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Preface
The composites industry has grown multifold in recent times; it continues to grow and 
further growth is expected in the future as well. Composite materials and products 
are now regularly used in a wide range of applications across various industrial sec-
tors. Naturally, there has been an increased demand for trained personnel in the field 
of composites. The subject of composites, which used to be taught only at a few select 
universities and institutes a couple of decades ago, is offered today by many other uni-
versities and institutes both at the undergraduate as well as the postgraduate levels. It is 
also offered as short-term courses as a part of continuing education program by certain 
institutes. Also, there are a large number of practicing professionals who do self-study.

One of the primary objectives of composites education is to equip the student with 
adequate know-how in the area of development of composite products. Composites, 
in general, and composite product development, in particular, are interdisciplinary 
subjects that draw resources from a number of subfields, namely, material science, 
mechanics, analysis, design, tooling, manufacturing, and testing. These topics have 
been extensively covered in a number of excellent books. Depending on the content, 
the books on composites can be broadly placed in three categories. The first category 
includes several excellent texts on mechanics of composites. In the second category, 
composites are treated as a part of material science. The third category includes the 
literature on manufacturing methods and shop floor and lab activities in composites.

The topics in composites mentioned above, however, cannot be considered in isola-
tion and an integrated approach is essential for successful execution of a composite 
product development program. This book is a humble effort to present the concepts in 
composites in an integrated manner.

The contents of this book are organized in two parts. Part I is devoted to the topics 
related to mechanics, analytical methods in composites, and basic finite element proce-
dure. An introductory discussion on the characteristic features of composites is given 
first. Basic concepts of solid mechanics are reviewed and it is followed up by discus-
sions on the concepts of micromechanics and macromechanics. Analytical methods are 
excellent tools in understanding the behavior of composite structural elements. Some 
of these methods in the simple cases of beams and plates are presented next. Finite 
element method is the most popular tool for analysis; understanding of the underlying 
concepts and the basic procedure is essential for effective use of this method and a brief 
presentation on the same is given to complete the discussions in Part I.

Part II of this book is devoted to the topics on materials, manufacturing processes, 
testing, and design. These are the aspects in composites that the shop floor man is 
directly concerned with. The author is of the firm belief that composites design is not a 
closed door activity and a general understanding of the concepts of mechanics, analysis 
tools, available materials, manufacturing processes, tooling, and destructive and non-
destructive test methods is essential for doing an efficient design. With this in mind, a 
discussion on composites design is given in the end.

The primary objective of this book is to expose the reader to the complete cycle of 
development of a composite product. I sincerely hope that this book will be an excel-
lent guide to a student who wants to make a career in composites. I also expect that it 
will be an excellent companion to a practicing professional in the field of composites.

Finally, I take this opportunity to place on record my sincerest gratitude to all my 
teachers who molded me—right from my early school days to my doctoral study at IIT 
Madras; all that I present in this book belongs to them.
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This book would not have seen the light of day without very professional guid-
ance and support from CRC Press; my sincere thanks to Dr. Gagandeep Singh 
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Panthier, and Shashikumar Veeran, all of whom have been directly associated with the 
editing and production of this book.

I would like to place on record my sincere gratitude to Dr. Tessy Thomas, Outstanding 
Scientist and Director, Advanced Systems Laboratory, Hyderabad, for her encourage-
ment and support in publishing this book. My sincerest thanks are also due to my 
colleagues with whom I have had long hours of invaluable interactions developing com-
posite products.

I take this opportunity to express my gratitude to my parents, who brought me up 
in a small sleepy town yet taught me to be ambitious. I thank all my family members 
and near and dear ones for their support in this humble endeavor. Life is a long journey 
and the past six to seven years, were special and tough too; I spent long hours working 
on the manuscript of this book; my wife Ainu managed family affairs and son Beli 
grew up silently. I would like to express my love and gratitude to my loving family for 
their sacrifice and support and for standing patiently by my side in the hours of need. 
I indeed remain indebted to them.
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Book Road Map
The topics for this book have been chosen keeping in mind the primary objective of the 
book, that is, to expose the reader to the complete cycle of development of a composite 
product—from design to manufacturing to testing and evaluation. The chapters, as 
depicted pictorially in the figure given below, are organized into two parts and placed 
by and large in a chronological order of reading.

PART I
Part I is devoted to the introductory concepts and the topics on mechanics, analytical 
methods, and analysis; these topics are primarily computational in nature.

The objective of Chapter 1 is to introduce the subject of composite materials and 
structures. Toward this, we shall begin our journey with a discussion on the character-
istic features that define a composite material, their advantages and disadvantages, and 
their typical applications.

The mechanics of composite materials is an important subject; a good understand-
ing of the concepts of mechanics is essential for understanding the analytical methods 
and analysis tools, which in turn are essential for the efficient design of a compos-
ite product. Chapters 2 through 5 present discussions on basic solid mechanics and 
mechanics of composites. Composites are anisotropic in nature and, as a result, the 
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mechanics of composite material is more involved than that for conventional metal-
lic materials. The concepts of solid mechanics provide the foundation on which the 
subject of mechanics of composite materials is built. A detailed review of the basic 
solid mechanics concepts is presented in Chapter 2. A composite structure is built with 
composite laminates. A laminate is made by combining several laminae and a lamina 
consists of reinforcements and matrix. The laminae are the building blocks and we 
shall address them in Chapters 3 and 4. Chapter 3 presents the micromechanics of a 
lamina; the interaction of the individual constituents and their effect on the behavior 
of the lamina are discussed in this chapter. The macromechanics of a lamina, that is, 
the study of the gross behavior of a lamina without making a distinction between the 
constituents, is presented in Chapter 4. The macromechanics of a laminate is discussed 
next in Chapter 5.

Analytical methods and analysis tools play an important role in the design process 
by providing estimates of the response of a structure to applied loads; these topics are 
presented in Chapters 6 through 8. Analytical methods are available for the solution 
of simple structural elements under simple loading; we shall discuss such analytical 
tools for composite beams and plates in Chapters 6 and 7, respectively. These meth-
ods, however, are not suitable for most real-life situations, where a structure as well 
as the applied loads are rather complex. In such cases, numerical methods such as 
the finite element method are invariably used. The finite element method is the most 
popular tool used for the analysis of structures. Several general-purpose finite element 
software are commercially available. A basic understanding of the method is essential 
for the proper use of these software. We shall wind up Part I of this book with a brief 
discussion on the basic concepts and general procedure in the finite element method 
in Chapter 8.

PART II
There are several aspects in the overall cycle of a composite product development, 
where the engineer is primarily involved with shop-floor-related activities. Part II of 
this book is devoted to these topics. These topics are materials, manufacturing methods, 
testing of composites and their constituents, and nondestructive evaluation. In addition 
to these, other major classes of composites, viz. metal matrix composites (MMCs), 
ceramic matrix composites (CMCs), and carbon/carbon composites (C/C composites) 
are included in this part. Also, a discussion on the design of composite products is 
given in the end.

The major raw materials used in the polymer matrix composites industry 
are presented in Chapter 9. Raw materials play a key role in any product devel-
opment exercise. Two primary categories of raw materials needed to make a 
composite product are the reinforcements and the matrix. The general charac-
teristics and the mechanical and physical properties of common fibers and res-
ins are presented. We  shall also briefly present the principles of manufacturing 
methods for  these materials. It is expected that this chapter will be able to guide 
the designer  in  selecting  the appropriate reinforcement  and matrix materials for 
specific applications.

Composites technology is process-intensive and a good knowledge of manufactur-
ing processes is essential for anyone in this field. Similar to materials selection, the 
manufacturing process selection is a critical decision to be made in the design of a 
composite product. With a view to getting solutions to such issues, we shall address 
manufacturing methods in polymer composites in Chapter 10. Several manufacturing 
processes are regularly employed in the composites industry; they can be categorized 
into open mold, closed mold, and continuous molding processes. The basic processing 
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steps, some of the popular manufacturing processes, and the manufacturing process 
selection are presented in this chapter.

Another major aspect of composites technology is testing, various aspects of which 
are addressed in Chapter 11. We will see there that testing is an inseparable part in 
any composite product development program. It is done with either one or more of the 
following as objectives—design data generation, quality control, and development of 
new materials. Testing in composites is unique and typically a building-block approach 
is adopted. Tests are done at various levels—constituent raw materials testing to full-
scale component testing. These tests are destructive in nature and the specimen gets 
consumed/damaged during testing. In contrast to destructive testing, nondestructive 
testing neither destroys nor causes any damage to the part, and the utility of the part 
remains intact. We shall briefly review some of the common nondestructive evaluation 
techniques in Chapter 12.

MMCs, CMCs, and C/C composites complement polymer matrix composites in 
the overall composites industry. The scope of this book is limited to mainly polymer 
matrix composites. However, familiarity with these sister composite materials helps a 
polymer matrix composite professional immensely in the design and development of 
a product. The introductory concepts covering general characteristics, raw materials, 
and manufacturing methods with regard to MMCs, CMCs, and C/C composites are 
presented in Chapter 13.

Finally, we shall acquaint ourselves with various aspects of design in Chapter 14. 
Design is a common term, yet very often misunderstood. It is an art, yet certain set 
patterns and key features can be associated with it. The concept of design as a solution 
to meet certain requirements using available resources within certain constrains is 
introduced in this chapter. The fundamental features of composites structural design 
process, laminate design, joint design, and some important design issues are presented. 
Design examples are provided to help in the assimilation of the concepts. It is a 
phase that comes fairly early in the overall product development program. However, 
it is a subject that demands a reasonable level of insight into various other aspects 
of composites technology; inputs from mechanics, analysis estimates, materials data, 
manufacturing, testing, and evaluation are required in the design process. Accordingly, 
we shall deliberate on it in the end.

SUGGESTED PLAN FOR READING
There are 14 chapters in this book and they can be read in a sequential manner. 
However, it will be difficult to cover the entire book in the time frame of a single semes-
ter. From the points of view of (i) organizing the contents in one-semester courses and 
(ii) effective self-study, the following study plans are suggested:

First, a basic course on the mechanics of composites can be planned based on the 
sequence: Chapter 1 → Chapter 2 → Chapter 3 → Chapter 4 → Chapter 5. Some 
selected sections from Chapters 6 through 8 can be added.

Second, an advanced course on the mechanics and analysis of composites can be 
planned based on the sequence: Chapter 1 → Chapter 4 → Chapter 5 → Chapter 6 → 
Chapter 7. Some selected sections from Chapters 2, 3, and 8 can be added.

Third, a course on manufacturing and testing of composites can be planned based on 
the sequence: Chapter 1 → Chapter 9 → Chapter 10 → Chapter 12 → Chapter 13. Some 
selected sections from Chapters 3 through 5 and 11 can be added.

Fourth, a generalized course on the design of composite products can be planned 
based on the sequence: Chapter 1 → Chapter 4 → Chapter 5 → Chapter 9 → 
Chapter 10 → Chapter 14. Some selected sections from Chapters 2, 3, 6 through 8, and 
11 through 13 can be added.
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1.1  CHAPTER ROAD MAP
The objective of this chapter is to give the reader an overview of composite materials. 
Advanced composites are a relatively new class of materials, but the concept of com-
posites is rather old. A brief historical note on composites is provided. Composites are 
unique materials; the characteristic features that differentiate them from conventional 
metallic materials are presented next. A classification of these materials is provided 
so as to establish a link within the overall system of materials. A brief description 
of different types of composites is given for a proper understanding of classification 
of composites. Composites are multiphase material systems and their behavior is 
dependent on the constituents; a note on the general functions and characteristics of the 
constituents is given. For successful use of composites in product design, it is important 
to know their advantages as well as disadvantages; the general advantages and disad-
vantages associated with composites are presented, followed by a discussion on their 
applications in various industrial sectors.

1.2  INTRODUCTION
Materials have always played a major role in the development and growth of human 
civilization. Composite materials are no exception. The advent of advanced composites 
has influenced almost every aspect of modern life and today, major impacts are felt in 
aerospace and aviation sector, automobile industry, sports goods industry, naval appli-
cations, civil engineering, etc.

Composites have their own unique features. There are advantages as well as disad-
vantages. While exceptionally high mechanical and thermal properties can be achieved 
in a composite material, translation of such high levels of material properties to com-
posite structures is equally important and highly challenging. Basic material science, 
process engineering, and design and analysis of composite materials and structures are 
inherently related.

1.3  HISTORY OF COMPOSITES
The use of composite materials can be traced back to 2000 bc or even earlier. Straw-
reinforced mud bricks were used in Egypt and Mesopotamia. Straws were also used for 
making reinforced pottery. Composite bows were used in ancient Mongolia and other 
places across Asia. Evidence exists on the use of composites in ancient Japan, where 
laminated metals were used by the Samurais to make swords.

The development of modern advanced composites has been greatly influenced by 
the developments in the fields of raw materials, viz. reinforcements and resins, and 
composites manufacturing processes [1–4].

1
Introduction to Composites
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Glass fiber was first commercially produced in the 1930s. Around the same time, 
unsaturated polyester resins were also developed and commercialized. The first glass 
fiber-reinforced plastic (GFRP) boats and radomes were built in the early 1940s. 
Rapid progress took place in the 1950s with increasing use of GFRP in boat hulls, car 
bodies, electrical components, etc. GFRP products were the first advanced compos-
ite products, and they still constitute a very large proportion of today’s composites’ 
market.

The next phase of development of composites was marked by the development 
of high-performance composites using carbon, boron, and aramid fibers. High-
performance carbon fibers and boron fibers were introduced around the same time 
in the late 1950s and early 1960s. They were followed by the development of aramid 
fibers in the early 1970s. Epoxy resins have been available since the 1930s, and with 
the advent of these high-performance fibers, composites industry received a major 
boost. Development in the composites industry was also pushed hard by demands 
from aerospace and defense sectors for lighter and more efficient structures. Further, 
technological developments in respect of processing equipment and machinery such 
as filament winding machine, computer numerical controls, autoclave, etc. have been 
some of the major features of the growth of composites. Another noteworthy point 
is the development in the field of analytical tools for composites product design and 
analysis.

1.4 � CHARACTERISTICS OF COMPOSITE 
MATERIALS

1.4.1  Definition

Broadly, four types of materials are used for making a structural element. These are 
metals, polymers, ceramics, and composites. In a general sense, a composite material 
is one that has two or more constituent materials in it. The constituent materials in a 
composite material are metals, polymers, ceramics, or a combination of these three. 
A definition of composites can be found by identifying the characteristics of the con-
stituents and the process of combining them [5–7]. We check them as follows:

◾◾ The constituent materials differ in composition and form. Their combination 
results in two phases in a composite material: reinforcement—a discontinu-
ous phase, which is usually hard and strong, and matrix—a continuous phase, 
which binds the reinforcements together.

◾◾ The reinforcing material is embedded in the matrix material at a macroscopic 
level. Thus, the constituent materials do not dissolve or merge together and 
they retain their individual properties.

◾◾ The matrix binds the reinforcements in such a way as to form a distinct inter-
phase between them.

◾◾ The reinforcements and the matrix, as individual materials, may not be of any 
engineering use; it is the process of combining them that transforms them into 
a new material, which is a useful and efficient one. The interphase helps the 
reinforcement and the matrix act in unison and the resultant composite mate-
rial often exhibits better properties than the constituent materials.

Thus, keeping the above points in mind, we can arrive at a definition as the fol-
lowing: A composite material is a useful and efficient material system that is made by 
macroscopically combining two constituents—a reinforcement and a matrix, in such a 
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way that the constituents do not dissolve or merge together and retain their individual 
properties, yet they act in unison to exhibit better engineering properties.

1.4.2  Classification

Composites can be classified primarily in two ways. As mentioned earlier, there are 
four broad types of structural materials, of which any one of the first three, namely, 
metals, polymers, and ceramics, can be used as the matrix for making a composite 
material. Thus, the first way to classify a composite material is based on the type of 
matrix material. From this angle, composite materials are classified into:

◾◾ Polymer matrix composites (PMCs)
◾◾ Metal matrix composites (MMCs)
◾◾ Ceramic matrix composites (CMCs)
◾◾ Carbon/carbon composites (C/C composites)

1.4.2.1  Polymer Matrix Composites

PMCs have been a subject of great interest for basic as well as applied research. 
They possess several advantages over monolithic metals and today, products of wide 
variety, in terms of shape and size, are efficiently designed, fabricated, and used. In 
a PMC material, a polymer such as epoxy is used as the matrix material that is rein-
forced with very fine diameter fibers such as carbon, glass, etc. The reinforcing fibers 
can be either continuous or discontinuous. Continuous fibers can be used in forms 
such as strands, roving, fabric, etc. Discontinuous fibers can be particulate, whiskers, 
or flakes.

Mechanical properties such as strength and stiffness of PMCs are directly dependent 
on the reinforcement properties. Matrix, on the other hand, binds the reinforcements 
together and helps in load transfer. Thus, in general, the principal philosophy in design-
ing a composite part is to orient the reinforcements in the direction of load so that the 
composite properties are efficiently exploited. Of course, manufacturing constraints 
need to be given due consideration.

The processing techniques in composites are a critical part in the study of PMCs. 
Several processing techniques are available for the manufacture of structural elements 
using PMCs. A common objective in all these processing techniques is to place the 
reinforcements as per design requirement and wet them properly with the matrix. An 
essential step is to cure the composite, during which the matrix solidifies through a 
process of cross-linking and it binds the reinforcements.

PMCs play a dominant role in the overall market for composites, including MMCs, 
CMCs, and C/C composites. MMCs, CMCs, and C/C composites are introduced in this 
chapter. We shall discuss them in some detail in Chapter 13. However, our emphasis in 
this book would be on PMCs. Thus, unless otherwise specifically stated, composites in 
the remainder of this book would mean PMCs.

1.4.2.2  Metal Matrix Composites

In an MMC material, a metal or an alloy is the continuous phase in which the rein-
forcements are embedded [8]. Addition of reinforcements in a monolithic metal greatly 
improves its mechanical and other properties to suit specific design requirements. 
MMCs have certain advantages over PMCs as well as monolithic metals. These advan-
tages include high transverse strength and modulus, high shear strength and modulus, 
high service temperature, low thermal expansion, very low moisture absorption, dimen-
sional stability, high electrical and thermal conductivities, better fatigue and damage 
resistance, ease of joining and resistance to most radiations including ultraviolet (UV) 
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radiation, etc. These benefits have been made use of and MMCs have found many 
applications in several sectors [9–12].

1.4.2.3  Ceramic Matrix Composites

CMCs are a class of structural materials in which either continuous or discontinuous 
reinforcements are embedded in a monolithic ceramic material [13]. Ceramics, as a 
class of materials by themselves, characteristically have very high temperature resis-
tance but low fracture toughness. Low fracture toughness makes ceramics susceptible 
to catastrophic failure under tensile or impact loads. In CMCs, fracture properties are 
improved. Other advantages of CMCs include low density, chemical inertness, hard-
ness, and high strength. Thus, these materials are suitable for applications where high 
mechanical properties are desired at high service temperatures [14].

1.4.2.4  Carbon/Carbon Composites

In C/C composites, carbon fiber reinforcements are embedded in a carbon matrix [15]. 
Carbon by itself is brittle and sensitive to material defects. By reinforcing carbon with 
carbon fibers, the properties are greatly improved. C/C composites are typically very 
highly temperature resistant. They retain high tensile and compressive strengths and 
high fatigue strength at high temperatures, and they are used in several aerospace and 
other high-end applications such as brake disks for aircrafts, nose cone of reentry 
vehicles, nozzle throat, etc. [16]. C/C composites, however, involve long and complex 
processing cycle.

We had mentioned earlier that the reinforcements form a discontinuous phase. 
Different shapes and sizes of reinforcements can be used and the final composite 
structural forms can be different. Thus, based on the geometry and shape of the rein-
forcements and the structural form of the composites, the following classification of 
composites is possible (Figure 1.1):

◾◾ Phased composites
−− Particulate composites
−− Short fiber composites
−− Flake composites
−− Unidirectional composites

◾◾ Layered composites
−− Laminated composites
−− Sandwich composites

Particulate composites Short fiber composites Flake composites

(a)

Laminated composites Sandwich composites

(b)

Skin
Light core

FIGURE 1.1  Types of composites based on shape of reinforcements and form of composites. 
(a) Phased composites. (b) Layered composites.
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1.4.2.5  Particulate Composites

In a particulate composite material, reinforcing particles are added in a continuous 
matrix. A particle is an object such that no dimension is more than about five times the 
other two dimensions. The particles are added at random and due to the random orien-
tation of the particles, particulate composites are isotropic in nature. Both metallic and 
nonmetallic particles are used as reinforcements in particulate composites. Table 1.1 
lists common particulate reinforcements. These particles can be combined with either 
metallic matrix or nonmetallic matrix materials and thus we have the following four 
possible combinations in a particulate composite material:

◾◾ Metal particles in metal matrix
◾◾ Metal particles in nonmetal matrix
◾◾ Nonmetal particles in metal matrix
◾◾ Nonmetal particles in nonmetal matrix

Examples of particulate composites are given in Table 1.2.
Particulate composites possess several advantages such as improved strength, stiff-

ness, and toughness compared to the unreinforced metal or ceramic material. They also 
possess typically higher operating temperatures and in certain cases, specific beneficial 
properties are infused into the matrix by adding particulate reinforcements. Further, 
their processing is cheap and simple. However, they exhibit generally inferior mechani-
cal properties as compared to the other types of composites.

1.4.2.6  Short Fiber Composites

In short fiber composites, either short fibers or whiskers are added in a continuous 
matrix. The reinforcements are discontinuous and they are mixed in the matrix at ran-
dom. The fibers have highly direction-dependent properties and thus these composites 
are anisotropic. However, owing to the random orientation of the fibers/whiskers, these 
composites depict isotropic behavior at a product level.

TABLE 1.1
Common Particulate Reinforcements
Metal Aluminum, tungsten

Nonmetal

Ceramic Alumina (Al2O3), silicon carbide (SiC), silicon nitride (Si3N4), titanium carbide (TiC), titanium 
diboride (TiB2), boron carbide (B4C)

Others Sand, rock particles

TABLE 1.2
Examples of Particulate Composites
Metal particles in metal matrix Tungsten/Al
Metal particles in nonmetal matrix Solid propellant (Al/rubber)
Nonmetal particles in metal matrix Graphite/Al, SiC/Al
Nonmetal particles in nonmetal matrix Concrete (sand/cement)

Note:	 The convention followed in this table and the remainder of this book to repre-
sent a composite material is to put the name of the reinforcement first fol-
lowed by a front slash and the name of the matrix. Thus, SiC/Al is silicon 
carbide-reinforced aluminum matrix composite, and so on.
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1.4.2.7  Flake Composites

Unlike fibers, flakes have a two-dimensional (2D) structure—strength and stiffness 
properties are high in two directions. Two types of flake composites are used. In the 
first type of flake composites, nonmetallic flakes such as mica or glass are embedded, 
usually parallel to one another, in a matrix material. The resulting composite material 
exhibits highly direction-dependent behavior. In the second type of flake composites, 
preimpregnated fabric cut pieces are randomly mixed. Although the fabric cut pieces 
are 2D with direction-dependent properties, due to the random orientation, the result-
ing composite part is isotropic.

1.4.2.8  Unidirectional Composites

These are composites with long continuous reinforcements. Strength and stiffness 
properties of these composites are very high in the direction of the reinforcements but 
poor in the other two directions.

1.4.2.9  3D Composites

Three-dimensional (3D) composites are a special variety of composites that are rein-
forced with long continuous reinforcements oriented in all the three dimensions. Most 
frequently, these composites are made from preforms of oriented fibers into which the 
resin matrix is injected and cured.

1.4.2.10  Laminated Composites

Laminated composites are made up of several thin plies (layers) stacked and bonded 
together. Different types of laminated composites such as fiber-reinforced plastic, 
bimetals, laminated wood, etc. are used. In bimetallic laminated composites, layers of 
two different metals of usually significantly different thermal coefficients are bonded. 
In fiber-reinforced laminated composites, each ply is a plastic layer reinforced with 
usually continuous fibers. The reinforcements are unidirectional, bidirectional, or even 
multidirectional. In certain cases, short fiber-reinforced plies are also used, in which 
case the fibers are normally randomly oriented. Fiber-reinforced laminated composites 
are widely used, and in the remainder of this book, the term “laminated composites” 
would be used to mean fiber-reinforced laminated composites.

1.4.2.11  Sandwich Composites

These are basically panels of lightweight core sandwiched between two relatively thin 
but hard and strong skins. The core material may be low-density foam or honeycomb.

1.4.3  Characteristics and Functions of Reinforcements and Matrix

We have learnt that the reinforcements and matrix do not react with each other, retain 
their individual characteristics, act in unison, and offer better resultant composite prop-
erties. Now, we need to understand that the reinforcements and matrix have their own 
characteristics and specific functions.

Fibers used as reinforcements for advanced composites are typically very fine in 
diameter, and their volume per unit length is low. Thus, in the fiber form, flaws are far 
less than in the bulk form. Also, many fiber manufacturing processes involve spinning 
and stretching operations, during which a high degree of microstructural orientation 
takes place. As a result, mechanical properties such as strength and modulus of fibrous 
reinforcements are very high. Thus, structural functions are performed primarily by 
the reinforcements. In addition to possessing very high mechanical properties, some 
fibers also possess some specific characteristics. In such cases, fibers impart specific 
characteristics to the composite material. For example, carbon fibers have negative 
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longitudinal thermal coefficients of expansion, and carbon fiber composites can be 
designed to make dimensionally stable part across a wide temperature range. Similarly, 
silica fibers can be used for making thermal insulator.

In general, we can list a few key functions of fiber reinforcements as follows:

◾◾ Reinforcements are the primary load-bearing element in a composite material.
◾◾ Reinforcements provide stiffness to the composite material.
◾◾ Reinforcements provide thermal stability.
◾◾ Reinforcements provide electrical and thermal conductivity (or insulation).

The reinforcements alone, without the matrix, are meaningless as a structural part. 
Matrix is inferior to fibers in terms of mechanical properties; however, it influences a 
number of composite mechanical properties such as transverse modulus and strength, 
shear modulus and strength, compressive strength, fatigue characteristics, interlaminar 
shear strength, and coefficient of thermal expansion (CTE). The matrix, in a composite 
material, has several critical functions, of which the following may be noted:

◾◾ The matrix acts as glue and holds the reinforcing fibers together, and gives 
shape and rigidity to the composite material as a structural part.

◾◾ The matrix transfers load between the reinforcing fibers.
◾◾ The matrix provides good protection to the reinforcing fibers against chemical 

attack and mechanical wear and tear.
◾◾ The matrix provides good surface finish to the part.
◾◾ Transverse mechanical properties of composite materials are greatly influ-

enced by the matrix.

1.4.4  Composites Terminologies

	 1.	Isotropic material: An isotropic material is one that has equal or same mate-
rial properties in all directions at a point. In other words, material properties 
are not dependent on directions in an isotropic material. Conventional metallic 
materials such as steel, aluminum, etc. are isotropic.

	 2.	Anisotropic material: An anisotropic material is one that has unequal or dis-
similar material properties in different directions at a point. In other words, 
material properties are dependent on directions in an anisotropic material.

	 3.	Orthotropic material: An orthotropic material is one with material properties 
that are different in three mutually perpendicular directions at a point.

		    We will learn about planes of material property symmetry in Chapter 2. We will 
learn that an isotropic material has infinite numbers of planes of material property 
symmetry, an orthotropic material has three, and anisotropic material has none.

		    Composite materials are generally anisotropic. The degree of anisotropy in a 
composite material is highly dependent upon the reinforcement. The matrix is 
typically isotropic in nature but the reinforcements may exhibit highly directional 
properties. For example, carbon fibers are very strong and stiff in the longitudinal 
direction. Laminated composite materials are reinforced with such reinforcements 
and these composites are exceptionally strong and stiff in the direction of fibers as 
compared to the transverse directions. Particulate composites, with uniform dis-
persion of the reinforcing particles, are isotropic. Flakes and short fibers, as rein-
forcements, are highly anisotropic with high strength and stiffness in the direction 
of the fibers. However, these reinforcements are generally randomly oriented in 
the matrix and thus, the resulting composites are isotropic at a macro level.

	 4.	Homogeneous material: A homogeneous material is one that has equal 
or same material properties in a specified direction at all points. In other 
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words, material properties are not dependent on location in a homogeneous 
material.

	 5.	Nonhomogeneous material: A nonhomogeneous material is one that has unequal 
or dissimilar material properties in a specified direction at different points. In 
other words, the material properties are dependent on location in a nonhomoge-
neous material.

		    Composite materials, in a strict sense, are almost always nonhomogeneous. 
These are multiphase materials and the properties at a location in the matrix are 
mostly different from those at a location in the reinforcements. However, at a 
macro level, a composite material is mostly homogeneous.

	 6.	Lamina: A lamina (laminae in plural) is a single layer or ply in a laminated 
composite material. It is the building block of a laminated composite structure. 
It can be either flat or curved and is made up of unidirectional, bidirectional, 
multidirectional, or randomly oriented fibers in the matrix material.

	 7.	Laminate: A laminate is a laminated composite structural element that is made 
by a number of laminae. As shown in Figure 1.2, typically, the reinforcements 
in the laminae are oriented w.r.t. the coordinate system of the structural ele-
ment and the laminae are stacked as per certain ply sequence.

	 8.	Micromechanics: It is the study of a composite material wherein the constituents 
of the composite material are considered as distinct phases and their interaction 
with each other is analyzed to determine the gross properties of the compos-
ite material. Thus, in micromechanics, we study the behavior of the composite 
material based on micro-level properties or the properties of the constituents.

	 9.	Macromechanics: It is the study of a composite material wherein the constitu-
ents of the composite material are not considered as distinct phases; rather, 
the gross or apparent properties of the laminae and the interaction between 
laminae are analyzed to determine the laminate behavior. Thus, in macrome-
chanics, we study the behavior of composite material based on macro-level 
properties or the apparent properties of the laminae.

1.5 � ADVANTAGES AND DISADVANTAGES 
OF COMPOSITES

1.5.1  Advantages

There are several advantages associated with composite materials that make them more 
attractive than other traditional materials in many applications where high performance 
and light weight are essential requirements. These are briefly discussed below:

xy
z

xy
z

xy
z

Lamina Laminae Laminate

FIGURE 1.2  Schematic representations of lamina and laminate.
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	 1.	High tensile strength and stiffness
	 2.	High specific strength and specific stiffness
	 3.	High fatigue strength
	 4.	Inherent material damping and good impact properties
	 5.	Tailorable properties
	 6.	Design flexibility
	 7.	Less corrosion
	 8.	Simple manufacturing techniques
	 9.	Near net shape part and lower part count
	 10.	Cost-effective product development

	 1.	High tensile strength and stiffness: Strength and stiffness properties of mono-
lithic polymers are generally low compared to metals and ceramics. These 
properties can be greatly improved by reinforcing with suitable reinforcements 
such as glass or carbon. Thus, PMCs exhibit comparable or better tensile 
strength and stiffness in the direction of reinforcements than conventional met-
als or ceramics. Mechanical properties of MMCs and CMCs are also higher as 
compared to those of their monolithic counterparts. Table 1.3 gives a compari-
son of typical mechanical properties of some of the common metals, polymers, 
ceramics, and composites.

	 2.	High specific strength and specific modulus: Specific strength and specific 
modulus are the ratios of strength to density and modulus to density, respec-
tively. Composites, on account of their low densities and high strength and 
modulus, possess very high specific strengths and specific moduli. As a result, 
structural parts made by using composites are typically lighter than those 
made from metals. In aerospace vehicles, light weight is a key requirement 
that is associated with longer range, higher payload, and fuel saving. There are 
specific applications in other sectors as well where weight saving is beneficial 
to the overall performance. In all these applications, composites are suitable 
due to their high specific strength and stiffness.

	 3.	High fatigue strength: Fatigue strength or endurance limit refers to the failure 
stress under cyclic loads. Under cyclic loads, most materials fail at lower levels 
of stress than under static loads. Composites exhibit higher fatigue strength 
than conventional metals such as steel and aluminum. Fatigue strengths of 
metals are far lower compared to the respective static strengths—as low as 
35% for aluminum and 50% for steel and titanium. On the other hand, uni-
directional composites exhibit high fatigue strengths of about 90% of static 
strengths.

