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Preface

This book is written for both theoretical and experimental scientist (chemists and
physicists) to help understand chemical bonding and electronic structure, from the
viewpoint of molecular orbital theory. A long time ago, quantum theory was
applied to very simple atoms. To connect quantum theory with complex systems,
there were many research activities in the fields of quantum chemistry and physics:
the Bohr model, wave-function, Schrödinger’s equation, the Hartree-Fock method,
Mulliken charge density analysis, density functional theory, etc. Due to this
research, we are now able to perform molecular orbital calculations from small
molecules through to advanced materials including transition metals. In this book,
chemical bonding and electronic structure are explained with the use of concrete
calculation results, density functional theory, and coupled cluster methods.

In Part I the theoretical background of quantum chemistry is clearly explained.
In Part II we introduce molecular orbital analysis of atoms and diatomic molecules
via concrete calculation results. After introducing the theoretical background of
inorganic chemistry in Part III, the concrete calculation results for advanced
materials such as photocatalysts, secondary batteries, and fuel cells are introduced
in Part IV. Finally, helium chemistry and the future of the subject are considered in
Part V.
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Chapter 1
Quantum Theory

Abstract By the difference of scale, matter is largely classified into solid, molecule
and cluster. The basis unit of matter is atom. Atom consists of quantum particles such
as electron, proton and neutron. InBohrmodel, quantumeffect is incorporated through
the concept of matter wave. In the case of hydrogen, the orbit radius was estimated to
be 0.5292 Å, corresponding to the experimental distance. In addition, the discrete
energy was also reproduced. However, Bohr model was not able to be applicable to
many-electron system. In order to incorporate particle-wave duality in universal
manner, quantum wave-function was proposed. In wave-function theory, electron
does not correspond to classical point, but spreads as wave. It is difficult to interpret
wave-function itself. It is because it does not represent figure. Instead, the square of
wave-function represents electron density.Wave-function can be obtained by solving
the Schrödinger equation, where electron energy is given by operating wave-function
with Hamiltonian. As a feature of wave-function, it is normalized and satisfies
orthogonality. In quantum mechanics, one electron occupies one wave-function.
It implies that one electron is not distributed to several wave-functions.

Keywords Wave-particle duality � Bohr model � Quantum wave-function �
Schrödinger equation

1.1 Matter and Atom

By the difference of scale,matter is largely classified into the three: solid,molecule and
cluster (nano-cluster), as shown in Fig. 1.1. Molecule and cluster exist in the basic
three fundamental states: gas, liquid and solid (molecular solid). In quantum chem-
istry, electronic structure is normally discussed in three fundamental states. As the
extreme environment, matter exists as plasma and superconducting states. In plasma
state, matter is divided into positively charged ion and negatively charged electron at
very high temperature. It has been considered that most of matter in space exists as
plasma state. On the other hand, in superconducting state, electric resistance becomes
zero at very low temperature, though matter keeps the same crystal structure.

© Springer Nature Singapore Pte Ltd. 2018
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The basis unit of matter is atom. Atom consists of quantum particles such as
electron, proton and neutron. As they belong to Fermi particle, the spin angular
momentum becomes half-integer. Atom has an atomic nucleus at the centre, con-
sisting of proton and neutron. As is well known, there are several kinds of atoms in
space. The kind of atom is called element. Element is represented by atomic number
(Z) that corresponds to the total number of protons. For example, the elements of
Z = 1, 2 and 3 denote hydrogen, helium and lithium, respectively. When the same
element has the different total number of neutrons, it is called isotope. As the
magnitude of charge density of proton is e, the total charge density of atomic
nucleus becomes +Ze. Z electrons are allocated around atomic nucleus. Note that
the magnitude of electron charge density is −e.

1.2 Wave-Particle Duality

Quantum particle is defined as particle with wave-particle duality. The wave
property is incorporated through the concept of matter wave.

k ¼ h
mv

ð1:1Þ

where k is the wave-length of matter wave: h is Plank constant; m is the mass of
quantum particle; v is the velocity of quantum particle. In electron, m denotes the
mass of electron, which is expressed as me. Though the energy of classical particle
continuously changes, quantum particle has the discrete energy.

1.3 Bohr Model

Niels Bohr proposed a theoretical hydrogen model, which is well known as Bohr
model, to express positions of electron and atomic nucleus, under consideration of
wave-particle durability. In Bohr model, proton is located at atomic centre, and

Fig. 1.1 Basic three
fundamental states of matter
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electron rotates around atomic centre, as shown in Fig. 1.2. The driving factor of
the rotation is the Coulomb interaction (f) between proton and electron:

f ¼ e2

4pe0r2
ð1:2Þ

where e0 is dielectric constant of vacuum; r is orbit radius. The centrifugal force,
which is obtained from the classical equation of circular motion, is equal to the
Coulomb interaction.

mev2

r
¼ e2

4pe0r2
ð1:3Þ

The equation implies that quantum effect is taken into account, by applying the
concept of matter wave to electron. Electron goes around an orbit, and orbit dis-
tance is mathematically determined to be 2pr. It must be also integer-multiple of
wave-length of matter wave.

2pr ¼ nk n ¼ 1; 2; 3; . . .ð Þ ð1:4Þ

By the substitution of Eq. (1.1) in Eq. (1.4), it is rewritten:

mevr ¼ nh
2p

n ¼ 1; 2; 3; . . .ð Þ ð1:5Þ

By the substitution of Eq. (1.5) in Eq. (1.3), the orbit radius of hydrogen is
obtained:

r ¼ e0h2n2

pmee2
n ¼ 1; 2; 3; . . .ð Þ ð1:6Þ

As orbit radius depends on integer (n), it is found that orbit radius is quantized. It
implies that orbital radius has only discrete value. The orbit radius of n = 1 is called
Bohr radius. The value is estimated to be 0.5292 Å.

Proton
+e

Electron
-e 

r 

v Fig. 1.2 Schematic drawing
of Bohr model. Proton is
located at atomic centre, and
electron goes around an orbit
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Let us consider an electron energy. It is obtained by the summation of electron
kinetic energy (KE) and potential energy (PE). In classical manner, KE is given by

KE ¼ mev2

2
¼ e2

8pe0r
ð1:7Þ

From Coulomb’s law, PE is given by

PE ¼ � e2

4pe0r
ð1:8Þ

It is defined that PE is zero, when electron is infinitely apart from proton. Hence,
potential energy exhibits negative value. Finally, the total energy of electron is
given by

KEþ PE ¼ � e2

8pe0r
ð1:9Þ

By the substitution of Eq. (1.6) in Eq. (1.9), it is rewritten:

KEþ PE ¼ � mee4

8e20h2n2
n ¼ 1; 2; 3; . . .ð Þ ð1:10Þ

It is found that the electron energy is also quantized by the introduction of matter
wave. It implies that the discrete electron energy of hydrogen is successfully repro-
duced in Bohr model. When n = 1, the electronic state is called ground state,
exhibiting the smallest energy. When n is larger than two, the electronic state is called
excited state. In general, the electron energy of excited state is larger than ground state.

1.4 Quantum Wave-Function

In Bohr model, wave property is incorporated through the concept of matter wave.
Bohr model was not able to be extended to many-electron system. As the solution,
quantum wave-function was proposed. Let us consider an electron isolated in space.
It is mathematically represented by wave-function (W(r1)), which contains one
radial parameter (r1). In wave-function theory, electron corresponds to not classical

Point
Quantum Wave-function

(ψ)

Fig. 1.3 Schematic drawing
of quantum wave-function
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point, but spreads as wave (see Fig. 1.3). Note that radial parameter is used for
representing the spread of electron. In many-electron system, n-radial parameters
are included. The wave-function is expressed as W(r1, r2,…,rn), where r1, r2,…,rn
are defined for electron 1, electron 2,…, electron n, respectively. Note that the
time-independent wave-function is considered in this book, though time evolution
is possible in wave-function.

1.5 Wave-Function Interpretation

One electron can be expressed as one wave-function. However, it is difficult to
interpret wave-function itself. It is because it does not represent figure (line, curved
surface, etc.). Instead, the square of wave-function represents electron density. It is
given by,

wj j2¼ w�w ð1:11Þ

Electron density within the volume element (ds) is proportional to wj j2ds, where
ds is equal to dxdydz (see Fig. 1.4).

For the correspondence to the real electron, the normalization is performed for
the wave-function. The normalized wave-function (w0) is expressed as

w0 ¼ Nw ð1:12Þ

where N is the normalization constant. When integrating electron density within the
whole space, it must represent one electron.

Z1

�1
w0�w0ds ¼ 1 ð1:13Þ

x

y

z 

r 
dx

dz 

dy

Fig. 1.4 Schematic drawing
of the relationship between
electron density and volume
element
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By substitution of Eq. (1.12) in Eq. (1.13), it is rewritten:

N2 Z1

�1
w�wds ¼ 1 ð1:14Þ

In general, the normalized wave-function is utilized.

1.6 Schrödinger Equation

The basic equation of classical particle is motion equation. On the other hand, the
basic equation of electron is Schrödinger equation, where electron is expressed as
wave-function (w). In one-dimensional system, it is expressed as

� �h2

2m
d2w
dx2

þV xð Þw ¼ Ew ð1:15Þ

where V(x) denotes the potential energy at x; E is the total energy; �h is defined as

�h ¼ h
2p

ð1:16Þ

Extending to three-dimensional system, it is expressed as

� �h2

2m
r2wþVw ¼ Ew ð1:17Þ

where r2 is defined as

r2 ¼ @2

@x2
þ @2

@y2
þ @2

@z2
ð1:18Þ

In the general expression, Schrödinger equation is expressed as

Ĥw ¼ Ew ð1:19Þ

where Ĥ is the Hamiltonian operator, which mathematically operates to
wave-function.

Ĥ ¼ � �h2

2m
r2 þ V̂ ð1:20Þ

When wave-function operates with the Hamiltonian operator, the total energy is
given (see Fig. 1.5). Schrödinger equation is eigenvalue equation, where E and w

8 1 Quantum Theory



denote eigenvalue and eigenfunction, respectively. It implies that one eigenvalue is
given for one wave-function.

Let us consider two different wave-functions. The wave-functions (wi and wj)
satisfy the following equations:

Ĥwi ¼ Eiwi ð1:21Þ

Ĥwj ¼ Ejwj ð1:22Þ

where Ei and Ej are eigenvalues for wi and wj, respectively. Integrating Eq. (1.21)
within the whole space, combined with the product of w�

i on the left side,

Z
w�
j Ĥwids ¼ Ei

Z
w�
j wids ð1:23Þ

Integrating Eq. (1.22) within the whole space, combined with the product of w�
i

on the left side,

Z
w�
i Ĥwjds ¼ Ej

Z
w�
i wjds ð1:24Þ

The complex conjugate of Eq. (1.23) becomes as

Z
w�
j Ĥwidtau

� ��
¼ Ei

Z
w�
i wjds ð1:25Þ

In general, Hermitian operator satisfies the following relationship:

Z
w�
i Ĥwjds ¼

Z
w�
j Ĥwids

� ��
ð1:26Þ

By the substitution of Eqs. (1.24)–(1.26),

Ei � Ej
� �Z

w�
i wjds ¼ 0 ð1:27Þ

Fig. 1.5 Schematic drawing
of Schrödinger equation
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When Ei 6¼ Ej is satisfied,

Z
w�
i wjds ¼ 0 ð1:29Þ

It implies that eigenfunctions with different eigenvalues are orthogonal.

1.7 Quantum Tiger

Quantum electron is represented as quantum wave-function, which is obtained from
Schrödinger equation. For the easy understanding, it is, here, assumed that one tiger
represents one quantum electron, and one box represents one wave-function. When
there are two boxes (box A and box B), where is tiger is staying? (See Fig. 1.6). In
conventional world, tiger stays in box A or B, without changing its figure. It means
that the density of tiger must be 0 or 100% in one box. If the density is between 0
and 100%, tiger must be separated into two pieces. It does not occur.

If tiger is separated into two pieces, it means that one electron is delocalized over
two wave-functions. In fact, the ith quantum electron has specific energy (Ei) and
exists in one wave-function (wi) (see Fig. 1.7). The ith electron cannot be allocated
in the different wave-function, due to the orthogonality between wave-functions
with different energies. In degenerated case, although the wave-functions are dif-
ferent, they have the same energy. However, the ith electron is allocated into one
wave-function.

OR 

A(100%) B(0%) 

B(100%) A(0%) 

A(50%) B(50%) 

Fig. 1.6 Schematic figure of quantum tiger in two boxes
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Chapter 2
Atomic Orbital

Abstract In one-electron atom such as hydrogen atom and hydrogenic atom, the
exact solution of Schrödinger equation can be obtained. The wave-function, which
stands for atomic orbital, is separated into the two radial and angular
wave-functions. Radial wave-function contains two quantum numbers such as
principal quantum number and orbital angular momentum quantum number. The
former and latter denote shell and subshell, respectively. Due to the relationship
between two quantum numbers, 2p and 3d orbitals have the three and five orbitals.
Angular wave-function expresses electron spread by using two angular parameters.
The wave-function cannot be directly plotted into three-dimensional space. Instead,
it is possible to visualize electron density, which is given by the square of
wave-function. In many-electron atom, the effect of spin cannot be negligible. Spin
has two quantum numbers of total spin angular momentum and spin angular
momentum along the standard direction. When the latter quantum number is +1/2
or −1/2, it is called a or b spins, respectively. To incorporate electron spin in
wave-function, spin function is introduced. Spin orbital is expressed by the product
between spatial orbital and spin function. To satisfy inversion principle, the total
wave-function is represented by Slater determinant. Finally, building-up principle is
also explained.

Keywords Hydrogenic atom � Radial wave-function � Angular wave-function �
Electron spin � Slater determinant

2.1 Hydrogenic Atom

2.1.1 Schrödinger Equation

As explained in Chap. 1, in quantum manner, electron is represented by
wave-function. The wave-function standing for an electron is called orbital. In atom
and molecule, it is called atomic orbital (AO) and molecular orbital (MO),
respectively. Let us explain atomic orbitals of hydrogenic atom, where one electron

© Springer Nature Singapore Pte Ltd. 2018
T. Onishi, Quantum Computational Chemistry,
DOI 10.1007/978-981-10-5933-9_2
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exists around atomic nucleus with nuclear charge Ze. Note that Z is positive integer.
Coulomb potential energy (V) between atomic nucleus and electron is expressed as

V ¼ � Ze2

4peer
ð2:1Þ

where e, e0 and r denote charge, vacuum permittivity and electron-atom distance,
respectively. The Hamiltonian of hydrogenic atom is given by

H ¼ � �h2

2me
r2 � �h2

2mN
r2 � Ze2

4peer
ð2:2Þ

where �h ¼ h=2p;me is the mass of electron, and mN is the mass of nucleus. The
first, second and third terms denote kinetic energy of electron, kinetic energy of
atomic nucleus and Coulomb potential energy, respectively. The Schrödinger
equation for hydrogenic atom is expressed as

� �h2

2me
r2 � �h2

2mN
r2 � Ze2

4peer

� �
W ¼ EW ð2:3Þ

where W and E denote the wave-function of an electron and the total energy,
respectively. The wave-function can be separated into two parts by three variables
such as radial (r) and two angular (h, /) components (see Fig. 2.1).

W r; h;/ð Þ ¼ R rð ÞY h;/ð Þ ð2:4Þ

When the reduced mass (l) is defined as

l ¼ memN

me þmN
ð2:5Þ

z 

r

x

y

φ 

θ 

Fig. 2.1 Relationship
between Cartesian
coordinates and polar
coordinates
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the l value is approximately similar to the electron mass.

1
l
¼ 1

me
þ 1

mN
� 1

me
ð2:6Þ

It is because the nucleus mass is much larger than electron mass. By the sub-
stitution of Eq. (2.6), Eq. (2.3) is written as

� �h2

2l
r2 � Ze2

4peer

� �
W ¼ EW ð2:7Þ

In spherical polar coordinates, r2 is defined as

r2 ¼ @2

@r2
þ 2

r
@

@r
þ 1

r2
K2 ð2:8Þ

where K2 is defined as

K2 ¼ 1

sin2h

@2

@/2 þ 1
sin h

@

@h
sin h

@

@h
ð2:9Þ

The Schrödinger equation is rewritten as

� �h2

2l
@2

@r2
þ 2

r
ð

@r
þ 1

r2
K2

� �
RY � Ze2

4peer
RY ¼ ERY ð2:10Þ

Finally, it is rewritten as

� �h2

2lR
r2
d2R
dr2

þ 2r
dR
dr

� �
þ Ze2

4pee
r2 � �h2

2lHU
K2Y ¼ Er2 ð2:11Þ

Equation (2.11) can be separated into two equations.

� �h2

2lHU
K2Y ¼ constant ð2:12Þ

� �h2

2lR
d2R
dr2

þ 2
r2
dR
dr

� �
þ Ze2

4pee
r2 � Er2 ¼ �constant ð2:13Þ

The parameters of Eq. (2.12) are two angular components (/ and h). On the
other hand, r is the sole parameter in Eq. (2.13).
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2.1.2 Radial Wave-Function

We go through the detailed mathematical process to solve the radial equation.
Table 2.1 shows the radial wave-functions of hydrogenic atom. The wave-functions
are written in terms of dimensionless quantity (q).

q ¼ Zr
a0

ð2:14Þ

where a0 is Bohr radius.

a0 ¼ 4pe0�h2

mee2
ð2:15Þ

In radial wave-function, two quantum numbers are defined. One is the principal
quantum number (n), corresponding to a shell. For example, electrons with n = 2
belong to the L shell. The other is orbital angular momentum quantum number (l),
corresponding to a subshell. Two quantum numbers satisfies the following
condition.

l ¼ 0; 1; 2; 3; . . .; n� 1ð Þ ð2:16Þ

Table 2.2 shows the relationship between quantum numbers, shell and subshell
in hydrogenic atom. When n = 1, there is only one s-type subshell (l = 0). Quantum
numbers of n = 1 and l = 0 stand for 1s atomic orbital. When n = 2, there are s-
type (l = 0) and p-type (l = 1) subshells. Quantum numbers of n = 2 and l = 0
stand for 2s atomic orbital, and n = 2 and l = 1 stand for 2p atomic orbital.
Figure 2.2 shows the variation of R/(Zr/a0)

3/2 value, changing Zr/a0 value. In 2s, 3s
and 3p AOs, positive and negative R/(Zr/a0)

3/2 values are given. The total energy
(E) is given by

Table 2.1 Radial wave-functions of hydrogenic atom

n l R(r)

1 0
R1s ¼ 2 Z

a0

� �3=2
e�q=2

2 0
R2s ¼ 1

2
ffiffi
2

p Z
a0

� �3=2
2� qð Þe�q=2

2 1
R2p ¼ 1

2
ffiffi
6

p Z
a0

� �3=2
qe�q=2

3 0
R3s ¼ 1

9
ffiffi
3

p Z
a0

� �3=2
6� 6qþ q2ð Þe�q=2

3 1
R3p ¼ 1

9
ffiffi
6

p Z
a0

� �3=2
4� qð Þqe�q=2

3 2
R3d ¼ 1

9
ffiffiffiffi
30

p Z
a0

� �3=2
q2e�q=2
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E ¼ � �h2

2mea20

Z2

n2
ð2:17Þ

E depends only on principal quantum number. It is why 2s and 2p atomic
orbitals of hydrogenic atom are degenerated.

2.1.3 Angular Wave-Function

The sign of the total wave-function is determined by the signs of the radial and
angular wave-functions. The angular wave-functions are written in terms of angular
components (h and /). We go through the detailed mathematical process to solve the
angular equation. Table 2.3 shows the angular wave-functions of hydrogenic atom.

Table 2.2 Relationship between quantum numbers, shell and subshell in hydrogenic atom

n Shell l Subshell Atomic orbital

1 K 0 s 1s

2 L 0 s 2s

2 L 1 p 2p

3 M 0 s 3s

3 M 1 p 3p

3 M 2 d 3d

-0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0

R/
(Z

r/
a 0)

3/
2

Zr/a0 

1s 2s 2p 3s 3p 3d

Fig. 2.2 Variation of R/(Zr/a0)
3/2 value, changing Zr/a0 value
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In 1s, 2s and 3s AOs, one angular wave-function has no angular parameter. It
implies that the AOs spread uniformly to all directions. The sign of wave-function
is determined by the radial wave-function. In 1s AO, the sign of wave-function
becomes positive. On the other hand, in 2s and 3s AOs, the sign of radial
wave-functions is positive or negative, depending on a radius. It implies that the
sign of wave-function is changeable.

In 2p and 3p AOs, three angular wave-functions are given. In n = 2, the AOs are
called 2px, 2py and 2pz AOs. Though the sign of radial wave-function (R2p) is
positive, the signs of angular wave-functions are positive or negative, depending on
angular parameters. Hence, the sign of wave-function is changeable in 2p AOs.

In 3d AOs, five angular wave-functions are given. The AOs are called 3dxy, 3dyz,
3dxz, 3dx2�y2 ; 3d3z2�r2 AOs. Though the sign of radial wave-function (R3d) is pos-
itive, the signs of angular wave-functions are positive or negative, depending on
angular parameters. Hence, the sign of wave-function is changeable in 3d AOs.

The positive and negative signs in the wave-function represent the qualitative
difference of wave-function. In electron–electron interaction, the difference has an
important role.

2.1.4 Visualization of Hydrogenic Atomic Orbital

In hydrogenic atom, one electron spreads as one wave-function. The wave-function
of the ground state consists of R1s and Yð¼ 1=2

ffiffiffi
p

p Þ. It is because minimum total
energy is given when n = 1. However, the wave-function (W) cannot be directly
plotted into three-dimensional space. Instead, it is possible to visualize electron

Table 2.3 Angular wave-functions of hydrogenic atom

l Yðh;/Þ
0 1

2
ffiffi
p

p

1 1
2

ffiffi
3
p

q
cos h

1 1
2

ffiffi
3
p

q
sin h cos /

1 1
2

ffiffi
3
p

q
sin a sin/

2 1
4

ffiffi
5
p

q
ð3cos2h� 1Þ

2 1
2

ffiffiffiffi
15
p

q
sin h cos h cos /

2 1
2

ffiffiffiffi
15
p

q
sin h cos h sin /

2 1
4

ffiffiffiffi
15
p

q
sin2h cos 2/

2 1
4

ffiffiffiffi
15
p

q
sin2h sin 2/
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density, which is given by the square of wave-function ( W2
�� ��). Electron density in

an finite volume (ds) is given by

W2
�� ��ds ð2:18Þ

Electron density is normalized in three-dimensional space.

Z
W2
�� ��ds ¼ 1:00 ð2:19Þ

In general, the atomic orbital envelope diagrams are drawn based on the con-
tours, within which the values of electron density is 0.95. Figure 2.3 depicts the
atomic orbital envelope diagram of hydrogenic atom. Note that electron density is

Fig. 2.3 Atomic orbital envelope diagrams of hydrogenic atom
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dense around the centre, though the radial wave-function spreads in a large dis-
tance. The positive and negative signs of wave-functions are discriminated by
colour difference. In this book, grey- and blue-coloured lobes represent the positive
and negative signs of wave-function, respectively.

2.2 Many-Electron Atom

2.2.1 Schrödinger Equation

First, we consider helium atom as the simple example of two-electron atom (see
Fig. 2.4). Two electrons are labelled as electron 1 and electron 2. Each electron has
both electron–atomic nucleus interaction and electron–electron interaction. The
Hamiltonian of the Schrödinger equation is expressed by

H ¼ � �h2

2me
r2

1 �
�h2

2me
r2

2 �
�h2

2mN
r2 � 2e2

4peer1
� 2e2

4peer2
þ e2

4peer12
ð2:20Þ

In many-electron atom (n-electron system), all electron–atomic nucleus and
electron–electron interactions must be included in the Hamiltonian.

H ¼ � �h2

2me

Xn
i

r2
i �

�h2

2mN
r2 � Ze2

4pee

Xn
i

1
ri
þ e2

4pee

Xn
i\j

1
rij

ð2:21Þ

2.2.2 Electron Spin

In many-electron atom, which means that more than two electrons exist in one
atom, the effect of spin cannot be negligible. In general, two quantum numbers
related to spin are defined. One is quantum number of total spin angular momentum

Atomic nucleus
(+2e) 

Electron 2
(-e) 

Electron 1
(-e) 

r12

r2

r1

Fig. 2.4 Schematic drawing
of helium atom
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(S). The other is quantum number of spin angular momentum along the standard
direction (ms). When ms =+1/2, electron has a spin. On the other hand, when
ms = −1/2, electron has b spin. Figure 2.5 depicts the schematic drawing of elec-
tron allocation in one atomic orbital. In one electron case, one electron occupies one
atomic orbital. The spin multiplicity, which is defined as (2S + 1), becomes two. It
is called doublet spin state. When two electrons occupy one atomic orbital, two
spins are paired, due to Pauli exclusion principle. Two electrons with paired spins
have zero resultant spin angular momentum. Hence, the spin multiplicity becomes
one. It is called singlet spin state.

2.2.3 Spin Orbital

To incorporate electron spin in wave-function, two kinds of spin functions such as
a(x) and b(x) are introduced. x is a parameter of spin coordinates. Two spin
functions are normalized.

Z
a� xð Þa xð Þdx ¼

Z
b� xð Þb xð Þdx ¼ 1 ð2:22Þ

Using the bra and ket symbols, they are rewritten:

ha xð Þja xð Þi ¼ hb xð Þjb xð Þi ¼ 1 ð2:23Þ

Two spin functions satisfy an orthogonality.

Z
a� xð Þb xð Þdx ¼

Z
b� xð Þa xð Þdx ¼ 0 ð2:24Þ

No electron 
S=0

One electron 
S=1/2

2S+1=2
(Doublet) 

Two electrons 
S=0

2S+1=1
(Singlet) 

Fig. 2.5 Electron allocation in one atomic orbital
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Using the bra and ket symbols, they are rewritten:

ha xð Þjb xð Þi ¼ hb xð Þja xð Þi ¼ 1 ð2:25Þ

The spin orbital (v) is defined by the product between spatial orbital (w) and spin
function. When one electron has a spin, it is expressed as

v xð Þ ¼ w rð Þa xð Þ ð2:26Þ

where v denotes both space and spin coordinates. On the other hand, one electron
has b spin, and it is expressed as

v xð Þ ¼ w rð Þb xð Þ ð2:27Þ

Note that it is assumed that a and b spins are allowed in one spatial orbital. The
different spatial orbitals are also orthonormal.

Z
w�
i rð Þwj rð Þdr ¼ dij ð2:28Þ

where dij is called Kronecker delta.

dij ¼ 1 i ¼ jð Þ
0 i 6¼ jð Þ

�
ð2:29Þ

As the result, the different spin orbitals are orthonormal.

Z
v�i rð Þvj rð Þdr ¼ dij ð2:30Þ

2.2.4 Total Wave-Function

By using Hartree product, the total wave-function (U) of n-electron system is
expressed as the product of all spin orbitals.

UHP x1; x2; . . .; xnð Þ ¼ v1 x1ð Þ � v2 x2ð Þ. . .vn xnð Þ ð2:31Þ

If there is no electron–electron interaction, UHP is the eigenfunction of the
Schrödinger equation. However, if there is an electron–electron interaction, Hartree
product is different from the exact total wave-function.

Electron belongs to fermion, which is a quantum particle with half-integer
quantum number for spin angular momentum. Fermion must satisfy “inverse
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principle” that the total wave-function changes the sign, when the labels of any two
identical fermions are exchanged.

U x1; . . .; xi; . . .; xj; . . .xn
	 
 ¼ �U x1; . . .; xj; . . .; xi; . . .xn

	 
 ð2:32Þ

In order to satisfy inverse principle, by using Slater determination, the total
wave-function is expressed as

U v1; v2; . . .vnð Þ ¼ n!ð Þ�1
2

v1 x1ð Þ v2 x1ð Þ
v1 x2ð Þ v2 x2ð Þ � � � vn x1ð Þ

vn x2ð Þ
..
. . .

. ..
.

v1 xnð Þ v2 xnð Þ � � � vn xnð Þ

2
6664

3
7775 ð2:33Þ

The convenient representation of Slater determination is expressed as

v1 x1ð Þv2 x2ð Þ. . .vn xnð Þj i ð2:34Þ

Let us consider the simple example of many-electron atom. Helium atom has
two electrons with paired spins. They are allocated into the same atomic orbital.
The spin orbitals are given by

v1 x1ð Þ ¼ w1 r1ð Þa x1ð Þ ð2:35Þ

v2 x2ð Þ ¼ w1 r2ð Þb x2ð Þ ð2:36Þ

Slater determination is rewritten as

U v1; v2ð Þ ¼ v1 x1ð Þv2j x2ð Þ ¼ 2!ð Þ�1
2
v1 x1ð Þ v2 x1ð Þ
v1 x2ð Þ v2 x2ð Þ

� �
ð2:37Þ

¼ 2!ð Þ�1
2
w1 r1ð Þa x1ð Þ w1 r1ð Þb x1ð Þ
w1 r2ð Þa x2ð Þ w1 r2ð Þb x2ð Þ

� �
ð2:38Þ

¼ w1 r1ð Þw1 r2ð Þffiffiffi
2

p a x1ð Þ � b x2ð Þ � b x1ð Þ � a x2ð Þf g ð2:39Þ

However, the Schrödinger equation for many-electron atom cannot be analyti-
cally solved. Many calculation methods have been developed to solve it approxi-
mately with high precision.
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2.2.5 Building-Up Rule

Building-up principle is the plausible and empirical rule to predict the ground-state
electron configuration of a single atom. It is a starting point before actual calcu-
lation. It is based on two types of allocations for one AO: (1) one electron with a
spin and (2) two electrons with paired spins. The order of occupation is as follows.

1ð Þ1s; 2ð Þ2s; 3ð Þ2p; 4ð Þ3s; 5ð Þ3p, 6ð Þ3d. . . ð2:40Þ

In hydrogen atom, which is one-electron system, one electron occupies 1s orbital
with a spin.

H : 1s1 ð2:41Þ

In helium atom, which is two-electron system, two electrons occupy 1s orbital
with paired spins.

He : 1s2 ð2:42Þ

In lithium atom, which is three-electron system, two electrons occupy 1s orbital
with paired spins, and one electron occupies 2s orbital with a spin.

Li : 1s22s1 ð2:43Þ

Table 2.4 summarizes the number of electrons in atomic orbitals, based on
building-up principle. Neutral carbon, oxygen and nitrogen have six, seven and
eight electrons. Their electron configuration is expressed as follows.

C : 1s22s22p2 ð2:44Þ

O : 1s22s22p3 ð2:45Þ

N : 1s22s22p4 ð2:46Þ

Table 2.4 Number of electrons in atomic orbitals, based on building-up principle

n l Atomic orbital Number of electrons

1 K 0 1s 2 (1a, 1b)

2 L 0 2s 2 (1a, 1b)

1 2p 6 (3a, 3b)

3 M 0 3s 2 (1a, 1b)

1 3p 6 (3a, 3b)

2 3d 10 (5a, 5b)

24 2 Atomic Orbital



Further Readings

1. Atkins P, de Paula J (2006) Physical chemistry 8th edn, Chapters 9 and 10 (in Japanese)
2. Atkins P, de Paula J, Friedman R (2009) Quanta, matter, and change a molecular approach to

physical chemistry, Chapter 4 (in Japanese)
3. Barrow GM (1999) Physical chemistry 6th edn, Chapter 10 (in Japanese)

Further Readings 25



Chapter 3
Hartree-Fock Method

Abstract In many-electron system, it is impossible to obtain the exact solution of
the Schrodinger equation by using the present mathematical approach.
Hartree-Fock method was developed to solve approximately the time-independent
Schrödinger equation. In Born–Oppenheimer approximation, atomic nucleus is
regarded as stationary point, in comparison with electron. The total energy of
many-electron system can be represented by using one-electron and two-electron
operators. Schrödinger equation can be mathematically transformed to one-electron
Hartree-Fock equation by minimizing the total energy. The eigenvalue and
wave-function denote orbital energy and molecular orbital (atomic orbital). In
closed shell system, there is one restriction that a-spin and b-spin electrons are
paired in the same spatial orbital. Hartree-Fock in the closed shell system is called
restricted Hartree-Fock (RHF). On the other hand, in open shell system, the spatial
orbital of a electron is independent from b electron. Hartree-Fock in open shell
system is called unrestricted Hartree-Fock (UHF). By using orbital energy rule, the
stability of molecular orbital (atomic orbital) can be discussed from orbital energy.

Keywords Born–Oppenheimer approximation � Hartree-Fock method � Closed
shell � Open shell � Orbital energy rule

3.1 Born–Oppenheimer Approximation

In Chap. 2, it was explained that electron spreads as wave-function within atom. In
comparison with electron, atomic nucleus may be regarded as stationary point. In
Born–Oppenheimer approximation, kinetic energy of atomic nucleus is neglected in
the Hamiltonian. The Hamiltonian for n-electron atom is given by

HAtom ¼ � �h2

2me

Xn
i¼1

r2
i �

Ze2

4pee

Xn
i¼1

1
ri
þ e2

4pee

Xn
i¼1

Xn
j¼1;j 6¼i

1
rij

ð3:1Þ
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where Z, e, ri and rij denote atomic number, an electronic charge, the atomic
nucleus-electron distance and the electron–electron distance, respectively. The first,
second and third terms denote the kinetic energy of electrons, the Coulomb inter-
action energy between nucleus and electrons and the Coulomb repulsion energy
between electrons, respectively. Atomic orbital (AO) is given as the solution
(wave-function) of the Schrödinger equation.

In n-electron molecule consisting of m-atom, the Hamiltonian is given by

HMolecule ¼ � �h2

2me

Xn
i¼1

r2
i �

e2

4pee

Xn
i¼1

Xm
j¼1

Zj
ri

þ e2

4pee

Xn
i¼1

Xn
j¼1;j 6¼i

1
rij

ð3:2Þ

where Zj denotes jth atomic number. Note that molecular orbital (MO) is given as
the solution (wave-function) of the Schrödinger equation.

3.2 Total Energy of n-Electron Atom

Multiplied of U� on the left of Schrödinger equation, then integrated both sides,

Z
U�HUdx1dx2 � � � dxn ¼ E

Z
U�Udx1dx2 � � � dxn ð3:3Þ

By the using bra and ket symbols, it is rewritten:

UjHjUh i ¼ E UjUh i ð3:4Þ

By the normalization of wave-function, Eq. (3.4) is rewritten as

E ¼ UjHjUh i ð3:5Þ

By using Slater determination, the wave-function of n-electron atom is expressed
as

UAtom ¼ v1 x1ð Þv2 x2ð Þ � � � vn xnð Þj i ð3:6Þ

where vi denotes the ith spin orbital. Under Born–Oppenheimer approximation, the
Hamiltonian for the ith component is given by

HAtom
i ¼ � �h2

2me
r2

i �
Ze2

4peeri
þ e2

4pee

Xn
j[ i

1
rij

ð3:7Þ
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The one-electron operator (hi) is defined as

hAtomi ¼ � �h2

2me
r2

i �
Ze2

4peeri
ð3:8Þ

The notation of one-electron integral is

Z
v�i xið ÞhAtomi vi xið Þdxi ¼ vi xið Þh jhAtomi vi xið Þj i ð3:9Þ

By using Eq. (3.9), the total energy related to one-electron operator is expressed
as

1
n

v1 x1ð Þh jhAtom1 v1 x1ð Þj iþ 1
n

v2 x1ð Þh jhAtom2 v2 x1ð Þj iþ � � �

þ 1
n

vn x1ð Þh jhAtomn vn x1ð Þj i þ 1
n

v1 x2ð Þh jhAtom1 v1 x2ð Þj i

þ 1
n

v2 x2ð Þh jhAtom2 v2 x2ð Þj i þ � � � þ 1
n

vn x2ð Þh jhAtomn vn x2ð Þj i þ � � �

þ 1
n

v1 xnð Þh jhAtom1 v1 xnð Þj iþ 1
n

v2 xnð Þh jhAtom2 v2 xnð Þj iþ � � �

þ 1
n

vn xnð Þh jhAtomn vn xnð Þj i

ð3:10Þ

By using a sigma symbol, Eq. (3.10) is rewritten as

Xn
i¼1

vi xið Þh jhAtomi vi xið Þj i ð3:11Þ

Two-electron operator (r�1
ij ) is defined as

r�1
ij ¼ e2

4peerij
ð3:12Þ

The notation of two-electron integrals is

Z
v�i xið Þv�j xj

� �
r�1
ij vi xið Þvj xj

� �
dxidxj ¼ vi xið Þvj xj

� �jvi xið Þvj xj
� �� � ð3:13Þ

The total energy related to two-electron operator can be separated into two parts.
By using Eq. (3.13), the first part is expressed as
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v1 x1ð Þv2 x2ð Þjv1 x1ð Þv2 x2ð Þh iþ v1 x1ð Þv3 x2ð Þjv1 x1ð Þv3 x2ð Þh i
þ � � � þ v1 x1ð Þvn x2ð Þjv1 x1ð Þvn x2ð Þh iþ v2 x1ð Þv3 x2ð Þjv2 x1ð Þv3 x2ð Þh i
þ � � � þ v2 x1ð Þvn x2ð Þjv2 x1ð Þvn x2ð Þh iþ � � �
þ vn�1 x1ð Þvn x2ð Þjvn�1 x1ð Þvn x2ð Þh i

ð3:14Þ

By using a sigma symbol, Eq. (3.14) is rewritten as

Xn
i¼1

Xn
j[ i

vi xið Þvj xj
� �jvi xið Þvj xj

� �� � �
Xn
i¼1

Xn
j[ i

Jij ð3:15Þ

where Jij is called Coulomb integral. Note that rij is not defined when i is equal to j.
By using Eq. (3.13), the second part is expressed as

v1 x1ð Þv2 x2ð Þjv2 x1ð Þv1 x2ð Þh iþ v1 x1ð Þv3 x2ð Þjv3 x1ð Þv1 x2ð Þh i
þ � � � þ v1 x1ð Þvn x2ð Þjvn x1ð Þv1 x2ð Þh iþ v2 x1ð Þv3 x2ð Þjv3 x1ð Þv2 x2ð Þh i
þ � � � þ v2 x1ð Þvn x2ð Þjvn x1ð Þv2 x2ð Þh iþ � � � þ vn�1 x1ð Þvn x2ð Þjvn x1ð Þvn�1 x2ð Þh i

ð3:16Þ

By using a sigma symbol, Eq. (3.16) is rewritten as

Xn
i¼1

Xn
j[ i

vi xið Þvj xj
� �jvj xið Þvi xj

� �� � �
Xn
i¼1

Xn
j[ i

Kij ð3:17Þ

where Kij is called exchange integral. It is because two electrons i and j are
exchanged between two spin orbitals in the right ket symbol. Finally, the total
energy of n-electron atom is rewritten as

EAtom ¼
Xn
i¼1

vi xið Þh jhAtomi vi xið Þj iþ
Xn
i¼1

Xn
j[ i

vi xið Þvj xj
� �jvi xið Þvj xj

� �� ��

� vi xið Þvj xj
� �jvj xið Þvi xj

� �� ��

¼
Xn
i¼1

vi xið Þh jhAtomi vi xið Þj iþ
Xn
i¼1

Xn
j[ i

Jij � Kij
� �

ð3:18Þ

3.3 Total Energy of n-Electron Molecule

Here, n-electron molecule consisting of m-atom is considered. The wave-function
of n-electron molecule is
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UMolecule ¼ v1 x1ð Þv2 x2ð Þ � � � vn xnð Þj i ð3:19Þ

where vi denotes the ith spin orbital. Under Born–Oppenheimer approximation, the
Hamiltonian for the ith component is given by

HMolecule
i ¼ � �h2

2me
r2

i �
e2

4peeri

Xm
j¼1

Zj þ e2

4pee

Xn
j[ i

1
rij

ð3:20Þ

The one-electron operator (hi) is defined as

hMolecule
i ¼ � �h2

2me
r2

i �
e2

4peeri

Xm
j¼1

Zj ð3:21Þ

The total energy for the molecule is obtained in the same manner:

EMolecule ¼
Xn
i¼1

vi xið Þh jhMolecule
i vi xið Þj iþ

Xn
i¼1

Xn
j[ i

Jij � Kij
� � ð3:22Þ

Note that Eqs. (3.20)–(3.22) are for n-electron atom, when m = 1. Hence, they
are also used for n-electron atom.

3.4 Hartree-Fock Equation

Hartree-Fock method is regarded as starting point in ab initio calculation. Though
the accurate electron–electron interactions are not reproduced due to average
approximation, it provides the qualitatively correct results. The present precise
calculation methods have been theoretically constructed based on the revision of
Hartree-Fock method.

The n-electron Schrödinger equation is mathematically transformed to one-
electron Hartree-Fock equation by minimizing the total energy of Schrödinger
equation.

fivi xið Þ ¼ eivi xið Þ ð3:23Þ

where fi denotes Fock operator; ei is an eigenvalue, which denotes orbital energy. In
atom and molecule, atomic orbital (AO) and molecular orbital (MO) are given as a
solution, respectively. Fock operator, which is one-electron operator for a spin
orbital, is defined as

fi ¼ hi þ
Xn
j 6¼i

Jj � Kj
� � ð3:24Þ
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where hi denotes kinetic energy and Coulomb potential energy between atomic
nucleus and electrons for the ith electron; Jj and Kj are Coulomb operator and
exchange operator between the ith and jth electrons, respectively. Note that hi, Jj
and Kj are given by

hi ¼ � �h2

2me
r2

i �
e2

4peeri

Xm
j¼1

Zj ð3:25Þ

Jjvi xið Þ ¼
Z

v�j xj
� �

r�1
ij vj xj

� �
dvj � vi xið Þ ð3:26Þ

Kjvi xið Þ ¼
Z

v�j xj
� �

r�1
ij vi xj

� �
dvj � vj xið Þ ð3:27Þ

The ith orbital energy (ei) satisfies the following equation.

ei ¼ vi xið Þh jfi vi xið Þj i ð3:28Þ

By substituting Eqs. (3.24), (3.26) and (3.27), Eq. (3.28) is rewritten as

ei ¼ vi xið Þh jhi vi xið Þj i þ
Xn
j 6¼i

vi xið Þh jJj vi xið Þj i � vi xið Þh jKj vi xið Þj i� �

¼ vi xið Þh jhi vi xið Þj i þ
Xn
j¼1

vi xið Þvj xj
� �jvi xið Þvj xj

� �� ��

� vi xið Þvj xj
� �jvj xið Þvi xj

� �� ��
ð3:29Þ

Note that the second and third terms are cancelled out, when i is equal to j.

3.5 Closed Shell System

The total wave-function of closed 2n-electron system is expressed as

U ¼ v1 x1ð Þv2 x2ð Þ � � � v2n�1 x2n�1ð Þv2n x2nð Þj i ð3:30Þ

where vi is the ith spin orbital. As a and b electrons are paired at the same spatial
orbital in closed shell system (see Fig. 3.1), the total wave-function is rewritten as

U ¼ w1 r1ð Þa x1ð Þw1 r2ð Þb x2ð Þ � � �wn r2nð Þa x2nð Þwn r2nð Þb x2nð Þj i ð3:31Þ
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Let us consider the total energy of 2n-electron system. The first term of
Eq. (3.22) is rewritten as

X2n
i¼1

vi xið Þh jhi vi xið Þj i ¼
Xn
i¼1

wi rið Þa xið Þh jhi wi rið Þa xið Þj i

þ
Xn
i¼1

wi rið Þb xið Þh jhi wi rið Þb xið Þj i
ð3:32Þ

In addition, due to the orthonormality of spin functions, it is rewritten:

X2n
i¼1

vi xið Þh jhi vi xið Þj i ¼ 2
Xn
i¼1

wi rið Þh jhi wi rið Þj i ð3:33Þ

The second term of Eq. (3.22) is rewritten as

1
2

Pn
i¼1

Pn
j¼1

wi rið Þa xið Þwj rj
� �

a xj
� �jwi rið Þa xið Þwj rj

� �
a xj
� �� �

þ 1
2

Pn
i¼1

Pn
j¼1

wi rið Þa xið Þwj rj
� �

b xj
� �jwi rið Þa xið Þwj rj

� �
b xj
� �� �

þ 1
2

Pn
i¼1

Pn
j¼1

wi rið Þb xið Þwj rj
� �

a xj
� �jwi rið Þb xið Þwj rj

� �
a xj
� �� �

þ 1
2

Pn
i¼1

Pn
j¼1

wi rið Þb xið Þwj rj
� �

b xj
� �jwi rið Þb xið Þwj rj

� �
b xj
� �� �

ð3:34Þ

Fig. 3.1 Electron
configuration of closed shell
system. In the same spatial
orbital, a and b spins are
paired
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Due to the orthonormality of spin functions, it is rewritten as

Xn
i¼1

Xn
j¼1

2 wi rið Þwj rj
� �jwi rið Þwj rj

� �� � ¼
Xn
i¼1

Xn
j¼1

2Jij ð3:35Þ

The third term of Eq. (3.22) is rewritten as

� 1
2

Pn
i¼1

Pn
j¼1

wi rið Þa xið Þwj rj
� �

a xj
� �jwj rið Þa xið Þwi rj

� �
a xj
� �� �

� 1
2

Pn
i¼1

Pn
j¼1

wi rið Þa xið Þwj rj
� �

b xj
� �jwj rið Þb xið Þwi rj

� �
a xj
� �� �

� 1
2

Pn
i¼1

Pn
j¼1

wi rið Þb xið Þwj rj
� �

a xj
� �jwj rið Þa xið Þwi rj

� �
b xj
� �� �

� 1
2

Pn
i¼1

Pn
j¼1

wi rið Þb xið Þwj rj
� �

b xj
� �jwj rið Þb xið Þwi rj

� �
b xj
� �� �

ð3:36Þ

Due to the orthogonality of spatial orbitals, it is rewritten as

�
Xn
i¼1

Xn
j¼1

wi rið Þwj rj
� �jwj rið Þwi rj

� �� � ¼ �
Xn
i¼1

Xn
j¼1

Kij ð3:37Þ

Finally, the total energy of the 2n-electron closed shell system is rewritten:

E ¼ 2
Xn
i¼1

wi rið Þh jhi wi rið Þj iþ
Xn
i¼1

Xn
j¼1

2Jij � Kij
� � ð3:38Þ

The ith orbital energy is rewritten in the same manner:

ei ¼ wi rið Þh jhi wi rið Þj iþ
Xn
j¼1

2Jij � Kij
� � ð3:39Þ

In closed shell system, there is one restriction that a-spin and b-spin electrons are
paired in the same spatial orbital. Hartree-Fock in the closed shell system is called
restricted Hartree-Fock (RHF).

3.6 Open Shell System

The total wave-function of n-electron open shell system is expressed as

U ¼ v1 x1ð Þv2 x2ð Þ � � � vn xnð Þj i ð3:40Þ
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where vi is the ith spin orbital. As shown in Fig. 3.2, each electron has the specific
spatial orbital. Note that spatial orbital is theoretically discriminated by electron
spin. The numbers of a and b electrons are denoted as na and nb, respectively.

n ¼ na þ nb ð3:41Þ

By using spatial orbital and spin function, spin orbitals of a spin are expressed as

wa
1 ra1
� �

a xa
1

� �
;wa

2 ra2
� �

a xa
2

� �
; � � � ;wa

na rana
� �

a xa
na

� � ð3:42Þ

In the same manner, spin orbitals of b spin are expressed as

wb
1 rb1
� 	

b xb
1

� 	
;wb

2 rb2
� 	

b xb
2

� 	
; � � � ;wb

nb rbnb
� 	

b xb
nb

� 	
ð3:43Þ

Note that position and spin coordinates are separately defined in a and b spins.
When na is larger than nb, Eq. (3.40) is rewritten as

U ¼ wa
1 ra1
� �

a xa
1

� �
wb
1 rb1
� 	

b xb
1

� 	
� � �wa

na rana
� �




E
ð3:44Þ

The first term of Eq. (3.22) is rewritten as

Xn
i¼1

vi xið Þh jhi vi xið Þj i ¼
Xna
i¼1

wa
i rai
� �

a xa
i

� �� 

hi wa
i rai
� �

a xa
i

� �

 �

þ
Xnb
i¼1

wb
i rbi
� 	

b xb
i

� 	D 


hi wb
i rbi
� 	

b xb
i

� 	



E ð3:45Þ

Fig. 3.2 Electron
configuration of open shell
system
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Due to the orthogonality of spin functions, it is rewritten as

Xn
i¼1

vi xið Þh jhi vi xið Þj i ¼
Xna
i¼1

wa
i rai
� �� 

hi wa

i rai
� �

 �þ Xnb

i¼1

wb
i rbi
� 	D 


hi wb

i rbi
� 	




E

ð3:46Þ

The second term of Eq. (3.22) is rewritten as

1
2

Pna
i¼1

Pna
j¼1

wa
i rai
� �

a xa
i

� �
wa
j raj
� 	

a xa
j

� 	
jwa

i rai
� �

a xa
i

� �
wa
j raj
� 	

a xa
j

� 	D E

þ 1
2

Pna
i¼1

Pnb
j¼1

wa
i rai
� �

a xa
i

� �
wb
j rbj
� 	

b xb
j

� 	
jwa

i rai
� �

a xa
i

� �
wb
j rbj
� 	

b xb
j

� 	D E

þ 1
2

Pnb
i¼1

Pna
j¼1

wb
i rbi
� 	

b xb
i

� 	
wa
j raj
� 	

a xa
j

� 	
jwb

i rbi
� 	

b xb
i

� 	
wa
j raj
� 	

a xa
j

� 	D E

þ 1
2

Pnb
i¼1

Pnb
j¼1

wb
i rbi
� 	

b xb
i

� 	
wb
j rbj
� 	

b xb
j

� 	
jwb

i rbi
� 	

b xb
i

� 	
wb
j rbj
� 	

b xb
j

� 	D E

ð3:47Þ

Due to the orthogonality of spin functions, it is rewritten as

1
2

Pna
i¼1

Pna
j¼1

wa
i rai
� �

wa
j raj
� 	

jwa
i rai
� �

wa
j raj
� 	D E

þ 1
2

Pna
i¼1

Pnb
j¼1

wa
i rai
� �

wb
j rbj
� 	

jwa
i rai
� �

wb
j rbj
� 	D E

þ 1
2

Pnb
i¼1

Pna
j¼1

wb
i rbi
� 	

wa
j raj
� 	

jwb
i rbi
� 	

wa
j raj
� 	D E

þ 1
2

Pnb
i¼1

Pnb
j¼1

wb
i rbi
� 	

wb
j rbj
� 	

jwb
i rbi
� 	

wb
j rbj
� 	D E

ð3:48Þ

The third term of Eq. (3.22) is rewritten as

� 1
2

Pna
i¼1

Pna
j¼1

wa
i rai
� �

a xa
i

� �
wa
j raj
� 	

a xa
j

� 	
jwa

j rai
� �

a xa
i

� �
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i raj
� 	

a xa
j

� 	D E

� 1
2

Pna
i¼1

Pnb
j¼1

wa
i rai
� �

a xa
i

� �
wb
j rbj
� 	

b xb
j

� 	
jwa

j rai
� �

b xa
i

� �
wb
i rbj
� 	

a xb
j

� 	D E

� 1
2

Pnb
i¼1

Pna
j¼1

wb
i rbi
� 	

b xb
i

� 	
wa
j raj
� 	

a xa
j

� 	
jwb

j rbi
� 	

a xb
i

� 	
wa
i raj
� 	

b xa
j

� 	D E

� 1
2

Pnb
i¼1

Pnb
j¼1

wb
i rbi
� 	

b xb
i

� 	
wb
j rbj
� 	

b xb
j

� 	
jwb

j rbi
� 	

b xb
i

� 	
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i rbj
� 	

b xb
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� 	D E

ð3:49Þ
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Due to the orthogonality of spin functions, it is rewritten as

� 1
2

Xna
i¼1

Xna
j¼1

wa
i rai
� �

wa
j raj
� 	

jwa
j rai
� �

wa
i raj
� 	D E

� 1
2

Xnb
i¼1

Xnb
j¼1

wb
i rbi
� 	

wb
j rbj
� 	

jwb
j rbi
� 	

wb
i rbj
� 	D E ð3:50Þ

Finally, by using notations of Coulomb and exchange integrals, the total energy
of the n-electro closed shell system is given by

E ¼
Xna
i¼1

wa
i rai
� �� 

hi wa

i rai
� �

 �þ Xnb

i¼1

wb
i rbi
� 	D 


hi wb

i rbi
� 	




E

þ 1
2

Xna
i¼1

Xna
j¼1

Jaaij � Kaa
ij

� 	
þ 1

2

Xnb
i¼1

Xnb
j¼1

Jbbij � Kbb
ij

� 	
þ

Xna
i¼1

Xnb
j¼1

Jabij

ð3:51Þ

The ith orbital energy of a atomic orbital is rewritten in the same manner:

eai ¼ wa
i rai
� �� 

hi wa

i rai
� �

 �þ Xna

j¼1

Jaaij � Kaa
ij

� 	
þ

Xnb
j¼1

Jabij ð3:52Þ

The ith orbital energy of b atomic orbital is rewritten in the same manner:

ebi ¼ wb
i rbi
� 	D 


hi wb

i rbi
� 	




E
þ

Xnb
j¼1

Jbbij � Kbb
ij

� 	
þ

Xna
j¼1

Jabij ð3:53Þ

In open shell system, the spatial orbital of a electron is independent from b
electron. Hartree-Fock in open shell system is called unrestricted Hartree-Fock
(UHF).

3.7 Orbital Energy Rule

After solving Hartree-Fock equation, orbital energy is given as an eigenvalue. Note
that it is different from total energy. As it is difficult to consider the chemical
meaning, orbital energy difference between n-electron system and (n − 1)-electron
system (En − En−1) is considered.
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En � En�1 ¼ vn xnð Þh jhn vn xnð Þj i

þ 1
2

Xn�1

i¼1

vi xið Þvn xnð Þjvi xið Þvn xnð Þh if � vi xið Þvn xnð Þjvn xið Þvi xnð Þh ig

þ 1
2

Xn�1

j¼1

vn xnð Þvj xj
� �jvn xnð Þvj xj

� �� �� � vn xnð Þvj xj
� �jvj xnð Þvn xj

� �� ��

þ 1
2

vn xnð Þvn xnð Þjvn xnð Þvn xnð Þh i � 1
2

vn xnð Þvn xnð Þjvn xnð Þvn xnð Þh i
ð3:54Þ

The second term is equivalent to the third term, and the fourth term can be
included in the sigma symbol. It is rewritten:

En � En�1 ¼ vn xnð Þh jhn vn xnð Þj i

þ
Xn
j¼1

vn xnð Þvj xj
� �jvn xnð Þvj xj

� �� �� � vn xnð Þvj xj
� �jvj xnð Þvn xj

� �� ��

ð3:55Þ

From Eq. (3.29), it is found that the value corresponds to the n-th orbital
energy (en).

En � En�1 ¼ en ð3:56Þ

Here is assumed that spatial orbitals are the same in both systems. The selection
of excluded electron is arbitrary. Though spatial orbitals may be slightly different
between n-electron and (n − 1)-electron system of the same molecule or atom, it is
useful for qualitative discuss to use the relationship between total and orbital
energies.

It is normally considered that total energy of n-electron system is smaller than
(n − 1)-electron system. It is because the effect of Coulomb interaction is larger in
n-electron system. However, when the effects of kinetic energy and electron–
electron repulsion are larger, the total energy of n-electron system is larger than
(n − 1)-electron system. As the result, the positive orbital energy is given. The
orbital energy rule can be constructed as follows.

Orbital energy rule

(1) When En < En−1, the negative n-th orbital energy (en) is given.
The n-th orbital is stabilized

(2) When En > En−1, the positive n-th orbital energy (en) is given.
The n-th orbital is destabilized

(3) When En = En−1, the n-th orbital energy is zero.
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In three-electron system, two cases are considered as the pattern of electron
exclusion. In case 1 (see Fig. 3.3a), the orbital energy of MO2a (e2

a) can be esti-
mated from Eq. (3.56). In fact, orbital energy of MO1a is slightly different from
MO1b, though the same orbital energy is given in MO1a and MO1b of
two-electron closed shell system. Hence, Eq. (3.56) may not give the precise n-th
orbital energy. However, the stability of n-th orbital could be qualitatively dis-
cussed. In case 2 (see Fig. 3.3b), the orbital energy of MO1b (e1

b) can be estimated
from Eq. (3.56). However, the same situation occurs.

Further Reading

1. Szabo A, Ostlund NS (1996) Modern quantum chemistry: introduction to advanced electronic
structure theory. Dover Publications Inc., New York, pp 108–230

Fig. 3.3 Schematic drawing of the three-electron system and the corresponding two-electron
system, when one electron is excluded
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Chapter 4
Basis Function

Abstract In many-electron system, Hartree-Fock equation has no analytical
solution. To overcome the inconvenience, the introduction of basis functions to
spatial orbital was considered. By the introduction of basis functions, Hartree-Fock
equation can be expressed as matrix equation. In Hartree-Fock matrix equation, the
problem is converted to obtain expansion coefficients and orbital energies numer-
ically by self-consistent-field (SCF) calculation. A set of basis functions per atom is
called “basis set”. Initial atomic orbital is defined from designated basis set. Note
that basis set must be beforehand designated per atom. The real atomic orbital and
molecular orbital are represented by the combination of initial atomic orbitals.
Virtual orbital is produced by the introduction of basis set. Due to inadequacy of
theoretical definition, virtual orbital is often meaningless. Basis set is expressed by
Gaussian basis function, due to mathematical advantages. However, Gaussian basis
function has two disadvantages of a poor representation of radial wave-function
near atomic nucleus, and a rapid decrease in the amplitude of the wave-function. In
order to improve them, contraction is performed. In order to express flexibility of
outer shell electron, split-valence basis function is applied. Polarization basis
function and diffuse basis function are applied for further improvement. Several
useful basis sets are introduced: minimal basis set, 6-31G basis set and
correlation-consistent basis set. Finally, our empirical recommendation for basis set
selection is introduced.

