand
the	node’s	state	and	determine	which	of	the	nodes	in	the	path	is	causing	the	outage.	As	the
network	grows	in	scale	and	complexity,	the	path	through	the	network	becomes	harder	to
trace,	and	the	number	of	devices	to	hop	through	may	become	close	to	impossible	in	real
time	(as	the	error	is	occurring).	If	the	network	grows	beyond	a	single	administration
domain,	gathering	information	from	each	device	along	the	path	may	become	impossible
due	to	access	restrictions.	The	larger	and	more	complex	the	network	is,	the	more	difficult
it	will	be	to	troubleshoot	using	manual	methods.

Policy	Dispersion	Versus	Optimal	Traffic	Handling
Network	designers	don’t	often	think	about	the	relationship	between	control	plane
complexity	and	optimal	utilization,	but	there	is	a	clear	link	through	the	concept	of	policy
dispersion.	Policy	dispersion	is	nothing	more	than	one	of	the	costs	involved	in	the	human
interaction	with	the	network,	as	outlined	in	the	previous	section—the	number	of	devices
that	require	configuration	to	implement	a	specific	policy.	A	specific	example	will	help	in
understanding	the	scope	of	the	problem.	Use	the	network	in	Figure	4.1	for	this	example.

Figure	4.1	Policy	Dispersion	and	Optimal	Network	Utilization

Assume	three	sets	of	policies	need	to	be	applied	to	incoming	traffic:

•	A	quality	of	service	policy	classifying	large	file	transfers	originating	from	Host	A	so
these	flows	are	placed	into	a	lower	classification	queue	along	the	path.

•	A	quality	of	service	policy	classifying	smaller	file	transfers	originating	from	Host	B
so	these	flows	are	placed	in	a	medium	priority	queue	along	the	path.

•	A	quality	of	service	policy	classifying	voice	traffic	originating	from	any	host
connected	to	any	router	in	the	“Edge”	box	into	a	high	priority	queue.

The	concern	here	is	not	with	how	these	policies	might	be	implemented,	but	where	they

might	be	implemented—and	the	tradeoffs	involved	in	deciding	where	to	implement	them.
There	are	three	places	these	policies	can	be	implemented	in	the	network	illustrated:

•	The	most	natural	place	to	deploy	these	policies	would	be	along	the	edge	of	the
network,	(Routers	C	and	D	in	the	example),	and	potentially	all	the	other	devices	at
the	same	level	in	the	hierarchy.	This	design	has	the	advantage	of	enforcing	the
policy	on	the	links	between	the	edge	devices	and	Routers	E,	F,	G,	and	H	(and	the
rest	of	the	network),	so	traffic	is	handled	optimally	all	along	the	path.	The
disadvantage	of	this	solution	is	the	configuration	of	the	edge	routers	becomes	more
complex	as	additional	configuration	is	added	to	implement	the	policy—and	there	are
(potentially)	a	large	number	of	edge	devices	(in	this	case	there	are	only	ten,	but	in
large-scale	networks	there	could	be	many	thousands).	The	number	of	devices	on
which	the	policy	must	be	configured	can	be	traded	off	against	the	uniformity	of	the
configuration	for	all	edge	devices	throughout	the	network,	of	course,	but	this	doesn’t
“solve”	the	complexity	problem,	it	just	moves	the	complexity	from	one	place	to
another	in	the	operational	chain.

•	The	first	alternative	would	be	to	implement	these	policies	at	Routers	E,	F,	G,	and	H.
In	this	case,	the	number	of	routers	across	which	the	policies	must	be	synchronized	is
much	smaller,	but	the	links	between	the	edge	routers	and	these	four	routers	will	not
be	used	optimally	by	the	traffic	flows	being	generated	by	the	hosts.	The	tradeoff	is
there	are	only	four	routers	on	which	the	policies	must	be	implemented	and
maintained—making	the	implementation	and	synchronization	of	policies	easier.

•	The	second	alternative	would	be	to	implement	these	policies	at	Routers	M	and	N,	so
they	primarily	control	the	traffic	flowing	along	the	Ethernet	link	connecting	the
destination	host	to	the	network.	This	increases	the	length	of	each	path	that	will	be
used	suboptimally,	and	also	decreases	the	number	of	devices	on	which	the	policies
must	be	configured	and	managed.

The	answer,	in	this	case,	might	appear	to	be	simple—configure	the	policies	along	the
edge	of	the	network.	In	larger	networks	with	a	number	of	edge	modules,	however,	the
choice	becomes	more	complicated.

If	there	are	thousands	of	edge	devices,	and	each	edge	device	is	configured	with	the
same	policies	to	ensure	consistency	of	application	and	configuration,	as	well	as	optimal
network	usage	throughout	the	network,	how	many	devices	must	have	synchronized
configurations,	and	what	is	the	cost	of	a	mistake?	If	every	edge	device	is	configured	with
just	the	policy	it	needs,	then	what	is	the	cost	of	maintaining	a	thousand	different
configurations,	and	what	is	the	cost	of	a	mistake?

Which	specific	areas	of	the	network	need	to	enforce	optimal	traffic	flow,	and	why?	In
this	small	(and	contrived)	example,	do	the	links	between	the	edge	routers	and	Routers	E,
F,	G,	and	H	really	need	to	be	policy	controlled?	Would	it	be	more	efficient	to	simply	throw
bandwidth	at	the	problem	of	quality	of	service	along	the	first	layer	of	hierarchy	so	the
relevant	policies	can	be	implemented	on	a	smaller	number	of	devices	further	into	the
network?

These	questions	aren’t	as	easy	to	answer	as	they	might	first	appear.	To	see	why,	turn	to
some	of	the	mechanisms	used	in	network	design	to	manage	the	operational	complexities

previously	considered.

Solving	the	Management	Complexity	Problem
If	you’re	an	experienced	network	engineer,	by	the	time	you	get	to	this	point,	a	voice	in
your	head	should	be	screaming	“automate	it!”	The	problems	of	human	interaction	with	the
network	and	policy	dispersion	through	the	network	are,	in	fact,	addressable	through
automated	management	tools—and	this	is	certainly	a	good	option	in	many	cases.
However,	there	is	a	historical	tendency	in	network	design	and	engineering	to	throw
complexity	over	the	cubicle	wall	onto	the	network	operations,	implying	“the	network
management	system	will	manage	that	problem.”	Moving	complexity	from	the	network
design	or	the	protocol	into	the	network	management	system	doesn’t	really	reduce
complexity;	it	just	hides	it	behind	a	department	division	(or	cubicle)	wall.

This	tendency	is	further	exacerbated	when	network	engineers	and	designers	consider
only	a	part	of	the	overall	network	when	trying	to	reduce	complexity,	instead	of	taking	a
systemic	architectural	approach	in	which	the	moving	of	complexity	from	module	to
module	is	quite	evident.	Only	by	looking	at	the	overall	system	can	you	see	the	full	impact
of	removing	complexity	from	one	discrete	area.

Three	different	mechanisms	for	managing	operational	complexity	can	illustrate	this	in
more	detail.	Automation,	because	it	is	the	favorite	tool	of	all	large-scale	networks,	will	be
considered	first,	followed	by	modularity,	and	finally	adding	protocol	complexity	to	reduce
management	complexity.

Automation	as	a	Solution	to	Management	Complexity
Consider	the	example	given	in	the	previous	section—deploying	a	set	of	quality	of	service
policies.	The	basic	choice	in	that	situation	was	to	either:

•	Deploy	the	policy	closer	to	the	network	edge	on	more	devices,	thus	making	more
optimal	use	of	the	available	bandwidth,	but	managing	the	policy	on	a	larger	number
of	devices.

•	Deploy	the	policy	closer	to	the	core	of	the	network,	reducing	the	number	of	devices
on	which	the	policy	must	be	managed,	but	(potentially)	using	the	available
bandwidth	less	efficiently.

Hence,	the	solutions	available	point	to	a	tradeoff	between	managing	complexity	and
optimal	network	utilization	(a	tradeoff	that’s	actually	quite	common	in	network	design
decisions).	Automation	appears	to	provide	a	“third	way”	out	of	this	situation,	allowing	the
policy	to	be	placed	on	the	edge	devices	without	manual	intervention,	thus	resolving	the
complexity	tradeoff;	however,	it’s	not	that	simple.	There	is	no	“silver	bullet”	for	the
complexity	curve.	Tradeoffs	will	be	considered	in	the	following	sections.

Brittleness

Automated	systems	take	the	“human	out	of	the	reaction.”	While	this	does	provide
consistency	in	the	management	process,	it	also	takes	the	recognition	of	problems	and
issues	out	of	the	management	process,	as	well.	This	removal	of	human	interaction	can
result	in	what	might	be	called	ossification	(the	word	used	to	describe	the	process	of
material	becoming	fossilized).	The	result	can	be	a	hard,	but	brittle,	material—robust	yet
fragile	is	the	term	used	to	describe	this	in	Chapter	1,	“Defining	Complexity.”

Automation	is	brittle	because	automated	processes	can’t	respond	to	every	possible
failure	mode	or	situation—because	the	human	designers	of	such	systems	can’t	imagine
every	possible	failure	mode	or	situation.	The	brittleness	of	an	automated	system	can	be
offset	by	periodic	human	oversight	and	better	design,	but	such	interactions	must	be
managed,	increasing	complexity	in	the	process	of	deploying	a	system	designed	to	reduce
complexity.	There	is	a	clear	tradeoff	here	that	needs	to	be	managed	when	considering
automated	solutions	to	solve	management	complexity	problems.

An	example	of	this	situation	might	be	seen	when	deploying	an	orchestration	system	to
manage	tunneled	overlays	in	a	data	center	fabric.	Applications	can	be	given	the	ability	to
bring	up	new	tunneled	paths	across	the	fabric	through	the	orchestration	system	fairly
easily—over	time	thousands	(or	tens	of	thousands)	or	such	tunnels	can	be	built	without
any	human	intervention.	But	what	happens	when	an	application	builds	enough	tunnels	to
overcome	the	ability	of	any	particular	device’s	forwarding	table	to	manage	the	set	of
tunnels	overlaid	onto	the	topology?	The	best	case	is	a	tunnel	creation	process	fails,
causing	a	human	operator	to	look	at	the	situation	and	try	to	find	out	what’s	going	on.	The
worst	is	a	complete	network	failure	due	to	an	overloaded	forwarding	place.

Ossification	also	leads	to	brittleness	in	another	way—the	assumption	that	“if	it	exists,	it
is	needed	by	someone.”	In	a	purely	automated	solution,	it	is	often	difficult	to	trace	down
why	a	particular	tunnel	(in	this	example)	was	configured	through	the	various	system	log
files.	How	can	the	operator	be	certain	there	isn’t	an	ever	increasing	set	of	unused	tunnels
that	are	needlessly	wasting	network	resources	due	to	incorrect	cleanup	(or	garbage
collection)	processes?

Network	State

Automation	systems	are,	in	a	sense,	abstractions	of	the	network	state.	Rather	than	dealing
directly	with	configurations	or	the	current	running	state	of	any	given	device,	the	network
operator	deals	with	a	piece	of	software	that	interprets	intended	state	into	actual	state.	This
added	layer	of	abstraction	is	what	gives	network	automation	its	power	to	cut	through
complex	configurations	on	a	large	number	of	devices.

The	other	side	of	this	abstraction,	however,	is	losing	touch	with	the	real	state	of	the
network.	An	engineer	looking	at	the	configuration	of	a	single	device	might	need	to	trace
through	a	number	of	processes	and	pieces	of	code	to	understand	how	and	why	a	particular
configuration	is	the	way	it	is.	This	can	be	problematic	in	large-scale	outages,	or	when	time
is	at	a	premium	in	tracing	down	a	network	outage.	Again,	this	can	be	resolved	by	taking
great	care	with	documentation;	however,	documenting	the	processes	whereby	a	particular
configuration	is	installed	on	a	particular	device	is	a	form	of	complexity	on	its	own.

A	second	problem	in	this	space	is	the	failure	to	single	source,	or	to	have	a	canonical
source	of	truth	about	what	the	network	configuration	should	be	and	why	it’s	configured
this	way	(connecting	intent	to	deployment).	Engineers	are	bound	to	examine	the	actual
configuration	of	the	devices	deployed	in	the	network	first	to	understand	what	is	actual	and
intended.	They	might	look	at	the	comments	in	an	automation	framework	second,	and	then
finally	into	some	form	of	actual	documentation	stored	in	a	repository.	There	is	a	clear
tendency	for	documentation	stored	in	different	locations,	and	managed	within	different
time	scales,	to	diverge	over	time.	With	no	“single	source	of	truth,”	it’s	hard	to	know
precisely	what	any	particular	configuration	was	designed	to	do,	nor	how	it	should	actually
be	deployed.	Because	of	this,	well-documented	systems	can	actually	provide	a	false	view
of	the	state	of	the	network—a	situation	sometimes	worse	than	having	no	(or	minimal)
documentation.

Managing	the	Management	System

Anyone	who	has	ever	worked	on	a	large-scale	system	development	from	a	software
perspective	can	tell	you	the	difficulties	involved—tracking	changes	to	the	codebase,
testing	the	code	before	it	reaches	production,	managing	the	entire	feature	development
process—each	of	these	has	its	own	set	of	complex	problems	to	solve.	When	a	network
automation	project	begins	as	a	“side	project”	on	the	whiteboard	with	a	couple	of	network
engineers,	it’s	hard	to	imagine	the	final	system,	years	later,	with	version	control,	a	full
blown	smoke	test	system,	a	lab	environment,	and	so	on.

While	automation	can	be	a	huge	benefit	for	controlling	the	complexity	of	network
devices,	it	can	also	be	a	source	of	endless	complexity	on	its	own.	Vendors	have,	for	years,
promised	to	make	the	process	of	managing	equipment	easier	for	automation	systems;	there
is	a	constant	swing	between	open	interfaces	and	revenue	projection.	Perhaps	software
defined	networks	and	other,	newer,	models	will	provide	the	keys	to	unlocking	simpler
automated	management,	but	there	are	definite	tradeoffs	in	this	area	the	network	engineer
should	be	aware	of.

Final	Thoughts	on	Automation	as	a	Solution

Automation	of	network	device	configuration	might	be	seen	as	similar	to	automating	many
other	tasks	in	a	network.	Each	solution	has	plusses	and	minuses,	and	each	solution	has	its
own	set	of	complexities.

The	three	areas	discussed	previously—brittleness,	network	state,	and	managing	the
management	system—are	factors	that	need	to	be	considered	when	deciding	to	automate
any	particular	network	configuration	task,	and	when	building	automation	systems.

Modularity	as	a	Solution	to	Management	Complexity
Modularity	is	often	used	as	a	mechanism	to	break	networks	up	a	number	of	failure
domains,	but	it’s	also	a	useful	mechanism	to	manage	operation	complexity.	Modularizing
networks	has	many	benefits,	including	the	ability	to	constrain	the	scope	of	network
structures,	constrain	the	(adverse)	effects	of	network	changes,	and	allow	for	modules	that
are	not	only	reusable	but	also	can	evolve	somewhat	independently.	As	a	corollary,
modularizing	networks	reduces	the	number	of	elements,	protocols,	and	the	amount	of
information	that	humans	have	to	deal	with	when	interacting	with	these	networks.

Returning	to	the	previous	example,	determining	whether	to	distribute	a	set	of	quality	of
service	policies	to	the	edge	of	a	network	on	a	wide	array	of	devices,	or	on	a	smaller	set	of
devices	closer	to	the	network	core.	One	of	the	issues	considered	in	that	example	was	the
problem	of	either:

Distributing	the	policy	to	every	edge	device,	and	thus	distributing	the	policy
configuration	to	a	large	number	of	devices	where	the	policy	isn’t	needed

or

Distributing	the	policy	only	to	the	set	of	devices	where	the	policy	is	needed,
but	then	dealing	with	a	lack	of	consistency	throughout	the	network

Modularity	helps	to	resolve	this	problem	by	breaking	devices	up	into	modules.	Each
module	can	then	have	a	set	of	policies	that	are	applied	uniformly	across	all	the	edge
devices	in	the	module.	So	long	as	a	network	engineer	examining	the	device	can	locate	the
module	in	which	the	device	is	configured,	a	common	or	standard	set	of	configurations
should	be	readily	apparent.

In	fact,	in	this	sense	modularity	is	an	adjunct	to	the	abstraction	of	service	types
necessary	to	the	automation	of	network	configuration.	Treating	each	device	as	a	“single
case”	in	a	network	automation	system	imports	the	complexity	of	thousands	of
configurations	back	into	the	automation	system	itself—network	automation	only	makes
sense	if	it’s	possible	to	separate	off	a	relatively	small	number	of	“devices	classes,”	each	of
which	can	be	abstracted	into	a	single	configuration.	This	is	what	modularity	helps	to
achieve—not	only	can	a	device	be	classified	as	an	edge	or	core	device,	it	can	be	classified
as	an	edge	device	connecting	a	user	or	process	that	connects	to	accounting	systems,	for
instance	(because	the	device	is	located	in	an	edge	module	used	primarily	by	the
accounting	office).

This	greater	degree	of	precision	allows	more,	rather	than	less,	“cookie	cutter”
configurations	to	be	designed	and	used	throughout	the	network.	The	idea,	from	an
operational	complexity	perspective,	is	to	be	able	to	group	in	modules	and	templates	those
device	roles,	to	further	be	able	to	interact	with	the	aggregate.	While	an	operator	typically
will	not	be	saying	“apply	policy	X	to	all	edge	devices,”	he	or	she	could	be	saying	“apply
policy	X	to	all	edge	devices”	that	provide	Layer	3	Virtual	Private	Network	(L3VPN)
service	and	have	more	than	Y	number	of	subscribers.

Modularity,	however,	is	not	without	its	complexity	tradeoffs.	Modularity	can	be	taken	to
extremes	in	one	of	three	directions:

•	First,	modularity	might	be	taken	to	the	extreme	of	attempting	to	build	the	perfect

configuration	for	every	possible	corner	case.	If	this	path	is	taken,	the	final	module
size	is	often	one.	But	rather	than	treating	each	device	as	an	individual	configuration,
the	result	is	a	layering	of	policy	on	top	of	policy,	and	exception	on	top	of	exception,
to	the	point	where	the	final	device	configuration	is	not	only	unique,	it	is	uniquely
created	through	a	unique	set	of	rules.	Each	rule	might	apply	to	a	wide	array	of
devices,	but	each	device	represents	a	unique	combination	of	those	rules.	This
actually	causes	more	problems	than	it	solves,	as	it	introduces	another	entire	realm	of
interaction	surfaces	into	the	network—policy	to	policy,	or	domain	to	domain.

•	Second,	modularity	might	be	taken	to	the	extreme	of	managing	down	the	array	of
possible	policies	and	configurations	to	the	minimum	at	the	expense	of	the	actual
applications	and	services	using	the	network.	In	this	case,	an	application	developer	or
user	might	be	told	they	cannot	deploy	a	particular	service	or	application	on	the
network	because	it	would	be	too	difficult	to	adjust	the	network	policy	around	it.
Another	way	of	putting	this	would	be,	“this	application	can	be	deployed,	but	the
application	will	run	in	a	suboptimal	way	because	there’s	no	easy	way	to	adjust	our
tools	and	modules	to	support	the	policy	requirements	for	optimization.”	There	will,
of	course,	always	be	some	set	of	applications	that	will	run	suboptimally	on	a
network	with	a	small	set	of	consistent	policies,	but	there	must	also	always	be	a
balance	sought	between	the	complexity	of	policy,	the	“leakiness”	of	the	abstractions
used	to	modularize	the	network,	and	the	actual	applications	and	services	running	on
the	network.

•	Finally,	modularity	can	be	taken	to	the	extreme	of	perfectly	clean	APIs,	or	perfect
interaction	surfaces,	creating	hard	sided	silos	that	cannot	be	broken	down.	This
produces	another	form	of	brittleness	through	ossification	in	the	network	design;	once
the	silos	are	set	up,	there	is	no	space	or	way	for	the	network	to	grow	and	resolve	new
business	problems.	The	business	becomes,	in	effect,	a	victim	of	complexity
reduction	in	the	network	operations	realm—perhaps	a	prime	negative	example	of
“throwing	complexity	over	the	cube	wall.”

Protocol	Complexity	versus	Management	Complexity
Return,	for	the	moment,	to	the	problem	of	human	interaction	in	troubleshooting	a	network,
application,	or	service	failure.	Assume	the	network	operator	needs	to	determine	what	path
is	traffic	taking	between	two	specific	hosts.	One	way	the	operator	could	determine	this	is
to	start	at	the	host,	determining	the	default	gateway	for	that	specific	host.	Once	at	the
default	gateway,	the	operator	could	then	examine	the	local	forwarding	table	to	find	the
next	hop;	moving	to	this	next	hop	device,	the	operator	could	trace	the	path	of	the	traffic
through	the	network.

Alternatively,	the	operator	could	use	a	traceroute	from	the	source	node	only,	and	more
quickly	and	efficiently	have	a	potential	identification	of	where	the	path	is	broken.	It	would
be	useful	to	analyze	this	case	in	some	more	depth.	A	single	tool	added	to	the	operator
toolset	is	dramatically	improving	the	time	it	takes	to	detect	the	failure,	and	also	massively
reduces	the	number	of	devices	and	commands	that	the	operator	needs	to	interact	with.	The
application	traceroute	is	leveraging	specific	protocol	behavior	[i.e.,	expiration	of	the
Time-to-Live/Hop	Limit,	generation	of	Internet	Control	Message	Protocol	(ICMP)

messages],	which	is	arguably	more	protocol	complexity.	The	end	result	is	that	the	number
of	devices	touched	by	the	operator	decreases	to	one.	This	makes	for	a	solid	example	of	the
shifts	in	complexity	and	the	tradeoffs:	shifting	complexity	from	operational	complexity	to
protocol	complexity	dramatically	improves	the	end	result.

Consider	a	slightly	more	comprehensive	case	that	illustrates	similar	results.	Assume
you	are	troubleshooting	a	broken	MPLS	Label	Switched	Path	(LSP).	An	operator	can	use
the	same	application,	traceroute,	and	have	not	only	a	potential	identification	of	the
problem	node,	but	also	he	or	she	could	trace	the	MPLS	label	stack	throughout	the	path
with	the	use	of	ICMP	Extensions	for	MPLS	(RFC4950).1	In	this	case,	however,	the
operator	could	also	choose	to	use	another	tool:	Detecting	MPLS	Data	Plane	Failures
(RFC4379).2	This	is	a	more	complex	approach	from	a	protocol	complexity	standpoint,	but
is	one	that	can	provide	much	more	granular	problem	cause	identification,	and	more
comprehensively	can	explore	equal	cost	multipaths.	In	other	words,	using	this	new	tool,
MPLS	LSP	Ping/Traceroute,	can	result	in	faster	and	better	troubleshooting,	specifically	a
more	comprehensive	path	coverage	and	actual	problem	cause	reporting.

1.	Ron	Bonica	et	al.,	“ICMP	Extensions	for	Multiprotocol	Label	Switching”	(IETF,	August	2007),	accessed
September	15,	2015,	https://www.rfc-editor.org/rfc/rfc4950.txt.

2.	K.	Kompella	and	G.	Swallow,	“Detecting	Multi-Protocol	Label	Switched	(MPLS)	Data	Plane	Failures”	(IETF,
February	2006),	accessed	September	15,	2015,	https://www.rfc-editor.org/rfc/rfc4379.txt.

To	finalize	this	use	case,	continue	with	the	MPLS	LSP	example	and	now	assume	that
there	is	RSVP-TE	(node	or	path)	protection	deployed	in	the	network,	and	there	is	also
bidirectional	forwarding	detection	in	place	for	rapid	fault	detection.	These	protocols	will
be	explored	more	fully	in	Chapter	7,	“Protocol	Complexity,”	but	it	is	also	interesting	to
see	their	operational	implications.	A	rapid	fault	detection	and	automatic	fault	remediation
(or	bypass)	can	actually	be	seen	as	“proactive	troubleshooting,”	in	which	no	human
intervention	resulted	in	an	outage	prevented	and	allows	more	time	for	an	operator	to
diagnose	and	fix	the	root	cause.

As	with	all	things	in	the	world	of	complexity,	however,	there	are	a	number	of	tradeoffs
in	the	real	world.

•	The	protocol	becomes	another	“thing”	which	must	be	managed	within	the	context	of
the	network.	To	return	to	an	earlier	example,	routing	protocols	reduce	complexity	by
removing	the	requirement	to	manually	configure	full	reachability	information	on
every	router	in	the	network.	On	the	other	hand,	routing	protocols	inject	their	own
complexity	into	the	network	in	operational	terms,	including	policy,	aggregation,
operation,	and	other	issues.

•	The	protocol	is,	in	effect,	a	“leaky	abstraction.”	While	traceroute,	for	instance,	can
expose	the	path	through	the	network	from	one	host	to	another,	it	might	not	expose
the	path	a	particular	application’s	or	service’s	path	will	really	take.	For	instance,
voice	traffic	might	be	directed	onto	a	different	set	of	links	than	network	management
traffic	for	quality	of	service	reasons.

https://www.rfc-editor.org/rfc/rfc4950.txt
https://www.rfc-editor.org/rfc/rfc4379.txt

Failures	in	Traceroute	without	Traffic	Engineering

It’s	worth	mentioning	that	it	doesn’t	take	policy-based	routing	or	traffic	engineering	to
cause	problems	of	the	type	described	here.	Assume,	for	instance,	that	you	run	a	traceroute
from	a	device	to	discover	the	source	of	a	large	delay	along	the	path.	The	result	looks
something	like	this:
Click	here	to	view	code	image

C:\>tracert	example.com
1	<1	ms	<1	ms	<1	ms	192.0.2.45
2	4	ms	3	ms	11	ms	192.0.2.150
3	20	ms	4	ms	3	ms	198.51.100.36
4	*	*	*	Request	timed	out.
5	*	*	*	Request	timed	out.
6	7	ms	7	ms	7	ms	203.0.113.49

The	two	“starred”	hops	certainly	look	suspicious,	don’t	they?	In	reality,	though,	they
could	mean	anything—or	nothing.	Three	specific	points	are	worth	noting.	First,	not	every
device	along	a	path	will	decrement	the	TTL	on	an	IP	packet.	Data	link	layer	firewalls	that
connect	as	switches	rather	than	routers	will	pass	traffic	through	without	modifying	the
TTL,	for	instance.	Second,	tunnels	may	appear	as	a	single	hop	or	many.	A	device	that
switches	a	packet	based	on	an	outer	tunnel	header	will	not	(most	of	the	time)	do	anything
with	the	inner	header	TTL,	which	means	a	large	set	of	devices	can	appear	to	be	a	single
device.	Third,	the	return	path	is	not	shown	in	the	output	of	a	traceroute—and	yet	the
return	path	has	as	much	to	do	with	network	performance	as	the	outbound	path.

In	all	three	of	these	cases—and	many	others	besides—the	network	has	been	abstracted
to	appear	simpler	than	it	actually	is.	Hops	that	do	exist	are	not	exposed,	and	half	of	the
entire	round	trip	path	is	not	shown	at	all.	These	abstractions	leak,	however,	in	impacting
the	performance	of	applications	carrying	traffic	over	the	network.	This	lack	of	visibility
into	the	actual	operation	of	the	network	can	have	a	major	impact	on	finding	and	resolving
problems,	as	well	as	in	understanding	the	actual	operation	of	the	network.

A	Final	Thought
This	chapter	has	covered	both	the	problem	space	and	some	solutions	for	the	problem	of
operational	complexity.	The	two	earlier	examples	of	the	problem	space	are	the	cost	of
human	interaction	with	the	network,	and	policy	dispersion	versus	optimal	network	usage.
Both	of	these	problems	illustrate	a	single	point—the	scale	of	a	network	relates	as	much	to
the	complexity	of	the	services	offered	as	it	does	to	the	number	of	devices	physically
interconnected	by	the	network.	A	large	number	of	devices,	each	serving	a	similar	purpose,
and	therefore	with	few	configuration	differences	to	support	a	wide	array	of	policies,	have
a	completely	different	set	of	scaling	issues	than	a	moderately	sized	network	carrying	a
wide	array	of	services.	This,	if	nothing	else,	is	a	useful	takeaway	from	examining
management	complexity	in	a	network—the	problem	of	scale	doesn’t	have	a	single	axis,
but	rather	at	least	two	axes.

After	examining	some	of	the	problem	space,	this	chapter	then	looked	at	some	of	the
potential	solutions	to	the	complexity	problems,	including	automation,	modularity,	and
protocol	complexity	(or	adding	additional	protocols).	Each	of	these	has	tradeoffs,
however,	from	brittleness	to	state	to	adding	more	surface	interactions	and	systems	that

must	be	managed.	In	each	of	these	cases,	some	complexity	is	being	“tossed	over	the
cubicle	wall”	to	some	other	place	to	be	managed.	Automation	is,	of	course,	a	requirement
in	the	operation	of	truly	large-scale	networks—but	it’s	important	not	to	use	automation	as
a	thin	coat	of	paint	over	what	is	an	otherwise	complex	system.	Tossing	complexity	over
the	cubicle	wall,	to	someone	on	a	development	operations	team,	or	a	nearby	friendly
coder,	might	make	the	network	seem	simpler,	but	the	complexity	required	to	solve	real-
world	problems	doesn’t	ever	go	away.
While	this	chapter	isn’t	a	major	focus	of	this	book,	it	does,	hopefully,	provide	some

thinking	material	for	network	engineers	to	consider,	and	some	places	for	engineers	to	look
for	complexity	tradeoffs.	The	next	chapter	moves	from	operational	complexity	to	design
complexity.	Many	of	the	same	problems,	solutions,	and	tradeoffs	will	appear,	but
expressed	from	a	different	view—and	in	a	different	domain.

Chapter	5.	Design	Complexity

Anyone	who’s	been	in	the	network	or	operations	world	for	a	long	time	has	a	story	about	a
network	topology	that	was	simply	overwhelming.	Like	the	time	the	network	designer	for
one	large	company	stood	in	front	of	a	flip	chart	of	over	a	hundred	pages	hung	on	the	wall
of	a	conference	room	explaining	the	ins	and	outs	of	his	network’s	physical	layer	topology.
Or	the	network	that	was	built	with	hundreds	of	T1	speed	links	through	a	single	campus
because	the	bandwidth	requirements	had	long	ago	overrun	the	capacity	of	ten	or	fifteen
T1s	in	parallel,	but	the	local	telco	wouldn’t	offer	any	sort	of	larger	link.

These	large-scale	failures	in	network	design	are	often	trotted	out	as	the	worst	of	the
worst	in	complex	networks	because	network	complexity	is	often	equated	with	topological
complexity—how	many	links	are	there,	where	are	they	placed,	how	many	loops,	etc.	The
more	highly	meshed	the	topology,	the	more	complex	the	network	(if	it’s	easier	to	find	your
way	through	your	child’s	room	than	your	network	topology—or	if	your	network	is
meshier	than	your	child’s	room,	you	know	you	have	a	problem).

Equating	topological	complexity	with	design	complexity,	however,	we	are	limiting	our
field	of	view	in	some	very	less	than	useful	ways—because	the	topology	doesn’t	stand
alone	in	terms	of	complexity.	It’s	quite	easy	to	build	a	topology	that	is	very	dense,	and	has
a	lot	of	nodes,	and	yet	isn’t	all	that	complex.	Think,	for	instance,	of	a	typical	folded	single
stage	spine-and-leaf	topology.	There	are	a	lot	of	connections,	a	lot	of	links,	and	a	lot	of
devices—but	the	topology	is	fairly	easy	to	understand,	and	fairly	easy	to	explain.

So	why	and	how	does	a	difficult	to	understand	topology	relate	to	network	design
complexity?	Beyond	the	gut	visual	reaction,	what	else	is	there	that	ties	complexity	and
spaghetti-like	topologies	together?

The	one	that	we’ll	consider	in	this	chapter	is	the	topology’s	relationship	with	the	control
plane,	as	this	is	probably	one	of	the	more	difficult	surface	interactions	to	manage.	The	two
surfaces	interacting—the	layer	that	is	transporting	packets	(such	as	the	physical	layer	or	a
tunnel)	and	the	control	plane—are	very	complex	systems	on	their	own,	each	consisting	of
a	number	of	subsystems,	and	hence	presenting	their	own	deep	complexity	problems.
Combine	two	complex	systems	along	a	large,	ill-defined,	and	oft-changing	interaction
surface,	and	you	end	up	with	more	complexity	than	you	want	to	deal	with.

Three	primary	areas	where	the	control	plane	interacts	with	the	transport	layer’s
topology	are	as	follows:

•	The	amount	of	control	plane	state.

•	The	rate	of	control	plane	state	change.

•	The	scope	of	propagation	through	which	any	change	in	the	topology	must	be	carried
—how	far	a	topological	change	must	be	carried	within	the	control	plane.

It’s	interesting	to	consider	these	three	points	in	relation	to	the	components	of
complexity	back	in	Chapter	2,	“Components	of	Complexity.”

•	State:	How	does	the	topology	contribute	to,	or	take	away	from,	the	amount	of	state
the	control	plane	is	handling?

•	Speed:	How	does	the	topology	contribute	to,	or	take	away	from,	the	speed	at	which
the	control	plane	must	react	to	changes,	or	even	the	rate	at	which	changes	in	the
topology	are	reported	to	the	control	plane?

•	Surface:	How	many	devices	in	the	control	plane	does	a	change	in	the	topology
impact?	How	deep	is	the	interaction	between	the	control	plane	and	the	data	plane,	or
the	topology?	How	many	places	do	control	plane	components	interact?

While	there	are	a	lot	of	different	points	we	could	examine	to	understand	these
interactions	in	some	detail,	we’ll	limit	ourselves	to	four	(otherwise,	we	could	have	an
entire	stack	of	books,	rather	than	a	single	chapter).

The	first	example	is	control	plane	state	versus	stretch—a	clear	example	of	how	the
amount	of	information	carried	by	the	control	plane,	and	the	rate	of	change	in	the	control
plane,	can	be	traded	off	against	the	efficiency	of	the	network.

The	second	example	will	be	topology	versus	speed	of	convergence.	Not	only	will	we
look	at	the	relationship	between	resilience	and	redundancy	here,	we’ll	also	look	at	the
relationship	between	topology	and	resilience.

The	third	example,	fast	convergence,	continues	the	theme	of	convergence	speed,	and
hence	network	performance,	as	a	source	of	complexity—and	the	tradeoffs	surrounding
convergence.

Our	final	example	will	be	virtualization	versus	design	complexity.	This	one	won’t	be	so
obvious	to	most	network	engineers,	even	after	many	years	of	practice,	but	there	is	a
definite	relationship	between	complexity	and	the	various	forms	of	virtualization	network
engineers	practice.

Control	Plane	State	versus	Stretch
What	is	network	stretch?	In	the	simplest	terms	possible,	it	is	the	difference	between	the
shortest	path	in	a	network	and	the	path	traffic	between	two	points	actually	takes.	Figure
5.1	illustrates	this	concept.

Figure	5.1	Stretch,	Illustrated

Assuming	that	the	cost	of	each	link	in	this	network	is	the	same,	the	shortest	physical
path	between	Routers	A	and	C	will	also	be	the	shortest	logical	path:	[A,B,C].	What
happens,	however,	if	we	change	the	metric	on	the	[A,B]	link	to	3?	The	shortest	physical
path	is	still	[A,B,C],	but	the	shortest	logical	path	is	now	[A,D,E,C].	The	differential
between	the	shortest	physical	path	and	the	shortest	logical	path	is	the	distance	a	packet
being	forwarded	between	Routers	A	and	C	must	travel—in	this	case,	the	stretch	can	be
calculated	as	(4	[A,D,E,C])–(3	[A,B,C]),	for	a	stretch	of	1.

How	is	stretch	measured

Should	stretch	be	measured	in	terms	of	hop	count,	the	summary	of	the	metrics,	the
delay	through	the	network,	or	some	other	way?	It	depends	on	what	is	most
important	in	any	given	situation,	but	the	most	common	way	is	by	comparing	hop
counts	through	the	network,	as	is	used	in	the	examples	here	for	simplicity.	In	some
cases,	it	might	be	more	important	to	consider	the	metric	along	two	paths,	the	delay
along	two	paths,	or	some	other	metric,	but	the	important	point	is	to	measure	it
consistently	across	every	possible	path	to	allow	for	accurate	comparison	between
paths.

Several	points	are	worth	noting	about	stretch:

•	It’s	sometimes	difficult	to	differentiate	between	the	physical	topology	and	the
logical	topology.	In	this	case,	was	the	[A,B]	link	metric	increased	because	the	link	is
actually	a	slower	link?	If	so,	whether	this	is	an	example	of	stretch,	or	an	example	of
simply	bringing	the	logical	topology	in	line	with	the	physical	topology	is	debatable.

•	In	line	with	this	observation,	it’s	much	easier	to	define	policy	in	terms	of	stretch
than	almost	any	other	way.	Policy	is	any	configuration	that	increases	the	stretch	of	a
network.	Using	Policy	Based	Routing,	or	Traffic	Engineering,	to	push	traffic	off	the
shortest	physical	path	and	onto	a	longer	logical	path	to	reduce	congestion	on	specific
links,	for	instance,	is	a	policy—it	increases	stretch.

•	Increasing	stretch	is	not	always	a	bad	thing.	Understanding	the	concept	of	stretch
simply	helps	us	understand	various	other	concepts,	and	put	a	framework	around
complexity	tradeoffs.	The	shortest	path,	physically	speaking,	isn’t	always	the	best
path.

•	Stretch,	in	this	illustration,	is	very	simple—it	impacts	every	destination,	and	every
packet	flowing	through	the	network.	In	the	real	world,	things	aren’t	so	simple.
Stretch	is	actually	per	source/destination	pair,	making	it	very	difficult	to	measure	on
a	network	wide	basis.

With	all	of	this	in	mind,	let’s	look	at	two	specific	examples	of	the	tradeoff	between
stretch	and	optimization.

Aggregation	versus	Stretch
Aggregation	is	a	technique	used	to	reduce	not	only	the	amount	of	information	carried	in
the	control	plane,	but	also	the	rate	of	state	change	in	the	control	plane.	Aggregation	is	built
into	IP	(both	IPv4	and	IPv6)—even	a	single	subnet	contains	multiple	host	addresses.	By
connecting	a	single	broadcast	segment	to	a	set	of	hosts,	the	IP	routing	protocol	doesn’t
need	to	manage	Layer	2	reachability,	nor	individual	host	addresses.

Note

Host	addresses	are	sometimes	used	to	provide	mobility	within	a	larger
network,	particularly	data	center	fabrics	and	mobile	ad-hoc	networks—an
illustration	of	the	state	versus	stretch	tradeoff	we	won’t	consider	here.

Aggregation	within	the	control	plane	can	also	cause	stretch,	as	Figure	5.2	shows.

Figure	5.2	Aggregation	and	Stretch

Note

Most	routing	protocols	take	into	account	the	metrics	of	an	aggregate’s
components	to	provide	as	close	to	optimal	routing	as	possible	at	an
aggregation	edge	of	this	type.	However,	it’s	still	common	for	stretch	to	be
introduced	into	the	network	even	with	these	counter	measures.	This	example
dispenses	with	taking	component	metric	into	account	to	make	the	principle
easier	to	illustrate.

Two	different	situations	illustrate	increasing	stretch	through	route	aggregation:

•	Assume	the	[A,B]	link	has	a	cost	of	2,	and	all	the	other	links	in	this	network	have	a
cost	of	1.	If	Routers	B	and	C	both	aggregate	to	2001:db8::/61,	then	the	path	through
[A,C]	would	be	preferred	for	everything	within	the	aggregate.	Traffic	destined	to
2001:db8:0:1::/64	will	pass	along	the	path	[A,C,E,D]	to	reach	its	destination,	even
though	the	shortest	(physical)	path	is	[A,B,D].	The	stretch	for	2001:db8:0:2::/64
isn’t	changed,	but	the	stretch	for	2001:db8:0:1::/64	is	increased	by	one.

•	Assume	all	the	links	in	the	network	have	a	cost	of	1.	If	Routers	B	and	C	both
aggregate	to	2001:db8::/61,	then	Router	A	will	somehow	load	share	traffic	toward
the	two	subnets	behind	Routers	D	and	E	across	the	two	equal	cost	paths	it	has
available.	Given	perfect	load	sharing,	50%	of	the	traffic	destined	to
2001:db8:0:1::/64	will	flow	along	[A,C,E,D],	with	a	stretch	of	1,	and	50%	of	the
traffic	destined	to	2001:db8:0:2::/64	will	flow	along	[A,B,D,E],	with	a	stretch	of	1.

The	question	that	should	come	to	mind	about	now	is	this—so	what?	The	amount	of
control	plane	state	is	decreased	through	aggregation	(both	the	actual	amount	of	state	and
the	rate	of	change	in	that	state),	which	clearly	reduces	complexity.	There	are	three
outcomes	being	traded	off	here:

•	Implementing	aggregation	breaks	up	failure	domains,	improving	the	stability	and
resilience	of	the	control	plane	(and	hence	of	the	entire	network).

•	Implementing	aggregation	requires	designing,	configuring,	and	maintaining	the	set
of	policies	around	the	aggregation	itself.	This	is	additional	complexity.

•	Implementing	aggregation	in	this	network	causes	what	would	normally	be	two
redundant	links	to	become	a	single	point	of	failure.	If	Router	B	is	the	preferred	route
to	the	aggregate	2001:0db8::/61,	and	the	link	between	Routers	D	and	E	fails,
2001:0db8:0001::/64	will	become	unreachable	from	Router	A.	Traffic	destined	to
this	prefix	will	be	forwarded	to	Router	C,	because	the	aggregate	covers	this	address
space,	and	then	dropped	because	Router	C	will	have	no	route	to	the	specific	subnet.
To	remedy	this,	a	new	path	must	be	installed	providing	an	alternate	path	to	Router	D
from	Router	C.	Normally,	this	link	would	be	installed	between	Routers	B	and	C,	and
configured	so	it	is	“behind”	the	aggregation,	rather	than	“in	front	of”	the	aggregation
(aggregation	must	be	configured	toward	Router	A	from	Router	C’s	perspective,	not
Router	B).	Solving	this	aggregation	black	hole	problem	increases	complexity	in
several	areas.

•	Increasing	stretch	increases	the	complexity	of	the	data	plane	by	pushing	traffic

through	more	hops,	and	hence	more	queues,	etc.

•	Increasing	stretch	disconnects	the	obvious/apparent	operation	of	the	network	from
the	way	the	network	actually	works.	As	policies	are	implemented	that	increase
stretch,	it	becomes	more	difficult	to	look	at	the	network	topology	and	understand
how	traffic	flows	through	the	network.	This	increases	the	complexity	and	difficulty
of	troubleshooting	various	problems	that	might	(in	fact,	almost	certainly	will)	arise
in	operating	the	network.

•	Increasing	stretch	increases	the	overall	utilization	of	the	network	without	any	actual
increase	in	the	amount	of	traffic	being	carried	through	the	network.	In	the	example
given	in	Figure	5.1,	traffic	that	would	normally	take	a	two-hop	path	is	directed	along
a	three-hop	path,	which	means	one	more	link	and	one	more	router	are	involved	in
forwarding	and	switching	the	packets	in	the	flow(s)	across	the	network.	In	purely
mathematical	terms,	increasing	stretch	decreases	the	overall	efficiency	of	the
network	by	increasing	the	number	of	devices	and	links	used	to	forward	any
particular	flow.

This	last	bullet	is	an	interesting	point—for	it	cuts	to	the	heart	of	our	next	comparison	of
stretch	versus	control	plane	state,	how	traffic	engineering	impacts	complexity.

Traffic	Engineering
Let’s	look	at	a	more	specific	example	of	trading	state	for	traffic	engineering.	We’ll	use	the
network	in	Figure	5.3	as	an	example.

Figure	5.3	Traffic	Engineering,	State,	and	Stretch

Assume	that	every	link	in	this	network	has	a	cost	of	1;	the	shortest	path	between
2001:db8:0:1::/64	and	2001:db8:0:2::/64	is	[A,B,F].	However,	the	network	administrator
doesn’t	want	traffic	between	these	two	subnets	traveling	along	that	path—for	instance,
perhaps	the	traffic	being	exchanged	is	a	high	bandwidth	file	transfer	stream,	and	the	[A,B]
link	is	already	used	for	a	video	stream.	To	prevent	the	two	streams	from	“colliding,”
causing	quality	of	service	issues,	the	network	administrator	implements	some	form	of
policy-based	routing	at	Router	A	that	redirects	the	file	transfer	traffic	through	the	path
[A,C,E,F].

Consider	what	this	involves:

•	A	policy	must	now	be	created	and	installed	on	Routers	A	and	F	to	redirect	this
specific	traffic	around	the	[A,B,F]	path.

•	The	stretch	for	the	file	transfer	traffic	has	been	increased	by	one.

•	This	additional	stretch	means	the	traffic	is	now	going	to	pass	through	four	hops,
rather	than	three,	which	means	four	input	queues,	four	output	queues,	four
forwarding	tables,	etc.,	must	be	managed,	instead	of	three.

•	The	path	of	any	given	stream	through	the	network	is	no	longer	obvious	from	the
topology;	to	understand	the	path	of	a	specific	stream,	a	network	engineer
troubleshooting	problems	must	examine	the	control	plane	policies	to	determine	what
will	happen	in	each	specific	case.

Each	of	these	is	an	added	bit	of	complexity—in	fact,	both	the	data	plane	and	the	control
plane	complexity	have	increased	through	this	exercise.	So	what	have	we	gained?	Why	do
this	sort	of	traffic	engineering?

Because	even	though	the	overall	efficiency	of	the	network	(in	terms	of	utilization)	has
decreased	by	redirecting	some	traffic	along	a	path	with	some	stretch,	the	overall	utilization
rate	of	the	network	has	increased	in	terms	of	its	ability	to	handle	load,	or	rather	to	support
a	specific	set	of	applications.	To	put	this	in	other	terms,	the	network	now	has	a	higher
utilization	rate	even	though	the	overall	efficiency	is	lower.	This	prevents	the	network
operator	from	being	forced	to	install	new	links,	or	upgrade	capacity—both	good	things
from	the	operator’s	point	of	view.

State	versus	Stretch:	Some	Final	Thoughts
So	in	the	case	of	state	versus	stretch,	any	time	we	are	increasing	stretch,	we	are
implementing	some	sort	of	policy,	and	any	time	we	are	implementing	a	policy,	we	are
increasing	complexity	in	some	way.	On	the	other	hand,	creating	stretch	through	policy	is
often	necessary	to	either	reduce	state	in	the	control	plane,	or	to	improve	overall	network
utilization.

State	versus	stretch	is,	then,	a	set	of	tradeoffs.	There	is	no	absolutely	right	answer	to	the
question,	“Should	I	implement	this	policy	that	increases	stretch?”	The	right	answer	is
always	going	to	depend	on	the	goals	and	the	projected	consequences.	Before	we	jump	into
the	next	section	considering	the	tradeoff	between	topology	design	and	convergence,	it’s
important	to	tie	state	versus	stretch	back	to	the	state,	speed,	surface	framework	outlined	in
Chapter	2,	“Components	of	Complexity”:

•	State:	The	amount	of	information	in	the	control	plane	is	either	decreased	through
aggregation,	or	increased	through	traffic	engineering.	In	the	one	case,	the	amount	of
control	plane	complexity	is	decreasing,	while	the	network	complexity	(in	the	data
plane)	is	increasing,	at	least	in	some	amount.

•	Speed:	Aggregation	reduces	the	speed	at	which	the	control	plane	must	react	by
hiding	changes	in	the	network.	Chapter	6,	“Managing	Design	Complexity,”	looks	at
this	in	more	detail.	Adding	more	state	to	the	control	plane	to	engineer	traffic	has	an
effect	that’s	the	opposite	of	aggregation;	a	single	link	failure	can	mean	multiple
updates	in	the	control	plane,	so	the	control	plane	must	react	more	quickly.

•	Surface:	Aggregation	reduces	the	interaction	surface	between	the	control	plane	and
the	topology	in	some	ways—by	hiding	some	parts	of	the	topology	from	the	control
plane—and	increases	the	interaction	surface	in	other	ways—by	implementing
control	plane	policy	that	must	coincide	with	specific	topological	features	within	the
network.	Traffic	engineering	increases	the	interaction	surface	between	the	control
plane	and	topology.

The	state,	speed,	and	surface	framework	proves	useful	in	diagnosing	the	various	points
where	complexity	has	increased,	where	complexity	has	decreased,	and	where	the	tradeoffs
lie.

Topology	versus	Speed	of	Convergence
Stretch	isn’t	the	only	place	where	the	network	topology	and	the	control	plane	interact	with
one	another.	The	actual	layout	of	the	topology	is	a	(often	not	so	obvious)	point	of
interaction,	as	well.	Let’s	consider	two	specific	examples	of	interactions	between	the
topology	and	the	control	plane:	ring	topology	convergence,	and	redundancy	versus
resilience.

Ring	Topology	Convergence
Ring	topologies,	such	as	the	one	illustrated	in	Figure	5.4,	have	a	fairly	specific	set	of
convergence	characteristics.

Figure	5.4	Ring	Topology	Convergence

If	the	[D,	2001:db8:0:1::/64]	link	fails,	what	is	the	convergence	process	for	a	distance
vector	protocol	on	this	topology?

1.	Router	D	discovers	the	failure.

2.	Router	D	advertises	the	failure	to	Routers	C	and	E.

3.	Routers	C	and	E	advertise	the	loss	of	the	link	to	2001:db8:0:1::/64	to	B	and	F.

4.	Routers	B	and	F	advertise	the	loss	of	the	link	to	2001:db8:0:1::/64	to	Router	A.

5.	The	route	to	2001:db8:0:1::/64	is	removed	from	all	the	local	routing	tables,	and

traffic	destined	to	this	subnet	is	dropped.

What	about	with	a	link	state	protocol?

1.	Router	D	discovers	the	failure.

2.	Router	D	floods	modified	link	state	information	to	the	rest	of	the	routers	in	the
network	(or	at	least	within	the	flooding	domain).

3.	Each	router	then	sets	a	timer	to	delay	running	SPF.

4.	As	each	router	runs	SPF,	it	will	recalculate	the	best	path	to	2001:db8:0:1::/64	and
install	it.

5.	As	routers	in	the	ring	run	SPF	at	different	times,	they	will	install	the	new	path
toward	this	destination	at	different	times,	resulting	in	microloops	while	the	routing
tables	throughout	the	ring	are	in	an	inconsistent	state.	(Note	this	won’t	happen	with	a
route	removal,	as	in	this	case.)

6.	After	some	period	of	time,	all	routers	have	run	SPF,	recalculated	their	best	paths	to
the	destination,	and	installed	the	routes.

So	no	matter	which	type	of	routing	protocol	you’re	using,	there	is	some	time	lag	as	the
information	about	changes	to	specific	destination	is	propagated	and	acted	on	through	the
ring.	You	essentially	have	your	choice	between	dropping	or	looping	traffic	during
convergence.

Why,	then,	do	network	designers	often	use	rings?	The	primary	reasons	are	as	follows:

•	Rings	are	the	least	connection	rich	topology	that	offers	a	secondary	path	(a	two
connected	graph,	in	more	formal	terms).

•	Because	rings	are	not	connection	rich,	there	are	no	scaling	issues	with	the	number	of
neighbors,	etc.,	on	a	ring	topology—no	matter	how	large	the	ring	grows,	each	router
will	only	have	two	neighbors.

•	Rings	are	good	for	spanning	long	geographic	distances	with	a	minimal	set	of
(expensive)	links.

•	In	terms	of	complexity,	ring	topologies	add	a	lot	less	load	to	the	network’s	(routed	or
IP)	control	plane.

Triangles	(any	part	of	a	larger	topology	with	three	hops)	converge	much	faster	than
rings	(any	part	of	a	topology	with	four	or	more	hops),	but	triangles	place	a	lot	more	load
on	the	control	plane—particularly	in	terms	of	the	amount	of	information	each	node
receives.	Here,	then,	we	have	a	clear	complexity	tradeoff	in	the	interaction	between
topologies,	control	planes,	and	convergence	speed.

Let’s	go	to	the	opposite	end	of	the	network	topology	spectrum	and	example	very
densely	connected	topologies.

Redundancy	versus	Resilience
Assume	that	you	need	to	build	a	network	with	six	nines	of	reliability	(99.9999%	uptime),
and	the	only	links	you	have	available	have	an	average	downtime	of	about	3.5	days	in	any
given	year	(99%	reliability).	The	easy	solution	to	providing	high	availability	with	low
reliability	parts	is	to	put	many	of	them	in	parallel.	Table	5.1	shows	the	relationship
between	increasing	the	number	of	parallel	units	and	the	reliability	of	the	system.

Table	5.1	Availability	versus	Redundancy

Calculating	Availability

How	did	we	find	these	numbers?	The	formula	for	parallel	and	series	availability	is
simple	if	you	have	availability	numbers	for	each	component.	For	series
components,	simply	multiply	the	availability	for	each	series	component	together.
For	instance,	to	find	the	availability	of	two	99%	available	links	tied	together	back	to
back,	multiply	the	two	availabilities	together:

Click	here	to	view	code	image
A	==	A1	*	A2
A	==	0.99	*	0.99
A	==	0.9801	==	98%	available

For	components	in	parallel,	use	the	following	formula:
Click	here	to	view	code	image

A	==	1	–	((1	–	A1)	*	(1	–	A2))
A	==	1	–	((1	–	0.99)	*	(1	–	0.99)
A	==	1	–	(0.01	*	0.01)
A	==	1	–	0.0001
A	==	0.9999	==	99.99%	available

If	you’re	combining	parallel	(side-by-side)	and	series	(back-to-back)
components,	then	compute	in	pieces,	starting	from	the	smallest	groupings	either	in
parallel	or	series,	and,	as	you	replace	the	smaller	sections	with	larger	ones,	treating
a	group	of	components	as	a	single	component.	Figure	5.5	is	used	to	illustrate
computing	the	availability	of	a	system	with	both	parallel	and	series	components.

Figure	5.5	Computing	Parallel	and	Series	Availability

If	Routers	A,	B,	C,	and	D	all	had	individual	availability	rates	of	99%,	you	would
compute	the	availability	of	all	four	routers	(ignoring	the	links)	using	the	following
formula:

Click	here	to	view	code	image
(A,B)	==	1	–	((1	–	A)	*	(1	–	B))
(A,B)	==	1	–	((1	–	0.99)	*	(1	–	0.99)
(A,B)	==	1	–	(0.01	*	0.01)
(A,B)	==	1	–	0.0001
(A,B)	==	0.9999	==	99.99%	available

Given	the	availability	of	the	pair	of	routers	(A,B)	is	going	to	be	the	same	as	the
availability	of	the	pair	of	routers	(C,D),	you	can	now	compute	the	availability	of	the
four	routers	by	computing	the	availability	of	(A,B)	in	serial	with	(C,D):

Click	here	to	view	code	image
Availability	==	(A,B)	*	(C,D)
A	==	0.9999	*	0.9999
A	==	0.9998	==	99.98%	available

So	the	combined	systems	(ignoring	the	links)	would	have	three	nines	of
availability.

Easy—just	make	certain	that	there	are	at	least	three	links	in	parallel	anyplace	in	the
network,	and	you	have	six	nines	of	reliability,	right?	Well,	maybe.	Let’s	add	in	redundancy
for	our	routers,	and	then	try	to	build	something	out	of	it.	Figure	5.6	illustrates	a	triple
redundant	full	mesh	topology.

Figure	5.6	A	Triple	Redundant	Full	Mesh	Topology

This	design	certainly	meets	the	six	nines	requirement	from	the	perspective	of	links	and
routers—but	how	fast	is	the	control	plane	going	to	converge?	It	might	even	work	under
“ideal”	conditions,	but	when	one	link	fails	in	a	way	that	causes	a	rapid	flap,	interesting
problems	are	going	to	result	from	this	sort	of	design.	In	lab	testing	done	on	EIGRP,	the
protocol	actually	started	losing	convergence	speed	at	around	four	parallel	links	(on	a	very
simple	topology	with	tens	of	thousands	of	routes).

Link	state	protocol	convergence	could	be	hampered	by	the	number	of	control	plane
traffic	flooded	through	the	network.	For	instance,	if	the	(A,2001:db8:0:1::/64)	link	fails,
the	modified	link	state	update	will	be	flooded	throughout	the	triple	full	mesh	multiple
times,	unless	some	sort	of	flooding	reduction	mechanism	is	used.	This	is,	in	fact,	why
mesh	groups	exist	in	IS-IS	and	OSPF—to	prevent	large	flooding	events	on	full	mesh
networks.	Beyond	this,	the	number	and	location	of	microloops	created	during	convergence
on	this	topology	could	be	large	and	difficult	to	predict.

One	way	to	lower	the	complexity	of	this	type	of	topology,	while	maintaining	triple
redundancy	for	resilience,	might	be	to	treat	each	of	the	sets	of	links	between	the	routers	as

a	single	link—this	would	be	possible	using	a	technology	like	Link	Aggregation	Groups
(LAGs),	for	instance.	Observant	readers	are	already	going	to	realize	that	there	are
tradeoffs	here,	as	well.	First,	the	LAG	has	its	own	control	plane,	and	makes	modifications
to	the	forwarding	plane,	to	ensure	equal	use	of	each	of	the	parallel	circuits.	These	will
interact	with	the	overlaying	IP	routing	protocol,	creating	another	interaction	surface.	One
example	of	the	difficulty	in	managing	this	interaction	surface	is	deciding	how	to	handle
the	failure	of	a	single	link	out	of	the	three	available	between	any	two	routers.	Should	the
metric	on	the	single	aggregated	link	be	modified	in	the	routing	protocol?	Or	should	the
link	be	used	at	equal	cost	anyway?	What	are	the	implications	of	each	solution	from	a
traffic	flow	and	loading	perspective?	These	are,	as	always,	not	easy	questions	to	answer—
while	such	a	solution	might	fit	a	particular	situation	well,	then,	there	are	always	tradeoffs
to	consider	in	terms	of	complexity	and	optimization	of	traffic	flow	through	the	network.

So	it	depends	on	a	lot	of	factors,	but	the	routing	protocol	here	is	probably	not	going	to
converge	within	the	six	nines	requirement	in	all	possible	conditions	without	some	serious
tuning	of	timers,	and	potentially	some	reduction	of	control	plane	state	along	the	way.

The	tradeoff	here	is	between	redundancy	and	resilience—while	it	might	seem	that
adding	redundant	links	will	always	increase	network	resilience,	this	simply	isn’t	the	case
in	the	real	world.	Each	redundant	link	adds	a	bit	more	control	plane	state,	and	a	bit	more
load	during	convergence.	Each	added	bit	of	load	slows	down	the	convergence	speed	of	the
control	plane,	and,	in	some	cases,	can	even	cause	the	control	plane	to	fail	to	converge.

Topology	versus	Speed	of	Convergence:	Some	Final	Thoughts
Let’s	go	back	to	our	state,	speed,	and	surface	model	to	see	how	and	where	the	topology
versus	speed	tradeoff	fits.	They	will	be	presented	in	a	slightly	different	order	here.

•	State:	As	the	redundancy	built	into	the	network	increases,	the	number	of	links	and
the	number	of	adjacencies/peering	sessions	must	increase	to	discover	the	additional
links	and	neighbor	relationships	across	those	links.	This,	in	turn,	increases	both	the
amount	of	information	carried	in	the	control	plane	and	the	number	of	replications	of
that	data	throughout	the	network.

•	Surface:	As	the	number	of	devices	in	the	network	increases,	the	number	of
adjacencies	or	peering	relationships	among	devices	participating	in	the	control	plane
must	also	increase.	The	increase	in	peering	relationships	represents	an	increase	in
interaction	surfaces.	Any	particular	piece	of	information	must	be	carried	through
more	devices.

•	Speed:	As	the	redundancy	built	into	the	network	increases,	the	number	of	times	any
particular	piece	of	information	about	the	state	of	the	network	must	be	replicated
increases.	If	any	change	in	the	topology	requires	the	control	plane	to	converge	so	the
state	of	the	internal	databases	matches	the	state	of	the	real	world	(in	topological
terms),	each	additional	piece	of	information	included	in	the	total	state	either	requires
convergence	to	take	longer,	or	a	larger	amount	of	state	to	be	distributed	and
calculated	across	in	the	same	amount	of	time.	If	we	expect	the	network	to	converge
in	the	same	amount	of	time	or	faster	with	more	information,	then	we	are	expecting
the	control	plane	to	process	information	more	quickly.	Larger	databases	processed	in

the	same	amount	of	time	(or	faster)	require	more	speed,	or	more	transactions	per
second.

This	last	point	on	speed	will	operate	as	a	segue	into	the	next	section	investigating	the
relationship	of	speed	and	complexity—fast	convergence.

Fast	Convergence	versus	Complexity
When	networking	technology	first	became	widespread,	fast	convergence	meant	fast
enough	to	allow	a	file	transfer	or	email	to	make	its	way	through	the	network	without	too
much	interruption.	As	networks	have	become	faster,	the	applications	deployed	on	top	of
them	have	been	built	around	the	faster	speeds	and	higher	availability	networks	can	deliver.
Once	acceptable	convergence	speeds	are	now	considered	too	slow	for	many	applications.
Consider	the	following	illustration	showing	the	theoretical	convergence	times	of	various
routing	protocols	as	they	were	originally	deployed,	using	default	timers	and	no	“tricks,”
such	as	loop-free	alternates	(LFAs)	or	fast	reroute	mechanisms.	Figure	5.7	illustrates
routing	protocol	convergence	speeds	with	default	timers	and	“No	Tricks.”

Figure	5.7	Routing	Protocol	Convergence	Speeds	with	Default	Timers	and	“No	Tricks”

Let’s	look	at	each	protocol	to	get	a	sense	for	the	convergence	times	shown	here.