	 4.	Inherent material damping and good impact properties: Composite materials, 
due to the presence of fiber–matrix interface, exhibit better damping charac-
teristics than conventional metals. A composite part, under the action of an 
impact load, develops numerous microcracks. During the process of formation 
of the microcracks, the energy of impact is absorbed, and catastrophic failure 
is avoided.

	 5.	Tailorable properties: In a composite material, reinforcements can be aligned 
in the direction of principal direction of load; plies can be stacked in a desired 
sequence such that material properties are utilized in the most efficient manner. 
This characteristic of composites is very unique, one that allows the engineer 
to design the material system itself or virtually tailor the material properties as 
per product requirement.

	 6.	Design flexibility: Design flexibility is a key advantage of composite materi-
als. Metallic parts are designed using raw materials that are readily available 
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in the market. These raw materials such as bar stocks, sheets, sections, etc. 
are available with standard specifications; thus, in general, the designer’s final 
choice in respect of the structural elements is influenced by the available raw 
materials. On the contrary, composite parts are designed along with the design 
of the material system itself. Several classes of reinforcements with wide range 
of properties are commercially available in various physical forms. Similarly, 
many matrix materials with their own characteristics are available. Also, there 
has been extensive technological development in the field of composite pro-
cessing and many efficient processing techniques are available today. Thus, 
the designer has a wide range of choices of combinations of raw materials, 
stacking sequence, processing techniques, etc. that enables him to meet the end 
requirement in the most efficient way.

	 7.	Less corrosion: Composite materials, in general, offer better corrosion resis-
tance than metallic materials. As a result, composite structures have longer 
storage life.

	 8.	Simple manufacturing techniques: Manufacturing techniques available in the 
broad field of composites vary widely in terms of their complexity, equipment 
and machinery required, cycle time, and cost. In general, manufacturing tech-
niques for PMCs are much simpler compared to those for MMCs, CMCs, and 

TABLE 1.3
Comparison of Typical Mechanical Properties of Common Engineering Materials

Material
Specific 
Gravity

Tensile 
Modulus (GPa)

Tensile 
Strength (MPa)

Specific Tensile 
Modulus 

(GPa/g/cc)

Specific Tensile 
Strength 

(MPa/g/cc)

Metals

Steel 7.9 205 275–1880 26 35–238
Aluminum 2.7 70 60–700 26 22–259
Polymers
Epoxy 1.2 2.5–4.5 50–130 2.1–3.8 42–108
Polyester 1.2 2.5–4.0 20–80 2.1–3.3 17–67
Phenolic 1.3 3.0–4.0 35–70 2.3–3.1 27–54
Polyimide 1.4 3.0–4.0 70–80 2.1–2.9 50–57
Ceramics
Alumina 3.9 380 330 97 85
Magnesia 3.6 205 230 57 64

Unidirectional PMCs (Vf = 0.5)

Glass/epoxy 1.8–1.9 30–45 550–1350 16–25 289–750
Carbon/epoxy 1.4–1.7 105–460 875–2760 62–329 515–1971
Kevlar/epoxy 1.3–1.4 70–76 1065–1380 50–58 761–1062
MMCs
SiC/Al 2.7–2.9 82–228 210–700 28–84 72–259
CMCs
SiC/SiC 2.3–2.4 190–210 280–340 79–91 117–148
C/C composites
UD C/C composites 1.7 125–220 570–600 74–129 335–353

Note:	 The material properties given in the table are only representative. Certain materials such as carbon 
fibers, depending upon their subtypes, have wide variation in their strength and stiffness properties. 
As a consequence, composites made by using such a reinforcing fiber exhibit wide variation in their 
mechanical properties. Similarly, the tensile strength of monolithic materials such as steel and alumi-
num vary widely depending upon their composition and processing parameters. Specific properties 
from the manufacturer’s data sheet should be used in an actual design and analysis exercise.
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C/C composites. There are many areas where the manufacture of a PMC part 
is simpler than a similar metallic part. Today, a wide variety of manufacturing 
techniques are available for PMCs; some of these techniques do not need appli-
cation of high temperature or pressure. Similarly, equipment and machinery 
required for PMC manufacture need not be very expensive and complex. As 
a result, PMCs have grown very fast in terms of volume as well as variety of 
applications.

	 9.	Near net shape part and lower part count: In the case of composite materi-
als, parts are made by adding materials, and parts with near net shape can be 
manufactured. Parts with complex shapes and large sizes can be realized, as a 
result of which, the number of parts in the overall assembly comes down dras-
tically. This feature also enables the engineer to eliminate/reduce machining 
operations and reduce manufacturing cycle time.

	 10.	Cost-effective product development: Composites are preferred due to their low 
cost as well. Different elements of cost in the development and commercializa-
tion of a composite product include raw material cost, equipment and machin-
ery cost, processing cost, design and analysis cost, marketing cost, etc. Raw 
material cost depends on the type of reinforcements and matrix materials—
while raw materials such as carbon fibers and high-end epoxy resins are expen-
sive, many other reinforcements and resins such as E-glass fiber and polyester 
resins for commercial applications are economically priced. Similarly, simpler 
manufacturing methods lead to low costs of equipment and machinery and 
processing. The overall cost is also reduced due to reduced processing cost 
(near net shape part), lower assembly cost (lower part count), and longer storage 
life (less corrosion).

1.5.2  Disadvantages

While there is a long list of advantages associated with composites, there are certain 
disadvantages as well. Special care has to be taken to overcome these limitations. They 
are enumerated below:

	 1.	Low service temperature
	 2.	Sensitivity to radiation and moisture
	 3.	Low elastic properties in the transverse direction
	 4.	Complex design and analysis
	 5.	Complex mechanical characterization
	 6.	High cost of raw materials and fabrication
	 7.	Difficulty in jointing

	 1.	Low service temperature: PMCs, in general, degrade at relatively low tempera-
tures above room temperature, and have low service temperature. PMCs are 
of two broad types—structural composites and thermal/ablative composites. 
Polymer matrix structural composites tend to lose strength and stiffness prop-
erties as the ambient temperature increases. For high-temperature applications, 
these composites need protection in the form of insulating or ablative lining. 
Ablative composites can withstand high temperatures, but they are nonstruc-
tural in nature.

	 2.	Sensitivity to radiation and moisture: Many polymers when exposed to radia-
tions such as UV radiation, etc. degrade. Moisture absorption is also a problem 
for many PMCs. Protective coatings are applied to increase the service life of 
these composite parts. In certain other cases, additives such as UV-resistant 
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fillers, etc. are added to the matrix to reduce degradation of the composites 
when exposed to harmful radiations.

	 3.	Low elastic properties in the transverse direction: Strength and stiffness of 
unidirectional composites in transverse direction, that is, normal to the direc-
tion of the reinforcements, are controlled by the matrix. Polymer matrix materi-
als have low elastic properties. Thus, unidirectional composites are associated 
with rather low strength and stiffness properties in the transverse direction. 
However, this drawback of unidirectional composites is successfully overcome 
by tailoring of the plies and efficient fiber directional properties in the design 
of the laminates.

	 4.	Complex design and analysis: There are only two independent elastic con-
stants in an isotropic material. On the other hand, more numbers of elastic 
constants are required for describing an anisotropic material. (We will dis-
cuss about elastic constants of anisotropic materials in Chapter 2.) Similarly, 
strength parameters are also more in anisotropic materials. Composite materi-
als are anisotropic in nature, and thus, the number of parameters to be con-
sidered in the design and analysis of a part using composite material is more. 
Fiber-reinforced composites are typically layered. While we can consider dif-
ferent combinations of ply sequences, tailor the material properties and exploit 
the material system, this flexibility also increases the complexity of the design 
and analysis procedure.

	 5.	Complex mechanical characterization: Owing to the presence of more numbers of 
elastic constants and strength properties, mechanical characterization procedure, 
which involves laminate making, coupon preparation, and testing, is complex 
and time consuming. Further, individual raw materials, viz. resin, curing agents, 
and fiber, also have to be evaluated for mechanical and physical properties.

	 6.	High cost of raw materials and fabrication: While some raw materials such 
as E-glass fiber, polyester resin, etc. are cheap, several others such as carbon 
fibers, high-performance epoxy resin, etc. are expensive. Similarly, some of the 
composite manufacturing processes such as autoclave molding, filament wind-
ing, etc. are rather expensive, and these processes are suitable for high-end 
applications where cost is not a primary criterion.

	 7.	Difficulty in jointing: Joints in composite parts are a major area of concern. 
Conventional jointing methods using nut and bolt, rivets, threaded holes, etc. 
are not directly applicable in composites. Utmost care and caution and innova-
tive thinking are required for designing efficient and reliable composite joints.

1.6  APPLICATIONS OF COMPOSITES
The benefits of composites are well recognized today, and the use of composite materi-
als in different industrial sectors is steadily growing. Industrial sectors that use com-
posites can be broadly listed as aerospace, automotive, building and construction, 
chemical, consumer goods, electrical and electronics, marine, and others. It is impor-
tant to note that each sector has its own characteristics in respect of functional require-
ment, demand for goods, and many other parameters. Depending upon the particular 
needs of a sector, composite materials, their design, and manufacturing processes are 
exploited suitably. Thus, characteristic features of composite structures vary from one 
industrial sector to another. Some of the common applications of composite materials 
are listed in Table 1.4 [5,17–24].

Composites are used in both commercial and military aircrafts. Typical benefits 
include (i) weight reduction leading to higher speeds, increased payloads, longer range, 
and fuel economy, (ii) reduced part count leading to simpler assembly and reduced 
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TABLE 1.4
Applications of PMCs

Sector Applications Typical Materials, Processes, and Benefits

Aerospace

Aircraft •	Primary structures
−− Fuselage, forward fuselage, 
mid-fuselage, rear fuselage

−− Wing box
−− Empennage box

•	Control components
−− Flaps
−− Ailerons
−− Spoilers
−− Slats
−− Horizontal stabilizer
−− Vertical stabilizer
−− Elevator
−− Rudder

•	Exterior parts
−− Radome
−− Landing gear hatches
−− Karmans
−− Storage room doors
−− Fairings
−− Propeller blades

•	Interior parts
−− Floors
−− Doors
−− Partitions
−− Bulkheads
−− Brake disks

Materials:
•	CFRP, AFRP, and GFRP with epoxy
•	UD and BD prepregs
•	GFRP mainly in light aircrafts
•	CFRP in modern aircrafts

Processes:
•	Automated prepreg lay-up
•	Vacuum bagging, autoclave curing
•	Filament winding and pultrusion
•	Honeycomb sandwich, stiffened structures
•	Adhesive bonding of skins to core

Benefits:
•	Weight reduction leading to higher speeds, increased payloads, longer range, 

and fuel economy.
•	Reduced part count leading to simpler assembly and reduced overall cost
•	Reduced radar reflection and heat radiation leading to stealth capability in 

military aircrafts
•	Higher fatigue resistance
•	Higher corrosion resistance

Helicopter •	Rotor blades
−− Spar
−− Skin
−− Core

•	Rotor hub

Materials:
•	CFRP and GFRP with epoxy, polyimide, and phenolics

Processes:
•	Filament winding and molding processes

Benefits:
•	Reduced weight
•	Enhanced dynamic characteristics
•	Manufacturing ease

Launch vehicles 
and missiles

•	Solid rocket motor
−− Rocket motor case
−− Insulating and ablative nozzle 
liners

•	Airframe structures
−− Interstage section
−− Payload adapters
−− Fairings

•	Control surfaces
−− Fins

•	Reentry vehicle components
•	Launch canisters

Material:
•	Carbon/epoxy, Kevlar/epoxy for rocket motor casing
•	Carbon/phenolic and glass/phenolic for nozzle liners
•	Carbon/phenolic for reentry vehicle liners
•	Carbon/epoxy for satellite applications

Process:
•	Filament winding
•	Tape winding, compression molding for nozzle liners
•	Advanced grid-stiffened shells and panels for airframe structures, payload 

adapters and fairings
Benefits:

•	Weight reduction
•	Reduced part count
•	Reduced cycle time
•	Manufacturing flexibility

Satellite •	Tubings
•	Brackets and fittings
•	Shear panels
•	Bus panel
•	Flywheels

(Continued)



16 Composite Structures

TABLE 1.4  (Continued)
Applications of PMCs

Sector Applications Typical Materials, Processes, and Benefits

Automotive
Car, bus, and 
truck

•	Structural components
−− Chassis parts
−− Leaf springs
−− Floor elements

•	Body components
−− Roof
−− Doors
−− Hood cover
−− Bumper

•	Interior components
−− Seat frames
−− Side panel and central console
−− Dash board

•	Components under the hood
−− Motor and gear box parts
−− Battery support
−− Head light support
−− Transmission shafts

Materials:
•	E-glass/polyester and E-glass/vinyl ester SMCs for most body parts
•	E-glass/epoxy for leaf springs

Processes:
•	Compression molding
•	Structural reaction injection molding

Benefits:
•	Reduced weight leading to fuel efficiency
•	Reduced tooling cost
•	Corrosion resistance
•	Lower part count

Chemical industry
•	Corrosion-resistant tanks
•	Pipes, industrial vessels, sewer lines
•	Waste water treatment equipment
•	Pollution control equipment

Materials:
•	GFRP with vinyl ester

Processes:
•	Contact lay-up, filament winding

Benefits:
•	Corrosion resistance

Civil engineering structures
Buildings and 
houses

•	Modular house
•	Doors
•	Bathtubs
•	Bathroom fixtures

Materials:
•	GFRP with polyester, vinyl ester, and epoxy

Processes:
•	Contact lay-up—manual and automated
•	Sandwich construction
•	Pultrusion for sections
•	Adhesive bonding for repair of old and damaged concrete bridges

Benefits:
•	Corrosion resistance
•	Weight reduction leading to ease of transportation and installation, longer 

span, etc.

Infrastructures •	Bridges

Marine
Small crafts •	Hulls of

−− Lifeboats
−− Pleasure boats
−− Fishing boats
−− Speed boats

Materials:
•	GFRP with polyester and vinyl ester
•	AFRP
•	CFRP in high-performance applications

Processes:
•	Contact molding
•	Honeycomb sandwich construction

Benefits:
•	Weight reduction leading to greater speeds, better maneuverability and fuel 

efficiency

Large crafts •	Hulls of
−− Military and commercial hovercrafts
−− Mine countermeasure ships
−− Yachts

•	Sonar domes
•	Fairings
•	Superstructures of ships
•	Radomes
•	Rudders
•	Masts

(Continued)
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overall cost, (iii) reduced radar reflection and heat radiation leading to stealth capability 
in military aircrafts, (iv) higher fatigue resistance, and (v) higher corrosion resistance, 
etc. Initial applications include boron/epoxy composites in skins of the horizontal stabi-
lizers of F-14 in the 1960s. Airbus A310 was the first commercial aircraft to have exten-
sive composites (about 10% of the total weight). Since then, the use of composites has 
steadily increased and today they are used in significant proportions in many aircrafts. 
For example, Airbus A380 and Boeing 787 Dreamliner use about 25% and 50% of 
composites, respectively. Carbon fiber-reinforced plastic (CFRP), glass fiber-reinforced 
plastic (GFRP), and aramid fiber-reinforced plastic (AFRP) with epoxy resin are all 
used, of which CFRP is the dominant composite material system. Both unidirectional 
and bidirectional carbon/epoxy prepregs are used employing automated tape laying, 
vacuum bagging, autoclave curing, filament winding, pultrusion, and adhesive bonding 
as common manufacturing processes. Structural concepts such as honeycomb sand-
wich and conventional stiffened panel and grid-stiffened panel are employed.

CFRP and GFRP are used in helicopter rotor blades and rotor hub. Rotor blades are 
typically made by filament winding and molding processes. The principal advantages 
of composites in rotor blade are (i) reduced weight, (ii) enhanced dynamic characteris-
tics, and (iii) manufacturing ease.

Composites are used in many space vehicle applications. While the primary objec-
tive of using composites in space applications is weight reduction, several other benefits 
such as reduced part count, reduced cycle time, manufacturing flexibility, etc. can also 
be exploited. Carbon/epoxy and Kevlar/epoxy filament-wound rocket motor cases and 
carbon/phenolic and glass/phenolic nozzle liners are common in many solid propulsion 
systems in rockets and missiles. Advanced grid-stiffened shells and panels have been 
adopted in airframe structures, payload adapters, and fairings. Filament-wound and 
tape-wound carbon/phenolic liners are used for thermal protection in reentry vehicles. 

TABLE 1.4  (Continued)
Applications of PMCs

Sector Applications Typical Materials, Processes, and Benefits

Offshore oil 
exploration

•	Oil platforms

Piping system •	Pipes
•	Pumps
•	Valves
•	Heat exchangers

Others
Wind turbines •	Rotor blades Materials:

•	GFRP with polyester for rotor blades
•	CFRP with epoxy for tennis rackets, golf club shafts, fishing rods, bicycle 

frames, etc.
•	GFRP with epoxy for pole vault

Processes:
•	Contact molding
•	Pultrusion

Benefits:
•	Weight reduction
•	Better strength/stiffness
•	Better damping characteristics energy absorption

Sporting goods •	Golf shafts, tennis rackets, snow skis, 
fishing rods, sports bike, pole vault, 
etc.

Consumer 
goods

•	Chairs, tables, desert air cooler body, 
computer, printer, washing machine, 
etc.

Electrical and 
electronics

•	Circuit boards, insulators, switch gears, 
appliance covers

Note:	 (i) CFRP = carbon fiber-reinforced plastic, GFRP = glass fiber-reinforced plastic, AFRP = aramid fiber-reinforced plastic. UD = unidirectional, 
BD = bidirectional. (ii) Materials and process options indicated in the table are indicative and not exhaustive.
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Carbon/epoxy composites are used in satellite applications like tubings, brackets and 
fittings, bus panel, etc. CFRP composites can be designed to yield near-zero CTE, which 
helps achieve dimensional stability across a wide range of temperature variations.

Composites have unique applications in the automotive industry. E-glass fiber-
reinforced epoxy leaf springs are the first major structural applications of composites 
in automobiles. Other structural applications include chassis components, drive shafts, 
etc. However, these applications have somewhat limited acceptability. On the other 
hand, the major automotive applications of composites are in respect of the body com-
ponents such as roof, doors, hood cover, etc. These are made by compression molding 
of discontinuous E-glass fiber-reinforced sheet molding compounds (SMCs), in which 
the resin is either polyester or vinyl ester. In addition to compression molding, struc-
tural reaction injection molding (SRIM), a variant of resin transfer molding (RTM) is 
also employed in the manufacture of the automobile body parts. The major advantages 
of using composites in automobiles are (i) reduced weight leading to fuel efficiency, 
(ii) reduced tooling cost, (iii) corrosion resistance, and (iv) lower part count.

Civil engineering applications of composites are broadly of two types—housing 
sector and infrastructure. GFRP prefabricated modular house, bunk house, cabin, 
mobile toilet cabin, etc. are some of the commercially available products today. In 
the infrastructure sector, construction of new bridges and repair of old bridges have 
been the major applications of composites. In this regard, corrosion resistance of com-
posites is the main attraction. Weight saving is not the main objective; however, it 
has some indirect advantages like ease of transportation and installation, longer span, 
etc. E-glass fiber-reinforced polyester composite laminates are used as facing sheets 
in sandwich construction to make bridge decks. The core is typically glass/polyester 
tubes. Pultruded sections, resin transfer molded panels, etc. are other forms of compos-
ites in bridge construction.

Glass/polyester and glass/vinyl ester composites are routinely used in the produc-
tion of different types of small and large yachts. In some cases, aramid fibers are also 
used these days. The primary attraction of composites is weight reduction, which leads 
to greater speeds, better maneuverability, and fuel efficiency. Hulls of these boats are 
made typically by contact molding. In some high-performance applications such as rac-
ing boats, high specific strength and stiffness are essential. In such cases, hulls, decks, 
masts, etc. are made using carbon/epoxy laminates and honeycomb sandwich construc-
tion with carbon/epoxy skins. There are other marine applications of composites that 
include submarines, offshore oil exploration, etc.

Composites are also extensively used in other sectors, including energy sector, sport-
ing goods, consumer goods, chemical industry, etc. Rotor blades of wind turbines are 
made by using glass fiber composites. Carbon/epoxy composites are used in tennis 
rackets, golf club shafts, fishing rods, bicycle frames, etc. Weight reduction coupled 
with better strength/stiffness and damping characteristics are the primary attraction of 
composites in these sporting goods. Glass/epoxy composites are also used, for example, 
in pole vaults for better energy absorption. Glass/polyester composites are predominant 
players in the consumer goods sector, where chairs, tables, desert air cooler, etc. are 
made typically by using chopped strand mat (CSM).

Note: Materials and manufacturing processes referred to in this section shall be dis-
cussed subsequently in Chapters 9 and 10.

1.7  SUMMARY
An introduction to composite materials is given in this chapter. We have seen that there 
are several unique features that differentiate composite materials from conventional 
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materials. They are a class of useful materials made by macroscopic combination of 
reinforcements and matrix. The reinforcements and the matrix retain their individual 
characteristics; they have their own individual functions, and as a whole, the resultant 
composite material exhibits better properties that the individual reinforcements and 
matrix do not possess.

Composites are classified based on the type of matrix used. They are also classified 
based on the physical form of the reinforcements.

Composites are associated with many advantages that include high mechanical 
properties, low densities, tailorable properties, design and manufacturing flexibility, 
less corrosion, and cost-effective product development. There are certain limitations as 
well, which need to be addressed in the design and manufacture of composite structures.

Applications of composites are no longer limited to high-end aerospace and defense 
sectors. Today, PMCs are regularly used in many industrial sectors, including aerospace 
and defense, automotive, chemical engineering, civil engineering, marine, and others. 
These applications in each industrial sector, in general, have their own characteristics 
w.r.t. materials and manufacturing processes.

EXERCISE PROBLEMS

	 1.1	 Define composite materials. What are the characteristic features and 
functions of the reinforcements and matrix in a composite material?

	 1.2	 List the various classifications of composite materials.
	 1.3	 Write a short note giving details of the advantages and disadvantages 

associated with polymer matrix composites.
	 1.4	 Write a note on the applications of polymer matrix composites.
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2.1  CHAPTER ROAD MAP
For the design and development of a composite product, it is imperative, on the part 
of the designer, to have a good grasp of the available materials and manufacturing 
processes. In addition to these, the composites’ engineer must have a thorough knowl-
edge of the behavior of a composite structure under loads. A composite product, like 
any other structural element, is subjected to different types of loads. Study of the 
response of a composite structure to different types of loads is the focus area in the 
field of mechanics of composite materials. One of the primary objectives of composite 
mechanics is to develop appropriate tools for analysis of composite structures. Basic 
knowledge of solid mechanics is essential for understanding the topics on analysis of 
composite lamina and laminate. In this chapter, we review the basic solid mechanics 
concepts. Subsequently, we will have detailed discussions on mechanics of composite 
materials in Chapters 3 through 5.

The basic concepts of solid mechanics are well developed and we present a brief 
discussion on these concepts. Next, the governing equations that are required for the 
development of analytical tools are discussed; the various concepts under kinematics, 
kinetics, and constitutive modeling are also addressed. Generalized Hooke’s law is 
reduced to various specialized cases such as orthotropic and isotropic materials. Plane 
elasticity idealizations are made use of in composite lamina and laminate analysis and 
these topics are introduced toward the end of this chapter.

Solid mechanics concepts are fundamental requirements in the fields of composites 
mechanics and analysis; this chapter will be a prerequisite to subsequent Chapters 3 
through 8 and 14.

2.2  PRINCIPAL NOMENCLATURE
B	 Body force
b	� Position vector of deformed coordinate system w.r.t. 

undeformed coordinate system
C, Cijkl	� Generalized fourth-order tensor of elastic constants
[D], D, Dij	� Displacement gradient in the component form, vector 

notation, and indicial notation, respectively
dε	� Incremental strain
Ex, Ey, Ez	� Young’s moduli in the x-, y-, and z-directions, respectively
ex, ey, ez	� Unit vectors along x-, y-, and z-directions, respectively
[F], F, Fij	� Deformation gradient in the component form, vector 

notation, and indicial notation, respectively
Gxy, Gyz, Gzx	� In-plane shear moduli in the xy-, yz-, and zx-planes, 

respectively
I, Iij	� Unit tensor in vector form and indicial notation, respectively

2
Basic Solid Mechanics
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K	� Change in kinetic energy
L, l	� Undeformed and deformed lengths, respectively
n	� Unit normal vector
nx, ny, nz	� Components of the unit normal vector
Q	� Heat input to the body during loading
r, θ, z	� Cylindrical coordinate axes
S	� Material compliance matrix
Tn, Tx, Ty, Tz	� Stress vectors or traction vectors normal to planes repre-

sented by unit vectors n, ex, ey, ez, respectively
Tnx, Tny, Tnz, Txx, Txy, Txz, Tyx, 
  Tyy, Tyz, Tzx, Tzy, Tzz	

�Components of the stress vectors Tn, Tx, Ty, Tz in the x-, 
y-, and z-directions

t	� Time
U	� Change in internal energy
U0	� Strain energy density function
u, ui	� Displacement vector of a point (x, y, z) in the vector form 

and indicial notation, respectively
ur , uθ, uz	� Displacement vector components in the r-, θ-, and 

z-directions, respectively
uX, uY, uZ	� Displacement vector components in the X-, Y-, and 

Z-directions, respectively
ux, uy, uz	� Displacement vector components in the x-, y-, and 

z-directions, respectively
W	� Total work done by surface traction and body forces
X, Xi	� Position vector of a point (X, Y, Z) in the undeformed 

configuration in vector and indicial notation, respectively
X, Y, Z	� Cartesian coordinate axes in the initial undeformed 

configuration
x, xi	� Position vector of a point (x, y, z) in the deformed con-

figuration in vector and indicial notation, respectively
x, y, z	� Cartesian coordinate axes in the deformed configuration
[α]	� Transformation matrix
a a a a

a a a a a

x x x y x z y x

y y y z z x z y z z

′ ′ ′ ′

′ ′ ′ ′ ′

, , , ,

, , , , 	�

Direction cosines (elements of transformation matrix)

ΔA	� Infinitesimal area
ΔF	� Force on an infinitesimal area
ΔL	� Change in length
ΔM	� Moment on an infinitesimal area
∇	� Differential operator
[E], E, Eij	� Finite strain tensor in the component form, vector nota-

tion, and indicial notation, respectively
Err, Erθ, Erz, Eθθ, Eθz	� Finite strains in the cylindrical coordinate system
εrr, εrθ, εrz, εθθ, εθz	� Infinitesimal strains in the cylindrical coordinate 

system
EXX, EYY, EZZ	� Finite normal strains in the Cartesian coordinate system
EXY, EYZ, EZX	� Finite shear strains in the Cartesian coordinate system
εA, εE, εG, εL	� Almansi strain, engineering strain, Green strain, and 

logarithmic strain, respectively
εxx, εyy, εzz	� Infinitesimal normal strains in the Cartesian coordinate 

system
εxy, εyz, εzx	� Infinitesimal tensorial shear strains in the Cartesian 

coordinate system
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γxy, γyz, γzx	� Infinitesimal engineering shear strains in the Cartesian 
coordinate system

νxy, νyz	� Major Poisson’s ratio in the xy- and yz-planes, respectively
φx, φy	� Change in angle
σ	� Stress tensor
σ1, σ2, σ3, σ4, σ5, σ6	� Components of the stress vector in the contracted notation
σxx, σyy, σzz	� Normal stress components of the stress tensor
τxy, τyz, τzx	� Shear stress components of the stress tensor

2.3  INTRODUCTORY CONCEPTS

2.3.1  Solid Mechanics and Continuum

Mechanics is the study of the response (motion and deformation) of a body to applied 
forces. This is based on two approaches:

◾◾ Physical approach
◾◾ Phenomenological approach

In the physical approach, adopted in solid state physics, the structure of a body is 
studied at the atomic and molecular levels.

On the other hand, the phenomenological approach is adopted in solid mechanics. It 
is based on the fundamental concept of continuum. Continuum is a state, in which it is 
assumed that the material is continuously distributed, without any crack or flaw, in the body. 
Thus, properties such as mass and displacement associated with the body can be defined as 
continuous functions or piecewise continuous functions inside the body. Governing equa-
tions are developed by considering the behavior of the solid body at a macroscopic level.

2.3.2  Spatial Point, Material Point, and Configuration

A spatial point or simply a point is a point fixed in space. A particle is a very small 
volumetric element with mass concentrated in it. It is a material point and it should 
be clearly differentiated from a spatial point. A particle or a material point occupies a 
certain spatial point at a certain instant in time.

A body, on the other hand, is a collection of particles that are constrained and 
bounded within certain volume. It has a definite mass and volume. Solid mechanics is 
concerned with solid bodies. A solid body is made up of particles that are geometrically 
bounded within a certain boundary. It, at a particular instant in time, occupies a certain 
region in physical space. This region with certain geometrical shape is the configura-
tion of the body at that instant in time. Under the application of forces, the body under-
goes motion and deformation and the particles move from one spatial point to another. 
Solid mechanics is concerned about this movement of material points.

2.3.3  Fundamental Principles and Governing Equations

In solid mechanics, we are concerned with the determination of the response of a body 
to the applied loads. While the loads are mechanical, thermal, or both, generally, the 
response of a body is expressed in terms of stress, strain, displacement, and temperature 
distribution. Often, we make mathematical models to represent the physical problem in 
terms of differential equations and solve the same to obtain the response. Mathematical 
models are based on fundamental principles of physics and assumptions supported by 
experimental observations.



24 Composite Structures

Fundamental principles of physics are the result of centuries of research. A detailed 
discussion on these principles is beyond the scope of this chapter. Instead, we name 
here four key fundamental laws of physics that are often employed in solid mechanics:

◾◾ Principle of conservation of mass
◾◾ Principle of conservation of linear momentum
◾◾ Principle of conservation angular momentum
◾◾ Principle of conservation of energy

Now, we turn our attention to the governing equations in solid mechanics. These 
equations can be broadly categorized into four classes:

◾◾ Kinematics
◾◾ Kinetics
◾◾ Constitutive relations
◾◾ Thermodynamics

Kinematics is the study of geometric changes or deformation in a body. The factors 
that cause such deformations are not considered and attention is paid only to the ini-
tial and final configurations of the body. The basis for kinematic study is geometrical 
considerations and no fundamental principles of mechanics are involved. The variables 
involved in kinematics are the displacements and strains; strain–displacement relations 
are the primary output of kinematics.

Kinetics is the study of forces and moments acting on a body in static or dynamic 
equilibrium. It is based on the principles of conservation of linear and angular momenta. 
Conservation of linear momentum results in the equilibrium equations or the equations 
of motion. However, conservation of angular momentum leads to symmetry of stress 
tensor. (We shall discuss about stress tensor in the section on kinetics.)

In thermodynamics, we study the relations between thermodynamic state variables 
such as strain tensor, temperature, etc. (We shall discuss about strain tensor in the 
section on kinematics.) Thermodynamic state variables are governed by the first law 
(conservation of energy) and the second law of thermodynamics.

Constitutive relations are based on experimental observations on material behavior. 
They relate the dependent variables of kinematics to those of kinetics. These relations 
are not independent and they are governed by thermodynamic principles.

Table 2.1 presents the governing equations in solid mechanics. As we can see (and it 
will be clear by the end of the section on constitutive modeling) that we have 15 govern-
ing equations from kinematics, kinetics, and constitutive modeling in a 3D structure. 
We will see that there are 15 unknowns (six stress components, six strain components, 
and three displacement components) corresponding to these 15 equations. Thus, we get 
a complete solution on the deformation and force distribution in a solid. The numbers of 
equations and unknowns reduce in the case of 2D and one-dimensional (1D) problems.

Keeping in view the overall objective of this book, solid mechanics topics are dis-
cussed here only in an introductory manner; for more details, interested reader may 
refer to References 1–4, for instance.

