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Preface 

This book deals with multiple repeated analyses (reanalysis) of structures. 
Reanalysis is needed in many problems of structural analysis, design and 
optimization. It is related to a wide range of applications in Aerospace En-
gineering, Civil Engineering, Mechanical Engineering and Naval Architec-
ture. The book was developed while I was teaching graduate courses on 
analysis, design and optimization of structures, in the United States, Can-
ada, Europe and Israel. It summarizes many years of research and devel-
opments in these areas. The purpose of the book is to collect together the 
main results of this work and to present them in a unified approach. It 
meets the need for a general text covering the basic concepts as well as re-
cent developments on reanalysis of structures. This should prove useful to 
students, researchers, consultants and practicing engineers involved in 
structural analysis and design. Other books on structural analysis do not 
cover most of the topics presented in the book. Early developments on this 
subject are introduced in a previous book by the author (Design-Oriented 
Analysis of Structures, Kluwer Academic Publishers, Dordrecht 2002). 

In general, the structural response cannot be expressed explicitly in 
terms of the structure properties, and structural analysis involves solution 
of a set of simultaneous equations. Reanalysis methods are intended to 
analyze efficiently structures that are modified due to changes in the struc-
ture properties. The object is to evaluate the structural response (e.g. dis-
placements, stresses and forces) for such changes without solving the 
complete set of modified analysis equations. The solution procedures usu-
ally use the available response of the original structure. 

Structural analysis is a main part of any design problem. The analysis 
often must be repeated many times during the design process due to 
changes in the design variables. The high computational cost involved in 
reanalysis is one of the main obstacles in the optimization of large-scale 
structures. In structural damage analysis, it is necessary to analyze the 
structure repeatedly for various changes due to damage. It is difficult to de-
termine a priori what damage scenarios should be checked, and numerous 
analyses are required to evaluate various hypothetical scenarios. Reanaly-
sis is involved also in the solution of various nonlinear and dynamic analy-
sis problems. In nonlinear analysis, a set of updated linear equations must 
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be solved repeatedly many times. Similarly, many of the vibration solution 
techniques are based on matrix iteration methods. To calculate the mode 
shapes it is often necessary to solve repeatedly a set of updated equations.  

The significant increases in computer processing power, memory and 
storage space have not eliminated the computational cost and time con-
straints on the use of structural analysis. This is due to the constant in-
crease in the required fidelity and complexity of analysis models and com-
putational procedures. The model complexity is a function of various 
parameters such as the number of degrees of freedom and the topology of 
the structure. Complex analysis such as nonlinear and dynamic analysis 
use linearization algorithms that require linear analysis as a repeated step. 
History-dependent nonlinear analysis and nonlinear dynamic analysis are 
currently the extremes of analysis complexity. They typically require nu-
merous linear analysis equivalents. Reanalysis methods are intended to 
overcome the difficulties involved in repeated analysis complexities. 

The book introduces effective computational procedures for reanalysis. 
The necessary background material on structural analysis needed in the 
rest of the book is summarized in the first 3 chapters. However, the reader 
is expected to be familiar with the basic concepts of finite element analysis 
of structures. Various analysis models are considered in the book, includ-
ing linear, nonlinear, static and dynamic analysis. In addition, design sensi-
tivity analysis for all these models is introduced. Considerations related to 
the efficiency of the calculations, the accuracy of the results and the ease 
of implementation, are discussed in detail. To clarify the presentation, 
many illustrative examples and numerical results are demonstrated. No 
specific system of units is used in the examples. However, in some exam-
ples actual dimensions of the structure and specified magnitude of forces 
have been used. 

Chapters 1–3 present introductory material on various analysis models. 
In Chap. 1 static analysis of framed structures and continuum structures is 
introduced. Considering the stiffness method, linear and nonlinear analysis 
formulations are discussed. Both geometric and material nonlinearities are 
considered, and common solution procedures are described. 

Chap. 2 is devoted to vibration analysis. Free vibration is presented and 
properties of the eigenproblem are discussed. Various solution methods of 
the eigenproblem are introduced, including vector iteration methods, trans-
formation methods, polynomial iterations, Rayleigh-Ritz analysis, the 
Lanczos method and subspace iteration. 

In Chap. 3 dynamic analysis is developed. Solution methods of the equi-
librium equations are presented, including direct iteration methods, mode 
superposition and special analysis procedures. The reduced basis approach 
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for static and dynamic analysis is described and nonlinear dynamic analy-
sis by implicit integration and mode superposition is discussed. 

Chap. 4 deals with the statement and general solution approaches of re-
analysis problems. Formulations of linear, nonlinear, static, vibration and 
dynamic reanalysis are presented. Various reanalysis methods are re-
viewed, including direct and approximate methods. Finally, developments 
in the unified approach considered in the rest of the text are described. 

In Chaps. 5–7 the combined approximations approach for reanalysis is 
developed for the various analysis models presented in Chaps. 1–3. The 
basic concepts of combining various methods into a unified approach are 
introduced. The advantage is that the efficiency of local approximations 
and the improved accuracy of global approximations are combined to ob-
tain effective solution procedures. The approach presented is suitable for a 
wide range of applications and different types of structures. Various types 
of changes in the structure can be considered, including changes in cross-
sections, the material properties, the geometry and the topology of the 
structure. The solution procedures use finite-element stiffness analysis 
formulations. Calculation of derivatives is not required, and the approach 
is most attractive in cases where derivatives are not readily available or not 
easy to calculate. The accuracy of the results and the efficiency of the cal-
culations can be controlled by the amount of information considered. 
Highly accurate results can be achieved at the expense of more computa-
tional effort by considering high-order approximations. On the other hand, 
very efficient procedures are obtained by simplified low-order approxima-
tions. It is shown that in certain cases exact solutions can be achieved with 
a small computational effort.  

In Chap. 5 static reanalysis is discussed. The method for determining the 
basis vectors is developed, and solution procedures for linear and nonlinear 
reanalysis are described. The efficiency of the calculations and the accu-
racy of the results are demonstrated by numerical examples. Various cases 
of topological and geometrical changes are introduced. 

In Chap. 6 vibration reanalysis is presented. It is shown how the prob-
lem can be formulated as a reduced small-scale eigenproblem and solved 
efficiently by combined approximations. Various solution procedures are 
developed and several techniques, intended to improve the accuracy of the 
results, are demonstrated. 

In Chap. 7 dynamic reanalysis is introduced. Linear and nonlinear dy-
namic reanalysis problems are solved by the combined approximations ap-
proach, using procedures that are suitable for both direct integration and 
mode superposition. 

Direct methods, giving exact closed-form solutions, are presented in 
Chap. 8. These methods are efficient in situations where a relatively small 
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proportion of the structure is changed (e.g., changes in cross sections of a 
few elements). It is shown that in such cases the combined approximations 
approach provides also exact solutions. Exact solutions are demonstrated 
for various cases of topological and geometrical changes. Solution proce-
dures are developed for the challenging problem where the number of de-
grees of freedom in the structure is changed. 

In Chap. 9 effective procedures for repeated calculations of the response 
derivatives with respect to design variables are developed. It is shown that 
accurate derivatives can be obtained with a reduced computational effort 
for various analysis models. Procedures of sensitivity calculations are de-
veloped for linear and nonlinear static problems, vibration problems and 
dynamic problems. 

In Chap. 10 efficiency and accuracy considerations are discussed. The 
efficiency is compared with various methods of analysis. Some cases of 
near exact solutions are demonstrated and procedures for error evaluation 
are presented. 

The author wishes to express his appreciation to many graduate students 
and colleagues who helped in various ways. In particular, I am indebted to 
my former graduate students Michael Bogomolni and Oded Amir for the 
fruitful collaboration in research on dynamic and nonlinear reanalysis. Ac-
knowledgement is due to various Foundations, Institutes and Organizations 
for the generous support of many research projects throughout the years 
that formed the basis of this text. Finally, the author gratefully acknowl-
edges the assistance of Professors Donald Grierson and Raphael Haftka in 
reviewing the manuscript and offering critical comments  
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1 Static Analysis 

Structural analysis is a most exciting field of activity, but it is only a sup-
port activity in the field of structural design. Analysis is a main part of the 
formulation and the solution of any design problem, and it often must be 
repeated many times during the design process. The analysis process helps 
to identify improved designs with respect to performance and cost. 

Referring to behavior under working loads, the objective of the analysis 
of a given structure is to determine the internal forces, stresses and dis-
placements under application of the given loading conditions. In order to 
evaluate the response of the structure it is necessary to establish an analyti-
cal model, which represents the structural behavior under application of 
the loadings. An acceptable model must describe the physical behavior of 
the structure adequately, and yet be simple to analyze. That is, the basic 
assumptions of the analysis will ensure that the model represents the prob-
lem under consideration and that the idealizations and approximations used 
result in a simplified solution. This latter property is essential particularly 
in the design of complex or large systems.  

Two categories of mathematical models are often considered: 

� Lumped-parameter (discrete-system) models. 
� Continuum-mechanics-based (continuous-system) models. 

The solution of discrete analysis models involves the following steps: 

� Idealization of the system into a form that can be solved. The actual 
structure is idealized as an assemblage of elements that are 
interconnected at the joints. 

� Formulation of the mathematical model. The equilibrium requirements 
of each element are first established in terms of unknown displacements, 
and the element interconnection requirements are then used to establish 
the set of simultaneous analysis equations. 

� Solution of the model. The response is calculated by solving the 
simultaneous equations for the unknown displacements; the internal 
forces and stresses of each element are calculated by using the element 
equilibrium requirements. 
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The overall effectiveness of an analysis depends to a large degree on the 
numerical procedures used for the solution of the equilibrium equations 
[1]. The accuracy of the analysis can, in general, be improved if a more re-
fined model is used. In practice, there is a tendency to employ more and 
more refined models to approximate the actual structure. This means that 
the cost of an analysis and its practical feasibility depend to a considerable 
degree on the algorithms available for the solution of the resulting equa-
tions. The time required for solving the equilibrium equations can be a 
high percentage of the total solution time, particularly in nonlinear analysis 
or in dynamic analysis, when the solution must be repeated many times. 
An analysis may not be possible if the solution procedures are too costly. 
Because of the requirement to solve large systems, much research effort 
has been invested in equation solution algorithms. 

In elastic analysis we refer to behavior under working loads. The forces 
must satisfy the conditions of equilibrium, and produce deformations com-
patible with the continuity of the structure and the support conditions. That 
is, any method must ensure that both conditions of equilibrium and com-
patibility are satisfied. In linear analysis we assume that displacements 
(translations or rotations) vary linearly with the applied forces. That is, any 
increment in a displacement is proportional to the force causing it. This as-
sumption is based on the following two conditions: 

� The material of the structure is elastic and obeys Hooke's law. 
� All deformations are assumed to be small, so that the displacements do 

not significantly affect the geometry of the structure and hence do not 
alter the forces in the members. Thus, the changes in the geometry are 
small and can be neglected. 

The majority of actual structures are designed to undergo only small and 
linear deformations. In such cases the principle of superposition can be ap-
plied. Linear elastic analysis involves the solution of a set of simultaneous 
linear equations. Framed structures are systems consisting of members that 
are long in comparison to the dimensions of their cross section. Typical 
framed structures are beams, grids, and plane and space trusses and 
frames. The displacement (stiffness) method [e.g. 2, 3], which is the most 
commonly used analysis method, is considered throughout this text. Linear 
analysis of framed structures is presented in Sect. 1.1 

Elastic analysis of continuum structures, such as plates and shells, is 
usually performed by the numerical finite element method [e.g. 1, 4]. This 
method can be regarded as an extension of the displacement method to 
two- and three-dimensional continuum structures. The actual continuum is 
replaced by an equivalent idealized structure composed of discrete ele-
ments, referred to as finite elements, connected together at a number of 
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nodes. By assuming displacement fields or stress patterns within an ele-
ment, we can derive a stiffness matrix. A set of simultaneous algebraic 
equations is formed by applying conditions of equilibrium at every node of 
the idealized structure. The solution gives the nodal displacements, which 
in turn are used to determine the stresses. Linear analysis of continuum 
structures is described in Sect. 1.2. 

In most structural analysis problems it is required to solve a set of linear 
equilibrium equations. Moreover, in various nonlinear and dynamic analy-
sis problems it is necessary to repeat the solution many times for updated 
sets of linear equations. The solution process often involves factorization 
of the stiffness matrix, or iterative procedures. Solution of the linear equi-
librium equations is discussed in Sect. 1.3. 

A nonlinear relationship between the applied forces and the displace-
ments exists under either geometric nonlinearity or material nonlinearity. 
The solution process can be carried out by various procedures, including 
an incremental solution scheme, the iterative Newton-Raphson method and 
combined incremental/iterative solutions. Solution procedures for nonlin-
ear analysis of structures usually involve repeated solutions of sets of up-
dated linear equations. Nonlinear analysis is introduced in Sect. 1.4. 

1.1 Linear Analysis of Framed Structures 

In the displacement method, joint displacements, chosen as the analysis 
unknowns, are determined from the conditions of equilibrium. The internal 
forces and stresses are then determined by superposition of the effects of 
the external loads and the separate joint displacements. 

The equilibrium equations to be solved by the displacement method are 

K r + RL = RE, (1.1)

where K is the stiffness matrix, its elements Kij represent the force in the 
ith coordinate due to unit displacement in the jth coordinate (Kij are com-
puted in the restrained structure, where i, j correspond to displacement de-
grees of freedom); r is the vector of unknown displacements; RL is the vec-
tor of forces corresponding to the unknown displacements in the restrained 
structure; RE is the vector of external loads corresponding to the unknown 
displacements (RE = 0 if no loads act directly in the directions of the un-
known displacements). Defining the load vector R = RE – RL, Eq. (1.1) be-
comes 

K r = R. (1.2)
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The vector of unknown displacements r is computed by solving the set of 
simultaneous equations (1.2). The vector of final member forces in the 
structure, N, is given by the following superposition equations 

N = NL + Nr r, (1.3)

where NL is the vector of member forces due to loads and Nr is the matrix 
of member forces due to unit value of the elements of r, both computed in 
the restrained structure. 

If the loads act only in the directions of the unknown nodal displace-
ments, NL= 0 and the stresses ���� can be determined by 

���� = S r, (1.4)

where S is the stress transformation matrix. 
All equations are related to the action of a single loading. In the case of 

several loading conditions, all vectors will be transformed into matrices so 
that each of their columns will correspond to a certain loading condition. 

The elements of K, R, NL, Nr and S are functions of the material proper-
ties, the geometry of the structure and members' cross-sections. 

Example 1.1 

To illustrate solution by the displacement method, consider the continuous 
beam shown in Fig. 1.1a. The beam has a constant flexural rigidity EI, the 
modulus of elasticity is E, the moment of inertia is I, the spans and the 
loads are represented by L and P, respectively. The object is to find the 
forces at the left-end support, N1 and N2. The two degrees of freedom are 
the two rotations at the joints r1 and r2, which are the unknown displace-
ments. The coefficients computed in the restrained structure are (Figs. 1.1b 
and 1.1c) 
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Fig. 1.1. a. Continuous beam example b. Loads on the restrained structure c. Unit 
displacements on the restrained structure 
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Substituting these coefficients into Eq. (1.2), we find the unknown dis-
placements r 
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The resulting forces N, computed by Eq. (1.3), are 
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1.2 Linear Analysis of Continuum Structures 

Analysis of continuum structures is usually carried out by the finite ele-
ment method. To apply the method, it is necessary first to convert the con-
tinuum into a system with a finite number of unknowns so that the problem 
can be solved numerically. This procedure involves the following steps: 

� The structure is divided into finite elements defined by lines or surfaces. 
� The elements are assumed to be interconnected at discrete nodal points 

situated on the element boundaries. The degrees of freedom at the 
nodes, called nodal-displacement parameters, normally refer to the 
displacements at the nodes. 

� A displacement function, in terms of nodal-displacement parameters, is 
chosen to represent the displacement field within each element. Based 
on the displacement function, a stiffness matrix is written to relate the 
nodal forces to nodal-displacement parameters. The principle of virtual 
work or the principle of minimum total potential energy can be used for 
this purpose. 

The choice of a good displacement function is most important, as badly 
chosen functions will lead to inaccurate analysis results. The displacement 
function must have the same number of unknown constants as the total 
number of degrees of freedom of the element. It must be balanced with re-
spect to the coordinate axes and it must allow the element to undergo rigid-
body movement without any internal strain. The displacement function 
also must be able to represent states of constant stress or strain. Otherwise, 
the stresses will not converge to a continuous function as progressively 
smaller elements are used in the idealization of the structure. It also must 
satisfy the compatibility of displacements along the boundaries with adja-
cent elements. That is, the function values, and sometimes their first de-
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rivatives, are required to be continuous along the boundaries. If all of the 
above conditions are satisfied, the idealization of the whole system will 
generally provide a lower bound to the strain energy, and convergence can 
be guaranteed as the mesh size is successively reduced. However, a num-
ber of elements that do not completely satisfy the conditions of compatibil-
ity along the boundaries have been successfully used, even though conver-
gence is not assured.  

Once the displacement function has been determined, it is possible to 
obtain all the strains and stresses within the element and to formulate the 
stiffness matrix and a consistent load matrix. The load matrix represents 
the equivalent nodal forces, which replace the external distributed loads. 

Consider a linear elastic two-dimensional element (Fig. 1.2), for which 
the displacement function f can be written in the form 

f = P H, (1.5)

where f may have three components (for a three-dimensional body), two 
translation components u, v (for plane stress, Fig. 1.2a), or simply be equal 
to the transverse deflection w (for a plate in bending, Fig. 1.2b); P is a 
function of the coordinates x and y only; and H is a vector of undetermined 
constants. Note that the element of Fig. 1.2a has six degrees of freedom 
representing the translations u and v for each node, while the element of 
Fig. 1.2b has nine degrees of freedom (vertical deflection w, and two rota-
tions at each of the three nodes). 

Applying Eq. (1.5) repeatedly to the nodes of the element one after the 
other, we obtain the following set of equations relating the nodal parame-
ters re to the constants H 

re  = C H. (1.6)

The elements of matrix C are functions of the relevant nodal coordinates. 
From Eq. (1.6), the undetermined constants H can be expressed as 

H = C-1 re. (1.7)

Substituting Eq (1.7) into Eq. (1.5), we have 

f = P C-1 re. (1.8)

In many cases, the displacement function is constructed directly in terms 
of the nodal parameters 

f = L re, (1.9)

where L is a function of x, y and the coordinates of the nodes. Comparing 
Eq. (1.8) with Eq. (1.9), it is clear that 
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Fig. 1.2. a. Plane stress  b. Bending element 

L = P C-1. (1.10)

The vector �  of generalized strains (normal strain, shear strain, bending 
or twisting curvature) can be expressed in the form 

� = B re, (1.11)

where the elements of B are derived by appropriate differentiation of L 
[Eq. (1.9)] with respect to x and y. The generalized stresses �  are given by 

�d� 	 , (1.12)

where d is a symmetric elasticity matrix, representing the material proper-
ties of the element. Substituting Eq. (1.11) into Eq. (1.12) yields 

�  = d B re. (1.13)

The product S = dB is the stress matrix, and Eq. (1.13) can be written as 

�  = S re. (1.14)

To formulate the stiffness and the consistent load matrices, we consider 
an element subjected to concentrated forces Qe at the nodes together with 
the uniformly distributed loads q per unit area. Writing the expression for 
the total potential energy of the element, differentiating with respect to the 
nodal parameters one after another and then (using the principle of mini-
mum total potential energy) setting them equal to zero, we obtain the set of 
simultaneous equations 

�� �
��	�

�
�

�
�
� ddV T

eev

T qLBdB Qr , 
(1.15)

where the two integrals are over the volume V and the area of the element 
�. Equation (1.15) can be written as 
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Ke re = Re, (1.16)

where the element stiffness matrix Ke is defined by 

dV
v

T
e BdBK �	 , (1.17)

and the consistent load vector Re is given by 

Re = Qe + Qqe, (1.18)

Qqe being the consistent load vector for distributed loads q 

�	 �� dT
qe qLQ . (1.19)

The stiffness relationship can also be derived by the principle of virtual 
work, and Eq. (1.19) can be obtained by equating the virtual work done by 
the equivalent nodal forces and virtual work done by the distributed loads 
for the same set of permissible virtual displacements. 

Example 1.2 

Consider the simple element of Fig. 1.2a with the following displacement 
function [Eq. (1.5)] 
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Writing Eq. (a) for each of the nodes, we have 
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The constants H can be expressed in terms of nodal displacements [Eq. 
(1.7)] by inversion of Eq. (b) 
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where a, b, c, � are constants expressed in terms of the nodal coordinates 
xi, yi, xj, yj, xk, yk (� is the area of the element). From Eq. (c) we may find 
the matrix C-1 corresponding to the vector of nodal-displacement parame-
ters, re. Thus C-1 and re are given by 
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From Eqs (a) and (d) we may find the matrix L [Eq. (1.10)] 
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The strains for a plane problem are given by 
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Differentiation of the displacement function 
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gives the following expressions for �  
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(h)

The matrix B relating the strains �  to the nodal displacements re [Eq. 
(1.11)] is thus given by  
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Since the elements of B are constants, the strains inside the element must 
all be constant. This type of element is often called constant strain triangu-
lar element.  

The elasticity matrix d [Eq. (1.12)] can be shown to be 
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where 

C1 = E/(1 – � 2)    C2 = �   for plane stress, 

              
��

�
	

����
��

	
1)21)(1(

)1(
21 C

E
C      for plane strain, 

              C12 = C1 (1 – C2)/2    for both cases, 
 
              �  = Poisson's ratio. 

(k) 

Since the elements of the stress matrix S = dB [Eqs. (1.13), (1.14)] are 
constants, stresses within an element will also be constant and the result 
would be stress discontinuities from one element to the next. In practice, 
this can be overcome either by considering the stress values at the centroid 
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of each element, or by using a method of averaging, in which the stresses 
of all the elements surrounding a node are summed and then averaged. 
These average stresses are then assigned to the node concerned. 

The stiffness matrix, Ke, can now be computed by Eq. (1.17). Since the 
elements of B and d are constants, the integration is equivalent to multiply-
ing the integrand by the volume of the element V 

Ke = V BTd B. (l)

For uniformly distributed body forces in the x and y directions of magni-
tude qx and qy per unit area, the consistent load vector, Qqe, is given by [see 
Eqs. (1.19) and (e)] 

�
�
�
�
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q
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3
LQ . 

(m)

That is, 1/3 of the load acting on the element is assigned to each node. 
Consider the square isotropic plate of constant thickness h = 1.0 shown 

in Fig. 1.3a [2], which is free along three edges and fixed at the other edge. 
The displacement conditions are u = v = 0 at the fixed edge, and u = 0 
along the line of symmetry. Poisson's ratio is �= 0.25, the modulus of 
elasticity is E = 1.0, and the object is to find the stress distribution in the 
plate. Using the finite-element idealization shown in Fig. 1.3b, the un-
known displacements for the right-hand half of the plate are 

rT = {v1, v2, u4, v4, u5, v5, u7, v7, u8, v8}, (n)

and the corresponding external applied force vector is 

RT = {0.5, 0, 0, 1.0, 0, 0, 0, 0.5, 0, 0}. (o)

The stiffness matrices of the elements Ke are computed by Eq. (l), and the 
assembled matrix K is then computed by considering the contribution of 
the elements. Solving the equations 

K r = R, (p)

we find the nodal displacements r shown in Fig. 1.3c. The element 
stresses, calculated by Eq. (1.13), are shown in Fig. 1.3d. 
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Fig. 1.3. a. Plate dimensions and loading  b. Finite-element idealization  c. Nodal 
displacements  d. Element stresses 

1.3 Solution of the Linear Equilibrium Equations 

1.3.1 Matrix Factorization 

In this section some common methods for solving the linear equilibrium 
equations are described. A square matrix K can be factorized into a prod-
uct of two matrices L, U 

K = L U, (1.20)

where U is an upper triangular matrix having pivots on its diagonal and L 
is a lower triangular matrix having 1's on its diagonal. 

Divide U by a diagonal matrix D that contains the pivots (it is conven-
ient to keep the same letter U for this new upper triangular matrix that has 
1's on its diagonal). Then, the triangular factorization can be written as 
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K = L D U, (1.21)

where both L and U have 1's on their diagonal. 
If A is a symmetric matrix, then U = LT and the factorization of Eq. 

(1.21) is also symmetric, that is 

K = L D LT. (1.22)

Finally, in cases where K is a symmetric positive-definite matrix (that 
is, rT K r > 0 for every nonzero vector r, and all diagonal elements of D 
are positive), then the factorization Eq. (1.22) can be written as the Chole-
sky factorization K = L LT, or 

K = UT U, (1.23)

where U is an upper triangular matrix. 
Consider the set of equilibrium equations (1.2) 

K r = R. (1.24)

In general, decomposition of the stiffness matrix K constitutes the main 
part of the equation solution. If K is given in the decomposed form of Eq. 
(1.23), then the solution of Eq. (1.24) involves only forward and backward 
substitutions. Specifically, substitution of Eq. (1.23) into Eq. (1.24) gives 

UT U r = R. (1.25)

We first solve for the vector of unknowns t by the forward substitution 

UTt = R. (1.26)

The unknown displacement vector r is then calculated by the backward 
substitution 

U r = t. (1.27)

Similarly, if K is given in the decomposed form of Eq. (1.22), substitu-
tion of Eq. (1.22) into Eq. (1.24) gives 

L D LT r = R. (1.28)

The vector t is first calculated by the forward substitution 

L t = R. (1.29)

The unknown displacement vector r is then calculated by the backward 
substitution 

LT r = D-1 t. (1.30)
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It should be noted that an efficient solution is often obtained because no 
operations are needed to be performed on zero elements. Thus, it is possi-
ble to avoid the storage of elements that remain zero and to skip the rele-
vant operations. 

1.3.2 Iterative Solution Procedures 

A basic disadvantage of an iterative solution is that it is difficult to esti-
mate the number of iterations required for convergence, which depends on 
the condition number of the matrix of coefficients (matrix K for K r = R). 
However, for very large systems a direct method of solution may require a 
large amount of storage and computer time. The required storage is pro-
portional to n mk, where n is the number of equations and mk is the half-
bandwidth. A measure of the number of operations is 1/2 n mk

2. The half-
bandwidth is roughly proportional to n1/2. On the other hand, in an iterative 
solution the required storage is much less because we need to store only 
the actually nonzero matrix elements under the skyline of the matrix, a 
pointer array that indicates the location of each nonzero element, and some 
arrays also of small size. The number of nonzero elements under the sky-
line is only a small fraction of all the elements under the skyline. 

The fact that effective procedures that accelerate convergence have be-
come available for many applications has rendered iterative methods very 
attractive [1]. 

Conjugate Gradient Method with Preconditioning 

The Preconditioned Conjugate Gradient (PCG) method presented in this 
section is one of the most effective and simple iterative methods. More-
over, the unified reanalysis approach developed in this text is closely re-
lated to this method, as will be shown later in Sect. 10.3. 

The Conjugate Gradient (CG) method can be used as an iterative 
method for solving the linear set of Eq. (1.2) 

K r = R, (1.31)

where K is an n�n symmetric and positive-definite matrix. This problem 
can be stated equivalently as minimization of the quadratic function 

Q = 1/2 rT K r – rT R. (1.32)

A set of n nonzero vectors S1, S2, ..., Sn is said to be conjugate with re-
spect to K, if 
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0	j
T
i SKS     for all i  j . (1.33)

It can be shown that any set of vectors satisfying this property is also line-
arly independent. A set of conjugate vectors possesses a powerful property 
[5]; namely, if the quadratic function Q is minimized sequentially, once 
along each of a set of n conjugate directions, the minimum of Q will be lo-
cated at or before the nth step, regardless of the starting point. The order in 
which the directions are used is immaterial to this property. 

There are many ways to choose the conjugate directions. The CG 
method is a conjugate directions method with a special property. In gener-
ating its set of conjugate vectors, it can compute a new vector by using 
only the previous vector and the current gradient. This property implies 
that the method requires little storage and computation. The method was 
developed in the 1950s as a method for finding exact solutions of symmet-
ric positive definite systems [6]. Some years later the method came to be 
viewed as an iterative method that could give good approximate solutions 
to systems in many fewer than n steps [7, 8]. 

To solve the linear system of Eq. (1.31) by the CG method, we start 
with the initial estimate r0 at the initial point K = K0 

r0 = 1
0
�K R. (1.34)

The residual !!!!0 of Eq. (1.31) is then calculated by 

!!!!0"= K r0 – R. (1.35)

The first direction of minimization, S0, is the steepest descent direction of 
the quadratic function Q [Eq. (1.32)], at the initial point r0, given by 

S0"= – !!!!0. (1.36)

A sequence of vectors rk is then generated by the method. The vectors 
generated are given by the expression 

rk+1 = rk + #k "Sk, (1.37)

where #k is the one-dimensional minimizer of the quadratic function Q 
along rk + #k "Sk, given explicitly by 

k
T
k

k
T
k

k KSS
��

	# . 
(1.38)

The residual !!!!k+1 of the linear system of Eq. (1.31) is calculated by  

!!!!k+1"= K rk+1 – R = !!!!k"+ #k "K Sk. (1.39)
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The (k+1)th direction, Sk+1, is selected by 

Sk+1 = – !!!!k +1 + $ k+1Sk. (1.40)

The scalar $k+1 is determined by the requirement that Sk and Sk+1 must be 
conjugate with respect to K [Eq. (1.33)]. By pre-multiplying Eq. (1.40) by 

KST
k and imposing the condition 01 	�k

T
k SKS , we find the following ex-

pression for $k+1 

k
T
k

k
T
k

k
T
k

k
T
k

k
��

��

SKS
SK� 111

1
���

� 		$ . 
(1.41)

In summary, we first calculate r0 [Eq. (1.34)], !!!!0 [Eq. (1.35)] and S0"[Eq. 
(1.36)]. Then, the following calculations are carried out repeatedly: 

� The scalar #k is calculated by Eq. (1.38). 
� The vector rk+1 is calculated by Eq. (1.37). 
� The residual !!!!k+1 of Eq. (1.31) is calculated by Eq. (1.39).  
� The scalar $k+1 is calculated by Eq. (1.41). 
� The direction Sk+1 is calculated by Eq. (1.40). 

Each search direction Sk and residual !!!!k are constrained by the Krylov 
subspace of degree k for !!!!%, defined as 

� (!!!!%, k) = span {!!!!%, K !!!!%, ... , Kk !!!!%}. (1.42)

The rate of convergence of the above procedure depends on the eigen-
value distribution of K and the initial approximation r0. The convergence 
is faster when the condition number of K, defined by the ratio of the 
maximum and minimum eigenvalues, is smaller and/or when K has clus-
tered eigenvalues. 

The CG properties are valid only in exact arithmetic. For ill-conditioned 
problems the convergence of the method might be slow, mainly due to 
round-off errors, when working with inexact arithmetic. For such prob-
lems, the conjugate directions are no longer exactly conjugate after some 
iteration cycles. It is possible to accelerate the rate of convergence by 
transformation of the linear system of Eqs. (1.31) such that the eigenvalue 
distribution of K is improved [9]. The key to this process, which is known 
as preconditioning, is a change of variables from r to r~  via a nonsingular 
matrix C called the pre-conditioner 

rCr ~	 . (1.43)

Substituting Eq. (1.43) into Eq. (1.31) and pre-multiplying the resulting 
equation by CT, we obtain the following new system of equations 
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(CT K C) r~  = CT R. (1.44)

Defining 

CKCK T	
~

   RCR T	
~

, (1.45)

and substituting Eqs. (1.45) into Eq. (1.44), we obtain the new system 

RrK ~~~
	 . (1.46)

Note that when K is symmetric and positive-definite and C has full 
rank, K~  is also symmetric and positive-definite. The convergence rate of 
the CG method applied to Eq. (1.46) will depend on the eigenvalues of the 
preconditioned matrix K~  rather than those of K. The aim is to choose the 
pre-conditioner C such that the condition number of K~  is much smaller 
than the condition number of the original matrix K. Alternatively, C could 
be chosen such that the eigenvalues of K~  are clustered.  

It is possible to apply the CG method directly on the new system of Eq. 
(1.46). However, in this case it would be necessary to calculate and store 
the new (typically large) matrix K~  and to perform extensive computa-
tional effort at each iteration cycle. Alternatively, the tilde notation can be 
used during the solution procedure applied to Eq. (1.46), also for the auxil-
iary vectors kr

~  and kS~ , where 

kk rCr ~	       kk SCS ~
	 . (1.47)

The relation between the residuals k�
~
 and k�  is given by 

& ' & ' k
TTT

k �CRKrCRrKCCCRrK� 	�	�	�	 �1~~~~
, 

                                       k
T

k �C�
~

)( 1�	 . 

(1.48)

Define an auxiliary vector 

zk = C CT !!!!k. (1.49)

If no preconditioning is used, then CCT= I and zk = !!!!k. We can write the re-
sulting Preconditioned Conjugate Gradient (PCG) method with the original 
variables r, using modified formulas for #k, $k+1 and Sk+1 

k
T
k

k
T
k

k KSS
z�

	# , 
(1.50)
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k
T
k

k
T
k

k z�
z� 11

1
��

� 	$ , 
(1.51)

 

Sk+1 = – z k+1 + $k+1 Sk. (1.52)
 

For the calculated r0 [Eq. (1.34)], !!!!%"[Eq. (1.35)], S%"[Eq. (1.36)] z0 [Eq. 
(1.49)], each iteration cycle involves the following steps: 

� The scalar #k is calculated by Eq. (1.50). 
� The vector rk+1 is calculated by Eq. (1.37). 
� The residual !!!!k+1 of Eq. (1.31) is calculated by Eq. (1.39). 
� The vector zk+1 is calculated by z k+1 = C CT !!!! k+1 [Eq. (1.49)]. 
� The scalar $k+1 is calculated by Eq. (1.51). 
� The direction Sk+1 is calculated by Eq. (1.52). 

Various pre-conditioners C have been proposed in the literature [9]. The 
best choice of C could be the inverse factor C = U-1, where U is an upper 
triangular matrix given by the Cholesky factorization K = UT U. With this 
choice, the preconditioned matrix becomes equal to the identity matrix 
[Eq. (1.45)] K~ = (U-1)T K U-1 = (UT)-1 (UT U) U-1 = I. However, in this case 
much computational effort is needed to calculate matrix C = U-1. Alterna-
tively, matrix C can be chosen as 

C = 1
0
�U , (1.53)

where U0 is an upper triangular matrix, which is already given by the Cho-
lesky factorization K0 = T

0U U0. In this case the only additional work, com-
pared with the CG algorithm, is the computation of the auxiliary vector zk, 
i.e., the solution of the system of equations [see Eq. (1.49)] 

kk �zK 	0 , (1.54)

for zk, "which guarantees the preconditioning effect. Solution of Eq. (1.54) 
is easy, as we already have the Cholesky factor U0 of K0. The precondi-
tioned matrix K~  for the chosen C is 

K~  = CT K C = T)( 1
0
�U K 1

0
�U . (1.55)

It can be noted that for K = K0 the preconditioned matrix is equal to the 
identity matrix T)(

~ 1
0
�	 UK K0

1
0
�U = 1

0 )( �TU ( T
0U U0)

1
0
�U = I. If the eigen-
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values of K are close to those of K0, the preconditioned matrix is close to 
the identity matrix, and the convergence of the PCG is extremely fast. 

1.4 Nonlinear Analysis 

In linear analysis the displacements r, determined by solving the set of lin-
ear equations K r = R, are linear functions of the loads R. In various cases 
of large displacements, nonlinear stress-strain relations, or changes in the 
displacement boundary conditions during loading (e.g. contact problems), 
the displacements are some nonlinear functions of the loads. Considering 
separately material nonlinear effects and geometric nonlinear effects, we 
can categorize different nonlinear analysis problems. A nonlinear relation-
ship between the applied forces and the resulting displacements exists un-
der either of two conditions: 

� The stress-strain relation is within the linear-elastic range, but the 
geometry of the structure changes significantly during an application of 
the loads (geometric nonlinearity). 

� The stress-strain relation is nonlinear (material nonlinearity). Material 
non-linearity is considered in plastic analysis. 

The most general analysis case is the one in which the structure is sub-
jected to large displacements and nonlinear stress-strain relation. Nonlinear 
analysis is usually carried out in an iterative process. The study of nonlin-
ear behavior includes plastic analysis and buckling of structures. The basic 
problem in nonlinear analysis is the solution of a set of nonlinear equa-
tions. Depending on the history of the loading, the stiffness of the structure 
may be softening or stiffening, the equilibrium path may be stable or un-
stable, and the structure itself may be at a stage of loading or unloading. 
All such phenomena are typified by the occurrence of critical points such 
as the limit points and snap-back points in the load-deflection curves.  

The solution process can be carried out by different methods [1, 10, 11]. 
A requirement for the solution method is its ability to overcome the nu-
merical problems associated with various types of behavior. In practical 
nonlinear analysis, the external forces are introduced in stages. Solution of 
the nonlinear set of equations is usually carried out by an incre-
mental/iterative technique, such as a predictor-corrector method. This is 
accomplished by solving the equations for successive values of a load or 
displacement parameter, such that the solution corresponding to a particu-
lar value of the parameter is used to calculate a suitable approximation 
(predictor) for the displacements r at a different value of the parameter. 
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This approximation is then chosen as an initial estimate of r in a correc-
tive-iterative procedure such as the Newton-Raphson Method. 

1.4.1 Geometric Nonlinearity 

For illustrative purposes consider the Newton-Raphson method, which is 
the most frequently used iteration scheme for the solution of the nonlinear 
analysis equations. Starting with linear analysis, we first calculate the ini-
tial displacements r0 by the linear analysis equations 

K0 r0 = R0, (1.56)

where K0 is the given elastic stiffness matrix and R0 is the given external 
force vector. The matrix K0 is often factorized into the form of Eq. (1.23). 
The member forces N are calculated for the deformed geometry. Consider-
ing both the compatibility equations and the constitutive law, the member 
forces are some nonlinear functions N(r) of the displacements r 

N = N(r). (1.57)

The forces computed by Eq. (1.57) are not in equilibrium with the external 
forces R0. The internal forces RI, corresponding to the member forces N, 
are determined by the equilibrium equations of the deformed geometry 

RI
 = C(r) N, (1.58)

where the elements of matrix C(r) depend on the deformed geometry.  
The equilibrium equations, which are some nonlinear functions of r, can 

be expressed as 

f(r) = R0 – RI = 0. (1.59)

Assume first-order (linear) Taylor series approximations about the initial 
displacements r0 

f(r) = f(r0) + )( 0

0

rr
r
f

r

�
�
�

. 
(1.60)

Substituting from Eq. (1.59) into Eq. (1.60) and assuming that that the ex-
ternal loads are deformation-independent, we obtain 

I
I RRrr

r
R

r

�	�
�
�

00 )(
0

. 
(1.61)

Define the out-of-balance (residual) force vector !R 
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!R = R0 – RI. (1.62)

The out-of-balance forces correspond to a load vector that is not yet bal-
anced by element stresses, and hence an increment in the nodal-point dis-
placements is required. The vector of incremental displacements due to the 
out-of-balance forces, !r, is given by 

!r = r – r0, (1.63)

and the current tangent stiffness matrix KT is defined as 

KT =
0rr

R
�
� I . 

(1.64)

The tangent stiffness matrix can be expressed as 

KT = K0 + KG, (1.65)

where KG = KG(r, N) is the geometric stiffness matrix, whose elements are 
some functions of the deformed geometry and the member forces. Substi-
tuting Eqs. (1.62), (1.63), (1.64) into Eq. (1.61) gives 

KT !r = !R. (1.66)

The vector !r is calculated by the modified equilibrium equations (1.66), 
written for the deformed geometry. Starting with the initial displacements 
r0, we update the displacements iteratively by  

r = r0 + !r, (1.67)

where r0 is defined as the updated displacement at the previous cycle. 
In summary, the following quantities are calculated repeatedly during 

the solution process: 

� the member forces N [Eq. (1.57)]; 
� the corresponding internal force vector RI [Eq. (1.58)]; 
� the out-of-balance force vector !R [Eq. (1.62)]; 
� the tangent stiffness matrix KT [Eq. (1.64)]; 
� the incremental displacements !r [Eq. (1.66)]; and  
� the updated displacements r [Eq. (1.67)]  

These calculations are repeated until convergence occurs. Typical con-
vergence conditions related to the norms of !R and !r are R�(!R  and 

r�(!r , where R� , r�  are some small predetermined parameters.  
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This procedure is a simplified version of the Newton-Raphson method. 
Different variations and improvements might be considered [10], including 
an incremental solution, retaining the original decomposed tangential ma-
trix during several iterations, or combined incremental-iterative methods. 
The correct evaluation of the tangent stiffness matrix is important. How-
ever, because of the expense involved in evaluating and factoring a new 
tangent stiffness matrix, it can be more efficient to evaluate the matrix only 
at certain times. In the modified Newton-Raphson method a new tangent 
stiffness matrix is established only at the beginning of each load step. So-
lution of the nonlinear equations is discussed later in Sect. 1.4.5. 

Example 1.3 

To illustrate the solution steps, consider the simple two-bar truss shown in 
Fig. 1.4. Assuming arbitrary units, the modulus of elasticity is E = 10000 
and the cross sectional area of both members is A1 = A2 = 0.01. The ele-
ments of K0 and R0 are given by 
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Substituting Eqs. (a) into Eq. (1.56) and solving for r0, we find 
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Fig. 1.4. Two-bar truss 
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Assume small strains such that 11
2
1

2
1 /<</ LrLr , where L1, L2 are the 

members lengths and r1, r2 are the nodal displacements (Fig. 1.4). The 
force N1 in member 1 can be expressed in terms of the displacements as 

& '& ' & '2
1

2
211111

2/12
2

2
1111 /5.0//++= LrLrEALLrrLEAN �)�

�
��

�
� � . (c) 

Using a similar expression for the force N2 in member 2 gives the follow-
ing vector of member forces N [Eq. (1.57)] 
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The internal force vector RI [Eq. (1.58)] consists of the horizontal and ver-
tical components of the member forces, i.e., 
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and the out-of-balance forces !R [Eq. (1.62)] are given by  
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For A1=A2=A, the tangent stiffness matrix KT is [Eq. (1.64)]  
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(g)

Using Eqs. (f), (g), the incremental displacements !r and the updated dis-
placements r are then calculated by Eqs. (1.66), (1.67) 
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Starting with r0 [Eq. (b)] the iterative process converges very fast in this 
simple example. The results for 3 iteration cycles are shown in Table 1.1. 

An alternative procedure is to improve the initial displacements by cal-
culating first the tangential predictor [10]. Calculating the tangent stiffness 
matrix KT for the given r0, we first calculate the displacements r by solv-
ing the set of equations 

KT r = R0. (j)

The result is" * +1553.0 ,5852.1	Tr ,"The Newton-Raphson iteration then 
proceeds as shown in Table 1.2. 
 

Table 1.1. Results, Newton-Raphson iteration 

Iteration N [Eq. (d)] RI [Eq. (e)] !R [Eq. (f)] !r [Eq. (h)] r [Eq. (i)] 
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Table 1.2. Results, tangential predictor and Newton-Raphson iteration 

Iteration N [Eq. (d)] RI [Eq. (e)] !R [Eq. (f)] !r [Eq. (h)] r [Eq. (i)] 
1 



�
�



�
�

2.8094
7.9290

 

�
�



�
�

2.8710
8.3744

 


�
�



�
�

2.1290
1.6256

 


�
�



�
�

0.1665
0.2450

 


�
�



�
�

0.3218
1.8302

 

2 



�
�



�
�

4.8928
9.1639

 


�
�



�
�

5.0403
10.0594

 


�
�



�
�

0.0403-
0.0594-

 


�
�



�
�

0.0021-
0.0095-

 


�
�



�
�

0.3197
1.8207

 

3 



�
�



�
�

4.8545

9.1163
 



�
�



�
�

5.0002

10.0001
 



�
�



�
�

0.0002-

0.0001-
 



�
�



�
�

0.0000-

0.0000-
 



�
�



�
�

0.3197

1.8207
 



26      1 Static Analysis 

1.4.2 Material Nonlinearity 

Material nonlinearity can arise when the stress-strain relationship of the 
material is nonlinear in the elastic and/or in the plastic range. In the sim-
plest incremental method the applied forces R are divided into increments. 
The load increments are applied one at a time and an elastic analysis is car-
ried out. For the ith load increment Ri, the equilibrium equations Ki ri ="Ri 
are solved. The stiffness matrix Ki depends upon the stress level reached in 
the preceding increment. Thus, for the ith increment, the modulus of elas-
ticity is the slope of the stress-strain diagram at the stress level reached in 
the increment i-1. The displacements obtained by the solution of the equi-
librium equations for each load increment are summed to give the final 
displacements. The advantage of the incremental method is its simplicity. 
It can also be used for geometric nonlinear analysis. For this purpose, the 
stiffness matrix Ki for the increment i is based on the geometry of the 
structure and the internal forces determined in the preceding increment. 

The Newton-Raphson or the modified Newton-Raphson methods can 
also be used to analyze structures with material non-linearity. In the New-
ton-Raphson method the full load is introduced, and an approximate solu-
tion is obtained and corrected by a series of iterations. A new tangent stiff-
ness matrix is used in the solution of the linear equations at each iteration 
cycle. In the modified Newton-Raphson method the load is introduced in 
stages. To avoid generating a new stiffness matrix in each iteration cycle, 
the tangent stiffness matrix determined in the first cycle for each load stage 
is employed in all subsequent cycles, before proceeding to the next load 
stage. That is, a new tangent stiffness matrix is introduced only in the first 
cycle of each new load increment. 

Fig. 1.5. Bi-linear moment-curvature relations 
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To simplify the analysis, approximate bi-linear relations are often as-
sumed. Two such relations are shown in Fig. 1.5. Elasto-plastic moment-
curvature relation with no hardening is shown in Fig. 1.5a (the modulus of 
elasticity is E = 3 107kN/m2, the elastic limit stress is �Y = -%%%%kN/m2, and 
the plastic hinge moment is MP = �Y bh2/4=-.%%"kNm). Bi-linear moment-
curvature relation with hardening of 5% is shown in Fig. 1.5b.  

Plastic Analysis 

Design of structures based on the plastic approach is increasingly used and 
has become accepted by various codes of practice. Considering elastic-
perfectly-plastic model, the material is assumed to deform in an idealized 
manner such that the stress and strain are proportional to one another up to 
the yield stress. At this point the strain increases indefinitely without any 
increase in stress. For a bilinear moment-curvature relationship in plastic 
analysis of frames, for example, the structure behaves linearly until the 
first plastic hinge has developed. Under increasing load, the structure con-
tinues to behave linearly, with a reduced stiffness, until a second hinge is 
formed. The same behavior continues under increasing load until sufficient 
hinges have developed to form a failure mechanism. An elastic analysis is 
performed for each load increment, and the structure stiffness matrix is 
changed accordingly. Collapse is reached when: 

� the stiffness matrix becomes singular; 
� very large displacements are obtained. 

For each load stage, the analysis is carried out for a proportionate in-
crement in all loads. The corresponding internal forces are used to deter-
mine a load multiplier, which causes the yield stress to be reached at any 
one section. The sum of the multipliers in all stages is used to determine 
the value of the loads at collapse. For each loading stage, we generate the 
corresponding modified stiffness matrix.  

Specifically, for the initial stiffness matrix K1 = K0 and load vector R0, 
we first calculate the displacements r0 by solving K0 r0 = R0. The load vec-
tor R0 is then increased to obtain R1 ="/1 R0, which is the load that causes 
the yield stress to be reached at the first section. The displacements at this 
point are given by r1 = /1 r0. The modified stiffness matrix K2 = K1+�K1 
is then determined, considering the reduction �K1 in the stiffness due to 
yield of the first section. The additional load vector R2 = /2 R0 that causes 
the yield stress to be reached at the second section is determined from the 
modified equations K2 r2 = R2, where r2 is the vector of additional dis-
placements. We proceed with the modified stiffness matrix K3 = K2+�K2 
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considering the reduced stiffness due to yield of the first and the second 
sections. The additional load vector R3 = /3 R0 that causes the yield stress 
to be reached at the third section is determined in a similar way from the 
modified equations K3 r3 = R3, where r3 is the vector of additional dis-
placements. These steps are repeated until collapse of the structure. If col-
lapse occurs after the stress reached the yield stress at m sections, the value 
of the loads at collapse is given by 

0
	

/	/	
m

i
i

1
00collapse RRR , 

(1.68)

where / is the corresponding load factor. 

Example 1.4 

To illustrate plastic analysis consider the simple continuous beam, having 
two equal spans, shown in Fig. 1.6 and subjected to two concentrated loads 
at the middle of the spans. Denote the uniform plastic moment by MP, the 
length of each span by L and the load factor by /. The bending moments at 
the three critical sections, where plastic hinges can be formed, are as fol-
lows 

PLMPLMPLM
16
75.5

16
50.4

16
75.1

321 			 . 
(a)

In Eq. (a) positive values are assumed when tension is in the bottom fiber 
for sections 1, 3, and in the top fiber for section 2. Multiplying the loads by 
/1 the first plastic hinge is formed in section 3 when 

PMPLM 	/	 13 16
75.5

. 
(b)

 

P 2P

L L

1

2

3

 

Fig. 1.6. Two-span continuous beam 
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Rearranging Eq. (b), we obtain the load factor /1 

PL
M P

75.5
16

1 	/ . 
(c)

Multiplying the terms in Eq. (a) by /1, we obtain the moments 

PPP MMMMMM 			 321 75.5
50.4

75.5
75.1

. 
(d)

The additional loads /2P, /2"-P are applied on a statically determinate 
beam obtained by forming a hinge in section 3. The corresponding addi-
tional moments are given by 

0
4
1

32221 	/	/�	 MPLMPLM . 
(e)

The second plastic hinge is formed in section 2 when [Eqs. (d), (e)] 

PP MPLMM 	/�	 22 75.5
50.4

. 
(f)

Solving Eq. (f) for /2 we find 

PL
M P

75.5
25.1

2 	/ . 
(g)

In this example collapse occurs after the second plastic hinge is formed. 
Therefore, the load factor / corresponding to collapse is given by 

PL
M P321 	/�/	/ . 

(h)

1.4.3 Time Varying Loads 

Assume that the externally applied loads are described as a function of 
time. The time variable t may take on any value from zero to the maximum 
time of interest. In a static analysis without time effects other than the load 
level, time is only a convenient variable to describe the load. However, in 
a dynamic analysis and in static analysis with material time effects, the 
time variable describes the actual physical situation. In the incremental 
step-by-step solution we assume that the solution for the discrete time t is 
known and the solution for the time t+�t is required. The equilibrium con-
ditions at time t+�t, considering all nonlinearities, can be expressed as 
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t+�tR0 – t+�tRI = 0, (1.69)

where t+�tR0 is the vector of external loads at time t+�t, and t+�tRI is the 
vector of nodal forces that correspond to the element stresses. Since the so-
lution is known at time t, we can write 

t+�tRI = tRI + !RI, (1.70)

where !RI is the increment in the forces from time t to time t+�t. This vec-
tor can be approximated by 

!RI = tK !r, (1.71)

where !r is a vector of incremental nodal displacements and tK is the tan-
gent stiffness matrix, which corresponds to the geometric and material 
conditions at time t, given by 

tK = � tRI/ � r. (1.72)

From Eqs. (1.70), (1.71) we obtain 
tK !r = t+�tR0 – tRI. (1.73)

Solving for !r, we can calculate the approximate displacements at time 
t+�t by 

t+�tr = tr + !r. (1.74)

The exact displacements at time t+�t are those that correspond to the ap-
plied loads t+�tR0. We calculate in Eq. (1.74) only an approximation to 
these displacements because Eq. (1.71) was used. It is therefore necessary 
to iterate until the solution of Eq. (1.69) is sufficiently accurate. 

1.4.4 Buckling Analysis 

In many cases the objective of a nonlinear analysis is to estimate the 
maximum load that a structure can support prior to structural instability (or 
collapse). Assuming that the load distribution on the structure is known, 
the object is to find the load magnitude that the structure can sustain. The 
linearized buckling analysis presented in this section gives a reasonable es-
timate of the collapse load only if the collapse displacements are relatively 
small and the changes in the material properties are close to being linear. 
Denote the stiffness matrices at times t –"�t and t as t-�tK and tK, respec-
tively, and the corresponding vectors of external loads as t-�tR and tR. In 
the linearized buckling analysis we assume that at any time 1  
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1K= t-�tK + /& tK – t-�tK), (1.75)
 

1R= t-�tR + /& tR – t-�tR), (1.76)

where / is a scaling factor, and we are interested in those values of / that 
are greater than 1. 

At collapse or buckling the tangent stiffness matrix becomes singular, 
and the condition for calculating the corresponding / is  

det 1K= 0, (1.77)

or, equivalently 
1K � "= 0, (1.78)

where 2222 is a nonzero vector. Substituting Eq. (1.75) into Eq. (1.78), we 
obtain the eigenproblem 

t-�tK �  = /"& t-�tK – tK) � . (1.79)

The eigenproblem properties and various solution procedures are discussed 
later in Chap. 2. The eigenvalues /1, /2,…3"/n give the buckling loads [see 
Eq. (1.76)] and the eigenvectors n��� ,...,, 21  represent the corresponding 
buckling modes. The matrices t-�tK and tK are both positive definite, but 
the matrix t-�tK – tK is indefinite. Therefore, some eigenvalues might be 
negative, but we are interested in only the smallest positive eigenvalues. 

Rewrite Eq. (1.79) as 
1K�  = �" t-�tK� , (1.80)

where 

/
�/

	�
1

. 
(1.81)

The eigenvalues �4, �-, … are all positive and usually only the smallest 
values are of interest. That is, �4 corresponds to the smallest positive value 
of /"in the problem of Eq. (1.79).  