Keywords Hartree-Fock matrix equation � Basis set � Initial atomic orbital �
Polarization basis function � Split-valence basis function � Diffuse basis function

4.1 Hartree-Fock Matrix Equation

4.1.1 Closed Shell System

In closed shell system, due to the orthogonality of spin functions, the Hartree-Fock
equation for the ith molecular orbital is written as

© Springer Nature Singapore Pte Ltd. 2018
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DOI 10.1007/978-981-10-5933-9_4
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fiwiðriÞ ¼ eiwiðriÞ ð4:1Þ

where fi denotes Fock operator; ei is eigenvalue, which denotes orbital energy; wi
denotes the wave-function of the ith molecular orbital. However, it is impossible to
obtain eigenvalue and wave-function analytically. As one of the solutions, a set of
basis functions, which is called basis set, is introduced to the wave-function of
spatial orbital.

wi rið Þ ¼
XNk

k¼1

Cki/k ð4:2Þ

where Nk is a number of basis functions that is normally larger than the number of
electrons. Cki is an unknown expansion coefficient, and /k is a defined basis
function. Note that basis set is designated per atom. By introducing basis set,
Hartree-Fock equation is rewritten as

fi
XNk

k¼1

Cki/k ¼ ei
XNk

k¼1

Cki/k ð4:3Þ

Multiplied /�
c on the left, and then integrated both sides,

XNk

k¼1

Cki /cjfij/k

� � ¼ ei
XNk

k¼1

Cki /cj/k

� � ð4:4Þ

Fock matrix (Fck) and overlap matrix (Sck) are defined as follows.

Fck ¼ /cjfij/k

� � ð4:5Þ

Sck ¼ /cj/k

� � ð4:6Þ

By using the notations of Eqs. (4.5) and (4.6), the Hartree-Fock equation is
rewritten as

XNk

k¼1

FckCki ¼ ei
XNk

k¼1

SckCki ð4:7Þ

Finally, it can be written as matrix equation.

FC ¼ SCe ð4:8Þ
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where C and e are given by

C ¼

C11 C12 � � � C1Nk

C21 C22 � � � C2Nk

� � � � � �
� � � � � �

CNk1 CNk2 � � � CNkNk

0
BBBB@

1
CCCCA

ð4:9Þ

e ¼

e1 0 � � � 0
0 e2 � � � 0
� � � � � �
� � � � � �
0 0 � � � eNk

0
BBBB@

1
CCCCA

ð4:10Þ

The problem is converted to obtain expansion coefficients and orbital energies
numerically by self-consistent-field (SCF) calculation. By using arbitrary set of
expansion coefficients, the new set of expansion coefficients are obtained (cycle).
The cycle process is continued until the convergence criterion is satisfied. For
example, energy difference after cycle process is enough small, etc. Finally, con-
verged expansion coefficients and orbital energies are given.

4.1.2 Open Shell System

In open shell system, two Hartree-Fock equations are considered for a and b spatial
orbitals. The Fock operator for a spatial orbital is written as

f ai ¼ hi þ
Xna

j 6¼i

Jaj � Ka
j

n o
þ

Xnb

j6¼i

Jbj � Kb
j

n o
ð4:11Þ

where Jj
x and Kj

x denote Coulomb and exchange operators for x spin (x = a or b),
respectively. The exchange operator of b spatial orbital will be cancelled out, due to
the orthogonality of spin functions. Finally, it is rewritten as

f ai ¼ hi þ
Xna

j6¼i

Jaj � Ka
j

n o
þ

Xnb

j 6¼i

Jbj ð4:12Þ

In the same manner, the Fock operator for b spatial orbital is written as

f bi ¼ hi þ
Xnb

j6¼i

Jbj � Kb
j

n o
þ

Xna

j 6¼i

Jaj ð4:13Þ
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Two Hartree-Fock equations for a and b spatial orbitals are written as

f ai w
a
i ðrai Þ ¼ eai w

a
i ðrai Þ ð4:14Þ

f bi w
b
i ðrbi Þ ¼ ebi w

b
i ðrbi Þ ð4:15Þ

The same basis sets are introduced in both a and b spatial orbitals.

wa
i rið Þ ¼

XNk

k¼1

Ca
ki/k ð4:16Þ

wb
i rið Þ ¼

XNk

k¼1

Cb
ki/k ð4:17Þ

where Nk is the number of basis functions; Ck
a and Ck

b are unknown expansion
coefficients for the a and b spatial orbitals, respectively; /k is a defined basis
function. Note that expansion coefficients of a spatial orbitals are generally different
from b spatial orbitals. By substitution of Eqs. (4.16) and (4.17), two Hartree-Fock
equations (Eqs. 4.14 and 4.15) are rewritten as

f ai
XNk

k¼1

Ca
ki/k ¼ eai

XNk

k¼1

Ca
ki/k ð4:18Þ

f bi
XNk

k¼1

Cb
ki/k ¼ ebi

XNk

k¼1

Cb
ki/k ð4:19Þ

Multiplied /c* on the left, and then integrated both sides,

XNk

k¼1

Ca
ki /cjf ai j/k

� � ¼ eai
XNk

k¼1

Ca
ki /cj/k

� � ð4:20Þ

XNk

k¼1

Cb
ki /cjf bi j/k

D E
¼ ebi

XNk

k¼1

Cb
ki /cj/k

� � ð4:21Þ

Fock matrices (Fck
a , Fck

b ) for a and b spins, and overlap matrix (Sck) are defined as
follows.

Fa
ck ¼ /cjf ai j/k

� � ð4:22Þ

Fb
ck ¼ /cjf bi j/k

D E
ð4:23Þ
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Sck ¼ /cj/k

� � ð4:24Þ

By using the notations of Eqs. (4.22)–(4.24), two Hartree-Fock equations for a
and b spatial orbitals are rewritten as

XNk

k¼1

Fa
ckC

a
ki ¼ eai

XNk

k¼1

SckC
a
ki ð4:25Þ

XNk

k¼1

Fb
ckC

b
ki ¼ ebi

XNk

k¼1

SckC
b
ki ð4:26Þ

Finally, they can be written as matrix equations.

FaCa ¼ SCaea ð4:27Þ

FbCb ¼ SCbeb ð4:28Þ

where Ca, ea, Cb and eb are given by

Ca ¼

Ca
11 Ca

12 � � � Ca
1Nk

Ca
21 Ca

22 � � � Ca
2Nk

� � � � � �
� � � � � �

Ca
Nk1 Ca

Nk2 � � � Ca
NkNk

0
BBBB@

1
CCCCA

ð4:29Þ

ea ¼

ea1 0 � � � 0
0 ea2 � � � 0
� � � � � �
� � � � � �
0 0 � � � eaNk

0
BBBB@

1
CCCCA

ð4:30Þ

Cb ¼

Cb
11 Cb

12 � � � Cb
1Nk

Cb
21 Cb

22 � � � Cb
2Nk

� � � � � �
� � � � � �

Cb
Nk1 Cb

Nk2 � � � Cb
NkNk

0
BBBBB@

1
CCCCCA

ð4:31Þ

eb ¼

eb1 0 � � � 0
0 eb2 � � � 0
� � � � � �
� � � � � �
0 0 � � � ebNk

0
BBBBB@

1
CCCCCA

ð4:32Þ
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The problem is converted to obtain expansion coefficients and orbital energies of
a and b spatial orbitals numerically by SCF calculation. Arbitrary set of expansion
coefficients must be prepared for both a and b spatial orbitals. Finally, converged
expansion coefficients and orbital energies of a and b spatial orbitals are given,
when convergence criterion is satisfied.

4.2 Initial Atomic Orbital

Atomic orbital (AO) and molecular orbital (MO) are the solution of Hartree-Fock
equation for atom and molecule, respectively. The concept of initial atomic orbital
(IAO) is very useful to analyse obtained AOs and MOs. In each atom, IAO is
defined by one basis function or combination of basis functions. In this book, IAO
is just called “orbital”. Note that IAO is an artificially defined orbital. AOs and MOs
are represented by the combination of IAOs. In many cases, AO corresponds to
IAO. However, AO is sometimes represented by the combination of IAOs. It is
called hybridization. MO related to outer shell electrons is often represented by the
combination of IAOs of the different atoms. It is called orbital overlap.

4.3 Virtual Orbital

In Hartree-Fock matrix equation, the number of the produced AOs and MOs cor-
respond to the sum of all basis functions (see Eqs. 4.10, 4.30 and 4.32). For
example, in hydrogen molecule, two MOs are produced, if one basis function is
defined for hydrogen 1s orbital. At ground state, two electrons occupy one MO, and
the other MO is unoccupied. The unoccupied AO and MO are often called “virtual
orbital”.

Readers may consider that virtual orbital is related to excited electronic structure.
However, the obtained virtual orbital often does not correspond to excited elec-
tronic structure. It is because there is no universal method to estimate the interaction
between virtual orbitals, as no electron is allocated in virtual orbital. Hence, the
present virtual orbital, which is obtained from the present calculation, is often
meaningless. We have to pay attention to examine virtual orbital.

4.4 Gaussian Basis Function

There are two types of basis functions: Slater-type and Gauss-type (Gaussian) basis
functions. Slater-type basis function resembles the wave-function of hydrogenic
atom. However, it suffers from obtaining analytical solution for two-electron integral.
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On the other hand, Gaussian basis function (/Gauss) can overcome the problem. It is
written in terms of Cartesian coordinates.

/Gauss ¼ Nxiy jzkexpð�ar2Þ ð4:33Þ

The origin of coordinates is atomic nucleus. N is normalization constant. The
xiyjzk part stands for angular component. The i, j and k values are non-negative
integers. The sum of these values determines the types of orbitals. When i + j +
k = 0, s orbital is expressed, due to no existence of x, y and z parameters. When
i + j + k = 1, three px orbital (i = 1), py orbital (j = 1) and pz orbital (k = 1) are
expressed. When i + j + k = 2, six types of orbitals are considered. However, only
five d orbitals are allowed in hydrogenic atom. When i = j = 1, j = k = 1 and
i = k = 1, dxy, dyz, and dxz orbitals are expressed, respectively. Two dx2�y2 orbital
and d3z2�r2 orbital cannot be expressed in the manner. Instead, dx2�y2 orbital is
expressed by the hybridization between dx2 orbital (i = 2) and dy2 orbital (j = 2).
d3z2�r2 orbital is expressed by the hybridization between dx2 orbital (i = 2), dy2
orbital (j = 2) and dz2 orbital (k = 2).

4.5 Contraction

Gaussian basis function is utilized from the viewpoint of analytical advantage.
However, they have two disadvantages. One is a poor representation of radial
wave-function near atomic nucleus. The other is a rapid decrease in the amplitude
of the wave-function. For example, hydrogen 1s orbital has a cusp around atomic
nucleus. As shown in Fig. 4.1, though a cusp is reproduced well in Slater-type basis
function, the figure of Gaussian basis function is smooth around atomic nucleus. In
order to improve radial wave-function, one orbital is expressed by the linear
combination of several basis functions. It is called a contracted Gaussian basis
function.
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wave-functions of Slater-type
and Gaussian basis functions
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XL
l¼1

dl/
Gauss
a ð4:34Þ

L is the number of Gaussian basis functions in the linear combination. /a
Gauss is the

primitiveGaussian basis function.dl is the contracted coefficient.Note that the contracted
Gaussian basis function stands for one IAO. The analytical solution of two-electron
integrals is also obtained when using the contracted Gaussian basis function.

4.6 Split-Valence Basis Function

In comparison with inner shell electron, outer shell electron is more interactive. To
express own flexibility, IAO of outer shell electron is represented by multi-basis
functions. In double-zeta split-valence basis, one IAO is represented by two
Gaussian basis functions. In triple-zeta split-valence basis, one IAO is represented
by three Gaussian basis functions. On the other hand, IAO of inner shell electron is
represented by one Gaussian basis function.

Let us consider hydrogen atom. In double-zeta split-valence basis, hydrogen 1s
IAO is represented by two Gaussian basis functions.

cHð1s0Þ/Hð1s0Þ þ cHð1s00Þ/Hð1s00Þ ð4:35Þ

where /Hð1s0Þ and /Hð1s00Þ denote two Gaussian basis functions, and cHð1s0Þ and
cHð1s00Þ denote the coefficients. In triple-zeta split-valence basis, hydrogen 1s IAO is
represented by three Gaussian basis functions.

cHð1s0Þ/Hð1s0Þ þ cHð1s00Þ/Hð1s00Þ þ cHð1s000Þ/Hð1s000Þ ð4:36Þ

where /Hð1s0Þ;/Hð1s00Þ and /Hð1s000Þ denote Gaussian basis functions, and cHð1s0Þ,
cHð1s000Þ and cHð1s000Þ denote the coefficients.

4.7 Polarization Basis Function

Own orbital flexibility can be enhanced by the introduction of split-valence basis
function. When covalent bonding is formed between different orbitals, more
complicated covalent bonding may be formed. For the correction, polarization basis
function is introduced. There is no clear rule in the combination of polarization
basis functions. In many cases, the basis function of p orbital is combined to s
orbital, and the basis function of d orbital is combined to p orbital. Hence, in
principal, polarization basis function does not stand for IAO.
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4.8 Diffuse Basis Function

In highest spin state, electrons are allocated in more outer shell orbital where
electron is unoccupied in lowest spin state. The extra basis function, which is called
diffuse basis function, is added to represent excited electron configuration. In this
sense, it can be regarded as “excited electron configuration basis function”. For
example, the ground state of helium atom has the singlet electron configuration,
where two electrons occupy one helium 1s orbital. On the other hand, in triplet
helium atom, though one electron is allocated in helium 1s orbital, the other is
allocated in helium 2s orbital. The extra basis function must be included to rep-
resent 2s orbital. In this case, diffuse basis function stands for IAO. The other role
of disuse basis function is the correction of polarization basis function. For
example, in aug-cc-pVXZ basis set, diffuse basis function is used for the correction.

In summary, there are two roles in diffuse basis functions: (1) representation of
excited electron configuration and (2) correction of polarization. Though the former
stands for IAO, the latter is used only for the correction. We must distinguish the
difference in molecular orbital analysis. Polarization and diffuse basis functions are
principally defined in theoretical manner. However, there is no guarantee that they
keep principal role in practical calculation.

4.9 Useful Basis Set

Basis set is a set of basis functions that is defined for each atom. We have to select
the best basis set to reproduce a scientifically reasonable electronic structure. It is
because there is no single and universal basis set that is applicable under all cir-
cumstances. In this chapter, several practical basis sets are introduced.

4.9.1 Minimal Basis Set

In the minimal basis set, occupied IAO are only expressed by Gaussian basis
functions. Minimal basis set is often called MINI or MINI basis set. Let us explain
MINI basis set for neutral copper. The electron configuration of copper atom is

Cu: 1s22s22p63s23d104s1 ð4:37Þ

At least, 1s, 2s, 2p, 3s, 3p, 3d and 4s orbitals must be represented by Gaussian
basis functions. The general notation of basis set is as follows.

Basis set N1s:N2s:N3s:N4s � � � =N2p:N3p � � � =N3d � � �
� � ð4:38Þ
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where NX (X = 1s, 2s, 3s, 4s, 2p, 3p, 3d, etc.) denotes the number of primitive
Gaussian basis functions for each IAO. In MINI(5.3.3.3/5.3/5) basis set for neutral
copper, copper 1s, 2s, 3s and 4s IAOs are represented by a contracted Gaussian
basis function with five, three, three and three primitive Gaussian basis functions,
respectively; copper 2p and 3p orbitals are represented by a contracted Gaussian
basis function with five and three primitive Gaussian basis functions, respectively;
copper 3d orbital is represented by a contracted Gaussian basis function with five
primitive Gaussian basis functions. The exponential coefficients (a) and contracted
coefficients (c) of MINI(5.3.3.3/5.3/5) for neutral copper are shown in Table 4.1.

Three types of IAOs (px, py and pz orbitals) exist in both 2p and 3p orbitals.
Though basis functions of 2px, 2py and 2pz orbitals have the same exponential
coefficients and contracted coefficients, they have the different the xiyjzk term in
Eq. 4.33. It implies that they have the same radial wave-function, but the angular
wave-function is different. Six types of IAOs (dx

2, dy
2, dz

2, dxy, dyz, dxz orbitals) exist
in 3d orbital. Though basis functions of 3dx

2, 3dy
2, 3dz

2, 3dxy, 3dyz, 3dxz orbitals have
the same exponential coefficients and contracted coefficients, they have the different
the xiyjzk term. In real, 3dz3�r2 and 3dx2�y2 orbitals are represented by the
hybridization between basis functions of 3dx2 , 3dy2 and 3dz2 orbitals. Though the

Table 4.1 Contracted coefficients (d) and exponential coefficients (a) of MINI (5.3.3.3/5.3/5) for
neutral copper

1s orbital 2s orbital 3s orbital 4s orbital

d1 −0.0051311 −0.1089833 0.2242654 −0.0971173

d2 −0.0389436 0.6381907 −0.7327660 0.5610408

d3 −0.1761209 0.4362349 −0.4010780 0.5192031

d4 −0.4682401

d5 −0.4507014

a1 32311.084 161.71783 13.738109 0.92052275

a2 4841.4341 18.731951 2.2080203 0.10255637

a3 1094.8876 7.7018109 0.84846612 0.03649045

a4 307.74535

a5 94.865639

2p orbital 3p orbital 3d orbital

d1 0.0095141 0.3410642 0.0348038

d2 0.0704695 0.5491335 0.1757100

d3 0.2663558 0.2331493 0.3897658

d4 0.5105298 0.4580844

d5 0.3239964 0.3141941

a1 963.25905 5.1070835 45.307828

a2 227.39750 1.9450324 12.636091

a3 72.327649 0.71388491 4.2082300

a4 26.200292 1.3630734

a5 9.7923323 0.37550107
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basis set is optimized based on Cu: 1s22s22p63s23d104s1, it may work well in
copper cation such as Cu2+: 1s22s22p63s23d9.

In MINI(5.3.3.2.1/5.3/4.1) basis set, split-valence basis functions is combined.
4s and 3d IAOs are represented by two Gaussian basis functions. Polarization basis
function and diffuse basis function can be added in MINI basis set. MINI basis set
reproduces well the electron configuration of transition metal 3d electron. It is
because five 3d orbitals have the more flexibility, in comparison with 1s, 2s and
three 2p orbitals.

4.9.2 6-31G Basis Set

6-31G basis set, which belongs to double-zeta split-valence basis, was developed
by Pople and coworkers. It has been recognized that it reproduces well electronic
structure, combined with Hartree-Fock and density functional theory
(DFT) methods. IAO of inner shell electron is represented by a contracted Gaussian
basis function, which contains six primitive Gaussian basis functions. IAO of outer
shell orbital is split into two Gaussian basis functions. One is a contracted Gaussian
basis function, which contains three primitive Gaussian basis functions. The other is
a single Gaussian basis function. Polarization basis function is added to 6-31G
except for hydrogen. It is denoted as 6-31G*. 6-311G basis set belongs to
triple-zeta split-valence basis. IAO of outer shell electron is split into three Gaussian
basis functions. One is a contracted Gaussian basis function with three primate
Gaussian basis functions. The others are a single Gaussian basis function.

Hydrogen
One electron occupies 1s IAO, and there is no inner shell electron. In 6-31G basis
set, 1s IAO is represented by two Gaussian basis functions.

cHð1s0Þ/Hð1s0Þ þ cHð1s00Þ/Hð1s000Þ ð4:39Þ

where /Hð1s0Þ and /Hð1s00Þ denote two Gaussian basis functions for 1s IAO; cHð1s0Þ
and cHð1s00Þ denote the coefficients. In hydrogen and helium, no polarization basis
function is added in 6-31G*, but p-type polarization basis function is added in
6-31G**.

Carbon
Two electrons occupy 1s IAO as inner shell electron, and it is treated that four
electrons occupy 2s and 2p IAOs as outer shell electron. In 6-31G basis set, 1s IAO
is represented by Gaussian basis function.

cCð1sÞ/Cð1sÞ ð4:40Þ

where /Cð1sÞ denotes Gaussian basis function of 1s IAO; cCð1sÞ denote the coefficient.
On the other hand, 2s and 2p IAOs are represented by two Gaussian basis functions.
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cCð2s0Þ/Cð2s0Þ þ cCð2s00Þ/Hð2s00Þ ð4:41Þ

cCð2p0xÞ/Cð2p0xÞ þ cCð2p00x Þ/Cð2p00x Þ ð4:42Þ

cCð2p0yÞ/Cð2p0yÞ þ cCð2p00y Þ/Cð2p00y Þ ð4:43Þ

cCð2p0zÞ/Cð2p0zÞ þ cCð2p00z Þ/Cð2p00z Þ ð4:44Þ

where /Cð2s0Þ and /Cð2s00Þ denote two Gaussian basis functions of 2s IAO; /Cð2p0xÞ and
/ð2p00x Þ denote two Gaussian basis functions of 2px IAO; /Cð2p0xÞ and /ð2p00x Þ denote two
Gaussian basis functions of 2py IAO; /Cð2p0zÞ and /ð2p00z Þ denote two Gaussian basis
functions of 2pz IAO; cCð2s0Þ; cCð2s00Þ; cð2p0xÞ; cð2p00x Þ; cð2p00y Þ; cð2p00y Þcð2p0zÞ and cð2p00z Þ denote
the coefficients. Though basis functions of 2px, 2py and 2pz IAOs have the same
exponential coefficients and contracted coefficients, they have the different radial
wave-function, due to the different the xiyjzk terms. Note that the difference of the
xiyjzk terms is automatically recognized in many calculation program. In carbon,
d-type polarization basis function is added in 6-31G* and 6-31G** basis sets.

Table 4.2 summarizes the initial atomic orbitals and polarization basis functions
of first-row atoms (H, He), second-row atoms (Li, Be, B, C, N, O, F, Ne) and the

Table 4.2 Initial atomic orbitals and polarization basis functions of first-row atoms (H, He),
second-row atoms (Li, Be, B, C, N, O, F, Ne) and the third-row atoms (Na, Mg, Al, Si, P, S, Cl,
Ar) in 6-31G, 6-31G* and 6-31G** basis sets

Basis set Row Initial atomic orbital Polarization

Inner shell electron Outer shell electron

6-31G First � 1s orbital �
Second 1s orbital 2s orbital �

2p orbital

Third 1s orbital 3s orbital �
2s orbital 3p orbital

2p orbital

6-31G* First 1s orbital �
Second 1s orbital 2s orbital d-type

2p orbital

Third 1s orbital 3s orbital d-type

2s orbital 3p orbital

2p orbital

6-31G** First 1s orbital p-type

Second 1s orbital 2s orbital d-type

2p orbital

Third 1s orbital 3s orbital d-type

2s orbital 3p orbital

2p orbital
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third-row atoms (Na, Mg, Al, Si, P, S, Cl, Ar) in 6-31G, 6-31G* and 6-31G** basis
sets. In the first-row atoms, no polarization basis function is added in 6-31G*,
though p-type polarization basis function is added in 6-31G** basis set. Note that
6-31G* is equivalent to 6-31G in hydrogen and helium. In second-row and
third-row atoms, d-type polarization basis function is added in 6-31G* and
6-31G** basis sets.

The general notations of 6-31G basis set for the first-row, second-row and
third-row atoms are 6-31G (3.1), 6-31G (6.3.1/3.1) and 6-31G (6.6.3.1/6.3.1),
respectively. The notations of 6-31G* for the first-row, second-row and third-row
atoms are 6-31G* (3.1), 6-31G* (6.3.1/3.1/1) and 6-31G* (6.6.3.1/6.3.1/1),
respectively. The notations of 6-31G** for the first-row, second-row and third-row
atoms are 6-31G** (3.1/1), 6-31G** (6.3.1/3.1/1) and 6-31G** (6.6.3.1/6.3.1/1),
respectively.

4.9.3 Correlation-Consistent Basis Sets

4.9.3.1 cc-PVXZ Basis Set

Correlation-consistent basis sets were developed by Dunning and coworkers, from
the viewpoint of the improvement of electron correlation energy. Recently, it has
been widely utilized, combined with accurate calculation methods beyond
Hartree-Fock method. The general notation of correlation-consistent basis set is
cc-pVXZ, which implies “correlation-consistent polarized valence X-zeta basis set”
(X = D (double-zeta), T (triple-zeta), Q (quadruple-zeta), etc.).

Hydrogen
One electron occupies 1s IAO, and there is no inner shell electron. In cc-pVDZ
basis set, 1s IAO is represented by two Gaussian basis functions.

cHð1s0Þ/Hð1s0Þ þ cHð1s00Þ/Hð1s00Þ ð4:45Þ

where /Hð1s0Þ and /Hð1s00Þ denote two Gaussian basis functions for 1s IAO; cHð1s0Þ
and cHð1s00Þ denote the coefficients. One p-type polarization basis function is added.
The notation of cc-pVDZ basis set for hydrogen is cc-pVDZ (3.1/1).

Carbon
Two electrons occupy 1s IAO as inner shell electron, and it is treated that four
electron occupy 2s and 2p IAOs as outer shell electron. In cc-pVDZ basis set, 1s
IAO is represented by Gaussian basis function. 2s and 2p IAOs are represented by
two Gaussian basis functions.
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cCð2s0Þ/Cð2s0Þ þ cCð2s00Þ/Cð2s00Þ ð4:46Þ

cCð2p0xÞ/Cð2p0xÞ þ cCð2p00x Þ/Cð2p00x Þ ð4:47Þ

cCð2p0yÞ/Cð2p0yÞ þ cCð2p00y Þ/Cð2p00y Þ ð4:48Þ

cCð2p0zÞ/Cð2p0zÞ þ cCð2p00z Þ/Cð2p00z Þ ð4:49Þ

where /Cð2s0Þ and /Cð2s00Þ denote two Gaussian basis functions of 2s IAO; /Cð2p0xÞ
and /ð2p00x Þ denote two Gaussian basis functions of 2px IAO; /Cð2p0yÞ and /ð2p00y Þ
denote two Gaussian basis functions of 2py IAO; /Cð2p0zÞ and /ð2p00z Þ denote two
Gaussian basis functions of 2pz IAO; cCð2s0Þ, cCð2s00Þ, cð2p0xÞ, cð2p00x Þ, cð2p0yÞ, cð2p00y Þ, cð2p0zÞ
and cð2p00z Þ denote the coefficients. Though basis functions of 2px, 2py and 2pz IAOs
have the same exponential coefficients and contracted coefficients, they have the
different radial wave-function, due to the different the xiyjzk terms. One d-type
polarization basis function is also added. The notation of cc-pVDZ basis set for
carbon is cc-pVDZ (8.8.1/3.1/1).

Silicon
In cc-pVDZ basis set, as 1s, 2s and 2p electrons belong to inner shell, 1s, 2s and 2p
IAOs are represented by Gaussian basis function. On the other hand, as it is treated
that 3s and 3p electrons belong to outer shell, 3s and 3p IAOs are represented by
two Gaussian basis functions.

cSið3s0Þ/Sið3s0Þ þ cSið3s00Þ/Sið3s00Þ ð4:50Þ

cSið3p0xÞ/Sið3p0xÞ þ cSið3p00x Þ/Sið3p00x Þ ð4:51Þ

cSið3p0yÞ/Sið3p0yÞ þ cSið3p00y Þ/Sið3p00y Þ ð4:52Þ

cSið3p0zÞ/Sið3p0zÞ þ cSið3p00z Þ/Sið3p00z Þ ð4:53Þ

where /Sið3s0Þ and /Sið3s00Þ denote two Gaussian basis functions of 3s IAO; /Sið3p0xÞ
and /Sið3p00x Þ denote two Gaussian basis functions of 3px IAO; /Sið3p0yÞ and /Sið3p00y Þ
denote two Gaussian basis functions of 3py IAO; /Sið3p0zÞ and /Sið3p00z Þ denote two
Gaussian basis functions of 3pz IAO; cSið3s0Þ, cSið3s00Þ, cSið3p0xÞ, cSið3p00x Þ, cSið3p0yÞ, cSið3p00y Þ,
cSið3p0zÞ and cSið3p00z Þ denote the coefficients. Though basis functions of 3px, 3py and
3pz IAOs have the same exponential coefficients and contracted coefficients, they
have the different radial wave-function, due to the different the xiyjzk terms. One
d-type polarization basis function is also added. The notation of cc-pVDZ basis set
for silicon is cc-pVDZ (11.11.11.1/7.7.1/1).
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4.9.3.2 aug-cc-pVXZ basis set

To represent excited electron configuration or perform the correction of polarization
basis function, diffuse basis function is added to cc-pVXZ basis set. The general
notation of correlation-consistent basis set with diffuse basis function is
aug-cc-pVXZ, which implies “augmented correlation-consistent polarized valence
X-zeta basis set” (X = D (double-zeta), T (triple-zeta), Q (quadruple-zeta), etc.).

Hydrogen
In aug-cc-pVDZ basis set, 1s IAO is represented by two Gaussian basis functions,
as same as cc-pVDZ basis set. Based on cc-pVDZ basis set, s-type and p-type
diffuse basis functions are added. The notation of aug-cc-pVDZ basis set for
hydrogen is aug-cc-pVDZ (3.1.1/1.1).

Carbon
In aug-cc-pVDZ basis set, s-type, p-type and d-type diffuse basis functions are
added, based on cc-pVDZ basis set. The notation of aug-cc-pVDZ basis set for
carbon is aug-cc-pVDZ (8.8.1.1/3.1.1/1.1).

Silicon
In aug-cc-pVDZ basis set, s-type, p-type and d-type diffuse basis functions are
added, based on cc-pVDZ basis set. The notation of silicon aug-cc-pVDZ basis set
is aug-cc-pVDZ (11.11.11.1.1/7.7.1.1/1.1).

4.9.4 Basis Set Selection

No single and universal basis set has been developed yet. Basis set selection
contains very arbitrary factors. There is no guarantee that correct electronic struc-
ture is reproduced, even if larger basis set is applied in practical calculation. It is
expected that smaller eigenvalue may be given, due to mathematical advantage such
as higher flexibility through contraction and diffuse and polarization basis func-
tions. However, there is a possibility that electron may be allocated mainly in
diffuse and polarization basis functions. We have to pay attention that mathemat-
ically smallest eigenvalue is not always equivalent to a real minimum total energy.
Benchmarking of basis set is important.

Table 4.3 summarizes our empirical recommendation of basis set selection. For
small molecule and conventional organic molecule, the use of 6-31G* basis set
combined with DFT method, which is denoted as 6-31G*/DFT, has an advantage in
computational cost and gives the scientifically reasonable electronic structure.

For small molecule and conventional organic molecule, the use of
correlation-consistent basis set combined with coupled cluster method, which is
denoted as aug-cc-pVXZ/coupled cluster, makes it possible to perform the very
accurate quantitative discussion.
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For transition metal, MINI basis set combined with DFT method gives the
scientifically reasonable electronic structure. Normally, 3d orbital participates in
chemical bonding. It has own flexibility, due to the existence of five type orbitals. In
transition metal compounds, 6-31G* basis set is normally utilized for other atoms
except for transition metal.

Basis function has two scientific meaning such as the expression of IAO and the
correction of chemical bonding. In atom, the definition of IAO normally corre-
sponds to the real AO. On the other hand, in molecule, complex chemical bonding
is formed between IAOs, diffuse basis function and polarization basis function.
There is a possibility that electron is allocated in diffuse basis function. In practical
calculation result, it is important to check whether roles of basis functions are
changed or not. Basis set selection is one of the important factors for scientifically
reasonable calculation.

Three main factors

(1) Basis set
(2) Combination of basis set and calculation method
(3) Modelling

If scientifically reasonable model is not constructed, benchmarking is mean-
ingless. In Chap. 6, calculation methods beyond Hartree-Fock method such as
coupled cluster and DFT are introduced. In Chap. 9, how to construct model is
introduced.
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cc-pVTZ
aug-cc-pVTZ

DFT 6-31G*

Transition metal compounds Hartree-Fock MINI (transition metal)
6-31G* (other atoms)

DFT MINI (transition metal)
6-31G* (other atoms)
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Chapter 5
Orbital Analysis

Abstract In Hartree-Fock equation, the obtained wave-function represents atomic
orbitals in atom and molecular orbitals in molecule. The details of chemical
bonding and charge density can be investigated from orbital analysis. Chemical
bonding rule is very useful to specify chemical bonding character. Outer shell
electron is shared between different atoms in covalent bonding, though different
atoms are bound through Coulomb interaction in ionic bonding. Hence, chemical
bonding character can be specified by checking whether orbital overlap exists or not
in molecular orbital including outer shell electrons. Mulliken charge density is a
useful index to estimate a net electron distribution. As orbital overlap is equally
divided into different atoms, it may cause an error. However, it has been widely
accepted that Mulliken charge density is applicable for a quantitative discussion. In
wave-function, spin-orbital interaction is taken into account, through the product
between spatial orbital and spin function. The communication relation exists
between Hamiltonian and spin operator. Natural orbital is completely different from
molecular orbital. The discrete orbital energy disappears, and a and b spin functions
are mixed.

Keywords Chemical bonding rule � Population analysis � Mulliken charge
density � Spin-orbital interaction � Natural orbital

5.1 Chemical Bonding Rule

By solving Hartree-Fock matrix equation, atomic orbital (AO) or molecular orbital
(MO) coefficients are obtained. Chemical bonding can be understood, based on the
interaction between initial atomic orbitals (IAOs). In molecule and solid, chemical
bonding is largely divided into covalent bonding and ionic bonding. In covalent
bonding, outer shell electron is shared between different atoms. On the other hand,
in ionic bonding, different atoms are bound through Coulomb interaction. Hence,
checking MOs including outer shell electrons, chemical bonding character can be
specified.
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Chemical bonding rule
For molecular orbitals including outer shell electrons,
check whether orbital overlap exists or not.

– With orbital overlap: Covalent.
– Without orbital overlap: Ionic.

Notation

(1) Ionic bonding coexists in covalent bonding.
(2) In open shell system, outer shell electrons are often allocated in not only

unpaired a MOs but also paired a and b MOs (see Fig. 5.1).
(3) MOs including outer shell electrons must be determined from obtained MO

coefficients.
(4) The difference between orbital hybridization and orbital overlap: orbital

hybridization occurs within atom; orbital overlap occurs between different
atoms.

Check orbital overlap

(a) (b)

Fig. 5.1 Schematic drawing of chemical bonding rule: a open shell system, b closed shell system
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5.2 Mulliken Population Analysis

5.2.1 Charge Density Function

Before starting electron distribution into each atom, the total charge density func-
tion is defined for atom or molecule. In closed shell 2n-electron system, it is defined
as

q rð Þ ¼ 2
Xn
i¼1

wi rð Þ�wi rð Þ ð5:1Þ

where wi(r) is the i-th AO in atom or MO in molecule. The integration of the total
charge density function corresponds to the total number of electrons in atom or
molecule:

Z
q rð Þdr ¼ 2

Xn
i¼1

Z
wi rð Þ�wi rð Þdr ¼ 2n ð5:2Þ

On the other hand, in open shell system, the total a charge density function is
defined as

qa rð Þ ¼
Xna
i¼1

wa
i rð Þ�wa

i rð Þ ð5:3Þ

where na is the total number of a electrons; wi
a(r) is the i-th a AO in atom or MO in

molecule. The integration of the total a charge density function corresponds to the
total number of a electrons in atom or molecule:

Z
qa rð Þdr ¼

Xna
i¼1

Z
wa
i rð Þ�wa

i rð Þdr ¼ na ð5:4Þ

On the other hand, the total b charge density function is defined as

qb rð Þ ¼
Xnb
i¼1

wb
i rð Þ�wb

i rð Þ ð5:5Þ
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where nb is the total number of b electrons; wi
b(r) is the i-th b AO in atom or MO in

molecule. The integration of the total b charge density function corresponds to the
total number of b electrons in atom or molecule:

Z
qb rð Þdr ¼

Xnb
i¼1

Z
wb
i rð Þ�wb

i rð Þdr ¼ nb ð5:6Þ

As a and b orbitals are separated in open shell system, the total number of all
electrons is given by the summation of Eqs. (5.4) and (5.6).

Z
qa rð Þþ qb rð Þ� �

dr ¼ na þ nb ð5:7Þ

5.2.2 Mulliken Charge Density

5.2.2.1 Two-Electron System

Mulliken explored how to estimate charge density of each atom in molecule, from
obtained molecular orbitals. Let us consider two-electron system with singlet spin
state, where two electrons are allocated in two atoms. Atom 1 and atom 2 have own
atomic orbital. Atomic orbitals for atom 1 and atom 2 are denoted as w1 and w2,
respectively. The wave-function of molecular orbital is approximately represented
by the combination of w1 and w2.

W r1; r2ð Þ ¼ c1w1 r1ð Þþ c2w2 r2ð Þ ð5:8Þ

where c1 and c2 denote a coefficient; r1 and r2 denote coordinate variable. The
charge density function of the two-electron system is given by

q r1; r2ð Þ ¼ W� r1; r2ð ÞW r1; r2ð Þ ð5:9Þ

By substitution of Eq. (5.8),

q r1; r2ð Þ ¼ c1ð Þ2 w1 r1ð Þf g2 þ c�1c2w1 r1ð Þ�w2 r2ð Þþ c1c
�
2w1 r1ð Þw2 r2ð Þ� þ c2ð Þ2 w2 r2ð Þf g2

ð5:10Þ

As coefficients are real, it is rewritten as

q r1; r2ð Þ ¼ c1ð Þ2 w1 r1ð Þf g2 þ 2c1c2w1 r1ð Þw2 r2ð Þþ c2ð Þ2 w2 r2ð Þf g2 ð5:11Þ

Though the first and third terms correspond to charge density functions in pure
atom 1 and atom 2, respectively, the second term is related to both atoms.
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In Mulliken manner, it is equally divided into both atoms. The charge density
function of atom 1 is expressed as

q r1; r2ð Þatom1¼ c1ð Þ2 w1 r1ð Þf g2 þ c1c2w1 r1ð Þw2 r2ð Þ ð5:12Þ

The integration of the function gives the net number of electrons distributed to
atom 1.

Z
q r1; r2ð Þatom1dr1dr2 ¼ c1ð Þ2

Z
w1 r1ð Þf g2dr1 þ c1c2

Z
w1 r1ð Þw2 r2ð Þdr1dr2

ð5:13Þ

The value is called Mulliken charge density. The overlap integral between two
orbitals is defined as

Sij ¼
Z

wi rið Þwj rj
� �

dridrj ð5:14Þ

By using the notation, it is rewritten as

Z
q r1; r2ð Þatom1dr1dr2 ¼ c1ð Þ2S11 þ c1c2S12 ð5:15Þ

On the other hand, the charge density function of atom 2 is expressed as

q r1; r2ð Þatom2¼ c1c2w1 r1ð Þw2 r2ð Þþ c2ð Þ2 w2 r2ð Þf g2 ð5:16Þ

The integration of the function gives Mulliken charge density of atom 2:

Z
q r1; r2ð Þatom2dr1dr2 ¼ c1c2

Z
w1 r1ð Þw2 r2ð Þdr1dr2 þ c2ð Þ2

Z
w2 r2ð Þf g2dr2

ð5:17Þ

By using the notation of overlap integral, it is rewritten as

Z
q r1; r2ð Þatom2dr1dr2 ¼ c1c2S12 þ c2ð Þ2S22 ð5:18Þ

If atom 1 and atom 2 are the same, the division will give the best approximation.
It is due to molecular symmetry of the system, for example H2 molecule, N2

molecule, O2 molecule, etc.
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5.2.2.2 General System

Let us generalize Mulliken charge density for open shell system (m-atom; na-a
electron; nb-b electron). By substitution of basis function (Eq. 4.2) in the total a
charge density function (Eq. 5.3),

qa rð Þ ¼
Xna
i¼1

Xk
k¼1

cak ið Þ�/a
k ið Þ�

Xk
l¼1

cal ið Þ/a
l ið Þ ð5:19Þ

where k is the number of basis functions. The integration of the total a charge
density function gives the total number of a electrons.

na ¼
Z

qa rð Þdr ¼
Xna
i¼1

Xk
k¼1

Xk
l¼1

cak ið Þ�cal ið Þ
Z

/a
k ið Þ�/a

l ið Þdr ð5:20Þ

By using the notation of overlap integral, it is rewritten as

na ¼
Z

qa rð Þdr ¼
Xna
i¼1

Xk
k¼1

Xk
l¼1

Pa
kl ið ÞSakl ið Þ ð5:21Þ

where Pkl
a is defined as

Pa
kl ið Þ ¼ cak ið Þ�cal ið Þ ð5:22Þ

If the wave-function of atomic orbital for atom 1 consists of one basis function
(/1), the terms related to atom 1 are

Pa
11 1ð ÞSa11 1ð Þþ Pa

12 1ð ÞSa12 1ð ÞþPa
13 1ð ÞSa13 1ð Þþ � � � þPa

1k 1ð ÞSa1k 1ð Þ� �
þ Pa

21 1ð ÞSa21 1ð ÞþPa
31 1ð ÞSa31 1ð Þþ � � � þPa

k1 1ð ÞSak1 1ð Þ� � ð5:23Þ

Though the first term belongs only to atom 1, other terms must be half-divided.
Finally, Mulliken a charge density of atom 1 is given by

Pa
11 1ð ÞSa11 1ð Þþ Pa

12 1ð ÞSa12 1ð ÞþPa
13 1ð ÞSa13 1ð Þþ � � � þPa

1k 1ð ÞSa1k 1ð Þ� � ð5:24Þ

If the wave-function of atomic orbital for atom 1 consists of two basis function
(/1, /2), the terms related to atom 1 are

Pa
11 1ð ÞSa11 1ð ÞþPa

12 1ð ÞSa12 1ð ÞþPa
21 1ð ÞSa21 1ð ÞþPa

22 1ð ÞSa22 1ð Þ
þ Pa

13 1ð ÞSa13 1ð Þþ � � � þPa
1k 1ð ÞSa1k 1ð Þ� �þ Pa

31 1ð ÞSa31 1ð Þþ � � � þPa
k1 1ð ÞSak1 1ð Þ� �

þ Pa
23 1ð ÞSa23 1ð Þþ � � � þPa

2k 1ð ÞSa2k 1ð Þ� �þ Pa
32 1ð ÞSa32 1ð Þþ � � � þPa

k2 1ð ÞSak2 1ð Þ� �
ð5:25Þ
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Except for the first, second, third and fourth terms, other terms must be
half-divided. Mulliken a charge density is given by

Pa
11 1ð ÞPSa11 1ð ÞþPa

12 1ð ÞSa12 1ð ÞþPa
21 1ð ÞSa21 1ð ÞþPa

22 1ð ÞSa22 1ð Þ
þ Pa

13 1ð ÞSa13 1ð Þþ � � � þPa
1k 1ð ÞSa1k 1ð Þ� �

þ Pa
23 1ð ÞSa23 1ð Þþ � � � þPa

2k 1ð ÞSa2k 1ð Þ� � ð5:26Þ

In the same manner, b Mulliken charge density can be estimated. When
obtaining Mulliken charge density for specific atom, it must be checked which basis
functions belong to which atom. It is summarized how to obtain Mulliken charge
density as follows:

How to estimate Mulliken charge density

1. Check which basis functions belong to which atom.
2. Sum PS terms consisting of considering atom.
3. Sum PS terms consisting of considering and other atoms, and then divide

them in half.
4. Sum 2 and 3 = Mulliken charge density for considering atom.

5.2.3 Summary

In Mulliken population analysis, PS term is equally divided in half. When con-
sidering orbital overlap between different orbitals or different atoms, half-division
may cause an error. It is because spread of orbital is not correctly represented. If PS
term is correctly distributed to each atom, precise charge density can be obtained. In
addition, Mulliken charge density depends on basis set. However, it has been
widely accepted that Mulliken charge density is very useful and applicable for a
quantitative discussion. More precise division, combined with precise basis set, is
much expected.

5.3 Spin-Orbital Interaction

5.3.1 Spin Angular Momentum

Spin angular momentum (s) of electron has two quantum numbers. One is for total
spin angular momentum (s), and the other is z-component of total spin angular
momentum (sz). Note that the selection of the direction may be arbitrary, but the z
direction is normally chosen. The wave-function of spin angular momentum (/spin)
satisfies the following quantum equations.
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s2/spin ¼ s sþ 1ð Þ/spin ð5:27Þ

sz/spin ¼ sz/spin ð5:28Þ

where s2 and sz denote operators of spin angular momentum and its z-component,
respectively.

In the spin angular momentum of electron, a-type and b-type exist. The a-type
and b-type wave-functions are denoted as /a

spin and /b
spin, respectively. /

a
spin and

/b
spin have the same s value (1/2). They are distinguished by the different sz values:

1/2 (/a
spin), −1/2 (/b

spin). By substitution of s value, Eq. (5.27) is rewritten as

s2/a
spin ¼

3
4
/a
spin ð5:29Þ

s2/b
spin ¼

3
4
/b
spin ð5:30Þ

By substitution of sz values, Eq. (5.27) is rewritten as

sz/
a
spin ¼

1
2
/a
spin ð5:31Þ

sz/
a
spin ¼ � 1

2
/a
spin ð5:32Þ

Note that /a
spin and /b

spin are not eigenfunctions of both sx and sy operators.
Instead, two ladder operators (s+, s−) are introduced. By using ladder operators, s2

operator can be rewritten as

s2 ¼ sþ s� � sz þ s2z ð5:33Þ

Ladder operators satisfy the following equations.

sþ/a
spin ¼ 0 ð5:34Þ

sþ/
b
spin ¼ /a

spin ð5:35Þ

s�/a
spin ¼ /b

spin ð5:36Þ

s�/
b
spin ¼ 0 ð5:37Þ
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5.3.2 Total Spin Angular Momentum

In n-electron system, the total spin angular momentum corresponds to the sum-
mation of spin angular momentum.

S ¼
Xn
i¼1

s ið Þ ð5:38Þ

Spin state is characterized by quantum number of total spin angular momentum
(S). For example, anti-parallel-spin coupling (a and b spins) when S = 0, and
parallel-spin coupling (the same spins) when S = 1. The 2S + 1 value stands for
spin multiplicity: 1 (singlet), 2 (doublet), 3 (triplet), 4 (quartet), etc.

The z-component of total spin angular momentum corresponds to the summation
of z-component of spin angular momentum.

Sz ¼
Xn
i¼1

sz ið Þ ð5:39Þ

For example, anti-parallel-spin coupling (a and b spins) appears when Sz = 0;
parallel-spin coupling of a spins appears when Sz =+1; parallel-spin coupling of b
spins appears when Sz = −1.

The ladder operator of total spin angular momentum corresponds to the sum-
mation of ladder operators of spin angular momentum.

Sþ ¼
Xn
i¼1

sþ ið Þ ð5:40Þ

S� ¼
Xn
i¼1

s� ið Þ ð5:41Þ

S2 operator is given by

S2 ¼
Xn
i¼1

s2 ið Þ
Xn
j¼1

s2 jð Þ ð5:42Þ

By using ladder operators, it is rewritten as

S2 ¼ Sþ S� � Sz þ S2z ð5:43Þ

The wave-function of total spin angular momentum satisfies the following
quantum equations.
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S2Uspin ¼ S Sþ 1ð ÞUspin ð5:44Þ

SzUspin ¼ SzUspin ð5:45Þ

5.3.3 Communication Relation

Let us consider spin-orbital interaction. The Hamiltonian of Schrödinger equation
(H) is expressed without spin coordinates. There are two commutation relations
between H and S2 and between H and Sz.

HS2 � S2H ¼ 0 ð5:46Þ

HSz � SzH ¼ 0 ð5:47Þ

Hence, the exact wave-function of Schrödinger equation (U) is expected to be
also eigenfunction of S2 and Sz operators.

S2U ¼ S Sþ 1ð ÞU ð5:48Þ

SzU ¼ SzU ð5:49Þ

5.3.4 Two-Electron System

Let us consider spin-orbital interaction in closed shell two-electron system, where
paired a and b electrons are allocated in the same spatial orbital. By using Slater
determinant, the wave-function is expressed as

U ¼ v1j x1ð Þv2 x2ð Þi ¼ v1 x1ð Þv2 x2ð Þ � v2 x1ð Þv1 x2ð Þ ð5:50Þ

By substitutions of both spatial orbitals and spin functions,

U ¼ 1ffiffiffi
2

p w1 r1ð Þw2 r2ð Þa x1ð Þb x2ð Þ � w2 r1ð Þw1 r2ð Þb x1ð Þa x2ð Þf g ð5:51Þ

S2U is divided into the three terms regarding S+S−, Sz and Sz
2 terms. S+S− term is

rewritten as

Sþ S�U ¼ sþ x1ð Þs� x1ð Þþ sþ x1ð Þs� x2ð Þþ sþ x2ð Þs� x1ð Þþ sþ x2ð Þs� x2ð Þf gU
ð5:52Þ
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In addition, by substitution of Slater determinant,

Sþ S�U ¼ 1ffiffiffi
2

p w1 r1ð Þw2 r2ð Þ � w2 r1ð Þw1 r2ð Þf g a x1ð Þb x2ð Þþ b x1ð Þa x2ð Þf g

ð5:53Þ

By using sz operator, Sz term is rewritten as

SzU ¼ sz x1ð Þþ sz x2ð Þf gU ð5:54Þ

In addition, by substitution of Slater determinant,

SzU ¼ 1ffiffiffi
2

p 1
2
w1 r1ð Þw2 r2ð Þa x1ð Þb x2ð Þ � 1

2
w1 r1ð Þw2 r2ð Þa x1ð Þb x2ð Þ

�

þ 1
2
w2 r1ð Þw1 r2ð Þb x1ð Þa x2ð Þ � 1

2
w2 r1ð Þw1 r2ð Þb x1ð Þa x2ð Þ

�
¼ 0

ð5:55Þ

By using sz operators, Sz
2 term is rewritten as

S2zU ¼ sz x1ð Þsz x1ð Þþ sz x1ð Þsz x2ð Þþ sz x2ð Þsz x1ð Þþ sz x2ð Þsz x2ð Þf gU ð5:56Þ

In addition, by substituting of Slater determinant,

S2zU ¼ 1ffiffiffi
2

p 1
4
w1 r1ð Þw2 r2ð Þa x1ð Þb x2ð Þ � 1

4
w1 r1ð Þw2 r2ð Þa x1ð Þb x2ð Þ

�

� 1
4
w1 r1ð Þw2 r2ð Þa x1ð Þb x2ð Þþ 1

4
w1 r1ð Þw2 r2ð Þa x1ð Þb x2ð Þ

þ 1
4
w2 r1ð Þw1 r2ð Þb x1ð Þa x2ð Þ � 1

4
w2 r1ð Þw1 r2ð Þb x1ð Þa x2ð Þ

� 1
4
w2 r1ð Þw1 r2ð Þb x1ð Þa x2ð Þþ 1

4
w2 r1ð Þw1 r2ð Þb x1ð Þa x2ð Þ

�
¼ 0

ð5:57Þ

Finally, we obtain

S2U ¼ 1ffiffiffi
2

p w1 r1ð Þw2 r2ð Þ � w2 r1ð Þw1 r2ð Þf g a x1ð Þb x2ð Þþ b x1ð Þa x2ð Þf g ð5:58Þ

In closed shell system, paired a and b electrons are allocated in the same spatial
orbital. Namely, w1 = w2.

S2U ¼ 1ffiffiffi
2

p w1 r1ð Þw1 r2ð Þ � w1 r1ð Þw1 r2ð Þf g a x1ð Þb x2ð Þþ b x1ð Þa x2ð Þf g ¼ 0

ð5:59Þ
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It is found that U is the eigenfunction of S2, and S(S + 1) eigenvalue is zero,
corresponding anti-parallel-spin coupling between a and b spins. On the other
hand, when different spatial orbitals are given for a and b electrons, U is not the
eigenfunction of S2 any longer. It is because U is not eigenfunction of S+S−, though
it is eigenfunction of Sz. It implies that spin symmetry is broken by introduction of
different spatial orbitals. In fact, a and b electrons are allocated in the same spatial
orbital in ground state of neutral helium, hydrogen molecule and lithium cation.

Let us consider spin-orbital interaction in open shell two-electron system, where
two electrons have the same a spin. By substitutions of both spatial orbitals and
spin function, the total wave-function is rewritten as

U ¼ 1ffiffiffi
2

p w1 r1ð Þw2 r2ð Þ � w2 r1ð Þw1 r2ð Þf ga x1ð Þa x2ð Þ ð5:60Þ

S2U is divided into the three terms regarding S+S−, Sz and Sz
2 terms. S+S− term is

rewritten in the same manner.

Sþ S�U ¼ 2ffiffiffi
2

p w1 r1ð Þw2 r2ð Þ � w2 r1ð Þw1 r2ð Þf ga x1ð Þa x2ð Þ ¼ 2U ð5:61Þ

Sz term is rewritten in the same manner:

SzU ¼ 1ffiffiffi
2

p w1 r1ð Þw2 r2ð Þ � w2 r1ð Þw1 r2ð Þf g 1
2
þ 1

2

	 

a x1ð Þa x2ð Þ ¼ U ð5:62Þ

It is found that U is eigenfunction of Sz operator, and the eigenvalue is 1. Sz
2 term

is rewritten in the same manner:

S2zU ¼ 1ffiffiffi
2

p w1 r1ð Þw2 r2ð Þ � w2 r1ð Þw1 r2ð Þf g 1
4
þ 1

4
þ 1

4
þ 1

4

	 

a x1ð Þa x2ð Þ ¼ U

ð5:63Þ

Finally, we obtain

S2U ¼ 2U ð5:64Þ

It is found that U is the eigenfunction of S2, and S(S + 1) eigenvalue is two,
corresponding parallel-spin coupling between a spins.
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5.3.5 Three-Electron System

Let us consider spin-orbital interaction in three-electron system, where two a and b
electrons are paired, and one electron is unpaired. The total wave-function is given
by

U ¼ 1ffiffiffi
6

p w2 r1ð Þ w3 r2ð Þw1 r3ð Þ � w1 r2ð Þw3 r3ð Þf gb x1ð Þa x2ð Þa x3ð Þ

þ 1ffiffiffi
6

p w2 r2ð Þ w1 r1ð Þw3 r3ð Þ � w3 r1ð Þw1 r3ð Þf ga x1ð Þb x2ð Þa x3ð Þ

þ 1ffiffiffi
6

p w2 r3ð Þ w3 r1ð Þw1 r2ð Þ � w1 r1ð Þw3 r2ð Þf ga x1ð Þa x2ð Þb x3ð Þ

ð5:65Þ

S2U is divided into the three terms regarding S+S−, Sz and Sz
2 terms. S+S− term is

rewritten in the same manner.

Sþ S�U ¼ 2ffiffiffi
6

p w2 r1ð Þ w3 r2ð Þw1 r3ð Þ � w1 r2ð Þw3 r3ð Þf g b x1ð Þa x2ð Þa x3ð Þþ a x1ð Þb x2ð Þa x3ð Þf g

þ 2ffiffiffi
6

p w2 r1ð Þ w3 r2ð Þw1 r3ð Þ � w1 r2ð Þw3 r3ð Þf g b x1ð Þa x2ð Þa x3ð Þþ a x1ð Þa x2ð Þb x3ð Þf g

þ 2ffiffiffi
6

p w2 r2ð Þ w1 r1ð Þw3 r3ð Þ � w3 r1ð Þw1 r3ð Þf g a x1ð Þb x2ð Þa x3ð Þþ b x1ð Þa x2ð Þa x3ð Þf g

þ 2ffiffiffi
6

p w2 r2ð Þ w1 r1ð Þw3 r3ð Þ � w3 r1ð Þw1 r3ð Þf g a x1ð Þb x2ð Þa x3ð Þþ a x1ð Þa x2ð Þb x3ð Þf g

þ 2ffiffiffi
6

p w2 r3ð Þ w3 r1ð Þw1 r2ð Þ � w1 r1ð Þw3 r2ð Þf g a x1ð Þa x2ð Þb x3ð Þþ b x1ð Þa x2ð Þa x3ð Þf g

þ 2ffiffiffi
6

p w2 r3ð Þ w3 r1ð Þw1 r2ð Þ � w1 r1ð Þw3 r2ð Þf g a x1ð Þa x2ð Þb x3ð Þþ a x1ð Þb x2ð Þa x3ð Þf g

ð5:66Þ

In general, U is not eigenfunction of S+S− operator. However, as a and b
electrons occupy the same spatial orbital (w1 is equivalent to w2), S+S−U can be
rewritten as

Sþ S�U ¼ 2ffiffiffi
6

p w1 r1ð Þ w3 r2ð Þw1 r3ð Þ � w1 r2ð Þw3 r3ð Þf gb x1ð Þa x2ð Þa x3ð Þ

þ 2ffiffiffi
6

p w1 r2ð Þ w1 r1ð Þw3 r3ð Þ � w3 r1ð Þw1 r3ð Þf ga x1ð Þb x2ð Þa x3ð Þ

þ 2ffiffiffi
6

p w1 r3ð Þ w3 r1ð Þw1 r2ð Þ � w1 r1ð Þw3 r2ð Þf ga x1ð Þa x2ð Þb x3ð Þ ¼ 2U

ð5:67Þ
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Regardless of the spatial orbital, Sz term is rewritten in the same manner.