2.4  KINEMATICS
A solid body has a certain configuration at a particular instant in time. Under the action of 
forces, the body undergoes rigid body motion, deformation, or a combination of both. A 
rigid body is one that does not change its configuration under loads, and the relative distance 
between any two material points in it remains unchanged. Under the action of forces, a rigid 
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body undergoes rigid body translation and rigid body rotation. Rigid body, however, is a 
mathematical concept and in reality, all bodies are deformable. A deformable body, under 
the action of forces, changes its configuration; the material points undergo displacements 
and the relative distance between two arbitrary material points in the body changes. In 
simple term, deformation of a body produces change in shape and size of the body.

Strain, on the other hand, is a quantitative measure of relative deformation of a body 
w.r.t. its undeformed or initial configuration.

Study of deformation and strain is necessary for three reasons. First, governing equations 
obtained from considerations of stress and force alone are insufficient to obtain a solution of 
a solid body and complete stress picture cannot be obtained. Deformation and strains have 
to be considered for evolving additional equations. Second, from functional angle, in many 
applications deformations are required to be known. Third, stress is an abstract quantity and 
it cannot be seen. Strain can be evaluated experimentally; stress can be related to strain and 
based on strain data, stress distribution in a body can be indirectly obtained.

2.4.1  Normal Strain and Shear Strain

Strain is a measure of relative deformation of a body. Two modes of deformation can 
be identified—first, change in size and second, change in shape. Strains that cause only 
change in size but not shape are normal strains or direct strains. Let us consider an 
elemental cuboid as shown in Figure 2.1. For simplicity, let us assume that the cuboid 
deforms only in the x- and y-directions. (It is the case of plane strain as discussed in 
Section 2.8.2.) Under normal strains, the cuboid changes its size but not shape and 
the rectangular faces remain rectangular after deformation. Also, normal strain in a 
particular direction would cause change in length of a line segment in that direction. 
Thus, line segments such as OA and OB change in length to OA′ and OB′, respectively, 
but the angle between OA and OB does not change.

On the other hand, shear strains cause change in shape. Such a change in shape can 
be expected under the action of shear forces in the x- and y-directions. Note that the 
angle between OA and OB changes.

TABLE 2.1
Governing Equations in Solid Mechanics

Subject Basis Output Equations Key Parameters

Number of 
Solid Mechanics 

Equations

3D 2D 1D

Kinematics Geometrical 
considerations

Strain–displacement 
relations

Strains, 
displacements

6 3 1

Kinetics Conservation of 
linear momentum

Equations of motion Stresses 3 2 1

Conservation of 
angular 
momentum

Symmetry of stress 
tensor

Stresses – – –

Thermodynamics First law of 
thermodynamics

Energy equation Stresses, 
temperature, heat 
flux, velocities

– – –

Constitutive 
modeling

Experimental 
observations

Stress–strain 
relations (Hooke’s 
law)

Stresses, strains, 
temperature, heat 
flux

6 3 1

Source:	 Adapted with permission from J. N. Reddy, An Introduction to Continuum Mechanics—With 
Applications, Cambridge University Press, Cambridge, 2010.



26 Composite Structures

2.4.2  Types of Strain Measures: 1D Approach

Strain measurement schemes are somewhat arbitrary and several types are in vogue. 
We shall define some of the common strain measures in this section. For the sake of 
simplicity, we shall adopt a 1D approach first, which can be extended to two and three 
dimensions. Let us consider a bar as shown in Figure 2.2. The undeformed length of the 
bar is L, which changes by ΔL to l after deformation.

2.4.2.1  Engineering Strain

Engineering strain is the most common measure of strain used in structural engineer-
ing. It is defined as the change in length of the bar per unit undeformed length. Thus,

	
εE

l L

L

L

L
=

−
=

∆

	
(2.1)

Here, we have taken a bar for easy visualization. We can also consider an elemental 
material line segment and define engineering normal strain as the ratio of the change 
in the length to the original length of the line segment.

2.4.2.2  True Strain

Engineering strain takes only the initial undeformed and final deformed configurations 
into account. True strain, also known as logarithmic strain or natural strain, takes into 

(a) (b)

C ′C ′
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A
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B B′
B
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FIGURE 2.1  Normal and shear strains. (a) Deformation under normal strains in the x- and y-
directions. (b) Deformation under shear strain in the xy-plane.

l = L + ΔL

(a)

(b)

(c)

x + dx
x

L

FIGURE 2.2  1D strain in a bar. (a) Undeformed configuration. (b) Intermediate configuration. 
(c)  Final deformed configuration. (Adapted from A. K. Singh, Mechanics of Solids, PHI Learning, 
New Delhi, 2011.)
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account the intermediate configurations as well. Now, w.r.t. the bar in Figure 2.2, the 
incremental strain at an intermediate configuration is defined as

	
d

dx

x
ε =

	
(2.2)

where x is the intermediate length of the bar. Then, the true strain at the final deformed 
configuration is given by

	

εL

L

l

dx

x

l

L
= =







∫ ln

	

(2.3)

2.4.2.3  Green Strain

Green strain represents change in square of the length w.r.t. the undeformed length. 
Thus, Green strain in one dimension is given by

	
εG

l L

L
=

−2 2

22 	
(2.4)

2.4.2.4  Almansi Strain

Almansi strain is similar to the Green strain; however, it is defined w.r.t. the deformed 
configuration. Thus, Almansi strain in one dimension is given by

	
εA

l L

l
=

−2 2

22 	
(2.5)

We have adopted a 1D approach for defining normal strain in different strain 
measures. Shear strain is a measure of change in angle and thus we need to adopt a 
2D approach. Let us consider two initially mutually orthogonal line segments as in 
Figure 2.3. (Note that the coordinate axes in the deformed and undeformed configura-
tions are superimposed.) Under shearing action, the line segments change their orien-
tations. Engineering shear strain is defined as the total change in angle. On the other 
hand, true shear strain (tensorial shear strain) is defined as half of absolute change in 
angle in radian. Thus,

Engineering shear strain,

	 γ φ φxy x y= + 	 (2.6)

2 θ
π

B′

B
B

Y, y

X, x
Z, z

C C

A
A

duy

dux

C ′

φy

φx

FIGURE 2.3  Definition of shear strain. (Adapted with permission from J. N. Reddy, An Introduction 
to Continuum Mechanics—With Applications, Cambridge University Press, Cambridge, 2010.)
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True shear strain,

	
ε φ φxy x y= +

1
2

( )
	

(2.7)

2.4.3  Displacement at a Point

Let us consider a body as shown in Figure 2.4. The undeformed or initial configuration 
B0 at time t = t0 changes to the deformed or current or final configuration B at time 
t = t, and in this process of deformation, a particle at P0 in the undeformed configura-
tion moves to P in the deformed configuration.

Let us consider two Cartesian coordinate systems: O-XYZ with unit vectors eX, eY, 
and eZ for the undeformed configuration and o-xyz with unit vectors ex, ey, and ez for 
the deformed configuration. The origins of the two coordinate systems are connected 
by the vector b.

Position vectors of the points P0(X, Y, Z) and P(x, y, z) are given, respectively, by
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(2.8)

and
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(2.9)
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FIGURE 2.4  Deformation of a solid body: a particle in the undeformed and deformed configurations. 
(Adapted from G. E. Mase, Theory and Problems of Continuum Mechanics, McGraw-Hill, New York, 
1970.)



29Basic Solid Mechanics

The vector u joining the points P0 and P is the displacement vector, and in terms of 
its Cartesian components, it is given by
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or
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The displacement vector is related to the position vectors as follows:

	 u b x X= + − 	 (2.12)

If the initial and final position vectors of the particle are known for the chosen coordi-
nate systems, the displacement vector can be determined from Equation 2.12. The motion 
of a point and deformation of a continuum can be studied in two ways—Lagrangian or 
material description of motion and Eularian or spatial description of motion.

In the Lagrangian description, motion of a body is referred to a reference configura-
tion. The initial configuration is usually chosen as the reference configuration. Thus, 
current coordinates of a particle are expressed as functions of the coordinates the parti-
cle occupied at time t = t0. In other words, Lagrangian description is deformation map-
ping of the initial configuration onto the final or current configuration. Mathematically, 
in the Lagrangian description,

	 x x X= ( , )t 	 (2.13)

On the other hand, in the Eularian description, the undeformed configuration is 
expressed in terms of the deformed configuration. Thus, initial coordinates of a particle 
at time t = t0 are expressed as functions of the coordinates the particle occupies at time 
t = t. Thus, Eularian description is a mapping of the final configuration onto the initial 
configuration such that the original position of a particle can be traced from the current 
position. Mathematically, in the Eularian description,

	 X X x= ( , )t 	 (2.14)

Solid mechanics generally uses the Lagrangian description, whereas, in fluid mechan-
ics, the Eularian description is used. Further, in solid mechanics, the two coordinate sys-
tems are often superimposed. We shall use such superimposed coordinate systems for 
which, it may be noted, b = 0. Then, from Equation 2.12, we write the relation between 
position vectors and displacement vector as follows:

In the component form,
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(2.15)



30 Composite Structures

In the vector form,

	 x X u= + 	 (2.16)

In the indicial notation,

	 x X ui i i= + 	 (2.17)

Note: Indicial notation is very helpful in concise and clear representation of solid 
mechanics expressions involving vectors and matrices; the reader is urged to get 
acquainted with it (see, for instance, References 3–5).

2.4.4  Deformation Gradient and Displacement Gradient

Let us consider the undeformed and deformed configurations of a body as shown in 
Figure 2.5. The material points A and B in the undeformed or initial configuration of 
the body get displaced to the new positions A′ and B′, respectively, and the infinitesi-
mal line segment, represented by the vector dX deforms to the line segment dx after 
deformation.

Deformation gradient and displacement gradient are two important quantities in the 
analysis of deformation and strain. Deformation gradient connects the deformed con-
figuration of a body to its undeformed configuration.

The two coordinate systems O-XYZ and O-xyz share the same origin and are aligned. 
For convenience, we shall use only the lower case letters for coordinate axes. Thus, the 
undeformed and deformed line segments are given by
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FIGURE 2.5  Deformation of a solid body: a line segment in the undeformed and deformed con-
figurations. (Adapted from G. E. Mase, Theory and Problems of Continuum Mechanics, McGraw-Hill, 
New York, 1970.)
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Using chain rule of differentiation, we can express the components of the deformed 
line segment as
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Equation 2.20 can be written as follows:
In the component form,
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(2.21)

In the vector form,

	 d dx F X= . 	 (2.22)

In the indicial notation,
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Now, w.r.t. Equations 2.21 through 2.23, deformation gradient is defined as follows:
In the component form,
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In the vector form,
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In the indicial notation,
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On the other hand, the displacement gradient is defined as follows:
In the component form,
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In the vector form,
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In the indicial notation,
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Now, from Equations 2.15, 2.16, and 2.17, we note that for the superimposed coor-
dinates the position vector of a material point in its final configuration is related to its 
position vector in the initial configuration as x = X + u. Both sides of these equations 
are operated by the differential operator ∇, given by
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and the relation between deformation gradient and the displacement gradient is obtained 
as follows:

In the component form,

	 [ ] [ ] [ ]F I D= + 	 (2.31)

In the vector form,

	 F I D= + 	 (2.32)

In the indicial notation,

	 F I Dij ij ij= + 	 (2.33)

2.4.5  Infinitesimal Strain and Finite Strain Theories

Deformation of a body can be classified into small deformation and large deformation.
Small deformation is the one in which the deformed and undeformed configura-

tions of the body are nearly identical. In this case, displacement gradient terms are far 



33Basic Solid Mechanics

smaller than unity, that is, Dij ≪ 1. This class of deformation is governed by the infini-
tesimal strain theory (also known as small strain theory and small deformation theory), 
wherein the strain–displacement relations are linear. Deformation characteristics of 
many engineering materials exhibiting elastic behavior, such as metals and composites, 
belong to this category. Engineering strains, defined in the previous section are used in 
the analysis of strains as per the small strain theory.

On the other hand, many materials such as elastomers, fluids, etc., which exhibit 
plastic deformation, undergo large deformations under loads. In such a case, the 
deformed and undeformed configurations are grossly different. Finite strain theory 
(also known as large strain theory or large deformation theory) is used in the strain 
analysis of such materials. Strain–displacement relations are nonlinear and the dis-
placement gradient terms are not small such that squares of these terms are not neg-
ligible. Engineering strains are not applicable in this class of deformations and other 
more complex definitions such as logarithmic strain, Green strain, and Almansi strain 
are used.

2.4.6  Infinitesimal Strain at a Point

State of strain at a material point is given by changes in lengths per unit length of all 
the possible infinitesimal line segments and changes in angle between all the pos-
sible pairs of orthogonal line segments at that material point. Fortunately, however, 
we do not need to consider all these possible line segments or pairs of line segments. 
We rather consider three mutually perpendicular axes and three mutually perpen-
dicular planes formed by these three axes passing through the point, and express the 
state of strain at that point by means of three unique normal strains and three unique 
shear strains. For strains in any other directions or plane, we need to resort to strain 
transformation.

We shall first discuss the case of normal strains. Let us go back to Figure 2.5 and 
consider the infinitesimal line segment AB. The line segment moves to A′B′ after defor-
mation. Normal strain in the direction of the line segment would only cause change in 
its length. Then, by following the definition of engineering strain, normal strain in the 
direction of the line segment is given by
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X 	
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The length of the undeformed line segment can be expressed as

	 | | ( ) ( )( )d dX dY dZX = + +2 2 2

	
(2.35)

We shall first find an expression for the infinitesimal normal strain in the x-direction. 
Toward this, let us align the line segment in the x-direction such that dY = dZ = 0. 
Thus,

	 | |d dXX = 	 (2.36)

The length of the deformed line segment is

	 | | ( ) ( ) ( )d dx dy dzx = + +2 2 2

	
(2.37)
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Now, we see from Equations 2.22 and 2.32 that dx = F.dX = (I + D).dX. Thus,
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(2.38)

or
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So,
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(2.40)

Substituting Equations 2.36 and 2.40 in Equation 2.34, we get the following for 
infinitesimal normal strain in the x-direction:
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(2.41)

The terms under the square root can be expanded as a binomial series. Now, for 
infinitesimal strains, displacement gradients are so small that higher order terms of dis-
placement gradients can be ignored when compared to unity. Thus, ignoring the second 
and third terms inside the square root in Equation 2.41, we get

	
εxx xu

X
=

∂
∂ 	

(2.42)

Next, we align the line segment in the y- and z-directions, respectively, and we can 
obtain the expressions for respective infinitesimal normal strains. Further, for infini-
tesimal strains, the partial derivatives of a displacement component w.r.t. x and X are 
nearly equal to each other, that is,
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(2.43)

The space inside the brackets in the above expressions can be filled with any displace-
ment component. Thus, we can write the expressions for infinitesimal normal strains as
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(2.45)

	
εzz zu

z
=

∂
∂ 	

(2.46)

Next, we shift our attention to the infinitesimal shear strains and go back to Figure 2.3. 
Let us consider two mutually orthogonal line segments AB and AC. Let AB and AC be 
aligned in the x- and y-directions, respectively. Shear forces causing shear strains in the 
xy-plane would change the angle BAC to B′AC′. Engineering shear strain is defined as 
the change in the angle. Thus,

	 γ φ φxy x y= + 	 (2.47)

For small angles, the angles are equal to the tangents of the respective angles, that 
is, φx ≈ tanφx and φy ≈ tanφy.

We note that
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(2.48)

Now, in the line segment AB, dY = dZ = 0 and
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Similarly, in the line segment AC, dX = dZ = 0 and
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(2.50)

Thus, from Equation 2.47, together with Equations 2.48 through 2.50,
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Then, considering the orthogonal line segments in the yz- and zx-planes, respec-
tively, we can arrive at the expressions for infinitesimal shear strains in the other two 
planes. Further, like in the case of infinitesimal normal strains, partial derivatives of 
the displacement components w.r.t. x are nearly equal to those w.r.t. X. Thus, we can 
write the expressions for infinitesimal shear strains as
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2.4.7  Finite Strain at a Point

2.4.7.1  Finite Strain Tensor

Let us once again go back to Figure 2.5. Let us consider the deformation of the solid 
body and the arbitrarily chosen infinitesimal line segment at material point A. The 
change in the square of the length of the infinitesimal line segment from the unde-
formed configuration to the deformed configuration is the quantity used for analysis of 
deformation in the finite strain theory. Let us note carefully that the coordinates of the 
points A, B, A′, and B′ as indicated below:
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The length of the line segment in its undeformed configuration is given by

	 AB d dX dY dZ= = + +| | ( ) ( ) ( )X 2 2 2

	
(2.55)

Similarly, length of the deformed line segment is given by

	
′ ′ = = + + + + +A B d dX du dY du dZ dux y z| | ( ) ( ) ( )x 2 2 2

	
(2.56)

Using Equations 2.55 and 2.56, we can express the quantity (|dx|)2 − (|dX|)2 as
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The displacement differentials can be expressed as
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(2.58)
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Substituting Equation 2.58 in Equation 2.57 and by rearranging the terms, we get 
the following:
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(2.59)

The coefficients of the terms dX2, dY 2, dZ 2, dXdY, dYdZ, and dZdX in Equation 2.59 
are of special significance and we rewrite Equation 2.59 as follows:

	

(| |) (| |)d d dX dY dZ

dXdY dYdZ
XX YY ZZ

XY YZ

x X2 2 2 2 22 2 2

4 4

− = + +
+ + +
E E E

E E 44EZXdZdX 	
(2.60)

where the coefficients are given by
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(2.61)
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Thus, Equation 2.60, with the help of Equations 2.61, can be rearranged further as 
follows:

In the component form,
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In the vector form,

	 | | | |d d d dx X X X2 2 2− = ⋅ ⋅E 	 (2.63)

In the indicial notation,

	 | | | |d d dX dXij i jx X2 2 2− = E 	
(2.64)
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Here, the second-order tensor [E] or E or Eij is known as the Green’s (or Lagrangian) 
finite strain tensor.

The components of the finite strain tensor are given in the explicit component forms 
by Equations 2.61. A very convenient way to express the finite strain tensor components 
is in the indicial notation as
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(2.66)

2.4.7.2  Physical Meaning of Finite Strain Tensor Components

We consider three mutually orthogonal infinitesimal line segments PA, PB, and PC, 
aligned in the x-, y-, and z-directions, respectively, in the undeformed configuration as 
shown in Figure 2.6. After deformation, the line segments move to P′A′, P′B′, and P′C′.
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FIGURE 2.6  Physical meaning of finite strain tensor components.
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Let us consider the line segment PA; we note that
for PA,

	 | |( ) ( ) ( ) ( )d dX dY dZX 1 1 1 10 0= ≠ = =and 	 (2.67)

Now, we substitute Equation 2.67 in Equation 2.59, and with the help of Equation 
2.61, obtain the following:
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By definition, the expression on the left-hand side in Equation 2.68 is the Green’s 
normal strain in the X-direction. In a similar way, we can consider the line segments 
PB and PC and conclude that the three diagonal elements in the finite strain tensor in 
Equation 2.65 are the Green’s normal strains in the X-, Y- and Z-directions.

To check the physical meaning of the off-diagonal elements in the strain tensor, let 
us consider the infinitesimal line segments PA and PB in the XY-plane in the unde-
formed configuration. In the undeformed configuration, the line segments are per-
pendicular to each other, whereas in the deformed configuration, the included angle 
changes to θ ′ ′A B . From basic coordinate geometry, we know that the included angle 
θ ′ ′A B  is given by
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Noting that dx(1) = dX(1) + du and dx(2) = dX(2) + du, we can arrive at the following:
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Utilizing Equations 2.70 and 2.61, we get from Equation 2.69
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Now, let us denote the change in angle between the line segments in the PA and PB 
by αXY, etc. Then,
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For small angle, sin(αXY) ≈ αXY. Thus,

	
α θXY A B= ( )′ ′cos

	
(2.73)

Then, from Equation 2.71 and by considering the other two possible combinations of 
pairs of line segments, it can be shown that
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Equation 2.74 shows that the off-diagonal elements, that is, shear strain components in 
the finite strain tensor depend on change in the angle between the corresponding line 
segments as well as normal strains in the line segments.

We have discussed both the infinitesimal as well as finite strains and derived the 
strain–displacement relations. At this juncture following points may be noted:

◾◾ We have not made any assumption of smallness in any quantity in the finite 
strain theory.

◾◾ Engineering shear strains are twice tensorial shear strains.
◾◾ In the case of infinitesimal strains, the displacement gradient terms are so small 

compared to unity that second or higher order terms of displacement gradient 
can be neglected compared to unity. Further, we replace X with x in the partial 
derivatives of displacements. Thus, by ignoring higher order terms of displace-
ment gradients in the expressions for finite strain tensor components, we can 
obtain the expressions for the components of the infinitesimal strain tensor. In 
the indicial form, we can write the expression for infinitesimal strain tensor as
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2.4.8  Strain–Displacement Relations in Cylindrical Coordinates

Strain–displacement relations are a set of very useful equations that are used frequently 
in solid mechanics. We have discussed them in detail in the previous sections and 
arrived at the expressions in the Cartesian coordinate system. In this section, these 
relations in the cylindrical coordinate system (Figure 2.7) are presented [1,6]. Finite 
strain–displacement relations in cylindrical coordinates are as follows:
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Infinitesimal strain–displacement relations in cylindrical coordinates are as follows:
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2.4.9 � Transformation of Strain Tensor

Transformation of strain tensor is similar to that of stress tensor. We shall discuss 
transformation of stress tensor in Section 2.5.4. Here, we merely present the strain 
transformation equations. Then, w.r.t. the Cartesian coordinate systems as shown in 
Figure 2.11, the small strain tensor transformation is given by

	 [ ] [ ][ ] [ ]( , , ) ( , , )ε α ε α′ ′ ′ =x y z x y z
T

	
(2.88)
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FIGURE 2.7  Cylindrical coordinate system.
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In the explicit component form, the strain transformation is given by
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Note: The finite strain transformation is the same as small strain transformation.

2.4.10  Compatibility Conditions

As we had mentioned earlier, in kinematics, we are concerned about the initial and 
the final configurations of a body. We had related an arbitrary line segment in the 
initial configuration to the line segment in the final configuration and arrived at strain–
displacement equations. No constraint was put regarding the configuration that the 
body can assume. Physically, in solid mechanics, deformation of a body does not pro-
duce any void or gap. Also, deformation cannot result in a configuration, in which a 
single spatial point is occupied by more than one material points, that is, one portion 
of the body cannot penetrate into another. Compatibility conditions are the equations, 
which ensure that these physical requirements are met.

We know that there are six strain–displacement equations and only three displace-
ment components. Thus, given the components of the strain tensor, if we have to find the 
displacement components, we face a problem which is overdeterminate. Compatibility 
equations, also known as St. Venant’s compatibility equations, ensure that a unique 
displacement field is obtained from a given strain field. The compatibility equations 
can be derived by differentiating the strain–displacement equations [7–9]. There are 
six compatibility equations. However, it can be proved that they are not independent, 
and they can be reduced to only three. Here, we present the compatibility equations for 
small strains. In the explicit component form, these equations are as follows:
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2.5  KINETICS

2.5.1  Forces on a Body

Forces can be broadly divided into two types—body forces and surface forces.
Body forces are the results of characteristic properties of a body, and they act on all 

the points of the volume of the body. Examples of body forces include gravitational 
force, inertia, magnetic force, centrifugal force, etc. These forces are expressed as force 
per unit volume. They can also be expressed in terms of force per unit mass.

Surface forces are results of interaction between two bodies. These forces act on a 
portion or whole of the bounding surface of the volume of a structural element. From 
the point of view of mathematical convenience, surface forces can be considered to be 
acting on a surface, a line, or a point. Thus, these forces are expressed in units such 
as N, N/mm, N/mm2, etc. Examples of surface forces are plenty; they include contact 
forces between bodies and nearly all our day-to-day experiences such as carrying a bag 
of grocery items, opening a door, pushing a car, and so on.

2.5.2  Cauchy’s Stress Principle and Stress Vector

In a very simple way, stress is known as force per unit area. It has a magnitude and ori-
entation. Thus, it is a vector. Let us consider a body under applied surface forces, F, and 
body forces, B (Figure 2.8). These forces are transmitted from one point in the body 
to another, and reacted at the restrained boundary by reaction forces, Ω, and the body 
is in static equilibrium. The transmission of forces within the body results in internal 
forces. Let us consider an arbitrary plane that divides the body into two halves. Each 
half is kept in equilibrium by the internal forces acting on the dividing plane and the 
surface forces and body forces acting on that portion of the body.

We intend to find the stress vector at a point O in the dividing plane. Let us consider 
a small area, ΔA, in the arbitrary dividing plane around the point, O. The internal 
forces acting on the area, ΔA, can be expressed as a resultant force, ΔF, and resul-
tant moment, ΔM, acting at the point, O. As per Cauchy’s principle, as ΔA → 0, the 

Arbitrary
plane

(a)

(b)

O

Ω

(c)

O
ΔA

n
n

Tn

y

x

z

ΔF

ΔM

F

B

FIGURE 2.8  Cauchy’s stress principle. (a) A solid body under applied surface forces and body forces. 
(b) Internal forces and resultant force and moment on a small area. (c) Stress vector at a point.
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limiting value of the resultant moment per unit area vanishes, whereas, the limiting 
value of the resultant force per unit area has a finite value, and it is called the stress 
vector at that point. Mathematically,
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Tn in Equation 2.97 is called the stress vector or traction vector. The subscript n 
indicates that the stress vector Tn is associated with a plane whose unit outward normal 
vector at the point O is n. The stress vector can be resolved into two components—one 
normal to the plane, called normal stress and the other along the plane, called shear 
stress. The shear stress can be further resolved into two components. Thus, the stress 
vector has one normal stress component and two shear stress components.

2.5.3  State of Stress at a Point and Stress Tensor

We, now, focus our attention to the state of stress at a point. Cauchy’s stress principle 
gives us the stress vector at a point on a surface element represented by its unit normal 
vector. The state of stress at the point is given by all the possible combinations of stress 
vectors and associated unit outward normal vector. However, we do not need to con-
sider all these pairs of stress vectors and the associated unit normal vectors. We, rather, 
consider three mutually orthogonal planes at the point and determine the stress vectors 
on these three planes. Stress transformation equations can then be applied to determine 
stress vectors on any other plane.

Let us consider a Cartesian coordinate system as shown in Figure 2.9. ex, ey, and ez 
are the unit vectors along the respective axes. The stress vector at a point O on a plane 
normal to axis x is Tx and the plane is represented by its unit normal vector ex. We can 
consider two more planes through the point O with unit normal vectors ey and ez and 
associated stress vectors Ty and Tz, respectively. These three stress vectors associated 
with the three unit vectors are sufficient to express the total state of stress at the point 
O. Mathematically,
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FIGURE 2.9  Stress vectors at a point on three mutually orthogonal planes.
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Combining the three stress vectors,
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The nine stress vector components in Equation 2.101 constitute a second-order 
Cartesian tensor, called stress tensor. These components are commonly expressed in 
the following way: σxx for Txx, σyy for Tyy, σxy for Txy, σzy for Tzy, and so on. Thus, the 
stress tensor is expressed as
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The first letter in the subscript indicates the axis to which the concerned plane is nor-
mal, and the second letter indicates the direction of the stress component. σxx, σyy, and 
σzz are the normal stresses. Remaining six stress components are the shear stresses. For 
shear stresses, it is common to use the symbol τ. Also, it can be shown that the stress 
tensor is symmetric, that is, τxy = τyx, τxz = τzx, and τyz = τzy. Thus, the stress tensor 
becomes
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The stress tensor components are conveniently expressed pictorially by considering 
an infinitesimal cube as shown in Figure 2.10. We intend to find the stress tensor at a 
point O and the cube is constructed such that the point is at its centroid and the sides of 
the cube are parallel to the axes of the Cartesian coordinates. On each of the six sides, 
one normal stress and two shear stress components act. The convention for denoting the 
stress components is as follows:

◾◾ σ’s are normal stress and τ’s are shear stress components.
◾◾ The first letter in the suffix stands for the plane and the second letter for the 

direction of the stress component.
◾◾ Normal stress is positive if it is in the outward direction (producing tension in 

the cube).
◾◾ Shear stress is positive is if it has the same sense as the corresponding normal 

stress. Thus, on a plane where the normal stress is positive and in the direction 
of the coordinate axis, positive shear stresses are also in the direction of the 
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corresponding coordinate axes. On the other hand, if a positive normal stress 
is in the opposite direction of the axis, positive shear stresses are also in the 
opposite directions to the coordinate axes.

Note: The stress behavior we have studied so far is on the deformed configuration of 
the body under loads. Stress tensor on the deformed configuration is called the Cauchy 
stress tensor.

2.5.4  Transformation of Stress Tensor

Let us consider two Cartesian coordinate systems O-xyz and O-x′y′z′ as shown in Figure 
2.11. Our aim is to express the stress tensor in the O-x′y′z′ system in terms of the stress 
tensor in the O-xyz system. Direction cosines are used for stress transformation and 
these are: direction cosine of x′ w.r.t. x is ax x′ = cos α, direction cosine of x′ w.r.t. y is 
ax y′ = cosβ, direction cosine of x′ w.r.t. z is ax z′ = cos γ, and so on. Direction cosines 
are given in a tabular form in Table 2.2.

Let us consider a tetrahedron with three mutually orthogonal planes and one inclined 
plane as shown in Figure 2.12. The inclined plane is chosen in such a way that the axis 
x′ is along its normal. The areas of the orthogonal triangles can be related to that of the 
inclined triangle in the following way:

	

∆
∆
OBC

ABC
ax x= ′

	
(2.104)

y

z′

y ′

x′

x

z

β

α

γ

FIGURE 2.11  Cartesian coordinate systems for stress/strain transformation.