•	Routing	Information	Protocol	(RIP)	uses	a	periodic	update	to	inform	neighbors
about	a	change	in	reachability	(RIP	doesn’t	really	carry	topology	information,
though	some	information	about	the	topology	can	be	inferred	from	the	database).	The
“default”	timer	for	this	periodic	update	is	30	seconds;	on	average	(statistically),	any
given	change	in	reachability	will	wait	15	seconds	before	being	advertised	to	a
neighboring	router.	The	average	time	to	notify	the	entire	network	of	a	change	in
reachability,	then,	is	the	maximum	number	of	hops	the	reachability	change	must
travel	multiplied	by	15	seconds.	For	large	networks,	this	could	mean	two	or	three
minutes.

•	OSPF	is	a	link	state	protocol,	so	any	change	in	topology	and/or	reachability	is
flooded	through	the	entire	network.	Every	router	that	receives	an	updated	LSA	will
compute	the	SPT	(calculated	using	SPF)	independently,	which	means	(theoretically)
in	parallel	with	all	the	other	routers	in	the	flooding	domain.	The	original	timers	that

impacted	OSPF	convergence	are	the	LSA	generation	timer	and	the	SPF	calculation
timer.	These	two	timers,	combined,	result	in	a	minimum	convergence	time	for
standard,	unaltered	OSPF	of	around	one	second.	The	maximum	convergence	time	is
shown	here	to	be	around	30	seconds,	the	maximum	amount	of	time	a	neighbor
failure	will	take	to	be	discovered	and	advertised	throughout	the	network.

•	EIGRP	is	a	distance	vector	protocol	that	holds	one	hop	of	topology	information	in	a
local	database,	using	this	information	to	precalculate	loop-free	paths	where	possible.
If	an	alternate	loop-free	path	is	available,	EIGRP	can	converge	in	less	than	100
milliseconds	(ms)	after	a	link	failure	has	been	detected.	In	the	absence	of	a	LFA
(called	a	Feasible	Successor,	or	FS),	EIGRP	will	propagate	a	query	through	the
network;	on	average,	this	query	will	require	about	200	ms	per	hop	to	process.	The
average	amount	of	time	EIGRP	requires	to	converge	is,	then,	200	ms	multiplied	by
the	number	of	routers	that	must	participate	in	the	query	process—a	number
regulated	by	network	design	and	configuration.	The	maximum	convergence	time	is
set	by	the	EIGRP	Stuck	in	Active	timer,	which	is	normally	around	90	seconds.

Note

Why	is	SPT	calculation	theoretically	in	parallel?	Because	of	slight	differences
in	the	rate	at	which	one	router	can	flood	packets	to	each	of	its	neighbors,	and
the	cumulative	time	required	to	flood	new	information	through	a	multihop
network,	there	is	no	way	to	ensure	all	the	routers	in	the	network	receive	new
topology	information	at	precisely	the	same	moment.	Given	this,	there	is	also
no	way	to	ensure	that	every	router	in	the	network	will	begin	calculating	a	new
SPT	at	precisely	the	same	moment.	This	is,	ultimately,	the	cause	of
microloops	during	link	state	protocol	convergence.

As	you	can	see	from	the	application	requirements	shown	in	Figure	5.7,	these
convergence	times	just	won’t	supply	what	is	expected	out	of	networks	today.	How	can
convergence	times	for	these	protocols	be	improved?	The	first	step	in	the	process	was	to
move	from	talking	to	talking	faster.

Improving	Convergence	with	Intelligent	Timers:	Talk	Faster
If	we	want	to	improve	the	convergence	of	a	routing	protocol,	where	would	be	the	easiest
place	to	start?	Given	the	focus	on	the	interaction	between	the	various	timers,	the
distribution	of	routing	information,	and	the	calculation	of	new	forwarding	tables,	the	most
obvious	place	to	begin	would	be	with	the	timers	the	protocols	use	to	determine	when	to
advertise	new	pieces	of	information.	To	better	understand	the	problem,	we	face	when
shortening	these	timers,	we	need	to	understand	why	the	timers	are	there	in	the	first	place.
Let’s	consider	OSPF	running	on	the	network	shown	in	Figure	5.8.

Figure	5.8	A	Simple	OSPF	Network

Just	to	illustrate	the	point,	assume	the	2001:db8:0:1::/64	link	is	flapping	so	it	fails,	then
reconnects,	every	200	or	300	ms.	What	happens	if	Router	A	generates	a	new	LSA	each
time	this	link	changes	state?	Routers	B	and	C	would	be	flooded	with	routing	updates,
taking	up	bandwidth	and	buffer	space.	To	prevent	this	from	happening,	OSPF	is	designed
with	a	minimal	amount	of	time	a	router	will	wait	before	advertising	a	link	state	change—
the	LSA	generation	timer.	If	the	LSA	generation	timer	is	set	fairly	high,	rapid	status
changes	in	locally	connected	links	will	be	damped—constant	flaps	like	the	one	described
here	will	not	cause	a	constant	flood	of	LSAs	flooded	through	the	network.	On	the	other
hand,	setting	the	LSA	generation	timer	too	high	will	cause	the	network	to	converge	more
slowly.	How	do	we	resolve	this	problem?

The	solution	is	to	use	a	variable	timer—allow	Router	A	to	advertise	the	new	link	state
very	quickly	(or	even	immediately)	when	the	2001:db8:0:1::/64	link	changes	state,	but
then	“back	off,”	so	that	Router	A	must	wait	some	longer	period	of	time	before	advertising
the	next	link	state	change.	This	will	allow	the	network	to	converge	quickly	for	single
changes,	but	dampen	the	effect	of	a	large	number	of	changes	happening	over	a	short
period	of	time.

This	is	precisely	what	exponential	backoff,	a	feature	now	included	in	most	OSPF
implementations,	does.	The	timer	is	set	to	a	very	low	number,	and	increased	each	time	a
new	event	occurs,	until	it	reaches	some	maximum	amount	of	time	between	new
advertisements.	As	time	passes	with	no	events	occurring,	the	timer	is	reduced	until	it
eventually	reaches	the	minimum	again.	Figure	5.9	illustrates	the	exponential	backoff	timer
operation.

Figure	5.9	Exponential	Backoff	Timer	Operation

In	Figure	5.9,	the	first	failure	of	2001:db8:0:1::/64	causes	Router	A	to	generate	an	LSA
(close	to)	immediately,	so	the	rest	of	the	network	is	informed	as	quickly	as	possible.
Router	A,	after	sending	this	LSA,	modifies	its	LSA	generation	timer	to	Timer	Step	1.
Router	A	then	immediately	begins	“decaying”	the	LSA	generation	timer,	reducing	it
slowly	as	time	passes	without	any	new	link	state	changes.	After	a	few	moments,	however,
the	second	topology	change	occurs.	Router	A	now	waits	until	the	timer	expires,	sends	out
a	new	LSA,	and	adds	more	time	to	the	timer,	increasing	it	to	Timer	Step	2	in	the
illustration.	Again,	Router	A	begins	reducing	the	timer	slowly	while	the	2001:db8:0:1::/64
link	remains	stable.	A	third	state	change,	however,	causes	Router	A	to	wait	until	the	timer
expires,	transmit	a	new	LSA,	and,	again,	add	more	time	to	the	timer	value.	At	this	point,
the	maximum	timer	setting	has	been	reached—no	matter	how	many	future	failures	occur,
the	timer	will	never	be	set	any	higher	than	this	value.

This	type	of	exponential	backoff	can	be	applied	to	the	interval	between	SPT
calculations,	as	well,	to	provide	fast	reaction	for	small	numbers	of	changes	without
overloading	the	network	with	updated	information	and	processing	requirements.

Note

If	this	looks	similar	to	a	chart	for	BGP	dampening,	that’s	because	it	is—
dampening	and	exponential	backoff	use	the	same	principles	and	techniques	to
promote	network	stability	while	allowing	for	fast	notification	of	small
changes	in	reachability	or	topology.

Several	points	are	worth	considering	in	the	relationship	between	talking	faster	and
complexity.

•	Only	a	minimal	amount	of	state	is	added	to	the	control	plane—in	fact,	no	new	state

is	added	to	the	control	plane	state	carried	between	routers	at	all.	A	number	of
additional	timers	must	be	added	to	the	control	plane	protocol	implementation	(this
can	be	quite	complex,	of	course,	depending	on	the	granularity	at	which	the	timers
must	operate—per	neighbor/peer,	per	prefix,	etc.),	but	this	is	all	opaque	to	the	“on
the	wire”	protocol	itself.	There	may—or	may	not—be	more	traffic	on	the	wire	to
provide	for	faster	convergence,	depending	on	how	the	timers	are	set.	In	older
networks,	with	lower	transmissions	speeds,	these	additional	packets	could	have	a
large	impact	on	the	operation	of	the	network	itself.	In	more	modern,	higher	speed
links,	this	additional	traffic	is	minimal	against	the	gains	in	convergence	speed.	These
sorts	of	timer	modifications,	done	correctly,	might	increase	the	speed	of	operations
in	the	control	plane,	the	speed	at	which	the	control	plane	is	propagating	state
throughout	the	network.	Increasing	the	spacing	of	advertising	events	as	the	rate	of
events	increases	(exponential	backoff),	mitigates	the	speed	of	operations	to	the	point
that	little	additional	complexity	is	added	if	the	two	techniques	are	combined.

•	Perhaps	the	most	complexity	is	added	through	exponential	backoff	timers	along	the
interaction	surfaces	in	the	control	plane.	Rather	than	having	a	lot	of	devices	with
fairly	consistent	timers,	the	operator	now	has	a	lot	of	devices,	each	with	fairly
independent	timers	that	could	be	running	at	different	rates.	This	makes	it	harder	to
predict,	at	any	given	moment,	precisely	what	the	state	of	the	network	is,	introducing
a	more	“quantum	state”	nature	to	the	mix	when	troubleshooting	or	determining	what
control	plane	behavior	will	be	in	specific	situations.	Multiple	failure	situations	will
now	produce	a	different	chain	of	events	than	single	failure	situations,	potentially
causing	difficult	to	trace	race	conditions	and	other	artifacts	of	complex	surface
interactions.

Note

As	with	all	control	plane	modifications,	there	is	a	definite	tradeoff	to	be
considered	when	configuring	exponential	backoff	as	a	mechanism	to	provide
faster	convergence.	For	instance,	a	single	misbehaving	device	(or	an	attacker)
can,	by	injecting	false	changes	to	the	topology	into	the	control	plane,
conceivably,	force	the	exponential	backoff	timers	to	remain	high	(near	the
maximum	timer	setting	in	Figure	5.9).	If	these	timers	are	forced	to	remain
higher	than	they	should	be,	the	network	will	react	too	slowly	to	real	changes,
potentially	causing	application	failures.	This	might	seem	to	be	far-fetched,
but	it’s	also	not	something	the	typical	network	administrator	is	going	to	look
for	when	troubleshooting	application	performance	issues.

Modifying	the	convergence	timers	in	routing	protocols,	then,	typically	provides	a	lot	of
gain	in	terms	of	convergence	time	without	having	a	huge	complexity	impact.

Removing	Timers	from	Convergence:	Precompute
What’s	next	after	talking	and	talking	faster?	If	making	the	timers	more	intelligent	can
dramatically	improve	convergence	time,	then	what	about	simply	taking	the	timers	out	of
convergence	altogether?	This	is	what	precomputed	LFA	paths	does.	Figure	5.10	will	be
used	to	illustrate	how	this	works.

Figure	5.10	Precompute	Example	for	Fast	Convergence

In	this	network,	Router	A	has	two	paths	to	reach	destinations	behind	Router	C:	via
Router	B	with	a	total	cost	of	2,	and	via	Router	D	with	a	total	cost	of	3.	In	this	case,	Router
A	will	obviously	choose	the	path	through	Router	B	with	a	total	cost	of	2.	But	why	couldn’t
Router	A	install	the	route	through	Router	D	as	a	backup	path?	It’s	obvious	the	path	is	loop
free.

This	is,	in	fact,	what	precomputing	does—discover	alternate	loop-free	paths	and	install
them	as	a	locally	available	backup	path.	The	key	point	to	remember	is	that	routers	can’t
“see”	the	network	like	a	network	engineer,	with	an	actual	diagram	of	the	network	end-to-
end	on	which	to	map	out	alternate	paths	to	reach	a	single	destination	(and	it’s	not	so
simple	as	to	find	the	alternate	paths	on	a	map,	anyway—the	cost	of	the	path	makes	a	big
difference,	as	we’ll	see	in	the	next	section).	All	the	router	can	do	is	examine	the	cost	of	the
two	paths,	especially	the	cost	being	advertised	by	the	next	hop	of	any	alternate	route,	to
determine	if	the	path	should	actually	be	used	as	a	LFA.

In	this	case,	Router	A	can	look	at	Router	D’s	cost	and	determine	that	the	path	through
Router	D	cannot	be	a	loop,	because	the	cost	of	Router	D’s	path	is	less	than	the	cost	of
Router	A’s	path.	In	EIGRP	terms,	this	is	called	the	feasibility	test;	if	the	neighbor’s
Reported	Distance	(the	cost	at	Router	D)	is	less	than	the	local	Feasible	Distance	(the	best
path	at	Router	A),	then	the	path	is	loop	free,	and	can	be	used	as	a	backup.	OSPF	and	IS–IS
calculate	LFAs	in	much	the	same	way,	by	calculating	the	cost	to	any	given	destination
from	the	neighbor’s	point	of	view	to	decide	if	the	path	is	loop	free	or	not.

Let’s	consider	the	precomputation	of	LFA	paths	in	complexity	terms.

•	Like	timer	modification,	precomputing	LFA	paths	doesn’t	add	anything	to	the	state
carried	through	the	network	in	the	control	plane.	All	the	information	required	to
compute	these	alternate	paths	is	available	in	information	already	carried	by	the
control	plane,	both	with	EIGRP	and	with	link	state	protocols,	so	there	is	no	reason	to
add	any	new	information.	Precomputing	alternate	paths	does,	of	course,	increase	the
internal	state	for	any	specific	implementation,	introducing	new	code	paths	that	need
to	be	tested.

•	Precomputation	has	little	to	no	impact	on	the	speed	at	which	the	control	plane

operates—if	anything,	if	most	paths	through	a	network	can	be	protected	through
precomputation,	the	timer	modifications	discussed	in	the	previous	section	may
become	less	important,	allowing	convergence	speeds	to	become	“lazier,”	and	the
pace	of	notifications	in	the	control	plane	to	be	slower.

•	Perhaps	the	most	complexity	is	added	through	precomputation—as	was	true	with
exponential	backoff	timers—along	the	interaction	surfaces	in	the	control	plane.	This
is	true	along	two	dimensions—control	plane	operation	and	operational	state.	Control
plane	operation	is	made	more	complex	by	the	possibility	that	a	single	or	multiple
failures	may	cause	overlapping	precomputed	paths	to	come	into	play,	causing
unanticipated	states	in	the	network.	Race	and	other	conditions	are	a	possible	side
effect	that	must	be	considered	(and	possibly	tested	for).	From	an	operational	state
perspective,	precomputed	paths	add	one	more	bit	of	internal	state	to	each	forwarding
device	operators	must	pay	attention	to—what	is	the	alternate	path,	is	the	network	in
a	state	between	switching	to	the	alternate	path	and	calculating	a	new	best	path,	for
instance.	In	the	case	of	two	failures	occurring	at	or	near	the	same	time,	it’s	difficult
for	an	operator	to	predict	the	outcome,	and	hence	to	know	how	the	network	will
actually	converge	(will	it	converge	within	the	required	bounds).

As	was	the	case	in	modifying	timers	to	improve	protocol	convergence,	precomputing
paths	offers	a	lot	of	gains	against	very	small	increases	in	apparent	complexity.	In	fact,
EIGRP	Feasible	Successors,	a	form	of	precomputed	paths,	have	been	deployed	in	many
large-scale	networks	for	many	years	with	little	noticeable	increases	in	complexity.

Working	around	Topology:	Tunneling	to	the	Loop-Free	Alternate
What	happens	if	the	metrics	in	Figure	5.10	are	changed	slightly,	throwing	in	an	extra
router,	and	resulting	in	the	network	illustrated	in	Figure	5.11?

Figure	5.11	The	Loop-Free	Alternate	That	Isn’t

Router	A	still	has	two	paths	to	every	destination	beyond	Router	C,	such	as
2001:db8:0:1::/64,	but	the	path	via	Router	D	cannot	be	used	as	a	LFA.	Why?	If	the	path	to
2001:db8:0:1::/64	through	Router	B	fails,	and	Router	A	switches	to	the	alternate	path
through	Router	D,	where	will	Router	D	forward	this	traffic?	Router	D	has	two	paths	to
2001:db8:0:1::/64;	through	Router	E	with	a	cost	of	4,	and	through	Router	A	with	a	cost	of

3.	Router	D	will,	then,	forward	any	traffic	Router	A	sends	it	with	a	destination	of
2001:db8:0:1::/64	back	to	Router	A.

Router	A	using	Router	D	as	a	LFA,	in	this	case,	actually	results	in	a	routing	loop	during
the	time	between	the	failure	of	the	path	through	Router	B,	and	the	time	when	Router	D
recomputes	its	best	path	and	starts	using	the	path	through	Router	E	to
reach2001:db8:0:1::/64.	This	is	called	a	microloop,	because	the	loop	is	caused	by	the
control	plane,	and	it	tends	to	be	for	a	very	short	duration	(it	isn’t	a	permanent	loop).

How	can	we	resolve	this?	The	most	obvious	answer	is	to	simply	not	use	the	path
through	Router	D	as	a	backup	path—but	we’re	trying	to	provide	for	fast	rerouting	of
traffic	in	the	case	of	a	change	in	the	network’s	topology,	not	dropped	packets.	Fast	reroute
solutions	can	solve	this	problem	by	tunneling	past	Router	D,	to	some	point	in	the	network
where	the	traffic	won’t	be	forwarded	(looped)	back	toward	Router	A.	There	are	several
ways	to	accomplish	this:

•	Compute	the	SPT	from	the	perspective	of	a	wider	ring	of	neighbors	until	you	find	a
point	several	hops	away	where	you	can	tunnel	traffic	to	without	it	looping	back	to
yourself.	Most	mechanisms	that	do	this	stop	searching	at	two	hops	(your	neighbor’s
neighbor),	because	this	finds	the	vast	majority	of	all	alternate	paths	available	in	this
way.

•	Advertise	reachability	to	2001:db8:0:1::/64	through	Routers	D	and	E	to	Router	A.1

1.	See,	as	an	example	S.	Bryant,	S.	Previdi,	and	M.	Shand,	“A	Framework	for	IP	and	MPLS	Fast	Reroute	Using	Not-
Via	Addresses”	(IETF,	August	2013),	accessed	September	15,	2015,	https://www.rfc-editor.org/rfc/rfc6981.txt.

•	Compute	an	alternate	topology	using	an	algorithm	such	as	depth	first	searching	with
a	random	walk,	or	others.2

2.	See,	as	an	example	A.	Atlas	et	al.,	“An	Architecture	for	IP/LDP	Fast-Reroute	Using	Maximally	Redundant	Trees”
(IETF,	July	2015),	accessed	September	15,	2015,	https://www.ietf.org/id/draft-ietf-rtgwg-mrt-frr-architecture-
06.txt.

•	Compute	a	reverse	tree	from	the	destination	toward	the	local	router;	find	a	point	on
this	reverse	tree	that	is	not	on	the	current	best	path	from	the	local	router	toward	the
destination.3

3.	For	further	information,	see	Chapter	8,	“Weathering	Storms,”	in	The	Art	of	Network	Architecture:	Business-Driven
Design,	1st	edition.	(Indianapolis,	Indiana:	Cisco	Press,	2014).

Once	the	remote	point	where	traffic	can	be	safely	tunneled	is	found,	some	form	of
tunnel	must	be	automatically	created	to	use	as	a	backup	path.	This	tunnel	must	be	inserted
in	the	local	forwarding	table	with	a	very	high	metric,	or	inserted	in	such	a	way	as	to
prevent	it	from	being	used	until	the	set	of	primary	(nontunneled)	paths	have	been	removed
from	the	table.	The	end	point	of	the	tunnel	must	also	have	a	tunnel	tail	end	though	which
to	handle	packets	being	forwarded	down	this	path,	preferably	something	that	is
autoconfigured	to	reduce	network	management	and	configuration	overhead.

Returning	to	the	state,	speed,	surface,	optimization	model	developed	up	to	this	point
will	help	expose	what	new	complexities	these	types	of	tunneled	fast	reroute	add	to	the
network.

•	Tunneled	solutions	add	state	in	a	number	of	ways.	First,	there	is	the	additional

https://www.rfc-editor.org/rfc/rfc6981.txt
https://www.ietf.org/id/draft-ietf-rtgwg-mrt-frr-architecture-06.txt

internal	and	implementation	state,	both	of	which	add	complexity.	This	state	includes
additional	processing	required	to	recalculate	any	tunneled	backup	paths	when	the
network	topology	changes.	Second,	some	mechanisms	require	the	advertisement	of
additional	control	plane	state	explicitly	(such	as	NotVia),	which	adds	control	plane
protocol	complexity.	Third,	if	the	tunneling	protocol	used	to	build	the	fast	reroute
backup	paths	are	not	currently	deployed	in	the	network,	they	must	be	deployed—
adding	additional	protocols	to	the	stack,	configurations,	etc.	Finally,	the
provisioning	(or	autoprovisioning)	tunnel	endpoints	throughout	the	network
increases	complexity	by	increasing	configuration.

•	Tunneled	fast	reroute	mechanisms	don’t	increase	the	speed	at	which	the	control
plane	operates,	nor	the	speed	at	which	changes	occur	in	the	network	topology.	In
fact,	fast	reroute	can	actually	reduce	the	speed	of	updates	by	reducing	the	need	for
the	fancy	and	tuned	timers	described	above.	In	this	case,	tunneled	fast	reroute
mechanisms	can	be	a	way	to	reduce	complexity.

•	Tunneled	solutions	increase	the	size	and	depth	of	interaction	surfaces	in	a	number	of
ways.	In	fact,	this	is	probably	the	primary	way	in	which	these	solutions	increase
network	complexity.	A	few	examples	will	suffice—First,	determining	the	traffic
patterns	in	a	network	is	much	more	complex,	particularly	during	network	outages.
For	networks	that	value	a	high	level	of	utilization	(rather	than	overbuilding	and
ignoring	quality	of	service),	this	adds	a	number	of	factors	to	consider	when
planning,	configuring,	and	managing	quality	of	service	issues.	Second,	because
traffic	can	travel	over	tunnels	during	transient	states	to	a	point	multiple	hops	away	in
the	network,	following	the	flow	of	a	particular	stream	or	flow	can	become	much
more	difficult.	In	networks	with	constant	topology	change,	this	can	become	an
overwhelming	challenge.	Third,	operators	must	remember	to	look	in	more	than	one
place	when	determining	where	traffic	is	flowing	and	why—there	is	more	to	the
control	plane	than	just	what	is	in	the	current	forwarding	table.	Finally,	tunneled
mechanisms	require	that	a	large	number	of	devices	be	capable	of	dynamically
terminating	tunnels	to	reroute	traffic.	Each	of	these	dynamically	open	tunnel	tail
ends	are	potential	security	threats	and	additional	management	complexity.

Some	Final	Thoughts	on	Fast	Convergence
It	should	be	obvious	by	now	that	moving	from	default	timers,	to	precalculated	LFAs,	to
tunneled	LFAs,	involves	two	somewhat	small	steps	up	in	complexity,	and	one	final	step
that’s	a	bit	larger	in	complexity.	Figure	5.12	illustrates	this	concept.

Figure	5.12	Complexity	versus	Convergence

Note

Tunneled	and	precomputed	LFAs	are	close	to	identical	in	the	speed	of
convergence	offered	by	each	solution,	so	they	are	shown	close	together	in
Figure	5.12.	The	primary	tradeoff	between	these	two	is	the	amount	of	control
plane	complexity	versus	the	types	of	topologies	each	will	cover.	Tunneled
LFAs	can	cover	just	about	every	topology	(with	some	exceptions—nonplanar
topologies	aren’t	always	covered	by	every	tunneled	LFA	technology),	at	the
cost	of	more	complexity	in	the	control	plane.

You	might	place	each	specific	solution	in	a	different	place	on	this	curve—it	all	depends
on	the	requirements	of	the	network	you’re	working	on,	and	how	you	perceive	the	added
complexity	of	moving	to	ever	faster	convergence.	Either	way,	movement	along	the
continuum	of	talk,	talk	faster,	precompute,	and	tunnel	adds	another	layer	of	interconnected
entities	into	the	network	as	a	system,	another	set	of	interaction	surfaces,	and	another	group
of	uncertainty	points.	While	each	one	appears	to	be	fairly	simple	on	the	surface,
complexity	can	add	up	very	quickly	when	trying	to	converge	quickly.	The	tradeoffs	here
are	real,	persistent,	and	urgent.

Will	there	ever	be	any	end	to	the	fast	convergence	game?	Let’s	put	the	question	the

other	way	around.	Networks	are,	in	essence,	a	sop	to	human	impatience.	The	problem
network	engineers	face	is	that	there	is	no	apparent	end	point	in	human	impatience—no
matter	how	fast	something	is,	it	can	always	be	faster.	As	noted	in	the	beginning	of	this
chapter,	email	and	file	transfer	work	fine	with	moderately	fast	control	plane	convergence.
Voice	and	video,	however,	put	higher	expectations	on	the	network.	High-speed	trading	in
the	stock	market	and	real-time	medical	uses	place	even	harder	requirements	on	network
convergence.	As	machine	to	machine	and	other	applications	are	deployed	across	networks,
they	are	likely	to	push	ever	increasing	convergence	speeds,	until	engineers	have	simply
reached	the	limit	of	what	can	be	done	to	make	a	network	control	plane	converge	faster.	In
short,	there	is	probably	no	end	in	sight	for	trying	to	make	the	network	converge	more
quickly.

Virtualization	versus	Design	Complexity
Virtualization	is	one	of	those	“always	new”	technologies	in	the	world	of	networking.	It
was	new	when	Frame	Relay	first	provisioned	virtual	circuits,	it	was	new	again	when
Asynchronous	Transfer	Mode	(ATM)	was	first	proposed,	it	was	new	when	VLANs	on
Ethernet	were	proposed,	and	it	was	new	when	MPLS	originally	known	as	tag	switching)
was	proposed,	and	it	will	be	new	again	in	some	future	instance.	Why	is	virtualization	such
a	popular	and	perennial	topic	in	network	engineering?	Because	it	provides	a	way	to	hide
information	(more	on	information	hiding	can	be	found	in	Chapter	6,	“Managing	Design
Complexity”),	which	allows	network	operators	to	resolve	complex	problems	in	apparently
simple	ways.	To	understand	the	reasoning	behind	virtualization,	let’s	look	at	a	simple	use
case	using	the	network	illustrated	in	Figure	5.13.

Figure	5.13	Virtualization	Use	Case

Assume	we	want	to	be	certain	that	Hosts	A	and	F	can	talk	to	one	another,	and	Hosts	B
and	E	can	talk	to	one	another,	but	Hosts	A	and	B	cannot,	nor	A	and	E,	nor	B	and	F,	nor	E
and	F.	We	could,	of	course,	set	up	filters	at	all	the	interfaces	through	the	network	to	ensure
traffic	can	only	pass	between	the	hosts	we’ve	decided	should	communicate,	and	traffic
cannot	pass	between	hosts	we	don’t	want	to	communicate.	This	would	take	a	lot	of
management	and	configuration	effort,	however—it’s	simpler	to	create	two	virtual
topologies	on	which	only	devices	within	each	virtual	topology	can	communicate,	and
attach	the	right	set	of	hosts	to	each	virtual	topology.

In	this	case,	we	could	include	E,	it’s	upstream	router,	D,	the	[D,E]	link,	B’s	upstream
router,	C,	the	[B,C]	link,	and	B,	on	one	topology.	On	the	other	topology	we	could	include

A,	A’s	upstream	router,	C,	the	[A,C]	link,	D,	F’s	upstream	router,	[D,F]	link,	and	F.	So
long	as	we	have	some	way	to	separate	the	two	topologies	along	the	[C,D]	link,	so	each
topology	appears	to	be	its	own	“network,”	we	can	build	two	apparently	independent
topologies	through	which	to	carry	traffic.

Further	Thoughts	on	Using	Virtual	Topologies	for	Security

The	preceding	example	provides	simplistic	reductions	of	the	many	uses	cases	for
virtualized	networks,	even	from	a	security	point	of	view.	One	example	that	is	used
in	the	real	world	on	a	regular	basis	is	separating	publicly	accessible	servers	and
services	(such	as	a	public	facing	web	server)	from	private	backed	servers	(such	as	a
database	or	business	logic	service).	By	breaking	an	application	apart	into	multiple
components,	those	parts	which	need	to	be	publicly	accessible	can	be	addressed
using	public	pools,	and	those	parts	that	should	not	be	publicly	accessible	can	be
addressed	out	of	private	pools.	Taking	this	to	maximum	scale	often	results	in	the
creation	of	microservices,4	very	small	services,	each	with	a	focused	purpose,	that
only	communicate	over	the	network;	the	interfaces	for	such	services	need	to	be
protected	not	only	from	public	access,	but	also	from	internal	users.	Carrying	the
concept	of	microservices	into	another	realm,	microsegmentation	breaks	a	single
network	up	into	virtual	topologies,	and	gives	users	and	applications	access	to	these
topologies	only	when	they	need	the	services	that	reside	there.	Much	like	the
example	given	in	the	text,	this	provides	an	alternate	route	to	security	that	not	only
protects	against	unauthorized	access,	but	also	blocks	any	internal	or	external
attacker’s	ability	to	even	reach	the	processes	that	house	critical	services.

4.	For	an	excellent	introduction	to	microserves,	see	Sam	Newman,	Building	Microservices,	1st	edition.	(O’Reilly
Media,	2015).

These	sorts	of	design	enable	scaling,	as	well,	by	conserving	address	space,	and
breaking	what	could	be	a	large	failure	domain	up	into	potentially	many	different
failure	domains.

While	this	is	a	bit	oversimplified,	this	is	the	essence	of	most	virtualization	deployments
—the	ability	to	create	virtual	topologies	allows	us	to	transfer	the	complexity	of
configuring	a	lot	of	filters	into	the	complexity	of	an	additional	set	of	control	plane	and
data	plane	primitives.

While	there	are	many	reasons	to	virtualize,	they	all	come	down	to	some	form	of
multiplexing	or	another,	whether	between	applications,	groups	of	users,	users,	or	some
other	dividing	line.	There	are	also	many	forms	of	virtualization,	but	they	all	come	down	to
the	same	set	of	concepts—putting	an	out	wrapper,	tunnel	header,	or	some	other	maker	in
the	packet	header	to	segregate	one	topology	from	another.	Let’s	consider	some	of	the
tradeoffs	of	virtualization	from	this	rather	simplistic	viewpoint.

Functional	Separation
Virtualization	allows	the	network	operator	to	break	a	single	problem	into	multiple	parts,
and	then	solve	each	one	separately.	An	easy	example—rather	than	managing	the	quality	of
service	and	interactions	of	hundreds	of	different	flows	from	dozens	of	different
applications,	configurations	can	be	molded	around	a	small	set	of	applications	traveling
along	one	virtual	topology,	and	then	manage	inter-virtual	topology	configuration
separately.	This	layering	of	functions	is	essentially	what	we	see	in	building	protocols,
hierarchical	network	designs,	and	even	the	building	and	testing	of	software	based	on	units,
rather	than	as	monoliths.	Functional	separation	is	a	major	simplification	tool;
virtualization	is	a	good,	time	tested	way	to	provide	functional	separation.

Separating	layers	and	problems	into	multiple	parts,	however,	can	generate	more
complexity	by	increasing	the	number	of	surfaces	which	must	interact.	Each	component
created	also	creates	a	set	of	points	of	interaction	between	the	new	module	and	other
existing	modules.	To	return	to	the	quality	of	service	example,	while	there	are	fewer	traffic
flows	and	applications	to	manage—they’re	grouped	off	by	virtualizing	them—a	number	of
new	questions	need	to	be	answered,	such	as:

•	Should	each	virtual	topology	be	considered	a	single	“class	of	service,”	or	should
there	be	multiple	“buckets”	or	classes	of	service	within	each	virtual	topology?

•	If	there	each	virtual	topology	is	going	to	have	multiple	classes	of	service,	how
should	these	classes	of	service	be	indicated?	Is	copying	the	quality	of	service
information	from	the	“inner”	header	to	the	“outer”	header	enough?	Does	there	need
to	be	some	form	of	mapping	between	these	two	pieces	of	quality	of	service
information?

•	How	should	the	different	classes	of	service	interact	between	the	virtual	topologies?
Should	all	the	“gold”	service	be	lumped	into	a	single	class	on	the	underlying
transport	network,	or	should	one	topology	have	priority	over	the	others	(and	why)?
This	is	specifically	problematic	when	each	topology	represents	a	different	customer.
If	two	customers	have	both	purchased	a	“gold”	level	of	service,	how	should	the
network	react	when	a	link	or	path	is	congested	enough	that	this	level	of	service
cannot	be	maintained	for	both	customers?	Should	one	customer	“lose”	to	the	other?
Should	both	receive	degraded	service?	Should	there	be	different	levels	within	the
“gold”	class	based	on	the	size	or	total	worth	of	the	customer?	These	are	difficult
questions	to	answer.

Forwarding	Plane	Complexity
The	forwarding	plane	is	simpler	because	each	packet	forwarding	device	in	the	network
must	only	examine	a	small	set	of	header	bits,	a	label,	or	a	tag,	to	determine	which	links	a
packet	can	be	forwarded	on	or	not.	The	alternative,	of	course,	is	to	have	a	rather	explicit
set	of	filters,	built	on	a	per	host	basis,	which	forwarding	devices	must	examine	to	make
the	same	determination.	Given	the	complexities	of	maintaining	and	search	such	a	list,
header	bits	or	an	outer	header	is	a	much	simpler	solution	to	the	traffic	separation	problem.

On	the	other	hand,	the	forwarding	plane	is	more	complex	in	some	ways;	traffic,	on
being	accepted	into	the	network,	must	have	some	set	of	bits,	a	label,	or	an	outer	header

imposed	on	each	packet.	These	same	bits	of	information	must	be	stripped	as	the	packet
passes	out	of	the	network.

Control	Plane	Complexity
Virtualizing	simplifies	the	control	plane	by	segmenting	off	reachability,	topology,	and
policy	information	normally	carried	in	a	single	control	plane	among	several	different
control	planes.	Each	individual	control	plane	in	a	virtualized	stack	is	therefore	simpler—
but	what	of	the	overall	network	complexity?	Adding	more	control	planes	stacked	on	top	of
each	other	clearly	increases	complexity	by	the	following:

•	Increasing	the	amount	of	state.	Link	and	node	status	impacting	multiple	topologies
must	be	carried	in	multiple	control	planes.

•	Increasing	the	speed	of	change.	While	the	actual	rate	at	which	changes	take	place
might	remain	the	same,	the	speed	at	which	these	changes	are	reported	(the	velocity
of	information	flow	in	the	set	of	control	planes)	must	increase.

•	Increasing	the	interaction	surfaces	throughout	the	network.	Multiple	control	planes,
each	operating	with	their	own	timing	and	convergence	characteristics,	must	now
operate	over	the	same	set	of	topology	information.	Solutions	such	as	wait	for	bgp	are
designed	to	manage	these	intercontrol	plane	interactions—but	these	solutions
inevitably	add	state	complexity,	as	well.

Wait	for	BGP

Wait	for	BGP	is	a	perfect	example	of	the	interaction	between	two	control	planes
running	on	top	of	one	another	in	one	form	of	virtualization	(BGP	is	used	to	carry
global	reachability,	while	IGPs	are	used	to	carry	local	reachability,	making	this	a
form	of	virtualization).	Figure	5.14	illustrates	the	interaction	between	the	IGP	and
BGP,	and	the	solution	wait	for	BGP	provides.

Figure	5.14	Wait	for	BGP

In	this	example,	we	being	with	the	best	path	between	2001:db8:0:2::/64	and
2001:db8:0:1::/64	passing	through	[A,B,C].	Note	that	in	iBGP,	from	Router	A’s
perspective,	the	next	hop	for	2001:db8:0:1::/64	is	the	interface	on	Router	C	facing
the	cloud,	rather	than	someplace	within	or	beyond	the	cloud,	and	the	final	router	in
the	path	(which	directly	connects	to	the	destination).	Note	also	that
2001:db8:0:1::/64	is	not	a	reachable	destination	in	the	underlying	IGP;	the	only

path	Routers	A,	B,	and	D	have	to	this	destination	is	through	BGP.

If	router	B	fails,	then	the	IGP	will	quickly	find	a	new	route	toward	C	through	D.
Router	A’s	path	to	the	next	hop	will	now	be	[A,D,C],	rather	than	[A,B,C].	As	the
BGP	process	on	both	B	and	D	have	reachability	to	2001:db8:0:1::/64	through	BGP,
Router	A	switching	it’s	path	toward	Router	D,	as	the	BGP	next	hop,	has	no	effect
on	traffic	forwarding.

When	Router	B	comes	back	into	service,	however,	there	is	a	problem.	The	IGP
will	recalculate	the	path	between	Routers	A	and	C	quickly,	switching	traffic
between	these	two	routers	back	to	the	path	through	Router	B.	iBGP	will	not
converge	as	quickly—it	will	take	some	time	before	Router	B	relearns	the	route
toward	2001:db8:0:1::/64	through	its	iBGP	peering	session	with	Router	C.	During
the	period	of	time	when	Router	A	is	using	the	path	through	Router	B	to	reach	its
next	hop	toward	2001:db8:0:1::/64,	and	router	B’s	iBGP	table	is	reconverging,
Router	B	will	be	receiving	traffic	it	does	not	know	how	to	forward—hence,	this
traffic	will	be	dropped.

To	resolve	this,	most	major	router	vendors	implement	a	feature	that	allows	the
IGP	on	Router	B	to	wait	in	advertising	reachability	to	Router	C	toward	Router	A
until	the	local	BGP	process	signals	it	has	converged—wait	for	BGP.	This	feature
slows	down	one	of	the	two	control	planes	in	operation	on	the	network	to	allow	the
second	control	plane	to	“catch	up”—a	solid	idea	that	prevents	a	lot	of	dropped
packets	across	BGP	networks	in	operation.

Shared	Fate	Risk	Groups
While	Shared	Risk	Link	Groups	(SRLGs)	are	probably	the	most	easily	understood	result
of	virtualization,	they	are	often	the	most	difficult	to	remember	and	account	for	in	network
design	and	implementation.	Sometimes,	in	fact,	they	are	impossible	to	discover	until	the
common	risk	has	reared	its	ugly	head	through	a	major	outage.	Essentially,	an	SRLG	is
formed	whenever	two	virtual	links	share	the	same	physical	infrastructure.	For	instance:

•	Two	different	circuits	running	over	the	same	Frame	Relay	link/node.

•	Two	different	VLANs	running	over	the	same	physical	Ethernet	link,	or	across	the
same	switch.

•	Two	different	virtual	processes	running	on	the	same	physical	compute	and	storage
set.

Quite	often,	SFRGs	are	buried	under	layers	of	virtualization	to	the	point	that	very	few
designers	think	about	their	existence	or	impact.	In	some	cases,	SRLGs	can	be	buried	under
contracts	and	subcontracts—two	major	providers	leasing	redundant	circuits	to	a	single
facility	across	a	common	fiber	cable,	or	two	hosting	services	providing	redundant	services
out	of	a	single	data	center.	It’s	up	to	the	network	designer	to	find	these	sorts	of
overlapping	service	offerings—very	few	providers	are	going	to	be	helpful	in	determining
which	facilities	are	shared,	and	which	are	not,	for	instance.

A	Final	Thought
Design	complexity	is	not	always	obvious,	and	therefore	not	always	completely	considered
or	dealt	with.	In	fact,	the	law	of	unintended	consequences,	a	side	effect	of	the
impossibility	of	solving	or	removing	complexity	in	the	face	of	hard	problems,	makes
many	of	these	design	problems	the	most	haunting,	and	difficult	to	solve.	In	the	next
chapter,	we’re	going	to	look	at	the	tools	network	engineers	have	that	can	help	balance
complexity	against	the	other	factors.

Chapter	6.	Managing	Design	Complexity

The	last	chapter	examined	the	tradeoffs	engineers	and	architects	need	to	consider	when
designing	the	topology	and	control	planes	of	a	network.	How	can	the	network	engineer
manage	these	tradeoffs—state	versus	stretch,	topology	versus	the	speed	of	convergence,
and	virtualization	versus	design	complexity?	When	should	one	(for	instance,
virtualization)	be	chosen	over	the	other	(for	instance,	fate	sharing)?	These	are,	in	fact,
some	of	the	most	difficult	decisions	to	make	in	the	field	of	network	engineering,	perhaps
even	more	so	because	they	rarely	come	to	the	surface	as	intentional	decisions	at	all.

This	chapter	will	consider	a	few	ways	engineers	can	manage	these	types	of	decisions,
from	the	traditional	to	the	not-so-traditional.	Three	specific	areas	considered	are	as
follows:

•	Modularity,	which	enables	information	hiding.

•	Information	hiding	as	a	potential	solution	to	managing	control	plane	state.

•	Models	and	visualization	tools	as	a	method	to	work	with	virtualization	and	fate
sharing	issues.

Modularity
Modularity	is	a	longstanding,	tried,	and	true	method	used	in	network	design	and
engineering.	Let’s	consider	some	examples	of	modular	design,	and	then	consider	how
modular	design	attacks	the	complexity	problem.

Uniformity
Uniformity	is	a	common	mechanism	used	by	network	designers	and	engineers	to	reduce
complexity	within	a	network.	The	following	sections	discuss	several	of	these	techniques,
and	their	tradeoffs.

Uniform	Vendor

It’s	common	for	a	company	or	network	operations	team	to	choose	devices	from	the	same
vendor	for	use	throughout	their	network	to	reduce	the	number	of	interfaces	and
implementations,	thus	reducing	the	amount	of	training	and	variety	of	skill	sets	required	to
configure	new	nodes	as	well	as	troubleshoot	problems	as	they	arise.

There	are	three	tradeoffs	when	choosing	this	route	to	controlling	complexity:

•	Vendor	Lock-in:	If	a	single	vendor’s	equipment	is	chosen	throughout	the	network,
then	the	vendor	ends	up	driving	the	hardware	and	software	life	cycles.	Barring	a
great	deal	of	self-control,	the	vendor	will	also	end	up	controlling	the	architecture	of
the	network,	whether	or	not	that’s	best	for	the	company.

•	Cost:	Using	a	single	vendor	will	almost	always	drive	up	cost,	as	the	vendor	faces	no
competition.

•	Monoculture	Failures:	A	single	vendor’s	equipment,	running	a	single	operating

system,	and	a	single	set	of	applications,	is	a	monoculture.	A	monoculture	suffers
from	a	shared	set	of	failure	modes	across	all	the	devices;	if	one	device	in	the
network	reacts	poorly	to	a	specific	set	of	circumstances,	all	the	devices	in	the
network	will.	Seemingly	small	problems	can	turn	into	major	failures	in	a
monoculture.

Uniform	Hardware

Using	the	same	physical	switches	throughout	a	single	data	center	fabric	is	one	approach	to
uniformity.	Based	on	the	principles	laid	out	by	Charles	Clos	in	1952,	spine	and	leaf
designs	were	originally	created	to	build	a	large	fabric	based	on	minimal	equally	sized
switches,	as	shown	in	Figure	6.1.

Figure	6.1	A	Clos,	or	Spine	and	Leaf,	Topology

Assuming	that	there	are	only	four	connections	from	each	leaf	node	shown	in	Figure	6.1
to	some	sort	of	load,	each	switch	in	the	Clos	fabric	illustrated	has	the	same	number	of
interfaces—8.	Using	a	single	device	type,	each	with	8	interfaces,	a	total	of	32	devices	can
be	interconnected	(internally,	or	not	connected	to	an	outside	network).	In	fact,	the	entire
point	of	the	original	design	was	to	allow	the	interconnection	of	a	large	number	of	devices
by	combining	the	switching	capabilities	of	small,	equally	sized	switches.	Using	a	single
device	type	throughout	an	entire	data	center	in	this	way	allows	the	network	operator	to
minimize	the	number	of	spares	on	hand,	as	well	as	minimize	the	configuration	and
management	involved	when	swapping	out	a	failed	device	or	link	hardware.

Note

The	Clos	fabric	may	appear	similar	to	a	traditional	hierarchical	Ethernet	or	IP
network	design,	particularly	when	it	is	drawn	with	all	the	leaf	nodes	on	one
side	(in	the	“folded”	configuration).	However,	there	are	several	crucial
differences.	For	instance,	in	the	spine	and	leaf	topology	(or	fabric),	there	are
no	cross	connections	between	any	two	leaf	nodes,	or	any	two	spine	nodes.
This	property	means	there	are	no	topological	loops	in	the	fabric	other	than
those	passing	through	a	leaf	node.	If	the	leaf	nodes	are	configured	so	they
cannot	forward	traffic	received	on	an	interface	connected	to	a	spine	node
back	to	another	spine	node,	the	spine	and	leaf	design	has	no	topological
loops.	This	property	simplifies	the	design	of	the	network,	allowing	it	to	scale
through	the	addition	of	more	spine	and	leaf	nodes,	and	reducing	the	work	on
the	control	plane.

Several	realities	make	this	attempt	at	reducing	complexity	more	difficult	than	it	might
appear	on	the	surface.	For	instance,	device	models	change	over	time,	which	means	serious
thought	needs	to	be	put	into	controlling	the	life	cycle	of	devices	installed	in	the	network.
Theory	aside,	it’s	very	difficult	to	use	a	single	device	in	every	location,	even	in	a	data
center	fabric;	spine	switches	often	need	higher	port	count	than	top	of	rack	devices,	fat	tree
designs	force	the	designer	into	choosing	between	multiple,	less	expensive,	fixed
configuration	devices	or	more	consistent	usage	of	more	expensive,	blade-	or	slot-based
devices,	etc.

Uniform	Control	and	Management

It	is	possible	to	purchase	equipment	from	multiple	vendors,	and	then	rely	on	open
standards	implementations	of	control	planes	and	management	interfaces.	For	instance,	a
network	operator	may	decide	to	standardize	on	IS-IS	as	a	control	plane	throughout	their
network,	and	to	standardize	on	open	standards	based	YANG	models,	using	a	NETCONF
or	RESTCONF	transport	to	manage	all	the	devices.

There	are,	of	course,	several	tradeoffs	to	consider	when	attempting	to	deploy	this	type
of	solution.	For	instance:

•	Vendors	are	financially	driven	to	support	features,	rather	than	management
interfaces.	This	means	management	interfaces	often	lag	far	behind	the
implementation	of	new	protocols	or	features	on	networking	products.

•	Vendors	are,	at	least	to	some	degree,	driven	away	from	supporting	standardized
interfaces.	By	supporting	standardized	interfaces,	vendors	are	opening	themselves
up	to	being	easily	replaced	in	any	deployment—in	effect,	standardized	interfaces
drive	equipment	into	more	of	a	commodity	role.

•	Standard	bodies	are	often	slow	to	produce	new	features	or	extensions	to	protocols.	If
a	network	operator	waits	until	a	new	idea	is	fully	standardized,	or	even	looks	like	it
will	be	standardized	in	a	specific	form,	they	could	risk	losing	some	advantage	over
their	competitors.

It	is	often	possible	to	cover	up	interface	differences	through	a	variety	of	tools,	of	course

—network	management	systems	and	open	source	tools	like	Puppet	can	often	work	to	find
a	common	set	of	features	through	a	thunk	or	hardware	abstraction	layer.	However,	keep
the	problem	of	leaky	abstractions	in	mind	when	working	with	these	sorts	of	tools.

The	Law	of	Leaky	Abstractions

What	is	a	leaky	abstraction?	In	2002,	Joel	Spolsky	coined	the	law	of	leaky
abstractions	on	his	blog,	Joel	on	Software.1	The	law	of	leaky	abstractions	posits,
“All	non-trivial	abstractions,	to	some	degree,	leak.”	Joel	uses	TCP	as	an	example	of
such	a	leaky	abstraction—TCP	is,	in	effect,	an	abstraction	of	the	underlying	IP
connectivity	designed	to	emulate	a	connection	oriented	end-to-end	link	across	an
unreliable	path.	The	problem	is	that	TCP,	as	an	abstraction,	leaks.

1.	Joel	Spolsky,	“The	Law	of	Leaky	Abstractions,”	Blog,	Joel	on	Software,	n.p.,	last	modified	November	11,	2002,
accessed	January	19,	2015,	http://www.joelonsoftware.com/articles/LeakyAbstractions.html.

There	are	two	ways	to	see	this	leaking	effect.	The	first	is	to	realize	that	no	matter
how	well	TCP	covers	up	the	underlying	network	with	an	apparently	connection
oriented	link,	there	are	still	artifacts	of	the	underlying	connectionless,	unreliable
link	to	deal	with.	When	a	piece	of	software	using	TCP	to	transfer	data	encounters
jitter,	for	instance,	it	must	decide	what	to	do—whether	to	buffer	the	traffic	so	the
user	is	presented	with	the	experience	they	expect	from	an	end-to-end	lossless
connection,	to	break	the	connection,	and	start	over,	or	to	deploy	some	other
strategy.	The	specific	strategy	chosen	is	application	dependent,	of	course,	but	the
application	cannot	operate	as	if	a	TCP	connection	is	truly	an	end-to-end	connection
between	two	hosts,	or	two	devices.	Thus	the	application	developer	must	understand
something	of	the	IP	network	over	which	the	TCP	session	runs—so	the	abstraction
leaks.

The	second	way	to	see	the	leaky	abstraction	in	TCP	is	to	consider	what	happens
when	a	TCP	session	actually	does	fail.	If	TCP	were	truly	an	end-to-end	connection,
an	engineer	troubleshooting	the	problem	could	confine	themselves	to	TCP
mechanisms—the	timers,	windows,	data	marshaling,	and	other	techniques	TCP	uses
to	transfer	information.	In	reality,	however,	engineers	working	on	TCP	problems
must	dive	into	the	interaction	between	TCP	and	IP,	IP	itself,	the	interaction	between
IP	and	the	lower	physical	layers,	the	queuing	mechanisms	used	on	the	devices
forwarding	the	IP	traffic,	the	control	plane	that	directs	IP	traffic,	etc.	The
abstraction	leaks—just	because	it	looks	like	an	end-to-end	lossless	connection
doesn’t	mean	you	can	actually	treat	it	that	way	all	the	time.	The	key	is	to	know
when	you	can	treat	TCP	as	an	end-to-end	lossless	connection,	and	when	you	can’t,
and	to	manage	the	exceptions.

The	same	problem	crops	up	in	network	management,	particularly	at	the	device
level.	You	can	build	an	abstraction	that	will	describe	all	the	various	configuration
possibilities,	all	the	various	modes	of	operation,	etc.,	for	any	given	device.
However,	there	are	two	problems	that	confront	us.	First,	to	build	a	complete	list	is
to	destroy	the	point	of	the	abstraction	itself.	Second,	no	matter	how	complete	such
an	abstraction	might	be,	it	will	still	be	leaky.	There	will	still	be	times	when	the
engineer	must	work	through	the	abstraction	to	understand	what	the	real

http://www.joelonsoftware.com/articles/LeakyAbstractions.html

configuration	on	the	real	device	is,	and	how	to	manipulate	it	to	make	the	device	do
what	the	engineer	needs	it	to	do.

The	problem	with	leaky	abstractions	is	that	the	leakier	the	abstraction,	the	less
useful	the	abstraction	really	is.	At	some	point,	for	instance,	it	becomes	harder	to
figure	out	how	to	configure	the	device	through	a	device	model	(such	as	YANG)
than	to	simply	configure	the	device	directly	using	native	configuration	commands.
It’s	a	matter	of	discipline,	of	course,	to	use	the	abstraction	whenever	possible,	and
to	put	the	work	into	fixing	the	abstraction	rather	than	simply	going	around	it	on	a
regular	basis.	In	the	end,	though,	there	has	to	be	some	balance	between	the	amount
of	time	it	takes	to	keep	the	abstraction	“clean,”	and	simply	getting	the	work	done.	If
the	abstraction	is	so	leaky	that	it	requires	a	lot	of	time	and	effort	to	work	within	it,
the	end	result	might	be	more	complexity	rather	than	less.

Uniform	Transport

One	of	the	overlooked	areas	of	network	complexity	is	the	wide	array	of	transport	systems
deployed	in	the	real	world.	Remember	the	old	IP	focused	model,	with	one	transport	over	a
variety	of	circuits,	and	a	lot	of	different	applications	running	on	top?	The	reality	today	is	a
spaghetti	of	overlays,	tunnel	types,	and	transports	scattered	throughout	the	network,	as
Figure	6.2	(partially)	illustrates.

Figure	6.2	The	Spaghetti	Transport	System

The	spaghetti	transport	system	has	several	interesting	(and	difficult	to	manage)	features,
including:

•	Several	upper	layer	protocols	are	heavily	reliant	on	information	contained	in	and
state	generated	by	lower	layer	protocols.	For	instance,	many	upper	layer	applications
actually	rely	on	the	IP	address	as	a	sort	of	identifier	for	a	particular	system
connected	to	the	network,	although	the	IP	address	is	actually	a	locator.

•	Several	upper	layer	protocols	can	carry	lower	layer	protocols,	creating	a	complex
and	overlapping	stack.	Although	Virtual	Extensible	Local	Area	Network	(VXLAN)
tunnels	rely	on	IP,	it	actually	carries	Ethernet	frames;	IPv4,	IPv6,	and	Generic
Routing	Encapsulation	(GRE)	tunnels	(including	MPLS	carried	inside	a	GRE
tunnel)	are	regularly	carried	on	top	of	VXLAN.

•	IPv4	and	IPv6	can	run	as	parallel	network	protocols,	either	with	their	own	control
plane	or	separate	control	planes.

Each	of	these	protocols	is	a	leaky	abstraction;	laying	them	one	on	top	of	another	in	this
way,	especially	when	protocols	are	designed	and	deployed	in	“stacking	loops,”	such	as
Ethernet	over	VXLAN	over	IP	over	Ethernet,	causes	the	leaks	in	each	abstraction	to

mingle,	making	a	complete	mess	in	terms	of	management	and	troubleshooting.	Each	pair
of	protocols	in	this	illustration	represent	another	interaction	surface	in	the	overall	system,
as	well.

What	can	be	done	to	alleviate	this	spaghetti	transport	system?	Reducing	the	number	of
transports	running	in	any	given	network	to	the	minimum	possible.	Designers	should	try
and	choose	the	minimal	number	of	protocols,	both	overlays	and	underlays,	which	will
support	all	the	applications	and	all	the	requirements.	This	will	necessarily	involve
tradeoffs	in	support	for	specific	applications	or	systems,	but	the	gain	in	reduced
complexity	is	well	worth	it,	as	it	will	reduce	the	MTTR,	control	plane	state,	and	many
other	factors.	Using	MPLS	as	an	example—a	single	MPLS	deployment	can	support
Ethernet,	IPv4,	and	IPv6	virtual	links	with	full	virtualization	across	a	very	minimal
transport	system.	Deploying	dual-stack	IPv4/IPv6	and	VXLAN	for	Layer	2	virtualization
(with	IP	on	top	for	Layer	3	virtualization)	is	a	much	more	complex	solution	to	the	same
set	of	problems.

Remember	that	just	because	another	protocol	is	available,	it	doesn’t	mean	you	have	to
deploy	it	in	your	network—just	because	you	can	doesn’t	mean	you	should.

The	one	downside	to	standardizing	on	just	a	few	transports	can	be	illustrated	by
returning	to	MPLS.	It’s	much	harder	(or	rather	more	expensive)	to	obtain	MPLS	support
in	enterprise	or	data	center	class	equipment,	as	MPLS	is	seen	as	a	“transit	service	provider
solution.”	Sometimes	our	own	preconceptions	can	cause	us	to	choose	solutions	based	on
what	they’re	“meant	for,”	rather	than	what	they’re	really	useful	for;	in	the	end,	this	can
make	our	networks	more,	rather	than	less,	complex.

Interchangeable	Modules
At	the	device	level,	using	a	single	vendor’s	products,	or	in	a	more	complete	way,	the	same
model	of	device	(see	the	previous	example	on	data	center	fabrics),	can	reduce	complexity
through	uniformity.	The	same	principle	can	be	applied	at	the	network	level,	as	well,	by
cataloging	each	of	the	different	types	of	modules	in	the	network,	and	then	building	each
one	to	be	as	similar	as	possible.	For	instance,	you	might	be	able	to	divide	a	network	into	a
small	set	of	topologies:

•	Campus

•	Data	Center

•	Point	of	Presence

•	Core

For	each	one	of	these	“places,”	determine	a	set	of	roles	and	the	requirements	that	go
with	that	role.	For	each	role	in	each	pin,	deploy	a	single	network	topology	and
configuration	that	will	support	the	range	of	requirements.	So	long	as	discipline	is
maintained	in:

•	Keeping	the	configurations	and	deployments	of	every	instance	of	a	single	“place”
the	same	across	time	and	location.

•	Keeping	the	number	of	“places”	and	roles	to	the	minimum	possible.

The	amount	of	work	required	to	design,	deploy,	manage,	and	troubleshoot	these
modules	is	greatly	diminished.

Within	the	data	center,	this	type	of	thinking	is	often	used	of	“pods,”	or	“modules,”	as
well.	Each	set	of	racks	within	a	data	center	can	be	considered	a	modular	unit,	where	the
data	center	grows	in	units	(rather	than	devices),	and	units	are	upgraded	or	replaced,	rather
than	individual	devices.	There	are,	as	usual,	a	number	of	problems	that	come	along	with
interchangeable	modules.

First,	interchangeable	parts	often	aren’t.	In	spite	of	all	the	work	network	managers	do	to
make	each	module	identical,	local	conditions,	spread	across	time,	work	against
consistency.	As	manufacturers	replace	lines	of	equipment,	or	replace	one	device	with
another,	it	quickly	becomes	difficult	to	ensure	consistency	across	a	large	number	of
identical	modules.	This	is	also	a	problem	when	interconnecting	different	Places	In	the
Network	(PINs).	As	an	example,	if	you	decide	to	upgrade	the	connection	speed	between
PINs,	you	will	need	to	modify	every	PIN	in	the	entire	network.	Modularity	is	often
difficult	to	maintain	in	the	face	of	such	problems.

Second,	a	problem	often	hidden	behind	interchangeable	modules	is	the	“places	in	the
network”	syndrome,	where	the	modules	become	the	focus	of	all	network	design	and
operations,	leaving	the	network	as	a	whole,	or	as	a	system,	off	the	table	as	something	to	be
considered.	It’s	a	bit	like	building	a	house	by	choosing	a	lot	of	different	rooms	you	think
you	want,	and	then	choosing	a	hallway	to	connect	them	all.	It	might	be	really	nice	from
the	perspective	of	the	person	living	in	the	house,	but	the	builder	is	going	to	face	some	real
trouble	in	trying	to	build	what	the	customer	wants—and	maintenance	is	going	to	be	a
disaster.

Note

See	the	section	on	“Places	in	the	Network”	later	in	this	chapter	for	a	more
complete	description	of	PINs.

How	Modularity	Attacks	the	Complexity	Problem
Network	engineers	often	equate	modularity	with	hierarchical	network	design	and
aggregation,	but	these	two	are	not	precisely	the	same	thing.	Hierarchical	network	design	is
a	discipline	that	uses	modularity	as	one	of	its	principles,	but	not	all	hierarchical	network
designs	are	modular,	nor	are	all	modular	network	designs	hierarchical.	In	the	same	way,
aggregation	often	depends	on	modularity,	but	you	can	build	a	very	modular	network	that
doesn’t	aggregate	any	information	at	all.	So,	if	aggregation	and	hierarchy	are	not	the	point,
how	does	modularity,	and	the	examples	given	here—uniform	hardware,	uniform
management,	uniform	transport,	and	interchangeable	modules—really	impact	the
complexity	of	a	network’s	design?

While	a	truly	modular	design	often	leads	to	the	ability	to	reduce	state,	modular	designs,
themselves,	don’t	actually	reduce	state.	The	same	can	be	said	for	speed,	as	well—building
a	modular	design	might	provide	opportunities	to	reduce	the	speed	at	which	information	is
spread	through	the	control	plane,	it	doesn’t	directly	impact	the	speed	at	which	the	network
operates.

Surface,	then,	is	the	primary	means	through	which	modularity	reduces	complexity	in
network	design.	By	breaking	the	network	up	into	multiple	smaller	pieces,	modularity
reduces	the	size	of	interaction	surfaces	in	the	network,	as	illustrated	in	Figure	6.3.

Figure	6.3	Modularization	and	Interaction	Surfaces

Information	Hiding
Modularization,	on	its	own,	provides	some	reduction	in	network	complexity,	both	from	a
management	and	a	control	plane	perspective,	by	reducing	the	size	of	the	interaction
surfaces.	But,	as	above,	modularization	doesn’t	really	attack	the	state	or	speed	aspects	of
network	complexity.	Modularity	does,	however,	enable	information	hiding—and
information	hiding	directly	attacks	state	and	speed.	Let’s	look	at	two	forms	of	information
hiding	commonly	used	in	network	design:	aggregation	and	virtualization.

Aggregation
Aggregation	is,	by	far,	the	most	common	form	of	information	hiding	in	networks.	There
are	actually	two	types	of	aggregation	in	use	in	network	design,	although	they	are	often
conflated	into	the	same	thing:	hiding	topology	information	and	summarizing	reachability
information.	The	easiest	way	to	understand	the	difference	between	the	two	is	by
examining	aggregation	in	a	link	state	protocol,	such	as	IS-IS.	Figure	6.4	will	be	used	to
illustrate	the	difference.

Figure	6.4	Aggregation

Given	the	network	as	illustrated,	with	no	configurations	beyond	placing	Routers	A	and
B	in	a	single	level	2	flooding	domain,	and	Routers	B,	C,	D,	and	E	in	a	separate	level	1
flooding	domain,	what	would	Router	B	see	in	its	level	1	IS-IS	topology	database	versus
what	Router	A	sees	in	it	level	2	topology	database?