Having evaluated �4 and then /4 from Eq. (1.81), the buckling (or col-
lapse) load is given by [Eq. (1.76)] 

Rbuckling= t-�tR + /4& tR – t-�tR). (1.82)

Similarly, we can evaluate the linearized buckling loads corresponding to 
�-, �5, etc. The procedure presented can be used when geometric or mate-
rial nonlinearities are considered.  
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1.4.5 Solution of the Nonlinear Equations 

The equations used in the Newton-Raphson iteration to solve Eq. (1.69) for 
the kth iteration are obtained by linearizing the response about the condi-
tions at time t+�t and iteration k–1. The resulting equations are 

t+�tK(k-1) !r(k) = t+�tR0 – )1( ��� k
I

tt R ="!R(k-1), (1.83)

 

!r(k) = t+�tr(k) – t+�tr(k-1), (1.84)

with the initial conditions 
t+�tr(0) = tr        t+�tK(0) = tK       )0(

I
tt R�� = tRI. (1.85)

In the first iteration Eqs. (1.83), (1.84) reduce to Eqs. (1.73), (1.74). The 
out-of-balance load vector !R(k-1) corresponds to a load vector that is not 
yet balanced, and hence an increment in the displacements is required.  

The most powerful procedure for reaching convergence of Eqs. (1.83), 
(1.84) is the full Newton-Raphson iteration. Using this procedure, the cur-
rent tangent stiffness matrix t+�tK(k-1) is calculated as follows. Denoting the 
complete solution at time t+�t as r, then the corresponding equilibrium 
equations can be expressed as 

f(r) = t+�tR0(r) – t+�tRI(r) = 0. (1.86)

Assuming that in the iterative solution we have evaluated t+�tr(k-1), then a 
first-order Taylor series approximation gives 

f(r) = f(t+�tr(k-1)) + )( )1(

)1(

����
�
�

���

ktt

ktt

rr
r
f

r
= 0. 

(1.87)

Substituting from Eq. (1.86) into Eq. (1.87) and assuming that that the ex-
ternal loads are deformation-independent, we obtain 

)1(
0

)1( )(
)1(

�������� �	�
�
�

���

k
I

ttttkttI

ktt

RRrr
r

R

r

. 
(1.88)

The current tangent stiffness matrix, t+�tK(k-1), is given by  

)1(

)1(

����
�

	���

ktt

Iktt

rr
RK . 

(1.89)

Using Eqs. (1.84), (1.89) and substituting into Eq. (1.88), we obtain the 
full Newton-Raphson equations for calculating !r(k) [Eq. (1.83)] 
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t+�tK(k-1) !r(k) = t+�tR0 – )1( ��� k
I

tt R . (1.90)

The improved displacement solution, t+�tr(k), is given by [Eq. (1.84)] 
t+�tr(k) = t+�tr(k-1) + !r(k). (1.91)

The relations in Eqs. (1.89), (1.91) constitute the Newton-Raphson solu-
tion of Eq. (1.69). In this iteration an incremental analysis is performed 
with time (or load) steps of size �t and the initial conditions of Eq. (1.85). 
In the full Newton-Raphson iteration, a new tangent stiffness matrix is cal-
culated in each iteration cycle. In general, the major computational cost per 
iteration lies in the calculation and factorization of the tangent stiffness 
matrix. Since these calculations can be expensive when large-order sys-
tems are considered, the use of modified algorithms can be effective. 

In the initial stress method we use the initial stiffness matrix 0K in Eq. 
(1.83) 

0K !r(k) = t+�tR0 – )1( ��� k
I

tt R . (1.92)

In this case only the matrix 0K is factorized, thus avoiding multiple calcu-
lations and factorizations of the coefficient matrix in Eq. (1.83). This 
method corresponds to a linearization of the response about the initial con-
figuration of the system and may converge very slowly and even diverge. 

In the modified Newton-Raphson iteration, an approach somewhat in be-
tween the full Newton-Raphson iteration and the initial stress method is 
employed. In this method we use a stiffness matrix �K that corresponds to 
one of the accepted equilibrium configurations at times 0, �t,"-�t, ... or t. 
Thus, instead of solving Eq. (1.83), we solve 

�K !r(k) = t+�tR0 – )1( ��� k
I

tt R . (1.93)

The modified Newton-Raphson iteration involves fewer stiffness reforma-
tions than the full Newton-Raphson iteration and bases the stiffness matrix 
update on an accepted equilibrium configuration. 

Quasi-Newton methods, or matrix update methods [12], have been de-
veloped as an alternative to the Newton-Raphson method for iteration on 
nonlinear systems of equations. These methods involve updating the in-
verse of the coefficient matrix to provide a secant approximation to the 
matrix. The quasi-Newton methods provide a compromise between the full 
reformulation of the stiffness matrix performed in the full Newton-
Raphson method and the use of a previous stiffness matrix as is done in the 
modified Newton-Raphson method.  
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In the BFGS (Broyden-Fletcher-Goldfarb-Shanno) method [13], a 
search direction can be computed without explicitly calculating the up-
dated matrices or performing any additional costly matrix factorizations as 
required in the full Newton-Raphson method. Line searches can also be 
used in the Newton-Raphson method. In this case the expense of the itera-
tions increases, but less iteration cycles may be needed for convergence. 

Load-Displacement-Constraint Methods 

In nonlinear analysis it is frequently required to calculate the collapse load 
of a structure. Consider, for simplicity of presentation, a single displace-
ment. For very small loads the load-displacement response is usually lin-
ear. As the load increases, the response becomes increasingly nonlinear 
until the collapse load is reached. The response beyond this point is re-
ferred to as post collapse or post buckling response. In some structures, the 
load first decreases in this regime and then increases again as the dis-
placement increases. To calculate the response, we can employ initially 
relatively large load increments. As the collapse of the model is ap-
proached, the load increments must become smaller. At the collapse point 
the stiffness matrix is singular, and beyond that point special solution pro-
cedures, such as a load-displacement-constraint method [14], must be 
used. In this method we assume that the load vector varies proportionally 
during the response calculation. We introduce a load multiplier that in-
creases or decreases the intensity of the applied loads, to obtain fast con-
vergence in each load step and to be able to transverse the collapse point 
and evaluate the post collapse response.  

The equilibrium conditions to be solved at time t +�t are 
t+�t/ R0 – t+�tRI = 0, (1.94)

where t+�t/ is a scalar load multiplier to be determined, R0 is the reference 
load vector, and t+�tRI is the vector of nodal forces that correspond to the 
element stresses. Since Eq. (1.94) represents n equations in n+1 unknowns, 
we need an additional equation to determine the load multiplier.  

Consider the following equations to be solved [see Eq. (1.93)] 
�K !r(k) = (t+�t/(k-1) + �/(k)' R0 – )1( ��� k

I
tt R . (1.95)

The additional equation is a constraint equation between �/(k)"and !r(k), of 
the form 

f(�/(k)3"!r(k)) = 0. (1.96)

For a given load step we define 
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r(k) = t+�tr(k) – tr, (1.97)
 

/(k) = t+�t/(k) – t/. (1.98)

That is, r(k)3"/(k) are  total increments in displacements and load multiplier, 
up to iteration k, within the load step. Effective constraint equations are 
given by the spherical constant arc length criterion [15, 16] or the scheme 
of constant increment of external work [17]. 
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2 Vibration Analysis 

2.1 Free Vibration 

The purpose of dynamic analysis is to determine internal forces, stresses 
and displacements under application of dynamic (time varying) loads. In 
general, the structural response to any dynamic loading is expressed in 
terms of the displacements of the structure. Dynamic analysis is discussed 
in detail in various texts [e.g. 1–3]. Some basics of this topic are presented 
later in Chap. 3. The eigenproblem is to find the free-vibration frequencies 
and the mode shapes of the vibrating system. In this chapter eigenproblem 
analysis is introduced. 

A dynamic response calculation is substantially more costly than a static 
analysis. Whereas in a static analysis the solution is obtained in one step, 
in dynamic analysis the solution is required at a number of discrete points 
over the time interval considered. The equations of motion for a multiple 
degrees of freedom system subjected to external dynamic forces are 

)()()(+)( tttt RrKrCrM ����� , (2.1)

where M is the mass matrix, C is the damping matrix and K is the stiffness 
matrix. The unknown displacement vector r(t), the velocity vector )(tr� , 
the acceleration vector )(tr�� , and the load vector R(t) are functions of the 
time variable t. Eq. (2.1) may be written as 

)()()()( tttt RDI RFFF ��� , (2.2)

where the terms FI(t), FD(t), FR(t), in the left-hand side of Eq. (2.2), repre-
sent the inertia forces, the damping forces and the resisting (elastic or ine-
lastic) forces, respectively. 

An elastic structure disturbed from its equilibrium condition by the ap-
plication and removal of forces will oscillate about its position of static 
equilibrium. Thus, the displacements will vary periodically between spe-
cific limits in either direction. The distance of either of these limits from 
the position of equilibrium is the amplitude of the vibration. We may dis-
tinguish between the following two types of motion: 
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� Free-vibration motion, where no external forces or support motion act 
on the structure, and the motion may continue with the same amplitude 
for an indefinitely long time. 

� Damped free-vibration, where forces tending to oppose the motion act 
on the structure. In practice there are always such forces, which cause 
the amplitude to diminish gradually until the motion ceases. 

Considering a structure with no damping and ignoring the notation of 
the time variable (t), we obtain the equations of motion for a freely vibrat-
ing undamped system by omitting the load vector from Eq. (2.1) 

0rKrM �+�� . (2.3)

The problem of vibration analysis consists of determining the conditions 
under which the equilibrium conditions (2.3) are satisfied.  

Assuming that the free-vibration motion is simple harmonic, we find 

rr 2����� , (2.4)

where �  is the circular frequency. Substituting Eq. (2.4) into Eq. (2.3) and 
rearranging gives the eigenproblem 

rMrMrK ���� 2 , (2.5)

where the quantities 2���  are the eigenvalues, indicating the square of 
the free-vibration frequencies, while the corresponding displacement vec-
tors r express the eigenvectors, or natural mode shapes of the vibrating 
system. For a system having n degrees of freedom, the frequency vector 

� �n
T �����  ..., ,,, 321�  represents the frequencies of the n modes of vi-

bration possible in the system. The mode having the lowest frequency is 
called the first mode; the next higher frequency is the second mode, etc. If 
the solution is considered in order to obtain eigenvalues and eigenvectors, 
the problem is referred to as an eigenproblem, whereas if only eigenvalues 
are to be calculated, the problem is called an eigenvalue problem. The so-
lution of the eigenproblem for large structures is often the most costly 
phase of a dynamic response analysis, and calculation of the eigenvalues 
and eigenvectors requires much computational effort. Solution of the ei-
genproblem is discussed in Sects. 2.2–2.8. 

The shape of the vibrating system can be determined by solving for all 
the displacements in terms of any one coordinate. For convenience the dis-
placement vector associated with the ith mode of vibration is often ex-
pressed in dimensionless form by dividing all the components by a refer-
ence component (e.g. the largest). The resulting ith mode shape i�  is 
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(2.6)

where i1�  is taken as the reference component. The square matrix made 
up of the n mode shapes, called the modal matrix, is represented by �  

] ..., , ,[ 21 n���� � . (2.7)

With the above definitions the problem of Eq. (2.5), called the general-
ized eigenproblem, is expressed as 

�M��K � . (2.8)

The diagonal matrix of the eigenvalues, ����, is known as the spectral matrix. 

2.1.1 Properties of the Eigenproblem 

Some properties of the eigenproblem are discussed in the following. The 
natural modes can be shown to satisfy the following orthogonality condi-
tions for any different mode shapes ji �� ,  

0�j
T
i �M�       0�j

T
i �K� . (2.9)

The orthogonality of natural modes implies that the following square ma-
trices are diagonal 

�M�M T�
~

      �K�K T�
~

, (2.10)

where �  is the modal matrix [Eq. (2.7)]. The diagonal elements of M~  and 
K~ are given by 

i
T
iiM �M��       i

T
iiK �K�� . (2.11)

These diagonal elements are related by [see Eq. (2.8)] 

iii MK �� . (2.12)

The matrices of Eq. (2.10) are positive definite, that is, the diagonal ele-
ments of both matrices are positive. 

Consider the eigenpair �i, i�  satisfying  
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K i�  = �i����� i� . (2.13)

It is common to normalize modes so that the Mi have unit values 

1�� i
T
iiM M�� . (2.14)

This fixes the lengths of the eigenvectors. The natural modes normalized 
by Eq. (2.14) are a mass orthogonal set. When the modes are normalized 
by this equation we obtain from Eq. (2.12) 

iiK �� . (2.15)

Thus, the eigenvectors satisfy the orthogonality conditions 

ijj
T
i ���M�        ijij

T
i ����K� , (2.16)

where ij�  is the Kronecker delta, for which ij� = 0 (i � j) and 1��ii . Us-

ing these relations, we may write the following conditions that the eigen-
vectors must satisfy 

I�M� �T , (2.17)

 

��K� �T , (2.18)

where I is the identity matrix and ���� is the spectral matrix. 

2.1.2 The Standard Eigenproblem and the Rayleigh Quotient 

Consider a standard eigenproblem, defined as 

AV = ��V, (2.19)

where matrix A is symmetric and V represents the eigenvectors. A change 
of basis is performed by using the similarity transformation 

V = �P v, (2.20)

where P is an orthogonal matrix, for which 

PT = P-1, (2.21)

and v represents the solution vector in the new basis. Substituting Eq. 
(2.20) into Eq. (2.19), pre-multiplying both sides of the resulting equation 
by PT and using Eq. (2.21), we obtain the generalized eigenproblem 
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a v = � b v, (2.22)

where 

a = PTA P        b = PT P. (2.23)

Since matrix P is orthogonal b = I and the generalized eigenproblem of 
Eq. (2.22) is reduced to the standard eigenproblem 

a v = � v. (2.24)

It can be proved that the problem of Eq. (2.24) has the same eigenvalues as 
the problem of Eq. (2.19), whereas the eigenvectors are related by Eq. 
(2.20).  

The Rayleigh quotient ��v) is defined as 

vv
vavv T

T

�� )( , 
(2.25)

where 

n����� )(1 v . (2.26)

If a is positive definite then 

0 < ��v). (2.27)

For any vector v the minimum of ��v) will be reached when  

11)()( ����� vv . (2.28)

Consider the generalized eigenproblem 

�M�K �� , (2.29)

where K, M are positive definite, which ensures that the eigenvalues are 
all positive, that is �1 > 0. The Rayleigh minimum principle states that 

)(1 ���� min , (2.30)

where the minimum is taken over all possible vectors � , and )(��  is the 
Rayleigh quotient 

M��

�K�
�

T

T

�� )( . 
(2.31)

The bounds on the Rayleigh quotient are n������ )(0 1 � . 
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2.2 Solution of the Eigenproblem 

2.2.1 Static Condensation 

In dynamic analysis, those degrees of freedom that are not required to ap-
pear in the global finite element model can be eliminated by static conden-
sation. In the calculation of frequencies and mode shapes, the basic as-
sumption is that the mass of the structure can be lumped at only some 
specific degrees of freedom without much effect on the accuracy of the re-
sults. To illustrate reduction of the number of degrees of freedom, consider 
first the static equilibrium equations K r = R. We assume that the stiffness 
matrix and corresponding displacement and load vectors can be partitioned 
into the form 
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(2.32)

Using the second sub-matrix equation in Eq. (2.32), we obtain 

)(1
ababbbb rKRKr ��� � . (2.33)

Substituting Eq. (2.33) into the first sub-matrix equation in Eq. (2.32) we 
obtain the condensed equations 

bbbabaababbabaa RKKRrKKKK 11 )][ �� ��� . (2.34)

The name static condensation refers to dynamic analysis, where it is of-
ten possible to reduce the size of the system before solving the eigenprob-
lem by eliminating the mass-less degrees of freedom. Considering now the 
generalized eigenproblem and using partitioning, we rewrite the equation 
K� = � �����  as 
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(2.35)

The first sub-matrix equation is  

0�K�K �� babaaa . (2.36)

Therefore, the mass-less degrees of freedom )( a�  are related to the de-
grees of freedom at the mass points )( b�  by 

babaaa �KK�
1��� . (2.37)
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Substituting Eq. (2.37) into the second sub-matrix equation in Eq. (2.35), 
the resulting eigenproblem is reduced to the form 

bbbabaababb �M�KKKK ��� � ][ 1 . (2.38)

One important disadvantage of the static condensation approach is that the 
reduced stiffness matrix ][ 1

abaababb KKKK ��  tends to fill as more mass-
less degrees of freedom are eliminated. Therefore the reduction in size of 
the system may not be economical from a computational viewpoint. 

2.2.2 Solution Methods 

Solution of the eigenproblem requires considerably more effort than a 
static analysis. Since exact solution can be prohibitively expensive, ap-
proximate solution techniques have been developed for large scale sys-
tems. In such systems, the object is often to calculate the smallest eigen-
values and the corresponding eigenvectors. 

In general, no explicit formulae are available, and all solution methods 
must be iterative in nature. To find an eigenpair �i, i� , only one of them is 
calculated by iteration; the other can be obtained without further iteration. 
For example, if �i is obtained by iteration, then i�  can be evaluated with-
out iteration by solving the equations (K – � iM) i� = 0. On the other hand, 
if i�  is determined by iteration, �i can be calculated by the Rayleigh quo-
tient [Eqs. (2.30), (2.31)] 

i
T
i

i
T
i

i
�M�

�K�
�� . 

(2.39)

A basic question in considering an effective solution method is whether 
we should first solve for the eigenvalue and then calculate the eigenvector, 
or vice versa, or whether it is more economical to solve for both simulta-
neously. The answer to this question depends on various properties of the 
problem under consideration. The effectiveness of a solution method de-
pends on the possibility of a reliable use of the procedure and the cost of 
solution, determined by the number of high-speed storage operations and 
an efficient use of backup storage devices. 

The common solution methods can be subdivided into the following 
groups, corresponding to the properties used in the solution process [1, 4]: 

� Vector iteration methods (e.g. inverse iteration), which work directly on 
the property of Eq. (2.13) 
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K i�  = �i����� i� . (2.40)

� Transformation methods (e.g. Jacobi iteration), which use the basic 
orthogonality properties of the eigenvectors [Eqs. (2.17), (2.18)] 

I�M� �T , (2.41)

 

��K� �T , (2.42)

where �  is the modal matrix [Eq. (2.7)], ���� is the spectral matrix (a 
diagonal matrix of the eigenvalues) and I is the identity matrix. 

� Polynomial iteration methods, which work on the fact that  

p(�i) = 0, (2.43)

where 

p(�) = det (K – �M). (2.44)

� Methods that employ the Sturm sequence property of the characteristic 
polynomials of Eq. (2.44) 

p(r)(�(r)) = det (K(r) – �(r)M(r))         r = 1,…, n–1, (2.45)

where p(r)(�(r)) is the characteristic polynomial of the rth associated 
problem K(r) )(r

� =�(r)��������(r) )(r
� . All matrices are of order n–r, and K(r), 

����(r) are obtained by deleting the last r rows and columns from K, M. 
� There are many variants of these procedures. The Lanczos method and 

the subspace iteration method use a combination of the properties used 
in the above methods. 

In this chapter only several methods are described. Vector iteration 
methods are presented in Sect. 2.3 and transformation methods are dis-
cussed in Sect. 2.4. Polynomial iterations are introduced in Sect. 2.5, 
Rayleigh-Ritz analysis is described in Sect. 6, the Lanczos method is pre-
sented in Sect. 2.7 and solution by subspace iteration is demonstrated in 
Sect. 2.8. 
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2.3 Vector Iteration Methods 

2.3.1 Inverse Vector Iteration 

In structural engineering we often analyze systems with narrowly banded 
stiffness matrix K and diagonal or narrowly banded mass matrix M sub-
jected to excitations that excite primarily the lower natural modes of vibra-
tions. Inverse vector iteration methods are usually effective for such cases. 

Many of the eigenproblem solution techniques are based on the vector 
iteration approach. The use of iteration to evaluate the vibration mode of a 
structure is a very old concept that originally was called the Stodola 
method. To calculate the first-mode shape Eq. (2.5) can be rewritten in an 
iterative form. Since only the shape is needed, the frequency is dropped 
from this equation to obtain 

)1()( �� kk rMrK , (2.46)

where k denotes the iteration number, )1( �kr  is the displacement vector in 
the previous iteration and )(kr is the resulting improved shape. To initiate 
the iteration procedure for evaluating the first mode shape, a trial dis-
placement vector r(0) is assumed that is a reasonable estimate of this shape. 
The improved iteration vector is then obtained by normalizing the shape 

)(kr . There are various ways to obtain convenient normalized vectors. We 
can normalize the shape )(kr by 

�  2/1)()(

)(
)(

kTk

k
k

rMr

rr � . 
(2.47)

This equation assures that the new vector satisfies the mass orthogonality 
relation [see Eq. (2.17)] 

1)()( �kTk rMr . (2.48)

Alternatively, normalizing the shape )(kr  by dividing it by an arbitrary 
reference element of the vector, )( )(kref r , gives 

�  )(

)(
)(

k

k
k

ref r
rr � . 

(2.49)

This operation has the effect of scaling the reference element to unity. In 
general, the vector is normalized with respect to its largest element.  
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It has been proven that the iteration process converges to the first-mode 
shape. The convergence is linear, thus if �1 <��2, the relative magnitude 
�1/�2 determines the rate of convergence; if �1 = �2 the rate of convergence 
is given by the ratio of �1 to the next distinct eigenvalue. 

By repeating the process sufficiently, we can improve the mode-shape 
approximation to any desired level of accuracy. The eigenvalue can be es-
timated by the Rayleigh quotient [Eq. (2.39)] 

)()(

)1()(

)()(

)()(
)(

kTk

kTk

kTk

kTk
k

rMr
rMr

rMr
rKr �

��� . 
(2.50)

The approximation of this equation can be used to determine convergence 
of the iteration by comparing two successive values of �. 

Before starting the iteration procedure, the stiffness matrix K is often 
factorized, taking advantage of its narrow banded character. Equations 
(2.46), (2.47) state the basic iteration algorithm. However, it is more effi-
cient to use the following iteration steps, starting with r(0), Y(0) = M r(0), 

)1()( �� kk YrK , (2.51)

 

)()( kk rMY � , (2.52)
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2/1)()(
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)( kTk

k
k

Yr
YY � . 

(2.54)

Inverse iteration can be used to evaluate higher-order modes as well, by 
assuming shapes that contain no lower-mode components. Calculating the 
second mode shape 2� , we start with an arbitrary r and make it orthogo-
nal to 1�  by the Gram-Schmidt orthogonalization presented later in Sect. 
2.3.3. This process can also be used to orthogonalize a trial vector with re-
spect to several eigenvectors that already have been determined. However, 
it should be noted that numerical problems may occur due to round-off er-
rors, and convergence of the iteration process becomes slower for the 
higher mode shapes. 
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Example 2.1 

To illustrate solution by the inverse vector iteration method, consider the 
three-bay eight-story frame shown in Fig. 2.1. The mass of the frame is 
lumped in the girders, with values M1=1.0, M2=1.5, M3=2.0. The girders 
are assumed to be non-deformable and the lateral stiffness of each story is 
EI/L3 = 5.0.  

The initial displacement vector is assumed as  

r(0)T���!"#�"#�"#�"#�"#�"#�"#�"$. (a)

The mode shapes obtained by the procedure of Eqs. (2.46), (2.49) for 
five iteration cycles and the exact solution r(exact) = 1�  are shown in Ta-
ble 2.1. The corresponding eigenvalue is �1 = 1.5718. 
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Fig. 2.1. Eight-story frame 

Table 2.1. First mode shape, inverse vector iteration, five iteration cycles 

    r(1)     r(2)     r(3)     r(4)     r(5) r(exact) 
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
0.9792 0.9747 0.9739 0.9738 0.9738 0.9738 
0.9375 0.9245 0.9224 0.9221 0.9221 0.9221 
0.8646 0.8388 0.8348 0.8342 0.8342 0.8342 
0.7604 0.7202 0.7143 0.7136 0.7135 0.7134 
0.6250 0.5727 0.5657 0.5648 0.5647 0.5647 
0.4583 0.4015 0.3947 0.3939 0.3938 0.3937 
0.2500 0.2071 0.2028 0.2022 0.2022 0.2022 
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2.3.2 Vector Iteration with Shifts 

The inverse vector iteration procedure described above, combined with the 
concept of shifting the eigenvalue spectrum, provides an effective means 
to improve the convergence rate of the iteration process and to make it 
converge to an eigenvector other than the first mode. Considering the gen-
eralized eigenproblem 

K� = � ����� , (2.55)

introducing a shift %, defining 

%����
�

         MKK %��
�

, (2.56)

and substituting Eqs. (2.56) into Eq. (2.55) yields 

�K
�

= �
�

����� . (2.57)

The eigenvectors of the two eigenproblems of Eqs. (2.55) and (2.57) are 
the same. Applying the standard inverse vector iteration, the solution will 
converge to the eigenvector having the smallest shifted eigenvalue.  

Selection of an appropriate shift is difficult without knowledge of the 
eigenvalue. This difficulty can be overcome by various methods, of which 
the Rayleigh quotient iteration [5] is described below. Using this proce-
dure, we start with an initial vector r(0) and an initial shift �(0), and calcu-
late a new shift at each iteration cycle. The following steps are to be re-
peated until convergence: 

� Determine )(kr  by solving 

)1()()1( )( �� ��� kkk rMrMK . (2.58)

� Estimate the eigenvalue and shift  

1
)()(

)1()(
)( �

�

���� k
kTk

kTk
k

rMr
rMr

. 
(2.59)

� Normalize )(kr  by Eq. (2.47) 

�  2/1)()(

)(
)(

kTk

k
k

rMr

rr � . 
(2.60)

The convergence of this iteration process depends on the initial vector 
r(0) and an initial shift �(0). The rate of convergence is faster than the stan-
dard vector iteration with shift described earlier, but at the expense of addi-
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tional computation, because a new matrix )( )1( MK ��� k has to be factor-
ized at each iteration cycle. 

Example 2.2 

To illustrate solution by inverse vector iteration with shifts, consider again 
the eight-story frame of example 2.1 shown in Fig. 2.1. The following two 
cases of initial values for the shift have been assumed: 

� Case a. Initial shift �(0)= 10. 
� Case b. Initial shift �(0)= 30. 

The initial displacement vector in both cases is assumed as  

r(0)T = [1, 1, 1, 1, 1, 1, 1, 1]. (a)

Results obtained by the procedure described in this section are shown in 
Tables 2.2, 2.3. It is observed that the solution converges to the second 
mode shape in case a. In case b we obtain the third mode shape, and the 
corresponding eigenvalues are �2 = 12.3880 and �3 = 31.1972. 

Table 2.2. Second mode shape, inverse iteration with an initial shift �(0)= 10 

r(1) r(2) r(3) r(4) r(5) r(exact) 
1.0000 1.0000  1.0000  1.0000  1.0000 1.0000 
0.8816  0.6375  0.8109  0.7933  0.7935 0.7935 
0.6646 -0.0107  0.4713  0.4226  0.4232 0.4232 
0.3538 -0.8797  0.0092 -0.0792 -0.0781 -0.0781 
0.0270 -1.6846 -0.4346 -0.5568 -0.5553 -0.5553 

-0.2342 -2.1482 -0.7258 -0.8622 -0.8605 -0.8605 
-0.3644 -2.0865 -0.7778 -0.9008 -0.8992 -0.8992 
-0.2765 -1.2830 -0.4948 -0.5675 -0.5666 -0.5666 

Table 2.3. Third mode shape, inverse iteration with an initial shift �(0)= 30 

r(1) r(2) r(3) r(exact)
 1.0000  1.0000  1.0000 1.0000
 0.4155  0.4830  0.4800 0.4800
-0.4612 -0.2820 -0.2895 -0.2895
-1.1187 -0.8215 -0.8333 -0.8333
-1.0639 -0.7126 -0.7271 -0.7271
-0.3379 -0.0378 -0.0539 -0.0539
 0.5148  0.6778  0.6614 0.6614
 0.6838  0.7008  0.6889 0.6889
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2.3.3 Matrix Deflation and Gram-Schmidt Orthogonalization 

Assume that we have calculated a specific eigenpair �i, i� . To ensure that 
the solution of another eigenpair does not converge again to �i, i� , we 
need to deflate either the matrices or the iteration vectors. The basis of 
vector deflation is that in order for an iteration vector to converge to a re-
quired eigenvector, the iteration vector must not be orthogonal to it. 
Hence, if the iteration vector is orthogonal to the eigenvectors already cal-
culated, convergence occurs to another eigenvector. The Gram-Schmidt 
orthogonalization can be used in the solution of the generalized eigenprob-
lem �M��K �  [Eq. (2.8)]. Assume that we have calculated the eigen-
vectors m��� ...,,, 21 �by inverse iteration and that we want to M-
orthogonalize 1r  to these eigenvectors. A vector r1 which is M-orthogonal 
to the eigenvectors m��� ...,,, 21  is calculated by 

ii

m

i

�rr &�� '
�1

11
. 

(2.61)

The coefficients &i are obtained using the orthogonality conditions 

01 �rM�
T
i      i = 1, ..., m, (2.62)

 

ijj
T
i ��M��      i, j = 1, ..., m, (2.63)

where ij�  is the kronecker delta, for which  

ij� = 0 (i � j)     1��ii . (2.64)

Pre-multiplying both sides of Eq. (2.61) by M�
T
i  and using the orthogo-

nality conditions of Eqs. (2.62), (2.63) we obtain 

1rM�
T
ii �&       i = 1, ..., m. (2.65)

The Gram-Schmidt orthogonalization is sensitive to round-off errors and 
must be used with care. If the technique is employed in inverse iteration 
without shifting, it is necessary to calculate the eigenvectors to high preci-
sion. In addition, the iteration vector should be orthogonalized at each it-
eration cycle to the eigenvectors already calculated. 
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Example 2.3 

To illustrate solution by inverse vector iteration with the Gram-Schmidt 
orthogonalization, consider again the eight-story frame of example 2.1 
shown in Fig. 2.1. The first mode shape 1�  is given by (see Table 2.1) 

T
1�  = [1, 0.9738, 0.9221, 0.8342, 0.7134, 0.5647, 0.3937, 0.2022], (a)

and the initial displacement vector is assumed as  

r(0)T = [1, 1, 1, 1, 1, 1, 1, 1]. (b)

We use the inverse vector iteration procedure described in Section 2.3.1 
and employ the Gram-Schmidt orthogonalization such that the result at 
each iteration cycle is M-orthogonal to the eigenvector 1� . The results in 
Table 2.4 show slow convergence to the second mode shape, with small 
errors after seven iteration cycles. 

Table 2.4. Second mode shape, inverse iteration with orthogonalization 

r(1) r(2) r(3) r(4) r(5) r(6) r(7) r(exact)
 1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000
 0.8398  0.8147  0.8028  0.7975  0.7952  0.7942  0.7938  0.7935
 0.5372  0.4739  0.4450  0.4323  0.4269  0.4247  0.4238  0.4232
 0.0739 -0.0162 -0.0531 -0.0680 -0.0741 -0.0765 -0.0775 -0.0781
-0.4604 -0.5269 -0.5463 -0.5523 -0.5542 -0.5549 -0.5552 -0.5553
-0.9424 -0.9096 -0.8836 -0.8705 -0.8647 -0.8622 -0.8612 -0.8605
-1.2202 -1.0305 -0.9519 -0.9203 -0.9076 -0.9026 -0.9005 -0.8992
-0.9930 -0.6992 -0.6138 -0.5845 -0.5735 -0.5693 -0.5677 -0.5666

2.4 Transformation Methods 

The transformation methods employ the orthogonality properties of the ei-
genvectors [Eqs. (2.41), (2.42)] 

I�M� �T , (2.66)

 

��K� �T . (2.67)

Since the matrix � diagonalizes K and M we may construct it by iteration. 
Specifically, we define K1 = K and M1 = M, and form the matrices  

Kk+1 = kk
T
k PKP , (2.68)
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Mk+1 = kk
T
k PMP , (2.69)

The matrices Pk are selected to bring Kk and Mk closer to diagonal form 

Kk+1 (  ����, (2.70)
 

Mk+1 (  I, (2.71)

as k )( . Denoting the last iteration by l, then 

lPPP� ...21� . (2.72)

In practice it is only necessary that matrices Kk+1 and Mk+1 converge to di-
agonal form. Two transformation methods discussed in detail elsewhere 
[1] are the Jacobi and the Householder-QR-inverse iteration methods.  

In the Jacobi solution [6] the kth iteration step reduces to Eq. (2.68), 
where Pk is selected in such a way that an off-diagonal element in Kk is ze-
roed. Matrix Pk is an orthogonal rotation matrix satisfying the condition 

IPP �k
T
k . (2.73)

The Householder-QR-inverse iteration procedure is restricted to the so-
lution of the standard eigenproblem. Householder transformations are em-
ployed to reduce the matrix K to tri-diagonal form. QR iteration is then 
used to evaluate the eigenvalues, and inverse iteration is used to calculate 
the eigenvectors of the tri-diagonal matrix. These vectors are transformed 
to obtain the eigenvectors of K. Once the eigenvalues have been evaluated, 
we calculate the eignvectors of the tri-diagonal matrix by simple inverse 
iteration with shifts equal to the corresponding eigenvalues. The eigenvec-
tors of the tri-diagonal matrix then need to be transformed with the House-
holder transformations used to obtain the eigenvectors of K. 

2.5 Polynomial Iterations 

The set of homogeneous equations (2.55) has a nontrivial solution if  

det [K – �M] = 0. (2.74)

The equation (K – �i�����) i� = **** is satisfied for nontrivial i� only if the 
matrix K – �i�������� is singular. When the determinant is expanded, a polyno-
mial known as the characteristic equation, or frequency equation, is ob-
tained. The eigenvalues are the roots of the characteristic polynomial 
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p(�) = det [K – �M]. (2.75)

Evaluation of the coefficients of the polynomial for large systems re-
quires much computational effort and the roots of the equation are sensi-
tive to numerical round-off errors in the coefficients. Using polynomial it-
erations, only the eigenvalues are calculated. The corresponding 
eigenvectors can then be obtained by inverse iteration with shifts. The so-
lution by polynomial iteration can be carried out directly using matrices K 
and M, without transforming the problem into a different form. The solu-
tion is most effective if only a few eigenvalues are to be calculated.  

The first step in explicit polynomial iteration is to write p(�) in the form 

p(�) = a0 + a1� + a2�
2 + …. + an�

n, (2.76)

and evaluate the polynomial coefficients. The second step is to calculate 
the roots of the polynomial using, for example, a Newton iteration or se-
cant iteration. A basic difficulty in this approach is that small errors in the 
coefficients cause large errors in the roots of the polynomial. 

In implicit polynomial iteration we evaluate the value of p(�) directly, 
without calculating first the coefficients, by decomposing the K – %���� ma-
trix into a lower-unit triangular matrix L and an upper triangular matrix S 
to obtain 

K – �M = LS, (2.77)
 

det [K – �M] = det LS = S11S22 … Snn, (2.78)

where Sii are the diagonal elements of S. This decomposition may require 
interchanges when � > �1. Each row or column interchange merely affects 
a change in sign of the determinant. When row and corresponding column 
interchanges are carried out, the coefficient matrix K – ����� in Eq. (2.78) 
remains symmetric. If the coefficient matrix is symmetric, then we have 
S= DLT and hence 

det [K – �M] = D11D22 … Dnn. (2.79)

In this case, one polynomial evaluation requires about 1/2 n mk
2 operations, 

where n is the order of K and M, and mk is the half-bandwidth of K. A 
number of iteration schemes, such as the Newton method, can be used to 
calculate a root of the polynomial. 
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2.6 Rayleigh-Ritz Analysis 

2.6.1 Approximate Eigenproblem Solution 

Rayleigh-Ritz analysis is a general approach for finding approximations to 
the lowest eigenvalues and corresponding eigenvectors of the eigenprob-
lem. The method has been used widely to reduce the dimension of the 
equations of motion. It is based on the assumption that the displacement 
vector can be approximated by a linear combination of discrete Ritz vec-
tors. Various methods can be understood to be Ritz analysis, and the 
methods differ only in the choice of the Ritz basis vectors assumed in the 
analysis. Discrete Ritz vectors can be taken as approximations of the true 
vibration mode shapes. The Ritz vectors are an attractive alternative to 
standard normal modes, since they can be computed with significantly less 
computational effort. A proper choice of Ritz vectors, employed as starting 
vectors in various iterative procedures, can significantly accelerate the so-
lution process. 

In the Ritz analysis we consider a set of vectors � , which are linear 
combination of the Ritz basis vectors r1, r2,…, rs. A typical vector is given 
by 

�  = y1r1 + y2r2 + ... + ysrs = rB y, (2.80)

where y is the vector of Ritz coordinates yi, rB is the n+s matrix of the Ritz 
basis vectors ri and s is smaller than the number of degrees of freedom n, 
that is 

], ... , ,[ 21 sB rrrr �      yT = {y1, y2, ... , ys}. (2.81)

The vector �  lies in the subspace spanned by the Ritz basis vectors. To 
invoke the Rayleigh minimum principle, we first evaluate the Rayleigh 
quotient 

�M�

�K�
� T

T

�� )( . 
(2.82)

Substituting Eq. (2.80) into Eq. (2.82), differentiating with respect to y and 
setting the result equal to zero, we obtain the eigenproblem 

KR y = � MR y, (2.83)

where 

B
T
BR rKrK �       B

T
BR rMrM � . (2.84)
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The solution to Eq. (2.83) yields s eigenvalues �1, …, �s, which are ap-
proximations to the eigenvalues �1, …, �s, and s eigenvectors y1, …, ys, 
which are used to evaluate the vectors s�� ....,,1 . The latter vectors are 
approximations to the eigenvectors s�� ....,,1 . In general, the approxima-
tions of the higher eigenvalues are less accurate than the approximations of 
the lower eigenvalues. It is instructive to note that an eigenvalue calcu-
lated from the Ritz analysis is an upper bound on the corresponding exact 
eigenvalue of the system. The success of the Rayleigh-Ritz method de-
pends on how well linear combinations of Ritz vectors can approximate 
the natural modes of vibration. 

2.6.2 Load-Dependent Ritz Vectors 

Load-dependent Ritz vectors are a particular class of Ritz vectors where 
information about the loading on the structure is used to generate the vec-
tors. A procedure for generating such vectors, called derived Ritz vectors 
[3] is described in this section. The initial vector of the coordinate se-
quence is the deflected shape resulting from static application of the dy-
namic load distribution, and the subsequent vectors account for inertial ef-
fects on the dynamic response. The following notation is used in the 
derivation of the vectors: 

� ir  is the preliminary deflected shape calculated first in the derivation of 
each vector, where the subscript is the number of the derived vector.  

� ir
~  is obtained after orthogonalization with the preceding vectors. 

�  ri is the final form of the derived vector obtained after normalization. 

To derive the first vector, the static equilibrium equations,  

K 1r = R, (2.85)

are first solved for the preliminary deflected shape 1r . The vector 1r  is 
then normalized to obtain the first derived Ritz vector r1  

�  2/1
11

1
1

rMr

rr
T

� , 
(2.86)

so that it provides a unit generalized mass 111 �rMrT . 
Calculation of the second vector starts with solution of 

K 2r �= M r1, (2.87)
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to obtain the deflected shape 2r � resulting from the inertial load Mr1. 
Then, the shape 2r  is made mass-orthogonal to the first vector r1 by the 
Gram-Schmidt procedure [Eqs. (2.61)–(2.65)] to obtain  

�  12122
~ rrMrrr T�� . (2.88)

Finally, this shape is normalized to obtain the second derived Ritz vector 

�  2/1
22

2
2 ~~

~

rMr

rr
T

� , 
(2.89)

so that 122 �rMrT . Derivation of further vectors proceeds in a similar way. 
It has been shown [3] that when a vector is made orthogonal to the two 
preceding shapes, it automatically is orthogonal to all preceding shapes. 

In summary, derivation of ri+1 involves the following steps: 

� The deflected shape 1�ir �is obtained by solving 

K 1�ir = M ri. (2.90)

� The deflected shape 1�ir  is made mass-orthogonal with respect to the 
two preceding vectors by the Gram-Schmidt procedure 

111
~

��� ,�&�� iiiiii rrrr �
, (2.91)

where 

1��& i
T
ii rMr       �  2/1~~

i
T

ii rMr�, . (2.92)

� The shape is normalized to obtain ri+1 by calculating 

�  2/1
11

1
1 ~~

~

��

�
� �

i
T

i

i
i

rMr

r
r . 

(2.93)

The unique orthogonality property of these vectors makes it possible to 
organize the equations of motion in a special tri-diagonal form. 

Example 2.4 

Given a one-bay five-story shear frame, the following stiffness matrix K, 
mass matrix M, and load vector R are considered 
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(a) 

The object is to determine the first two modes, using two load-dependent 
Ritz vectors. The first Ritz vector is calculated by Eqs. (2.85), (2.86) 

T
1r  = [0.0410, 0.0739, 0.0985, 0.1149, 0.1231], 

T
1r  = [0.3792, 0.6826, 0.9102, 1.062, 1.138]. 

(b)

The second Ritz vector is determined by Eqs. (2.87), (2.88), (2.89) 

T
2r  = [0.0342, 0.0654, 0.0909, 0.1090, 0.1183], 

T
2

~r  = 0.01[–0.4134, –0.3705, –0.1204, 0.1500, 0.3164], 

T
2r  = [–1.217, –1.091, –0.3546, 0.4418, 0.9316]. 

(c)

The reduced stiffness matrix and mass matrix are calculated by Eq. (2.84)  

�
�

�
�
�

�

�

�
�

95.91086.3

086.3986.9
RK       �

�

�
�
�

�
�

0.1

0.1
RM . 

(d)

Solving the reduced Eigenproblem [Eq. (2.83)] we obtain 

�
�

�
�
�

��
��

�

�
�
�

�
�

9993.0

0376.0

0376.0

9993.0
21 yy , 

�"����"
1/2���3.142�������-����-

1/2�� 9.595. 

(e) 

The approximate mode shapes are obtained by Eq. (2.80) 
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! $

].8882.0,4016.0,3886.0,116.1,230.1[

,172.1,078.1,8962.0,6412.0,3332.0

2

1

����

�

T

T

�

�

 

(f)

The exact solution is given by 

T
1� = [0.3338, 0.6405, 0.8954, 1.078, 1.173]#��

 

� T
2� =[-0.8954, -1.173, -0.6411, 0.3338, 1.078], 

(g)

 

�"����"
1/2 � 3.142�������������-����-

1/2����9.170.� (h) 

It is observed that, using two load-dependent Ritz vectors, better accuracy 
is obtained for the first mode shape. 

2.7 The Lanczos Method 

If the objective is to calculate only a few eigenvalues and corresponding 
eigenvectors, an iteration analysis based on the Lanczos transformation 
can be very efficient [7]. The Lanczos coordinates are an effective set of 
Ritz vectors, where the vectors are derived by a procedure that is similar in 
many respects to vector iteration analysis of the fundamental vibration 
modes. The Lanczos method is equivalent to the discrete Rayleigh-Ritz re-
duction with vectors in the Krylov sequence selected as the global ap-
proximation vectors. The method generates the latter vectors, and the se-
quence converges to the eigenvector corresponding to the smallest 
eigenvalue. The basis vectors of the Krylov subspace consist of the vectors 

r1, D r1, D2 r1, ..., D
s-1r1, (2.94)

where the starting vector r1 is the static response due to the loads, s is the 
number of vectors considered and matrix D is defined as D = K-1M.  

The Lanczos algorithm involves supplementing the Krylov sequence 
with the Gram-Schmidt orthogonalization process at each step. The result 
is a set of M-orthonormal vectors that is used to reduce the dimension of 
the set of equations. These vectors do not have the full uncoupling prop-
erty of the mode shapes, but they are much less expensive to generate.  

Each Lanczos step, for derivation of the (i+1)th vector ri+1, i = 1, …, n, 
involves the following basic operations [1, 8]: 
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� The deflected shape 1�ir �is obtained by solving 

(K – %M) 1�ir �= M ri, (2.95)

where % is a shift (usually the initial % equals zero). This calculation is 
very similar to the inverse vector iteration with shifts. 

� The shape 1�ir is made mass-orthogonal with respect to the two 
preceding vectors by the Gram-Schmidt procedure [Eqs. (2.91), (2.92)]. 

� The shape is normalized to obtain ri+1 [Eq. (2.93)]. The coefficients &i, 
,i are used to form matrix Tn 
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(2.96)

The Lanczos method transforms the generalized eigenproblem, 

K �  = � ����� , (2.97)

into a standard form with a tri-diagonal coefficient matrix Tn 

Tn�
~

= (1/�)�
~

. (2.98)

The eigenvalues of Tn are the reciprocals of the eigenvalues of Eq. (2.97). 
The eigenvectors of the two problems of Eqs. (2.97), (2.98) are related by 

�r�
~

B� , (2.99)

where matrix rB is defined as [see Eq. (2.95) and Eqs. (2.91)–(2.93)] 

rB = [r1, r2, …, rn]. (2.100)

Theoretically, the vectors ri+1 generated by the procedure of Eq. (2.95) 
and Eqs. (2.91)–(2.93) are M-orthogonal, that is ijj

T
i ��rMr . In practice, 

the tri-diagonalization does not produce the desired orthogonal vectors be-
cause of round-off errors. If we perform the transformation for i = 1, …, q 
(q << n), we calculate Tq corresponding to the eigenproblem 

Tq S = / S. (2.101)

The solution of Eq. (2.101) may yield good approximations to the smallest 
eigenvalues and corresponding eigenvectors of the original eigenproblem. 
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The following definitions are used in describing the solution approach: 

� A Lanczos step is the use of Eq. (2.95) and Eqs. (2.91)–(2.93). Thus, at 
each Lanczos step it is necessary to solve Eq. (2.95) for 1�ir , where the 
shift % is changed at each Lanczos stage. 

� A Lanczos stage consists of q Lanczos steps and the calculation of the 
eigenpairs of the problem of Eq. (2.101). 

The solution algorithm involves the following operations. 

� Start a new Lanczos stage. Choose a starting vector that is orthogonal to 
all previous eigenvector approximations and normalize it [Eq. (2.93)]. 
Choose a shift % (usually %�= 0 for the first Lanczos stage). 

� Perform the Lanczos steps. Although a Gram Schmidt orthogonalization 
has been performed, the vector ri+1 is checked for loss of orthogonality. 
If the loss occurs, this Lanczos stage is terminated with q = i. Otherwise 
perform a maximum number of steps qmax and set q = qmax. Compute 
additional converged eigenpairs by solving Eq. (2.101). Reset the 
number of converged eigenvalues in the preceding stages to the new 
value. If the required eigenpairs have not yet been obtained, restart for 
an additional Lanczos stage. 

� Continue until all required eigenpairs have been calculated or until the 
maximum number of assigned Lanczos steps has been reached. 

2.8 Subspace Iteration 

Similar to the Lanczos method, a combination of the properties used in 
various methods are considered in the subspace iteration method [1, 9]. 
Specifically, the method is based on simultaneous vector iteration, Sturm 
sequence information and Rayleigh-Ritz analysis. The method is particu-
larly suitable for the calculation of a few eigenvectors and eigenvalues of 
large systems. The trial vectors are all subjected to inverse iteration com-
bined with some technique that forces convergence to independent shapes. 
The convergence is to the lowest undamped vibration mode shapes. The 
method consists of the following steps. 

� Establish the matrix r(1), consisting of q starting vectors (q > p, where p 
is the number of vectors to be calculated).  

� Use simultaneous inverse iteration and Ritz analysis to extract the best 
eigenvalue and eigenvector approximations from the q iteration vectors. 
The solution involves the following operations: 
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– Calculate the matrix of new vectors )1( �kr  by simultaneous inverse it-
eration 

)()1( kk rMrK �� . (2.102)

– Find the projections of the matrices K and M by  

)1()1()1( ��� � kkTk
R rKrK       )1()1()1( ��� � kkTk

R rMrM . (2.103)

– Solve the eigensystem of the projected matrices �

)1()1()1()1()1( ����� � kk
R

kkk
R yM�yK , 

(2.104)

    and find the eigenpairs y(k+1) and ����(k+1). 
– Calculate the improved approximation to the matrix of eigenvectors, 

r(k+1) 

)1()1()1( ��� � kkk yrr . (2.105)

Then, provided that the vectors of matrix r(1) are not orthogonal to 
one of the required eigenvectors, the solution process will converge to 
the set of eigenvalues and corresponding eigenvectors 

�r�� (( �� )1()1( kk . (2.106)

The iteration is equivalent to iteration with a q-dimensional subspace 
and should not be regarded as a simultaneous iteration with q individ-
ual iteration vectors 

� After convergence of the iteration, use the Surm sequence to verify that 
the required eigenvalues and vectors have been calculated. 

It has been noted [1] that the method presented is most effective for 
evaluating a relatively small number of eigenpairs. For a larger number of 
eigenpairs the cost of the solution rises rapidly. Various acceleration pro-
cedures for the basic subspace iteration method have been proposed. 

Example 2.5 

To illustrate solution by subspace iteration, consider again the eight-story 
frame of example 2.1, shown in Fig. 2.1. The object is to calculate 3 ei-
genvectors. The matrix r(1), consisting of 4 starting vectors, is chosen as 



62      2 Vibration Analysis 

�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�

�

�

�

1

1
0
0
0
0
0
0

0

0
1
1
0
0
0
0

0

0
0
0
1
1
0
0

0

0
0
0
0
0
1
1

)1(r . 

(a)

Using the solution procedure described in this section, the results obtained 
for the first 3 mode shapes in 4 iteration cycles are given in Tables 2.5 
through 2.7. The corresponding eigenvalues are summarized in Table 2.8. 
It is observed that accurate results are achieved for the first mode shape af-
ter 2 iteration cycles and for the second mode shape after 4 iteration cy-
cles. Some errors are obtained for the third mode shape after 4 iteration 
cycles. To reduce these errors, 5 vectors (instead of 4 vectors) could be 
considered. 

Table 2.5. First mode shape, subspace iteration 

r(1) r(2) r(3) r(4) r(exact) 
1.0000 1.0000 1.0000 1.0000 1.0000 
0.9739 0.9738 0.9738 0.9738 0.9738 
0.9217 0.9221 0.9221 0.9221 0.9221 
0.8346 0.8342 0.8342 0.8342 0.8342 
0.7128 0.7134 0.7134 0.7134 0.7134 
0.5653 0.5647 0.5647 0.5647 0.5647 
0.3922 0.3937 0.3937 0.3937 0.3937 
0.2037 0.2022 0.2022 0.2022 0.2022 

Table 2.6. Second mode shape, subspace iteration 

r(1) r(2) r(3) r(4) r(exact) 
1.0000 1.0000 1.0000 1.0000 1.0000 
0.5398 0.7937 0.7935 0.7935 0.7935 

-0.3806 0.4219 0.4231 0.4232 0.4232 
-0.7795 -0.0762 -0.0781 -0.0782 -0.0781 
-0.6569 -0.5579 -0.5556 -0.5554 -0.5553 
-0.1728 -0.8595 -0.8603 -0.8605 -0.8605 
0.6728 -0.8959 -0.8987 -0.8991 -0.8992 
0.7304 -0.5702 -0.5671 -0.5667 -0.5666 
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Table 2.7. Third mode shape, subspace iteration 

r(1) r(2) r(3) r(4) r(exact) 
 1.0000 1.0000  1.0000  1.0000 1.0000 
 0.2996 0.4817  0.0717  0.4786 0.4800 
-1.1012 -0.3151 -0.9756 -0.2918 -0.2895 
-0.8873 -0.8098 -0.6245 -0.8300 -0.8333 
 0.9413 -0.6967  0.6950 -0.7237 -0.7271 
 1.1097 -0.0841  0.9430 -0.0568 -0.0539 
-0.3821  0.6528 -0.1826  0.6595 0.6614 
-0.7520  0.6992 -0.8342  0.6914 0.6889 

Table 2.8. Summary of eigenvalues, subspace iteration 

Mode      1      2      3 
�(subspace) 1.5718 12.3880 31.1980 
�(exact) 1.5718 12.3880 31.1972 
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3 Dynamic Analysis 

3.1 Linear Dynamic Analysis 

Linear dynamic analysis is discussed in detail in various texts [e.g. 1–3]. In 
this section some basics of this topic are presented. Consider the equations 
of motion for a system subjected to external dynamic forces 

)()()(+)( tttt RrKrCrM ����� , (3.1)

where M is the mass matrix, C is the damping matrix and K is the stiffness 
matrix. The displacement vector r(t), the velocity vector )(tr� , the accel-
eration vector )(tr��  and the load vector R(t) are functions of the time t. 

For linear analysis, Eq. (3.1) represents a system of linear differential 
equations of second order and, in principle, the solution can be obtained by 
standard procedures for the solution of differential equations with constant 
coefficients. In practical analysis, the common procedures can be divided 
into two methods of solution (the choice of one method or the other is de-
termined by their relative numerical effectiveness): 

� Direct integration, where Eqs. (3.1) are integrated using a numerical 
step-by-step procedure. The term “direct” means that prior to the 
numerical integration, no transformation of the equations into different 
form is carried out. Direct numerical integration is based on the idea that 
the equations are satisfied only at discrete time intervals. In addition, the 
method is based on the assumption that a variation of displacements, 
velocities and accelerations within each time interval has a certain form. 
The form of this assumption determines the accuracy, stability, and cost 
of the solution procedure.  

� Mode superposition, where the equilibrium equations are transformed 
into a form in which the step-by-step solution is less costly. In a 
practical finite element analysis only the lowest modes are considered. 
In general the object is to obtain a good approximation to the actual 
exact response. The finite element analysis approximates the lowest 
exact frequencies best, and little or no accuracy can be expected in 
approximating the higher frequencies and mode shapes. In a mode 
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superposition analysis only a few modes may need to be considered. In 
such cases this procedure can be much more effective than direct 
integration. The mode superposition procedure may be more effective 
also when the integration must be carried out for many time steps. 

3.1.1 Direct Integration 

We assume that the displacement, velocity and acceleration vectors at time 
t=0 are known. The derivatives are considered for a constant time-step t� . 
The cost of a direct integration analysis is directly proportional to the 
number of time steps required for solution. The commonly used effective 
direct integration methods are briefly described in the following. A de-
tailed discussion is given elsewhere [4]. We distinguish between explicit 
integration methods, where the solution for t+�tr is based on using the equi-
librium conditions at time t, and implicit integration methods such as the 
Houbolt [5], Wilson [6] and Newmark [7] methods, where the equilibrium 
conditions at time tt �� are used. 

