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Preface
The major challenge in today’s structural engineering is to better design structures
against the damaging effects of earthquakes and strong winds. Smart structural
systems are an innovative concept that has been proven to be very effective in
protecting structures. These systems absorb damaging energy and/or counteract
damaging force on the structure, and thus reduce structural response and possible
damage. Smart structure technology is being improved every day, and there is
a great need for documented references in this field. This book is a useful ref-
erence for researchers and practicing engineers working in the field of structural
engineering. It is also a key resource for senior undergraduates and all postgraduate
students who need to find an organized collection of information of smart structure
technology. Key features of the book include

1. Complete mathematical formulations and numerical procedures for the
topics presented

2. New technologies
3. Design guidelines and examples based on current official codes
4. Detailed figures and illustrations
5. Extensive references

This book is prepared with the following emphases:

1. The book functions as a self-study unit. Essential information on struc-
tural formulations, mechanism of control systems, numerical algorithms,
and so forth, is given in detail.

2. Step-by-step numerical examples are provided. These serve to illus-
trate mathematical formulations and to interpret physical representa-
tions, enabling the reader to understand the formulas vis-à-vis their
applications.

3. Each chapter discusses a specific topic, and the topic areas are covered
comprehensively and outlined as follows:• Chapter 1 introduces various smart structure systems currently

in vogue so that the reader can have an overall view on the
subject.• Chapters 2 and 3 present base isolation systems and their asso-
ciated damping devices. Base isolation and damping systems
have official design codes and are thus focused on herein with

xiii
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xiv Preface
extensive design examples that are believed to be beneficial to
the practitioner to thoroughly comprehend the specifications.• Chapter 4 focuses on active controlled systems, emphasizing
mathematical derivation, control algorithm development, as
well as system design and implementation.• With the background of previous chapters, semiactive and
hybrid control systems are developed and compared in
Chapter 5.• In today’s engineering technology, information about real-
world events is collected, stored, and analyzed by a computer
using numerical data. Chapter 6 thus emphasizes sensing and
data acquisition.• To achieve optimal cost of a constructed facility, the number
of control devices to be installed on a structure is of paramount
importance. Chapter 7 develops optimal placement algorithms
along with numerical examples of controlled systems.• Controlled structures are traditionally assumed to be suppor-
ted by a fixed base. However, a controlled system in reality
is composed of three parts: structure, foundation, and soil
base. Thus, Chapters 8 and 9 consider soil–structure inter-
action; the former deals with embedded foundations and the
latter emphasizes shallow foundations. The soil properties,
SSI formulations, and numerical procedures for response ana-
lysis are comprehensively presented for both conventional
methodologies and MATLAB® applications.• To achieve maximum protection of a controlled system from
future earthquake destruction during the structure’s lifetime,
extensive details are given for generating future earthquakes
on the basis of historic tectonic movements. Using the earth-
quake data resulting from simulation based on a probability
approach, several case studies are provided to show response
results of maximum floor displacements, the required control
forces, and control effectiveness with various considera-
tions with and without control, as well as with and without
soil–structure interaction.
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1 Basic Concept of SmartStructure Systems
1.1 INTRODUCTION

1.1.1 Structures and Smart Structures
A structure is a system that carries and/or transmits loads. It is engineered to per-
form such functions without experiencing irreparable damage during its designed
service life. Engineering structures can serve as buildings, bridges, ships, air-
planes, or space shuttles. The loads on a structure can be static, such as gravity, or
dynamic, such as earthquakes. Structural components, such as columns, beams,
plates, and shells, are load-bearing systems and are structures themselves. The
behavior of a structure and its components, such as deformation under static
loads and vibration under dynamic loads, is called structural response. Design
of a structure simply refers to the determination of its profile and configuration
in the three-dimensional space, the material and size of its components, and the
connections between its components, so that the structural response can meet
the established criteria. A typical structure design would ensure the structural
safety (strength and stability) and serviceability (stiffness) of the structure and its
components under expected loads. Multiple disciplines, such as material science,
mathematics, and mechanics, are employed to obtain a structure design. Material
science provides properties and limit states (failure modes) of the materials for the
structure, mathematics calculates the structural response to loads, and mechanics
ensures the equilibrium and stability of the structure.

The traditional approach is to design structures with sufficient strength to with-
stand loads and with the ability to deform in a ductile manner. Such designed
structures have limited capacity owing to three factors. First, these structures rely
on their inherently small material damping to dissipate dynamic energy. There
are no guidelines for how to increase the damping of common structure mater-
ials, such as reinforced concrete or steel. Second, these structures have a fixed
capacity of load resistance and energy dissipation. Thus, they cannot adapt to
ever-changing environmental excitations, such as winds or earthquakes. Third,
these structures totally depend on their stiffness to resist loads. Limitations in the
traditional approach of structure design motivated researchers to explore altern-
atives. Advanced research has discovered natural and man-made materials with
unusual properties, called smart materials, and systems that can automatically
adjust themselves to environmental changes, called adaptive systems. These dis-
coveries led to the innovative concept of smart structures [82]. With adaptive
systems and/or smart materials and devices added to the structure, the structure

1
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2 Smart Structures: Innovative Systems for Seismic Response Control
becomes “smart” because it can monitor itself and adapt to the environment. A
smart structure system has the ability to sense any change in the environment or
system, diagnose any problem at critical locations, store and process measured
data, and command appropriate action to improve system performance and to pre-
serve structural integrity, safety, and serviceability. The smart structure concept
has been applied in aerospace and mechanical industries, such as aircraft struc-
ture crack monitoring systems and automobile vibration absorbers. Application of
this concept for wind and seismic response reduction of large civil engineering
structures is still a cutting-edge technology under research and development.

1.1.2 Significance of Smart Structure Technology for
Civil Engineering Structures

Civil engineering structures, such as buildings, bridges, and towers, may vibrate
severely or even collapse while subjected to strong wind or earthquake excita-
tions. Designing structures to withstand seismic damage remains a challenge for
civil engineers. Despite intensive effort toward wind- and earthquake-resistant
designs in code development and construction, structures are still vulnerable to
strong wind or earthquake excitations. This is because structures designed using
the traditional approach have limited capacities of load resistance and energy dis-
sipation. Such structures totally rely on their own stiffness to resist earthquake
force and on their own small material damping to dissipate dynamic energy. These
structures are passive in that they cannot adapt to ever-changing and uncertain
wind and earthquake excitations. In order to withstand a stronger excitation, an
increase in structure strength and ductility is required, but high-strength and ductile
construction materials are usually expensive. Increasing strength by enlarging
cross sections of partial constituent members of an indeterminate structure actu-
ally attracts more demand force on these members, subsequently requiring even
greater strength. This can result in a fruitless spiral design. Moreover, there is no
way to improve damping for common construction materials, such as reinforced
concrete or steel.

The ineffectiveness of traditional wind- and seismic-resistant designs led to the
application of innovative smart structure technology to civil engineering structures
in the 1970s. It has steadily gained acceptance as research findings and practical
implementation continue to show that this concept is a promising way to pro-
tect structures from wind and seismic excitations [7,17,25,26,40,46,49,76–78,80].
With smart structure technology, devices and/or systems are added to the structure
to increase its seismic-resistant capacity. The structure then relies not only on its
own strength to withstand earthquake force but also on these devices or systems
to dissipate dynamic energy. Smart structure technology is becoming an attractive
alternative to augment structural safety and serviceability as it can greatly improve
seismic performance of structural systems.

When building a new structure or retrofitting an existing one for safety and
serviceability requirements, using smart structure systems can save materials and
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construction work, consequently reducing structural weight as well as construction
cost. Today, such systems have been applied to the following civil engineering
structures:• Structures under unusual excitations, such as extreme winds or strong

earthquakes.• Structures with critical functions and high safety requirements, such as
hospitals, fire stations, and power plants.• Structures requiring serviceability considerations, such as towers, tall
buildings, long-span roofs or bridges, and other flexible structures.
Under large environmental excitation, excessive structural vibrations
could affect occupant comfort or structural safety.

1.2 BASIC PRINCIPLES OF SMART STRUCTURE TECHNOLOGY FOR

SEISMIC RESPONSE CONTROL

In this section, a simple single-degree-of-freedom (SDOF) structural model is used
to illustrate the basic principles of smart structure technology for seismic response
control. An SDOF structure subjected to earthquake excitation can be modeled as

mẍ(t)+ cẋ(t)+ kx(t) = −mẍg(t) (1.1)

where m is the mass of the structure, c is the damping coefficient of the structure,
and k is the linear elastic stiffness of the structure. While subjected to an earthquake
ground motion ẍg(t), this SDOF system responds with a lateral displacement x(t)
relative to the ground.

Equation 1.1 can be rewritten as

ẍ(t)+ 2ζωn ẋ(t)+ ω2
nx(t) = −ẍg(t) (1.2)

where ζ is the damping ratio and ωn is the natural frequency in radians of the
structure. The structure response can be solved easily using the theory of structural
dynamics [13,61]

x(t) = e−ζωn t(C1 cos ω̄nt + C2 sin ω̄nt)− 1ω̄n

∫ t

0
ẍg(τ )e−ζωn(t−τ) sin ω̄n(t − τ) dτ (1.3)

where ω̄n = √
1− ζ 2ωn is the damped natural frequency, and C1 and C2 are

constants to be determined by initial conditions. Since the earthquake ground
motion can always be expanded into a Fourier series, the structural seismic
response would be a summation of structural responses by a series of sinusoidal
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excitations. The response of the SDOF system under sinusoidal excitation
P sin θ t is

x(t) = e−ζωn t(C1 cos ω̄nt + C2 sin ω̄nt)+ P sin(θ t − ϕ)
m

√(ω2
n − θ2)2 + 4ζ 2ω2

nθ2
(1.4)

where ϕ = tan−1[2ζωnθ/(ω2
n − θ2)].

Equations 1.3 and 1.4 show that, mathematically, there are three methods to
reduce structural seismic response—reducing the magnitude of ẍg(t), increasing
the damping ratio ζ , and avoiding resonance by enlarging the difference of ωn
and θ . These mathematical concepts are realized by smart structures through the
following mechanisms:• Base-isolation systems that cut off the energy transmission of earth-

quake ground motions to the structure.• Control devices or systems that apply a control force to serve as an extra
damping mechanism by means of devices such as mass dampers/drivers,
tendons, or bracings.• Control devices or systems that utilize the energy absorption capabil-
ity of materials by viscosity and/or nonlinear characteristics, such as
yielding.• Control devices or systems that distance the natural period of the struc-
ture from the predominant frequency of earthquake ground motions.

The above mechanism shows that a smart structure can use either a base-isolation
system or a control system for seismic response reduction. Control systems add
damping to the structure and/or alter the structure’s dynamic properties. Adding
damping increases the structural energy-dissipating capacity, and altering struc-
tural stiffness can avoid resonance to external excitation, thus reducing structural
seismic response. Mathematically, an SDOF smart structure using a control system
under seismic excitation can be expressed as(m + mc)ẍ(t)+ cẋ(t)+ kx(t)+ Fc(t) = −(m + mc)ẍg(t) (1.5)

where mc is the mass of the control device/system, which is usually much smal-
ler than structure mass m; Fc(t) is the control force generated by the control
device/system. The force Fc(t) is highly dependent on the type of the control
device or system. A typical linear model of Fc(t) can be expressed as

Fc(t) = ccẋ(t)+ kcx(t) (1.6)

Then Equation 1.5 can be rewritten as(m + mc)ẍ(t)+ (c+ cc)ẋ(t)+ (k + kc)x(t) = −(m + mc)ẍg(t) (1.7)
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By comparing Equations 1.1 and 1.7, it is shown that the addition of the control
system introduces control force Fc(t), which modifies the structural properties so
that it can respond more favorably to the designed or anticipated ground motion.
Typically, the added devices/systems are designed to increase structure damping
c and/or to avoid resonance by altering structure stiffness k or mass m so that the
structure response can be reduced.

It is worth noting that for large civil engineering structures, adding damping
to the system is more practical than altering system mass and stiffness. Thus,
seismic response control systems are usually designed mainly to add damping to
the system with only minor modifications to the system’s stiffness or mass. This
can be clarified with the SDOF system described by Equation 1.2 by studying its
response amplitude of system forces. The displacement, velocity, and acceleration
amplitudes of the steady-state response of the SDOF system described by Equation
1.2 to a resonant excitation Psin(ωnt) can be easily derived from Equation 1.4 as

xm = P
2ζmω2

n
, ẋm = P

2ζmωn
, ẍm = P

2ζm
(1.8)

Then, the amplitudes of the restoring force, Rm, the damping force, Dm, and
the inertia force, Im, are

Rm = P
2ζ , Dm = P, Im = P

2ζ (1.9)

Equation 1.9 shows that the amplitude of both the inertia and restoring forces is
much larger (50 times for a 1% damping system) than that of the damping force
for a lightly damped system. The same conclusion can be drawn by studying
the system’s root-mean-square (RMS) response to a white-noise excitation S0. Its
RMS displacement response, σx , and velocity response, σẋ , are [53]σx = √ πS0

2ζω3
n

, σẋ = √ πS0

2ζωn
(1.10)

Then, the RMS values of the restoring force, σR, and the damping force,σD, areσR = ω2
n

√ πS0

2ζω3
n
= √πS0ωn

2ζ , σD = 2ζωn

√ πS0

2ζωn
= 2ζ√πS0ωn

2ζ (1.11)

Thus, σR = σD/2ζ , which shows that the RMS restoring force is much larger
than the RMS damping force for lightly damped structures.

Civil engineering structures usually have very small damping, and the resonant
component makes major contributions to the response of such lightly damped
systems under wide-banded excitation [53]. If the control effort is to alter the
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system’s stiffness or mass, the control force must approximate the magnitude of the
restoring force or inertia force; consequently, numerous sizeable force-generating
devices would be required. If the control force mainly adds damping to the system,
much less control effort is required. Thus, altering the system’s mass or stiffness
takes much more control effort and is less practical than adding damping to large
civil engineering structures.

It is also important to note that a smart structure can use various types of control
devices or systems. Thus, it is useful to distinguish the control devices/systems
currently being used in practice. Sections 1.4 through 1.8 introduce the basic con-
cepts of various systems developed for civil engineering structures. Base-isolation
systems are introduced in Section 1.4. Active control systems, as described in
Section 1.7, use external power to generate the control force. The control force is
determined by a control algorithm with a measured structure response, and their
cc and kc parameters expressed in Equation 1.6 can be adjusted by feedback gain
within the actuator capacity. Thus, they are adaptive systems that make struc-
tures fully “smart” to environmental excitations. Passive control systems, on the
other hand, use passive energy-dissipation devices, as described in Section 1.5.
Structure motion drives these devices to produce the control force. Since their
cc and kc are nonadjustable device properties, passive systems are less adapt-
able to excitations and thus are referred to as passive. The design specifications
for base-isolation and passive damper systems have been officially established
[6,33,34,42] in the engineering communities. Thus, base-isolation and passive
damper systems are given more attention in later sections of this chapter. Semi-
active control systems, as described in Section 1.6, add adaptive mechanisms
to passive systems to adjust their force-generating behavior, thus often being
viewed as controllable passive systems. Compared to active systems, a semi-
active system is less adaptive because its force-generating capacity is limited by
its passive device base. Hybrid control systems generally refer to a combined
active control system and passive system or base-isolation system. Since a por-
tion of the control objective is accomplished by the passive system, a less active
control effort, implying a smaller active force-generating device and less power
resource, is required. More discussion of hybrid systems can be found in Section
1.8. Hybrid control systems are more favorable than other systems in that they
can utilize the advantages and avoid the disadvantages of both active and passive
systems.

1.3 HISTORY OF SMART STRUCTURE TECHNOLOGY FOR

SEISMIC-RESPONSE CONTROL

Adding devices to structures for vibration suppression has a long history. Passive
dampers emerged in the early 1900s. An early application of damping devices to
large civil engineering structures can be found in tower structures with elevated
water tanks [72], as shown in Figure 1.1. Passive dampers have been commer-
cially available since the 1970s and have been extensively applied for vibration
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Damping device

FIGURE 1.1 Water tower with damping devices.

suppression in automobiles, aircrafts, space structures, and civil engineering
structures. Modern control technologies and adaptive systems are also mature
in mechanical and electrical industries. However, smart structure technology for
wind and seismic response control of civil engineering structures was not concep-
tualized until the 1950s [51] as it is a very challenging task to develop control
devices and adaptive systems for large structures.

The concept of structural seismic response control originated in the 1950s
with Japanese researchers Kobori and Minai [51]. They came to an important
conclusion—as long as the precise characteristics of earthquake ground motion
vis-à-vis a building cannot be predicted, seismic response must be controlled on
the receiving end, the building structure. Yao’s conceptual paper [95] marked a
significant contribution to structural control research in the United States. He pro-
posed an “error-activated structural system whose behavior varies automatically in
accordance with unpredictable variations in the loading as well as environmental
conditions and thereby produces desirable responses under all possible loading
conditions.” In such a structural system, earthquakes and winds are countered not
only by structural members but also by a control force.

Remarkable progress has followed these initial concepts in structural seismic
response control. Japan took the lead in the practical application of control sys-
tems to building structures. In 1985, full-scale control system tests were launched
to progress toward further practical application. In 1989, an active mass driver
(AMD) system was installed in a building for seismic response suppression. AMD
efficiency was verified by real-time observation and numerical simulation [50]. In
the United States, under the leadership of the National Science Foundation (NSF),
following significant support of various control research projects in earthquake
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engineering, the U.S. Panel on Structural Control Research was formally estab-
lished, and a 5-year research program was initiated in 1992 for safety, performance,
and hazard mitigation [54]. The Civil Infrastructure Systems (CIS) research pro-
gram, closely related to structural control, was also initiated by the NSF [54].
Through these NSF programs, significant advances have been and continue to
be made in the United States. As interest in structural control grows, international
cooperation fosters research and development of seismic response control systems.
Since the Ninth World Conference on Earthquake Engineering in 1988 recognized
the importance of seismic response control, the United States and Japan have col-
laborated on research in this area. To promote global cooperation, the International
Association for Structural Control (IASC) was established in 1992 at the Tenth
World Conference on Earthquake Engineering. IASC sponsored the International
Workshop on Structural Control in 1993, the First World Conference on Structural
Control at Los Angeles in 1994, the Second World Conference on Structural Con-
trol at Kyoto, Japan in 1998, the Third World Conference on Structural Control
at Como, Italy in 2002, and the Fourth World Conference on Structural Control
at San Diego, California in 2006. In addition, numerous bilateral and trilateral
workshops on smart structures were held in Asia, Europe, and the United States,
such as the US–Korea Workshop on Smart Structural Systems [27,28]. Today,
numerous full-scale control systems have been installed in actual structures and
have performed well for seismic- and wind-response reduction [49,76,78,80]. Joint
research projects are being conducted by researchers from the United States, Japan,
China, South Korea, and elsewhere. These collaborative efforts contribute greatly
to the development of seismic response control. Table 1.1 summarizes the history
of smart structure technology for seismic response control [54,80].

With these research and development efforts, great achievements have been
made in smart structure technology for seismic response control. These efforts can
be grouped into the following categories:• Control system modeling and algorithm development. This area focuses

on improving the applicability of modern control theory to the seismic
response of large civil structures characterized by severe uncertainty.• Control device development and experimental verification. Dampers
and actuators capable of generating the large force required for seismic
response control are developed. Shaking table tests or field measure-
ments are conducted to verify the effectiveness of control devices and
proposed control algorithms.• Application of smart materials. Electrorheological (ER) or magnetorhe-
ological (MR) materials, piezoelectric (PZT) layers, shape memory
alloys, and optical fiber sensors are being studied for civil engineering
applications. They are used to develop sensors, dampers, and structural
members with embedded smart material layers for sensing and actu-
ation. Structural components with smart materials, dampers, and sensors
are applied to civil engineering structures such that these structures are
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TABLE 1.1
History Summary of Smart Structure Technology for Seismic-
Response Control

Year Event

1988 Ninth WCEE recognized the importance of seismic response control
1989 U.S. Panel on Structural Control research
1990 Japan panel on structural response control
1991 5-year research initiative on structural control by NSF
1992 International Association for Structural Control (IASC) established at Tenth WCEE
1993 European association for control of structures
1993 Civil infrastructure systems research program initiated by NSF
1994 First world conference on structural control (Los Angeles, California, USA)
1996 First European conference on structural control (Barcelona, Spain)
1998 Chinese panel for structural control
1998 Korean panel for structural control
1998 Second world conference on structural control (Kyoto, Japan)
2000 Second European conference on structural control (Paris, France)
2002 Third world conference on structural control (Como, Italy)
2004 International Association for Structural Control and Monitoring (IASCM)
2006 Fourth world conference on structural control (San Diego, California, USA)

capable of responding spontaneously to seismic excitations in order to
minimize undesired effects.• Applicability issues. These studies have enhanced the applicability of
control systems of full-scale structures. Issues here include system
integration, robust control strategies for reliability, observer–controller
techniques for a sensing system with acceleration measurements and
insufficient state sensors, force-generating capacity of actuators and
hybrid control strategies, maximizing control system effectiveness
by optimally placing the control devices, and overall system safety,
stability, and maintenance.• Full-scale implementation. Here, control systems are installed on actual
structures. While passive control systems were extensively applied to
civil structures originally, full-scale active control systems made their
debut with significant momentum [50,76].• Design standard development. Seismic-design specifications are being
updated with guidelines for smart structure design. Federal Emergency
Management Agency (FEMA) takes the lead in developing guidelines
for the design of seismic-isolated structures or structures with damper
systems and has published four editions of the design guide in 1991
(FEMA 140), 1997 (FEMA 302), 2000 (FEMA 368), and 2003 (FEMA
450) [33,34]. These design guides have been adopted by model building
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codes and ASCE-7 standards. In 1991, the Uniform Building Code
(UBC), issued by the International Conference of Building Officials
(ICBO), adopted design regulations for seismic-isolated structures in
Appendix-Division III [41]. These provisions stem from Tentative
Seismic-Isolation Design Requirements (September 1986), circulated
by a base-isolation subcommittee on behalf of the Structural Engin-
eers Association of Northern California (SEAONC). A later version
of the UBC (UBC-97) specified design provisions for isolated struc-
tures in Division IV, Appendix-Chapter 16 [41]. Static and dynamic
lateral response procedures are recommended for seismic design of
base-isolated structures. Both response spectrum and time-history ana-
lysis are permitted in the dynamic procedure. The International Building
Code, published by the International Code Council, adopted the FEMA
guidelines for seismic-isolated structures in Section 1623 of both 2000
and 2003 editions [42]. ASCE-7 Standard Minimum Design Loads for
Buildings and Other Structures, issued by the American Society of Civil
Engineers, also adopted the FEMAprovisions for seismic-isolated struc-
tures in its 1995, 1998, and 2002 editions [6]. The latest edition of
ASCE-7, published in 2005, has adopted design guidelines for not only
seismically isolated structures (Chapter 13) but also for structures with
passive damper systems (Chapter 15) [6].

1.4 BASE-ISOLATION SYSTEMS

1.4.1 Introduction
Base isolation is a well-established application of the passive control approach. A
building mounted on a material with low lateral stiffness, such as rubber, achieves
a flexible base. During the earthquake, the flexible base is able to filter out high fre-
quencies from the ground motion and to prevent the building from being damaged
or collapsing. Therefore, base isolation is an effective tool for providing seis-
mic protection for low- and middle-rise building structures because these types of
buildings are characterized as having high frequencies. The design specifications
for base isolation have been officially established as indicated in the previous sec-
tion. Thus, this book includes one chapter on this subject, focusing on the outline
of code specifications, equations, and numerical illustrations of analysis and the
design of sample buildings.

Applying base isolation to structural engineering began in the 1960s. Since
the first base-isolated building, the Foothill Community Law and Justice Center
located at Rancho Cucamonga, California [63], was constructed in the United
States, base-isolation technology has been successfully utilized to isolate differ-
ent types of building lateral-force-resisting systems, such as steel braced frames,
concrete shear walls, reinforced or unreinforced masonry walls, and even wood
frames [83]. A recent application of the base-isolation system combined with steel
special moment resisting frames with reduced beam sections (RBSs) is the Sue &
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(a) (b)

FIGURE 1.2 (a) Construction of Sue & Bill Gross Women’s Pavilion at Hoag Memorial
Hospital Presbyterian, Newport Beach, California and (b) installation of base-isolation
system.

Bill Gross Women’s Pavilion at Hoag Memorial Hospital Presbyterian, Newport
Beach, California, as shown in Figure 1.2. This eight-story building structure,
designed by Taylor & Gaines Structural Engineers in Pasadena, California, is isol-
ated by 54-high-damping natural rubber bearings manufactured by BTR Andre in
the United Kingdom.

Isolation components, usually called isolators or bearings, are generally
classified as one of two major types: elastomeric- and sliding-type bearings.
Elastomeric-type bearings are typically composed of rubber and steel plates, while
sliding-type bearings rely upon friction between specially treated surfaces of an
assembly unit. Some types of bearings combine characteristics of elastomeric and
sliding bearings, but these two basic types are dominantly used in building struc-
tures. The following sections mainly focus on the introduction of elastomeric-type
and sliding-type bearings.

1.4.2 Elastomeric Bearings
Elastomeric bearings were originally made from natural rubber; later on, their
properties were improved by adding steel plates or shims. An elastomeric bearing
with steel shims is schematically presented in Figure 1.3. The thickness of the
steel shim is approximately 1 in., and the rubber layer between the steel shims
varies from 3 to 7.5 in. Compared to the pure rubber bearing, using steel shims
greatly reduces the bearing’s vertical deformation and keeps the rubber layers from
laterally bulging. Accordingly, the bearing’s stiffness in the upward direction is
much less than that in the downward direction. Since the steel shims do not prevent
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Natural rubber

Thick steel plate connected to column

Steel shims

Thick steel plate connected to foundation

FIGURE 1.3 Elastomeric bearing with steel shims.

the rubber layers from lateral movement, the bearing’s lateral stiffness is barely
affected and is much less than the vertical stiffness.

Synthetic rubbers, such as neoprene, can be used as an alternative to natural
rubber when manufacturing bearings. Both types of rubber properties are very
stable and do not exhibit creep under long-term loading. Elastomeric bearings
have been used successfully in buildings and other nonbuilding structures. They
have functioned well for over 50 years of service.

Owing to the flexibility of rubber properties and the long range of elastic shear
deformation, the critical damping of elastomeric bearings only varies from 2% to
3%. Therefore, elastomeric bearings are also called low-damping bearings.

Elastomeric bearings are easily manufactured, and the manufacturing cost
is relatively low compared to other types of bearings. Also, their mechanical
properties are independent of temperature and aging. However, owing to the
low critical damping, elastomeric bearings have little resistance to service load,
and additional damping devices are required in order to control higher lateral
displacement.

1.4.3 Lead-Plug Bearings
The disadvantage of the elastomeric bearing’s low-damping properties can be
overcome by plugging a lead core into the bearing. A preformed hole, slightly
smaller than the lead plug, is usually located in the center of the elastomeric
bearing. Once the lead plug is tightly fitted into the preformed hole, both portions
become a unit and form a lead-plug bearing as shown in Figure 1.4.

The performance of the lead-plug bearing depends on the imposed lateral force.
If the lateral force is small, the movement of the steel shims is restrained by the lead
core, and the bearing displays higher lateral stiffness. As the lateral force becomes
larger, the steel shims force the lead core to deform or yield, and the hysteretic
damping is developed with energy absorbed by the lead core. Consequently, the
lateral stiffness of the bearing is reduced. The equivalent damping of the lead-plug
bearing varies from 15% to 35%. A bilinear model is usually used to depict the
mechanical properties of the lead-plug bearing.
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Natural rubber 

Thick steel plate connected to column

Thick steel plate connected to foundation

Steel shims Lead core 

FIGURE 1.4 Lead-plug bearing.

(a) (b)

FIGURE 1.5 (a) High-damping natural rubber bearings manufactured by BTR Andre and
(b) the section cut of tested bearing.

1.4.4 High-Damping Rubber Bearings
Another effective method to increase the damping of the electrometric bearing is to
modify the rubber compounds no matter whether the rubber is natural or synthetic.
For example, adding carbon black or other types of fillers to the natural rubber
changes the rubber’s properties and results in higher damping.

The high-damping rubber bearing is only composed of rubber and steel shims,
but it possesses necessary flexibility as well as energy-dissipation capabilities.
Figure 1.5 shows a high-damping rubber bearing 46 in. in diameter, which was
manufactured by BTR Andre and installed in the Sue & Bill Gross Women’s
Pavilion (see Figure 1.2). During the prototype test, the bearing remained stable
and did not fail even though it was vertically stretched by half an inch in order
to simulate the applied overturning force and then sheared by 26 in. of horizontal
movement.

A bilinear model can also be adopted to illustrate the effect of the applied
lateral force on the bearing and the corresponding displacement. The effective
damping of a high-damping rubber bearing is a function of the bearing’s shear
strains. For natural rubber, the effective damping changes from approximately
15% at low-shear strain to 10% at high-shear strain.
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The mechanical properties of the high-damping rubber bearing are somehow

affected by the effects of aging, temperature, and scragging. Also, the selection
of the bearing’s stiffness and damping is limited owing to the rubber compound
itself [48].

1.4.5 Friction Pendulum Bearings
The original friction bearing features flat sliding surfaces. The imposed lateral
force is resisted by the product of the friction coefficient and the vertical load
applied on the bearing. The major disadvantage of the friction bearing with flat
sliding surfaces is that the building structure is unable to return to its original
position after an earthquake. This is because once the imposed lateral force is
less than the resistance generated from the friction, the movement of the build-
ing structure stops and causes the structure stay some distance from the center
of the bearing. Aftershocks may force the building to move from the stopping
position and even further away from the original position. Accordingly, the build-
ing’s movement might exceed the bearing’s range and result in the failure of the
bearings.

To reduce the distance to the center of the bearing after an earthquake, a fric-
tion bearing with a spherical or concave sliding surface was developed. This type
of bearing is called a friction pendulum bearing and is shown in Figure 1.6. The
spherical sliding surface is normally coated by Teflon with approximately 3%
friction coefficient. The imposed lateral force pushes the bearing in both hori-
zontal and vertical directions. Once the lateral force disappears, a restoring force
is generated. A component of applied vertical load along the tangential direction
to the spherical surface helps the bearing move back to the center. The movement
stops when the friction is equal to or greater than the component of the applied
vertical load.

One noticeable characteristic of the friction pendulum bearing, which is called
static friction, is that the lateral force needed to initiate sliding is larger than that
needed to maintain sliding. Once the imposed force overcomes the resistance from
the friction, the articulated slider is activated and moves along the spherical sur-
face. The friction coefficient is governed by the applied vertical load and velocity
[48]. A higher applied vertical load results in a lower friction coefficient, while
the friction coefficient greatly increases at high velocity. Detailed discussions of

Teflon coated spherical surface Articulated slide

Stainless steel base 

FIGURE 1.6 Friction pendulum bearing.
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Top articulated slide 

Bottom articulated slide 

FIGURE 1.7 Friction pendulum bearing with double concave surface.

the mechanical properties of the friction pendulum bearing will be presented in
Chapter 2.

The friction pendulum bearing has the advantage of low maintenance. The
coated Teflon on the stainless steel effectively protects the sliding surface from
corrosion. Since the bearing slides only during an earthquake, the coated Teflon
can last for the entire design life. Also, the aging effects and temperature variations
hardly affect the bearing’s mechanical properties.

A friction pendulum bearing with double concave surfaces has recently been
developed. Figure 1.7 schematically depicts this type of bearing. Compared to the
friction pendulum bearing with a single concave surface, use of double concave
surfaces can achieve the same horizontal movement with reduced bearing size
because the horizontal movement of the bearing is contributed by the top and
bottom concave surfaces.

1.4.6 Other Types of Base-Isolation Systems
Pot-type bearings, originally developed in Europe, are an example of the com-
bination of elastomeric- and sliding-type bearings. The elastomer is confined by a
pot-like piston coated by Teflon on its top surface. Figure 1.8 presents a schematic
section of the pot bearing. Owing to the confinement of the piston, the elastomer is
prevented from bulging under high pressure. Also, the pot bearing has rotational
capacity so that the sliding face is subjected to more uniform loading under the
earthquake’s displacement. However, the eccentricity generated by lateral move-
ment will result in an additional movement to the structure above the isolation
system.

Another application of elastomeric bearings combined with Teflon-coated slid-
ing bearings, such as the combined system tested by Earthquake Engineering
Research Center (EERC) at Berkeley, California and the hybrid Taisei shake sus-
pension system (TASS) system [63], is to install both systems in different locations
of the building’s foundation. Elastomeric bearings are used to resist lateral force
and offer restoring force, while the sliding bearings are designed to support the ver-
tical loads. The performance of the base-isolation system mainly relies on the lay-
out of the bearings’ locations. If not properly placed, the elastomeric bearing may
experience high tensile force because it is not designed to carry any gravity loads.
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Top plate with stainless surface
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FIGURE 1.8 Pot bearing.

In addition to elastomeric bearings, sliding bearings, and combinations of
both types of bearings, there are other types of base-isolation systems based on
concepts of energy dissipated passively, such as resilient-friction base-isolation
systems, spring-type systems, and sleeved-pile isolation systems. Some systems
are only limited to certain building structures, and some are not yet commercially
available. Owing to the space limitations herein, detailed discussions of these
systems are referred to Reference 63.

1.5 PASSIVE ENERGY-DISSIPATION SYSTEMS

Passive energy-dissipating systems use mechanical devices to dissipate a por-
tion of structural input energy, thus reducing structural response and possible
structural damage. They have been used to mitigate structural vibration by wind
and earthquake excitations. Typical passive systems are tuned mass dampers
(TMDs), tuned liquid dampers (TLDs), friction devices, metallic yield devices,
viscous-elastic dampers, and viscous fluid dampers. As described in the follow-
ing subsections, these systems require no external power or measurements on
structural response. Structures with such systems are smart because such systems
can generate a larger damping force when the structural response gets higher.
However, passive systems only have a limited control capacity. Some systems,
such as TMDs and TLDs, are only effective within a narrow frequency band
because they are tuned to the first-mode frequency of the structure. Such dampers
can be applied to vibration suppression of structures under wind excitations in
which the first mode dominates the response, but they lack the capacity to con-
trol seismic response in which multiple modes are significant. Smart structures
using passive systems have limited intelligence as they are unable to adapt to the
excitation and global structural response. Passive systems depend on the relative
structure movement to drive the energy-dissipation mechanism, and dissipated
energy can only be related to the local (where the passive device is located)
structural response. As noted in Section 1.3, the design specifications for pass-
ive damper systems have been officially established. Thus, this book includes one
chapter on this subject, focusing on the outline of code specifications, equations,
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and numerical illustrations of analysis and design of sample buildings with passive
dampers.

1.5.1 Tuned Mass Dampers
Tuned mass dampers, in their simplest form, consist of an auxiliary mass (md)-
spring (kd)-dashpot (cd) system anchored or attached to the main structure, usually
on the top of the structure, as shown in Figure 1.9. The basic mechanism of a TMD
is a dynamic vibration absorber, as shown in Figure 1.10. The absorber comprises
a small mass md and a spring with stiffness kd, and it is attached to the main mass
m with spring stiffness k. Under sinusoidal excitation P0 sinωt, the main mass
remains stationary when the natural frequency of the attached absorber is equal
to the excitation frequency, that is, ωn = ωd = √kd/md [32]. This external forcemd

kd cd

FIGURE 1.9 Tuned mass damper installed on structure.P0 sin �t

md kdm k
FIGURE 1.10 Undamped dynamic vibration absorber.
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P0 sin ωt on the main mass m can be balanced by the restoring force of the small
mass md.

Dynamic absorbers are widely used in mechanical systems. Application of a
dynamic absorber or a TMD to a building structure is more complex as building
structures are large and heavy. The TMD responds to structural vibrations, and part
of the energy transfers to the vibration energy of the TMD. The TMD damping
dissipates its vibration energy, and as a result, the vibration energy of the structure
is absorbed by TMD damping. On the basis of the mechanism of the undamped
vibration absorber, the energy-absorbing capacity of the TMD is related to the
mass ratio of the TMD to the main structure, the stiffness ratio of the TMD to the
structure (kd/k), the frequency (tuning) ratio of the TMD to the structure, the natural
frequencies of the TMD and the structure, and the damping ratios of the TMD and
the structure. Details can be found in publications by Luft [57], Warburton [87],
and Fujino and Abe [36].

A TMD’s effect can be viewed as equivalent to changing the damping ratio of
the structure itself to a larger value. For responses of lightly damped structures with
a dominant mode, TMD can effectively reduce the peak response or resonant com-
ponent. Given this characteristic, TMDs are increasingly used for wind-sensitive
structures to curb excessive building motion and to ensure occupant comfort. Such
structures include the CN Tower, Toronto, the John Hancock Tower, Boston, and
Citicorp Center, New York City.

Figure 1.11 demonstrates some examples of the many types of TMDs available
for practical implementation. The restoring force can be generated by the TMD
gravity load (see types a, b, d, and e), by a spring (see types c, d, and f), or by a
bearing (see types g and h). The damping force can be achieved by a dashpot (see
types b, c, d, and f) or by high-damping materials such as rubber (see type h). For
the one-mass pendulum type TMD (see types a and b in Figure 1.11), the vibration
period T only depends on the pendulum arm length L (T = 2π√L/g). In order to
tune the TMD frequency to the structural fundamental mode, the pendulum arm
often requires too large space. To save the required space, this simple pendulum is
modified in such a way that the pendulum period depends on both the pendulum arm
length and the other properties. For example, the pendulum arm can be connected
to a spring (see type c in Figure 1.11); a two-mass damper (see type d in Figure 1.11)
can be used, with one mass sliding on the building floor and the other acting as a
pendulum; or the multistage pendulum (see type e in Figure 1.11) can be employed,
of which winded hangers reduce the vertical space requirement and keep the same
horizontal occupied space. Citicorp Center’s TMD system uses sliding mass with
a spring and damper.

TMD applicability is still limited by three factors. First, TMDs are effect-
ive only for one mode, making them less suited for seismic response control.
Second, they are sensitive to mistuning. Third, they occupy a relatively large space.
As industrial technology progresses, TMD configurations are being enhanced to
address these limitations. An interesting development is to add active capacity
to the TMD so that it can be effective for multiple modes of seismic response.
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FIGURE 1.11 Typical types of TMDs: (a) simple pendulum, (b) pendulum with damper,
(c) inverted pendulum with damper and spring, (d) two-mass damper, (e) multistage damper,
(f) sliding mass with spring and damper, (g) swinging mass on rotational bearings, and
(h) mass on rubber bearings.

Such devices are called active mass dampers (AMDs) and hybrid mass dampers
(HMDs) described in Sections 1.7 and 1.8, respectively.

1.5.2 Tuned Liquid Dampers
Another type of dynamic absorber for structural vibration suppression is the TLD.
In a TLD, water or some other liquid serves as the mass in motion, and the restoring
force is generated by gravity. The structural vibration shakes the TLD and induces
the liquid movement inside the container. The turbulence of the liquid flow and
the friction between the liquid flow and the container convert the dynamic energy
of the fluid flow to heat, thus absorbing structural vibration energy. Note that a
TLD has the same basic principle as a TMD to absorb structural vibration energy,
and neither one has complex mechanisms. The difference is that all characteristics
of a TLD’s auxiliary system—mass, damping, and restoring mechanisms—are
provided by the liquid.

While TLDs were initially applied in ships, their application for vibration
control of civil engineering structures began in the 1980s [9]. Figure 1.12 shows
two typical types of TLDs. The sloshing damper places meshes or rods in the
liquid to provide damping capacity, and its natural frequency is adjusted by
the size of the container or depth of the liquid. The column damper generates
high-flow turbulence through the orifice to provide damping capacity, and its
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Vibration Vibration

(a) (b)

p

FIGURE 1.12 Tuned liquid dampers: (a) sloshing damper with meshes and rods and
(b) column damper with orifice.

natural frequency is adjusted by column shape and air pressure. The column TLD
can be adapted to crossed-tube containers for reducing structural vibration in any
direction.

Similar to TMDs, TLDs have been used to suppress wind-excited vibrations
of tall structures, such as airport towers and tall buildings [85]. Such structures
include the Nagasaki airport tower, the Yokohama marine tower, and the Tokyo air
traffic control towers at Haneda and Narita airports. TLDs have two advantages. A
single TLD can be effective in any direction of lateral vibrations, and water used
for TLD can serve a dual purpose as part of the building’s fire protection supply.
On the other hand, TLDs have two unfavorable properties. They require more
space because liquids have less mass density than do the materials for TMD, such
as concrete or steel. TLDs also exhibit a highly nonlinear response due to liquid
sloshing and/or orificing. This inherent nonlinearity complicates the analysis and
design process for TLD systems; thus, many research efforts have focused on their
optimum parameters and nonlinearity.

1.5.3 Friction Devices
Friction is an effective, reliable, economical, and widely applied mechanism to
dissipate kinetic energy by converting it to heat. This friction mechanism for
energy dissipation has been utilized to develop dampers for structural vibration
suppression. To achieve this essential friction, the damper must have two solid
bodies that slide relative to each other.

In the early 1980s, Pall and Marsh [66] pioneered passive friction dampers on
the basis of the model of friction brakes. Since then, considerable progress has
been made in friction devices, and their behavior has been studied analytically and
experimentally. Figure 1.13 illustrates several types of friction devices developed
around the world. Pall and Marsh’s X-braced friction damper [67] is shown in
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FIGURE 1.13 Typical types of friction dampers: (a) X-braced friction damper and
(b) Sumitomo friction damper.

Figure 1.13a. Slotted slip joints provide consistent force resistance via friction by
brake lining pads installed between the steel plates. When a seismic load is applied,
the compression brace and tension brace induce slippage at the friction joint, and
energy is thus dissipated. Figure 1.13b shows a Sumitomo friction damper [2,3]
mounted on K-bracing. When the structure vibrates, relative movement between
the structure and the brace drives the copper alloy friction pads as they slide along
the inner surface of the cylinder’s steel casing. Resistant force is then produced
through the action of the spring against the inner and outer wedges. Nims et al.
[64] developed a more sophisticated energy-dissipating-restraint (EDR) device
dissipates energy on the interface between the bronze friction wedges and the
steel cylinder wall. With an EDR, the structure vibrates and induces movement
of the spherical rod. Then the combination of wedges, stops, and inner springs
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produces friction proportional to the displacement of the device’s edges. A friction
device, proposed by Fitzgerald et al. [35], utilizes slotted bolted connections in
concentrically braced frames. Sliding between structural steel components gen-
erates friction and dissipates energy. Extensive studies have been conducted on
friction dampers, which has led to their practical application for structural seismic
protection [2,78].

Friction dampers are simple to construct and effective for seismic protection.
However, it is very difficult to maintain their mechanical properties over prolonged
time intervals. In particular, corrosion, deformation due to temperature changes,
and relaxation of the sliding metal interface jeopardize the friction-generating
capacity of the damper. Moreover, friction dampers behave nonlinearly and are
difficult to analyze and design. These two weaknesses limit the application of
friction dampers.

1.5.4 Metallic Yield Devices
Inelastic deformation of metallic materials is another effective mechanism for
energy dissipation. The traditional seismic-resistant design of structures depends
on postyield ductility of structural members to dissipate earthquake input energy.
This concept led to the idea of installing separate metallic hysteretic devices in
a structure to absorb seismic energy. In the 1970s, conceptual and experimental
work on metallic yield devices began [47,75]. Since then, development, testing,
analytical modeling, and practical implementation of metallic yield dampers have
progressed considerably [80,86,88]. Several kinds of metallic yield devices have
been developed, of which two models are sketched in Figure 1.14. The device in
Figure 1.14a dissipates energy by material hysteretic behavior in inelastic tensile
deformation of the rectangular steel frame in the diagonal direction of the ten-
sion brace. Buckling of the bracings is not a concern as it rarely happens. This
is because the compression brace disconnects and has a small effective length,
and the buckling critical load is designed to be higher than the yielding load
[86]. The other model is called added damping and stiffness (ADAS) as shown in
Figure 1.14b, which consists of multiple X-steel plates, and yielding occurs over
the entire length of the device. Rigid boundary members are used such that the
X-plates are deformed in double curvature. Implementation of metallic yield
dampers for full-scale structures began in New Zealand in the 1970s. Since then,
various metallic yield devices have been used to improve the seismic-resistant
design of new structures or to upgrade the seismic-resistant capacity of existing
structures [2,47,60].

Metallic yield devices generally have stable hysteretic behavior, low-cycle
fatigue, long-term reliability, and relative insensitivity to environmental temperat-
ure. However, they do not absorb much energy during their initial elastic behavior.
Energy dissipation occurs after large inelastic deformation happens. Moreover,
metallic yield dampers behave nonlinearly; they increase structural strength in
addition to damping. This behavior complicates analysis and requires an iteration
design process.
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FIGURE 1.14 Typical types of metallic yield dampers: (a) Tyler’s yielding steel bracing
system and (b) added damping and stiffness (ADAS) device.

1.5.5 Viscoelastic Dampers
Viscoelastic (VE) dampers utilize high damping from VE materials to dissipate
energy through shear deformation. Such materials include rubber, polymers, and
glassy substances. A typical VE damper consists of VE layers bonded to steel
plates as shown in Figure 1.15a. VE damper components are mounted on a struc-
ture as part of the chord (see Figure 1.15b) and the diagonal bracing system
(see Figure 1.15c), respectively. Shear deformation occurs and energy is dis-
sipated when the structural vibration induces relative motion between the outer
steel flanges and the center plate. Applications of VE dampers can be found in
References 31 and 78.

As noted, TLDs, friction dampers, and metallic yield dampers are all character-
ized by nonlinearity. VE dampers offer a distinct advantage in that they generally
behave linearly as they use linear VE materials, which simplifies the analysis and
design process. This linear behavior also enables VE dampers to absorb vibration
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FIGURE 1.15 Viscoelastic (VE) damper: (a) damper detail, (b) installation as chord, and
(c) installation as diagonal bracing.

energy caused by either severe earthquakes or small excitations such as wind,
traffic, or mild earthquakes. However, VE dampers have the disadvantage of being
frequency and temperature dependent. This can present a problem in the design
process because the properties of VE materials can only be expressed by shear
storage modulus (measure of the energy stored and recovered per cycle) and shear
loss modulus (measure of the energy dissipated per cycle).

1.5.6 Viscous Fluid Dampers
Recall that metallic, friction, and VE dampers all utilize the action of solids to
enhance the performance of structures subjected to environmental excitations. Use
of viscous fluid for shock and vibration mitigation is familiar to heavy industry
and the military. For example, automotive shock absorbers were invented in the
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FIGURE 1.16 Typical types of viscous fluid dampers: (a) GERB viscous fluid damper and
(b) viscous damping wall.

early 1900s. In the 1970s, the first full-scale implementation of viscous fluid
dampers was done for bridges in Italy [78]. In the 1980s, significant efforts were
made toward the conversion of this industrial technology for civil engineering
structures. These efforts led to the development, analysis and modeling, and testing
and full-scale implementation of viscous fluid dampers.

The most promising design of viscous fluid dampers is shown in Figure 1.16. A
straightforward design is achieved with classical dashpot, and dissipation occurs
by converting kinetic energy to heat as a piston moves and deforms a thick, highly
viscous fluid. This viscous fluid damper (see Figure 1.16a) was first manufactured
by GERB Vibration Control and used as a component of seismic base-isolation
systems [39]. The relative movement of damper piston to damper housing drives
the viscous damper fluid back and forth through the orifice. Energy is dissipated by
the friction between the fluid and the orifice. This kind of damper configuration can
provide motion and energy dissipation in all six degrees of freedom as vibration
in any direction can shake the viscous fluid. An alternative design for superstruc-
tures (see Figure 1.16b), the viscous damping wall (VDW), was developed by the
Sumitomo Construction Company in Japan [8]. The VDW’s piston is a steel plate
constrained to move in its plane within a narrow rectangular steel container filled
with viscous fluid. To install a VDW, the piston is attached to the floor above, and
the container is fixed to the floor below. Interstory motion deforms the fluid; thus,
the friction between the inner plate and the viscous fluid dissipates energy. In order
to be effective, these dampers must employ fluids with high viscosities. During the
1990s, modeling of viscous fluid dampers advanced. Macroscopic models were
developed for structural application on the basis of the theory of fluid dynamics, the
constitutive law of viscous fluid, and experimental investigation [25,30,55,59,70].
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Similar to VE dampers, viscous fluid dampers behave linearly but are tem-

perature and frequency dependent. High-strength seals are required to prevent
viscous fluid from leaking. Cost remains relatively low while effectiveness is
high. Thus, viscous fluid dampers hold promise for civil engineering structure
applications.

1.6 SEMIACTIVE DAMPER SYSTEMS

Semiactive dampers are a natural evolution of passive energy-dissipating techno-
logy as they incorporate adaptive systems to improve effectiveness and intelli-
gence. They are frequently referred to as controllable or intelligent dampers. Their
adaptive system gathers information about the excitation and structural response
and then adjusts the damper behavior on the basis of this information to enhance
its performance. A semiactive damper system consists of sensors, a control com-
puter, a control actuator, and a passive damping device. The sensors measure the
excitation and/or structural response. The control computer processes the meas-
urement and generates a control signal for the actuator. Then the actuator acts to
adjust the behavior of the passive device. Note that the actuator is used to control
the behavior of the passive device instead of applying a force directly onto the
structure; thus, it only requires a small power supply such as batteries. This is
a great advantage because the main power source to the building structure may
fail during seismic events, and the actuator does not have any harmful potential
such as destabilization of the structure. Although semiactive dampers are a bit
more complex than passive dampers, they are still easy to manufacture, reliable
to operate, and capable of performing better than passive dampers. The control
capacity of semiactive dampers is still limited as they can only operate within the
maximum capacity of corresponding passive devices.

Semiactive dampers were proposed earlier as automobile shock absorbers in
the 1920s [44]. They were then the subject of extensive research in mechanical
engineering, primarily for automotive applications. In the 1980s, their application
to vibration control of civil engineering structures was considered. The research
introduced the concept of semiactive dampers for wind-response control applica-
tions [38]. In the 1990s, this concept was introduced for seismic response control.
Semiactive control systems are less advanced than passive control systems. How-
ever, because semiactive dampers combine the advantages of both passive and
active control systems with small additional cost compared to passive dampers,
they appear to be a promising approach for seismic response control of civil
engineering structures.

1.6.1 Semiactive Tuned Mass Dampers
In 1983, Hrovat et al. [38] proposed a semiactive TMD for control of wind-induced
vibrations in tall buildings (see Figure 1.17). This system consists of a TMD and
an actuator installed on top of the main structure. The semiactive TMD has mass
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FIGURE 1.17 Semiactive TMD.

md, damping cd, and stiffness kd, while the main structure is represented by mass
m, damping c, and stiffness k. The actuator, denoted by SA, generates the control
force u. The control force u adjusts TMD damping such that it is always optimal
to ever-changing excitation. Since the TMD mass md is much smaller than the
structural mass m, and the active control force is used to change the damping force
of the TMD (which is much less than the inertial force of the TMD), a small amount
of external power is required to achieve this adjustment. Semiactive TMDs are still
in the stage of research and development.

1.6.2 Semiactive Tuned Liquid Dampers
The semiactive TLD simply regulates the tuning of the liquid in operation. On
the basis of the two major types of TLDs discussed in Section 1.5.2, researchers
have developed the semiactive sloshing TLD and the column TLD. The semiactive
sloshing TLD, as proposed by Lou et al. in 1994 [56], added a set of rotatable baffles
in the liquid tank of a sloshing TLD. An actuator is used to adjust the orientation
of these baffles on the basis of predefined algorithms. When the baffles are in the
horizontal position, the liquid tank maintains its original length. When the baffles
are in the vertical position, the liquid tank is divided into a number of shorter tanks.
Since the natural frequency of the contained liquid changes with tank length, the
tuning of the TLD can be controlled by rotating the baffles to a desired inclined
position. With this mechanism, no powerful actuator is required as it is only used
to rotate the light-weight baffles. TLD performance can thus be improved at low
cost. The semiactive column TLD, as proposed by Yalla and Kareem in 2002 [89],
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uses a variable orifice in a column TLD to maintain optimal damping conditions.
An electropneumatic actuator is utilized to drive a ball valve to change the cross-
section of a column TLD according to the control algorithm, thus adjusting the
damper properties to achieve better performance. Similar to semiactive TMDs,
semiactive TLDs remain a focus of research and device development.

1.6.3 Semiactive Friction Dampers
Akbay and Aktan developed a semiactive friction damper in 1991 [5] by using
an electromechanical actuator. This device is based on a friction damper that con-
sists of a preloaded friction shaft rigidly connected to the structural bracing. The
brace applies a preloaded normal force to the friction interface of the device,
and the energy is dissipated via friction. An electric motor is employed to drive
the actuator piston that applies compression (normal force) to the friction inter-
face. Since the friction force is proportional to the normal force, adjusting the
movement of the actuator piston controls the friction force and damping capacity
of the damper. By regulating the normal compression force through an optimal
control algorithm, the friction is mechanically adjusted so as to achieve better
performance.

Chen and Chen [12] have developed another type of semiactive friction damper
by using PZT actuators. Owing to their strong electromechanical coupling prop-
erty, smart PZT materials can generate a significant amount of stress when exposed
to an electric field and subjected to a restraint in their motion. With this smart prop-
erty, PZT materials have been widely used in mechanical and aerospace industries
to suppress excessive structure vibration. However, the limited actuating capacity
of PZT actuators makes them unable to directly control wind and seismic response
of large civil engineering structures. Thus, the smart feature of PZT materials was
employed to improve the effectiveness of passive friction dampers. This concept
led to a piezoelectric friction damper (PFD). As shown in Figure 1.18, the PFD
consists of four preloading units, four PZT stack actuators, a friction component,
and a steel box housing other components. The friction component has a thin sheet
of steel with friction material (brake linings) bonded to its top and bottom surfaces.
When the PFD is installed on a structure, relative movement of the isolation plate
and the bottom plate causes friction and thus dissipates energy. The PZT stack
actuators are located directly above the isolation plate, and the actuation force
serves as a normal force to the friction surface. By adjusting the electric field
on the PZT actuators according to a predetermined algorithm, the normal force
and thus the friction control force are regulated to enhance real-time effectiveness
of the friction device. A semiactive control algorithm was developed for the PFD,
and shaking table tests were conducted for a three-story steel structure model with
PFD installed between a K-bracing support and the first floor [12]. Numerical sim-
ulations and experimental results both indicate that the PFD not only effectively
suppresses structural vibration but also adapts to varying excitations from weak
to strong earthquakes.
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FIGURE 1.18 Piezoelectric friction damper: (a) view and (b) schematic.

Semiactive friction dampers have guaranteed energy dissipation by friction.
The adaptive feature enhances the damper’s behavior, and they operate with low
energy and do not cause instability of the controlled structures. More research is
needed for engineering application.

1.6.4 Semiactive Vibration Absorbers
One effective method to achieve a controllable damping device is to use a variable-
orifice valve to adjust the flow of a hydraulic damper. This concept led to
the emergence of semiactive vibration absorbers (SAVA), also called semiact-
ive hydraulic dampers (SAHD). As shown schematically in Figure 1.19, such a
device provides adjustment of both damping and stiffness. The damping capacity
is generated from the viscous fluid, and the stiffness is adjusted by the opening of
the flow valve. If the valve is closed, the SAVA works as a stiffness spring. If the
valve is open, the fluid can easily flow through the tube and provides little stiffness
to the structure. SAVA was applied to automobiles for improved ride and road-
holding [43]. Applications of SAVA to buildings and bridges include experiments
for seismic response control and implementation [68,69,80].

1.6.5 Semiactive Stiffness Control Devices
A semiactive variable-stiffness (SAVS) system, also called a variable-stiffness
device (VSD) by the authors, has been studied and implemented in Japan [52]. As
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FIGURE 1.19 Schematic of semiactive vibration absorbers.
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FIGURE 1.20 Semiactive variable-stiffness device.

shown schematically in Figure 1.20, this device is mounted on a bracing system of
the structure. The VSD consists of a balanced hydraulic cylinder, a double-acting
piston rod, a normally closed solenoid control valve, and a tube connecting the
two cylinder chambers. The solenoid valve can be set open or closed. When the
valve is open, fluid flows freely and disengages the beam–brace connection, thus
decreasing structural stiffness. When the valve is closed, the fluid cannot flow and
effectively locks the beam to the brace, thus increasing structural stiffness. With
this mechanism, a VSD adjusts the stiffness of the structure’s bracing system so
as to minimize resonant-type structural responses during earthquake events.
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1.6.6 Electrorheological Dampers
ER dampers use smart ER fluids that contain dielectric particles suspended within
nonconducting viscous fluids (such as oil) absorbed onto the particles. When the
ER fluid is subjected to an electric field, the dielectric particles polarize and become
aligned, thus offering resistance to the flow. ER fluids are capable of undergoing
dramatic reversible increases in resistance to flow; they can reversibly change from
free-flowing linear viscous fluids to semisolids with controllable yield strength in
milliseconds. Adjustment of the electric field can therefore easily regulate the
behavior of ER fluids.

Researchers have proposed ER dampers that take advantage of the smart prop-
erty of ER fluids to regulate the damping-force generation. The damping force
generated by the ER damper is adjusted by varying the strength of the electric
field according to a predefined control algorithm. A sample ER damper, which
has a cylinder containing a balanced piston rod and a piston head, is shown in
Figure 1.21. The head pushes the ER fluid through a stationary annular duct
between the inner rod and the external cylinder. The voltage gradient, V , between
the inner rod and the external cylinder generates an electric field applied to the
ER fluid. Adjustment of the voltage V alters the electric field and thus controls the
behavior of the ER fluid and regulates the damping capacity of the ER damper.
Dynamic energy is dissipated owing to both the shearing of the fluid (ER effect)
and the orificing of the viscous fluid (friction effect) [58].

ER dampers are still under research and development. Researchers have formu-
lated a dynamic model on the basis of experimental results [10] and have developed
a large-scale ER damper with a capacity of 445 kN [58]. Three factors limit the ER
dampers for seismic response control of large civil engineering structures. First,
the ER fluids have very limited yield stress (usually a maximum yield stress of
5–10 kPa). Second, common impurities that might be introduced during manu-
facturing may reduce the capacity of ER fluids significantly. Third, high-voltage
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FIGURE 1.22 Schematic of MR damper.

(about 4000 V) power supplies required to control the ER fluid may result in safety,
availability, and cost issues.

1.6.7 Magnetorheological Dampers
Magnetorheological dampers use smart MR fluid, which is a magnetic analog of
ER fluid and typically consists of micron-size, magnetically polarizable particles
dispersed in a viscous fluid, such as silicone oil. When the MR fluid is exposed to a
magnetic field, the particles in the fluid polarize, and the fluid exhibits viscoplastic
behavior, thus offering resistance to the fluid flow. MR fluid is also characterized
by its ability to undergo reversible change from a free-flowing linear viscous fluid
to a semisolid in milliseconds when subjected to a magnetic field. By varying
the strength of the magnetic field according to a predefined algorithm, the control
force generated by the MR damper can be adjusted accordingly. In comparison
with ER fluids, MR fluids offer advantages of high-yielding strength (on the order
of 50–100 kPa), insensitivity to contaminants, and stable behavior over a broad
temperature range [81].

As illustrated schematically in Figure 1.22, the prototype of this MR damper is
an orifice damper, and the energy is dissipated by orificing. However, this damper
uses hydrocarbon oil randomly dispersed with micron-size, magnetically soft iron.
The magnetic field is applied perpendicular to the direction of fluid flow, and an
accumulator compensates the fluid volume change. Shaking table tests have been
conducted for a three-story steel structure model with an MR damper installed in
the first story. Test results show the damper behaves similar to a combination of
a Coulomb damper and a viscous damper. A dynamic model of this MR damper
was developed on the basis of test results and then implemented [91].

1.6.8 Semiactive Viscous Fluid Damper
A semiactive viscous fluid damper for structural seismic response control is illus-
trated schematically in Figure 1.23. Analytical and experimental studies have been
conducted. This device uses a normally closed solenoid valve to control the intens-
ity of the fluid through a bypass loop. Energy is dissipated through friction between
the flow, the bypass loop, and orifices in the piston head. When the opening of
the valve is large, the fluid can easily flow through the valve, and less damping
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FIGURE 1.23 Construction of semiactive viscous fluid damper.

force develops. When the opening is small, the fluid cannot easily flow through
the valve, and the damper provides greater control force. Damper behavior is con-
trolled by adjusting the valve opening according to the control algorithm. Little
external power supplied from the electric terminal is required [74,84]. The concept
was utilized for a case study of bridge experiments [45].

1.7 ACTIVE CONTROL SYSTEMS

Sections 1.5 and 1.6 have discussed smart structures using passive and semiactive
control systems. Both systems are cost-effective and reliable to operate, but their
capacity and/or intelligence are limited for structural seismic response control.
Passive systems have simple mechanisms and are easy to manufacture, but they
are not sufficiently adaptive to ever-changing external excitation because they
neither sense excitation and response nor use external power. Some of them, such
as TMDs and TLDs, are only effective for the suppression of structural responses
with one dominant mode, such as wind-induced structure vibrations. Semiactive
dampers have an adaptive system incorporated, but they can only operate within
the maximum capacity of the passive devices on which they are based. Thus,
there is clearly a need for a more powerful adaptive system to protect structures
from excessive vibrations and damages by strong earthquakes where multiple
modes are significant in structural response. This has led to the emergence of
smart structures with active seismic response control. This innovative technique
uses special devices, such as electrohydraulic actuators, to generate the required
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control force against earthquake loading by feeding back the measured structural
response. This control force can serve as extra damping, thus reducing structural
vibration under traffic, wind, and earthquake excitations.

Active control systems have been widely used to suppress noises and struc-
tural vibrations in mechanical and aerospace industries. Their application to large
civil engineering structures is an innovative area under research and develop-
ment [14,19,22,61,76]. Active seismic response control has received considerable
attention in recent years owing to its following advantages:• Enhanced control effectiveness. In theory, active systems can be as

powerful as desired. In practice, the degree of control effectiveness
is limited only by the actuator capacity. Modern industry can produce
actuators capable of generating much larger control forces than passive
or semiactive dampers.• Adaptability to ground motion. An active control system can sense the
ground motion and then adjust its control efforts.• Selectivity of control objectives. The control system can be designed
for various objectives, such as structural safety or human comfort.• Applicability to different excitation mechanisms. Active control covers
a wide frequency range, that is, all significant modes of the structure. An
active control system can effectively reduce structural response under
wind and/or earthquake excitations.

Although active structural control is a new area with less research and develop-
ment than passive structural control, great advances have been made owing to
its powerful capacity and adaptability. Advances continue to be made on active
seismic response control as shown by a number of publications [26,40,80]. Active
seismic response control has reached a stage of practical applications. Researchers
have developed several active control devices, such as active tendon, AMD, active
bracing, and pulse generation systems.

1.7.1 Basic Configuration of Active Control Systems
An active control system is fully adaptive. Smart structures using active control sys-
tems employ external power to generate the control force, which is directly applied
to the structure to reduce its response. Since building structures are usually large,
huge force-generating equipment and large external power supplies are required for
active seismic response control. Thus, an active seismic response control system
is usually designed mainly to increase structural damping with minor modifica-
tions of structural stiffness, as discussed in Section 1.2. Figure 1.24 schematically
illustrates the basic configuration of such a system, which consists of three types
of elements: sensor(s), actuator(s), and a controller with a predetermined control
algorithm.

Sensors in a smart structure system are similar to sensing organs in the human
body. The sensor(s) can be located at the structural base to measure external
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FIGURE 1.24 Schematic diagram of an active control system.

excitation or installed on the structure and/or the control device to measure system
response variables, such as displacements, velocities, accelerations, and control
forces. Control devices may also have built-in sensors to monitor their behavior.
For example, a hydraulic actuator may have a built-in displacement sensor to meas-
ure the relative displacement of the actuator piston vis-à-vis the cylinder. Linear
variable differential transformers (LVDTs), velocity transducers, accelerometers,
and load cells, which measure displacement, velocity, acceleration, and force,
respectively, are common sensors for smart structure systems. These sensors can
work as linear proportional devices in the frequency range of 0.1–100 Hz, which
covers the frequency band of structural vibration under seismic or wind excita-
tions. Sensor output is usually in the form of voltage signals that are sent to the
controller for processing.

The controller in a smart structure system is similar to the human brain. It
receives measurements from sensors, analyzes them, and generates necessary con-
trol signals (also called control commands) to drive the actuator on the basis of a
predetermined control algorithm. Thus, the controller is an information processor
that produces actuation signals by a feedback function of sensor measurements.
In the design stage, the mathematical model of the controller is formulated by
control theory, and the feedback control law is determined by control algorithms.
For physical implementation, there are analogous and digital controllers. Analog-
ous controllers are devices that implement a feedback control law formulated in
a continuous-time domain; all physical components of such a controller work in
a continuous way. Digital controllers have a control computer as the main com-
ponent. Owing to advances in microelectronics, digital technology has surpassed
that of the analogous controller. Figure 1.25 shows the configuration of a digital
control computer, which may consist of analog/digital (A/D) and digital/analog
(D/A) converters. A continuous-time-domain signal from sensors is sampled by an
A/D converter. The signal is changed into a sequence of measured output values
that represent each sampling instance. The digital controller then uses those values
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FIGURE 1.25 Configuration of digital control computers.
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FIGURE 1.26 Servovalve-controlled hydraulic actuator.

to calculate a desired value for the control sequence. This sequence is converted
into another continuous-time signal by a D/A converter to feed the actuators. If
there are too few sensor measurements as feedback for the controller, an observer
is used to estimate unmeasured system response.

When only the structural response variables are continually measured, the
control configuration is referred to as feedback control because these measurements
are used to make continual corrections to the applied control forces. When only
earthquake inputs are measured, a feed-forward control can be achieved, and the
control forces are regulated by the measured excitation.

Actuators are similar to the hands and feet of the human body. Actuators pro-
duce the required control forces according to the control signals from the brain—the
controller. For seismic response control, the large size of civil engineering struc-
tures necessitates sizable actuators capable of generating a large control force.
Electrohydraulic actuators and pulse generators are among the choices, and they
both use external power sources. Figure 1.26 shows a schematic of the servovalve-
controlled hydraulic actuator used by smart structure systems for seismic response
control.

1.7.2 Active Mass Damper Systems
An AMD is also called an active mass driver. It evolved from TMDs with the
introduction of an active control mechanism. As noted, TMDs are only effective
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FIGURE 1.27 Schematic comparison of smart structures using active mass damper (AMD)
and tuned mass damper (TMD).

for structural response control when the first mode is dominant, such as wind-
induced structural vibration. Development of AMDs focuses on seeking control
of structural seismic response with a wide frequency band. It is expected that
structures with AMDs will demonstrate enhanced effectiveness over structures
with TMDs. A conceptual model of an AMD-controlled structure is shown in
Figure 1.27, with a schematic comparison of AMDs and TMDs. One actuator
is installed between the primary (i.e., structure) and the auxiliary (i.e., TMD)
systems. The motion of the auxiliary system can be controlled by the actuator to
augment the control effectiveness.

AMDs were proposed in the early 1980s and have been studied analytically
[11,65]. As shown in the conceptual model (see Figure 1.27), an actuator is installed
on theAMD-controlled structure. This actuator is placed between the primary (i.e.,
structure) and the auxiliary (i.e., AMD) systems. The motion of the latter can be
controlled by the actuator to augment the system’s control effectiveness. Analytical
study is aimed at how to operate the actuator to subdue response of the primary
system most effectively with the optimum control law to find the appropriate
feedback gain of theAMD in order to obtain optimal control input [11,18,19,21,65].
Researchers have also conducted numerous shaking table tests onAMD systems for
seismic response control and full-scaleAMD system implementation [4,29,76,80].

AMDs have an economic advantage in full-scale structures because far less
control force and a much smaller actuator are required than for other active systems.
The actuator in an AMD is used to drive the auxiliary mass, while the actuator in
other active systems usually acts on the structure directly. However, the control
effectiveness of an AMD is felt mainly at the fundamental frequency and less so
at higher frequencies [93].

1.7.3 Active Tendon Systems
Active tendon control systems consist of a set of prestressed tendons whose tension
is controlled by electrohydraulic servomechanisms. Figure 1.28 shows a typical
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FIGURE 1.28 Schematic diagram of active tendon system.

configuration of an active control system using active tendons. Active tendons
are installed between two stories of a building structure. The actuator cylinder
is attached to the floor below. One end of the tendon is connected to the upper
floor and the other end to the actuator piston. Under the earthquake excitation,
the structural vibration induces interstory drift that drives the relative movement
of the actuator piston to the actuator cylinder. This relative movement changes
the tension of the prestressed tendons, thus applying dynamic control force to the
structure to reduce its seismic response.

Active tendon control has been studied analytically [14,17,22,92] and experi-
mentally [29]. Full-scale implementation of an active tendon system on a 6-story,
600-ton building has been tested in Tokyo, Japan [76]. Both experimental and sim-
ulation results show a significant reduction of seismic response of smart structures
using active tendon systems.

Active tendons can operate in both the pulsed- and the continuous-time modes.
Thus, active tendon control can accommodate both continuous-time and pulse con-
trol algorithms. Another advantage is that tendons of this system can use existing
structural members, which minimizes the need for additions and modifications to
the structure.

1.7.4 Active Brace Systems
An active bracing system uses existing structural braces to install an active control
device (i.e., actuator) onto a structure. Three types of bracing systems—diagonal,
K-braces, and X-braces—can be used, the same as those for passive dampers.
Servovalve-controlled hydraulic actuators capable of generating a large control
force are mounted on the bracing system between two adjacent floors. Figure 1.29
shows an active brace control system with a hydraulic actuator mounted on a K-
brace. The actuator cylinder is bolted to the structural floor, and the actuator piston
is connected to the brace. This system consists of a servovalve, a servovalve
controller, a hydraulic actuator, a hydraulic power supply, sensors, and a con-
trol computer with a predetermined control algorithm. Sensors measure structure
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FIGURE 1.29 Active bracing system with hydraulic actuator.

motion due to the earthquake excitation. The control computer uses the control
algorithm to process these measurements and to generate the control signal. The
servovalve then uses the control signal to regulate flow direction and intensity,
which yields a pressure difference in the two actuator chambers. The control force
is thus generated by the pressure difference to resist seismic loads on the structure.

Active bracing systems have been studied analytically [23,76] and experi-
mentally [79]. Active bracing systems offer the same advantage as active tendon
systems: modifications of the structure are minimized because existing structural
members can be used to install the actuator.

1.7.5 Pulse Generation Systems
A pulse generation system uses a pulse generator instead of a hydraulic actuator.
Pulse generators use pneumatic mechanisms to produce an active control force.
Such mechanisms utilize compressed air to generate a pulse-type actuation force,
different from hydraulic actuators using high-pressure fluid. A smart structure
system can be achieved by installing pulse generators at several locations within a
structure. When a large relative velocity is detected at any of these locations, the
pneumatic actuator at this location is triggered, and a control force opposite to the
velocity is applied to the structure. Researchers have conducted shaking table tests
on a six-story steel frame with a pulse generator at the top [62], and the test results
have shown that pulse generators were a promising device for seismic response
control.

Pulse generators use compressed gas energy and are not expensive. However,
gas energy may not be powerful enough to drive full-scale building structures.
Moreover, pulse-generation systems may have high nonlinearity as the force
generated by pneumatic actuators may deviate from an ideal rectangular pulse
shape.
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1.8 HYBRID CONTROL SYSTEMS

As noted, active control systems are introduced to address the limited capacity and
intelligence of passive and semiactive dampers. However, active structural control
still has two disadvantages. First, its operation depends totally on an external power
supply and requires a complicated sensing and signal-processing system. This com-
plexity limits its application and reduces control reliability. Second, to apply active
control to civil engineering structures, large force-generating equipment, that is,
big actuators, are required. Since seismic-resistant structures weigh hundreds or
even thousands of tons, the required control force must exceed hundreds of kilo-
Newtons to augment the structural damping force sufficiently. Current industrial
technology makes it feasible to design and manufacture such a large actuator, but
its cost severely limits its application. Innovative hybrid control systems, which are
achieved by combining passive and active control techniques, have become attract-
ive. When these techniques work together, reliability is ensured by the former and
the capacity is powered by the latter. A hybrid system gains the advantages of
both techniques and alleviates limitations of either technique alone. As a result,
it surpasses passive, semiactive, and active systems. Hybrid control systems have
received significant attention since the 1990s [1,15,16,25,37,71,73,94,96]. Three
typical hybrid control systems have been developed: HMD, hybrid base-isolation
systems, and damper–actuator systems.

1.8.1 Hybrid Mass Dampers
Hybrid mass dampers combine a passive TMD and an active control actuator, or
they add an AMD to a TMD, as shown in Figure 1.30 [37,73]. An AMD is attached
to a TMD instead of to the structure so that the AMD can be small; its mass is
10–15% of that for the TMD. The vibration suppression capacity of HMDs mainly

Hybrid mass damper
AMD

TMD

Building

Actuatoruxaxpxn

cpka kpmp

ma

FIGURE 1.30 Schematic of hybrid mass damper.
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relies on the natural motion of the TMD. The actuator generates a control force,
which regulates the TMD and thus increases the device’s efficiency and robustness
to change the dynamic characteristics of the structure. In other words, the TMD
is tuned to the fundamental mode of the structure, and the AMD is designed to
improve control effectiveness for higher modes of the structure. Thus, the energy
and forces required to operate an HMD are far less than those associated with
a full AMD system with comparable performance. This feature makes HMDs
relatively inexpensive to achieve improved control effectiveness, and they have
been the most common control device employed in full-scale building structure
applications [73,80,90]. On the other hand, design constraints, such as severe
space limitations, can preclude the use of an HMD system.

1.8.2 Hybrid Base-Isolation System
A hybrid base-isolation system combining a base-isolation system and an active
control system has also been proposed [94]. This system (see Figure 1.31) con-
sists of an active tendon system on the superstructure and a base-isolation system
between the foundation and the superstructure. Theoretical studies have been con-
ducted for the base-isolation/actuator system, including system nonlinearity, direct
output feedback, sliding mode control technique, and design of the sliding surface
[1]. Researchers have also proposed another type of hybrid base-isolation system
using MR fluid dampers on the superstructure [96]. This system, called a smart
or intelligent base-isolation system by the authors, employs controllable MR fluid
to adapt to ever-changing seismic excitations. Shaking table tests of a building

FIGURE 1.31 Hybrid system with base isolation and actuators.
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structure model with such a smart base-isolation system have been conducted to
verify its effectiveness.

1.8.3 Hybrid Damper-Actuator Bracing Control
In the early 1990s, Cheng and his associates began to develop a hybrid damper-
actuator bracing control (also called a hybrid bracing control system) mounted
by K-braces on the structure [15,25], as shown in Figure 1.32a. Owing to various
control objectives and economic considerations, a hybrid device, an actuator, a
damper, or no control device at all can be installed on one floor of the building
structure. Liquid mass dampers, spring dampers, and viscous fluid dampers (see
Figure 1.32b) are suggested as passive devices for the system. Hydraulic actuators
are proposed as the active device for the system owing to their powerful force-
generating capacity.

Extensive studies have been conducted for the hybrid damper-actuator system
[15,16,24,25]. Theoretical studies focus on system modeling, optimal algorithm

Passive

Active

Hybridxg (t)(a)

..

FIGURE 1.32 Hybrid bracing system and control devices: (a) configuration and (b) device
installation.
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FIGURE 1.32 (Continued)

development, the damper mechanism (dynamics of the viscous fluid damper and
parameter analysis of the liquid mass damper and the spring damper), and effect-
iveness evaluation. Experimental studies were conducted on the damper device
(Figure 1.33a) and shaking table tests of a three-story structure model with a
hybrid control device (see Figure 1.33b). The hybrid bracing control system con-
sists of a hydraulic actuator and a viscous fluid damper mounted on a K-bracing
at the first floor of the structure model. Modal tests, including impact and swept-
sine techniques, are performed to find the natural frequencies and mode shapes
of the structure. Closed-loop system identification is employed to identify the
structure with hybrid control. An observer–controller identification (OCID) pro-
cedure determines the system’s Markov parameters, and an eigensystem realization
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FIGURE 1.33 (a) Testing on damper device for hybrid damper-actuator bracing control
(HDABC) and (b) three-story test building with HDABC.

algorithm (ERA) obtains the state-space model of the structure with hybrid control.
These test results are used to verify the analytical modeling of the structure with
hybrid control. Shaking table tests and computer simulation studies have shown
that this system has greater capacity than a passive system in reducing seismic
structural response, and it requires less active control force than an active control
system to achieve a control objective [15,16,25,96].

A hybrid damper-actuator system is more attractive than other hybrid con-
trol systems owing to additional advantages. In this system, a damper and an
actuator can either be combined or separated. Installation of control devices on
a structure can utilize existing structural braces, and the active control force is
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applied directly to the structure. Thus, a hybrid bracing system costs less than a
base-isolation/actuator system and has more control capacity than an HMD.

Hybrid control, combining passive and active systems, is an attractive innova-
tion and an effective protection system. Such systems overcome the disadvantages
of passive, active, and semiactive control systems while gaining the reliability of
passive systems and the capacity of active control systems. With two control tech-
niques in operation together, limitations of either technique operating singly are
alleviated. A hybrid system has a larger capacity and greater effectiveness than a
passive system, and it costs less and requires smaller external power than an active
control system. With these great features, hybrid control becomes very promising
for seismic response reduction of civil engineering structures.
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2 Base Isolation Systems
As introduced in Section 1.4, once a building is separated from its foundation with
a base isolation system, the isolated structure is subjected to less seismic force from
the ground motion and, as a result, the responses of the building itself are greatly
reduced. This simple concept with feasible constructability has garnered extensive
attention from researchers and structural engineers. Over the past five decades,
numerous researches and investigations were focused on development of isolation
systems’ theories and experimental verifications of their stability and durability.
Since then, more than 200 applications of base isolation systems to buildings and
bridges in the United States have been completed, which demonstrates that this
new technology is able to provide seismic protection for structures successfully.
Now use of base isolation systems has been widely accepted as a useful strategy
for the design of important facilities.

Studies and developments of isolation systems’ theories and application tech-
nologies have been reported extensively in the literature. It is impossible and
unnecessary to include all the concepts and application details in a single chapter.
Therefore, only the basic but most important theories and applications are presen-
ted herein, which, as the authors intend, may guide interested readers to advanced
topics in this field. The organization of this chapter is summarized as follows. In
Section 2.1, basic concepts of seismically isolated structures are first introduced.
Then, discussions of the mechanical properties of isolator units are presented in
Section 2.2. Section 2.3 provides the important design requirements according
to the American Society of Civil Engineers (ASCE) Standard ASCE 7-05 [2].
Design examples based on ASCE 7-05 are given in Section 2.4. Verifications and
modifications of isolator’s mechanical properties are presented in Section 2.5.

2.1 BASIC CONCEPTS OF SEISMICALLY ISOLATED BUILDING
STRUCTURES

2.1.1 Single-Degree-of-Freedom Motion Equations
The motion of a seismically isolated building structure can be expressed by a single-
degree-of-freedom (SDOF) motion equation assuming that the structure above the
isolation interface is extremely rigid and the movement of the structural system
mainly occurs at its base or at the isolation system. Isolator units usually refer
to bearings, while an isolator system is defined as an assembly of isolator units,
members structurally tying isolator units, such as steel beams with end fixities,
and connections between isolator units and other structural members. In addition
to the isolator unit and the isolator system, other terminologies of definitions, such

51
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FIGURE 2.1 Terminology of seismically isolated structure.
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FIGURE 2.2 Sketch of SDOF seismically isolated structure.

as the structure above or below the isolation system, are graphically illustrated
in Figure 2.1. A sketch of an SDOF seismically isolated structure is shown in
Figure 2.2. A rigid body with a mass, m, represents the building structure above
the isolation interface. The isolation system possesses lateral stiffness, kb, and
damping coefficient, cb. The movement of the isolation system and the ground
motion are expressed as u(t) and xg(t), respectively. Utilizing simplified notations
of u and xg to represent u(t) and xg(t), the motion equation, derived based on the
equilibrium condition, is given as follows:

mü+ cb(u̇− ẋg)+ kb(u− xg) = 0 (2.1)
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Introducing the relative displacement, x = u − xg, the angular frequency,ωb = √kb/m, and the damping ratio, βb = cb/2ωbm, Equation 2.1 is rewritten as

mẍ + cbẋ + kbx = −mẍg or ẍ + 2ωbβbẋ + ω2
bx = −ẍg (2.1a)

By applying the method of variation parameters, the general solution of Equation
2.1a can be expressed as below:

x(t) = C1(t)e−βbωbt sinωbt + C2(t)e−βbωbt cosωbt (2.2)

where the damped frequency is ωb = ωb

√
1− β2

b . C1(t) and C2(t) are purposely
selected to meet the following condition:

Ċ1(t)e−βbωbt sinωbt + Ċ2(t)e−βbωbt cosωbt = 0 (2.3)

Successive derivatives of Equation 2.2 result in the following relation between
Ċ1(t) and Ċ2(t):

Ċ1(t)e−βbωbt(ωb cosωbt − βbωb sinωbt)− Ċ2(t)e−βbωbt(ωb sinωbt + βbωb cosωbt) = −ẍg(t) (2.3a)

Solving Equations 2.3 and a, coefficients Ċ1(t) and Ċ2(t) are obtained by

Ċ1(t) = − 1ωb
ẍg(t)eβbωbt cosωbt (2.4)

Ċ2(t) = 1ωb
ẍg(t)eβbωbt sinωbt (2.4a)

Taking the integration of Equations 2.4 and 2.4a, C1(t) and C2(t) are obtained as
follows:

C1(t) = − 1ωb

∫ t

0
ẍg(τ )eβbωbτ cosωbτ dτ + C1

C2(t) = 1ωb

∫ t

0
ẍg(τ )eβbωbτ sinωbτ dτ + C2

where C1 and C2 are constants that are independent of time t.
Substituting C1(t) and C2(t) into Equation 2.2, the movement of the seismically

isolated structure is therefore expressed by means of Duhamel’s integral.

x(t) = e−βbωbt(C1 sinωbt + C2 cosωbt)− 1ωb

∫ t

0
ẍg(τ )e−βbωbt sinωb(t − τ) dτ

(2.5)
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Determinations of constants C1 and C2 are explicitly given by Cheng [3] on
page 15. However, since there are no initial movement and velocity of the studied
structure at the beginning of an earthquake, C1 = C2 = 0. Thus, Equation 2.5 is
simplified as follows:

x(t) = − 1ωb

∫ t

0
ẍg(τ )e−βbωb(t−τ) sinωb(t − τ) dτ (2.5a)

As is the case with seismically isolated structures without damper devices, the
damping ratio, βb, usually does not exceed 20% of critical damping. Accordingly,
the effects from the term

√
1− β2

b are negligible and replacement of the damped
frequency, ωb, by the angular frequency, ωb, is appropriate. Equation 2.5a can be
rewritten as

x(t) = − 1ωb

∫ t

0
ẍg(τ )e−βbωb(t−τ) sinωb(t − τ) dτ (2.5b)

The maximum absolute value of the integral portion in Equation 2.5b is defined
as pseudovelocity [3] from pages 362 through 368, and is expressed as below:

SV = ∣∣∣∣∫ t

0
ẍg(τ )e−βbωb(t−τ) sinωb(t − τ) dτ ∣∣∣∣

max
(2.6)

The spectral displacement, SD, has the following relation with the pseudovelocity:

SV = ωbSD (2.7)

For the damping ratio, βb, less than 20% of the critical damping, the following
relation between the pseudoacceleration, SA, and the spectral displacement, SD,
can be further simplified with satisfactory accuracy:

SA = ω2
bSD (2.8)

The ground motion, ẍg(t), shown in Equation 2.6 is usually known. Thus, SD, SV,
and SA are functions of the angular frequency, ωb, and the damping ratio, βb of
the seismically isolated structures. Equation 2.8 is the basis for establishing an
equivalent lateral force procedure for the design of seismically isolated structures,
which is explicitly discussed in Section 2.3.

2.1.2 Multiple-Degree-of-Freedom Motion Equations
Figure 2.3 shows a seismically isolated structure with multiple stories. By
employing the equilibrium condition, the motion equation at the roof level, n,
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FIGURE 2.3 Sketch of MDOF seismically isolated structure.

is derived as

mnün + cn(u̇n − u̇n−1)+ kn(un − un−1) = 0 (2.9)

where mn is the roof mass; cn and kn denote the damping coefficient and the story
stiffness between the roof and the story below the roof, respectively; un and un−1,
simplified from un(t) and un−1(t), represent the movement at the roof and the story
below the roof.

By applying the same methodology, the motion equation at story m is expressed
as follows:

mmüm + cm(u̇m − u̇m−1)− cm+1(u̇m+1 − u̇m)+ km(um − um−1)− km+1(um+1 − um) = 0 (2.10)

where mm is the mass at story m; cm+1 and cm are the damping coefficient between
story m + 1 and m, and between story m and m − 1, respectively; km+1 and km
are denoted as the story stiffness between story m + 1 and m, and between story
m and m − 1, respectively; um+1, um, and um−1, represent the movement at story
m + 1, m, and m − 1.
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At the level immediately above the isolation system denoted as story 1,

considering the ground motion xg, which is simplified from xg(t), the motion
equation can be written as

m1ü1 + c1(u̇1 − ẋg)− c2(u̇2 − u̇1)+ k1(u1 − xg)− k2(u2 − u1) = 0 (2.11)

where m1 is the mass at story 1; c2 and k2 are the damping coefficient and the
story stiffness between story 2 and 1, respectively; c1 and k1 are designated as
the damping coefficient and stiffness of isolation system, respectively; u2 and u1
represent the movement at story 2 and 1.

Introducing the relative displacement between each story and the ground
motion that is expressed in terms of xm = um − xg, Equations 2.9, 2.10, and 2.11
become

mnẍn + cn(ẋn − ẋn−1)+ kn(xn − xn−1) = −mnẍg (2.9a)

mmẍm + cm(ẋm − ẋm−1)− cm+1(ẋm+1 − ẋm)+ km(xm − xm−1)− km+1(xm+1 − xm) = −mmẍg (2.10a)

m1ẍ1 + c1ẋ1 − c2(ẋ2 − ẋ1)+ k1x1 − k2(x2 − x1) = −m1ẍg (2.11a)

Equations 2.9a, 2.10a, and 2.11a form multiple-degree-of-freedom (MDOF)
motion equations. These equations can be expressed in matrix notations and
symbolically expressed as below:[M]{ẍ} + [C]{ẋ} + [K]{x} = −ẍg[M]{1} (2.12)

where the mass matrix, [M], the damping matrix, [C], and the structural stiffness,
[K], are in the following forms:[M] =  m1 0 0 0 0

m2 0 0 0
. . .

...
mm · · · 0 0

. . .
sym. mn−1

mn

 (2.12a)
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c2 + c3 0 0 0

. . .
...

cm + cm+1 . . . 0 0
. . .

sym. cn−1 + cn −cn
cn


(2.12b)[K] =  k1 + k2 −k2 0 0 0

k2 + k3 0 0 0
. . .

...
km + km+1 . . . 0 0

. . .
sym. kn−1 + kn −kn

kn


(2.12c)

In Equation 2.12 {1} is a 1 × n unit vector, {x}, {ẋ}, and {ẍ} present the relative
displacement vector, velocity vector, and acceleration vector of the seismically
isolated structure:{x}T = { x1 x2 . . . xm . . . xn−1 xn } (2.13){ẋ}T = { ẋ1 ẋ2 . . . ẋm . . . ẋn−1 ẋn } (2.13a){ẍ}T = { ẍ1 ẍ2 . . . ẍm . . . ẍn−1 ẍn } (2.13b)

Let the relative displacement vector be expressed in terms of generalized
response vector, {x′}. Equation 2.13 becomes{x} = [�]{x′} (2.14)

where [�] is the modal matrix as shown below:[�] =  φ1,1 φ1,2 · · · φ1,m · · · φ1,n−1 φ1,nφ2,1 φ2,2 · · · φ2,m · · · φ2,n−1 φ2,n· · · · · · · · · · · · · · · · · · · · ·φm,1 φm,2 · · · φm,m · · · φm,n−1 φm,n· · · · · · · · · · · · · · · · · · · · ·φn−1,1 φn−1,2 · · · φn−1,m · · · φn−1,n−1 φn−1,nφn,1 φn,2 · · · φn,m · · · φn,n−1 φn,n


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The successive derivatives of Equation 2.14 result in[M][�]{ẍ′} + [C][�]{ẋ′} + [K][�]{x′} = −ẍg[M]{1} (2.15)

Premultiplying and dividing both sides of Equation 2.15 by [�]T and [�]T[M][�],
respectively, the motion equation becomes{ẍ′} + [�]T[C][�][�]T[M][�] {ẋ′} + [�]T[K][�][�]T[M][�] {x′} = − [�]T[M]{1}[�]T[M][�] ẍg (2.15a)

Defining damping ratio at each mode, βm = cm
/

2ωmmm, m = 1, …, n, then[�]T[C][�][�]T[M][�] =  2β1ω1 0 0 0 0
2β2ω2 0 0 0

. . .
...

2βmωm · · · 0 0
. . .

sym. 2βn−1ωn−1 0
2βnωn

 = [2βω];
(2.16)

where [2βω] is an n× n diagonal matrix. Note that for simplicity, β andω are used to present βm and ωm, respectively. Theoretically, [�]T[C][�]([�]T[M][�])−1cannot be decoupled into a diagonal matrix [2βω] since the damp-
ing of the isolation system is larger than that of the structure above the isolation
interface. However, the coupled damping effects, which exist at the off-diagonal
components of the matrix, [�]T[C][�]([�]T[M][�])−1, are proved to be small
and negligible for most structures [12]. Therefore, assuming that the damping
ratios can be uncoupled, as shown in Equation 2.16, it will not lose the analytical
accuracy of studying the entire system’s behavior. If damping devices are added
into the isolation system, the coupled damping effects cannot be neglected, and
the complex modal analysis must be used to find the solutions [3,13]. A diag-
onal stiffness, [ω2], is also achieved based on the properties of the structural
system:[�]T[K][�][�]T[M][�] =  ω2

1 0 0 0 0ω2
2 0 0 0

. . . ω2
m · · · 0 0

. . .
sym. ω2

n−1 0ω2
n

 = [ω2] (2.16a)
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To the right side of Equation 2.15a, a participation factor, 
, is defined as below:
 = [�]T[M]{1}[�]T[M][�] (12.16b)

The participation factor can be written as 
 = {
1 . . . 
m . . . 
n}T, where
m represents the mth mode participation factor. Relying on the orthogonal con-
ditions as presented in Equations 2.16, 2.16a, and 2.16b, Equation 2.15a becomes
uncoupled and is expressed as{ẍ′} + [2βω]{ẋ′} + [ω2]{x′} = −
ẍg (2.17)

Equation 2.17 is similar to Equation 2.1a for the SDOF motion equation, but it
consists of n independent equations and can be solved separately for each mth
mode of vibration:

ẍ′m + 2βmωmẋ′m + ω2
mx′m = −
mẍg = − {�}Tm[M]{1}{�}Tm[M]{�}m ẍg (2.17a)

where {�}Tm = {φ1,m . . . φm,m . . . φn,m}. Applying Duhamel’s integral, the
solution of Equation 2.17a is obtained for each story of the seismically isolated
structure.

x′m(t) = − 1ωm

m

∫ t

0
ẍg(τ )e−βmωm(t−τ) sinωm(t − τ) dτ m = 1, . . . , n (2.18)

where ωm = ωm
√

1− β2
m is the damped frequency at the mth mode. As discussed

in Section 2.1.1, the expression of
√

1− β2
m is negligible for most seismically

isolated structures without damping devices. Thus, ωm ≈ ωm, and Equation 2.18
is simplified as

x′m(t) = − 1ωm

m

∫ t

0
ẍg(τ )e−βmωm(t−τ) sinωm(t − τ) dτ m = 1, . . . , n

(2.18a)

Once the generalized response vector, {x′}, is computed from Equation 2.18a,
the relative displacement vector, {x}, can be determined from Equation 2.14. The
velocity vector, {ẋ}, and the acceleration vector, {ẍ}, are also easily derived as
follows: {ẋ} = [�]{ẋ′} (2.19){ẍ} = [�]{ẍ′} (2.19a)
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The procedure presented above, called modal displacement superposition

method, is used for fixed-base structures, and has also demonstrated applicab-
ility to most MDOF seismically isolated structures, which have damping ratios of
isolator units less than 20% of critical.

Example 2.1.1

A one-story seismically isolated structure has roof mass equal to 5 k-s2/in.
(876.4 × 103 kg). The mass of the floor, which is immediately above the
isolation system, is approximately 4 k-s2/in. (700.5 × 103 kg). The stiffness
of the superstructure and the isolation system is 5000 k/in. (875.6 kN/mm)
and 8 k/in. (1.4 kN/mm), respectively. Assume that the couple effects of
damping between the superstructure and the isolation system are negligible.
Critical damping of 2% is given for the superstructure and 15% of critical
damping is experimentally determined for the isolation system. A sketch of
the seismically isolated structure is shown in Figure 2.4. Customary units are
used to resolve following items:

1. Find the periods of the system, Tm = 2π /ωm, m = 1, 2;
2. Determine the modal matrix, [�];
3. Derive the relative displacement, {x}, and the acceleration, {ẍ}, of the

system.

Solution
1. According to the given information, the mass matrix is expressed as[M]= [

m1 0
0 m2

] = [
4 0
0 5

]
and ω2[M] = [

4ω2 0
0 5ω2

]
(a)

The stiffness matrix becomes[K] = [
k1 + k2 −k2−k2 k2

] = [
8+ 5000 −5000−5000 5000

] = [
5080 −5000−5000 5000

]
(b)k2 = 5000 k/in.

2

Isolation system  k1 = 8 k/in., 1= 0.15 

= 0.02 

m2 = 5 k-s2/in.m1 = 4k-s2/in.
�

�

FIGURE 2.4 Example 2.1.1.
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The angular frequencies can be determined using the following equation and
assuming the determinant is zero for variables {x}:([K] − ω2[M]){x} = {0}∣∣∣∣ 5080− 4ω2 −5000−5000 5000− 5ω2

∣∣∣∣ = 0 (c)

For ω2
1 = 8.845, ω1 = 2.974 rad/s.

The period related to the first mode is

T1 = 2πω1
= 2π

2.974
= 2.113 s (d)

For ω2
2 = 2261.155, ω2 = 47.552 rad/s; the period related to the second

mode is

T2 = 2πω2
= 2π

47.552
= 0.132 s (e)

2. Assume that the natural modes corresponding to the first and second
frequency are expressed as follows:{�}1 = {φ1,1φ2,1

}
, {�}2 = {φ1,2φ2,2

}
(f )

For ω2
1 = 8.845,[

5080− 4(8.845) −5000−5000 5000− 5(8.845) ]{φ1,1φ2,1

} = {
0
0

}
(g){φ1,1φ2,1

} = {
0.9912

1

}
(h)

For ω2
2 = 2261.155,[

5080− 4(2261.155) −5000−5000 5000− 5(2261.155) ]{φ1,2φ2,2

} = {
0
0

}
(i){φ1,2φ2,2

} = {
1−0.7929

}
(j)

Therefore, the modal matrix is assembled as[�] = [
0.9912 1.0000
1.0000 −0.7929

]
(k)
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3. On the basis of modal matrix determined from Equation k, then{�}T1 [M]{�}1 = {φ1,1 φ2,1 } [m1 0

0 m2

]{φ1,1φ2,1

}= { 0.9912 1 } [ 4 0
0 5

]{
0.9912

1

} = 8.9299 (l){�}T2 [M]{�}2 = {φ1,2 φ2,2 } [m1 0
0 m2

]{φ1,2φ2,2

}= { 1 −0.7929 } [ 4 0
0 5

]{
1−0.7929

} = 7.1435 (m)[�]T[M][�] = [
8.9299 0

0 7.1435

]
(n)([�]T[M][�])−1 =  1

8.9299
0

0
1

7.1435

 (o)

According to Equation 2.16a,[�]T[K][�][�]T[M][�] = [ 0.9912 1.0000
1.0000 −0.7929

] [
5080 −5000−5000 5000

][
0.9912 1.0000
1.0000 −0.7929

] 1
8.9299

0

0
1

7.1435

= [ 8.845 0
0 2261.155

]
(p)

Since the given condition assumes there are no damping coupled effects,
Equation 2.16 is valid and is computed as follows:[�]T[C][�][�][M][�] = [

2(0.15)(2.974) 0
0 2(0.02)(47.552) ] = [

0.8922 0
0 1.9021

]
(q)

The participation factor defined by Equation 2.16b for each degree of freedom
is determined as
1 = {�}T1 [M]{1}{�}T1 [M]{�}1 = { 0.9912 1 } [ 4 0

0 5

]{
1
1

}
1

8.9299
= 1.0039 (r)
2 = {�}T2 [M]{1}{�}T2 [M]{�}2 = { 1 −0.7929 } [ 4 0

0 5

]{
1
1

}
1

7.1435
= 0.0050 (s)
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Substituting the above results into Equation 2.17a, the uncoupled motion
equations are expressed as

ẍ′1 + 0.8992ẋ′1 + 8.845x′1 = −1.0039ẍg (t)

ẍ′2 + 1.9021ẋ′2 + 2261.155x′2 = −0.005ẍg (u)

On the basis of Duhamel’s integral given in Equation 2.18a, x′1(t) and x′2(t)
are shown as below:

x′1(t) = −0.3375
∫ t

0
ẍg(τ )e−0.4461(t−τ) sin[2.974(t − τ)] dτ (v)

x′2(t) = −0.0001
∫ t

0
ẍg(τ )e−0.951(t−τ) sin[47.552(t − τ)] dτ (w)

Substituting x′1(t) and x′2(t) into Equation 2.14, each component of {x} =[�]{x′} is written asφ1,1x′1(t) = −0.3346
∫ t

0
ẍg(τ )e−0.4461(t−τ) sin[2.974(t − τ)] dτ (x)φ1,2x′2(t) = −0.0001

∫ t

0
ẍg(τ )e−0.951(t−τ) sin[47.552(t − τ)] dτ (y)φ2,1x′1(t) = −0.3375

∫ t

0
ẍg(τ )e−0.4461(t−τ) sin[2.974(t − τ)] dτ (z)φ2,2x′2(t) = 0.0001

∫ t

0
ẍg(τ )e−0.951(t−τ) sin[47.552(t − τ)] dτ (aa)

Compared to φ1,1x′1(t) and φ2,1x′1(t), the contributions of φ1,2x′2(t) andφ2,2x′2(t) to the displacement at each level are very small and are negligible.
It is well explained from this example that the lateral displacement is mainly
generated by the isolation system and the structure above the isolation system
barely displays movement or story drift. Therefore, the displacement at the
floor immediately above the isolation system is expressed approximately as

x1(t) = φ1,1x′1(t)+ φ1,2x′2(t)≈ −0.3346
∫ t

0
ẍg(τ )e−0.4461(t−τ) sin[2.974(t − τ)] dτ (bb)

The displacement at the roof is shown as follows:

x2(t) = φ2,1x′1(t)+ φ2,2x′2(t)≈ −0.3375
∫ t

0
ẍg(τ )e−0.4461(t−τ) sin[2.974(t − τ)] dτ (cc)
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Taking the second time derivative of x1(t) and x2(t), the acceleration at the
floor immediately above the isolation system is determined as

ẍ1(t) = 2.8928
∫ t

0
ẍg(τ )e−0.4461(t−τ) sin[2.974(t − τ)] dτ+ 0.8879

∫ t

0
ẍg(τ )e−0.4461(t−τ) cos[2.974(t − τ)] dτ (dd)

The acceleration at the roof is expressed as

ẍ2(t) = 2.9178
∫ t

0
ẍg(τ )e−0.4461(t−τ) sin[2.974(t − τ)] dτ+ 0.8956

∫ t

0
ẍg(τ )e−0.4461(t−τ) cos[2.974(t − τ)] dτ (ee)

2.2 BASE ISOLATOR MECHANICAL CHARACTERISTICS AND
COMPUTER MODELING TECHNIQUES

2.2.1 Introduction
Motion equations derived in Section 2.1 for seismically isolated structures are
established on the assumptions of the effective damping and the effective stiffness
of the isolation system, as well as the linear stiffness of the structure’s seismic
force-resisting system. Consequently, the responses of the structure display a lin-
ear relation to the imposed seismic force on both the structure and the isolation
system. However, with complicated building configurations, the impact of very
soft soil condition on the structure above the isolation system, and the building’s
proximity to major active faults, a linear analysis is unable to capture accurately
the building’s performance, such as the actual pulse effects on both the building’s
seismic force-resisting system and the isolation system. The limited capabilities of
the linear analysis have been eventually overcome by incorporating actual mech-
anical properties of isolator units or bearings into the analytical procedures, which
results in a nonlinear analysis.

Theoretically, the nonlinearity of a seismically isolated structure comes from
two sources: inelastic deformation of the building’s seismic force-resisting sys-
tem and the isolation system. However, since the seismic force-resisting system
is much stiffer than the isolation system, the inelastic deformation mainly con-
centrates at the isolation system, and the building’s seismic force-resisting system
can be reasonably assumed to exhibit linear responses. Thus, for design prac-
tice, only consideration of nonlinear properties of bearings still conveys the actual
performance of the seismically isolated structure and provides required accuracy.
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Force, F
Displacement, DF + F –

D – D+

Force, F
Displacement, DF + F –

D – D +

(a) (b) 

FIGURE 2.5 Idealized force–displacement relationships of isolation system: (a) hyster-
estic behavior and (b) viscoelastic behavior.

The mechanical properties of different types of bearings have been extens-
ively investigated. Various mathematical models were developed to depict the
hysteretic and viscoelastic behavior of bearings. Hysteretic behavior reflects velo-
city independence of the bearing properties, which exhibit the maximum and
minimum displacement of the bearing occurring at the maximum and minimum
shear force, respectively. However, viscoelastic behavior of the bearing possesses
velocity-dependent properties, which show the maximum and minimum shear
usually taking place before the maximum and minimum displacement, respect-
ively. The idealized hysteretic and viscoelastic behavior of bearings is shown in
Figure 2.5. Among all the proposed models, the bilinear model is mostly accepted
for research and in design practice because its simplicity not only characterizes the
mechanical properties of the bearings properly, but also fits both elastomeric-type
and sliding-type bearings.

Development and application of a bilinear model to different types of bearings
will be explicitly discussed in the following sections. The determination of a bilin-
ear model is initiated by defining three basic parameters. Then, based on unique
properties of each type of bearings, specific equations are presented to ascertain
the three basic parameters. Other properties of bearings, such as effective damping
and vertical stiffness, are also introduced for bearing model development. Applic-
ation of the bilinear model to computer programs is discussed in the last section,
along with an explanation of inputting a bearing’s parameters into commercial
software.

2.2.2 Bilinear Model and Model Parameters
The bilinear model, used to express the relation between the shear force and the
lateral displacement, can be defined by three parameters: elastic stiffness, ke,
postyield stiffness, kp, and characteristic strength, Q. The characteristic strength,
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Force, FF+o b cdke

keffke

kpa
Displacement, D2QQFy Dy

ED (Shaded area)

FIGURE 2.6 Bilinear model of isolator unit.

Q, is usually utilized to estimate the stability of hysteretic behavior when the
bearing experiences many loading cycles. These three parameters properly reflect
the mechanical properties of bearings and provide satisfactory estimations of a
bearing’s nonlinear behavior.

Figure 2.6 shows an idealized bilinear model based on test data. When a shear
starts applying to a bearing, a linear relation, as expressed by line oa, exists between
the shear and the lateral displacement. If the applied shear is decreased from point
a, the unloading path remains linearly along line, ao. Once the shear increases to
point b, the bearing yield occurs. Beyond point b, the bearing experiences larger
displacement with a small increase in shear and its stiffness is defined postyield
stiffness, kp. If unloading starts at point c, the unloading path does not follow the
previous path. Instead, it goes along path cd with the same initial stiffness of line
oa. The shear value of cd is equal to 2Fy, where Fy is designated as the yield force.
With the shear continues beyond point d, the unloading path is parallel to line bc
with the same magnitude of kp.

Effective stiffness of the bearing, keff , at the postyield region can be expressed
in terms of the postyield stiffness, kp, and the characteristic strength, Q, with
corresponding lateral displacement, D.

keff = kp + Q
D

(2.20)
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The yield displacement, Dy, which is conveniently used in some computer
programs to define the bilinear model, is also derived from ke, kp, and Q.

Dy = Q
ke − kp

(2.21)

The yield force, Fy, at the yield displacement, Dy is determined as

Fy = Q+ kpDy (2.22)

The effective damping, βeff , is defined as follows:βeff = ED

2πkeffD2 (2.23)

where ED is the energy dissipated per cycle as shown in Figure 2.6. For the
bilinear model, ED is considered as the area of the hysteresis loop bounded by
the lateral displacement−D and+D at each cycle. Thus, ED = 4Q(D−Dy), and
the effective damping βeff , becomes:βeff = 4Q(D− Dy)

2πkeffD2 = 2Q(D− Dy)πkeffD2 (2.23a)

In design practice, the effective stiffness and the effective damping are determined
at the design displacement, DD, and the maximum displacement, DM. Explana-
tions of the design displacement and the maximum displacement are given in
Section 2.3.2.

2.2.3 Bilinear Model of Lead-Plug Bearing System
The characteristic strength, Q, of the lead-plug bearing is dominantly controlled
by the shear strength of the lead core. Shear yield occurs at the lead core under a
low level of shear stress. However, the hysteretic behavior of the bearing is quite
stable even though the bearing is subjected to many loading cycles. Equation 2.24
exhibits the relation between the characteristic strength, Q, and the product of
lead yield stress, fyl, and the lead-plug area, Al.

Q = Al fyl (2.24)

The postyield stiffness, kp, is shown as follows [6]:

kp = AbGfL
t

(2.25)
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where Ab is the bonded area of rubber; t is the total rubber thickness; and the
coefficient, fL, is typically 1.5. G represents the tangent shear modulus of rubber,
which is determined from dynamic shear tests.

The elastic stiffness, ke, is not easily determined, but it can be approximately
estimated as shown below:

6.5kp ≤ ke ≤ 10kp (2.25a)

On the basis of on Equation 2.21, the yield displacement is determined as follows,
assuming ke = κkp and the ratio of its elastic stiffness to postyield stiffness, κ , is
between 6.5 and 10 [6]:

Dy = Q
ke − kp

≈ Qκkp − kp
= Q(κ − 1)kp

(2.26)

Substituting the yield displacement and the effective stiffness into Equation 2.23a,
the effective damping becomes in terms of Q, kp, and κ .βeff = 2Q(D− Dy)πkeffD2 = 2Q[(κ − 1)kpD− Q]π(κ − 1)kp(kpD+ Q)D (2.27)

After the determination of the characteristic strength, Q, and the postyield stiffness,
kp, from bearing’s prototype tests, the bilinear model as present above is easily
established and can be used to perform nonlinear analysis of a structure with
lead-plug bearings.

2.2.4 Bilinear Model of High Damping Rubber System
The three parameters used to generate a bilinear model for a high damping rub-
ber bearing are conventionally derived from the tangent shear modulus, G, and
effective damping, βeff . The tangent shear modulus is ascertained from dynamic
shear tests. The effective damping, determined from bearing’s prototype tests, var-
ies between 10% and 20% of critical damping [13]. Then the postyield stiffness is
calculated as:

kp = GAb
t

(2.28)

where Ab is the bonded area of rubber, and t is the total rubber thickness. The
characteristic strength, Q, can be evaluated by the following equation:

Q = πβeffkpD2
D(2− πβeff)DD − 2Dy

(2.29)

where DD is denoted as the design displacement. In Equation 2.29, the yield
displacement, Dy, is unknown until the parameters, ke, kp, and Q are determined.
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An approximate estimation of Dy, supported by test results, can be expressed in
terms of the total rubber thickness, t: Dy = λt, where coefficient, λ, varies between
0.05 and 0.1 [6].

Once kp, Dy, and Q are known, the yield force of the bearing, Fy, is easily
determined as follows:

Fy = Q+ kpDy (2.30)

Then the elastic stiffness of the high damping rubber bearing becomes

ke = Fy

Dy
= kp + Q

Dy
= kp

{
1+ πβeffD2

Dλt[(2− πβeff)DD − 2λt]} (2.31)

By substituting Dy = λt into Equation 2.23a, the effective stiffness at the design
displacement can be derived as follows:

keff = 2Q(DD − λt)πβeffD2
D

(2.32)

2.2.5 Bilinear Model of Friction Pendulum System
The characteristic strength of a friction pendulum bearing, Q, is expressed as

Q = µsPc (2.33)

where Pc is the axial force applied at the bearing, which is composed of the gravity
load, Pg, and the effects of vertical ground acceleration. If the effects of the vertical
acceleration are not significant and can be neglected, then the axial force, Pc, is
simplified as Pc = Pg. µs is the coefficient of sliding friction related to the sliding
velocity, which is given as [5]µs = fmax − ( fmax − fmin)e−ξ|Ḋ| (2.34)

In Equation 2.34, fmax and fmin are friction coefficients at fast and slow velocity,
respectively; Ḋ represents the velocity of the bearing movement; ξ is called the
inverse of the characteristic sliding velocity, which controls the transition from fmax
to fmin and is determined from experiments.Asuggested value of ξ is approximately
2.54 s/in. [5].

The postyield stiffness is determined as shown below:

kp = Pc

R
(2.35)
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where R represents the radius of curvature of the sliding surface. Test results
indicate that the elastic stiffness of the friction pendulum bearing, ke, is nor-
mally over 100 times larger than the postyield stiffness, kp. Accordingly, the yield
displacement, Dy, becomes

Dy = Q
ke − kp

≈ Q
100kp

= µsPc

100
(
Pc
/

R
) = µsR

100
(2.36)

Equation 2.36 implies that the yield displacement, Dy, is a very small value and
is approximately 0.1 in.

From Equation 2.20, the effective stiffness of the friction pendulum bearing at
the design displacement, DD, can be written as

keff = kp + Q
D
= Pc

(
1
R
+ µs

DD

)
(2.37)

Since the yield displacement, Dy, is much smaller than the design displace-
ment, DD, the hysteresis loop area of the friction pendulum bearing can be
simplified and is approximately estimated as follows:

ED = 4Q(DD − Dy) ≈ 4QDD = 4µsPcD (2.38)

By substituting Equations 2.37 and 2.38 into Equation 2.23a, the effective damping
of the friction pendulum bearing is derived as follows:βeff = ED

2πkeffD2
D
= 4µsPcDD

2πPc (1/R+ µs/DD)D2
D
= 2µsπ (DD/R+ µs) (2.39)

2.2.6 Computer Modeling of Isolation System
Modeling of isolation systems by computers originally evolved from SDOF mod-
els that simply assumed the rigid structure above the isolation system and only
accounted for the nonlinearity of the isolator units. However, with the improve-
ment of computational technologies and the decrease in computer processing time,
isolation systems have enabled to be incorporated into computer programs for two-
or three-dimensional structural analyses. In the meantime, the invention of high-
speed personal computers and price reduction of computer hardware have resulted
in developing powerful computer programs to analyze and design complicated
building structures with consideration of the nonlinear behavior of the isolator
units and the structure above the isolation system.

Along with other popular computer programs, SAP2000 and ETABS [4] have
been recognized as reliable programs to analyze and design seismically isol-
ated structures. Both programs have capabilities to perform equivalent static
analysis, response spectrum analysis, linear response history analysis, and non-
linear response history analysis, but each program also has its own unique
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characteristics: SAP2000 has more sophisticated functions that can be tailored
to study and investigate any types of seismically isolated structures, such as build-
ings and bridges, while ETABS mainly emphasizes the analysis and design of
building structures with isolation systems. A user familiar with one program will
not have problems operating the other. Since the assignment of isolator properties
is basically the same for both programs, this section only introduces how to model
isolator properties using ETABS.

There are two types of link elements that are built into ETABS: ISOL-
ATOR1 is usually used to model elastomeric-type bearings and ISOLATOR2
is considered for friction pendulum bearings. For ISOLATOR1, effective stiff-
ness, keff , and effective damping, βeff , of a bearing along two principal directions
of the superstructure shall be the input for response spectrum analysis and lin-
ear response history analysis. As discussed in Section 2.2.2, keff and βeff are
derived at the design displacement, DD, or at the maximum displacement, DM.
However, DD and DM from ETABS results are usually not the same values as
used to determine keff and βeff initially. Iteration procedures are normally per-
formed to adjust DD and DM until the ETABS results are satisfactorily close
to the assumed values for determination of keff and βeff . In addition, attention
should be paid to the input of effective damping, βeff . During linear analysis,
such as response spectrum analysis, the total damping factor of the structural sys-
tem consists of two portions: one is additionally specified to the structure above
the isolation system, and the other is automatically converted by ETABS from
the effective damping, βeff , of each ISOOLATOR1 assigned in the structural
model [4].

If ISOLATOR1 is used for nonlinear response history analysis, the following
parameters of the bearing in both principal directions of the superstructure are
required: elastic stiffness, ke, yield displacement, Dy, and the ratio of postyield
stiffness to elastic stiffness, η = kp/ke. On the basis of these parameters input
into the program, ETABS automatically generates a biaxial hysteretic model of
the bearing to consider the coupled shear–deformation relationship from the two
assigned principal directions.

Elastomeric-type bearings have a higher vertical stiffness in compression than
in tension. However, ISOLATOR1 only assumes the same magnitude of vertical
stiffness in tension and compression. If the vertical stiffness in tension is modeled,
the same as in compression, the overturning or uplift force in the bearing becomes
abnormally higher and, in reality, the bearing does not have the capacity to resist
such high tensile force. Consequently, the analytical results inaccurately reflect
the actual performance of the seismically isolated structure. The modeling of dif-
ferent tensile and compressive stiffness in the vertical direction can be achieved
by adding a gap element to ISOLATOR1. The gap element has only vertical stiff-
ness in compression but does not resist tensile force. Therefore, use the tensile
stiffness, kten, in ISOLATOR1 and assign the stiffness, kcom – kten, to the gap ele-
ment in the vertical direction, where kcom is the bearing’s compressive stiffness.
Once the bearing is in compression and the vertical deformation is assumed to
be u, the sum of the compressive force in ISOLATOR1 and the gap element is
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kenu + (kcom – ken)u = kcomu, which means that the compressive stiffness of the
bearing is properly assigned by combining two elements at the same location.

ISOLATOR2, used to model the properties of a friction pendulum bearing,
allows the bearing to move in the upward direction with no tensile stiffness. In
the vertical direction, ISOLATOR2 behaves like a gap element and the user must
define its compressive stiffness. The effective stiffness, keff , and the effective
damping, βeff , along two principal directions of the structure above the isolation
system shall be input into ISOLATOR2. The elastic stiffness, ke, must be assigned
for nonlinear response history analysis. Unlike ISOLATOR1 for elastomeric-type
bearings, ISOLATOR2 requires defining radius of curvature of the sliding sur-
face, R. Also, the inverse of the characteristic sliding velocity, ξ , mainly related to
the bearing pressure, and the coefficients of sliding friction at fast velocity, fmax,
and at slow velocity, fmin, are needed in ISOLATOR2 in order to calculate the
coefficient of sliding friction, µs, and the yield displacement, Dy. The postyield
stiffness is automatically generated by ETABS from the applied axial force, Pc,
and the radius of curvature of the sliding surface, R. A biaxial hysteretic model
of the bearing showing the coupled shear–deformation relationship from the two
assigned principal directions is also automatically developed by ETABS.

Both ISOLATOR1 and ISOLATOR2 require assigning the self-weight of the
bearing, the translational mass, and the rotational mass moment of inertia because
appropriate Ritz vectors need to be activated during nonlinear response history
analysis.

2.3 CODE REQUIREMENTS FOR DESIGN OF SEISMICALLY ISOLATED
STRUCTURES

2.3.1 Introduction
In the United States, the first design provisions for seismically isolated structures
were developed by the Northern Section of the Structural Engineers Association
of California (SEAOC) in 1986 [15]. The SEAOC Seismology Committee revised
these design provisions and published the revisions as Appendix 1L to the 1990
SEAOC Blue Book [16]. Afterward, the International Conference of Building
Officials (ICBO) made minor editorial changes to Appendix 1L and included it in
the 1991 Uniform Building Code (UBC) as a nonmandatory appendix to Chapter
23 [10]. ICBO and the SEAOC Seismology Committee periodically reviewed
and modified the design provisions for seismically isolated structures to update
the UBC and the SEAOC Blue Book in each code development cycle [11,17].
Since 1991, the Federal Emergency Management Agency (FEMA) has developed
guidelines for the design of new buildings and the rehabilitation of existing build-
ings with isolation systems in FEMA 273/274 [6], FEMA 356 [7], and FEMA
450 [8].

The most current version of design provisions for seismically isolated struc-
tures can be found in the ASCE Standard, ASCE 7-05 [2]. ASCE 7-05, Chapter 17
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represents the state-of-the-art development of the design provisions for seismically
isolated structures. In addition, these provisions have been entirely adopted in the
seismic provisions of the 2006 International Building Code (IBC) [9]. It is expec-
ted that more and more state and local codes will reference ASCE 7-05, Chapter 17
for the design of seismically isolated structures. Therefore, the main focus of this
section is to represent the ASCE 7-05 design provisions for seismically isolated
structures. First, concepts of seismic ground motions are introduced. Then, the
section of the analysis procedure for structural design, static or dynamic, is dis-
cussed. This section ends with summaries of the ASCE 7-05 special requirements
for each analysis procedure.

2.3.2 Seismic Ground Motion
Two levels of earthquake forces are required by ASCE 7-05 for the design of seis-
mically isolated structures: maximum considered earthquake (MCE) and design
earthquake. The MCE, defined as the most severe earthquake effects, normally
refers to 2% probability of exceedance in 50 years, which means that the aver-
age of the MCE return period is approximately 2500 years. The isolation system
shall remain in stable condition under the MCE. The design earthquake, which is
defined as the earthquake effects equal to two-thirds of the MCE effects, is used in
design to ensure that life safety is guaranteed; structural and nonstructural damage
are minimized or avoided; and facility functions are maintained.

The MCE spectral response acceleration is usually determined by performing
a ground motion hazard analysis. However, ASCE 7-05 provides a convenient
method to establish the MCE response spectrum relying upon two mapped accel-
eration parameters: the MCE spectral response acceleration parameter at short
period, SS, and the MCE spectral response acceleration parameter at a period of
1 s, S1, which are given in ASCE 7-05, Figures 22-1 through 22-14 of the MCE
ground motion maps. Note that the application of mapped acceleration parameters
to the development of the MCE response spectrum is limited by soil profile and
the region’s seismicity, which will be discussed at the end of this section.

The development of the MCE ground motion maps is based on region seis-
micity of the United States, which is classified by the U.S. Geological Survey
(USGS) into three regions:

1. Regions of negligible seismicity with a very low probability of structure
collapse or damage are characterized as body wave magnitude not over
5.5 and recorded ground motions with Modified Mercalli Intensity V or
less. Thus, the MCE ground motion maps specify 1% of acceleration on
the mass as a minimum lateral force for structural design.

2. Regions with seismicity varying from low and moderate to high feature
undefined earthquake sources and an MCE with long return periods,
the acceleration parameters shown on the ASCE 7-05 MCE ground
motion maps are determined from USGS probabilistic seismic hazard
maps with a 2% probability of exceedance of 50 years.
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3. For high seismicity regions that are close to known faults with short

return periods, such as coastal California, the USGS deterministic hazard
maps are used to determine the acceleration parameters of theASCE 7-05
MCE ground motion maps. The establishment of the USGS deterministic
hazard maps is in accordance with a 50% increase in the median estimate
of ground motion attenuation functions.

Note that the ASCE 7-05 MCE ground motion maps are generated based on a 5%
damped spectral response acceleration at Site Class B. Classifications of different
Site Class that ranges from A through F mainly rely on parameters of average
shear wave velocity, νs, standard blow count, N , and undrained shear strength, su.
Detailed explanations of site clarifications can be found in Chapter 20 of ASCE
7-05 [2].

After selecting the spectral response acceleration parameters, SS and S1, from
the MCE ground motion maps, the MCE spectral response acceleration at a short
period, SMS, and the MCE spectral response acceleration at 1 s, SM1, can be
computed as follows with consideration of the site class effects:

SMS = FaSS (2.40)

SM1 = FvS1 (2.41)

where Fa and Fv are site coefficients and are specified in Tables 2.1 and 2.2.
Once SMS and SM1 are determined, the design spectrum acceleration paramet-

ers at a short period, SDS, and the design spectrum acceleration parameter at 1 s,
SD1, are expressed as

SDS = 2
3

SMS (2.42)

SD1 = 2
3

SM1 (2.42a)

TABLE 2.1
Site Coefficient, Fa

Mapped MCE spectral response acceleration parameters at short period
Site
class SS ≤ 0.25 SS = 0.5 SS = 0.75 SS = 1.0 SS ≥ 1.25
A 0.8 0.8 0.8 0.8 0.8
B 1.0 1.0 1.0 1.0 1.0
C 1.2 1.2 1.1 1.0 1.0
D 1.6 1.4 1.2 1.1 1.0
E 2.5 1.7 1.2 0.9 0.9
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TABLE 2.2
Site Coefficient, Fv

Mapped MCE spectral response acceleration parameters at 1 s period
Site
class S1 ≤ 0.1 S1 = 0.2 S1 = 0.3 S1 = 0.4 S1 ≥ 0.5
A 0.8 0.8 0.8 0.8 0.8
B 1.0 1.0 1.0 1.0 1.0
C 1.7 1.6 1.5 1.4 1.3
D 2.4 2.0 1.8 1.6 1.5
E 3.5 3.2 2.8 2.4 2.4

If the period of the structural system, T , is less than T0 = 0.2SD1/SDS, the design
spectral response acceleration, Sa, displays a linear relation to T and is given as

Sa = SDS

(
0.4+ 0.6

T
T0

)
(2.43)

When the period of the structural system, T , is in the region of T0 < T < Ts =
SD1

/
SDS, Sa remains constant and is expressed as

Sa = SDS (2.44)

For Ts < T < TL, where TL is the long-period transition period and is given in
Figures 22-15 through 22-20 of ASCE 7-05, Sa can be determined as

Sa = SD1

T
(2.45)

Once T is longer than TL, Sa has the following relation with T :

Sa = SD1TL

T2 (2.46)

The MCE response spectrum is determined by simply increasing the design
response spectrum by a factor of 1.5. Figure 2.7 shows the design response
spectrum and the MCE response spectrum.

If the seismically isolated structure is located in Site Class F or on the site
with S1 over 0.6, spectral response acceleration parameters from the MCE ground
motion maps are not applicable to the determination of the design response spec-
trum and the MCE response spectrum. Therefore, site-specific ground motions, as
indicated in Chapter 21 of ASCE 7-05, have to be investigated in order to develop
the design response spectrum and the MCE response spectrum.
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FIGURE 2.7 The design and the MCE response spectrum.

2.3.3 Analysis Procedure Selection
ASEC7-05 addresses three design procedures for seismically isolated structures:
equivalent lateral force analysis, response spectrum analysis, and response history
analysis. The response history procedure is the first choice for structural analysis
because it is capable of taking the nonlinear behavior of both the seismic force-
resisting system and the isolation system into account, and is able to capture
the actual performance of the structure no matter how complicated the structural
configuration is. Also, due to availability of powerful personal computers and the
development of commercial software, the impact of unfavorable soil conditions
and very near fields of active faults can be easily considered in computer models
for structural design.

However, the equivalent lateral force procedure possesses its own advantages.
For example, use of this static analysis can greatly simplify the design procedure for
some particular structures. Moreover, the equivalent lateral force procedure can be
utilized to quantify some crucial design parameters, such as the displacement and
the lateral force, as lower-bound limits on response spectrum analysis or response
history analysis. ASCE7-05 permits using the equivalent lateral force procedure
if the following items are met:

Item 1: The MCE spectral response acceleration parameter at a period of
1 s, S1, shall be less than 0.6 g at the structure’s construction site.

Item 2: The location of the structure shall be limited to Site Class A, B,
C, or D.

Item 3: The height of the structure above the isolation interface is less than
or equal to four stories, also, the maximum height shall not be
over 65 ft.
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Item 4: The effective period of the isolated structure at the maximum
displacement, TM, shall not be over 3.0 s.

Item 5: The following relation between the effective period of the isolated
structure at the design displacement, TD, and the period of the fixed-
base structure above the isolation interface may be computed from
the approximate period, Ta, which shall satisfy

TD > 3Ta = 3Cthx
n (2.47)

where hn is the height in ft (m) of the structure above the isolation
system. Selected coefficients of Ct and x are provided in Table 2.3
according to different types of the structures’seismic force-resisting
systems.

Alternatively, a simplified equation can be used to estimate the
period of the fixed-base structure above the isolation interface for
both steel and concrete moment frames, provided that the number
of building stories, n, is less than or equal to 12 with the story height
over 10 ft.

Ta = 0.1n (2.48)

Item 6: The structure above the isolation system shall not have any
horizontal or vertical structural irregularities.

Item 7: The effective stiffness of the isolation system at the design displace-
ment shall be greater than one-third of the effective stiffness at 20%
of the design displacement. Figure 2.8 illustrates the above relation.

Item 8: The isolation system has the capability to produce a restoring force.
ASCE7-05 requires that the lateral force at the total design displace-
ment be at least 0.025W greater than the lateral force at 50% of the
total design displacement.

Item 9: The isolation system does not limit the MCE displacement to less
than the total maximum displacement.

Use of the response spectrum procedure may be permitted provided that Items 2,
7, 8, and 9, as stated above for the equivalent lateral force procedure are satisfied.

TABLE 2.3
Parameters Ct and x

Structure type Ct x

Steel moment-resisting frames 0.028 0.8
Concrete moment-resisting frames 0.016 0.9
Eccentrically braced steel frames 0.03 0.75
All other structural systems 0.02 0.75
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FIGURE 2.8 Requirement on keff for equivalent lateral force procedure.

2.3.4 Equivalent Lateral Force Procedure

2.3.4.1 Design displacement and corresponding effective
stiffness

The equivalent lateral force procedure is developed based on a simple relationship
between the spectral displacement, SD, and the pseudoacceleration, SA, as stated
in Equation 2.8. Considering the design earthquake, SD and SA can be redenoted
as the design displacement, DD, in in. (mm), and the design spectral response
acceleration, Sa, respectively. In addition, by introducing a numerical coefficient
for effective damping, BD, to reduce Sa, Equation 2.8 is rewritten as follows:

DD = Saω2
bBD

(2.49)

where the angular frequency is ωb = 2π/TD; TD represents the effective period
of the seismically isolated structure, in s, at the design displacement. For most
seismically isolated structures, TD is normally between 2.0 and 4.0 s, and is
given by

TD = 2π√ W
kD ming

where kD min equals the minimum effective stiffness, in kips/in. (kN/mm), of
the isolation system at the design displacement in the horizontal direction;
W represents the effective seismic weight of the structure above the isolation
interface. The units of W are in kips (kN).
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Thus, substituting the design spectral response acceleration at TD as given in
Equation 2.45 into Equation 2.49, the design displacement, DD, is derived as

DD = Saω2
bBD
= 1

BD

(
TD

2π )2 SD1

TD
g = gSD1TD

4π2BD
(2.50)

where g is the acceleration of gravity. The unit for g is in./s2 (mm/s2).
The numerical coefficient for effective damping, BD, is related to the effective

damping of the isolation system at the design displacement, βD, which is defined
as follows: βD = ∑

ED

2πkD maxD2
D

(2.51)

where kD max is the maximum effective stiffness, in kips/in. (kN/mm), of the
isolation system at the design displacement in the horizontal direction;

∑
ED

represents the total energy dissipated per cycle of the design displacement response,
which shall be taken as the sum of the energy dissipated at a complete cycle in all
isolator units measured at the design displacement, DD. AfterβD is determined, the
numerical coefficient for damping ratio, BD, can be computed from the following
equation [14] with limitation to 50% of critical damping:

BD = 2.31− 0.41 ln(5)
2.31− 0.41 ln βD

(2.52)

Equation 2.52 is established on the basis of 5% of critical damping. Thus, βD
equal to 5% of critical damping results in a unit of numerical coefficient, BD.
ASCE 7-05 does minor adjustments to Equation 2.52 and the tabular values are
given in Table 2.4.βM and BM in Table 2.4 present the effective damping and the numerical
coefficients at the MCE, respectively, and will be discussed in next section. Linear
interpolation of βD or βM is permitted to calculate BD or BM.

TABLE 2.4
Damping Coefficient, BD or BMβD or βM ≤2% 5% 10% 20% 30% 40% ≥50%
BD or BM 0.8 1.0 1.2 1.5 1.7 1.9 2.0
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2.3.4.2 Maximum displacement and corresponding effective

stiffness

If the seismically isolated structure is required considering the MCE, such as the
design of the isolation system, the effective period at the maximum displacement,
TM, is calculated as

TM = 2π√ W
kM ming

(2.53)

where kM min is the minimum effective stiffness, in kips/in. (kN/mm), of the
isolation system at the maximum displacement in the horizontal direction.

Utilizing the same methodology as presented in Section 2.3.4.1, the maximum
displacement, DM, in (mm) can be expressed as follows:

DM = gSM1TM

4π2BM
(2.54)

where SM1 comes from Equation 2.41 and the numerical coefficient for effective
damping, BM, is determined from Table 2.4. The effective damping of the isolation
system at the maximum displacement, βM, used to determine BM, is defined as
follows: βM = ∑

EM

2πkM maxD2
M

(2.55)

where
∑

EM is the total energy dissipated per cycle of the maximum displacement
response, which shall be taken as the sum of the energy dissipated at a complete
cycle in all isolator units measured at the maximum displacement, DM.

2.3.4.3 Total design displacement and total maximum
displacement

The design displacement obtained from Equation 2.50 does not represent the max-
imum movement of the isolation system since it only accounts for the displacement
at the isolation system’s center of rigidity. In fact, an additional displacement exists
owing to the eccentricity, e, in ft (mm) as shown in Figure 2.9. Thus, these two
portions of displacements form the maximum movement of the isolation system
that is normally called the total design displacement. The eccentricity, e, which
results in the additional displacement, consists of the actual eccentricity measured
from the mass of the structure above the isolation interface to the isolation system’s
center of rigidity, and the accidental eccentricity equal to 5% of the longest plan
dimension of the structure perpendicular to the considered force direction. The
additional displacement is determined assuming a rectangular plane of the isola-
tion system with the longest plan dimension, d, and the shortest plan dimension, b.
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FIGURE 2.9 Determination of total design displacement, DTD.

It is further assumed that the isolation system is uniformly distributed in this rect-
angular plane. Therefore, the torsional stiffness of the isolation system, ktorsion,
can be expressed in terms of the maximum effective stiffness, kD max:

ktorsion = b2 + d2

12
kD max (2.56)

At the design displacement, the seismic force acting on the center of the rigidity of
the isolation system is keff DD. The rotation of the isolation system, γ , is derived asγ = kD maxDDe(

b2 + d2/12
)

kD max
= 12DDe

b2 + d2 (2.57)

The additional displacement, Da, at the distance, y, which is between the iso-
lation system’s center of rigidity and the designated structural element measured
perpendicular to the force direction, can be determined as

Da = 12DDe
b2 + d2 y (2.57a)

By adding DD to Equation 2.57a, the total design displacement, DTD, in in. (mm),
becomes

DTD = DD + Da = DD

(
1+ y

12e
b2 + d2

)
(2.58)
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In the same way, the total maximum displacement, DTM, can be determined as
follows:

DTM = DM

(
1+ y

12e
b2 + d2

)
(2.58a)

2.3.4.4 Minimum lateral force

A minimum lateral force, Vb, in kips (kN), is specified by ASCE 7-05 to design
the isolation system, the structural elements below the isolation system, and the
foundation:

Vb = kD maxDD (2.59)

The minimum shear force, Vs, to design the structural elements above the isolation
interface shall be evaluated based on the following equation:

Vs = kD maxDD

RI
(2.60)

where RI is a numerical coefficient related to the type of the seismic force-resisting
system above the isolation system. ASCE 7-05 requires that 1.0 ≤ RI = 3R/8 ≤
2.0, where R represents the response modification factor that is given in Table 12.2-
1 of ASCE 7-05. Selected values of R and RI for commonly used seismic force-
resisting systems are summarized in Table 2.5.

ASCE 7-05 indicates that the minimum shear force, Vs, computed from Equa-
tion 2.60 shall not be less than the seismic force determined by the following three
conditions. If it is, then the largest seismic force controls the design of structural
elements above the isolation system.

A fixed-base structure with the same effective period, TD, is introduced to
evaluate the minimum lateral force based on Section 12.8 of ASCE 7-05 [2].
This minimum lateral force is renoted as V , and the determination procedures are

TABLE 2.5
Selected �0, R, RI, and Cd

Seismic force resisting system �0 R RI Cd

Bearing wall systems Special reinforced concrete shear walls 2.5 5 1.875
Special reinforced masonry shear walls 2.5 5 1.875

Building frame systems Special steel concentrically braced frames 2 6 2
Special reinforced concrete shear walls 2.5 6 2

Moment-resisting frame systems Special steel moment frames 3 8 2
Special reinforced concrete moment frames 3 8 2
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TABLE 2.6
Importance Factor

Building occupancy category I

Essential Facilities—IV 1.5
Substantial hazard to human life in the event of failure—III 1.25
Low hazard to human life in the event of failure—I
Other buildings not specified in Occupancy Categories I, III, and IV—II 1.0

summarized as below:

V = CSW (2.61)

where CS is the seismic response coefficient determined as follows:

CS = SDS(
R
/

I
) (2.62)

where I is the occupancy importance factor, which is given in Table 2.6.
The upper-bound value of CS is specified in following Equations 2.63

and 2.63a:

CS ≤ SD1

TD
(
R
/

I
) for TD ≤ TL (2.63)

CS ≤ SD1TL

T2
D
(
R
/

I
) for TD ≥ TL (2.63a)

However, CS determined from Equation 2.62 shall not be less than the value as
given below:

CS ≥ 0.01 (2.64)

If the seismically isolated structure is constructed at the site with the mapped
MCE spectral response acceleration at a period of 1 s, S1, equal to or greater
than 0.6 g, the following equation has be used to check the lower-bound value
of CS:

CS ≥ 0.5S1(
R
/

I
) (2.65)

Wind load effects must be considered to evaluate the minimum lateral force.
In general, the wind load generates less lateral force than that of Vs and does
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not control the design of most seismically isolated structures. In addition, due to
substantial content concerning wind load determination provided in ASCE 7-05
and the limited space of this book, computations of wind load effects are not
presented in this section. Detailed methods of determining the lateral force from
the wind load can be found in ASCE 7-05, Chapter 6 [2].

A lateral force that fully activates the isolation system or the wind-restraint
system shall be determined to evaluate the minimum lateral force Vs. For sliding-
type bearings, such as a friction pendulum system, the minimum lateral force, as
renoted as Vi, to activate the isolation system is expressed as follows:

Vi = 1.5µbW (2.66)

where µb is the breakaway friction coefficient of the friction pendulum system.
For elastomeric-type bearings, the minimum lateral force rewritten as Vi,

which results in the yield of the isolation system, is determined as seen below.

Vi = 1.5keDy (2.67)

where ke is the elastic stiffness of the isolation system and Dy represents the yield
displacement of the isolation system.

2.3.4.5 Vertical distribution of lateral force and story drift
limitation

The vertical distribution of the minimum lateral force, Vs, over the height of the
structure above the isolation interface is provided by ASCE 7-05 and shown in
Equation 2.68.

Fi = VSwihi∑n
j=1 wjhj

(2.68)

where wi or wj is portion of the effective seismic weight, W , at story i or j, and
hi or hj at story i or j represents the height measured from the base level of the
seismically isolated structure.