O
σxx

τxy

τxz

σyy

τyx
τyz

σyy

τyx

τyz

τzy

σzz
τzy

σzz
τzx

τzx

σxx

τxy

τxzy

x

z

FIGURE 2.10  State of stress at a point.
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∆
∆
OAC

ABC
ax y= ′

	
(2.105)

	

∆
∆
OAB

ABC
ax z= ′

	
(2.106)

Components of the stress tensor in the O-xyz system are shown on the three orthogo-
nal planes. The resultant stress vector on the inclined plane is resolved into three com-
ponents parallel to the x-, y-, and z-axes. Considering static equilibrium of forces acting 
on the tetrahedron, we get

	 T ABC OBC OAC OABx x xx yx zx′ = + +( ) ( ) ( ) ( )∆ ∆ ∆ ∆σ ττ 	 (2.107)

	 T ABC OBC OAC OABx y xy yy zy′ = + +( ) ( ) ( ) ( )∆ ∆ ∆ ∆τ σ τ 	 (2.108)

	 T ABC OBC OAC OABx z xz yz zz′ = + +( ) ( ) ( ) ( )∆ ∆ ∆ ∆τ τ σ 	 (2.109)

Dividing both the sides with the area of the inclined triangle and using Equations 
2.104 through 2.106 and noting that τxy = τyx, τyz = τzy, and τzx = τxz, we get

	 T a a ax x xx x x xy x y zx x z′ ′ ′ ′= + +σ τ τ 	 (2.110)

	 T a a ax y xy x x yy x y yz x z′ ′ ′ ′= + +τ σ τ 	 (2.111)

	 T a a ax z zx x x yz x y zz x z′ ′ ′ ′= + +τ τ σ 	 (2.112)

TABLE 2.2
Direction Cosines

Axes x y z

x′ ax x′ ax y′ ax z′
y′ ay x′ ay y′ ay z′
z′ az x′ az y′ az z′

O O

O

O

σxx

τxy

τxz

τyz

σyy

τyx

σzz

τzy

τzx

AA Tx′z
Tx′x

Tx′y

A

A

BBB

B

B

C
C

C

C

x
z ′

y′
x′

z

y

FIGURE 2.12  Stress components on the planes of an octahedron (exploded view).
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In the matrix form, we can write

	

T

T

T

x x

x y

x z

xx xy zx

xy yy yz

zx y

′

′

′



















=
σ τ τ
τ σ τ
τ τ zz zz

x x

x y

x z

a

a

aσ





































′

′

′ 	

(2.113)

The stress resultant on the inclined plane can also be resolved into a normal stress 
component σ ′ ′x x  and two shear stress components τ ′ ′x y  and τ ′ ′z x . We can obtain the com-
ponents of Tx x′ , Tx y′ , and Tx z′  in the x-′, y-′, and z′-directions by multiplying them with the 
respective direction cosines. Thus,

	 σ ′ ′ ′ ′ ′ ′ ′ ′= + +x x x x x x x y x y x z x zT a T a T a 	 (2.114)

	 τ ′ ′ ′ ′ ′ ′ ′ ′= + +x y x x y x x y y y x z y zT a T a T a 	 (2.115)

	 τ ′ ′ ′ ′ ′ ′ ′ ′= + +z x x x z x x y z y x z z zT a T a T a 	 (2.116)

In the matrix form,

	

σ
τ
τ

′ ′

′ ′

′ ′

′ ′ ′

′ ′



















=
x x

x y

z x

x x x y x z

y x y y

a a a

a a aa

a a a

T

T

T
y z

z x z y z z

x x

x y

x z

′

′ ′ ′

′

′

′



































 	

(2.117)

Combining Equations 2.113 and 2.117, we get the following:

	

σ
τ
τ

′ ′

′ ′

′ ′

′ ′ ′

′ ′



















x x

x y

z x

x x x y x z

y x y y

a a a

a a= aa

a a a
y z

z x z y z z

xx xy zx

xy yy yz

zx yz zz

′

′ ′ ′



















σ τ τ
τ σ τ
τ τ σ





































′

′

′

a

a

a

x x

x y

x z 	

(2.118)

We have considered a tetrahedron with an inclined plane whose normal is along x′. 
Now, we consider two more tetrahedrons with normals along y′ and z′. Following a 
similar procedure, we get

	

τ
σ
τ

′ ′

′ ′

′ ′

′ ′ ′

′ ′



















x y

y y

y z

x x x y x z

y x y y

a a a

a a= aa

a a a
y z

z x z y z z

xx xy zx

xy yy yz

zx yz zz

′

′ ′ ′



















σ τ τ
τ σ τ
τ τ σ





































′

′

′

a

a

a

y x

y y

y z 	

(2.119)

	

τ
τ
σ

′ ′

′ ′

′ ′

′ ′ ′

′ ′



















=
z x

y z

z z

x x x y x z

y x y y

a a a

a a aa

a a a
y z

z x z y z z

xx xy zx

xy yy yz

zx yz zz

′

′ ′ ′



















σ τ τ
τ σ τ
τ τ σ





































′

′

′

a

a

a

z x

z y

z z 	

(2.120)
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Now, combining the three Equations 2.118 through 2.120, we get the following:

	

σ τ τ
τ σ τ
τ σ σ

′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′



















x x x y z x

x y y y y z

z x y z z z 

=



















′ ′ ′

′ ′ ′

′ ′ ′

a a a

a a a

a a a

x x x y x z

y x y y y z

z x z y z z

xx xσ τ yy zx

xy yy yz

zx yz zz

x x y x z x

x y y y

a a a

a a a

τ
τ σ τ
τ τ σ



















′ ′ ′

′ ′ ′′

′ ′ ′



















z y

x z y z z za a a
	

(2.121)

Equation 2.121 can be written as

	 [ ] [ ][ ] [ ]( , , ) ( , , )σ α σ α′ ′ ′ =x y z x y z
T

	
(2.122)

where

	

[ ]( , , )σ ′ ′ ′

′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′

≡x y z

x x x y z x

x y y y y z

z x y z z

σ τ τ
τ σ τ
τ τ σ zz

















 	

is the stress tensor in the O-x′y′z′ coordinate system

	

[ ]( , , )σ x y z

xx xy zx

xy yy yz

zx yz zz

≡



















σ τ τ
τ σ τ
τ τ σ

	

is the stress tensor in the O-xyz coordinate system

	

[ ]α ≡
















′ ′ ′

′ ′ ′

′ ′ ′

a a a

a a a

a a a

x x x y x z

y x y y y z

z x z y z z 	

is the transformation matrix of direction cosines.

2.5.5  Stress Tensor–Stress Vector Relationship

In Equation 2.113, the vector of direction cosines is also the vector of the unit normal to 
the inclined plane. Thus, the stress vector at a point on a surface is related to the stress 
tensor at that point as follows:

In the component form,

	 { } [ ]{ }T n= σ 	 (2.123)

In the vector form,

	 T nn =σ. 	 (2.124)
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In the indicial notation,

	 T ni ji j= σ 	 (2.125)

where

	

{ }T =



















Tnx

ny

nz

T

T
	

is the stress vector at a point on a plane whose unit normal is n

	

[ ]σ =



















σ τ τ
τ σ τ
τ τ σ

xx xy zx

xy yy yz

zx yz zz 	

is the stress tensor at the point

	

{ }n =



















n

n

n

x

y

z 	

is the unit normal vector with components (nx, ny, nz) such that n n nx y z
2 2 2 1+ + =  

Note that [σ] is symmetric; thus, [σ] = [σ]T.

2.5.6  Principal Stresses

The stress tensor at a point gives the state of stress at that point w.r.t. a set of three 
mutually orthogonal planes. Each of these planes is associated with a stress vector that 
has one normal stress and two shear stress components. Theoretically, innumerable 
planes and the corresponding stress vectors can be thought of at a point; however, from 
design and analysis point, we are more concerned about the maximum normal and 
shear stresses and the associated planes at that point.

The normal stress is the maximum when the stress vector Tn is parallel to the unit 
normal vector n. Let λ be the magnitude of the stress vector. Then, for a stress vector, 
which is parallel to the unit normal vector, we can write

	 T n I nn = =λ λ . 	 (2.126)

I being an unit tensor 
We know from Equation 2.124, that the stress vector is related to the stress tensor as

	 .T nn =σ 	 (2.127)

Thus, from the above two equations, we get the following:
In the component form,

	 ([ ] [ ]){ }σ − =λ I n 0 	 (2.128)
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or

	

σ τ τ
τ σ τ
τ τ σ

λ
xx xy zx

xy yy yz

zx yz zz



















−










1 0 0

0 1 0

0 0 1








































=
n

n

n

x

y

z

0

	

(2.129)

or

	

σ λ τ τ
τ σ λ τ
τ τ σ λ

xx xy zx

xy yy yz

zx yz zz

x

y

z

n

n

n

−
−

−





































= 0

	

(2.130)

In the vector form,

	 ( ).σ λ− =I n 0 	 (2.131)

and, in the indicial notation,

	 ( )σ λδij ij in− = 0 	 (2.132)

Equations 2.130 through 2.132 are an eigenvalue problem. The solution of this prob-
lem is obtained by equating the determinant of the square matrix to zero, that is,

	

σ λ τ τ
τ σ λ τ
τ τ σ λ

xx xy zx

xy yy yz

zx yz zz

−
−

−
= 0

	

(2.133)

Equation 2.133 is a cubic equation for λ (called the characteristic equation), solving 
which we get three eigenvalues λ. These eigenvalues are the principal stresses and the 
associated eigenvector, that is, the unit normal vector associated with each principal 
stress represents the corresponding principal plane.

EXAMPLE 2.1

Let the stress tensor at a point be given by

	

[ ]σ =



















10 4 0

4 4 0

0 0 4

MPa

	

Find the principal stresses and the principal planes.

Solution

Corresponding to the principal stresses and principal planes,

	 |σ − λI| = 0
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or

	

10 4 0

4 4 0

0 0 4

0

−
−

−
=

λ
λ

λ 	

On solving, we get

	 λ = 2, 4, 12

Thus, the principal stresses are

	 σ1 = 2 MPa

	 σ2 = 4 MPa

	 σ3 = 12 MPa

Now, let us find the principal planes. Note that each eigenvalue has got an 
associated eigenvector.

First, for σ1 = 2,

	

10 2 4 0

4 4 2 0

0 0 4 2

−
−

−





































n

n

n

x

y

z

== 0

	

which gives us

	 2nx + ny = 0

	 nz = 0

Also,

	 n n nx y z
2 2 2 1+ + = 	

Thus, on solving, we get

	

n

n

n

x

y

z

=

= −

=

1

5

2

5

0 	

which means

	
n1

1

5
2= −( )e ex y

	

Second, for σ2 = 4,
Following a similar procedure, we get

	 nx = 0

	 ny = 0

	 nz = 1
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that is,

	 n2 = ez

Third, for σ3 = 12,
Here, we get

	

n

n

n

x

y

z

=

=

=

2

5

1

5

0 	

that is,

	
n3

1

5
2= +( )e ex y

	

Note: Let us consider the following cross-product n1 × (n2 × n3), which is equal to 
zero. We can consider any other similar possible combination. It shows that the three 
unit vectors are mutually orthogonal.

2.5.7  Equilibrium Equations

Let us consider an infinitesimal cuboid with point O at its centroid as shown in 
Figure 2.13. By Newton’s second law of motion, the sum of all forces in any direc-
tion on a body in dynamic equilibrium is equal to the mass of the body multiplied by 
its acceleration in the same direction. Now, the sum of all forces in the x-direction 
results in

O + 2

+ 2

+ 2
− 2

− 2

− 2

+ 2

+ 2

+ 2

− 2

− 2

− 2+ 2

+ 2

+ 2

− 2

− 2

− 2

∂τxy dy

∂τyz dy

∂σyyσyy
dy

y

∂y

∂y

∂σxx dx
∂x

∂σzz dz
∂z

∂y

∂τzx dx
∂x

∂τyz dz
∂z

∂τzx dz
∂z

τxy

τyz

∂τzx dz

∂τyz dz

∂σzzσzz

σxx

σyy

τzx

τyz

τxy

dz
∂z

∂z

∂z

∂τzx dx
∂x

∂τyz dy
∂y

∂τxy dy
∂y

∂σyy dy
∂y

∂τxy dx
∂x

∂σxx dx x
∂x

τzx

τyz

τxy

σxx

τxz

τxy

σzz

τyz

τzx

∂τxy dx

z

∂x

FIGURE 2.13  Infinitesimal cuboid in equilibrium.
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z

dz
dx dy

2 2

BBx xdx dydz a dx dydz= ρ 	 (2.134)

Upon simplifying and generalizing for all the three directions, we get the following: 
In the component form,

	

∂
∂

+
∂
∂

+
∂
∂

+ =

∂
∂

+
∂
∂

+
∂
∂
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∂
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a

y z x
a

B

B

∂∂
+

∂
∂
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∂
∂
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z x y

azx yz
z z

τ τ
ρB

	

(2.135)

In the vector form,

	 ∇ + =⋅σ B ρa 	 (2.136)

In the indicial notation,

	

∂
∂

+ =
σ

ρji

j
i i

x
aB

	
(2.137)

Equations 2.135 through 2.137 are the equations of motion. Note that for static equi-
librium, a = 0.

2.6  THERMODYNAMICS
Strain tensor and stress tensor in kinematics and kinetics, respectively, have been dis-
cussed. In the next section, we shall relate these variables by means of constitutive 
relations. Constitutive relations, however, are not independent, and thermodynamic 
principles put constraints on them. In this section, without going into the details of 
mathematical derivation, we shall briefly state these thermodynamic principles.

Let us consider a body as shown in Figure 2.14. Let us apply surface traction and 
heat on the body. Then, as per the first law of thermodynamics, also known as the prin-
ciple of conservation of energy, which states that the sum of the work done by external 
forces and the heat input to a body per unit time is equal to the change in stored energy, 
which we can write as

	 W Q K U+ = + 	 (2.138)

where
W: Total work done by the surface traction and body forces
Q: Heat input to the body during loading
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K: Change in kinetic energy during the same period
U: Change in internal energy during the same period

If the forces are applied in a quasi-static manner, K = 0. Also, for an adiabatic pro-
cess, no heat transfer takes place between the body and the surrounding, and Q = 0. 
Thus, for quasi-static loading under adiabatic conditions,

	 W U= 	 (2.139)

The sum of work done by surface traction (Wt) and work done by body forces (Wb) 
during the process of deformation is given by

	

W W W T du dS du dVt b i i i i
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= + = +∫ ∫∫∫
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B

	
(2.140)

By Cauchy’s stress formula, Ti = σjinj. Substituting in the above equation, we get
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The first term in the above equation is a surface integral and, by employing Gauss 
divergence theorem, it can be converted into a volume integral. Then,
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Expanding and rearranging the terms, we get
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From equation of motion (Equation 2.137), the first term is zero for a quasi-static 
loading (ai = 0). Thus,

	

W
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x
dVji

i

j
V

=
∂
∂∫∫ σ

u 	
(2.144)

Surface traction T

Body force BHeat input Q

FIGURE 2.14  Body under thermo-mechanical loads.
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Stress tensor is symmetric, that is, σij = σji. Then, using strain–displacement rela-
tion, it can be shown that
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(2.145)

Then, substituting Equation 2.145 in Equation 2.144 and combining with Equation 
2.139, we obtain

	

U d dVij ij

V

= ∫∫ σ ε
ε 	

(2.146)

Equation 2.146 gives the expression for the total internal energy of a body for adia-
batic process under quasi-static loading. The internal energy is the strain energy and we 
can define a scalar function called strain energy density function U0, such that

	 dU dij ij0 = σ ε 	 (2.147)

Thus, we can express the stress tensor as

	
σ

εij
ij

U
=

∂
∂

0

	
(2.148)

We have arrived at the concept of strain energy density function from thermody-
namic principles and its existence implies that the energy stored is recoverable, the 
deformation is reversible, and the body is elastic. So far, we have considered the first 
law of thermodynamics. Now, we can apply the second law of thermodynamics and, 
from considerations of entropy, it can finally be shown that the strain energy density 
function is positive. It puts restriction on constitutive modeling.

2.7  CONSTITUTIVE MODELING
Let us consider a body under the action of surface traction and body force. Let displace-
ments be given on part of the boundary. A typical solid mechanics problem is to find the 
following unknowns: displacement vector, strain tensor, and the stress tensor. Thus, in 
three dimensions, we have a total of 15 unknowns (three displacement components, six 
strain components, and six stress components). We have nine equations from kinematics 
and kinetics—six strain–displacement relations and three equilibrium equations. Thus, 
we need six more equations for a complete solution of our problem. An insight into the 
problem tells us that these equations have to come from the relations between stress and 
strain. Our objective in this section is to find these six equations of stress–strain relations.

Constitutive modeling is mathematical modeling on the response of material to exter-
nal loads. Constitutive equations relate primary field variables with secondary field vari-
ables. In the present context, stress–strain relations (or force–displacement relations) are 
derived from constitutive modeling. Mathematical modeling is based on assumptions 
regarding different aspects of the subject. Constitutive modeling is about material and 
the assumptions made are based on experimental observations on material behavior.

2.7.1  Idealization of Materials

There are many parameters, which are studied by experiments on materials. In this 
section, we are concerned with stress–strain behavior of materials, and the common 
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tests conducted are the uniaxial tension test, torsion test, and triaxial test. The results 
of these tests are typically expressed as stress–strain curves where stress and strain 
are plotted along y-axis (ordinate) and x-axis (abscissa), respectively. These curves 
vary widely for different materials. Even for the same material, under different load-
ing environments such as different rates of loading, temperature, etc. these curves 
vary. Thus, for simplicity and as an aid to design of structures, idealized materials are 
constructed and used in mathematical modeling. Some of the idealized materials are 
as follows:

◾◾ Linear elastic material
◾◾ Nonlinear elastic material
◾◾ Linear elastic perfectly plastic material
◾◾ Rigid material
◾◾ Rigid perfectly plastic material, etc.

We shall restrict our discussions to elastic materials.

2.7.2  Elastic Materials

Elastic materials are those that regain their original shape and size once the applied 
loads are removed. For these materials, the constitutive behavior depends only on the 
current state of deformation. Many materials such as metals exhibit linear relationship 
between load and deformation below the yield point. Stress–strain relation of these 
materials below the yield point can be idealized as linear elastic (Figure 2.15a). On 
the other hand, materials such as rubber exhibit nonlinear behavior between load and 
deformation and their stress–strain relationship can be idealized as nonlinear elastic 
(Figure 2.15b). In both these cases, the material regains its original shape and size once 
the applied loads, which caused deformations, are removed. Following points should 
be noted:

◾◾ Elastic deformation is instantaneous and time independent. Upon loading, an 
elastic body deforms instantaneously without any time gap between loading 
and deformation. Thus, elastic deformation is time-independent and time is not 
a parameter in the constitutive modeling of elastic material.

◾◾ Elastic deformation does not involve loss of energy. Upon loading, an elastic 
body deforms and the work done is stored in the body as strain energy. Once 
the load is removed, the strain energy is fully recovered.

◾◾ Elastic deformation is reversible. Upon loading, an elastic body deforms. Once 
the load is removed, the body regains its original configuration. There is no 
permanent deformation.

(a) (b) σσ

ε ε

FIGURE 2.15  Idealized stress–strain curves for (a) linear elastic and (b) nonlinear elastic materials.
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◾◾ Elastic deformation is such that there is one-to-one relation between state of 
stress and state of strain in the current configuration.

2.7.3  Generalized Hooke’s Law

We stated above that for an elastic solid, there is one-to-one relation between state of 
stress and state of strain in the current configuration. It is possible to relate the stress 
tensor σij to the strain tensor εkl by a one-to-one function fij as follows:

	 σ εij ij klf= ( ) 	 (2.149)

Such materials are called Cauchy elastic material. These materials are not based on 
thermodynamic principles, and it can be shown that reversibility of energy is not satis-
fied by these materials.

Reversibility of energy is ensured by assuming the existence of the strain energy 
density function U0. Such materials are called hyperelastic materials or Green elastic 
materials. U0 can be expanded in the Taylor’s series about ε = 0. For linear elastic 
materials, cubic and higher order terms in the Taylor’s series expansion are neglected 
and a quadratic form of U0 is obtained. By partial differentiation of this quadratic form 
w.r.t. εij, for a linear elastic body with zero stress prior to load application, we can relate 
stress to strain as

	 σ εij ijkl klC= 	 (2.150)

Equation 2.150 gives the most generalized relation between stress tensor and 
strain tensor for a linear elastic material and it is known as the generalized Hooke’s 
law. Cijkl are the components of a fourth-order tensor C with 81(= 34) elastic 
constants.

σij and εij are second-order tensors; however, it is convenient to adopt an alternate 
notation, in which, we write them as 9 × 1 vectors as follows:

	

σ

σ

σ

σ

τ

τ

τ

τ

τ

τ

ij

xx

yy

zz

yz

zx

xy

zy

xz

yx

=





















and ε

ε

ε

ε

ε

ε

ε

ε

ε

ε

ij

xx

yy

zz

yz

zx

xy

zy

xz

yx

=





















=

εxxx

yy

zz

yz

zx

xy

zy

xz

yx

ε

ε

γ

γ

γ

γ

γ

γ

/

/

/

/

/

/

2

2

2

2

2

2



















 	

(2.151)

On the other hand, Cijkl is a fourth-order tensor and, as per the alternate notation, we 
write it as a 9 × 9 matrix. In this way, the generalized Hooke’s law can be written as
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The number of elastic constants in Equation 2.152 is 81 and it can be drastically 
reduced under different criteria. In the following sections, we explore some of these 
cases.

2.7.3.1  Symmetry of Stress and Strain Tensors

σij and εij are symmetric tensors. In their vector forms, the seventh, eighth, and ninth 
rows can be deleted and the (9 × 1) vectors are replaced with (6 × 1) vectors. Similarly, 
seventh, eighth, and ninth rows and columns in Cijkl are deleted. Thus, the number of 
elastic constants reduces from 81 to 36. Now, we can rewrite the generalized Hooke’s 
law as
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Note that εyz, εzx, and εxy have been replaced by 2εyz(= γyz), 2εzx(= γzx), and 2εxy(= γxy), 
respectively.

We make further changes and adopt an alternate (usually referred to as the con-
tracted) notation. As per the contracted notation,

	 xx yy zz yz zx xy→ → → → → →1 2 3 4 5 6 	 (2.154)

	 σ σ σ σ σ σ τ σ τ σ τ σxx yy zz yz zx xy= = = = = =1 2 3 4 5 6 	 (2.155)

	 ε ε ε ε ε ε γ ε γ ε γ εxx yy zz yz zx xy= = = = = =1 2 3 4 5 6 	 (2.156)

Then, we can write Hooke’s law as follows:
In the component form,

	 { } [ ]{ }σ ε= C 	 (2.157)
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In the vector form,

	 σ ε= C : 	 (2.158)

In the indicial notation (Summation on repeated indices is implied from 1 to 6.),

	 σ εi ij j=C 	 (2.159)
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is the vector of stress components. (Note that this vector is different from the stress 
vector or traction vector defined in the section on kinetics.)
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is called the elastic stiffness matrix.
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is the vector of strain components.
Now, let us go back to Table 2.1 in Section 2.3.3. We mentioned there that we 

need 15 independent equations for determining 15 unknowns in a 3D problem. 
We  obtained nine equations from kinematics and kinetics. Here, we see that the 
remaining six equations are the stress–strain relations obtained from constitutive 
modeling.

Equation 2.157 is invertible and we can express strains in terms of the stresses. Thus,

	 { } [ ]{ }ε σ= S 	 (2.160)
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where [ ] [ ]S C= −1 is called the material compliance matrix. And, we can write
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(2.161)

2.7.3.2  Symmetry of Elastic Stiffness Matrix

For elastic materials, strain energy density function takes a quadratic form and it can 
be shown that
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In other words, the tensor Cijkl is symmetric in ij and kl. Thus, the elastic stiffness 
matrix Cij is symmetric in i and j. Thus, the total number of independent elastic con-
stants for a general anisotropic elastic material reduces to 21 and we can write the 
generalized Hooke’s law as
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The number of independent elastic constants can be further reduced by consider-
ation of material planes of symmetry. We shall see in the following sections simpler 
forms of Hooke’s law corresponding to different classes of materials.

2.7.3.3  Anisotropic Materials

Equation 2.163 gives the Hooke’s law for general anisotropic elastic material. As men-
tioned before, it has 21 independent elastic constants.

Some materials exhibit directional symmetry in properties w.r.t. certain planes. In 
the most general case, in which there is no material plane of symmetry, the material is 
called anisotropic. The presence of material plane(s) of symmetry reduces the number 
of elastic constants as discussed below.

2.7.3.4  Monoclinic Materials

A monoclinic material has one material plane of symmetry. Figure 2.16 shows a mono-
clinic material in which the material plane of symmetry is normal to the z-direction. 
For the axes shown in the figure, the transformation matrix (refer to Equation 2.122) 
is given by
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(2.164)
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For this transformation, we can find from Equations 2.88 and 2.122 that
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Now,

	 σ ε ε ε ε ε ε1 11 1 12 2 13 3 14 4 15 5 16 6= + + + + +C C C C C C 	 (2.166)

	 ′ = ′ ′ + ′ ′ + ′ ′ + ′ ′ + ′ ′ + ′ ′σ ε ε ε ε ε ε1 11 1 12 2 13 3 14 4 15 5 16 6C C C C C C 	 (2.167)

Employing Equation 2.165 in Equation 2.167,

	 σ ε ε ε ε ε ε1 11 1 12 2 13 3 14 4 15 5 16 6= ′ + ′ + ′ − ′ − ′ + ′C C C C C C 	 (2.168)

Comparing Equation 2.166 with Equation 2.168, we get
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+ + ′( )+ + ′′( )+ − ′( )=C C C15 6 16 16 0ε

	
(2.169)

Equation 2.169 is valid for all values of strain components. It is possible when,

	 C C14 15 0= = 	

Extending the process to other stress components, it can be shown that

	 C C C C C C24 25 34 35 46 560 0 0= = = = = =and and 	

O

Material plane of symmetry

x, x′
z′

z

y, y′

FIGURE 2.16  Monoclinic material.
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Thus, the number of independent elastic constants reduces to 13 and Hooke’s law for 
monoclinic material can be written as given below

	

σ

σ

σ

σ

σ

σ

1

2

3

4

5

6

11



















=

C CC C C

C C C C

C C C C

C C

C C

12 13 16

12 22 23 26

13 23 33 36

44 45

45 5

0 0

0 0

0 0

0 0 0 0

0 0 0 55

16 26 36 66

1

2

3

4

5

6

0

0 0C C C C





































ε

ε

ε

ε

ε

ε















 	
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2.7.3.5  Orthotropic Materials

An orthotropic material has three mutually orthogonal material planes of symmetry. 
Arguments similar to those for monoclinic materials can be extended and it can be 
shown that the number of elastic constants is reduced to nine in the elastic stiffness 
matrix. Thus, Hooke’s law for orthotropic materials takes the form as below
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Similarly, in terms of the compliance matrix, for orthotropic materials, we can write
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Orthotropic materials are an important class of materials, especially in the field 
of composites. We have noted that there are nine independent constants in the elastic 
matrix. We shall now see that there are nine engineering elastic constants that describe 
an orthotropic material.

Engineering constants are experimentally determined by tests such as tension test 
and torsion test. These tests can be mathematically represented by means of application 
of stress in the respective direction. Figure 2.17 shows a cuboid under normal stress and 
shear stress states.

Let us first consider a stress state in Figure 2.17a, in which, a normal stress is applied 
in the x-direction.

	 σ σ σ σ σ σ1 2 3 4 5 60 0≠ = = = = =, 	 (2.173)
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Then, from Equation 2.172, the strain components can be obtained as

	 ε σ ε σ1 11 1 11= =S Sxx xxor 	 (2.174)

	 ε σ ε σ2 12 1 12= =S Syy xxor 	 (2.175)

	 ε σ ε σ3 13 1 13= =S Szz xxor 	 (2.176)

	 ε ε ε γ γ γ4 5 6 0 0= = = = = =or yz zx xy 	 (2.177)

Thus, we see that there are normal strains in all the three orthogonal directions and 
no shear strain. Under this applied stress, the normal strain in the x-direction is due to 
the direct stress and the normal strains in the y- and z-directions are due to Poisson’s 
effect.

Now, in a general case, Young’s modulus Ei is defined as the ratio of the direct stress 
in the i-direction to the normal strain in the same direction. Similarly, Poisson’s ratio 
νij, i ≠ j is defined as the ratio of the transverse strain in the j-direction to the normal 
strain in the i-direction when the applied stress is in the i-direction. (Note: i and j take 
the values x, y, z. No indicial notation is implied here.)

Thus, Young’s modulus in the x-direction and Poisson’s ratios in the xy- and xz-
planes are given by
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(2.178)

In a similar way, by applying normal stress in the y- and z-directions, respectively, 
we can obtain the following:
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(2.180)

(a) (b)

y

x

z

σxx (σ1)

τyz (σ4)

FIGURE 2.17  A cuboid under (a) normal stress and (b) shear stress (stresses within brackets are as 
per our alternate notation).
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Using Equations 2.174 through 2.176 in Equations 2.178 through 2.180 and extend-
ing the procedure to the y- and z-directions, we get the following:
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Next, as shown in Figure 2.17b, let us consider a stress state in which a shear stress 
is applied.

	 σ σ σ σ σ σ1 2 3 5 6 40 0= = = = = ≠, 	 (2.184)

Then, from Equation 2.172, the strain components can be obtained as

	 ε ε ε ε ε ε1 2 3 0 0= = = = = =or xx yy zz 	 (2.185)

	 ε σ γ τ4 44 4 44= =S Syz yzor 	 (2.186)

	 ε ε γ γ5 6 0 0= = = =or zx xy 	 (2.187)

Thus, we see that there is only one shear strain and all other strains are zero.
Now, in a general case, shear modulus Gij, i ≠ j is defined as the ratio of the shear 

stress in the ij-plane to the shear strain in the same plane. (Note: i and j take the values 
x, y, z. No indicial notation is implied here.)

Thus, shear modulus in the yz-plane is given by
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(2.188)

In a similar way, by applying shear stress in the zx- and xy-planes, respectively, we 
can obtain the following:
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Using Equation 2.186 in Equation 2.188 and extending the procedure to the other 
two planes, we finally get
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(2.191)
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Now, from Equations 2.181 through 2.183 and 2.191, we obtain the expressions for 
the compliance matrix components for an orthotropic material as follows:
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Thus, for an orthotropic material, the stress–strain relation can be written as
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2.7.3.6  Transversely Isotropic Materials

A transversely isotropic material is an orthotropic material that exhibits isotropic 
behavior in one plane of symmetry. Taking the plane yz- as the material plane of sym-
metry possessing isotropic properties, it can be seen that

	 C C C C C C22 33 12 13 55 66= = =and and 	

Further, it can be shown that
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C C
44

22 23

2
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−

	

Thus, the number of independent elastic constants reduces to 5. The independent 
engineering constants for a transversely isotropic material with yz- as the plane of isot-
ropy are

Ex		 Young’s modulus in the x-direction
Ey		 Young’s modulus in the y-direction
νxy		 Major Poisson’s ratio in the xy-plane
Gxy	 In-plane shear modulus in the xy-plane
νyz		 Major Poisson’s ratio in the yz-plane

In-plane shear modulus, Gyz in the plane of isotropy is related to the major Poisson’s 
ratio, νyz in the same plane as
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(2.202)

Thus, Gyz can also be considered as the fifth independent engineering constant in 
place of νyz. Note that Ey = Ez, νxz = νxy, and Gzx = Gxy.

The stiffness matrix for this material is given by
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The compliance matrix for this material is given by
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Then, the stress–strain relation for a transversely isotropic material with yz as the 
plane of symmetry can be written as
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2.7.3.7  Cubic Symmetry

An orthotropic material, in which all three material planes of symmetry are identical, 
is known as a material with cubic symmetry. The number of independent elastic con-
stants reduces to three. Note that the three orthogonal planes are identical but they do 
not have isotropy. Equation 2.206 shows the elastic stiffness matrix.
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2.7.3.8  Isotropic Materials

Further reduction in the number of independent elastic constants from three to two is 
possible when one of the three orthogonal planes in a cubic symmetric material is iso-
tropic. Such a material is called isotropic. It can be seen that in an isotropic material, 
there are infinite numbers of material planes of symmetry. Thus, material properties are 
not dependent on the directions and the elastic stiffness matrix takes the following form:

	

[ ]C

C C C

C C C

C C C

C C

C

=
−

11 12 12

12 11 12

12 12 11

11 12

0 0 0

0 0 0

0 0 0

0 0 0
2

0 0

0 0 0 0 111 12

11 12

2
0

0 0 0 0 0
2

−

−











































C

C C

	

(2.207)
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The compliance matrix reduces to

	

[ ]
( )

S

S S S

S S S

S S S

S S
=

−

11 12 12

12 11 12

12 12 11

11 12

0 0 0

0 0 0

0 0 0

0 0 0 2 0 0

0 0 0 00 2 0

0 0 0 0 0 2
11 12

11 12

( )

( )

S S

S S

−
−































 	

(2.208)

Then, the stress–strain relation for an isotropic material can be written as

	

ε
ε
ε
γ
γ
γ

xx

yy

zz

yz

zx

xy





















=

− −

− −

− −

+

+

1
0 0 0

1
0 0 0

1
0 0 0

0 0 0
2 1

0 0

0 0 0 0
2 1

E E E

E E E

E E E

E

ν ν

ν ν

ν ν

ν

ν

( )

( ))

( )
E

E

0

0 0 0 0 0
2 1+

















































ν

























σ
σ
σ
τ
τ
τ

xx

yy

zz

yz

zx

xy



	

(2.209)

It may be noted that we have three engineering elastic constants describing an iso-
tropic material, namely Young’s modulus E, shear modulus G, and Poisson’s ratio ν. It 
may further be noted that out of these three constants only two are independent as the 
third one can be expressed in terms of the first two as follows:

	
G

E
=

+2 1( )ν 	
(2.210)

2.8  PLANE ELASTICITY PROBLEMS
In the preceding sections, we framed the governing equations for a 3D linear elastic-
ity problem. The boundary conditions are provided in the form of forces, displace-
ments, or both specified on the boundary. In certain boundary value problems, owing 
to their particular way of loading, geometry and boundary conditions, it is possible to 
ignore some of the stress or strain components. Considerable computational efficiency 
is achieved by idealizing these problems as 2D. Two such important idealized problems 
are plane stress problem and plane strain problem [2]. In this section, we shall briefly 
discuss these two plane problems.