SzU ¼ � 1
2
þ 1

2
þ 1

2

	 

þ 1

2
� 1
2
þ 1

2

	 

þ 1

2
þ 1

2
� 1
2

	 
� �

1ffiffiffi
6

p w2 r1ð Þ w3 r2ð Þw1 r3ð Þ � w1 r2ð Þw3 r3ð Þf gb x1ð Þa x2ð Þa x3ð Þ
�

þ 1ffiffiffi
6

p w2 r2ð Þ w1 r1ð Þw3 r3ð Þ � w3 r1ð Þw1 r3ð Þf ga x1ð Þb x2ð Þa x3ð Þ

þ 1ffiffiffi
6

p w2 r3ð Þ w3 r1ð Þw1 r2ð Þ � w1 r1ð Þw3 r2ð Þf ga x1ð Þa x2ð Þb x3ð Þ
�

¼ 3
2
U ð5:68Þ

It is found that U is eigenfunction of Sz operator, and the eigenvalue is 3/2. Sz
2

term is rewritten in the same manner.

S2zU ¼ 1
4
U ð5:69Þ

It is found that U is eigenfunction of Sz
2 operator, and the eigenvalue is 3/4.

Finally, we obtain

S2U ¼ 3
4
U ð5:70Þ

It is found that U is eigenfunction of S2, and S(S + 1) eigenvalue is 3/4, cor-
responding S = 1/2. It is concluded that spin symmetry is kept when a and b
electrons occupy the same spatial orbital. When paired a and b electrons occupy the
same spatial orbital, the Hartree-Fock method is called restricted open shell
Hartree-Fock (ROHF) method.

In real three-electron system, the independent spatial orbitals (w1
a and w1

b) for
paired a and b electrons are obtained. U is not the eigenfunction of S2 any longer,
because U is not eigenfunction of S+S− operator (see Eq. 5.56).

5.3.6 Summary

In open shell system, the paired MOs and unpaired MOs (spin source) are obtained.
Note that “paired” means the qualitatively same. In paired a and b MOs, molecular
orbital coefficients are slightly different. The total wave-function is not eigen-
function of S2 operator, though it is eigenfunctions of Sz and Sz

2 operators. When
spin function is defined as isolated electron, eigen equations of spin function are
satisfied. However, in general, they are not satisfied without the restriction of spatial
orbital.
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5.4 Natural Orbital

Natural orbital is completely different from molecular orbital. It is based on
pseudo-quantum mechanics. Natural orbital is derived from the introduction of
reduced charge density function. In n-electron system, reduced charge density
function is given by

q x
0
1jx1

� �
¼ n

Z
U�Udx2dx3 � � � dxn ð5:71Þ

where U is the total wave-function of n-electron system.

U ¼ v1 x1ð Þv2 x2ð Þ � � �j vn xnð Þi ð5:72Þ

where vi is the i-th spin orbital. Equation (5.71) is rewritten as

q x
0
1jx1

� �
¼

Xn
i¼1

Xn
j¼1

qijvi x1ð Þvj x1ð Þ ð5:73Þ

where qij is the coefficient. The matrix expression is

q11v1ðx1Þv1ðx1Þ q12v1ðx1Þv2ðx1Þ q1nv1ðx1Þvnðx1Þ
q21v2ðx1Þv1ðx1Þ q22v2ðx1Þv2ðx1Þ . . . q2nv2ðx1Þvnðx1Þ
q21v3ðx1Þv1ðx1Þ q32v3ðx1Þv2ðx1Þ q3nv3ðx1Þvnðx1Þ

..

. . .
. ..

.

qn1v3ðx1Þv1ðx1Þ qn2vnðx1Þv2ðx1Þ . . . qnnv3ðx1Þvnðx1Þ

0
BBBBB@

1
CCCCCA

ð5:74Þ

By diagonalizing the matrix, it is rewritten as

n1g1ðx1Þg1ðx1Þ 0 0
0 n2g2ðx1Þg2ðx1Þ . . . 0
0 0 0

..

. . .
. ..

.

0 0 . . . nngnðx1Þgnðx1Þ

0
BBBB@

1
CCCCA ð5:75Þ

The reduced charge density function is rewritten as

q x
0
1jx1

� �
¼

Xn
i¼1

nigi x1ð Þgi x1ð Þ ð5:76Þ

where ηi is the i-th natural orbital; fi is the i-th occupation number. It implies that
the reduced charge density function can be expressed by natural orbitals, instead of
spin orbitals. By the integration of Eq. (5.71),
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Z
q x

0
1jx1

� �
dx1 ¼ n

Z
U�Udx1dx2dx3 � � � dxn ¼ n ð5:77Þ

By the integration of Eq. (5.76),

Xn
i¼1

ni

Z
gi x1ð Þgi x1ð Þdx1 ¼ n1 þ n2 þ � � � þ nn ð5:78Þ

Finally, we have one equation related to occupation numbers:

n ¼ n1 þ n2 þ � � � þ nn ð5:79Þ

It implies that the total of occupation numbers corresponds to the total number of
electrons.

Figure 5.2 depicts the schematic drawing of the comparison between molecular
orbital and natural orbital. Molecular orbital is the solution of Hartree-Fock equa-
tion. The eigenvalue of Hartree-Fock equation corresponds to orbital energy. As
Hartree-Fock equation is based on quantum mechanics, discrete orbital energy is
reproduced in molecular orbital. On the other hand, natural orbital is derived from
the diagonalization of reduced charge density function. In the process, quantum
mechanics is partially neglected. For example, natural orbital is not eigenfunction of
Hartree-Fock equation.

figi x1ð Þ 6¼ nigi x1ð Þ ð5:80Þ

Energy 

Electrons are allocated in
the different energy level.

α and β spins are expressed.

Molecular orbital Natural orbital 
Occupation 
number

Electrons are allocated in
the different occupation level. α

and β spins are indistinguishable.

Fig. 5.2 Schematic figure of comparison between molecular orbital and natural orbital
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In natural orbital, theoretical concept of the total wave-function are not prepared.
In addition, the information of a and b spatial orbitals disappears, and a and b
spatial orbitals are mixed. However, natural orbital is sometimes useful, after a deep
understanding the serious problems. For example, initial atomic orbitals of spin
source are easily characterized, when checking occupation number.
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Chapter 6
Electron Correlation

Abstract Hartree-Fock method quantitatively reproduces electronic structure.
However, electron–electron interaction, which is called electron correlation effect,
is theoretically treated in an average manner. For example, Coulomb hole cannot be
quantitatively represented, though Fermi hole can be represented. To incorporate
electron correlation effect accurately, several calculation methods beyond
Hartree-Fock such as configuration interaction (CI), coupled cluster (CC), density
functional theory (DFT) have been developed. In CI and CI-based CC methods, it is
assumed that the exact wave-function is represented by the combinations of the
wave-functions of several excited electron configurations. Though CC method
succeeded in reproducing electronic structure of small molecules, CI and CI-based
CC methods essentially contain the scientific contradiction that the summation of
several Hartree-Fock equations is away from universal quantum concept. DFT has
the different concept to incorporate electron correlation effect. The electron corre-
lation effect is directly considered to represent the correct exchange-correlation
energy. Though universal exchange-correlation functional has not been developed,
DFT predicts correct electronic state in transition metal compounds.

Keywords Fermi hole and Coulomb hole � Electron correlation � Configuration
interaction � Coupled cluster � Density functional theory

6.1 Fermi Hole and Coulomb Hole

Electron belongs to Fermi particle. In quantum mechanics, more than two Fermi
particles are not allowed to have the same quantum state. Figure 6.1 depicts the
schematic drawing of Fermi hole and Coulomb hole. When one a electron exists in
the specific spatial orbital, another a electron is not allowed to be allocated in the
same spatial orbital. The hole of the spatial orbital is called Fermi hole. On the other
hand, two electrons with different spins are allowed to be allocated in the same
spatial orbital. However, when Coulomb repulsion between two electrons is much
larger, two electrons are not allowed to be allocated in the same spatial orbital.
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The hole is called Coulomb hole. In Hartree-Fock method, though Fermi hole is
reproduced, Coulomb hole cannot be quantitatively reproduced. It is because the
strength of Coulomb repulsion between two electrons is treated in an average
manner.

6.2 Electron Correlation

It is difficult to incorporate accurately electron correlation effect in Hartree-Fock
method. In the third term of the Hamiltonian (Eq. 3.2), Coulomb interaction
between two electrons is represented in an average manner. In fact, the interaction
differs, depending on both shell type and orbital type.

There are two famous theoretical manners to represent electron correlation effect.
One is configuration interaction (CI) method, which was proposed from the
viewpoint of the correction of Hartree-Fock method. In many-electron system,
electron correlation energy (ECorr) is defined as the difference between exact total
energy (EExact) and Hartree-Fock total energy (EHF):

ECorr ¼ EExact � EHF ð6:1Þ

In CI method, after finishing Hartree-Fock calculation, correlation energy is
estimated as the correction. In general, Hartree-Fock total energy is estimated to be
higher than exact total energy.

Fermi hole

Coulomb hole

Fig. 6.1 Schematic drawing
of Fermi hole and Coulomb
hole
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As is apart from Hartree-Fock method, density functional theory (DFT) was
proposed to take electron correlation effect directly into account. Instead of
one-electron Hartree-Fock equation, one-electron Kohn–Sham equation is derived
by the introduction of electron density to Schrödinger equation. Though electron
correlation effect is expressed as exchange-correlation functional, the universal
functional has not been developed yet. In fact, they have been determined by
several theoretical manners. In present, the best exchange-correlation functional
must be selected, depending on considering system.

6.3 Configuration Interaction

In CImethod, the theoretical assumption is that the exact wave-function is represented
by the combinations of the wave-functions of several excited electron configurations.
Let us consider excited electron configurations from Hartree-Fock ground state (see
Fig. 6.2). The wave-function of Hartree-Fock ground state is denoted as W(HF).

(a) (b) (c) 

Fig. 6.2 Schematic figure of excited configurations: a Hartree-Fock ground state, b one-electron
excitation, c two-electron excitation
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When one electron is excited from occupied molecular orbital to unoccupied
molecular orbital, one-electron excited configuration appears. For example, the
wave-function of one-electron excited configuration is denoted as Wp

a (HF). In the
same manner, the wave-function of two-electron excited configuration state is
denoted as Wpq

ab (HF), and the wave-function of multi-electron excited configuration
can be defined (see Fig. 6.2). Finally, the full CI wave-function (W(CI)) is given by

W CIð Þ ¼ W HFð Þþ
X
a;p

cpa W
p
a HFð Þþ

X
a\b
p\q

cpqab W
pq
ab HFð Þþ � � � ð6:2Þ

where cpa, c
pq
ab … are the coefficients. CI wave-function is assumed to be the exact

solution of Hartree-Fock equation.

HW CIð Þ ¼ ECIW CIð Þ ð6:3Þ

where H denotes the Hamiltonian for considering system; ECI denotes CI total
energy.

hW CIð ÞjW CIð Þi ¼ 1þ
X
a;p

cpa
� �2 þ X

a\b
p\q

cpqab
� �2 þ � � � ð6:4Þ

It is found that W(CI) is not normalized, due to the normalization of W(HF).
Instead, the following equation is satisfied.

hW CIð ÞjW HFð Þi ¼ 1 ð6:5Þ

In many previous works, CI calculations reproduced well interatomic distance
and molecular frequency in several small molecules. However, CI wave-function
includes scientific contradiction. In quantum mechanics, one wave-function is given
per one electron, as the solution of Hartree-Fock equation. Note that several
wave-functions are not given for one electron.

When the CI wave-function, which is truncated until two-electron configuration,
operates with Hamiltonian,

H WðHFÞþ
X
a;p

cpa W
p
a ðHFÞþ

X
a\b
p\q

cpqab W
pq
ab ðHFÞ

0
BB@

1
CCA

¼ EWðHFÞþ P
a;p

cpa E
p
a W

p
a ðHFÞþ

P
a\b

cpqab E
pq
ab W

pq
ab ðHFÞ

ð6:6Þ

The first term of CI wave-function is the solution of Hartree-Fock equation. It
satisfies the following equation.
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HW HFð Þ ¼ EW HFð Þ ð6:7Þ

where E denotes the eigenvalue of Hartree-Fock equation. The second and third
terms are also the solution of Hartree-Fock equation.

HWp
a HFð Þ ¼ Ep

a W
p
a HFð Þ ð6:8Þ

HWpq
ab HFð Þ ¼ Epq

ab W
pq
ab HFð Þ ð6:9Þ

where Ep
a and Epq

ab denote total energies of Hartree-Fock equation in one-electron
excited and two-electron excited configurations, respectively. It is found that
Eq. 6.6 consists of the combination of Eqs. 6.7, 6.8 and 6.9.

In CI method, the further minimization based on variational principle is performed
in Eq. 6.6. As the result, CI wave-function pretends to be a solution of one
Hartree-Fock equation. However, it cannot be negligible that the scientific contra-
diction that several Hartree-Fock equations are taken into account at the same time.
Quantum mechanics explains that one electron spreads in one spin orbital. The
summation of several Hartree-Fock equations is obviously different from universal
quantumconcept. InCImethod, size consistency is not always preserved. The average
manner essentially remains in CI method. CI-based calculation predicts wrong elec-
tronic structure, especially in transition metal compounds, due to the above problems.

6.4 Coupled Cluster

In coupled cluster (CC) method, the full CI wave-function is represented by using
cluster operator (T) and Hartree-Fock wave-function (W(HF)). The CC
wave-function (W(CC)) is given by

W CCð Þ ¼ exp Tð ÞW HFð Þ ð6:10Þ

Cluster operator is the summation of one-electron excitation operator (T1),
two-electron excitation operator (T2), …, n-electron excitation operator (Tn).

T ¼ T1 þ T2 þ � � � þ Tn ð6:11Þ

For example, T1w and T2w satisfy

T1W HFð Þ ¼
X
a;p

tpa W
p
a HFð Þ ð6:12Þ

T2W HFð Þ ¼
X
a\b
p\q

tpqab W
pq
ab HFð Þ ð6:13Þ
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where tpa and t
pq
ab are the coefficients. In coupled cluster singles and doubles (CCSD),

as excited electron configuration is truncated until two-electron excitation, T1 and
T2 are employed. In coupled cluster doubles (CCD), as two-electron excited con-
figuration is only considered, T2 is employed. By using Taylor expansion, CCD
wave-function is written as

W CCDð Þ ¼ 1þ T2 þ 1
2!
T2
2 þ

1
3!
T3
2 þ � � �

� �
W HFð Þ ð6:14Þ

The CCD wave-function is the solution of Hartree-Fock equation.

HW CCDð Þ ¼ ECCDW CCDð Þ ð6:15Þ

By the substitution of Eq. 6.14, it is rewritten as

H 1þ T2 þ 1
2!
T2
2 þ

1
3!
T3
2 þ . . .

� �
W HFð Þ

¼ ECCD 1þ T2 þ 1
2!
T2
2 þ

1
3!
T3
2 þ � � �

� �
W HFð Þ

ð6:16Þ

By multiplying Hartree-Fock wave-function from the left side, the left side is

W HFð ÞjH 1þ T2 þ 1
2!
T2
2 þ

1
3!
T3
2 þ � � �

� �
jWðHFÞ

� �

¼ hW HFð ÞjHjW HFð Þiþ hW HFð ÞjHT2jW HFð Þi
ð6:17Þ

It is because there is no coupling between Hartree-Fock ground state and other
excited electron configurations, except for two-electron excited configuration. On
the other hand, the right side becomes ECCD. It is because the Hartree-Fock
wave-function is orthogonal to wave-functions of all excited electron configura-
tions. Finally, we obtain

ECCD ¼ hW HFð ÞjHjW HFð Þiþ hW HFð ÞjHT2jW HFð iÞ ð6:18Þ

The electron correlation energy is represented by the second term. In coupled
cluster theory, size consistency is preserved, due to the introduction of exponential.
However, it essentially contains the same scientific contradiction as same as con-
figuration interaction. Coupled cluster calculation provides very accurate electronic
structure in small molecules. In this book, CCSD method is applied for the species.
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6.5 Density Functional Theory

In density functional theory (DFT), Hamiltonian is uniquely represented by using
electron density q(r).

q rð Þ ¼
Xn
i¼1

v�i xið Þvi xið Þ ð6:19Þ

where vi(xi) is the ith spin orbital in n-electron system. Hartree-Fock equation is
rewritten as Kohn–Sham equation.

f KSi vKSi ¼ eKSi vKSi ð6:20Þ

where fi
KS denotes Kohn–Sham operator; ei

KS denotes Kohn–Sham orbital energy;
vi
KS denotes the wave-function of Kohn–Sham molecular orbital. In this book, the

Kohn–Sham molecular orbital is called just “molecular orbital”.
In Kohn–Sham equation, the kinetic energy is calculated under the assumption

of non-interacting electrons, as same as Hartree-Fock equation. The DFT total
energy is generally expressed as

EDFT qð Þ ¼ Texact qð ÞþEne qð Þþ J qð ÞþEXC qð Þ ð6:21Þ

where the first and second terms denote the exact kinetic energy and the Coulomb
interaction energy between atomic-nucleus and electrons, respectively; the third and
fourth terms denote Coulomb interaction energy between electrons, and exchange
interaction energy between electrons, respectively. Note that the exact kinetic
energy is obtained in non-interacting n-electron system.

It is known that Hartree-Fock method provides about 99% kinetic energy (T qð Þ).
The energy difference with Hartree-Fock method is incorporated into EXC qð Þ.

EXC qð Þ ¼ T qð Þ � Texact qð Þf gþ Eee qð Þ � J qð Þf g ð6:22Þ

where Eee qð Þ denotes all-electron interaction energy. If the universal
exchange-correlation energy is given, DFT provides the exact solution. However,
no universal exchange-correlation energy is defined at present. When basis sets are
introduced in Kohn–Sham equation, the problem is converted to obtain the
expansion coefficients and orbital energies numerically by SCF calculation.

Previously, many useful functionals of exchange-correlation energy have been
developed, byfitting functional to experimental results, physical conditions and so on.
In local density approximation (LDA), density is locally treated as uniform electron
gas. Local spin density approximation (LSDA) is applied for open shell system.
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Vosko, Wilk and Nusair (VWN) is also based on a uniform electron gas. In order to
treat as non-uniform electron gas, generalized gradient approximation (GGA) was
developed. Becke 1988 exchange functional and Lee-Yang-Parr (LYP) correlation
functional were developed based on GGA. Table 6.1 summarizes the several
exchange and correlation functionals.

When there is no correlation energy, Kohn–Sham molecular orbitals are identical
to Hartree-Fock molecular orbitals. The exact exchange energy is represented as the
Hartree-Fock exchange energy. The exchange-correlation functional including the
exact (Hartree-Fock) exchange functional is called hybrid functional. For example,
let us consider transition metal compounds, which belong to strongly correlated
electron system. They contain both localization and delocalized properties. In
hybrid DFT, Hartree-Fock exchange functional represents localization property,
and exchange and correlation functionals represents delocalized property, as shown
in Fig. 6.3. It is well known that hybrid DFT method reproduces well electronic
structure in transition metal compounds.

Table 6.1 Several exchange and correlation functionals of density functional theory

Type Functional

Pure
exchange

Slater

Becke

Pure
correlation

VWN Vosko–Wilk–Nusair correlation

LYP Lee–Yang–Parr correlation

Combination SVWN Slater exchange + VWN exchange

BLYP Becke exchange + LYP correlation

PBEa PBE exchange + PBE correlation

Hybrid BHHLYP Hartree-Fock exchange + Becke exchange + LYP correlation

B3LYP Becke exchange + Slater exchange + Hartree-Fock
exchange + LYP correlation + VWN correlation

aPBE = Perdew–Burke–Ernzerhof

Strongly correlated electron system 

Metal Insulator 

DFT Hartree-
Fock (HF) Hybrid-DFT 

Localization Delocalization 

Fig. 6.3 Schematic drawing of hybrid DFT
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Chapter 7
Atomic Orbital Calculation

Abstract Atomic orbital analysis is based on initial atomic orbital, which is des-
ignated by basis set. Orbital hybridization is observed in atomic orbital. Regarding
3d orbital, 6D expression is often utilized. The real 3d3z2�r2 orbital is different from
6D 3dz2 orbital. It is represented by the hybridization between 6D 3dz2 , 3dx2 and
3dy2 orbitals. Electron configuration rule empirically predicts an atomic electron
configuration. Electrons are allocated to realize maximum spin multiplicity in a
subshell. In this chapter, coupled cluster calculations are performed for typical
atoms. In one-electron system such as neutral hydrogen, helium cation and divalent
lithium, the exact solution of Schrödinger equation can be obtained. The calculation
results are compared with the exact solution. In many-electron system, there is a
flexibility of electronic structure. Different formal charges and different electron
configurations are considered. The calculation results of hydrogen, helium, lithium,
boron, carbon, nitrogen, oxygen and fluorine are introduced.

Keywords Hybridization � Electron configuration rule � Atomic orbital � Exact
solution � Coupled cluster

7.1 Hybridization of Initial Atomic Orbital

When coefficients appear in different initial atomic orbitals (IAOs), orbital is
hybridized. Note that IAO is just called “orbital” in this book. Though 2s orbital
tends to be hybridized with 1s orbital, the signs of coefficients are normally
opposite. It is called inversion hybridization.

In principal, the wave-functions of three 2p orbitals such as 2px, 2py, and 2pz
orbitals have the same radial wave-function, but they have the different angular
wave-function. In atom, when different 2p orbitals are hybridized, orbital rotation is
caused, due to the hybridization of different angular wave-functions. The
hybridization between 3p IAOs also causes orbital rotation, due to the same reason.

The 3d orbitals have the five different 3d orbitals such as 3dx2�y2 , 3d3z2�r2 , 3dxy,
3dyz and 3dxz orbitals. The orbital rotation occurs as same as 2p orbital. Though five
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different 3d orbitals actually exist, 6D expression is often utilized in molecular
orbital calculation. In 6D expression, 3d orbital is represented by six different 3d
orbitals such as 3dx2 , 3dy2 , 3dz2 , 3dxy, 3dyz, 3dxz orbitals. For example, 3dx2�y2

orbital is represented by the hybridization between 3dx2 and 3dy2 orbitals, and
3d3z2�r2 orbital is represented by the hybridization between 3dz2 , 3dx2 and 3dy2
orbitals. Note that 3d3z2�r2 orbital is often denoted as 3dz2 orbital in chemistry.

7.2 Electron Configuration Rule

A quantum number of orbital angular momentum (l) designates a subshell type.
Electron configurable rule is empirical, but it is useful to predict electron config-
uration in orbitals with the same l value. In electron configuration rule, electrons are
allocated to realize maximum spin multiplicity in the same subshell. It is because
electron–electron repulsion energy may be minimized.

In neutral carbon, two electrons exist in 2p orbitals. From electron configuration
rule, two electrons are allocated in triplet electron configuration. The notation of
electron configuration of neutral carbon is

C:1s22s22p1x2p
1
y ð7:1Þ

In neutral nitrogen, three electrons exist in 2p orbitals. From electron configu-
ration rule, three electrons are allocated in quartet electron configuration. The
notation of electron configuration of neutral nitrogen is

N:1s22s22p1x2p
1
y2p

1
z ð7:2Þ

In neutral oxygen, four electrons exist in 2p orbitals. From electron configuration
rule, four electrons are allocated in triplet electron configuration. Spin paired 2p
orbital is arbitrary,

O:1s22s22p2x2p
1
y2p

1
z ð7:3Þ

By using helium electron configuration [He], the brief notation is possible.
Equations 7.1, 7.2 and 7.3 are rewritten as

C: He½ �2s22p1x2p1y ð7:4Þ

N: He½ �2s22p1x2p1y2p1z ð7:5Þ

O: He½ �2s22p2x2p1y2p1z ð7:6Þ
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7.3 Hydrogen Atom

CCSD method, which is based on Hartree-Fock method, has succeeded in accurate
calculation in small molecules. Here, CCSD/aug-cc-pVTZ calculation is performed
for hydrogen atom. Figure 7.1 depicts three electronic structures of hydrogen atom:
(1) hydrogen cation (proton): H+, (2) neutral hydrogen with doublet spin state:
H and (3) hydrogen anion with singlet or triplet spin state: H−. In H+ and H, there is
no electron–electron interaction. As the special case, in H+ and H, the calculation
results can be compared with the exact solution of Schrödinger equation.

7.3.1 Proton

Table 7.1 summarizes the calculated total energy and orbital energy of hydrogen
atom. The total energy becomes zero in proton (H+). It is because unoccupied

Hydrogen cation 
H+

No electron 

Neutral hydrogen 
H 

One electron 

Hydrogen anion 
H-

Two electrons

Singlet Triplet

Fig. 7.1 Three electronic structures of hydrogen atom

Table 7.1 Calculated total energy and orbital energy of hydrogen atom

Spin State Total energy AO1 AO2

H+ 0.00000 −0.49982 −0.12399

H Doublet −0.49982 a −0.49982 0.05775

b 0.01560 0.12374

H− Singlet −0.52656 −0.04571 0.24205

Triplet −0.44283 a −0.32716 0.05772

b 0.17363 0.28772

*Energy is shown in au
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atomic orbital (AO) is only given, due to no existence of electron. The obtained
wave-function of unoccupied AO1 is

wAO1 Hþð Þ ¼ 0:24/H 1s0ð Þ þ 0:51/H 1s00ð Þ þ 0:38/H 1s000ð Þ ð7:7Þ

1s orbital is represented by three Gaussian basis functions: /H 1s0ð Þ, /H 1s00ð Þ and
/H 1s000ð Þ. It is found that unoccupied AO1 consists of only 1s orbital.

7.3.2 Neutral Hydrogen

Neutral hydrogen (H) is open shell system with doublet electron configuration. One
electron is occupied in AO1a. The obtained wave-function of AO1a is

wAO1a Hð Þ ¼ 0:24/H 1s0ð Þ þ 0:51/H 1s00ð Þ þ 0:38/H 1s000ð Þ ð7:8Þ

As the wave-function of AO1a corresponds to the total wave-function of H, the
orbital energy of AO1a corresponds to the total energy. It is found that the cal-
culated total energy (−0.49982 au) reproduces well the exact total energy
(−0.5 au).

In neutral hydrogen, which belongs to one-electron system, Coulomb and kinetic
integrals are not defined. The orbital energy is given by

eAO1a Hð Þ ¼ \WAO1ajh1 WAO1a[j ð7:9Þ

where WAO1a denotes the wave-function of atomic orbital; h1 is one-electron
operator (see Eq. 3.8). Note that one electron occupies AO1a with doublet electron
configuration. On the other hand, in proton, the orbital energy of unoccupied AO1 is
defined by the allocation of one electron in unoccupied AO1 virtually. It is given by

eAO1 Hþð Þ ¼ \WAO1jh1 WAO1j [ ð7:10Þ

As wAO1a Hð Þ is equivalent to wAO1 Hþð Þ, it is found that eAO1a(H) corresponds
to eAO1(H

+). The exact orbital energy of AO2 is estimated to be −0.25 from
Eq. 2.17. On the other hand, the calculated orbital energies of unoccupied AO2a
and AO2b are 0.05775 and 0.12374 au, respectively. It is found that unoccupied
AOs do not correspond to the exact AO.

7.3.3 Hydrogen Anion

Two electron configurations are considered in hydrogen anion. One is singlet
electron configuration where two electrons are allocated in the same AO1.
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The other is triplet electron configuration, where two electrons are allocated in two
different AO1a and AO2a.

In singlet electron configuration, two electrons occupy AO1. The obtained
wave-function of occupied AO1 is

wAO1 H�ð Þ ¼ 0:16/H 1s0ð Þ þ 0:27/H 1s00ð Þ þ 0:41/H 1s000ð Þ þ 0:37/H 2sð Þ ð7:11Þ

Hybridization occurs between 1s and 2s orbitals. It is found that AO1(H−) is
different from AO1a(H). The calculated orbital energy (eAO1(H

−)) is −0.04571 au.
From orbital energy rule, it is found that AO1 electrons can be removed with much
smaller energy, in comparison with neutral hydrogen.

In triplet electron configuration, two electrons are allocated in different alpha
AO1a and AO2a, though AO1b unoccupied. The obtained wave-functions of
occupied AO1a and AO2a are

wAO1a H�ð Þ ¼ 0:24/H 1s0ð Þ þ 0:51/H 1s00ð Þ þ 0:37/H 1s000ð Þ ð7:12Þ

wAO2a H�ð Þ ¼ �0:71/H 1s000ð Þ þ 1:36/H 2sð Þ ð7:13Þ

Though AO1a consists of 1s orbital, inversion hybridization occurs between 1s
and 2s orbitals in AO2a. The calculated orbital energies of AO1a and AO2a are
−0.32716 and 0.05772 au, respectively. From orbital energy rule, it is considered
that the electron of AO2a is easily removed, due to positive value.

The total energy of singlet electron configuration (−0.52656 au) is smaller than
triplet electron configuration (−0.44283 au). The energy difference is 0.084478 au
(2.30 eV). Provided an energy to singlet electron configuration by external field, triplet
electron configuration could be realized. However, electron of AO2a is not stabilized.

One may think that electron is coercively moved from AO1 to AO2, keeping the
electronic structure of singlet electron configuration, as shown in Fig. 7.2. We call
it “virtual excitation”. This idea is similar to frontier orbital theory. It is explained
that the excitation reaction occurs through electron transfer from highest occupied
AO (AO1) to lowest unoccupied AO (AO2). In fact, the wave-functions and orbital
energies in singlet electron configuration are different from triplet electron con-
figuration. We must pay attention to adapt the concept of virtual excitation.

AO1

AO2

AO1

AO2

AO1α 

AO2α 

Excitation 

Fig. 7.2 Schematic drawing of electron excitation in hydrogen anion

7.3 Hydrogen Atom 93



7.4 Helium Atom

Helium exists as colourless, odourless and inert gas. Helium is the second lightest
and abundant element in the universe. Figure 7.3 depicts four electronic structures
that is considered for helium atom: (1) singlet neutral helium, (2) triplet neutral
helium, (3) doublet helium cation (He+) and (4) doublet helium anion (He−).
CCSD/aug-cc-pVTZ calculation is performed for them. As the special case, the
Schrödinger equation of He+ can be analytically solved. The calculation results are
compared with the exact solution.

7.4.1 Neutral Helium

Table 7.2 summarizes the calculated total energy and orbital energy for helium
atom. Neutral helium has singlet electron configuration, or triplet electron config-
uration, respectively. The total energy of singlet electron configuration is 0.73 au

Neutral helium 
He

Two electrons

Helium cation
He+

One electron 

Singlet Triplet Helium anion
He-

Three electrons 

Fig. 7.3 Four electronic structures of helium atom

Table 7.2 Calculated total energy and orbital energy of helium atom

Spin State Total energy AO1 AO2

He Singlet −2.90060 −0.91787

Triplet −2.16989 a −1.70884 −0.16997

He+ Doublet −1.99892 a −1.99892

He− Triplet −2.79199 a −0.67342 0.11030

b −0.64837

*Energy is shown in au
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lower than triplet electron configuration. It is found that the ground state of neutral
helium is singlet, and singlet-triplet excitation is caused. In singlet electron con-
figuration, two electrons occupy AO1. The obtained wave-function of AO1 is

wAO1 Heð Þ ¼ 0:35/He 1s0ð Þ þ 0:48/He 1s00ð Þ þ 0:30/He 1s000ð Þ ð7:14Þ

AO1 consists of only 1s orbital. On the other hand, in triplet electron configu-
ration, two electrons occupy AO1a and AO2a. The obtained wave-functions of
AO1a and AO2a are

wAO1a Heð Þ ¼ 0:46/He 1s0ð Þ þ 0:56/He 1s00ð Þ ð7:15Þ

wAO2a Heð Þ ¼ �0:10/He 1s0ð Þ � 0:19/He 1s00ð Þ � 0:16/He 1s000ð Þ þ 1:14/He 2sð Þ ð7:16Þ

AO1a consists of only 1s orbital. In AO2a, there is inversion hybridization
between 1s and 2s orbitals. It implies that the electron is delocalized over 1s and 2s
IAOs. The orbital energy of AO1a is 0.79097 au lower than occupied AO1 of
singlet electron configuration. It is due to the difference of electron repulsion. In
fact, the total electron–electron repulsion energies of singlet and triplet electron
configurations are 1.02545 and 0.29008 au, respectively. Instead, occupied AO2a
is destabilized.

7.4.2 Helium Cation

Helium cation is open shell system with doublet electron configuration (see
Fig. 7.3). One electron occupies AO1a. The obtained wave-function of AO1a is

wAO1a Heþð Þ ¼ 0:46/He 1s0ð Þ þ 0:56/He 1s00ð Þ ð7:17Þ

AO1a consists of only 1s orbital. The calculated total energy (−1.9989 au)
reproduces well the exact total energy (−2.0 au).

7.4.3 Helium Anion

Helium anion is open shell system with doublet electron configuration (see
Fig. 7.3). Though it has more electron than neutral helium, the total energy is higher
than singlet neutral helium. It implies that helium anion is destabilized. The
obtained wave-functions of AO1a and AO1b are
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wAO1a He�ð Þ ¼ 0:36/He 1s0ð Þ þ 0:48/He 1s00ð Þ þ 0:29/He 1s000ð Þ ð7:18Þ

wAO1b He�ð Þ ¼ 0:35/He 1s0ð Þ þ 0:47/He 1s00ð Þ þ 0:31/He 1s000ð Þ ð7:19Þ

They consist of only 1s orbital. Though two wave-functions are qualitatively the
same, the different orbital energies are given. The orbital energies of AO1a and
AO1b are −0.67342 and −0.64837 au, respectively. They are larger than occupied
AO1 of singlet neutral helium. It implies that AO1a and AO1b are destabilized.
The obtained wave-functions of AO2a is

wAO2a He�ð Þ ¼ �0:64/He 1s000ð Þ þ 1:34/He 2sð Þ ð7:20Þ

There is inversion hybridization between 1s and 2s orbitals. It implies that elec-
tron is delocalized over 1s and 2s IAOs. The orbital energy of AO2a is positive.
From orbital energy rule, it is considered that the electron of AO2a is easily removed.

7.5 Lithium Atom

Lithium is categorized as alkali metal. As it is the lightest metal under normal
condition, it has been widely used for lithium ion battery, where lithium cation (Li+)
migrates as conductive ion. Figure 7.4 depicts four electronic structures of lithium
atom: (1) divalent lithium cation (Li+2), (2) monovalent lithium cation (Li+),
(3) neutral lithium (Li), (4) lithium anion (Li−). CCSD/aug-cc-pVTZ calculation is
performed for them. In aug-cc-pVTZ basis sets, 1s orbital is represented by one
contracted basis function, and valence 2s orbital is represented by one contracted
basis function and two basis functions. 3s orbital is represented by one basis function.

Neutral lithium 
Li 

Three electrons 
Lithium cation 

Lithium anion 
Li- 

Four electrons 
Li+2

One electron 
Li+

Two electrons

Fig. 7.4 Electronic structures of lithium atom
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7.5.1 Divalent Lithium Cation

Table 7.3 summarizes the calculated total energy and orbital energy of lithium atom.
In divalent lithium cation, the exact solution of Schrödinger equation is given, as
same as neutral hydrogen. From the equation of the exact total energy (Eq. 2.17), the
exact total energy of lithium cation is nine times (Z2 = 32) larger than neutral
hydrogen (−0.5 au). The calculated total energy of Li+2 (−4.49888 au) reproduces
well the exact total energy (−4.5 au). The obtained wave-function of AO1a is

wAO1a Liþ 2
� � ¼ 0:92/Li 1sð Þ � 0:10/Li 2s0ð Þ ð7:21Þ

There is inversion hybridization between 1s and 2s orbitals. The main coefficient
is for 1s orbital. It implies that electron is delocalized over 1s and 2s orbitals.

7.5.2 Monovalent Lithium Cation

Monovalent lithium is closed shell system. Two electrons occupy AO1. The
obtained wave-function of AO1 is expressed as

wAO1 Liþð Þ ¼ 0:76/Li 1sð Þ � 0:28/Li 2s0ð Þ ð7:22Þ

There is inversion hybridization between 1s and 2s orbitals. The main coefficient
is for 1s orbital. It implies that electron is delocalized over 1s and 2s orbitals. In
comparison with divalent lithium cation, though electron–electron repulsion
between two electrons exists, the total energy is smaller. It is found that monovalent
lithium cation is more stabilized.

7.5.3 Neutral Lithium

Neutral lithium with three electrons is open shell system with doublet electron
configuration (see Fig. 7.4). The obtained wave-functions of AO1a and AO1b are

Table 7.3 Calculated total energy and orbital energy of lithium atom

Spin State Total energy AO1 AO2

Li+2 Doublet −4.49888 a −4.49888

Li+ Singlet −7.23638 −2.79236

Li Doublet −7.43271 a −2.48668 −0.19636

b −2.46883

Li− Singlet −7.45528 −2.32252 −0.01432
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wAO1a Lið Þ ¼ 0:76/Li 1sð Þ � 0:28/Li 2s0ð Þ ð7:23Þ

wAO1b Lið Þ ¼ 0:76/Li 1sð Þ � 0:29/Li 2s0ð Þ ð7:24Þ

The wave-functions of AO1a and AO1b are qualitatively the same. AO1a and
AO1b are paired. Though inversion hybridization occurs between 1s and 2s orbi-
tals, the main component is for 1s orbital. The orbital energies of AO1a and AO1b
are much smaller than AO2a. It implies that 1s orbital exists in inner shell. The
obtained wave-functions of AO2a is

wAO2a Lið Þ ¼ �0:12/Li 1sð Þ þ 0:17/Li 2s0ð Þ þ 0:57/Li 2s00ð Þ þ 0:52/Li 2s000ð Þ ð7:25Þ

In AO2a, there is also inversion hybridization between 1s and 2s orbitals. The
main components are for 2s orbital. As the orbital energy of AO2a is larger than
AO1a and AO1b, it is considered that 2s electron is more reactive.

7.5.4 Lithium Anion

Lithium anion with four electrons is closed shell system (see Fig. 7.4). Four
electrons occupy AO1 and AO2. The obtained wave-functions of AO1 and AO2 are

wAO1 Li�ð Þ ¼ 0:76/Li 1sð Þ � 0:28/Li 2s0ð Þ ð7:26Þ

wAO2 Li�ð Þ ¼ 0:11/Li 2s0ð Þ þ 0:25/Li 2s00ð Þ þ 0:45/Li 2s000ð Þ þ 0:45/Li 3sð Þ ð7:27Þ

In AO1, inversion hybridization occurs between 1s and 2s orbitals. In addition,
in AO2, 2s and 3s orbitals are hybridized. It is found that electrons spread from 1s,
2s and 3s orbitals. As the orbital energy of AO2 is close to zero, it is considered that
2s electron is more reactive.

7.6 Boron Atom

It is known that boron atom forms covalent bonding with other atoms. In neutral
boron, two electrons occupy K shell, and three electrons occupy L shell. Figure 7.5
depicts the electronic structures of neutral boron. Possible two electron configu-
rations are considered: (1) doublet electron configuration, (2) quartet electron
configuration. Note that electronic structure of L shell is only shown.
CCSD/aug-cc-pVTZ calculation is performed for them.
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7.6.1 Doublet Electron Configuration

In doublet electron configuration, three alpha and two beta AOs are occupied. The
obtained wave-functions of AO1a and AO1b are

wAO1a Bð Þ ¼ 0:98/B 1sð Þ ð7:28Þ

wAO1b Bð Þ ¼ 0:98/B 1sð Þ ð7:29Þ

AO1a and AO1b are paired. They represent 1s orbital. The obtained
wave-functions of AO2a and AO2b are

wAO2a Bð Þ ¼ �0:20/B 1sð Þ þ 0:57/B 2s0ð Þ þ 0:12/B 2s00ð Þ þ 0:39/B 2s000ð Þ ð7:30Þ

wAO2b Bð Þ ¼ �0:19/B 1sð Þ þ 0:54/B 2s0ð Þ þ 0:11/B 2s00ð Þ þ 0:42/B 2s000ð Þ ð7:31Þ

They are qualitatively the same, though coefficients are slightly different. There
is inversion hybridization between 1s and 2s orbitals. The main component is for 2s
orbital. The obtained wave-function of AO3a is

wAO3a Bð Þ ¼ 0:34/B 2p0zð Þ þ 0:51/B 2p00zð Þ þ 0:34/B 2p000zð Þ ð7:32Þ

AO3a has no paired AO and is responsible for spin density. It consists of only
2pz orbital.

Doublet electron 
configuration 

Quartet electron
configuration 

(1)

(2)

Fig. 7.5 Electronic structures of neutral boron: 1 doublet electron configuration, 2 quartet electron
configuration. Electrons of L shell are only shown
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7.6.2 Quartet Electron Configuration

In quartet electron configuration, four alpha and one beta AOs are occupied. The
obtained wave-functions of AO1a and AO1b are

wAO1a Bð Þ ¼ 0:98/B 1sð Þ ð7:33Þ

wAO1b Bð Þ ¼ 0:98/B 1sð Þ ð7:34Þ

AO1a and AO1b are paired. They represent 1s orbital. The obtained
wave-functions of AO2a, AO3a and AO4a are

wAO2a Bð Þ ¼ �0:20/B 1sð Þ þ 0:61/B 2s0ð Þ þ 0:13/B 2s00ð Þ þ 0:35/B 2s000ð Þ ð7:35Þ

wAO3a Bð Þ ¼ 0:35/B 2p0zð Þ þ 0:54/B 2p00zð Þ þ 0:30/B 2p000zð Þ ð7:36Þ

wAO4a Bð Þ ¼ 0:35/B 2p0yð Þ þ 0:54/B 2p00yð Þ þ 0:30/B 2p000yð Þ ð7:37Þ

In AO2a, inversion hybridization occurs between 1s and 2s orbitals. The main
components are for 2s orbital. The figures of AO3a and AO4a are the same, though
the directions are different. The wave-functions of AO3a and AO4a are along z
direction and y direction, respectively. As they have the same orbital energy
(−0.35638 au), it is found that they are degenerated. In neutral boron, the total
energies for doublet and quartet electron configurations are −24.53217 and
−24.45136 au, respectively. The doublet electron configuration is more stable,
corresponding to building-up principle.

7.7 Carbon Atom

Carbon exhibits strong covalency. Two electrons occupy K shell, and four electrons
occupy L shell. Figure 7.6 depicts the electronic structures of neutral carbon.
Possible three electron configurations are considered: (1) singlet electron configu-
ration, (2) triplet electron configuration, (3) quintet electron configuration.
CCSD/aug-cc-pVTZ calculation is performed for them.

7.7.1 Singlet Electron Configuration

Neutral carbon with singlet electron configuration is closed shell system. Three
alpha and three beta AOs are occupied. The obtained wave-function of AO1 is
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wAO1 Cð Þ ¼ 0:98/C 1sð Þ ð7:38Þ

AO1 consists of only 1s orbital. The obtained wave-functions of AO2 and AO3
are

wAO2 Cð Þ ¼ �0:21/C 1sð Þ þ 0:57/C 2s0ð Þ þ 0:15/C 2s00ð Þ þ 0:38/C 2s000ð Þ ð7:39Þ

wAO3 Cð Þ ¼ 0:35/C 2p0zð Þ þ 0:47/C 2p00zð Þ þ 0:37/C 2p000zð Þ ð7:40Þ

AO2 represents 2s orbital. In AO2, inversion hybridization occurs between 1s
and 2s orbitals. The main components are for 2s orbital. On the other hand, AO3
consists of only 2pz orbital. The orbital energies of AO2 and AO3 are −0.72600 and
−0.35825 au, respectively. 2pz orbital is more reactive.

7.7.2 Triplet Electron Configuration

In triplet electron configuration, four alpha and two beta AOs are occupied. The
obtained wave-functions of AO1a and AO1b are

Singlet electron configuration 

Triplet electron configuration

Quintet electron configuration 

(1)

(2)

(3)

Fig. 7.6 Electronic structures of neutral carbon: 1 singlet electron configuration, 2 triplet electron
configuration, 3 quintet electron configuration. Electrons of L shell are only shown
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wAO1a Cð Þ ¼ 0:98/C 1sð Þ ð7:41Þ

wAO1b Cð Þ ¼ 0:98/C 1sð Þ ð7:42Þ

AO1a and AO1b are paired. They represent 1s orbital. The obtained
wave-functions of AO2a and AO2b are

wAO2a Cð Þ ¼ �0:21/C 1sð Þ þ 0:59/C 2s0ð Þ þ 0:15/C 2s00ð Þ þ 0:36/C 2s000ð Þ ð7:43Þ

wAO2b Cð Þ ¼ �0:20/C 1sð Þ þ 0:52/C 2s0ð Þ þ 0:13/C 2s00ð Þ þ 0:42/C 2s000ð Þ ð7:44Þ

In AO2a and AO2b, inversion hybridization occurs between 1s and 2s orbitals.
The main components are for 2s orbital. The coefficients of AO2a and AO2b are
slightly different, and orbital energies of AO2a and AO2b are −0.82958 and
−0.58414 au, respectively. AO2a and AO2b are paired, due to qualitative same
wave-functions. The obtained wave-functions of AO3a and AO4a are

wAO3a Cð Þ ¼ 0:36/C 2p0yð Þ þ 0:51/C 2p00yð Þ þ 0:33/C 2p000yð Þ ð7:45Þ

wAO4a Cð Þ ¼ 0:36/C 2p0xð Þ þ 0:51/C 2p00xð Þ þ 0:33/C 2p000xð Þ ð7:46Þ

The figures of AO3a and AO4a are the same, though the directions are different.
The wave-functions of AO3a and AO4a are along y direction and x direction,
respectively. As they have the same orbital energy (−0.43882 au), it is found that
they are degenerated.

7.7.3 Quintet Electron Configuration

In quintet electron configuration, five alpha and one beta AOs are occupied. The
obtained wave-functions of AO1a and AO1b are

wAO1a Cð Þ ¼ 0:98/C 1sð Þ ð7:47Þ

wAO1b Cð Þ ¼ 0:98/C 1sð Þ ð7:48Þ

AO1a and AO1b are paired. They represent 1s orbital. The obtained
wave-function of AO2a is

wAO2a Cð Þ ¼ �0:22/C 1sð Þ þ 0:61/C 2s0ð Þ þ 0:15/C 2s00ð Þ þ 0:34/C 2s000ð Þ ð7:49Þ
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In AO2a, inversion hybridization occurs between 1s and 2s orbitals. The main
components are for 2s orbitals. The obtained wave-functions of AO3a, AO4a and
AO5a are

wAO3a Cð Þ ¼ 0:36/C 2p0zð Þ þ 0:53/C 2p00zð Þ þ 0:30/C 2p000zð Þ ð7:50Þ

wAO4a Cð Þ ¼ 0:36/C 2p0xð Þ þ 0:53/C 2p00xð Þ þ 0:30/C 2p000xð Þ ð7:51Þ

wAO5a Cð Þ ¼ 0:36/C 2p0yð Þ þ 0:53/C 2p00yð Þ þ 0:30/C 2p000yð Þ ð7:52Þ

The figures of AO3a, AO4a and AO5a are the same, though the directions are
different. The wave-functions of AO3a, AO4a and AO5a are along z, x and y di-
rections, respectively. As they have the same orbital energy (−0.47897 au), it is
found that they are degenerated. In neutral carbon, the total energies for singlet,
triplet and quintet electron configurations are −37.60305, −37.69181 and
−37.59680 au, respectively. It is found that quintet electron configuration is
destabilized by the formation of unpaired 2s AO, corresponding to building-up
principle. In comparison with singlet electron configuration, the stabilization of
triplet electron configuration follows electron configuration rule.

7.8 Nitrogen Atom

Figure 7.7 depicts the electronic structures of nitrogen atom. Neutral nitrogen has
five electrons in L shell. Two electron configurations are considered: (1) doublet
electron configuration; (2) quintet electron configuration. In solids, the formal
charge of nitrogen atom is often −3. Trivalent nitrogen anion is closed shell system.
CCSD/aug-cc-pVTZ calculation is performed for them.

7.8.1 Doublet Neutral Nitrogen

In doublet neural nitrogen, four alpha three beta AOs are occupied. The obtained
wave-functions of AO1a and AO1b are

wAO1a Nð Þ ¼ 0:98/N 1sð Þ ð7:53Þ

wAO1b Nð Þ ¼ 0:98/N 1sð Þ ð7:54Þ

AO1a and AO1b are paired. They represent 1s orbital. The obtained
wave-functions of AO2a and AO2b are
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wAO2a Nð Þ ¼ �0:22/N 1sð Þ þ 0:58/N 2s0ð Þ þ 0:16/N 2s00ð Þ þ 0:36/N 2s000ð Þ ð7:55Þ

wAO2b Nð Þ ¼ �0:21/N 1sð Þ þ 0:55/N 2s0ð Þ þ 0:15/N 2s00ð Þ þ 0:39/N 2s000ð Þ ð7:56Þ

In AO2a and AO2b, hybridization occurs between 1s and 2s orbitals. Though
the coefficients of AO2a and AO2b are slightly different, AO2a and AO2b are
paired, due to the qualitative same wave-functions. The main coefficients are for 2s
orbital. The orbital energies of AO2a and AO2b are −1.04737 and −0.89817 au,
respectively. AO2a is more stabilized than AO2b. The obtained wave-functions of
AO3a, AO4a and AO3b are

wAO3a Nð Þ ¼ 0:37/N 2p0zð Þ þ 0:50/N 2p00zð Þ þ 0:32/N 2p000zð Þ ð7:57Þ

wAO3b Nð Þ ¼ 0:35/N 2p0xð Þ þ 0:46/N 2p00xð Þ þ 0:38/N 2p000xð Þ ð7:58Þ

wAO4a Nð Þ ¼ 0:36/N 2p0xð Þ þ 0:48/N 2p00xð Þ þ 0:35/N 2p000xð Þ ð7:59Þ

AO3a and AO4a consist of 2pz and 2px orbitals, respectively. On the other hand,
AO3b consists of 2px orbital. Though the coefficients of AO4a and AO3b are

Doublet neutral nitrogen 

Quintet neutral nitrogen 

Singlet nitrogen anion 

(1)

(2)

(3)

Fig. 7.7 Electronic structures of nitrogen atom: 1 doublet electron configuration of neutral
nitrogen; 2 quintet electron configuration of neutral nitrogen; 3 singlet electron configuration of
nitrogen anion. Electrons of L shell are only shown
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slightly different, AO4a and AO3b are paired, due to qualitative same
wave-functions. The orbital energies of AO3a and AO4a are −0.56702 and
−0.47856 au, respectively. It is because the electron correlation is different in
AO3a and AO4a. For example, AO3a has no paired AO, and AO4a has paired
AO.

7.8.2 Quintet Neutral Nitrogen

In quintet neutral nitrogen, five alpha AOs and two beta AOs are occupied. The
obtained wave-functions of AO1a and AO1b are

wAO1a Nð Þ ¼ 0:98/N 1sð Þ ð7:60Þ

wAO1b Nð Þ ¼ 0:98/N 1sð Þ ð7:61Þ

AO1a and AO1b are paired. They represent 1s orbital. The obtained
wave-functions of AO2a and AO2b are

wAO2a Nð Þ ¼ �0:22/N 1sð Þ þ 0:60/N 2s0ð Þ þ 0:16/N 2s00ð Þ þ 0:34/N 2s000ð Þ ð7:62Þ

wAO2b Nð Þ ¼ �0:21/N 1sð Þ þ 0:51/N 2s0ð Þ þ 0:14/N 2s00ð Þ þ 0:43/N 2s000ð Þ ð7:63Þ

In AO2a and AO2b, inversion hybridization occurs between 1s and 2s orbitals.
Though the coefficients of AO2a and AO2b are slightly different, AO2a and AO2b
paired, due to the qualitative same wave-functions. The main coefficients are for 2s
orbital. The orbital energies of AO2a and AO2b are −1.16360 and −0.72695 au,
respectively. AO2a is more stabilized than AO2b. The obtained wave-functions of
AO2a, AO3a and AO3a are

wAO3a Nð Þ ¼ 0:37/N 2p0xð Þ þ 0:50/N 2p00xð Þ þ 0:32/N 2p000xð Þ ð7:64Þ

wAO4a Nð Þ ¼ 0:37/N 2p0yð Þ þ 0:50/N 2p00yð Þ þ 0:32/N 2p000yð Þ ð7:65Þ

wAO5a Nð Þ ¼ 0:37/N 2p0zð Þ þ 0:50/N 2p00zð Þ þ 0:32/N 2p000zð Þ ð7:66Þ

The figures of AO3a, AO4a and AO5a are the same, though the directions are
different. The wave-functions of AO3a, AO4a and AO5a are along x, y and z di-
rections, respectively. As they have the same orbital energy (−0.57074 au), they are
degenerated. The total energies of doublet and quintet neutral nitrogen are
−54.26529 and −54.40116 au, respectively. Quintet electron configuration is more
stable than doublet electron configuration, following electron configuration rule.
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7.8.3 Singlet Nitrogen Anion

In nitrogen anion, eight electrons occupy all AOs of L shell. The obtained
wave-functions of AO1 and AO2 are

wAO1 Nð Þ ¼ 0:98/N 1sð Þ ð7:67Þ

wAO2 Nð Þ ¼ �0:21/N 1sð Þ þ 0:54/N 2s0ð Þ þ 0:15/N 2s00ð Þ þ 0:33/N 2s000ð Þ þ 0:11/N 3sð Þ
ð7:68Þ

Though AO1 consists of 1s orbital, AO2 consists of 1s, 2s and 3s orbitals. In
AO2, inversion hybridization occurs between 1s and other orbitals. The main
components are for 2s orbital. The obtained wave-functions of AO3, AO4 and AO5
are

wAO3 Nð Þ ¼ 0:24/N 2p0yð Þ þ 0:35/N 2p00yð Þ þ 0:17/N 2p000yð Þ þ 0:60/N 3pyð Þ ð7:69Þ

wAO4 Nð Þ ¼ 0:24/N 2p0xð Þ þ 0:35/N 2p00xð Þ þ 0:17/N 2p000xð Þ þ 0:60/N 3pxð Þ ð7:70Þ

wAO5 Nð Þ ¼ 0:24/N 2p0zð Þ þ 0:35/N 2p00zð Þ þ 0:17/N 2p000zð Þ þ 0:60/N 3pzð Þ ð7:71Þ

The figures of AO3, AO4 and AO5 are the same, though the directions are
different. The wave-functions of AO3, AO4 and AO5 are along y, x and z direc-
tions, respectively. As they have the same positive orbital energy (0.38587 au), they
are degenerated. As they consist of not only 2p and but also 3p orbitals, electrons
are delocalized over both 2p and 3p orbitals. From the delocalization and orbital
energy rule, charge transfer easily occurs from nitrogen to other atoms in molecule
or solid.

7.9 Oxygen Atom

Figure 7.8 depicts the electronic structures of oxygen atom. Neutral oxygen has six
electrons in L shell. Two electron configurations are considered: (1) singlet electron
configuration, (2) triplet electron configuration. In solids, the formal charge of
oxygen is often −2. Divalent oxygen anion is closed shell system. CCSD/
aug-cc-pVTZ calculation is performed for them.
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7.9.1 Singlet Neutral Oxygen

In singlet neural oxygen, eight electrons occupy four AOs. The obtained
wave-functions of AO1 and AO2 are

wAO1 Oð Þ ¼ 0:98/O 1sð Þ ð7:72Þ

wAO2 Oð Þ ¼ �0:22/O 1sð Þ þ 0:57/O 2s0ð Þ þ 0:16/O 2s00ð Þ þ 0:37/O 2s000ð Þ ð7:73Þ

AO1 consists of only 1s orbital. In AO2, inversion hybridization occurs between
1s and 2s orbitals. The main components are for 2s orbital. The obtained
wave-functions of AO3 and AO4 are

wAO3 Oð Þ ¼ 0:38/O 2p0xð Þ þ 0:48/O 2p00xð Þ þ 0:34/O 2p000xð Þ ð7:74Þ

wAO4 Oð Þ ¼ 0:38/O 2p00zð Þ þ 0:48/O 2p00zð Þ þ 0:34/O 2p000zð Þ ð7:75Þ

Singlet neutral oxygen 

Triplet neutral oxygen 

Singlet oxygen anion 

(1)

(2)

(3)

Fig. 7.8 Electronic structures of oxygen atom: 1 singlet electron configuration of neutral oxygen,
2 triplet electron configuration of neutral oxygen, 3 singlet electron configuration of oxygen anion.
Electrons of L shell are only shown
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The figures of AO3 and AO4 are the same, though the directions are different.
The wave-functions of AO3 and AO4 are along x and z directions, respectively. As
they have the same orbital energy (−0.58664 au), they are degenerated.

7.9.2 Triplet Neutral Oxygen

In triplet neutral oxygen, five alpha and three beta AOs are occupied. The obtained
wave-functions of AO1a and AO1b are

wAO1a Oð Þ ¼ 0:98/O 1sð Þ ð7:76Þ

wAO1b Oð Þ ¼ 0:98/O 1sð Þ ð7:77Þ

AO1a and AO1b are paired. They represent 1s orbital. The obtained
wave-functions of AO2a and AO2b are

wAO2a Oð Þ ¼ �0:22/O 1sð Þ þ 0:59/O 2s0ð Þ þ 0:17/O 2s00ð Þ þ 0:34/O 2s000ð Þ ð7:78Þ

wAO2b Oð Þ ¼ �0:22/O 1sð Þ þ 0:54/O 2s0ð Þ þ 0:15/O 2s00ð Þ þ 0:40/O 2s000ð Þ ð7:79Þ

In AO2a and AO2b, inversion hybridization occurs between 1s and 2s orbitals.
Though the coefficients of AO2a and AO2b are slightly different, AO2a and AO2b
are paired, due to the qualitative same wave-functions. The main coefficients are for
2s orbital. The orbital energies of AO2a and AO2b are −1.41956 and −1.07729 au,
respectively. AO2a is more stabilized than AO2b. The obtained wave-functions of
AO3a, AO3b, AO4a and AO5a are

wAO3a Oð Þ ¼ 0:40/O 2p0xð Þ þ 0:51/O 2p00xð Þ þ 0:30/O 2p000xð Þ ð7:80Þ

wAO3b Oð Þ ¼ 0:37/O 2p0zð Þ þ 0:46/O 2p00zð Þ þ 0:37/O 2p000zð Þ ð7:81Þ

wAO4a Oð Þ ¼ 0:40/O 2p0yð Þ þ 0:51/O 2p00yð Þ þ 0:30/O 2p000yð Þ ð7:82Þ

wAO5a Oð Þ ¼ 0:39/O 2p0zð Þ þ 0:49/O 2p00zð Þ þ 0:33/O 2p000zð Þ ð7:83Þ

The figures of AO3a and AO4a are the same, though the directions are different.
The wave-functions of AO3a and AO4a are along x and y directions, respectively.
As the orbital energies of AO3a and AO4a are the same (−0.71100 au), they are
degenerated. On the other hand, the orbital energy of AO5a (−0.61182 au) is larger
than AO3a and AO4a. AO5a and AO3b consist of 2pz orbital. Though the coef-
ficients of AO5a and AO3b are slightly different, AO5a and AO3b are paired, due
to the qualitative same wave-functions. In neutral oxygen, the total energies of
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singlet and triplet electron configurations are −74.88724 and −74.97552 au,
respectively. The triplet electron configuration is more stable, following electron
configuration rule.