Router	B:

•	2001:db8:0:1::/64	connected	to	D

•	2001:db8:0:2::/64	connected	to	E

•	Router	B	=>	Router	D

•	Router	D	=>	Router	B

•	Router	E	=>	Router	D

•	Router	D	=>	Router	E

•	Router	E	=>	Router	C

•	Router	C	=>	Router	E

•	Router	C	=>	Router	B

•	Router	B	=>	Router	C

•	Router	B	connected	to	a	level	2	routing	domain	(the	connected	bit	set	in	Router	B’s
LSP)

Router	A:

•	2001:db8:0:1::/64	reachable	through	Router	B

•	2001:db8:0:2::/64	reachable	through	Router	B

•	Router	A	=>	Router	B

•	Router	B	=>	Router	A

Examining	these	two	lists,	the	big	differences	are	as	follows:

•	The	connection	points	for	the	two	reachable	subnets	are	attached	to	Router	B’s
routing	information,	rather	than	Routers	D	and	E.

•	The	links	between	Routers	B,	C,	D,	and	E	are	all	removed	from	the	topology
database.

By	attaching	all	the	reachable	destinations	within	the	level	1	flooding	domain	to	the
level	1/level	2	flooding	domain	border,	Router	A	doesn’t	need	to	know	the	internal	details
of	the	level	1	topology.	The	point	of	creating	multiple	flooding	domains	in	a	link	state
protocol	like	IS-IS	is,	in	fact,	to	block	the	topology	information	from	“outlying”	flooding
domains	into	the	“core”	flooding	domain—from	the	level	1	flooding	domains	into	the
level	2	flooding	domain.	Router	B,	then,	is	aggregating	the	topology	information,	carrying
just	the	reachable	destinations	and	the	cost	to	reach	them,	rather	than	passing	the	link	state
between	each	pair	of	routers	within	the	level	1	flooding	domain	to	Router	A.	What	does
aggregating	this	topology	information	accomplish?	Two	things:

•	Aggregation	of	topology	information	decreases	the	state	carried	in	the	control	plane
by	removing	the	link	information	carried	in	the	level	1	flooding	domain	from	the
level	2	flooding	domain,	hence	reducing	the	size	of	the	topology	database	and	the
size	of	the	tree	the	SPF	algorithm	must	calculate	across.

•	Aggregation	of	topology	information	decreases	the	speed	of	the	information	flowing
through	the	control	plane	by	removing	information	about	the	state	of	the	links	within
the	level	1	flooding	domain	from	the	level	2	database;	it	doesn’t	matter	to	Router	A
what	the	state	of	the	link	between	Routers	D	and	E	are,	for	instance,	so	long	as	the
reachable	destinations	remain	constant	from	the	perspective	of	Router	B.	By
blocking	topology	information	from	flowing	into	the	level	2	link	state	topology
database,	aggregation	slows	down	the	pace	of	updates,	and	hence	the	pace	at	which
Router	A	must	react	to	those	updates.

Aggregation	can	be	taken	one	step	further	by	configuring	Router	B	to	aggregate	the
reachability	information	in	the	level	1	flooding	domain	to	which	it’s	attached.	In	this	case,
the	two	routes,	2001:db8:0:1::/64	and	2001:db8:0:2::/64,	can	be	aggregated	to	a	single
shorter	prefix	route,	2001:db8::0/61.	If	you	examined	Router	A’s	level	2	topology	database
after	this	aggregation	is	configured,	you’d	find	it	is	now	slightly	smaller.

•	2001:db8::0/64	reachable	through	Router	B

•	Router	A	connected	to	Router	B

•	Router	B	connected	to	Router	A

Once	again,	examining	this	from	the	perspective	of	state	and	speed:

•	Aggregation	of	reachability	information	decreases	the	state	carried	in	the	control
plane	by	reducing	the	two	reachable	destinations	to	a	single	reachable	destination.

•	Aggregation	of	topology	information	decreases	the	speed	of	the	information	flowing
through	the	control	plane	by	removing	information	about	the	state	of	the	two
individual	reachable	destinations	within	the	level	1	flooding	domain.	No	matter	what
the	state	of	either	2001:db8:0:1::/64	or	2001:db8:0:2::/64	are,	the	state	of
2001:db8::0/61	remains	constant.

Aggregation,	like	all	abstractions,	has	a	set	of	tradeoffs	(as	always,	there	is	no	such
thing	as	a	free	lunch).	The	last	chapter	spent	a	good	deal	of	time	discussing	the	impact	of
aggregation	on	stretch—that	discussion	won’t	be	repeated	here,	but	it’s	important	to	bear
in	mind.	Beyond	stretch,	however,	network	engineers	should	remember	that	aggregation	is
also	subject	to	the	law	of	leaky	abstractions,	explained	in	a	sidebar	above.	How	do
aggregates	leak?	Figure	6.5	illustrates	aggregation	as	a	leaky	abstraction.

Figure	6.5	Aggregation	as	a	Leaky	Abstraction

Router	B	is	configured	to	aggregate	2001:db8:0:1::/64	and	2001:db8:0:2::/64	to
2001:db8::/61	using	the	lowest	metric	from	the	two	component	routes.	In	this	case,	the
metric	would	be	chosen	from	the	[B,D]	path,	so	the	aggregate	would	be	advertised	with	a

metric	of	2.	If	the	link	between	Router	B	and	D	fails,	however,	the	lowest	metric	among
the	components	would	be	the	path	[B,C,E],	with	a	total	metric	of	3.	When	this	link	fails,
the	aggregate	route	will	change	metric	from	a	cost	of	2	to	a	cost	of	3—hence	the
abstraction	has	leaked	information	about	the	topology	through	the	aggregation.	It	is
possible,	of	course	to	plug	this	leak;	however,	it’s	important	to	remember	that	any	solution
used	here	will	have	its	own	set	of	tradeoffs	to	consider.

Failure	Domains	and	Information	Hiding
No	discussion	of	information	hiding	would	be	complete	without	some	examination	of
failure	domains.	Both	aggregation	and	virtualization	are	used	to	limit	the	size	of	a	failure
domain—but	what	is	a	failure	domain,	and	how	does	it	relate	to	complexity?	To	begin,
let’s	define	what	a	failure	domain	is,	then	let’s	look	at	the	relationship	between	failure
domains	and	network	complexity.	Figure	6.6	illustrates	failure	domains.

Figure	6.6	Failure	Domains

Router	B	in	this	IS-IS	network	is	configured	to	aggregate	2001:db8:0:1::/64	and
2001:db8:0:2::/64	into	a	single	route,	2001:db8::/61,	which	is	then	advertised	into	the
level	2	flooding	domain	(toward	Router	C).	2001:db8:0:8::/64	does	not	fall	within	this
aggregate,	so	it	is	advertised	“as	is”	into	the	level	two	flooding	domain.	Using	this
configuration,	you	can	build	a	high-level	overview	of	what	the	database	for	a	selection	of
routers	in	the	network	will	look	like	in	relation	to	these	three	routes.

•	Router	B,	Level	1	Database:

•	Router	B	is	connected	to	Router	A.

•	Router	B	is	connected	to	a	level	2	flooding	domain.

•	Router	A	is	connected	to	Router	B.

•	Router	A	is	connected	to	2001:db8::0/64.

•	Router	A	is	connected	to	2001:db8:0:2::/64.

•	Router	A	is	connected	to	2001:db8:0:8::/64.

•	Routers	B,	C,	&	D,	Level	2	Database:

•	Router	B	is	connected	to	Router	C.

•	Router	C	is	connected	to	Router	B.

•	Router	C	is	connected	to	Router	D.

•	Router	D	is	connected	to	Router	C.

•	Router	B	is	connected	to	2001:db8::/61.

•	Router	B	is	connected	to	2001:db8:0:8::/64.

•	Router	E:

•	Router	D	is	connected	to	Router	E.

•	Router	E	is	connected	to	Router	D.

•	Router	D	is	connected	to	a	level	2	flooding	domain.

Examining	this	high-level	view	of	the	link	state	databases	at	various	places	in	the
network	would	show	the	following:

•	If	2001:db8:0:1::/64	or	2001:db8:0:2::/64	are	disconnected	from	Router	A,	only
Routers	A	and	B	will	need	to	recalculate	their	SPT.

•	If	2001:db8:0:8::/64	is	disconnected	from	Router	A,	Routers	B,	C,	and	D	will	need
to	recalculate	their	SPT.

Hiding	information,	then,	reduces	the	number	of	routers	that	must	recalculate	their	SPT
in	reaction	to	a	change	in	the	network	topology.	This	is,	in	fact,	as	good	a	definition	of	a
failure	domain	as	you	are	likely	to	find:

A	failure	domain	is	the	set	of	devices	that	must	interact	with	the	control	plane	when
network	topology	or	reachability	changes.

Given	this	definition,	if	2001:db8:0:2::/64	is	disconnected	from	Router	A,	the	failure
domain	contains	only	Routers	A	and	B.	Routers	C	through	E	are	not	included	in	the	failure
domain	in	this	case,	because	the	information	in	their	control	planes	doesn’t	change.	So	by
hiding	information	through	aggregation,	the	size	of	the	failure	domain	has	been	reduced.
This	reduces	the	scope	of	the	interaction	surfaces	within	the	control	plane,	as	well	as
reducing	the	speed	at	which	the	control	plane	receives	new	information.

Another	point	to	note	from	this	example	is	that	the	failure	domain	is	not	a	“solid	line”
you	can	paint	around	any	particular	part	of	the	network.	Some	information	(such	as	the
example	of	the	aggregate’s	metric	changing	given	above)	will	always	leak	through	any
point	where	information	is	being	hidden	in	the	network	(see	the	previous	sidebar	on	The
Law	of	Leaky	Abstractions),	so	there	are	actually	many	different	overlapping	failure
domains	in	any	given	network.

Final	Thoughts	on	Information	Hiding
Information	hiding	in	one	form	or	another	is	one	of	the	best	tools	the	network	designer	has
to	deal	with	complexity.	By	hiding	information	between	modules:

•	The	amount	of	state	carried	in	the	control	plane	is	reduced.	Aggregation	removes
reachability	and	topology	information,	reducing	the	total	amount	of	information
carried	in	the	control	plane.	Virtualization	(discussed	in	the	last	chapter)	breaks	the

topology	and	reachability	information	up	among	multiple	control	planes,	so	that
each	control	plane	only	manages	a	subset	of	the	total	network	state.

•	The	speed	of	the	control	plane	is	reduced.	Aggregation,	for	instance,	reduces	the
speed	at	which	the	information	the	control	plane	is	carrying	by	either	removing	state
entirely	(topology)	or	replacing	more	volatile	state	with	less	volatile	state
(summarization	of	reachability	information).	Virtualization	reduces	the	speed	of
changes	in	the	control	plane	by	spreading	the	changes	across	multiple	control	planes
(it’s	important	to	remember	that	virtualization	impacts	the	speed	of	control	plane
operations	less	than	aggregation	does).

•	The	interaction	surfaces	are	contained	in	aggregation	primarily	through
modularization,	and	the	creation	of	“choke	points”	in	the	network	limiting	the	places
where	various	pieces	of	the	control	plane	interact.	Virtualization	reduces	the	size	of
the	interaction	surfaces	by	tying	specific	applications	or	customer	to	specific	logical
topologies,	thus	allowing	each	set	of	applications	to	be	treated	as	a	case	that’s
independent	of	the	rest	of	the	applications	running	on	the	network.	Of	course,
virtualization	isn’t	quite	as	straight	forward	as	aggregation,	because	the	virtual
topologies	themselves	must	interact,	creating	another	interaction	surface	in	the
network.

Models
Models	aren’t	an	“on	network”	tool	to	deal	with	complexity,	but	rather	a	way	of
categorizing	and	abstracting	out	what	is	happening	in	the	network.	Most	network
engineers	are	generally	familiar	with	the	seven	and	four	layer	models—and	these	are	good
models	for	abstracting	the	operation	of	protocols.	What	about	useful	models	for
understanding	the	deployment	and	operation	of	the	network	as	a	whole,	or	the	operation	of
the	network	and	applications?	Three	different	models	are	presented	in	this	section,	and
finally	a	modeling	language.

Waterfall
The	waterfall	model	isn’t	a	model	of	network	operation,	but	rather	a	model	of	traffic
flows.	This	model	is	based	on	the	basic	insight	that	all	routing	and	switching	protocols
essentially	build	a	tree	sourced	at	the	destination,	and	spread	out	to	each	available	source.
Figure	6.7	shows	the	waterfall	model.

Figure	6.7	The	Waterfall	Model

The	waterfall	model	shows	how	data	flow	splits	in	a	network	at	every	network	device
so	that	a	single	stream	becomes	a	set	of	streams.	Once	any	network	data	stream	has	split,
there	is	no	way	to	rejoin	the	streams	back	into	a	single	stream	of	data	without	risking
loops	in	the	network	topology.	To	understand	how	this	relates	to	modeling	a	network,
consider	the	difference	between	spanning	tree	and	routing	operation	in	a	waterfall	model.

Spanning	tree	builds	one	large	tree	which	is	shared	by	every	source	and	destination	pair.
This	single	tree	means	that	all	traffic	must	“leap	up	the	waterfall”	to	the	head	end,	where	it
can	then	follow	the	flow	of	water	back	toward	its	real	destination.	For	instance,	a	packet
flowing	along	Stream	W	toward	the	end	of	Stream	Z	must	follow	the	stream	to	its	source
at	A,	and	then	follow	the	path	for	Stream	Z.

For	a	routed	control	plane,	each	edge	device	builds	its	own	tree,	so	each	device	is	at	the
head	end	of	a	waterfall,	or	a	spanning	tree.	Rather	than	“leaping	up”	the	waterfall	to	reach
the	top,	and	then	flowing	back	down,	each	traffic	stream	follows	its	own	set	of	streams
down.	In	the	example	given	here,	if	traffic	were	flowing	from	an	entrance	point	at	Stream
W	to	an	endpoint	at	Stream	Z,	it	would	follow	a	different	tree	originating	at	Router	C.
This	is	why	a	routing	protocol	is	more	efficient	than	spanning	tree;	traffic	doesn’t	need	to
“leap	up”	the	tree	to	reach	its	destination.

Places	in	the	Network
PINs	are	a	way	to	divide	a	network	along	functional,	rather	than	topological	links.	Figure
6.8	illustrates	a	PINs	view	of	a	network.

Figure	6.8	Places	in	the	Network

Each	functional	section	of	the	network	is	separated	into	a	different	component,	such	as
the	two	data	centers	and	the	two	campuses,	and	they	are	connected	using	interconnection
points	(marked	IC	in	the	illustration).	Splitting	the	network	up	in	this	way	emphasizes	the
function	of	each	piece	of	the	network.	Different	design	paradigms	can	be	used	in	each
section,	to	match	the	specific	purpose	of	the	PIN	being	designed.	For	instance,	a	large-
scale	hub	and	spoke	topology	might	dominate	the	retail	environment,	while	the	first	data
center	might	be	designed	using	a	traditional	switched	Ethernet	topology,	and	the	second	as
a	Clos	topology.

Security,	management	mechanisms,	and	other	aspects	of	each	PIN	can	also	be	different;
Data	Center	1	might	have	an	open	security	policy	within	the	data	center	itself,	and	strong
restrictions	on	outside	access,	while	Data	Center	2	might	have	no	entrance	policies,	but
strong	per	server/application	security	mechanisms.	Every	PIN	is	completely	opaque	to
every	other	PIN	in	the	network.	Data	Center	1	is	simply	a	traffic	sink	for	Data	Center	2,
and	the	WAN	PIN	is	simply	a	transport	mechanism	to	reach	the	other	PINs	in	the	network.
This	is	a	form	of	strictly	typed	modularity.

Connecting	these	different	PINs	is	a	series	of	interconnects,	shown	as	light	gray	circles
in	Figure	6.8.	Some	PINs	might	connect	directly	to	each	other	as	well	as	to	the	Wide	Area
Network	(WAN),	or	Core	PIN,	as	illustrated	with	the	DMZ	and	Data	Center	2	PINs.
Others	might	connect	only	to	the	Core.	Each	PIN’s	internal	structure	is	completely
different	from	every	other	PIN’s.	For	instance,	Data	Center	1	might	have	core,

distribution,	and	access	layers,	and	Data	Center	2	might	have	only	a	core	and	aggregation
layers.	These	layers	are	completely	independent	of	the	overall	network	design.

PINs	are	useful	for	understanding	a	network	design	from	an	operational	perspective,
because	they	provide	a	strong	functional	view	based	on	business	use	for	each	PIN.	This
allows	each	business	problem	to	be	approached	independently,	which	can	often	clarify	the
problems	involved.	Vendor	sales	folks	tend	to	work	within	PINs	almost	exclusively,
because	it	helps	to	narrow	the	solution	to	a	particular	environment,	helping	to	drive
requirements.

As	a	model,	PINs	fail	in	one	particular	regard—they	focus	the	network	architecture	on	a
bottom	up	view	of	functionality.	This	does	allow	the	network	to	more	closely	mimic	the
functionality	required;	it	pushes	the	overall	architecture	out	of	sight.	This	can	result	in	a
systemic	architecture	that	“just	grows	organically,”	rather	than	producing	a	well	thought
out	overall	plan	and	architecture.

Note

Several	other	positive	and	negative	aspects	of	PINs	are	similar	to	the	positive
and	negative	aspects	of	interchangeable	modules	discussed	earlier	in	this
chapter.

Hierarchical
Hierarchical	network	models,	grounded	in	scale	free	networks,	are	as	old	as	networks
themselves.	Hierarchical	design	is,	in	essence,	taking	the	rules	of	modularity,	combining
them	with	a	waterfall	model	of	traffic	flow,	and	finally	combining	these	two	with
aggregation	for	information	hiding,	and	building	a	set	of	“rules	of	thumb”	that	generally
work	for	just	about	any	network	design	project.	Figure	6.9	illustrates	a	basic	hierarchical
design.

Figure	6.9	A	Basic	Hierarchical	Design

Note

Hierarchical	network	design	is	covered	in	detail	in	the	Cisco	Press	book,
Optimal	Routing	Design.2	Many	networks	are	now	two	layer	designs,	rather
than	three,	with	“layers	within	layers”	to	build	out	to	scale.

2.	Russ	White,	Alvaro	Retana,	and	Don	Slice,	Optimal	Routing	Design	(Cisco	Press,	2005).

Consider	some	of	the	“rules	of	thumb”	for	hierarchical	network	design	in	network
complexity	terms.

Focused	Layered	Functionality

Each	of	the	three	layers	in	the	hierarchical	design—access,	distribution,	and	core—should
be	focused	on	a	small	set	of	functions	or	purposes.	For	instance,	the	network	core	should
be	focused	on	forwarding	traffic	between	the	distribution	layer	modules,	rather	than
implementation	of	policy,	or	even	connectivity	to	outside	networks.	For	instance,	the
Internet	and	outside	partner	networks	should	not	be	connected	to	the	network	core,	but
rather	to	an	access	layer	module	parallel	to	the	other	access	layer	modules.

Focusing	functionality	within	each	layer	helps	manage	complexity	by	controlling	the
interaction	surfaces	within	and	between	the	network	modules.	By	focusing	on	forwarding
between	distribution	layer	modules,	for	instance,	the	configuration	of	the	network	core
devices	can	be	greatly	simplified—admittance	policy	and	per	user	or	device	security	can
be	left	off	these	devices,	as	those	functions	are	handled	someplace	else	in	the	network.
Restricting	the	location	of	any	particular	function	also	simplifies	equipment	choices,	and
allows	the	modules	within	the	layer	to	be	more	similar.	As	an	example,	if	high-speed
forwarding	over	a	long	distance	dark	fiber	interface	is	a	function	consistently	pushed	to
the	network	core	devices,	then	distribution	layer	devices	can	be	chosen	without	reference
to	the	types	of	interfaces	required	to	support	this	capability.

Focused	Policy	Points

The	hierarchical	design	pattern	also	provides	convenient	“choke	points”	in	the	network
topology.	At	the	edge	of	the	topology,	along	the	user	connection	point	to	the	access	layer,
and	between	each	layer,	there	are	a	smaller	number	of	connections	that	pull	the	topology
together.	These	places,	where	the	amount	of	connectivity	is	more	limited	by	the	design	of
the	network,	are	perfect	places	to	implement	policy	in	a	more	centralized	way.

By	way	of	illustration,	consider	aggregation	as	a	policy.	It	makes	sense	to	configure
aggregation	on	the	links	between	layers	in	a	hierarchical	design,	as	this:

•	Provides	full	routing	information	within	each	module.

•	Provides	a	small	set	of	places	to	look	for	aggregation	within	each	module.

•	Provides	a	small	set	of	places	to	look	for	suboptimal	traffic	distribution	between	the
modules.

•	Provides	a	separation	point	between	the	control	plane	state	between	modules.

Providing	“choke	points,”	in	the	topology	allows	for	controlled	interaction	surfaces
between	the	network	modules,	points	at	which	to	reduce	the	control	plane	state	being
carried	between	modules,	and,	in	turn,	a	way	to	control	the	speed	at	which	the	control
plane	must	manage	network	changes.

Note

The	tradeoffs	around	aggregation	are	discussed	in	the	Information	Hiding
section	earlier	in	this	chapter	and	Chapter	5,	“Design	Complexity.”	The
tradeoffs	around	policy	placement	are	discussed	in	Chapter	5,	“Design
Complexity.”

UML
The	Unified	Modeling	Language	(UML)	might	seem	out	of	place	here,	because	it’s	a
modeling	tool,	rather	than	a	model	or	a	system.	However,	the	network	engineering	world
tends	to	“fly	by	the	seat	of	its	pants,”	rather	than	intentionally	think	through	the	way	the
network	interacts	with	applications	and	policies.	A	process	focused	modeling	language
can	be	really	helpful	in	understanding	how	an	application	works	in	some	detail,	which	can
then	be	directly	mapped	to	policies	and	packet	flows	in	the	network.	This	is	particularly
true	in	large-scale	data	center	and	cloud	deployments.	Although	large-scale	cloud	and	data
center	deployments	are	designed	to	be	“application	agnostic,”	there	often	comes	a	point	in
troubleshooting	an	application	running	on	a	data	center	fabric	when	understanding	the
packet	flow,	and	where	policies	are	put	in	place,	is	really	helpful	in	determining	where	the
problem	lies.

Figure	6.10	illustrates	a	UML	model	for	a	web	application.

Figure	6.10	Example	of	a	Simple	Web	Application	Modeled	Using	UML

While	the	diagram	shown	in	Figure	6.10	focuses	on	the	interaction	between	the
different	processes	which	make	up	the	web	application,	the	interactions	between	the
applications	all	happen	across	the	network—as	such,	each	interaction	represents	a	flow	of
packets	that	must	be	planned	for.	Examining	this	diagram,	a	network	engineering	might
ask	questions	like:

•	What	type	of	connectivity	is	used	between	each	of	these	processes?	If	it’s	Layer	2
connectivity,	then	the	processes	must	be	placed	into	a	single	Layer	2	domain,	or	the
traffic	must	otherwise	be	handled	so	the	processes	believe	they	are	connected	over	a
Layer	2	link.

•	What	protocol	is	used	at	each	connection?	For	instance,	TCP	might	be	used	between
the	Hypertext	Markup	Language	(HTML)	Render	component	and	session	control,
but	User	Datagram	Protocol	(UDP)	might	be	used	between	session	control	and	the
logic	components.	This	information	will	play	a	large	role	in	determining	where	and
what	types	of	quality	of	service	need	to	be	deployed.

•	Where	and	how	is	policy	implemented?	There	are	only	two	policies	noted	on	the
diagram	(this	is	rather	simple	compared	to	most	real-world	application	deployments)
—are	these	policies	implemented	by	the	network,	the	application,	or	both?	How	are
they	to	be	implemented?

Beyond	these	questions,	getting	a	solid	estimate	of	the	sizes	of	each	traffic	flow	could
be	very	helpful	in	building	a	picture	of	the	way	the	application	uses	network	resources.	If
you	have	this	type	of	information	for	each	application,	it	is	possible	to	roll	this
information	up	into	an	overall	picture	of	what	the	traffic	should	look	like	on	the	network
—but	even	at	the	individual	application	level,	understanding	these	sorts	of	traffic	flows
can	be	useful.

A	Final	Thought
Network	designers	and	architects	face	very	uncertain	environments	from	a	complexity
perspective.	While	the	tools	are	“out	there,”	they	aren’t	often	widely	understood	in	terms
of	managing	complexity,	nor	are	they	always	well	developed.	Instead,	most	network
designers	work	from	“rules	of	thumb,”	based	on	“seat	of	the	pants	flying,”	based	on	long
years	of	experience	with	what	doesn’t	work.

By	examining	the	“rules	of	thumb”	from	a	complexity	perspective,	you	can	begin	to	put
some	reasoning	behind	them—why	they	work,	where	they	work,	and	when	they	won’t
work.	Examining	the	problems	of	network	design	from	a	complexity	perspective	helps	to
untangle	some	of	the	mysteries,	and	to	point	the	way	toward	better	network	design
through	a	deeper	understanding	of	what	the	tradeoffs	really	are,	and	how	the	techniques
and	models	really	work.

Chapter	7.	Protocol	Complexity

Who	cares	about	protocol	complexity?	It’s	a	topic	reserved	for	the	geeks	with	their	heads
in	radix	trees	and	deep	math,	right?

Wrong.

The	protocols	deployed	on	a	network,	whether	used	in	the	control	plane	or	to	carry	data
through	the	network,	are	actually	systems	in	their	own	right—often	complex	systems—
that	interact	with	the	other	systems	in	the	network	along	the	same	sorts	of	interaction
surfaces	discussed	at	the	network	and	design	levels.	Because	of	these	design	surfaces,
network	engineers	working	“down	in	the	protocols”	need	to	know	network	design	just	as
much	as	network	architecture	folks	need	to	know	protocol	design.

This	chapter	aims	to	bring	the	complexity	tradeoffs	discussion	to	the	world	of	protocol
design,	so	network	engineers	can	understand	why	one	protocol	might	work	better	in	one
situation,	and	others	in	another.	There	are	two	opposite	trends	in	the	network	engineering
world	to	guard	against:

•	Trying	to	solve	every	problem	with	a	single	protocol;	this	is	most	pronounced	in	the
drive	with	the	BGP	(at	presstime).	While	a	single	control	plane	for	everything	(and
one	ring	to	rule	them	all)	can	greatly	simplify	the	job	of	the	network	designer,	it	can
also	push	suboptimal	designs.

•	Solving	every	problem	with	its	own	protocol	suite.

The	tradeoffs	here	aren’t	always	obvious,	but	there	clearly	needs	to	be	a	balance
between	deploying	a	point	solution	for	every	problem	and	deploying	a	single	solution	for
all	problems.	This	is	where	layering	in	a	network	design	(virtualizing	topologies	so
different	control	and	data	planes	see	different	views	of	the	network)	can	be	very	useful.

This	chapter	begins	with	a	section	considering	the	tradeoff	between	flexibility	and
complexity,	using	OSPF	versus	IS-IS	as	the	“classic”	example	of	how	different
complexity	tradeoffs	lead	to	completely	different	protocols,	each	with	their	own	set	of
tradeoffs.	The	second	section	considers	layering	versus	complexity,	specifically	in	light	of
John	Day’s	iterative	model	of	network	transport.	The	third	section	considers	protocol
complexity	against	design	complexity	using	two	examples;	the	first	is	a	return	to	the
concepts	of	microloops	and	fast	convergence	in	link	state	protocols,	and	the	second
considers	the	perception	of	EIGRP	in	the	“early	years”	against	the	reality,	and	changes
made	to	the	protocol	over	the	years	to	contain	complexity	in	network	design.

Flexibility	versus	Complexity:	OSPF	versus	IS-IS
Perhaps	the	classic	example	of	complexity	versus	flexibility	in	the	world	of	protocol
design	is	the	original	contrasting	designs	of	OSPF	and	IS-IS.	A	little	bit	of	history	is
required	to	understand	the	original	context	of	the	discussion	and	decisions	that	were	made
in	relation	to	the	two	protocols.

Note

IS-IS	is	a	link	state	protocol	widely	deployed	in	large-scale	service	provider
networks.	The	standards	specification	for	the	protocol	is	contained	in	the	ISO
10589.1

1.	For	more	information	on	IS-IS,	see	Russ	White	and	Alvaro	Retana,	IS-IS:	Deployment	in	IP	Networks,	1st
edition.	(Boston:	Addison-Wesley,	2003).

IS-IS	was	originally	designed	to	support	the	Open	Systems	Interconnect	(OSI)	protocol
stack	(the	original	seven-layer	stack),	which	was	designed	around	End	Systems	(ES)	and
Intermediate	Systems	(IS).	Each	ES	was	assigned	an	address	based	on	the	Layer	2	address
of	the	device	that	was	then	advertised	by	the	connected	IS	throughout	the	network—
essentially	host	routing	was	the	normal	mode	of	operation	for	OSI-based	networks,	with
aggregation	only	taking	place	at	the	flooding	domain	boundary.	The	actual	systems
involved	were	heavier	weight	computers	(for	that	time),	and	hence	had	a	good	deal	of
processing	performance	and	available	memory,	so	the	original	designers	of	IS-IS	were
more	concerned	about	designing	a	protocol	that	was	flexible	and	extensible	to	new	address
types	(in	case	the	OSI	networking	protocols	ever	took	on	a	new	type	of	end	host	to	route
for,	or	Layer	2	addressing	changed,	etc.),	as	well	as	the	ability	to	handle	level	1	and	level	2
flooding	domains	with	a	minimal	number	of	packet	types.

This	general	outlook	led	to	a	protocol	that	was	focused	on	carrying	information	in
TLVs;	to	add	new	information,	a	new	TLV	to	carry	the	information	could	easily	be	added
to	the	protocol.	At	the	same	time,	all	the	information	originated	by	a	single	device	was
carried	in	a	single,	corresponding,	Link	State	Packet	(LSP),	which	could	be	fragmented	if
the	size	of	packet	became	larger	than	the	Maximum	Transmission	Unit	(MTU)	of	the
network.

OSPF,	on	the	other	hand,	was	designed	with	a	slightly	different	set	of	goals	in	mind.	In
the	time	during	which	OSPF	was	designed,	routers	(in	particular)	had	what	would	today
be	considered	very	low	performance	processors.	As	special	purpose	devices,	routers
simply	were	not	equipped	with	the	processing	performance	or	the	memory	that	any	given
ES	might	have—so	while	IS-IS	counted	on	a	relatively	high-performance	device	handling
forwarding,	OSPF	was	developed	around	the	concept	of	a	relatively	low-performance
device	handling	forwarding.

To	meet	these	goals,	three	specific	points	came	to	the	forefront	in	OSPF’s	design:

•	Fixed	length	encoding.	Rather	than	using	TLVs	to	encode	and	carry	information,
OSPF	focused	on	using	fixed	length	encoding,	which	requires	less	resources	both	on
the	wire	(the	TLV	header	can	be	dispensed	with)	and	in	processing	(fixed	blocks	of
code	can	be	used	to	process	specific	packet	formats,	rather	than	the	longer,	more
complex	blocks	of	code	required	to	dynamically	read	and	react	to	various	TLVs
carried	within	a	single	stream).

•	Fixed	packet	types	of	a	smaller	size.	Rather	than	each	router	originating	a	single
“packet”	that	is	fragmented,	and	the	numerous	headaches	around	synchronizing
these	fragments,	OSPF	focused	on	shorter	packets	that	would	(in	theory)	fit	in	a
single	MTU	packet	on	the	network.	This	made	flooding	and	synchronization

simpler.

•	Aggregated	reachability.	In	IP,	Layer	3	addressing	is	untied	from	Layer	2
addressing,	which	means	(in	practice)	that	reachability	is	aggregated	from	the	first
hop.	IP	routers	advertise	subnets,	which	are	an	aggregate	of	a	set	of	hosts,	rather
than	each	individual	host.	This	means	OSPF	needed	to	handle	multiaccess	links	and
aggregation	in	a	way	that	was	more	IP	centric	than	IS-IS	in	the	initial	phases	of	the
design.

As	a	result	of	these	goals,	OSPF	was	designed	with	a	number	of	different	LSA	types,
each	one	having	a	fixed	format,	and	each	one	carrying	a	different	type	of	information.
Figure	7.1	illustrates	the	difference.

Figure	7.1	OSPF	versus	IS-IS

The	network	illustrated	in	Figure	7.1	consists	of	only	two	routers,	each	connected	to	a
stub	link,	and	both	connected	to	a	common	broadcast	(multipoint)	link.	Both	OSPF	and
IS-IS	elect	a	pseudonode	(though	it’s	called	a	Designated	Router	[DR]	in	OSPF)	to
represent	the	broadcast	link	to	reduce	the	number	of	adjacencies	and	routing	protocol
traffic	flowing	across	the	link;	this	is	represented	by	Router	B,	which	is	smaller	and	gray.
Treating	each	IS-IS	TLV	as	a	separate	packet	(or	fragment	of	a	single	LSP),	the	two	sets	of
packets	generated	by	each	protocol	are	set	side-by-side.	If	you	understand	the	concept	of
link	state	routing,	the	result	isn’t	very	surprising—the	same	information	must	somehow	be
carried	in	both	protocols.	The	main	difference	is	in	how	the	two	protocols	encode	the
information.	IS-IS	encodes	the	information	in	TLVs	within	fragments,	while	OSPF
encodes	the	information	in	different	types	of	packets.	If	each	TLV	in	IS-IS	represents	a

single	LSA	type	in	OSPF,	the	correlation	is	almost	one-to-one.

OSPF	traded	off	complexity	in	coding	and	transport	against	fixed	length	packets.	This
leads	to	the	question—what	advantage	does	using	TLVs	give	IS-IS?	The	cost	of	the	TLV
is	a	larger	packet	size	and	more	complex	processing;	how	does	IS-IS	gain	against	OSPF
for	increasing	the	packet	formatting	complexity	in	this	way?

The	most	obvious	answer	is	in	the	ability	to	quickly	and	easily	add	new	types	of
information	to	IS-IS.	For	instance,	when	IPv6	was	developed,	both	of	these	link	state
protocols	needed	to	support	the	new	IP	format.	IS-IS	simply	added	a	new	set	of	TLVs,
while	OSPF	required	an	entirely	new	protocol—OSPFv3.	The	downside	of	fixed	length
formats	is	immediately	obvious.	In	general,	IS-IS	proliferates	TLV	types,	while	OSPF
proliferates	packet	types.

Note

This	is	a	bit	simplified	to	illustrate	a	specific	point;	the	TLV	formatting	is	not
the	only	reason	why	OSPFv3	was	created	rather	than	simply	adding	IPv6	to
OSPFv2.	For	instance,	OSPFv2	builds	adjacencies,	and	carries	LSAs,	across
layer	IPv4,	so	the	next	hops	in	OPSFv2	are	IPv4	addresses—which	would
cause	some	headaches	when	trying	to	deploy	IPv6,	which	should	naturally
use	IPv6	next	hops.	OSPF	is	more	intimately	tied	to	the	underlying	Layer	3
transport	than	IS-IS,	which	peers	directly	at	Layer	2.

Is	OSPF	better,	or	IS-IS?	There’s	no	clear	cut	answer	to	this	question—a	lot	depends	on
the	use	to	which	the	protocol	is	being	put,	the	skills	of	the	network	operators,	and	the
individual	implementations.	In	the	real	world,	the	tradeoffs	made	years	ago	based	on	the
different	environments	each	protocol	was	designed	for	have	been	overcome	by	events;	that
the	details	hardly	matter	is	apparent	in	the	level	of	detail	any	debate	about	the	two
protocols	must	reach	to	actually	find	a	difference	worth	mentioning.

Layering	versus	Protocol	Complexity
Figure	7.2	illustrates	two	protocol	stacks;	which	one	is	simpler?

Figure	7.2	Protocol	Stacks

If	you’re	like	most	network	engineers,	you’re	likely	to	have	one	of	two	reactions	to	this
illustration:

•	The	XYZ	protocol,	because	there’s	only	one	protocol	in	the	stack—and	one	protocol
is	always	simpler	than	many	protocols	interacting.

•	The	XYZ	protocol	stack,	because	layering	is	good.	Aren’t	transport	protocols	(such
as	TCP	and	IP)	layered	like	this?

Either	you	believe	that	layers	are	good	because	they’ve	been	drilled	into	the	head	of
every	network	engineer	because	of	their	first	console	experience,	or	layers	are	a	necessary
evil	that	make	it	hard	to	remember	when	you’re	sitting	down	to	take	a	certification	test	or
college	exam.	Which	is	it?

It’s	neither.

Which	one	is	more	complex	actually	depends	on	several	factors,	including:

•	What	the	total	functionality	of	the	stack	of	protocols	is.	Changing	the	context	of	the
illustration	changes	the	perception	of	the	problem;	if	someone	said,	“the	XYZ
protocol	stack	is	a	replacement	for	the	IP	component	in	the	current	transport	stack,
increasing	the	layers	in	that	stack	from	four	to	six,”	you’d	immediately	think	“too
complex.”	If	someone	said,	“the	XYZ	protocol	replaces	three	layers	of	tunnels
currently	running	in	the	network	with	a	single	tunneled	protocol,”	you’d	probably
immediately	yell,	“hurrah!”

•	How	well	defined	the	interaction	surfaces	are	between	the	protocols	in	the	stack.
Protocol	stacks	with	well-defined	layers	make	for	well-defined	interaction	surfaces.
Well-defined	interaction	surfaces	are	still	leaky	abstractions,	but	better	definition
tends	to	reduce	the	leaks.	Well-defined	interactions	surfaces	are	still	interaction
surfaces	that	add	complexity,	but	well-defined	depth	and	scope	both	contribute	to
less	cross-layer	abstraction	leaks,	and	make	it	easier	to	understand	the	interactions

for	modifications	and	troubleshooting.

Layering,	then,	can	either	be	a	good	thing	or	a	bad	thing	from	a	complexity	standpoint.
It	all	depends	on	how	the	layering	impacts	the	following:

•	State:	Does	the	addition	of	a	layer	actually	divide	state	in	some	meaningful	way?	Or
are	the	additional	layers	simply	spreading	out	state	that	often	“acts	together”	across
the	layering	boundary,	making	the	interaction	surface	more	complex?

•	Speed:	Does	the	additional	layer	reduce	the	speed	at	which	one	layer	must	operate,
or	separate	two	processes	with	completely	different	“operation	tempos”?

•	Surface:	Does	the	additional	layer	produce	a	set	of	clean	interaction	points	and
minimize	leaky	abstractions?	Are	there	just	a	few	places	where	unintended
consequences	can	come	into	play,	or	many?

Note

The	concept	of	unintended	consequences	is	closely	tied	to	the	concept	of
subsidiarity,	which	is	covered	in	more	detail	in	Chapter	10,	“Programmable
Network	Complexity.”

One	of	the	ways	network	engineers	have	dealt	with	the	questions	raised	above	about
layering	in	protocol	stacks	is	by	building	protocol	stacks	according	to	models.	Two
common	models	are	the	four-layer	DoD	model,	and	the	seven-layer	OSI	model.	While
most	network	engineers	are	familiar	with	at	least	one	of	these	models,	a	quick	review
might	be	in	order.

The	Seven-Layer	Model
Virtually	anyone	who	has	ever	been	through	a	networking	class	or	studied	for	a	network
engineering	certification	is	familiar	with	using	the	seven-layer	model	to	describe	the	way
network’s	work.	Connectionless	Networking	Protocol	(CLNP)	and	a	routing	protocol,	IS-
IS,	were	designed	by	the	ISO	to	meet	the	requirements	given	within	the	seven-layer
model.	These	protocols	are	still	in	wide	use,	particularly	IS-IS,	which	has	been	modified
to	support	routing	in	IP	networks.	Figure	7.3	illustrates	the	seven-layer	model.

Figure	7.3	Seven-Layer	Model

Each	pair	of	layers,	moving	vertically	through	the	model,	interacts	through	an	API.	So
to	connect	to	a	particular	physical	port,	a	piece	of	code	at	the	data	link	layer	would
connect	to	the	socket	for	that	port.	This	allows	the	interaction	between	the	various	layers
to	be	abstracted	and	standardized.	A	piece	of	software	at	the	network	layer	doesn’t	need	to
know	how	to	deal	with	various	sorts	of	physical	interfaces,	only	how	to	get	data	to	the
data	link	layer	software	on	the	same	system.

Each	layer	has	a	specific	set	of	functions	to	perform:

•	The	physical	layer	(Layer	1)	is	responsible	for	getting	the	0s	and	1s	modulated,	or
serialized,	onto	the	physical	link.	Each	link	type	has	a	different	format	for	signaling
a	0	or	1;	the	physical	layer	is	responsible	for	translating	0s	and	1s	into	these	physical
signals.

•	The	data	link	layer	is	responsible	for	making	certain	that	transmitted	information	is
sent	to	the	right	computer	on	the	other	side	of	the	link.	Each	device	has	a	different
data	link	(Layer	2)	address	that	can	be	used	to	send	traffic	to	that	specific	device.
The	data	link	layer	assumes	that	each	frame	within	a	flow	of	information	is	separate
from	all	other	packets	within	that	same	flow	and	only	provides	communication	for
devices	that	are	connected	through	a	single	physical	link.

•	The	network	layer	is	responsible	for	transporting	data	between	systems	that	are	not
connected	through	a	single	physical	link.	The	network	layer,	then,	provides	network-

wide	(or	Layer	3)	addresses,	rather	than	link	local	addresses,	and	also	provides	some
means	for	discovering	the	set	of	devices	and	links	that	must	be	crossed	to	reach
these	destinations.

•	The	transport	layer	(Layer	4)	is	responsible	for	the	transparent	transfer	of	data
between	different	devices.	Transport	layer	protocols	can	either	be	“reliable,”	which
means	the	transport	layer	will	retransmit	data	lost	at	some	lower	layer,	or
“unreliable,”	which	means	that	data	lost	at	lower	layers	must	be	retransmitted	by
some	higher-layer	application.

•	The	session	layer	(Layer	5)	doesn’t	really	transport	data,	but	manages	the
connections	between	applications	running	on	two	different	computers.	The	session
layer	makes	certain	that	the	type	of	data,	the	form	of	the	data,	and	the	reliability	of
the	data	stream	are	all	exposed	and	accounted	for.

•	The	presentation	layer	(Layer	6)	formats	data	in	a	way	that	the	application	running
on	the	two	devices	can	understand	and	process.	Encryption,	flow	control,	and	any
other	manipulation	of	data	required	to	provide	an	interface	between	the	application
and	the	network	happen	here.	Applications	interact	with	the	presentation	layer
through	sockets.

•	The	application	layer	(Layer	7)	provides	the	interface	between	the	user	and	the
application,	which	in	turn	interacts	with	the	network	through	the	presentation	layer.

Each	layer	in	the	model	provides	the	information	the	layer	below	it	is	carrying;	for
instance,	Layer	3	provides	the	bits	Layer	2	encapsulates	and	transmits	using	Layer	1.	This
leads	to	the	following	observation:	not	only	can	the	interaction	between	the	layers	be
described	in	precise	terms	within	the	seven-layer	model,	the	interaction	between	parallel
layers	on	multiple	computers	can	be	described	precisely.	The	physical	layer	on	the	first
device	can	be	said	to	communicate	with	the	physical	layer	on	the	second	device,	the	data
link	layer	on	the	first	device	with	the	data	link	layer	on	the	second	device,	and	so	on.	Just
as	interactions	between	two	layers	on	a	device	are	handled	through	sockets,	interactions
between	parallel	layers	on	different	devices	are	handled	through	network	protocols:

•	Ethernet	describes	the	signaling	of	0s	and	1s	onto	a	physical	piece	of	wire,	a	format
for	starting	and	stopping	a	frame	of	data,	and	a	means	of	addressing	a	single	device
among	all	the	devices	connected	to	a	single	wire.	Ethernet,	then,	falls	within	both
Layer	1	and	Layer	2	in	the	OSI	model.

•	IP	describes	the	formatting	of	data	into	packets,	and	the	addressing	and	other	means
necessary	to	send	packets	across	multiple	Layer	2	links	to	reach	a	device	that	is
several	hops	away.	IP,	then,	falls	within	Layer	3	of	the	OSI	model.

•	TCP	describes	session	setup	and	maintenance,	data	retransmission,	and	interaction
with	applications.	TCP,	then,	falls	within	the	transport	and	session	layers	of	the	OSI
model.

This	was	illustrated	in	Figure	7.3,	where	each	“layer-wise”	interaction	is	labeled	using
the	name	used	to	describe	the	blocks	of	information	transferred.	For	instance,	segments
are	transferred	from	the	transport	layer	on	one	device	to	another,	while	packets	are
transferred	from	the	network	layer	on	one	device	to	another.

The	Four-Layer	Model
One	of	the	reasons	why	engineers	have	so	much	difficulty	fitting	the	IP	transport	stack
into	the	seven-layer	model	is	that	it	was	developed	with	a	different	model	of	network
communications	in	mind.	Instead	of	a	seven-layer	model,	the	IP	transport	stack	was
designed	around	a	four-layer	model,	roughly	described	in	RFC	1122	and	illustrated	in
Figure	7.4.

Figure	7.4	Four-Layer	Model

In	this	model:

•	The	link	layer	is	roughly	responsible	for	the	same	functions	as	the	physical	and	data
link	layers	in	the	OSI	model—controlling	the	use	of	physical	links,	link-local
addressing,	and	carrying	frames	as	individual	bits	across	an	individual	physical	link.

•	The	Internet	layer	is	roughly	responsible	for	the	same	things	as	the	Network	layer	in
the	OSI	model—providing	addressing	and	reachability	across	multiple	physical	links
and	providing	a	single	packet	format	and	interface	regardless	of	the	actual	physical
link	type.

•	The	transport	layer	is	responsible	for	building	and	maintaining	sessions	between
communicating	devices	and	providing	a	common	transparent	data	transmission
mechanism	for	streams	or	blocks	of	data.	Flow	control	and	reliable	transport	may
also	be	implemented	in	this	layer,	as	in	the	case	of	TCP.

•	The	application	layer	is	the	interface	between	the	user	and	the	network	resources,	or
specific	applications	that	use	and	provide	data	to	other	devices	attached	to	the
network.

In	this	model,	Ethernet	fits	wholly	within	the	link	layer;	IP	and	all	routing	protocols	fit
in	the	Internet	layer;	and	TCP	and	UDP	fit	within	the	transport	layer.	Because	of	this
neatness,	this	is	a	cleaner	model	for	understanding	IP	as	its	deployed	today,	although	it
doesn’t	provide	the	detailed	structure	of	splitting	up	the	various	levels	of	signaling	that

might	be	useful	in	a	more	research-oriented	environment.

The	Iterative	Model
The	seven-	and	four-layer	models	rely	on	the	concept	that	as	you	move	up	the	stack	from
the	physical	to	the	application,	each	layer	adds	some	specific	function,	or	a	set	of	related
functions.	This	functionality	is	generally	tied	to	a	component	of	the	network,	such	as	a
single	link,	an	end-to-end	path,	or	application	to	application	communication.	By	grouping
functionality	into	layers,	the	complexity	of	each	protocol	in	the	stack	can	be	minimized,
and	the	interaction	surface	between	each	protocol	or	each	layer	of	protocols	within	the
stack	can	be	defined	and	managed.

To	understand	these	concepts	a	little	more	fully,	it’s	useful	to	look	at	one	final	model	for
protocol	stacks	in	networks.	While	this	model	isn’t	as	popular	or	used	as	widely	as	the
seven-and	four-layer	models,	it	more	clearly	illustrates	the	tradeoff	between	complexity
and	layering.

If	you	examine	the	actual	function	of	each	layer	in	the	protocol	stacks	above,	you’ll	find
many	similarities	between	them.	For	instance,	the	Ethernet	data	link	layer	provides
transport	and	multiplexing	across	a	single	link,	and	IP	provides	transport	and	multiplexing
across	a	multihop	path.	This	leads	to	the	following	observation:	There	are	really	only	four
functions	that	any	data	carrying	protocol	can	serve:	transport,	multiplexing,	error
correction,	and	flow	control.2	There	are	two	natural	groupings	within	these	four	functions:
transport	and	multiplexing,	error	and	flow	control.	So	most	protocols	fall	into	doing	one	of
two	things:

2.	John	Day,	Patterns	in	Network	Architecture:	A	Return	to	Fundamentals	(Upper	Saddle	River,	N.J.;	London:
Prentice	Hall,	2008).

•	The	protocol	provides	transport,	including	some	form	of	translation	from	one	data
format	to	another,	and	multiplexing,	the	ability	of	the	protocol	to	keep	data	from
different	hosts	and	applications	separate.

•	The	protocol	provides	error	control,	either	through	the	capability	to	correct	small
errors	or	to	retransmit	lost	or	corrupted	data,	and	flow	control,	which	prevents	undue
data	loss	because	of	a	mismatch	between	the	network’s	capability	to	deliver	data	and
the	application’s	capability	to	generate	data.

From	this	perspective,	Ethernet	provides	transport	services	and	flow	control,	so	it	is	a
mixed	bag	concentrated	on	a	single	link,	port	to	port	(or	tunnel	endpoint	to	tunnel
endpoint)	within	a	network.	IP	is	a	multihop	protocol	(a	protocol	that	spans	more	than	one
physical	link)	providing	transport	services,	whereas	TCP	is	a	multihop	protocol	that	uses
IP’s	transport	mechanisms	and	provides	error	correction	and	flow	control.	Figure	7.5
illustrates	the	iterative	model.

Figure	7.5	Iterative	Model	of	Network	Protocols

Each	layer	in	this	model	groups	the	information	required	to	manage	a	single	set	of
parameters	within	a	given	scope	into	a	single	protocol.

Protocol	Stacks	and	Design
What	does	this	little	excursion	into	protocol	design	and	layering	tell	us	about	network
complexity,	particularly	in	the	area	of	design?	First,	layering	is	a	time	tested,	proven	way
to	separate	complexity	from	complexity	by	dividing	functions	across	an	API	boundary.
Second,	the	comparison	of	the	three	models	shows	that	matching	the	layers	to	what	they
do,	rather	than	where	they	are,	provides	a	cleaner	and	easier	to	handle	model	of
operations.	While	the	four-	and	seven-layer	models	work,	they	neither	really	describe	what
the	protocols	at	each	layer	are	doing,	nor	do	they	really	suggest	a	way	to	insert	new
protocols	into	the	stack	in	the	future.	The	iterative	model,	on	the	other	hand,	provides	both
of	these.

Protocol	Complexity	versus	Design	Complexity
Protocols	stacks	aren’t	just	self-contained	systems,	however,	they	interact	with	the	larger
network	environment	through	application	performance,	manageability,	and	design.	This
section	focuses	on	the	tradeoff	between	network	design	and	protocol	complexity	a	little
more	deeply,	to	give	network	engineers	a	better	feel	for	the	tradeoffs	in	these	areas.
Specifically,	how	does	protocol	complexity	tradeoff	against	design	complexity?

As	the	protocol	takes	on	more	complexity,	some	elements	of	design	become	less
complex.	On	the	other	hand,	as	the	protocol	becomes	more	complex,	troubleshooting	and
managing	the	protocol	becomes	more	complex	as	well.	Each	action	has	an	equal	and
opposite	reaction,	creating	a	chain	of	action	and	reaction	as	the	complexity	levels	of	each
component	in	the	overall	system	rise	and	fall.	Engineers	need	to	be	aware	that	the
complexity	doesn’t	just	“go	away,”	once	they’ve	“thrown	it	over	the	cubicle	wall.”	Some
other	system	must	pick	that	complexity	up	and	manage	it.

Microloops	and	Fast	Reroute
The	first	example	of	this	tradeoff	between	protocol	complexity	and	network	complexity	is
a	concept	that’s	already	been	discussed	in	Chapter	5,	“Design	Complexity.”	This	section
will	dig	a	little	deeper	in	the	protocol	complexity	pieces	of	fast	reroute.	Figure	7.6	will	be
used	as	an	illustration	here.

Figure	7.6	Microloops	in	a	Link	State	Control	Plane

Assume	that	this	network	starts	with	the	state:

•	Router	B’s	shortest	path	to	2001:db8:0:1::/64	is	through	A.

•	Router	C’s	shortest	path	to	2001:db8:0:1::/64	is	through	B.

•	Router	D’s	shortest	path	to	2001:db8:0:1::/64	is	through	C.

•	Router	E’s	shortest	path	to	2001:db8:0:1::/64	is	through	A.

•	All	routers	are	running	a	link	state	routing	protocol	(either	OSPF	or	IS-IS).

When	the	[B,C]	link	fails,	what	will	be	the	result?	To	answer	this,	consider:

•	Routers	B	and	C	will	be	notified	of	the	link	failure	immediately,	and	local	processes
will	remove	the	impacted	destinations	from	the	local	routing	table.

•	Routers	B	and	C,	because	they’ve	been	notified	of	the	failure	first,	will	calculate	a
new	tree	and	switch	to	the	new	routes	first.

•	Routers	D	and	A	will	be	notified	of	the	failure	second,	calculate	a	new	tree,	and
switch	to	the	new	routes.

•	Router	E	will	be	notified	of	the	failure	last,	and	hence	will	calculate	and	install	any
new	necessary	routing	information	last.

Note

In	link	state	protocols,	flooding	is	a	separate	process	from	calculating	the
SPT;	for	convenience,	the	description	above	considers	them	both	at	the	same
time.

Combining	the	original	state	of	the	network	with	the	order	of	convergence	when	the
[B,C]	link	fails,	it’s	obvious	where	the	microloop	occurs.	When	Router	C	discovers	the

failure,	it	quickly	recomputes	the	SPT	and	discovers	that	the	path	through	Router	D	is	the
new	shortest	(loop	free)	path.	While	Router	C	is	forwarding	through	Router	D,	Router	D	is
still	discovering	the	failure	and	recalculating	a	new	shortest	path	three.	During	the
differential	in	time	between	Router	C’s	recalculation	and	Router	D’s,	traffic	destined	to
2001:db8:0:1::/64	will	be	looped	between	the	two	routers.

Why	not	set	a	timer	so	Router	C	waits	until	Router	D	has	recalculated	to	install	the	new
routes?	This	simply	won’t	work.	Every	router	in	the	network	must	react	the	same	way	to
received	information;	the	entire	point	of	a	link	state	protocol	is	to	ensure	that	every	device
participating	in	the	control	plane	has	a	single	view	of	the	state	of	the	network,	and	acts	in
the	same	way.	This	is	one	of	the	foundations	of	the	determinism	of	link	state	control
planes	like	OSPF	and	IS-IS.	Setting	up	a	timer	during	which	Router	C	must	wait	to
converge	means	setting	the	same	timer	on	Router	D;	all	this	solution	does	is	to	slow	the
total	network	convergence	down,	rather	than	actually	resolving	the	microloop.

Note

It	is	possible	to	force	the	routers	in	a	link	state	control	plane	to	order	the
installation	of	the	prefixes	to	prevent	microloops;	however,	it’s	not	as	simple
as	using	timers.	Instead,	each	router	must	calculate	its	distance	from	the
network	change,	and	calculate	the	amount	of	time	it	must	wait	before	it	can
safely	install	new	shortest	paths	to	each	destination	in	the	local	routing	table.
This	process	does	prevent	microloops,	but	at	a	cost	in	terms	of	convergence
speed.	RFC6976	describes	the	ordered	Forwarding	Information	Base	(FIB)
solution,	and	a	message	of	completion	system	that	can	alleviate	some	of	the
convergence	speed	impact.

Why	not	just	force	all	the	routers	in	a	link	state	network	to	recalculate	at	the	same	time?
Surely	there	must	be	a	way	to	synchronize	all	the	clocks	across	all	the	devices
participating	in	the	control	plane	so	they	all	begin	calculating	at	the	same	time,	or	they	all
install	their	routes	at	the	same	time.	But	how	closely	can	you	get	all	the	timers	on	all	the
devices	across	thousands	of	distributed	nodes	synchronized?	The	answer	is:	not	down	to
the	microseconds.	Even	if	you	could	synchronize	all	the	clocks	to	this	level	of	precision,	it
would	be	almost	impossible	to	ensure	every	router	installs	the	route	at	the	same	time	after
the	calculation.	Some	routers	have	distributed	forwarding	planes,	while	others	unify
forwarding	with	route	calculation.	Among	routers	that	have	distributed	forwarding	planes,
each	one	is	going	to	have	different	paths	between	the	control	plane	and	the	forwarding
hardware,	and	each	of	those	paths	are	going	to	take	a	different	amount	of	time	to	install
the	route.	Even	among	routers	with	identical	distributed	systems,	the	processor	load	on
each	router	will	vary	moment	to	moment,	which	again	impacts	the	amount	of	time	it	takes
to	install	a	route	once	it’s	been	calculated.

Several	answers	to	this	problem	are	considered	in	the	following	sections.

Loop	Free	Alternate

Loop	Free	Alternates	(LFAs)	were	probably	first	outlined	academically	in	a	paper	by	J.	J.
Garcia—the	paper	that	became	the	foundation	for	Cisco’s	EIGRP.3	The	concept	of	an	LFA
relies	on	simple	geometry,	as	shown	in	Figure	7.7.

3.	J.	J.	Garcia-Lunes-Aceves,	“Loop-Free	Routing	Using	Diffusing	Computations,”	IEEE/ACM	Transactions	on
Networking	1,	no.	1	(February	1993):	130–141.

Figure	7.7	Loop	Free	Alternates

In	the	network	illustrated	in	Figure	7.7,	there	are	three	paths	between	Router	A	and
2001:db8:0:1::/64:

•	[A,B,E]	with	a	metric	of	4

•	[A,C,E]	with	a	metric	of	5

•	[A,D,E]	with	a	metric	of	6

To	understand	LFAs,	three	more	metrics	need	to	be	noted:

•	[B,E]	with	a	metric	of	2

•	[C,E]	with	a	metric	of	3

•	[D,E]	with	a	metric	of	4

The	concept	of	a	LFA	comes	from	this	simple	observation:	the	cost	of	any	path	that
loops	“through	me”	cannot	be	less	than	“my	cost”	to	reach	that	same	destination.	To	put
this	in	other	terms—if	a	path	is	a	loop	“through	me,”	the	cost	of	the	neighbor	advertising
the	route	must	be	more	than	or	equal	to	the	local	best	path	to	reach	that	same	destination.

In	terms	of	Figure	7.7,	from	the	perspective	of	Router	A:

•	If	the	cost	of	a	path	to	reach	2001:db8:0:1::/64	from	Router	A	is	greater	than	4,	then

it	might	be	a	loop.

•	If	the	cost	of	a	path	to	reach	2001:db8:0:1::/64	is	less	than	4,	then	it	cannot	be	a	loop
passing	back	through	Router	A	itself.

With	this	information	in	hand,	Router	A	can	now	examine	the	cost	to	reach
2001:db8:0:1::/64	from	the	perspective	of	each	of	its	connected	neighbors	to	determine	if
their	path	to	reach	this	destination	is	a	loop	back	through	Router	A	itself	or	not.	Examining
each	of	the	paths	available:

•	(A,B,E):	This	is	the	best	(lowest	cost)	path,	so	it	does	not	need	to	be	examined.

•	(A,C,E):	The	cost	at	Router	C	(Router	A’s	neighbor)	is	3,	and	the	best	path	at	Router
A	is	4.	Because	Router	C’s	cost	is	less	than	Router	A’s	cost,	this	path	cannot	loop
back	through	Router	A	itself.	Hence,	this	path	is	loop	free	(from	Router	A’s
perspective),	and	is	therefore	a	valid	loop	free	alternate	path.

•	(A,D,E):	The	cost	at	Router	D	is	4,	and	the	best	path	at	Router	A	is	4.	Because	these
two	costs	are	equal,	it	is	possible/probable	that	traffic	forwarded	to
2001:db8:0:1::/64	could	be	forwarded	back	to	Router	A	during	certain	topology
change	events	(this	is	another	instance	of	a	microloop).	Because	of	this,	EIGRP
would	declare	this	path	as	being	a	looped	path,	while	link	state	protocols	(OSPF	and
IS-IS)	would	determine	this	is	a	viable	loop	free	alternate	path	to	the	destination.

Note

Just	to	be	complete,	the	metric	of	the	best	path	at	Router	A	is	called	the
Feasible	Distance	in	EIGRP,	and	the	metric	at	Routers	B,	C,	and	D	is	called
the	Reported	Distance	at	Router	A—because	this	is	the	cost	(or	distance	or
metric)	they’ve	reported	to	Router	A.

What	are	the	tradeoffs,	in	terms	of	complexity,	when	using	LFAs	to	provide	fast	reroute,
from	a	protocol	perspective?

•	State	(carried):	There	is	no	additional	state	carried	in	the	control	plane	protocol
itself	to	provide	the	loop	free	alternate.	For	link	state	protocols,	the	cost	to	reach	a
destination	at	a	neighbor	can	be	computed	from	the	link	state	database	by	simply
running	SPF	from	the	neighbor’s	perspective.	For	EIGRP,	the	cost	at	the	neighbor	is
simply	the	metric	contained	in	the	original	route	advertisement	(without	the	cost	of
the	connected	links	added	in).

•	State	(local):	There	is	some	additional	state	within	each	router,	or	each	device
participating	in	the	control	plane.	For	a	link	state	protocol,	SPF	must	be	run	not	only
for	a	local	view	of	the	network,	but	also	once	for	each	neighbor,	to	obtain	each
neighbor’s	cost	to	any	given	destination.	The	backup	path	must	also	be	somehow
stored	once	calculated,	so	the	forwarding	plane	can	quickly	switch	over	to	it	if	the
primary	path	fails.

•	Speed:	In	theory,	fast	reroute	mechanisms	reduce	the	global	speed	at	which	the
control	plane	must	react	to	changes	in	the	topology	by	increasing	the	speed	at	which
they	can	react	locally.

•	Surface:	As	there	are	no	changes	to	the	protocol	“on	the	wire,”	there	is	little	change
in	the	surface	between	the	control	plane	and	any	other	system	when	using	LFAs	for
fast	reroute.