The story drift, δi, at each story level i from structural analysis is limited as

Cdδi

I
≤ 0.015hsi (2.69)

where I represents the important factor and Cd is a deflection amplification factor,
which is given in Table 2.5. The story height is denoted as hsi at any level i.
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2.3.5 Dynamic Analysis Procedure

2.3.5.1 General requirements for dynamic analysis

ASCE 7-05 specifies two dynamic analysis procedures to design seismically isol-
ated structures: response spectrum analysis and response history analysis. Both
procedures require that a structural model include the seismic force-resisting sys-
tem above the isolation interface and the isolation system in order to capture
sufficient design information.

A well-established structural model has the capability to reflect real system
performance and provide convincing results for design. Therefore, the following
criteria may be used to guide the development of the structural model:

1. The seismic force-resisting system shall be modeled. For concrete and
masonry structures, the effective cracked sections of elements must be
used to determine the stiffness of the seismic force-resisting system. For
a steel moment frame system, the story drift shall count toward the panel
zone deformation. If the assumption of rigid diaphragm is invalid, the
diaphragm participation in the dynamic response shall be considered in
the structural model. In addition, P–� effects shall be taken into account.
Models of P–� effects, panel zones, and rigid diaphragms refer to pages
252, 463, and 615 of Reference 3.

2. For modeling the isolation system, the isolator units shall be assigned in
the model based on the real locations as planned. The modeled isolation
system is able to report the uplift force and vertical movement of each
isolator, as well as to provide translational displacement and torsional
movement of the structure above the isolation interface and the isolation
system itself. The nonlinear behavior of the isolation system shall be
incorporated into the structural model for nonlinear dynamic analysis.

A linear elastic model is permitted by ASCE 7-05 for dynamic analysis if
the maximum effective stiffness of the isolation system is used to substitute the
nonlinear properties of the isolation system and the seismic force-resisting system
above the isolation system keeps its elasticity under the design earthquake.

2.3.5.2 Lower-bound lateral displacements and lateral forces

The total design displacement, DTD, and the total maximum displacement, DTM,
are specified by ASCE 7-05 to provide limits on corresponding displacements
obtained from dynamic analysis.

DTD = DD√
1+ (

T
/

TD
)2

[
1+ y

(
12e

b2 + d2

)]
(2.70)

DTM = DM√
1+ (

T
/

TM
)2

[
1+ y

(
12e

b2 + d2

)]
(2.71)
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where T is the period of the fixed-base structure above the isolation system. For the
meanings of other notations, refer to Equations 2.58 and 2.58a. The total displace-
ment from the dynamic analysis shall not be less than 90% of DTD as determined
by Equation 2.70, and the total maximum displacement from the dynamic analysis
shall not be less than 80% of DTM as specified by Equation 2.71.

For the design of the isolation system, the structural elements below the isola-
tion system, and the foundation, the forces determined from the dynamic analysis
shall not be reduced and shall not be less than 90% of Vb as determined from
Equation 2.59.

For the design of the structural elements above the isolation system, the forces
obtained from the dynamic analysis may be reduced by a factor of RI. If the
superstructure is regular, the reduced force shall not be less than 80% of Vs for
response spectrum analysis and 60% of Vs for response history analysis, where Vs is
the minimum shear force determined from the equivalent lateral force procedure
and its limits as given in Section 2.3.4.4. For the irregular superstructure, the
reduced force must be the same as Vs for response spectrum analysis and shall not
be less than 80% of Vs for response history analysis. The forces from dynamic
analysis must be increased or scaled up in case they are below the lower bound as
specified above.

The story drift is checked based on Equation 2.69. The story drift limitation is
0.015hsx for response spectrum analysis and 0.020hsx for response history analysis.
P–� effects of the structure above the isolation system subjected to the MCE shall
be considered if the story drift ratio is over 0.01/RI.

2.3.5.3 Response spectrum analysis

Response spectrum analysis is essentially a linear analytical procedure. As dis-
cussed in Section 2.2.1, minimization of nonlinear deformations of the structure
above the isolation interface could be achieved on condition that a seismic force-
resisting system is properly selected and its layout is well balanced. As a result,
nonlinear deformations dominantly occur at the isolation system and the struc-
ture above the isolation interface can be assumed to deform within elastic ranges.
Also, the conversion of the nonlinearity of the isolation system into a linear rela-
tion between the shear and its lateral displacement is accomplished by introducing
an effective stiffness or secant stiffness, keff , at the design or maximum displace-
ment. Figure 2.6 gives an example to determine the effective stiffness, keff , from
a bilinear model of an isolator unit. On the basis of the above assumptions, use
of linear properties for both the seismic force-resisting system and the isolation
system makes the response spectrum procedure applicable to analyze seismically
isolated structures.

Considering a structure with an isolation system under the design earthquake,
the damping portion of the superstructure and the isolation system, [2βω]{ẋ′},
as given in Equation 2.17, can be eliminated [17] by employing a 5% damped
pseudoacceleration, Sam, which is inclusively reduced by a numerical coefficient
for effective damping, BmD, at the mth mode of vibration. Thus, the motion
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equation corresponding to the mth angular frequency, ωm, is simplified as follows:

ẍ′m + ω2
mx′m = 
mSam, m = 1, 2, . . . n (2.72)

x′m in Equation 2.72 represents the mth component of the generalized response
vector and is used to define the structural displacements, {x}m = {�}mx′m, where{�}m is the mth mode shape of the system and its component, φn,m, at the isolation
interface is designated as a unit. The angular frequency, ωm, in Equation 2.72 is
determined by the following equation:ω2

m = {�}Tm[K]{�}m{�}Tm[M]{�}m (2.73)

where [M] and [K] in Equation 2.73 are the matrices of mass and stiffness of the
structure combined with the isolation system. The mth modal participation factor,
m, in Equation 2.72 is defined as
m = {�}Tm[M]{1}{�}Tm[M]{�}m = ∑n

i=1 miφi,m∑n
i=1 miφ2

i,m
(2.74)

The application of Equation 2.72 to the analysis of a seismically isolated struc-
ture mainly depends on whether or not the input of the pseudoacceleration, Sam,
reduced by the numerical coefficient, BmD, enables to capture the system per-
formance and to provide satisfactory accuracy of structural responses. As required
by ASCE 7-05, the damping of the base isolation system, normally related to
the fundamental modes of the seismically isolated structure, must be the smaller
value of the effective damping of the isolation system or 30% of critical damping.
Damping of superstructure usually related to higher modes of vibration shall be
selected based on the materials of the seismic force-resisting system. Determina-
tion of the pseudoacceleration with reduction by numerical coefficients, BmD, is
schematically presented in Figure 2.10.

To determine the design displacement, the system displacement at the mth
mode of vibration, {x}m = {�}mx′m, as given in Equation 2.72, shall be combined
by means of the square roof of the sum of the squares (SRSS), complete quadratic
combination (CQC), or other rational methods [3]. Note that the effective stiffness
of an isolation unit, keff , is calculated from the assumed design displacement, DD.
However, the design displacement reported from the response spectrum analysis
may not be the same as the assumed value. Thus, iteration procedures have to
be employed to repeat response spectrum procedures by changing the effective
stiffness of the isolator units with newly assumed design displacement until the
computed and assumed design displacement are close to each other within the
required accuracy. Once the displacement of the mth mode, {x}m = {�}mx′m, is
obtained from Equation 2.72, the design lateral force that is vertically distributed
at each level of the structure at the mth mode of vibration can be computed by
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FIGURE 2.10 Response spectrum reduced by numerical coefficients, BmD.

applying Newton’s law:{F}m = [M]{ẍ}m = [M]{�}mẍ′m = [M]{�}m
mSam (2.75)

where {F}m is a 1×n vector that can be written as {F1,m . . . Fi,m . . . Fn,m}.
The design base shear of the mth mode is the sum of the design lateral force at
each level and is given as follows:

Vm = n∑
i=1

Fi,m = ( n∑
i=1

miφi,m

)
mSam = Sam

g
Wm (2.76)

where Wm is the effective seismic weight of the mth mode and is defined as

Wm = ( n∑
i=1

miφi,m

)
mg = (∑n
i=1 miφi,m

)2∑n
i=1 miφ2

i,m
g (2.77)

For the structure above the isolation interface and the isolation system, the
displacements, δi,mD and δi−1,mD, at story i and i− 1 of the mth mode are given asδi,mD = DmDφi,m; δi−1,mD = DmDφi−1,m (2.78)

Accordingly, the story drift,�i,mD, between story i and i – 1 of the mth mode
becomes �i,mD = DmD(φi,m − φi−1,m) (2.78a)

The design values of the lateral force at each level of the structure and the isolation
system, the base shear, and the story drift shall be determined by applying SRSS
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or CQC method to combine Equations 2.75, 2.76, and 2.78a with sufficient modes
included. The rule of selecting sufficient modes for computation of the design
values is to ensure that the combined modal mass participation captures at least
90% of the actual mass in each principal direction.

The response spectrum procedure as presented above is also applicable to
the structural analysis under the MCE. As indicated in ASCE 7-05, the total
design displacement, DTD, and the total maximum displacement, DTM, shall be
determined by combining 100% of the ground motion in the critical direction
with 30% of the ground motion perpendicular to the critical direction. Accord-
ingly, the maximum value of DTD and DTM shall be computed as a vector sum
of the displacement in both principal axes of the structure. In addition, the design
shear at any story from the response spectrum analysis shall not be less than
the story shear determined by the equivalent lateral force procedure as given in
Equation 2.68.

2.3.5.4 Special requirements for response history analysis

Response history analysis shall be performed with minimum of three properly
selected horizontal ground motions. Each horizontal ground motion has two com-
ponents, which are perpendicular to each other. Both components shall be applied
simultaneously to the structural model to perform the response history analysis.
At each time increment, the vector sum of the displacement in both principal axes
of the structure is used to compute the maximum value of the total displacement,
DTD, and the total maximum displacement, DTM. ASCE 7-05 permits using an
average value of the analytical results for design if seven ground motion records
are utilized. In case of less than seven ground motion records used to perform
response history analysis, the maximum value of the analytical results shall be
used for design. For examples of multiple seismic inputs, refer to Reference [3]
from pages 397 through 410.

When selecting ground motion records, one must consider earthquake mag-
nitudes, fault distance, near source effects, and source mechanisms. If there are no
sufficient ground motion records available, ASCE 7-05 allows to use the appro-
priate simulated ground motion in order to provide the required number of ground
motions. The ground motion records may be scaled according to the following
method. First, for two components of each ground motion, a SRSS of 5% damped
spectrum is constructed. Then a design response spectrum with 5% damping, as
presented in Section 2.3.2, is determined. The next step is to apply the individual
scaling factor to each SRSS spectrum and find the average value of SRSS spectra.
At last, the selected scaling factors shall not cause the average value of SSRS
spectra to fall below 1.3 times the design response spectrum by over 10% with
period varying from 0.5TD through 1.25TM. Figure 2.11 illustrates this method.
Detailed computations for selecting scaling factors are given in Example 2.4.3.

Note that the input of ground motion into the structural model does not account
for the accidental torsional effects. To simulate accidental torsion in the struc-
tural model, masses of the structure above the isolation system are usually moved
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FIGURE 2.11 Determination of scaling factors for ground motions.

by 5% of the building dimension along each principal axis. Movement of masses
could happen in any direction (positive or negative) along the principal axes, which
results in tremendous computational efforts to determine the most disadvantage-
ous case for the design of the seismically isolated structure. Unfortunately, there
is no simple method to reduce the computational efforts. From the design practice
viewpoint, reduction of running response history analysis may rely upon engin-
eering judgment to identify the irregularities of the structural layout, the most
disadvantageous mass eccentricity, and the critical ground motion records. It is
because these major factors govern the maximum parameters of interest, such as
the story drifts, the lateral displacement at the isolation system, and the uplift
forces in isolator units.

2.4 DESIGN EXAMPLES

Example 2.4.1

A four-story building designed, based on Occupancy Category IV, is 64 ft
(19.52 m) high with equal story height of 16 ft (4.88 m). The longest and
shortest plan dimensions for the building are measured as 240 ft (73.2 m)
and 150 ft (45.75m), respectively. The effective seismic weight of the struc-
ture above the isolation system is approximately 24,000 kips (106.75 MN).
There are no horizontal or vertical structural irregularities of the building
structure above the isolation system. Special steel concentrically braced
frames are selected as the seismic force-resisting system. The eccentricity
between the mass center above the isolation system and the isolation system’s
center of the rigidity is approximately 2.0 ft in both principal directions. The
isolation system consists of twenty 32-in. and thirty-four 38-in. bearings. The
bearing properties are summarized in Table 2.7.
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TABLE 2.7
Bearing Properties

Diameter in in. (mm) 32 (813) 38 (965)

KD min in k/in. (kN/mm) 5.63 (0.986) 7.44 (1.303)
Dy,min related to KD min in in. (mm) 2.00 (51) 2.00 (51)
Ke,min in k/in. (kN/mm) 11.93 (2.089) 13.54 (2.371)
Kp,min in k/in. (kN/mm) 4.40 (0.771) 6.25 (1.094)
KD max in k/in. (kN/mm) 6.75 (1.182) 8.19 (1.434)
Dy,D max related to KD max in in. (mm) 2.00 (51) 2.00 (51)
Ke,max in k/in. (mm) 14.32 (2.508) 16.23 (2.842)
Kp,max in k/in. (mm) 5.28 (0.925) 7.49 (1.312)
KM min in k/in. (mm) 5.25 (0.919) 6.94 (1.215)
KM max in k/in. (mm) 6.42 (1.124) 8.48 (1.485)

Force, F
Displacement, Dkp, max= 5.28 k/in.kp, min= 4.40 k/in.ke, max= 14.32 k/in.ke, min= 11.93 k/in.

ke, max= 16.23 k/in.ke, min= 13.54 k/in.

kp, min= 6.25 k/in.

kp, max= 7.49 k/in.Dy, max = Dy, min = 2.0 in. Displacement, DDy, max = Dy, min = 2.0 in.Force, F
(a) (b) 

FIGURE 2.12 Bilinear model: (a) 32-in. bearing, (b) 38-in. bearing.

Abilinear relationship between the lateral force and the displacement prop-
erly reflects the mechanical properties of the bearings and is presented in
Figure 2.12. At the preliminary design phase, 10% of the base isolation sys-
tem’s effective damping is tentatively used. Assume that the isolation system
does not limit the MCE displacement to less than the total maximum dis-
placement. The structure will be constructed at the site with S1 and Ss equal
to 0.58 and 1.25, respectively. Site soil is classified as Class D. On basis of
the given information, design and check the following items using customary
units:

1. Use the equivalent lateral force procedure to determine the total
design displacement, DTD, and the total maximum displacement,
DTM.
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2. Find the minimum lateral force at the isolation system, above

and below the isolation system. Assume that wind load is not the
governing case.

3. Check if the assumptions of the equivalent lateral force procedure
are valid or not.

Solution
1. To determine the total design displacement, DTD, and the total maximum
displacement, DTM, the minimum or maximum stiffness of the isolation sys-
tem and the effective period related to the design and maximum displacement
shall be calculated.

The total design displacement is determined by the following steps.

kD min = 20(5.63)+ 34(7.44) = 365.56 k/in. (a)

TD = 2π√ W
kD ming

= 2π√ 24,000(365.56)(386.1) = 2.59 s (b)

From Table 2.2, the site coefficient Fv = 1.5.
Accordingly, SM1 = FvS1 = 1.5(0.58) = 0.87, and SD1 = (2/3)SM1 =(2/3)(0.87) = 0.58. From Table 2.4, BD = BM = 1.2 for 10% of effective
damping. Therefore, the design displacement is

DD = gSD1TD

4π2BD
= (386.1)(0.58)(2.59)

4π2(1.2) = 12.24 in. (c)

Some braced frames are usually located at the perimeters of the build-
ing structure in order to effectively resist the seismic force. In this
example, y= 240/2= 120 ft leads to the maximum eccentricity. The accident
eccentricity is determined as ea = 0.05(240)= 12 ft. The total eccentricity
becomes e= 2+ 12= 14 ft, which results in the total design displacement as
follows:

DTD = DD

[
1+ y

(
12e

b2 + d2

)]= (12.24) [1+ (
240

2

)( (12)(14)
1502 + 2402

)] = 15.32 in. (d)

The total maximum displacement is calculated from the followings steps:

kM min = 20(5.25)+ 34(6.94) = 340.96 k/in. (e)

TM = 2π√ W
kM ming

= 2π√ 24,000(340.96)(386.1) = 2.68 s (f )

From Table 2.1, the site coefficient Fa = 1.0. Therefore, SMS = FaSS =
1.0(1.25) = 1.25, and SDS = 2SMS/3 = 2(1.25)/3 = 0.83. The maximum
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displacement is

DM = gSM1TM

4π2BM
= (386.1)(0.87)(2.68)

4π2(1.2) = 19.00 in. (g)

The total maximum displacement is

DMD = DM

(
1+ y

(
12e

b2 + d2

))= (19)(1+ (
240
2

)( (12)(14)
1502 + 2402

)) = 23.78 in. (h)

2. The maximum effective stiffness of the isolation system at the design
displacement is

kD max = 20(6.75)+ 34(8.91) = 437.94 k/in. (i)

Thus, the minimum lateral force at the isolation system and for the design
of structural elements below the isolation system is

Vb = kD maxDD = 437.94(12.24) = 5360.4 k (j)

The numerical coefficient, RI, is equal to 2.0 from Table 2.5. Thus, the
minimum lateral force used to design structural elements above the isolation
system is

Vs = kD maxDD

RI
= 437.94(12.24)

2
= 2680.2 k (k)

However, the minimum lateral force, Vs, shall be checked by two cases:
the fixed-base structure with an effective period of TD, and the yield of the
isolation system multiplied by a factor of 1.5. Note that the given condition
indicates that the wind load does not govern the lateral force, and this case
does not need to be checked.

From Tables 2.5 and 2.6, R = 6 and I = 1.5. Accordingly, the seismic
response coefficients based on Equations 2.62 through 2.64 are determined as
below:

CS = SDS(R/I) = 0.83(6/1.5) = 0.208 (l)

CS = SD1

TD(R/I) = 0.58
2.59(6/1.5) = 0.056 > 0.01 (m)

Use Vs1 to define the base shear for a fixed-base structure with the effective
period, TD. Then the base shear, Vs1, is calculated as shown below:

Vs1 = CSW = 0.056(24,000) = 1344 k < Vs = 2680.2 k (n)
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At the yield level of the isolation system, the lateral force denoted as Vs3

becomes

Vs3 = 1.5ke,maxDDy,max = 1.5 [(20)(28.64)+ (34)(32.46)]= 2514.7 k < Vs = 2680.2 k (o)

Since Vs1 and Vs3 are less than Vs, the minimum lateral force is Vs =
2680.2k for the design of structural elements above the isolation system.
Note that Equation 2.65 is not used here because S1 is less than 0.6 g.

3. The design information given in this example has already met some
requirements of the equivalent lateral force procedure. S1 = 0.58 and the Site
Class D meet Items 1 and 2 as required in Section 2.3.3. The building is four
stories, and the height is less than 65 ft, thus also meeting Item 3. The effective
period at the maximum displacement, TM, is 2.68 s, which satisfies Item 4.
Item 6 is met because the given condition specifies that the building does
not have any irregularities. As specified in the given condition, the MCE
displacement is not limited by the isolation system to the total maximum
displacement. Therefore, Item 9 is automatically satisfied.

Only Items 5, 7, and 8 require further verification. These items are checked
as follows:

For Item 5, the period of the fixed-base structure is Ta = Cthx
n =

0.02(64)0.75 = 0.45 s. 3Ta = 3(0.45) = 1.35 s, which is much less than
TD = 2.59 s. Thus, Item 5 is met.

For Item 7, 20% of the design displacement is 0.2(12.24) = 2.45 in. The
stiffness is accordingly calculated as follows:

32-in. bearing:
1
3

K32′′ = 2(14.32)+ 5.28(2.45− 2)
3(2.45)= 4.22k/in. < KD max = 6.75 k/in. (p)

38-in. bearing:
1
3

K38′′ = 2(16.23)+ 7.49(2.45− 2)
3(2.45)= 4.87k/in. < KD max = 8.91 k/in. (q)

Thus, the effective stiffness of both types of bearings at the design dis-
placement is greater than one-third of the effective stiffness at 20% of the
displacement. Note that the above demonstration is derived from the max-
imum stiffness at the design displacement. The same conclusion can be
obtained for the minimum stiffness at the design displacement by applying
the same methodology.

Item 8 is to check the capability of the isolation system to produce a
restoring force. Fifty percent of the total design displacement is

50%DTD = 0.5(15.32) = 7.66 in. (r)
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For a 32-in. bearing, the lateral force at 50% DTD is

V32" = 2(14.32)+ 5.28(7.66− 2) = 58.52 k (s)

For a 38-in. bearing, the lateral force at 50% DTD is

V38" = 2(16.23)+ 7.49(7.66− 2) = 74.85 k (t)

Thus, the lateral force of the isolation system at 50% DTD becomes

V50%TD = 20(58.52)+ 34(74.85)
24,000

= 0.155 W (u)

The lateral force at the total design displacement can be written as follows:

VTD = 20[2(14.32)+ 5.28(15.32− 2)] + 34[2(16.23)+ 7.49(15.32− 2)]
24,000= 0.270 W (v)

VTD − V50%TD = 0.270 W − 0.155 W = 0.115 W > 0.025 W (w)

Therefore, Item 8 is satisfied. On the basis of the above verifications, all the
items are met, and use of the equivalent lateral force procedure is acceptable.

Example 2.4.2

Define lower-bound limits on response spectrum analysis for the seismically
isolated structure as described in Example 2.4.1. All the given conditions
remain the same except for the irregularities of the structure above the
isolation system.

Solution
Using the response spectrum procedure, the following lower-bound limits as
specified in Section 2.3.5.2 shall be established.

On the basis of the solutions from Example 2.4.1, the design displacement
is DD = 12.24 in. The approximate period of the fixed-base structure is used
here. Then, Ta = 0.45 s, and the effective period at design displacement is
TD = 2.59 s. Thus, the design displacement to determine the total design
displacement for response spectrum analysis is

D′D = DD√
1+ (

Ta
/

TD
)2
= 12.24√

1+ (
0.45

/
2.59

)2
= 12.06 in. (a)
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The total design displacement becomes

DTD = D′D [
1+y

(
12e

b2 + d2

)]= (12.06) [1+(240
2

)( (12)(14)
1502+2402

)] = 15.10 in. (b)

The lower-bound limit on the total design displacement is 0.9DTD =
0.9(15.1) = 13.59 in.

The maximum displacement from Example 2.4.1 is DM = 19.0 in., and the
corresponding effective period is TM = 2.68 s. The maximum displacement
to define the total maximum displacement for response spectrum analysis is

D′M = DM√
1+ (

Ta
/

TM
)2
= 19.0√

1+ (
0.45

/
2.68

)2
= 18.74 in. (c)

The total maximum displacement is

DMD = D′M [
1+ y

(
12e

b2 + d2

)]= (18.74) [1+ (
240

2

)( (12)(14)
1502 + 2402

)] = 23.46 in. (d)

The lower-bound limit on the total maximum displacement is 0.8DTM =
0.8(23.46) = 18.78 in.

The lower-bound limit on the design lateral force at and below the isolation
system is

0.9Vb = 0.9(5360.4) = 4824.4 k (e)

The lower-bound limit on the design lateral force for the design of structural
elements above the isolation system is 1.0Vs = 2680.2 k, which is also greater
than Vs1 = 1752 k and Vs3 = 2514.7 k.

The results from response spectrum analysis shall not be less than the
lower-bound limits determined above.

Example 2.4.3

A seismically isolated building will be constructed on a Site Class D. The
effective period at the design displacement is TD = 2.5 s, and the effective
period at the maximum displacement is TM = 2.6 s. Response history analysis
must be performed owing to structural irregularities. Three ground motion
histories are selected for response history analysis and the maximum value
of the response parameters shall be selected for the structure design. These
three ground motion histories were recorded during the 1989 Loma Prieta
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earthquake at Joshua Tree and the 1992 Landers earthquake at Gilroy Array
and Hollister City Hall. Response spectra of three ground motion histories
at 5% of damping are shown in Table 2.8. Response spectrums are identified
as (1), (2), and (3). The MCE spectral acceleration parameters are SS = 2.0
at the short period and S1 = 1.0 at a period of 1 s, which will be used to
determine the design response spectrum.

1. Find the design response spectrum based on the given information. The
long-period transition period, TL, is 6 s for this site.

2. Determine the scaling factor for each ground motion history.

Solution
1. From Tables 2.1 and 2.2, site coefficients Fa and Fv are 1.0 and 1.5,
respectively, for Site Class D. Thus, SMS = FaSS = 1.0(2.0) = 2 and
SM1 = FvS1 = 1.5(1.0) = 1.5. The design spectral acceleration parameters
are determined as follows:

SDS = 2
3

SMS = 2
3
(2) = 4

3
and SD1 = 2

3
SM1 = 2

3
(1.5) = 1.0 (a)

T0 = 0.2
(

SD1

SDS

) = 0.2

[
1.0(
4
/

3
)] = 0.15 (b)

TS = SD1

SDS
= 3

4
= 0.75 (c)

The design spectral response acceleration for a period less than T0 is
presented as shown below.

Sa = SDS

[
0.4+ 0.6

(
T
T0

)] = 4
3

(
0.4+ 0.6T

0.15

) = 0.533+ 5.333T (d)

The design spectral response acceleration between T0 and TS is 1.333 in
unit of g and the acceleration between Ts and TL is given by

Sa = SD1

T
= 1

T
(e)

On the basis of the above relationship between T and Sa, the design response
spectrum can be developed and is shown in Figure 2.13. Since 1.25TM is
shorter than TL, the portion of acceleration with period longer than TL is not
shown in Figure 2.13.

2. The scaling factor for each spectrum from the ground motion is determ-
ined between 0.5TD and 1.25TM. 0.5TD = 0.5(2.5) = 1.25 s, and 1.25TM =
1.25(2.6) = 3.25 s. The design response spectrum is multiplied by a factor
of 1.3 according to ASCE7-05. By trial and error to find a set of scaling
factors that is able to meet the ASCE 7-05 requirements, scaling factors of
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TABLE 2.8
Response Spectrums of Three Ground Motions

(1) 1992 Landers (2) 1989 Loma Prieta (3) 1989 Loma Prieta Hollister
Joshua Tree Gilroy Array City Hall

T (s) Component Component Component Component Component Component
1 2 1 2 1 2

0.01 0.713 0.742 1.226 0.783 0.815 0.392
0.10 0.764 1.021 2.908 1.932 0.842 0.527
0.15 0.868 1.104 3.540 2.129 0.954 0.855
0.20 0.989 1.347 4.384 3.132 1.335 0.709
0.30 1.836 1.932 2.240 2.646 1.881 0.963
0.40 1.945 1.217 2.382 1.031 1.386 0.914
0.50 1.739 1.097 2.260 1.540 2.585 1.535
0.60 1.450 1.575 1.538 1.062 2.175 0.896
0.70 1.737 2.616 1.124 0.902 2.147 0.889
0.75 1.763 2.250 1.069 1.053 2.214 0.824
0.80 1.722 1.763 1.082 0.936 2.251 0.736
0.90 1.657 1.473 0.817 0.851 2.062 0.640
1.00 1.042 1.372 0.586 0.829 2.199 0.799
1.10 1.204 1.664 0.408 0.843 1.920 0.951
1.20 1.378 1.495 0.348 0.843 1.509 0.889
1.25 1.258 1.367 0.319 0.845 1.325 0.791
1.30 1.153 1.251 0.290 0.842 1.242 0.647
1.40 0.676 1.074 0.330 0.821 1.156 0.451
1.50 0.562 0.964 0.378 0.776 1.090 0.386
1.60 0.495 0.941 0.327 0.768 1.026 0.406
1.70 0.494 0.811 0.266 0.736 1.108 0.359
1.80 0.464 0.705 0.197 0.695 1.097 0.374
1.90 0.379 0.608 0.161 0.687 0.986 0.346
2.00 0.344 0.492 0.164 0.658 0.835 0.312
2.20 0.274 0.360 0.150 0.563 0.670 0.342
2.40 0.250 0.398 0.118 0.506 0.553 0.281
2.60 0.213 0.471 0.123 0.425 0.486 0.292
2.80 0.190 0.459 0.136 0.349 0.436 0.307
3.00 0.121 0.306 0.132 0.282 0.390 0.251
3.20 0.095 0.286 0.144 0.226 0.347 0.203
3.25 0.099 0.300 0.143 0.214 0.337 0.209
3.40 0.108 0.284 0.130 0.181 0.306 0.213
3.60 0.109 0.230 0.114 0.159 0.268 0.180
3.80 0.127 0.197 0.100 0.142 0.235 0.167
4.00 0.109 0.192 0.098 0.128 0.205 0.212
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FIGURE 2.13 Design spectral acceleration.

1.07, 0.82, and 1.38 applied to ground motions (1), (2), and (3) are selec-
ted. Thus, the average of the SRSS spectra from three ground motions is not
less than 10% of the design response spectrum increased by a factor of 1.3.
Figure 2.14 shows that the average of the SRSS spectra is above 1.3 times the
design response spectrum reduced by 10% between 1.25 s and 3.25 s. Scaling
factors are selected using Microsoft Excel and are summarized in Table 2.9.
Interpretations of results at a typical time interval are given step-by-step as
follows.

At the time of 3.25s, the spectral acceleration from the design response
spectrum is

Sa = (
1
/

3.25
)

g = 0.308g, 1.3Sa = 1.3(0.308) = 0.4g (f )

For the spectrum (1) at the time of 3.25 s, two components of spectral accel-
eration are combined by SRSS. Thus Sa,(1) = √0.0992 + 0.32 = 0.316g. Do
the same for the spectra (2) and (3),

Sa,(2) = √
0.1432 + 0.2142 = 0.257g and

Sa,(3) = √
0.3372 + 0.2092 = 0.396g (g)
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(3) 1989 Loma-Prieta, Hollister; scaling factor = 1.38

(1) 1992 Landers, Joshua; scaling factor = 1.07
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1.3 Times design spectral acceleration

(2) 1989 Loma-Prieta, Gilroy; scaling factor = 0.82

FIGURE 2.14 Scaling factor determination of ground motions.

Applying the selected scaling factors, the average of the SRSS spectra
becomes

Sa = 1.07Sa,(1) + 0.82Sa,(2) + 1.38Sa,(3)
3= 1.07(0.316)+ 0.82(0.257)+ 1.38(0.396)

3
= 0.365g (h)

Compared to the design response spectrum as represented in Figure 2.13,
the following condition is satisfied:

0.9 (1.3Sa) = 0.9(0.4) = 0.36 g < Sa = 0.365 g (i)

Thus, the selected scaling factors meet ASCE7-05 requirements. As an
exercise of applying the above methodology, demonstrations of the average
of SRSS spectra not less than 10% of 1.3 times the design response spectrum
are easily achieved at any time interval between 1.25 and 3.25 s.
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2.5 TESTING VERIFICATION AND DETERMINATION OF ISOLATOR
PROPERTIES

2.5.1 Testing Requirements of ASCE 7-05
Mechanical properties of isolation systems, used in the equivalent lateral force
procedure and the dynamic analysis procedures, shall be verified by prototype
tests in accordance with ASCE 7-05, Section 17.8 [2]. Two full-size bearings for
each type and size are required for testing. The prototype tests shall include the
following sequences:

1. An average of gravity load, P, which is equal to D + 0.5L, is preloaded on
the bearing, where D and L are the dead load and live load, respectively.
Under this sequence, 20 fully reversed cycles are performed under the
lateral force equal to the design wind load.

2. The gravity load, P, remains applied on the bearing, which is forced
to move three fully reversed cycles at each displacement increment
of 0.25DD, 0.5DD, 1.0DD, and 1.0DM. If the tested bearing is used
to resist the vertical seismic force transferred from the seismic force-
resisting system, two additional vertical load cases shall be included in
the testing sequences to perform the same cycle procedures as presented
above. (1.2+ 0.2SMS)D+ L + QE (2.79)(0.9− 0.2SMS)D+ QE (2.80)

where QE is the seismic force determined from the MCE and SMS
represents the MCE spectral response acceleration at a short period.

3. Under the gravity load, P, three fully reversed cycles are performed with
the total maximum displacement, DTM.

4. Subjected to the same gravity load, P, the bearing is forced to
move

(
30SD1

/
SDSBD

) ≥ 10 fully reversed cycles with the total design
displacement, DTD.

On the basis of the results from prototype tests, the minimum and maximum
effective stiffness at the design displacement is determined as

kD min = ∑∣∣F+D ∣∣min +∑∣∣F−D ∣∣min
2DD

(2.81)

kD max = ∑∣∣F+D ∣∣max +∑∣∣F−D ∣∣max
2DD

(2.82)

where
∑∣∣F+D ∣∣min and

∑∣∣F−D ∣∣min are the sums of the minimum absolute lateral
force at the positive and negative design displacement, DD;

∑∣∣F+D ∣∣max and
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FIGURE 2.15 Definition of effective stiffness, kmax and kmin.∑∣∣F−D ∣∣max present the sums of the maximum absolute lateral force at the positive
and negative design displacement, DD.

In the same way, the minimum and maximum effective stiffness at the
maximum displacement are expressed as

kM min = ∑∣∣F+M∣∣
min +∑∣∣F−M∣∣

min
2DM

(2.83)

kM max = ∑∣∣F+M∣∣
max +∑∣∣F−M∣∣

max
2DM

(2.84)

where
∑∣∣F+M∣∣

min and
∑∣∣F−M∣∣

min are the sums of the minimum absolute lateral
force at the positive and negative maximum displacement, DM;

∑∣∣F+M∣∣
max and∑∣∣F−M∣∣

max present the sums of the maximum absolute lateral force at the positive
and negative maximum displacement, DM. Figure 2.15 shows the relation of the
effective stiffness with the corresponding absolute displacement.

After kD max and kM max are determined, and the total dissipated energy in the
isolation system in a full cycle of the design displacement,

∑
ED, and in a full cycle

of the maximum displacement
∑

EM are calculated from prototype test results,
the corresponding effective damping, βD and βM, are obtained based on Equations
2.51 and 2.55.

In addition to the prototype tests, production tests of all the bearings are
required to ensure that testing results fall into the accepted ranges of the preselec-
ted design values. The production test usually includes bearing compression test
to find its compressive stiffness, test of lateral stiffness at the design displacement,
and determination of the effective damping at the design displacement.
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Acceptance criteria of testing results for both prototype and production tests
need to be reviewed and approved by the design review panel and the enforce-
ment agency. This section only provides general requirements for the prototype
and production test. Specific requirements are expected to test different types of
bearings. Detailed explanations of prototype and production test requirements for
different types of bearings can be found in Reference [13].

2.5.2 Modifications of Isolator Properties
The mechanical properties determined from tests have been proven to vary dur-
ing years of service owing to environmental conditions, such as the effects
of aging, contamination, travel, temperature, and scragging. Scragging is a
unique characteristic of elastomeric-type bearings, which refers to the reduc-
tion of the bearing’s shear stiffness at initial cycles of testing with large shear
deformation. However, recovery time of the scragged bearing’s original shear
stiffness mainly depends on the bearing’s rubber properties. All the effects as
mentioned above shall be considered in the design stages. However, ASCE 7-05
[1] does not explicitly specify how to account for them. In the current design
practice for seismically isolated structures, modifications of isolator properties
are usually determined by a method of system property modification factors
developed by Constantiou, et al. [5] based on their research work, which has
been adopted by the 1999 AASHTO Guide Specifications for Seismic Isolation
Design [1].

This method establishes upper- (maximum) and lower- (minimum) bound bear-
ing properties by applying different modification factors to its nominal properties
that are determined from tests. Assuming that the nominal properties of bearings
are designated as Pn, the modified maximum and minimum properties of bearings
become Pmax and Pmin, respectively, and the relation of P to Pmax and Pmin is
expressed as below:

Pmax = f (λmax,1, . . . , λmax,i)Pn (2.85)

Pmin = f (λmin,1, . . . , λmin,i)Pn (2.86)

where f (λmax,1, . . . , λmax,i) and f (λmin,1, . . . , λmin,i) are functions of modifica-
tion factors or λ-factors owing to different effects and are defined in terms of∏ λmax,i and

∏ λmin,i. For sliding-type bearings, the modification factors include
effects of aging, contamination, wear, and temperature, while the effects of aging,
scragging, temperature, and heat are considered for elastomeric-type bearings.λ-factors can be determined from Tables 5-1 through 5-8 in the report by Con-
stantiou, et al. [5]. Note that there is a slim probability of all the effects being
applied during an earthquake event. Thus, a system property adjustment factor, χ ,
is proposed [5] to modify

∏ λmax,i and
∏ λmin,i. By introducing λmax and λmin to

express f (λmax,1, . . . , λmax,i) and f (λmin,1, . . . , λmin,i), respectively, the adjusted
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modification factors become as follows:λmax = 1+ χ (∏ λmax,i − 1

)
(2.87)λmin = 1− χ (∏ λmin,i − 1

)
(2.88)

where χ varies from 0.66 to 1.0 based on the importance of the structure. An
application to the method of system property modification factors is depicted in
the following example.

For a high damping rubber bearing with a diameter of 40 in., the nominal upper-
bound properties are characterized as the elastic stiffness, ke max = 27.6 k/in., the
postyield stiffness, kp max = 10.08 k/in.; and the yielding displacement, Dy max =
2.0 in. Thus, the yielding force is Fy = 27.6(2) = 55.2 k. By using Equation 2.21,
the characteristic strength becomes Q = (ke max – kp max)Dy = (27.6 – 10.08)(2)=
35.04 k. The heat effect for high damping rubber bearing is negligible, and from
Tables 5-5 and 5-6 of the report [5], a factor of 1.2 for both the effects of aging and
scragging is obtained to modify the postyield stiffness, kp max, and the characteristic
strength, Q. Assuming that this is not an essential structure, the system property
adjustment factor, χ , is equal to 0.75, which leads Equation 2.87 to be λmax = 1+
0.75[1.2(1.2)−1] = 1.33. Thus, the adjusted kp max = 1.33(10.08) = 13.41 k/in.,
and adjusted Q = 1.33(35.04) = 46.60 k. Accordingly, Dy max = Q/(ke max –
kp max) = 46.6/(27.6 – 13.41) = 3.28 in., and Fy = 27.6× 3.28 = 90.53 k.

The modified postyield stiffness, kp max, and yielding displacement, Dy max,
along with the elastic stiffness, ke max, will be used to perform equivalent lateral
force analysis or be input into computer model for dynamic analysis of the building
structure.
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3 Damping Systems
The objective of utilizing dampers is to reduce structure responses and to mit-
igate damage or collapse of structures from severe earthquakes by participating
energy dissipations. As a successful application, installation of dampers in an exist-
ing building structure, which does not possess sufficient lateral stiffness, enables
control of the story drift within the required limitation and maintains its desired
functions during an earthquake event. Since the first application of dampers in
structural engineering took place in 1960s, abundant research work has been con-
ducted to study the mechanisms of dampers and the behavior of damped structures.
With the invention of different types of damping devices, improvement of mod-
eling techniques, and development of new computational methodologies, use of
dampers has become a mature technology in designing of new structures and
retrofitting of existing facilities.

Study of damped structure performance mainly relies on types of dampers
and configurations of their installations. The authors’ intention being the same
as mentioned in Chapter 2, this chapter only addresses commonly used types
of dampers, and introduces corresponding basic theories and their important
applications to damped building structures. In addition, this chapter could be
considered as a stepping stone for reader’s further studies. A brief summary of
this chapter is presented as follows. In Section 3.1, basic concepts of damped
structures with single or multiple degree-of-freedoms are introduced with consid-
eration of nonlinear behavior of both building structures and dampers. Different
analytical procedures with ASCE 7-05 [1] requirements are explained in detail
in Section 3.2. Section 3.3 provides design examples according to ASCE 7-05
requirements. Testing requirements and properties verifications of dampers are
summarized in Section 3.4.

3.1 BASIC CONCEPTS OF BUILDING STRUCTURES WITH

DAMPING SYSTEM

3.1.1 Single-Degree-of-Freedom Motion Equations
A building installed with dampers features two structural systems to resist seismic
force: seismic force-resisting system and damping system. Aseismic force-resisting
system is characterized by selected structural materials and its configurations,
such as steel braced frames, steel moment frames, and concrete shear walls.
A damping system is usually defined as a collection of dampers, connections
between dampers and structural members, and structural members transferring
forces between damping devices and the seismic force-resisting system or the

109
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Seismic force-resisting system (SFRS) Damping system (DS)
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Damping system (DS)

FIGURE 3.1 Definition of damping device and damping system.

foundation. Figure 3.1 illustrates both systems in a structural frame elevation.
Note that the damping devices indicated earlier refer to a combination of dampers
and their end connections, which could be in forms of pins, bolts, brace segments,
or gusset plates.

On the basis of the location of the damping system, the damping device can be
classified as internal or external [9]. As shown in Figure 3.1, if the damping system
is combined with the seismic force-resisting system, some structural members are
called shared elements or common elements.

Development of single-degree-of-freedom (SDOF) motion equations can be
depicted from a single-story building structure installed with a damping system,
which is schematically shown in Figure 3.2. The mass of this structure, assuming
it is simply lumped at the roof level, is denoted as m. To consider the nonlin-
ear behavior of the building structure, a general expression is utilized to define
the structural force, Q, instead of ksx, where ks is linear lateral stiffness of the
structure and x, simplified from x(t), represents roof displacement or deflection of
the structure at any time t. The structural damping coefficient is designated as cs.
Force, P, is defined along the movement of the damping device. Accordingly, its
horizontal component becomes D = P cosϕ, where angle, ϕ, relies on assembly
configurations of damping device and bracings. For the damping devices connec-
ted by diagonal bracings to the building structure, the angle, ϕ, represents the
damping device’s inclination to the horizontal movement of the structure. How-
ever, if the damping device is installed between chevron bracings and a horizontal
structural member or a braced frame beam as shown in Figure 3.2, the move-
ment of the damping device is parallel to the structure displacement and the angle,ϕ, becomes zero. Some sophisticated assemblies of damping devices and bra-
cings structurally tied to the seismic force-resisting system have been developed
in order to satisfy particular requirements of structural configurations and func-
tions, such as damping device incorporated into upper or lower toggle bracings, or
scissor-jack bracings [10]. Determination of their relations between the damping
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FIGURE 3.2 Sketch of SDOF structures with damping devices.

force in the direction of damping device movement and its horizontal component
can be found in References 10 and 12.

For common configurations of damping devices assembled with diagonal or
chevron bracings, the axial stiffness of bracings is usually much stronger than that
of the damping device and the movement or deformation of the damping system is
dominantly contributed by the damping device. Accordingly, the bracings can be
reasonably assumed to be rigid components with infinite stiffness. On the basis of
the assumption of infinite stiffness of the bracings and the well-known equilibrium
condition, SDOF motion equation of the damped structure is easily expressed as
follows:

mẍ + csẋ + D+ Q = −mẍg or mẍ + csẋ + P cosϕ + Q = −mẍg (3.1)

where the structural acceleration, ẍ, and the ground acceleration, ẍg, are designated
from simplified notations of ẍ(t) and ẍg(t), respectively.

As discussed in Section 1.5 and based on damper mechanical properties, damp-
ing devices can be classified as two major categories: velocity dependent and
displacement dependent. Velocity-dependent damping devices include fluid vis-
cous damper, fluid viscoelastic damper, and solid viscoelastic damper, whereas
displacement-dependent damping devices consist of friction damper and metallic
yielding damper. In addition, a combination of velocity- and displacement-
dependent damping devices is somehow considered as a third category. Since
each type of damping device possesses its own unique mechanical properties,
development of a unified expression of the damping force, P, seems impossible.
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FIGURE 3.3 Force–displacement relations of velocity-dependent damping devices:
(a) fluid viscous damper and (b) solid or fluid viscoelastic damper.

As a result, an individual expression of damping force, P, has to be developed
based on its mechanical properties.

Figure 3.3 represents typical relations between the damping force and its dis-
placement of linear or nonlinear viscous dampers, and solid or fluid viscoelastic
dampers. Supported by test results for linear fluid viscous damper, the damping
force, P, can be simply depicted as a linear relation to its velocity:

P = cd l̇ (3.2)

where cd is the damping coefficient of the fluid viscous damper, while l̇ represents
the relative velocity of the damper in the direction of P. As shown in Figure 3.2,
l and x remain the following relation:

l = x cosϕ and l̇ = ẋ cosϕ.

Thus

P = cd ẋ cosϕ, or D = cd ẋ cos2 ϕ (3.2a)

If the fluid viscous damper exhibits nonlinear behavior to its relative velocity, then
the force of a nonlinear fluid viscous damper, P, has the following relation to its
movement:

P = cd|l̇|αsgn(l̇) = cd|ẋ cosϕ|αsgn(ẋ) or D = cd|ẋ|α cosα+1 ϕsgn(ẋ) (3.3)

where α is the velocity exponent. According to mechanical properties of a solid
viscoelastic damper, the damper force features a function of its relative velocity to
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displacement, which can be simplified in terms of effective damping coefficient,
cd, and effective stiffness, kd:

P = cd l̇ + kdl = cd ẋ cosϕ + kdx cosϕ, or D = cd ẋ cos2 ϕ + kdx cos2 ϕ
(3.4)

Unlike fluid viscous damper, the effective damping coefficient, cd, and the
effective stiffness, kd, of a solid viscoelastic damper not only vary with frequency
of oscillation, but also depend on ambient temperature and motion amplification
[10]. As to fluid viscoelastic damper, similar properties as solid viscoelastic damper
owns are observed from testing. Thus, its damper force can also be expressed by
Equation 3.4 except that the fluid viscoelastic damper does not possess its effective
stiffness during application of static load.

For displacement-dependent damping device, the damping force, P, is
independent of the relative velocity and is mainly controlled by the relative dis-
placement of the damping device. Figure 3.4 illustrates frequency-dependent
hysteretic behavior from test results for friction damper and metallic yielding
damper. On the basis of the different types of damping devices, their hysteretic
behavior can be idealized as elastoplastic model, bilinear model, polynomial model
[10], or other types of models, such as smoothed bilinear model [13,17]. The rela-
tion of the damping force, P, and the relative displacement, l, can be written in a
general function f (l):

P = f (l) or D = f (x cosϕ) cosϕ (3.4a)

This general equation could be specifically expressed if the loading histories
of the damping device are known. For example, as shown in Figures 3.5 and 3.6
for commonly adopted elastoplastic model or bilinear model, the damping force,P l l

(a) (b) 

P +

PP + P –

P –
–

l – l –l + l +

FIGURE 3.4 Force–displacement relations of displacement-dependent damping devices:
(a) friction damper and (b) metallic yielding damper.
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FIGURE 3.5 Elastoplastic model of displacement-dependent damping device.
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FIGURE 3.6 Bilinear model of displacement-dependent damping device.

P, can be determined by either loading or unloading case at any designated hys-
teretic loop. In the same way, Equation 3.4 is still applicable to models with more
sophisticated expressions of loading and unloading paths [10].

The general expression of the structural force, Q, as given in Equation 3.1,
can be used to capture the linear or nonlinear behavior of the structure subjec-
ted to seismic force. If the structure only exhibits linear behavior, then the term
Q simply becomes ksx. However, if the structure experiences nonlinear deform-
ation or postyield behavior and the impact of imposed loading histories is not
negligible, this general expression is still capable of taking the hysteretic behavior
of the structure into account. Therefore, relying on the properties of structural
materials, elastoplastic model, bilinear model, polynomial model, or other types
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of models [2] can be selected to define the structural force, Q. Detailed expressions
of the structural force for different types of models are given by Cheng [2].

3.1.2 Multiple-Degree-of-Freedom Motion Equations
A sketch of a multistory structure installed with damping system is shown in
Figure 3.7. Applying the equilibrium conditions at the roof level n, and using
relative displacement, xn, which has been defined in Section 2.1.2, the motion
equation due to the ground acceleration, ẍg, is derived as

mnẍn + cs,n(ẋn − ẋn−1)+ Dn + Qn = −mnẍg, (3.5)

or

mnẍn + cs,n(ẋn − ẋn−1)+ Pn cosϕn + Qn = −mnẍg (3.5a)

where mn is the roof mass and cs,n is denoted as the structural damping between
the roof and the story below the roof. xn, and xn−1 are utilized to identify the
relative displacement at the roof and the story below. For the structural force
between the roof level and the story below, a general expression of Qn, is alsoQ1

P2 Pmcs,mQmcs,2

Q2m1

cs,1

xg(t) x cs,ncs,mcs,2cs,1cs,m +1P1

�1

Damping device 

mnmmm1

From story m to n
From story 1 to m�n

�m mm mnPm Pncs,nQnQm +1cs,m +1

FIGURE 3.7 Sketch of MDOF structures with damping devices.
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used to represent elastic or inelastic behavior of the seismic force-resisting system.
According to material properties of the structure, Qn can be idealized as a linear
model, elastoplastic model, bilinear model, or other types of models, which have
already been discussed in Section 3.1.1. In Equations 3.5 and 3.5a, Pn and Dn are
used to define the axial force and its horizontal component of damping devices
between the roof and the story below. The specific expression of the damping force
and its relative velocity or relative displacement needs to be determined by selected
damping devices as discussed in Section 3.1.1. ϕn presents the angle between the
axial force and the horizontal component of the damping device.

By applying the same methodology used for Equation 3.5, the motion equation
at story m is identified as below:

mmẍm + cs,m(ẋm − ẋm−1)− cs,m+1(ẋm+1 − ẋm)+ Dm − Dm+1+ Qm − Qm+1 = −mmẍg, (3.6)

or

mmẍm + cs,m(ẋm − ẋm−1)− cs,m+1(ẋm+1 − ẋm)+ Pm cosϕm − Pm+1 cosϕm+1 + Qm − Qm+1 = −mmẍg (3.6a)

where mm is the mass at the story m; cs,m+1 and cs,m are the structural damping
between story m + 1 and m, and between story m and m − 1, respectively. xm+1,
xm, and xm−1, are designated as the relative displacement at story m + 1, m, and
m−1. Qm+1 and Qm are denoted as the structural force between story m+1 and m,
and between story m and m− 1, respectively. Pm+1, Pm, Dm+1, and Dm represent
the axial force and the horizontal component of damping devices between story
m + 1 and m, and between story m and m − 1. ϕm+1 and ϕm are angles between
the axial force, Pm+1 or Pm, and the horizontal component Dm+1 or Dm of the
damping devices.

In the same way, the motion equation at the first level can be easily derived:

m1ẍ1 + cs,1ẋ1 − cs,2(ẋ2 − ẋ1)+ D1 − D2 + Q1 − Q2 = −m1ẍg, (3.7)

or

m1ẍ1 + cs,1ẋ1 − cs,2(ẋ2 − ẋ1)+ P1 cosϕ1 − P2 cosϕ2 + Q1 − Q2 = −m1ẍg
(3.7a)

where m1 is the mass at the first level. cs,1 and cs,2 are the structural damping
between the second and the first story, and between the first story and the base,
respectively. x2 and x1 represent the relative displacement at the second and the
first story. Q2 and Q1 are denoted as the structural force between the second and the
first story, and between the first story and the base, respectively. P2, P1, D2, and
D1 are the axial force and the horizontal component of damping devices between
the second and the first story, and between the first story and the base. ϕ2 and ϕ1
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are angles between the axial force, P2 or P1, and the horizontal component D2 or
D1 of the damping devices.

Equations 3.5, 3.6, and 3.7 form multiple-degree-of-freedom (MDOF) motion
equations. These equations can be condensed in matrix notations and symbolically
shown as below:[M]{ẍ} + [C]{ẋ} + [D]{1} + [Q]{1} = −ẍg[M]{1} (3.8)

where the mass matrix, [M], the structural damping matrix, [C], the damping force
matrix [D], and the structural force matrix, [Q], are in following forms:[M] =  m1 0 0 0 0

m2 0 0 0
. . .

...
mm · · · 0 0

. . .
sym. mn−1 0

mn

[C] =  cs,1 + cs,2 −cs,2 0 0 0
cs,2 + cs,3 0 0 0

. . .
...

cs,m + cs,m+1 · · · 0 0
. . .

sym. cs,n−1 + cs,n −cs,n
cs,n

[D] =  D1 −D2 0 0 0
D2 0 0 0

. . .
...

Dm · · · 0 0
. . .

sym. Dn−1 −Dn
Dn

=  P1 cosϕ1 −P2 cosϕ2 0 0 0
P2 cosϕ2 0 0 0

. . .
...

Pm cosϕm · · · 0 0
. . .

sym. Pn−1 cosϕn−1 −Pn cosϕn
Pn cosϕn





“CHAP03” — 2008/1/18 — 10:43 — page 118 — #10

118 Smart Structures: Innovative Systems for Seismic Response Control[Q] =  Q1 −Q2 0 0 0
Q2 0 0 0

. . .
...

Qm · · · 0 0
. . .

sym. Qn−1 −Qn
Qn


In Equation 3.8, {1} is designated as a 1 × n unit vector; {x}, {ẋ}, and {ẍ}

represent the relative displacement vector, velocity vector, and acceleration vector
of the structure with damping system:{x}T = {x1 x2 . . . xm . . . xn−1 xn} (3.9){ẋ}T = {ẋ1 ẋ2 . . . ẋm . . . ẋn−1 ẋn} (3.9a){ẍ}T = {ẍ1 ẍ2 . . . ẍm . . . ẍn−1 ẍn} (3.9b)

Equation 3.8 provides general motion equations of MDOF, which are applic-
able to building structures with either velocity-dependent devices or displacement-
dependent devices considering the structure’s linear or nonlinear characteristics.
Once the damping devices are identified and the mechanical properties of the
seismic force-resisting system are selected, the damping force matrix [D] and
the structural force matrix [Q] can be explicitly determined from the relation
between the damping force and the relative velocity or displacement, as well
as from the relation between the structural force and its deformation, respectively.
Consequently, the displacement, velocity, and acceleration of the seismic force-
resisting system and the damping system are explicitly computed from Equation
3.8 in accordance with the input of the ground acceleration, ẍg.

3.2 ANALYSIS PROCEDURES AND CODE REQUIREMENTS

3.2.1 Introduction
Analysis of a structure equipped with a damping system is a complicated procedure.
It is because during an earthquake event, both the seismic force-resisting system
and the damping system dissipate seismic-induced energy in the structure, which
leads the seismic force-resisting system to experience postyield hysteretic stage.
Thus, to obtain accurate solutions of the motion equations as given in Equation 3.8,
the nonlinearity of the seismic force-resisting system has to be taken into account.
Moreover, if the damping system also exhibits nonlinear behavior, the analytical
process becomes much more complex.

Theoretically, nonlinear response history analysis is the only procedure to
resolve Equation 3.8 on condition that the nonlinearity of the seismic force-
resisting system and damping system has to be considered in a direct way. However,
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because the mechanical properties of damping devices and the structural mem-
bers are dependent upon time and history of the ground accelerations, iteration
process has to be employed at each time interval in order to get results con-
verged to a desired accuracy. In addition, from the design practice viewpoint,
more than one-time history shall be utilized to envelop all possible seismic per-
formances of the damped structure, and uncertainties of actual mass centers of
the structure that result in accidental torsional effects shall be investigated in
the response history analysis in order to capture the most unfavorable struc-
tural responses. Multiple inputs of time histories, shift of mass center locations,
modeling techniques, and optimized layout of the seismic force resisting sys-
tem combined with the damping system create tremendous computational efforts.
Thus, this complicated analysis procedure became a major impediment to applica-
tion of damping devices by means of energy dissipations to the design of building
structures.

Before early 1990s, another impediment to the use of damping devices in
building structures was the gap between the research achievements and the design
practice: no codes or guidelines to regulate the design and test procedures of
damping devices. But this gap was eventually bridged in 1992 by the Northern
Section of the Structural Engineers Association of California (SEAOC), which
published the first draft requirements in 1992 [18] to guide the design of struc-
tures with damping systems. Afterwards, the SEAOC Seismology Committee
adopted these tentative guidelines for passive energy dissipation systems and
published them as Appendix H to the 1999 Blue Book [16]. In addition, the
Federal Emergency ManagementAgency (FEMA) developed guidelines for design
of new buildings and rehabilitation of existing buildings with damping systems
and published in FEMA 222A [9], FEMA 302 [5], FEMA 273/274 [6], and
FEMA 356 [7].

Meanwhile, to remove the major impediment in design of damped structures,
researchers [12,19] focused on development of an effective method that is able to
simplify the design procedures and reduce computational efforts for some types
of damped building structures. This method, normally called simplified method,
assumes that a viscously damped structure with equivalent linear stiffness of the
seismic force-resisting system is utilized to represent the damped structure charac-
terized with nonlinear behavior of the seismic force-resisting system. In addition,
a total effective damping is introduced to sum the structural inherent damping,
viscous damping of damping system, and hysteretic damping owing to posty-
ield hysteretic behavior of the structure. Consequently, the pseudoacceleration,
reduced by a function of the total effective damping, is applied to compute the
maximum responses, velocities, and accelerations of the damping system and
the lateral force-resisting system. Use of this method has not only simplified the
response spectrum procedure, but also resulted in the development of an equival-
ent lateral force procedure, a simplified method of response spectrum procedure
with only two modes taken into account: the fundamental and residual modes.
Comparisons of design examples based on the simplified method and nonlinear
response history analysis were performed [15] to evaluate differences caused by



“CHAP03” — 2008/1/18 — 10:43 — page 120 — #12

120 Smart Structures: Innovative Systems for Seismic Response Control
the influence of higher modes of vibration and force–displacement relation of the
structural system. Analytical results revealed that the simplified method was able to
provide satisfactory estimations of the peak displacement and acceleration. How-
ever, the peak velocity determined by this simplified method deviated from that
obtained from the nonlinear response history analysis within a fairly reasonable
range. FEMA 368/369 [8] adopted the simplified method and incorporated it into
an appendix to Chapter 13. In FEMA 450 [9], this appendix became Chapter 15
with editorial revisions. ASCE 7-05 [1] adopted the entire Chapter 15 of FEMA
450 and formed Chapter 18 for the seismic design of structures with damping
systems. Four design procedures for damped structures are presented in ASCE
7-05 [1] based on the seismic design category of the structure location, the selec-
ted seismic force-resisting system, the chosen damping system, and the structural
configurations: response spectrum procedure, equivalent lateral force procedure,
nonlinear static procedure or pushover analysis, and nonlinear response history
procedure. Nonlinear procedures are generally recommended for the design of
all types of damped structures. However, applications of the response spectrum
procedure and the equivalent lateral force procedure, which are developed based
on the simplified method, are only permitted on condition that limitations imposed
by ASCE 7-05 are met. Detailed descriptions of each procedure with ASCE 7-05
specific requirements are presented in following sections.

3.2.2 Response Spectrum Analysis

3.2.2.1 Development of response spectrum procedure

As discussed in Section 2.3.5.3 for response spectrum analysis, the motion equation
of a structure at the mth angular frequency, ωm, can be rewritten in correspondence
with the pseudoacceleration, Sam which is inclusively reduced by a numerical
coefficient for effective damping, BmD, at the mth mode of vibration.

ẍ′m + ω2
mx′m = �mSam, m = 1, 2, . . . , n (3.10)

where x′m represents the mth component of the generalized response vector and
is used to define the structural displacements: {x} = {�}mx′m, where {�}m is
the mth mode shape of the structure and its component. φn,m at the roof level is
designated as a unit. In Equation 3.10, the angular frequency, ωm, is determined
by the following equation: ω2

m = {�}Tm[K]{�}m{�}Tm[M]{�}m (3.11)

Matrixes [M] and [K] in Equation 3.11 represent the mass and stiffness of the
damped structure. The mth modal participation factor, �m, in Equation 3.10 is
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defined as �m = {�}Tm[M]{1}{�}Tm[M]{�}m = ∑n
i=1 miφi,m∑n
i=1 miφ2

i,m
(3.12)

The application of Equation 3.10 to response spectrum analysis of a structure
with damping system mainly depends on whether the input of pseudoacceleration,
Sam, reduced by a numerical coefficient for effective damping, BmD, enables to
reflect the structure performance with the damping system and to provide satisfact-
ory accuracy of structural responses or not. In addition, compared to the structure
with isolation system, the structure equipped with damping system is more likely
to exhibit inelastic behavior under a strong earthquake event. To retain Equation
3.10 applicable without changing its format, an effective ductility demand, µD, is
introduced byASCE 7-05 [1] to take the inelastic deformation of the seismic force-
resisting system into account, and the numerical coefficient for effective damping,
BmD, is adopted to consider the effects of the structural damping, β or βI, the
effective damping of the damping devices, βV, and the effective damping due to
postyield hysteretic performance of the seismic force-resisting system combined
with structural elements of the damping system, βH. The development of response
spectrum procedure for the structure with damping system is presented in detail
subsequently.

For the mth angular frequency, ωm, the period of the structure is expressed
as Tm = 2π/ωm. Thus, the pseudoacceleration, Sam, at the effective yield point
of the seismic force-resisting system can be determined from the corresponding
Tm as shown in Figure 3.8. Divided by the numerical coefficient for effective
damping, BmD, which is being discussed in detail in Section 3.2.2.2, and multiplied
by a coefficient R/(Cd�o), which further adjusts the pseudoacceleration, Sam, to
match the level of the structural performance with first yielding of a structural
element, the modified pseudoacceleration is expressed in terms of seismic response
coefficient, CSm:

Sam = SDS�oBmD

(
R

Cd

)
g = CSmg, Tm < TS (3.13)

Sam = SD1

Tm�oBmD

(
R

Cd

)
g = CSmg, Tm ≥ TS (3.13a)

where R is response modification coefficient, Cd is deflection amplification
factor, and �o is overstrength factor. Coefficients R, Cd, and �o are defined
in Table 12.2-1 of ASCE 7-05 [1] for all types of seismic force-resisting systems.
Owing to space limitation, the coefficients only for commonly used seismic force-
resisting systems are summarized here in Table 2.5. TS is the period defined as the
ratio of SD1/SDS. Definitions of SDS and SD1 are given in Section 2.3.2.

Note that the effective yield point of the seismic force-resisting system and
the first yielding of a structural element present different levels of the building’s
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FIGURE 3.8 Reduction of spectral acceleration, Sa, by numerical coefficient, BmD.

performance. For instance, the seismic force-resisting system of a damped struc-
ture is characterized with special steel moment frames. By performing nonlinear
static analysis, a base shear versus roof displacement curve is developed as shown
in Figure 3.9. After the first plastic hinge forms in a member of the steel moment
frames, the relation between the base shear and the roof displacement still remains
linear. However, with increase in applied seismic force, more plastic hinges
occur in members of the steel moment frames. Consequently, a small increment
of seismic force results in a large displacement and there is no linear relation
between the applied force and the roof displacement. Actually, the base shear
versus roof displacement curve as shown in Figure 3.9 reflects general charac-
teristics of most seismic force-resisting systems and is usually simplified as an
idealized elastoplastic model. The effective yield point is defined as the base shear
at the effective yield displacement DY in in. (mm), of idealized model as shown in
Figure 3.9. The determination of the effective yield point is based on the equivalent
work done by both curves.

Since the stiffness, [K], in Equation 3.8 is restricted to the linear behavior of
the building structure, periods, Tm, used in Equations 3.13 and 3.13a only present
the structure’s performance at elastic stage. To account for the inelastic behavior
of the structure, ASCE 7-05 introduces an effective period of the first mode or
fundamental mode, T1D, and replaces T1 in Equation 3.13. Thus, Equations 3.13
and 3.13a become as follows:

Sa1 = SDS�oB1D

(
R

Cd

)
g = CS1g, T1D < TS (3.13b)

Sa1 = SD1

T1D�oB1D

(
R

Cd

)
g = CS1g, T1D ≥ TS (3.13c)

Furthermore, based on Equation 2.8 for the relation between the pseudoaccel-
eration, Sa1, and the design displacement, D1D in in. (mm), as shown in Figure 3.9,
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FIGURE 3.9 Relation between the base shear and the displacement of the first mode.

T1D is defined as

T2
1D = 4π2D1D

Sa1
(3.14)

Relying on the relation of D1D = µDDY, where µD is designated as effective
ductility demand and DY is denoted as displacement of the effective yield point,
the effective period of the fundamental mode, T1D, can be expressed in terms of
the structural period of the fundamental mode, T1.

T2
1D = 4π2(µDDY)

Sa1
= µDT2

1 , or T1D = T1
√µD (3.14a)

The maximum value of the effective ductility demand, µmax, is set by ASCE
7-05 and given by the following expressions:µmax = 1

2
TS − T1

T1D − T1

(
R�oI
− 1

)2 + R�oI
, T1 ≤ TS ≤ T1D (3.15)µmax = R�oI

, TS ≤ T1 (3.15a)
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2

[(
R�oI

)2 + 1

]
, TS ≥ T1D (3.15b)

On the basis of Equation 3.14, the displacement of the structure at each model
can be determined. From Equation 3.10, the maximum displacement is estimated
as below:

x′m = 1ω2
m
�mSam (3.16)

Substituting Equation 3.16 into {x}m = {�}mx′m, and multiplying it by
Cd�o/R, the displacement related to the yield of the structure at each story level
becomes {x}m = {�}mx′m = g

4π2�m

(
Cd�o

R

)
CSmT2

m{�}m (3.17)

where {x}m is a 1 × n vector and can be written as {x1,m · · · xm,m · · · xn,m}.
From Equation 3.17 for the fundamental mode (m = 1) and φ1.n = 1 at the roof
level, the displacement at the effective yield point, DY, becomes

DY = ( g
4π2

)�1

(
Cd�o

R

)
CS1T2

1 (3.18)

Substituting Equations 3.14a into the displacement at the effective yield point,
DY and relying on the definition of the effective ductility demand, the design
displacement at the roof level is derived as follows and its limitation of application
is imposed by ASCE 7-05 [1]:

D1D = ( g
4π2

)�1

(
Cd�o

R

)
CS1T2

1D= ( g
4π2

)�1

(
SDST2

1D
B1D

) ≥ ( g
4π2

)�1

(
SDST2

1
B1E

)
, T1D < TS (3.19)

D1D = ( g
4π2

)�1

(
Cd�o

R

)
CS1T2

1D= ( g
4π2

)�1

(
SD1T1D

B1D

) ≥ ( g
4π2

)�1

(
SD1T1

B1E

)
, T1D ≥ TS (3.19a)

For the mode other than 1 (m > 1), the design displacement, DmD, in. (mm)
at the roof level is

DmD = ( g
4π2

)�m

(
Cd�o

R

)
CSmT2

mD= ( g
4π2

)�m

(
SD1Tm

BmD

) ≤ ( g
4π2

)�m

(
SDST2

m
BmD

)
(3.19b)
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The derivation of the seismic force at each story level is based on Equation 3.10.
Thus, the maximum acceleration can be expressed as

ẍ′m = �mSam (3.20)

Consequently, by applying Newton’s law and using Equation 3.20, the design
lateral force vertically distributed at each level of the structure at the mth mode
becomes as below:{F}m = [M]{ẍ}m = [M]{�}mẍ′m = [M]{�}m�mSam = [M]{�}m�mCSmg

(3.21)

In Equation 3.21, {F}m is a 1 × n vector and can be written as{F1,m · · · Fm,m · · · Fn,m}. The design base shear of the mth mode is the sum of
the design lateral force at each story level and is given as follows:

Vm = n∑
i=1

Fi,m = ( n∑
i=1

miφi.m

)�mCSmg = CSmWm (3.22)

where Wm is the effective seismic weight of the mth mode in kip (kN), and is
defined as

Wm = ( n∑
i=1

mmφi,m

)�mg = (∑n
i=1 mmφi.m

)2∑n
i=1 mmφ2

i.m
g (3.23)

For a damped structure, the design displacement, δi,mD and δi−1,mD, in. (mm)
at story i and i − 1 of the mth mode is givenδi,mD = DmDφi,m; δi−1,mD = DmDφi−1,m (3.24)

Thus, the story drift, �i,mD, in (mm), becomes�i,mD = DmD(φi,m − φi−1,m) (3.25)

On the basis of the Equation 2.7, the design story velocity of the fundamental
mode (m = 1), ∇i,1D, in in./s (mm/s), and higher modes (m > 1), ∇i,mD, in in./s
(mm/s), are expressed respectively, as follows:∇i,1D = 2π �i,1D

T1D
, m = 1 and i = 1, 2, . . . , n (3.26)∇i,mD = 2π �i,mD

Tm
, m > 1 and i = 1, 2, . . . , n. (3.26a)
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Note that the response spectrum procedure itself is independent of the selected

response spectrums. Even though the above procedure is depicted by utilizing the
response spectrum developed from the design earthquake, it is still applicable to the
input of response spectrums generated from the maximum considered earthquake
(MCE). Thus the same analytical procedure can be used without any modification
to determine the displacement at each story, the story velocity, and other items
for design of damping devices under the MCE, except that the roof displacement,
DmM, in (mm), m = 1, . . ., n, is rewritten in terms of the MCE spectral response
acceleration for short period, SMS, and at 1s, SM1, respectively.

D1M = ( g
4π2

)�1
SMST2

1M
B1M

≥ ( g
4π2

)�1
SMST2

1
B1E

, m = 1 and T1M < TS

(3.27)

D1M = ( g
4π2

)�1
SM1T1M

B1M
≥ ( g

4π2

)�1
SM1T1

B1E
, m = 1 and T1M ≥ TS

(3.27a)

DmM = ( g
4π2

)�m
SM1Tm

BmM
≤ ( g

4π2

)�m
SMST2

m
BmM

, m > 1 (3.27b)

The limitations of using response spectrum procedure are specified by ASCE
7-05 [1]. Specifically, at least two damping devises shall be installed at each level
of the building structure. The orientation of these damping devices shall be parallel
to the imposed seismic force and they need to be installed at locations to resist the
torsion generated by the seismic force. The effective damping of the fundamental
mode, β1D, is not greater than 35% of critical damping. At last, the design spectral
response acceleration parameter with 5% of critical at the period of 1 s, S1, is
not greater than 0.6. The above limitations ensure that analytical results of the
response spectrum procedure are within acceptable accuracy.

3.2.2.2 Effective damping and damping coefficient

In general, the effective damping of a damped structure consists of three portions
as described by ASCE 7-05: (1) structural damping due to inherent dissipation
of energy by structural elements before the effective yield displacement, DY,
of the seismic force-resisting system, which is also called inherent damping,βI; (2) viscous damping, βV, due to energy dissipation by the damping sys-
tem before the effective yield displacement, DY, of the seismic force-resisting
system; and (3) hysteretic damping, βH, due to postyield hysteretic behavior of
the seismic force-resisting system and elements of the damping system. Inherent
damping, βI, usually is within 2–5% of critical damping. Therefore, βI is easily
determined only on the basis of the properties of building materials. However,
determination of viscous damping, βV, depends on the selected type of damp-
ing devices: displacement dependent or velocity dependent. Extensive research
has been reported [10] on how to evaluate viscous damping by means of analysis
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and experiment. Owing to the space limitation, discussion of viscous damping
in this section focuses only upon linear and nonlinear fluid viscous dampers.
For the determination of viscous damping for other types of devices, refer to
References 10 and 14.

For linear fluid viscous damper under the design earthquake, its velocity, Vi,j,
and force Pi,j, are expressed in terms of the relative displacement, li,j at mth mode
based on Equation 3.26:

Vi, j = 2π
Tm

li, j; Pi, j = cdi, j
2π
Tm

li, j (3.28)

where cdi,j is the damping coefficient of the fluid viscous damper. Subscripts i and
j designated in Equation 3.28 present the jth damper at the ith story. Assuming
there are k dampers at the ith story, damper j is within the region j ≤ k.
According to the relation of the story drift and the relative movement of the damper
as given in Equation 3.25, the damper force, Pi,j, can be written as

Pi, j = cdi, j
2π
Tm

DmD(φi,m − φi−1,m) cosϕi, j (3.29)

where ϕi,j is the angle of the damper axial direction to the story horizontal move-
ment. The subscripts of i and j have the same meaning as defined in Equation 3.28.
Accordingly, the work done by the jth damper at the ith story in one complete
cycle of dynamic response at the mth mode is determined as follows:

Wmi, j = πPi, jli, j = cdi, j
2π2

Tm
D2

mD(φi,m − φi−1,m)2 cos2 ϕi,j (3.30)

Thus, the total work done by all the dampers at the mth mode becomes

WDm =∑
Wmi, j = 2π2

Tm
D2

mD

n∑
i=1

k∑
j=1

cdi, j(φi,m − φi−1,m)2 cos2 ϕi, j (3.31)

Since the maximum strain energy of the structure is equal to the maximum kin-
etic energy, the maximum strain energy of the mth mode, WSm, can be determined
as below:

WSm = 2π2

T2
m

D2
mD

n∑
i=1

miφ2
i,m (3.32)

On the basis of the definition of viscous damping specified by ASCE 7-05 [1],
the viscous damping of the linear fluid viscous damping devices is expressed asβVm = WDm

4πWSm
= Tm

4π ∑n
i=1

∑k
j=1 cdi, j(φi,m − φi−1,m)2 cos2 ϕi, j∑n

i=1 miφ2
i,m

(3.33)

For the first mode m = 1, taking the nonlinear deformation of the structure into
account and substituting T1D = T1

√µD into Equation 3.33, the viscous damping
at the first mode becomes βV1

√µD.
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For nonlinear fluid viscous damper, the work done by the jth damper at the ith

story, determined by [10], is shown as below based on Equation 3.30:

Wmi, j = cdi, jλi, j

(
2π
Tm

)αi, j [
DmD

(φi,m − φi−1,m
)

cosϕi, j
](αi, j+1) (3.34)

where αi, j is the velocity exponent. In Equation 3.34, λi, jis related to gamma
functions, �(αi, j), and is expressed asλi, j = 4

(
2αi, j

) �2 [(1+ αi, j
)/

2
]� (2+ αi, j

) (3.35)

Notations given in Equations 3.34 and 3.35 are defined the same as in Equation
3.31. Thus, the total work done by all the dampers is the sum of Equation 3.34.

WDm = n∑
i=1

k∑
j=1

Wi, j= n∑
i=1

k∑
j=1

cdi, jλi, j

(
2π
Tm

)αi, j [
DmD

(φi,m − φi−1,m
)

cosϕi, j
](αi, j+1) (3.36)

The maximum strain energy of the structure at mth mode is identical to that
determined by Equation 3.32. Thus, the viscous damping of the nonlinear fluid
viscous damping devices becomesβVm= WDm

4πWSm=∑n
i=1

∑k
j=1cdi,jλi,j(2π/Tm)(αi,j−2)D(αi,j−1)

mD [(φi,m−φi−1,m)cosϕi,j](αi,j+1)
2π∑n

i=1miφ2
i,m

(3.37)

For the first mode m = 1, considering the nonlinear deformation of the structure
and substituting T1D = T1

√µD and D1D = µDDY into Equation 3.37, the viscous
damping at the first mode is simplified as βV1µ1−α/2

D for αi,j = α.
The determination of hysteretic damping relies on the mechanical properties

of building materials. For example, the relation of the base shear and its roof
displacement measured from a damped steel structure can be assumed as a bilinear
model as shown in Figure 3.10. The postyield stiffness of the structure is denoted
as ηks where ks is the structural stiffness before the effective yield displacement,
DY, and 0 ≤ η < 1. Assuming at the design displacement, DyµD, the work done
by the structure due to it postyield hysteretic behavior can be computed as follows:

WH = 4ksµDD2
Y(1− η)(1− 1µD

)
(3.38)
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FIGURE 3.10 Determination of hysteretic damping.

The maximum strain energy of the structure is

Ws = 1
2

ksµDD2
Y(1− η + ηµD) (3.39)

Thus, the hysteretic damping of the structure is derived as below:βHD = 2π 1− η
1− η + ηµD

(
1− 1µD

)
(3.40)

However, in reality the actual hysteretic loops of the structure do not perfectly
match those as idealized by the bilinear model owing to pinching and other effects.
Therefore, the actual area bounded by hysteretic loops is smaller than that assumed
by the bilinear model. The reduction of hysteretic loop areas is considered inASCE
7-05 [1] by introducing a hysteretic loop adjustment factor, qH:

qH = 0.67
TS

T1
0.5 ≤ qH ≤ 1.0 (3.41)

where TS = SD1/SDS and T1 is fundamental period of the structure (m = 1). Also,
ASCE 7-05 separates the inherent damping, βI, from Equation 3.40 and utilizes the
elastoplastic model with η = 0 to define the structural postyield behavior. Thus,
Equation 3.40 becomesβHD = qH

(
2π − βI

)(
1− 1µD

) = qH(0.64− βI)(1− 1µD

)
(3.42)
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Note that Equation 3.42 is developed based on the design earthquake. The

hysteretic damping under the MCE can be determined in the same way and is
given as βHM = qH(0.64− βI)(1− 1µM

)
(3.43)

where µM is the effective ductility demand on the seismic force-resisting system
under the MCE and is defined as µM = D1M/DY. Equations 3.15, 3.15a, and
3.15b are still applicable to the upper or lower bound of µM.

Once three portions of effective damping are computed from above equations,
the total effective damping of the damped structure at the design earthquake or the
MCE is easily determined and is summarized below, based on different modes of
the structural vibration:β1D = βI + βV1

√µD + βHD, m = 1 (3.44)β1M = βI + βV1
√µM + βHM, m = 1 (3.44a)βmD = βmM = βI + βVm, m > 1 (3.44b)βV+I = βI + βV1 (3.44c)

The subscripts D and M as shown in Equations 3.44 through 3.44c indicate the
effective damping at the design earthquake and the MCE, respectively. Accord-
ingly, numerical coefficients for effective damping, B1D, B1M, BmD, BmM, and
BV+I, can be determined from corresponding effective damping β1D, β1M, βmD,βmM, and βV+I as given in Equations 3.44 through 3.44c.

As presented in Section 2.3.4.1, Equation 2.52, which describes the relation
between the damping coefficient and the effective damping, is still applicable to
the damped structure. However, the limitation of Equation 2.52 is extended to
100% of critical damping [11] and is shown in Figure 3.11.

3.2.2.3 Design requirements of seismic force-resisting system

Chapter 18 of ASCE 7-05 [1] requires that the seismic force-resisting system of
the damped structure be designed under the design earthquake. Specifically, if
a damped structure is analyzed by response spectrum procedure, then the design
base shear, Vm, in kip (kN), corresponding to mode m is determined from Equation
3.22. A method of the square root of the sum of the square (SRSS) or complete
quadratic combination (CQC) shall be utilized to combine the seismic base shear
of mode m. For example, by applying the method of SRSS, the design base shear,
VD, in kip (kN), for design of the seismic force-resisting system is written as

VD = ( n∑
m=1

V2
m

)1/2
(3.45)
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FIGURE 3.11 Damping coefficient, B1D, B1M, BmD, BmM, and BV+I.

TABLE 3.1
Coefficient of Upper Bound on Calculated Period, Cu

SD1 ≤ 0.1 0.15 0.2 ≥ 0.3
Cu 1.7 1.6 1.5 1.4

The seismic base shear shall be satisfied with following limits:

VD ≥ V/BV+I, and VD ≥ 0.75V (3.46)

where V is the design base shear and can be determined based on Section 2.3.4.4
with additional requirements on the limitation of the fundamental period, T1,(m = 1).

T1 ≤ CuTa (3.47)

where Cu as shown in Equation 3.47 is the coefficient as the upper bound to the
calculated period, which is related to the design spectrum response acceleration at
1s, SD1. Table 3.1 gives the value Cu corresponding to SD1.

In Equation 3.47, Ta is called approximate fundamental period and is
determined by the following equation:

Ta = Cthx
n (3.48)
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TABLE 3.2
Coefficient Ct and x

Structure
type

Steel moment-
resisting frames

Concrete moment-
resisting frames

Eccentrically braced
steel frames

All other
structural system

Ct 0.028 0.016 0.03 0.02
x 0.8 0.9 0.75 0.75

where hn is the height of the structure measured from the base to the top level.
Coefficient Ct and x are related to types of the seismic force-resisting systems and
are determined from Table 3.2.

In addition to the requirements on the design base shear as specified above,
ASCE 7-05 also requires that the design lateral force, Fi,m, in kip (kN), in Equation
3.21, design story drift, �i,mD, in. (mm), in Equation 3.25, as well as the design
story velocity, ∇i,mD, in in./s (mm/s), in Equations 3.26 and 3.26a, of all the modes
be combined based on the method of SRSS or CQC for design of the seismic force-
resisting system. The torsional effects of the structure shall be added to the design
story drift and the design story drift shall be less than the product of R/Cd and the
allowable story drift, �a, in in. (mm). For most damped structures, the allowable
story drift, �a, is limited to 0.020hsx for Occupancy Category I and II, 0.015hsx
for Occupancy Category III, and 0.010hsx for Occupancy Category IV, where hsx
is denoted as the story height in (mm).

3.2.2.4 Design requirements of damping system

As required by ASCE 7-05 [1], damping devices and their connections shall be
capable of resisting the peak displacement, velocity, and force under the MCE. Spe-
cifically, the design of the damping system shall consider three possible stages that
would generate the maximum seismic force in the damping system: (1) maximum
story drift or displacement, (2) maximum velocity, and (3) maximum acceleration.

At the stage of the maximum displacement, the design force, QE, in kip (kN), in
an element of the damping system shall be determined by following Equation 3.49:

QE = �o

( n∑
m= 1

Q2
mSFRS

)1/2 ± QDSD (3.49)

where QmSFRS is the mth mode design force from the seismic force-resisting
system. For use of displacement-dependent devices, the seismic force, QDSD,
in kip (kN), considered in Equation 3.49 shall be determined at the maximum
displacement in the positive or negative direction.
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When the maximum velocity occurs, the design force, QE, in an element of
the damping system shall be evaluated as follows:

QE = ( n∑
m=1

Q2
mDVS

)1/2
(3.50)

QmDVS as given in Equation (3.50), in kip (kN), presents the mth mode design
force of velocity-dependent damping devices.

At the stage of the maximum acceleration, the design force, QE, in an element
of the damping system shall be computed based on following Equation 3.51:

QE = [ n∑
m=1

(CmFD�oQmSFRS + CmFVQmDSV)2]1/2 ± QDSD (3.51)

Force coefficients, CmFD and CmFV, as given in Equation 3.51, are determined
as below [12]:

CmFD = cos δ, DmD or DmM < DY (3.52)

CmFD = µD cos δ ≤ 1.0 or CmFD = µM cos δ ≤ 1.0 DmD or DmM > DY
(3.52a)

CmFV = sinα δ (3.52b)δ = (
2παβeffλ ) 1

2−α
(3.52c)

CmFD given in Equation 3.52a cannot exceed 1.0. In Equation 3.52c, λ is
related to gamma function and is determined by Equation 3.35. α is the velocity
exponent related to the velocity of the damping device. For the mth mode that is
greater than 1, use α = 1. Note that the exact value of δ is tan−1(2βeff ) for linear
viscous damping device.

The effective damping, βeff , is evaluated by the mode of the structural vibra-
tion. For the fundamental mode (m = 1), the effective damping is βeff =β1D − βHD for the design earthquake or βeff = β1M − βHM for MCE. If the
mth mode is greater than 1, the effective damping becomes βeff = βmD for the
design earthquake and βeff = βmM for the MCE. Owing to the complexity of
Equations 3.52 through 3.52c, ASCE 7-05 [1] provides force coefficients, CmFD
and CmFV in tabular forms 18.7-1 and 18.7-2. Note that for viscoelastic damping
devices, the force coefficients, CmFD and CmFV are equal to 1.0 unless the values
are substantiated by analysis and test results.

3.2.3 Equivalent Lateral Force Analysis
Equivalent lateral force analysis is basically originated from response spectrum
procedure. The philosophy of developing this procedure is to reduce modes of
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a structural vibration with n degree-of-freedoms in the direction of interest into
two: the fundamental mode (m = 1) and the residual mode, which can be imaged
as a combination of all the higher modes (m > 1). Consequently, the displacement,
velocity, and force in elements of a seismic force-resisting system and a damping
system obtained from all higher modes of the structural vibration are condensed
into the residual displacement, residual velocity, and residual force. Thus, the
application of the equivalent lateral force procedure greatly simplifies the design
process of a damped structure. Since the equivalent lateral force procedure is quite
similar to the response spectrum procedure, all the notations used in the following
equations, unless specifically specified, have the same physical meaning as given
in the equations of the response spectrum procedure.

ASCE 7-05 [1] indicates that use of the equivalent lateral force procedure shall
meet the following requirements:

1. At least two damping devises are installed at each level. These damping
devices shall be parallel to the imposed seismic force and be located to
resist the torsion generated by the seismic force.

2. The effective damping of the fundamental mode, β1D, does not exceed
35% of critical damping.

3. Neither vertical irregularity nor horizontal irregularity exists in the
selected seismic force-resisting system.

4. Floor at each level and the roof shall satisfy the assumption of rigid
diaphragm.

5. The maximum height of the structure measured from the base is not
over 100 ft (30 m).

6. The site for construction of the damped structure is characterized with
the spectral response acceleration parameter with 5% of critical at the
period of 1 s, S1, not over 0.6 g.

3.2.3.1 Design base shear and design lateral force

The design base shear of the fundamental mode, V1, in kip (kN), is given as below:

V1 = CS1W1 (3.53)

where the fundamental mode seismic response coefficient is presented as

CS1 = (
R

Cd

)
SDS�oB1D

, T1D < TS (3.54)

CS1 = (
R

Cd

)
SD1

T1D�oB1D
, T1D ≥ TS (3.54a)

All the notations used in Equations 3.54 and 3.54a have the same definitions
as given in Equations 3.13 and 3.13a. The effective fundamental mode seismic
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weight, W1, in kip (kN), as shown in Equation 3.53, may be computed by using
the simplified fundamental mode shapeφi,1 = hi

hr
(3.55)

where subscripts 1 and i present the fundamental mode and the ith level of the
structure, respectively. The height of the structure, hr , is measured from the base
to the roof level, while the height at level i from the based is designated as hi.
Note that the mode shape at the roof level, φ1,n, is always assumed to be 1.0. Thus
fundamental mode participation factor, �1, can be expressed in terms of W1�1 = W1∑n

i=1 wiφi,1
(3.56)

where wi is seismic dead load in kip (kN) at the level i. The effective fundamental
mode period, T1D, as shown in Equations 3.54 and 3.54a has the following relation
to the fundamental period, T1:

T1D = T1
√µD (3.57)

The fundamental period, T1, needs to be obtained from dynamic analysis
with elastic behavior of the seismic force-resisting system. Alternately, T1 can
be determined from the following equation:

T1 = 2π ( n∑
i=1

miδ2
i

fiδi

)1/2
(3.58)

where fi is the lateral force applied at level i and δi presents the elastic deflection
under the lateral force fi. The period of the residual mode is defined as TR = 0.4T1.

In the same way, the residual mode base shear is expressed as below:

VR = CSRWR (3.59)

where CSR is the residual mode seismic response coefficient, which is given as

CSR = SDS�oBR

(
R

Cd

)
(3.60)

Numerical coefficient for effective damping, BR, in Equation 3.60 is obtained
from Figure 3.11 corresponding to βR = βI + βVR, where βVR is the effective
damping of the residual mode and is referred to in Section 3.2.2.2 for determin-
ation of βVm. The effective residual mode seismic weight, WR, in kip (kN), in
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Equation 3.59 is defined as the difference of the effective seismic weight and the
effective fundamental mode seismic weight:

WR = W −W1 (3.61)

The design base shear is obtained from the combination of the fundamental
mode base shear and the residual mode base shear, which is given as

VD = √
V2

1 + V2
R > max

{
V

BV+I
, 0.75V

}
(3.62)

where the design base shear, V , in kip (kN), is determined from Section 3.2.2.3.
On the basis of the Equation 3.21, the design lateral force at story level i in units of
kip (kN), related to the fundamental and residual modes, respectively, is calculated
from following equations:

Fi,1 = wiφi,1�1

W1
V1 (3.63)

Fi,R = wiφi,R�R

WR
VR (3.63a)

In Equation 3.63a, the residual mode shape, φi,R, and the residual mode parti-
cipation factor, �R, are given in terms of the fundamental mode shape, φi,1, and
the fundamental mode participation factor, �1:φi,R = 1− �1φi,1�R

(3.64)�R = 1− �1 (3.65)

The design lateral force at story level i in units of kip (kN), which is used to
design the elements of seismic force-resisting system, shall be determined applying
SRSS method:

Fi = √
F2

i,1 + F2
i,R (3.66)

3.2.3.2 Design story drift and story velocity

Determination of design roof displacement at the fundamental mode and the resid-
ual mode is essentially the same as the approach used in development of the
response spectrum procedure. On the basis of Equations 3.19, 3.19a, and 3.19b,
the roof displacement due to the fundamental mode and the residual mode, D1D,
and, DRD, in. s(mm) under the design earthquake is presented as follows:

D1D = ( g
4π2

) �1SDST2
1D

B1D
≥ ( g

4π2

) �1SDST2
1

B1E
T1D < TS (3.67)
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D1D = ( g
4π2

) �1SD1T1D

B1D
≥ ( g

4π2

) �1SD1T1

B1E
, T1D > TS (3.67a)

DRD = ( g
4π2

) �RSD1TR

BR
≤ ( g

4π2

) �RSDST2
R

BR
(3.67b)

The design floor deflections and the design story drifts due to the fundamental
and residual modes are calculated as below, respectively, with φn,1 = φn,R = 1.0:δi,1D = D1Dφi,1, �i,1D = δi,1D − δi−1,1D = D1D(φi,1 − φi−1,1) (3.68)δi,RD = DRDφi,R, �i,RD = δi,RD − δi−1,RD = DRD(φi,R − φi−1,R) (3.68a)

SRSS method is also used to combine the fundamental and residual mode
design story drift into the total design drift at each level in units of in. (mm):�i,D = √�2

i,1D +�2
i,RD (3.69)

The design fundamental and residual mode story velocity is given as below
and SRSS method shall be used to combine two components as the design velocity
in units of in./s (mm/s): ∇i,1D = 2π �i,1D

T1D
(3.70)∇i,RD = 2π �i,RD

TR
(3.70a)∇i,D = √∇2

i,1D + ∇2
i,RD (3.71)

For design of the damping system, determination of the floor deflection, story
drift, and the story velocity under the MCE can follow the procedures as presen-
ted above. However, since the effective ductility demand, µM, and the spectral
response acceleration parameters, SMS and SM1, are different from those under the
design earthquake, the roof displacement under the MCE shall be computed by
the following equations:

D1M = ( g
4π2

) �1SMST2
1M

B1M
≥ ( g

4π2

) �1SMST2
1

B1E
, T1M < TS (3.72)

D1M = ( g
4π2

) �1SM1T1M

B1M
≥ ( g

4π2

) �1SM1T1

B1E
, T1M > TS (3.72a)

DRM = ( g
4π2

) �RSM1TR

BR
≤ ( g

4π2

) �RSMST2
R

BR
(3.72b)

where T1M = T1
√µM.
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Requirements of the seismic force-resisting system and the damping system

as given in Sections 3.2.2.3 and 3.2.2.4 are still applicable to the equivalent lateral
force procedure. Application of the equivalent lateral force procedure to design of
damped structures will be explicitly presented as an example in Section 3.3.

3.2.4 Nonlinear Static Procedure
Nonlinear static procedure or pushover analysis is essentially developed from the
response spectrum analysis. Owing to availabilities of commercial computer pro-
grams, such as SAP 2000 and ETABS [3], there is no technical difficulty to perform
nonlinear static analysis of any structures with damping systems. However, how
to determine the design roof displacement, or target displacement, is the key to
the procedure of the analysis. It is because the determination of the design roof
displacement involves iteration process to identify mode shapes with effective
stiffness of the seismic force-resisting system, effective fundamental period, and
damping coefficients related to viscous damping plus hysteretic damping. Once
the design roof displacement is obtained, the design displacement at other levels,
velocity, and accelerations of the seismic force-resisting system and damping sys-
tem can be easily calculated for design. Detailed steps of nonlinear static analysis
are summarized as below [12]:

1. The construction of a mathematical model for the damped structure
shall include modeling of the postyield hysteretic behavior of the seis-
mic force-resisting system and the damping system. Specifically, the
idealized force–deformation curves or moment–rotation relations with
postyield portions shall be defined in the model for all the elements of
the seismic force-resisting system. If damping devices are displacement-
dependent, their stiffness shall be included into the model. To perform
nonlinear static analysis, the vertical distribution of the base shear to each
level needs to consider two patterns: uniform pattern and modal pattern.
The uniform pattern refers to lateral force distribution proportional to
the mass at each level, while the modal pattern is the lateral force distri-
bution based on the first model shape of vibration. P–� effects induced
by story drift and deformation of structural elements shall be captured
during the analysis. Sufficient number of modes shall be utilized in the
analysis to ensure combined modal mass participation is at least more
than 90% of the total mass in the direction of interest.

2. Once the pushover analysis is completed, a base shear–roof displace-
ment curve can be established as shown in Figure 3.12a. This curve is
usually simplified based on a bilinear or trilinear model. To convert this
curve into spectral acceleration–spectral displacement curve, which is
conventionally called spectral capacity curve, a tentative design roof dis-
placement, D1D, has to be assumed. According to the assumed D1D, the
secant stiffness of the elements of the seismic force-resisting system is
determined from the defined force–deformation curves, which are used to
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FIGURE 3.12 Nonlinear static analysis: (a) nonlinear static analysis curves with simplified
mode, (b) spectral demand curve and spectral capacity curve of the fundamental mode, and
(c) spectral demand curve and spectral capacity curve of higher mode.

perform eigenvalue analysis in order to obtain modal shapes, φi,1, where
subscripts 1 and i present the fundamental mode and level i, respect-
ively. Substituting φi,1 into Equations 3.12 and 3.23 and using m = 1,
the participation factor of the fundamental mode, �1, and the effective
fundamental mode seismic weight, W1, are determined. Therefore, the
relations between the base shear and the spectral acceleration, Sa1, as
well as between the roof displacement and the spectral displacement,
SD1, are calculated as follows:

Sa1 = Vg
W1

(3.73)
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SD1 = Dφi,1�1

(3.74)

where V and D are denoted as the base shear and the roof displacement as
computed from pushover analysis, respectively. φn,1 is the fundamental
mode shape at the roof and equal to 1.

3. Meanwhile, the viscous damping, βV1, and hysteretic damping, βHD, can
also be obtained from the assumed design roof displacement, D1D. The
effective fundamental mode period, T1D, calculated from the eigenvalue
analysis is used to determine βV1 and βHD. Then, substituting βV1 andβHD into Equation 3.44, the damping coefficient, B1D, is found from
Figure 3.11. Note that the effective ductility demand, µD, is computed
by the relation of the assumed design roof displacement, D1D, to the
effective yield displacement, DY, identified from the base shear–roof
displacement curve. The response spectrum with 5% of critical damping,
which is selected for the design of the damped structure, is reduced by
a numerical coefficient, B1D. The reduced response spectrum is usually
called the design demand curve.

4. The spectral capacity curve and the design demand curve are plotted here
in one diagram as shown in Figure 3.12b. The intersection of both curves
gives the calculated design roof displacement, D1D, and the design base
shear of the fundamental mode, V1 = Sa1W1, where V1 shall not be
less than that calculated from Equation 3.22 or (3.53) with R/Cd = 1.0.
In general D1D and D1D are not the same. Therefore, iterations based
on items 2 and 3 as discussed above are required until the difference
between D1D and D1D is within the acceptable accuracy.

5. Determination of the design roof displacements of higher modes is quite
straightforward since the spectral capacity curve is linear and no iter-
ation procedures are involved. In accordance with the modal shapes,φi,m(m = 2, 3, . . ., n), determined from the eigenvalue analysis at the
final iteration performed in Item 2, the participation factor of the mth
mode, �m, and the effective mth mode seismic weight, Wm, are com-
puted from Equations 3.12 and 3.23. Substituting φi,m, �m, and Wm,
into Equations 3.73 and 3.74, the spectral acceleration, Sam, and the
spectral displacement, SDm, are computed. By using the same method as
given in Item 3, the response spectrum is scaled down by the numerical
coefficient, BmD, based on the total effective damping given in Equation
3.44b. Both the spectral capacity curve and the spectral demand curve of
higher mode are plotted in one diagram as shown in Figure 3.12c. Thus
the design roof displacement, DmD, is determined at the intersection of
two curves. Also, the design base shear of high mode is Vm = S̄amWm,
where Vm shall not be less than that calculated from Equation 3.22 or
3.59 with R/Cd = 1.0.
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6. Once the design roof displacement, DmD, and the design base shear, Vm,
of all modes are determined from the above items, the design lateral
force, story drift, and design story velocity can be identified. These
values from all modes shall be combined by SRSS or CQC method for
design of the damped structure. Note that the nonlinear static procedure
explained above is for the design of the seismic force-resisting system
under the design earthquake. The above procedures of nonlinear static
analysis are also the same to design the damping system. However, the
input of response spectrum shall be for MCE.

3.2.5 Special Requirements on Nonlinear Response
History Procedure

Nonlinear response history analysis is a project-oriented procedure since the ana-
lysis directly relies on modeling of nonlinear behavior of the damping system and
the seismic force-resisting system. Thus, there are no unified solutions to Equation
3.8. However, ASCE 7-05 provides guidelines to establish mathematical models
for nonlinear response history procedure: The postyield hysteretic behavior of the
seismic force-resisting system and nonlinear properties of damping devices, if any,
shall be directly incorporated into the model. The properties of damping devices
used in the model shall be verified from tests. Linear properties of elements in the
seismic force-resisting system are permitted in the model when the demands of
such elements are not over 150% of their nominal strength. In addition, maximum
inherent damping used in the model shall not be greater than 5% of critical damping.

In addition, ASCE permits using average values of displacement, velocity, and
acceleration in the seismic force-resisting system and damping system if nonlinear
response history analyses are performed based on at least seven time histories. For
time histories used in nonlinear response history analysis less than seven, the
maximum values of displacement, velocity, and acceleration shall be selected to
design the damped structure.

3.3 DESIGN EXAMPLES

Example 3.3.1

A two-story building, which has16 ft (4.88 m) of story height at each level,
is to be constructed with a linear viscous damping system. The building
configuration is square with 145 ft (44.23 m) in each direction. Columns are
equally spaced at 29 ft (8.85 m) as shown in Figure 3.13. Roof and floor fram-
ing systems consist of steel beams and lightweight concrete over steel metal
deck, which ensure the validity of rigid diaphragm assumption. The seismic
force-resisting system is located along frames at Line 1, 6, A, and G. The
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FIGURE 3.13 Example 3.3.1.

total seismic dead load at the floor, W1, and at the roof, W2, for each frame
is approximately 1000 kips (4448 kN) and 1200 kips (5338 kN), respect-
ively. Since Occupancy Category IV is required for the structural design,
special steel moment frames are selected as the seismic force-resisting sys-
tem with lateral stiffness of 374 k/in. (65.5 kN/mm) in each direction and at
each level. It is further assumed that the building does not possess vertical
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and horizontal structural irregularities. The effective damping of the structure
owing to energy dissipation inherently is considered asβI = 0.05. Each damp-
ing device has the same damping coefficient of 6.0 k·s/in. (1.05 kN·s/mm).
Damping devices are located at the perimeters of the structure as shown in one
typical frame elevation of Figure 3.13. The site of the building construction
is characterized with S1 and SS equal to 0.58 and 1.25, respectively. Site soil
is classified as Class D. This structure is intended to be designed applying the
equivalent lateral force procedure and the following items shall be checked
using customary units:

1. Determine the seismic base shear for each frame ignoring the
building torsional effects.

2. Verify the validity of assumptions for the equivalent lateral force
procedure.

3. Find the design lateral force, the story drift at each level, and the
design story velocity.

4. Calculate the design lateral force for the damping system design.

Solution
1. According to the given information, masses at the floor level,

m1, and the roof, m2, are determined as m1 = (W1/g) = (1000/
386.1) = 2.590 k · s2/in. and m2 = (W2/g) = (1200/386.1) =
3.108 k · s2/in., respectively. Thus the mass matrix is expressed as
follows: [M] = [

m1 0
0 m2

] = [
2.590 0

0 3.108

]
, andω2[M] = [

2.590ω2 0
0 3.108ω2

]
(a)

On the basis of the given stiffness, k1 and k2, the stiffness matrix
becomes[K] = [

k1 + k2 −k2−k2 k2

] = [
374+ 374 −374−374 374

]= [
748 −374−374 −374

]
(b)

The angular frequencies can be determined by following equation:∣∣∣∣ 748− 2.590ω2 −374−374 374− 3.108ω2

∣∣∣∣ = 0 (c)

One solution of Equation c is ω2
1 = 48.134, ω1 = 6.938 rad/s.
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The period related to the first or fundamental mode is

T1 = (
2πω1

) = (
2π

6.938

) = 0.906 s

The other solution of Equation c is ω2
2 = 361.005, ω2 = 19.0 rad/s.

Accordingly, the period related to the second mode is

T2 = (
2πω2

) = (
2π

19.0

) = 0.331 s

For the first mode, the displacement amplitudes of the fundamental mode
are calculated based on Equation 3.55 and are shown as follows:{ φ1,1φ2,1

} = {
16/32
32/32

} = {
0.5
1.0

}
(d)

Then the effective seismic weight of the first mode is determined as

W1 = (∑2
i=1 wiφi,1

)2∑2
i=1 wiφ2

i,1
= [1000(0.5)+ 1200(1.0)]2

1000(0.52)+ 1200(1.02) = 1993.1 k (e)

The participation factor of the first mode becomes�1 = W1∑2
i=1 wiφi,1

= 1993.1
1000(0.5)+ 1200(1.0) = 1.1724 (f )

From Table 2.2, the site coefficient Fv = 1.5.
Accordingly, SM1 = FvS1 = 1.5(0.58) = 0.87, and SD1 = (2/3)SM1 =(2/3)(0.87) = 0.58. The site coefficient Fa = 1.0 based on Table 2.1.
Therefore, SMS = FaSS = 1.0(1.25) = 1.25, and SDS = (2/3)SMS =(2/3)(1.25) = 0.83.

TS = SD1

SDS
= 0.58

0.83
= 0.699 s (g)

The hysteresis loop adjustment factor is qH = 0.67Ts/T1 = 0.67(0.699)/
0.906 = 0.517, which is between 0.5 and 1.0. Thus, use qH = 0.517. Assum-
ing the effective ductility demand on the seismic force-resisting system due to
the design earthquake, µD, is approximately 1.3, which is less than the max-
imum value of 1.78 as computed from Equation 3.15a, the effective period
of the first mode becomes

T1D = T1
√µD = 0.906

√
1.3 = 1.032 s > TS = 0.696 s (h)
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The effective hysteretic damping, βHD, due to the postyield hysteretic
behavior the seismic force-resisting system and the elements of the damping
system at µD is determined as follows:βHD = qH(0.64− βI)(1− 1µD

) = 0.517(0.64− 0.05)(1− 1
1.3

) = 0.07

(i)

The modal drift at the first mode is{ φ1,1φ2,1 − φ1,1

} = {
0.5

1.0− 0.5

} = {
0.5
0.5

}
( j)

The angle between the viscous damper and the horizontal direction is ϕ =
tan−1(16/29) = 28.89◦. The effective viscous damping of the first mode,βV1, based on Equation 3.33, becomesβV1 = 0.906

4π · 2(6)(cos 28.89◦)2 [(0.5)2 + (0.5)2]
2.590(0.5)2 + 3.108(1.0)2 = 0.09 (k)

The total effective damping at the fundamental mode is as follows:β1D = βI + βV1
√µD + βHD = 0.05+ 0.09

√
1.3+ 0.07 = 0.223 (l)

Therefore, from Figure 3.11, the numerical coefficient is determined as
B1D = 1.569. Because of T1D > TS, the seismic coefficient of the first mode
is calculated on the basis of the response modification factor, overstrength
factor, and deflection amplification factor determined from Table 2.5 and
ASCE 7-05, Table 12.2–1.

CS1 = (
R

Cd

)
SD1

T1D�oB1D
= 8

5.5
· 0.58

1.032(3)(1.569) = 0.174 (m)

The design value of the first mode is

V1 = CS1W1 = 0.174(1993.1) = 346.8 k (n)

For βV1 + βI = 0.09+ 0.05 = 0.14, the damping coefficient, B1E = 1.32
based on Figure 3.11. Since T1D > TS, the design displacement of the first
mode at the roof level is

D1D = ( g
4π2

) �1SD1T1D

B1D
= 386.1

4π2 · 1.1724(0.58)(1.032)
1.569

= 4.37 in. (o)( g
4π2

) �1SD1T1

B1E
= 386.1

4π2 · 1.1724(0.58)(0.906)
1.32= 4.56 in. > D1D = 4.37 in. ( p)
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Thus, using D1D = 4.56 in. the effective yield displacement of the seismic

force-resisting system is

DY = ( g
4π2

) �oCd
R

�1Cs1T2
1 = 386.1

4π2 · 3(5.5)(1.1724)(0.174)(0.9062)
8= 3.38 in. (q)µD = D1D/DY = 4.56/3.38 = 1.349. Compared to the assumed value of

1.3, the difference is less than 5%. Therefore, the assumed effective ductility
demand is acceptable and no iterations are required to estimate µD.

For the residual mode, the effective seismic weight, WR, participation
factor, �R, and period, TR, are determined as follows.

WR = W −W1 = 1000+ 1200− 1993.1 = 206.9 k (r)�R = 1− �1 = 1− 1.1724 = −0.1724 (s)

TR = 0.4T1 = 0.4(0.906) = 0.362 s (t)

Consequently, the displacement amplitudes and modal drifts of the residual
mode are computed as{φ1,Rφ2,R

} = 1(1− �1) {1− �1φ1,1
1− �φ2,1

}= 1(1− 1.1742) {1− 1.1742(0.5)
1− 1.1742(1.0)}= {−2.4

1.0

}
(u){ φ1,Rφ2,R − φ1,R

} = { −2.4
1.0− (−2.4)} = {−2.4

3.4

}
(v)

Thus, applying Equation 3.33, the effective viscous damping of the residual
mode and the total effective mode in the residual mode are given below
respectively.βVR = 0.362

4π · 2(6)(cos 28.89◦)2[(−2.4)2 + (3.4)2]
2.590(−2.4)2 + 3.108(1.0)2 = 0.255 (w)βR = βI + βVR = 0.05+ 0.255 = 0.305 (x)

Determined from Figure 3.11, the numerical coefficient, BR, is 1.815. The
roof displacement and seismic response coefficient and the seismic base shear
of the residual mode are as follows:

DRD = ( g
4π2

)�R
SD1TR

BR
= (

386.1
4π2

) ∣∣−0.1724
∣∣ (0.58(0.362)

1.815

) = 0.20 in.

(y)
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4π2

)�R
SDST2

R
BR

= (
386.1
4π2

) ∣∣−0.1724
∣∣ (0.83(0.3622)

1.815

)= 0.10 in. < DRD = 0.20 in., (z)

DRD = 0.10 in. (aa)

CSR = (
R

Cd

)
SDS�oBR

= 8
5.5
· 0.83

3(1.815) = 0.222 (bb)

VR = CSRWR1 = 0.222(206.9) = 45.9k (cc)

On the basis of the Equation 3.62, the seismic base shear is

VD = √
V2

1 + V2
R = √

346.82 + 45.92 = 349.8k (dd)

The seismic base shear, V , as determined above shall not be less than Vmin
as given in Equation 3.62. The determination of Vmin is based on the follow-
ing procedures. First, the approximate fundamental period is determined by
Equation 3.48 as Ta = Cthx

n = 0.028(32)0.8 = 0.448 s. Since the coefficient
for upper limit, Cu, is 1.4 as given by Table 3.1, and CuTa = 1.4(0.448) =
0.627 s < T1 = 0.906 s, T = 0.627 s is used to find the value of Cs.

CS = SDS(R/I) = 0.83(8/1.5) = 0.156 < SD1

T(R/I)= 0.58
0.627(8/1.5) = 0.173 (ee)

Since CS > 0.01, use Cs = 0.156, which results in V = CSW =
0.156(1000+ 1200) = 343.2k. Thus, the minimum design base shear is

Vmin = 0.75V = 0.75(343.2) = 257.4k < VD = 349.8k (ff )

Also, based on βV1 + βI = 0.14, and BV+I = 1.32,

Vmin = V
BV+I

= 343.2
1.32

= 260.0k < VD = 349.8k (gg)

Therefore, the design base shear of the structure with the damping system
shall be V = 349.8 k.

2. Verifying the assumptions of using the equivalent lateral force
procedure is summarized as follows:
(a) In each principal direction, four damping devises are

installed at each level. They are all in the frames of the seis-
mic force-resisting system, and can effectively resist the
imposed seismic force and resist the torsion generated by
the seismic force.
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(b) The effective damping of the fundamental mode, β1D, is

22.3% of critical, which is less than 35% of critical.
(c) Neither vertical irregularity nor horizontal irregularity exists

in the selected seismic force-resisting system.
(d) Floor at each level and the roof are given by the example as

rigid diaphragms.
(e) The maximum height of the structure measured from the

base is 32 ft.
(f) The site for construction of the damped structure is char-

acterized with the spectral response acceleration parameter
with 5% of critical at the period of 1 s, S1, is 0.58, which is
less than 0.6.

Investigation of the above conditions indicates that the equivalent lateral
force procedure is applicable to the design of this damped structure.

3. The design lateral force due to the fundamental mode response and
the residual mode response at each level are given as follows:

F1,1D=W1φ1,1
�1

W1
V1 = 1000(0.5)1.1724

1993.1
· 346.8=102.0k (hh)

F2,1D=W2φ2,1
�1

W1
V1=1200(1.0)1.1724

1993.1
· 346.8 = 244.8k (hha)

F1,R = W1φ1,R
�R

WR
VR = 1000(−2.4) |−0.1724|

206.9
· 45.9 = −91.8k

(ii)

F2,R=W2φ2,R
�R

WR
VR=1200(1.0) |−0.1724|

206.9
· 45.9 = 45.9k (iia)

The design lateral force at each level is obtained from SSRS
method:

F1,D = √
F2

1,1D + F2
1,RD = √

102.02 + (−91.8)2 = 137.2k (jj)

F2,D = √
F2

2,1D + F2
2,RD = √

244.82 + (45.9)2 = 249.1k (kk)

The floor deflection and drift due to the fundamental mode
response and the residual mode response at each level are determ-
ined asδ1,1D = D1Dφ1,1 = 4.56(0.5) = 2.28 in.; �1,1D = δ1,1D = 2.28 in.;δ2,1D = D1Dφ2,1 = 4.56(1.0) = 4.56 in.;�2,1D = δ2,1D − δ1,1D = 4.56− 2.28 = 2.28 in.;
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Damping Systems 149δ1,RD = DRDφ1,R = 0.10(−2.4) = −0.24 in.;�1,RD = δ1,RD = −0.24 in.;δ2,RD = DRDφ2,R = 0.10(1.0) = 0.10 in.;�2,RD = δ2,RD − δ1,RD = 0.10− (−0.24) = 0.34 in.

The design story drift at each level is�1,D = √�2
1,1D +�2

1,RD = √
2.282 + 0.242 = 2.29 in. (ll)�2,D = √�2

2,1D +�2
2,RD = √

2.282 + 0.342 = 2.31 in. (mm)

The design story velocity owing to the fundamental mode
response and the residual mode response, as well as their com-
binations based on SRSS, at each level are determined as below:∇1,1D = 2π �1,1D

T1D
= 2π · 2.28

1.032
= 13.881 in./s∇1,RD = 2π �1,RD

TR
= 2π · (−0.24)

0.362
= −4.166 in./s∇1,D = √∇2

1,1D + ∇2
1,RD = √

13.8812 + (−4.166)2= 14.493 in./s (nn)∇2,1D = 2π �2,1D

T1D
= 2π · 2.28

1.032
= 13.881 in./s∇2,RD = 2π �2,RD

TR
= 2π · (0.34)

0.362
= 5.901 in./s∇2,D = √∇2

2,1D + ∇2
2,RD = √

13.8812 + (5.901)2= 15.083 in./s (oo)

4. To find the maximum design lateral force at each level for
design of the damping system, three conditions as given in
Section 3.2.2.4 shall be considered.
(a.) The design lateral force at the stage of the maximum

displacement is calculated from Equation 3.49. Thus,
the design lateral force in elements of the seismic
force-resisting system as given in Equations dd and
kk are amplified by the over strength factor, �o,
to obtain the design lateral force for the damping
system design.

Q1,E = �oF1,D = 3(349.8) = 1049.4k (pp)

Q2,E = �oF2,D = 3(249.1) = 747.3k (qq)
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The damping system shall remain elastic under the
design force. Accordingly, the design lateral force as
given in Equations dd and kk is increased by a factor
of �oCd/R. ASCE 7-05 gives a more conservative
method by multiplying the design lateral force by �o
instead of �oCd/R.

(b.) At the stage of maximum velocity, the design lateral
force at each level is equal to the total horizontal com-
ponents of the axial forces of the damping devices.
From Equations nn and oo, and 3.50, the design lateral
force for the damping system design becomes

Q1,E =∑
cdi, j cos2 ϕ∇1,D= 2(6)(cos2 28.89◦)(14.493) = 133.3k (rr)

Q2,E =∑
cdi, j cos2 ϕ∇2,D= 2(6)(cos2 28.89◦)(15.083) = 138.7k (ss)

(c.) The design lateral force at the stage of maximum
acceleration is determined from Equations 3.51 and
3.52. Since linear viscous damping devices are selec-
ted, the effective damping of the fundamental mode
equals βeff = β1D − βHD = 0.153. Thus, δ =
tan−1(2βeff ) = 0.297. The corresponding force coef-
ficients, CmFD and CmFV, are computed on the basis
of Equations 3.52a and 3.52b:

CmFD = µD cos δ = 1.3(cos 0.297) = 1.24 > 1,

use CmFD = 1.0. (tt)

CmFV = sin δ = sin 0.297 = 0.29 (uu)

For the residual mode, the effective damping is βeff = β1D−βHD = 0.305,
which results in δ = tan−1(2βeff ) = 0.548. Accordingly, force coefficients,
CmFD and CmFV, become

CmFD = µD cos δ = 1.3(cos 0.548) = 1.11 > 1, use CmFD = 1.0. (vv)

CmFV = sin δ = sin 0.548 = 0.52 (vva)
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The design lateral force at the floor and the roof is determined from
Equation 3.51 as

Q1,E = { 2∑
1
(CmFD�oQmSFRS + CmFVQmDSV)2}1/2

1,E= {[1.0(3)(346.8)+ 0.29(2)(6)(cos2 28.89◦)(13.881)]2+ [(1.0(3)(45.9)+ 0.52(2)(6)(cos2 28.29◦)(4.166)]2}1/2 = 1088.9k
(ww)

Q2,E = { 2∑
1
(CmFD�oQmSFRS + CmFVQmDSV)2}1/2

2,E= {[1.0(3)(244.8)+ 0.29(2)(6)(cos2 28.89◦)(13.881)]2+ [(1.0(3)(45.9)+ 0.52(2)(6)(cos2 28.29◦)(5.901)]2}1/2 = 789.1k
(xx)

From the results of three unfavorable conditions, the design lateral force for
the damping system design is controlled at the stage of the maximum accelera-
tion as shown in Equations xx and yy. Note that for design of damping devices,
the design force shall be obtained from the maximum considered earth-
quake. Determination of the displacement, drift, and velocity at each level to
calculate the force in the damping device is identical to the above procedures.

Example 3.3.2

An essential building will be designed for emergency responses. Accord-
ingly, the base isolation system combined with damping devices is selected
to satisfy this special requirement. Low-damping rubber bearings are util-
ized. The effective damping of bearings, βb, is approximately 2.0%. Ten
linear fluid viscous dampers are installed in each principal direction of the
building structure at the isolation interface. The damping coefficient, cd, is
4.2 k· s/in. (0.74 kN·s/mm) for each damper. Assume that the weight of the
structure above the isolation system is W = 12,000 k (53.38 MN), and the
design displacement under the design earthquake is DD in units of in. (mm).
Also, the effective period is TD = 2.6 s and the effective stiffness at the
design displacement is designated as kD, in kip/in. (kN/mm). The movement
of the structure above the isolation system is assumed to be under harmonic
vibration in the horizontal direction of interest.
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Find the maximum lateral force at the isolation system and demonstrate

that the maximum lateral force does not occur at the design displacement,
DD. Use customary units to resolve this example.

Solution
In designing of base isolation buildings, low-damping rubber bearings or
friction pendulum bearings are usually utilized along with damping devices
in order to control the lateral displacement of the isolation system. Unlike
the isolation system without damping devices, the maximum lateral force
at the isolation system with damping devices does not occur at the design
displacement, DD. This example illustrates how to find the maximum lateral
force in the isolation system combined with damping devices.

On the basis of the given condition, the structure above the isolation system
undergoes harmonic vibration and its movement, x, can be expressed in terms
of time, t:

x = DD cosωDt (a)

where ωD is the angular frequency and has the following the effective period:ωD = 2π
TD
= (

m
kD

)1/2
(b)

Taking derivative of Equation a with respect to x, the velocity of the
structure, ẋ, is derived as

ẋ = −ωD sinωDt (c)

The lateral force at the isolation damping system can be expressed based
on the equilibrium condition:

V(t) = kDx + 2ωDm(βb + βd)ẋ= kDDD cosωDt − 2ω2
Dm(βb + βd)DD sinωDt (d)

The building mass given in Equation d is m = W/g = 12,000/386.1 =
31.08 k · s2/in.

To find the maximum lateral force, Vmax, Equation d is differentiated as

V ′(t) = −kDDDωD sinωDt − 2ω3
Dm(βb + βd)DD cosωDt (e)

For V ′(t) = 0, substitutingω2
D = kD/m into Equation e, the corresponding

t can be determined asωDt = − tan−1[2(βb + βd)] + kπ , k = 1, 2, . . . (f )



“CHAP03” — 2008/1/18 — 10:43 — page 153 — #45

Damping Systems 153

Therefore,

cos
{− tan−1[2(βb + βd)] + kπ} = cos(kπ)√

1+ 4(βb + βd)2 (g)

sin
{− tan−1[2(βb + βd)] + kπ} = − 2(βb + βd)√

1+ 4(βb + βd)2 cos(kπ) (h)

Substituting Equations g and h into Equation d, the maximum lateral force,
Vmax, becomes

Vmax = −kDDD cos(kπ)√1+ 4(βb + βd)2 (i)

On the basis of the given damping coefficient of the damper, the effective
damping, βd, is calculated asβd = n

TDcd
4πm

= 10(2.6)(4.2)
4π(31.08) = 0.28

Then βb+ βd = 0.02+ 0.28 = 0.3. For k = 1, the maximum lateral force

Vmax = −kDDD cos(π)√1+ 4(0.3)2 = 1.166kDDD ( j)

at the displacement of

DDcos
{− tan−1[2(βb + βd)] + kπ} = cos(π)DD√

1+ 4(0.3)2 = 0.857DD (k)

In the same way, k = 2, the maximum lateral force in the reversed
direction is

Vmax = −kDDD cos(2π)√1+ 4(0.3)2 = −1.166kDDD (l)

at the displacement of −0.857DD.
Compared to the lateral force at the displacement of DD, the maximum

value is increased by 16.6%.
Note that due to adding damping devices to the isolation system, the lateral

force at the original position, or x = 0, is

V |x=0 = ±2kD(βb + βd)DD = ±0.6kDDD (m)

Figure 3.14 shows the lateral force contributed by low-damping rubber
bearings, damping devises, and their combinations.
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FIGURE 3.14 Relation of design base shear and lateral displacement.

3.4 TESTING VERIFICATION AND DETERMINATION OF DAMPING

DEVICE PROPERTIES

3.4.1 Introduction
Mechanical properties of damping devices, no matter by which procedure they
are selected as presented in Section 3.2, shall be verified by prototype tests based
on ASCE 7-05 requirements. For each type and each size of damping devices,
two full-size damping devices are required to perform prototype tests. If one type
of damping devices is used with more than one size, ASCE 7-05 permits repres-
entative sizes for prototype test as long as the same quality control procedures
and fabrication processes are assured and the professional engineer of record is
responsible for the determined representative sizes.

During the tests, the force–velocity–displacement characteristics at each cycle
shall be recorded for further review and analysis. For example, the stiffness of a
solid viscoelastic damping device, kd, can be determined from the recorded results
in accordance with the following relation.

kd = |P+| + |P−||l+| + |l−| (3.75)
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where P+ and P− are the positive and negative testing force at displacement of l+
and l− for each cycle, respectively. In general, specimens that have not failed in the
prototype tests are not allowed for construction unless the professional engineer of
record proves that the tested specimens meet the requirements of production tests.

The above requirements are indispensable for any size and type of proto-
type tests. Thus, testing procedures as specified by ASCE 7-05 are explicitly
explained in Section 3.4.2. Acceptance criteria of prototype tests, which ensure
validities of damper mechanical properties used in design, are summarized in
Section 3.4.3 for velocity-dependent damping devices and in Section 3.4.4 for
displacement-dependent damping devices, respectively. As to production tests,
the testing procedures are similar to those for prototype tests. ASEC 7-05 only
requires that the professional engineer of record be responsible for verification of
design limitations on force–velocity–displacement characteristics.

3.4.2 Prototype Test Procedures
ASCE 7-05 [1] specified three testing sequences to perform prototype tests. The
requirements of these testing sequences are summarized as follows:

Sequence 1: This testing sequence is to verify the quality and reliability of
damping devices. It requires that at least 2000 continuous fully reversed cycles be
undergone for each damping device to simulate the action of the design wind load.
The displacement of the damping device used in the test is computed from the
design wind load, while the applied frequency is determined based on the reverse
of the fundamental period of the structure, T1. This testing could be waived if
the yield displacement or slip of the damping device is larger than the maximum
displacement under the wind load.

Sequence 2: The variation of damping device properties with change of operat-
ing temperature is determined from this testing sequence. To each damping device
five fully reversed sinusoidal cycles are applied at a frequency calculated from the
reverse of the effective period of the fundamental mode, T1M, at the maximum dis-
placement, D1M. This testing sequence shall be repeated at least at the maximum,
ambient, and minimum temperature.

Sequence 3: The purpose of this testing sequence is to study whether the prop-
erties of the damping device are significantly affected by excitation frequencies.
First, the test of Sequence 2 is repeated with a frequency of 2.5/T1. In the range of
the maximum displacement, D1M, if the force-deformation obtained based on the
frequency of 1/T1M is over 15% of that determined from the frequency of 2.5/T1,
then another Sequence 2 shall be performed with the frequency of 1/T1.

Instead of the above three testing sequences, ASCE 7-05 permits using alternat-
ive testing sequences if the characteristics of damping devices affected by influence
of operating temperature, excitation frequencies, and increase in temperature
can be determined based on the equivalent requirements as presented above. In
addition, the proposed alternative testing sequences shall be permitted by the
professional engineer of record.
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3.4.3 Acceptance Criteria for Velocity-Dependant

Damping Devices
Once the prototype tests are completed, the performance of the damping device
shall be evaluated. ASCE 7-05 [1] specifies the following acceptance criteria for
velocity-dependent damping devices. If the tested damping device meets these
criteria, then this prototype test is considered as acceptable:

1. After Sequence 1, the tested damping device shall be checked if it has
any leakage, yielding, or breakage.

2. If the velocity-dependent damping device possesses its stiffness, similar
to the solid viscoelastic damping device, the effective stiffness shall be
determined from Equation 3.75. Under any designated frequency and
operating temperature, the effective stiffness of a full cycle recorded
from either Sequence 2 or 3 does not deviate by over 15% from the
average effective stiffness obtained from the five full cycles.

3. Under any designated frequency and operating temperature, the max-
imum and minimum force at the original position of the damping device
for any full cycle, which is obtained from Sequence 2 or 3, shall not be
over 15% of the average values determined from five full cycles.

4. Under any designated frequency and operating temperature, the area of
hysteretic loop for any full cycle, which is obtained from Sequence 2
or 3, shall not be over 15% of the average values determined from five
full cycles.

5. No matter which sequence is selected, the effective stiffness determined
from Item 2, the average maximum and minimum force obtained from
Item 3, and the average area of hysteretic loops calculated from Item 4
shall not be over 15% from the target values used to design the damped
structure.

3.4.4 Acceptance Criteria for Displacement-Dependant
Damping Devices

ASCE 7-05 [1] specifies the following acceptance criteria for displacement-
dependent damping devices. If the tested damping device meets these criteria,
then this prototype test is considered as acceptable:

1. After Sequence 1, the tested damping device shall be checked if it has
any yielding, or breakage.

2. Under any designated frequency and operating temperature, the max-
imum and minimum force at the original position of the damping device
for any full cycle, which is obtained from Sequence 2 or 3, shall not be
over 15% of the average values determined from five full cycles.

3. Under any designated frequency and operating temperature, the max-
imum and minimum force at the maximum displacement of the damping
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device, D1M , for any full cycle, which is obtained from Sequence 2 or
3, shall not be over 15% of the average values determined from five full
cycles.

4. Under any designated frequency and operating temperature, the area of
hysteretic loop for any full cycle, which is obtained from Sequence 2 or
3, shall not be over 15% of the average values determined from five full
cycles.

5. No matter which sequence is selected, the average maximum and min-
imum force at the original position of the damping device obtained from
Item 2, the average maximum and minimum force at the maximum dis-
placement determined from Item 3, and the average area of hysteretic
loops calculated from Item 4 shall not be over 15% from the target values
used to design the damped structure.
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4 Smart Seismic StructuresUsing Active ControlSystems
Chapter 1 discussed the basic concepts and configurations of smart seismic
structures using active control systems. Smart structures with active control are
completely adaptive as they have fully functional sensing and actuation systems
working together. The actuation device, called actuator, generates control force
based on sensed external excitation and system response and applies the force
directly to the structure to reduce its seismic response.

In this chapter, smart seismic structures using active control systems are studied
in detail, emphasizing on mathematical modeling, control algorithm development,
and system design and implementation. Section 4.1 develops a general mathemat-
ical model of active-controlled smart seismic structures. The mathematical model
of the controller in an active control system, the feedback control law, is presented.
Different implementation schemes of the active controller for smart seismic struc-
tures are discussed. The closed formula solutions of the system’s seismic response
are derived. In Section 4.2, the classical methods to determine the feedback law
(Riccati and pole-placement control algorithms) are studied for their application
to seismic response control of smart structures. In Section 4.3, innovative control
algorithms for seismic response control (instantaneous and generalized optimal
active closed-loop control algorithms) are presented. Section 4.4 provides the
concluding remarks.

4.1 ANALYTICAL MODEL OF SMART SEISMIC STRUCTURES

WITH ACTIVE CONTROL

In order to analyze and design a smart structure system using active seismic
response control, an analytical model of the entire system needs to be formu-
lated first. This system model should be based on the dynamic behavior or
operating mechanism of all its components, the structure, actuators, sensors,
and the controller. In theory, actuators, sensors, and the controller are dynamic
systems. In seismic response control practice, they are usually assumed as linear
systems with proportional relationship between input and output. Sensors used
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in smart seismic structure systems, such as linear variable displacement trans-
ducers (LVDTs) and accelerometers, behave linearly in the frequency range of
structural seismic response. Thus, they can be modeled by linear equations with
a gain from input to output. More details on sensors can be found in Chapter 6.
The controller can also be regarded as a linear device and its mathematical model
is a linear matrix equation with a feedback gain from input to output. This linear
equation is called feedback control law determined by control algorithms. Feed-
back law and control algorithms are discussed in detail in Sections 4.1.4, 4.2,
and 4.3. Hydraulic actuators [1,31,36], capable of generating the large control
force for smart seismic structures, are complicated mechanical dynamic systems
themselves. Experimental studies [25,33,34] reveal that when hydraulic actuators
are applied to a structure, their dynamics may adversely affect control action or
even make the open-loop system unstable. Thus, the actuator interacts with the
structure in smart seismic structure systems. However, studies have shown that
[9,10,28,29,44,45], after the actuator stabilization, the actuator–structure interac-
tion effects can be small and then the actuator behaves linearly. Thus, a linear
stabilized actuator is assumed in this chapter. Details about actuator dynamics are
discussed in Chapter 5.

In this section, a general analytical model of smart seismic structures with
active control is formulated by considering dynamics of the structure and active
control force applied to the structure. Deriving motion equations of the smart
structures using theory of structural dynamics is the first step of the system
modeling. Good references about this topic are References 6, 8, 11, 15, 17, and
18 for structures with active tendon control and References 12, 17, and 18 for
structures with active mass damper (AMD). As shown in Figure 4.1, this section
uses smart seismic structures with two types of active control systems, active
tendon systems and an AMD, respectively, to demonstrate the modeling pro-
cess. These models are condensed into matrix form with the consideration of
arbitrary number and location of control devices. Finally, state-variable repres-
entations of the system model in both continuous and discrete time domains are
developed.

4.1.1 Motion Equations of Smart Seismic Structures with
Active Tendon Control

This section starts with an earthquake-excited n-story one-bay shear build-
ing structure equipped with active tendons at some floors, as shown in
Figure 4.2. This active tendon system has multiple servovalve-controlled hydraulic
actuators mounted on tendon systems on the structure. Each floor of the
building structure can either have an actuator or no control device. Floors
without a control device do not need the tendon system. When an n-story
building structure is equipped with r actuators, r ≤ n. The motion equa-
tions of such a smart structure system under seismic excitations can be
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FIGURE 4.1 Smart building structures with active control: (a) active tendon and (b) active
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FIGURE 4.2 Model and free-body diagram for structures with active tendon control.
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expressed asm1(ẍ1 + ẍg)+ c1ẋ1 − c2(ẋ2 − ẋ1)+k1x1 − k2(x2 − x1) = −u1 + u2· · ·

mi(ẍi + ẍg)+ ci(ẋi − ẋi−1)− ci+1(ẋi+1 − ẋi)+ki(xi − xi−1)− ki+1(xi+1 − xi) = −uj + uj+1

mi+1(ẍi+1 + ẍg)+ ci+1(ẋi+1 − ẋi)− ci+2(ẋi+2 − ẋi+1)+ki+1(xi+1 − xi)− ki+2(xi+2 − xi+1) = −uj+1 + uj+2· · ·
mn−1(ẍn−1 + ẍg)+ cn−1(ẋn−1 − ẋn−2)− cn(ẋn − ẋn−1)+kn−1(xn−1 − xn−2)− kn(xn − xn−1) = −ur−1 + ur

mn(ẍn + ẍg)+ cn(ẋn − ẋn−1)+ kn(xn − xn−1) = −ur

(4.1a)

where mi, ci, and ki (i = 1, 2, . . . , n) denote, respectively, the mass, damping, and
stiffness coefficients for the ith floor of the building structure; uj(j = 1, 2, . . ., r)
represents the horizontal component of the active tendon force generated by the
jth actuator; ẍg is the absolute ground acceleration; xi is the ith floor relative
displacement defined by

xi = �i − xg (i = 1, 2, · · · , n) (4.1b)

in which xg and �i are absolute displacements of the ground and the ith floor,
respectively.

Equation 4.1 can be rewritten asm1ẍ1 + c1ẋ1 − c2(ẋ2 − ẋ1)+k1x1 − k2(x2 − x1) = −u1 + u2 − m1ẍg· · ·
miẍi + ci(ẋi − ẋi−1)− ci+1(ẋi+1 − ẋi)+ki(xi − xi−1)− ki+1(xi+1 − xi) = −uj + uj+1 − miẍg

mi+1ẍi+1 + ci+1(ẋi+1 − ẋi)− ci+2(ẋi+2 − ẋi+1)+ki+1(xi+1 − xi)− ki+2(xi+2 − xi+1) = −uj+1 + uj+2 − mi+1ẍg· · ·
mn−1ẍn−1 + cn−1(ẋn−1 − ẋn−2)− cn(ẋn − ẋn−1)+kn−1(xn−1 − xn−2)− kn(xn − xn−1) = −ur−1 + ur − mn−1ẍg

mnẍn + cn(ẋn − ẋn−1)+ kn(xn − xn−1) = −ur − mnẍg

(4.2)
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which can be condensed into matrix form as[M]{ẍ(t)} + [C]{ẋ(t)} + [K]{x(t)} = [γ ]{u(t)} + {δ}ẍg(t) (4.3)

where[M] = m1
m2 . . .

mi . . .
mn−1

mn

 (4.4a)[C] =  (c1 + c2) −c2−c2 (c2 + c3) −c3. . .−ci (ci + ci+1) −ci+1. . .−cn−1 (cn−1 + cn) −cn−cn cn


(4.4b)[K] = (k1 + k2) −k2−k2 (k2 + k3) −k3. . .−ki (ki + ki+1) −ki+1. . .−kn−1 (kn−1 + kn) −kn−kn kn


(4.4c){δ} = [−m1,−m2, . . . ,−mi, . . . ,−mn]T (4.4d){x(t)} = [x1(t), x2(t), . . . , xi(t), . . . , xn(t)]T (4.4e){u(t)} = [u1(t), u2(t), . . . , uj(t), . . . , ur(t)]T (4.4f )

In Equation 4.4, [M], [C], and [K] are n×n matrices of mass, damping, and stiffness
of the building structure, respectively; {x(t)} of n× 1 and {u(t)} of r× 1 are vectors
of floor displacements and control forces of active tendons, respectively; [γ ] of
n × r is the location matrix of control forces of active tendons; and {δ} of n× 1
is the coefficient vector for earthquake ground acceleration ẍg(t). For a structure
with active tendons installed at each floor, the controller location matrix [γ̄ ] of
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n× n takes the following form:

[γ̄ ] =

−1 1−1 1−1 1. . . . . .. . . . . . −1 1−1


n×n

(4.5)

and the control force {ū(t)} is an n× 1 vector, that is,{ū(t)} = [u1(t), u2(t), . . . , ui(t), . . . , un(t)]T (4.6)

If there are only r(r < n) active tendons located at some floors, the control
force {u(t)} will become an r × 1 vector whose relationship to the control force
vector {ū(t)} of n× 1 is{ū(t)}n×1 = {u1(t), u2(t), · · · , 0, · · · , ui(t), · · · , 0, · · · , ur−1(t), ur(t)}T=  1 0 0 · · · · · · · · · · · · · · · 0

0 1 0 · · · · · · · · · · · · · · · 0· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · · · · · · · · · · · · · · · · · · · 0
0 · · · · · · 0 1 0 · · · · · · 0· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · · · · · · · · · · 0 · · · · · · 0
0 · · · · · · · · · · · · · · · 0 1 0
0 · · · · · · · · · · · · · · · · · · 0 1


n×r

 u1(t)
u2(t). . .

ur−1(t)
ur(t) r×1= [θ ]n×r {u(t)}r×1 (4.7)

Therefore, the location matrix [γ ] for the r active tendons can be obtained as
follows:

[γ ]n×r = [γ̄ ]n×n[θ ]n×r (4.8)

When there is only one active tendon on the structure, {u(t)} becomes a scalar
and location matrix [γ ] will degrade to an n× 1 location vector {γ }.
4.1.2 Motion Equations of Smart Seismic Structures

with Active Mass Damper
Similar modeling processes can be used for an earthquake-excited n-story one-
bay shear building structure equipped with an AMD at the top floor, as shown in
Figure 4.3. The difference is that the AMD only has one hydraulic actuator on
top of the structure. Thus, {u(t)} = ud(t). Figure 4.3 also shows the free-body
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FIGURE 4.3 Model and free-body diagram for structures with AMD.

diagram of the structure with AMD. The mass of the AMD adds one more DOF to
the system, and the relative displacement of the AMD with respect to the top floor
displacement is �d(t) = xd(t)− xn(t) (4.9)

Then the system becomes a (n + 1)th order with the displacement vector
defined as {x(t)} = [x1(t), x2(t), . . . , xn(t), xd(t)]T (4.10)

The motion equation of the structure is given bym1ẍ1 + c1ẋ1 − c2(ẋ2 − ẋ1)+ k1x1 − k2(x2 − x1) = −m1ẍg· · ·
miẍi + ci(ẋi − ẋi−1)− ci+1(ẋi+1 − ẋi)+ ki(xi − xi−1)− ki+1(xi+1 − xi) = −miẍg

mi+1ẍi+1 + ci+1(ẋi+1 − ẋi)− ci+2(ẋi+2 − ẋi+1)+ ki+1(xi+1 − xi)− ki+2(xi+2 − xi+1) = −mi+1ẍg· · ·
mn−1ẍn−1 + cn−1(ẋn−1 − ẋn−2)− cn(ẋn − ẋn−1)+ kn−1(xn−1 − xn−2)− kn(xn − xn−1) = −mn−1ẍg

mnẍn + cn(ẋn − ẋn−1)+ kn(xn − kn−1) = −ud − mnẍg

(4.11)
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And the motion equation of the AMD is

md ẍd + cd(ẋd − ẋn)+ kd(xd − xn) = ud − md ẍg (4.12)

Equations 4.11 and 4.12 can be condensed into matrix form as[M]{ẍ(t)} + [C]{ẋ(t)} + [K]{x(t)} = {γ }u(t)+ {δ}ẍg(t) (4.13)

where [M], [C] and [K] are (n + 1) × (n + 1) matrices of mass, damping and
stiffness of the system, respectively; {x(t)} of (n + 1) × 1 is vector of floor and
AMD displacements; u(t) is AMD control force; {γ } of (n + 1) × 1 is location
matrix of AMD control forces; and {δ} of (n + 1) × 1 is coefficient vector for
earthquake ground acceleration ẍg(t).[M] = m1

m2 . . .
mi . . .

mn
md

 (4.14a)[C] = (c1 + c2) −c2−c2 (c2 + c3)−c3. . .−ci (ci + ci+1) −ci+1· · ·−cn−1 (cn−1 + cn)−cn−cn cn−cd cd


(4.14b)[K] =(k1 + k2) −k2−k2 (k2 + k3)−k3. . .−ki (ki + ki+1) −ki+1

......−kn−1 (kn−1 + kn)−kn−kn kn−kd kd


(4.14c){γ } = [0, 0, ..., 0,−1, 1]T (4.14d){δ} = [−m1,−m2, ...,−mn−1,−mn,−md]T (4.14e)

It can be noted that Equations 4.3 and 4.13, the motion equations of smart
structures with active tendons or an AMD, respectively, have the same format
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except that the coefficient matrices have different elements. Typically, there would
be one AMD on a structure, and an active tendon system can have actuators at
multiple locations. This results in a scalar control force for an AMD system or a
vector of control forces for active tendon systems. Thus, Equation 4.3 is used for
further discussions in this chapter as Equation 4.13 can be treated as a special case
of Equation 4.3.