Explicit Integration Methods 

The equilibrium conditions at time t are  

RrKrCrM tttt ��� ��� . (3.2)

Considering the central-difference method, we assume that the accelera-
tions are approximated by the expression for tt �� , t, tt ��  

� �rrrr tttttt

t
���� ��

�
� 2

1
2

�� . 
(3.3)

The assumed expression for the velocities is 

� �rrr ttttt

t
���� ��

�
�

2
1

� . 
(3.4)

Defining the integration constants a0, …, a3 

20
1
t

a
�

�      
t

a
�

�
2
1

1      02 2aa �      
2

3
1
a

a � , 
(3.5)

then the effective mass matrix, M̂ , the displacement vector, rt�� , and the 
effective load vector at time t, R̂t , are given by 
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CMM 10
ˆ aa �� , (3.6)

 

rrrr ��� 0
3

00 att ������ , (3.7)

 

� � � � rCMrMKRR ttttt aaa ������� 102
ˆ . (3.8) 

Substituting Eqs. (3.3) through (3.8) into Eq. 3.2, we find the displace-

ments at time tt �� , rtt �� , from the equilibrium conditions at time t 

RrM ˆˆ ttt ��� . (3.9)

Integration methods that require a time step smaller than a critical time 
step, such as the central difference method, are conditionally stable. If a 
time step larger than the critical time step is used the integration is unsta-
ble. For example, any errors resulting from round-off in the computer grow 
and make the response calculations worthless in many cases. 

The complete algorithm using the central difference method is as fol-
lows. For the given K, M, C, r0 , r�0 , r��0 , we start with selecting the time 
step t�  smaller than the critical time step 

��� /ncr Tt , (3.10)

where Tn is the smallest period of the system. Then we calculate the inte-
gration constants a0, …, a3 [Eq. (3.5)], the effective mass matrix M̂t  [Eq. 
(3.6)], the displacements rt�� [Eq. (3.7)], and triangularize matrix M̂  by 

TLDLM �ˆ . (3.11)

The solution process involves the following stages for each time step: 

� Calculation of the effective load vector at time t, R̂t  [Eq. (3.8)]. 

� Solving for the displacements at time tt �� , rtt ��  [Eq. (3.9)]. 
� Evaluation of the accelerations at time t [Eq. (3.3)]. 
� Evaluation of the velocities at time t [Eq. (3.4)]. 

It is observed that the integration scheme does not require a factoriza-
tion of the effective stiffness matrix. The method is effective when each 
time step solution can be performed very efficiently, e.g., when a lumped 
diagonal mass matrix can be assumed and damping can be neglected. In 
such cases the system of equations can be solved without factorizing a ma-
trix. Another advantage of the method is that no stiffness matrix of the 



68      3 Dynamic Analysis 

complete assemblage needs to be calculated. The solution can be carried 
out on the element level and relatively little high-speed storage is required. 
Thus, systems of very large order can be solved effectively.  

Example 3.1 

Consider a system with the following equilibrium equations 
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rr�� . 

(a)

The free-vibration periods are T1=4.45, T2=2.8. Assuming �t=T2/10=0.28, 
the object is to evaluate the displacements for 12 time steps and the initial 
values 0rr �� �00  by the central-difference method. Using Eq. (a) we find 

	


�
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�

�
10

0
r�� . 

(b)

The integration constants are [Eq. (3.5)] 

a0 = 12.8     a1 = 1.79     a2 = 25.5     a3 = 0.0392. (c)

The effective mass matrix M̂  and the effective load vector R̂t  at time t 
are given by [Eqs. (3.6), (3.8)] 

�
�

�
�
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�
�

8.120

05.25
M̂ , 

(d)

 

rrR ttt ��
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10ˆ . 
(e)

Table 3.1. Displacements tr as functions of time t, central-difference method 

t �t 2�t 3�t 4�t 5�t 6�t 
tr 
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Solving the resulting equations [Eq. (3.9)], 

Rr ˆ
8.120

05.25 ttt ��
�

�
�
�

� �� , 
(f)

for each time step, we obtain the displacements shown in Table 3.1. 

Implicit Integration Methods 

In these methods we satisfy the equilibrium conditions at time tt �� . The 
methods are unconditionally stable, and their effectiveness derives from 
the fact that to obtain accuracy in the integration the time step t�  can be 
very large. However, the integration methods are implicit and a factoriza-
tion of the effective stiffness matrix is required for the solution. 

In the Houbolt method [5] backward-difference formulas are used. If 
mass and damping effects are neglected (M = 0 and C = 0), the method re-
duces directly to a static analysis. That is, we obtain the static solution for 
time-dependent loads. On the other hand, the central difference method 
could not be used in this case. The Wilson method [6] is an extension of 
the linear acceleration method, in which a linear variation of acceleration 
from time t to time tt ��  is assumed. In this method no special starting 
procedures are needed since displacements, velocities, and accelerations at 
time tt ��  are expressed in terms of the same quantities at time t only. 
The Newmark integration scheme [7] can also be understood to be an ex-
tension of the linear acceleration method. There is a close relationship be-
tween the implementation of this method and the Wilson method.  

Considering the Newmark method, we use the following assumptions 

ttttttt ������� ���� ])1[( rrrr ������ , (3.12)

 

2])2/1[( tt ttttttt ��������� ���� rrrrr ����� , (3.13)

where � and � are parameters determined to obtain integration accuracy 
and stability. For solution at time tt �� , we consider the equations 

RrKrCrM tttttttt �������� ��� ��� . (3.14)

Solving Eq. (3.13) for r��tt ��  in terms of rtt �� and substituting for r��tt ��  
into Eq. (3.12), we can express r��tt ��  and r�tt ��  in terms of rtt ��  only. 
These two relations for r��tt ��  and r�tt ��  are substituted into Eq. (3.14) to 
solve for rtt �� . We then calculate r�tt �� , r��tt ��  by Eqs. (3.12), (3.13). 
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The complete algorithm using the Newmark integration scheme is as 
follows. For the given K, M, C, r0 , r�0 , r��0 , we start with selecting the 
time step t� , and the parameters � � 0.5 and � � 0.25(0.5+����. We calcu-
late the integration constants a0, …, a7, which are functions of t� , �� �� by 

20
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t
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��

�       
t
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�

�1       
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�
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2        1
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3 �
�

�a , 

14 �
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�a       �
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�

 �
�
��

� 2
25
t

a       )1(6 ���� ta      ta ���7 . 

(3.15)

Then we form and triangularize the effective stiffness matrix K̂  by 

CMKK 10
ˆ aa ��� , (3.16)

 

TLDLK �ˆ . (3.17)

For each time step we calculate the effective loads R̂tt �� , the displace-
ments rtt �� , the accelerations r��tt ��  and the velocities r�tt ��  at time t��t 
by the following expressions 

)()(ˆ
541320 rrrCrrrMRR ������

tttttttttt aaaaaa ������� ���� , (3.18)

 

RrLDL ˆttttT ���� � , (3.19)

 

))( 320 rrrrr �����
ttttttt aaa ���� ���� , (3.20)

 

rrrr ������
tttttt aa ���� ��� 76 . (3.21)

Example 3.2 

Consider again the system of example 3.1 with the equilibrium equations 
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The object is to calculate the displacement response of the system by the 
Newmark method for 12 time steps, ��t = 0.28, and the initial values 
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(b)

Assuming �����0.5, ��= 0.25, the integration constants are [Eq. (3.15)] 

a0 = 51.0     a1 = 7.14     a2 = 14.3     a3 = 1.00, 

a4 = 1.00     a5 = 0.00     a6 = 0.14     a7 = 0.14, 

(c)

and the effective stiffness matrix is [Eq. (3.16)] 
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(d)

For each time step we evaluate the effective loads R̂tt ��  [Eq. (3.18)], the 
displacements rtt ��  [Eq. (3.19)], the accelerations r��tt ��  [Eq. (3.20)] and 
the velocities r�tt ��  [Eq. (3.21)] by the following expressions 

)0.13.140.51(
10
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10
0ˆ rrrR ��� ttttt ���
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�
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��� , 
(e)

 

RrLDL ˆttttT ���� � , (f)

 

)0.13.14)(0.51 rrrrr ����� ttttttt ���� ���� , (g) 

 

rrrr ������ tttttt ���� ��� 14.014.0 . (h)

The resulting displacements are summarized in Table 3.2. 

Table 3.2. Displacements tr as functions of time t, Newmark method 

t �t 2�t 3�t 4�t 5�t 6�t 
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3.1.2 Mode Superposition 

In this approach a change of basis from the finite element nodal displace-
ments to the eigenvectors of the generalized eigenproblem is performed 
prior to the time integration. We use the transformation 

)()( tt ZPr � , (3.22)

where P is an n!n transformation matrix and the components of Z are the 
generalized displacements, also called modal coordinates – or normal co-
ordinates. The objective of the transformation is to obtain new system 
stiffness, mass and damping matrices, which have a smaller band width 
than the original system matrices. Substituting Eq. (3.22) into Eq. (3.1) and 
pre-multiplying by PT, we obtain 

)(
~

)(
~

)(
~

+)(
~

tttt RZKZCZM ����� , (3.23)

where 

PMPM T�
~

     PCPC T�
~

     PKPK T�
~

     RPR T�
~

. (3.24)

An effective transformation matrix P is the displacement solutions of the 
free-vibration equations [Eq. (2.3)] 

0rKrM �+�� . (3.25)

The result is the generalized eigenproblem [Eq. (2.8)] 

K� = """"�####� , (3.26)

where """" is the spectral matrix (diagonal matrix of the eigenvalues). Thus, 
for P = � the transformation of Eq. (3.22) becomes 

)()( tt Z�r � . (3.27)

For the complete response, the displacements are obtained by superposi-
tion of the response in each mode 

$
�

�
n

i
ii tZt

1

)()( �r . 
(3.28)

Using the orthogonality properties [Eq. (2.9)], multiplying both sides of 
Eq. (3.28) by M�

T
i  and rearranging, we obtain for Zi 

i
T
i

T
i

i
t

Z
�M�

rM� )(
� . 

(3.29)
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Substituting [Eqs. (2.17), (2.18)] 

I�M� �T
     ��K� �T

, 
(3.30)

into Eqs. (3.24), and substituting the resulting expressions and 

)()( tt T R�T � , (3.31)

into Eq. (3.23), we obtain the equilibrium equations that correspond to the 
modal generalized displacements 

)()()(+)( tttt T TZ�ZC��Z ����� . (3.32)

Solution without Damping 

If damping effects are not considered, Eq. (3.32) becomes 

)()(+)( ttt TZ�Z ��� . (3.33)

Since """" is a diagonal matrix we obtain decoupled equilibrium equations. 
The individual equations are of the form 

)()(+)( tTtZtZ iiii �%�� , (3.34)

where 

)()( ttT T
ii R�� . (3.35)

The initial conditions at time 0 are obtained by [Eqs. (3.29), (3.30)] 

rM�Z 00 T�      rM�Z �� 00 T� . 
(3.36)

In summary, the response analysis by mode superposition involves the 
following steps: 

� Solution of the eigenproblem [Eq. (3.26)]. 
� Solution of the decoupled equations of motion [Eq. (3.34)]. 
� Superposition of the response [Eq. (3.28)]. 

Example 3.3 

Consider again the system of example 3.1 with the following given data 
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The object is to calculate the displacement response of the system using 
mode superposition and the Newmark method with time step ��t = 0.28 for 
the time integration. The generalized eigenproblem is 
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, 
(b)

and the two solutions obtained are 
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Using Eq. (3.31) we find 
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(d)

and the decoupled equilibrium equations are given by [Eq. (3.33)] 

&	

&


�

&�

&


�

�
��

�

�
�
�

�

3/210
3/10

)(
5

2
+)( tt ZZ�� . 

(e) 

Solving the decoupled equations by the Newmark method we obtain the 
results shown in Table 3.3. Substituting these results in [see Eq. (3.27)] 

Table 3.3. Generalized displacements Z(t) as functions of time t 

t �t ��t '�t (�t )�t *�t 
Z(t) 
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3/23/1
3/22/13/1

)( tt Zr
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� , 

(f)

we obtain the displacement response as shown in Table 3.2 (example 3.2). 
As expected, the response is the same as the response obtained in example 
3.2 when the Newmark method is used in direct integration. 

Consideration of Damping 

When damping is considered, the equations of motion for a freely vibrat-
ing system are 

0rKrCrM �++ ��� . (3.37)

Expressing the displacements in terms of the natural modes of the system 
without damping we obtain [Eqs. (3.27), (3.28)] 

Z��r ��$
�

n

i
ii Z

1
. 

(3.38)

Substituting Eq. (3.38) into Eq. (3.37) and pre-multiplying by T
� gives 

0ZKZCZM ��
~~

+
~ ��� , (3.39)

where 

�M�M T�
~

     �C�C T�
~

     �K�K T�
~

. (3.40)

We still would like to deal with a decoupled system in Eqs. (3.39). It has 
been noted that matrices M~  and K~  are diagonal [Eqs. (3.30)]. If matrix 

C~  is also diagonal, Eq. (3.39) represents uncoupled differential equations 
in the modal coordinates Zi.  

We may distinguish between classical damping and non-classical 
damping. The system is said to have classical damping when classical mo-
dal analysis is applicable. Such systems possess the same natural modes as 
those of the un-damped system. The dynamic response of linear systems 
with classical damping can be determined by classical modal analysis. 
Thus the response in each natural vibration mode can be computed inde-
pendently of the others, and the modal responses can be combined to de-
termine the total response. Systems with damping such that matrix C~  is 
non-diagonal are said to have non-classical damping. These systems are 
not amenable to classical modal analysis, and they do not possess the same 
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natural modes as the un-damped system. Classical modal analysis is not 
applicable to a structure consisting of subsystems with very different levels 
of damping. For such systems the equations of motion cannot be uncou-
pled by transforming to modal coordinates of the system without damping. 
Such systems can be analyzed by transforming the equations of motion to 
the eigenvectors of the complex problem, or by solution of the coupled 
system of differential equations. Classical modal analysis is also not appli-
cable to inelastic systems. 

The mode superposition analysis is particularly effective in cases where 
damping is proportional, that is, the eigenvectors are also C-orthogonal  

ijiiij
T
i M �01� 2�C� , (3.41)

where 1i is the circular frequency, ij�  is the Kronecker delta and i0  is a 

modal damping parameter, called the damping ratio. Denoting 

i
T
iiC �C�� , 

(3.42)

substituting Eq. (3.42) into Eq. (3.41) and rearranging, we obtain for i = j 

ii

i
i M

C
1

�0
2

. 
(3.43)

The damping ratio i0 is usually not computed by Eq. (3.43). It is estimated 
using experimental data for structures similar to the one being analyzed. 

Each of the differential equations (3.39) in modal coordinates is 

0+ �� iiiiii ZKZCZM ��� , (3.44)

where Mi and Ki are defined by Eqs. (2.11). Substituting Eq. (3.41), 
%�12  and iii MK %�  [Eq. (2.12)] into Eq. (3.44), and dividing the re-

sulting equation by Mi, we obtain 

02+ 2 �1�01 iiiiii ZZZ ��� . (3.45)

Equation (3.45) can be solved for Zi(t) by methods suitable for free vibra-
tion problems of a single degree of freedom. 

For the case of proportional damping under consideration, the equations 
of motion are reduced to [see Eqs. (3.32), (3.45)] 

)()()(2+)( 2 tTtZtZtZ iiiiiii �1�01 ��� , (3.46)

where )()( ttT T
ii R�� [Eq. (3.35)]. The decoupled equation (3.46) can be 

expressed in matrix form as 
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TZ�ZCZI ��� 2���
d , (3.47)

where )(tT R�T �  [Eq. (3.31)] and the identity matrix �M�I T�  is the 
mass matrix in normalized coordinates [Eq. (3.30)]. The damping matrix 

�C�C T
d �  and the stiffness matrix �K��

T�2  in these coordinates 
are diagonal low-order matrices, given by 
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(3.49)

In general, the damping matrix cannot be constructed from element 
damping matrices, such as the mass and stiffness matrices. Introduction of 
the matrix is often based on approximation of the overall energy dissipa-
tion during the system response. 

The solution of Eq. (3.46) can be accomplished by several methods. For 
certain loadings which can be expressed as an analytic function, exact 
mathematical solutions are possible. Otherwise, one of the following 
methods is often used: 

� Direct step-by-step solution, using a numerical finite difference method. 
� Duhamel integral, which is numerically integrated. 
� Transformation to the frequency domain. 
� Piecewise exact method, using a series of straight lines for representing 

the loading between unequal time intervals. 
� Response spectra analysis, where the load is specified as a response 

spectra. 

In summary, computation of the dynamic response by modal analysis in-
volves the following steps: 

� Determine the eigenpairs %i, i� by solving the eigenproblem [Eq. (3.26)] 

K� = """"�####� . (3.50)
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� Compute the modal coordinates Zi(t). If damping effects are not 
considered, solve the individual decoupled equations [Eq. (3.34)] 

)()(+)( tTtZtZ iiii �%�� . (3.51)

In case of proportional damping, solve the decoupled equations [Eq. 
(3.46)] 

)()()(2+)( 2 tTtZtZtZ iiiiiii �1�01 ��� . (3.52)

� Compute the nodal displacements by [Eq. (3.28)] 

$
�

�
n

i
ii tZt

1
)()( �r . 

(3.53)

3.1.3 Special Analysis Procedures 

Modal Response Contributions 

Consider a common case where the loadings are given in the form 

)()( tPt SR � , (3.54)

and the spatial distribution S can be expressed as  

$$
��

2��
n

i
ii

n

i
i

11
M�SS , 

(3.55)

where Si is the contribution of the ith mode to S. The factor i2  is called a 

modal participation factor. Multiplying both sides of Eq (3.55) by T
i� , as-

suming 1�i
T
i �M�  and rearranging, we obtain for i2  

S�
T
ii �2 . (3.56)

Substituting the contribution, Ti(t), of the ith mode, 

)()()()( tPtPttT ii
T
ii

T
ii 2��� S�R� , (3.57)

into Eq. (3.46), we obtain 

)()()(2+)( 2 tPtZtZtZ iiiiiii 2�1�01 ��� . (3.58)
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The solution Zi(t) can expressed in terms of a single degree of freedom 
system with properties ),( ii 01  of the ith mode of the original system ex-
cited by the force P(t). The response of this system is given by  

)()()(2+)( 2 tPtDtDtD iiiiii �1�01 ��� , (3.59)

where Di denotes the solution of the single degree of freedom system. 
Comparing Eqs. (3.58) and (3.59), we obtain 

)()( tDtZ iii 2� . (3.60)

Thus, once Di is known, Zi is readily available.  
The contribution ri(t) of the ith mode to the nodal displacements r(t) 

[Eqs. (3.53), (3.60)] is given by  

)()()( tDtZt iiiiii ��r 2�� . (3.61)

Substituting K i� = 2
i1 #### i�  and Eqs. (3.38), (3.55), (3.61) into the ex-

pression Rsti(t) = K ri(t) of the equivalent static forces associated with the 
ith mode, we obtain 

)()()()( 22 tDtZtt iiiiiiisti 1�1�� SM�rKR . (3.62)

Thus, the total response r(t) can be expressed now as the sum of the con-
tributions ri(t) of the modes by 
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��

1��
n

i
ii

st
i

n

i
i tDrtrtr

1

2

1
)()()( . 

(3.63)

where st
ir  is the static value of the response due to the external forces Si. 

In summary, the contribution ri(t) of the ith mode to the dynamic re-
sponse is obtained by multiplying the results of two analyses: 

� Static analysis of the structure subjected to external forces Si. 
� Dynamic analysis of the ith mode single degree of freedom system 

excited by the force P(t). 

Thus, modal analysis requires static analysis for n sets of external forces 
Si, and dynamic analysis of n different single degree of freedom systems. 
The dynamic response is obtained by combining the effect of the modes. 

Define the dynamic response factor for the ith mode as the ratio of dy-
namic amplitude to corresponding static amplitude. This factor can help to 
identify the modes that may contribute significantly to the response. Using 
this definition, the two methods of static correction and mode acceleration 
superposition are described in the following subsections. 
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Static Correction Method 

The static correction method is effective when many modes must be in-
cluded to represent the distribution S of the applied forces, but the exciting 
force P(t) is such that the dynamic response factor for only a few lower 
modes is significantly larger than unity. That is, for some of the higher 
modes the dynamic response factor may be only slightly larger than unity. 
This is the case when the higher-mode period is much shorter than the pe-
riod of the harmonic excitation. The response in such a higher mode could 
be determined by static analysis. 

The modal contributions to the response can be expressed as 

$$
���

��
n

ndi
i

nd

i
i trtrtr

11
)()()( , 

(3.64)

where nd is the number of modes with natural periods such that the dy-
namic effects are significant. Defining stst

ii rrr /� and substituting into Eq. 
(3.63), we obtain the following expression for the dynamic response ri(t) 

)()( 2 tDrrtr iii
st

i 1� . (3.65)

A static solution of Eq. (3.59) gives Di(t) for modes nd+1 to n. Dropping 
the velocity )(tDi

�  and the acceleration , we obtain  

)()(2 tPtDii �1 . (3.66)

Substituting Eqs. (3.65) and (3.66) into Eq. (3.64) gives 
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���
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n

ndi
i

st
nd

i
iii

st rtPrtDrrtr
11

2 )()()( . 
(3.67)

Thus, Eq. (3.59) needs to be solved by dynamic analysis procedures only 
for the first nd modes. The second term in Eq. (3.67) is the static response 
solution for the higher modes nd+1 to n, which may be considered as the 
static correction to the dynamic response solution given by the first term. 
Equation (3.67) can be expressed in the following final form 

� ��
�

�
�
�

�
�1�� $

�

nd

i
iii

st tPtDrtPrtr
1

2 )()()()( . 
(3.68)
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Mode Acceleration Superposition Method 

The mode acceleration superposition method can provide a similar effect 
as the static correction method. Using Eq. (3.65), the total response is 

$
�

1�
n

i
iii

st tDrrtr
1

2 )()( . 
(3.69)

Rearranging Eq. (3.59) gives 

)(2)()()(2 tDtDtPtD iiiiii
��� 01���1 . (3.70)

Substituting Eq. (3.70) into Eq. (3.69) and noting that the sum of all ir  
equals unity, we obtain 
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(3.71)

This expression can be interpreted as the static solution given by the first 
term on the right side, modified by the second term to obtain the dynamic 
response of the system. If the response in all modes higher than the first nd 
modes is essentially static, the summation can be truncated accordingly. 

The mode acceleration superposition method is equivalent to the static 
correction method. Thus, the two methods should provide identical results. 
The static correction method is usually easier to implement, because it re-
quires simple modification of classical modal analysis (or the classical 
mode displacement superposition method).  

3.2 Reduced Basis 

In many structural analysis problems, a large system of simultaneous equa-
tions must be solved repeatedly in order to evaluate the response of the 
structure. This process involves much computational effort, particularly for 
large-scale, nonlinear and time-dependent (dynamic) problems.  

The basic idea of the reduced-basis approach is that of transforming a 
problem with a large number of Degrees Of Freedom (DOF) into one with 
a much smaller number of DOF. The response of the system, which was 
originally described by a large number of DOF, is approximated by a lin-
ear combination of a few pre-selected basis vectors. The problem is then 
stated in terms of a small number of unknown coefficients of the basis vec-
tors. The resulting analysis model is more efficient, since only the corre-
sponding small system of equations must be solved. This approach is most 
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effective in cases where highly accurate approximations can be achieved 
by solving the reduced system of equations. 

The solution process involves the following two main stages: 

� Generation of basis vectors for approximating the response. 
� Determination of the unknown coefficients of the basis vectors, using a 

variational technique. 

Reduced-basis has been used in various problems and applications [8], 
including the unified approach presented in this text. Formulations of static 
and dynamic analysis are described in Sects. 3.2.1 and 3.2.2, respectively. 

3.2.1 Static Analysis 

We assume that the displacement vector r can be approximated by a linear 
combination of pre-selected s linearly independent basis vectors, also 
called global approximation vectors, r1, r2, ..., rs  

r = y1r1 + y2r2 + ... + ysrs = rB y, (3.72)

where s is much smaller than the number of degrees of freedom n, rB is the 
n!s matrix of the basis vectors and y is a vector of unknown coefficients 

rB = [r1, r 2, ... , rs]        yT = {y1, y2, ... , ys}. (3.73)

The space spanned by the global approximation vectors (matrix rB), is usu-
ally referred to as the reduced basis subspace. 

The justification for using this approach is that the large number of de-
grees of freedom describing the response of the system is often dictated by 
such considerations as complex topology or numerous changes in the sys-
tem properties, rather than by the complexity of the response. The power 
of the reduced basis method derives from the fact that for many systems of 
practical interest, the transformation of Eq. (3.72) can provide highly accu-
rate approximations of r, even when s is very much smaller than n. 

The equilibrium equations are now approximated by a smaller system of 
equations in the new unknowns y. Substituting Eq. (3.72) into Eq. (1.2) 

and pre-multiplying the resultant equation by T
Br  gives the s!s system 

RryrKr T
BB

T
B � . (3.74)

Introducing the notation 

B
T
BR rKrK �         RrR T

BR � , (3.75)

and substituting Eqs. (3.75) into Eq. (3.74), we obtain 
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KR y = RR. (3.76)

The s!s matrix KR is full but is symmetric and much smaller in size than 
the n!n matrix K of the original system. That is, rather than computing the 
exact solution by solving the large n!n system in the original equations, 
we first solve the smaller s!s system in Eq. (3.76) for y, and then evaluate 
the approximate displacements r for the computed y by Eq. (3.72). 

The reduced set of Eqs. (3.76) can be obtained from the total potential 
energy expression  

U = 1/2 rT K r – rT R. (3.77)

Substituting Eq. (3.72) into Eq. (3.77) gives 

U = yT T
Br (1/2 K rB y – R). (3.78)

Differentiating Eq. (3.78) with respect to y, setting the result equal to zero 
and using the symmetry of K, we obtain the following conditions for 
minimum potential energy 

T
Br K rB y – T

Br R = 0. (3.79)

These conditions are equivalent to Eq. (3.76) [see Eq. (3.75)]. 
The effectiveness of the reduced-basis approach depends, to a great ex-

tent, on the appropriate choice of the basis vectors r1, r2, ..., rs, which span 
the reduced basis subspace. Proper selection of the basis vectors is perhaps 
the most important factor affecting the successful application of the ap-
proach. Displacement vectors of previously analyzed designs can be used, 
but it should be emphasized that an ad hoc or intuitive choice of such vec-
tors may not lead to satisfactory approximations. In addition, calculation of 
the basis vectors requires several exact analyses of the structure for the ba-
sis design points, which might involve extensive computational effort.  

An ideal set of basis vectors will provide accurate results with a small 
computational effort. Specifically, the following criteria must be satisfied 
in arriving at the basis vectors to be used [9]: 

� Linear independence. 
� Low computational expense in their generation, and simplicity of 

automatic selection of their number. 
� Good approximation properties, in the sense of high accuracy of the 

solution obtained by using these vectors. 
� Simplicity of obtaining the system response characteristics using these 

vectors. 
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The first criterion is necessary for convergence of the approximation 
process and the latter three criteria govern the computational efficiency of 
the method and its effectiveness. The proper selection of the basis vectors 
depends on the system response characteristics being approximated, as 
well as the particular application. 

3.2.2 Dynamic Analysis 

From the viewpoint of computational effort, the reduction of degrees of 
freedom is more important in dynamic problems than in static problems, 
because the solution must be performed successively at many different 
times to generate the time history of the response. The discretized model of 
a complicated system may have numerous degrees of freedom. Therefore, 
it is customary in dynamic analysis to reduce the equations of motion to a 
much smaller number before the dynamic response is calculated. 

The earliest applications of these methods have been to eigenvalue prob-
lems, and date back to the early 1960's. At that time, the calculation of the 
eigenvalues and eigenvectors of large systems by the available algorithms 
required much computational effort. The earliest reduction method applied 
to linear dynamic problems is the classical modal superposition technique, 
in which the global approximation vectors are selected to be linear vibra-
tion modes. It has been noted that in the analysis of linear structures the re-
sponse is often expressed in terms of the un-damped free vibration mode 
shapes, using only the lower modes. The main analytical problem then be-
comes the evaluation of the mode shapes, and the problem of reducing the 
number of degrees of freedom is transferred to this phase of the analysis. 

The different reduced-basis methods for eigenproblems can be classified 
into two general categories according to the selection of the basis vectors: 

� Single step methods, where both the basis vectors and the reduced 
equations are generated at a single step and then used to evaluate the 
approximate eigenvectors and eigenvalues. Examples for this class of 
methods include Rayleigh-Ritz reduction (projection method), static 
condensation, and dynamic substructuring or component mode 
synthesis techniques. 

� Multi-step methods, or generalized reduction methods, in which the 
basis vectors and the reduced equations are modified in successive 
iterations. In some of these methods the initial matrix consists of very 
simple vectors. Examples of these methods include the Lanczos method 
and subspace iteration. 
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Two of the most widely used modal methods for transient structural 
analysis are the mode-displacement method and the mode-acceleration 
method. In these two methods the dynamic response is approximated by a 
linear combination of modal displacements and modal accelerations, re-
spectively. To improve the convergence rate of modal methods, a higher-
order modal method can be used. In an effort to avoid the cost associated 
with calculating the modes, other choices have been proposed for the re-
duced-basis subspace. These include Taylor subspace, in which the global 
approximation vectors are the various-order time derivatives of the re-
sponse, Lagrange subspace, in which the response vectors at various times 
are selected as the approximation vectors, Runge-Kutta subspace and Kry-
lov subspace. A comprehensive discussion and references on these and 
other methods are given elsewhere [8]. 

Considering again the equations of motion [Eq. (3.1)] with no damping 
and ignoring the notation of the time variable (t) we have 

RrKrM �+�� . (3.80)

A standard model reduction process for the system of Eqs. (3.80) can be 
described as the simple coordinate transformation of Eq. (3.72). Substitut-
ing the latter equation into Eq. (3.80) and pre-multiplying the resultant 
equation by T

Br , we obtain 

RRR RyKyM �+�� , (3.81)

where the reduced mass matrix, stiffness matrix and load vector are de-
fined as 

B
T
BR rMrM �        B

T
BR rKrK �        RrR T

BR � . (3.82)

The transformation matrix rB could be a modal matrix containing normal 
modes of the system. The model reduction process is then just the standard 
mode-displacement method, and Eq. (3.81) is a set of uncoupled linear or-
dinary differential equations. More generally, rB could contain general Ritz 
vectors, as described in Sect. 2.6. Both matrices MR and KR are full if the 
vectors are not orthogonal. 

Rayleigh-Ritz Analysis 

Consider again the equations of motion for a system subjected to forces 
R(t) = S P(t) [Eq. 3.54)] 

)(tPSrKrCrM ��� ��� . (3.83)
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In the Rayleigh-Ritz method, the displacements are expressed as a linear 
combination of several Ritz vectors r1, r2, …, rs 

r(t) = y1(t) r1 + y2(t) r2 + ... + ys(t)rs = rB y(t), (3.84)

where y(t) is the vector of the generalized Ritz coordinates yi(t) and rB is 
the n!s matrix of the Ritz basis vectors ri. Substituting the Ritz transforma-
tion of Eq. (3.84) into Eq. (3.83) and pre-multiplying by T