From	a	protocol	perspective,	the	negative	results	of	the	tradeoff	in	complexity	are
minimal,	while	the	positive	results	are	fairly	large.	From	a	design	perspective	(covered
more	fully	in	Chapter	6,	“Managing	Design	Complexity”),	LFAs	don’t	provide	coverage
for	many	commonly	used	topologies.	For	the	network	engineer	determining	whether	to
deploy	LFAs	or	not,	two	things	must	be	considered:

•	Which	parts	of	the	network	will	LFAs	cover,	and	which	will	they	not	cover?

•	Is	it	worth	the	additional	complexity	of	deploying	LFAs	to	cover	the	parts	of	the
network	they	will	cover?	A	specific	point	that	needs	to	be	considered	here	is	that	if
there	are	parts	of	the	network	that	will	not	be	covered,	deploying	LFAs	may	not
increase	the	delay/jitter	characteristics	of	the	end-to-end	path	in	a	measurable	way
(or	rather,	deploying	LFAs	won’t	allow	the	operator	to	claim	a	fixed,	high-speed
convergence	time).

The	crucial	point	is	to	consider	the	tradeoff	between	business	requirements	for	fast
convergence,	network	coverage,	and	the	added	complexity	at	a	protocol,	configuration,
troubleshooting,	and	management	perspectives.

NotVia

The	primary	topology	LFAs	cannot	provide	fast	reroute	for	is	a	ring,	as	illustrated	in
Figure	7.8.

Figure	7.8	A	Ring	Topology	for	Fast	Reroute

In	this	network,	Router	A	has	two	loop	free	paths	to	2001:db8:0:1::/64,	but	it	will	mark
the	path	through	Router	B	as	a	potential	loop	when	considering	LFAs.	How	can	Router	A
use	the	path	[A,B,F,E]?	The	problem	is	that	during	transitions	in	the	network	topology,

any	traffic	Router	A	sends	to	Router	B,	destined	to	a	host	on	2001:db8:0:1::/64,	might	be
looped	back	by	Router	B	(see	Chapter	5,	“Design	Complexity,”	for	more	details).	How
can	this	problem	be	solved?	If	Router	A	can	figure	out	how	to	tunnel	the	traffic	to	a	router
that	always	points	to	Router	E	to	reach	2001:db8:0:1::/64,	then	it	can	forward	traffic	over
this	tunnel	during	topology	changes	and	still	be	certain	the	traffic	will	not	loop	(will	reach
the	correct	destination).

How	can	Router	A	find	out	about	potential	tunnel	endpoints	that	meet	this	criteria?
NotVia	is	one	solution.	Assume	that	the	network	administrator	determines	the	link	[D,E]
needs	to	be	protected	from	failure.	In	a	rather	simplified	form:

•	Router	E	is	configured	with	a	special	IP	address.	This	address	is	called	E	notvia	D
for	reference	throughout	this	explanation.

•	E	notvia	D	is	advertised	by	Router	E	to	every	other	neighbor	than	Router	D.	In	this
case,	E	notvia	D	is	advertised	only	to	Router	F.

•	Router	A	receives	this	advertisement	only	from	Router	B,	giving	it	a	route	to	Router
E	no	matter	what	the	state	of	the	[A,D,E]	path	is.

•	When	Router	A	calculates	the	path	to	2001:db8:0:1::/64,	it	first	finds	the	best
(lowest	cost)	path	along	[A,D,E],	and	installs	this	in	the	local	table.

•	Router	A	then	searches	for	an	alternate	path	to	this	destination.	Finding	Router	B	is
in	the	path,	and	there	is,	in	fact,	a	route	E	notvia	D,	it	installs	the	notvia	route	as	a
backup	tunnel	path	to	the	destination.

•	If	the	path	[A,D,E]	fails,	Router	A	switches	traffic	destined	to	2001:db8:0:1::/64	to
the	tunneled	path.	Traffic	is	encapsulated	in	a	header	that	follows	[A,B,F,E].	Router
E	removes	this	outer	header	and	forwards	based	on	the	information	inside	the
packet.	Because	the	inner	header	in	the	tunneled	packet	is	destined	to	a	host	on
2001:db8:0:1::/64,	the	packet	is	forwarded	out	the	directly	connected	interface.

Note

This	sequence	assumes	that	the	best	path	to	Router	E	from	Router	A	is	along
[A,B,F,E].	Because	this	may	not	be	the	case,	NotVia	would	calculate	to
Router	F	instead.	How	this	is	done	is	beyond	the	scope	of	this	simple
explanation	of	the	concept.

How	does	NotVia	fare	from	a	complexity	perspective?

•	State	(carried):	NotVia	requires	an	additional	IP	address	for	each	protected	link	or
node	in	the	network.	This	may	(depending	on	how	many	links	or	devices	are
protected)	be	a	large	number	of	additional	IP	addresses	injected	into	the	control
plane—and	these	addresses	must	be	somehow	marked	in	the	protocol	as	notvia
addresses,	so	they’re	not	used	for	normal	forwarding.	State	is,	therefore,	increased
with	NotVia.	In	fact,	this	additional	state	is	the	primary	reason	NotVia	was	rejected
as	an	Internet	Standard.

•	State	(local):	Each	device	participating	in	the	control	plane	will	need	to	keep	the
additional	notvia	addresses,	and	calculate	their	local	SPT	with	these	links	included

to	discover	alternate	routes.	The	calculation	time	is	likely	minimal,	but	there	is	some
additional	state.

•	Speed:	In	theory,	fast	reroute	mechanisms	reduce	the	global	speed	at	which	the
control	plane	must	react	to	changes	in	the	topology	by	increasing	the	speed	at	which
they	can	react	locally.

•	Surface:	Although	there	are	protocol	changes,	there	is	little	change	in	the	interaction
surfaces	between	the	control	plane	and	the	other	network	systems	it	interacts	with.
NotVia	does	deepen	the	interaction	surfaces	between	routers,	however,	in	two	ways.
First,	there	is	additional	state	that	must	be	carried,	computed,	and	relied	on	in	the
control	plane.	Second,	there	is	the	addition	of	an	“open	tunnel”	on	any	device	in	the
control	plane	hosting	a	NotVia	address.

NotVia	does	add	some	state	to	the	control	plane,	and	hence	does	increase	control	plane
complexity.

Remote	Loop	Free	Alternate

An	alternative	to	NotVia	is	for	Router	A,	in	Figure	7.8,	to	use	some	other	mechanism	to
calculate	a	remote	next	hop	that	will	reach	2001:db8:0:1::/64	even	if	its	primary	path
through	Router	D	has	failed,	and	find	some	alternate	way	to	tunnel	packets	to	this
intermediate	router.	Remote	LFAs	provide	just	such	a	solution.	To	calculate	a	remote	LFA:

•	Router	A	calculates	a	SPT	from	its	neighbor’s	neighbor’s	perspective.	In	this	case,
Router	A	would	calculate	the	best	path	to	2001:db8:0:1::/64	from	the	perspective	of
Router	F.

•	Finding	Router	F	does,	in	fact,	have	a	loop	free	path	to	the	destination,	Router	A	can
then	build	a	tunnel	to	Router	F,	and	install	this	tunnel	as	a	backup	to	the	primary
route	through	Router	D.

The	main	question,	in	this	solution,	is	what	form	of	tunneling	should	be	used	to	build
these	alternate	paths.	The	most	common	answer	to	this	question	is	MPLS,	as	it	is
lightweight,	and	has	all	the	signaling	necessary	to	dynamically	build	tunnels.	Given	MPLS
signaling	of	some	type	is	already	running	in	the	network	for	other	reasons,	adding	Remote
LFAs	is	a	fairly	trivial	exercise	from	a	network	management	perspective.	Dynamically
created	tunnels	can	add	some	excitement	to	the	troubleshooting	process,	of	course;	it	can
take	some	time	and	careful	work	to	sort	out	why	specific	flows	are	traveling	over	specific
links	in	the	network	with	dynamic	tunnels,	because	there’s	no	connection	between	the
configurations	on	individual	devices	and	the	actual	tunnels	created.

Again,	it’s	worth	examining	how	Remote	LFAs	compare	to	the	complexity	model	used
here.

•	State	(carried):	Remote	LFAs	don’t	add	any	new	information	to	the	routing
protocol	specifically,	but	they	do	require	some	way	to	build	backup	tunnels	through
the	network.	If	some	form	of	dynamical	tunneling	system	is	already	running	on	the
network	(for	instance,	to	support	MPLS	virtual	private	networks	or	traffic
engineering/MPLS-TE),	then	this	additional	state	is	very	small.	If	some	form	of
dynamic	tunneling	signaling	must	be	deployed	to	support	Remote	LFAs,	then	the

additional	control	plane	state—and	increase	in	complexity—could	be	daunting.

•	State	(local):	Each	device	participating	in	the	control	plane	will	need	to	perform	an
additional	set	of	SPF	calculations,	and	to	store	information	about	a	backup	tunnel.
Of	course,	the	state	of	the	backup	tunnel	must	be	maintained,	as	well,	so	this	could
well	be	a	large	amount	of	state	(and	hence,	a	large	amount	of	complexity).

•	Speed:	In	theory,	fast	reroute	mechanisms	reduce	the	global	speed	at	which	the
control	plane	must	react	to	changes	in	the	topology	by	increasing	the	speed	at	which
they	can	react	locally.

•	Surface:	Remote	LFAs	add	at	least	one	new	system	to	the	network,	some
mechanism	to	dynamically	build	and	manage	an	overlay	of	alternate	path	tunnels.
This	adds	several	new	interaction	surfaces,	such	as	the	interface	between	the	control
plane	and	the	tunnel	signaling	system,	and	the	physical	topology	and	the	tunneled
overlay.	If	a	dynamic	tunneling	mechanism	has	been	deployed	for	some	other
reason,	then	these	additional	interaction	surfaces	are	already	in	place,	and
complexity	isn’t	increased	in	the	network.	If	dynamic	tunneling	is	being	deployed	to
support	Remote	LFAs,	however,	their	deployment	will	increase	the	number	of
interaction	surfaces	in	the	network.

Note

This	list	of	tradeoffs	assumes	that	Label	Distribution	Protocol	(LDP)	is,	in
fact,	running	on	all	the	nodes	required	to	build	backup	tunnels,	so	the	cost	to
add	Remote	LFAs	is	primarily	in	the	amount	of	state	carried	in	the	network,
as	well	as	additional	tunnels,	endpoints,	etc.	In	fact,	if	deploying	Remote
LFAs	requires	deploying	LDP	to	a	wider	set	of	nodes	in	the	network—a
distinct	possibility	in	most	network	designs—the	increased	network
performance	would	need	to	be	greater,	or	the	business	drivers	more	insistent,
to	justify	deploying	LDP	on	the	additional	nodes.	The	cost	of	deploying
protocols	and	solutions	onto	additional	nodes	in	the	network	should	always
be	included	when	considering	the	complexity	tradeoffs.

EIGRP	and	the	Design	Conundrum
Early	in	the	era	of	large-scale	networking,	EIGRP	gained	a	reputation	as	being	a	routing
protocol	you	could	“throw	onto	any	topology,	without	a	lot	of	design	effort,	and	will	just
work.”	There	is,	in	fact,	a	good	deal	of	truth	to	this	belief—in	fact,	there’s	a	bit	too	much
truth	to	this	statement.	Soon	enough,	very	large	unplanned	networks	began	failing	in	a	big
way	while	running	EIGRP—leading	to	the	opposite	conclusion,	that	EIGRP	is	a	really
horrible	control	plane.	In	a	way,	EIGRP	is	a	victim	of	its	own	early	success	in	supporting
large	complex	networks	with	little	thought	to	actual	design.

Why	did	EIGRP	hold	up	so	well	in	large-scale	networks	with	little	design	effort?	A
short	review	of	EIGRP	operation	might	be	helpful	in	explaining,	using	the	topology	in
Figure	7.9.

Figure	7.9	EIGRP	Operation	Overview

If	Router	A	loses	its	link	to	2001:db8:0:1::/64,	what	happens?

1.	Router	A	will	first	examine	its	local	information	to	determine	if	there	is	an	LFA	(a
FS	in	EIGRP)	for	this	destination.

2.	Finding	none,	it	will	mark	the	route	active	(which	means	EIGRP	is	actively	looking
for	an	alternate	route	to	this	destination),	and	send	a	query	to	each	of	its	neighbors,
in	this	case	Router	D.

3.	Router	D,	on	receiving	this	query,	will	examine	its	local	tables	and	discover	Router
A	is	the	only	path	available	to	2001:db8:0:1::/64.	Router	D	will	mark	this	route
active,	and	send	a	query	to	Router	E.

4.	Router	E	will	follow	Router	D’s	example,	sending	a	query	to	Router	F.

5.	Router	F	will	follow	Router	E’s	example,	sending	a	query	to	Router	G.

6.	Router	G	will	find	it	has	no	neighbors	to	query,	so	it	will	mark	2001:db8:0:1::/64
unreachable,	and	send	a	reply	to	Router	F	stating	it	has	no	alternate	path	to	the
destination.

7.	Router	F,	on	receiving	this	reply,	will	mark	the	route	unreachable,	and	send	a	reply
to	Router	E	stating	it	has	no	alternate	path	to	this	destination.

8.	This	chain	of	replies	will	continue	until	Router	A	receives	a	reply	from	Router	D.	At
this	point,	the	route	is	removed	from	Router	A’s	routing	table,	and	Router	A	sends	a
following	update	with	an	unreachable	metric	for	2001:db8:0:1::/64.	This	removes
the	destination	from	the	other	router’s	tables.

Note

In	simple	networks	like	the	one	shown	in	Figure	7.9,	this	entire	query	process
seems	redundant—and	even	“not	very	useful.”	In	reality,	the	entire	query
mechanism	in	EIGRP	is	designed	to	find	alternate	paths	previously	marked	as
loops,	or	not	reported	because	of	split	horizon.	As	such,	the	query	process	in
EIGRP	acts	much	like	the	mechanisms	used	in	a	link	state	protocol	to
discover	a	remote	LFA—only	it’s	built	into	the	protocol	as	a	part	of	normal
convergence,	rather	than	added	on	as	a	fast	reroute	mechanism.

There	are	several	interesting	points	about	this	process	worth	noting:

•	The	amount	of	state	being	carried	through	this	process	is	minimal.	As	EIGRP	is	a

distance	vector	protocol,	no	topology	information	is	carried,	only	reachability
information.

•	Through	this	diffusing	update	process,	EIGRP	spreads	the	load	of	finding	any
available	alternate	paths	to	every	router	within	the	failure	domain.	This	load
spreading	mechanism	makes	EIGRP	extremely	robust	to	large-scale	environments
(half	a	million	routes	or	more	is	possible,	with	hundreds	of	neighbors,	especially	in
hub-and-spoke	topologies).

•	The	process	of	discovering	any	alternate	routes	is	similar	to	running	SPF	on	the	tree
itself,	in	real	time.	Because	this	is	performed	in	a	serialized	way,	no	microloops	are
ever	formed	in	EIGRP.	Packets	will	be	dropped	during	convergence,	but	never
looped.

So	why	does	EIGRP	scale	so	well	in	relatively	design	free	networks?	Because	the	state
carried	in	the	control	plane	is	minimal	compared	to	most	other	protocols,	and	because	the
Diffusing	Update	Algorithm	(DUAL)	does	such	a	good	job	at	spreading	the	convergence
load	through	the	network.

Why,	then,	do	EIGRP	networks	fail?	EIGRP	can	encounter	several	specific	network
situations	that	will	cause	a	convergence	failure	of	some	type,	including:

•	Extremely	long	“query	tails.”	An	EIGRP	query	stops	wherever	there	is	no	local
knowledge	of	the	destination	contained	in	the	query	itself—this	generally	means
“the	edge	of	the	network,”	or	someplace	where	reachability	information	is
aggregated.	If	there	is	no	aggregation	configured	in	the	network,	each	and	every
query	will	be	processed	by	every	router	in	the	network.	If	a	single	link	fails	that
causes	thousands	of	destinations	to	be	dropped	off	the	network,	the	distributed
convergence	process	that	makes	EIGRP	robust	actually	works	against	the	protocol,
causing	a	lot	more	work	than	is	necessary	to	bring	the	network	to	convergence.

•	High	numbers	of	parallel	paths.	Because	each	EIGRP	router	sends	a	query	to	each	of
its	neighbors,	a	high	number	of	parallel	paths	cause	a	large	number	of	queries	to	be
transmitted	through	the	network.	This	works	the	EIGRP	state	machine	very	hard,
again	causing	DUAL	to	work	against	its	better	attributes.

•	Network	devices	with	low	amounts	of	memory	or	processing	performance	paired
with	devices	that	have	big	processors	and	lots	of	memory.	A	mismatched	set	of
devices	in	the	network	means	one	router	can	quickly	send	thousands	of	queries	to	a
neighbor	that	simply	cannot	handle	the	processing	load.	Again,	the	DUAL	process
begins	to	work	against	itself	in	these	types	of	situations.

The	most	obvious	result	of	any	of	these	situations	is	a	stuck	in	active	route.	As	each
router	in	the	EIGRP	network	transmits	a	query,	it	sets	a	timer;	the	router	expects	to	receive
an	answer	for	this	query	within	this	period	of	time.	If	no	reply	is	received	within	this	time
period,	the	route	is	declared	stuck	in	active,	and	the	adjacency	with	the	neighbor	for	which
no	reply	was	forthcoming	will	be	reset.

As	you	can	imagine,	the	last	thing	you	want	to	do	when	the	protocol	is	already	under
the	stress	of	a	large-scale	convergence	event	is	to	reset	the	neighbor	adjacencies,	causing
another	round	of	queries,	and	hence	more	stress	in	the	network.	Why	was	the	protocol

designed	to	work	this	way?	Because,	in	effect,	once	the	timer	has	fired	the	control	plane
has	stepped	outside	the	finite	state	machine	defined	by	DUAL.	There	is	no	real	way	to
resolve	the	problem	other	than	to	reset	the	state	machine.

For	years,	many	engineers	simply	increased	the	stuck	in	active	timer	when	they	would
see	stuck	in	active	routes	in	their	network.	This	is,	however,	precisely	the	wrong	solution
to	the	problem.	If	you	view	the	stuck	in	active	timer	as	the	amount	of	time	you’re	willing
to	allow	the	network	to	remain	unconverged	(and	hence	dropping	packets	to	a	destination
that	should,	actually,	be	reachable),	you	can	immediately	see	the	bad	side	effects	of
increasing	this	timer.	Instead,	the	network	and	protocol	both	need	to	work	to	resolve	this
situation.

Real	field	experience	with	the	protocol	in	large-scale	environments	revealed	these
problems.	In	response,	two	lines	of	action	were	taken:

•	The	perception	of	EIGRP	as	a	protocol	that	would	run	over	just	about	anything	you
could	configure	it	on	was	changed	to	a	more	balanced	view.	EIGRP	will,	in	fact,
tolerate	a	wide	variety	of	topologies	and	network	conditions.	However,	there	still
needs	to	be	thought	put	into	some	specific	design	parameters,	such	as	the	size	of	a
failure	domain,	the	quality	of	the	equipment	deployed,	and	other	factors.	In	the
realm	of	complexity,	this	is	effectively	throwing	some	of	the	complexity	being
handled	by	the	protocol	“back	over	the	cubicle	wall,”	to	be	handled	by	the	network
designer.	There	is	an	important	lesson	in	balancing	the	location	of	complexity	here.

•	EIGRP’s	stuck	in	active	process	was	modified	to	allow	the	protocol	to	more
gracefully	remain	inside	the	DUAL	state	machine	for	longer	while	decreasing	the
impact	on	the	actual	network	operation.	Specifically,	the	expiration	of	the	stuck	in
active	timer	caused	a	new	query	to	be	transmitted	through	the	query	chain,	rather
than	resetting	the	neighbor	adjacency.	This	allowed	routers	with	smaller	processors
and	memory	pools	the	time	they	needed	to	process	large	groups	of	queries,	or	a	local
adjacency	problem	to	be	sorted	out	without	impacting	the	network	as	a	whole.	In
complexity	terms,	this	added	set	of	packets	and	timers	increased	the	complexity	of
the	protocol	to	resolve	some	of	the	problems	being	seen	in	actual	deployments.
Here,	complexity	in	deployment	was	traded	off	against	protocol	complexity,	as	the
protocol	complexity	didn’t	appear	to	be	as	difficult	to	manage	as	redesigning	every
EIGRP	network	in	the	world	wholesale.

The	development,	and	modification,	of	EIGRP	through	years	of	experience	shows	how
complexity	tradeoffs	must	be	handled	in	the	real	world.	Sometimes	it’s	best	to	move	the
complexity	someplace	else,	sometimes	it’s	best	to	keep	the	complexity	in	the	protocol.	It
all	depends	on	the	specific	situation	the	engineer	faces.

A	Final	Thought
The	intersection	of	protocol,	design,	and	system	complexity	is	itself	a	complex	topic.	This
chapter	really	only	scratches	the	surface	of	this	broad	and	interesting	area	of	investigation.
However,	the	examples	and	outlined	thoughts	here	should	provide	you	with	a	solid	core	of
working	knowledge,	a	set	of	tools	that	will	help	you	at	least	recognize	the	tradeoffs	in	any
given	situation,	and	to	think	twice	about	“tossing	complexity	over	the	cubicle	wall.”

Chapter	8.	How	Complex	Systems	Fail

Every	happy	family	is	happy	in	much	the	same	way,	but	every	unhappy	one	is
miserable	in	completely	unique	ways.

To	apply	this	to	the	network	world	with	just	a	slight	change—“every	network	that
succeeds	does	so	in	much	the	same	way	as	every	other	network	in	the	world,	but	every
network	that	fails	does	so	in	a	completely	unique	way.”	Turning	this	around,	this	means
one	of	the	best	ways	to	learn	network	design	is	to	work	on	failures.	Every	failed	network
design	an	engineer	touches	teaches	some	lesson	in	design,	as	well.

But	to	really	learn	network	engineering,	a	little	theory	of	failure	is	called	for—an
understanding	of	what	might	be	called	“failure	theory”	provides	a	context,	or	a
framework,	into	which	an	engineer	cannot	only	place	failures,	but	also	new	ideas.	New
(and	old)	ideas	in	protocols,	network	devices,	and	networks	as	a	system	can	be	effectively
evaluated	for	potential	failures	by	knowing	what	sorts	of	failure	modes	to	look	for—and
then	actually	looking.	What	tends	to	happen	in	network	engineering	is	finding	a	problem
that	needs	to	be	solved,	and	then	solving	it—without	thought	for	the	complexity	tradeoffs,
and	without	considering	the	failure	modes	that	might	result	up	in	the	protocol	or	network.

This	entire	concept	of	potential	failure	modes	works	alongside	the	concept	of
unintended	consequences,	and	the	unreachable	space	at	the	bottom	left	corner	of	the
complexity	curve	(or	the	unfillable	triangle	of	the	CAP	theorem,	discussed	way	back	in
Chapter	1,	“Defining	Complexity”).

This	chapter	will	discuss	two	major	reasons	why	networks	fail	from	a	theoretical
perspective:

•	Positive	feedback	loops

•	Shared	fate

These	categories	might	seem	broad,	but	this	chapter	will	flesh	them	out	with	a	number
of	examples	that	should	help	you	understand	what	to	look	for	in	each	case.	These	failure
modes	will	also	be	examined	to	see	how	they	interact	with	other	commonly	asserted
causes	of	network	failure,	such	as	the	speed	of	a	finely	tuned	control	plane,	or
redistribution.

Feedback	Loops
Feedback	loops	are	useful	for	a	lot	of	different	things—for	instance,	in	a	phase	locked
loop,	the	feedback	of	the	circuit	is	carefully	controlled	to	produce	a	constant	frequency
waveform	or	carrier.	Phased	locked	loops	form	the	foundation,	in	fact,	of	almost	all
modern	radio	systems.	Another	example	of	a	feedback	loop	is	the	various	types	of
mechanisms	controlling	the	air	and	fuel	flow	into	internal	combustion	and	jet	propulsion
engines.	Without	these	feedback	loops,	these	types	of	engines	can	only	run	at	a	very
minimal	level,	and	at	a	somewhat	low	efficiency.

There	are	two	kinds	of	feedback:	negative	and	positive.	Figure	8.1	illustrates	a	negative
feedback	loop	using	a	very	simple	oscillating	signal	style	of	explanation.

Figure	8.1	A	Negative	Feedback	Loop

In	this	figure,	there	are	two	devices;	you	don’t	need	to	understand	how	the	components
illustrated	here	actually	work	to	understand	the	concept	of	a	feedback	loop:

•	Add:	This	device	simply	takes	the	two	input	signals	and	combines	them	to	create	a
single-output	signal.

•	Tap:	This	device	simply	replicates	the	signal	presented	to	one	input,	does	any
programmed	modification,	and	outputs	the	result	on	its	second	output	interface.

In	this	case,	the	TAP	device	is	configured	to	invert	the	signal	and	reduce	its	strength
(amplitude	in	more	precise	terms)	a	bit.	What	happens	in	this	illustration	is	this:

1.	The	section	of	the	wave	marked	A	passed	through	the	ADD	device.

2.	At	first,	there	is	no	signal	on	the	second	input,	so	the	wave	passes	through	the	ADD
device	without	change.

3.	The	wave	continues	on	and	passes	into	the	TAP	device.

4.	At	the	TAP	device,	a	small	replica	of	the	wave	is	made	and	inverted	(so	the	positive
peaks	are	reversed	with	the	negative	peaks),	and	this	little	replica	of	the	signal	is
passed	back	along	the	path	to	the	second	input	of	the	ADD	device.

5.	This	signal,	being	fed	back	from	the	TAP	device,	is	added	to	the	original	signal	by
the	ADD	device.

6.	Because	this	signal	is	inverted,	the	addition	of	the	two	waves	has	the	effect	of
reducing	the	strength	of	the	output	of	the	ADD	device.	This	process	is	much	like
taking	a	large	number,	multiplying	it	by	some	very	small	number	(say	0.01),
inverting	the	number	(changing	it	from	a	positive	sign	to	a	negative),	and	adding	it
back	to	the	original	number.

7.	This	has	the	effect	of	causing	the	output	level	of	the	ADD	device	to	decrease.

8.	This	decreased	signal	is	then	fed	back	into	the	TAP	device,	which	takes	the	same
proportion	of	the	received	signal,	inverting	it,	and	feeding	it	back	to	the	ADD
device.

The	result,	as	you	can	see	from	the	output	signal	on	the	right	side	of	the	illustration,	is	a
signal	that	is	constantly	decreasing	in	strength.	It’s	tempting	to	think	this	situation	will

stabilize,	but	it	never	really	will—leave	the	circuit	running	long	enough,	and	the	signal
exiting	the	TAP	device	will	eventually	be	reduced	to	the	point	that	it	cannot	be	measured.
An	alternative	way	to	envision	this	negative	feedback	loop	is	as	a	spiral,	with	the	strength
of	the	signal	represented	as	a	spiral	and	a	graph	to	show	the	decreasing	signal	on	the
output	over	time	as	shown	in	Figure	8.2.

Figure	8.2	Negative	Feedback	Loop	Alternate	Conceptions

The	spiral	chart,	on	the	left	in	Figure	8.2,	shows	the	input	and	output	of	the	circuit	as	a
set	of	cycles,	with	each	cycle	moving	closer	to	the	null	point	in	the	middle	of	the	spiral,	or
the	point	where	the	signal	becomes	unmeasurable.	The	curve	version,	on	the	right	in
Figure	8.2,	shows	the	constantly	reducing	signal	strength	against	a	graph,	with	the	same
cycles	marked	out	for	reference.

To	illustrate	a	positive	feedback	look,	reverse	the	action	of	the	TAP	device	shown	in
Figure	8.1;	Figure	8.3	illustrates	the	result.

Figure	8.3	A	Positive	Feedback	Loop

In	this	case,	the	TAP	device	is	configured	to	leave	the	signal	in	phase	with	the	original
and	reduce	its	strength	(amplitude	in	more	precise	terms)	a	bit.	What	happens	in	this
illustration	is	this:

1.	The	section	of	the	wave	marked	A	passed	through	the	ADD	device.

2.	At	first,	there	is	no	signal	on	the	second	input,	so	the	wave	passes	through	the	ADD

device	without	change.

3.	The	wave	continues	on	and	passes	into	the	TAP	device.

4.	At	the	TAP	device,	a	small	replica	of	the	wave	is	made,	and	this	little	replica	of	the
signal	is	passed	back	along	the	path	to	the	second	input	of	the	ADD	device.

5.	This	signal,	being	fed	back	from	the	TAP	device,	is	added	to	the	original	signal	by
the	ADD	device.

6.	Because	this	signal	is	not	inverted,	the	addition	of	the	two	waves	has	the	effect	of
increasing	the	strength	of	the	output	of	the	ADD	device.

7.	This	process	is	much	like	taking	a	large	number,	multiplying	it	by	some	very	small
number	(say	0.01),	and	adding	it	back	to	the	original	number.

8.	This	has	the	effect	of	causing	the	output	level	of	the	ADD	device	to	increase.

9.	This	increased	signal	is	then	fed	back	into	the	TAP	device,	which	takes	the	same
proportion	of	the	received	signal	and	feeding	it	back	to	the	ADD	device.

Once	again,	it	is	sometimes	useful	to	illustrate	the	same	concept	in	a	different	way,	as
shown	in	Figure	8.4.

Figure	8.4	An	Alternate	Illustration	of	a	Positive	Feedback	Loop

Looking	at	these	two	illustrations	(Figures	8.3	and	8.4),	it	should	be	obvious	why
positive	feedback	loops	are	dangerous.	First,	unless	there	is	something	that	limits	the
amplitude	of	the	resulting	signal,	there	is	no	end	to	the	loop.	In	fact,	most	positive
feedback	loops	do	occur	in	systems	with	a	limiter	of	some	type;	most	of	the	time	the
limiter	is	some	physical	property	of	the	system	itself.	As	an	example,	consider	feedback	in
an	audio	system—that	loud	screeching	noise	you	hear	sometimes	when	a	microphone	is
placed	too	close	to	a	speaker.	Feedback	of	this	type	is	caused	by	any	noise	in	the
amplification	and	speaker	system	(and	there	will	always	be	some)	being	picked	up	by	a
microphone	(TAP	in	the	diagrams	above),	then	fed	back	into	the	amplification	system
(ADD	in	the	illustrations	above),	to	create	a	higher	volume	noise,	which	is	then	picked	up
by	the	microphone	as	a	louder	noise,	and	hence	amplified	to	a	higher	level,	and	then
played	by	the	speakers.	The	limiting	factor	in	the	audio	example	is	the	upper	limit	on	the
speaker’s	volume,	combined	with	the	physical	properties	of	the	microphone.

Second,	once	the	system	reaches	the	limiter,	it	will	stay	there	permanently.	And
reduction	in	the	rate	or	strength	of	change	is	immediately	overcome	by	the	action	of	the
TAP/ADD	feedback,	which	adds	in	whatever	level	of	signal	is	needed	(over	time)	to	bring
the	system	back	to	the	limiting	point.	This	is	called	saturation	in	the	field	of	control
systems	and	electronics.

Note

The	illustrations	here	indicate	that	a	positive	feedback	loop	will	always	result
in	an	increasing	level	of	output,	as	the	input	and	some	part	of	the	output	are
added	in	the	processing.	However,	many	positive	feedback	loops	simply
achieve	stability,	and	hence	are	called	self-reinforcing,	or	stable,	feedback
loops.	In	this	case,	the	loop	doesn’t	add	to	the	point	of	increasing	output,	but
simply	keeps	the	output	stable	at	an	elevated	level.	The	result	is	a	constant
amplification	of	the	input	to	the	output,	rather	than	an	ever	increasing	output.
To	simplify	the	discussion,	these	cases	are	still	treated	as	positive	feedback
loops	in	this	text.

The	difference	between	a	positive	feedback	loop	and	a	negative	feedback
loop	is	the	sign	of	the	number	fed	back	into	the	ADD	in	these	illustrations.	If
the	ADD	is	fed	a	negative	number,	the	feedback	loop	will	be	negative.	If	it’s
fed	a	positive	number,	the	feedback	loop	will	be	positive.	The	steepness	of
the	feedback,	the	rate	at	which	it	impacts	the	output	signal,	is	impacted	by	the
percentage	of	the	original	signal	that’s	taken	off	at	the	TAP	and	fed	back	to
the	ADD.	The	higher	the	percentage,	the	greater	the	speed	at	which	the	output
increases	or	decreases.

Positive	Feedback	Loops	in	Network	Engineering
How	do	feedback	loops—positive	feedback	loops	in	particular—relate	to	network
engineering?	Returning	to	the	original	model	of	network	complexity	described	in	Chapter
2,	“Components	of	Complexity,”	feedback	loops	interact	with	all	three	pieces	of	the
complexity	model:	state,	speed,	and	surface.	Working	through	some	examples	is	going	to
be	the	best	way	to	understand	how	feedback	loops	relate	to	complexity;	this	section	will
consider	a	packet	duplication	loop,	a	redistribution	loop,	and	a	link	flap	control	plane
failure	loop.

Packet	Loop

Packet	loops	are	more	common	than	might	be	initially	supposed	in	any	given	network—
but	they	don’t	always	form	feedback	loops,	and	hence	aren’t	always	related	to	a	network
failure.	Figure	8.5	illustrates	a	typical	packet	loop.

Figure	8.5	Packet	Loop	Examples

The	left	half	of	Figure	8.5	illustrates	a	loop	in	which	packet	replication	does	not	take
place—so	there	is	no	immediately	obvious	positive	feedback	loop.	Packets	transmitted	by
Host	A	are	forwarded	by	Router	B	to	Router	C,	which	are	then	forwarded	to	Router	D,
then	back	to	Router	B,	where	they	are	again	forwarded	to	Router	C.	There	is,	however,	a
self-sustaining	loop,	or	enough	positive	feedback	to	sustain	the	increased	traffic	levels
across	the	links	in	the	network.	This	self-sustaining	loop	can	still	cause	the	amount	of
traffic	that	can	reach	the	limiter,	or	saturation	point,	for	the	loop,	if	Host	A	is	transmitting
enough	traffic.

To	understand	why,	consider	that	the	only	way	to	prevent	traffic	from	passing	along	this
loop	eternally	is	to	put	a	maximum	number	of	hops	in	the	packet	itself—a	time	to	live.	If
the	time	to	live	is	set	very	high,	to	allow	for	a	wide	diameter	network	(a	network	with	a	lot
of	hops),	then	each	packet	Host	A	transmits	will	increase	the	load	on	the	network	while
older	packets	are	still	counting	down	to	their	time	to	live.	If	the	time	to	live	is	set	to	16,
Host	A	can	consume	up	to	16	times	the	bandwidth	available	along	the	link	from	itself	to
Router	B	along	other	links	in	the	network.	If	the	Host	A	→	Router	B	link	is	1g,	then	Host
A	can	consume	up	to	16g	across	the	[B,C],	[C,D],	and	[D,B]	links	(combined,	or	one	third
of	16g	on	each	of	the	three	links).

The	right	side	of	Figure	8.5	illustrates	a	forwarding	loop	with	positive	feedback
characteristics.	Here	a	packet	transmitted	by	Router	E	to	Router	F	is	forwarded	by	Router
G	to	both	Routers	H	and	K,	each	of	which	replicates	the	packet	and	transmits	it	back	to
Router	F.	Each	time	the	single	packet	traverses	the	loop,	it	doubles;	in	the	first	round,	then,
the	single	packet	transmitted	by	Host	E	becomes	two,	in	the	second	round	it	becomes	four,
in	the	third	round	it	becomes	eight,	and	so	on.	It	should	also	be	obvious	this	is	only	a
problem	in	the	case	of	multicast	or	broadcast	traffic;	unicast	traffic	wouldn’t	normally	be
duplicated	at	Router	F.

What	would	the	limiter	be	for	either	of	these	forwarding	loops?	Limiters	would	include:

•	The	speed	at	which	any	device	in	the	forwarding	path	can	forward	the	traffic.

•	The	bandwidth	of	the	links	connecting	the	devices.

•	The	time	to	live	of	the	packets	being	transmitted	into	the	forwarding	loop.	This
generally	isn’t	going	to	be	much	of	a	limiter,	as	any	time	to	live	is	normally	set	high
enough	to	ensure	transport	across	a	large	diameter	network,	which	is	almost	always
too	high	to	prevent	collateral	damage	from	a	forwarding	loop.

•	The	viability	of	the	control	plane	state	passing	over	the	links	through	which	the
forwarding	loop	passes.

While	most	of	these	are	fairly	obvious,	the	last	limiter	might	not	be—what	precisely
does	the	viability	of	the	control	plane	mean?	If	the	traffic	along	the	links	involved	in	the
loop	becomes	large	enough	to	cause	packet	drops,	the	control	plane	will	not	be	able	to
maintain	state.	When	the	control	plane	state	fails,	the	reachability	information	that	formed
the	link	will	(likely)	be	removed	from	the	table,	causing	the	loop	to	“unwind.”	If	the	loop
is	stable,	it	will	be	re-formed	when	the	control	plane	relearns	reachability	information
across	the	links	in	the	loop.

Packet	Loops	in	the	Control	Plane

How	do	forwarding	loops	that	lead	to	feedback	loops	form	in	a	network?	Generally	the
problem	begins	someplace	in	the	control	plane.	Generally	speaking,	control	planes	will
form	forwarding	loops	when	the	actual	state	of	the	network	doesn’t	match	the	control
plane’s	view	of	the	network.	Some	examples	might	be	helpful	in	understand	how	and
when	this	happens.

Mutual	Redistribution

Figure	8.6	illustrates	a	network	with	mutual	redistribution	between	two	routing	protocols.

Figure	8.6	Redistribution	Control	Plane	Loop

In	this	network,	Router	A	is	redistributing	2001:db8:0:1::/64	into	OSPF	v3	toward
Routers	B	and	D	with	a	cost	of	100.	To	simplify	the	explanation,	take	one	side	of	the	loop;

Router	B	redistributes	this	destination	into	EIGRP	with	a	metric	of	1000.
2001:db8:0:1::/64	is	then	picked	up	as	an	EIGRP	external	route	by	Router	D,	and
redistributed	back	into	OSPF	with	a	cost	of	10.	Router	D	then	advertises	this	route	back	to
Router	B	along	the	broadcast	link	shared	by	Routers	A,	B,	and	D;	the	route	reaches	Router
B	as	an	external	OSPF	route	with	a	cost	of	10.	Because	the	cost	through	Router	D—10
plus	the	cost	of	the	[B,D]	link—is	less	than	the	cost	of	the	route	through	Router	A—100
plus	the	cost	of	the	[B,D]	link—Router	B	will	choose	the	path	through	Router	D	to	reach
this	destination.	This	type	of	routing	loop	can	time	itself	out	through	the	increasing	costs
each	time	the	destination	is	redistributed	between	the	two	protocols,	but	it	will	quickly	be
rebuilt	once	the	first	cycle	of	redistribution	is	completed.	This	type	of	routing	loop	can
also	remain	stable,	depending	on	the	way	the	redistribution	metrics	are	chosen.

Note

The	reason	this	works	is	the	original	route	is	redistributed	into	OSPF,	rather
than	simply	being	advertised	into	OSPF.	2001:db8:0:1::/64	must	be	an
external	route	at	both	points	of	entry	to	create	the	loop;	otherwise	Routers	B
and	D	will	have	one	internal	OSPF	route	and	one	external	OSPF	route,	and
they	will	always	prefer	the	internal	route	over	the	external,	breaking	the	loop.
Multiple	points	of	redistribution	are	required	to	cause	this	type	of	loop.

It’s	tempting	to	say	the	problem	here	is	that	information	passing	from	one	routing
domain	is	being	leaked,	or	redistributed,	into	another	routing	domain,	and	then	it’s	being
redistributed	back	again—that	the	mutual	redistribution	is	actually	the	root	of	the	problem.
But	while	removing	the	mutual	redistribution,	or	blocking	redistributed	routes	from	being
redistributed	again	(though	filters,	tags,	communities,	or	other	mechanisms)	will	resolve
the	problem,	mutual	redistribution	is	not	the	root	cause.

The	root	cause	is	actually	the	removal	of	information	about	the	state	of	the	network	in
the	redistribution	process	itself.	Reaching	back	to	routing	fundamentals,	you	might	recall
that	routing	protocols	determine	whether	a	particular	path	to	a	destination	is	a	loop	by
examining	the	metrics.	Because	the	metrics	of	any	two	protocols	use	cannot	be	directly
compared,	the	metric	assigned	to	a	redistributed	route	must	simply	be	configured	or
calculated	in	some	way—no	matter	how	this	configuration	or	calculation	is	done,
information	about	the	state	of	the	network	(the	cost	of	the	path	to	the	destination	in	this
case)	will	likely	be	lost	when	redistributing	routes.

Hence,	when	routing	information	is	redistributed	between	two	different	routing
protocols,	a	mismatch	between	the	actual	state	of	the	network	and	what	the	control	plane
believes	to	be	the	state	of	the	network	occurs.	Any	time	such	a	mismatch	occurs,	there	is
the	possibility	of	a	routing	loop,	which	then	causes	a	(potentially	permanent)	forwarding
loop	in	the	network.

Microloops

Chapter	7,	“Protocol	Complexity,”	spent	a	good	deal	of	time	examining	microloops	and
various	solutions,	specifically	in	terms	of	increasing	protocol	complexity	in	an	attempt	to
reach	the	“corner”	of	the	Turing	Curve	(see	Chapter	1,	“Defining	Complexity”).	A	quick
revisit	here	in	the	context	of	forwarding	loops	will	be	useful,	using	Figure	8.7.

Figure	8.7	A	Microloop	in	the	Control	Plane

Given	this	network	is	running	a	link	state	protocol,	and	Router	D’s	best	path	to
2001:db8:0:1::/64	is	through	Router	C,	a	failure	at	[B,C]	will	cause	a	loop	to	form
between	Routers	C	and	D	during	the	time	after	Router	C	has	converged	and	before	Router
D	has	converged.	Chapter	7,	“Protocol	Complexity,”	discussed	a	number	of	solutions	for
this	problem—but	what,	really,	is	the	root	cause?

While	the	most	obvious	problem	is	the	two	routers	should	recalculate	at	the	same	time,
the	actual	root	cause	is	the	mismatch	between	the	network	topology	as	it	exists	and	the
network	topology	as	Router	D	believes	it	to	be.	This	reinforces	the	point	that	any	time
there	is	a	mismatch	between	the	topology	as	it	exists	and	the	control	plane’s	view	of	the
topology,	bad	things	happen.

Seen	from	this	angle,	it	becomes	obvious	why	the	problem	is	so	difficult	to	solve.	The
CAP	theorem	states	that	you	can	design	a	database	that	is	consistent,	available,	and
exhibits	tolerance	for	partitions	(perhaps	it	should	be	the	CAT	theorem,	named	in	honor	of
that	inexplicable	creature,	the	cat?)—you	must	choose	two	of	the	three.	If	the	control
plane	is	simply	treated	as	a	distributed	real	time	database,	the	routing	protocol	must	give
up	something—which	one	should	it	be?

Tolerance	for	partitioning	is	certainly	not	something	a	distributed	routing	protocol	can
give	up;	that	would	destroy	the	very	essence	of	its	distributed	nature.	Accessibility	is
another	area	that	simply	isn’t	in	doubt;	a	routing	protocol	database	that	isn’t	accessible	by
every	device	participating	in	the	control	plane	all	the	time	really	isn’t	much	use	for	packet
forwarding	duty.	Consistency,	then,	is	the	point	that	must	give	way	in	a	distributed	control

plane—and	as	Chapter	7’s	exploration	of	the	problem	of	microloops	illustrates,	there’s	no
simple	way	to	resolve	the	problems	that	come	from	an	inconsistent	view	of	the	network
(in	fact,	according	to	CAP	theorem,	there’s	no	way	to	actually	resolve	the	problem
entirely,	no	matter	how	much	complexity	is	thrown	at	the	problem).

Another	set	of	choices	can	be	made,	of	course—the	control	plane	database	can	be
centralized,	removing	the	“P”	out	of	the	CAP	theorem,	and	hence	making	the	“A”	and	“C”
theoretically	possible.	It	doesn’t	always	work	out	this	in	real	life,	however,	as	you’ll
discover	in	Chapter	10,	“Programmable	Network	Complexity.”

Speed,	State,	and	Surface:	Stability	in	the	Network	Control	Plane
With	this	understanding	of	feedback	loops	in	the	background,	it’s	time	to	move	back	into
the	world	of	complexity.	This	section	will	begin	with	another	example	of	a	control	plane
loop,	and	then	continue	with	a	discussion	of	the	speed,	state,	and	surface	of	complexity	in
relation	to	network	engineering.

A	Spanning	Tree	Failure	Case	Study

Spanning	Tree	is	famous—perhaps	infamous	is	a	better	term—for	cascading	control	plane
failures.	Figure	8.8	illustrates	a	small	network	over	which	it	is	possible	to	trace	such	a
failure.

Figure	8.8	Spanning	Tree	Failure	Example

This	network	begins	with	Switch	A	as	the	root	bridge,	and	the	path	[B,D]	blocked	by
the	Spanning	Tree	Protocol.	Assume	that	two	things	occur	at	the	same	time:

•	An	outsized	unidirectional	flow	is	passing	through	the	switched	network,	using	a
large	amount	of	the	available	bandwidth,	from	Switch	A	through	Switches	B	and	C,
to	Switch	E	(and	someplace	beyond	Switch	E).

•	Some	process	on	Switch	B	misbehaves,	causing	the	Bridge	Protocol	Data	Unit
(BPDU)	process	to	fail	in	sending	regular	hello	packets.

If	the	spanning	tree	process	fails	to	send	regular	BPDUs	at	Switch	B,	Switches	C	and	D
will	begin	to	elect	a	new	root	bridge,	and	hence	to	determine	the	shortest	set	of	paths

through	the	network	without	reference	to	the	current	state	of	Switch	A	as	the	root	bridge,
or	the	existence	of	Switch	B.	This	will	result	in	the	[B,D]	link	being	unblocked	for	traffic,
so:

•	The	large	flow	originating	at	A	will	be	transmitted	across	the	broadcast	link	[B,C,D].

•	The	large	flow	will	be	transmitted	by	both	Switches	C	and	D	onto	the	broadcast	link
[C,D,E].

•	Switch	D	will	receive	the	same	large	flow	at	its	[C,D,E]	interface	and	retransmit	it
back	onto	the	[B,C,D]	broadcast	link,	setting	up	the	forwarding	loop.

Once	the	forwarding	loop	is	started,	the	only	limiting	factor	will	be	the	saturation	point
for	the	links,	interfaces,	and	forwarding	devices	in	the	network.	As	the	traffic	on	the	wire
builds,	the	BPDUs	that	Spanning	Tree	counts	on	to	form	a	shortest	path	tree	along	the
network	topology	will	be	dropped,	causing	the	network	to	further	fragment	into
independent	switches	each	electing	their	own	root	bridge.	Once	the	network	reaches	this
point	there	is	no	way	to	recover	other	than	the	failure	of	one	(or	more)	of	the	switches,
causing	the	traffic	to	stop	being	forwarded,	and	giving	Spanning	Tree	the	chance	to	re-
establish	loop	free	paths	through	the	network.

Riding	the	See-Saw

There	are	several	points	to	be	considered	in	the	examples	given	thus	far;	the
state/speed/surface	model	will	be	used	here	to	put	these	points	into	complexity	terms.

State:	In	each	of	these	cases,	control	plane	state	plays	a	role	in	starting	or	maintaining
the	feedback	loop.	The	problem	is	a	lack	of	information	about	the	true	state	of	the	network
topology.	Any	time	there	is	a	mismatch	between	what	the	control	plane	believes	about	the
network	topology,	and	the	actual	network	topology	as	it	exists	in	the	real	world,	there	will
be	some	forwarding	issue.	The	examples	above	used	a	packet	loop	to	remove	topology
information	through	packet	loss	(spanning	tree	failure),	and	the	removal	of	control	plane
state	describing	the	actual	network	topology	(redistribution)	to	illustrate	this	mismatch
between	state	and	reality.

Speed:	The	loss	of	information	in	the	control	plane,	resulting	in	a	mismatch	between	the
network	and	the	control	plane’s	view	of	the	network,	is	the	primary	cause	for	each	of	the
examples	given	here.	However,	it	is	important	to	note	the	role	speed	plays	in	each
situation,	as	well.	In	the	case	of	microloops,	the	control	plane	isn’t	fast	enough	to	keep	up
with	changes	in	the	network	topology.	Speeding	the	control	plane	up,	however,	simply
causes	other	complexity	issues	to	surface—there	is	no	such	thing	as	a	free	lunch	in	the
world	of	complexity	(or,	rather,	you	can’t	beat	the	complexity	demon	as	easily	as	just
setting	a	timer	to	make	things	go	faster).

An	alternative	way	to	look	at	this	is	as	a	see-saw:	the	fast	the	network	reacts	to	topology
changes,	the	more	likely	you	are	to	find	situations	where	the	control	plane	forms	a	positive
feedback	loop.	Speed	is	good,	but	speed	is	also	bad.	It’s	far	too	easy	to	push	to	one	side	of
the	see-saw	without	thinking	through	what’s	going	to	happen	when	the	weight	shifts,	and
your	side	starts	heading	toward	the	ground.	What	is	it	you’ll	face	when	you	“saw”	rather
than	“see”?	A	nasty	bump	on	the	bottom,	or	something	worse?

Surface:	Two	of	the	examples	just	discussed	illustrate	the	problem	with	broad,	deep
surfaces	connecting	two	different	systems.	In	the	redistribution	example,	the	surface
between	the	two	routing	protocols	can	be	said	not	to	be	deep	enough.	Because	information
isn’t	fully	exchanged	between	the	protocols,	the	interaction	surface	is	inefficient.	Further,
the	interaction	surface	in	this	case	is	too	broad;	redistribution	doesn’t	need	to	take	place	at
more	than	a	minimal	number	of	places	in	the	network.	Reducing	the	points	at	which
redistribution	does	take	place	can	potentially	reduce	the	efficiency	of	traffic	flow	through
the	network,	but	this	is	a	common	tradeoff	against	control	plane	state.

In	the	case	of	the	spanning	tree	failure,	the	interaction	surface	in	view	is	between	the
control	plane	and	the	traffic	flowing	through	the	network,	or	the	data	plane.	This	isn’t
normally	an	interaction	surface	network	engineers	think	about,	but	because	the	control
plane	rides	on	the	same	links	as	the	data	plane	(the	control	plane	is	in	band),	there	is	a
definite	interaction	surface	that	needs	to	be	considered.

The	third	example,	microloops,	illustrates	the	surface	problem	in	another	way.	The
control	plane	can	be	said	to	be	one	system,	while	the	network	topology	can	be	said	to	be	a
separate	system.	The	detection	of	the	topology	state	by	the	control	plane	is	therefore	an
interaction	surface.	In	this	case,	the	interaction	surface	can	be	said	to	be	too	shallow,	in
that	the	control	plane	cannot	always	react	to	changes	in	the	topology	as	quickly	as	those
changes	actually	occur.	This	is	another	way	of	looking	at	the	problem	described	as	a	state
and	speed	issue	in	the	paragraphs	above.

Shared	Fate
Feedback	loops	between	systems	or	within	a	system	are	interesting,	but	they	are	often	easy
to	spot	once	you	know	what	you’re	looking	for.	Shared	fate,	however,	is	often	very
difficult	to	see	in	any	given	network—most	often	because	shared	fate	situations	are
intentionally	buried	under	layers	of	abstraction	designed	to	reduce	the	apparent
complexity	of	the	network.	What	is	a	shared	fate	problem,	and	how	does	it	impact	network
failure	in	the	real	world?	The	best	way	to	understand	this	type	of	problem	is	through
examples.	Once	these	examples	have	been	considered,	shared	fate	problems	will	be
related	back	into	the	complexity	model	used	throughout	this	book—speed,	state,	and
surface.

Virtual	Circuits
Virtual	circuits	aren’t	new—in	fact,	the	use	of	tagged	packet	header	to	put	several	different
“circuits”	onto	a	single	physical	wire	have	been	common	from	almost	the	very	beginning
in	networks.	Starting	with	multiplexed	T1’s,	working	through	Frame	Relay,	and	the	more
modern	802.1Q	and	802.1ad	headers	placed	on	an	Ethernet	frame	to	break	a	single
Ethernet	link	into	multiple	virtual	topologies,	virtualization	has	been	the	rule,	rather	than
the	exception,	in	data	link	protocols.	Today,	engineers	can	choose	from	VXLAN,	MPLS,
and	many	other	technologies	to	virtualize	their	links.

Virtualization	provides	many	benefits,	such	as:

•	The	capability	to	hide	one	virtual	topology	from	another;	a	form	of	information
hiding	that	reduces	the	state	carried	in	the	overlay	control	plane,	and	the	speed	at

which	the	control	plane	must	react	to	changes	in	the	topology.

•	The	capability	to	abstract	the	physical	topology	into	multiple	logical	topologies,
each	with	their	own	characteristics,	such	as	per	hop	behaviors.

•	The	capability	to	carry	traffic	across	a	longer	than	shortest	path	(to	increase	the
stretch	of	a	specific	path)	to	meet	specific	business	or	operational	goals.

There	is	a	downside	to	virtualization,	however—the	SRLG.	Figure	8.9	illustrates	shared
risk	link	groups.

Figure	8.9	Shared	Risk	Link	Groups

Assume	the	following:

•	Routers	A	and	B	are	both	demarcation	(or	handoff)	points	for	Provider	X,	which	is
selling	a	high-speed	link	between	two	cities.

•	Routers	C	and	D	are	both	demarcation	(or	handoff)	points	for	Provider	Y,	which	is
selling	a	high-speed	link	between	two	cities.

A	customer	purchases	a	virtual	circuit	from	Provider	X,	and	a	backup	link	from
Provider	Y,	to	connect	their	facilities	in	the	two	cities	that	both	providers	interconnect.	A
backhoe	operator	then	proceeds	to	fade	the	network	at	Link	E	(perhaps	they	are	cleaning
out	a	drainage	ditch	someplace	alongside	a	road).

This	will	cause	both	of	the	virtual	circuits	to	fail,	as	they	share	a	single	physical	link.

How	can	the	customer	avoid	this	situation?	Neither	provider	is	likely	to	explain	exactly
how	their	virtual	circuit	is	provisioned,	hop-by-hop—this	would	be	giving	out	competitive
information	that	could	negatively	impact	the	provider’s	business.	From	the	customer’s
perspective,	the	virtualization	of	the	single	link,	E,	has	created	an	SRLG	that	is	not	visible
because	of	the	magic	of	abstraction—and	there’s	little	the	customer	can	do	about	the
situation	other	than	use	a	single	provider	and	demand	this	type	of	situation	doesn’t	arise	in
the	network.

The	virtualization	abstraction	can	be	said	to	leak;	state	at	a	lower	logical	layers	leaks
into	higher	logical	layers	in	the	form	of	shared	risk	groups,	where	a	single	failure
translates	into	a	number	of	different	outages.

TCP	Synchronization	as	a	Shared	Fate	Problem
Shared	fate	problems	don’t	just	ride	atop	virtualized	links,	however;	any	time
virtualization	is	used,	there	is	the	possibility	of	a	shared	fate	situation	developing.	The
behavior	of	multiple	TCP	flows	passing	through	a	single	set	of	buffers	or	queues	in	a
network	is	an	unexpected	variant	of	a	shared	fate	problem.	Figure	8.10	illustrates	the
behavior	of	several	TCP	flows	passing	through	a	network.

Figure	8.10	TCP	Synchronization

In	this	diagram,	three	hosts,	A,	B,	and	C,	are	sending	three	different	TCP	streams	to
three	other	hosts	that	are	only	reachable	across	the	single	[D,E]	link.	Examining	the	output
queue	at	D,	there	are	six	packets	waiting	to	be	transmitted;	one	from	each	of	the	three
streams.	If	this	output	queue	can	only	hold	three	packets,	then	three	of	the	packets	placed
in	the	queue	will	be	dropped.	If	a	tail	drop	mechanism	is	used,	the	three	newest	packets	in
the	queue	will	be	dropped,	which	means	P4,	P5,	and	P6.

Note	that	these	three	packets	represent	one	packet	from	each	stream,	so	each	of	the
three	TCP	sessions	will	go	into	slow	start	mode	at	the	same	time.	Whether	or	not	the	three
TCP	sessions	are	using	the	same	timers	to	rebuild	to	a	larger	window,	the	same	situation
will	arise	when	the	[D,E]	link	reaches	some	percentage	of	its	maximum	capacity,	causing
the	cycle	to	restart.	The	result	is	the	sawtooth	utilization	chart	on	the	bottom	right	of	the
figure—clearly	a	suboptimal	use	of	the	link	capacity.	There	are	several	ways	to	look	at
this	problem.

First,	this	can	be	modeled	as	a	case	of	a	leaky	abstraction.	Each	TCP	session	sees	the

path	from	host	to	host	as	an	exclusive	channel,	but	it’s	not—the	channel	is	being	shared
with	other	TCP	sessions.	The	single	link,	then,	is	abstracted	into	three	links,	each
appearing	to	be	an	exclusive	link.	The	underlying	reality	leaks	through	in	the	single	output
queue	at	Router	D,	forcing	the	upper	layers	to	interact	with	the	underlying	reality.

Second,	this	problem	can	be	seen	as	a	case	of	interacting	surfaces—the	“other	side”	of
the	leaky	abstraction	explanation.	Within	the	model	of	complexity	theory	used	throughout
this	book,	speed,	state,	and	surface	are	the	key	points.	Here	the	problem	is	caused	by	the
interaction	between	the	underlying	transport	system	(the	physical	and	data	link	on	the
[D,E]	link)	and	the	overlay	transport	system	(IP	and	TCP).	At	the	intersection	of	these	two
systems	there	is	a	surface	along	which	they	interact—specifically	the	output	queue	at
Router	D.	Within	the	model	of	network	complexity	used	here,	then,	this	problem	can	be
solved	by	either	removing	the	interaction	surface	(making	the	three	links	three	actual
links,	rather	than	one	shared	link),	or	by	adding	more	depth	and	complexity	to	resolve	the
nuances	of	the	interaction.	Of	course	there	will	be	tradeoffs	in	adding	this	depth	to	the
interaction	surface.

Weighted	Random	Early	Detection	(WRED)	is	one	mechanism	used	to	resolve	this
problem.	By	randomly	dropping	packets	off	the	queue,	rather	than	always	dropping	the
last	set	of	packets	added	to	the	queue,	the	impact	of	TCP	going	into	slow	start	is	spread
across	time	on	different	sessions,	preventing	the	original	synchronization	of	the	various
streams.	However,	WRED	can	have	side	effects	on	a	single	stream	running	across	such	a
queue,	and	it’s	often	difficult	to	precisely	tune	WRED	to	manage	both	tiny	(mouse)	flows
that	only	last	a	few	seconds	alongside	larger,	long	lived	(elephant)	flows	along	the	same
link.	It’s	often	useful	to	move	mouse	and	elephant	flows	onto	different	links	in	a	network
just	to	mitigate	the	effects	of	TCP	synchronization	and	quality	of	service	buffer	issues.	So
in	an	attempt	to	resolve	one	problem	in	a	specific	interaction	surface,	complexity	ripples
outward	like	the	little	wavelets	expanding	from	a	stone	thrown	in	the	water.	Okay,	that
was	very	philosophical,	but	you	get	the	point.

Finally,	to	return	to	the	theme	of	this	section,	this	problem	can	be	seen	as	a	shared	fate
issue.	In	this	case,	you	can	model	the	three	TCP	streams	as	virtual	circuits	running	across
a	common	physical	infrastructure.	The	output	queue	at	Router	D	is	a	shared	resource
through	which	all	three	streams	must	pass,	and	the	fate	of	that	queue	is	shared	by	all	three
flows.

This	specific	example	is	useful	because	it’s	relatively	easy	to	see	all	three	perspectives
—leaky	abstractions,	interaction	surfaces,	and	shared	fate—as	different	ways	to	model	the
same	underlying	problem.	Each	of	these	three	models	can	suggest	a	different	set	of
solutions,	or	even	point	you	to	problems	with	any	given	solution.

A	Final	Thought
This	chapter	has	covered	two	broad	areas	of	the	interaction	between	complexity	and
failure:	feedback	loops	and	shared	fate.	Both	of	these	situations	can	be	mapped	to	the
complexity	model	first	described	in	Chapter	1,	“Defining	Complexity,”	and	used
throughout	the	book:

•	State:	The	mismatch	between	the	actual	state	of	the	network	and	the	state	as	viewed

by	the	control	plane	is	the	ultimate	cause	of	microloops	formed	through	the	control
plane,	while	the	removal	of	state	about	the	actual	topology	through	a	variety	of
means	is	often	the	ultimate	cause	of	more	permanent	forwarding	loops	formed	in	the
control	plane.	In	the	case	of	shared	fate,	the	state	of	a	single	shared	resource	leaks
through	the	abstraction	created	by	upper	layers	in	the	protocol	stack	to	impact	the
operation	of	the	upper	layer	protocol.

•	Speed:	The	speed	of	change	in	the	actual	state	of	the	network	can	overwhelm	the
control	plane,	or	happen	quickly	enough	that	the	control	plane	cannot	react	in	real
time.	In	reality,	all	control	planes	are	near	real	time,	rather	than	real	time,	to	provide
enough	“buffer”	to	prevent	a	control	plane	failure	in	the	case	of	rapid	changes.

•	Surface:	The	interaction	surface	between	the	topology	and	the	control	plane	plays	a
large	role	in	positive	feedback	loops	and	in	many	shared	fate	problems,	such	as	TCP
synchronization.