7.9.3 Singlet Oxygen Anion

In oxygen anion, eight electrons occupy all AOs of L shell. The obtained
wave-function of AO1 and AO2 are

wAO1 Oð Þ ¼ 0:98/O 1sð Þ ð7:84Þ

wAO2 Oð Þ ¼ �0:22/O 1sð Þ þ 0:53/O 2s0ð Þ þ 0:15/O 2s00ð Þ þ 0:37/O 2s000ð Þ ð7:85Þ

Though AO1 consists of 1s orbital, AO2 consists of 1s and 2s orbitals. In AO2,
inversion hybridization occurs between 1s and 2s orbitals. The main components
are for 2s orbital. The obtained wave-function of AO3, AO4 and AO5 are

wAO3 Oð Þ ¼ 0:31/O 2p0zð Þ þ 0:39/O 2p00zð Þ þ 0:31/O 2p000zð Þ þ 0:34/O 3pzð Þ ð7:86Þ

wAO4 Oð Þ ¼ 0:31/O 2p0yð Þ þ 0:39/O 2p00yð Þ þ 0:31/O 2p000yð Þ þ 0:34/O 3pyð Þ ð7:87Þ

wAO5 Oð Þ ¼ 0:31/O 2p0xð Þ þ 0:39/O 2p00xð Þ þ 0:31/O 2p000xð Þ þ 0:34/O 3pxð Þ ð7:88Þ

The figures of AO3, AO4 and AO5 are the same, though the directions are
different. The wave-functions of AO3, AO4 and AO5 are along z, y and x direc-
tions, respectively. As they have the same positive orbital energy (0.19348 au), they
are degenerated. As they consist of not only 2p and but also 3p orbitals, electrons
are delocalized over both 2p and 3p orbitals. From the delocalization and orbital
energy rule, charge transfer easily occurs from nitrogen to other atoms in molecule
or solid.

7.10 Fluorine Atom

Figure 7.9 depicts the electronic structures of fluorine atom. As neutral fluorine has
seven electrons in L shell, the spin multiplicity is doublet. In solids, the formal
charge of fluorine is −1. Monovalent fluorine anion is closed shell system.
CCSD/aug-cc-pVTZ calculation is performed for them.
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7.10.1 Neutral Fluorine

The obtained wave-functions of AO1a and AO1b are

wAO1a Fð Þ ¼ 0:98/F 1sð Þ ð7:89Þ

wAO1b Fð Þ ¼ 0:98/F 1sð Þ ð7:90Þ

AO1a and AO1b are paired. They represent 1s orbital. The obtained
wave-functions of AO2a and AO2b are

wAO2a Fð Þ ¼ �0:23/F 1sð Þ þ 0:58/F 2s0ð Þ þ 0:18/F 2s00ð Þ þ 0:35/F 2s000ð Þ ð7:91Þ

wAO2b Fð Þ ¼ �0:22/F 1sð Þ þ 0:55/F 2s0ð Þ þ 0:17/F 2s00ð Þ þ 0:38/F 2s000ð Þ ð7:92Þ

In AO2a and AO2b, inversion hybridization occurs between 1s and 2s orbitals.
Though the coefficients of AO2a and AO2b are slightly different, AO2a and AO2b
paired, due to the qualitative same wave-functions. The main coefficients are for 2s
orbital. The orbital energies of AO2a and AO2b are −1.67449 and −1.47926 au,
respectively. AO2a is more stabilized than AO2b. The obtained wave-functions of
AO3a, AO3b, AO4a, AO4b and AO5a

wAO3a Fð Þ ¼ 0:41/F 2p0xð Þ þ 0:51/F 2p00xð Þ þ 0:29/F 2p000xð Þ ð7:93Þ

wAO3b Fð Þ ¼ 0:39/O 2p0zð Þ þ 0:48/O 2p00zð Þ þ 0:34/O 2p000zð Þ ð7:94Þ

Doublet neutral fluorine 

Singlet fluorine anion 

(1)

(2)

Fig. 7.9 Electronic structures for fluorine atom: 1 doublet electron configuration of neutral
fluorine, 2 singlet electron configuration of fluorine anion. Electrons of L shell are only shown
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wAO4a Fð Þ ¼ 0:40/O 2p0zð Þ þ 0:49/O 2p00zð Þ þ 0:32/O 2p000zð Þ ð7:95Þ

wAO4b Fð Þ ¼ 0:39/O 2p0yð Þ þ 0:48/O 2p00yð Þ þ 0:34/O 2p000yð Þ ð7:96Þ

wAO5a Fð Þ ¼ 0:40/O 2p0yð Þ þ 0:49/O 2p00yð Þ þ 0:32/O 2p000yð Þ ð7:97Þ

The figures of AO4a and AO5a are the same, though the directions are different.
The wave-functions of AO4a and AO5a are along z and y directions, respectively.
As the orbital energies of AO4a and AO5a are the same (−0.73207 au), they are
degenerated. The figures of AO3b and AO4b are the same, though the directions
are different. The wave-functions of AO3b and AO4b are along z and y directions,
respectively. As the orbital energies of AO3b and AO4b are the same value
(−0.68029 au), they are degenerated. AO4a and AO3b are paired, and AO5a and
AO4b are paired, due to the qualitative same wave-functions. AO3a, which con-
sists of 2px orbital, has no paired beta AO. As the orbital energy (−1.67449 au) is
smaller than AO4a and AO5a, it is stabilized.

7.10.2 Fluorine Anion

In fluorine anion, eight electrons occupy all AOs of L shell. The obtained
wave-function of AO1 and AO2 are

wAO1 Fð Þ ¼ 0:98/F 1sð Þ ð7:98Þ

wAO2 Fð Þ ¼ �0:22/F 1sð Þ þ 0:54/F 2s0ð Þ þ 0:16/F 2s00ð Þ þ 0:38/F 2s000ð Þ ð7:99Þ

Though AO1 consists of 1s orbital, AO2 consists of 1s and 2s orbitals. In AO2,
inversion hybridization occurs between 1s and 2s orbitals. The main components
are for 2s orbital. The obtained wave-functions of AO3, AO4 and AO5 are

wAO3 Fð Þ ¼ 0:36/O 2p0xð Þ þ 0:44/O 2p00xð Þ þ 0:36/O 2p000xð Þ þ 0:12/O 3pxð Þ ð7:100Þ

wAO4 Fð Þ ¼ 0:36/O 2p0yð Þ þ 0:44/O 2p00yð Þ þ 0:36/O 2p000yð Þ þ 0:12/O 3pyð Þ ð7:101Þ

wAO5 Fð Þ ¼ 0:36/O 2p0zð Þ þ 0:44/O 2p00zð Þ þ 0:36/O 2p000zð Þ þ 0:12/O 3pzð Þ ð7:102Þ

The figures of AO3, AO4 and AO5 are the same, though the directions are
different. The wave-functions of AO3, AO4 and AO5 are along x, y and z direc-
tions, respectively. As they have the same orbital energy (−0.18095 au), they are
degenerated. As they consist of not only 2p but also 3p orbitals, electrons are
delocalized over both 2p and 3p orbitals.
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Chapter 8
Molecular Orbital Calculation of Diatomic
Molecule

Abstract Covalent bonding is formed through orbital overlap between orbitals of
different atoms. It is classified into r-type and p-type by the difference of the
interaction between lobes. In this chapter, chemical bonding formation of diatomic
molecule is clearly explained from the viewpoints of molecular orbital analysis and
energetics. In homonuclear diatomic molecule, chemical bonding formations of
hydrogen molecule, lithium dimer, nitrogen molecule and oxygen molecule are
explained through concrete calculation results. Triplet and singlet spin states are
compared in oxygen molecule. The stability of triplet oxygen molecule is clearly
explained. The high reactivity of superoxide is also discussed. On the other hand, in
heteronuclear diatomic molecule, chemical bonding formations of hydrogen
fluoride, hydrogen chloride, hydroxide and carbon oxide are explained through
concrete calculation results. The difference of acidity is discussed in comparison
with hydrogen fluoride and hydrogen chloride. In comparison with hydroxide, the
reactivity of hydroxide radical is also discussed. Point charge notation has been
used for atom and molecule. However, the limit of point charge denotation is
pointed out.

Keywords Orbital overlap � Covalent bonding � Inversion covalent bonding �
Homonuclear diatomic molecule � Heteronuclear diatomic molecule

8.1 Orbital Overlap

In many-electron atom, initial atomic orbitals (IAOs) are hybridized in the same
atom. It is called orbital hybridization. Note that IAO is designated by basis set. In
this book, IAO is just called “orbital”.

In many-electron molecule, molecular orbital (MO) is often represented by the
combination of IAOs of different atoms. It is called orbital overlap. There are two
orbital overlap patterns. One is conventional orbital overlap, when MO coefficients
of different atoms have the same sign. The other is inversion orbital overlap, when
the coefficients of different atoms have the different signs. In inversion orbital
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overlap, the wave-function is annihilated, due to node between different atoms.
Node is where the wave-function is zero. Hence, the orbital energy of inversion
covalent bonding is higher than conventional covalent bonding.

Lobe is orbital figure with the same sign. s and p orbitals have one lobe and two
lobes, respectively. d orbital has three or four lobes. The use of lobe makes it
possible to explain the difference of r-type and p-type covalent bonds.

Figure 8.1 depicts r-type covalent bonding patterns between orbitals of different
atoms. In r-type covalent bonding, one lobe interacts with one lobe of different
atom. When the sign of another lobe is opposite, inversion r-type covalent bonding
is formed. The orbital energy of inversion r-type covalent bonding is higher than
corresponding r-type covalent bonding, due to the existence of node.

Figure 8.2 depicts p-type covalent bonding patterns between orbitals of different
atoms. In p-type covalent bonding, two lobes interact with two lobes of different
atom. When the sign of another lobes are opposite, inversion p-type covalent
bonding is formed. The orbital energy of inversion p-type covalent bonding is
higher than corresponding p-type covalent bonding, due to the existence of node.

(a) 

(b)

(c) 

(d)

(e) 

Fig. 8.1 The r-type covalent bonding patterns between orbitals of different atoms: a s and s
orbitals, b s and p orbitals, c p and p orbitals, d p and d orbitals, e s and d orbitals. The
corresponding inversion r-type covalent bonding patterns are also shown. The grey and blue lobes
has the positive and negative coefficients
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8.2 Hydrogen Molecule

8.2.1 Hydrogen Molecule

Hydrogen molecule, which is denoted as H2, is a homonuclear diatomic molecule.
The lowest and second lowest orbital energies are given in MO1 and MO2,
respectively. Though two electrons occupy MO1, MO2 is unoccupied. MO1 and
MO2 correspond to the highest occupied molecular orbital (HOMO) and lowest
unoccupied molecular orbital (LUMO), respectively.

B3LYP/6-31G* calculation is performed for H2 (H1–H2) with closed shell
electron configuration. In closed shell system, the number of MOs corresponds to
the total number of basis functions. As 6-31G* basis sets of hydrogen has two basis
functions, four MO are produced. The obtained wave-function of occupied MO1 is

(a) 

(b)

(c) 

Fig. 8.2 The p-type covalent bonding patterns between orbitals of different atoms: a p and p
orbitals, b p and d orbitals, c d and d orbitals. The corresponding inversion p-type covalent
bonding patterns are also shown. The grey and blue lobes has the positive and negative coefficients
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wMO1 H2ð Þ ¼ 0:33/H1 1s0ð Þ þ 0:27/H1 1s00ð Þ þ 0:33/H2 1s0ð Þ þ 0:27/H2 1s00ð Þ ð8:1Þ

One H1 lobe interacts with one H2 lobe. The signs of H1 and H2 coefficients are
positive. From chemical bonding rule, it is found that the r-type covalent bonding
is formed between two hydrogen 1s orbitals. MO1 is symmetric to middle point
between two hydrogen atoms. The obtained wave-function of unoccupied MO2 is

wMO2 H2ð Þ ¼ �0:18/H1 1s0ð Þ � 1:64/H1 1s00ð Þ þ 0:18/H2 1s0ð Þ þ 1:64/H2 1s00ð Þ ð8:2Þ

One H1 lobe interacts with one H2 lobe. Though the absolute values of H1 and H2
coefficients are the same, the signs are different. Fromchemical bonding rule, it is found
that inversion r-type covalent bonding is formed between two hydrogen 1s orbitals.

Figure 8.3 depicts the orbital energy level diagram and molecular orbitals of H2

molecule, and atomic orbital of H atom. It can be also understood that covalent
bonding is formed through the combinations of two hydrogen 1s atomic orbitals
(AOs), and inversion covalent bonding is formed through hydrogen 1s and inver-
sion 1s AOs. One may think that the explanation based on independent AOs is
natural. The explanation is not always applicable.

When changing the interatomic H1–H2 distance (r), the change of total energy is
investigated (see Fig. 8.4). The local minimum is given at 0.734 Å, corresponding
to H2 bond length. When r is smaller than local minimum, higher total energy is
given, due to electron–electron repulsion. On the other hand, when r is larger than
local minimum, higher energy is also given. Bond dissociation energy is a useful
indication of bond dissociation. In general, it can be estimated from the total energy
difference between the local minimum and completely dissociated point.

Edissociation H2ð Þ ¼ E H�ð ÞþE H�ð Þ � E H2ð Þ ð8:3Þ

Note that it is assumed that two hydrogen radicals exist at completely dissociated
point. The bond dissociation energy is estimated to be 108.6 kcal/mol. The
zero-point vibration energy is 6.292 kcal/mol. It is much smaller than the bond
dissociation energy.

8.2.2 Hydrogen Molecule Cation

In hydrogen molecule cation (H2
+), though there is only one electron, Schrödinger

equation cannot be analytically solved, due to three-body problem. One electron
occupies MO1a with the lowest orbital energy.

B3LYP/6-31G* calculation is performed for H2
+ (H1–H2) with open shell

electron configuration. The spin state is doublet, due to no paired beta MO. The
number of alpha or beta MOs corresponds to the total number of basis functions.

116 8 Molecular Orbital Calculation of Diatomic Molecule



Four alpha and four beta MOs are produced, because 6-31G* basis set of hydrogen
atom has two basis functions. MO1b, MO2a, MO2b, MO3a, MO3b, MO4a and
MO4b are unoccupied. The obtained wave-function of MO1a is

wMO1a H2
þð Þ ¼ 0:39/H1 1s0ð Þ þ 0:26/H1 1s00ð Þ þ 0:39/H2 1s0ð Þ þ 0:26/H2 1s00ð Þ ð8:4Þ

One H1 lobe interacts with one H2 lobe. The signs of H1 and H2 coefficients are
positive. From chemical bonding rule, it is found that r-type covalent bonding is
formed between two hydrogen 1s orbitals. MO1a is symmetric to the middle point
between two hydrogen atoms. The obtained wave-function of unoccupied MO2a is

H1 AO
(-0.3162) 

MO1(-0.4340) 

MO2(0.1001) 

H2 AO
(-0.3162) 

Orbital energy

Fig. 8.3 Orbital energy level diagram and molecular orbitals of hydrogen molecule (H2), and
atomic orbital of hydrogen atom (H). The calculated orbital energy is shown in parentheses
(B3LYP/6-31G*)
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wMO2a H2
þð Þ ¼ �0:40/H1 1s0ð Þ � 0:78/H1 1s00ð Þ þ 0:40/H2 1s0ð Þ þ 0:78/H2 1s00ð Þ ð8:5Þ

One H1 lobe interacts with one H2 lobe. Though the absolute values of H1 and
H2 coefficients are the same, the signs are different. From chemical bonding rule, it
is found that inversion r-type covalent bonding is formed between two hydrogen 1s
orbitals.

Figure 8.5 depicts the orbital energy level diagram and molecular orbitals for
H2

+ molecule, and atomic orbitals of H atom. In this case, it is difficult to under-
stand chemical bonding formation through the combinations of AOs. It is because
no electron exists in AO of H2. In MO1a, one electron is shared between H1 and
H2.

When changing the interatomic H1–H2 distance (r), the local minimum is given
at 1.058 Å (see Fig. 8.6). It is found that H2

+ bond length is larger than H2 bond
length. Bond dissociation energy can be estimated from the total energy difference
between the local minimum and completely dissociated point.

Edissociation H2
þð Þ ¼ E H�ð Þ þE Hþð Þ � E H2

þð Þ ð8:6Þ

Note that it is assumed that one hydrogen radical and proton exist at the com-
pletely dissociated point. In proton, where there exists no electron, the total energy
is zero, from the definition of the total energy in molecular orbital calculation. The
bond dissociation energy is estimated to be 64.31 kcal/mol. It is smaller than H2.
The zero-point vibration energy is 3.319 kcal/mol. It is much smaller than the bond
dissociation energy.
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Fig. 8.4 Potential energy curve of hydrogen molecule, changing the interatomic H1–H2 distance
(CCSD/aug-cc-pVTZ)
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8.3 Lithium Dimer

8.3.1 Lithium Dimer

In Chap. 7, AOs for lithium atom were explained. Two electrons occupy paired
AO1a and AO1b, and one electron occupies AO2a. The electron configuration of
lithium atom is written as Li: 1s22s1. When two lithium atoms are bound, lithium
dimer (Li2) is formed.

B3LYP/6-31G* calculations is performed for lithium dimer (Li1–Li2). The total
energies of singlet and triplet spin states are −15.01475 au and −14.98267 au,
respectively. It is found that singlet spin state is more stable than triplet spin state.
Thirty MOs are produced, because 6-31G* basis set of lithium atom has fifteen
basis functions.

H1 AO
(-0.3161) 

MO1α
(-0.8984) 

MO2α
(-0.4496) 

Orbital energy

Fig. 8.5 Orbital energy level diagram and molecular orbitals of hydrogen molecule cation (H2
+),

and atomic orbital of neutral hydrogen atom (H). The calculated orbital energy is shown in
parentheses (B3LYP/6-31G*)
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Let us examine MOs of singlet spin state. Six electrons occupy MO1, MO2 and
MO3. The obtained wave-functions of MO1 and MO2 are

wMO1 Li2ð Þ ¼ 0:70/Li1 1sð Þ þ 0:70/Li2 1sð Þ ð8:7Þ

wMO2 Li2ð Þ ¼ 0:70/Li1 1sð Þ � 0:70/Li2 1sð Þ ð8:8Þ

Li1 1s orbital overlaps with Li2 1s orbital. One Li1 lobe interacts with one Li2
lobe. From chemical bonding rule, it is found that the r-type covalent bonding is
formed between two lithium 1s orbitals. Though Li1 and Li2 coefficients are
positive in MO1, they are different in MO2. The inversion r-type covalent bonding
is formed in MO2. The obtained wave-functions of MO3 is

wMO3 Li2ð Þ ¼ 0:15/Li1 1sð Þ � 0:24/Li1 2s0ð Þ � 0:33/Li1 2s00ð Þ � 0:11/Li1 2p0xð Þ
þ 0:15/Li2 1sð Þ � 0:24/Li2 2sð Þ � 0:33/Li2 2s00ð Þ � 0:11/Li2 2p0xð Þ

ð8:9Þ

In Li1 and Li2, it is found that inversion hybridization occurs between 1s and 2s
orbitals, and 2px orbital is also hybridized. The main coefficients are for Li1 and Li2
2s orbitals. One Li1 lobe interacts with one Li2 lobe. From chemical bonding rule,
it is found that the r-type covalent bonding is formed between Li1 and Li2 2s
orbitals.

Figure 8.7 shows the orbital energy level diagram and molecular orbitals of
lithium dimer, and atomic orbitals for lithium atom. Regarding MO1 and MO2, it
can be understood that covalent bonding is formed through the combination of two
1s AOs, and inversion covalent bonding is formed through the combination of two
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Fig. 8.6 Potential energy curve of hydrogen molecule cation, changing the interatomic H1–H2
distance (CCSD/aug-cc-pVTZ)
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1s and inversion 1s AOs. However, in MO3, it is not easy to explain chemical
bonding formation through the combination of AOs. It is because 2px orbital is also
hybridized in MO3.

Figure 8.8 depicts the potential energy curve of lithium dimer, changing the
interatomic Li1–Li2 distance (r). The local minimum is given at 2.727 Å, corre-
sponding to the bond length of lithium dimer. Bond dissociation energy can be

MO2 (-2.0036) 

MO1 (-2.0039) 

MO3
(-0.1324) Li1 AO2α 

(−0.1333) 

Li1 AO1β 
(−2.0255) Li1 AO1α 

(−2.0347) 

Li2 AO1β 
(−2.0255) Li2 AO1α 

(−2.0347) 

Li2 AO2α 
(−0.1333) 

Orbital energy

Fig. 8.7 Orbital energy level diagram and molecular orbitals of lithium dimer (Li2), and atomic
orbital of lithium atom (Li). The calculated orbital energy is shown in parentheses
(B3LYP/6-31G*)
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Fig. 8.8 Potential energy curve of lithium dimer, changing the interatomic Li1–Li2 distance
(CCSD/aug-cc-pVTZ)
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estimated from the total energy difference between the local minimum and com-
pletely dissociated point.

Edissociation Li2ð Þ ¼ E Li�ð ÞþE Li�ð Þ � E Li2ð Þ ð8:10Þ

Note that it is assumed that two lithium radicals exist at completely dissociated
point. It is estimated to be 22.67 kcal/mol. As it is smaller than the bond dissoci-
ation energy of H2, it is found that Li–Li dissociation occurs more easily than H–H
dissociation. The zero-point vibration energy is 0.484 kcal/mol. It is much smaller
than the bond dissociation energy.

8.3.2 Lithium Dimer Cation

In lithium dimer, lithium atoms are bound through covalent bonding between two
outer shell electrons. In lithium dimer cation (Li2

+), there is one outer shell electron,
and spin state is doublet.

B3LYP/6-31G* calculation is performed for Li2
+ (Li1–Li2) with open shell

electron configuration. Thirty alpha and beta MOs are produced, because 6-31G*
basis set of lithium atom has fifteen basis functions. Four electrons occupy MO1a,
MO1b, MO2a and MO2b. The obtained wave-functions of MO1a and MO1b are

wMO1a Li2 þð Þ ¼ �0:70/Li1 1sð Þ � 0:70/Li2 1sð Þ ð8:11Þ

wMO1b Li2 þð Þ ¼ �0:70/Li1 1sð Þ � 0:70/Li2 1sð Þ ð8:12Þ

MO1a and MO1b are paired. Li 1s orbital overlaps with Li2 orbital. One Li1
lobe interacts with one Li2 lobe. From chemical bonding rule, it is found that the
r-type covalent bonding is formed between two lithium 1s orbitals. The obtained
wave-functions of MO2a and MO2b are

wMO2a Li2 þð Þ ¼ 0:70/Li1 1sð Þ � 0:70/Li2 1sð Þ ð8:13Þ

wMO2b Li2 þð Þ ¼ 0:70/Li1 1sð Þ � 0:70/Li2 1sð Þ ð8:14Þ

MO2a and MO2b are paired. Li 1s orbital overlaps with Li2 orbital. One Li1 lobe
interacts with one Li2 lobe. The signs of Li1 and Li2 coefficients are different. From
chemical bonding rule, it is found that the inversion r-type covalent bonding is
formed between two lithium 1s orbitals. The obtained wave-functions of MO3a is

wMO3a Li2 þð Þ ¼ �0:13/Li1 1sð Þ þ 0:37/Li1 2s0ð Þ þ 0:14/Li1 2s00ð Þ þ 0:27/Li1 2p0xð Þ
� 0:13/Li2 1sð Þ þ 0:37/Li2 2s0ð Þ þ 0:14/Li2 2s00ð Þ þ 0:27/Li2 2p0xð Þ

ð8:15Þ
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In Li1 and Li2, inversion hybridization occurs between 1s and 2s orbitals, and
2px orbital is also hybridized. The main coefficients are for Li1 2s and Li2 2s
orbitals. One Li1 lobe interacts with one Li2 lobe. From chemical bonding rule, it is
found that the r-type covalent bonding is formed between Li1 and Li2 2s orbitals.

Figure 8.9 depicts the potential energy curve of lithium dimer cation, changing
the interatomic Li1–Li2 distance (r). The local minimum is given at 3.158 Å, which
is larger than lithium dimer (2.727 Å). It is because covalency of Li2

+ is more
subsided than Li2, due to one outer shell electron. Bond dissociation energy can be
estimated from the energy difference between the local minimum and completely
dissociated point.

Edissociation Li2 þð Þ ¼ E Liþð ÞþE Li�ð Þ � E Li2 þð Þ ð8:16Þ

Note that it is assumed that lithium cation and lithium radical exist at the
completely dissociated point. It is 29.24 kcal/mol. The zero point vibration energy
is 0.372 kcal/mol. It is much smaller than the bond dissociation energy.

8.4 Nitrogen Molecule

Nitrogen atom has two electrons in K shell and five electrons in L shell. When two
nitrogen atoms are bound, nitrogen molecule is formed. B3LYP/6-31G* calculation
is performed for N2 (N1–N2) with closed shell electron configuration. Thirty MOs
are produced, because 6-31G* basis set of nitrogen atom has fifteen basis functions.
Fourteen electrons occupy MO1, MO2, MO3, MO4, MO5, MO6 and MO7.
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Fig. 8.9 Potential energy curve of lithium dimer cation, changing the interatomic Li1–Li2
distance (CCSD/aug-cc-pVTZ)
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Figure 8.10 depicts the orbital energy diagram and MOs of nitrogen molecule at
optimized structure. The obtained wave-function of MO1 is

Fig. 8.10 Orbital energy
diagram and molecular
orbitals of nitrogen molecule
at optimized structure
(B3LYP/6-31G*). The
calculated orbital energy is
shown in parentheses
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wMO1 N2ð Þ ¼ 0:70/N1 1sð Þ þ 0:70/N2 1sð Þ ð8:17Þ

N1 1s orbital overlaps with N2 1s orbital. One N1 lobe interacts with one N2
lobe. From chemical bonding rule, it is found that r-type covalent bonding is
formed between nitrogen 1s orbitals. The obtained wave-functions of MO2 is

wMO2 N2ð Þ ¼ 0:70/N1 1sð Þ � 0:70/N2 1sð Þ ð8:18Þ

The signs of N1 and N2 coefficients are different in MO2. The inversion r-type
covalent bonding is formed between nitrogen 1s orbitals. The obtained
wave-functions of MO3 and MO4 are

wMO3 N2ð Þ ¼ �0:16/N1 1sð Þ þ 0:34/N1 2s0ð Þ þ 0:19/N1 2s00ð Þ þ 0:23/N1 2p0xð Þ
� 0:16/N2 1sð Þ þ 0:34/N2 2s0ð Þ þ 0:19/N2 2s00ð Þ � 0:23/N2 2p0xð Þ

ð8:19Þ

wMO4 N2ð Þ ¼ 0:15/N1 1sð Þ � 0:33/N1 2s0ð Þ � 0:53/N1 2s00ð Þ þ 0:21/N1 2p0xð Þ
� 0:15/N2 1sð Þ þ 0:33/N2 2s0ð Þ þ 0:53/N2 2s00ð Þ þ 0:21/N2 2p0xð Þ

ð8:20Þ

In MO3 and MO4, there is inversion hybridization between 1s and 2s orbitals,
and 2px orbital is also hybridized. The main coefficients are for 2s orbital. One N1
lobe interacts with one N2 lobe. In MO4, the signs of the coefficients of N1 and N2
2s orbitals are different. From chemical bonding rule, it is found that the r-type
covalent bonding is formed between 2s orbitals in MO3, and inversion r-type
covalent bonding is formed between 2s orbitals in MO4. The orbital energies of
MO3 and MO4 are much larger than MO1 and MO2. It is because four electrons of
MO1 and MO2 are in inner K shell.

The coefficients of MO5, MO6 and MO7 are for outer shell electrons (2s and 2p
electrons). The obtained wave-function of MO5 and MO6 are

wMO5 N2ð Þ ¼ 0:13/N1 2p0yð Þ þ 0:44/N1 2p0zð Þ þ 0:22/N1 2p00zð Þ
þ 0:13/N2 2p0yð Þ þ 0:44/N2 2p0zð Þ þ 0:22/N2 2p00zð Þ

ð8:21Þ

wMO6 N2ð Þ ¼ 0:44/N1 2p0yð Þ þ 0:22/N1 2p00yð Þ � 0:13/N1 2p0zð Þ
þ 0:44/N2 2p0yð Þ þ 0:22/N2 2p00yð Þ � 0:13/N2 2p0zð Þ

ð8:22Þ

In MO5 and MO6, as there is hybridization between 2py and 2pz orbitals, rotated
2p orbital is given. Two N1 lobes interact with two N2 lobes. From chemical
bonding rule, it is found that p-type covalent bonding is formed between N1 and N2
2p orbitals. As the orbital energies of MO5 and MO6 are the same, they are
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degenerated. Note that the wave-functions of MO5 and MO6 are different as
quantum mechanics, due to direction difference. The obtained wave-function of
MO7 is

wMO7 N2ð Þ ¼ 0:11/N1 2s0ð Þ þ 0:34/N1 2s00ð Þ � 0:46/N1 2p0xð Þ � 0:19/N1 2p00xð Þ
þ 0:11/N2 2s0ð Þ þ 0:34/N2 2s00ð Þ þ 0:46/N2 2p0xð Þ þ 0:19/N2 2p00xð Þ

ð8:23Þ

There is hybridization between 2px and 2s orbitals. The main coefficients are for
2px orbital. The coefficients of N1 and N2 2s orbitals are positive, and the signs of
the coefficients of N1 and N2 2px orbitals are different. One N1 lobe interacts with
one N2 lobe. From chemical bonding rule, r-type covalent bonding is formed
between N1 and N2 2px orbitals.

MO8, MO9 and MO10 are unoccupied. The obtained wave-function of MO8,
MO9 and MO10 are

wMO8 N2ð Þ ¼ �0:50/N1 2p0yð Þ � 0:56/N1 2p00yð Þ þ 0:50/N2 2p0yð Þ þ 0:56/N2 2p00yð Þ
ð8:24Þ

wMO9 N2ð Þ ¼ �0:50/N1 2p0zð Þ � 0:56/N1 2p00zð Þ þ 0:50/N2 2p0zð Þ þ 0:56/N2 2p00zð Þ
ð8:25Þ

wMO10 N2ð Þ ¼ �0:24/N1 2s0ð Þ � 3:85/N1 2s00ð Þ � 0:12/N1 2p0xð Þ � 2:58/N1 2p00xð Þ
þ 0:24/N2 2s0ð Þ þ 3:85/N2 2s00ð Þ � 0:12/N2 2p0xð Þ � 2:58/N2 2p00xð Þ

ð8:26Þ

It is found that inversion p-type covalent bonding is formed in MO8 and MO9,
and inversion r-type covalent bonding is formed in MO10. The orbital energies of
MO8 and MO9 are the same, due to the degeneracy.

Figure 8.11 shows the potential energy curve of nitrogen molecule, changing
interatomic N1–N2 distance. The local minimum is given at 1.097 Å, corre-
sponding to the N2 bond length. Bond dissociation energy can be estimated from
the total energy difference between the local minimum and completely dissociated
point.

Edissociation N2ð Þ ¼ E Nquintet
� �þE Nquintet

� �� E N2ð Þ ð8:27Þ

Note that it is assumed that two neutral nitrogen atoms with quintet spin state
exist at the completely dissociated point. The bond dissociated energy is estimated
to be 208.9 kcal/mol. It is much larger than hydrogen molecule. The zero-point
vibration energy is 3.458 kcal/mol. It is much smaller than the dissociation energy.
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8.5 Oxygen Molecule

8.5.1 Triplet and Singlet Oxygen Molecules

It is well known that oxygen molecule (O1–O2) exhibits triplet spin state. Let us
confirm the fact, from the viewpoint of energetics. B3LYP/6-31G* calculation is
performed for singlet and triplet oxygen molecules.

Figures 8.12 and 8.13 depict the potential energy curves of triplet and singlet
oxygen molecules, changing the interatomic O1–O2 distance. The local minima are
given at 1.202 Å in triplet O2 and 1.209 Å in singlet O2. The bond lengths are
almost the same. The total energies of triplet and singlet spin states are −94,203.08
and −94,170.22 kcal/mol, respectively. The total energy of triplet spin state is
32.87 kcal/mol lower.

Bond dissociation energy can be estimated from the total energy difference
between the local minimum and completely dissociated point.

Edissociation O2ð Þ ¼ E Otriplet
� �þE Otriplet

� �� E O2ð Þ ð8:28Þ

Note that it is assumed that two triplet oxygen atoms appear at the completely
dissociated point. The dissociation energies of triplet and singlet spin states are
107.30 and 74.44 kcal/mol, respectively. In this point, it is found that oxygen atoms
are strongly bound in triplet state. In comparison with nitrogen molecule, both
values are about half. It implies that oxygen molecule is more reactive than nitrogen
molecule.

-68650

-68600

-68550

-68500

-68450

-68400

-68350

-68300

-68250

0.5 1.0 1.5 2.0 2.5

To
ta

l E
ne

rg
y 

[k
ca

l/m
ol

] 

N-N distance [Å]

Fig. 8.11 Potential energy curve of nitrogen molecule, changing the interatomic N1–N2 distance
(CCSD/aug-cc-pVTZ)
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8.5.2 Molecular Orbital of Triplet Oxygen Molecule

In triplet oxygen molecule, thirty alpha and beta MOs are produced, because
6-31G* basis set of oxygen atom has fifteen basis functions. Nine electrons occupy
nine alpha MOs such as MO1a, MO2a, MO3a, MO4a, MO5a, MO6a, MO7a,
MO8a and MO9a. Seven electrons occupy seven beta MOs such as MO1b, MO2b,
MO3b, MO4b, MO5b, MO6b and MO7b.
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Fig. 8.12 Potential energy curve of triplet oxygen molecule, changing the interatomic O1–O2
distance (CCSD/aug-cc-pVTZ)
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Fig. 8.13 Potential energy curve for singlet oxygen molecule, changing the interatomic O1–O2
distance (CCSD/aug-cc-pVTZ)
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Figure 8.14 depicts the orbital energy diagram and molecular orbitals of triplet
oxygen molecule. The obtained wave-functions of MO1a, MO1b MO2a and
MO2b are

wMO1a O2ð Þ ¼ �0:70/O1 1sð Þ � 0:70/O2 1sð Þ ð8:29Þ

wMO1b O2ð Þ ¼ �0:70/O1 1sð Þ � 0:70/O2 1sð Þ ð8:30Þ

wMO2a O2ð Þ ¼ 0:70/O1 1sð Þ � 0:70/O2 1sð Þ ð8:31Þ

wMO2b O2ð Þ ¼ �0:70/O1 1sð Þ þ 0:70/O2 1sð Þ ð8:32Þ
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(-1.2439)

MO4β
(-0.7493)

MO6α
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(-0.3082)

MO10α
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MO9β
(-0.1128)

Fig. 8.14 Orbital energy diagram and molecular orbitals of triplet oxygen molecule at optimized
structure (B3LYP/6-31G*). The calculated orbital energy is shown in parentheses
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In MO1a and MO1b, though orbital energies are different, wave-functions are
the same. MO1a and MO1b are paired. Due to the same reason, MO2a and MO2b
are paired. MO1a, MO1b, MO2a and MO2b consist of O1 and O2 1s orbitals. O1
1s orbital overlaps O2 1s orbital. One O1 lobe interacts with one O2 lobe. From
chemical bonding rule, it is found that r-type covalent bonding is formed between
O1 and O2 1s orbitals. In MO2a and MO2b, as the signs of O1 and O2 coefficients
are different, inversion r-type covalent bonding is formed. The lower orbital
energies are given in MO1a, MO1b, MO2a and MO2b because electrons are in
inner K shell. The obtained wave-functions of MO3a, MO3b MO4a and MO4b are

wMO3a O2ð Þ ¼ �0:15/O1 1sð Þ þ 0:36/O1 2s0ð Þ þ 0:22/O1 2s00ð Þ þ 0:18/O1 2p0xð Þ
� 0:15/O2 1sð Þ þ 0:36/O2 2s0ð Þ þ 0:22/O2 2s00ð Þ � 0:18/O2 2p0xð Þ

ð8:33Þ

wMO3b O2ð Þ ¼ �0:15/O1 1sð Þ þ 0:34/O1 2s0ð Þ þ 0:23/O1 2s00ð Þ þ 0:19/O1 2p0xð Þ
� 0:15/O2 1sð Þ þ 0:34/O2 2s0ð Þ þ 0:22/O2 2s00ð Þ � 0:19/O2 2p0xð Þ

ð8:34Þ

wMO4a O2ð Þ ¼ 0:17/O1 1sð Þ � 0:40/O1 2s0ð Þ � 0:47/O1 2s00ð Þ þ 0:13/O1 2p0xð Þ
� 0:17/O2 1sð Þ þ 0:40/O2 2s0ð Þ þ 0:47/O2 2s00ð Þ þ 0:13/O2 2p0xð Þ

ð8:35Þ

wMO4b O2ð Þ ¼ �0:16/O1 1sð Þ þ 0:38/O1 2s0ð Þ þ 0:48/O1 2s00ð Þ � 0:14/O1 2p0xð Þ
þ 0:16/O2 1sð Þ � 0:38/O2 2s0ð Þ � 0:48/O2 2s00ð Þ � 0:14/O2 2p0xð Þ

ð8:36Þ

Though orbital energy of MO3a is smaller than MO3b, the wave-functions of
MO3a and MO3b are qualitatively the same. MO3a and MO3b are paired. In O1
and O2, inversion hybridization occurs between 1s and 2s orbitals, and 2px orbital is
also hybridized. The main coefficients of MO3a and MO3b are for O1 and O2 2s
orbitals. One O1 lobe interacts with one O2 lobe. From chemical bonding rule, it is
found that r-type covalent bonding is formed between O1 and O2 2s orbitals. Due
to the same reason, MO4a and MO4b are paired. The main coefficients of MO4a
and MO4b are for O1 and O2 2s orbitals. One O1 lobe interacts with one O2 lobe.
The signs of O1 and O2 2s coefficient are different. From chemical bonding rule, it
is found that inversion r-type covalent bonding is formed between O1 and O2 2s
orbitals. The obtained wave-functions of MO5a, MO5b, MO6a, MO6b, MO7a and
MO7b are

wMO5a O2ð Þ ¼ 0:48/O1 2p0zð Þ þ 0:25/O1 2p00zð Þ þ 0:48/O2 2p0zð Þ þ 0:25/O2 2p00zð Þ ð8:37Þ

wMO5b O2ð Þ ¼ �0:11/O1 2s0ð Þ � 0:30/O1 2s00ð Þ þ 0:46/O1 2p0xð Þ þ 0:22/O1 2p00xð Þ
� 0:11/O2 2s0ð Þ � 0:22/O2 2s0ð Þ � 0:46/O2 2p0xð Þ � 0:22/O2 2p00xð Þ

ð8:38Þ
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wMO6a O2ð Þ ¼ �0:48/O1 2p0yð Þ � 0:25/O1 2p00yð Þ � 0:48/O2 2p0yð Þ � 0:25/O2 2p00yð Þ
ð8:39Þ

wMO6b O2ð Þ ¼ �0:42/O1 2p0yð Þ � 0:27/O1 2p00yð Þ þ 0:14/O1 2p0zð Þ
� 0:42/O2 2p0yð Þ � 0:27/O2 2p00yð Þ þ 0:14/O2 2p0zð Þ

ð8:40Þ

wMO7a O2ð Þ ¼ 0:12/O1 2s0ð Þ þ 0:28/O1 2s00ð Þ � 0:47/O1 2p0xð Þ � 0:22/O1 2p00xð Þ
þ 0:12/O2 2s0ð Þ þ 0:28/O2 2s00ð Þ þ 0:47/O2 2p0xð Þ þ 0:22/O2 2p00xð Þ

ð8:41Þ

wMO7b O2ð Þ ¼ 0:14/O1 2p0yð Þ þ 0:42/O1 2p0zð Þ þ 0:27/O1 2p00zð Þ
þ 0:14/O2 2p0yð Þ þ 0:42/O2 2p0zð Þ þ 0:27/O2 2p00zð Þ

ð8:42Þ

MO5a consists of O1 and O2 2pz orbitals. In MO7b, though O1 and O2 2py
orbitals are hybridized, the main coefficients are for O1 and O2 2pz orbitals. MO5a
and MO7b are paired. Two O1 lobes interact with two O2 lobes. From chemical
bonding rule, it is found that p-type covalent bonding is formed between O1 and O2
2p orbitals in MO5a and MO7b. MO5a and MO6a are degenerated. MO6a con-
sists of O1 and O2 2py orbitals. In MO6b, though O1 and O2 2pz orbitals are
hybridized, the main coefficients are for O1 and O2 2py orbitals. MO6a and MO6b
are paired. Two O1 lobes interact with two O2 lobes. From chemical bonding rule,
it is found that the p-type covalent bonding is formed between O1 2p and O2 2p
orbitals in MO6a and MO6b. In MO7a and MO5b, though O1 and O2 2s orbitals
are hybridized, the main coefficients are for 2px orbital. MO5b and MO7a are
paired. One O1 lobe interacts with one O2 lobe. From chemical bonding rule, it is
found that r-type covalent bonding is formed between O1 and O2 2p orbitals in
MO7a and MO5b. The obtained wave-functions of MO8a, MO8b, MO9a, MO9b,
MO10a and MO10b are

wMO8a O2ð Þ ¼ �0:53/O1 2p0yð Þ � 0:37/O1 2p00yð Þ þ 0:13/O1 2p0zð Þ
þ 0:53/O2 2p0yð Þ þ 0:37/O2 2p00yð Þ � 0:13/O2 2p0zð Þ

ð8:43Þ

wMO8b O2ð Þ ¼ 0:51/O1 2p0yð Þ þ 0:43/O1 2p00yð Þ � 0:51/O2 2p0yð Þ � 0:43/O2 2p00yð Þ
ð8:44Þ

wMO9a O2ð Þ ¼ �0:13/O1 2p0yð Þ � 0:53/O1 2p0zð Þ � 0:37/O1 2p00zð Þ
þ 0:13/O2 2p0yð Þ þ 0:53/O2 2p0zð Þ þ 0:37/O2 2p00zð Þ

ð8:45Þ
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wMO9b O2ð Þ ¼ 0:51/O1 2p0zð Þ þ 0:43/O1 2p00zð Þ � 0:51/O2 2p0zð Þ � 0:43/O2 2p00zð Þ
ð8:46Þ

wMO10a O2ð Þ ¼ 0:24/O1 2s0ð Þ þ 1:02/O1 2s00ð Þ þ 0:52/O1 2p0xð Þ þ 0:99/O1 2p00xð Þ
� 0:24/O2 2s0ð Þ � 1:02/O2 2s00ð Þ þ 0:52/O2 2p0xð Þ þ 0:99/O2 2p00xð Þ

ð8:47Þ

wMO10b O2ð Þ ¼ �0:24/O1 2s0ð Þ � 1:12/O1 2s00ð Þ � 0:51/O1 2p0xð Þ � 1:05/O1 2p00xð Þ
þ 0:24/O2 2s0ð Þ þ 1:12/O2 2s00ð Þ � 0:51/O2 2p0xð Þ � 1:05/O2 2p00xð Þ

ð8:48Þ

Degenerated MO8a and MO9a are occupied and are responsible for spin den-
sity. In MO8a and MO9a, though 2pz and 2py orbitals are also hybridized, the main
coefficients are for 2py and 2pz orbitals, respectively. There are orbital overlaps
between O1 and O2 2py orbitals in MO8a, and between O1 and O2 2pz orbitals in
MO9a. The sign of O1 coefficient is opposite to the sign of O2 coefficient in MO8a
and MO9a. From chemical bonding rule, it is found that inversion p-type covalent
bonding is formed between O1 and O2 2p orbitals. MO8b, MO9b, MO10a and
MO10b are unoccupied. In MO8b and MO9b, inversion p-type covalent bonding is
formed. In MO10a and MO10b, inversion r-type covalent bonding is formed.

8.5.3 Molecular Orbital of Singlet Oxygen Molecule

In singlet oxygen molecule, thirty MOs are produced, because 6-31G* basis set of
oxygen atom has fifteen basis functions. Sixteen electrons occupy eight MOs with
spin pairs.

Figure 8.15 depicts the orbital energy diagram and molecular orbitals of singlet
oxygen molecule at optimized structure (B3LYP/6-31G*). The obtained
wave-functions of MO1, MO2, MO3 and MO4 are

wMO1 O2ð Þ ¼ �0:70/O1 1sð Þ � 0:70/O2 1sð Þ ð8:49Þ

wMO2 O2ð Þ ¼ �0:70/O1 1sð Þ þ 0:70/O2 1sð Þ ð8:50Þ

wMO3 O2ð Þ ¼ �0:15/O1 1sð Þ þ 0:35/O1 2s0ð Þ þ 0:22/O1 2s00ð Þ þ 0:18/O1 2p0xð Þ
� 0:15/O2 1sð Þ þ 0:35/O2 2s0ð Þ þ 0:22/O2 2s00ð Þ � 0:18/O2 2p0xð Þ

ð8:51Þ
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wMO4 O2ð Þ ¼ �0:17/O1 1sð Þ þ 0:39/O1 2s0ð Þ þ 0:48/O1 2s00ð Þ � 0:13/O1 2p0xð Þ
þ 0:17/O2 1sð Þ � 0:39/O2 2s0ð Þ � 0:48/O2 2s00ð Þ � 0:13/O2 2p0xð Þ

ð8:52Þ

As same as triplet oxygen molecule, r-type covalent bonding is formed between
O1 and O2 1s orbitals in MO1, and inversion r-type covalent bonding is formed
between O1 and O2 1s orbitals in MO2. In MO3 and MO4, the main coefficients

MO2
(-19.3071) 

MO1
(-19.3074)

MO3
(-1.2767)

MO4
(-0.7982)

MO6
(-0.5153) 

MO5
(-0.5315)

MO7
(-0.5076)

MO9
(-0.1793)

MO8
(-0.2502)

MO10
(0.2121)

Fig. 8.15 Orbital energy
diagram and molecular
orbitals of singlet oxygen
molecule at optimized
structure (B3LYP/6-31G*).
The calculated orbital energy
is shown in parentheses
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are for O1 and O2 2s orbitals, though there are inversion hybridizations between O1
1s and 2s orbitals, and between O2 1s and 2s orbitals, combined with hybridizations
of O1 and O2 2px orbitals. r-type covalent bonding is formed in MO3, and
inversion r-type covalent bonding is formed in MO4.

MO5, MO6 and MO7 are for 2p orbital. The obtained wave-functions of MO5,
MO6 and MO7 are

wMO5 O2ð Þ ¼ 0:12/O1 2s0ð Þ þ 0:29/O1 2s00ð Þ � 0:47/O1 2p0xð Þ � 0:22/O1 2p00xð Þ
þ 0:12/O2 2s0ð Þ þ 0:29/O2 2s00ð Þ þ 0:47/O2 2p0xð Þ þ 0:22/O2 2p00xð Þ

ð8:53Þ

wMO6 O2ð Þ ¼ �0:46/O1 2p0yð Þ � 0:27/O1 2p00yð Þ � 0:46/O2 2p0yð Þ � 0:27/O2 2p00yð Þ
ð8:54Þ

wMO7 O2ð Þ ¼ �0:47/O1 2p0zð Þ � 0:26/O1 2p00zð Þ � 0:47/O2 2p0zð Þ � 0:26/O2 2p00zð Þ
ð8:55Þ

In MO5, there is hybridization between 2px and 2s orbitals in O1 and O2. The
main coefficients are for O1 and O2 2px orbitals. One O1 lobe interacts with one O2
lobe. From chemical bonding rule, it is found that r-type covalent bonding is
formed between O1 and O2 2px orbitals. There are orbital overlaps between O1 and
O2 2py orbitals in MO6, and between O1 and O2 2pz orbitals in MO7. Two O1
lobes interact with two O2 lobes in MO6 and MO7. From chemical bonding rule, it
is found that p-type covalent bonding is formed between O1 and O2 2p orbitals in
MO6 and MO7.

MO8 is occupied, and MO9 and MO10 are unoccupied. The obtained
wave-function of MO8, MO9 and MO10 are

wMO8 O2ð Þ ¼ �0:53/O1 2p0zð Þ � 0:39/O1 2p00zð Þ þ 0:53/O2 2p0zð Þ þ 0:39/O2 2p00zð Þ
ð8:56Þ

wMO9 O2ð Þ ¼ 0:52/O1 2p0yð Þ þ 0:41/O1 2p00yð Þ � 0:52/O2 2p0yð Þ � 0:41/O2 2p00yð Þ ð8:57Þ

wMO10 O2ð Þ ¼ 0:24/O1 2s0ð Þ þ 1:05/O1 2s00ð Þ þ 0:52/O1 2p0xð Þ þ 1:01/O1 2p00xð Þ
� 0:24/O2 2s0ð Þ � 1:05/O2 2s00ð Þ þ 0:52/O2 2p0xð Þ þ 1:01/O2 2p00xð Þ

ð8:58Þ

In MO8, there is orbital overlap between O1 and O2 2pz orbitals. Two O1 lobes
interact with two O2 lobes. The sign of O1 coefficients are opposite to the sign of
O2 coefficients. From chemical bonding rule, it is found that inversion p-type
covalent bonding is formed between O1 and O2 2p orbitals. MO9 and MO10 are
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unoccupied. In MO9, inversion p-type covalent bonding is formed between O1 and
O2 2p orbitals. In MO10, inversion r-type covalent bonding is formed between O1
and O2 2p orbitals.

Figure 8.16 summarizes the difference between triplet and singlet oxygen
molecules. In triplet oxygen molecule, two electrons are allocated in two MOs of
inversion p-type covalent bonding. On the other hand, in singlet oxygen molecule,
two electrons are allocated in one MO of inversion p-type covalent bonding.

8.5.4 Superoxide

It is well known that superoxide, hydroxyl radical and singlet oxygen molecule
have high chemical reactivity. They are called reactive oxygen species. Superoxide
denotes monovalent oxygen molecule anion (O2

−) with doublet spin state. Let us
examine MOs of superoxide. B3LYP/6-31G* calculation is performed for super-
oxide. In superoxide, thirty alpha and beta MOs are produced, because 6-31G*
basis set of oxygen atom has fifteen basis functions.

Figure 8.17 depicts the orbital energy diagram and molecular orbitals of
superoxide. Alpha electrons are occupied up to MO9a, and beta electrons are
occupied up to MO8b. The obtained wave-functions of MO1a, MO1b, MO2a and
MO2b are

wMO1a O2
�ð Þ ¼ �0:70/O1 1sð Þ � 0:70/O2 1sð Þ ð8:59Þ

wMO1b O2
�ð Þ ¼ �0:70/O1 1sð Þ � 0:70/O2 1sð Þ ð8:60Þ

Two electrons

One π-type inversion covalent bonding
or 

Two π-type inversion covalent bonding

ππ

Singlet oxygen molecule

Triplet oxygen molecule

Fig. 8.16 Difference
between triplet and singlet
oxygen molecules
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wMO2a O2
�ð Þ ¼ �0:70/O1 1sð Þ þ 0:70/O2 1sð Þ ð8:61Þ

wMO2b O2
�ð Þ ¼ 0:70/O1 1sð Þ � 0:70/O2 1sð Þ ð8:62Þ

As same as oxygen molecule, r-type covalent bonding is formed between O1
and O2 1s orbitals in MO1a and MO1b. MO1a and MO1b are paired. Inversion
r-type covalent bonding is formed between O1 and O2 1s orbitals in MO2a and
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MO5α
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(0.0929)
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(0.5020)
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(0.1515) 
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(0.2597)

Fig. 8.17 Orbital energy diagram and molecular orbitals of superoxide at optimized structure
(B3LYP/6-31G*). The calculated orbital energy is shown in parentheses
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MO2b. MO2a and MO2b are paired. The obtained wave-functions of MO3a,
MO3b, MO4a and MO4b are

wMO3a O2
�ð Þ ¼ �0:15/O1 1sð Þ þ 0:35/O1 2s0ð Þ þ 0:29/O1 2s00ð Þ þ 0:13/O1 2p0xð Þ

� 0:15/O2 1sð Þ þ 0:35/O2 2s0ð Þ þ 0:29/O2 2s00ð Þ � 0:13/O2 2p0xð Þ
ð8:63Þ

wMO3b O2
�ð Þ ¼ �0:15/O1 1sð Þ þ 0:33/O1 2s0ð Þ þ 0:29/O1 2s00ð Þ þ 0:14/O1 2p0xð Þ

� 0:15/O2 1sð Þ þ 0:33/O2 2s0ð Þ þ 0:29/O2 2s00ð Þ � 0:14/O2 2p0xð Þ
ð8:64Þ

wMO4a O2
�ð Þ ¼ 0:17/O1 1sð Þ � 0:37/O1 2s0ð Þ � 0:48/O1 2s00ð Þ

� 0:17/O2 1sð Þ þ 0:37/O2 2s0ð Þ þ 0:48/O2 2s00ð Þ
ð8:65Þ

wMO4b O2
�ð Þ ¼ �0:17/O1 1sð Þ þ 0:36/O1 2s0ð Þ þ 0:49/O1 2s00ð Þ

þ 0:17/O2 1sð Þ � 0:36/O2 2s0ð Þ � 0:49/O2 2s00ð Þ
ð8:66Þ

In MO3a and MO3b, the main coefficients are for O1 and O2 2s orbitals, though
there are inversion hybridizations between O1 1s and 2s orbitals, and between O2
1s and 2s orbitals, combined with hybridizations of O1 and O2 2px orbitals. MO3a
and MO3b are paired. One O1 lobe interacts with one O2 lobe. From chemical
bonding rule, it is found that r-type covalent bonding is formed between O1 and O2
2s orbitals. In MO4a and MO4b, the main coefficients are for O1 and O2 2s
orbitals, though there are inversion hybridizations between O1 1s and 2s orbitals,
and between O2 1s and 2s orbitals. MO4a and MO4b are paired. One O1 lobe
interacts with one O2 lobe. The sign of O1 coefficients is opposite to the sign of O2
coefficients. From chemical bonding rule, it is found that inversion r-type covalent
bonding is formed between O1 and O2 1s 2s orbitals.

MO5a, MO5b, MO6a, MO6b, MO7a and MO7b are for 2p orbital. The
obtained wave-functions of MO5a, MO5b, MO6a, MO6b, MO7a and MO7b are

wMO5a O2
�ð Þ ¼ 0:28/O1 2s00ð Þ � 0:45/O1 2p0xð Þ � 0:27/O1 2p00xð Þ

þ 0:28/O2 2s00ð Þ þ 0:45/O2 2p0xð Þ þ 0:27/O2 2p00xð Þ
ð8:67Þ

wMO5b O2
�ð Þ ¼ 0:29/O1 2s00ð Þ � 0:45/O1 2p0xð Þ � 0:27/O1 2p00xð Þ

þ 0:29/O2 2s00ð Þ þ 0:45/O2 2p0xð Þ þ 0:27/O2 2p00xð Þ
ð8:68Þ

wMO6a O2
�ð Þ ¼ �0:44/O1 2p0yð Þ � 0:30/O1 2p00yð Þ � 0:44/O2 2p0yð Þ � 0:30/O2 2p00yð Þ

ð8:69Þ
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wMO6b O2
�ð Þ ¼ 0:43/O1 2p0zð Þ þ 0:31/O1 2p00zð Þ þ 0:43/O2 2p0zð Þ þ 0:31/O2 2p00zð Þ

ð8:70Þ

wMO7a O2
�ð Þ ¼ �0:44/O1 2p0zð Þ � 0:31/O1 2p00zð Þ � 0:44/O2 2p0zð Þ � 0:31/O2 2p00zð Þ

ð8:71Þ

wMO7b O2
�ð Þ ¼ �0:41/O1 2p0yð Þ � 0:33/O1 2p00yð Þ � 0:41/O2 2p0yð Þ � 0:33/O2 2p00yð Þ

ð8:72Þ

In MO5a and MO5b, there is hybridization between oxygen 2px and 2s orbitals.
The main coefficient is for oxygen 2px orbital. MO5a and MO5b are paired. There
is orbital overlap between O1 and O2 2px orbitals. One O1 lobe interacts with one
O2 lobe. From chemical bonding rule, it is found that the r-type covalent bonding
is formed between O1 and O2 2px orbitals. MO6a and MO7b are paired. In MO6a
and MO7b, there is orbital overlap between O1 and O2 2py orbitals. Two O1 lobes
interact with two O2 lobes. From chemical bonding rule, it is found that the p-type
covalent bonding is formed between O1 and O2 2py orbitals. MO7a and MO6b are
paired. In MO7a and MO6b, there is orbital overlap between O1 and O2 2pz
orbitals. Two O1 lobes interact with two O2 lobes. From chemical bonding rule, it
is found that the p-type covalent bonding is formed between O1 and O2 2pz
orbitals.