Br , we obtain 

)(
~~~

+
~

tPTyKyCyM ����� , (3.85)

where 

B
T
B MrrM�

~
     B

T
B CrrC �

~
     B

T
B KrrK�

~
     SrT T

B�
~

. (3.86)

Equation (3.85) is a system of s differential equations in the s generalized 
coordinates. It is observed that Eq. (3.85) in generalized coordinates is 
similar to Eq. (3.47) in modal coordinates. However, both sets of equations 
differ in an important sense. The Ritz vectors are used for transformation 
in one case, whereas the natural vibration modes are used in the other case. 
In general, the Ritz vectors are different from the natural modes, therefore 
the matrices KCM ~

,
~

,
~

 are not diagonal (whereas matrices I, Cd, 3333
2 are di-

agonal).  
In summary, the Ritz transformation of Eq. (3.84) has made it possible 

to reduce the original set of n equations in the nodal displacements r to a 
smaller set of s equations in the generalized coordinates y(t). 

3.3 Nonlinear Dynamic Analysis 

3.3.1 Implicit Integration 

The implicit time integration schemes discussed in Sect. 3.1.1 for linear 
dynamic analysis can also be used in nonlinear dynamic analysis. In this 
section we consider for illustrative purpose the trapezoidal rule, which is 
Newmark’s method with ����/4) and ����/4�)��and the modified Newton-
Raphson iteration. Neglecting the effect of damping, the equilibrium equa-
tions at time t+�t are expressed as 

)1(
0

)()( ������� ���� k
I

ttttktktt RRrKrM �� , (3.87)

where tK is the stiffness matrix at some previous time, superscript k de-
notes the iteration cycle and R0, RI are the internal and external force vec-
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tors, respectively. The vector of displacements due to the out-of-balance 
forces, �r(k), is defined as 

�r(k) = t+�tr(k) – t+�tr(k-1). (3.88)

Using the trapezoidal rule of time integration, we employ the assumptions 

� �rrrr �� tttttt t ���� �
�

��
2

, 
(3.89)
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. 
(3.90)

Using Eqs. (3.88) through (3.90), we obtain 

� � rrrrrr ����� ttktkttktt
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(3.91)

Substituting Eq. (3.91) into Eq. (3.87), we have 

� � ,
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(3.92) 

where 

MKK 2

4ˆ
t

tt

�
�� . 

(3.93)

It is observed that the iterative equations in nonlinear dynamic analysis us-
ing implicit integration are of the same form as the equations in nonlinear 
static analysis, except that both the coefficient matrix and the force vector 
contain contributions from the inertia of the system. The dynamic response 
is usually smoother than the static response, due to the effect of inertia 
forces. Therefore, convergence of the iteration is expected to be more rapid 
than in static analysis. The convergence can be improved by decreasing �t. 

3.3.2 Mode Superposition 

Formulation of the Incremental Equations 

Consider the equations of motion [Eq. (3.1)] at time t for a system sub-
jected to dynamic forces 

RFrCrM t
R

ttt ����� + , (3.94)
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where superscript t denotes the time and tFR is the resisting (elastic or ine-
lastic) force vector. Writing the equations at time t + �t 

RFrCrM tt
R

tttttt �������� ����� + , (3.95)

and subtracting Eq. (3.94) from Eq. (3.95), we obtain the incremental 
equations 

RFrCrM ������� t
R

ttt ��� , (3.96)

where 

rrrrrrrrr ��������� tttttttttttt ��������� ������ , 

RRRFFF tttt
R

t
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tt
R

t ������ ���� . 

(3.97) 

Using the first-order Taylor series approximations of the resisting force we 
obtain 

�r
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FFF�F ts
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tt
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5
5

6�� �� . 
(3.98)

The tangent stiffness matrix at time t, tK, is given by 

r
FK

5
5

� R
t

t . 
(3.99)

Thus, Eq. (3.98) can be expressed as 

�rK�F tt
R

t � . (3.100)

Substituting Eq. (3.100) into Eq. (3.96) yields 

R�rKrCrM ������ ttttt ��� . (3.101)

Assuming that the displacements tr are known and solving Eq. (3.101) for 
t�r, the displacements t+�tr are calculated by [see Eq. (3.97)] 

t+�tr = tr + t�r. (3.102)

Simplified Solution Procedure 

In linear dynamic analysis, the mode superposition approach can be more 
effective than direct integration in cases where only the lowest mode 
shapes may be considered and the integration must be carried out for many 
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time steps. In nonlinear dynamic analysis, the structure properties change 
during the solution process and as a result the eigenpairs also change. A 
major difficulty in the solution process is the need to repeat the eigenprob-
lem solution many times. The complete mode superposition analysis of 
nonlinear dynamic response is generally effective only when the solution 
can be obtained without updating the stiffness matrix too frequently, and 
only a few mode shapes are considered. 

Assume the transformation from the nodal displacements to the general-
ized displacements 

Z�rZ�rZ�r ������ ��������� ttttttttt , (3.103)

where t�Z is a vector of generalized displacements and �t  is the matrix of 

eigenvectors at time t. The eigenpairs i
t
� , t%i are obtained by solving the 

eigenproblem 

tK i
t
� = t%i #### i

t
� . (3.104)

In the presentation that follows we assume proportional damping such 
that classical modal analysis can be used. Considering p mode shapes, 
where p << n (n is the number of degrees of freedom), substituting Eqs. 
(3.103) into Eq. (3.101) and pre-multiplying the resulting equations by 

Tt
� , we obtain the decoupled equations of motion 

R�Z�ZCZI ������� tTtttt
d

tt 2��� . (3.105)

In these equations the identity matrix �M�I tTt�  is the mass matrix in 

normalized coordinates. The damping matrix �C�C tTt
d �  and the 

stiffness matrix �K��
ttTtt �2  in these coordinates are diagonal low-

order matrices, dependent on time and given by [see Eqs. (3.48), (3.49)] 
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where i
t 1  are the free vibration frequencies )( 2

i
t

i
t %�1  and i0  are the 

damping ratios, usually estimated by experimental data.  
To illustrate a simplified solution procedure, assume material nonlinear-

ity and approximate bi-linear relations. Starting with initial analysis at time 
t = 0, the stiffness matrix K0 is first assembled and factorized. We find the 
p dominant eigenpairs i0� , %0i from the initial eigenproblem 

K0 i0� = %0i #### i0� . (3.108)

The generalized displacements �Z, velocities Z�� and accelerations Z���  
are obtained by solving decoupled equations Eq. (3.105). The Newmark 
time integration method, for example, can be used for this purpose. The in-
cremental displacements, velocities and accelerations ),,( rrr ��� ���  are 
then determined by Eq. (3.103), and the element forces are calculated and 
checked for material nonlinearity. If any element is in the nonlinear region, 
we reduce the time steps, to find the transition point of the material proper-
ties. For small steps the out-of-balance forces are also small. If the force in 
any element has reached the elastic limit point we use a smaller time step. 
When the force approaches the unloading region we use a similar proce-
dure and find the point where the velocity (or change in forces) is zero.  

The following steps are repeated for each time interval. 

� Assemble the updated stiffness matrix tK and solve the updated 
eigenproblem [Eq. (3.104)] to find the p eigenpairs t%i, i

t
�  (i = 1, ..., p). 

Find the diagonal low-order matrices tCd, 2
�

t  [Eqs. (3.106), (3.107)].  

� Introduce and solve the p decoupled equations in the generalized 
coordinates [Eq. (3.105)], evaluate t�Z, Z��t , Z���t , and calculate t�r, 

r��t , r���t by Eq. (3.103). Evaluate t+�tr, r�tt �� , r��tt ��  by [see Eq. (3.97)] 

rrrrrrrrr ��������� ��������� ������ tttttttttttt . (3.109)

� Evaluate the member forces and check the properties of the members. If 
the stiffness coefficients of all members do not change, then start the 
calculations for the next time interval from the previous step with the 
new initial displacements, velocities and accelerations. If the stiffness 
coefficients of any member change (the force reached the elastic limit 
point or the unloading point), reduce the time step size �t and repeat the 
calculations from the first step. 

During the solution process it is necessary to update the generalized co-
ordinates Z. Using the transformation 
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Z�r ttt � , (3.110)

pre-multiplying Eq. (3.110) by M�
Tt  and noting that I�M� �tTt , we 

obtain the required expression 

rM�Z tTtt � . (3.111)
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4 Reanalysis of Structures 

Repeated analysis, or reanalysis, is needed in various problems of struc-
tural analysis, design and optimization. In general, the structural response 
cannot be expressed explicitly in terms of the structure properties, and 
structural analysis involves solution of a set of simultaneous equations. 
Reanalysis methods are intended to analyze efficiently structures that are 
modified due to various changes in their properties. The object is to evalu-
ate the structural response (e.g. displacements, forces and stresses) for such 
changes without solving the complete set of modified simultaneous equa-
tions. The solution procedures usually use the response of the original 
structure. Some common problems, where multiple repeated analyses are 
needed, are described in the following. 

� In structural optimization the solution is iterative and consists of 
repeated analyses followed by redesign steps. The high computational 
cost involved in repeated analyses of large-scale problems is one of the 
main obstacles in the solution process. In many problems the analysis 
part will require most of the computational effort, therefore only 
methods that do not involve numerous time-consuming implicit analyses 
might prove useful. Reanalysis methods, intended to reduce the 
computational cost, have been motivated by some typical difficulties 
involved in the solution process. The number of design variables is 
usually large, and various failure modes under each of several load 
conditions are often considered. The constraints are implicit functions of 
the design variables, and evaluation of the constraint values for any 
assumed design requires the solution of a set of simultaneous analysis 
equations. 

� In structural damage analysis it is necessary to analyze the structure for 
various changes due to deterioration, poor maintenance, damage, or 
accidents. In general many hypothetical damage scenarios, describing 
various types of damage, should be considered. These include partial or 
complete damage in various elements of the structure and changes in the 
support conditions. Numerous analyses are required to assess the 
adequacy of redundancy and to evaluate various hypothetical damage 
scenarios for different types of damage. 



94      4 Reanalysis of Structures 

� In the design of the construction stages of complex structures, it might 
be necessary to analyze repeatedly structures that are modified during 
the construction. The modified structures are subjected to different 
loading conditions. The changes in the structure may include additional 
elements and different support conditions.  

� Nonlinear analysis of structures is usually carried out in an iterative 
process. The solution can be performed by different methods but, in 
general, a set of updated linear equations must be solved repeatedly. 
Similarly, many of the vibration (or eigenproblem) solution techniques 
are based on matrix iteration methods. To calculate the mode shapes it is 
necessary to solve repeatedly a set of updated analysis equations.  

� Reanalysis methods might prove useful in other applications such as 
probabilistic analysis, controlled structures, smart structures, adaptive 
structures, and for conceptual design problems. 

One basic question that may arise is whether we really need efficient re-
analysis methods, in view of the significant increase in computer process-
ing power, memory and storage space. In this regard, it has been noted [1] 
that the rapid developments in computer technology have not eliminated 
computational cost and time constraints on the use of structural optimiza-
tion for design. This is due to the constant increase in the required fidelity, 
and hence complexity, of analysis models. It seems that analysis models of 
acceptable accuracy have required an overnight run throughout the last 
decades.  

The two main components of complexity of the problem are related to 
the complexity of the analysis model and the analysis procedure. The 
model complexity is a function of various parameters such as the number 
of degrees of freedom of the finite element model and the topology of the 
structure (which determines the bandwidth of the stiffness matrix). In 
terms of analysis complexity, linear elastic analysis is the simplest. More 
complex analysis such as non-linear elastic or dynamic response use lin-
earization algorithms that require linear analysis as a repeated step. His-
tory-dependent nonlinear analysis and nonlinear dynamic analysis are cur-
rently the extremes of analysis complexity. These types of analysis may 
require numerous linear analysis equivalents. The analysis complexity can 
be considered as the number of matrix inversions performed. Reanalysis 
methods are intended to overcome the difficulties involved in the above 
complexities. 
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4.1 Design Variables 

A structural system can be described by a set of quantities, some of which 
are viewed as variables during the design process. Those quantities defin-
ing a structural system that are fixed during the design are called pre-
assigned parameters. Those quantities that are not pre-assigned are called 
design variables. The pre-assigned parameters together with the design 
variables completely describe a design. Quantities are designated as pre-
assigned parameters for a variety of reasons. It may be that the designer is 
not free to choose certain parameters, or it may be known from experience 
that a particular value of the parameter produces good results. From a 
physical point of view, the design variables that are varied during the de-
sign process may represent: 

� the mechanical or physical properties of the material; 
� the topology of the structure, i.e., the pattern of connection of members 

(number and orientation of elements and joints); 
� the geometry or the shape of the structure (e.g. coordinates of joints);  
� the cross-sectional dimensions or the sizes of elements. 

From a mathematical point of view, it is important to distinguish be-
tween continuous and discrete design variables. In cases of discrete vari-
ables with a large number of values uniformly distributed over a given in-
terval, use of a continuous variable representation is often satisfactory, 
followed by selection of the nearest available discrete value. When a 
strictly discrete design variable is handled in this way, it is categorized as 
pseudo-discrete. However, it should be recognized that situations arise 
when it is essential to employ discrete or integer variables. An example for 
an integer variable is the number of elements in the structure. 

Material selection presents a special problem with conventional materi-
als, as they have discrete properties. That is, a choice is to be made from a 
discrete set of variables. Application of high-performance composite mate-
rials in structural components has encouraged further consideration of ma-
terial properties as design variables. For example, in fiber composites the 
volume fraction of fibers or the modulus of elasticity in the longitudinal di-
rection of carbon fibers could be considered as design variables.  

Topological optimization is perhaps the most challenging class of prob-
lems in structural optimization because there are numerous possible to-
pologies, which are difficult to classify and quantify. At the same time, 
topological optimization is of considerable importance because it leads to 
significant material savings. The topology of the structure can be opti-
mized automatically in many cases when elements are allowed to reach 
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zero size. This permits elimination of some uneconomical elements during 
the optimization process. In other cases, however, it may be necessary to 
represent some design variables as integer variables and to declare the ex-
istence or absence of a structural element. An example of an integer topo-
logical variable is a truss member joining two nodes, which is limited to 
the values 1 (the member exists), or 0 (the member is absent). Other exam-
ples of integer topological variables include the number of spans in a 
bridge, the number of columns supporting a roof system, or the number of 
elements in a grillage system. 

Geometrical variables may represent, for example, the coordinates of 
joints in a truss or in a frame. Other examples for this class of variable in-
clude the location of supports in a bridge, the length of spans in a continu-
ous beam, and the height of a shell structure. In general, the geometry of 
the structure is represented by continuous variables. 

Cross-sectional dimensions are the simplest design variables. The cross-
sectional areas of truss members, the moments of inertia of flexural mem-
bers, or the thickness of a plate are some examples of this class of design 
variables. In certain cases a single design variable is adequate to describe 
the cross section, but a more detailed design with several design variables 
for each cross section may be necessary. For example, if the axial buckling 
of members is considered, the cross-sectional dimensions which define the 
area and the moment of inertia can be taken as design variables. In practi-
cal design, cross-sectional variables may be restricted to some discrete 
values, e.g. the areas of commercial steel section shapes. 

It should be noted that a change in the cross sections or in the geometry 
might affect the topology. For example, the topology will be changed due 
to zero areas during sizing modifications or the coalescence of joints dur-
ing geometrical modifications. In addition, the geometry might be affected 
by topological changes due to elimination of members and joints. 

Changes in the design often affect only the numerical values of the coef-
ficients of the analysis equations. However, in some cases of topological 
changes, members and joints are deleted or added and the structural model 
is allowed to vary during the design process. We may distinguish between 
the following cases of topological changes, considered later in this text: 

� Deletion and addition of members, where the number of Degrees of 
Freedom (DOF) is unchanged (Fig. 4.1a). In this case the number of 
analysis equations is also unchanged and only the numerical values of 
the coefficients of the equations are modified. 

� Deletion and addition of members, and deletion of some joints, where 
the number of DOF is decreased (Fig. 4.1b). In this case it is necessary 



4.2 Formulation of Static Reanalysis      97 

to change the analysis model such that the deleted DOF are not included 
in the modified analysis equations.  

� Deletion and addition of members, and addition of some joints, where 
the number of DOF is increased (Fig. 4.1c). In this case it is necessary to 
augment the analysis model such that the new degrees of freedom are 
included in the modified analysis equations. 
 

(a) (b) (c)

Initial design

Modified design

 

Fig. 4.1. Types of topological changes 

The resulting modified structures may be classified as follows:  

� Stable structures, where the modified response can be evaluated by 
solving the modified equilibrium equations. 

� Conditionally Unstable structures, where the forces in the structure 
satisfy equilibrium conditions only for some specific loadings. That is, 
the structure can carry only these specific loading conditions, and it is 
unstable for other loading conditions. 

� Unstable structures, where the structure or part of it is unstable for a 
general loading condition. In this case the modified equilibrium 
equations cannot be solved and a collapse of the structure will occur. 

4.2 Formulation of Static Reanalysis 

4.2.1 Linear Static Reanalysis 

Linear static reanalysis is encountered in numerous analysis, design and 
optimization problems. The formulation presented in this section is gen-
eral, and covers a wide range of problems. Assuming the displacement 
method of analysis, we can state a typical reanalysis problem as follows: 
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� Given an initial structure, the corresponding stiffness matrix K0 and the 
load vector R0, the displacements r0 are computed by solving the 
equilibrium equations [Eq. (1.2)] 

K0 r0 = R0. (4.1)

The symmetric positive-definite stiffness matrix K0 is usually given 
from the initial analysis in the decomposed form [Eq. 1.23)] 

K0 = T
0U U0, (4.2)

where U0 is an upper triangular matrix. 
� Assume a change in the structure and corresponding changes �K0 in the 

stiffness matrix and �R0 in the load vector. The modified stiffness 
matrix K and the modified load vector R are given by 

K = K0 + �K0, (4.3)
 

R = R0 + �R0. (4.4)

In general, the elements of the stiffness matrix K are some explicit func-
tions of the design variables. The changes �K0 are functions of the 
members' cross-sections, the material properties, the geometry and the 
topology of the structure. In general, the changes �R0 are also functions 
of the design variables. However, the elements of the load vector R are 
often assumed to be independent of these variables, that is, �R0 = 0. 

� The object is to estimate the modified displacements r due to the 
changes in the structure, without solving the complete set of modified 
analysis equations 

(K0 + �K0) r = R. (4.5)

Once the displacements have been evaluated, the forces N and the 
stresses ���� are readily calculated [Eqs. (1.3), (1.4)]. Thus, reanalysis meth-
ods essentially replace the formal solution of the implicit equations (4.5).  

In this formulation the initial stiffness matrix K0, the load-vector R0
 and 

the corresponding displacements r0 are given from initial analysis of the 
structure. But the present reanalysis formulation might prove useful also in 
cases where results of exact analysis are not available, that is, the initial 
displacements r0 are unknown. The object in this case is to evaluate r for 
the given stiffness matrix K = K0 + �K0, where matrices K0 and �K0 can 
be chosen such that the solution is simple and effective. For example, it is 
possible to choose K0 as a diagonal matrix Kd consisting of the diagonal 
elements of K. In this case, �K0 and R are given by 
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�K0 = K – Kd, (4.6)
 

R = R0. (4.7)

The initial displacements are given explicitly by r0 = (Kd)-1R, and the re-
quested displacements r are calculated by Eq. (4.5). It will be shown later 
that despite this poor selection of r0, accurate results can be achieved by 
the reanalysis approach presented in this text. 

4.2.2 Nonlinear Static Reanalysis 

General Formulation 

Consider the equations used in the Newton-Raphson method for the kth it-
eration cycle, obtained by linearizing the response about the conditions at 
time t+�t, iteration k-1 [Eq. (1.83)] 

t+�tK(k-1) �r(k) =��R(k-1), (4.8)

where t+�tK(k-1) is the current tangent stiffness matrix. The out-of-balance 
load vector �R(k) is given by 

�R(k-1) = t+�tR0 – )1( ��� k
I

tt R , (4.9)

and �r(k) is the vector of incremental displacements due to �R(k-1).  
For simplicity of presentation, consider the notation 

KT = t+�tK(k-1)       �R = �R(k-1)        �r = �r(k). (4.10)

Substituting Eqs. (4.10) into Eq. (4.8), the vector �r is calculated at each 
iteration cycle by solving the set of equations 

KT �r = �R. (4.11)

The tangent stiffness matrix KT can be expressed in terms of Kref and the 
matrix of changes �K as 

KT = Kref + �K, (4.12)

where Kref is a reference stiffness matrix, which is the tangent stiffness ma-
trix calculated at some previous step. Matrix Kref might represent, for ex-
ample, the tangent stiffness matrix at the end of the previous increment, 
the elastic stiffness matrix, or another choice, depending on the solution 
procedure discussed later in Sect. 5.4. Substituting Eq. (4.12) into Eq. 
(4.11), we obtain the set of equations to be solved at each iteration cycle 
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KT �r = (Kref +�K) �r = �R. (4.13)

The definition of matrix �K depends on the type of problem to be solved. 
We may distinguish between the following two problems of nonlinear 
analysis and reanalysis: 
� The general case of nonlinear reanalysis of a modified structure, where 

matrix �K is expressed in terms of the following two types of changes 

�K = �KNL + �K0. (4.14)

 Matrix �KNL represents the changes in the stiffness matrix due to the 
nonlinear behavior and it is usually calculated at each iteration cycle. 
Matrix �K0 represents the changes in the stiffness matrix due to design 
considerations and it is constant for any given modified design. It should 
be noted that the present formulation is suitable also for situations where 
�K is not calculated explicitly. Rather, we can calculate �K at each 
iteration cycle from [Eq. (4.12)] 

�K = KT – Kref. (4.15)

� The case of nonlinear analysis of the original structure, where �K0 = 0 
and 

�K = �KNL. (4.16)

 That is, matrix �K represents only changes due to the nonlinear 
behavior of the structure. As noted earlier, Kref is the tangent stiffness 
matrix calculated at some previous step. 

Particular Formulations 

Various formulations may be viewed as particular cases of the general 
formulation. Considering first the particular case of geometric nonlinear 
analysis of the original structure, we start with the initial displacements r0, 
computed by [Eq. (1.56)] 

K0 r0 = R0. (4.17)

The modified equations, which must be solved at each iteration cycle, are 
expressed as 

(Kref + �K(k-1)) �r(k) = �R(k-1). (4.18)

In this case, Kref  can be chosen as the elastic stiffness matrix 

Kref = K0 (4.19)
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and the resulting matrix of stiffness changes �K(k-1) is the geometric stiff-
ness matrix )1( �k

GK , that is 

�K(k-1) = )1( �k
TK – K0 = )1( �k

GK . (4.20)

Considering the problem of geometric nonlinear reanalysis of a modi-
fied structure, it is still possible to choose Kref as the elastic stiffness matrix 
[Eq. (4.19)]. In this case, the resulting matrix of stiffness changes �K(k) is 

�K(k-1) = )1( �k
TK – K0 = �K0 + )1( �k

GK , (4.21)

where��K0 represents changes in the elastic stiffness matrix due to changes 
in the design. The modified equations, solved at each iteration cycle, are 

(K0 + �K(k-1)) �r(k) = �R(k-1). (4.22)

Problems of material nonlinearity can be formulated in a similar way. 
Consider for illustrative purposes the particular case of plastic analysis 
presented in Sect. 1.4.2. The structure is first analyzed for the initial stiff-
ness matrix K0 and load vector R0. The load vector is then increased to ob-
tain R1 =��1 R0, which is the load that causes the yield stress to be reached 
at the first section. The modified stiffness matrix,  

K2 = K0+�K1, (4.23)

is then determined, accounting for the reduction �K1 in the stiffness due to 
yield of the first section. The additional load vector R2 that causes the yield 
stress to be reached at the second section R2 = �2 R0 is determined from the 
modified equations K2 r2 = R2. We proceed with the modified matrix 

K3 = K0+�K1+�K2, (4.24)

considering the reduced stiffness due to yield at the first and the second 
sections. These steps are repeated until collapse. Given the initial K0, R0, 
r0 and defining, 
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(4.25)

 

mm �
 0RR , (4.26)

plastic analysis at the mth load stage involves solution of the modified 
equations  

(K0+�K)rm = Rm. (4.27))
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In summary, various nonlinear analysis and reanalysis problems can be 
formulated in the form of linear reanalysis. The mathematical expressions 
of the formulations presented in Sects. 4.2.1, 4.2.2 are shown in Table 4.1. 

Table 4.1. Formulation of static reanalysis problems 

Problem 
 

Reanalysis Equations Matrix of Changes Right-hand side 

Linear 
Analysis 
 

(4.5) 
(K0+�K0) r = R 

(4.6) 
�K0=K–Kd 

(4.7) 
R=R0 

Linear 
Reanalysis 
 

(4.5) 
(K0+�K0)r=R 

(4.3) 
�K0=K–K0 

(4.4) 
R=R0+�R0 

General 
Nonlinear 
Analysis 

(4.10), (4.13) 
(Kref +�K)�r=�R 

(4.16) 
�K = �KNL 

(4.9), (4.10) 
�R=t+�tR0–

t+�tRI
(k-1) 

General 
Nonlinear 
Reanalysis 

(4.10), (4.13) 
(Kref +�K)�r=�R 

(4.14) 
�K = �KNL + �K0 

(4.9), (4.10) 
�R=t+�tR0–

t+�tRI
(k-1) 

Geometric 
Nonlinear 
Analysis 

(4.18) 
(Kref+�K(k-1))�r(k)=�R(k-1) 

(4.20) 
�K(k-1)=KG

(k-1) 
(4.9) 
�R(k-1)=t+�tR0–

t+�tRI
(k-1) 

Geometric 
Nonlinear 
Reanalysis 

(4.22) 
(K0+�K(k-1))�r(k)=�R(k-1) 

(4.21) 
�K(k-1)=�K0+KG

(k-1) 
(4.9) 
�R(k-1)=t+�tR0–

t+�tRI
(k-1) 

Plastic 
Analysis 

(4.27) 
 
(K0+�K)rm=Rm 

(4.25) 

	
�




�
�
1

1

m

i
iKK  

(4.26) 
 

Rm=R0�m 

4.3 Formulation of Vibration Reanalysis 

4.3.1 Eigenproblem Reanalysis 

In a typical vibration analysis, the following eigenproblem is solved for an 
initial structure [see Eq. (2.8)] 

K0 0� =��0 M0 0� , (4.28)

where K0, M0 are the stiffness and mass matrices, and ��, 0�  represent the 
ith eigenpair (for simplicity, the subscript i is omitted). Assume a change 
in the structure and corresponding changes �K0, �M0 in the stiffness and 
mass matrices such that the modified matrices are expressed as 
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K = K0 + �K0, (4.29)
 

M = M0 + �M0. (4.30)

The modified analysis equations are given by 

K� =�� M� . (4.31)

Denoting the right hand side vector of Eq. (4.31) as 

R = � M� , (4.32)

and substituting Eqs. (4.29), (4.32) into Eq. (4.31) we find 

(K0 + �K0)� = R. (4.33)

It can be observed that the modified equations (4.5) and (4.33) are of simi-
lar form. However, the difference is that the terms of R in the latter case 
[Eq. (4.32)] are functions of the unknown eigenpair �,� . 

4.3.2 Iterative Procedures 

It has been noted in Chap. 2 that in various procedures of eigenproblem 
analysis, a linear set of equations is solved iteratively. In such cases it is 
possible to state the eigenproblem reanalysis as a linear reanalysis prob-
lem. In this section only the inverse vector iteration (Sect. 2.3.1), the vec-
tor iteration with shifts (Sect. 2.3.2) and the subspace iteration (Sect. 2.8) 
procedures are considered. Similar formulations can be introduced for 
other iterative procedures. 

The basic step in the inverse iteration is the solution of Eq. (2.46) – a set 
of algebraic equations. The initial trial vector r(0)����
� 0�  is known from so-
lution of the initial eigenproblem [Eq. (4.28)]. For the changes �K0, �M0 
[Eqs. (4.29), (4.30)] the reanalysis problem, to be solved at the kth iteration 
cycle, is [Eq. (2.46)] 

(K0 + �K0) 
)(kr = R(k-1), (4.34)

where the vector R(k-1) is defined as 

R(k-1) = M����r(k-1). (4.35)

The basic step in inverse iteration with shifts is the solution of Eq. 
(2.58). Considering again the known initial eigenvector r(0)����
 0� , the re-
analysis problem solved at the kth iteration cycle is [see Eq. (2.58)] 
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(K0 + �K(k-1)) )(kr = R(k-1), (4.36)

where R(k-1) is given by Eq. (4.35) and �K(k-1) is defined as 

�K(k-1) = �K0 – �(k-1) M. (4.37)

It is observed that both �K(k-1) and R(k-1) are changed at each iteration cy-
cle. Again, Eqs. (4.5) and (4.36) are of similar form, therefore eigenprob-
lem reanalysis can be stated in the form of linear reanalysis. For any 
change in the design, �K(k-1) and R(k-1) are revised accordingly. 

The basic step in the subspace iteration procedure is the solution of Eq. 
(2.102). The reanalysis problem, to solved at the kth iteration cycle for the 
changes �K0, �M0 [Eqs. (4.29), (4.30)], can be stated as 

)()1(
00 )( kk RrKK 
�� � , (4.38)

where the vector R(k) is defined as 

R(k) = M r(k). (4.39)

It is observed that all the modified equations presented in this section 
[Eqs. (4.33), (4.34), (4.36), (4.38)] and the linear reanalysis problem [Eq. 
(4.5)] are of similar form. The various vibration reanalysis formulations 
are summarized in Table 4.2. 

Table 4.2. Formulation of vibration reanalysis problems 

Problem 
 

Equations Matrix of Changes Right-hand side  
 

Eigenproblem  
Reanalysis 
 
 

(4.33) 
 

(K0 + �K0)�  = R 

(4.29) 
�

�K0 = K – K0 

(4.32) 
 

R = � M�  

Inverse 
Iteration 
 
 

(4.34) 
 

(K0 + �K0) 
)(kr = R(k-1) 

(4.29) 
 

�K0 = K – K0 

(4.35) 
 

R(k-1) =� M����r(k-1) 

Inverse 
Iteration 
with Shifts 
 

(4.36) 
 

(K0+�K(k-1)) )(kr =R(k-1) 

(4.37) 
 

�K(k-1)=�K0–�
(k-1)M 

(4.35) 
 

R(k-1) =� M����r(k-1) 

Subspace  
Iteration 
 

(4.38) 
 

)()1(
00 )( kk RrKK 
�� �  

(4.29) 
 

�K0 = K – K0 

(4.39) 
 

R(k) =� M����r(k) 
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4.4 Formulation of Dynamic Reanalysis 

4.4.1 Linear Dynamic Reanalysis 

The equations of motion for multiple degrees of freedom system subjected 
to external dynamic forces are [Eq. (3.1)] 

)()()(+)( tttt RrKrCrM 
���� , (4.40)

where M is the mass matrix, C is the damping matrix and K is the stiffness 
matrix. The displacement vector r(t), the velocity vector )(tr� , the accel-
eration vector )(tr�� , and the load vector R(t) are functions of the time t. 

Given is an initial structure represented by the initial values K0, M0. As-
suming a change in the design, and corresponding changes �K0, �M0, the 
modified matrices are given by 

K = K0 + �K0        M = M0 + �M0. (4.41)

The problem of dynamic reanalysis is to estimate efficiently and accurately 
r(t), )(tr� , )(tr��  of the modified structure, without solving the complete set 
of Eq. (4.40). It has been noted that the common procedures for solving 
these equations can be divided into two methods of solution: 

� Direct integration, where Eqs. (4.40) are integrated using a numerical 
step-by-step procedure. It is assumed that the equations are satisfied 
only at discrete time intervals, and the variation of displacements, 
velocities and accelerations within each time interval has a certain form. 

� Mode superposition, where the equilibrium equations are transformed 
into a form in which the step-by-step solution is less costly. This method 
may be more effective if the integration must be carried out for many 
time steps. In addition, the effectiveness of the method depends on the 
number of modes that must be considered. If only a few modes may 
need to be considered, the mode superposition procedure can be much 
more effective than direct integration. 

In this section some common formulations of linear dynamic reanalysis 
are presented. Other formulations can be introduced in a similar way. 

Solution by Direct Integration 

Using the Newmark implicit integration method [Eqs. (3.12) – (3.21)], we 
solve at each time step the equilibrium equations [Eqs. (3.17), (3.19)] 

RrK ˆˆ tttt ���� 
 , (4.42)
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where the effective stiffness matrix K̂  and the effective load vector R̂tt ��  
are given by [Eqs. (3.16), (3.18)] 

CMKK 10
ˆ aa ��
 , (4.43)

 

)()(ˆ
541320 rrrCrrrMRR ������

tttttttttt aaaaaa ������
 ���� . (4.44)

It is observed that any change in the structure results in corresponding 
changes in K̂  and R̂tt �� . Thus, Eq. (4.42) can be expressed in terms of 
the initial matrix ),,(ˆ

000 CMKK  and the matrix of changes K̂�  as 

RrKK ˆ)ˆˆ( 0
tttt ���� 
�� , (4.45)

where K̂�  is given by 

),,(ˆ),,(ˆˆ
000 CMKKCMKKK �
� . (4.46)

The effective load vector R̂tt ��  is changed for each change in M, C and 
at each time step. It is observed that the modified analysis equations (4.5) 
and Eq. (4.45) are of similar form. 

Solution by Mode Superposition 

Computation of the dynamic response by modal analysis requires first to 
determine the eigenpairs �i, i�  by solving the eigenproblem 

K i� = �i����� i�       i = 1, …, n. (4.47)

For the case of proportional damping, we then solve the decoupled equa-
tions [Eq. (3.46)] 

)()()(2+)( 2 tTtZtZtZ iiiiiii 

��
 ��� , (4.48)

where Zi are the components of the modal coordinates, i�  are the damping 
ratios and Ti(t) are given by 

)()( ttT T
ii R�
 . (4.49)

Finally, we compute the nodal displacements by [Eq. (3.38)] 

Z��r 

	



n

i
ii Z

1
, 

(4.50)
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where �  is the modal matrix, made up of the n mode shapes, and Z is the 
vector of modal coordinates. 

As noted earlier, a significant part of the computational effort is in-
volved in repeated solutions of the eigenproblem. The reanalysis formula-
tions presented in Sect. 4.3 are suitable for this type of problem. 

4.4.2 Nonlinear Dynamic Reanalysis 

Solution by Direct Integration 

Considering the common trapezoidal rule, which is Newmark’s method 
with ��
���� and ��
�����, neglecting the effect of damping, and using the 
modified Newton-Raphson iteration, the modified equilibrium equations to 
be solved at each iteration cycle are [Eq. (3.87)] 

)1(
0

)()( ������� �
�� k
I

ttttktktt RRrKrM �� , (4.51)

where [Eq. (3.88)] 

�r(k) = t+�tr(k) – t+�tr(k-1), (4.52)

and tK is the stiffness matrix considered for the solution of Eq. (4.51). Us-
ing the trapezoidal rule of time integration, we obtain [Eqs. (3.92), (3.93)] 

)()( ˆˆ kttkt RrK ��
� , (4.53)

where 

MKK 2

4ˆ
t

tt

�
�
 , 

(4.54)

 

� � .
44ˆ )1(

2
)1(

0
)(

��

�
��

� �
�

��
�

��
 ���������� rrrrMRRR ��� tttkttk
I

ttttktt

tt  

(4.55)

It is observed that the effective stiffness matrix K̂t  might change at each 
time step whereas the effective load vector )(ˆ ktt R�� – at each iteration cy-
cle. The iterative equations are similar to the nonlinear static equations, 
except that K̂t  and )(ˆ ktt R�� contain contributions from the inertia of the 
system. Thus, Eq. (4.53) can be expressed in the form 

)()(
0

ˆ)ˆˆ( kttkt RrKK ��
��� , (4.56)

where subscript 0 denotes the initial matrix and K̂�t  is given by 
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),(ˆ),(ˆˆ
000 MKKMKKK �
� ttt . (4.57)

Again, the modified analysis equations (4.5) and (4.56) are of similar form. 

Solution by Mode Superposition 

In nonlinear dynamic analysis, the eigenpairs i
t
� , t�i at time t are first ob-

tained by solving the eigenproblem [Eq. (3.104)] 
tK i

t
� = t�i ���� i

t
� , (4.58)

where tK is the tangent stiffness matrix at time t, given by [Eq. (3.99)] 

r
FK
�
�


 R
t

t . 
(4.59)

For proportional damping, we solve the uncoupled equations (3.105) 

R�Z�ZCZI �
����� tTtttt
d

tt 2��� , (4.60)

where t�Z are the generalized displacements and �t  is the matrix of ei-

genvectors. The identity matrix �M�I tTt
  is the mass matrix in nor-

malized coordinates. The damping matrix �C�C tTt
d 
  and the stiffness 

matrix �K��
ttTtt 
2  in these coordinates are diagonal matrices. The 

nodal displacements are computed by [Eqs. (3.102), (3.103)] 

Z�r �
� ttt , (4.61)

 

t+�tr = tr + t�r. (4.62)

As noted earlier, a significant part of the computational effort involves 
repeated eigenproblem solutions in the nonlinear region. The nonlinear ei-
genproblem [Eq. (4.58)] can be expressed as 

(K0 + t�K) i
t
� = tR i       i = 1, …, n, (4.63)

where 

tR i = t�i�
 M i

t
� . (4.64)

The matrix of changes t�K consists of the following two parts 
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t�K = �K0 + t�KNL, (4.65)

where matrix �K0, representing the changes in the elastic stiffness matrix 
due to changes in the design, is constant for any given design, whereas ma-
trix t�KNL = tK – (K0+�K0), representing the changes in stiffness due to 
the nonlinear behavior, might change at each time step.  

The mathematical expressions of the problems presented in this section 
are summarized in Table 4.3. 

Table 4.3. Formulation of dynamic reanalysis problems 

Problem Equations Matrix of Changes Right-hand side 
Linear 
Direct 
Integration 
 
 

(4.45) 

R

rKK
ˆ

)ˆˆ( 0

tt

tt

��

��




��

 

(4.46) 

),,(ˆ
),,(ˆˆ

000 CMKK

CMKKK

�


�

 

(4.44) 
),,,,(ˆ rrrMRR ��� ttttttt ����

Linear 
Mode 
Superposition 
 

(4.33) 
(K0 + �K0)� = R 

(4.29) 
�K0 = K – K0 

(4.32) 
R =��M�  

Nonlinear 
Direct 
Integration 
 
 

(4.56) 

)(

)(
0

ˆ
)ˆˆ(

ktt

kt

R

rKK
��


���

 

(4.57) 

),,(ˆ
),,(ˆˆ

000 CMKK

CMKKK

�


� ttt

(4.55) 
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)1(

)1(
0
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rrrrM

RRR
��� tttktt

k
I
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���

�������
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Mode 
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(4.63) 

(K0 + t�K) i
t
� = tR i 

(4.65) 
 

t�K = �K0 + t�KNL 
(4.64) 
tRi =

 t�i�
 M i

t
�  

 

4.5 Reanalysis Methods 

Several comprehensive reviews on reanalysis methods have been pub-
lished in the past [e.g. 2–4]. The various methods may be divided into the 
following two general categories, described in this section: 

� Direct methods, giving exact closed-form solutions and might be 
efficient only when a relatively small part of the structure is changed. 

� Approximate methods, giving approximate solutions, with the accuracy 
being dependent on the type of changes and the specifiec method used. 
These methods are usually suitable for changes in large parts of the 
structure. 
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4.5.1 Direct Methods 

Direct reanalysis methods are efficient for low-rank changes in the stiff-
ness matrix. In particular, these methods are applicable to situations where 
a relatively small proportion of the structure is changed and the changes in 
the stiffness matrix can be represented by a small sub-matrix (e.g. when 
the cross sections of only a few members are changed). Direct methods are 
inefficient when the sub-matrix of changes in the stiffness matrix is large. 

Direct methods are usually based on the Sherman-Morrison [5] and 
Woodbury [6] formulae for the update of the inverse of a matrix. Surveys 
on these methods are given elsewhere [7–9]. A comprehensive historical 
survey of the origin of these formulae is presented in [8]. It has been 
shown [9] that various reanalysis methods may be viewed as variants of 
these formulae. Several methods for calculating the modified response due 
to changes in the structure were proposed in the late 1960s and the early 
1970s. Most of these improved methods are based on the Sherman-
Morrison identity [e.g. 10–12]. Direct methods are described later in Chap. 
8. The Combined Approximations (CA) approach, introduced in this text, 
provides exact solutions under certain conditions. It is shown in Sects. 
8.2.2 and 8.2.3 that in such cases exact solutions achieved by the CA ap-
proach and the Sherman-Morrison-Woodbury formulae are equivalent. 

Other direct methods are the Virtual Distortion Method [VDM, 13–14] 
and the Theorems of Structural Variation [TSV, 15–20]. The two methods, 
called load-based methods and may be viewed as variants of the Wood-
bury formula [9], require collinear loads to be applied to the modified 
members, to compute an influence matrix. In the VDM, a reduced set of 
equations is then solved for a set of scalar multipliers of the influence vec-
tors. In the TSV approach the modified displacements and forces are ex-
pressed in terms of the original values and the values due to unit loadings. 

4.5.2 Approximate Methods 

Approximate reanalysis methods are suitable for cases of changes in large 
parts or all of the structure. These methods have been used extensively in 
structural optimization to reduce the number of exact analyses and the 
overall computational cost during the solution process. Reduction of the 
computational cost allows the solution of large-scale problems. 

In general, the following factors are considered in choosing an approxi-
mate reanalysis method for a specific application: 

� The accuracy of the calculations (the quality of the approximations). 
� The computational effort involved (the efficiency of the method). 
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� The ease-of-implementation. 

The implementation effort is weighted against the performance of the 
algorithms as reflected in their computational efficiency and accuracy. The 
quality of the results and the efficiency of the calculations are usually con-
flicting factors. That is, better approximations are often achieved at the ex-
pense of more computational effort. The different levels of analysis range 
from inexpensive and inaccurate to costly and accurate. The common ap-
proximations can be divided into the following classes [4, 21]: 

� Local approximations (called also single-point approximations), such as 
the first-order Taylor series expansion or the binomial series expansion 
about a given design point. Local approximations are based on 
information calculated at a single point. These methods are very 
efficient but they are effective only for small changes in the design 
variables. For large changes in the design the accuracy of the 
approximations often deteriorates and the results may become 
meaningless. That is, the approximations are valid only in the vicinity of 
a design point. To improve the quality of the results, reciprocal cross-
sectional areas have been assumed as design variables [22, 23]. A hybrid 
form of the direct and reciprocal approximations, which is more 
conservative than either, can also be introduced [24]. This 
approximation has the advantage of being convex [25], but it has been 
found that the hybrid approximation tends to be less accurate than either 
the direct or the reciprocal approximation. More accurate convex 
approximations can be introduced by the method of moving asymptotes 
[26], but the quality of the results might be dependent on the selection of 
these asymptotes. Another possibility to improve the quality of the 
results is to consider second-order approximations [27, 28] but this 
considerably increases the computational effort. 

� Global approximations (called also multipoint approximations), such as 
polynomial fitting, response surface or reduced basis methods [29–33]. 
These approximations are obtained by analyzing the structure at a 
number of design points, and they are valid for the whole design space 
(or, at least, large regions of it). In response surface methods [e.g. 30, 
31], the response functions are replaced by simple functions 
(polynomials), which are fitted to data computed at a set of selected 
design points. So far, the use of response surface methods has been 
limited to problems with a relatively small number of design variables. 
In reduced basis methods [32, 33] the response of a large system, which 
was originally described by a large number of degrees of freedom, is 
approximated by a linear combination of a few pre-selected basis 
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vectors. The problem is then stated in terms of a small number of 
unknown coefficients of the basis vectors. The approach is most 
effective when highly accurate approximations can be introduced by the 
reduced and much smaller system of equations. A basic question in 
using reduced basis methods is the choice of an appropriate set of the 
basis vectors. Response vectors of previously analyzed designs could be 
used, but an ad hoc or intuitive choice may not lead to satisfactory 
approximations. In addition, calculation of the basis vectors requires 
several exact analyses of the structure for the basis designs, which 
involves extensive computational effort. In summary, global 
approximations may require much computational effort, particularly in 
problems with large numbers of design variables. 

� Combined approximations. In the next chapters of this text we develop a 
third class of approximations, called Combined Approximations (CA). 
In this approach we attempt to give global qualities to local 
approximations. This can be achieved by considering the terms of local 
approximations as basis vectors in a global expression. Specifically, the 
binomial series terms are used as basis vectors in reduced basis 
approximations. The advantage is that the efficiency of local 
approximations and the improved quality of global approximations are 
combined to obtain an effective solution procedure. That is, the above 
choice of basis vectors provides accurate results efficiently. Various 
means can be used to improve both the accuracy of the results and the 
efficiency of the calculations. The approach is general, providing 
various options and possibilities in applications. The main developments 
of the approach are reviewed in the next subsection. 

4.5.3 The Combined Approximations Approach 

Initially, the main objective in developing the CA approach was to sim-
plify design optimization procedures for practical structures. Later, it was 
found that the approach might prove useful not only in structural optimiza-
tion but also in various analysis and design tasks. In particular, solutions 
for the following classes of problems have been developed: 

� Linear and nonlinear static analysis. Solutions of various analysis and 
reanalysis problems have been demonstrated, including topological and 
geometrical changes, geometric and material nonlinearity, accurate and 
exact solutions. Linear and nonlinear static reanalysis are presented in 
Chap. 5. 
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� Vibration analysis. Effective solution procedures for linear and 
nonlinear eigenproblems have been developed. Various procedures for 
vibration reanalysis are introduced in Chap. 6. 

� Linear and nonlinear dynamic analysis. Solutions of various analysis 
and reanalysis problems of structures subjected to dynamic loadings are 
discussed in Chap. 7. 

� Sensitivity analysis. Repeated sensitivity analysis for various problems 
is demonstrated in Chap. 9. Solutions of linear, nonlinear, static and 
dynamic problems are presented.  

Efficiency and accuracy considerations for the above classes of prob-
lems are discussed in Chap. 10. The main developments of the CA 
approach are described in the next subsections. 

Early Developments 

Early developments related to linear static reanalysis problems are pre-
sented in [34–39]. Several studies in the early 1980s [34, 35] showed that 
improved local approximations can be achieved by scaling of the initial 
design such that the changes in the design variables are reduced. The ad-
vantage is that the solution is still based on results of a single exact analy-
sis. It was found that scaling procedures may significantly improve the ac-
curacy of the results with little computational effort. Moreover, scaling 
might prove useful for various types of design variables and response func-
tions. Several criteria for selecting the scaling multiplier have been pro-
posed, based on geometrical [34] and mathematical [35] considerations. In 
the early 1990s it was shown [36–38] that scaling of both the initial design 
and the modified approximate displacements can be expressed in a reduced 
basis form, using transformations of variables. Extending the concept of 
scaling to include also the approximate displacements, in addition to the 
initial design, significantly improved the results. It was found [39] that ac-
curate approximations of displacements, stresses and forces can be 
achieved by the CA approach, for very large changes in the design vari-
ables, by considering only first-order approximations. Reanalysis of static 
problems by the CA approach is developed in Chap. 5. 

Geometrical and Topological Changes 

Following the early stages of developments, it was found that the CA ap-
proach is very effective for geometrical and topological changes [40–52]. 
In the early 1990s, it has been shown that the approach provides accurate 
solutions for topological changes [40]. It was found [41] that exact solu-
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tions can be achieved for cross-sectional variables if for a changed member 
only one basis vector is considered. For simultaneous changes in several 
members, exact solutions are achieved if for each changed member a cor-
responding basis vector is considered. This result is valid also for all types 
of topological changes in the structure, including elimination and addition 
of members and joints [42, 43]. Exact and accurate solutions for all types 
of topological and geometrical changes have been demonstrated [44–47]. 
In the early 2000s the solution approach was improved to obtain more ac-
curate results [48–52]. It was found [48] that a preconditioned conjugate 
gradient method and the CA procedure provide theoretically identical re-
sults. Improved solution procedures for the challenging problem of in-
creasing the number of degrees of freedom were developed [51, 52]. Topo-
logical changes are discussed in Sect. 5.3. Direct solutions for topological 
and geometrical changes are demonstrated in Sect. 8.3. 

Direct Solutions 

It was found in the early 2000s [9] that exact solutions achieved by the CA 
approach and the Sherman-Morrison-Woodbury formulae are equivalent. 
The two solution procedures show that the change in nodal displacements 
due to a change in the cross section area of a truss member is a multiple of 
the response to a pair of collinear forces acting at the ends of the member. 
It has been shown also that this result can be generalized to any structural 
member such as a frame element or a plate element. Direct solutions by the 
CA approach were developed in the early 1900s [40, 41]. Such solutions 
have been demonstrated also for various cases of topological and geomet-
rical changes [42, 46, 47]. Direct reanalysis is discussed in Chap. 8. 

Vibration, Dynamic and Nonlinear Reanalysis 

In the late 1990s, eigenvalue reanalysis of damaged structures [53] and 
nonlinear reanalysis [54, 55] by the CA approach were first presented. It 
was found that by using a Gram-Schmidt orthonormalization procedure a 
new set of basis vectors can be generated such that the reduced set of 
analysis equations becomes uncoupled. For any assumed number of basis 
vectors, the results obtained by considering either the original set of basis 
vectors or the new set of uncoupled basis vectors, are identical. The advan-
tage in using the latter vectors is that all expressions for evaluating the dis-
placements become explicit functions of the parameters of the structure. 
As a result, additional vectors can be considered without modifying the 
calculations that have been already carried out. In addition, the uncoupled 
system is more well-conditioned. Several procedures, based on the CA ap-
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proach, have been developed recently for solving various nonlinear analy-
sis and reanalysis problems [56]. These procedures are used to evaluate the 
modified displacements at each iteration cycle. 

Effective procedures for eigenproblem reanalysis have been developed 
in the early 2000s [57–61]. Significant improvements in the accuracy of 
the results and the efficiency of the calculations for vibration reanalysis 
were reported. These studies formed the basis for developing improved so-
lution procedures for linear-dynamic [62] and nonlinear-dynamic [63, 64] 
reanalysis. Vibration reanalysis is discussed in Chap. 6 and dynamic re-
analysis is developed in Chap. 7.  

Repeated Sensitivity Analysis 

Various approximations that might be adequate for structural reanalysis are 
not sufficiently accurate for repeated sensitivity analysis. It has been 
shown [65–72] that the CA approach can be used also for effective ap-
proximations of the response derivatives for designs where results of exact 
analysis are not available. Accurate results have been achieved by either 
the direct method or the adjoint-variable method for calculations of ana-
lytical derivatives [65, 66] and finite-difference derivatives [67] of static 
and vibration response. Methods for calculations of repeated sensitivity 
analysis of structures subjected to linear [68] and nonlinear [69] dynamic 
response have been developed. Improved efficiency has been demonstrated 
in the solution of various problems [70, 71]. It was found [72] that im-
proved accuracy of shape sensitivity calculations can be achieved using re-
fined basis vectors. Repeated sensitivity analysis is presented in Chap. 9. 

Computational Considerations 

Various considerations related to the convergence properties of the solu-
tion process and to the accuracy of the results have been studied [48, 73, 
74]. It has been noted [48] that a preconditioned conjugate gradient 
method and the CA approach provide theoretically identical results. As a 
result, some convergence criteria and error expressions developed for con-
jugate gradient methods can be used for the CA approach. The approach 
has been successfully applied to both low-rank and moderately high-rank 
modifications to structures [75]. Accurate results were reported for large 
scale systems [76] and for probabilistic analysis [77]. Efficient procedures 
have been developed for numerous repeated calculations of the structural 
response in large scale structures [78] and for nonlinear reliability analysis 
of structural systems [79]. In a recent study [80] a methodology was de-
veloped to integrate the CA method with the commercial program MSC-
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NASTRAN for finite element analysis. A modified CA method has been 
developed and integrated with other methods to achieve efficient probabil-
istic vibration analysis of complex structures [81] and efficient reanalysis 
of large finite element models [82]. Various computational advantages of 
the CA approach have been discussed in several studies [83–86]. 
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5. Static Reanalysis 

It has been noted that the overall effectiveness of reanalysis depends to a 
large extent on the numerical procedures used for the solution of the equi-
librium equations. The accuracy of the analysis can, in general, be im-
proved if a more refined model is used. Because of the tendency to employ 
more and more refined models to approximate the actual structure, the cost 
of an analysis and its practical feasibility depend to a considerable degree 
on the algorithms available for the solution of the resulting equations. The 
time required for solving the equilibrium equations of large-scale systems 
can be a high percentage of the total solution time, particularly in nonlinear 
analysis, when the solution must be repeated many times. An analysis may 
not be possible if the solution procedures are too costly or unstable.  

In this section approximate solution procedures, for static analysis and 
reanalysis by the CA approach, are developed. The solution is based on re-
sults of a single exact analysis and the integration of several concepts and 
methods, most of them presented in previous chapters. These include ma-
trix factorization, series expansion, reduced basis, and Gram-Schmidt or-
thogonalization. In the approach presented, the terms of the binomial series 
are used as high quality basis vectors in a reduced basis expression. The 
advantage is that efficient local approximations (series expansion) and ac-
curate global approximations (the reduced basis method) are combined to 
achieve an effective solution procedure. Due to the nature of the selected 
basis vectors, high accuracy can be achieved by considering only a few 
vectors. Yet, the accuracy of the results can be improved at the expense of 
more computational effort, by considering additional vectors.  

Determination of the basis vectors is introduced in Sect. 5.1. Linear re-
analysis using coupled and uncoupled basis vectors is developed in Sect. 
5.2, and topological changes, where members and joints are deleted or 
added, are presented in Sect. 5.3. Nonlinear analysis and reanalysis are 
demonstrated in Sect. 5.4.  

The main advantages of the CA approach, which have been studied in 
terms of several criteria, are as follows [1–4]: 
� Generality. Various analysis models (linear, nonlinear, elastic, plastic, 

static, dynamic), different types of structures (e.g. trusses, frames, 
grillages, continuum structures) and all types of changes in the structure 
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(changes in cross-sections, geometry, topology and material properties) 
may be considered. The changes can be of different extent, varying from 
changes in only a few elements to all elements of the structure. As well, 
changes in the structural model itself may be considered.  

� Accuracy. Accurate approximations can be achieved for significant 
changes in large-scale structures. Various means can be used to improve 
the accuracy of the results, including consideration of high-order terms 
and Gram-schmidt orthogonalization procedures. Moreover, exact 
solutions can be achieved in certain cases.  

� Efficiency. Similar to local approximations, the calculations are based 
on results of a single exact analysis. The number of algebraic operations 
and the total CPU effort are usually much smaller than those needed to 
carry out complete analysis of modified structures. 

� Flexibility. The efficiency of the calculations and the accuracy of the 
results can be controlled by the level of simplification or sophistication 
considered and the amount of information used. Depending on the 
problem to be solved, various simplified and efficient versions of the 
approach may be considered. On the other hand, various sophisticated 
means may be used to improve the accuracy of the approximations at 
the expense of more computational effort. 

� Ease of implementation. The solution steps are straightforward, the 
approach can be readily used with general finite element systems, and 
the calculations are based on simple analytical expressions. 

5.1 Determination of the Basis Vectors 

5.1.1 The Binomial Series 

In the CA approach presented in this chapter the first few terms of the bi-
nomial series expansion are used as basis vectors. Consider the modified 
analysis equations (K0 + �K) r = R [Eq. (4.5)], rearranged to read 

K0 r = R – �K r. (5.1)

Writing these equations as the recurrence relation 

K0 r(k+1) = R – �K r(k), (5.2)

where r(k+1) is the value of r after the kth iteration cycle, and assuming the 
initial value r(0) = 0, we obtain the binomial series 

r = (I – B + B2 – ... ) r1, (5.3)
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where I is an identity matrix. The matrix B and the vector r1, which is the 
first term of the series, are defined as 

B � 1
0
�K �K, (5.4)

 

r1 ��
1

0
�K R, (5.5)

The additional terms of the series are given by the recurrence relation 

ri = –B ri-1     (i = 2, ..., s). (5.6)

The series of Eq. (5.3) can be obtained in an alternative way as follows. 
Pre-multiplying the modified equations (K0+�K) r = R by 1

0
�K  and substi-

tuting Eqs. (5.4), (5.5) yields  

(I + B) r = r1. (5.7)

Pre-multiplying Eq. (5.7) by (I + B)-1 and expanding 

(I + B)-1 ��I – B + B2 – ..., (5.8)

gives the series (5.3). Convergence of the series is discussed in Sect. 5.1.3. 

5.1.2 Calculation of the Basis Vectors 

The positive-definite stiffness matrix K0 is usually given from initial 
analysis in the decomposed form K0 = T

0U U0 [Eq. (4.2)]. If the load vector 
is unchanged (�R = 0, R = R0) then the first term r1 = r0

 is already given 
from initial analysis. It is shown in the following that calculation of the se-
ries terms by Eq. (5.6) involves only forward and backward substitutions. 

The vector r2 is calculated by [Eqs. (4.2), (5.4), (5.6)] 

K0 r2 = T
0U U0 r2 = –�K r1. (5.9)

We first solve for the vector of unknowns t by the forward substitution 

T
0U t = –�K r1. (5.10)

The vector r2 is then calculated by the backward substitution 

U0 r2 = t. (5.11)

Similarly, the vector ri is calculated by 

K0 ri = –�K ri-1. (5.12)
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In some particular cases, repeated calculation of the series terms in-
volves almost no computational effort. Consider for example the common 
case of approximations along the line defined by 

K = K0 + �K = K0 + � �K0, (5.13)

where the elements of matrix �K0 are constant, representing a given direc-
tion of movement, the scalar � is a step size variable and  

�K = � �K0. (5.14)

The expression of Eq. (5.14) is obtained also if the matrix of changes �K 
represents a change of rank-one in the stiffness matrix. For B0 = 1

0
�K �K0 

and R = R0, the terms of the binomial series [Eqs. (5.5), (5.6)] become 

r1 = r0, (5.15)
 

ri = �i-1 r0i     (i = 2, ..., s), (5.16)

where the elements of vectors r0i are constant, defined by 

r0i ��– B0 r0i-1     (i = 2, ..., s). (5.17)

That is, once the vectors r0i are calculated, then for any assumed � it is 
necessary to calculate only the products �i-1 r0i  (i = 2, ..., s). Moreover, it 
will be shown later in Sect. 5.2.1 that, in the CA approach, multiplication 
of any basis vector by a scalar does not change the results. That is, the con-
stant vectors r0i can be used as basis vectors for any value of the scalar �. 

The terms of the binomial series are equivalent to those of the Taylor se-
ries for homogeneous displacement functions. Both the Taylor series and 
the binomial series are based on information of a single design. As a result, 
the accuracy of the results might be insufficient for large changes in the 
design, where problems of slow convergence or divergence of the series 
may be encountered. Several methods have been proposed to improve the 
series convergence. These include the Jacobi iteration, block Gauss-Seidel 
iteration, dynamic acceleration and scaling of the initial design [5, 6, 7]. 
One advantage of using the binomial series is that, unlike the Taylor series, 
calculation of derivatives is not required and high-order terms can readily 
be calculated. This makes the method more attractive in various applica-
tions where derivatives are not available or difficult to calculate. 

The accuracy of the binomial series approximations can be significantly 
improved by considering its terms as basis vectors in a reduced basis ex-
pression, as will be shown later in this chapter. 



5.2 Linear Reanalysis      125 

5.1.3 Convergence of the Series 

The series of basis vectors [Eq. (5.3)] converges if and only if [8] 

0B �
�	

k

k
lim , (5.18)

which in turn holds if and only if  


(B) < 1, (5.19)

where 
(B) is the spectral radius (the largest eigenvalue) of matrix B. A 
sufficient criterion for the convergence of the series is 

1�B , (5.20)

where B  is the norm of B.  
To evaluate the errors involved in the binomial series approximations, 

we see that the sum of the additional terms in the series of Eq. (5.3), be-
yond the first s terms, 