Thoughts	on	Root	Cause	Analysis
This	chapter	has	discussed	root	causes	for	failures,	but	this	is	a	concept	engineers	need	to
be	cautious	with.	Complex	systems,	particularly	highly	redundant	and	available	ones,	are
always	in	a	pseudo-failure	mode.	There	is	always	something	wrong	someplace	in	any	truly
complex	system.	The	techniques	used	to	manage	and	control	the	impacts	of	failures	are
generally	sufficient	to	prevent	a	total	system	failure,	so	the	overall	system	is	not	impacted.
As	a	result	(or	corollary)	of	this,	when	a	major,	or	systemic,	failure	occurs,	it	usually	has
more	than	one	cause.	A	common	situation	is	the	combination	of	some	set	of	pseudo-
failures	with	a	single	shift	in	the	topology,	control	plane,	or	forwarding	plane	that	acts	as	a
catalyst,	resulting	in	a	systemic	failure.

This	implies	that	the	search	for	a	single	root	cause	is	generally	counterproductive	in
managing	or	doing	postmortems	of	systemic	failures	in	large	complex	systems.	What
postmortems	should	do,	instead,	is	attempt	to	find	the	original	conditions,	the	catalyst,	and
the	feedback	loops	and	interaction	surfaces	that	led	from	the	one	change	to	the	final
failure.	In	a	complex	system,	a	failure	isn’t	a	single	thing—it’s	a	complex	system	in	and	of
itself.

There	is	a	human	side	to	consider,	as	well.	A	well	thought	out	expression	of	this	human
side	is	given	by	Robert	Cook:

The	evaluations	based	on	such	reasoning	as	‘root	cause’	do	not	reflect	a
technical	understanding	of	the	nature	of	failure	but	rather	the	social,	cultural
need	to	blame	specific,	localized	forces	or	events	for	outcomes…	.	This	means
that	ex	post	facto	accident	analysis	of	human	performance	is	inaccurate.1

1.	Richard	I.	Cook,	How	Complex	Systems	Fail	(Cognitive	Technologies	Laboratory,	2000).

Instead	of	just	seeking	out	a	root	cause	and	then	fixing	the	blame,	organizations	that
build	and	manage	large	complex	systems	need	to	focus	on	finding	and	fixing	the	problem
—including	reaching	back	into	the	business	drivers	that	drove	the	creation	of	complexity
in	the	first	place.	One	possible	solution	to	constant	failure	through	complexity	is	to
remember	that	complexity	arises	as	side	effect	of	solving	hard	problems.	Sometimes	the
only	real	solution,	the	only	way	to	truly	reduce	complexity,	is	to	reduce	the	hardness	of	the

problems.

Engineering	Skills	and	Failure	Management
For	the	individual	engineer,	what	skills	are	best	for	managing	failure	in	a	large	complex
system?	There	are	three	answers	to	this	question:

•	The	ability	to	see	where	and	how	feedback	loops	can	form	in	any	particular	design
or	deployment.	Positive	feedback	loops	are	probably	the	most	destructive	force	in
the	world	of	control	plane	failures;	in	many	years	as	a	network	engineer,	I	can
almost	always	point	to	a	positive	feedback	loop	as	part	of	the	root	cause—or	the
primary	root	cause—in	virtually	every	control	plane	failure.

•	The	ability	to	“reach	through”	abstractions,	and	to	“see”	the	interaction	surfaces,	as
they	exist	in	the	real	world.	Being	able	to	model	these	interaction	surfaces	in	a
number	of	different	ways	can	help	the	engineer	to	really	understand	the	problem	at
hand,	and	to	find	a	good	solution	within	the	realm	of	complexity	tradeoffs.	Or	to
simply	ignore	the	problem	on	determining	the	tradeoffs	given	will	simply
overwhelm	any	possible	solution.

•	Gaining	experience	with	failure.	Many	skills,	like	riding	a	bicycle,	must	be	learned
through	physical	experience.	Managing	failure	on	large	complex	systems	is	one	of
those	skills—and	like	riding	a	bike,	it’s	also	a	skill	not	easily	forgotten	once	well
learned.	There	is	no	simple	way	to	develop	these	sorts	of	skills	in	the	real	world
other	than	putting	new	engineers	on	smaller	failures,	teaching	them	the	thinking	and
engineering	sense	needed	to	develop	failure	management	skills,	and	then	letting
them	practice.	This	is	a	hard	lesson	for	those	who	depend	on	large	complex	systems
to	learn,	but	it’s	a	necessary	one.

Why	not	just	solve	these	problems?	Because	complexity	doesn’t	allow	for	a	“silver
bullet.”	The	Turing	Curve	always	catches	up	with	any	proposed	solution,	no	matter	how
well	thought	out.	Unintended	consequences	and	leaky	abstractions	will	always	find	a	way
to	sneak	through	even	the	most	tightly	woven	net.

Chapter	9.	Programmable	Networks

In	a	sense,	networks	have	been	programmable	from	the	beginning.	BGP	communities,
originally	outlined	on	two	napkins	drawn	at	a	Washington	DC	bar	by	Tony	Li	and	Yakov
Rekhter,	enshrined	carrying	complex	policy	within	a	routed	control	plane.	While	the
tagging	capability	in	many	routing	protocols,	including	OSPF,	IS-IS,	and	EIGRP	were
useful	for	simple	tasks,	the	ability	to	attach	a	full	policy	set	to	a	single	prefix	added	an
entire	range	of	capabilities.	What	else	can	policy-based	routing	and	traffic	engineering	be
considered	other	than	programming	the	network?	What’s	different	with	the	modern	drive
to	make	networks	programmable	(at	press	time—networking	technology	changes	almost
as	quickly	as	the	width	of	men’s	ties	and	the	length	of	hemlines)?	How	are	DevOps	and
software-defined	networks	(SDNs)	different,	and	what’s	driving	this	movement	toward	a
programmable	network?	There	are	several	possible	answers	to	this	question:

•	The	specific	mechanism	used	to	interact	with	the	control	and	forwarding	systems.

•	The	rate	of	business	change.

•	The	changing	perceived	business	value	of	technology.

•	The	perceived	complexity	of	distributed	control	planes.

This	chapter	provides	the	groundwork	for	Chapter	10,	“Programmable	Network
Complexity.”	It	begins	with	the	drivers	and	a	definition,	as	these	underlie	the	tradeoffs
network	engineers	make	when	considering	how	and	where	to	deploy	network
programmability.	The	second	section	considers	use	cases	for	network	programmability	to
put	a	little	flesh	on	the	bones	of	the	business	drivers	and	definition.	The	third	section	then
considers	the	SDN	landscape	by	examining	several	proposed	interfaces.

Drivers	and	Definition
A	number	of	years	ago,	an	international	service	provider	suffered	a	large-scale	network
outage.	In	response,	the	provider’s	management	demanded	that	16	well-known	network
design	and	escalation	engineers—distinguished	engineers	and	engineers	from	the	global
escalation	team—gather	in	a	single	office	and	work	“as	long	as	it	took,”	to	redesign	their
network	so	it	would	never	fail	again.	As	one	of	the	engineers	involved	remarked:	“It’s
going	to	take	a	long	time	to	come	up	with	such	a	perfect	design.	What	we’re	going	to	have
is	one	person	writing	on	the	white	board,	and	fifteen	erasing.”	This	story	transfers	directly
to	defining	the	programmable	network—if	you	put	sixteen	engineers	in	a	room	and	ask
them	to	define	“the	programmable	network,”	you’ll	end	up	with	one	writing	and	fifteen
erasing.

Because	you	can’t	erase	the	pages	of	this	book,	however,	this	section	will	attempt	to
answer	the	question,	what	is	a	programmable	network?—though	you	might	be	tempted	to
use	correction	tape	on	your	computer	screen	before	this	section	is	done.	The	easiest	path
to	a	definition	is	through	the	drivers	for	programmable	networks.	Two	subsets	of	drivers
will	be	discussed	here:

•	Business	drivers

•	The	ebb	and	flow	of	centralization

Business	Drivers
Every	business	is	an	information	business.

It	doesn’t	matter	if	most	businesses	believe	they’re	not	in	the	information	business—
they	are.	In	fact,	business	has	always	been	about	information,	though	the	focus	of	the
information	has	shifted	over	the	years.	First,	there	was	information	about	technique
(craftsmanship),	then	about	who	could	be	trusted	where	for	trade	(mercantile	systems),
then	there	was	a	return	to	technique	(manufacturing	systems),	and	so	on.	In	today’s	world,
the	information	that	rises	to	the	top	of	everyone’s	mind	is	about	the	customer—who	are
they,	what	do	they	want,	and	how	do	I	“talk”	to	them	in	a	way	that	will	get	their	attention?

A	key	difference	between	the	old	information	economy	and	the	new	is	the	speed	at
which	the	things	business	leaders	want	to	know	is	changing.	Manufacturing	systems,
techniques,	formulas,	processes,	and	trading	partners	change	more	slowly	than	the	latest
fad;	customer	desires	change	direction	like	the	wind	in	a	storm.	As	the	information	driving
the	business	increases	in	speed,	it’s	only	natural	for	business	leaders	to	look	for	ways	to
manage	that	information.	As	Jill	Dyche	points	out:	“With	the	advent	of	trends	like	big
data,	businesspeople	are	more	apt	to	see	connection	through	the	lens	of	information,
consolidating	key	data	in	an	effort	to	reach	a	single	view	of	the	business.”1	Handling	and
producing	information	on	a	fairly	static	set	of	systems	(including	the	network)	is	very
difficult.

1.	Jill	Dyche,	The	New	IT:	How	Technology	Leaders	Are	Enabling	Business	Strategy	in	the	Digital	Age	(McGraw-
Hill,	2015),	n.p.

Virtual	topologies	can	be	built	quickly	and	efficiently	on	top	of	a	physical	underlay	in	a
much	faster	way	to	respond	to	new	applications	and	requirements.	While	the	underlay	can
remain	fairly	constant	in	design	and	scope	(generally	achieved	by	using	a	scale	out
paradigm	allowing	new	capacity	to	be	added	fairly	quickly),	new	virtual	topologies	can	be
spun	up	and	managed	for	different	applications	or	business	groups	to	meet	short	or	long
term	needs	as	they	arise.

Spinning	up	such	overlays	on	a	regular	basis	is	difficult	with	traditional	distributed
control	planes.	Programmable	networks	allow	overlays	to	be	built	and	managed	more
quickly,	providing	the	ability	to	manage	information	at	the	speed	of	business.

Driving	the	top	line	up—increasing	revenues—is	only	one	side	of	the	equation	for
programmable	networks,	however.	Manually	provisioning	networks	requires	a	lot	of	time,
effort,	and	expertise—and	can	often	lead	to	a	lot	of	mistakes	just	through	human	error.
Repeating	the	same	configuration	across	a	large	number	of	devices	manually	will
inevitably	result	in	some	mistake	being	made	someplace.	Large-scale	repetition	of
common	tasks	is,	however,	ripe	for	automation,	saving	time,	and	making	the	network
more	available	by	reducing	the	MTBM.	Automating	these	tasks	can	drive	the	bottom	line
down	by	reducing	the	OPEX	required	to	run	the	network.

Another	way	programmable	networks	can	drive	the	bottom	line	down	is	by	increasing
the	overall	utilization	of	the	network.	For	instance,	traffic	often	follows	daily,	hourly,
weekly,	and	seasonal	patterns.	Because	of	the	difficulty	of	rapidly	moving	traffic	around	to

lower	utilized	links,	network	operators	often	overbuild	their	networks.	Bandwidth	is
chosen	to	support	the	highest	traffic	across	a	single	link.	During	non-peak	times,	this
bandwidth	is	not	used,	and	is	therefore	a	cost	that	has	no	return	on	investment.	If	the
network	is	programmable,	however,	traffic	can	be	engineered	in	near	real	time	to	adjust	to
increasing	load	on	the	network—or	the	network	can	signal	some	applications	(such	as	a
backup	job)	to	wait	until	another	time	to	send	any	traffic	at	all.	Planning	bandwidth	usage
in	advance	in	this	way	is	called	bandwidth	calendaring.	While	calendaring	cannot	replace
the	need	for	effective	bandwidth	planning,	it	can	move	the	emphasis	away	from	building
for	peak	load	and	toward	building	for	a	number	closer	to	the	average	load	across	longer
time	periods.

Finally,	many	network	operators	see	programmable	networks	as	a	way	to	separate	their
hardware	investment	from	their	software,	or	systems,	investment.	In	traditional
networking,	the	control	plane—and	therefore	the	basic	architecture	of	the	network—is
intimately	tied	to	the	hardware.	Purchasing	a	particular	vendor’s	equipment	ties	the
operator	to	a	particular	feature	set.	Vendors	have	often	made	a	fine	art	out	of	being	“just
standard	enough”	to	claim	interoperability,	while	including	features	that	produce	the
highest	degree	of	lock	in	possible.	From	the	vendor’s	perspective,	these	“lock	in	features”
are	actually	examples	of	innovation	and	added	value.

Programmable	networks	are	seen,	by	many	operators,	as	a	way	out	of	this	back	and
forth	with	vendors.	A	programmable	network	might	often	be	able	to	provide	the	same
level	of	service	as	vendor-specific	“lock	in	features,”	while	avoiding	the	actual	vendor
lock	in.	This	could,	in	turn,	drive	down	Capital	Expenditures	(CAPEX),	and	vendors	are
forced	to	compete	on	hardware	and	software	features	separately.

The	Ebb	and	Flow	of	Centralization
Part	of	the	rush	to	programmability	is,	of	course,	part	of	the	normal	ebb	and	flow	of
centralization	versus	decentralization	in	the	world	of	information	technology.	The	first
desktop	computers	were	stuffed	into	closets,	hidden	from	the	IT	department.	Data	was
first	pulled	off	mainframes	into	Lotus	123	and	other	software	packages	through	screen
scrapers	on	desktop	computers	connected	to	the	mainframe	through	terminal	emulation
cards.	As	data	was	distributed	through	the	organization,	IT	tried	to	regain	control	through
minis,	Structured	Query	Language	(SQL),	and	middleware.	At	press	time,	centralization	is
the	rage	again,	this	time	with	cloud	computing.	What	drives	these	cycles?	Table	9.1
discusses	a	few.

Table	9.1	Centralized	versus	Decentralized	for	General	Processing

The	ebb	and	flow	of	centralization	and	decentralization	is	obvious	enough	for	general
computing,	but	what	about	network	control	planes?	Looking	back	across	the	history	of
networks,	the	same	sort	of	cycle	can	be	observed.	Telephone	networks	were	the	“original”
networks,	operated	by	a	small	army	of	people	who	understood	how	to	wire	cables	for
manual	cross	connects,	and	to	manage	central	offices	with	rotary	relays	that	would	make
connections	based	on	sequential	circuit	interruptions.	These	centralized	management
systems	were	automated	over	time,	resulting	in	large-scale	Private	Branch	Exchange
systems.

The	public	telephone	network	eventually	fell	into	competition	with	packet	switched

networks,	adapting	principles	of	the	distributed	control	planes	used	in	IP	and	other	packet
switched	networks	in	Signaling	System	7.	Distributed	networks	eventually	took	over	the
role	of	the	telephone	network,	with	most	voice	carried	on	top	of	IP,	facilitated	by
distributed	control	planes.	The	drive	toward	programmable	networks	can	also	be	seen	as	a
drive	toward	centralized	control	once	again.

Table	9.1	considered	some	of	the	reasons	for	the	ebb	and	flow	of	information	between
central	repositories	and	decentralized	compute	and	storage	devices.	What	drives	the	ebb
and	flow	of	centralization	and	decentralization	in	the	control	plane?	Perhaps	the	strongest
driver	is	perceived	complexity.

When	distributed	systems	are	the	norm,	network	engineers	develop	a	close	and	personal
relationship	with	the	complexity	inherent	in	those	distributed	systems.	Because	there	is
little	experience	abroad	with	centralized	systems,	theories	around	how	to	build	a	simpler
system	through	centralization	grow	like	mushrooms,	and	there’s	a	move	toward
centralization	to	simplify	networks.	In	periods	where	centralization	is	the	rule,	and
decentralization	the	exception,	the	opposite	occurs—decentralization	appears	much
simpler	than	the	centralized	mess	currently	in	use,	and	so	the	market	moves	toward	the
perceived	simplicity	of	a	decentralized	system.

Complexity	isn’t	always	just	perceived,	of	course—to	build	the	large	networks	required
to	support	the	centralization	of	data	and	processing,	some	form	of	network
programmability	is	required.	The	sheer	scale	of	such	large	networks	requires	automated
processes	to	configure	and	manage	thousands	of	physical	devices	and	their	connectivity,
along	with	the	virtual	machines	and	virtual	network	overlays	required	to	support	a	large
number	of	customers	or	applications	running	on	a	single	infrastructure.

Defining	Network	Programmability
These,	then,	are	the	drivers	for	network	programmability:

•	Increasing	the	ability	of	the	network	to	change	to	business	requirements,	which	are,
in	turn,	changing	more	quickly	in	a	consumer-driven	world.

•	Decreasing	the	OPEX	required	to	manage	large-scale	networks	by	automating	many
processes	that	would	otherwise	require	talent	and	time.

•	Decreasing	the	CAPEX	required	to	purchase	and	build	large-scale	networks	by
separating	software	from	hardware.	This	allows	the	architecture	of	the	network	to	be
separated	from	vendor-driven	architectures,	or	rather	the	appliance	model	of
hardware	explicitly	tied	to	a	particular	piece	of	sheet	metal.	This	has	two	effects;	the
first	is	simply	to	put	hardware	in	competition	with	hardware	and	software	in
competition	with	software,	reducing	what	is	normally	seen	as	a	system	into	separate
pieces	that	compete	independently.	The	second	is	to	allow	the	hardware	and
software	to	be	managed	as	separate	systems,	each	with	their	own	lifecycles.
Replacing	hardware,	in	this	model,	doesn’t	necessitate	a	new	design	or	architectural
conception	of	the	way	the	network	operates.

•	The	ebb	of	data	from	distributed	computers	and	into	more	centralized	compute	and
storage	resources.

•	The	belief	that	the	grass	is	greener	on	the	other	side	of	the	centralized/decentralized
fence.

•	The	belief	that	if	I	“invent	it	here,”	it	must	be	better	often	plays	into	the	equation	in
some	way,	as	well.	The	desire	to	be	a	“special	snowflake,”	or	to	build	a	unicorn,
often	drives	engineers	to	change	things	around	“just	to	be	different,”	in	some
number	of	cases.

Based	on	the	drivers	reviewed	up	to	this	point,	how	can	network	programmability	be
defined?	While	there	is	no	perfect	definition,	a	good	working	definition	might	be:

A	network	is	programmable	when	the	control	and	data	planes	provide	an
interface	that	allows	the	state	of	the	network	to	be	modified	and	monitored
through	a	machine	readable	data-driven	API.

The	scope	of	this	definition	is	wide,	encompassing	almost	any	mechanism	that	allows
the	monitoring	and	modification	of	state	across	an	array	of	network	devices.	Several
points	should	be	noted:

•	Command-line	interfaces	(CLIs),	Graphical	User	Interfaces,	and	other	interfaces
designed	for	interaction	with	humans	would	not	be	included	in	this	definition.

•	Standardization	is	not	included;	while	standardization	is	important,	a	single	vendor
network	with	a	single	set	of	interfaces	would	still	qualify.	This	type	of	solution
might	not	be	ideal	(or	even	acceptable)	from	the	network	design	and	management
perspective.	Vendor	neutrality	might	be	achieved	through	programmable	networks,
but	it’s	not	a	certain	outcome.	On	the	other	hand,	vendor	neutrality	is	going	to	be
almost	impossible	to	achieve	without	programmable	interfaces	on	networking
devices.

•	The	state	is	both	the	control	and	the	data	plane.	An	entire	taxonomy	can	be	built
around	what	the	programmable	API	changes	(for	such	a	taxonomy,	see	Chapter	17,
“Software	Defined	Networks,”	in	The	Art	of	Network	Architecture,	Cisco	Press,
2013).

•	There	needs	to	be	some	differentiation	between	managing	a	network	and
programming	a	network.	The	speed	at	which	information	flows	into	and	out	of	the
control	and	data	planes	isn’t	a	reliable	measure	of	which	category	any	particular
action	belongs	on.	The	definition	used	here	is	that	management	relates	to	devices,
network	programmability	relates	to	the	control	or	data	plane.	This	isn’t	a	perfect
split,	but	it’s	useful	for	the	discussions	that	follow.

Note

There	is	bound	to	be	some	question	about	the	inclusion	of	screen	scraping
mechanisms	off	of	a	CLI	in	the	definitions	here.	Two	points	should	be	noted
about	CLIs.	First,	the	complexity	of	a	screen	scraping	application	is	much
greater	than	the	complexity	of	a	true	machine	interface.	Screen	scrapers	must
keep	up	with	each	possible	change	in	the	output	and	input	formats	of	each
device;	dealing	with	the	raw	data	models	of	each	device,	even	if	they	are	all
different,	and	can	potentially	all	change	on	a	regular	basis,	removes	one	step
out	of	the	processing.	It	can	be	argued	moving	from	screen	scraping	to	a	true
programmable	interface	removes	the	most	complex	and	difficult	to	maintain
pieces	of	the	process.	Second,	screen	scraping	is	an	imperfect	adaption	that
works	over	small-scale	problems,	but	doesn’t	really	provide	a	holistic	view	of
the	network,	nor	is	it	scalable	in	the	same	way.	Screen	scraping	is	not
included	here	as	a	programmable	interface	for	these	reasons—it	will	be
mentioned	here	and	there,	but	it’s	not	considered	a	future	looking	well
thought	out	solution	for	the	network	programmability	problem.

Use	Cases	for	Programmable	Networks
One	good	way	to	understand	a	technology	is	to	think	through	the	problems	it’s	designed	to
solve.	Examining	use	cases	not	only	helps	engineers	to	understand	how	the	technology
works,	but	also	to	understand	why	it	works	the	way	it	does.	Two	use	cases	are	presented
here:	bandwidth	calendaring	and	software-defined	perimeter.

Bandwidth	Calendaring
Each	network	has	a	normal	“pattern	of	usage”	across	time.	There	are	times	when	the
network	is	oversubscribed,	and	dropping	packets,	and	other	times	when	the	network	is
undersubscribed,	with	bandwidth	available	that’s	not	being	used.	Figure	9.1	illustrates
somewhat	typical	bandwidth	utilization	for	a	corporate	network.

Figure	9.1	Bandwidth	Utilization	across	Time

What	should	be	immediately	obvious	are	the	times	during	which	the	network	(or	link,

or	fabric,	or	some	other	point	at	which	this	utilization	is	being	measured)	is	very	low.	It’s
intuitive	to	try	and	put	applications	that	use	a	lot	of	bandwidth	into	these	lower	utilization
periods.	The	solutions	in	this	space	range	from	the	simple	to	the	complex.	For	instance:

•	How	much	of	the	network	is	utilized?	Measuring	the	utilization	of	a	single	link	is
different	than	measuring	the	utilization	of	a	set	of	links	across	the	network,
especially	when	any	application	could	use	any	particular	path,	and	the	path	might
actually	change	over	time	(given	equal	cost	load	sharing,	topology	changes,	etc.).

•	The	time	at	which	the	application	kicks	off	large-scale	transfers	must	be	manually
managed.	If	network	utilization	changes,	then	the	times	must	be	changed,	as	well.
While	this	manual	process	can	be	automated	through	screen	scraping	and	other
means,	no	such	process	is	going	to	be	ideal.

•	If	the	gaps	in	the	network’s	utilization	are	too	short	in	duration,	the	application
might	not	be	able	to	finish	its	work	within	the	available	gap	in	utilization.	In	this
case,	should	the	application	somehow	be	paused—and	how	should	that	“pausing”
take	place?	What	is	the	impact	of	such	a	pause	on	data	consistency	and	application
usage?	The	obvious	solution	is	some	sort	of	interface	into	the	network,	including	a
feedback	loop	that	allows	the	application	to	see	the	impact	of	changes	in	the	data
flow	in	network	conditions	in	near	real	time.

•	There	may	be	situations	where	the	applications	traffic	can	be	placed	on	a	specific	set
of	links,	allowing	the	remainder	of	the	network	to	be	unaffected	by	the	application’s
traffic.	This	type	of	traffic	engineering	solution	is	tangential	to	bandwidth
calendaring—the	two	solutions	can	interact	and	overlap	in	a	single	network—but
also	to	elephant	and	mouse	flows	across	a	single	fabric.

These	challenges	can	be	met—with	a	lot	of	fingers	on	keyboards	across	many	people-
years	of	time—through	manual	configuration.	A	definite	improvement	can	be	made	in	the
process	through	more	advanced	screen	scraping	types	of	automation,	given	the	user
interfaces	of	each	device	doesn’t	change	too	often.	To	truly	make	the	interaction	between
the	network	and	application	to	work	well,	however,	the	network	needs	a	programmable
interface	through	which	the	application	and	the	network	can	communicate.	Figure	9.2
illustrates	the	use	case.

Figure	9.2	Bandwidth	Calendaring

The	process	shown	in	Figure	9.2:

1.	The	application	sends	a	notification	to	the	controller	about	an	upcoming	flow.	This
could	include	information	about	the	size	and	rate	of	the	flow,	the	time	by	which	the
flow	must	be	completed,	the	ability	of	the	flow	to	be	paused,	and	whether	the	flow	is
near	real	time	(streaming	information)	or	fairly	static	data	(block	storage).

2.	The	forwarding	devices	in	the	network	provide	information	on	the	current
utilization,	queue	sizes,	and	other	network	state	information.

3.	The	controller	interacts	with	a	data	store	that	contains	historical	information	about
the	state	of	the	network,	including	bandwidth	utilization,	queue	depths,	jitter	and
delay	across	each	link,	and	so	on.

4.	The	controller	determines	when	the	application	should	start	to	finish	within	the	time
required	with	minimal	impact	on	the	other	applications	running	on	the	network.

5.	The	controller	signals	the	application	when	it	should	kick	the	flow	off.

6.	If	necessary,	the	controller	will	configure—Quality	of	Service	(QoS),	reserve	links,
move	traffic	off	of	links,	and	so	on,	to	make	the	application’s	transfer	successfully.

7.	If	network	conditions	change	on	the	fly,	the	controller	can	recalculate	the	time
required	to	carry	the	application’s	flow	across	the	network,	signaling	the	application
to	pause	the	flow	as	needed.

This	type	of	process	requires	a	solid	set	of	interfaces	between	the	forwarding	devices,
the	application,	and	a	controller.	This	is	all	arguably	possible	without	such	a	set	of
interfaces,	but	it	would	be	difficult	to	achieve	on	a	large	scale.

To	carry	this	one	step	further,	any	such	interface	should	be	open,	in	the	sense	that	any

application,	either	built	in	house	or	commercial,	should	be	able	to	communicate	with	any
controller,	and	the	controller	should	be	able	to	communicate	with	any	set	of	network
devices,	regardless	of	the	vendor.	Whether	this	last	implication	applies	only	to	the
hardware—any	vendor’s	hardware	with	a	single	vendor’s	software—or	across	both
software	and	hardware	is	a	matter	of	further	discussion	(actually	political	maneuvers	and
loud	boisterous	arguments)	within	the	computer	networking	world.

Software-Defined	Perimeter
Network	security	is	often	defined	like	a	castle;	there	is	an	inside	and	an	outside,	as
illustrated	in	Figure	9.3.

Figure	9.3	Castle	Security	as	an	Example

In	Figure	9.3,	there	is	a	portion	of	a	castle	wall	defense	system.

•	The	end	towers,	A	and	E,	provide	coverage	for	the	wall	and	gate.	Defenders	can
shoot	into	the	flank	of	any	attackers	from	these	points,	discouraging	attacks	on	the
walls	and	gate	system.

•	The	outer	gate,	B	is	not	the	bulwark	you	might	think—though	they	tend	to	look
impressive	in	movies.	In	reality,	the	gate	of	a	walled	city	was	normally	a	system,
rather	than	a	single	gate.	In	ancient	Israel,	the	system	has	six	chambers	with	seven
gates,	with	the	innermost	gate	being	the	most	formidable.	Gate	B	is	a	formidable
gate,	of	course,	but	its	primary	purpose	is	to	filter,	rather	than	to	completely	block.	If
attackers	can	get	past	this	gate,	it	is	designed	with	a	secondary	gate	that	will	drop
from	above—a	portcullis—trapping	attackers	inside	the	first	chamber,	where	they
can	be	destroyed	from	the	protection	of	the	surrounding	walls	and	ceilings.	Breaking
your	enemy	up	into	smaller	groups	(divide	and	conquer)	was	much	of	the	strategy	of
wall	systems.

•	C	and	D	are	inner	gates.	Each	chamber	is	a	complete	defense	system,	designed	as	a
fall	back	in	case	the	previous	gate	fails—the	first	stage	of	defense	in	depth.	In	a
sense,	gate	C	is	only	there	to	protect	gate	D	from	attack	(to	protect	the	integrity	of
the	inner	gate).

If	an	invader	made	it	inside	the	outer	wall,	there	was	often	an	inner	wall	with	gates,	and
so	on,	and	finally	a	keep,	or	some	form	of	temple	that	would	serve	as	a	complete	fortress
within	a	fortress.	Such	wall	systems	were	effective	in	their	time;	250	defenders	could	hold

a	walled	city	against	armies	of	incredible	sizes,	necessitating	long	sieges	to	starve	the
defenders	out.	The	most	effective	attack	against	a	walled	city	was	an	insider	attack—
bribing	someone	in	the	city	to	leave	a	smaller	side	gate	open.	In	the	modern	world,	these
systems	seem	impressive	but	ineffectual.	Why?

•	Artillery	made	breaching	the	walls	much	easier.

•	Tunneling	mechanisms	allowed	breaching	the	walls	from	underneath.

•	Airplanes	made	it	possible	to	just	fly	over	the	walls,	dropping	stuff	from	above.

Network	security	perimeters	are	built	much	like	a	walled	city,	as	shown	in	Figure	9.4:

•	Router	F	is	configured	primarily	to	do	some	basic	filtering.	This	isn’t	really	to	block
most	attacks,	but	rather	to	protect	G,	a	firewall,	from	attack	from	the	outside	through
methods	designed	to	overflow	the	link,	G’s	input	interface,	or	other	means.	This	is
the	equivalent	of	gate	B	on	the	walled	defense	system;	this	outer	layer	takes	care	of
some	simple	attacks	quickly	without	using	a	lot	of	network	resources.

•	Host	H	may	host	“sacrificial”	services,	but	it	also	serves	as	a	honeypot.	Any	attacks
against	this	server	can	be	measured	and	quantified,	which	helps	build	better	filters
on	Router	F	and	better	stateful	inspection	rules	on	G.	Information	gathered	here	can
also	indicate	which	internal	services	attackers	are	trying	to	reach,	and	so	on.	This	is
the	equivalent	of	the	chamber	between	Gates	B	and	C	in	the	walled	defense	system.
Note	this	host	can	be	used	as	a	base	of	attack	by	an	intruder	if	it	is	taken	over,	much
as	the	chamber	between	the	gates	in	a	walled	city.	Such	a	host	needs	to	be	well
controlled	with	tight	local	security.

•	The	security	appliance,	G,	may	include	stateless	filters,	stateful	packet	filters,	and
network	address	translation.	This	is	the	“primary	gate,”	similar	to	gate	C	in	the
walled	defense	system.	Network	address	translation	at	this	point	provides	a	“fail
closed”	safeguard;	software	errors	result	in	a	loss	of	connectivity,	rather	than	open
access.

Figure	9.4	A	Network	Demilitarized	Zone	(DMZ)

What	are	the	weaknesses	of	the	traditional	DMZ	system?	Pretty	much	the	same	as	a
walled	city:

•	Denial	of	Service	(DoS)	attacks	can	throw	artillery	at	the	DMZ,	breaking	or
breaching	the	network	gate	system.

•	Tunnels	to	the	outside	world	provide	an	entry	point	through	which	attackers	can

reach	through	the	wall	without	passing	through	the	gates.

•	Direct	to	server	attacks	(such	as	scripting	attacks	against	HTTP	servers)	provide	a
way	to	“fly	over”	the	defense	system.

•	And,	of	course,	there’s	always	the	ever	present	insider	attack.

As	it	turns	out,	things	haven’t	changed	much	since	the	Middle	Ages.	As	the	tools	for
attacking	the	network’s	walls	become	more	advanced,	network	security	needs	to	move
from	building	walls	to	building	fluid	mobile	forces	that	can	defend	specific	spots	against	a
variety	of	attacks—just	like	the	modern	fluid	mechanized	force.	To	put	it	in	less	military
terms,	the	network	needs	to	move	from	being	crunchy	on	the	outside	and	chewy	in	the
middle	to	being	crunchy	through	and	through.

But	how	do	networks	make	the	transition?	One	possibility	is	to	enlist	the	tools	available
in	the	programmable	network.	Figure	9.5	illustrates.

Figure	9.5	Software-Defined	Perimeter	Example

In	this	network:

1.	Host	A	sends	a	packet	toward	a	service,	located	on	Server	D.	For	this	example,
assume	this	packet	is	initiating	a	session	with	the	service,	and	the	packet	contains
some	form	of	login	credentials	to	the	service.

2.	Router	B,	rather	than	simply	forwarding	this	packet,	notes	the	service	has	been
marked	secure,	so	it	redirects	the	packet	toward	a	controller.

3.	The	controller,	E,	examines	the	packet	and	determines	which	service	the	packet	is
destined	toward.	The	controller	then	contacts	the	service	itself	(shown	here),	or
some	centralized	identity	service	(such	as	a	Keystone	service	instance	in
OpenStack),	to	verify	the	user’s	ability	to	access	the	service.

4.	The	target	service,	or	the	identity	service,	returns	a	denial	for	the	request	to	access
the	service	for	this	particular	user.

5.	The	controller	uses	this	information	to	set	up	a	filter	blocking	the	user	from
accessing	the	server,	D,	on	which	the	service	resides,	and	replies	to	the	original
packet	with	a	denial	or	login	failed.

While	this	is	more	of	an	Authentication,	Authorization,	Access	(AAA)	example,	the

same	principle	holds	for	stateful	filtering	and	other	security	measures.	Programmable
networks	can	push	security	policy	to	the	edge	of	the	network,	providing	a	software-
defined	perimeter	on	a	per	service	or	per	network	topology	element	basis.

Programmable	Network	Interfaces
Interfaces	are	a	key	point	in	bridging	the	gap	between	traditional	control	planes,
applications	and	policy	implementation,	and	the	programmable	network.	The	interface
between	the	network	(or	network	devices)	and	applications	or	systems	programming	the
network	is	broken	into	two	different	pieces.

The	northbound	interface	is	information	individual	network	devices	provide	to
controllers;	this	information	would	normally	be	rolled	up	into	a	larger	view	of	the	network
as	a	whole.	This	interface	contains	three	specific	kinds	of	information:

•	Capabilities:	Provides	information	what	can	be	programmed	or	controlled.	This
included	metadata,	or	rather	information	about	how	the	control	structures	are
organized,	and	how	information	is	presented	by	network	devices	to	the	controller.

•	Inventory:	Provides	information	about	what	devices	are	installed	where	in	the
network,	potentially	including	any	information	about	physical	connections.

•	Topology:	Provides	information	about	the	state	of	links	connecting	network	devices.
This	may	include	things	like	the	native	bandwidth.

•	Telemetry:	Includes	operational	state,	counters,	and	other	information	about	the
current	network	state.	This	includes	things	like	the	available	bandwidth,	queue
depths,	delay,	and	jitter.

The	southbound	interface	is	desired	state	pushed	from	the	controller	into	the	network
(or	network	devices).	There	are	at	least	three	specific	interfaces	here:

•	Forwarding	Information	Base	(FIB):	A	direct	interface	into	the	actual	tables	used
to	forward	packets	through	the	switching	device.	This	interface	bypasses	and
internal	control	plane	processes,	statically	configured	forwarding	information,	and
so	on.

•	Routing	Information	Base	(RIB):	A	direct	interface	into	the	tables	used	to	build
the	FIB.	Information	injected	into	this	interface	is	mixed	with	forwarding
information	installed	by	other	control	plane	process,	static	forwarding	information,
and	so	on.	This	could	include	interfaces	into	protocol	specific	tables,	such	as	an
internal	RIB	or	topology	table—the	problem	with	such	interfaces,	however,	is	they
interfere	directly	with	the	operation	of	distributed	protocols	that	have	very	specific
rules	designed	to	prevent	loops	in	the	calculation	of	best	paths.	Interfacing	with
these	tables	can	have	much	larger	side	effects	than	a	single	device	failure	or	a	local
routing	loop	by	injecting	information	that	causes	the	protocol	to	fail	to	converge.

•	Switching	Path:	An	interface	into	forwarding	parameters	that	don’t	relate	to	the
forwarding	tables,	but	directly	impact	packet	handling,	such	as	QoS.

None	of	these	interfaces	encompass	what	might	traditionally	be	considered	network
management.	They	all	three	relate	directly	to	how	packets	are	handled	as	they	pass

through	the	device,	and	not	to	things	like	the	power	level,	the	temperature	of	any	installed
processors,	memory	utilization,	and	so	on.	Figure	9.6	illustrates	these	interfaces.

Figure	9.6	Programmable	Network	Interfaces

The	Programmable	Network	Landscape
What	technologies	are	being	developed	to	address	the	use	cases	described	so	far?	This
section	provides	an	overview	of	four	very	different	types	of	technology	developed	(or
being	developed)	in	the	programmable	network	space.	This	overview	doesn’t	offer	a
complete	picture,	because	the	focus	here	is	to	provide	a	solid	background	for	considering
network	programmability	and	complexity.	The	technologies	that	will	be	considered	are
OpenFlow,	YANG,	Path	Computation	Element	Protocol	(PCEP),	and	the	Interface	to	the
Routing	System	(I2RS).

OpenFlow
OpenFlow	was	originally	designed	to	facilitate	the	study	of	new	control	plane	protocols
and	systems	in	an	experimental	setting.	As	most	high	speed	forwarding	hardware	is	tied	to
a	specific	vendor’s	equipment,	there	is	little	room	to	develop	and	implement	a	new	control
plane	to	see	if	more	efficient	systems	of	managing	the	advertisement	of	reachability	can	be
found.	OpenFlow	was	developed	at	a	time	in	the	networking	industry	when	large	chassis-
type	switches	were	common;	in	a	chassis	switch	the	control	plane	runs	on	a	route
processor,	while	the	actual	high-speed	forwarding	hardware	is	installed	and	configured	on
line	cards.	This	separation	of	functionality	provides	a	natural	point	at	which	an	external
device	can	be	connected;	separating	the	route	processor	from	the	line	cards	in	most
chassis-based	routers	allows	the	control	plane	processes	running	on	the	route	processor	to
be	replaced	by	a	different	control	plane	deployed	on	an	external	device,	a	controller.

Within	Figure	9.6,	then,	OpenFlow	is	a	southbound	interface	providing	forwarding
information	to	the	FIB.

Figure	9.7	illustrates	the	operation	of	OpenFlow.

Figure	9.7	OpenFlow	Operation

In	this	figure:

1.	Host	A	transmits	a	packet	toward	Server	D.

2.	This	packet	is	received	by	Router	B,	which	examines	its	local	forwarding	table,	and
discovers	it	doesn’t	have	forwarding	information	for	this	destination.	As	there	is	no
local	forwarding	information,	Router	B	forwards	the	packet	to	the	Controller,	E,	for
processing.

3.	The	Controller,	E,	examines	the	packet	it	has	received	from	Router	B.	The
controller	determines	the	correct	routing	information	(the	process	by	which	this
information	is	discovered	is	left	up	to	the	controller,	but	it	could	be	something	as
simple	as	connecting	the	controller	to	every	router	in	the	network,	so	it	has	full
visibility	for	every	destination—or	the	controller	could	run	a	distributed	routing
protocol	to	exchange	reachability	information	with	other	controllers).	Once	this
information	is	determined,	including	a	next	hop	rewrite,	the	correct	outbound
interface,	and	so	on,	a	flow	entry	is	installed	into	Router	B’s	forwarding	table.	This

creates	the	state	necessary	for	Router	B	to	forward	packets	in	this	flow.

4.	The	Controller,	E,	can	also	determine	this	traffic	flow	must	pass	through	Router	C,
so	it	installs	the	calculated	outbound	interface	and	other	information	into	Router	C’s
forwarding	table,	as	well.

5.	Some	future	packet	Host	A	sends	toward	Server	D	will	now	be	forwarded	through
Routers	B	and	C	based	on	this	cached	flow	label	information.

Note

This	packet	processing	process	should	sound	familiar	to	long	time	network
engineers.	It	is	almost	identical	to	the	“fast	cache”	processing	of	older	Cisco
routers,	for	instance;	see	Inside	Cisco	IOS	Software	Architecture	for	more
information.

A	key	point	to	remember	about	OpenFlow	is	it	was	originally	designed	to	carry	flow
entries	with	full	information	from	the	header	of	the	forwarded	packet,	including	the	source
IP	address,	the	destination	IP	address,	the	IP	protocol	number,	the	source	port,	and	the
destination	port.	Flow	labels	can	contain	specific	information	that	will	implement
forwarding	for	each	specific	flow,	or	they	can	contain	information	for	a	group	of	flows
through	wildcards.	For	instance,	a	standard	IP	route	can	be	emulated	using	flow	entries
with	just	the	destination	IP	address	information.

OpenFlow	has	been	implemented,	in	varying	degrees,	by	a	wide	array	of	vendors.

Note

See	Foundations	of	Modern	Networking:	SDN,	NFV,	QoS,	IoT,	and	Cloud	by
William	Stallings	(Addison-Wesley	Professional,	2015)	for	a	more	complete
description	of	OpenFlow.

YANG
In	most	protocols,	the	data	model	is	bound	into	the	protocol	itself.	For	instance,	the	IS-IS
protocol	carries	reachability	information	in	a	set	of	Type-Length-Vectors,	bound	within	a
specific	packet	format	any	IS-IS	process	running	on	any	device	can	understand.	Hence,
the	format	of	the	information	carried	within	the	protocol	and	the	transportation	mechanism
for	the	information	are	combined	into	one	object,	or	one	thing.	YANG	is	different	in	that	it
is	actually	a	modeling	language	designed	to	describe	the	forwarding	and	other	state	in
network	devices.

Note

Data	models	and	information	models	are	closely	related	but	different	things.
An	information	model	describes	the	flow	of	information	as	well	as	the
structure	of	the	information	and	the	interaction	between	the	different
processes	that	handle	the	information.	A	data	model	is	focused	on	the
structure	of	the	information	itself,	including	the	relationships	between
different	structures	that	hold	information.	YANG,	as	a	modeling	language,	is
a	data	model	rather	than	an	information	model,	as	it	focuses	on	the	structure
of	information.	An	information	model	based	on	YANG	could	potentially
include	the	transport	of	data	structured	using	a	YANG	model,	as	well	as
information	about	how	the	data	is	used	to	achieve	specific	states	in	the
network.

Note

The	YANG	specification	is	published	as	RFC60202	by	the	Internet
Engineering	Task	Force	(IETF).

2.	M.	Bjorklund,	ed.,	“YANG	-	A	Data	Modeling	Language	for	the	Network	Configuration	Protocol
(NETCONF)”	(IETF,	October	2010),	accessed	September	24,	2015,
https://datatracker.ietf.org/doc/rfc6020/.

YANG	is	a	modular	language	expressed	as	an	eXtensible	Markup	Language	(XML)	tree
structure—a	more	familiar	subset	of	XML	is	the	HTML,	used	to	carry	the	instructions
browsers	render	as	web	pages.	As	a	language,	YANG	doesn’t	really	specify	any
information	about	network	devices;	it	just	provides	a	framework	for	expressing
information	about	network	devices,	much	like	a	set	of	grammar	rules	for	any	natural
language.

Note

While	HTML	is	a	rough	subset	of	XML,	HTML	was	actually	developed
before	XML.	The	success	of	HTML	in	the	field	led	to	the	development	of	a
superset	markup	system	that	could	be	used	for	a	wider	array	of	uses	than
HTML,	including	the	general	structuring	of	information	such	as	YANG.	In	a
sense,	HTML	is	the	“father”	of	XML,	which,	in	turn,	has	spawned	a	number
of	peers	to	HTML.	YANG	can	be	considered	a	peer	of	YANG	in	this	sense,	as
it’s	a	subset	or	more	specific	definition	of	YANG	used	for	a	specific	case.

A	number	of	YANG	models	are	being	developed	for	network	protocols	and	devices	at
the	time	of	this	writing.	For	instance,	a	snippet	of	a	model	for	structuring	the	notification
of	a	link	failure	follows.3

3.	M	Bjorklund,	“YANG-A	Data	Modeling	Language	for	the	Network	Configuration	Protocol	(NETCONF),”	YANG
Central,	n.p.,	last	modified	October	2010,	accessed	June	14,	2015,	http://www.yang-
central.org/twiki/pub/Main/YangDocuments/rfc6020.html#rfc.section.4.2.2.5.

Click	here	to	view	code	image

https://datatracker.ietf.org/doc/rfc6020/
http://www.yang-central.org/twiki/pub/Main/YangDocuments/rfc6020.html#rfc.section.4.2.2.5

notification	link-failure	{
						description	“A	link	failure	has	been	detected”;
						leaf	if-name	{
										type	leafref	{
														path	“/interface/name”;
										}
						}
						leaf	if-admin-status	{
										type	admin-status;
						}
						leaf	if-oper-status	{
										type	oper-status;
						}
		}

		<notification
						xmlns=“urn:ietf:params:netconf:capability:notification:1.0”>
				<eventTime>2007-09-01T10:00:00Z</eventTime>
				<link-failure	xmlns=“http://acme.example.com/system”>
						<if-name>so-1/2/3.0</if-name>
						<if-admin-status>up</if-admin-status>
						<if-oper-status>down</if-oper-status>
				</link-failure>
		</notification>

This	first	code	snippet	shows	the	information	in	the	model	as	a	set	of	declarations	(such
as	might	be	appropriate	for	building	a	piece	of	software	around	handling	this	information).
The	second	shows	the	same	information	expressed	in	XML,	with	markups	to	indicate
what	type	of	information	is	contained	in	each	section.	Most	user	interfaces	will	show
models	in	the	XML	format	for	human	readability,	though	they	can	also	retrieve	the
declaration	type	representation.

Note

For	more	complete	examples	of	YANG	models,	see	RFC6241.4

4.	R.	Enns,	“Network	Configuration	Protocol	(NETCONF)”	(IETF,	June	2011),	accessed	September	24,
2015,	https://www.rfc-editor.org/rfc/rfc6241.txt.

If	every	vendor	implements	interfaces	that	can	express	the	state	of	each	network
element	in	terms	of	a	standard	YANG	model,	then	every	device	in	the	network	could	be
programmed	through	a	single	interface.	This	is	a	“unicorn	dream,”	of	course,	but	the	IETF
and	other	open	standards	organizations	are	working	toward	this	goal	by	creating	models
for	all	open	standards	based	protocols,	and	common	models	for	generic	network	devices.

With	the	modeling	language	and	actual	models	in	place,	the	next	question	that	must	be
answered	is—how	is	this	information	carried	through	the	network?	While	there	are	a
variety	of	ways,	two	are	of	special	note,	as	they	are	being	defined	specifically	to	carry
YANG	information.

•	NETCONF	is	a	Remote	Procedure	Call-based	protocol	designed	specifically	to
carry	YANG	encoded	information	in	an	XML	format.	NETCONF	allows	an
application	to	retrieve,	manipulate,	and	update	device	configuration.	An	access
control	YANG	model	is	also	provided	with	NETCONF.

•	RESTCONF	is	a	variation	on	NETCONF.	It	is	still	specifically	designed	to	carry

https://www.rfc-editor.org/rfc/rfc6241.txt

YANG	encoded	information	in	an	XML	format,	but	it	only	provides	a
REpresentational	State	Transfer	(REST)	interface.	A	REST	interface,	in	this	case,
means	there	is	no	state	held	on	the	router,	such	as	what	the	external	application	has
asked	for	in	the	past,	the	previous	command	issued	by	the	external	application,	and
so	on.	A	REST	interface	transfers	the	complexity	of	managing	current	state	out	of
the	device	being	controlled	and	into	the	controlling	application,	making	it	easier	to
implement	a	REST	interface	on	the	controlled	device;	this	can	be	ideal	for	many
types	of	network	devices	and	applications.

YANG,	NETCONF,	and	RESTCONF	were	originally	developed	to	provide	northbound
and	southbound	interfaces	into	device	capabilities	and	management,	and	to	provide	a
northbound	interface	for	telemetry	and	topology.

Note

YANG	is	designed	to	be	transport	independent;	YANG	models	are	not
supposed	to	rely	on	the	formatting	or	capabilities	of	either	NETCONF	or
RESTCONF.	Conversely,	NETCONF	and	RESTCONF	could,	in	theory,	carry
information	modeled	using	some	other	language	than	YANG.	While	it’s
probable,	however,	that	YANG	will	be	widely	used	outside	RESTCONF	or
NETCONF,	it’s	not	likely	that	the	two	transport	protocols	will	ever	be	used
for	anything	other	than	transporting	YANG	formatted	information.

Path	Computation	Element	Protocol
PCEP	was	originally	developed	to	connect:

•	A	Path	Computation	Element	(PCE),	which	can	calculate	paths	through	the	network
based	on	specific	constraints,	such	as	available	bandwidth,	to	a	—

•	A	Path	Computation	Client	(PCC),	which	can	receive	the	paths	computed	by	a	PCE
and	forward	traffic	based	on	them

PCEP	was	originally	designed	to	support	traffic	engineering	for	flows	that	cross	Service
Provider	(SP)	boundaries	(called	Inter-AS	traffic	flows).	Documented	in	IETF	RFC	4655,
the	general	idea	was	to	allow	one	SP	to	set	specific	parameters	for	flows	being	passed	to
another	SP	so	the	second	SP	could	calculate	an	optimal	path	for	the	traffic	without
allowing	the	first	SP	to	actually	control	their	network’s	forwarding	policies.	Figure	9.8
illustrates	this.

Figure	9.8	PCEP	Operation	by	Design

In	this	illustration:

1.	Provider	Y’s	controller	(B)	sends	information	about	the	quality	of	service
requirements	for	a	customer’s	virtual	topology	to	Provider	Z’s	controller	(K).	This
information	may	be	manually	configured,	automatically	configured	as	part	of	a
provisioning	system,	or	signaled	in	some	other	way.	Assume,	for	this	example,	that
the	customer’s	traffic,	originating	from	Host	A,	will	require	a	minimum	amount	of
bandwidth.

2.	Provider	Z’s	controller	(K),	will	compute	a	path	through	the	network	that	will	meet
the	constraints	required	by	the	policy	for	this	specific	traffic	or	tunnel.	This
computation	would	normally	involve	running	a	constrained	SPF	computation,	but	it
may	be	calculated	using	any	method—this	is	an	implementation	detail	within	the
controller	software	from	the	protocol’s	point	of	view.	Provider	Z’s	controller	will
then	use	PCEP	to	configure	Routers	D,	F,	and	G	with	the	correct	information	to
ensure	the	flow	passes	along	a	path	with	the	required	qualities.

3.	Traffic	transmitted	by	Host	A	will	be	carried	along	the	indicated	path	to	Server	H.

How	is	the	traffic	forwarded	through	the	path	requested	(the	path	through	[D,F,G])
rather	than	along	what	appears	to	be	the	shortest	path	(the	path	through	[D,G])?	By
building	an	MPLS	tunnel	through	the	network—in	fact,	PCEP	is	just	installing	labels
along	the	path	to	make	certain	that	the	traffic	inserted	into	the	tunnel	headend	at	Router	D
is	carried	through	the	tunnel	through	Routers	F	and	G	to	Server	H.

Note

This	example	assumes	one	way	of	setting	up	the	MPLS	tunnels	to	carry	the
traffic	along	the	engineered	path.	There	are	many	others—the	tunnel	may
begin	in	one	provider’s	network	and	terminate	in	the	other,	or	the	labels
required	to	tunnel	traffic	from	Router	D	to	G	might	already	exist,	so
Controller	K	only	needs	to	single	Router	D	at	the	headend	to	effect	the	policy
required.	In	fact,	there	is	probably	an	almost	infinite	number	of	ways	to	set
these	tunnels	up,	depending	on	how	the	provider	has	configured	their
network,	the	relationship	between	the	two	providers,	and	other	issues.

If	you	think	OpenFlow	and	PCEP	are	similar	in	operation	and	intent,	you’re	right.
They’re	both	southbound	interfaces	that	transmit	forwarding	information	from	an	external
controller	to	the	forwarding	plane.	Some	differences	between	the	two	technologies,
however,	include:

•	OpenFlow	signals	an	entire	5	or	7	tuple	to	build	the	flow	table	on	the	forwarding
devices,	and	anticipates	that	forwarding	will	take	place	based	on	the	packet	header
as	it’s	transmitted	by	the	originating	host	or	device.

•	PCEP	signals	an	MPLS	label	stack,	and	anticipates	forwarding	will	take	place	based
on	the	MPLS	label	stack.

•	OpenFlow	is	designed	to	replace	the	entire	control	plane,	or	rather	to	allow	the
controller	to	operate	like	a	route	processor	in	a	large	chassis-based	system.

•	PCEP	is	designed	to	augment	the	existing	distributed	control	plane.

While	OpenFlow	and	PCEP	are	similar	in	where	they	interface	with	forwarding
devices,	they	are	different	in	their	original	intent	and	what	they	signal.	The	operation	of
PCEP—signaling	MPLS	label	stacks	to	direct	traffic	along	specific	paths	in	the	network—
means	it	can	be	used	as	a	more	generic	southbound	interface.	PCEP	can	be	an	effective
tool	to	control	the	flow	of	traffic	through	a	network	with	MPLS	transport	for	any	reason,
rather	than	just	for	interdomain	traffic	engineering.	That	PCEP	is	widely	deployed,
augments	the	existing	distributed	routing	system	(rather	than	replacing	it),	and	works	with
a	widely	available	and	understood	tunneling	mechanism	(MPLS)	means	PCEP	is	a	good
candidate	for	a	general	purpose	southbound	interface	in	many	networks.

PCEP,	however,	can	only	install	MPLS	labels,	and	not	layer	2	forwarding	information.
In	this	sense,	OpenFlow	is	more	flexible	than	PCEP,	in	that	it	can	be	used	to	install	either
MPLS	labels	or	layer	2	forwarding	information.	Of	the	choice	between	the	two	is	going	to
be	dependent	on	what	is	already	deployed,	what	the	operations	staff	are	more	comfortable
with,	future	architectural	plans,	and	what	the	already	installed	equipment	offers	the	best
support	for.

Interface	to	the	Routing	System
The	I2RS	charter	on	the	IETF	website	says:

I2RS	facilitates	real-time	or	event-driven	interaction	with	the	routing	system

through	a	collection	of	protocol-based	control	or	management	interfaces.
These	allow	information,	policies,	and	operational	parameters	to	be	injected
into	and	retrieved	(as	read	or	by	notification)	from	the	routing	system	while
retaining	data	consistency	and	coherency	across	the	routers	and	routing
infrastructure,	and	among	multiple	interactions	with	the	routing	system.	The
I2RS	interfaces	will	co-exist	with	existing	configuration	and	management
systems	and	interfaces.5

5.	“Interface	to	the	Routing	System,”	IETF,	n.p.,	accessed	June	15,	2015,	https://datatracker.ietf.org/wg/i2rs/charter/.

I2RS	was	not	started	to	compete	with	OpenFlow,	PCEP,	and	other	southbound
interfaces.	Rather,	it	was	originally	started	to	complement	those	efforts	by	providing:

•	A	Layer	3	southbound	interface	into	the	RIB	that	would	overlay	and	support	existing
distributed	routing	protocols

•	A	Layer	3	northbound	interface	into	the	RIB	and	routing	processes	that	would	make
the	topology,	telemetry,	inventory,	and	other	information	about	the	network	already
known	by	existing	distributed	routing	protocols	accessible

Figure	9.9	illustrates	one	way	to	model	I2RS.

https://datatracker.ietf.org/wg/i2rs/charter/

Figure	9.9	I2RS	Operational	Model

Applications	may	either	communicate	with	devices—or	rather,	the	network—through
I2RS	clients,	which	provide	a	common	library	of	device	capability,	data	marshaling,
discovery,	transport,	and	other	services.	An	I2RS	client,	for	instance,	might	gather
information	from	the	routing	processes	across	multiple	devices,	and	provide	an	interface
into	a	unified	topological	view	of	the	network.	I2RS	clients	can	also	provide	a	unified	data
model	for	devices	that	hold	specific	pieces	of	data,	such	as	a	RIB	entry	or	a	BGP	table
entry,	in	different	ways.	Ultimately,	the	goal	of	I2RS	is	to	have	all	devices	use	a	common
set	of	data	models,	but	in	the	real	world	this	might	not	ever	be	possible;	the	client	provides
a	point	at	which	information	can	be	transformed	between	data	models	without	impacting
application	design.

A	useful	way	to	think	of	I2RS	within	a	more	traditional	context	is	to	consider
Application	3	in	Figure	9.9	“just	another	routing	process”	that	happens	to	run	on	generic
compute	and	storage	off	Router	Z.	This	might	be	a	route	server,	or	a	process	running	in	a
standard	container	or	virtual	machine	in	a	data	center.	Either	way,	the	interface	between
the	on	box	routing	processes	and	the	RIB	can	be	used	by	an	off	box	routing	process	to
interact	with	the	other	routing	protocols	and	routing	information	sources	on	a	router	to

appear	to	be	on	box.

Some	key	points	of	the	I2RS	architecture,	as	described	in	An	Architecture	for	the
Interface	to	the	Routing	System	(draft-ietf-i2rs-architecture)	are:

•	Multiple	Simultaneous	Asynchronous	Operations:	Multiple	clients	should	be	able
to	query	and	set	routes	and	other	information	without	interfering	with	one	another.
This	drives	the	I2RS	requirements	for	near	real-time	event	processing	and	REST-
based	operations.	If	state	must	be	held	by	the	agent	across	operations	from	multiple
clients	(the	agent	process	in	Router	Z	in	Figure	9.8	could	receive	alternating	events
from	two	different	clients),	the	order	in	which	these	operations	are	received	must	not
be	important.	Different	event	orders,	in	other	words,	should	not	result	in	different
state	in	the	local	RIB	of	any	device.	This	is	important	to	preserve	the	loop	free
nature	of	routing.

•	Asynchronous,	Filtered	Events:	Clients	should	be	able	to	receive	information
about	changes	in	the	RIB	or	routing	processes	in	managed	devices	in	near	real	time.
To	prevent	driving	unneeded	information	across	the	network,	clients	must	be	able	to
install	filters	on	the	information	being	driven	from	the	agents	it	is	monitoring.

•	Ephemeral	State:	I2RS	interacts	with	two	sets	of	information	that	are	normally
built	through	distributed	routing	protocols—the	RIB,	internal	BGP,	IS-IS,	OSPF,	and
other	routing	protocol	tables.	Network	engineers	do	not	expect	this	information	to
survive	a	reboot—in	fact,	a	route	in	the	routing	table	surviving	a	reboot	is	generally
considered	a	bad	thing	(unless	it’s	preserved	through	some	protocol	mechanism	such
as	graceful	restart),	as	stale	routing	information	may	not	match	the	current	network
topology.	I2RS,	then,	never	installs	any	permanent	information	in	network	devices.
If	state	must	persist	through	a	device	reboot,	the	process	of	reinstalling	must	be
managed	by	an	I2RS	agent.	This	rules	out	using	I2RS	for	configuring	a	device,	or
managing	the	configuration	of	a	device.

While	the	decision	isn’t	final	at	the	time	of	this	writing,	it	appears	I2RS	will	resolve	to
using	YANG	models	for	the	state	of	the	RIB	and	routing	protocol	tables,	combined	with	a
RESTCONF	interface	into	that	information.	The	models	are	still	in	development,	and	it’s
uncertain	that	RESTCONF	will	be	able	to	support	the	near	real-time	requirements	of
I2RS.

A	Final	Thought
The	concept	and	use	cases	driving	the	programmable	network	aren’t	really	new	in	any
meaningful	sense,	but	the	current	open	API,	open	protocol,	data	model	focused	idea	of	a
network	API	is	breathing	fresh	air	into	the	world	of	network	engineering.	Moving	from
manual	configuration	to	expressing	a	policy	that	is	then	managed	and	implemented
through	a	series	of	machine	to	machine	interfaces	is	a	complete	revolution	in	the	way
network	control	planes	are	perceived	and	understood.

How	does	this	world	fare	against	complexity?	The	simplest	answer	is	that	because
complexity	is	apparently	buried	under	a	layer	of	APIs,	simple	interfaces,	and	new	ways	of
looking	at	expressing	policy	and	state,	networks	will	become	dramatically	simpler.	This
doesn’t	match	the	experience	or	theory	of	complexity	in	the	real	world,	however—

complexity	can	be	moved,	but	it	can’t	be	eliminated.	The	next	chapter	will	examine	these
questions	in	more	detail.

Chapter	10.	Programmable	Network	Complexity

The	allure	of	the	programmable	network,	as	outlined	in	Chapter	9,	“Programmable
Networks,”	is	two-fold:	the	reduction	in	complexity	enabled	by	centralized	routing
decisions,	and	the	ability	to	allow	applications	and	orchestration	to	interact	with	the
control	plane.	How	do	these	promises	pan	out	when	considered	in	light	of	systemic
network	complexity?	This	chapter	examines	programmable	networks	in	terms	of	network
complexity—where	does	network	programmability	really	decrease	complexity,	and	where
does	it	add	complexity?	The	primary	goal	of	this	chapter	is	to	consider	a	set	of	tradeoffs
that	will	help	guide	the	questions	to	ask	when	considering	deploying	programmable
network	technologies.

A	short	overview	of	the	subsidiarity	principle	will	frame	the	following	discussion;	while
this	principle	is	actually	a	governance	construct,	it	is	echoed	in	many	principles	and
concepts	used	in	the	world	of	network	engineering.	Following	this,	four	specific	areas	will
be	examined	to	consider	the	tradeoffs	programmable	networks	bring	to	each	one:	policy
management,	control	plane	failure	domains,	the	separation	of	the	control	and	data	planes,
and	the	impact	of	application-based	control	on	the	concept	of	interaction	surfaces.	These
four	do	not	represent	every	possible	area	of	investigation,	and	every	one	of	these	is	not
applicable	to	every	type	of	network	programmability,	but	they	do	provide	a	broad	cross
section	of	thought	around	tradeoffs	in	the	realm	of	complexity.