4.1.3 State-Variable Representation of Smart Seismic
Structures

Equation 4.3 can be rewritten as{ẍ(t)} = − [M]−1[C] {ẋ(t)} − [M]−1[K] {x(t)}+ [M]−1[γ ] {u(t)} + [M]−1{δ}ẍg(t) (4.15)

and noticing that {ẋ(t)} = [I]{ẋ(t)} (4.16)

the following expression can be obtained as{ {ẋ(t)}{ẍ(t)}} = [ [0]−[M]−1[K] ∣∣∣∣ [I]−[M]−1[C]]{ {x(t)}{ẋ(t)}}+ [ [0][M]−1[γ ]] {u(t)}+ { {0}[M]−1{δ}} ẍg(t) (4.17)

Linear optimal control theory has been developed for first-order dynamic sys-
tems. In order to apply this theory for seismic response control, the second-order
motion equation 4.3 is cast into its first-order state-variable representation by
defining the following state-vector [3,4,17,18]:{Z(t)} = {{x(t)}{ẋ(t)}} (4.18)

Then Equation 4.17 can be rewritten into state form as{Ż(t)} = [A]{Z(t)} + [Bu]{u(t)} + {Br}ẍg(t) (4.19)

where {Ż(t)} = {{ẋ(t)}{ẍ(t)}}2n×1
(4.20a)[A] = [ [0] [I]−[M]−1[K] −[M]−1[C]]2n×2n
(4.20b)
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(4.20c){Br} = { {0}[M]−1{δ}}2n×1
(4.20d)

Matrix [A] is called plant matrix of the system. Equation 4.19, the state equa-
tion, is also suitable for smart structures with other types of control systems, such
as hybrid damper-actuator bracing control (HDABC) systems to be discussed in
Chapter 5.

Corresponding initials conditions for Equation 4.19 are{Z(0)} = {0}, {u(0)} = {0}, and ẍg(0) = 0 (4.21)

It can be found that the motion equation, Equation 4.3, is an n-dimensional
second-order differential equation, while the state equation, Equation 4.19, is
a 2n-dimensional first-order differential equation. Transformation from second-
order motion equation to first-order state equation simplifies the solution procedure
for the problem but doubles the number of equations or unknown variables.

From the structural dynamics point of view, a system described by motion
equation 4.3 would be stable if all damping ratios are positive, but unstable
if any of its damping ratios become negative. The system response would be
smaller if its damping ratios of all significant modes are bigger. For a smart
structure system described by Equation 4.19, the i-th eigenvalues of the plant
matrix [A], pi(i = 1, 2, . . . , n), are given by the following complex conjugage
pairs [37,45]:

pi = −ζiωi ± jωi

√
1− ζ 2

i , j = √−1 (4.22)

where ζi and ωi are damping ratio and modal frequency, respectively, for the
ith mode of the smart structure. For a system described by state equation 4.19,
the eigenvalues of plant matrix [A] are also referred as poles of the system in
general control theory. As shown in Figure 4.4, pole locations in a complex plane
determine the system stability. The real and imaginary components of the poles are
the abscissa and ordinate, respectively, of the complex plane. If a pole were located
in the left plane, its damping ratio would be positive. A stable system would have
all its poles located in the left part of the complex plane. If a system has one or
more poles in the right plane, the system is unstable. If the ith pair of the system
poles moves left, bigger damping ratio and less system response for the ith mode
would be achieved.

4.1.4 Feedback Law and Implementation Schemes
Note that Equation 4.19 cannot be solved directly. This is because there are only 2n
equations but (2n+ r) unknown variables, that is, {Z(t)} of (2n× 1) and {u(t)} of
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FIGURE 4.4 Plant matrix poles on the complex plane for smart seismic structures.
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FIGURE 4.5 Schematic of open-loop control.(r×1). Therefore, r more equations are required in order to solve the active control
problem in Equation 4.19. These r equations are referred as the feedback control
law obtained from control algorithms. There are three active control schemes by
which the feedback control law can be implemented to a smart seismic structure
[3–5,18]• Open-loop feedback control• Closed-loop feedback control• Open–closed-loop feedback control

In the open-loop structure control scheme shown in Figure 4.5, the control force
is determined by a feedback of external excitation, such as earthquake ground
motion. Thus, the control law only requires information about the earthquake
excitation. The diagram for implementation of this scheme using an active tendon
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is shown in Figure 4.6. An accelerometer placed at the base of the building structure
measures the earthquake ground acceleration. This information is used to calculate
the required control force based on the active control algorithm for open-loop
control, and the force is then applied to the structure.

In the closed-loop control scheme shown in Figure 4.7, the control force is
determined by a feedback of system response expressed by state variables. The
state variables include structural displacements and velocities. Thus, in a closed-
loop control system, the control law requires information of the system response
such as the relative displacements and velocities of the structure. The diagram
for this scheme is shown in Figure 4.8 with the active tendon system. The sensed
information is used to calculate the required control force based on the closed-loop

Active
tendons

Actuator

u(t) x(t)
Control

computer

�

Disturbance
sensors

xg(t)m, k, c
FIGURE 4.6 Open-loop control implementation.

Actuator Structure

Response
sensors

Control
computer

Controlled responseControl forces

Disturbance

FIGURE 4.7 Schematic of closed-loop control.



“CHAP04” — 2008/1/18 — 11:51 — page 171 — #13

Smart Seismic Structures Using Active Control Systems 171

Active
tendons

Response
sensors

Control
computeru(t) x(t)

�xg(t)m, k, c
Actuator

FIGURE 4.8 Closed-loop control implementation.

active control algorithm, and the force is then applied to the structure. It shall be
emphasized that realization of a closed-loop feedback scheme for a 2nth order
system requires the measurements of the full-state vector, that is, 2n sensors are
required to measure the response. However, when analog differentiators or state
estimators (observers) are used, the number of sensors can be greatly reduced.
Details on the sensor requirement will be discussed in Chapter 6.

The open-closed-loop scheme is a combination of the open-loop and closed-
loop control schemes. As shown in Figure 4.9, this scheme required the information
of both system response and external disturbance. The diagram for implementation
of this scheme with an active tendon is shown in Figure 4.10. Both the earth-
quake ground acceleration and relative displacements and velocities are measured
and then used to calculate the required control force based on the active control
algorithm, and the force is then applied to the structure.

Open-loop seismic response control has the advantage of simple sensing
system—only one accelerometer is required. However, its optimal feedback gain
cannot be found unless the earthquake ground motion over the entire control dur-
ation is known a priori [17,18,45]. This is not possible for most smart seismic
structures. Closed-loop control has the advantage of well-developed optimal con-
trol algorithms to determine the optimal feedback gain. Its weakness, requiring
a complicated sensing system, recedes with the development of seismic observer
technique (see Chapter 6) that greatly simplifies the sensing system. Closed-open-
loop control combines the open-loop and closed-loop and is thus supposed to be
superior to them. However, it has the same problem to determine the optimal
feedback gain as open-loop scheme. Thus, closed-loop feedback is the most pop-
ular scheme while the other two are generally infeasible for seismic response
control.
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FIGURE 4.9 Open–closed-loop disturbance-compensated control.

Active
tendons

Response
sensors

Control
computer

Disturbance
sensors

Actuator

u(t) x(t)
�xg(t)m, k, c

FIGURE 4.10 Open–closed-loop control implementation.

With one of these feedback control schemes, Equation 4.19 becomes mathem-
atically solvable. Take the active control system with closed-loop feedback as an
example, the control force vector is determined by feeding back the measurements
of structural response. Thus, the feedback law can be expressed as{u(t)}r×1 = −[G]r×2n {Z(t)}2n×1 (4.23)

where [G] is r × 2n matrix of feedback gain. With these r extra equations, the
control system response, {Z(t)} in Equation 4.19, can be mathematically solved.
Thus, the key point is to find gain matrix [G]. Once the [G] matrix is determined,
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the closed-loop system will take the form{Ż(t)} = [Ac]{Z(t)} + {Br}ẍg(t) (4.24a)

where [Ac] = [A] − [Bu][G] (4.24b)

is the closed-loop plant matrix obtained by substituting Equation 4.23 into
Equation 4.19.

As observed, a closed-loop system can be a full-state feedback if all state
variables are measured. For a seismic response control system, the state variables
are displacements and velocities at all degrees of freedom (d.o.f.) of the seismic
structure, and Equation 4.23 can be rewritten as{u(t)}r×1 = −[G] {Z(t)} = − [ [Gd]r×n [Gv]r×n

] {{x(t)}n×1{ẋ(t)}n×1

}
(4.25a)

where the [Gd] and [Gv] are gain matrices for displacements and velocities. With
Equations 4.20 and 4.25a, the system’s closed-loop plant matrix in Equation 4.24b
can be rewritten as[Ac] = [A] − [Bu][G]= [ [0] [I]−[M]−1[K] −[M]−1[C] ]− [ [0][M]−1[γ ] ] [ [Gd] [Gv ]]= [ [0] [I]−[M]−1 ([K] + [γ ][Gd]) −[M]−1 ([C] + [γ ][Gv]) ]

(4.25b)

There are chances that only part of the state variables is measured, full-state
feedback cannot be achieved unless the observer technique is employed (see
Chapter 6). A typical case is the velocity feedback control where only velocities
are measured. For velocity feedback control, [Gd] would be zero matrix and{u(t)}r×1 = − [Gv]r×n {ẋ(t)}n×1 (4.26)

Substituting Equation 4.26 into Equation 4.3 yields[M]{ẍ(t)} + ([C] + [γ ][Gv]) {ẋ(t)} + [K]{x(t)} = {δ}ẍg(t) (4.27a)

which shows that velocity feedback control enhances system damping and thus
mitigates system response. Note that the system stiffness is not modified by velocity
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feedback control. Such closed-loop systems have the plant matrix as[Ac] = [ [0] [I]−[M]−1[K] −[M]−1 ([C] + [γ ][Gv]) ] (4.27b)

It is worth noting that displacements and velocities are difficult to measure
in a seismic response control system. Instead, accelerations are the most reliable
measurements. Some researchers thus proposed direct acceleration feedback to
address this issue [32–35,46]. This method would simplify the sensing system
and thus make the control system more practical from the sensing system point of
view. However, this method needs to be further enhanced to make the actuation
system practical as it modifies system inertia force to avoid resonance. As discussed
in Chapter 1, it would require huge and expensive actuators for smart seismic
structures. More discussion on this issue can be found in Chapter 6.

4.1.5 Solution Procedure for State Equation
This section discusses how to solve Equation 4.19. Assuming optimal control force{u(t)} has been obtained by feedback control law, and earthquake excitation ẍg(t)
has been measured up to time instant t, structural response {Z(t)} can then be found
analytically by the following procedure.

Let the state vector be expressed in terms of modal transformation matrix [T ]
of plant matrix [A], that is, {Z(t)} = [T ] {ψ(t)} (4.28)

where [T ] of (2n × 2n) is a matrix constructed from the eigenvectors of matrix
[A], that is,[T ] = [{α1}, {β1}; {α2}, {β2}; . . . ; {αj}, {βj}; . . . ; {αn}, {βn}] (4.29)

in which {αj} and {β j} are the real and imaginary parts of the jth eigenvector of
matrix [A].

Substituting Equation 4.28 into state Equation 4.19 yields[T ] {ψ̇(t)} = [A][T ]{ψ(t)} + [Bu]{u (t)} + {Br}ẍg(t) (4.30)

Premultiplying Equation 4.30 by [T ]−1 results in the following modal state
equation: {ψ̇(t)} = [�]{ψ(t)} + {�(t)} (4.31)

where [�] is the modal plant matrix defined as

[�] = [T ]−1[A][T ] (4.32)
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and vector {�(t)} consists of control force and excitation terms as{�(t)} = [T ]−1[Bu]{u(t)} + [T ]−1{Br}ẍg(t) (4.33)

The advantage of Equations 4.31 over Equation 4.19, the original state
equation, is that the modal plant matrix is a decoupled matrix, that is,[�] =  [�]1 [�]2

.
.

. [�]j
.

.
. [�]n 

(4.34)

where each submatrix [�]j is a (2× 2) matrix given by

[�]j = [ µj νj−νj µj

]
, j = 1, 2, . . . , n (4.35)

in which µj and νj are the real and imaginary parts, respectively, of the jth
eigenvalue of matrix [A].

Initial conditions at time t = 0 are{ψ(0)} = {0}, {u(0)} = {0}, ẍg(0) = 0 (4.36)

The solution of Equation 4.31 can be obtained by solving the following integral:{ψ(t)} = ∫ T

0
exp([�](t − τ)){�(τ)} dτ (4.37)

where τ is a dummy integration variable, and exp([�](t − τ)) is a (2n × 2n)
exponential matrix.

Using the initial conditions, the integration of Equation 4.37 can be solved
numerically by employing the trapezoidal rule or numerical integration technique
[7]. Let t = m�t; then{ψ(t)} = �t

2
{exp([�](t − 0 ·�t))�(0 ·�t) + 2 exp([�](t −�t))�(�t)+ 2 exp([�](t − 2�t))�(2�t)+ · · ·+ 2 exp([�][t − (m − 1)�t])�[(m − 1)�t]+ exp([�][t − m�t])�(m�t)} (4.38a)
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From Equations 4.33 and 4.36, we have�(0) = [T ]−1[Bu]{u(0)} + [T ]−1{Br}ẍg(0) = 0 (4.38b)

Thus, Equation 4.38a becomes (note that t = m�t){ψ(t)} = �t
2

{
0+ 2

m−1∑
l=1

exp([�][t − l�t]) {�(l�t)}+ exp([�][t − m�t]) {�(m�t)}}= m−1∑
l=1

exp([�][m�t − l�t]) {�(l�t)}�t + exp([�] · 0) {�(t)} �t
2= m−1∑

l=1
exp([�](m − l)�t) {�(l�t)}�t + {�(t)}(�t

2

)
(4.38c)

where �t is the time increment. In order to simplify Equation 4.38, define the
summation term as{�(t −�t)} = m−1∑

l=1
exp([�](m − l)�t) {�(l�t)}�t (4.39)

so that Equation 4.38 can be rewritten as{ψ(t)} = {�(t −�t)} + {�(t)}(�t
2

)
(4.40)

The term {�(t −�t)} can be expressed in recurrent form as{�(t −�t)} = exp ([�]�t) ({�(t − 2�t)} + {�(t −�t)}�t) (4.41a)

This is because from Equation 4.39, we have (note t = m�t){�(t −�t)} = m−1∑
l=1

exp([�](m − l)�t){�(l�t)}�t= m−2∑
l=1

exp([�](m − l)�t){�(l�t)}�t+ exp([�][m − (m − 1)]�t){�[(m − 1)�t]}�t
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l=1

exp([�](m − 1− l)�t) exp([�]�t){�(l�t)}+ exp([�]�t) {�[(m − 1)�t]}�t= exp([�]�t)[m−2∑
l=1

exp([�](t −�t − l�t)){�(l�t)}�t+{�[(m − 1)�t]}�t]= exp([�]�t)({�(t − 2�t)} + {�(t −�t)}�t) (4.41b)

Substituting Equation 4.40 into Equation 4.28, the state vector is returned to
its physical coordinates as{Z(t)} = [T ]({�(t −�t)} + {�(t)}(�t

2

))
(4.42)

Now the system response {Z(t)} can be determined. In Equation 4.42, {�(t)}
is easily obtained using Equation 4.33 since {u(t)} is assumed known and ẍg(t)
is measured; then {�(t −�t)} can be derived from the result of {�(t − 2�t)} as
shown by Equation 4.41. Attention must be paid to the calculation of exp([�]�t)
as follows. With Equation 4.34, we can prove that

exp([�]�t) = exp

 [�]1
[�]2

. . .
[�]n

�t

 (4.43)=  exp([�]1�t)
exp([�]2�t)

. . .
exp([�]n�t) 

and with Equation 4.35

exp([�]j�t) = exp
([ µj νj−νj µj

]�t
) = eµj�t

[
cos νj�t sin νj�t− sin νj�t cos νj�t

]
(4.44)
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where j = 1, 2, . . . , n. Details of the proof procedure are shown in Equations 4.45
through 4.58. Using Taylor’s series to expand exp([�]�t), we have

exp([�]�t) = ∞∑
k=0

([�]�t)k
k! = [I]n×n + [�]�t + 1

2! ([�]�t)2 + . . . (4.45)

where [I] is unit matrix. Since,([�]�t)2 = [�][�](�t)2 =  [�]1 [�]2 . . . [�]n  [�]1 [�]2 . . . [�]n  (�t)2=  [�]21 [�]22 . . . [�]2n  (�t)2
(4.46)

and ([�]�t)3 = [�][�][�](�t)3=  [�]21 [�]22 . . . [�]2n  [�]1 [�]2 . . . [�]n  (�t)3=  [�]31 [�]32 . . . [�]3n  (�t)3 (4.47)

we obtain

exp ([�]�t)=  [I]2×2 [I]2×2
. . . [I]2×2

+ (�t) [�]1 [�]2 . . . [�]n + (�t)2
2!  [�]21 [�]22 . . . [�]2n + (�t)3

3!  [�]31 [�]32 . . . [�]3n + · · · (4.48a)
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Thus

exp ([�]�t)=  [I]2×2 + (�t) [�]1+ (�t)2
2! [�]2

1+ (�t)3
3! [�]3

1 + · · · [I]2×2 + (�t) [�]2+ (�t)2
2! [�]2

2+ (�t)3
3! [�]3

2 + · · ·
. . . [I]2×2 + (�t) [�]n+ (�t)2

2! [�]2
n+ (�t)3

3! [�]3
n + · · · =  exp([�]1�t)

exp([�]2�t)
...

exp([�]n�t)  (4.48b)

Equation 4.43 is thus proved. Note that Equation 4.44 shall be used to calculate
each submatrix exp([�]j�t), j = 1, 2, . . . , n in Equation 4.48. Using the Taylor’s
series to expand the submatrix, the same way as Equation 4.45, yields

exp([�]j�t) = ∞∑
k=0

([�]j�t)
k! k = ∞∑

k=0

(�t)k
k! ([�]j)k (4.49)

Equation 4.35 can be rewritten as[�]j = [ µj νj−νj µj

] = µj[I] + νj[J] (4.50)

where [I] = [ 1 0
0 1

]
, [J] = [ 0 1−1 0

]
(4.51)

Substituting Equation 4.50 into Equation 4.49 yields

exp([�]j�t)= ∞∑
k=0

(�t)k
k! (µj[I] + νj[J])k
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2! (µj[I] + νj[J])2 + (�t)3

3! (µj[I] + νj[J])3+ (�t)4
4! (µj[I] + νj[J])4 + (�t)5

5! (µj[I] + νj[J])5 + · · · (4.52a)

which can be expanded as

exp([�]j�t)= [I] + µj�t[I] + νj�t[J] + (�t)2
2! (µ2

j [I]2 + 2µjνj[I][J] + ν2
j [J]2)+ (�t)3

3! (µ3
j [I]3 + 3µ2

j vj[I]2[J] + 3µjv2
j [I][J]2 + v3

j [J]3)+ (�t)4
4! (µ4

j [I] + 4µ3
j vj[I]3[J] + 6µ2

j v2
j [I]2[J]2 + 4µjv3

j [I][J]3 + v4
j [J]4)+ (�t)5

5! (µ5
j [I]5 + 5µ4

j vj[I]5[J] + 10µ3
j v2

j [I]3[J]2 + 10µ2
j v3

j [I]2[J]3+5µjv4
j [I][J]4 + v5

j [J]5 )+ · · ·
(4.52b)

Note that [I]k = [I], k = 1, 2, · · · ,∞ (4.53){[I]k[J]l = [I][J]l = [J]l[J]l[I]k = [J]l[I] = [J]l k, l = 1, 2, . . . ,∞ (4.54)

and [J]2 = [ 0 1−1 0

] [
0 1−1 0

] = [−1 0
0 −1

] = −[I][J]3 = [J]2[J] = −[I][J] = −[J] (4.55)[J]4 = [J]2[J]2 = −[I](−[I]) = [I]
which means[J]4k = [I], [J]4k+1 = [J], [J]4k+2 = −[I], [J]4k+3 = −[J] (4.56)

Substituting Equations 4.53, 4.54, and 4.56 into Equation 4.52b yields

exp
([�]j�t

)= [I] + µj�t[I] + vj�t[J] + (�t)2
2! (µ2

j [I] + 2µjvj[J] − v2
j [I])
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3! (µ3

j [I] + 3µ2
j vj[J] − 3µjv2

j [I] − v3
j [J])+ (�t)4

4! (µ4
j [I] + 4µ3

j vj[J] − 6µ2
j v2

j [I] − 4µjv3
j [J] + v4

j [I])+ (�t)5
5! (µ5

j [I] + 5µ4
j vj[J] − 10µ3

j v2
j [I] − 10µ2

j v3
j [J] + 5µjv4

j [I]+ v5
j [J])+ · · ·= [1+ µj�t + 1

2! (µj�t)2 − 1
2! (vj�t)2 + 1

3! (µj�t)3 − 3
3! (µj�t)(vj�t)2+ 1

4! (µj�t)4 − 6
4! (µj�t)2(vj�t)2 + 1

4! (vj�t)4+ 1
5! (µj�t)5 − 10

5! (µj�t)3(vj�t)2 + 5
5! (µj�t)(vj�t)4 + · · · ] [I]+ [vj�t + 2

2! (µj�t)(vj�t)+ 3
3! (µj�t)2(vj�t)− 1

3! (vj�t)3+ 4
4! (µj�t)3(vj�t)− 4

4! (µj�t)(vj�t)3 + 5
5! (µj�t)4(vj�t)− 10

5! (µj�t)2(vj�t)3 + 1
5! (vj�t)5 + · · · ] [J] (4.57a)

Thus

exp
([�]j�t

)=[(1+µj�t+ 1
2! (µj�t)2+ 1

3! (µj�t)3+ 1
4! (µj�t)4+ 1

5! (µj�t)5+···) ·1−(1+µj�t+ 1
2! (µj�t)2+ 1

3! (µj�t)3+···) 1
2! (νj�t)2+(1+µj�t+···) 1

4! (νj�t)4+···][I]+[(1+µj�t+ 1
2! (µj�t)2+ 1

3! (µj�t)3+ 1
4! (µj�t)4+···)νj�t+(1+µj�t+ 1

2! (µj�t)2+···)(− 1
3! (vj�t)3)+ (1+···)( 1

5! (vj�t)5)+···][J]=eµj�t
(

1− 1
2! (vj�t)2+ 1

4! (vj�t)4+···)[I]



“CHAP04” — 2008/1/18 — 11:51 — page 182 — #24

182 Smart Structures: Innovative Systems for Seismic Response Control+eµj�t
[

vj�t− 1
3! (vj�t

)3+ 1
5! (νj�t)5+···][J]=eµj�t [cosvj�t[I]+sinvj�t[J]]=eµj�t

([
cosvj�t 0

0 cosvj�t

]+[ 0 sinvj�t−sinvj�t 0

])=eµj�t
[

cosvj�t sinvj�t−sinvj�t cosvj�t

]
(4.57b)

when �t = 0, Equation 4.57 becomes

exp([�]j�t)|�t=0 = eµj�t
[

cos vj�t sin vj�t− sin vj�t cos vj�t

]∣∣∣∣�t=0= e0
[

cos 0 sin 0− sin 0 cos 0

] = [ 1 0
0 1

] = [I] (4.58)

Now exp([�]�t) in Equation 4.41 has been determined by Equations 4.43,
4.44, and 4.58 and the system’s response is then obtained.

The above procedure to solve system response has been implemented in com-
mercial software packages such as MATLAB® function LSIM. Refer to Appendix A
for details. Note that the above solution procedure for Equation 4.42 is based on
the fact that the control force {u(t)} is known. In an optimal closed-loop control
system, optimal control force {u(t)} is regulated by the feedback of the state vector{Z(t)} alone; the measurements required are those of the response at time-instant t.
This can be done by placing displacement and velocity sensors at each floor level.
The determination of control force by feedback of state vector is called control
algorithms, which are discussed in the following sections.

4.2 CLASSICAL OPTIMAL CONTROL ALGORITHMS FOR SMART

SEISMIC STRUCTURES

Active control algorithms are used to determine the control force from the
measured structural response. They are implemented by means of software in
the digital controller, the control computer. Control algorithms yield a con-
trol law, the mathematical model of the controller, for the active structural
control system. Development and implementation of the control algorithm are
also called controller design. This section reviews the concept of performance
indexes and determination of feedback gain and control force by classical con-
trol algorithms, Riccati optimal active control (ROAC) and pole placement. Then
application of these algorithms to seismic response control systems is discussed
and numerical examples are employed to demonstrate these algorithms. Finally,
advantages and weaknesses of these algorithms for seismic response control are
studied.
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4.2.1 Riccati Optimal Active Control Algorithm
Section 4.1 shows that optimal control force {u(t)} was obtained by the control
law expressed in Equation 4.23, in which the gain matrix [G] is determined by
control algorithms. This section discusses how the ROAC algorithm determines
the gain matrix [G].
4.2.1.1 Performance index

In order to design an optimal control system, the control law should achieve the
control objective, such as maximizing the reduction of structural response with
minimum control energy or control force. However, more reduction of structural
response requires more control force. A performance index is used in this situation
to find a compromise between the need to reduce structural response and the need to
minimize control force. Different quantification of performance indices produces
different types of algorithms. A quadratic index of n variables x1, x2, . . . , xn is
an expression in which each term contains either the square of a variable or the
product of two different variables

J(xk) = n∑
i=1

n∑
j=1

aijxixj = a11x1x1 + a12x1x2 + · · · + a1nx1xn+ a21x2x1 + a22x2x2 + · · · + a2nx2xn+ · · ·+ an1xnx1 + an2xnx2 + · · · + annxnxn (4.59)

where k = 1, 2, . . . , n. By denoting a vector{x} = {x1, x2, . . . xn}T (4.60)

Equation 4.59 can be put into the matrix form

J ({x}) = n∑
i=1

xi

n∑
j=1

aijxj = n∑
i=1

xi([A]{x})i = {x}T[A]{x} (4.61)

in which aij is the (i, j) element of matrix [A].
In the quadratic index J = {x}T[A]{x}, matrix [A] is said to be positive-definite

if the index is positive for all {x} except {x} = {0}; matrix [A] is said to be positive
semidefinite if the index is nonnegative for all {x} and there may be a nonzero
vector {x} for which {x}T[A]{x} = 0. From this definition, we have the following
two theorems:• Theorem 1. Matrix [A] is positive-definite if and only if all eigenvalues

of [A] are positive, and matrix [A] is positive semidefinite if and only
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if all eigenvalues of [A] are nonnegative and some of the eigenvalues
may be zero.• Theorem 2. Matrix [A] is positive-definite if the naturally ordered
principal minors of [A] are all positive, that is,

a11 > 0,
∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ > 0,

∣∣∣∣∣∣ a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ > 0, . . . , |A| > 0 (4.62a)

and matrix [A] is positive semidefinite if the naturally ordered principal
minors of [A] are all nonpositive, that is,

a11 ≥ 0,
∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ ≥ 0,

∣∣∣∣∣∣ a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ ≥ 0, . . . , |A| ≥ 0 (4.62b)

For example, matrix
[

1 0
0 1

]
is positive-definite because its principal

minors 1 >0 and
∣∣∣∣ 1 0

0 1

∣∣∣∣ = 1 > 0; matrix
[

1 0
0 0

]
is positive

semidefinite because its principal minors 1 >0 and
∣∣∣∣ 1 0

0 0

∣∣∣∣ = 0.

The Riccati optimal control algorithm determines control force {u(t)} by
minimizing a standard quadratic index, J , given by

J = 1
2

tf∫
t0

({Z(t)}T[Q]{Z(t)} + {u(t)}T[R]{u(t)}) dt (4.63)

and satisfying the state equation, Equation 4.19. t0 and tf in Equation 4.63 are,
respectively, the initial and final time-instants under consideration. Matrix [Q] is
a (2n × 2n) positive semidefinite symmetrical matrix. If [Q] is positive-definite,
all d.o.f of the system are included in the index; if [Q] is semidefinite matrix with
some zero eigenvalues, some d.o.f of the system may not be included. For example,
if we want to design a system with velocity feedback only, we may pick[Q]2n×2n = [ [0]n×n [0]n×n[0]n×n [I]n×n

]
(4.64)
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where [I]n×n is a unit matrix of nth order. Obviously, [Q] in Equation 4.64 is
positive semidefinite. Then{Z(t)}T[Q]{Z(t)} = {{x(t)}{ẋ(t)}}T [[0] [0][0] [I]]{{x(t)}{ẋ(t)}}= {ẋ(t)}T[I]{ẋ(t)} (4.65)

which means the index J is only related to velocities {ẋ(t)} instead of the full-state

vector {Z(t)} = {{x(t)}{ẋ(t)}} . For active tendon systems, [R] is an (r × r) positive-

definite symmetrical matrix so that all control forces are effective. For an AMD,
[R] is reduced to a scalar number since there is only one control force. [Q] and
[R] are weighting matrices for system response and control force, respectively.
Performance index, J , represents a weighted balance between structural response
and control energy. The performance shown by Equation 4.63 is chosen so as to
minimize the structural response and control energy over the time period from t0 to
tf . When the elements of [Q] are large, system response is reduced at the expense
of increased control force. When the elements of [R] are large, control force is
small but the system response may not be sufficiently reduced.

4.2.1.2 Determination of control force

Assume that the system is controllable, that is, available control force is sufficient to
bring the system from any initial state to any desired final state. Assume also that the
system is observable, that is, system response output yields sufficient information
to determine the state vector at any time instant t. Then the solution to this optim-
ization problem can be obtained by the following variational calculus approach.

Define the HamiltonianH as

H = 1
2
{Z(t)}T[Q]{Z(t)} + 1

2
{u(t)}T[R]{u(t)}+ {λ(t)}T ([A]{Z(t)} + [Bu]{u(t)} − {Ż(t)}) (4.66)

where {λ(t)} of (2N × 1) is the vector of Langrange multipliers.
From the theory of functionals, Euler equations (expressed as follows) are the

necessary conditions for optimality: ∂H∂{Z(t)} − d
dt

( ∂H∂{Ż(t)}) = {0}∂H∂{u(t)} − d
dt

( ∂H∂{u̇(t)}) = {0}∂H∂{λ(t)} − d
dt

( ∂H∂{λ̇(t)}) = {0} (4.67)
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Substituting Equation 4.66 into the first two relationships of Equation 4.67 yields
(note that ∂H/∂{u̇(t)} = 0 as there is no term related to {u̇(t)}) ∂∂{Z(t)} [ 1

2 {Z(t)}T[Q]{Z(t)} + {λ(t)}T[A]{Z(t)}]− d
dt

[ ∂(−{λ(t)}T{Ż(t)})∂{Ż(t)} ] = {0}∂∂{u(t)} [ 1
2 {u(t)}T[R]{u(t)} + {λ(t)}T[Bu]{u(t)}] = {0}

(4.68)

For each term in Equation 4.68, we have∂∂zk

[
1
2
{Z(t)}T[Q]{Z(t)}] = ∂∂zk

1
2

2n∑
i=1

2n∑
j=1

ziqijzj

= 1
2

 2n∑
i=1

ziqik + 2n∑
j=1

qkjzj

 = 1
2

 2n∑
i=1

ziqik + 2n∑
i=1

qkizi


(4.69)

Because [Q] is a symmetrical matrix, qki = qik , i, k = 1, 2, . . . , 2n. Equation
4.69 then becomes∂∂zk

[
1
2
{Z(t)}T[Q]{Z(t)}] = 1

2

( 2n∑
i=1

ziqki + 2n∑
i=1

ziqki

) = 2n∑
i=1

qkizi (4.70)

thus ∂∂{Z(t)} [1
2
{Z(t)}T[Q]{Z(t)}] = [Q]{Z(t)} (4.71)

Similarly,∂∂zk

({λ}T[A]{Z(t)}) = ∂∂zk

 2n∑
i=1

2n∑
j=1

λiaijzj

 = 2n∑
i=1

λiaik = 2n∑
i=1

aikλi (4.72)

thus ∂∂{Z(t)} ({λ}T[A]{Z(t)}) = [A]T{λ} (4.73)

And

d
dt

[ ∂∂ żk
(−{λ(t)}TT{Ż(t)})] = d

dt

[ ∂∂ żk

(− 2n∑
i=1

λi żi

)] = d
dt
(−λk) = −λ̇k

(4.74)
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thus

d
dt

[ ∂∂{Ż(t)} (−{λ(t)}T{Ż(t)})] = −{λ̇(t)} (4.75)

Also∂∂uk

(
1
2
{u(t)}T[R]{u(t)}) = ∂∂uk

1
2

2n∑
i=1

2n∑
j=1

uirijuj

= 1
2

 2n∑
i=1

uirik + 2n∑
j=1

rkjuj

 = 1
2

 2n∑
i=1

uirik + 2n∑
i=1

rkiui


(4.76)

Because [R] is a symmetrical matrix, rik = rki, i, k = 1, 2, . . . , 2n.
Equation 4.76 then becomes∂∂uk

(
1
2
{u(t)}T[R]{u(t)}) = 1

2

( 2n∑
i=1

rkiui + 2n∑
i=1

rkiui

) = 2n∑
i=1

rkiui (4.77)

thus ∂∂ {u(t)}(1
2
{u(t)}T[R]{u(t)}) = [R]{u(t)} (4.78)

Similarly,∂∂{u(t)} ({λ}T[Bu]{u(t)}) = ∂∂uk

 2n∑
i=1

2n∑
j=1

λibijuj

 = 2n∑
i=1

λibik = 2n∑
i=1

bikλi

(4.79)

thus ∂∂{u(t)} ({λ}T[Bu]{u(t)} = [Bu]T{λ(t)} (4.80)

Substituting Equations 4.71, 4.73, 4.75, 4.78, and 4.80 into Equation 4.68 yields{[Q]{Z(t)} + [A]T{λ(t)} + {λ̇(t)} = {0}[R]{u(t)} + [Bu]T{λ(t)} = {0} (4.81)
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From the second equation in Equation 4.81, we obtain{u(t)} = −[R]−1[Bu]T{λ(t)} (4.82)

Since, there is no control at final time tf , that is,{u(tf )} = {0} (4.83)

From Equation 4.83 it can be seen that in order to apply Equation 4.82 to every
arbitrarily selected positive-definite matrix [R]−1, {λ(tf )} should also be {0}. This
is referred to as the transversality condition that must be satisfied by the solution
of Euler equation at the endpoint tf .{λ(tf )} = {0} (4.84)

The first equation in Equation 4.81 expresses the relationship between {λ(t)}
and {Z(t)}. Its solution can be assumed as{λ(t)} = [P(t)]{Z(t)} (4.85)

in which [P(t)] is to be determined. Substituting Equation 4.85 into the first
equation in Equation 4.81 gives[Q]{Z(t)} + [A]T[P(t)]{Z(t)} + [Ṗ(t)]{Z(t)} + [P(t)]{Ż(t)} = 0 (4.86)

where {Ż(t)} can be determined as follows. Because functional H has nothing to
do with {λ̇(t)} and the first two terms in H are not related to {λ(t)}, substituting
Equation 4.66 into the third relationship in Equation 4.67 yields∂∂{λ(t)} [{λ(t)}T ([A]{Z(t)} + [Bu]{u(t)} − {Ż(t)})] = 0 (4.87)

Assume {V(t)} = [A]{Z(t)} + [Bu]{u(t)} − {Ż(t)} (4.88)

and vi(t) is the ith element of {V(t)}. Then we obtain∂∂λk

[{λ(t)}T ([A]{Z(t)} + [Bu]{u(t)− {Ż(t)})]= ∂∂λk

[{λ(t)}T{V(t)}] = ∂∂λk

2n∑
i=1

λivi = vk(t) (4.89)
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Thus ∂∂{λ(t)} [{λ(t)}T{V(t)}] = {V(t)} (4.90)

Combining Equations 4.87, 4.88, and 4.90 yields[A]{Z(t)} + [Bu]{u(t)} − {Ż(t)} = 0 (4.91)

that is, {
Ż(t)} = [A]{Z(t)} + [Bu]{u(t)} (4.92)

A comparison of Equations 4.92 and 4.19 shows that in the Riccati optimal
algorithm, the earthquake excitation ẍg(t) is not considered in determining control
force. This weakness is further discussed in Section 4.3.

Combining Equation 4.82 and Equation 4.85 gives{u(t)} = −[R]−1[Bu]T[P(t)]{Z(t)} (4.93)

Substituting Equation 4.93 into Equation 4.92 yields{Ż(t)} = [A]{Z(t)} − [Bu][R]−1[Bu]T[P(t)]{Z(t)} (4.94)

and similarly substituting Equation 4.94 into Equation 4.86 yields([Q] + [A]T[P(t)] + [Ṗ(t)] + [P(t)][A] − [P(t)][Bu][R]−1[Bu]T[P(t)]) {Z(t)} = {0}
(4.95)

The tranversality condition expressed by Equation 4.84 can be rewritten using
Equation 4.85 [P(tf )]{Z(tf )} = {λ(tf )} = {0} (4.96)

Equations 4.95 and 4.96 are valid for any state {Z(t)} that cannot always be
zero at any time instant. Thus, the nontrivial solution is[Ṗ(t)] + [P(t)][A] + [A]T[P(t)] − [P(t)][Bu][R]−1[Bu]T[P(t)] + [Q] = [0]

(4.97a)[P(tf )] = [0] (4.97b)
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Equation 4.97, the matrix Riccati equation (MRE), is a nonlinear equation

about [P(t)]. The scalar form of MRE can be written as

ṗ(t)+ 2ap(t)− b2
u
r

p2(t)+ q = 0 (4.98)

After the solution of MRE is found, it is substituted into Equation 4.93 to
obtain the optimal control force. MRE can be solved by using various numerical
algorithms [30,47]. One method is to directly use numerical integration, such as
the standard Runge-Kutta method [7].

Note that the solution of MRE is time-dependent. Consequently, the gain matrix
[P(t)] in Equation 4.93 is also time-dependent. When the final time tf approaches
infinity, that is, tf = ∞, it can be shown that the time-dependent MRE becomes
time-invariant. In fact, solution of MRE can quickly reach a steady state. For
example, the first-order system expressed by Equation 4.98 has a step response as
shown in Figure 4.11, which quickly reaches a time-invariant steady state.

For a stable building structure, the Ricatti matrix [P(t)] remains constant over
the entire duration of an earthquake and drops rapidly to zero near tf . In other
words, [P(t)] establishes a stationary state, and MRE becomes time-invariant.
Thus, we can approximate [P(t)] by [Ṗ(t)] = [0] or [P(t)] = [P]; and Equation
4.97 becomes an algebraic Riccati equation (ARE)[P][A] + [A]T[P] − [P][Bu][R]−1[Bu]T[P] + [Q] = 0 (4.99)

Note that ARE is a time-invariant equation, which can be much more easily
solved than MRE [41,43]. Then the control law expressed by Equation 4.93
becomes {u(t)} = −[R]−1[Bu]T[P]{Z(t)} = −[G]{Z(t)} (4.100)

where the control gain matrix[G] = [R]−1[Bu]T[P] (4.101)

is also time-invariant. Owing to this property, it is easier to solve an ARE than an
MRE, and the ARE yields a proportional control law, that is, the control forcest t(a) (b)1

FIGURE 4.11 Step response of first-order system: (a) excitation and (b) response.
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be simplified because the control law can be physically realized by an amplifier.
A time-dependent control law using the MRE is difficult to implement from the
standpoint of hardware realization.

When the ARE is lower-order, it can be solved by longhand calculation.
However, special algorithms must be employed to solve the ARE when the system
becomes higher-order due to the nonlinearity about [P]. An algorithm based on an
iterative technique was presented by Kleinman [41]. Another algorithm developed
by Laub [43] uses an eigenvector approach based on Schur vectors. Refer to these
references for details.

It is worth noting that ROAC algorithm used here is a special case of linear
quadratic regulator (LQR) in modern control theory [37,39]. The LQR quadratic
cost function (performance index) is defined as

J = 1
2

∞∫
0

({Z(t)}T[Q]{Z(t)} + {u(t)}T[R]{u(t)} + 2{Z(t)}T[N]{u(t)}) dt

(4.102)

If the seismic duration is [t0, tf ], above index for seismic structures becomes

J = 1
2

tf∫
t0

({Z(t)}T[Q]{Z(t)} + {u(t)}T[R]{u(t)} + 2{Z(t)}T[N]{u(t)}) dt

(4.103)

The associated ARE is[P][A] + [A]T[P] − ([P][Bu] + [N]) [R]−1
([Bu]T[P] + [N]T)+ [Q] = 0

(4.104)

And the control gain matrix is given by[G] = [R]−1
([Bu]T[P] + [N]T) (4.105)

Note that Equation 4.104 degenerates into an ARE Equation 4.99 by setting
[N] = [0]. Thus, LQR algorithm uses a more general ARE. Riccati and LQR
algorithms have been implemented in commercial software packages such as
MATLAB® functions CARE and LQR. Refer to Appendix A for details.
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Example 4.2.1

Solve the algebraic Ricatti equation by longhand calculation. Matrices are
given as[A] = [ 0 1

0 0

]
, [Bu] = { 0

1

}
, R = 1, Q = [ 1 0

0 2

]
Solution
Substituting these matrices into the ARE equation 4.99 yields[

p11 p12
p21 p22

] [
0 1
0 0

]+ [ 0 0
1 0

] [
p11 p12
p21 p22

]− [ p11 p12
p21 p22

] [
0
1

] [1]−1 [ 0 1
] [ p11 p12

p21 p22

]+ [ 1 0
0 2

] = [ 0 0
0 0

]
(a)

where pij (i, j = 1, 2) is the element of Ricatti matrix [P] at ith row, jth
column.[

0 p11
0 p21

]+ [ 0 0
p11 p12

]− [ p12
p22

] [
0 1

] [ p11 p12
p21 p22

]+ [ 1 0
0 2

] = [ 0 0
0 0

]
(b)[

0 p11
p11 p21 + p12

]− [ 0 p12
0 p22

] [
p11 p12
p21 p22

]+ [ 1 0
0 2

] = [ 0 0
0 0

]
(c)[−p12p21 + 1 p11 − p12p22

p11 − p22p21 p21 + p12 − p2
22 + 2

] = [ 0 0
0 0

]
(d) p12p21 = 1

p11 = p12p22
p11 = p22p21

}
p2

22 = p12 + p21 + 2

⇒ p21 = p12

}⇒ p21 = p12 = 1

⇒ p2
22 = 4⇒ p22 = 2 (e)

Thus  p11 = p12p22 = 2
p21 = p12 = 1

p22 = 2
⇒ [P] = [ 2 1

1 2

]
(f )
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Example 4.2.2

A two-story shear building is installed with active tendons on each floor, as
shown in Figure 4.12. Structural properties are mass m1 = 0.136 k-s2/in.
(2.382 × 104 kg), m2 = 0.066 k-s2/in. (1.156 × 104 kg); stiffness k1 =
30.70 k/in. (5.378 × 106 N/m), k2 = 44.30 k/in. (7.760 × 106 N/m); and
1% damping ratios in both modes. Assume ground acceleration ẍg(t) has the
shape shown in Figure 4.12c. Use ROAC algorithm to design the control
system and find the response of the controlled structure.

Solution
(1) Mathematical model of the system: Motion equation of the controlled
structure is[M]{ẍ(t)} + [C]{ẋ(t)} + [K]{x(t)} = [γ ]{u(t)} + [δ]ẍg(t) (a)

where {x(t)} = {x1(t) x2(t)}T (b){u(t)} = {u1(t) u2(t)}T (c)

(a) (b) 

(c)

0 0.5 1.0 t (s)

0.3

c2c1

m2m1xg xg

m2 (x2 + xg)m1 (x1 + xg) c1 x1    k1 x1

x2x1

u2u2 u1T1

T2T2

c2 (x2 – x1) k2 (x2 – x1)c2 (x2 – x1) k2 (x2 – x1)
k1

k2xg (g)

FIGURE 4.12 (a) Two-story structure with tendon control, (b) free-body diagram, and
(c) excitation.
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0 m2

] = [ 0.136
0.066

]
(d)[K] = [ k1 + k2 −k2−k2 k2

] = [ 75.00 −44.30−44.30 44.30

]
(e)[γ ] = [−1 1

0 −1

]
(f ){δ} = −{m1

m2

} = −{ 0.136
0.066

}
(g)

and the damping matrix is given by [7][C] = α[M] + β[K] (h)

where α = 2ω1ω2
ζ1ω2 − ζ2ω1ω2

2 − ω2
1

, β = 2(ζ2ω2 − ζ1ω1)ω2
2 − ω2

1
(i)

In Equation i above, ω1 and ω2 are first and second natural frequencies; ζ1
and ζ2 are damping ratios of first and second modes that are given asζ1 = ζ2 = 1% = 0.01 (j)ω1 and ω2 are roots of the characteristic equation∣∣∣−ω2[M] + [K]∣∣∣ = 0 (k)∣∣∣∣75.00− 0.136ω2 −44.30−44.30 44.30− 0.066ω2

∣∣∣∣ = 0 (l)ω4 − 1222.683ω2 + 151516.266 = 0 (m)ω1 = 11.829 rad/s, ω2 = 32.905 rad/s (n)

Substituting Equations j and n into Equation i yieldα = 2(11.829)(32.905)(0.01)(32.095− 11.829)
32.9052 − 11.8292 = 0.174β = 2(0.01)(32.905− 11.829)

32.9052 − 11.8292 = 4.471× 10−4
(o)



“CHAP04” — 2008/1/18 — 11:51 — page 195 — #37

Smart Seismic Structures Using Active Control Systems 195

Thus,[C] = 0.174
[

0.136 0
0 0.066

]+ 4.47× 10−4
[

75.00 −44.30−44.30 44.30

]= [ 0.0572 −0.0198−0.0198 0.0313

]
(p)

By defining state vector{Z(t)} = {x1(t) x2(t) ẋ1(t) ẋ2(t)}T (q)

Equation a can be rewritten as state equation{Ż(t)} = [A]{Z(t)} + [Bu]{u(t)} + {Br}ẍg(t) (r)

where [A] = [ [O] [I]−[M]−1[K] −[M]−1[C] ] , [Bu] = [ [0][M]−1[γ ] ] ,{Br} = [ {0}[M]−1{δ} ] (s)

Since [M]−1 = [ 0.136 0
0 0.066

]−1 = [ 7.353 0
0 15.152

][M]−1[K] = [ 7.353 0
0 15.152

] [
75.00 −44.30−44.30 44.30

]= [ 551.475 −325.738−671.234 671.234

][M]−1[C] = [ 7.353 0
0 15.152

] [
0.0572 −0.0198−0.0198 0.0313

]= [ 0.421 −0.146−0.300 0.474

][M]−1[γ ] = [ 7.353 0
0 15.152

] [−1 1
0 −1

] = [−7.353 7.353
0 −15.152

][M]−1{δ} = [ 7.353 0
0 15.152

]{−0.136−0.066

} = {−1−1

} (t)
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0 0 | 0 1−−−−− −−−−− | − −− −−−−−551.475 325.738 | −0.421 0.146

671.234 −671.234 | 0.300 −0.474

[Bu] =  0 0
0 0−−−−− −−−−−−7.353 7.353
0 −15.152

 , {Br} =  0
0−1−1

 (u)

(2) Controller design: Let[Q] =  1.0
1.0

1.0
1.0

 , [R] = [ 0.01 0
0 0.01

]
(v)

The Riccati matrix [P] satisfies Equation 4.99. With matrices [A], [Bu],[Q], and [R] given in Equations u and v, the Riccati matrix is obtained as[P] =  5.068 −2.176 1.368× 10−2 1.168× 10−2

3.962 −1.078× 10−2 −4.958× 10−3

1.304× 10−2 4.241× 10−3

symm 8.271× 10−3

 (w)[R]−1[Bu]T = [ 0.01 0
0 0.01

]−1

 0 0
0−−−−−−− 0−−−−−−−−7.353 7.353
0 −15.152

T= [ 100 0
0 100

] [
0 0| −7.353 0
0 0| 7.353 −15.152

]= [ 0 0 −735.3 0
0 0 735.3 −1515.2

]
(x)

Thus, the control gain matrix can be obtained from Equation 4.101 as[G] = [R]−1[Bu]T[P]
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0 0 735.3 −1515.2

]×  5.068 −2.176 1.368× 10−2 1.168× 10−2

3.962 −1.078× 10−2 −4.958× 10−3

1.304× 102 4.241× 10−3

symm 8.271× 10−3

= [−10.06 7.93 −9.59 −3.12−7.64 −0.42 3.16 −9.41

]
(y)

(3) Calculation of controlled-structure response: The transformation matrix
[T ] is eigenvector of matrix [A] that is calculated as[T ] = −6.653× 10−4 −6.690× 10−2 1.861× 10−4 1.864× 10−2−8.417× 10−4 −8.453× 10−2 −3.035× 10−4 −3.038× 10−2

0.7915 0 −0.6132 0
1.000 0 1.000 0

 (z)[T ]−1 =  4.208× 10−4 3.925× 10−4 0.7119 0.4365−8.421 −5.165 −7.084× 10−3 −4.344× 10−3−4.209× 10−4 −3.924× 10−4 −0.7119 0.5635
23.430 −18.540 7.097× 10−3 −5.638× 10−3

 (aa)[T ]−1[Bu] =  4.208× 10−4 3.925× 10−4 0.7119 0.4365−8.421 −5.165 −7.084× 10−3 −4.344× 10−3−4.209× 10−4 −3.924× 10−4 −0.7119 0.5635
23.430 −18.540 7.09× 10−3 −5.638× 10−3

 0 0
0 0−7.353 7.353
0 −15.152

 =  −5.235 −1.379
0.052 0.014
5.235 −13.770−0.052 0.138

 (bb)[T ]−1{Br} =  4.208× 10−4 3.925× 10−4 0.7119 0.4365−8.421 −5.165 −7.084× 10−3 −4.344× 10−3−4.209× 10−4 −3.924× 10−4 −0.7119 0.5635
23.430 −18.540 7.097× 10−3 −5.638× 10−3

 0
0−1−1

 =  −1.148
1.143× 10−2

0.1484−1.459× 10−3

 (cc)

From Equation 4.32 [�] = [T ]−1 [A][T ] we obtain

[�] = −0.1183 11.829 | 0 0−11.829−−− −0.1183−−− | 0−−− 0−−−
0 0 | − 0.3291 32.093
0 0 | −32.903 −0.3291

 (dd)
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Let the time increment be �t = 0.01 s; then Equation 4.44 yields

exp([�]�t) =  exp(−0.1183× 0.01) [ cos(11.829× 0.01) sin(11.829× 0.01)− sin(11.829× 0.01) cos(11.829× 0.01) ][0]2×2[0]2×2

exp(−0.3291× 0.01) [ cos(32.903× 0.01) sin(32.903× 0.01)− sin(32.903× 0.01) cos(32.903× 0.01) ] =  0.9988
[

0.9930 0.1180−0.1180 0.9930

] [0]2×2[0]2×2 0.9967
[

0.9464 0.3231−0.3231 0.9464

] =  0.9918 0.1179 0 0−0.1179 0.9918 0 0
0 0 0.9432 0.3221
0 0 −0.3221 0.9432

 (ee)

At time to = 0.00 s, initial conditions are

ẍg(0) = 0, {u(0)} = {0}, {Z(0)} = {0} (ff)

From Equations 4.28, 4.33, and 4.39 we obtain{ψ(0)} = [T ]−1{Z(0)} = {0}{�(0)} = [T ]−1{Bu}{u(0)} + [T ]−1{Br}ẍg(0) = {0}{�(0)} = exp([0]){�(0)} = {0} (gg)

At time t1 = �t = 0.01 s.{�(t1)} = [T ]−1[Bu]{u(t1)} + [T ]−1{Br}ẍg(t1)= {0} + −1.148
1.143× 10−2

0.1484−1.459× 10−3

[0.01
0.5

(0.3)(386.4)]=  −2.662
2.649× 10−2

0.344−3.383× 10−3

 (hh)

where control force {u(t)} is treated as zero between t0 = 0 and t1 = �t. Rect-
angular rule is used for approximation of {u(t)}, which means between k�t
and (k + 1)�t, {u(t)} = {u(k�t)}, and Equation 4.33 becomes Equation hh.
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From Equation 4.40, we have{ψ(t1)} = {�(t1 −�t)} + {�(t1)} �t
2= {�(0)} + −2.662

2.649× 10−2

0.344−3.383× 10−3

 0.01
2
= −1.331× 10−2

1.325× 10−4

1.720× 10−3−1.692× 10−5

 (ii)

The state vector is then obtained from Equation 4.42{Z(t1)} = [T ]{ψ(t1)}= −6.653× 10−4 −6.690× 10−2 1.861× 10−4 1.864× 10−2−8.417× 10−4 −8.453× 10−2 −3.035× 10−4 −3.038× 10−2

0.7915 0 −0.6132 0
1.0 0 1.0 0

× −1.331× 10−2

1.325× 10−4

1.720× 10−3−1.692× 10−5

= −4.404× 10−9−5.188× 10−9−1.159× 10−2−1.159× 10−2

 (jj)

Using Equation 4.23 and numerical values in Equations y and jj, we obtain{u(t1)} = −[G]{Z(t1)}= − [−10.06 7.93 −9.59 −3.12−7.64 −0.42 3.16 −9.41

]−4.404× 10−9−5.188× 10−9−1.159× 10−2−1.159× 10−2

= {−0.1473−0.0724

}
kips (kk)

At t2 = 2, �t = 0.02 s, t2 −�t = t1, the above procedures are repeated{�(t2)} = [T ]−1[Bu]{u(t2)} + [T ]−1{Br}ẍg(t2)= −5.235 −1.379
0.052 0.014
5.235 −13.770−0.052 0.138

{−0.1473−0.0724

}
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1.143× 10−2

0.1484−1.459× 10−3

[0.02
0.5

(0.3)(386.4)]=  0.871−8.670× 10−3

0.227−2.280× 10−3

+−5.325
0.053
0.688−0.007

 = −4.454
0.044
0.915−0.009

 (ll){ψ(t2)} = {�(t2 −�t)} + {�(t2)} �t
2
= {�(t1)} + {�(t2)} �t

2= −2.637× 10−2

3.401× 10−3

3.233× 10−3

1.140× 10−3

+−4.454
0.044
0.915−0.009

 0.01
2
= −4.864

0.362
0.781−0.118

× 10−2

(mm)

where{�(t1)} = exp([�]�t) {�(t1)}�t=  0.9918 0.1179 0 0−0.1179 0.9918 0 0
0 0 0.9432 0.3221
0 0 −0.3221 0.9432

 −2.662
2.649× 10−2

0.344−3.383× 10−3

 (0.01) (nn)=  −2.637× 10−2

3.401× 10−3

3.233× 10−3−1.140× 10−3

{Z(t2)} = [T ]{ψ(t2)}=  −6.653× 10−4 −6.690× 10−2 1.861× 10−4 1.864× 10−2−8.417× 10−2 −8.453× 10−2 −3.035× 10−4 −3.038× 10−2

0.7915 0 −0.6132 0
1.0 0 1.0 0

 −4.864
0.362
0.781−0.118

× 10−2 =  −2.230× 10−4−2.232× 10−4−4.329× 10−2−4.080× 10−2

 (oo){u(t2)} = −[G]{Z(t2)}= −[ −10.06 7.93 −9.59 −3.12−7.64 −0.42 3.16 −9.41

] −2.230× 10−4−2.232× 10−4−4.329× 10−2−4.080× 10−2

 = { −0.543−0.249

}
kips

(pp)
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4.2.2 Pole Placement Algorithm
Pole placement method, also referred to as pole assignment method, is another
effective classical algorithm in modern control theory [37,39]. As discussed in
Section 4.1.3, the plant matrix [A] of open-loop system described by Equation
4.19 determines the system dynamics in that the eigenvalues of matrix [A] provide
the open-loop modal damping and stiffness characteristics. Similarly, the eigen-
values of plant matrix [Ac] for the closed-loop system described by Equation
4.24 defines the closed-loop modal damping and natural frequencies. As shown
by Equation (4.24b), the closed-loop plant matrix [Ac] = [A] − [Bu][G] and its
eigenvalues are generally different from those of open-loop plant matrix [A]. This
is because the active control modified the system plant matrix by feedback gain
[G] and thus altered the modal damping ratios and frequencies. From the theory
of structural dynamics, modal damping and frequencies determines a system’s
behavior and response to external excitations. Thus, the desired eigenvalues of the
controlled system can be selected first based on the required response, and then the
corresponding feedback control gain is determined by these preselected closed-
loop system eigenvalues (poles). This control strategy led to the pole placement
algorithm, which have been widely applied in electrical and mechanical fields
[37,40]. Compared to Riccati/LQR algorithms that determine optimal feedback
gain directly by solving Riccati equations, pole placement algorithm derives the
feedback gain such that the closed-loop system has preselected poles. A system
must be fully controllable in order to use pole placement method to design the feed-
back controller. Several pole placement algorithms have been developed [2,39,40]
and readers can refer to these publications for details. Pole assignment algorithms
are also implemented in commercial software packages such as MATLAB® ACKER
and PLACE functions. Refer to Appendix A for details.

Application of pole placement algorithm to smart civil engineering structures
is very promising and convenient. This is because structural wind response nor-
mally has only one dominant mode, and structural seismic response typically only
has a few significant modes. The small number of significant modes makes the
closed-loop eigenvalues be easily and clearly selected to achieve a control goal,
as attentions only need to be paid to the significant modes.

Example 4.2.3

Consider the active-controlled structure in Example 4.2.2. Use pole placement
method to design the active control system with velocity feedback so that the
closed-loop system doubles the open-loop modal damping.

Solution
The state equation of the system has been derived in Example 4.2.2 as{

Ż(t)} = [A] {Z(t)} + [Bu]u(t)+ {Br} ẍg(t) (a)
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where the coefficient matrices and vector are[A] = [ [0] [I]−[M]−1[K] −[M]−1[C] ]=  0 0 | 1 0

0 0 | 0 1−−−−− −−−−− | − −− −−−−−551.471 325.735 | −0.421 0.146
671.212 −671.212 | 0.300 −0.474

 (b)[Bu] =  0 0
0 0−−−−− −−−−−−7.353 7.353
0 −15.152

 , {Br} =  0
0−1−1

 (c)

As noted, the poles of this open-loop system are the eigenvalues of
plant matrix [A]. They can be easily solved by MATLAB® function
eig(A) as {

p1,2 = −0.1183± 11.8289j
p3,4 = −0.3291± 32.9035j

(d)

When the system damping ratios and natural frequencies are known, the
system poles can also be calculated by Equation 4.22p1,2 = −ζ1ω1 ±√1− ζ 2

1ω2
1j

p3,4 = −ζ2ω2 ±√1− ζ 2
2ω2

2j
(e)

Thus, the poles in Equation d correspond to the following modal damping
ratios and frequencies, respectively{ζ1 = 0.01 ω1 = 11.830 rad/sζ1 = 0.01 ω2 = 32.905 rad/s (f)

And mode shapes are[φ] = [φ1 φ2] = [ 0.621 −0.523
0.784 0.853

]
(g)
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From the theory of structural dynamics [7] we have[φ]−1 (−[M]−1[K]) [φ] = [−ω2
1 0

0 −ω2
2

][φ]−1 (−[M]−1[C]) [φ] = [−2ζ1ω1 0
0 −2ζ2ω2

] (h)

Augmenting the mode shapes into the following form[�] = [ [φ] [0][0] [φ] ] (i)

Then we have the modal decomposition for plant matrix of the state
equation[�]−1[A][�] = [ [φ]−1 [0][0] [φ]−1

] [ [0] [I]−[M]−1[K] −[M]−1[C] ] [ [φ] [0][0] [φ] ]= [ [0] [I][φ]−1 (−[M]−1[K]) [φ] [φ]−1 (−[M]−1[C]) [φ] ]=  0 0 1 0
0 0 0 1−ω2

1 0 −2ζ1ω1 0
0 −ω2

2 0 −2ζ2ω2


(j)

From the theory of Linear Algebra, it can be easily proved that matrix[A] has the same eigenvalues as matrix [�]−1[A][�]. As specified, modal
damping ratios of the closed-loop system are double of those of the open-
loop system. Thus, the closed-loop system will have the following modal
damping ratios and frequencies{ ζ̂1 = 0.02 ω̂1 = 11.830 rad/sζ̂2 = 0.02 ω̂2 = 32.905 rad/s

(k)

Then substituting Equation k into Equation 4.22 yields the desired closed-
loop poles {

p̂1,2 = −0.2366± 11.8271j
p̂3,4 = −0.6581± 32.8985j (l)

According to Equation 4.26, the gain matrix of velocity feedback can be
assumed as [G] = [ 0 0 g1 g2

0 0 g3 g4

]
(m)
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where g1 ∼ g4 are four unknowns to be determined. Then substituting
Equations b, c, and m into Equation 4.24b yields closed-loop plant matrix[Ac] = [A] − [Bu][G]=  0 0 1 0

0 0 0 1−551.471 325.735 −0.421 0.146
671.212 −671.212 0.300 −0.474

−  0 0
0 0−7.353 7.353
0 −15.152

[ 0 0 g1 g2
0 0 g3 g4

]=  0 0 1
0 0 0−551.471 325.735 −0.421− 7.353g1 + 7.353g3

671.212 −671.212 0.300− 15.152g3

0
1

0.146− 7.353g2 + 7.353g4−0.474− 15.152g4

 (n)

Thus from Equation i[�]−1[Ac][�] =  0 0 1 0
0 0 0 1−ω̂2

1 0 −2ζ̂1ω̂1 0
0 −ω̂2

2 0 −2ζ̂2ω̂2

=  0 0 1 0
0 0 0 1−139.937 0 −0.473 0
0 −1082.746 0 −1.316

 (o)

With left multiplying [�] and right multiplying [�]−1, the above equation
becomes [Ac] =  0 0 1 0

0 0 0 1−551.471 325.735 −0.841 0.291
671.212 −671.212 0.600 −0.948

 (p)
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Comparing Equations n and p yields the following four equations:−0.421− 7.353g1 + 7.353g3 = 0.841
0.146− 7.353g2 + 7.353g4 = 0.291
0.300− 15.152g3 = 0.600−0.474− 15.152g4 = −0.948

(q)

that can solve the four unknown elements of the gain matrix as follows:

g1 = 0.0374, g2 = 0.0115, g3 = −0.0198, g4 = 0.0313 (r)

Then substituting Equation r into Equation m yields the velocity feedback
control gain matrix [G] = [ 0 0 0.0374 0.0115

0 0 −0.0198 0.0313

]
(s)

With the feedback gain matrix determined, the closed-loop plant matrix
can be calculated by Equation 4.24b, and then the seismic response of the
controlled structure can be solved by the procedure described in Section 4.1.5,
the same as Example 4.2.2.

4.3 DEVELOPMENT OF ACTIVE CONTROL ALGORITHMS FOR

SEISMIC SMART STRUCTURES

As noted in Section 4.2, ROAC algorithm is based on performance integrated over
the entire duration of the earthquake excitation. The control force is determined
by minimizing this performance index J defined in Equation 4.63. This min-
imization is a variational problem with two fixed boundary values at t = t0
and t = tf . The solution of this variational problem means making a family
of comparison functions and finding the extremal from them (see Figure 4.13).
The extremal corresponds to the minimum value of performance index J . How-
ever, there is no guarantee that this extremal is optimum at any time-instant
ti or any time interval [ti−1, ti]. Furthermore, the earthquake excitation term
is ignored in the derivation of the Riccati matrix [P]. Because of this neg-
lect, the minimum value of the performance is always zero. In other words,
the most optimum case without considering the external excitation is the sys-
tem without response. Obviously, this is not the original objective of the active
control design. The shortcomings of ROAC led to the development of instant-
aneous optimal active control (IOAC) algorithm, as discussed in the following
section.
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Extremal

Comparison functions
f t0 ti–1 ti tf t
FIGURE 4.13 Solution of variational problems with fixed ends.

4.3.1 Instantaneous Optimal Active Closed-Loop
Control Algorithm

Instead of minimizing the integral performance index in the Riccati algorithm, a
sequence of single-stage processes was minimized to achieve optimality at each
instant of time. This concept led to the advent of the IOAC and “per-interval”
optimal controller [16,17,48]. Yang, Akbarpour, and Ghaemmaghami [48] adop-
ted this idea for control of earthquake-excited structures. Cheng and Pantelides
[13–15] extended the same concept to the optimum design of seismic struc-
tures equipped with AMD and active tendons. Cheng and Pantelides also applied
this algorithm to optimal control of wind-excitated structures [16–18]. IOAC
algorithm derives optimal control force {u(t)} by minimizing an instantaneous
time-dependent performance index Jp(t) rather than ROAC integral performance
index J

Jp(t) = {Z(t)}T[Q]{Z(t)} + {u(t)}T[R]{u(t)} (4.106)

where {Z(t)} and {u(t)} are defined in Equations 4.20a and 4.4f, respectively.
Performance index Jp(t) is minimized at every time-instant t in the interval of
earthquake duration, t0 ≤ t ≤ tf . Note that optimal control force {u(t)} also
satisfies the state equation, Equation 4.19, and its alternative form, Equation 4.42.
Substituting Equation 4.42 into Equation 4.106 yields

Jp(t) = {[T ]({�(t −�t)} + {�(t)}(�t
2

))}T [Q] (4.107)× {[T ]({�(t −�t)} + {�(t)}(�t
2

))}+ {u(t)}T[R]{u(t)}
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which can be simplified as

Jp(t) = ({�(t −�t)}T + {�(t)}T (�t
2

)) [T ]T[Q][T ]× ({�(t −�t)} + {�(t)}(�t
2

))+ {u(t)}T[R]{u(t)} (4.108)

The Lagrangian function is given by

LF = {Z(t)}T[Q]{Z(t)} + {u(t)}T[R]{u(t)}+ {λ(t)}T ({Z(t)} − [T ] {�(t −�t)} − [T ] {�(t)} (�t/2)) (4.109)

Substituting {�(t)} of Equation 4.33 into above equation yields

LF = {Z(t)}T[Q]{Z(t)} + {u(t)}T[R]{u(t)}+ {λ(t)}T ({Z(t)} − [T ] {�(t −�t)} − ([Bu]{u(t)} + [Br]ẍg(t)) (�t/2))
(4.110)

The necessary conditions for optimality are ∂LF∂{Z(t)} = {0} ⇒ 2[Q]{Z(t)} + {λ(t)} = {0}∂LF∂{u(t)} = {0} ⇒ 2[R]{u(t)} − [Bu]T{λ(t)}(�t
2

) = {0}∂LF∂{λ(t)} = {0} ⇒ {Z(t)} − [T ] {�(t −�t)} − ([Bu]{u(t)} + [Br]ẍg(t)) {�(t)}(�t
2

)
(4.111)

Then optimal control force {u(t)} can be solved from above equations as{u(t)} = −(�t
2

) [R]−1[Bu]T[Q]{Z(t)} (4.112)

Thus, the optimal control forces are proportional to the measured structural
response.

Equation 4.112 shows that, the active control force is proportional to the
time increment. This means the feedback gain matrix by IOAC is quite sens-
itive to incremental time intervals used in response analysis [21,22]. For a
structure subjected to a certain earthquake loading, using different time inter-
vals may yield various control forces and structural responses. Such nonuniform
results are obviously irrational. The second shortcoming involves both Riccati
and IOAC algorithms. A global optimum point cannot be discerned from the
algorithms’ integral performance index curves with the change of their control
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design parameter, Q/R ratios. Actually, according to the definition of their per-
formance indices, the minimum value of the integral performance index curves
versus Q/R ratios for these two algorithms is always zero. This corresponds to
the case without active control that is absolutely contrary to the original object-
ive of the active control design. These shortcomings led to the development of a
technique called generalized optimal active control (GOAC) algorithm for linear
and nonlinear seismic structures [19–21,23,24] to be discussed in the subsequent
sections.

4.3.2 Generalized Optimal Active Control Algorithm
In order to overcome the flaws in ROAC and IOAC algorithms, Cheng and Tian
developed a technique called GOAC algorithm for seismic-resistant structures
[19–21]. This section presents details of this GOAC algorithm.

4.3.2.1 Generalized performance index for GOAC algorithm

In order to obtain an optimal solution for state vector {Z(t)} and control force vec-
tor {u(t)}, a performance index is defined and minimized. Equation 4.63 expresses
standard quadratic performance index J . Clearly, the standard optimum controller
is based on a fixed-end optimization problem for integrand J . However, this optim-
ization may not be the physical case in discrete time domain for digital controllers.
By dividing duration [t0, tf ] into n segments, Equation 4.63 can be written as

J = n∑
i=1

1
2

∫ ti

ti−1

({Z(t)}T[Q]{Z(t)} + {u(t)}T [R]{u(t)}) dt (4.113)

In Equation 4.63, integrand J has the following boundary values:{{Z(t0)} = {Z(tf )} = {0}{u(t0)} = {u(tf )} = {0} (4.114)

The performance index J in Equation 4.113 will be integrated step by step in
discrete time domain. At each step “i”, the initial value of the state vector, {Z(ti−1)},
is specified from the earlier step, but the final value, {Z(ti)} , is unknown. For
each integration from ti−1 to ti (i = 1, 2, . . . , n), at least one of the two boundary
values is then unspecified. The minimization of integrand J in Equation 4.113
is related to a free-end boundary value problem [26] as shown in Figure 4.14.
There are many families of comparison functions corresponding to the different
endpoint values. In Figure 4.14, the value at t = ti−1 is specified, and the value
at t = ti is unspecified and this end is movable, as points 1, 2, 3, and 4 shown in
Figure 4.14. By employing the Euler’s equation to this free-end problem, a series
of extremals can be found, each refers to the optima of one end point at t = ti.
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Extremal 1
Extremal 2
Extremal 3
Extremal 4ti –1 tif t4

3
2
1

FIGURE 4.14 Solution of variational problems with one fixed end and one movable end.

In order to find the optimal function among these extremals, transversal-
ity conditions at t = tf must be employed. {Z(ti)} is unknown and should
also be minimized, the performance index should include a function of{Z(ti)}. Thus, a new performance index is defined at time interval [ti−1, ti] as
[19–21]

Ji = g ({Z(ti)})+ 1
2

∫ ti

tt−1

({Z(t)}T[Q]{Z(t)} + {u(t)}T[R]{u(t)}) dt= g ({Z(ti)})+ 1
2

∫ ti

ti−1

f̄ (t) dt (4.115)

where g({Z(ti)}) can be chosen in the form of

g({Z(ti)}) = 1
2
{Z(ti)}T[S][Z(ti)} (4.116)

that is a function for optimizing the end conditions at each end point ti; [S] and
[Q] of 2n× 2n are positive semidefinite matrix; [R] or r × r is a positive-definite
matrix and

f̄ (t) = {Z(t)}T[Q]{Z(t)} + {u(t)}T[R]{u(t)} (4.117)

Recall that the problem involved is a free-end boundary value problem. There-
fore, the minimization of generalized performance index J that determines the
control force, should meet not only the Euler equations but also the transversality
conditions at endpoint ti. These requirements are further discussed in the following
section.



“CHAP04” — 2008/1/18 — 11:51 — page 210 — #52

210 Smart Structures: Innovative Systems for Seismic Response Control
4.3.2.2 Determination of feedback gain matrix and control

force

By introducing vector of multipliers {λ(t)} of 2n× 1 and considering earthquake
excitation, an augmented function is formed as

F(t) = f̄ (t)+ {λ(t)}T {f (t)}= {Z(t)}T[Q]{Z(t)} + {u(t)}T[R]{u(t)}+ {λ(t)}T ([A]{Z(t)} + [Bu]{u(t)} + {Br}ẍg(t)− {Ż(t)}) (4.118)

where f (t) is defined by the system’s state-variable representation, Equation
4.19, as

f (t) = [A]{Z(t)} + [Bu]{u(t)} + {Br}ẍg(t)− {Ż(t)} (4.119)

Euler equations can be expressed as ∂F(t)∂{Z(t)} − d
dt

( ∂F(t)∂{Ż(t)) = {0}∂F(t)∂{u(t)} − d
dt

( ∂F(t)∂{u̇(t)) = {0} (4.120)

Substitute Equation 4.118 into Equation 4.120 and note in Section 4.2.1.2 that
we proved  ∂∂{Z(t)} [1

2
{Z(t)}T [Q]{Z(t)}] = [Q]{Z(t)}∂∂{Z(t)} [{λ(t)}T[A]{Z(t)}] = [A]T{λ(t)}

d
dt

[ ∂∂{Ż(t)} (−{λ(t)}T{Ż(t)})] = −{λ̇(t)}∂∂{u(t)} ({u(t)}T[R]{u(t)}) = [R]{u(t)}∂∂{u(t)} ({λ(t)}T[Bu]{u(t)}) = [Bu]T{λ(t)} (4.121)

as shown in Equations 4.71, 4.73, 4.75, 4.78, and 4.80. Then we obtain{0} = ∂F(t)∂{Z(t)} − d
dt

( ∂F(t)∂{Ż(t)})= ∂({Z(t)}T[Q]{Z(t)} + {λ(t)}T [A]{Z(t)})∂{Z(t)} − d
dt

(−∂({λ(t)}T {Ż(t)})∂{Ż(t)} )= [Q]{Z(t)} + [A]T{λ(t)} + {λ̇(t)} (4.122)
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dt

( ∂F(t)∂{u̇(t)})= ∂∂{u(t)} (1
2
{u(t)}T[R]{u(t)} + {λ(t)}T[Bu]{u(t)})− 0= [R]{u(t)} + [Bu]T{λ(t)} (4.123)

End conditions of the system governed by Equation 4.19 are ti−1 = t0 + i−1∑
k=1

�tk{Z(ti−1)} = {Zi−1}
ti = ti−1 +�ti = t0 + i−1∑

k=1
�tk +�ti = t0 + i∑

k=1
�tk

(4.124)

where �tk(k = 1, 2, . . . , n) is the time increment for the kth segment of time
duration [t0, tf ], that is,

∑n
k=1�tk = tf − t0. Time segments may have time

increments of different values.
Equation 4.124 can be rewritten as{�} = �1�2�3

 = (ti−1 − t0)− i−1∑
k=1

�tk{Z(ti−1)} −{Zi−1}(ti − t0) − i∑
k=1

�tk

 = {0} (4.125)

By introducing multiplier {µ} and forming an augmented function

G = g ({Z(ti)})+ {µ}T{�} (4.126)

the tranversality condition is expressed as

dG− [{ ∂F(t)∂{Ż(t)}}T {
Ż(t)}− F(t)] dt

∣∣∣∣∣ti
ti−1

+ { ∂F(t)∂{Ż(t)}}T

d {Z(t)}∣∣∣∣∣∣ti
ti−1

= 0

(4.127)

Since function G is related to ti−1, ti,{Z(ti)}, and {Z(ti−1)}, we have

dG = ∂G∂ti−1
dti−1 + ∂G∂ti

dti + ∂G∂{Z(ti−1)}d{Z(ti−1)} + ∂G∂{Z(ti)}d{Z(ti)}
(4.128)
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and{ ∂F(t)∂{Ż(t)}}T {

Ż(t)}− F(t) dt

∣∣∣∣∣∣ti
ti−1

= { ∂F(ti)∂{Ż(ti)}}T {
Ż(ti)}− F(ti) dti− { ∂F(ti−1)∂{Ż(ti−1)}}T {

Ż(ti−1)}− F(ti−1) dti−1 (4.129){ ∂F(t)∂{Ż(ti)}}T

d{Z(t)}∣∣∣∣∣∣ti
ti−1

= { ∂F(ti)∂{Ż(ti)}} d{Z(ti)} − { ∂F(ti−1)∂{Ż(ti−1)}} d{Z(ti−1)}
(4.130)

Substituting Equations 4.128, 4.129, and 4.130 into Equation 4.127 yields ∂G∂ti−1
+ { ∂F∂{Ż(ti)}}T {

Ż(t)}− F(t)
t=ti−1

dti−1+ ∂G∂ti
− { ∂F∂{Ż(t)}}T {

Ż(t)}+ F(t)
t=ti

dti+ [ ∂G∂{Z(ti−1)} − { ∂F(ti−1)∂{Ż(ti−1)}}] d{Z(ti−1)}+ [ ∂G∂{Z(ti)} + ∂F(ti)∂{Ż(ti)}] d{Z(ti)} = 0 (4.131)

Thus  ∂G∂ti−1
+ { ∂F(t)∂{Ż(t)}}T {Z(t)} − F(t)∣∣∣∣∣∣

t=ti−1

= 0∂G∂ti
− { ∂F(t)∂{Ż(t)}}T {

Ż(t)}+ F(t)∣∣∣∣∣∣
t=ti

= 0∂G∂{Z(ti−1)} − { ∂F(t)∂{Ż(t)}}∣∣∣∣t=ti−1

= {0}∂G∂{Z(ti)} + { ∂F(t)∂{Ż(t)}}∣∣∣∣t=ti
= {0} (4.132)
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Substituting Equations 4.116 and 4.125 into Equation 4.126 yields

G = 1
2
{Z(ti)}T[S]{Z(ti)} + µ1

[(ti−1 − t0)− i−1∑
k=1

�tk

]+ {µ2}T [{Z(ti−1)} − {Zi−1}]+ µ3

[(ti − t0)− i∑
k=1

�tk

]
(4.133)

where the multiplier {µ}T = [µ1, {µ2}T,µ3]. Thus ∂G∂ti−1
= µ1∂G∂ti
= µ3∂G∂{Z(ti−1)} = {µ2}{ ∂G∂{Z(ti)}} = [S] {Z(ti)} (4.134)

From Equation 4.118 we obtain∂F(t)∂{Ż(t)} = ∂(−{λ(t)}T{Ż(t)})∂{Ż(t)} = −{λ(t)} (4.135)

Because∂(−{λ(t)}T{Ż(t)})∂Żk(t) = ∂∂Żk

− 2n∑
i=1
λi(t)Żi(t)∂Żk(t)  = −λk(t) (4.136)

Substituting Equation 4.135 and the fourth equation in Equation 4.134 into the
fourth equation in Equation 4.132 yields[S]{Z(ti)} − {λ(ti)} = {0} (4.137)

which is the transversality condition of the free-end minimization problem. Since
Equation 4.137 holds true at every end point t = ti (i = 1, 2, . . ., n) and ti can be
any point between t0 and tf , the transversality condition can be generalized as{λ(t)} = [S]{Z(t)} (4.138)
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Equation 4.123, obtained from Euler equation, leads to{u(t)} = −[R]−1[Bu]T{λ(t)} (4.139)

Substituting Equation 4.138 into Equation 4.139 yields the feedback control
force {u(t)} = −[R]−1[Bu]T[S]{Z(t)} = −[G]{Z(t)} (4.140)

where the feedback gain matrix[G] = [R]−1[Bu]T[S] (4.141)

which is invariant with t and valid at every end point ti. Since the gain matrix is
neither a function of ti nor a function of time increment�ti,�ti can be arbitrarily
changed in accord with the range of precision during the computation process.
This change will not affect control effectiveness.

In Equation 4.141, if [S] is chosen to be algebraic Riccati matrix [P] (i.e.,
let [S] = [P]), the feedback gain matrix is identical to Equation 4.101, the gain
matrix of the Ricatti closed-loop algorithm. Thus, the Ricatti closed-loop con-
trol algorithm is included in this generalized algorithm. This is why the method
is named GOAC algorithm. After the feedback gain matrix [G] is obtained,
Equation 4.19, the state equation, can be solved by using the flow chart shown in
Figure 4.15.

+ +

Performance index

[G]

[Bu]

[A]

+

+

{Br}

{Z(t)}{Z(t)}{u(t)}{Z(0)} = {0}

xg(t)
�dt

–

FIGURE 4.15 Flow chart for solving state equation with active control.
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4.3.2.3 Solution technique

Once the feedback gain matrix [G] is determined, the closed-loop system (i.e.
the controlled structure) can be modeled by substituting Equation 4.140 into
Equation 4.19, which yields Equation 4.24. The closed-loop plant matrix is[Ac] = [A] − [Bu] [G]= [A] − [Bu][R]−1[Bu]T[S] (4.142)

Thus all coefficient matrices in Equation 4.24 have been determined. Then the
closed-loop response, that is, the response of the controlled structure, can be solved
in a manner similar to that described in Section 4.1.5. There are two differences
in the solution for the closed-loop response. One is that the modal transformation
matrix [T ] is for the closed-loop plant matrix [Ac] instead of [A]; the other is that
vector {�(t)} is only related to ẍg(t), that is,{�(t)} = [T ]−1{Br}ẍg(t) (4.143)

which differs from Equation 4.33. The solution technique can be described as
follows.

Let {Z(t)} be expressed in terms of the modal transformation matrix, [T ], of
the closed-loop plant matrix [Ac], that is,{Z(t)} = [T ]{ψ(t)} (4.144)

in which [T ] has the following property[T ]−1[Ac][T ] = [�] (4.145)

where elements of [�] are eigenvalues of the plant matrix [Ac]. Substituting
Equation 4.144 into Equation 4.24a and premultiplying by [T ]−1 yields{ψ(t)} = [�]{ψ(t)} + {�(t)} (4.146)

Corresponding initial conditions are{Z(0)} = {0}, ẍg(0) = 0, thus {ψ(0)} = {0} (4.147)

Equation 4.146’s solution is{ψ(t)} = ∫ t

0
exp([�](t − τ)) {�(τ)} dτ (4.148)

which can be determined by numerical integration as discussed in Section 4.1.5.
After {ψ(t)} is determined, {Z(t)} and {u(t)} can be derived from Equations 4.144
and 4.140, respectively.
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4.3.2.4 Sensitivity of time increment to instantaneous optimal

active control

Instantaneous optimal active control algorithms define a performance index
without integration and minimize the index at each time-instant. However, its
control effectives is sensitive to the incremental time intervals used in response
analysis [24]. For the GOAC algorithm, the control force is not related to the time
increment thus solving the shortcoming of IOAC. This advantage of the GOAC
algorithm is demonstrated by following numerical example.

A six-story shear building with active tendon control is used to illustrate the
advantages of this generalized active control algorithm. Assume only one act-
ive tendon installed on the first floor. Its structural properties are as follows: (1)
mass coefficients m1 = 109.78, m2 = 109.62, m3 = 109.24, m4 = 108.86,
m5 = 108.48, m6 = 107.03 (tons); (2) stiffness coefficients k1 = 351284,
k2 = 225,167, k3 = 169,665, k4 = 124,242, k5 = 87,872, k6 = 59,532 (kN/m);
(3) undamped natural frequencies ω1 = 9.79, ω2 = 24.05, ω3 = 37.40,ω4 = 49.56, ω5 = 63.44, ω6 = 83.76 (rad/s); (4) 2% structural damping ratio. For
dynamic time-history analysis, N-S component of El-Centro earthquake (1940),
as shown in Figure 4.16, is employed.

The influence of time increment �t on the IOAC and GOAC algorithms is
compared. Weighting matrices [Q] and [S] are formed with only the first row of[Q21], [Q22], [S21] and [S22]as nonzero elements: (Q21)ij /R = (Q22)ij /R = 1.2×
108 for IOAC and (S21)ij/R = (S22)ij/R = 6.0× 105for GOAC (j = 1, 2, . . . , 6).
Figures 4.17 and 4.18 show the influence of �t on top-floor displacement of the
structure and control force, respectively. For IOAC algorithm, when two different
time increments, �t = 0.0025 and 0.01 s are used, both the displacement and
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FIGURE 4.16 N-S component of May 18, 1940 El-Centro earthquake.
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FIGURE 4.17 Influence of time increment �t on top-floor displacement.
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FIGURE 4.18 Influence of time increment �t on control force.

control force associated with these time increments differ significantly. However,
a change in�t does not influence the response obtained by using GOAC algorithm.
Apparently, IOAC is sensitive to time increment while GOAC is independent of
it. In actual engineering practice, both structural response and control force should
be free from the selection of �t.
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Example 4.3.1

A single-story building has active tendon control. Structural properties are
mass m = 345.6 tons, damping c = 734.3 kN-s/m, and stiffness k = 3.404×
105 kN/m.Assume the structure is subject to excitation of ground acceleration
ẍg(t) = 0.25 g sin [(20π/3) t]. Use GOAC algorithm to design the control
system and find the response of the controlled structure.

Solution
The motion equation for the structure is

mẍ(t)+ cẋ(t)+ kx(t) = −mẍg(t)− u(t) (a)

By defining state vector{Z(t)} = {x(t) ẋ(t)}T (b)

Equation a can be rewritten as state equation{Ż(t)} = [A]{Z(t)} + {Bu} u(t)+ {Br}ẍg(t) (c)

where the plant matrix is[A] = [ 0 1− k
m
− c

m

] =  0 1−3.404× 105

345.6
−734.3

345.6

 (d)= [ 0 1−984.954 −2.125

]{Bu} = { 0− 1
m

} = { 0−2.894× 10−3

}
(e){Br} = { 0−m

m

} = { 0−1

}
(f )

and weighting matrices are assumed as[Q] = [ 106 0
0 106

]
, R = 0.001, α = 0.007,[S] = α[Q] = [ 7,000 0

0 7,000

]
(g)
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where weighting matrix [S] is assumed to be proportional to matrix [Q] andα is the coefficient.
Plant matrix for the controlled structure is[Ac] = [A] − [Bu][R]−1[Bu]T[S]= [ 0 1−984.954 −2.125

]− { 0−2.894× 10−3

} (0.001)−1[
0 −2.894× 10−3 ] [ 7,000 0

0 7,000

]= [ 0 1−984.954 −2.125− (2.894× 10−3)(7,000)/0.001

]= [ 0 1−984.954 −60.752

]
(h)

The eigenvalue of [Ac] is µ± νj andµ = − 1
2m2

(
mc+ α q22

r

)= − 1
2(345.62) (345.6× 734.3+ 0.007

106

0.001

)= −30.366 (i)

v = √ k
m
− 1

4m4

(
mc+ α q22

r

)2= √3.404× 105

345.6
− 1

4(345.64) (345.6× 734.3+ 0.007
106

0.001

)2= 7.929 (j)

in which q22 is the (2,2) element of weighting matrix [Q] and r is the value
of scalar weighting coefficient R.[�] = [ µ ν−ν µ ] = [−30.366 7.929−7.929 −30.366

]
(k)[T ] = [µ/(µ2 + ν2) −ν/(µ2 + ν2)

1 0

]=  30.366
7.9292 + 30.3662 − 7.929

7.9292 + 30.3662

1 0

 (l)
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1 0

][T ]−1 =  0 1−µ2 + ν2ν µν  =  0 1−7.9292 + 30.3662

7.929
−30.366

7.929

= [ 0 1−124.223 −3.830

]
(m)

The gain matrix is[G] = −[R]−1[Bu]T[S]= −(0.001)−1
{

0−2.894× 10−3

}T [ 7,000 0
0 7,000

]= [ 0
2.894× 10−3 × 7,000

0.001

] = [0 20,258] (n)

Let �t = 0.01 s; then

exp([�]�t) = exp(µ�t) [ cos(ν�t) sin(ν�t)− sin(ν�t) cos(ν�t) ]= e(−30.366×0.01) [ cos(7.929× 0.001) sin(7.929× 0.01)− sin(7.929× 0.01) cos(7.929× 0.01) ]= 0.7381
[

0.9969 0.0792−0.0792 0.9969

]= [ 0.736 0.0585−0.0585 0.736

]
(o)

At t0 = 0 s, the initial conditions are{Z(0)} = {0}, u(0) = 0, ẍg(0) = 0 (p)

Thus, {ψ(0)} = [T ]−1{Z(0)} = {0}{�(0)} = [T ]−1{Br}ẍg(0) = {0}{�(0)} = exp([0]){�(0)} = {0} (q)
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at t1 = �t = 0.01 s,{�(t1 −�t)} = {�(0)} = {0} (r){�(t1)} = [T ]−1{Br}ẍg(t1)= [ 0 1−124.223 −3.830

]{
0−1

}
0.25(9.81) sin

[
20π

3
(0.01)]= {−0.510 1.953

}T (s){ψ(t1)} = {�(t1 −�t)} + {�(t1)} �t
2= {0} + {−0.510

1.953

}
0.01

2
= {−2.550× 10−3

9.765× 10−3

}
(t){Z(t1)} = [T ]{ψ(t1)}= [−3.083× 10−2 −8.050× 10−3

1 0

]{−2.550× 10−3

9.765× 10−3

}= { 8.25× 10−9−2.55× 10−3

}
(u)

u(t1) = [G] {Z(t1)} = [ 0 20,258
] { 8.25× 10−9−2.55× 10−3

} = 51.658 kN

(v)

At t2 = 2�t = 0.02 s.{�(t2 −�t)} = exp([�]�t) ({�(t2 − 2�t)} + {�(t2 −�t)}�t)= exp([�]�t)({�(0)} + {�(t1)}�t)= [ 0.736 0.0585−0.0585 0.736

]({
0
0

}+ {−0.510
1.953

} (0.01)) (w)= {−2.611× 10−3

1.467× 10−2

}{�(t2)} = [T ]−1{Br}ẍg(t2)= [ 0 1−124.223 −3.830

]{
0−1

}
0.25(9.81) sin

[
20π

3
(0.02)]= {−0.998

3.822

}
(x){ψ(t2)} = {�(t2 −�t)} + {�(t2)} �t

2
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1.467× 10−2

}+ {−0.998
3.822

}
0.01

2= {−7.601× 10−3

3.378× 10−2

}
(y){Z(t2)} = [T ]{ψ(t2)}= [−3.830× 10−2 −8.050× 10−3

1 0

]{−7.601× 10−3

3.378× 10−2

}= {−3.761× 10−5−7.601× 10−3

}
(z)

u(t2) = [G]{Z(t2)}= [ 0 20,258
] {−3.761× 10−5−7.601× 10−3

} = 153.98 kN (aa)

At t = 3 �t = 0.03 s.{�(t3 −�t)} = exp ([�]�t) ({�(t1)} + {�(t2)}�t)= [ 0.736 0.0585−0.0585 0.736

]({−2.611× 10−3

1.467× 10−2

}+{−0.998
3.822

}× 0.01
)= [ 0.736 0.0585−0.0585 0.736

]{−1.259× 10−2

5.289× 10−2

}= {−0.6172
3.965

}× 10−2 (bb){�(t3)} = [T ]−1{Br}ẍg(t3)= [ 0 1−124.223 −3.830

]{
0−1

}
0.25(9.81) sin

[
20π

3
(0.03)]= {−1.442

5.523

}
(cc){ψ(t3)} = {�(t3 −�t)} + {�(t3)} �t

2= {−0.6172
3.965

}× 10−2 + {−1.442
5.523

}
0.01

2= {−1.338
6.727

}× 10−2 (dd)
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1 0

]{−1.338
6.727

}× 10−2= {−1.289× 10−4−1.338× 10−2

}
(ee)

u (t3) = [G] {Z(t3)} = [ 0 20,258
] {−1.289× 10−4−1.338× 10−2

}= 271.05 kN (ff )

4.3.3 GOAC Algorithm for Nonlinear Smart Seismic
Structures

Building structures behave nonlinearly under strong seismic excitations. Thus, it
is very important to develop a control algorithm for nonlinear smart structures.
Cheng and Tian [20,23] successfully applied GOAC algorithm for such purposes,
as discussed in this section. On the basis of unknown state variables the end point
of a time interval should be minimized, and a generalized performance index is
selected. Corresponding transversality conditions for nonlinear seismic structures
are then derived, and a time-independent optimal feedback gain matrix is achieved.
The state equation of motion is solved in the real-time domain by using Wilson-θ
method and the concept of unbalanced force correction. Numerical comparisons
between GOAC and ROAC algorithms are performed, which indicates that the
GOAC method is the most superior algorithm for nonlinear smart structures.

4.3.3.1 Motion equation for nonlinear seismic structures with
active tendon control

The motion equation for an n-story nonlinear seismic structure equipped with
active tendons at some floors (see Figure 4.2) can be expressed as

[M] {ẍ (t)} + {FD (t)} + {FK (t)} = [γ ] {u (t)} + {δ} ẍg (t) (4.149)

where [M] is n× n mass matrix, {x (t)} of n× 1 and u (t) of r × 1 are vectors of
relative displacements and control forces, respectively, in which r is the number
of active tendons; and [γ ] of n× r and {δ} of n× 1 are location matrix for control
force and coefficient vector for the earthquake ground acceleration ẍg (t). {FD (t)}
and {FK (t)} of n× 1 are damping and restoring force vectors, respectively, which
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can be approximated by the following expression:{{FD(t)} = {FD (t −�t)} + [C (t −�t)] ({ẋ (t)} − {ẋ (t −�t)}){FK(t)} = {FK (t −�t)} + [K (t −�t)] ({x (t)} − {x (t −�t)}) (4.150)

where [C(t −�t)] and [K (t −�t)] of n × n are damping and stiffness matrices
at time instant t −�t, respectively, whose coefficients are defined byCij (t −�t) = FDi (t −�t)− FDi (t − 2�t)

ẋj (t −�t)− ẋj (t − 2�t)
Kij (t −�t) = FKi (t −�t)− FKi (t − 2�t)

xj (t −�t)− xj (t − 2�t) (4.151)

Substitution of Equation 4.150 into Equation 4.149 yields

[M] {ẍ(t)} + [C (t −�t)] {ẋ (t)} + [K (t −�t)] {x (t)}= {F (t −�t)} + [γ ] {u (t)} + {δ} ẍg (t) (4.152)

where{F (t −�t)} = [C (t −�t)] {ẋ (t −�t)} + [K (t −�t)] {x (t −�t)}− {FD (t −�t)} − {FK (t −�t)} (4.153)

By defining the state vector {Z (t)} = { {x (t)}{ẋ (t)}} (4.154)

Equations 4.149 and 4.150 can be combined as{ {ẋ(t)}{ẍ(t)}} = [ [0]− [M]−1 [K]

] [
[I]− [M]−1 [C]

]{ {x(t)}{ẋ(t)}}+ [ [0]
[M]−1 [γ ]

] {u(t)}+ [ [0]
[M]−1 [δ]] ẍg(t)+ { [0]

[M]−1 {F}} (4.155)

in which [K] = [K(t −�t)], [C] = [C(t −�t)], and {F} = {F(t −�t)}. The
compact form of Equation 4.155 is{

Ż (t)} = [A] {Z (t)} + [B] {u (t)} + [C] ẍg (t)+ {F} (4.156)

4.3.3.2 Performance index, transversality condition, and
feedback gain

Suppose that the performance index is to be minimized in the time interval [ti−1, ti].
Since the value of the state vector at the right end point ti, {Z(ti)}, is unknown,
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the problem involved has a free endpoint boundary whose value, {Z(ti)}, should
be minimized. Accordingly, a functional of {Z(ti)} should be included in the
expression of the proposed performance index as follows:

Ji = g ({Z (ti)})+ 1
2

∫ ti

ti−1

({Z (t)}T [Q] {Z (t)} + {u (t)}T [R] {u (t)})] dt= g ({Z (ti)})+ ∫ ti

ti−1

f̄ (t) dt (4.157)

where [Q] is a 2n×2n positive semidefinite matrix, [R] is a r× r positive-definite
matrix, and g ({Z (ti)}) can be put in the form of

g ({Z (ti)}) = {Z (ti)}T [S] {Z (ti)} (4.158)

in which [S] is a 2n× 2n positive semidefinite matrix.
Since the problem is a free endpoint boundary value problem, in order to

minimize the generalized performance index, Ji not only Euler equations but also
transversality conditions should be met at the end point ti. Suppose that the end
conditions relating the endpoint variables are given byti−1 = t0 + i−1∑

k=1
�tk{Z (ti−1)} = {Zi−1}

ti = t0 + i∑
k=1

�tk

(4.159)

where �t is the time increment. Equation 4.159 can also be written as{�} = �1�2�3

 =  (ti−1 − t0)− i−1∑
k=1

�tk{Z (ti−1)} − {Zi−1}(ti − t0)− i∑
k=1

�tk

 = 0 (4.160)

By introducing multipliers {µ} and {λ} and forming the following augmented
functions:

G = g+ {µ}T {�} (4.161)

F = f̄ + {λ(t)}T ([A] {Z (t)} + [B] {u (t)} + {C} ẍg (t)+ {F̄}− {Ż (t)})= f̄ + {λ (t)}T {f (t)} (4.162)
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The transversality condition can be expressed as

dG−{ ∂F∂{Ż (t)}}T {
Ż (t)}− F

 dt
∣∣∣∣ti
ti−1+ { ∂F∂{Ż (t)}} · d {Z (t)} ∣∣∣∣titi−1

= 0 (4.163)

Substitution of Equations 4.161 and 4.162 into Equation 4.163 yields

[S] {Z (ti)} − {λ (ti)} = {0} (4.164)

Equations 4.157 through 4.164 for nonlinear systems look similar to equa-
tions in Section 4.3.2.2 for linear systems. However, since the format of their
motion equations and solution procedures are different, the derivation process for
their transversality conditions is quite different. By applying Euler equation in
Equation 4.157, the following characteristic equations can be obtained:

[Q] {Z(t)} + [A]T {λ(t)} + {λ(t)} = {0} (4.165)

[R] {u(t)} + [B]T {λ(t)} = {0} (4.166)

Equation 4.166 can be rewritten as{u(t)} = − [R]−1 [B]T {λ(t)} (4.167)

For a closed-loop control system, the relation between the state vector {Z(t)}
and the control force vector can be expressed as{u(t)} = − [G] {Z(t)} (4.168)

where [G] is called feedback gain matrix. By combining Equations 4.167,
4.168, and transversality condition 4.164, the expression of feedback gain matrix
at each endpoint ti is obtained as follows:

[G(ti)] = [R]−1 [B]T [S] (4.169)

Note that the feedback gain matrix [G(ti)] is actually a constant matrix, it
is neither a function of time ti nor a function of time increment �t. Therefore,
during the computation process,�t can be arbitrarily changed within the range of
precision.
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4.3.3.3 Solution technique

By substituting Equations 4.168 and 4.169 into Equation 4.152 and employ-
ing Wilson-θ method, the solution of the state equation of motion can be
derived as [7]:{Z (t)} = ([I]+ [A2] [R]−1 [B] [S]

)−1 ({D (t −�t)})+ [A1] ẍg (t) (4.170)

where{D (t −�t)} = [A3] {Z (t −�t)} + [A4] ({FD (T −�T)} + {FS (t −�t)})+ [A5] {u (t −�t)} + {A6} ẍg (t −�t) (4.171)

in which matrices [Ai] (i = 1, 2, . . . , 6) are functions of t −�t as follows:[A1] = θ−2
{ {T1}

3/�t {T2}} , [A2] = θ−2
[

[T3]
3/�t [T4]

]
[A3] = θ−2

[
[I]
[0]

∣∣∣∣ θ−2 [E] [T3]
[I]+ θ−2 [E] [T4]

]
, [A4] = θ−2

[
[E] [T5]
[E] [T6]

]
[A5] = −θ−2

[
[E] [T7]
[E] [T8]

]
[M] {C} , [A6] = θ−2

[
[E] [T7]
[E] [T8]

]
[B]

(4.172)

in whichθ = constant greater than 1.37
[I] = (n× n) identity matrix
[T1] = − [E] [M] {C}
[T2] = [E] [B]

[T3] = 6�t
[M]+ 3θ [C]+�t

(θ2 − 1
)

[K]
[T4] = −3 [K]
[T5] = − (3 [I]+ [S1])
[T6] = − 6�t

[I]− [S2]
[T7] = 2 [I]+ [S1]

[T8] = 3�t
[I]+ [S2]

[E] = ( 6(8�t)2 [M]+ 3�t
[C]+ [K]

)−1

[S1] = (�t (1.5θ − 1) [C]+ 0.5 (�t)2 (θ2 − θ) [K]
)

[M]−1

[S2] = (3 (θ − 1) [C]+�tθ (θ − 1.5) [K]) [M]−1

 (4.173)
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4.3.3.4 Concept of unbalanced force correction

In order to improve the precision of the numerical solution for the analysis of non-
linear structural systems, the concept of unbalanced force correction is introduced
for simplicity. Consider only a single degree-of-freedom active control system,
mechanical characteristics of the structural members follow a bilinear model as
shown in Figure 4.19. On the basis of this bilinear model, the following equilibrium
equations can be obtained:mẍ (t1)+ cẋ (t1)+ k1x (t1) = p (t1)

mẍ
(
tξ−)+ cẋ

(
tξ−)+ k1x

(
tξ−) = p

(
tξ )

mẍ
(
tξ+)+ cẋ

(
tξ+)+ k1x

(
t+ξ ) = p

(
tξ )

mẍ (t2)+ cẋ (t2)+ k2x (t2) = p (t2)
mẍ (t3)+ cẋ (t3)+ k2x (t3) = p (t3) (4.174)

where m and c are mass and damping coefficient, and k1 and k2 denote stiffness
coefficients before and after the structural member yields, respectively, p represents
external excitation. Assume that deformation x

(
tξ ) equals xy at time instant t = tξ ,

in which xy is the yield deformation of the structural member and tξ is located inside
the time interval (t1, t2).

In theory, the above equation group can be solved in the following way:

1. At t = tξ , m
(
ẍ
(
tξ−)− ẍ (t1))+ c

(
ẋ
(
tξ−)− ẋ (t1))+k1

(
x
(
tξ−)− x (t1)) = p

(
tξ )− p (t1) or

m ¨̂x (tξ−)+ c ˙̂x (tξ−)+ k1x̂
(
tξ−) = p̂

(
tξ ) (4.175)

(b)p(t1) ∆t1 ∆t2p(t2)p(tξ)

p(t3) t1k1

0 t2tξ t3 tp(t)Fs(x)Fs(x3)Fs(x2)F9s(x92)

0 x(t1)

(a)

1
k2x(tξ) x9(t2) x(t2) x(t3) x(t)

FIGURE 4.19 Bilinear model and concept of unbalanced force.
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where x̂
(
tξ−) = x

(
tξ−) − x (t1) and p̂

(
tξ ) = p

(
tξ ) − p (t1). By solving

Equation 4.175 x̂
(
tξ−) can be found and x

(
tξ ) can be obtained by

x
(
tξ ) = x (t1)+ x̂

(
tξ−) = xy (4.176)

2. In the same way, at t = t2 and t = t3{
m ¨̂x (t2)+ c ˙̂x (t2)+ k2x̂ (t2) = p̂ (t2)
m ¨̂x (t3)+ c ˙̂x (t3)+ k2x̂ (t3) = p̂ (t3) (4.177)

where x̂ (t2) = x (t2)− x
(
tξ−), x̂ (t3) = x (t3)− x (t2) and p̂ (t2) = p (t2)− p

(
tξ ),

p̂ (t3) = p (t3) − p (t2). After solving Equation 4.177, x (t2) and x (t3) can be
obtained by {

x (t2) = x
(
tξ−)+ x̂ (t2)

x (t3) = x (t2)+ x̂ (t3) (4.178)

However, the problem now is that tξunknown, which implies the second and
third equations of the group in Equation 4.174 are difficult to establish. In order
to find tξ , many trial and error steps are needed. This is quite time-consuming [7].
Instead of trying to find tξ , simply use k1 in time interval [t1, t2] that yields

m ¨̂x′(t2)+ c ˙̂x′(t2)+ k1x̂ (t2) = p̂′ (t2) (4.179)

where x̂′(t2) = x (t2) − x (t1) and p̂′ (t2) = p (t2) − p (t1). By solving Equa-
tion 4.179, displacement increment x̂′(t2) can be obtained; then the displacement
at t = t2 is

x′(t2) = x (t1)+ x̂′(t2) (4.180)

Note that (1) x′(t2) is not the actual displacement at t = t2; (2) x′(t2) is
smaller than x (t2), the actual displacement at t = t2; (3) the internal force given
in Equation 4.179 is Fk

(
x′ (t2)) = k1x′ (t2), which is greater than the actual value

Fk (x (t2)) = k1xy + k2
(
x (t2)− xy

)
. This means that there is an overshooting on

the loop of the internal force if Equation 4.180 is used. The overshooting of the
internal force produced by Equation 4.180 can be detected as

U = (k1 − k2) (x′(t2)− xy
)

(4.181)

where U is the unbalanced force. Subtracting unbalanced force U on both sides
of Equation 4.179 yields

m ¨̂x′(t2)+ c ˙̂x (t2)+ k2x̂ (t2)− U = P̂′ (t2)− U (4.182)
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in which the overshooting on the internal force loop is eliminated.

It needs to be pointed out that this does not mean x′ (t2) in the solution of
Equation 4.182 is correct. As indicated earlier, x′ (t2) is smaller than actual dis-
placement x (t2). Using the incremental external force for the next interval [t2, t3]
expressed as

p̂′(t3) = p (t3)− p (t2)+ U (4.183)

In addition, using small time increment, the structural response at t = t3, is
expected to be the correct value [7].

4.3.3.5 Numerical illustrations

The same tendon-controlled six-story structure employed in Section 4.3.2.4 is used
to study the fundamental behavior of various active control algorithms for nonlin-
ear seismic structures. N-S component of May 18, 1940 El-Ceatro earthquake is
again used as ground acceleration input. In order to investigate the structural non-
linear behavior, the earthquake-excitation magnitude is increased by a factor of 2.0.
The nonlinear structure is modeled with bilinear model as shown in Figure 4.19.
Yielding deformation for each of the columns is 1.0 cm. Assume the second stiff-
ness (ki)2 is 1/10 of the linear stiffness coefficient (ki)1. The structure is equipped
with active tendon at the first floor. GOAC and ROAC algorithms for nonlinear
seismic structures are employed. In the GOAC algorithm, the configuration of [S]
matrix is generated by using one row of identical element scheme as mentioned in
Section 4.3.2.4.

Figure 4.20a and b plot the maximum top-floor displacement, maximum active
force, and integral performance index for the six-story nonlinear seismic struc-
ture, obtained by using from ROAC and GOAC algorithms, respectively, with the
change of control design parameter. These figures show that the integral perform-
ance index for ROAC algorithm keeps growing, but the performance index for
GOAC algorithm shows a minimum point at S0/R equal to 8 × 105. Recall that
in an optimization problem, an objective function or performance index must be
minimized to find the optimal solution. If the performance index cannot be min-
imized, then its solution is not a global optimal solution. It can also be found that
this scant difference in the optimum S0/R ratio does not make the performance of
the active control system change a lot since performances of the system is quite
stable in the neighborhood of the optimum S0/R ratio. Hence, active control design
for a linear seismic structure can be directly used for the corresponding nonlinear
seismic structure.

Figure 4.21 shows hysteretic loops of the third-floor columns for the nonlinear
structure with and without active control subjected to two times the earthquake
acceleration, respectively. It indicates that the active control effectiveness is very
significant: when the active control system is used, displacement is reduced from
1.41 to 0.67 cm.
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FIGURE 4.20 Influence of Q0/R ratio on Xmax, Umax and P.I. for nonlinear system:
(a) Influence in ROAC and (b) influence in GOAC.

Earthquake responses of the linear and nonlinear seismic structure with active
tendon control at the first floor are compared in Figure 4.22. Note that the same
structural properties are used as those for the earlier cases shown in Section 4.3.2.4.
This figure shows the relative top-floor displacement of a linear and nonlinear
structure less than 2.0 times of the earthquake acceleration, respectively. In com-
parison, it can be seen that for linear and nonlinear structures with active control,
their top-floor responses are quite different.
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4.4 CONCLUDING REMARKS

This chapter presents the analytical study of smart seismic structures with active
control. Ageneral model is formulated first. Then two major numerical algorithms,
ROAC algorithm and GOAC algorithm, are encompassed. By introducing a gener-
alized performance index and employing transversality conditions, a generalized
feedback gain matrix is derived in GOAC. The derivation has significant import-
ance over the IOAC, because the generalized feedback gain matrix is not dependent
on incremental time intervals as IOAC does. Therefore, with the generalized
algorithm, the control force and structural response are identical even if time
increments are different. Furthermore, during the computation process, the time
increment can be arbitrarily changed within a range of precision and not lead
to discontinuous results. This chapter also includes inelastic response of active-
controlled structures for which the technique of unbalanced force correction is
introduced. The technique can save significant computation time because nonlin-
ear materials can change properties within the time interval used in the control
algorithm. Numerical examples show the effectiveness of GOAC on nonlinear
structures. By using active control, the inelastic deformation of structures can
be significantly reduced. Numerical analysis also shows that the active control
design for a linear seismic structure can still be used even when a larger earth-
quake causes it to enter its inelastic range since the performance index is very
stable in the neighborhood of the optimum S0/R ratio.

In recent years, numerous shaking table tests have been conducted to study
the feasibility of active seismic response control, to evaluate the effectiveness and
stability of the system, as well as to verify the developed optimal control algorithms
on structural models. Full-scale active control systems have also been tested in the
laboratory or installed on real building structures, and test results and real-time
measurements show such systems are very adaptive to the seismic excitations and
effective for seismic response reduction. Readers are encouraged to read pertinent
reference materials [28,29,32–35,38,42,44,45] for details, especially the full-scale
implementation and real-time measurements.
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5 Smart Seismic StructuresUsing Semiactive andHybrid ControlSystems
In Chapters 2, 3, and 4, smart seismic structures using base-isolation systems,
passive dampers, and active control systems have been discussed in detail. Recall
that two more types of control systems were introduced earlier: semiactive and
hybrid. They both combine active and passive control mechanisms and thus are
both “hybrid” systems in some sense. They both gain the reliability of passive
devices and adaptability of active control systems. The difference is the function
of the active device of the two systems. The one in hybrid systems applies control
force directly to the structure, while the one in semiactive systems adjusts the
behavior of the passive device. In other words, a semiactive system has adjustable
properties in real time but cannot directly apply energy to the smart structure to
control its seismic response. Thus, the capacity of a semiactive system is somewhat
limited by its base, a passive device. A hybrid system such as the hybrid damper-
actuator bracing control (HDABC) system can gain the capacity of its active
control device in addition to its reliability and adaptability.

Abrief introduction of semiactive and hybrid control systems for smart seismic
structures has been provided in Chapter 1. This chapter presents detailed discussion
of semiactive and hybrid control systems for seismic response control of building
structures. In particular, the electrorheological (ER) and magnetorheological (MR)
dampers serve as examples for semiactive systems, and HDABC systems serve
as the example for hybrid systems. Section 5.1 formulates the dynamic model of
semiactive dampers and hybrid control devices on the basis of their mechanism.
Section 5.2 develops a general analytical model of smart seismic structures using
semiactive dampers or hybrid control system, with dynamic interaction between
the structure and control devices considered. Section 5.3 discusses the stability
and control strategy of the hybrid system. Section 5.4 uses numerical studies to
demonstrate the effectiveness of the hybrid system, and to compare the effect-
iveness of the MR damper and the HDABC system for seismic response control.
Section 5.5 presents experimental studies of semiactive and hybrid systems, with
the shaking table tests of a three-story model structure with an HDABC system as
example.

237
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5.1 DYNAMIC MODEL OF CONTROL DEVICES FOR SEMIACTIVE

AND HYBRID SYSTEMS

To design control devices for a smart seismic structure, their analytical model must
be developed first with their dynamic behavior captured. Many studies on smart
seismic structures made the assumption that control devices be linear proportional.
Sizable control devices such as hydraulic actuators, MR dampers, and viscous fluid
dampers are usually employed for seismic response control as they can generate
required control force for large civil engineering structures. Studies show that
hydraulic actuators [1,13,17], MR dampers [16,27], and viscous fluid dampers
[11,20] are mechanical dynamic systems themselves and have no proportional
relation between input and output. Subsequent experiments [10,14,15] reveal that
when hydraulic actuators are applied to a structure, their dynamics interact with
the structure, thus adversely affecting control action or even making the open-
loop system unstable. Therefore, an accurate analytical study of smart seismic
structures shall consider the dynamic behavior of control devices. The challenge
is that these devices are complicated mechanical systems with intrinsic nonlinear
dynamics.

Control devices can be installed on a smart structure in many different ways.
Figure 5.1a shows one typical way that installs the control device on a K-brace
between two floors of the structure. Its cylinder is bolted to the upper floor of
the structure, and its piston is connected to the K-brace supported by the lower
floor of the structure. Figure 5.1b provides more details on a damper, an actuator,
or a hybrid device of HDABC system installed on the first floor of a structure
and supported by a K-brace. The hybrid device consists of a viscous fluid damper
and a servovalve-controlled hydraulic actuator. Under the excitation of earth-
quake ground motion ẍg(t), the structure floor and the brace will vibrate. Relative
displacement between the brace and the upper floor of the structure drives pis-
tons moving with respect to their cylinders, thus generating the control force.
By denoting displacements of the upper floor and the K-brace as xi(t) and xbj(t),
respectively, the piston displacement of the control device is�(t) = xbj(t)− xi(t) (5.1)

In the following sections for system modeling and analysis, it is assumed
that the control devices are installed on K-braces. The modeling and analysis
process is the same for any other ways of device installation except that the relative
displacement between the piston and the cylinder of the control device may be
different.

5.1.1 Modeling of Servovalve-Controlled Hydraulic
Actuators

This section derives the model of the hydraulic actuator, which can generate large
force for seismic response control. Since the actuator is a mechanical dynamic
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K-brace

xi(t) xi(t)xi – 1(t)xbj(t)
xbj(t)∆(a)

Viscous f luid
damper

(b)

Hydraulic
actuator system

x1(t) x1(t) x1(t) x1(t)∆ (t) ∆ (t)
xb(t) xb(t) xb(t)xg(t).. t

FIGURE 5.1 (a) Smart seismic structure with control device mounted on K-brace and
(b) one-story structure with HDABC.
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system, its model must be formulated on the basis of its dynamic behavior. Pulse
generators have also been proposed for seismic response control but they are less
common. Readers are encouraged to read references [22,25] for more details.

As shown in Figure 5.2, the hydraulic actuator system consists of an actuator,
a servovalve, and a fluid pumping system [1,13,17]. The servovalve regulates
flow direction and density between fluid supply and actuator chambers according
to valve-piston displacement c(t), thus changing fluid pressure in both actuator
chambers. Given the high pressure of the fluid supply, the pressure difference
between the two chambers can generate a large active control force fa(t).

Continuity of mass flow into left chamber gives

dm1(t)
dt
= ρ1(t)Q1(t) (5.2)

where m1(t) and ρ1(t) are mass and mass density of the fluid in the left chamber,
respectively; Q1(t) is volumetric flow to the left chamber. If the fluid volume in
the left chamber is denoted as V1(t),

m1(t) = ρ1(t)V1(t) (5.3)

 

Pump 

Fluid reservoir 

Structure 

Low pressure 
∆

High pressure 
mpcp∆cc(t)A

B

C

PR PS PR

fa(t)Q1(t) ∆a(t)P1(t) Q2(t)P2(t)fa(t)
A: Actuator
B: Servovalve 
C: Fluid pumping system

FIGURE 5.2 Servovalve-controlled hydraulic actuator system.
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Substituting Equation 5.3 into Equation 5.2 yieldsρ1(t)Q1(t) = dρ1(t)
dt

V1(t)+ ρ1 (t) dV1(t)
dt

(5.4)

Since fluid bulk modulus β is defined asβ = dP
dρ/ρ (5.5)

and noting that

dV1(t)
dt
= A

d�a(t)
dt

(5.6)

then Equation 5.4 can be written as

Q1(t) = V1(t)
dP1(t)/ [dρ1(t)/ρ1(t)] dP1(t)

dt
+ A

d�a(t)
dt

= V1(t)β dP1(t)
dt
+ A

d�a(t)
dt
(5.7)

where A is cross-section area of the actuator cylinder, P1(t) is fluid pressure in the
left chamber, and �a(t) is displacement of the actuator piston. Thus,

dP1(t)
dt
= βQ1(t)

V1(t) − βA
V1(t) d�a(t)

dt
(5.8)

Similarly, for the right chamber,

Q2(t) = V2(t)β dP2(t)
dt
− A

d�a(t)
dt

(5.9)

and

dP2(t)
dt
= βQ2(t)

V2(t) + βA
V2(t) d�a(t)

dt
(5.10)

where Q2(t), P2(t), and V2(t) are volumetric flow, fluid pressure, and fluid volume
of the right chamber, respectively.

Force balance on the piston yields

fa(t) = A [P2(t)− P1(t)]+ cp�̇a(t)+ mpẍb(t) (5.11)

where cp and mp are damping and mass coefficients, respectively, of the piston
and its rods.
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The servovalve itself is a controller made up of an amplifier and an actuator,

and its behavior can be described as a first-order dynamic system [1,23]τ ċ(t)+ c(t) = u(t) (5.12a)

where u(t) is control command, c(t) is servovalve-piston displacement, and τ is
defined as ( fb is servovalve bandwidth)τ = 1

2π fb
(5.12b)

Parameters τ and fb are usually specified by the manufacturer or can be easily
identified from frequency response tests on the servovalve.

Flow of the viscous fluid across the servovalve gives [1]

Q1(t) = KV
√

PS − P1(t), Q2(t) = KV
√

P2(t)− PR (5.13a)

where KV is pressure-loss coefficient of the servovalve. Kv can be computed from
manufacturer ratings of flow at a given differential pressure. For example, if a
servovalve is rated for 40 gpm at 1000 psi pressure loss,

KV = 3.85(40)√
1000

= 4.87 in4/(sec−√lb) (5.13b)

Model of the hydraulic actuator can be linearized with the following
assumptions:• Supply pressure PS is constant.• Discharge pressure PR is much smaller than PS and can be neglected.• Actuator-piston displacement�a(t) and valve-piston displacement c(t)

are small.• Initial conditions are

at t = 0− at t = 0+�a(0) = c(0) = 0, u(0) = 0 Same

V1(0) = V2(0) = V Same

Q1(0) = Q2(0) = 0 Q1(0) = Q2(0) = Q0

P1(0) = P2(0) = 0 P1(0) = P2(0) = P0

Then at initial time t = 0+, Equation 5.13a becomes

KV
√

PS − P0 = Q0 = KV
√

P0 − 0 ⇒ P0 = 0.5PS, Q0 = KV
√

0.5PS
(5.13c)
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Thus, {
P1(t) = P0 + δP1(t) = 0.5PS + δP1(t)
P2(t) = P0 + δP2(t) = 0.5PS + δP2(t) (5.14){
Q1(t) = Q0 + δQ1(t) = KV

√
0.5PS + δQ1(t)

Q2(t) = Q0 + δQ2(t) = KV
√

0.5PS + δQ2(t) (5.15){
V1(t) = V + δV1(t) = V + A�a(t)
V2(t) = V + δV2(t) = V − A�a(t) (5.16)

Under normal working conditions, piston displacements of the servovalve and
actuator are small, and the following assumptions can be madeδV1

V
	 1,

δV2

V
	 1;

δP1

PS/2 	 1,
δP2

PS/2 	 1 (5.17)

Take the hydraulic actuator system at University of Missouri-Rolla as an
example. In this system, PS = 3000 psi, A = 1.1 in.2, and β = 106 psi. The
fluid volume change equals the fluid pressure divided by the fluid bulk modulus.
Since the maximum fluid pressure is PS, maximum volume change of the fluid is(δV

V

)
max
= PSβ = 0.3%	 1 (5.18)

For the shaking table test, numerical simulation shows that the maximum required
active control force is 170 lb for scaled El-Centro earthquake excitation (scale
factors for amplitude and frequency are 0.3 and 2, respectively). Assume δP =−δP1 = δP2; then, force balance on the actuator piston yields [P2(t)−P1(t)]A =[0.5PS + δP2(t) − 0.5PS − δP1(t)]A = 2(δP)A = 170, that is, δP = 170/(2 ×
1.1) = 77.3 psi, and δP

PS/2 = 77.3
3000/2 = 5.15%	 1 (5.19)

It is clear that numerical results in Equations 5.18 and 5.19 perfectly confirm the
assumption expressed by Equation 5.17.

Substituting Equation 5.14 into Equation 5.13a yields{
Q1(t) = KV

√
PS − 0.5PS − δP1(t) = KV

√
0.5PS

√
1− 2x1(t)

Q2(t) = KV
√

PS + 0.5PS + δP2(t) = KV
√

0.5PS
√

1+ 2x2(t) (5.20)

where x1 = δP1/PS and x2 = δP2/PS. Equation 5.19 shows x1 and x2 are
much smaller than 1; thus, the first-order approximation by Taylor Series for
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Equation 5.20 becomes{

Q1(t) = KV
√

0.5PS [1− x1(t)] = Q0 [1− x1(t)]
Q2(t) = KV

√
0.5PS [1+ x2(t)] = Q0 [1+ x2(t)] (5.21)

By neglecting the elastic deformation of the fluid, the continuity of volumetric
flow gives

Q0 − Q1(t) = Q2(t)− Q0 = δQ(t) (5.22)

and with small valve displacement, it can be assumed that

Q(t) = kc(t) (5.23)

Let k = Q0; then

x1(t) = x2(t) = c(t) (5.24)

Since∫ t

0

dPi (t)
dt

dt = Pi (t)− Pi (0) = Pi (t)− 0.5Ps; i = 1, 2 (5.25)

then the integration of Equations 5.8 and 5.10 yieldsP1(t)− 0.5PS = β ∫ t

0

Q1(t)
V1(t) dt − βA

∫ t

0

�̇a(t)
V1(t) dt

P2(t)− 0.5PS = β ∫ t

0

Q2(t)
V2(t) dt + βA

∫ t

0

�̇a(t)
V2(t) dt

(5.26)

For the first term on the right side of Equation 5.26, V1(t) and V2(t) can be
regarded as constant. This is because Vi(t) changes much less than Qi(t), i = 1, 2.
For example, from Equations 5.18, 5.19 and 5.21, it is clear that the hydraulic
actuator system at the University of Missouri-Rolla has∣∣∣∣δQi

Q0

∣∣∣∣ = ∣∣∣∣Qi − Q0

Q0

∣∣∣∣ = ∣∣∣∣Q0(1± xi)− Q0

Q0

∣∣∣∣ = |xi| = ∣∣∣∣δPi

PS

∣∣∣∣ (5.27)= 0.5× 5.15% = 2.58%� 0.3% = (δVi

V

)
max
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For the second term on the right side of Equation 5.26, V1(t) and V2(t) are
expressed by Equation 5.16. Then this term becomes∫ t

0

�̇a(t)
V1(t) dt ≈ ∫ �a

0

d�a(t)
V1(t)+ A�a(t) = 1

A
ln
(

1+ A�a(t)
V1(t) )= 1

A

(
A�a(t)
V1(t) − A2�2

a(t)
V2

1 (t) + · · ·) ≈ �a(t)
V1(t) (5.28)

Note that the first-order approximation of the Taylor series is used in the above
equation because A�a/V = δV/V 	 1 as Equation 5.18 shows. Similarly,∫ t

0

�̇a(t)
V2(t) dt ≈ ∫ �a

0

d�a(t)
V2(t)− A�a(t) = − 1

A
ln
(

1− A�a(t)
V2(t) ) (5.29)= − 1

A

(−A�a(t)
V2(t) + A2�2

a(t)
V2

2 (t) + · · ·) ≈ �a(t)
V2(t)

Then, Equation 5.26 becomesP1(t)− 0.5PS ≈ β
V
∫ t

0 Q1(t)dt − βA
V
�a(t)

P2(t)− 0.5PS ≈ β
V
∫ t

0 Q2(t)dt + βA
V
�a(t) (5.30)

and

A [P2(t)− P1(t)] = 2βA2

V
�a(t)+ βA

V

∫ t

0
[Q2(t)− Q1(t)] dt (5.31)

Combining Equations 5.13c, 5.21, 5.24, and 5.31 leads to

A [P2(t)− P1(t)] = 2βA2

V
�a(t)+ βA

V

∫ t

0
[Q0 + Q0 c(t)− Q0 + Q0 c(t)] dt= 2βA2

V
�a(t)+ 2βAKV

V

√
PS

2

∫ t

0
c(t) dt (5.32)

and substituting Equation 5.32 into Equation 5.11 yields the linearized model for
the actuator

fa(t) = [
2βA2

V
�a(t)+ cp�̇a(t)+ mpẍb(t)]+ βAKV

V
√

2PS

∫ t

0
c(t) dt (5.33)
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In structural seismic response control, earthquake ground motion results in

additional inertia force for the valve-piston, that is,

fa(t) = [
2βA2

V
�a(t)+ cp�̇a(t)+ mp

(
ẍb(t)+ ẍg(t))]+ βAKV

V
√

2PS

∫ t

0
c(t) dt

(5.34)

Since fa is much larger than cp�̇a(t) and mp[ẍb(t) + ẍg(t)] for a structural
control system, Equation 5.34 can be simplified as

fa(t) = 2βA2

V
�a(t)+ βAKV

V
√

2PS

∫ t

0
c(t) dt (5.35a)

or

ḟa(t) = 2βA2

V
�̇a(t)+ βAKV

V
√

2PSc(t) (5.35b)

Equations 5.12 and 5.35 form the mathematical model of the hydraulic actuator
for structural control. Because there is no fa(t) term in the right side of Equation
5.35b, this actuator model indicates that the system has a zero eigenvalue (i.e.,
a pole at origin). This means that the servovalve-controlled hydraulic actuator
is a marginally stable system, and small deviations due to initial imperfections
may cause the system to be unstable. This theoretical result matches well with
experiments [10,14,15]. This actuator model also indicates that actuator force and
actuator-piston displacement interact as shown by the first term of the right side
of Equations 5.35a or 5.35b. Because actuator-piston displacement is equal to the
relative displacement between the K-brace and the structure (see Equation 5.1),
the actuator model indicates that the structure and the actuator have dynamic
interaction in a smart structure system. More details on the interaction issue is
discussed in Sections 5.3.3 and 5.3.4.

When two or more hydraulic actuators are applied to the system, say the kth
hydraulic actuator (k = 1, 2, . . . , r) is attached to the ith floor (i = 1, 2, . . . , n) and
supported by the jth bracing system (j = 1, 2, . . . , m), actuator-piston displacement�ak(t) = xbj(t)− xi(t). Then, from Equations 5.12a and 5.35b ḟak(t) = (

2βA2

V

)
k

[
ẋbj(t)− ẋi(t)]+ (βAKV

V
√

2PS

)
k

ck(t)
ċk(t) = − 1τk

ck(t)+ 1τk
uk(t) (5.36)

5.1.2 Modeling of Passive Dampers
Application of passive dampers for seismic response control has been discussed in
Chapter 3 in detail. This section presents dynamic models of passive dampers used
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in hybrid systems, particularly these viscous fluid dampers, liquid mass dampers,
and spring dampers.

5.1.2.1 Model of viscous fluid dampers

As shown in Figure 5.3, the viscous fluid damper consists of a hydraulic piston–
cylinder filled with viscous fluid and a tube connecting the two chambers separated
by the piston head. The cylinder can be attached to a structural floor and the

(a)

Structure

Fluid flow 

fp(t) fp(t)∆p(t)∆(b)

FIGURE 5.3 Viscous fluid damper: (a) view and (b) schematic.
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piston’s rod connected to a bracing system. Structural and bracing vibration drives
movement of the piston relative to the cylinder. This allows the viscous fluid in both
chambers to flow back and forth through the tube. Friction force between the fluid
flow and the tube and cylinder absorbs energy and thus reduces structural vibration.

As well known, the linear elastic and viscous behavior of materials are
respectively governed by the following two equations τyx = −G

dux

dy
= −Gγyxτyx = −µdνx

dy
= −µ d

dy

(
dµx

dt

) = −µγ̇yx

(5.37a)

where τyx is the shear stress; G is the shear modulus of the elastic materials, such as
Hookean solids; µ is viscosity of the linear viscous materials, such as Newtonian
liquids; vx is the fluid velocity; ux is the displacement in the x-direction; the
qualities γyx and γ̇yx are components of the strain tensor and the rate of strain (or
rate of deformation), respectively. Equation 5.37a can be rewritten as 1

G
∂τyx∂t
= −γ̇yx

1µτyx = −γ̇yx

(5.37b)

Viscous fluid dampers use a fluid type of viscoelastic materials. Viscoelastic
materials have combined elastic and viscous properties. The mechanical behavior
of such a material, called viscoelasticity, exhibits viscous and elastic behaviors
simultaneously. Such behaviors can be mathematically expressed as [12]τ = f (γ , γ̇ , t) (5.37c)

where τ and γ are the shear stress and shear strain, respectively, t is the time instant.
Equation 5.37c shows that the shear stress is a function of shear strain, rate of the
strain and time. A linear viscoelastic material would have a linearized relationship
to reveal combined viscous and elastic behavior. Thus, a direct thought will be
superposition of linear elastic and linear viscous models of Equation 5.37b asτyx + µG ∂τyx∂t

= −µγ̇yx (5.37d)

The above equation is called Maxwell model. By introducing new notations
for the constants and replacing µ with C0 and µ/G with λ0, the Maxwell model
becomes τ + λ0

∂τ∂t
= −C0γ̇ (5.37e)

C0 and λ0 are the relaxation modulus and material viscosity, respectively. The
Maxwell model shows that the shear stress at any time instant, t, depends on the
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rate of strain at the present time, t, and also the rate of strain at all past time t′,
with the weighting factor (the relaxation modulus) that decays exponentially as
one goes backwards in time, and displays the material characteristics of memory.

The above governing equations of elastic, viscous, and viscoelastic materi-
als are stress–strain relationships. Their integration along the shear area leads to
force–displacement relationship, which is the base of the following mechanical
analogies:• The stress–strain relationship of a Hookean solid has the same form

as the force–displacement relationship for a linear spring with stiffness
constant of k, which is shown in Figure 5.4a. This linear spring model
is expressed as

fp(t) = k�1(t) (5.38a)

where fp is the force applied on the spring and �1 is the force-
caused displacement as shown in Figure 5.4a. Equation 5.38a can be
rewritten as

d
dt

fp(t) = k
d
dt
�1(t) (5.38b)

Multiplying above equation by constant C0/k yields

C0

k
ḟp(t) = C0�̇1(t) (5.38c)• The relationship of stress and rate of strain for a Newtonian fluid has

the same form as the relationship of force and rate of displacement for
a dashpot, where the dashpot consists of a loose-fitting position that
moves in a cylinder containing a Newtonian fluid, as in Figure 5.4b.
The dashpot is modeled by

fp(t) = C0
d
dt
�2(t) = C0�̇2(t) (5.38d)

(a) (b)fpk ∆1 fpC0 C0

∆2

(c)fp fpk ∆1

∆2 ∆1 + ∆2

FIGURE 5.4 Mechanical analogies of various material behaviors: (a) elastic material,
(b) viscous material, and (c) viscoelastic material.
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tionship of the same form as for the force–displacement relationship of
a spring and dashpot in series, as shown in Figure 5.4c. With superpos-
ition law for linear systems, the model for viscoelastic materials can be
obtained by adding Equations 5.38c and 5.38d together

fp(t)+ C0

k
d
dt

fp(t) = C0
d
dt
�1(t)+ C0

d
dt
�2(t) (5.38e)

The summation of displacements in the spring and in the dashpot is the total
displacement at the point where the force is applied, as shown in Figure 5.4c. Thus,
by introducing a new constant λ0 = C0/k, Equation 5.38e can be rewritten asλ0 ḟp(t)+ fp(t) = C0�̇p(t) (5.39a)

The viscous fluid damper is composed of a moving piston in a cylinder filled
with viscoelastic material. Thus, its dynamic behavior follows the Maxwell model
in force–displacement format [10–12,20] as expressed by Equation 5.39a. Then,
fp(t) and�p(t) are force applied to the fluid damper and resulting piston displace-
ment, respectively; damper parameters, namely, λ0 is relaxation time factor and C0
is damping coefficient at zero frequency. Parameters λ0 and C0 can be determined
through parameter identification tests [10,20].

If two or more dampers are employed, say the kth damper (k = 1, 2, . . . , s)
is mounted on the jth bracing (j = 1, 2, . . . , m) and attached to ith floor (i =
1, 2, . . . , n), then piston displacement�pk(t) = xbj(t)− xi(t), and Equation 5.39a
becomes λ0k ḟpk(t)+ fpk(t) = C0k

[
ẋbj(t)− ẋi(t)] (5.39b)

5.1.2.2 Linear model of liquid mass dampers

As shown in Figure 5.5a, the liquid mass damper is composed of a viscous damper
and a tube that connects both ends of the damper’s cylinder. The damper generates
passive inertia force and damping force, which are respectively proportional to the
piston’s acceleration and velocity. If such a damper is installed on jth K-brace at
ith floor, its linear model can be expressed as

fpk = mek(ẍi − ẍbj)+ cpk(ẋi − ẋbj), i = 1, 2, . . . , n;

j = 1, 2, . . . , m; k = 1, 2, . . . , s (5.40)

where xi and xbj are displacements of the ith floor and the jth K-brace, respectively;
n, m, and s are numbers of stories, K-braces and dampers, respectively; cpk is
damping coefficient of the kth damper; and mek is effective liquid mass caused by
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Tube(a)

Tube(b) Spring

FIGURE 5.5 Two types of damper for hybrid control: (a) liquid mass damper and (b) spring
damper.

the motion of the liquid in the tube of the kth damper, which can be calculated by
the following formula

me = ρLtAt

(
Ap

At

)2
(5.41)

where ρ is mass density of liquid used in the viscous damper, Lt is length of the
tube, and Ap and At are cross-sectional areas of the cylinder and tube, respectively.