�r =�Bs�r0 –�Bs+1�r0 � Bs+2 r0 –�


, (5.21)

can be expressed as 

�r = Bs��������B � B2 ��


��r0. (5.22)

This expression is bounded from above by [9] 

||||
||||1

1
|||| 0r

B
Br

�
�� s . 

(5.23)

It is observed that for large changes �K (and large elements of B) this 
bound becomes very large and the series diverges. It will be shown that 
even in such cases the CA approach provides accurate results. 

5.2 Linear Reanalysis 

5.2.1 Coupled Basis Vectors 

Linear elastic reanalysis by the CA approach, which has been discussed in   
various studies [e.g. 1–4], is described in this section. We assume that the 
binomial series terms developed in Sect. 5.1.1 are used as basis vectors in 
the reduced basis expression presented in Sect. 3.2.1 [Eq. (3.72)]. The dis-
placements r of a new design are approximated by a linear combination of 
pre-selected s linearly independent basis vectors, r1, r2, ..., rs  
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r = y1r1 + y2r2 + ... + ysrs = rB y, (5.24)

where s is much smaller than the number of degrees of freedom n, rB is the 
n�s matrix of the basis vectors and y is a vector of unknown coefficients 

rB = [r1, r2, ..., rs], (5.25)
 

yT = {y1, y2, ... , ys}. (5.26)

The modified analysis equations are approximated by a smaller system 
of equations in the new unknowns y. Substituting Eqs. (5.24) into the 
modified equations K r=R and pre-multiplying by T

Br  gives the s�s system 

RryrKr T
BB

T
B � . (5.27)

Introducing the notation 

B
T
BR rKrK �      RrR T

BR � , (5.28)

and substituting Eqs. (5.28) into Eq. (5.27), we obtain 

KR y = RR. (5.29)

The term coupled basis vectors indicates that the basis vectors are cou-
pled by a set of simultaneous equations [Eqs. (5.28), (5.29)]. 

Given the initial stiffness matrix K0 in the decomposed form K0 = T
0U U0 

[Eq. (4.2)], the initial load vector R0, and the initial displacement vector r0, 
calculation of the modified displacements r by the CA approach for any 
assumed changes �K0 and �R0 involves the following steps: 
� Calculate the modified K and R by Eqs. (4.3) and (4.4) 

K = K0 + �K0, 

R = R0 + �R0. 

(5.30)

Since the initial values K0 and R0 are already given, this step involves 
only calculation of �K0 and �R0. 

� Calculate the basis vectors by Eqs. (5.5), (5.6) 

r1 ��
1

0
�K R, (5.31) 

 

ri = –B ri-1       (i = 2, ..., s), (5.32) 

where B is defined by Eq. (5.4). It has been shown in Sect. 5.1.2 that 
calculation of the basis vectors involves only forward and backward 
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substitutions when K0 is given from the initial analysis in the 
decomposed form of Eq. (4.2).  
For large changes in the design, the elements of the basis vectors may 
become very large, due to large �K values. To overcome numerical 
round off errors, it is possible to normalize any basis vector ri by 
dividing it by an arbitrary reference element of the vector (say, the first 
element r1i) to obtain the normalized vector rNi 

rNi = ri / r1i. (5.33) 

This operation scales the first element of the vector to unity. It does not 
change the final solution, as shown below [Eq. (5.36)]. 

� Calculate the reduced stiffness matrix and load vector by Eqs. (5.28) 

B
T
BR rKrK �      RrR T

BR � . (5.34) 

This calculation is straightforward. 
� Calculate the vector of coefficients y by solving Eq. (5.29) 

KR y = RR. (5.35) 

Since the number of basis vectors s is much smaller than the number of 
degrees of freedom n, it is necessary to solve only the smaller s�s 
system of Eq. (5.35) for y instead of computing the exact solution by 
solving the large n�n system K r = R. 

� Evaluate the final displacements by Eq. (5.24)  

r = rB y. (5.36) 

Equation (5.36) shows that the transformation of Eq. (5.33) does not 
change the final solution (but only the corresponding scalars yi). 

The above solution procedure is most effective in many cases where 
high accuracy is achieved with only a small number of basis vectors. 

Example 5.1 

The object of this example is to demonstrate the accuracy of the results 
achieved by the CA approach for very large changes in the design. Con-
sider the ten-bar truss shown in Fig. 5.1. Assuming arbitrary units, the de-
sign variables X are the member cross-sectional areas, the initial cross sec-
tion areas X0 are all unity, the modulus of elasticity is 30000 and the eight 
analysis unknowns are the horizontal and vertical displacements at joints 1, 
2, 3 and 4, respectively. The stress constraints are –25.0 � ���� � 25.0 and the 
minimum size constraints are 0.001 �X. Assuming the weight as an objec-
tive function, the optimal design is 
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T
optX = {8.0,0.001,8.0,4.0,0.001,0.001,5.667,5.667,5.667,0.001}. (a)

The line from the initial design to the optimal design is given by  

X = X0 + � �X0, (b)

where �X0 = Xopt – X0 is given by 

T
0X� ={7.0,-0.999,7.0,3.0,-0.999,-0.999,4.667,4.667,4.667,-0.999} (c)

and � is a step-size variable. For � =1.0 (the optimum) the changes in the 
design are most significant: members 1 and 3 are increased by 700%, 
member 4 is increased by 300%, members 7, 8, 9 are increased by 467%, 
and the topology is changed by effectively eliminating members 2, 5, 6 
and 10, and hence joint 2 (displacements 3 and 4).  

To illustrate results for various magnitudes of change in the design vari-
ables, the following three cases of change are considered: 

� Large change in the design (up to –10% and +70%), ��= 0.1. 
� Very large change in the design (up to –50% and +350%), ��= 0.5. 
� Most significant change in the design (up to –99% and +700%), ��= 1.0. 

The Results obtained by the CA approach, summarized in Table 5.1, 
show that larger step sizes require more basis vectors to achieve certain 
accuracy. For two-digit accuracy, only 3 vectors are needed for � = 0.1, 
whereas 4 vectors are needed for ��= 0.5 and 5 vectors are needed for 
�=1.0. 
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Fig. 5.1. Ten-bar truss 
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Table 5.1. Approximations of displacements by the CA method 

Number of basis vectors 2 3 4 5 Exact 
Solution 

��= 0.1 (large) 1.36 1.37   1.37 
 3.59 3.56   3.56 
 1.76 1.77   1.77 
 8.23 8.25   8.25 
 -2.06 -2.10   -2.10 
 8.62 8.65   8.65 
 -1.44 -1.45   -1.45 
 3.92 3.89   3.89 
��= 0.5 (very large) 0.50 0.52 0.52  0.52 
 1.53 1.46 1.49  1.49 
 0.71 0.76 0.77  0.77 
 3.56 3.63 3.64  3.64 
 -0.89 -0.98 -0.98  -0.98 
 3.77 3.87 3.89  3.89 
 -0.54 -0.55 -0.55  -0.55 
 1.70 1.64 1.62  1.62 
��= 1.0 (most significant) 0.28 0.29 0.29 0.30 0.30 
 0.90 0.84 0.88 0.90 0.90 
 0.41 0.45 0.47 0.49 0.49 
 2.10 2.17 2.19 2.21 2.21 
 -0.53 -0.61 -0.62 -0.60 -0.60 
 2.24 2.34 2.37 2.40 2.40 
 -0.30 -0.31 -0.31 -0.30 -0.30 
  1.01 0.95 0.93 0.90 0.90 

Example 5.2 

Originally, the CA approach was developed for reanalysis of structures 
where results from initial analysis are known. It is shown in this example 
how the approach can also be used in cases where the initial displacements 
are not available. The object is to find the unknown displacements r, 
where the known K is expressed in the form K = K0 + �K0, matrices K0, 
�K0 are to be defined, and r0 is unknown. Since results of previous analy-
sis are not available, one simple approach is to choose K0 as a diagonal 
matrix Kd consisting of the diagonal elements of K [see Eq. (4.6)]. As a re-
sult the displacements corresponding to the initial stiffness matrix K0 are 
uncoupled, given directly by r0 = (Kd)-1R0. In this case Kd might represent 
several substructures, which are completely different from the actual struc-
ture represented by K, as is shown in this example. Since the initial and the 
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modified displacements are of different nature, the CA procedure may re-
quire a large number of basis vectors to achieve accurate results. 

Consider again the ten-bar truss shown in Fig. 5.1, subjected to a single 
loading condition of two loads. The modulus of elasticity is 30 000 and the 
8 analysis unknowns are the horizontal and the vertical displacements at 
joints 1, 2, 3 and 4, respectively. The object is to analyze the structure for 
cross-sectional areas equal to unity. With the initial structure as repre-
sented by Kd, we have four different substructures with cross sections cor-
responding to the stiffness coefficients, as shown in Fig. 5.2. The initial 
displacements calculated by r0 = (Kd)-1R0 are given by 

T
0r = {0, 0, 0, 0, 0, 0.89, 0, 0.70}. (a)

 
1 2

100
3

100
4

 
Fig. 5.2. Four different substructures, representing the initial solution 

Table 5.2. Complete analysis by the CA approach 

Number of basis vectors 2 3 4 5 6 7 Exact 
solution 

r 0.45 0.45 2.25 2.32 2.30 2.34 2.34 
 2.30 4.84 5.50 5.64 5.56 5.58 5.58 
 -0.71 0.11 2.45 2.75 2.77 2.83 2.83 
 3.24 6.92 11.72 12.50 12.65 12.65 12.65 
 -0.89 -0.96 -3.06 -3.31 -3.24 -3.17 -3.17 
 3.96 7.41 11.88 13.10 13.13 13.13 13.13 
 0.00 -1.21 -2.58 -2.54 -2.50 -2.46 -2.46 
 3.14 5.17 6.33 5.99 6.00 6.01 6.01 
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The displacements obtained by considering various numbers of basis 
vectors are shown in Table 5.2. The results show that despite the very poor 
initial displacements, the CA procedure converges to the exact solution. 

5.2.2 Uncoupled Basis Vectors 

The Gram-Schmidt orthogonalization procedure, presented in Sect. 2.3.3, 
can be used to generate a new set of basis vectors such that the reduced set 
of analysis equations [Eq. (5.35)] becomes uncoupled with respect to K. 
This procedure has been used for nonlinear analysis [10] and linear re-
analysis of structures [11]. For any assumed number of basis vectors, the 
results obtained by considering the reduced set of equations, for either the 
original set of basis vectors or the new set of uncoupled vectors, are identi-
cal. The advantage in using the latter vectors is that all expressions for 
evaluating the displacements become explicit functions of the design vari-
ables. As a result, additional vectors can be considered without modifying 
the calculations that already were carried out for previous terms. In addi-
tion, the results obtained by the uncoupled basis vectors are more well- 
conditioned, particularly in problems of nonlinear analysis. 

It can be observed from Eq. (5.34) that the elements RijK  of the reduced 

stiffness matrix KR are given by  

j
T
iRijK rKr� . (5.37)

The object is to transform the reduced system of Eq. (5.35) into an uncou-
pled set of equations. This can be done by generating a set of new vectors 
Vi (i = 1, 2, ... , s), from the original vectors ri, such that for any two vec-
tors Vi and Vj 

ijj
T
i ��KVV , (5.38)

where ij�  is the kronecker delta, for which  

ij� = 0 (i� j)     1��ii . (5.39)

The vectors Vi and Vj are orthogonal with respect to K if the condition of 
Eq. (5.38) is satisfied. The new basis vectors, which are linear combina-
tions of the original vectors, are generated as follows. 

The first normalized vector V1 is chosen as 
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2/1
11

1
1 || rKr

rV T� . 
(5.40)

To generate the second normalized vector V2 we first define the non-
normalized vector 2V , which is a linear combination of V1 and r2, by 

122 VrV ��� , (5.41)

where �  is chosen such that the orthogonality condition of Eq.(5.38), 

012 �KVVT , (5.42)

is satisfied. Substituting Eq. (5.41) into the condition of Eq. (5.42) yields  

0111212 ���� KVVKVrKVV TTT . (5.43)

Since 111 �KVVT  [Eqs. (5.38), (5.40)], then Eq. (5.43) becomes 

12 KVrT�� . (5.44)

Substituting Eq. (5.44) into Eq. (5.41) gives 

� � 11222 VKVrrV T�� . (5.45)

Finally, normalizing 2V  we obtain the second normalized vector 

2/1
22

2
2 || VKV

VV T� . 
(5.46)

Additional basis vectors are generated in a similar way. The resulting gen-
eral expressions for all i = 2, ..., s vectors are 

� � j

i

j
j

T
iii VKVrrV �

�

�

��
1

1
, 

2/1|| i
T
i

i
i VKV

V
V � , 

(5.47)

where iV  and Vi are the ith non-normalized and normalized vectors. 
Now, we will show how the new basis vectors Vi are used to evaluate 

the displacements. It is observed [Eqs. (5.34), (5.38)] that, for the basis 
vectors Vi (i = 1, 2, ... , s), the diagonal elements of the new reduced stiff-
ness matrix equal unity and all other elements equal zero. That is, the new 
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reduced stiffness matrix is the identity matrix I. Define the matrix of new 
basis vectors VB and the vector of new coefficients z by 

VB = [V1 , V2 , ... , Vs], 

zT = {z1, z2, ... , zs}. 

(5.48)

Rather than the reduced system of Eq. (5.35), we have [see Eq. (5.34)]  

I z = z = RVT
B , (5.49)

where z is the vector of new coefficients, which can be determined directly 
by Eq. (5.49). Since this system is uncoupled, the final displacements are 
given by the explicit expression [see Eq. (5.36)] 

� �RVVzVr T
BBB �� . (5.50)

The displacements calculated by Eq. (5.50) can be expressed as an addi-
tively separable quadratic function of the basis vectors Vi by 

� �RVVr T
i

s

i
i�

�

�
1

. 
(5.51)

One advantage in using the new vectors is that all expressions for evalu-
ating the displacements are explicit functions of the original basis vectors 
and, therefore, might be explicit functions of the design variables. This can 
be seen from the following expressions:  

� The stiffness matrices �K, K and load vectors �R, R are often explicit 
functions of the design variables. 

� The vectors ri are explicit functions of �K and R [Eqs. (5.31), (5.32)]. 
� The vectors Vi are explicit functions of ri and K [Eqs. (5.40), (5.47)]. 
� The final displacements r are explicit functions of Vi and R [Eq. (5.51)]. 

Another advantage is that calculation of any new basis vector Vi leads to 
an additional term in the displacements expression [Eq. (5.51)]. As a re-
sult, additional vectors can be considered without modifying the calcula-
tions that already were carried out. 

It was found that the normalized vectors Vi are of similar magnitude, 
whereas the values of the zi coefficients of the vector z, and therefore the 
corresponding terms of the series of Eq. (5.51), are gradually decreased. 
That is, transformation of the binomial series terms [Eqs. (5.31), (5.32)] 
into the terms of the CA series [Eq. (5.51)] provides accurate solutions 
even in cases where the binomial series diverges. 
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In summary, calculation of the displacements for any assumed changes 
�K, �R, using the presented procedure, involves the following steps:  

� Generate the original basis vectors ri by the procedure described in Sect. 
5.2.1. 

� Generate the normalized basis vectors Vi. The first vector is [Eq. (5.40)] 

2/1
11

1
1 || rKr

rV T� . 
(5.52)

Additional vectors Vi (i = 2, ..., s) are generated by [Eqs. (5.47)] 

� � j

i

j
j

T
iii VKVrrV �

�

�

��
1

1
, 

2/1|| i
T
i

i
i VKV

VV � , 

(5.53)

where iV , Vi are the ith non-normalized and normalized vectors. 
� Evaluate the displacements r by [Eq. (5.51)] 

� �RVVr T
i

s

i
i�

�

�
1

. 
(5.54)

The accuracy of the results for any specific number of basis vectors, s, 
can be evaluated by several methods described later in Sect. 10.2. If the 
accuracy is insufficient, additional basis vectors are introduced and the up-
dated displacements are evaluated. Equations (5.53) and (5.54) show that 
additional vectors can be considered without modifying the calculations 
that were carried out already. 

Example 5.3 

Consider again the ten-bar truss shown in Fig. 5.1. The displacements ob-
tained by the CA approach, with the original basis vectors ri for various 
numbers of basis vectors, are summarized in Table 5.1. Considering the 
case of most significant changes in the design (��=1.0, up to –99% and 
+700%), Fig. 5.3a shows how the norm of the terms ri of the series of ba-
sis vectors (the binomial series) increases and the series diverges. Figure 
5.3b shows that the norms of the uncoupled basis vectors Vi are of similar 
magnitude and Figs. 5.3c, 5.3d show that the zi coefficients of the vector z 
and the norm of the CA terms, Vizi, gradually decrease and the series con-
verges as the number of basis vectors is increased. 
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  (a)     (b) 
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Fig. 5.3. Results for ��= 1  a. Norm of the original basis vectors ri   b. Norm of the 
uncoupled basis vectors Vi  c. Values of coefficients zi  d. Norm of the terms Vi zi 

Example 5.4 

The accuracy of low-order approximations (small number of basis vectors) 
might be insufficient for large changes in large-scale problems. In such 
cases a larger number of basis vectors might be needed to improve the ac-
curacy of the approximations. Results obtained by high-order approxima-
tions are presented in this example. The object is to illustrate the accuracy 
achieved by the CA approach for structures having different numbers of 
DOF and solved with various numbers of basis vectors. In all structures the 
design variables are the member cross-sectional areas and the initial areas 
equal unity. Many cases of random changes in the cross-sections were as-
sumed for each structure. The structures considered are as follows: 

� The 50-bar cantilever truss shown in Fig. 5.4a. 
� The 204-bar bridge truss shown in Fig. 5.4b. 
� 356-bar and 968-bar rectangular space trusses made up of the double-

layer segments shown in Fig. 5.4c, subjected to uniformly distributed 
loads and supported along the four edges. 
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   (a) 

 
 
   (b) 

P 2P P

 
 
   (c) 
 

 
Fig. 5.4. a. 50-bar truss  b. 204-bar truss  c. Segments of double-layer space truss 

Table 5.3. Numbers of basis vectors needed for maximum errors of 1% and 0.1% 

Structure Maximum error 1% Maximum error 0.1% 
50-bar truss 5-6 6-7 
204-bar truss 6-7 8-9 
356-bar truss 8-9 9-10 
968-bar truss 10-11 11-12 

 

The numbers of basis vectors needed for the various structures to limit 
maximum errors to 1% and 0.1% are shown in Table 5.3. It is observed 
that the difference in the numbers of basis vectors required for the two 
cases of errors is small. In addition, the number of vectors is not signifi-
cantly increased with the size of the structure. 

Example 5.5 

To illustrate changes in the geometry of the structure, consider the 130-bar 
truss shown in Fig. 5.5, having 10-stories and 3-bays, subjected to 10 hori-
zontal loads of 10.0. Two types of changes are considered: 
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Fig. 5.5. Initial geometry, 130-bar truss 
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Fig. 5.6. Modified geometries, 130-bar truss 
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Type a (Fig. 5.6a) 
The following modified values of X, defining the location of the 3rd col-
umn from the left relative to that of the 2nd column (X = 200 for the initial 
design): 

Case a1: X = 250 (increase of 25%). 
Case a2: X = 300 (increase of 50%). 
Case a3: X = 350 (increase of 75%). 

Type b (Fig. 5.6b) 
The following modified values of X, defining the location of the outer 
joints relative to the inner joints (X = 200 for the initial design): 

Case b1: X = 100 (decrease of 50%). 
Case b2: X = 50 (decrease of 75%). 

The maximum horizontal displacements at the top left joint, obtained by 
the CA approach for various numbers of basis vectors and exact solutions, 
are summarized in Table 5.4. The corresponding percentage errors are 
shown in Table 5.5. It is observed that the larger is the change in the ge-
ometry the more the number of basis vectors needed to achieve accurate 
results. Similar errors are obtained for other displacements for the truss. 

Table 5.4. Maximum horizontal displacements, 130-bar truss 

Change type   a  b  
Case  a1 a2 a3 b1 b2 
Basis vectors 2 14.06 13.12 11.42 13.37 10.67 
 3 14.26 13.61 12.68 15.28 13.22 
 4  13.82 13.33 15.61 15.31 
 5   13.52  15.99 
 6     16.18 
Exact solution  14.26 13.83 13.56 15.63 16.28 
 

Table 5.5. Errors [%] in maximum horizontal displacements, 130-bar truss 

Change type   a  b  
Case  a1 a2 a3 b1 b2 
Basis vectors 2 1.4 5.1 15.8 14.4 34.5 
 3 0.0 1.6 6.5 2.2 18.8 
 4  0.1 1.7 0.1 16.0 
 5   0.3    1.8 
 6       0.7 
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5.3 Topological Changes 

Developing a reanalysis approach for topological changes is most chal-
lenging, because the structural model is changed and the resulting response 
might be significantly different from the original response. Various ap-
proximate reanalysis methods are not suitable for such changes and pro-
vide inadequate or meaningless results. It is shown in this section that ac-
curate approximations can be achieved efficiently by the CA approach for 
significant changes in the topology. 

In cases where the number of degrees of freedom (DOF) is unchanged, 
the general solution procedure presented in Sect. 5.2 can be used for vari-
ous topological changes. This procedure can be used also in cases where 
members are deleted or added [12–14]. In this section the two basic cases 
of decreasing and increasing the number of DOF are considered. It is 
shown later in Chap. 8 that exact solutions can be obtained efficiently by 
the CA approach for low-rank topological changes in the stiffness matrix. 

5.3.1 Number of DOF is Decreased 

This case is encountered in many topological optimization problems where 
various members and joints are deleted from a ground structure consisting 
of numerous members and joints. As a result, the number of DOF and the 
corresponding number of analysis equations are decreased. 

The sizes of the stiffness matrix and the load vector are decreased ac-
cording to the number of joints deleted from the structure. The modified 
stiffness matrix and the modified load vector can be expressed as 

�
�

�
�
�

�
��

00
0K

KKK r=+ 00 , 
(5.55)
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��
0

R
RRR r=+ 00 , 

(5.56)

where K and R are the modified stiffness matrix and the modified load 
vector, respectively, of the complete set of equations, including  the origi-
nal degrees of freedom; and Kr and Rr are the stiffness sub-matrix and the 
load sub-vector, respectively, of the modified structure with the reduced 
number of DOF. Since some analysis equations become zero identities, 
stiffness analysis of the complete set of modified equations cannot be car-
ried out. The reduced set of equations to be solved is 
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Kr rr = Rr, (5.57)

where rr is now a reduced vector of modified displacements. Despite the 
reduction in the size of the stiffness matrix, the number of modified analy-
sis equations is often large and efficient reanalysis might prove useful. 

It should be noted that the resulting structure represented by Eq. (5.57) 
might be conditionally unstable, in which case the modified stiffness ma-
trix is singular and exact analysis cannot be carried out. The reduced stiff-
ness matrix KR used by the CA approach is often not singular even in cases 
where the modified stiffness matrix Kr is singular. Therefore, approximate 
reanalysis by the CA approach with a reduced number of unknowns may 
provide accurate results even when the modified structure is conditionally 
unstable. If the number of basis vectors considered is smaller than the 
number of DOF of the modified structure, the usual CA procedure might 
provide accurate results efficiently. 

Example 5.6 

Consider the nineteen-bar tower truss shown in Fig. 5.7 subjected to a sin-
gle loading condition of two concentrated loads. The modulus of elasticity 
is 10000 and the twelve analysis unknowns are the horizontal and the ver-
tical displacements at joints 2, 3, 4, 6, 7, and 8, respectively. With initial 
cross-sectional areas of unity and an initial nineteen-bar topology, the fol-
lowing three cases are solved by considering 0.001 (practically zero) cross-
section areas for the eliminated members (Fig. 5.8): 
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Fig. 5.7. 19-bar tower truss 
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a. Elimination of six members (Fig. 5.8a). 
b. Elimination of seven members (Fig. 5.8b). 
c. Elimination of nine members (Fig. 5.8c). 

The results shown in Table 5.6 indicate that high accuracy is achieved 
by the CA procedure with only 3 basis vectors (CA3) for these large topo-
logical changes. 

 
(a) (b) (c)

 
Fig. 5.8. Modified truss topologies 

Table 5.6. CA3 and Exact modified displacements, 19-bar truss 

  Case a  Case b  Case c 
Number CA3 Exact CA3 Exact CA3 Exact

1 0.49 0.48 0.78 0.76 0.71 0.70
2 0.27 0.26 0.21 0.21 0.32 0.32
3 1.57 1.58 2.07 2.09 * *

4 0.43 0.43 0.33 0.32 * *

5 2.88 2.88 3.61 3.62 3.53 3.53
6 0.48 0.48 0.35 0.32 0.54 0.53
7 0.50 0.50 0.72 0.70 * *

8 -0.27 -0.27 -0.32 -0.32 * *

9 1.54 1.54 2.00 2.03 1.97 1.98
10 -0.42 -0.43 -0.51 -0.53 -0.42 -0.43
11 2.93 2.93 3.64 3.65 3.62 3.62
12 -0.48 -0.48 -0.63 -0.64 -0.42 -0.43

* These displacements correspond to joints that are practically eliminated 
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5.3.2 Number of DOF is Increased 

If some members and joints are added to the structure, the number of DOF 
is increased, the number of analysis equations is changed, and the sizes of 
the stiffness matrix and the load vector are increased accordingly. Several 
procedures have been proposed to solve this problem [e.g. 15–18]. The 
procedure presented in this section, which is based on the CA approach, 
can be used to calculate the modified displacements efficiently [16]. 

Let us define the augmented stiffness matrix KA and the augmented load 
vector RA, with the increased number of DOF, by 

�
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�

�

00
0K

K 0=A         
�
�
�

�
 
!

0
R

R 0=A . 
(5.58)

Upon increasing the number of DOF, the matrix of changes �K0 and the 
vector of changes �R0 can be expressed in terms of corresponding sub-
matrices and sub-vectors as 
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(5.59)

where �K00, �R00 are the changes in stiffness coefficients and in the loads, 
respectively, corresponding to the original DOF; �KNN, �RNN are the 
changes corresponding to the new DOF; and �K0N, �KN0 are the changes 
in the coefficients corresponding to both the original and the new DOF. 

The modified stiffness matrix and the modified load vector are given by 

K = KA + �K0     R = RA + �R0, (5.60)

where the new degrees of freedom are included in the set of modified 
analysis equations. The number of added DOF is usually small, compared 
with the original number of DOF.  

Upon increasing the number of DOF, it is necessary first to establish a 
Modified Initial Analysis (MIA), such that the new degrees of freedom are 
included in the analysis model. For the augmented stiffness matrix and the 
augmented load vector [Eqs. (5.58)], the MIA model can be selected such 
that reanalysis will be convenient. Once the MIA is established, it is then 
possible to analyze structures modified due to addition or deletion of 
members, keeping the number of degrees of freedom unchanged.  

The MIA is established as follows. The matrix of changes in the stiff-
ness �K0 is expressed first as a sum of the matrices �KA and �KN by 

�K0 = �KA + �KN. (5.61)
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These two matrices are defined in such a way that the modified initial 
analysis is easy to carry out. The modified initial stiffness matrix KM is ex-
pressed as 

KM = KA + �KA. (5.62)

Matrices �KA and �KN are defined as 
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(5.63)

where � is a scalar multiplier to be selected (0 < � �  1). Substituting the 
expressions of KA and �KA [Eqs. (5.58), (5.63)] into Eq. (5.62) yields 
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(5.64)

The rationale of this selection is that, once the decomposed form of Eq. 
(4.2) is available, factorization of the modified initial stiffness matrix KM, 

KM = T
MU UM, (5.65)

is straightforward. Specifically, matrix UM can be expressed as 
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U 00 , 

(5.66)

where the elements of matrix U0 are already given. That is, the rows and 
columns corresponding to the original degrees of freedom are unchanged 
and only rows and columns corresponding to the new degrees of freedom 
are calculated. In general the number of added DOF is small, and the fac-
torization of Eq. (5.65) involves a small computational effort. 

Concerning the selected value of �" it is observed that ��= 1 yields 
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(5.67)

One drawback of this selection is that matrix KM is not necessarily positive 
definite and the factorization of Eq. (5.65) might not be possible. In such 
cases we can use the symmetric factorization 
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KM = LM
 DM

T
ML , (5.68)

where LM is a lower triangular matrix and DM is a diagonal matrix. How-
ever, matrix KM might not represent a real structure and the accuracy of the 
approximations might deteriorate.  

In the presented procedure this difficulty is overcome by selecting a 
small � value such that matrix KM [Eq. (5.64)] is a good approximation of 
the matrix KA + ��K0 [since ���K00 << K0, see Eqs. (5.58), (5.59)].  

In summary, the solution procedure involves the following two stages. 

� The modified initial analysis (MIA) is established. Assuming a small � 
value, we calculate and factorize the matrix KM [Eqs. (5.64), (5.65)]. 
Since the decomposed form of Eq. (4.2) is available, this operation 
involves a small computational effort. The modified initial 
displacements rM are then calculated by solving 

KM rM = R. (5.69)

This calculation involves only forward and backward substitutions. 
� Once the vector rM has been determined, the displacements due to the 

remaining changes in the stiffness matrix �KN [Eq. (5.63)] are 
calculated by solving the modified equations 

K r = (KM + �KN) r = R. (5.70)

The CA approach described in Sect. 5.2 can be used for this purpose, 
with rM, KM, UM, R replacing r0, K0, U0, R0 as initial values. 

Example 5.7 

To illustrate reanalysis for the case of addition of members and joints, con-
sider the initial six-bar truss shown in Fig. 5.9a. The six analysis un-
knowns are the horizontal and the vertical displacements at joints 1, 2 and 
3, respectively. The initial values r0, U0 are given by 

 
(b)(a)

1 1

2 23 3

4 4

 
Fig. 5.9. a. Six-bar truss, initial topology  b. Modified topology 
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T
0r = {1.20, 11.59, –4.80, 20.98, –3.60, 10.39}, (a)
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(b)

Assume addition of one joint and four members to obtain the ten-bar truss 
shown in Fig. 5.9b. Reanalysis is carried out in the following two stages:  

� The Modified Initial Analysis (MIA) is carried out. Selecting ��= 0.001, 
the initial decomposed stiffness matrix is given by UM [Eq. (5.66)], 
where U0 is already given as above. Thus, we calculate only the sub-
matrices U0N, UNN to obtain 
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(c)

For the UM found from Eq. (5.66), calculation of the modified initial 
displacement vector rM by Eq. (5.69) involves only forward and back-
ward substitutions. The result is 

T
Mr ={1.22, 11.74, –4.87, 21.28, –3.65, 10.52, 2.44, 20.06}. (d)

It is observed that, due to the small change in stiffness the displacements 
of the original degrees of freedom have changed only slightly.  

� The displacements due to the remaining changes in the stiffness matrix 
�KN are calculated. Employing the CA procedure described in Sect. 5.2, 
with rM, KM, UM, R replacing r0, K0, U0, R0, respectively, as initial 
values, we achieve the exact solution with only three basis vectors 

rT ={2.34, 5.58, –3.17, 13.13, –2.46, 6.01, 2.82, 12.65}. (e)
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5.4 Nonlinear Analysis and Reanalysis 

5.4.1 Problem Formulation 

In the full Newton-Raphson procedure, the main computational effort is in-
volved in calculations and factorizations of the tangent stiffness matrix. 
These calculations must be repeated at each iteration cycle. In the Newton-
Raphson incremental-iterative procedure we assume that the solution at the 
time t is known, where time represents the load-level step. The incremental 
displacements �r(k) at the current iteration cycle and time t+�t are calcu-
lated by solving the set of equations [Eq. (1.83)] 

t+�tK(k-1) �r(k) = t+�tR0 – )1( ��� k
I

tt R =��R(k-1). (5.71)

The superscript (k-1) denotes values calculated according to the displace-
ments at the end of the previous iteration cycle, the superscript (t+�t) 
represents the current load level, t+�tK(k-1) is the current tangent stiffness 
matrix, t+�tR0 is the vector of external forces, )1( ��� k

I
tt R  is the vector of in-

ternal forces and �R(k-1) is the out-of-balance (residual) force vector. 
In the modified Newton-Raphson procedure, the tangent stiffness matrix 

is calculated and factorized only at the beginning of each load increment, 
in order to save calculation and factorization of a new matrix at each itera-
tion cycle. Using this procedure, we obtain the following set of equations 
[Eq. (1.93)] 

�K �r(k) = t+�tR0 – )1( ��� k
I

tt R , (5.72)

where matrix �K corresponds to equilibrium at the end of the previous in-
crement. A requirement for the solution method is its ability to overcome 
various numerical problems associated with different types of behavior. 

Consider the full Newton-Raphson procedure and assume, for simplicity 
of presentation, the notation, 

KT = t+�tK(k-1)       �R = �R(k-1)        �r = �r(k), (5.73)

where KT is the tangent stiffness matrix, �R is the vector of unbalanced 
forces and �r is the vector of incremental displacements. Substituting Eqs. 
(5.73) into Eq. (5.71), the vector �r is calculated at each iteration cycle by 
solving the set of equations 

KT �r = �R. (5.74)

Consider a positive-definite reference stiffness matrix Kref , which is the 
tangent stiffness matrix calculated at some previous step. Matrix Kref might 
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represent, for example, the tangent stiffness matrix at the end of the previ-
ous increment Kref = �K, the elastic stiffness matrix Kref = K0, or another 
choice. We assume that matrix Kref is given in the decomposed form 

Kref = T
refU Uref, (5.75)

where Uref is an upper triangular matrix. Passing a limit point, the stiffness 
matrix may become non-positive-definite and Eq. (5.75) cannot be used. In 
such cases the LDLT factorization can be considered, where L is a lower-
triangular matrix and D is a diagonal matrix.  

Expressing the current tangent stiffness matrix KT in terms of Kref and 
the matrix of changes �K 

KT = Kref + �K, (5.76)

and substituting Eq. (5.76) into Eq. (5.74), we obtain the set of equations 
to be solved at each iteration cycle 

KT �r = (Kref +�K) �r = �R. (5.77)

It has been noted in Sect. 4.2.2 that the definition of matrix �K depends 
on the type of problem to be solved. Specifically, we distinguish between 
the following two problems of nonlinear analysis and reanalysis: 
� The general case of nonlinear reanalysis of a modified structure, where 

matrix �K is expressed in terms of the following two types of changes 

�K = �KNL + �K0. (5.78)

 Matrix �KNL represents the changes in the stiffness matrix due to the 
nonlinear behavior and it is usually calculated at each iteration cycle. 
Matrix �K0 represents the changes in the stiffness matrix due to design 
considerations and it is constant for any given modified design. In 
nonlinear reanalysis of a modified structure we assume that Kref is 
known from nonlinear analysis of the original structure. It should be 
noted that the present formulation is suitable also for situations where 
�K is not calculated explicitly. Rather, we can calculate �K at each 
iteration cycle from [Eq. (5.76)] �K = KT  – Kref. 

� The particular case of nonlinear analysis of the original structure, 
where �K0 = 0 and �K = �KNL. That is, matrix �K represents only 
changes due to the nonlinear behavior of the structure. Choosing, for 
example, Kref = K0 then the resulting matrix of changes �K = KT – K0 is 
the geometric stiffness matrix KG. 
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5.4.2 Solution by Combined Approximations 

Consider the general case of nonlinear reanalysis of a modified structure (a 
similar procedure is used for nonlinear analysis of the original structure). 
Given matrix Kref in the decomposed form of Eq. (5.75), calculation of the 
incremental displacements �r for any KT and �R at each iteration cycle by 
the CA approach involves the following steps: 

� Calculate the matrix of changes �K = �KNL + �K0 = KT – Kref. Again, 
the elements of �K0 are constant for any assumed change in the design 
whereas the elements of �KNL are changed at each iteration cycle. 

� Calculate the the n�s matrix of basis vectors basis vectors rB  

rB = [r1, r2, ..., rs], (5.79)

where the basis vectors r1, r2, ..., rs are calculated by  

r1 = 1�
refK �R, (5.80)

 

ri = –B ri-1      (i = 2, ..., s), (5.81)

and matrix B is defined as 

B � 1�
refK �K. (5.82)

 Again, since Kref is given in a decomposed form [Eq. (5.75)], calculation 
of the basis vectors involves only forward and backward substitutions. 

� Calculate the reduced stiffness matrix KR  and load vector RR by  

BT
T
BR rKrK �      RrR �� T

BR . (5.83)

� Calculate the unknown coefficient  y by solving the reduced set 

KR y = RR. (5.84)

Since the number of basis vectors s is much smaller than the number of 
degrees of freedom n, it is necessary to solve only the smaller s�s 
system in Eq. (5.84) for y instead of solving the large n�n system in Eq. 
(5.77). To improve the accuracy of the results, uncoupled basis vectors 
can be used (see Sect. 5.2.2), instead of solving Eq. (5.84) 

� Evaluate the displacements �r in Eq. (5.77) by the linear combination 

�r = y1r1 + y2r2 + ... + ys rs = rB y. (5.85)

The solution process can be repeated for various changes in the design 
as necessary, with the initial decomposed Kref being unchanged. 
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Example 5.8 

Consider again the two-bar truss presented in example 1.3 and shown in 
Fig. 5.10. The object is to illustrate the solution steps by the CA approach 
for the two cases discussed earlier in Sect. 5.4.1, namely: 

� the particular case of nonlinear analysis of the original structure; and 
� the general case of nonlinear reanalysis of a modified structure. 

Since there are only two DOF, consideration of two basis vectors by the 
CA approach will provide the exact solution of the equations. 

Nonlinear Analysis of the Original Structure. Choosing Kref as the elastic 
stiffness matrix we first calculate the initial displacements r0 [Eq. (1.56)],  
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For the first iteration cycle we calculate �R, KT [Eqs. (1.62), (1.65)] 
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The object now is to demonstrate solution of the modified equations [Eq. 
(5.77)] at the first iteration cycle by the CA approach. The matrix of basis 
vectors rB is calculated by Eqs. (5.79) – (5.82) 
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Fig. 5.10. Two-bar truss 
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The reduced stiffness matrix KR  and load vector RR are [Eqs. (5.83)] 
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Finally, the multipliers y and the resulting incremental displacements �r 
for the first iteration cycle are [Eqs. (5.84), (5.85)] 
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As noted earlier, this is the exact solution of the modified equations for the 
first iteration cycle (see results of the first iteration in Table 1.1). 

Nonlinear reanalysis of a modified structure. Assuming Kref = K0 and a 
reduction of 50% in the cross section areas, the tangent stiffness matrix for 
the first iteration cycle is calculated by [Eqs. (5.76), (5.78)] 
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The out-of-balance forces are given by 
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Assuming two basis vectors, the matrix of basis vectors rB is calculated by 
Eqs. (5.79) – (5.82) 
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Finally, the multipliers y and the resulting incremental displacements �r 
for the first iteration cycle are [Eqs. (5.84), (5.85)] 
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Again, since the number of basis vectors is equal to the number of DOF, 
this is the exact solution of the modified equations for the first iteration cy-
cle. Using r(k) = r(k-1) + �r(k), the solution converges very fast as follows 
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5.4.3 Procedures for Analysis and Reanalysis 

Nonlinear Analysis of the Original Structure 

During nonlinear analysis of the original structure, the frequency of as-
sembling and factorizing the tangent stiffness matrix depends on the solu-
tion scheme. In the full Newton-Raphson procedure we factorize the ma-
trix at each iteration cycle, whereas in the modified Newton-Raphson 
procedure we factorize it at the beginning of each load increment. In this 
section, several solution procedures that are based on the CA approach are 
presented. The procedures differ in the strategies for choosing matrices 
Kref, ����K and rB. As a result, the expected efficiency and accuracy of the 
approximations is also different. 

The matrix �K is defined as [Eq. (5.76)] 

�K = KT – Kref, (5.86)

where KT is the current tangent stiffness matrix and Kref is a stiffness ma-
trix from a certain solution step preceding the current step, given in the de-
composed form of Eq. (5.75). We may start with the initial (elastic) stiff-
ness matrix Kref = K0, and then consider various possibilities for updating 
Kref. Evidently, any strategy for this update directly influences the accu-
racy of the results and the efficiency of the solution process. Once matrix 
Kref is chosen and factorized, the matrix of changes ����K and the matrix of 
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basis vectors rB are determined accordingly for subsequent iteration cycles. 
It should be noted that frequent updates of Kref improves the accuracy of 
the results at the expense of additional computational effort, because each 
update involves factorization of the corresponding tangent stiffness matrix.  

As to the nature of matrix ����K, it has been noted that in nonlinear analy-
sis of the original structure �K = �KNL, that is, �K represents only 
changes due to the nonlinear behavior of the structure. The accuracy of ����K 
depends on the accuracy of matrices KT and Kref [Eq. (5.86)]. Thus, im-
proving the accuracy of both matrices might lead to more effective ap-
proximations in terms of accuracy and efficiency. In material nonlinearity 
the changes in the stiffness matrix are often of local nature. When yielding 
occurs in a structural element, only the stiffness coefficients related to that 
element are changed. In that sense, material nonlinearity is similar to linear 
reanalysis for local changes in the design. It has been shown [19] that in 
such cases exact or near exact solutions can be achieved with a small num-
ber of basis vectors. On the other hand, in geometric nonlinearity, the 
changes in the geometry are often of global nature.  

Another factor that may significantly contribute to the computational ef-
fort is the update of matrix rB. It is observed [Eqs. (5.80), (5.81)] that for 
any given factorization of Kref [Eq. (5.75)] the basis vectors depend on ma-
trix �K and on the residual force vector �R. Since both �K and �R are 
modified at each iteration cycle, it might be more efficient to update the 
basis vectors only after several iteration cycles.  

Various possibilities for updating matrices Kref, KT, �K, rB have been 
proposed and examined in terms of accuracy and efficiency [19], including 
the following strategies: 

� Strategy A. Matrix Kref is the tangent stiffness matrix at the beginning of 
an increment, matrices KT, �K, rB are updated at each iteration cycle. 

� Strategy B. Matrix Kref is updated every few increments, matrices KT, 
�K, rB are updated at each iteration cycle. 

� Strategy C. Matrix Kref is the initial stiffness matrix K0, matrices KT, 
�K are updated at each increment and matrix rB is updated at each 
iteration cycle. 

� Strategy D. Matrix Kref is the initial stiffness matrix K0, matrices KT, 
�K are updated at each increment and matrix rB is updated every few 
iteration cycles. 

Solution by some of these strategies is demonstrated later in this section 
by numerical examples. 
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Nonlinear Reanalysis of Modified Structures 

The procedures presented in this section are intended to reduce the num-
ber of matrix factorizations during nonlinear reanalysis. The object is to 
evaluate the response under incrementally applied loads after changes in 
the structure properties due to various design modifications. The presented 
procedures are suitable for multiple successive design modifications, 
which might be necessary in various applications (e.g. design optimiza-
tion, structural damage analysis, probabilistic analysis). It is recognized 
that various approximations considered in nonlinear analysis may result in 
inaccurate or inefficient solutions, and even divergence or incorrect re-
sults. The object in this section is to demonstrate the performance of some 
reanalysis procedures in terms of both accuracy and efficiency. In the pro-
cedures presented we assume that the factorized matrix Kref  is calculated 
(once, or more) only for the original structure. 

Using the CA approach, we start with nonlinear analysis of the original 
structure and calculate M factorized tangent stiffness matrices (M is for ex-
ample the number of load increments) chosen as reference matrices mKref 
(m=1,2,...,M). Having calculated mKref, the following two options for 
choosing the appropriate reference increment are considered [19]: 

� Option 1 – load resemblance. The reference increment is related to the 
current load intensity, that is tR0 � mRref. It is assumed in this case that 
the load distribution does not change significantly, thus choosing the 
appropriate increment is rather simple. 

� Option 2 – displacement resemblance. The reference increment is 
related to the current displacement field, that is tr � mrref. The most 
similar displacement vector can be found according to a particular 
significant displacement or as the reference displacement vector having 
the smallest angle with the current displacement vector. 

Noting that �K = ����KNL + ����K0 [Eq. (5.78)], the entries in ����KNL for op-
tion 1 might be mainly functions of the displacements, because Kref  repre-
sents load resemblance. On the other end, the entries for option 2 might be 
mainly functions of the internal forces because Kref represents displace-
ment resemblance. As a result, option 1 is more suitable for cases where 
the nonlinearity is mostly dominated by forces whereas option 2 is suitable 
for cases where the nonlinearity is dominated by displacements. 

Different numerical examples have been solved considering the various 
options and strategies presented. Some small scale examples are demon-
strated in this section. The accuracy of the results is discussed in the next 
sub-section and in Sect. 10.2. The efficiency of the calculations for large-
scale structures is examined in Sect. 10.1. 
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Accuracy Considerations 

Various examples of nonlinear analysis have shown that high accuracy can 
be achieved by the procedures presented in this section for both material 
nonlinearity (MNL) and geometric nonlinearity (GNL). Convergence of 
the procedures is assumed when consideration of additional basis vectors 
does not improve the quality of the results. 

The high accuracy achieved for MNL is due to the local nature of the 
changes in the structure. Very efficient results have been achieved in MNL 
examples, where the stiffness matrix is factorized only once during the so-
lution process. In some examples the average size of the errors is reduced 
consistently when considering additional basis vectors. The high accuracy 
achieved for GNL is due to the smooth nature of the problem formulation.  

In some examples, increase in the number of basis vectors considered 
does not improve the accuracy of the results. It was found that in such 
cases the basis vectors become close to linearly dependent as their number 
is increased. One possible solution is to calculate the angles between the 
basis vectors and avoiding those vectors for which their angle relative to a 
previous vector is close to zero. Another possible criterion is the condition 
number of the reduced stiffness matrix. When this number is high the ma-
trix becomes ill-conditioned. Various topics related to accuracy considera-
tions are discussed later in Sect. 10.2. 

Example 5.9 

Consider the simple frame shown in Fig. 5.11, having 30 co-rotational 
beam elements. Using [kN, m] units, the reference load is P=1000, the 
cross-section area is 0.007548, the moment of inertia is 1.29 10-4 and the 
modulus of elasticity is 206 850 000. The object is to demonstrate results 
for both geometric nonlinear analysis and reanalysis  

Analysis of the original structure. Assuming automatic load incrementa-
tion up to a maximum load factor of � = 20, we evaluate the nonlinear re-
sponse using strategies A and B with 2–6 basis vectors (CA2–CA6). The 
results are compared with the Full Newton-Raphson (FNR) and the Modi-
fied Newton-Raphson (MNR) procedures. For strategy B the stiffness ma-
trix is factorized at the beginning of every second increment.  

All the above procedures provide identical results for � = 20 (Fig. 5.12). 
The horizontal displacement at the top left corner is 2.0921 and the mo-
ment at the left base is 34855. The resulting numbers of factorizations, in-
crements and iteration cycles are shown in Table 5.7. The following obser-
vations are made: 
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� For strategy A, the numbers of matrix factorizations required by the CA 
approach are 21%–34% of the numbers required by the FNR procedure. 
For the more efficient strategy B, these numbers are only 15%–21%. 

� Using automatic incrementation, the numbers of increments required by 
the CA approach are significantly smaller than those required by the 
MNR procedure and similar to those required by the FNR procedure. 

� Increasing the number of basis vectors, the numbers of CA iteration 
cycles are reduced, due to the more accurate problem formulation. 

 
Fig. 5.11. Frame example, geometric nonlinear analysis and reanalysis 
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Fig. 5.12. a Deformed frame  b. Displacement at top-left corner 

Table 5.7. Results, geometric nonlinear analysis 

Result Strategy CA2 CA3 CA4 CA5 CA6 MNR FNR 
Relative number A 0.339 0.304 0.304 0.214 0.214 0.589 1.000 
of factorizations B 0.214 0.161 0.179 0.152 0.152 0.536 1.000 
Increments A 19 17 17 12 12 33 18 
 B 24 18 20 17 17 60 18 
Iteration cycles A 174 150 122 57 47 383 56 
 B 261 187 193 137 136 702 56 
Iterations per  A 9.16 8.82 7.18 4.75 3.92 11.61 3.11 
increment B 10.88 10.39 9.65 8.06 8.00 11.70 3.11 
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Reanalysis of modified structures. The following two cases have been 
solved by the CA4, CA5 and FNR procedures: 

� Case 1. The cross sectional areas and moments of inertia of the columns 
are increased by 100% and those of the beam are decreased by 50%. 
The maximum load factor is 25. 

� Case 2. The cross sectional areas and moments of inertia of the columns 
are decreased by 50% and those of the beam are increased by 100%. 
The maximum load factor is 12. 

It was found that, in general, option 2 showed better performance in 
terms of accuracy and efficiency. Table 5.8 and Fig. 5.13 show that accu-
rate results are achieved using this option for CA4 and CA5. Again, in-
creasing the number of basis vectors, the numbers of iteration cycles are 
reduced. Solution by the FNR procedure involves less iteration cycles at 
the expense of more matrix factorizations. 

Table 5.8. Results, geometric nonlinear reanalysis, option 2 

  Case 1   Case 2  
Result FNR CA4 CA5 FNR CA4 CA5 
Top left displacement 1.85 1.85 1.85 2.0555 2.0555 2.0555 
Left base moment  45450 45450 45450 19305 19305 19305 
Increments 18 21 19 16 19 17 
Iteration cycles 49 98 68 51 120 92 
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Fig. 5.13. Load factor versus top horizontal displacement, option 2: 
a. case 1, CA4  b. case 1, CA5  c. case 2, CA4      d. case 2, CA5 



5.4 Nonlinear Analysis and Reanalysis      157 

Example 5.10 

To demonstrate snap-through of a shallow arch, consider the classic ex-
ample shown in Fig. 5.14. The geometric and material properties are taken 
from [20]. The half-arch is modeled with 5 co-rotational beam elements 
and 14 DOF. Using [lb, inch] units the modulus of elasticity is 107, the 
cross sectional area is 0.32 and the moment of inertia is 1.0. The reference 
load P/2 = 200 is applied by automatic load incrementation up to a maxi-
mum load factor of � = 20. The nonlinear analysis of this example might 
involve accuracy difficulties due to the limit points and non-positive-
definite stiffness matrix. The object is to demonstrate the accuracy 
achieved by the CA approach considering strategy A and only two basis 
vectors (CA2). The first increment has a small prescribed displacement 
and the initial arc length is calculated according to this displacement. The 
stiffness matrix is factorized only at the beginning of each increment. The 
apex displacement obtained by CA2 is in good agreement with the results 
obtained by the FNR procedure and a commercial code [20, 21], as shown 
in Fig. 5.15. 

 

Fig. 5.14. Shallow arch example, snap-through nonlinear analysis 
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Fig. 5.15. Load factor versus displacement at apex 
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6 Vibration Reanalysis 

It has been noted that in dynamic analysis by mode superposition, the main 
computational effort is spent in the solution of the eigenproblem. Since ex-
act solution of the problem can be prohibitively expensive, approximate 
solution techniques have been developed, primarily to calculate the lowest 
eigenvalues and corresponding eigenvectors [1–3]. Several studies have 
been published on eigenvalue reanalysis, where the object is to calculate 
only the modified eigenvalues [e.g. 4–6]. Other studies deal with eigen-
problem reanalysis, or vibration reanalysis, where the object is to calcu-
late both the modified eigenvalues and eigenvectors [e.g. 7, 8]. Vibration 
reanalysis is needed in various problems of structural analysis, design and 
optimization. Different reanalysis methods, which have been used for lin-
ear static analysis, are usually not suitable for vibration reanalysis.  

In this chapter effective procedures for vibration reanalysis, based on 
the CA approach, are developed. Using these procedures, significant im-
provements in the accuracy of the results and the efficiency of the calcula-
tions can be achieved [9–12]. 

In Sect. 6.1 vibration reanalysis by the CA approach is introduced. The 
approximate reduced eigenproblem is formulated and procedures for de-
termining the basis vectors are developed. Various means intended to im-
prove the accuracy of the results are developed in Sect. 6.2. The proce-
dures presented, which improve the quality of the basis vectors, include 
Gram-Schmidt orthogonalizations of the approximate modes, shifts of the 
basis vectors and Gram-Schmidt orthogonalizations of the basis vectors. A 
general solution procedure for vibration reanalysis is presented in Sect. 6.3 
and various numerical examples are demonstrated in Sect. 6.4. In Sect. 6.5 
it is shown how the CA approach can be used to improve the solution effi-
ciency when various common iterative procedures for eigenproblem analy-
sis are considered. These iterative procedures, formulated as reanalysis 
problems in Sect. 4.3.2, include inverse iteration, inverse iteration with 
shifts and subspace iteration. 
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6.1 The Reduced Eigenproblem 

6.1.1 Problem Formulation 

Consider the given initial values K0, M0, and the initial eigenpairs �0, 0� , 
known from solution of the initial eigenproblem [Eq. (4.28)] 

K0 0� =��0 M0 0� . (6.1)

For simplicity of presentation, the subscript i denoting the ith mode is 
omitted. Assume a change in the design and corresponding changes �K0 
and �M0 in the stiffness and mass matrices such that the modified matrices 
are [Eqs. (4.29), (4.30)] 

K = K0 + �K0         M = M0 + �M0. (6.2)

The modified analysis equations to be solved are 

K� =�� M� . (6.3)

Substitution of Eq. (6.2) into Eq. (6.3), the problem can be expressed as 

(K0 + �K0)� = � M� . (6.4)

Thus, the reanalysis problem under consideration is to evaluate efficiently 
and accurately the modified eigenpairs �, � , due to various changes in the 
design, such that the modified equations (6.4) are satisfied.  

Similar to linear static reanalysis, we assume that the mode shape �  of 
a new design can be approximated by a linear combination of pre-selected 
s linearly independent basis vectors r1, r2, ..., rs  

� = y1r1 + y2r2 + ... + ysrs = rB y, (6.5)

where s is much smaller than the number of degrees of freedom n, rB is the 
n�s matrix of the basis vectors and y is a vector of unknown coefficients 

rB = [r1, r2, ..., rs], (6.6)
 

yT = {y1, y2, ... , ys}. (6.7)

The modified equations (6.3) are now approximated by a smaller system 
of equations in the new unknowns y. Substituting Eq. (6.5) into Eq. (6.3) 
and pre-multiplying the resultant equation by T

Br  gives the s�s system 

yrMryrKr B
T
BB

T
B �� . (6.8)

Introducing the notation 
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B
T
BRB

T
BR rMrMrKrK ��           , (6.9)

and substituting Eq. (6.9) into Eq. (6.8), the reduced eigenproblem be-
comes 

yMyK RR �� . (6.10)

The s�s matrix KR is full but is symmetric and much smaller in size than 
the n�n matrix K. That is, rather than computing the exact solution by 
solving the large n�n system in Eq. (6.3), we first solve the smaller s�s 
system in Eq. (6.10) for the first eigenpair �1, y1. Then we evaluate the first 
mode shape � for the computed y1 by Eq. (6.5). A similar procedure is 
used to evaluate higher eigenpairs, as will be shown later in this chapter. 

6.1.2 Determination of the Basis Vectors 

The basis vectors can be determined in several different ways. One possi-
bility is to pre-multiply the modified equations (6.4) by 1

0
�K  to obtain 

(I + B)� = r1, (6.11)

where r1 and B are defined as 

r1 = 1
0
�K � M� , (6.12)

 

B = 1
0
�K �K. (6.13)

Pre-multiplying Eq. (6.11) by (I + B)-1 and expanding 

(I + B)-1 ��I – B + B2 – ..., (6.14)

we obtain the binomial series  

� = (I – B + B2 – ... ) r1. (6.15)

Similar to static reanalysis, the terms of Eq. (6.15) could be assumed as 
basis vectors, with the first basis vector given by Eq. (6.12). However, 
since r1 is unknown it is convenient to consider the known expression, 

r1 = 1
0
�K �0 M ����0 = 1

0
�K R0, (6.16)

as the first basis vector r1, with R0 defined as 

R0 = �0 M 0� . (6.17)
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Since multiplication of a basis vector by a scalar does not affect the results 
[only the corresponding y is changed, Eq. (6.5)], we can drop �0 from the 
expression of r1. It is instructive to note that for M = M0 the first basis vec-
tor is simply the initial mode shape r1 = 0� . 

Similar to static reanalysis, the additional basis vectors are calculated 
successively by 

ir = –B ri-1      (i = 2, ..., s). (6.18)

The basis vectors ir  can then be normalized in several different ways. One 
possibility to do that is to divide ir  by an arbitrary reference element, 

	 
iref r , e.g. the largest element, to obtain the normalized basis vector 

	 
i
i

i ref r
rr � . 

(6.19)

These normalizations are useful in cases of large changes in the design 
(large �K), when the elements of the basis vectors may become very large. 

Alternatively, the basis vectors can be determined as follows. Rearrang-
ing Eq. (6.4), dropping the eigenvalue � and writing the resulting equation 
as a recurrence relation, we obtain 

100 )( ����� ii rMKrK . (6.20)

Denoting 

)(1
0 MKKC ��� � , (6.21)

we can calculate the basis vectors successively by 

1��� ii rCr        i = 2, ..., s, (6.22)

where the first basis vector is chosen as the initial mode shape 0�  

r1 = 0� . (6.23)

It is observed that the expression of the recurrence relation [Eq. (6.22)] is 
similar to the expression of the inverse iteration [Eq. (2.46)]. One differ-
ence is that, for the expression of Eq. (6.22), once the initial stiffness ma-
trix has been factorized by K0 =

T
0U U0, it can be used for calculation of the 

basis vectors for any modified design. Again, calculation of each basis 
vector by Eq. (6.22) involves only forward and backward substitutions. On 
the other hand, for the expression of Eq. (2.46), the modified stiffness ma-
trix K must be factorized repeatedly for each change in the design. 
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It can be observed that for M = M0 both methods of Eq. (6.18) and Eq. 
(6.22) provide identical results. In other cases, still similar results have 
been obtained [10, 12]. 

6.2 Improved Basis Vectors 

For illustrative purposes, consider again the procedure of Eqs. (6.16) – 
(6.18) for determining the basis vectors, and assume the normalization of 
Eq. (2.47). We obtain for the first basis vector 

1r  = 1
0
�K M 0� , (6.24)

 

	 
 2/1
11

1
1

rMr

rr
T

�
�

, 
(6.25)

where 1r
�  and 1r  are the normalized and non-normalized vectors, respec-

tively. Additional non-normalized and normalized basis vectors are calcu-
lated by 

ir   =� –B 1�ir� , (6.26)
 

	 
 2/1
i

T
i

i
i

rMr

rr �
�      i =2, 3, . . , s. 

(6.27)

It was found [10, 12] that high accuracy is achieved by this procedure 
for the first mode shape with a small number of basis vectors, even for 
very large changes in the design. Less accurate results might be obtained 
for the higher mode shapes. In this section, several procedures intended to 
improve the basis vectors, in order to achieve higher accuracy of the re-
sults, are introduced. 

6.2.1 Gram-Schmidt Orthogonalizations of the Modes 

The accuracy can be significantly improved with a small computational ef-
fort by using vector deflation, as described in Sect. 2.3.3. The basis of vec-
tor deflation is that in order to converge to a required eigenvector, the basis 
vectors must not be orthogonal to it. If the basis vectors are orthogonal-
ized, with respect to M, to the eigenvectors already calculated we elimi-
nate the possibility that the solution converges to any one of them. To im-
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prove the accuracy of the results in calculation of the higher mode shapes, 
we use Gram-Schmidt orthogonalizations of the approximate mode shapes. 
Assume for example that we have calculated the first m eigenvectors and 
we want to M-orthogonalize 1�m�  to these eigenvectors. For this purpose, 
we M-orthogonalize the basis vector ir�  of 1�m�  to the lower eigenvec-
tors. Using the expression 

k

m

k
kii �rr �

�


��
1

�
, 

(6.28)

the non-orthogonal basis vector ir�  is calculated by Eq. (6.25) or Eq. 
(6.27), and the coefficients 
k are obtained from the conditions  

0�i
T
k rM�      k =1, ..., m, (6.29)

 

kjj
T
k ���M�      k, j =1, ..., m, (6.30)

where kj�  is the kronecker delta. Pre-multiplying both sides of Eq. (6.28) 

by M�
T
k  and using Eqs. (6.29), (6.30), we obtain 

i
T
kk rM�

�
�
 . (6.31)

Substituting Eq. (6.31) into Eq. (6.28) gives 

k

m

k
i

T
kii �rM�rr �

�

��
1

)( ��        i =2, 3, …, s. 
(6.32)

The first basis vector for the first mode is 

r1= 1r
� , (6.33)

whereas for the higher modes we have from Eq. (6.32) 

k

m

k

T
k �rM�rr �

�

��
1

111 )( ��
. 

(6.34)

6.2.2 Shifts of the Basis Vectors 

To further improve the accuracy of the higher mode shapes, we can use the 
concept of shifts and the Rayleigh quotient iteration, discussed in Sect. 
2.3.2. Introducing a shift �, defining 
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�����
�

, (6.35)

 

MKK ���
�

, (6.36)

and substituting Eqs. (6.35), (6.36) into Eq. (6.3) yields 

�K
�

= �
�
����� . (6.37)

The eigenvectors of the two problems of Eqs. (6.3) and (6.37) are the 
same. Using inverse iteration the solution will converge to the mode hav-
ing the smallest shifted eigenvalue. The object is to use the concept of 
shifts to improve the basis vectors. Substituting Eqs. (6.2), (6.36) into Eq. 
(6.37), we obtain 

(K0 + �K0 – �M)� = �
�
����� . (6.38)

Pre-multiplying Eq. (6.38) by 1
0
�K  and denoting 

B�= 1
0
�K (�K0 – �M), (6.39)

 

r0 = 1
0
�K �

�
����� , (6.40)

the resulting equation is 

(I + B�)� = r0. (6.41)

Since Eqs. (6.11), (6.41) are similar, we can calculate the basis vectors by 

ir  =� –B�i ri-1     i =2, 3, . . , s, (6.42)

where matrix B�i, which is changed for each basis vector, is given by 

B�i = 1
0
�K (�K0 – �i M). (6.43)

The shift �i is calculated by the Rayleigh quotient iteration 

11

11

��

����
i

T
i

i
T
i

i rMr
rKr

. 
(6.44)

Finally, normalization of the calculated vectors ir  gives 

2/1

i
T
i

i
i

rMr

rr �      i = 2, 3, . . , s. 
(6.45)
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6.2.3 Gram-Schmidt Orthogonalizations of the Basis Vectors 

It was found that in many cases the basis vectors, determined by Eqs. 
(6.24) through (6.27), come close to being linearly-dependent. As a result, 
numerical errors might occur. To overcome this difficulty, Gram-Schmidt 
orthogonalizations (as described in Sect. 5.2.2 for static reanalysis) are 
used to generate a new set of orthogonal basis vectors Vi (i = 1, 2, ... , s). 
The advantage is that more accurate results are obtained with the new vec-
tors that satisfy the conditions ijj

T
i ��VMV . The first normalized basis 

vector V1 is determined by 

2/1
11

1
1 || rKr

rV T� . 
(6.46)

Additional basis vectors are generated in a way similar to the procedure 
presented in Sect. 5.2.2. The resulting general expression is [Eqs. (5.47)] 

	 
 j

i

j
j

T
iii VKVrrV �

�

�

��
1

1

        i = 2, ..., s. 
(6.47)

The vectors iV  are normalized by 

2/1|| i
T
i

i
i VKV

V
V � . 

(6.48)

6.3 General Solution Procedure 

Given the initial values K0, M0, 0� ����and 0�  from vibration analysis of the 
initial structure, we can now summarize the steps of a general solution 
procedure for vibration reanalysis. In the procedure presented in this sec-
tion we distinguish between the two main stages of determining improved 
basis vectors and evaluating the eigenpairs by the reduced eigenproblem. 

Determination of Improved Basis Vectors 