MO8a, MO8b, MO9a, MO9b, MO10a and MO10b are also for 2p orbital.
MO8a, MO8b and MO9a are occupied. The obtained wave-functions of MO8a,
MO8b, MO9a, MO9b, MO10a and MO10b are

wMO8a O2
�ð Þ ¼ 0:50/O1 2p0yð Þ þ 0:40/O1 2p00yð Þ � 0:50/O2 2p0yð Þ � 0:40/O2 2p00yð Þ

ð8:73Þ

wMO8b O2
�ð Þ ¼ �0:49/O1 2p0zð Þ � 0:42/O1 2p00zð Þ þ 0:49/O2 2p0zð Þ þ 0:42/O2 2p00zð Þ

ð8:74Þ

wMO9a O2
�ð Þ ¼ �0:50/O1 2p0zð Þ � 0:41/O1 2p00zð Þ þ 0:50/O2 2p0zð Þ þ 0:41/O2 2p00zð Þ

ð8:75Þ

wMO9b O2
�ð Þ ¼ �0:47/O1 2p0yð Þ � 0:45/O1 2p00yð Þ þ 0:47/O2 2p0yð Þ þ 0:45/O2 2p00yð Þ

ð8:76Þ

wMO10a O2
�ð Þ ¼ �0:21/O1 2s0ð Þ � 0:65/O1 2s00ð Þ � 0:49/O1 2p0xð Þ � 0:82/O1 2p00xð Þ

þ 0:21/O2 2s0ð Þ þ 0:65/O2 2s00ð Þ � 0:49/O2 2p0xð Þ � 0:82/O2 2p00xð Þ
ð8:77Þ
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wMO10b O2
�ð Þ ¼ 0:21/O1 2s0ð Þ þ 0:68/O1 2s00ð Þ þ 0:49/O1 2p0xð Þ þ 0:84/O1 2p00xð Þ

� 0:21/O2 2s0ð Þ � 0:68/O2 2s00ð Þ þ 0:49/O2 2p0xð Þ þ 0:84/O2 2p00xð Þ
ð8:78Þ

It is found that MO8a is responsible for spin density, due to no paired beta MO.
In MO8a, there is orbital overlap between O1 and O2 2py orbitals. Two O1 lobes
interact with two O2 lobes. The signs of O1 coefficients are opposite to the signs of
O2 coefficients. From chemical bonding rule, it is found that the inversion p-type
covalent bonding. MO9a and MO8b are paired. In MO9a and MO8b, there is
orbital overlap between O1 and O2 2pz orbitals. Two O1 lobes interact with two O2
lobes. The signs of O1 coefficients are different from the signs of O2 coefficients.
From chemical bonding rule, it is found that the inversion p-type covalent bonding
is formed between O1 and O2 2pz orbitals. In triplet oxygen molecule, orbital
energies of MO8a and MO9a, which are responsible for spin density, are negative.
However, in superoxide, positive orbital energies are given in MO8a, MO9a and
MO8b. From orbital energy rule, they are destabilized. It is the reason why
superoxide is more reactive.

8.6 Hydrogen Fluoride

Hydrogen fluoride (H–F) exhibits weak acidity in dilute aqueous solution, in spite
of the strong electronegativity of fluorine atom. B3LYP/6-31G* calculation is
performed for hydrogen fluoride. Seventeen MOs are produced, because hydrogen
and fluorine have two and fifteen basis functions in 6-31G* basis set, respectively.

Figure 8.18 depicts the orbital energy diagram and molecular orbitals of
hydrogen fluoride at optimized structure. The obtained wave-function of MO1 is

wMO1 HFð Þ ¼ 0:99/F 1sð Þ ð8:79Þ

MO1 consists of fluorine 1s orbital. The obtained wave-function of MO2 is

wMO2 HFð Þ ¼ 0:13/H 1s0ð Þ � 0:23/F 1sð Þ þ 0:51/F 2s0ð Þ þ 0:47/F 2s00ð Þ � 0:10/F 2p0xð Þ
ð8:80Þ

In MO2, there is inversion hybridization between fluorine 2s and 1s orbitals, and
the fluorine 2px orbital is also hybridized. The main coefficient is for fluorine 2s
orbital. There is orbital overlap between hydrogen 1s and fluorine 2s orbitals.
One H lobe interacts with one F lobe. From chemical bonding rule, it is found that
r-type covalent bonding is formed between hydrogen 1s and fluorine 2s orbitals.
The obtained wave-function of MO3 is
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wMO3 HFð Þ ¼ 0:27/H 1s0ð Þ þ 0:15/H 1s00ð Þ
� 0:12/F 2s0ð Þ � 0:36/F 2s00ð Þ � 0:55/F 2p0xð Þ � 0:34/F 2p00xð Þ

ð8:81Þ

In MO3, there is hybridization between fluorine 2s and 2px orbitals. As shown in
Fig. 8.19, there are two orbital overlap patterns between hydrogen and fluorine.
One is between hydrogen 1s and fluorine 2s orbitals. The other is between hydrogen
1s and fluorine 2px orbitals. One H lobe interacts with one F lobe, and the sign of
hydrogen 1s coefficient is opposite to the sign of fluorine 2s coefficient. From
chemical bonding rule, it is found that the inversion r-type covalent bonding is
formed between hydrogen 1s and fluorine 2s orbitals, and the r-type covalent
bonding is formed between hydrogen 1s and fluorine 2px orbitals. The latter is more
dominative than the former. The obtained wave-functions of MO4 and MO5 are

wMO4 HFð Þ ¼ 0:23/F 2p0yð Þ þ 0:17/F 2p00yð Þ þ 0:62/F 2p0zð Þ þ 0:46/F 2p00zð Þ ð8:82Þ

wMO5 HFð Þ ¼ �0:62/F 2p0yð Þ � 0:46/F 2p00yð Þ þ 0:23/F 2p0zð Þ þ 0:17/F 2p00zð Þ ð8:83Þ

MO2
(-1.1675)

MO1
(-24.6635)

MO3
(-0.5191)

MO4
(-0.3762)

MO5
(-0.3762)

Fig. 8.18 Orbital energy diagram and molecular orbitals of hydrogen fluoride at optimized
structure (B3LYP/6-31G*). Hydrogen and fluorine atoms are located at the left and right sides,
respectively. The calculated orbital energy is given in parentheses
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In MO4 and MO5, as the same orbital energy is given, they are degenerated.
There is hybridization between fluorine 2py and 2pz orbitals in fluorine atom. There
is no orbital overlap with hydrogen. MO4 and MO5 represent rotated 2p orbital.

Mulliken charge densities of hydrogen and fluorine are 0.465 and −0.465,
respectively. As the formal charge of hydrogen is +1.000, it is found that electron
exists around hydrogen through covalent bonding formation.

Figure 8.20 shows the potential energy curve of hydrogen fluoride, changing the
interatomic H–F distance. The local minimum is given at 0.918 Å, corresponding to
H–F distance. Bond dissociation energy can be estimated the total energy difference
between the local minimum and completely dissociated point

Edissociation HFð Þ ¼ E Hð ÞþE Fð Þ � E HFð Þ ð8:84Þ

The bond dissociation energy is estimated to be 137.3 kcal/mol. It is larger than
H2 molecule. It is because two covalent bonds are formed. The zero-point vibration
energy is 5.961 kcal/mol. It is much smaller than bond dissociation energy.

8.7 Hydrogen Chloride

Hydrogen chloride exhibits strong acidity in aqueous solution. The electron con-
figuration of chlorine is [Ne]3s23p5, where 3s and 3p electrons exist as outer shell
electron. B3LYP/6-31G* calculation is performed for hydrogen chloride.

(a) MO2

(b) MO3

H 1s orbital

F 2s orbital

F 2px orbital

H 1s orbital

F 2s orbital

F 2px orbital

Inversion

Fig. 8.19 Two orbital
overlap patterns of MO2 and
MO3 in hydrogen fluorine
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Twenty-one MOs are produced, because hydrogen and chlorine have two and
nineteen basis functions in 6-31G* basis set, respectively.

Figure 8.21 depicts the orbital energy diagram and molecular orbitals of
hydrogen chloride at optimized structure. The obtained wave-functions of MO1,
MO2, MO3 and MO4 are

wMO1 HClð Þ ¼ �0:99/Cl 1sð Þ ð8:85Þ

wMO2 HClð Þ ¼ 0:28/Cl 1sð Þ � 1:02/Cl 2sð Þ ð8:86Þ

wMO3 HClð Þ ¼ 0:99/Cl 2pxð Þ ð8:87Þ

wMO4 HClð Þ ¼ 0:21/Cl 2pyð Þ þ 0:97/Cl 2pzð Þ ð8:88Þ

wMO5 HClð Þ ¼ �0:97/Cl 2pyð Þ þ 0:21/Cl 2pzð Þ ð8:89Þ

MO1 consists of chlorine 1s orbital. In MO2, though there is inversion
hybridization between chlorine 1s and 2s orbitals, the main coefficient is for
chlorine 2s orbital. MO3, MO4 and MO5 consist of chlorine 2p orbital in inner L
shell. In MO4 and MO5, 2py and 2pz orbitals are hybridized, implying orbital
rotation from standard direction. The obtained wave-function of MO6 is

wMO6 HClð Þ ¼ 0:16/H 1s0ð Þ � 0:36/Cl 2sð Þ þ 0:72/Cl 3s0ð Þ þ 0:27/Cl 3s00ð Þ ð8:90Þ
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Fig. 8.20 Potential energy curve of hydrogen fluoride, changing the interatomic H–F distance
(CCSD/aug-cc-pVTZ)
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In MO6, though there is inversion hybridization between chlorine 3s and 2s
orbitals, the main coefficient of chlorine is 3s orbital. There is orbital overlap
between hydrogen 1s and chlorine 3s orbitals. One H lobe interacts with one Cl
lobe. From chemical bonding rule, it is found that r-type covalent bonding is
formed between hydrogen 1s and chlorine 3s orbitals. The obtained wave-functions
of MO7 is

wMO7 HClð Þ ¼ �0:29/H 1s0ð Þ � 0:24/H 1s00ð Þ � 0:13/Cl 2sð Þ � 0:23/Cl 2pxð Þ
þ 0:27/Cl 3s0ð Þ þ 0:24/Cl 3s00ð Þ þ 0:58/Cl 3p0xð Þ þ 0:17/Cl 3p00xð Þ

ð8:91Þ

In MO7, there is hybridization between chlorine 3s and 3px orbitals. As shown in
Fig. 8.22, there are two orbital overlap patterns between hydrogen and chlorine.
One is between hydrogen 1s and chlorine 3s orbitals. The other is between
hydrogen 1s and chlorine 3px orbitals. In both cases, one H lobe interacts with one

Fig. 8.21 Orbital energy diagram and molecular orbitals of hydrogen chloride at optimized
structure (B3LYP/6-31G*). Hydrogen and chlorine atoms are located at the left and right sides,
respectively. The calculated orbital energy is given in parentheses
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Cl lobe. The sign of the coefficient of hydrogen 1s orbital is opposite to the sign of
the coefficient of chlorine 3s orbital. From chemical bonding rule, it is found that
inversion r-type covalent bonding is formed between hydrogen 1s and chlorine 3s
orbitals, and r-type covalent bonding is formed between hydrogen 1s and chlorine
3px orbitals. The obtained wave-functions of MO8 and MO9 are

wMO8 HClð Þ ¼ 0:27/Cl 2pzð Þ � 0:22/Cl 3p0yð Þ � 0:12/Cl 3p00yð Þ
� 0:70/Cl 3p0zð Þ � 0:39/Cl 3p00zð Þ

ð8:92Þ

wMO9 HClð Þ ¼ 0:27/Cl 2pyð Þ � 0:70/Cl 3p0yð Þ � 0:39/Cl 3p00yð Þ
þ 0:22/Cl 3p0zð Þ þ 0:12/Cl 3p00zð Þ

ð8:93Þ

In MO8 and MO9, as the same orbital energy is given, they are degenerated. 3py
and 3pz orbitals are hybridized, implying orbital rotation from standard direction.

Figure 8.23 shows the potential energy curve of hydrogen chloride, changing the
interatomic H–Cl distance. The local minimum is given at 1.277 Å, corresponding
to H–Cl distance. In comparison with HF, the intermolecular distance is larger. It is
because more outer 3s and 3px orbitals overlap with hydrogen 1s orbital.

Bond dissociation energy can be estimated the total energy difference between
the local minimum and completely dissociated point

Edissociation HFð Þ ¼ E Hð ÞþE Clð Þ � E HClð Þ ð8:94Þ

The bond dissociation energy is estimated to be 103.4 kcal/mol. It is smaller
than HF molecule. Hence, HF molecule exhibit weak acidity, compared with HCl
molecule. The zero-point vibration energy is 4.309 kcal/mol. It is much smaller
than bond dissociation energy.

H 1s orbital

Cl 3s orbital

Cl 3px orbital

Inversion 
Fig. 8.22 Two orbital
overlap patterns of MO7 in
hydrogen chloride
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8.8 Hydroxide

8.8.1 Hydroxide

In hydroxide (OH−), hydrogen and oxygen atoms are bound. The formal charge of
hydroxide is −1. As the total number of electrons is as same as hydrogen fluoride, it
can be compared with hydrogen fluoride. B3LYP/6-31G* calculation is performed
for hydroxide. Seventeen MOs are produced, because hydrogen and oxygen have
two and fifteen basis functions in 6-31G* basis set, respectively.

Figure 8.24 depicts the orbital energy diagram and molecular orbitals of
hydroxide at optimized structure. The obtained wave-function of MO1 is

wMO1 OH�ð Þ ¼ 0:99/O 1sð Þ ð8:95Þ

MO1 consists of oxygen 1s orbital. The obtained wave-functions of MO2 is

wMO2 OH�ð Þ ¼ �0:21/O 1sð Þ þ 0:45/O 2s0ð Þ þ 0:50/O 2s00ð Þ þ 0:11/O 2p0xð Þ þ 0:17/H 1s0ð Þ

ð8:96Þ

In MO2, there is an inversion hybridization between oxygen 2s and 1s orbitals,
and the oxygen 2px orbital is also hybridized. The main coefficients are for oxygen
2s orbital. There is orbital overlap between oxygen 2s and hydrogen 1s orbitals.
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Fig. 8.23 Potential energy curve for hydrogen chloride, changing the intramolecular H–Cl
distance (CCSD/aug-cc-pVTZ)
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One O lobe interacts with one H lobe. From chemical bonding rule, it is found that
r-type covalent bonding is formed between oxygen 2s and hydrogen 1s orbitals.
The obtained wave-functions of MO3 is

wMO3 OH�ð Þ ¼ 0:14/O 2s0ð Þ þ 0:56/O 2s00ð Þ � 0:46/O 2p0xð Þ � 0:27/O 2p00xð Þ
� 0:27/H 1s0ð Þ � 0:37/H 1s00ð Þ

ð8:97Þ

In MO3, there is hybridization between oxygen 2s and 2px orbitals. As shown in
Fig. 8.25, there are two orbital overlap patterns between oxygen and hydrogen. One
is between oxygen 2s and hydrogen 1s orbitals. The other is between oxygen 2px
and hydrogen 1s orbitals. In both case, one O lobe interacts with one H lobe. The
sign of the coefficient of oxygen 2s orbital is opposite to the signs of the coefficient
of hydrogen 1s orbital. From chemical bonding rule, it is found that inversion

MO2 
(-0.4821)

MO1 
(-18.6651)

MO3 
(0.0056)

MO4 
(0.1608)

MO5 
(0. 1608)

Fig. 8.24 Orbital energy diagram and molecular orbitals of hydroxide at optimized structure
(B3LYP/6-31G*). Oxygen and hydrogen atoms are located at the left and right sides, respectively.
The calculated orbital energy is given in parentheses

Inversion 

H 1s orbital 

O 2s orbital 

O 2px orbital 

Fig. 8.25 Two orbital
overlap patterns of MO3 in
hydroxide
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r-type covalent bonding is formed between oxygen 2s and hydrogen 1s orbitals,
and r-type covalent bonding is formed between oxygen 2px and hydrogen 1s
orbitals. The obtained wave-functions of MO4 and MO5 are

wMO4 OH�ð Þ ¼ 0:58/F 2p0yð Þ þ 0:53/F 2p00yð Þ þ 0:17/F 2p0zð Þ þ 0:16/F 2p00zð Þ ð8:98Þ

wMO5 OH�ð Þ ¼ 0:17/F 2p0yð Þ þ 0:16/F 2p00yð Þ � 0:58/F 2p0zð Þ � 0:53/F 2p00zð Þ ð8:99Þ

In MO4 and MO5, as the same orbital energy is given, they are degenerated. 2py
and 2pz orbitals are hybridized, implying orbital rotation from standard direction.

Mulliken charge densities of oxygen and hydrogen are −1.139 and 0.139,
respectively. As the formal charge of hydrogen is +1.000, it is found that electron
exists around hydrogen through covalent bonding formation.

Figure 8.26 shows the potential energy curve of hydroxide, changing the
interatomic O–H distance. The local minimum is given at 0.964 Å, corresponding
to O–H distance. Bond dissociation energy can be estimated the total energy dif-
ference between the local minimum and completely dissociated point

Edissociation OH�ð Þ ¼ E Hð ÞþE O�ð Þ � E OH�ð Þ ð8:100Þ

Doublet oxygen atom is assumed at completely dissociated point. The bond
dissociation energy is estimated to be 111.8 kcal/mol. It is smaller than hydrogen
fluoride, though the same electron configuration is given. The zero-point vibration
energy is 5.396 kcal/mol. It is much smaller than bond dissociation energy.

In comparison with hydrogen fluoride, the same types of molecular orbitals are
given. However, the orbital energies of MO3, MO4 and MO5 are positive. From
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Fig. 8.26 Potential energy curve of hydroxide, changing the interatomic O–H distance
(CCSD/aug-cc-pVTZ)
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orbital energy rule, it implies that they are destabilized, and more reactive. Hence,
hydroxide possesses electron donor property.

8.8.2 Hydroxide Radical

Hydroxide radical is open shell system. Five alpha and four beta electrons occupy
MOs with doublet spin configuration. B3LYP/6-31G* calculation is performed for
hydroxide radical. Seventeen MOs are produced, because hydrogen and oxygen
have two and fifteen basis functions in 6-31G* basis set, respectively.

Figure 8.27 depicts the orbital energy diagram and molecular orbitals of
hydroxide radical at optimized structure. The obtained wave-functions of MO1a
and MO1b are

wMO1a OH�ð Þ ¼ �0:99/O 1sð Þ ð8:101Þ

wMO1b OH�ð Þ ¼ �0:99/O 1sð Þ ð8:102Þ

MO1a and MO1b consist of oxygen 1s orbital. MO1a and MO1b are paired.
The obtained wave-functions of MO2a and MO2b are

MO2α
(-1.0072)

MO1α
(-19.2137)

MO3α
(-0.4671)

MO4α
(-0.4040)

MO5α 
(-0.3289)

MO2β
(-0.9366)

MO1β
(-19.1891)

MO3β
(-0.4412)

MO4β
(-0.3019 )

Fig. 8.27 Orbital energy diagram and molecular orbitals of hydroxide radical at optimized
structure (B3LYP/6-31G*). Oxygen and hydrogen atoms are located at the left and right sides,
respectively. The calculated orbital energy is given in parentheses
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wMO2a OH�ð Þ ¼ �0:22/O 1sð Þ þ 0:51/O 2s0ð Þ þ 0:48/O 2s00ð Þ
þ 0:12/O 2p0xð Þ þ 0:15/H 1s0ð Þ

ð8:103Þ

wMO2b OH�ð Þ ¼ �0:21/O 1sð Þ þ 0:48/O 2s0ð Þ þ 0:48/O 2s00ð Þ
þ 0:13/O 2p0xð Þ þ 0:17/H 1s0ð Þ

ð8:104Þ

The wave-functions of MO2a and MO2b are qualitatively the same. MO2a and
MO2b are paired. In MO2a and MO2b, there is inversion hybridization between
oxygen 2s and 1s orbitals, and oxygen 2px orbital is also hybridized. The main
coefficients of oxygen atom are for 2s orbital. There is orbital overlap between
oxygen 2s and hydrogen 1s orbitals. One O lobe interacts with one H lobe. From
chemical bonding rule, it is found that the r-type covalent bonding is formed
between oxygen 2s and hydrogen 1s orbitals. The obtained wave-functions of
MO3a and MO3b are

wMO3a OH�ð Þ ¼ �0:17/O 2s0ð Þ � 0:35/O 2s00ð Þ þ 0:55/O 2p0xð Þ þ 0:30/O 2p00xð Þ
þ 0:27/H 1s0ð Þ þ 0:18/H 1s00ð Þ

ð8:105Þ

wMO3b OH�ð Þ ¼ �0:18/O 2s0ð Þ � 0:40/O 2s00ð Þ þ 0:53/O 2p0xð Þ þ 0:30/O 2p00xð Þ
þ 0:27/H 1s0ð Þ þ 0:20/H 1s00ð Þ

ð8:106Þ

The wave-functions of MO3a and MO3b are qualitatively the same. MO3a and
MO3b are paired. In MO3a and MO3b, there is hybridization between oxygen 2s
and 2px orbitals. As shown in Fig. 8.28, there are two orbital overlap patterns

Inversion 

H 1s orbital

O 2s orbital

O 2px orbital

Fig. 8.28 Two orbital
overlap patterns of MO3a and
MO3b in hydroxide radical
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between oxygen and hydrogen. One is between oxygen 2s and hydrogen 1s orbital.
The other is between oxygen 2px and hydrogen 1s orbitals. One O lobe interacts
with one H lobe. The sign of the coefficient of oxygen 2s orbital is opposite to the
sign of the coefficient of hydrogen 1s orbital. From chemical bonding rule, it is
found that the inversion r-type covalent bonding is formed between oxygen 2s and
hydrogen 1s orbitals, and r-type covalent bonding is formed between oxygen 2px
and hydrogen 1s orbitals. The obtained wave-functions of MO4a, MO4b and
MO5a are

wMO4a OH�ð Þ ¼ 0:32/F 2p0yð Þ þ 0:21/F 2p00yð Þ þ 0:61/F 2p0zð Þ þ 0:40/F 2p00zð Þ ð8:107Þ

wMO4b OH�ð Þ ¼ �0:58/F 2p0yð Þ � 0:44/F 2p00yð Þ þ 0:30/F 2p0zð Þ þ 0:23/F 2p00zð Þ ð8:108Þ

wMO5a OH�ð Þ ¼ �0:60/F 2p0yð Þ � 0:43/F 2p00yð Þ þ 0:31/F 2p0zð Þ þ 0:22/F 2p00zð Þ ð8:109Þ

The wave-functions of MO5a and MO4b are qualitatively the same. MO5a and
MO4b are paired. MO4a is responsible for spin density. In MO4a, MO4b and
MO5a, 2py and 2pz orbitals are hybridized, implying orbital rotation from standard
direction.

Mulliken charge densities of oxygen and hydrogen are −0.400 and 0.400,
respectively. As the formal charge of hydrogen is +1.000, it is found that electron
exists around hydrogen through covalent bonding formation.

Figure 8.29 shows the potential energy curve of hydroxide radical, changing the
interatomic O–H distance. The local minimum is given at 0.971 Å, corresponding
to O–H distance. Bond dissociation energy can be estimated the total energy dif-
ference between the local minimum and completely dissociated point
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Fig. 8.29 Potential energy curve of hydroxide radical, changing the interatomic O–H distance
(CCSD/aug-cc-pVTZ)
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Edissociation OH�ð Þ ¼ E Hð ÞþE Otriplet
� �� E OH�ð Þ ð8:110Þ

Triplet oxygen atom is assumed in the completely dissociated point. The bond
dissociation energy is estimated to be 103.1 kcal/mol. It is smaller than hydroxide.
The zero-point vibration energy is 5.370 kcal/mol. It is much smaller than bond
dissociation energy.

In hydroxide radial, no positive orbital energy is given. It is considered that
hydroxide radical does not work as electron donor as same as hydroxide. However,
it is well known that hydroxide radical acts as reactive oxygen species. The high
reactivity of hydroxide radical is due to the existence of unpaired electron.

8.9 Carbon Oxide

Recently, catalysts for oxidation of carbon oxide (CO) have much scientific and
industrial interest. Carbon oxide molecule is absorbed on catalyst surface. It is
important to know chemical bonding between carbon and oxygen atoms, as the first
step. Carbon oxide has seven alpha and seven beta electrons and is closed shell
system. B3LYP/6-31G* calculation is performed for carbon oxide. Thirty MOs are
produced, because carbon and oxygen have fifteen basis functions in 6-31G* basis
set, respectively.

Figure 8.30 depicts the orbital energy diagram and molecular orbitals of carbon
oxide at optimized structure. The obtained wave-functions of MO1 and MO2 are

wMO1 COð Þ ¼ �0:99/O 1sð Þ ð8:111Þ

wMO2 COð Þ ¼ 0:99/C 1sð Þ ð8:112Þ

MO1 consists of oxygen 1s orbital, and MO2 consists of carbon 1s orbital. The
obtained wave-functions of MO3 and MO4 are

wMO3 COð Þ ¼ 0:12/C 1sð Þ � 0:22/C 2s0ð Þ � 0:22/C 2p0xð Þ
þ 0:20/O 1sð Þ � 0:45/O 2s0ð Þ � 0:36/O 2s00ð Þ þ 0:18/O 2p0xð Þ

ð8:113Þ

wMO4 COð Þ ¼ �0:14/C 1sð Þ þ 0:30/C 2s0ð Þ þ 0:23/C 2p0xð Þ
þ 0:12/O 1sð Þ � 0:26/O 2s0ð Þ � 0:45/O 2s00ð Þ � 0:49/O 2p0xð Þ � 0:23/O 2p00xð Þ

ð8:114Þ

In MO3 and MO4, there is an inversion hybridization between carbon 2s and 1s
orbitals, and between oxygen 2s and 1s orbitals. Carbon and oxygen 2px orbitals are
also hybridized. As shown in Fig. 8.31, there are four orbital overlap patterns between
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carbon and oxygen: (1) between carbon 2s and oxygen 2s orbitals, (2) between carbon
2s andoxygen 2px orbitals, (3) between carbon 2px andoxygen2s orbitals, (4) between
carbon 2px and oxygen 2px orbitals. One C lobe interacts with one O lobe. From
chemical bonding rule, it is found that r-type covalent bonding is formed between
carbon and oxygen inMO3, and inversionr-type covalent bonding is formed between
carbon and oxygen inMO4.The obtainedwave-functions ofMO5,MO6 andMO7are

wMO5 COð Þ ¼ 0:23/C 2p0yð Þ þ 0:22/C 2p0zð Þ
þ 0:41/O 2p0yð Þ þ 0:25/O 2p00yð Þ þ 0:39/O 2p0zð Þ þ 0:23/O 2p00zð Þ

ð8:115Þ

wMO6 COð Þ ¼ 0:22/C 2p0yð Þ � 0:23/C 2p0zð Þ
þ 0:39/O 2p0yð Þ þ 0:23/O 2p00yð Þ � 0:41/O 2p0zð Þ � 0:25/O 2p00zð Þ

ð8:116Þ

MO2
(-10.3043)

MO1
(-19.2581)

MO3
(-1.1579)

MO4
(-0.5700)

MO5
(-0.4674)

MO6
(-0.4674)

MO7
(-0.3715)

Fig. 8.30 Orbital energy diagram and molecular orbitals of carbon oxide at the optimized
structure (B3LYP/6-31G*). Carbon and oxygen atoms are located at the left and right sides,
respectively. The calculated orbital energy is given in parentheses
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wMO7 COð Þ ¼ 0:15/C 1sð Þ � 0:27/C 2s0ð Þ � 0:62/C 2s00ð Þ þ 0:44/C 2p0xð Þ þ 0:14/C 2p00xð Þ
� 0:28/O 2p0xð Þ � 0:15/O 2p00xð Þ

ð8:117Þ

In MO5 and MO6, as the same orbital energy is given, they are degenerated.
There are hybridizations between carbon 2py and 2pz orbitals, and between oxygen
2py and 2pz orbitals, implying orbital rotation from standard direction. There is
orbital overlap between carbon 2p and oxygen 2p orbitals. Two C lobes interact
with two O lobes. From chemical bonding rule, it is found that p-type covalent
bonding is formed between carbon 2p and oxygen 2p orbitals. On the other hand, in
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C 2s orbital 

C 2px orbital 

Inversion 
(b) MO4 

O 2s orbital 

O 2px orbital 

C 2s orbital 

C 2px orbital 

O 2s orbital 

O 2px orbital 

Inversion 

Fig. 8.31 Four orbital overlap patterns of MO3 and MO4 in carbon oxide

C 2s orbital 

C 2px orbital 

Inversion 

O 2px orbital 

Fig. 8.32 Two orbital
overlap patterns of MO7 in
carbon oxide
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MO7, there is inversion hybridization between carbon 2s and 1s orbital, and 2px
orbitals are also hybridized. As shown in Fig. 8.32, there are two orbital overlap
patterns between carbon and oxygen: (1) between carbon 2s and oxygen 2px
orbitals, (2) between carbon 2px and oxygen 2px orbitals. One C lobe interacts with
one O lobe. From chemical bonding rule, it is found that inversion r-type covalent
bonding is formed between carbon 2s and oxygen 2px orbitals, and r-type covalent
bonding is formed between carbon 2px and oxygen 2px orbitals.

8.10 Limit of Point Charge Denotation

8.10.1 Nitrogen Molecule

It is well recognized that point charge denotation of electrons, which is often called
Lewis structure, is a useful method to express chemical bonding formation of outer
shell electrons. Let us consider the difference between molecular orbital (atomic
orbital) and point charge denotation.

Figure 8.33a shows the atomic orbital and point charge denotation of nitrogen
atom. In nitrogen atom, five electrons exist as outer shell electron. Following
electron configuration rule, two electrons occupy one 2s orbital, and three 2p
electrons occupy three 2p orbitals. Note that three 2p orbitals are half-filled. In point
charge denotation, two 2s electrons are shown as paired electrons, and three 2p
electrons are shown as unpaired electron. It is found that point charge denotation
corresponds to atomic orbital.

Figure 8.33b shows the molecular orbital and point charge denotation of nitro-
gen molecule. In nitrogen molecule, ten electrons exist as outer shell electron. In
MO3 and MO4, covalent bonding is formed between two nitrogen 2s orbitals, and

N

2s orbital 

N

N2

N N

2s orbital 

2p orbital 
2p orbital 

MO4

MO3

MO5 MO6

MO7

paired 

(a) (b)

Fig. 8.33 a Atomic orbital and point charge denotation of nitrogen atom, b molecular orbital and
point charge denotation of nitrogen molecule
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four electrons are occupied with spin pairs. In MO5, MO6 and MO7, as covalent
bonding is formed between two nitrogen 2p orbitals, six electrons are allocated with
spin pairs. Point charge denotation may be also applicable for nitrogen molecule.
Following the present manner of point charge denotation, six electrons are shared
between two nitrogen atoms, and two electron pairs are allocated in both nitrogen
atoms. On the other hand, in molecular orbital, five covalent bonds are formed. It
implies that ten electrons are shared by two nitrogen atoms. The corrected point
charge denotation of nitrogen molecule is shown in Fig. 8.34.

Fig. 8.34 Corrected point charge denotation of nitrogen molecule
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Fig. 8.35 a Atomic orbital and point charge denotation of oxygen atom, b molecular orbital and
point charge denotation of triplet oxygen molecule
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8.10.2 Oxygen Molecule

Figure 8.35a shows the atomic orbital and point charge denotation of oxygen atom.
In oxygen atom, six electrons exist as outer shell electron. Following electron
configuration rule, two electrons occupy one 2s orbital, and four 2p electrons
occupy three 2p orbitals with triplet electron configuration. In point charge deno-
tation, two 2s electrons are shown as paired electrons. Two 2p electrons are shown
as paired electrons, and two 2p electrons are shown as unpaired electron. It is found
that point charge denotation corresponds to atomic orbital.

Figure 8.35b shows the molecular orbital of triplet oxygen molecule. In triplet
oxygen molecule, twelve electrons exist as outer shell electron. In MO3 and MO4,
covalent bonding is formed between two oxygen 2s orbitals, and four electrons are
occupied with spin pairs. In MO5, MO6 and MO7, as covalent bonding is formed
between two nitrogen 2p orbitals, six electrons are allocated with spin pairs. In
MO8 and MO9, inversion covalent bonding is formed between two nitrogen 2p
orbitals. Two electrons occupy MO8 and MO9 with triplet electron configuration.
The corrected point charge denotation of nitrogen molecule is shown in Fig. 8.36.
Note that unpaired two electrons are also shared by two oxygen atoms.
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Chapter 9
Model Construction

Abstract When performing molecular orbital calculation, model construction is
required. In small molecule, the real molecule corresponds to calculation model.
The situation changes in solid. Within solid, the same unit structures are continu-
ously allocated. To represent an electronic structure of unit structure in ideal solid, a
minimum cluster model corresponding to unit structure is favourable. When con-
structing a minimum cluster model, three conditions are required: (1) no neutral
condition; (2) no geometry optimization; (3) experimental interatomic distance. On
the other hand, in larger cluster model including many unit structures, the equality
of unit structure is not kept. The difference between molecular orbital and band
structure are also explained. It is often recognized that molecular orbitals of infinite
cluster model should correspond to band structure. The breakdown of the idea is
also explained in comparison with molecular orbital and band structure.
A geometric structure of solid is determined by a short-range chemical bonding and
long-range ionic interaction. In a minimum cluster model, a long-range ionic
interaction is incorporated by the use of experimental lattice distance. Finally, two
useful indices such as ionic radius and tolerance factor are introduced.

Keywords Solid � Cluster model construction � Long-range ionic interaction �
Ionic radius � Tolerance factor

9.1 Solid and Cluster Model Construction

As shown in Fig. 9.1, the same unit structures, which possess the same electronic
configuration and geometric structure, are continuously allocated within ideal solid.
On the other hand, a variety of electron configurations and geometric structures are
considered near solid surface. It is because boundary condition, which implies the
same units are continuously allocated, is not applied there. The distortion of a unit
structure may be observed. In this chapter, a unit structure is focused to investigate
a solid state property.

© Springer Nature Singapore Pte Ltd. 2018
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To perform molecular orbital calculation for solid, cluster model construction is
required. For example, the electronic and geometric structures of the units 1, 2, 3, 4
and 5 must be the same in an ideal solid (see Fig. 9.2). A unit structure near solid
surface may be distorted, due to the breakdown of boundary condition. The
wave-functions of units 1, 2, 3, 4 and 5 must be the same in ideal solid, though the
wave-function of the distorted unit structure near solid surface may be different.

When considering the large cluster model containing the units 1, 2, 3, 4 and 5,
what does it represent? In large cluster model, electrons of each unit are not equally
treated. It corresponds to one big molecule containing the five units. For example,
the electronic state of unit 1 is different from unit 2, unit 3 and unit 4, though the
same electronic state is given in unit 5, due to the symmetry. To represent an
electronic structure of unit structure in ideal solid, a minimum cluster model cor-
responding to unit structure is favourable. In nanoparticle, contrarily, larger cluster
model is favourable. It is because the size of unit structure may be changeable or
different unit structures may be mixed. When constructing a minimum cluster
model, the following conditions are required, as shown in Fig. 9.3.

Solid
Unit structure

Fig. 9.1 A unit structure within ideal solid

Unit 1 Unit 2 Unit 3 Unit 4 Unit 5

Fig. 9.2 Same electronic and geometric structures of unit structures in ideal solid
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Three conditions

(1) No neutral condition

A minimum cluster model is not neutral molecule but a part of solid. Neutral
condition is not required. The total charge is estimated as the summation of formal
charges of all atoms.

(2) No geometry optimization

If performing geometry optimization, it corresponds that a minimum cluster model
is treated as molecule or nanoparticle. The largely distorted structure will be given.

(3) Experimental interatomic distance

Instead of geometry optimization, experimental interatomic distances are applied.

9.2 Molecular Orbital Versus Band

Let us consider the relationship between molecular orbital and band structure. In
band structure, electrons are allocated in not real space but momentum space.
Figure 9.4 depicts the schematic drawing of the difference between molecular
orbital and band structure. It is difficult to characterize the position of electron in
momentum space, in comparison with molecular orbital.

One may think that molecular orbitals of infinite cluster model correspond to
band structure. Figure 9.5 depicts the schematic drawing of molecular orbital in
cluster model extension. Let us consider molecular orbitals in a large cluster model,
assuming that two electrons are allocated per a unit structure. Note that N denotes
the number of molecular orbitals. In N = 2, two different molecular orbitals, which
have different orbital energies, are given. When N is very large number, many

No neutral condi on 
No geometry op miza on 
Experimental distance 

Boundary unit structure 

Reproducing electronic state 
in scientifically reasonable 

cluster model 

Fig. 9.3 Three required
conditions for cluster model
construction
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molecular orbitals with different orbital energies are given. Even if degenerated
molecular orbitals are given, orbital directions are different. Cluster model exten-
sion breaks the equality of unit structure. A minimum cluster model is desirable,
due to the equality of unit structures within solid. Instead, a larger cluster model is
favourable in nanoparticle.

Molecular orbital
Real space

Band
Momentum 

space

EnergyFig. 9.4 Schematic drawing
of the difference between
molecular orbital and band
structure

Orbital 
energy

N=3N=2N=1 N=6

N=larger number

Fig. 9.5 Schematic drawing
of molecular orbital in cluster
model extension
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9.3 Long-Range Ionic Interaction

A geometric structure of solid is determined by short-range chemical bonding and
long-range ionic interaction. Chemical bonding such as covalent bonding and ionic
bonding are considered as a short-range interaction. In addition, a long-range ionic
interaction is combined.

Let us consider transition metal oxide, for example. Transition metal is directly
bound with oxygen, combined with a long-range ionic interaction between posi-
tively charged transition metal and negatively charged oxygen. If performing
geometry optimization of a minimum cluster model directly, the latter will be
neglected. Instead, the experimental lattice distance is used without geometry
optimization.

Embedding point charges around unit structure (minimum cluster model) is
another solution to take long-range ionic interaction into account (see Fig. 9.6).
However, as both charge transfer and orbital overlap are not represented between
atom and point charge, geometry optimization for a minimum cluster model
embedding point charges cannot be universal manner. In addition, the magnitude of
point charge must be arbitrarily determined. The reasonable value is different from a
formal charge.

Unit structure

Fig. 9.6 Embedding point
charges around unit structure.
Blue dot denotes point charge
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9.4 Useful Index

9.4.1 Ionic Radius

In transition metal compound, chemical bonding is formed between transition metal
cation and anion. Shannon empirically determined the effective ionic radii of cation
and anion (see Table 9.1). In most cases, though covalent bonding is combined, the
index is useful to predict crystal structure before molecular orbital calculation. For
example, in a cubic perovskite, it can be predicted whether counter cation can be
allocated or not. The details will be shown in Part 4.

9.4.2 Tolerance Factor

In AMX3 perovskite, tolerance factor (t) is empirically defined to express the
stability of cubic structure. It is given by

t ¼ rA þ rXð Þ
ffiffiffi

2
p

rM þ rXð Þ ð9:1Þ

where rA, rM and rX denote the empirical ionic radii for A, M and X, respectively.
For example, using the effective ionic radii of octahedral coordination (see
Table 9.1), t values is obtained. The empirical prediction rule is below.

Table 9.1 Effective ionic
radius of octahedral
coordination

Atom Ionic radius (Å)

Al3+ 0.675

Ba2+ 1.49, 1.56 (eight-coordination)

Cl− 1.67

Co2+ 0.885 (high spin state), 0.79 (low spin state)

Cu2+ 0.87

F− 1.19

Fe2+ 0.92 (high spin state), 0.75 (low spin state)

K+ 1.52, 1.65 (eight-coordination)

La3+ 1.17, 1.30 (eight-coordination)

Li+ 0.90, 1.06 (eight-coordination)

Mn2+ 0.97 (high spin state), 0.81 (low spin state)

Na+ 1.16, 1.32 (eight-coordination)

O2− 1.26

OH− 1.23

Sr2+ 1.32, 1.40 (eight-coordination)

Ti4+ 0.745

Zr4+ 0.86
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Tolerance factor

t ¼ 1:0: Ideal cubic structure
0:89\ t\ 1:0: Cubic structure
0:8\ t\ 0:89: Distorted structure

When the ionic radii of eight-coordination are used for counter cation, t values of
KMnF3, KCoF3, SrTiO3 and BaTiO3 are 0.93, 0.97, 0.94 and 0.99, respectively.
The values are within 0.89 < t < 1.0, predicting cubic structure. Tolerance factor is
an empirical indication, because ionic radius is also an empirical value. In fact, as
covalent bonding between transition metal and anion is combined, tolerance factor
is a rough estimate.

How can we use it? For example, let us consider barium-doping at counter cation
site in KMnF3 perovskite. From Table 9.1, it is found that the ionic radius of
barium is close to potassium. The t value of BaMnF3 unit is 0.90. When substituting
potassium for barium, it is predicted that Ba-doped KMnF3 perovskite keeps a
cubic structure.

Further Readings
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Chapter 10
Superexchange Interaction

Abstract In linear MXM system, where M is transition metal and X is
bridge-anion, the magnetic interaction is often antiferromagnetic. In Kanamori-
Goodenough rule, the magnetic interaction can be predicted based on slight charge
transfer from ligand anion to transition metal. As the magnetic interaction occurs
between transition metal atoms via ligand anion, it is called “superexchange
interaction”. In this chapter, superexchange interaction is reconsidered, from the
viewpoint of molecular orbital theory. In fact, there are two direct interactions
between transition metal and ligand anion. One is charge transfer, and the other is
orbital overlap. Kanamori-Goodenough rule is revised (“superexchange rule”). In
MnFMn, Mn4F4 and KMn8F12 models, the mechanism of superexchange interac-
tion is explained according to superexchange rule. In Cu2F2 model, slight r-type
superexchange interaction occurs in bent CuFCu. Finally, two-atom bridge
superexchange interaction is explained in MnCNMn model.

Keywords Kanamori-Goodenough rule � Superexchange rule � KMnF3 per-
ovskite � Covalent bonding � Orbital overlap

10.1 Kanamori-Goodenough Rule

Let us consider the magnetic interaction in linear MXM model, where M and
X denote transition metal and ligand anion, respectively. It is assumed that the left
and right transition metals have a and b spins, respectively. Kanamori-Goodenough
rule predicts the mechanism of the magnetic interaction between transition metals.
This rule is based on charge transfer from ligand anion to transition metal, at
Heiter-London approximation level.

Kanamori-Goodenough rule

*Charge transfer
In Kanamori-Goodenough rule, the direct interaction between transition metal and
ligand anion is explained by charge transfer. As shown in Fig. 10.1, slight charge
transfer occurs from ligand anion to the right transition metal, and slight charge

© Springer Nature Singapore Pte Ltd. 2018
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transfer occurs from ligand anion to the left transition metal. The charge transfer
patterns are shown in Table 10.1.

*Spin
Ligand anion has no spin, due to two charge transfer patterns. a and b spins remain
in left and right transition metals, respectively. As the result, antiferromagnetic
interaction occurs between transition metals via ligand anion. It is called “su-
perexchange interaction”.

10.2 Superexchange Rule

Let us reconsider the mechanism of superexchange interaction, from the viewpoint
of molecular orbital (MO) theory. Due to electron correlation effect, two direct
interactions exist between transition metal and ligand anion. One is charge transfer
from ligand anion to transition metal, as mentioned Kanamori-Goodenough rule.
The other is electron spread between transition metal and ligand anion. In MO
method, it is called “orbital overlap”. Although Kanamori-Goodenough rule pre-
dicts superexchange interaction correctly, orbital overlap is not fully taken into
account. To include the effect of electron spread between transition metal and
ligand anion, Kanamori-Goodenough rule is revised. It is called “superexchange
rule”.

Superexchange rule

*Orbital overlap
Figure 10.2 depicts the schematic drawing of the superexchange rule in MXM
model. There are two orbital overlap patterns: (1) between transition metal a orbital
and ligand anion a orbital in MOa; (2) between transition metal b orbital and ligand
anion b orbital in MOb. Table 10.2 shows the typical orbital overlap patterns in
MXM model.

Coulomb hole Coulomb hole

Fig. 10.1 Schematic drawing of Kanamori-Goodenough rule in MXM model. M and X denote
transition metal and ligand anion, respectively

Table 10.1 Typical charge
transfer patterns in MXM
model

From 2px 2py 2py
To 3dx2�y2 ð3d3x2�r2 Þ 3dxy 3dxz
*MXM model is allocated along x axis. Charge transfer occurs
from ligand 2p electron to transition metal 3d electron
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*Spin
In MOa and MOb, ligand anion a spin is cancelled out with ligand anion b spin.
Hence, left transition metal a spin remains in MOa, and right transition metal b spin
remains in MOb. As the result, antiferromagnetic interaction occurs between
transition metals via ligand anion.

10.3 Cluster Model of Superexchange System

Figure 10.3 shows the geometric structures of A2MX4 and AMX3 perovskites.
Transition metal (M) coordinates with six ligand anions (X). In A2MX4 perovskite,
the two-dimensional layers are alternately stacked. Figure 10.4 shows three cluster
models are constructed for A2MX4 and AMX3 perovskites. A, M and X denote

MOα MOβ 

Fig. 10.2 Schematic drawing
of superexchange rule in
MXM model. M and X denote
transition metal and ligand
anion, respectively

Table 10.2 Typical orbital
overlap patterns in MXM
model

Covalent bonding r-type p-type p-type

Transition metal 3d orbital 2px 2py 2py
Ligand anion 2p orbital 3dx2�y2 ð3d3x2�r2 Þ 3dxy 3dxz
*MXM model is allocated along x axis

Fig. 10.3 Geometric
structures of a A2MX4

perovskite and b AMX3

perovskite. Black dot, white
dot and grey dot denote
transition metal (M), ligand
anion (X) and counter cation
(A), respectively
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counter cation, transition metal and ligand anion, respectively. In both perovskites,
the minimum unit structure is MXM. The details are explained below.

Linear chain MXM model
MXM model is the minimum cluster model of AMX3 perovskite and A2MX4

perovskite. From our calculation results, it was found that orbital overlap is over-
estimated, though superexchange interaction is qualitatively reproduced in MXM
model. In this book, this model is used for the simplicity and qualitative discussion.

Two-dimensional M4X4 model
M4X4 is the best cluster model for A2M4X4 perovskite. Two-dimensional orbital

overlap is approximately reproduced. In most cubic perovskites, though counter
cation plays an important role in stabilizing cubic structure, it does not affect
superexchange interaction directly. However, there is the case that counter cation
forms chemical bonding with conductive ion. In that case, counter cation must be
included in M4X4 model. The details will be explained in Part 4.

Three-dimensional AM8X12 model
AM8X12 is the best cluster model for AMX3 perovskite. Three-dimensional

orbital overlap is approximately reproduced. AM8X12 model is more favourable, in
comparison with M8X12 model. It is because counter cation affects lattice distance.

10.4 MnFMn Model

MnFMn model is the simple cluster model of antiferromagnetic K2MnF4 and
KMnF3 perovskites. MO calculation by using BHHLYP method is performed for
MnFMn model. The site number of right and left manganese atoms are Mn1 and
Mn2, respectively (Mn2-F-Mn1). MINI (5.3.3.3/5.3/4.1) and 6-31G* basis sets are
used for manganese and fluorine, respectively. The formal charges of Mn and F are
+2 and −1, respectively. In formal electron configuration, five electrons occupy
manganese 3d orbitals.

M1X M2

M1X8M4

M2X6M3

X7 X5

M5X M8

M6X M7

X X 

M1X M4

M2X M3

X X 

X X 

X X 

A 

(a)

(b)

(c)

Fig. 10.4 Cluster models for
A2MX4 perovskite and AMX3

perovskite: a MXM model,
b M4X4 model, c AM8X12

model. A, M and X denote
transition metal ligand anion
and counter cation,
respectively
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Mulliken charge densities of manganese and fluorine are 1.870 and −0.740,
respectively. Spin densities of Mn1 and Mn2 spins are 4.967 and −4.967,
respectively. Figure 10.5 depicts the selected molecular orbitals of MnFMn model.
The obtained wave-functions of MO21a and MO21b are

wMO21a ¼ 0:74/Mn1 3dx20ð Þ þ 0:27/Mn1 3dx200ð Þ � 0:37/Mn1 3dy20ð Þ � 0:13/
Mn1 3dy2

00� �

� 0:37/Mn1 3dz20ð Þ � 0:13/
Mn1 3dz2

00� �þ 0:26/F 2px0ð Þ þ 0:19/F 2px00ð Þ

ð10:1Þ

MO28α
(-0.9975)

MO28β
(-0.9975)

MO27α
(-0.9975)

MO27β
(-0.9975)

MO26α
(-1.0294)

MO26β
(-1.0294)

MO25α
(-1.1243)

MO25β
(-1.1243)

MO24α
(-1.1243)

MO24β
(-1.1243)

MO23α
(-1.1254)

MO23β
(-1.1254)

MO22α
(-1.1254)

MO22β
(-1.1254)

MO21α
(-1.1380)

MO21β
(-1.1380)

Fig. 10.5 Selected molecular
orbitals of MnFMn model
(BHHLYP method)
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wMO21b ¼ 0:74/Mn2 3dx20ð Þ þ 0:27/Mn2 3dx200ð Þ � 0:37/Mn2 3dy20ð Þ � 0:13/Mn2 3dy200ð Þ
� 0:37/Mn2 3dz20ð Þ � 0:13/Mn2 3dz200ð Þ � 0:26/F 2px0ð Þ � 0:19/F 2px00ð Þ

ð10:2Þ

MO21a and MO21b are partially paired in 2px orbital. a and b spins exist in
Mn1 and Mn2 3d3x2�r2 orbitals, respectively. One manganese lobe interacts with
one fluorine lobe. From chemical bonding rule, it is found that r-type covalent
bonding is formed between Mn1 3d3x2�r2 and fluorine 2px orbitals, and between
Mn2 3d3x2�r2 and fluorine 2px orbitals. r-type superexchange interaction occurs
between Mn1 and Mn2 via fluorine. The obtained wave-functions of MO22a and
MO22b are

wMO22a ¼ �0:73/Mn1 3dy20ð Þ � 0:27/Mn1 3dy200ð Þ
þ 0:73/Mn1 3dz20ð Þ þ 0:27/Mn1 3dz200ð Þ

ð10:3Þ

wMO22b ¼ �0:73/Mn2 3dy20ð Þ � 0:27/Mn2 3dy200ð Þ
þ 0:73/Mn2 3dz20ð Þ þ 0:27/Mn2 3dz200ð Þ

ð10:4Þ

In MO22a and MO22b, Mn1 and Mn2 3dy2�z2 orbitals are represented,
respectively. The obtained wave-functions of MO23a and MO23b are

wMO23a ¼ 0:84/Mn1 3dyz0ð Þ þ 0:31/Mn1 3dyz00ð Þ ð10:5Þ

wMO23b ¼ 0:84/Mn2 3dyz0ð Þ þ 0:31/Mn2 3dyz00ð Þ ð10:6Þ

In MO23a and MO23b, Mn1 and Mn2 3dyz orbitals are represented, respec-
tively. The obtained wave-functions of MO24a and MO24b are

wMO24a ¼ �0:79/Mn1 3dxy0ð Þ � 0:29/Mn1 3dxy00ð Þ � 0:26/Mn1 3dxz0ð Þ � 0:09/Mn1 3dxz00ð Þ
þ 0:09/F 2py0ð Þ þ 0:07/F 2py00ð Þ þ 0:03/F 2pz0ð Þ þ 0:02/F 2pz00ð Þ

ð10:7Þ

wMO24b ¼ 0:74/Mn2 3dxy0ð Þ þ 0:27/Mn2 3dxy00ð Þ þ 0:37/Mn2 3dxz0ð Þ þ 0:14/Mn2 3dxz00ð Þ
þ 0:08/F 2py0ð Þ þ 0:06/F 2py00ð Þ þ 0:04/F 2pz0ð Þ þ 0:03/F 2pz00ð Þ

ð10:8Þ

MO24a and MO24b are partially paired in hybridized fluorine 2p orbital. a and
b spins exist in hybridized Mn1 and Mn2 3d orbital, respectively. Two manganese
lobes interact with two fluorine lobes. From chemical bonding rule, it is found that
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p-type covalent bonding is formed between Mn1 hybridized 3d and hybridized
fluorine 2p orbitals, and between Mn2 hybridized 3d and hybridized fluorine 2p
orbitals. p-type superexchange interaction occurs between Mn1 and Mn2 via
fluorine. The obtained wave-functions of MO25a and MO25b are

wMO25a ¼ �0:26/Mn1 3dxy0ð Þ � 0:09/Mn1 3dxy00ð Þ þ 0:79/Mn1 3dxz0ð Þ þ 0:29/Mn1 3dxz00ð Þ
þ 0:03/F 2py0ð Þ þ 0:02/F 2py00ð Þ � 0:09/F 2pz0ð Þ � 0:07/F 2pz00ð Þ

ð10:9Þ

wMO25b ¼ 0:37/Mn2 3dxy0ð Þ þ 0:13/Mn2 3dxy00ð Þ � 0:74/Mn2 3dxz0ð Þ � 0:27/Mn2 3dxz00ð Þ
þ 0:04/F 2py0ð Þ þ 0:03/F 2py00ð Þ � 0:08/F 2pz0ð Þ � 0:06/F 2pz00ð Þ

ð10:10Þ

MO25a and MO25b are partially paired in hybridized fluorine 2p orbital. a and
b spins exist in Mn1 and Mn2 hybridized 3d orbital, respectively. Two manganese
lobes interact with two fluorine lobes. From chemical bonding rule, it is found that
p-type covalent bonding is formed between Mn1 hybridized 3d and hybridized
fluorine 2p orbitals, and between Mn2 hybridized 3d and hybridized fluorine 2p
orbitals. p-type superexchange interaction occurs between Mn1 and Mn2 via
fluorine. In comparison with r-type superexchange interaction, the contribution of
fluorine 2p coefficients is slight in p-type superexchange interaction. It shows the
weak superexchange interaction. The obtained wave-functions of MO26a and
MO26b are

wMO26a ¼ �0:38/Mn1 3dx20ð Þ � 0:10/Mn1 3dx200ð Þ þ 0:23/Mn1 3dy20ð Þ þ 0:12/Mn1 3dy200ð Þ
þ 0:23/Mn1 3dz20ð Þ þ 0:12/Mn1 3dz200ð Þ þ 0:53/F 2px0ð Þ þ 0:45/F 2px00ð Þ

ð10:11Þ

wMO26b ¼ �0:38/Mn2 3dx20ð Þ � 0:10/Mn2 3dx200ð Þ þ 0:23/Mn2 3dy20ð Þ þ 0:12/Mn2 3dy200ð Þ
þ 0:23/Mn2 3dz20ð Þ þ 0:12/Mn2 3dz200ð Þ � 0:53/F 2px0ð Þ � 0:45/F 2px00ð Þ

ð10:12Þ

MO26a and MO26b are partially paired in fluorine 2px orbital. a and b spins
exist in Mn1 and Mn2 hybridized 3d orbitals, respectively. One manganese lobe
interacts with one fluorine lobe. There are nodes between Mn1 and F, and between
Mn2 and F. From chemical bonding rule, it is found that inversion r-type covalent
bonding is formed between Mn1 hybridized 3d and fluorine 2px orbitals, and
between Mn2 hybridized 3d and fluorine 2px orbitals. Inversion r-type superex-
change interaction occurs between Mn1 and Mn2 via fluorine. MO26a and MO26b
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are inversion r-type covalent bonding to MO21a and MO21b, respectively. The
obtained wave-functions of MO27a, MO27b, MO28a and MO28b are

wMO27a ¼ 0:10/Mn1 3dxy0ð Þ � 0:12/Mn1 3dxz0ð Þ
þ 0:41/F 2py0ð Þ þ 0:32/F 2py00ð Þ � 0:49/F 2pz0ð Þ � 0:38/F 2pz00ð Þ

ð10:13Þ

wMO27b ¼ �0:14/Mn2 3dxy0ð Þ þ 0:08/Mn2 3dxz0ð Þ
þ 0:55/F 2py0ð Þ þ 0:42/F 2py00ð Þ � 0:33/F 2pz0ð Þ � 0:25/F 2pz00ð Þ

ð10:14Þ

wMO28b ¼ 0:12/Mn1 3dxy0ð Þ þ 0:10/Mn1 3dxz0ð Þ
þ 0:49/F 2py0ð Þ þ 0:38/F 2py00ð Þ þ 0:41/F 2pz0ð Þ þ 0:32/F 2pz00ð Þ

ð10:15Þ

wMO28b ¼ �0:08/Mn2 3dxy0ð Þ � 0:14/Mn2 3dxz0ð Þ
þ 0:33/F 2py0ð Þ þ 0:25/F 2py00ð Þ þ 0:55/F 2pz0ð Þ þ 0:42/F 2pz00ð Þ

ð10:16Þ

In MO27a, MO27b, MO28a and MO28b, two manganese lobes interact with
two fluorine lobes. There are nodes between Mn1 and F, and between Mn2 and F.
From chemical bonding rule, it is found that inversion p-type covalent bonding is
formed between Mn1 hybridized 3d and hybridized fluorine 2p orbitals, and
between Mn2 hybridized 3d and hybridized fluorine 2p orbitals. They are inversion
p-type covalent bonding to MO24a, MO24b, MO25a and MO25b.

In MnFMn model, two types of superexchange interaction are reproduced. One
is r-type superexchange interaction in MO21a, MO21b, MO26a and MO26b. The
other is p-type superexchange interaction in MO24a, MO24b, MO25a, MO25b,
MO27a, MO27b, MO28a and MO28b.