5.1.2.3 Linear model of spring dampers

The spring damper, as shown in Figure 5.5b, consists of a viscous damper and
a parallel spring, which provide passive damping and spring forces, respectively.
If such a damper is installed on jth K-brace at ith floor, its linear model can be
expressed as

fpk = cpk(ẋi − ẋbj)+ kpk(xi − xbj), i = 1, 2, . . . , n;

j = 1, 2, . . . , m; k = 1, 2, . . . , s (5.42)

where cpk and kpk are damping and spring coefficients, respectively, of the kth
spring damper.
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5.1.3 Modeling of Semiactive Dampers
Chapter 1 has presented a brief introduction of semiactive dampers. Various semi-
active dampers have been proposed by adding performance-adjustment functions
to passive energy-dissipating devices using friction, yielding, or viscous fluid
mechanisms, and so forth. To analyze and design a smart seismic structure with
semiactive systems, the model of the semiactive device must first be formulated
on the basis of its dynamic behavior. This task is usually challenging as most
semiactive devices are complicated and behave in a highly nonlinear manner. One
class of semiactive dampers uses controllable fluids, the electrorheological (ER)
or magnetorheological (MR) fluids. This kind of semiactive dampers is currently
in vogue and thus serves as example for analysis of semiactive dampers in this
chapter.

5.1.3.1 Model of electrorheological dampers

The stress–strain behavior of ER fluids is often described by the Bingham visco-
plastic model [24], which defines the plastic viscosity as the slope of shear stress
versus shear strain rate. Thus, the total shear stress τ is given byτ = τu + ηγ̇ (5.43)

where τu is the yield stress induced by the electric field, η is the viscosity of the
fluid, and γ̇ is the shear rate. On the basis of this model for the rheological behavior
of ER fluids, Stanway et al. [28] proposed an idealized mechanical model, called
the Bingham model, for the behavior of an ER damper. As shown in Figure 5.6,
this model consists of a Coulomb friction element placed in parallel with a linear
viscous damper. The force generated by the linear viscous damper is proportional
to the relative velocity �̇(t) of the piston to the cylinder of the ER damper. If the
relative velocity is zero, the damper force is generated by the Coulomb friction
element only. Thus, the force fsa(t) generated by the device is given by

fsa(t) = fcsign
(�̇(t))+ c0�̇(t)+ f0 (5.44)∆(t)fsa(t) – f0c0

fc
FIGURE 5.6 Bingham model of ER damper.



“CHAP05” — 2008/1/18 — 12:20 — page 253 — #17

Smart Seismic Structures Using Semiactive and Hybrid Control Systems 253fcc0 c1 k2k1

∆1(t) ∆2(t) ∆3(t)fsa(t)–f0
FIGURE 5.7 Extended Bingham model of ER damper.

where c0 is damping coefficient, fc is friction force related to the fluid yield stress,
and f0 is offset force that accounts for the nonzero mean value of the measured
force owing to the presence of the accumulator.

The Bingham model is based on the assumption that the ER damper behaves
in viscoplastic way. Gamota and Filisko [18] discovered that the ER fluid has
mixed viscoelastic and viscoplastic behavior, and thus proposed an extension of
the Bingham model. As described schematically by the viscoelastic–plastic model
in Figure 5.7, two linear spring elements and a dashpot, which describe the vis-
coelastic behavior of the ER damper, are added to the Bingham model. While�3(t) is the relative displacement of the piston and the cylinder of the ER damper,
two more internal states (degrees of freedom), �1(t) and �2(t), are added to the
system. The damper model is then expressed as fsa(t) = fcsign

(�̇1(t))+ c0�̇1(t)+ f0= c1
[�̇2(t)− �̇1(t)]+ k1 [�2(t)−�1(t)]+ f0= k2 [�3(t)−�2(t)]+ f0

 | fsa| > fc

fsa(t) = c1�̇2(t)+ k1 [�2(t)−�1(t)]+ f0= k2 [�3(t)−�2(t)]+ f0�̇1(t) = 0

 | fsa| ≤ fc

(5.45)

Again, c0, fc, and f0 are coefficients associated with the Bingham model; k1, k2,
and c1 are spring and damping coefficients for the viscoelastic part of the model.

5.1.3.2 Model of magnetorheological dampers

As discussed in Chapter 1, MR dampers use the MR fluid and are very promising
alternatives for seismic response control [16,27]. MR fluid and dampers have
the following advantages that make them highly potential for seismic response
control:• Transition of MR fluid to rheological equilibrium can be achieved in

a few milliseconds, allowing construction of MR dampers with high
bandwidth.• MR fluid can achieve much higher yield stress than ER fluid.
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only slight variations in yield stress.• MR fluids are not sensitive to impurities caused during manufacturing
and usage.• MR fluid has little separation between magnetic particle and carrier fluid
under common flow conditions.• MR fluid can be readily controlled with low voltage (e.g., 12–24 V) and
low energy requirement (1–2 Å).

Because the MR fluid and ER fluid behave similarly, Spencer et al. [27]
evaluated the above Bingham models for their application to MR dampers. An
MR damper manufactured by Lord Corporation of Cary, North Carolina was tested
and the measured data was used to fit the above model to identify the model para-
meters. Then, the response predicted by the model using these parameters was
compared to test response. It was shown that the Bingham model predicted the
force–displacement behavior of the damper well, but it did not capture the force–
velocity behavior very well, especially for the region with small velocities. It was
also shown that the extended Bingham model could predict the response better but
had a major numerical weakness that this model was extremely stiff and required
a time step in the order of 10−6 s.

To improve these models, Spencer et al. proposed a model that is numerically
tractable and predicts response well. As shown in Figure 5.8 schematically, this
model combines the Bouc-Wen model [29] and a spring-dashpot model, which are
for the hysteretic behavior and the linear viscoelastic behavior of the MR damper,
respectively. The Bouc-Wen model is extremely versatile and can exhibit a wide
variety of hysteretic behavior. This model expresses the force generated by thec0k0

Bouc-Wen 
∆(t)fsa(t)

FIGURE 5.8 Bouc-Wen model of MR damper.
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damper fsa(t) as

fsa(t) = c0�̇(t)+ k0 [�(t)−�0]+ α�1(t) (5.46)

Again, k0 and c0 are spring and damping coefficients for the viscoelastic part
of the model, the force f0 due to the accumulator is modeled by an initial deflection
of the linear spring �0, and α is the constant in Bouc-Wen model. Besides the
relative displacement �(t) between the damper piston and cylinder, this model
introduces an internal state (degree-of-freedom), the evolutionary variable �1(t),
which is governed by�̇1(t) = −γ ∣∣�̇(t)∣∣�1(t) |�1(t)|n−1 − β�̇(t) |�1(t)|n + A�̇(t) (5.47)

where γ , n,β, and A are the parameters. By adjusting them, the above model can
well match the hysteretic behavior of the MR damper. Again, for the same test,
data were used to determine these parameters by best fitting the Bouc-Wen model
response to the test. A comparison between the model predicted response and
experimental data shows that this model predicts the force–displacement behavior
well, but not very well for the force–velocity relationship in the small velocity
region, which is similar to the Bingham model though it more closely resembles
the experimental data. Thus, Spencer et al. [27] proposed an improved model
by adding one more set of spring-dashpot (k1 and c1) to the model. As shown
schematically by Figure 5.9, this model introduced another internal state �2(t),
the displacement of the new dashpot. The new spring k1 represents the accumulator
stiffness, and the new dashpot c1 produces the round-off observed in the region with
low velocities. The existing spring and dashpot would then control the stiffness
and viscous damping at large velocities, and �0 becomes the initial displacement
of the accumulator associated with its own spring k1.

Force balance of the new dashpot yields

c1�̇2(t) = α�1(t)+ c0
[�̇(t)− �̇2(t)]+ k0 [�(t)−�2(t)] (5.48)c1 c0k0k1

fsa (t)1(t)Bouc-Wen 

FIGURE 5.9 Improved Bouc-Wen model of MR damper.
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This can be rewritten as�̇2(t) = 1

c0 + c1

[−k0�2(t)+ α�1(t)+ c0�̇(t)+ k0�(t)] (5.49)

The internal displacement for the Bouc-Wen model is [�(t)−�2(t)] now.
Thus, the evolutionary variable �1(t) is governed by�̇1(t) = −γ ∣∣�̇(t)− �̇2(t)∣∣�1(t) |�1(t)|n−1− β [�̇(t)− �̇2(t)] |�1(t)|n + A

[�̇(t)− �̇2(t)] (5.50)

and the force generated by the damper fsa(t) is then given by

fsa(t) = α�1(t)+ c0
[�̇(t)− �̇2(t)]+ k0 [�(t)−�2(t)]+ k1 [�(t)−�0]

(5.51)

By substituting Equation 5.48 into the above equation yields

fsa(t) = c1�̇2(t)+ k1 [�(t)−�0] (5.52)

As shown by Equations 5.49, 5.50, and 5.52, this model describes the MR
damper as first-order nonlinear dynamic system with two internal states, �1(t)
and �2(t). By fitting the model with the same test data, it is shown that the
proposed model predicts the damper behavior very well in all regions.

Note that the above model is based on a constant magnetic field. However,
optimal seismic response control would expect an ever-changing magnetic field on
the basis of the feedback of measured structural seismic response. Thus, the model
must be enhanced to predict the damper behavior under a fluctuating magnetic field
for seismic response control. It has been found that parameters α, c0, and c1 would
have functional dependence with the magnetic field and a linear relationship has
been assumed [27] α = α(u) = α0 + α1u(t)

c0 = c0(u) = c00 + c01u(t)
c1 = c1(u) = c10 + c11u(t) (5.53)

where the magnetic field measure u(t) would have first-order dynamics with the
applied voltage v(t) due to the setting time for the MR fluid to reach rheological
equilibrium

u̇(t) = −η [u(t)− v(t)] (5.54)

Equations 5.49, 5.50, and 5.52–5.54 fully define the dynamic behavior of an
MR damper. It introduces first-order device dynamics to a smart seismic structure
system using an MR damper with five device states, �(t),�2(t), u(t), and v(t).
There are 14 parameters involved and must be identified for the prototype MR
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TABLE 5.1
Identified Model Parameters for an MR Damper

c00 c01 c10 c11 k0 k1
Parameter A N-s/cm N-s/(cm-V) N-s/cm N-s/(cm-V) N/cm N/cm

Value 301 21.0 3.50 283 2.95 46.9 5.0

x0 α0 α1 β γ η

Parameter cm N N/cm N/cm cm−2 cm−2 s−1

Value 14.3 2 140 695 363 363 190

damper. Table 5.1 shows the parameters identified for the aforementioned MR
damper [27].

5.2 DYNAMIC MODEL OF SMART SEISMIC STRUCTURES WITH

SEMIACTIVE OR HYBRID CONTROL

To analyze and design a semiactive or hybrid control system for a full-scale seismic-
resistant structure, an analytical model of the entire system needs to be formulated
first. Its accurate model shall be based on the dynamic behavior and/or operat-
ing mechanism of all the system’s components: the structure, braces, and control
devices (dampers and actuators). Moreover, it is desirable to have a general model
that addresses arbitrary number and location of control devices. This is because a
system model with fixed number and location of control devices has two weak-
nesses. First, owing to the dynamic interaction between the structure and control
devices, this model does not work for the same structure with different number
and/or the location of control devices. In other words, the model has to be reformu-
lated. Thus, this approach is not practical for computer analysis because not only
the input data but also the program must be changed. Second, fixed number and
location of control devices have no meaning for optimal design of a control system
because the location and number of control devices are not known at the design
stage. Thus, researchers have taken efforts to develop a general and accurate model
to address these weaknesses [6–8,19,22,25], as discussed in this section. In detail,
this section formulates such a model for the analysis of smart seismic structures.
The HDABC system, which consists of servovalve-controlled hydraulic actuators
and passive dampers mounted on K-braces between two stories of a structure,
serves as the example for the process. Three types of passive dampers—viscous
fluid damper, liquid mass damper, and spring damper—are considered for HDABC
system. Analytical models for each component of the HDABC system are formu-
lated on the basis of the dynamic behavior of the structure with braces and the
dynamic model of control devices. Thus, the integrated system model considers
dynamics of the structure, braces, and control devices as well as their dynamic
interaction. The model is then condensed into matrix form by considering arbitrary
number and location of control devices. Finally, a state-variable representation of
the system model in both continuous and discrete time domain is developed.
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FIGURE 5.10 Shear building with HDABC system.

5.2.1 System Description
Figure 5.10 shows a typical n-story seismic-resistant structure equipped with a
HDABC system. This system has multiple servovalve-controlled hydraulic actu-
ators, viscous fluid dampers, and hybrid devices supported by K-braces on the
structure. The hybrid device is a combination of a damper and an actuator. Installed
at each floor of the building structure can be a hybrid device, a damper only, an
actuator only, or no control device at all. Floors without a control device do not
need the bracing system. When an n-story building structure is equipped with
r actuators, s passive dampers, and m bracing systems, the following relation-
ship exists because a bracing system may support a damper, an actuator, or their
combination (i.e., a hybrid device).

r ≤ m, s ≤ m, m ≤ (r + s), m ≤ n (5.55)
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5.2.2 Shear Building Structures with Hybrid Devices on
All Floors

To simplify the problem, an n-story shear building structure equipped with a hybrid
control device on each floor (see Figure 5.11) is studied. In this case, the control sys-
tem has n braces, n actuators, and n passive dampers. mi, ci, and ki(i = 1, 2, . . . , n)
are coefficients of mass, damping, and stiffness of the ith floor of the structure,
respectively; mbi, cbi, and kbi are coefficients of mass, damping, and stiffness of the
ith bracing, respectively; fai and fpi are active and passive control forces generated
by ith actuator and ith damper, respectively; xi is ith floor displacement relative
to the ground; xbi is displacement of ith bracing relative to the ground; and ẍg is
earthquake ground acceleration. Obviously, the absolute displacement of the ith
floor and ith bracing are (xi + xg) and (xbi + xg), respectively.

From the free-body diagram in Figure 5.11, motion equations for the controlled
structure under earthquake excitation can be expressed as m1(ẍ1 + ẍg)+ c1ẋ1 − c2(ẋ2 − ẋ1)− cb2(ẋb2 − ẋ1)+k1x1 − k2(x2 − x1)− kb2(xb2 − x1) = fa1 + fp1

m2(ẍ2 + ẍg)+ c2(ẋ2 − ẋ1)− c3(ẋ3 − ẋ2)− cb3(ẋb3 − ẋ2)+k2(x2 − x1)− k3(x3 − x2)− kb3(xb3 − x2) = fa2 + fp2· · · · · ·
mi(ẍi + ẍg)+ ci(ẋi − ẋi−1)− ci+1(ẋi+1 − ẋi)− cbi+1(ẋbi+1 − ẋi)+ki(xi − xi−1)− ki+1(xi+1 − xi)− kbi+1(xbi+1 − xi) = fai + fpi· · · · · ·
mn−1(ẍn−1 + ẍg)+ cn−1(ẋn−1 − ẋn−2)− cn(ẋn − ẋn−1)− cbn(ẋbn − ẋn−1)+kn−1(xn−1 − xn−2)− kn(xn − xn−1)− kbn(xbn − xn−1) = fan−1 + fpn−1
mn(ẍn + ẍg)+ cn(ẋn − ẋn−1)+ kn(xn − xn−1) = fan + fpn

(5.56)

Note that ki represents the stiffness of all columns at ith floor, and ci signifies
the damping coefficient on that floor. Each bracing is modeled as a single d.o.f.
system.

Motion equations for the bracing systems are mb1(ẍb1 + ẍg)+ cb1ẋb1 + kb1xb1 = −fa1 − fp1
mb2(ẍb2 + ẍg)+ cb2(ẋb2 − ẋ1)+ kb2(xb2 − x1) = −fa2 − fp2· · · · · ·
mbi(ẍbi + ẍg)+ cbi(ẋbi − ẋi−1)+ kbi(xbi − xi−1) = −fai − fpi· · · · · ·
mbn−1(ẍbn−1 + ẍg)+ cbn−1(ẋbn−1 − ẋn−2)+ kbn−1(xbn−1 − xn−2)= −fan−1 − fpn−1
mbn(ẍbn + ẍg)+ cbn(ẋbn − ẋn−1)+ kbn(xbn − xn−1) = −fan − fpn

(5.57)
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FIGURE 5.11 Shear building with HDABC on every floor: (a) schematic and (b) free-body
diagram.

Equations 5.56 and 5.57 can be condensed in matrix form as[M]{ẍ(t)} + [C]{ẋ(t)} + [K]{x(t)} = [γa]{fa(t)} + [γp]{fp(t)} + {δ}ẍg(t) (5.58)

which forms the analytical model of a smart structure with HDABC sys-
tem. In Equation 5.58, {x(t)} of 2n × 1 is vector of structural and bracing
displacements; {fa(t)} of n × 1 and {fp(t)} of n × 1 are vectors of active
and passive control forces, respectively; [M], [C], and [K] are 2n × 2n
matrices of mass, damping, and stiffness of the structure with bracing sys-
tems, respectively; [γa] and [γp] of 2n × n are location matrices for actu-
ators and dampers, respectively; and {δ} of 2n × 1 is the coefficient vector
for earthquake ground acceleration, ẍg(t). These vectors and matrices can be
expressed as{x(t)} = [x1(t), x2(t), · · · , xn(t); xb1(t), xb2(t), · · · , xbn(t)]T (5.59){fa(t)} = [fa1(t), fa1(t), · · · , fan(t)]T (5.60){

fp(t)} = [
fp1(t), fp1(t), · · · , fpn(t)]T (5.61)[M] = [ [Ms] [Mb] ] , [C] = [ [Cs] + [Cbsb] [Csb][Cbs] [Cb] ]

,
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(5.63)[γs] = −[γb] = [I]n×n =  1

1 · · ·
1 · · ·

1
1


n×n

(5.64){δ} = −[m1, m2, · · · , mi, · · · , mn−1, mn; mb1, mb2, · · · , mbi, · · · , mbn−1, mbn]T
(5.65)

And the submatrices of [M] and [C] in Equation 5.62 are defined as[Ms] =  m1
m2 · · ·

mn−1
mn


n×n

(5.66)[Mb] =  mb1
mb2 · · ·

mbn−1
mbn


n×n

(5.67)[Cs] =  c1 + c2 − c2− c2 c2 + c3 −c3· · · · · · · · ·−ci ci + ci+1 −ci+1· · · · · · · · ·−cn−1 cn−1 +cn −cn−cn cn


n×n

(5.68)[Cb] =  cb1
cb2 · · ·

cbi · · ·
cbn−1

cbn


n×n

(5.69)
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0 −cb3· · · · · ·

0 −cbi· · · · · ·
0 −cbn

0


n×n

(5.70)[Cbsb] = [ϒ]T[Cb][ϒ] =  cb2
cb3 · · ·

cbi+1 · · ·
cbn

0


n×n
(5.71)

where [ϒ] =  0−1 0· · · · · ·−1 0· · · · · ·−1 0−1 0


n×n

(5.72)

Similarly, the submatrices of [K] in Equation 5.62 are defined as[Ks] =  k1 + k2 −k2−k2 k2 + k3 −k3· · · · · · · · ·−ki ki + ki+1 −ki+1· · · · · · · · ·−kn−1 kn−1 + kn −kn−kn kn


n×n

(5.73)[Kb] =  kb1
kb2 · · ·

kbi · · ·
kbn−1

kbn


n×n

(5.74)
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0 −kb3· · · · · ·

0 −kbi· · · · · ·
0 −kbn

0


n×n

(5.75)[Kbsb] = [ϒ]T[Kb][ϒ] =  kb2
kb3 · · ·

kbi+1 · · ·
kbn

0


n×n
(5.76)

5.2.3 Structures with Control Devices on Some Floors
Consider a general case where a structure cannot be modeled as shear building and
only some floors of the structure are installed with control devices. If the structure
is equipped with r actuators, s passive dampers, and m bracing systems (as defined
in Section 5.2.1), there are r active control forces fai (i = 1, 2, . . . , r), s passive
control forces fpi (i = 1, 2, . . . , s), and m d.o.f. xbi (i = 1, 2, . . . , m) for bracing
systems. Equations 5.59 (the vector of structural and bracing displacements), 5.60
(the vector of active control force), and 5.61 (the vector of passive control force)
then become{x(t)}(n+m)×1 = [x1(t), x2(t), · · · , xn(t); xb1(t), xb2(t), · · · , xbm(t)]T (5.77){fa(t)}r×1 = [fa1(t), fa2(t), · · · , far(t)]T (5.78){fp(t)}s×1 = [

fp1(t), fp2(t), · · · , fps(t)]T (5.79)

Although Equations 5.58, 5.62, 5.63, and 5.75 are still applicable, orders
of matrices and vectors in these equations are different. Since there are only
m bracings, Equations 5.57 and 5.58 become in the orders of m and (n + m),
respectively, and [M], [C], and [K] are of the (n + m) × (n + m) matrices now.
For shear building structures, [Ms], [Cs], and [Ks] are the same as defined in
Equations 5.66, 5.68, and 5.73, respectively. If the structure cannot be modeled as
a shear building, matrices [C] and [K] are no longer tridiagonal. For the current
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case of a shear building, [Mb], [Cb], and [Kb] are of m× m and[Mb] =  mb1

mb2 · · ·
mbm

 (5.80a)[Cb] =  cb1
cb2 · · ·

cbm

 (5.80b)[Kb] =  kb1
kb2 · · ·

kbm

 (5.80c)

Let [θb]n×m denote the location matrix of bracing systems on the structure;
elements of this matrix are zero except that θb(i, j) = 1 when the jth bracing is
supported by the ith floor. Then{

[Cbs]T
m×n = [Csb]m×n = [ϒ]T

n×n [θb]n×m [Cb]m×m

[Kbs]T
m×n = [Ksb]m×n = [ϒ]T

n×n [θb]n×m [Kb]m×m
(5.81)

and{
[Cbsb]n×n = [ϒ]T

n×n [θb]n×m [Cb]m×m [θb]T
m×n [ϒ]n×n = [Csb]n×m [θb]T

m×n [ϒ]n×n

[Kbsb]n×n = [ϒ]T
n×n [θb]n×m [Kb]m×m [θb]T

m×n [ϒ]n×n = [Ksb]n×m [θb]T
m×n [ϒ]n×n

(5.82)

The relationship between Equations 5.78 and 5.62 can be expressed as{fa(t)}n×1=  fa1(t)
fa2(t)· · ·

0· · ·
fai(t)· · ·

0· · ·
far−1(t)

far(t)  =  1 0 0 · · · · · · · · · · · · · · · 0
0 1 0 · · · · · · · · · · · · · · · 0· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · · · · 0 · · · · · · · · · · · · 0· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · · · · 0 1 0 · · · · · · 0· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · · · · · · · · · · 0 · · · · · · 0· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · · · · · · · · · · · · · 0 1 0
0 · · · · · · · · · · · · · · · 0 0 1

× fa1(t)
fa2(t)· · ·

far−1(t)
far(t)  = [θa]n×r {fa(t)}r×1 (5.83)
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which means that zero elements are filled to {fa(t)}n×1 for those floors without an
actuator. In Equation 5.83, [θa]n×r is matrix of actuator location on the structure,
and its elements are zero except that θa(i, j) = 1 when the jth actuator is attached
on the ith floor.

Similarly, for passive control forces{
fp(t)}n×1= fp1(t)

fp2(t)· · ·
0· · ·

fpi(t)· · ·
0· · ·

fps−1(t)
fps(t) = 1 0 0 · · · · · · · · · · · · · · · 0

0 1 0 · · · · · · · · · · · · · · · 0· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · · · · 0 · · · · · · · · · · · · 0· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · · · · 0 1 0 · · · · · · 0· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · · · · · · · · · · 0 · · · · · · 0· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · · · · · · · · · · · · · 0 1 0
0 · · · · · · · · · · · · · · · 0 0 1

× fp1(t)
fp2(t)· · ·

fps−1(t)
fps(t)  = [θp]n×s

{
fp(t)}s×1 (5.84)

where [θp]n×s is matrix of damper location on the structure. If the jth damper is
attached on the ith floor, θa(i, j) = 1, otherwise, θa(i, j) = 0. Actuator and damper
location matrices [γa] and [γp] can be further expressed as[γa](n+m)×r = [ [γs]n×n[θa]n×r[θb]Tm×n[γb]n×n[θa]n×r

][γp](n+m)×s = [ [γs]n×n[θp]n×r[θb]Tm×n[γb]n×n[θp]n×r

]
(5.85)

where [γs] and [γb] are defined in Equation 5.75.
Coefficient vector for earthquake excitation, {δ}, now of (n + m) × 1, is

expressed as{δ} = − [m1, m2, · · · , mi, · · · , mn−1, mn; mb1, mb2, · · · , mbi, · · · , mb m−1, mbm]T

(5.86)
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FIGURE 5.12 Four-story shear building with HDABC system: (a) schematic and (b) free-
body diagram.

5.2.4 Verification of the General Model for
HDABC-Controlled Structures

A four-story shear building with an HDABC system (see Figure 5.12) serves as
an example to verify the general model. This control system consists of a hybrid
control device at the first floor, an actuator at the second floor, and a damper at
the fourth floor. Analytical models are developed in two ways. One uses equations
from the general model while the other is obtained directly from the free-body
diagram. The validity of the general model is verified if both methods yield the
same results for this four-story building with control.

Since there are two actuators, two dampers, and three bracings on the four-
story building, n = 4, m = 3, and r = s = 2. From Equations 5.77 through
5.79, vectors of displacements, active control forces, and passive control forces
are expressed respectively as{x(t)}7×1 = [x1(t), x2(t), x3(t), x4(t); xb1(t), xb2(t), xb3(t)]T (5.87){fa(t)}2×1 = [fa1(t), fa2(t)]T (5.88){

fp(t)}2×1 = [
fp1(t), fp2(t)]T (5.89)

and [Ms] =  m1
m2

m3
m4

 (5.90)
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 (5.91)[Ks] =  k1 + k2 −k2−k2 k2 + k3 −k3−k3 k3 + k4 −k4−k4 k4

 (5.92)[ϒ] =  0−1 0−1 0−1 0

 (5.93)[Mb] =  mb1
mb2

mb3

[Cb] =  cb1
cb2

cb3

[Kb] =  kb1
kb2

kb3

 (5.94)

Since there are three bracings, two actuators, and two dampers on the four-story
structure, location matrices for bracings [θb], for actuators [θa], and for dampers
[θp] are of 4×3, 4×2, and 4×2, respectively. θb(1, 1) = θb(2, 2) = θb(4, 3) = 1
for the three bracings installed on the first, second, and fourth floors, respectively;θa(1, 1) = θa(2, 2) = 1 for the two actuators equipped on the first and second
floors, respectively; and θp(1, 1) = θp(4, 2) = 1 for the two dampers equipped on
the first and fourth floors, respectively. Other elements in these three matrices are
zero. Thus,[θb] =  1 0 0

0 1 0
0 0 0
0 0 1

 , [θa] =  1 0
0 1
0 0
0 0

 , [θp] =  1 0
0 0
0 0
0 1

 (5.95)
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From Equations 5.81, 5.82, 5.85, and 5.86[Csb]4×3 = 0 −1 0 0

0 0 −1 0
0 0 0 −1
0 0 0 0

 1 0 0
0 1 0
0 0 0
0 0 1

 cb1 0 0
0 cb2 0
0 0 cb3

= 0 −cb2 0
0 0 0
0 0 −cb3

0 0 0


[Ksb]4×3 = 0 −1 0 0

0 0 −1 0
0 0 0 −1
0 0 0 0

 1 0 0
0 1 0
0 0 0
0 0 1

 kb1 0 0
0 kb2 0
0 0 kb3

= 0 −kb2 0
0 0 0
0 0 −kb3

0 0 0


(5.96)[Cbsb]4×4 =  0 −cb2 0

0 0 0
0 0 −cb3

0 0 0

 1 0 0 0
0 1 0 0
0 0 0 1

 0 0 0 0−1 0 0 0
0 −1 0 0
0 0 −1 0

 =  cb2 0 0 0
0 0 0 0
0 cb3 0 0
0 0 0 0


[Kbsb]4×4 =  0 −kb2 0

0 0 0
0 0 −kb3

0 0 0

 1 0 0 0
0 1 0 0
0 0 0 1

 0 0 0 0−1 0 0 0
0 −1 0 0
0 0 −1 0

 =  kb2 0 0 0
0 0 0 0
0 kb3 0 0
0 0 0 0

 (5.97)
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[γa]7×2 =   1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 1 0
0 1
0 0
0 0

 1 0 0 0
0 1 0 0
0 0 0 1

 −1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 1 0
0 1
0 0
0 0

=  1 0
0 1
0 0
0 0−1 0
0 −1
0 0

 (5.98)[γp
]

7×2 =   1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 1 0
0 0
0 0
0 1

 1 0 0 0
0 1 0 0
0 0 0 1

 −1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 1 0
0 0
0 0
0 1

=  1 0
0 0
0 0
0 1−1 0
0 0
0 −1

 (5.99)

and {δ} = −[m1, m2, m3, m4; mb1, mb2, mb3]T (5.100)
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Modeling the system directly from the free-body diagram (see Figure 5.12)

leads tom1(ẍ1 + ẍg)+ c1ẋ1 − c2(ẋ2 − ẋ1)− cb2(ẋb2 − ẋ1)+k1x1 − k2(x2 − x1)− kb2(xb2 − x1) = fa1 + fp1

m2(ẍ2 + ẍg)+ c2(ẋ2 − ẋ1)− c3(ẋ3 − ẋ2)+k2(x2 − x1)− k3(x3 − x2) = fa2

m3(ẍ3 + ẍg)+ c3(ẋ3 − ẋ2)− c4(ẋ4 − ẋ3)− cb3(ẋb3 − ẋ3)+k3(x3 − x2)− k4(x4 − x3)− kb3(xb3 − x3) = 0
m4(ẍ4 + ẍg)+ c4(ẋ4 − ẋ3)+ k4(x4 − x3) = fp2

(5.101a)mb1(ẍb1 + ẍg)+ cb1ẋb1 + kb1xb1 = −fa1 − fp1

mb2(ẍb2 + ẍg)+ cb2(ẋb2 − ẋ1)+ kb2(xb2 − x1) = −fa2

mb3(ẍb3 + ẍg)+ cb3(ẋb3 − ẋ3)+ kb3(xb3 − x3) = −fp2

(5.101b)

By condensing Equations 5.101a and 5.101b into matrix form as shown in
Equation 5.58, the following coefficient matrices are obtained[Cs] =  c1 + c2 + cb2 −c2 0 0 0 −cb2 0−c2 c2 + c3 −c3 0 0 0 0

0 −c3 c3 + c4 + cb3 −c4 0 0 −cb3
0 0 −c4 c4 0 0 0
0 0 0 0 cb1 0 0−cb2 0 0 0 0 cb2 0
0 0 −cb3 0 0 0 cb3


(5.102)= [ [Cs ]4×4+[Cbsb ]4×4 [Csb ]4×3[Cbs ]3×4 [Cb ]3×3

][Ks] =  k1 + k2 + kb2 −k2 0 0 0 −kb2 0−k2 k2 + k3 −k3 0 0 0 0
0 −k3 k3 + k4 + kb3 −k4 0 0 −kb3
0 0 −k4 k4 0 0 0
0 0 0 0 kb1 0 0−kb2 0 0 0 0 kb2 0
0 0 −kb3 0 0 0 kb3


(5.103)= [ [Ks ]4×4+[Kbsb ]4×4 [Ksb ]4×3[Kbs ]3×4 [Kb ]3×3

][γa ]7×2 = [
1 0 0 0 −1 0 0
0 1 0 0 0 −1 0

]T
,[γp ]7×2 = [

1 0 0 0 −1 0 0
0 0 0 1 0 0 −1

]T
(5.104)
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These results are exactly the same as those from the general model. Clearly,
mass matrix [M] and coefficient vector for earthquake excitation {δ} are also the
same as general modeling.

5.2.5 State-Variable Representation of the HDABC
System

As noted in Chapter 4, the linear system in modern control theory is expressed
by the first-order state equations. This section shows how motion equations of an
HDABC system are consolidated into state equations, with the HDABC system
using viscous fluid damper as the example.

With the definition of displacement vector {x(t)} for the structure and braces by
Equation 5.77, the actuator models expressed by Equation 5.36 can be condensed
into matrix form as {ḟ a(t)} = [Bx]{ẋ(t)} + [Bc]{c(t)}{ċ(t)} = [Cc]{c(t)} + [Cu]{u(t)} (5.105)

where {fa(t)} is defined by Equation (5.78); {c(t)} and {u(t)} are vectors of
valve-piston displacements and active control commands, respectively; parameter
matrices [Bx] of r × (n + m), [Bc] of r × r, [Cc] of r × r, and [Cu] of r× r
are determined by coefficients in Equation 5.36. Elements in [Bx] are zero except
Bx(k, i) = −2(βA2/V)k and Bx(k, i + n) = 2(βA2/V)k ; [Bc], [Cc], and [Cu] are
diagonal with elements Bc(k, k) = (βAKv

√
2PS/V)k , Cc(k, k) = −1/τk , and

Cu(k, k) = 1/τk ; τk is a parameter of the kth actuator defined in Equation 5.12b.
Similarly, the damper models expressed by Equation 5.39b can be condensed

into matrix form as {
ḟp(t)} = [P1] {ẋ(t)} + [P2] {fp(t)} (5.106)

where {x(t)} and {fp(t)} are defined by Equations 5.77 and 5.79, respectively;
parameter matrices [P1] of s × (n + m) and [P2] of s × s can be easily obtained
from Equation 5.39b. Elements in [P1] are zero except that P1(k, i) = −C0k/λ0k
and P1(k, j + n) = C0k/λ0k; [P2] is a diagonal matrix with elements P2(k, k) =−1/λ0k.

Owing to the existence of actuator and damper dynamics, state variables must
include d.o.f. for actuator dynamics, {fa(t)} and {c(t)}, and damper dynamics,
{fp(t)},in addition to d.o.f. for dynamics of the structure and K-braces. Thus, the
state vector is defined as {Z(t)}N×1 = {x(t)}{ẋ(t)}{

fa(t)}{
fp(t)}{c(t)} (5.107)
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If r actuators and s dampers are supported by m bracings on a building structure

with n d.o.f., there are (n + m) elements in either {x(t)} or {ẋ(t)}, r elements in
either {fa(t)} or {c(t)}, and s elements in {fp(t)}. Thus, the order of {Z(t)}—vector
of state variables—is

N = 2n+ 2m + 2r + s (5.108)

Combining Equations 5.58, 5.105, and 5.106 yields the following state-
variable representation of the hybrid structural control system{

Ż(t)} = [A] {Z(t)} + [Bu] {u(t)} + {Br} ẍg(t) (5.109a)

where [A] of N ×N is plant matrix; [Bu] of N × r is coefficient matrix for control
commands; and {Br} of N× 1 is coefficient vector for earthquake excitation. These
matrices can be further expressed as[A] =  [0] [I] [0] [0] [0]−[M ]−1[K] −[M ]−1[C] −[M ]−1[γa] −[M ]−1[γp] [0][0] [Bx] [0] [0] [Bc][0] [P 1] [0] [P 2] [0][0] [0] [0] [0] [Cc]

(5.109b)[Bu] =  [0][0][0][0][Cu] [Br] =  {0}{−1}{0}{0}{0}  (5.109c)

For a digital control system with zero-order hold and sampling period T , the
values of {Z(t)}, {u(t)}, and ẍg(t) at kth sampling time (i.e., at t = kT , k =
0, 1, 2, . . .,+∞) are z(k), u(k), and r(k), respectively; the relationship during
time interval kT ≤ t < (k + 1)T (k = 0, 1, 2, . . .,+∞) becomes{Z(t)} = {Z(kT)} = z(k){u(t)} = {u(kT)} = u(k) (5.110)

ẍg(t) = ẍg(kT) = r(k)
The solution to Equation 5.109 is{Z(t)} = �(t − t0) {Z(t0)} + ∫ t

t0
�(t − τ) ([Bu] {u(τ )} + {Br}ẍg(τ )) dτ

(5.111)
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where state transition matrix �(t) is in the same order as plant matrix [A] and is
given by�(t) = exp ([�]�t) = ∞∑

k=0

([�]�t)k
k!= [I]N×N + [�]�t + 1

2! ([�]�t)2 + 1
3! ([�]�t)3 . . . (5.112)

In Equation 5.112, [�] is modal plant matrix defined by Equation 4.31, and
[I] is unit matrix.

Let t0 = kT and t = (k + 1)T ; then, with the zero-order hold expressed by
Equation 5.110, Equation 5.111 can be rewritten as

z(k + 1) = �(T)z(k)+ ∫ (k+1)T
kT

�(kT + T − τ)[Bu] dτu(k)+ ∫ (k+1)T
kT

�(kT + T − τ){Br} dτ r(k) (5.113)

By denoting

A = �(T)
Bu = ∫ (k+1)T

kT
�(kT + T − τ)[Bu] dτ

Br = ∫ (k+1)T
kT

�(kT + T − τ){Br} dτ (5.114)

the state-variable representation of the system in discrete time domain is
obtained as

z(k + 1) = Az(k)+ Buu(k)+ Brr(k) (5.115)

For HDABC systems using liquid mass damper or spring damper, the damping
force { fp(t)}, as expressed by Equations 5.40 or 5.42, is not an independ-
ent state but rather directly related to the states of the structure and braces{x(t)}, {ẋ(t)}, and {ẍ(t)}. The state vector of such system shall be defined as{Z(t)}N×1 = {x(t)}{ẋ(t)}{

fa(t)}{c(t)} (5.116)
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and

N = 2(n+ m + r) (5.117)

The state equation will be in the same format as Equation 5.109. The plant
matrix is different, and it shall be derived by substituting the damper model,
Equation 5.40 or Equation 5.42, into motion equations of structure and braces,
Equations 5.56 and 5.57. Such process is further demonstrated by numerical
examples in Sections 5.3 and 5.4.

EXAMPLE 5.2.1

Derive the analytical model of the one-story seismic structure with HDABC
system as shown in Figure 5.1b. This model shall be in state-variable
representation as Equation 5.109a shows. Structural properties are mass
m1 = 1000 lb (454 kg), damping ratio ζ1 = 1%, and natural fre-
quency f1 = 2.0 Hz. K-brace properties are mb = 27.778 lb (12.6
kg), ζb = 0.1%, and kb = 3.416 × 106 lb/s2 (1549.3 kN/m). The
HDABC system uses a servovalve-controlled hydraulic actuator and a vis-
cous fluid damper. The servovalve is rated for 5 gpm (3.1542 ×10−4

m3/s) at 1000 psi (6.895 MPa) pressure loss and has a bandwidth fb =
35.63 Hz. The actuator chamber has volume V = 3.3 in.3 and cross-
sectional area A = 1.1 in.2. The hydraulic supply pressure Ps = 3000
psi (20.684 MPa) and hydraulic fluid bulk modulus β = 105 psi (689.48
MPa). The damper is analyzed by a Maxwell model with damping coeffi-
cient C0 = 120 lb/s (533.6688 Ns/m) and relaxation time λ0 = 0.025 s.
Also, find their open-loop system poles on the basis of the derived state
equations.

Solution
The natural frequency of the structure in radians isω1 = 2π f1 = 2(π)(2.0) = 12.566 rad/s (a)

From the structural dynamics, the damping and stiffness coefficients of the
structure are given by

c1 = 2ζ1ω1m1 = 2(0.01)(12.566)(1000) = 251.327 lb/s (b)

k1 = m1ω2
1 = (1000)(12.5662) = 1.579× 105 lb/s2 (c)
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and the natural frequency and damping ratio of the K-brace areωb = √
kb
mb
= √

3.416× 106

27.778
= 350.657 rad/s (d)

cb = 2ζbωbmb = 2(0.001)(350.657)(27.778) = 19.481 lb/s (e)

The motion equations of the structure and the K-brace can be obtained on
the basis of the force balance of the free bodies shown in Figure 5.13. For the
structure floor

m1
(
ẍ1 + ẍg

)+ c1ẋ1 + k1x1 = fa + fp (f )

And for the brace

mb
(
ẍb + ẍg

)+ cbẋb + kbxb = −fa − fp (g)

The motion Equations f and g of the system can be condensed in a matrix
form as[M]{ẍ(t)} + [C]{ẋ(t)} + [K]{x(t)} = {γa}fa(t)+ {γp}fp(t)+ {δ}ẍg(t) (h)m1[x1 (t) + xg (t)]mb[xb(t) + xg(t)]kbxb(t) cbxb(t)k1x1(t) c1x1(t)fa(t)fa(t) fp(t) fp(t) K-Brace

Floor

FIGURE 5.13 Example 5.2.1: free-body diagram of one-story building with HDABC
system.
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where [M] = [

m1 0
0 mb

] = [
1000.0 0

0 27.778

][C] = [
c1 0
0 cb

] = [
251.327 0

0 19.481

][K] = [
k1 0
0 kb

] = [
1.579× 105 0

0 3.416× 106

]{γa} = {γp} = {
1−1

}{δ} = {−m1−mb

} = {−1000.0−27.778

} (i)

Equations h and i, motion equations of the structure and the K-brace,
can also be formulated using Equation 5.58 directly. Equation h can be
rewritten as{ẍ(t)} = −[M]−1[C]{ẋ(t)} − [M]−1[K]{x(t)}+ [M]−1{γa}fa(t)+ [M]−1{γp}fp(t)+ [M]−1{δ}ẍg(t) (j)

where [M]−1[C] = [
0.2513 0

0 0.7013

][M]−1[K] = [
157.914 0

0 1.230× 105

][M]−1{γa} = [M]−1{γp} = {
0.001−0.036

}[M]−1{δ} = {−1−1

} (k)

The dynamic model of the hydraulic actuator is given by Equations 5.12
and 5.35b with Equation 5.1 as{

ḟa(t) = 2βA2

V (ẋb(t)− ẋ1(t))+ βAKV
V
√

2PSc(t)
ċ(t) = (−1/τ)c(t)+ (1/τ)u(t) (l)
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and the passive damper model is given by Equation 5.39a as

ḟp(t) = −( 1λ0

)
fp(t)+ (C0λ0

) (
ẋb(t)− ẋ1(t)) (m)

With given data, coefficients in Equations l and m can be calculated as

2βA2

V
= 2(105)(1.12)

3.3
= 7.333× 105 pli

KV = 3.85(5)√
1000

= 0.6087 in4
/(sec−√lb) (n)βAKV

V
√

2PS = ( (105)(1.1)(0.6087)
3.3

)√
2(3000) = 1.572× 106 lb/s

1τ = 2π fb = 2π(35.63) = 223.870

where Kv is calculated by Equation 5.13b; and{
1/λ0 = 1/0.025 = 40.0
C0/λ0 = 120.0/0.025 = 4800.0

(o)

Thus, Equations l and m become{
ḟa(t) = −7.333× 105ẋ1(t)+ 7.333× 105ẋb(t)+ 1.572× 106c(t)
ċ(t) = −223.870c(t)+ 223.870u(t) (p)

ḟp(t) = −40.0fp(t)− 4800.0ẋ1(t)+ 4800.0ẋb(t) (q)

By defining the state vector{Z(t)} = [
x1(t), xb(t); ẋ1(t), ẋb(t); fa(t), fp(t), c(t)]T (r)

Equations j, l, and m can be condensed into matrix form as{
Ż(t)} = [A] {Z(t)} + {Bu}u(t)+ {Br}ẍg (s)

which is the state-space representation of the single-story building with
HDABC system. In Equation s, [A] is the system plant matrix and {Bu}
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and {Br} are coefficient vectors for control command and earthquake input,
respectively. Their element values are determined by Equations k, p, and q[A] =  0 0 1 0 0 0 0

0 0 0 1 0 0 0−159.714 0 −0.2513 0 0.001 0.001 0
0 −1.230× 105 0 −0.7013 −0.036 −0.036 0
0 0 −733333.3 733333.3 0 0 1.572× 106

0 0 −4800.0 4800.0 0 −40.0 0
0 0 0 0 0 0 −223.870

{Bu} = [
0 0 0 0 0 0 223.870

]T
, {Br} = [

0 0 −1 −1 0 0 0
]T (t)

The system poles, as defined by Equation 4.22, are given by the eigenvalues
of matrix [A]. Using MATLAB® eigensolution function EIG [21], the poles are
solved as p1 = 0

p2 = −39.844
p3 = −223.870
p4,5 = −0.176± 15.174j
p6,7 = −0.378± 354.640j

(u)

The first pole at origin confirms that the actuator is marginally stable. The
two conjugate complex pairs represent the mode of the structure and the
K-brace, respectively. Note that they are altered owing to the dynamic inter-
action between the structure/brace and the control devices. From Equation
4.22 we have ζ1ω1 = 0.176√

1− ζ 2
1ω1 = 15.174

}⇒ { ζ1 = 0.0116ω1 = 15.174 rad/sζbωb = 0.378√
1− ζ 2

bωb = 354.640

}⇒ { ζb = 1.065× 10−3ωb = 354.640 rad/s

(v)

Without the control devices, the system poles can be calculated by directly
substituting the damping ratio and natural frequency of the structure and
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TABLE 5.2
Comparison of Damping Ratios and Natural Frequencies

Control devices Structure K-brace

Exist? ζ1 ω1 p4,5 ζb ωb p6,7

No 0.01 12. −0.126± 12.566j 0.001 350.657 −0.351± 350.657j
Yes 0.0116 15.175 −0.176± 15.174j 0.00165 354.640 −0.378± 354.640j

K-brace into Equation 4.22p4,5 =− ζ1ω1 ±√1− ζ 2
1ω1j=− (0.01)(12.566)±√1− (0.01)2(12.566)j=− 0.126± 12.566j

p6,7 =− ζbωb ±√1− ζ 2
bωb=− (0.001)(350.657)±√1− (0.001)2(350.657)j=− 0.351± 350.657j

(w)

Table 5.2 is a comparison of the eigenvalues of the structure and K-brace
with and without considering dynamics of control devices. It shows that their
damping ratios and natural frequencies are increased owing to the viscous
behavior of the passive damper and stiffness of the actuator and damper
systems.

5.2.6 Summary
This section has presented analytical modeling of smart seismic structures using
semiactive and hybrid control systems. The control devices are mounted on the
K-bracing system of a structure. On the basis of the dynamic models of control
devices formulated in Section 5.1, a general model of the smart structure system is
formulated with consideration of dynamics and arbitrary number and location of
control devices. State-variable representation of the system with analog and digital
controllers is developed. A four-story building structure equipped with actuators
and dampers on K-bracing serves as an example to verify the general modeling of
the system. Although the general model seems tedious for hand formulation, it is
convenient for computer programming; this convenience is the rationale for the
general model.
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5.3 CONTROL STRATEGY AND SYSTEM STABILITY

This section addresses the control algorithms, intelligent scheme, and actuator
stability issues for semiactive and hybrid systems, with HDABC systems serving
as the example in some particular areas.

5.3.1 Control Algorithms
Note that the analytical model of smart seismic structures using semiactive and
hybrid systems (Equation 5.109) is in exactly the same format as the one for smart
structures with active control (Equation 4.19). Thus, the classical algorithms (such
as Riccati and pole placement) and generalized algorithms discussed in Chapter 4
should also be applicable to semiactive and hybrid control systems [2,3]. Note that
they are full-state feedback algorithms and have the following feedback law{u(t)} = −[G] {Z(t)} (5.118)

The feedback gain matrix [G], determined by control algorithms, is con-
stant here. Take the Riccati algorithm as an example. On the basis of the Riccati
performance index

J = 1
2

∫ tf

t0
({z(t)}T[Q]{z(t)} + {u(t)}T[R]{u(t)}) dt (5.119)

The feedback gain is given by[G] = [R]−1[Bu]T[P] (5.120)

Equation 5.118 shows that the control force is proportional to the state vari-
ables, such as velocities and displacements of the structures. Thus, a system with
such control algorithms is usually referred as state control. As noted in Section 4.2,
state feedback—feedback of structural velocities and displacements—changes the
damping and stiffness coefficients of the structure. Thus, an active system with
state control behaves in the same way as a spring damper. A hybrid system using
spring damper usually employs state control algorithms to synchronize actuator
and damper behavior, as its actuator provides active damping and spring forces to
withstand earthquake loads.

For a hybrid system using liquid mass dampers, the damper changes the mass
and damping coefficients of the structure. An active system behaves in the same
way if the active control force changes the inertia and damping forces of the system,
which corresponds to the feedback of structural accelerations and velocities, that is,
the derivative of the state vector {Z(t)}. This led to the concept of state-slope
control, whose performance index is defined in terms of the derivative of the state
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vector {Z(t)}
J = 1

2

tf∫
t0

({Ż(t)}T[Q]{Ż(t)} + {u(t)}T[R]{u(t)}) dt (5.121)

And the feedback law as{u(t)} = −[G] {Ż(t)} = −[R]−1[Bu]T[Q] {Ż(t)} (5.122)

Ahybrid system using liquid mass dampers usually employs state-slope control
algorithms to synchronize actuator and damper behavior, as its active part provides
active inertia and damping forces to withstand earthquake loads.

Both state control and state-slope control feed back structural velocities and
thus improve the system damping and seismic resistance. The difference is that
state control feeds back displacements while state-slope control feeds back accel-
erations. Thus, state control is more effective in reducing structure displacements,
while state-slope control is more effective in controlling structural acceleration.
Because classical control algorithms can be used for semiactive and hybrid con-
trol systems, the controlled structural behavior can also be simulated in MATLAB®

control toolbox functions [21] such as LQR in the same way to adjust the weight-
ing matrices [Q] and [R]. Take an N th order hybrid system with one hydraulic
actuator as an example. The weighting matrix [Q] is in order of N , and R
becomes a scalar value. By setting [Q] as unit matrix and adjusting the value
of R, an increasing and decreasing magnitude for the active control force can
be obtained. As noted in Chapter 4, when the Q(i,i)/R value decreases, the active
control force increases (and so does the total hybrid control force), and then the
structural response is further reduced.

5.3.2 Intelligent Hybrid Control Systems
As noted, passive systems are effective for seismic response control of structures
under small earthquakes. Active control systems have powerful capacity for strong
earthquakes but are quite expensive. Hybrid systems combine passive and active
systems; however, its expensive active part is not necessary for small earthquakes.
This led to the concept of intelligent hybrid control systems [8–10] whose active
part is not in operation unless it is required. The intelligent system can activate
its active part at any time during the dynamic history of the earthquake-excited
structure. Athreshold response, TR, is defined so that the active part begins to oper-
ate once maximum structural response exceeds this threshold value. The working
principle is described by the flowchart in Figure 5.14. Note that when TR = 0,
the intelligent system becomes a full hybrid control system as both passive and
active part are in operation at any time. When a large TR is selected, the system
degenerates into a passive control system whenever the system response is less
than TR. With this control strategy, small earthquakes are handled by the passive
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Response>TR ?

No

Yes

Z(t)Z(t) or Z(t)Structure

Feedback gain

Excitation Z(t) = 0 
or Z(t) = 0

+
–

FIGURE 5.14 Working mechanism of the intelligent hybrid system.

control system, and the expensive active control part operates only when strong
earthquakes occur.

Though the intelligent control strategy is developed for the HDABC system,
it can be applied to any hybrid systems. Its goal is to maximize the passive damp-
ing power and to minimize the use of control energy. The two-stage intelligent
system shown by Figure 5.14 can be further extended to a three-stage system
[9,31,32], on the basis of the uncontrolled structural response and capacity of
passive dampers. These stages are based on two threshold values selected to util-
ize optimally the hydraulic actuator’s capacity. The threshold values can be set
for the most important response, such as floor acceleration or story drift, which
is monitored in real-time. At stage 1, the passive damper operates alone during
small earthquake excitations, as long as it can restrain structural seismic response
within the first threshold value with its designed capacity. For stronger earthquakes
where the passive damper cannot adequately control the structural response (i.e.,
response is higher than the first threshold value), the hydraulic actuator will be
activated and the system then functions in stage 2 or 3. The system becomes
hybrid and combines the passive force with the active force generated by the
actuator to keep the response within the second threshold value. If the response
exceeds the second threshold limit, the HDABC system automatically adjusts the
feedback gain for the actuator to generate larger control force so that the sys-
tem response meets the safety and serviceability requirements. In detail, when the
observed response is larger than the first threshold value, the control system moves
from stage 1 into stage 2, and the active actuator(s) starts with small feedback
gain so that the passive damper continues operating with its maximum capacity.
If the structural response is restrained below the second threshold value, the system
keeps working in stage 2. Otherwise, the hybrid system moves into stage 3; its
active part plays the dominant role as the weighting matrix and the feedback gain
are adjusted to yield higher active control force. This three-stage intelligent control
strategy is illustrated by the flowchart in Figure 5.15, and its working mechanism
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Ground motion

Input Stage 1

Response Response

Damper Actuator

Stage 3Stage 2
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Damper Actuator

Structure Structure

Damper

Structure

With adjusted feedback gain

FIGURE 5.15 Flowchart of the three-stage intelligent hybrid system.

is summarized as follows:

1. The most critical structural response is determined and two threshold
values are set for it.

2. The system works within stage 1 for small earthquake excitations that
yield structural response lower than the first threshold.

3. The actuator starts working and the system moves into stage 2 whenever
the response exceeds the first threshold value.

4. When the response exceeds the second threshold value, the feedback
gain is adjusted to generate larger control force. The system functions
in stage 3.

5.3.3 Stabilization of Servovalve-Controlled Hydraulic
Actuators

As noted in Section 5.1.1, the servovalve-controlled hydraulic actuator is a mar-
ginally stable system. Small derivations such as initial imperfections may cause
the actuator system to be unstable. When the actuator is applied to a structural
control system, the actuator must be stabilized such that the control system can be
identified and control algorithm implemented. Thus, it is important to develop a
technique for actuator stabilization and to study the stability behavior of structural
control systems using servovalve-controlled hydraulic actuator(s) [3,4].

5.3.3.1 One-story building with active bracing control

To simplify the problem without loss of generality, a one-story building with
the hydraulic actuator mounted on a rigid K-brace system (see Figure 5.16) is
employed to demonstrate the actuator’s application to a structural control system,
to study the actuator’s stability behavior, and to develop a stabilization method for
the system.
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(a)

x(t)
(b)

cx(t) fa(t)fa(t) ∆a(t) = –x(t) fa(t) kx(t)m[ x (t)+xg(t)]
FIGURE 5.16 One-story building with hydraulic actuator mounted on K-brace: (a) schem-
atic and (b) free-body diagram.

The free-body diagram of the structure yields

mẍ(t)+ cẋ(t)+ kx(t)− fa(t) = 0 (5.123)

Applying Laplace transform to Equation 5.123 gives

ms2X(s)+ csX(s)+ kX(s)− Fa(s) = 0 (5.124)

Thus, the transfer function from structural displacement x(t) to control force
fa(t) is

Tfx(s) = Fa(s)
X(s) = ms2 + cs+ k (5.125)

Substituting Equation 5.35 into Equation 5.123 yields

mẍ(t)+ cẋ(t)+ kx(t)− 2β A2

V
�a(t)− βAKv

V
√

2Ps

∫ t

0
c(t) dt = 0 (5.126)

Assume that the bracing is rigid without elastic deformation; then, actuator-
piston displacement �a(t) = –x(t), and Equation 5.126 becomes

mẍ(t)+ cẋ(t)+ kx(t)+ 2β A2

V
x(t)− βAKv

V
√

2Ps

∫ t

0
c(t) dt = 0 (5.127)

Applying Laplace transform to Equation 5.127 gives the transfer function from
valve-piston displacement c(t) to structural displacement x(t) as

Txc(s) = X(s)
C(s) = βAKv

√
2Ps/V

s(ms2 + cs+ k + 2βA2/V) = βAKv
√

2Ps/(Vm)
s(s2 + 2 ζn ωns+ ω2

n)
(5.128)
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where natural frequency ωn and damping ratio ζn areωn = √
2βA2 + kV

Vm
= √

k + 2βA2/V
m

, ζn = c
2mωn

(5.129)

The relationship between control command u(t) and valve-piston displacement
c(t) is expressed by Equation 5.12a. Applying Laplace transform to that equation
yields the corresponding transfer function of the servovalve as

Tcu(s) = C(s)
U(s) = 1τ s+ 1

= 1/τ
s+ 1/τ (5.130)

Combining Equations 5.128 and 5.130 gives the transfer function from u(t)
to x(t)

Txu(s) = X(s)
U(s) = X(s)

C(s) C(s)
U(s) = Txc(s) · Tcu(s) (5.131)= βAKv
√

2Ps/(Vmτ)
s(s+ 1/τ)(s2 + 2 ζn ωns+ ω2

n) = γ
s(s+ 1/τ)(s2 + 2 ζn ωns+ ω2

n)
where γ = βAKv

√
2Ps

Vmτ . Equation 5.131 shows that this control system is of the
fourth order with a pole at the origin, a pole far from the imaginary axis, and a pair
of conjugate complex poles with natural frequency ωn and damping ratio ζn. The
two conjugate complex poles come from the structure, and actuator dynamics is
the source of the two additional real poles.

Having a first-order pole at the origin makes this control system margin-
ally stable in open loop. Although the structure is stable, the actuator-structure
system becomes marginally stable owing to actuator dynamics. In theory, a mar-
ginally stable system has bounded nonzero steady-state response. In practice,
such a system tends to be unstable. This is because the pole at the origin eas-
ily becomes positive owing to initial imperfections. An actuator-structure system
must therefore be stabilized before it can be identified and the control algorithm
implemented.

Setting up a closed loop with feedback mechanism is a common way to stabilize
a system. A sensing system and a controller are required for the closed loop. From
the standpoint of hardware realization, the most reliable sensing method is to
install a load cell to measure active control force fa(t). In addition, the actuator has
a built-in linear variable displacement transducer (LVDT) to measure actuator-
piston displacement �a(t). Three choices are thus available to set up a closed
loop: displacement feedback only, force feedback only, and a combination of
displacement and force feedback. Figure 5.17 is a schematic of the open-loop and
three closed-loop systems.
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u(t)(b)

(c) (d)

x(t)Txu(s)

–Gxu(t) x(t)Txu(s)Tfx(s)–Gf

Tfx(s)–Gf

–Gx

FIGURE 5.17 Schematic of open- and closed-loop systems for actuator stabilization:
(a) open-loop system, (b) displacement feedback, (c) force feedback, and (d) displacement
and force feedback.

The closed-loop transfer function of a displacement feedback system shown
in Figure 5.17b is given by linear control theory as

Tc1(s) = Txu(s)
1+ GxTxu(s) = γ

s(s+ 1/τ)(s2 + 2 ζn ωns+ ω2
n)+ Gx γ (5.132)

where Gx is displacement feedback gain. Similarly, for a force feedback system
(see Figure 5.17c)

Tc2(s) = Txu(s)
1+ Gf Tfu(s)= Txu(s)
1+ Gf [−(ms2 + cs+ k)Txu(s)]= γ
s(s+ 1/τ)(s2 + 2 ζn ωns+ ω2

n)+ Gfγ (ms2 + cs+ k) (5.133)

and for the system with combination of force and displacement feedback (see
Figure 5.17d)

Tc3(s) = Txu(s)
1+ Gf Tfu(s)+ GxTxu(s)= γ
s(s+ 1/τ)(s2 + 2 ζn ωns+ ω2

n)+ Gfγ (ms2 + cs+ k)+ Gxγ
(5.134)

where Gf is the gain for force feedback. Tfu(s) in the above equations is obtained by

Tfu(s) = Fa(s)
U(s) = Fa(s)

X(s) X(s)
U(s) = Tf x(s)Txu(s)= (ms2 + cs+ k)Txu(s) (5.135)

and Tfx(s) is given by Equation 5.125.
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Effectiveness of the three closed-loop systems for actuator stabilization can be
investigated by root-locus plots based on closed-loop transfer functions from u(t)
to x(t). These plots demonstrate the locus of closed-loop system poles (eigenvalues
of the transfer function) in a complex plane as the feedback gain (Gf and/or Gx)
varies from 0 to +∞. The abscissa and ordinate of a root-locus plot are real and
imaginary parts of these poles, respectively. As noted in Section 4.1.3, a system
is stable if all its poles stay in the left half-plane. Thus, root-locus plots are useful
tools for analyzing the closed-loop system stability. The root-locus method has
been implemented in commercial software packages such as MATLAB® control
toolbox function rlocus [21].

The system shown in Figure 5.16 is used as an example to study actu-
ator stabilization. Structural properties are mass M = 454 kg, damping ratioζN = 2%, and natural frequency f = 2.0 Hz. The active system uses a Moog
760-102A servovalve-controlled hydraulic actuator. Figures 5.18 through 5.20 are
root-locus plots of the three closed-loop feedback systems expressed by Equa-
tions 5.132 through 5.134, respectively. With these plots we can conclude• A closed loop by displacement feedback cannot stabilize the actuator.

This is because, as Figure 5.18 shows, while the pole at the origin moves
to the left half-plane, two conjugate complex poles move to the right
half-plane and destabilize the system at the same time.• Aclosed loop with force feedback stabilizes the actuator by any feedback
gain. This is because all poles are always in the left half-plane as shown
by Figure 5.19.
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FIGURE 5.18 Root-locus plot of one-story building with displacement feedback.
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FIGURE 5.19 Root-locus plot of one-story building with force feedback.
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FIGURE 5.20 Root-locus plot of one-story building with displacement and force feedback.• A closed loop with both displacement and force feedback stabilizes the
actuator sometimes. As Figure 5.20 shows, the system poles are all in
left side if feedback gains are properly selected. If the gains are too
large, the actuator becomes unstable again because the two real poles
move to the right half-plane. Furthermore, two sensors and two-channel
hardware are required to implement this feedback system.

With above comparison, a closed loop with force feedback is the best way for
the actuator stabilization in that it only requires one sensor and works with any
feedback gain.

5.3.3.2 Three-story building with HDABC system

Actuator stability is evaluated through numerical study of a one-fourth scale model
of a three-story building with HDABC at the first floor (see Figure 5.21) tested on a
shaking table. The hybrid control device consists of a Moog 760-102Aservovalve-
controlled hydraulic actuator and a viscous fluid damper. The actuator has a built-
in LVDT to measure its piston displacement. A load cell is installed between
actuator piston and K-brace to measure the active control force. The damper is
analyzed by a Maxwell model with damping coefficient C0 = 21.04 kN-s/m
and relaxation time λ0 = 0.05 s. Structural properties are (1) mass coefficients
m1 = 593.8, m2 = 590.2, m3 = 576.6 (kg); (2) natural frequencies f1 = 2.622,
f2 = 9.008, f3 = 17.457 (Hz); and (3) damping ratios ζ1 = 0.364%, ζ2 =
0.354%, ζ3 = 0.267%. K-brace properties are mb = 12.6 kg, ζb = 0.1%, and
kb = 1549.3 kN/m.

According to the formulation in Section 5.2, the mathematical model of the
structure and the K-brace is[M]{ẍ(t)} + [C]{ẋ(t)} + [K]{x(t)} = [γa]{fa(t)} + [γp]{fp(t)} + {δ} ẍg(t)

(5.136)
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FIGURE 5.21 Three-story building model with HDABC.

where {x(t)} = [x1(t), x2(t), x3(t), xb(t)]T (5.137)[M] = [ [Ms ]3×3 {0 }3×1[0 ]1×3 Mb

]
, [C] = [ [Cs ]3×3 {0 }3×1[0 ]1×3 Cb

]
, [K] = [ [Ks ]3×3 {0 }3×1[0 ]1×3 Kb

]
(5.138){δ} = −[m1, m2, m3; mb ]T (5.139)

and [Ms], [Cs], and [Ks] are matrices of mass, damping, and stiffness, respectively,
of the three-story structure.

Damper-piston displacement �p(t) = xb(t) − x1(t). Substituting it into
Equation 5.39a yields the mathematical model of the viscous fluid damperλ0 ḟ p(t)+ fp(t) = C0 [ẋb(t)− ẋ1(t)] (5.140)

Equations 5.12 and 5.35 are the dynamic models of the actuator. Note that
actuator-piston displacement �a(t) = �p(t) = xb(t) − x1(t), with the piston
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deformation neglected. Thus, the mathematical model of the hydraulic actuator isτ ċ(t)+ c(t) = u(t)

ḟa(t) = 2βA2

V
[ẋb(t)− ẋ1(t)]+ βAKv

V
√

2Psc(t) (5.141)

Equations 5.136, 5.140, and 5.141 form the mathematical model of the hybrid
structural control system and can be condensed into matrix form using state-
variable representation. State variables of the system comprise three displacements
and three velocities of the structure, displacement and velocity of the brace, act-
ive control force, servovalve displacement, and passive control force. Thus, the
hybrid structural control system is of the 11th order. This system’s state-variable
representation is expressed by Equation 5.109 while the state vector and plant
matrix are{Z(t)} = [

x1(t), x2(t), x3(t), xb(t); ẋ1(t), ẋ2(t), ẋ3(t), ẋb(t); fa(t), fp(t), c(t)]T

(5.142)[A] =  [0]4×4 [I ]4×4 [0 ]4×3
mk11 mk12 mk13 0 mc11 mc11 mc11 0 1

m1
1

m1
0

mk21 mk22 mk23 0 mc11 mc11 mc11 0 0 0 0
mk31 mk23 mk33 0 mc11 mc11 mc11 0 0 0 0

0 0 0 − kb
mb

0 0 0 − cb
mb
− 1

mb
− 1

mb
0

0 0 0 0 −α1 0 0 α1 0 0 α2

0 0 0 0 −C0λ0
0 0 C0λ0

0 − 1λ0
0

0 0 0 0 0 0 0 0 0 0 1
/τ 

(5.143)

where mkij and mcij are elements at jth column and ith row of –[Ms]−1 [Ks] and
–[Ms]−1 [Cs], respectively; matrices [Ms], [Cs], and [Ks] are defined in Equations
5.66, 5.68, and 5.73, respectively; α1 = 2βA2/V ,α2 = (βAKv

/
V
)√

2Ps; and{ {Bu} = [
0 0 0 0 0 0 0 0 0 0 −1/τ ]T{Br} = [
0 0 0 0 −1 −1 −1 −1 0 0 0

]T (5.144)

Many commercial software packages have eigensolution functions that can
easily solve eigenvalues of plant matrix [A] (poles of the system), such as MATLAB®

function EIG. Table 5.3 lists these open-loop poles of the structure with hybrid
control. The first three modes come from the structure and the fourth mode comes
from the K-brace. Real poles 1 and 3 are induced by actuator dynamics, while real
pole 2 is induced by damper dynamics. The same as that of the one-story building
with active bracing control (see Figure 5.16), this hybrid system with hydraulic
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TABLE 5.3
Open-Loop Poles of Structure with HDABC System

Conjugate complex poles Real poles

First mode Second mode Third mode Fourth mode 1 2 3−0.070±
23.29j

−0.207±
66.61j

−0.295±
112.85j

−0.633±
1,094.40j

0 −19.40 −223.87
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FIGURE 5.22 Root-locus plot of hybrid system with displacement feedback.
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FIGURE 5.23 Root-locus plot of hybrid system with force feedback.

actuator is a marginally stable system owing to the existence of a pole at the origin
(real pole 1). A closed loop must be formed to stabilize this system. Note that
j = √−1 in Table 5.3.

Figures 5.22 and 5.23 show root-locus plots for the hybrid system with dis-
placement feedback and force feedback, respectively. They match well with results
for the system shown in Figure 5.16. While displacement feedback stabilizes the
pole at the origin, two other poles become unstable; the system is not stabilized.
With force feedback, all poles of the system stay in the left half-plane, so the
system is stabilized.
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5.3.4 Effect of Actuator Dynamics on System Response
Equation 5.35 shows that a structural control system with hydraulic actuat-
ors is marginally stable in open loop due to actuator dynamics. It also shows
an interaction effect between structural displacement and active control force.
To study the effect of actuator dynamics on system response, the seismic response
in time history is simulated numerically for the hybrid-controlled structure (see
Figure 5.21). Scaled E-W component of the New Mexico earthquake (time incre-
ment �t = 0.02 s) and scaled N-S component of the El-Centro earthquake
(�t = 0.01 s) are adopted as excitations; amplitude and frequency scale factors
are 0.3 and 2, respectively. This system is modeled by Equations 5.109 and 5.142
through 5.144. Rectangular rule is used to calculate the time history of structural
response.

Figure 5.24 shows that, since the hybrid structural control system in open
loop is marginally stable; its maximum displacement response at the third floor is
1.013 cm, 30% larger than that of the structure without control, despite the presence
of a damper. Note that the response cannot dampen out and will eventually damage
the system. If the actuator is stabilized by force feedback with gain Gf = 1 (see
Equation 5.133) but generates little control force, the stable system has a smaller
response than that of a structure without control; structural vibration is quickly
dissipated because of the passive control by the viscous fluid damper.

As noted, the hydraulic actuator adds two real poles to the system: one at origin
and the other far from the imaginary axis (see real poles 1 and 3 in the Table 5.3).
Since this structural control system possesses more dynamics than systems with
a linear proportional actuator, its closed-loop response may be affected by the
actuator dynamics. As shown in Figures 5.19 and 5.23, the stabilized closed-loop
system places the poles as two negative poles or a pair of conjugate complex poles
with a negative real part. If the two poles are not far from the imaginary axis,
they have a significant effect on system response. The effect of actuator dynam-
ics on closed-loop response is demonstrated by comparing system response with
and without considering actuator dynamics. The hybrid structural control system
shown in Figure 5.21 is employed here for such purposes. When actuator dynam-
ics is not considered, the actuator is modeled as a linear device with proportional
relation from input u(t) to output fa(t). Pole assignment algorithm, as described
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FIGURE 5.24 Structural response to scaled El-Centro earthquake.
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TABLE 5.4
Closed-Loop Poles of Structure with HDABC

Conjugate complex poles

First mode Second mode Third mode Fourth mode Fifth mode Real pole−2.019±
18.59j

−2.071±
59.48j

−0.682±
110.51j

−42.41±
397.67j

−27,983±
28,001j

−10.64
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FIGURE 5.25 Effect of actuator dynamics on closed-loop response: (a) required active
control force for N-S El-Centro earthquake and (b) required active control force for E-W
New Mexico earthquake.

in Section 4.2.2, is used to design the feedback controller. For the hybrid system
with actuator dynamics, desired closed-loop poles are listed in Table 5.4; for the
hybrid system with linear proportional actuator, closed-loop poles are also given
in Table 5.4 but excluding the two poles of the fifth mode.

Since the two poles for actuator dynamics is placed far from the imagin-
ary axis in closed loop, that is, −27,983 ± 28, 001j (j = √−1) in Table 5.4,
actuator dynamics is expected to have little effect on closed-loop response. This
expectation is verified by numerical results shown in Figure 5.25 that compares
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required active control forces of the hybrid system with and without consid-
ering actuator dynamics. Figure 5.25a illustrates time-history response of the
hybrid-controlled structure to scaled N-S component of the El-Centro earthquake.
By setting maximum top-floor displacements the same at 0.5805 cm, the system
considering actuator dynamics demands 354.6 N active control force while the
system using linear proportional actuator demands 354.4 N. Very little difference
(<0.1%) is found for the required active control force. Asimilar result can be found
for system responses to scaled E-W component of the New Mexico earthquake,
as shown in Figure 5.25b. By setting maximum displacement at 0.2785 cm, the
system considering actuator dynamics demands 147.6 N active control force while
the system using linear proportional actuator demands 147.5 N. Again, less than
0.1% difference is found in the required active control force.

If the two poles for actuator dynamics are not placed far from the imaginary
axis, a sizeable difference is expected in system response with or without consid-
ering actuator dynamics. This expectation is verified by numerical results for the
closed-loop hybrid control system that places the two poles at –10.0 and –192.19
(see Table 5.5). Pole assignment control algorithm is also used here. The closed-
loop poles for the hybrid system with actuator dynamics are listed in Table 5.5.
For the hybrid system with linear proportional actuator, the closed-loop poles are
also given in Table 5.5 but excluding real poles 1 and 3. Numerical results are
shown in Figure 5.26 that compares required active control forces in time history
for closed-loop hybrid systems with and without considering actuator dynamics.
Figure 5.26a illustrates this comparison for the excitation of scaled N-S compon-
ent of the El-Centro earthquake. By setting maximum top-floor displacement the
same at 0.45 cm, 2,076 Newtons active control force is demanded if the actuator
is modeled as a linear proportional device, while 1,822 Newtons active control
force is demanded if actuator dynamics is considered. Here the error is 13.94%.
For the excitation of scaled E-W component of the New Mexico earthquake, max-
imum top-floor displacement is set the same at 0.21 cm. As shown in Figure 5.26b,
the system without considering actuator dynamics demands 490.8 Newtons active
control force while 469.5 Newtons active control force is demanded for the system
considering actuator dynamics. Here the error is 4.54%.

A suggestion emerges from these findings. Actuator dynamics should be con-
sidered in the analysis and design of a control system with a hydraulic actuator,

TABLE 5.5
Closed-Loop Poles of Hybrid-Controlled Structure

Conjugate complex poles Real poles

First mode Second mode Third mode Fourth mode 1 2 3−3.880±
22.54j

−2.395±
66.73j

−0.769±
113.00j

−3.655±
1,109.20j

−10.0 −24.45 −192.19
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FIGURE 5.26 Effect of actuator dynamics on system response: (a) required active control
force under El-Centro earthquake and (b) required active control force under New Mexico
earthquake.

and the two poles by actuator dynamics be placed far from the imaginary axis to
minimize their effect on closed-loop response. If so, the actuator dynamics can be
ignored for further study of a smart seismic structure system.

5.3.5 Summary
This section has studied control strategy and stability of the HDABC system using
servovalve-controlled hydraulic actuators mounted on a K-brace system. State
and state-slope control techniques are proposed for hybrid systems using spring
dampers and liquid mass dampers, respectively. The effect of actuator dynamics
on open-loop system stability is investigated and a method to stabilize the actuator
is developed. A one-story building structure with active control and a three-story
structure with hybrid control serve as numerical examples to reveal the stability
behavior and demonstrate the effectiveness of the proposed method for actuator
stabilization. Then effects of actuator dynamics on closed-loop response are dis-
cussed for structural control systems using hydraulic actuators. Results show that
a structure with a hydraulic actuator is marginally stable in open-loop owing to
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actuator dynamics. Force feedback is the best method for actuator stabilization.
Actuator dynamics must be considered to analyze and design a control system, and
the two poles induced by actuator dynamics must be placed far from the imaginary
axis such that they have little effect on closed-loop response.

5.4 EFFECTIVENESS OF HDABC SYSTEM FOR SEISMIC RESPONSE

CONTROL

In this section, numerical simulations of smart seismic structures using HDABC
system are conducted to demonstrate the system effectiveness. Seismic responses
of a controlled structure in time history is simulated numerically to demonstrate the
capacity and effectiveness of the active and hybrid bracing systems using hydraulic
actuators [4–7,19]. The effectiveness of the HDABC system is also compared with
an MR damper system installed on a K-brace [30].

5.4.1 One-Story Smart Seismic Structure with
HDABC System

A single-story model structure is used first to demonstrate the effectiveness of
HDABC system for seismic response control. The structure properties are m1 =
1.48 lb-s2/in., c1 = 0.74 lb-s/in., k1 = 233.09 lb/in. The K-brace properties are
mb = 0.01, m1 = 0.0148 lb-s2/in., cb = 0.0, kb = 100, k1 = 23,309.0 lb/in.
The actuator is stabilized and the closed-loop poles are designed far away from
imaginary axis. Thus, the actuator is assumed to be linear proportional. The hybrid
control system employs either active state-slope control with a liquid mass damper
whose me = 0.2 m1 = 0.296 lb-s2/in., or active state control with spring damper
whose kp = 0.2 k1 = 46.62 lb/in. Both dampers have damping coefficient cp =
5 c1 = 3.70 lb-s/in. The N-S component of El-Centro (1940) earthquake data with
scale factor 0.2 is employed.

5.4.1.1 Analytical model

Assume x1(t) and xb(t) denote the displacements of the structure floor and K-brace,
respectively. Then the motion equations of the structure and K-brace are{

m1
(
ẍ1(t)+ ẍg(t))+ c1ẋ1(t)+ k1x1(t) = fa(t)+ fp(t)

mb
(
ẍb(t)+ ẍg(t))+ cbẋb(t)+ kbxb(t) = −fa(t)− fp(t) (5.145)

With the liquid mass damper whose model is expressed as

fp(t) = me
(
ẍ1(t)− ẍb(t))+ cp

(
ẋ1(t)− ẋb(t)) (5.146)
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Substituting Equation 5.146 into Equation 5.145 yields{ (m1 − me) ẍ1(t)+ meẍb(t)+ (c1 − cp
)

ẋ1(t)+ cpẋb(t)+ k1x1(t) = fa(t)− m1ẍg(t)
meẍ1(t)+ (mb + me) ẍb(t)+ cpẋ1(t)+ (cb + cp

)
ẋb(t)+ kbxb(t) = −fa(t)− mbẍg(t)

(5.147)

And Equation 5.147 can be condensed into matrix format

[M] {ẍ(t)} + [C] {ẋ(t)} + [K] {x(t)} = {γa} fa(t)+ {δ} ẍg(t) (5.148)

where[M] = [
m1 − me me

me mb + me

]
, [C] = [

c1 − cp cp
cp cb + cp

]
, [K] = [

k1 0
0 kb

]{x(t)} = {
x1(t)
xb(t) } , {γa} = {

1−1

}
, {δ} = {−m1−mb

}
(5.149)

By defining the state-variable as{Z(t)} = { {x(t)}{ẋ(t)}} = [
x1(t) xb(t) ẋ1(t) ẋb(t) ]T (5.150)

Equation 5.150 can be rewritten in state equation format as{
Ż(t)} = [A] {Z(t)} + {Bu} fa(t)+ {Br} ẍg(t)= [ [0] [I]−[M]−1[K] −[M]−1[C] ] {Z(t)} + { {0}−[M]−1 {γa}} fa(t)+ { {0}−[M]−1 {δ}} ẍg(t) (5.151)

Similarly, for the HDABC system with spring damper[
m1 0
0 mb

]{
ẍ1(t)
ẍb(t)}+ [ c1 − cp cp

cp cb + cp

]{
ẋ1(t)
ẋb(t)}+ [ k1 − kp kp

kp kb + kp

]{
x1(t)
xb(t)} = {

1−1

}
fa(t)+ {−m1−mb

}
ẍg(t) (5.152)

Thus Equations 5.150 and 5.151 can still be used except the coefficient matrices
[M], [C], and [K] are different[M] = [

m1 0
0 mb

]
, [C] = [

c1 − cp cp
cp cb + cp

]
, [K] = [

k1 − kp 0
0 kb − kp

]
(5.153)
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5.4.1.2 Effectiveness of hybrid-state control

To show the effectiveness of the hybrid-state control system, earthquake response
and required control forces are evaluated for three cases: passive spring damper
only, active state control, and hybrid-state control. Figure 5.27a shows the displace-
ment time history of the three cases. Note that the passive control is less effective
than active or hybrid control in that the passive-only case can only reduce the max-
imum floor displacement to 0.322 in, while the other two can reduce it to 0.200 in.
Figure 5.27b shows the comparison of active and hybrid control. It compares the
maximum required active control force with the controlled response—the max-
imum floor displacement set same at 0.2 in. It shows the maximum active force by
hybrid-state control is 14.85 lb, only 53.1% of that for active state control. This
means that the hybrid system requires a much smaller actuator that can significantly
reduce the cost of the system.
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FIGURE 5.27 Effectiveness of hybrid-state control: (a) floor displacement and (b) active
control force.
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5.4.1.3 Effectiveness of hybrid state-slope control

Similarly, to show the effectiveness of the hybrid state-slope control system, earth-
quake response and required control forces are evaluated for three cases: passive
liquid mass damper only, active state-slope control, and hybrid state-slope con-
trol. Figure 5.28a shows the displacement time history of the three cases. Again,
it shows that the passive control is less effective than active or hybrid control in
that the maximum floor displacement of the passive-only case is much larger than
the other two. Figure 5.28b also compares the required active control force by
active and hybrid control with the maximum floor displacement set to 0.200 in. It
also shows that the maximum active force by hybrid state-slope control is much
less than that for active state-slope control.
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FIGURE 5.28 Effectiveness of hybrid state-slope control: (a) floor displacement and (b)
active control force.
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5.4.1.4 Comparison of state and state-slope control strategies

Note that a comparison of Figures 5.27b and 5.28b shows that the maximum
required control force by active state-slope control is larger than that by active state
control (31.56 lb vs. 27.97 lb). A further comparison is shown by Figure 5.29 with
the maximum floor displacement of both cases set to the same 0.2 in. Figure 5.29a
shows that both state and state-slope control strategies are effective in reducing
structural displacement response. Figure 5.29b compares the acceleration response
and it shows that more acceleration can be reduced by state-slope control (to 25.99
in./s2) than state control (to 55.75 in./s2). Thus, active state control is more effect-
ive in reducing structural displacement while active state-slope control is more
effective in controlling structural acceleration. State-slope control is preferred if
acceleration is a concern though it requires little bit larger control efforts.
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5.4.1.5 Illustration of intelligent hybrid-state control

Dynamic response and active control force are compared with three different
threshold values, TR = 0, 0.2, and 0.4. TR = 0 means that the active control is
always effective, thus resulting in hybrid control. Recall that the maximum floor
displacement by passive only is 0.322 in. Thus TR = 0.4 means the active control
is never effective and leads to passive control only. TR = 0.2 means the active con-
trol will be effective when the controlled response exceeds 0.2 in., thus yielding
an intelligent hybrid control. Figure 5.30a,b compare the floor displacement and
active control force, respectively, for the three different TR values. It can be seen
that the active control is switched on at t = 2.02 s. when the response exceeds the
threshold value. The only weakness of this intelligent setup is that, during the firstTR = 0.4 in.TR = 0.2TR = 0
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FIGURE 5.30 Demonstration of intelligent hybrid control system: (a) floor displacement
and (b) active control force.
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couple of cycles right after the active control is activated, larger floor displace-
ment is produced and larger active control force is required than the hybrid control(TR = 0). However, observations reveal that sudden involvement of active control
during structural response requires more control force to reduce floor displacement
but does not disturb the stability of the structural system. For small earthquakes,
only passive system is needed to control the structural response.

5.4.2 Three-Story Smart Seismic Structure with
HDABC System

The system shown in Figure 5.21 is again employed to demonstrate the powerful
capacity of hydraulic actuators and the effectiveness of HDABC system. Properties
of the structure with brace, the damper, and the actuator are given in Section
5.3.3.2. Recall that this system is of 11th order. LQR and pole assignment control
algorithms are used for controller design. The controller design and system seismic
response are analyzed with MATLAB® control toolbox. Refer to Appendix A for
details of MATLAB® control toolbox and .m program.

5.4.2.1 Capacity of control systems with hydraulic actuator

A hydraulic actuator can be used in an active control system and a hybrid control
system. To demonstrate the control capacity of active and hybrid systems with a
hydraulic actuator, seismic response in time history is evaluated for the following
four cases: (1) structure only; (2) structure with passive control using viscous fluid
damper mounted on K-brace at the first floor; (3) structure with active control
using an actuator mounted on K-brace at the first floor; (4) structure with hybrid
device mounted on K-brace at the first floor. The hybrid device in case 4 consists
of a damper and an actuator that are same as those in cases 2 and 3, respectively.

Figure 5.31 compares the displacement response of cases 1, 2, and 3 under the
excitation of scaled N-S component of the El-Centro earthquake. The dashed line,
solid line, and darkened solid line refer to responses for case 1, 2, and 3, that is,
structure without control, structure with passive control, and structure with active
control, respectively. Results show that the maximum displacement at the third
floor is 0.7794 cm for the structure without control. By applying passive control,
maximum displacement can only be reduced to 80.7%, that is, 0.6287 cm. With
active control, it can be further reduced to 58.5%, that is, 0.4561 cm, which is
72.5% of that for the passive control system. This result shows that active control
systems have a greater capacity to mitigate structural seismic response.

Similarly, Figure 5.32 compares the displacement response of cases 1, 2, and 4
to scaled N-S component of the El-Centro earthquake. The dashed line, solid line,
and darkened solid line refer to responses for case 1, 2, and 4, that is, structure
without control, structure with passive control, and structure with hybrid control,
respectively. Results show that the maximum displacement at the third floor can
be reduced to 0.4042 cm by hybrid control, which is 51.9% of that for structure
without control and 64.3% of that for the passive system. This result shows that
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FIGURE 5.31 Demonstration of capacity of active bracing control.

hybrid control systems have a powerful capacity to mitigate structural seismic
response.

5.4.2.2 Effectiveness of the HDABC system

To show the effectiveness of hybrid control structural seismic responses, and
required control forces are evaluated for three cases: (1) structure with hybrid
control, (2) structure with active control, and (3) structure with passive control.
The same hydraulic actuators are used in cases 1 and 2, and the same viscous fluid
dampers are used for cases 1 and 3.

As observed, the force-generating capacity of the hydraulic actuator is a major
concern for full-scale implementation of structural control. Therefore, the required
active control force for active and hybrid control systems is compared using the
same control objective. Pole assignment control algorithm is used to design the
feedback controller. Desired closed-loop poles for the hybrid system and closed-
loop poles for the active control system are the same as listed in Equation 5.154 but
excluding the real pole –21.269. Figure 5.33 compares the required active control
force in the active and hybrid systems. Assume that the control objective is the
maximum closed-loop displacement at the third floor of the structure. Under the
excitation of the scaled N-S component of the El-Centro earthquake, the control
objective of both systems are set the same at 0.5 cm. Results show that for the
hybrid control system, maximum required active control force is 785.9 N, which
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FIGURE 5.32 Demonstration of capacity of HDABC system.

is only 68.3% of that for the active control system (see Figure 5.33a). If the control
objective of both systems is set the same at 0.54 cm, the required active control
force for the hybrid system is 609.4 N, which is 56.1% of that for the active control
system (see Figure 5.33b). This is because the passive damper uses structural
vibration to generate the passive control force. When the structural response is
larger, the passive damper generates more control force and thus takes a more
important role in the hybrid system.{p} =  −2.453± 18.589j−2.071± 59.477j−0.682± 110.51j−42.409± 397.67j−2.798× 104 ± 2.800× 104j−21.269

 , j = √−1 (5.154)

5.4.3 Effectiveness Comparison of HDABC System and
MR Damper

This section uses numerical studies to compare the effectiveness of hybrid and
semiactive systems for seismic response control, with the HDABC system and the
MR damper as the examples, respectively. For this comparison, it is assumed that



“CHAP05” — 2008/1/18 — 12:20 — page 305 — #69

Smart Seismic Structures Using Semiactive and Hybrid Control Systems 305

Time (s)
       

1000

500

(a)

0

–500

–1000

–1500

Fo
rc

e 
(N

) 

Hybrid system (max. 785.9 N) 
Active system (max. 1150 N) 

0 1 2 3 4 5 6

Fo
rc

e 
(N

) 

Hybrid system (max. 609.4 N) 

Active system (max. 1087 N) 

Time (s)

1000
(b)

500

0

–500

–1000

–1500

0 1 2 3 4 5 6

FIGURE 5.33 Comparison of required active control force for El-Centro earthquake: (a)
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both systems are installed on the same brace-structure system subjected to three
different earthquake excitations [30]. The same three-story structure and K-brace
as Section 5.3.3.2 are used here. Two control systems are installed at the same
three-story building and brace system was introduced in the intelligent control
example. Then three ground motions recorded, El-Centro earthquake in 1940,
Northridge earthquake in 1994, and Kobe earthquake in 1995, were adopted as
input. As noted, the natural frequencies of the structure model are two times of
its prototype thus all the three earthquake records are scaled with 1:2 time factors
for the numerical simulation. To compare the control effectiveness of two control
systems, the controlled top-floor displacement for two control systems is set to be
the same and other responses are evaluated.

By setting controlled top-floor displacement the same, the structural response
of acceleration, displacement, and column shear is compared and evaluated. The
HDABC system model and MR damper model have been developed in Section 5.1.
LQR optimal algorithm is used by the HDABC system. For the semiactive control,
the clipped-optimal control [16] is utilized here and the command signal (voltage
applied on MR damper) is given byν = νmaxH {(fc − f ) f } (5.155)
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where νmax is the voltage associated with the saturation of the magnetic field in
the MR damper. H (•) is the Heaviside step function; fc is optimal active control
force.

5.4.3.1 El-Centro earthquake

In this case, the magnitude of the earthquake input is scaled to 50% of its original
and the reduction of maximum top-floor displacement is set as 29%. Figure 5.34
shows the top-floor displacement response (MR-controlled) and MR control force
and voltage applied on MR fluid. Figure 5.35a plots the top-floor displacements by
two control systems and shows that the maximum displacements of the two systems
are set approximately the same. For further clarification, Figure 5.36 illustrates
the peak values of displacement, acceleration, and shear force at the three floors
for three cases, uncontrolled structure, the HDABC system, and the MR damper.
Figure 5.36b shows that the controlled displacements are almost the same for two
control systems except that the MR system provides a little bit more reduction.
Figure 5.36a compares the maximum acceleration response of the three cases.
It shows that the HDABC system reduces the acceleration response significantly at
all three floors, while the MR system does not provide much reduction at the second
and third floor but even results in larger peak acceleration at the first floor than the
uncontrolled system. Note that this symptom only happens to the peak acceleration.
In other words, the MR system can provide acceleration reduction during the time
history (see Figure 5.35b) except for some time instants with impulse-like increase,
such as the 1.3 s shown in Figure 5.35b. This phenomenon is directly related to
the MR control force (Figure 5.34b) by the clipped-optimal control. The voltage
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FIGURE 5.34 Demonstration of MR damper control: (a) applied voltage and generated
force and (b) top-floor displacement response.
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FIGURE 5.35 Comparison of MR damper and HDABC system-controlled structure
response at top-floor: (a) displacement and (b) acceleration.

modification always causes a sudden increase of MR force, consequently resulting
in impulse-like acceleration. Figure 5.36c shows both systems are effective for the
peak shear force reduction, and the HDABC system reduced more column shear
force at each story.

5.4.3.2 Northridge and Kobe earthquakes

For Northridge Earthquake input, magnitude is scaled to 30% of the original, and
25% for the Kobe Earthquake input. In comparison, the reduction of top-floor peak
displacement is set as 44% and 47% for Northridge and Kobe earthquake inputs,
respectively.

The peak displacement, acceleration, column shear of the structure under the
two earthquake inputs for the three cases, uncontrolled, hybrid control, and MR
control, are compared in Table 5.6. Similar results are observed, that is, the two
controlled systems yield similar peak responses of floor displacement, while the
MR control system provides less peak acceleration reduction than the hybrid
control system at the first floor, where the control devices are installed. Again,
this symptom of the MR control is due to the force thrust caused by voltage
modification.

5.4.4 Summary
This section has studied the capacity and effectiveness of active and hybrid con-
trol systems with servovalve-controlled hydraulic actuator mounted on K-brace.
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The effectiveness of HDABC system and MR damper system is compared.
A HDABC-controlled one-story building is employed to demonstrate the effect-
iveness of state and state-slope control of the system with spring and liquid
mass dampers, respectively, as well as the intelligent hybrid control strategy.
Numerical comparisons of seismic response for a three-story structure with
passive, active, and hybrid control are used to demonstrate the effectiveness
and capacity of hybrid control systems using hydraulic actuator and viscous
fluid damper. Active and hybrid control systems have greater control capacity
than passive control systems, while hybrid control technique is more efficient
than active control in that smaller actuators are required in hybrid control
systems.

In the effectiveness comparison of HDABC and MR damper systems, one
phenomenon was found that the MR-controlled floor acceleration response
exhibits some impulse-like increase when such active force appears at the
instance associated with MR voltage modification, especially for the floor dir-
ectly connected with the MR damper. This needs to be taken into account for
the building designed with high restrictions on floor acceleration. The MR-
controlled floor acceleration has exhibited some impulse-like increase caused
by thrust-like MR force at the instance of the MR voltage modification that
may affect the performance of the acceleration-sensitive equipment on the
floor.
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5.5 IMPLEMENTATION OF HYBRID CONTROL FOR SMART SEISMIC

STRUCTURES

Hybrid seismic response control systems have been implemented in various ways.
For instance, full-scale hybrid mass dampers were installed on physical buildings in
Japan for evaluating their effectiveness by real-time measurements [26]. Shaking
table tests are conducted at the University of Missouri-Rolla (UMR) to study
the feasibility of hybrid seismic response control, evaluate the effectiveness and
stability of the system, as well as to verify the developed optimal control algorithms
[10, 20]. This section provides a brief introduction of the experimental studies of
HDABC systems at UMR.

5.5.1 Test Setup

5.5.1.1 Structure and K-braces

Figure 5.21 shows the quarter-scale, three-story steel building model. Its dimen-
sions are 4 ft long, 2 ft wide and 8 ft 4 in. tall. The floor heights are
3 ft 4 in. for the first floor and 2 ft 6 in. for the second and third floors. All
structural beam and column members use AISC standard A36 steel (36 ksi yield-
ing stress) and ST 1.5× 3.75 shape. Floor weights are m1 = m2 = m3 = 1250 lb
so that the structural fundamental frequency is close to 2.0 Hz by analysis. The K-
brace at the first story consists of double angles 2L2×2×1/4 with cross-sectional
area 1.88 in.2. Nominal length of each arm is 37 in., and the angle of both arms to
the ground is 56.8◦. The K-brace is designed to be much stiffer (with horizontal
stiffness 8.84 kips/in.) than the first floor (with horizontal stiffness 2.90 kips/in.)
so that it can provide sound support to the control devices and produce reasonable
relative displacement between device pistons and cylinders.

5.5.1.2 Control devices

The HDABC control system consists of a viscous fluid damper for passive control
and a Moog 760-102A servovalve-controlled hydraulic actuator for active control.
The cylinders of the damper and actuator are bolted to the first floor and their
pistons are connected to the K-brace. As shown in Figure 5.3, this damper consists
of a hydraulic cylinder, a piston, and a tube. The piston separates the cylinder
into two chambers, which is filled with viscous fluid and connected by the tube.
The relative movement between the damper cylinder and the piston drives the
viscous fluid to flow back and forth in the tube and thus dissipates energy. Damper
properties can vary through changing the size and length of the tube. The hydraulic
actuator, as shown in Figure 5.2, comprises a hydraulic cylinder with a piston, a
servovalue with a piston, and a valve control system. It also has a built-in LVDT to
monitor the relative displacement between the piston and the cylinder. The actuator
is powered by the same hydraulic power supply for the shaking table described
below. The hydraulic power supply pumps the hydraulic fluid into the servovalue
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first. When the servovalue piston moves to one side, the hydraulic fluid can be
pumped into this side of the actuator cylinder and sucked from the other side of
the cylinder. The pressure difference in the two sides generates the active control
force. The piston movement can be controlled by the servocontrol system with
a predetermined control algorithm. Maximum stoke for both the damper and the
actuator is±1.5 in. The structure and K-brace are sitting on the shaking table. The
cylinders of the damper and the actuator are bolted to the bottom of the second
floor and their pistons are connected to ground through the K-brace.

Sensing system includes three LVDTs to measure the displacement response
of each structural floor and four accelerometers to measure acceleration at each
floor and the shaking table. Measurement range is 5 g for accelerometers and ±3
in for LVDTs. The sensors send signals of the system response to a control com-
puter, which analyzes the signals and sends a feedback signal to the active control
system.

5.5.1.3 Earthquake simulator system

The earthquake simulator system includes a shaking table, a hydraulic power
supply, and a random vibration controller system. The shaking table is 3 ft 6 in.
wide and 7 ft 0 in. long. It can provide a horizontal vibration along its longitudinal
direction. It is driven by a hydraulic actuator that can provide a visible vibration up
to 10 Hz and can move±1 in. at 1 Hz or±0.75 in. at 2 Hz. The hydraulic actuator,
which uses a hydraulic power supply with 3000 psi working pressure at 22 gpm
flow rate, can generate maximum control force 22 kips. The vibration controller
system is to control the shaking table to produce different types of vibrations such
as sine function, triangular function, and random vibration with specified power
spectrum. Scaled N-S component of El-Centro earthquake (1940) is simulated by
the shaking table as ground acceleration excitation.

5.5.2 Parameter Identification of Control Devices
The governing equation for viscous fluid damper is expressed by Equation 5.39a.
Parameters appearing in this equation, C0 and λ0, can be determined through
parameter identification tests. In such a test, the damper is driven by a speed-
adjustable motor to produce a sinusoidal motion. Driving force, fp(t), damper
displacement and velocity, xp(t), and ẋp(t), are monitored and recorded. This test
is repeated with motions in different frequencies, ω1,ω2, . . . ,ωN. The damper
characteristic equation at frequency ωi can be expressed as

f (i)p (t) = K(ωi)x(i)p (t)+ C(ωi)ẋ(i)p (t) (5.155)

where K(ωi) and C(ωi) are constant, and x(i)p (t), ẋ(i)p (t) and f (i)p (t) are sine
functions.
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TABLE 5.7
Test Results for Identifying Parameters of the Viscous Fluid Damper

C0 = 1
n

n∑
i=1

C (ωi )·
Test
No. i

fi
(Hz)

ωi
(rad) C (ωi ) K (ωi ) λi

0 = 1
n

n∑
i=1

1
ω2

K (ωi )
C (ωi )

[
1+ (λ0ωi )

2
]

1 1.5 9.425 105.13 306.03 0.0328 111.53
2 2.0 12.566 102.99 434.80 0.0267 114.14
3 2.5 15.708 98.31 572.91 0.0236 114.94
4 3.0 18.850 89.75 777.50 0.0244 111.61
5 3.5 21.991 82.37 991.26 0.0249 109.68
6 4.0 25.132 79.44 1239.85 0.0247 113.84∑

Total 0.1571 674.74
Average 0.0262 112.64

If x(i)p (t1) = 0 at t = t1, C(ωi) is found by

C(ωi) = f (i)p (t1)
ẋ(i)p (t1) (5.156)

And if ẋ(i)p (t2) = 0 at t = t2, K(ωi) is found by

K(ωi) = f (i)p (t2)
x(i)p (t2) (5.157)

When all K(ωi) and C(ωi) (i = 1, 2, . . ., N) are found, parameters of the
viscous fluid damper, C0 and λ0, are obtained byλ0 = 1

n

n∑
i=1

1ω2
K(ωi)
C(ωi) , C0 = 1

n

n∑
i=1

C(ωi) [1+ (λ0ωi)2] (5.158)

Table 5.7 provides a group of experiment results for identifying parameters of
the viscous fluid damper [8,10,20]. Similar tests can be conducted to verify para-
meters (such as Kv and τ ) of the hydraulic actuator specified by the manufacturer.
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6 Sensing and DataAcquisition Systems forSmart Seismic Structures
Similar to many other automation systems, information of excitations and sys-
tem response are essential for smart seismic structures [3,4,19,25]. Sensing and
data acquisition is the process of collecting information from the real world. For
smart seismic structure applications, such information can be ground motion,
control forces, as well as displacements, velocities, and accelerations of the
structure. The information is first converted to electrical signals using sensors.
Real-world seismic events and system response are analogs, and the sensor output
signals, called measurements, are also analogs with continuous range of values.
Because the sensor output signals have noises and may be weak, the signal is
amplified and/or filtered by electrical instrumentation called signal condition-
ers. Figure 6.1a shows analog sensing and data acquisition in the smart structure
system.

In today’s digital world, information of real-world events are usually collected,
stored, and analyzed with a computer by numerical data [1,12,18]. The computer
can automate the data acquisition process, enabling fewer errors in data collection.
It can easily record measurements with very small time intervals (i.e., much less
than a millisecond), minimizing the difference between the analog signal and its
digital representation. Moreover, the information can be easily displayed graphic-
ally, analyzed, and/or processed by the computer. Owing to the decreasing cost and
increasing functionality of computers in both hardware and software, digital data
acquisition and control have superseded the analog technology in both laborator-
ies and the industry. As computers are common in today’s world, implementing a
digital data acquisition system is often just a moderate expense of add-in boards
and support software. Figure 6.1b shows a schematic of digital sensing and data
acquisition system. As noted, the real-word signals are analogs, not in a form of
binary numbers that can be directly stored by a computer. Thus, analog-to-digital
(A/D) boards are added to convert the analog signal to digital data before the data
feed the digital controller in the computer.

This chapter focuses on how smart seismic structures obtain and process
these measurements by sensors and the data acquisition system. Conventional
sensors and digital data acquisition systems are first discussed in Sections 6.1
and 6.2, respectively, for their application to smart seismic structures. Then the
latest research advances are introduced to address the weaknesses of conventional
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FIGURE 6.1 Schematic of sensing and data acquisition for smart seismic structures:
(a) analog and (b) digital.

sensing technology. Section 6.3 presents the new sensing technology, namely,
smart sensors, and Section 6.4 develops the seismic observer technique.

6.1 COMMON SENSORS FOR SMART SEISMIC STRUCTURES

A sensor is an electrical, electronic, and/or mechanical device that responds to
external excitation or stimulus with an electrical signal [5,8,29]. The external
excitation or stimulus is referred to as measurand and the electrical signal is
called measurement. Sensors can be regarded as a translator with measurand and
measurement as input and output, respectively. Sensors are usually classified by
its input/measurand (i.e., what it measures). For example, sensors that measure
accelerations are called accelerometers. Sensor input can be of many types such as
temperature, pressure, forces, accelerations, velocities, and displacements, and so
forth. Sensor output can be in the form of current, charge, or voltage. The output
signal can be expressed in time domain (amplitude and phase) or frequency domain
(spectrum). A sensor sometimes is referred to as a transducer, but the difference is
that the transducer output can be in any form of energy other than the input while
sensor output must be an electrical signal. Sensors can be passive and active.
Passive sensors use input energy by external excitation/stimulus to generate the
output signal, such as piezoelectric sensors. Active sensors require external power
(excitation signal) and modify this signal to produce sensor output. Sensors in
smart structures are designed to acquire information to feed the controller. They
do not function alone but rather as a part of sensing and data acquisition system
discussed in Section 6.2.
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This section discusses the basic mechanisms and specifications of several
sensors and transducers that are commonly used for smart seismic structures.
These sensors are usually analog devices that generate analog output signals. They
measure system responses of the control devices and controlled structures, such as
displacements, velocities, accelerations, strain, or forces. These sensors are listed
below and discussed later in detail:• Position transducers. Linear variable differential transformer (LVDT)

and rotary variable differential transformer (RVDT).• Velocity transducers. Electromagnetic linear velocity transducers and
tachometers.• Accelerometers. Capacitive, piezoelectric, and thermal accelerometers.• Force transducers. Strain gauge–based, piezoelectric, or spring-
displacement load cells.

All these sensors are commercially available. Common sensor vendors
include Omega Engineering (http://www.omega.com/prodinfo), Honeywell
Sensing and Control (http://www.sensotec.com), PCB Piezotronics, Inc.
(http://www.pcb.com), Analog Devices (http://www.analog.com), and GlobalSpec
(http://www.globalspec.com), and so forth. Some of them are also suppliers of data
acquisition devices (such as signal conditioners) and digital control systems (such
as digital-to-analog (D/A) and A/D converters).

In a smart structure system, the control algorithm requires certain measure-
ments and thus dictates what sensors shall be used. Many factors and specifications
(see Table 6.1 for examples) such as the following shall be considered in the
selection of any particular sensor for smart seismic structures:• Frequency bandwidth shall cover the range of seismic excitations and

structural response.• Format and strength of the output signal.• Linear range and dynamic accuracy.• Sensitivity and resolution.

TABLE 6.1
Examples of Sensor Specifications

Types Frequency bandwidth Resolution Accuracy Sensitivity

LVDT DC→ 2500 Hz 0.001 mm 0.3% 50 mV/mm
Piezoelectric accelerometer 1 Hz→ 25 kHz 1 mm/s2 1% 0.5 mV/mm/s2

Source: Chu, S.Y., et al., Active, Hybrid, and Semi-Active Structural Control: A Design and
Implementation Handbook, John Wiley & Sons, Chichester, England, 2005.
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318 Smart Structures: Innovative Systems for Seismic Response Control• Environmental factors such as temperature, pressure, humidity, chem-
icals, and electric or magnetic fields, and so forth.• Reliability and cost.

6.1.1 Linear or Rotary Variable Differential Transducer
An LVDT (or an RVDT) measures linear (or angular) displacement by the method
of electromagnetic induction. As shown in Figure 6.2, the LVDT consists of a core
and two coils called the primary winding and the secondary winding. The two coils
work as a transformer in that the primary winding carries an AC excitation, Vi,
which induces a steady AC output voltage, Vo, in the secondary winding. The level
of the induced voltage depends on the flux coupling between the two coils. By
associating the measurand motion with the magnetic flux coupling between two
coils, the output voltage in the secondary winding can represent the measurement
of the motion. There are two methods to change the flux coupling. One is to move
physically one coil with respect to the other. The other way, which is more common,
is to use a nonmagnetized ferromagnetic medium to alter the reluctance (magnetic
resistance) of the flux path, which, in turn, changes the coupling between the two
coils. Thus, motion sensors that employ the principle of electromagnetic induction,
such as LVDTs and RVDTs, are also referred to as variable-reluctance transducer.
LVDTs and RVDTs are active sensors, as they require excitation voltage.

As shown in Figure 6.2, the LVDT core attaches to the smart structure to
measure its movement. The core, made of a ferromagnetic material, is inserted
coaxially into the cylindrical opening without physically touching the coils. The
two subcoils in secondary winding are connected in the opposed phase. When the
core is positioned in the center, the induced voltage in the two subcoils cancels
and there is no output signal (called neutral calibration). The core movement
from the neutral position unbalances the flux linkage of the two subcoils in the
secondary winding to the primary winding, developing an output signal. Thus, the

+ +

+

Primary winding

–

––

Secondary winding

Smart
seismic
structure

VoVi

FIGURE 6.2 Schematic of induction displacement sensors (LVDTs).
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movement of the smart structure, which determines the axial position of the core,
is associated to the flux coupling and the output signal. It changes the reluctance
of the flux path, with an associated change of the flux linkage in the secondary
coil. Thus, the degree of flux linkage depends on the axial position of the core,
and the amplitude of the induced voltage is proportional to the core displacement.
Consequently, this voltage can be used as a measure of the displacement, which is
the operating principle of an LVDT. The RVDT operates on the same mechanism
as the LVDT, except that a rotary ferromagnetic core is used, as its primary use is
to measure angular displacement.

For smart structure applications, the selected LVDT or RVDT must be able
to measure transient motions accurately. This requires that the frequency of the
excitation voltage have to be at least ten times larger than the largest significant
frequency in the measured structural response. Usually structural seismic response
has significant modal frequencies less than 5 Hz, and thus a standard AC supply
(at 60 Hz line frequency) would work.

There are many advantages of the LVDT (RVDT) for smart structure applic-
ations, such as little friction resistance; small resistive forces due to near-ideal
electromechanical energy conversion and light weight core; no signal amplifica-
tion needed with low output impedance, low susceptibility to noises; directional
(positive/negative) measurements; fine resolutions; low cost and durability due to
a simple and robust construction; and availability in small sizes. However, as you
may notice, external fixed support is required for the LVDT to measure the struc-
tural absolute displacement. This can be done in a laboratory but is impossible for
full-scale physical structures. However, LVDTs are useful to measure relative dis-
placements inside a physical smart seismic structure. One example is the built-in
LVDT in some hydraulic actuators to monitor the relative displacement between
actuator piston and cylinder.

6.1.2 Velocity Sensors
In theory, the velocity can be derived from displacement measurements, as velocity
is a first derivative of displacement. However, taking derivatives may result in high
noises in the signal, even with sophisticated conditioning devices. Thus, velocity
sensors are essential for some smart structure applications.

Velocity sensors, such as linear velocity transducers and tachometers, take
advantage of the mechanism of magnetic induction. According to Faraday’s law,
moving a magnet through a coil of wire will induce a voltage in the coil and the
voltage is proportional to the magnet’s velocity and the field strength. This prin-
ciple of electromagnetic induction between a permanent magnet and a conducting
coil is used in speed measurement by permanent magnet transducers. A distinctive
feature of permanent magnet transducers is that they generate a uniform and steady
magnetic field. The relative motion between the magnetic field and an electrical
conductor induces a voltage that is proportional to the speed at which the conductor
crosses the magnetic field. Thus, such a sensor is usually enclosed in a steel casing
to isolate it from ambient magnetic fields. Depending on the configuration, either
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FIGURE 6.3 Mechanism of linear electromagnetic velocity sensors.

translational velocities or angular speeds can be measured. Tachometers use the
same principle and the only difference is that they have rotary core. Unlike LVDTs,
velocity sensors are passive devices in that they do not need external excitation but
generate current/voltage signals with a moving permanent magnet. Thus, velocity
sensors are passive.

Figure 6.3 shows the mechanism of a linear velocity sensor for application to
smart seismic structures. It uses a permanent magnet and a fixed geometry coil
so that the output voltage signal is directly proportional to the relative velocity
of the magnet or the structure over its working range. In this velocity sensor,
both ends of the magnet are inside the coil. With one coil, this would give a zero
output because the voltage generated by one end of the magnet would cancel the
voltage generated by the other end. The coil is divided into two sections to address
this issue. The north pole of the magnet induces a current in one coil, while
the south pole induces a current in the other coil. The two coils are connected
in a series-opposite direction to obtain an output proportional to the magnet’s
velocity. Maximum detectable velocity depends primarily on the input stages of
the interface electronic circuit. Minimum detectable velocity depends on the noise
level in current and nearby equipment. Specifications of velocity sensors also
need to be evaluated for a particular application. Table 6.2 lists the range of typical
specifications of electromagnetic velocity sensors.

6.1.3 Accelerometers
As their name implies, accelerometers are devices that measure accelerations of
the motion or vibration of a structure. An accelerometer is a useful instrument
for detecting and measuring vibrations or for measuring accelerations such as
gravity. It can be configured into a single-, dual-, and triple-axis model to measure
accelerations in single or multiple directions simultaneously. Accelerometers have
been widely used in modern industry and scientific/engineering systems to measure
seismic activities and structural vibration of buildings, automobiles, airplanes, and
so forth. Atypical example is the accelerometer in automobile’s airbag deployment
systems. It measures the acceleration of the automobile to detect collisions and
their severity so as to determine if triggering off the airbag is needed. The wide
use of accelerometers has cut their cost down drastically.
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TABLE 6.2
Specification Ranges of Electromagnetic
Velocity Sensors

Property Range

Magnet core displacement (inches) 0.5–24
Sensitivity (mV/in/s) 35–500
Coil resistance (k�) 2–45
Coil inductance (Henry) 0.06–7.5
Frequency response (Hz) 500–1500
Weight (g) 20–1500

Source: Fraden, J., Handbook of Modern Sensors:
Physics, Designs and Applications, American Institute
of Physics Press, Woodbury, New York, 1997.

Direct sensing of accelerations is more difficult than measuring forces. How-
ever, the Newton’s second law interprets that a force F causes a mass M to
accelerate. If the acceleration of the mass is a, the product Ma is called inertia
force and equal to external force F. Thus by sensing the inertia force of a mass,
the acceleration of the mass can then be measured. This is the mechanism of
common accelerometers that have a built-in seismic mass. Take the piezoelectric
accelerometer as an example. The inertia force induced by the acceleration causes
the mass to squeeze the piezoelectric material, and an electrical signal is then
generated. With the linear piezoelectric materials (meaning the electric signal is
proportional to the applied force) and the constant seismic mass, the signal would
be proportional to the acceleration. Note this acceleration is the one for the accel-
erometer mass, not the one of the external excitation (the measurand). However,
if we can correlate the acceleration of the accelerometer mass to the measurand
acceleration linearly, the measurement of external acceleration can be obtained.
To achieve this goal, an accelerometer usually consists of an SDOF mass-spring
system, and a frame structure with damping device properties. Under external
excitation ae = ẍe(t), the motion equation of the accelerometer system can be
described by

ma ẍa(t)+ ca ẋa(t)+ kaxa(t) = −ma ẍe(t) (6.1)

As noted above, the measurand is ẍe(t) but the directly sensed value by the
accelerometer is ẍa(t). The frequency response from xe(t) to xa(t) of this SDOF
system is given by [10]

G( jω) = 1ω2
n − ω2 + 2ζωn jω , j = √−1 (6.2)
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which is illustrated by Figure 6.4. A correctly designed, installed, and calibrated
accelerometer should have one obvious resonant frequency ωn and a frequency
range with flat response, where the accelerometer is linear and thus accurate meas-
urements can be made. This useful flat region is created by having much bigger
natural frequency ωn than the reference frequency ωr , and improved by using vis-
cous damping to limit the resonant effects. If the measurand frequency range is
inside the flat region, the accelerations of accelerometer mass and the measurand
have linear relationship.

Accelerometers can be classified by their force-sensing mechanism. These
using piezoelectric materials are called piezoelectric accelerometers and their
detailed discussion is in Section 6.1.3.1. The second type takes advantage of
electromagnetic induction. Such accelerometers convert the inertia force into
a proportional displacement using a spring element, and this displacement is
measured by an electromagnetic sensor, such as an LVDT. Examples are differ-
ential transformer and capacitive accelerometers. The third type is strain-gage
accelerometers. It determines the acceleration by measuring the strain at cer-
tain locations of a structural member deflected by inertia force. Other types
include thermal, acoustic, and laser accelerometers, which correlate the accel-
eration to temperature change, surface acoustic wave, and optimal signal,
respectively.

6.1.3.1 Piezoelectric accelerometers

Piezoelectricity (PZT) is a natural phenomenon that certain materials can generate
an electrical charge and voltage when subjected to mechanical stress or strain.
Such materials can be certain ceramic materials (barium titanate, lead zirconite
titanate, lead metaniobite, and so forth) and quartz crystals. The piezoelectric effect
is reversible in that piezoelectric crystals, when subjected to an externally applied
voltage, can change shape in a small amount. PZT was discovered by Pierre Curie
and the word is derived from the Greek piezein, which means to squeeze or press.
The piezoelectric effect finds useful applications in many fields and is utilized to
sense forces and acceleration accordingly. A piezoelectric accelerometer usually
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consists of a crystal sandwiched between the case and the mass so that the force is
proportional to the acceleration. In miniature accelerometers, a thin film of PZT
material is deposited on a micromachined silicon layer.

Piezoelectric accelerometers can be low- or high-impedance output accelero-
meters. The high-impedance one produces an electrical charge signal. It is directly
connected to the signal conditioning devices but requires external charge-to-
voltage converter/amplifier. It is most commonly found in research facilities and
high-temperature (>120◦C) environments. The low-impedance output accelero-
meter has a charge accelerometer and a built-in charge-to-voltage converter to
produce a low impedance voltage. They are commonly found in industry applic-
ations as they can easily interface with standard data acquisition instrumentation.
Piezoelectric accelerometers have the advantages of being light in weight, little
noises, high linearity, and a wide operating temperature range. They operate from
a frequency as low as 1 Hz and up to about 5 kHz and have good high-frequency
response. However, piezoelectric materials can only generate small voltage signals
(in the order of 1 mV). Thus, some piezoelectric accelerometers are built into a
charge-to-voltage converter that can also amplify the piezoelectric crystal signal.
The other approach is to use a large mass so that the inertia force on the crystal
is large for a given acceleration, thus generating a relatively large output signal.
However, the large accelerometer mass may distort the measurand acceleration
due to the mechanical loading effect.

6.1.3.2 Accelerometer specifications

To select an appropriate accelerometer for practical applications to smart seis-
mic structures, the accelerometer specifications provided by its vendor shall be
consulted. These specifications are• Frequency response. The accelerometer’s resonance frequency ωn and

reference frequency ωr are usually given in its manufacturer specific-
ation. A good accelerometer shall have a ωr much smaller than ωn. In
addition, the low cutoff frequency (where the output starts to fall off
below the stated accuracy) and high frequency limit (where the output
exceeds the stated output deviation) are usually specified. The high limit
shall be much lower than the resonance frequency of the accelerometer
to ensure accuracy. All significant natural frequencies of the smart seis-
mic structure under consideration (usually in 0.1–10 Hz) shall be in the
range between low cutoff and high limit.• Amplitude range. It is the range between plus/minus maximum accel-
eration amplitude that the accelerometer can accurately measure. It is
typically specified in gs, where g is the acceleration due to the earth’s
gravity (i.e., 9.8 m/s2). Beyond this range, the accelerometer output
signal may be distorted or clipped.• Linearity and accuracy. The maximum error in amplitude of the output
signal of the accelerometer is typically specified by a deviation, such as
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frequency of the measurand very well. Obviously the more accurate
the better. In addition, the accelerometer mass shall be much smaller
than the measurand mass to ensure the accuracy. It is not an issue for
smart seismic structures as the structural mass is huge compared to the
accelerometer mass.• Sensitivity. It is the voltage (measured in mV ) of the accelerometer out-
put signal produced by a certain force (measured in g). It is measured
by the ratio of the electrical output to the acceleration input at refer-
ence frequency ωr and in unit of mV /g. Because accelerometers are
linear devices and their output signal is proportional to the measurand
vibration, the sensitivity is a constant number. There are two typical
values of accelerometer sensitivity 10 mV /g or 100 mV /g. Acceler-
ometers with small sensitivity can work for applications with strong
vibrations/motions while accelerometers with big sensitivity are used
to measure low vibrations.• Signal grounding. Accelerometers can be ground-isolated or case-
grounded. The former is much less susceptible to ground-induced noise
while care must be given to the latter to avoid ground noise.• Noise level. Electronic noise may be generated by the built-in circuit
in the accelerometer. Noise levels can be specified in gs at a specific
frequency, that is, 0.0025 g at 10 Hz. Such noise at low frequencies (in
order of 1 Hz) is more of an issue for smart seismic structures.• Temperature range and sensitivity. Typically, accelerometer temperat-
ure range is −50 to 120◦C. The accelerometer can be inaccurate and
very sensitive to temperature if outside this range.• Environment factors. These factors can be available space, moisture,
presence of electric noises, corrosive chemicals, and magnetic and
electric fields.

Motion sensors discussed above may have different preferences in applications.
As a rule of thumb, displacement measurements generally provide good accuracy
in low-frequency (in the order of 1 Hz) applications. Velocity measurements are
usually favored in intermediate-frequency (<1 kHz) applications. Acceleration
measurements are preferred for high-frequency motions with reasonable noise
levels.

6.1.4 Strain Gauges
A strain gauge is a resistive elastic device used to measure deformation (strain) of
an object. It was invented by Edward E. Simmons in 1938 [8,29]. Strain gauges
use materials whose electrical resistance changes linearly by applied strain. When
a strain gauge is attached to an object, it deforms as the object is deformed, causing
its resistance to change. This linear relationship of the gauge between the strain
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and the resistance change is expressed through a constant gauge factor (GF), which
is defined as

GF = �R
/(R · ε) (6.3)

where R is the resistance of the undeformed gauge, �R is the resistance change
caused by strain, and ε is strain.�R can be easily measured by the variation of the
electrical current through the gauge. Then with the specified GF and resistance
R, the strain ε is determined. Strain gauges are passive sensors as external power
supply is needed to measure the resistance change.

There are two common types of strain gauges: metal foil and semiconductor
ones. They are usually small in size; for example, the active area of foil gauges
is typically 2–10 mm. Their resistance R can vary from a hundred to several
thousand ohms. Foil strain gauges have a GF usually around 2 (except about
6 for these using platinum alloys). They can measure wide range of strains (up
to at least 10%). Metal foil strain gauges can be fabricated with many metal
materials, such as alloys of constantan, nichrome, and karma. The semicon-
ductor gauge, also called piezoresistors, usually has a larger GF (as high as
150) than a foil gauge. Thus, semiconductor gauges are often used to measure
small strain. However, piezoresistors are more expensive, more sensitive to tem-
perature, and more fragile than foil gauges. Strain gauges normally have stable
performance over a period of years, which is essential for smart seismic structure
applications.

The following issues are worth noting for applying strain gauges to smart
structures:• The gauge shall be attached to the object by strong adhesives so that

there is no relative deformation between the gauge and the object.• The direction is important for installing metal foil gauges, as they are
more sensitive to vertical strain than horizontal. In order to measure
strains in different axes, multiple gauges can be used either separately
or in a bridge circuit.

Thermal expansion exists in many materials, especially for the temperature-
sensitive materials (metals or semiconductors) used by strain gauges. Thus,
temperature variations can induce extra strain in the gauge, resulting in signi-
ficant measurement error. A common way to address this issue is to build a
temperature-compensating network or to setup a gauge bridge with multiple gauges
compensating each other for strains by temperature change. The Wheatstone bridge
arrangement, as shown in Figure 6.5, is a popular way for temperature compens-
ation. It connects two parallel branches, containing four resistors (gauges). Two
gauges are attached to the object and two are unattached. The two unattached
gauges produce signal because of temperature change and cancel the thermal strain
in the two attached ones.
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6.1.5 Force Transducers
The measurement of force is commonly required in a smart structure system.
A typical example is to monitor the control force. Sensors used for such meas-
urements are called force transducers. Force transducers in smart structures are
quantitative sensors that respond to the force with an electrical signal. Examples
of these sensors are strain gauges and load cells fabricated in a stainless steel cyl-
inder. Capacity and frequency ranges are two major factors to select a particular
force transducer for smart structure applications. They must be designed to have
an axial load capacity at least exceeding the limit of the measurand (e.g., control
force). Commercially available force transducers have capacity ranging from one-
thousandth of a Newton to very large forces (e.g., 10 tons) of heavy-duty load
cells. They can monitor impulsive, slowly varying, and high-frequency forces.

A force is proportional to the acceleration according to Newton’s second law.
Thus, force transducers can also employ the sensing mechanism of accelerometers.
For example, force transducers also commonly employ piezoelectric crystals with
built-in microelectronics. The common methods to sense force are• By measuring the acceleration of a known mass to which the force is

applied• By balancing the force against an electromagnetically developed force• By converting the force to a fluid pressure and measuring that pressure
and• By measuring the strain produced in an elastic member by the unknown
force

Most of force sensors do not directly convert the force into an electric signal,
but rather require some intermediate steps. Such mechanism details are described
in the following sections for typical force sensors.

6.1.5.1 Strain gauge–based load cells

They are the most common force transducers, which use the theory that forces cause
strain or deformation when applied to any object. These sensors convert a force to
an electrical signal with two steps. The first step is to deform a strain gauge and the
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second step is to convert the deformation (strain) to electrical signals by the strain
gauge. A load cell can use any strain-gauge bridge configuration. Its output signal
is typically in the order of a few millivolts and thus signal amplification is usually
required. Strain gauge–based load cells have the advantage that they are applicable
to cases with bending moments. The load cell can be constructed with resistive
foil strain gages arrayed in a full Wheatstone bridge. Each arm of the bridge has
two gauges connected in series and physically placed such that any strains due
to bending moments would cancel and only the axial force would be measured.
As noted in Section 6.1.4, strain gauges can remain stable over a period of years.
Thus, strain gauge–based load cells are durable sensors for smart structures.

6.1.5.2 Electromagnetic force sensors

Such a force sensor consists of a force-to-displacement converter such as a linear
spring and an electromagnetic induction-based displacement sensor such as an
LVDT. Within its linear range, the spring converts the axial tension/compression
force P to a displacement δ. This relationship can be defined through the spring
coefficient k δ = P/k (6.4)

Then the displacement sensor converts the δ into a voltage signal V . Figure 6.6a
shows a schematic of such a sensor. Because the spring and the LVDT are both
linear, the sensor output voltage V is proportional to the applied force P.

Electromagnetic force sensors have two weaknesses for smart structure applic-
ations. The first is that such a load cell has mass-spring behavior, exhibiting
vibrations at its natural frequency when subjected to dynamic excitations and
abrupt load changes. This oscillating data pattern is commonly referred as

LVDT(a)

(b)

Smart
seismic
structure

k
Smart
seismic
structure

Pressure sensor

Fluid-filled bellows

FIGURE 6.6 Force sensors: (a) using a spring and an LVDT and (b) using a pressure
transducer.
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“ringing,” which can result in noises in the output signal. Ringing can be suppressed
by passive techniques or by conditioning the signal if the noises are outside of the
measurand frequency. The second is that such sensors may require an LVDT com-
ponent allowing very large deflection in order to measure large forces in smart
seismic structures.

6.1.5.3 Hydraulic (or hydrostatic) load cells

When the force is distributed over an area or applied to fluids (i.e., liquids or gases),
it is easier to measure the pressure; and the force can be obtained by integrating the
pressure over the area or surface. Force sensors with such mechanism are called
hydraulic load cells, which use pressure sensors. Figure 6.6b shows a schematic
of hydraulic force sensor. They have fluid-filled bellows that responds to applied
force with hydraulic pressure. The pressure is applied to the sensing membrane of
the pressure sensor and the output signal is then generated. With such a mechanism,
the voltage signal is proportioned to the force. Compared to induction force sensors
and strain gauge load cells, a hydraulic load cell is immune to ambient electric or
magnetic fields thus it can be a more effective device in outdoor environments.
Hydraulic load cells can measure large force and thus they are commonly used in
industrial applications.

6.1.5.4 Piezoelectric force sensors

These force sensors have the same mechanism as the piezoelectric accelerometers
discussed in Section 6.1.3.1. The only difference is that the accelerometer sensit-
ivity shall be multiplied by the seismic mass to obtain the sensitivity of the force
sensor.

6.2 SENSING, DATA ACQUISITION, AND DIGITAL CONTROL

SYSTEMS

As discussed above, a smart structure system contains sensors that convert system
responses to electrical signals—typically voltages. The sensor output signal is
normally analog signal. In today’s digital world, a control computer is usually
used for smart structure systems. Thus, the analog signal is converted to digital
before feeding into the digital controller in the computer. The digital control signal
generated by the controller is then converted back to analog to feed the actuator.
In addition, the electrical signals from sensor output need conditioning before
the controller can process them and take appropriate action. For example, some
sensors may have weak output signal thus requiring amplification; the nature of the
wiring and the analog sensor circuit can surely add some high-frequency noise to
the signal, which needs signal filtering or it may seriously affect the effectiveness
of a digital control system. This is because such noise, along with high-frequency
response in the electrical or mechanical devices and high-mode structural response
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in the system, may become low-frequency response when the analog signal is
converted to digital, and thus altering the control signal. This effect is usually
referred as “aliasing” and shall be filtered out. The required signal processing is
done by the data acquisition system (or called signal interface system sometimes)
as discussed in this section.

6.2.1 Elements of Data Acquisition and Digital Control
Systems

Figure 6.7 shows a traditional data acquisition system for smart seismic structures
with a digital controller. It collects sensor outputs, conditions (filters the noise
in the signal and/or amplifies the signal) them, and feeds the brain of the smart
structure (i.e., the control computer). The data acquisition system usually consists
of sensors, a signal conditioner (a filter and/or an amplifier), a control computer
(signal processors, memory devices, data recorders, and a monitor), and A/D and
D/A converters. The control computer also comprises of a digital controller and an
observer (a state estimator) if the measurements are insufficient for the controller.
Figure 6.7 also indicates the data flow in the whole system as follows:

1. Acquire measurand information by sensor(s) with their output (analog
electrical signal).

2. Amplify the signal as necessary and filter out the noises in the signal by
the signal conditioner.

3. Convert the conditioned analog signal to digital for the control computer
by the A/D converter.

4. Estimate the unmeasured state variables by the observer in the control
computer.

5. Generate a digital control signal by the controller in the control
computer.

6. Convert the digital control signal to analog by the D/A converter. The
analog control signal feeds the actuator to generate the control force.

Control computer

A/D

Display

Observer

Controller

Data
recorder

Sensors

Smart structure 

Actuator(s)

Signal conditioner

Multiplexer

Filter 

Amplifier 

D/A

FIGURE 6.7 Data acquisition and digital control system for smart seismic structures.
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The important specifications for selecting the system are sampling speed,

accuracy, resolution, amount of data, multitasking capacities, and required data
processing and display. Software selection is more complex than hardware selec-
tion but has the same level of importance. Well-written software can maximize
computer hardware performance. It can also improve the data analysis and present-
ation with the computer capacities. The software may include the controller ability,
which analyzes system response, makes decisions based on those measurements,
and varies the computer outputs accordingly. The software may also have observer
function to estimate unmeasured system states. Today, such software packages are
commercially available, which can collect, analyze, and graphically display data
with few programming efforts.

This data acquisition and digital control system may have some extra devices
such as the wiring for signal communications and false-safe circuit that detects and
limits large signal to avoid the structure damage by excess of actuator force and
displacement. Devices in the system may also have additional built-in functions,
such as recording the measurements and monitoring the system performance as
necessary by the control computer. The mechanism of some complex devices in
the system is discussed in the following subsections.

6.2.1.1 Signal amplifiers

The basic mechanism of voltage signal amplifiers can be illustrated by the circuit
shown in Figure 6.8. By using Kirchhoff’s current law [16]

Vi(t)− Vo(t)
R2

+ Vi(t)
R1
= 0 (6.5)

where Vi(t) and Vo(t) are voltages of input and output signals; R1 and R2 are
resistors in the amplifiers. Rewriting Equation 6.5 yields the amplified output
voltage Vo(t)

Vo(t) = (1+ R2

R1

)
Vi(t) (6.6)R2Vi(t) Vo(t)R1

FIGURE 6.8 Mechanism of voltage signal amplifiers.
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6.2.1.2 Signal filters

As mentioned, sensor output signals in a smart structure system may have high-
frequency noises. Thus, an analog low-pass filter is usually used to weaken the
noise. Mechanism of such a filter can be illustrated by the frequency response in
Figure 6.9. The filter’s transfer function is in the form of damped SDOF system as

G(s) = 1
s2 + 2ζωn + ω2

n
(6.7)

where ζ and ωn are the filter’s damping ratio and natural frequency, respectively.
The filter’s frequency response is similar to the accelerometer shown in Figure
6.3. Because the filter’s amplitude drops sharply in high frequency range, the
high-frequency component of the signal is weakened by passing the filter. Note
the signal could be amplified around the filter’s natural frequency. This issue can
be relieved by using a filter with higher damping. It is also desired that when a
filter is selected, the expected noise shall have much higher frequency than the
filter’s natural frequency, ωn.

6.2.1.3 A/D and D/A converters

The process of converting an analog voltage or current signal into a series of bin-
ary numbers is called A/D conversion, and the electronic device that does this
conversion is called A/D converter. As shown in Figure 6.10, an A/D converter
digitalizes an analog signal to a stepped one with specified time interval between
values. Three steps are involved in the conversion, sampling and hold, quantiz-
ation, and encoding. The resulting digital signal is usually an array of numerical
values usually separated by fixed time intervals. Each step has constant value and
thus can be represented by binary numbers in a computer. When the time inter-
val becomes small enough, the digital signal can be a good approximation to the
analog one. The reverse process of decoding a series of binary data into an analog
voltage or current signal is called D/A conversion, and the device that does this
conversion is called a D/A converter. A/D and D/A converters are commercially
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FIGURE 6.9 Frequency response of low-pass filters.
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A/D

D/A

Analog signal Digital signal

FIGURE 6.10 Example of analog-to-digital (A/D) and digital-to-analog (D/A)
conversions.

available. Important specifications of an A/D or a D/A converter, such as resolu-
tion, range of analog input or output, linearity error, and conversion time, need be
evaluated for the use in a particular smart structure system.

6.2.1.4 Control computer

The control computer has a digital controller, which is the software implementation
of the control algorithm. Details of the controller and control algorithm have been
discussed in Chapter 4. The computer may also have a state observer if the sensor
output does not have enough measurements of system states. Details of the state
observer will be discussed in Section 6.3. The control computer also analyzes,
records, and displays the information received from data acquisition system.

6.2.2 Challenges in Sensing System of Smart Structures
Researchers have made great advances in smart seismic structures in proving
concept, system analysis, device development, and laboratory tests. Optimal con-
trol algorithms with full-state feedback are generally used for such systems [3,25]
as they have been widely applied in modern control systems [10,12]. This is
because the full-state feedback technique can improve damping at each degree of
freedom (d.o.f.) of the structure and thus effectively reduces structural vibration.
However, these algorithms require measurements of all state variables because the
control force is generated by feedback of all state variables. Many studies on smart
seismic structures implicitly assumed that all state variables were measured for
the full-state feedback controller. In reality, measuring all state variables is a big
challenge for practical design and construction of large smart seismic structures
because of the complexity and reliability of the sensing system. Detailed reasons
are as follows:• Direct measurement of state variables is difficult to achieve in the real

world. State variables of a smart structure system include displace-
ments and velocities at each structural d.o.f. as well as variables for
the dynamics of control devices. As noted, a velocity or displacement
sensor requires an extra support. The structural displacements must be
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measured with respect to an external reference structure that has no
elastic deformation. Such an additional structure can be constructed for
laboratory tests, but it is not practical for a physical smart structure sys-
tem. During seismic activity, this situation is exacerbated because the
structural foundation is moving with the ground and cannot provide an
inertial reference to measure absolute displacement or velocity of the
smart structure.• Too many sensors may be required for a large smart seismic structure.
The full-state feedback algorithm requires that the displacements and
velocities at each d.o.f. be measured. Seismic structures are usually large
and have many d.o.f. and state variables. Numerous sensors are required
to measure the full-state vector of full-scale smart seismic structure
systems, that is, the control system presents complications if sensors
are installed to measure all state variables. Such complexity seriously
affects the system reliability, cost, and maintenance.• Conventional control algorithms assume that all data are centrally col-
lected and processed. Complex wiring is required to link wired sensors
to signal conditioning and data acquisition hardware. With a dense array
of sensors installed on a smart seismic structure, the wiring can be
very complex and unreliable. Moreover, they are easily affected by
environment excitations, which may result in significant noises in the
signal.• Sensors for smart seismic structures need to be effective over decades
(i.e., during the structure’s life). It is very difficult to ensure conventional
sensors to work for such a long periods, and even if it is possible, the
maintenance of sensors, their installation, and the complex wiring would
be very expensive.

6.2.3 Solutions for the Sensing System of Smart Seismic
Structures

Several techniques [2,6,7,9,11,13–15,17,20–24,26–28], as discussed in this sec-
tion, have been proposed to address above issues in sensing system. Such advance
of sensing technology for smart structures not only makes the technology more
implementable, but also enhances the ability to monitor continuously the structural
performance in real time and to detect damage at an early stage. This is essential for
public safety and repair cost reduction with respect to the aging seismic structures
in today’s world.

6.2.3.1 Using accelerometers

Accelerometers do not need any reference structure, thus this approach addresses
the unpractical requirement of supporting structures by displacement and velo-
city sensors. However, the conventional state feedback controller does not work
for a system using accelerometers, as it requires state variables (velocities and
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displacements). A new feedback controller has to be designed for acceleration
measurements. Moreover, it is unrealistic to measure accelerations at all struc-
tural degrees of freedom. Installing accelerometers at strategic points of the
structure is the most reliable and least expensive measurement method for a
smart seismic structure system. Thus, for practical implementation of a struc-
tural control system with full-state feedback technique, insufficient sensors and
acceleration measurements have to be addressed. Three approaches have been
suggested: direct acceleration feedback [6,7,11,27], feedback of pseudovelocities
calculated from acceleration measurements [9,24], and seismic observer technique
[2,13–15].

The first method, direct acceleration feedback, has been studied analytically
and experimentally. Analytical studies extend the H∞ control algorithm for accel-
eration feedback [11]. Experimental studies include implementation of H2/LQG
control strategies with acceleration feedback for an active mass driver, an act-
ive bracing system, and an active tendon system [6,7]. The experimental studies
have verified the proposed acceleration feedback control strategy. Test results
have indicated that effective and robust controllers can be developed using accel-
eration feedback control strategies, and that acceleration feedback can achieve
comparable effectiveness to full-state feedback for seismic response reduction. The
second method is psuedovelocity feedback [9,24]. In this method, psuedovelocities
are obtained by online computing (integration) from acceleration measurements.
The first two approaches have proven that a smart structure system can be real-
ized with a sensing system using accelerometers, thus they have improved the
implementability of the sensing system for smart seismic structures.