Using the concepts presented in Sect. 6.2, the procedure for determining 
improved basis vectors may involve the following steps (see Table 6.1): 

� Basic calculations. It is possible only to calculate the basic terms of the 
the basis veectors and to normalize them [Eqs. (6.24) through (6.27)]. 
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� Gram-Schmidt orthogonalizations of the modes. The first basis vector 
for the first mode is unchanged [Eq. (6.33)] whereas the first basis 
vector of the higher modes are calculated by Eq. (6.34). The remaining 
basis vectors are determined by Eq. (6.32). 

� Shifts of the basis vectors. The second and higher basis vectors are 
calculated by Eqs. (6.42), (6.45). 

� Gram-Schmidt orthogonalizations of the basis vectors. The first basis 
vector is calculated by Eq. (6.46) and the remaining vectors by Eqs. 
(6.47), (6.48). 

It was found that high accuracy is achieved for the higher modes if all 
the above steps are considered. For the lower modes it is possible to elimi-
nate part of the steps and still obtain high accuracy. 

Table 6.1. Solution procedure for determining the basis vectors 

Step Equation Expression 
  

(6.24) 1r  = 1
0
�K M 0�  

 
Basic calculations 

 
(6.25) 

	 
 2/1

11

1
1

rMr

r
r

T
�

�  

 (6.26) ir  =� –Bi ri-1            i = 2, 3, . . , s 
  

(6.27) 
	 
 2/1

i
T
i

i
i

rMr

rr �
�        i = 2, 3, . . , s 

  
(6.33) 

 

11 rr �
�     (first mode) 

Gram-Schmidt 
orthogonalizations 
of the modes 

 
(6.34) k

m

k

T
k �rM�rr �

�

��
1

111 )(
��

    (higher modes) 

  
(6.32) k

m

k
i

T
kii �rM�rr �

�

��
1

)(
��      i =2, 3, . . , s 

 

 
 

(6.42) ir  =� –B�i ri-1        i =2, 3, . . , s 
Shifts  

(6.45) 2/1

i
T
i

i
i

rMr

rr �      i = 2, 3, . . , s 

  
(6.46) 2/1

11

1
1 || rKr

rV
T

�
 

Gram-Schmidt 
orthogonalizations 
of the basis vectors 

 
(6.47) 	 
 j

i

j
j

T
iii VKVrrV �

�

�

��
1

1

     i = 2, 3, . . , s 

  
(6.48) 2/1|| i

T
i

i
i VKV

VV �
        i = 2, 3, . . , s 
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Evaluation of the eigenpairs 

The second stage of evaluating the eigenpairs by the reduced eigenproblem 
involves the following steps: 

� Calculation of the reduced matrices KR  and MR [Eqs. (6.9)] 

B
T
BRB

T
BR rMrMrKrK ��           . (6.49)

� Solution of the reduced s�s eigenproblem for �1, y1 [Eq. (6.10)] 

111 yMyK RR �� , (6.50)

where �1 is the first eigenvalue and y1 is the corresponding eigenvector. 
The solution at this step is similar to that of Eq. (6.3), except that a 
much smaller system is considered. 

� Evaluation of the mode shape [Eq. (6.5)] 

� = rB y1. (6.51)

The required eigenvalue is already given from Eq. (6.50) ����� = �1. 

6.4 Numerical Examples 

The object of the numerical examples presented in this section is to illus-
trate typical results achieved by the CA approach for different design situa-
tions. The examples demonstrate the accuracy achieved by the approach 
compared with direct (exact) formulation of the modified equations. 
Small-scale examples are considered for illustrative purposes. Some of the 
examples describe common cases such as global changes in the design, 
and changes in the stiffness and in the mass for various sizes of the struc-
ture. Other examples demonstrate the performance of the approach in spe-
cial cases such as switch of modes due to changes in the design, and prob-
lems with identical eigenvalues. In most examples the improved basis 
vectors have been determined by considering only Gram-Schmidt or-
thogonalizations of the approximate modes. The following notation has 
been used: 

� ri(init) = ri(0) = initial ith mode shape. 
� ri(s) = modified ith mode shape, CA formulation with s basis vectors. 
� ri(ex) = modified ith mode shape, exact (direct) formulation. 
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Example 6.1 

Consider the cantilever beam shown in Fig. 6.1. The beam is divided into 6 
elements, the number of DOF is 12 and the initial stiffness of each element 
is given by EI = 1.0, L = 1.0. The mass is lumped at the joints, the initial 
mass at the interior joints is 1.0, and the initial mass at the end of the beam 
is 0.5. The change in the design is represented by additional mass of 2.0 at 
each of the joints. The results obtained by the CA approach with only 2 ba-
sis vectors for the first 4 mode shapes, shown in Table 6.2, demonstrate the 
high accuracy achieved by the approach. 

 
123456

 
Fig. 6.1. Cantilever beam 

Table 6.2. Results, mass changes in a cantilever beam 

Mode 1 2 3 4
Case r1(2) r1(ex) r2(2) r2(ex) r3(2) r3(ex) r4(2) r4(ex)
Shape 1.0000 1.0000 1.0000 1.0000 0.7413 0.7411 0.5584 0.5580
 0.7664 0.7664 0.0184 0.0185 -0.6118 -0.6115 -0.9817 -0.9809
 0.5401 0.5401 -0.7142 -0.7145 -0.7657 -0.7663 0.1348 0.1350
 0.3331 0.3331 -0.9820 -0.9822 0.2295 0.2309 1.0000 1.0000
 0.1615 0.1615 -0.7574 -0.7571 1.0000 1.0000 -0.4690 -0.4711
 0.0438 0.0438 -0.2793 -0.2789 0.6104 0.6091 -0.9876 -0.9865
�� 0.0025 0.0025 0.0990 0.0990 0.7743 0.7743 2.9352 2.9352

Example 6.2 

To illustrate results obtained for switching of modes due to changes in the 
design, consider the simply supported beam divided into 10 elements 
shown in Fig. 6.2. The following parameters represent the initial design: 

� Lumped masses, M = 1.0. 
� The stiffness of each beam element is given by EI = 1.0, L = 1.0.. 
� The stiffness of the middle spring, K = 0 (there is no spring). 

 
M M M M M M M

K

MM

 
Fig. 6.2. Simply-supported beam with a spring 
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Fig. 6.3. Simply-supported beam 
a. Original-mode 1, modified-mode 2  b. Original-mode 2, modified-mode 1 
c. Original-mode 3, modified-mode 4  d. Original-mode 4, modified-mode 3 
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Table 6.3. Initial values, simply-supported beam 

Case r1(0) r2(0) r3(0) r4(0)
Shape 0.31  0.62 0.81 -1.00
 0.59  1.00 0.95 -0.62
 0.81  1.00 0.31 0.62
 0.95  0.62 -0.59 1.00
 1.00  0.00 -1.00 0.00
 0.95 -0.62 -0.59 -1.00
 0.81 -1.00 0.31 -0.62
 0.59 -1.00 0.95 0.62
 0.31 -0.62 0.81 1.00
    �� 0.01 0.16 0.79 2.48

Table 6.4. Results, simply-supported beam  

Case r1(2)* r1(ex)* r2(2) r2(ex) r3(2) r3(ex) r4(2) r4(ex)
Shape 0.65 0.67 -0.62 -0.62 -0.77 -0.85 -1.00 -1.00
 1.00 1.00 -1.00 -1.00 -0.48 -0.43 -0.62 -0.62
 0.90 0.84 -1.00 -1.00 0.56 0.69 0.62 0.62
 0.44 0.39 -0.62 -0.62 1.00 1.00 1.00 1.00
 0.12 0.11 0.00 0.00 0.63 0.63 0.00 0.00
 0.44 0.39 0.62 0.62 1.00 1.00 -1.00 -1.00
 0.90 0.84 1.00 1.00 0.56 0.69 -0.62 -0.62
 1.00 1.00 1.00 1.00 -0.48 -0.43 0.62 0.62
 0.65 0.67 0.62 0.62 -0.77 -0.85 1.00 1.00
�� 0.36 0.35 0.16 0.16 2.96 2.90 2.48 2.48

* r1 means modified displacements corresponding to the original-mode 1 

The modified design is represented by adding a spring with stiffness of 
K = 12 in the middle of the span. It is observed that there is a change in the 
topology of the structure. The initial eigenpairs are shown in Table 6.3. 
The modified eigenpairs determined by the CA approach with only 2 basis 
vectors, for the first 4 mode shapes, are shown in Table 6.4 and in Fig. 6.3. 
It is observed that high accuracy is achieved for the significant changes in 
the mode shapes. Moreover, there is a switch in the modes as follows: the 
original mode 1 becomes the modified mode 2, the original mode 2 be-
comes the modified mode 1, the original mode 3 becomes the modified 
mode 4 and the original mode 4 becomes the modified mode 3. 

Example 6.3 

To illustrate results for problems with identical eigenvalues, consider the 
system of masses and springs shown in Fig. 6.4. The initial lumped masses 
are given by M = 1 and the initial springs stiffness is given by K = 1, with 
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K = 0 for the middle spring (there is no middle spring). That is, the initial 
system consists of two independent subsystems. The modified design is 
represented by adding the middle spring with K = 1. In this case, it is nec-
essary to consider basis vectors of the 2 subsystems. 

Considering the first mode of each of the 2 subsystems as the only 2 ba-
sis vectors, the exact modified shape of mode 1 is obtained. For mode 2, an 
approximate solution is obtained with the usual 2 basis vectors. The initial 
eigenpairs and the modified eigenpairs obtained for the first 2 mode 
shapes, by the CA approach with only 2 basis vectors and by exact solu-
tions, are shown in Fig. 6.5 and in Table 6.5.  

 

M M 2M M M2M
K K K 2K K K2K

 
Fig. 6.4. A system of masses and springs 
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Fig. 6.5. A system of masses and springs:  a. Mode 1  b. Mode 2 
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Table 6.5. Results for mode shapes 1, 2, system of masses and springs 

Case r1(0) r1(2) r1(ex) r2(0) r2(2) r2(ex)
Shape 0.46 0.46 0.46 0.00 0.71 0.77
 0.86 0.86 0.86 0.00 1.00 1.00
 1.00 1.00 1.00 0.00 0.76 0.77
 0.00 1.00 1.00 0.00 0.00 0.00
 0.00 1.00 1.00 1.00 -0.76 -0.77
 0.00 0.86 0.86 0.86 -1.00 -1.00
 0.00 0.46 0.46 0.46 -0.71 -0.77
���� 0.139 0.139 0.139 0.139 0.699 0.697

Example 6.4 

To demonstrate results for a larger structure, consider the fifty-story frame 
shown in Fig. 6.6. The inertia force at each joint is due to the frame self-
weight and an additional concentrated mass of 25ton at an external joint 
and 50ton at an internal joint. The total number of DOF is 600 and the 
width and depth of all cross sections are 0.5m, 2.0m, respectively. The ob-
ject is to evaluate the first 8 eigenpairs of a modified structure where the 
depth of all beams is 0.75m and the depths of the columns are as follows.  

� Stories   1–10:   2.5m. 
� Stories 11–20:   2.0m. 
� Stories 21–30:   1.5m. 
� Stories 31–40:   1.0m. 
� Stories 41–50: 0.75m. 

The initial eigenvalues �	init), the modified exact eigenvalues �	ex), 
and the modified approximate eigenvalues considering only Gram-Schmidt 
orthogonalizations of the mode shapes and 6 basis vectors, �	CA6), are 
shown in Table 6.6. It is observed that small errors are obtained by the CA 
approach for the lower modes and larger errors for the higher modes.  

To illustrate the effect of the improved basis vectors, the ratios of eigen-
values �	CA)/��	ex) have been compared for the following cases, consid-
ering various numbers of basis vectors: 

� Without Gram-Schmidt orthogonalizations of the basis vectors: 
 without shifts (Fig. 6.7a) and with shifts (Fig. 6.7b). 
� With Gram-Schmidt orthogonalizations of the basis vectors: 
 without shifts (Fig. 6.8a) and with shifts (Fig. 6.8b). 

Fig. 6.7 shows how the shifts improve the accuracy. However, for a 
large number of basis vectors errors might occur due to ill-conditioning. 
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To overcome this difficulty we use Gram-Schmidt orthogonalizations of 
the basis vectors (Fig. 6.8). The highest accuracy is achieved when Gram-
Schmidt orthogonalizations of the basis vectors and shifts are considered.  

 

 
Fig. 6.6. Fifty-story frame 

Table 6.6. First 8 eigenvalues with only Gram-Schmidt orthogonalizations of the 
approximate modes 

Mode �	init) �	ex) �	CA6) Error [%] 
1 3.2 1.007 1.011 0.32 
2 53.8 8.862 9.001 1.58 
3 232.7 28.02 28.31 1.04 
4 526.5 59.00 59.40 0.67 
5 945.1 106.1 107.0 0.86 
6 1483.6 173.6 180.0 3.68 
7 2157.3 259.0 276.5 6.75 
8 2971.1 371.9 408.3 9.79 

Fig. 6.7. Approximate/exact eigenvalues without Gram-Schmidt orthogonaliza-
tions of the basis vectors:  a. without shifts  b. with shifts 
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Fig. 6.8. Approximate/exact eigenvalues with Gram-Schmidt orthogonalizations 
of the basis vectors:  a. without shifts  b. with shifts 

6.5 Reanalysis by Iterative Procedures 

It has been noted that the general formulation of vibration reanalysis prob-
lems is given by Eq. (6.3). The modified equations solved by the CA ap-
proach are expressed in the form of Eq. (6.4) 

(K0 + �K0)� = R, (6.52)

where R is defined as 

R = � M� , (6.53)

and the reduced eigenproblem to be solved is given by Eq. (6.10). 
In this section, solutions of vibration reanalysis problems, using itera-

tive analysis procedures presented in Sect. 4.3.2 and the CA approach, are 
introduced. The iterative procedures include inverse iteration (II), inverse 
iteration with shifts (IIS) and subspace iteration (SI). These procedures are 
not efficient for reanalysis of large scale systems, because each change in 
the design (sometimes, each iteration) requires factorization of the modi-
fied stiffness matrix, which involves much computational effort. We can 
reduce this effort by using the CA approach. 

Inverse Iteration (II) 

Considering the general inverse iteration formulation, the original reanaly-
sis problem to be solved at the kth iteration cycle is [Eq. (2.46)] 

K )(kr = M����r(k-1). (6.54)

Using the CA formulation, the problem to be solved is [Eq. (4.34)] 
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)1()(
00 )( ���� kk RrKK , (6.55)

where the vector R(k-1) is defined as [Eq. (4.35)] 

R(k-1) =� M r(k-1). (6.56)

The procedure of Eq. (6.54) is not efficient for reanalysis because each 
change in the design requires repeating factorization of the modified stiff-
ness matrix. Solving Eq. (6.55) by the CA procedure, we use the given ini-
tial factorization K0= T

0U U0 [Eq. (4.2)] for each change in the design. 

Inverse Iteration with Shifts (IIS) 

Considering the original formulation of inverse iteration shifts, the re-
analysis problem to be solved at the kth iteration cycle is [Eq. (2.58)] 

(K – �(k-1) M) )(kr = M����r(k-1). (6.57)

The inverse iteration with shifts (IIS) procedure is not efficient for reanaly-
sis because each change in the shift �(k-1) (or in the design K, M) requires 
factorization of the modified matrix (K – �(k-1) M). That is, new factoriza-
tion is required at each iteration cycle.  

Using the CA formulation, the problem to be solved is [Eq. (4.36)] 

(K0 + �K(k-1)) )(kr = R(k-1), (6.58)

where �K(k-1) and R(k-1) are defined as [Eqs. (4.35), (4.37)] 

�K(k-1) = �K0 – �(k-1) M, (6.59)
 

R(k-1) = M����r(k-1). (6.60)

Again, instead of repeating the factorization of (K – �(k-1) M) at each itera-
tion cycle, we use the given initial factorization K0 = T

0U U0 [Eq. (4.2)] to 
solve Eq. (6.58) by the CA procedure described in Sect. 6.3. 

Subspace Iteration (SI) 

Considering the original formulation of subspace iteration, the reanalysis 
problem to be solved at the kth iteration cycle is [Eq. (2.102)] 

K )1( �kr = M���� r(k). (6.61)

Similar to the previous iteration procedures, the subspace iteration (SI) is 
not efficient for reanalysis of multiple modified designs.  
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Using the CA formulation, the problem to be solved is [Eq. 4.38)] 

)()1(
00 )( kk RrKK ��� � , (6.62)

where the vector R(k) is defined as [Eq. (4.39)] 

R(k) =� M r(k). (6.63)

Again, we use the given initial factorization of K0 to solve Eq. (6.62) by 
the CA procedure described in Sect. 6.3. 

The various presented formulations are summarized in Table 6.7. The 
accuracy of the results is demonstrated by the following numerical exam-
ples. Efficiency considerations are discussed later in Sect. 10.1. 

Table 6.7. Summary of modified equations 

Procedure Original formulation CA formulation 
 

General 
 

 

(6.3) K� = R 
 

(6.52) (K0 + �K0)� = R 
 

II 
 

(6.54) K )(kr  = M����r(k-1) (6.55) (K0 + �K0) )(kr  = R(k-1) 
 

IIS 
 

(6.57) (K–�(k-1)M) )(kr =Mr(k-1)  (6.58) (K0+�K(k-1)) )(kr  = R(k-1) 
 

SI 
 

(6.61) )()1( kk rMrK ��  (6.62) )()1(
00 )( kk RrKK ��� �  

Example 6.5 

In this example the frame shown in Fig. 6.9 is solved for various numbers 
of stories, N. Consider 3 degrees of freedom at each story, the total number 
of DOF is n = 3N. The mass of the frame is lumped at the joints, with an 
initial mass Mi = 1.0 (i = 1, … , N) in each story. The initial stiffness of all 
elements is determined by assuming EIi = 1.0, Li = 1.0 (i = 1, …, N). The 
modified design is represented by the following parameters: 

� EI1 = 1.5, EIi = EIi-1 + 0.25 (i = 2, …, N). 
� M1 = 5.0, MN = 4.0, Mi = 0.2 (i = 2, …, N – 1). 

To compare results obtained for various problem sizes, solutions of the 
general formulation have been obtained for the following numbers of sto-
ries: N = 14, 28, 56, 112 (336 DOF). The first 3 eigenvalues were calcu-
lated using the general formulation [�(ex), Eq. (6.3)] and the reduced CA 
formulation [�(CA), Eq. (6.10)] with various numbers of basis vectors. 
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1
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MN

 
Fig. 6.9. N-story frame 

Table 6.8. Summary of eigenvalues, general and reduced CA formulations 

N (stories) n (DOF) Mode Basis vectors �(CA) �(ex) Error [%] 
14 42 1 3 0.3042 0.3039 0.10
  2 3 6.6898 6.6814 0.13
  3 3 19.2279 19.1951 0.17
28 84 1 3 0.1913 0.1902 0.61
  2 3 2.5100 2.4888 0.85
  3 4 9.1537 9.1268 0.30
56 168 1 3 0.1255 0.1226 2.37
  2 3 1.0581 1.0189 3.85
  3 4 3.5898 3.5671 0.63
112 336 1 4 0.0799 0.0783 2.06
  2 4 0.4834 0.4662 3.68
  3 5 1.5426 1.5088 2.24

The results (Table 6.8) indicate that the number of basis vectors needed 
to achieve good accuracy is only slightly increased with the problem size. 

To illustrate the first 3 mode shapes obtained by the above formulations, 
consider the 14-story frame (N = 14). The following notation is used for 
the results shown in Table 6.9 and Fig. 6.10: 

� r(init) = r(0) = initial displacements. 
� r(CAs) = modified displacements, CA formulation with s basis vectors. 
� r(ex) = modified displacements, exact (or direct) formulation. 
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Table 6.9. Modified shapes, CA and exact formulations, 14-story frame 

Mode  1  2  3 
Case r(CA3) r(ex) r(CA3) r(ex) r(CA3) r(ex)
Shape 1.00 1.00 -0.14 -0.15 -0.08 -0.08
 0.90 0.90 0.16 0.17 0.38 0.41
 0.80 0.79 0.45 0.48 0.79 0.81
 0.70 0.70 0.69 0.72 1.00 1.00
 0.61 0.61 0.86 0.88 0.98 0.97
 0.52 0.53 0.97 0.97 0.77 0.78
 0.45 0.45 1.00 1.00 0.44 0.47
 0.37 0.38 0.97 0.97 0.08 0.11
 0.31 0.31 0.90 0.90 -0.26 -0.23
 0.25 0.25 0.78 0.79 -0.53 -0.53
 0.19 0.19 0.64 0.65 -0.72 -0.74
 0.13 0.13 0.48 0.49 -0.84 -0.85
 0.08 0.08 0.31 0.33 -0.84 -0.85
 0.03 0.03 0.15 0.15 -0.60 -0.62
��� 0.30 0.30 6.69 6.68 19.23 19.20

 

Table 6.10. Solution by II and IIS procedures, second iteration cycle 

Mode  1  2  3 
Case r(CA2) r(ex) r(CA3) r(ex) r(CA4) r(ex) 
Shape 1.00 1.00 -0.27 -0.27 -0.08 -0.08
 0.91 0.90 0.03 0.05 0.34 0.41
 0.80 0.79 0.34 0.37 0.73 0.81
 0.70 0.70 0.60 0.62 0.96 1.00
 0.61 0.61 0.61 0.81 1.00 0.97
 0.52 0.53 0.93 0.93 0.86 0.78
 0.45 0.45 1.00 0.99 0.57 0.47
 0.37 0.38 1.00 1.00 0.20 0.12
 0.31 0.31 0.95 0.93 -0.18 -0.23
 0.25 0.25 0.85 0.84 -0.53 -0.52
 0.19 0.19 0.72 0.71 -0.80 -0.74
 0.13 0.13 0.57 0.55 -0.93 -0.85
 0.08 0.08 0.40 0.38 -0.91 -0.85
 0.03 0.03 0.20 0.19 -0.64 -0.62
�� 0.30 0.30 6.52 6.45 19.35 19.20

 
Consider now the Inverse Iteration (II) and Inverse Iteration with Shifts 

(IIS) procedures. Results for the second iteration cycle and various num-
bers of basis vectors are shown in Table 6.10 and in Fig. 6.11 for the fol-
lowing cases of initial values: 
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Fig. 6.10. Exact (ex) and CA3 formulations:  a. Mode 1  b. Mode 2  c. Mode 3 
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Fig. 6.11.  Exact and CA formulations, II and IIS procedures, 2nd iteration cycle: 
a. Mode 1    b. Mode 2  c. Mode 3 
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Fig. 6.12. Exact and CA formulations, SI procedure, first iteration cycle: 
a. Mode 1   b. Mode 2   c. Mode 3 
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� Case a. No shift and the initial first-mode shape. 
� Case b. Initial shift �(0)= 10 and the initial second-mode shape. 
� Case c. Initial shift �(0)= 20 and the initial third-mode shape. 

Finally, considering the Subspace Iteration (SI) procedure, results for 
the first iteration cycle and two basis vectors are shown in Table 6.11 and 
in Fig. 6.12. 

It is observed that high accuracy is achieved by the various CA proce-
dures with a small number of basis vectors. 

Table 6.11. Fourteen-story frame, solution by SI, first iteration cycle 

Mode  1 2 3 
Case r(CA2) r(ex) r(CA2) r(ex) r(CA2) r(ex)
Shape 1.00 1.00 -0.15 -0.15 -0.08 -0.08
 0.91 0.90 0.18 0.17 0.35 0.40
 0.80 0.79 0.49 0.49 0.75 0.82
 0.70 0.70 0.74 0.73 1.00 1.00
 0.61 0.61 0.90 0.90 1.06 0.98
 0.52 0.53 0.98 0.99 0.92 0.79
 0.45 0.45 1.00 1.00 0.61 0.48
 0.38 0.38 0.96 0.99 0.18 0.11
 0.31 0.31 0.89 0.89 -0.27 -0.23
 0.24 0.25 0.79 0.79 -0.67 -0.53
 0.19 0.19 0.66 0.66 -0.93 -0.74
 0.13 0.13 0.51 0.51 -1.01 -0.85
 0.08 0.08 0.34 0.33 -0.93 -0.85
 0.03 0.03 0.15 0.16 -0.61 -0.62
� 0.30 0.30 6.68 6.68 19.66 19.66
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7 Dynamic Reanalysis 

It has been noted that, from the viewpoint of computational effort, the re-
duction of degrees of freedom is more important in dynamic problems than 
in static problems. The discretized model of a complicated system may 
have numerous degrees of freedom, and the solution must be performed 
successively at many different times to generate the time history of the re-
sponse. The computational effort might become prohibitive in nonlinear 
dynamic reanalysis problems of large scale structures. On the other hand, 
the nonlinear dynamic response is usually smoother than the nonlinear 
static response, due to the effect of inertia forces. Therefore, convergence 
of the iteration is expected to be more rapid than in static analysis.  

In this chapter solution of both linear and nonlinear dynamic reanalysis 
problems, by the CA approach, is presented. Linear dynamic reanalysis is 
introduced in Sect. 7.1 and nonlinear dynamic reanalysis is developed in 
Sect. 7.2. It will be shown that, in various problems, accurate results can 
be achieved with a reduced computational effort.  

7.1 Linear Dynamic Reanalysis 

In this section we consider the following reanalysis problem.  

� Given an initial design, the corresponding stiffness matrix K0, mass 
matrix M0, damping matrix C0, and the load vector R0(t); the initial 
displacement vector r0(t), velocity vector )(0 tr�  and acceleration vector 

)(0 tr�� are computed by the equations of motion [Eq. (3.1)] 

)()()(+)( 0000000 tttt RrKrCrM ����� . (7.1)

� Assume a change in the design and corresponding changes �K0 and 
�M0 in the stiffness and mass matrices (we assume that matrix C = C0 is 
unchanged) such that the modified matrices are given by 

K = K0 + �K0     M = M0 + �M0. (7.2)
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� The objective is to evaluate the modified displacements r(t), velocities 
)(tr� , and accelerations )(tr�� , without solving the complete set of 

modified equations 

)()()(+)( tttt RrKrCrM ����� . (7.3)

7.1.1 Solution by Direct Integration 

Initial Analysis Formulation 

As noted in Sect. 3.1.1, in implicit integration methods (e.g. the Houbolt 
[1], Wilson [2], and Newmark [3] methods) we use the equilibrium equa-
tions of motion at time tt �� . The methods are unconditionally stable, and 
their effectiveness derives from the fact that to obtain accuracy in the inte-
gration, the time step t�  can be very large. However, a factorization of the 
stiffness matrix is required for the solution. 

Considering the Newmark method, dynamic analysis of the initial struc-
ture involves the steps described in the following. For the initial values K0, 
M0, C0, 0

0r , 0
0r� , 0

0r�� , we first select the time step t�  and the parameters 
� �  0.5 and ��  0.25(0.5+��	
. Then we calculate the integration constants 
a0, … , a7, which are functions of t� , �� �, by [Eq. (3.15)] 

20
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�
�
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�
��

� 2
25
t

a       )1(6 ���� ta      ta ���7 , 

(7.4)

and we form and triangularize the initial effective stiffness matrix [Eqs. 
(3.16), (3.17)] 

010000
ˆ CMKK aa ��� , (7.5)

 

T
0000

ˆ LDLK � . (7.6)

For each time step we calculate the following quantities at time tt �� : 

� The effective loads [Eq. (3.18)] 
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� The displacements [Eq. (3.19)] 

00000 R̂rLDL ttttT ���� � . (7.8)

� The accelerations and the velocities [Eqs. (3.20), (3.21)] 

))( 03020000 rrrrr �����
ttttttt aaa ���� ���� , (7.9)

 

070600 rrrr ������
tttttt aa ���� ��� . (7.10)

Efficient Reanalysis 

To evaluate the dynamic response of a modified design, represented by K, 
M [Eq. (7.2)], we first have to factorize the modified effective stiffness 
matrix CMKK 10

ˆ aa ���  [Eq. (3.16)]. It has been noted that the major 
computational cost in reanalysis is involved in this factorization. Equations 
(7.4), (7.5) show that for the given integration constants a0, …, a7, dy-
namic analysis of an initial design involves only a single factorization of 
the modified matrix K̂ . However, a new factorization of the matrix is re-
quired for any change in the design, and corresponding changes �K0, �M0. 

Using the CA approach, we express the matrix K̂  as  

KKMKKK ˆˆ)(ˆˆ
00000 �������� a , (7.11)

where 0K̂  is given by Eqs. (7.5), and 000
ˆ MKK ����� a . For each time 

step we calculate at time tt ��  the effective loads R̂tt ��  by Eq. (3.18) and 
evaluate the displacements rtt ��  by solving the set of equations 

RrKK ˆ)ˆˆ( 0
tttt ���� ��� . (7.12)

The procedure of linear reanalysis described in Sect 5.2 can be used for 
this purpose. Once 0K̂  is factorized [Eq. (7.6)], it is not necessary to re-

peat factorizations for each change in the design. The accelerations r��tt ��  
and the velocities r�tt ��  are then evaluated by Eqs. (3.20), (3.21). Using the 
CA approach for the present formulation, the savings in the computational 
effort might not be significant because only a single factorization is needed 
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for each change in the design. More significant savings are expected in 
other formulations, where multiple factorizations are needed for reanalysis 
of any specific modified design. 

Example 7.1 

To demonstrate reanalysis by direct integration using the CA approach, 
consider the eight-story plane frame shown in Fig. 7.1. The objective is to 
evaluate the response of the structure for the loading (ground acceleration) 
of the El Centro earthquake shown in Fig. 7.2, scaled to have a 10% prob-
ability of occurrence in 50 years [4].  

 

 
Fig. 7.1. Eight-story frame 
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Fig. 7.2. El Centro Earthquake 
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Fig. 7.3. Horizontal displacements, velocities and accelerations at the top of the 
frame, CA3 and direct formulation of the modified equations 
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Three degrees of freedom are considered at each joint and the total 
number of degrees of freedom is 48. The time step is t = 0.005sec, the ma-
terial is elastic, the damping ratio is 0.05, and the masses are assumed to be 
concentrated at the joints. The total inertia force at each joint is due to the 
structure self-weight and an additional concentrated mass of 25ton. Only 
horizontal inertia forces have been considered.  

The initial design is represented by the following cross-section sizes. 
The depth of columns is 2.0m, the depth of all beams is 1.5m and the width 
of all elements is 0.5m. The object is to evaluate the dynamic response of a 
modified structure, for which the depth of all elements is 1.0m (the width 
is unchanged).  

Assuming that the response of the initial structure is known, the modi-
fied response has been evaluated by the CA approach with 3 basis vectors 
(CA3). The resulting horizontal displacements, velocities and accelerations 
at the top of the frame are shown in Fig. 7.3. It is observed that good 
agreement is obtained between solutions of the CA3 formulation and direct 
formulation of the modified equations (Direct). 

7.1.2 Solution by Mode Superposition 

Analysis Formulation 

Calculation of the dynamic response by modal analysis, presented in Sect. 
3.1.2, involves the following steps: 

� Determine the stiffness matrix K and the mass matrix M, and estimate 
the modal damping ratios i�  (if damping is considered). 

� Calculate the eigenpairs �i, i� (i = 1, …, n) by solving the eigenproblem 
[Eq. (3.26)] 

K� = ���������� . (7.13)

� Calculate the modal coordinates Zi(t) by solving the equilibrium 
equations that correspond to the modal generalized displacements. If 
damping effects are not considered, solve the individual decoupled 
equilibrium equations [Eq. (3.34)] 

)()(+)( tTtZtZ iiii ���� , (7.14)

where Ti(t) is defined as 

)()( ttT T
ii R�� . (7.15)
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If damping effects are considered, solve the individual equations [Eq. 
(3.46)] 

)()()(2+)( 2 tTtZtZtZ iiiiiii ����� ��� , (7.16)

where �i is the ith frequency. This can be accomplished by one of sev-
eral methods such as numerical finite difference method, numerical in-
tegration using Duhamel integral, or response spectra analysis. 

� Calculate the nodal displacements, combining the contribution of all the 
modes, to determine the total response [Eq. (3.28)] 

�
�

�
n

i
ii tZt

1
)()( �r . 

(7.17)

� Calculate the element forces using the element stiffness properties. 

Efficient Reanalysis 

Solving the reanalysis problem by mode superposition, a significant part of 
the computational effort is involved in repeated solutions of modified ei-
genproblems [Eq. (7.13)]. It has been noted that some methods for solving 
the eigenproblem (e.g. inverse iteration with shifts) require repeated fac-
torizations of the coefficient matrix at each iteration cycle, even when the 
stiffness matrix is unchanged. Solution by the CA approach, as described 
in Chap. 6, can significantly reduce the computational effort [5]. 

Example 7.2 

To illustrate solution by mode superposition using the CA approach, con-
sider again the eight-story frame of example 7.1 (Fig. 7.1). The damping 
ratio is 0.05 and the masses are assumed to be concentrated at the joints. 
The total inertia force at each joint is due to the frame self-weight and an 
additional concentrated mass of 25ton. Only horizontal inertia forces are 
considered and the time step is t = 0.005sec. The depth of all elements is 
1.0m and the width of all elements is 0.5m. Again, the assumed loading is 
the ground acceleration of the El Centro earthquake (Fig. 7.2).  

Analysis of the Initial Structure. Employing first dynamic analysis of the 
initial structure, the following two cases have been solved: 

� Consideration of all 16 mode-shapes  
� Consideration of only the first 4 mode-shapes. 
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Fig. 7.4. Initial response at the top of the frame, analysis by mode superposition 
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Fig. 7.5. Modified response at the top of the frame, CA3 and exact formulations 
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The resulting horizontal displacements, velocities and accelerations at 
the top of the frame are shown in Fig. 7.4. It is observed that the results ob-
tained in both cases are similar. Thus, only the first 4 mode shapes will be 
considered in solution of the reanalysis problem. 

Reanalysis of a Modified Structure. To demonstrate results of reanalysis, 
assume initial and modified designs as in example 7.1. That is, the initial 
design is represented by the following cross-section sizes. The depth of 
columns is 2.0m, the depth of all beams is 1.5m and the width of all ele-
ments is 0.5m. The object is to evaluate the dynamic response of a modi-
fied structure, for which the depth of all elements is 1.0m (the width is un-
changed). 

Considering the first 4 mode-shapes and using the CA approach, the re-
duced eigenproblems were solved by inverse vector iteration. The modi-
fied eigenpairs have been evaluated using the exact eigenproblem formula-
tion [��Exact), � (Exact)] and the CA approach with only 3 basis vectors 
[�(CA3), � (CA3)]. The initial and the modified eigenvalues are summa-
rized in Table 7.1, and the resulting horizontal displacements, velocities 
and accelerations at the top of the frame are shown in Fig. 7.5. It is ob-
served that despite the significant changes in the design, high accuracy is 
achieved by the CA approach with only 3 basis vectors. 

Table 7.1. Eigenvalues, eight-story frame 

Mode ��Initial) ��Exact) ��CA3) Error [%] 
1 267.33 82.19 82.19 0.002 
2 3180.3 856.7 857.3 0.071 
3 13370 3044 3047 0.072 
4 38267 7621 7622 0.015 

 

Example 7.3 

To illustrate reanalysis of a larger structure, consider the fifty-story frame 
shown in Fig. 7.6. The loading is again the ground acceleration of the El 
Centro earthquake (Fig. 7.2), scaled to have a 10% probability of occur-
rence in 50 years [4]. The damping ratios are 0.05, the masses are assumed 
to be concentrated at the joints and the time step is 0.02sec. The inertia 
force at each joint is due to the frame self-weight and an additional con-
centrated mass of 25ton at an external joint and 50ton at an internal joint. 
The total number of DOF is 600 and the initial width and depth of all ele-
ments are 0.5m, 2.0m, respectively.  
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For the modified structure the depth of all beams is 0.75m and the 
depths of columns are as follows. 

� Stories   1–10:   2.5m. 
� Stories 11–20:   2.0m. 
� Stories 21–30:   1.5m. 
� Stories 31–40:   1.0m. 
� Stories 41–50:  0.75m. 

The objective is to evaluate the dynamic response of the modified struc-
ture, considering the first 8 mode shapes. The effect of improved basis 
vectors on the accuracy of the results was demonstrated in example 6.4.  

The modified response is evaluated by the CA approach with 6 basis 
vectors (CA6) and by exact formulation of the modified equations (Exact). 
The initial response (Initial) and the modified response (CA6 and Exact) at 
the top of the frame are shown in Fig. 7.7. It is observed that high accuracy 
is achieved by the CA approach with only 6 basis vectors for the very large 
changes in the design and in the response of the structure. 

 

 
 

Fig. 7.6. Fifty-story frame 
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Fig. 7.7. Modified response at the top of the frame, CA6 and Exact formulations 
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7.2 Nonlinear Dynamic Reanalysis 

7.2.1 Solution by Implicit Integration 

Consider the common trapezoidal rule, which is Newmark’s method with 
������� and ������
�. Neglecting the effect of damping and using the modi-
fied Newton-Raphson method, it has been shown in Sect. 4.4.2 that the 
equations to be solved at the kth iteration are [Eq. (4.56)] 

)()(
0

ˆ)ˆˆ( kttkt RrKK ������ , (7.18)

where matrix 0K̂  is the initial effective stiffness matrix, defined as  

0200
4ˆ MKK
t�

�� . 
(7.19))

The modified effective stiffness matrix is given by [see Eq. (4.54)] 

MKK 2

4ˆ
t

tt

�
�� , 

(7.20)

where tK is the stiffness matrix considered for the solution of Eq. (7.18), 

and ),(ˆ),(ˆˆ
000 MKKMKKK ��� ttt  [see Eq. (4.57)]. The effective load 

vector is given by [Eq. (4.55)] 
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(7.21)

It is observed that the effective stiffness matrix K̂t  might change at 
each load step whereas the effective load vector )(ˆ ktt R�� is changed at each 
iteration cycle. In addition, any change in the design results in correspond-
ing changes in both K̂t  and )(ˆ ktt R�� . In summary, the iterative equations 
are similar to the nonlinear static equations, except that K̂t  and 

)(ˆ ktt R�� contain contributions from the inertia of the system. Thus, the CA 
procedure might prove useful for the solution process. 

7.2.2 Solution by Mode Superposition 

Assuming proportional damping and a mass matrix which is constant in 
time, the solution of nonlinear dynamic reanalysis problems by mode su-
perposition involves the following calculations at each time step: 
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� Calculation of the eigenpairs i
t
� , t�i at time t by solving the modified 

eigenproblem [Eqs. (4.63), (4.64), (4.65)] 

(K0 + t�K) i
t
� = tR i       i = 1, …, n, (7.22)

 

tR i = t�i�
 M i

t
� , (7.23)

 

t�K = �K0 + t�KNL. (7.24)

The changes �K0 in the elastic stiffness matrix due to changes in the de-
sign variables are constant for any given design. The changes t�KNL due 
to the nonlinear behavior might be different for the various time steps. 
The tangent stiffness matrix at time t, tK, expressed as 

tK = K0 + t�K, (7.25)

is calculated by [Eq. (4.59)] 

r
FK

#
#

� R
t

t . 
(7.26)

� Solution of the uncoupled equations of motion [Eq. (4.60)] 

R�Z�ZCZI ������� tTtttt
d

tt 2��� , (7.27)

where t�Z are the generalized displacements and �t  is the matrix of ei-

genvectors. The identity matrix �M�I tTt�  is the mass matrix in 

normalized coordinates. The damping matrix �C�C tTt
d �  and the 

stiffness matrix �K��
ttTtt �2  in these coordinates are diagonal. 

� Calculation of the nodal displacements by [Eqs. (4.61), (4.62)] 

Z�r ��� ttt , (7.28)

 

t+�tr = tr + t�r. (7.29)

As noted earlier, a significant part of the computational effort is in-
volved in repeated solutions of modified eigenproblems in the nonlinear 
region. A solution procedure based on the CA approach, similar to the pro-
cedure used for linear dynamic reanalysis, has been developed [6, 7]. 
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Example 7.4 

The object of this simple example is to demonstrate the effectiveness of 
the CA procedure by comparing its results with those obtained by exact re-
analysis, and by an approximate procedure where the initial mode shapes 
are not updated during the solution process. Consider the clamped beam 
shown in Fig. 7.8, subjected to a uniformly distributed load of 275kN/m 
constant in time. The beam is divided into 20 elements, the number of 
DOF is 38 (rotation and deflection at each joint) and the time step is �t = 
0.0001sec. The inertia forces are due to the mass of the beam, and damp-
ing is not considered. The width and the depth of the beam are 0.5m, 1.0m, 
respectively. The assumed moment-curvature relation is elasto-plastic with 
no hardening, as shown in Fig. 7.9, the modulus of elasticity is 3 107kN/m2, 
the elastic limit stress is Y$ =20000kN/m2, and the plastic hinge moment is 
MP = 2500kNm. The displacements at the middle of the beam obtained by 
the following methods are shown in Fig. 7.10: 

 

Fig. 7.8. Clamped beam 

Fig. 7.9. Elasto-plastic moment-curvature relation with no hardening 
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Fig. 7.10. Displacements at the middle of the beam 

� Approximate mode superposition analysis considering only 3 modes 
(1st, 3rd and 5th mode), where the elastic modes (EM) are not updated, 
and are used as approximate modes during the solution process. 

� Approximate solution by the CA approach with 2 basis vectors (CA2).  
� Exact reanalysis using a commercial code [8]. The solution is based on 

direct integration (DI) scheme. 

It is observed that the CA procedure with only 2 basis vectors (CA2) 
provides practically the solution obtained by the exact reanalysis (DI), 
whereas consideration of only the initial elastic modes (EM) during the 
mode superposition analysis provides poor results. 

Example 7.5 

Considering the fifty-story frame shown in Fig. 7.11, the object is to illus-
trate results obtained by the CA approach for the following two problems: 

� Nonlinear dynamic analysis of the original structure. 
� Nonlinear dynamic reanalysis of modified structures. 

Nonlinear dynamic analysis of the original structure. The damping ratios 
for all modes are 0.05 and the time step is �t = 0.005sec. The masses are 
assumed to be concentrated at the joints, and only horizontal inertia forces 
are considered. The inertia force is due to the frame self-weight and an ad-
ditional concentrated mass of 50ton at an internal joint and 25ton at an ex-
ternal joint. The moment-curvature relation is bi-linear with hardening of 
5%, as shown in Fig. 7.12. The width and depth of all elements are 0.5m, 
1.0m, respectively, the modulus of elasticity is 3 107kN/m2, the elastic limit 
stress is Y$ =20000kN/m2, and the plastic hinge moment is MP = 2500kNm. 
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Considering the first 8 mode shapes, the object is to evaluate the nonlin-
ear dynamic response for the loading of the El Centro earthquake shown in 
Fig. 7.2. To demonstrate results for cases where the time range of the 
nonlinear response is larger, the loading was also multiplied by a factor of 
2. The following two cases have been solved using the CA approach: 

� a. El-Cento loading, using 4 basis vectors (CA4). 
� b. 2x El-Cento loading, using 6 basis vectors (CA6). 

 

 
Fig. 7.11. Fifty-story frame 
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Fig. 7.12. Bi-linear moment-curvature relation with hardening 
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Fig. 7.13. Nonlinear dynamic response of the original structure, top of the frame: 
a. El-Cento loading, CA4  b. 2x El-Cento loading, CA6 

 

Fig. 7.14. First mode period of the original structure: a. El-Cento loading, CA4    
b. 2x El-Cento loading, CA6 
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Fig. 7.15. Displacements, velocities, accelerations, top of frame reanalysis, CA8: 
a. El-Cento loading  b.  2x El-Cento loading 

Fig. 7.16. First mode period of the modified structure, CA8: a. El-Cento loading 
b. 2x El-Cento loading 
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In case b a larger number of basis vectors are considered in order to re-
duce the errors for the larger time range of the nonlinear response. The re-
sults have been compared with those obtained by exact analysis formula-
tion (Exact). The resulting displacements, velocities and accelerations at 
the top of the frame are shown in Fig. 7.13. Figure 7.14 shows the first 
mode period as a function of time. It was found that for the El Centro load-
ing (case a), the time range of the nonlinear response is 20% of the total 
loading time. Increasing the loading to 2x El-Cento (case b), the time 
range of the nonlinear response is 57% of the total loading time. As ex-
pected, a larger number of basis vectors is needed in case b to obtain errors 
similar to those of case a. In summary, high accuracy is achieved by the 
CA approach with relatively small numbers of basis vectors. 

Nonlinear dynamic reanalysis of modified structures. To illustrate reanaly-
sis by the CA approach, assume the time step �t = 0.02sec. The initial 
width and depth of all elements are 0.5m, 1.0m, respectively, and the ob-
ject is to evaluate the response of the modified structure where the width of 
all elements is 0.4m, the height of all beams is 0.75m, and the depths of 
columns are as follows. 

� Stories   1–10:  1.25m. 
� Stories 11–30:  1.00m. 
� Stories 31–50:  0.75m. 

Additional data is as previously described for analysis of the original 
structure. The results shown in Figs. 7.15, 7.16 illustrate the high accuracy 
achieved by the CA procedure with 8 basis vectors (CA8) for both loading 
cases. A larger number of basis vectors are considered because of the large 
changes in the structure. 
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8 Direct Reanalysis 

Direct (closed form) reanalysis methods are efficient for low-rank changes 
in the stiffness matrix. In particular, these methods are applicable to situa-
tions where a relatively small proportion of the structure is changed and 
the changes in the stiffness matrix can be represented by a small sub-
matrix. These methods are inefficient when the sub-matrix of changes in 
the system stiffness matrix is of high-rank or large. 

Direct methods are usually based on the Sherman-Morrison [1] and 
Woodbury [2] formulae for the update of the inverse of a matrix. Surveys 
on these methods are given elsewhere [3–5]. A comprehensive historical 
survey of the origin of these formulae is presented in [4]. It has been 
shown [5] that various reanalysis methods may be viewed as variants of 
these formulae. When the stiffness matrix is modified by a rank-one in-
crement, the solution can be updated inexpensively with the Sherman-
Morrison formula by solving the initial analysis equations with a different 
right-hand side vector, which is a factor of the matrix increment. Similarly, 
solution for a higher-rank change in the stiffness matrix can be carried out 
by superposition of rank-one changes. This is reflected in the Woodbury 
formula. 

Direct reanalysis methods are presented in Sect. 8.1. The Sherman-
Morrison formula for exact solutions for a single rank-one change is intro-
duced in Sect. 8.1.1, the Woodbury formula for multiple rank-one changes 
is discussed in Sect. 8.1.2, and a procedure for general changes in the de-
sign is presented in Sect. 8.1.3. In Sect. 8.2 direct solutions, which are 
based on the CA approach, are developed. For multiple rank-one changes 
in the stiffness matrix the presented CA solution procedure and the 
Sherman-Morrison and Woodbury formulae are equivalent. It is shown in 
Sect. 8.3 that direct solutions can be obtained by the CA approach also for 
topological and geometrical changes.  
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8.1 Direct Methods 

8.1.1 A Single Rank-One Change 

The rank of the matrix of changes �K (rank �K) is the dimension of the 
linear space spanned by its columns. Rank �K is equal to the maximum 
number of linearly independent columns (or rows) of �K. Rank �K is also 
equal to the order of the square sub-matrix of �K of greatest order whose 
determinant does not vanish. An example of a rank-one change in the stiff-
ness matrix is a change in the cross-sectional area of a truss member. 

For a change of rank-one in the n� n stiffness matrix K0, the matrix of 
changes �K can be expressed in terms of the vectors v, w and a scalar � as  

�K = v wT = � v vT, (8.1)

where the scalar � is positive or negative, depending on the sign of the 
stiffness change, and 

w = � v. (8.2)

The Sherman-Morrison (S-M) formula, giving the change in the inverse of 
a matrix due to a rank-one change �K, can be expressed in terms of v and 
w as 

� � � � � � .1 1
0

11
0

1
0

1
0

1
0

1
0

������� ������� KwvKwvKKwvKKK TTT  (8.3)

Using the relation of Eq. (8.2), we can express the S-M formula in terms of 
v and � as 

� � � � 1
0

11
0

1
0

1
0

1
0 1 ������

������� KvvKvvKKvvK TTT . (8.4)

Define the vector t by 

vKt 1
0
�� . (8.5)

Post-multiplying Eq. (8.4) by the load vector R0 and substituting Eq. (8.5) 
and K0 r0 = R0, we obtain the S-M formula for the modified displacements 

� � � � � � 0
1

00
1

00
1

0 1 rvtvtrRvvKRKKr TTT ��� ����������� . (8.6)

Defining the scalar 

� � 0
1

1 rvtv TTa
�

����  (8.7)

and substituting Eq. (8.7) into Eq. (8.6), we obtain the expression for r 
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trr a�� 0 . (8.8)

In summary, solution by the S-M formula for evaluating the modified 
displacements r, due to a rank-one change �K in the stiffness matrix K0, 
involves the following steps: 

	 Calculation of the vector t by Eq. (8.5). 
	 Determination of the scalar a by Eq. (8.7). 
	 Calculation of the modified displacements by Eq. (8.8). 

It can be observed that calculation of the vector t by Eq. (8.5) involves 
only forward and backward substitutions if K0 is given from the initial 
analysis in the decomposed form K0 = T

0U U0 [Eq. (4.2)]. In this case, cal-
culation of t is equivalent to the solution of the initial analysis equations 
with a different right-hand side vector. 

8.1.2 Multiple Rank-One Changes 

For m rank-one changes �Ki (i = 1, 2, ..., m) in the n� n stiffness matrix, 
the total change in stiffness �K can be expressed in terms of the matrices 
V, W and a diagonal matrix H as  

�K = �K1 + �K2 + ...+ �Km  = V WT = V H



VT, (8.9)

where matrices V and W are of order n� m, matrix H is of order m� m and 

W = V H. (8.10)

The Woodbury formula, giving the change in the inverse of a matrix due to 
a rank-m  change �K, can be expressed in terms of V and W as  

� � � � � � .1
0

11
0

1
0

1
0

1
0

1
0

������� ������� KWVKWIVKKVWKKK TTT (8.11)

Using Eq. (8.10), we can express the Woodbury formula in terms of V and 
H as 

� � � � .1
0

11
0

1
0

1
0

1
0

������
���� KVHVKVHIVKKVHVK TTT  (8.12)

Define the matrix T by 

VKT 1
0
�� . (8.13)

Post-multiplying Eq. (8.12) by R0 and substituting K0r0 = R0 and Eq. 
(8.13), we obtain the Woodbury formula for the modified displacements r 
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� � � � 0
1

00
1

0 rVHTVHITrRVHVKr TTT ��
����� . (8.14)

Denoting the right-hand term in parentheses, called the capacitance matrix, 
by C  

TVHIC T�� , (8.15)

defining the vector A as  

0
1 rVHCA T�� , (8.16)

and substituting into Eq. (8.14), we obtain the expression for the modified 
displacements 

TArr �� 0 . (8.17)

In summary, solution by the Woodbury formula for evaluating the 
modified displacements, due to m rank-one changes in the stiffness matrix, 
involves the following steps: 

	 Calculation of matrix T by Eq. (8.13). 
	 Determination of the vector A by Eq. (8.16). 
	 Calculation of the modified displacements by Eq. (8.17). 

Again, it can be observed that calculation of matrix T by Eq. (8.13) is 
equivalent to the solution of the initial analysis equations with m different 
right-hand side vectors. In addition, calculation of the vector A involves 
solution of the m� m set of Eq. (8.16). When the rank of �K is small com-
pared to the order of K, the main computational cost is involved in the so-
lution of Eq. (8.13). For a banded matrix K of order n and band-width mk, 
this requires about m n mk multiplications. The factorization of the matrix 
requires about n mk

2 multiplications. Therefore, the above procedure is ef-
fective only when the ratio m/mk is small. 

Example 8.1 

To illustrate calculation of the exact displacements by the S-M Formula, 
consider the ten-bar truss shown in Fig. 8.1. The truss is subjected to two 
concentrated loads, the modulus of elasticity is E =30000 and the eight 
analysis unknowns are the horizontal (to the right) and the vertical (down-
ward) displacements at joints 1, 2, 3 and 4, respectively.  

Assuming the initial cross-sectional areas X = 1.0, solutions are pre-
sented for the following two separate cases of changes:  
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Fig. 8.1. Ten-bar truss 

	 Case 1. A change �X1 = 1.0 in member 1. 
	 Case 2. A change �X2 = 1.0 in member 2. 

The terms related to case 1 are denoted by subscript 1 and those related 
to case 2 by subscript 2. 

Case 1. The matrix of changes, �K1 is given by [Eq. (8.1)] 

,

0000
0000
0000
0000

0000
0000
0000
0000

0000
0000
0000

0000

0000
0000
0000

0001

111
1

1
1

T

L
XE vvK ��

�
�
�
�
�
�
�
�
�
�

�




�
�
�
�
�
�
�
�
�
�

�

�

�
��  

(a)

where L1 is the length of the member and 

333.831 ��      0} 0, 0, 0, 0, 0, 0, {1,1 �
Tv . (b)

The vector t1 is computed by 1
1

01 vKt ��  [Eq. (8.5)], 

� �,0054.0,0014.0,0181.0,0013.0,0179.0,0107.0,0066.0,0106.01 ���Tt (c)

and the scalar a1 is computed by [Eq. (8.7)] 
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� � 7468.1031 01
1

11111 �����
�

rvtv TTa . (d) 

The final modified displacements obtained by the S-M formula are com-
puted by [Eq. (8.8)] 

� �45.5,31.2,26.11,04.3,79.10,71.1,89.4,24.1)( 110 ����� TT a trr . (e)

Case 2. The matrix of changes, �K2 is given by [Eq. (8.1)] 

,

0000
0000
0000
0000

0000
0000
0000
0000

0000
0000
0000

0000

0000
0101
0000

0101

222
2

2
2

T

L
XE vvK ��

�
�
�
�
�
�
�
�
�
�

�




�
�
�
�
�
�
�
�
�
�

�

�

�

�

�
��  

(f)

where L2 is the length of the member and 

333.832 ��      0} 0, 0, 0, 0, 1, 0, {1,2 ��Tv . (g)

The vector t2 is computed by 2
1

02 vKt ��  [Eq. (8.5)], 

,
0006.0,0001.0,0054.0,0011.0

,0066.0,0109.0,0006.0,0001.0
2

�
�
�

�
�
�

��

����
�Tt  

(h)

and the scalar a2 is computed by [Eq. (8.7)]  

� � 1721.211 02
1

22222 ������
�

rvtv TTa . (i) 

The final modified displacements obtained by the S-M formula are com-
puted by [Eq. (8.8)] 

� �.02.6,46.2,02.13,15.3,51.12,60.2,57.5,34.2)( 220 ����� TT a trr (j) 

8.1.3 General Procedure 

Assume the general case where the incremental stiffness matrix �K can be 
compressed, by eliminating zero columns and rows, to form a reduced in-
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cremental matrix �KR of size equal to the number of changed columns (or 
rows) in matrix K. The relation between �K and �KR is given by 

�K = bT �KR b, (8.18)

where b is a Boolean matrix with linearly independent rows, each of which 
contains all zeroes except for one unit value, located at the column number 
where a change in K occurs.  

It has been shown [6] that the following formula for computing K-1 can 
be derived from the Sherman-Morrison identity 

, )(

)( 
1

0
1-1

0
1

0
1

0

1
0

1

����

��

����

����

bKKbbKKIbKK

b KbKK  

R
T

R
T

R
T

 

(8.19)

where I is the identity matrix. Note that both matrices I and T
R bbKK 1

0
��  

are of size equal to that of �KR. In addition, for V = bT and WT =
�KR b 
Eqs. (8.11) and (8.19) are equivalent. 

The following procedure [6] utilizes symmetry and positive definiteness 
properties to compute the modified displacements directly. Assume that 
the initial stiffness matrix K0 is available in the decomposed form  

K0
 = T

0U U0, (8.20)

where U0 is an upper triangular matrix. Denote 

r = r0 + �r, (8.21)

where �r is the change in the displacements. Post multiplying Eq. (8.19) 
by R0 and substituting K0 r0 = R0 and Eq. (8.21) into the resulting equa-
tion, we obtain 

. )( 0
-11

0
1

0 rbKbKbKIbKr R
T

R
T ������ ��  (8.22)

The reduced unsymmetrical matrix )( 1
0

T
R bKbKI ���  can readily be 

shown to be nonsingular, even when �KR is singular. Using U0 from Eq. 
(8.20) we define the symmetric influence matrix of unit changes, Q, by 

ZZbUUbbKbQ TTTT ��� ��� 1
0

1
0

1
0 )( , (8.23)

where the rectangular matrix Z is defined as 

Z = 1
0 )( �TU bT. (8.24)

The matrix Z can be produced by a forward-substitution process per-
formed on bT. 
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Using Eqs. (8.23) and (8.24), we can write Eq. (8.22) as 

. )( 0
-11

0 rbKQKIZUr RR ������ �  (8.25)

This equation can be written in convenient positive-definite form by ex-
tracting the matrix Q as a common factor from the matrix to be inverted, as 
follows 

. )( 0
-1111

0 rbKKQQZUr RR ������ ���  (8.26)

Matrices Q and )( 1
RKQ ���  can be shown to be positive definite, thus 

pivoting is unnecessary in the triangularization. An optimal order of calcu-
lation has been proposed elsewhere [6, 7] and is illustrated in the following 
numerical example. 

Example 8.2 

To illustrate calculation of exact displacements by the procedure presented 
in this section, consider a structure with the following initial values 
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Changes are made to the structure as follows 
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To determine �r by Eq. (8.26), we calculate the following intermediate 
values 
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The matrix )( 1
RKQP ��� � is factorized into P

T
PUUP �  where 

�
�



�
�

� �
� 2/1)14(33.00

33.23
PU , 

(e)

and the vectors, 11r , 111r  are calculated by 

�
�
�

�
�
��

�� ��

60

60
1

11
11 rPQr , 

�
�

�
�

�

�
�

�
�

�

���

30
30
0

11111 rZr . 

(f)

The final results for Eqs. (8.26) and (8.21) are 

� �30,0,0��� Tr , 

� �66,54,36)( 0 ���� TT rrr . 

(g)

8.2 Direct Solutions by Combined Approximations 

In general, the CA approach provides approximate solutions for high-rank 
changes in the stiffness matrix. It is shown in this section that exact solu-
tions are efficiently obtained by the approach for a small number of simul-
taneous rank-one changes in the stiffness matrix. In such cases, solutions 
obtained by the CA approach and the Sherman-Morrison-Woodbury for-
mulae are equivalent. In Sect. 8.2.1 we present the expressions for calcu-
lating the exact modified displacements. Using these expressions, a general 
solution procedure is introduced in Sect. 8.2.2. 
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It is instructive to note that exact solutions can be obtained by the CA 
approach also in other particular cases discussed in Sect. 10.2. These in-
clude cases when a newly created basis vector becomes a linear combina-
tion of the previous vectors, or if a modified design is a scaled design. 

8.2.1 Multiple Rank-One Changes 

In this section we present the expressions for calculating the exact modi-
fied displacements by the CA approach for simultaneous rank-one changes 
in the stiffness matrix. Such exact solutions are efficient in cases where the 
number of changes is much smaller than the number of DOF.  

Consider the common case where the first basis vector is r1 = r0 and the 
second basis vector is calculated by r2 = –B r0. These two vectors are line-
arly dependent if 

B r0 = y r0, (8.27)

where y is a scalar different from zero and r0 is an arbitrary displacement 
vector. Substituting B =
 1

0
�K �K into Eq. (8.27) and pre-multiplying the 

resulting equation by K0 yields 

�K r0 = y K0 r0 = y R0. (8.28)

It is observed that the condition of Eq. (8.28) is equivalent to the case of 
uniform scaling where �K = y K0. 

Two successive basis vectors Bj-1r0 and Bj r0 are linearly dependent if  

Bj r0 = y Bj-1 r0, (8.29)

for some scalar y different from zero. The condition of Eq. (8.29) is satis-
fied for arbitrary displacements r0 if 

Bj = y Bj-1. (8.30)

For the second and the third basis vectors this condition becomes 

B2 = y B. (8.31)

The condition of Eq. (8.31) is satisfied in cases of rank-one changes in K. 
Consider for example the typical case of a change in the cross-sectional 

area of a single truss member. It has been shown [8] that for a change in 
the ith member, �Ki, an exact solution is obtained by the CA approach 
with only two basis vectors by 

r = r0 + yi ri, (8.32)

where the basis vector ri is defined as 
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ri = – 1
0
�K �Ki r0 = –Bi r0. (8.33)

That is, the matrix Bi corresponds to the change �Ki in the stiffness matrix 
of member i 

Bi =
1

0
�K �Ki. (8.34)

The term �Ki r0 in Eq. (8.33) represents a pair of collinear forces on the 
ends of the modified truss member. Thus, the basis vector ri may be 
viewed as an influence coefficient vector measuring the effect of the 
change �Ki in element i on the displacement vector [Eq. (8.32)]. 

The expression of Eq. (8.32) for a change in a single member can be ex-
tended to the general case of simultaneous changes in m members, for 
which the exact solution is given by [8] 

�
�

��
m

i
iiy

1
0 rrr , 

(8.35)

where ri (i = 1, …, m) are defined by Eq. (8.33) for all changed members. 
Exact solutions by Eq. (8.35) are efficient in cases where the number of 
changes is much smaller than the number of DOF for the structure, that is 
m << n. 

It has been shown [5] that for a change in the cross-sectional area of a 
single truss member, the exact solutions obtained by the CA approach [Eq. 
(8.32)] and the S-M formula [Eq. (8.8)] are equivalent. Moreover, for si-
multaneous changes in m truss members, the exact solutions obtained by 
the CA approach [Eq. (8.35)] and the Woodbury formula [Eq. (8.17)] in-
volve exactly the same calculations. 

8.2.2 Solution Procedure 

Using the expressions presented in Sect. 8.2.1, we introduce in this section 
a general solution procedure for the case of m rank-one simultaneous 
changes in the stiffness matrix (for example, simultaneous changes in m 
truss members). It has been noted that this procedure is particularly effi-
cient when the number of changed members is much smaller than the 
number of DOF. If some of the basis vectors are linearly dependent, the 
exact solution is obtained with a smaller number of basis vectors. 

Consider a common problem where it is necessary to repeat the analysis 
many times, due to various combinations of changes in m members. It will 
be shown that, using the procedure presented, it is necessary to calculate m 
basis vectors only once. These vectors can then be used to achieve exact 
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solution for any modified design. The procedure presented is most effec-
tive in various applications, such as response surface calculations. 

For the given initial values K0 and r0, the solution procedure involves 
the following two main stages. 

Stage a, calculation of the constant vectors r0i. It has been noted in Sect. 
5.2.1 that multiplying a basis vector by any scalar does not change the so-
lution but only the corresponding scalar yi [Eq. (5.33)]. Therefore, a basis 
vector r0i related to a change ����K0i in the ith member and defined as 

r0i = 1
0
��K ����K0i r0        i = 1, ..., m,  (8.36)

can be used for any magnitude of change ����Ki obtained by  

����Ki � �Xi ����K0i         i = 1, ..., m, (8.37)

where �Xi is a scalar multiplier. As noted earlier, calculation of the basis 
vectors involves only forward and backward substitutions. Thus, the ma-
trix of basis vectors rB0, 

rB0 = [r01, r02, …, r0m], (8.38)

can be used for any modified design 

Stage b, repeated calculations. This stage consists of the following simple 
repeated calculations for any modified design: 

	 Calculation of the modified stiffness matrix K. For any assumed set of 
of changes �Xi, the modified stiffness matrix K is calculated by 

��
��

������
m

i
ii

m

i
i X

1
00

1
0= KKKKK . 

(8.39)

Note that the matrices ����K0i are already given from calculation of the 
constant basis vectors. 

	 Calculation of the coefficients yi. For the given matrix of basis vectors 
rB0, the reduced stifffness matrix KR and the reduced load vector RR are 
calculated by  

00 B
T
BR rKrK �        )( 00 KrRrR �� T

BR , (8.40)

and the vector of unknown coefficients,  

yT = {y1, y2, ... , ym}, (8.41)

is calculated by solving the m�m set of equations 

KR y = RR. (8.42) 
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	 Calculation of the final exact displacements r. These are calculated by 

i

m

i
iy rrr �

�

��
1

0  . 
(8.43)

Example 8.3 

To illustrate calculation of the exact displacements by the CA approach, 
consider again the ten-bar truss shown in Fig. 8.2, solved in example 8.1 
by the S-M Formula. The truss is subjected to a single loading condition of 
two concentrated loads, the initial cross-sectional areas equal unity, the 
modulus of elasticity is 30000 and the eight analysis unknowns are the 
horizontal and the vertical displacements at joints 1, 2, 3 and 4.  

The given initial displacement vector r0 and the constant basis vectors 

i0r  [Eq. (8.36)], calculated for changes �Xi = +1.0 in each of the 10 cross 
sections, are shown in Table 8.1. As noted earlier, these vectors can be 
used in reanalysis of any modified design. The final exact displacements 
can readily be determined for any assumed set of changes in the cross sec-
tions by the procedure described in this section.  

Assume, for example, the following two separate changes: 

	 Case 1. A change �X1 = 1.0 in member 1. 
	 Case 2. A change �X2 = 1.0 in member 2. 
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Fig. 8.2. Ten-bar truss 
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Table 8.1. Vectors r0 and r0i 

r0 r01 r02 r03 r04 r05 r06 r07 r08 r09 r010 
2.34 -2.07 -0.01 -0.29 0.01 0.04 -0.01 -0.41 0.38 0.02 -0.02
5.58 -1.30 -0.02 -1.10 0.03 0.17 -0.02 -1.59 -1.79 0.09 -0.06
2.83 -2.10 -0.44 -0.26 -0.07 0.08 0.04 -0.37 0.34 -0.19 0.13

12.65 -3.50 -0.27 -3.70 -0.32 -0.02 0.21 -1.80 -1.60 -0.91 -0.75
-3.17 0.25 0.04 2.20 0.65 0.08 0.04 -0.37 0.34 -0.19 0.13
13.13 -3.53 -0.21 -3.67 -0.40 0.02 -0.22 -1.75 -1.64 -1.12 -0.61
-2.46 0.27 -0.01 2.17 0.01 0.04 -0.01 -0.41 0.38 0.02 -0.02
6.01 -1.05 0.02 -1.36 -0.03 -0.17 0.02 -1.96 -1.45 -0.09 0.06
 
The scalars y1 = 0.531 and y2 = 0.526 are calculated separately by solv-

ing a single equation [Eq. (8.42)]. The final exact displacements are as fol-
lows [Eq. (8.43)]: 
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Case 2 
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As expected, these results are identical to those obtained by the S-M for-
mula in example 8.1 [Eqs. (e), (j)]. 
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8.3 Topological and Geometrical Changes 

In this section exact solutions for topological and geometrical changes in 
the structure are presented. It is shown that the solution procedure devel-
oped in Sect. 8.2.2 is suitable also for these types of changes.  

8.3.1 Topological Changes 

Considering topological changes, it has been shown [8–11] that exact solu-
tions can be obtained by the CA approach also for various cases where 
members are deleted or added. Moreover, in cases where the number of 
DOF is decreased or increased, the formulations presented in Sect. 5.3 can 
be used together with the procedure developed in Sect. 8.2.2 to obtain ex-
act solutions. Exact solutions for changes affecting only a small number of 
members are demonstrated by the numerical example that follows. For 
simplicity of presentation a small-scale truss structure is considered. It has 
been noted earlier that the number of basis vectors needed to achieve the 
exact solution is equal to the number of changed members. However, it 
was found that a smaller number of vectors is often sufficient. 

Example 8.4 

To illustrate exact solutions for conditionally-unstable modified structures 
obtained by elimination of members, consider again the initial ten-bar truss 
shown in Fig. 8.3. The cross-sectional areas equal unity, the modulus of 
elasticity is 30000 and the eight analysis unknowns are the horizontal and 
the vertical displacements at joints 1, 2, 3 and 4, respectively. The follow-
ing cases of eliminated members have been solved: 

Case a: members 2+6+10 (Fig. 8.4a). 
Case b: members 2+5+6+10 (Fig. 8.4b). 
Case c: members 2+6+7+10 (Fig. 8.4c). 
Case d: members 2+6+8+10 (Fig. 8.4d). 
Case e: members 2+6 (Fig. 8.4e). 
Case f: members 4+9 (Fig. 8.4f). 
Case g: members 5+8+9 (Fig. 8.4g). 
Case h: members 4+5+8+9 (Fig. 8.4h). 

The resulting exact displacements obtained the CA approach with only 3 
basis vectors are summarized in Table 8.2. It is observed that cases a, b, c, 
d represent stable structures, whereas cases e, f, g, h represent condition-
ally unstable structures. As a result, some of the displacements and joints 
are irrelevant and can be eliminated in order to obtain a stable structure. 
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Fig. 8.3. Initial structure 
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Fig. 8.4. Modified structures obtained by elimination of members 

Table 8.2. Exact solutions obtained by the CA approach with 3 basis vectors 

Case Eliminated                               Displacements 
 members 1 2 3 4 5 6 7 8 

a 2+6+10 2.40 5.80 * * -3.60 15.18 -2.40   5.80 
b 2+5+6+10 2.40 5.80 * * -3.60 15.18 -2.40   5.80 
c 2+6+7+10 3.60 10.37 * * -2.40 19.77 -1.20 11.57 
d 2+6+8+10 1.20 11.57 * * -4.80 20.96 -3.60 10.37 