2.8.1  Plane Stress

Let us consider a thin plate in the xy-plane (Figure 2.18). The thickness of the plate 
is small compared to the other two dimensions and the applied forces act only in the 
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plane of the plate, that is, in the xy-plane. A problem like this can be idealized as one 
in which the stresses in the thickness direction are zero. Also, the nonzero stresses are 
functions of x and y only. This is called a plane stress problem, which is mathematically 
described as

	 σ τ τzz zx yz= = = 0 	 (2.211)

	 σ σ σ σ τ τxx xx yy yy xy xyx y x y x y= = =( ) ( ) ( ), , ,and and 	 (2.212)

2.8.1.1  Plane Stress Problem in Orthotropic Materials

Under plane stress condition, the strains in orthotropic materials can be obtained by 
using Equation 2.201 as

	
ε σ ν σ

xx
xx

x

xy yy

xE E
= −

	
(2.213)

	
ε

σ ν σ
yy

yy

y

xy xx

xE E
= −

	
(2.214)

	
ε ν σ ν σ

zz
xz xx

x

yz yy

yE E
= − +











	
(2.215)

	 γ yz = 0 	 (2.216)

	 γ zx = 0 	 (2.217)

	
γ

τ
xy

xy

xyG
=

	
(2.218)

z

h

y

x

σyy

σyy

σxx

σxx

τxy

τxy

τxy

τxy

FIGURE 2.18  A thin plate—pictorial representation of plane stress.
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By solving the above equations, the nonzero stresses can be obtained and the results 
can be written in the matrix form as

	

σ
σ
τ

ν ν
ν

ν ν

ν
xx

yy

xy

x

xy yx

xy y

xy yx

x

E E



















=

− −1 1
0

yy y

xy yx

y

xy yx

xy

xx
E E

G

1 1
0

0 0

− −

































ν ν ν ν

ε
εyyy

xyγ



















	

(2.219)

Equation 2.219 gives the stress state in an orthotropic material under plane stress 
condition. Note that there are three nonzero stress components, but, there are four non-
zero strain components.

2.8.1.2  Plane Stress Problem in Isotropic Materials

Under plane stress condition, the strains in isotropic materials can be obtained by using 
Equation 2.209 as

	
ε σ νσ

xx
xx yy

E E
= −

	
(2.220)

	
ε

σ νσ
yy

yy xx

E E
= −

	
(2.221)

	
ε ν σ σ

zz
xx yy

E E
= − +










	

(2.222)

	 γ yz = 0 	 (2.223)

	 γ zx = 0 	 (2.224)

	
γ ν τxy xy

E
=

+2 1( )

	
(2.225)

By solving the above equations, the nonzero stresses can be obtained and the results 
can be written in the matrix form as

	

σ
σ
τ

ν
ν

ν
ν

ν ν

xx

yy

xy

E E

E E


















=

− −

− −

1 1
0

1 1
0

0 0

2 2

2 2

GG

xx

yy

xy















































ε
ε
γ

	

(2.226)

Equation 2.226 gives the stress state in an isotropic material under plane stress con-
dition. Note that, as in the case of orthotropic materials, there are three nonzero stress 
components, but, there are four nonzero strain components.
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2.8.2  Plane Strain

Let us consider a long thick cylinder under internal pressure (Figure 2.19). For the sake 
of simplicity, let us orient the axis of the cylinder along the z-axis such that the xy-plane 
is normal to the axis of the cylinder. Some characteristic features of this problem are

◾◾ Geometry—the cross-sectional dimensions are small compared to the longitu-
dinal dimension.

◾◾ Loading—the applied forces are normal to the longitudinal axis. They are 
functions of x and y only, and independent of z.

◾◾ Boundary conditions—the ends are restrained such that displacement gradi-
ents are zero at the ends.

Let us consider a cross section far from the ends. The displacements along x- and 
y-directions are functions of x and y only. On the other hand, the displacement along 
the z-direction is zero. Mathematically,

	 u u x yx x= ( , ) 	 (2.227)

	 u u x yy y= ( , ) 	 (2.228)

	 uz = 0 	 (2.229)

Thus,

	
ε εxx

x
xx

u

x
x y≡

∂
∂

= ( ),
	

(2.230)

	
ε εyy

y
yy

u

y
x y≡

∂
∂

= ( ),
	

(2.231)

	
εzz

zu

z
≡

∂
∂

= 0
	

(2.232)

	
γ yz

z yu

y

u

z
≡

∂
∂

+
∂
∂

= 0
	

(2.233)

y

y

x

x

p

z

FIGURE 2.19  A long cylinder under internal pressure—pictorial representation of an example of 
plane strain.
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γ zx

x zu

z

u

x
≡

∂
∂

+
∂
∂

= 0
	

(2.234)

	
γ γxy

y x
xy

u

x

u

y
x y≡

∂
∂

+
∂
∂

= ( ),
	

(2.235)

A problem with these characteristics is known as a plane strain problem. Some com-
mon examples of plane strain problems are thick pipe under internal or external pres-
sure, dam, tunnel, etc.

2.8.2.1  Plane Strain Problem in Orthotropic Materials

By substituting the strains from Equations 2.230 through 2.235 in Equation 2.201, after 
some arithmetic manipulation, we get the following:

	
ε ν σ

ν ν ν
σxx

x

zx

z
xx

xy

x

yz zx

y
y

E E E E
= −











− +










1 2

yy

	
(2.236)

	
ε

ν ν ν
σ

ν
yy

xy

x

yz zx

y
xx

y

yz z

yE E E

E

E
= − +











+ −








1 2

2 
σyy

	
(2.237)

	
γ

τ
xy

xy

xyG
=

	
(2.238)

We can solve the above equations for σxx, σyy, and τxy, and express them in terms 
of the nonzero strain components. Further, σzz can be expressed in terms of σxx and 
σyy as

	
σ ν σ

ν
σzz zx xx

z yz

y
yy

E

E
= +

	
(2.239)

Thus, we see that there are four nonzero (three independent) stress components.

2.8.2.2  Plane Strain Problem in Isotropic Materials

For isotropic materials, we put Ex = Ey = Ez = E, νxy = νyz = νzx = ν, and Gxy = G and 
obtain the following:

	
ε ν σ ν ν σxx xx yy

E E
=

−









−
+









1 2 2

	
(2.240)

	
ε ν σ ν ν σyy yy xx

E E
=

−









−
+









1 2 2

	
(2.241)

	
γ

τ
xy

xy

G
=

	
(2.242)
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We can solve the above equations for σxx, σyy, and τxy, and express them in terms of 
the nonzero strain components in the matrix form as follows:
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σ
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ν
ν ν

ν
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yy

xy

E E




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













2
0

1 1 2
1

1 1 2
0

0 0

ν
ν
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








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

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




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ε
ε
γ

xx

yy

xy

	

(2.243)

Further, σzz can be expressed in terms of σxx and σyy as

	 σ ν σ σzz xx yy= +( ) 	 (2.244)

Thus, we see that there are four nonzero stress components. However, it may be 
noted that only three stress components are independent.

2.9  SUMMARY
The basic concepts of solid mechanics have been reviewed in this chapter. Solid 
mechanics is based on the fundamental concept of continuum, which is a state of 
a continuously distributed material without any crack or flaw. The governing equa-
tions belonging to four broad areas—kinematics, kinetics, constitutive relations, and 
thermodynamics—based on certain fundamental principles govern the behavior of a 
material; concepts in the first three areas are discussed in detail, whereas an intro-
ductory remark is made in respect of thermodynamic principles as applied to solid 
mechanics.

Kinematics is the subject of geometric changes in a body without any concern 
for the factors that cause such changes. The variables involved in kinematics are 
the displacements and strains and, the primary output of kinematics are the strain–
displacement relations. Kinetics is the study of forces and moments acting on a body 
in static or dynamic equilibrium and it is based on conservation of momenta, which 
gives us the equilibrium equations or equations of motion. Experimental observations 
together with thermodynamic considerations provide the constitutive relations. The 
constitutive relations are developed for different idealized materials and they relate 
kinematics to kinetics. The strain–displacement relations, equations of motion, and 
constitutive models provide the necessary equations to determine the required param-
eters such as displacements, strains, and stresses.

Computational efforts can be greatly reduced by the plane stress and plane strain 
approximations. These approximations are valid in certain boundary conditions, load-
ing, and geometry such that a 3D problem can be treated as 2D with reduced numbers 
of parameters.

EXERCISE PROBLEMS

	 2.1	 If a bar of length 400 mm elongates under an axial tensile force by 0.4 mm, 
determine the following strains in the bar: (i) engineering strain, (ii) true 
strain, (iii) Green strain, and (iv) Almansi strain.
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	 2.2	 The displacement vector (coordinate axes O-XYZ and o-xyz are superim-
posed) at a point is given by

u e e ex y z= + + + + + + + + + + +( ) ( ) ( )4 3 2 2 2 5 2 3 5 32 2 2x y z x y z x y z 	

		  If the initial coordinate of a point is (1,0,−2), determine its coordinates in 
the deformed configuration.

	 2.3	 The displacement vector (coordinate axes O-XYZ and o-xyz are superim-
posed) at a point is given by

	 u e e ex y z= + + + + +( ) ( ) ( )4 3 2 5 5 32 2 2x y y z 	

		  Determine the deformation gradient and displacement gradient. Verify that

	 [ ] [ ] [ ]F I D= + 	

	 2.4	 Consider the displacement field given in Exercise 2.3. Determine the infini-
tesimal strains at a point whose initial coordinates are (1,−2,4).

	 2.5	 The displacement vector (coordinate axes O-XYZ and o-xyz are superim-
posed) at a point is given by

	 u e e ex y z= + + − + +( ) ( ) ( )4 3 2 5 5 6x y y z 	

		  If the coordinates of a point in the deformed configuration are (1, 4, 0), 
determine the original coordinates and the infinitesimal strains at the point.

	 2.6	 Consider the displacement field given in Exercise 2.5. Determine the change 
in length of the line segment joining two points whose original coordinates 
are (4, 0, 2) and (2, 1, 0).

	 2.7	 The stress tensor at a point is given by

	

[ ]σ =



















3 1 0

1 3 0

0 0 1

MPa

	

		  Determine the principal stresses and associated principal planes.
	 2.8	 The stress tensor at a point is given by

	

[ ]σ =



















5 1 0

1 4 0

0 0 2

MPa

	

		  Determine the stress vectors on the positive and negative xy-, yz-, and 
zx-planes.

	 2.9	 The stress tensor at a point is given by

	

[ ]σ =
−

−



















6 2 1

2 4 0

1 0 2

MPa
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		  Determine the shear stress on the plane associated with the normal given by

	
n e e ex y z= + +

1

3
( )

	

	 2.10	 The stress tensor at a point is given by

	

[ ]σ =
−

−



















2

4 0

0 6

x y z

y y

z z

MPa

	

		  Determine the body forces acting on the body if it is at rest.
	 2.11	 The stress tensor at a point is given by

	

[ ]σ =



















250 40 75

40 200 0

75 0 200

MPa

	

		  Write the stresses as a (6 × 1) vector in the contracted notation.
	 2.12	 The strain tensor at a point is given by

	

[ ]

. . .

. .

. . .

ε =


















× −

1 2 0 8 0 4

0 8 1 0 2

0 4 0 2 1 1

10 4

	

		  Write the strains as a (6 × 1) vector in the contracted notation.
	 2.13	 For an anisotropic material, the generalized Hooke’s law states that there 

are 81 elastic constants. Work out systematically and show that under vari-
ous criteria, the number of these constants can be reduced leading to five 
and two independent elastic constants, respectively, for transversely isotro-
pic material and isotropic material.

	 2.14	 Young’s modulus and shear modulus of aluminum are given as 70 and 
26 GPa, respectively. Determine its Poisson’s ratio.

	 2.15	 The stress tensor at a point is given as

	

[ ]σ =



















150 25 0

25 140 0

0 0 160

MPa

	

		  Determine the strain tensor if Young’s modulus and shear modulus are 70 
and 26 GPa, respectively.

	 2.16	 Derive the elastic stiffness matrix for an orthotropic material in terms of its 
elastic constants.

		  Hint: Compliance matrix is given by Equation 2.201. [C] = [S]−1.

	 2.17	 Given the compliance matrix of an orthotropic material by Equation 2.201, 
derive the compliance matrix expression of an isotropic material in terms of 
its elastic constants.

		  Hint: For an isotropic material Ex = Ey = Ez = E, and so on.
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	 2.18	 The material properties of an orthotropic material are as follows:

	

E E E G G

G

x y z yz xy

zx

= = = = =

=

150 12 12 4 5 8

8

GPa GPa GPa GPa GPa

GPa

, , , . , ,

, νxxy xz yz= = =0 2 0 2 0 3. , . , .ν νand 	

		  Determine the stiffness matrix and the compliance matrix.
	 2.19	 For an orthotropic material, the elastic constants are given as

	

E E E G G

G

x y z yz xy

zx

= = = = =

=

150 12 12 4 5 8

8

GPa GPa GPa GPa GPa

GPa

, , , . , ,

, νxxy xz yz= = =0 2 0 2 0 3. , . , .ν ν and 	

		  The stress tensor at a point is given as

	

[ ]σ =



















1200 30 40

30 25 0

40 0 20

MPa

	

		  Determine the strain tensor.
	 2.20	 In a thin plate (in the xy-plane) under in-plane loads, the strains are 

given as

	 ε ε γxx yy xy= = × =−1 2 10 04. and .

		  Determine the stresses if E = 200 GPa and ν = 0.3.
		  What is the normal and shear strains in the z-direction and xz-/yz-planes?

		  Hint: Use plane stress idealization.

	 2.21	 In a thin plate (in the xy-plane) under in-plane loads, the following stresses 
are applied:

	 σ σ τxx yy xy= = =1400 250 0MPa MPa, and , 	

		  If the out-of-plane stresses are zero, determine the strains in the plate. 
The orthotropic material properties are as follows:

	

E E E G G

G

x y z yz xy

zx xy

= = = = =

= =

160 8 8 3 6

6 0

GPa GPa GPa GPa GPa

GPa

, , , , ,

, ν .. , . , .2 0 2 0 33ν νxz yz= = and 	

		  Solve it first by using 3D orthotropic constitutive relation and then verify 
the results by using plane stress idealization.

	 2.22	 A long tube of internal diameter 80 mm and thickness 8 mm is pressurized 
to 120 MPa. Determine the stresses and strains in the pipe.

		  Following data are given:

	 E GPa= =200 0 3, .ν 	

		  Hint: Use force equilibrium to determine the membrane stresses. Use plane 
strain idealization for strains.
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	 2.23	 Solve the problem in Exercise 2.22 if the material is changed to orthotropic 
with the following data:

	 E E Gx y xy xy= = = =60 60 4 0 2GPa GPa GPa, , , .ν 	

	 2.24	 Consider two Cartesian coordinate systems O-xyz and O-x′y′z′, where the 
second system is obtained by rotating the first one about x-axis by 30°. The 
stress at a point in the first coordinate system by

	

[ ]σ =



















1200 30 40

30 25 0

40 0 20

MPa

	

		  What is the stress tensor in the second coordinate system?
	 2.25	 Consider the problem given in Exercise 2.24. Determine the strains in the 

first coordinate system and then get the strains by transformation. Verify 
the results by first transformation of stress to the second coordinate system 
followed by determination of strains. Assume the following isotropic mate-
rial data:

	 E = =200 0 3GPa, .ν 	
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3.1  CHAPTER ROAD MAP
A laminate is a laminated composite structural element, and laminate design is a cru-
cial aspect in the overall design of a composite structure. As mentioned in Chapter 1, 
laminae are the building blocks in a composite structure; knowledge of lamina behav-
ior is essential for the design of a composite structure and analysis of a lamina is the 
starting point. Figure 3.1 presents a schematic representation of the process of compos-
ite laminate analysis (and design) at different levels. A lamina is a multiphase element 
and its behavior can be studied at two levels—micro level and macro level. For micro-
mechanical analysis of a lamina, the necessary input data are obtained from the experi-
mental study of its constituents, viz. reinforcements and matrix, and lamina behavior is 
estimated as functions of the constituent properties. The lamina characteristics are then 
used in the analysis of the lamina at the macro level and subsequent laminate design 
and analysis. Alternatively, the input data for the macro-level analysis of a lamina and 
subsequent laminate design and analysis can be directly obtained from an experimental 
study of the lamina. Thus, in the context of product design, the micromechanics of a 
lamina can be considered as an alternative to the experimental study of the lamina.

In this chapter, we provide an introductory remark followed by a brief review of the 
basic micromechanics concepts. There are many micromechanics models in the litera-
ture. Our focus is not a review of these models; instead, we dwell on the formulations of 
some mechanics of materials-based models for the evaluation of lamina thermoelastic 
parameters and briefly touch upon the elasticity-based models and semiempirical models.

3.2  PRINCIPAL NOMENCLATURE
A	 Area of cross section of a representative volume element
Ac, Af, Am	� Areas of cross section of composite, fibers, and matrix, respectively, 

in a representative volume element
bc, bf, bm	� Widths of composite, fibers, and matrix, respectively, in a representa-

tive volume element
d	 Fiber diameter
Ec	 Young’s modulus of isotropic composite
E1c, E2c	� Young’s moduli in the longitudinal and transverse directions, respec-

tively, of transversely isotropic composite
Ef	 Young’s modulus of isotropic fibers
E1f, E2f	� Young’s moduli in the longitudinal and transverse directions, respec-

tively, of transversely isotropic fibers
Em	 Young’s modulus of matrix
Fc	 Total force on composite (representative volume element)
Ff, Fm	 Forces shared by the fibers and matrix, respectively
Gf	 Shear modulus of isotropic fibers

3
Micromechanics of a Lamina
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G12f, G23f	� Shear moduli in the longitudinal and transverse planes, respectively, 
of transversely isotropic fibers

Gm	 Shear modulus of matrix
l, b, t	� Length, width, and thickness, respectively, of a representative volume 

element
lc, lf, lm	� Lengths of composite, fibers, and matrix, respectively, in a represen-

tative volume element
s	 Fiber spacing
tc, tf, tm	� Thicknesses of composite, fibers, and matrix, respectively, in a repre-

sentative volume element
Vf, Vm, Vv	� Fiber volume fraction, matrix volume fraction, and voids volume 

fraction, respectively
(Vf)cri, (Vf)min	� Critical fiber volume fraction and minimum fiber volume fraction, 

respectively
vc	 Total volume of composite
vf, vm, vv	 Volumes of fibers, matrix, and voids, respectively
Wf, Wm	 Mass fraction of fibers and mass fraction of matrix, respectively
wc	 Total weight of composite
wf, wm	 Mass of fibers and mass of matrix, respectively
αc	 Coefficient of thermal expansion of isotropic composite
α1c, α2c	� Longitudinal and transverse coefficients of thermal expansion, 

respectively, of transversely isotropic composite
α1f, α2f	� Longitudinal and transverse coefficients of thermal expansion, 

respectively, of transversely isotropic fibers
αm	 Coefficient of thermal expansion of matrix
βc	 Coefficient of moisture expansion of isotropic composite
β1c, β2c	� Longitudinal and transverse coefficients of moisture expansion, 

respectively, of transversely isotropic composite
β1f, β2f	� Longitudinal and transverse coefficients of moisture expansion, 

respectively, of transversely isotropic fibers
βm	 Coefficient of moisture expansion of matrix
γ12c, γ23c	� Longitudinal (in a longitudinal plane) and transverse (in a transverse 

plane) shear strains, respectively, in composite

Analysis of composite structure

Analysis of composite laminate

Macromechanical analysis of lamina

Micromechanical
analysis of lamina 

Experimental
study of laminaOr

Characterization of
constituents

FIGURE 3.1  Schematic representation of composite laminate analysis process.
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(γc)ult	 Ultimate shear strain in isotropic composite
(γ12c)ult, (γ23c)ult	� Ultimate longitudinal (in a longitudinal plane) and transverse (in a 

transverse plane) shear strains, respectively, in transversely isotropic 
composite

γ12f, γ23f	� Longitudinal (in a longitudinal plane) and transverse (in a transverse 
plane) shear strains, respectively, in fibers

(γf)ult	 Ultimate shear strain in isotropic fibers
(γ12f)ult, (γ23f)ult	� Ultimate longitudinal (in a longitudinal plane) and transverse (in a 

transverse plane) shear strains, respectively, in transversely isotropic 
fibers

γ12m, γ23m	� Longitudinal (in a longitudinal plane) and transverse (in a transverse 
plane) shear strain, respectively, in matrix

(γm)ult	 Ultimate shear strain in matrix
Δc, Δf, Δm	 Deformations in composite, fibers, and matrix, respectively
ΔCc, ΔCf, ΔCm	� Changes in moisture content in composite, fibers, and matrix, 

respectively
Δl	 Change in length of a representative volume element
Δlc, Δlf, Δlm	� Changes in length of composite, fibers, and matrix, respectively, in a 

representative volume element
ΔT	 Change in temperature
ε ε1 2c

T
c

T, 	 Longitudinal and transverse tensile strains, respectively, in composite
ε ε1 2c

C
c

C, 	� Longitudinal and transverse compressive strains, respectively, in 
composite

( )εc
T

ult 	 Ultimate tensile strain in isotropic composite
( ) , ( )ε ε1 2c

T
ult c

T
ult	� Ultimate longitudinal and transverse tensile strains, respectively, in 

transversely isotropic composite
( ) , ( )ε ε1 2c

C
ult c

C
ult	� Ultimate longitudinal and transverse compressive strains, respec-

tively, in transversely isotropic composite
ε ε1 2f

T
f

T, 	 Longitudinal and transverse tensile strains, respectively, in fibers
ε ε1 2f

C
f

C, 	� Longitudinal and transverse compressive strains, respectively, in 
fibers

( )ε f
T

ult 	 Ultimate tensile strain in isotropic fibers
( ) , ( )ε ε1 2f

T
ult f

T
ult	� Ultimate longitudinal and transverse tensile strains, respectively, in 

transversely isotropic fibers
( ) , ( )ε ε1 2f

C
ult f

C
ult	� Ultimate longitudinal and transverse compressive strains, respec-

tively, in transversely isotropic fibers
ε ε1 2m

T
m

T, 	 Longitudinal and transverse tensile strains, respectively, in matrix
ε ε1 2m

C
m

C, 	� Longitudinal and transverse compressive strains, respectively, in 
matrix

( )εm
T

ult 	 Ultimate tensile strain in matrix
η	 Fiber packing factor (in Halpin–Tsai equations)
νf	 Poisson’s ratio of isotropic fibers
ν12f, ν23f	� Major Poisson’s ratios (in the longitudinal plane and transverse plane, 

respectively) of transversely isotropic fibers
νm	 Poisson’s ratio of matrix
ξ	 Reinforcing factor (in Halpin–Tsai equations)
ρc, ρf, ρm	 Density of composite, fibers, and matrix, respectively
σ σ1 2c

T
c

T, 	� Longitudinal and transverse tensile stresses, respectively, in composite
σ σ1 2c

C
c

C, 	� Longitudinal and transverse compressive stresses, respectively, in 
composite

( )σc
T

ult	� Ultimate tensile stress in isotropic composite (i.e., tensile strength of 
isotropic composite)
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( ) , ( )σ σ1 2c
T

ult c
T

ult	� Ultimate longitudinal and transverse tensile stresses, respectively, in 
transversely isotropic composite (i.e., longitudinal and transverse ten-
sile strengths of transversely isotropic composite)

( ) , ( )σ σ1 2c
C

ult c
C

ult	� Ultimate longitudinal and transverse compressive stresses, respec-
tively, in transversely isotropic composite (i.e., longitudinal and trans-
verse compressive strengths of transversely isotropic composite)

σ σ1 2f
T

f
T, 	 Longitudinal and transverse tensile stresses in fibers

σ σ1 2f
C

f
C, 	 Longitudinal and transverse compressive stresses in fibers

( )σ f
T

ult	� Ultimate tensile stress in isotropic fibers (i.e., tensile strength of iso-
tropic fibers)

( ) , ( )σ σ1 2f
T

ult f
T

ult	� Ultimate longitudinal and transverse tensile stresses, respectively, in 
transversely isotropic fibers (i.e., longitudinal and transverse tensile 
strengths of transversely isotropic fibers)

( ) , ( )σ σ1 2f
C

ult f
C

ult	� Ultimate longitudinal and transverse compressive stresses, respec-
tively, in transversely isotropic fibers (i.e., longitudinal and transverse 
compressive strengths of transversely isotropic fibers)

σ σ1 2m
T

m
T, 	 Longitudinal and transverse tensile stresses, respectively, in matrix

σ σ1 2m
C

m
C, 	� Longitudinal and transverse compressive stresses, respectively, in 

matrix
( ) , ( )σ σm

T
ult m

C
ult	� Ultimate tensile and compressive stresses, respectively, in matrix (i.e., 

tensile and compressive strengths of matrix)
τ12c, τ23c	� Longitudinal (in a longitudinal plane) and transverse (in a transverse 

plane) shear stresses, respectively, in composite
(τc)ult	 Ultimate shear stress (i.e., shear strength) of isotropic composite
(τ12c)ult, (τ23c)ult	� Ultimate longitudinal and transverse shear stresses, respectively, in 

transversely isotropic composite (i.e., longitudinal and transverse 
shear strengths)

τ12f, τ23f	� Longitudinal (in a longitudinal plane) and transverse (in a transverse 
plane) shear stresses, respectively, in fibers

(τf)ult	 Ultimate shear stress (i.e., shear strength) of isotropic fibers
(τ12f)ult, (τ23f)ult	� Ultimate longitudinal and transverse shear stresses, respectively, in trans-

versely isotropic fibers (i.e., longitudinal and transverse shear strength)
τ12m, τ23m	� Longitudinal (in a longitudinal plane) and transverse (in a transverse 

plane) shear stresses, respectively, in matrix
(τm)ult	 Ultimate shear stress in matrix (i.e., shear strength of matrix)

3.3  INTRODUCTION
A composite lamina is made up of two constituents—reinforcements and matrix. As 
we know, these constituents combine together and act in unison as a single entity. 
Micromechanics is the study in which the interaction of the reinforcements and the 
matrix is considered and their effect on the gross behavior of the lamina is determined. 
Toward this, we need to determine several thermoelastic parameters of the lamina in 
terms of constituent properties. These parameters include

◾◾ Elastic moduli
◾◾ Strength parameters
◾◾ Coefficients of thermal expansion (CTEs)
◾◾ Coefficients of moisture expansion (CMEs)

Extensive work, as reflected by numerous research papers available in the literature, 
has been done in the field of micromechanics. The subject is also discussed at different 
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levels of treatment in many texts on the mechanics of composites [1–5]. Micromechanics 
models have been of keen research interest and several approaches have been adopted 
to develop models for the prediction of various parameters, especially elastic moduli, 
of a unidirectional lamina. A detailed survey of various approaches is provided by 
Chamis and Sendeckyj [6]; these approaches are netting analysis, mechanics of materi-
als, self-consistent models, bounding techniques based on variational principles, exact 
solutions, statistical methods, finite element methods, microstructure theories, and 
semiempirical models. The netting models and mechanics of materials-based models 
involve grossly simplifying assumptions. The rest of the approaches are based on the 
principles of elasticity and they, barring the semiempirical models, are typically asso-
ciated with rigorous treatment and complex mathematical and graphical expressions. 
Thus, for the sake of convenience of discussion, the micromechanics models can be put 
into a simple classification as follows:

◾◾ Netting models
◾◾ Mechanics of materials-based models
◾◾ Elasticity-based models
◾◾ Semiempirical models

Netting models are highly simplified models in which the bond between the fibers 
and the matrix is ignored for estimating the longitudinal stiffness and strength of a 
unidirectional lamina; it is assumed that longitudinal stiffness and strength are pro-
vided completely by the fibers. On the other hand, transverse and shear stiffness and 
Poisson’s effect are assumed to be provided by the matrix. These models typically 
underestimate the properties of a lamina but due to their simplicity they are still used 
in the preliminary ply design of pressure vessels [7].

The mechanics of materials-based models too involve grossly simplifying assump-
tions (see, for instance, References 8–10). Averaged stresses and strains are used in force 
and energy balance in a representative volume element (RVE) to derive the desired 
expressions for elastic parameters. Typically, the continuity of displacement across the 
interface between the constituents is maintained. Some of the common assumptions 
in micromechanics (see Section 3.4.1) are relaxed/modified suitably and a number of 
mechanics of materials-based models have been proposed in the past. Several of these 
models relate to different assumed geometrical array of fibers (square, rectangular, 
hexagonal, etc.), fiber alignment, inclusion of voids, etc.

Elasticity-based models involve more rigorous treatment of the lamina behavior (see, 
for instance, References 11–20). In an exact method, an elasticity problem within the 
general frame of assumptions (see Section 3.4.1) is formulated and solved by various 
techniques, including numerical methods such as the finite element method. A variation 
of the exact method is the self-consistent model. Variational principles are employed 
to obtain bounds on the elastic parameters. In the statistical methods, the restrictions 
of aligned fibers in regular array are relaxed and the elastic parameters are allowed to 
vary randomly with position. All these models, however, are somewhat complex and 
they have limited utility in the design of a product. Also, many variables that actu-
ally influence the lamina elastic behavior are ignored, leading to unreliable estimates. 
In semiempirical models, the mathematical complexity is reduced and the effects of 
process-related variables are taken into account by incorporating empirical factors [21].

An exhaustive discussion of the models available in the literature is beyond the scope 
of this book; for in-depth reviews, interested readers can refer to References 6, 22, and 
23 and the bibliographies provided therein. In this chapter, we shall attempt to provide 
an overall idea required in a product design environment. With this in mind, we shall 
discuss the mechanics of materials models in detail for all the parameters listed above. 
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A brief discussion is also provided on the elasticity approach and the semiempirical 
approach for the elastic moduli.

3.4  BASIC MICROMECHANICS

3.4.1  Assumptions and Restrictions

Micromechanics models are based on a number of simplifying assumptions and restric-
tions in respect of lamina, its constituents, that is, fibers and matrix, and the interface. 
These assumptions and restrictions are as follows:

◾◾ The lamina is (i) macroscopically homogeneous, (ii) macroscopically ortho-
tropic, (iii) linearly elastic, and (iv) initially stress-free.

◾◾ The fibers are (i) homogeneous, (ii) linearly elastic, (iii) isotropic, (iv) regularly 
spaced, (v) perfectly aligned, and (vi) void-free.

◾◾ The matrix is (i) homogeneous, (ii) isotropic, (iii) linearly elastic, and (iv) void-free.
◾◾ The interface between fibers and matrix has (i) perfect bond, (ii) no voids, and 

(iii) no interphase, that is, fiber–matrix interaction zone.

Some of the restrictions are not realistic and some of them are relaxed in the deriva-
tions of various models. For example, glass fibers are isotropic, but carbon and aramid 
fibers are highly anisotropic. They can be considered as transversely isotropic and their 
elastic moduli and strengths are direction-dependent. As we shall see in the next section, 
the mechanics of materials-based models discussed here can accommodate anisotropic 
(transversely isotropic) fibers. Fibers are generally randomly spaced and their align-
ment is not perfect. Similarly, the matrix can have voids and the lamina can have initial 
stresses. Also, an interphase is present at the interface between the fibers and the matrix.

3.4.2  Micromechanics Variables

The general procedure, irrespective of the micromechanics model used, is to express 
the desired parameter in terms of a number of basic micromechanics variables. These 
variables are as follows:

◾◾ Elastic moduli of fibers and matrix
◾◾ Strengths of fibers and matrix
◾◾ Densities of fibers and matrix
◾◾ Volume fractions of fibers, matrix, and voids
◾◾ Mass fractions of fibers and matrix

3.4.2.1  Elastic Moduli and Strengths of Fibers and Matrix

The elastic moduli and strengths of fibers and matrix are determined experimentally. The 
number of these parameters to be determined experimentally for use in micromechan-
ics would depend on the restriction in respect of behaviors of fibers and matrix. Certain 
fibers such as carbon are highly anisotropic and they can be considered as transversely 
isotropic. For these fibers, we need five stiffness parameters: E1f , E2f , G12f , ν12f , and ν23f . 
For isotropic fibers such as glass, the number of stiffness parameters reduces to three—
Ef , Gf , and νf . On the other hand, all common matrix materials are isotropic for which 
we need the three stiffness parameters—Em , Gm , and νm . Further, under the restriction of 
homogeneousness, all of these parameters are uniform across the fibers or matrix.