The third method, seismic observer technique, further enhances the imple-
mentability of the whole control system in addition to allowing the usage of
accelerometers. It addresses two other common practical implementation issues,
numerous sensors, and expensive sizeable actuators for large civil engineering
structures. These issues not only complicate the system, but also lead to expensive
and hard-to-maintain smart seismic structures. Thus the seismic observer tech-
nique, which is able to solve the two issues, is very significant for practical
application of smart seismic structure technology. While two other methods require
accelerometers installed at each structural degree-of-freedom, the seismic observer
technique allows the accelerometers installed only at strategic points on the struc-
ture. Moreover, the control force by acceleration feedback alters system inertia
force to avoid resonance and thus reducing seismic response. This means the con-
trol force needs to be in the same magnitude order as the structural seismic inertia
force in order to significantly reduce its seismic response. The seismic observer
technique enables the full-state feedback control be implemented with acceler-
ometers, and the control force mainly improves system damping. Thus it only
requires a control force, which approximates the magnitude of structural damping
force. As noted in Chapter 1, damping force of a smart structure system is signi-
ficantly lower than its inertia and restoring forces. Therefore, the seismic observer
technique can also reduce the system cost and complexity by cutting the number
of required sizeable actuators.
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6.2.3.2 Using integrated sensors and smart sensors

As mentioned, sensor output signals need to be conditioned by filtering and
amplification before feeding the controller. For large smart seismic structure
applications, lots of wiring is required to link the sensors with signal conditioning
hardware. This can increase system complexity and signal noise level. Integrated
sensor is one approach to partially address this issue. As shown in Figure 6.11a,
signal conditioning and processing devices are directly built into the sensor [17,26]
and thus its output signal can directly feed the controller.

Smart sensors [17,19–21,23,26,28], as illustrated in Figure 6.11b, further sim-
plify the complex wiring by adopting wireless sensing technology and embedding
with an onboard microprocessor. A smart sensor is an enhanced integrated sensor
with wireless and intelligence capabilities. The microprocessor is able to handle
signal processing and A/D conversion. Thus, the signal from smart sensors can be
directly sent to a digital controller without any wiring. As the industry technology
advances, the size and cost of smart sensors have been decreasing. This makes
smart sensors easier to install, as they have less effects on the system and are
more applicable to smart seismic structures. With such great properties of smart
sensors, researchers have been extensively exploring their application to smart
seismic structures for both response control and health monitoring [20,21,28].
These studies have shown that smart wireless sensors are very promising emer-
ging technologies that can greatly improve the way that smart seismic structure
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FIGURE 6.11 Innovation sensing system: (a) integrated sensors and (b) smart sensors.
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systems are monitored, controlled, and maintained. There are still some challenges
for smart sensors, such as low-resolution data acquisition and small memory of
the microprocessor inside the sensor.

6.3 SEISMIC OBSERVER TECHNIQUE

In this section, an observer technique is established for smart seismic structures.
This newly developed seismic observer is able to simplify greatly the sensing sys-
tem and to estimate the full-state vector from acceleration measurements. With
an observer-controller system, an optimum full-state feedback algorithm can be
implemented for active or hybrid control of seismic-resistant structures. Determin-
ation of the required number of sensors and simplification of the sensing system in
seismic response control are studied. Numerical simulation of building structures
with an observer-controller system is used to demonstrate the effectiveness of the
proposed seismic observer technique.

6.3.1 Analytical Modeling of Smart Seismic Structures
with Accelerometers

6.3.1.1 Plant equation

In Chapters 4 and 5, the plant equation of a smart structure system for seismic
response control has been developed as{Ż(t)} = [A]{Z(t)} + [Bu]{u(t)} + {Br}ẍg(t) (6.8)

where {Z(t)} is state vector, [A] is the plant matrix, [Bu] is coefficient matrix
of the control command vector {u(t)} and {Br} is coefficient vector of reference
input (i.e., earthquake excitation) ẍg(t). Chapters 4 and 5 show these vectors and
matrices can have different elements in different systems.

For a digital seismic response control system, the plant equation becomes

z(k + 1) = Az(k)+ Buu(k)+ Brr(k) (6.9)

where z(k), u(k), and r(k) are sampled values of {Z(t)}, {u(t)}, and ẍg(t) at
kth sampling time (i.e., at t = kT, k = 0, 1, 2, . . .,+∞), respectively, and T
is sampling period; matrices A, Bu, and Br are defined in Equation 5.114 and
rectangular rule is used for the integration.

6.3.1.2 Equation for sensor output

For seismic response control, the signals are in the frequency range of 0.1–100 Hz.
Sensors can work as linear proportional devices in this range [5,8,29], that is, the
sensor output (usually voltage signal) is proportional to the measurand. Assume
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that there are s1 accelerometers and s2 state sensors; then the sensor output {y(t)}
can be modeled as {y(t)} = [ [C1] {ẍ(t)}

[C2] {Z(t)} ] (6.10)

where [C1] of s1 × n and [C2] of s2 × N are location matrices of accelerometers
and other kinds of sensors (such as load cells), respectively; C1(i, j) = 1 if the ith
accelerometer is mounted on the jth floor and C2(i, j) = 1 if the ith sensor is used
to measure the jth state variables; n is number of d.o.f. The order of {y(t)} is equal
to the total number of sensors, S = (s1 + s2). S is usually smaller than the order
of the system (i.e., the order of plant matrix [A]), N .

The motion equation of smart seismic structures, Equation 5.58, can be
rewritten as{ẍ(t)} = −[M]−1([C] {ẋ(t)} + [K] {x(t)})+ [M]−1([γa]{ fa(t)}+ [γp]{ fp(t)} + {δ}ẍg(t)) (6.11)

Substituting it into Equation 6.10 yields{y(t)} = [Cz] {Z(t)} + [Du] {u(t)} + {Dr} ẍg(t) (6.12a)

where[Cz] = [[Cz1][Cz2]] , [Du] = [[0][0]] , [Dr] = [−[C1][M]−1{δ}{0} ]
(6.12b)

and

[Cz1] = [C1] [M]−1 [−[K] −[C] [γa] [γp] [0]] , [Cz2] = [C2] (6.12c)

In discrete time domain, the sensor equation can be expressed as

y(k) = Cz(k)+ Duu(k)+ Drr(k) (6.13)

Then the entire system is described by Equations 6.9 and 6.13. Since the sensor
equation (Equation 6.12) is in algebraic proportion relation, matrices C, Du, and
vector Dr in Equation 6.13 are the same as [Cz], [Du], and [Dr] in Equation 6.12a,
respectively.

Equation 6.13 shows that the sensor output y(k) is not state variable z(k), but
rather linear transformation of state variables and related to control command u(k)
and reference input r(k). If an optimal control algorithm by full-state feedback is
to be implemented, a technique must be employed to estimate all state variables
from the sensor output, y(k).
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6.3.2 Conventional Observer Technique
An N th order linear control system using state sensors can be modeled as

z(k + 1) = Az(k)+ Bu(k) (6.14a)

y(k) = Cz(k) (6.14b)

Since state sensors are used and each sensor output is equal to a state variable,
the sensor equation here (Equation 6.14b is different from Equation 6.13. Elements
in matrix C are zero except that C(i, j) = 1 if the ith sensor measures the jth state
variable.

This system described by Equation 6.14 is observable if the initial state, z(0),
can be calculated from N measurements, y(0), y(1), y(2), . . . , y(N − 1), with N
finite. This definition comes with the following theorem: the N th order system
described by Equation 6.14 is observable if and only if its observability matrix
Mo, defined by the following equation, is of rank N [10,12,18]:

Mo =  C
CA
CA2

...
CAN−1

 (6.15)

If a system is observable, available measurements are sufficient to estim-
ate all state variables by means of the observer technique. The controller then
uses these estimated states to generate control action, u(k), according to the full-
state feedback algorithm. Figure 6.12 illustrates the observer configuration and its
application in a control system.

Plant z(k) y(k)

Sensor(s)
Observer

Time-delay

z(k + 1) +
+

–

++
+

Controller

u(k)

+
+

+ Time-delay

z(k + 1)

r(k) = xg(kT) Bu Bu

T L–G

A

C

Br Br

A

T C y(k)

z(k)z(k)

FIGURE 6.12 Closed-loop system with observer and controller.
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The optimum control algorithm yields the following full-state feedback law:

u(k) = −Gz(k) (6.16)

where G is control gain matrix determined by the control algorithm. For the
observer-controller system shown in Figure 6.12, Equation 6.16 becomes

u(k) = −Gẑ(k) (6.17)

and the observer is described by

ẑ(k + 1) = Aẑ(k)+ Buu(k)+ Brr(k)+ L[y(k)− ŷ(k)] (6.18a)

ŷ(k) = Cẑ(k) (6.18b)

Modern control theory [10,12] has shown that the system (Equation 6.14) with
observer (Equation 6.18) and control law (Equation 6.17) has exactly the same
transfer function from r(k) to y(k) as the full-state feedback system described by
Equations 6.14 and 6.16. This means, in theory, an observer-controller technique
is as effective as full-state sensing and feedback.

When configuring the observer, measurements of reference input r(k) and
control input u(k) are assumed to be available in addition to y(k), and the open-
loop dynamics of the observer is selected the same as the plant. Note that only
matrix L is unknown in the observer model (see Equation 6.18). The determination
of matrix L is called observer design. The criterion for picking L should be that
ẑ(k) tends to z(k) as soon as possible. Let error function be

z̃(k) = z(k)− ẑ(k) (6.19a)

Then from Equations 6.14, 6.18, and 6.19a

z̃(k + 1) = (A− LC)z̃(k) = ALz̃(k) (6.19b)

where
AL = A− LC and AT

L = AT − CTLT (6.19c)

Recall that a closed-loop control system with gain matrix G is modeled as

z(k + 1) = (A− BuG)z(k) = Acz(k) (6.20a)

where
Ac = A− BuG (6.20b)

The comparison of Equations 6.19c and 6.20b shows that the observer design
(to determine L) is similar to the controller design (to determine G) except that
the dynamics of AT is improved by CT instead of A by Bu. Thus, LT can be
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determined by optimal control algorithms. Kalman filter is an example of optimal
observer [12,18].

Note that this conventional observer theory implicitly assumes that sensors are
used to measure state variables. This is because the observer is based on a system in
which sensor output is proportional to state variables, as shown in Equation 6.14b.
Enough state sensors must be employed to meet the observability requirement
expressed by Equation 6.15. A seismic response control system may have no state
sensor but accelerometers; state measurements required by this observer theory
may not be available. Therefore, this observer technique cannot be directly applied
to seismic response control.

Example 6.3.1

The two-story smart structure in Example 4.2.2 serves as an example here.
Assume there is only one displacement sensor installed at the top of the
structure. Check the system observability and design the observer.

Solution
As the Equation q in Example 4.2.2 shows, state variables of this system
include the displacements and velocities at each story of the structure. Thus,{Z(t)} = {x1(t) x2(t) ẋ1(t) ẋ2(t)}T (a)

The sensor output can be expressed as

y(t) = x2(t) = [C] {Z(t)} (b)

where [C] = [0 1 0 0] (c)

The system plant matrix has been calculated in Example 4.2.2 as[A] =  0 0 | 1 0
0 0 | 0 1−−−−− −−−−− | − −− −−−−−551.475 325.738 | −0.421 0.146

671.234 −671.234 | 0.300 −0.474

 (d)

Then [C][A] = [ 0 0 0 1] (e)[C][A]2 = [ 671.234 −671.234 0.300 −0.474] (f )[C][A]3 = [ −483.607 415.886 670.965 −670.965] (g)
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Substituting Equations c and e–g into Equation 6.15 yields the observability
matrix of this system

[Mo] =  0 1 0 0
0 0 0 1

671.234 −671.234 0.300 −0.474−483.607 415.886 670.965 −670.965

 (h)

The rank of above observability matrix can be directly checked by MATLAB®

function RANK(Mo) [22], which gives in 4, that is, it is full rank. It can also
be checked by calculating its eigenvalues with MATLAB® function EIG(Mo)
that yields the four eigenvalues

p1 = 672.11; p2,3 = 0.223± 25.913j; p4 = 0.998 (i)

where j = √−1. Equation i shows that the observability matrix is full
rank for it has no zero eigenvalue. Thus, this system is observable with one
displacement sensor at top.

The governing equation for observer design is Equation 6.19c in which
matrices A and C are given and observer gain matrix L is to be determined.
As noted, a comparison of Equations 6.19c and 6.20b shows that the observer
design is similar to controller design except that the transposed form in Equa-
tion 6.19c shall be used. Thus, the Riccati optimal control algorithm is used
here to determine the observer gain matrix [L]. The transpose of matrices [A]
and [C] are[A]T =  0 0 −551.475 671.234

0 0 325.738 −671.234
1 0 −0.421 0.300
0 1 0.146 −0.474

 ; [C]T =  0
1
0
0

 (j)

Let the weighting matrices in the algebraic Riccati equation (see
Equation 4.99) be [Q] =  1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

 ; R = 0.01 (k)

Use the MATLAB® function LQR(. . .) to solve the algebraic Riccati equation
with the syntax � LT = LQR(AT, CT, Q, R) (l)

then the observer gain matrix [L] is obtained as

[L]T = [1.540 15.949 −67.172 77.182
]

(m)
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or

[L] = [1.540 15.949 −67.172 77.182
]T (n)

Thus the closed-loop observer plant matrix[A]L = [A] − [L][C]=  0 0 1 0
0 0 0 1−551.475 325.738 −0.421 0.146

671.234 −671.234 0.300 −0.474

− 1.540
15.949−67.172
77.182

[ 0 0 1 0
]

(o)=  0 −1.540 1 0
0 −15.949 0 1−551.48 392.910 −0.421 0.146

671.234 −748.420 0.300 −0.474


and its eigenvalues can be calculated by MATLAB® function EIG(AL) as

p1,2 = −0.329± 32.904j; p3,4 = −0.118± 11.829j (p)

Since all its poles are in left side of the complex plane, the observer is
stable. Details on how this example uses MATLAB® functions are listed in
Section A.2 of Appendix A.

6.3.3 Development of Observer Technique for Smart
Seismic Structures

As discussed in Section 6.3.1, a seismic response control system can be modeled
by Equations 6.8 and 6.12a in the continuous time domain, or by Equations 6.9
and 6.13 in discrete time domain. Since digital control is getting more common
with the advance of microcomputers, the seismic observer technique is developed
in discrete time domain. A similar procedure can be used to develop a seismic
observer for an analog system.

6.3.3.1 Formulation of the seismic observer

Equation 6.18 is the proposed mathematical model of the conventional observer
for the control system expressed by Equation 6.14. Since the model of a smart
seismic structure system has two extra terms Duu(k) and Drr(k) in the sensor
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equation (see Equation 6.13), the seismic observer may be configured by adding
these two terms to Equation 6.18b. Then Equation 6.18 becomes

ẑ(k + 1) = Aẑ(k)+ Buu(k)+ Brr(k)+ L[ y(k)− ŷ(k)] (6.21a)

ŷ(k) = Cẑ(k)+ Duu(k)+ Drr(k) (6.21b)

Equation 6.21 is the mathematical model of the seismic observer. A seismic
response control system with this observer, called seismic observer-controller
system, is then described by a combination of Equations 6.9, 6.13, 6.17, and
6.21. Simulation diagram of this system is shown by Figure 6.13. A comparison of
the seismic observer (see Figure 6.13) and the conventional observer (see Figure
6.12) shows that the seismic observer does not require any extra measurements
but u(k), r(k), and y(k). Moreover, this observer can be realized totally by similar
computer software for controller implementation. No additional device is needed.

6.3.3.2 Closed-form verification

To ensure the validity of this observer configuration, it must be verified that the
observer-controller system functions the same as the corresponding full-state sens-
ing and feedback system. This can be done by proving that the observer-controller
system has the same transfer function between input r(k) and output y(k) as the
full-state sensing and feedback system.

Plant

r(k)

z(k)z(k+1)

z(k+1)

r(k)=xg(kT) y(k)
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FIGURE 6.13 Simulation diagram of seismic response control system with observer.
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A seismic response control system with full-state sensing and feedback can

be described by Equations 6.9, 6.13, and 6.16. Substituting Equation 6.16 into
Equations 6.9 and 6.13 yields the system model in closed-loop as

z(k + 1) = (A− BuG) z(k)+ Brr(k) (6.22a)

y(k) = (C − DuG) z(k)+ Drr(k) (6.22b)

For digital systems, a transfer function is usually expressed in z-domain.
Applying z-transform to Equation 6.22 leads to(zI − A+ BuG)Z(z) = BrR(z) (6.23a)

Y(z) = (C − DuG)Z(z)+ DrR(z) (6.23b)

where I is unit matrix. Equation 6.23a can be rewritten as

Z(z) = (zI − A+ BuG)−1BrR(z) (6.24)

Substituting Equation 6.24 into Equation 6.23b yields the transfer function
from r(k) to y(k) of the full-state sensing and feedback system as

T1(z) = Y(z)
R(z) = (C − DuG) (zI − A+ BuG)−1 Br + Dr (6.25)

A seismic response control system with the observer-controller can be
described by Equations 6.9, 6.13, 6.17, and 6.21; y(k) and ŷ(k) are defined by
Equations 6.13 and 6.21b, respectively. Substituting them into the observer plant
equation, that is, Equation 6.21a, yields

ẑ(k + 1)= Aẑ(k)+ Buu(k)+ Brr(k)+ L[Cz(k)+ Duu(k)+ Drr(k)− Cẑ(k)− Duu(k)− Drr(k)]= LCz(k)+ (A− LC) ẑ(k)+ Buu(k)+ Brr(k) (6.26)

Substituting Equations 6.17–6.26 yields the observer model in closed loop as

ẑ(k + 1) = LCz(k)+ (A− LC)ẑ(k)− BuGẑ(k)+ Brr(k)= LCz(k)+ (A− BuG− LC)ẑ(k)+ Brr(k) (6.27a)

and substituting Equation 6.17 into Equation 6.9 yields the plant equation of the
control system in closed-loop as

z(k + 1) = Az(k)− BuGẑ(k)+ Brr(k) (6.27b)
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Equations 6.27a and b can be condensed in matrix form as{
z(k + 1)
ẑ(k + 1)} = [ A −BuG

LC A− BuG− LC

]{
z(k)
ẑ(k)}+ {Br

Br

}
r(k) (6.27c)

Equation 6.27c is the mathematical model of the observer-controller system in
closed-loop. It shows that this system is of the 2N th order, where N is the order
of plant matrix A. This means that the observer-controller system here has more
mode shapes than a full-state sensing and feedback system. Thus, it is important to
verify the function of the observer-controller system. A closed-form formulation,
described as follows, is used for this verification.

Applying z-transform to Equation 6.27c gives

BuGẐ(z)+ (zI − A)Z(z) = BrR(z) (6.28a)(zI − A+ BuG+ LC) Ẑ(z)− LCZ(z) = BrR(z) (6.28b)

Eliminating Ẑ(z) in Equation 6.28 leads to[
zI − A+ BuG (zI − A+ BuG+ LC)−1 LC

]
Z(z)= [I − BuG (zI − A+ BuG+ LC)−1

]
BrR(z) (6.29)

The Lemma for frame matrix inversion is expressed as[
I + ϕ(zI − α )−1 β]−1 = I − ϕ(zI − α + βϕ )−1 β (6.30)

Let ϕ = Bu G, α = A− Bu G− LC, β = −I (6.31)

Then the following two equations are obtained by applying the Lemma in
Equation 6.30[

I − BuG(zI − A+ BuG+ LC)−1
]−1= I + BuG(zI − A+ BuG+ LC − BuG)−1= I + BuG(zI − A+ LC)−1 (6.32)

zI − A+ BuG(zI − A+ BuG+ LC)−1LC= zI − A+ LC − LC + BuG(zI − A+ BuG+ LC)−1LC= (zI − A+ LC)− [I − BuG(zI − A+ BuG+ LC)−1
]

LC
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]−1

LC= (zI − A+ LC)− [(zI − A+ LC + BuG)(zI − A+ LC)−1
]−1

LC= (zI − A+ LC)− (zI − A+ LC)(zI − A+ LC + BuG)−1LC= (zI − A+ LC) [I − (zI − A+ LC + BuG)−1LC
]

(6.33)

Substituting Equations 6.32 and 6.33 into Equation 6.29 yields

BrR(z) = [I − BuG (zI − A+ BuG+ LC)−1
]−1[zI − A+ BuG(zI − A+ BuG+ LC)−1LC]Z(z)= [I + BuG (zI − A+ LC)−1

] {(zI − A+ LC) [I − (zI − A+ BuG+LC)−1LC
]}

Z(z)= (zI − A+ LC + BuG) [I − (zI − A+ LC + BuG)−1 LC
]

Z(z)= [(zI − A+ LC + BuG)− LC] Z(z)= (zI − A+ BuG)Z(z) (6.34a)

which can be rewritten as

Z(z) = (zI − A+ BuG)−1BrR(z) (6.34b)

Substituting Equation 6.34a into Equation 6.28a yields

BuGẐ(z)+ (zI − A)Z(z) = (zI − A+ BuG)Z(z) (6.35a)

Thus,
Ẑ(z) = Z(z) (6.35b)

Equation 6.35b shows that, in theory, the observer output is exactly the same
as the full-state vector in z-domain. This result verifies the function of the seismic
observer. In practice, errors in Ẑ(z) exist due to system nonlinearity, noises, and
nonzero initial conditions.

Substituting Equation 6.17 into Equation 6.13 yields

y(k) = Cz(k)− DuGẑ(k)+ Drr(k) (6.36a)
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Applying z-transform to Equation 6.36a gives

Y(z) = CZ(z)− DuGẐ(z)+ DrR(z) (6.36b)

and with Equation 6.35b

Y(z) = (C − DuG)Z(z)+ DrR(z) (6.36c)

Substituting Equations 6.34b into 6.36c yields the corresponding transfer
function

T2(z) = Y(z)
R(z) = (C − DuG) (zI − A+ BuG)−1 Br + Dr (6.37)

which is exactly same as Equation 6.25. This means that the response of the
observer-controller system is identical to that of the full-state sensing and feed-
back system. Thus, with the seismic observer shown in Figure 6.13, any full-state
feedback control algorithm can be implemented if the number of sensors, includ-
ing accelerometers, meets the observability requirement. If a system is observable,
measurements are sufficient for the observer to estimate the full-state vector. Con-
sequently, the minimum required number of sensors can be determined by the
observability requirement, as discussed in the following section.

6.3.4 Simplified Sensing System for Smart Seismic
Structures

The seismic observer is able not only to estimate state variables from acceler-
ation measurements, but also to simplify the sensing system. This section will
determine the minimum required sensors for a smart structure system using the
seismic observer, which would demonstrate the great potential of sensing system
simplification by the seismic observer.

6.3.4.1 Analytical studies

As in Section 6.3.2, the observability requirement (see Equation 6.15) determines
if the available number of sensors is sufficient to estimate the full-state vector by
observer technique. Since the rank of observability matrix Mo cannot be calculated
unless the number and location of sensors are known, the minimum required
number of sensors cannot be explicitly determined by closed-form formulation. To
make this determination, a trial-and-error procedure described below can be used.

An n-story shear building with r active tendons (see Figure 6.14) serves as an
example to determine the minimum required number of sensors. All actuators in
the active tendon control system are considered as linear proportional devices. It is
first assumed that there is only one sensor at the top floor. Then system observability
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FIGURE 6.14 Shear building with active tendon control.

is checked by determining if the observability matrix is of full rank. If not, add
one more sensor to the structure and check the rank of the observability matrix
again. Repeat this trial-and-error procedure until the observability requirement is
met. If the observability requirement can be met with a small number of sensors,
there is great potential for the observer technique to simplify the sensing and data
acquisition system.

The plant equation in the state-variable representation of the structure with
active tendon control has been derived in Chapter 4 as{

Ż(t)} = [A] {Z(t)} + [Bu] {u(t)} + {Br} ẍg(t) (6.38)

where {Z(t)} and {u(t)} are state vector and vector of control commands,
respectively, and can be expressed as{Z(t)} = [x1(t), x2(t), . . . , xn(t); ẋ1(t), ẋ2(t), . . . , ẋn(t)]T (6.39){u(t)} = [u1(t), u2(t), . . . , ur(t)]T (6.40)

and coefficient matrices [A], [Bu], and {Br} are expressed as[A] = [ [0] [I]−[M]−1[K] −[M]−1[C] ]2n×2n
(6.41a)[Bu] = [ [0][M]−1[γ ] ]2n×r
(6.41b){Br} = { {0}[M]−1{δ} }2n×1
(6.41c)
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In Equation 6.41, matrices of mass, stiffness, and damping, [M], [K], and [C],
respectively, of shear buildings are defined by Equation 4.14; [γ ] is location matrix
of active tendons; its elements are zero except that γ (i, j) = 1 if jth active tendon
is attached on ith floor; {δ} is vector of coefficients for earthquake excitation ẍg(t)
defined as {δ} = [−m1 −m2 · · · −mn]T (6.42)

Equations 6.38 and 6.39 show that this is a 2nth order system. Full-state sens-
ing and feedback technique requires 2n sensors (n displacement sensors and n
velocity sensors). This complicates the control hardware and the sensing and data
acquisition system when a building has many stories. Thus, it is significant to study
the possibility of simplifying the system with the seismic observer technique.

First, the case of only an LVDT (displacement sensor) at the top floor is
considered. The sensor equation can be expressed as

y(t) = [C]{Z(t)} (6.43)

where [C] = [0 0 ... 0 1; 0 0 ... 0 ]
1 2 ... n− 1 n n+ 1 n+ 2 ... 2n

(6.44)

To determine if this system is observable, that is, to check if the observability
matrix is of full rank, four theorems are introduced as follows.

Theorem 1. [A]2n×2n is a full-rank matrix.

Proof If [A] is not a full-rank matrix, it should have one or more zero eigenvalues.
In fact, eigenvalues of matrix [A] are−ζiωi ±√1− ζ 2

i ωi j, i = 1, 2, . . . , n (6.45)

where ζi and ωi are ith damping ratio and natural frequency, j = √−1. If any
eigenvalue of [A] is zero, the corresponding ζi and ωi are both zero. This cannot
be true for civil engineering structures that are stable and statically indeterminate.
Thus, [A] must be a full-rank matrix.

Theorem 2. Matrix Moa, defined as follows, is of rank n.

Moa =  [C][C][A][C][A]2. . .[C][A]n−1

 (6.46)
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This is because

1 . . . n− 1 n− 2 n n+ 1 . . . 2n− 2 2n− 1 2n[C] = [0 . . . 0 0 1 0 . . . 0 0 0][C][A] = [0 . . . 0 0 0 0 . . . 0 0 1][C][A]2 = [0 . . . 0 kn/mn −kn/mn 0 . . . 0 cn/mn −cn/mn][C][A]3 = [0 . . . s(3, n− 2) s(3, n− 1) s(3, n) 0 . . . s(3, 2n− 2) s(3, 2n− 1) s(3, 2n)]
(6.47)

and so on; where s(3, n− 2) = cnkn−1

mnmn−1
s(3, 2n− 2) = cncn−1

mnmn−1

s(3, n− 1) = − cnkn−1

m2
n
− cn(kn + kn−1)

mnmn−1
s(3, 2n− 1) = − kn

mn
+ c2

n
m2

n
− cn(cn + cn−1)

mnmn−1

s(3, n) = cnkn

mnmn−1
+ cnkn

m2
n

s(3, 2n) = kn

mn
+ m2

n
mnmn−1

− c2
n

m2
n

(6.48)
Thus,

Moa= 0 0 0 · · · 0 0 1 0 0 0 · · · 0 0 0
0 0 0 · · · 0 0 0 0 0 0 · · · 0 0 1
0 0 0 · · · 0 ∗ ∗ 0 0 0 · · · 0 ∗ ∗· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 ∗ · · · ∗ ∗ ∗ 0 0 ∗ · · · ∗ ∗ ∗
0 ∗ ∗ · · · ∗ ∗ ∗ 0 ∗ ∗ · · · ∗ ∗ ∗ n×2n

(6.49)
where the symbol ∗ refers to a nonzero element. After full Gauss elimination,
each row still has at least one nonzero element. Thus, matrix Moa has n linearly
unrelated rows, that is, it is of rank n.

Theorem 3. Matrix Mob, defined as follows, is of rank n.

Mob =  [C][A]n[C][A]n+1· · ·[C][A]2n−1

 =  [C][C][A]· · ·[C][A]n−1

 [A]n = Moa[A]n (6.50)

Proof Two Lemmas in linear algebra theory are introduced to prove this theorem.

Lemma 1. If matrix Am×n is of rank r and matrix Bn×n is of full rank, then matrix
Cm×n = Am×nBn×n is of rank r, where r ≤ min(m, n).

Lemma 2. The product of two full-rank matrices is of full rank.

From Lemma 2, An is of full rank 2n because A is of full rank 2n. From
Lemma 1, Mob is of rank n because Moa is of rank n and An is of full rank 2n.
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Theorem 4. Matrix Moc, defined as follows, is of rank (n+ 1).

Moc =  [C][C][A]· · ·[C][A]n−1[C][A]i  = [ Moa[C][A]i ] , i = n, n+ 1, . . . , 2n− 1 (6.51)

This is because [C][A]i = [∗, ∗, · · ·, ∗, ∗, · · ·, ∗], that is, all elements are nonzero.
Thus [C][A]i is linearly unrelated to any row of Moa, which means Moa is of rank
(n+ 1).

Theorem 4 shows that any row of full-rank matrix Mob is not linearly related

to full rank matrix Moa; thus, the observability matrix, Mo1 = [ Moa
Mob

]
, is of full-

rank 2n. This means that only one LVDT is enough for the observer to estimate
the full-state vector.

Second, the case that only an accelerometer is installed at the top floor is
considered. The sensor equation can be expressed as

y(t) = [C′]{z(t)} + [Du]{u(t)} + {Dr}ẍg(t) (6.52)

where[C′] = [0 0 · · · kn−1
mn

− kn
mn

; 0 0 · · · cn−1
mn

− cn
mn

]
1 2 · · · n− 1 n; n+ 1 n+ 2 · · · 2n− 1 2n= [ 0 0 · · · 0 1; 0 0 · · · 0 0 ][A]2= [C][A]2 (6.53)

The sensor equation in discrete time domain is the same as Equation 6.52
because it is in proportional relation. Then the observability matrix is

Mo2 =  [C′][C′][A][C′][A]2. . .[C′][A]2n−1

 = − [C][A]2[C][A]3[C][A]4. . .[C][A]2n+1

 = − [C][C][A][C][A]2. . .[C][A]2n−1

 [A]2 = −Mo1[A]2
(6.54)

Since both Mo1 and A2 are of full rank, Mo2 is of full rank, and the system is
observable. This result shows that the required number of sensors can be reduced
from 2n to 1 if a seismic observer is employed by the smart structure system.
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Thus, the observer technique can greatly simplify the sensing and data acquisition
system for seismic response control.

6.3.4.2 Numerical illustrations

In order to verify the analytical formulation and demonstrate the effectiveness of
the proposed seismic observer technique, two numerical examples are employed
as follows. The advantages of a seismic observer are illustrated by comparing the
required number of sensors and closed-loop response of the observer-controller
system to those of the full-state sensing and feedback system. For time-history
analysis, scaled N–S component of the El-Centro earthquake is adopted (scale
factors for amplitude and frequency are 0.3 and 2, respectively).

6.3.4.2.1 Three-story smart seismic structure with
HDABC system

This system, as shown in Figure 5.21, installs a hybrid control device on a K-brace
at the first floor. An accelerometer is used to measure acceleration response at the
top floor, and a load cell is employed to measure active control force. The structural
properties and parameters of control devices are given in Section 5.3.3.2.

From the formulation in Section 5.3.3.2 and Equation 5.142, it is shown that
state variables for this smart structure with the HDABC system comprise three
displacements and three velocities for the three-story building, one displacement
and one velocity for the K-brace, active control force and servo-valve displacement
for the hydraulic actuator, and passive control force for the viscous fluid damper.
Thus, this hybrid control system is of the 11th order, and 11 sensors must be used
to implement an optimal control algorithm by full-state sensing and feedback.

To evaluate the potential system simplification and the effectiveness of the
observer-controller technique, computer simulation with MATLAB®. m code is used
to analyze the hybrid-controlled smart structure system. Linear quadratic and pole
assignment control algorithms are used for controller and observer design.

With an accelerometer at the top floor and a load cell for active control force,
numerical results indicate that observability matrix M0 is of rank 11, so the system
is observable. Figure 6.15 shows that, consistent with the theory, closed-loop
displacement response of the observer-controller system is exactly the same as
that of the full-state feedback system. These results fully reveal the advantage of
the observer-controller system: the system is as effective as a full-state feedback
system yet it uses a simple sensing system because far fewer sensors are required.

When the load cell is absent and only the accelerometer is installed at the top
floor, observability matrix M0 is of rank 10; thus, the system is unobservable. This
result shows that a sensor must be employed to observe the actuator dynamics.

Note that there is an alternative method. Since the actuator usually has a built-
in LVDT to measure relative displacement of an actuator piston with respect to its
cylinder, this LVDT may be employed for the observer instead of an extra load
cell so the sensing system can be further simplified. In this case, sensor output is
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expressed as{y(t)} = { ẍ3(t)
xa(t)} = { ẍ3(t)

xb(t)− x1(t)} = [C]{Z(t)} + [Du]u(t)+ {Dr}ẍg(t)
(6.55)

where[C] =  −k31

m3
−k32

m3
−k33

m3
0 −c31

m3
−c32

m3
−c33

m3
0 0 0−1 0 0 1 0 0 0 0 0 0


(6.56)[Du] = 0, {Dr} = { −1

0

}
and kij and cij are elements at ith row jth column of the stiffness and damp-
ing matrices, respectively. Numerical result shows that the corresponding
observability matrix is of rank 11; thus, the system is observable.

From this example, it can be seen that the observer-controller system requires
only four sensors: an accelerometer at the top floor, a load cell or an LVDT for
the actuator, and two sensors for reference input (earthquake excitation ẍg) and
control command u(t). To implement a full-state feedback algorithm without a
state observer, 11 sensors and control hardware with 11 channels must be used.
Thus, a seismic response control system can be simplified with the seismic observer
technique.

In Figure 6.16, direct output feedback is compared to the observer-controller
system. For the former, the control command u(t) is a feedback of the sensor
output ẍ(t) and fa(t), and control command u(t) = gaẍ3(t) + gf fa(t); for the
latter, the control command u(t) is a feedback of all 11 state variables (see Equa-
tion 5.142) estimated by the observer from the sensor output ẍ(t) and fa(t). With
identical settings for maximum active control force at 1,330.8 N, the direct out-
put feedback system exhibits 5.24 mm maximum displacement at the top floor,
which is 34% larger than full-state feedback achieved by the seismic observer



“CHAP06” — 2008/1/18 — 12:52 — page 354 — #40

354 Smart Structures: Innovative Systems for Seismic Response Control
0 1 2 3 4 5 6

Time(s)

10

5

0

–5

–103r
d 

Fl
oo

r d
is

p.
 (m

m
)

Observer-controller system (max. 3.91 mm)

Direct output feedback (max. 5.24 mm)

FIGURE 6.16 Response comparison of observer-controller and direct output feedback
systems.

Damper

Hybrid control device

Actuator xg (t)
FIGURE 6.17 Six-story shear building with hybrid damper-actuator bracing control
(HDABC).

technique. Therefore, the observer-controller system is more effective than direct
output feedback in reducing seismic structural response.

6.3.4.2.2 Six-story shear building with HDABC system
This system installs a hybrid control system on a K-brace system at the first floor, as
shown in Figure 6.17. Structural properties are: (1) mass coefficients m1 = 109.78,
m2 = 109.62, m3 = 109.24, m4 = 108.86, m5 = 108.48, m6 = 107.03 (tons); (2)
stiffness coefficients k1 = 351,284, k2 = 225,167, k3 = 169,665, k4 = 124,242,
k5 = 87,872, k6 = 59,532 (kN/m); (3) undamped natural frequencies ω1 = 9.79,ω2 = 24.05, ω3 = 37.40, ω4 = 49.56, ω5 = 63.44, ω6 = 83.76 (rad/s); and
(4) 2% structural damping ratio. K-brace properties are mb = 2.0 tons; kb =
2.0 × 105 kN/m; and 0.1% damping. State variables include six displacements
and six velocities for the six-story building, one displacement and one velocity for
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the K-brace, active control force and servo-valve displacement for the hydraulic
actuator, and passive control force for the viscous fluid damper. Thus, this smart
structure with HDABC system is of the 17th order.

To set up a full-state sensing and feedback system, 17 sensors (eight displace-
ment sensors [LVDTs], seven velocity sensors, and two load cells) are required
and a data-acquisition system with 17 or more channels must be employed. If the
observer-controller is applied to the system, numerical simulation results show
that two sensors can meet the observability requirement. These two sensors are
an accelerometer at the top floor and a load cell to measure active control force.
With two additional sensors to measure the reference input (earthquake ground
motion) and the control command for the observer, only four sensors are required
for the observer-controller system. Compared to the full-state sensing and feed-
back system that requires 17 sensors, the observer technique can greatly simplify
the sensing and data acquisition system. Furthermore, since the actuator has a
built-in LVDT to measure its piston displacement, this LVDT may be employed
for the observer instead of an extra load cell. Numerical simulation results also
show that the system with the LVDT in the actuator and an accelerometer at the
top floor is observable. This further simplifies the setup of the sensing system.
Similar to the system in Section 6.3.4.2.1, closed-loop displacement response of
the observer-controller system is exactly the same as that of the full-state feedback
system, as shown in Figure 6.18. Details on how to use MATLAB® functions for
this example is discussed in Section A.3 of Appendix A.

6.3.5 Summary
A seismic observer is developed to estimate the full-state vector from accelera-
tion measurements for the optimum controller. Such an observer does not require
extra devices but is implemented with software in control computer. Studies show
that a smart seismic structure system with the proposed observer-controller tech-
nique works as effectively as a full-state sensing and feedback system, yet is able to
handle acceleration sensors and needs far fewer sensors. With the seismic observer,
the full-state feedback control system and algorithms discussed in other chapters
of this book can be implemented with accelerometers at strategic points. There-
fore, this observer-controller technique offers a promising alternative to process
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insufficient sensors and acceleration measurements. With this technique, a smart
seismic structure system becomes more practical because it is easier to implement
and maintain.
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7 Optimal DevicePlacement for SmartSeismic Structures
This chapter carries out a theoretical study on optimal placement of control devices
(dampers and actuators) for a smart seismic structure system. Section 7.1 reviews
the study background and numerically demonstrates the significance of optimal
device placement for smart seismic structures. Section 7.2 presents three methods
based on controllability and performance indices for optimal actuator placement.
Numerical simulations of structural seismic response to various earthquake records
are carried out to evaluate these methods. Section 7.3 develops a statistical method
for optimal placement of hybrid control devices. A stochastic theory is established
first for seismic response of controlled structures that have first-order dynamics
and nonorthogonal damping and stiffness. Then a statistical criterion is developed
based on this theory for optimal placement of a viscous fluid damper, a servo-
valve controlled hydraulic actuator, and their combination (i.e., a hybrid device)
on a seismic-resistant structure. Ageneral optimization problem for optimal device
placement is formulated, and a solution procedure is established. Numerical ana-
lysis of the seismic response of a hybrid-controlled smart structure is used to
verify the proposed method for optimal device placement and to demonstrate the
effectiveness of a control system with optimal location.

7.1 INTRODUCTION

7.1.1 Basic Concepts of Engineering Optimization
Accomplishing the best possible design is vital in engineering practice because of
economy and performance. For this reason, optimization theory has emerged to
seek the best solution for engineering design. This theory formulates an optimiz-
ation problem whose solution corresponds to the best design. In such a problem,
maximization or minimization of a function serves as the optimization criterion.
This function, called cost function or objective function, represents a quantitat-
ive measure of the “goodness” of the engineering system. The objective function
depends on a detailed configuration of the system, and variables of the objective
function are called design variables of the optimization problem. Optimization
problems are classified into two categories: those with continuous variables and
those with discrete variables [6,9,30]. The former seeks a set of real numbers
or even a function from a continuous design space as the optimal solution,

359
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while the latter, also called combinatorial optimization, finds an optimum object
from a finite or countably infinite set, such as an integer set.

To solve an optimization problem, a special technique called optimization
algorithm is employed. In theory, the optimization algorithm is a simple search
procedure composed of the following five steps: (1) Selection of initial design in
the design space, (2) Evaluation of objective function for the design, (3) Assess-
ment of design feasibility with constraints, (4) Comparison of current design
with preceding designs, (5) Rational way to select a new design and repeat the
process. In practice, too much calculation is involved in evaluation of the object-
ive function, comparison of different designs, and search procedure, especially
when the objective function has many independent variables. This computational
complexity remains a challenge in engineering optimization.

There are three types of optimization algorithms: calculus-based, enumerative,
and random [15]. Calculus-based algorithms seek local extrema by setting the
gradient of the objective function equal to zero. These algorithms are not suitable
for combinatorial optimization and are not effective for optimization problems with
a high degree of nonlinearity and discontinuity. Moreover, there is no guarantee that
these algorithms can find global optimal solutions. Enumerative schemes are fairly
straightforward. Within a finite search space, or a discretized infinite search space,
the search algorithm starts looking at values of the objective function at every
point in the space, one at a time. Enumerative algorithms are attractive because of
their simple principle and perfect applicability for combinatorial optimization. It is
guaranteed that an enumerative scheme can find the global extrema within a finite
search space because all designs have been evaluated and compared. The weakness
is that such schemes lack efficiency with a large optimization problem. Random
search algorithms have achieved popularity because of their efficiency with large
problems. They use random choices as a tool to guide a highly exploitative search
through the design space. Genetic algorithms [15] and simulated annealing [22]
are typical random search techniques. Although these randomized searches are not
directionless, they can be easily trapped in local extrema. This is because these
algorithms only search part of the design space and the global optima may not be
in this part. In the long run, random algorithms are not expected to do better than
enumerative schemes. This is because enumerative schemes are more accurate
than random algorithms, and the efficiency of such schemes improves everyday
with the rapid advance of digital computing technologies.

The optimal placement of dampers and actuators on smart building structures
is a typical combinatorial optimization problem as its design space—the building
stories and bays, are discrete. The discrete nature of available locations of control
devices makes it impossible to use calculus-based algorithms; and as noted above,
enumerative schemes will be realistic for large design space with improved effi-
ciency by evolving digital computing technologies, and do better than a random
search procedure for their accuracy. Thus, enumerative schemes are used through-
out this chapter to accurately determine the optimal locations of the control devices,
while the computing cost is greatly reduced by simplified optimization objective
function.
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7.1.2 Significance of Optimal Device Placement for
Smart Seismic Structures

Structural control offers a promising alternative to protect structures from seismic
damage. However, the force-generating capacity of control devices (dampers and
actuators) limits the application of control systems for full-scale seismic-resistant
structures. Since seismic-resistant structures can weigh hundreds or thousands
of tons, under strong earthquake excitations, their inertia and restoring forces
may be thousands of kilo-Newtons, and their damping force may be hundreds
of kilo-Newtons. Because the inertia or restoring force is much larger than the
damping force, the control mechanism is to add damping force to a structure
with a minor modification of inertia or restoring force; the required control force
should have same magnitude order as the damping force to reduce seismic response
significantly. Current industrial technology makes such a big actuator or damper
feasible, but the cost would limit its application. This cost issue can be partially
addressed by placing these devices optimally to maximize their efficiency, as
demonstrated by the following numerical example.

To show how significant the optimal placement of control devices is, the three-
story building model with hybrid control device shown in Figure 5.21 serves as
an example here. Time-history response of the controlled structure for scaled
N-S component of the El-Centro earthquake (with amplitude and frequency scale
factors at 0.3 and 2, respectively) is evaluated for three possible locations of
the hybrid device: first, second, or third floor. Required active control force
is compared for the three locations with an identical control objective, say,
reducing the maximum displacement at the third floor from 0.7794 cm (struc-
ture without control) to 0.508 cm. Figure 7.1 compares the time histories of
required control forces for scaled El-Centro earthquake. Required active force
is 752.7, 3610.2, and 1908.9 (N) for the hybrid device at the first, second, and
third floor, respectively. Apparently, the first floor is the optimal device loca-
tion because the least active control force is required to reduce the maximum
displacement at the third floor to 0.508 cm. If the hybrid device is installed at
nonoptimal locations, that is, second and third floors, 2.54 and 4.80 times lar-
ger active control forces are respectively required to achieve the same control
objective. Thus, effectiveness of control devices is strongly dependent on their
locations on the structure, and such device locations greatly influence the effi-
ciency of a control system. Therefore, it is very significant to study optimal device
placement for smart seismic structures as such studies make the concept of smart
structures more practical for vibration reduction of structures under earthquake
excitations.

7.1.3 Review of Former Studies on Optimal
Device Placement

Because it is vital to install control devices at optimal locations on a structure,
optimal device placement has been a very important issue in smart structure
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FIGURE 7.1 Response of HDABC system to scaled El-Centro earthquake: (a) displace-
ment at third floor and (b) required active control force.

technology for seismic response control. Researchers have made some pro-
gress on optimal placement of control devices [1–3,7,8,10–12,18–20,24,26,29,31].
A preferred approach for control device placement is formulation of an optim-
ization problem in which the objective function is the criterion for optimal
placement. Optimal device placement is a combinatorial optimization problem
because the design space—different locations on the structure—is discrete. No
efficient algorithm can solve the general problem of optimal device placement [24].
There are two reasons for this. First, a combinatorial problem cannot be solved
with calculus-based techniques because no gradient is defined in discrete space.
Second, random search techniques have limited applicability for combinatorial
optimization because of the danger of falling into local optima. Fortunately, control
devices for seismic-resistant structures has limited location choices. If an actuator
is installed between stories of a one-bay building, the number of choices equals
the number of stories. The finite design space of the optimum placement problem
makes it possible to search the optimal location by enumerative techniques.

Recall that calculation complexity is of major concern in engineering optimiza-
tion. Two kinds of calculation complexity may exist for optimal device placement
in seismic response control. First is enormous design space. When the number
of structural members or the number of control devices is large, a structural
control system has a huge number of possible configurations. For example, if
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r control devices (dampers or actuators) are to be placed in a one-bay n-story
building (r ≤ n), the total combinations for the selection of r device locations
out of n possible story units, which are feasible locations of control devices, is
n!/[r!(n− r)!]. This number can be very large for complex structures, that is, the
control devices have too many possible locations. Second is complex objective
function. An objective function may require that seismic response of controlled
structures in time history be calculated. Even worse, multiple earthquake records
may have to be employed owing to the uncertainty of earthquake excitations.
Since objective function must be evaluated for each design, a complex objective
function would greatly increase computation time. Consequently, two approaches
have been proposed to reduce the computation cost for optimal placement of con-
trol devices: development of efficient algorithms with reduced design space and
simplification of the objective function.

The first approach, development of efficient algorithms, cuts the computing
cost by reducing design space. This approach is usually employed when the design
space is large. To search the global optimum device locations in a large design
space, the huge number of possible configurations may lead to high computa-
tion cost. Alternatively, a practical and efficient way is to place control devices
at near-optimal locations in part of the design space (such as substructure) so
that the amount of calculation is reasonable. This idea led to the development of
random search algorithms, such as genetic algorithms and simulated annealing
proposed in the 1990s [2,4,17,26,27,31]. Instead of searching all possible config-
urations, random algorithms only search part of the design space guided by random
choice. Computation cost is reduced as less searching is required. However, this
method has a major challenge of accuracy for combinational optimization. Ran-
dom techniques do not guarantee how close the near-optimal solution is to the
global extrema; instead, they are easily trapped in local optimal solutions. It is
the same situation for substructure approach, and there is no guide as to how to
split the structure in order to be accurate enough. Moreover, a limitation on the
total number of control devices applies if a genetic algorithm is used to formulate
the placement problem as zero–one optimization. This limitation seriously affects
crossover and mutation operations in the genetic algorithm.

The other approach focuses on development and simplification of optimal cri-
teria; calculation complexity is reduced by simplifying the objective function. For
optimal device placement in seismic response control, evaluation of the object-
ive function may be complex because civil engineering structures are usually
large and earthquake excitation has severe uncertainty. If the objective function
is simplified, calculation time in its evaluation for each design is decreased, and
total computation cost is greatly reduced for the optimization problem. Thus, this
approach researchers have been concentrating on it and have developed various
criteria for optimal placement of control devices, as described in the subsequent
paragraphs.

In the research by Milman and Chu [26], damping in selected modes and an
H2 norm (a quadratic integral) of selected transfer functions are chosen as the
criteria for optimal damper placement. This method is effective when structural
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response has one dominant mode, such as wind response control. However, the
criterion has less applicability for optimal damper placement on seismic-resistant
structures. Seismic structural response usually has multiple significant modes, and
one damper location is unlikely to yield the largest damping for all significant
modes. Moreover, the participation of each mode in seismic response must be
calculated to select significant modes for each damper location. This seriously
increases the computation complexity for the evaluation of objective functions.

Agrawal and Yang [1] defined five objective functions for optimal placement
of energy dissipative devices. These objective functions are

1. Average dissipated energy

J1 = E
[∫ ∞

0
�TCd�dt

]
(7.1)

where� = [δ1, δ2, . . . , δn]Tis an nth order vector for interstory drifts for an n-story
building; Cd is a (n× n) diagonal matrix with Cd (i, i) being coefficient of the
damper installed at the ith story.

2. Weighted sum of damping ratios for dominant modes

J2 = q∑
i=1

ψiζi (7.2)

where q is number significant modes, ψi is scalar weighting factor and ζi is
damping ratio for ith mode.

3. H2 cost of interstory drift J3

J3 = ∥∥Hδγ ∥∥2 = √trace
(
[C] [GC] [C]T) (7.3)

in which Hδγ is the transfer function from reference input r (i.e., earthquake excit-
ation ẍg) to interstory drift δ(t). For a seismic response control system described
by Equations 4.19 and 5.109, the interstory drift can be expressed asδ(t) = [C] {Z(t)} (7.4)

In Equation 7.3, the Lyapunov matrix [GC] is obtained from

[AC] [GC]+ [GC] [AC]T + {Br} {Br}T = 0 (7.5)

and the operator trace() is defined as

trace([C] [GC] [C]T) = N∑
i, j=1

C(i)GC(i, j)C( j) (7.6)
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where N is order of plant matrix [AC] or Lyapunov matrix [GC].
4. Maximum of peak interstory drift

J4 = max {δi} , i = 1, 2, . . . , n (7.7)

where δi is interstory drift at ith story.

5. Maximum root-mean-square (RMS) interstory drift

J5 = max {σδi} , i = 1, 2, . . . , n (7.8)

where σδi is RMS value for interstory drift at ith story.
The optimal locations for the energy dissipative systems are determined such

that a particular objective function is optimized, that is, either maximizing J1,
J2 or minimizing J3, J4, J5. These objective functions are suitable for seismic
response control because they can consider multiple significant modes for struc-
tural response. However, J1 and J4 require the interstory drift of structure be
calculated that it may increase calculation complexity. The study shows optimal
locations obtained by minimizing J4 depending on the specific design earthquake.
For J2, there is no guideline on how to select the weighting factor ψi.

Shukla and Datta defined a criterion called controllability index for optimal
damper placement [11]. The controllability index is expressed as

x = max
[σxi

hi

]
, i = 1, 2, . . . , n (7.9)

where x and σxi are the value of the index and RMS value of interstory drift at
ith story, respectively; hi is the ith story height. Thus, the ith story is the optimal
damper location when x is maximum. The basic idea behind the controllability
index is that a passive damper is optimally located if it is placed where the dis-
placement response of the uncontrolled structure is the largest. This idea may be
inaccurate because the passive control force generated by the damper is usually
related to velocity response, and the largest displacement response of a com-
plex seismic-resistant structure may not occur at same location where the largest
velocity happens.

As noted above, many research studies have been done for the optimal place-
ment of dampers. In the following sections, we will focus on detail discussion of
optimal placement of actuators and hybrid devices on a smart structure for seismic
response control.

7.2 OPTIMAL ACTUATOR PLACEMENT FOR SMART SEISMIC

STRUCTURES WITH ACTIVE CONTROL

Active control systems use actuators powered by external energy to generate con-
trol force. The cost of actuators and the power required to operate them are
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significant factors for the design of an active control system. Optimal actuator
placement is very important because it can greatly improve the actuator’s effective-
ness. Studies on optimal actuator placement started in early 1980s and again these
studies are concentrated on simplification of the optimization criteria. Since then,
various optimal criteria for actuator placement on structures have been developed,
as discussed throughout this section.

7.2.1 Measure of Modal Controllability

7.2.1.1 System controllability

Chapters 4 and 5 show that a smart structure system with active, semiactive, or
hybrid control can be expressed by the same state variable representation, Equa-
tions 4.19 and 5.109. Such a system is controllable if and only if its controllability
matrix [Mc], defined by the following equation, and is of full rank N [14].[Mc] = [Bu, ABu, A2Bu, . . . , AN−1Bu] (7.10)

where N is the order of plant matrix [A].

7.2.1.2 Modal controllability

This definition of system controllability reveals that a system is either controllable
or uncontrollable. It is desirable to consider how controllable a system is. This
leads to the definition of measure of modal controllability [16, 24], which are the
modal coefficients of the active control force. Application of this concept for active
seismic response control is discussed in detail as follows.

Smart seismic structures with an active control system using a linear propor-
tional actuator can be modeled as

[M] {ẍ(t)} + [C] {ẋ(t)} + [K] {x(t)} = {γ } u(t)+ {δ} ẍg(t) (7.11a)

or using the state variable representation by Equation 4.19. Using modal analysis
for the system described by Equation 7.11a{x(t)} = [�] {q(t)} (7.11b)

Then[
M∗] {q̈(t)} + [C∗] {q̇(t)} + [K∗] {q(t)} = [�]T {γ } u(t)+ [�]T {δ} ẍg(t)

(7.11c)

where [M∗], [C∗], and [K∗] are diagonal matrices of mass, damping, and stiff-
ness coefficients in modal space, respectively; [�] and {q(t)} are matrix of mode



“CHAP07” — 2008/1/18 — 13:33 — page 367 — #9

Optimal Device Placement for Smart Seismic Structures 367

shapes and vector of modal coordinates, respectively. The ith modal equation from
Equation 7.11c becomes

q̈i(t)+ 2ζiωiq̇(t)+ ω2
i qi(t) = γiu(t)+ δiẍg(t) (7.12)

and γi = {φi}T{γ }/Mi, δi = {φi}T{δ}/Mi, and Mi = {φi}T[M]{φi} (i =
1, 2, . . . , n), n is the number of d.o.f for the system. State variable representation
of the ith modal equation is{

q̇i(t)
q̈i(t)} = ( 0 1−ω2

i −2ζiωi

){
qi(t)
q̇i(t)}+ { 0γi

}
u(t)+ { 0δi

}
ẍg(t) (7.13)

Obviously, the value of γi shows how sensitive the effect of active control force u(t)
is to the response in the mode i. If the magnitude (absolute value) of γi is large, it is
easy for the active force to control the ith modal response; if γi is small, the active
control force has little effect on the ith modal response. If γi = 0, the control force
has no effect on this mode, which means that mode i is uncontrollable. Thus, the
effectiveness of the control force and the control system on the ith mode is propor-
tional to the magnitude of γi. This is the reason why γi(i = 1, 2, . . . , n) in Equation
7.12 is the measure of modal controllability of the ith mode. This concept can serve
as a criterion for optimal actuator placement in that the optimum corresponds to the
largest value of the measure of controllability [11,24]. The optimal actuator loca-
tion for mode i should correspond to largest absolute value of γi. If a system has
only one critical mode, the optimum actuator location should have the largest mag-
nitude of γi for this critical mode. If there are multiple significant modes, a more
general criterion is needed for the optimal device placement in seismic response
control.

EXAMPLE 7.2.1

The two-story shear building in Example 4.2.2 serves as the example here.
Assume there is only one active tendon installed on the structure. Find the
optimal tendon location.

Solution
The motion equation of the system has been developed in Example 4.2.2 as

[M] {ẍ(t)} + [C] {ẋ(t)} + [K] {x(t)} = {γ } u(t)+ {δ} ẍg(t) (a)

where

[M] = ( 0.136
0.066

)
k-s2/in., [C] = ( 0.0572 −0.0198−0.0198 0.0313

)
k-s/in.

[K] = ( 75.00 −44.30−44.30 44.30

)
k/in., {δ} = {−0.136−0.066

}
k-s2/in. (b)
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If the active tendon is installed at the first floor{γ }1 = {−1

0

}
(c)

or the second floor {γ }2 = { 1−1

}
(d)

Natural frequencies of this system have been calculated asω1 = 11.829 rad/s, ω2 = 32.905 rad/s (e)

and mode shapes {x} satisfies[−ω2 [M]+ [K]
] {x} = {0} (f )

For the first mode,[−11.8292
(

0.136
0.066

)+ ( 75.00 −44.30−44.30 44.30

)]{
x1
x2

}
1
= { 0

0

}
(g)(

55.97 −44.30−44.30 35.06

){
x1
x2

}
1
= { 0

0

}
(h){φ}1 = { x1

x2

} = { 0.7915
1.0

}
(i)

For the second mode,[−32.9052
(

0.136 0
0 0.066

)+ ( 75.00 −44.30−44.30 44.30

)]{
x1
x2

}
2
= { 0

0

}
( j)(−72.253 −44.30−44.30 −27.161

){
x1
x2

}
2
= { 0

0

}
(k){φ2} = { x1

x2

}
2
= {−0.6131

1.0

}
(l)
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The measure of modal controllability for the first and second modes is
illustrated as follows:

For the first mode
When actuator at first floorγ 1

1 = {φ1}T {γ }1 = [ 0.7915 1.0
] {−1

0

} = −0.7915 (m)

and when actuator at second floorγ 2
1 = {φ1}T {γ }2 = [ 0.7915 1.0

] { 1−1

} = −0.2085 (n)

Since
∣∣γ 1

1
∣∣ > ∣∣γ 2

1
∣∣, the first floor is the optimal actuator location for the first

mode.

Similarly, for the second mode
When the actuator is at the first floorγ 1

2 = {φ2}T {γ }1 = [−0.6131 1.0]{−1
0

} = 0.6131 (o)

and when the actuator is at the second floorγ 2
2 = {φ2}T {γ }2 = [−0.6131 1.0

] { 1−1

} = −1.6131 (p)

Since
∣∣γ 2

2
∣∣ > ∣∣γ 1

2
∣∣, the second floor is the optimal actuator location for the

second mode.

As expected, this example has shown that optimal actuator location is different
in different modes by the measure of modal controllability. Thus, the measure of
modal controllability can find the optimal device location only when one mode
dominates the system response, for example, the first floor is the optimal actuator
location if the first mode dominates the response.

The method of modal controllability is simple and straightforward as the
optimal actuator locations can be determined in open loop (i.e., no active con-
trol force). This criterion is effective for structural response with one dominant
mode, but less applicable for structural seismic response control systems. This is
because structural seismic response usually has multiple significant modes while
one actuator location may not have the biggest modal coefficients for all signific-
ant modes as shown by above example. Moreover, this method does not work for
a smart structure system with significant dynamics of control devices in that its
open-loop dynamics can be very different from its closed-loop behavior.
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7.2.2 Performance Index
Owing to the weakness of modal controllability method, better approaches are
needed for optimal device placement of smart seismic structures with multiple
significant modes in system response. Performance index is such an approach as
discussed below.

7.2.2.1 Basic concepts

The method of performance indices employs a scalar measure that is defined by
the integration of control energy or seismic structural response in time history.
Optimal actuator location corresponds to the minimization of the scalar measure.
One of such indices, control energy index JE , is defined as [3]

JE = ∫ tf

t0
{u(t)}T{u(t)} dt (7.14)

where {u(t)} is vector of active control forces, t0 and tf are initial and final time,
respectively. This concept is based on that if the actuator is optimally placed, the
work performed by the control system reflected by Equation 7.14 shall be the
minimum. However, minimization of control energy by Equation 7.14 alone may
not lead to the optimal solution since the reduction of control energy may result
in an increase of structural response. Thus a new performance index, the response
index JR, was proposed [11,29]. This index is defined as

JR = ∫ T0

0
{Z(t)}T{Z(t)} dt (7.15)

where {Z(t)} is state variables, which includes structural displacements and
velocities. This index reflects upon the measure of the reduction of the struc-
tural response. The optimal actuator location corresponds to the minimization of
performance index JR, that is, the smallest structural response.

Compared to modal controllability, performance indices do not require a dom-
inant mode but consider the response by all modes. However, they require much
more calculation in solving and integrating system response.

7.2.2.2 Numerical illustrations

The performance index methods are applied to an eight-story shear building with
two active tendons [11]. The two tendons can be located on any of the eight possible
locations. The structural properties are (1) stiffness coefficients k1 = 1026.3 k/in.,
k2 = 937.4 k/in., k3 = 790.6 k/in., k4 = 684.1 k/in., k5 = 538.5 k/in., k6 = k7 =
k8 = 1026.3 k/in.; (2) mass coefficients mj = 2 k-s2/in., j = 1, 2, . . . , 8; (3) 1%
critical damping for all modes. An artificial earthquake excitation is used that is
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FIGURE 7.2 First three mode shapes of an eight-story building.

expressed as

ẍg (t) = 0.05g (0.2 sin 3.5t + sin 9t + 3 sin 15t) (7.16)

Riccati optimal active control algorithm is used to design the control system, and
the weighting matrices [Q] and [R] are assumed to be diagonal with the values
Q(i, i) = 1500, i = 1, 2, . . . , 16; and R(1, 1) = R(2, 2) = 0.15.

As an initial selection of the optimal actuator location, the eighth and the
fourth floors can be suggested as the suitable choice. This is because the modal
coordinates are maxima at eighth floor for the first mode, and at fourth floor for
the second mode, as Figure 7.2 shows. Using performance indices expressed by
Equations 7.14 and 7.15, several trials were made and part of the results is shown
in Tables 7.1 and 7.2. Table 7.1 shows that, if the response index by Equation 7.15
is used as the criterion for optimal actuator placement, the best locations would
be fifth and sixth floors. Obviously, this choice (fifth and sixth floors) has least
maximum displacement and acceleration response. However, the maxima of the
control forces for the fifth and sixth floor choice is slightly greater. In order to carry
out a better comparison, the maxima of control forces are set to be equal at about
150 kips by allowing the elements of weighting matrix [R] to be different for each
choice of actuator location as Table 7.2 shows. Since the required control forces are
approximately equal, the choice that has least structural response maximizes the
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TABLE 7.1
Optimal Actuator Locations—Fixed R(i , i ) = 0.15 and Excitation by
Equation 7.16

Actuator location 4 and 8 5 and 6 1 and 2 6 and 7 7 and 8

Control energy 74,829 74,132 78,514 61,429 60,075
Response index 368 266 346 294 386
Maximum displacement (in.)

Floor 1 1.94 1.72 1.87 1.77 2.00
Floor 2 3.27 2.95 3.21 3.03 3.44
Floor 3 3.43 3.21 3.50 3.33 3.72
Floor 4 3.40 2.45 3.20 2.56 2.88
Floor 5 5.95 4.74 5.83 4.95 5.58
Floor 6 6.67 5.78 6.66 6.18 7.46
Floor 7 5.61 4.16 5.15 4.21 5.37
Floor 8 8.64 6.89 8.33 7.13 8.60

Maximum acceleration (g%)
Floor 1 90 80 83 84 93
Floor 2 146 127 131 134 150
Floor 3 134 109 116 117 135
Floor 4 55 40 47 39 46
Floor 5 148 140 150 146 151
Floor 6 189 173 183 188 212
Floor 7 59 47 57 42 51
Floor 8 179 152 167 158 185

Maximum control force (kips) 4th . . . 8th 5th . . . 6th 1st . . . 2nd 6th . . . 7th 7th . . . 8th
92 . . . 164 95 . . . 179 158 . . . 149 142 . . . 137 163 . . . 99

R(1,1) 0.15 0.15 0.15 0.15 0.15
R(2,2) 0.15 0.15 0.15 0.15 0.15

actuator effectiveness and thus is optimal actuator location. The response index,
maximum displacements, and accelerations are least for the fifth and sixth floor
choice, thus this choice is optimal actuator location. Both Tables 7.1 and 7.2 shows
that the control energy index is the least for the choice of seventh and eighth
floor. However, this choice is not optimal actuator location because its structural
response is much higher than that of the choice of fifth and sixth floors. This means
that the control energy index may not be a good criterion for optimal actuator
placement.

To verify this optimal actuator location, time-history responses of the eighth
floor displacement to the excitation expressed by Equation 7.16 are compared
for the choice of fifth and sixth floors and the choice of fourth and eighth floors.
Figures 7.3, 7.4, and 7.5 shows the total response, first mode response and second
mode response, respectively. Since the maximum active control forces are set
approximately to 150 kips, the choice of fifth and sixth floor is better because
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TABLE 7.2
Optimal Actuator Locations—Equal Control Force and Excitation by
Equation 7.16

Actuator locations 4 and 8 5 and 6 1 and 2 6 and 7 7 and 8

Control energy 93,283 83,716 75,333 70,955 70,856
Response index 331 249 349 280 390
Maximum displacement (in.)

Floor 1 1.96 1.71 1.86 1.79 2.11
Floor 2 3.31 2.93 3.21 3.02 3.61
Floor 3 3.44 3.17 3.50 3.31 3.87
Floor 4 3.20 2.38 3.73 2.49 2.88
Floor 5 5.70 4.64 5.87 4.90 5.61
Floor 6 6.29 5.59 6.68 6.09 7.62
Floor 7 5.09 4.03 5.20 3.99 5.35
Floor 8 8.06 6.64 8.38 6.88 8.67

Maximum acceleration (g%)
Floor 1 92 80 84 86 98
Floor 2 149 127 132 136 158
Floor 3 138 110 117 119 142
Floor 4 55 41 48 39 46
Floor 5 149 138 150 148 156
Floor 6 189 172 183 192 222
Floor 7 57 47 57 42 54
Floor 8 180 152 167 159 195

Maximum control forces (kips) 4th . . . 8th 5th . . . 6th 1st . . . 2nd 6th . . . 7th 7th . . . 8th
150 . . . 154 149 . . . 151 148 . . . 151 152 . . . 152 149 . . . 147

R(1, 1) 0.085 0.095 0.16 0.13 0.155
R(2, 2) 0.160 0.180 0.15 0.125 0.095

more reduction of structural response is achieved by this choice. To test if this
optimal actuator location is still optimal for a different earthquake excitation, the
following artificial earthquake ground motion is employed.

ẍg (t) = 0.02 (0.2 sin 3.5t + 7.0 sin 9t + 3.3 sin 15t) (7.17)

Compared to the excitation by Equation 7.16, this ground motion excites the second
modes more than other modes. The elements of the weighting matrix [Q] are fixed
at Q(i, i) = 1500, and the elements of the weighting matrix [R] are different such
that the maximum active control forces are approximately equal at 150 kips. Two
choices, fourth and eighth floor and fifth and sixth floor are evaluated. The results
are shown in Table 7.3. The fifth and sixth floor choice is still better than the
choice of fourth and eighth floor since the former has less response index. Again,
the control energy index is higher at the optimal actuator location, the fifth and
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TABLE 7.3
Optimal Actuator Locations—Equal Control Forces and
Excitation by Equation 7.17

Actuator locations 4 and 8 5 and 6

Control energy 124,966 130,195
Response index 604 480
Maximum displacement (in.)

Floor 1 2.77 2.39
Floor 2 5.07 4.37
Floor 3 6.39 5.46
Floor 4 6.39 5.39
Floor 5 6.05 5.25
Floor 6 3.65 4.05
Floor 7 6.49 6.05
Floor 8 8.75 8.18

Maximum acceleration (%g)
Floor 1 298 80
Floor 2 149 127
Floor 3 138 110
Floor 4 55 41
Floor 5 149 138
Floor 6 189 172
Floor 7 57 47
Floor 8 180 152

Maximum control forces (kips) 4th . . . 8th 5th . . . 6th
150 . . . 152 153 . . . 152

R(1, 1) 0.075 0.30
R(2, 2) 0.620 0.720

sixth floor choice. Thus, the response index can be a better measurement than the
control energy index.

7.2.3 Controllability Index
The earlier two methods for optimal actuator placement have their weaknesses:
the measure of modal controllability may not be suitable for these systems with
multiple significant modes; the performance indices require that the integration
of the seismic structural response in time history be calculated, which is a com-
plicated procedure. To further reduce the calculation complexity, researchers have
developed the controllability index for optimal actuator placement [10,11,29]. This
method is discussed in detail through this section.
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7.2.3.1 Basic concepts

As discussed in Section 7.2.1.1, Laskin [23] first defined a controllability index,
which is linked with initial disturbance problem. A system is controllable if it is
possible to find certain control action to dampen any initial system state {Z (t0)}
to the origin (the neutral state) in finite time T∗ = (tf − t0). This definition only
reveals that a system is either controllable or uncontrollable. It is desirable to
consider how controllable a system is. This motivation leads to the definition of
the degree of controllability (DOC).

The state equation of a second-order system subjected to an initial disturbance{Z (t0)} can be written as{
Ż (t)} = [A] {Z (t)} + [B] {u(t)} (7.18)

with {Z (t)} ∣∣t=t0 = {Z (t0)} (7.19)

where {Z (t)} is state vector of structural displacement and velocities, [A] is plant
matrix, [B] is actuator location matrix, and {u (t)} is vector of active control forces.
Since all actuators have limitation on their force-generating capacity, the active
control forces are accompanied by the constraint|ui (t)| ≤ ui,max, i = 1, 2 . . . , r (7.20)

where ui,max is saturation limit of the ith control force; r is number of actuators.
The control objective is to drive the initial disturbed state {Z(t0)} to the origin.

Assume this control objective is achieved with the control energy E∗ and in the
possible time T∗. Laskin [23] defines a recovery region for the special E∗and T∗
as the volume in which every initial condition {Z(t0)} can be driven to the origin
at time T∗, with a set of control forces |ui(t)| ≤ ui,max, and for which the total
energy required for all r actuators during period t0 to tf = T∗ + t0 is less than or
equal to E∗. The DOC is thus equal to the lower limit of the recovery region. In
other words, the DOC is a scalar measure of the recovery region, which determines
the region’s smallest dimension.

7.2.3.2 Controllability index for seismic-resistant structures

With the definition of DOC, the optimal actuator location corresponds to where
the DOC is to be maximized, that is, the location of actuators is optimized in the
sense that it maximizes the smallest dimension of the recovery region. Following
the Lashin’s definition of DOC, the controllability index has been proposed [11] as
the criterion for optimal actuator placement on seismic-resistant structures. This
criterion is discussed as follows.
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The motion equations of structures with active control have been derived in
Chapter 4 as

[M] {ẍ(t)} + [C] {ẋ (t)} + [K] {x(t)} = [γ ] {u(t)} + {δ} ẍg (t) (7.21)

Its modal equations can be written as

q̈i (t)+ 2ζiωiq̇i(t)+ ω2
i qi (t) = {φi}T [γ ] {u (t)} + {φi}T {δ} ẍg (t){φi}T [M] {φi} (7.22)

To develop the criterion for optimal actuator placement on seismic-resistant
structures, the following facts must be taken into consideration:

(a) Lower modes are dominant in structural seismic response.
(b) The control objective is to reduce the structural seismic response and

improve the stability of the seismic-resistant structure.
(c) The control effort in terms of control power is limited.
(d) The structural response should not exceed certain thresholds for the

safety and serviceability of the structure.

On the basis of these facts, the following assumptions are used to develop a
meaningful criterion for actuator placement:

(a) Use the modal shapes of the uncontrolled structure to evaluate the
influence of each mode.

(b) Use the response spectra of the actual earthquake when evaluating the
response of the uncontrolled structure.

(c) Active tendons are used to implement the active control system in which
the actuator is linear proportional device.

Subject to the above assumptions and facts, a controllability index is defined as
the criterion for optimal actuator placement on seismic-resistant structures. This
criterion assumes that the optimal actuator location is where the displacement
of an uncontrolled structure is largest. For an active tendon control system, the
controllability index ρ(X) is defined as [11]ρ(X) = max

√√√√ n∑
j=1

{�[φj(X)]�X
Yj(t)}2

(7.23)

where X is a percentage of total structure height at the actuator location (0 ≤ X ≤
1); n is number of significant modes; φj(X) is jth mode shape; Yj(t) is maximum
response spectrum value for jth mode; �[ ] refers to spatial difference of the
quantity from position X1 to position X2; X1 is height where the actuator cylinder is
attached and X2 is height where the tendon is anchored; and�X is height difference
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between X1 and X2. The algebraic difference of the mode shapes is taken because
the relative displacement between floors is a critical parameter for active tendons.
The effect of earthquake excitations is taken care by the maximum spectrum value.
The different modes are weighted in a RMS fashion since the modal maxima do not
occur at the same time. With the stipulations outlined above, the optimal actuator
location is defined to be the value of X for which ρ(X) is maximum. The next best
actuator location is one for which ρ(X) has the second largest value, and so on.

Advantages of this criterion by controllability index are the simple objective
function and the ability to handle multiple significant modes. However, it is based
on response spectra and mode shapes of an uncontrolled structure. This approxim-
ation affects the accuracy and limits the applicability of the criterion. The reason
is as follows. Mode shapes of controlled structures are different from these of
uncontrolled structures due to actuator dynamics, interaction between structure
and actuator, and nonorthogonal damping and stiffness of a controlled structure.
Moreover, response spectra are based on effective peak accelerations (EPA) and
effective peak velocities (EPV) of uncontrolled structures with assumed damping
such as 5% used here.

EXAMPLE 7.2.2

The two-story shear building with one active tendon system in Example 7.2.2
serves as an example here. Using the controllability index find the optimal
actuator location.

Solution
The natural frequencies and mode shapes of this system have been calculated
in Example 7.2.1 asω1 = 11.829 rad/s, {φ1} = { 0.7915

1.0

}
(a)ω2 = 32.905 rad/s, {φ2} = {−0.6131

1.0

}
(b)

Thus the natural frequencies in cps are

f1 = ω1

2π = 11.829[2(3.1415926)] = 1.883 cps (c)

f2 = ω2

2π = 32.905[2(3.1415926)] = 5.237 cps (d)

Using the response spectra for the 1940 N-S El-Centro earthquake record
[5] as shown in Figure 7.6, the two maximum modal response values in
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FIGURE 7.6 Response spectra for N-S component of El-Centro earthquake, May 18, 1940.

inches are {
Y1 = 3.29
Y2 = 0.49 (e)

Let the active tendon be at the first floor, and assume that the first and the
second floors have same story heights. Then x2 = 0.5, x1 = 0�x = x2 − x1 = 0.5� [φ1 (x)] = φ1 (x2)− φ1 (x1) = 0.7915− 0 = 0.7915� [φ2 (x)] = φ2 (x2)− φ2 (x1) = −0.6131− 0 = −0.6131

(f)

Then from Equation 7.23 the controllability index for active tendon at first
floor is ρ1 =√√√√√ 2∑

j=1

{� [φj (x)]�x
Yj

}2= √[0.7915
0.5

(3.29)]2 + [−0.6131
0.5

(0.49)]2= 5.24 (g)



“CHAP07” — 2008/1/18 — 13:33 — page 380 — #22

380 Smart Structures: Innovative Systems for Seismic Response Control
If the active tendon is installed on the second floor, x2 = 1.0, x1 = 0.5�x = 1.0− 0.5 = 0.5� [φ1 (x)] = 1.0− 0.7915 = 0.2085� [φ2 (x)] = 1.0− (−0.6131) = 1.6131

(h)ρ2 =√√√√√ j=2∑
j=1

{� [φj (x)]�x
Yj

}2 = √[0.2085
0.5

(3.29)]2 + [1.6131
0.5

(0.49)]2= 2.09 (i)

Sinceρ1 > ρ2, the largest value of controllability index occurs when tendon is
located at the first floor. Thus, according to the controllability index criterion,
the first floor is the optimal actuator location for the active tendon system.

7.2.3.3 Numerical studies

A 15-story shear building, as shown in Figure 7.7, is studied for the optimal
location of two active tendons on two of its floors. Structural properties are floor
stiffness ki = 3000 k/in. and floor mass mi = 2 k-s2/in (i = 1, 2, . . . , 15), andL x

FIGURE 7.7 Fifteen-story shear building with two active tendon systems.
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TABLE 7.4
Determination of Controllability Index

Floor x 1st mode φ1 (x) 2nd mode φ2 (x) �φ1/�x �φ2/�x ρ (x)

1 0.067 0.026 −0.076 0.390 1.140 10.60
2 0.133 0.051 −0.145 0.375 1.035 9.76
3 0.200 0.076 −0.201 0.375 0.840 8.45
4 0.267 0.100 −0.238 0.360 0.555 6.59
5 0.333 0.123 −0.254 0.345 0.240 5.01
6 0.400 0.145 −0.246 0.330 0.120 4.52
7 0.467 0.165 −0.216 0.300 0.450 5.42
8 0.533 0.184 −0.165 0.285 0.765 7.27
9 0.600 0.201 −0.100 0.255 0.975 8.60

10 0.667 0.216 −0.026 0.225 1.110 9.47
11 0.733 0.228 0.051 0.180 1.155 9.65
12 0.800 0.238 0.123 0.150 1.080 8.97
13 0.867 0.246 0.184 0.120 0.915 7.57
14 0.933 0.251 0.228 0.075 0.660 5.43
15 1.000 0.254 0.251 0.045 0.345 2.86

First mode �1(x)
(�1 = 3.923 rad/s) 

Second mode �2(x)
(�2 = 11.730 rad/s)  

FIGURE 7.8 First two mode shapes of the 15-story building.

damping 3% critical. The first two natural frequencies of the structure with control
are ωn1 = 3.923 rad/s and ωn2 = 11.730 rad/s, which correspond to periods
T1 = 1.60 s and T2 = 0.54 s. The mode shapes of the first two modes are given in
Table 7.4 and shown in Figure 7.8.



“CHAP07” — 2008/1/18 — 13:33 — page 382 — #24

382 Smart Structures: Innovative Systems for Seismic Response Control
Floor  Controllability index �(x)

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

FIGURE 7.9 Controllability index values for optimal actuator locations on the 15-story
building.

7.2.3.3.1 Determination of optimal placement of
active tendons

The controllability index of Equation 7.23 is used to establish optimal locations
of the two active tendons. Using response spectra for the 1940 N-S El-Centro
earthquake record (see Figure 7.6), the first two maximum modal response
values are {

Y1 = 0.439 ft
Y2 = 0.265 ft (7.24)

The first two modes are considered in evaluating the value of the controllability
index. Values of the index ρ (x) for each tendon location is given in Table 7.4
and a plot of ρ (x) is shown in Figure 7.9. It is seen that the two largest values ofρ (x) occur at the first and second floors, which are optimal locations for the active
tendons according to the controllability index criterion.

7.2.3.3.2 Comparison of controllability index and control
energy index

To show the consistency of two optimal actuator placement criteria, ρ(x) and JE,
numerical analysis of two cases of locating active tendons is made to compare the
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FIGURE 7.10 Response comparisons for two actuator locations on the 15-story building.

two criteria. In case (A), floors one and two are equipped with active tendons. In
case (B), the two active tendons are installed at floors six and fifteen. Recall that
using the controllability index criterion, the case (A) is optimal and thus is superior
to the case (B). Figure 7.10 is a plot of two cases. The horizontal axis of the figure
is the control energy index of Equation 7.14 and the vertical axis is the maximum
displacement response at the 15th floor. As shown in Figure 7.10, case (A) produces
less response with same amount of control energy, and requires less control energy
to reduce the maximum displacement response at the 15th floor. Similar results
are true for other tendon locations and all the other response quantities [11]. Thus,
the criterion of control energy index JE is automatically satisfied by the criterion
controllability index ρ (x).
7.2.3.3.3 Demonstration of significance of optimal

actuator placement
In order to show the effectiveness of optimal actuator placement, two comparisons
are made for the two cases (A) and (B), as shown in Figure 7.10. In the first
comparison (1), the two cases have the same control energy index fixed at a level of
1.1×106. Figures 7.11 and 7.12 shows the displacement response of the 1st and the
15th stories for the fixed control energy level. It is observed that the optimal tendon
location can maximize the control effectiveness, thus has smaller displacement
response. Adversely, less control force or less control energy are required for
an optimally placed active tendon system to reduce the structural response to a
certain level. This is demonstrated in the second comparison (2) where the 15th
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FIGURE 7.11 Comparison of first floor response for two actuator locations on the 15-story
building with fixed control energy.
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FIGURE 7.12 Comparison of top-floor response for two actuator locations on the 15-story
building with fixed control energy.

story maximum displacement was made equal for both cases (A) and (B) at 6.16 in.
as shown in Figures 7.10 and 7.13. Then the two sets of the pairs of control forces
required were studied for cases (A) and (B). Figure 7.14 compares the first-story
control force of case (A) and the sixth-story control force of case (B). Figure 7.15
compares the second-story control force of case (A) with the 15th story control
force of case (B). Again, it can be seen that case (A) requires less control force.
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FIGURE 7.13 Top-floor displacement responses for two actuator locations with maximum
set same.

The control energy index for case (A) is 0.28× 106, as compared to 1.1× 106 for
case (B). Hence, case (A) is optimal from both the response and control energy
points of view.

7.2.3.3.4 Effect of controlled mode shapes on optimal locations
Recall that the controllability index by Equation 7.23 is based on the mode shape
of uncontrolled structure. With control force applied to the structure, the structural
damping and stiffness are changed, and thus mode shapes of controlled structure
are no longer the same as those of the uncontrolled structure. Thus, it is desirable
to investigate whether this difference is significant enough to alter the optimal
locations found by the criterion of controllability index.

The closed-loop mode shapes can be found by solving eigenvectors of the
closed-loop plant matrix [AC] by Equation 4.99. Riccati optimal active control
algorithm determines the feedback gain matrix [G] in Equation 4.99. The weighting
matrix [Q] is assumed to be diagonal with qii = 15,000 and [R] matrix is varied
to achieve different levels of control forces. The controllability index ρ(x) is
recalculated using the mode shapes of the controlled structure, and the result is
shown in Table 7.5 and Figure 7.16. It can be observed that the first and second
stories are still optimal. Thus, the criterion of controllability index is not sensitive
to the mode shapes of controlled or uncontrolled structures.

7.2.3.3.5 Effect of different earthquakes on optimal locations
Recall that the optimal tendon locations for the 15-story building were found using
response spectra of the N-S horizontal component of the El-Centro 1940 earth-
quake. It is desirable to determine whether this location would still be optimal for
another earthquake. For this purpose, the response spectra of the 1985 Mexico
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FIGURE 7.14 Comparison of required control forces by tendons at first floor of Case (A)
and sixth floor of Case (B).
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FIGURE 7.15 Comparison of required control forces by tendons at second floor of Case (A)
and 15th floor of Case (B).

City earthquake (see Figure 7.17) is used. Judgment of whether the optimal
locations will remain the same is made by observing the response spectra for
the displacement of the two records, since this will be the only parameter that
will change in the controllability index by Equation 7.23. Figure 7.17 shows
that the two curves though not identical are parallel for the range of periods of
interest. Note that in calculating the optimal locations the relative (not the absolute)
magnitude of displacement response spectra is of importance. The fact that the
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TABLE 7.5
Optimal Locations Using Mode Shapes of Controlled Structures

Floor x 1st mode φ1 (x) 2nd mode φ2 (x) �φ1/�x �φ2/�x ρ (x)

1 0.067 −0.001834 −0.003151 0.390 0.375 6.04−0.025766 j −0.024536 j
2 0.133 −0.003617 −0.005974 0.375 0.330 5.69−0.051317 j −0.046907 j
3 0.200 −0.004338 −0.005457 0.375 0.270 5.48−0.076337 j −0.065211 j
4 0.267 −0.004998 −0.004615 0.375 0.195 5.26−0.100578 j −0.077544 j
5 0.333 −0.005639 −0.003596 0.345 0.075 4.66−0.123802 j −0.082845 j
6 0.400 −0.006209 −0.002401 0.330 0.045 4.43−0.145723 j −0.080325 j
7 0.467 −0.006738 −0.001225 0.300 0.135 4.16−0.166170 j −0.070538 j
8 0.533 −0.007216 −0.000119 0.285 0.255 4.34−0.184904 j −0.054262 j
9 0.600 −0.007645 0.000852 0.255 0.315 4.26−0.201744 j −0.032982 j

10 0.667 −0.008018 0.001665 0.225 0.360 4.19−0.216518 j −0.008683 j
11 0.733 −0.008335 0.002288 0.180 0.390 3.97−0.229068 j +0.016392 j
12 0.800 −0.008590 0.002749 0.150 0.345 3.44−0.239264 j +0.039978 j
13 0.867 −0.008780 0.003071 0.120 0.300 2.91−0.247005 j +0.059882 j
14 0.933 −0.008910 0.003252 0.075 0.210 1.97−0.252214 j +0.074234 j
15 1.000 −0.008969 0.003347 0.045 0.120 1.14−0.254830 j +0.081778 j

response spectra are parallel will produce the same optimal locations. Thus, it can
be predicted that the locations found for El-Centro will still be optimal for the
Mexico earthquake. Calculation of the controllability index ρ(x) for the Mexico
earthquake shows that the case of floors 1 and 2 is still optimal.

7.2.3.3.6 Variability of optimal locations with structural
properties

The structural properties of the 15-story building are modified to observe whether
or not the optimal locations will be different from those found earlier. Recall that
the optimal locations were the first and second floor for the choice of two active
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FIGURE 7.16 Controllability index for the 15-story building using mode shapes of
controlled structure.
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TABLE 7.6
Controllability Index for the 15-Story Building

Floor 1st mode (φ1) 2nd mode (φ2) �φ1/�x �φ2/�x ρ (x)

1 0.013 −0.042 0.195 0.630 0.647
2 0.027 −0.086 0.210 0.660 0.687
3 0.042 −0.130 0.225 0.660 0.711
4 0.059 −0.173 0.255 0.645 0.754
5 0.077 −0.211 0.270 0.570 0.747
6 0.097 −0.240 0.300 0.435 0.755
7 0.120 −0.255 0.345 0.225 0.801
8 0.145 −0.250 0.375 0.075 0.853
9 0.174 −0.214 0.435 0.540 1.067

10 0.207 −0.138 0.495 1.140 1.412
11 0.235 −0.042 0.420 1.440 1.441
12 0.259 0.060 0.360 1.530 1.409
13 0.277 0.154 0.270 1.410 1.222
14 0.289 0.225 0.180 1.065 0.897
15 0.295 0.263 0.190 0.570 0.474

tendons. The structural parameters used here are k1 = 3,000 k/in., k2 = 2,750
k/in., k3 = 2,500 k/in., k4 = 2,250 k/in., k5 = 2,000 k/in., k6 = 1,750 k/in.,
k7 = 1,500 k/in., k8 = 1,250 k/in., k9 = 1,000 k/in., k10 = k11 = k12 = k13 =
k14 = k15 = 800 k/in.; mi = 2 k-s2/in., i = 1, 2, . . . , 15; damping = 3% critical.
The weighting matrix is diagonal with Qi,i = 15,000 as before. The first two natural
frequencies of structure without control are ω1 = 2.896 rad/s and ω2 = 7.635
rad/s, which correspond to periods of T1 = 2.17 s and T2 = 0.82 s, respectively.
Using the response spectra values for the El-Centro 1940, N-S component, the
following maximum response values are obtained: Y1 = 0.894 ft, Y2 = 0.294 ft.
The first two modes are considered in evaluating the controllability index and the
procedure is shown in Table 7.6. A plot of the controllability index of Table 7.6 is
shown on Figure 7.18. It can be seen that the first and second floor locations are
no longer optimal; instead, the optimal locations are the 10th and 11th floor. Thus,
different structures have different optimal actuator location; even their number of
stories and geometrical shapes are same.

7.2.3.3.7 Effect of number of modes considered in optimal
locations selection

In these numerical studies above, it is assumed that two modes are enough to
evaluate the optimal tendon locations. In order to find the truly optimal locations
of active tendons, it is important to investigate if this assumption is accurate
enough, or if not, how many modes are required.
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FIGURE 7.18 Controllability index for the modified 15-story structure.

In this study, the structural properties for the 15-story building in this example
are as follows: ki = 300 k/in.; mi = 6 k-s2/in., i = 1, 2, . . . , 7 and kj = 200 k/in.;
mj = 5 k-s2/in., j = 8, 9, . . . , 15; damping = 3% critical. Two active tendons are to
be located optimally and, we consider only two modes at the start. The first natural
frequency is ω1 = 0.732 rad/s and the second frequency and ω2 = 1.954 rad/s,
with corresponding periods of T1 = 8.58 s and T2 = 3.22 s, respectively. Using
response spectra of the 1985 Mexico City earthquake (shown in Figure 7.17), the
following maximum response values are obtained: Y1 = 1.143 ft, Y2 = 2.238 ft.
The first two modes are then used to calculate the controllability index of Equation
7.23 and the results are shown in Table 7.7. A plot of the controllability index
is given in Figure 7.19. It is seen that the 10th and 11th floors are the optimal
locations. Next, three modes are considered in calculating the controllability index
of Equation 7.23, the first, second, and third. The third mode natural frequency isω3 = 3.350 rad/s with corresponding period T3 = 1.88 s. The maximum response
value is Y3 = 2.684 ft. The optimal locations are calculated using Equation 7.23
and the results are shown on Table 7.8. A plot of ρ (x) for three modes is given
in Figure 7.20. It can be seen that the optimal locations are no longer at the 10th
and 11th floors but are at the 8th and 12th floors. The same result is obtained if
one considers four modes, or five modes, as shown on Table 7.8 and Figure 7.9.
Hence, the 8th and 12th floor locations are optimal.

From this study, we know that three modes are sufficient to use the controllabil-
ity index by Equation 7.23 for optimal tendon placement on the 15-story structure.
In other situations, more modes may need to be considered. The procedure can be
terminated when an increase of the number of modes considered does not change
the optimal locations.
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TABLE 7.7
Controllability Index Using Two Modes

Floor First mode (φ1) Second mode (φ2) �φ1/�x �φ2/�x ρ (x)

1 0.014 −0.041 0.21(0.88∗) 0.62(0.84∗) 5.42
2 0.024 −0.078 0.23(0.96) 0.56(0.76) 5.14
3 0.043 −0.110 0.21(0.88) 0.48(0.65) 4.49
4 0.056 −0.133 0.20(0.83) 0.35(0.47) 3.60
5 0.069 −0.146 0.20(0.83) 0.20(0.27) 2.86
6 0.081 −0.148 0.18(0.75) 0.03(0.04) 2.19
7 0.092 −0.138 0.17(0.71) 0.15(0.20) 2.35
8 0.108 −0.108 0.24(1.0) 0.45(0.61) 4.52
9 0.122 −0.068 0.21(0.88) 0.600.(0.81) 5.27

10 0.134 −0.021 0.18(0.75) 0.71(0.96) 5.88
11 0.145 0.028 0.17(0.71) 0.740.(10.0) 6.05
12 0.153 0.074 0.12(0.50) 0.69(0.93) 5.49
13 0.160 0.113 0.11(0.46) 0.59(0.80) 4.74
14 0.164 0.141 0.06(0.25) 0.42(0.57) 3.23
15 0.166 0.156 0.03(0.13) 0.23(0.31) 1.80

*Normalized.
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FIGURE 7.19 Controllability index using the first two modes.
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FIGURE 7.20 Controllability index with higher modes considered.

TABLE 7.8
Controllability Index—Higher Modes

ρ (x)

Floor Three modes Four modes Five modes

1 7.27 7.36 7.361
2 6.41 6.44 6.443
3 4.88 4.88 4.884
4 3.65 3.75 3.752
5 3.95 4.13 4.136
6 4.88 5.00 5.004
7 5.57 5.59 5.590
8 8.18 8.20 8.197
9 6.80 6.91 6.908

10 5.90 6.05 6.052
11 6.88 6.93 6.927
12 8.39 8.39 8.392
13 4.84 4.96 4.962
14 7.28 7.41 7.414
15 4.22 4.33 4.335
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TABLE 7.9
Frequencies and Mode Shapes when First Floor Stiffness Changes

Frequency (Hz) First mode Second mode Third mode

Original 2.863, 9.502, 15.06 [0.678 0.889 1.0] [1.0 0.194 −0.850] [−0.602 1.0 −0.480]
Case 1 3.318, 9.958, 15.18 [0.573 0.850 1.0] [1.0 0.284 −0.815] [−0.666 1.0 −0.469]
Case 2 3.871, 10.79, 15.50 [0.430 0.796 1.0] [1.0 0.470 −0.805] [−0.825 1.0 −0.441]
Case 3 4.192, 11.49, 15.91 [0.340 0.761 1.0] [1.0 0.682 −0.859] [−1.0 0.967 −0.396]
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FIGURE 7.21 Relationship between control energy and response indices.

7.2.3.3.8 Validation of controllability index as optimal
placement criterion

In order to verify the controllability index, a comparison is made between different
optimal placement criterion and time-history response of the controlled structure
is simulated. The 15-story building with structural properties same as those in
Section 7.2.3.3.6 serves as an example here. The controllability index of Equation
7.23 using two modes is shown in Table 7.6 and Figure 7.18. According to the
criterion of the controllability index, locations of the two active tendons are best
at floors 10 and 11, intermediate at floors 1 and 2, and worst at floors 1 and 15.
Figure 7.21 plots the control energy and response performance indices for these
three cases. Consistent with the result by the controllability index, the case of floors
10 and 11 is the best because of giving the least response and the case of floors 1
and 15 gives the largest response thus is the worst, for all levels of control energy.
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FIGURE 7.22 Response comparisons for three actuator placement options.

Actual time-history responses of the three cases to the El-Centro 1940 earthquake
are compared, as shown in Figure 7.22. This figure confirms the validity of the
controllability index as the optimum placement criterion for active control devices.

7.2.4 Discussions on Performance Indices
Performance indices have the advantage of applicability to seismic response con-
trol where multiple modes are significant. However, they have two weaknesses for
optimal device placement of seismic response control systems. First, a trial and
error procedure must be employed [11]. Second, seismic structural response in
time history has to be solved and integrated, which means the performance index
approach still requires large computing cost. Third, specific earthquake records
have to be employed to determine the optimal device location. With great uncer-
tainty in the nature of earthquake excitation, using different earthquake records
can yield different optimal location. In the following section, a statistical method
is developed for optimal placement of control devices. This method can overcome
weaknesses of above approaches in that it is applicable to smart seismic structures
with any control system, considers multiple significant modes of the structure, uses
analytical model of controlled structures, and requires no complex calculation of
seismic structural response in time history.

7.3 STATISTICAL METHOD FOR OPTIMAL DEVICE PLACEMENT OF

SMART SEISMIC STRUCTURES
As noted, it is important to place dampers and actuators optimally so as to maximize
the control efficiency of a control system. This section develops a general, accurate,
and statistical method for optimal device placement of smart seismic structures
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[7,8,18,20]. It is general as it is applicable to smart structures using dampers,
actuators, and their combination (i.e., hybrid devices). It is accurate as it starts
with a mathematical models that considers dynamics of actuators and dampers
and nonorthogonal damping and stiffness of controlled structures. The statistical
nature of this method gives a further advantage that the optimal device locations
do not depend on the earthquake records. This section uses hybrid systems as the
example to demonstrate the method. A hybrid control system can be complicated
as it may consist of multiple actuators and dampers, as shown in Figure 1.34a.
Pure passive (or active) systems are simplified cases of hybrid systems in that they
are a “hybrid” system without active devices (or passive dampers).

7.3.1 System Description

7.3.1.1 Dynamic model of hybrid-controlled seismic-resistant
structures

A structure with hybrid bracing control system, as shown in Figure 1.34a, uses
K-brace mounted viscous fluid dampers and servovalve controlled actuators. The
analytical model of this controlled structure under earthquake excitation ẍg(t) has
been derived as {Ż(t)} = [A]{Z(t)} + [Bu]{u(t)} + {Br}ẍg(t) (7.25)

where {Z(t)} is state vector, [A] is plant matrix, [Bu] is coefficient matrix of the
control command vector {u(t)}, and {Br} is coefficient vector of the reference
input (i.e., earthquake excitation) ẍg(t). Different systems have different elements
for these vectors and matrices. Since dynamics of control devices (dampers and
actuators) is considered here, the state vector should include variables for control
devices in addition to those for structural responses, as discussed in Chapter 4.

Optimal algorithms by full-state feedback lead to the following control law:{u (t)} = − [G] {Z(t)} (7.26)

Substituting Equation 7.26 into Equation 7.25 yields the state variable represent-
ation of the closed-loop system (i.e., the controlled structure) as{

Ż(t)} = [AC] {Z(t)} + {Br} ẍg (t) (7.27)

and the plant matrix of the controlled structure system as[Ac] = [A] − [Bu][G] (7.28)

7.3.1.2 Stochastic model of earthquake ground motions

As proposed by Kanai and Tajimi [21,33], earthquake horizontal ground acceler-
ation ẍg(t) can be modeled as a stationary Gaussian random process with a zero
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mean and characterized by its power spectral density G(ω)

G(ω) = (1+ 4ζ 2
gω2/ω2

g)G0(1− ω2/ω2
g)2 + 4ζ 2

gω2/ω2
g

; ω ≥ 0 (7.29)

where G0 is spectral intensity of the ground acceleration, ζg and ωg are damping
ratio and prevailing circular frequency, respectively, which describe soil deposit
characteristics. ωg is called prevailing frequency because it corresponds the largest
power spectral density. Parameters in the spectrum model are proposed by the
authors [28] as Firm soil : ωg = 31.4 rad/s; ζg = 0.55

Medium soil : ωg = 15.6 rad/s; ζg = 0.60
Soft soil : ωg = 10.5 rad/s; ζg = 0.65

(7.30)

In shaking table tests on structural control, Spencer et al. [32] suggested that 20 ≤ ωg ≤ 120 rad/s, 0.3 ≤ ζg ≤ 0.75,σẍg = 0.12 g, G0 = 0.03ζgπωg(4ζ 2
g + 1) g2 · s (7.31)

for a three-story structure model with active mass driver system, and 8 ≤ ωg ≤ 50 rad/s, 0.3 ≤ ζg ≤ 0.75σẍg = 0.034 g, G0 = 2.35× 10−3ζgπωg(4ζ 2
g + 1) g2 · s (7.32)

for a three-story structure model with active tendon system. These values match
Palazzo and Petti’s parameters with consideration of the similarity of structure
models.

The Kanai-Tajimi spectrum can be modified [13] by applying a low-band
frequency filter, and the formulation is

G(ω) = H2
CP(ω)H2

KT(ω)G0 (7.33)

where HCP(ω) is the Clough and Penzien low-band frequency filter given by

HCP(ω) = ω2/ω2
1(1− ω2/ω2

1)+ 2jζ1ω/ω1
, j = √−1 (7.34)

and HKT(ω) is the Kanai and Tajimi filter given by

HKT(ω) = 1+ 2jζgω/ωg(1− ω2/ω2
g)+ 2jζgω/ωg

(7.35)
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The ith moment of G(ω) is defined asλi = ∫ ∞
0

ωiG(ω) dω (7.36)

that can be used to express statistical properties of ground motion. λ0 is the mean
square value or variance of the ground acceleration.

7.3.2 Review of Stochastic Theory of Structural Seismic
Response

A structure with n dynamic d.o.f. under seismic excitation can be modeled as[M]{ẍ(t)} + [C]{ẍ(t)} + [K]{ẍ(t)} = {δ}ẍg(t) (7.37)

where {δ} is vector of coefficients for earthquake ground acceleration. In general,
it is assumed that this system has orthogonal damping and stiffness matrices. Then
with modal transformation, the response at kth d.o.f. is

xk(t) = n∑
i=1

φkiqi(t); k = 1, 2, . . . , n (7.38)

and Equation 7.37 becomes

q̈i(t)+ 2ζiωiq̇i(t)+ ω2
i qi(t) = riẍg(t) = Fi(t) (7.39)

where ζi and ωi are damping ratio and natural frequency of the ith mode; ri ={φi}T{δ}/Mi and Mi = {φi}T[M]{φi}; i = 1, 2, . . . , n.
The power spectrum density of the response at the lth d.o.f. will be

Sxl (ω) = n∑
i=1

n∑
k=1

φliφlkHi(−jω)Hk(jω)SFiFk (ω) ≈ n∑
i=1

φ2
li|Hi(jω)|2SFi(ω)

(7.40)

where ω is excitation frequency and

SFi(ω) = r2
i Sẍg(ω) = r2

i G(ω); ω ≥ 0 (7.41)

Hi(jω) = 1ω2
i − ω2 + 2jζiωiω ; j = √−1 (7.42)
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The RMS value of the response of the lth d.o.f. isσxl = √∫ +∞−∞ Sxl (ω) dω =√√√√ n∑

i=1
φ2

lir
2
i

∫ ∞
0
|Hi(jω)|2G(ω) dω (7.43)

Integration in the above equation can be found by the theorem of residue [25].
Since Equation 7.37 describes a linear system, its responses are a Gaussian random
process with zero mean values, the same as the excitation.

Design value of response of the lth d.o.f. is

xl = µσxl (7.44)

where the factor µ is determined by the required probability of structural safety.
Therefore, if the control objective is to reduce the response at freedom l of
the structure, optimal placement of the control device will yield the smallest
values of σxl .

7.3.3 Modal Analysis of Smart Structures with
Hybrid System

As noted, control devices are a first-order dynamic system in a structural control
system. This characteristic results in real eigenvalues (poles) of the system plant
matrix. In addition, control force will change damping and stiffness coefficients of
the structure, which leads to nonorthogonal damping and stiffness matrices. Thus,
the classical modal analysis cannot be applied to controlled structures. A new
approach needs to be developed.

7.3.3.1 Eigenvalues and eigenvectors of plant matrix for
controlled structures

The analytical model of controlled structures is expressed by Equations 7.27
and 7.28. Since actuator and damper dynamics is considered, both [A] and [Ac]
have first-order real poles. In addition, each structural mode corresponds to a
pair of conjugate complex poles. Eigenvalues of matrix [Ac] (i.e., poles of the
system) are• n pairs of conjugate complex numberµi ± νij = −ζiωi ±√1− ζ 2

i ωij (7.45)

and each pair refers to one mode of the system; ζi and ωi are damping ratio
and natural frequency of ith mode, respectively; j = √−1.
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devices.

Thus, the corresponding eigenvectors can be expressed as[T ] = [T1, T2, . . . , Tn; Tn+1, Tn+2, . . . , Tn+m] (7.46)

where Tn+i (i = 1, 2, . . . , m) are real vectors expressed as[Tn+i] = [α1,n+i α2,n+i . . . αn,n+i αn+1,n+i . . . αn+m,n+i]T (7.47)

and Ti(i = 1, 2, . . . , n) is a pair of conjugate complex vectors expressed as[Ti] =  α1i + β1ij α1i − β1ijα2i + β2ij α2i − β2ij
...

...αni + βnij αni − βnijαn+1,i + βn+1,ij αn+1,i − βn+1,ij
...

...αn+m,i + βn+m,ij αn+m,i − βn+m,ij


2×(n+m) (7.48)

7.3.3.2 Modal decomposition

Let {Z(t)} = [T ]{ψ(t)} (7.49)

Then Equation 7.27 can be rewritten as[T ]{ψ̇(t)} = [AC][T ]{ψ(t)} + {Br}ẍg(t) (7.50)

Thus{ψ̇(t)} = [T ]−1[AC][T ]{ψ(T)} + [T ]−1{Br}ẍg(t) = [�]{ψ(t)} + {�}ẍg(t)
(7.51)

where{ψ(t)} = [ψ1(t), ψ̄1(t);ψ2(t), ψ̄2(t); . . . ;ψn(t), ψ̄n(t);ψn+1(t), . . . ,ψn+m(t)]T
(7.52)
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and {ψi(t), ψ̄i(t)} is ith pair of conjugate complex modal coordinates; [�] is a
diagonal matrix expressed as[�] = [T ]−1[AC][T ]= µ1 + ν1j µ1 − ν1j · · · µn + νnj µn − νnj −p1 · · · −pm


(7.53)

and [�] = [T ]−1{Br} = [x1 + y1j, x1 − y1j; x2 + y2j, x2 − y2j; . . . ;
xn + ynj, xn − ynj; xn+1, . . . , xn+m]T (7.54)

Thus, Equation 7.51 can be rewritten as{ ψ̇i(t) = (µi + νij)ψi(t)+ (xi + yij)ẍg(t)ψ̇ i(t) = (µi − νij)ψ i(t)+ (xi − yij)ẍg(t) i = 1, 2, . . . , n (7.55a)ψ̇n+k(t) = −pkψn+k(t)+ xn+k ẍg(t) k = 1, 2, . . . , m (7.55b)

and the response of kth d.o.f. is given by Equation 7.49 as

zk(t) = n∑
i=1

[(αki + βkij)ψi(t)+ (αki − βkij)ψ i(t)]+ m∑
i=1

αk,n+iψn+i(t) (7.56)

7.3.4 Stochastic Seismic Response of Hybrid-Controlled
Smart Structures

7.3.4.1 Transformation of pair of complex equations to
second-order real equation

Equations 7.55a and b are not convenient for stochastic response analysis because
they are complex equations, as it is difficult to define the power spectrum of
complex variables. However, there is a way to simplify the process. Since each
complex pair of the summation in Equation 7.56 refers to a modal contribution,
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the ith pair of the first-order complex equations in Equation 7.55a may be trans-
formed into an equivalent second-order equation as Equation 7.39 shows. Rewrite
Equation 7.39 as{

q̇i(t)
q̈i(t)} = [ 0 1−ω2

i −2ζiωi

]{
qi(t)
q̇i(t)}+ { 0

ri

}
ẍg(t) (7.57)

The ith pair of conjugate complex equations in Equation 7.55a can be rewritten as

d
dt

{ψi(t)ψ̄i(t)} = [µi + νij 0
0 µi − νij

]{ψi(t)ψ̄i(t)}+ { xi + yij
xi − yij

}
ẍg(t) (7.58)

Comparing Equations 7.57 and 7.58, a linear transform relationship may be

assumed between
{ψ(t)ψ(t)} and

{
q(t)
q̇(t)} as follows:{

qi(t)
q̇i(t)} = [�]{ ψi(t)ψ i(t)} = [ a b

c d

]{ ψi(t)ψ i(t)} (7.59)

Substituting Equation 7.59 into Equation 7.57 yields[
a b
c d

]{ ψ̇i(t)ψ̇ i(t)} = [ 0 1−ω2
i −2ζiωi

] [
a b
c d

]{ ψi(t)ψ i(t)}+ { 0
ri

}
ẍg(t) (7.60)

and it can be rewritten as{ψ̇i(t)˙̄ψi(t)}= [ a b
c d

]−1[ 0 1−ω2
i −2ζiωi

] [
a b
c d

]{ψi(t)ψ̄i(t)}+ [ a b
c d

]−1{ 0
ri

}
ẍg(t)

(7.61)

By comparing Equations 7.61 and 7.58, we obtain the equations for determining
the transformation matrix [�] as[

a b
c d

]−1 [ 0 1−ω2
i −2ζiωi

] [
a b
c d

] = [µi + νij 0
0 µi − νij

]
(7.62a)[

a b
c d

]−1 { 0
ri

} = { xi + yij
xi − yij

}
(7.62b)

Since [
a b
c d

]−1 = 1
ad − bc

[
d −b−c a

]
(7.63)
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Equation 7.62 can be rewritten as

1
ad − bc

[
abω2

i + 2bcζiωi + cd b2ω2
i + d2 + 2bdζiωi−a2ω2

i − c2 − 2acζiωi −abω2
i − cd − 2adζiωi

]= [µi + νij 0
0 µi − νij

]
(7.64a)

1
ad − bc

{−bri
ari

} = { xi + yij
xi − yij

}
(7.64b)

The equivalence of elements (1, 2) and (2, 1) in Equation 7.64a leads to{
b2ω2

i + d2 + bd · 2ζiωi = 0
a2ω2

i + c2 + ac · 2ζiωi = 0 (7.65)

Since µi = −ζiωi and µ2
i + ν2

i = ω2
i , the above equations yield{

b2(µ2
i + ν2

i )+ d2 − 2bdµi = 0
a2(µ2

i + ν2
i )+ c2 − 2acµi = 0 (7.66)

that is, { (bµi − d)2 + b2ν2
i = 0(aµi − c)2 + a2ν2
i = 0

(7.67)

Thus, {
bµi − d = ±bνij
aµi − c = ±aνij

(7.68)

that is,

c = a(µi ± νij), d = b(µi ± νij) (7.69)

Let’s pick

c = a(µi + νij), d = b(µi − νij) (7.70)

Then for element (1, 1) in Equation 7.64a

abω2
i + cd + 2ζiωibc

ad − bc
= ab(µ2

i + ν2
i )+ cd − 2µibc

ad − bc= ad/(µi − νij)(µ2
i + ν2

i )+ cb(µi − νij)− 2µibc
ad − bc= µi + νij (7.71)
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and for element (2, 2)−abω2
i − cd − 2ζiωibc

ad − bc
= −ab(µ2

i + ν2
i )− cd + 2µibc

ad − bc= −ad/(µi − νij)(µ2
i + ν2

i )− cb(µi − νij)+ 2µibc
ad − bc= µi − νij (7.72)

Equations 7.71 and 7.72 show that, whatever the values of a and b are, Equation
7.64a is always valid if Equation 7.70 is valid.

With Equation 7.70 we have[�]−1 = [ a b
c d

]−1 = [ a b(µi + νij)a (µi − νij)b]−1= j
2abνi

[
b(µi − νij) −b−a(µi + νij) a

]
(7.73)

Thus Equation 7.62b becomes[
a b
c d

]−1 { 0
ri

} = j
2abνi

[
b(µi − νij) −b−a(µi + νij) a

]{
0
ri

}= jri

2abνi

{−b
a

} = { xi − yij
xi + yij

}
(7.74)

Then we obtain − jri
2aνi
= xi + yij, i.e., a = −yi + xij

2νi(x2
i + y2

i ) ri

jri
2bνi
= xi − yij, i.e., b = −yi + xij

2νi(x2
i + y2

i ) ri

(7.75)

Thus, the elements of the transformation matrix [�] in Equation 7.59 area= −yi − xij
2νi(x2

i + y2
i ) ri

b= −yi − xij
2νi(x2

i + y2
i ) ri

c= a(µi + νij)
d= b(µi − νij) (7.76)

This solution shows that, no matter what the value (except zero) of ri is, the trans-
form expressed by Equation 7.59 is always valid if the elements of transformation
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matrix [�] are given by Equation 7.76. To simplify the problem, let ri = 1. The
ith pair of summations in Equation 7.56 becomes[αki + βkij αki − βkij]{ ψi(t)ψ i(t)}= [αki + βkij αki − βkij

] [�]−1
{

qi(t)
q̇i(t)}= j[αki + βkij αki − βkij]

2abνi

[
b(µi − νij) −b−a(µi + νij) a

]{
qi(t)
q̇i(t)}= 2

ri
[(βkiµi − αkiνi)yi − (αkiµi + βkiνi)xi (αkixi − βkiyi)]= fkiqi(t)+ gkiq̇i(t) (7.77)

where

fki = 2
ri
[(βkiµi − αkiνi)yi − (αkiµi + βkiνi)xi], gki = 2

ri
(αkixi − βkiyi)

(7.78)

and fki and gki are known because they relate only to coefficients given by Equa-
tions 7.47, 7.48, 7.53, and 7.54. Substituting Equation 7.77 into Equation 7.56
yields the seismic response of the controlled structure (k = 1, 2, . . . , n+ m)

zk(t) = n∑
i=1

fkiqi(t)+ n∑
i=1

gkiq̇i(t)+ m∑
i=1

αk,n+iψn+i(t) (7.79)

A comparison of the above equation and Equation 7.38 shows that the modal
superposition for a system with first-order dynamics and nonorthogonal damping
and stiffness is different in that it includes the contribution of real poles and modal
velocities. This further shows that classical theory of stochastic seismic response
cannot be applied to controlled structures. In order to obtain statistics of system
response, variances of modal coordinates and modal velocities for each pair of
complex poles as well as stochastic seismic response of the first-order system
must be examined first. Since the system is linear, q(t), q̇(t) andψ(t) are Gaussian
stochastic process with zero mean values, the same as that of the excitation. Thus
if their variances or RMS values are found, the stochastic seismic response is
determined.

7.3.4.2 Stochastic response of first-order dynamic system
under seismic excitation

The contribution of the real poles to the total response can be readily shown by the
following simple equation because each seismic excitation can be expanded to a
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Fourier series

ẏ(t)+ py(t) = sinωt (7.80)

The response is given by

y(t) = Ce−pt + p
p2 + ω2 sinωt − ω

p2 + ω2 cosωt (7.81)

Equation 7.81 shows that y(t) may be significant if p is small. Thus, the effect
of real poles on system response must be considered unless they are far from the
origin.

In Equation 7.79, ψn+i(t) is found by solving the first-order real equations in
Equation 7.55b which can be rewritten asψ̇n+k(t)+ pkψn+k(t) = xn+k ẍg(t) (7.82)

Response power spectrum density is obtained by

Sψn+k (ω) = |Hn+k(ω)|2G(ω) = ∣∣∣∣ xn+k

jω + pk

∣∣∣∣2G(ω) (7.83)

and the variance isσ 2
n+k = ∫ ∞

0
Sψn+k (ω) dω= ∫ ∞

0

x2
n+k

p2
k + ω2

(1+ 4ζ 2
gω2/ω2

g)G0(1− ω2/ω2
g)2 + 4ζ 2

gω2/ω2
g

dω= ∫ ∞
0

x2
n+k/ω2

g

p2
k/ω2

g + ω2/ω2
g

(1+ 4ζ 2
gω2/ω2

g)G0ωg(1− ω2/ω2
g)2 + 4ζ 2

gω2/ω2
g

d(ω/ωg)= x2
n+kG0ωg

∫ ∞
0

(1+ 4ζ 2
g x2) dx(x2 + q2)[(1− x2)2 + 4ζ 2

g x2] (7.84)

where x = ω/ωg, q = pk/ωg. This integration can be found by applying the
theorem of residue described as follows.

Lemma 7.1 If F(z) is an even function, the integration∫ ∞
0

F(z)dz = π j
N∑

i=1
(z − zi)F(z)|z=zi (7.85)

where zi are poles of F(z) and N is number of these poles in the upper half-plane.



“CHAP07” — 2008/1/18 — 13:33 — page 406 — #48

406 Smart Structures: Innovative Systems for Seismic Response Control
The integrand in Equation 7.84 has three poles in upper half-plane, qj and±√1− ζ 2

g + ζgj. Their residues are

R1= lim
x→qj

(x−qj)· 1+4ζ 2
g x2(x2+q2)[(1−x2)2+4ζ 2

g x2
]= 1

2qj
1−4ζ 2

g q2(1+q2)2−4ζ 2
g q2 (7.86)

R2= lim
x→(−√1−ζ 2

g+ζgj
)(x+√1−ζ 2

g −ζgj
)· 1+4ζ 2

g x2(x2+q2)[(1−x2)2+4ζ 2
g x2]= [

1+4ζ 2
g

(−√1−ζ 2
g +ζgj

)2
][−√1−ζ 2

g +ζgj−√1−ζ 2
g −ζgj

]−1[(−√1−ζ 2
g +ζgj

)2+2ζgj
(−√1−ζ 2

g +ζgj
)−1

][(−√1−ζ 2
g +ζgj

)2+q2
]= ζg

(
3+q2−4ζ 2

g q2
)−√1−ζ 2

g

(
1+q2+4ζ 2

g q2
)

j

8ζg
√

1−ζ 2
g

[(
q2+1

)2−4ζ 2
g q2

] (7.87)

R3= lim
x→(√1−ζ 2

g+ζgj
)(x−√1−ζ 2

g −ζgj
)· 1+4ζ 2

g x2(x2+q2)[(1−x2)2+4ζ 2
g x2]= [

1+4ζ 2
g

(√
1−ζ 2

g +ζgj
)2
][(√

1−ζ 2
g +ζgj

)2+q2
]−1[(√

1−ζ 2
g +ζgj

)2+2ζgj
(√

1−ζ 2
g +ζgj

)−1
][√

1−ζ 2
g +ζgj+√1−ζ 2

g −ζgj
]= ζg

(−3−q2+4ζ 2
g q2

)−√1−ζ 2
g

(
1+q2+4ζ 2

g q2
)

j

8ζg
√

1−ζ 2
g

[(
q2+1

)2−4ζ 2
g q2

] (7.88)

Therefore,σ 2
n+k = x2

n+kG0ωg
[π j(R1 + R2 + R3)]= πx2

n+kG0ωg

 1− 4ζ 2
g q2

k

2qk

[(q2
k + 1)2 − 4ζ 2

g q2
k

] + 1+ q2
k + 4ζ 2

g q2
k

4ζg
[(q2

k + 1)2 − 4ζ 2
g q2

k

]
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n+kG0

4qkζgωg

qk + q3
k + 2ζg − 8ζ 3

g q2
k + 4ζ 2

g q3
k[(

q2
k + 1

)2 − 4ζ 2
g q2

k

]= πx2
n+kG0ωg

4pkζg

pk + 4ζ 2
g pk + 2ζgωgω2

g + 2ζgωgpk + p2
k

(7.89)

7.3.4.3 Stochastic response of second-order dynamic system
under seismic excitation

The second-order dynamic system in modal space is expressed by Equation 7.39.
Power spectrum density of the modal displacement response qi(t) is

Sqi(ω) = |Hi(ω)|2G(ω) = ∣∣∣∣∣ ri−ω2 + 2ζiωiωj + ω2
i

∣∣∣∣∣G(ω) (7.90)

and the variance can be obtained byσ 2
qi = ∫ ∞

0
Sqi(ω) dω= ∫ ∞

0

r2
i /ω4

i(
1− ω2ω2

i

)2 + 4ζ 2
i
ω2ω2

i

· (1+ 4ζ 2
gω2/ω2

g

)
G0(

1− ω2ω2
g

)2 + 4ζ 2
g
ω2ω2

g

dω= r2
i G0ωg

2ω4
i

∫ +∞−∞ (1+ 4ζ 2
g x2)dx[(s2x2 − 1)2 + 4ζ 2

i s2x2
] [(x2 − 1)2 + 4ζ 2

g x2
] (7.91)

where x = ω/ωg, s = ωg/ωi. The above integration can also be found by the
theorem of residue, but the procedure is too complicated. So the following Lemma
[34] is introduced to find the above integration.

Lemma 7.2

Ik = ∫ +∞−∞ Gk(jω)
Hk(jω)Hk(−jω) dω = (−1)k+1 π

a0

Nk

Dk
(7.92)

where

Gk(jω) = b0(jω)2k−2 + b1(jω)2k−4 + · · · + bk−1

Hk(jω) = a0(jω)k + a1(jω)k−1 + · · · + ak
(7.93)
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Dk = ∣∣∣∣∣∣∣∣ d11 d12 · · · d1k

d21 d22 · · · d2k· · · · · · · · · · · ·
dk1 dk2 · · · dkk

∣∣∣∣∣∣∣∣ , Nk = ∣∣∣∣∣∣∣∣ b0 d12 · · · d1k
b1 d22 · · · d2k· · · · · · · · · · · ·
bk1 dk2 · · · dkk

∣∣∣∣∣∣∣∣ (7.94)

and dmn= a2m−n (as= 0 if s< 0 or s> k). All roots of Hk(jω) are in upper half-
plane.

From this lemma, the integrand in Equation 7.91 contains

G4(jx) = 4ζ 2
g x2 + 1 (7.95)

and

H4(jx) = (x2 − 2ζgjx − 1)(s2x2 − 2ζk s jx − 1)= s2x4 − 2s(ζgs+ ζk)jx3 − (1+ 4ζgζis+ s2)x2+ 2(ζis+ ζg)jx + 1

(7.96)

The comparison of Equation 7.96 and Equation 7.93 yields

b0 = 0, b1 = 0, b2 = −4ζ 2
g , b3 = 1 (7.97)

and

a0 = s2, a1 = 2s(ζgs+ ζj), a2 = 1+ 4ζgζjs+ s2, a3 = 2(ζj + ζg), a4 = 1
(7.98)

Then

D4 = ∣∣∣∣∣∣∣∣ d11 d12 d13 d14
d21 d22 d23 d24
d31 d32 d33 d34
d41 d42 d43 d44

∣∣∣∣∣∣∣∣ = ∣∣∣∣∣∣∣∣ a1 a0 0 0
a3 a2 a1 a0
0 a4 a3 a2
0 0 0 a4

∣∣∣∣∣∣∣∣ = a4

∣∣∣∣∣∣ a1 a0 0
a3 a2 a1
0 a4 a3

∣∣∣∣∣∣= a4(a1a2a3 − a0a2
3 − a2

1a4)= 4s[ζgζi + 4ζ 2
i ζ 2

g s+ 2ζgζi(2ζ 2
g + 2ζ 2

i − 1)s2 + 4ζ 2
g ζ 2

i s3 + ζgζis4] (7.99)

N4 = ∣∣∣∣∣∣∣∣ b0 d12 d13 d14
b1 d22 d23 d24
b2 d32 d33 d34
b3 d42 d43 d44

∣∣∣∣∣∣∣∣ = ∣∣∣∣∣∣∣∣ b0 a0 0 0
b1 a2 a1 a0
b2 a4 a3 a2
b3 0 0 a4

∣∣∣∣∣∣∣∣ = −a0

∣∣∣∣∣∣ 0 a1 a0
b2 a3 a2
b3 0 a4

∣∣∣∣∣∣= −a0(a1a2b3 − a0a3b3 − a1a4b2)= −2s3
[(

1+ 4ζ 2
g

) ζi + 4ζg
(ζ 2

i + ζ 2
g

)
s+ 4ζ 2

g ζis2 + ζgs3
]

(7.100)
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Thus the variance of modal displacement qi(t) in Equation 7.39 isσ 2
qi = πr2

i G0ωg

4ω4
i

(
1+ 4ζ 2

g

) ζi + 4ζg
(ζ 2

i + ζ 2
g

)
s+ 4ζ 2

g ζ 2
i s2 + ζ 3

g s3ζgζi + 4ζ 2
i ζ 2

g s+ 2ζgζi

(
2ζ 2

g + 2ζ 2
i − 1

)
s2 + 4ζ 2

g ζ 2
i s3 + ζgζis4= πr2

i G0

4
ωgω4

i

Nqi

Dqi

(7.101a)

where

Nqi = (1+ 4ζ 2
g

) ζi + 4ζg
(ζ 2

i + ζ 2
g

)
s+ 4ζ 2

g ζis2 + ζgs3 (7.101b)

Dqi = ζgζi + 4ζ 2
i ζ 2

g s+ 2ζgζi

(
2ζ 2

g + 2ζ 2
i − 1

)
s2 + 4ζ 2

g ζ 2
i s3 + ζgζis4 (7.101c)

Similarly, the square variance of modal velocity q̇i(t) in Equation 7.39 is given byσ 2
q̇i
= ∫ ∞

0
Sq̇i(ω) dω= ∫ ∞

0

r2
i ω2(ω2 − ω2

i
)2 + 4ζ 2

i ω2
i ω2
· (

1+ 4ζ 2
gω2/ω2

g

)
G0(

1− ω2/ω2
g

)2 + 4ζ 2
gω2/ω2

g

dω= r2
i G0

2
ω3

gω4
i

∫ +∞−∞ (x2 + 4ζ 2
g x4)dx[(

s2x2 − 1
)2 + 4ζ 2

i s2x2
] [(x2 − 1)2 + 4ζ 2

g x2
] (7.102)

where x = ω/ωg, s = ωg/ωk . Comparing the above integrand to that in Equa-
tion 7.91, it is known that only the numerator of the integrand is different. D4 for
Equation 7.102 is then given by Equation 7.100 but N4 is different. Note that for
Equation 7.102

G4(ix) = 4ζ 2
g x4 + x2 (7.103)

In this case

b0 = 0, b1 = 4ζ 2
g , b2 = −1, b3 = 0 (7.104)



“CHAP07” — 2008/1/18 — 13:33 — page 410 — #52

410 Smart Structures: Innovative Systems for Seismic Response Control
and

N4 = ∣∣∣∣∣∣∣∣ b0 d12 d13 d14
b1 d22 d23 d24
b2 d32 d33 d34
b3 d42 d43 d44

∣∣∣∣∣∣∣∣ = ∣∣∣∣∣∣∣∣ b0 a0 0 0
b1 a2 a1 a0
b2 a4 a3 a2
b3 0 0 a4

∣∣∣∣∣∣∣∣= −a0

∣∣∣∣∣∣ b1 a1 a0
b2 a3 a2
0 0 a4

∣∣∣∣∣∣ = −a0a4

∣∣∣∣ b1 a1
b2 a3

∣∣∣∣ = −a0a4(a3b1 − a1b2)= −2s2
[
4ζ 3

g + ζk

(
1+ 4ζ 2

g

)
s+ 2ζgs2

] (7.105)

where s = ωg/ωk . Thus the square variance of q̇i(t) isσ 2
q̇i
= πr2

i G0ω3
g

4ω4
i

4ζ 3
g + ζi

(
1+ 4ζ 2

g

)
s+ 2ζgs2

sζg
[ζi + 4ζ 2

i ζgs+ 2ζi(2ζ 2
g + 2ζ 2

i − 1)s2 + 4ζgζ 2
i s3 + ζis4

]= πr2
i G0

4
ω3

gω4
i

Nq̇i

Dq̇i

(7.106a)

where

Nq̇i = 4ζ 3
g + ζi

(
1+ 4ζ 2

g

)
s+ ζgs2 (7.106b)

Dq̇i = sζg
[ζi + 4ζ 2

i ζgs+ 2ζi

(
2ζ 2

g + 2ζ 2
i − 1

)
s2 + 4ζgζ 2

i s3 + ζis4
]

(7.106c)

7.3.4.4 Stochastic response of controlled structure under
seismic excitation

For linear systems, σqq̇ = 0 under stationary random excitation and the interaction
effect between different modes is small if the modes are well-spaced. The variance
of the system’s closed-loop response, which is defined by Equation 7.79, can be
found by the square-root-of-the-sum-of-the-squares (SRSS) method asσ 2

zk
= n∑

i=1

(
f 2
kiσ 2

qi + g2
kiσ 2

q̇i

)+ m∑
i=1

α2
k,n+iσ 2

n+i (7.107)

Equation 7.107 shows that there are two additional terms in the stochastic
seismic response of controlled structures compared to that of uncontrolled struc-
tures with orthogonal damping and stiffness matrices. First is

∑m
i=1 α2

k,n+iσ 2
n+i,

which expresses the effect of first-order dynamics of control devices; second is∑n
i=1 g2

kiσ 2
q̇i

, which means that the stochastic response of a controlled structure is
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related not only to modal coordinate qi(t), but also to the first derivative of the
modal coordinate, that is, q̇i(t).
7.3.5 Determination of Optimal Placement of Control

Devices

7.3.5.1 Optimization problem definition

The goal of optimal placement of control devices is to maximize control system
effectiveness, that is, to reduce structural responses to a given level with the least
control force. Thus, the general optimization problem for control device placement
can be expressed as

Minimize {f (x)}
Subject to

{
g(x) = g0
1 ≤ x ≤ N

(7.108)

where f (x) is objective function that expresses the optimization goal, for the optim-
ization of control device placement, f (x) can be active control force, passive
control force, or their weighted summation; g(x) is control objective that can be
structural displacement, velocity or drift, and g0 is desired structural response level
with control; x is design variable; for the hybrid bracing control system presented
in Figure 5.21, x is story number where a control device is placed, and N is the
total number of stories in the building. If there are more than two control devices
used in the hybrid bracing control system, x will be a vector and each element of
x refers to the location of one control device.

Equation 7.44 shows that the design values of both control force and structural
response are proportional to their RMS values determined by Equation 7.107.
Thus, if the control objective is to reduce the response at freedom l of the structure,
optimal placement of the control device will yield the smallest values of σxl with
RMS value of control force set same, or the optimal location of control devices
is where the smallest RMS value of control force is required to achieve a control
objective. Thus, the optimization problem expressed by Equation 7.108 can be
rewritten as

Minimize {σf (x)}
Subject to

{σg(x) = σ0
1 ≤ x ≤ N

(7.109)

7.3.5.2 Solution procedure

As noted, there is no efficient algorithm for the optimization problem of control
device placement. Since the number of locations for control devices in seismic-
resistant structures is limited by the number of bays and stories, an enumerative
technique (a sequential search procedure) is implemented by MATLAB®. m code
to solve this optimization problem. It is expressed by the following step-by-step
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Passive system?

Yes

Yes

Yes

NO

NONO

NO

Compare all �f by different location (x), optimal
location corresponds to the smallest �f x=x+1(Place control device at next location)

Equivalent modal analysis

RMS response in modal coordinates

RMS response in natural coordinates

Feedback gain

Passive system?

Open-loop system model

x=1 (Place control device at the first possible location)

Close-loop system model

Eigenvalues and eigenvectors

FIGURE 7.23 Flowchart of solution procedure for optimal placement problem.

procedure and the flowchart in Figure 7.23. This procedure works for any structure
with multiple bays and stories.

Step 1. Let x= 1, that is, place the control device at the first floor. Establish its
model according to Equation 7.25.
Step 2. Find gain matrix [G] by certain control algorithms and closed-loop plant
matrix [Ac] according to Equations 7.26 and 7.28.
Step 3. Calculate and sort the eigenvalues and the eigenvectors of matrix [Ac].
Step 4. Solve coefficients xi, yi and fki, gki for each mode, and xn+i for each
real pole.
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Step 5. Use Equations 7.89, 7.101, and 7.106 to find RMS values of the system
response in the modal space.
Step 6. Solve RMS values of structural response σg using Equation 7.107.
Step 7. Check the RMS value of structural response σg. It should equal required
level σ0. If not, change feedback gain [G] and repeat steps 2–7 till σg = σ0.
Step 8. Find the RMS value of required control force σf solved by Equation 7.107.
Step 9. Increase x by 1 and repeat steps 1–7 until x = N .
Step 10. Compare σf obtained for each x; the optimum location x0 is the one with
the smallest σf .

EXAMPLE 7.3.1

The two-story building in Example 7.2.1 serves as an example here. Assume
the building is constructed on medium soil. Find its stochastic seismic
displacement response of the structure with active control at the first floor.