e 2+6 2.40 5.80 * * -3.60 15.18 -2.40   5.80 
f 4+9 2.11 4.67 3.30 13.62 * 14.81 -1.35   5.57 
g 5+8+9 * * 2.40 19.76 -3.60 20.96 -3.60 10.38 
h 4+5+8+9 * * 2.40 19.76 * 20.96 -3.60 10.38 

* Irrelevant displacements that can be eliminated due to conditional instability 
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8.3.2 Geometrical Changes 

Geometrical changes are conceptually similar to cross-sectional changes in 
the sense that the number of DOF is usually unchanged. However, since 
the displacements are highly nonlinear functions of the design variables, it 
might be difficult to achieve accurate approximations. In addition, changes 
in the geometry often significantly affect the response of the structure.  

It is shown in this section that exact solutions can be achieved effi-
ciently by the CA approach for geometrical changes that affect a small 
number of elements. This can be done by viewing these changes as corre-
sponding topological changes [12]. Changing, for example, coordinates of 
a single joint we obtain the exact modified solution by viewing the change 
in the geometry as the following two successive changes in the topology: 

	 All members connected to that joint are deleted. 
	 New members are added at the modified location of the joint. 

The solution procedure is demonstrated in the following example. 

Example 8.5 

Consider the nine-bar truss with the initial geometry shown in Fig. 8.5a. 
To calculate displacements for the modified geometry shown in Fig. 8.5b, 
we first assume that members 8 and 9 connected to joint 4 are deleted from 
the structure. Then we assume that the new members 10 and 11 are added 
at the new location of joint 4. The resulting matrix of changes in the stiff-
ness matrix is given by 

�K =�K (8, 9) + �K (10, 11) = �
�
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Fig. 8.5. a. Initial truss geometry  b. Modified truss geometry 
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where 
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10   0.1789 0.3578

0   0  0.3578 0.2844  
0   0       0              0      
0   0       0              0      

 83.333== 1221
TKK . 

(d)

Since four members have been changed, four basis vectors are needed to 
achieve the exact solution. In the present case, the matrices corresponding 
to the two vertical members 9 and 11 are linearly dependent and, therefore, 
only three basis vectors are required to obtain the exact modified dis-
placements 

� �15.19 2.30, 5.80, 2.40, 15.19, 3.60, 5.80, 2.40,= ���Tr . (e)
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9 Repeated Sensitivity Analysis 

Design sensitivity analysis of structures deals with the calculation of 
changes in the response resulting from changes in the parameters describ-
ing the structure. The derivatives of the response with respect to the system 
parameters, called the sensitivity coefficients, are used in the solution of 
various problems. In design optimization, the sensitivity coefficients are 
used to select a search direction. Their calculation often involves much 
computational effort, particularly in the optimization of large scale sys-
tems. Moreover, calculation of the derivatives for a given design involves 
structural analysis of the design. As a result, there has been much interest 
in efficient procedures for calculating the sensitivity coefficients [1]. 

Design sensitivities are often used in generating approximations for the 
response of a modified system, including approximate reanalysis models 
and explicit approximations of the constraint functions in terms of the 
structural parameters (e.g. first-order Taylor series approximations). In ad-
dition, the sensitivities are required for assessing the effects of uncertain-
ties in the structural properties (e.g. material or geometric properties) on 
the system response. 

Similar to reanalysis, the following factors are considered in choosing a 
suitable method for repeated sensitivity analysis (or sensitivity reanalysis): 

� The accuracy of the calculations. 
� The computational effort involved. 
� The ease-of-implementation. 

The present chapter deals with repeated sensitivity analysis for discrete 
systems. The two general approaches used for calculating the sensitivity 
coefficients are: 

� The direct approach, considered in this chapter, which is based on the 
implicit differentiation of the analysis equations that describe the system 
response with respect to the desired parameters, and the solution of the 
resulting equations. 

� The adjoint-variable approach, not mentioned in this book, where an 
adjoint physical system is introduced whose solution permits the rapid 
evaluation of the desired sensitivity coefficients. 
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Methods of design sensitivity analysis for discretized systems can be di-
vided into the following classes: 
� Finite-difference methods, which are easy to implement but might 

involve numerous repeated analyses and involve high computational 
cost, particularly in problems with many design variables or response 
variables. The efficiency can be improved by using fast reanalysis 
techniques. In addition, the solution might involve accuracy problems.  

� Analytical methods, which provide exact solutions but might not be easy 
to implement in some problems such as shape optimization. 

� Semi-analytical methods, which are based on a compromise between 
finite-difference methods and analytical methods. These methods use 
finite-difference evaluation of the right-hand-side vector. They are easy 
to implement but may provide inaccurate results [2, 3]. The accuracy 
can be improved by using one of several procedures. 

� Computational or automated derivatives that rely on differentiation of 
the software itself. 

The outline of this chapter is as follows. Finite-difference derivatives 
are described in Sect. 9.1. Repeated sensitivity reanalysis by the CA ap-
proach, using analytical and finite-difference derivatives, is developed in 
Sects. 9.2 – 9.5. Static problems are presented in Sect. 9.2 and vibration 
problems are introduced in Sect. 9.3. Solutions of linear and nonlinear dy-
namic problems are discussed in Sects. 9.4 and 9.5, respectively. 

9.1 Finite-Difference Derivatives 

For simplicity of presentation assume a single design variable. Consider 
the problem of calculating the derivatives X�� /0r  of the displacement 
vector r with respect to a design variable X at the point X0. In the forward-
difference method, the derivatives are approximated from the exact dis-
placements at the original point X0 and at the perturbed point X0+�X �by 

X
XXX

X �
���

�
�
� )()( 000 rrr

, 
(9.1)

where �X �is a predetermined step-size. The accuracy can be improved by 
the central-difference approximation, where the derivatives are computed 
from the exact displacements at the points X0 –��X and X0 + �X �by�

X
XXXX

X �
�����

�
�
�

2
)()( 000 rrr

. 
(9.2)
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Finite-difference methods are the easiest to implement and therefore 
they are attractive in many applications. When r(X0��is known, application 
of Eq. (9.1) involves only one additional calculation of the displacements 
at X0 +��X while Eq. (9.2) requires calculation at the two points X0 –��X 
and X0 +��X	 For a problem with n design variables, finite difference de-
rivative calculations require repetition of the analysis for n+1 [Eq. (9.1)] or 
2n+1 [Eq. (9.2)] different design points. This procedure is usually not effi-
cient compared to analytical and semi-analytical methods. 

As noted earlier, finite-difference approximations might involve accu-
racy problems. The following two sources of errors should be considered 
whenever these approximations are used: 

� The truncation error, which is a result of neglecting terms in the Taylor 
series expansion of the perturbed response. Considering the forward-
difference method [Eq. (9.1)] the Taylor series expansion of r(X0 +��X) 
about X0 yields 


 � 
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or, after rearranging 
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It is observed that the truncation error in this case is 
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and the largest term in this expression is proportional to �X. Similarly, 
for the central-difference method [Eq. (9.2)], the Taylor series expan-
sion of the displacements r(X0 – �X) about X0 yields 
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From Eqs. (9.3), (9.6) we obtain 
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It is observed that the largest truncation error in this case is proportional 
to (�X)2. 
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� The condition error, which is the difference between the numerical 
evaluation of the function and its exact value. Examples for this type of 
error include round-off error in calculating X�� /0r  from the original 
and perturbed values of r, and calculation of the response by 
approximate analysis. Approximate analysis can also be the result of an 
insufficient number of iterations being used during the solution process. 

Considerations related to the truncation error and the condition error are 
conflicting. A small step size �X will reduce the truncation error, but may 
increase the condition error. In some cases there may not be any step size 
which yields an acceptable error. In certain applications, truncation errors 
are not of major importance since it might be sufficient to find the average 
rate of change in the structural response and not necessarily the accurate 
local rate of change at a given point. Therefore, to eliminate round-off er-
rors due to approximations it is recommended to increase the step-size.  

It is known that small response values are not calculated as accurately as 
large response values. The same applies to derivatives [4]. Thus, it would 
be difficult to evaluate accurately small response derivatives by finite dif-
ference or other approximations. However, it is usually less important to 
evaluate accurately such derivative values. The relative magnitude of the 
derivatives can be estimated from the ratio )//()/( XX�� rr . 

9.2 Static Problems 

9.2.1 Analytical Derivatives 

Given a design X0 and the corresponding stiffness matrix K0, the resulting 
displacements r0 are computed by the linear static equilibrium equations  

K0 r0 = R0, (9.8)

where R0 is the load vector. The stiffness matrix is first factorized by 

K0 =
T
0U U0, (9.9)

where U0 is an upper triangular matrix. Differentiating Eq. (9.8) with re-
spect to the design variable X and rearranging yields 

0
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(9.10)

The right-hand side of this equation is often referred to as the pseudo-load 
vector. Equations (9.8) and (9.10) have the same coefficient matrix K0. If 
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the decomposed form of Eq. (9.9) is available, then only forward and 
backward substitutions are needed to solve for X�� /0r  [Eq. (9.10)].  

The load vector R is often assumed to be independent of the design 
variables. In such cases Eq. (9.10) is reduced to the form 

0
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0 rKrK
XX �

�
��

�
�

. 
(9.11)

Analytical methods are widely used and often demonstrate good per-
formance in terms of both accuracy and efficiency. However, implementa-
tion of these methods is difficult in some problems such as shape optimiza-
tion, where the derivatives in the right-hand-side vector of Eq. (9.10) are 
not easy to obtain. Employing finite-difference methods can improve sig-
nificantly the ease of implementation at the expense of less accurate re-
sults. The effect of the finite difference approximations on the computa-
tional efficiency strongly depends on the problem under consideration. 

9.2.2 Semi-Analytical Derivatives 

Semi-analytical methods may improve the ease-of-implementation of ana-
lytical methods. These methods are based on finite-difference evaluation 
of the right-hand-side vector of Eq. (9.10). Using the forward-difference 
method, the displacement derivatives X�� /0r  are computed from the ex-
act values of R and K at the two points X0 and X0 + �X by 
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Using the central-difference method, the requested derivatives are com-
puted from the exact values of R and K at X0 – �X and X0 + �X� by 
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Semi-analytical methods combine ease-of-implementation and computa-
tional efficiency, and they have been implemented in several finite element 
programs. However, the errors associated with the finite-difference ap-
proximations of the right-hand-side vector can be substantial [2–3]. Vari-
ous methods have been proposed to improve the accuracy [5–9].  

In this section the refined semi-analytical method [9], which is useful 
for shape design variables, is described. It was found that inaccuracies 
arise when large rigid body motions are identified for the individual ele-
ments. Using the refined semi-analytical method, the contribution to the 
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design sensitivities corresponding to the rigid body motion are evaluated 
by exact differentiation of the rigid body modes. The non-self equilibrating 
contributions to the pseudo-load vector are also corrected using exact dif-
ferentiation of rigid body modes. Consider the forward-difference method 
and assume that the load vector R is independent of the design variables. 
The pseudo-load vector q is the right-hand side of Eq. (9.11) 

rKq
X�

�
�� , 

(9.14)

which is evaluated by summing the individual element contributions qe 

e
e

e X
rKq
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�� , 
(9.15)

where Ke is the element stiffness matrix and re is the element displacement 
vector. The latter vector can be decomposed into a part of pure deforma-
tions �

er  and a part of pure rigid body motions k� . The latter are orthogo-
nal vectors that can be easily found. Obviously, it holds true that 

0�K �ke . (9.16)

Differentiating Eq. (9.16) and rearranging gives 
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The displacement vector re can be expressed in terms of the M rigid 
body motions k�  and corresponding scalars k�  as 
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Using some additional algebraic operations we obtain the following ex-
pression for the individual element contributions qe [9] 
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The third and fourth terms in this equation can be calculated exactly by an 
analytical differentiation. The first and the second terms are also corrected 
using exact differentiation of rigid body modes. As a result, the method re-
duces the errors involved in the semi-analytical method. 
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9.2.3 Repeated Analytical Derivatives 

The problem considered in this section is to evaluate analytical derivatives 
�r/�X for various modified designs where exact calculations of r are not 
available. It has been shown [10–12] that the CA procedure presented in 
Chap. 5 can be used to effectively calculate the required derivatives. When 
results of exact analysis for modified designs are available, calculation of 
analytical displacement derivatives might be straightforward, using the 
formulation presented in Sect. 9.2.1.  

Assume that the elements of K are some functions of X, expressed as 

K = K0 + �K(X), (9.20)

such that the derivatives �K/�X are readily available.  
Differentiation of Eq. (5.24) yields 
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Differentiating Eq. (5.29) and rearranging, we obtain for �y/�X 

yKRyK
XXX

RR
R �

�
�

�
�

�
�
�

. 
(9.22)

Assuming, for simplicity of presentation, 

R = R0, (9.23)

then from Eqs. (5.28) we have 
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In summary, evaluation of the derivatives �r/�X by the CA approach for 
any assumed X involves the following steps: 

� Determine the matrices �rB/�X��and �K/�X. Derivatives of the basis 
vectors, �rB/�X, can be calculated in several ways, of which two simple 
and efficient possibilities are described in the next sub-section. 

� Calculate the �KR/�X��and �RR/�X �Eqs.�
�	�����
�	����. 
� Calculate the �y/�X�� by solving a reduced set s � s set [Eq. (9.22)]. 
� Evaluate the derivatives �r/�X [Eq. (9.21)]. 



234      9 Repeated Sensitivity Analysis 

Table 9.1 shows that the computations of r and �r/�X by the CA proce-
dure for any modified design involve similar calculations. 

Table 9.1. Summary of calculations 

Calculation  Displacements Displacement  
derivatives 

Coefficient matrices K 
 

�K/�X 

Basis vectors rB 
 

�rB/�X� 

Reduced matrices and vectors KR  
 

RR  
 

�KR/�X�
�

�RR/�X 

Reduced unknowns y 
 

�y/�X 

Final unknowns r �r/�X 

Derivatives of the Basis Vectors 

The basis vectors are implicit functions of X. In such cases it is possible to 
consider explicit approximations [12]. Assume for example the quadratic 
fitting  

ri(X) = ai + bi�X + ci X
2, (9.26)

where ai, bi, ci are constant vectors. The latter vectors can be determined 
from the basis vectors calculated at three design points, which are in be-
tween the bounds on X. Differentiating Eq. (9.26), we obtain 

�ri/�X = bi� + 2ci X. (9.27)

The expressions of Eqs. (9.26), (9.27) can be used for any modified design. 

The basis vectors are explicit functions of X. In such cases the solution is 
often straightforward. Consider for example rank-one changes in the stiff-
ness matrix (Sect. 8.2.1), where Eq. (9.20) is expressed as 

K = K0 + X �K0. (9.28)

The elements of matrices �K0 and �K/�X=�K0 are constant. In this case 
the exact displacements obtained by the CA approach are [Eq. (8.32)] 

r = r0 + y1 r1, (9.29)

where the basis vector r1 is given by [see Eq. (8.33)] 
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r1 = – 1
0
�K �K r0 = – X B0 r0, (9.30)

and B0 is a matrix of constant elements defined as 

B0 �� 1
0
�K �K0. (9.31)

Since multiplication of a basis vector by a scalar does not change the re-
sults we can use, instead of r1 [Eq. (9.30)], the constant basis vector 

r01 = – B0 r0, (9.32)

for any modified design. The constant elements of matrix �rB/�X are ob-
tained by differentiation of Eqs. (9.30)  

�r1/�X = – B0 r0. (9.33)

Example 9.1 

To illustrate the accuracy of the results achieved by the CA procedure, 
consider the ten-bar truss shown in Fig. 9.1. The modulus of elasticity is 
30000 and the eight analysis unknowns are the horizontal and the vertical 
displacements at joints 1, 2, 3 and 4, respectively. The initial cross-
sectional areas are X0 = 1.0, the stress constraints are –25.0� �������� � 25.0, and 
the minimum size constraints are 0.001� X. Assuming minimum weight 
design, the optimum is 

T
optX ={8.0,0.001,8.0,4.0,0.001,0.001,5.667,5.667,5.667,0.001}. (a)

Consider the line from the initial design to the optimal design 
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Fig. 9.1. Ten-bar truss 
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Table 9.2. Cross section areas of elements for ����0.5 and�� = 1.0 

Element ����0.5 � = 1.0 
1 4.500 8.000 
2 0.501 0.001 
3 4.500 8.000 
4 2.500 4.000 
5 0.501 0.001 
6 0.501 0.001 
7 3.334 5.667 
8 3.334 5.667 
9 3.334 5.667 
10 0.501 0.001 

Table 9.3. Approximate displacements and displacement derivatives for ��= 0.5 

Number of basis vectors          2       3        4      5 Exact
Displacements 0.50 0.52 0.52 0.52 0.52
 1.53 1.46 1.48 1.49 1.49
 0.71 0.76 0.77 0.77 0.77
 3.56 3.63 3.64 3.65 3.65
 -0.89 -0.98 -0.99 -0.98 -0.98
 3.77 3.87 3.89 3.90 3.90
 -0.54 -0.55 -0.55 -0.55 -0.55
 1.71 1.64 1.62 1.62 1.62
Displacement derivatives -0.80 -0.81 -0.80 -0.79 -0.79
 -2.16 -2.16 -2.11 -2.09 -2.09
 -1.05 -1.04 -1.02 -1.01 -1.01
 -4.96 -4.93 -4.91 -4.89 -4.89
 1.24 1.23 1.21 1.24 1.24
 -5.21 -5.17 -5.13 -5.10 -5.10
 0.85 0.85 0.86 0.87 0.86
 -2.37 -2.36 -2.39 -2.42 -2.42
 

X = X0 + ��X0, (b)

where ��is a variable representing the step size and �X0 is defined as 

T
0X� ={7,–0.999,7,3,–0.999,-0.999,4.667,4.667,4.667,–0.999}. (c)

Evaluation of the displacements and displacement derivatives with re-
spect to � are illustrated for the two design points ����0.5,���=1.0. The 
corresponding modified cross-sectional areas are shown in Table 9.2	� 
Solving by the presented CA procedure the results are summarized in Ta-
bles 9.3, 9.4 for various numbers of basis vectors. It is observed that good 
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accuracy is achieved with 2–3 basis vectors for these very large changes in 
the design, for both displacements and displacement derivatives. The accu-
racy is further improved by considering additional basis vectors. 

Table 9.4. Approximate displacements and displacement derivatives for ��= 1.0 

Number of basis vectors  2 3 4 5 Exact
Displacements 0.28 0.29 0.29 0.30 0.30
 0.90 0.84 0.88 0.90 0.90
 0.41 0.45 0.47 0.49 0.49
 2.10 2.17 2.19 2.21 2.21
 -0.53 -0.61 -0.62 -0.60 -0.60
 2.24 2.34 2.37 2.40 2.40
 -0.30 -0.31 -0.31 -0.30 -0.30
 1.01 0.95 0.93 0.90 0.90
Displacement derivatives 0.25 0.25 0.25 0.24 0.24
 0.74 0.72 0.69 0.64 0.64
 * * * * *

 * * * * *

 0.43 0.46 0.44 0.47 0.47
 1.81 1.84 1.81 1.74 1.74
 0.26 0.27 0.27 0.29 0.29
 0.82 0.80 0.81 0.87 0.88

*  Irrelevant results, joint 2 is practically eliminated 

9.2.4 Repeated Finite-Difference Derivatives 

It has been noted that the evaluation of derivatives by finite-difference ap-
proximations involves multiple repeated analyses. In cases where the de-
rivatives must be calculated for many design variables or design points, the 
resulting computational effort might be prohibitive. The CA approach is 
most suitable to overcome this difficulty. It can be used to evaluate effi-
ciently the response for numerous modified designs.  

Given an initial design, we assume that the corresponding stiffness ma-
trix K0 is given in the decomposed form of Eq. (9.9), and the displace-
ments r0 are computed by the initial equilibrium equations [Eq. (9.8)]. For 
any change in the design, calculation of the modified displacements by the 
CA approach can be carried out using the procedure developed in Sect. 
5.2. It was found that accurate results can be achieved efficiently [13]. In 
this section, some numerical examples are demonstrated. Accuracy and ef-
ficiency considerations are discussed later in Chap. 10.  

We may distinguish between the following two cases of calculating the 
sensitivity coefficients by the CA approach: 
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� Calculation of the sensitivity coefficients at the initial design point X0. 
In this case sensitivity analysis by the forward-difference method 
involves an additional analysis for X0 +��X�. The central-difference 
method requires two additional analyses (for ��X0 –��X and X0 +��X��	 
Since the change in the design is small, high accuracy of the 
approximations is expected with a small number of basis vectors. 

� Calculation of the sensitivity coefficients at a design point X where the 
factorized stiffness matrix U and the exact displacements r are 
unknown. Using the CA approach in this case, the basis vectors are 
calculated by forward and backward substitutions for those design 
points where results of analysis are required. It is expected that the 
accuracy of the results will not be as good as for the previous case. 

Example 9.2 

Consider again the ten-bar truss of example 9.1 shown in Fig. 9.1. The de-
sign variables are the cross-sectional areas X, and the initial cross sections 
X0 are all unity. Assuming that results of exact displacements are given 
only at the initial point X0, displacement derivatives calculated by the fol-
lowing methods have been compared: 

� �r/�X(Ex) = exact analytical derivatives. 
� �r/�X(FD) = finite-difference derivatives using exact analysis. 
� �r/�X(CA2) = finite-difference derivatives using CA analysis with 2 

basis vectors. 

The following cases have been solved: 

� Calculation of �r/�X1 and �r/�X2 at X0. Assuming the forward-
difference method and �X1 = �X2 = 0.001, the results in Tables 9.5, 9.6 
show that both finite-difference solutions, �r/�X(FD), �r/�X(CA2) are 
identical, with very small errors compared with the exact solution. 

� Assume the line from the initial design given by 

X = X0 + ��X0, (a)

where ��is a variable representing the step size and �X0 is defined as 

� T
0X� ={7,–0.999,7,3,–0.999,–0.999,4.667,4.667,4.667,–0.999}. (b)

Assuming the forward-difference method and ���= 0.0001, the deriva-
tives ��r/�� computed by the various methods at ��= 0 are shown in Ta-
ble 9.7. It is observed that �r/��(FD) and �r/��(CA2) are practically 
identical and very close to �r/��(Ex). 
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� Assuming forward-differences and ���=0.0001, the derivatives ��r/�� 
computed by the various methods at ��= 0.5 are shown in Table 9.8. In 
this case calculation of �r/��(FD) requires exact analysis at ��= 0.5 and 
��= 0.5001, whereas �r/��(CA2) requires only approximate analysis at 
these points. It is observed that the accuracy obtained by �r/��(CA2), 
even for the very large change in the design, is relatively good. 

Table 9.5. Sensitivities �r/�X1 at X0 = 1.0, �X1 = 0.001, ten-bar truss 

Number �r/�X1(Ex) �r/�X1(FD) = 
�r/�X1(CA2) 

1 -2.0703 -2.0685 
2 -1.2950 -1.2939 
3 -2.0987 -2.0968 
4 -3.5024 -3.4993 
5 0.2457 0.2455 
6 -3.5308 -3.5276 
7 0.2741 0.2738 
8 -1.0493 -1.0484 

Table 9.6. Sensitivities �r/�X2 at X0 = 1.0, �X2 = 0.001, ten-bar truss 

Number �r/�X2(Ex) �r/�X2(FD) = 
�r/�X2(CA2) 

1 -0.0058 -0.0058 
2 -0.0223 -0.0223 
3 -0.4369 -0.4365 
4 -0.2660 -0.2657 
5 0.0446 0.0446 
6 -0.2155 -0.2153 
7 -0.0058 -0.0058 
8 0.0223 0.0223 

Table 9.7. Sensitivities �r/�� at ��= 0, �� = 0.0001, ten-bar truss 

Number �r/��(Ex) �r/��(FD) �r/��(CA2) 
1 -16.548 -16.536 -16.536 
2 -32.028 -32.009 -32.008 
3 -17.541 -17.53 -17.53 
4 -70.619 -70.575 -70.576 
5 17.733 17.721 17.722 
6 -71.612 -71.568 -71.569 
7 17.052 17.040 17.041 
8 -33.214 -33.194 -33.194 
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Table 9.8. Sensitivities �r/�� at � = 0.5, �� = 0.0001, ten-bar truss 

Number �r/��(Ex) �r/��(FD) �r/��(CA2) 
1 -0.79 -0.79 -0.80 
2 -2.09 -2.09 -2.16 
3 -1.01 -1.01 -1.05 
4 -4.89 -4.89 -4.96 
5 1.24 1.24 1.24 
6 -5.10 -5.10 -5.20 
7 0.86 0.86 0.85 
8 -2.42 -2.42 -2.37 

9.2.5 Errors Due to Rigid Body Motions 

It has been noted in Sect. 9.2.2 that, using semi-analytical derivatives, the 
errors associated with the finite-difference approximations of the right-
hand-side vector can be substantial. It was found that such errors arise 
when relatively large rigid body motions can be identified for the individ-
ual elements. It is shown in this section that the expressions of the semi-
analytical derivatives are similar to the expressions of the basis vectors in 
finite-difference calculations by the CA approach. Therefore, for relatively 
large rigid body motions, the errors obtained by this approach might also 
be substantial. It is possible to reduce these errors by improving the choice 
of the basis vectors, using central-difference basis vectors, as will be 
shown later in Sect. 9.3.3. These basis vectors can be used in various sensi-
tivity analysis problems, including static, vibration and dynamic problems. 

Assuming a perturbation �X, and corresponding perturbation �K in the 
stiffness matrix, the basis vectors at the perturbed design are usually calcu-
lated by the recurrence relation 

ri = – 1
0
�K �K ri-1     (i = 2, ..., s). (9.34)

For simplicity of presentation assume a constant load vector 

R0 = R(X0) = R(X0 + �X). (9.35)

That is, the first basis vector r1 is simply 

r1 = r0, (9.36)

and the second basis vector r2 is given by 

r2 = – 1
0
�K �K r0. (9.37)

Considering the forward-difference method, matrix �K is given by 
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�K = K(X0 +��X) – K(X0). (9.38)

Substituting Eq. (9.38) into Eq. (9.37) and rearranging we obtain for r2 

K0 r2 = – [K(X0+�X) – K(X0)] r0. (9.39)

Considering the semi-analytical method and a constant load vector [Eq. 
(9.35)], the forward-difference expression [Eq. (9.12)] becomes 

0
000

0
)()( rKKrK

X
XXX

X �
���

��
�
�

. 
(9.40)

Comparing Eq. (9.39) with Eq. (9.40), and noting that multiplying a basis 
vector by a scalar does not change the result, it is observed that the expres-
sion for calculating r2 is identical to the expression of X�� /0r . Therefore, 
the errors involved in using Eq. (9.39) might be substantial. To overcome 
this difficulty we could calculate the second basis vector r2 by [14] 

0
0

20 rKrK
X�

�
�� , 

(9.41)

instead of Eq. (9.39), which may significantly reduce the errors. 
In summary, the Refined Basis Vectors (RBV) are calculated by 

1
0

0 ��
�

�� ii X
rKrK      (i = 2, ..., s), 

(9.42)

instead of the usual CA procedure, where the basis vectors are calculated 
by 

K0 ri = –�K ri-1     (i = 2, ..., s). (9.43)

It is observed that in both cases of Eq. (9.42) and Eq. (9.43), calculation of 
the basis vectors involves only forward and backward substitutions. One 
possible difficulty is that X�� /0K  must be calculated. To overcome this 
problem, an alternative expression is introduced in Sect. 9.3.3. 

Example 9.3 

Consider the cantilever beam shown in Fig. 9.2, consisting of n equally 
sized beam elements. The uniform bending stiffness is EI = 1.0, the length 
of the elements is the design variable X and the initial length is X0 = 1.0. 
Denote the perturbation by �X and the relative perturbation by � = �X/X0. 
Assuming first n = 6, �X = 0.01, the resulting sensitivities �r/�X, calcu-
lated by the following methods are shown in Table 9.9: 
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Fig. 9.2. Cantilever beam 

� Exact analytical derivatives (EX). 
� Finite-difference derivatives using exact analysis (FD). 
� Finite-difference derivatives using CA with s basis vectors (CAs). 

It is observed that the results obtained by CA3 and EX are very close. 
It has been noted [3] that the errors semi-analytical derivatives are pro-

portional to ��n2. Thus, similar errors might be obtained for the CA solu-
tions. It is shown in this example how the refined basis vectors [RBV, Eq. 
(9.42)] improve the accuracy of the results for large n values.  

Assume the following values for n and �X: n = 200, 300, 400, 500, 600 
and �X = 0.01, 0.001, 0.0001. The percentage errors E(CAs) for CA with s 
basis vectors are calculated by 

(EX)
(EX))(CA

100)CA(
r

rr �
�

s
sE . 

(a) 

Similar errors E(RBVs) are calculated for s refined basis vectors. The re-
sults in Table 9.10 show that very large errors are obtained by CA2 and 
CA3. Additional basis vectors do not improve the results, whereas very 
small errors are obtained by RBV2. 

Table 9.9. Derivatives �r/�X for n = 6, �X = 0.01, cantilever beam 

Number FD CA3 EX 
1 1.01 1.00 1.00 
2 1.00 1.00 1.00 
3 4.02 4.01 4.00 
4 2.00 2.00 2.00 
5 9.05 9.03 9.00 
6 3.00 3.00 3.00 
7 16.08 16.05 16.00 
8 4.00 4.00 4.00 
9 25.13 25.09 25.00 

10 5.00 5.00 5.00 
11 36.18 36.15 36.00 
12 6.00 6.00 6.00 
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Table 9.10. True percentage errors of displacements, cantilever beam 

  n �X E(CA2) E(CA3) E(RBV2)
200 0.01 100.2 98.7 2.2 10-7

 0.001 21.4 2.0 3.1 10-8

 0.0001 0.2 2.1 10-4 1.6 10-7

300 0.01 100.1 99.9 1.9 10-5

 0.001 70.7 32.4 2.9 10-6

 0.0001 1.1 5.0 10-3 3.0 10-6

400 0.01 100.0 100.0 3.7 10-4

 0.001 94.1 78.9 3.1 10-6

 0.0001 3.4 5.1 10-2 1.3 10-6

500 0.01 100.0 100.0 6.9 10-3

 0.001 99.2 94.4 6.7 10-5

 0.0001 8.4 0.3 3.9 10-5

600 0.01 100.0 100.0 6.7 10-2

 0.001 100.1 98.3 7.3 10-4

 0.0001 17.5 1.3 7.6 10-6

9.3 Vibration Problems 

9.3.1 Analytical Derivatives 

Consider the initial eigenproblem [Eq. (6.1)] 

K0 0� =� 0 M0 0� , (9.44)

where the eigenvector 0�  is normalized such that 

1000 ��M�
T . (9.45)

Differentiating Eqs. (9.44), (9.45) with respect to X and rearranging gives 
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or, in matrix form 
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(9.47)

In the solution of Eq. (9.47) care must be taken because the principal mi-
nor (K0 –  0�....0) is singular. In many cases we are interested only in the 
derivatives of the eigenvalues. These derivatives may be obtained by pre-
multiplying the first equation in (9.46) by T

0�  and rearranging to obtain 
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Equation (9.44) can be written as T
0� (K0–� 0�....0����) = 0, i.e., the last term in 

Eq. (9.48) equals zero. Rearranging the resulting equation we obtain 
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(9.49)

Note that this is correct only if  0 is distinct. 

9.3.2 Repeated Finite-Difference Derivatives 

Vibration reanalysis by the CA approach has been discussed in Chap. 6. 
Given the initial values K0, M0, 0� , 0  from the initial vibration analysis, 
the CA reanalysis procedure described in Sect. 6.3 can be used to evaluate 
the modified eigenpairs� ,  , due to changes in the design. It was found 
that accurate results can be achieved efficiently in calculating finite-
difference design-sensitivities [13], as illustrated in the following example. 
Various means, discussed earlier in Sect. 6.2 and later in Sect. 9.3.3, can 
be used to improve the accuracy of the results. 

Example 9.4 

Consider the eight-story frame shown in Fig. 9.3. The mass of the frame is 
lumped in the girders, with initial values M1 =1.0, M2 =1.5, M3 =2.0. The 
girders are assumed to be non-deformable and the initial lateral stiffness of 
each of the stories is given by EI/L3=5.0. Consider a single design variable 
X, representing the lateral stiffness of the bottom story, and assume the 
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perturbation �X = 0.01. The eigenpair derivatives � r/ �X, �  / �X have 
been calculated for the first 3 mode shapes by the following procedures: 

� Forward-difference using exact reanalysis (FD).  
� Forward-difference using CA with 2 basis vectors (CA2). 
� Exact analytical derivatives (Exact). 

The derivatives �  /� X and 100 � r/ �X, shown in Tables 9.11, 9.12 and in 
Fig. 9.4, demonstrate the accuracy obtained with only 2 basis vectors. 
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Fig. 9.3. Eight-story frame 

Table 9.11. Eigenvalue derivatives, first 3 mode shapes 

Mode  1   2   3  
Method FD CA2 Exact FD CA2 Exact FD CA2 Exact 
� /�X 0.0830 0.0830 0.0831 0.6703 0.6703 0.6711 1.1339 1.1338 1.1346 

Table 9.12. Eigenvector derivatives, first 3 mode shapes 

Mode  1   2   3  
Method FD CA2 Exact FD CA2 Exact FD CA2 Exact 
100�r/�X 0.61 0.55 0.61 0.58 0.20 0.58 -0.06 -0.46 -0.06 
 0.54 0.49 0.54 0.00 -0.19 0.00 -0.87 -0.89 -0.87 
 0.39 0.37 0.39 -0.96 -0.85 -0.96 -1.64 -1.24 -1.64 
 0.16 0.16 0.16 -1.91 -1.57 -1.92 -0.76 -0.52 -0.76 
 -0.16 -0.12 -0.16 -2.22 -1.92 -2.22 1.77 1.45 1.77 
 -0.53 -0.47 -0.53 -1.45 -1.47 -1.45 3.83 3.43 3.83 
 -0.92 -0.87 -0.92 0.37 0.00 0.37 2.98 3.25 2.98 
 -1.32 -1.31 -1.32 2.88 2.81 2.88 -2.09 -1.99 -2.09 
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Fig. 9.4. Eigenvector derivatives 100�r/�X/��a. Mode 1  b. Mode 2  c. Mode 3 
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9.3.3 Improved Basis Vectors using Central-Differences 

Various means intended to improve the basis vectors have been presented 
in Sect. 6.2. These include Gram-Schmidt orthogonalizations of the ap-
proximate modes, shifts of the basis vectors, and Gram-Schmidt orthogo-
nalizations of these vectors. It has been shown in Sect. 9.2.5 that in cases 
of large rigid body motions, the errors obtained in sensitivity analysis by 
the CA approach might be substantial. In this section a central-difference 
expression, intended to improve the accuracy of the results, is introduced. 
The presented improved basis vectors can be used in various sensitivity 
analysis problems, including static, vibration and dynamic problems. 

Consider the usual basis vectors determined by the CA approach 

r1 = 1
0
�K  M 0� , (9.50)

 

ri = – 1
0
�K �K ri-1     (i = 2, ..., s), (9.51)

where matrix �K represents changes in the stiffness matrix due to �X 

�K = K(X+ �X) – K0. (9.52)

It has been noted in Sect. 9.2.5 that Eq. (9.51) might cause inaccuracies 
in problems of shape design variables. To improve the accuracy, it is pos-
sible to use the central-difference expression 

K� = K(X+ �X) – K(X – �X), (9.53)

in Eq. (9.51), instead of the forward-difference expression �K [Eq. (9.52)]. 
This modification may reduce significantly the number of basis vectors re-
quired to achieve sufficiently accurate results. It should be emphasized 
that, using Eq. (9.53), it is only necessary to evaluate K(X+ �X), K(X – �X) 
and not r(X+ �X), r(X – �X). The procedure presented can be used for both 
forward-difference derivatives and central-difference derivatives. 

In summary, once K�  is calculated, we use the following expressions 
for calculating the basis vectors [instead of Eqs. (9.50) – (9.52)] 

1r  = r1 = 1
0
�K  M 0� , (9.54)

 

ir =� – B  1�ir         (i = 2, ..., s), (9.55)

where  

B  = 1
0
�K K� . (9.56)
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Example 9.5 

Consider the column shown in Fig. 9.5 consisting of n equally sized ele-
ments. The uniform bending stiffness is EI = 109, the distributed mass is 
103, the length of the elements is the design variable X = L / n and the ini-
tial design is X0 = 1.0. Denote the relative perturbation by � =��X/X, where 
�X is the perturbation. Assume the following values for n and �:  
n = �00��100��and � = 0.01, 0.001, 0.0001. The eigenvalue derivatives 
�  i/ �X (i = 2������			���� have been calculated by the following methods: 

� �  i/�X(FD) = forward-difference derivatives using exact reanalysis. 
� �  i/ �X(CAs) = forward-difference derivatives using CA reanalysis 

with s basis vectors, assuming either the usual �K [Eq. (9.52)] or the 
improved central-difference expression K�  [Eq. (9.53)]. 

Fig. 9.5. Column example 

Consider the following percentage errors in Eigenvalue Sensitivities 

)FD(/
)CA(/)FD(/

100)(
X

XX
ES

i

sii
i � �

� ��� �
� . 

 

The results in Table 9.13 show that significantly smaller numbers of basis 
vectors are required by the improved K�  to obtain errors similar to those 
obtained by �K, particularly for large n and � values. 
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Table 9.13. Percentage errors in eigenvalue sensitivities, using �K and K�  

n ���� Method CAs ES( 2) ES( �) ES( 1) ES( �) ES( �) 
200 0.01 ��K CA10 ������� ������� 0.00007 0.00004 0.00010 
 K� � CA4 ������� ������� ������� ������� ������� 
 0.001 ��K CA4 ����		� ������
 ������� ������� ������� 
 K� � CA2 ����	�� ������	 ������� ������� ������� 
 0.0001 �K CA3 ���	��� ���
	�� ������� ������� ������	 
 K� � CA2 ���	��� ���

�
 �����30 ������� ������
 
300 0.01 ��K CA13 ����		
 ������
 0.00003 ����	�� ������� 
 K� � CA
 ������� ������� ������� ���	
	� ����	�� 
 0.001 ��K CA5 ���
	�� ����
�� ������� ������� 0.00007 
 K� � CA� ���
��	 ����
�	 ������
 ������� 0.00008 
 0.0001 ��K CA3 ���
�	0 ������� ����
�� ����
�� ����	�� 
 K� � CA� ���
��� �����
� ����
�� ����
�� ����	�� 

9.4 Linear Dynamic Problems 

9.4.1 Modal Analysis Equations 

Calculation of linear dynamic response by modal analysis, presented in 
Sect. 3.1.2 and summarized in Sect. 7.1.2, involves the following steps: 

� Determine the matrices K, M, and C. 
� Determine the eigenpairs  i, i� by solving the eigenproblem [Eq. (7.13)] 

K� = 3333�....� . (9.57)

� Calculate the modal coordinates Zi(t) by solving [Eq. (7.16)] 

)()()(2+)( 2 tTtZtZtZ iiiiiii �4�54 ���        i = 1, …, p, (9.58)

where p is the number of modes considered and 

)()( ttT T
ii R�� . (9.59)

In various problems (e.g. earthquake loading) the load vector R [and 
therefore Ti(t)] are not given analytically but as discrete values. 

� Calculate the nodal displacements r by [Eq. (7.17)] 



�

�
p

i
ii tZt

1
)()( �r . 

(9.60)

� Calculate the element forces using the element stiffness properties. 
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9.4.2 Analytical Derivatives 

The derivative expressions, jX�� /r , of the displacements r with respect 

to a design variable Xj are obtained by differentiating Eq. (9.60) 
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(9.61)

Assuming that the damping ratios i5  are independent of design variables, 
we calculate ji XZ �� /  by differentiating Eq. (9.58) and rearranging 
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Denoting 

jiijiijii XZqXZqXZq ��������� /// ������ , (9.63) 

and substituting Eqs. (9.59), (9.63) into Eq. (9.62) yields 
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(9.64)

Note that, whereas the right hand sides are different, the left hand sides and 
the initial conditions of Eqs. (9.58) and (9.64) are similar (e.g. 0�� ii qq �  
for t = 0). This similarity will be used in Sect. 9.4.3 to reduce the number 
differential equations that must be solved during the solution process. 

Given the eigenpairs and the response for a certain design and time, 
evaluation of the displacement derivatives involves the following steps. 

� Evaluate the eigenpairs derivatives ji X�� /� , �  i/� Xj. 

� Compute the right side of Eq. (9.64).  
� Compute the derivatives qi = � Zi /�Xj by solving Eq. (9.64). 
� Evaluate the displacement derivatives jX�� /r  by Eq. (9.61). 

Assuming a problem with p mode shapes and m design variables, the 
main computational effort is involved in evaluation of pm eigenpair de-
rivatives and solution of the pm differential equations (9.64). Efficient 
evaluation of the eigenpair derivatives, using finite-difference and the CA 
approach, has been presented in Sect. 9.3. A procedure intended to reduce 
the number of differential equations to be solved during the solution proc-
ess [15] is introduced in the following section.  
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9.4.3 Reducing the Number of Differential Equations 

Due to the linearity of Eq. (9.64), we can use superposition and divide it 
into the following 3 equations with identical initial conditions 

)()(2)()( 2 kk
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k
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k
iii

Fqqq �4�54� ���      k = 1, 2, 3, (9.65)
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Noting that the right hand sides of Eq. (9.58) and Eq. (9.65) for k = 1 are 

)()( ttT T
ii R�� , (9.68)
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(9.69)

and assuming that the load vector can be expressed as R(Xj, t) = R(Xj) g(t), 
then Eqs. (9.68), (9.69) describe similar functions in time with different 
amplitudes. For zero initial conditions (or, if we neglect the influence of 
the homogeneous solution), the ratio between the two displacement func-
tions of Eqs. (9.58) and (9.65) is equal to the ratio between the right-hand 
side terms. Thus, given the solutions Zi of Eq. (9.58) for all p modes, the 
solutions )1(

i
q  of Eq. (9.65) for k = 1 can be determined directly by 
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(9.70)

To find )3()2( , ii qq , Eq. (9.65) must be solved for k = 2 and k = 3. For X1 we 
have to solve the two equations 
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)2(2)2()2( 22 , 
(9.71)
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i
i

iiiiii Z
X

qqq
1

2
)3(2)3()3( 2

�
4�

��4�54� ��� . 
(9.72)

Given the solutions of Eqs. (9.71), (9.72) with respect to X1, it is observed 
that the solutions for any other variable Xj can be determined directly by 

)(
/

/
)( 1

)2(

1

)2( Xq
X

X
Xq i

i

ji
ji �4�

�4�
�       )(

/

/
)( 1

)3(

1
2

2
)3( Xq

X

X
Xq i

i

ji
ji �4�

�4�
� . 

(9.73)

If i�  and R are orthogonal, we obtain Ti =���� T
i� R = 0. From Eq. (9.58) we 

have 0��� iii ZZZ ��� , and from Eqs. (9.70) – (9.72), 0)3()2()1( ��� iii qqq . 
In summary, considering a problem with p dominant mode shapes and m 

design variables, the number of times that the differential Eqs. (9.64) must 
be solved in order to perform sensitivity analysis is usually pm. Consider-
ing the procedure presented in this section and assuming that the solution 
of the analysis problem [Eq. (9.58)] is known, the number of times that the 
differential equations must be solved is reduced to 2p [Eqs. (9.71), (9.72)]. 
Thus, the ratio between the two numbers is pm /2p = m / 2, which means a 
significant reduction in the computational cost. For example, for a problem 
with 10 design variables, the procedure presented requires about 20% of 
the effort involved in complete sensitivity analysis. 

Example 9.6 

Consider again the column of example 9.5, shown in Fig. 9.5, consisting of 
n equally sized elements. The column length is L =100, the bending stiff-
ness is EI = 109, the distributed mass is 103 and the length of the elements 
is the design variable X = L/n. The structure is subjected to the ground ac-
celeration of the El Centro earthquake shown in Fig 9.6, scaled to have a 
10% probability of occurrence in 50 years [16]. The relative perturbation 
of the design variable is �� =��X/X, where �X is the perturbation.  

The object is to evaluate the derivatives of the horizontal displacement 
at the top of the column with respect to X for the following 2 cases: 

� n = 100, � = 0.0001. 
� n = 300, � = 0.0001. 

Considering 2 and 3 basis vectors (CA2 and CA3, respectively) and the 
usual �K [not the improved K� , see Eqs. (9.52), (9.53)], the results shown 
in Fig. 9.7 demonstrate the high accuracy achieved by the CA procedure 
with very small numbers of basis vectors. 
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Fig. 9.6. El Centro Earthquake 

Fig. 9.7. Displacement derivatives  a. n = 100, � = 0.0001  b. n =300, � =0.0001 

Example 9.7 

To demonstrate results for a larger structure, consider the fifty-story frame 
shown in Fig. 9.8. The number of degrees of freedom is 600, and the 
damping ratios are 0.05. The masses are assumed to be concentrated at the 
joints, and only horizontal inertia forces are considered. The inertia force is 
due to the frame self-weight and an additional concentrated mass of 50ton 
at an internal joint and 25ton at an external joint. The width of all elements 
is 0.5m, the depth of all columns is 1.0m and the depth of all beams is 
0.8m. The modulus of elasticity is 3 107kNm2 and the time-step is �t = 
0.02sec. The structure is subjected to the ground acceleration of the El 
Centro earthquake shown in Fig 9.6, scaled to have a 10% probability of 
occurrence in 50 years [16]. 
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Fig. 9.8. Fifty-story frame 

Fig. 9.9. Displacement derivatives with respect to:  a. X1  b. X2  c. X3  d. X4 

 
  (a)          (b) 

0 2 4 6 8 10
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Time (sec)

Se
ns

iti
vi

ty
 o

f t
he

 5
0t

h 
st

or
y

FD (Exact)
FD (CA2)

0 2 4 6 8 10-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Time (sec)

Se
ns

iti
vi

ty
 o

f t
he

 5
0t

h 
flo

or

FD (CA2)

FD (Exact)

 
 

  (c)          (d) 

0 2 4 6 8 10-4

-3

-2

-1

0

1

2

3

4x 10-3

Time (sec)

Se
ns

iti
vi

ty
 o

f t
he

 5
0t

h 
flo

or FD (CA2)

FD (Exact)

0 2 4 6 8 10-4

-3

-2

-1

0

1

2

3

4x 10-3

Time (sec)

Se
ns

iti
vi

ty
 o

f t
he

 5
0t

h 
flo

or FD (CA2)

FD (Exact)

 
 



9.5 Nonlinear Dynamic Problems      255 

Considering the first 8 mode shapes, the object is to evaluate the deriva-
tives of the horizontal displacements at the top of the frame with respect to 
the following four design variables 

� X1 – depth of the columns in the 1st story. 
� X2 – depth of the beams in the 1st story. 
� X3 – depth of the columns in the 50th story. 
� X4 – depth of the beams in the 50th story. 

The results achieved by forward-difference derivatives using the CA 
approach with 2 basis vectors [FD(CA2)] are compared with those ob-
tained by forward-difference derivatives using exact analysis formulation 
[FD(Exact)]. From the results shown in Fig. 9.9 it is observed that the pro-
cedure presented provides high accuracy with only 2 basis vectors. 

9.5 Nonlinear Dynamic Problems 

9.5.1 Modal Analysis Equations 

Calculation of nonlinear dynamic response by modal analysis, presented in 
Sect. 3.3.2, involves the following steps for each time interval: 

� Assemble the updated stiffness matrix tK and solve the corresponding 

eigenproblem [Eq. (3.104)] to find the p eigenpairs t i, i
t
�  (i = 1, ..., p) 

tK i
t
� = t i .... i

t
� . (9.74)

� Find the diagonal damping matrix d
tC = Tt

� C �t  and stiffness matrix 

2�t = Tt
�

tK �t  [Eqs. (3.106), (3.107)].  

� Evaluate t�Z, Z��t , Z���t  by solving the p uncoupled equations in the 
generalized coordinates [Eq. (3.105)] 

R�Z�ZCZI ������� tTtttt
d

tt 2��� . (9.75)

� Calculate t�r, r��t , r���t , by [Eq. (3.103)] 

Z�rZ�rZ�r ������ ��������� ttttttttt . (9.76)

� Evaluate t+�tr, r�tt �� , r��tt ��  by [Eq. (3.97)] 

rrrrrrrrr ��������� ��������� ������ tttttttttttt . (9.77) 
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� Evaluate the forces and check the properties of the members. If all 
stiffness coefficients do not change, start the calculations for the next 
time interval by solving Eq. (9.75). If the stiffness coefficients of any 
member change, reduce �t and repeat the solution from the first step. 

9.5.2 Nonlinear-Dynamic Sensitivity Analysis 

We solve the nonlinear-dynamic sensitivity analysis problem incremen-
tally, starting with the initial conditions ,/,/ 00 0r0r ������ jj XX �  

where Xj is a design variable. Differentiation of Eqs. (9.77) gives 
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Considering the transformation of coordinates 
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and differentiating Eqs. (9.81) with respect to Xj, we obtain 
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(9.82)
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The values of i
t
� , t�Z, Z��t , Z���t  are known from solution of the analy-

sis equations (9.74), (9.75). The derivatives at the right-hand side terms are 
calculated as follows.  

The term ji
t X�� /�  is calculated by finite-differences and the CA ap-

proach (Sect. 9.3). To compute ji
t

ji
t

ji
t XZXZXZ ��������� /,/,/ ���  

we differentiate the individual equations (9.75) to obtain 
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(9.85)

Equation (9.85) is solved by Newmark's method, which involves evalua-
tion of ./,/,/ ji

t
ji

t
ji

t XZXZXZ ������ ���  Using the transformation 
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and differentiating Eq. (9.86) we obtain 
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Premultiplying Eq. (9.87) by M�T
i

t , noting the orthogonality property 
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Similarly, we obtain for ji
t
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In summary, starting with the initial values 0rr ������ jj XX // 00
� , 

we calculate the following derivatives at each time step. 

� ji
t X�� /� , �  t i/� Xj (i = 1, ..., p). 

� ji
t

ji
t

ji
t XZXZXZ ������ /,/,/ ���  [Eqs. (9.88) – (9.90)]. 

� ji
t

ji
t

ji
t XZXZXZ ��������� /,/,/ ���  [Eq. (9.85)]. 

� j
t

j
t

j
t XXX ��������� /,/,/ rrr ���  [Eqs. (9.82) – (9.84)]. 

� j
tt

j
tt

j
tt XXX ������ ������ /,/,/ rrr ���  [Eqs. (9.78) – (9.80]. 

9.5.3 Efficient Solution Procedures 

It has been noted that solution of nonlinear dynamic analysis problems by 
the mode superposition approach is usually not efficient. In this section 
several solution procedures, based on the CA approach and intended to 
improve the efficiency of nonlinear-dynamic sensitivity analysis using 
mode superposition, are presented [17]. The accuracy of the approxima-
tions is demonstrated by a numerical example. It is shown later in Sect. 
10.1.3 that these procedures reduce significantly the computational effort. 
The following solution procedures are considered and compared: 

� DI = Direct Integration. Analytical derivatives are obtained by Eqs. 
(9.78) – (9.80). Since the analysis and the sensitivity analysis equations 
have the same coefficient matrices in the left-hand side, we can solve 
efficiently the latter equations. 

� MS(EX) = Mode Superposition using exact analysis formulation. The 
eigenpair derivatives ji

t X�� /� , �  t i/� Xj are calculated by forward 

finite-differences, using exact analysis for both the original and the 
perturbed eigenproblems 
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� MS(CA) = Mode Superposition using CA analysis. The eigenpair 
derivatives are calculated by forward finite-differences, using CA 
analysis for both the original and the perturbed eigenproblems 
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� MS(EX)+MS(CA) = Mode Superposition using exact analysis for the 
original eigenproblem and CA analysis for the perturbed eigenproblem 

X
XXX

X
Exi

t
CAi

t

j

i
t

�

���
�

�
� )()( 00 ���

, 
(9.95)

 

X
XXX

X
Exi

t
CAi

t

j

i
t

�

 ��� 
�

�
 � )()( 00 . 

(9.96)

� MS(EX)+APP = Mode Superposition using exact analysis and 
approximate eigenvector sensitivities. The eigenpair derivatives are 
calculated using the exact eigenpairs and the initial eigenpair derivatives 

X�� /0
� , � 0 /� X. We first calculate the exact � t /� X  by 
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The eigenvector derivatives are assumed to be constant, using the 
approximation 

jiji
t XX ��6�� // 0

�� . (9.98)

� MS(CA)+APP = Mode Superposition using CA analysis and 
approximations. The eigenpair derivatives are calculated by 
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jiji
t XX ��6�� // 0

�� . (9.100)

The efficiency of the various procedures is demonstrated in Sect. 10.1.3. 

Example 9.8 

Consider again the fifty-story frame shown in Fig. 9.8. The modulus of 
elasticity is 3 107kN/m2, the elastic limit stress is Y� =20000kN/m2 and the 
assumed moment-curvature relation is bi-linear as shown in Fig. 9.10. The 
damping ratios are 0.05 and the assumed time step is 0.02sec. The width 
and depth of all elements are 0.5m and 1.0m, respectively.  

Fig. 9.10. Moment-Curvature relation 
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Fig. 9.11. Displacement derivatives obtained by FD and MS(EX) 

Fig. 9.12. Displacement derivatives obtained by FD and:  a.  MS(EX)+MS(CA)  
b. MS(CA)  c. MS(EX)+APP  d. MS(CA)+APP 
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The inertia force is due to the frame self-weight and an additional con-
centrated mass of 50ton at an internal joint and 25ton at an external joint. 
Only horizontal inertia forces are considered. Again, the structure is sub-
jected to the ground acceleration of the El Centro earthquake shown in Fig 
9.6, scaled to have a 10% probability of occurrence in 50 years [16]. 

Considering the first 8 mode shapes and CA analysis with 9 basis vec-
tors, the object is to evaluate derivatives of horizontal displacements at the 
top of the frame with respect to the depth of the columns in the first floor. 
Solving first by MS(EX) and finite-difference derivatives using exact 
analysis (FD), it is shown in Fig. 9.11 that the results obtained by the two 
procedures are practically the same. Thus, sensitivities calculated by the 
FD procedure will be used as a reference in comparing the results obtained 
by the other procedures. 

Results obtained by MS(EX)+MS(CA), MS(CA), MS(EX)+APP, 
MS(CA)+APP are compared with those obtained by FD in Fig. 9.12. Fig-
ure 9.12a shows that high accuracy is achieved by MS(EX)+MS(CA). 
Figure 9.12b shows that the results obtained by MS(CA) are less accurate 
than those obtained by MS(EX)+MS(CA). Figs. 9.12c, 9.12d show that 
good accuracy is achieved by both MS(EX)+APP and MS(CA)APP. 
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10 Computational Considerations 
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10.1 Efficiency of the Calculations 
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10.1.1 Static Reanalysis 
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Considering nonlinear static reanalysis, the numbers of algebraic opera-
tions required by the CA procedure, the Full Newton-Raphson (FNR) and 
the Modified Newton-Raphson (MNR) procedures have been compared. 
The following assumptions are based on various numerical examples. 
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� For material nonlinear reanalysis the CA procedure is compared with 
the MNR procedure. It is assumed that the load is divided into 20 
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10.1.2 Dynamic Reanalysis 
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sensitivity analysis are shown in Fig. 10.4. Comparing solutions by direct 
integration DI and mode superposition MS(EX) it is observed that the 
number of operations in the latter case is significantly larger. This number 
is reduced by the MS(EX)+MS(CA) procedure and even more by the 
MS(CA) procedure. The best efficiency is obtained by the MS(CA)+APP 
procedure. The relations between the numbers of algebraic operations in-
volved in DI and MS(CA)+APP (Fig. 10.5) show that sensitivity analysis 
by the latter procedure significantly reduces the computational effort. 

Fig. 10.4. Numbers of operations, nonlinear dynamic sensitivity analysis: 

a. m =100  b.  m = 20 
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Fig. 10.5. Relations between numbers of operations in DI and MS(CA)+APP: 

a. m =100  b. m = 20 

10.2 Accuracy Considerations 

10.2.1 Linearly Dependent Basis Vectors 

It has been noted that linear independence of the basis vectors is necessary 
for convergence of reduced-basis approximations. The vector of approxi-
mate displacements evaluated by the CA approach is a linear combination 
of the basis vectors r1, r2, ..., rs [Eq. (5.24)]. The latter vectors are said to 
be linearly independent if the relation, 

y1r1 + y2r2 + ... + ys rs = 0, (10.1)

can be satisfied only for the trivial case, that is, only for the case where all 
the coefficients y1, y2, ..., ys are identically zero. If the relation is satisfied 
and part of the coefficients are different from zero, then the basis vectors 
r1, r2, ... , rs are said to be linearly dependent, with the implication that one 
vector is a linear combination of the remaining vectors. 

It is shown in this section that an exact solution is obtained by the CA 
procedure in cases where a newly created vector becomes a linear combi-
nation of the previous vectors [4]. For simplicity of presentation assume 
that R = R0 and therefore r1 = r0. Pre-multiplying the modified equations 
(K0+�K) r = R0 by 1

0
�K  and substituting B �� 1

0
�K �K, we obtain the fol-

lowing exact expression for the modified design 

(I + B) r = r0, (10.2)

where I is an identity matrix. Premultipling Eq. (10.2) by (I+B)-1 gives the 
exact modified displacements 
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r = (I + B)-1 r0. (10.3)

Substituting the expression of the basis vectors [r1 = r0, ri = –B ri-1, see 
Eqs. (5.31), (5.32)] into Eq. (5.24) 

r = rB y, (10.4)

we obtain the following expression for the approximate displacements in 
terms of the s basis vectors 

r = y1 r0 – y2 B r0 + y3 B2r0 – ... + ys Bs-1r0. (10.5)

Assuming that the approximate solution involving s terms [Eq. (10.5)] is 
equal to the exact solution [Eq. (10.3)], pre-multiplying both equations by 
(I+B) and rearranging we obtain the expression for an additional term rs+1 

ii

s

i
s a rr 	

�

 �

1
1

, 
(10.6)

where ai  are scalar multipliers given by 
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(10.7)

Equation (10.6) shows that when the reduced basis expression with s terms 
[Eq. (10.5)] is equal to the exact solution [Eq. (10.3)], the (s+1)th basis 
vector is a linear combination of the previous s vectors. That is, the (s+1) 
basis vectors are linearly dependent.  

In general the CA procedure provides approximate solutions, but accu-
rate solutions are often achieved with a small number of basis vectors. It is 
expected that accurate (nearly exact) solutions will be achieved when the 
high-order basis vectors come close to being linearly dependent on previ-
ous vectors. Two basis vectors ri and ri+1 = –B ri are close to being linearly 
dependent if  

cos �i, i+1�= (ri
T B ri) / (|ri | |B ri |) �  1, (10.8)

where �i, i+1 is the angle between the two vectors. Various numerical ex-
amples show that the basis vectors determined by the CA approach satisfy 
the condition of Eq. (10.8), as the basis vectors index i is increased, even 
for very large changes in the design. 
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Example 10.1 

Consider the ten-bar truss shown in Fig. 10.6 with 2 geometrical variables: 
D = the truss depth, W = the panel width. Assuming the initial design W = 
D = 360, the following cases of modified geometries have been solved: 

Case a. W = 360, D = 540 (50% increase in the depth).  
Case b. W = 360, D = 720 (100% increase in the depth). 
Case c  W = 180, D = 720 (50% decrease in the width, 100% increase in 
the depth). 

The results obtained for 2 and 3 basis vectors (CA2 and CA3, respec-
tively) summarized in Table 10.4 show that the changes in the geometry 
lead to significant changes in the displacements. It was found that the basis 
vectors are close to being linearly dependent. In Case b, for example, we 
obtain cos �1,2 = 0.9912, cos �2,3 = 0.9999 for the first 3 basis vectors, 
which explains the high accuracy achieved for these large design changes. 
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Fig. 10.6. Ten-bar truss 

Table 10.4. Geometrical changes, ten-bar truss 

Case W D Method 1 2 3 4 5 6 7 8 
Initial 360 360 Exact 2.34 5.58 2.82 12.65 -3.17 13.13 -2.46 6.01 

a 360 540 CA2 1.49 4.02 1.71   7.86 -2.06   8.40 -1.60 4.48 
   CA3 1.53 3.93 1.81   7.83 -2.17   8.46 -1.64 4.45 
   Exact 1.55 3.94 1.82   7.84 -2.18   8.47 -1.66 4.44 
b 360 720 CA2 1.17 3.78 1.26   6.72 -1.61   7.29 -1.28 4.27 
   CA3 1.14 3.67 1.34   6.62 -1.68   7.35 -1.24 4.25 
   Exact 1.15 3.67 1.34   6.60 -1.66   7.36 -1.25 4.24 
c 180 720 CA2 0.43 2.59 0.36   3.83 -0.59   4.27 -0.50 2.97 
   CA3 0.31 2.52 0.43   3.86 -0.55   4.44 -0.35 2.98 
   Exact 0.29 2.47 0.33   3.85 -0.42   4.53 -0.31 2.94 
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10.2.2 Scaled and Nearly Scaled Designs 

In this section we first show that if the modified design is a scaled initial 
design, then the basis vectors are linearly dependent. A scaled design is 
obtained by multiplying the initial stiffness matrix K0 by a positive scaling 
multiplier 
 to obtain the modified matrix 

K = 
�K0. (10.9)

For R = R0 the exact displacements after scaling are given by 

r = 
-1 r0. (10.10)

It is observed that in this case matrix B becomes 

B �� 1
0
�K �K = (
���������, (10.11)

where I is the identity matrix, and the resulting basis vectors are 

r1 = r0       r2 = – (
�–�������r0      r3 = (
�–���2 r0 … (10.12)

Since these basis vectors are linearly dependent, consideration of the single 
basis vector r1=r0 with y1=
-1 will provide the exact solution [Eq. (10.10)]. 

Assume the initial design variables vector X0 and the modified vector X, 
due a change �X. In general, both the direction of change and the magni-
tude of change �may affect the accuracy of the approximations at X. This 
effect can be quantified by the cosine of the angle � between the two vec-
tors of the initial design and the modified design 

cos ��= (XT X0) / (|X| |X0|), (10.13)

where |X| denotes the absolute value of X. It can be observed that various 
designs, obtained by scaling a certain modified design, provide identical � 
angles. It was found [4] that high accuracy is achieved with a small num-
ber of basis vectors for designs correspond to small � values. More basis 
vectors are needed for designs that correspond to larger �. These observa-
tions are limited to the space formed by the vectors X0 and X. For the 
complete design space, smaller � values do not guarantee better approxi-
mations. 

Example 10.2 

Consider the initial geometry of the fifty-bar truss shown in Fig. 10.7. The 
member cross section areas equal unity, the modulus of elasticity is 10000 
and the 40 unknowns are the horizontal (X direction) and the vertical (Y di-
rection) displacements of joints 2 through 21.  
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(a)

(b)
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Fig. 10.7. Initial and modified geometries, 50-bar truss 

Table 10.5. Approximations of displacements, 50-bar truss. 

   Case a  Case b 
Joint Direction CA2 Exact CA2 Exact

2 X 0.09 0.08 0.20 0.20
 Y 0.11 0.08 0.25 0.24
3 X 0.16 0.15 0.38 0.38
 Y 0.35 0.28 0.90 0.88
4 X 0.22 0.21 0.54 0.54
 Y 0.69 0.60 1.90 1.87
5 X 0.26 0.27 0.68 0.67
 Y 1.12 1.01 3.21 3.18
6 X 0.29 0.31 0.79 0.79
 Y 1.60 1.51 4.79 4.74
7 X 0.32 0.35 0.88 0.88
 Y 2.13 2.07 6.58 6.54
8 X 0.34 0.38 0.95 0.96
 Y 2.69 2.69 8.54 8.50
9 X 0.35 0.40 1.01 1.01
 Y 3.27 3.36 10.63 10.60

10 X 0.35 0.41 1.04 1.04
 Y 3.86 4.05 12.81 12.79

11 X 0.35 0.42 1.05 1.05
 Y 4.45 4.75 15.02 15.02

 
The truss depth D and the panel width W are the two geometric vari-

ables. Assuming the initial design D = W = 1.0 and multiplying both D and 
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W by a scalar, the modified design is a scaled design and the exact modi-
fied displacements are obtained directly. The following two cases of 
changes in the geometry have been considered: 

a. An increase of 20% in the depth D = 1.2. 
b. An increase of 100% in the depth D = 2.0 and 90% in the width W = 1.9. 

Comparing the results obtained for these two cases (Table 10.5) with 2 
basis vectors (CA2), it is observed that higher accuracy is obtained in case 
b, for larger changes in the geometry. This can be explained by noting that 
in this case the modified geometry is closer to a scaled geometry (D = W). 

10.3 Equivalence of the PCG and CA methods 

It is shown in this section that the Preconditioned Conjugate Gradient 
(PCG) method, described in Sect. 1.3.2, and the CA approach are equiva-
lent and provide identical results [5] if matrix C is chosen as [Eq. (1.53)] 

C = 1
0
�U , (10.14)

where U0 is an upper triangular matrix, given by factorization of the initial 
stiffness matrix K0 =

T
0U U0. 

Applying k iterations of the Conjugate Gradient (CG) method to Eq. 
(1.31) is equivalent to the minimization of the quadratic function Q [Eq. 
(1.32)] on the Krylov subspace of degree k, defined as 

k� = r0 + span {�����, K �����, K2�����,... , Kk-1 �����}, (10.15)

where the residual vector ����� is given by Eq. (1.35). Consider the case 
where the CG method is applied to the preconditioned system [Eq. (1.46)] 

RrK ~~~
� , (10.16)

where [Eq. (1.45)] 

CKCK T�
~

     RCR T�
~

, (10.17)

with C = 1
0
�U  [Eq. (10.14)]. The quadratic function, 

RrrKr ~~~~~2/1Q
~ TT �� , (10.18)

is minimized in the kth iteration on the Krylov subspace 
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� �0
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000k
~~

,,
~~

,
~~

,
~

span~~
�K�K�K�r �
� k

�� . (10.19)

Assuming the initial point 0~
0 �r  and denoting 1

0
�� K�KP , then [Eqs. 

(10.16), (10.17)] RCrKR�
T��� 00