10.5 Mn4F4 Model

MO calculation by using BHHLYP method is performed for two-dimensional
Mn4F4 model. MINI (5.3.3.3/5.3/4.1) and 6-31G* basis sets are used for manganese
and fluorine, respectively. The formal charges of Mn and F are +2 and −1,
respectively. In formal electron configuration, five electrons occupy manganese 3d
orbitals.

Mulliken charge densities for manganese and fluorine are 1.759 and −0.759.
Spin densities of manganese with a and b spins are 4.925 and −4.925, respectively.
Figure 10.6 depicts the selected molecular orbitals of Mn4F4 model. The obtained
wave-functions of MO45a and MO45b are
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wMO45a ¼ �0:42/Mn1 3dx20ð Þ � 0:16/Mn1 3dx200ð Þ þ 0:42/Mn1 3dy20ð Þ þ 0:16/Mn1 3dy200ð Þ
þ 0:42/Mn3 3dx20ð Þ þ 0:16/Mn3 3dx200ð Þ � 0:42/Mn3 3dy20ð Þ � 0:16/Mn3 3dy200ð Þ
þ 0:16/F5 2py0ð Þ þ 0:12/F5 2py00ð Þ � 0:16/F6 2px0ð Þ � 0:12/F6 2px00ð Þ
þ 0:16/F7 2py0ð Þ þ 0:12/F7 2py00ð Þ � 0:16/F8 2px0ð Þ � 0:12/F8 2px00ð Þ

ð10:17Þ

MO54α 
(-1.0735)

MO54β 
(-1.0735)

MO53α 
(-1.0743)

MO53β 
(-1.0743)

MO48α 
(-1.0839)

MO48β 
(-1.0839)

MO47α 
(-1.0863)

MO47β 
(-1.0863)

MO46α 
(-1.0959)

MO46β 
(-1.0959)

MO45α 
(-1.0996)

MO45β 
(-1.0996)

Fig. 10.6 Selected molecular
orbitals of Mn4F4 model
(BHHLYP method)
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wMO45b ¼ 0:42/Mn2 3dx20ð Þ þ 0:16/Mn2 3dx200ð Þ � 0:42/Mn2 3dy20ð Þ � 0:16/Mn2 3dy200ð Þ
� 0:42/Mn4 3dx20ð Þ � 0:16/Mn4 3dx200ð Þ þ 0:42/Mn4 3dy20ð Þ þ 0:16/Mn4 3dy200ð Þ
þ 0:16/F5 2py0ð Þ þ 0:12/F5 2py00ð Þ þ 0:16/F6 2px0ð Þ þ 0:12/F6 2px00ð Þ
þ 0:16/F7 2py0ð Þ þ 0:12/F7 2py00ð Þ þ 0:16/F8 2px0ð Þ þ 0:12/F8 2px00ð Þ

ð10:18Þ

MO45a and MO45b are paired partially in F5 2py, F6 2px, F7 2py and F8 2px
orbitals. a spins exist in 3dx2�y2 orbitals of Mn1 and Mn3, and b spins exist in
3dx2�y2 orbitals of Mn2 and Mn4. In MO45a, Mn1 lobe interacts with F5 lobe and
one F8 lobe, and Mn3 lobe interacts with F6 lobe and F7 lobe. From chemical
bonding rule, it is found that Mn1 3dx2�y2 orbital forms r-type covalent bonding
with F5 2py orbital and F8 2px orbital, and Mn3 3dx2�y2 orbital forms r-type
covalent bonding with F6 2px orbital and F7 2py orbital. In MO45b, Mn2 lobe
interacts with F5 lobe and one F6 lobe, and Mn3 lobe interacts with F7 lobe and F8
lobe. From chemical bonding rule, it is found that Mn2 3dx2�y2 orbital forms r-type
covalent bonding with F5 2py orbital and F6 2px orbital, and Mn4 3dx2�y2 orbital
forms r-type covalent bonding with F7 2py orbital and F8 2px orbital. r-type
superexchange interaction occurs between Mn1 and Mn2 via F5, between Mn2 and
Mn3 via F6, between Mn3 and Mn4 via F7, and between Mn4 and Mn1 via F8. The
obtained wave-functions of MO46a and MO46b are

wMO46a ¼ 0:43/Mn1 3dx20ð Þ þ 0:16/Mn1 3dx200ð Þ � 0:43/Mn1 3dy20ð Þ � 0:16/Mn1 3dy200ð Þ
þ 0:43/Mn3 3dx20ð Þ þ 0:16/Mn3 3dx200ð Þ � 0:43/Mn3 3dy200ð Þ � 0:16/Mn3 3dy200ð Þ
� 0:15/F5 2py0ð Þ � 0:11/F5 2py00ð Þ � 0:15/F6 2px0ð Þ � 0:11/F6 2px00ð Þ
þ 0:15/F7 2py0ð Þ þ 0:11/F7 2py00ð Þ þ 0:15/F8 2px0ð Þ þ 0:11/F8 2px00ð Þ

ð10:19Þ

wMO46b ¼ 0:43/Mn2 3dx20ð Þ þ 0:16/Mn2 3dx200ð Þ � 0:43/Mn2 3dy20ð Þ � 0:16/Mn2 3dy200ð Þ
þ 0:43/Mn4 3dx20ð Þ þ 0:16/Mn4 3dx200ð Þ � 0:43/Mn4 3dy20ð Þ � 0:16/Mn4 3dy200ð Þ
þ 0:15/F5 2py0ð Þ þ 0:11/F5 2py00ð Þ þ 0:15/F6 2px0ð Þ þ 0:11/F6 2px00ð Þ

� 0:15/F7 2py0ð Þ � 0:11/F7 2py00ð Þ � 0:15/F8 2px0ð Þ � 0:11/F8 2px00ð Þ

ð10:20Þ

In MO46a and MO46b, r-type superexchange interaction occurs between Mn1
and Mn2 via F5, between Mn2 and Mn3 via F6, between Mn3 and Mn4 via F7, and
between Mn4 and Mn1 via F8. There are inversion interactions between F5 and F6,
and between F7 and F8. The orbital energies of MO46a and MO46b (−1.0959 au)
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are slightly higher than MO45a and MO45b (−1.0996 au). The obtained
wave-functions of MO47a and MO47b are

wMO47a ¼ 0:26/Mn1 3dx20ð Þ þ 0:10/Mn1 3dx200ð Þ þ 0:26/Mn1 3dy20ð Þ þ 0:10/Mn1 3dy200ð Þ
� 0:51/Mn1 3dz20ð Þ � 0:18/Mn1 3dz200ð Þ þ 0:26/Mn3 3dx20ð Þ þ 0:10/Mn3 3dx200ð Þ
þ 0:26/Mn3 3dy20ð Þ þ 0:10/Mn3 3dy200ð Þ � 0:51/Mn3 3dz20ð Þ � 0:18/Mn3 3dz200ð Þ
þ 0:14/F5 2py0ð Þ þ 0:10/F5 2py00ð Þ � 0:14/F6 2px0ð Þ � 0:10/F6 2px00ð Þ
� 0:14/F7 2py0ð Þ � 0:10/F7 2py00ð Þ þ 0:14/F8 2px0ð Þ þ 0:10/F8 2px00ð Þ

ð10:21Þ

wMO47b ¼ 0:26/Mn2 3dx20ð Þ þ 0:10/Mn2 3dx200ð Þ þ 0:26/Mn2 3dy20ð Þ þ 0:10/Mn2 3dy200ð Þ
� 0:51/Mn2 3dz20ð Þ � 0:18/Mn2 3dz200ð Þ þ 0:26/Mn4 3dx20ð Þ þ 0:10/Mn4 3dx200ð Þ
þ 0:26/Mn4 3dy20ð Þ þ 0:10/Mn4 3dy200ð Þ � 0:51/Mn4 3dz20ð Þ � 0:18/Mn4 3dz200ð Þ
� 0:14/F5 2py0ð Þ � 0:10/F5 2py00ð Þ þ 0:14/F6 2px0ð Þ þ 0:10/F6 2px00ð Þ
þ 0:14/F7 2py0ð Þ þ 0:10/F7 2py00ð Þ � 0:14/F8 2px0ð Þ � 0:10/F8 2px00ð Þ

ð10:22Þ

MO47a and MO47b are partially paired in F5 2py, F6 2px, F7 2py and F8 2px
orbitals. a spins exist in 3d3z2�r2 orbitals of Mn1 and Mn3, and b spins exist in
3d3z2�r2 orbitals of Mn2 and Mn4. In MO47a, Mn1 lobe interacts with F5 lobe and
F8 lobe, and Mn3 lobe interacts with F6 lobe and F7 lobe. From chemical bonding
rule, it is found that Mn1 3d3z2�r2 orbital forms r-type covalent bonding with F5
2py orbital and F8 2px orbital, and Mn3 3d3z2�r2 orbital forms r-type covalent
bonding with F6 2px orbital and F7 2py orbital. In MO47b, Mn2 lobe interacts with
F5 lobe and F6 lobe, and Mn4 interacts with F7 lobe and F8 lobe. From chemical
bonding rule, it is found that Mn2 3d3z2�r2 orbital forms r-type covalent bonding
with F5 2py orbital and F6 2px orbital, and Mn4 3d3z2�r2 orbital forms r-type
covalent bonding with F7 2py orbital and F8 2px orbital. r-type superexchange
interaction occurs between Mn1 and Mn2 via F5, between Mn2 and Mn3 via F6,
between Mn3 and Mn4 via F7, and between Mn4 and Mn1 via F8. The obtained
wave-functions of MO48a and MO48b are

wMO48a ¼ 0:27/Mn1 3dx20ð Þ þ 0:11/Mn1 3dx200ð Þ þ 0:27/Mn1 3dy20ð Þ þ 0:11/Mn1 3dy200ð Þ
� 0:53/

Mn1 3dz2
0� � � 0:19/Mn1 3dz200ð Þ � 0:27/

Mn3 3dx2
0� � � 0:11/Mn3 3dx200ð Þ

� 0:27/
Mn3 3dy2

0� � � 0:11/Mn3 3dy200ð Þ þ 0:53/
Mn3 3dz2

0� �þ 0:19/Mn3 3dz200ð Þ
þ 0:12/F5 2py0ð Þ þ 0:09/F5 2py00ð Þ þ 0:12/F6 2px0ð Þ þ 0:09/F6 2px00ð Þ
þ 0:12/F7 2py0ð Þ þ 0:09/F7 2py00ð Þ þ 0:12/F8 2px0ð Þ þ 0:09/F8 2px00ð Þ

ð10:23Þ
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wMO48b ¼ �0:27/Mn2 3dx20ð Þ � 0:10/Mn2 3dx200ð Þ � 0:27/Mn2 3dy20ð Þ � 0:10/Mn2 3dy200ð Þ
þ 0:51/Mn2 3dz20ð Þ þ 0:18/Mn2 3dz200ð Þ þ 0:27/Mn4 3dx20ð Þ þ 0:10/Mn4 3dx200ð Þ
þ 0:27/Mn4 3dy20ð Þ þ 0:10/Mn4 3dy200ð Þ � 0:51/Mn4 3dz20ð Þ � 0:18/Mn4 3dz200ð Þ
þ 0:12/F5 2py0ð Þ þ 0:09/F5 2py00ð Þ � 0:12/F6 2px0ð Þ � 0:09/F6 2px00ð Þ
þ 0:12/F7 2py0ð Þ þ 0:09/F7 2py00ð Þ � 0:12/F8 2px0ð Þ � 0:09/F8 2px00ð Þ

ð10:24Þ

In MO48a and MO48b, r-type superexchange interaction occurs between Mn1
and Mn2 via F5, between Mn2 and Mn3 via F6, between Mn3 and Mn4 via F7, and
between Mn4 and Mn1 via F8. There are inversion interactions between F5 and F6,
and between F7 and F8. The orbital energies of MO48a and MO48b (−1.0839 au)
are slightly higher than MO47a and MO47b (−1.0863 au). The obtained
wave-functions of MO53a and MO53b are

wMO53a ¼ 0:56/Mn1 3dxy0ð Þ þ 0:21/Mn1 3dxy00ð Þ þ 0:56/Mn3 3dxy0ð Þ þ 0:21/Mn3 3dxy00ð Þ
� 0:08/F5 2px0ð Þ � 0:07/F5 2px00ð Þ þ 0:08/F6 2py0ð Þ þ 0:07/F6 2py00ð Þ
þ 0:08/F7 2px0ð Þ þ 0:07/F7 2px00ð Þ � 0:08/F8 2py0ð Þ � 0:07/F8 2py00ð Þ

ð10:25Þ

wMO53b ¼ �0:56/Mn2 3dxy0ð Þ � 0:21/Mn2 3dxy00ð Þ � 0:56/Mn4 3dxy0ð Þ � 0:21/Mn4 3dxy00ð Þ
� 0:08/F5 2px0ð Þ � 0:07/F5 2px00ð Þ þ 0:08/F6 2py0ð Þ þ 0:07/F6 2py00ð Þ
þ 0:08/F7 2px0ð Þ þ 0:07/F7 2px00ð Þ � 0:08/F8 2py0ð Þ � 0:07/F8 2py00ð Þ

ð10:26Þ

MO53a and MO53b are partially paired in F5 2px, F6 2py, F7 2px and F8 2py
orbitals. a spins exist in 3dxy orbitals of Mn1 and Mn3, and b spins exist in 3dxy
orbitals of Mn2 and Mn4. In MO53a, two Mn1 lobes interact with two F5 lobes and
two F8 lobes, and two Mn3 lobes interact with two F6 lobes and two F7 lobes.
From chemical bonding rule, it is found that Mn1 3dxy orbital forms p-type covalent
bonding with F5 2px orbital and F8 2py orbital, and Mn3 3dxy orbital forms p-type
covalent bonding with F6 2py orbital and F7 2px orbital. In MO53b, two Mn2 lobes
interact with two F5 lobes and two F6 lobes, and two Mn4 lobes interact with two
F7 lobes and two F8 lobes. From chemical bonding rule, it is found that Mn2 3dxy
orbital forms p-type covalent bonding with F5 2px orbital and F6 2py orbital, and
Mn4 3dxy orbital forms p-type covalent bonding with F7 2px orbital and F8 2py
orbital. p-type superexchange interaction occurs between Mn1 and Mn2 via F5,
between Mn2 and Mn3 via F6, between Mn3 and Mn4 via F7, and between Mn4
and Mn1 via F8. The obtained wave-functions of MO54a and MO54b are
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wMO54a ¼ 0:57/Mn1 3dxy0ð Þ þ 0:21/Mn1 3dxy00ð Þ � 0:57/Mn3 3dxy0ð Þ � 0:21/Mn3 3dxy00ð Þ
� 0:07/F5 2px0ð Þ � 0:06/F5 2px00ð Þ � 0:07/F6 2py0ð Þ � 0:06/F6 2py00ð Þ
� 0:07/F7 2px0ð Þ � 0:06/F7 2px00ð Þ � 0:07/F8 2py0ð Þ � 0:06/F8 2py00ð Þ

ð10:27Þ

wMO54b ¼ �0:57/Mn2 3dxy0ð Þ � 0:21/Mn2 3dxy00ð Þ þ 0:57/Mn4 3dxy0ð Þ þ 0:21/Mn4 3dxy00ð Þ
� 0:07/F5 2px0ð Þ � 0:06/F5 2px00ð Þ þ 0:07/F6 2py0ð Þ þ 0:06/F6 2py00ð Þ
� 0:07/F7 2px0ð Þ � 0:06/F7 2px00ð Þ þ 0:07/F8 2py0ð Þ þ 0:06/F8 2py00ð Þ

ð10:28Þ

In MO54a and MO54b, p-type superexchange interaction occurs between Mn1
and Mn2 via F5, between Mn2 and Mn3 via F6, between Mn3 and Mn4 via F7, and
between Mn4 and Mn1 via F8. There are inversion interactions between F5 and F6,
and between F7 and F8. The orbital energies of MO54a and MO54b (−1.0735 au)
are slightly higher than MO53a and MO53b (−1.0743 au).

In Mn4F4 model, two types of two-dimensional superexchange interaction are
reproduced. One is r-type superexchange interaction in MO45a, MO45b, MO46a,
MO46b, MO47a, MO47b, MO48a and MO48b. The other is p-type superex-
change interaction is represented through MO53a, MO53b, MO54a and MO54b.
Mn4F4 model reproduces well two-dimensional superexchange interaction within
MnF2 layer in K2MnF4. Note that r-type superexchange interaction in z direction is
not reproduced, though 3dz2 component participates in molecular orbitals.

10.6 KMn8X12 Model

MO calculation by using BHHLYP method is performed for three-dimensional
KMn8F12 model. MINI (5.3.3.3/5.3/4.1), 6-31G* and MINI(4.3.3.3/4.3) basis sets
are used for manganese, fluorine and potassium, respectively. The formal charges of
Mn, F and K are +2, −1 and +1, respectively. In formal electron configuration, five
electrons occupy manganese 3d orbitals.

Mulliken charge densities for manganese and fluorine are 1.692 and −0.778. The
spin densities of manganese with a and b spins are 4.891 and −4.891, respectively.
Table 10.3 shows the population analysis of alpha and beta orbitals of KMn8F12
model. Note that spin densities of manganese 3d orbitals are expressed by two
components, because they are expressed by two basis functions. For example, 3dx2
orbital is represented by two 3dx20 and 3dx200 components. It is considered that
twelve superexchange interactions occur between two neighbouring manganese
atoms via fluorine, due to a spins of Mn1, Mn3, Mn6 and Mn8, and b spins of Mn2,
Mn4, Mn5 and Mn7.
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10.7 Bent Superexchange Interaction: Cu2F2 Model

Let us investigate superexchange interaction in bent CuFCu. Figure 10.7 depicts
Cu2F2 model and expected covalent bonds in 90°-bent CuFCu. Note that it is
assumed that the formal charge of copper is +2, and Cu1 and Cu2 have spin density
on 3dx2�y2 orbital. It is expected that Cu1 3dx2�y2 orbital forms covalent bonding
with F3 2px and F4 2py orbitals, and Cu2 3dx2�y2 orbital forms covalent bonding
with F3 2py and F4 2px orbitals. Following superexchange rule, as two orbitals
remain as spin source, ferromagnetic interaction is expected.

BHHLYP calculation is performed for Cu2F2 model. MINI (5.3.3.3/5.3/5) and
6-31G* are used for copper and fluorine, respectively. At the geometry optimization
structure, the Cu–F–Cu angle is different from 90°. Antiferromagnetic spin state is
stabilized, and spin densities of Cu1 and Cu2 are 0.996 and −0.996, respectively.

Figure 10.8 depicts the selected molecular orbitals of Cu2F2 model. The
obtained wave-functions of MO23a and MO23b are

wMO23a ¼ 0:96/Cu1 3dx2ð Þ � 0:67/Cu1 3dy2ð Þ � 0:30/Cu1 3dz2ð Þ
� 0:02/F3 2s0ð Þ � 0:03/F3 2s00ð Þ � 0:02/F4 2s0ð Þ � 0:03/F4 2s00ð Þ

ð10:29Þ

wMO23b ¼ 0:96/Cu2 3dx2ð Þ � 0:67/Cu2 3dy2ð Þ � 0:30/Cu2 3dz2ð Þ
� 0:02/F3 2s0ð Þ � 0:03/F3 2s00ð Þ � 0:02/F4 2s0ð Þ � 0:03/F4 2s00ð Þ

ð10:30Þ

Table 10.3 Population
analysis of alpha and beta
electrons of KMn8F12 model
(BHHLYP method)

Site Component Alpha Beta

Mn1, Mn3,
Mn6, Mn8

3dx20 , 3dy20 , 3dz20
3dx200 , 3dy200 , 3dz200
3dxy0 , 3dyz0 , 3dxz0
3dxy00 , 3dyz00 , 3dxz00

0.5416
0.1446
0.7994
0.2037

Mn2, Mn4,
Mn5, Mn7

3dx20 , 3dy20 , 3dz20
3dx200 , 3dy200 , 3dz200
3dxy0 , 3dyz0 , 3dxz0
3dxy00 , 3dyz00 , 3dxz00

0.5416
0.1446
0.7994
0.2037

Cu1F3

F4Cu2

x

y

Fig. 10.7 Cubic Cu2F2 model and expected covalent bonding
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In MO23a, there are slight orbital overlap between Cu1 hybridized 3d and F3 2s
orbitals, and Cu1 hybridized 3d and F4 2s orbitals. In MO23b, Cu2 has the same
types of orbital overlaps. One Cu1 lobe interacts with one F3 lobe, and one F4 lobe.
From chemical bonding rule, it is found that slight r-type covalent bonding is
formed in MO23a and MO24b. Slight r-type superexchange interaction occurs
between Cu1 and Cu2 via F3 and F4. The obtained wave-functions of MO24a and
MO24b are

wMO24a ¼ 0:89/Cu1 3dxyð Þ þ 0:36/Cu2 3dxyð Þ
� 0:10/F3 2px0ð Þ � 0:06/F3 2px00ð Þ þ 0:10/F4 2px0ð Þ þ 0:06/F4 2px00ð Þ

ð10:31Þ

wMO24b ¼ 0:36/Cu1 3dxyð Þ þ 0:89/Cu2 3dxyð Þ
� 0:10/F3 2px0ð Þ � 0:06/F3 2px00ð Þ þ 0:10/F4 2px0ð Þ þ 0:06/F4 2px00ð Þ

ð10:32Þ

In MO24a and MO24b, there is orbital overlap between Cu1 3dxy, Cu2 3dxy,
F3 2px and F4 2px orbitals. Cu1 lobe interacts with F2 lobe and F3 lobe, and Cu2
interacts with F2 lobe and F3 lobe. From chemical bonding rule, it is found that r-
type covalent bonding is formed. However, as MO24a and MO24b are paired,
MO24a and MO24b are not spin source. The obtained wave-function of MO26a
and MO26b are

MO26α 
(-1.2729)

MO24α 
(-1.3067)

MO23α 
(-1.3404)

MO26β 
(-1.2729)

MO24β 
(-1.3067)

MO23β 
(-1.3404)

x

y

F4

Cu1Cu2

F3

Fig. 10.8 Selected molecular
orbitals of Cu2F2 model
(BHHLYP method)
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wMO26a ¼ 0:40/Cu1 3dxyð Þ � 0:90/Cu2 3dxyð Þ
þ 0:04/F3 2s0ð Þ þ 0:10/F3 2s00ð Þ � 0:04/F4 2s0ð Þ � 0:10/F4 2s00ð Þ

ð10:33Þ

wMO26b ¼ �0:90/Cu1 3dxyð Þ þ 0:40/Cu2 3dxyð Þ
� 0:04/F3 2s0ð Þ � 0:10/F3 2s00ð Þ þ 0:04/F4 2s0ð Þ þ 0:10/F4 2s00ð Þ

ð10:34Þ

In MO26a and MO26b, there is orbital overlap between Cu1 3dxy, Cu2 3dxy,
F3 2s and F4 2s orbitals. Cu1 lobe interacts with F2 lobe and F3 lobe, and Cu2
interacts with F2 lobe and F3 lobe. There are nodes between Cu1-F3, Cu1-F4,
Cu2-F3 and Cu2-F4. From chemical bonding rule, it is found that inversion r-type
covalent bonding is formed. However, as MO26a and MO26b are approximately
paired, MO24a and MO24b are not spin source.

10.8 Two-Atom Bridge Superexchange Interaction:
MnCNMn Model

In KMnF3 perovskite, superexchange interaction atoms occur between manganese
atoms via one fluorine bridge. Let us consider two-atom bridge superexchange
interaction. In Prussian blue and its analogues, manganese atoms are bound with
cyano-ligand (CN). MO calculation by using BHHLYP method is performed for
MnCNMn model. Note that carbon and nitrogen are allocated at the right and left
sides, respectively. MINI (5.3.3.3/5.3/5) basis set is used for manganese, combined
with 6-31G* basis set for carbon and nitrogen. In formal electron configuration, five
electrons occupy manganese 3d orbitals.

Mulliken charge densities for Mn1, Mn2, C and N are 1.821, 1.885, −0.067 and
−0.638, respectively. The spin densities of Mn1 and Mn2 are 4.950 and −4.983,
respectively. There exist small spin densities of carbon (−0.151) and nitrogen
(0.183). In comparison with MnFMn model, charge and spin densities are
non-symmetric. Figure 10.9 depicts the molecular orbitals of MnCNMn model. The
obtained wave-functions of MO22a and MO22b are

wMO22a ¼ 0:62/Mn1 3dx2ð Þ � 0:29/Mn1 3dy2ð Þ � 0:29/Mn1 3dz2ð Þ
� 0:13/C 1sð Þ þ 0:25/C 2s0ð Þ þ 0:16/C 2s00ð Þ þ 0:18/C 2px0ð Þ þ 0:23/C 2px00ð Þ
� 0:18/N 2s0ð Þ þ 0:15/N 2px0ð Þ þ 0:20/N 2px00ð Þ

ð10:35Þ
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wMO22b ¼ �0:75/Mn2 3dx2ð Þ þ 0:35/Mn2 3dy2ð Þ þ 0:35/Mn2 3dz2ð Þ
þ 0:19/C 2s0ð Þ þ 0:10/C 2s00ð Þ þ 0:12/C 2px00ð Þ
� 0:15/C 2s0ð Þ � 0:13/C 2px0ð Þ þ 0:25/N 2px0ð Þ þ 0:19/N 2px00ð Þ

ð10:36Þ

MO22a and MO22b are partially paired in cyano-ligand: carbon 2s, carbon 2px,
nitrogen 2s and nitrogen 2px orbitals. In MO22a, one Mn1 lobe interacts with one
carbon lobe. In MO23b, one Mn2 lobe interacts with nitrogen lobe. From chemical
bonding rule, it is found that Mn1 and Mn2 form r-type covalent bonding with
cyano-ligand. r-type superexchange interaction occurs between Mn1 and Mn2 via
cyano-ligand. It is called two-atom bridge superexchange interaction.
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Chapter 11
Ligand Bonding Effect

Abstract In ligand field theory, electron configuration of transition metal is
empirically predicted based on Coulomb repulsion between transition metal and
ligand anion. In octahedral coordination, transition metal 3d orbitals are split into
two eg 3d3z2�r2 ; 3dx2�y2

� �
and t2g (3dxy, 3dyz, 3dxz) orbitals. However, it does not

always predict correct electronic structure. It is because quantum effects of charge
transfer and orbital overlap are missing. The alternate copper 3dz2�x2 type orbital
ordering occurs in K2CuF4 perovskite. From molecular orbital calculation, it is
found that the elongation and shrink of Cu–F distance occur. The electron con-
figuration of transition metal is determined by quantum effect and structural dis-
tortion. The effect is called ligand bonding effect. In KCoF3 perovskite, Co2+ has
the degree of freedom in cobalt electron configuration. Two spin states such as
quartet and doublet spin state are compared. Finally, in ideal FeF6 model, the
relationship between Fe–F distance and total energy is discussed.

Keywords Ligand field effect � Ligand bonding effect � K2CuF4 perovskite �
Alternate 3dz2�x2 type orbital ordering � Electron configuration

11.1 Ligand Field Theory

In transition metal compounds, the orbital energies of 3d orbitals are split. Ligand
field theory predicts the orbital energy splitting, based on Coulomb interaction
between transition metal and ligand anion. If transition metal is isolated, 3d orbitals
are degenerated.

In octahedral coordination, it is well known that transition metal 3d orbitals are
split into two eg 3d3z2�r2 ; 3dx2�y2

� �
and t2g (3dxy, 3dyz, 3dxz) orbitals (see Fig. 11.1).

eg orbitals are destabilized, compared with t2g orbitals. It is because Coulomb
repulsion between eg electron and ligand anion is larger. However, ligand field theory
does not always predict a correct electronic structure, because of pseudo-quantum
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level. For example, the effect of orbital overlap between transition metal and ligand
anion is missing.

11.2 Ligand Bonding Effect

In transition metal compounds, orbital energies of transition metal 3d orbitals are
split, due to Coulomb repulsion, charge transfer and orbital overlap between
transition metal and ligand anion. In addition, the elongation or shrink of transition
metal-ligand anion distance is combined. The effect is called “ligand bonding
effect”. The magnitudes of elongation and shrink depend on the type of covalent
bonding. For example, in octahedral coordination, t2g orbitals have r-type orbital
overlap with ligand anion, and eg orbitals have p-type orbital overlap with ligand
anion.

11.3 K2CuF4 Perovskite

In K2CuF4 perovskite, magnetic CuF2 layer is separated by two non-magnetic KF
layers, as shown in Fig. 10.3. The formal charges of copper and fluorine are +2 and
−1, respectively. The change of copper electron configuration from the conven-
tional octahedral coordination occurs, combined with displacements of fluorine
anions on CuF2 layer.

It was reported that apical and equatorial Cu–F distances are 1.95 Å and 2.08 Å,
respectively. Note that the average Cu–F distance is observed in experiment. The
further displacements are connected, in relation to Q2 vibration mode (see
Fig. 11.2). In one copper atom, as Cu–F distance along x and y axes shrinks and is
elongated, respectively, the orbital energy of 3dz2�X2 orbital becomes higher. In
neighbouring copper atom, as Cu–F distance along x and y axes is elongated and
shrinks, respectively, the orbital energy of 3dz2�y2 orbital becomes higher. As the
result, alternate 3dz2�x2 type orbital ordering is caused in K2CuF4 perovskite.

t2g

eg
3d3z

2
-r

2

3dx
2

-y
2 

3dxy
3dyz
3dxz

Octahedral coordinated field 

M XX

X

X

X

X

Fig. 11.1 Orbital energy
splitting of transition metal 3d
orbitals in octahedral
coordinated field. M and
X denote transition metal and
ligand anion, respectively
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BHHLYP calculation is performed for two-nuclear F5CuFCuF5 model. MINI
(5.3.3.3/5.3/5) and 6-31G* basis sets are used for copper and fluorine, respectively.

Figure 11.3 shows the potential energy curve of F5CuFCuF5 model, displacing
fluorine following Q2 mode. In Q2 mode, all apical Cu–F distances are fixed
(1.95 Å), and equatorial Cu–F distances change. When r = 0.00 Å, equatorial Cu–
F distance corresponds to experimental Cu–F distance (2.08 Å). The local mini-
mum is given at around r = 0.15 Å. It is found that fluorine anions are displaced,
following Q2 vibrational mode.

Mulliken charge densities of Cu1 and Cu2 are 1.73 and 1.74, respectively. Spin
densities of Cu1, Cu2 and surrounding fluorine are 0.96, 0.97 and 0.00, respec-
tively. Figure 11.4 depicts the selected molecular orbitals, which are related to
alternate 3dz2�x2 type orbital ordering. The obtained wave-functions of MO41a and
MO42a are

Cu FF

F

F

F

F

Fig. 11.2 Schematic drawing of Q2 normal vibration mode. The arrows denote the directions of
elongation and shrink
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Fig. 11.3 Potential energy curve of F5CuFCuF5 model, displacing fluorine following Q2 mode.
The displaced distance (r) is defined from the lattice position. (BHHLYP method)
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wMO41a ¼ �0:78/Cu2 3dz2ð Þ þ 0:82/Cu2 3dy2ð Þ
� 0:11/F9 2py0ð Þ � 0:07/F9 2py00ð Þ þ 0:11/F10 2py0ð Þ þ 0:07/F10ð2py00Þ
þ 0:10/F11 2pz0ð Þ þ 0:06/F11 2pz00ð Þ � 0:10/F12 2pz0ð Þ � 0:06/F12ð2pz00Þ

ð11:1Þ

wMO42a ¼ �0:77/Cu1 3dz2ð Þ þ 0:81/Cu1 3dx2ð Þ
þ 0:08/F3 2px0ð Þ þ 0:04/F3 2px00ð Þ � 0:15/F8 2px0ð Þ � 0:11/F8ð2px00Þ
þ 0:10/F6 2pz0ð Þ þ 0:06/F6 2pz00ð Þ � 0:10/F7 2pz0ð Þ � 0:06/F7ð2pz00Þ

ð11:2Þ

In MO41a, as there is hybridization between copper 3dz2 and 3dy2 orbitals, it is
found that copper 3dz2�y2 orbital has orbital overlap with fluorine 2 orbitals. One
copper lobe interacts with one fluorine lobe. From chemical bonding rule, it is
found that r-type covalent bonding is formed between Cu2 3dz2�y2 and fluorine 2p
orbitals. On the other hand, in MO42a, there is hybridization between copper 3dz2
and 3dx2 orbitals. r-type covalent bonding is formed between Cu2 3dz2�x2 and
fluorine 2p orbitals. As MO41a and MO42a are spin source, it is found that
alternate 3dz2�x2 type orbital ordering is caused, and no superexchange interaction
occurs between copper atoms.

MO41α
(0.2933au)

x

y
z

MO42α
(0.3015au)

Fig. 11.4 Selected molecular orbitals related to alternate 3dz2�x2 type orbital ordering in
F5CuFCuF5 model. The orbital energy is shown in parenthesis. (BHHLYP method)
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11.4 KCoF3 Perovskite

At room temperature, KCoF3 perovskite has the cubic structure, where the Co–F
distance is 2.035 Å. As shown in Fig. 11.5, there are two possible electron con-
figurations in Co2+ (see Fig. 11.5). BHHLYP calculation is performed for
two-nuclear F5CoFCoF5 model, under consideration of two cobalt electron con-
figurations (quartet and doublet). MINI(5.3.3.3/5.3/5) and 6-31G* basis sets are
used for cobalt and fluorine, respectively.

Table 11.1 summarizes the population analysis of cobalt alpha and beta elec-
trons, and spin densities. It is found that quartet and doublet electron configurations
are reproduced. In quartet electron configuration, one spin is delocalized over three
t2g orbitals, and two spins are delocalized over two eg orbitals. On the other hand, in
doublet electron configuration, one spin is delocalized over three t2g orbitals. The
total energies of quartet and doublet cobalt electron configurations are −3860.02731
au and −3859.93008 au, respectively. It is found that quartet cobalt electron con-
figuration is more stabilized than doublet cobalt electron configuration.

Quartet electron configuration

eg

Doublet electron configuration

t2g

eg

t2g

Fig. 11.5 Cluster model of KCoF3 perovskite (F5CoFCoF5 model), and two possible cobalt
electron configuration
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11.5 FeF6 Model

To investigate the ligand bonding effect of iron fluorides, let us consider ideal FeF6
model for the simplicity. The formal charges of iron and fluorine are +2 and −1,
respectively. There are two possible electron configurations in Fe2+. BHHLYP
calculation is performed for FeF6 model, under considering two iron electron
configurations (quintet and singlet). MINI(5.3.3.3/5.3/5) and 6-31G* basis sets are
used for iron and fluorine, respectively.

11.5.1 Quintet Electron Configuration

Figure 11.6 depicts the electron configuration of quintet iron, and selected
molecular orbitals of FeF6 model in quintet spin state. The obtained wave-functions
of MO22a, MO23a, MO43a and MO44a are

wMO22a ¼ 0:31/Fe1 3dx2ð Þ þ 0:32/Fe1 3dy2ð Þ � 0:66/Fe1 3dz2ð Þ
þ 0:28/F6 2pz0ð Þ þ 0:22/F6 2pz00ð Þ � 0:28/F7 2pz0ð Þ � 0:22/F7 2pz00ð Þ

ð11:3Þ

wMO23a ¼ �0:51/Fe1 3dx2ð Þ þ 0:51/Fe1 3dy2ð Þ
þ 0:23/F2 2px0ð Þ þ 0:18/F2 2px00ð Þ þ 0:24/F3 2py0ð Þ þ 0:19/F3 2py00ð Þ
� 0:23/F4 2px0ð Þ � 0:18/F4 2px00ð Þ � 0:24/F5 2py0ð Þ � 0:19/F5 2py00ð Þ

ð11:4Þ

Table 11.1 Population analysis of alpha and beta electrons, and spin density in F5CoFCoF5
model by BHHLYP calculation

Quartet Doublet

Site Alpha Beta Spin Site Alpha Beta Spin

Co1 3dx2 0.6830 0.0997 0.5833 Co1 3dx2 0.6790 0.0601 0.6190

3dy2 0.6814 0.1003 0.5811 3dy2 0.2650 0.0824 0.1826

3dz2 0.6814 0.1003 0.5811 3dz2 0.2285 0.0843 0.1442

3dxy 1.0020 0.6449 0.3572 3dxy 1.0014 1.0012 0.0002

3dyz 1.0020 0.6449 0.3572 3dyz 1.0014 1.0012 0.0002

3dxz 1.0020 0.6525 0.3496 3dxz 1.0017 1.0014 0.0003

Co2 3dx2 0.0997 0.6830 −0.5833 Co2 3dx2 0.0601 0.6790 −0.6190

3dy2 0.1003 0.6814 −0.5811 3dy2 0.0824 0.2650 −0.1826

3dz2 0.1003 0.6814 −0.5811 3dz2 0.0843 0.2285 −0.1442

3dxy 0.6449 1.0020 −0.3572 3dxy 1.0012 1.0014 −0.0002

3dyz 0.6449 1.0020 −0.3572 3dyz 1.0012 1.0014 −0.0002

3dxz 0.6525 1.0020 −0.3496 3dxz 1.0014 1.0017 −0.0003
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wMO43a ¼ 0:37/Fe1 3dx2ð Þ þ 0:40/Fe1 3dy2ð Þ � 0:78/Fe1 3dz2ð Þ
þ 0:14/F2 2px0ð Þ þ 0:12/F2 2px00ð Þ � 0:15/F3 2py0ð Þ � 0:13/F3 2py00ð Þ
� 0:14/F4 2px0ð Þ � 0:12/F4 2px00ð Þ þ 0:15/F5 2py0ð Þ þ 0:13/F5 2py00ð Þ
� 0:27/F6 2pz0ð Þ � 0:23/F6 2pz00ð Þ þ 0:27/F7 2pz0ð Þ þ 0:23/F7 2pz00ð Þ

ð11:5Þ

MO43α
(0.5082)

MO41α
(0.4553)

MO40α
(0.4551)

MO28α
(0.3888)

MO26α
(0.3673)

MO25α
(0.3672)

MO23α
(0.3488)

MO22α
(0.3280)

MO42α
(0.5058)

MO44α
(0.5339) eg

t2g

Quintet electron configuration

MO40β
(0.5946)

MO26β
(0.3982)

Fig. 11.6 Electron
configuration of quintet iron,
and selected molecular
orbitals of FeF6 model in
quintet spin state. The orbital
energy is shown in
parenthesis
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wMO44a ¼ �0:73/Fe1 3dx2ð Þ þ 0:71/Fe1 3dy2ð Þ
� 0:22/F2 2px0ð Þ � 0:19/F2 2px00ð Þ � 0:22/F3 2py0ð Þ � 0:19/F3 2py00ð Þ
þ 0:22/F4 2px0ð Þ þ 0:19/F4 2px00ð Þ þ 0:22/F5 2py0ð Þ þ 0:19/F5 2py00ð Þ

ð11:6Þ

In MO22a, iron 3d3z2�r2 orbital has orbital overlap with fluorine 2p orbitals. One
iron 3d lobe interacts with one fluorine 2p lobe. From chemical bonding rule, it is
found that r-type covalent bonding is formed. MO43a represents corresponding
inversion r-type covalent bonding. In MO23a, iron 3dx2�y2 orbital has orbital
overlap with fluorine 2p orbitals. One iron 3d lobe interacts with one fluorine 2p
lobe. From chemical bonding rule, it is found that r-type covalent bonding is
formed. MO44a represents corresponding inversion r-type covalent bonding. The
spin population of iron 3dx2 ; 3dy2 and 3dz2 orbitals is 0.634, 0.636 and 0.630,
respectively. As the whole, there exist about two spins in iron 3d3z2�r2 and 3dx2�y2

orbitals. The obtained wave-functions of MO25a, MO26a, MO40a and MO41a are

wMO25a ¼ 0:61/Fe1 3dxzð Þ
þ 0:21/F2 2pz0ð Þ þ 0:18/F2 2pz00ð Þ � 0:21/F4 2pz0ð Þ � 0:18/F4 2pz00ð Þ
þ 0:24/F6 2px0ð Þ þ 0:21/F6 2px00ð Þ � 0:24/F7 2px0ð Þ � 0:21/F7 2px00ð Þ

ð11:7Þ

wMO26a ¼ 0:61/Fe1 3dyzð Þ
� 0:21/F3 2pz0ð Þ � 0:18/F3 2pz00ð Þ þ 0:21/F5 2pz0ð Þ þ 0:18/F5 2pz00ð Þ
þ 0:24/F6 2py0ð Þ þ 0:21/F6 2py00ð Þ � 0:24/F7 2py0ð Þ � 0:21/F7 2py00ð Þ

ð11:8Þ

wMO40a ¼ 0:78/Fe1 3dyzð Þ
þ 0:24/F3 2pz0ð Þ þ 0:21/F3 2pz00ð Þ � 0:24/F5 2pz0ð Þ � 0:21/F5 2pz00ð Þ
� 0:17/F6 2py0ð Þ � 0:15/F6 2py00ð Þ þ 0:17/F7 2py0ð Þ þ 0:15/F7 2py00ð Þ

ð11:9Þ

wMO41a ¼ �0:13/Fe1 3dxyð Þ þ 0:77/Fe1 3dxzð Þ
� 0:24/F2 2pz0ð Þ � 0:20/F2 2pz00ð Þ þ 0:24/F4 2pz0ð Þ þ 0:20/F4 2pz00ð Þ
� 0:17/F6 2px0ð Þ � 0:14/F6 2px00ð Þ þ 0:17/F7 2px0ð Þ þ 0:14/F7 2px00ð Þ

ð11:10Þ

In MO25a, iron 3d3xz orbital has orbital overlap with fluorine 2p orbitals. Two
iron 3d lobes interact with two fluorine 2p lobes. From chemical bonding rule, it is
found that p-type covalent bonding is formed. MO41a represents corresponding
inversion r-type covalent bonding. In MO26a, iron 3dyz orbital has orbital overlap
with fluorine 2p orbitals. Two iron 3d lobes interact with two fluorine 2p lobes.
From chemical bonding rule, it is found that p-type covalent bonding is formed.
MO40a represents corresponding inversion p-type covalent bonding. The obtained
wave-functions of MO28a, MO26b, MO42a and MO40b are
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wMO28a ¼ 0:39/Fe1 3dxyð Þ
þ 0:27/F2 2py0ð Þ þ 0:24/F2 2py00ð Þ � 0:27/F3 2px0ð Þ � 0:24/F3 2px00ð Þ
� 0:27/F4 2py0ð Þ � 0:24/F4 2py00ð Þ þ 0:27/F5 2px0ð Þ þ 0:24/F5 2px00ð Þ

ð11:11Þ

wMO26b ¼ 0:19/Fe1 3dxyð Þ
þ 0:25/F2 2py0ð Þ þ 0:22/F2 2py00ð Þ þ 0:14/F2 2pz0ð Þ þ 0:12/F2 2pz00ð Þ
� 0:25/F3 2px0ð Þ � 0:22/F3 2px00ð Þ
� 0:25/F4 2py0ð Þ � 0:22/F4 2py00ð Þ � 0:14/F4 2pz0ð Þ � 0:12/F4 2pz00ð Þ
þ 0:25/F5 2px0ð Þ þ 0:22/F5 2px00ð Þ
þ 0:18/F6 2px0ð Þ þ 0:16/F6 2px00ð Þ � 0:18/F7 2px0ð Þ � 0:16/F7 2px00ð Þ

ð11:12Þ

wMO42a ¼ �0:91/Fe1 3dxyð Þ � 0:16/Fe1 3dxzð Þ
þ 0:14/F2 2py0ð Þ þ 0:11/F2 2py00ð Þ � 0:14/F3 2px0ð Þ � 0:11/F3 2px00ð Þ
� 0:14/F4 2py0ð Þ � 0:11/F4 2py00ð Þ þ 0:14/F5 2px0ð Þ þ 0:11/F5 2px00ð Þ

ð11:13Þ

wMO40b ¼ �0:96/Fe1 3dxyð Þ � 0:17/Fe1 3dxzð Þ
þ 0:09/F2 2py0ð Þ þ 0:07/F2 2py00ð Þ � 0:09/F3 2px0ð Þ � 0:07/F3 2px00ð Þ
� 0:09/F4 2py0ð Þ � 0:07/F4 2py00ð Þ þ 0:09/F5 2px0ð Þ þ 0:07/F5 2px00ð Þ

ð11:14Þ

MO28a and MO26b are approximately paired. In MO28a and MO26b, iron 3dxy
orbital has orbital overlap with fluorine 2p orbitals. Two iron 3d lobes interact with
two fluorine 2p lobes. From chemical bonding rule, it is found that p-type covalent
bonding is formed. MO42a and MO40b are also approximately paired. They are
corresponding inversion p-type covalent bonding.

11.5.2 Singlet Electron Configuration

Figure 11.7 depicts the electron configuration of singlet iron and selected molecular
orbitals of FeF6 model in singlet spin state. Degenerated MO23, MO24 and MO25
represent hybridized t2g orbitals. Two iron lobes interact with two fluorine lobes.
From chemical bonding rule, it is found that p-type covalent bonding is formed.
Degenerated MO40, MO41 and MO42 correspond to inversion p-type covalent
bonding.

Figure 11.8 shows the potential energy curve of FeF6 model, changing Fe–F
distance. Local minima are given around 2.2 Å in quartet electron configuration, and
2.1 Å in singlet electron configuration. In all regions, quintet electron configuration is
more stable than singlet electron configuration. In FeF6 model, potential energy
curves are not crossed. However, if two potential energy curves are crossed between
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Fig. 11.7 Electron configuration of singlet iron, and molecular orbitals of FeF6 model in singlet
spin state. The orbital energy is shown in parenthesis
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Fig. 11.8 Potential energy curve of FeF6 model, changing Fe–F distance
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different electron configurations, spin transition occurs between different electron
configurations. The phenomenon is called spin crossover. In fact, spin crossover is
observed in Prussian blue. The spin transition occurs between quartet and singlet
electron configurations by changing Fe–CN distance. The conditions of spin cross-
over are very sensitive and complex, depending on patterns of Coulomb repulsion,
charge transfer, orbital overlap, superexchange interaction, etc.
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Chapter 12
Photocatalyst

Abstract SrTiO3 perovskite has been utilized as photocatalyst. The bandgap
(3.27 eV) corresponds to the wave-length of ultraviolet light. In general, virtual
molecular orbital does not represent excited electronic structure. However, in
SrTiO3 perovskite, the reliable LUMO is given, due to the inclusion of electron
correlation effect and stable crystal structure. Bandgap can be estimated as HOMO–
LUMO energy gap. To enhance visible light response, nitrogen-doping and
carbon-doping at oxygen site are performed to decrease bandgap, corresponding to
the wave-length of visible light. From the viewpoint of energetics and bonding, the
mechanism of bandgap change is explained. In nitrogen-doping, combined oxygen
vacancy disturbs visible light response. Instead, in carbon-doping, visible light
response is enhanced, due to no oxygen vacancy.

Keywords Bandgap � HOMO–LUMO energy gap � Hybrid-DFT � Photocatalyst �
SrTiO3 perovskite

12.1 Bandgap

As is explained in Chap. 4, virtual (unoccupied) molecular orbitals (MOs) are
produced as the result of the introduction of basis function. In general, virtual MO
does not represent excited electronic structure. However, in SrTiO3 perovskite, the
reliable lowest unoccupied molecular orbital (LUMO) is given, due to the inclusion
of the electron correlation effect in LUMO, and stable crystal structure. The exci-
tation energy of solid is called “bandgap”. As shown in Fig. 12.1, in molecular
orbital, bandgap corresponds to HOMO–LUMO energy gap.
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12.2 Bandgap Estimation in SrTiO3 Perovskite

BHHLYP calculation is performed for SrTi8O12 model of SrTiO3 perovskite, where
Ti-O-Ti distance is 3.91Å (see Fig. 12.2). Basis sets used for titanium, oxygen and
strontium are MINI(5.3.3.3/5.3/5), 6-31G* and MINI(4.3.3.3.3/4.3.3/4), respec-
tively. The formal charges of titanium and oxygen are +4 and −2, respectively. It
implies that titanium formally has no 3d electron.

Figure 12.3 depicts the orbital energy diagram and molecular orbitals of
SrTi8O12 model. The obtained wave-function of HOMO is

Bandgap 
LUMO

HOMO 

(a) (b) Conduction band

Valence band

(c) 

Fig. 12.1 Schematic drawing of the relationship between HOMO–LUMO energy gap and
bandgap: a ground state of molecular orbital; b excited state of molecular orbital; c band structure.
Ref. [1] by permission from Elsevier
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wHOMO ¼ �0:14/O9 2px0ð Þ � 0:10/O9 2px00ð Þ þ 0:14/O9 2pz0ð Þ þ 0:10/O 2pz00ð Þ
þ 0:14/O10 2px0ð Þ þ 0:10/O10 2px00ð Þ þ 0:14/O10 2pz0ð Þ þ 0:10/O10 2pz00ð Þ
þ 0:14/O11 2py0ð Þ þ 0:10/O11 2py00ð Þ � 0:14/O11 2pz0ð Þ � 0:10/O11 2pz00ð Þ
� 0:14/O12 2py0ð Þ � 0:10/O12 2py00ð Þ � 0:14/O12 2pz0ð Þ � 0:10/O12 2pz00ð Þ
þ 0:14/O13 2px0ð Þ þ 0:10/O13 2px00ð Þ � 0:14/O13 2py0ð Þ � 0:10/O13 2py00ð Þ
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Fig. 12.3 Orbital energy diagram and molecular orbitals of SrTi8O12 model. (BHHLYP method)
Ref. [1] by permission from Elsevier
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þ 0:14/O14 2px0ð Þ þ 0:10/O14 2px00ð Þ þ 0:14/O14 2py0ð Þ þ 0:10/O14 2py00ð Þ
� 0:14/O15 2px0ð Þ � 0:10/O15 2px00ð Þ � 0:14/O15 2py0ð Þ � 0:10/O15 2py00ð Þ
� 0:14/O16 2px0ð Þ � 0:10/O16 2px00ð Þ þ 0:14/O16 2py0ð Þ þ 0:10/O16 2py00ð Þ
� 0:14/O17 2px0ð Þ � 0:10/O17 2px00ð Þ � 0:14/O17 2pz0ð Þ � 0:10/O17 2pz00ð Þ
þ 0:14/O18 2px0ð Þ þ 0:10/O18 2px00ð Þ � 0:14/O18 2pz0ð Þ � 0:10/O18 2pz00ð Þ
þ 0:14/O19 2py0ð Þ þ 0:10/O19 2py00ð Þ þ 0:14/O19 2pz0ð Þ þ 0:10/O19 2pz00ð Þ
� 0:14/O20 2py0ð Þ � 0:10/O20 2py00ð Þ þ 0:14/O19 2pz0ð Þ þ 0:10/O19 2pz00ð Þ ð12:1Þ

HOMO consists of 2p orbitals of twelve oxygen atoms. The obtained
wave-function of LUMO is

wLOMO ¼ �0:21/Ti1 3dxyð Þ � 0:21/Ti1 3dxzð Þ � 0:21/Ti1 3dyzð Þ
� 0:21/Ti2 3dxyð Þ þ 0:21/Ti2 3dxzð Þ � 0:21/Ti2 3dyzð Þ
� 0:21/Ti3 3dxyð Þ � 0:21/Ti3 3dxzð Þ þ 0:21/Ti3 3dyzð Þ
� 0:21/Ti4 3dxyð Þ þ 0:21/Ti4 3dxzð Þ þ 0:21/Ti4 3dyzð Þ
þ 0:21/Ti5 3dxyð Þ � 0:21/Ti5 3dxzð Þ � 0:21/Ti5 3dyzð Þ
þ 0:21/Ti6 3dxyð Þ þ 0:21/Ti6 3dxzð Þ � 0:21/Ti6 3dyzð Þ
þ 0:21/Ti7 3dxyð Þ � 0:21/Ti7 3dxzð Þ þ 0:21/Ti7 3dyzð Þ
þ 0:21/Ti8 3dxyð Þ þ 0:21/Ti8 3dxzð Þ þ 0:21/Ti8 3dyzð Þ

ð12:2Þ

LUMO consists of t2g-type 3d orbitals of eight titanium atoms. The obtained
wave-function of MO114 is

wMO114 ¼ 0:10/Sr 2pxð Þ � 0:31/Sr 3pxð Þ þ 0:72/Sr 4pxð Þ
þ 0:19/Sr 3pyð Þ � 0:43/Sr 4pyð Þ þ 0:28/Sr 3pzð Þ � 0:63/Sr 4pzð Þ

ð12:3Þ

MO114 consists of strontium 4p orbitals, which are outer shell orbitals. It is
found that strontium is isolated as counter cation.

The orbital overlap between titanium 3d and oxygen 2p orbitals is observed in
between MO115 and MO144. Although LUMO consists of titanium 3d orbital, the
electron correlation effect between titanium and oxygen is taken into account.
MO145–MO150 consist of oxygen 2p orbitals. Thus, it is found that charge transfer
occurs from oxygen to titanium 3d electron, and orbital overlap occurs between
titanium 3d and oxygen 2p orbitals, due to the electron correlation effect.

Bandgap depends on the magnitudes of charge transfer and orbital overlap. It is
well known that bandgap is underestimated by pure DFT methods such as LDA and
GGA. It is closely related to the fact that pure DFT overestimates the magnitudes of
charge transfer and orbital overlap (delocalization effect). To solve the problem,
hybrid-DFT is utilized to incorporate the localization effect by Hartree-Fock
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exchange functional. In hybrid-DFT, the exchange and correlation energy is
expressed as

EXC ¼ c1E
HF
X þ c2E

Slater
X þ c3E

Becke
X þ c4E

VWN
C þ c5E

LYP
C ð12:4Þ

where EHF
X ESlater

X and EBecke
X denote Hartree-Fock, Slater and Becke exchange

energies, respectively; EVWN
C and ELYP

C denote Vosko-Wilk-Nusair and Lee-Yang-
Parr correlation energies, respectively. The coefficients of Hartree-Fock exchange
energy are 1.0, 0.5, 0.2 and 0.0 for Hartree-Fock, BHHLYP, B3LYP and BLYP
methods, respectively.

Figure 12.4 shows the variation of bandgap by changing Hartree-Fock exchange
coefficient in SrTi8O12 model. Bandgap approximately increases, in proportion to
Hartree-Fock coefficient. The experimental SrTiO3 bandgap (3.27 eV) is repro-
duced by the Hartree-Fock coefficient between BHHLYP and B3LYP.

Figure 12.5 shows the variations of Mulliken charge densities of titanium,
oxygen and strontium by changing Hartree-Fock exchange coefficient in SrTi8O12

model. Charge density of titanium monotonously increases, and charge density of
oxygen monotonously decreases, in proportion to Hartree-Fock coefficient. On the
other hand, charge density of strontium is unchanged. It is concluded that bandgap
depends on the magnitude of Hartree-Fock coefficient. Here, the scaling factor
(k) can be applicable as substitution for determining the best Hartree-Fock
coefficient.

DE ¼ kDEBHHLYP ð12:5Þ

The k value is 0.73 in SrTiO3 perovskite. The corrected bandgap (DE) can be
estimated from the calculated one by BHHLYP (DEBHHLYP).
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Fig. 12.4 Variation of corrected bandgap, changing the Hartree-Fock exchange coefficient in
SrTi8O12 model. (BHHLYP method) Ref. [2] by permission from Wiley
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12.3 Photocatalytic Activity of SrTiO3 Perovskite

12.3.1 Introduction of Photocatalyst

Titanium oxides such as SrTiO3 and TiO2 are widely utilized as photocatalyst under
ultraviolet light. About 40% of sunlight belongs to visible light, though ultraviolet
light is less than 5% of sunlight. For the effective use of sunlight, photocatalyst with
visible light response has been explored. SrTiO3 bandgap (3.27 eV) corresponds to
wave-length of ultraviolet light. To enhance a visible light response, the bandgap
must be decreased, corresponding to wave-length of visible light (see Fig. 12.6).

Figure 12.7 depicts the schematic drawing of orbital energy diagram and pho-
tocatalytic reactions. When electron is excited by sunlight, electron hole (h) is
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Fig. 12.5 Variation of Mulliken charge densities of titanium, oxygen and strontium, changing
Hartree-Fock exchange coefficient in SrTi8O12 model. (BHHLYP method) Ref. [2] by permission
from Wiley
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produced within occupied molecular orbital. Let us explain the possible major
reactions. One is the reaction between excited electron and oxygen molecule:

e� þO2 ! O�
2 ð12:6Þ

Then, superoxide reacts with proton:

2O�
2 þ 2Hþ ! H2O2 þO2 ð12:7Þ

The other is the reaction between electron hole (h) and hydroxyl group (OH−)

hþOH� ! �OH ð12:8Þ

It is known that the produced active species on the surface are closely related to
photocatalytic reactions such as water oxidation, decomposition, etc. Though
several reactions on surface are proposed, the details are still unclear.

12.3.2 Nitrogen-Doping

It was reported that bandgap decreases by dopings of nitrogen, carbon and sulphur,
and transition metals (see Fig. 12.8). Here, the effect of nitrogen-doping at oxygen

Electron hole

Excited electron

O2

OH- 

Fig. 12.7 Schematic drawing of orbital energy diagram and photocatalytic reactions
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site on photocatalytic activity is investigated, from the viewpoint of energetics and
bonding.

As shown in Fig. 12.9a, one-nitrogen-doped SrTi8O11N model is constructed.
The formal charges of oxygen and nitrogen are −2.0 and −3.0, respectively. One
oxygen vacancy is produced per two-nitrogen-doping, due to the neutral condition
as the whole. To investigate the effect of oxygen vacancy on bandgap change,
SrTi8O10N model is also constructed (see Fig. 12.9b).