3.4.2.2  Volume Fractions

As we know, a composite material is made up of primarily two constituents—fibers 
and matrix. However, during the manufacture of a composite laminate, deviations do 
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occur and voids are introduced. Thus, the total volume of a composite material consists 
of three parts—fibers, matrix, and voids. Fiber volume fraction is defined as the ratio 
of the volume of fibers in the composite material to the total volume of composite. 
Similarly, matrix volume fraction is defined as the ratio of the volume of matrix to the 
total volume of composite, and voids volume fraction is defined as the ratio of the vol-
ume of voids to the total volume of composite. Thus,

	
V

v

v
V

v

v
V

v

v
f

f

c
m

m

c
v

v

c

= = =, , and
	

(3.1)

where
Vf	 fiber volume fraction
Vm	 matrix volume fraction
Vv	 voids volume fraction
vf	 volume of fibers
vm	 volume of matrix
vv	 volume of voids
vc	 total volume of composite material

It is clear that

	 v v v vf m v c+ + = 	 (3.2)

Dividing both the sides by vc, we get

	 V V Vf m v+ + =1	 (3.3)

For an ideal composite material, vv = Vv = 0 and we get

	 V Vf m+ =1	 (3.4)

We shall see in the subsequent sections that fiber volume fraction is a key param-
eter that greatly influences lamina properties such as longitudinal modulus and major 
Poisson’s ratio. It is useful to know the theoretical maximum fiber volume fraction of 
a lamina. In a composite material, fibers are packed in a random fashion. However, 
with a view to determining the maximum theoretical fiber volume fraction, as shown 
in Figure 3.2, let us consider two regular arrays of fibers—square array and triangular 
array. Fiber volume fractions can be expressed as

	
For square array, V

d

s
f =

π 2

24 	
(3.5)

(a) d

s s

d(b)

FIGURE 3.2  Schematic representation of fiber packing. (a) Square array. (b) Triangular array.
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and

	
For triangular array, V

d

s
f =

π 2

22 3 	
(3.6)

where d and s are fiber diameter and fiber spacing, respectively.
For maximum fiber packing, d = s. Thus, theoretical maximum fiber volume frac-

tions with fibers of circular cross section are

	
For square array, ( ) .Vf max = =

π
4

0 79
	

(3.7)

	
For triangular array, ( ) .Vf max = =

π
2 3

0 91
	

(3.8)

where (Vf)max is the theoretical maximum fiber volume fraction.

3.4.2.3  Mass Fractions

Fiber mass fraction is defined as the ratio of the mass of fibers to the total mass of 
composite material. Similarly, matrix mass fraction is defined as the ratio of the mass 
of matrix to the total mass of composite. Thus,
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(3.10)

where
Wf	 fiber mass fraction
Wm	 matrix mass fraction
wf	 mass of fibers
wm	 mass of matrix
wc	 mass of the composite material

It is clear that

	 w w wc f m= + 	 (3.11)

Now, we know that the product of density and volume is the mass contained in that 
volume. Then, for the composite, fibers, and matrix, we can write the following:

	 w vc c c= ρ 	 (3.12)

	 w vf f f= ρ 	 (3.13)

	 w vm m m= ρ 	 (3.14)

where ρc, ρf, and ρm are densities of composite, fibers, and matrix, respectively.
Substituting Equations 3.12 through 3.14 in Equation 3.11, we get

	 ρ ρ ρc c f f m mv v v= + 	 (3.15)
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Dividing both the sides by vc and using Equation 3.1, we get

	 ρ ρ ρc f f m mV V= + 	 (3.16)

Equation 3.16 is the rule of mixtures expression for density of composite.
Now, substituting Equations 3.12 through 3.14 in Equations 3.9 and 3.10, we get the 

following:

	
W Vf

f

c
f=

ρ
ρ 	

(3.17)

	
W Vm

m

c
m=

ρ
ρ 	

(3.18)

Then, substituting Equation 3.16 in Equations 3.17 and 3.18, with simple manipula-
tion, we get the expressions for mass fractions for fibers and matrix as
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(3.19)

Taking voids fraction as zero, Vm = 1 − Vf, and we get the following:
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(3.20)

3.4.3  Representative Volume Element

An RVE is considered for obtaining expressions of the various elastic moduli and 
strengths. Figure 3.3a shows the schematic representation of a unidirectional lamina. 
The fibers are taken as straight and regularly aligned. Let the fiber spacings be bc and 
tc in the width and thickness directions, respectively. Then, we take an RVE of size 
lc × bc × tc as shown in Figure 3.3b such that by placing the RVEs repeatedly next 
to each other, we can obtain the complete lamina. Further, it is presumed that the 
responses of the RVEs to applied loads are identical and thus the analysis of an RVE 

(a)

(b) (c)

3

2

bc

bc

bc

tc

tc

tc

lclc bm/2

bm/2
bf

0 1

FIGURE 3.3  (a) Schematic representation of a unidirectional lamina. (b) Representative volume ele-
ment. (c) Idealized volume element. (Adapted with permission from A. K. Kaw, Mechanics of Composite 
Materials, CRC Press, Boca Raton, FL, 2006.)
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is sufficient for determining the characteristics of the complete lamina. The RVE is 
further simplified as shown in Figure 3.3c.

Now, the total cross-sectional area of composite in the RVE, Ac, the cross-sectional 
area of the fibers, Af, and the cross-sectional area of the matrix, Am, are, respectively, 
given by

	 A b tc c c= 	 (3.21)

	 A b tf f c= 	 (3.22)

	 A b tm m c= 	 (3.23)

It is easy to see that for zero voids fraction,

	 A A Ac f m= + 	 (3.24)

3.5  MECHANICS OF MATERIALS-BASED MODELS

3.5.1  Evaluation of Elastic Moduli

A unidirectional lamina (Figure 3.3a) is an orthotropic body characterized by four elas-
tic constants—longitudinal modulus (E1c) along the fiber direction, transverse modulus 
(E2c) normal to the fiber direction, shear modulus (G12c) in the plane of the lamina, and 
major Poisson’s ratio (ν12c).

Notes:

◾◾ We have used a Cartesian coordinate system O-123 usually known as the mate-
rial coordinate system. Here, 1-direction is the longitudinal direction, which is 
along the fibers, 2-direction is the transverse direction, which is normal to the 
fibers in the plane of the lamina, and 3-direction is normal to the plane of the 
lamina.

◾◾ In the general nomenclature, composite elastic moduli are represented by E1, 
E2, G12, etc. However, in this chapter, we shall add an additional suffix “c” 
to stress on the fact that the parameter belongs to the composite. Similarly, 
suffixes “f” and “m” are used for fibers and matrix, respectively. Thus, E1c is 
the longitudinal Young’s modulus of composite, E2f is the transverse Young’s 
modulus of fibers, Em is the Young’s modulus of matrix, and so on.

3.5.1.1  Longitudinal Modulus (E1c)

Let us consider a unidirectional lamina under uniaxial load in the fiber direction. An 
RVE under this loading condition is shown in Figure 3.4a. The RVE can be compared 
with a system of springs with different stiffnesses in parallel. This springs-in-parallel 
analogy is shown in Figure 3.4b.

Now, the total force taken by the volume element is shared by the fibers and the 
matrix. Thus,

	 F F Fc f m= + 	 (3.25)

where
Fc	 total force on the representative volume element
Ff	 force shared by the fibers
Fm	 force shared by the matrix
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From Equation 3.25, we obtain

	 σ σ σ1 1 1c c f f m mA A A= + 	 (3.26)

where
σ1c	 longitudinal stress in the composite material
σ1f	 longitudinal stress in the fibers
σ1m	 longitudinal stress in the matrix

Now, under the restriction that the composite, fibers, and matrix are elastic, we bring 
in Hooke’s law and write Equation 3.26:

	 E A E A E Ac c c f f f m m m1 1 1 1 1ε ε ε= + 	 (3.27)

The fibers and matrix are perfectly bonded, and thus, the longitudinal strains in the 
composite, fibers, and matrix are equal, that is, ε1c = ε1f = ε1m. Then, from Equation 
3.27, we obtain

	
E E

A

A
E

A

A
c f

f

c
m

m

c
1 1= +

	
(3.28)

In the above equation, we can multiply the numerator and the denominator in the 
area fractions by the length lc of the RVE and see that the area fractions are equal to 
the corresponding volume fractions. Thus, we obtain the expression for the longitudinal 
modulus as follows:

	 E E V E Vc f f m m1 1= + 	 (3.29)

Equation 3.29 is a very popular one and it is referred to as the “rule of mixtures” for 
the longitudinal modulus of a unidirectional composite. Under the restriction that there 
is no void in the composite, we can also write it as

	 E E V E Vc f f m f1 1 1= + −( ) 	 (3.30)
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FIGURE 3.4  (a) Representative volume element under uniaxial stress in the fiber direction. 
(b)  Springs-in-parallel analogy. (Adapted in parts with permission from R. M. Jones, Mechanics of 
Composite Materials, second edition, Taylor & Francis, New York, 1999; A. K. Kaw, Mechanics of 
Composite Materials, CRC Press, Boca Raton, FL, 2006.)
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Figure 3.5 shows the variation of the longitudinal modulus w.r.t. the fiber volume 
fraction for the data given in Example 3.1. As seen from the figure, the rule of mix-
tures gives a simple linear relation in terms of the constituent moduli and volume frac-
tions. It is widely used in design and analysis; it is not only simple but also reliable as 
predictions made for the longitudinal modulus by the rule of mixtures tally well with 
experimental results. For most advanced polymeric matrix composite materials, the 
fiber modulus is far higher than the matrix modulus. In these materials, changes in 
the matrix modulus do not have any appreciable impact on the composite modulus. 
Further, as we mentioned before, the RVE can be compared with a system of springs-
in-parallel. From the springs-in-parallel analogy (Figure 3.4b) of the RVE, it can be 
seen that the resultant stiffness of the three springs is controlled by the stiffer spring, 
viz. the fibers. Thus, we may conclude that the longitudinal modulus of a unidirectional 
lamina is a fiber-dominated property.

3.5.1.2  Transverse Modulus (E2c)

An RVE stressed in the transverse direction as shown in Figure 3.6a is considered next. 
Under the load as shown in the figure, the RVE undergoes gross extension in the trans-
verse direction. Owing to Poisson’s effect, it undergoes contraction in the longitudinal 

0

10

20

E1c = E1fVf + EmVm

Em

E1f

30

40

50

60

70

80

0.0 0.2 0.4 0.6 0.8 1.0

Lo
ng

itu
di

na
l m

od
ul

us
 (E

1c
)

Fiber volume fraction (Vf)

FIGURE 3.5  Longitudinal modulus by mechanics of materials approach (constituent material data 
from Example 3.1).
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FIGURE 3.6  (a) Representative volume element under transverse stress. (b) Springs-in-series anal-
ogy. (Adapted in parts with permission from R. M. Jones, Mechanics of Composite Materials, second 
edition, Taylor & Francis, New York, 1999; A. K. Kaw, Mechanics of Composite Materials, CRC Press, 
Boca Raton, FL, 2006.)
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direction. The RVE can be compared with a system of springs with different stiffnesses 
in series. This springs-in-series analogy is shown in Figure 3.6b. The gross transverse 
extension in the transverse is the sum total of transverse extensions in the fibers and 
matrix. Thus,

	 ∆ ∆ ∆c f m= + 	 (3.31)

where
Δc	 gross transverse extension in the composite
Δf	 transverse extension in the fibers
Δm	 transverse extension in the matrix

Bringing in the definition of normal strains, Equation 3.31 can be written as

	 ε ε ε2 2 2c c f f m mb b b= + 	 (3.32)

where
ε2c	 transverse strain in the composite
ε2f	 transverse strain in the fibers
ε2m	 transverse strain in the matrix

Dividing both the sides by bc, Equation 3.32 can be written as

	
ε ε ε2 2 2c f

f

c
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m

c

b

b

b

b
= +

	
(3.33)

Now, multiplying the numerator and denominator, in the width fractions in the right-
hand side of the above equation, by the product of length and thickness of the RVE, lctc, 
we see that the width fractions are nothing but fiber volume fraction and matrix volume 
fraction, respectively. Thus,

	

b

b
Vf

c
f=

	
(3.34)
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(3.35)

Further, transverse strains in composite, fibers, and matrix are related to the respec-
tive moduli as

	
ε σ
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Then, substituting Equations 3.34 through 3.38 in Equation 3.33, we get

	

σ σ σ2

2

2

2
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f
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m
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E E
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E
V= +

	
(3.39)
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Now, we look at the RVE under transverse stress in Figure 3.6, and notice that the 
cross-sectional area normal to the transverse stress is the same for the composite as a 
whole as well as the fibers and matrix. Thus,

	 σ σ σ2 2 2c f m= = 	 (3.40)

Using Equation 3.40 in Equation 3.39, we get

	

1

2 2E
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Ec

f
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m
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= +
	

(3.41)

or

	
E

E E

E V E V
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f m

m f f m
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2
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=
+ 	

(3.42)

Taking void content as zero, Equation 3.42 can be written as

	
E

E E

E V E V
c

f m

m f f f
2

2

2 1
=

+ −( ) 	
(3.43)

The variation of E2c with Vf for the data given in Example 3.1, based on Equation 
3.43, is shown in Figure 3.7. The variation in the transverse modulus is rather sharp at 
high fiber volume fractions. Such high fiber volume fractions, however, are unrealistic. 
On the other hand, E2c rises at a very low rate up to a fiber volume fraction of about 
0.8 and it is very close to the matrix modulus. Further, as mentioned earlier, the rep-
resentative volume under transverse stress can be with a system of springs-in-series. 
From the springs-in-series analogy (Figure 3.6b), we can see that the resultant stiffness 
of the springs is influenced heavily by the weak springs (matrix). In a unidirectional 
composite lamina under transverse stress, gross deformation of the lamina is primar-
ily dependent on the matrix deformations. Thus, we may conclude that the transverse 
modulus of a unidirectional lamina is a matrix-dominated property.
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Another way to express the composite transverse modulus is in the nondimensional-
ized form as follows:

	

E

E E E V
c

m m f f

2

2

1
1 1

=
+ −( )/ 	

(3.44)

From the above equation, we see that, if E2f/Em = 1 or E2f = Em, irrespective of the 
fiber volume fraction, E2c/Em = 1 or E2c = E2f = Em. In other words, in a unidirectional 
lamina, if the fiber and matrix moduli are equal, the transverse modulus of the com-
posite is equal to the modulus of the fibers or matrix. For MMCs and CMCs, fiber and 
matrix moduli are of similar order, and E2f/Em values are typically small. On the other 
hand, fiber-to-matrix modulus ratios are very large in PMCs. Typical E2c/Em plots for 
these two cases are shown in Figure 3.8. The mechanics of materials-based model for 
E2c is a simple one, but it does not compare well with experimental results. In general, 
this approach leads to underestimate of the transverse modulus.

3.5.1.3  Major Poisson’s Ratio (ν12c)

The major Poisson’s ratio is defined as the negative ratio of transverse normal strain to 
longitudinal normal strain under uniaxial loading in the fiber direction. Thus,

	
ν ε

ε
σ12

2

1
1 0c

c

c
c= − ≠with and all others zero

	
(3.45)

The model for the major Poisson’s ratio is similar to that for the longitudinal modu-
lus and we consider an RVE under uniaxial force in the longitudinal direction as shown 
in Figure 3.9. The lamina deforms in the longitudinal direction due to direct stress and 
in the transverse direction due to Poisson’s effect.

Now, the total transverse deformation is the sum of transverse deformations in the 
fibers and matrix. (Note that transverse deformations are negative.) Thus,

	 ∆ ∆ ∆c
T

f
T

m
T= + 	

(3.46)
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FIGURE 3.8  Variation of transverse modulus with different fiber-to-matrix modulus ratios.



94 Composite Structures

where
Δc

T 	 total transverse deformation in composite
Δ f

T 	 transverse deformation in the fibers
Δm

T 	 transverse deformation in the matrix

Deformations in the composite and the constituents can be related to the respective 
strains and we can write Equation 3.46 as

	 b b bc c f f m mε ε ε2 2 2= + 	 (3.47)

where
ε2c	 transverse strain in the composite
ε2f	 transverse strain in the fibers
ε2m	 transverse strain in the matrix

Now, under the restriction that the fibers and matrix are perfectly bonded, the longi-
tudinal strains in the composite, fibers, and matrix are all equal, that is, ε1c = ε1f = ε1m. 
Then, dividing both the sides of Equation 3.47 with the width of the RVE, bc, and lon-
gitudinal strain, ε1c (or ε1f or ε1m), we get the following:
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(3.48)

Now, by definition
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FIGURE 3.9  Representative volume element under uniaxial stress in the fiber direction for the 
determination of the major Poisson’s ratio. (Adapted with permission from A. K. Kaw, Mechanics of 
Composite Materials, CRC Press, Boca Raton, FL, 2006.)
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Substituting the above in Equation 3.48 and noting that the width fractions are equal 
to the corresponding volume fractions, we get

	 ν ν ν12 12c f f m mV V= + 	 (3.52)

For zero void content,

	 ν ν ν12 12 1c f f m fV V= + −( ) 	 (3.53)

Equations 3.52 and 3.53 are the rule of mixtures expressions for the major Poisson’s 
ratio. We had seen before that the longitudinal modulus is a fiber-dominated property 
whereas the transverse modulus is matrix-dominated. Fiber and matrix Poisson’s ratios 
are not much different from each other and thus, composite Poisson’s ratio is neither 
fiber-dominated nor matrix-dominated.

3.5.1.4  In-Plane Shear Modulus (G12c)

For developing a model for the in-plane shear modulus, an RVE is subjected to in-plane 
shear stress as shown in Figure 3.10. The total shear deformation in the volume element 
is the sum of shear deformations in the fibers and the matrix. Thus,

	 ∆ ∆ ∆c f m= + 	 (3.54)

where
Δc	 shear deformation in the composite
Δf	 shear deformation in the fibers
Δm	 shear deformation in the matrix

Shear deformations are related to the shear strains and shear strains can in turn be 
related to the shear stresses. Thus, we can express the shear deformations as follows:
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FIGURE 3.10  (a) Representative volume element under shear stress. (b) Shear deformation. (Adapted 
in parts with permission from R. M. Jones, Mechanics of Composite Materials, second edition, Taylor & 
Francis, New York, 1999; A. K. Kaw, Mechanics of Composite Materials, CRC Press, Boca Raton, FL, 2006.)
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∆m m m

m

m
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G
b= =γ τ

12
12

	
(3.57)

We may note here that the shear stresses in composite, fibers, and matrix are all 
equal, that is, τ12c = τ12f = τ12m. Then, substituting Equations 3.55 through 3.57 in 
Equation 3.54, we get
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m12 12
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(3.58)

Dividing both the sides of the above equation with bc, and noting that bf/bc = Vf and 
bm/bc = Vm, we get the following relation for the in-plane shear modulus of a unidirec-
tional composite:
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(3.59)

or
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(3.60)

Under the restriction that there is no void,
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(3.61)

Equations 3.60 and 3.61 are the models by the mechanics of materials-based 
approach for the in-plane shear modulus of a unidirectional lamina. These equations 
are very similar to those for the transverse modulus. As with E2c, G12c is also a matrix-
dominated property. A typical variation of G12c with Vf is shown in Figure 3.11.
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EXAMPLE 3.1

For a unidirectional glass/epoxy lamina, the constituent material properties 
are as follows: Ef = 76 GPa, νf = 0.2, Gf = 35 GPa, Em = 3.6 GPa, νm = 0.3, 
Gm = 1.4 GPa. Consider zero void content and a fiber volume fraction of 0.6.

(a) Determine the composite longitudinal modulus, transverse modulus, major 
Poisson’s ratio, and in-plane shear modulus. (b) Apply a longitudinal force on the 
lamina and determine the ratio of axial forces shared by fibers and matrix. (c) 
Consider the cross section of fibers as circular and determine the maximum pos-
sible composite longitudinal modulus, transverse modulus, major Poisson’s ratio, 
and in-plane shear modulus.

Solution

Glass fiber is isotropic and we can replace E1f and E2f with Ef, G12f with Gf, and 
ν12f with νf. Then, using Equations 3.30, 3.43, 3.53, and 3.6), respectively, the lon-
gitudinal modulus, transverse modulus, major Poisson’s ratio, and in-plane shear 
modulus are obtained as
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Let us apply a longitudinal force F1c on the composite. The ratio in which load 
sharing takes place is as follows:
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We know under uniaxial longitudinal loads, longitudinal strains in fibers and 
matrix are equal to each other. Also, note that Af/Ac = Vf and Am/Ac = Vm. Then, 
dividing the numerator and denominator by Ac, we obtain the desired load sharing 
ratio as
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We see that the fibers take 31.67 times the axial load taken by the matrix. In 
other words, the fibers take about 97% of the total axial load on the composite, 
whereas the matrix takes only about 3%.

For fibers of circular cross section, the maximum theoretical volume fraction 
of fibers is given by

	
( ) .Vf max = =

π
2 3

0 9069
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The corresponding elastic moduli for this fiber volume fraction are given by
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EXAMPLE 3.2

For a unidirectional carbon/epoxy lamina, the constituent material properties 
are given as follows: E1f = 240 GPa, E2f = 24 GPa, ν12f = 0.3, G12f = 22 GPa, 
Em = 3.6 GPa, νm = 0.3, Gm = 1.4 GPa.

	 a.	Determine the composite longitudinal modulus, transverse modulus, 
major Poisson’s ratio, and in-plane shear modulus.

	 b.	Apply a longitudinal force on the composite and determine the ratio of 
axial forces shared by fibers and matrix.

	 c.	Consider circular cross section of fibers and determine the maximum 
possible composite longitudinal modulus, transverse modulus, major 
Poisson’s ratio, and in-plane shear modulus.

	 d.	Compare the elastic moduli of the carbon/epoxy lamina with those of 
glass/epoxy lamina in Example 3.1.

Take a fiber volume fraction of 0.6 and zero void content.

Solution

Using Equations 3.30, 3.43, 3.53, and 3.61, respectively, the longitudinal modu-
lus, transverse modulus, major Poisson’s ratio, and in-plane shear modulus are 
obtained as
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Under a longitudinal force on the composite, the ratio in which load sharing 
takes place is calculated as follows:
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We see that the fibers take 100 times the axial load taken by the matrix. In 
other words, the fibers take about 99% of the total axial load on the composite, 
whereas the matrix takes only about 1%.
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For fibers of circular cross section, the maximum theoretical volume fraction 
of fibers is given by

	
( ) .Vf max = =

π
2 3

0 9069
	

The corresponding elastic moduli for this fiber volume fraction are given by
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A comparison of the elastic moduli of the carbon/epoxy lamina with those of 
the glass/epoxy lamina in the previous example is given in Table 3.1.

Note: From the comparison made above, we find that w.r.t. the matrix modulus, 
the longitudinal modulus of the lamina is greatly increased by the reinforcements. 
The increase is more prominent in the case of carbon/epoxy lamina as the lon-
gitudinal modulus of carbon fiber is higher than the glass fiber modulus. The 
transverse modulus and the in-plane shear modulus are increased by the rein-
forcements only marginally. On the other hand, the major Poisson’s ratio remains 
largely uninfluenced. In other words, the longitudinal modulus of a unidirectional 
lamina is fiber-dominated, the transverse and in-plane shear moduli are matrix-
dominated, and the major Poisson’s ratio is neutral to fibers or matrix.

3.5.2  Evaluation of Strengths

The strength of a material is the maximum stress that it can be subjected to before 
failure. There are five strength parameters (Table 3.2) to be evaluated for complete 
characterization of strength of a unidirectional composite lamina. Each of these 
strength parameters corresponds to a specific combination of loading direction and 
nature of load.

The fibers and matrix have their own failure characteristics as individual entities 
and in the form of composite material as well. Consequently, in a unidirectional lamina 

TABLE 3.1
Comparison of Elastic Moduli (Example 3.2)

Elastic 
Modulus

UD Glass/Epoxy Lamina UD Carbon/Epoxy Lamina

Absolute 
Value

As a Ratio w.r.t. 
Matrix Property

Absolute 
Value

As a Ratio w.r.t. 
Matrix Property

E1c 47.0 13.1 145.4 40.4
E2c 8.4 2.3 7.4 2.1
G12c 3.3 2.4 3.2 2.3

ν12c 0.24 0.8 0.3 1.0
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under different loading conditions, different failure modes can be found. The failure 
of a lamina is highly sensitive to local imperfections such as voids, fiber kink, etc. 
These imperfections, however, do not affect the stiffness characteristics to the same 
extent. Stiffness may be considered as a global parameter with a smoothening effect as 
far as local imperfections are concerned. As a result, the models for the evaluation of 
strengths of a lamina are more complex than those for moduli.

3.5.2.1  Longitudinal Tensile Strength ( )1σ c
T

ult

The failure characteristics of a composite lamina depend on the failure characteristics 
of its constituents—fibers and matrix and the interface between the two. The possible 
failure modes in a unidirectional lamina under longitudinal tensile load are fiber frac-
ture, fiber fracture with fiber pullout, fiber debond, and matrix cracking. Fibers, matrix, 
and the interface have their own individual failure characteristics. As a result, the fail-
ure characteristics of a composite lamina can be quite involved. However, simplifying 
assumptions are made for the development of models for predicting the strength of a 
lamina. We made a number of simplifying assumptions and restrictions for the evalua-
tion of elastic moduli. In addition to those assumptions and restrictions, we assume that 
individual fibers are of equal strengths. As per our restriction, the fiber is linearly elas-
tic till failure. Thus, as we apply gradually increasing tensile stress in a fiber, its strain 
increases linearly till failure. The strain at which fiber fracture takes place is referred 
to as the maximum fiber strain or fiber failure strain and it would be denoted as ( )ε1 f

T
ult . 

The corresponding stress in the fiber is the longitudinal tensile strength of fiber ( )σ1 f
T

ult . 
Similarly, the matrix is linearly elastic till failure and under a gradually increasing 
tensile stress in the matrix, the strain increases linearly till failure. The strain at which 
matrix failure takes place is referred to as the maximum matrix strain or matrix failure 
strain and it would be denoted as ( )εm

T
ult  and the corresponding stress in the matrix is 

the tensile strength of matrix, ( )σm
T

ult. The strengths of the constituents are related to 
the limiting strains as follows:

	
σ ε1 1 1f

T

ult
f

T

ult
fE( ) =( )

	
(3.62)

and

	
σ εm

T

ult
m
T

ult
mE( ) =( )

	
(3.63)

The mechanics of materials-based model for the longitudinal strength of a unidi-
rectional lamina is governed by the failure strains (and strengths) of fibers and matrix 
together with the elastic moduli of fibers and matrix and fiber volume fraction.

TABLE 3.2
Strength Parameters of a Unidirectional Lamina

Strength Parameter Nature of Load Applied Loading Direction

Longitudinal tensile strength Tensile force Along the fiber direction
Longitudinal compressive strength Compressive force Along the fiber direction
Transverse tensile strength Tensile force Normal to the fiber direction 

(in the plane of the lamina)
Transverse compressive strength Compressive force Normal to the fiber direction 

(in the plane of the lamina)
In-plane shear strength Shear force In the plane of the lamina
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Now, there are two possible cases of maximum fiber strain relative to maximum 
matrix strain: (i) ( ) ( )ε ε1 f

T
ult m

T
ult<  and (ii) ( ) ( )ε ε1 f

T
ult m

T
ult> . Let us consider these cases 

separately.

Case 1: ( ) ( )ε ε1 f
T

ult m
T

ult<  (Figure 3.12)

Let us check the longitudinal tensile strength of a unidirectional lamina under different 
fiber volume fractions. When the fiber volume fraction is zero, the composite is nothing 
but pure matrix and the longitudinal tensile strength of the lamina is equal to the tensile 
strength of the matrix. At this point, the longitudinal tensile strength of the composite 
is given by

	
σ σ1c
T

ult
m
T

ult
( ) =( )

	
(3.64)

As we gradually increase the fiber volume fraction, initially, the fibers hardly con-
tribute to the strength of the lamina. At a very low fiber volume fraction, under small 
tensile load, the fiber tensile strain exceeds its failure strain and fiber fracture occurs. 
Fiber fracture implies a decrease in effective cross-sectional area of the lamina and 
an instantaneous increase in matrix strain. However, this increase in matrix strain at 
the same composite stress does not necessarily imply failure of the composite. The 
fractured fibers are like holes in the cross section of the composite lamina and the total 
load is taken by the matrix alone. The longitudinal strength of the composite lamina is 
then given by

	
σ σ1 1c
T

ult
m
T

ult
fV( ) =( ) −( )

	
(3.65)
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FIGURE 3.12  Mechanics of materials model for the longitudinal strength of a unidirectional lamina, 
( ) ( )ε ε1 f

T
ult m

T
ult< . (a) Strength of a unidirectional lamina. (b) Stress–strain curves for a unidirectional lam-

ina, Vf < (Vf)min. (c) Stress–strain curves for a unidirectional lamina, Vf > (Vf)min. (Adapted with permis-
sion in parts from R. M. Jones, Mechanics of Composite Materials, second edition, Taylor & Francis, 
New York, 1999; A. Kelly and G. J. Davies, Metallurgical Reviews, 10(37), 1965, 1–77.)
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Equation 3.65 implies that the addition of fibers actually reduces lamina strength! 
Quite obviously, this contradicts the very principle of composites where reinforcements 
are provided for better properties. Thus, Equation 3.65 has to be valid for zero fiber 
volume fraction (i.e., pure matrix) and at low fiber volume fractions. At this point, let us 
introduce the concept of minimum fiber volume fraction, (Vf)min, below which Equation 
3.65 is valid. Note that in this region of fiber volume fractions, the longitudinal strength 
of the composite lamina is entirely contributed by the matrix alone. At fiber volume 
fractions above (Vf)min too, once the fiber tensile strain exceeds its failure strain, fiber 
fracture occurs and the matrix strain increases instantaneously. However, at high 
fiber volume fractions, this increase in matrix strain is beyond its failure strain and 
fiber fracture leads to complete failure of the composite lamina. Thus, the fiber failure 
strain can be considered as the failure strain of the composite lamina as well and its 
longitudinal tensile strength is then given by

	
σ σ ε1 1 1 1c
T

ult
f
T

ult
f f

T

ult
m fV E V( ) =( ) +( ) −( )

	
(3.66)

In Equation 3.66, the first term is the contribution from the fibers to the longitudinal 
tensile strength of the composite lamina, whereas the second term is the contribution 
from the matrix. Note that stress in the matrix at the point of maximum fiber strain is 
( )ε1 f

T
ult mE .