~~~~
. Since 1

0
T �� KCC  we obtain 

� � RPCRCRCC�KKC�K TTTT 
�
� 00
~~

, 

RPCRPCRC�K 2
0

2 2
~~ TTT 

� , 

(10.20)

and so on, so that 

� �RPRPRPRC 1k2T
k ,,,,span~ �� �� . (10.21)

Hence, the minimizer of Q
~

 on k
~
�  [Eqs. (10.18), (10.21)] is of the form 

� �RPRPRPRCr 1k
1k

2
210

T
k

~ �
��

�
�
�� � . (10.22)

To return to the original variables, pre-multiply Eq. (10.22) [and thus Eq. 
(10.21)] by C  to obtain 

k� � �RPKRPKRPKRK 11
0

21
0

1
0

1
0 ,,,,span ������ k

� , (10.23)
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0
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�� k
k � . (10.24)

In summary, in the kth iteration of the PCG method applied to K r = R, 
with the preconditioned matrix C = 1

0
�U  [Eq. (10.14)] and the initial value 

0r �0
~ , we minimize the quadratic function Q [Eq. (1.32)] on the Krylov 

subspace of Eq. (10.23). In the CA approach we introduce an n�k matrix 
rB by means of vectors ri defined recurrently. The approximate solution of 
K r = R is obtained by solving the reduced system KR y = RR, and interpo-
lating by r = rB y. But this is the same as minimizing the quadratic func-
tional Q [Eq. (1.32)] on a subspace defined by Eq. (10.23). The conclusion 
is that the solution found by the CA approach with an n�k matrix rB is 
fully equivalent to k iterations of the PCG method with the preconditioned 
matrix C = 1

0
�U  and the initial value 0r �0

~ . 

Example 10.3 

Consider a minimum compliance (external work) topology design problem 
for a truss with a ground structure of 51�11 nodes [5]. The potential bars 
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connect all neighboring nodes as shown in Figure 10.8a. All the nodes on 
the left-hand-side are fixed and the bottom node at the right-hand-side is 
subject to a vertical load. Altogether there are 2050 bars and 1100 degrees 
of freedom (nodal displacements). The optimal topology is shown in Fig. 
10.8b and the compliance of the optimal design is 6.2165 10-6. 

Results achieved by the CA approach are demonstrated for different sys-
tems defined by various values of the initial and the modified stiffness ma-
trices. These matrices are given (through the design variables X) by a pa-
rameter ���according to )( 00 XXXX ��
� opt  where X0 is a vector of 

initial constant numbers 1/2050, and optX  is the optimal design vector 

from Fig. 10.8b. All design vectors satisfy the feasibility constraint 
	 �1iX . Table 10.6 shows minimal and maximal values of the design 

variables for various � values, and indicates the significant changes in X. 
 

    (a) 
 

 
 
    (b) 

 

Fig. 10.8.  2050-bar truss:  a. Initial ground structure  b. Optimal topology 

Table 10.6.  Minimal and maximal X for various � values 

 ���= 0 ���= 0.1 �� = 0.5 �� = 0.9� �� = 0.99 �� = 1.0�
Xmin 0.0004878 0.000439 0.000243 4.9 10-5 4.9 10-6 2.7 10-12 
Xmax 0.0004878 0.014725 0.071672 0.12862 0.14143 0.14286 
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Table 10.7. Condition numbers of K and K~  for various modified designs 

Initial � Modified � )(K�  )
~

(K�  

0.10 0.50 1.67 106 8.8 
0.10 0.90 2.29 106 78.5 
0.50 0.90 2.29 106 9.0 
0.50 0.99 1.08 107 98.7 

Table 10.8. Compliance (times 106) 

Initial � Modified � CA3 solution Exact solution 

0.10 0.50 11.44 11.44 
0.10 0.90 6.84 6.84 
0.50 0.90 6.84 6.84 
0.50 0.99 6.27 6.27 
 
The condition numbers (defined by the ratio of the maximum and mini-

mum eigenvalues) of the original matrix, )(K� , and the preconditioned 

matrix, )
~

(K� , for various modified designs are shown in Table 10.7. It is 

observed that the condition numbers of matrices K~ are much smaller than 
those of K. The compliance for various initial designs and modified de-
signs, considering 3 basis vectors (CA3), are shown in Table 10.8. For the 
initial designs �������������50 and �modified designs ���������������99, 
only 3 basis vectors are required to achieve accurate results�� 

10.4 Error Evaluation 

10.4.1 Static Reanalysis 

The Conjugate Gradient (CG) Method 

In exact arithmetic the CG method, described in Sect. 1.3.2, will terminate 
at the solution in at most n iterations. What is more remarkable is that 
when the distribution of the eigenvalues of K has certain favorable fea-
tures, the method will identify the solution in much less than n iteration 
cycles. It has been shown [e.g. 6, 7] that if K has only p distinct eigenval-
ues, then the CG iteration will terminate at the solution in at most p itera-
tions. In addition, if the eigenvalues of K occur in p distinct clusters, the 
CG method will approximately solve the problem after p steps. 

Define the usual energy norm 
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� � 2/1
 |||| rKrr K

T� . (10.25)

If K has eigenvalues ������ ...��n, a useful estimate of the convergence 
behavior for k steps of the CG method is given by [8]  
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Another, more approximate, convergence expression for the CG method is 
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(10.27)

where )(K�  is the condition number of K, defined by the ratio of the 
maximum and minimum eigenvalues 

minmax ���� /)(K . (10.28)

This bound gives an overestimate of the error, but it can be useful when 
the only information about K is estimates of the extreme eigenvalues. 

The CA Procedure 

It has been noted in Sect. 5.1.3 that the series of basis vectors [Eq. (5.3)] 
converges if and only if lim Bk=0 as #$k , which in turn holds if and 
only if %(B) < 1, where %(B) is the spectral radius (the largest eigenvalue) 
of matrix B [9]. To evaluate the errors involved in the binomial series ap-
proximations, it has been shown that the sum �r of the additional terms in 
the series of Eq. (5.3), beyond the first s terms, is bounded from above by 
Eq. (5.23) [10] 

||||
||||1

1
|||| 0r

B
Br

�
�� s . 

(10.29)

Evidently, for large changes �K (and corresponding large elements of B) 
this bound may become very large and the series diverges.  

In the CA procedure the binomial series terms can be normalized, and 
very fast convergence is obtained even in cases where the series of basis 
vectors [Eq. (5.3)] diverges. The reduced problem is [Eqs. (5.28), (5.29)] 

KR  y = RR, (10.30)

where 
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KR = T
Br K rB       RR = T

Br R. (10.31)

It has been noted in Sect. 10.3 that the CA solution with k basis vectors is 
equivalent to k iterations of the PCG method. Applying results from the 
CG method, the error bound for k basis vectors in the CA procedure can be 
evaluated by an expression similar to Eq. (10.27). Considering C = 1

0
�U  

[Eq. (10.14)], we obtain the preconditioned system of Eqs. (10.16), 
(10.17). Thus, the corresponding expression giving the error bound for k 
basis vectors in the CA approach is 
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where 
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~
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Consider the approximate displacements expressed in the uncoupled 
form of Eq. (5.51). The errors in the results for a specific number of basis 
vectors s can be evaluated by assessing the size of the elements of the sth 
term  of Eq. (5.51) 

)()( RVVr T
ss

s � . (10.34)

If the solution process converges, the relative size of the elements of the 
vector r(s) can be used as a measure for evaluating the error, )(sr& , namely 
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The true percentage error &(r) in the approximate displacements r(appr) 
relative to the exact displacements r(exact) is defined as 
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(10.36)

To evaluate the errors involved in the approximations, we define the error 
vector of the equilibrium equations 

&R = K r(appr) – R. (10.37)
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The norm of &R, defined as 

R&  = (&RT&R)1/2, (10.38)

can be used as a measure for evaluating the error. It should be noted that 
although R&  may be very small, the error in the solution might still be 

large. On the other hand, for an accurate solution R&  must be small. 

Therefore, a small residual &R is a necessary but not a sufficient condition 
for an accurate solution. To obtain more information on the solution errors 
the residual displacements vector &r is expressed as &r= K-1&R. An analy-
sis can be performed that uses the condition number of K, )(K� , to evalu-
ate the solution errors. It has been noted [2] that a large )(K�  means that 
solution errors are more likely.�

10.4.2 Vibration Reanalysis 

The true percentage error, &(�), in the approximate eigenvalues, �(appr), 
relative to the exact eigenvalues, �(exact), is defined as [see Eq. (10.36)] 

)�(
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exact

exactappr �
�& , 

(10.39)

and the error vector &R of the eigenproblem equations is [see Eq. (10.37)] 

&R = K r(appr) – �(appr) M r(appr), (10.40)

where r(appr) is the approximate mode shape. Using the definition of the 
norm [Eq. (10.38)], we may define the following relative norm as a meas-
ure for evaluating the error 

Kr
R

R
&

�& )( . 
(10.41)

To evaluate the quality of the results, it is possible to calculate lower 
and upper bounds on the eigenvalues [11, 12]. Denote the (i–1)th, (i)th, 
(i+1)th approximate eigenvectors by r(i – 1), r(i), r(i + 1), respectively, 
and the corresponding eigenvalues by �(i – 1), �(i), �(i + 1). Defining 
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the following lower and upper bounds on �(i) can be established [11] 
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For the first eigenvalue we assume �(0) = 0. 

Example 10.4 

Consider the eight-story frame shown in Fig. 10.9. The mass of the frames 
is lumped in the girders, with initial values M1 = 1.0, M2 = 1.5, M3 = 2.0. 
The girders are assumed to be non-deformable and the initial lateral 
stiffness of each of the stories is EI/L3 = 5.0. 
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Fig. 10.9. Eight-story frame 

Table 10.9. Eigenproblem reanalysis, norms of the first 4 binomial series terms 

Mode 1r 2r 3r 4r
1 2 22 226 2374
2 0.4 4 42 402
3 0.2 2 21 213
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Table 10.10. Results, eigenproblem reanalysis, mode 1 

Shape Initial r(CA2) r(CA3) r(exact)
Displacements 1.0000 1.0000 1.0000 1.0000
 0.9738 0.9622 0.9614 0.9612
 0.9221 0.8876 0.8853 0.8852
 0.8342 0.7885 0.7866 0.7849
 0.7134 0.6608 0.6595 0.6570
 0.5647 0.5087 0.5081 0.5059
 0.3937 0.3373 0.3375 0.3370
 0.2022 0.1718 0.1718 0.1713
�������� 1.5718 11.6277 11.6274 11.6269
�True error &(�)  0.0068 0.0043  
�Relative norm &(R)  0.0169 0.0155  

Table 10.11. Results, eigenproblem reanalysis, mode 2 

Shape Initial r(CA2) r(CA3) r(exact)
Displacements 1.0000 1.0000 1.0000 1.0000
  0.7935  0.6784  0.6782  0.6698
  0.4232  0.1204  0.1199  0.1184
 -0.0781 -0.4035 -0.4034 -0.4184
 -0.5553 -0.8344 -0.8338 -0.8296
 -0.8605 -1.0187 -1.0182 -0.9918
 -0.8992 -0.8640 -0.8642 -0.8562
 -0.5666 -0.5093 -0.5096 -0.4964
�������� 12.388� 99.1601 99.1600 99.0589
�True error &(�) 0.1022 0.1021
�Relative norm &(R) 0.0314 0.0315

Table 10.12. Results, eigenproblem reanalysis, mode 3 

Shape Initial r(CA2) r(CA3) r(exact)
Displacements 1.0000 1.0000 1.0000 1.0000
  0.4800  0.1754  0.1574  0.1416
 -0.2895 -0.8431 -0.8590 -0.8384
 -0.8333 -1.0958 -1.0538 -1.0750
 -0.7271 -0.5436 -0.5050 -0.4727
 -0.0539  0.4948  0.4806  0.4985
  0.6614  1.1817  1.1172  1.0807
  0.6889  0.8550  0.8668  0.8412
�������� 31.1972 258.4644 257.9363 257.5310
�True error &(�)  0.3624 0.1574  
�Relative norm &(R)  0.0292 0.0207  
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Fig. 10.10. Eigenproblem reanalysis: a. Mode 1  b. Mode 2  c. Mode 3 
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Fig. 10.11. Normalized graphs of true errors and relative norms: 
a. Mode 1  b. Mode 2  c. Mode 3 

To illustrate results for large changes in both the lateral stiffness and 
mass, assume a modified mass in all stories M = 2.0 and the following 
modified lateral stiffness: 

� 0.50/ 3 �LEI  for stories 1 – 2 from top. 
� 0.55/ 3 �LEI  for stories 3 – 6 from top. 
� 0.60/ 3 �LEI  for stories 7 – 8 from top. 
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Calculating the norms ir  of the first 4 basis vectors for the first 3 
mode shapes (Table 10.9) we observe that the norm of a basis vector is 
larger by an order of magnitude from the norm of the previous one. It was 
found that even in this case, where the series of basis vectors diverges, the 
CA solution converges with a small number of basis vectors.  

Solving the reduced eigenproblem by the CA approach with 2 and 3 ba-
sis vectors (CA2 and CA3, respectively), the results for the first 3 mode 
shapes are shown in Tables 10.10, 10.11, 10.12 and in Fig. 10.10. It was 
found that the basis vectors for each of the 3 mode shapes are close to be-
ing linearly dependent, which explains the relatively good accuracy 
achieved with only 2 basis vectors. 

The normalized graphs of the true percentage error [Eq. (10.39)] and the 
relative norm [Eq. (10.41)] for the eigenvalues of the first 3 mode shapes 
and various numbers basis vectors are demonstrated in Fig. 10.11. It is ob-
served that the two graphs are similar.  

Finally, the lower and upper bounds on �(i) are computed by Eqs. 
(10.43), (10.44). The results in Table 10.13 show that the bounds obtained 
by the CA approach provide good estimation of the eigenvalues. 

Table 10.13. Bounds on eigenvalues 

Mode Terms �L �U �(CA) �(exact)
1 3 11.6269 11.6274 11.6274 11.6269
2 3 99.0188 99.1716 99.1600 99.0589
3 4 257.301 258.097 257.920 257.531

10.5 Accuracy of Forces and Stresses 

The CA approach is mainly intended to reduce the computational effort in-
volved in repeated calculations of the displacements. In many applications 
it is important to evaluate also the forces and the stresses. Once the dis-
placements are available, calculation of the forces and the stresses is often 
straightforward, using force-displacement and stress-displacement rela-
tions. However, it should be noted that in some applications evaluation of 
forces and stresses might involve significant computational effort or accu-
racy problems. Moreover, it is possible that small errors in displacements 
can magnify to large errors in stresses. 

Since the accuracy of forces and stresses depends on the accuracy of 
displacements, it is important to obtain sufficiently accurate approxima-
tions of displacements. Various means introduced in this text can be used 
for this purpose. These include improved basis vectors and consideration 
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of additional vectors. The numerical example presented in this subsection 
illustrates the accuracy of forces and stresses, calculated from displace-
ments evaluated by the CA approach. 

Example 10.5 

Consider again the ten-bar truss shown in Fig. 10.12. The modulus of elas-
ticity is 30000 and the eight unknown displacements are the horizontal and 
vertical displacements at joints 1, 2, 3 and 4, respectively. The design vari-
ables X are the member cross-sectional areas. The initial areas are all unity 
and the modified areas are as follows 

XT = {3.8, 0.6, 3.8, 2.2, 0.6, 0.6, 2.867, 2.867, 2.867, 0.6} (a)

 
1 2

34

6

5

1 2

3 4

7 8 9 10

5 6

100 100

360

360 360
 

Fig. 10.12. Ten-bar truss 

 
Results obtained by the CA approach with 2, 3, and 4 basis vectors 

(CA2, CA3 and CA4, respectively) and the corresponding percentage er-
rors [E(CA2), E(CA3), E(CA4)], relative to exact solutions (Exact), are 
summarized in Table 10.14. The forces and the stresses are computed by 
the force-displacement and stress-displacement relations. It is observed 
that solving by CA2, the force and stress errors in some members (mem-
bers 2, 4, 5, 6, 10) are very large. Solving by CA3, the displacement errors 
are small but the force and stress errors in member 5 are still large. A prac-
tically exact solution is achieved by CA4.  
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Table 10.14. Percentage errors in modified displacements, forces and stresses 

Method CA2 CA3 CA4 Exact E(CA2) E(CA3) E(CA4)
Displacements 0.59 0.61 0.61 0.61 3.4 0.0 0 
 1.78 1.71 1.73 1.73 2.8 1.2 0 
 0.84 0.88 0.89 0.89 6.0 1.1 0 
 4.14 4.20 4.21 4.21 1.7 0.2 0 
 -1.04 -1.12 -1.12 -1.12 7.7 0.0 0 
 4.38 4.47 4.49 4.49 2.5 0.4 0 
 -0.64 -0.65 -0.65 -0.65 1.6 0.0 0 
 1.98 1.91 1.90 1.90 4.0 0.5 0 
Forces 188.0 193.5 194.5 194.5 3.5 0.5 0 
 12.1 13.4 13.7 13.7 13.9 3.0 0 
 -201.3 -206.6 -205.5 -205.5 2.1 0.5 0 
 -73.7 -85.8 -86.3 -86.3 17.1 0.6 0 
 9.9 10.0 8.2 8.2 17.5 21.9 0 
 12.1 13.4 13.7 13.7 13.9 3.0 0 
 160.5 150.6 149.2 149.2 7.0 0.9 0 
 -141.8 -131.6 -133.6 -133.6 5.8 1.5 0 
 115.5 122.6 122.0 122.0 5.6 0.5 0 
 -17.1 -19.0 -19.4 -19.4 13.3 2.5 0 
Stresses 49.4 50.9 51.2 51.2 3.5 0.5 0 
 20.2 22.3 23.0 23.0 13.9 3.0 0 
 -53.0 -54.4 -54.1 -54.1 2.1 0.5 0 
 -33.5 -39.0 -39.2 -39.2 17.1 0.6 0 
 16.6 16.7 13.7 13.7 17.5 21.9 0 
 20.2 22.3 23.0 23.0 13.9 3.0 0 
 56.0 52.5 52.0 52.0 7.0 0.9 0 
 -49.5 -45.9 -46.6 -46.6 5.8 1.5 0 
 40.3 42.8 42.5 42.5 5.6 0.5 0 
 -28.6 -31.6 -32.4 -32.4 13.3 2.5 0 
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material nonlinearity, 26-29 
time varying loads, 29-30 

Nonlinear static reanalysis, 146-157 
formulation, 99-104, 146-147 
solution by CA, 148-151 
solution procedures, 151-157 

Norm, 125, 284 
Normal coordinates (see Modal co-

ordinates) 
Normalized coordinates, 89 

Normalized shape, 45 
Normalized vector, 127, 132, 133, 

134 

O 

Orthogonality conditions, 39, 132 
Orthogonal matrix, 40 
Out-of-balance force vector, 21, 87, 

99 

P 

Piecewise exact method, 77 
Plastic analysis, 27, 101 
Plastic hinge moment, 199, 200 
Poisson's ratio, 11, 12 
Polynomial fitting, 111 
Polynomial iteration, 44, 52-53 
Positive-definite matrix, 14, 143, 

146 
Potential energy, 83 
Preconditioned  

conjugate gradient, 15-20, 115, 
278 
matrix, 19, 20, 281 
system, 278 

Pre-conditioner, 17 
Preconditioning, 17 
Predictor-corrector method, 20 
Principle of minimum total potential 

energy, 6 
Principle of virtual work, 6, 9 
Projection method, 84 
Pseudo-load vector, 230, 232 

Q 

QR iteration, 52 
Quadratic fitting, 233 
Quadratic function, 15, 133, 278 
Quasi-Newton methods, 33 

R 

Rayleigh minimum principle, 41 
Rayleigh quotient, 41, 43, 46, 54 

iteration, 48, 164, 165 
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Rayleigh-Ritz 
analysis, 85-86, 54-58 
method, 86 
reduction, 84 

Reanalysis formulation, 93-120 
dynamic, 105-109 
eigenproblem-iterative, 103-104 
eigenproblem, 102-103 
linear dynamic, 105-107 
linear static, 97-99 
nonlinear dynamic, 107-109 
nonlinear static, 99-102 
static, 97-102 
vibration, 102-104 

Reanalysis methods, 109-115 
approximate, 110-112 
combined approximations, 112-
115 
direct, 110. 

Reciprocal approximations, 111 
Reduced basis, 81-86 

dynamic analysis, 84-86 
methods, 111 
static analysis, 82-84 
subspace, 82 

Reduced eigenproblem, 160 
Reduced load vector, 127 
Reduced set, 148 
Reduced system, 133 
Repeated sensitivity analysis, 115, 

227-264 
Residual vector, 16, 17, 278, 284 
Residual force vector (see Out of 

balance force vector) 
Resisting (elastic or inelastic) 

forces, 37, 88 
Response spectra analysis, 77 
Response surface, 111, 267 
Rigid body modes, 231, 232 
Ritz 

basis vectors, 54, 86 
coordinates, 54, 86 
load dependent vectors, 55-58 
transformation, 86 
vectors, 54-58, 85, 86 

Runge-Kutta subspace, 85 

S 

Scaled and nearly scaled designs, 
276-278 

Scaling of the initial design, 124, 
276 

Second-order approximations, 111 
Sensitivity analysis, 113 

adjoint-variable approach, 227 
analytical derivatives, 230-231 
analytical, 228 
central-difference, 228, 229, 231, 
240 
condition error, 230 
direct approach, 227 
finite-difference, 228-230, 240 

 forward-difference, 228, 229, 
231, 232, 240, 241 
linear dynamic, 249-255 
nonlinear dynamic, 255-260 
refined emi-analytical, 231 

 semi-analytical, 228, 231-232, 
241 
static problems, 230-243 
truncation error, 229 
vibration problems, 243-249 

Sensitivity reanalysis 
 analytical derivatives, dynamic 

problems, 250 
 analytical derivatives, static prob-

lems, 233-237 
 errors due to rigid body motions, 

240-243 
 finite-difference derivatives, 

static problems, 237-240 
 finite-difference derivatives, vi-

bration problems, 244-246 
 improved basis vectors, central 

differences, 247-249 
 linear dynamic, 249-255 

nonlinear-dynamic, 255-260 
Series of basis vectors, 125 
Shallow arch example, 157 
Sherman-Morrison identity (see 

Sherman-Morrison formula) 
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Sherman-Morrison formula, 110, 
114, 207, 208, 213, 215 

Shifts of the basis vectors, 167, 247 
Simply supported beam example, 

169 
Single-point approximations (see 

Local approximations) 
Single step methods, 84 
Six-bar truss example, 144 
Snap-through of a shallow arch, 157 
Spectral matrix, 39, 40, 44, 72 
Spectral radius, 125, 282 
Stable structures, 97 
Standard eigenproblem, 40-41 
Static 

analysis, 1-36 
condensation, 42-43, 84 
correction method, 80, 81 
reanalysis, 97-102, 121-158 

Steepest descent direction, 16 
Stiffness matrix, 3, 6, 8, 37, 65, 77, 

185 
changes, 98, 100, 106 
changes in elastic, 109 
decomposition of, 14 
elastic, 21, 147, 151 
effective, 70, 106, 186 
element, 9, 12 
half-bandwidth, 15 
low-rank changes, 110 
modified, 98, 218 
modified initial, 143 
reference, 99, 146 
rank-one changes, 124, 208, 209, 
234, , 267 
reduced, 127 
tangent (see Tangent stiffness 
matrix) 

Stiffness method (see Displacement 
method) 

Stodola method, 45 
Strain, 10 
Stress matrix, 8, 11 
Stresses, 4, 289-291 
Stress transformation matrix, 4 

Structural optimization, 93, 94, 112, 
227 

Sturm sequence property, 44 
Subspace iteration, 44, 60-63, 84, 

104, 176 
Substructures, 130 
System of masses and springs ex-

ample, 171 

T 

Tangent stiffness matrix, 22, 30, 32, 
36, 88, 99, 108, 146, 147 

Tangential predictor, 25 
Taylor series, 21, 32, 85, 88, 111, 

124, 227, 229 
Ten-bar truss example, 127, 130, 

134, 210, 219, 221, 235, 238, 
275, 290 

Theorems of structural variation, 
110 

Three hundreds and fifty six-bar 
truss example, 135 

Time varying load, 29-30 
Topological changes, 113, 139-145, 

221 
 number of DOF is decreased, 

139-141 
 number of DOF is increased, 142-

145 
Topological optimization, 95 
Transformation methods, 44, 51-52 
Trapezoidal rule, 86, 87, 107 
Triangular factorization, 13 
Triangular matrix, 13, 67, 144 
True percentage error, 283 
Two-bar truss example, 23, 149 
Two hundreds and four-bar truss ex-

ample, 135 

U 

Unstable structures, 97 

V 

Vector deflation, 163 
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Vector iteration, 43, 45-51 
Vector iteration with shifts, 48-49 
Velocity vector, 37, 65, 185 
Vibration analysis, 37-64, 113 
Vibration reanalysis, 102-104, 114, 

159-184 
Virtual distortion method, 110 
Virtual work, 9 

principle of, 6 

W 

Wilson method, 69, 186 
Woodbury formula, 110, 114, 207, 

209, 215 
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66. P. Argoul, M. Frémond and Q.S. Nguyen (eds.): IUTAM Symposium on Variations of Domains

and Free-Boundary Problems in Solid Mechanics. Proceedings of the IUTAM Symposium
held in Paris, France. 1999 ISBN 0-7923-5450-8

67. F.J. Fahy and W.G. Price (eds.): IUTAM Symposium on Statistical Energy Analysis. Proceedings
of the IUTAM Symposium held in Southampton, U.K. 1999 ISBN 0-7923-5457-5

68. H.A. Mang and F.G. Rammerstorfer (eds.): IUTAM Symposium on Discretization Methods in
Structural Mechanics. Proceedings of the IUTAM Symposium held in Vienna, Austria. 1999

ISBN 0-7923-5591-1



Mechanics
SOLID MECHANICS AND ITS APPLICATIONS

Series Editor: G.M.L. Gladwell

69. P. Pedersen and M.P. Bendsøe (eds.): IUTAM Symposium on Synthesis in Bio Solid Mechanics.
Proceedings of the IUTAM Symposium held in Copenhagen, Denmark. 1999

ISBN 0-7923-5615-2
70. S.K. Agrawal and B.C. Fabien: Optimization of Dynamic Systems. 1999

ISBN 0-7923-5681-0
71. A. Carpinteri: Nonlinear Crack Models for Nonmetallic Materials. 1999

ISBN 0-7923-5750-7
72. F. Pfeifer (ed.): IUTAM Symposium on Unilateral Multibody Contacts. Proceedings of the

IUTAM Symposium held in Munich, Germany. 1999 ISBN 0-7923-6030-3
73. E. Lavendelis and M. Zakrzhevsky (eds.): IUTAM/IFToMM Symposium on Synthesis of Non-

linear Dynamical Systems. Proceedings of the IUTAM/IFToMM Symposium held in Riga,
Latvia. 2000 ISBN 0-7923-6106-7

74. J.-P. Merlet: Parallel Robots. 2000 ISBN 0-7923-6308-6
75. J.T. Pindera: Techniques of Tomographic Isodyne Stress Analysis. 2000 ISBN 0-7923-6388-4
76. G.A. Maugin, R. Drouot and F. Sidoroff (eds.): Continuum Thermomechanics. The Art and

Science of Modelling Material Behaviour. 2000 ISBN 0-7923-6407-4
77. N. Van Dao and E.J. Kreuzer (eds.): IUTAM Symposium on Recent Developments in Non-linear

Oscillations of Mechanical Systems. 2000 ISBN 0-7923-6470-8
78. S.D. Akbarov and A.N. Guz: Mechanics of Curved Composites. 2000 ISBN 0-7923-6477-5
79. M.B. Rubin: Cosserat Theories: Shells, Rods and Points. 2000 ISBN 0-7923-6489-9
80. S. Pellegrino and S.D. Guest (eds.): IUTAM-IASS Symposium on Deployable Structures: Theory

and Applications. Proceedings of the IUTAM-IASS Symposium held in Cambridge, U.K., 6–9
September 1998. 2000 ISBN 0-7923-6516-X

81. A.D. Rosato and D.L. Blackmore (eds.): IUTAM Symposium on Segregation in Granular
Flows. Proceedings of the IUTAM Symposium held in Cape May, NJ, U.S.A., June 5–10,
1999. 2000 ISBN 0-7923-6547-X

82. A. Lagarde (ed.): IUTAM Symposium on Advanced Optical Methods and Applications in Solid
Mechanics. Proceedings of the IUTAM Symposium held in Futuroscope, Poitiers, France,
August 31–September 4, 1998. 2000 ISBN 0-7923-6604-2

83. D. Weichert and G. Maier (eds.): Inelastic Analysis of Structures under Variable Loads. Theory
and Engineering Applications. 2000 ISBN 0-7923-6645-X

84. T.-J. Chuang and J.W. Rudnicki (eds.): Multiscale Deformation and Fracture in Materials and
Structures. The James R. Rice 60th Anniversary Volume. 2001 ISBN 0-7923-6718-9

85. S. Narayanan and R.N. Iyengar (eds.): IUTAM Symposium on Nonlinearity and Stochastic
Structural Dynamics. Proceedings of the IUTAM Symposium held in Madras, Chennai, India,
4–8 January 1999 ISBN 0-7923-6733-2

86. S. Murakami and N. Ohno (eds.): IUTAM Symposium on Creep in Structures. Proceedings of
the IUTAM Symposium held in Nagoya, Japan, 3-7 April 2000. 2001 ISBN 0-7923-6737-5

87. W. Ehlers (ed.): IUTAM Symposium on Theoretical and Numerical Methods in Continuum
Mechanics of Porous Materials. Proceedings of the IUTAM Symposium held at the University
of Stuttgart, Germany, September 5-10, 1999. 2001 ISBN 0-7923-6766-9

88. D. Durban, D. Givoli and J.G. Simmonds (eds.): Advances in the Mechanis of Plates and Shells
The Avinoam Libai Anniversary Volume. 2001 ISBN 0-7923-6785-5

89. U. Gabbert and H.-S. Tzou (eds.): IUTAM Symposium on Smart Structures and Structonic Sys-
tems. Proceedings of the IUTAM Symposium held in Magdeburg, Germany, 26–29 September
2000. 2001 ISBN 0-7923-6968-8



Mechanics
SOLID MECHANICS AND ITS APPLICATIONS

Series Editor: G.M.L. Gladwell

90. Y. Ivanov, V. Cheshkov and M. Natova: Polymer Composite Materials – Interface Phenomena
& Processes. 2001 ISBN 0-7923-7008-2

91. R.C. McPhedran, L.C. Botten and N.A. Nicorovici (eds.): IUTAM Symposium on Mechanical
and Electromagnetic Waves in Structured Media. Proceedings of the IUTAM Symposium held
in Sydney, NSW, Australia, 18-22 Januari 1999. 2001 ISBN 0-7923-7038-4

92. D.A. Sotiropoulos (ed.): IUTAM Symposium on Mechanical Waves for Composite Structures
Characterization. Proceedings of the IUTAM Symposium held in Chania, Crete, Greece, June
14-17, 2000. 2001 ISBN 0-7923-7164-X

93. V.M. Alexandrov and D.A. Pozharskii: Three-Dimensional Contact Problems. 2001
ISBN 0-7923-7165-8

94. J.P. Dempsey and H.H. Shen (eds.): IUTAM Symposium on Scaling Laws in Ice Mechanics
and Ice Dynamics. Proceedings of the IUTAM Symposium held in Fairbanks, Alaska, U.S.A.,
13-16 June 2000. 2001 ISBN 1-4020-0171-1

95. U. Kirsch: Design-Oriented Analysis of Structures. A Unified Approach. 2002
ISBN 1-4020-0443-5

96. Edition). 2002
ISBN 1-4020-0496-6

97. B.L. Karihaloo (ed.): IUTAM Symposium on Analytical and Computational Fracture Mechan-
ics of Non-Homogeneous Materials. Proceedings of the IUTAM Symposium held in Cardiff,
U.K., 18-22 June 2001. 2002 ISBN 1-4020-0510-5

98. S.M. Han and H. Benaroya: Nonlinear and Stochastic Dynamics of Compliant Offshore Struc-
tures. 2002 ISBN 1-4020-0573-3

99. A.M. Linkov: Boundary Integral Equations in Elasticity Theory. 2002
ISBN 1-4020-0574-1

100. L.P. Lebedev, I.I. Vorovich and G.M.L. Gladwell: Functional Analysis. Applications in Me-
chanics and Inverse Problems (2 Edition). 2002

ISBN 1-4020-0667-5; Pb: 1-4020-0756-6
101. Q.P. Sun (ed.): IUTAM Symposium on Mechanics of Martensitic Phase Transformation in

Solids. Proceedings of the IUTAM Symposium held in Hong Kong, China, 11-15 June 2001.
2002 ISBN 1-4020-0741-8

102. M.L. Munjal (ed.): IUTAM Symposium on Designing for Quietness. Proceedings of the IUTAM
Symposium held in Bangkok, India, 12-14 December 2000. 2002 ISBN 1-4020-0765-5

103. J.A.C. Martins and M.D.P. Monteiro Marques (eds.): Contact Mechanics. Proceedings of the
3 Contact Mechanics International Symposium, Praia da Consolação, Peniche, Portugal,
17-21 June 2001. 2002 ISBN 1-4020-0811-2

104. H.R. Drew and S. Pellegrino (eds.): New Approaches to Structural Mechanics, Shells and
Biological Structures. 2002 ISBN 1-4020-0862-7

105. J.R. Vinson and R.L. Sierakowski: The Behavior of Structures Composed of Composite Ma-
terials. Second Edition. 2002 ISBN 1-4020-0904-6

106. Not yet published.
107. J.R. Barber: Elasticity. Second Edition. 2002 ISBN Hb 1-4020-0964-X; Pb 1-4020-0966-6
108. C. Miehe (ed.): IUTAM Symposium on Computational Mechanics of Solid Materials at Large

Strains. Proceedings of the IUTAM Symposium held in Stuttgart, Germany, 20-24 August
2001. 2003 ISBN 1-4020-1170-9

A. Preumont: Vibration Control of Active Structures. An Introduction (2nd

rd

nd



Mechanics
SOLID MECHANICS AND ITS APPLICATIONS

Series Editor: G.M.L. Gladwell
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