BHHLYP calculation is performed for SrTi8O11N and SrTi8O10N models. Basis
sets for titanium, oxygen, nitrogen and strontium are MINI(5.3.3.3/5.3/4.1),
6-311 + G*, 6-311 + G* and MINI(4.3.3.3.3/4.3.3/4), respectively. Due to the
smaller formal charge of nitrogen, Coulomb interaction between titanium and
nitrogen is larger than between titanium and oxygen. Hence, the shrink of Ti-N-Ti
bond is taken into account as partially structural relaxation. Titanium is displaced
from the cubic corner towards nitrogen of Ti-N-Ti bond.

Figure 12.10 shows the potential energy curve, when displacing titanium. The
local minimum is given between 0.15 and 0.20Å. Figure 12.11 shows the variation
of corrected bandgap, when displacing titanium. The corrected bandgap near the
local minimum (between 0.15 and 0.20Å) is between 3.00 and 3.18 eV. It is found
that nitrogen-doping enhances visible light response.

Bandgap decrease

N-doping 
C-doping 

Fig. 12.8 Schematic drawing
of bandgap decrease by
doping
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nitrogen in Ti-N-Ti bond. d is the displacement distance from the cubic corner. (BHHLYP
method)
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Figure 12.12 depicts the selected molecular orbitals of SrTi8O11N model at
d = 0.15Å. The obtained wave-function of HOMO-2 is

wHOMO�2 ¼ 0:12/O9 2px00ð Þ þ 0:14/O9 2px000ð Þ
� 0:11/O10 2px00ð Þ � 0:12/O10 2px000ð Þ � 0:09/O10 2pz00ð Þ � 0:10/O10 2pz000ð Þ
� 0:11/O11 2py00ð Þ � 0:12/O11 2py000ð Þ þ 0:09/O11 2pz00ð Þ þ 0:10/O11 2pz000ð Þ
þ 0:12/O12 2py00ð Þ þ 0:14/O12 2py000ð Þ
� 0:10/O13 2px00ð Þ � 0:11/O13 2px000ð Þ
þ 0:10/O15 2px00ð Þ þ 0:10/O15 2px000ð Þ þ 0:10/O15 2py00ð Þ þ 0:10/O15 2py000ð Þ
� 0:10/O16 2py00ð Þ � 0:10/O16 2py000ð Þ
þ 0:12/O17 2px00ð Þ þ 0:14/O17 2px000ð Þ
� 0:11/O18 2px00ð Þ � 0:12/O18 2px000ð Þ þ 0:09/O18 2pz00ð Þ þ 0:10/O18 2pz000ð Þ
� 0:11/O19 2py00ð Þ � 0:12/O19 2py000ð Þ � 0:09/O19 2pz00ð Þ � 0:10/O19 2pz000ð Þ
þ 0:12/O20 2py00ð Þ þ 0:14/O20 2py000ð Þ

ð12:9Þ

HOMO-2 consists of oxygen 2p orbitals, corresponding to valence bond. The
obtained wave-functions of HOMO-1 and HOMO are
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Fig. 12.11 Variation of corrected bandgap of SrTi8O11N model, when displacing titanium towards
nitrogen in Ti-N-Ti bond. d is the displacement distance from the cubic corner. (BHHLYP method)
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wHOMO�1 ¼ �0:12/Ti2 3dxz0ð Þ þ 0:12/Ti2 3dyz0ð Þ
þ 0:12/Ti6 3dxz0ð Þ � 0:12/Ti6 3dyz0ð Þ
� 0:14/O9 2pz00ð Þ � 0:15/O9 2pz000ð Þ
� 0:14/O12 2pz00ð Þ � 0:15/O12 2pz000ð Þ
þ 0:11/O13 2py00ð Þ þ 0:13/O13 2py000ð Þ
þ 0:12/N14 2px0ð Þ þ 0:18/N14 2px00ð Þ þ 0:23/N14 2px000ð Þ

LUMO
(-1.2761)

HOMO
(-1.4271)

Orbital energy

HOMO-1 
(-1.4422)

HOMO-2 
(-1.4608)

Fig. 12.12 Orbital energy diagram and selected molecular orbitals of SrTi8O11N model at
d = 0.15Å. The orbital energy is given in parenthesis. (BHHLYP method)
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� 0:12/N14 2py0ð Þ � 0:18/N14 2py00ð Þ � 0:23/N14 2py000ð Þ
� 0:11/O16 2px00ð Þ � 0:13/O16 2px000ð Þ
þ 0:14/O17 2pz00ð Þ þ 0:15/O17 2pz000ð Þ
þ 0:14/O20 2pz00ð Þ þ 0:15/O20 2pz000ð Þ ð12:10Þ

wHOMO ¼ �0:13/Ti2 3dxz0ð Þ � 0:13/Ti2 3dyz0ð Þ þ 0:13/Ti6 3dxz0ð Þ þ 0:13/Ti6 3dyz0ð Þ
þ 0:14/O9 2pz00ð Þ þ 0:15/O9 2pz000ð Þ
� 0:14/O12 2pz00ð Þ � 0:15/O12 2pz000ð Þ
� 0:10/O13 2py00ð Þ � 0:11/O13 2py000ð Þ
þ 0:11/N14 2px0ð Þ þ 0:18/N14 2px00ð Þ þ 0:21/N14 2px000ð Þ
þ 0:11/N14 2py0ð Þ þ 0:18/N14 2py00ð Þ þ 0:21/N14 2py000ð Þ
� 0:10/O16 2px00ð Þ � 0:11/O16 2px000ð Þ
� 0:14/O17 2pz00ð Þ � 0:15/O17 2pz000ð Þ
þ 0:14/O20 2pz00ð Þ þ 0:15/O20 2pz000ð Þ

ð12:11Þ

HOMO-1 and HOMO consist of titanium 3d, nitrogen 2p and oxygen 2p
orbitals. There is orbital overlap between titanium t2g-type 3d and nitrogen 2p
orbitals. Two titanium lobes interact with two nitrogen lobes. From chemical
bonding rule, it is found that p-type covalent bonding is formed. The obtained
wave-function of LUMO is

wLUMO ¼ �0:27/Ti1 3dxz0ð Þ � 0:35/Ti3 3dxz0ð Þ þ 0:35/Ti3 3dyz0ð Þ þ 0:27/Ti4 3dyz0ð Þ
� 0:27/Ti5 3dxz0ð Þ � 0:35/Ti7 3dxz0ð Þ þ 0:35/Ti7 3dyz0ð Þ þ 0:27/Ti8 3dyz0ð Þ

ð12:12Þ

LUMO consists of titanium t2g-type 3d orbitals, corresponding to conduction
band. It is found that electron of HOMO is excited to LUMO by the smaller
excitation energy.

Figure 12.13 depicts the molecular orbitals of oxygen-deficient SrTi8O10N
model at d = 0.15Å. The obtained wave-function of HOMO-1 is
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LUMO+1
(-1.5738)

LUMO
(-1.6531)

Orbital energy

HOMO
(-1.6715)

HOMO-1
(-1.7578)

LUMO+2
(-1.5594)

Fig. 12.13 Orbital energy diagram and selected molecular orbitals of SrTi8O10N model at
d = 0.15Å. The orbital energy is given in parenthesis. (BHHLYP method)
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wHOMO�1 ¼ 0:10/O9 2pz0ð Þ þ 0:15/O9 2pz00ð Þ þ 0:16/O9 2pz000ð Þ
þ 0:10/O12 2pz0ð Þ þ 0:15/O12 2pz00ð Þ þ 0:16/O12 2pz000ð Þ
� 0:12/O13 2py0ð Þ � 0:17/O13 2py00ð Þ � 0:19/O13 2py000ð Þ
� 0:11/N14 2px00ð Þ � 0:14/N14 2px000ð Þ þ 0:11/N14 2py00ð Þ þ 0:14/N14 2py000ð Þ
þ 0:12/O16 2px0ð Þ þ 0:17/O16 2px00ð Þ þ 0:19/O16 2px00ð Þ
� 0:10/O17 2pz0ð Þ � 0:15/O17 2pz00ð Þ � 0:16/O17 2pz000ð Þ
� 0:10/O20 2pz0ð Þ � 0:15/O20 2pz00ð Þ � 0:16/O20 2pz000ð Þ

ð12:13Þ

HOMO-1 consists of oxygen 2p orbitals, corresponding to valence band. The
obtained wave-function of LUMO + 2 is

wLUMOþ 2 ¼ 0:33/Ti1 3dyz0ð Þ � 0:30/Ti2 3dxz0ð Þ þ 0:30/Ti2 3dyz0ð Þ � 0:33/Ti4 3dxz0ð Þ
þ 0:33/Ti5 3dyz0ð Þ � 0:30/Ti6 3dxz0ð Þ þ 0:30/Ti6 3dyz0ð Þ � 0:33/Ti8 3dxz0ð Þ

ð12:14Þ

LUMO + 2 consists of titanium t2g-type 3d orbitals, corresponding conduction
band. There are three MOs between valence bond and conduction band. The
obtained wave-functions of HOMO and LUMO + 1 are

wHOMO ¼ 0:16/Ti3 3sð Þ � 0:25/Ti3 3dx20ð Þ � 0:25/Ti3 3dy20ð Þ þ 0:60/Ti3 3dz20ð Þ þ 0:18/Ti3 3dz200ð Þ
þ 0:16/Ti7 3sð Þ � 0:25/Ti7 3dx20ð Þ � 0:25/Ti7 3dy20ð Þ þ 0:60/Ti7 3dz20ð Þ þ 0:18/Ti7 3dz200ð Þ

ð12:15Þ

wLUMOþ 1 ¼ 0:30/Ti3 3dx20ð Þ þ 0:30/Ti3 3dy20ð Þ � 0:63/Ti3 3dz20ð Þ � 0:14/Ti3 3dz200ð Þ
� 0:30/Ti7 3dx20ð Þ � 0:30/Ti7 3dy20ð Þ þ 0:63/Ti7 3dz20ð Þ þ 0:14/Ti7 3dz200ð Þ

ð12:16Þ

In HOMO and LUMO + 1, there is orbital overlap between titanium 3dz
2 orbi-

tals. One titanium lobe interacts with one titanium lobe. From chemical bonding
rule, it is found that the long range r-type covalent bonding is formed between
titanium 3d orbitals. Note that LUMO + 1 is inversion r-type covalent bonding to
HOMO. The obtained wave-function of LUMO is
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wLUMO ¼ �0:10/Ti2 3dxz0ð Þ � 0:10/Ti2 3dyz0ð Þ þ 0:10/Ti6 3dxz0ð Þ � 0:10/Ti6 3dyz0ð Þ

þ 0:15/O9 2pz00ð Þ þ 0:16/O9 2pz000ð Þ
� 0:15/O12 2pz00ð Þ � 0:16/O12 2pz000ð Þ
� 0:11/O13 2py00ð Þ � 0:13/O13 2py000ð Þ
þ 0:11/N14 2px0ð Þ þ 0:17/N14 2px00ð Þ þ 0:20/N14 2px000ð Þ
þ 0:11/N14 2py0ð Þ þ 0:17/N14 2py00ð Þ þ 0:20/N14 2py000ð Þ
� 0:11/O16 2px00ð Þ � 0:13/O16 2px000ð Þ
� 0:15/O17 2pz00ð Þ � 0:16/O17 2pz000ð Þ
þ 0:15/O20 2pz00ð Þ þ 0:16/O20 2pz000ð Þ

ð12:17Þ

In LUMO, there is orbital overlap between titanium t2g-type 3d and nitrogen 2p
orbitals. Two titanium lobes interact with two nitrogen lobes. From chemical
bonding rule, it is found that p-type covalent bonding is formed. The corrected
bandgap is 0.37 eV. It is found that oxygen vacancy disturbs a visible light
response, due to small bandgap.

Figure 12.14 depicts the schematic drawing of the effect of nitrogen-doping.
A visible light response is enhanced in the perfect cubic unit. It is because the
bandgap corresponds to the wave-length of visible light. However, in
oxygen-deficient cubic unit, there is no visible light response, due to bandgap
decrease.

Visible light

Nitrogen Oxygen vacancy 

Fig. 12.14 Schematic
drawing of the effect of
nitrogen-doping in SrTiO3

perovskite
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12.3.3 Carbon-Doping

In nitrogen-doping, oxygen vacancy is combined, due to the difference of the formal
charges. It was found that oxygen vacancy disturbs visible light response. As the
alternative dopant, carbon is proposed. It is because the formal charge of carbon can be
controllable.WhenC2− is doped at oxygen site, the perfect crystal can be realized.Here,
the effect of carbon-doping at oxygen site on photocatalytic activity is investigated.

Figure 12.15 depicts one carbon-doped SrTi8O11C model. BHHLYP calculation
is performed for SrTi8O11C model. Basis sets for titanium, oxygen, nitrogen and
strontium are MINI(5.3.3.3/5.3/5), 6-31G*, 6-31G* and MINI(4.3.3.3.3/4.3.3/4),
respectively. The elongation of Ti-C-Ti bond is taken into account as partially
structural relaxation. Titanium is displaced from the cubic corner towards carbon or
oxygen in neighbouring SrTi8O11C unit or SrTi8O12 unit.

Figure 12.16 shows the potential energy curve of SrTi8O11C model, when dis-
placing titanium. The local minimum is given around 0.10Å. It implies that Ti-C-Ti
bond is longer than Ti-O-Ti bond. It is because Coulomb interaction between
titanium and carbon is smaller than between titanium and oxygen, due to small
Mulliken charge density of carbon (−0.248). Figure 12.17 shows the variation of
corrected bandgap when displacing titanium. At the local minimum, the corrected
bandgap is 2.41 eV, corresponding to 513 nm. It is found that the desirable
bandgap is obtained in SrTi8O11C model.

Figure 12.18 depicts the selected molecular orbitals of SrTi8O11C model at
d = 0.10Å. The obtained wave-functions of MO132 and MO142 are
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Fig. 12.15 SrTi8O11C model
of carbon-doped SrTiO3

perovskite. The arrows
depicts a titanium
displacement direction

216 12 Photocatalyst



-293393.0

-293392.8

-293392.6

-293392.4

-293392.2

-293392.0

-293391.8

-293391.6

-293391.4

-293391.2

-293391.0

-0.10 -0.05 0.00 0.05 0.10 0.15 0.20 0.25

T
ot

al
 e

ne
rg

y 
[e

V
] 

d [Å] 

Fig. 12.16 Potential energy curve of SrTi8O11C model, when displacing titanium towards carbon
or oxygen in neighbouring SrTi8O11C unit or SrTi8O12 unit, respectively. d is the displacement
distance. (BHHLYP method)
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Fig. 12.17 Variation of corrected bandgap of SrTi8O11C model, when displacing titanium
towards carbon or oxygen in neighbouring SrTi8O11C unit or SrTi8O12 unit, respectively. d is the
displacement distance. (BHHLYP method)
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Fig. 12.18 Orbital energy diagram and molecular orbitals of SrTi8O11C model at d = 0.10Å. The
orbital energy is given in parenthesis. (BHHLYP method)
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wMO132 ¼ 0:11/Ti2 2pz00ð Þ � 0:11/Ti2 3dx2ð Þ � 0:11/Ti2 3dy2ð Þ þ 0:24/Ti2 3dz2ð Þ
þ 0:11/Ti6 2pz00ð Þ þ 0:11/Ti6 3dx2ð Þ þ 0:11/Ti6 3dy2ð Þ � 0:24/Ti6 3dz2ð Þ
þ 0:30/C14 2pz0ð Þ þ 0:27/C14 2pz00ð Þ
� 0:20/O9 2pz0ð Þ � 0:14/O9 2pz00ð Þ � 0:20/O12 2pz0ð Þ � 0:14/O12 2pz00ð Þ
� 0:20/O17 2pz0ð Þ � 0:14/O17 2pz00ð Þ � 0:20/O20 2pz0ð Þ � 0:14/O20 2pz00ð Þ

ð12:18Þ

wMO142 ¼ �0:10/Ti2 3dx2ð Þ � 0:10/Ti2 3dy2ð Þ þ 0:35/Ti2 3dz2ð Þ
þ 0:10/Ti6 3dx2ð Þ þ 0:10/Ti6 3dy2ð Þ � 0:35/Ti6 3dz2ð Þ
þ 0:36/C14 2pz0ð Þ þ 0:20/C14 2pz00ð Þ
þ 0:19/O9 2pz0ð Þ þ 0:14/O9 2pz00ð Þ þ 0:19/O12 2pz0ð Þ þ 0:14/O12 2pz00ð Þ
þ 0:19/O17 2pz0ð Þ þ 0:14/O17 2pz00ð Þ þ 0:19/O20 2pz0ð Þ þ 0:14/O20 2pz00ð Þ

ð12:19Þ

There is orbital overlap between titanium eg-type 3d and carbon 2p orbitals. One
titanium lobe interacts with one carbon lobe. From chemical bonding rule, it is
found that r-type covalent bonding is formed. The obtained wave-function of
HOMO-1 is

wHOMO�1 ¼ 0:13/O9 2px0ð Þ þ 0:10/O9 2px00ð Þ
� 0:15/O10 2px0ð Þ � 0:11/O10 2px00ð Þ � 0:19/O10 2pz0ð Þ � 0:14/O10 2pz00ð Þ
� 0:15/O11 2py0ð Þ � 0:11/O11 2py00ð Þ þ 0:19/O11 2pz0ð Þ þ 0:14/O11 2pz00ð Þ
þ 0:13/O12 2py0ð Þ þ 0:10/O12 2py00ð Þ
� 0:18/O13 2px0ð Þ � 0:14/O13 2px00ð Þ
þ 0:20/O15 2px0ð Þ þ 0:15/O15 2px00ð Þ þ 0:20/O15 2py0ð Þ þ 0:15/O15 2py00ð Þ
� 0:18/O16 2py0ð Þ � 0:14/O16 2py00ð Þ
þ 0:13/O17 2px0ð Þ þ 0:10/O17 2px00ð Þ
� 0:15/O18 2px0ð Þ � 0:11/O18 2px00ð Þ þ 0:19/O18 2pz0ð Þ þ 0:14/O18 2pz00ð Þ
� 0:15/O19 2py0ð Þ � 0:11/O19 2py00ð Þ � 0:19/O19 2pz0ð Þ � 0:14/O19 2pz00ð Þ
þ 0:13/O20 2py0ð Þ þ 0:10/O20 2py00ð Þ

ð12:20Þ
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HOMO-1 consists only of oxygen 2p orbital, corresponding to valence bond.
The obtained wave-function of LUMO is

wLUMO ¼ 0:14/Ti1 3dxyð Þ þ 0:30/Ti1 3dxzð Þ þ 0:15/Ti1 3dyzð Þ
þ 0:10/Ti2 3dxyð Þ � 0:14/Ti2 3dxzð Þ þ 0:14/Ti2 3dyzð Þ
þ 0:15/Ti3 3dxyð Þ þ 0:30/Ti3 3dxzð Þ � 0:30/Ti3 3dyzð Þ
þ 0:14/Ti4 3dxyð Þ � 0:15/Ti4 3dxzð Þ � 0:30/Ti4 3dyzð Þ
� 0:14/Ti5 3dxyð Þ þ 0:30/Ti5 3dxzð Þ þ 0:15/Ti5 3dyzð Þ
� 0:10/Ti6 3dxyð Þ � 0:14/Ti6 3dxzð Þ þ 0:14/Ti6 3dyzð Þ
� 0:15/Ti7 3dxyð Þ þ 0:30/Ti7 3dxzð Þ � 0:30/Ti7 3dyzð Þ
� 0:14/Ti8 3dxyð Þ � 0:15/Ti8 3dxzð Þ � 0:30/Ti8 3dyzð Þ

ð12:21Þ

LUMO consists only of titanium t2g-type 3d orbital, corresponding to conduction
bond. The obtained wave-function of HOMO is

wHOMO ¼ �0:23/Ti2 3dxzð Þ þ 0:23/Ti2 3dyzð Þ þ 0:23/Ti6 3dxzð Þ � 0:23/Ti6 3dyzð Þ
þ 0:30/C14 2px0ð Þ þ 0:21/C14 2px00ð Þ � 0:30/C14 2py0ð Þ � 0:21/C14 2py00ð Þ
� 0:16/O9 2pz0ð Þ � 0:14/O9 2pz00ð Þ � 0:16/O12 2pz0ð Þ � 0:14/O12 2pz00ð Þ
þ 0:11/O13 2py0ð Þ þ 0:10/O13 2py00ð Þ � 0:11/O16 2px0ð Þ � 0:10/O16 2px00ð Þ
þ 0:16/O17 2pz0ð Þ þ 0:14/O17 2pz00ð Þ þ 0:16/O20 2pz0ð Þ þ 0:14/O20 2pz00ð Þ

ð12:22Þ

There is orbital overlap between titanium t2g-type 3d and oxygen 2p orbitals.
Two titanium lobes interact with two oxygen lobes. From chemical bonding rule, it
is found that p-type covalent bonding is formed. It is found that electron of HOMO
is excited to LUMO with the smaller excitation energy.

Let us consider the effect of the structural relaxation in neighbouring SrTi8O11C
or SrTi8O12 units. Figure 12.19 shows the potential energy curve, when displacing
titanium along Ti-O-Ti bond in SrTi8O12 model. When titanium is displaced
towards to oxygen in Ti-O-Ti bond, the local minimum is given around 0.10Å. As
shown in Fig. 12.20a, when neighbouring unit is SrTi8O12, the structural distortion
disappears in total. Even if carbon is doped at neighbouring unit, the total structural
distortion disappears by alternate stacking.
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Fig. 12.19 Potential energy curve of SrTi8O12 model, when displacing titanium towards oxygen
in Ti-O-Ti bond. d is the displacement distance from the cubic corner. (BHHLYP method)

z 

Fig. 12.20 Schematic drawing of Ti-C elongation and Ti-O shrink in carbon-doped SrTiO3

perovskite: a stacking of SrTiO8O11C and SrTiO8O12, b alternate stacking of SrTiO8O11C. The
arrows depicts a titanium displacement direction
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Chapter 13
Secondary Battery: Lithium Ion
and Sodium Ion Conductions

Abstract Lithium ion battery has been widely in many electronic devices. Due to
flammability of liquid organic electrolyte, solid electrolyte has been explored from
the viewpoint of battery safety. To investigate the mechanism of lithium ion con-
duction in solid electrolyte of La2/3−xLi3xTiO3 perovskite, hybrid-DFT calculation
is performed. From the obtained potential energy curve, the activation energy for
lithium ion conduction can be estimated. From chemical bonding rule, it is found
that lithium ion forms ionic bonding during lithium ion conduction. Based on the
knowledge, KxBa(1−x)/2MnF3 perovskite was designed as thermally stable lithium
ion conductor. Recently, sodium ion battery has attracted much interest, because of
abundant sodium resource. However, as sodium ion has larger ionic radius, it is
more difficult to design sodium ion conductor. In this chapter, our designed sodium
ion conductors such as CsMn(CN)3, Al(CN)3 and NaAlO(CN)2 are introduced. In
CsMn(CN)3, Al(CN)3, sodium ion migrates through counter cation vacancy, as
same as La2/3−xLi3xTiO3 perovskite. In NaAlO(CN)2, the anisotropic sodium ion
conduction occurs. Sodium ion can migrates through only Al4(CN)4 bottleneck.

Keywords Secondary battery � Solid electrolyte � Lithium ion conduction �
Sodium ion conduction � Materials design

13.1 Introduction of Secondary Battery

Secondary battery is an energy storage system using both chemical reactions and
ion conductions. In general, lithium ion battery has advantages in larger gravimetric
energy density (100–200 Wh kg−1) and high voltage. In lithium ion battery, not
neutral lithium but lithium ion migrates from one electrode to another through
electrolyte, as shown in Fig. 13.1. On the other hand, in sodium ion battery, sodium
ion migrates instead of lithium ion. In general, organic solvent has been widely
utilized as electrolyte. It has a flammable problem during operation. The replace-
ment of organic solvent by solid electrolyte has been much expected from the
viewpoint of battery safety.

© Springer Nature Singapore Pte Ltd. 2018
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Lithium ion is one of the best cations in secondary battery. It is due to light
weight and small ionic radius. However, lithium resource is limited on earth. In
addition, it is often reported that the reduction reaction of lithium ion causes
unforeseen flammable accident. Recently, sodium ion battery has been explored as
a substitute of lithium ion battery, due to the abundance of sodium resource. From
the viewpoint of chemistry, as sodium ion has larger ionic radius compared with
lithium ion, it is more difficult to explore sodium ion conductor. In this chapter, the
ion conduction mechanism in solid state electrolyte is explained.

13.2 Lithium Ion Conductor

13.2.1 La2/3−xLi3xTiO3 Perovskite

It was reported that La2/3−xLi3xTiO3 perovskite exhibits high lithium ion conduc-
tivity at room temperature. Figure 13.2 depicts ATi8O12 model in La2/3−xLi3xTiO3

perovskite, where A denotes counter cation (La or Li). For the simplicity, the simple
cubic structure with lattice constant 3.871 Å (x = 0.116) is considered. Due to the
difference of formal charges of counter cations, vacancy is produced at counter
cation site. Figure 13.3 depicts the schematic drawing of lithium ion conduction in
La2/3−xLi3xTiO3 perovskite. Though lanthanum cation is kept fixed due to the large
ionic radius, lithium cation can migrates through vacancy. BHHLYP calculation is
performed for LiTi8O12 model. Basis sets used for titanium, oxygen and lithium are
MINI(5.3.3.3/5.3/5), 6-31G* and MINI(7.3), respectively.

Figure 13.4 shows the potential energy curve of LiTi8O12 model, when dis-
placing lithium ion along x axis. Note that Ti4O4 square part is called bottleneck.
Figure 13.5 depicts MO61, HOMO and LUMO of LiTi8O12 model, at the centre,
local minimum and bottleneck. The obtained wave-functions of MO61 at the centre,
local minimum and bottleneck are

wMO61 centreð Þ ¼ 0:99/Li 1sð Þ ð13:1Þ

Posi ve 
Electrode 

Nega ve 
Electrode 

Charge 

Discharge 

Li+ 

e- 

Electrolyte 

Fig. 13.1 Schematic drawing
of lithium ion battery
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wMO61 minð Þ ¼ 0:99/Li 1sð Þ ð13:2Þ

wMO61 bottleneckð Þ ¼ 0:99/Li 1sð Þ ð13:3Þ

MO61s consist of lithium 1s orbital. There is no orbital overlap between lithium
ion and others. From chemical bonding rule, it is found that lithium ion forms ionic
bonding during lithium ion conduction. The obtained wave-functions of HOMO at
the centre, local minimum and bottleneck are
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Ti
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x
0.0

Ti1

Ti5

Ti4

Ti8

Ti2

Ti6

Ti7

Ti3

O9

O10

O11

O12
O13

O14

O15 O16
O18
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Fig. 13.2 ATi8O12 model of
La2/3−xLi3xTiO3 perovskite.
A denotes La or Li. The site
numbers are shown for
titanium and oxygen.
Reference [1] by permission
from Elsevier

La 

Li 

La La 

La La 

La La La 

La 

Fig. 13.3 Schematic drawing
of lithium ion conduction in
La2/3−xLi3xTiO3 perovskite.
Reference [1] by permission
from Elsevier
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Fig. 13.4 Potential energy curve of LiTi8O12 model, when displacing lithium ion along x axis
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Fig. 13.5 Selected molecular orbitals of LiTi8O12 model at a the centre, b local minimum and
c bottleneck
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wHOMO centreð Þ ¼ 0:14/O9 2px0ð Þ þ 0:10/O9 2px00ð Þ � 0:14/O9 2pz0ð Þ � 0:10/O9 2pz00ð Þ
� 0:14/O10 2py0ð Þ � 0:10/O10 2py00ð Þ þ 0:14/O10 2pz0ð Þ þ 0:10/O10 2pz00ð Þ
� 0:14/O11 2px0ð Þ � 0:10/O11 2px00ð Þ � 0:14/O11 2pz0ð Þ � 0:10/O11 2pz00ð Þ
þ 0:14/O12 2py0ð Þ þ 0:10/O12 2py00ð Þ þ 0:14/O12 2pz0ð Þ þ 0:10/O12 2pz00ð Þ
� 0:14/O13 2px0ð Þ � 0:10/O13 2px00ð Þ þ 0:14/O13 2py0ð Þ þ 0:10/O13 2py00ð Þ
þ 0:14/O14 2px0ð Þ þ 0:10/O14 2px00ð Þ þ 0:14/O14 2py0ð Þ þ 0:10/O14 2py00ð Þ
þ 0:14/O15 2px0ð Þ þ 0:10/O15 2px00ð Þ � 0:14/O15 2py0ð Þ � 0:10/O15 2py00ð Þ
� 0:14/O16 2px0ð Þ � 0:10/O16 2px00ð Þ � 0:14/O16 2py0ð Þ � 0:10/O16 2py00ð Þ
þ 0:14/O17 2px0ð Þ þ 0:10/O17 2px00ð Þ þ 0:14/O17 2pz0ð Þ þ 0:10/O17 2pz00ð Þ
� 0:14/O18 2py0ð Þ � 0:10/O18 2py00ð Þ � 0:14/O18 2pz0ð Þ � 0:10/O18 2pz00ð Þ
� 0:14/O19 2px0ð Þ � 0:10/O19 2px00ð Þ þ 0:14/O19 2pz0ð Þ þ 0:10/O19 2pz00ð Þ
þ 0:14/O20 2py0ð Þ þ 0:10/O20 2py00ð Þ � 0:14/O20 2pz0ð Þ � 0:10/O20 2pz00ð Þ

ð13:4Þ

wHOMO minð Þ ¼ 0:10/O10 2py0ð Þ þ 0:07/O10 2py00ð Þ � 0:10/O10 2pz0ð Þ � 0:07/O10 2pz00ð Þ
þ 0:11/O11 2px0ð Þ þ 0:08/O11 2px00ð Þ þ 0:27/O11 2pz0ð Þ þ 0:21/O11 2pz00ð Þ
� 0:10/O12 2py0ð Þ � 0:07/O12 2py00ð Þ � 0:10/O12 2pz0ð Þ � 0:07/O12 2pz00ð Þ
� 0:11/O14 2px0ð Þ � 0:08/O14 2px00ð Þ � 0:27/O14 2py0ð Þ � 0:21/O14 2py00ð Þ
� 0:11/O15 2px0ð Þ � 0:08/O15 2px00ð Þ þ 0:27/O15 2py0ð Þ þ 0:21/O15 2py00ð Þ
þ 0:10/O18 2py0ð Þ þ 0:07/O18 2py00ð Þ þ 0:10/O18 2pz0ð Þ þ 0:07/O18 2pz00ð Þ
þ 0:11/O19 2px0ð Þ þ 0:08/O19 2px00ð Þ � 0:27/O19 2pz0ð Þ � 0:21/O19 2pz00ð Þ
� 0:10/O20 2py0ð Þ � 0:07/O20 2py00ð Þ þ 0:10/O20 2pz0ð Þ þ 0:07/O20 2pz00ð Þ

ð13:5Þ

wHOMO bottleneckð Þ ¼ 0:09/O10 2py0ð Þ þ 0:07/O10 2py00ð Þ � 0:09/O10 2pz0ð Þ � 0:07/O10 2pz00ð Þ
þ 0:10/O11 2px0ð Þ þ 0:07/O11 2px00ð Þ þ 0:29/O11 2pz0ð Þ þ 0:22/O11 2pz00ð Þ
� 0:09/O12 2py0ð Þ � 0:07/O12 2py00ð Þ � 0:09/O12 2pz0ð Þ � 0:07/O12 2pz00ð Þ
� 0:10/O14 2px0ð Þ � 0:07/O14 2px00ð Þ � 0:29/O14 2py0ð Þ � 0:22/O14 2py00ð Þ
� 0:10/O15 2px0ð Þ � 0:07/O15 2px00ð Þ þ 0:29/O15 2py0ð Þ þ 0:22/O15 2py00ð Þ
þ 0:09/O18 2py0ð Þ þ 0:07/O18 2py00ð Þ þ 0:09/O18 2pz0ð Þ þ 0:07/O18 2pz00ð Þ
þ 0:10/O19 2px0ð Þ þ 0:07/O19 2px00ð Þ � 0:29/O19 2pz0ð Þ � 0:22/O19 2pz00ð Þ
� 0:09/O20 2py0ð Þ � 0:07/O20 2py00ð Þ þ 0:09/O20 2pz0ð Þ þ 0:07/O20 2pz00ð Þ

ð13:6Þ
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HOMOs consist of oxygen 2p orbitals, corresponding to oxygen 2p valence
band. The obtained wave-functions of LUMO at the centre, local minimum and
bottleneck are

wLUMO centreð Þ ¼ 0:21/Ti1 3dxyð Þ þ 0:21/Ti1 3dxzð Þ þ 0:21/Ti1 3dyzð Þ
þ 0:21/Ti2 3dxyð Þ þ 0:21/Ti2 3dxzð Þ � 0:21/Ti2 3dyzð Þ
þ 0:21/Ti3 3dxyð Þ � 0:21/Ti3 3dxzð Þ � 0:21/Ti3 3dyzð Þ
þ 0:21/Ti4 3dxyð Þ � 0:21/Ti4 3dxzð Þ þ 0:21/Ti4 3dyzð Þ
� 0:21/Ti5 3dxyð Þ þ 0:21/Ti5 3dxzð Þ þ 0:21/Ti5 3dyzð Þ
� 0:21/Ti6 3dxyð Þ þ 0:21/Ti6 3dxzð Þ � 0:21/Ti6 3dyzð Þ
� 0:21/Ti7 3dxyð Þ � 0:21/Ti7 3dxzð Þ � 0:21/Ti7 3dyzð Þ
� 0:21/Ti8 3dxyð Þ � 0:21/Ti8 3dxzð Þ þ 0:21/Ti8 3dyzð Þ

ð13:7Þ

wLUMO minð Þ ¼ 0:50/Ti1 3dyzð Þ þ 0:50/Ti4 3dyzð Þ þ 0:50/Ti5 3dyzð Þ þ 0:50/Ti8 3dyzð Þ
ð13:8Þ

wLUMO bottleneckð Þ ¼ 0:51/Ti1 3dyzð Þ þ 0:51/Ti4 3dyzð Þ þ 0:51/Ti5 3dyzð Þ þ 0:51/Ti8 3dyzð Þ
ð13:9Þ

LUMOs consist of titanium t2g-type 3d orbitals, corresponding to titanium 3d
conduction band. However, the coefficients are changeable in HOMO and LUMO,
during lithium ion conduction.

The local maximum is given at the centre. In general, counter cation has a role of
stabilizing cubic structure, due to the large ionic radius. However, the ionic radius
of lithium ion is smaller, in comparison with lanthanum ion (see Table 9.1). For
example, in eight-coordination, the ionic radii of lithium and lanthanum ions are
1.06 and 1.30 Å, respectively. Lithium ion has no role in stabilizing the cubic
structure, but just a role in neutralization of solid. Hence, the higher total energy is
given at the centre.

The local minimum is given near the bottleneck. It is responsible for Coulomb
interaction between positively charged lithium ion and negatively charged oxygen
anions of bottleneck. The activation energy can be estimated from the total energy
difference between the centre and bottleneck (0.167 eV). It corresponds to the
experimental values (0.15–0.40 eV).
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13.2.2 KxBa(1−x)/2MnF3 Perovskite

KMnF3 perovskite has a cubic structure at room temperature, and displays
cubic-tetragonal structural distortion at low temperature. At operation temperature
of lithium ion battery, it keeps a cubic structure (see Fig. 13.6). It is expected that
barium-doping causes no structural distortion, since the ionic radii of potassium and
barium are 1.65 and 1.56, respectively. In addition, when barium is doped at
counter cation site, one vacancy is produced per one barium-doping, due to the
difference of formal charges. Note that the formal charges of potassium, barium and
lithium are +1, +2 and +1, respectively. BHHLYP is performed for LiMn8F12
model. Basis sets used for manganese, fluorine and lithium are MINI(5.3.3.3/5.3/5),
6-31G* and MINI(7.3), respectively.

Figure 13.7 shows the potential energy curve of LiMn8F12 model, when dis-
placing lithium ion along x axis. The local minimum is given near the bottleneck.
The local maximum is given at the centre, though the highest total energy is given
at the bottleneck. The activation energy can be estimated from the total energy
difference between the local minimum and bottleneck. The value (0.27 eV) is
enough small for lithium ion conduction. Figure 13.8 depicts the selected molecular
orbital related to conductive lithium ion (MO73) at the centre, local minimum and
bottleneck. The obtained wave-functions of MO73 at the centre, local minimum and
bottleneck are

wMO73 centreð Þ ¼ 1:00/Li 1sð Þ ð13:10Þ

wMO73 minð Þ ¼ 1:00/Li 1sð Þ ð13:11Þ

K or Ba 

Mn

F 

Mn4F4 square 

x
0.0

Fig. 13.6 Crystal structure of
KxBa(1−x)/2MnF3 perovskite
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wMO73 bottleneckð Þ ¼ 1:00/Li 1sð Þ ð13:12Þ

MO73s consist of lithium 1s orbital. There is no orbital overlap between lithium
ion and others. From chemical bonding rule, it is found that lithium ion forms ionic
bonding during lithium ion conduction.

We summarize the mechanism of lithium ion conduction in KMnF3 perovskite.
As shown in Fig. 13.9, when barium is doped in KMnF3 perovskite, one vacancy is
produced at counter cation site. Figure 13.10 depicts the schematic drawing of
lithium ion conduction in Li-doped KxBa(1−x)/2MnF3 perovskite. Potassium and
barium are kept fixed, due to the larger ionic radii. Instead, lithium ion migrates
through vacancy.
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Fig. 13.7 Potential energy curve of LiMn8F12 model, when displacing lithium ion along x axis.
Reference [2] by permission from Wiley

(a) (b) (c) 

Fig. 13.8 Selected molecular orbital related to lithium ion (MO73) in LiMn8F12 model: a centre,
b local minimum, c bottleneck
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13.3 Sodium Ion Conductor

Sodium ion has larger ionic radius, in comparison with lithium ion (see Table 9.1).
It is considered that sodium ion conduction is blocked in the same material, due to
the larger ionic radius. To overcome the problem, the larger cubic structure is
favourable. One of candidate materials is transition metal cyanide. In general,
M-CN-M distance is larger than M-O-M and M-F-M distances (M = transition
metal). Here, our designed sodium ion conductive CsMn(CN)3, Al(CN)3 and
NaAlO(CN)2 are introduced.

Ba

Li 

K K 

K Ba

Ba BaK 

Ba 

Fig. 13.10 Schematic drawing of lithium ion conduction in Li-doped KxBa(1−x)/2MnF3 perovskite

Ba2+ Vacancy Vacancy 

Fig. 13.9 Vacancy of counter cation site in KxBa(1−x)/2MnF3 perovskite

13.3 Sodium Ion Conductor 231



13.3.1 CsMn(CN)3

Fe4 Fe CNð Þ6
� �

3�xH2O, which is known as Prussian blue, is candidate material.
However, as water defect and iron vacancy are combined, it is expected that sodium
ion conductivity is unstable, due to the complex electronic structure.

CsMn(CN)3 was proposed. It is because there exist less water defect and less
manganese vacancy. Note that CsMn(CN)3 is often expressed as Cs2Mn[Mn(CN)6].
The formal charge of manganese is +2. The spin state of Mn2+ is sextet (t2g

3 eg
2).

Figure 13.11 shows the crystal structure of CsMn(CN)3. There are two coordination
patterns. One manganese is surrounded by six nitrogen atoms, and the other is
surrounded by six carbon atoms. Mn–C, Mn–N and C–N distances are 1.93, 2.19
and 1.18 Å, respectively. Caesium ion can be replaced by sodium ion, due to the
same formal charge. Here, in Cs1−xNaxMn(CN)3, the same ion conduction mech-
anism is assumed as lithium ion conduction (see Fig. 13.12). BHHLYP is per-
formed for NaMn8(CN)12 and CsMn8(CN)12 models (see Fig. 13.13). Basis sets
used for manganese, caesium and sodium are MINI(5.3.3.3/5.3/5), MINI
(4.3.2.2.2.2/4.2.2/4.2) and MINI(5.3.3/5), respectively, combined with 6-31G*
basis set for carbon and nitrogen.

Figure 13.14 shows the potential energy curve of CsMn8(CN)12 model, when
displacing caesium ion along x axis. The lowest and highest total energies are given
at the centre and bottleneck, respectively. The activation energy for caesium ion
conduction can be estimated from the total energy difference between the local

Fig. 13.11 Crystal structure
of CsMn(CN)3. A blue, green,
dark blue and centred blue
dots denote manganese,
carbon, nitrogen and caesium,
respectively
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minimum and local maximum. It becomes 4.14 eV. As the value is too large for ion
conduction, caesium ion is kept fixed at the centre.

Figure 13.15 shows the potential energy curve of NaMn8(CN)12 model, when
displacing sodium ion along x axis. The highest total energy is given at the centre. It
is because the ionic radius of sodium ion is enough small for the cube, as same as
lithium ion in La2/3−xLi3xTiO3 perovskite. The local minima are given around
x = 1.8 and −1.8 Å. It comes from the Coulomb interaction between positively
charged sodium ion and negatively charged cyano ligand. However, the effect of the
steric repulsion between sodium ion and other atoms is negligible at the bottleneck.

Fig. 13.12 Schematic drawing of sodium ion conduction in Cs1−xNaxMn(CN)3
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Fig. 13.13 a CsMn8(CN)12 and b NaMn8(CN)12 models of Cs1−xNaxMn(CN)3. The origin of
x axis is the cubic centre
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The activation energy for sodium ion conduction is 0.19 eV. The value is enough
small for sodium ion conduction.

Figure 13.16 depicts the molecular orbitals related to outer shell electrons of
sodium ion (sodium 2s and 2p electrons) in NaMn8(CN)12 model. Note that not
only 2s but also 2p electrons work as outer shell electron in sodium ion. At the
cubic centre, the obtained wave-functions of MOs related to outer shell electrons
are
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Fig. 13.14 Potential energy curve of CsMn8(CN)12 model, when displacing caesium ion along
x axis
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Fig. 13.15 Potential energy curve of NaMn8(CN)12 model, when displacing sodium ion along
x axis
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wMO74 centreð Þ ¼ �0:27/Na 1sð Þ þ 1:03/Na 2sð Þ ð13:13Þ

wMO99 centreð Þ ¼ �0:50/Na 2pxð Þ � 0:50/Na 2pyð Þ þ 0:71/Na 2pzð Þ ð13:14Þ

wMO100 centreð Þ ¼ �0:71/Na 2pxð Þ þ 0:71/Na 2pyð Þ ð13:15Þ

wMO101 centreð Þ ¼ 0:50/Na 2pxð Þ þ 0:50/Na 2pyð Þ þ 0:71/Na 2pzð Þ ð13:16Þ

In MO74, sodium 2s orbital has no orbital overlap with other atoms. In MO99,
MO100 and MO101, sodium 2p orbital has no orbital overlap with other atoms.
Note that sodium 2p orbital is rotated from the standard direction in MO99, MO100
and MO101. From chemical bonding rule, it is found that sodium forms ionic
bonding with other atoms at the centre. At the local minima, the obtained
wave-functions of MOs related to outer shell electrons are

Orbital energy 
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Fig. 13.16 Selected molecular orbitals related to outer shell electrons of sodium ion (sodium 2s
and 2p electrons) in NaMn8(CN)12 model: a centre, b local minima, c bottleneck
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wMO74 minð Þ ¼ �0:27/Na 1sð Þ þ 1:03/Na 2sð Þ ð13:17Þ

wMO99 minð Þ ¼ 0:94/Na 2pxð Þ � 0:20/Na 2pyð Þ � 0:26/Na 2pzð Þ ð13:18Þ

wMO100 minð Þ ¼ 0:33/Na 2pxð Þ þ 0:69/Na 2pyð Þ þ 0:64/Na 2pzð Þ ð13:19Þ

wMO101 minð Þ ¼ �0:69/Na 2pyð Þ þ 0:72/Na 2pzð Þ ð13:20Þ

In MO74, sodium 2s orbital has no orbital overlap with other atoms. In MO99,
MO100 and MO101, sodium 2p orbital has no orbital overlap with other atoms.
From chemical bonding rule, it is found that sodium forms ionic bonding with other
atoms at the local minima. At the bottleneck, the obtained wave-functions of MOs
related to outer shell electrons are

wMO74 bottleneckð Þ ¼ �0:27/Na 1sð Þ þ 1:03/Na 2sð Þ ð13:21Þ

wMO99 bottleneckð Þ ¼ 0:93/Na 2pxð Þ þ 0:24/Na 2pyð Þ þ 0:27/Na 2pzð Þ ð13:22Þ

wMO100 bottleneckð Þ ¼ �0:36/Na 2pxð Þ þ 0:68/Na 2pyð Þ þ 0:63/Na 2pzð Þ ð13:23Þ

wMO101 bottleneckð Þ ¼ �0:69/Na 2pyð Þ þ 0:72/Na 2pzð Þ ð13:24Þ

In MO74, sodium 2s orbital has no orbital overlap with other atoms. Though the
orbital energies of MO99, MO100 and MO101 are slightly different, sodium 2p
orbital has no orbital overlap with other atoms. From chemical bonding rule, it is
found that sodium forms ionic bonding with other atoms at the bottleneck.

It is found that sodium-doped CsMn(CN)3 can be applicable as sodium ion
conductor. The sodium ion conduction comes from vacancy at counter cation site.
Sodium ion forms ionic bonding during sodium ion conduction.

13.3.2 Al(CN)3

Let us consider another cyanide Al(CN)3. As there exists no 3d electron in alu-
minium, the simple chemical bonding is formed in Al–CN–Al bond, compared with
Mn–CN–Mn bond in CsMn(CN)3. In order to compare the difference of lattice
distance, we also consider conventional LaAlO3 perovskite. Figure 13.17 depicts
NaAl8O12 model of LaAlO3 perovskite and NalAl8(CN)12 model of Na-doped Al
(CN)3. BHHLYP is performed for NaAl8O12 and NaAl8(CN)12 models. Basis sets
used for aluminium, carbon, nitrogen and sodium are 6-31G* basis set.

Figure 13.18 shows the potential energy curve of NaAl8O12 model, when dis-
placing sodium ion along x axis. The lowest and highest total energies are given at
the centre and bottleneck, respectively. The activation energy for sodium ion
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conduction becomes 2.96 eV. It is concluded that sodium is kept fixed at counter
cation site, due to the small lattice distance.

Figure 13.19 shows the potential energy curve of NalAl8(CN)12 model, when
displacing sodium ion along x axis. The lowest and highest total energies are given
at the bottleneck and centre, respectively. The activation energy for sodium ion
conduction is 0.71 eV. In comparison with CsMn(CN)3, no local minimum is
given. It is because the steric repulsion between sodium ion and other atoms is
suppressed at the bottleneck. It is concluded that sodium ion conduction occurs in
sodium-doped Al(CN)3.

Figure 13.20 depicts the selected molecular orbitals related to outer shell elec-
trons of sodium ion (sodium 2s and 2p electrons) in NalAl8(CN)12 model. At the
cubic centre, the obtained wave-function related to outer shell electrons are

wMO66 centreð Þ ¼ �0:25/Na 1sð Þ þ 1:02/Na 2sð Þ ð13:25Þ
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Fig. 13.17 a NaAl8O12 model of LaAlO3 perovskite and b NaAl8(CN)12 model of Al(CN)3

-81740.5  

-81740.0  

-81739.5  

-81739.0  

-81738.5  

-81738.0  

-81737.5  

-81737.0  

-2.0  -1.6  -1.2  -0.8  -0.4  0.0  0.4  0.8  1.2  1.6  2.0  

To
ta

l e
ne

rg
y 

[e
V

]  

x [Å]

Fig. 13.18 Potential energy curve of NaAl8O12 model, when displacing sodium ion along x axis
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wMO67 centreð Þ ¼ 0:65/Na 2pxð Þ þ 0:75/Na 2pzð Þ ð13:26Þ

wMO68 centreð Þ ¼ 0:75/Na 2pxð Þ � 0:65/Na 2pzð Þ ð13:27Þ

wMO69 centreð Þ ¼ 1:00/Na 2pyð Þ ð13:28Þ

In MO66, sodium 2s orbital has no orbital overlap with other atoms. In
degenerated MO67, MO68 and MO69, sodium 2p orbital has no orbital overlap
with other atoms. Note that sodium 2p orbital is rotated from the standard direction
in MO67, MO68 and MO69. It is because sodium 2px, 2py and 2pz orbitals are
hybridized. From chemical bonding rule, it is found that sodium forms ionic
bonding with other atoms at the centre. At the bottleneck, the obtained
wave-function related to outer shell electrons are

wMO66 bottleneckð Þ ¼ �0:25/Na 1sð Þ þ 1:02/Na 2sð Þ ð13:29Þ

wMO67 bottleneckð Þ ¼ 1:00/Na 2pzð Þ ð13:30Þ

wMO68 bottleneckð Þ ¼ 1:00/Na 2pyð Þ ð13:31Þ

wMO69 bottleneckð Þ ¼ 1:00/Na 2pxð Þ ð13:32Þ

In MO66, sodium 2s orbital has no orbital overlap with other atoms. In MO67,
MO68 and MO69, sodium 2p orbital has no orbital overlap with other atoms,
though the orbital energy of MO69 is slightly larger than MO67 and MO68. From
chemical bonding rule, it is found that sodium forms ionic bonding with other
atoms at the bottleneck.
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Fig. 13.19 Potential energy curve of NalAl8(CN)12model, when displacing sodium ion along x axis
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It is found that sodium-doped Al(CN)3 can be applicable as sodium ion con-
ductor. The sodium ion conduction comes from vacancy at counter cation site.
Sodium ion forms ionic bonding during sodium ion conduction. However, as no

MO66
(-3.9032) 

MO67
(-2.7566) 

MO68
(-2.7566) 

MO69
(-2.7566) 

Orbital energy 

MO66
(-3.8526) 

MO67
(-2.7072) 

MO68
(-2.7072) 

MO69
(-2.7051) 

Orbital energy 

(a)

(b)

Fig. 13.20 Selected molecular orbitals related to outer shell electrons of sodium ion (sodium 2s
and 2p electrons) in NaAl8(CN)12 model: a centre, b bottleneck. Reference [3] by permission from
Wiley
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counter cation exists, trivalent aluminium must be substituted by divalent or
monovalent cation, to introduce sodium ion.

13.3.3 NaAlO(CN)2

In NaAlO(CN)2, sodium ion is allocated at the centre of Ti8O4(CN)8 cuboid without
the replacement of aluminium by different-valent cation (see Fig. 13.21). As the
long and short lattice distances are mixed in the cuboid, there are two types of
bottlenecks: Al4(CN)4 and Al4O2(CN)2. The two different directions of sodium ion
conductions are considered. BHHLYP is performed for NaAl8O4(CN)8 model of
NaAlO(CN)2. Basis sets used for aluminium, carbon, nitrogen and sodium are
6-31G* basis set.

Figures 13.22 and 13.23 show the potential energy curves of NaAl8O4(CN)8
model, when displacing sodium ion along z and x axes, respectively. In sodium ion
conduction along z axis, the local minimum is given, though it is not given in
NaAl8(CN)12 model. It is because the effect of Coulomb interaction between
sodium ion and oxygen anion is larger at the centre. Note that the formal charges of
oxygen and cyano ligand are −2 and −1, respectively. The activation energy can be
estimated from the total energy difference between the local maximum and the
bottleneck. The value is 0.06 eV. On the other hand, in sodium ion conduction
along x axis, the total energy monotonously increases. The activation energy is
5.55 eV. It is because Al4O2(CN)2 rectangle is smaller than Al4(CN)4 square.

Figure 13.24 depicts the selected molecular orbitals related to outer shell elec-
trons of sodium ion (sodium 2s and 2p electrons) in NaAl8O4(CN)8 model at cuboid
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z 

Fig. 13.21 NaAl8O4(CN)8 model of NaAlO(CN)2

240 13 Secondary Battery: Lithium Ion and Sodium Ion Conductions



-85428.0  

-85427.0  

-85426.0  

-85425.0  

-85424.0  

-85423.0  

-85422.0  

-85421.0  

-2.8  -2.4  -2.0  -1.6  -1.2  -0.8  -0.4  0.0  0.4  0.8  1.2  1.6  2.0  2.4  2.8  

To
ta

l e
ne

rg
y 

[e
V]  

x [Å]

Fig. 13.23 Potential energy curves of NaAl8O4(CN)8 model, when displacing sodium ion along
x axis
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Fig. 13.22 Potential energy curves of NaAl8O4(CN)8 model, when displacing sodium ion along
z axis
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centre (x = z = 0.0 Å) and the bottlenecks (z = 1.7 Å and x = 2.69 Å). At cuboid
centre, the obtained wave-functions related to outer shell electrons of sodium ion
(sodium 2s and 2p electrons) are

wMO62 centreð Þ ¼ �0:25/Na 1sð Þ þ 1:02/Na 2sð Þ ð13:33Þ

wMO63 centreð Þ ¼ �0:69/Na 2pxð Þ þ 0:71/Na 2pyð Þ ð13:34Þ

wMO64 centreð Þ ¼ 0:71/Na 2pxð Þ þ 0:69/Na 2pyð Þ ð13:35Þ

wMO65 centreð Þ ¼ 1:00/Na 2pzð Þ ð13:36Þ

In MO62, sodium 2s orbital has no orbital overlap with other atoms. In
degenerated MO63, MO64 and MO65, sodium 2p orbital has no orbital overlap
with other atoms. From chemical bonding rule, it is found that sodium ion forms
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Fig. 13.24 Selected molecular orbitals related to outer shell electrons of sodium ion (sodium 2s
and 2p electrons) in NaAl8O4(CN)8 model: a cuboid centre (x = z = 0.0 Å), b z = 1.7 Å,
c x = 2.69 Å. Reference [3] by permission from Wiley
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ionic bonding at cuboid centre. At Al4(CN)4 bottleneck (z = 1.7 Å), the obtained
wave-functions related to outer shell electrons of sodium ion are

w
MO62 z¼1:7 Å

� � ¼ �0:25/Na 1sð Þ þ 1:02/Na 2sð Þ ð13:37Þ

w
MO63 z¼1:7 Å

� � ¼ 0:71/Na 2pxð Þ þ 0:70/Na 2pyð Þ ð13:38Þ

w
MO64 z¼1:7 Å

� � ¼ �0:70/Nað2pxÞ þ 0:71/Nað2pyÞ ð13:39Þ

w
MO65 z¼1:7 Å

� � ¼ 1:00/Na 2pxð Þ ð13:40Þ

In MO62, sodium 2s orbital has no orbital overlap with other atoms. In MO63,
MO64 and MO65, sodium 2p orbital has no orbital overlap with other atoms,
though the orbital energy of MO65 is slightly larger than MO63 and MO64. From
chemical bonding rule, it is found that sodium ion forms ionic bonding with other
atoms at the bottleneck. At Al4O2(CN)2 bottleneck (x = 2.69 Å), the obtained
wave-functions related to outer shell electrons of sodium ion are

w
MO62 x¼2:69 Å

� � ¼ �0:24/Na 1sð Þ þ 1:02/Na 2sð Þ ð13:41Þ

w
MO63 x¼2:69 Å

� � ¼ 0:91/Na 2pzð Þ

þ 0:07/N10 2s0ð Þ þ 0:07/N10 2s00ð Þ � 0:07/N18 2s0ð Þ � 0:07/N18 2s00ð Þ
ð13:42Þ

w
MO64 x¼2:69 Å

� � ¼ 1:00/Na 2pyð Þ ð13:43Þ

w
MO65x¼2:69 ÅÞ ¼ 1:00/Na 2pxð Þ ð13:44Þ

w
MO69 x¼2:69 Å

� � ¼ 0:38/Na 2pzð Þ

þ 0:13/N10 1sð Þ � 0:26/N10 2s0ð Þ � 0:28/N10 2s00ð Þ � 0:12/N10 2py0ð Þ
� 0:13/N18 1sð Þ þ 0:26/N18 2s0ð Þ þ 0:28/N18 2s00ð Þ þ 0:12/N18 2py0ð Þ

ð13:45Þ

In MO62, sodium 2s orbital has no orbital overlap with other atoms. Though
MO64 and MO65 consist of sodium 2p orbital, there is orbital overlap between
sodium 2p orbital and nitrogen 2s orbitals in MO63. From chemical bonding rule, it
is found that covalent bonding is formed. MO69 is inversion covalent bonding to
MO63.
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In NaAlO2(CN)2, the anisotropic sodium conduction occurs. Sodium ion can
migrate through Al4(CN)4 bottleneck. As the activation energy along z axis is
enough small, it is expected as one-dimensional sodium ion conductor.

13.3.4 Materials Design of Sodium Ion Conductor

When designing sodium ion conductor, the two factors must be taken into con-
sideration at least.

(1) Large and inflexible bottleneck

It is difficult to realize a large bottleneck in M4X4-type square. In addition,
inflexible bottleneck is desirable. In flexible bottleneck, sodium ion may be strongly
bonded to bottleneck.

(2) Coulomb interaction

Coulomb interaction between sodium ion and bottleneck affects the magnitude
of activation energy. In NaAlO(CN)2, there is energetic advantage, due to Coulomb
interaction between sodium cation and oxygen anion.
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Chapter 14
Solid Oxide Fuel Cell: Oxide Ion
and Proton Conductions

Abstract “Hydrogen” (hydrogen molecule) has attracted much industrial interest
as future energy resource. Fuel cell is the efficient system that produces the electric
energy from hydrogen molecule. Solid oxide fuel cell has been much expected, due
to high efficiency of power generation. Solid oxide fuel cell is classified into oxide
ion conducing type and proton conducting type. In oxide ion conducting type, oxide
ion migrates through oxygen vacancy. Oxide ion forms covalent bonding with
counter cations. Oxide ion conductivity can be controlled by changing dopant. In
proton conducting type, proton forms covalent bonding with oxygen atoms. In
diagonal path, OH and OHO bonds are alternately formed. During proton con-
duction, the proton pumping is combined. It implies that proton is pumped towards
the square centre through OH conduction. The conflict with oxide ion conduction
during proton conduction is also discussed. Finally, the mismatch of the calculated
activation energy with AC impedance measurement is mentioned.