Each	of	these	will	be	considered	in	light	of	the	model	developed	early	in	this	book,	and
used	throughout—what	is	the	impact	on	the	state,	the	speed,	and	the	surfaces?	And	what	is
the	tradeoff	for	any	given	solution	in	terms	of	optimal	forwarding	and	use	of	network
resources?

The	Subsidiarity	Principle
Virtually	every	network	engineer	working	in	the	area	of	protocol	design	implementation
has	heard	of	the	end-to-end	principle.	Saltzer	first	articulated	this	principle	in	a	paper
published	in	1984:

In	a	system	that	includes	communications,	one	usually	draws	a	modular
boundary	around	the	communication	subsystem	and	defines	a	firm	interface
between	it	and	the	rest	of	the	system.	When	doing	so,	it	becomes	apparent	that
there	is	a	list	of	functions	each	of	which	might	be	implemented	in	any	of
several	ways:	by	the	communication	subsystem,	by	its	client,	as	a	joint	venture,
or	perhaps	redundantly,	each	doing	its	own	version.	In	reasoning	about	this
choice,	the	requirements	of	the	application	provide	the	basis	for	the	following
class	of	arguments:	The	function	in	question	can	completely	and	correctly	be
implemented	only	with	the	knowledge	and	help	of	the	application	standing	at
the	endpoints	of	the	communication	system.	Therefore,	providing	that
questioned	function	as	a	feature	of	the	communication	system	itself	is	not
possible,	and	moreover,	produces	a	performance	penalty	for	all	clients	of	the
communication	system.	(Sometimes	an	incomplete	version	of	the	function
provided	by	the	communication	system	may	be	useful	as	a	performance

enhancement.)	We	call	this	line	of	reasoning	against	low-level	function
implementation	the	end-to-end	argument.1

1.	J.	H.	Saltzer,	D.	P.	Reed,	and	D.	D.	Clark,	“End-to-End	Arguments	in	System	Design,”	ACM	Transactions	on
Computer	Systems	2,	no.	4	(1984):	277–278.

The	end-to-end	principle	might	appear	unique	to	the	computer	network	world,	but	it’s
actually	a	domain	specific	restatement	of	a	larger	principle.	In	social	and	governmental
circles,	the	same	concept	is	called	subsidiarity,	which	means	to	solve	local	problems	with
local	control	where	possible—or	to	move	the	control	and	decision	point	as	close	to	the
problem	as	possible.	The	general	idea	is	that	the	line	of	communication	between	the
problem	and	the	controller	is	a	naturally	congested	space	that	lends	itself	to	aggregation,
but	the	more	aggregated	information	is,	the	less	effective	any	give	solution	will	be	in
solving	the	problem	at	hand.	This	might	be	called	“local	information,	local	control.”

Within	the	context	of	“local	information,	local	control,”	when	considering	how	and
where	to	place	to	control	over	a	specific	process,	engineers	should	ask:

•	What	device	on	the	network	has	the	most	accurate	information	about	the	state	of	the
process?

•	What	information	must	be	transported,	at	what	frequency,	and	how,	if	control	of	the
process	is	moved	off	the	device	with	the	state?

Considering	this	from	the	perspective	of	the	end-to-end	principle—in	terms	of	error	and
flow	control,	which	device(s)	in	the	network	have	the	most	accurate	and	up-to-date	view
of	the	state	of	any	specific	stream	of	data	flowing	through	the	network?	The	transmitting
and	receiving	host.	Hence,	the	hosts	actually	transmitting	and	receiving	any	given	data
stream	should	have	the	most	control	over	retransmitting	and	controlling	the	flow	of	traffic.
While	routers,	switches,	and	middle	boxes	can	try	to	infer	information	from	the	flow	state
as	it	passes	through,	there	is	no	certain	way	for	such	devices	to	know	all	of	the	state	for
any	particular	flow.

This	same	principle	applies	in	the	control	plane	as	well—devices	that	are	directly
connected	to	the	links	making	up	the	network	topology	(including	the	reachable
destination)	are	more	likely	to	know	about,	and	react	to,	changes	in	that	state	more
quickly.

While	this	does	tend	to	push	intelligence	to	the	edge	of	the	network,	it	doesn’t
necessarily	mean	every	piece	of	state	needs	to	be	distributed	as	much	as	possible.	Rather,
it	means	each	piece	of	state	needs	to	be	carefully	examined	to	put	the	control	of	that	state
in	the	most	logical	place—and	the	most	logical	place	is	often	going	to	be	where	the
information	originates	and	is	the	most	complete.	By	reframing	the	end-to-end	principle	in
terms	of	keeping	state	close	to	the	origin	of	the	state	itself,	or	rather	keeping	control	close
to	the	most	complete	state	available,	the	end-to-end	principle	can	be	applied	across	the
system	in	both	protocol	and	network	design.

Policy	Management
Policy	is	probably	one	of	the	most	difficult	issues	to	manage	in	network	engineering.
Before	diving	into	a	long	discussion	over	the	tradeoffs	between	complexity	and	policy,
however,	one	question	needs	to	be	answered:	what	is	policy?	Perhaps	the	best	way	to
address	this	question	is	by	looking	at	some	examples,	starting	from	business	requirements
and	moving	through	to	the	practical	impact	on	the	network	design.

•	Flexible	Design:	Businesses	want	a	network	design	that	will	“roll	with	the
punches.”	If	the	business	expands,	contracts,	or	changes	direction,	they	don’t	want
to	perform	a	forklift	upgrade	across	their	systems.	How	is	this	accomplished	at	a
design	level?	Using	scale	out	design	principles—modularized	networks	and
workloads	that	can	be	expanded	as	needed	and	can	redeploy	resources	without	a
major	redesign.	One	common	solution	for	building	a	flexible	network	is	through
modularity,	which	in	turn	means	well-defined,	interchangeable	modules	within	the
network.	A	second	solution	is	to	pull	the	intelligence	out	of	the	network	as	much	as
possible,	so	the	network	becomes	useful	for	a	wide	array	of	tasks,	rather	than	being
narrowly	focused	on	a	small	set	of	problems.

•	High	Return	on	Investment:	This	overlaps	somewhat	with	flexible	design,	but	it
also	stands	as	a	separate	concept	in	many	network	designs.	For	instance,	there	is
little	point	in	purchasing	a	new	set	of	links	between	two	locations	in	the	network	if
there	is	excess	capacity	available,	just	not	along	the	shortest	path.	To	improve
network	utilization,	many	operators	use	various	forms	of	traffic	engineering,	placing
traffic	on	less	than	optimal	paths	from	a	shortest	path	perspective	to	achieve	higher
overall	network	utilization.	ROI	involves	equipment	cost,	as	well.	Is	it	better	to
purchase	smaller	devices	(such	as	a	set	of	1RU	switches)	that	can	be	easily	replaced,
or	a	larger	multiblade	chassis	system?

•	Business	Continuity:	Businesses	cannot	withstand	downtime—time,	in	the	business
application	world,	is	definitely	money.	How	is	this	accomplished	at	the	design	level?
Modularizing	the	network	to	divide	complexity	from	complexity,	to	break	up	failure
domains,	is	the	primary	mechanism	used	to	provide	business	continuity.	Defense
against	Denial	of	Service	(DoS)	attacks	also	plays	a	major	role	in	business
continuity,	again	requiring	points	where	traffic	can	be	measured,	and	policies
instituted.

•	Secure	Information:	Businesses	rely	on	secure	information	for	operations,	strategic
advantage,	and	to	protect	their	trust	relationship	with	their	customers.	How	does
information	security	translate	into	network	design?	Primarily	through	containing
data	through	virtualization,	access	policy,	and	other	techniques	that	allow
administrators	to	manage	who	and	what	can	access	specific	information.

•	Application	Support:	Many	applications	have	specific	requirements	around	jitter,
delay,	and	bandwidth	in	the	underlying	transport.	To	achieve	these	goals,	many
networks	deploy	a	combination	of	undersubscription	(overbuilding	the	available
bandwidth),	traffic	engineering	(moving	traffic	from	heavily	to	lightly	used	links),
and	quality	of	service	(modifying	the	way	packets	are	queued,	queues	scheduled,
and	congestion	managed).

What	are	the	common	elements	in	these	examples?	In	the	data	plane,	permitting	packets
to	pass	through	the	network,	and	the	handling	of	those	packets	passing	through	the
network,	are	the	two	common	elements.	In	the	data	plane,	then,	most	(or	all)	policy
resolves	to	the	per	hop	handling,	or	the	per	hop	behaviors,	of	actually	forwarding	traffic.

The	control	plane	is	a	bit	more	interesting.	What	is	common	between	modular	design,
breaking	up	failure	domains,	traffic	engineering,	and	controlling	data	access?	In	all	these
cases,	traffic	is	potentially	moved	from	the	shortest	path	between	two	points	in	the
network	to	some	longer	path	to	meet	some	policy	goal.	Figure	10.1	illustrates	this	concept.

Figure	10.1	Control	Plane	Policy	Example

•	The	path	[B,F]	would	be	the	shortest	path	(based	on	the	hop	count	alone,	assumed
throughout	this	example)	between	the	two	servers	A	and	G,	but	it	was	not	installed
to	create	a	module	boundary,	breaking	a	single	network	topology	into	two	failure
domains,	and	creating	two	separate	network	modules.

•	The	path	[B,D,F]	is	the	shortest	path	actually	available,	but	it	is	overloaded,	or	close
to	its	maximum	utilization.

•	The	path	[B,C,E,F]	is	the	actual	path	used	to	carry	traffic	between	the	two	servers	A
and	G.	This	path	is	one	hop	longer	than	the	actual	shortest	path,	and	two	hops	longer
than	the	shortest	potential	path.

In	this	illustration,	optimal	traffic	flow	has	been	traded	off	to	implement	policy,	which
then	supports	some	specific	business	requirement.

A	simple	rule	of	thumb	is:	any	time	policy	is	configured	in	a	network,	there	is	a	high
likelihood	that	traffic	will	take	a	less	than	optimal	path	between	some	pair	of	destinations.
Reversing	this,	policy	can	be	described	as:

•	Any	mechanism	that	moves	(or	potentially	moves)	traffic	off	the	lowest	cost	path	in
the	network	to	meet	some	goal	deemed	more	important	than	simply	following	the
lowest	cost	path.

•	Any	mechanism	that	prevents	traffic	from	entering	the	network,	or	blocks	a

particular	flow	from	passing	through	the	network.

Note

The	Control	Plane	State	versus	Stretch	section	in	Chapter	6,	“Managing
Design	Complexity,”	provides	more	illustrations	of	policy	versus	the	optimal
path,	as	well	as	discussing	the	relationship	between	modularity,	aggregation,
and	other	design	elements	in	relation	to	control	plane	complexity.

Policy	Dispersion
Chapter	4,	“Operational	Complexity,”	poses	a	problem	about	policy	dispersion	versus
network	complexity	in	the	section,	“Policy	Dispersion	versus	Optimal	Traffic	Handling.”
That	section	noted	that	the	closer	policy	is	deployed	to	the	edge	of	the	network	(or	rather,
the	source	of	a	set	of	flow	to	which	the	policy	must	be	applied),	more	optimal	the	use	of
network	resources,	and	more	protection	against	security	breaches	and	various	types	of
attacks,	will	be	achieved.

The	solution	proposed	to	this	problem	was	automated	deployment	of	the	policy	through
the	network.	Several	points	were	noted	in	relation	to	this	proposed	solution,	including
brittleness.

Machine-based	systems	can	react	more	consistently,	but	their	consistency	is	a	bad	thing
as	well	as	good.	Two	events	that	appear	to	be	the	same	from	one	set	of	measurements
might	actually	be	far	different,	for	instance;	attackers	can	learn	the	pattern	of	reaction,	and
change	their	attacks	to	take	advantage	of	them.	An	unforeseen	combination	of	reactions	to
multiple	events	occurring	at	the	same	time	can	cause	failure	modes	software	cannot
resolve.

Programmable	networks	can	provide	a	more	complete	solution	to	these	problems	by
continuously	monitoring	multiple	interlocking	systems	and	encompassing	more	complex
and	nuanced	reactions.	For	instance,	a	programmable	network	may	be	able	to	modify	an
application’s	behavior	in	response	to	network	conditions,	rather	than	just	modifying	the
configuration	of	the	network,	or	some	set	of	links	or	forwarding	devices.	Through	an
application	level	interface,	a	programmable	network	can	also	discover	exactly	what	a
particular	application	would	like	to	do,	rather	than	embedding	heuristics	into	the	network
that	attempt	to	discover	this	information.

Programmable	networks	can	also	provide	a	larger	amount	of	continuous	state	than	a
traditional	management	system	through	their	closer	to	real-time	interfaces	into	the	state	of
the	forwarding	plane.	By	interfacing	either	at	the	routing	table	or	forwarding	table,
controllers	in	a	programmable	network	can	recognize	and	adapt	to	network	conditions
more	quickly,	and	with	less	complexity,	than	a	management	system	that	primarily	relies	on
interface	and	device	level	state.

There	are	tradeoffs,	of	course.	The	more	finely	controlled	the	network	is	managed	to
achieve	optimal	control	on	a	near	real-time	basis,	the	more	state	the	network	must
manage.	Figure	10.2	illustrates	the	programmable	network	state.

Figure	10.2	Programmable	Network	State

Assume	traffic	originating	from	Server	A	and	destined	to	Server	H—for	some	policy
reason—should	flow	along	the	path	[B,C,D,F,G],	rather	than	along	any	other	path	through
this	network,	and	that	each	hop	shown	has	a	cost	of	1.	Using	traditional	network
configuration	and	destination-based	routing:

•	Router	B	must	be	configured	to	examine	traffic	for	any	packets	sourced	from	Server
A	and	destined	to	Server	H,	and	redirect	such	traffic	toward	Router	C,	rather	than
along	the	shortest	path	through	Router	E.

•	Router	C	must	be	configured	to	examine	traffic	for	any	packets	sourced	from	Server
A	and	destined	to	Server	H,	and	redirect	such	traffic	toward	Router	D,	rather	than
along	the	shortest	path	through	Router	E.

•	Router	D	must	be	configured	to	examine	traffic	for	any	packets	sourced	from	Server
A	and	destined	to	Server	H,	and	redirect	such	traffic	toward	Router	F,	rather	than
along	the	shortest	path	through	Router	E.

Each	of	these	configurations	represents	policy	that	is	dispersed,	either	manually	or
through	some	automation	system,	through	the	network.	The	policy	is,	in	effect,	in	the
“control	plane	in	the	mind	of	the	network	operator,”	rather	than	in	the	actual
programmable	control	plane	used	to	manage	the	network.	In	a	programmable	network,
this	information	would	be	captured	in	the	actual	control	plane	of	the	network,	increasing
the	amount	of	state	being	carried	through	the	network.

State	is	not	the	only	complexity	measure	impacted,	though.	Once	this	policy	is	captured
in	the	control	plane	through	a	programmatic	interface,	it	will	be	changeable	more	often
than	through	manual	configuration.	Thus,	the	drive	toward	programmable	networks	also
increases	the	speed	at	which	information	must	be	disseminated	through	the	control	plane
(in	reaction	to	changes	in	policy).

Note

The	policy	implemented	in	this	example	to	carry	traffic	along	a	less	than
optimal	(metric	wise)	path	through	the	network	could	be	implemented	in	any
number	of	ways,	including	ingressing	the	traffic	into	a	tunnel	or	LSP.

Finally,	the	programmable	interface	is	an	increase	in	the	breadth	and	depth	of	the
interaction	surfaces	between	various	devices	in	the	network;	this	is	covered	in	the	section
“Surface	and	the	Programmable	Network,”	that	follows.

Policy	Consistency
One	of	the	problems	with	distributing	policy	throughout	a	network	is	the	large	number	of
control	and	management	interfaces	used	by	the	wide	array	of	forwarding	devices.	A
device	or	service	that	specialized	in	stateful	packet	filtering	will	have	far	different
configuration	options	and	capabilities	than	a	device	that	is	primarily	designed	to	forward
packets.	A	programmable	interface	would	allow	an	intelligent	controller	to	query	each
device	in	the	network	and	determine	where	and	how	to	apply	any	given	policy	in	an
optimal	way	without	regard	to	the	user	interface	provided	at	each	device.	Even	if	the
programming	API	is	inconsistent	across	devices,	producing	translators	for	a	machine
readable	interface	is	much	different	than	creating	“screen	scrapers”	to	discover	and
manage	state.

Programmability	can	also	resolve	a	second	source	of	complexity	by	converting	many
complex	policies	directly	into	control	plane	state	at	the	controller,	rather	than	through	the
local	interface	of	each	device.	Returning	to	Figure	10.2,	assume:

•	Router	B	is	a	device	manufactured	by	one	vendor,	and	uses	Policy-Based	Routing	to
implement	the	policy	discussed.	This	entails	configuring	a	set	of	policies,	wrapping
those	policies	in	a	set	of	forwarding	rules,	and	then	applying	the	policies	to	the
relevant	interfaces	on	the	device.

•	Router	C	is	a	device	manufactured	by	a	second	vendor,	and	uses	Filter-Based
Forwarding	to	implement	the	policy	discussed.	This	entails	configuring	a	set	of
policies,	wrapping	those	policies	in	a	set	of	forwarding	rules,	and	then	applying	the
policies	to	the	relevant	interfaces	on	the	device.

•	Router	D	is	a	switch	that	must	be	configured	to	examine	the	Layer	3	information,
rather	than	Layer	2	information,	carried	in	the	packet	to	perform	the	operations
required.

•	Router	E	is	actually	a	stateful	packet	filter;	source-based	rules	for	this	device	must
be	configured	through	security	policies.

Each	of	these	devices	requires	a	different	interface	(and	set	of	logical	constructs)	to
achieve	the	desired	outcome.	If	each	them	had	a	programmable	interface,	however,	a
single	piece	of	software,	running	on	one	or	more	controllers,	could	distill	the	policy	into
local	forwarding	rules	for	each	device,	and	install	the	forwarding	rules	required	on	each
one.	This,	in	effect,	centralizes	the	logic	of	the	policy	while	distributing	the	result	of	the
policy	by	using	forwarding	plane	proxies	in	place	of	the	policy	itself	on	each	device	in	the
path.	Each	of	the	policies	involved	interacts	in	one	place—on	the	controller—rather	than
among	devices.

Once	again,	this	type	of	operation	places	more	state	into	the	control	plane.	The	policy
that	was	once	configured	locally	on	each	device	is	now	captured	within	the	control	plane,
albeit	in	a	simplified	form.	This	also	increases	the	speed	at	which	the	control	plane	must
disperse	information	among	device,	as	the	operator	is	interfacing	directly	with	the
forwarding	tables	in	each	device,	rather	than	with	the	slower	management	oriented	human
readable	user	interface	on	each	device.

This	example	also	shows	an	increase	in	the	interaction	surface;	each	device	must	now
interact	with	a	controller	that	provides	a	version	of	the	policy	distilled	for	use	in	the
various	forwarding	tables,	rather	than	acting	independently	based	on	local	configuration.
At	the	same	time,	however,	this	interaction	surface	moves	from	“the	mind	of	the	network
operator”	into	the	controller,	making	it	more	manageable.

Policy	Complexity
In	the	field	of	economics,	there	is	a	concept	called	moral	hazard,	which	is	defined	as:

In	economics,	moral	hazard	occurs	when	one	person	takes	more	risks	because
someone	else	bears	the	burden	of	those	risks…	.	Moral	hazard	occurs	under	a
type	of	information	asymmetry	where	the	risk-taking	party	to	a	transaction
knows	more	about	its	intentions	than	the	party	paying	the	consequences	of	the
risk.2

2.	“Moral	Hazard,”	Reference,	Wikipedia,	n.p.,	last	modified	June	6,	2015,	accessed	June	20,	2015,
https://en.wikipedia.org/wiki/Moral_hazard.

A	similar	hazard	exists	when	abstracting	or	simplifying	complexity	in	the	realm	of
network	policy.	Once	policy	is	centralized	into	a	single	set	of	code,	there’s	no	specific
reason	to	maintain	discipline	in	building	the	forwarding	plane	policy,	or	to	consider
alternatives	to	installing	new	per	hop	behaviors	to	solve	any	problem	at	hand.	As	an
example,	consider	the	case	of	early	EIGRP	deployments.	Because	many	engineers
believed	EIGRP	could	handle	any	network	topology,	they	designed	EIGRP	networks	with
no	aggregation	and	no	failure	domains.	Much	the	same	happens	in	some	large-scale	BGP
deployments;	the	protocol	appears	robust	enough	to	handle	anything,	so	why	bother	with
failure	domains?

Centralized	policy,	particularly	in	the	form	of	the	programmable	network,	can	result	in
the	same	sort	of	sloppiness;	human	nature	hasn’t	changed	much	since	EIGRP	was
invented	and	first	deployed,	after	all.	When	the	easiest	tool	to	use	is	the	hammer,	every
problem	quickly	becomes	a	nail.

Surface	and	the	Programmable	Network
The	preceding	sections	focused	primarily	on	state	and	speed	in	the	programmable
network,	but	what	about	surface?	Figure	10.3	will	be	used	to	examine	this	piece	of	the
complexity	puzzle.

https://en.wikipedia.org/wiki/Moral_hazard

Figure	10.3	Surface	in	the	Programmable	Network

When	using	a	distributed	control	plane	and	a	management	system:

•	Surface	1,	between	the	originating	host	and	the	first	hop	router,	is	primarily	a
function	of	any	information	Host	A	places	in	the	packet.	For	instance,	the	source
address,	the	destination	address,	the	type	of	service,	and	other	factors	actually	carry
information	between	the	host	and	the	router,	implying	an	interaction	between	these
devices,	and	therefore	a	surface.	This	interaction	surface,	however,	can	be	said	to	be
rather	shallow,	as	it	contains	minimal	information,	and	neither	the	host	nor	the	router
have	any	information	about	the	internal	state	of	the	other	device.

•	Surface	2,	between	the	two	routers,	is	actually	two	surfaces.	The	first	is	the
information	carried	inside	the	packets	being	forwarded	along	the	path,	and	it	has	the
same	characteristics	as	the	surface	between	Host	A	and	Router	B.	The	second	is	the
routing	protocol	(or	other	distributed	mechanism	designed	to	carry	reachability	and
topology	information	through	the	network).	This	second	surface	between	Routers	B
and	C	has	more	depth,	as	each	device	is	actually	trading	some	level	of	information
about	internal	state,	and	more	breadth,	as	this	surface	actually	reaches	across	every
forwarding	device	participating	in	the	control	plane	within	the	failure	domain.

•	Surface	3,	between	Router	C	and	Server	D,	is	similar	to	Surface	1.

•	Surfaces	4	and	7	don’t	(normally)	exist	in	a	network	primarily	dependent	on	a
distributed	control	plane.

•	Surfaces	5	and	6,	in	a	network	with	a	primarily	distributed	control	plane,	represent	a
management	interface.	While	this	surface	is	both	deep,	because	it	carries	internal
device	state,	and	broad,	because	the	management	device	typically	interacts	with
most	or	all	of	the	devices	connected	to	the	network,	this	surface	doesn’t	reach
directly	into	the	forwarding	information	in	any	meaningful	way.	From	the
forwarding	perspective,	this	surface	is	actually	shallow.	This	surface	is	actually
shallow	enough	that	it	can	often	not	be	monitored	with	little	impact	on	actual
network	operation	(although	this	wouldn’t	be	recommended!).

When	considering	a	programmable	network,	however:

•	Surfaces	1	and	3	remain	the	same.

•	Surface	2	can	either	remain	the	same	or	have	a	reduction	in	complexity.	If	the
control	plane	is	completely	centralized,	rather	than	running	in	a	hybrid	mode	(the
distributed	control	plane	operates	alongside	a	centralized	system	that	modifies
forwarding	information	based	on	policy	requirement),	the	only	surface	interaction
between	Routers	B	and	C	would	be	at	the	packet	level,	much	like	Surface	1.

•	Surfaces	4	and	7	may	contain	a	good	deal	of	state	in	near	real	time,	such	as	how
much	information	the	application	needs	to	transfer,	quality	of	service	requirements,
how	fast	the	application	should	transfer	information	based	on	the	network’s	state,
etc.	These	two	surfaces,	then,	can	become	much	deeper	and	broader.

•	Surfaces	5	and	6	now	contain	actual	forwarding	state,	both	as	it	exists	and	how	it
should	be,	being	carried	between	the	controller	and	the	forwarding	devices.	These
two	surfaces	will	become	much	deeper,	as	the	internal	forwarding	state	of	each
device	is	exposed	and	modified	by	the	controller.

•	If	the	controller	is	deployed	in	a	hybrid	mode,	where	a	distributed	control	plane
discovers	reachability	and	topology	in	near	real	time,	and	a	centralized	system
overlays	the	control	plane	to	implement	policy,	there	is	also	a	new	interaction
surface	between	the	two	control	planes.	The	centralized	control	plane	must	be
notified	of	changes	in	reachability	or	topology	in	near	real	time,	and	then	calculate
and	implement	policy	changes	as	needed	to	preserve	the	policies	imposed	on	the
network.	This	interaction	surface	is	both	deep	and	broad.

An	interesting	problem	in	the	surface	states	is	the	newly	minted	feedback	loops,	for
instance	along	surfaces	3,	6,	and	7.	The	network	has	always	been	capable	of	impacting
application	state.	Once	the	application	is	capable	of	impacting	network	state,	however,	a
feedback	loop	forms.	While	such	feedback	loops	can	have	a	strong	positive	impact,
particularly	in	the	form	of	injecting	applications	requirements	into	the	control	plane’s
operation	in	near	real	time,	and	in	allowing	applications	to	“see”	network	conditions	in
near	real	time,	such	feedback	loops	can	be	dangerous	as	well.	This	is	an	area	the	network
designer	deploying	programmable	networks	must	pay	careful	attention	to	if	stability	is	a
goal.

Note

Chapter	8,	“How	Complex	Systems	Fail,”	discussed	the	various	failure	modes
of	such	feedback	loops.

Impact	on	Failure	Domains
Failure	domain	separation	through	loose	coupling	of	different	systems	(and	multiple
pieces	within	these	systems)	is	a	foundational	concept	in	large-scale	network	design.	Does
the	programmable	network	have	an	impact	in	this	area?	Figure	10.4	illustrates	failure
domains	and	programmable	networks.

Figure	10.4	Failure	Domains	and	Programmable	Networks

Note

Controller	B	actually	has	a	connection	with	each	of	the	switches	shown	in	the
spine	and	leaf	fabric;	for	clarity,	these	are	shown	as	a	group,	rather	than
individual	connections.

Four	specific	instances	of	failure	domain	impact	need	to	be	examined	here.

Wide	Area	Failure	Domains
In	the	distributed	design	on	the	left	side	of	the	diagram,	internal	reachability	and	topology
information	is	carried	by	an	IGP	underlay,	while	external	(or	edge)	reachability	is	carried
in	BGP	as	an	overlay.	This	separates	edge	(or	external)	reachability	from	internal
reachability,	providing	two	different	failure	domains	with	fairly	loose	coupling	between
the	two.	The	IGP	can	further	be	broken	up	into	multiple	failure	domains	along	topological
boundaries	by	hiding	reachability,	topology	information,	or	configuring	other	forms	of
information	hiding.

When	a	controller	is	deployed	to	either	replace	or	augment	the	distributed	control	plane,
these	various	failure	domains	are	replaced	with	a	single	failure	domain.	Whether	this	is	a
positive	development	or	not	depends	on	the	ability	of	the	controller	to	handle	faults,	the
amount	of	policy	being	managed,	and	other	factors—but	the	reduction	in	the	number	of
failure	domains	goes	against	the	best	common	practice	of	years	of	experience	with
network	design,	and	needs	to	be	seriously	considered	as	a	tradeoff.

What	if	there	are	two	controllers,	rather	than	one?	Two	controllers	managing	the	same
set	of	devices	must	be	synchronized	in	terms	of	state	through	some	mechanism—hence
they	will	actually	form	a	single	failure	domain	in	response	to	many	common	errors.	For
instance,	if	a	malformed	packet	carrying	control	information	causes	the	first	controller	to
fail,	it	will	likely	cause	the	second	to	fail,	as	well.

Note

It	is	possible	to	have	a	more	federated	controller	design,	where	each
controller	can	send	instructions	to	several	forwarding	devices,	and	some
mechanism	is	used	on	each	device	to	determine	which	controller’s	input
should	be	accepted.	This	type	of	mechanism	would	represent	another	form	of
information	hiding,	as	the	decision	of	which	state	to	accept,	and	which
policies	should	be	accepted	from	each	controller,	is	a	distributed	form	of
state.	This	state	must,	of	course,	still	be	configured	or	managed	in	some	way
—the	complexity	doesn’t	“go	away,”	it	just	moves	from	one	area	of	the
network	to	another.

Data	Center	Failure	Domains
The	distributed	protocol	design	as	presented	in	the	illustration	has	each	leaf	row	and	the
spine	row	shown	as	a	separate	BGP	autonomous	system—a	fairly	common	design	in	very
large-scale	data	centers	(especially	supporting	commercial	cloud-based	workloads).
Because	network	devices	within	any	given	row	(either	leaf	or	spine)	are	not
interconnected,	each	BGP	speaker	only	maintains	eBGP	connections.	Failure	domains
must	be	seen	in	two	ways	in	this	type	of	design:

•	eBGP	is	known	for	its	loose	coupling	and	is	often	used	to	connect	two	different
failure	domains.	In	this	design,	then,	each	router	is	effectively	a	separate	“failure
domain”	from	a	control	plane	perspective,	as	counter-intuitive	as	that	might	seem.

•	The	entire	BGP	routing	system	is,	however,	a	single	failure	domain.

An	alternative	might	be	a	simple	IP	or	IP/MPLS	underlay	with	a	separate	BGP,
VXLAN,	or	other	overlay.	Replacing	either	of	these	with	a	single	controller,	or	a	set	of
redundant	controllers,	once	again	turns	what	is	originally	a	set	of	loosely	coupled	systems
into	one	system,	reducing	the	number	of	failure	domains.

Note

Use	of	BGP	for	Routing	in	Large-scale	Data	Centers	(draft-ietf-rtgwg-bgp-
routing-large-dc)	describes	using	BGP	as	a	standalone	protocol	in	large-scale
data	center	fabrics	in	detail.

One	option	here	is	to	use	one	controller	for	the	underlay,	and	another	for	the	overlay,
breaking	them	into	separate	failure	domains,	to	recover	some	of	the	separation	in	the
original	design.

Application	to	Control	Plane	Failure	Domain
In	a	network	that	is	not	programmable,	there	is	little	interaction	between	applications
running	on	the	network	and	the	control	plane—hence	the	application	and	the	control	plane
represent	either	completely	decoupled	or	loosely	coupled	failure	domains	(with	the
primary	coupling	being	in	the	area	of	packet	headers	carrying	information	between	the
application	and	the	network	devices).	Putting	an	interaction	surface	between	these	two
systems	actually	creates	a	larger	failure	domain,	as	there	are	failure	modes	that	can	reach
across	the	controller/application	divide.

Further,	presumably	most	of	the	applications	running	on	the	network	will	have	such	an
interface,	providing	yet	another	channel	through	which	many	complex	systems	can
interact	in	unforeseen	ways—hence	the	applications	themselves	can	be	unintentionally
coupled	into	a	single	failure	domain	through	the	controller.	As	an	example,	two	different
applications	might	“fight”	over	the	quality	of	service	settings	for	a	particular	set	of	links,
eventually	causing	a	chain	of	events	that	causes	one	of	the	two	applications	(or	both)	to
fail.

Controller	to	Controller	Failure	Domain
The	connection	between	controllers	A	and	B	must	be	watched	carefully	to	ensure	loose
coupling	is	maintained	between	them.	If	these	two	controllers	unintentionally	form	a
tightly	coupled	pair,	the	entire	network	becomes	a	single	failure	domain—contrary	to	all
good	design	principles.

Final	Thoughts	on	Failure	Domains
A	final	area	to	be	careful	of	is	in	band	signaling,	which	tightly	couples	access	to	the
forwarding	devices	to	the	state	of	the	forwarding	devices	themselves.	Consider	out	of
band	control	channels	to	create	a	truly	stable	network	if	building	for	centralized	control—
and	remember	to	consider	the	complexities	of	building	and	maintaining	the	out	of	band
network	itself.

In	short,	it’s	important	to	consider	the	tradeoffs	involved	in	enlarging	failure	domains
through	more	centralized	control	of	the	network.	Take	care	to	examine	each	interaction
surface	carefully,	particularly	looking	for	potential	instances	of	tight	coupling,	and	think
through	ways	of	enforcing	loose	coupling	in	these	areas.	One	good	way,	if	the	entire
distributed	control	plane	is	being	replaced,	is	to	run	multiple	controllers,	each	one
providing	reachability	for	either	one	specific	topological	area	of	the	network	or	one	virtual
topology.	Connect	the	controllers	with	the	loosest	coupling	possible—traditional	BGP
could	be	a	good	choice.

A	Final	Thought
Programmable	networks	are	surely	in	the	future	of	every	network	engineer—the
complexity	and	management	of	distributing	policy	to	thousands	of	devices	is	quickly
unmanageable	in	any	large-scale	environment.	The	rush	to	centralize,	though,	needs	to	be
balanced	with	serious	consideration	around	the	complexity	tradeoffs.

There	is	no	silver	bullet	for	complexity.

Traditional	network	design	holds	a	lot	of	lessons	for	the	new	world	of	programmable
networks,	from	separating	failure	domains	to	thinking	through	how	and	where	to	distribute
policy	to	potential	feedback	loops.	One	useful	way	to	think	through	these	problems	is	to
consider	a	layered	model	for	the	control	plane,	as	illustrated	in	Figure	10.5.

Figure	10.5	A	Layered	Model	for	Managing	the	Control	Plane

In	this	model,	there	are	four	essential	tasks	a	control	plane	handles:

•	Discovering	the	topology	and	reachability

•	Determining	the	shortest	path	between	every	pair	of	reachable	nodes	attached	to	the
network

•	Hiding	information	or	building	failure	domains

•	Traffic	engineering

Each	of	these	four	functions	is	repeated	at	each	“layer”	of	the	network.	As	a	simple
example,	consider	an	underlay/overlay:

•	There	will	be	the	shortest	path	and	topology	discovery	in	the	underlay	protocol.

•	Information	hiding	and	traffic	engineering	will	be	implemented	in	the	underlay,	as
well,	through	aggregation,	flooding	domain	boundaries,	(potentially)	fast	reroute,
and	other	mechanisms.

•	There	will	be	the	shortest	path	and	topology	discovery	in	the	overlay	control	plane
that	is	separate	from	the	underlay.

•	Information	hiding	and	traffic	engineering	will	also	be	implemented	in	the	overlay
—service	chaining,	examined	in	the	next	chapter,	might	be	one	example.

By	breaking	the	control	plane	out	into	functions	rather	than	protocols,	engineers	can	get
a	better	feel	for	what	each	protocol	in	a	network	control	plane	should	do	and	build	layers
of	functionality	that	will	provide	an	optimal	balance	between	functionality	and
complexity.	This	is	similar	to	the	way	network	engineers	have	built	layers	into	protocol
stacks	and	applications	to	manage	complexity	and	scale	problems.

Chapter	11.	Service	Virtualization	and	Service	Chaining

In	the	early	days	of	network	engineering,	two	words	could	be	used	to	describe	the
applications	running	over	the	network:	simple	and	few.	There	were	several	different	ways
to	transfer	files,	a	few	ways	to	talk	to	someone	else	(such	as	email	and	message	boards),
and	perhaps	a	few	other	applications	of	note.	In	these	ideal	times,	the	end-to-end	principle
reigned	supreme,	with	hosts	only	talking	to	other	hosts	(or	bigger	hosts	called	servers)	and
the	occasional	mainframe	or	mini	(remember	those?).

This	has	changed	over	the	years;	each	new	generation	of	users	and	businesses	have
added	new	ideas	about	what	networks	need	to	support	and	laid	requirements	on	the
network	itself.

First,	there	were	firewalls,	which	protect	data	and	systems	from	attackers.	Then	the
network	monitoring	tools,	and	the	deep	packet	inspectors	in	the	form	of	intrusion
detection	systems.	To	save	ongoing	operational	expenses	on	long	haul	links,	wide	area
accelerators	were	added	to	the	path.	A	single	server	couldn’t	handle	the	load	thrown	at	it,
so	load	balancers	were	inserted.	Over	time,	to	account	for	the	increasing	scarcity	of	IPv4
address	space,	network	address	translators	were	pushed	into	the	path.	Appliances	running
a	set	of	services	were	installed	throughout	the	network,	effectively	moving	intelligence	out
of	the	end	hosts	and	into	the	network	itself—bumps	in	the	wire	the	host	didn’t	know	about
now	manipulate,	fold,	and	spindle	almost	every	packet	transmitted	anywhere	beyond	a
single	hop.	Applications	now	run	“on”	the	network,	in	the	sense	that	the	APIs	that	connect
the	different	pieces	of	the	network	together	are	actually	resolved	across	the	network	itself.
Three	different	things	cause	this	model	of	adding	appliances	to	add	services	to	break
down:

•	The	added	complexity	of	policy	distribution	throughout	the	network.	Chapter	4,
“Operational	Complexity,”	has	a	more	lengthy	discussion	on	policy	dispersion
versus	complexity,	but	essentially	policy	spread	throughout	the	network	is	much
more	difficult	to	manage	than	policy	concentrated	in	a	few	processes	or	places.

•	The	added	cost	of	installing	and	managing	appliances.	Each	appliance	not	only
represents	a	cost,	but	also	represents	power,	space,	cabling,	and	an	entire	lifecycle
that	must	be	managed.	Each	of	these	things	adds	operational	and/or	capital	costs.

•	The	virtualization	of	the	network.	Supporting	multiple	tenants,	deeper	segmentation
for	security,	and	more	efficient	use	of	the	network	requires	virtualization.	Pushing
virtualized	circuits	through	an	appliance,	rather	than	physical	ones,	is	much	more
difficult	to	deploy	and	manage	for	several	reasons.	For	instance,	a	virtual	topology
can	be	moved	almost	anywhere	in	the	network	without	regard	to	topology	(in	fact,	in
spite	of	topology).	Moving	an	appliance-based	service	from	one	location	to	another,
or	even	just	the	state	contained	in	the	appliance	from	one	location	to	another,	is
problematic	(if	not	impossible).

So	why	not	virtualize	the	services	as	well?	This	is	where	Network	Function
Virtualization	(NFV)	enters	the	picture.	This	chapter	will	discuss	several	aspects	of	service
virtualization,	including	examining	some	of	the	specific	cases	where	services	are	being
virtualized,	and	the	concept	of	service	chaining,	which	is	required	to	move	traffic	to	these

virtualized	services	(where	they	were	placed	into	the	packet	stream	before).	The	topic	of
complexity	isn’t	addressed	directly	here;	rather	it	is	reserved	for	the	next	chapter,	which
explicitly	deals	with	the	tradeoffs	in	complexity	around	the	virtualization	of	services.

Network	Function	Virtualization
In	1994,	a	group	of	engineers	formed	the	company	Network	Translation	and	designed	the
first	PIX	firewall.	The	security	features	were	evident	from	the	start,	but	considered
secondary—the	PIX	was	first	developed	to	do	Network	Address	Translation	(NAT).	In	the
face	of	discussions	around	Address	Allocation	for	Private	Internets1	and	Traditional	IP
Network	Address	Translator,2	the	IPv4	address	space	was	showing	the	first	signs	of
running	out.	Cisco	acquired	the	PIX	in	late	1995,	shipping	and	maintaining	the	product
with	new	revisions	until	2008.

1.	Y.	Rekhter	et	al.,	“Address	Allocation	for	Private	Internets”	(IETF,	February	1996),	accessed	September	24,	2015,
https://datatracker.ietf.org/doc/rfc1918/.

2.	P.	Srisuresh	and	K.	Egevang,	“Traditional	IP	Network	Address	Translator”	(IETF,	n.d.),	accessed	September	24,
2015,	https://www.rfc-editor.org/rfc/rfc3022.txt.

Engineers	in	the	Cisco	Technical	Assistance	Center,	being	curious	folks	(as	most
engineers	are),	quickly	pulled	the	cover	off	the	first	few	PIX	devices	shipped	to	their	local
labs,	and	discovered	an	Intel	processor	(for	most	models)	and	standard	Ethernet	chipsets.

Note

The	PIX	was	constructed	using	Intel-based/Intel-compatible	motherboards;
the	PIX	501	used	an	AMD	5	×	86	processor,	and	all	other	standalone	models
used	Intel	80486	through	Pentium	III	processors.	Nearly	all	PIXes	used
Ethernet	NICs	with	Intel	82557,	82558,	and	82559	network	controllers,	but
some	older	models	are	occasionally	found	with	3COM	3c590	and	3c595
Ethernet	cards,	Olicom-based	Token-Ring	cards,	and	Interphase-based	Fiber
Distributed	Data	Interface	(FDDI)	cards.3

3.	“Cisco	PIX—Wikipedia,	the	Free	Encyclopedia,”	n.p.,	accessed	April	30,	2015,
https://en.wikipedia.org/wiki/Cisco_PIX.

There	was	also	a	single	piece	of	custom	silicon,	the	PIX-PL	in	the	original	models	and
the	PIX-PL2	in	later	models.	The	PIX-PL	accelerated	encryption	because	the	Intel
processors	used	for	general	processing	couldn’t	switch	packets	fast	enough.	These	PIX-PL
chips	[and	other	hardware	acceleration	Application	Specific	Integrated	Circuit	(ASICs)]
are,	in	a	sense,	at	the	heart	of	the	NFV	narrative.	As	with	the	first	two	generations	of	PIX,
the	most	convincing	reason	to	deploy	an	appliance	in	the	middle	of	a	traffic	flow	(as	a
middle	box)	is	for	the	custom	ASICs	designed	into	the	box.

https://datatracker.ietf.org/doc/rfc1918/
https://www.rfc-editor.org/rfc/rfc3022.txt
https://en.wikipedia.org/wiki/Cisco_PIX

Note

A	number	of	vendors	sell	appliances	rather	than	installable	software	services
for	reasons	other	than	the	included	custom	ASICs,	such	as	controlling	the
performance	of	the	service,	to	provide	for	simple	licensing,	the	inclusion	of
some	higher	end	processor	than	is	available	on	the	equipment	normally
available	in	a	network	for	functions	such	as	cryptography,	or	simply	to
increase	incremental	revenue.

The	question	is:	When	can	the	general	purpose	processor	already	included	in	the
appliance	take	over	all	the	packet	processing	duties,	and	hence	when	can	the	appliance	be
replaced	by	a	more	generic/general	purpose	device?	This	point	was	reached	sometime
after	2008,	but	before	2015	(the	year	of	this	writing)—though	there’s	no	“generally	agreed
on	date”	for	the	transition,	for	most	network	applications.

Note

The	crucial	words	in	the	statement	above	are	for	most	network	applications.
Networks	are,	in	a	sense,	simply	a	“concession	to	human	impatience.”	There
are	only	a	few	things	that	can	be	done	by	a	high-speed	link	running	across	an
ocean	that	can’t	(in	theory)	be	done	using	a	standard	carrier’s	overnight	box
holding	a	large	number	of	solid-state	drives.	But	humans	are	infinitely
impatient,	so	there	will	always	be	some	things	for	which	the	speed	of	a
general	purpose	processor	won’t	be	fast	enough,	so	appliances	and	custom
ASICs	most	likely	have	a	long	life	ahead	of	them.	The	more	likely	result	is
that	the	number	of	such	devices	will	remain	fairly	steady	over	time,	but	as
networks	increase	in	size	and	scope,	the	percentage	of	custom	silicon
switching	hardware	will	decrease	as	a	percentage	of	hardware	sold	and
deployed.	This	is	all	a	matter	of	tradeoffs—you’ve	either	missed	something
crucial	about	the	environment,	the	problem,	or	the	solution.	If	you	take	only
one	thing	away	from	this	book,	it	should	be	this:	there	are	always	tradeoffs.	If
you	don’t	see	any	tradeoffs,	then	you’re	not	looking	hard	enough.

Once	this	trend	of	fast	general	purpose	processors	meets	the	virtualization	of	networks
and	applications,	a	question	becomes	obvious:	Why	should	these	applications	run	on
appliances?	In	fact,	running	deep	packet	inspection,	stateful	filtering,	load	balancing,	and
all	other	services	that	live	within	the	network	can	run	on	“fast	enough”	general	purpose
processors,	and	therefore	be	run	on	the	general	purpose	compute	and	storage	resources
already	residing	in	the	network.

NFV,	then,	solves	two	sets	of	problems—or	rather,	is	at	the	confluence	of	two	different
trends:

•	The	explosion	of	virtualization	in	the	network,	and	the	desire	to	provide	“in	the
network”	services	to	the	resulting	virtual	networks.

•	Replacing	expensive	physical	appliances	containing	custom	packet	switching
hardware	with	less	expensive	(and	better	understood)	general	purpose	computing

resources.

NFV:	A	Use	Case
To	make	all	this	a	little	more	clear,	it’s	useful	to	work	through	a	use	case	showing	how
these	two	trends	merge	into	a	single	concept;	the	network	illustrated	in	Figure	11.1	will	be
used	as	an	example.

Figure	11.1	Pre-NFV	Network	and	Services	Design

Figure	11.1	shows	the	network	connectivity	and	services	commonly	required	to	provide
email	services	to	a	large	number	of	hosts.	The	path	of	traffic	through	the	network	can	be
traced	as:

1.	A	host	attached	to	either	Router	A	or	B	sends	an	email	packet	toward	one	of	the	two
servers,	shown	on	the	right	side	of	the	illustration

2.	First,	the	traffic	must	pass	through	one	of	the	routers,	to	be	ingressed	into	the
network,	have	any	QoS	markings	imposed,	terminate	any	tunnels	(such	as	an	IPsec
SA	or	an	MPLS	VRF),	and	any	basic	filtering	performed	(such	as	source-based
spoofing	filters).

3.	Then	the	traffic	is	passed	to	a	firewall	appliance,	where	several	actions	may	be
taken.	For	instance,	passing	the	flow	through	a	stateful	packet	filter	that	validates
each	packet	against	an	existing	stream,	or	performing	deep	packet	inspection	to
check	for	the	presence	of	an	attack	or	malware	in	the	flow’s	contents.	A	common
operation,	at	least	with	IPv4,	is	NAT	(or,	more	likely	Port	Address	Translation).

4.	Once	the	traffic	is	through	the	first	appliance,	it	is	passed	to	a	router,	which	then
directs	the	traffic	into	the	part	of	the	provider	network	where	the	email	servers	are
located.	The	next	hop	shown	in	the	diagram	is	a	load	balancer.

5.	In	this	particular	situation,	a	single	server	cannot	support	the	load	of	all	the	clients,
so	the	network	operator	has	configured	a	number	of	servers,	each	with	access	to	the
same	database	backend.	Each	of	the	mail	servers	is,	then,	operationally	identical,
with	access	to	the	same	set	of	mail	stores.	The	load	balancer,	another	appliance,
determines	which	server	has	the	least	amount	of	load,	and	hence	should	handle	any
new	incoming	requests.	This	service	requires	the	load	balancer	to	maintain	state
about	each	connection	and	each	server.

6.	The	traffic	is	passed	from	the	load	balancer	to	the	mail	server,	but	along	the	way
must	pass	through	a	Spam	Filter	(marked	with	SF	in	the	diagram).	This	might	be	an
appliance,	or	it	might	be	a	process	or	application	running	on	the	mail	server	itself.

In	each	case,	the	service	is	actually	an	application	running	on	an	appliance;	the
appliance	must	be	placed	in	the	path	of	the	traffic	as	it	moves	between	the	host	and	the
server,	or	between	the	two	endpoints	in	the	network.	Putting	an	appliance	into	the
network,	and	wiring	the	network	such	that	traffic	of	a	certain	type	must	pass	through	it,
can	be	called	manual	service	insertion.	A	useful	way	to	think	about	this	type	of	service
insertion	in	the	network	design	is	bringing	the	service	to	the	traffic	flow.

What	if	these	services	could	be	virtualized,	and	run	in	fairly	standard	compute	and
storage	resources?	One	option	would	be	to	place	standard	compute	and	storage	resources
throughout	the	network,	and	create	instances	where	needed	to	intercept	traffic	flows	as
they	pass	through	the	network.	The	primary	operational	expense	this	would	save	is	in	the
cost	of	the	appliances	themselves—perhaps	there	is	some	savings	here,	but	this	model	still
largely	depends	on	a	scale	up,	rather	than	a	scale	out,	model	of	providing	services.

Scale	Up	versus	Scale	Out

One	of	the	crucial	distinctions	application	developers	make	is	between	scale	up	and
scale	out.	Scale	up	is	what	most	engineers	are	accustomed	to	designing	around;	a
single	server	is	scaled,	in	terms	of	amount	of	memory,	storage,	and	processing
power	it	has	to	fit	the	task	at	hand.	In	network	hardware	terms,	this	is	much	like
purchasing	a	single	large	multicard	chassis-based	system	that	with	plenty	of	slots,
power,	and	processing	power,	and	increasing	the	number	of	ports	by	installing	new
line	cards	over	time	as	the	network	grows.	In	the	application	world,	a	database
server	might	have	additional	discs	added	over	time,	or	more	memory,	as	different
parts	of	the	system	near	their	maximum	utilization.	There	are	three	problems	with
the	scale	up	model.

First,	scale	up	assumes	there	is	something	more	that	can	be	added	to	the	system,
and	that	such	incremental	improvements	add	incremental	costs.	In	the	real	world,
however,	going	from	a	1TB	disc	array	to	a	2TB	disc	array	might,	or	might	not,	be	a
matter	of	adding	additional	physical	discs.	The	next	increment	might	actually	mean
upgrading	to	a	larger	box	all	the	way	around,	which	means	forklifting	the	old	box
out	of	place,	moving	all	the	data,	and	installing	a	new	one.	This	can	be	expensive.

Second,	scaling	a	platform	or	component	up	can	cost	more	than	simply	adding
incremental	capacity.	To	return	the	drive	space	example,	a	500GB	drive	might	be
similar	in	cost	to	a	1TB	drive.	Moving	to	a	2TB	drive	might,	however,	more	than

double	the	cost	of	the	component	or	the	platform.	Purchasing	four	times	the
capacity,	especially	at	the	higher	end,	may	well	mean	paying	much	more	than	four
times	the	cost.

Third,	scale	up	often	means	purchasing	more	than	you	need	when	the	system	is
installed,	and	trying	to	anticipate	the	growth	of	the	system	over	time.	This	leads	to	a
rather	suboptimal	investment	model,	such	as	the	one	shown	in	Figure	11.2.

Figure	11.2	Growth	versus	Capacity	over	Time

In	Figure	11.2,	any	time	the	gray	dashed	capacity	line	is	above	the	darker	dashed
demand	line,	the	business	is	paying	for	capacity	it	isn’t	using.	This	would	be	true,
for	instance,	in	the	case	of	a	large	chassis	system	that	only	has	a	couple	of	slots
used—the	additional	slots,	power,	processing,	and	space	are	all	paid	for,	but	not	in

use.	On	the	other	hand,	when	the	darker	business	line	is	above	the	lighter	gray
capacity	line,	the	business	is	not	operating	at	capacity—growth	may	actually	be
stunted,	or	the	business	might	be	forced	to	replace	network	capacity	with	employee
time	to	fulfill	customer	demands.	This	will	virtually	always	result	in	lost
opportunity	costs.

How	does	scale	out	deal	with	these	two	situations?	While	scale	up	builds	single
systems	that	can	be	upgraded	to	increase	their	capacity,	scale	out	builds	smaller
systems	that	can	split	the	load	of	a	single	task	effectively.	For	instance,	rather	than
using	a	pair	of	chassis	switches	to	provide	the	core	of	a	data	center,	a	set	of	smaller
switches	connected	through	a	fabric	that	spreads	the	load	through	equal	cost	load
sharing	over	a	higher	number	of	paths	are	used.	In	the	application	world,	scale	out
normally	involves	breaking	any	given	application	up	into	its	component	parts,	and
then	allowing	as	many	instances	of	each	component	part	(a	thread	or	process)	to	be
created	on	an	as-needed	basis.

Instead	of	using	a	scale	up	model,	inserting	these	services	onto	generic	hardware
scattered	throughout	the	network,	why	not	move	to	a	scale	out	model?	This	is	precisely
the	idea	behind	NFV;	Figure	11.3	illustrates	virtualizing	functions	in	the	network.

Figure	11.3	Virtualizing	Functions	in	the	Network

In	Figure	11.3,	each	of	the	component	services	normally	performed	in	an	appliance	has
been	made	into	a	separate	process,	and	is	being	run	on	generic	compute	and	storage
attached	to	the	data	center	fabric.	Rather	than	having	appliances	configured	inline	that
perform	stateful	packet	inspection,	for	instance,	a	pool	of	processing	elements	that

perform	the	same	function	are	simply	attached	to	the	data	center	fabric.	In	the	same	way
NAT,	SES,	and	the	mail	servers	themselves	are	all	converted	to	processes	running	on
generic	compute	and	storage	resources	attached	to	the	data	center	fabric.

The	range	of	services	that	can	be	virtualized	and	placed	on	the	data	center	fabric,	or	“in
the	cloud,”	in	more	common	parlance,	is	wide.	For	instance:

•	The	termination	of	services	for	mobile	devices,	including	tunnels,	operational	and
business	services,	billing,	and	the	full	range	of	support	for	these	devices	can	be
virtualized	into	a	data	center	fabric.

•	Content	replication	and	duplication	can	often	be	more	efficiently	handled	in
virtualized	scale	out	processes,	rather	than	in	customized	appliances.

The	problem	with	scaling	out	network	services	in	this	way	should	be	obvious	at	this
point.	With	the	scale	up	model,	the	network	engineer	could	place	appliances	into	the	path
of	the	traffic	as	it	passed	from	host	to	server,	or	from	host	to	host.	In	the	scale	out	NFV
model,	traffic	somehow	still	needs	to	pass	through	these	same	services,	but	there’s	no
obvious	way	to	enforce	this	sort	of	traffic	flow	through	a	packet-based	network	with
simple	destination-based	forwarding.

Service	chaining	provides	a	solution	to	this	problem.

Service	Chaining
Service	chaining	relies	on	modifying	the	path	of	a	flow	through	a	network	overlay—or
along	a	tunneled	path	in	a	virtual	topology—to	channel	traffic	through	the	set	of	services
required	to	ensure	the	network	operator’s	policies	are	enforced.	Figure	11.4	returns	to	the
previous	example,	showing	how	a	service	chain	can	be	used	to	push	the	traffic	along	a
path	required	to	ensure	traffic	passes	through	all	the	correct	services	in	the	right	order.

Figure	11.4	Chaining	Traffic	through	the	Services

In	this	case,	traffic	arriving	from	the	host	is	passed	through	Router	A,	and	placed	in
some	sort	of	tunnel	with	an	endpoint	so	it	arrives	at	one	of	the	packet	inspection	processes
within	that	pool.	Once	each	packet	has	been	processed,	it	is	encapsulated	in	a	way	that
causes	the	traffic	to	be	carried	to	a	NAT	process	and	then	on	to	a	process	that	does	spam
filtering,	and	finally	to	the	mail	server	itself.	At	each	of	these	steps,	the	packet	is	not
forwarded	based	on	the	destination	address—which	would	take	the	packet	directly	through
the	fabric	to	the	mail	server,	its	final	destination—but	rather	to	the	next	service	in	the
chain.

How	is	this	accomplished?	There	are	three	basic	models	that	can	be	used	to	form	a
service	chain:

•	The	initial	service	can	be	imposed	by	the	ingress	device	on	the	chain,	which	is
Router	A	in	this	case.	Once	the	packet	arrives	at	the	first	service	in	the	chain,	the
first	service	(or	the	local	hypervisor	virtual	switch)	imposes	the	correct
encapsulation	onto	the	packet	to	carry	it	to	the	next	service.	The	next	service	to
impose	on	the	chain	is	determined	by	some	local	policy	within	the	service	itself.
Once	the	final	service	has	handled	the	packet,	it	simply	forwards	each	packet	based
on	the	destination	address.

•	The	initial	service,	and	all	subsequent	services,	can	be	imposed	by	the	switching
devices	within	the	fabric.	This	is	similar	to	the	first	option,	above,	but	each	segment
in	the	chain	is	imposed	by	devices	in	the	network	(Top-of-Rack	switches,	for
instance),	rather	than	by	the	service	processes	themselves.

•	The	initial	service,	and	all	subsequent	services,	can	be	imposed	by	the	first	device
the	packet	encounters—the	Data	Center	(DC)	edge	switch	in	the	case	of	a	cloud
deployment,	for	instance.	In	this	case,	the	edge	switch	is	given	information	about
every	service	through	which	packets	destined	to	any	particular	service	must	pass,
and	some	way	to	build	a	chain	of	headers	that	can	be	“stacked”	onto	the	packet	that
will	carry	each	packet	through	this	chain	of	services.

Examples	of	each	of	these	types	of	deployments	follow.

Service	Function	Chaining
The	IETF	chartered	the	Service	Function	Chaining	(SFC)	working	group	in	late	2013	to
—:

…	document	a	new	approach	to	service	delivery	and	operation.	It	will	produce
an	architecture	for	service	function	chaining	that	includes	the	necessary
protocols	or	protocol	extensions	to	convey	the	Service	Function	Chain	and
Service	Function	Path	information	to	nodes	that	are	involved	in	the
implementation	of	service	functions	and	Service	Function	Chains,	as	well	as
mechanisms	for	steering	traffic	through	service	functions.4

4.	“Service	Function	Chaining	Charter,”	n.p.,	accessed	May	9,	2015,	https://datatracker.ietf.org/wg/sfc/charter/.

The	SFC	working	group	does	not	define	encapsulations	in	the	traditional	sense—the
SFC	header	does	not	contain	any	information	about	the	source	or	destination	of	a	packet,
so	it	cannot	be	used	for	forwarding.	Rather	the	SFC	header	contains	a	chain	of	services
that	can	be	acted	on	by	either	the	services	within	the	chain	or	by	devices	along	the	path
that	know	how	to	unpack	and	interpret	this	header.

Figure	11.5	illustrates	the	architecture	of	SFC.

Figure	11.5	Service	Function	Chaining	Architecture

The	SFC	specifications	do	not	assume	any	underlying	tunnel	mechanism,	but	the	work
has	largely	taken	place	with	the	base	assumption	that	either	VXLAN	(documented	in	A
Reference	Path	and	Measurement	Points	for	Large-Scale	Measurement	of	Broadband
Performance5)	or	NVGRE	[documented	in	Network	Virtualization	using	Generic	Routing
Encapsulation	Extensions	(draft-sridharan-virtualization-nvgre)]	will	be	the	“common
base,”	or	perhaps	default	tunneling	protocol,	in	use.	Figure	11.6	illustrates	what	is
considered	a	normal	process	for	chaining	packets	through	a	SFC	enabled	overlay	using
one	of	these	tunneling	protocols.

5.	M.	Bagnulo	et	al.,	“A	Reference	Path	and	Measurement	Points	for	Large-Scale	Measurement	of	Broadband
Performance”	(IETF,	February	2015),	accessed	September	24,	2015,	https://www.rfc-editor.org/rfc/rfc7398.txt.

https://datatracker.ietf.org/wg/sfc/charter/
https://www.rfc-editor.org/rfc/rfc7398.txt

Figure	11.6	Service	Function	Chaining	Example

In	this	illustration:

1.	A	packet	is	received	from	some	host	by	the	DC	edge	router.	This	device	examines
the	packet,	and	determining	it	is	part	of	a	flow	destined	to	a	mail	server	connected	to
the	fabric,	imposes	a	service	chain	header	with	the	correct	set	of	services	through
which	this	packet	must	be	routed	before	it	can	be	delivered	to	the	mail	server	itself.
Once	the	service	chain	is	imposed,	the	DC	edge	router	encapsulates	the	packet	into	a
VXLAN,	NVGRE,	or	other	tunnel,	and	forwards	the	packet	toward	the	first	hop
inside	the	fabric,	the	stateful	packet	inspection	service.

2.	The	packet	is	received	by	the	virtual	switch	(VSwitch)	running	in	the	hypervisor	of
the	blade	server	on	which	the	packet	inspection	service	processes	or	containers	are
configured.	The	network	administrator	has	configured	the	service	chain	to	terminate
in	the	VSwitch	rather	than	the	stateful	packet	inspection	processes	themselves
because	these	processes	are	not	SFC	aware—so	the	VSwitch	is	acting	as	a	“proxy”
for	these	services	along	the	service	chain.

3.	The	VSwitch	de-encapsulates	the	packet,	presenting	it	to	one	of	the	stateful	packet
inspection	processes	in	a	format	the	process	will	understand.	Once	the	packet	has
been	processed,	the	packet	is	switched	toward	the	mail	server,	which	directs	it	back
through	the	VSwitch.

4.	The	VSwitch	will	now	reimpose	the	correct	SFC	header,	place	the	packet	into	the
correct	tunnel	to	reach	the	next	service	in	the	chain	(in	the	case,	a	NAT	service)	and
forward	the	packet	back	out	over	the	DC	fabric.

5.	The	NAT	service,	being	SFC	capable,	receives	the	packet	and	processes	it	as
needed.	The	NAT	service	uses	local	routing	information	to	build	the	correct	tunnel
encapsulation	to	carry	the	packet	to	the	next	service	along	the	chain.	In	this	case,	the
next	service	is	the	email	filtering	service,	which	also	happens	to	be	SFC	aware.

6.	The	SES	service,	having	processed	the	packet,	notes	that	the	service	chain	has
ended,	and	the	packet	may	be	forwarded	on	to	its	final	destination—the	mail	server
itself.	The	SES	service	removes	the	SFC	headers	and	forwards	the	remaining	IP
packet	through	the	VSwitch	toward	the	ToR	switch	it	is	physically	connected	to.