Solution
The motion equation of the system has been given in Example 7.2.1. By
defining the state vector{Z(t)} = {{x(t)}{ẋ(t)}} = {x1(t), x2(t), ẋ1(t), ẋ2(t)}T (a)

we obtain the state variable representation of the system as{Ż(t)} = [A] {Z(t)} + {Bu} u(t)+ {Br} ẍg(t) (b)

where [A] = ( [O]2×2 [I]2×2−[M]−1[K] −[M]−1[C])=  [O]2×2− [0.136
0.066

]−1 [ 75.00 −44.30−44.30 44.30

][I]2×2− [ 0.136
0.066

]−1 [ 0.0572 −0.0198−0.0198 0.0313

]=  0 0 1.0 0
0 0 0 1.0−551.471 325.735 −0.421 0.146

671.212 −671.212 0.300 −0.474

 (c){Bu} = { {0}
[M]−1 {γ }} (d)
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when the control is at the first floor,{Bu} =  0

0[
0.136

0.066

]−1 {−1
0

} =  0
0−7.353
0

 (e)

and when the control is at the second floor,{Bu} =  0
0[

0.136
0.066

]−1 { 1−1

} =  0
0
7.353−15.152

 (f){Br} = { {0}
[M]−1 {δ}} =  0

0[
0.136

0.066

]−1 {−0.136−0.066

} =  0
0−1−1

 (g)

Assume the control is at the first-story; Linear quadratic control algorithm is
used to design the controller. Let the weighting matrices[Q] = [I]4×4 =  1

1
1

1

 (h)

[R] = 50 (i)

Use MATLAB® built–in function lqr for the controller design as� G = lqr(A, Bu, Q, R) (j)

then we obtain the gain matrix

[G] = [−0.0821 0.0814 −0.159 −0.0153] (k)

and the closed-loop plant matrix

[Ac] = [A]− {Bu} [G] = [A]− 0
0−7.353
0

 [−0.0821 0.0814 −0.159 0.0153]
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0 0 0 1.0−551.471 325.735 −0.421 0.146

671.212 −671.212 0.300 −0.474

−  0 0 0 0
0 0 0 0

0.603 −0.599 1.171 0.112
0 0 0 0

=  0 0 1.0 0
0 0 0 10.−552.074 326.334 −1.591 0.033

671.212 −671.212 0.300 − 0.474

 (l)

The eigenvalues and eigenvectors of [Ac] are solved as

[�]=−0.488+ 11.818j −0.488− 11.818j −0.545+ 32.906j −0.545− 32.906j


(m)

[T ]= 0.0463+ 0.0243j 0.0463− 0.0243j 0.0159+ 0.0004j 0.0159− 0.0004j
0.0579+ 0.0317j 0.0579− 0.0317j −0.0259+ 0.0003j −0.0259− 0.0003j−0.310+ 0.535j −0.310− 0.535j −0.0203+ 0.523j −0.0203− 0.523j−0.421+ 0.669j −0.421− 0.669j 0.0037− 0.852j 0.0037+ 0.852j


(n)

Thus there are two modes for this system, andµ1 = −0.488, ν1 = 11.818 (o)µ2 = −0.545, ν2 = 32.906 (p)α11 = 0.0463,β11 = 0.0243α21 = 0.0579,β21 = 0.0317α31 = −0.310,β31 = 0.535α41 = −0.421,β41 = 0.669

(q)α12 = 0.0159,β12 = 0.0004α22 = −0.0259,β22 = 0.0003α32 = −0.0203,β32 = 0.523α42 = 0.0037,β42 = −0.852

(r)
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4.537+2.934j 2.936+1.522j −0.217+ 0.401j −0.130+0.248j
13.751−0.220j −10.885+0.239j 0.010−0.418j 0.008+0.331j
13.751+0.220j −10.885−0.239j 0.010+0.418j 0.008−0.331j

 0
0−1−1

=  0.3473+ 0.6486j
0.3473− 0.6486j−0.0171+ 0.0869j−0.0171− 0.0869j

 (s)

Thus

x1 = 0.3473, y1 = 0.6486 (t)

x2 = −0.0171, y2 = 0.0869 (u)

From Equation 7.78 and recall that we can let γ1 = 1, then

f11 = 2
r1

[(β11µ1 − α11ν1) y1 − (α11µ1 + β11ν1) x1]= 2
1

{
[0.0243× (−0.488)− 0.0463× 11.818]× 0.6486− [0.0463× (−0.488)+ 0.0243× 11.818]× 0.3473

}= −0.909 (v)

g11 = 2
r1
(α11x1 − β11y1)= 2

1
(0.0463× 0.3473− 0.0243× 0.6486)= 6.380× 10−4 (w)

f21 = 2
r1

[(β21µ1 − α21ν1) y1 − (α21µ1 + β21ν1) x1]= 2
1

{
[0.0317 (−0.488)− 0.0579 (11.818)] (0.6486)− [0.0579 (−0.488)+ 0.0317 (11.818)] (0.3473)}= −1.148 (x)

g21 = 2
r1
(α21x1 − β21y1)= 2

1
[0.0579 (0.3473)− 0.0317 (0.6486)]= −9.039× 10−4 (y)
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f12 = 2
r2

[(β12µ2 − α12ν2) y2 − (α12µ2 + β12ν2) x2]= 2
1

{
[0.004× (−0.545)− 0.0159 (32.906)] (0.0869)− [0.0159 (−0.545)+ 0.0004 (32.906)] (−0.0171)}= −0.091 (z)

g12 = 2
r2
(α12x2 − β12y2)= 2

1
[0.0159 (−0.0171)− 0.0004 (0.0869)]= −6.133× 10−4 (aa)

f22 = 2
r2

[(β22µ2 − α22ν2) y2 − (α22µ2 + β22ν2) x2]= 2
1

{
[0.0003 (−0.545)− (−0.0259) (32.906)] (0.0869)− [−0.0259 (−0.545)+ 0.0003 (32.906)] (−0.0171)}= 0.149 (bb)

g22 = 2
r2
(α22x2 − β22y2)= 2

1
[−0.0259 (−0.0171)− 0.0003 (0.0869)]= 3.644× 10−4 (cc)

The properties of medium soil is given by Equation 7.30 asωg = 15.6 rad/s and ζg = 0.60 (dd)

The natural frequencies and damping ratios can be found from Equations o
and p using Equation 7.45, that is,{ −ζ1ω1 = µ1 = −0.488√

1− ζ 2
1ω1 = ν1 = 11.818

(ee)ω2
1 = µ2

1 + ν2
1 = (−0.488)2 + 11.8182 = 139.9 (ff)ω1 = 11.828 rad/s (gg)ζ1 = −0.488−11.828
= 0.0413 (hh)
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Similarly, { −ζ2ω2 = µ2 = −0.545√

1− ζ 2
2ω2 = ν2 = 32.906

(ii)ω2
2 = µ2

2 + ν2
2 = (−0.545)2 + 32.9062 = 1083.10 (jj)ω2 = 32.911 rad/s (kk)ζ2 = −0.545

32.911
= 0.0166 (ll)

From Equation 7.101

Nq1 = (1+ 4ζ 2
g

) ζ1 + 4ζg
(ζ 2

1 + ζ 2
g

)
s+ 4ζ 2

g ζ1s3 + ζgs= [1+ 4
(

0.62
)]

0.0413+ 4 (0.6) (0.04132 + 0.62
) (1.319)+ 4

(
0.62

) (0.0413) (1.3192
)+ 0.6

(
1.3193

)= 2.726 (mm)

Dq1 = ζgζ1 + 4ζ 2
1 ζ 2

g s+ 2ζgζ1
(

2ζ 2
g + 2ζ 2

1 − 1
)

s2 + 4ζ 2
g ζ 2

1 s3 + ζgζ1s4= 0.6 (0.0413)+ 4
(

0.04132
) (

0.62
) (1.319)+ 2 (0.6) (0.0413) (2× 0.62 + 2× 0.04132 − 1

) (
1.3192

)+ 4
(

0.62
) (

0.04132
) (

1.3193
)+ 0.6 (0.0413) (1.3194

)= 0.0848 (nn)

in which

s = ωgω1
= 15.6

11.828
= 1.319 (oo)

Thus,σ 2
q1 = πr2

1G0

4
ωgω4

1

Nq1

Dq1
= π (12)G0

4
15.6

11.8284
2.726

0.0848
= 0.0201G0 (pp)

From Equation 7.106,

Nq̇1 = 4ζ 3
g + ζ1

(
1+ 4ζ 2

g

)
s+ ζgs2
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[
1+ 4(0.62)] (1.319)+ 0.6(1.3192)= 2.041 (qq)

Dq̇1 = s
[ζgζ1 + 4ζ 2

1 ζ 2
g s+ 2ζgζ1

(
2ζ 2

g + 2ζ 2
1 − 1

)
s2 + 4ζ 2

g ζ 2
1 s3 + ζgζ1s4

]= sDq1 = 1.319 (0.0848) = 0.112 (rr)

Thus, σ 2
q̇1 = πr2

1G0

4
ω3

gω4
1

Nq̇1

Dq̇1= π12G0

4
15.63

11.8284
2.041
0.112= 2.776G0 (ss)

Then for the second mode,

s = ωgω2
= 15.6

32.911
= 0.474 (tt)

Nq2 = (1+ 4ζ 2
g

) ζ2 + 4ζ 2
g

(ζ 2
2 + ζ 2

g

)
s+ 4ζ 2

g ζ2s2 + ζgs3= (1+ 4× 0.62
) (0.0166)+ 4× 0.62

(
0.01662 + 0.62

) (0.474)+ 4
(

0.62
) (0.0166) (0.4742

)+ 0.6
(

0.4743
)= 0.356 (uu)

Dq2 = ζgζ2 + 4ζ 2
2 ζ 2

g s+ 2ζgζ2
(

2ζ 2
g + 2ζ 2

2 − 1
)

s2 + 4ζ 2
g ζ 2

2 s3 + ζgζ2s4= 0.6 (0.0166)+ 4
(

0.01662
) (

0.62
) (0.474)+ 2 (0.6) (0.0166) (2× 0.62 + 2× 0.01662 − 1

) (
0.4742

)+ 4
(

0.62
) (

0.01662
) (

0.4743
)+ 0.6 (0.0166) (0.4744

)= 9.442× 10−3 (vv)

Nq̇2 = 4ζ 3
g + ζ2

(
1+ 4ζ 2

g

)
s+ ζgs2= 4× 0.63 + 0.0166
(

1+ 4× 0.62
) (0.474)+ 0.6

(
0.4742

)= 1.018 (ww)
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Dq̇2 = s

[ζgζ2 + 4ζ 2
2 ζ 2

g s+ 2ζgζ2
(

2ζ 2
g + 2ζ 2

2 − 1
)

s2 + 4ζ 2
g ζ 2

2 s3 + ζgζ2s4
]= sDq2 = 0.474

(
9.442× 10−3

)= 4.476× 10−3 (xx)σ 2
q = πr2

2G0

4
ωgω4

2

Nq2

Dq2= π · 12G0

4
15.6

32.9114
0.356

9.442× 10−3= 3.938× 10−4G0 (yy)σ 2
q̇2 = πr2

2G0

4
ω3

gω4
2

Nq̇2

Dq̇2= π · 12G0

4
15.63

32.9114
1.018

4.476× 10−3= 0.578G0 (zz)

Then from Equation 7.107, we obtain the variance of closed-loop displace-
ments asσ 2

z1 = f 2
11σ 2

q1 + g2
11σ 2

q̇1 + f 2
12σ 2

q2 + g2
12σ 2

q̇2= (−0.909)2 (0.0201G0)+ (6.380× 10−4
)2 (2.776G0)+ (−0.091)2 (3.938× 10−4G0

)+ (−6.133× 10−4
)2 (0.578G0)= 0.0166G0 (aaa)

thus the RMS value of first floor displacementσx1 = σz1 = √0.0166G0 = 0.129
√

G0 (bbb)

Similarly,σ 2
z2 = f 2

21σ 2
q1 + g2

21σ 2
q̇1 + f 2

22σ 2
q2 + g2

22σ 2
q̇2= (−0.148)2 (0.0201G0)+ (9.039× 10−4

)2 (2.776G0)+ 0.1492
(

3.938× 10−4G0
)+ (3.644× 10−4

) (0.578G0)= 0.0265G0 (ccc)
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thus the RMS value of second floor displacementσx2 = σz2 = √0.0265G0 = 0.162
√

G0 (ddd)

This example demonstrates that the statistical method only requires some
algebraic calculation besides eigenanalysis in order to evaluate optimization
objective function. It is based on the earthquake spectrum and works for any
seismic excitations statistically. Thus, the statistical method is more simple
and more general than the method of performance or controllability index that
requires time-history analysis of specific earthquake excitation and numerical
integration of seismic response.

7.3.6 Numerical Studies
A structure with hybrid damper-actuator bracing control system in Figure 5.21
serves as an example to demonstrate the method and to illustrate the effectiveness
of optimal placement of control devices. Specifications and analytical modeling
of the HDABC system are given in Section 5.3.3.2. As shown by the 11-element
state vector in Equation 5.142, there are 11 state variables for the HDABC system,
which are 3 displacements and 3 velocities of the structure, 1 displacement and
1 velocity of the K-bracing, 1 active control force, 1 servovalve displacement, and
1 passive control force. Thus, the smart structure with HDABC system is of the
11th order.

7.3.6.1 Optimal placement of hybrid control device

Assume the structure is built on medium soil with ωg = 15.6 rad/s and ζg = 0.60.
Owing to time scaling, ωg in the Kanai–Tajimi spectrum used here is twice that
of the prototype. To determine optimal controller placement, G0 can be any value
because RMS values of control force and structural response are proportional to√

G0. To simplify the problem, let G0 = 1. If displacement at the third floor is the
control goal and its required RMS value is 0.04, and if the active control force is
the optimization objective for control device placement, the optimization problem
becomes

Minimize {σfa (x)}
Subject to

{σx3(x) = 0.04
1 ≤ x ≤ N

(7.110)

Using the proposed solution procedure, the normalized RMS values of active
control forces σfa determined by Equation 7.107 are found to be 41.7, 283.4, and
143.5 for the hybrid control device at the first, second, and third floor, respectively.
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FIGURE 7.24 Comparison of RMS active control forces for three hybrid device locations.

Thus the objective function σfa in Equation 7.110 is minimum when x = 1. This
means that the first floor is the optimal location for the hybrid control device.

Figure 7.24 illustrates the relationship between RMS active control force and
RMS displacement at the third floor for the hybrid device at three floors. As shown
in the figure, the curve for the control device at the first floor is always lowest.
At this location, the controller has maximum effectiveness since it uses the least
control force to achieve the control goal. Figure 7.24 also shows that the first floor
is the best location, the third floor is less desirable, and the second floor is the worst.

7.3.6.2 Optimal actuator placement for active control systems

If the damper does not exist, the system becomes active control in the tenth order.
If the third floor displacement is the control goal and its required RMS value is
0.05, and if the active force is the optimization objective for device placement, the
optimization problem becomes

Minimize {σfa (x)}
Subject to

{σx3(x) = 0.05
1 ≤ x ≤ N

(7.111)

Similarly, by using the proposed solution procedure, the normalized RMS
values of active control forces σfa are found as 41.3, 189.1, and 101.3 for the
actuator at the first, second, and third floor, respectively. The objective functionσf a in Equation 7.111 is minimum when x = 1. This means that the first floor is the
optimal location for the actuator. Figure 7.25 illustrates the relationship between
RMS active control force and RMS displacement at the third floor for the actuator
at three floors. As in Figure 7.24, the curve for the control device at the first floor
is always lowest, which means that the actuator has maximum effectiveness at this
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FIGURE 7.25 Comparison of RMS active control forces for three actuator locations.

location. Figure 7.25 also shows that the first floor is the best location, the third
floor is less desirable, and the second floor is the worst.

7.3.6.3 Demonstration of effectiveness of optimal placement

As noted, this optimization criterion for control device placement is based on a
statistical method. To verify this method and show the effectiveness of the hybrid
bracing system with optimum placement, a procedure is taken as follows. Dynamic
responses in time history of the structure with hybrid bracing system for scaled
E-W component of New Mexico and N-S component of El-Centro earthquakes
(with amplitude and frequency scale factors at 0.3 and 2, respectively) are eval-
uated for three control device locations: first, second, and third floor. Maximum
displacement at the third floor is the control goal, and active control force is the
optimization objective.

Time-history response of the system for scaled El-Centro earthquake is shown
in Figure 7.1. Recall that the maximum displacement at the third floor of the
uncontrolled structure is 0.7794 cm. Control objective is to reduce maximum dis-
placement at the third floor of the structure to 0.508 cm. This Figure shows that the
first floor is optimum because the least active control force is required to achieve
the control objective. Here the result conforms to that in Section 7.3.6.1 that was
obtained by the proposed statistical optimization criterion; the statistical method
has the advantage of not requiring complex calculation of time-history responses.
Note that the location of control devices greatly affects the control system. For
example, if the hybrid device is at the second floor instead of the first, 4.8 times
larger active control force is required to achieve same control objective.

Figure 7.26 compares the time histories of required active control force for
scaled New Mexico earthquake. As expected, the first floor is the optimum loca-
tion because the least maximum active control force (161.8 N) is required to reduce
structural displacement at the third floor from 0.509 cm (structure without control)
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FIGURE 7.26 Response of HDABC system to scaled New Mexico earthquake:
(a) displacement at the third floor and (b) required active control force.

to 0.24 cm. This figure also shows that a hybrid bracing control system with
optimum device location is the most effective because it requires less active control
force than a hybrid bracing control system with nonoptimal device location. Here
the effectiveness of optimum device placement is more significant than that for
scaled El-Centro earthquake. Maximum active control force for the hybrid device
at the first floor is 14.6% and 27.2% of that for the hybrid device at second and
third floor, respectively.

7.3.6.4 Influence of structural property on optimal device
location

As the optimal location criteria implies, optimal device location highly depends on
the structural properties. To demonstrate how the structural properties influence
the optimal control location, a similar three-story building equipped with the same
hybrid control device is used and one story’s stiffness is changed gradually while
the rest of structural properties are kept same. The three-story steel structure is
treated as a shear building with column stiffness EI = 1732.81 N · m2, lumped
mass 635.6 kg at all three floors and story height 1.016, 0.762, and 0.762 (m) for
first though third floor, respectively. Damping ratios are chosen as 0.35% for all
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TABLE 7.10
Frequencies and Mode Shapes when First Floor Stiffness Changes Third
Mode

Frequency (Hz) First mode Second mode Third mode

Original 2.863, 9.502, 15.06 [0.678 0.889 1.0] [1.0 0.194 −0.850] [−0.602 1.0 −0.480]
Case 1 3.318, 9.958, 15.18 [0.573 0.850 1.0] [1.0 0.284 −0.815] [−0.666 1.0 −0.469]
Case 2 3.871, 10.79, 15.50 [0.430 0.796 1.0] [1.0 0.470 −0.805] [−0.825 1.0 −0.441]
Case 3 4.192, 11.49, 15.91 [0.340 0.761 1.0] [1.0 0.682 −0.859] [−1.0 0.967 −0.396]
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FIGURE 7.27 Optimal control location when first floor stiffness changes.

modes. The K-braces and Kanai–Tajimi spectrum parameters are the same as in
earlier example.

Table 7.10 lists the frequencies and mode shapes of three additional cases
where the first floor stiffness is chosen as 1.5, 2.5, and 3.5 times the original case.
Figure 7.27 demonstrates the RMS active forces versus third floor RMS displace-
ments for each case with the three different control locations. It is shown that
the curve for the control at the first floor is going up as the first floor stiffness
increases. Finally, for Case 3, the second floor becomes the optimal control loca-
tion. Similarly, the second floor stiffness is chosen as 1.5 times, 1.8 times, and 2.5
times the original one for Case 1 through Case 3, respectively. The frequencies and
mode shapes of each case are listed in Table 7.11. For each case, the RMS active
forces verse third floor RMS displacements are presented in Figure 7.28 with three
different control locations. It is found that the curve for control at the second floor
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TABLE 7.11
Frequencies and Mode Shapes when Second Floor Stiffness Changes

Frequency First mode Second mode Third mode

Original 2.863, 9.502, 15.06 [0.678 0.889 1.0] [1.0 0.194 −0.850] [−0.602 1.0 −0.480]
Case 1 2.949, 9.980, 17.04 [0.733 0.882 1.0] [0.937 0.355 −1.0] [−0.740 1.0 −0.339]
Case 2 2.979, 10.13, 18.20 [0.753 0.879 1.0] [0.865 0.397 −1.0] [−0.789 1.0 −0.285]
Case 3 3.022, 10.33, 20.73 [0.783 0.876 1.0] [0.771 0.453 −1.0] [−0.855 1.0 −0.206]
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FIGURE 7.28 Optimal control location when second floor stiffness changes.

is going up as the second floor stiffness increases. Finally, in Case 3, control at
the second floor becomes the worst. Results for changing the third floor stiffness
are presented in Table 7.12 and Figure 7.29. In Case 1, the third floor stiffness is
increased to 1.5 times the original value and the curve with third floor control goes
up. When the stiffness is reduced to 60% and 40% of the original in Case 2 and Case
3, the curve goes down and is located below the curve with second floor control in
Case 3.

Please note that to expedite the illustration of the proposed method, above
numerical examples are simple one-bay two or three-story structures with one
control device. As the flowchart in Figure 7.23 shows, the method also works
for multiple-bay tall buildings. The only difference is that the design variable N ,
possible locations of the control device, would be a larger number. For structures
with multiple control devices, the whole process in the flowchart just needs to
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TABLE 7.12
Frequency and Mode Shapes when Third Floor Stiffness Changes

Frequency First mode Second mode Third mode

Original 2.863, 9.502, 15.06 [0.678 0.889 1.0] [1.0 0.194 −0.850] [−0.602 1.0 −0.480]
Case 1 2.886, 10.31, 16.85 [0.706 0.924 1.0] [1.0 −0.024 −0.684] [−0.410 1.0 −0.635]
Case 2 2.814, 8.126, 13.87 [0.624 0.820 1.0] [0.949 0.497 −1.0] [−0.837 1.0 −0.298]
Case 3 2.752, 7.011, 13.42 [0.563 0.742 1.0] [0.891 0.671 −1.0] [−0.972 1.0 −0.195]
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FIGURE 7.29 Optimal control location when third floor stiffness changes.

be repeated to determine optimal location of each control device. Of course, the
occupied location would be deleted from the design space of optimal placement
of following control devices.

7.4 Summary
This chapter carrier out a theoretical study on optimal device placements of a
seismic response control system. First, basic concepts, the significance, and an
overview of current study of optimal device placement in seismic response control
are discussed. Second, three methods for optimal actuator placement for an active
control system are presented and compared. These methods include the meas-
ure of modal controllability, control energy and response performance indices,
and the controllability index. Third, a statistical method is developed for optimal
device placement of dampers and actuators, with HDABC systems serving as
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the example. This statistical method is based on the establishment of stochastic
seismic response of the controlled structure with dynamics of control devices con-
sidered. To account for actuator and damper dynamics as well as nonorthogonal
damping and stiffness matrices of the controlled structure, an equivalent modal
analysis procedure is developed to study the stochastic seismic response of the
controlled structure. On the basis of the study, a general definition for optimal
device placement is established in a statistical manner, and a solution procedure
for this optimization problem is developed. A numerical example, time-history
response of a building structure for El-Centro and New Mexico earthquakes, is
used to verify the proposed method and to demonstrate the effectiveness of the
optimally located hybrid control system. The influence of structural properties on
optimal control locations are analyzed numerically.

The following conclusions can be reached for optimal actuator placement stud-
ied in this chapter. The measure of modal controllability is effective for device
placement on structures with one dominant mode in its seismic response. The
method of controllability index is in agreement with the methods of control energy
and response performance indices. The latter methods, however, needs a lot of
computation time because seismic response in time history must be computed.
Investigations of the mode shapes of a structure (not equipped with control) show
that they are sufficient for evaluating the scalar index and that considering the
mode shapes of the controlled structure does not affect the results. The optimal
locations of active tendons were found to remain optimal for two different earth-
quakes. The optimal locations index depends on the structural parameters of the
building. A building of the same height with different structural properties has
different optimal locations for active tendons. Studies of how many modes are
sufficient in using the method, showed that the procedure can be terminated when
an increase in the number of modes considered does not alter the optimal locations.

The statistical method for optimal placement of hybrid control device is simple
because it does not require complex computation of seismic structural response
in time history and response integration. This method is also general because it
does not require a specific earthquake record, and it can handle the combination of
actuators and dampers and dynamics of control device. It is also worth noting that
this method is based on a general analytical model of smart seismic structures, and
thus it works for any configuration of structures and control systems. Numerical
studies show that the effectiveness of control devices is greatly influenced by their
location, thus the efficiency of control devices can be much improved by placing
them on optimal location. It is also shown that the optimal control location is
sensitive to structural properties of a smart seismic structure system.
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8 Active Control onEmbedded Foundation
In Chapter 4, the study of active structural control was based on the fixed-base
model in which the structure is assumed to be fixed at its base. This model may
be well founded where the structure is built on rock. If the structure is constructed
on soil, both the control algorithm and the structural system shall include the soil–
structure interaction (SSI) that covers the flexibility of the soil and the displacement
of the foundation. This leads to an increase in the number of the system’s degrees
of freedom (d.o.f.) that changes the structural response behavior and accordingly
controls action and effectiveness.

In this chapter, analytical model considering SSI is developed for seismic-
resistant structures with active control. Generalized optimal control algorithm
is extended for the soil-structure system. Numerical examples are employed to
demonstrate the analytical procedures.

8.1 MOTION EQUATION OF ACTIVELY CONTROLLED STRUCTURE
WITH SOIL–STRUCTURE INTERACTION

8.1.1 System Definition
Figure 8.1 shows a multistory building with active tendon control constructed on a
mat foundation embedded in unbounded soil. The soil consists of horizontal layers
that rest on an elastic half-space subjected to seismic P- and S-waves generated
from epicenter [2,11]. The soil is considered as isotropic viscoelastic material with
hysteretic damping. Its properties may vary with depth but remain constant within
individual layers.

Substructure method is used to model the system. The whole system is divided
into two subsystems, that is, superstructure system and ground system, through
an artificial interface. The superstructure consists of the structure and its founda-
tion, including the active controllers installed on the structure. The ground system
includes the soil layers and the underneath elastic half-space. It is assumed that
the interfaces between the superstructure and the ground system are always in
complete contact with each other.

To model the superstructure, building masses mi are lumped on each floor i,
where i = 1, 2, . . . , N and N is the number of building floors. To simplify the prob-
lem, shear-building structure is selected as shown in Figure 8.2. Floor translational
spring stiffness is represented by two columns on each floor, each column having
a stiffness of ki/2. Proportional damping ratios of two translational modes are

431
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FIGURE 8.1 Multistory controlled building embedded in unbounded soil.

used to determine the viscous damping of the structure. The mat foundation is
assumed to be rigid. Foundation mass and mass moment of inertia are denoted
by m0 and I0, respectively. It is assumed that the foundation depth h0 is not very
deep so that the ground acceleration can be considered to be applied on the mass
center of the foundation. With this consideration, the superstructure would have
(N+2) d.o.f. that are N horizontal translations of the structure xi (i = 1, 2, . . . , N),
the horizontal translation of the foundation x0 and the rotation of the foundationθ0. Included in the model of the controlled structure are m active tendons. Since
the parameters of the superstructure system are frequency-independent, it can be
analyzed in time-domain.

The ground system is modeled as an unbounded continuous domain represen-
ted by (s − 1) unbounded horizontal layers resting on a half-space, as shown in
Figure 8.3. Each layer i (i= 1, 2, . . . , s − 1) has constant properties: soil densityρi, modulus of elasticity Ei, Poisson’s ratio νi, hysteretic damping ratio βgi, and
layer depth di. The half-space has the following properties: density ρR, modulus
of elasticity ER, Poisson’s ratio νR, and hysteretic damping ratio βR. Since the mat
foundation is modeled as a rigid block; the interface is rigid represented by the
d.o.f. at point O, a horizontal translational xg

0 and rotation θg
0 , where superscript
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FIGURE 8.2 Structure system modeling.

g denotes the ground system. Since we assume the superstructure and the ground
system are in perfect contact, then xg

0 = x0 and θg
0 = θ0. Length 2B and height D of

the interface are equal to those of the foundation, respectively. Since the unboun-
ded soil has infinite length in x-direction, and the properties of the unbounded
soil are frequency dependent, the indirect boundary element method in frequency
domain is appropriately applied to analyze the system.

8.1.2 Single-Story Building
In order to simplify the problem, let us formulate the SSI model for the single-
story building with control (see Figure 8.4) first. For a SSI model subjected to a
vertically incident shear wave, rotational seismic input may be omitted. From the



“CHAP08” — 2008/1/18 — 14:55 — page 434 — #4

434 Smart Structures: Innovative Systems for Seismic Response Controld1

2B xg
0 = x0 

�g
0 = �0 Zg

0 = 0 

Rigid interface

0

D1

2

riS–1

d2drdids–1

Soil I

Soil II

Soil III

Half-space

–SV

SV-wave

P-wave
–

P +

+

FIGURE 8.3 Ground system with rigid interface.

–Z xt
1

m1, I1k1
2

k1
2ha1ha0

m0, I0

Rigid interface

xt
0, –Rx xtx = xxtg + xg0xt0 = x0tg + xg0θt0 = θtg0+ θg0; θg0xt
0, –Rx�t

0, –R�

�t
0, R�

0

0 z
–SV+

xx ~~ 0

Note

Layered-
soil

Half-space

Vertically incident shear wave

FIGURE 8.4 Single-story SSI model.
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FIGURE 8.5 Free-body diagram of single-story SSI model.

free-body diagram as shown in Figure 8.5, the motion equation of the single-story
shear building equipped with an active tendon system can be obtained asm1(ẍtg

1 + ẍg
0)+ c1(ẋtg

1 − ẍtg
0 + ha1θ̇ tg

0 )+ k1(xtg
1 − xtg

0 + ha1θ tg
0 )+ �u1 = 0

m0(ẍtg
1 + ẍg

1 − ha0θ̈ tg
0 )− c1(ẍtg

1 − ẋtg
1 + ha1θ̇ tg

0 )−k1(xtg
1 − xtg

0 + ha1θ tg
0 )− �u1 + Rx = 0(I1 + I0)θ̈ tg

1 − m0(ẍtg
0 + ẍtg

0 − ha0θ̈ tg
0 )ha0 − m1(ẍtg

1 + ẍg
0)ha1 + Rθ = 0

(8.1)
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At any nth time interval, the above motion equation can be considered in matrix
form as m1 0 0

0 m0 −ha0m0−ha1m1 −ha0m0 I1 + I0 + h2
a0m0

ẍtg
1 (n)

ẍtg
0 (n)θ̈ tg
0 (n)+  c1 −c1 ha1c1−c1 c1 −ha1c1

0 0 0

ẋtg
1 (n)

ẋtg
0 (n)θ̇ tg
0 (n)+  k1 −k1 ha1k1−k1 k1 −ha1k1

0 0 0

xtg
1 (n)

xtg
0 (n)θ tg
0 (n)=  −m1−m0

ha1m1 + ha0m0

 ẍg
0(n)+−1

1
0

 �u1(n)+ 0−Rx(n)−Rθ (n) (8.2)

where m1 and m0 are floor lumped mass and foundation lumped mass, respectively.
I1 and I0 are floor and foundation mass moments of inertia around point 0. ha1 and
ha0 are heights from rotational point 0 to the centroid of floor lumped mass and
foundation lumped mass, respectively. k1 is translational spring–stiffness coeffi-
cient. c1 is translational damping coefficient approximated by 2β1

√
k1m1. β1 is

damping ratio of the translational mode. It should be noted that external transla-
tion and rotation damping of the structural system are neglected. xtg

1 , xtg
0 , and θ tg

0
are floor translation, foundation translation, and foundation rotation, respectively.
Superscript tg indicates all responses are of the total dynamic system and relative
to those of the ground system. ẍg

0 is the horizontal acceleration, at point 0, of the
ground system with rigid interface. A dot and a double dot over a symbol denote
the first derivative and second derivative in relation to time, respectively. �u1 is a
horizontal control force. Rx and Rθ are horizontal interaction force and interaction
moment between the structural system and ground system at point 0, respectively.

8.1.3 Multiple-Story Building
Analogous to a derivation of Equation 8.2, motion equation of a multiple-story
seismic shear structure (see Figure 8.6) can written in general form as[

[MSS] [MS0]
[M0S] [M00]

]{Ẍ tg
S (n)}{

Ẍ tg
0 (n)}+ [[CSS] [CS0]

[C0S] [C00]

]{Ẋ tg
S (n)}{

Ẋ tg
0 (n)}+ [[KSS] [KS0][K0S] [K00]]×{X tg

S (n)}{
X tg

0 (n)} = {{δs}{δ0}} ẍg
0(n)+ [[γS]

[γ0]

] { �U(n)}+ { {0}−{R0(n)}} (8.3)
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FIGURE 8.6 Structure system with fictitious springs subjected to equivalent forces.

[MSS] =  mNO
... 0

... 0. . . . . .
...

...
...

0 · · · mi
... 0. . . . . . . . . . . .

...
0 · · · 0 · · · m1

 (8.4)

[MS0] = [0]; [M0S] = [ 0 . . . 0 . . . 0−haNOmNO . . . −haimi . . . −ha1m1

]
(8.5)

[M00] =  m0 −ha0m0−ha0m0
NO∑
i=0

Ii + h2
a0m0

 (8.6)
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[KSS] =  kNO −kNO 0

... 0
... 0 0−kNO kNO + kNO−1 −kNO−1

... 0
... 0 0

0 −kNO−1 kNO−1 + kNO−2
... 0

... 0 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...

...
...

...

0 0 0 . . . ki + ki−1
... 0 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

...
...

0 0 0 . . . 0 . . . k3 + k2 −k2

0 0 0 . . . 0 . . . −k2 k2 + k1


(8.7)[KS0] =  0 hNOkNO

0 hNO−1kNO−1 − hNOkNO
0 hNO−2kNO−2 − hNO−1kNO−1
...

...
0 hiki − hi+1ki+1
...

...
0 h2k2 − h3k3−k1 ha1k1 − h2k2

 (8.8)

[K0S] = [ 0 0 0 . . . 0 . . . 0 −k1
0 0 0 . . . 0 . . . 0 0

]
(8.9)

[K00] = [ k1 −ha1k1
0 0

]
(8.10)[CSS] = αm[MSS] +�k [KSS] (8.11)[CS0] =  0 �k(hNOkNO)

0 �k(hNO−1kNO−1 − hNOkNO)
0 �k(hNO−2kNO−2 − hNO−1kNO−1)
...

...
0 �k(hiki − hi+1ki+1)
...

...
0 �k(h2k2 − h3k3)−�kk1 �k(ha1k1 − h2k2)  (8.12)
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[C0S] = [ 0 0 0 . . . 0 . . . 0 −�kk1
0 0 0 . . . 0 . . . 0 0

]
(8.13)[C00] = [ αmm1 +�kk1 −�kha1k1

0 0

]
(8.14){δS} = −mNO

...−mi

...−m1

 (8.15){δ0} =  −m0
NO∑
i=0

haimi

 (8.16)

where [MSS], [KSS], and [CSS] of dimension NO by NO are diagonal lumped
mass, symmetrical spring stiffness, and proportional damping matrices related
to the superstructure, respectively. [MS0], [KS0], [CS0] of dimension NO by 2
and [M0S], [K0S], [C0S] of dimension 2 by NO are mass, stiffness, and damping
matrices related to superstructure and rigid foundation. [M00], [K00], and [C00] of
dimension 2 by 2 are mass, stiffness, and damping matrices related to rigid founda-
tion, respectively. Subscripts S and 0 indicate that elements in the denoted vector or
matrix correspond to the d.o.f. of superstructure and foundation, respectively. αm
and �k can be determined by solving αm�kω2

i = 2ωiβi for i = 1, 2 where βi are
damping ratios of translational mode of frequency ωi. {δS} of dimension NO by 1
and {δ0} of dimension 2 by 1 are horizontal ground-acceleration coefficient vectors
for superstructure and foundation, respectively. hai, i = 0, 1, . . . , NO, are accumu-
lated heights from rotational point 0 to the centroid of mass mi. hi = 1, . . . , NO,
are the ith floor height.

Vector {X tg
S } of dimension NO by 1 is the floor translation vector,[xtg

NOxtg
NO−1. . .xtg

i . . .xtg
2 xtg

1 ]T. {X tg
0 } of dimension 2 by 1 is a vector consisting of

foundation translation and rotation at point 0,
[

xtg
0 θ tg

0

]T
. {R0} of dimension 2

by 1 is a vector consisting of horizontal interaction force and interaction moment
at point 0. Other notations are given in Section 8.1.2.

Matrices [γS] of dimension NO by NCR and [γ0] of dimension 2 by NCR are
controller-location matrices for superstructure and foundation, respectively. NCR
is the number of active controllers. { �U} of dimension NCR by 1 is the vector of
horizontal control forces, [�uNCR . . . �ui . . . �u1]T. An example of matrices [γS] and[γ0] for a two-controller system, having controller no. 1 attached between rigid
foundation and first floor (node no. 1) and controller no. 2 attached between second
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floor (node no. 2) and third floor (node no. 3), is shown as

[γS] =  0 0
...

...
0 0−1 0
1 0
0 −1

 (8.17)

and

[γ0] = [ 0 1
0 0

]
(8.18)

In the model used in this study, an active tendon system provides only horizontal
control forces. Thus the bottom row of [γ0], corresponding to rotational d.o.f. is
always equal to zero despite the controller’s location.

Apply the general model for the one-story building shown in Figure 8.4 using
Equations 8.4 through 8.18, we have[MSS] = m1, [MS0] = [ 0 0

]
, [M0S] = { 0−ha1m1

}
[M00] = [ m0 −ha0m0−ha0m0 I0 + I1 + h2

a0m0

][KSS] = k1, [KS0] = [−k1 ha1k1
]

, [K0S] = { 0−k

}
[K00] = [ k1 −ha1k1

0 0

][CSS] = c1, [CS] = [ −c1 haic1
]

[C0S] = {−c1
0

}
, [C00] = [ c1 −ha1c1

0 0

]{δS} = −m1, {δ0} = { −m0
ha0m0 + ha1m1

}
[γS] = −1, [γ0] = { 1

0

}
8.1.4 Determination of Interaction Force at

Foundation-Soil Interface
Earthquake excitation imposed on the ground system with rigid interface (see
Figure 8.3) causes point 0 of the system to move at velocities ẋg

0, żg
0, and θ̇g

0
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in x-, z-direction and around y-direction, respectively. Interaction between this
system and the structure system leads to velocities ẋt

0, żt
0, and θ̇ t

0 at the same
point. Changes in velocities, ẋtg

0 , żtg
0 , and θ̇ tg

0 that is ẋt
0 − ẋg

0, żt
0 − żg

0, and θ̇ t
0 −θ̇g

0 , respectively, induce interaction forces Rx , Rz, and Rθ . The interaction forces
are related to the ground system’s impulse velocity matrix that can be obtained
by convolution integral, taking causality conditions into account (amplitude of
impulse velocity function equal zero for time t < 0). Since vertical (z-direction)
translation is omitted, the convolution integral corresponding to the other two d.o.f.
can be expressed as {

Ẋ tg
0 (t)} = ∫ t

0

[χ̇g
00(τ )] {R0(t − τ)} dτ (8.19)

with [χ̇g
00(τ )] = [ χ̇g

xx χ̇g
xθχ̇gθx χ̇gθθ ] (8.20)

where t and τ are time variables.
[χ̇g

00
]

is the ground system’s impulse velocity
matrix with rigid interface. Coefficients χ̇g

xx , χ̇g
xθ , χ̇gθx , and χ̇gθθ are velocities, at

time equals τ , corresponding to the first subscript’s d.o.f. due to a unit impulse
force, at time equals zero, corresponding to the second subscript’s d.o.f. (see
Section 8.6.4.3 for detailed derivations). On the basis of causality conditions,
interaction forces and velocities under a unit impulse force, before time equal to
zero, must be zero. Thus τ varies from 0 to t. Since the solution procedure of a
state equation is carried on in the discrete time-domain, the convolution integral
can be replaced by summation as{

Ẋ tg
0 (n)} = �t

n∑
m=0

[χ̇g
00(m)] {R0(n− m)} (8.21)

where�t and n are time increment and time-instant number, respectively. m varies
from zero to n. To reduce the number of operations in Equation 8.21, one may take
advantage of the fact that a ground system with half-space has radiation damping.
Then the amplitude of velocity under a unit impulse load (impulse velocity func-
tion) attenuates as time proceeds. At time-instant number equals l, for instance,
all elements in the impulse velocity matrix approximately equal zero, and nl is the
minimum of n and l. Then Equation 8.21 can be written as{

Ẋ tg
0 (n)} = �t

nl∑
m=0

[χ̇g
00(m)] {R0(n− m)} (8.22)
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Assuming velocities at midpoint of nth time step equal average velocities between
nth point and (n− 1)th point leads to{

Ẋ tg
0 (n)} = 2�t

({
X tg

0 (n)}− {X tg
0 (n− 1)})− {Ẋ tg

0 (n− 1)} (8.23)

By separating the first term of Equation 8.22 and then combining the separated
equation and Equation 8.23, interaction forces can be formulated as follows:�t

[χ̇g
00(0)] {R0(n)} +�t

nl∑
m=1

[χ̇g
00(m)] {R0(n− m)}= 2�t

({
X tg

0 (n)}− {X tg
0 (n− 1)})− {Ẋ tg

0 (n− 1)}
which results{R0(n)} = 2�t2

[χ̇g
00(0)]−1

{
X tg

0 (n)}− 2�t2
[χ̇g

00(0)]−1
[{

X tg
0 (n− 1)}+ �t

2

({
Ẋ tg

0 (n− 1)}+�t
nl∑

m=1

[χ̇g
00(m)] {R0(n− m)}) ] (8.24)

Grouping terms in Equation 8.24, the compact form of interaction force expression
can be written as {R0(n)} = [K̃00

] {
X tg

0 (n)}− {R̃0(n− 1)} (8.25)

with [
K̃00

] = 2�t2
[χ̇g

00(0)]−1 (8.26){
R̃0(n− 1)} = [K̃00

] [ {
X tg

0 (n− 1)}+ �t
2

({
Ẋ tg

0 (n− 1)}+�t
nl∑

m=1

[χ̇g
00(m)] {R0(n− m)}) ] (8.27)

where the time-independent matrix [K̃00] of dimension 2 by 2 is a pseudostatic
stiffness matrix of ground system. Vector {R̃0} of dimension 2 by 1 is a dynamic-
equivalent-force vector making up for the ground system’s dynamic effect. This
vector depends only on the events before nth time-instant.
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8.2 STATE EQUATION OF SSI—MODEL AND SOLUTION
TECHNIQUE

8.2.1 Formulation of State Equation of SSI-Model
Substituting interaction force vector (Equation 8.25) in the multiple-story equation
of motion (Equation 8.3) results in[ [MSS] [MS0]

[M0S] [M00]

]{Ẍ tg
S (n)}{

Ẍ tg
S (n)}+ [ [CSS] [CS0]

[C0S] [C00]

]{Ẋ tg
S (n)}{

Ẋ tg
0 (n)}+ [ [KSS] [KS0]

[K0S] [K00]+ [K̃00
] ]{X tg

S (n)}{
X tg

0 (n)}= { {δS}{δ0} } ẍg
0(n)+ [ [γS]

[γ0]

] { �U(n)}+ { {0}{
R̃0(n− 1)}} (8.28)

Taking
[
K̃00

]
in the total system’s stiffness matrix could be physically interpreted

as attaching a set of fictious springs, having coefficients of K̃xx , K̃xθ , K̃θx , and
K̃θθ (elements of

[
K̃00

])
, to a structure system’s rigid foundation as shown in

Figure 8.6. Meanwhile the total system is subjected to the equivalent forces of
amplitude −miẍ

g
0 at the centroid of each mass i, where i = 0, 1, . . . , NO, and

is subjected to an equivalent moment of amplitude
∑NO

i=0 haimiẍ
g
0 around point 0

(contribution of {δS} ẍg
0 and {δ0} ẍg

0). Furthermore, at point 0, dynamic-equivalent
force R̃x and moment R̃θ ({R̃0

} = [ R̃x R̃θ ]T) are added to compensate for the
ground system’s dynamic effect.

Rearranging Equation 8.28, acceleration vector can be expressed as{Ẍ tg
S (n)}{

Ẍ tg
0 (n)} = − [ [MSS] [MS0]

[M0S] [M00]

]−1 [ [CSS] [CS0]
[C0S] [C00]

]{Ẋ tg
S (n)}{

Ẋ tg
0 (n)}− [ [MSS] [MS0]

[M0S] [M00]

]−1
[

[KSS] [KS0]
[K0S] [K00]+ [K̃00

] ]{X tg
S (n)}{

X tg
0 (n)}+ [ [MSS] [MS0]

[M0S] [M00]

]−1 { {δS}{δ0} } ẍg
0(n)+ [ [MSS] [MS0]

[M0S] [M00]

]−1 [ [γS]
[γ0]

] { �U(n)}+ [ [MSS] [MS0]
[M0S] [M00]

]−1
{ {0}{

R̃0 (n− 1)}} (8.29)
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State vector of dimension 2(NO+ 2) by 1 is introduced as{

Z tg(n)} = {X tg
S (n)}{

X tg
0 (n)}{

Ẋ tg
S (n)}{

Ẋ tg
0 (n)} (8.30a)

and noting that {Ẋ tg
S (n)}{

Ẋ tg
0 (n)} = [I]

{Ẋ tg
S (n)}{

Ẋ tg
0 (n)} (8.30b)

Combining Equations 8.29 and 8.30, state equation of the SSI model can be
expressed as{

Ż tg(n)} = [A]
{
Z tg(n)}+ [B]

{ �U(n)}+ {C} ẍg
0(n)+ {Ř0(n− 1)} (8.31)

with

[A] = [ [0] (I)− [AK] − [AC]

]
(8.32)

[AK] = [ [MSS] [MS0]
[M0S] [M00]

]−1
[

[KSS] [KS0]
[K0S] [K00]+ [K̃00

] ] (8.33)

[AC] = [ [MSS] [MS0]
[M0S] [M00]

]−1 [ [CSS] [CS0]
[C0S] [C00]

]
(8.34)

[B] =  [0][
[MSS] [MS0]
[M0S] [M00]

]−1 [ [γS]
[γ0]

] (8.35){C} =  {0}[
[MSS] [MS0]
[M0S] [M00]

]−1 { {δS}{δ0} } (8.36){
Ř0(n− 1)} =  {0}[

[MSS] [MS0]
[M0S] [M00]

]−1
{ {0}{

R̃0(n− 1)}} (8.37)
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where the characteristic matrix [A] of dimension 2(NO + 2) by 2(NO + 2) is a
time-independent matrix as are matrix [B] of dimension 2(NO+ 2) by NCR and
vector {C} of dimension 2(NO+ 2) by 1. Acceleration vector {Ř0} of dimension
2(NO+ 2) by 1 is associated with dynamic–equivalent forces, depending only on
the outcomes before nth time instant.

8.2.2 Solution Technique
As discussed in Chapter 4, for a closed-loop control, control forces and structural
responses are related to an optimal control law as{ �U(n)} = [GSSI

] {
Z tg(n)} (8.38)

where
[
GSSI] of dimension NCR by 2(NO+2) is time-independent feedback gain

matrices. Therefore, the state equation of Equation 8.31 can be written in a similar
form as {

Ż tg(n)} = [D]
{
Z tg(n)}+ {E(n)} (8.39)

with

[D] = [A]+ [B]
[
GSSI

]
(8.40){E(n)} = {C} ẍg

0(n)+ {Ř0(n− 1)} (8.41)

where [D] of dimension 2(NO+2) by 2(NO+2) is time-independent plant matrix;{E} of dimension 2(NO + 2) by 1 is external disturbance vector. In the system
without control, term associated with gain matrix in Equation 8.40 is omitted. For
simplicity, let Equation 8.39 be written as{

Ż(n)} = [D] {Z(n)} + {E(n)} (8.42)

The natural frequencies and corresponding damping ratios evaluated from the plant
matrix [D] that yields NO + 2 complex conjugate pairs of eigenvalues µi ± ινi
and their corresponding eigenvectors {ai} ± ι {bi}, where ι = √−1; µi, νi are
real scalars; {ai}, {bi} are real vectors of dimension 2(NO + 2) by 1; and i =
1, 2, . . . , 2(NO+ 2).

Transformation matrix [T ] is needed to transform the state equation into canon-
ical form. [T ] is a real matrix of dimension 2(NO+ 2) by 2(NO+ 2), considering
of real parts {ai} and imaginary parts {bi} of the plant matrix’s eigenvectors, and
can be expressed as

[T ] = [{a1} {b1} . . . {ai} {bi} . . . {aNO+2} {bNO+2}] (8.43)
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Transformation matrix [T ] and plant matrix [D] are related to matrix[�], consisting
of real parts µi and imaginary parts νi of the plant matrix’s eigenvalues, as

[T ]−1 [D] [T ] = [�] (8.44)

where [�] of dimension 2(NO+ 2) by 2(NO+ 2) is a real matrix of the following
form:

[�] =  [�1] . . . [0] . . . [0]
...

. . . . . . . . . . . .
[0]

... [�i] . . . [0]
...

...
...

. . . . . .
[0]

... [0]
... [�NO+2]

 (8.45)

[�i] = [ µi νi−νi µi

]
(8.46)

Let solution of the state equation of Equation 8.42 be expressed as{Z(n)} = [T ] {�(n)} (8.47)

Using Equations 8.44 and 8.47, the state Equation 8.42 is transformed into{�̇(n)} = [�] {�(n)} + {�(n)} (8.48)

with {�(n)} = [T ]−1 {E(n)} (8.49)

where {�} and {�} are vectors of dimension 2(NO+ 2) by 1. A dot over a symbol
denotes the derivative in relation to time.

Since at time equals zero (n = 0), total dynamic system is at rest, initial
conditions can be formulated as{Z(0)} = {0} ⇒ {�(0)} = {0} (8.50)

in which ẍg
0(0) = 0, {R0(0)} = {0}. Thus{�(0)} = {0} (8.51)

Equation 8.48, the canonical form of state Equation 8.42, is a first-order differential
equation whose time-continuous form can be expressed as{�̇(t)}− [�] {�(t)} = {�(t)} (8.52)
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where the solution of differential equation of Equation 8.52 becomes{�(t)} = [exp ([�] t)] {�(0)} + [exp ([�] t)] ∫ t

0
[exp (− [�] τ)] {� (τ)} dτ= [exp ([�] t)] {�(0)} + ∫ t

0
[exp ([�] (t − τ))] {� (τ)}dτ (8.53)

As derived in Equation 4.58 [exp ([0])] is equal to an identity matrix [I] and

[exp ([�] t)] =  [exp ([�1] t)] . . . [0] . . . [0]
...

. . . . . . . . . . . .
[0]

... [exp ([�i] t)] . . . [0]
...

...
...

. . . . . .
[0]

... [0]
... [exp ([�NO+2] t)] 

(8.54)

with

[exp ([�i] t)] = exp (µit) [ cos(νit) sin (νit)− sin (νit) cos (νit) ] (8.55)

Applying the initial conditions in Equations 8.50 and 8.51 and utilizing trapezoidal
rule with time increment�t, the solution of Equation 8.53 at nth time-instant can
be written as (see derivation in Equations 4.38a through 4.38c){�(n�t)} = [exp ([�] n�t)] {�(0)} + �t

2
[exp ([�] n�t)] {�(0)}+�t

n−1∑
m=1

[exp ([�] (n− m)�t)] {�(m�t)} + �t
2
{�(n�t)}= �t

n−1∑
m=1

[exp ([�] (n− m)�t)] {� (m�t)} + �t
2
{�(n�t)} (8.56)

In compact form, the solution of Equation 8.56 can be derived as{�(n)} = {�(n− 1)} + �t
2
{�(n)} (8.57)
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with {�(n− 1)} = �t

n−1∑
m=1

[exp ( [�] (n− m)�t)] {� (m)} (8.58)

where vector {�(n− 1)} can be written in a recursive form as{�(n− 1)} = [exp([�]�t)] [ {�(n− 2)} +�t {� (n− 1)}] (8.59)

By using Equations 8.57 and 8.58, the state vector at nth time-instant of
Equation 8.42 can be determined in a discrete real-time fashion.

8.3 GENERALIZED OPTIMAL ACTIVE CONTROL ALGORITHM FOR

THE SSI SYSTEM
Generalized optimal active control (GOAC) algorithm was introduced in Chapter 4
(see Section 4.3.2). Since this chapter is for SSI system with various notations
different from previous presentations, essential equations for the algorithm are
thus systematically and briefly derived herein for clarity purposes.

8.3.1 System Model
The time-continuous version of state equation expressed in Equation 8.31 for SSI
model can be written as{

Ż tg (t)} = [A]
{
Z tg (t)}+ [B]

{ �U (t)}+ {E(t)} (8.60)

with {E(t)} = {C} ẍg
0 (t)+ {Ř0 (t −�t)} (8.61)

where {E} of dimension 2(NO+ 2) by 1 is external disturbance vector. The other
notations are defined in Equations 8.31 through 8.37. Let the notation of tg be
omitted in Equation 8.60, which is simplified as{

Ż(t)} = [A] {Z (t)} + [B]
{ �U(t)}+ {E(t)} (8.62)

8.3.2 Generalized Performance Index
To obtain an optimal solution for state vector {Z(t)} and control force vector{ �U(t)} in Equation 8.62, a performance index or an objective functional needs to
be defined and minimized. An integral quadratic performance index J , which may
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describe a system’s energy during a given time duration, can be expressed as

J
({Z (t)} , { �U (t)})= 1

2

∫ tf

t0

( {Z (t)}T [Q ] {Z (t)} + { �U (t)}T
[R]

{ �U (t)}) dt (8.63)

where the state-weighting matrix [Q] of dimension 2(NO + 2) by 2(NO + 2) is
a positive semidefinite. The control-weighting matrix [R] of dimension NCR by
NCR is a positive definite. These conditions are imposed to guarantee a nonzero
positive value for the integrand. Then the performance index’s function of time
t increases in the interval [t0, tf ]. t0 and tf are an initial and a final time instant,
respectively.

By splitting up the time duration [t0, tf ] into NT intervals, the performance
index in Equation 8.63 can be written as

J
({Z (t)} , { �U (t)}) = NT∑

n=1
Jn

({Z (t)} , { �U (t)}) (8.64)

with

Jn

({Z (t)} , { �U (t)})= 1
2

∫ tn

tn−1

( {Z (t)}T [Q] {Z (t)} + { �U (t)}T
[R]

{ �U (t)}) dt (8.65)

For each time interval n, the amplitude of state variables zi (t) for i =
1, 2, . . . , 2(NO + 2) and control forces �ui (t) at time tn−1, are specified from the
previous time interval; those at time tn are not. This leads to the problem of min-
imizing a variable-end-point functional for which the unknown amplitude of state
vector {Z (t)} at time tn should also be minimized. Therefore, the function of this
state vector needs to be included in the expression of performance index. A new
objective functional or generalized performance index, at time interval [tn−1, tn]
can be defined as

Jn

({Z (tn)} , {Z (t)} , { �U (t)})= g ({Z (tn)})+ ∫ tn

tn−1

f
(

t, {Z (t)} , { �U (t)}) dt (8.66)
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with

g({Z (tn)}) = 1
2
{Z (tn)}T [S] {Z (t)} (8.67)

f
(

t, {Z (t)} , { �U (t)}) = 1
2

({Z (t)}T [Q] {Z (t)} + { �U (t)}T
[R]

{ �U (tn)})
(8.68)

To ensure the positive value for Equation 8.67, the weighting matrix [S] of
dimension 2(NO+ 2) by 2(NO+ 2) is a positive semidefinite.

8.3.3 Feedback Gain Matrix and Active Control Force

8.3.3.1 Transversality condition

To minimize the generalized performance index Jn in Equation 8.66 with a free end
point condition and consequently the performance index J in Equation 8.64, not
only Euler’s equation but also transversality condition must be satisfied. Assume
that the boundary condition at endpoints is given by{�g (tn−1, {Z (tn−1)}, tn)} =  tn−1 − t0 − (n− 1)�t{Z (tn−1)} − {Zn−1}

tn − t0 − n�t

 = {0} (8.69)

where
{�g

}
is a {2(NO+ 2)+ 2} × 1 vector. �t is a time increment that equals(tf − t0)/NT. t0, tf , and NT are initial time instant, final time instant, and a number

of divided time intervals, respectively. Vector {Zn−1} of dimension 2(NO+ 2) by
1 comprises the amplitude of {Z (t)} at time tn−1.

State equation of Equation 8.62 can serve as a constraint of the quadratic energy
Equation 8.68 and can be rewritten into a vector {�f } of dimension 2(NO+2)×1 as{�f

({
Ż (t)} , {Z (t)} , { �U (t)})}= {Ż (t)}− [A] {Z (t)} − [B]

{ �U (t)}− {E (t)} = {0} (8.70)

By introducing multiplier vectors
{λg

}
of dimension 2(NO + 2) + 2 by 1 and{λf } of dimension 2(NO+ 2) by 1, and combining vector

{�g
}

in Equation 8.69
and vector {�f } in Equation 8.70 with the former, the augmented function and
functional of the generalized performance index in Equation 8.66 becomes

Jn = G (tn−1, {Z (tn−1)} , {Z (tn)} , tn)+ ∫ tn

tn−1

F
(

t,
{
Ż (t)} , {Z (t)} , { �U (t)}) dt (8.71)
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with

G = 1
2
{Z (tn)}T [S] {Z (tn)} + {λg

}T

 tn−1 − t0 − (n− 1)�t{Z (tn−1)} − {Zn−1}
tn − t0 − n�t

 (8.72)

F = 1
2

({Z (t)}T [Q] {Z (t)} + { �U (t)}T
[R]

{ �U (t)})+ {λf (t)T} ({Ż (t)}− [A] {Z (t)} − [B]
{ �U (t)}− {E (t)}) (8.73)

Applying the fundamental necessary condition (variable of Jn = 0) to
Equation 8.71 with unknown end points leads to the transversality condition as

dG+ [(F − {F,{Ż(t)}}T {
Ż (t)}) dt

]tn

tn−1

+ [{F,{Ż(t)}}T {d {Z (t)}}]tn

tn−1

= 0

(8.74)

where the letter d represents differential of function or variable following it. A
comma denotes a partial derivative with respect to the subscript following it. Since
tn−1, {Z (tn−1)}, and tn are known and fixed, their differentials dtn−1, d {Z (tn−1)},
and dtn equal zero. Therefore, the transversality condition in Equation 8.74 can be
reduced as {{

G,{Z(tn)}}+ {F,{Ż(t)}}tn

}T {d {Z (tn)}} = 0 (8.75)

Substituting Equations 8.72 and 8.73 in Equation 8.75 and knowing that{d {Z (tn)}} �= {0} , leads to

[S] {Z (tn)} + {λf (tn)} = {0} (8.76)

8.3.3.2 Euler’s equation

This equation is a necessary condition for an extremum in a fixed-endpoint prob-
lem. Since the solution of a variable-end-problem is a subset of the extremals of
various fixed-endpoint problems, the former also requires the Euler equation as a
necessary condition. By applying the fundamental necessary condition (variation
of functional = 0) to the second term of Equation 8.71 with fixed endpoints, the
Euler equation can be expressed as{

F,{Z(t)}}− { d
dt

{
F,{Ż(t)}}} = {0} (8.77a){

F
,
{ �U(t)}}− { d

dt

{
F

,
{ �̇U(t)}}} = {0} (8.77b)
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Equation 8.77a is satisfied in the process of deriving the transversality condition.
By substituting Equation 8.73 in Equation 8.77b, the latter can be formulated as

[R]
{ �U{t}}− [B]T {λf {t}} = {0} (8.78)

8.3.3.3 Control force and gain matrix

In a closed-loop control algorithm, a relation between force vector
{ �U (t)} and

state vector {Z (t)} can be given by{ �U(t)} = [G] {Z (t)} (8.79)

where [G] of dimension NCR by 2(NO + 2) is an optimal control law, known
as a feedback gain matrix. This matrix is a result of an attempt to minimize the
generalized performance index that can be done by satisfying the Euler equations
and the transversality condition earlier described.

At each end point n (t = tn) for n = 1, 2, . . . , NT , the Euler Equation 8.78 can
be written as { �U(tn)} = [R]−1 [B]T {λf (tn)} (8.80)

Substituting transversality condition from Equation 8.76 in Equation 8.80 leads to{ �U(tn)} = − [R]−1 [B]T [S] {Z (tn)} (8.81)

By comparing Equations 8.81 to 8.79, the feedback gain matrix at each end point
n can be expressed as

[G(tn)] = − [R]−1 [B]T [S] (8.82)

Gain matrix [G (tn)] is constant and neither a function of time t nor time increment�t. Therefore, it is valid at every end point n. Note Equation 8.82 is similarly
expressed shown in Equation 4.169 for fixed-base structures. Apparently, the indi-
vidual matrices must include SSI effects. In order to signify SSI, Equation 8.82 is
rewritten as [

GSSI
] = − [R]−1 [B]T [S] (8.83)

8.3.4 Weighting Matrix Configuration
As discussed in Chapter 4, state-weighting matrices [Q] and [S] are arbitrary pos-
itive semidefinite. Control-weighting matrix [R] is an arbitrary positive definite.
From a practical point of view, the integral performance index may be treated as
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system energy during a given time duration [5,6]. For the case of SSI, the perform-
ance index is also chosen to provide an approximate measure of strain, kinetic,
and potential energies of the total dynamic system. However, the dimensions of
[Q] and [R] are 2(NO+ 2) by 2(NO+ 2) and NCR by NCR, respectively as

[Q] =  [KSS] [KS0] [0] [0]

[KS0]T
[
Ǩ00

]
[0] [0]

[0] [0] [MSS] [0]
[0] [0] [0] [M00]

 (8.84)

and

[R] = [ [γS]
[γ0]

]T
[ [KSS] [KS0]

[KS0]T
[
Ǩ00

] ]−1 [
[γS]
[γ0]

]
(8.85)

with [
Ǩ00

] = [ k1 + K̃xx −ha1k1 + K̃xθ−ha1k1 + K̃θx h2
a1k1 + K̃θθ ]−1

(8.85a)

where [KSS], [KS0], [MSS], [M00], [γS], and [γ0] are given in Equations 8.7,
8.8, 8.4, 8.6, 8.17, and 8.18, respectively. A weighting matrix [S] of dimension
2(NO+ 2) by 2(NO+ 2) is selected as an arbitrary row matrix as

[S] = [ [0] [0]
[SD] [SV]

]
(8.86)

where elements on the Rth row of submatrices [SD] and [SV] of dimension (NO+2)
by (NO + 2) equal the arbitrary constants sD and sV, respectively, which satisfy
a positive semidefinite assumption. For each controller, R equals N − ONC+ 1,
where ONC is one of the controller’s node numbers that does not allow any two con-
secutive rows of the matrix to be filled. To assure a positive semidefinite condition
of matrix [S], alternately, a symmetrical matrix can be chosen as

[S] = γD

�−1
V

[
Ǩ
] [

Ǩ
][

Ǩ
] �V

[
Ǩ
] (8.87)

with [
Ǩ
] = [ [KSS] [KS0]

[KS0]T
[
Ǩ00

] ] (8.88)
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where γD and �V are a stiffness scaling factor and a damping scaling factor,
respectively. The influence of SD, SV, and γD,�V on the total system can be studied
by substituting the gain matrix equation of Equation 8.83 in the plant matrix of
Equation 8.40 as

[D] = [A]− 1
R
{B} {B}T [S] (8.89)

For simplicity, let us use fixed-base single-story shear building shown in
Figure 8.4 for demonstration for which

[A] = [MSS]−1 [KSS] = [ 0 1− (k1
/

m1
) − (c1

/
m1
) ] (8.90)

[B] = [MSS]−1 {γS} = { 0− (1/m1
) } (8.91)

R = {γS}T [KSS]−1 {γS} = 1
k1

(8.92)

Inserting the row matrix [S] of Equation 8.86 into Equation 8.89 leads to

[D] = [ 0 1− (k1
/

m1
) (

1+ SD
/

m1
) − (c1

/
m1
) (

1+ SVk1
/

c1m1
) ] (8.93)

Similarly, inserting the symmetric weighting matrix of [S] in Equation 8.87 into
Equation 8.89 we have

[D] = [ 0 1− (k1
/

m1
) (

1+ γDk1
/

m1
) − (c1

/
m1
) (

1+�VγDk2
1
/

c1m1
) ]
(8.94)

By comparing the characteristic matrix [A] of the structure system in Equation 8.90
to the plant matrices [D] of the structure system with control (Equations 8.93 and
8.94), the constants sD, γD, and sV, γV increase the stiffness and damping coeffi-
cient of the new system, respectively. As the stiffness and damping coefficients
correspond to displacement and velocity vectors, sD, γD and sV, γV can also be
described as displacement control and velocity control factors, respectively. The
complex conjugate pairs of eigenvalues of the plant matrices in Equations 8.93
and 8.94 can be expressed as α ± ι�, whereα = −c1

(
1+ sVk1

/
c1m1

)
2m1

for Equation 8.93 (8.95)α = −c1
(
1+�VγDk2

1
/

c1m1
)

2m1
for Equation 8.94 (8.96)
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and� =√√√√k1
(
1+ sD

/
m1
)

m1
− (c1

(
1+ sVk1

/
c1m1

)
2m1

)2

for Equation 8.93

(8.97)� =√√√√k1
(
1+ γDk1

/
m1
)

m1
− (c1

(
1+�VγDk2

1
/

c1m1
)

2m1

)2

for Equation 8.94

(8.98)

For a subcritical damping system, an imaginary part of the root, �, can be inter-
preted as a damped free vibration frequency ω and −α/� as a damping ratio. In
order to maintain the system in the subcritical range (� is a real number �= 0),
sD,sV or γD,�V must be selected according to the following inequality condition:

sV < 2m1

k1

√
m1k1

(
1+ sD

m1

)− c1 (8.99)�V < 2m1γDk2
1

√
m1k1

(
1+ γDk1

m1

)− c1γDk1
(8.100)

8.4 SOIL PROPERTIES AND WAVE EQUATIONS

8.4.1 Dynamic-Equilibrium Equation
The fundamental equations of elastodynamics relevant to the formulations of soil
system are crucial and are summarized in this section [1,11]. The infinitesimal
cube, shown in Figure 8.7 is assumed to be an isotropic homogeneous elastic
medium with hysteretic damping. For harmonic excitation with frequency ω, the
dynamic-equilibrium equations without body forces can be expressed asσx,x (x, y, z)+ τxy,y (x, y, z)+ τxz,z (x, y, z) = −ρω2u (x, y, z) (8.101)τyx,x (x, y, z)+ σy,y (x, y, z)+ τyz,z (x, y, z) = −ρω2v (x, y, z) (8.102)τzx,x (x, y, z)+ τzy,y (x, y, z)+ σz,z (x, y, z) = −ρω2w (x, y, z) (8.103)

Normal stress and shear stress amplitudes are denoted as σ and τ , respectively.
The first subscript denotes the direction of the stress component. The second
one denotes the direction of the infinitesimal area’s normal on which the stress
component acts. A comma denotes a partial derivative with respect to the subscript
following it. The letter ρ represents the mass density. Displacements u, v, and w
are in x-, y-, and z-direction, respectively. All amplitudes are a function of x, y,
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dyz

dx
dz �z,z

�x,x �y,y y�yz,z
�xy,y��2u ��2v��2w

�yx,x �zy,y
�zx,x�xz,zx

FIGURE 8.7 Infinitesimal cubes in harmonic motion.

and z. Hook’s law, the constitutive equation, is specified asεx = 1
E
(σx − υσy − υσz) (8.104)εy = 1

E
(−υσx + σy − υσz) (8.105)εz = 1

E
(−υσx − υσy + σz) (8.106)γxy = γyx = τxy℘ = τyx℘ (8.107)γxz = γzx = τxz℘ = τzx℘ (8.108)γyz = γzy = τyz℘ = τzy℘ (8.109)

where the normal strain and shear strain amplitudes are denoted by ε and γ ,
respectively. Shear modulus ℘ can be expressed as a function of Young’s modulus
of elasticity E and Poisson’s ratio υ as℘ = E

2 (1+ υ) (8.110)

Stress amplitudes in Equations 8.104 through 8.109 can be written in terms of
strain amplitudes as σx = (2℘ + λ)εx + λ(εy + εz) (8.111)σy = (2℘ + λ)εy + λ(εx + εz) (8.112)
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where the Lame constant λ is expressed asλ = υE(1+ υ)(1− 2υ) (8.117)

Strain–displacement equations are formulated asεx = u,x (x, y, z) (8.118)εy = v,y (x, y, z) (8.119)εz = w,z (x, y, z) (8.120)γxy = γyx = u,y (x, y, z)+ v,x (x, y, z) (8.121)γxz = γzx = u,z (x, y, z)+ w,x (x, y, z) (8.122)γyz = γzy = v,z (x, y, z)+ w,y (x, y, z) (8.123)

Substituting the stress–strain relationship in Equations 8.111 through 8.116 and
the strain–displacement relationship in Equations 8.118 through 8.123 into the
equilibrium equations 8.101 through 8.103 leads to(2℘ + λ) u,xx + λ (v,yx + w,zx

)+ ℘ (u,yy + v,xy + u,zz + w,xz
) = −ρω2u

(8.124)(2℘ + λ) v,yy + λ (u,xy + w,zy
)+ ℘ (v,xx + u,yx + v,zz + w,yz

) = −ρω2v
(8.125)(2℘ + λ)w,zz + λ (u,xz + v,yz

)+ ℘ (w,xx + u,zx + w,yy + v,zy
) = −ρω2w

(8.126)

In order to uncouple the displacements in Equations 8.124, 8.125, and 8.126 and
to identify the different types of waves the volumetric strain with amplitude e and
the rotational-strain vector {�}with amplitudes�x ,�y, and�z, are introduced as

e (x, y, z) = u,x + v,y + w,z (8.127){�(x, y, z)} = �x�y�z

 = 1
2

w,y − v,z
u,z − w,x
v,x − u,y

 (8.128)
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Note that�x,x +�y,y +�z,z = (

w,yx − v,zx + u,zy − w,xy + v,xz − u,yz
)

2
= 0 (8.129)

By using Equations 8.127 through 8.129 dynamic-equilibrium formulation of
Equations 8.124 through 8.126 can be written as(2℘ + λ) e,x + 2℘ (�y,z −�z,y

) = −ρω2u (8.130)(2℘ + λ) e,y + 2℘ (�z,x −�x,z
) = −ρω2v (8.131)(2℘ + λ) e,z + 2℘ (�x,y −�y,x
) = −ρω2w (8.132)

The material damping occurring in a soil system involves frictional loss of energy
or linear hysteretic damping. The effect of material damping, which may differ for
various types of waves, is assumed to be the same. This frequency-independent
property can be incorporated by replacing the elastic material constants with the
corresponding complex ones. Complex shear modulus ℘∗ and Lame constant λ∗
can be expressed as℘∗ = (1+ 2ιζ ) ℘ and λ∗ = (1+ 2ιζ ) λ (8.133)

where symbols ζ and ι represent the ratio of linear hysteretic damping and
√−1,

respectively. Replacing the elastic material constants in Equations 8.130 through
8.132 with the complex ones leads to(

2℘∗ + λ∗) e,x + 2℘∗ (�y,z −�z,y
) = −ρω2u (8.134)(

2℘∗ + λ∗) e,y + 2℘∗ (�z,x −�x,z
) = −ρω2v (8.135)(

2℘∗ + λ∗) e,z + 2℘∗ (�x,y −�y,x
) = −ρω2w (8.136)

Eliminating rotational strains �x , �y, and �z by differentiating Equations 8.134
through 8.136 with respect to x, y, and z, respectively, and then adding these three
relationship lead to (

2℘∗ + λ∗) (e,xx + e,yy + e,zz
) = −ρω2e

e,xx + e,yy + e,zz = −ω2

C2
P

e (8.137)

where the dilatational wave velocity is specified as

CP = √ (2℘∗ + λ∗)ρ (8.138)
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Use the following procedures to eliminate volumetric strain e by differentiating
Equation 8.135 with respect to y, subtracting these two expressions, and noting
that the derivative of Equation 8.129 with respect to x also vanishes. The final
result is ℘∗ (�x,xx +�x,yy +�x,zz

) = −ρω2�x�x,xx +�x,yy +�x,zz = −ω2

C2
S
�x (8.139)

The detailed derivation of Equation 8.139 is as follows:(
2℘∗ + λ∗) e,yz + 2℘∗ (�z,xz −�x,zz

) = −ρω2v,z (8.139a)(
2℘∗ + λ∗) e,zy + 2℘∗ (�x,yy −�y,xy

) = −ρω2w,y (8.139b)

Subtracting the above equations yields(
2℘∗ + λ∗) (e,zy − e,yz

)+ 2℘∗ (�x,yy −�y,xy −�z,xz +�x,zz
)= −ρω2 (w,y − v,z

)
(8.139c)

Since �x = (
w,y − v,z

)
2

; �x,x +�y,y +�z,z = 0 (8.139d)

we have

2℘∗ (�x,xx +�y,yy +�z,zx
)+ 2℘∗ (�x,yy −�y,xy −�z,xz +�x,zz

) = −2ρω2�x
(8.139e)

In Equation 8.139, the shear wave velocity is defined as

CS = √℘∗ρ (8.140)

Analogously, two other expressions can result as�y,xx +�y,yy +�y,zz = −ω2

C2
S
�y (8.141)�z,xx +�z,yy +�z,zz = −ω2

C2
S
�z (8.142)
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Putting Equations 8.139, 8.141, and 8.142 together becomes{�},xx + {�},yy + {�},zz = −ω2

C2
S
{�} (8.143)

Therefore, for harmonic excitation, the equations of motion are specified in Equa-
tions 8.137 and 8.143 with the unknown amplitudes of the volumetric strain e
and the rotational-strain vector {�}, respectively. These wave equations are linear
partial differential equations of second order.

8.4.2 Earthquake Propagation Waves
Earthquake propagation waves consist of primary wave and secondary wave
so-called P- and S-waves, respectively. The equations associated with these two
waves are derived in the following sections.

8.4.2.1 Primary-wave equation

The displacement associated with body waves owing to earthquakes are sketched
in Figure 8.8a,b; and the primary wave is shown in Figure 8.8c. As the P-wave
(primary wave or dilatational wave) travels, it alternately compresses and dilates
the medium. The volumetric strain e defined in Equation 8.127 can be used to
describe this behavior. To find the unknown amplitude of the volumetric strain for
Equation 8.137, the following trial function is assumed:

e(x, y, z) = ιω
Cp

Ap exp
[− ιω

Cp
(lxx + lyy + lzz)] (8.144)

The trial function in Equation 8.144 satisfies the wave equation of
Equation 8.137 only if l2

x+l2
y+l2

z = 1. These three scalars lx , ly, and lz may be con-
sidered as the direction cosines of the wave propagation’s direction. l2

x+l2
y+l2

z = 1
can be proved as follows: to prove the trial function let us substitute the function
and its derivative into Equation 8.137 as

e,xx = ιω3l2
x

C3
p

Ap exp
[ ιω

Cp
(−lxx − lyy − lzz)]

e,yy = ιω3l2
y

C3
p

Ap exp
[ ιω

Cp
(−lxx − lyy − lzz)]

e,zz = ιω3l2
z

C3
p

Ap exp
[ ιω

Cp
(−lxx − lyy − lzz)]
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FIGURE 8.8 Displacement associated with body waves: (a) P-wave, (b) S-wave, and
(c) cross section of incident P-wave.
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Then substituting the above and Equation 8.144 into Equation 8.137 yieldsιω3

C3
p
(l2

x + l2
y + l2

z )Ap exp
[ ιω

Cp
(−lxx − lyy − lzz)]= −ω2

C2
p

[−ιω
Cp

Ap exp
( ιω

Cp

[−lxx − lyy − lzz
])]

The proof is thus obtained asιω3

C3
p

Ap exp
[ ιω

Cp
(−lxx − lyy − lzz)] ≡ ιω3

C3
p

Ap exp
[ ιω

Cp
(−lxx − lyy − lzz)]

Substituting Equation 8.144 into Equation 8.127 and using l2
x + l2

y + l2
z = 1 yield

e = u,x + v,y + w,z = − ιωCp
(l2

x + l2
y + l2

z )Ap exp
[− ιω

Cp
(lxx + lyy + lzz)]

Collecting the terms corresponding to u,x , v,y, and w,z, respectively yields

u,x = − ιωCp
l2
x Ap exp

[− ιω
Cp
(lxx + lyy + lzz)]

v,y = − ιωCp
l2
y Ap exp

[− ιω
Cp
(lxx + lyy + lzz)]

w,z = − ιωCp
l2
z Ap exp

[− ιω
Cp
(lxx + lyy + lzz)]

Integrating the above equations leads to the following displacements uP, vP, and
wP corresponding to x-, y-, and z-direction (see Figure 8.9), respectively.

uP = lxAp exp
[− ιω

Cp
(lxx + lyy + lzz)] (8.145)

vP = lyAp exp
[− ιω

Cp
(lxx + lyy + lzz)] (8.146)

wP = lzAp exp
[− ιω

Cp
(lxx + lyy + lzz)] (8.147)

At x = y = z = 0, the amplitude of P-wave equal to AP is defined an initial
condition. Therefore, in x-, y-, and z-direction, amplitudes of the wave at the
same location are equal to lxAP, lyAP, and lzAP, respectively. By enforcing these
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FIGURE 8.9 Displacement associated with incident P-wave.

conditions, the integration constants in Equations 8.145 through 8.147 are equal
to zero. Subscript P indicates that the corresponding displacements are associated
with P-wave. Equations 8.145 through 8.147 also show that the P-wave amplitude
is constant over a plane perpendicular to the direction of propagation. The velocity
of propagation CP is constant and depends on material properties only.

8.4.2.2 Secondary-wave equation

As the S-wave (secondary wave or distortional wave) propagates, it shears the
medium sideways at right angles to the direction of propagation (see Figure 8.10).
The rotational strain vector {�} defined in Equation 8.128 can be used to interpret
this behavior. To find the unknown amplitudes of the rotational-strain vector for
Equation 8.143, the trial vector is assumed as{�(x, y, z)} = − ιω

2CS
{C} exp

[− ιω
CS

(
mxx + myy + mzz

)]
(8.148)

The trial vector in Equation 8.148 satisfies equilibrium Equation 8.143, only if
m2

x + m2
y + m2

z = 1 and mxCx + myCy + mzCz = 0 where Cx , Cy, and Cz are
components of vector {C}. Direction cosines mx , my, and mz in the former specify
the direction of propagation. The proof of the trial function can be similarly done
for Equation 8.144. First, differentiate trial function {�} with respect to x, y, z
twice which and Equation 8.148 are then substituted into Equation 8.143. After
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S-wave

Wavelength

Amplitude

FIGURE 8.10 Cross section of incident S-wave.

substitution, the first row of the matrix may be written asιω3

C3
S
(m2

x + m2
y + m2

z )Cx exp
[ ιω

CS
(−mxx − myy − mzz)]= −ω2

C2
S

[−ιω
2CS

Cx exp
( ιω

CS

[−mxx − myy − mzz
])]

that yields the following proof:ιω3

C3
S

Cx exp
[ ιω

CS
(−mxx − myy − mzz)] ≡ ιω3

C3
S

Cx exp
[ ιω

CS
(−mxx − myy − mzz)]

The above proof is identical for second and third row.
Since the scalar product in the latter vanishes, vector {C} and thus {�} are

perpendicular to the direction of propagation. Applying m2
x + m2

y + m2
z = 1,

mxCx+myCy+mzCz = 0 and Equation 8.128 to the trial vector (Equation 8.148),
each row of the trail vector is expanded and separated into groups corresponding to
u,y, u,z, νx , νz, and w,x , w,y. Then, integrating each group and setting its integration
constant to zero result in displacements us, νs, and ws corresponding to x-, y-, and
z- direction, respectively, as

uS = (mzCy − myCz
)

exp
[− ιω

CS

(
mxx + myy + mzz

)]
(8.149)

vS = (mxCz − mzCx) exp
[− ιω

CS

(
mxx + myy + mzz

)]
(8.150)

wS = (myCx − mxCy
)

exp
[− ιω

CS

(
mxx + myy + mzz

)]
(8.151)
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FIGURE 8.11 Displacement associated with incident S-wave.

Subscript S indicates that the corresponding displacements are associated with
S-wave. Equations 8.149 through 8.151 show that the displacement amplitudes
are proportional to the components of the vector product of {C} and the direction
of propagation. It follows that the particle motion of S-wave lies in the plane
perpendicular to the direction of propagation and is constant over this plane. The
material dependent velocity of propagation Cs is constant.

Since the original equation of Equation 8.139 is based on the rotational strain,
the displacements in Equations 8.149 through 8.151 represent the S-wave. The
displacement vector can be further decomposed by using geometric consideration
in Figure 8.11, into a horizontal component with amplitude ASH, lying in the plane
parallel to x–y plane, and into a component with amplitude ASV, lying in the plane,
which contains the vertical z-axis and direction of propagation as follows:

ASH = Cz√
m2

x + m2
y

(8.152)

ASV = mxCy − myCx√
m2

x + m2
y

(8.153)

where ASH and ASV are the amplitudes of SH- and SV-wave at the point at x =
y = z = 0, respectively. The displacements (see Figure 8.11) can be reformulated
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in terms of these amplitudes as

uS = uSH + uSV = −myASH + mxmzASV√
m2

x + m2
y

exp
[− ιω

CS

(
mxx + myy + mzz

)]
(8.154)

vS = vSH + vSV = mxASH + mymzASV√
m2

x + m2
y

exp
[− ιω

CS

(
mxx + myy + mzz

)]
(8.155)

wS = wSV = −√m2
x + m2

yASV exp
[− ιω

CS

(
mxx + myy + mzz

)]
(8.156)

As described in Equations 8.138 and 8.140, P- and S-wave velocities are equal to√(2℘∗ + λ∗)/ρ and
√℘∗/ρ, respectively. The always-larger numerator of the

former leads to P-wave velocity being faster than S-wave velocity. Therefore, at an
observation point on the surface, amplitude of P-wave is first recorded and then
that of S-wave as shown in Figure 8.12.

8.4.2.3 In-plane displacement equation for horizontal layer

A. For incident wave when k �= 0

The origin of the local coordinate with the z-axis pointing downward is located at
the top of the horizontal layer as shown in Figure 8.13. Assuming the directions
of propagation of the P- and S-wave lie in the same vertical plane , say the x–z
plane, leads to the condition of ly = my = 0. Adding the displacement caused by
P-wave Equations 8.145 and 8.147 and S-wave in Equations 8.154 and 8.156 with

Amplitude

S-wave
P-wave

Time separation

1 2

3

2

1

FIGURE 8.12 Typical earthquake record.
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FIGURE 8.13 In-plane displacements for horizontal layer.

the above condition, the total motion in x- and z-direction can be expressed as

u(x, z) = lxAP exp
[− ιω

CP
(lxx + lzz)]+ mzASV exp

[− ιω
CS

(mxx + mzz)]
(8.157)

w(x, z) = lzAP exp
[− ιω

CP
(lxx + lzz)]− mxASV exp

[− ιω
CS

(mxx + mzz)]
(8.158)

Note that in- plane displacements with amplitudes u and w depend only on the
P- and SV-wave. The out-of-plane displacement with amplitude v (perpendicular to
x–z plane), caused by the SH-wave, is independent of u, w and not mentioned here.
The form of Equations 8.157 and 8.158 compels the boundary conditions at the
top and bottom of the layer to vary as exp

(−ιω lxx/Cp
)

and as exp(−ιω mxx/Cs).
To achieve the same variation with x, the following condition needs to be
imposed.

lx
CP
= mx

CS
(8.159)

As a total of four boundary conditions has to be satisfied (displacements with
amplitudes u and w at top and bottom of layer), a second P- and SV-wave with the
same variation in x is introduced (see Figure 8.13). Since ly = 0, for any value
of lx , lz can be selected as ±√1− l2

x . The value of lx equals cosψP, whereby ψP
is the angle of incidence of the P-wave measured from x-axis. This interpretation
holds only for a real value that is smaller than or equal to 1. Analogously, mz can
be chosen as ±√1− m2

x with mx = cosψS whereby ψS is the angle of incidence
of the S-wave measured from x-axis. Substituting lz and mz into Equations 8.157
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and 8.158 leads to

u(x, z) = lx

[
AP exp

(ιω√1− l2
x

CP
z

)+ BP exp

(−ιω√1− l2
x

CP
z

)]× exp
(−ιω lx

CP
x
)−√1− m2

x (8.160)

w(x, z) = −√1− l2
x

[
AP exp

(ιω√1− l2
x

CP
z

)− BP exp

(−ιω√1− l2
x

CP
z

)]× exp
(−ιω lx

CP
x
)− mx

[
ASV exp

(ιω√1− m2
x

CS
z

)+BSV exp

(−ιω√1− m2
x

CS
z

)]
exp

(−ιωmx

CS
x
)

(8.161)

where AP, ASV and BP, BSV are amplitudes of waves traveling in the negative and
positive z-direction, respectively (see Figure 8.13). Definitions of AP and ASV here
differ from Equations 8.157 and 8.158 where they are defined as the amplitudes
of general waves. For convenience, the following notation is introduced:

Phase velocity: C = CP

lx
= CS

mx
(8.162)

Wave number: k = ω
C

(8.163)

Scalar f : f = √ 1
l2
x
− 1 (8.164)

Scalar s: s = √ 1
m2

x
− 1 (8.165)

Using Equations 8.162 through 8.165, the in-plane displacements in Equa-
tions 8.160 and 8.161 can be rewritten as

u(x, z) = u(k, z) exp(−ιkx) (8.166)

w(x, z) = w(k, z) exp(−ιkx) (8.167)
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with

u(k, z) = lx [AP exp(ιkfz)+ BP exp(−ιkfz)]− mxs [ASV exp(ιksz)− BSV exp(−ιksz)] (8.168)

w(k, z) = lxf [AP exp(ιkfz)− BP exp(−ιkfz)]− mx [ASV exp(ιksz)+ BSV exp(−ιksz)] (8.169)

where lx/CP = mx/CS needs to be enforced. Displacements u(k, z) and w(k, z)
in Equations 8.166 and 8.167 can be interpreted as the amplitudes of waves
propagating in the positive x-direction (for a positive wave number k) with phase
velocity C.

B. For incident wave when k = 0

For the vertically incident wave, the angle of incidentψP = ψS = 90◦ (lx = mx = 0).
Therefore, the phase velocity C equals infinity and k = 0. Since lx = mx = 0, the
in-plane displacements in Equations 8.160 and 8.161 can be reformulated as

u(x, z)k=0 = −ASV exp
( ιω

CS
z
)+ BSV exp

(− ιω
CS

z
)

(8.170)

w(x, z)k=0 = −AP exp
( ιω

CP
z
)+ BP exp

(− ιω
CP

z
)

(8.171)

In this special case, it should be noted that the displacements have no variation in
x-direction.

8.4.2.4 In-plane displacement equation for half plane

A half plane can be regarded as a horizontal layer with depth approaching infinity.
Applying an external load at the free surface of a half plane, only waves travel in the
positive z-direction (outgoing waves); the radiation condition states that no energy
can propagate from infinity toward the free surface. Therefore, the incoming waves
with amplitudes AP and ASV in Equations 8.168 and 8.169 are excluded.

8.5 STIFFNESS COEFFICIENTS OF HORIZONTAL LAYER AND

HALF PLANE

8.5.1 Dynamic-Stiffness Coefficients of Horizontal Layer

8.5.1.1 For incident wave when k �= 0

The soil properties and wave equations are presented in Sections of 8.4.1 and 8.4.2,
respectively. Following the relationship between soil properties and wave equa-
tions, we can now derive the stiffness coefficient expressed in force–displacement
relationship in k-domain for harmonic excitation.
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FIGURE 8.14 Displacements, stresses, and external forces on layer i

In Figure 8.14, the horizontal layer i of depth d, extending to infinity in both
x-directions, has constant materiel properties. Origin of the local coordinate system
with the z-axis pointing downwards is located at the top of the layer. The in-plane
displacement equations of layer are given in Equations 8.166 through 8.169. By
using the stress–strain relationship (Hook’s law) and strain–displacement relation-
ship, normal stress and shear stress amplitudes on the horizontal interface can be
obtained as follows:σz(x, z) = [2℘∗ + λ∗]w,z (x, z)+ λ∗u,x (x, z) (8.172)τxz(x, z) = ℘∗ [u,z (x, z)+ w,x (x, z)] (8.173)

Substituting the displacements in Equations 8.166 through 8.169 into Equa-
tions 8.172 and 8.173 and omitting term exp(−ιkx), normal stress and shear stress
amplitudes in k-domain can be expressed asσz (k, z) = [2℘∗ + λ∗]w,z (k, z)− ιkλ∗u (k, z)= −ιk [2℘∗ + λ∗] {lx f 2 [AP exp(ιkfz)+ BP exp(−ιkfz)]+mxs [ASV exp(ιksz)− BSV exp(−ιksz)] }− ιkλ∗ {lx [AP exp(ιkfz)+ BP exp(−ιkfz)]−mxs [ASV exp(ιksz)− BSV exp(−ιksz)] }= ιk℘∗ {lx

(
1− s2

)
[AP exp(ιkfz)+ BP exp(−ιkfz)]−2mxs [ASV exp(ιksz)− BSV exp(−ιksz)] } (8.174)



“CHAP08” — 2008/1/18 — 14:55 — page 471 — #41

Active Control on Embedded Foundation 471τxz (k, z) = ℘∗ [u,z (x, z)− ιkw (k, z)]= ιk℘∗ {lx f [AP exp(ιkfz)− BP exp(−ιkfz)]− mxs2 [ASV exp(ιksz)+ BSV exp(−ιksz)]+ lx f [AP exp(ιkfz)− BP exp(−ιkfz)]+mx [ASV exp(ιksz)+ BSV exp(−ιksz)] }= ιk℘∗{2lx f [AP exp(ιkfz)− BP exp(−ιkfz)]+mx(1− s2) [ASV exp(ιksz)+ BSV exp(−ιksz)] } (8.175)

By using Equations 8.168, 8.169, 8.174, and 8.175, displacements and stresses at
the top (node i, z = 0) of layer i can be expressed in matrix form in terms of wave
amplitude AP, BP, ASV, and BSV as ui (k)

wi (k)τxz (i) (k)σz (i) (k) = [uwτσ ABi (k)] k �=0

 AP
BP

ASV
BSV

 (8.176)

with

[uwτσ ABi (k)]k �=0 = [uwτσ AB(1,1)
i

] [
uwτσ AB(1,2)

i

][
uwτσ AB(2,1)

i

] [
uwτσ AB(2,2)

i

] (8.177)

where [
uwτσ AB(1,1)

i

] = lx
[

1 1−f f

]
(8.178)[

uwτσ AB(1,2)
i

] = mx

[−s s−1 −1

]
(8.179)[

uwτσ AB(2,1)
i

] = ιklx℘∗ [ 2f −2f
1− s2 1− s2

]
(8.180)[

uwτσ AB(2,2)
i

] = ιkmx℘∗ [ 1− s2 1− s2−2s 2s

]
(8.181)
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At the bottom (node i + 1, z = d) of layer i, displacements and stresses can be
expressed in terms of the wave amplitudes AP, BP, ASV, and BSV as ui+1 (k)

wi+1 (k)τxz(i+1) (k)σz(i+1) (k) = [uwτσ ABi+1 (k)]k �=0

 AP
BP

ASV
BSV

 (8.182)

with

[uwτσABi+1 (k)]k �=0 = [uwτσAB(1,1)
i+1

] [
uwτσAB(1,2)

i+1

][
uwτσAB(2,1)

i+1

] [
uwτσAB(2,2)

i+1

]  (8.183)

where[
uwτσ AB(1,1)

i+1

] = lx
[

exp(ιkfd) exp(−ιkfd)−f exp(ιkfd) f exp(−ιkfd) ] (8.184)[
uwτσ AB(1,2)

i+1

] = mx

[−s exp(ιksd) s exp(−ιksd)− exp(ιksd) − exp(−ιksd) ] (8.185)[
uwτσ AB(2,1)

i+1

] = ιklx℘∗ [ 2f exp(ιkfd) −2f exp(−ιkfd)(
1− s2) exp(ιkfd) (

1− s2) exp(−ιkfd) ] (8.186)[
uwτσ AB(2,2)

i+1

] = ιkmx℘∗ [ (1− s2) exp(ιksd) (
1− s2) exp(−ιksd)−2s exp(ιksd) 2s exp(−ιksd) ]

(8.187)

Using Equations 8.176 and 8.182, displacement and stress amplitude at node i+1
are expressed as a function of those at node i by the transfer matrix as ui+1(k)

wi+1(k)τxz(i+1)(k)σz(i+1)(k)  = [uwτσ i+1
i (k)] k �=0

 ui(k)
wi(k)τxz(i)(k)σz(i)(k)  (8.188)

with[
uwτσ i+1

i (k)]k �=0 = [uwτσ ABi+1(k)]k �=0
[
[uwτσ ABi(k)]k �=0

]−1
(8.189)

When assembling the stiffness matrix, applied loads are defined in the global-
coordinate system. The local system used to define the stresses is opposite to
it on the negative side of a layer. Therefore, as shown in Figure 8.14, introdu-
cing external load amplitudes Pi= − τxz(i), Ri= − σz(i), Pi+1= τxz(i+1), and
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Ri+1 = σz(i+1), into Equation 8.189 and performing a partial inversion leads to the
dynamic-stiffness matrix of a horizontal layer as Pi(k)

Ri(k)
Pi+1(k)
Ri+1(k) = [SL

P−SV(k)]k �=0

i

 ui(k)
wi(k)

ui+1(k)
wi+1(k) (8.190)

with [
SL

P−SV (k)]k �=0

i
= Cof

 S11 S12 S13 S14
S21 S22 S23 S24
S31 S32 S33 S34
S41 S42 S43 S44

 (8.191)

where

Cof = (1+ s2)k℘∗
2 [1− cos(kfd)cos(ksd)]+ ( fs+ 1

/
fs) sin(kfd) sin(ksd) (8.192)

S11 = S33 = 1
s

cos(kfd) sin(ksd)+ f sin(kfd)cos(ksd) (8.193)

S12 = −S21 = −S34 = S43 = (3− s2) ι(1+ s2) [1− cos(kfd)cos(ksd)]+ (1+ 2f 2s2 − s2)ι
fs(1+ s2) sin(kfd) sin(ksd) (8.194)

S13 = S31 = −f sin(kfd)− 1
s

sin(ksd) (8.195)

S14 = −S41 = S23 = −S32 = ι[cos(kfd)− cos(ksd)] (8.196)

S22 = S44 = 1
f

sin(kfd)cos(ksd)+ s [cos(kfd) sin(ksd)] (8.197)

S24 = S42 = −1
f

sin(kfd)− s [sin(ksd)] (8.198)

Note that superscript L stands for horizontal layer i and subscript P-SV indicates
the corresponding stiffness matrix associated with P- and SV-wave.

8.5.1.2 For vertically incident waves when k = 0

This special case corresponds to a zero wave number k. The derivation is analogous
to that presented in Section 8.5.1.1, except the in-plane displacement equations
of a layer are based on Equations 8.170 and 8.171. Using the displacement in
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Equations 8.170 and 8.171 and the stresses in Equations 8.172 and 8.173 , normal
stress and shear stress amplitudes can be expressed asσz(z) = [2℘∗ + λ∗]w, z(x, z)= − ιωCp

C2
S
℘∗ [Ap exp

( ιω
Cp

z
)+ Bp exp

(− ιω
Cp

z
)]

(8.199)τxz(z) = ℘∗u,z(x, z)= − ιω
CS
℘∗ [ASV exp

( ιω
CS

z
)+ BSV exp

(− ιω
CS

)
z
]

(8.200)

Using Equations 8.170 through 8.200, the displacements and the stresses at node
i(z = 0) can be expressed as ui

wiτxz(i)σz(i)  = [uwτσ ABi]k=0

AP
BP
ASV
BSV

 (8.201)

with

[uwτσ ABi]k=0 = [uwτσ AB(1,1)
i

] [
uwτσ AB(1,2)

i

][
uwτσ AB(2,1)

i

] [
uwτσ AB(2,2)

i

] (8.202)

where [
uwτσ AB(1,1)

i

] = [ 0 0−1 1

]
(8.203)[

uwτσ AB(1,2)
i

] = [ −1 1
0 0

]
(8.204)[

uwτσ AB(2,1)
i

] = − ιωCP

C2
S
℘∗ [ 0 0

1 1

]
(8.205)[

uwτσ AB(2,2)
i

] = − ιω
CS
℘∗ [ 1 1

0 0

]
(8.206)

At node i + 1(z = d) the displacements and the stresses can be expressed as ui+1
wi+1τxz(i+1)σz(i+1)  = [uwτσ ABi+1]k=0

AP
BP
ASV
BSV

 (8.207)
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with

[uwτσ ABi+1]k=0 = [uwτσ AB(1,1)
i+1

] [
uwτσ AB(1,2)

i+1

][
uwτσ AB(2,1)

i+1

] [
uwτσ AB(2,2)

i+1

] (8.208)

where[
uwτσ AB(1,1)

i+1

] = [ 0 0− exp(ιωd/CP) exp(−ιωd/CP) ] (8.209)[
uwτσ AB(1,2)

i+1

] = [− exp(ιωd/CS) exp(−ιωd/CS)
0 0

]
(8.210)[

uwτσ AB(2,1)
i+1

] = − ιωCp

C2
S
℘∗ [ 0 0

exp(ιωd/CP) exp(−ιωd/CP) ] (8.211)[
uwτσ AB(2,1)

i+1

] = − ιω
CS
℘∗ [ exp(ιωd/CS) exp(−ιωd/CS)

0 0

]
(8.212)

Using Equations 8.201 and 8.207, the displacement and stress amplitudes at
node i+1 are expressed as a function of those at node i by the transfer matrix as ui+1

wi+1τxz(i+1)σz(i+1)  = [uwτσ i+1
i

]k=0

 ui
wiτxz(i)σz(i)  (8.213)

with [
uwτσ i+1

i

]k=0 = [uwτσ ABi+1]k=0
[
[uwτσ ABi]k=0

]−1
(8.214)

Introducing external load amplitudes Pi = −τxz(i), Ri = −σz(i), Pi+1 =τxz(i+1), and Ri+1 = σz(i+1) into Equation 8.213 and performing a partial inversion
leads to the dynamic-stiffness matrix of a layer (k = 0) asPi

Ri
Pi+1
Ri+1

 = [SL
P−SV

] k=0

i

 ui
wi
ui+1
wi+1

 (8.215)
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with [

SL
P−SV

]k=0

i
= Cof

 S11 0 S13 0
0 S22 0 S24

S31 0 S33 0
0 S42 0 S44

 (8.216)

where

Cof = ω
CS
℘∗ (8.217)

S11 = S33 = cot
(ωd

CS

)
(8.218)

S13 = S31 = −1
sin(ωd/CS) (8.219)

S22 = S44 = (CP

CS

)
cot
(ωd

CP

)
(8.220)

S24 = S42 = (CP

CS

) −1
sin(ωd/CP) (8.221)

8.5.2 Dynamic-Stiffness Coefficients of Half Plane
A half plane can be regarded as a horizontal layer with depth approaching infinity.
Applying an external load at the free surface of a half plane, only wave traveling
in the positive z-direction (outgoing waves) is developed as shown in Figure 8.15.
The radiation condition states that no energy can propagate from infinity toward
the free surface. Therefore, the incoming waves with amplitudes AP and ASV in
Equations 8.168 and 8.169 are excluded. The wave number k can be positive,
negative, and zero for which three cases presented in Sections 8.5.2.1 through
8.5.2.3, respectively.

8.5.2.1 Positive wave number k

The in-place displacement equations for a positive wave number k can be
expressed as

u(k, z) = lxBP exp(−ιkfz)+ mxsBSV exp(−ιksz) (8.222)

w(k, z) = lxfBP exp(−ιkfz)− mxBSV exp(−ιksz) (8.223)

Substituting displacement Equations 8.166, 8.167, 8.222, and 8.223 into stress
Equations 8.172 and 8.173, and omitting term exp(−ιkx), the stress amplitudes in
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FIGURE 8.15 Displacements, stresses, and external forces on half plane.

k-domain can be expressed asσz(k, z) = [2℘∗ + λ∗]w, z(k, z)− ιkλ∗u(k, z)= ιk℘∗[lx(1− s2)BP exp(−ιkfz)+ 2smxBSV exp(−ιksz)] (8.224)τxz(k, z) = ℘∗[u,z(k, z)− ιkw(k, z)]= ιk℘∗[−2lx fBP exp(−ιkfz)+ mx(1− s2)BSV exp(−ιksz)] (8.225)

At node 0 (z = 0) on the surface of a half plane, displacements and external forces(P0 = −τxz(0), ) R0 = −σz(0) in Figure 8.15 can be expressed in terms of wave
amplitudes BP and BSV as{

u0(k)
w0(k)} = [ lx mxs

lx f −mx

]{
BP

BSV

}
(8.226){

P0(k)
R0(k)} = ιk℘∗ [ 2lx f −mx(1− s2)−lx(1− s2) −2mxs

]{
BP

BSV

}
(8.227)

Eliminating BP, BSV in Equations 8.226 and 8.227, the dynamic-stiffness matrix
of a half plane, for a positive nonzero k, can be expressed as{

P0(k)
R0(k)} = [SR

P−SV(k)]k>0
{

u0(k)
w0(k)} (8.228)
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with[

SR
P−SV(k)]k>0 = ιk℘∗ [ 2lxf −mx(1− s2)−lx(1− s2) −2mxs

] [
lx mxs
lxf −mx

]−1= ιk℘∗ [ f (1+ s2)/(1+ fs) 2− [(1+ s2)/(1+ fs)]−2+ [(1+ s2)/(1+ fs)] s(1+ s2)/(1+ fs) ]
(8.229)

As the half plane is used mainly to represent rock bed, a superscript R is introduced.
Subscript P-SV indicates that the corresponding stiffness matrix is associated with
P- and SV-wave.

8.5.2.2 Negative wave number k

The displacement equations having the outgoing waves (propagating in the positive
z-direction and the negative x-direction as shown in Figure 8.15) with amplitudes
BP and BSV can be expressed as

u(k, z) = lxBP exp(ιkfz)− mxsBSV exp(ιksz) (8.230)

w(k, z) = −lx fBP exp(ιkfz)− mxBSV exp(ιksz) (8.231)

Substituting displacement Equations 8.166, 8.127, 8.230, and 8.231 into stress
Equations 8.172 and 8.173, and omitting term exp(−ιkx), normal stress and shear
stress amplitudes can be expressed asσz(k, z) = ιk℘∗[lx(1− s2)BP exp(ιkfz)− 2smxBSV exp(ιksz)] (8.232)τxz(k, z) = ιk℘∗[2lx fBP exp(ιkfz)+ mx(1− s2)BSV exp(ιksz)] (8.233)

At node 0(z = 0) on the surface of a half plane, the displacements and
external forces (P0 = −τxz(0), R0 = −σz(0)) shown in Figure 8.15 can be
expressed as{

u0(k)
w0(k)} = [ lx −mxs−lx f −mx

]{
BP

BSV

}
(8.234){

P0(k)
R0(k)} = ιk℘∗ [ −2lx f −mx(1− s2)−lx(1− s2) 2mxs

]{
BP

BSV

}
(8.235)
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Eliminating BP, BSV in Equations 8.234 and 8.235, the dynamic-stiffness matrix
of half plane, for a negative k, can be expressed as{

P0(k)
R0(k)} = [SR

P−SV(k)]k<0
{

u0(k)
w0(k)} (8.236)

with[
SR

P−SV(k)]k<0 = ιk℘∗ [ −2lx f −mx(1− s2)−lx(1− s2) 2mxs

] [
lx −mxs−lx f −mx

]−1= ιk℘∗ [ −f (1+ s2)/(1+ fs) 2− [(1+ s2)/(1+ fs)]−2+ [(1+ s2)/(1+ fs)] −s(1+ s2)/(1+ fs) ]
(8.237)

8.5.2.3 Wave associated with k = 0

As presented earlier, only the outgoing waves with amplitudes BP and BSV
are developed. Therefore, the displacements in Equations 8.170 and 8.171 are
reduced to

u(x, z)k=0 = BSV exp
(− ιω

CS
z
)

(8.238)

w(x, z)k=0 = BP exp
(− ιω

CP
z
)

(8.239)

Using the displacements in Equations 8.238 and 8.239 and the stresses in Equa-
tions 8.172 and 8.173, the normal stress and shear stress amplitudes can be
expressed as σz(z) = − ιωCP

C2
S
℘∗BP exp

(− ιω
CP

z
)

(8.240)τxz(z) = − ιωCS
℘∗BSV exp

(− ιω
CS

z
)

(8.241)

At node 0 (z = 0) on the surface of a half plane, the displacements and external
forces

(
P0 = −τxz(0), R0 = −σz(0)) can be expressed as{

u0
w0

} = [ 0 1
1 0

]{
BP

BSV

}
(8.242){

P0
R0

} = ιω
CS
℘∗ [ 0 1

CP/CS 0

]{
BP

BSV

}
(8.243)
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Using Equations 8.242 and 8.234, the dynamic-stiffness, matrix of a half plane,
for k = 0, can be expressed as{

P0
R0

} = [SR
P−SV

]k=0
{

u0
w0

}
(8.244)

with [
SR

P−SV

]k=0 = ιω
CS
℘∗ [ 1 0

0 CP/CS

]
(8.245)

8.6 DYNAMIC-STIFFNESS MATRICES OF GROUND SYSTEM

8.6.1 Definition and Concept
The ground system with embeded foundation is constructed by excavating a part
of the soil from free-field soil as shown in Figure 8.16. Free-field system is the
site before excavation and construction. Excavated part is the soil to be removed
and then replaced by embedded foundation. Thus, all three parts have the same
soil properties for which the mathematical model must be consistent. For instance,
they have common rigid interface and three d.o.f. at point 0, x0, z0, and θ0, in
x-, z-direction and around y-direction, represent the d.o.f. along the rigid interface.
Superscripts g, f, and e, only identify ground, free field, and excavated part of
the whole system. Because free-field is an unbounded continuous domain and
excavated part is a bounded medium; the stiffness matrices of these two systems
must be first derived independently according to the characteristics of soils and
wave equations presented in Sections 8.4 and 8.5, ground system’s stiffness matrix
is then obtained.

2B 2BM Mi iN-1 N-1

2 2

P P+ +

+– –
––

+

0 0

0
θg

0
θg

0 θe
0

zg
0

xg
0

xf
0 xe

0ze
0

zf
0

1 1

SV SV
SV-wave SV-wave

P-wave P-wave

(a) (b) (c)

= –

Rigid interface

Rigid interface

Rigid interface

FIGURE 8.16 Ground system with rigid interface: (a) ground system, (b) free-field system,
and (c) excavated part.



“CHAP08” — 2008/1/18 — 14:55 — page 481 — #51

Active Control on Embedded Foundation 481

Rigid interface

2B
1

Soil I

Soil II

Soil III

Half-space

M 0

D = di Myf, θ0f Fzf, z0fFxf, x0fMi=1 N-1

Σ
FIGURE 8.17 Forces and displacements of free-field system with rigid interface.

8.6.2 Free-Field System’s Stiffness Matrix

8.6.2.1 Force–displacement relationship in frequency domain

The dynamic stiffness matrix
[
Sf

00 (ω)] of the continuous free-field system with
rigid interface is represented in Figure 8.17. It specifies the amplitude of forces
Ff

x , Mf
y , Ff

z due to unit amplitude of displacement xf
0, θ f

0 , zf
0 applied at node 0 of

the rigid interface for harmonic motion with excitation frequency ω as Ff
x

Mf
y

Ff
z

 = [Sf
00 (ω)] xf

0θ f
0

zf
0

 (8.246)

The concept of the indirect boundar-element method, a special case of
weighted-residual technique [9,10,12], can be applied to the free-field system even
though the rigid interface is not a boundary. Assume that loading patterns acting
along the rigid interface do exist and that these loads result along the same interface,
in the prescribed displacement of unit nodal values xf

0, θ f
0 , zf

0. This can be achieved
by adjusting load intensities to satisfy this condition. Integrating loading patterns
with prescribed displacement will lead to the dynamic-stiffness matrix. Since only
a finite number of load intensities can be chosen, an approximate solution results.

In Figure 8.18, the rigid interface consists of two vertical interfaces for length
D and a horizontal interface for length 2B. As additional horizontal interfaces are
introduced into the system, the former is divided into elements of length di, for
i = 1, 2, . . . , M, on each of the vertical interface. The latter is equally divided into
2L elements, each of length b. The elements are numbered from 1 to 2(M + L).
Element 1 is started from the top element of the left vertical interface to the bottom
one, element M. Elements M+1, . . . , M+2L define the element of the horizontal
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1 u(ϑ)w(ϑ)

1

Soil I

Soil IIM + 2L M+2L+1

2(M+L)M + 1

M
Soil III

Half-space

M 0θ0
f z0

f
x0

fN-1

2B = 2L * bD = diMi=1
Σ
FIGURE 8.18 Prescribed displacements along rigid interface.

interface from the left element to the right one. On the right vertical interface,
elements M + 2L + 1, . . ., 2(M + L) are used to describe the element from top to
bottom.

Rigid body kinematics relate the prescribed displacement amplitudes u (ϑ),
w (ϑ) along the rigid interface (see Figure 8.18) to the rigid body d.o.f. associated
with the dynamic-stiffness’s definition as{

u (ϑ)
w (ϑ)} = [N (ϑ)] xf

0θ f
0

zf
0

 (8.247)

where ϑ denotes symbolically a point on the assumed line that subsequently
forms the rigid interface. A bold letter in the matrix used herein indicates the
corresponding matrix in the space domain of frequency.

On the continuous system in Figure 8.19, load amplitudes p (ϑ), r (ϑ) along
the assumed line are related to the initially unknown intensities pi, ri on node i as{

p (ϑ)
r (ϑ)} = [L (ϑ)] [ p1 r1 . . . pi ri . . . pNN rNN

]T (8.248)

[L (ϑ)] represents a selected interpolation function (e.g., a linearly distributed
function). Nodes are numbered from 1 to NN, where NN is a number of notes along
the assumed line and equals 2(M+L)+3 as the discontinuities of load patterns are
introduced at the corners of the assumed line. Node 1 goes from the top node of the
left vertical interface to the bottom one, note M+1. Nodes M+2, . . ., M+2L+2
define the nodes of the horizontal interface from the left note to the right one.
On the right vertical interface, nodes M + 2L + 3, . . ., 2(M + L) + 3 are used to
describe the nodes from top to bottom.
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M + 1 M + 2

M + 2L + 3

2(M + L) + 3M + 2L + 2z� z� x�x�M rj pjpj+1 pl+1
rj+1 rl+1

pjplrlp(ϑ) p(ϑ)r(ϑ)

r(ϑ)

1
1

diMi=1
Σ 2B = 2L * b

Soil I

Soil II

Soil III

Half-space

FIGURE 8.19 Linearly distributed loads along assumed line.

Green’s influence functions (seeAppendix B) relate the amplitudes of displace-
ment upr (ϑ), wpr (ϑ) along the assumed line to initially unknown intensities pi, ri
on node i as{

upr (ϑ)
wpr (ϑ)} = [uwpr (ϑ)] [ p1 r1 . . . pi ri . . . pNN rNN

]T (8.249)

Since only a finite number of load intensities pi, ri can be introduced, the
displacement-boundary condition on the interface cannot be satisfied exactly but
is expressed in an average sense as∫ϑ [W (ϑ)] T

({
upr (ϑ)
wpr (ϑ)}− { u (ϑ)

w (ϑ)}) dϑ = {0} (8.250)

In order to guarantee the symmetry of the dynamic-stiffness matrix, for indirect
boundary-element method, the weighting matrix [W (ϑ)] is chosen to be equal to
[L (ϑ)] [6].

Substituting Equations 8.247 and 8.124 in Equation 8.250, the total load
intensities pi, ri that satisfy the condition in Equation 8.250 can be determined as[

p1 r1 . . . pi ri . . . pNN rNN
]T = [F]−1 [T]

 xf
0θ f
0

zf
0

 (8.251)
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where

[F] = ∫ϑ [L (ϑ)]T [uwpr (ϑ)] dϑ (8.252)

[T] = ∫ϑ [L (ϑ)]T [N (ϑ)] dϑ (8.253)

The flexibility matrix [F] of a dimension 2(NN) by 2(NN), where
NN = 2(M + L)+ 3, is symmetric. The generalized strain–displacement matrix
[T] has a dimension of 2(NN) by 3.

As is well known from virtual work consideration, amplitudes of the con-
centrated loads Ff

x , Mf
y , Ff

z can be obtained by integrating loading patterns with
prescribed displacement as Ff

x

Mf
y

Ff
z

 = ∫ϑ [N (ϑ)]T
{

p (ϑ)
r (ϑ) } dϑ (8.254)

Using Equations 8.248 and 8.251 in Equation 8.254 leads to the dynamic-stiffness
matrix of free-field system with rigid interface as Ff

x

Mf
y

Ff
z

 = [Sf
00 (ω)]  xf

0θ f
0

zf
0

 (8.255)

where [
Sf

00 (ω)] = [T]T [F]−1 [T] (8.256)

8.6.2.2 Strain–displacement relationship in
frequency domain

Integration of Equation 8.253 is performed, along the rigid interface, on each ele-
ment based on its local coordinates. Origin of the local coordinates is located
at the top node for the vertical element and at the left node for the hori-
zontal element. By using the geometric configuration shown in Figure 8.18, the
rigid body kinematics in Equation 8.247 can be broken down into one of each
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element as[
N (z)]i =  1 −( M∑

n=i
dn

)+ z 0

0 B 1

 for element i, i = 1, . . ., M (8.257)[
N (x)]i =  1 0 0

0
(M+L∑

n=i
b
)− x 1

 for element i, i = M + 1, . . ., M + L

(8.258)[
N (x)]i =  1 0 0

0 −( i∑
n=M+L+1

b

)+ b− x 1


for element i, i = M + L + 1, . . ., M + 2L (8.259)[

N (z)]i =  1 −( M∑
n=i−M−2L

dn

)+ z 0

0 −B 1


for element i, i = M + 2L + 1, . . ., 2(M + L) (8.260)

where a horizontal bar on top of a letter denotes that the given matrix is element
matrix. As an example, the determination of the terms on the first row and the
second column of the matrix in Equation 8.257 are described as follows. The term∑M

n=i dn represents the distance from the top node of ith element to the level of
point 0. Subtracting z (distance from the top node of ith element to a considering
point) from

∑M
n=i dn results in

∑M
n=i dn − z, which represents the distance from a

considering point to the level of point 0. Multiplying
∑M

n=i dn − z by θ f
0 (rotation

point of 0) leads to a negative horizontal displacement at a considering point.
The expression on the first row and second column of this matrix relates to the
horizontal displacement at a considering point, u (z), to the rotation at point 0, θ f

0 ,
therefore it equals −∑M

n=i dn + z.
For linearly distributed loads in Figure 8.19, a two-node element is employed.

Since only the nodal values on these two corresponding nodes dictates loading
patterns on the element, the interpolation matrix in Equation 8.248 can be written as[

L(z)]i=[1−z
/

di 0 z
/

di 0
0 1−z

/
di 0 z

/
di

]
for element i on vertical interface

(8.261)[
L(x)]i=[1−x

/
b 0 x

/
b 0

0 1−x
/

b 0 x
/

b

]
for element i on horizontal interface

(8.262)
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Using Equations 8.257 through 8.262, the element strain–displacement matrix

[
T
]
,

can be obtained as[
T
] = ∫ di

0

[
L (z)]Ti [N (z)]i dz for element i on vertical interface (8.263)[

T
] = ∫ b

0

[
L (x)]Ti [N (x)]i dx for element i on horizontal interface (8.264)

Completing the integration in Equations 8.263 and 8.264 results, for element i, in[
T
]

i =  di
/

2 −( M∑
n=i

dn

)
di
/

2+ d2
i
/

6 0

0 Bdi
/

2 di
/

2

di
/

2 −( M∑
n=i

dn

)
di
/

2+ d2
i
/

3 0

0 Bdi
/

2 di
/

2

 i = 1, . . . , M (8.265)[
T
]

i =  b
/

2 0 0

0
(M+L∑

n=i
b
)

b
/

2− b2/6 b
/

2

b
/

2 0 0

0
(M+L∑

n=i
b
)

b
/

2− b2/3 b
/

2

 i = M + 1, . . . , M + L (8.266)[
T
]

i =  b
/

2 0 0

0 −( i∑
n=M+L+1

b

)
b
/

2+ b2/3 b
/

2

b
/

2 0 0

0 −( i∑
n=M+L+1

b

)
b
/

2+ b2/6 b
/

2

 i = M + L + 1, . . . , M + 2L

(8.267)[
T
]

i =  di
/

2 −( M∑
n=i−M−2L

dn

)
di
/

2+ d2
i
/

6 0

0 −Bdi
/

2 di
/

2

di
/

2 −( M∑
n=i−M−2L

dn

)
di
/

2+ d2
i
/

3 0

0 −Bdi
/

2 di
/

2

 i = M + 2L + 1, . . . , 2(M + L)
(8.268)

Therefore, the generalized strain–displacement matrix [T] of a dimension of 2(NN)
by 3 can be obtained by assembling the element strain–displacement matrices.
In the assembling process, the element matrices of two adjacent elements are
overlapped on the rows corresponding to the same node. This overlapping does
not apply to the nodes corresponding to the corners of the assumed line since
discontinuities in loading patterns were introduced. Note that the integration of
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Equation 8.252 is performed in the same manner as that of Equation 8.253 for
generalized strain–displacement matrix.

8.6.3 Excavated Part’s Stiffness Matrix in Frequency
Domain

For harmonic motion with excitation frequency ω, the dynamic stiffness mat-
rix

[
Se

00(ω)] of the bounded excavated part of the system with rigid interface is
demonstrated in Figure 8.20. It defines amplitude of forces Fe

x , Me
y , Fe

z due to unit
amplitude displacements xe

0, θe
0 , ze

0 applied at node 0 of the rigid interface asFe
x

Me
y

Fe
z

 = [Se
00(ω)] xe

0θe
0

ze
0

 (8.269)

with [
Se

00(ω)] = [Ke](1+ 2ζ ι)− ω2[Me] (8.270)

where [Ke] and [Me] are the stiffness matrix and the mass matrix of the excavated
part of the system respectively. Symbols ζ and ι represent the linear hysteretic
damping ratio and

√−1, respectively.
As the excavated part of the system represents a bounded domain, the concept

of the finite element method can be applied. First, the domain is discretized into
elements connected to each other at nodal points. Determining and assuming the
element dynamic stiffness matrix leads to dynamic stiffness matrix corresponding
to d.o.f. of all nodal points. Then the condensation process is needed to eliminate
the d.o.f. of the nodes not lying on the rigid interface. Finally, relating the d.o.f. of
the nodes along the interface to the rigid body d.o.f. at point 0 yields the desired
dynamic stiffness matrix.

As shown in Figure 8.21, depth D of the excavated domain is equally divided
into Me portions each of length de. In addition, the domain’s width at length

2B
Rigid interfaceθe

0 ze
0

xe
00

D = diMi=1
Σ

FIGURE 8.20 Excavated part of system with rigid interface.
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w1w2

2(M e + Le) + 2M e + 1
M e + Le + 1

2(M e + Le) + 1M e + 2Le + 1
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2B = 2Le * be

D
 = M e * d e 1 4
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4Le

2LeM e2Le (M e – 1) + 1

FIGURE 8.21 Discretization of excavated part of system.

2B is evenly divided into 2Le portions, each of length be. This results in 2LeMe

rectangular elements of dimensions de by be, each having four nodal points.
Also shown in the same figure, rectangular elements are numbered from 1 to

2LeMe starting from left to right and top to bottom. The nodes are categorized into
two groups: nodes along the interfaces (subscript B) and nodes in the domains
interior, including those along the top boundary (subscript I). The former are
numbered from 1 to Me+1, going from top to bottom of the vertical left interface,
from Me + 1 to Me + 2Le + 1 going from left to right of the horizontal interface,
and from Me+2Le+1 to 2(Me+Le)+1 going from bottom to top of the vertical
right interface. The latter are numbered from 2(Me+Le)+2 to (Me+1)(2Le+1)
going from top to bottom and left to right for the interior.

The 8× 8 dynamic stiffness
[
S e(ω)]

j
of element j, where j = 1, . . . , 2LeM e,

can be obtained as [
S e(ω)]

j
= [K e]

j
(1+ 2ζjι)− ω2

[
M e]

j
(8.271)

where
[
K e] and

[
M e] are stiffness matrix and mass matrix of element j. They are

discussed in Appendix C.
In the standard assembling process, the element dynamic stiffness matrices[

S e(ω)] of adjacent discretizing elements are overlapped on the matrix’s elements
corresponding to the same nodes. The resulting matrix can be expressed as{{PRB}{PRI}} = [Se(ω)] {{uwB}{uwI}} (8.272)
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with{PRB} = [P1 R1 . . . Pi Ri . . . P2(Me+Le)+1 R2(Me+Le)+1
]T{PRI} = [P2(Me+Le)+2 R2(Me+Le)+2 . . . Pi Ri . . . P(Me+Le)(2Le+1)

R(Me+Le)(2Le+1)]T
(8.273)[

Se(ω)] = [[S̃BB
] [

S̃BI
][

S̃IB
] [

S̃II
]] (8.274) {uwB} = [u1 w1 . . . ui wi . . . u2(Me+Le)+1 w2(Me+Le)+1

]T{uwI} = [u2(Me+Le)+2 w2(Me+Le)+2 . . . ui wi . . . u(Me+Le)(2Le+1)
w(Me+Le)(2Le+1)]T

(8.275)

where Pi and Ri are the horizontal and vertical forces at node i, respectively. ui and
wi are the horizontal and vertical displacement at node i, respectively. The dynamic
stiffness matrix [Se(ω)] of dimension 2(Me+ 1)(2Le+ 1) by 2(Me+ 1)(2Le+ 1)
consists of four submatrices, each corresponding to the d.o.f. of subscripts’ nodes.
Subscript B indicated indicates the nodes along the interfaces. Subscript I stand
for the interior nodes, including those along the top boundary. Subscripts e denotes
the excavated part system.

Since no external forces act on the nodes in the interior ({PRI } = 0),
Equation 8.272 can be condensed and expressed as{PRB} = [Se

BB(ω)] {uwB} (8.276)

with [
Se

BB(ω)] = [S̃BB
]− [S̃BI

] [
S̃II
]−1 [

S̃IB
]

(8.277)

where
[
Se

BB(ω)] has a dimension of 4(Me + Le) + 2 by 4(Me + Le) + 2. Since
the interface is rigid, as shown in Figure 8.22, the d.o.f. of the nodes along the
interface relate to the rigid body d.o.f., at point 0 as{uwB} = [A]

xe
0θe
0

ze
0

 (8.278)

with

[A] =  [A1]
[A2]
[A3]
[A4]

 (8.279)
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2B = 2Le *be

wMe + 2Le + 1
uMe + 2Le + 1

u 2(Me+ Le) + 1w2(Me+ Le) + 1w1

u1wi uiuMe+1wMe+1 θe
0 ze

0

0 xe
0

FIGURE 8.22 Rigid body d.o.f. of excavated part of system.

where

[A1] =  ...
...

...

1 −(Me∑
n=i

de

)
0

0 B 1
...

...
...

 for node i, i = 1, . . ., M, (8.280)

[A2] =  ...
...

...
1 0 0

0
Me+Le∑

n=i
be 1

...
...

...

 for node i, i = Me + 1, . . ., Me + Le (8.281)

[A3] =  ...
...

...
1 0 0

0 −( i∑
n=Me+Le+1

be

)+ be 1

...
...

...


for node i, i = Me + Le + 1, . . ., Me + 2Le + 1 (8.282)
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[A4] =  ...
...

...

1 −( i∑
Me+2Le+2

de

)
0

0 −B 1
...

...
...


for node i, i = Me + 2Le + 2, . . ., 2(Me + Le)+ 1 (8.283)

Matrix [A] of dimension 4(Me + Le)+ 2 by 3 consists of four submatrices, [A1],
[A2], [A3], and [A4]. Matrix [A1], having a dimension of 2Me by 3, corresponds to
the d.o.f. along the vertical left interface. Matrix [A2], having a dimension of 2Le
by 3, corresponds to the d.o.f. along the left portion of the horizontal interface.
Matrix [A3], having a dimension of 2Le+2 by 3, corresponds to the d.o.f. along the
right portion of the horizontal interface. Matrix [A4] having a dimension of 2Me

by 3, corresponds to the d.o.f. along the vertical right interface. These submatrices
can be determined by using consideration in Figure 8.22. For example, the term−∑i

Me+2Le+2 de in Equation 8.283 relates a horizontal displacement at node i of
the vertical right interface, ui, to the rotation at point 0, θe

0 . This term represents
the negative distance from node i to the level of point 0 as positive rotation results
in the negative horizontal displacement at node i. The summation of de from
Me + 2Le + 2 to i leads to the distance from the level of point 0 to the node i.

Using matrix [A] in Equation 8.278 and its transposed form in Equation 8.276
the dynamic stiffness matrix of the excavated part of the system with rigid interface
can be expressed as Fe

x
Me

y
Fe

z

 = [Se
00(ω)] xe

0θe
0

ze
0

 (8.284)

where [
Se

00(ω)] = [A]T [Se
BB(ω)] [A] (8.285)

and Fe
x

Me
y

Fe
z

 = [A]T {PRB} (8.286)
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2BD = diMi=1

Σ Soil I

Soil II

Soil III

Half-space

Rigid interface

0N-1

iM Mgy ,θg
0

Fgx ,xg
0Fgz  , zg
0

2

1

FIGURE 8.23 Forces and displacements of ground system with rigid interface.

8.6.4 Ground System’s Stiffness and Flexibility Matrix

8.6.4.1 Transformation of stiffness matrix to flexibility matrix
in frequency domain

In Figure 8.23, the dynamic stiffness matrix
[
Sg

00(ω)]of the unbounded ground
system with rigid interface is depicted. It specifies the amplitude of forces Fg

x , Mg
y ,

Fg
z due to unit amplitude displacements xg

0, θg
0 , zg

0 applied at the node 0. These
forces, for harmonic motion with excitation frequency ω, are expressed asFg

x

Mg
y

Fg
z

 = [Sg
00(ω)]xg

0θg
0

zg
0

 (8.287)

with [
Sg

00(ω)] = Sg
xx Sg

xθ 0
Sgθx Sgθθ 0
0 0 Sg

zz

 (8.288)

where ground system coefficients Sg
xx , Sg

xθ , Sgθx , Sgθθ and Sg
zz are forces corres-

ponding to the first subscript’s d.o.f. due to a unit displacement excitation
corresponding to the second subscripts d.o.f. Since we assume the soil domain
to be a linear system the law of superposition is valid. Thus the dynamic stiffness
matrix of the ground system can be obtained by subtracting that of the excavate part
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of the system, Equation 8.285, from that of the free-field system Equation 8.256 as[
Sg

00(ω)] = [Sf
00(ω)]− [Se

00(ω)] (8.289)

Near the natural frequency of the system’s excavated part, that system’s dynamic
stiffness coefficients as well as the free-field system’s will be large. Since the
dynamic stiffness coefficients of the ground system involve two large numbers
obtained from two different methods, a number of discretzing elements must be
chosen carefully in this vicinity.

Since harmonic motion is represented as exp(ιωt), the ground system’s force–
displacement relationship in Equation 8.287 can also be written as

exp(ιωt)Fg
x

Mg
y

Fg
z

 = exp(ιωt) [Sg
00(ω)] xg

0θg
0

zg
0

 (8.290)

where ι and t represent
√−1 and time variable, respectively. Dynamic flexibility

matrix is the inverse form of dynamic stiffness matrix. In the case of a ground
system with rigid interface (see Figure 8.23), the dynamic flexibility matrix spe-
cifies amplitude of displacement xg

0, θg
0 , zg

0 due to unit amplitude of forces Fg
x , Mg

y ,
Fg

z applied at node 0 of the rigid interface for harmonic motion with excitation
frequency ω. This relationship can be expressed as

exp(ιωt)xg
0θg
0

zg
0

 = exp(ιωt) [Fg
00(ω)]Fg

x
Mg

y
Fg

z

 (8.291)

with [
Fg

00(ω)] = [Sg
00(ω)]−1 (8.292)

where
[
Fg

00(ω)] of dimension 3 by 3 is dynamic flexibility matrix of ground system
with rigid interface for the harmonic motion with excitation frequency ω.

8.6.4.2 Time derivative of flexibility matrix

Differentiating the displacement–force Equation 8.291 with respect to time, and
omitting term exp(ιωt), results in a velocity–force relationship of ground system
in harmonic motion as ẋg

0θ̇g
0

żg
0

 = [Ḟg
00(ω)] Fg

x

Mg
y

Fg
z

 (8.293)
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where

[
Ḟg

00(ω)] is a symbolic form, not a derivative, representing the so-called
time–derivative dynamic flexibility matrix of ground system as shown later in
Equation 8.295: ẋg

0θ̇g
0

żg
0

 = ιω xg
0θg
0

zg
0

 (8.294)[
Ḟg

00(ω)] = ιω [Fg
00(ω)] = ιω [Sg

00(ω)]−1= Ḟg
xx Ḟg

xθ 0
Ḟgθx Ḟgθθ 0
0 0 Ḟg

zz

 (8.295)

where
[
Ḟg

00(ω)] of dimension 3 by 3 specifies amplitude of velocities ẋg
0, θ̇g

0 , żg
0

due to unit amplitude of forces Fg
x , Mg

y , Fg
z applied at node 0 of the rigid interface

for harmonic motion with excitation frequency ω.

8.6.4.3 Flexibility matrix in time domain

Observe Equation 8.27,
[χ̇g

00 (m)] is in time domain because the online control
must respond to seismic excitation according to earthquake time–history record.
Thus

[
Ḟg

00(ω)] in Equation 8.295 needs to be converted to time-domain. Note
that Equation 8.294 is a velocity expression of ẋg

0, θ̇g
0 , żg

0 at time t for which the
velocity amplitude is a series of amplitudes of impulse forces Fg

x , Mg
y , Fg

z . Thus,
the velocity can be related to the impulse forces by the following:ẋg

0 (t)θ̇g
0 (t)

żg
0 (t) = ∫ ∞−∞ [χ̇g

00 (τ )] Fg
x (1− τ)

Mg
y (1− τ)

Fg
z (1− τ) dτ (8.296)

with [χ̇g
00 (τ )] = χ̇g

xx χ̇g
xθ 0χ̇gθx χ̇gθθ 0

0 0 χ̇g
zz

 (8.297)

where
[χ̇g

00
]

is impulse velocity matrix of ground system with rigid interface. Coef-
ficients χ̇g

xx χ̇g
xθ χ̇gθx χ̇gθθ and χ̇g

zz are velocities at time τ , corresponding to the first
subcript’s d.o.f. due to a unit impulse force, at time equal to zero, corresponding to
the second subscript’s d.o.f. Clearly, these coefficients are time-dependent causal
functions.
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This impulse velocity matrix
[χ̇g

00 (t)] can be obtained by the inverse Fourier
transformation of the ground system’s time-derivative dynamic flexibility matrix[
Ḟg

00(ω)] in Equation 8.295 as[χ̇g
00 (t)] = 1

2π ∫ ∞−∞ [Ḟg
00 (τ )] exp(ιωt) dω (8.298)

Since the soil system’s dynamic-stiffness matrices and the time-derivative
dynamic-flexibility matrix used in Equation 8.298 are obtained in discrete-
frequency domain, the discrete version of inverse Fourier transform applies as[χ̇g

00 (n�t)] = �ω
2π NS∑

m=1−NS

[
Ḟg

00 (m�ω)] exp(ιm�ω�t) (8.299)

where�t and n are time increments and time-instant number, respectively.�ω and
m are frequency increment and frequency number, respectively. NS is a number
of sampling steps where (NS)�ω and (NS)�t equal a truncated frequency �T
and time range Tχ̇ of impulse velocity function, respectively [1,8].

In the discrete version, the time-derivative dynamic flexibility functions
Ḟg

xx(ω), Ḟg
xθ (ω), Ḟgθx(ω), Ḟgθθ (ω), Ḟg

zz(ω) in Equation 8.295, non-periodic ones,
are truncated at an arbitrary frequency. This truncated frequency�T must include
all predominant frequencies of total dynamic system, ground system, and incid-
ent waves. As a result of the truncation, band-limited functions having frequency
range from−�T to�T are formed. Then periodic extensions of these band-limited
functions, required by the form of Equation 8.299 are used in the transform-
ation. Therefore, only within time range

[−Tχ̇ , Tχ̇ ] is the discrete version in
Equation 8.299 similar to the continuous version in Equation 8.298.

Truncated frequency�T dictates a size of time increment�t. Size of frequency
increment�ω depends on a number of sampling steps, NS. Their relationship can
be expressed as �t = π�T

= π(NS)�ω (8.300)

and �ω = �T

NS
= π(NS)�t

= π
Tχ̇ (8.301)

According to Equation 8.300, if truncated frequency�T is too small (not including
all predominant frequencies), time increment�t will be too large for discrete rep-
resentation of the continuous functions of the entire dynamic system’s response,
impulse velocity, and earthquake excitation. Since impulse velocity functions
attenuate as time goes on and the discrete version’s precision is only within a
time range

[−Tχ̇ , Tχ̇ ] where Tχ̇ = (NS)�t, this time range must cover all signi-
ficant ranges of impulse velocity functions and beyond. (From a practical point of
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view, Tχ̇ should double the significant limit of impulse velocity functions to guar-
antee causality condition.) Therefore, the number of sampling steps, NS, needs to
be large enough to cover these ranges. According to Equation 8.301, NS must also
be large enough to make frequency increment �ω small enough for discrete rep-
resentation of the continuous band-limited functions of time-derivative flexibility
functions Ḟg

xx(ω), Ḟg
xθ (ω), Ḟgθx(ω), Ḟgθθ (ω), Ḟg

zz(ω).
Band-limited sequence of the time derivative flexibility matrix

[
Ḟg

00 (m�ω)],
from frequency − (NS− 1)�ω to (NS− 1)�ω, is used for the transformation
in Equation 8.299. Knowing that the time-derivative flexibility pair corresponds
to a positive–negative frequency pair is complex conjugate, the band-limited
sequence can be constructed from a given sequence along the positive half of
the frequency range. This complex conjugate relationship can be proved by sub-
stituting a positive–negative frequency pair in the discrete Fourier transform
formula for a causal function. This formula describes time-derivative flexibility
matrix as [

Ḟg
00 (m�ω)] = �t

NS∑
n=0

[χ̇g
00 (n�t)] exp(−ιm�ωn�t) (8.302)

Substituting m = l[
Ḟg

00 (l�ω)]= �t
NS∑

n=0

[χ̇g
00 (n�t)] exp(−ιl�ωn�t)= cos (l�ωn�t)�t

NS∑
n=0

[χ̇g
00 (n�t)]− ιsin (l�ωn�t)�t

NS∑
n=0

[χ̇g
00 (n�t)]

(8.303)

Substituting m = −l[
Ḟg

00 (−l�ω)]= �t
NS∑

n=0

[χ̇g
00 (n�t)] exp(ιl�ωn�t)= cos (l�ωn�t)�t

NS∑
n=0

[χ̇g
00 (n�t)]+ ιsin (l�ωn�t)�t

NS∑
n=0

[χ̇g
00 (n�t)]

(8.304)

Equations 8.303 and 8.304 always form a complex conjugate pair because signs
of their imaginary part are opposite for any integer l.
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Phase angle of impulse velocity response is assumed to be either 0◦ or 180◦.
Impulse velocity functions χ̇g

xx (t), χ̇g
xθ (t), χ̇gθx (t), χ̇gθθ (t), χ̇g

zz (t) are then assumed
to be real number. Therefore the following properties are applied.

1. Impulse velocity function χ̇(t) can be expressed as the sum of an even
part χ̇e(t) and an odd part χ̇o(t)χ̇(t) = χ̇e(t)+ χ̇o (t) (8.305)

2. The even part χ̇e (t) or conjugate-symmetric one, can be obtained by
inverse Fourier transform of the real part of time-derivative flexibility
Ḟ(ω). If the even part is defined asχ̇e (t) = χ̇e (−t) and χ̇e (0) = χ̇ (0) (8.306)

then χ̇e (t) = 1
2π ∫ ∞−∞ Real

(
Ḟ(ω)) exp(ιωt) dω (8.307)

3. The odd part χ̇o(t)or conjugate-antisymmetric one, can be obtained
by inverse Fourier transform of the imaginary part of time derivative
flexibility Ḟ(ω). If the odd part is defined asχ̇o(t) = χ̇o (−t) and χ̇o (0) = 0 (8.308)

then χ̇o(t) = 1
2π ∫ ∞−∞ Imag

(
Ḟ(ω)) exp(ιωt) dω (8.309)

Impulse velocity function χ̇ (t) is casual (amplitude of functions equals zero for
time t < 0). Therefore, for t < 0, the summation of even and odd parts must be
zero. Their relationship can be expressed asχ̇e (t) = −χ̇o (t) for time t < 0 (8.310)

Using Equations 8.305, 8.306, and 8.308 and the causality condition in Equa-
tion 8.310, impulse velocity function can be expressed in terms of either an even
part or an odd part as χ̇(t) = 2χ̇e (t)U (t)− χ̇e (0) δt (8.311)
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and χ̇ (t) = 2χ̇o (t)U (t)+ χ̇ (0) δt (8.312)

where U(t) is a unit step function in the interval of time t greater than or equal to
zero. δ (t) is the Dirac-delta function equal to 1 at time t equal to zero. It should
be noted that impulse velocity function χ̇(t), for t = 0, cannot be determined by
using the odd part alone (see Equation 8.312).

Therefore, by using Equations 8.307 and 8.311, impulse velocity function χ̇ (t)
can be determined by using only the real part of Ḟ(ω)asχ̇ (0) = 1

2π ∫ ∞−∞ Real
(
Ḟ(ω)) dω for time t = 0 (8.313)

and χ̇ (t) = 1π ∫ ∞−∞ Real
(
Ḟ(ω)) exp(ιωt) dω for time t > 0 (8.314)

For a ground system with rigid interface, discrete impulse velocity matrix can be
obtained by applying the discrete version of transformation (Equation 8.299) and
its complex conjugate property (demonstrated in Equations 8.303 and 8.304) to
Equations 8.313 and 8.314 as[χ̇g

00 (0)] = �ω
2π NS∑

m=1−NS
Real

([
Ḟg

00 (m�ω)])= �ωπ NS−1∑
m=1

Real
([

Ḟg
00 (m�ω)])+ �ω2π Real

([
Ḟg

00 (�T)]) (8.315)

and [χ̇g
00 (n�t)] = �ωπ NS∑

m=1−NS
Real

( [
Ḟg

00 (m�ω)] ) exp(ιm�ωn�t)
for n = 1, 2, . . . , NS (8.316)

Note that the static components of the ground system’s time-derivative flexibility
matrix

[
Ḟg

00(ω) = 0
]

always equal zero (see Equation 8.295). Therefore, those of
ground system’s stiffness matrix need not to be determined. Only the dynamic-
stiffness matrices on the positive half of frequency range are needed due to their
complex conjugate property. To minimize computing time, Fast Fourier Trans-
form (FTT), an efficient technique of calculating discrete Fourier transform, is
employed [1,8].
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8.7 NUMERICAL ILLUSTRATIONS
The mathematical formulations and concepts presented in earlier sections of this
chapter are now illustrated with numerical examples in this section. Since the equa-
tions were derived according to the fundamental concepts of various disciples of
soils, earthquake waves, SSI, and control. The number of equation is numerous
and the sequential order of the equation number is based on the theoretical devel-
opments. For numerical illustrations, only portions of the equations are needed
and they are not in the order of equation derivations. For reader’s convenience,
the equations used in the numerical examples are rewritten along with the original
equation number.

8.7.1 Solution Procedure of SSI System without Control

EXAMPLE 8.7.1

A single-story shear building shown in Figure 8.4 is constructed on a rectan-
gular mat foundation embedded in half-space. Their properties are described
as
Structure floor: mass (m1) 0.54 kton
Moment of inertia with respect to point 0 (I1) 148.14 kton-m2

Height (h1) 15.0 m
Width(ws) 5.0 m
EI 9368.4141 MN-m2β1 2%
Foundation: Mass(m0) 0.108 kton
Moment of inertia w/respect to point 0 (I0) 0.405 kton-m2

Depth (2h0) 1.5 m
Width (wf ) 6.0 m
Half-space: Mass density 2.0 gram/cm3

Poisson’s ratio 0.33
Shear modulus 320 MN/m2

Shear wave velocity 400 m/s
Hysteretic damping ratio 0.05

Assume the structure is subjected to 1940 N-S EI Centro earthquake; find the
structural response without control.