Keywords Solid oxide fuel cell � Oxide ion conduction � Proton conduction �
Proton pumping effect � Covalent bonding

14.1 Introduction of Solid Oxide Fuel Cell

Oil production will end in the future, though the date cannot be correctly predicted.
“Hydrogen” has been much expected as next-generation energy resource, and will
be replaced by present oil resource. Note that “Hydrogen” denotes hydrogen
molecule. Hydrogen molecule is produced through many methods. For example, in
steam reforming of methane, hydrogen molecule is produced. Methane is the main
ingredient of natural gas.

CH4 þ 2H2O ! 4H2 þCO2 ð14:1Þ

Recently, methane can be produced from fermentation of raw garbage.
Hydrogen molecule is produced as by-product in steel plant. The direct synthesis of
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hydrogen molecule has been also developed. Though electrolysis using photocat-
alyst is well known, it does not reach practical use.

Fuel cell is the efficient system that produces electricity from hydrogen mole-
cule. In solid oxide fuel cell (SOFC) and polymer electrolyte fuel cell (PEFC), solid
oxides and polymer are used as solid electrolyte, respectively. SOFC operates
between 500 and 1000°. PEFC can operate below 100°. SOFC has been expected in
home fuel cell system. It is because SOFC exhibits high efficiency of power gen-
eration, in comparison with PEFC. In addition, heat waste can be utilized in
practical use. Perovskite-type compounds are widely used in electrolyte and elec-
trode of SOFC. Figure 14.1 depicts the schematic drawing of SOFC. SOFC is
classified into two types, according to the difference of ion conduction type. One is
oxide ion conducting type. The other is proton conducting type. In both cases, water
molecule is finally produced through chemical reactions and ion conduction.

(b)

(a)
Fig. 14.1 Schematic drawing
of solid oxide fuel cell:
a oxide ion conducting type,
b proton conducting type
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H2 þ 1
2
O2 ! H2O ð14:2Þ

In this chapter, the mechanism of oxide ion conduction and proton conduction in
perovskites is explained, from the viewpoint of energetics and bonding.

14.2 Oxide Ion Conduction in LaAlO3 Perovskite

14.2.1 Introduction of Oxide Ion Conduction

Oxide ion conduction is observed in AMO3 perovskite, where A and M denote
counter cation and transition metal, respectively. As shown in Fig. 14.2, oxide ion
migrates through oxygen vacancy. To incorporate oxygen vacancy in AMO3 per-
ovskite, A is replaced by different-valent counter cation. For example, in LaAlO3

perovskite, trivalent lanthanum (La3+) is replaced by divalent strontium (Sr2+).
When two lanthanum cations are replaced by two divalent counter cations, one
oxygen vacancy is produced. Note that the formal charge of oxygen anion is −2,
and the ionic radius of replaced counter cation should be close to La3+ to avoid the
structural distortion. The local structural distortion may be caused near surface.
Oxide ion conduction will be suppressed at locally distorted structure, due to strong
chemical bonding formation between oxide ion and others. The effect is negligible,
when considering oxide ion conduction in boundary solid structure.

LaGaO3 perovskite was utilized as oxide ion conductor, due to lower operation
temperature and lower activation energy. However, the alternative oxide ion con-
ductor was expected, due to high cost of gallium. LaAlO3 perovskite was consid-
ered as the candidate, due to low cost and light weight.

Fig. 14.2 Schematic drawing
of oxide ion conduction on
MO2 layer in AMO3

perovskite. Black, white and
dotted line circles denote M,
oxygen and oxygen vacancy,
respectively. The arrows
depicts oxide ion conduction
path
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14.2.2 Oxide Ion Conduction Mechanism

LaAlO3 perovskite has a simple cubic structure at operation temperature. The lattice
distance (Al–O–Al) is 3.81 Å. During oxide ion conduction, Al–O–Al bond is
alternately broken and formed. To incorporate the effect of chemical bonding for-
mation between oxide ion and up-and-down counter cations of AlO2 layer, three
La2Al4O3, LaSrAl4O3 and Sr2Al4O3 models are constructed, as shown in Fig. 14.3.
The arrows depict two possible oxide ion conduction paths. One is diagonal path,
where oxide ion migrates towards oxygen vacancy at nearest neighbouring oxygen
site. The other is parallel path, where oxide ion migrates towards oxygen vacancy at
next-nearest neighbouring oxygen site. BHHLYP calculation is performed for three
models. Basis sets used for aluminium, oxygen, lanthanum and strontium are
6-31G*, 6-31G*, MINI(3.3.3.3.3.3/3.3.3.3/3.3/4) and MINI(4.3.3.3/4.3.3/4),
respectively.

Figures 14.4 and 14.5 show the potential energy curves of La2Al4O3 model,
when displacing oxide ion along diagonal and parallel paths, respectively. In
diagonal path, the local maximum is given at the middle of diagonal line, and the
local minima are given around 0.6 and 2.1 Å. The highest energy is given at the
lattice positions. The activation energy for oxide ion conduction can be estimated
from the total energy difference between the local minimum and lattice position.
The value is 2.73 eV. On the other hand, in parallel path, the local maxima and
minima are given, as same as diagonal path. However, the highest total energy is
given at the middle. Parallel path is impossible, due to too large activation energy
(11.3 eV).

Figure 14.6 depicts the selected molecular orbitals related to outer shell electrons
of oxide ion in La2Al4O3 model, at the local minimum in diagonal path. The
obtained wave-functions of MO72, MO81, MO83 and MO84 are

(a) (b) (c)La1

La2

La1

Sr2 Sr2

Sr1

O1 O1 O1

O2 O2O2

O3 O3O3

Fig. 14.3 a La2Al4O3, b LaSrAl4O3 and c Sr2Al4O3 models in Sr-doped LaAlO3 perovskite. The
arrows depict two possible oxide ion conduction paths. Black, white, dotted line, red and blue
circles denote aluminium, oxygen, oxygen vacancy, lanthanum and strontium, respectively
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Fig. 14.4 Potential energy curve of La2Al4O3 model, when displacing oxide ion along diagonal
path. d is oxide ion conduction distance. Reference [1] by permission from Wiley
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Fig. 14.5 Potential energy curve of La2Al4O3 model, when displacing oxide ion along parallel
path. x is oxide ion conduction distance
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wMO72 ¼ �0:22/O1ð1sÞ þ 0:44/O1ð2s0Þ þ 0:57/O1ð2s00Þ ð14:3Þ

wMO81 ¼ �0:17/O1 2s00ð Þ þ 0:50/O1 2px0ð Þ þ 0:43/O1 2px00ð Þ þ 0:11/O2 2py0ð Þ ð14:4Þ

wMO83 ¼ 0:58/O1 2pz0ð Þ þ 0:54/O1 2pz00ð Þ ð14:5Þ

wMO84 ¼ 0:57/O1 2py0ð Þ þ 0:51/O1 2py00ð Þ ð14:6Þ

2s and 2p orbitals of oxide ion have no orbital overlap with other atoms, though
there is hybridization between O1 2px and O2 2py orbitals in MO81. From chemical
bonding rule, it is found that oxide ion forms ionic bonding with other atoms at the
local minimum.

Orbital energy

MO72 
(-3.1353)

MO81 
(-2.5419)

MO83 
(-2.4600)

MO84 
(-2.4586)

Fig. 14.6 Selected molecular
orbitals related to outer shell
electrons of oxide ion in
La2Al4O3 model, at the local
minimum in diagonal path
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Figure 14.7 depicts the selected molecular orbitals related to outer shell electrons
of oxide ion in La2Al4O3 model, at the middle in diagonal path. The obtained
wave-functions of MO72, MO75, MO78, MO81, MO82 and MO83 are

wMO72 ¼ �0:22/O1 1sð Þ þ 0:45/O1 2s0ð Þ þ 0:58/O1 2s00ð Þ ð14:7Þ

Orbital energy

MO72 
(-3.1792)

MO75 
(-2.8998)

MO78 
(-2.8801)

MO81 
(-2.5463)

MO82 
(-2.5192)

MO83 
(-2.5103)

Fig. 14.7 Selected molecular
orbitals related to outer shell
electrons of oxide ion in
La2Al4O3 model, at the
middle in diagonal path
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wMO75 ¼ 0:09/O1 2pz0ð Þ þ 0:08/O1 2pz00ð Þ
þ 0:14/La1 3pxð Þ � 0:14/La1 3pyð Þ � 0:40/La1 4pxð Þ þ 0:40/La1 4pyð Þ þ 0:20/La1 4pzð Þ
� 0:42/La1 5pxð Þ þ 0:42/La1 5pyð Þ þ 0:20/La1 5pzð Þ
� 0:14/La2 3pxð Þ þ 0:14/La2 3pyð Þ þ 0:40/La2 4pxð Þ � 0:40/La2 4pyð Þ þ 0:20/La2 4pzð Þ
þ 0:42/La2 5pxð Þ � 0:42/La2 5pyð Þ þ 0:20/La2 5pzð Þ

ð14:8Þ

wMO78 ¼ 0:10/O1 2s0ð Þ þ 0:13/O1 2s00ð Þ
� 0:15/La1 3pxð Þ þ 0:15/La1 3pyð Þ þ 0:41/La1 4pxð Þ � 0:41/La1 4pyð Þ � 0:16/La1 4pzð Þ
þ 0:45/La1 5pxð Þ � 0:45/La1 5pyð Þ � 0:16/La1 5pzð Þ
� 0:15/La2 3pxð Þ þ 0:15/La2 3pyð Þ þ 0:41/La2 4pxð Þ � 0:41/La2 4pyð Þ þ 0:16/La2 4pzð Þ
þ 0:45/La2 5pxð Þ � 0:45/La2 5pyð Þ þ 0:16/La2 5pzð Þ

ð14:9Þ

wMO81 ¼ �0:41/O1 2px0ð Þ � 0:38/O1 2px00ð Þ þ 0:41/O1 2py0ð Þ þ 0:38/O1 2py00ð Þ ð14:10Þ

wMO82 ¼ 0:39/O1 2px0ð Þ þ 0:35/O1 2px00ð Þ þ 0:39/O1 2py0ð Þ þ 0:35/O1 2py00ð Þ ð14:11Þ

wMO83 ¼ 0:57/O1 2pz0ð Þ þ 0:55/O1 2pz00ð Þ
þ 0:10/La1 4pxð Þ � 0:10/La1 4pyð Þ � 0:13/La1 4pzð Þ
þ 0:13/La1 5pxð Þ � 0:13/La1 5pyð Þ � 0:19/La1 5pzð Þ
� 0:10/La2 4pxð Þ þ 0:10/La2 4pyð Þ � 0:13/La2 4pzð Þ
� 0:13/La2 5pxð Þ þ 0:13/La2 5pyð Þ � 0:19/La2 5pzð Þ

ð14:12Þ

MO72 consists mainly of oxygen 2s orbital, though there is slight orbital overlap
between oxide ion and lanthanum. In MO78, there are orbital overlaps between O1
2s and La1 p orbitals, and between O1 2s and La2 p orbitals. One oxygen lobe
interacts with one lanthanum lobe of La1 and La2. There are two nodes between O1
and La1, and between O1 and La2. From chemical bonding rule, it is found that
inversion r-type covalent bonding is formed between oxide ion and two lanthanum
cations. MO78 is inversion molecular orbital to MO72. In MO75 and MO83, there
are orbital overlaps between O1 2pz and La1 p orbitals, and between O1 2pz and
La2 p orbitals. One oxygen lobe interacts with one lanthanum lobe. From chemical
bonding rule, it is found that r-type covalent bonding is formed between oxide ion
and two lanthanum cations in MO75. In MO83, there are two nodes between O1
and La1, and between O1 and La2. MO83 is inversion r-type covalent bonding to
MO75. MO81 and MO82 consist mainly of 2p orbitals of oxide ion, though the
slight orbital overlap with lanthanum in MO81. It is concluded that oxide ion
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alternately forms and breaks r-type covalent bonding with lanthanum, during oxide
ion conduction.

To investigate doping effect on oxide ion conduction, LaSrAl4O3 and Sr2Al4O3

models are considered. Note that LaSrAl4O3 and Sr2Al4O3 units are locally realized
in a part of solid. Figures 14.8 and 14.9 show the potential energy curves of
LaSrAl4O3 and Sr2Al4O3 models, when displacing oxide ion along diagonal path,
respectively. In both models, the local maximum is given at the middle of diagonal
line, and the local minima are given around 0.6 and 2.1 Å. The highest energy is
given at the lattice positions. The activation energies of LaSrAl4O3 and Sr2Al4O3
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Fig. 14.8 Potential energy curve of LaSrAl4O3 model, when displacing oxide ion along diagonal
path. d is oxide ion conduction distance. Reference [1] by permission from Wiley
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Fig. 14.9 Potential energy curves of Sr2Al4O3 model, when displacing oxide ion along diagonal
path. d is oxide ion conduction distance. Reference [1] by permission from Wiley
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models for oxide ion conduction are 2.29 and 1.85 eV, respectively. It is found that
strontium doping decreases the activation energy.

Figure 14.10 depicts the selected molecular orbitals related to outer shell elec-
trons of oxide ion in LaSrAl4O3 model, at the middle in diagonal path. The obtained
wave-functions of MO63, MO67, MO72, MO73, MO74, and MO75 are

wMO63 ¼ �0:22/O1 1sð Þ þ 0:45/O1 2s0ð Þ þ 0:57/O1 2s00ð Þ ð14:13Þ

Orbital energy

MO63 
(-2.9748)

MO67 
(-2.7403)

MO74 
(-2.3067)

MO72 
(-2.3421)

MO75 
(-2.3023)

MO73 
(-2.3182)

Fig. 14.10 Selected
molecular orbitals related to
outer shell electrons of oxide
ion in LaSrAl4O3 model, at
the middle in diagonal path
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wMO67 ¼ 0:08/O1 2ps0ð Þ þ 0:11/O1 2ps00ð Þ
� 0:21/La1 3pxð Þ þ 0:21/La1 3pyð Þ þ 0:58/La1 4pxð Þ � 0:58/La1 4pyð Þ þ 0:21/La1 4pzð Þ
þ 0:63/La1 5pxð Þ � 0:63/La1 5pyð Þ þ 0:21/La1 5pzð Þ

ð14:14Þ

wMO72 ¼ 0:21/O1 2s00ð Þ � 0:40/O1 2px0ð Þ
� 0:36/O1 2px00ð Þ þ 0:40/O1 2py0ð Þ þ 0:36/O1 2py00ð Þ ð14:15Þ

wMO73 ¼ 0:38/O1 2px0ð Þ þ 0:34/O1 2px00ð Þ þ 0:38/O1 2py0ð Þ þ 0:34/O1 2py00ð Þ ð14:16Þ

wMO74 ¼ 0:50/O1 2pz0ð Þ þ 0:47/O1 2pz00ð Þ
� 0:16/O2 2py0ð Þ � 0:12/O2 2py00ð Þ þ 0:16/O3 2px0ð Þ þ 0:12/O3 2px00ð Þ

� 0:12/Sr2 4pxð Þ þ 0:12/Sr2 4pyð Þ þ 0:16/Sr2 4pzð Þ
ð14:17Þ

wMO75 ¼ 0:11/O1 2px0ð Þ � 0:11/O1 2py0ð Þ � 0:27/O1 2pz0ð Þ � 0:25/O1 2pz00ð Þ
� 0:28/O2 2py0ð Þ � 0:22/O2 2py00ð Þ þ 0:28/O3 2px0ð Þ þ 0:22/O3 2px00ð Þ
� 0:14/Sr2 4pzð Þ

ð14:18Þ

MO63 consists mainly of oxygen 2s orbital, though there is slight orbital overlap
between oxide ion and lanthanum. In MO67, there is orbital overlap between O1 2s
and La1 p orbitals. One oxygen lobe interacts with one lanthanum lobe. There is
node between O1 and La1. From chemical bonding rule, it is found that inversion
r-type covalent bonding is formed between oxide ion and lanthanum cation. MO67
is inversion molecular orbital to MO63. MO72 consists mainly of 2p orbitals of
oxide ion, though the slight orbital overlap between oxide ion and lanthanum.
MO73 consists mainly of 2p orbitals of oxide ion, though the slight orbital overlap
between oxide ion and other oxygen atoms. In MO74 and MO75, not only O1 but
also O2 and O3 2p orbitals also participate.

The slight orbital overlap between oxide ion and strontium is observed. It is
found that the total energy at the middle is much destabilized, due to the weak
covalent bonding between oxide ion and strontium. As the result, the activation
energy becomes smaller than La2Al4O3 model.

Figure 14.11 depicts the molecular orbitals related to outer shell electrons of
oxide ion in Sr2Al4O3 model, at the middle in diagonal path. The obtained
wave-functions of MO54, MO58, MO60, MO63, MO64, MO65 and MO66 are

wMO54 ¼ �0:22/O1 1sð Þ þ 0:46/O1 2s0ð Þ þ 0:57/O1 2s00ð Þ ð14:19Þ
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wMO58 ¼ �0:06/O1 2pz0ð Þ � 0:06/O1 2pz00ð Þ
þ 0:22/Sr1 3pxð Þ � 0:22/Sr1 3pyð Þ � 0:52/Sr1 4pxð Þ þ 0:52/Sr1 4pyð Þ
� 0:22/Sr2 3pxð Þ þ 0:22/Sr2 3pyð Þ þ 0:52/Sr2 4pxð Þ � 0:52/Sr2 4pyð Þ

ð14:20Þ

Orbital energy

MO54 
(-2.7664)

MO63 
(-2.1382)

MO64 
(-2.1177)

MO65 
(-2.1174)

MO66 
(-2.1016)

MO58 
(-2.4909)

MO60 
(-2.4804)

Fig. 14.11 Selected
molecular orbitals related to
outer shell electrons of oxide
ion in Sr2Al4O3 model, at the
middle in diagonal path
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wMO60 ¼ 0:06/O1 2s0ð Þ þ 0:07/O1 2s00ð Þ
þ 0:23/Sr1 3pxð Þ � 0:23/Sr1 3pyð Þ � 0:54/Sr1 4pxð Þ þ 0:54/Sr1 4pyð Þ
þ 0:23/Sr2 3pxð Þ � 0:23/Sr2 3pyð Þ � 0:54/Sr2 4pxð Þ þ 0:54/Sr2 4pyð Þ

ð14:21Þ

wMO63 ¼ 0:19/O1 2s00ð Þ � 0:35/O1 2px0ð Þ � 0:30/O1 2px00ð Þ þ 0:35/O1 2py0ð Þ þ 0:30/O1 2py00ð Þ

� 0:16/O2 2py0ð Þ � 0:12/O2 2py00ð Þ þ 0:16/O3 2px0ð Þ þ 0:12/O3 2px00ð Þ
ð14:22Þ

wMO64 ¼ 0:12/O1 2s00ð Þ � 0:21/O1 2px0ð Þ � 0:18/O1 2px00ð Þ þ 0:21/O1 2py0ð Þ þ 0:18/O1 2py00ð Þ
þ 0:29/O2 2py0ð Þ þ 0:22/O2 2py00ð Þ � 0:29/O3 2px0ð Þ � 0:22/O3 2px00ð Þ

ð14:23Þ

wMO65 ¼ 0:36/O1 2px0ð Þ þ 0:32/O1 2px00ð Þ þ 0:36/O1 2py0ð Þ þ 0:32/O1 2py00ð Þ
þ 0:11/O2 2py0ð Þ þ 0:11/O3 2px0ð Þ

ð14:24Þ

wMO66 ¼ 0:58/O1 2pz0ð Þ þ 0:52/O1 2pz00ð Þ
� 0:11/Sr1 4pxð Þ þ 0:11/Sr1 4pyð Þ þ 0:16/Sr1 4pzð Þ
þ 0:11/Sr2 4pxð Þ � 0:11/Sr2 4pyð Þ þ 0:16/Sr2 4pzð Þ

ð14:25Þ

MO54 consists mainly of oxygen 2s orbital. In MO60, there are orbital overlaps
between O1 2s and Sr1 p orbitals, and between O1 2s and Sr2 p orbitals. One
oxygen lobe interacts with one strontium lobe. There are nodes between O1 and
Sr1, and between O1 and Sr2. From chemical bonding rule, it is found that
inversion r-type covalent bonding is formed between oxide ion and strontium
cations. MO60 is inversion molecular orbital to MO54. In MO58 and MO66, there
are orbital overlaps between O1 2p and Sr1 p orbitals, and between O1 2p and Sr2 p
orbitals. One oxygen lobe interacts with one strontium lobe. From chemical
bonding rule, it is found that r-type covalent bonding is formed between oxide ion
and strontium cations in MO58. In MO66, there are nodes between O1 and Sr1, and
between O1 and Sr2. MO66 is inversion r-type covalent bonding to MO58. In
MO63, MO64 and MO65, not only O1 but also O2 and O3 2p orbitals also
participate.

The orbital overlap between oxide ion and strontium is smaller. It is found that
the total energy at the middle is much destabilized, due to the weak covalent
bonding between oxide ion and strontium. As the result, the activation energy
becomes smaller than La2Al4O3 model.
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Lead (Pb+2) is another dopant for LaAlO3 perovskite to incorporate oxygen
vacancy. Figures 14.12 and 14.13 show the potential energy curves of LaPbAl4O3

and Pb2Al4O3 models, when displacing oxide ion along diagonal path, respectively.
Note that one lanthanum cation is replaced by one lead cation in LaPbAl4O3 model,
and two lanthanum cations are replaced by two lead cations in Pb2Al4O3 model. In
both models, the local maximum is given at the middle of diagonal line, and the
local minima are given around 0.4 and 2.3 Å. The highest energy is given at the
middle. The activation energies of LaPbAl4O3 and Pb2Al4O3 models for oxide ion
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Fig. 14.12 Potential energy curve of LaPbAl4O3 model, when displacing oxide ion along
diagonal path. d is oxide ion conduction distance. Reference [2] by permission from Elsevier
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Fig. 14.13 Potential energy curve of Pb2Al4O3 model, when displacing oxide ion along diagonal
path. d is oxide ion conduction distance. Reference [2] by permission from Elsevier
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conduction are 2.10 and 2.67 eV, respectively. It is found that one lead doping in
La2Al4O3 decreases the activation energy.

During oxide ion conduction, oxide ion migrates through oxygen vacancy. At
the middle of the diagonal path, covalent bonding is formed between oxide ion and
counter cations. By the difference of chemical bonding formation with
up-and-down counter cations, the activation energy is changeable. For example,
when strontium is substituted for lanthanum, the activation energy becomes smaller.

14.3 Proton Conduction in LaAlO3 Perovskite

14.3.1 Introduction of Proton Conduction

It was first observed that SrCeO3 perovskite exhibits high proton conductivity.
However, it has disadvantages in structural stability and mechanical strength in
practical use. BaZrO3 and SrTiO3 perovskites were considered as next candidate
material. It was shown that the activation energy for proton conduction in BaZrO3

perovskite is 2.42 eV. In SrTiO3 perovskite, as titanium 3d orbital is related to
chemical bonding formation during proton conduction, it was considered that the
stable proton conduction is not expected.

To decrease activation energy for proton conduction, in comparison with
BaZrO3 perovskite, LaAlO3 perovskite was proposed. To incorporate proton into
LaAlO3 perovskite, dopants are introduced. There are three methods to introduce
proton (positive hydrogen atom). One is the direct insertion during synthesis. When
divalent counter cation is doped at lanthanum site, one proton is incorporated, due
to charge compensation. Proton exists as a part of OH−. Second is dissolution of H2

gas. Using Kröger–Vink notation, the formation of OH defect is expressed as,

H2 þO00
O ! 2OH0

O þ 2e0 ð14:26Þ

H+

OH-

Fig. 14.14 Schematic
drawing of proton
incorporation on AlO2 layer
of LaAlO3 perovskite, under
wet condition. Black, white
and dotted circles denote
aluminium, oxygen, and
oxygen vacancy, respectively
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Third is dissolution of water molecule under wet condition (see Fig. 14.14). As
same as oxide ion conductor, oxygen vacancy is required as defect. The formation
of OH defect is expressed as, in the same manner,

H2OþV�
O þO00

O ! 2OH0
O ð14:27Þ

In this case, charge compensation is kept, when OH− and H+ are coincidentally
incorporated on surface. Note that Kröger–Vink notation is based on the formal
charge here.

14.3.2 Proton Conduction Path

In order to take the effect of chemical bonding formation between conducting
proton and up-and down counter cations, La2Al4O4H model is constructed (see
Fig. 14.15). Figure 14.16 depicts three proton conduction paths within Al4O4

square. In A and B paths, proton migrates towards nearest neighbouring and
next-nearest neighbouring oxygen, respectively. C path is considered to investigate
whether proton directly crosses Al4O4 square or not. BHHLYP calculation is
performed for La2Al4O4H model. Basis set used for aluminium and oxygen is
6-31G*, combined with MINI(3.3.3.3.3.3/3.3.3.3/3.3/4) for lanthanum.

Figure 14.17 shows the potential energy curves of La2Al4O4H model in A, B
and C paths. Figure 14.18 depicts the molecular orbitals of La2Al4O4H model at the
local maximum and minimum in A path, and at the local minimum in B path.

In A path, the local maximum is given at the middle, and the local minima are
given around 0.95 and 1.75 Å. The activation energy for proton conduction is
0.74 eV. At the local minimum, the obtained wave-functions of MO73, MO83 and
MO84 are

O6

Al3 Al2O7

La1

La2

O5

Al4 Al1O8

H

(a) (b)

Fig. 14.15 a Crystal structure of LaAlO3 perovskite, b La2Al4O4H model. Reference [3] by
permission from Elsevier
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wMO73 minð Þ ¼ 0:19/H 1s0ð Þ � 0:20/O7 1sð Þ þ 0:42/O7 2s0ð Þ þ 0:47/O7 2s00ð Þ ð14:28Þ

wMO83 minð Þ ¼ 0:27/H 1s0ð Þ þ 0:26/H 1s00ð Þ � 0:13/O5 2s00ð Þ
� 0:17/O7 2s0ð Þ � 0:39/O7 2s00ð Þ þ 0:40/O7 2px0ð Þ þ 0:26/O7 2px00ð Þ þ 0:17/O7 2py0ð Þ

ð14:29Þ

wMO84 minð Þ ¼ 0:10/H 1s0ð Þ þ 0:37/H 1s00ð Þ
� 0:10/O5 2s0ð Þ � 0:23/O5 2s00ð Þ
� 0:26/O7 2px0ð Þ � 0:27/O7 2px00ð Þ þ 0:48/O7 2py0ð Þ þ 0:30/O7 2py00ð Þ

ð14:30Þ

In MO73, there is orbital overlap between H 1s and O7 2s orbitals. One
hydrogen lobe interacts with one oxygen lobe. From chemical bonding rule, it is
found that hydrogen atom forms r-type covalent bonding with oxygen atom (OH
bond). In MO83 and MO84, there are orbital overlaps between H1s and O7 2p
orbitals, though O5 2s orbital also participates. One hydrogen lobe interacts with
one oxygen lobe. From chemical bonding rule, it is found that hydrogen atom forms
r-type covalent bonding with oxygen atom. Mulliken charge density of hydrogen
atom is 0.10. It implies that hydrogen atom exists as not proton but almost neutral
hydrogen at the local minimum. It is concluded that hydrogen atom is regarded as a
part of OH at the local minimum. At the local maximum, the obtained
wave-functions of MO73 and MO83 are

H
OAl Al

OAl Al

O O d

HOAl Al

OAl Al

O O

x

H
OAl Al

OAl Al

O O

y
(a)

(c)

(b)
Fig. 14.16 Three proton
conduction paths within
Al4O4 square of LaAlO3

perovskite: a A path, b B
path, c C path. Reference [3]
by permission from Elsevier
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Fig. 14.17 Potential energy curves of La2Al4O4H model: a A, b B and c C paths. Reference [3]
by permission from Elsevier
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wMO73 maxð Þ ¼ 0:13/H 1s0ð Þ � 0:14/O5 1sð Þ þ 0:30/O5 2s0ð Þ þ 0:33/O5 2s00ð Þ
� 0:14/O7 1sð Þ þ 0:30/O7 2s0ð Þ þ 0:33/O7 2s00ð Þ

ð14:31Þ

wMO83 maxð Þ ¼ 0:27/H 1s0ð Þ þ 0:37/H 1s00ð Þ
� 0:12/O5 2s0ð Þ � 0:26/O5 2s00ð Þ � 0:10/O5 2px0ð Þ � 0:26/O5 2py0ð Þ � 0:16/O5 2py00ð Þ
� 0:12/O7 2s0ð Þ � 0:26/O7 2s00ð Þ þ 0:26/O7 2px0ð Þ þ 0:16/O7 2px00ð Þ þ 0:10/O7 2py0ð Þ

ð14:32Þ

In MO73, there are orbital overlaps between H 1s and O5 2s orbitals, and
between H 1s and O7 2s orbitals. One hydrogen lobe interacts with one oxygen
lobe. From chemical bonding rule, it is found that hydrogen atom forms r-type
covalent bonding with two oxygen atoms (OHO bond). In MO83, there are nodes
between H and O5, and between H and O7. MO83 is inversion r-type covalent
bonding to MO73. Mulliken charge density of hydrogen atom is 0.00. It implies
that hydrogen atom exists as not proton but neutral hydrogen at the local maximum.
Finally, it is concluded that OH and OHO covalent bonds are alternately formed
during proton conduction in A path.

In B path, the local maximum is given at the centre, and the local minima are
given around 1.0 and 2.8 Å. As the activation energy for proton conduction in B
path (3.56 eV) is much larger than A path, it is found that A path is dominative. At
the local minimum, the obtained wave-functions of MO73 and MO83 are

MO73 
(-3.0911)

MO83 
(-2.5461)

MO84 
(-2.3604)

MO73 
(-2.9897)

MO83 
(-2.5104)

MO83 
(-2.4648)

MO73 
(-3.0814)

(a)

(b) (c)

Fig. 14.18 Selected molecular orbitals of La2Al4O4H model: a local minimum in A path, b local
maximum in A path, c local minimum in B path. Orbital energy is given in parenthesis. Reference
[3] by permission from Elsevier
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wMO73 minð Þ ¼ 0:16/H 1s0ð Þ � 0:20/O7 1sð Þ þ 0:43/O7 2s0ð Þ þ 0:49/O7 2s00ð Þ ð14:33Þ

wMO83 minð Þ ¼ 0:28/H 1s0ð Þ þ 0:39/H 1s00ð Þ
� 0:17/O7 2s0ð Þ � 0:38/O7 2s00ð Þ þ 0:48/O7 2py0ð Þ þ 0:24/O7 2py00ð Þ

ð14:34Þ

In MO73, there is orbital overlap between H 1s and O7 2s orbitals. In MO83,
there are orbital overlaps between H 1s and O7 2s orbitals, and between H 1s and
O7 2p orbitals. From chemical bonding rule, it is found that hydrogen atom forms
r-type covalent bonding with oxygen atom (OH bond). Mulliken charge density of
hydrogen atom is 0.04. It implies that hydrogen atom exists as not proton but almost
neutral hydrogen. Finally, it is concluded that hydrogen atom exists as a part of OH
at the local minimum.

In comparison with total energies of three local minima (see Table 14.1), the
total energy at the local minimum in C path is 4.15 eV larger than the local
minimum in A path. It is found that the direct proton conduction through Al–O–Al
bond is impossible. Figure 14.19 depicts the schematic drawing of proton con-
duction within Al4O4 square. Before starting proton conduction, hydrogen exists as
a part of OH bond, which is towards a square centre. When proton conduction
starts, hydrogen starts to be rotated around oxygen atom, keeping OH bond. When
hydrogen reaches the local minimum in diagonal line, hydrogen migrates towards
to next-nearest neighbouring oxygen, changing covalent bonding (OH and OHO
bonds).

Table 14.1 Total energies at
three local minima

Proton conduction path Total energy (eV)

A −480515.31

B −480516.75

C −480510.43

O

H

O

O

O

MIN
MIN

OH rotation

OH and OHO bonds

Fig. 14.19 Schematic drawing of proton conduction within Al4O4 square. Black circle denotes
aluminium
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Figure 14.20 depicts alternative three-dimensional proton conduction path (D
path). In D path, hydrogen is rotated, connecting three different local minima on
three different Al4O4 squares. Note that hydrogen is three-dimensionally rotated
around O5, keeping OH bond. Figure 14.21 shows the potential energy curve of
La2Al4O4H model in D path. Hydrogen migration between two local minima is

Al

O

O7

MIN
O5

H

O

MIN

MINAl Al

Al

O

O Al

Al AlO AlO

OO O

Al

O
O

H

O

Fig. 14.20 Three-dimensional proton conduction path, crossing Al4O4 square (D path). Reference
[3] by permission from Elsevier
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Fig. 14.21 Potential energy curve of La2Al4O4H model in D path. Reference [3] by permission
from Elsevier
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only shown. It is because the same potential energy curve is given, due to the
symmetry. The activation energy of D path is 1.65 eV.

Figure 14.22 depicts the schematic drawing of the whole proton conduction path
in LaAlO3 perovskite. Before starting proton conduction, hydrogen is located at the
most stable position within Al4O4 square, where hydrogen of OH bond is located
towards square centre. Hydrogen migrates through OH rotation until the local
minimum in diagonal line. Then, hydrogen migrates towards next-nearest neigh-
bouring oxygen site, forming OHO and OH bonds alternately. When crossing
Al4O4 square, hydrogen migrates through three-dimensional OH rotation, con-
necting three local minima in the diagonal line. In order to estimate the activation
energy for proton conduction in LaAlO3 perovskite, all proton conduction paths
within and crossing Al4O4 square must be coincidentally considered. Figure 14.23
shows the whole potential energy curve of La2Al4O4H model. Note that proton
conduction distance is projected in x axis. The activation energy is estimated to be
2.17 eV, from the total energy difference between minimum (0.0 Å) and local
maximum (0.95 Å). Once proton conduction starts, hydrogen can pass the next
energy barrier (1.65 eV) through three-dimensional OH rotation.

Fig. 14.22 Schematic drawing of the whole proton conduction in LaAlO3 perovskite. Black,
white, and red circles denote aluminium, oxygen and lanthanum, respectively. Reference [3] by
permission from Elsevier
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14.3.3 Proton Pumping Effect

Before starting proton conduction, proton exists as a part of OH, at oxygen lattice
position. It was theoretically proposed that proton is pumped into the inside of
Al4O4 square, combined with OH conduction. The effect is called “proton pumping
effect”. Figure 14.24 depicts the schematic drawing of proton pumping effect.
When H2 molecule is dissolved into LaAlO3 perovskite, proton forms covalent
bonding with oxygen. After three-dimensional OH rotation, proton is pumped
towards the centre of Al4O4 square through OH conduction. Then proton con-
duction occurs within Al4O4 square. When proton reaches second nearest neigh-
bouring oxygen, proton pumping occurs after crossing Al4O4 square. On the other
hand, when water molecule is dissolved into LaAlO3 perovskite under wet con-
dition, OH and proton are directly captured at oxygen vacancy and oxygen,
respectively. In the former case, without three-dimensional OH rotation, proton is
pumped towards the centre of Al4O4 square through OH conduction. In the latter
case, the process is as same as H2 gas.

Let us confirm proton pumping effect in LaAlO3 perovskite. Figure 14.25 shows
the potential energy curve of La2Al4O4H model, when displacing OH towards the
centre of Al4O4 square. The lattice position of oxygen is defined as origin (see
Fig. 14.26). The local minimum is given around 0.1 Å. It implies that proton
pumping occurs. Figure 14.27 shows the potential energy curve of La2Al4O4H
model, under consideration of proton pumping effect. The activation energy for
proton conduction is 1.31 eV, which is much smaller in comparison with no proton
pumping (2.17 eV).

It is concluded that high proton conductivity comes from proton pumping effect.
Even if no local minimum is given during OH conduction, there may be energetic
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Fig. 14.23 Whole potential energy curve of La2Al4O4H model. The proton conduction distance is
projected in x axis. Reference [3] by permission from Elsevier
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Fig. 14.24 Schematic drawing of proton pumping effect in LaAlO3 perovskite: a H2 gas, b water
molecule under wet condition. Black and white circles denote aluminium and oxygen, respectively.
Reference [3] by permission from Elsevier
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Fig. 14.25 Potential energy curve of La2Al4O4H model, when displacing OH towards the centre
of Al4O4 square. Reference [3] by permission from Elsevier
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Fig. 14.26 Schematic drawing of proton conduction after proton pumping in LaAlO3 perovskite.
Reference [3] by permission from Elsevier
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Fig. 14.27 Potential energy curve of La2Al4O4H model, under consideration of proton pumping
effect. Reference [3] by permission from Elsevier
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advantage, in comparison with energetic disadvantage of no proton pumping.
Proton pumping can be regarded as the local structural relaxation, due to strong OH
covalency. However, conventional structural relaxation on surface may suppress
proton conductivity. It is because proton may be kept fixed, due to the stabilization.

14.3.4 Conflict with Oxide Ion Conduction in LaAlO3

Perovskite

In LaAlO3 perovskite, oxide ion migrates through oxygen vacancy. When oxygen
vacancy exists, the conflict with oxide ion conduction must be taken into consid-
eration. For example, when positively charged proton migrates from left electrode
to right electrode through solid electrolyte, negatively charged oxide ion can
migrate from right electrode to left electrode through oxygen vacancy (see
Fig. 14.1). It implies the coincident oxide ion conduction.

Table 14.2 summarizes the activation energies for proton and oxide ion con-
ductions in LaAlO3 perovskite. In undoped case (La2Al4O4H and La2Al4O3

models), the activation energies for proton and oxide ion conductions are 1.31 and
2.73 eV, respectively. When keeping lower operation temperature, only oxide ion
can be prevented. As the strategy of materials design, the smaller and larger acti-
vation energies are favourable for proton and oxide ion conductions, respectively.
For example, Pd and Zn co-doped LaAlO3 perovskite is one of the best candidates.

14.4 Comparison with AC Impedance Measurement

In AC impedance measurement, the real part, which expresses electric resistance, is
generally divided into three contributions such as bulk, grain boundary and elec-
trode interface. In experimental analysis, electric resistance is constant in bulk
part. However, in real oxide ion and proton conductors, it is changeable, due to
change of covalent bonding. In proton conducting BaZrO3 perovskite, BHHLYP
calculation predicts that the activation energy for proton conduction is 2.42 eV

Table 14.2 Calculated activation energies for proton and oxide ion conductions in undoped and
doped LaAlO3 perovskite (BHHLYP method)

Undoped
case

Sr-doping Pb-doping Zn-doping Pb and Zn
co-doping

Proton La2Al4O4H LaSrAl4O4H LaPbAl4O4H La2Al3ZnO4H LaPbAl3ZnO4H

1.31 eV 1.57 eV 1.78 eV 0.91 eV 1.32 eV

Oxide
ion

La2Al4O3 LaSrAl4O3 LaPbAl4O3 La2Al3ZnO3 LaPbAl3ZnO3

2.73 eV 2.29 eV 2.10 eV 3.57 eV 4.99 eV
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under consideration of proton pumping effect (see Fig. 14.28), though experimental
value is 0.44–0.49 eV. The large mismatch comes from neglecting a change of
covalency. On the other hand, as lithium and sodium ions form no covalent bonding
with other atoms, there is no mismatch between theoretical and experimental
values.
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Part V
Helium Chemistry and Future



Chapter 15
Helium Chemistry

Abstract Helium is getting rare resource to support recent advanced industry. The
electronic structure of helium is introduced, in comparison with hydrogen. In
helium dimer, it has been recognized that helium atoms are weakly bound through
interatomic interaction, due to zero bond order. In coupled cluster calculation for
helium dimer, there is orbital overlap between helium 1s orbitals. One helium lobe
interacts with one helium lobe. From chemical bonding rule, it is found that r-type
covalent bonding is formed. Bond order cannot determine whether diatomic
molecule is dispersed or not. In He–H system, three formal charges of hydrogen are
considered. In He–H+, covalent bonding is formed between helium 1s and
hydrogen 1s orbitals. It implies that one electron is shared by helium and hydrogen.
However, in He–H and He–H−, no orbital overlap is observed between helium and
hydrogen.

Keywords Helium � Hydrogen � Covalent bonding � Bond order � Chemical
bonding rule

15.1 Introduction of Helium

The atomic number of helium is 2, and the element symbol is “He”. It is known that
helium, neon, argon, krypton, xenon and radon are categorized as noble gas, and
have closed shell electronic structure. At normal temperature, helium exists as
colourless, odourless, non-toxic inert gas. Table 15.1 shows the boiling point of
several molecules under normal pressure. The boiling point of helium is 4.2 K,
which is much smaller than other molecules.

Helium has been widely utilized as industrial gas, and has been indispensable in
manufacturing process of optical fibre and semi-conductor, and coolant for super-
conductors. Helium is getting to be recognized as rare resource to support recent
advanced industry. Industrial production of helium is performed by separation and
purification from underground natural gas, since helium scarcely exists in the air.
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Figure 15.1 depicts the schematic drawings of particle structures of helium 3 and
helium 4. In both helium, two electrons occupy 1s orbital. In nature, helium exists
as helium 4, where two protons and two neutrons exist within atomic nucleus.
Helium 3, where two protons and one neutron in atomic nucleus, is the stable
isotope of helium 4.

Figure 15.2 depicts the schematic drawings of particle structures of hydrogen,
deuterium and tritium. Hydrogen has only one proton within atomic nucleus,
though deuterium and tritium have one and two neutrons, respectively.

As shown in Fig. 15.3, helium 4 is synthesized by nuclear fusion reaction
between deuterium and tritium (D–T reaction).

Table 15.1 Boiling point of several molecules under normal pressure

H2O O2 N2 H2 He

373 K 90 K 77 K 20 K 4 K

Fig. 15.1 Schematic
drawings of particle structures
for a helium 3 and b helium 4

Fig. 15.2 Schematic
drawings of particle structures
of a hydrogen (H),
b deuterium (D) and tritium
(T)
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DþT ! 4Heþ n ð15:1Þ

In the reaction, neutron is created, combined with emission of larger energy.
On the other hand, as shown in Fig. 15.4, helium 3 is synthesized by nuclear

fusion reaction between deuteriums (D–D reaction).

DþD ! 3Heþ n ð15:2Þ

The neutron of hydrogen has an important role in the nuclear fusion reaction of
helium.

15.2 Helium Dimer

In general, it has been recognized that helium atoms are weakly bound through
interatomic interaction, due to the closed shell structure. Let us reconsider chemical
bonding between helium atoms, based on molecular orbital (MO) theory. Following
empirical manner, it is assumed that two helium 1s orbitals form MO1 and cor-
responding inversion MO2, as shown in Fig. 15.5. Note that molecular orbital
calculation is not performed at this stage.

Bond order (N) is known as an empirical index to judge covalency in diatomic
molecule. It is defined by

Fig. 15.3 Schematic drawing
of D–T reaction. Atomic
nucleus is only shown

Fig. 15.4 Schematic drawing
of D–D reaction. Atomic
nucleus is only shown
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N ¼ Na � Nbð Þ=2 ð15:3Þ

where Na and Nb denote the numbers of electrons in covalent and corresponding
inversion MOs, respectively. In fact, covalent character depends on both orbital
overlap pattern and magnitude. In helium dimer, bond order becomes zero, due to
Na = Nb = 2. It has been often recognized that helium dimer is dispersed, as bond
order is zero. It implies that helium atoms are isolated and there is no orbital overlap
between helium 1s orbitals.

Let us discuss again whether helium dimer is dispersed or not. The site numbers
of left and right helium atoms are defined as He1 and He2, respectively.
CCSD/aug-cc-pVTZ calculation is performed for helium dimer (He1–He2). At
geometry optimized structure, He1–He2 distance is 3.04 Å. It is much larger than
H–H distance. Four electrons occupy MO1 and MO2. The obtained wave-function
of MO1 is

wHe2 MO1ð Þ ¼ 0:25/He1 1s0ð Þ þ 0:34/He1 1s00ð Þ þ 0:21/He1 1s000ð Þ
þ 0:25/He2 1s0ð Þ þ 0:34/He2 1s00ð Þ þ 0:21/He2 1s000ð Þ

ð15:4Þ

There is orbital overlap between He1 and He2 1s orbitals. One He1 lobe interacts
with one He2 lobe. From chemical bonding rule, it is found that r-type covalent
bonding is formed. The obtained wave-function of MO2 is

wHe2 MO2ð Þ ¼ 0:25/He1 1s0ð Þ þ 0:34/He1 1s00ð Þ þ 0:21/He1 1s000ð Þ
� 0:25/He2 1s0ð Þ � 0:34/He2 1s00ð Þ � 0:21/He2 1s000ð Þ

ð15:5Þ

MO2 is corresponding inversion r-type covalent bonding, due to the different
signs of He1 and He2 1s coefficients. It is found that covalent bonding is formed in
helium dimer in spite of zero bond order. Finally, it is concluded that bond order

Fig. 15.5 Schematic drawing
of molecular orbital diagram
of helium dimer
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cannot judge whether covalent bonding is formed or not in diatomic molecule. Note
that there is no orbital overlap between them, if two atoms are completely
dispersed.

Figure 15.6 shows the potential energy curve of helium dimer, changing He1–
He2 distance. The bond dissociation energy can be estimated from the total energy
difference between the local minimum and completely dissociated point.

Edissociation He2ð Þ ¼ E Heð ÞþE Heð Þ � E He2ð Þ ð15:6Þ

The value is 0.017 kcal/mol. It is found that helium dimer can be formed only at
very low temperature. At room temperature, the larger energy is given as kinetic
energy, in comparison with the bond dissociation energy. Helium dimer will be
dispersed.

As the zero point vibration energy (0.038 kcal/mol) is larger than the bond
dissociation energy, the effect of quantum vibration is negligible. It is considered
that solid state helium aggregation is difficult, due to the quantum fluctuation.

15.3 Helium and Hydrogen

In universe, the abundance ratios of helium and hydrogen are larger than other
atoms. It can be expected that helium is interacted with hydrogen at very low
temperature or under extreme environment. CCSD/aug-cc-pVTZ calculation is
performed for He–H model. Here, we consider three types of hydrogen charges
such as positive (+1), neutral (0) and negative (−1).

Fig. 15.6 Potential energy curve of helium dimer, changing He–He distance
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15.3.1 He–H+

Figure 15.7 shows the potential energy curves of He–H+ model, changing He–H
distance. Local minimum is given at 0.776 Å. Mulliken charge densities of helium
and hydrogen are 0.315 and 0.685, respectively. Two electrons occupy one MO1.
The obtained wave-function of MO1 is

wHeHþ MO1ð Þ ¼ 0:13/H 1s0ð Þ þ 0:12/H 1s00ð Þ þ 0:35/He 1s0ð Þ þ 0:45/He 1s00ð Þ þ 0:16/He 1s000ð Þ
ð15:7Þ

There is orbital overlap between He and H 1s orbitals. One He lobe interacts
with one H lobe. From chemical bonding rule, it is found that r-type covalent
bonding is formed.

Figure 15.8 depicts the schematic drawing of the relationship between atomic
orbitals and molecular orbital in He–H+. As the formal charge of H+ is +1, no
electron exist in atomic orbital of H+. However, one electron is shared by both
helium and hydrogen in He–H+.

Fig. 15.7 Potential energy curve of He–H+, changing He–H distance
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15.3.2 He–H

Figure 15.9 shows the potential energy curves of He–H, changing He–H distance.
Local minimum is given at 3.58 Å. Spin densities of helium and hydrogen are 0.00
and 1.00, respectively. There electrons occupy MO1a, MO1b and MO2a. The
obtained wave-functions of MO1a, MO1b and MO2a are

He H+ 

e 

e 

He
1s atomic orbital

H+ 

1s atomic orbital

He-H+

molecular orbital

Fig. 15.8 Schematic drawing of the relationship between atomic orbitals and molecular orbital in
He–H+

Fig. 15.9 Potential energy curve of He–H, changing He–H distance
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wHeH MO1að Þ ¼ 0:35/He 1s0ð Þ þ 0:48/He 1s00ð Þ þ 0:30/He 1s000ð Þ ð15:8Þ

wHeH MO1bð Þ ¼ 0:35/He 1s0ð Þ þ 0:48/He 1s00ð Þ þ 0:30/He 1s000ð Þ ð15:9Þ

wHeH MO2að Þ ¼ 0:24/H 1s0ð Þ þ 0:51/H 1s00ð Þ þ 0:38/H 1s000ð Þ ð15:10Þ

There is no orbital overlap between helium and hydrogen. From chemical
bonding rule, it is found that no covalent bonding is formed. MO1a and MO1b are
paired. MO2a is unpaired.

15.3.3 He–H−

Figure 15.10 shows the potential energy curves of He–H−, changing He–H dis-
tance. Local minimum is given at 6.45 Å. Four electrons occupy MO1 and MO2.
The obtained wave-functions of MO1 and MO2 are

wwHeH� MO1ð Þ ¼ 0:35/He 1s0ð Þ þ 0:48/He 1s00ð Þ þ 0:30/He 1s000ð Þ ð15:11Þ

wwHeH� MO2ð Þ ¼ 0:16/H 1s0ð Þ þ 0:27/H 1s00ð Þ þ 0:41/H 1s000ð Þ þ 0:37/H 2s0ð Þ ð15:12Þ

As same as He–H, there is no orbital overlap between helium and hydrogen.
From chemical bonding rule, it is found that no covalent bonding is formed. He–H−

distance is larger than He–H. It is because Coulomb repulsion between helium and
hydrogen is larger.

Fig. 15.10 Potential energy curve of He–H−, changing He–H distance
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15.3.4 Comparison with Three Cases

The dissociation energies of He–H+, He–H and He–H− are 46.9, 0.0117 and
0.0191 kcal/mol, respectively. The large dissociation energy of He–H+ is due to
covalent bonding formation. Zero point vibration energies for He–H+, He–H and
He–H− are 4.58, 0.0467 and 0.0208 kcal/mol, respectively. In He–H+, zero point
energy is smaller than dissociation energy. It implies that the effect of quantum
vibration hydrogen is negligible in He–H+.
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Chapter 16
Summary and Future

Abstract At the beginning of last century, it was difficult to extend quantum
theory to many-electron system. In Bohr model, the electron structure of hydrogen
atom was reproduced by introducing the concept of matter wave. However, it could
not be applicable for many-electron system. To represent electron as quantum
particle, the wave-function was proposed. One electron is allocated in one
wave-function. It is not split into two wave-functions. Though the basic equation of
electrons is Schrödinger equation, it cannot be analytically solved. Hartree-Fock
method was developed to solve it numerically. It is important to analyse the
obtained wave-function, which stands for molecular orbital. By using chemical
bonding rule, chemical bonding character is specified. Though natural orbital is
often utilized in molecular orbital analysis, it is completely different from molecular
orbital. DFT is the scientifically reasonable method, due to incorporation of electron
correlation effect. It makes it possible to design advanced materials. Finally, the
future research in collaboration with particle physics is explained.

Keywords Quantum particle � Wave-function � Chemical bonding rule �
Molecular orbital � Chemistry of the universe

16.1 From Quantum Theory to Molecular Orbital

16.1.1 Quantum Electron and Schrödinger Equation

Electron is categorized as quantum particle. In Bohr model, wave-particle duality is
incorporated by the introduction of the concept of matter wave. However, Bohr
model could not be applicable for many-electron system. To represent electron as
quantum particle, quantum wave-function was proposed. Though the wave-function
represents no figure, the square of wave-function represents electron density. The
basic equation of electron is Schrödinger equation. Operating wave-function to
Hamiltonian, discrete energy is given as eigenvalue. One electron is allocated in
one wave-function. It is not split into two wave-functions.
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16.1.2 Orbital and Hartree-Fock Equation

In principal, the electronic structure of many-electron system can be obtained by
solving Schrödinger equation. In hydrogen atom and hydrogenic atom, the exact
wave-function is analytically obtained. It corresponds to orbital, which is expressed
in real space. The kind of orbital is determined by the difference of two quantum
numbers such as principal quantum number and quantum number of orbital angular
momentum. In many-electron system, spin orbital is introduced to include the effect
of spin angular momentum. The total wave-function is expressed by Slater deter-
minant, to satisfy inverse principle.

Hartree-Fock equation is derived by minimizing the total energy of Schrödinger
equation, under Born–Oppenheimer approximation. Hartree-Fock equation is
one-electron equation. The eigenfunction and eigenvalue correspond to spin orbital
and orbital energy, respectively.

16.1.3 Wave-Function Analysis

To solve Hartree-Fock equation numerically, basis function is introduced to spatial
wave-function. In Hartree-Fock matrix equation, the coefficients and orbital energy
are calculated under self-consistent-field (SCF) procedure. Initial atomic orbital is
defined by basis function designated for calculation. Molecular orbital is repre-
sented by the combination of initial atomic orbitals.

In molecule and solid, atoms are bound through chemical bonding formation. In
covalent bonding, outer shell electron is shared between different atoms. On the
other hand, in ionic bonding, different atoms are bound through Coulomb inter-
action. In chemical bonding rule, chemical bonding character is specified by
checking molecular orbitals including outer shell electrons: With orbital overlap, it
is covalent; without orbital overlap, it is ionic. The essence of covalency is sharing
electron at the same energy level. Note that ionic bonding is essentially included,
due to the existence of positively charged atomic nucleus and negatively charged
electron. Mulliken charge density is also utilized to estimate a net electron density.

In principal, from the communication relation of Hamiltonian operator and
square of total spin angular momentum operator (S2), the total wave-function must
be the eigenfunction of S2 operator. However, the relation is not satisfied in open
shell system. It is much expected that spin function is prepared for not isolated
electron but electron in atom, under consideration of spin-orbital interaction.

Natural orbital is completely different from molecular orbital. It loses the
information of energy by the diagonalization of reduced charge density matrix.
Hence, molecular orbitals with different orbital energies are mixed. In addition, spin
information disappears, because spatial orbitals of a and b spins are mixed. Natural
orbital is not eigenfunction of Hartree-Fock equation. It is apart from quantum
mechanics. Natural orbital analysis sometimes misleads wave-function analysis.
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16.2 Electron Correlation

In Hartree-Fock method, the electron–electron interaction is represented in an
average manner. The exact total energy is different from Hartree-Fock total energy.
Electron correlation energy is defined as the difference between the exact and
Hartree-Fock total energies. In configuration interaction method, the electron cor-
relation effect is incorporated by the combination of wave-functions with excited
electron configurations. In coupled cluster method, the expansion of wave-function
is performed by using cluster operator. However, they have the scientific contra-
diction that several Hartree-Fock equations are taken into account at the same time.
CI and CI based methods sometimes predict the wrong electronic structure, espe-
cially in transition metal compounds.

In density functional theory, the electron correlation effect is incorporated by
revising the electron correlation energy directly. Though it is scientifically rea-
sonable, universal exchange-correlation functional has not been developed. At
present, the best functional must be selected for considering system. The electron–
electron interaction differs according to material (combination of atoms). For
example, in transition metal compounds, hybrid-density functional theory is
applied. It is because localization and delocalization properties are incorporated by
Hartree-Fock exchange functional and LDA or GGA functionals, respectively. To
perform very accurate calculation, the essence is to reproduce the electron–electron
interaction precisely. Note that the calculation accuracy must be discussed by
energetics and bonding. The latter is often missing in many research.

16.3 Solid State Calculation

In boundary system, molecular orbital calculation for minimum cluster model is
applicable under three conditions: (1) no neutral condition, (2) no geometry opti-
mization and (3) experimental distance. If using large cluster model consisting of
many minimum cluster models, the electronic structure of nanoparticle will be
reproduced, due to the breakdown of boundary condition within large cluster
model.

The antiferromagnetic interaction of MXM system, where M and X denote
transition metal and ligand anion, respectively, is explained by superexchange rule.
When a and b molecular orbitals represent up and down spins of transition metals,
respectively, a and b spins of ligand anion are cancelled out. As the result, the
antiferromagnetic interaction occurs between transition metals via ligand anion.

In transition metal compounds, the energy splitting of 3d orbitals is explained by
ligand bonding effect. The 3d electron configuration of transition metal is affected
by not only Coulomb interaction but also charge transfer and orbital overlap. In
some cases, the structural distortion is combined.
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16.4 Materials Design

It is desired that molecular orbital calculation is performed, in parallel to experi-
mental study. It is because much useful chemical information is provided from the
experimental results. For example, much experimental information makes it faster
to construct the scientific reasonable calculation model. The calculation results can
be compared with the experimental results. Contrarily, the validity of experimental
results is also judged. Now, it is possible to store much calculation data for several
materials. By using much data effectively, we can design new material theoretically.

The major targets of materials design

(1) Battery materials
(2) Catalysts materials
(3) Medicine, Biomolecules

16.5 Chemistry of the Universe

It is known that most of elements in the universe are hydrogen and helium. It is
because they are produced by nuclear fusion reaction of proton and neutron. Other
heavy elements are synthesized from hydrogen and helium. To investigate nucle-
osynthesis, the collaboration of particle physics is indispensable. It is because
quantum particles such as proton and neutron participate in nucleosynthesis. In
addition, orbital theory under extreme condition must be explored. Previously,
molecular orbital theory has succeeded in reproducing the real electronic structure
and real chemical reaction for many materials on earth. At next stage, it is much
expected that nucleosynthesis in the universe is clarified, based on the next
molecular orbital theory, combined with particle physics.

Further Readings

1. Onishi T (2016) J Chin Chem Soc 63:83–86
2. Onishi T (2016) AIP Conf Proc 1790:02002
3. Onishi T, Prog Theor Chem Phys, in press
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