7.	The	ToR	receives	the	packet,	examines	its	local	routing	information,	and	forwards
the	packet	over	the	DC	fabric	to	the	mail	server.

SFC	is,	then,	primarily	an	example	of	the	first	(and	potentially	the	second)	kind	of
service	chaining	outlined	above—the	services,	themselves,	control	the	forwarding	of	the
packet	through	the	data	center	(or	cloud)	fabric	by	taking	advantage	of	tunneling
mechanisms	that	already	exist	within	the	overlay	(or	virtual)	network.

Segment	Routing
Segment	routing	is	a	product	of	the	Source	Packet	Routing	in	the	Network	(SPRING)
working	group	of	the	IETF.	The	basic	concept	is	the	same	as	SFC,	but	rather	than
assuming	the	processes	along	the	path	will	manage	the	service	chain,	SPRING	assumes
the	routing	control	plane	will	actually	manage	the	path	of	flows	through	a	network.
SPRING	can	use	one	of	two	modes	of	operation,	as	illustrated	in	Figure	11.7.

Figure	11.7	A	Segment	Routing	Example

To	understand	the	flow	of	traffic	in	this	illustration,	it’s	important	to	start	with	one	basic
definition.	A	segment	actually	represents	a	network	segment	(like	an	Ethernet	segment,
however,	it	might	not	actually	be	Ethernet)	or	an	adjacency	between	two	devices.	In
practice,	a	segment	is	normally	assigned	to	a	routed	interface	much	like	a	destination	IP
address,	or	perhaps	the	inbound	interface	to	the	device	that	knows	how	to	reach	the
service	or	the	segment	where	the	service	lives.	This	might	seem	a	little	confusing,	but	the
point	is	to	get	the	traffic	to	the	service	(or	collection	of	services)	that	lives	on	a	specific
segment.	While	SFC	routes	to	specific	services,	SPRING	routes	to	specific	segments.	This
makes	sense	from	the	perspective	of	segment	routing,	as	it	is	control	plane	focused,	rather
than	specifically	service	focused.	In	the	real	world,	there	might	not	be	much	of	a
difference	between	the	concept	of	a	service	and	a	segment,	but	understanding	the
terminology	is	important	when	trying	to	understand	the	technology.

In	Figure	11.7:

Note

This	description	focuses	on	using	MPLS	to	transport	a	packet	along	a
segment	route	through	a	network.	SPRING	actually	defaults	to	using	a	loose
source	route	header	option	in	IPv6,	but	it’s	simpler	to	illustrate	using	an
MPLS	label	stack,	so	that’s	what	is	used	here.

1.	Traffic	is	received	by	the	ingress	router.	The	destination	address	is	examined,	or
some	form	of	packet	inspection	takes	place	to	determine	the	type	of	information	the
packet	is	carrying	(such	as	HTTPS	SSH),	and	thus	into	which	service	chain	the
packet	needs	to	be	inserted.	Once	this	is	determined,	an	MPLS	label	stack	is
imposed	onto	the	packet,	called	the	SR	Tunnel.	This	stack	encodes	the	list	of
segments	that	the	packet	must	visit	before	being	released	from	the	tunnel	at	the	tail
end.

2.	The	packet	is	forwarded	based	on	the	outer	MPLS	label;	the	packet	is	forwarded
along	the	LSP	for	MPLS	tag	1000,	where	it	reaches	the	first	router	in	the	chain.
Router	B	has	been	configured	to	swap	label	1000	for	1001,	and	forward	the	packet
along	to	one	of	the	packet	inspection	processes	in	the	pool.	This	is	called	a	continue
in	segment	routing;	the	current	outer	label	is	replaced,	rather	than	popped,	before	the
packet	is	forwarded.

3.	Router	B	forwards	the	packet	based	on	the	new	outer	MPLS	label,	this	time	to	one
of	the	packet	inspection	processes.	Just	like	SFC,	a	segment	can	actually	be	an
anycast	destination	in	SPRING.	This	allows	the	packet	to	be	forwarded	to	one	of	a
set	of	segments,	each	of	which	has	(at	least)	one	instance	of	a	particular	service
attached	to	it.	The	packet	inspection	service	finishes	processing	the	packet,	and
forwards	it	back	to	Router	B.

4.	Router	B	now	pops	the	outer	label,	as	this	segment	has	been	completed.	This
exposes	second	MPLS	label	in	the	stack	as	the	new	outer	label.	Router	B	forwards
the	packet,	based	on	this	new	outer	label,	through	the	LSP	indicated	by	the	label
value,	1002.

5.	The	MPLS	label	1002	happens	to	indicate	an	adjacency	between	a	virtual	switch
connected	to	Router	C	and	a	NAT	service.	The	NAT	service	is	directly	participating
in	the	service	chain,	so	it	processes	the	packet	and	pops	the	outer	label,	exposing	the
next	label	in	the	stack,	with	a	value	of	1003.	The	NAT	process	forwards	the	packet
out	through	Router	C,	which	simply	switches	it	based	on	the	outer	label	toward	the
SES	service	next	in	the	chain.

6.	The	SES	service	receives	the	packet,	processes	it,	and	pops	the	final	label	in	the
stack,	exposing	the	IP	header.	At	this	point,	the	service	forwards	the	packet	toward
the	hypervisor	to	forwarding	based	on	the	original	layer	3	forwarding	information.

7.	The	hypervisor	uses	the	IP	destination	address	to	forward	the	packet	toward	the
final	mail	server,	completing	the	journey	of	the	packet	through	the	service	chain.

As	segment	routing	can	use	MPLS	LSPs	as	its	underlying	transport,	it’s	possible	for	the
path	of	a	flow	through	the	network	to	be	defined	using	something	other	than	simply	the

list	of	services	or	segments	packets	in	the	flow	must	visit.	It	is	possible,	for	instance,	to
use	a	centralized	controller	computing	a	path	through	the	network	constrained	by	available
bandwidth,	latency,	or	other	factors,	and	then	signal	the	path	using	PCEP.

Segment	routing,	then,	provides	a	lot	of	flexibility	to	the	network	operator	in	defining	a
set	of	services	or	segments	through	which	a	particular	flow	must	pass	on	its	way	through
the	network.

A	Final	Thought
NFV,	combined	with	some	form	of	service	chaining	(whether	SFC,	SPRING,	or	some
other	option),	provides	a	powerful	set	of	tools	for	operators	to	organize	their	networks
around	services,	rather	than	around	traffic	flows.	Essentially,	rather	than	bringing	services
to	the	traffic	flow,	these	technologies	allow	the	operator	to	bring	the	traffic	to	the	services.
This	has	always	been	possible	with	policy-based	routing,	hacks	with	source-	or	policy-
based	routing,	various	forms	of	tunneling,	and	other	options—but	none	of	these	are	as
architecturally	clean	as	the	options	presented	in	this	chapter.

With	this	background	in	place,	however,	it’s	important	to	return	to	the	concept	of
complexity.	What	are	the	complexity	tradeoffs	involved	in	these	forms	of	“extreme	traffic
engineering”?	The	next	chapter	addresses	this	question.

Chapter	12.	Virtualization	and	Complexity

Network	services,	such	as	stateful	packet	filtering,	network	address	translation,	and	billing
per	unit	of	data	transmitted,	have	traditionally	been	associated	with	appliances.	If	you
wanted	to	block	access	to	a	particular	application	or	part	of	the	network,	you	would
purchase	an	appliance	called	a	firewall,	mount	it	in	a	rack,	and	cable	the	network	so	traffic
passing	into	the	network	would	pass	through	the	appliance.	But	why	should	packet
inspection,	for	instance—ideally	positioned	as	a	software	service	to	support	rapid
deployment	of	new	features—be	tied	to	an	appliance,	and	hence	to	a	specific	physical
location	in	the	network?	And	why	should	a	specific	set	of	services,	no	matter	how
logically	grouped,	be	associated	with	one	specific	physical	appliance?	Instead	of	a	bundle
of	related	services	tied	to	a	physical	appliance	mounted	in	a	rack,	it	should	be	possible	to
run	individual	software-based	services	(perhaps	even	microservices)	on	generic	hardware
located	anywhere	in	the	network.	This	would	allow	the	operator	to	scale	services	out	as
needed,	and	manage	the	lifecycle	of	services	from	a	software,	rather	than	hardware,	point
of	view.

Virtualizing	services	in	this	way,	however,	presents	a	secondary	problem.	If	the	service
is	virtualized,	and	can	therefore	be	placed	anywhere	in	the	network,	how	can	traffic	be
directed	through	it?	When	connecting	physical	appliances,	traffic	is	directed	through	the
service	by	cabling	the	appliance	into	the	network.	Obviously	some	sort	of	“virtual
cabling”	is	needed.	Tunneling	and	policy-based	routing	(or	filter-based	forwarding)	are	the
obvious	solutions	to	this	sort	of	problem,	but	they	add	a	lot	of	complex	configurations	that
need	to	be	managed.	As	services	are	brought	online,	or	as	policies	change	dynamically,	the
entire	infrastructure	of	tunnels	and/or	policy	needs	to	be	tuned—a	difficult,	if	not
impossible,	task.

Service	chaining,	a	technique	allowing	the	network	operator	to	treat	each	service	(or
microservice)	as	a	sort	of	building	block	within	a	larger	service,	can	resolve	these
problems.	Deploying	a	technology	such	as	service	chaining	allows	the	architect	to	design
the	network	around	optimal	usage	of	resources,	rather	than	around	the	services	through
which	traffic	must	flow	while	passing	through	the	network.

Virtualizing	services	into	generic	hardware	running	anywhere	on	the	network,	and	using
service	chaining	to	build	a	larger,	customized	application	out	of	the	virtualized	services,
seems	like	a	win/win	situation.	By	allowing	the	operator	to	disconnect	the	physical	and
logical	locations	of	a	service	from	the	physical	topology,	service	chaining	and	virtualized
services	allow	a	great	deal	of	flexibility	in	building	applications	on	top	of	the	network,	in
scaling	the	network	and	services,	and	in	disconnecting	hardware	lifecycles	from	service
lifecycles.	This	appearance	should	immediately	raise	a	red	flag.	If	you	haven’t	found	a
tradeoff,	then	you	haven’t	looked	hard	enough.

This	chapter	is	focused	on	exploring	the	tradeoffs	in	service	virtualization.	The	first
section	considers	the	concept	of	policy	dispersion	and	network	virtualization,	along	with
the	direct	relationship	between	policy	and	complexity	in	managing	a	large-scale	system.
The	second	section	considers	other	complexity	factors	when	deploying	service
virtualization,	including	failure	domains	(tight	coupling)	and	troubleshooting	(MTTR)—

with	a	slight	detour	through	some	coding	history	as	it	relates	to	maintainability	in	the	real
world.

The	third	section	considers	the	orchestration	effect—how	service	virtualization	allows
the	operator	to	treat	the	network	as	a	set	of	services	and	processes,	rather	than	as	a
topology	and	devices.	This	abstraction	brings	a	great	deal	of	power	to	the	table,	in	terms
of	connecting	to	business	drivers,	but	it	also	brings	its	own	level	of	complexity	into	the
design	space.	The	fourth	section	of	this	chapter	considers	some	practical	advice	on
managing	the	complexity	service	virtualization	and	chaining	introduce	into	network
designs.	The	final	section	provides	some	final	thoughts	on	service	virtualization.

Policy	Dispersion	and	Network	Virtualization
Chapter	4,	“Operational	Complexity,”	touched	on	policy	dispersion	a	bit.	Figure	12.1
provides	an	example	as	a	refresher	on	the	concept,	and	to	continue	discussion	around
policy	dispersion	and	service	virtualization.

Figure	12.1	Policy	Dispersion

In	this	small	network,	there	is	a	single	policy—each	packet	must	pass	through	a	stateful
packet	inspection	while	passing	between	the	originating	host	(on	the	left	side	of	the
diagram)	and	the	destination	server	(on	the	right	side	of	the	diagram).	Assuming	that	the
stateful	packet	inspection	service	can	be	virtualized,	or	somehow	placed	anywhere	in	the
network	topology,	where	should	it	be	inserted	and	configured?	At	point	A,	point	B,	or
point	C	in	the	topology?

If	the	policy	is	configured	at	point	A,	it	must	be	configured	and	managed	on	four
different	devices.	Any	change	in	the	policy	must	be	distributed	to	each	of	these	four
devices	in	a	way	that	produces	roughly	equivalent	service	for	each	of	the	users	impacted.
Somehow	this	policy	must	not	only	be	distributed	consistently,	but	also	within	a	short	time
period.	Remember	the	CAP	theorem	from	Chapter	1,	“Defining	Complexity?”	Keeping
the	configurations	of	a	large	number	of	devices	scattered	throughout	a	network	is	a	direct
application	of	this	theorem—consistent,	accessible,	and	partitionable,	choose	two.	As	the

configuration	is	spread	out	over	multiple	devices,	partitionable	is	chosen	by	default,	so
either	accessible	or	consistent	must	suffer.	Most	often,	consistent	is	the	element	of	the
triad	that	suffers;	network	operators	often	“give	up”	on	managing	the	configuration	of
every	device	in	the	network	in	real	time.

While	configuring	the	policy	at	point	A	has	the	downside	of	increasing	management
strain,	and	the	certain	result	that	not	every	device	is	going	to	be	configured	the	same	in
near	real	time,	it	has	a	compensating	positive	feature.	Any	packets	that	would	otherwise
be	discarded	because	they	fall	outside	the	policies	configured	on	the	stateful	packet
filtering	devices	will	be	discarded	early,	which	means	network	resources	will	not	be
wasted	carrying	packets	that	will	ultimately	be	dropped	to	the	filtering	device.	It	also
exposes	a	large	part	of	the	network	to	unfiltered	traffic—there	is	some	remote	chance	an
attacker	could	use	this	“unfiltered	space”	through	the	network	as	an	attack	surface.

What	about	placing	the	stateful	packet	filtering	at	point	C?	This	does	reduce	the	number
of	devices	that	need	to	be	managed	to	one—but	it	allows	unfiltered	traffic	to	pass	through
the	network.

Placing	the	stateful	packet	filter	at	point	C	doesn’t	just	use	the	network	less	efficiently;
however,	it	also	means	the	device	placed	at	point	C	must	be	able	to	support	the	same	load
and	traffic	flow	that	devices	placed	at	point	A	would.	In	other	words,	the	single	device	at
point	C	must	be	able	to	scale	to	four	times	the	size	of	the	same	devices	positioned	at	point
A	in	the	network.

There	are	two	problems	with	the	current	service	model,	then.	First,	the	service	must	be
brought	to	the	traffic	flow.	While	some	degree	of	traffic	engineering	can	be	admitted,	in
the	end	all	traffic	must	flow	through	some	appliance	or	device	that	instantiates	the	service
in	order	for	the	policy	to	be	applied.	Second,	the	service	must	be	scaled	in	a	way	that
accommodates	its	placement	in	the	network,	rather	than	in	a	way	that	accommodates	its
usage.	Neither	of	these	are	ideal	from	an	operational	or	business	perspective.

What	if	instead	of	bringing	the	service	to	the	traffic—placing	the	stateful	packet	filters
in	the	network	where	the	traffic	will	necessarily	pass	through	them—the	traffic	is	brought
to	the	service?	This	would	disconnect	the	location	of	the	service	in	the	network	from	the
implementation	of	the	policies	the	service	represents,	and	it	would	allow	the	service	to	be
scaled	out,	rather	than	up.

This	is	precisely	what	service	chaining	allows	the	operator	to	do.	Service	chaining	lets
you	bring	the	traffic	to	the	policy,	so	you	can	implement	the	policy	in	a	fewer	number	of
places,	across	a	smaller	set	of	devices,	preferably	virtualized	on	a	standard	set	of
hardware.	Figure	12.2	illustrates	the	same	network	after	gathering	the	stateful	packet
inspection	services	into	a	single,	scalable	service	running	in	one	location	in	the	network,
with	chaining	used	to	pull	packets	through	the	server	to	the	final	destination.

Figure	12.2	Appliances	Replaced	with	a	Virtualized	Service

Examining	a	few	different	points	along	the	state/speed/surface	model	will	help	to	bring
the	various	complexity	tradeoffs	into	sharper	focus.

State	and	Service	Chaining
The	primary	driver	behind	virtualizing	the	services	is	the	reduction	in	the	amount	of
policy	dispersed	throughout	the	network.	Done	correctly,	service	virtualization	can	move
policy	from	a	large	number	of	devices	(hundreds	to	hundreds	of	thousands—in	the	case	of
virtualizing	the	network	edge	for	mobile	devices,	such	as	cell	phones)	into	a	single	data
center	fabric.	Once	these	services	are	moved,	the	policy	that	goes	with	them	can	be
centrally	managed	through	an	automation	system.	This	is	a	huge	gain	for	the	operator,
because	both	across	the	board	and	individualized	policies	can	be	efficiently	managed,
lowering	cost	and	complexity	from	a	policy	perspective.

From	the	perspective	of	the	control	plane,	however,	the	amount	of	state	in	the	network
increases.

First,	there	must	be	some	form	of	tunneling	and	the	associated	control	plane	in	place	to
carry	traffic	that	is	transmitted	to	one	destination	through	a	chain	of	services	instead	(as
described	in	Chapter	11,	“Service	Virtualization	and	Service	Chaining”).	Assuming	that
the	virtualized	services	will	reside	in	a	data	center,	tunneling	and	the	associated	control
plane	information	isn’t	going	to	add	a	lot	of	additional	complexity.	Most	data	center
networks	are	already	built	with	an	underlay	that	provides	some	form	of	simple	switching
through	the	fabric	(often	IP	or	IP/MPLS	only),	and	then	an	overlay	that	provides	a	richer
control	plane	for	virtualized	connectivity,	the	necessary	tunneling	mechanisms	will	likely
already	be	in	place.

Second,	the	service	chain	must	be	imposed	someplace—there	must	be	some	device	that
creates	a	tunnel	header	with	information	about	each	service,	and	any	packet	within	a
chained	flow	must	be	passed	into	the	tunnel	(or	have	the	service	chain	header	written	into
the	packet)	in	some	way.	To	accomplish	this,	the	service	chain	itself	must	be	carried
through	a	control	plane	or	management	system	to	the	edge	of	the	data	center	network
(generally	the	inbound	fabric	edge	or	gateway).	This	service	chain	information	represents

an	additional	state	carried	through	the	control	plane—hence	an	increase	in	the	amount	of
control	plane	state,	and	an	increase	in	the	complexity	of	the	control	plane.

In	the	area	of	state,	then,	virtualization	offers	a	mixed	bag.	It	reduces	policy	dispersion
and	decreases	state	from	a	policy	perspective,	but	it	increases	state	in	the	control	plane,
and	increases	network	stretch.	As	with	all	things	in	network	design,	no	single	answer	is
the	“right”	answer	for	every	network.	Most	networks	will	probably	see	their	complexity
decrease	in	aggregate	complexity	through	the	virtualization	of	services,	while	a	smaller
percentage	might	see	an	increase	in	aggregate	complexity.

State	and	Optimization
Carrying	a	flow	through	a	service	chain	will	almost	certainly	increase	network	stretch.
Comparing	Figures	12.1	and	12.2	amply	illustrates	the	increasing	stretch	as	the	service
moves	from	residing	on	an	inline	appliance	to	an	offline	service	along	the	path	to,	finally,
a	virtualized	service	connected	to	a	data	center	fabric.	While	the	data	center	fabric	is	(or
should	be)	optimized	for	very	low	latency,	low	packet	loss	levels,	low	jitter,	and	all	the
“rest	of	the	best”	in	quality	of	service,	there	are	still	several	additional	hops	through	the
network.	The	flow	must	move	through	the	data	center	edge	(gateway),	three	(or	more,
depending	on	the	network	topology)	hops	through	the	fabric	to	the	Top-of-Rack	(ToR)
switch,	to	where	the	virtualized	stateful	packet	filtering	service	is	located,	through	the
hypervisor	and	virtual	switch	on	the	compute	side	of	the	ToR,	back	through	the	hypervisor
and	virtual	switch,	through	three	more	hops	through	the	fabric,	and	finally	to	the	server.
Increasing	the	stretch	in	this	way	will	increase	the	complexity	of	the	data	plane	through
which	the	flow	must	travel.	There	are	several	additional	queues,	several	additional	points
where	packets	must	be	de-encapsulated	and	then	encapsulated,	etc.

Increasing	the	stretch	in	this	way	also	reduces	the	efficiency	of	the	network	in	terms	of
pure	utilization	of	resources.	The	efficiency	of	the	network	overall	might	increase	through
virtualization,	but	the	amount	of	bandwidth	required	to	handle	one	flow	will	increase	in
aggregate	as	the	stretch	of	the	path	through	the	network	increases.	The	optimization	of	the
network	therefore	suffers,	at	least	in	terms	of	efficiency	of	bandwidth	utilization,	through
virtualization.

Comparing	Figure	12.1	with	Figure	12.2	exposes	the	amount	of	time	a	packet	must
spend	passing	through	the	network	before	being	filtered,	illustrating	the	optimization
tradeoff	in	service	chaining.	In	most	service	chaining	solutions,	traffic	is	tunneled	through
the	network,	reducing	the	security	exposure	risk	to	some	degree	(tunneling	is	not	a	strong
security	mechanism	in	general,	but	it	at	least	prevents	internal	device	interfaces	from
being	exposed	to	external	traffic).	Unfiltered	traffic	is	still	carried	through	the	network
only	to	be	dropped	at	the	filter,	wasting	bandwidth,	power,	and	other	resources.

Note

This	illustration	covers	traffic	passing	into	and	out	of	the	data	center	fabric,
and,	as	such,	illustrates	the	worst	case	to	examine	the	tradeoff	engineers’	need
to	look	for	when	considering	service	chaining.	For	east/west	traffic	within	a
data	center	or	cloud	fabric,	these	tradeoffs	may	run	in	the	other	direction—
service	chaining	might	actually	provide	better	optimization	in	terms	of
network	utilization.	Engineers	need	to	be	aware	of	both	situations,	and
carefully	consider	where	complexity	is	being	added,	and	how	optimization	is
impacted.

Surface	and	Policy	Interaction
Returning	to	Figure	12.2,	how	does	the	DC	edge	router,	marked	Router	A	in	the	diagram,
know	what	service	chain	to	impose	on	the	packets	in	the	inbound	flow?	This	information
must	be	carried	in	the	control	plane	in	some	way—a	point	noted	in	the	previous	section	on
state—but	how	is	it	communicated	to	the	control	plane	to	be	carried	to	the	edge	router?
There	must	be	some	connection	between	the	control	plane	and	an	outside	system	that
provides	this	information.	What	must	this	system	do?

•	Determine	what	the	correct	policies	are.

•	Determine	which	flows	map	each	to	which	policy	must	be	applied.

•	Determine	where	the	virtual	services	are	in	the	network	that	can	supply	those
services.

•	Determine	the	correct	service	chain	to	push	packets	through	that	set	of	services.

•	Communicate	this	service	chain	to	the	control	plane.

Ignoring	the	added	complexity	of	this	external	system—what	might	be	called
orchestration,	as	it	orchestrates	which	flows	map	to	which	service	locations—the
interaction	between	the	control	plane	and	this	system	is	another	surface	that	must	be
accounted	for.	Adding	a	new	interaction	surface	to	allow	these	tasks	to	be	completed	will
clearly	increase	the	complexity	of	the	network	as	a	complete	system.

Surface	and	Policy	Proxies
Another	interaction	surface	to	consider	is	the	connection	between	packet	level	policy	and
forwarding	policy.	When	traffic	enters	the	DC	fabric	at	Router	A,	there	must	be	some
form	of	classifier	that	recognizes	that	this	packet	belongs	to	a	specific	flow	onto	which	a
specific	service	chain	must	be	imposed.	This	classification	mechanism	essentially	serves
as	a	proxy	for	the	services	through	which	any	given	packet	or	flow	must	be	chained.	The
process	of	centralizing	one	policy	has	effectively	dispersed	another	sort	of	policy	to	the
edge	of	the	network	in	its	stead.

There	are	a	lot	of	differences	between	these	two	sets	of	policies,	of	course:

•	Packet	inspection	policy	has	a	(potentially)	deep	set	of	filter/pass	policies	that	must
examine	an	array	of	fields.	The	information	examined	includes	information	about

the	flow	that	spans	packets,	such	as	the	state	of	the	flow,	the	type	of	information
being	transferred,	and	valid	and	invalid	encodings.

•	Packet	classification	is	generally	designed	to	operate	on	the	minimum	amount	of
information	possible,	such	as	a	destination	address	or	a	five	tuple	(the	source	and
destination	addresses,	the	source	and	destination	ports,	and	the	protocol).

•	Packet	inspection	normally	stands	alone	in	the	network;	packet	inspection	might	be
combined	with	other	services	on	a	single	appliance,	but	conceptually	you	wouldn’t
mix	packet	inspection	with	load	balancing,	for	instance.

•	Packet	classification	is	normally	performed	across	all	packets	to	support	a	wide
array	of	services.	Packets	can	be	classified	and	chained	at	a	network	edge	for	packet
inspection,	load	sharing,	and	a	number	of	other	services.

A	broader	way	to	state	is	that	by	replacing	the	actual	packet	inspection	policy	at	the
network	edge	with	a	packet	classifier	that	directs	traffic	into	a	service	chain,	you	are
replacing	a	specialized	service	with	a	more	generic	one.	While	this	doesn’t	eliminate
policy	dispersion,	it	allows	multiple	services	to	share	the	same	channel	and
implementations	along	the	network	edge.	Hence,	complexity	is	not	eliminated	from	the
edge	through	service	chaining,	but	the	weight	of	complexity	can	be	moved	from	the	edge
toward	the	centralized	services.

Using	forwarding	policy	as	a	proxy	for	a	more	complex	policy	deeper	in	the	network
has	another	side	effect	worth	considering—the	interaction	surface	between	the	control	and
forwarding	planes	actually	becomes	deeper,	not	just	broader.	Carrying	policy	in	the
control	plane	means	the	control	plane	is	not	only	responsible	for	determining	reachability,
but	also	for	carrying	policy	that	must	be	applied	to	packets	as	they	pass	through	the
network.	There	must	be	hooks	or	interaction	points	between	the	control	and	forwarding
planes	on	each	edge	device	to	ensure	that	the	policy	information	carried	in	the	control
plane	is	interpreted,	installed,	and	otherwise	managed	correctly.

Other	Design	Considerations
Several	complexity	tradeoffs	don’t	fit	neatly	into	the	state/speed/surface	model;	these	will
be	covered	in	this	section.	Three	specific	areas	should	be	of	concern	to	the	more
traditional	network	designer:

•	The	size	of	failure	domains.

•	The	relationship	between	abstraction	(hiding	state)	and	the	MTTR.

•	Network	operation	predictability.

Coupling	and	Failure	Domains
One	of	the	first	lessons	network	engineers	learned	(the	hard	way)	was	that	failure	domains
are	an	important	part	of	the	design.	Two	tightly	coupled	systems	can	form	a	single	failure
domain;	a	failure	in	one	will	“leak”	into	the	second,	causing	a	failure	from	the	first	to
spread	to	the	second.	An	example	of	this	is	in	route	redistribution	as	illustrated	using	the
network	shown	in	Figure	12.3.

Figure	12.3	Coupling	and	Failure	Domains

In	this	illustration,	Routers	A	is	sending	some	large	number	of	routes	to	Router	B
through	eBGP.	To	make	the	scenario	realistic,	assume	that	this	is	a	full	default	free
Internet	routing	table,	so	more	than	a	half	a	million	routes	(at	presstime,	but	it’s	bound	to
grow	over	time).	Router	B	is	configured	as	a	route	reflector	client	of	Router	E,	so	it	is
passing	this	full	table	on	within	the	AS.	Router	B	is	also,	however,	configured	to
redistribute	a	small	number	of	the	routes	learned	through	eBGP,	from	Router	A,	into	a
local	OSPF	process.	While	such	redistribution	between	protocols	is	uncommon,	there	are
real-world	situations	where	it	is	useful.

If	such	redistribution	is	configured,	it’s	common	for	the	redistribution	to	fail	in	some
way.	Either	an	operator	misconfigures	a	filter	(perhaps	the	filters	are	based	on	a
community	someone	disables	because	they	don’t	know	what	it’s	being	used	for)	or	the
redistribution	code	has	a	defect	(both,	again,	are	real-world	situations).	The	result	of	the
failure	is	all	the	BGP	routes	being	redistributed	into	OSPF,	and	the	failure	of	OSPF	to
converge.	OSPF’s	failure	then	causes	BGP,	which	relies	on	underlying	IP	connectivity	to
operate	correctly,	to	fail	as	well,	so	the	entire	network	crashes.

OSPF	and	BGP	are	tightly	coupled	in	this	situation—not	only	through	redistribution,
but	also	through	BGP’s	reliance	on	OSPF	to	provide	the	underlying	reachability	it	needs
to	operate.	Still,	this	type	of	situation	often	surprises	network	engineers,	who	assume	that
the	filters	on	redistribution,	or	the	process	of	redistributing	routes	between	two	control
planes,	separate	the	failure	domains	by	removing	or	reducing	coupling.

Rather	than	crashing	the	network,	it’s	also	possible	for	traffic	forwarded	to	destinations
behind	Router	A	to	be	black	holed	at	either	Router	C	or	D.	Assume	that	a	packet	is
forwarded	to	Router	C	by	Router	E	with	a	destination	somewhere	beyond	Router	A.	As
Router	C	is	not	running	BGP,	it	must	rely	on	routes	learned	through	OSPF	to	build	the
forwarding	table	entries	on	which	this	packet	will	be	switched.	If	BGP	is	not	being
redistributed	into	OSPF	at	Router	B,	how	will	Router	C	know	about	the	destination?	It
won’t—hence,	it	will	drop	the	traffic.	In	this	case,	both	control	planes	(BGP	and	OSPF)
can	be	operating	properly,	but	combined	they	cause	a	network	failure.	Again,	the	two
systems,	in	this	network	configuration,	must	be	tightly	coupled	for	proper	network

operation.

In	terms	of	surface	in	the	complexity	model	used	throughout	this	book,	there	are	two
interaction	surfaces	involved.

•	Redistribution,	which	is	controlled	for	breadth	by	redistributing	at	a	small,	well-
defined	number	of	points	in	the	network.	The	depth	of	this	interaction	surface	is
controlled	through	redistribution	filters—so	although	it	is	a	deep	interaction,	it	is
limited	in	scope	to	the	minimum	possible.

•	The	interaction	between	reachability	provided	by	one	system	and	the	operation	of
the	other	system	is	not	very	deep,	but	it	is	very	broad.	The	failure	of	the	depth
control	in	the	first	point	of	contact	between	these	two	protocols	causes	a	failure	in
the	second—a	classic	cascading	failure	case	across	multiple	interaction	surfaces
between	two	systems.

Software	design	has	long	worked	around	the	same	fundamental	concepts.	For	instance:

Note

When	services	are	loosely	coupled,	a	change	to	one	service	should	not	require
a	change	to	another.	The	whole	point	of	a	microservice	is	being	able	to	make
a	change	to	one	service	and	deploy	it,	without	needing	to	change	any	other
part	of	the	system.	This	is	really	quite	important.1

1.	Sam	Newman,	Building	Microservices,	First	Edition	(O’Reilly	Media,	2015),	30.

Imposing	a	service	chain	carried	by	the	control	plane	at	the	edge	of	the	network	creates
just	this	sort	of	coupling	between	systems.	Using	service	chains	binds	the	control	plane	to
the	services	architecture,	and	the	services	architecture	to	the	data	plane,	or	the	forwarding
state.	This	sort	of	coupling	essentially	combines	the	services,	any	orchestration	service
that	ties	services	and	service	chains	together,	and	the	control	plane	into	a	single	large
failure	domain.	Figure	12.4	illustrates	one	case	where	a	failure	in	one	system	can	impact
the	other	systems	in	a	catastrophic	way.

Figure	12.4	Tightly	Coupled	Failure	Domains	in	a	Service	Chain

In	Figure	12.4:

•	A	packet	enters	at	Router	A	with	a	destination	prefix	of	2001:db8:0:1::/64.

•	Router	A	has	some	policy	that	imposes	a	service	chain	on	this	packet	to	pass	through
the	service	labeled	1000,	then	1001,	and	then	to	be	released	for	normal	forwarding.

•	The	packet	follows	the	service	chain	to	Router	B,	which	removes	the	first	label	and
then	forwards	it	to	Router	C.

•	The	packet	follows	the	service	chain	to	Router	C,	which	processes	the	packet,
removes	the	service	chain,	and	forwards	along	the	shortest	path	to
2001:db8:0:1::/64.

•	The	shortest	path	from	Router	C	to	2001:db8:0:1::/64	is	through	Router	A.

•	The	packet	is	forwarded	to	Router	A,	which	has	some	policy	that	imposes	a	service
on	this	packet	to	pass	through	the	service	labeled	1000,	then	1001,	and	then	to	be
released	for	normal	shortest	path	forwarding	through	the	network.

The	problem	should	be	obvious.	If	the	flow	toward	2001:db8:0:1::/64	is	large	enough,
it’s	possible	to	move	from	a	simple	failure	of	the	service	chain	to	a	cascading	failure—the
looping	traffic	can	easily	overwhelm	one	of	the	three	links	over	which	it	is	passing,
causing	the	distributed	routing	protocol	to	fail,	as	well.

Troubleshooting
The	effective	troubleshooting	of	a	network	is	heavily	dependent	on	a	few	underlying
processes,	such	as	half	splitting—the	process	of:

1.	Finding	the	path	of	the	signal	or	information	through	the	system.

2.	Finding	a	“half	way”	point	in	this	path.

3.	Measuring	the	signal	at	the	halfway	point	to	determine	if	it	is	correct	(as	expected)

or	not.

4.	If	it	is	as	expected,	find	the	point	halfway	between	the	current	measurement	point
and	the	end	of	the	signal	path	and	repeat.

5.	If	it	is	not	as	expected,	find	the	point	halfway	between	the	current	measurement
point	and	the	beginning	of	the	signal	path	and	repeat.

The	ability	to	troubleshoot	a	network	(or	any	system)	depends	on	the	ability	of	an
engineer	to	understand	the	path	of	the	signal,	or	the	flow	of	information,	through	the
system.	Edsgar	Dijkstra	described	this	situation	in	more	eloquent	terms	in	his	paper	on
goto	statements	in	programming	languages:

Note

My	first	remark	is	that,	although	the	programmer’s	activity	ends	when	he	has
constructed	a	correct	program,	the	process	taking	place	under	control	of	his
program	is	the	true	subject	matter	of	his	activity,	for	it	is	this	process	that	has
to	accomplish	the	desired	effect;	it	is	this	process	that	in	its	dynamic	behavior
has	to	satisfy	the	desired	specifications.	Yet,	once	the	program	has	been
made,	the	“making”	of	the	corresponding	process	is	delegated	to	the	machine.
The	unbridled	use	of	the	go	to	statement	has	an	immediate	consequence	that	it
becomes	terribly	hard	to	find	a	meaningful	set	of	coordinates	in	which	to
describe	the	process	progress.2

2.	Edsgar	Dijsktra,	“Go	To	Statement	Considered	Harmful,”	University	of	Arizona,	n.p.,	last	modified	1968,
accessed	June	5,	2015,
http://www.u.arizona.edu/~rubinson/copyright_violations/Go_To_Considered_Harmful.html.

Dijkstra—the	inventor	of	the	most	widely	used	SPF	algorithm	used	in	link	state
protocols—is	essentially	saying	here	that	goto	statements	make	it	much	harder	to	connect
the	flow	of	the	information	with	the	flow	of	the	code.	Instead	of	simply	reading	the	code,
someone	trying	to	troubleshoot	and	fix	a	problem	must	“break	context”	by	following	goto
statements	wherever	they	lead,	trying	to	put	the	entire	flow	back	together	in	their	heads.
Turning	to	Dijkstra’s	argument	again:

Note

My	second	remark	is	that	our	intellectual	powers	are	rather	geared	to	master
static	relations	and	that	our	powers	to	visualize	processes	evolving	in	time	are
relatively	poorly	developed.	For	that	reason	we	should	do	(as	wise
programmers	aware	of	our	limitations)	our	utmost	to	shorten	the	conceptual
gap	between	the	static	program	and	the	dynamic	process,	to	make	the
correspondence	between	the	program	(spread	out	in	text	space)	and	the
process	(spread	out	in	time)	as	trivial	as	possible.3

3.	Ibid.

Transferring	this	to	the	networking	world,	and	service	chaining	in	particular,	is	simple:
a	service	chain	is	the	software	equivalent	of	a	goto	statement	in	code.

http://www.u.arizona.edu/~rubinson/copyright_violations/Go_To_Considered_Harmful.html

Coders	now	use	goto	widely—there	are	over	100,000	goto	statements	in	the	Linux
kernel	code4—but	they	do	so	within	patterns	(or	models)	that	make	it	easy	to	understand
what	the	goto	is	being	used	for	and	how	to	trace	information	flowing	through	the	process.
Multiple	goto	statements	being	used	instead	of	an	if/else	construction	is	considered	bad
form,	but	using	goto	to	break	out	of	a	loop	when	an	error	has	been	encountered	is
considered	okay.	A	goto	leading	to	another	goto	is	considered	particularly	a	bad	form,	as
this	often	leads	to	spaghetti	code.

4.	“Goto,”	Wikipedia,	accessed	June	5,	2015,	https://en.wikipedia.org/wiki/Goto#Criticism_and_decline.

In	the	networking	world,	creating	a	spaghetti	flow	with	service	chaining	can	be	just	as
easy	(and	just	as	bad)	as	creating	spaghetti	code	using	goto	statements	in	a	program.	The
result	is	a	disconnect	between	the	flow	of	the	information	through	the	system	and	the
service	chain	itself,	causing	major	headaches	in	troubleshooting,	high	MTTR,	and	high
Mean	Time	Between	Maintenance.

As	a	practical	illustration,	consider	the	network	engineer	who	is	trying	to	resolve	a
problem	with	jitter	through	a	particular	network.	The	engineer	begins	at	the	network	edge,
examining	the	table	entries	that	will	be	used	to	forward	packets	in	flows	of	a	specific	type
through	the	network.	Examining	the	forwarding	table	on	the	inbound	device,	the	engineer
finds	a	set	of	flow	labels.

Now	what?	What	precisely	does	this	set	of	flow	labels	mean?	Which	network	segment
will	this	packet	flow	over?	That	information	is	abstracted	out;	the	engineer	must	connect
the	label	with	a	forwarding	path	by	stepping	deeper	into	the	forwarding	table.	The	path
itself	is	disconnected	from	the	topology,	as	well.

Each	of	these	disconnects	reduces	the	ability	of	the	engineer	to	quickly	grasp	and
troubleshoot	the	problem	at	hand—making	troubleshooting	network	level	problems	a
complex	problem,	indeed.

Network	Operation	Predictability

One	often	unstated	network	design	principle	is	predictability.	Two	specific	considerations
drive	the	desire	for	predictability	in	a	network	design:

•	It’s	difficult	to	measure	things	that	are	constantly	changing	in	any	way	that	actually
provides	a	meaningful	baseline.	If	the	state	of	the	network	is	constantly	changing,
including	the	path	of	particular	flows	or	application	traffic,	it’s	difficult	to	get	a	feel
for	what	“normal”	looks	like.	This	inability	to	determine	what	“normal”	looks	like
directly	impacts	the	ability	of	the	network	engineer	to	predict	future	requirements,
and	to	repair	problems	once	they	appear.	It’s	hard	to	know	what	is	broken	if	you
don’t	know	what	“working”	looks	like.

•	It’s	hard	to	know	what	the	state	of	the	network	will	be	after	any	specific	failure
occurs.	If	a	link	fails,	where	will	the	traffic	move,	and	what	will	the	impact	be	on	the
links	it	moves	to?

Network	engineers	can	get	into	something	of	a	panic	if	they	can’t	answer	these	kinds	of
questions—they’re	fundamental	to	the	ability	to	predict	how	much	additional	bandwidth	is
needed,	where	quality	of	service	needs	to	be	applied,	controlling	delay	and	jitter,	and

https://en.wikipedia.org/wiki/Goto#Criticism_and_decline

many	other	things.

It	makes	more	sense	to	try	and	get	a	handle	on	a	bigger	picture—to	mine	the	network
for	information,	rather	than	to	try	and	make	per	link	predictions.	Not	everything	can	be
defined	in	the	design	or	deployment	phase	of	network	engineering;	sometimes	it	must	be
discovered,	instead.

The	Orchestration	Effect
Rising	above	the	wire,	however,	service	chaining	and	function	virtualization	can	improve
the	ease	of	which	you	can	understand	and	manage	the	flow	of	information	through	the
network	in	two	ways.

First,	service	chaining	abstracts	out	the	topology—much	like	a	link	state	flooding
domain	boundary—leaving	just	information	about	what	services	a	particular	flow	must
pass	through,	and	how	those	services	modify	the	flow.	This	abstraction	relieves	the
orchestration	system,	which	is	spinning	up	services	and	matching	flows	to	services	as
needed,	from	dealing	with	more	fine	grained	details,	such	as	how	traffic	will	actually	flow
through	the	network.	In	the	same	way,	this	abstraction	allows	those	who	are	more	business
minded	to	focus	on	the	flow	of	information	without	getting	involved	in	how	the	network
actually	works.	This	can	improve	the	connection	between	business	drivers	and	network
engineering	(in	design,	implementation,	and	operations),	providing	a	pathway	between	the
two	worlds.

This	effectively	separates	topology	from	policy,	layering	the	control	plane.	Each
resulting	layer	deals	with	one	type	of	information	well,	and	interacts	with	the	other	layer
through	a	well-defined	and	constrained	surface.	This	follows	the	cohesion	principle:
gathering	related	behavior	together,	and	pushing	unrelated	behavior	into	other
components.	This	also	helps	implement	the	single	responsibility	principle:	focusing	each
particular	service	or	component	on	doing	one	good	job	well.

Second,	virtualizing	functionality	allows	services	to	be	broken	into	smaller	pieces	that
can	be	scaled	out,	rather	than	maintained	as	larger	monolithic	units	that	must	be	scaled	up.
Each	service	then	becomes	a	fairly	standard	“thing”	that	can	be	managed	separately,
including	being	placed	where	there	are	resources	on	the	network	rather	than	where	the
traffic	is	already	flowing.	Virtualization,	combined	with	service	chaining,	allows	services
to	be	managed	as	low-touch	services,	rather	than	as	high-touch	appliances,	or	unique,
custom	engineered	solutions	(also	known	as	“special	snowflakes”).

Scale	Up	versus	Scale	Out

Scale	up	and	scale	out	are	commonly	used	terms	in	application	development—but
they	aren’t	terms	network	engineers	already	run	in	to.	What	do	they	mean?	The
difference	between	the	two	can	be	likened	to	creating	multiple	parallel	resources
versus	creating	one	single	larger	resource.	Figure	12.5	illustrates	the	two	concepts.

Figure	12.5	Scale	Up	versus	Scale	Out

If	Process	1,	for	instance,	becomes	overloaded	in	the	scale	up	solution,	the	entire
compute	container	must	be	made	larger.	The	application	is	simpler,	in	some	ways,
to	develop,	as	interprocess	calls	are	“local”	within	the	application,	and	mechanisms
such	as	shared	memory	can	be	used	to	simplify	passing	arguments	and
implementing	features.	In	the	scale	out	solution,	each	process	must	be	made	to	be
self-contained,	and	the	application	must	be	broken	up	into	smaller	services	or
microservices.	Each	of	these	services	runs	on	(potentially)	different	compute
platforms,	possibly	even	using	different	languages	and	environments,	and
communicates	across	the	network	through	some	communications	interface	such	as
REST.	However,	once	the	application	has	been	broken	up	into	pieces,	each	process
can	be	scaled,	replaced,	and	managed	independently.

Once	the	application	is	broken	up	into	processes,	each	process	can	actually
represent	a	service,	and	the	services	can	be	chained	together	using	service	chaining.
You	saw	that	one	coming,	didn’t	you?

An	analogous	situation	in	network	engineering	is	the	difference	between	higher
speed	links	and	parallel	links	of	a	slower	speed.	When	traffic	overruns	a	single	link,
there	are	two	options:	upgrade	the	link	to	a	higher	speed	(scale	up),	or	add	more
parallel	links	(scale	out).	Each	has	advantages	and	disadvantages,	of	course.

Managing	Complexity
It’s	important	to	go	back	to	the	beginning	of	this	book	and	consider	the	role	complexity
plays	in	the	network.	It’s	impossible	to	resolve	complexity;	rather,	complex	solutions	are
required	to	solve	hard	problems.	The	most	network	engineers,	designers,	architects,	and
all	the	other	people	working	in	and	around	networking	technologies	can	do	is	to	manage
complexity.	Don’t	be	afraid	of	complexity,	but	don’t	allow	complexity	to	build	where	it
doesn’t	add	any	value.	In	the	spirit	of	this	line	of	thinking,	how	can	network	engineers
manage	complexity	when	service	virtualization	and	chaining	come	into	play?

First,	return	to	the	basics.	Remember	the	hourglass,	illustrated	in	Figure	12.6?

Figure	12.6	The	Hourglass	Model	of	Reducing	Complexity

Strive	to	build	an	hourglass	in	the	network,	as	this	facilitates	loose	coupling	across
domains	and	allows	you	to	separate	complexity	from	complexity.	While	you	might	not
have	multiple	physical	layer	protocols,	you	might	face	the	temptation	to	deploy	a	dozen
different	control	planes,	and	a	matching	number	of	transport	overlay	mechanisms,	onto	a
single	fabric.	After	all,	what	does	it	hurt	if	you	run	VXLAN,	NVGRE,	MPLS,	and
MPLSoGRE	on	the	same	IP	infrastructure?	What	does	it	matter	if	there	are	multiple	SDN
controllers,	BGP,	and	some	other	mechanisms	all	tangled	up	as	overlapping	control
planes?

The	difference	it	makes	can	be	seen	by	returning	to	the	model	of	complexity	built
earlier	around	state,	speed,	surface,	and	optimization.	Each	additional	control	plane	adds
another	layer	of	state;	each	additional	transport	system	adds	another	interaction	surface.	A
rule	of	thumb	here	might	be:	since	you	can’t	control	complexity	in	some	areas	of	the
network,	for	instance	the	way	applications	run	across	the	network	and	the	path	traffic
takes	through	the	network,	keep	a	tight	lid	on	the	complexity	you	can	control.	This	will
encourage	the	hourglass	model,	ultimately	making	the	complexity	manageable.

Second,	remember	the	lesson	of	goto.	Once	you	start	using	goto,	it	can	be	addictive.
“Why	not	just	place	this	part	of	the	service	over	here	in	this	data	center,	and	that	part	over
there	in	another	one?	Why	can’t	we	service	chain	between	various	databases	on	the
backend,	and	between	services	on	the	front	end,	and	between	business	logic	in	the
middle?”

The	answer	is	because	you’re	going	to	end	up	with	spaghetti	code.	Just	as	spaghetti
code	is	unmaintainable	within	an	application,	it’s	also	unmaintainable	between	the
services	that	result	from	breaking	an	application	up.	Build	a	framework	around	what	is,

and	isn’t,	allowed	with	the	goto	statement	of	service	chaining.	One	suggested	rule,	for
instance,	might	be	“no	traffic,	once	it	passed	through	a	service,	should	pass	through	the
same	service	again.”	This	would	be	the	equivalent	of	not	having	goto’s	chained	through	a
number	of	modules,	making	it	impossible	to	mentally	connect	the	traffic	flow	with	the
logic	(or	services)	flow.

A	Final	Thought
Given	the	complexity	of	building	and	managing	virtualized	services	and	service	chaining,
why	are	so	many	large	network	operators	moving	in	this	direction?	The	primary	reason	is
actually	that	the	business	logic	and	development	folks	are(for	once)	throwing	complexity
back	over	the	cubicle	wall.	Whether	the	complexity	belongs	in	the	network,	or	in	the
application	and	business	logic,	is	ultimately	a	business	decision.	Often,	though,	a	few
factors	dictate	that	pushing	this	complexity	into	the	network	makes	sense.	For	instance:

•	Making	the	application	development	process	match	the	flow	and	pace	of	business
operations	allows	IT	to	drive	more	value.	This,	in	turn,	makes	IT	a	more	integrated
part	of	the	business—a	good	thing.

•	Breaking	monolithic	applications	into	individual	services	allows	the	business	to
compose	applications	on	the	fly.	This	means	new	services	can	be	developed	and
offered	without	building	them	entirely	from	scratch;	reuse	of	existing	services	is
easier	than	reuse	of	existing	monolithic	applications.

•	Breaking	monolithic	applications	into	individual	services	allows	the	development
teams	to	build	and	manage	applications	in	a	way	that	prevents	a	number	of
traditional	problems—such	as	the	huge,	large-scale	application	that	runs	on	a	server
sitting	in	the	corner	that	everyone	is	afraid	to	touch,	but	is	crucial	to	the	business’
operation.

Given	the	cost–benefit	tradeoffs,	service	virtualization	is	normally	actually	a	good
tradeoff,	rather	than	a	bad	one.	This	is	why	the	concept	is	becoming	so	popular,
particularly	in	large-scale	service	provider	networks.

Chapter	13.	Complexity	and	the	Cloud

Cloud	computing	is	one	of	the	big	movements	in	the	networking	and	information
technology	worlds	right	now.	Mostly	everyone	wants	to	either	build	a	cloud,	or	use	one.	In
response,	the	industry	has	built	a	set	of	definitions,	practices,	and	concepts	around	cloud
computing	that	almost	everyone	knows—and	almost	no	one	really	understands.

The	promise	of	cloud,	of	course,	is	that	by	putting	your	stuff	in	the	cloud	you’re
outsourcing	all	the	infrastructure	and	management	to	someone	else—someone	who,	in
theory,	can	manage	the	infrastructure	cheaper	than	you	can,	and	can	provide	you	with	on-
demand	services	as	you	need	them.	Moving	to	the	cloud	should	save	you	lots	of	money
and	time.	At	least	that’s	the	theory.

This	chapter	will	consider	complexity	and	the	cloud.	Does	moving	to	the	cloud	really
solve	all	the	complexity	problems	you	face	on	the	networking,	compute,	and	storage
infrastructure	front?	Or	does	it	just	move	the	complexity	someplace	else?	Does	cloud
provide	“the”	silver	bullet	for	complexity,	by	throwing	all	the	complexity	into	someone
else’s	lap,	or	is	it	really	just	another	set	of	options	and	tradeoffs	engineers	need	to	consider
carefully?

Given	everything	discussed	about	complexity	in	this	book,	the	answer	should	be	one
you	know	well	already—cloud	isn’t	the	ultimate	solution	to	all	your	network	complexity
problems.	You	can	move	complexity	around,	but	you	can’t	get	rid	of	it	or	solve	it.

This	chapter	will	approach	cloud	from	three	perspectives.	The	first	is	a	model	around
complexity	and	the	cloud,	the	second	is	an	alternative	model	useful	for	breaking	down	the
types	of	services	being	supported.	The	final	section	will	discuss	some	more	specific
complications	and	complexities	when	considering	cloud	as	a	solution.

Where	Does	the	Complexity	Live?
Given	you’ve	read	to	this	point,	you	already	know	that	you	can’t	eliminate	complexity.	In
fact,	you	can’t	really	toss	it	over	the	cubicle	wall	very	effectively	all	the	time;	sometimes
the	result	of	splitting	the	problem	in	the	wrong	place,	and	trying	to	offload	the	wrong
parts,	is	more	complexity	than	what	you	started	with.	To	avoid	these	results,	it’s	often
useful	to	model	the	problem	space	in	some	way,	so	you	can	think	through	the	complexity
tradeoffs	in	terms	of	state,	speed,	and	surface.	Figure	13.1	illustrates	one	model	you	can
use	to	break	the	tradeoffs	down	into	manageable	pieces.

Figure	13.1	Where	Complexity	Lives

This	figure	illustrates	three	distinct	types	of	deployment	for	any	particular	application
or	system.	There	are,	in	the	real	world,	any	number	of	varying	degrees	between	these	three
(for	instance,	hybrid	cloud),	focusing	on	these	three	points	along	the	continuum	is	useful
for	understanding	some	of	the	basic	issues	in	play.

In	every	case,	you	must	manage	the	business	logic,	application	development,	making
decisions	about	what	to	store	where,	process	management,	and	anything	else	related	to	the
actual	building	and	running	of	an	application	to	meet	a	specific	set	of	business	needs.	As
you	move	from	right	to	left,	however,	different	pieces	of	complexity	trade	off	against	one
another.

Cloud	Centric
Starting	at	the	far	left,	a	cloud	centric	deployment	is	to	move	(or	create)	all	processing	and
data	storage	into	a	cloud	provider’s	service.	This	can	be	very	attractive,	as	it	allows	the
business	to	focus	on	the	actual	information	processing	aspects	of	the	problems	at	hand,
removing	entirely	any	interaction	with	infrastructure	hardware,	architecture,	network	or
compute	and	storage	design,	infrastructure	tools	and	software,	control	plane	protocols,	and
all	the	other	pieces	that	relate	to	running	a	network.	These	pieces	can	be	a	huge
administrative	load,	particularly	for	businesses	whose	main	focus	is	on	a	product	or
service,	rather	than	on	technology.

On	the	other	side	of	the	tradeoff,	though,	are	a	bundle	of	added	business	and	technical

complexities.	On	the	business	side	is	the	reliance	on	a	provider	for	your	business,
including	responsiveness	and	trust.	It’s	important	to	note	that	most	providers	have	their
own	business	plans	(big	surprise,	right?),	and	the	alignment	of	their	business	plan	and
your	business	plan	isn’t	always	completely	overlapping.	In	other	words,	the	provider	can
be	concerned	about	the	state	of	your	business	to	grow	theirs—but	this	doesn’t	always
work	out	the	way	you	think	it	might.

But	we’re	not	a	technology	company	…

One	of	the	most	difficult	confrontations	between	a	technologist	and	a	business
person	comes	down	to	the	words,	“we’re	not	a	technology	company.”	I	can	well
remember	the	first	time	I	encountered	the	words;	when	discussing	a	new	project
with	a	high	level	manager	at	a	large	manufacturer,	the	executive	said:	“This	is	all
neat	stuff,	but	we’re	not	a	technology	company.	We	build	widgets,	and	that’s	all
we’re	really	interested	in.”	Focusing	on	a	core	competency	is	a	major	part	of	what
any	business	person	learns	early	on—and	it’s	a	valid	and	important	skill.	Even	for
engineers,	focusing	on	a	core	competency	is	a	major	point	in	determining	career
choices,	training	consumed,	and	so	on.	However,	there	is	another	side	to	this
problem—it	doesn’t	matter	what	you	build,	make,	or	learn,	you’re	always	in	the
information	business,	whether	you	like	it	or	not.

One	of	the	most	tempting	things	about	moving	processes	and	information	to	the
cloud	is	that	it	(apparently)	takes	the	business	out	of	the	IT	world.	The	reality	is,
however,	that	no	matter	how	far	you	move	out	of	the	technology	world,	you’re	still
in	the	information	business	alongside	whatever	your	core	competency	is.	When	you
outsource	your	technology,	you	need	to	be	careful	about	outsourcing	your
information	as	well.	The	belief	that	you	can	take	a	business	“out	of	the	IT	world”	is
dangerous	from	a	business	perspective.

Outsourcing	information	and/or	the	technology	needed	to	deal	with	the
information	might,	or	might	not,	be	acceptable	in	different	situations—but	either
way,	it	needs	to	be	considered	for	what	it	actually	is,	rather	than	as	a	simple
solution	to	a	set	of	complex	problems.	In	outsourcing	information,	you	might	end
up	being	better	able	to	focus	on	a	set	of	core	competencies.	Or	you	might	end	up
being	unable	to	manage	the	information	you	need	in	a	way	that	gives	you	a	strategic
advantage.	Each	case	needs	to	be	approached	with	an	open	mind	and	independent
thinking,	along	with	real	thought	about	when	information,	itself,	is	part	of	the	core
competency,	and	when	it’s	not.

Vendor	Centric
The	vendor	centric	model	is	the	one	most	of	the	networking	world	tends	to	live	under.	For
any	given	project,	a	set	of	requirements	are	set	out,	and	then	a	set	of	vendors	are	examined
to	see	what	products	they	might	have,	or	are	planning	to	have,	that	will	meet	those
requirements.	Engineers	don’t	tend	to	think	of	this	type	of	model	as	a	form	of	outsourcing
—but	it	is.	What’s	being	outsourced	is	some	basic	(or	high-level)	design	work,
management	of	the	network	software	process	(including	protocols),	and	the	designing	and
building	of	the	hardware	components.

There	are	many	positive	attributes	to	this	type	of	outsourcing.	It	places	the	company	in
the	position	of	having	a	vendor	partner	who	is	doing	much	of	the	fundamental	research
needed	to	keep	up	with	technical	trends,	and	“one	number	to	call”	when	things	go	wrong.
This	solution	can	be	much	like	using	plastic	building	blocks	to	build	a	castle—the	options
are	limited,	yes,	but	they	are	often	limited	to	things	someone	with	more	expertise	and
experience	knows	should	work.	This	can	take	a	lot	of	engineering	load	off	the	company
while	allowing	semicustomized	solutions	that	can	keep	the	business	ahead	of	the	game,
while	retaining	ownership	of	the	data	within	the	business	itself.

The	business	still	needs	to	interface	with	the	business	logic,	applications,	and
information	handling	pieces	of	the	puzzle,	but	doesn’t	need	to	think	as	hard	about	network
design	and	architecture,	equipment	life	cycles,	and	other	related	matters.	The	other	side	of
this	tradeoff	is	the	business	must	now	manage	a	set	of	vendor	relationships,	including
finding	people	who	are	qualified	in	that	specific	vendor’s	equipment	and	vendor	lock-in
through	training,	legacy	gear,	mindset,	and	many	other	potential	factors.	While	this	is	the
choice	most	companies	make,	it	can	actually	be	the	worst	of	both	worlds—vendor
relationships	can	be	as	difficult	to	navigate	as	provider	relationships,	design	constraints
can	stunt	business	growth	by	limiting	opportunities	for	strategic	advantage,	and	the
business	ends	up	being	bound	to	the	vendor’s	growth	plan	through	upgrades	and	new
product	rollouts.

Network	Centric
The	network	centric	vision	might	best	be	described	as	aligning	with	the	white	box	trend	in
networking	technology.	In	this	area,	the	infrastructure	hardware	and	software	might	be
outsourced	to	different	companies	or	vendors,	untying	the	two,	and	the	IT	staff	takes	on
more	of	the	integration	work	to	put	all	the	pieces	together	into	a	single	unified	whole.

Moving	down	this	path	requires	a	large,	competent	IT	staff,	so	it’s	not	for	the	faint	of
heart	in	terms	of	raw	complexity.	The	engineers	involved	in	these	sorts	of	projects	must	be
technology	focused,	rather	than	vendor	or	offering	focused,	and	know	how	to	integrate
and	manage	the	different	pieces	to	make	a	unified	whole.	In	the	real	world,	of	course,
more	complex	vendor	focused	deployments	and	network	centric	deployments	may	be	very
similar	in	complexity	levels	from	an	engineering	perspective,	as	virtually	no	vendor-based
solution	actually	covers	all	the	requirements	for	any	given	project	or	business	plan.

The	tradeoff	in	complexity	from	an	engineering	perspective	is	untying	the	business
from	a	vendor’s	upgrade	path,	being	able	to	right	size	the	network	to	the	job	at	hand,	and
being	able	to	quickly	take	advantage	of	new	ideas	in	design	and	architecture	to	reap
competitive	advantage.

Is	There	a	“Right	Way?”
It’s	tempting	to	choose	one	path	among	these	three	and	declare	it	“the	right	way.”	In
reality,	however,	many	different	ways	might	be	best	for	any	particular	application	or
business.	For	instance,	outsourcing	sales	tracking	might	be	a	good	idea,	while	at	the	same
time	building	custom	software	on	a	network	centric	data	center	for	manufacturing
processes	unique	to	the	company.	The	point	here	is	to	find	a	set	of	models	that	help	the
architect	think	through	the	complexity	and	business	tradeoffs,	rather	than	providing	a	pat
answer.

Centralize	What?
While	the	first	model	of	cloud	services	can	be	helpful	in	understanding	the	tradeoffs	in
using	a	cloud	service,	the	second	model	covered	here	can	be	more	effective	in
understanding	the	range	and	scope	of	cloud	offerings.	There	are,	in	any	specific
application	or	technology	system,	only	a	few	real	moving	parts:

•	Storage—where	the	information	is	stored	when	it’s	not	being	actively	used	for
something

•	Infrastructure,	or	plumbing—the	parts	of	the	system	that	move	information
around	between	the	other	system	components

•	Compute—the	computing	power	used	to	actually	do	the	processing	required

•	Software	Environment—the	set	of	software	and	services	on	which	the	application
is	developed	and	deployed,	including	an	operating	system,	database	system,	and
other	components

•	Intelligence/Analytics—the	logic	used	to	process	the	information,	and	the	code	that
implements	this	logic

While	each	of	these	components	can	be	very	complicated	in	themselves,	these	are	the
only	four	real	components	of	any	information	technology	system.	Everything	else	either
builds,	manages,	or	somehow	interacts	with	one	of	these	four	things.	Cloud	services,	then,
can	be	broken	down	by	what	they	centralize,	virtualize,	or	outsource	as	outlined	in	the	list
that	follows:

•	Storage	as	a	Service:	A	number	of	services	effectively	offer	centralized	storage	and
synchronization	with	minimal	processing	and/or	applications	APIs	to	lay	on	top	of
the	service.	This	correlates	to	simply	outsourcing	storage.	Some	services	in	this
space,	at	the	time	of	this	writing,	include	DropBox,	Google	Drive,	SpiderOak,	Azure
Storage,	and	Amazon	S3.