Solution
Since the building configuration is given in Figure 8.4, the motion of equation
of the structure already established in Equation 8.2 is rewritten as

[M]
{
Ẍ
}+ [K] {X} + [C]

{
Ẋ
} = {δ} ẍg

0 + {γ } �U + {R} (a)
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in which

[M] =  0.54 0 0
0 0.108 −0.75(0.108)−16.5(0.54) −0.75(0.108) 148.14+ 0.405+ (0.75)20.108

=  0.54 0 0
0 0.108 −0.081−8.91 −0.081 148.60575

 (b)

The structural stiffness is k1 = 12EI/L3 = (12)9368.4141/153 =
33.3099 MN/m, and the structural damping coefficient is C1 = 2β1

√
k1m1 =

2(0.02)√33.3099(0.54) = 0.169 MN s/m2. Thus the damping matrix is[C] =  0.169 −0.169 16.5(0.169)−0.169 0.169 −16.5(0.169)
0 0 0

=  0.169 −0.169 2.789−0.169 0.169 −2.789
0 0 0

 (c)

and the stiffness matrix is[K] =  33.3099 −33.3099 16.5(33.3099)−33.3099 33.3099 −16.5(33.3099)
0 0 0

=  33.3099 −33.3099 549.6134−33.3099 33.3099 −549.6134
0 0 0

 (d)

The acceleration coefficient vector is{δ} =  −0.54−0.108
16.5(0.54)+ 0.75(0.108)T =  −0.54−0.108

8.991

 (e)

At point 0 of foundation–soil interface, the interaction force and displacement
vector can be expressed as{R0} = [Rx

Rθ] and
{

X tg
0

} = [xtg
0θ tg
0

]
(f)

The interaction force vector relates to the displacement vector can be found
using Equations 8.25 through 8.27 for {R0(n)}, [K̃00], {R̃0(n− 1)}. The time
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derivative dynamic flexibility matrix of ground syatem at t= 0 is obtained
by using Equations 8.297 with numerical procedures in Equations 8.315 and
8.136 as [

Ḟg
00(0)] = [14.7321 0.8429

0.8429 1.9208

]
(g)

for which �ω= 0.1571 rad/s and NS= 3200. Therefore,
[
K̃00

]
in Equa-

tion 8.26 can be determined for �t= 0.00625sec associated with n= 1 as[
K̃00

] = 2(0.00625)2 [14.7321 0.8429
0.8429 1.9208

]−1 = [ 3564.91 −1564.38−1564.38 27342.1

]
(h)

Thus,
[
Ḟg

00(n�t)] for n = 1,…, 160 are obtained, as[
Ḟg

00(n)] = [A B
B C

]
(i)

where A, B, C are calculated by computer for n = 1 through 60 of which
typical results corresponding to n = 1, 2, 59, and 60 are given in the following
(using �ω = 0.1571 rad/s and NS = 3200):

n t A B C

1 0.006 −0.557462E+ 01 −0.801356E+ 00 −0.139152E+ 01
2 0.013 −0.271077E+ 01 −0.271282E+ 00 −0.473180E+ 00
...

59 0.369 −0.734280E− 02 0.133634E− 03 −0.297111E− 04
60 0.375 −0.473949E− 02 −0.141021E− 03 −0.501287E− 04

Note that Equation 8.2 or Equation a can be rewritten in submatrix form
corresponding to structure and foundation d.o.f. as shown in Equation 8.3
for which the state equation force is shown in Equation 8.31 as

{
Ż tg(n)}

with submatrices in Equations 8.32 through 8.37 representing {Z tg(n)}, [A],[AK], [AC], [B], [C], and {R̃0(n− 1)}, respectively. {Z tg(n)} is signified by
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Equation 8.30a. Thus,

[AK] =  0.54 0 0
0 0.108 −0.081−8.91 −0.081 148.60575

−1×  33.3099 −33.3099 549.6134−33.3099 33.3099+ 3564.91 −549.6134− 1564.38
0 −1564.38 27342.1

=  61.685 −61.685 1017.8−305.776 33319.8 −19398.4
3.5318 3.9359 234.442

 ( j)

[AC] =  0.54 0 0
0 0.108 −0.081−8.91 −0.081 148.60575

−1 0.169 −0.169 2.789−0.169 0.169 −2.789
0 0 0

= 0.312963 −0.312963 5.16481−1.55138 1.55138 −25.6023
0.0179 −0.0179 0.2957

 (k)

[A] =  0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1−61.685 61.685 −1017.8 −0.312963 0.312963 −5.16481

305.776 −33319.8 19398.4 1.55138 −1.55138 25.6023−3.5318 −3.9359 −234.442 −0.0179 0.0179 −0.2957

 (l)

[B] =  0
0
0 0.54 0 0

0 0.108 −0.081−8.91 −0.081 148.60575

−1−1
1
0

 =  0
0
0−1.85185−9.17974−0.106028

 (m)

[C] =  0
0
0 0.54 0 0

0 0.108 −0.081−8.91 −0.081 148.60575

−1 −0.54−0.108
8.991

 =  0
0
0−1−1
0

 (n)
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For a closed-loop control, the control force is related to the displacement by
a gain matrix for which we have formulas given in Equations 8.38 through
8.41 representing

{ �U(n)},
{
Ż tg(n)}, [D], and {E(n)}, respectively. For the

given structure without control,
[
GSSI] is not applicable and the second term

of Equation 8.40 should be omitted. Therefore,

[D] = [A] = Equation (l) (o)

Ground acceleration at point 0 is subjected to be 1940 N-S EI Centro
earthquake of which a few sample data are given as follows:

t (s) ẍg
0 (m/s2) t (s) ẍg

0 (m/s2) t (s) ẍg
0 (m/s2)

0.00625 0.0268941 0.11875 0.0209321 0.23125 0.1193730
0.01250 0.0537882 0.12500 0.0151565 0.23750 0.1259408

...
7.21875 0.8469194 7.35625 0.16155535 7.49375 −0.6268811
7.22500 0.8736786 7.36250 0.1072675 7.50000 −0.5913664

Solution of the differential equation of Equation 8.39
{
Ż tg(n)} is given in

Equation 8.47 as {Z(n)} for which the relevant matrices of [T ], {�(n)},
[exp([�] t)], [exp([�i] t)], {�(n)}, {�(n− 1)} are given in Equations 8.43,
8.49, 8.54, 8.55, 8.57, and 8.59, respectively.

For Equation 8.43, the plant matrix [D] (see Equation o) yields eigenvalues
shown in Equation p and eigenvectors in Equation q (only with ith value
shown here), respectively.µi ± νiι: −0.06989± 6.56059ι, i = 1−0.228733± 15.9561 ι, i = 2−0.784867± 182.528 ι, i = 3

(p)

In Equation p, the imaginary part νi of eigenvalues can be interpreted as a
damped free vibration frequency ω and −µ/ν as a damping ratio asω1 = 6.56 rad/s = 1.044 Hz; ω2 = 15.96 rad/s = 2.539 Hz;ω3 = 82.53 rad/s = 29.05 Hz; β1 = 0.06989/6.56059 = 0.0107;β2 = 0.228733/15.9561 = 0.0143; β3 = 0.784867/182.528 = 0.0043;

(q)



“CHAP08” — 2008/1/18 — 14:55 — page 504 — #74

504 Smart Structures: Innovative Systems for Seismic Response Control{ai} ± {bi} ι :−1.62361× 10−3−1.07401× 10−5−4.87957× 10−5

1.0−1.54656× 10−3−1.84182× 10−2

±  0.1524078−2.35964× 10−4−2.80792× 10−3

0
8.62127× 10−5

5.16379× 10−4

 ι, i = 1−8.97797× 10−4−4.08421× 10−4−1.01518× 10−3

1.0
0.1245738
0.1963721

± 6.26453× 10−2

7.79954× 10−3

1.22898× 10−2

1.49012× 10−8

4.73768× 10−3

1.33908× 10−2

 ι, i = 2−9.32613× 10−6−2.35579× 10−5−5.52762× 10−7−1.85285× 10−3

0.9999999
1.18674× 10−4

± −1.01928× 10−5

5.47851× 10−3

6.47687× 10−7

1.71029× 10−3

0
1.00388× 10−4

 ι, i = 3

(r)

The transformation matrix in [T ] in Equation 8.43 can be written a

[T ]=  −1.62361 152.4078 −.897797 62.6453 −.00932613 −.0101928−.0107401 −.235964 −.408421 7.79954 −.0235579 5.47851−.0487957 −2.80792 −1.01518 12.2898 −.000552762 .000647687
1000 0 1000 .0000149012 −1.85285 1.71029−1.54656 .0862127 124.5738 4.73768 999.9999 0−18.4182 .516379 196.3721 13.3908 .118674 .100388

× 10−3

(s)

of which the inversion is

[T ]−1= −101.2986 −201.044 4662.54 914.9927 2.24439 −4636.76−6001.28 15.9689 −30429.5 5.36387 .06812 −157.10−98.3985 111.139 −4478.99 85.0049 −.398673 4635.9
1363.51 −15.95 74070.22 11.8802 .0362996 328.50−5.43729 13.6082 216.8785 −9.23106 1000.05 −586.23−1689.81 182546.1 −107085 −8.59120 4.22621 −140.6

× 10−3

(t)
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Verify the transformation matrix [T ] by Equation 8.44, [T ]−1 [D] [T ] =
[�], in which detailed matrices are given in Equations 8.45 and 8.46. Thus,

[T ]−1 [D] [T ]= −.0699 −6.56059 0 0 0 0
6.5606 −.0699 0 0 0 0

0 0 −0.228732 −15.9596 0 0
0 0 15.9596 −0.228736 0 0
0 0 0 0 −0.784868 −182.528
0 0 0 0 −182.5279 −0.78488


(u)

which confirms [T ]−1 [D] [T ] ∼= [�] as Equations p and u are approximately
identical.

For [exp([�]�t)] in Equation 8.54, the numerical results are given in
Equation v for �t = 0.00625

[exp([�]�t)]= 0.99872 −0.04097 0 0 0 0
0.04097 0.99872 0 0 0 0

0 0 0.99361 −0.09944 0 0
0 0 0.09944 0.99361 0 0
0 0 0 0 0.41483 −0.90453
0 0 0 0 0.90453 0.41483


(v)

where the numerical values of first row is calculated from Equation 8.55 as
follows:

exp(µi�t) cos (νi�t) = exp[0.00625 (−0.06989)] cos [0.00625 (−6.56059)]= 0.99956(0.99916) = 0.99872; i = 1

exp(µi�t) sin (νi�t) = exp[0.00625 (−0.06989)] sin [0.00625 (−6.56059)]= 0.99956(−0.04099) = −0.04097; i = 1

The response analysis includes using Equations 8.41, {E(n)}, 8.49, {�(n)},
and 8.59, {�(n− 1)}, which respectively yield the results in Equations w, x,
and y for t = 0 (n = 0), as well as Equations z, aa, and bb at �t = 0.00625
(n = 1).
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At t = 0 (n = 0){E (0)} = {C} ẍg

0 (0)+ {Ř0 (0− 1)} = {0} (w){� (0)} = [T ]−1 {E (0)} = {0} (x){�(0)} = [exp([�]�t)] [{�(−1)+ 0.00625} {� (0)}] = {0} (y)

At t = 0.00625 (n = 1){E (1)} = [0 0 0 −1 −1 0
]T 0.0268941+ {Ř0 (0)}= [0 0 0 −0.0268941 −0.0268941 0

]T (z)

where {Ř0 (0)} = 0. From Equation 8.49{�(1)}= [T ]−1{E(1)}=[−24.6683 −0.146088 −2.27541 −0.320484 −26.6472 0.117392
]T×10−3

(aa){�(1)}= [exp([�]�t)][{�(0)}+0.00625 {�(1)}]=[−0.15394 −0.00723 −0.01393 −0.00034 −0.06975 −0.15034
]T×10−3

(bb)

Using Equation 8.57 yields{�(1)}={�(0)}+ 0.00625
2
{�(1)}=[−0.07709 −0.00046 −0.00711 −0.001 −0.08327 0.000037

]T×10−3

(cc)

For Equation 8.47, we have{Z(1)} = [T ] {�(1)} = [0 0 0 −0.00008408 −0.00008408 0
]T (dd)

Similarly for Equation 8.47, we have{
Ż(1)} = [D] {Z(1)} + {E(1)}= [−0.00008408 −0.00008408 0 −0.0268941 −0.0268941]T

(ee)
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Using Equations 8.27 and 8.25 yields Equations ff and gg, respectively{
R̃0(0)} = [K̃00

]× [{X tg
0 (0)}+ �t

2

({
Ẋ tg

0 (0)}+�t
160∑

m=1

[χ̇g
00 (m)] {R0(1− m)})] = {0}

(ff){R0(1)} = [K̃00
] {

X tg
0 (1)}− {R̃0(0)} = {0} (gg)

in which
{

X tg
0 (0)} ,

{
Ẋ tg

0 (0)} , {R0(1− m)}, and
{

Ẋ tg
0 (1)} are all zero. Note

that {R0} represent Rx and Rθ as explained in Equation ff, which can also
be obtained by using structure’s free-body diagram shown in Figure 8.5, the
interacting forces at the footing base (Rx , Rθ )and the shear at the column end(
SSSI

base, MSSI
base

)
are expressed in Equations hh through kk

Rx = − NO∑
i=1

mi(ẍtg
i + ẍg

0)− m0(ẍtg
0 + ẍg

0 − ha0θ̈ tg
0 ) (hh)

Rθ = − NO∑
i=1

Iiθ̈ tg
0 − I0θ̈ tg

0 + NO∑
i=1

mihai(ẍtg
i + ẍg

0)+ m0h0(ẍtg
0 + ẍg

0 − ha0θ̈ tg
0 )

(ii)

SSSI
base = − NO∑

i=1
mi(ẍtg

i + ẍg
0) ( jj)

MSSI
base = − NO∑

i=1
Iiθ̈ tg

0 + NO∑
i=1

mi(hai − 2h0)(ẍtg
i + ẍg

0) (kk)

Substituting appropriate data into Equations hh through kk yields the
following results:

Rx = −0.54(−0.0268941+ 0.0268941)− 0.108(−0.0268941+ 0.0268941− 0.75(0)) = 0 (ll)

Rθ = −148.14(0)− 0.405(0)+ 0.54(16.5)(−0.0268941+ 0.0268941)+ 0.108(0.75)(−0.0268941+ 0.0268941− 0.75(0)) = 0 (mm)

SSSI
base = −0.54(−0.0268941+ 0.0268941) = 0 (nn)

MSSI
base = −148.14(0)+ 0.54(15.0)(−0.0268941+ 0.0268941) = 0 (oo)

The results in Equations ll and mm confirm that in Equation gg.
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At t = 0.00125 (n = 2)

From Equation 8.41 along with Equations 8.36 and 8.37, we have{E(2)} =  0
0
0−1−1
0

 0.0537882+  0
0
0 0.54 0 0

0 0.108 −0.081−8.91 −0.081 148.60575

−1  0−0.00093668
0.00041104

= [0 0 0 −0.0537882 −0.0624626 −0.0000020
]T (pp)

for which
{

R̃0(1)} is from Equation 8.27 as{
R̃0(1)} = [K̃00

] [{
X tg

0 (1)}+ 0.00625
2×([−0.00008408 0
]T +�t

160∑
m=1

[
Ḟg

00 (m)] {R0(2− m)})]T= [−0.00093668 0.00041104
]T (qq)

where
{

X tg
0 (0)}, and {R0(2− m)} are zero for which

[
Ḟg

00 (m)] is not yet
employed here but should always be evaluated as shown in Equation i.

From Equation 8.49{�(2)} = [T ]−1 {E(2)}= [−49.34672 −0.29245 −4.55664 −0.64194 −61.96822 0.1984
]T × 10−3 (rr){�(2)} = {�(1)} + �t

2
{� (1)}= [−0.3081485 −0.008143 −0.0281695 −0.005406 −0.263400 −0.14972

]T × 10−3

(ss)

in which {�(1)} and {�(2)} are from Equations bb and rr, respectively. Using
Equation 8.47 yields{Z(2)}= [T ] {�(2)}=[−0.00105 −0.00084 0 −0.33609 −0.26646 0.00002

]T×10−3

(tt)
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in which the floor displacement is −1.05 × 10−6 m. For Equation 8.39, we
have{

Ż(2)}= [D]{Z(2)}+{E(2)}=[0.33609 −0.26646 0.00002 −53.75363 −34.91826 0.00623
]T×10−3

(uu)

Following Equation 8.25 gives{R0(2)} = [K̃00
] {

X tg
0 (2)}− {R̃0(1)} = [−0.00205784 0.00090384

]T (vv)

that is calculated as shown for {R0(1)}. [K̃00] and {R̃0(1)} are from Equa-
tions hh and qq, respectively. {X tg

0 (2)} = {X t
0(2)} − {Xg

0 (2)} (see Figure 8.4
and Equation t) is calculated as [−0.0000084 0]T. Again Rx and Rθ in (vv)
can be checked with Equations hh and ii as

Rx = −0.54(−0.05375363+ 0.0537882)− 0.108(−0.03491826+ 0.0537882− 0.75(0.00000623))= −0.002056116 � −0.00205784 (ww)

Rθ = −148.14(0.00000623)− 0.405(0.00000623)+ 0.54(16.5)(−0.05375363+ 0.0537882)+ 0.108(0.75)(−0.03491826+ 0.0537882− 0.75(0.00000623))= 0.00091067 ∼= 0.00090384 (xx)

The intersection at base is

SSSI
base = −0.54(−0.05375363+ 0.0537882) = −0.0000186678 (yy)

MSSI
base = −148.14(0.00000623)+ 0.54(15.0)(−0.05375363+ 0.0537882)= −0.0006428952 (zz)
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The subsequent responses can be similarly calculated as shown above. Note that
the numerical values listed are with several unnecessary decimal numbers from
engineering practice point of view; it is for the purpose of demonstrating a solution
correctness.

8.7.2 Solution Procedure of SSI System with Control

EXAMPLE 8.7.2

The single-story shear building of Example 8.7.1 is now studied with an
active tendon system of closed-loop control. The structure is constructed
on the same foundation with rectangular mat foundation embedded in half-
space subjected to the same earthquake as given in that example. Find the
SSI response of the controlled system.

Solution
For a closed-loop control, the gain matrix is needed along with other equations
as shown below in Equations 8.83, 8.85, 8.85a, and 8.86, which respectively
represent [GSSI], [R], [Ǩ00], and [S]. Let us calculate Equation 8.85a for
which [Ǩ00] is given in Equation d of Example 8.7.1 and k1 = 33.309 MN/m,
therefore,[

Ǩ00
] = [ 33.309+ 3564.91 −(16.5)33.309− 1564.38−(16.5)33.309− 1564.38 (16.5)233.309+ 27342.1

]−1= [ 3598.2199 −2113.99335−2113.99335 36410.7203

]
(a)

For Equation 8.85

[R] = [[γS]
[γ0]

]T
[

[KSS] [KS0]
[KS0]T

[
K̆00

]]−1 [
[γS]
[γ0]

]= [−1 1 0
] 33.3099 −33.3099 549.6134−33.3099 3598.2199 −2113.9934

549.6134 −2113.9934 36410.7203

−1−1
1
0

= 0.0402347 (b)
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For Equation 8.86, one needs a computer to evaluate optimal performance,
which yields Sd = Sv = 0.17685 and R= 0.0402 as

[S] =  0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0.17685 0.17685 0.17685 0.17685 0.17685 0.17685
0 0 0 0 0 0
0 0 0 0 0 0

 (c)

Thus, Equation 8.83 results[
GSSI

] = 1
R

[B]T [S]= [8.139732 8.139732 8.139732 8.139732 8.139732 8.139732
]

(d)

in which

[B]T [S] = [−0.3275 −0.3275 −0.3275 −0.3275 −0.3275 −0.3275
]

(e)

[B] is given by Equation m of Example 8.7.1. The plant matrix given in
Equation 8.40 that can now be evaluated as

[D] = [A]+ [B]
[
GSSI

]=  0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1−76.7585 46.6114 −1032.8735 −15.3865 −14.76059 −20.2383

380.4966 −33245.079 19473.1206 76.2720 73.1692 100.3229−4.3948 −4.7989 −235.3050 −0.88093 −0.8451 −1.15874


(f)

in which [A] is in Equation l of Example 8.7.1.
The eigenvalues and eigenvectors of [D] areµi ± νiι: −6.306± 5.42986ι; i = 1−1.94979± 13.6656ι; i = 2

36.56449± 181.9853ι; i = 3
(g)
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]T × 10−3± [78.4108 0.441987 −0.858508 0 −2.62076 17.6339

]T × 10−3ι; i = 1

(h)[−10.2323 −6.15607 −14.7678 1000 58.9209 71.3070
]T × 10−3± [71.7163 3.43333 3.11093 0 77.4324 0.1957457

]T × 10−3ι; i = 2
(i)[

3.68106 10.6121 0.218122 −232.108 10000.0 −11.4302
]T × 10−4± [−2.01504 52.8173 −0.106634 −743.578 0 −43.594
]T × 10−4ι; i = 3

(j)

As discussed in Equation r of the earlier example, the natural frequencies ω1 = ν1 = 5.42986 rad/s = 0.864 Hz;ω2 = ν2 = 13.6656 rad/s = 2.175 Hz;ω3 = ν3 = 181.9853 rad/s = 28.964 Hz;
(k)

and the damping ratios are from Equation hβ1 = µ1ν1
= 6.306

5.42986
= 1.161β2 = µ2ν2

= 1.94979
13.6656

= 0.143 (l)β3 = µ3ν3
= 36.56449

181.9853
= 0.201

Following Equation 8.43, the transformation matrix [T ] is obtained from
Equations i through k as

[T ]= [{a1} {b1} . . . {ai} {bi} . . . {aNO+2
} {

bNO+2
}]=  −91.0626 78.4108 −10.2323 71.7163 0.368106 −0.2011504−0.306433 0.441987 −6.15607 3.43333 1.06121 5.28173−2.25055 −0.858508 −14.7678 3.11093 0.0218122 −0.0106634

1000.0 −0.00003 1000 0 −23.2108 −74.3578
2.59304 −2.62076 58.9209 77.324 1000.0 0
9.53035 17.339 71.3070 195.7457 −1.14302 −4.3594

× 10−3

(m)
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of which the inversion is[T ]−1= 1.07614 16.61685 69.8634 1.27286 0.00793 −1.9918
14.73174 16.7602 54.56908 1.52734 0.00355 −6.55997−1.22469 −3.03723 −77.7363 0.30312 0.00032 1.73728−0.97807 2.85477 17.6392 0.09893 0.000536 5.13639
0.1837122 −0.041259 3.1763 0.026169 0.99998 −0.512612−2.0551 182.6382 −106.87 −0.415132 −0.20113 −0.67247


(n)

Thus, [T ]−1 [D] [T] = [�] is obtained that can prove the correctness of
Equation h. For Equation 8.54

[exp([�])�t]= 0.9608004 −0.0326188 0 0 0 0
0.0326188 0.9608004 0 0 0 0

0 0 0.9842866 −0.0842732 0 0
0 0 0.0842732 0.9842866 0 0
0 0 0 0 0.527769 −1.14056
0 0 0 0 1.14056 0.0527769


(o)

For Equation o, sample calculations are illustrated for i = 1 and �t =
0.00625 as shown in Equations p and q:

exp(µi�t) cos (νi�t) = exp[(0.00625× (−6.306))] cos [(0.00625× (−5.49986))]= 0.961354 (0.9994242) = 0.9608004; i = 1 (p)
exp(µi�t) sin (ν�t) = exp[(0.00625× (−6.306))] sin [(0.00625× (−5.42986))]= 0.961354

(−3.39301× 10−2
) = −3.26188× 10−2; i = 1 (q)

Similar to Example 8.7.1, the response analysis is calculated as follows:

At t = 0 (n = 0) {E(0)} = {C}ẍg
0(0)+ {Ř0(0− 1) = {0} (r){� (0)} = [T ]−1 {E(0)} = {0} (s)
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] [{

xtg
0 (0)}]+ �t

2

({
xtg

0 (0)}+�t
160∑

m=1

[
Ḟg

00 (m) {R0 (1− m) }]) = {0} (u)

At t = 0.00625 (n = 1){E(1)} = [0 0 0 −1 −1 0
]T 0.0268941+ {Ř(0)}= [0 0 0 −0.0268941 −0.0268941 0

]T (v){� (1)} = [T ]−1 {E(1)}= [−34.4459 −41.1722 8.1436 2.6275 −27.5960

16.5739]T × 10−3 (w){�(2)} = {�(0)} + 0.00625
2
{� (1)}= [−0.1076 −0.1287 0.0254 0.0082 −0.0862 0.0518

]T × 10−3

(x){Z(1)} = [T ] {�(1)}= [0 0 0 −0.0000840 −0.0000840 0
]T (y)

from which the floor displacement is zero. For Equation 8.31{
Ż(1)} = [D] {Z(1)} + {E(1)}= [−0.0000840 −0.0000840 0 −0.0243604 −0.0394539 0.0001451

]T
(z)

The horizontal force Rx and moment Rθ are{R0(1)} = [K̃∞] {X tg
0 (1)}− {R0(1)} = {0}

The control is obtained using Equation 8.38 as{ �U(1)} = [GSSI
] {Z tg(1)}= [GSSI
] [

0 0 0 −0.0000840 −0.0000840 0
]T = 0.001367474

(aa)

where
[
GSSI] is given in Equation d.
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At t = 0.0125 (n = 2){�(1)} = [exp([�] �t)] [ {�(0)} + 0.0625 {�(1)}= [−0.1985 −0.2543 0.0487 0.0205 −0.2092 −0.1420
]T × 10−3

(bb){�(2)} = {�(1)} + 0.00625
2
{� (2)}= [−0.4139 −0.5116 0.0996 0.0368 −0.4087 −0.0336

]T × 10−3

(cc)

where{� (2)} = [T ]−1{E(2)}= [−68.957 −82.3622 16.2811 5.2402 −63.8611 34.8931
]T × 10−3{Z(2)} = [T ] {�(2)}= [−0.0009 −0.0013 0 −0.3024 −0.3998 0.0020

]T × 10−3 (dd){
Ż(2)} = [D] {Z(2)} + {E(2)}= [−0.3024 −0.3998 0.0020 −43.2689 −71.3274 0.6090

]T × 10−3

(ee)

where{E(2)} = [0 0 0 −53.7882 −62.4590 −.0020
]T × 10−3

The horizontal force Rx and moment R0 are{R0(2)} = [K̃00
] [−0.0000013

0

]− [−0.0009363
0.0004109

] = [−3.7368× 10−3

1.80226× 10−3

]
(ff)

The control force is{U(2)} = [GSSI
] {Z tg(2)} = −0.005717 (gg)

The response calculations of subsequent time intervals are similar to those depicted
above.
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8.8 COMPUTER SOLUTIONS FOR BUILDING STRUCTURES WITH AND

WITHOUT CONTROL

A one-bay, ten-story shear-building structure is used to demonstrate the influence
of structure–soil interaction with and without control. The structure has an active
tendon system attached to its foundation and second floor (node no. 1) and is sup-
ported by a 6.0× 6.0 m rigid square foundation having its 3.0-m depth embedded
into ground. Structural properties are each floor mass (mi) =10 ton; each floor
mass moment of inertia (Ii−mihai) = 20.83 ton-m2; foundation mass (m0) = 28.75
ton; foundation mass moment of inertia (I0) = 172.5 ton-m2; floor translational
stiffness (ki) = 1244 MN/m; proportional damping ratios β1 = 0.02 and β2 = 0.10
for the first mode and the second mode; and floor height (hi) 3.00 m for every
floor. Half-plane properties are shear modulus of elasticity (℘) = 7.2 MN/m2; soil
density (ρ) = 2.0 gram/cm3; Poisson’s ratio (υ) = 0.33; and hysteretic damping
ratio (ζ ) = 0.04. The shear wave velocity (CS) is 60 m/s. The first 20-s 1940 El
Centro earthquake acceleration record, north–south component is selected as the
horizontal acceleration at point 0 of the ground system’s rigid interface. Since
vertically incident shear wave is assumed, the rotational component of the ground
system is omitted. As for a one-controller system, the control-weighting matrix [R]
consists of only one element r. To obtain an optimal performance of the system,
sl/r ratio is varied parametrically.

The fundamental system frequency is 2.65 Hz for the FIX-model (structural
supprt is on rock) and 1.15 Hz for the SSI-model. The smaller frequency in the SSI-
model is a result of its greater flexibility. In a system with control, its frequency and
damping ratio are increased as sl/r ratio reaches an optimal point (the minimum
point of performance index). For the FIX-model (see Figure 8.24), the fundamental
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FIGURE 8.24 Fundamental frequency and damping ratio versus s1/r ratio, ten-story
controlled structure, FIX-model.
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FIGURE 8.25 Fundamental frequency and damping ratio versus s1/r ratio, ten-story
controlled structure, SSI-model.

system frequency and damping ratio are increased, at the optimal point (s1/r =
0.6), to 2.85 Hz and 0.36, respectively. For the SSI-model (Figure 8.25), at the
optimal point (sl/r = 0.6), the fundamental system frequency and damping ratio are
increased to 1.19 Hz and 0.15, respectively. This is because control force, which
is related to the system’s displacement and velocity vector by a gain matrix [G],
helps to increase stiffness and damping of the system. Displacement control and
velocity control are manipulated by sD and sV in the state-weighting matrix [S]
and therefore in the gain matrix [G], which are chosen to be equal to an arbitrary
real number sl.

In a system without control, the maximum of the top floor displacement relative
to footing is equal to 0.053 m

(
xtb

10
)

for the FIX-model and 1.219 m
(

xtg
10 − xtg

0

)
for

the SSI model. The larger displacement in the SSI-model is mainly due to found-
ation rotation θ tg

10 since the rigid rocking mode trends to dominate in a flexible
high-rise structure. Figure 8.26 shows the comparison of the top floor displacement
relative to footing

(
xtb

10
)

in the FIX-model and the top floor displacement relative to
footing excluding rigid motion effect due to foundation

(
xtg

10 − xtg
0 + ha10θ tg

0

)
of

the structure with control. The smaller displacement in the FIX-model implies
that the system’s control force is more effective in reducing the FIX-model’s
translational displacement than the SSI model’s relative displacement excluding
rotational effect. For the FIX-model with control (see Figure 8.27), an increase
of sl/r ratio results in an increase of the maximum of control force and then a
decrease of the maximum of the top floor displacement relative to footing

(
xtb

10
)
.
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(excluding rotational effect), with control (s1/r = 0.6).
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FIGURE 8.27 Maximum top floor displacement and horizontal control force versus s1/r
ratio, FIX-model.

At the optimal point, the maximum displacement is reduced from 0.053 m (without
control) to 0.016 m with the maximum control force of 8.68 MN.

For the SSI-model with control (see Figure 8.28), an increase of sl/r ratio also
results in the same manner as the case of the FIX-model. But the change in the
maximum of the top floor displacement relative to footing excluding rotational
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FIGURE 8.28 Maximum top floor displacement with and without rotational effect and
horizontal control force versus s1/r ratio, SSI-model.

effect (DISP W/O ROT) as a function of sl/r ratio is very small. This indicates that
the decrease of displacement relative to footing is mainly the result of the decrease
of footing rotation. At the optimal point, the maximum displacement is reduced
from 1.219 m (without control) to 0.735 m with the maximum control force of
68.54 MN. The footing rotation is reduced from 0.035 rad. (without control) to
0.022 rad. as shown in Figure 8.29. Therefore, the active tendon system, attached
to the foundation and second floor of a structure embedded in a soft soil, can
limit structural responses by means of reducing foundation rotation. This active
system is not so effective in reducing relative floor translation. To limit structural
responses even more, the second active system on the upper floor may be needed.

Since the foundation d.o.f. in an SSI-model distinguishes this model’s behavior
from a FIX-model’s, the responses of these two models are different and thus
require different control forces. The control force required in the SSI-model is
greater than that in the FIX-model as a result of the former’s larger response.
Thus, an additional amount of control force is needed to limit the movement of
foundation. Consequently the control force determined by a FIX-model’s gain
matrix may not be large enough to limit the foundation movement and thus the
structural responses.

8.9 SUMMARY AND CONCLUDING REMARKS

A general mathematical model of a multiple-story seismic shear-building structure
with active tendon control including SSI was presented. The derived formula-
tions can be easily applied to controlled fixed-base model (FIX), and can also be
employed for both SSI-model and FIX-model without control.
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FIGURE 8.29 Footing rotation of system with control (s1/r = 0.6) and without control.

The SSI-model is established for the seismic structure having a rigid rectangu-
lar mat foundation embedded in an unbounded soil. The unbounded soil domain
is modeled as unbounded horizontal layers stacked on a half-space (layered half-
space). An isotropic viscoelastic property of soil may vary with depth but remain
constant within the individual layers. The indirect boundary-element method is
applied to unbounded part of soil (free-field system), while the finite element
method with 4-node rectangular element is employed to bounded part (system’s
excavated part). In the indirect boundary-element method, an adaptive quadrat-
ure integration technique is used in a Green’s influence function’s transformation
from the k wave-number domain to space domain. For the integration along
a boundary (foundation-soil interface), Simpson’s method is employed. The
frequency-dependent time-derivative flexibility coefficient of ground system is
determined and then, by using the discrete Fourier transformation (or fast Fourier
transform) with causality condition, an impulse velocity coefficient is obtained. By
virtue of the soil coefficient’s time derivative, its static component is not required.
In a discrete time fashion, an SSI force is computed through the convolution integ-
ral of the impulse velocity coefficient. This coefficient relates the difference of the
ground system’s and foundation’s responses to the interaction force. Since ver-
tically incident shear wave are assumed, the rotational component of the ground
system’s response is neglected.

In the integrated control systems, the concept of a GOAC is applied. The
weighting matrix [S] associated with the endpoint state vector is chosen to be
either a row matrix or a symmetrical matrix. Since this weighting matrix is integ-
rated into the gain matrix, the displacement control and velocity control are
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manipulated by the weighting elements (SD, γD and SV, γV) corresponding to
a system’s displacement vector and velocity vector, respectively. In the SSI-model
with control, foundation responses (translation and rocking) are included in the
state vector and then dictate control force. Therefore, in a closed control, not only
a response sensor on the floor but also an innovative sensor for foundation may
be useful. The foundation sensor may detect the pressure (or stress or strain) at a
foundation–soil interface and then convert to the foundation’s response relative to
the ground system.
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9 Hybrid Control ofStructures on ShallowFoundation with Existingand GeneratedEarthquakes
9.1 INTRODUCTION

As discussed in Chapter 8, the assumption that a structure is fixed on the ground
surface of geologic media may lead to some deviations in the analysis results,
especially for structures on a soft base. In reality, a structure is mounted on the
foundation that is in turn supported and surrounded by soil with various properties.
The whole system is actually composed of three parts: structure, foundation and the
soil base. The soil–structure interaction (SSI) evaluates the whole system under
the input of free field ground motion, which describes the ground motion at the
site without existence of a structure. Chapter 8 presents active controlled building
structures constructed on embedded foundations with consideration of soil in hori-
zontal layers and half space. This chapter introduces hybrid-controlled structures,
equipped with hybrid damper-actuator-bracing control (HDABC), supported by
shallow foundation.

Since future earthquake excitation at a given site must be different from the
existing records and cannot be predicted deterministically, this chapter presents
how to generate future ground motions based on the historical tectonic movements
of the seismic plate with consideration of wave propagation and local site soil
amplification. A group of motions is generated for a given earthquake magnitude,
mj, and time history analysis is then carried out for each motion in the group.
The maximum values for a specific response (such as floor displacements, control
forces, etc.) are collected, and then the nondeterministic Monte Carlo method is
employed for the maximum response probability study.

9.1.1 Interaction Types
There are two kinds of interaction taking place with a vibrating structure on soil:

1. The inertial interaction is brought from the inertia of the structure due
to its own vibration, and in turn causes displacement of the foundation,

523
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which can be considered by the impedance function as describing
the stiffness and damping characteristics between the foundation and
the soil.

2. The kinematic interaction is the interaction between the soil and found-
ation, which causes the foundation motion to be different from the free
field motion. It is called foundation input motion (FIM). The kinematic
interaction is described by a frequency dependent transfer function that
relates the free field motion and FIM [11,18].

The actual foundation motion is therefore composed of two parts as

X = FIM+Motion due to inertia interaction= Sk(ω)X0 + X1 (9.1)

where X0 is the free field motion and Sk(ω) is the transfer function to consider the
kinematic interaction. When the structure rests on a fixed base (infinitely stiff soil),
the transfer function S(ω) is a unit scale number and X1 is zero, so the motion of
the foundation is the same as the ground motion of the free field.

9.1.2 Substructure Approach
Among the methods that include SSI in the system dynamic analysis, the direct
method models soil, foundation, and structure together, and the finite element
analysis is used to study the dynamic response. The substructure approach is
composed of three distinct parts and they are independent of each other:

1. The first part is finding the FIM by considering the kinematic interaction
effect.

2. The second part considers the inertial interaction, in which the impedance
function is used.

3. The final part is the dynamic analysis for the structure supported on a
compliant base represented by the impedance function, and subjected to
a base excitation of FIM.

The kinematic interaction makes the FIM deviate from the free-field motion
because of the existence of a stiff foundation on or in the soil media, which can
be caused by base-slab averaging, embedment/deconvolution effects and wave
scattering. Now, little is known about the effects of wave scattering on the base-
slab motions, because the effect is very small compared with the more significant
base-slab averaging and embedment effects [16].

In the inertial interaction consideration, impedance function is given as a
general expression in the frequency domain as

Fc(ω) = [KI(ω)]Uc(ω) (9.2)
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FIGURE 9.1 Foundation dynamic responses.

where, Fc(ω) = [ f x, fy, fz, mx, my, mz]T, is the reaction force-moment vector
from the soil media to the foundation when the foundation has a movement of
Uc(ω) = [ux, uy, uz,ϕox,ϕoy,ϕoz]T; and [KI(ω)] is the impedance function matrix,
which can be a 6 × 6 square matrix in a three-dimensional case as, shown in
Figure 9.1. In general, there are eight different impedances in [KI(ω)] as shown
in Equation 9.3. Six of them correspond to the six possible modes of vibration of
the rigid foundation, one vertical, Kzz, two horizontal, Kxx and Kyy; two rocking,
Krx and Kry; and one torsional, Krz. Moreover, the horizontal forces along its
axes induce not only translational oscillations, but also the rotational, two more
cross-coupling horizontal-rocking impedances: Kxry and Kyrx .[KI(ω)] =  Kxx 0 0 0 Kxry 0

0 Kyy 0 Kyrx 0 0
0 0 Kzz 0 0 0
0 Kyrx 0 Krx 0 0

Kxry 0 0 0 Kry 0
0 0 0 0 0 Krz

 (9.3)

Each of the impedance in the matrix is composed of a real term and an imaginary
term as shown below:

Kprq(ω) = kprq(ω)+ jωcprq(ω) (9.4)

where j = √−1, and p, q can be x, y, z, or none to generally represent the imped-
ance in Equation 9.2. On the basis of the Fourier transform theory, the real part in
the impedance represents the stiffness, the imaginary the damping, and they are
all frequency dependent. They can be physically expressed as spring/dashpot pairs
with their stiffness and damping coefficient changing with excitation frequency.

The study of the dynamic response of the structure is limited to the in
2-dimension of the vertical plane, x-o-z, and the vertical seismic vibration is not
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considered. Therefore, the impedance function of Equation 9.2 can be reduced as{

fx
moy

} = [ Kxx Kxry
Kyrx Kry

]{
uxϕoy

}
(9.5a)

or {
Fc
Mc

} = [ kHH(ω)+ jωcHH(ω) kHM(ω)+ jωcHM(ω)
kMH(ω)+ jωcMH(ω) kMM(ω)+ jωcMM(ω) ]{ x0φ } (9.5b)

where x0 and φ are the horizontal and rocking motions of the foundation, respect-
ively; kHH and cHH replace the notations of kxx and cxx to represent the frequency
dependent stiffness and damping in the horizontal direction; kMM and cMM replace
the notation of kry and cry for the rocking; and kMH, kHM and cMH, cHM replace
the notation of kyrx , kxry and cyrx , cxry for the coupling items. The coupling items
are negligibly small in the case of surface and shallow foundation, but the effects
may become appreciable for a larger depth of embedment, h, in Figure 9.1 [2].

9.2 STRUCTURAL FORMULATION WITH HDABC

9.2.1 Hybrid Controlled Single-Story Structure
without SSI

For a single-story building structure with the hybrid controller on the bracing
known as HDABC system, the motion equations can be obtained based on the
force balance of the free bodies, structure floor, and the brace (see Figure 9.2) as

The floor:

m1ẍ1 + k1x1 + c1ẋ1 = fa + fp − m1ẍg (9.6a)fa(t) kbxb(t) cbx.b(t)fa(t) fp(t) fp(t)c1x.
1(t)k1x1(t) mb[x..b(t)+x..g(t)]m1[x..1(t)+x..g(t)]

Floor

K-Brace

FIGURE 9.2 Free body diagrams for fixed base cases.
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or

ẍ1 + ω2
1x1 + 2ρ1ω1ẋ1 = fa

m1
+ ( fp

m1

)− ẍg (9.6b)

The brace:

mbẍb + kbxb + cbẋb = −fa − fp − mbẍg (9.7a)

or

ẍb + ω2
bxb + 2ρbωbẋb = − fa

mb
− ( fp

mb

)− ẍg (9.7b)

where x1 and xb are the displacements of the floor and brace, respectively, relative to
the fixed base; m1, k1, and c1 are the floor mass, column stiffness, and the damping,
respectively; the subscript of 1 denotes that they are for the first floor and items
of the brace are subscripted by lower case b. fa, fp, and ẍg are the active, passive
forces, and the ground acceleration input, respectively. The motion equations of
the controlled system can be assembled in a matrix form as[M]{ẍ} + [K]{x} + [C]{ẋ} = { fa} + { fp} − [M]{I}ẍg (9.8)

where [M] = [m1 0
0 mb

]
; [K] = [ k1 0

0 kb

]
; [C] = [ c1 0

0 cb

]
;{ fa} = { fa−fa

}
; { fp} = { fp−fp

}
; {I} = { 1

1

}
The system modeled by the linear differential equations, can be represented in a

state space form, which is composed of a series of first order differential equations.
For the hybrid controlled single-story building structure, as in Equation 9.8, it can
be written in four equations as

d
dt

x1 = ẋ1 (9.9a)

d
dt

xb = ẋb (9.9b)

d
dt

ẋ1 = −ω2
1x1 − 2ρ1ω1ẋ1 + fa

m1
+ ( fp

m1

)− ẍg (9.9c)

d
dt

ẋb = −ω2
bxb − 2ρbωbẋb − ( fa

mb

)− ( fp
mb

)− ẍg (9.9d)
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Equations 9.9a through 9.9d can be organized in a matrix form as

d
dt

 x1
xb
ẋ1
ẋb

 =  0 0 1 0
0 0 0 1−ω2

1 0 −2ρ1ω1 0
0 −ω2

b 0 −2ρbωb

 x1
xb
ẋ1
ẋb

+ 0
0

1/m1−1/mb

 fa + 0
0

1/m1−1/mb

 fp + 0
0−1−1

 ẍg (9.10)

that can be expressed, as in Equation 9.11, by defining the state vector of z =[x1 xb ẋ1 ẋb]T.

ż = [A]z + {Ba} f a + {Bb} f p + {Br}ẍg (9.11)

Equation 9.11 is the state space representation of the controlled single-story
building equipped with HDABC system where [A] is the plant matrix, {B}s are the
input position vectors and the subscripts of a, p, r correspond to active, passive,
and earthquake input, respectively.

9.2.2 Hybrid Controlled Single-Story Building with SSI
The soil influence of the inertia interaction is dominant for the shallow foundation
[18,19], for which the reaction is expressed by a series of stiffness-damper units
between the foundation and the soil with their values provided in the impedance
function [1,16]. Figure 9.3 shows the SSI consideration for the hybrid controlled
single story building resting on the soil. The impedance function is given inx0h af afh x1 xg

.. m1, I1m0, I0KHH (�) KMM (�)

Hydralic
actuator

Passive
damper

FIGURE 9.3 HDABC system on soil.
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frequency domain, which is related to the reaction force from the soil to the found-
ation motions. In Equation 9.12, only the horizontal and rocking motions of the
foundation are considered.{

Fc
Mc

} = [ kHH(ω)+ jωcHH(ω) kHM(ω)+ jωcHM(ω)
kMH(ω)+ jωcMH(ω) kMM(ω)+ jωcMM(ω) ]{ x0φ }= [ KHH KHM
KMH KMM

]{
x0φ } (9.12)

where the upper case K represents the impedance, which includes both stiffness
and damping. KMH and KHM are the couple items between the translational and
the rocking motions, which are omitted in the study.

In consideration of the SSI, two more degrees of freedom are introduced when
the translational and rocking motions of the foundation are included. Similar to
the fixed base case, when the free body analysis is conducted, the force balances
of the floor and the brace in the horizontal direction can be formulated as

m1
(
ẍ0 + h1(φ̈ + φ̈g)+ ẍ1 + ẍg

)+ c1ẋ1 + k1x1 = fa + fp (9.13)

mb(ẍ0 + hb
(φ̈ + φ̈g

)+ ẍb + ẍg)+ cbẋb + kbxb = −fa − fp (9.14)

For the foundation, the force balance in the horizontal direction gives

m0(ẍ0 + ẍg)+ cHHẋ0 + kHHx0 + Fup = 0 (9.15)

where Fup is the reaction force from the superstructure to the foundation, kHH and
cHH are frequency dependent stiffness and damping, in the impedance function.
Their values at the fundamental frequencies of the soil structure system can be
applied in the time domain analysis [16,20]. The reaction forces from the super-
structure to the foundation is transferred at the column and brace footing, as shown
in Figure 9.4, and can be given as

Fup = −c1ẋ1 − k1x1 − cbẋb − kbxb (9.16)

that can be transformed as Equation 9.17 based on Equations 9.13 and 9.14

Fup = m1
(
ẍ0 + h1(φ̈ + φ̈g)+ ẍ1 + ẍg

)+ mb
(
ẍ0 + hb(φ̈ + φ̈g)+ ẍb + ẍg

)
.

(9.17)

Substituting Equations 9.16 and 9.17 into Equation 9.15 yields

m0ẍ0 − c1ẋ1 − k1x1 − cbẋb − kbxb + cHHẋ0 + kHHx0 = −m0ẍg (9.18a)
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I1(�+�g)Ib(φ+φg)
.. ..mb[xb+x0+xg+hb(�+�g)].. .. .. .. ..m0[x0+xg]....k1x1(t) fa(t)fa(t) fp(t)kbxb(t)k1x1(t)+kbxb(t) fp(t) mbgm1gh1 hb

c1x1(t).cbxb(t). c1x1(t)+cbxb(t). .cHHx0+kHHx0
. cHHx0+kHHx0

.cMM�+kMM�
. cMM�+kMM�

. cMM�+kMM�
. cHHx0+kHHx0

.
Foundation

Soil media

I0(�+�g)
.. ..

FIGURE 9.4 Free body diagrams for soil structure interaction case.

or

mẍ0 + m1
(
ẍ0 + h1(φ̈ + φ̈g)+ ẍ1

)+ mb
(
ẍ0 + hb(φ̈ + φ̈g)+ ẍb

)+ kHHx0 + cHHẋ0 = −(m1 + mb + m0)ẍg (9.18b)

where φ̈g is the ground rotational acceleration input. The moment balance of
the whole system about the foundation’s centroid gives the rotational motion
equation as

IT(φ̈ + φ̈g)+ m1h1
(
ẍ0 + h1(φ̈ + φ̈g)+ ẍ1 + ẍg

)+ mbhb(ẍ0 + hb(φ̈ + φ̈g)+ ẍb + ẍg)+ cMMφ̇0 + kMMφ + m1gx1 + mbgxb = 0 (9.19a)

where IT = I1+Ib+I0 and I1, Ib and I0 are mass moment of inertias of floor, brace,
and foundation about their centroids, respectively; terms m1gx1 and mbgxb are
moments due to the superstructure weight. It is P-� effect, which is omitted in this
study but should be considered for tall buildings. Considering general building con-
figurations and simplicity of formulation, we may let hb = h1, then Equation 9.19a
can be expressed as Equation 9.19b based on Equations 9.13 and 9.14

IT(φ̈ + φ̈g)− c1h1ẋ1 − k1h1x1 − cbhbẋb − kbhbxb + cMMφ̇0 + kMMφ = 0
(9.19b)

Let xt1 = x1 + x0 + φh1 and xbt = xb + x0 + φh1 express the dis-
placements of floor and brace relative to the ground. Rearranging items in
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Equations 9.13, 9.14, 9.18a, and 9.19b yields Equations 9.20a through d as

m1ẍ1t + c1(ẋ1t − ẋ0 − h1φ̇)+ k1(x1t − x0 − h1φ) = fa + fp − m1ẍg − m1h1φ̈g
(9.20a)

mbẍbt + cb(ẋbt − ẋ0 − h1φ̇)+ kb(xbt − x0 − h1φ) = −fa − fp − mbẍg − mbh1φ̈g
(9.20b)

m0ẍ0 − c1(ẋ1t − ẋ0 − h1φ̇)− cb(ẋbt − ẋ0 − h1φ̇)− k1(x1t − x0 − h1φ)− kb(xbt − x0 − h1φ)+ cHHẋ0 + kHHx0 = −m0ẍg (9.20c)

ITφ̈ − c1h1(ẋ1t − ẋ0 − h1φ̇)− cbh1(ẋbt − ẋ0 − hbφ̇)− k1h1(x1t − x0 − h1φ)− kbh1(xbt − x0 − h1φ)+ cMMφ̇0 + kMMφ = −ITφ̈g (9.20d)

Equations 9.20c and d can be transformed to Equations 9.21a and b by
arranging coefficients for [x1txbtx0φ] and their derivatives as

m0ẍ0 − c1ẋ1t − cbẋbt + (c1 + cb + cHH)ẋ0 + (c1h1 + cbh1)φ̇− k1x1t − kbxbt + (k1 + kb + kHH)x0 + (k1h1 + kbh1)φ = −m0ẍg (9.21a)

ITφ̈ − c1h1ẋ1t − cbh1ẋbt + (c1h1 + cbh1)ẋ0 + (c1h2
1 + cbh2

b + cMM)φ̇− k1h1x1t − kbh1xbt + (k1h1 + kbh1)x0 + (k1h2
1 + kbh2

1 + kMM)φ = −ITφ̈g
(9.21b)

The motion equation of the one-story hybrid controlled system with SSI
can then be given in the matrix form of Equation 9.22 by assembling
Equations 9.20 a, b, 9.21a, and b asm1 0 0 0

0 mb 0 0
0 0 m0 0
0 0 0 IT

 ẍ1t
ẍbt
ẍ0φ̈ +  c1 0 −c1 −c1h1

0 cb −cb −cbhb−c1 −cb c1 + cb + cHH c1h1 + cbhb−c1h1 −cbh1 c1h1 + cbh1 c1h2
1 + cbh2

b + cMM

 ẋ1t
ẋbt
ẋ0φ̇ +  k1 0 −k1 −k1h1

0 kb −kb −kbh1−k1 −kb k1 + kb + kHH k1h1 + kbh1−k1h1 −kbh1 k1h1 + kbh1 k1h2
1 + kbh2

1 + kMM

 x1t
xbt
x0φ 
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0
0

 fa + 1−1
0
0

 fp +−m1−mb−m0
0

 ẍg +−m1h1−mbh1
0−IT

 φ̈g (9.22)

9.2.3 Hybrid Controlled Multiple-Story Building
without SSI

For an n-story building with the hybrid control at each floor, the motion equations
of the controlled system can be given in a general form as [5,7][M]{ẍ(t)} + [C]{ẋ(t)} + [K]{x(t)} = [δa]{ fa(t)} + [δp]{ fp(t)} + [δr]{ ẍg(t)φ̈g(t)}

(9.23)

where {x(t)} is a 2n×1 vector of structural and bracing displacements; and { fa(t)},{ fp(t)} are n× 1 vectors of active and passive control forces, respectively; also{x(t)} = [ x1(t) x2(t) . . . xn(t) xb1(t) xb2(t) . . . xbn(t)]T (9.24){ fa(t)} = [ fa1(t) fa2(t) · · · fan(t)]T (9.25){ fp(t)} = [ fp1(t) fp2(t) · · · fpn(t)]T (9.26)[M], [C], and [K] are 2n × 2n matrixes of the structural mass, damping, and
stiffness matrixes, respectively and they can be given as[M] = [ [Ms] [Mb] ] ; [C] = [ [Cs] + [Cbsb] [Csb][Cbs] [Cb] ] ;[K] = [ [Ks] + [Kbsb] [Ksb][Kbs] [Kb] ] (9.27)

with[M] = m1
m2

. . .
mn

 ; [Mb] = mb1
mb2

. . .
mbn

 (9.28a,b)
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kn−1 + kn −kn−kn kn

 ;[Kb] =  kb1
kb2

. . .
kbn

 (9.29a,b)[Ksb] = [Kbs]T = [�]T[Kb]; [Kbsb] = [�]T[Kb][�] (9.30a,b)

and [�] =  0−1 0 · · ·−1 0−1 0


n×n

(9.31)

The damping matrixes are similarly given as[Cs] =  c1 + c2 −c2−c2 c2 + c3 · · ·
cn−1 + cn −cn−cn cn

 ;[Cb] =  cb1
cb2

. . .
cbn

 (9.32a,b)[Csb] = [Cbs]T = [�]T[Cb]; [Cbsb] = [�]T[Cb][�] (9.33a,b)[δa] and [δp] are 2n × n controller location matrixes for actuators and dampers,
respectively; [δr] is the location matrix for the inputs of horizontal and rotational
ground motions. They can be given as[δa] = [δp] = [ [γs][γb] ] ; [γs] = −[γb] = nth order identity matrix (9.34)



“CHAP09” — 2008/1/18 — 15:35 — page 534 — #12

534 Smart Structures: Innovative Systems for Seismic Response Control
and [δr] = −[M][
]; 
 = [ 1 . . . 1 1 . . . 1

h1 . . . hn h1 . . . hn

]T
(9.35)

If the brace stiffness is not considered in the controlled system, then matrices
in Equation 9.23, Equations 9.24 through 9.27 should be modified as {x(t)} = [x1(t) x2(t) . . . xn(t)]T{ fa(t)} = [ fa1(t) fa2(t) · · · fan(t)]T{ fp(t)} = [ fp1(t) fp2(t) · · · fpn(t)]T (9.36)[M], [C], and [K] are n×n matrixes of the structural mass, damping, and stiffness
matrixes, respectively and they can be given as[M] = [Ms]; [C] = [Cs]; [K] = [Ks] (9.37)

If controllers are put at some specific floors, rather than at each floor, the
bracing location matrix, [θ ], is introduced, which is a n×m matrix if there are m
braces. The elements of this matrix are all zero except that θ(i, j) = 1 when the
jth bracing is supported on the ith floor ( j = 1, . . . , m). Then{ [Cbs]Tn×m = [Csb]n×m = [�]Tn×n[θ ]n×m[Cb]m×m[Kbs]Tn×m = [Ksb]n×m = [�]Tn×n[θ ]n×m[Kb]m×m

(9.38a,b){ [Cbsb]n×n = [�]Tn×n[θ ]n×m[Cb]m×m[θ ]Tm×n[�]n×n = [Csb]n×m[θ ]Tm×n[�]n×n[Kbsb]n×n = [�]Tn×n[θ ]n×m[Kb]m×m[θ ]Tm×n[�]n×n = [Ksb]n×m[θ ]Tm×n[�]n×n
(9.39a,b)

and the controller input matrixes in Equation 9.34 become[δa](n+m)×m = [δp](n+m)×m = [ [γs]n×n[θ ]n×m[θ ]Tm×n[γb]n×n[θ ]n×m

]
(9.40)

Then the motion equations for the n-story building with m hybrid controllers
are established for the system resting on a fixed base.

9.2.4 Hybrid Controlled Multiple-Story Building with SSI
The controlled building is illustrated in Figure 9.5. The difference of forces on
free bodies of floor or bracing is that two more items appear in the inertia forces
when foundation motion is considered. They are miẍ0 and mihiφ̈, where mi and
hi are mass of the ith free body and its height. So the motion equation of the
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(a)

(b)

(c)

Ground motion

Hydraulic
actuators

Viscoelastic
dampers

x0x0

x0 xn�

�hn
�hn–1

�hi xixn–1

Soil a a mnm0, I0x..g (t)KMM (�)KHH (�)

mn–1

knkn–1 mim2k2k1

m1

hnhih1fai(t)fa1(t)fa1(t)fpi(t)fp1(t)fp1(t)fp(t) fa(t) c(t) �g(t)..

Viscoelastic
fluid

Flow supply
from pump

Flow discharged
to reservoir

Hydraulic actuator

Actuator

Servovalve

Viscoelastic damper

∆(t) ∆(t)
FIGURE 9.5 HDABC SSI structure system: (a) multiple-story structure, (b) mathematical
model, and (c) viscoelastic damper and hydraulic actuator.

superstructure can be obtained for the SSI case by adding those inertia forces to
that of the fixed base case as[M]{ẍ(t)} + [M][
]{ ẍ0(t)φ̈(t) }+ [C]{ẋ(t)} + [K]{x(t)} = [δa]{ fa(t)}+ [δp]{ fp(t)} + [δr]{ ẍg(t)φ̈g(t)} (9.41)
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that can be rearranged as[M]{ẍ(t)} + [C]{ẋ(t)} + [K]{x(t)} = [δa]{ fa(t)} + [δp]{ fp(t)}+ [δr]{ ẍ0(t)+ ẍg(t)φ̈(t)+ φ̈g(t) } (9.42)

The horizontal-force balance of the free-body foundation generates the lateral-
motion equation for the foundation as

m0(ẍ0 + ẍg)+ cHHẋ0 + kHHx0 + Fup = 0 (9.43)

where Fup is the force from the superstructure to the foundation transferred through
column (and bracing if there is a control at the first floor).

Fup = −c1ẋ1 − k1x1 − cbẋb − kbxb = −[1 1 · · · 1]1×(n+m) ([K]{x} + [C]{ẋ})
(9.44)

that can be written in another form by substituting the motion equation of the
superstructure of Equation 9.42 into Equation 9.44. It becomes

Fup = −[1 1 · · · 1]1×(n+m)(−[M]{ẍ(t)} + [δa]{ fa(t)} + [δp]{ fp(t)} + [δr]{ ẍ0(t)+ ẍg(t)φ̈(t)+ φ̈g(t) }) (9.45)

Because the forces of active and passive are internally acting on the floors and
braces, which are self balanced within the superstructure, there are−[1 1 · · · 1]1×(n+m) ([δa]{ fa(t)} + [δp]{ fp(t)}) = 0. (9.46)

So, Equation 9.45 can be simplified as

Fup = −[1 1 · · · 1](1×(n+m) (−[M]{ẍ(t)} + [δr]{ ẍ0(t)+ ẍg(t)φ̈(t)+ φ̈g(t) }) (9.47a)

Noting that [δr]=−[M][
], Equation 9.47a can be written as Equation 9.47b as

Fup = [1 1 · · · 1]1×(n+m)[M]({ẍ(t)} + [
]{ ẍ0(t)+ ẍg(t)φ̈(t)+ φ̈g(t) }) (9.47b)
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Substituting Equation 9.47b into Equation 9.43, the motion equation of the
foundation in the horizontal direction can be

m0(ẍ0 + ẍg)+ [1 1 · · · 1](1×(n+m)[M]({ẍ(t)} + [
]{ ẍ0(t)+ ẍg(t)φ̈(t)+ φ̈g(t) })+ cHHẋ0 + kHHx0 = 0 (9.48)

where the first item in the equation is the inertia force at the foundation, the second
item expresses the force transferred from the superstructure, and the last two items
are the reaction force of the soil to the foundation in the lateral direction.

The motion equation of the foundation in rocking can be obtained by the
moment balance of the whole system. Similar to the single story building, it can
be obtained as

I0(φ̈ + φ̈g)+ [ h1 · · · hn h1 · · · hn ]1×(n+m)[M]× ({ẍ(t)} + [
]{ ẍ0(t)+ ẍg(t)φ̈(t)+ φ̈g(t) })+ cMMφ̇0 + kMMφ = 0 (9.49)

The first item in the equation is the inertia moment at the foundation. The
centroidal moment of inertia of the superstructure can be neglected in the seismic
response of simple building-foundation systems [4], so there is I0, rather than IT ,
in the item. The second item expresses the moments caused from the horizontal
inertia forces at each mass of the superstructure. The last two items are the reaction
moment of the soil to the foundation.

Equations 9.48 and 9.49 can be combined to give the motion equations for the
foundation as[

m0 0
0 I0

]{
ẍ0(t)+ ẍg(t)φ̈(t)+ φ̈g(t) }+ [
]T[M]({ẍ(t)} + [
]{ ẍ0(t)+ ẍg(t)φ̈(t)+ φ̈g(t) })= − [ cHH

cMM

]{
ẋ0φ̇ }− [ kHH

kMM

]{
x0φ } (9.50a)

Substituting the motion of the superstructure into Equation 9.50a yields[
m0 0
0 I0

]{
ẍ0(t)+ ẍg(t)φ̈(t)+ φ̈g(t) }+ [
]T(−[C]{ẋ(t)} − [K]{x(t)}[δa]{ fa(t)}+ [δp]{ fp(t)}) = − [ cHH

cMM

]{
ẋ0φ̇ }− [ kHH

kMM

]{
x0φ } (9.50b)
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that can be expanded as[

m0 0
0 I0

]{
ẍ0(t)+ ẍg(t)φ̈(t)+ φ̈g(t) }− [
]T[C]{ẋ(t)} + [ cHH

cMM

]{
ẋ0φ̇ }− [
]T[K]{x(t)} + [ kHH

kMM

]{
x0φ }=−[
]T[δa]{ fa(t)}−[
]T[δp]{ fp(t)}

(9.51)

Similar to the single story case, the displacement of floor and brace relative to
the ground are defined as{xt(t)} = {x(t)} + [
]{Xf (t)} = {x(t)} + [
]{ x0(t)φ(t) } (9.52)

where {Xf (t)} defined in the above equation is the motion vector of the foundation,
which includes the horizontal, transversal, and rocking motions.

Replacing {x(t)} based on Equation 9.52, in the motion equation of the
superstructure, Equation 9.42, it becomes[M]{ẍt(t)} − [M][
]{ ẍ0(t)φ̈(t) }+ [C]{ẋt(t)} − [C][
]{ ẋ0(t)φ̇(t) }+ [K]{xt(t)} − [K][
]{ x0(t)φ(t) }= [δa]{ fa(t)} + [δp]{ fp(t)} + [δr]{ ẍ0(t)+ ẍg(t)φ̈(t)+ φ̈g(t) } (9.53)

Noting that [δr] = −[M][
], Equation 9.53 can be reduced as[M]{ẍt(t)} + [C]{ẋt(t)} − [C][
]{ ẋ0(t)φ̇(t) }+ [K]{xt(t)} − [K][
]{ x0(t)φ(t) }= [δa]{ fa(t)} + [δp]{ fp(t)} + [δr]{ ẍg(t)φ̈g(t)} (9.54)

By replacing {x(t)}, based on Equation 9.52, in the motion equation of the
foundation, Equation 9.51 becomes[

m0 0
0 I0

]{
ẍ0(t)φ̈(t) }− [
]T[C]{ẋt(t)} + ([
]T[C][
] + [ cHH

cMM

]){
ẋ0φ̇ }− [
]T[K]{xt(t)} + ([
]T[K][
] + [ kHH

kMM

]){
x0φ }= −[
]T[δa]{ fa(t)} − [
]T[δp]{ fp(t)} − [m0 0

0 I0

]{
ẍg(t)φ̈g(t)} (9.55)
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The motion equation of the whole system can be obtained by assembling
Equation 9.54 for superstructure, and Equation 9.55 for foundation, as[ [M] 0

0 [Mf ] ]{ ẍt(t)
Ẍf (t)}+ [ [C] −[C][
]−[
]T[C] [
]T[C][
] + [Cs] ]{ ẋt(t)

Ẋf (t)}+ [ [K] −[K][
]−[
]T[K] [
]T[K][
] + [Ks] ]{ xt(t)
Xf (t)} = − [ −[δa][
]T[δa] ] { fa(t)}− [ −[δp][
]T[δp] ] { fp(t)} − [ [M] 0

0 [Mf ] ] [ [
][I2] ]{ ẍg(t)φ̈g(t)} (9.56)

where [Mf ] = [m0 0
0 I0

]
; [Cs] = [ cHH

cMM

]
; [Ks] = [ kHH

kMM

]
; [I2] is

an identity matrix with order of 2. By defining the mass, stiffness, and damping
matrixes of the global SSI system as[MSSI] = [M 0

0 Mf

]
; [CSSI] = [ C −C
−
TC 
TC
 + Cs

]
;[KSSI] = [ K −K
−
TK 
TK
 + Ks

]
(9.57a,b,c)

and defining the input location matrixes for the global system as[δs
a] = − [ −δa
Tδa

]
; [δs

p] = − [ −δp
Tδp

]
; [δs

r ] = −[MSSI] [ 
I2

]
(9.58a,b,c)

Equation 9.56 can be simply expressed as[MSSI]{ẍt(t)} + [CSSI]{ẋt(t)} + [KSSI]{xt(t)} = [δs
a]{ fa(t)}+ [δs

p]{ fp(t)} + [δs
r]{ ẍg(t)φ̈g(t)} (9.59)

that is the motion equation of the SSI system in a form similar to the fixed base
case, except with the coefficient matrixes replaced. By putting the superstructure
property matrixes of the single story case[M] = [m1

mb

]
; [K] = [ k1

kb

]
; [C] = [ c1

cb

]
and [δa] = [δp] = [ 1−1

]
; [
] = [ 1 h1

1 h1

]
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into Equation 9.59, the motion equation for the single story case can be obtained,
which produces the same results as Equation 9.22.

9.3 STATE SPACE FORMULATION OF HDABC SYSTEMS

WITH AND WITHOUT SSI

9.3.1 Single-Story Structural System without SSI
As discussed in Chapter 4 the state space representation is composed of a series
of first order differential equations for which equations of the structural system
are given as Equations 9.9a through d. The equations of the control system can be
written based on Equations 5.35b, 5.36, and 5.39a which become Equations 9.60,
9.61, and 9.62, respectively.

d
dt

fa(t) = α1 (ẋ1(t)− ẋb(t))+ α2c(t) (9.60)

d
dt

c(t) = −1τ c(t)+ 1τ u(t) (9.61)

d
dt

fp(t) = p1 (ẋ1(t)− ẋb(t))+ p2 fp(t) (9.62)

where new notations of p1 = C0λ0
, p2 = − 1λ0

, α1 = 2βA2

V , and α2 = βAKv
V
√

2Ps are
to simplify the expressions as introduced in Equation 5.35. By selecting the state
vector of

z(t) = [ẋ1(t), ẋb(t), x1(t), xb(t), fa(t), fp(t), c(t)]T (9.63)

the state space representation for the whole hybrid controlled system can be given
in Equation 9.64 using Equations 9.9a through d and Equations 9.60 through 9.62 as

ż(t) = [At]z(t)+ {Bu}u(t)+ {Br}ẍg(t) (9.64)

where [At] is the plant matrix as

.....................

[At] =  0 0 1 0 0 0 0
0 0 0 1 0 0 0−ω2

1 0 −2ρ1ω1 0 1/m1 1/m1 0
0 −ω2

b 0 −2ρbωb −1/mb −1/mb 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 α1 −α1 0 0 α2
0 0 p1 −p1 0 p2 0
0 0 0 0 0 0 −1/τ 7×7

(9.65)
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and the input location vectors for the control command, u(t), and the ground
acceleration ẍg(t) have their forms as{Bu}7×1 = [ 0 0 0 0 0 0 −1/τ ]T (9.66){Br}7×1 = [ 0 0 −1 −1 0 0 0

]T (9.67)

9.3.2 Single-Story Structural System with SSI
The state space representation for the hybrid-controlled system with soil considered
can be obtained by using the motion equation of the SSI system of Equation 9.22.
Four more items need to be added in the state vector for the foundation’s motions as

z(t) = [ẋ1(t), ẋb(t), ẋ0(t), φ̇(t), x1(t), xb(t), x0(t),φ(t), fa(t), fp(t), c(t)]T (9.68)

and the state space representation for the SSI system is given as

ż(t) = [As
t ]z(t)+ {Bs

u}u(t)+ [Bs
r]{ ẍg(t)φ̈g(t)} (9.69)

where the plant matrix and the input location vectors are different from those for
the fixed base case. They are marked with the superscript s to indicate that they
are for the SSI case. The plant matrix is given in Equation 9.70 as[As

t ]11×11 = 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0−ω2

1 0 ω2
1 ω2

1h1 −2ρ1ω1 0 2ρ1ω1 2ρ1ω1h1 1 1 0
0 −ω2

b ω2
b ω2

bh1 0 −2ρbωb 2ρbωb 2ρbωbh1 −1−1 0
k1
m0

kb
m0
− (k1+kb+kHH)

m0
− (k1h1+kbh1)

m0
c1
m0

cb
m0

− (c1+cb+cHH)
m0

− (c1h1+cbh1)
m0

0 0 0
k1h1

IT
kbh1

IT
− (k1h1+kbh1)

IT
− (k1h2

1+kbh2
1+kMM)

IT
c1h1

IT
cbh1

IT
− (c1h1+cbh1)

IT
− (c1h2

1+cbh2
1+cMM)

IT
0 0 0

0 0 0 0 α1 −α1 0 0 0 0 α2
0 0 0 0 p1 −p1 0 0 0 p2 0
0 0 0 0 0 0 0 0 0 0 − 1τ

(9.70)

The input location vectors for the control command and the ground acceleration
in the SSI system are given as{Bs

u}11×1 = [0 0 0 0 0 0 0 0 0 0 −1/τ ]T (9.71)

and [Bs
r]11×2 = [ 0 0 0 0 −1 −1 −1 0 0 0 0

0 0 0 0 −h1 −h1 0 −1 0 0 0

]T
(9.72)
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9.3.3 Multiple-Story Building System without SSI
The motion equation of the controlled structure system is given in Equation 9.23.
The equations of m hybrid controllers can be assembled as{ ḟp(t)} = [P1]{ẋ(t)} + [P2]{ fp(t)} (9.73){ ḟa(t)} = [Fx]{ẋ(t)} + [Fc]{c(t)} (9.74){ċ(t)} = [Cc]{c(t)} + [Cu]{u(t)} (9.75)

where [P1] is a m × (n+ m) matrix with each row describing damper properties.
Supposing the kth damper is put between the ith floor and the jth brace, there are
only two nonzero elements at the kth row of [P1]. They are

P1(k, i) = −C0kλ0k
; P1(k, n+ j) = C0kλ0k

(9.76)

and [P2] is a m× m diagonal matrix with its elements

P2(k, k) = −1λ0k
(9.77)

where C0k and λ0k are the damping coefficient and relaxation time corresponding
to the kth damper, respectively [8]. When bracing stiffness is not involved, then
[P1] is a m × n matrix. Supposing the kth damper is put at the ith floor, there are
two nonzero elements at the kth row of [P1] and they are

P1(k, i) = −C0kλ0k
; P1(k, i − 1) = C0kλ0k

where P1(k, i − 1) is nonexistent for the case of i = 1.
[Fx] is a m× (n+m)matrix with each row describing an actuator. Supposing

the kth actuator is put between the ith floor and the jth brace, there are only two
nonzero elements at the kth row of [Fx]. They are

Fx(k, i) = −α1k and Fx(k, n+ j) = α1k (9.78)

and [Fc] is a m× m diagonal matrix with its elements as

Fc(k, k) = α2k (9.79)

and [Cc] and [Cu] are m× m diagonal matrices with their elements as

Cc(k, k) = −1τk
; Cu(k, k) = 1τk

(9.80)
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where subscripts of k denote that the item corresponds to the kth controller. Select
the state space vector as{z} = [{x}Tn+m {ẋ}Tn+m { fa}Tm { fp}Tm {c}Tm]T (9.81)

and combine the structure equations and controller equations; the state space rep-
resentation of the hybrid-controlled multiple-story building on the fixed base can
be given as

ż(t) = [At]z(t)+ [Bu]u(t)+ [Br]{ ẍg(t)φ̈g(t)} (9.82)

with the plant matrix as[At](2n+5m)×(2n+5m)=  [zero](n+m)×(n+m) [I](n+m)×(n+m) [zero](n+m)×3m−[M]−1[K] −[M]−1[C] −[M]−1[δa] −[M]−1[δp] [zero](n+m)×m[zero]m×(n+m) [Fx] [zero]m×m [zero]m×m [Fc][zero]m×(n+m) [P1] [zero]m×m [P2] [zero]m×m[zero]m×(n+m) [zero]m×(n+m) [zero]m×m [zero]m×m [Cc] 
(9.83)

The input location vectors for the control command and the ground acceleration
are given as [Bu](2n+5m)×m = [ [zero](2n+4m)×m[Cu] ]

(9.84)

and [Br](2n+5m)×2 =  [zero](n+m)×2−[
][zero]3m×2

 (9.85)

9.3.4 Multiple-Story Structural System with SSI
The state space representation for the SSI case can be obtained in the manner
similar to Equation 9.81, which becomes{z} = [{x}Tn+m

{
x0φ }T {ẋ}Tn+m

{
ẋ0φ̇ }T { fa}Tm { fp}Tm {c}Tm]T

(9.86)

The plant matrix has dimensions of (2n+ 5m+ 4)× (2n+ 5m+ 4) and is the
same form as Equation 9.83, with the mass stiffness and damping matrix replaced
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by [MSSI], [KSSI], and [CSSI] in Equations 9.57a, b, and c respectively. [P1] and[Fx] need to be reset for the SSI system as

P1(k, i) = −C0kλ0k
; P1(k, n+ 2+ j) = C0kλ0k

(9.87)

and

Fx(k, i) = −α1k ; Fx(k, n+ 2+ j) = α1k (9.88)

The input location vectors for the control command and the ground acceleration
in the SSI system are given as[Bu](2n+5m+4)×m = [ [zero](2n+4m+4)×m[Cu] ]

(9.89)

and [Br](2n+5m+4)×2 =  [zero](n+2+m)×2− [ 
I2

][zero]3m×2

 (9.90)

9.4 NUMERICAL EXAMPLES USING MATLAB®

In order to use MATLAB® [12] for response analysis of controlled structures, the
mathematical formulations of state space and plant matrix presented in earlier sec-
tions should be modified in different expressions. As discussed in Appendix A,
MATLAB® has a number of features for various engineering applications; this sec-
tion presents seven numerical examples to illustrate the fundamental procedures
relevant to the subject including this chapter.

For simplicity, six-story building shown in Figure 9.5 is used for all the
examples. The building has a mass, 1.1×105 kg for each floor, the column stiffness
of 3.51 × 108, 2.25 × 108, 1.70 × 108, 1.24 × 108, 0.88 × 108, 0.60 × 108 N/m
for first story through sixth story, story-height of 3.75 m for each story and 2%
damping ratio. Controllers are installed at the top two floors, which are the optimal
control locations based on the optimal location index analysis.

For simplicity, ground rotational acceleration φ̈g, bracing stiffness Kb, and
actuator effect, Fx (see Equation 9.74) are not considered. In this study presented
herein for the given data, the mass, damping, and stiffness and matrices are cal-
culated and listed in Equations 9.91, 9.92, and 9.93 according to Equations 9.28a,
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9.29a, and 9.32a, respectively.

M =
110000 0 0 0 0 0

0 110000 0 0 0 0
0 0 110000 0 0 0
0 0 0 110000 0 0
0 0 0 0 110000 0
0 0 0 0 0 110000

(9.91)

K =
576451000 −225167000 0 0 0 0−225167000 394835000 −169668000 0 0 0

0 −169668000 293908000 −124240000 0 0
0 0 −124240000 212111000 −87871000 0
0 0 0 −87871000 147403000 −59532000
0 0 0 0 −59532000 59532000

(9.92)

C =
1.5306e+ 006 −9.6761e+ 005 2.9474e+ 005 −5.2481e+ 004−9.6761e+ 005 9.7222e+ 005 −3.8823e+ 005 7.7709e+ 004
2.9474e+ 005 −3.8823e+ 005 4.0703e+ 005 −1.4155e+ 005−5.2481e+ 004 7.7709e+ 004 −1.4155e+ 005 2.1505e+ 005

0 −2.0481e+ 004 1.0378e+ 004 −6.3351e+ 004
0 0 −7.1862e+ 003 −8.5838e+ 003
0 0−2.0481e+ 004 0

1.0378e+ 004 −7.1862e+ 003−6.3351e+ 004 −8.5838e+ 003
1.4791e+ 005 −4.7664e+ 004−4.7664e+ 004 9.0230e+ 004 (9.93)

The ground acceleration input, ẍg(t) = [time; acc] with time interval of 0.01 s,
for all the examples is given in Figure 9.6.

9.4.1 Fixed Support without Control
For MATLAB® application, the structural system’s state space representation
modified is expressed as {z} = [{x}T{ẋ}T]T (9.94){ż(t)} = [As]{z(t)} + {Br}ẍg(t) (9.95)



“CHAP09” — 2008/1/18 — 15:35 — page 546 — #24

546 Smart Structures: Innovative Systems for Seismic Response Control
0 2 4 6 8 10 12 14 16

–2

–1.5

–1

–0.5

0

0.5

1

1.5

2

Time (s)

A
cc

el
. (

m
/s

2 )
Ground motion input

PGA=1.349 

FIGURE 9.6 Typical ground motion with earthquake magnitude mj = 6.0.

where [As] is named as the system matrix in the following form:[As] = [ [zero] [I]−[Ms]−1[Ks] −[Ms]−1[Cs] ] (9.96)

In which the [M], [K], and [C] are already obtained as shown above. Thus, the
numerical value of the system matrix is

As =
Columns 1 through 4

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0−5.2405e+ 003 2.0470e+ 003 0 0

2.0470e+ 003 −3.5894e+ 003 1.5424e+ 003 0
0 1.5424e+ 003 −2.6719e+ 003 1.1295e+ 003
0 0 1.1295e+ 003 −1.9283e+ 003
0 0 0 7.9883e+ 002
0 0 0 0
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Columns 5 through 8

0 0 1.0000e+ 000 0
0 0 0 1.0000e+ 000
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 −1.3914e+ 001 8.7965e+ 000
0 0 8.7965e+ 000 −8.8384e+ 000
0 0 −2.6795e+ 000 3.5294e+ 000

7.9883e+ 002 0 4.7710e− 001 −7.0645e− 001−1.3400e+ 003 5.4120e+ 002 0 1.8619e− 001
5.4120e+ 002 −5.4120e+ 002 0 0

Columns 9 through 12

0 0 0 0
0 0 0 0

1.0000e+ 000 0 0 0
0 1.0000e+ 000 0 0
0 0 1.0000e+ 000 0
0 0 0 1.0000e+ 000−2.6795e+ 000 4.7710e− 001 0 0

3.5294e+ 000 −7.0645e− 001 1.8619e− 001 0−3.7003e+ 000 1.2868e+ 000 −9.4345e− 002 6.5329e− 002
1.2868e+ 000 −1.9550e+ 000 5.7592e− 001 7.8034e− 002−9.4345e− 002 5.7592e− 001 −1.3447e+ 000 4.3331e− 001
6.5329e− 002 7.8034e− 002 4.3331e− 001 −8.2027e− 001

(9.97)

The time history solution is calculated from the first-order differential equations
shown in Equation 9.95 as{z(t)} = eAs(t−t0){z(t0)} + ∫ t

0
eAs(t−τ){Br}ẍg(τ ) dτ (9.98)

where t0 is the initial time and{Br} = { {0}[M]−1{δγ }} (9.99)

where {δγ } is given by Equation 9.35 without bracing d.o.f. as well as the rotational
input of φ̈g(τ ).
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The solution can be given by using MATLAB® lsim command as[ y1e, t1] = lsim(As, Br , C, D, acc, time) (9.100)

and the output of each state space representation can be given from{ y(t)} = [C]{z(t)} + [D]ẍg(t) (9.100a)

By choosing proper output matrix of [C] and [D], the structural responses,
control forces, and ground motion input can be obtained from output.

For this sample, the top story displacement response is calculated using Equa-
tion 9.98 and is printed out according to Equation 9.100a by assigning [C] and [D]
as follows: [C] = [0 0 0 0 0 1 0 0 0 0 0 0]; [D] = [0] (9.101)

For saving printing space, the displacement output response is listed for the
first nine and the last six time intervals (�t = 0.01 s) of the record’s first second as 0.0000000e+ 000 −1.5180748e− 008 −9.2071484e− 008 −1.7511972e− 007−2.0869892e− 007 −2.5346746e− 007 −3.6924003e− 007 −4.9691076e− 007 −5.7786466e− 007

...−5.8247944e− 003 −6.1688493e− 003 −6.3814962e− 003 −6.4567591e− 003 −6.3963595e− 003−6.2098135e− 003
(9.102)

Similarly, the top floor velocity response can be output by assigning[C] = [0 0 0 0 0 0 0 0 0 0 0 1]; [D] = [0] (9.103)

and the results are listed first nine and the last six time intervals as 0.0000000e+ 000 −4.5532990e− 006 −9.4100365e− 006 −5.7882451e− 006−2.4234283e− 006 −8.0223436e− 006 −1.3651329e− 005 −1.0405323e− 005 −7.3129074e− 006

...−4.0681896e− 002 −2.7972638e− 002 −1.4438435e− 002 −6.4355854e− 004 1.2559711e− 002
2.4496688e− 002

(9.104)

9.4.2 SSI without Control
The foundation for the building is square with dimensions of 12× 12 m, mass of
2.2 × 105 kg, and with elastic soil conditions Vs = 150 m/s. Since the stiffness
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FIGURE 9.7 Impedance function curves.

and damping in Equation 9.5 are in the frequency domain, in order to apply them
to online control, they must be expressed in the time domain. This can be done by
using the structural system’s fundamental frequency of 9.70 rad/s in the impedance
function curves shown in Figure 9.7 [1]. The coefficients are then

kHH = 1.5/e9 N/m; kMM = 5.6e10N; cHH = 4e7N-s/m; cMM=1.3e8N-s
(9.105)

For MATLAB® application, let{X} = [{xt}T{Xf }T]T (9.106){xt} = {x} + [
]{Xf } (9.107){z} = [{X}T{Ẋ}T]T (9.108){ż(t)} = [ASSI]{z(t)} + {Br}ẍg(t) (9.109)

where [ASSI] is the system matrix for the SSI system as[ASSI] = [ [0] [I]−[MSSI]−1[KSSI] −[MSSI]−1[CSSI] ] (9.110)
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in which the submatrices are based on Equations 9.57a through c, and, [
] is
modified from Equation 9.35b as

Gama =
1.0000e+ 000 3.7500e+ 000
1.0000e+ 000 7.5000e+ 000
1.0000e+ 000 1.1250e+ 001
1.0000e+ 000 1.5000e+ 001
1.0000e+ 000 1.8750e+ 001
1.0000e+ 000 2.2500e+ 001 (9.111)

Thus, the MATLAB® assembles the system matrix [ASSI] as

Columns 1 through 4

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0−5.2405e+ 003 2.0470e+ 003 0 0

2.0470e+ 003 −3.5894e+ 003 1.5424e+ 003 0
0 1.5424e+ 003 −2.6719e+ 003 1.1295e+ 003
0 0 1.1295e+ 003 −1.9283e+ 003
0 0 0 7.9883e+ 002
0 0 0 0

1.5967e+ 003 0 0 0
4.4786e+ 001 7.9960e+ 001 0 0

Columns 5 through 8

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 3.1935e+ 003 4.2994e+ 003
0 0 0 7.6761e+ 003
0 0 0 0

7.9883e+ 002 0 0 0−1.3400e+ 003 5.4120e+ 002 0 0
5.4120e+ 002 −5.4120e+ 002 0 0

0 0 −8.4149e+ 003 −5.9878e+ 003
0 0 −1.2475e+ 002 −6.0707e+ 003
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Columns 9 through 12

1.0000e+ 000 0 0 0
0 1.0000e+ 000 0 0
0 0 1.0000e+ 000 0
0 0 0 1.0000e+ 000
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0−1.3914e+ 001 8.7965e+ 000 −2.6795e+ 000 4.7710e− 001

8.7965e+ 000 −8.8384e+ 000 3.5294e+ 000 −7.0645e− 001−2.6795e+ 000 3.5294e+ 000 −3.7003e+ 000 1.2868e+ 000
4.7710e− 001 −7.0645e− 001 1.2868e+ 000 −1.9550e+ 000

0 1.8619e− 001 −9.4345e− 002 5.7592e− 001
0 0 6.5329e− 002 7.8034e− 002

3.6602e+ 000 −1.4836e+ 000 7.9630e− 001 1.2180e− 001
2.8366e− 002 1.1180e− 001 1.9755e− 002 3.7668e− 002

Columns 13 through 16

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1.0000e+ 000 0 0 0
0 1.0000e+ 000 0 0
0 0 1.0000e+ 000 0
0 0 0 1.0000e+ 000
0 0 7.3203e+ 000 2.7231e+ 000

1.8619e− 001 0 −2.9672e+ 000 1.0733e+ 001−9.4345e− 002 6.5329e− 002 1.5926e+ 000 1.8964e+ 000
5.7592e− 001 7.8034e− 002 2.4360e− 001 3.6161e+ 000−1.3447e+ 000 4.3331e− 001 2.4360e− 001 1.8270e+ 001
4.3331e− 001 −8.2027e− 001 2.4360e− 001 1.8270e+ 000
1.2180e− 001 1.2180e− 001 −1.8516e+ 002 −1.1311e+ 001
1.9031e− 002 1.9031e− 002 −2.3565e− 001 −1.3972e+ 001

(9.112)

Following Equations 9.98 and 9.101a, the top floor displacement response can
be obtained by assigning:[C] = [0 0 0 0 0 1 0 0, 0 0 0 0 0 0 0 0]; [D] = [0] (9.113)

The foundation translational response can be output by assigning[C] = [0 0 0 0 0 0 1 0, 0 0 0 0 0 0 0 0]; [D] = [0] (9.114)

Similarly, the foundation translational response can be output by assigning[C] = [0 0 0 0 0 0 0 1, 0 0 0 0 0 0 0 0]; [D] = [0] (9.115)
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9.4.3 Fixed Support with Passive Control
For this case, the state space vector is{z} = [ {x}T {ẋ}T { fp}T ]T (9.116)

and state space representation is{ż(t)} = [Ap]{z(t)} + {Br}ẍg(t) (9.117)

with the system matrix as[Ap] =  [0] [I] [0]−[M]−1[K] −[M]−1[C] −[M]−1[δp][0] [P1] [P2]  (9.118)

Two passive dampers are placed at the top two floors with its coefficients of C0 =
3.84× 106 N-s/m and λ0 = 0.063 s. The system matrix is obtained as

As =
Columns 1 through 4

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0−5.2405e+ 003 2.0470e+ 003 0 0

2.0470e+ 003 −3.5894e+ 003 1.5424e+ 003 0
0 1.5424e+ 003 −2.6719e+ 003 1.1295e+ 003
0 0 1.1295e+ 003 −1.9283e+ 003
0 0 0 7.9883e+ 002
0 0 0 0

Columns 5 through 8

0 0 1.0000e+ 000 0
0 0 0 1.0000e+ 000
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 −1.3914e+ 001 8.7965e+ 000
0 0 8.7965e+ 000 −8.8384e+ 000
0 0 −2.6795e+ 000 3.5294e+ 000

7.9883e+ 002 0 4.7710e− 001 −7.0645e− 001−1.3400e+ 003 5.4120e+ 002 0 1.8619e− 001
5.4120e+ 002 −5.4120e+ 002 0 0
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Columns 9 through 12

0 0 0 0
0 0 0 0

1.0000e+ 000 0 0 0
0 1.0000e+ 000 0 0
0 0 1.0000e+ 000 0
0 0 0 1.0000e+ 000−2.6795e+ 000 4.7710e− 001 0 0

3.5294e+ 000 −7.0645e− 001 1.8619e− 001 0−3.7003e+ 000 1.2868e+ 000 −9.4345e− 002 6.5329e− 002
1.2868e+ 000 −1.9550e+ 000 5.7592e− 001 7.8034e− 002−9.4345e− 002 5.7592e− 001 −1.3447e+ 000 4.3331e− 001
6.5329e− 002 7.8034e− 002 4.3331e− 001 −8.2027e− 001

(9.119)

where [δp] is given in Equation 9.34a without inclusion of [δb]. [M], [K], and[C] are given in Equations 9.91 through 9.93. Since the bracing stiffness is not
considered, Equation 9.76 should be modified as

P1(k, i) = −C0kλ0k
; P1(k, i − 1) = C0kλ0k

; P2(k, i) = −C0kλ0k
(9.120)

In general, [P1] is a m × n matrix. Supposing the kth damper is put at the ith
floor, there are two nonzero elements at the kth row of [P1] and P1(k, i − 1) is
nonexistent for the case of i = 1. Substituting Equation 9.119 in Equation 9.98
with integration yields the top story displacement response that can be obtained
by assigning[C] = [0 0 0 0 0 1, 0 0 0 0 0 0, 0 0]; [D] = [0] (9.121)

The floor displacement data is listed for the first and the last eight time intervals
of the first second response as

0.0000000e+ 000 −1.5180748e− 008 −9.2071490e− 008 −1.7511974e− 007 −2.0869836e− 007−2.5346223e− 007 −3.6921609e− 007 −4.9683639e− 007 −5.7768380e− 007 −6.7329550e− 007
...−3.6039016e− 003 −4.0424234e− 003 −4.3963286e− 003 −4.6629900e− 003 −4.8454755e− 003−4.9508065e− 003 −4.9897082e− 003 −4.9720251e− 003 −4.9080436e− 003 −4.8074307e− 003

(9.122)

The passive control force at the top floor can be similarly obtained with[C] = [0 0 0 0, 0 00 0 0 0 0 0, 1 0]; [D] = [0]. The passive control
forces curve is given as

0.0000000e+ 000 −3.1103359e− 006 −4.8395167e− 005 2.0737333e− 004 2.8595425e− 003
1.1603871e− 002 2.8603207e− 002 5.3379192e− 002 9.0042582e− 002 1.6108784e− 001
...
5.3728194e+ 004 5.6279889e+ 004 5.4810873e+ 004 4.9509233e+ 004 4.0924620e+ 004
2.9926228e+ 004 1.7645287e+ 004 5.3869639e+ 003 −5.5019444e+ 003 −1.3807857e+ 004

(9.123)
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9.4.4 SSI with Passive Control
By choosing the state space vector of{z} = [{X}T {Ẋ}T { fp}T]T (9.124)

the state space representation of the passive controlled multiple-story building on
the fixed base can be given as{ż(t)} = [Ap

SSI
]{z(t)} + {Br}ẍg(t) (9.125)

with the system matrix as[
Ap

SSI
] =  [0] [I] [0]−[MSSI]−1[KSSI] −[MSSI]−1[CSSI] −[MSSI]−1[0] [P1] [P2]  (9.126)

where [MSSI], [KSSI], and [CSSI] are the same as used in Equation 9.110. [P1]
should be modified from Equation 9.87 because no bracing stiffness is involved
and the damper is on the top floor. Thus, [P1] and [P2] are the same as given in
Equation 9.120.

The numerical values of Equation 9.126 are

Columns 1 through 5

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0−5.2405e+ 003 2.0470e+ 003 0 0 0

2.0470e+ 003 −3.5894e+ 003 1.5424e+ 003 0 0

0 1.5424e+ 003 −2.6719e+ 003 1.1295e+ 003 0

0 0 1.1295e+ 003 −1.9283e+ 003 7.9883e+ 002
0 0 0 7.9883e+ 002 −1.3400e+ 003
0 0 0 0 5.4120e+ 002

1.5967e+ 003 0 0 0 0

4.4786e+ 000 7.9960e+ 001 0 0 0

0 0 0 0 0

0 0 0 0 0
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Columns 6 through 10

0 0 0 1.0000e+ 000 0

0 0 0 0 1.0000e+ 000
0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 3.1935e+ 003 4.2994e+ 003 −1.3914e+ 001
0 0 7.6761e+ 003 8.7965e+ 000 8.8384e+ 000
0 0 0 −2.6795e+ 000 3.5294e+ 000
0 0 0 4.7710e− 001 −7.0645e− 001

5.4120e+ 002 0 0 0 1.8619e− 001−5.4120e+ 002 0 0 0 0

0 −8.4149e+ 003 −5.9878e+ 003 3.6602e+ 000 −1.4836e+ 000
0 −1.2475e+ 002 −6.0707e+ 003 2.8366e− 002 1.1180e− 001
0 0 0 0 0

0 0 0 0 0

Columns 11 through 15

0 0 0 0 0

0 0 0 0 0

1.0000e+ 000 0 0 0 0

0 1.0000e+ 000 0 0 0

0 0 1.0000e+ 000 0 0

0 0 0 1.0000e+ 000 0

0 0 0 0 1.0000e+ 000
0 0 0 0 0−2.6795e+ 000 4.7710e− 001 0 0 7.3203e+ 000

3.5294e+ 000 −7.0645e− 001 1.8619e− 001 0 −2.9672e+ 000−3.7003e+ 000 1.2868e+ 000 −9.4345e− 002 6.5329e− 002 1.5926e+ 000
1.2868e+ 000 −1.9550e+ 000 5.7592e− 001 7.8034e− 002 2.4360e− 001−9.4345e− 002 5.7592e− 001 −1.3447e+ 000 4.3331e− 001 2.4360e− 001
6.5329e− 002 7.8034e− 002 4.3331e− 001 −8.2027e− 001 2.4360e− 001
7.9630e− 001 1.2180e− 001 1.2180e− 001 1.2180e− 001 −1.8516e+ 002
1.9755e− 002 3.7668e− 002 1.9031e− 002 1.9031e− 002 2.3565e− 001

0 0 6.0921e+ 007 −6.0921e+ 007 0

0 6.0921e+ 007 −6.0921e+ 007 0 0

Columns 16 through 18

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

1.0000e+ 000 0 0

2.7231e+ 000 0 0

1.0733e+ 001 0 0

1.8964e+ 000 0 0

3.6161e+ 000 0 −9.0909e− 006
1.8270e+ 000 −9.0909e− 006 9.0909e− 006
1.8270e+ 000 9.0909e− 006 0−1.1311e+ 001 0 0

1.3972e+ 001 0 0

0 −1.5873e+ 001 0

0 0 −1.5873e+ 001 (9.127)
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The displacements and the control forces at the top floor can be output with

Equations 9.128a and b, respectively.[C] = [0 0 0 0 0 1 0 0, 0 0 0 0 0 0 0 0, 0 0]; [D] = [0] (9.128a)[C] = [0 0 0 0 0 0 0 0, 0 0 0 0 0 0 0 0, 1 0]; [D] = [0] (9.128b)

9.4.5 Fixed Support with Active Control
There are several control algorithms in MATLAB® as introduced in Appendix A.
This study is based on the optimal LQR technique. As there are two controllers
placed on the top two floors, the weighting matrices have the unit value of element
(6, 6) and other elements as zeros in [Q]; and [R] = r[I2] for two forces with [I2]
as an identity matrix of order 2. From optimal LQR results, the value of r is set at
as 8 × 10−15. The feedback gain matrix is already discussed in Chapter 4 and is
given as [G] = −R−1BT

a P; [Ba] = [ [zero][M]−1[δa] ] (9.129, 9.130)

in which [δa] is given in Equation 9.34a without the bracing d.o.f. The numerical
values of the feedback gain given can be found by MATLAB® lqr command, [G] =
lqr(As, Ba, Q, R) from which [As], [Ba], [Q], [R] are provided. The values of [G]
are then obtained and are given in Equation 9.131 as

Columns 1 through 6−2.1913e+ 004 −5.1223e+ 004 −5.1158e+ 004 1.1263e+ 005 6.6938e+ 005 1.0403e+ 006−1.3381e+ 004 −5.8003e+ 003 7.9547e+ 004 2.7820e+ 005 4.4980e+ 005 2.4212e+ 005
Columns 7 through 12

6.4264e+ 003 1.6260e+ 004 3.1083e+ 004 6.5103e+ 004 1.5838e+ 005 3.4217e+ 005
8.3606e+ 003 2.5787e+ 004 6.1924e+ 004 1.3295e+ 005 2.4291e+ 005 3.3618e+ 005

(9.131)

The state vector is expressed in the following form:{ż(t)} = [Aa]{z(t)} + {Br}ẍg(t) (9.132)

where the system matrix is [Aa] = [[As] − [Ba][G]] (9.133)
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The numerical values of the system matrix are

Aa =
Columns 1 through 4

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0−5.2405e+ 003 2.0470e+ 003 0 0

2.0470e+ 003 −3.5894e+ 003 1.5424e+ 003 0
0 1.5424e+ 003 −2.6719e+ 003 1.1295e+ 003−1.2165e− 001 −5.2730e− 002 1.1302e+ 003 −1.9258e+ 003−7.7560e− 002 −4.1293e− 001 −1.1882e+ 000 7.9732e+ 002

1.9921e− 001 4.6566e− 001 4.6507e− 001 −1.0239e+ 000
Columns 5 through 8

0 0 1.0000e+ 000 0
0 0 0 1.0000e+ 000
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 −1.3914e+ 001 8.7965e+ 000
0 0 8.7965e+ 000 −8.8384e+ 000
0 0 −2.6795e+ 000 3.5294e+ 000

8.0292e+ 002 2.2011e+ 000 5.5311e− 001 −4.7203e− 001−1.3380e+ 003 5.4846e+ 002 −1.7583e− 002 9.9581e− 002
5.3511e+ 002 −5.5066e+ 002 −5.8422e− 002 −1.4782e− 001

Columns 9 through 12
0 0 0 0
0 0 0 0

1.0000e+ 000 0 0 0
0 1.0000e+ 000 0 0
0 0 1.0000e+ 000 0
0 0 0 1.0000e+ 000−2.6795e+ 000 4.7710e− 001 0 0

3.5294e+ 000 −7.0645e− 001 1.8619e− 001 0−3.7003e+ 000 1.2868e+ 000 −9.4345e− 002 6.5329e− 002
1.8498e+ 000 −7.4640e− 001 2.7842e+ 000 3.1342e+ 000−3.7472e− 001 −4.0877e− 002 −2.1131e+ 000 4.8771e− 001−2.1725e− 001 −5.1381e− 001 −1.0065e+ 000 −3.9309e+ 000

(9.134)

The top story displacement response is calculated of which the output is
obtained by assigning[C] = [0 0 0 0 0 1, 0 0 0 0 0 0]; [D] = [0] (9.135)
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The displacement response is listed for the first and the last eight time intervals

of the first second as

0.0000000e+ 000 −1.4967685e− 008 −8.9095564e− 008 −1.6466819e− 007 −1.8804065e− 007−2.2183257e− 007 −3.2369861e− 007 −4.3255191e− 007 −4.9218214e− 007 −5.6659233e− 007
...−2.6145128e− 003 −3.2908604e− 003 −3.9284376e− 003 −4.5008196e− 003 −4.9847384e− 003−5.3610395e− 003 −5.6170953e− 003 −5.7446741e− 003 −5.7432281e− 003 −5.6199689e− 003

(9.136)

The active control force is calculated from

fa(t) = [G]z(t) (9.137a)

To output the active control force, the feedback matrix [G] is used as the [C]
matrix in the following form:[C] = [G(1, :)]; [D] = [0] (9.137b)

To output the control force at a specific floor, the corresponding row in feedback
matrix is used. The active forces of the top floor corresponds to the first row in the
matrix and are listed below.

0.0000000e+ 000 2.8186439e+ 000 5.8122516e+ 000 3.5403720e+ 000 1.4305953e+ 000
4.8808915e+ 000 8.3434010e+ 000 6.2980511e+ 000 4.3498852e+ 000 8.0719603e+ 000
...
2.9577003e+ 004 2.9169098e+ 004 2.8323750e+ 004 2.6938674e+ 004 2.4984396e+ 004
2.2456557e+ 004 1.9280117e+ 004 1.5383576e+ 004 1.0920631e+ 004 6.0261856e+ 003

(9.138)

9.4.6 Fixed Support with Hybrid Control
The hybrid control system is combing the passive and active controls. Its state
space is the similar to that used for the passive system as{ż(t)} = [Ahy]{z(t)} + {Br}ẍg(t) (9.139)

in which [Ahy] =  [Aa] [0]−[M]−1[δp][0] [P1] [P2]  (9.140)

where [Aa] is the system matrix of active control already given in Equation 9.134.
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The output of each of the state space representation can be given as shown in
Equation 9.100a. By choosing proper output matrix of [C] and [D], the structural
states, and control forces can be obtained. The numerical values of [Ahy] are

A_hy =
Columns 1 through 5

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0−5.2405e+ 003 2.0470e+ 003 0 0 0

2.2470e+ 003 −3.5894e+ 003 1.5424e+ 003 0 0

0 1.5424e+ 003 −2.6719e+ 003 1.1295e+ 003 0−1.2165e− 001 −5.2730e− 002 1.1302e+ 003 −1.9258e+ 003 8.0292e+ 002−7.7560e− 002 −4.1293e− 001 −1.1882e+ 000 7.9732e+ 002 −1.3380e+ 003
1.9921e− 001 4.6566e− 001 4.6507e− 001 −1.0239e+ 000 5.3511e+ 002

0 0 0 0 0

0 0 0 0 0

Columns 6 through 10

0 1.0000e+ 000 0 0 0

0 0 1.0000e+ 000 0 0

0 0 0 1.0000e+ 000 0

0 0 0 0 1.0000e+ 000
0 0 0 0 0

0 0 0 0 0

0 −1.3914e+ 001 8.7965e+ 000 −2.6795e+ 000 4.7710e− 001
0 8.7965e+ 000 −8.8384e+ 000 3.5294e+ 000 −7.0645e− 001
0 −2.6795e+ 000 3.5294e+ 000 −3.7003e+ 000 1.2868e+ 000

2.2011e+ 000 5.5311e− 001 −4.7203e− 001 1.8498e+ 000 −7.4640e− 001
5.4846e+ 002 −1.7583e− 002 9.9581e− 002 −3.7472e− 001 −4.0877e− 002−5.5066e+ 002 −5.8422e− 002 −1.4782e− 001 −2.1725e− 001 −5.1381e− 001

0 0 0 0 0

0 0 0 0 6.0921e+ 007
Columns 11 through 14

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1.0000e+ 000 0 0 0

0 1.0000e+ 000 0 0

0 0 0 0

1.8619e− 001 0 0 0−9.4345e− 002 6.5329e− 002 0 0

2.7842e+ 000 3.1342e+ 000 0 −9.0909e− 006−2.1131e+ 000 4.8771e− 001 −9.0909e− 006 9.0909e− 006−1.0065e+ 000 −3.9309e+ 000 9.0909e− 006 0

6.0921e+ 007 −6.0921e+ 007 −1.5873e+ 001 0−6.0921e+ 007 0 0 −1.5873e+ 001 (9.141)

The top story displacement response can be an output with the same [C], [D]
matrix as in passive control case. The sample results are listed for the first and the
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last eight time intervals of the first second as

0.0000000e+ 000 −1.4967953e− 008 −8.9111786e− 008 −1.6482265e− 007 −1.8870857e− 007−2.2371253e− 007 −3.2779114e− 007 −4.4013424e− 007 −5.0475103e− 007 −5.8566056e− 007
...−3.1523889e− 003 −3.5818958e− 003 −3.9348402e− 003 −4.2074518e− 003 −4.4012590e− 003−4.5212843e− 003 −4.5758353e− 003 −4.5721830e− 003 −4.5182980e− 003 −4.4221408e− 003

(9.142a)

To output the hybrid control force at the top floor, we use [C] = [G(1, :),
1, 0]; [D] = [0]. The force response is similar to

0.0000000e+ 000 −3.1103359e− 006 −4.8395167e− 005 2.0737333e− 004 2.8595425e− 003
1.1603871e− 002 2.8603207e− 002 5.3379192e− 002 9.0042582e− 002 1.6108784e− 001
...
5.3728194e+ 004 5.6279889e+ 004 5.4810873e+ 004 4.9509233e+ 004 4.0924620e+ 004
2.9926228e+ 004 1.7645287e+ 004 5.3869639e+ 003 −5.5019444e+ 003 −1.3807857e+ 004

(9.142b)

9.4.7 SSI with Hybrid Control
The state space representation is similar to that of Equation 9.139 and is
expressed as {ż(t)} = [Ahy

SSI

] {z(t)} + {Br}ẍg(t) (9.143)

in which [
Ahy

SSI

] = [Aa
SSI
] [0]−[MSSI]−1[δp][0] [P1] [P2]  (9.144)

where the system matrix
[
Ahy

SSI

]
obtained from

[
Ap

SSI
]
, Equation 9.125, by replacing[ASSI], Equation 9.110, with [Aa

SSI], system matrix of the active control with SSI,[Aa
SSI], is given in Equation 9.148.

On the basis of the conclusion of Reference 11 that “The effects of ignoring
the interaction between the structure and the soil in the calculation of the control
gains are small and result in a slightly lower response of the structure and the
foundation at the expense of a slightly larger control force,” we let the feedback
gain be the same as the fixed base case. However, the active control force is
then determined with this gain matrix multiplying the response of superstructure,
which is calculated including the effect of SSI as presented in Equations 9.146
through 9.148.
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The active force is expressed as

fa(t) = [G] [x(t), ẋ(t)]T (9.145)

or

fa(t) = [GSSI] [X(t), Ẋ(t)]T = [G] [[I −
] [I −
]] [X(t), Ẋ(t)]T (9.146)

Then, the state space representation of the active controlled multiple-story
building can be given as{ż(t)} = [Aa

SSI
] {z(t)} + {Br}ẍg(t) (9.147)

where the system matrix is[
Aa

SSI
] = [[ASSI]− [Ba] [GSSI]] (9.148)

The numerical values of [G] are same as given in Equation 9.131; the numer-
ical values of [GSSI] are calculated according to Equation 9.146 and are given
in Equation 9.149. Consequently, the numerical values of Equation 9.148 can be
calculated and are not given here. However, the numerical values of system matrix
based Equation 9.144 are listed in Equation 9.150.

G_feed_ssi =
Columns 1 through 5−2.1913e+ 004 −5.1223e+ 004 −5.1158e+ 004 1.1263e+ 005 6.6938e+ 005−1.3381e+ 004 −5.8003e+ 003 7.9547e+ 004 2.7850e+ 005 4.4980e+ 005
Columns 6 through 10

1.0403e+ 006 −1.6980e+ 006 −3.6605e+ 007 6.4264e+ 003 1.6260e+ 004
2.4212e+ 005 −1.0305e+ 006 −1.8856e+ 007 8.3606e+ 003 2.5787e+ 004

Columns 11 through 16

3.1083e+ 004 6.5103e+ 004 1.5838e+ 005 3.4217e+ 005 −6.1942e+ 005 −1.2141e+ 007
6.1924e+ 004 1.3295e+ 005 2.4291e+ 005 3.3618e+ 005 −8.0811e+ 005 −1.5034e+ 007

(9.149)

The top floor displacement can be an output with[C] = [0 0 0 0 0 1 0 0, 0 0 0 0 0 0 0 0, 0 0]; [D] = [0]
The comparison of the floor displacement responses is shown in Figure 9.8 to

reveal the differences among cases of without control, and with passive control as
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FIGURE 9.8 Comparison of top floor displacements for passive or hybrid control and
without control.

well as hybrid control. The output of the hybrid control forces at the top floor can
be obtained by [C] = [G_ssi(1, :), 1, 0]; [D] = [0].
Columns 1 through 5

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0−5.2405e+ 003 2.0470e+ 003 0 0 0

2.0470e+ 003 −3.5894e+ 003 1.5424e+ 003 0 0
0 1.5424e+ 003 −2.6719e+ 003 1.1295e+ 003 0−1.2165e− 001 −5.2730e− 002 1.1302e+ 003 −1.9258e+ 003 8.0292e+ 002−7.7560e− 002 −4.1263e− 001 −1.1882e+ 000 7.9732e+ 002 −1.3380e+ 003

1.9921e− 001 4.6566e− 001 4.6507e− 001 −1.0239e+ 000 5.3511e+ 002
1.5967e+ 003 0 0 0 0
4.4773e+ 001 1.9688e+ 001 1.6142e+ 001 1.3054e+ 001 1.0461e+ 001

0 0 0 0 0
0 0 0 0 0

Columns 6 through 10

0 0 0 1.0000e+ 000 0
0 0 0 0 1.0000e+ 000
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 3.1935e+ 003 4.2994e+ 003 −1.3904e+ 001 8.7965e+ 000
0 0 1.8920e+ 003 8.7965e+ 000 −8.8384e+ 000
0 0 1.5487e+ 003 −2.6795e+ 000 3.5294e+ 000

2.2011e+ 000 −9.3680e+ 000 1.0684e+ 003 5.5311e− 001 −4.7203e− 001
5.4846e+ 002 −6.0682e+ 000 8.0475e+ 002 −1.7583e− 002 9.9581e− 002−5.5066e+ 002 1.5436e+ 001 2.3623e+ 003 −5.8422e− 002 −1.4782e− 001

0 −8.4149e+ 003 −5.9878e+ 003 3.6602e+ 000 −1.4836e+ 000
2.1596e+ 001 −1.2571e+ 002 −6.6781e+ 003 1.0101e− 001 2.2237e− 002

0 0 0 0 0
0 0 0 0 0
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Columns 11 through 15

0 0 0 0 0
0 0 0 0 0

1.0000e+ 000 0 0 0 0
0 1.0000e+ 000 0 0 0
0 0 1.0000e+ 000 0 0
0 0 0 1.0000e+ 000 0
0 0 0 0 1.0000e+ 000
0 0 0 0 0−2.6795e+ 000 4.7710e− 001 0 0 7.3203e+ 000

3.5294e+ 000 −7.0645e− 001 1.8619e− 001 0 −2.9672e+ 000−3.7003e+ 000 1.2868e+ 000 −9.4345e− 002 6.5329e− 002 1.5926e+ 000
1.8498e+ 000 −7.4640e− 001 2.7842e+ 000 3.1342e+ 000 −7.1029e+ 000−3.7472e− 001 −4.0877e− 002 −2.1131e+ 000 4.8771e− 001 1.9590e+ 000−2.1725e− 001 −5.1381e− 001 −1.0065e+ 000 −3.9309e+ 001 5.8747e+ 000
7.9630e− 001 1.2180e− 001 1.2180e− 001 1.2180e− 001 −1.8516e+ 002
9.7640e− 002 1.3079e− 001 2.1010e− 001 3.2866e− 001 −8.9043e− 001

0 0 6.0921e+ 007 −6.0921e+ 007 0
0 6.0921e+ 007 −6.0921e+ 007 0 0

Columns 16 through 18

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

1.0000e+ 000 0 0
9.1929e+ 000 0 0
7.0132e− 001 0 0
6.2027e+ 000 0 0−1.3087e+ 002 0 −9.0909e− 006
3.2795e+ 001 −9.0909e− 006 9.0909e− 006−1.1880e+ 002 9.0909e− 006 0−1.8408e+ 001 0 0−2.7251e+ 001 −3.5511e− 007 −3.5511e− 007
2.2845e+ 008 −1.5873e+ 001 0
2.2845e+ 008 0 −1.5873e+ 001 (9.150)

9.5 EXTREME VALUE DISTRIBUTION

As introduced at the beginning of this chapter, any future earthquake excitation at
a given site must be different from the existing records and cannot be predestined
deterministically. A controlled structure is designed to be protected from earth-
quake during the structural lifetime. Since seismic structural response based on
existing earthquake records cannot adequately reflect future response behavior, a
methodology is introduced here for generating ground motions based on historical
tectonic movements of the seismic plate with consideration of wave propagation
and local site soil amplification. After a group of motions is generated for an earth-
quake magnitude, mj, and time history structural analyses are then performed for
each motion in the group. The maximum values of a specific structural response
(such as floor displacements, control forces, etc.) are collected from the group, and
the nondeterministic Monte Carlo method is finally employed for the maximum
response probability study from which the result is used for designing a controlled
structure.
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9.5.1 Extreme Value and Description
Probability of the extreme value theory deals with the stochastic behavior of the
maximum and the minimum of random variables; the maximum is focused on in
this section. Extreme value distributions are usually considered in the mathematical
model of (Gumbel-type distribution) [9,10] as

Pr[X ≤ x] = exp
[− exp

(a− x)
b

]
(9.151)

where a and b are parameters describing the distribution.

9.5.2 Gumbel-Type Distribution

9.5.2.1 Distribution representations, mean value, and
variance

The probability distribution function (PDF) is given in Equation 9.151. The
probability density function (pdf) can be found by taking derivation of x on PDF as

pe(x) = 1
b

exp
(

a− x
b

)
exp
[− exp

(
a− x

b

)]
(9.152)

The case with a = 0 and b = 1 is called the standard Gumbel distribution. The
equation for the standard Gumbel distribution is reduced to

pes(x) = exp(−x) exp[− exp(−x)] (9.153)

On the basis of the Equation 9.151, x can be solved as the expression with
respect to the probability Pr ,

x = a− b ln[− ln(Pr)] = G(Pr) (9.154)

or

G(Pr) = a− b ln
[

ln
(

1
Pr

)]
(9.155)

and G(Pr) is called percentage point function (PPF). The expected value (mean
value) of x denoted as x, and standard deviation of x, denoted as σ (σ 2 is the
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variance of x), can be found based on their definitions of

x = E[x] = +∞∫−∞ xpe(x) dx (9.156)σ 2 = E[(x − x)2] = +∞∫−∞ (x − x)2pe(x) dx (9.157)

Mean value x
Substituting Equation 9.152 into Equation 9.156 yields the mean value as

x = +∞∫−∞ xpe(x) dx = 1
b

+∞∫−∞ x exp
(

a− x
b

)
exp
[− exp

(
a− x

b

)]
dx (9.158)

Define a new variable of z as

z = exp
(

a− x
b

)
(9.159)

From which

x = a− b ln z (9.160)

dz = −1
b

exp
(

a− x
b

)
dx (9.161)

Using Equations 9.159 through 9.161 in Equation 9.158, we then have

x = +∞∫
0

(a− b ln z) exp(−z)dz = Int(1) (9.162)

which is denoted as Int(1) for that the solution will be given later in this section.

Variance σ 2
Variance in Equation 9.157 may be expressed asσ 2 = +∞∫−∞ x2pe(x) dx + 2x

+∞∫−∞ xpe(x) dx + x2
+∞∫−∞ pe(x) dx (9.163)
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that can be transformed into the integral with respect to z based on Equations 9.160
and 9.161 asσ 2 = +∞∫

0

(a− b ln z)2 exp(−z) dz + 2x
+∞∫
0

(a− b ln z) exp(−z) dz+ x2
+∞∫
0

exp(−z) dz (9.164)

By using notations for each integral, the variation is given asσ 2 = Int(2)+ 2xInt(1)+ x2Int(3) (9.165a)

or σ 2 = Int(2)+ 2Int(1)2 + Int(1)2Int(3) (9.165b)

Then, the problem of finding mean value and variance becomes one of finding
the integrals of Int(1), Int(2), and Int(3). They can be calculated on the basis of
the theorem of Euler–Mascheroni integral.

Euler–Mascheroni integral
The theorem of Euler–Mascheroni integral and the integral solution are given
as [17,21]

In = (−1)n +∞∫
0

(ln z)n exp(−z) dz (9.166)

I0 = +∞∫
0

exp(−z) dz = [− exp(−z) dz]+∞0 = 0+ 1 = 1 (9.167a)

I1 = − +∞∫
0

ln z exp(−z) dz = γ (9.167b)

I2 = +∞∫
0

(ln z)2 exp(−z) dz = γ 2 + 1
6
π2 (9.167c)

I3 = − +∞∫
0

(ln z)3 exp(−z) dz = γ 3 + 1
2
γπ2 + 2ζ(3) (9.167d)
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and

I4 = +∞∫
0

(ln z)4 exp(−z) dz = γ 4 + γ 2π2 − 3
20
π4 + 8γ ζ (9.167e)

where γ is Euler–Mascheroni constant defined by the series as

lim
n→∞( n∑

k=1

1
k
− ln(n)) (9.167f )

The Euler–Mascheroni constant numerically equals 0.57721566 …. and looks
like an irrational number, but irrationality of γ is still an unsolved problem. ζ is
Apéry’s constant, which numerically equals 1.2020569…. and is an irrational
number. Then Int(1), Int(2), and Int(3) can be found as

Int(1) = aI0 + bI1 = a+ bγ (9.168a)

Int(2) = a2I0 + 2abI1 + b2I2 = a2 + 2abγ + b2
(γ 2 + 1

6
π2
)

(9.168b)

and

Int(3) = I0 = 1 (9.168c)

The mean value and standard deviation of x can finally be obtained from
Equations 9.162 and 9165 by substitution of Equations 9.168a through c as

x = a+ bγ (9.169)σ = bπ√
6

. (9.170)

9.5.2.2 Distribution parameters estimation

From the results in Equations 9.169 and 9.170, the distribution parameters can be
solved in terms of mean value and standard deviation as

a = x − √6γ σπ = u; b = √6σπ = 1α (9.171a,b)

in which a and b are replaced by u and 1/α. The replacement has physical mean-
ings: u is actually the most probable value of x, because the PPF has its maximum
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peak at x = u. This can be verified by seeking the derivative of ppf as

dpe(x)
dx

= 1
b2 exp

[− exp
(

a− x
b

)][
exp
(

2
(

a− x
b

))− exp
(

a− x
b

)]
(9.172)

that equals zero for the value of u = a. α is inversely proportional to the standard
deviation, which actually expresses the degree of dispersing. A smaller α corres-
ponds to a loose distribution. With the distribution parameters adopting u and α,
the PDF, pdf, and PPF can be obtained from Equations 9.151, 9.152, and 9.155 that
are expressed in Equations 9.173 through 9.175, respectively, using ηe to denote
the extreme value variable.

Pe(ηe) = exp[− exp(−α(ηe − u))] (9.173)

pe(ηe) = α exp(−α(ηe − u)) exp[− exp(−α(ηe − u))] (9.174)

and

G(Pr) = u− 1α ln
(

ln
1
Pr

)
(9.175)

With Ns samples observed for the random variable, which follows extreme
value distribution, the sample based mean value and standard deviation can be
statistically calculated as η̂e = 1

Ns

Ns∑
i=1

ηi
e (9.176)σ̂ηe =√√√√ 1

Ns

Ns∑
i=1

(ηi
e − ηe

)2 (9.177)

Then, the estimated distribution parameters can be obtained based on
Equations 9.171a,b as α̃ = π√

6σ̂ , ũ = ˆ̄ηe − √6γ σ̂π (9.178a,b)

Note that the estimation is based on the sample set and the accuracy depends
on the number of samples. When a large sample set can be provided, the mean
and variation can be calculated reliably, but a Gumbel suggested correction may
be applied when the sample set size is small.
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9.6 GROUND MOTION GENERATION

9.6.1 Modeling Concept
The uncertainty of a future earthquake is presented herein, based on probability
with groups of ground motions generated considering the seismic plate tectonic
movements. While the seismic threat comes from a fault between two seismic
plates, the vibrations are set up by the partial rupture and slipping of two contact
surfaces and they spread out in all directions in the earth’s crust from the hypo-
center. An earthquake is the passage of these vibrations and it comes to a building
as the vibration reaches it. The mathematical simulation model is demonstrated in
Figure 9.6a, and the rupture is regarded as composed of many small ruptures in
subfaults. The rupture plane is supposed to be rectangular and appears within the
rectangular seismic source in an earthquake. The rupture begins at the hypocen-
ter, one of the subfaults, and the vibration propagates from the hypocenter to the
building site. At the same time, the rupture expands rapidly over the whole rupture
plane. Elastic waves are generated at each subfault and they propagate to the build-
ing site simultaneously. At the base rock surface under the site, motions from all
subfaults are integrated considering the time delays. The integrated motion is then
transformed to site surface motions by considering the surface soil amplification
[14,20,21].

In the traditional point source model, the causative faults can be considered
as point sources. This assumption is appropriate when the distance between the
rupture and the site is large, compared to the fault dimensions. When the distance
becomes small, the finite-fault effects become significant and the point source
model is weak. The finite-fault effect is primarily due to the limited speed of
the rupture propagation within the rupture plane. Parts of the fault radiate energy
earlier than other parts, and the delayed waves then interfere and cause directivity
effect. Directivity effect causes earthquake ground motion in the direction of the
rupture propagation to be more severe than in other directions. For this reason,
the finite-source model has been under development in seismology for decades,
in which the fault is discretized into finite elements and each element is treated as
a small source. In this model, the radiation from all subsources is summed with
proper time delays.

9.6.2 Ground Motion Generated at Bed Rock Surface
With the finite source model, Beresnev and Atkinson [3], developed the FINSIM
program. In this model, the rupture is regarded to be composed of many small
ruptures in subfaults, which are properly divided from the whole rupture plane
with consideration of the earthquake magnitude. The rupture plane is supposed to
be rectangular in appearance within the rectangular fault plane in an earthquake.
The size of the rupture plane (L×W ) can be determined based on their empirical
relations to tectonic motion types, such as intraplate, or interplate earthquakes,
with motions of normal, reverse, or strike slip (see Figure 9.9).
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FIGURE 9.9 Generation of earthquakes with tectonic movements: (a) Earthquake gener-
ation procedure, (b) Fault and rupture planes, and (c) Sample ground motion mj = 6.0.

The FINSIM program employs a standard summation procedure, with the
rupture propagating rapidly from the hypocenter and triggering subsources as it
passes them. In the program, the motion from each subfault is modeled by the
point source stochastic Green’s function used. First, a Gaussian white noise is
modulated in time domain by use of a shaping window [15] as

w(t) = atb exp(−ct)H(t) (9.179)
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where H(t) is a unit step function and normalizing factor a, shape parameters b
and c are given as

a = [ (2c)2b+1
(2b+ 1)]1/2
(9.180a)

b = −ε ln η[1+ ε(ln η − 1)] (9.180b)

c = bεTw
(9.180c)

where Tw = 2Td, ε = 0.2, η = 0.05 and 
 is the gamma function. Td = 2π/ωc
and ωc is the corner frequency. The time history is then transformed into the
frequency domain to be multiplied by the acceleration spectrum, A(ω), and finally
transformed back into the time domain. The acceleration spectrum of the shear
wave at the distance, Rd, from the rupture fault is given as

A(ω) = CnM0S(ω)P(ω) exp
(− ωRd

2QVs

)
Rd (9.181)

in which Cn is a constant with the expression of

Cn = Rθφ · FS · RD
4πρV3

s
(9.182)

where Rθφ of the radiation pattern coefficient; FS = 2 of the amplification due
to the free surface; and RD = 1/√2 of the reduction factor for partitioning the
energy into two horizontal components; ρ and Vs are density and shear velocity,
respectively; and Q is the propagation factor. M0 is the seismic moment, which
represents the physical strength of an earthquake. Its empirical formula related to
the earthquake magnitude mj [13] as

log10 M0 = 1.5mj + 16.1 (9.183)

where M0 is in dyne-cm (1 dyne = 10−5 N). P(ω) is the high-cut filter, which
is used to consider sharp decreases with increasing frequency at some cutoff
frequency of ωm observed in the acceleration spectra. P(ω) is given as

P(ω) = [1+ ( ωωm

)2s
]−1/2

(9.184)
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where s controls the decay rate at the high frequencies for which the value of 4 is
used. S(ω) is the source spectrum given as

S(ω) = ω2

1+ (ω/ωc)2 (9.185)

in which ωc is the corner frequency expressed asωc = 7.8× 105Vs

(�σ
M0

)1/3
(9.186)

where ωc is in rad/s; Vs is in km/s; and �σ is in bars (1 bar = 105 Pa) that is
a parameter controlling the strength of high-frequency radiation and it has been
referred in literature by a variety of names such as effective stress, dynamic stress
drop and so forth.

For the generation of ground motions at the bedrock under the building
site, as in the aforementioned procedure, the following information needs to be
provided:

(a) A target earthquake magnitude;
(b) Fault geometry: strike, dip, length, width of the fault plane, depth of

the upper edge;
(c) Fault location (geographic coordinates of one of its corner);
(d) Building site location (geographic coordinates); and
(e) Seismic source parameters: density and shear-wave velocity of crystal

bed rock; the rupture velocity, dynamic stress drop (�σ) fault slip
distribution, and model for shear wave Q.

9.6.3 Ground Motion Generated at Ground Surface
On the basis of the method in the previous section, the ground motion is generated
at the bedrock surface beneath the building site. It is known that the cover soil
has an amplification effect as the wave goes through. The cover soil is actually
composed of many layers and cannot simply be taken as a homogenous elastic
material. The motions at the ground surface can be transformed from the motions
at the bedrock surface by SHACK’91 [9] with the soil layer profile provided.

9.6.4 One-Hundred Ground Motions Generated at
mj = 6.0

The building site is at geographic coordinates of 139.67◦E, 35.69◦N, where the
seismic fault is the Sagami trough between the Philippine Sea plate and the Eurasia
plate as shown in Figure 9.9b. There were more than 100 earthquakes (equal or
larger than magnitude mj = 6.0) recorded on the fault in last 400 years. The fault
plane is rectangular with size of 222 × 167 km, of which the dip and strike are
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TABLE 9.1
Site Soil Layer Profile

Layer label Depth H (m) Soil type ρ (kg/m3) Vs (m/s)
1 2.35 Sandy gravel 2.10× 103 220
2 3.45 Sand 1.75× 103 210
3 1.45 Silty clay 1.96× 103 180
4 4.55 Sandy gravel 2.10× 103 260
5 1.90 Sand 1.80× 103 230
6 10.0 Sand 1.89× 103 230
7 4.00 Silty clay 1.61× 103 190
8 3.00 Silt 1.70× 103 280
9 8.60 Sand 1.90× 103 380

15◦ and 290◦, respectively. The upper edge depth is 2.6 km below ground level.
The geographic coordinates of the southeast corner is 140.50◦E, 34.5◦N. The
interplate earthquake is considered and the rupture plane size as L = 100.5mj−1.88

and W = L/2. dL and dW are assumed to be same, with dL = 100.4mj−2 [14, 20].
The geologic properties for the ground motion generation are: mass density,ρ = 2.8 × 103 kg/m3, and shear wave velocity, Vs = 3700 m/s, for the crystal

bedrock; radiation pattern coefficient is Rθφ = 0.55, constant Q(ω) model is
Q(ω) = 1000; and dynamic stress drop �σ = 50 bars. One hundred ground
motions are generated for magnitude of mj = 6.0. After the motions at the base
rock have been generated, the soil layer amplification is included in the calculation
with soil layer profile given in Table 9.1. In one hundred ground motions, a typical
record with the maximum peak acceleration (PGA = 1.349) in the group as
shown in Figure 9.9c, which is also shown in Figure 9.6 used as the sample input
in Section 9.5.

The PGA values of the hundred motions are collected in Table 9.2.
From Table 9.2, the mean value and standard deviation is calculated per

Equations 9.176 and 9.177 and are listed as follows

mj

Mean
equation 9.176

Max data
No. 27

Min data
No. 61

σPGA
equation 9.177

6.0 0.559 1.349 0.186 0.254

9.7 CASE STUDIES USING GENERATED EARTHQUAKES

9.7.1 Numerical Examples of Fixed Supported Buildings
with and without Controls

Case study without controls
The studies are conducted on the responses of top floor displacement (denoted as
D) of the six-story building given in Section 9.5. Following the procedure used in
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TABLE 9.2
PGA Values (unit in g = 8.9 m/s2) of the Hundred Motions as

2.2163000e–002 3.9188000e–002 4.6966000e–002 1.9385000e–002 5.9694000e–002
5.7904000e–002 1.0324100e–001 6.7898000e–002 6.2166000e–002 9.6509000e–002
9.1479000e–002 4.3148000e–002 4.8812000e–002 4.9929000e–002 5.9816000e–002
2.2431000e–002 5.9440000e–002 4.7242000e–002 3.1733000e–002 4.7393000e–002
4.0315000e–002 3.7225000e–002 4.9633000e–002 2.0478000e–002 6.4554000e–002
1.0662900e–001 2.9209000e–002 2.3501000e–002 3.9990000e–002 4.2936000e–002
6.5342000e–002 1.3761300e–001 4.3262000e–002 3.3697000e–002 4.6564000e–002
2.4018000e–002 7.6674000e–002 5.8616000e–002 7.3019000e–002 4.9589000e–002
5.3130000e–002 2.3730000e–002 3.8002000e–002 9.3334000e–002 4.3250000e–002
6.2835000e–002 2.9571000e–002 6.5344000e–002 8.9327000e–002 4.5639000e–002
1.1625300e–001 6.6702000e–002 6.1335000e–002 3.1505000e–002 1.2153100e–001
5.8913000e–002 6.3420000e–002 7.0751000e–002 5.1899000e–002 4.6724000e–002
5.6053000e–002 3.9228000e–002 8.0302000e–002 6.8195000e–002 9.6827000e–002
3.5884000e–002 5.9477000e–002 2.4800000e–002 2.7936000e–002 2.6732000e–002
7.4444000e–002 3.5567000e–002 7.1005000e–002 2.8639000e–002 5.8373000e–002
3.8765000e–002 6.5798000e–002 8.0711000e–002 9.7065000e–002 6.5551000e–002
8.4825000e–002 1.3688200e–001 4.7734000e–002 4.7256000e–002 3.9393000e–002
4.1409000e–002 2.5946000e–002 4.9186000e–002 6.8966000e–002 9.3723000e–002
5.0828000e–002 4.4205000e–002 4.3358000e–002 2.6451000e–002 1.3366600e–001
4.5041000e–002 6.5195000e–002 6.6580000e–002 4.0916000e–002 7.3444000e–002

Section 9.5.1 for each of ground motions, we then obtain 100 maximum top floor
displacements as listed in Table 9.3.

Per Equations 9.176 and 9.177, the mean value and the standard deviation
are calculated using the MTLAB mean(), and std() command [12]. They are
computed as 1.829 and 0.85 cm, respectively. With mean value and standard
deviation calculated, the estimated distribution parameters, ũ and α̃ are calculated
per Equation 9.178a,b. They are 1.44 cm and 150.2 m−1. With those parameters,
the distribution curves are drawn for pdf, PDF, and PPF curves of D are shown in
Figures 9.10 through 9.12, respectively. In PPF, the response at the 80% probability
is marked as 2.44 cm.

Case with active controlled
There are two controllers placed on the top two floors based on optimal placement
evaluation. The weighting matrices have the unit value of element (6, 6) and other
elements as zeros in [Q]; and [R] = r[I2] for two forces with [I2] as an identity
matrix of order 2. Two active cases are studied with values of r as 2× 10−14 and
0.4×10−14, which are called cases of low active and high active, respectively. The
low active and high active are selected to compare the controlled results by reducing
60 and 80% of the highest response among 100 case studies, respectively. For these
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TABLE 9.3
Maximum Top Floor Displacements for Each of 100 Generated Earth-
quakes at mj = 6

6.9952774e–003 1.1622844e–002 2.6024768e–002 1.2235273e–002 1.7738517e–002
1.5830980e–002 3.1307899e–002 3.4857899e–002 1.9169070e–002 2.8713341e–002
2.1309704e–002 1.4845813e–002 1.2208368e–002 1.4035297e–002 1.7671105e–002
1.1357112e–002 1.3203714e–002 1.1584301e–002 1.1961589e–002 1.3195988e–002
1.6308843e–002 7.8208370e–003 1.2468054e–002 5.7960097e–003 1.7908874e–002
1.6289151e–002 1.1723282e–002 1.1307750e–002 1.5316215e–002 1.6966958e–002
1.0714708e–002 4.5539123e–002 1.5978571e–002 1.5328523e–002 2.3575813e–002
1.5749865e–002 2.8710848e–002 1.4604420e–002 1.1830335e–002 2.4884417e–002
1.2136181e–002 8.1256962e–003 1.2883588e–002 2.1593194e–002 1.3859180e–002
3.1234868e–002 4.0481161e–003 1.9253519e–002 3.0467801e–002 2.2228775e–002
3.2251159e–002 2.3591399e–002 3.2476367e–002 9.1715923e–003 2.9875830e–002
1.3260341e–002 1.1208590e–002 9.9839325e–003 3.4843176e–002 1.0343875e–002
1.6897899e–002 1.2857184e–002 2.9215770e–002 1.2141709e–002 1.9365095e–002
1.7721922e–002 2.1671960e–002 8.0525160e–003 9.4938487e–003 1.2602486e–002
3.1138851e–002 2.1263212e–002 2.5863081e–002 9.0625395e–003 1.1208515e–002
1.8547359e–002 2.6170644e–002 2.1203813e–002 1.7366696e–002 4.5492611e–002
2.1395242e–002 3.0160590e–002 2.6403480e–002 9.2426569e–003 1.0468309e–002
1.2288499e–002 1.4169281e–002 1.5682268e–002 1.2073521e–002 3.7369668e–002
2.8119390e–002 1.6554266e–002 1.4915960e–002 5.1516929e–003 1.7761363e–002
2.4265040e–002 1.8051349e–002 1.6925718e–002 1.3940251e–002 2.9232536e–002
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FIGURE 9.10 pdf curve for top floor displacement without control.

two cases the time history analyses are performed for each of the individual 100
ground motions, and from which the maximum top floor displacements are listed
in Tables 9.4 and 9.5 corresponding to low active control and high active control,
respectively.
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FIGURE 9.12 PPF curve for top floor displacement without control.

The mean values and standard deviations are statistically calculated for a
sample set; and u, α are then estimated based on Equations 9.178a,b. The dis-
tribution curves are drawn for pdf, PDF, and PPF in Figures 9.13 through 9.15,
respectively. For comparison presented in the figures, the curve associated without
control case is included that is from Figure 9.12, Active Control 1 and Active Con-
trol 2 are corresponding to low-active and high active control, respectively. The
studies are also conducted on the responses of active control forces. The data
sets are collected for the maximum responded forces at the top floor as listed in
Tables 9.6 and 9.7 for low active and high active control, respectively.