Equations 3.65 and 3.66 represent the micromechanics-based model for the longitu-
dinal strength of a unidirectional lamina. As indicated above, these equations are not 
valid for all fiber volume fractions; for volume fractions lower than (Vf)min, Equation 
3.65 is applicable, and for volume fractions above (Vf)min, Equation 3.66 is applicable. 
Mathematically, (Vf)min is obtained by solving Equations 3.65 and 3.66 as

	

( )V
E

E
f min

m
T

ult
f
T

ult
m

m
T

ult
f
T

ult
f
T

ult
m

=
( ) −( )

( ) +( ) −( )
σ ε

σ σ ε

1

1 1
	

(3.67)

Note that the lamina strength at (Vf)min is lower than the strength of the matrix. Thus, 
for the fibers to be effective in increasing the lamina strength above that of the matrix, 
we introduce another parameter referred to as the critical fiber volume fraction, (Vf)cri. 
(Vf)cri is the fiber volume fraction above which the lamina strength is more than that 
of the matrix. Then, by replacing the lamina strength with matrix strength in Equation 
3.66, one obtains the expression for critical fiber volume fraction as

	

( )V
E

E
f cri

m
T

ult
f
T

ult
m

f
T

ult
f
T

ult
m

=
( ) −( )
( ) −( )
σ ε

σ ε

1

1 1
	

(3.68)

The model for the longitudinal tensile strength of a unidirectional lamina, for the 
case ( ) ( )ε ε1 f

T
ult m

T
ult< , is pictorially explained in Figure 3.12. The line segments AO and 

OB represent the lamina strength at fiber volume fractions below and above (Vf)min, 
respectively. Irrespective of the fiber volume fraction, the fiber fails first. At this point, 
there is readjustment in the load sharing and longitudinal strain increases at the same 
stress in the composite. Beyond this point, for Vf < (Vf)min, the matrix continues to take 
load and the composite finally fails due to matrix failure. In this case, the strength of 
the composite and matrix strength are very close to each other. On the other hand, for 
Vf > (Vf)min, the readjustment of load sharing immediately after fiber failure increases 
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the strain sharply beyond the matrix failure strain and the composite fails at the same 
load. Also, in this case, the composite strength is far higher than that of the matrix.

Case 2: ( ) ( )ε ε1 f
T

ult m
T

ult>  (Figure 3.13)

The procedure for the development of the model in this case is similar to the first one. 
Thus, we check the longitudinal tensile strength of a unidirectional lamina under dif-
ferent fiber volume fractions. As in the first case, when fiber volume fraction is zero, the 
composite is nothing but pure matrix and the longitudinal tensile strength of the lamina 
is equal to the tensile strength of the matrix and the longitudinal tensile strength of the 
lamina is given by

	
σ σ1c
T

ult
m
T

ult
( ) =( )

	
(3.69)

As we gradually increase the fiber volume fraction, at a low fiber volume fraction, 
under small tensile load, the matrix tensile strain exceeds its failure strain and matrix 
cracking occurs. Matrix cracking implies a decrease in the effective cross-sectional 
area of the lamina and an instantaneous increase in fiber strain. At a small fiber volume 
fraction, this increase in strain is very steep; the fiber strain exceeds its ultimate failure 
strain and the composite fails. Thus, the longitudinal strength of the composite lamina 
is then given by

	
σ ε σ1 1 1c
T

ult
m
T

ult
f f m

T

ult
fE V V( ) =( ) +( ) −( )

	
(3.70)

Note the similarity of Equation 3.70 with Equation 3.66. At fiber volume fractions 
higher than a certain minimum value, (Vf)min, after matrix cracking, the fibers con-
tinue to take loads till the strain reaches the fiber ultimate failure strain, that is, the 
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FIGURE 3.13  Mechanics of materials-based model for the longitudinal strength of a unidirectional 
lamina, ( ) ( )ε ε1 f

T
ult m

T
ult> . (a) Strength of the lamina. (b) Stress–strain curves for the lamina, Vf < (Vf)min. 

(c) Stress–strain curves for the lamina, Vf > (Vf)min.
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fiber stress exceeds the ultimate fiber stress. The longitudinal strength of the composite 
lamina is then given by

	
σ σ1 1c
T

ult
f
T

ult
fV( ) =( )
	

(3.71)

Equation 3.70 is applicable at fiber volume fractions lower than (Vf)min. Note at zero 
fiber volume fraction (i.e., pure matrix), it reduces to Equation 3.69. Now, (Vf)min is 
obtained by solving Equations 3.70 and 3.71 as
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E E
f min

m
T

ult
m

f
T

ult
m
T

ult
f m

T

ult
m

=
( )

( ) −( )





+( )
ε

ε ε ε1 1
	

(3.72)

The model for the longitudinal tensile strength of a unidirectional lamina, for the 
case ( ) ( )ε ε1 f

T
ult m

T
ult> , is pictorially explained in Figure 3.13. The line segments AO and 

OB represent the lamina strength at fiber volume fractions below and above (Vf)min, 
respectively. Irrespective of the fiber volume fraction, the matrix fails first. At this 
point, there is readjustment in the load sharing and longitudinal strain increases at the 
same stress in the composite. For Vf < (Vf)min, the readjustment of load sharing imme-
diately after matrix failure increases the strain sharply beyond the fiber failure strain 
and the composite fails at the same load. On the other hand, for Vf > (Vf)min, the fiber 
continues to take load and the composite finally fails due to fiber failure.

EXAMPLE 3.3

For a unidirectional carbon/epoxy lamina, the constituent material properties are 
as follows: E1f = 375 GPa, ( )σ1 3000f

T
ult = MPa, Em = 3.6 GPa, ( )σm

T
ult = 72MPa .

	 a.	Determine the minimum fiber volume fraction and the critical fiber vol-
ume fraction.

	 b.	Study the stress, strain, and load-sharing characteristics at a fiber volume 
fraction of 0.01.

	 c.	Study the stress, strain, and load-sharing characteristics at a fiber volume 
fraction of 0.6.

Solution

First, we find the failure strains of fibers and matrix as follows:

	

ε

ε

1
3000

375 000
0 008

72
3600

0 02

f
T

ult

m
T

ult

( ) = =

( ) = =

,
.

.
	

We see that the matrix failure strain is higher than fiber failure strain.
Using Equations 3.67 and 3.68, the minimum and critical fiber volume frac-

tions are readily calculated as

	
( )

.
.

.Vf min =
− ×

+ − ×
=

72 0 008 3600
72 3000 0 008 3600

0 0142
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and

	
( )

.
.

.Vf cri =
− ×
− ×

=
72 0 008 3600

3000 0 008 3600
0 0145

	

Thus, at a fiber volume fraction less than 1.42%, the longitudinal tensile 
strength of the composite is lower than the matrix tensile strength. Also, any 
additional increase in fiber volume fraction would actually reduce the composite 
tensile strength.

At a fiber volume fraction between 1.42% and 1.45%, the longitudinal tensile 
strength of the composite is lower than the matrix tensile strength. However, any 
additional increase in fiber volume fraction would increase the composite tensile 
strength.

At a fiber volume fraction higher than 1.45%, the longitudinal tensile strength of 
the composite is higher than the matrix tensile strength and any additional increase 
in fiber volume fraction would further increase the composite tensile strength.

In a unidirectional carbon/epoxy composite, the fiber volume fraction is gener-
ally around 50% to 60%. Composite strength is invariably much higher than that 
of the matrix and further increase in the fiber volume fraction would increase the 
composite strength. Very low fiber volume fraction such as 1% is impractical. 
However, for the sake of illustration, let us consider Vf = 0.01.

Let us first consider an RVE of unit cross-sectional area. Then, at fiber volume 
fraction, Vf = 0.01, the cross-sectional areas of composite, fibers, and matrix are
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Let us apply a tensile force on the RVE and gradually increase its magnitude. 
Fiber failure takes place when the longitudinal strain is 0.008.

Just before fiber failure, the longitudinal stresses in the fibers, matrix, and com-
posite are calculated as follows:

	

σ
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. ( . , . ) .
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= × =
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MPaσ m
T

	

Loads shared by the fibers, matrix, and composite are calculated by multiply-
ing the stresses with the corresponding cross-sectional areas as follows:

	

F

F

F
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f
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1

1
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Immediately after fiber failure, load sharing goes through an instantaneous 
change and the total load is shared by the matrix alone, that is,
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and the corresponding stresses are
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The strains corresponding to these stresses are
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We find that when fiber failure takes place, the longitudinal strain increases at 
the same load. However, this increased strain is still lower than the failure strain 
of the matrix. Thus, the lamina has the capacity to take additional loads. On fur-
ther loading, finally, the matrix fails when the strain reaches matrix failure strain. 
At this point, the stresses are as follows:
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σ
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No further loading is possible as the matrix fails at this load level. So, the stress 
in the composite is the strength of the composite, that is, the longitudinal strength 
of the composite at a fiber volume fraction of 1% is 71.28 MPa. We can also use 
Equation 3.65 and get the composite strength as

	
σ1 72 1 0 01 71 28c
T

ult
( ) = × − =( . ) . MPa

	

Let us now consider a fiber volume fraction of 0.6.
As in the previous case, let us consider an RVE of unit cross-sectional area. 

Then, at fiber volume fraction, Vf = 0.6, the cross-sectional areas of composite, 
fibers, and matrix are
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Let us apply a tensile force on the RVE and gradually increase its magnitude. 
Fiber failure takes place when the longitudinal strain is 0.008.

Just before fiber failure, the longitudinal stresses in the fibers, matrix, and com-
posite are calculated as follows:
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Loads shared by the fibers, matrix, and composite are calculated by multiply-
ing the stresses with the corresponding cross-sectional areas as follows:
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To check whether further loading is possible, let us consider an instant imme-
diately after fiber failure. At this point, the total load is required to be shared by 
the matrix alone. That is,
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and the corresponding stresses are
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Note that the stress in the matrix is too high. The strains corresponding to 
these stresses are
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Note that the strain in the matrix is too high. We find that when fiber failure 
takes place, the matrix stress and strain increase instantaneously far beyond their 
limits. Thus, at this fiber volume fraction, the composite fails immediately after 
fiber failure and the corresponding composite stress is the composite strength, 
that is, the longitudinal tensile strength of the composite is 1811.52 MPa. We can 
also use Equation 3.66 and get the composite strength as

	
σ1 3000 0 6 0 008 3600 1 0 6 1811 52c
T

ult
( ) = × + × × − =. . ( . ) . MPa

	

3.5.2.2  Longitudinal Compressive Strength ( )1σ c
C

ult

The strength characteristics of a unidirectional lamina under longitudinal compression 
are different from and more complex than those under longitudinal tension. Typical 
failure modes associated with a unidirectional lamina under longitudinal compression 
are [2,25–27]

◾◾ Microbuckling of fibers in extension
◾◾ Microbuckling of fibers in shear
◾◾ Transverse tensile failure of matrix and/or interface
◾◾ Shear failure
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These basic failure modes in a unidirectional lamina under longitudinal compression 
are schematically shown in Figure 3.14. In a unidirectional composite lamina under 
longitudinal compression, the fibers act like tiny columns and they tend to buckle. 
Local fiber buckling may take place either out-of-phase or in-phase. Out-of-phase fiber 
microbuckling (Figure 3.14a) is the extensional buckling mode in which the matrix 
undergoes extension and compression in the transverse direction. This type of failure 
is associated with low fiber volume fraction and the following approximate expression 
can be used for longitudinal compressive strength [1]:
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(3.73)

At high fiber volume fraction (typically, Vf > 0.4), fiber microbuckling occurs in-
phase or the shear mode (Figure 3.14b) in which the matrix undergoes shear. This type 
of fiber microbuckling is more common and the longitudinal compressive strength of 
the composite in this mode can be approximated by [1]
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ult
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− 	
(3.74)

Transverse tensile failure of the matrix and/or interface (Figure 3.14c) takes place 
when the transverse tensile strain due to Poisson’s effect under longitudinal compres-
sion exceeds the ultimate tensile strain of the matrix or the fiber–matrix interface. Now, 
transverse tensile strain due to Poisson’s effect under a longitudinal compressive stress 
is given by

	
ε ν ε ν σ

2 12 1
12 1

1
c
T

c c
C c c

C

cE
= =

	
(3.75)

Thus, in this mode of failure, the longitudinal compressive strength of a unidirec-
tional lamina is given by

(a)

(d)(c)

(b)

FIGURE 3.14  Typical failure modes in a unidirectional lamina under longitudinal compression. 
(a) Microbuckling of fibers in extension. (b) Microbuckling of fibers in shear. (c) Transverse tensile fail-
ure of matrix. (d) Shear failure. (Adapted with permission from A. K. Kaw, Mechanics of Composite 
Materials, CRC Press, Boca Raton, FL, 2006.)
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(3.76)

The composite elastic moduli are given by the mechanics of materials formulae 
given in Equations 3.30 and 3.53. The ultimate transverse tensile strain of the compos-
ite will be discussed in Section 3.5.2.3, and we can use the mechanics of materials rela-
tion from Equation 3.83. Thus, the longitudinal composite strength can be expressed as
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(3.77)

The fourth basic compression failure mode in a unidirectional lamina is the shear 
failure (Figure 3.14d) that is associated with high fiber volume fractions. In this case, 
the composite fails due to direct shear failure of the fibers and the composite strength is 
dictated by the shear strength of the fibers. By applying the rule of mixtures, longitudi-
nal compressive stress in a unidirectional composite lamina can be shown as

	 σ σ σ1 1 1c
C

f
C

f m
C

fV V= + −( ) 	
(3.78)

where
σ1c
C 	 longitudinal compressive stress in the composite

σ1 f
C 	 longitudinal compressive stress in the fibers

σ1m
C 	 longitudinal compressive stress in the matrix

We know that the maximum shear stress under a longitudinal load is half the longitu-
dinal stress and it occurs on a plane at 45° to the longitudinal axis. Thus, the longitudi-
nal compressive stress in the fiber corresponding to fiber shear failure is 2(τ12f)ult. Here, 
we put a restriction that the matrix failure strain is higher than that of the fiber. Then, 
at the point of fiber shear failure, the longitudinal compressive stress in the matrix is 
given by σ τ1 12 12m

C
f ult m fE E= ( ) / . Thus, we get the longitudinal compressive strength as
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(3.79)

Note: We presented in this section models for predicting the longitudinal compressive 
strength of a unidirectional lamina in different compression failure modes. The failure 
modes in compression are rather complex and theoretically predicted values do not 
have good match with experimental results. Thus, these relations are useful only in 
preliminary design calculations.

EXAMPLE 3.4

For a unidirectional carbon/epoxy lamina, the constituent material properties 
are given as follows: E1f = 240 GPa, E2f = 22 GPa, G12f = 22 GPa, ν12f = 0.3, 
Em = 3.6 GPa, Gm = 1.4 GPa, νm = 0.3, (τ12f)ult = 36 MPa, and ( )σm

T
ult = 72MPa. 

Determine the longitudinal compressive strength of the lamina. Take the fiber vol-
ume fraction as 0.6.
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Solution

We shall first determine the longitudinal compressive strength as per different 
failure modes.

Fiber microbuckling in extensional mode: Using Equation 3.73, the longitudi-
nal compressive strength of the composite is obtained as
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Fiber microbuckling in shear mode: Using Equation 3.74, the longitudinal 
compressive strength of the composite is obtained as
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Transverse tensile failure of matrix: The ultimate tensile strain of matrix is 
obtained as
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Then, using Equation 3.77, longitudinal compressive strength of composite is 
obtained as
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Shear failure mode: Using Equation 3.79, the longitudinal compressive strength 
of the composite is obtained as
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Note: The variation of the longitudinal compressive strength of the unidirectional 
carbon/epoxy composite in Example 3.4 w.r.t. the fiber volume fraction is pictori-
ally shown in Figure 3.15. As found in the above calculations as well as in the 
figure, there is hardly any comparison among the results as per different fail-
ure modes. As reported in the literature, experimental results also do not match 
well with theoretical predictions. Thus, in a practical design scenario, one would 
rather depend on experimental material data. However, in the absence of any 
experimental data, the designer may use the minimum of the above results. In this 
example, direct shear failure mode gives the minimum longitudinal compressive 
strength; as seen in the figure, the graph for this failure mode is almost coincident 
with the horizontal axis.

3.5.2.3  Transverse Tensile Strength ( 2σ c
T

ult)

The transverse tensile strength of a unidirectional composite lamina is a critical param-
eter. The “first ply failure” of a laminate is generally due to the transverse tensile fail-
ure of a lamina. As we know, suitable reinforcements greatly enhance the longitudinal 
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properties of a unidirectional composite. However, it is not the case for the transverse 
properties. In fact, the transverse tensile strength of a unidirectional lamina can be 
lower than the tensile strength of the parent matrix! The fibers can be considered 
as discontinuities and stress/strain concentrations develop in the matrix around the 
fibers. It has been found from experimental observations that crack initiation usually 
takes place from the matrix with dense fiber packing indicating stress concentration in 
the matrix around the fibers. Theoretical analysis shows that this stress concentration 
factor is about two. However, stress or strain concentration is not the only factor that 
influences the transverse tensile strength. Among the several factors responsible for 
influencing the transverse tensile strength are strength of the matrix, strength of the 
fiber-to-matrix interface/interphase, fiber strength, fiber volume fraction, fiber pack-
ing and voids, etc. Theoretical models have been developed using these parameters. 
The effects of these factors on the transverse tensile strength are rather complex and 
the resulting models are also complex. Here, however, we would adopt a simplistic 
approach and discuss a mechanics of materials-based model in line with the model for 
the transverse modulus.

Let us consider the RVE used for deriving the expression for the transverse modu-
lus (Figure 3.6). The gross transverse extension in the composite is the sum total of 
transverse extensions in the fiber and matrix, that is, Δc = Δf + Δm. Expressing these 
transverse extensions in terms of transverse strains, we can show that

	 ε ε ε2 2 2 1c
T

f
T

f m
T

fV V= + −( ) 	
(3.80)

Under transverse load, the transverse stresses in the fiber and matrix are equal, 
which gives us

	 ε ε2 2 2f
T

f m
T

mE E= 	
(3.81)

Using Equation 3.81 in Equation 3.80, we get

	

ε ε2
2

21 1c
T m

f
f m

TE

E
V= + −

























 	

(3.82)
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FIGURE 3.15  Variation of longitudinal compressive strength with fiber volume fraction as per vari-
ous failure modes (Example 3.4).
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In this mode of failure, failure takes place when the transverse tensile strain in the 
matrix becomes equal to the ultimate tensile strain of the matrix, that is, ( )ε ε2m

T
m
T

ult= . 
Then, we get the ultimate tensile strain of the unidirectional composite as

	

ε ε2
2

1 1c
T

ult

m

f
f m

T

ult

E

E
V( ) = + −


























( )

	

(3.83)

And the transverse tensile strength of the unidirectional composite is given by

	

σ ε2 2
2

1 1c
T

ult
c

m

f
f m

T

ult
E

E

E
V( ) = + −









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
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







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( )

	

(3.84)

Equation 3.84 represents a simple model for the transverse tensile strength of a uni-
directional lamina using an RVE shown in Figure 3.6. By substituting the mechanics of 
materials expression for E2c in Equation 3.84, it can be shown that the right-hand side 
of the equation is nothing but matrix tensile strength. In other words, in this model, 
the transverse tensile strength of the unidirectional composite is the same as the tensile 
strength of the matrix. Other models can also be developed making appropriate simpli-
fying approximations. For example, let us consider a square array of fibers with circular 
cross section (Figure 3.16). Here, we make an approximation that the fiber-to-matrix 
interface is ineffective such that the total transverse stress is borne by the matrix alone. 
Thus,

	 σ σ2 2c
T

c c m
T

c cl t l t d= −( ) 	 (3.85)

where the terms lc, tc, and d are given in Figure 3.16. The composite fails when the 
transverse tensile stress in the matrix reaches the ultimate tensile stress of the matrix. 
Thus,

	
σ σ2c
T

ult
m
T

ult

c

c

t d

t
( ) =( ) −








	

(3.86)

We can see that the fiber volume fraction for the RVE in Figure 3.16 (considering a 
square array of fibers, i.e., bc = tc) is given by

	
V

d

t
f

c

=










π
4

2

	
(3.87)
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Tσ 2c

Tσ 2c
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FIGURE 3.16  Representative volume element for transverse tensile strength with fibers of circular 
cross section in a square array.
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Substituting Equation 3.87 in Equation 3.86, we get

	

σ σ
π2 1 2c

T

ult
m
T

ult

fV( ) =( ) −










	

(3.88)

EXAMPLE 3.5

For a unidirectional carbon/epoxy lamina, the constituent material properties are 
given as follows: E1f = 240 GPa, E2f = 22 GPa, Em = 3.6 GPa, ( )σ2 36f

T
ult = MPa, 

( )σm
T

ult = 72MPa . Verify that the transverse tensile strength of the lamina is the 
same as the tensile strength of the matrix. Take the fiber volume fraction as 0.6.

Solution

We shall first determine the transverse modulus of the unidirectional composite 
and the ultimate tensile strain of the matrix.

Using Equation 3.43, the transverse modulus of the unidirectional composite 
is obtained as

	
E c2

22 3 6
0 6 3 6 1 0 6 22

7 226=
×

× + − ×
=

.
. . ( . )

. GPa
	

The ultimate tensile strain of the matrix is obtained as

	
εmT

ult
( ) = =

72
3600

0 02.
	

Then, using Equation 3.84, the transverse tensile strength of the unidirectional 
composite is obtained as

	
σ2 7226 1

3 6
22

1 0 6 0 02 72c
T

ult
( ) = × + −







×











× =

.
. . MPa

	

which is identically the same as the tensile strength of the matrix. (See note at the 
end of Section 3.5.2.5.)

We can also use Equation 3.88 and obtain the transverse tensile strength of the 
unidirectional composite as

	

σ
π2 72 1 2

0 6
9 1c

T

ult
( ) = × − ×









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=
.

. MPa

	

3.5.2.4  Transverse Compressive Strength ( )2σ c
C

ult

A number of failure modes are possible in a unidirectional lamina under transverse 
compression. They are compression failure of matrix, shear failure of matrix, fiber 
crushing, and fiber-to-matrix interface failure. These failure modes may occur inde-
pendently or in combination with one another. Clearly, the final failure mechanism is 
complex. A simplistic approach in line with that for transverse tensile strength can be 
adopted and we can obtain a relation similar to Equation 3.84 as follows:

	

σ ε2 2
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1 1c
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ult
c
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f
f m
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ult
E

E

E
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( )

	

(3.89)

where
( )εmC ult   ultimate compressive strain of the matrix
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As in the case of the transverse tensile strength of the unidirectional composite, here 
too, the right-hand side of Equation 3.89 is actually the same as the matrix strength, 
which is compressive. Alternatively, considering fibers of circular cross section in a 
square array and assuming debond at the fiber-to-matrix interface, we can obtain a 
relation similar to Equation 3.88 as follows:

	

σ σ
π2 1 2c

C

ult
m
C

ult

fV( ) =( ) −










	

(3.90)

EXAMPLE 3.6

For a unidirectional carbon/epoxy lamina, the constituent material properties are 
given as follows: E1f = 240 GPa, E2f = 22 GPa, Em = 3.6 GPa, ( )σ2 36f

T
ult = MPa, 

( )σm
C

ult =108MPa. Verify that the transverse compressive strength of the lamina 
is the same as the compressive strength of the matrix. Take the fiber volume frac-
tion as 0.6.

Solution

We shall first determine the transverse modulus of the unidirectional composite 
and the ultimate compressive strain of the matrix.

From Example 3.5, the transverse modulus of the unidirectional composite is

	 E c2 7 226= . GPa 	

The ultimate compressive strain of the matrix is obtained as

	
εm

C

ult
( ) = =

108
3600

0 03.
	

Then, using Equation 3.89, the transverse compressive strength of the unidirec-
tional composite is obtained as

	
σ2 7226 1

3 6
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1 0 6 0 03 108c
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. . MPa

	

which is identically equal to the compressive strength of the matrix. (See note at 
the end of Section 3.5.2.5.)

Assuming fibers of circular cross section in a square array, we can also use 
Equation 3.90 and obtain the transverse compressive strength of the unidirec-
tional composite as

	

σ
π2 108 1 2

0 6
13 6c

T

ult
( ) = × − ×









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=
.

. MPa

	

3.5.2.5  In-Plane Shear Strength ( )12τ c ult

Under in-plane shear stress, the matrix shear strength and the fiber-to-matrix interface 
shear strength are critical. The fibers too come under shear stress, but fibers possess far 
higher shear strength and the possible failure modes are shear failure of matrix and the 
interface. Like in the case of transverse strengths, the failure mechanism in in-plane 
shear is also complex. Here, we adopt a simplistic approach in line with that for the 
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in-plane shear modulus. Let us consider the RVE subjected to in-plane shear stress 
as shown in Figure 3.10. Total shear deformation in the volume element is the sum of 
shear deformations in the fiber and the matrix, that is, Δc = Δf + Δm. Shear deforma-
tions are related to the shear strains and, with simple manipulation, we can express the 
shear strain in composite as follows:

	
γ γ γ12 12 12c f

f

c
m

m

c

b

b

b

b
= +

	
(3.91)

or

	 γ γ γ12 12 12 1c f f m fV V= + −( ) 	 (3.92)

The shear stresses in fiber and matrix are equal, that is, τ12f = τ12m, which gives us

	 γ γ12 12 12f f m mG G= 	 (3.93)

Using Equation 3.93 in Equation 3.92, after simple manipulations, we get
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(3.94)

Taking the mode of failure as the shear failure of the matrix, at failure, the shear 
strain in the matrix becomes equal to the ultimate shear strain of the matrix, that is, 
γ12m = (γm)ult. Thus,
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(3.95)

Then, multiplying the above with the in-plane shear modulus, the in-plane shear 
strength of the composite is obtained as

	

( ) ( )τ γ12 12
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1 1c ult c
m

f
f m ultG
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G
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(3.96)

It can be shown that the right-hand side of Equation 3.96 is the same as the shear 
strength of the matrix.

EXAMPLE 3.7

For a unidirectional carbon/epoxy lamina, the constituent material properties are 
given as follows: E1f = 240 GPa, G12f = 22 GPa, Gm = 1.4 GPa, ( )σ2 36f

T
ult = MPa, 

(τm)ult = 35 MPa. Verify that the in-plane shear strength of the lamina is the same 
as the shear strength of the matrix. Take the fiber volume fraction as 0.6.

Solution

We shall first determine the in-plane shear modulus of the unidirectional compos-
ite and the ultimate in-plane shear strain of the matrix.
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Using Equation 3.61, the in-plane shear modulus of the unidirectional compos-
ite is obtained as

	
G c12

22 1 4
0 6 1 4 1 0 6 22

3 195=
×

× + − ×
=

.
. . ( . )

. GPa
	

and the ultimate in-plane shear strain of the matrix is obtained as

	
( ) .γm ult = =

35
1400

0 025
	

Then, using Equation 3.96, the in-plane shear strength of the unidirectional 
composite is obtained as

	
( )

,
. .τc ult = × + −


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
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1 0 6 0 025 355 MPa
	

which is the same as the matrix shear strength. (See note below.)
Note on the mechanics of materials-based models for strengths: In this sec-

tion, we discussed the mechanics of materials-based models for the strengths of 
a unidirectional lamina. We also worked out the strengths of a hypothetical uni-
directional lamina using these models. Failure modes are complex and strength 
characteristics are far more complicated than stiffness. These models are based on 
highly simplified approximations, resulting in simple relations. As a result, these 
models are not reliable for use in any practical design and analysis exercise. It is 
always advisable that the designer utilizes experimentally determined strength 
data. The mechanics of materials-based models for strengths, at best, can be used 
in very preliminary design calculations. Further, the models for transverse tensile 
strength, transverse compressive strength, and in-plane shear strength are based 
on the inherent assumption that the composite failure is due to the matrix failure. 
The springs-in-series analogy is applicable in these cases and the failure of the 
composite is by the weakest link in the series, and as already found, the composite 
strengths are the same as the corresponding matrix strengths.

3.5.3  Evaluation of Thermal Coefficients

The CTE is a measure of relative change in dimensions w.r.t. change in temperature. 
For an isotropic material, it is defined as

	
α =

∆
∆

l

l T 	
(3.97)

where
α	 CTE of the material
Δl	 change in length
l	 original length
ΔT	 change in temperature

For a unidirectional lamina, CTE is a direction-dependent parameter. Longitudinal 
CTE gives a relative change in dimension of the lamina in the fiber direction. Let us 
now derive an expression for the longitudinal thermal coefficient of expansion based 
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on simple mechanics of materials approach. Let us consider an RVE and subject it to 
a temperature change of ΔT. If we consider the fibers and matrix to be free, that is, no 
bond at the interface, due to mismatch between the CTEs, they would undergo differ-
ent thermal deformations, Δlf and Δlm, respectively (Figure 3.17). However, the bond 
between them restrains them from differential deformation and the net deformation is 
the same, that is, Δlc, which is the thermal deformation of the composite. As a result, 
thermal stresses are generated in the fibers and the matrix although the net stress in the 
lamina is zero as there is no structural load. Thus, adding the longitudinal stresses in 
the fibers and matrix, we can write the following:

	 σ σ1 1 0f f m mA A+ = 	 (3.98)

where
Af	 cross-sectional area of the fibers
Am	 cross-sectional area of the matrix

Dividing both the sides of the above equation with the cross-sectional area of the 
composite, Ac, we get

	 σ σ1 1 1 0f f m fV V+ − =( ) 	 (3.99)

We can bring in the thermal deformations and rewrite the equation above as follows:
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l l
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V E

l l
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c f
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f m

c m
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∆ ∆ ∆ ∆−
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−







 − =( )

	
(3.100)

or

	 E l l V E l l Vf c f f m c m f1 1 0( ) ( )( )∆ ∆ ∆ ∆− + − − = 	 (3.101)

Now, thermal deformations are related to the temperature change as follows:

	 Δ Δl Tlc c c=α1 	 (3.102)

	 Δ Δl Tlf f c=α1 	 (3.103)

	 Δ Δl Tlm m c= α 	 (3.104)

Fiber

Matrix

Matrix

Change in temperature = ∆T
∆lm

∆lc

∆lflc

FIGURE 3.17  Representative volume element for longitudinal coefficient of thermal expansion—
schematic representation of longitudinal deformations due to change in temperature.
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Substituting the above in Equation 3.101 and dividing both the sides by ΔTlc, we get

	 E V E Vf c f f m c m f1 1 1 1 1 0( ) ( )( )α α α α− + − − = 	 (3.105)

Rearranging the terms, we can show that the longitudinal CTE is given by

	
α

α α
1

1 1

1

1

1
c

f f f m m f

f f m f

E V E V

E V E V
=

+ −
+ −

( )

( ) 	
(3.106)

In the case of the transverse CTE, ignoring the Poisson’s effect, a highly simpli-
fied mechanics of materials-based relation can be obtained by equating the total trans-
verse thermal expansion to the sum of the thermal expansions of the fibers and matrix 
(Figure 3.18), that is, Δbc = Δbf + Δbm

or

	 α α α2 2c c f f m mTb Tb Tb∆ ∆ ∆= + 	 (3.107)

Dividing both the sides by ΔTbc, we get an expression for transverse thermal coef-
ficient of expansion as

	 α α α2 2 1c f f m fV V= + −( ) 	 (3.108)

Rigorous methods have been employed for both longitudinal CTE as well as trans-
verse CTE. The expression for longitudinal CTE from rigorous analysis is the same as 
that from the mechanics of materials approach; for transverse CTE, it can be stated as 
given below [28]:

	 α ν α ν α α ν2 2 1 121 1c f f f m m m f cV V= + + + −( ) ( ) 	 (3.109)

In the above relation, for ν12c, the mechanics of materials expression can be used.

EXAMPLE 3.8

For a unidirectional carbon/epoxy lamina, the constituent material properties are 
given as follows: E1f = 240 GPa, Em = 3.6 GPa, α1f = −0.5 × 10−6 m/m/°C, α2f = 
6 × 10−6 m/m/°C, αm = 60 × 10−6 m/m/°C, and ν12f = 0.28, νm = 0.3. Determine 
the longitudinal and transverse CTEs. Take the fiber volume fraction as 0.6.

Solution

The longitudinal CTE is given by Equation 3.106 as follows:

	
α1

60 5 240 0 6 60 3 6 1 0 6
240 0 6 3 6 1 0 6

10 0c =
− × × + × × −

× + × −
× =−. . . ( . )

. . ( . )
.0099 10 6× °− m/m/ C

	

Change in temperature = ∆T

bm/2
(bm + ∆bm)/2

(bm + ∆bm)/2

bf + ∆bf bc + ∆bc

bm/2

bc bf Fiber

Matrix

Matrix

FIGURE 3.18  Representative volume element for transverse coefficient of thermal expansion—
schematic representation of transverse deformations due to change in temperature.
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The transverse CTE is given by Equation 3.108 as follows:

	 α2
6 66 0 6 60 1 0 6 10 27 6 10c = × + × − × = × °− −[ . ( . )] . m/m/ C 	

The longitudinal CTE as per rigorous analysis is the same as per the mechan-
ics of materials approach. The transverse CTE as per rigorous analysis is given 
by Equation 3.109. Toward this, we first determine the major Poisson’s ratio as 
follows:

	 ν12 0 28 0 6 0 3 1 0 6 0 288c = × + × − =. . . ( . ) . 	