•	Infrastructure	as	a	Service	(IaaS):	A	number	of	cloud	services	provide	storage,
network	connectivity,	processing	power,	and	other	tools	within	a	hypervisor
framework.	Users	must	install	their	own	operating	system	within	the	virtual
machines	spun	within	the	service,	build	any	connectivity,	and	build	other	services	as
needed.	The	service	will	always	include	some	form	of	storage	system—so	IaaS
always	includes	storage	as	a	service,	even	if	storage	isn’t	the	primary	focus.	This	is	a
form	of	centralizing	storage,	infrastructure,	and	processing,	but	without	the
intelligence	and/or	analytics.

•	Platform	as	a	Service	(PaaS):	It	implements	storage,	infrastructure,	and	processing
services,	like	IaaS	(above),	but	includes	the	software	environment,	as	well.
Generally	the	intelligence	is	in	the	form	of	operating	systems	installed	on	the	virtual
machines,	some	form	of	database	backend,	and	other	services.

•	Software	as	a	Service	(SaaS):	Implements	the	centralization	of	all	the	components
of	an	application,	including	storage,	infrastructure,	processing,	a	software
environment,	and	intelligence,	up	to	and	including	business	logic.	SaaS	can	actually
be	implemented	under	many	rubrics,	including	Software	Defined	Wide	Area
Network.

Asking	“what	is	being	centralized,”	or	even	better,	“what	is	being	outsourced,”	allows
you	to	clearly	think	about	what	interface	between	the	business	and	the	technology	is	being
deployed	to	solve	the	business	problem.

As	an	example,	consider	Desktop	Virtualization	(DV,	or	thin	client).	This	is	an
interesting	case	because	it	clearly	centralizes	and	outsources	storage,	infrastructure,
processing,	and	the	software	environment.	But	does	it	centralize	intelligence	and/or
analytics	as	well?	This	would	depend	on	what	the	DV	service	offers	in	the	way	of
applications	that	are	preinstalled	on	the	virtual	desktops.	Generally	speaking,	however,
DV	is	only	going	to	include	minimal	services	that	might	be	considered	at	the	intelligence
level	in	the	model.	This	means	the	primary	security	concerns	are	going	to	be	around	the
storage	of	files	being	worked	on	in	the	DV	environment,	rather	than	the	actual
implementation	of	business	logic	in	applications	deployed	on	a	PaaS	cloud,	for	instance.

Cloudy	Complications
With	these	models	in	the	background,	it’s	a	bit	easier	to	consider	the	actual	complexity
tradeoffs	involved	in	moving	services	into	the	cloud,	and	to	determine	which	type	of
service	might	fit	better	in	a	public,	private,	or	hybrid	cloud—or	whether	some	services
should	just	be	deployed	in	a	more	traditional	manner.	This	section	explores	several
specific	areas	of	complexity	that	need	to	be	managed	when	pushing	applications	or	data	to
a	cloud	service.

Security
Security	is,	by	far,	the	most	commonly	cited	reason	for	businesses	not	to	place	their	data
in	the	cloud.	This	is	well	covered	territory,	but	it’s	worthwhile	to	consider	some	of	the
forms	of	attack	possible	against	a	cloud-based	service,	the	countermeasures,	and	the
attendant	complexity	issues.

Centralized	data	is	a	bigger	target.	In	the	early	1960s,	a	gang	took	the	money	bags
from	a	Royal	Mail	train	travelling	between	Glasgow	and	London.	They	raided	the	train	on
a	tip	that	it	would	be	carrying	the	excess	cash	from	dozens	of	banks	between	the	two
cities,	being	carried	into	London	for	storage	over	a	bank	holiday	weekend.	The	take	was
the	largest	in	British	history	to	that	time,	and	most	of	the	money	was	never	recovered.	The
lesson	is	that	while	the	excess	holdings	of	any	specific	bank	wasn’t	large	enough	to	merit
such	a	carefully	orchestrated	plan,	the	total	of	their	holdings,	gathered	in	a	single	place,
were	well	worth	spending	the	time	and	effort	to	take.

In	the	same	way,	the	total	holdings	of	a	service	provider’s	cloud	offerings	may	offer
enough	rewards	to	attract	well	designed	plans	to	“take	the	entire	haul.”	Each	business	user
of	such	a	service	might	believe	their	information	is	not	worth	attacking,	because	the	value
of	the	data	would	not	cover	the	costs	of	taking	it—but	the	aggregate	of	information	might
present	a	far	different	picture.

Note

At	presstime,	several	very	large	breaches	in	cloud-based	systems	have	been	in
the	news.	Some	of	these	breaches	have	resulted	in	the	loss	of	millions	of
records	containing	personal	information	that	could	well	be	used	for	nefarious
purposes,	such	as	identity	theft	or	even	extortion.	These	types	of	breaches
should	make	businesses	think	seriously	about	the	security	of	the	information
they’re	storing	in	cloud-based	environments,	and	to	be	very	serious	about
security	audits	and	breach	procedures.	You	can	outsource	your	data,	but	you
can’t	outsource	the	responsibility	of	cleaning	up	the	mess	if	your	data	is
breached.

The	complexity	added	here	is	two-fold.	The	users	of	the	cloud	service	must	audit	the
cloud	provider	to	ensure	security,	and	track	all	breaches	into	the	provider’s	service,	rather
than	just	the	ones	impacting	the	data	the	customer	cares	about.	Any	breach	could	be	just
the	visible	top	of	a	much	larger	breach.	The	users	of	the	cloud	service	may	also	need	to
take	more	steps	to	protect	their	data	given	it	is	being	stored	off	site,	or	rather	outside	the
physical	bounds	of	their	network’s	operational	space.

The	counter	to	this	concern	is	that	professional	cloud	providers	can	often	afford	to	build
security	systems	that	are	far	beyond	the	ability	of	just	about	any	of	their	customers—so
while	centralized	data	is	a	bigger	target,	it	is	also	easier	to	defend.

The	tradeoffs	might	very	well	break	even,	but	the	user	of	a	cloud	service	needs	to	be
aware	of	the	additional	complexity	involved	in	managing	security	from	a	“one	off”
position—without	direct	access	to	the	infrastructure,	policies,	or	control	mechanisms	that
protect	the	information	stored	in	the	service	directly.

Cross	customer	contamination.	A	cloud	environment	represents	a	set	of	virtual
machines,	interconnections	(networks),	database	tables,	and	storage	spaces	located	on	a
set	of	physical	resources.	Any	time	there	are	multiple	processes	running	on	a	single
processor,	some	form	of	cross	contamination	is	always	possible—a	type	of	security	threat
where	one	process’	data	can	be	read	or	modified	by	another	process	running	on	the	same
hardware.	Figure	13.2	illustrates	possible	cross	contamination	points	in	a	virtualized
system.

Figure	13.2	Possible	Cross	Contamination	Points	in	a	Virtualized	System

This	is	often	blocked	by	the	virtualization	software,	but	users	on	a	shared	system	still
need	to	check	for	such	corruptions	and	data	breaches,	if	possible,	adding	complexity	to	the
applications	deployed	onto	these	shared	infrastructures.

Physical	Media	Management.	In	1981,	a	major	(class	5)	hurricane	came	up	the	Gulf
Coast	of	the	United	States,	flooding	New	Orleans	and	necessitating	the	evacuation	of	the
city.	During	the	disaster	itself,	and	in	the	cleanup	following,	many	buildings	were
destroyed,	or	gutted	and	essentially	rebuilt.	This	brings	up	a	perhaps	odd,	but	still
important,	question—what	happens	to	the	hard	drives	that	hold	all	your	corporate	data	in
such	a	situation?	If	a	tornado	strikes	the	data	center	in	which	a	cloud	service	you	rely	on
resides,	scattering	hardware,	will	your	data	still	be	secure?

Users	of	cloud	services	need	to	verity	the	status	of	their	data	in	the	case	of	physical
disasters,	the	disposal	of	hard	drives	and	other	equipment,	and	even	the	loss	of	single	hard
drives	to	rouge	employees	or	inside	threats.	Often	there	is	little	the	cloud	user	can	do	other
than	simply	trust	the	provider’s	processes	and	controls,	but	some	types	of	information
might	need	to	be	encrypted,	or	require	special	handling	for	applications	deployed	in	a
cloud	environment.

Who	controls	the	crypto?	Finally,	most	cloud	providers	encrypt	data	at	rest	(on	a	hard
drive	or	other	storage	device)	so	that	users	cannot	see	one	another’s	data.	However,	if	the
provider	is	providing	the	encryption,	then	the	provider	must	have	the	key	used	to	encrypt
the	data.	This	means	at	least	one	person	working	for	the	provider	has	access	to	the	keys,
and	hence	can	read	the	data	itself.

The	user	of	the	cloud	service	has	at	least	three	options:

•	The	first	is	to	encrypt	any	information	stored	in	the	cloud	service	within	the
processes	using	the	data,	so	it’s	secured	by	some	encryption	coded	into	the

applications	running	in	the	cloud	environment	as	well	as	the	provider’s	encryption.
This	option	can	add	a	good	bit	of	overhead	to	the	development	and	processing
requirements	for	any	application	within	the	cloud	environment,	and	it’s	not	always	a
practical	solution.

•	The	second	is	to	trust	(and	potentially	audit)	the	controls	the	cloud	provider	uses	to
manage	access	to	the	information	stored	in	the	cloud	environment.

•	The	third	is	to	regularly	audit	the	security	systems	in	place,	actively	checking	for
security	breaches—or	perhaps	to	hire	a	third	party	auditor	to	take	on	this	role.

Data	Portability
A	second	area	of	concern	in	the	complexity	space	for	information	and	applications	stored
in	a	cloud	environment	is	data	portability.	Particularly	in	the	case	of	centralized
intelligence	(largely	SaaS	deployments),	the	applications	developed	and	maintained	by	the
cloud	provider	may	be	stored	in	a	very	specific	format.	If	the	business	decides	to	switch
providers	or	applications,	retrieving	any	information	from	the	service	can	range	from	easy
to	impossible.	In	PaaS,	this	may	be	less	of	a	concern,	as	the	business	is	actually
developing	applications	to	run	on	the	cloud	provider’s	service,	and	hence	controls	the
formatting	and	storage	of	information.

While	this	might	seem	like	a	rather	obvious,	or	even	mundane,	problem,	the	cost	of
moving	data	out	of	the	cloud	environment	is	rarely	considered	in	any	analysis	of	the
advantages	and	disadvantages	of	moving	applications	or	storage	into	a	cloud	environment.
Moving	data	between	formats	can	add	a	great	deal	of	complexity	in	the	deployment	of	a
new	process	or	application.	This	is	something	businesses	considering	outsourcing	to
cloud-based	services	need	to	specifically	ask	about	at	the	beginning	of	the	process—rather
than	waiting	until	the	end.

A	Final	Thought
This	chapter	has	strayed	from	the	state/speed/surface	model	of	complexity	used	in	the	rest
of	this	book—but	complexity,	for	the	network	engineer	or	architect,	doesn’t	just	come
from	protocols	or	topologies.	The	complexity	tradeoff	in	cloud	computing	can	be	seen	as
falling	into	one	of	two	broad	categories—the	complexity	of	the	business	process	versus
the	infrastructure	complexity,	and	the	complexity	of	managing	a	relationship	versus	the
complexity	of	managing	a	network	infrastructure.	There	is	a	continuum	from	totally
outsourced/centralized	to	totally	insourced/managed	the	architect	can	follow,	and	a	variety
of	useful	models	for	organizing	the	decisions	and	tradeoffs	involved.

Even	in	places	where	you	might	think	you’re	safe	to	“offload”	complexity	by	“throwing
it	over	the	cubicle	wall,”	you	need	to	look	hard	for	the	complexity	tradeoffs,	because	there
is	always	a	complexity	tradeoff	involved	someplace.

Chapter	14.	A	Simple	Ending

This	book	has	covered	a	lot	of	heavy,	theoretical	materials.	It	began	with	a	general
overview	of	complexity,	and	moved	through	various	networking	technologies	to	illustrate
the	complexity	found	in	a	wide	array	of	networking	technologies.	What	do	you	do	with
this	information?	There	are,	of	course,	direct	applications	within	these	pages;	this	chapter
attempts	to	bring	all	the	lessons	learned	in	the	examination	of	each	of	these	areas	into
focus.

The	chapter	begins	with	a	short	review	of	complexity	as	a	theory,	and	then	reviews	the
three-part	model	used	here	to	describe	complexity.	The	final	section	develops	a	number	of
practical	steps	you	can	take	on	a	day-to-day	basis	to	manage	complexity.	The	goal	is	not	to
provide	the	answers,	but	rather	to	provide	the	questions	and	framework	that	will	help	you
find	the	answers	for	any	given	situation.	The	end	goal	is	a	set	of	tools,	and	a	new	way	of
looking	at	old	tools,	that	will	help	you	manage	complexity	in	every	area	of	network	design
and	operation.

Defining	Complexity
Complexity	is	difficult	to	define,	at	least	partly,	because	different	engineers	find	different
things	complex—and	some	researchers	even	argue	that	complexity	is	just	an	“observer
problem.”	Rather	than	providing	a	precise	definition,	it’s	better	to	consider	two	specific
components	that	always	appear	to	be	related	to	perceived	complexity.	It	might	not	be
possible	to	define	complexity	down	to	a	single	statement,	but	it’s	possible	to	describe
complexity	in	a	way	that	makes	it	recognizable.

Difficult	to	Understand
Anything	that	is	difficult	to	understand	is	often	perceived	as	being	complex,	whether	or
not	it	really	is.	What	often	makes	complexity	difficult	to	define	is	that	things	that	appear	to
be	complex	to	one	person	are	seen	as	simple	by	another—or	things	that	appear	to	be
complex	by	an	observer	missing	key	facts,	pieces	of	information,	or	training.	Any
definition	of	complexity	needs	to	reach	beyond	this	observational	problem,	however,	and
find	some	way	to	say,	“this	is	complex,”	regardless	of	whether	any	particular	observer
believes	that	it	is	complex.	In	fact,	one	of	the	most	difficult	problems	to	solve	in	the	world
of	design	is	the	belief	that	complex	things	are	simple,	leading	to	an	insufficient	level	of
attention	being	paid	to	the	complexity	that	is	really	there.

Rather	than	arguing	that	the	appearance	of	complexity	should	define	complexity,	it	is
better	to	find	some	more	objective	measure—and	perhaps	that	objective	measure	can	be
found	in	the	idea	that	complexity	involves	attempting	to	solve	for	sets	of	items	that	are
actually	mutually	exclusive.	Things	that	are	complex,	then,	involve	solutions	to	paradoxes,
or	the	attempt	to	come	as	close	to	resolving	a	set	of	problems	for	which	there	is	no
ultimate	solution.	The	closer	the	solution	tries	to	come	to	solving	an	ultimately	unsolvable
problem	set,	the	more	complex	the	solution	must	become.

Unintended	Consequences
This	second	description	of	complexity	is	actually	related	to	the	first.	When	faced	with	a
problem	that	cannot	be	solved	the	natural	tendency	of	an	engineer	is	to	go	ahead	and	try	to
solve	it.	The	result	of	this	exercise	is	an	increasing	array	of	unintended	consequences—
latent	problems	that	don’t	appear	in	the	original	design,	but	show	up	later	in	unanticipated
states	or	situations.	Of	course,	unintended	consequences	might	also	just	be	a	symptom	of
poor	system	design,	or	a	system	design	that	has	been	pushed	far	outside	its	original
operating	envelope.	But	even	in	well-designed	systems,	there	will	be	unintended
consequences.

Large	Numbers	of	Interacting	Parts
Finally,	complex	systems	tend	to	have	a	large	number	of	interacting	parts.	Just	how	these
parts	interact	and	the	relationship	between	those	interactions	and	complexity	are	details
left	to	a	section	just	ahead	in	this	chapter.

What	Makes	Something	“Too	Complex”?
While	it	is	certainly	true	that	complexity	is	a	necessary	result	of	any	response	to	a	hard
problem,	it	is	always	possible	to	have	a	poorly	implemented	solution	that	is	too	complex
—what	might	be	called	inelegant,	unsustainable,	or,	even,	“it	won’t	scale.”	While	it’s	easy
enough	to	recognize	such	situations	in	the	extreme	cases,	or	cartoon	depictions	of	strange
machines	that	provide	simple	services	through	long	and	unrepeatable	chains	of	events,
what	measure	can	be	used	to	find	such	systems	in	the	real	world?	Several	measures
suggest	themselves.	A	system	that	solves	the	problem	is	more	than	likely	too	complex,
but:

•	The	cost	of	maintaining	the	system	overwhelms	the	cost	of	simply	dealing	with	the
problem	in	the	first	place.

•	The	complexity	of	the	resulting	system	is	worse	than	the	complexity	of	simply
working	around	the	problem.

•	The	mean	time	to	failure	and/or	the	mean	time	to	repair	are	so	great	that	the	users	of
the	system	end	up	having	no	way	to	address	the	problem	that’s	supposed	to	be
solved	for	long	stretches	of	time	(the	availability	is	too	low	to	allow	the	system	to
meet	business	needs).

•	The	insertion	of	repairs	or	changes	causes	a	large	number	of	unintended
consequences,	each	of	which	is	difficult	to	understand	and	trace	to	a	root	cause,	and
many	or	some	of	which	are	repaired	without	any	understanding	of	how	the
implemented	fix	actually	solved	the	problem.

In	the	first	chapter,	“Defining	Complexity,”	the	chart	in	Figure	14.1	was	used	to
illustrate	the	relationship	between	robustness	and	complexity.	As	the	complexity	of	the
problem	increases,	the	complexity	of	the	solution	must	also	increase.	At	some	point,
increasing	complexity	in	the	solution	stops	increasing	robustness.	Instead,	further
increases	in	the	complexity	of	the	solution	actually	begin	to	decrease	the	system’s
robustness.	This	can	be	considered	the	point	where	the	solution	becomes	too	complex.

Figure	14.1	Complexity	versus	Robustness

It’s	important	to	remember	that	systems	aren’t	necessarily	created	too	complex,	but
rather	move	from	some	simpler	state	to	a	more	complex	one	over	time.	It’s	useful	to	think
of	the	process	of	increasing	complexity	as	ossification;	much	like	bones	or	other	organic
materials	are	hardened	into	stone	over	time,	a	flexible	and	robust	design	can	be	hardened
through	the	replacement	and	addition	of	different	pieces	over	time.	These	replacements
are	seen	as	hardening	the	system—and,	in	fact,	they	do	harden	the	system.	However,	as
the	system	is	hardened,	it	also	becomes	brittle.	The	result	is	a	system	that	is	hard	to	break,
but	once	it’s	broken,	it	shatters,	rather	than	degrading	gracefully.

Complexity	Is	a	Tradeoff
Why	not	just	“solve”	complexity?	Why	not	find	some	way	to	build	a	system	with	a	perfect
fit	to	the	problem	that	simply	isn’t	complex?	The	simple	answer	to	this	is	the	world	just
isn’t	built	that	way.	While	there	may	be	some	philosophical	or	“deep	math”	reason	why
this	simply	isn’t	possible,	the	why	doesn’t	matter—what	does	matter	is	that	complexity	is
a	tradeoff.	For	any	given	set	of	three	interrelated	pieces	of	a	problem,	you	can	choose	two.
Figure	14.2	illustrates	this	concept.

Figure	14.2	The	Three	Pronged	Tradeoff	Complexity	Problem

There	are	a	number	of	examples	of	this	three-sided	complexity	problem,	including:

•	The	CAP	Theorem.	There	are	three	desirable	traits	for	any	given	database:
consistency,	accessibility,	and	partitionability.	Consistency	refers	to	the	results	of
any	given	operation	by	any	given	pair	of	users	at	any	given	point	in	time.	If	a
database	system	is	consistent,	any	two	(or	more)	users	accessing	the	same	database
at	the	same	time	will	retrieve	the	same	information—or	rather,	every	user	of	the
database	has	the	same	view	of	the	data,	no	matter	when	it	is	checked.	Accessibility
means	just	what	it	sounds	like,	the	ability	of	any	user	to	access	the	information	in	the
database	at	any	time.	Partitionability	refers	to	the	ability	of	the	database	to	be
partitioned,	or	split-up,	onto	multiple	hosting	systems.	It	is	impossible	for	a	database
to	have	all	three	of	these	attributes	to	the	maximum	possible	level	at	the	same	time.

•	Quick,	Cheap,	High	Quality.	It’s	a	well-worn	maxim	in	just	about	every	area	that
you	can	choose	to	build	something	that’s	cheap	and	of	high	quality,	but	it	will	take	a
long	time;	you	can	build	something	quickly	that’s	of	high	quality,	but	it	will	cost	a
lot;	or	you	can	build	something	quickly	that’s	cheap,	but	quality	is	going	to	suffer.
This	applies	for	everything	from	software	to	nuts	and	bolts.

•	Fast	Convergence,	Stability,	Simple	Control	Plane.	In	network	architecture,
decreasing	the	convergence	time	will	always	either	cause	the	complexity	of	the
control	plane	to	increase,	or	it	will	cause	the	network	to	lose	stability	so	it	is	more

likely	to	fail.

There	is	probably	a	virtually	infinite	number	of	these	“three	sets”	in	every	area	of
engineering	(and	life	at	large).	That	they	exist	in	many	different	areas	and	realms	should
cause	us	to	be	alert	to	their	existence	and	involvement	in	every	engineering	problem	we
work	on—and	not	only	the	obvious	ones,	but	also	the	“deeper”	ones.	For	instance,	the	last
example	in	the	above	list	is	not	one	many	network	engineers	tend	to	think	about	when
they’re	tuning	a	network	for	high-speed	convergence,	but	it’s	just	as	real	as	the	first	two	in
the	list	[in	fact,	it’s	a	result	of,	or	corollary	to,	the	first	point,	the	consistency,	accessibility,
and	partitionability	(CAP)	theorem].

Complexity,	then,	will	always	be	a	tradeoff	in	the	real	world.	The	key	point	to
remember	is	to	assume	that	anything	you’re	working	on	will	involve	a	complexity
tradeoff.

Modeling	Complexity
This	book	has	used	a	single	model	to	explain,	examine,	and	comprehend	complexity:
state,	speed,	and	surface.	Each	of	these	three	is	interrelated	to	the	other	in	every	system
you	work	on,	so	a	solid	understanding	of	these	three	aspects	of	complexity	can	be	very
helpful	in	managing	complexity	in	the	real	world.

•	State:	The	amount	of	information	carried,	held,	or	otherwise	managed	within	a
single	component	or	system.	Within	this	book,	the	state	has	primarily	related	to	the
amount	of	information	carried	in	the	control	plane,	but	it	could	relate	to	just	about
any	type	of	information,	including	things	like	the	state	of	the	window	in	TCP,	or	the
neighbor	list	used	in	a	routing	protocol	to	ensure	two-way	connectivity	before
bringing	up	a	peering	session.

•	Speed:	The	rate	at	which	the	state	being	carried	in	the	control	plane	changes.
Throughout	this	book	this	has	been	related	to	the	rate	at	which	the	topology	changes,
driving	changes	in	the	reachability	information	carried	by	the	control	plane.	There
are	many	other	examples,	however,	such	as	the	rate	at	which	the	data	being	carried
through	a	network	changes,	or	the	rate	at	which	security	credentials	time	out	and
must	be	replaced.

•	Surface:	The	surface	can	be	described	as	the	depth	and	width	of	the	interface
between	any	two	subsystems	of	a	system	(or	any	two	interacting	systems).	The	more
two	systems	share	state,	or	one	system	relies	on	a	deep	understanding	of	the	state
contained	in	another	system,	the	deeper	the	interaction	between	the	two	systems.
The	more	points	at	which	two	systems	touch,	or	interact,	the	broader	the	interaction
surface	between	the	two	systems.	Broader	and	deeper	interaction	surfaces	cause	the
state	in	one	system	to	be	more	closely	(tightly)	tied	to	the	state	in	another	system,
thus	increasing	the	likelihood	of	unintended	consequences	in	one	system	based	on	a
state	change	in	another.	As	the	interaction	surface	increases	in	depth	and	breadth,	the
more	difficult	it	becomes	to	understand	and	account	for	every	possible	consequence
of	any	given	state	change.	This	is	simply	a	factorial	or	array	multiplication	problem.
Increasing	the	elements	increases	the	number	of	possible	combinations,	and	hence
the	number	of	possible	final	states.	At	some	point,	it’s	impossible	to	know	or	test	for

every	combination.	Further,	if	each	system	or	subsystem	uses	some	form	of
abstraction	to	hide	its	internal	actions	in	relation	to	a	specific	piece	of	information,
the	problem	becomes	almost	infinitely	complex.

While	the	model	of	state,	speed,	surface,	and	complexity	doesn’t	entirely	fit	into	the
triplet	model	shown	in	Figure	14.3,	it	does	provide	a	solid	way	of	approaching	the
complexity	problem	in	network	design,	from	protocols	to	policy.

Figure	14.3	Speed,	State,	and	Surface	as	a	Three-Sided	Problem

Engineers	can	either	optimize	for	speed,	state,	or	surface.	Consider	network
convergence	speed	as	an	example:

•	Optimize	for	Speed:	The	network	can	be	optimized	for	speed	of	convergence	by
increasing	the	state	in	the	control	plane—for	instance,	by	calculating	and	carrying
remote	LFAs	in	the	control	plane,	the	network	can	converge	almost	instantly	to	any
topology	change.	The	calculation	and	carrying	of	remote	LFAs,	however,	represents
an	increase	in	the	state	carried	through	the	network.	Another	option	to	increase	the
speed	of	convergence	might	be	to	build	a	tighter	link	between	the	layer	2	(or
physical)	state	of	any	given	link	in	the	network	and	the	layer	3	(or	logical)	state	of
that	same	link.	This,	however,	will	necessarily	increase	the	interaction	surface
between	these	two	layers	of	the	network,	and	thus	increase	complexity.

•	Optimize	for	State:	The	network	can	be	optimized	so	the	control	plane	carries	the
minimal	state	possible.	For	instance,	the	control	plane	can	be	configured	to	discover
and	cache	reachability	only	when	it’s	needed,	rather	than	when	the	topology	changes
(in	near	real	time).	However,	this	will	ultimately	reduce	the	speed	at	which	the
network	converges	by	disconnecting	the	control	plane’s	view	of	the	topology	from
the	real	state	of	the	topology	(in	CAP	theorem	terms,	trading	consistency	for
accessibility),	thus	slowing	the	network’s	convergence	down.	The	interaction	surface
between	the	control	plane	and	the	physical	layer	(the	actual	topology	of	the	network)
also	becomes	more	intertwined	when	the	control	plane	is	optimized	to	minimize
state.

•	Optimize	for	Surface:	It’s	possible	to	build	a	network	in	strict	layers,	where	no
layer	interacts	with	any	other	layer	except	in	very	minimal	ways.	For	instance,	a
logical	layer	riding	on	top	of	a	physical	layer	can	be	designed	to	completely	ignore
any	errors	reported	by	the	physical	layer,	thus	reducing	the	interaction	surface
between	the	two	layers	to	nothing	more	than	encapsulation	(and	perhaps	address
mapping).	However,	this	will	slow	down	the	speed	of	convergence,	resulting	in
potentially	suboptimal	network	operation,	and	increase	the	amount	of	state	the
overlying	logical	layer	needs	to	carry	to	properly	operate.

Even	within	the	state/speed/surface	model,	then,	there	is	a	three-sided	problem	that
needs	to	be	managed	and	considered	when	designing	a	network.

Managing	Complexity	in	the	Real	World
Network	engineers	are	in	a	complex	situation—it’s	impossible	to	resolve	hard	problems
without	dealing	with	complex	solutions,	and	yet	complexity,	itself,	is	an	unsolvable
problem.	Is	managing	complexity	simply	“tilting	at	windmills”	(or	perhaps	“tilting	at
perfect	security”)?	No.	Rather	than	abandon	the	field,	or	simply	ignore	complexity,
network	engineers	need	to	learn	to	manage	complexity	in	every	day	design	work.	This
final	section	of	this	final	chapter	provides	some	thoughts	and	tips	toward	this	end.

Don’t	Ignore	Complexity
You	can’t	run,	and	you	can’t	hide;	there’s	no	point	in	even	trying.	You’re	going	to
encounter	complexity;	ignoring	it	doesn’t	make	the	problem	go	away,	it	just	allows	the
problem	to	fester	under	some	rug	in	some	corner	of	your	network.	The	complexity
problems	you	create	today	will	come	back	to	haunt	you	in	just	a	few	years.	To	quote
someone	who’s	spent	years	looking	at	complexity:

Trying	to	make	a	network	proof	against	predictable	problems	tends	to	make	it
fragile	in	dealing	with	unpredictable	problems	(through	an	ossification	effect	as
you	mentioned).	Giving	the	same	network	the	strongest	possible	ability	to	defend
itself	against	unpredictable	problems,	it	necessarily	follows,	means	that	it	MUST
NOT	be	too	terribly	robust	against	predictable	problems	(not	being	too	robust
against	predictable	problems	is	necessary	to	avoid	the	ossification	issue,	but	not
necessarily	sufficient	to	provide	for	a	robust	ability	to	handle	unpredictable
network	problems.

—Tony	Przygienda

That	call	at	2AM	might	not	be	pleasant,	but	solving	it	the	wrong	way	might	cause	a
much	worse	call	at	2AM	sometime	down	the	road.	Hardening	the	network	against	all
failures	eventually	means	to	make	it	fail	spectacularly	when	a	failure	is	hit	that	you	didn’t
predict—there’s	just	no	way	around	this	reality.

When	dealing	with	engineering	problems,	then,	a	little	humility	around	what	can,	and
cannot,	be	solved	is	in	order.	Don’t	ignore	complexity,	but	don’t	think	you	can	solve	it,
either.	Instead,	remember	to	treat	every	situation	as	a	set	of	tradeoffs—and	if	you	don’t	see
the	tradeoffs,	you’re	not	looking	hard	enough.

Find	a	Model	to	Contain	the	Complexity
Many	of	the	models	used	by	network	engineers	are	really	just	ways	to	contain	complexity.
For	instance,	there	is	nothing	that	actually	constrains	network	designs	into	a	hierarchical
pattern	(in	fact,	there	are	a	number	of	other	patterns	out	there	to	draw	from	in	the	area	of
design).	So	why	do	engineers	use	the	hierarchical	model	so	consistently?	Because	it
provides	a	container	around	the	complexity	involved	in	designing	a	large-scale	system
with	so	many	moving	parts.	Like	the	engineer	who	only	wears	black	and	gray,	or	the
person	who	wears	a	“self-imposed	uniform,”	premaking	some	decisions	aids	in	making
other	decisions	more	quickly.

So	the	first	action	you	should	take	when	dealing	with	complexity	is	to	find	a	model	that
can	contain	the	complexity.	Whether	it’s	a	layering	model,	a	traffic	flow	model,	a
modularization	model,	or	some	other	model,	finding	a	model	to	contain	the	complexity
will	help	you	to	abstract	out	specific	components,	and	start	to	understand	the	system	as	a
whole.

A	word	of	caution,	however—don’t	stop	at	the	first	model	you	find.	Instead,	seek	out
and	use	as	many	models	as	you	can	to	describe	any	specific	system.	Each	model	you	use
is	actually	an	abstraction	of	the	problem—and	abstractions	are	leaky	by	their	very	nature.
Each	model—each	abstraction—will	be	leaky,	but	it	will	be	leaky	in	its	own	way.	While
you	can	never	completely	describe	any	complex	system	using	a	single	model,	nor	even	a
collection	of	models,	the	more	models	you	interact	with	in	relation	to	a	system	the	more
you	will	understand	the	system	and	its	behavior	as	a	whole.

Some	possible	models	might	be:

•	A	Packet	Flow	Model.	Network	engineers	normally	think	in	terms	of	control	plane
state,	rather	than	packet	flows.	It’s	often	useful	to	turn	this	line	of	thinking	on	its
head—starting	with	any	particular	device,	work	through	what	links	would	be	used,
what	queues	would	be	passed	through,	and	what	middle	boxes	would	be	encountered
when	sending	traffic	to	any	other	device.	This	is	particularly	useful	when	services
are	virtualized	throughout	the	network.

•	A	State-Focused	Model.	Ask	how	each	piece	of	information	is	carried	through	the
network,	what	state	is	necessary	to	carry	the	information,	where	each	piece	of	state
originates,	and	how	it	reaches	the	point	where	it	is	used.	For	instance,	to	switch	a
specific	packet,	a	router	must	have	some	reachability	information,	some	information
about	which	next	hop	it	needs	to	use	to	reach	the	destination,	and	some	information
on	how	to	encapsulate	the	packet.	It	might	also	need	information	on	how	to	queue
the	data	while	it’s	in	transit	through	the	router,	and	possibly	special	handling
instructions	of	some	type.	Where	does	all	this	information	come	from?	What	process
provides	the	information	within	the	router,	where	does	that	process	get	this
information,	where	does	this	information	originate,	how	often	does	it	change,	etc.?

•	An	API-Focused	Model.	Lay	out	the	various	components	of	the	system,	and	then
describe	the	interaction	surface	between	each	of	these	pairs	of	components.	This	will
give	you	a	good	idea	of	the	depth	and	breadth	of	the	interaction	surface	between
each	pair	of	components.	After	you’re	done	with	the	pairs,	think	through	any	three-
way	interaction	surfaces,	etc.

•	A	Policy-Focused	Model.	The	hierarchical	network	design	model	is,	in	reality,	a
policy-focused	model	(given	aggregation	is	a	form	of	policy	applied	to	control	plane
state).	Where	is	policy	applied,	and	why?	What	impact	does	the	application	of	this
policy	have	on	the	traffic	flowing	through	the	network?	Does	it	make	the	traffic	flow
more	optimally,	or	less?	What	are	the	tradeoffs	for	each	policy,	and	each	point
within	the	network	where	that	policy	can	be	applied?

Thinking	through	models	that	answer	each	of	these	questions	will	help	you	wrap	your
head	around	the	complexity	you	face	in	real	systems.

A	Final	Thought
If	you’ve	reached	this	section,	you’ve	read	through	a	lot	of	very	difficult	to	understand
text	that’s	very	focused	on	theory	(if	you’ve	skipped	ahead,	shame	on	you—go	back	and
do	your	reading	like	a	real	engineer!).	It	might,	at	times,	seem	difficult	to	see	how	to	apply
the	theoretical	side	of	network	engineering	to	the	real	world—but	the	connection	is
definitely	there.	Learning	the	theory	will	enable	you	to	see	problems	more	quickly,	ask
better	questions,	know	what	to	look	for	(and	how	to	look),	pick	up	new	technologies	more
quickly,	and	know	how	to	evaluate	technologies.

There	are,	in	the	real	world	of	engineering,	no	unicorns	standing	under	rainbows	to	be
found.	There	are	only	tradeoffs—tradeoffs	in	complexity	that	you	now	know	how	to
navigate	more	successfully.

Index

A
abstraction

leaky.	See	leaky	abstractions

orchestration	system,	263

aggregation

concept,	83

information	hiding,	122–126

as	leaky	abstraction,	125,	126

vs.	stretch,	83–85,	83

Alderson,	David	L.,	14,	41

API.	See	Application	Programming	Interface	(API)

apocryphal	story	of	the	engineer	and	the	hammer,	65–66

application	layer

four-layer	model,	147

seven-layer	model,	145

Application	Programming	Interface	(API),	9,	143

Application	Specific	Integrated	Circuit	(ASIC),	235

application	support,	policy	and,	218

The	Art	of	Network	Architecture	(Cisco	Press),	44

ASIC.	See	Application	Specific	Integrated	Circuit	(ASIC)

Asynchronous	Transfer	Mode	(ATM),	106

ATM.	See	Asynchronous	Transfer	Mode	(ATM)

auditing,	cloud	provider,	274

automation

abstractions	of	network	state,	71

brittleness,	70–71

as	solution	to	management	complexity,	69–72

availability

calculating,	90,	91

vs.	redundancy,	90

B
bandwidth	calendaring,	188,	193–196

bandwidth	utilization,	193

BGP.	See	Border	Gateway	Protocol	(BGP)

Border	Gateway	Protocol	(BGP),	9

amount	of	information	carried	in,	32

convergence,	26–28

formula	for,	35

propagating	a	new	destination,	35–36

layering,	on	OSPF,	6

OSFP	and,	coupling,	257–258

virtualization,	110–111

Brewer,	Eric,	21

business	continuity,	policy	and,	218

business	drivers,	programmable	networks,	186–188

C
capacity	vs.	growth	over	time,	239,	240

Capital	Expenditures	(CAPEX),	188

CAP	theorem,	21–22,	283

centralization

decentralization	vs.,	189–190

ebb	and	flow	of,	188–191

cheap	solution.	See	quick,	cheap,	and	high	quality	conundrum

choke	points,	134

Chun,	Byung-Gon,	53

Cisco	Technical	Assistance	Center,	235

Clarke,	Arthur	C.,	3

clean	solution,	3

CLNP.	See	Connectionless	Networking	Protocol	(CLNP)

Clos,	Charles,	114

Clos	fabric,	114–115

cloud	centric	model,	269–270

cloud	computing,	267

cloud	services

centralizing,	272–273

cloud	centric	deployment,	269–270

complications,	273–276

model,	268–272

network	centric	model,	271

overview,	267

vendor	centric	model,	270–271

cohesion	principle,	263

command-line	interfaces	(CLIs),	192–193

complexity

components,	25–46

defining,	3–5,	279–282

measuring,	47–59

negative	responses	to,	2

numbers	of	moving	parts,	5–9,	280

overview,	1–3

perceptions,	3–11

positive	responses	to,	2

reactions	to,	2

robustness	and,	281

routing	protocols	interaction,	6

as	tradeoff,	20,	282–283

understanding,	3–5,	280

unintended	consequences,	11–13,	280

complex	solution,	3

computing,	272

Connectionless	Networking	Protocol	(CLNP),	143

continue	in	segment	routing,	247

controller	to	controller	failure	domain,	229

control	plane

failure	domain,	229

microloops,	172–174

packet	loops	in,	170–174

policy,	219

control	plane	complexity,	virtualization,	109

control	plane	state	vs.	stretch,	81–87.	See	also	stretch

aggregation,	83–85

traffic	engineering,	85–87

convergence,	26–31

distance	vector,	28–29

link	state,	30–31

path	vector,	26–28

ring	topologies,	88–90

coupling	and	failure	domains,	257–260

D
database

accessible,	21

consistent,	21

tolerating	partitions,	22

Data	Center	(DC)	edge	switch,	243

data	center	failure	domains,	228–229

data	link	layer,	144

data	models,	204

data	portability,	276

data	science,	55

data	scientist,	55

DC	edge	router,	244–245

decentralization	vs.	centralization,	189–190

default	free	zone,	37

Denial	of	Service	(DoS)	attacks,	198

depth	of	interaction	surfaces,	39–40

Designated	Router	(DR),	140

Desktop	Virtualization	(DV),	273

Diffusing	Update	Algorithm	(DUAL),	160,	161

Dijkstra,	Edsgar,	260,	261

direct	to	server	attacks,	198

distance	vector	protocols.	See	also	Enhanced	Interior	Gateway	Routing	Protocol	(EIGRP)

amount	of	information	carried	in,	32

convergence,	28–29

ring	topologies,	88

distributed	systems,	21

Doyle,	John	C.,	14,	41

DR.	See	Designated	Router	(DR)

DUAL.	See	Diffusing	Update	Algorithm	(DUAL)

Dyche,	Jill,	187

E
ebb	and	flow	of	centralization,	188–191

EIGRP.	See	Enhanced	Interior	Gateway	Routing	Protocol	(EIGRP)

End	Systems	(ES),	138

end-to-end	principle,	216.	See	also	subsidiarity	principle

Enhanced	Interior	Gateway	Routing	Protocol	(EIGRP)

concept,	95

convergence	failure,	160–161

convergence	process,	28–29

design	conundrum,	158–162

fast	convergence,	95–96

large-scale	environments,	161–162

large-scale	manual	deployments,	63–64

stuck	in	active	process,	162

stuck	in	active	timer,	161

error	detection,	parity	bit	and,	17–18

event-driven	detection,	45–46

eXtensible	Markup	Language	(XML).	See	XML

F
failure	domains

controller	to	controller,	229

control	plane,	229

coupling	and,	257–260

data	center,	228–229

and	information	hiding,	126–128

programmable	networks,	226–230

wide	area,	227–228

failure	theory,	163

fast	convergence,	283

intelligent	timers,	96–99

removing	timers	from,	99–101

feedback	loops,	164

negative	feedback	loop,	164–166

positive	feedback	loop,	166–174

flexible	design,	217–218

FIB.	See	Forwarding	Information	Base	(FIB)

fixed	length	encoding,	OSPF,	139

fixed	packets,	OSPF,	139

flapping	links,	37–38

focused	layered	functionality,	hierarchical	models,	133

focused	policy	points,	hierarchical	models,	134

Forwarding	Information	Base	(FIB),	200.	See	also	interfaces,	programmable	networks

forwarding	plane	complexity,	109

four-layer	model,	146–147

application	layer,	147

Internet	layer,	147

link	layer,	146

transport	layer,	147

functional	separation,	virtualization,	108–109

G

Garcia,	J.	J.,	152

Goldberg,	Rube.	See	Rube	Goldberg	Machine

goto	statements,	260,	261

Graphical	User	Interfaces,	192

growth	vs.	capacity	over	time,	239,	240

H
hack,	4

hardware,	uniformity,	114–116

hardware	abstraction	layer,	116

hiding	information.	See	information	hiding

hierarchical	models,	132–134

basic	design,	133

focused	layered	functionality,	133

focused	policy	points,	134

modularity	and,	121

hourglass	model,	41–44,	42

speed,	43

state,	43

surfaces,	43

HTML,	135,	205

human	interactions,	61–63

HypterText	Markup	Language	(HTML).	See	HTML

I
I2RS.	See	Interface	to	the	Routing	System	(I2RS)

IaaS.	See	infrastructure	as	a	service	(IaaS)

IGRP.	See	Interior	Gateway	Routing	Protocol	(IGRP)

information	economy,	186–187

information	hiding,	122–129

aggregation,	122–126,	123

failure	domains,	126–128

information	models,	204

infrastructure	as	a	service	(IaaS),	272

insider	attack,	197

intelligence/analytics,	272

intelligent	timers,	convergence	with,	96–99

interaction	surfaces,	38–41

breadth	of,	39–40

depth	of,	39–40

modularization	and,	122

overlapping	interactions,	40–41

interfaces,	programmable	networks,	200–201

FIB,	200

information	contained	by,	200

northbound,	200

RIB,	200,	201

switching	path,	201

Interface	to	the	Routing	System	(I2RS),	210–212

architecture,	211–212

asynchronous,	filtered	events,	212

distributed	routing	protocols,	212

ephemeral	state,	212

multiple	simultaneous	asynchronous	operations,	211–212

Interior	Gateway	Routing	Protocol	(IGRP),	63–64

Intermediate	Systems	(IS),	138

Intermediate	System-to-Intermediate	System	(IS-IS),	9

convergence,	30–31

information	encoding,	140

OSPF	vs.,	138–141

TLV,	139,	140–141

Internet	layer,	147

Internet	Research	Task	Force,	51

inventory,	interfaces	and,	200

iterative	model,	147–148

J
Joel	on	Software,	117

K
Kohler,	Eddie,	53

L
Label	Distribution	Protocol	(LDP),	158

Label	Switched	Path	(LSP),	75

LAG.	See	Link	Aggregation	Groups	(LAG)

law	of	leaky	abstractions,	117.	See	also	leaky	abstractions

layering

four-layer	model,	146–147

iterative	model,	147–148

protocol	complexity	vs.,	141–149

seven-layer	model,	43–44,	143–146

LDP.	See	Label	Distribution	Protocol	(LDP)

leaky	abstractions,	76,	117–118

aggregation	as,	125,	126

LFA.	See	Loop	Free	Alternates	(LFA)

Li,	Tony,	185

Link	Aggregation	Groups	(LAG),	93

link	layer,	four-layer	model,	146

Link	State	Advertisement	(LSA),	95,	140

Link	State	Packet	(LSP),	139

link	state	protocols.	See	also	Intermediate	System-to-Intermediate	System	(IS-IS);	Open
Shortest	Path	First	(OSPF)

amount	of	information	carried	in,	33

control	plane	traffic	flooding,	92–93

convergence,	30–31

ring	topologies,	89

Linux	kernel	code,	261

local	information,	local	control,	216

Loop	Free	Alternates	(LFA),	152–154

remote,	157–158

tunneling	to,	101–104

LSA.	See	Link	State	Advertisement	(LSA)

LSA	generation	timer,	96–98

M
management	complexity,	69–76

automation	as	solution	to,	69–72

modularity	as	solution	to,	72–74

protocol	complexity	vs.,	74–76

Mandelbulb,	5–6

Maximum	Transmission	Unit	(MTU),	139

Mean	Time	Between	Mistakes	(MTBM),	63,	187

measuring	complexity,	47–58

modeling	design	complexity,	51–53

NetComplex,	53–55

Network	Complexity	Index,	49–51

organized	complexity,	55–57

overview,	47–48

microloops

control	plane,	172–174

and	fast	reroute,	152–158

LFA.	See	Loop	Free	Alternates	(LFA)

NotVia,	155–157

Remote	LFA,	157–158

minimum	route	advertisement	interval.	See	MRAI	(minimum	route	advertisement
interval)

modeling	design	complexity,	51–53.	See	also	measuring	complexity

models,	129–136

hierarchical,	132–134

PIN,	131–132

UML,	134–136

waterfall,	129–130

modularity,	113–122

attacking	problems,	121–122

interchangeable	modules,	120–121

as	solution	to	management	complexity,	72–74

taken	to	extremes,	73–74

uniformity.	See	uniformity

monoculture	failures,	114

MPLS,	106,	118,	119–120,	157

MRAI	(minimum	route	advertisement	interval),	35,	36

MTBM.	See	Mean	Time	Between	Mistakes	(MTBM)

Multiprotocol	Label	Switching	(MPLS).	See	MPLS

mutual	redistribution,	171–172

N
negative	feedback	loop,	164–166

NetComplex,	53–55.	See	also	measuring	complexity

NETCONF,	206,	207

Network	Address	Translation	(NAT),	234,	247

network	centric	model,	271

Network	Complexity	Index,	49–51.	See	also	measuring	complexity

Network	Complexity	Research	Group,	51

network	convergence.	See	convergence

Network	Function	Virtualization	(NFV),	234–241

use	case,	236–241

network	layer,	144–145

Network	Time	Protocol	(NTP),	8

Network	Translation,	234

NFV.	See	Network	Function	Virtualization	(NFV)

northbound	interfaces,	200

NotVia,	155–157

NTP.	See	Network	Time	Protocol	(NTP)

NVGRE,	244

O
obscure	code,	3

Occam’s	Razor,	10

OpenFlow,	202–203

Open	Shortest	Path	First	(OSPF),	9,	95

aggregated	reachability,	139

BGP	and,	coupling,	257–258

BGP	layering	on,	6

convergence,	30–31

event-driven	detection	and,	45–46

fixed	length	encoding,	139

fixed	packets,	139

goals,	139

information	encoding,	140

IS-IS	vs.,	138–141

Open	Systems	Interconnect	(OSI)	protocol	stack,	138

operational	complexity,	61–77

Operational	Expenditures	(OPEX),	62

optimal	traffic	handling	vs.	policy	dispersion,	66–69

optimization,	44–46

concept,	44–45

event-driven	detection,	45–46

state	and,	254

timer-driven	detection,	45

orchestration	effect,	262–263.	See	also	virtualization

organized	complexity,	55–57.	See	also	measuring	complexity

OSI-based	networks,	138–139

overlapping	interactions,	40–41.	See	also	interaction	surfaces

P
PaaS.	See	platform	as	a	service	(PaaS)

packet	classification,	256

packet	inspection,	255,	256

packet	loops,	168–170.	See	also	positive	feedback	loop

in	control	plane,	170–174

parity	bit

and	error	detection,	17–18

packet	processing,	18

Path	Computation	Client	(PCC),	207

Path	Computation	Element	Protocol	(PCEP),	207–210

MPLS	labels,	209–210

OpenFlow	vs.,	209

path	vector	convergence,	26–28.	See	also	Border	Gateway	Protocol	(BGP)

PCC.	See	Path	Computation	Client	(PCC)

PCEP.	See	Path	Computation	Element	Protocol	(PCEP)

physical	layer,	144

PIN.	See	Places	in	the	Network	(PIN)

PIX	firewall,	234–235

PIX-PL,	235

Places	in	the	Network	(PIN),	131–132

platform	as	a	service	(PaaS),	273

policy,	82

business	requirements	and,	217–218

control	plane,	219

described,	219–220

management,	217–220

Policy	Based	Routing,	82

policy	complexity,	programmable	network,	223–224

policy	consistency,	programmable	network,	222–223

policy	dispersion

vs.	optimal	traffic	handling,	66–69

programmable	network	complexity,	220–222

virtualization,	250–256

policy	proxies,	255–256

positive	feedback	loop,	166–168

microloops,	172–174

mutual	redistribution,	171

packet	loops,	168–170

predictability,	262

presentation	layer,	145

problem	space,	61–69

human	interaction	with	system,	61–63

policy	dispersion	vs.	optimal	traffic	handling,	66–69

troubleshooting	network	failure,	65–66

programmable	networks

business	drivers,	186–188

defining,	191–193

drivers	for,	186–191

ebb	and	flow	of	centralization,	188–191

failure	domain,	226–230

interfaces,	200–201

landscape,	201–212

overview,	185–186

policy	complexity,	223–224

policy	consistency,	222–223

policy	dispersion,	220–222

policy	management,	217–220

software-defined	perimeter,	196–199

surface,	224–226

use	cases	for,	193–199

protocol	complexity

design	complexity	vs.,	149–162

fast	reroute,	152–158

flexibility	vs.,	138–141

layering	vs.,	141–149.	See	also	layering

management	complexity	vs.,	74–76

protocol	stacks,	141–142

Q
quality	solution.	See	quick,	cheap,	and	high	quality	conundrum

quick,	cheap,	and	high	quality	conundrum,	20–21,	283

R
Ratnasamy,	Sylvia,	53

redistribution	between	two	routing	protocols,	171–172

redundancy	vs.	resilience,	90–93

Rekhter,	Yakov,	185

Remote	LFA,	157–158

REpresentational	State	Transfer	(REST)	interface,	207

resilience,	redundancy	vs.,	90–93

Resource	Reservation	Protocol	(RSVP),	17

RESTCONF,	207

return	on	investment,	218

RIB.	See	Routing	Information	Base	(RIB)

ring	topologies,	88–90

distance	vector	protocol,	88

fast	reroute,	155

link	state	protocol,	89

using,	reasons	for,	89

RIP.	See	Routing	Information	Protocol	(RIP)

robustness	and	complexity,	281

robust	yet	fragile,	19

root	cause	analysis,	troubleshooting	and,	65

Routing	Information	Base	(RIB),	200,	201

Routing	Information	Protocol	(RIP),	95

RSVP.	See	Resource	Reservation	Protocol	(RSVP)

Rube	Goldberg	Machine,	9–11

S
SaaS.	See	software	as	a	service	(SaaS)

Saltzer,	J.	H.,	216

scale	out	vs.	scale	up,	238–239

virtualization,	263–264

screen	scraping,	192–193

secure	information,	policy	and,	218

security

as	castle,	196

centralized	data,	274–275

cloud-based	services,	273–276

cross	contamination,	275

encryption,	276

physical	media	management,	275–276

virtual	topologies,	107

segment	routing,	245–248

concept,	245–246

continue	in,	247

example,	246

MPLS	label,	246,	247

MPLS	LSPs,	248

packet,	247

traffic,	247

self-documenting	code,	4

service	chaining,	242–248

initial	service,	242,	243

segment	routing,	245–248

SFC,	243–245

state	and,	253

Service	Function	Chaining	(SFC),	243–245

architecture	of,	244

description,	243

example,	244

specifications,	244

tunneling	protocols,	244–245

session	layer,	145

seven-layer	model,	43–44,	143–146

application	layer,	145

data	link	layer,	144

Ethernet,	145

IP,	145

network	layer,	144–145

physical	layer,	144

presentation	layer,	145

session	layer,	145

TCP,	146

transport	layer,	145

SFC.	See	Service	Function	Chaining	(SFC)

shared	fate

TCP	synchronization,	179–180

virtual	circuits,	177–178

Shared	Risk	Link	Groups	(SRLG),	111,	177,	178

Shortest	Path	Tree	(SPT),	95

single	responsibility	principle,	263

software	as	a	service	(SaaS),	273

software-defined	networks	(SDN),	185

software-defined	perimeter,	196–199

software	environment,	272

Source	Packet	Routing	in	the	Network	(SPRING),	245,	246

southbound	interface,	200–201

spaghetti	code,	261

spaghetti	transport	system,	118–120

Spanning	Tree	failure,	174–175

speed,	35–38

flapping	links,	37–38

network	never	converging,	35–37

Spolsky,	Joel,	117

SPT.	See	Shortest	Path	Tree	(SPT)

state,	31–34

amount	of	information,	32–33

and	optimization,	254

real	world	failures,	33–34

and	service	chaining,	253

vs.	stretch,	87

stretch	vs.	See	stretch

static	state,	35

storage,	272

storage	as	a	service,	272

stretch

aggregation	vs.,	83–85

concept,	81

control	plane	state	vs.,	81–87

increasing,	82

measuring,	82

state	vs.,	87

traffic	engineering,	85–87

stuck	in	active	process,	of	EIGRP,	162

stuck	in	active	timer,	EIGRP,	161

subsidiarity	principle,	216–217

Super	Bowl	(1996),	11

surface,	38–41.	See	also	interaction	surfaces

policy	interaction,	255

policy	proxies,	255–256

programmable	network,	224–226

T
TCP	synchronization,	shared	fate	problem	as,	179–180

technical	debt,	13

telemetry,	200

temporary	fix,	65

temporary	workaround,	4

three-dimensional	Mandelbulb,	5–6

thunk,	116

timer-driven	detection,	45

timers,	convergence	with

intelligent,	96–99

removing,	99–101

topology

aggregation	of	information,	124–125

interfaces	and,	200

ring	topologies.	See	ring	topologies

vs.	speed	of	convergence,	88–94

triangles,	89–90

ToR	switch,	245

“Towards	Robust	Distributed	Systems”	(Brewer),	21

traceroute,	74–76

traffic	engineering,	85–87

Transmission	Control	Protocol	(TCP),	7,	8

internal	state,	8

leaky	abstractions,	117–118

NTP	and,	8

transport	layer

four-layer	model,	147

seven-layer	model,	145

transport	system,	118–120

triangles,	89–90

troubleshooting,	virtualization,	260–262

troubleshooting	network	failure,	65–66

problem	identification,	65

problem	remediation,	65

root	cause	analysis,	65

TTL,	76

tunneled	fast	reroute	mechanisms,	103–104

tunneling	protocols,	SFC,	244–245

Turing	curve,	22,	23

Type-Length-Values	(TLV),	4,	139,	140–141

encodings,	14

header,	15

on-the-wire	bandwidth,	17

vs.	optimally	structured	packet	formats,	15–16

U
UDP.	See	User	Datagram	Protocol	(UDP)

Unified	Modeling	Language	(UML),	134–136

uniformity,	114–120

control	and	management,	116

hardware,	114–116

transport	system,	118–120

vendor,	114

unintended	consequences,	11–13,	280

User	Datagram	Protocol	(UDP),	135

V
vendor,	uniformity,	114

vendor	centric	model,	270–271

vendor	lock-in,	114

virtual	circuits,	177–178

Virtual	Extensible	Local	Area	Network	(VXLAN).	See	VXLAN

virtualization

BGP,	110–111

control	plane	complexity,	109

design	complexity	vs.,	106–111

design	considerations,	256–262

forwarding	plane	complexity,	109

functional	separation,	108–109

managing	complexity,	264–265

NFV,	234–241

orchestration	effect,	262–263

overview,	249–250

policy	dispersion,	250–256

segment	routing,	245–248

service	chaining.	See	service	chaining

SFC,	243–245

SRLG,	111

state	and	optimization,	254

state	and	service	chaining,	253

surface	and	policy	interaction,	255

surface	and	policy	proxies,	255–256

virtual	switch	(VSwitch),	245

VXLAN,	118,	119,	244

W
waterfall	model,	129–130

Weaver,	Warren,	56

web	application,	UML	for,	134–136

Weighted	Random	Early	Detection	(WRED),	180

wide	area	failure	domains,	227–228

WRED.	See	Weighted	Random	Early	Detection	(WRED)

X
XML,	205

XYZ	protocol,	141–142

XYZ	protocol	stack,	141–142

Y
YANG,	204–207

description,	204,	205

specification,	204

Code	Snippets

	About This E-Book
	Title Page
	Copyright Page
	About the Authors
	About the Technical Reviewers
	Dedications
	Acknowledgments
	Contents at a Glance
	Contents
	Introduction
	How This Book Is Organized

	Chapter 1. Defining Complexity
	What Is Complexity?
	Anything I Don’t Understand
	Anything with a Lot of Parts
	Anything for Which There Is More State Than Required to Achieve a Goal
	Unintended Consequences

	Why So Much Complexity?
	Future Extensions versus New Protocols
	Unexpected Errors

	Why Not Build Infinitely Complex Systems?
	Quick, Cheap, and High Quality: Choose Two
	Consistency, Availability, and Partition Tolerance: Choose Two

	Journey into the Center of Complexity

	Chapter 2. Components of Complexity
	Network Convergence
	Path Vector: A BGP Example
	Distance Vector: An EIGRP Example
	Link State: OSPF and IS-IS Convergence

	State
	Amount of Information
	An Example of State Failure in the Real World
	Final Thoughts on State

	Speed
	The Network That Never Converges
	The Flapping Link
	Final Thoughts on Speed

	Surface
	The Hourglass Model
	Optimization
	A Final Thought

	Chapter 3. Measuring Network Complexity
	Some Measures of Network Complexity
	Network Complexity Index
	Modeling Design Complexity
	NetComplex

	Organized Complexity
	Is This a Waste of Time?
	A Final Thought

	Chapter 4. Operational Complexity
	Exploring the Problem Space
	The Cost of Human Interaction with the System
	Policy Dispersion Versus Optimal Traffic Handling

	Solving the Management Complexity Problem
	Automation as a Solution to Management Complexity
	Modularity as a Solution to Management Complexity
	Protocol Complexity versus Management Complexity

	A Final Thought

	Chapter 5. Design Complexity
	Control Plane State versus Stretch
	Aggregation versus Stretch
	Traffic Engineering
	State versus Stretch: Some Final Thoughts

	Topology versus Speed of Convergence
	Ring Topology Convergence
	Redundancy versus Resilience
	Topology versus Speed of Convergence: Some Final Thoughts

	Fast Convergence versus Complexity
	Improving Convergence with Intelligent Timers: Talk Faster
	Removing Timers from Convergence: Precompute
	Working around Topology: Tunneling to the Loop-Free Alternate
	Some Final Thoughts on Fast Convergence

	Virtualization versus Design Complexity
	Functional Separation
	Forwarding Plane Complexity
	Control Plane Complexity
	Shared Fate Risk Groups

	A Final Thought

	Chapter 6. Managing Design Complexity
	Modularity
	Uniformity
	Interchangeable Modules
	How Modularity Attacks the Complexity Problem

	Information Hiding
	Aggregation
	Failure Domains and Information Hiding
	Final Thoughts on Information Hiding

	Models
	Waterfall
	Places in the Network
	Hierarchical
	UML

	A Final Thought

	Chapter 7. Protocol Complexity
	Flexibility versus Complexity: OSPF versus IS-IS
	Layering versus Protocol Complexity
	The Seven-Layer Model
	The Four-Layer Model
	The Iterative Model
	Protocol Stacks and Design

	Protocol Complexity versus Design Complexity
	Microloops and Fast Reroute
	EIGRP and the Design Conundrum

	A Final Thought

	Chapter 8. How Complex Systems Fail
	Feedback Loops
	Positive Feedback Loops in Network Engineering
	Speed, State, and Surface: Stability in the Network Control Plane

	Shared Fate
	Virtual Circuits
	TCP Synchronization as a Shared Fate Problem

	A Final Thought
	Thoughts on Root Cause Analysis
	Engineering Skills and Failure Management

	Chapter 9. Programmable Networks
	Drivers and Definition
	Business Drivers
	The Ebb and Flow of Centralization
	Defining Network Programmability

	Use Cases for Programmable Networks
	Bandwidth Calendaring
	Software-Defined Perimeter

	Programmable Network Interfaces
	The Programmable Network Landscape
	OpenFlow
	YANG
	Path Computation Element Protocol
	Interface to the Routing System

	A Final Thought

	Chapter 10. Programmable Network Complexity
	The Subsidiarity Principle
	Policy Management
	Policy Dispersion
	Policy Consistency
	Policy Complexity

	Surface and the Programmable Network
	Impact on Failure Domains
	Wide Area Failure Domains
	Data Center Failure Domains
	Application to Control Plane Failure Domain
	Controller to Controller Failure Domain
	Final Thoughts on Failure Domains

	A Final Thought

	Chapter 11. Service Virtualization and Service Chaining
	Network Function Virtualization
	NFV: A Use Case

	Service Chaining
	Service Function Chaining
	Segment Routing

	A Final Thought

	Chapter 12. Virtualization and Complexity
	Policy Dispersion and Network Virtualization
	State and Service Chaining
	State and Optimization
	Surface and Policy Interaction
	Surface and Policy Proxies

	Other Design Considerations
	Coupling and Failure Domains
	Troubleshooting

	The Orchestration Effect
	Managing Complexity
	A Final Thought

	Chapter 13. Complexity and the Cloud
	Where Does the Complexity Live?
	Cloud Centric
	Vendor Centric
	Network Centric
	Is There a “Right Way?”

	Centralize What?
	Cloudy Complications
	Security
	Data Portability

	A Final Thought

	Chapter 14. A Simple Ending
	Defining Complexity
	Difficult to Understand
	Unintended Consequences
	Large Numbers of Interacting Parts
	What Makes Something “Too Complex”?

	Complexity Is a Tradeoff
	Modeling Complexity
	Managing Complexity in the Real World
	Don’t Ignore Complexity
	Find a Model to Contain the Complexity

	A Final Thought

	Index
	Code Snippets