Using the identical procedures presented for displacement studies yields the
PPF distribution curves of control forces shown in Figure 9.16.
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TABLE 9.4
Maximum Top Floor Displacements for Low Active Control

5.1289596e–003 8.6198820e–003 1.7702796e–002 9.2654603e–003 1.2141910e–002
1.1869313e–002 2.4599024e–002 2.6030855e–002 1.4635382e–002 2.2363254e–002
1.5172050e–002 1.0673688e–002 9.4925131e–003 1.1687839e–002 1.4694775e–002
8.4121282e–003 9.7942984e–003 9.3960069e–003 8.6969681e–003 1.0436796e–002
1.2200463e–002 5.9494618e–003 8.9100243e–003 4.8452807e–003 1.3820017e–002
1.4193169e–002 8.8703914e–003 8.9664304e–003 1.1775394e–002 1.0902482e–002
8.6301431e– 003 3.1986830e–002 1.1505305e–002 1.0962026e–002 1.5981735e–002
1.1379719e– 002 2.2972540e–002 1.0120243e–002 1.0031615e–002 1.7325917e–002
9.8143322e– 003 6.0160409e–003 1.0864788e–002 1.5691410e–002 1.0843926e–002
2.3096616e– 002 3.3616753e–003 1.4109335e–002 2.1363170e–002 1.7489121e–002
2.5012299e– 002 1.8051135e–002 2.1342829e–002 6.2254047e–003 2.0856387e–002
1.0761401e– 002 8.3355557e–003 7.3951351e–003 2.3463821e–002 8.9012644e–003
1.1451321e– 002 1.0862512e–002 1.9950573e–002 9.3429136e–003 1.6711550e–002
1.2676602e– 002 1.6968271e–002 5.2621195e–003 6.9647782e–003 9.1067257e–003
2.6016315e– 002 1.4402639e–002 2.0361636e–002 6.6632501e–003 1.0175736e–002
1.3509288e– 002 1.8349737e–002 1.5761859e–002 1.4709276e–002 3.1042586e–002
1.8060334e– 002 2.2424997e–002 2.0046076e–002 7.7832177e–003 8.4955017e–003
9.5336808e– 003 9.6846822e–003 1.0781619e–002 9.1410755e–003 3.1129551e–002
1.8239482e– 002 1.2412410e–002 1.1067976e–002 4.4041374e–003 1.3620109e–002
1.5908318e– 002 1.2845564e–002 1.1281613e–002 1.0986243e–002 2.2589853e–002
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TABLE 9.5
Maximum Top Floor Displacements for High Active Control

3.4421495e–003 6.6145150e–003 1.0813343e–002 6.8037560e–003 7.8616926e–003
8.4946591e–003 1.7008717e–002 1.7494799e–002 1.0523090e–002 1.5212598e–002
1.0640084e–002 6.8412143e–003 6.9831965e–003 9.0466346e–003 1.0865165e–002
5.6264631e–003 6.6328650e–003 7.4368790e–003 5.7625780e–003 8.3537440e–003
8.0415593e–003 4.2592508e–003 7.1783311e–003 3.6773028e–003 9.3795445e–003
1.1165938e–002 5.8771102e–003 6.2706353e–003 8.6856583e–003 7.4265880e–003
7.9511752e–003 2.1575347e–002 7.3441841e–003 7.5709014e–003 1.1070878e–002
7.2598619e–003 1.6137825e–002 7.0070346e–003 7.7967679e–003 1.0994198e–002
7.1628939e–003 4.6181660e–003 8.6630404e–003 1.2617502e–002 7.7777395e–003
1.5653436e–002 3.0507572e–003 1.0177720e–002 1.4180157e–002 1.2352291e–002
1.8122740e–002 1.2802206e–002 1.3227205e–002 5.2033151e–003 1.3702283e–002
7.6638583e–003 5.9878746e–003 5.0780105e–003 1.4422666e–002 6.7752170e–003
8.1803109e–003 8.7077925e–003 1.2598076e–002 6.3238832e–003 1.3793370e–002
8.4746517e–003 1.2109435e–002 3.5781812e–003 5.2168290e–003 6.0621725e–003
2.0314397e–002 1.0412264e–002 1.5644797e–002 4.6126183e–003 8.5107336e–003
9.3293367e–003 1.2156429e–002 1.1336370e–002 1.1994391e–002 1.8885916e–002
1.4303663e–002 1.6169177e–002 1.4265549e–002 7.2744920e–003 5.8969954e–003
6.7710741e–003 6.1079400e–003 7.1455092e–003 6.5139137e–003 2.3089655e–002
1.0843503e–002 8.2793968e–003 7.0874034e–003 3.3987109e–003 1.0434634e–002
1.1170663e–002 9.6955214e–003 8.1089172e–003 7.7778808e–003 1.5805625e–002
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TABLE 9.6
Maximum Control Forces for Low Active Control

1.4415338e+004 2.3916624e+004 4.9741247e+004 2.4987756e+004 3.6381729e+004
3.7383476e+004 6.3690815e+004 7.5187519e+004 4.3532195e+004 6.9926075e+004
4.5725133e+004 3.0486744e+004 2.9862784e+004 3.4384217e+004 4.0938419e+004
2.4531282e+004 2.7277057e+004 2.5771325e+004 2.3567829e+004 3.1651222e+004
3.4914166e+004 1.5481403e+004 2.9946043e+004 1.4732457e+004 3.9898205e+004
4.5971948e+004 2.7351086e+004 2.5343439e+004 3.1839153e+004 2.8863500e+004
2.7141553e+004 9.6518571e+004 3.1232921e+004 3.0570845e+004 4.2176575e+004
3.1347748e+004 6.4277728e+004 2.9205492e+004 2.6284539e+004 4.4992865e+004
2.6367889e+004 1.9429745e+004 3.4534329e+004 4.8656912e+004 3.0355755e+004
6.4778920e+004 9.6388244e+003 4.0590185e+004 5.9885536e+004 5.0220330e+004
7.7583462e+004 5.3901934e+004 6.1497043e+004 1.6567862e+004 6.0928743e+004
3.0544679e+004 2.2768627e+004 2.0594427e+004 6.5768956e+004 2.4800970e+004
3.3245926e+004 3.3131549e+004 6.0938571e+004 2.8274639e+004 4.4536382e+004
3.4798945e+004 4.5390978e+004 1.5748191e+004 2.0352103e+004 2.5719021e+004
7.5773637e+004 4.2046762e+004 5.6783502e+004 1.9346155e+004 2.5391254e+004
3.8076525e+004 5.1618481e+004 5.1230357e+004 4.7663776e+004 8.2169113e+004
5.3965148e+004 6.7357604e+004 5.8248101e+004 2.4359342e+004 2.2496121e+004
2.7191886e+004 2.8319741e+004 3.0600480e+004 2.6205223e+004 8.7106940e+004
5.1685620e+004 3.4130906e+004 3.1423849e+004 1.1829736e+004 3.8369313e+004
4.6498354e+004 3.7667630e+004 3.5263074e+004 3.1168595e+004 6.8724676e+004
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TABLE 9.7
Maximum Control Forces for High Active Control

2.9957653e+004 5.8261063e+004 8.5979878e+004 5.5091286e+004 6.7984181e+004
8.1036903e+004 1.3382486e+005 1.4464882e+005 9.8253811e+004 1.4614586e+005
9.3124677e+004 5.9090242e+004 5.8075603e+004 8.0353777e+004 9.0950887e+004
4.7412075e+004 5.6792034e+004 6.0933303e+004 4.7243884e+004 7.5730025e+004
6.8968307e+004 3.3768710e+004 7.0550381e+004 3.3113833e+004 7.9407438e+004
1.0531278e+005 5.5529568e+004 5.3493711e+004 7.3718842e+004 6.3281912e+004
6.9258223e+004 1.9714186e+005 6.0979338e+004 6.3807511e+004 8.8761181e+004
6.0456413e+004 1.3502908e+005 6.0705792e+004 5.9248470e+004 8.3858101e+004
6.2617290e+004 4.3433081e+004 7.6367405e+004 1.1614645e+005 6.8490966e+004
1.3174677e+005 2.4605608e+004 8.1650050e+004 1.1740060e+005 1.0071855e+005
1.6625235e+005 1.1419355e+005 1.1382887e+005 4.0654487e+004 1.1568031e+005
7.0458263e+004 4.9005641e+004 4.3439487e+004 1.1687743e+005 5.9318326e+004
7.4299961e+004 7.4548564e+004 1.1334501e+005 6.1581910e+004 1.0199015e+005
6.9275184e+004 9.3734588e+004 3.3154535e+004 4.2976162e+004 5.0816995e+004
1.6470820e+005 8.9184070e+004 1.2900974e+005 4.4920242e+004 6.0181750e+004
7.5167888e+004 1.0313171e+005 1.0841025e+005 1.2003993e+005 1.5198232e+005
1.2893578e+005 1.6008103e+005 1.2384542e+005 6.6338918e+004 4.9586132e+004
5.4787533e+004 5.2237350e+004 5.9957209e+004 5.8307076e+004 1.9484353e+005
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9.7.2 Numerical Examples of Buildings with SSI and
Hybrid Control

The study is identical to the example illustrated in Section 9.4.7 and therefore no
detail is necessary to be given here. For comparison purposes, this section also
includes several other cases as (1) fixed support and SSI without control, (2) fixed
support and SSI with passive control, and (3) fixed support with hybrid control
(already presented, see Section 9.4).

Following the procedures illustrated in Section 9.6.4, we can calculate the
mean values and standard deviation of these cases by using MATLAB®. The PPF
responses of D/H (ratio of top floor displacement and building height) are given
in Figure 9.17 from which the control effectiveness can be observed by comparing
the D/H associated with the given cases.

9.8 CONCLUDING REMARKS

This chapter comprises of four major parts: The first part includes fundamental
behavior of SSI behavior and its formulation for a shallow foundation (see
Section 9.1). The second presents motion equations of the hybrid controlled sys-
tems of single- and multiple-story buildings with and without SSI for which the
state space is formulated in accordance with the numerical algorithms developed in
the previous chapters. This part is in Sections 9.2 and 9.3. The third part, presen-
ted in Section 9.4, is mainly developed for MATLAB® applications for that the
state space formulation is modified from the conventional expressions given in the
second part, in order to fit MATLAB’s® analytical procedures as well as input and
output formats. Seven numerical examples are provided to illustrate the necessary
procedures for various cases. The last part outlines technical details of generating
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ground motions based on historical tectonic movements and geological data of a
given seismic fault. Relevant mathematical formulations comprising of modeling
of ground motion generation, extreme value distribution, and its representation of
the mean value and variance are included. It is to aim that a controlled-structural
system can be designed based on both the existing and future earthquakes. Extens-
ive numerical examples are provided for a six-story building subjected to one
hundred generated ground motions of seismic magnitude mj = 6.0. The building
is investigated for various controlled cases of passive, active, or hybrid controllers
with and without SSI. The control effectiveness is thus assessed by comparing
the maximum floor displacements and control forces of these cases using Monte
Carlo technique. The comparison is expressed in PDF and PPF. The study of control
effectiveness can be extended to include more generated earthquakes of mj = 7.0
and 8.0 and earthquake recurrence during structure’s life period in order to have a
larger spectrum of response data from which the type and the number of controllers
may be decided for optimal cost of a controlled structural system [14,21].
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Appendix A: MATLAB®
MATLAB® is a powerful software package that provides an interactive numer-
ical computing environment and technical programming language for high-
performance numerical analysis and data visualization [1,2]. Developed by the
company The MathWorks, MATLAB® is available for Windows, UNIX, and Macin-
tosh systems. The latest release for Windows, MATLAB® Version 2007a, includes
MATLAB® 7.4, SIMULINK 6.6, as well as add-on extensions such as Control
System Toolbox 8.0. MATLAB® is a very successful technical software. It is now
commonly used as a teaching tool for linear algebra and numerical analysis. It is
also very popular among scientists and engineers for problem solving in areas that
involve mathematics.

MATLAB® provides an easy-to-use platform for matrix operation, 2D and
3D graphical representation of functions and data, algorithm implementation,
numerical analysis, signal processing, creation of graphical user interfaces, and
interfacing with programs written in other languages. As its name stands for
“matrix laboratory,” MATLAB® uses a matrix as its basic data element. With this
setup, MATLAB® users can easily solve complex computational problems, without
writing tedious programs in traditional programming languages such as FOR-
TRAN or C++. MATLAB® also provides add-on toolboxes for a wide range of
applications, including control system design, system identification, signal and
image processing, communications, test and measurement, financial modeling
and analysis, and computational biology. With its powerful features, especially
its Control System Toolbox, MATLAB® has become a very popular tool for ana-
lysis and design of smart seismic structures. This appendix introduces some
basics on how to apply the MATLAB® for such purposes. Detailed information of
MATLAB® can be found from its manuals, its online help information, and related
publications [1,2].

A.1 MATLAB® LANGUAGE

MATLAB® users can use it in two ways, the interactive shell or the script pro-
gram. The interactive shell has the Command Window after MATLAB® starts. It
allows users to directly enter calculation commands at the prompt, ». The script
program is to physically store sequences of commands in a text file (called M-
files) by intelligent built-in MATLAB® editor/debugger or any external text editor
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or word processor. Such a program can be encapsulated into a function to extend
the available commands. With this important extensibility feature, MATLAB® users
can easily create their own MATLAB® functions to supplement those that are built
into the package. In fact, the optional MATLAB® toolboxes are M-files written by
the MATLAB® vendor, The MathWorks.

The MATLAB® language is called M-code or simply M. M-code can be simply
entered and executed at the »prompt in the Command Window. The syntax of
MATLAB® commands is C-like, especially these selective statements, loop struc-
tures, and I/O statements. Learning MATLAB® is much easier than learning C/C++
as the simple arithmetic-like syntax of MATLAB® programs are short and easy to
read. In the MATLAB® Command Window, the user can just enter an expression
or equation at the MATLAB® command prompt, ». For example, to perform simple
arithmetic, you enter an expression or equation at the MATLAB® command prompt
as follows:
» 3*8

After you hit the Enter key, MATLAB® calculates the expression and returns the
result stored in the default variable ans
ans =

24
MATLAB® users can also create their own variables to store the input data and

results with the assignment operator, =. For example, if the following command
is entered
» product = 3∗8

MATLAB® responds
product =

24
MATLAB® variables are assigned without declaring their data type, and the

data type of a variable can change by its overriding assignment. A variable can be
assigned by a constant, another variable, a function, or an expression. For example,
the command
» product=‘new’
reassigns the variable product to string data ’new’; and the command
» product = 3∗ sin(0.5)
updates the value of product to real data 1.4382 by an expression with built-in
function sin().

Since it uses the matrix as its basic element, MATLAB® provides very convenient
ways for creating matrices of various dimensions, such as 1× N , N × 1, N ×M,
and N × M × L, and so forth, where N , M, and L can be any integer number.
The 1×N or N × 1 matrix in MATLAB® is actually a vector or referred as an array
in common programming languages. Matrix variables are treated the same way
as scalar variables in MATLAB® for the syntax for matrix operations and function
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arguments. Matrices are defined by a list of data elements enclosed by square
brackets []. The list uses blank space or comma to separate the elements of a row
and a semicolon at the end of each row. For example, the following two commands
define an array Vector1 and a matrix Matrix1:
» Vector1= [1 2 3 4 5];

Vector1=
1 2 3 4 5

» Matrix1 = [11 12 13; 21 22 23; 31 32 33]

Matrix1=
11 12 13

21 22 23

31 32 33

Elements and submatrices of a matrix are accessed using parenthesis ()
operator. For example,

» Matrix1(2,3)

ans = 23

» Matrix1(1:2,2:3)

ans =

12 13

22 23

MATLAB® also provides a simple way to define array or matrix elements by the
syntax: init:increment:terminator. For instance,

» array1 = 1:2:9

array1=
1 3 5 7 9

The variable array1 is assigned with a 5-element array consisting of the val-
ues 1, 3, 5, 7, and 9. The command means that the array starts at the initial
value, 1, and adds elements with increment by 2 until it reaches but not exceeds the
terminator, 9.

As noted, MATLAB® also has powerful and easy-to-use graphics tool. For
example, the following program produces a graph of sine curve in the range of
(0, 2π ) by two vectors x and y:

x = 0 : pi/100 : 2∗pi;

y = sin(x);
plot(x, y)
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A.2 COMMON FUNCTIONS USED FOR ANALYSIS AND DESIGN

OF SMART SEISMIC STRUCTURES

This section introduces common MATLAB® functions that are useful for analysis
and design of smart seismic structures. MATLAB® users can easily get their detailed
information either by the help menu or by the help command in the Command
Window. For instance, the command

» help EIG
would give detailed information of function EIG.• RANK : matrix rank.

» RANK(A) yields the number of linearly independent rows or columns
of a matrix A.• EYE(N): generates a square identity matrix of size N .• ZEROS(M, N): generates a matrix with all elements zero.• ONES(M, N): generates a matrix with all elements one.• EIG: solves eigenvalues and eigenvectors of a matrix.
» E = EIG(X) is a vector containing the eigenvalues of a square
matrix X .
» [V , D] = EIG(X) produces a diagonal matrix D of eigenvalues and
a full matrix V whose columns are the corresponding eigenvectors so
that XV = VD.• ACKER: pole placement technique by Ackermann’s formula.
» K = ACKER(A, B, P) calculates the feedback gain matrix K so that
the single-input system ẋ = Ax + Bu (u is a scalar variable) with a
feedback law of u = −Kx has closed-loop poles at the values specified
in vector P, that is, P = EIG(A− BK).• PLACE: pole placement technique for single- or multi-input systems.
» K = PLACE(A, B, P) computes the feedback gain matrix K so that
the closed-loop poles are those specified in vector P.• ARE: solves algebraic Riccati equation.
» X = ARE(A, B, C) solves algebraic Riccati equation ATX + XA −
XBX + C = 0 and returns the Riccati matrix X.• CARE: solves continuous-time algebraic Riccati equations.
» [X , L, G, RR] = CARE (A, B, Q, R, S, E) solves the continuous-time
algebraic Riccati equation ATXE + ETXA − (ETXB + N)R(BTXE +
NT)+Q = 0 and returns Riccati matrix X. Q, R, S, and E are weighting
matrices, and the last three are optional and set to default values (R = I ,
S = 0, and E = I) if omitted. L, G, and RR are optional outputs, which
are vector of closed-loop poles, gain matrix, and the Frobenius norm of
the relative residual matrix, respectively.• DARE: solves discrete-time algebraic Riccati equations.
» [X , L, G, RR] = DARE (A, B, Q, R, S, E) solves the discrete-time
algebraic Riccati equation and returns Riccati matrix X. Its arguments
have the same meaning as the CARE function.
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» [K , S, E] = LQR(A, B, Q, R, N) calculates the optimal gain matrix K
for the system ẋ = Ax + Bu such that the state-feedback law u = −Kx
minimizes the cost function J = ∫ (

xTQx + uTRu+ 2xTNu
)

dt. Q, R,
and N are weighting matrices, and N is an optional argument and set to
zero when omitted. This function also solves the Riccati matrix S in the
Riccati equation SA+ATS− (SB+N)R(BTST+NT)+Q = 0 and the
closed-loop poles E = EIG(A− BK).• RLOCUS: plots Evans root locus.
» RLOCUS(SYS) computes and plots the root locus of the SISO (single-
input, single-output) system SYS. The root locus plot shows the loci of
the closed-loop poles when the feedback gain K varies from 0 to ∞.
RLOCUS automatically generates enough positive gain K values so that
a smooth plot can be generated.
» RLOCUS(SYS, K) uses a user-specified vector K of gain values.• LSIM: simulates time–history response of a linear system to single or
multiple inputs.
» LSIM(SYS, U, T ) plots the time–history response of the linear sys-
tem SYS to the input signal described by U and T . The time vector T
consists of time instants, and U is a matrix with as many columns as
excitations and whose i-th row is the value of excitations at time instant
T(i). In smart structure applications, there is only one excitation—the
earthquake ground motion. Thus, U will be a vector whose i-th element
is the value of ground acceleration at time instant T(i).

MATLAB® interactive command window allows users to directly enter function
calls. Take the numerical calculations in Example 6.3.1 as an example here. The
following syntax inputs the observability matrix [Mo] in the MATLAB® command
window>>Mo = [0, 1, 0, 0; 0, 0, 0, 1; 671.234,−671.234, 0.300,−0.474;−483.607,
415.886,670.965,−670.965]
and MATLAB® responds

Mo

0 1.0000 0 0
0 0 0 1.0000

671.2340 -671.2340 0.3000 -0.4740
-483.6070 415.8860 670.9650 -670.9650

The following syntax of MATLAB® function call determines that the rank of
matrix [Mo] is 4
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ans=

4
Then, calling the function eig(Mo) with the following syntax gives the eigen-

values of matrix [Mo) (note that the command on the first line specifies the e-type
data format for report):>> format short e>> eig(Mo)

ans =

-6.7211e+002

2.2337e-001 +2.5913e+001i

2.2337e-001 -2.5913e+001i

9.9815e-001

In Chapters 4 and 5, closed-form solutions are derived for the response of
smart seismic structures. With MATLAB® functions, this complicated process can
be easily implemented by the following three steps.

Step 1. Build open-loop system model in state-variable representation, Equa-
tion 4.19. As noted in Section 4.1.3, this model is just a different format of the
structural motion equations derived by structural dynamics. In detail, for a structure
with n-d.o.f. and r active controls, the open-loop state equation is{Ż(t)} = [A]{Z(t)} + [Bu]{u(t)} + {Br}ẍg(t) (A.1)

where {Z(t)} = {{x(t)}{ẋ(t)}} , {Ż(t)} = {{ẋ(t)}{ẍ(t)}}2n×1[A] = [ [0] [I]−[M]−1[K] −[M]−1[C]]2n×2n
(A.2)[Bu] = [ [0][M]−1[γ ]]2n×r

, {Br} = { {0}[M]−1{δ}}2n×1

The structural motion equation is given by[M]{ẍ(t)} + [C]{ẋ(t)} + [K]{x(t)} = [γ ]{u(t)} + {δ}ẍg(t) (A.3)

The only difference is that Equation A.1 has 2n first-order equations while
Equation A.3 has n second-order equations. Because Equations A.1 and A.3 are
essentially the same, solving Equation A.1 would yield exactly the same results as
Equation A.3. This step, building the open-loop model in MATLAB®, is to calculate
the coefficient matrices [A], [Bu], and {Br}. As shown in Equation A.2, this calcu-
lation can be easily done by entering structural dynamic properties (such as mass,
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stiffness, and damping) into MATLAB® matrix/vector variables for the coefficient
matrices.

Note that both structural response and control forces are unknown variables
at this step. This means that Equation A.1 is not solvable as there are only 2n
equations but (2n + r) unknowns (2n in state vector {Z(t)} and r in the vector
of active control force {u(t)}). Same thing for Equation A.3—there are only n
equations but (n + r) unknowns (n in vector {x(t)} and r in the vector of active
control force {u(t)}). Additional r equations are needed, which are the feedback
control law determined in the next step.

Step 2. Determine feedback control law as per Section 4.1.4. This step is
also called controller design. As shown in the following equation, the feedback
law introduces r additional linear equations to the system provided that the gain
matrix [G] is determined.{u(t)}r×1 = −[G] {Z(t)} = − [

[Gd]r×n [Gv]r×n
] {{x(t)}n×1{ẋ(t)}n×1

}= − (
[Gd]r×n {x(t)}n×1 + [Gv]r×n {ẋ(t)}n×1

)
(A.4)

As discussed in Sections 4.2 and 4.3, gain matrix [G] is determined by control
algorithms. MATLAB® provides functions ACKER and PLACE for pole placement
algorithm (see Section 4.2.2) and ARE, CARE, DARE, and LQR for Riccati optimal
control algorithm (Section 4.2.1).

Step 3. Solve the closed-loop state equations, Equation 4.24 or Equation A.5a
given below. MATLAB® has implemented a function LSIM for the complex solution
procedure in Section 4.1.5. Substituting Equation A.4 into Equations A.1 and
A.3 yields the closed-loop state equations and motion equations of the system,
respectively, as {Ż(t)} = [Ac]{Z(t)} + {Br}ẍg(t) (A.5a)

where[Ac] = [A] − [Bu][G]= [ [0] [I]−[M]−1[K] −[M]−1[C]]− [ [0]−[M]−1[γ ]] [[Gd] [Gv]] (A.5b)= [ [0] [I]−[M]−1 ([K] + [γ ][Gd]) −[M]−1 ([C] + [γ ][Gv])]
and[M]{ẍ(t)} + ([C] + [γ ][Gv]) {ẋ(t)} + ([K] + [γ ][Gd]) {x(t)} = {δ}ẍg(t) (A.6)
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Now EquationA.5 is solvable as it has 2n first-order equations for 2n unknowns.

It has the same results as solving the n second-order motion equations in Equa-
tion A.6. There are numerical methods (such as Runge-Kutta, Wilson-θ, and
Newmark-β methods) in structural dynamics for directly solving the second-order
equations in Equation A.6. They shall yield the same results as MATLAB® solution
of Equation A.5, which uses a different numerical method for first-order equations.
Once the state vector {Z(t)} is determined, it can be substituted back to the feed-
back law (Equation A.4 to get the control forces {u(t)}. The state equation format
is essential for the controller design (i.e., to determine the feedback gain matrix
[G]) as all control algorithms are based on first-order equations.

The above steps use smart structures with active control and without consider-
ing dynamics of control devices as example. Smart structures with semiactive and
hybrid control would have the same procedure. The only difference is that in Step
1, the state model shall also include dynamics of the control devices in addition to
dynamics of the structure. The following section shows a MATLAB® example for a
smart structure with HDABC system.

A.3 SAMPLE MATLAB® .M PROGRAM

A sample MATLAB® program is included below for reference. It generates closed-
loop displacement response at each floor of the 6-story smart seismic structure
with HDABC system. Figure 6.8 of this book is one of the plots. It is easy to read,
and more information on any MATLAB® functions/statements in the program can be
easily found by MATLAB® help. Statements starting with a % symbol are comments
in the program.

%Matlab .m code for simulating the behavior of the 6-story shear building with
% HDABC system at 1st floor under El-Centro N-S earthquake excitation.
% It generates the displacement response plots, including Figure 6.18 of
% the book of Smart Structures, Innovative Systems for Seismic Response
% Control.
%
% by Hongping Jiang, Ph.D., P.E. August 1998 revised on 04/25/2007
%
% Units: Mass -- tons; Force -- kN; Length -- meters.
%
% Control Algorithms: LQG/LTR & Pole Placement
%
clear all; close all; format short e;
% Step 1 -- Input the system parameters
%Structure data
M1=109.78; M2=109.62; M3=109.24;
M4=108.86; M5=108.48; M6=107.03; %Lumped mass (tons)
M=diag([M1,M2,M3,M4,M5,M6]); %Mass Matrix
K(1)=351284; K(2)=225167; K(3)=169665;
K(4)=124242; K(5)=87872; K(6)=59532; %Stiffness Coefficient(kN/m)
Sm = zeros(6,6);
for i=1:5
Sm(i,i)=K(i)+K(i+1);

end
Sm(6,6)=K(6);
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for i=1:5
Sm(i,i+1)=-K(i+1);

end
for i=2:6
Sm(i,i-1)=-K(i);

end %Stiffness Matrix
W=[9.79 24.05 37.40 49.56 63.44 83.76]; %Natural Frequencies(rad/sec)
Zeta1=2/100.0; %Damping Ratio of first mode
alfa=Zeta1*W(1); beta=Zeta1/W(1);
for i=1:6
for j=1:6
Dm(i,j)=alfa*M(i,j)+beta*Sm(i,j); %Damping Matrix

end
end
K5=Sm(5,5); M5=M(5,5); C5=Dm(5,5);
K6=Sm(6,6); M6=M(6,6); C6=Dm(6,6);
%K-bracing parameters
Mb=2.0; Kb=2.0e5; Zetab=0.001;
Cb=2*Zetab*Mb*sqrt(Kb/Mb);
%Parameters of the hydraulic system
beta=100e3*0.454*9.81/(0.0254ˆ2*1000);
Ps=3000*0.454*9.81/(0.0254ˆ2*1000);
%Moog 760-102A Actuator parameters
Kv=3.85*(0.0254ˆ3)*15/sqrt(1000*0.454*9.81/(0.0254ˆ2*1000));
tau=1/(2*pi*35.63);
A=0.4; V=2.0; Mp=0.005; Zetap=0.002; %Mp,Zetap are assumed
Kp=2*beta*Kv*A*sqrt(Ps/2)/V; Cp=2*Zetap*Mp*sqrt(Kp/Mp);
Mp=0; Cp=0;
%Parameters of Passive Damper
C0=20000*0.454*9.81/(1000*0.0254); lm=0.05;
% Step 2 -- Load the Excitation Data
Te=0.01; TT=10; %el-centro: sampling rate: 100 Hz, total: 10 sec.
Ts=0.01; %sampling time for controller
np=TT/Ts; %total points
%t=0:Ts:(TT-Ts);
fid=fopen(’elns1000.dat’,’r’);
[xg,count]=fscanf(fid,’%f’,inf);
xg=xg*9810;
xg(1001:1600)=0*xg(1:600);
tt=0:Ts:(16-Ts);
num=Te/Ts;
if(num>1)
x0(num:num:np)=xg; clear xg;
dx0=x0(num)/num; num1=num-1;
for j=1:num1
x0(j)=dx0*j;

end
nx1=count-1;
for i=1:nx1
i1=num*i; i2=num*(i+1);
dx0=(x0(i2)-x0(i1))/num;
for j=1:num1
ij=i1+j; x0(ij)=x0(i1)+dx0*j;

end
end

xg=x0; clear x0;
end
%Step 3 -- State variable representation
%coefficients of Actuator equation
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A0=1+Mp/M1+Mp/Mb; A1=Mp*K5/M5*(Cb/Mb-C6/M6)/A0;
A2=(Mp*((K5+K6)/M5*(C6/M6-Cb/Mb)-Kb/Mb*(Cb/Mb+Cb/M5)+C6/M6*(Kb/M5+K6/M6))
+Cp*(Kb/Mb-K6/M6))/A0;
A3=(Mp*(K6*Cb/M5/Mb-K6*C6/M5/M6-K6*C6/M6ˆ2)+Cp*K6/M6)/A0;
A4=(Mp*(Kb*Cb/M5/Mb+Kb*Cb/Mbˆ2-Kb*C6/M5/M6)-Cp*Kb/Mb)/A0;
A5=Mp*C5/M5*(Cb/Mb-C6/M6)/A0;
A6=(Mp*((C5+C6)/M5*(C6/M6-Cb/Mb)-Cb/Mb*(Cb/Mb+Cb/M5)+C6/M6*(Cb/M5+C6/M6)
+(Kb/Mb-K6/M6))+Cp*(Cb/Mb-C6/M6))/A0;
A7=(-2*beta*Aˆ2/V+Cp*C6/M6+(Mp/M6+Mp/Mb)*C0/lm+Mp*K6/M6-Mp*C6ˆ2/M6ˆ2
-Mp*C6/M5*(C6/M6+Cb/Mb))/A0;
A8=(2*beta*Aˆ2/V-Cp*Cb/Mb-(Mp/Mb+Mp/M6)*C0/lm-Mp*Kb/Mb+Mp*Cbˆ2/Mbˆ2
-Cb/M5*(C6/M6+Cb/Mb))/A0;
A9=(-Cp/Mb-Cp/M6+Mp*C6/M6ˆ2-Mp*Cb/Mbˆ2)/A0;
A10=(-Cp/Mb-Cp/M6+(Mp/Mb+Mp/M6)/lm+Mp*C6/M6ˆ2+Mp*Cb/Mbˆ2)/A0;
A11=2*beta*A*Kv*sqrt(Ps/2)/(V*A0);
%Aa,Bu,Br
MM=diag([diag(M);Mb]);
KK=[Sm [0;0;0;0;-Kb;0]; 0 0 0 0 -Kb 0 Kb];KK(5,5)=KK(5,5)+Kb;
DC=[Dm [0;0;0;0;-Cb;0]; 0 0 0 0 -Cb 0 Cb];DC(5,5)=DC(5,5)+Cb;
Aa(1:7,1:17)=[0*eye(7),eye(7),zeros(7,3)];
Aa(8:14,1:17)=[-inv(MM)*KK,-inv(MM)*DC,[zeros(5,3);1/M6,1/M6,0;-1/Mb,-1/Mb,0]];
Aa(15,1:17)=[zeros(1,3),A1,A2,A3,A4,zeros(1,3),A5,A6,A7,A8,A9,A10,A11];
Aa(16,1:17)=[zeros(1,7) zeros(1,5) -C0/lm C0/lm 0 -1/lm 0];
Aa(17,1:17)=[zeros(1,16) -1/tau];
Bu=-Aa(17,:)’; Br=[zeros(1,7) -1 -1 -1 -1 -1 -1 -1 A8 0 0]’;
clear A A0 A1 A2 A3 A4 A5 A6 A7 A8 M1 M2 M3 Mb MM DC KK Kb;
% Step 4 -- Convert to digital system
[Ad,Bud]=c2d(Aa,Bu,Ts);
[Ad,Brd]=c2d(Aa,Br,Ts);
% Step 5 -- Observability
% Only one accelerometer is used at 6-th floor
Cdc=[Sm(6,1:6)/M(6,6) 0, Dm(6,1:6)/M(6,6) 0, 0 0 0;[zeros(1,14),1,0,0]];
Kob=rank(obsv(Ad,Cdc));
if Kob==size(Ad,1)
disp(’This system is observable. Program continues...’);

else
disp(’This system is unobservable! Rank of observability matrix is:’);
Kob
pause

end
% Step 6 -- Controller Design by LQG + Pole Placement algorithm
Q=eye(size(Aa)); R=1.0e-5*eye(size(Bu,2));
K=lqr(Aa,Bu,Q,R);
Po=eig(Aa-Bu*K); Pd=Po;
Pd(17)=Pd(17)*2.5;
Pd(15:16)=12.0*real(Po(15:16))+imag(Po(15:16))*sqrt(-1);
Pd(13:14)=7.0*real(Po(13:14))+imag(Po(13:14))*sqrt(-1);
Pd(11:12)=5.0*real(Po(11:12))+imag(Po(11:12))*sqrt(-1);
Pd(9:10)=2.0*real(Po(9:10))+imag(Po(9:10))*sqrt(-1);
disp(’The expected closed poles are:’); Pd
KK=place(Aa,Bu,Pd); %clear Po;
disp(’The poles of the designed closed loop system are:’);
Ac=Aa-Bu*KK; Pc=eig(Ac)
% Step 7 -- Calculate the responses
Cc=[1 zeros(1,16)]; Dc=0;
[y1,x1]=lsim(Ac,Br,Cc,Dc,xg,tt);
% Step 8 -- Compare performances of the systems with/without observer
% system without observer has been investigated previously
%
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% System with observer ...
% 1. Observer design
Qe=Q; Re=1e-5*eye(size(Cdc,1));
disp(’The gain matrix of the observer is:’);
L=lqr(Aa’,Cdc’,Qe,Re)’
disp(’Check the poles of the observer (Designed by LQG algorithm)’);
Poles_observer=eig(Aa-L*Cdc)
clear Q Qe R Re Poles_observer;
%
% 2. State variable representation
Aaug=[Aa -Bu*KK; L*Cdc Aa-Bu*KK-L*Cdc];
Baug=[Br;Br]; Caug=[Cc 0*Cc]; Daug=0;
%
% 3. Response
[y2,x2]=lsim(Aaug,Baug,Caug,Daug,xg,tt);
%
% 4. Comparison of responses
FigNum=1; figure; subplot(3,1,1); plot(tt,y1,tt,y2);
title(’Figure 1 Displacement Responses to Scaled El-Centro N-S Earthquake’);
ylabel(’1st Floor (mm)’); %axis([0 6.0 -4.5 7.5]);
gtext(’Full-State Feedback System’);
gtext(’Observer/Controller System’);
subplot(3,1,2); plot(tt,x1(:,2),tt,x2(:,2));
ylabel(’2nd Floor (mm)’); %axis([0 6.0 -5 5]);
subplot(3,1,3); plot(tt,x1(:,3),tt,x2(:,3));
%axis([0 6.0 -3 3]);
xlabel(’Time(seconds)’); ylabel(’3rd Floor (mm)’);
FigNum=1; figure; subplot(3,1,1); plot(tt,x1(:,4),tt,x2(:,4));
title(’Figure 2 Displacement Responses to Scaled El-Centro N-S Earthquake’);
ylabel(’4th Floor (mm)’); %axis([0 6.0 -4.5 7.5]);
subplot(3,1,2); plot(tt,x1(:,5),tt,x2(:,5));
ylabel(’5th Floor (mm)’);%axis([0 6.0 -5 5]);
subplot(3,1,3); plot(tt,x1(:,6),tt,x2(:,6));
%axis([0 6.0 -3 3]);
xlabel(’Time(seconds)’); ylabel(’6th Floor (mm)’);
gtext(’Full-State Feedback System’);
gtext(’Observer/Controller System’);
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Appendix B:Green’s Function
In the indirect boundary element method, a so-called fundamental solution is
needed for an applied load acting on a continuous system. In order to determ-
ine the dynamic stiffness of the free-field system in Section 8.6.2, displacements
upr(x, z) and wpr(x, z), on the assumed line that subsequently forms the structure–
soil interface, are needed for the applied distributed loads acting on the same line
of a continuous soil system.

B.1 DISPLACEMENTS IN k -DOMAIN FOR LOADS ON VERTICAL LINE
As shown in Figure B.1, the horizontal linearly distributed load p(x, z), with nodal
values of pj and pj+1, and the vertical linearly distributed load r(x, z), with nodal
vales of rj and rj+1, act on part of the vertical assumed line between node j
and node j + 1 in x- and z-directions, respectively. The procedure to determine
the displacements is divided into two parts. In part I (superscript I) as shown in
Figure B.2, an additional horizontal interface needs to be introduced through node
j. The introduced layer j on which the distributed loads act is fixed at the inter-
faces. Corresponding reaction forces PI

j (k), PI
j+1(k), and RI

j(k), RI
j+1(k) in x- and

z-directions are calculated to achieve this condition whereby local displacements
uI

pr(k, z) and wI
pr(k, z), between the nodes, are determined. In part II (subscript II)

as shown in Figure B.3, amplitudes of the reaction forces are then applied at the
nodes of the total soil system with the opposite direction; displacements uII

pr(k, z)
and wII

pr(k, z) along the vertical assumed line are calculated. To find global displace-
ments upr(k, z) and wpr(k, z), local displacements (part I) have to be superimposed
on them (part II). Subscript pr indicates that displacements u and w in x- and
z-directions are the result of both applied distributed loads p and r.

B.1.1 Fixed Layer (Part I)
For harmonic excitation with frequency ω, the dynamic equilibrium equations of
loaded layer j (see Figure B.1) in Cartesian coordinates x and z can be written asσx,x(x, z)+ τxz,x(x, z) = −ρω2u(x, z)− p(x, z) (B.1)τzx,x(x, z)+ σz,z(x, z) = −ρω2w(x, z)− r(x, z) (B.2)

597
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rj pjAssumed lines

Soil I
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Soil III

Half-space

xr (x,z)
p(x,z)rj+1

pj+1zj
FIGURE B.1 Linearly distributed loads on vertical assumed line.d Layer j r(k,z) p(k,z)

x
j + 1

j PIj(k) RIj(k)RIj+1(k)PIj+1(k)z Soil I

Soil II

Soil III

Half-space

FIGURE B.2 Loaded layer with reaction forces (Part I).

Normal stress and shear stress are denoted as σ and τ , respectively. The first
subscript denotes the direction of the stress component. The second one denotes
the direction of the infinitesimal area’s normal that the stress component acts on. A
comma denotes a partial derivative with respect to the subscript following it. The
letter ρ represents the mass density. Displacement amplitudes u(x, z) and w(x, z)
are in x- and z-directions, respectively. Linearly distributed loads p(x, z) and r(x, z)
can be expressed as

p(x, z) = [pj + (pj+1 − pj) z
d

] δ(x) (B.3)

r(x, z) = [rj + (rj+1 − rj) z
d

] δ(x) (B.4)
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Half-space

1 xjj+1M+1iN z
FIGURE B.3 Total soil system with external forces (Part II).

where the letter d represents the depth of the loaded layer j and δx represents the
Dirac-delta function equal to 1 at x = 0, and 0 where x �= 0. By using the stress–
strain relationship (Hook’s law) and strain–displacement relationship, the normal
stress and shear stress amplitudes can be expressed asσx(x, z) = [2℘∗ + λ∗] u, x(x, z)+ λ∗w, z(x, z) (B.5)σz(x, z) = [2℘∗ + λ∗] w, z(x, z)+ λ∗u, x(x, z) (B.6)τxz(x, z) = τzx(x, z) = ℘∗ [u, z(x, z)+ w, z(x, z)] (B.7)

where the complex shear modulus ℘∗ and the complex lame constant λ∗
(Equations 8.110, 8.117, and 8.113) can be expressed as the functions of Young’s
modulus of elasticity E, Poisson’s ratio ν, and the ratio of the linear hysteretic
damping ζ as follows:℘∗ = (1+ 2ιζ )

2(1+ ν) E and λ∗ = ν(1+ 2ιζ )(1+ ν)(1− 2ν)E (B.8)

As discussed in Equations 8.166 through 8.169, the x–z plane displacement
equations of layer can be derived and expressed as follows:

u(x, z) = u(k, z) exp(−ιkx) (B.9)

w(x, z) = w(k, z) exp(−ιkx) (B.10)
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with

u(k, z) = lx [AP exp(ιkfz)+ BP exp(−ιkfz)]− mxs [ASV exp(ιksz)− BSV exp(−ιksz)] (B.11)

w(k, z) = −lx f [AP exp(ιkfz)− BP exp(−ιkfz)]− mx [ASV exp(ιksz)+ BSV exp(−ιksz)] (B.12)

where the notations are defined in Section 8.4.2.3 and lx
/

CP = mx
/

CS needs to
be enforced.

Substituting the stresses in Equations B.5 through B.7 and the displacements
in Equations B.9 and B.10 into the dynamic-equilibrium Equations B.1 and B.2
results in{℘∗u, zz(k, z)− ιk [℘∗ + λ∗] w, z(k, z)− k2 [2℘∗ + λ∗] u(k, z)} exp(−ιkx)= −ρω2u(k, z) exp(−ιkx)− p(x, z) (B.13){−k2℘∗w(k, z)− ιk [℘∗ + λ∗] u, z(k, z)+ [2℘∗ + λ∗] w, zz(k, z)} exp(−ιkx)= −ρω2w(k, z) exp(−ιkx)− r(k, x) (B.14)

Distributed loads p(x, z) and r(x, z), defined in Equations B.3 and B.4, are then
expanded in the x-direction into Fourier integrals, with term exp(−ιkx), as

p(k, z) = 1
2π ∫ ∞−∞ p(x, z) exp(ιkx)dx = 1

2π [pj + (pj+1 − pj) z
d

]
(B.15)

r(k, z) = 1
2π ∫ ∞−∞ r(x, z) exp(ιkx)dx = 1

2π [rj + (rj+1 − rj) z
d

]
(B.16)

Thus, using Equations B.13 through B.16 and omitting term exp(−ιkx), the
equilibrium equations of loaded layer, for harmonic motion in k-domain, can be
written as℘∗u, zz(k, z)− ιk [℘∗ + λ∗] w, z(k, z)− k2 [2℘∗ + λ∗] u(k, z)= −ρω2u(k, z)− 1

2π [pj + (pj+1 − pj) z
d

]
(B.17)− k2℘∗w(k, z)− ιk [℘∗ + λ∗] u, z(k, z)+ [2℘∗ + λ∗] w, zz(k, z)= −ρω2w(k, z)− 1

2π [rj + (rj+1 − rj) z
d

]
(B.18)
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By inspection, the particular solutions (superscripts P) of Equations B.17 and
B.18 can be obtained and written in matrix form as{

up(k, z)
wp(k, z)} = [uwprP(k, z)]

j

 pj
rj

pj+1
rj+1

 (B.19)

with[
uwprP(k, z)]

j
= 1

2π× [−(1− z/d)Ã(k) B̃(k) −(z/d)Ã(k) −B̃(k)
B̃(k) −(1− z/d)C̃(k) −B̃(k) −(z/d)C̃(k)] .

(B.20)

where

Ã(k) = 1
k2℘∗f 2D̃

; B̃(k) = ι(1− 1/D̃)
k3℘∗df 2s2 ; C̃(k) = 1

k2℘∗s2 ; D̃ = C2
P

C2
S

(B.21)

and the j subscription for vectors or matrices denotes that they are associated
with distributed loads on and/or physical properties of layer j. At the top (node
j, z = 0) and the bottom (node j + 1, z = d) of loaded layer j, the particular parts
of corresponding displacement can be obtained as[

uP
j (k) wP

j (k) uP
j+1(k) wP

j+1(k)]T = [uwprP∗ (k)]j

[
pj rj pj+1 rj+1

]T
(B.22)

with [
uwprP∗ (k)]j

= 1
2π −Ã(k) B̃(k) 0 −B̃(k)

B̃(k) −C̃(k) −B̃(k) 0
0 B̃(k) −Ã(k) −B̃(k)

B̃(k) 0 −B̃(k) −C̃(k) (B.23)

where the subscript ∗ denotes that the given matrix yields nodal values. On the
basis of Equations B.6, B.7, B.9, B.10, and B.19 on any z-planes (z = constant),
the particular parts in k-domain of the normal stress in z-direction and of the shear
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stress in x-direction can be obtained asσ P

z (k,z)=[2℘∗+λ∗]wP
,z(k,z)−ιkλ∗uP(k,z)= ℘∗

2π d

[ιkÃ(k)(D̃−2)(d−z) −ιkdB̃(k)(D̃−2)+C̃(k)D̃ιkÃ(k)(D̃−2)z ιkdB̃(k)(D̃−2)−C̃(k)D̃] pj
rj

pj+1
rj+1

 (B.24)τP
xz(k,z)=℘∗[uP

,z−ιkwP(k,z)]= ℘∗
2πd

[
Ã(k)−ιkdB̃(k) ιC̃(k)(d−z) −Ã(k)+ιkdB̃(k) ιkC̃(k)z] pj

rj
pj+1
rj+1


(B.25)

The particular parts of reactions at the top and bottom of the loaded layer are
defined as PP

j (k) = −τP
xz(k, 0), RP

j (k) = −σ P
z (k, 0), PP

j+1(k) = τP
xz(k, d), and

RP
j+1(k) = σ P

z (k, d). By using Equations B.24 and B.25, they can be obtained in
matrix form as  PP

j (k)
RP

j (k)
PP

j+1(k)
RP

j+1(k) = [PRprP∗ (k)] j

 pj
rj

pj+1
rj+1

 (B.26)

with [
PRprP∗ (k)]j

= ℘∗
2π d

[PRprP(1,1)] [
PRprP(1,2)][

PRprP(2,1)] [
PRprP(2,2)] (B.27)

where[
PRprP(1,1)] = [−Ã(k)+ ιkdB̃(k) −ιkdC̃(k)−ιkdÃ(k)(D̃− 2) ιkdB̃(k)(D̃− 2)− C̃(k)D̃] (B.28)[
PRprP(1,2)] = [PRprP(2,1)] = [Ã(k)− ιkdB̃(k) 0

0 −ιkdB̃(k)(D̃− 2)+ C̃(k)D̃]
(B.29)



“APPENDIX-B” — 2007/12/10 — 16:49 — page 603 — #7

Appendix B 603[
PRprP(1,1)] = [−Ã(k)+ ιkdB̃(k) ιkdC̃(k)ιkdÃ(k)(D̃− 2) ιkdB̃(k)(D̃− 2)− C̃(k)D̃] (B.30)

To complete the first part of the procedure, the homogeneous parts (super-
script H) of the displacements and reactions will be determined and superimposed
on the particular ones. Boundary conditions at node j and j + 1 of the homo-
geneous equation of Equations B.11 and B.12 must be equal to negative values
uP

j (k), wP
j (k), uP

j+1(k), and wP
j+1(k) in order to fix those two interfaces of the loaded

layer. The homogenous equation of Equations B.11 and B.12 can be rewritten into
matrix form in terms of the unknowns AP, BP, ASV, and BSV as{

u(k, z)
w(k, z)}j

= [uwAB(k, z)]j

 AP
BP

ASV
BSV

 (B.31)

with

[uwAB(k, z)]j= [ lx exp(ιkfz) lx exp(−ιkfz) −mxs exp(ιksz) mxs exp(ιksz)−lxf exp(ιkfz) lx f exp(−ιkfz) −mx exp(ιksz) −mx exp(−ιksz)]
(B.32)

By using Equation B.31, the unknowns AP, BP, ASV, and BSV can be expressed
in terms of four boundary conditions at the top and bottom of the layer as AP

BP
ASV
BSV


j

= [uwAB∗(k)]−1
j

 uj(k)
wj(k)

uj+1(k)
wj+1(k) (B.33)

with

[uwAB∗(k)]j = [uwAB(1,1)] [
uwAB(1,2)][

uwAB(2,1)] [
uwAB(2,2)] (B.34)

where [
uwAB(1,1)] = lx

[
1 1−f f

]
(B.35)[

uwAB(1,2)] = mx

[−s s−1 −1

]
(B.36)
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uwAB(2,1)] = lx

[
exp(ιkfd) exp(−ιkfd)−f exp(ιkfd) f exp(−ιkfd)] (B.37)[

uwAB(2,2)] = mx

[−s exp(ιksd) s exp(−ιksd)− exp(ιksd) − exp(−ιksd)] (B.38)

Knowing the boundary conditions and then using Equations B.22, B.31, and
B.33, the homogeneous parts of the displacements can be obtained as{

uH(k, z)
wH(k, z)}j

= [uwprH(k, z)]
j

 pj
rj

pj+1
rj+1

 (B.39)

with [
uwprH(k, z)]

j
= − [uwAB(k, z)]j [uwAB∗(k)]−1

j

[
uwprP∗ (k)]j

(B.40)

Local displacements (part I) are the summation of the particular parts in
Equation B.19 and the homogenous parts in Equation B.39, which can be
expressed as {

uI
pr(k, z)

wI
pr(k, z)}j

= [uwprI(k, z)]
j

 pj
rj

pj+1
rj+1

 (B.41)

with[
uwprI(k, z)]

j
= [uwprP(k, z)]

j
+ [uwprH(k, z)]= [uwprP(k, z)]

j
− [uwAB(k, z)]

j

[
uwAB∗(k)]−1

j

[
uwprP∗ (k)]j

(B.42)

Homogenous parts of the reaction forces can be determined by using the
dynamic stiffness of the horizontal layer in k-domain. As shown in Equation 8.190,
external forces and nodal displacements of layer j are related to its stiffness
matrix as  Pj(k)

Rj(k)
Pj+1(k)
Rj+1(k) = [SL

P−SV(k)]j

 uj(k)
wj(k)

uj+1(k)
wj+1(k) (B.43)



“APPENDIX-B” — 2007/12/10 — 16:49 — page 605 — #9

Appendix B 605

By substituting negative values of the particular parts of the nodal dis-
placements into Equation B.43, homogeneous parts of the reactions can be
obtained as  PH

j (k)
RH

j (k)
PH

j+1(k)
RH

j+1(k) = [PRprH∗ (k)]j

 pj
rj

pj+1
rj+1

 (B.44)

with [
PRprH∗ (k)]j

= − [SL
P−SV(k)]j

[
uwprP∗ (k)]j

(B.45)

For loaded layer j, the reaction forces (see Figure B.2) to counterbalance the
linearly distributed loads and fix the interfaces can be obtained by combining
Equations B.26 and B.44 as PI

j (k)
RI

j(k)
PI

j+1(k)
RI

j+1(k) = [PRprI∗(k)]j

 pj
rj

pj+1
rj+1

 (B.46)

with [
PRprI∗(k)]j

= [PRprP∗ (k)]j
+ [PRprH∗ (k)]j= [PRprP∗ (k)]j
− [SL

P−SV(k)]j

[
uwprP∗ (k)]j

(B.47)

B.1.2 Free Layer (Part II)
The dynamic stiffness matrix

[
ST

P−SV(k)] of the total soil system that consists of
N−1 layers and a half-space (see Figure B.4) is first assembled by using the direct
stiffness approach. In the assembling process, the stiffness matrices of two adjacent
layers and half-space are overlapped on the matrix’s elements corresponding to the
same side. Superscript T stands for the total soil system. In Equations 8.190 and
8.215, the dynamic-stiffness matrices

[
SL

P−SV(k)]i of any horizontal layer i, for
i = 1, 2, . . . . N−1, relate displacement amplitudes u and w at node i and node i+1
to load amplitudes P and R at the same nodes. The force–displacement relationship
of the half-space can be obtained by dynamic stiffness matrices

[
SR

P−SV(k)] in
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1

Layer 1
P1P2

R1R2RiRi+1RN–1RNz PNPN–1

Pi+1

Pi x
Layer i
Layer N–1

2ii+1N–1N Soil I

Soil II

Soil III

Half-space

FIGURE B.4 Total soil system in k-domain.

Equations 8.228, 8.236, and 8.244. Both relationships can be expressed as follows: Pi(k)
Ri(k)

Pi+1(k)
Ri+1(k) = [SL

P−SV(k)]i

 ui(k)
wi(k)

ui+1(k)
wi+1(k) (B.48){

P0(k)
R0(k)} = [SL

P−SV(k)]i

{
u0(k)
w0(k)} (B.49)

As shown in Equations B.9 and B.10, the variation of displacement amp-
litudes u(x, z) and w(x, z) in the x-direction is determined by wave number k and
is thus constant with depth for the layer. Boundary conditions at the interface
of the two adjacent layers and half-space force the value of k to be constant for
the total soil system. For a given frequency ω, phase velocity C has to be con-
stant

(
C = ω/k

)
for all layers and half-space. After determining

[
SL

P−SV(k)]i and[
SR

P−SV(k)] by taking this into consideration, the total dynamic-stiffness matrix in
k-domain

[
ST

P−SV(k)] can be assembled and expressed as[
P1(k) R1(k) · · · Pi(k) Ri(k) · · · PN(k) RN(k)]T= [ST

P−SV(k)] [u1(k) w1(k) · · · ui(k) wi(k) · · · uN(k) wN(k)]T
(B.50)

For the distributed loads acting on the vertical assumed line of any layer j
between node j and node j+ 1, reactions at the corresponding nodes were determ-
ined in part I as shown in Equation B.46. Applying these forces in the opposite
direction at the same nodes to the total soil system (see Figure B.3), nodal dis-
placements at any node i and node i+ 1 can be calculated. Using Equations B.46
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and B.50, they can be expressed as uII
i (k)

wII
i (k)

uII
i+1(k)

wII
i+1(k) = [uwprII∗ (k)]i

j

 pj
rj

pj+1
rj+1

 (B.51)

with[
uwprII∗ (k)]i

j
= −SUBi j

([
ST

P−SV(k)]−1
)[

PRprI∗(k)]j= −SUBi j

[
ST

P−SV(k)]−1
([

PRprP∗ (k)]j
− [SL

P−SV(k)]j

[
uwprP∗ (k)]j

)
(B.52)

where SUBi j

([
ST

P−SV(k)]−1
)

is the submatrix of dimension 4 by 4, comprising

the coefficients in the matrix
[
ST

P−SV(k)]−1 from row 4i − 3th to row 4ith and
column 4j–3th to column 4jth and

[
PRprI∗(k)]j is shown in Equation B.47. The i

superscription for vectors or matrices indicates that they are associated with layer
i’s displacements.

Displacements uII
pr(k, z) and wII

pr(k, z) between node i and i+ 1 are determined
by using nodal displacements in Equation B.51 as the boundary conditions of
homogeneous equation of Equations B.11 and B.12. Using Equations B.31, B.33,
and B.51, the displacement vector in part II can be obtained as{

uII
pr(k)

wII
pr(k)}i

j

= [uwII
pr(k, z)]i

j

 pj
rj

pj+1
rj+1

 (B.53)

with [
uwprII(k, z)]i

j
= [uwAB(k, z)]

i

[
uwAB∗(k)]−1

i

[
uwprII∗ (k)]i

j= −[uwAB(k, z)]
i

[
uwAB∗(k)]−1

i
SUBi j

([
ST

P−SV(k)]−1
)× ([PRprP∗ (k)]j

− [SL
P−SV(k)]j

[
uwprP∗ (k)]j

)
(B.54)

B.1.3 Global Displacements
Along the vertical line in any layer i, for i = 1, 2, . . . ., M, where M = number
of layers along the vertical assumed line, on which no distributed loads act
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determined in part II (Equation B.53) and can be written as{

upr(k, z)
wpr(k, z)}i, i �=j

j
= {uII

pr(k, z)
wII

pr(k, z)}i

j

= [uwpr(k, z)] i, i �=j
j

 pj
rj

pj+1
rj+1

 (B.55)

with

[uwpr(k, z)] i, i �=j
j = − [uwAB(k, z)] i [uwAB∗(k)]−1

i SUBi j

( [
ST

P−SV(k)]−1
)× ([PRprP∗ (k)]j

− [SL
P−SV(k)]j

[
uwprP∗ (k)]j

)
(B.56)

Along the vertical line in any layer i on which the distributed loads act (i = j),
global displacements upr(k, z) and wpr(k, z) are the combination of displacements
contained in part I (Equation B.41) and part II (Equation B.53), and can be
expressed as {

upr(k, z)
wpr(k, z)}i,i=j

j
= {uI

pr(k, z)
wI

pr(k, z)}+
j

{
uII

pr(k, z)
wII

pr(k, z)}i

j= [uwpr(k, z)] i,i=j
j

 pj
rj

pj+1
rj+1

 (B.57)

with[
uwpr(k, z)] i,i=j

j
= [uwprP(k, z)]

j
− [uwAB(k, z)]

j

[
uwAB∗(k)]−1

j

[
uwprP∗ (k)]j− [uwAB(k, z)]

i

[
uwAB∗(k)]−1

i
SUBi j

([
ST

P−SV(k)]−1
)× ([PRprP∗ (k)]j

− [SL
P−SV(k)]j

[
uwprP∗ (k)]j

)
(B.58)

B.2 DISPLACEMENTS IN k -DOMAIN FOR LOADS ON
HORIZONTAL LINE

As shown in Figure B.5, the horizontal linearly distributed load p(x), with nodal
values of pl and pl+1 in x-direction, and the vertical linearly distributed load r(x),
with nodal values rl and rl+1 in z-direction, act on part of the horizontal assumed
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FIGURE B.5 Linearly distributed loads on horizontal assumed line.

line between node l and node l + 1, which lies underneath layer M. Since the
distributed loads act on the horizontal interfaces, not between the interfaces, the
first part of the procedure mentioned in the previous subsection is not required.

Linearly distributed loads p(x) and r(x) can be expressed in matrix form as{
p(x)
r(x)} = [(1− x/b) 0 x/b 0

0 (1− x/b) 0 x/b] pl
rl

pl+1
rl+1

 (B.59)

where the letter b is the length between node l and node l+1. Then the distributed
loads are expanded in the x-direction into Fourier integrals, with term exp(−ιkx){

PM+1(k)
RM+1(k)} = 1

2π ∫ b

0

{
p(x)
r(x)} exp (ιkx)dx = [PRpr∗(k)]M, l

 pl
rl

pl+1
rl+1

 (B.60)

with

[PRpr∗(k)]M, l = 1
2π [Ppl 0 Ppl+1 0

0 Rrl 0 Rrl+1

]
(B.61)

where

Ppl = Rrl = ι
k

[
1− exp(ιkb)]− 1

k2b

[
exp(ιkb)(1− ιkb)− 1

]
(B.62)

Ppl+1 = Rrl+1 = 1
k2b

[
exp(ιkb)(1− ιkb)− 1

]
(B.63)



“APPENDIX-B” — 2007/12/10 — 16:49 — page 610 — #14

610 Smart Structures: Innovative Systems for Seismic Response Control
The M, l subscription for the vectors and matrices denotes that they are asso-

ciated with distributed loads on the horizontal element between node l and l + 1,
which are on the horizontal interface underneath layer M.

These external loads are then applied to the total soil system at node M + 1
corresponding to the horizontal assumed line (see Figure B.5). By using the total
dynamic-stiffness matrix

[
ST

P−SV(k)]mentioned in Equation B.50 and the external
loads in Equation B.60, nodal displacements at any node i and i + 1 on vertical
line can be obtained as ui(k)

wi(k)
ui+1(k)
wi+1(k)M, l

= [uwpr∗(k)] i
M, l

 pl
rl

pl+1
rl+1

 (B.64)

with [
uwpr∗(k)] i

M, l
= sub i M

([
ST

P−SV(k)]−1
)[

PRpr∗(k)]
M, l

(B.65)

where subiM

([
ST

P−SV(k)]−1
)

is the submatrix of dimension 4 by 2. This dimension

comprises elements in the matrix
[
ST

P−SV(k)]−1 from row 4i− 3th to row 4ith and
column 4M−1th to column 4Mth. [PRpr∗(k)] can be obtained from Equation B.61.
The i superscription for vectors or matrices indicates that they are associated with
layer i’s displacements.

Analogous to part II of displacements for loads on the vertical assumed line in
the previous subsection, displacements upr(k, z) and wpr(k, z) between node i and
node i+1 are calculated by using nodal displacements in Equation B.64 as bound-
ary conditions of displacements in Equations B.11 and B.12. Using Equations B.31,
B.33, and B.34, the displacement vector can be obtained as{

upr(k, z)
wpr(k, z)}i

M, l
= [uwpr(k, z)]i

M, l

 pl
rl

pl+1
rl+1

 (B.66)

with[
uwpr(k)]i

M, l= [uwAB(k, z)]
i

[
uwAB(k, z)]−1

i

[
uwpr∗(k)]i

M, l= [uwAB(k, z)]
i

[
uwAB∗(k, z)]−1

i
subi M

([
ST

P−SV(k)]−1
) [

PRpr∗(k)]
M,l

(B.67)
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B.3 DISPLACEMENT FOR VERTICAL INCIDENT WAVE

B.3.1 Loads on Vertical Line
A procedure is analogous to Section B.1. For the vertically incident waves that
correspond to a zero wave number k, displacement equations (see Equations 8.170
and 8.171) can be expressed as

u(x, z)k=0 = −ASV exp
( ιω

CS
z
)+ BSV exp

(− ιω
CS

z
)

(B.68)

w(x, z)k=0 = −AP exp
( ιω

CP
z
)+ BP exp

(− ιω
CP

z
)

(B.69)

Using stress formulation in Equations B.6 and B.7 and displacement for-
mulation of Equations B.68 and B.69, the dynamic-equilibrium formulation of
Equations B.1 and B.2 for loaded layer j can be reformulated as℘∗u, zz(z) = −ρω2u(z)− 1

2π [pj + (pj+1 − pj
) z

d

]
(B.70)[

2℘∗ + λ∗] w, zz(z) = −ρω2w(z)− 1
2π [rj + (rj+1 − rj

) z
d

]
(B.71)

Displacements in Equations B.70 and B.71 are uncoupled. By inspection, the
particular solutions of these equations can be obtained in matrix form as{

uP(z)
wP(z)}j

= [uwprP(z)]k=0

j

 pj
rj

pj+1
rj+1

 (B.72)

with [
uwprP(z)]k=0

j
= −C2

S
2πω2℘∗ [1− z/d 0 z/d 0

0 1− z/d 0 z/d] (B.73)

At the top (node j, z = 0) and bottom (node j + 1, z = d) of the loaded layer,
the particular parts of corresponding displacement can be obtained as uP

j
wP

j
uP

j+1
wP

j+1

 = [uwprP∗]k=0

j

 pj
rj

pj+1
rj+1

 (B.74)
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with [

uwprP∗]k=0

j
= −C2

S
2πω2℘∗ 1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

 (B.75)

Based on Equations B.6, B.7, and B.72, on any z-planes (z = constant) the
particular parts of the normal stress in z-direction and the shear stress on x-direction
can be obtained asσ P

z (z) = [2℘∗ + λ∗] wP
, z(z) = C2

P
2πω2d

(
rj − rj+1

)
(B.76)τP

xz(z) = ℘∗uP
, z(z) = C2

P
2πω2d

(
pj − pj+1

)
(B.77)

By using Equations B.76 and B.77, the particular parts of reactions at the top
and bottom of the loaded layer can be obtained in matrix form as PP

j
RP

j
PP

j+1
RP

j+1

 = [PRprP∗]k=0

j

 pj
rj

pj+1
rj+1

 (B.78)

with [
PRprP∗]k=0

j
= 1

2πω2d

−C2
S 0 C2

S 0
0 −C2

P 0 C2
P

C2
S 0 −C2

S 0
0 C2

P 0 −C2
P

 (B.79)

Homogeneous equation of Equations B.68 and B.69 can be rewritten in matrix
form in terms of the unknowns AP, BP, ASV, and BSV as{

u(z)
w(z)}j

= [uwAB(z)]k=0

j

 AP
BP

ASV
BSV

 (B.80)
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with[
uwAB(z)]k=0

j= [ 0 0 − exp(ιωz/CS) exp(−ιωz/CS)− exp(ιωz/CP) exp(−ιωz/CP) 0 0

]
(B.81)

By using Equation B.80, the unknowns AP, BP, ASV, and BSV can be expressed
in terms of four boundary conditions at the top and bottom of the layer as AP

BP
ASV
BSV


j

= [[uwAB(z)]k=0
j

]−1

 uj
wj

uj+1
wj+1

 (B.82)

with

[uwAB∗] k=0
j=  0 0 −1 1−1 1 0 0

0 0 − exp(ιωd/CS) exp(−ιωd/CS)− exp(ιωd/CP) exp(−ιωd/CP) 0 0


(B.83)

Knowing the boundary conditions that equal the negative values of
uP

j (k), wP
j (k), uP

j+1(k), and wP
j+1(k) and then using Equations B.74, B.80, and B.82,

the homogeneous parts of the displacements can be obtained as{
uH(z)
wH(z)} = [uwprH(z)]k=0

j

 pj
rj

pj+1
rj+1

 (B.84)

with[
uwprH(z)]k=0

j
= −[uwAB(z)]k=0

j

[[
uwAB∗]k=0

j

]−1 [
uwprP∗]k=0

j= C2
S

2πω2℘∗ [uwprH(1,1) 0 uwprH(1,3) 0
0 uwprH(2,2) 0 uwprH(2,4)]

(B.85)
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where

uwprH(1,1) = sin [ω (d − z) /CS]
sin(ωd/CS) (B.86)

uwprH(1,3) = sin(ωz/CS)
sin(ωz/CS) (B.87)

uwprH(2,2) = sin [ω (d − z) /CP]
sin(ωd/CP) (B.88)

uwprH(2,4) = sin (ωz/CP)
sin (ωd/CP) (B.89)

Local displacements for k = 0 are the summation of the particular parts
in Equation B.72 and the homogeneous parts in Equation B.85, which can be
expressed as {

uI
pr(z)

wI
pr(z)}j

= [uwprI(z)]k=0

j

 pj
rj

pj+1
rj+1

 (B.90)

with[
uwprI(z)]k=0

j
= [uwprP(z)]k=0

j
+ [uwprH(z)]k=0

j= C2
S

2πω2℘∗ [uwprI(1,1) 0 uwprI(1,3) 0
0 uwprI(2,2) 0 uwprI(2,4)]

(B.91)

where

uwprI(1,1) = sin [ω (d − z) /CS]
sin(ωd/CS) + z

d
− 1 (B.92)

uwprI(1,3) = sin(ωz/CS)
sin(ωz/CS) − z

d
(B.93)

uwprI(2,2) = sin [ω (d − z) /CP]
sin(ωd/CP) + z

d
− 1 (B.94)

uwprI(2,4) = sin (ωz/CP)
sin (ωd/CP) − z

d
(B.95)
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As shown in Equation 8.215, external forces and nodal displacements of layer
j, for k = 0, are related to its stiffness matrix as Pj

Rj
Pj+1
Rj+1

 = [SL
P−SV

]k=0

j

 uj
wj

uj+1
wj+1

 (B.96)

By substituting negative values of the particular parts of nodal displacements
(Equation B.74) into Equation B.96, the homogeneous parts of the reactions can
be obtained as  PH

j
RH

j
PH

j+1
RH

j+1

 = [PRprH∗ ]k=0

j

 pj
rj

pj+1
rj+1

 (B.97)

with[
PRprH∗ ]k=0

j
= − [SL

P−SV

]k=0

j

[
uwprP∗]k=0

j= CS

2πω PRprH(1,1) 0 PRprH(1,3) 0
0 PRprH(2,2) 0 PRprH(2,4)

PRprH(3,1) 0 PRprH(3,3) 0
0 PRprH(4,2) 0 PRprH(4,4) (B.98)

where

PRprH(1,1) = PRprH(3,3) = cot
(ωd

CS

)
(B.99)

PRprH(1,3) = PRprH(3,1) = −1
sin(ωd

/
CS) (B.100)

PRprH(2,2) = PRprH(4,4) = (CP

CS

)
cot(ωd

/
CP) (B.101)

PRprH(2,4) = PRprH(4,2) = (CP

CS

) −1
sin(ωd

/
CP) (B.102)

For loaded layer j, the reaction forces for k = 0 (see Figure B.2) to coun-
terbalance linearly distributed loads and to fix the interfaces can be obtained by
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combining Equations B.78 and B.97 as PI

j
RI

j
PI

j+1
RI

j+1

 = [PRprI∗]k=0

j

 pj
rj

pj+1
rj+1

 (B.103)

with[
PRprI∗]k=0

j
= [PRprP∗]k=0

j
+ [PRprH∗ ]k=0

j= CS

2πω PRprI(1,1) 0 PRprI(1,3) 0
0 PRprI(2,2) 0 PRprI(2,4)

PRprI(3,1) 0 PRprI(3,3) 0
0 PRprI(4,2) 0 PRprI(4,4) (B.104)

where

PRprI(1,1) = PRprI(3,3) = cot
(ωd

CS

)− CSωd
(B.105)

PRprI(1,3) = PRprI(3,1) = −1
sin(ωd

/
CS) + CSωd

(B.106)

PRprI(2,2) = PRprI(4,4) = (CP

CS

)
cot(ωd

/
CP)− C2

P
CSωd

(B.107)

PRprI(2,4) = PRprI(4,2) = (CP

CS

) −1
sin(ωd

/
CP) + C2

P
CSωd

(B.108)

Analogous to the derivation of Equations B.55, global displacements
upr (k = 0, z) and wpr (k = 0, z) along the vertical line in any layer i, on which no
distributed loads act (i �= j), can be expressed as{

upr(k = 0, z)
wpr(k = 0, z)} i, i �=j

j
= [uwpr(k = 0, z)] i, i �=j

j

 pj
rj

pj+1
rj+1

 (B.109)
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with[
uwpr(k = 0, z)] i,i �=j

j = −[uwAB(z)] k=0

j

[[
uwAB∗] k=0

j

]−1× SUBi j

([[
ST

P−SV

]k=0
]−1

) [
PRprI∗]k=0

j
(B.110)

where
[
PRprI∗]k=0

j can be obtained from Equation B.104. Similar to the derivation
of Equation B.57, global displacements upr(k = 0, z) and wpr(k = 0, z) along the
vertical line in any layer i, on which the distributed loads act (i = j), can be
expressed as{

upr(k = 0, z)
wpr(k = 0, z)} i, i �=j

j
= [uwpr(k = 0, z)] i,i �=j

j

 pj
rj

pj+1
rj+1

 (B.111)

with

[uwpr(k = 0, z)] i, i �=j
j = [uwprI(z)]k=0

j
− [uwAB(z)]k=0

i

[[
uwAB∗]k=0

i

]−1× SUBi j

( [[
ST

P−SV

]k=0
]−1

) [
PRprI∗]k=0

j
(B.112)

where
[
uwprI(z)]k=0

j and
[
PRprI∗]k=0

j can be obtained from Equations B.91 and
B.104, respectively.

B.3.2 Loads on Horizontal Line
Analogous to Section B2, external loads P(k = 0) and R(k = 0) can be
formulated as{

P(k=0)
M+1

R(k=0)
M+1

} = 1
2π ∫ b

0

{
p(x)
r(x)} dx = [PRpr∗]k=0

M, l

 pl
rl

pl+1
rl+1

 (B.113)

with [
PRpr∗] k=0

M, l
= b

4π [1 0 1 0
0 1 0 1

]
(B.114)
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Similar to the derivation of Equation B.66, displacements upr(k = 0, z) and

wpr(k = 0, z) between node i and node i + 1, for loads on the horizontal element
l underneath layer M, can be expressed as{

upr(k = 0, z)
wpr(k = 0, z)}i

M, l
= [uwpr(k = 0, z)] i

M, l

 pl
rl

pl+1
rl+1

 (B.115)

with[
uwpr(k = 0, z)] i

M, l
= [uwAB(z)]k=0

i

[ [
uwAB∗] k=0

i

]−1× SUB iM

([ [
ST

P−SV

]k=0
]−1

) [
PRpr∗]k=0

M, l
(B.116)

B.4 GREEN’S INFLUENCE FUNCTIONS IN SPACE DOMAIN

In the previous subsections, displacements were determined in k-domain. The
inverse Fourier transform needs to be formulated in order to obtain Green’s influ-
ence functions in the space domain. The z-axis is based on the local z-axis of layer
i. The x′-axis is based on the local x-axis of layer for distributed loads on vertical
interface, and of elements l for distributed loads on horizontal interface.

Green’s influence function in any layer i on x′–z plane, for the linearly
distributed loads on the vertical assumed line in any layer j, can be expressed as{

upr(x′, z)
wpr(x′, z)}i

j
= [UWPR(x′, z)]ij  pj

rj
pj+1
rj+1

 (B.117)

with [
UWPR(x′, z)] i

j = ∫ ∞−∞ [uwpr(k, z)] i

j
exp(−ιkx′)dk (B.118)

where [uwpr(k, z)] i
j can be obtained from Equations B.56 or B.58 for nonzero

wave numbers k and from Equation B.110 or B.112 for a zero wave number k.
Bold letters in the matrix indicate that the corresponding matrix is in the space
domain.

As for linearly distributed loads on the horizontal element with any node l and
node l + 1, which are on the horizontal interface underneath layer M, Green’s



“APPENDIX-B” — 2007/12/10 — 16:49 — page 619 — #23

Appendix B 619

influence function in any layer i on x′–z plane can be expressed as{
upr(x′, z)
wpr(x′, z)}i

M, l
= [UWPR(x′, z)] i

M, l

 pl
rl

pl+1
rl+1

 (B.119)

with [
uwpr(x′, z)] i

M, l = ∫ ∞−∞ [UWPR(k, z)] i

M, l
exp

(−ιkx′) dk (B.120)

where [uwpr(k, z)]i
M, l can be obtained from Equation B.67 for nonzero wave

number k and from Equation B.116 for zero wave number k.
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Appendix C:Element Stiffnessand Mass Coefficients
C.1 ELEMENT STIFFNESS COEFFICIENTS

The local coordinate and node numbering system of a four-node rectangular ele-
ment is shown in Figure C.1. The element has lengths be and de along x- and z-
axes, respectively. For a plane elastic problem, the element has eight degrees of
freedom, two degrees of freedom on each node.

Therefore, the displacement pattern can be represented by eight unknown
coefficients of the polynomial as

u(x, z) = α1 + α2x + α3z + α4xz (C.1)

w(x, z) = α5 + α6x + α7z + α8xz (C.2)

Substituting the values of nodal coordinates in Equations C.1 and C.2 and then
solving for {α}, displacement shape functions can be expressed in terms of nodal
displacements as{

u(x, z)
w(x, z)} = [N(x, z)] [ u1 w1 . . . ui wi . . . u4 w4

]T (C.3)

with

[N(x, z)] = [ N (1,1) 0 N (1,3) 0 N (1,5) 0 N (1,7) 0
0 N (2,2) 0 N (2,4) 0 N (2,6) 0 N (2,8) ]

(C.4)

where

N (1,1) = N (2,2) = 1− x
be
− z

de
+ xz

bede
(C.5)

N (1,3) = N (2,4) = z
de
− xz

bede
(C.6)

621
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u3w3w4w2

w1 u2

xzde

FIGURE C.1 Four-node rectangular element.

N (1,5) = N (2,6) = x
be
− xz

bede
(C.7)

N (1,7) = N (2,8) = xz
bede

(C.8)

The strain–displacement relationship can be expressed asεx = u, x(x, z) (C.9)εy = w, z(x, z) (C.10)γxz = γzx = u, z(x, z)+ w, x(x, z) (C.11)

where the normal strain and shear strain amplitudes are denoted by ε and γ ,
respectively. The first subscript denotes the direction of the strain component. The
second denotes the direction of the infinitesimal area’s normal where the strain
component is. A comma denotes a partial derivative with respect to the subscript
following it.

Using Equation C.3, the strains in Equations C.9 through C.11 can be expressed
in terms of nodal displacements asεx(x, z)εz(x, z)γxz(x, z) = [B(x, z)] [ u1 w1 . . . ui wi . . . u4 w4

]T (C.12)

with[
B(x, z)]= B(1,1) 0 B(1,3) 0 B(1,5) 0 B(1,7) 0

0 B(2,2) 0 B(2,4) 0 B(2,6) 0 B(2,8)
B(3,1) B(3,2) B(3,3) B(3,4) B(3,5) B(3,6) B(3,7) B(3,8) 

(C.13)
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where

B(1,1) = B(3,2) = −B(1,5) = −B(3,6) = −1
be
+ z

bede
(C.14)

B(1,3) = B(3,4) = −B(1,7) = −B(3,8) = −z
bede

(C.15)

B(2,2) = B(3,1) = −B(2,4) = −B(3,3) = −1
de
+ x

bede
(C.16)

B(2,6) = B(3,5) = −B(2,8) = −B(3,7) = −x
bede

(C.17)

Normal stress and shear stress amplitudes can be obtained in terms of normal strain
and shear strain amplitudes, ε and γ , in matrix form asσxσzτxz

 = [D] εxεzγxz

 (C.18)

with [
D
] = 2℘ + λ λ 0λ 2℘ + λ 0

0 0 ℘ (C.19)

where the shear modulus of elasticity℘ = E
2 (1+ υ) (C.20)

the Lame constant λ = υE(1+ υ)(1− 2υ) (C.21)

and the letter E represents Young’s modulus of elasticity. The symbol ν represents
Poisson’s ratio.

By using Equations C.12 and C.18 and applying the principle of virtual work,
nodal forces relate to the nodal displacements in terms of the symmetrical element
stiffness matrix as[

P1 R1 · · · Pi Ri · · · P4 R4
]T= [K e

]
j

[
u1 w1 . . . ui wi . . . u4 w4

]T (C.22)
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with[

K e]
j = ∫ de

0

∫ be

0

[
B(x, z)]T [D]j [B(x, z)] dxdz=  K e(1,1) K e(1,2) K e(1,3) K e(1,4) K e(1,5) K e(1,6) K e(1,7) K e(1,8)
K e(2,2) K e(2,3) K e(2,4) K e(2,5) K e(2,6) K e(2,7) K e(2,8)

K e(3,3) K e(3,4) K e(3,5) K e(3,6) K e(3,7) K e(3,8)
Ke(4,4) K e(4,5) K e(4,6) K e(4,7) K e(4,8)

K e(5,5) K e(5,6) K e(5,7) K e(5,8)
symm K e(6,6) K e(6,7) K e(6,8)

K e(7,7) K e(7,8)
K e(8,8) 

(C.23)

where

K e(1,1) = K e(3,3) = K e(5,5) = K e(7,7) = 1
3

[(
2℘j + λj

) de

be
+ ℘j

be

de

]
(C.24)

K e(2,2) = K e(4,4) = K e(6,6) = K e(8,8) = 1
3

[(
2℘j + λj

) be

de
+ ℘j

de

be

]
(C.25)

K e(1,2) = K e(3,6) = K e(4,5) = K e(7,8) = 1
4
(℘j + λj

)
(C.26)

K e(1,8) = K e(2,7) = K e(3,4) = K e(5,6) = −1
4
(℘j + λj

)
(C.27)

K e(1,6) = K e(2,3) = K e(4,7) = K e(5,8) = 1
4
(λj − ℘j

)
(C.28)

K e(1,4) = K e(2,5) = K e(3,8) = K e(6,7) = −1
4
(λj − ℘j

)
(C.29)

K e(1,3) = K e(5,7) = 1
6

[(
2℘j + λj

) de

be
− 2℘j

be

de

]
(C.30)

K e(2,6) = K e(4,8) = 1
6

[(
2℘j + λj

) be

de
− 2℘j

de

be

]
(C.31)

K e(2,4) = K e(6,8) = −1
6

[
2
(
2℘j + λj

) be

de
− ℘j

de

be

]
(C.32)

K e(1,5) = K e(3,7) = −1
6

[
2
(
2℘j + λj

) de

be
− ℘j

be

de

]
(C.33)

K e(1,7) = K e(3,5) = −1
6

[
2
(
2℘j + λj

) de

be
+ ℘j

be

de

]
(C.34)
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K e(2,8) = K e(4,6) = −1
6

[
2
(
2℘j + λj

) be

de
+ ℘j

de

be

]
(C.35)

C.2 ELEMENT MASS COEFFICIENTS

Instead of using lumped mass at each node, consistent mass is considered. The
mass of element j distributed to each degree of freedom can be defined as[

M e]
j
= ∫ de

0

∫ be

0
ρj
[
N(x, z)]T [N(x, z)]dxdz (C.36)

Inserting Equation C.4 into Equation C.36 results in the symmetrical element
mass matrix as[

M e]
j
= ρjbede

 1
/

9 0 1
/

8 0 1
/

8 0 1
/

36 0
1
/

9 0 1
/

8 0 1
/

8 0 1
/

36
1
/

9 0 1
/

8 0 1
/

8 0
1
/

9 0 1
/

8 0 1
/

8
1
/

9 0 1
/

8 0
symm 1

/
9 0 1

/
8

1
/

9 0
1
/

9


(C.37)
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Notation
Roman Symbols
A cross-section area of an actuator cylinder, or system plant matrix in

discrete-time domain
AP, ASV amplitudes of incident P- and SV-wave traveling in negative z-direction/

amplitudes of general P- and SV-wave
ASH amplitudes of general SH-wave
Ab bearing’s bonded area of rubber
Al lead-plug area of lead-plug bearing
Ap cross-sectional areas of liquid mass damper’s cylinder
At cross-sectional areas of liquid mass damper’s tube
ae external excitation to represent measurand, ẍe(t){ai} real part of plant matrix’s ith eigenvector[A] plant matrix in open-loop, or matrix-related degrees of freedom of

nodes along rigid interface to rigid-body degrees of freedom at point 0;
characteristic matrix of controlled system[Aa] system matrix with active control but without SSI for MATLAB®

application[Ac] system plant matrix in closed loop, or plant matrix without SSI for state
space presentation[Ahy] system matrix with hybrid control but without SSI for MATLAB®

application[Ap] system matrix with passive control but without SSI for MATLAB®

application[As] system matrix without control and SSI for MATLAB® application[ASSI] system matrix without control but with SSI for MATLAB® application[Aa
SSI] system matrix with active control and SSI for MATLAB® application[Ahy
SSI] system matrix with hybrid control and SSI for MATLAB® application[Ap
SSI] system matrix with passive control and SSI for MATLAB® application[A0
c] plant matrix with SSI for state space presentation

B half-width of rectangular mat foundation
BD numerical coefficient for effective damping related to the design

earthquake
BM numerical coefficient for effective damping related to the MCE
BR numerical coefficient for effective damping, βR
BP, BSV amplitudes of incident P- and SV-wave traveling in positive z-direction
BV+I numerical coefficient for effective damping, βV+I
BmD the mth mode numerical coefficient for effective damping, βmD

627
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BmM the mth mode numerical coefficient for effective damping, βmM
b the shortest dimension of the structure above the isolation system,

or length of horizontal element on structure–soil interface
be width of discretizing element in excavated part domain{Bi} earthquake input vector{bi} imaginary part of plant matrix’s ith eigenvector{Br} coefficient vector for earthquake excitation[B] actuator location matrix, or matrices related to controller location[Ba] input matrix for active force[Bp] input matrix for passive force[Bu] coefficient matrix for control force vector[B] element strain nodal-displacement matrix in excavated part system
C phase velocity of wave traveling in soil domain, or sensor output

matrix in discrete-time domain
CP P-wave velocity, dilatational wave velocity
CS seismic response coefficient, or S-wave velocity, shear wave

velocity
CSm seismic response coefficient at the mth d.o.f., m = 1, . . . , n
CSR the residual mode seismic response coefficient of a damped

structure
Cd diagonal matrix related to the damper installed at the ith story, or

deflection amplification factor
CmFD, CmFV coefficients determined by Equations 3.52, 3.52a, 3.52b, and 3.52c
Ct coefficient to determine the building period with the fixed base, Ta,

given in Table 3.2
Cu coefficient as the upper bound to the calculated period
Cx, Cy, Cz nondimensionalized damping coefficients in horizontal direction,

rocking, and vertical direction, respectively
Cxy nondimensionalized coupling damping coefficients of horizontal

direction and rocking
C0 damper’s damping coefficient, or relaxation modulus of Maxwell

model
ca damping coefficient of accelerometer system
cb damping coefficient of the isolation system, or damping coefficient

of bracing
cbi damping coefficient of the ith brace
cd damping coefficient of fluid viscous damping device
cdi,j damping coefficient of the jth damper at the ith story level
ci, cm damping at the ith, or the mth d.o.f. of a structure, i, m = 1, . . . , n
cp damping coefficient actuator cylinder’s piston and its rods
cpk damping coefficient of the kth spring damper
cs structural damping coefficient
c0 damping coefficient
c1 translational damping coefficient of single-story shear building

structure
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c(t) servovalve–piston displacement
c(ω) frequency-dependent damping coefficient{C} vector associated with wave amplitude; vectors related to structure-

base’s acceleration[C], [C∗] damping matrix[Cb] damping matrix of braces[Cs] damping matrix of structural elements[C1], [C2] location matrix of accelerometers and sensors, respectively
D dead load, or depth of foundation embedment
DD the design displacement at the isolation system’s center of the rigidity
DM the maximum displacement at the isolation system’s center of the

rigidity
DRD the design displacement of the residual mode at the roof
DRM the maximum displacement of the residual mode at the roof
DTD the total design displacement
DTM the total maximum displacement
DY displacement corresponding to effective yield point of SFRS at roof

of structure
Dg floor displacement relative to ground system
Di absolute displacement at the ith floor
Dm horizontal component of damping force, Pm, at the mth d.o.f., m =

1, . . . , n
DmD the mth mode design displacement at roof of a structure, m = 1, . . . , n
DmM the mth mode maximum displacement at roof of a structure, m =

1, . . . , n
Ds floor relative displacement excluding rigid motion effect due to

foundation rotation
Dy yield displacement of bearing
d the longest dimension of the structure above the isolation system, or

depth of soil layer
de depth of discretizing element in excavated part of domain
di depth of soil layer i
Ḋ velocity of friction pendulum bearing’s movement[D] matrix of horizontal component of damping force, or plant matrix[D] element stress–strain matrix in excavated part system, or volumetric

strain
E Young’s modulus of elasticity
ED bearing’s energy dissipated per cycle of the design displacement
EM bearing’s energy dissipated per cycle of the maximum displacement
ER, Ei Young’s modulus of elasticity of layer i and of half-space
e eccentricity between the center of the mass above the isolation inter-

face and the isolation system’s center of the rigidity combined with
an accidental eccentricity

E∗ control energy{E} external disturbance vectors
Fa site coefficient specified in Table 2.1
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630 Notation
Fi design lateral force at story level i
Fi,R the residual mode design lateral force at story level i
Fi,m design lateral force of the mth mode at story level i
Fv site coefficient specified in Table 2.2
Fx vertical distribution of the minimum lateral force, Vs
Fy yield force of bearing
fL coefficient related to postyield stiffness of lead-plug bearing
fai active control force generated by the ith actuator and the

ith damper
fb servovalve bandwidth
fc friction force related to the fluid yield stress
fi the lateral force applied at level i
fmax friction coefficient at fast velocity under movement of

friction pendulum bearing
fmin friction coefficient at slow velocity under movement of

friction pendulum bearing
fpi passive control force generated by the ith actuator and the

ith damper
fyl lead yield stress of lead-plug bearing
Ḟg

xx, Ḟg
xθ , Ḟgθx, Ḟgθθ , Ḟg

zz ground system’s time-derivative displacement coefficients
corresponding to the first subscript’s degree of freedom
due to a unit force excitation corresponding to the second
subscript’s degree of freedom

F( ) augmented functional of functional f
Fc(t) control force{FD(t)} damping force vectors{FK(t)} restoring force vectors{F}m the mth mode vertical distribution of the design lateral

force, m = 1, . . . , n
f0 offset force
f ( ) quadratic energy function
f (t) system’s state-variable representation
f (x) objective function as given in Equation 7.108
fa(t) active control force
fp(t) passive control force, or force applied on spring
fsa(t) force generated by linear viscous damper[F] soil-flexibility matrix (strain–stress relationship)[Fg

00] dynamic-flexibility matrix of ground system with rigid
interface[Ḟg

00] ground system’s time-derivative dynamic-flexibility matrix
G tangent shear modulus of bearing, or shear modulus of

elastic materials
G0 the spectral intensity of the ground acceleration
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Notation 631

g acceleration of gravity
GF stain-gage factor
G( ) augmented function of function g
G(s) transfer function
G(ω) spectral density
g( ) quadratic function related to state vector at tn
g(x) control objective as given in Equation 7.108[G], [GSSI] feedback gain matrix[GC] Lyapunov matrix[Gd], [Gv] gain matrices for displacements and velocities
H depth of homogeneous layer on rock
Hδγ the transfer function from reference input as shown in Equation 7.3
hai accumulated height from rotational point 0 to the centroid of

mass m
hi the height of the structure above the base at story level i
hn the height of the structure above its base
hsi the story height at any level i
h0 depth of rectangular mat foundation
HCP(ω) Clough and Penzien low-band frequency filter
HKT(ω) Kanai and Tajimi filter
I the occupancy importance factor
Ii the ith floor mass moment of inertia with respect to point 0
I0 foundation mass moment of inertia with respect to point 0[I] identity matrix
J performance index
JE control energy index
JR response index
Jn performance index of the nth time interval
J1 average dissipated energy defined by the first objective function
J2 weighted sum of damping ratios for dominant modes defined by the

second objective function
J3 H2 cost of interstory drift defined by the third objective function
J4 Maximum of peak interstory drift defined by the fourth objective

function
J5 maximum root-mean-square interstory drift defined by the fifth

objective function
j imaginary number= √−1
Jp(t) time-dependent performance index
Kv servovalve pressure-loss coefficient
Kx , Ky, Kz nondimensionalized spring coefficients in horizontal direction, rock-

ing, and vertical direction, respectively
Kxy nondimensionalized coupling spring coefficients of horizontal direc-

tion and rocking
k linear spring with stiffness constant, or spring coefficient of a force

sensor in Equation 6.4, or wave number
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632 Notation
ka stiffness of accelerometer system
kDmax maximum effective stiffness of the isolation system at the design

displacement
kDmin minimum effective stiffness of the isolation system at the design

displacement
kMmax maximum effective stiffness of the isolation system at the maximum

displacement
kMmin minimum effective stiffness of the isolation system at the maximum

displacement
kb lateral stiffness of the isolation system, or stiffness of bracing
kbi stiffness of the ith brace
kcom compressive stiffness of bearing
ke bearing elastic stiffness
keff effective stiffness of bearing
ki, km stiffness at the ith, or the mth d.o.f. of a structure, i, m = 1, . . . , n
ki, k1 translational spring-stiffness coefficient of multistory shear structure

at the ith floor and of single-story shear structure, respectively
kp postyield stiffness of bearing
kpk spring coefficient of spring damper
ks linear lateral stiffness of a damped structure
kten tensile stiffness of bearing
ktorsion torsional stiffness of the isolation system
k(ω) frequency-dependent stiffness[K], [K∗] stiffness matrix[Kb] stiffness matrix of braces[Ks] stiffness matrix of structural elements[Ke] stiffness matrix of system’s excavated part[KI(w)] impedance function matrix[K̃00] symmetric spring-stiffness matrix corresponding to foundation

degrees of freedom using in state weighting matrix [Q]
L live load, or half-number of elements on horizontal part of structure–

soil interface, or observer model matrix
Le half-number of even portions along width of system’s excavated part
Lt tube length of liquid mass damper
l time-instant number where impulse velocity functions approach zero
lx , ly, lz propagating directional cosine to x-, y-, z-axes of incident P-wave
l+, l− positive or negative testing displacement[L] gain matrix, or interpolation matrix of distributed forces
M0 seismic moment
m mass of a SDOF structure, or number of K-braces
ma mass of accelerometer system
mb mass of bracing
mbi stiffness of the ith brace
mek effective liquid mass due to liquid motion in the tube of the kth

damper
mi, mm mass at the ith, or the mth d.o.f. of a structure, i, m = 1, . . . , n
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Notation 633

mp mass coefficient of actuator cylinder’s piston and its rods
m0 mass of rectangular mat foundation
MSSI

base base moment for SSI model
m1(t) fluid mass of the left actuator chamber[M], [M∗] mass matrix[Mb] mass matrix of braces[Mc] controllability matrix[Me] mass matrix of the system’s excavated part[Mf ] foundation mass matrix[Mo] observability matrix in Equation 6.15[Ms] mass matrix of structural elements
N order of state equations, or order of plant matrix [Ac]
NCR number of controllers
NS number of sampling steps in discrete Fourier transform
NT number of time intervals
N blow count
n number of structure stories
nl minimum of n and l[N] rigid-body kinematics matrix of rigid interface
P gravity load, or damping force in axial direction of a damping

device, or spring force in tension/compression of a force sensor
PR discharge pressure of hydraulic actuator
PS supply pressure of hydraulic actuator
Pc axial force applied at the friction pendulum bearing
Pg gravity load on friction pendulum bearing
Pi horizontal force at node i
Pi,j damping force of the jth damper at the ith story level
Pm damping force in axial direction of a damping device at the mth

d.o.f.
Pmax, Pmin modified maximum and minimum properties of a bearing, respect-

ively
Pn nominal properties of a bearing
p horizontal linearly distributed load
pi the ith system poles, or horizontal load intensity at node i
pH

j homogeneous part of horizontal reaction force at node j
pI

j part I horizontal reaction force at node j
pP

j particular part of horizontal reaction force at node j
P- primary
P+, P− positive or negative testing force at displacement of l+ and l− for

each cycle
P1(t), P2(t) hydraulic pressure[P] damping force matrix or Riccati matrix
Q characteristic strength of bearing, or structural force of a damped

structure
QDSD the mth mode design force of displacement-dependent damping

devices
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634 Notation
QE the seismic force determined from the MCE
Qm structural force of a damped structure at the mth d.o.f., m = 1, . . . , n
QmDVS the mth mode design force of velocity-dependent damping devices
QmSFRS the mth mode design force from the seismic force-resisting system
q number of significant modes in Equation 7.2
qH hysteretic loop adjustment factor
q(t) displacement in modal space{q(t)} vector of modal coordinates
Q1(t), Q2(t) hydraulic flow rate[Q] structural force matrix, or weighting matrix in performance indices,

or state weighting matrix
R response modification coefficient, or radius of curvature of the slid-

ing surface, or the resistance of the undeformed gauge given in
Equation 6.3

RI a numerical coefficient related to the type of the seismic force-
resisting system above the isolation system

Ri vertical force at node i
Rx , Rz horizontal and vertical interaction force at point 0 between structure

system and ground system
R1, R2 resistors in the amplifiers
r number of actuators as given in Equation 7.20, or vertical linearly

distributed load
ri vertical load intensity at node i
RH

j homogeneous part of vertical reaction force at node j
RI

j part I vertical reaction force at node j
RP

j particular part of vertical reaction force at node j
Rθ interaction moment around y-axis at point 0 between structure

system and ground system
r(k) sampled value of seismic excitation, ẍg(t), at the kth sampling time{R0} vector consisting of horizontal interaction force and interaction

moment{R̃0} dynamic-equivalent-force vector[R] weighting matrix in performance indices, or control weighting
matrix

SA pseudoacceleration
SD spectral displacement
SD1 the design spectrum acceleration parameter at 1s
SDS the design spectrum acceleration parameter at a short period
SMS MCE spectral response acceleration at a short period
SM1 MCE spectral response acceleration at 1s
SS MCE spectral response acceleration parameter at a short period
SV pseudovelocity
Sa design spectral response acceleration
Sam pseudoacceleration at the mth d.o.f., m = 1, . . . , n
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Notation 635

S1 MCE spectral response acceleration parameter at period of 1s
S- secondary horizontal
SH- secondary vertical
SV- horizontal base shear for SSI-model
s number of dampers
s1, s2 numbers of accelerometers and state sensors, respectively
s̄u undrained shear strength
Sqi(ω) power spectrum density of the modal displacement response qi(t)[S] weighting matrix in performance indices[Se] dynamic-stiffness matrix of system’s excavated part corresponding to all

nodal points[S00] dynamic-stiffness matrix of system with rigid interface
T building’s fundamental period
TD effective period of the isolated structure at the design displacement
TL long-period transition period
TM effective period of the isolated structure at the maximum displacement
TR period of the residual mode for a damped structure
TS period defined as the ratio of SD1/SDS
Ta building period with the fixed base
Tm period of structure at the mth d.o.f., m = 1, . . . , n
T0 period equal to 0.2SD1/SDS
T1D effective period of the damped structure’s fundamental mode at the design

displacement
T1M effective period of the damped structure’s fundamental mode at the

maximum displacement
t time variable, or total rubber thickness of bearing
ti time instant
tf final time instant
t0 initial time instant
T∗ possible time[T ] eigenvalues of plant matrix [A], or transformation matrix
u simplified notation of an isolation system’s movement, or hori-

zontal displacement/prescribed horizontal displacement/displacement in
x-direction

ui nodal horizontal displacement at node i
ui,max saturation limit of the ith control force specified in Equation 7.20
uj horizontal component of the active tendon force generated by the jth

actuator
um displacement or movement of a seismically isolated structure at story m
ux displacement of fluid viscous damper in x direction�ui horizontal control force corresponding to the ith controller
u(k) sampled values of {u(t)} at the kth sampling time
u(t) movement of an isolation system, or active control command{u(t)} control command vector{ū(t)} control force
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636 Notation{ �U} horizontal force vector
V actuator/damper chamber volume, or minimum lateral force determined

from the structure with the fixed base, or sensor output voltage
VD design base shear of a damped structure
VR the residual mode base shear of a damped structure
Vb minimum lateral force to design the isolation system, the structural

elements below the isolation system, and the foundation
Vi minimum lateral force to fully activate the isolation system or the wind-

restraint system
Vi,j velocity of the jth damper at the ith story level
Vm design base shear at the mth d.o.f., m = 1, . . . , n
Vs minimum shear force to design the structural elements above the isolation

system
v displacement in y-direction
vs shear wave velocity of soil
Vi(t) voltage of input signals
Vo(t) voltage of output signals
V1(t) fluid volume in the left actuator chamber
W effective seismic weight of the structure above the isolation interface
WDm the total work done by all damping devices at the mth mode
WSm maximum strain energy of all damping devices at the mth mode
Wmi,j the work done by the jth damper at the ith story in one complete cycle of

dynamic response at the mth mode
Wm effective seismic weight of the mth mode, m = 1, . . . , n
WR effective residual mode seismic weight of a damped structure
w vertical displacement/prescribed vertical displacement/displacement in

z-direction
wi, wj portion of W that is located at story level i and j, respectively
X percent of total structure height at the actuator location
x simplified notation of relative displacement of a SDOF structure, or

coefficient to determine the building period with the fixed base, Ta, or
controllability index in Equation 7.9, or design variable for optimization
problem

xbj displacement of the ith floor and the jth K-brace
xa displacement of accelerometer system
xi the ith floor relative displacement
xe

0 horizontal displacement at point 0 of rigid interface of system’s excavated
part

xg
0 horizontal displacement at point 0 of rigid interface of ground system

xf
0 horizontal displacement at point 0 of rigid interface of free-field system

xt
0 horizontal displacement at point 0 of rigid interface of total system

xt
i horizontal ith floor displacement of total system

xtb
i horizontal ith floor displacement of total system that is relative to

structure-base’s displacement
xtg

i horizontal ith floor displacement of total system that is relative to
horizontal displacement of ground system with rigid interface
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Notation 637

x , xx partial derivative with respect to successive variable(s)
x′m the mth component of the generalized response vector
ẋa velocity of accelerometer system
ẍa acceleration of accelerometer system
ẍb horizontal acceleration of structure-base
x(t) relative displacement of a SDOF structure
xg(t) earthquake ground motion
xi(t), xm(t) relative displacement at the ith, or the mth d.o.f. of a structure, i, m =

1, . . . , n
ẋ(t) velocity of SDOF structure
ẋi(t), ẋm(t) velocity at the ith, or the mth d.o.f. of a structure, i, m = 1, . . . , n
ẍ(t) acceleration of SDOF structure
ẍa(t) directly sensed value by the accelerometer
ẍg(t) earthquake ground acceleration
ẍi(t), ẍm(t) acceleration at the ith, or the mth d.o.f. of a structure, i, m = 1, . . . , n{Xt

S} floor displacement vector of total dynamic system{X tb
S } floor displacement vector of total dynamic system that is relative to

that of structure-base{X tg
S } floor displacement vector of total dynamic system that is relative to

that of ground system{X tg
0 } foundation displacement vector of total dynamic system that is

relative to that of ground system{x′} generalized response vector
Yj(t) the jth mode maximum response spectrum value{y(t)} sensor output
zi vertical displacement corresponding to node i
ze

0 vertical displacement at point 0 of rigid interface of excavated part
zg

0 vertical displacement at point 0 of rigid interface of ground system
zf

0 vertical displacement at point 0 of rigid interface of free-field system
zt

0 vertical displacement at point 0 of rigid interface of total system
z(k) system state vector in digital domain{Z} state vector{Z(t)} system state vector in analog domain{1} 1× n unit vector

Greek Symbolsα Rayleigh damping coefficient in [C] = α[M] + β[K], or velocity
exponent of fluid viscous damping deviceαi,j velocity exponent of the jth damper at the ith story level{α} polynomial coefficients vectorβ fluid bulk modulus, or Rayleigh damping coefficient in [C] =α[M] + β[K], or damping ratioβD effective damping of the isolation system at the design displacement
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638 NotationβHD, βHM effective damping due to postyield hysteretic perform-
ance of the SFRS combined with structural elements of
the damping system under the design earthquake or the
MCEβI effects of the structural damping of damped structureβM effective damping of the isolation system at the maximum
displacementβR total effective damping of the residual modeβV effective damping of damping devicesβV+I effective damping equal to βI + βV1βVR effective damping of the residual modeβVm the mth mode viscous dampingβb damping ratio of a SDOF seismically isolated structureβeff effective damping of bearing or effective modal dampingβm damping ratio at the mth mode of a seismically isolated
structure, m = 1, . . . , nβmD total effective damping of the mth mode at the design
displacementβmM total effective damping of the mth mode at the maximum
displacementχ bearing’s system property adjustment factorχ̇g

xx , χ̇g
xθ , χ̇gθx , χ̇gθθ , χ̇g

zz ground system’s impulse velocity coefficients correspond-
ing to the first subscript’s degree of freedom due to a unit
force excitation corresponding to the second subscript’s
degree of freedom[χg

00] impulse velocity matrix of ground system[χ̃00] pseudostatic-stiffness matrix of ground system� the nth order vector for interstory drifts for an n-story
building�i,D the total story drift between story i and i − 1�i,mD the story drift between story i and i − 1 of the mth mode�t time increment�ω frequency incrementδ displacement converted by the spring of a force sensor in
Equation 6.4, or Dirac-delta functionδi the story drift at level iδi,RD design displacement of story i at the residual modeδi,mD, δi−1,mD displacement or deflection at story i and i − 1 of the mth
mode�(t) actuator/damper piston displacement�a(t), �ak(t) displacement of an actuator piston�p(t), �pk(t) piston displacement of viscous fluid damper�1(t) the force-caused displacement of a spring∇i,D the total design velocity of story i∇i,mD design velocity of story i at the mth d.o.f., m = 1, . . . , n
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Notation 639∇i,RD design velocity of story i at the residual modeδ(t) interstory drift in the third objective function{δ} coefficient vector for earthquake excitation[δa] active controller-location matrix[δp] passive controller-location matrix[δr] input location matrix for horizontal and rotational ground acceler-
ationεx , εy, εz normal strain in x-, y-, z-directions, respectivelyφi,R the residual mode shape of the structure at story iφi,m,φn,m the mth mode shape of the structure at story i, or at the roof
levelφ̈g ground rotational acceleration{�} solution vector of transformed state equation{�}m the mth mode shape of the structure, m = 1, . . . , n[�] modal matrix, or eigenvectors of plant matrix [A]�R the residual mode participation factor�m the mth modal participation factor, m = 1, . . . , nγ shear strain of viscoelastic materialγxy, γxz, γyz shear strains in direction of first subscript on infinitesimal area,
normal in direction of second subscriptγyx , γ̇yx components of strain tensor and rate of strain, respectively{γi} vector of sensitive effect to active control force[γ ] n× r location matrix of control forces[γa], [γp] location matrices for actuators and dampers, respectively[γs] controller-location matrix for superstructure[γ0] controller-location matrix for foundation[γ̄ ] controller-location matrixη ratio of the postyield stiffness to the elastic stiffness, or fluid
viscosityη1, η2 proportional damping ratios of two translational modesι imaginary number= √−1℘ shear modulus of elasticityϕ angle of damper’s inclination to horizontal directionϕi,j angle of the jth damper’s inclination to horizontal direction at ith
story levelϕm damper inclination to horizontal direction at the mth d.o.f., m =
1, . . . , n℘∗ complex shear modulus of elasticity[ϕ] modal shapes of structureκ ratio of bearing’s elastic stiffness to its postyield stiffnessλ gamma functionλi,j gamma function of the jth damper at the ith story levelλmax, λmin adjusted modification factors to maximum or minimum bearing
propertiesλmax,i, λmin,i maximum or minimum modification factors to bearing properties
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640 Notationλ0 damper relaxation time, or material viscosity of Maxwell model,
or mean square value of the ground accelerationλ∗ complex Lame’s constant{λg}, {λf } multiplier vectors for quadratic function g and functional f ,
respectively[�] diagonal matrix equal to [T ]−1[Ac][T ], or matrix consisting of plant
matrix’s eigenvaluesµ viscosity of linear viscous material, or factor determined by
required probability of structural safety as given in Equation 7.44µi real part of the ith eigenvalueµD effective ductility demand of a damped structure under the design
earthquakeµM effective ductility demand of a damped structure under the MCEµb breakaway friction coefficient of the friction pendulum systemµi, µj the real part of the ith or jth eigenvalue of matrix [A]µmax maximum value of the effective ductility demandµs sliding coefficient related to sliding velocity of friction pendulum
bearingν command signalνi, νj the imaginary part of the ith or jth eigenvalue of matrix [A]νmax voltage associated with the saturation of magnetic field in the MR
damper

vx fluid velocity of fluid viscous damper
v̄s average shear wave velocity�(t) state transition matrix[�] transformation matrix of [�] as given in Equation 7.59[θa] matrix of actuator locations in a structure[θb] matrix of brace locations in a structure[θp] matrix of damper locations in a structureρ fluid mass density, or mass densityρi, ρR soil mass density of layer i and of half-spaceρ(X) controllability indexρ1(t) mass density of the fluid∑ ∣∣F+D ∣∣

max sum of the maximum absolute lateral force at a positive design
displacement, DD∑ ∣∣F+D ∣∣

min sum of the minimum absolute lateral force at a positive design
displacement, DD∑ ∣∣F−D ∣∣

max sum of the maximum absolute lateral force at a negative design
displacement, DD∑ ∣∣F−D ∣∣

min sum of the minimum absolute lateral force at a negative design
displacement, DD∑ ∣∣F+M∣∣

max sum of the maximum absolute lateral force at a positive maximum
displacement, DM∑ ∣∣F+M∣∣

min sum of the minimum absolute lateral force at a positive maximum
displacement, DM
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Notation 641∑ ∣∣F−M∣∣
max sum of the maximum absolute lateral force at a negative maximum

displacement, DM.∑ ∣∣F−M∣∣
min sum of the minimum absolute lateral force at a negative maximum

displacement, DMσx , σy, σz normal stresses in x-, y-, z-directionsσδi root-mean-square value for interstory drift at the ith storyτ shear stress of viscoelastic material, or parameter related to the
servovalve bandwidth, fb, or time variableτu yield stress induced by the electric fieldτxy, τxz, τyz shear stresses in direction of first subscript on infinitesimal area,
normal in direction of second subscriptτyx shear stress of elastic materialsυ, υi, υR Poisson’s ratio, Poisson’s ratio of soil layer i and of half-space T truncated frequency o overstrength factorω harmonic excitation frequencyωb angular frequency of a SDOF seismically isolated structureωf forcing frequencyωg prevailing circular frequency defined in Equation 7.29ωi the ith mode natural frequency of an uncontrolled structure,
or harmonic excitation frequency corresponding to the ith
modeωm angular frequency at the mth d.o.f., m = 1, . . . , nωn natural frequency of an uncontrolled SDOF structure, or filter’s
natural frequency in Equation 6.7ωb damped frequency of a SDOF seismically isolated structureωi the ith mode damped natural frequencyω̂i the ith mode natural frequency of structure with control{ } rotational-strain vectorξ characteristic sliding velocity of friction pendulum bearing given
in Equation 2.34ψi scalar weighting factor in Equation 7.2ψp,ψS angles of incident P- and S-wave measured from positive x-axis{ψ(t)} modal state vector{ψi(t), ψ̄i(t)} the ith pair of conjugate complex modal coordinates as shown in
Equation 7.52ζ the filter’s damping ratio in Equation 6.7, or hysteretic damping
ratioζi damping ratio of the ith mode, or the ith mode damping ratio of an
uncontrolled structure, or hysteretic damping ratio of soil layer i,
of half-spaceζg damping ratio defined in Equation 7.29ζn damping ratio of an uncontrolled SDOF structureζj, ζR discretizing soil element jζ̂i the ith mode damping ratio of structure with control
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642 Notation
Abbreviations
AASHTO AmericanAssociation of State Highway and Transportation Officials
AMD active mass damper
ASCE American Society of Civil Engineers
CQC complete quadratic combination
d.o.f. degree of freedom
FEM finite element method
FEMA Federal Emergency Management Agency
FIM foundation input motion
FIX fixed base
ft feet
GOAC generalized optimal active control
HDABC hybrid damper actuator bracing control
HMD hybrid mass damper
IBC International Building Code
ICBO International Conference of Building Officials
in inch
IOAC instantaneous optimal active control
k 1000 lbs
kg kilogram
kN 1000 Newtons
ksi 1000 lb/in2

lb pound
IBEM indirect boundary element method
LVDT linear variable differential transformer
MCE maximum considered earthquake
MDOF multiple-degree-of-freedom
NEHRP National Earthquake Hazard Reduction Program
pdf probability density function
PDF probability distribution function
PGA peak ground acceleration
PPF percentage point function
rad radium
RMS root-mean-square
ROAC Riccati optimal active control
SEAOC Structural Engineers Association of California
SDOF single-degree-of-freedom
sec, s second
SFRS seismic force-resisting system
SRSS square root of the sum of the squares
SSI soil–structure interaction, or structure–soil interaction
TLD tuned liquid damper
TMD turned mass damper
UBC Uniform Building Code
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Index
A
A/D converter, 35, 331
Accelerometers, 316, 320–324

piezoelectric, 322
sensing system, 333–336
specifications, 323–324

accuracy, 323–324
amplitude range, 323
environment factors, 324
frequency response, 323
linearity, 323
noise level, 324
sensitivity, 324
signal grounding, 324
temperature range, 324

Acoustic accelerometers, 322
Active brace systems, 38–39
Active control systems, 33–39

active brace systems, 38–39
active mass damper systems, 36–37
active tendon systems, 37–38
advantages, 34
basic configuration, 34–36
optimal actuator placement, 422–423
pulse generation systems, 39

Active mass driver, See AMD
Active seismic response control, 33–34, 159,

366, See also Smart seismic
structures

Active structural control, 34, 40
soil–structure interaction, See SSI

Active tendon control
motion equations, 160–164
shear building with, 349

Active tendon systems, 37–38
Actuators, 36

actuator dynamics
system response effect of, 292–296

actuator-structure system, 285
chambers, 240
damper–actuator systems, 40
dynamics, 285

system response effect of, 292–295
electric-mechanical actuator, 28

electrohydraulic actuators, 33
electropneumatic actuator, 28
hybrid damper-actuator bracing control,

42–45, 168
hydraulic actuators, See also Hydraulic

actuators
optimal actuator placement, See also

Active control systems; Smart
seismic structures

PZT actuators, 28
Adaptive systems, 1
ADAS (added damping and stiffness), 22
Algebraic Riccati equation, See ARE
AMD (active mass driver), 7, 36–37

motion equations, 164–167
Amplifier, 191

signal amplifiers, 330
Amplitude of velocities, 494
Analogous controllers, 35
Apéry’s constant, 567
ARE (algebraic Riccati equation), 190
ASCE 7-05, 100–104

prototype tests, 154
testing requirements, 103–105, 154–156

B
Base-slab averaging, 524
Base isolation system, 10–16, See also

Bearings
computer modeling techniques

bilinear model, 65–70
of isolation system, 70–72

isolator properties
determination, 103–106
modifications, 105–106
testing verification, 103–106

mechanical characteristics, 64–65
Bearings, 11–16

high-damping natural rubber bearings,
13–14

friction pendulum bearings, 14–15
pot-type bearings, 15

643
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644 Index
Bearings (continued)

elastomeric, 11–12
lead-plug bearings, 12–13
properties, 90

Bilinear model
of friction pendulum system, 69–70
high damping rubber system, 68–69
lead-plug bearing system, 67–68
and model parameters, 65–67

Bingham viscoplastic model, 252
Blow count, 74
Body wave magnitude, 73
Bouc-Wen model, 254–255

C
Calculus-based algorithms, 360
Capacitive accelerometers, 322
Causal functions, 494
Causality condition, 441, 497
Characteristic sliding velocity, 69
Characteristic strength, 67

friction pendulum system, 69
high damping rubber system, 68
lead-plug bearing system, 66

Chevron bracings, 110–111
Civil engineering structures, 2

smart structure systems application, 3
Closed-loop system, 339

feedback control, 170–171
Clough and Penzien filter, 396
Coefficient of sliding friction, 69, 72
Column damper, 19–20
Combinatorial optimization, 360

problem, 362
Complete quadratic combination, See CQC
Complex conjugate pairs, 445, 454
Control algorithms, 35, 160, 280–281

active control algorithms for seismic
smart structures, 205–232

classical optimal control algorithms
for smart seismic structures, 182–205

generalized optimal active control
algorithm, 208–223, 448–455

instantaneous optimal active closed-loop
control algorithm, 206–208

Riccati optimal active control algorithm,
183–200

Control computer, 182, 332
Control energy index, 370
Controllability index, 375–394

advantages, 378
for seismic-resistant structures, 376–377

Controllability matrix, 366
Control law, 182, 339, 395

feedback control law, 160, 169, 591
optimum control law, 37, 445, 452
time-dependent control law, 191

Controller design, 182
Control signals/commands, 35–36, 271,

328–329, 337, 354, 395
Cost function, 359
Conventional observer technique, 338–340
Coulomb friction element, 252
CQC (complete quadratic combination), 87

damping systems, 130

D
D/A converter, 35, 331
Damped frequency, 53
Damped natural frequency, 3
Damper-actuator systems, 40

hybrid damper-actuator system, 42, 44
Damping coefficient, 110, 112, 126–130,

152, 288, 500
Damping matrix, 56
Damping ratio, 3
Damping systems/devices, 109–157

analysis procedures and code
requirements, 118–120

equivalent lateral force analysis,
133–138

nonlinear static procedure, 138–141
response spectrum analysis, See

Response spectrum analysis
MODF, 115–118
properties determination, 154
SODF, 109–115
testing verification, 154–157

displacement-dependant damping
devices, 156–157

prototype test procedures, 155
velocity-dependant, 156

Data acquisition systems, 315
common sensors, 316–329

accelerometers, 320–324
force transducers, See Force transducers
LVDT, 318–319
RVDT, 318–319
strain gauges, 324–325
velocity sensors, 319–320

and digital control systems
A/D and D/A converters, 331–332
control computer, 332
signal amplifiers, 330
signal filters, 331

Deflection amplification factor, 121
Degree of controllability, See DOC
Design displacement, 78, 80
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damped structure, 125
Design earthquake, 73
Design spectral response acceleration, 75
Design story velocity, 125, 136–138
Design variables, 359
Diagonal bracings, 23–24, 110
Differential-transformers, 317, 319, 322
Digital control systems, 329
Digital controllers, 35
Direct acceleration feedback, 334
Displacement-dependent damping devices,

111, 113–114
DOC (degree of controllability), 376
Duhamel’s integral, 53, 59
Dynamic analysis, 85–90

general requirements, 85
lateral forces, 85–86
lower-bound lateral displacements, 85
response history analysis, 89–90
response spectrum analysis, 86–89

Dynamic-flexibility matrix, 493–495

E
Earthquake ground motions

stochastic model, 395–397
Earthquake magnitudes, 89, 546
Earthquake propagation waves, 460–469

in-plane displacement equation
for half plane, 469
for horizontal layer, 466–469

primary-wave equation, 460–463
secondary-wave equation, 463–466

Effective cracked sections, 85
Effective damping

friction pendulum system, 70
high damping rubber system, 68
lead-plug bearing system, 68

Effective ductility demand, 121
Effective peak accelerations, See EPA
Effective peak velocities, See EPV
Effective stiffness, 66

friction pendulum system, 70
high damping rubber system, 69

Effective yield displacement, 126
Eigen values, 398–399
Eigen vectors, 399
Elastic stiffness, 65

high damping rubber system, 69
lead-plug bearing system, 68

Elastomeric bearings, 11–12
with steel shims, 12

Elastoplastic model, 113, 114
El-Centro earthquake, 306–307

HDABC system response, 362

N-S component, 216, 352, 361, 378–379
structural response, 292

Electromagnetic force sensors, 327–328
Electropneumatic actuator, 28
Electrorheological dampers, 31–32

Bingham model, 253
Element mass coefficients, 625
Element stiffness coefficients, 621–625
Energy-dissipating-restraint device, 21
Engineering optimization, 359–360
Enumerative algorithms/techniques, 360,

411
EPA (effective peak accelerations), 378
EPV (effective peak velocities), 378
Equivalent lateral force analysis, 76,

133–138
ETABS, 70–71
Euler’s equation, 451–452
Euler–Mascheroni integral, 566–567
Eurasia plate, 572
Extreme value distribution, 563–568

F
Faraday’s law, 319
Fast fourier transform, See FTT
Fault distance, 89
Federal Emergency Management Agency,

See FEMA
Feedback control, 36

acceleration feedback control strategy, 334
closed-loop feedback control, 169
feedback control law, 160, 169
full-state feedback controller, 332
open–closed-loop feedback control, 169
open-loop feedback control, 169
velocity feedback control, 173

Feedback gain matrix, 450–452
control force, 452
Euler’s equation, 451–452
gain matrix, 452
transversality condition, 450–451

Feedback gain, 226
Feed-forward control, 36
FEMA (Federal Emergency Management

Agency), 9
damping systems, 119

Finite element method, 487
FINSIM, 569–570
Fixed-base structure, 60, 77, 93
FIX-model, 516–517
Flexibility matrix, 492–498

time derivative, 493–494
Fluid pumping system, 240
Fluid viscous damper, 111, 112, 127, 128
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Flux, 319
Force transducers, 317, 326

electromagnetic force sensors, 327–328
hydraulic load cells, 328
piezoelectric force sensors, 328
strain gauge–based load cells, 326–327

Frequency domain
excavated part’s stiffness matrix, 487–491
force–displacement relationship, 481–484
strain–displacement relationship, 484–487

Friction dampers
semiactive, 28

Friction devices, 20–22
Friction pendulum bearings, 14–15

with double concave surface, 15
Friction pendulum system

bilinear model, 69–70
FTT (fast fourier transform), 498
Full-state feedback, 173, 280, 332, 336,

339, 340

G
Gain matrix, 452
Gauge factor, 325
Gaussian random process, 395
Gaussian white noise, 570
Generalized optimal active control

algorithm, See GOAC
Generalized response vector, 57
Genetic algorithms, 360, 363
GERB viscous fluid damper, 25
GOAC (generalized optimal active control),

208–217
control force, 210–214
feedback gain matrix, 210
for nonlinear smart seismic structures,

223–230
active tendon control, 223–224
feedback gain, 226
performance index, 224–225
solution technique, 227
transversality condition, 226
unbalanced force correction,

228–230
performance index, 208–209
solution technique, 215
SSI system

feedback gain matrix, 450–452
performance index, 448–450
system model, 448
weighting matrix configuration,

452–455
Green’s function, 597–619

k-domain, See k-Domain

space domain, influence functions in,
618–619

vertical incident wave, 611–618
Ground motion attenuation, 74
Ground motion generation, 569–573
Ground motion maps, 73
Ground system

dynamic-stiffness matrices, 480–498
free-field system’s stiffness matrix,

481–487
flexibility matrix, 492–498

time derivative of, 493–494
Gumbel distribution, 564–568

H
Half plane

in-plane displacements, 469
stiffness coefficients

dynamic-stiffness coefficients, 476–480
HDABC (hybrid damper actuator bracing

control), 42–45
advantages, 45
control devices on some floors, 263–265
implementation, 310–312

control devices, 310–311
earthquake simulator system, 311
parameter identification, 311–312
structure and K-braces, 310

model verification, 266–271
seismic response control, effectiveness

for, 296–306
analytical model, 296–297
hybrid state-slope control, 299
hybrid-state control, 298
three-story smart seismic structure,

302–304
vs. magnetorheological dampers,

304–306
shear building, 258–263

hybrid devices on all floors, 259–263
stabilization, 288–291
state space formulation, 540–544

multiple-story building system,
542–544

single-story structural system, 540–541
state-variable representation, 271–274
structural formulation, 526–540

multiple-story building, 532–540
single story building, 526–532

system description, 258
High damping rubber system

bilinear model, 68–69
High-damping natural rubber bearings, 13,

14
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Hookean solids, 248–249
Horizontal layer, 466–469

in-plane displacements, 467
stiffness coefficients

dynamic-stiffness coefficients,
469–476

Hybrid base-isolation system, 41–42
Hybrid control systems, 40–45

hybrid base-isolation system, 41–42
hybrid damper-actuator bracing control,

42–45
advantages, 45

hybrid mass dampers, 40–41
optimal placement, 421–422

Hybrid controlled structures
shallow foundation, See Shallow

foundation
Hybrid damper actuator bracing control

system, See HDABC
Hybrid mass dampers, 40–41
Hybrid-controlled smart structures

stochastic seismic response, 400–404
of controlled structure, 410
first-order dynamic system, 404–407
second-order dynamic system, 407–410

Hydraulic actuators, 36, 39, 238–251,
283–291, 302–303, 535

Hydraulic load cells, 328
Hysteresis loop area, 70
Hysteretic damping, 126

determination, 129
Hysteretic loop adjustment factor, 129

I
IASC (International Association for

Structural Control), 8
Impedance function, 524, 525, 549
Impulse velocity matrix, 494
Indirect boundar-element method, 481
Induction displacement sensors, 318
Induction, 319
Inertial interaction, 523

impedance function, 524
Innovation sensing system, 335
Instantaneous optimal active control

algorithm, See IOAC
Integrated sensors, 335–336
Intelligent hybrid control systems, 281–283
International Association for Structural

Control, See IASC
Inverse Fourier transformation, 495
IOAC (instantaneous optimal active control

algorithm), 206–208
time increment, sensitivity of, 216–217

Isolation system
computer modeling, 70–72
hysterestic behavior, 65
rotation, 81
viscoelastic behavior, 65

Isolator unit, 51
bilinear model, 66

Isolators, 11

K
Kalman filter, 340
Kanai-Tajimi spectrum, 396
K-braces, 38
k-Domain

Green’s function
loads on horizontal line, 608–611
loads on vertical line, 597–608

total soil system, 606
Kinematic interaction, 524
Kobe earthquake, 307

L
Lame constant, 457
Langrange multipliers, 185
Laplace transform, 284–285
Laser accelerometers, 322
Lateral force analysis, 133–138

damping systems
design base shear, 134–136
design lateral force, 135
design story drift, 136–138
story velocity, 136

Lateral force, 82
Lead plug area, 67
Lead-plug bearings, 12

bilinear model, 67–68
Linear fluid viscous damper, 127–128

viscous damping, 127
Linear optimal control theory, 167
Linear quadratic regulator, See LQR
Linear variable differential transducer, See

LVDT
Linear velocity transducers, 319

mechanism, 320
Liquid mass dampers, 42

linear model, 250–251
Load cells, 35, 317, 326–328
Low-damping bearings, 12
Low-pass filters, 331
LQR (linear quadratic regulator), 191
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LVDT (linear variable differential

transducer), 318–319
advantages, 319

M
Magnetorheological (MR) dampers, 32–33

modeling, 253–257
vs. electrorheological fluid, 32
vs. HDABC, 304–306

Marginally stable systems, 246, 285, 292
Mat foundation, 432–433, 510
MATLAB®

fixed support
with active control, 556–558
with hybrid control, 558–560
with passive control, 552–553
without control, 545–548

language, 585–587
smart seismic structures

analysis and design, functions, 588–592
SSI

with hybrid control, 560–563
with passive control, 554–556
without Control, 548–551

Matrix Riccati equation, See MRE
Maximum considered earthquake, See MCE
Maximum kinetic energy, 127
Maximum strain energy, 127–129
Maxwell model, 248
MCE (maximum considered earthquake), 73
M-code, 586
MDOF (multiple-degree-of-freedom), 54–60

damping systems, 115–118
seismically isolated structure, 55

Mean, 565
Measurand, 316
Measurement, 316
Measure of modal controllability, 366–369,

428
Metallic hysteretic device, 22
Metallic yield devices, 22–23
Metallic yielding damper, 111, 113
Microprocessor, 336
Minimum lateral force, 82–84, 92–93
Minimum shear force, 82
Modal analysis, 398–400
Modal controllability, 366–367

system controllability, 366
Modal decomposition, 399–400
Modal displacement superposition method,

59–60
Modified Mercalli Intensity V, 73
Monte Carlo method, 523, 563
MRE (matrix Riccati equation), 190

Multi story building
hybrid controlled

with SSI, 534–540
without SSI, 532–534

SSI model, 436–440
Multiple-degree-of-freedom, See MDOF
Multistory controlled building, 432

N
Near source effects, 89
Negative wave number, 478
Neoprene, 12
Newtonian liquids, 248–249
Newton’s second law, 321
Nonlinear fluid viscous damper, 128

viscous damping, 128
Nonlinear response history analysis, 70–72,

118, 141
Nonlinear static procedure, 138–141
Northridge earthquake, 307
Numerical coefficient for effective damping,

79, 120

O
Objective function, 359
Observer-controller systems, 336

advantage of, 353
closed-loop response of, 352, 355
direct output feedback compared with, 353
functions, 343
seismic, 342

Observer design, 340
Observer technique

development of, 342–347
closed-form verification, 343–347
seismic observer, formulation of,

342–343
Occupancy importance factor, 83
Open-closed-loop feedback control, 171
Open-loop feedback control, 169–170
Optimal device placement, 359–427

determination of, 411–421
optimization problem, 411
solution procedure, 411–413

effectiveness, 423–424
optimal actuator placement, 365–394

active control systems, 422–423
controllability index, 375–394
modal controllability, 366–369
performance index, 370–375

significance, 361
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statistical method, 394–410
dynamic model, 395
modal analysis, 398–400
stochastic model, 395–397
stochastic seismic response, 400–410

structural property, influence of, 424–427
studies on, 361–365

Optimization theory, 359
Overstrength factor, 121

P
P-� effects, 85, 86, 138
Panel zone, 85
Participation factor, 59, 135
Passive control system, 6
Passive dampers, 6

modeling, 246–251
liquid mass dampers, 250–251
spring dampers, 251
viscous fluid dampers, 247–250

Passive energy-dissipation systems, 16–26
friction devices, 20–22
metallic yield devices, 22–23
TLD, 19–20
TMD, 16–19
viscoelastic dampers, 23–24
viscous fluid dampers, 24–26

Passive structures, 2
Percentage point function, 564
Performance index, 183–185, 224

GOAC, 208–209
optimal actuator placement, 370–375

advantages, 394
weakness, 394

ROAC, 183–185
SSI, 448–450

PFD (piezoelectric friction damper), 28
Philippine sea plate, 572
Piezoelectric accelerometers, 322
Piezoelectric actuators, 28
Piezoelectric effect, 322
Piezoelectric force sensors, 328
Piezoelectric friction damper, See PFD
Piezoelectricity, 322
Piezoresistors, 325
Plant matrix

controlled structures
eigen values, 398
eigen vectors, 398

Pole assignment method, 201
Pole placement, 182

Ackermann’s formula, 588
algorithm, 201–205

Polynomial model, 113

Position transducers, 317
Positive-definite matrix, 183, 188
Positive semi-definite matrix, 183, 209, 449,

452
Positive wave number, 476–478
Post-yield hysteretic stage, 118
Postyield stiffness, 65

friction pendulum system, 69
high damping rubber system, 68
lead-plug bearing system, 67

Pot-type bearings, 15–16
Power spectral density, 396
Primary-wave equation, 460–463
Production tests, 104, 155
Proportional damping, 432, 439, 516
Prototype tests, 68, 103, 155–156
Pseudoacceleration, 78
Pseudovelocity, 54
Psuedovelocity feedback, 334
Pulse generators, 39
Pushover analysis, 138
P-wave, 460–463

Q
Quadratic integral, 363
Quadratic performance index, 183, 448–450

R
Random search algorithms, 360, 363
Random systems/techniques, 311, 360, 362,

395–396
Relaxation modulus, 248
Reliability, 22, 237
Resilient-friction base isolation systems, 16
Response history analysis, 70, 71, 76, 89–91,

118, 141
Response index, 370
Response modification coefficient, 121
Response spectrum analysis

damping systems
design requirements, 130–133
effective damping, 126–130
procedure development, 120–126

Rigid diaphragm, 85
ROAC (Riccati optimal active control

algorithm), 183–200
control force determination, 185–200
performance index, 183–185

Root-locus plots, 287, 288, 291
Root-mean-square (RMS), 5, 365
Rotation of the isolation system, 81
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RVDT (rotary variable differential

transducer), 318–319
advantages, 319

S
Sagami trough, 572
SAP2000, 70–71
SAVA (semi-active vibration absorbers),

29, 30
SAVS (semi-active variable-stiffness),

29–30
Scissor-jack bracings, 110
Scragging, 105
SDOF (single-degree-of-freedom), 3, 51–54

damping systems, 110–115
motion equations, 51–54
seismically isolated structure, 52

Seismic force-resisting system, 130–132
Seismic observer technique, 334–340

accelerometers, analytical modeling with,
336–337

plant equation, 336
sensor output equation, 336–337

conventional observer technique,
338–340

Seismic plate tectonic movements, 569
Seismic response coefficient, 121
Seismic response control

history, 6
mechanisms, 4
smart structure systems, 3

Seismically isolated structures, 51–60
code requirements, 72–90

analysis procedure selection, 76–78
dynamic analysis procedure, See

Dynamic analysis
equivalent lateral force procedure,

78–84
seismic ground motion, 73–75

MDOF motion equations, 54–60
SDOF motion equations, 51–54

Semiactive damper systems, 26
friction dampers, 28
modeling, 252–257

electrorheological dampers, 252–253
magnetorheological dampers, 253–257

TLD, 27–28
TMD, 26–27
viscous fluid damper, 32–33

Semi-active friction dampers, 28–29
Semiactive hydraulic dampers, 29
Semi-active tuned liquid dampers, 27–28
Semi-active tuned mass dampers, 26–27

Semi-active viscous fluid dampers, 32–33
Semiconductors, 325
Sensors/Sensing systems

challenges in, 332–333
simplified system, 347–352
solutions, 333–336

accelerometers, 333–334
integrated sensors and smart sensors,

335–336
Serviceability, 1–2, 282
Servovalve-controlled hydraulic actuators,

36
modeling, 238–246
stabilization, 283–291

with active bracing control, 283–288
with HDBAC, 288–291

Shaking table test, 243
Shallow foundation

dynamic responses, 525
extreme value distribution, 563–568

extreme value and description, 564
Gumbel-type distribution, 564–568

ground motion generation, 569–573
at bed rock surface, 569–572
at ground surface, 572
modeling concept, 569
one hundred ground motions,

572–573
HDABC

state space formulation, 540–544
structural formulation, 526–540

substructure approach, 524–526
Shear force, 82
Shear loss modulus, 24
Shear modulus, 24, 456
Shear storage modulus, 24
Shear wave velocity, 74, 572, 573
Signal amplifiers, 330
Signal conditioners, 315, 329
Signal filters, 331
Signal interface systems, 329
Simulated annealing, 360
Single story building

hybrid controlled
with SSI, 528–532
without SSI, 526–528

SSI model, 433–436
Single-degree-of-freedom, See SDOF
Site coefficient, 74–75
Site soil layer profile, 573
Sleeved-pile isolation systems, 16
Sliding friction, 69
Sliding velocity, 69
Sliding-type bearings, 11, 15, 65
Sloshing damper, 19–20
Slotted bolted connections, 22
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Slotted slip joints, 21
Smart materials, 1, 8
Smart seismic structures

using active control systems, 159–233
analytical model, 159–167
classical optimal control algorithms,

184–201
feedback law, 168–174
GOAC, See GOAC
IOAC, See IOAC
ROAC, See ROAC
state-variable representation, 167–168

data acquisition systems, See Data
acquisition systems

motion equations
active tendon control, 160–164
AMD, 164–167
solution procedure, 174–184

optimal device placement, See Optimal
device placement

using semiactive and hybrid control
systems, 237–312

actuator dynamics, effect of, 292–295
control algorithms, 280–281
control devices, dynamic model of,

238–257
HDABC system, See HDABC
intelligent hybrid control systems,

281–283
sensing system, See Sensing system

Smart sensors, 316, 335–336
Smart structure systems, 1–45

active control systems, See Active control
systems

civil engineering structures, for, 2–3
history, 6
hybrid control systems, See Hybrid

control systems
passive energy-dissipation systems, See

Passive energy-dissipation systems
seismic response control, 3, 5, 7–10, 18,

26, 29, 31–34, 36–37, 39
mechanisms, 4

semiactive dampers, 26–33
electrorheological dampers, 31–32
magnetorheological dampers, 32
semiactive friction dampers, 28–29
semiactive TLD, 27–28
semiactive TMD, 26–27
semiactive vibration absorbers, 29
semiactive stiffness control devices,

29–30
semiactive viscous fluid damper, 32–33

Solid viscoelastic damper, 111–113
Soil–structure interaction, See SSI
Solenoid valve, 30

Source mechanisms, 89
Spectral displacement, 54, 78
Spring dampers, 42–43, 247, 295

linear model, 251
Spring-dashpot model, 254
Spring-type systems, 16
SRSS (square roof of the sum of the

squares), 87–90, 99–102, 130, 132,
136, 141, 149, 410

design story drift, 137
SSI (soil–structure interaction), 431–519

dynamic stiffness coefficients
ground system, See Ground system
half plane, 476–480
horizontal layer, 469–476

GOAC algorithm, 448–455
feedback gain matrix, 450–452
performance index, 448–450
system model, 448
weighting matrix configuration,

452–455
motion equation, 431–442

foundation-soil interface, 440–442
multistory building, 436–440
single-story building, 433–436

state equation, 443–448
formulation, 443–445
solution technique, 445–448

wave equations, 455–469
dynamic-equilibrium equation,

455–460
earthquake propagation waves,

460–469
with and without control, 516–519

State control, 280, 281, 298, 300–301
State observer technique, 336
State-slope control, 280, 281, 295, 296, 299,

300
Static friction, 15
Steel shims, 11–12
Stochastic theory

structural seismic response, 397
Story drift, 109, 125, 127, 132, 136–138, 141
Story velocity, 125–126, 136–137
Strain gauges, 324–325
Structural damping, 110, 115–117, 121, 126
Structural safety, 1, 398
Structural seismic response, 3–4, 7, 32–33,

37
stochastic theory, 397

Structural stiffness, 56
Structure design

traditional approach
limitations, 1

Structure, 1
structure-soil interaction, 516
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Subcritical damping, 455
Substructure method, 431
Sumitomo friction damper, 21
S-wave, 431–432, 460–461, 463–467, 470,

477
displacement, 465

Synthetic rubbers, 12
System controllability, 366

T
Tachometers, 319
Tangent shear modulus, 68
Teflon, 15
The MathWorks, 586
Thermal accelerometers, 317, 322
Time–derivative dynamic flexibility matrix,

494–495, 501
TLD (tuned liquid dampers), 16, 19–20

semiactive, 27–28
TMD (tuned mass dampers), 16–19

semiactive, 26–27
Toggle bracings, 110
Torsional stiffness, 81
Total design displacement, 77, 80–81, 85,

91–92, 94–96, 103
Transfer function, 284–287, 331, 340,

344–345, 348
Transformation matrix, 401, 403, 445–446,

504–505, 512
Transversality condition, 188, 209, 213,

223–226, 233, 450–452
Trapezoidal rule, 175, 447
Trilinear model, 138
Truncated frequency, 495
Tuned liquid dampers, See TLD
Tuned mass dampers, See TMD
Tyler’s yielding steel bracing system, 23

U
UBC (Uniform Building Code), 10
Undamped dynamic vibration

absorber, 17

Undrained shear strength, 74
Uniform Building Code, See UBC
Upper or lower toggle bracings, 110

V
Valve piston, 240, 242, 246, 271,

284–285
Variance, 564–566, 582
Variational problem, 205, 206, 209
Velocity-dependent damping devices,

111–112, 133, 154–155
Velocity feedback control, 173, 184, 201,

205
Velocity sensors, 319–320, 333, 350, 356

specication ranges, 321
Velocity transducers, 317, 319
Vertical incident wave, 611
Vibrating structure, 523
Virtual work, 484, 623
Viscoelastic dampers, 23–24
Viscosity, 247–248, 252
Viscous damping wall, 25
Viscous damping, 119, 126–128, 138–139,

141, 145–146, 150
Viscous fluid dampers, 24–26, 42

modeling, 247–250
Volumetric strain, 457, 459, 460
VSD (variable stiffness device), 29, 30

W
Wave equations, 455, 460, 463, 469,

480
Weighted-residual technique, 481
Wheatstone bridge, 325–327

X
X-braced friction damper, 20
X-braces, 38
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