Transverse CTE is then obtained as follows:

	

α2
61 0 28 6 0 6 1 0 3 60 1 0 6 0 5 0 288 10c = + × × + + × × − − − × ×

=

−[( . ) . ( . ) ( . ) ( . ) . ]

335 952 10 6. × °− m/m/ C 	

3.5.4  Evaluation of Moisture Coefficients

When a body absorbs moisture, it expands in size. The CME is a measure of relative 
change in dimension w.r.t. change in moisture content in the body. For an isotropic 
material, it is defined as

	
β =

∆
∆

l

l C 	
(3.110)

where
β	 CME of the material (m/m/kg/kg)
Δl	 change in length (m)
l	 original length (m)
ΔC	 change in moisture content per unit mass of the body (kg/kg)

For a unidirectional lamina, the CME is a direction-dependent parameter. Thus, the 
longitudinal CME is defined as the change in linear dimension in the fiber direction per 
unit length per unit change in mass of moisture content per unit mass of the body. On 
the other hand, the transverse CME gives us a measure of relative change in dimension 
in the transverse direction. The unit of CME is m/m/kg/kg.

Let us now derive an expression for the longitudinal CME based on the simple 
mechanics of materials approach. Let us consider an RVE (Figure 3.19). Let the 

Fiber

Matrix

Matrix

Change in moisture content per unit mass of composite = ∆Cc

∆lm

lc

∆lc

∆lf

FIGURE 3.19  Representative volume element for longitudinal coefficient of moisture expansion—
schematic representation of longitudinal deformations due to change in moisture content.
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volume element absorb a certain quantity of moisture. If we consider the fibers and 
matrix to be free, that is, no bond at the interface, due to mismatch between the 
CMEs, as shown in Figure 3.19, they would undergo different deformations, Δlf and 
Δlm, respectively. However, the bond between them restrains them from differential 
deformation and the net deformation is the same, that is, Δlc, which is the net defor-
mation of the composite due to moisture absorption. As a result, stresses are gener-
ated in the fibers and the matrix although net stress in the lamina is zero as there is 
no structural load. Thus, adding the longitudinal stresses in the fibers and matrix, we 
can write the following:

	 σ σ1 1 0f f m mA A+ = 	 (3.111)

where
Af	 cross-sectional area of the fibers
Am  cross-sectional area of the matrix

Dividing both the sides of the above equation with the cross-sectional area of the 
composite, Af, we get

	 σ σ1 1 1 0f f m fV V+ − =( ) 	 (3.112)

We can bring in the deformations due to moisture absorption and rewrite the equa-
tion above as follows:
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(3.113)

or

	 E l l V E l l Vf c f f m c m f1 1 0( ) ( )( )∆ ∆ ∆ ∆− + − − = 	 (3.114)

Note that till this point, the procedure for derivation is very similar to that for lon-
gitudinal CTE. However, the deformations are due to moisture expansion and they are 
related to the change in moisture content as follows:

	 ∆ ∆l C lc c c c= β1 	 (3.115)

	 ∆ ∆l C lf f f c= β1 	 (3.116)

	 ∆ ∆l C lm m m c= β 	 (3.117)

Substituting of the above in Equation 3.114 and dividing both the sides by lc, we get

	 E C C V E C C Vf c c f f f m c c m m f1 1 1 1 1 0( ) ( )( )β β β β∆ ∆ ∆ ∆− + − − = 	 (3.118)

Rearranging the terms, we get
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Now, the total moisture content in the composite is equal to the sum of moisture 
contents in the fibers and matrix. Thus,

	 ∆ ∆ ∆C l b t C l b t C l b tc c c c c f f c f c m m c m cρ ρ ρ= + 	 (3.120)

Dividing both the sides by ρclcbctc, we get
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Substituting Equation 3.122 in Equation 3.119, we get the expression for the longitu-
dinal CME as
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In the case of transverse CME, ignoring the Poisson’s effect, a highly simplified 
mechanics of materials-based relation is derived here. The methodology is similar to 
that for the transverse CTE and we equate the total transverse expansion to the sum of 
the expansions of the fibers and matrix (Figure 3.20), that is, Δbc = Δbf + Δbm. These 
deformations are related to the transverse CMEs and we get the following:

	 β β β2 2c c c f f f m m mC b C b C b∆ ∆ ∆= + 	 (3.124)

where
β2c	 transverse CME of the composite
β2f	 transverse CME of the fiber
βm	 CME of the matrix
ΔCc	 change in moisture content per unit mass of the composite
ΔCf	 change in moisture content per unit mass of the fibers
ΔCm	 change in moisture content per unit mass of the matrix

Dividing both the sides by ΔCcbc, we get
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(3.125)

Fiber

Matrix

Matrix

Change in moisture content per unit mass of composite = ∆Cc

bm/2

bm/2
(bm + ∆bm)/2

(bm + ∆bm)/2

bf + ∆bf bc + ∆bcbc bf

FIGURE 3.20  Representative volume element for transverse coefficient of moisture expansion—
schematic representation of transverse deformations due to change in moisture content.
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Substituting ΔCc from Equation 3.122, we can obtain an expression for transverse 
CME as
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We have developed expressions for both longitudinal as well as transverse CMEs 
based on simplistic assumptions. In the case of the transverse coefficient, the Poisson’s 
effect has been ignored. More rigorous methods have also been employed. The expres-
sion for the longitudinal CME from more rigorous analysis is the same as that from 
the mechanics of materials approach; for the transverse CME, it can be stated as fol-
lows [4]:
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EXAMPLE 3.9

For a unidirectional carbon/epoxy lamina, the constituent material properties are 
given as follows: E1f = 240 GPa, Em = 3.6 GPa, ρf = 1.8, ρm = 1.1, βm = 0.35 m/m/
kg/kg, ν12f = 0.28, and νm = 0.3. Determine the longitudinal and transverse 
CMEs. Take the fiber volume fraction as 0.6. Assume carbon fiber does not absorb 
moisture.

If a unidirectional laminate of size 400 mm × 300 mm × 8 mm absorbs 50 g 
moisture, determine the changed dimensions of the laminate.

Solution

Longitudinal CME is given by Equation 3.123. Now, under the given assumption 
that carbon fiber does not absorb moisture, ΔCf = β1f = β2f = 0. Then,
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The transverse CME as per the mechanics of materials-based approach is 
given by Equation 3.126 as follows:
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The longitudinal CME as per the rigorous analysis is the same as per the 
mechanics of materials approach. The transverse CTE as per the rigorous analy-
sis is given by Equation 3.127. The density of the composite is given by

	 ρc = × + × − =1 8 0 6 1 1 1 0 6 1 52. . . ( . ) . 	

And the longitudinal Poisson’s ratio of the composite is given by

	 ν12 0 28 0 6 0 3 1 0 6 0 288c = × + × − =. . . ( . ) . 	
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Then the transverse CME as per the rigorous approach is obtained as
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The mass of the laminate is obtained as

	
wc =

× × ×
=

40 30 0 8 1 52
1000

1 4592
. .

. kg
	

The mass of the matrix is

	
wm =

× × × − ×
=

( . ) ( . ) .
.

40 30 0 8 1 0 6 1 1
1000

0 4224 kg
	

The changes in the dimensions of the laminate (from the mechanics of materi-
als approach) are obtained as follows:
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Thus, the changed dimensions of the unidirectional laminate are

	 400 35 310 59 8 28. . . .mm mm mm× × 	

3.6  ELASTICITY-BASED MODELS
The mechanics of materials equations for stiffness, strength, and hygrothermal param-
eters presented in this chapter are derived by utilizing simple forms of equilibrium 
conditions. Simplifying assumptions such as uniform stress distribution are made. 
Compatibility and 3D stress–strain relations may not be satisfied at each point in the 
RVE. In the elasticity approach, too, the concept of RVE is adopted. However, this 
approach is based on more rigorous treatment, including stress–strain relations in three 
dimensions, equilibrium conditions, and compatibility conditions.

As we had mentioned earlier, there are several types of models that can be consid-
ered as elasticity models. Also, the classification of these models is a matter of conve-
nience of discussion. One way to classify the elasticity-based models is to categorize 
them into three subcategories—models based on bounding techniques, models with 
exact solutions, and self-consistent models [2].

Bounding techniques are associated with finding the upper and lower bounds for the 
elastic moduli. Principles of minimum complementary energy and minimum potential 
energy have been used for lower bound and upper bound, respectively. The following 
bounds for the Young’s modulus of an isotropic composite material can be derived [1,14]:
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E E

V E V E
m d

d m m d
lower =

+ 	
(3.128)
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and

	 E E V E Vd d m mupper = + 	 (3.129)

where
Elower	 lower bound for Young’s modulus
Eupper	 upper bound for Young’s modulus
Em	 Young’s modulus of the matrix
Ed	 Young’s modulus of the dispersed material
Vm	 matrix volume fraction
Vd	 volume fraction of the dispersed matter

These bounds can also be interpreted as bounds for the transverse modulus of a 
unidirectional composite. However, the bounds are too far apart for most practical fiber 
volume fractions. One of the reasons that the bounds are far apart is that fiber pack-
ing geometry is not specified. In the exact solutions approach, a possible solution is 
assumed. The assumed solution involves stress, strain, or displacement components and 
it is verified whether the governing differential equations are satisfied by the assumed 
solutions. In the composite cylindrical assemblage (CCA) approach [15], the fibers are 
taken as circular in cross section and arranged either in a regular array or at random. 
The RVE is a combination of two cylinders—an inner cylinder that represents the fiber 
and an outer cylinder for the matrix (Figure 3.21). Appropriate boundary conditions 
are applied on the composite cylinder and the desired elastic modulus is obtained by 
analyzing the response of the composite cylinder to the applied boundary conditions.

3.7  SEMIEMPIRICAL MODELS
We had noted before that the mechanics of materials-based models for the transverse 
modulus and the in-plane shear modulus are not very reliable as they do not have good 
match with experimental results. Elasticity-based models are generally complicated, 
and in some cases, their applicability is also restricted to a rather narrow range of 
design variables. Empirical models, on the other hand, are simple and easy to use 
in a design environment. Halpin–Tsai equations [1,21] are the most commonly used 
empirical models and these models are briefly discussed in this section. These models 
were developed by curve fitting of experimental and elasticity-based model data. The 
parameters used in the curve fitting have physical significance and thus these models 
are called semiempirical.

Fiber

Matrix

FIGURE 3.21  Representative volume element in the composite cylinder assemblage (CCA) approach. 
(Adapted with permission from A. K. Kaw, Mechanics of Composite Materials, CRC Press, Boca Raton, 
FL, 2006.)
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3.7.1  General Form of Halpin–Tsai Equations

The general form of the Halpin–Tsai equations for the elastic moduli of a lamina can 
be expressed as follows:
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in which, the coefficient η is given by
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and
M	 desired composite modulus, that is, E1c, E2c, ν12c, or G12c

Mf	 corresponding fiber modulus
Mm	 corresponding matrix modulus
Vf	 fiber volume fraction

The parameter ξ is called the reinforcing factor and it depends on fiber geometry, fiber 
packing geometry, and the loading condition. Halpin–Tsai equations are very simple to 
apply; however, their accuracy depends on the choice of the parameter ξ. It is determined by 
a procedure of curve fitting and comparing Equations 3.130 and 3.131 with elasticity solu-
tions or reliable experimental data. The recommended values of ξ are given in Table 3.3.

Using the values for ξ given in Table 3.3, we can obtain the expressions for different 
elastic moduli.

3.7.2  Halpin–Tsai Equations for Elastic Moduli

3.7.2.1  Longitudinal Modulus

	 ξ = ∞ 	 (3.132)

Thus, from Equation 3.131

	 η = 0 	 (3.133)

TABLE 3.3
Recommended Reinforcing Factors

Desired Modulus ξ Remarks

Longitudinal modulus, E1 ∞ –
Transverse modulus, E2 2 For fibers of circular cross section in a square array 

(Figure 3.22a)
2a
b

For fibers of rectangular cross section in a triangular 
array (Figure 3.22b)

Major Poisson’s ratio, ν12 ∞ –
In-plane shear modulus, G12 1 For fibers of circular cross section in a square array 

(Figure 3.22a)

3 ln
a
b









For fibers of rectangular cross section in a triangular 
array (Figure 3.22b)

Source:	 R. M. Jones, Mechanics of Composite Materials, second edition, Taylor & Francis, New York, 1999; 
S.  W. Tsai and H. Thomas Hahn, Introduction to Composite Materials, Technomic Publishing, 
Lancaster, 1980; B. Paul, Transactions of the Metallurgical Society of AIME, 100, 1960, 36–41.
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and

	
ξη = −
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(3.134)

On substitution in Equation 3.130, we get

	 E E V E Vc f f m f1 1 1= + −( ) 	 (3.135)

Thus, we find that the Halpin–Tsai equation for the longitudinal modulus is the same 
as that by the mechanics of materials approach with zero void content.

3.7.2.2  Transverse Modulus

The Halphin–Tsai equation for the transverse modulus of a lamina is given by
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where
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And ξ = 2 or ξ = 2a/b as per Table 3.3.

3.7.2.3  Major Poisson’s Ratio

As in the case of the longitudinal modulus, ξ = 0, and following a similar procedure, 
we can show that

	 ν ν ν12 12 1c f f m fV V= + −( ) 	 (3.138)

Thus, we find that the Halpin–Tsai equation for the major Poisson’s ratio is the same 
as that by the mechanics of materials approach with zero void content.

(a) (b)

b
a

FIGURE 3.22  Fiber cross section and fiber packing in Halpin–Tsai equations. (a) Fibers of circular 
cross section in a square array. (b) Fibers of rectangular cross section in a triangular array. (Adapted 
with permission from A. K. Kaw, Mechanics of Composite Materials, CRC Press, Boca Raton, FL, 
2006.)
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3.7.2.4  In-Plane Shear Modulus

The Halphin–Tsai equation for the in-plane shear modulus of a unidirectional lamina is 
similar to that for the transverse modulus and it is given by
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where
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And ξ = 1 or ξ = 3 ln( )a b/  as per Table 3.3.
Halpin–Tsai equations for the elastic moduli of a lamina are simple to apply in a wide 

range of fiber volume fractions. For the longitudinal modulus and the major Poisson’s 
ratio, Halpin–Tsai equations provide identical results as with the mechanics of materi-
als approach and there is a good match with experimental data as well. The mechanics 
of materials approach gives underestimates of transverse and in-plane shear moduli, 
whereas Halpin–Tsai equations yield closer match.

EXAMPLE 3.10

For the unidirectional carbon/epoxy lamina in Example 3.2, determine the com-
posite longitudinal modulus, transverse modulus, major Poisson’s ratio, and in-
plane shear modulus by using Halpin–Tsai equations. Take a fiber volume fraction 
of 0.6. Also, take the fiber cross section as circular in a square array. Compare the 
results with those obtained in Example 3.2.

Solution

The constituent material properties are as follows: E1f = 240 GPa, E2f = 24, 
ν12f = 0.3, G12f = 22 GPa, Em = 3.6 GPa, νm = 0.3, and Gm = 1.4 GPa.

Using Equation 3.135, the longitudinal modulus of the lamina is obtained as

	 E c1 0 6 240 1 0 6 3 6 145 44= × + − × =. ( . ) . . GPa 	

For the transverse modulus, ξ = 2 for circular fibers in a square array. Then, 
using Equation 3.137, η is obtained as
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−
+

=
( . )
( . )

.
24 3 6 1
24 3 6 2

0 6538
/
/ 	

Then, using Equation 3.136, we get the transverse modulus as

	
E c2
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− ×
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Using Equation 3.138, the major Poisson’s ratio is obtained as

	 ν12 0 6 0 3 1 0 6 0 3 0 3c = × + − × =. . ( . ) . . 	
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For the in-plane shear modulus, ξ = 1 for circular fibers in a square array. 
Then, using Equation 3.140, η is obtained as

	
η =

−
+

=
( . )
( . )

.
22 1 4 1
22 1 4 1

0 8803
/
/ 	

Then, using Equation 3.139, we get the in-plane shear modulus as
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The comparison of the results for the elastic moduli of the carbon/epoxy lam-
ina by Halpin–Tsai equations with the mechanics of materials approach is given 
below:

Note: From the comparison made above, we find that the longitudinal modulus 
and the major Poisson’s ratio are identical. This is a straightforward outcome as 
the expressions are identical in both the methods. On the other hand, the trans-
verse modulus and the in-plane shear modulus as per Halpin–Tsai equations are 
larger than those by the mechanics of materials approach. We had mentioned 
before that the mechanics of materials approach, when compared with experi-
mental data, underestimates the transverse and in-plane shear moduli. Thus, it is 
seen that Halpin–Tsai equations are better suited than the mechanics of materials 
approach for the evaluation of transverse and in-plane shear moduli.

3.8  SUMMARY
In this chapter, we reviewed the basic concepts and tools available for the analysis of a 
lamina at the micro level. At the micro level, the study of a composite material revolves 
around the determination of the composite lamina parameters, viz. elastic moduli, 
strengths and coefficients of thermal and moisture expansion from the knowledge of 
certain basic variables, viz. elastic moduli, strengths, densities, and volume fractions 
and mass fractions of the fibers and matrix. A number of models are available for the 
determination of the lamina parameters; they are of different types, including netting 
models, mechanics of materials-based models, elasticity-based models, and semiem-
pirical models.

Typically, an RVE is considered in the micromechanics models. Several basic 
assumptions are also made, of which some are relaxed in some models. The mechanics 
of materials-based models are simple tools that are based on simple equilibrium con-
siderations involving averaged stresses and strains. Elasticity-based models are based 
on more rigorous treatment of lamina behavior. They are generally complicated and 
they have limited applicability. Semiempirical models, on the other hand, are simple 
and easy to use in a design environment.

Elastic 
Modulus

Mechanics of 
Materials Approach

Halpin–Tsai 
Equations

E1c 145.4 145.4
E2c 7.4 10.57
G12c 3.2 4.53

ν12c 0.3 0.3
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Many of the assumptions made in micromechanics are unrealistic. As a result, there 
is generally a gap between micromechanics predictions and experimental results. Thus, 
while the study of micromechanics gives a good insight into how composites work, the 
models for the prediction of elastic moduli and strengths can at best be considered as 
an alternative to experimental work only in the preliminary design of a product. In this 
respect, the mechanics of materials-based models as well as Halpin–Tsai models are 
the most commonly used models.

EXERCISE PROBLEMS

	 3.1	 Consider the data given below:

		  Consider the fiber cross section as circular. (a) Determine the fiber volume 
fraction in (i) square array of fiber packing and (ii) triangular array of fiber 
packing for fiber spacing-to-fiber diameter ratios (s/d) of 1.0, 1.25, 1.5, 1.75, 
and 2.0. Plot the vf versus s/d curves. Are the fiber volume fractions depen-
dent on fiber type/diameter? (b) What is the theoretical maximum fiber vol-
ume fraction for each of the three composites? Are they dependent on the 
fiber type/diameter?

	 3.2	 Consider the data in Exercise 3.1. (a) Determine the fiber mass fraction in 
(i) square array of fiber packing and (ii) triangular array of fiber packing 
for fiber spacing-to-fiber diameter ratios (s/d) of 1.0, 1.25, 1.5, 1.75, and 2.0. 
Plot the Wf versus s/d curves. Are the fiber mass fractions dependent on fiber 
type? (b) What is the theoretical maximum fiber mass fraction for each of 
the three composites? Are they dependent on the fiber type?

	 3.3	 In a matrix digestion test (see Chapter 11 for details) of carbon/epoxy sam-
ple, the following were recorded:

		  Mass of empty crucible = 30.1525 g
		  Mass of crucible with sample before matrix removal = 30.5903 g
		  Mass of crucible with sample after matrix removal = 30.4590 g
		  Density of fiber = 1.80 g/cm3

		  Density of matrix 1.1 g/cm3

		  Determine the (a) fiber mass fraction and (b) fiber volume fraction.
		  Assume zero void content.

		  Hint: Use the rule of mixtures for composite density.

	 3.4	 Consider the data given in Exercise 3.3. If the density of the sample is exper-
imentally found as 1.48 g/cm3, determine the (a) fiber mass fraction, (b) fiber 
volume fraction, (c) matrix volume fraction, and (d) voids volume fraction.

	 3.5	 Consider a unidirectional carbon/epoxy and a unidirectional glass/epoxy 
lamina, each subjected to a uniaxial tension. E1f = 240 GPa (carbon fiber), 
Ef = 76 GPa (glass fiber), and Em = 3.5 GPa (epoxy matrix). Starting with 
small fiber volume fraction of 0.1, increase it gradually to 0.9 in steps of 0.1. 
Tabulate and plot the percentage share of load by the fibers in each lamina 
w.r.t. fiber volume fractions. Comment on the trend in load sharing in the 
two materials.

Diameter (µm) Density (g/cm3)

Carbon fiber 7 1.80
Glass fiber 16 2.58
Kevlar fiber 12 1.45
Epoxy matrix – 1.1
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	 3.6	 If the mass fraction of fiber in a unidirectional glass/epoxy lamina is 0.67, 
determine the void content. Assume the following data: ρf = 2.54 g/cm3, 
ρm = 1.1 g/cm3, and ρc = 1.75 g/cm3.

	 3.7	 Consider a unidirectional glass/epoxy lamina with the following constitu-
ent material properties: Ef = 76 GPa, νf = 0.2, Gf = 35 GPa, Em = 3.6 GPa, 
νm = 0.3, and Gm = 1.4 GPa. If the voids volume fraction is 2% and the fiber 
volume fraction is 60%. (a) Determine the composite longitudinal modulus, 
transverse modulus, major Poisson’s ratio, and in-plane shear modulus. (b) 
Apply a longitudinal force on the lamina and determine the ratio of axial 
forces shared by fibers and matrix. (c) Consider the circular cross section of 
fibers and determine the maximum possible composite longitudinal modu-
lus, transverse modulus, major Poisson’s ratio, and in-plane shear modulus.

		  Compare the results with those in Example 3.1. Discuss the effect of 
voids on the composite mechanical properties.

	 3.8	 Consider the following data for a unidirectional carbon/epoxy lamina:
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		  (a) Determine the longitudinal tensile strength of the lamina. (b) If at an 
elevated temperature, the fiber and matrix moduli reduce by 10% and 20%, 
respectively, determine the change in the longitudinal strength of the lamina.

	 3.9	 Consider a hybrid unidirectional carbon–glass/epoxy lamina with the fol-
lowing constituent characteristics:
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		  Determine the (a) longitudinal modulus, (b) transverse modulus, (c) in-plane 
shear modulus, and (d) major Poisson’s ratio of the lamina.

		  Hint: Replace the two reinforcement phases with an equivalent one. For 
example,
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	 3.10	 Consider a unidirectional glass/epoxy lamina with the following constituent 
material properties:

	 E G E Gf f f m m m= = = = = =76 0 2 35 3 6 0 3 1 4GPa GPa GPa GPa, . , , . , . , .ν ν

		  Assume zero void content and a fiber volume fraction of 0.6. Determine the 
composite longitudinal modulus, transverse modulus, major Poisson’s ratio, 
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and in-plane shear modulus using the Halpin–Tsai formulations. Compare 
the results with those in Example 3.1.

	 3.11	 Determine the (a) longitudinal tensile strength, (b) longitudinal compressive 
strength, (c) transverse tensile strength, (d) transverse compressive strength, 
and (e) in-plane shear strength of the lamina in Exercise 3.7. Use the follow-
ing additional data:

	

σ σ
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ult
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	 3.12	 For a unidirectional carbon/epoxy lamina, the constituent material properties 
are  given as follows: E1f = 240 GPa, Em = 3.6 GPa, α1f = −0.5 × 10−6 m/ 
m/°C, α2f = 6 × 10−6 m/m/°C, αm = 60 × 10−6 m/m/°C, and ν12f = 0.28. 
Determine the change in dimensions w.r.t. room temperature dimensions 
for Vf = 0.5 and Vf = 0.6 if the lamina is subjected to an elevated tem-
perature of 25°C above room temperature. The original dimensions are 
300 mm × 300 mm. Comment on the effect of Vf.

	 3.13	 Is it possible to design a unidirectional lamina such that its longitudinal 
dimension is temperature invariant? What should be the fiber volume frac-
tion of the carbon/epoxy lamina in Exercise 3.12 if its length (dimension 
along the fiber direction) should not change when subjected to temperature 
change?

	 3.14	 For a unidirectional carbon/epoxy lamina, the constituent material proper-
ties are given as follows: E1f = 240 GPa, Em = 3.6 GPa, ρf = 1.8, ρm = 1.1, 
βm = 0.35 m/m/kg/kg, ν12f = 0.28, νm = 0.3. If Vf = 0.6 and Vv = 0.02, 
determine the longitudinal and transverse CMEs. Assume carbon fiber does 
not absorb moisture. Compare the results with those in Example 3.9.

	 3.15	 Given the material data in Exercise 3.14, plot the percentage change in vol-
ume of a unidirectional laminate of size 400 mm × 300 mm × 8 mm w.r.t. 
Vf if it absorbs 50 g moisture. Take void content as zero.
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4.1  CHAPTER ROAD MAP
In the chapter road map for Chapter 3, we stated that the analysis of a composite lamina 
is done at two levels—micro level and macro level. We also noted that, in the context of 
product design, the study of a lamina at the micro level is an alternative to the experi-
mental study of the lamina. Effective hygro-thermo-mechanical parameters of a lam-
ina are the typical output of micro-level analysis or experimental study of the lamina. 
These hygro-thermo-mechanical parameters are the input to a macro-level analysis of 
a lamina and this is an essential step in the analysis of a laminate leading to product 
design and development.

The objective of this chapter is to acquaint the reader with the behavior of a lamina 
at a macro level. We shall begin our study of macromechanics with an introductory 
discussion on lamina and the parameters that are required to describe a lamina. The 
mechanical behavior of a lamina is discussed in terms of the constitutive relations, engi-
neering constants, and strength. Fiber orientation in a lamina is an important aspect 
and it is addressed in the discussion on topics in generally orthotropic lamina. Then, 
strength parameters of an orthotropic lamina are introduced and failure criteria are 
presented. Finally, the hygrothermal behavior of a lamina is discussed and the effects 
of temperature and moisture on specially orthotropic as well as generally orthotropic 
laminae are addressed.

Exposure to the introductory concepts of composites (Chapter 1) and basic solid 
mechanics (Chapter 2) is a prerequisite for effective assimilation of the concepts pre-
sented in this chapter; familiarity with micromechanics of lamina (Chapter 3) is desir-
able but not essential.

4.2  PRINCIPAL NOMENCLATURE
E1, E2	 Young’s moduli of a lamina in the material coordinates
Ex, Ey	 Young’s moduli of a lamina in the global coordinates
G12	 In-plane shear modulus of a lamina in the material coordinates
Gxy	 In-plane shear modulus of a lamina in the global coordinates
[Q]	 Reduced stiffness matrix of a lamina
Q11, Q12, …, Q66	 Elements of the reduced stiffness matrix
[ ]Q 	 Transformed reduced stiffness matrix of a lamina
Q Q Q11 12 66, , ,   … 	 Elements of the transformed reduced stiffness matrix
[R]	 Reuter matrix
( ) , ( )R RT T

11 22 	� Strength ratio/ultimate strain ratio for normal tensile stress in the 
directions -1 and -2, respectively

( )R C
11, ( )R C

22 	� Strength ratio/ultimate strain ratio for normal compressive stress 
in the directions -1 and -2, respectively

( )R S
12	 Strength ratio for in-plane shear stress

4
Macromechanics of a Lamina
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[S]	 Reduced compliance matrix of a lamina
[ ]S 	 Transformed reduced compliance matrix of a lamina
S11, S12, S22, S66	 Elements of the reduced compliance matrix
S S S11 12 66, , ,   … 	 Elements of the transformed reduced compliance matrix
[T]	 Transformation matrix
α1, α2	 CTEs of a lamina in the material coordinates
αx, αy, αxy	 CTEs of a lamina in the global coordinates
β1, β2	� Coefficients of moisture expansion of a lamina in the material 

coordinates
βx, βy, βxy	� Coefficients of moisture expansion of a lamina in the global 

coordinates
γ12	 In-plane shear strains in a lamina in the material coordinates
γxy	 In-plane shear strains in a lamina in the global coordinates
ΔT	 Change in temperature
ΔC	 Change in moisture content per unit mass of the lamina (kg/kg)
ε11, ε22	 Normal strains in a lamina in the material coordinates
εxx, εyy	 Normal strains in a lamina in the global coordinates
ηx,xy, ηy,xy, ηxy,x, ηxy,y	 Shear coupling ratios
ν12	 Major Poisson’s ratio of a lamina in the material coordinates
νxy	 Major Poisson’s ratio of a lamina in the global coordinates
σ11, σ22	 Normal stresses in a lamina in the material coordinates
σxx, σyy	 Normal stresses in a lamina in the global coordinates
( )σ11

T
ult , ( )σ22

T
ult	� Longitudinal and transverse tensile strengths, respectively, of a 

lamina
( )σ11

C
ult, ( )σ22

C
ult 	� Longitudinal and transverse compressive strengths, respectively, 

of a lamina
τ12	 In-plane shear stress in a lamina in the material coordinates
τxy	 In-plane shear stress in a lamina in the global coordinates
(τ12)ult	 In-plane shear strength
θ	 Orientation of a lamina w.r.t. x-axis

4.3  INTRODUCTION TO LAMINA
A lamina is a single layer or ply in a laminated composite material (Figure 4.1). It 
can be either flat or curved and it is made up of unidirectional, bidirectional, multi-
directional, or randomly oriented fibers in the matrix material. At the micro level, as 

(a) (b)

(d)

1

2

3

t

≈

(c)

FIGURE 4.1  (a) Unidirectional composite ply. (b) Bidirectional composite ply. (c) Random fiber 
composite ply. (d) Composite lamina.
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discussed in Chapter 3, the composite properties are determined from the interaction 
between the constituents. As noted in the chapter road map, macro-level analysis of a 
lamina is an essential step in the overall product design and analysis and it is presented 
in different styles and varying depth in many texts on mechanics of composites [1–6]. 
In macromechanics, a lamina is represented by its gross hygro-thermo-mechanical 
properties. A lamina is basically 2D and to describe it we need to know the ply thick-
ness and the gross properties in the length and breadth directions. Taking the case of 
a unidirectional lamina, the direction along the fibers is the longitudinal direction or 
direction −1. However, the direction across the fibers in the plane of the lamina is the 
transverse direction or direction −2. Clearly, direction −3 is along the thickness of the 
lamina. The coordinate system O-123 is called the material coordinate system (or the 
local coordinate system) and it should be clearly differentiated from the laminate coor-
dinate system O-xyz (or the global coordinate system).

The hygro-thermo-mechanical properties required in the macro-level analysis of a 
lamina are primarily as follows:

◾◾ Stiffness properties
−− Longitudinal modulus, E1

−− Transverse modulus, E2

−− In-plane shear modulus, G12

−− Poisson’s ratios, ν12 and ν23 (ν23 is needed if analysis involves ε33)

Note: In a transversely isotropic material, there are five independent elastic constants. 
Under the plane stress idealization, the Poisson’s ratio ν23 is associated only with the 
out-of-plane normal strain ε33. Thus, for lamina analysis involving in-plane stresses and 
strains, the remaining four stiffness parameters are sufficient.

◾◾ Strength parameters
−− Longitudinal tensile strength, ( )σ11

T
ult

−− Longitudinal compressive strength, ( )σ11
C

ult

−− Transverse tensile strength, ( )σ22
T

ult

−− Transverse compressive strength, ( )σ22
C

ult

−− In-plane shear strength, (τ12)ult

◾◾ Hygrothermal properties
−− Longitudinal CTE, α1

−− Transverse CTE, α2

−− Longitudinal CME, β1

−− Transverse CME, β2

As mentioned earlier, a lamina may be unidirectional, bidirectional, multidirec-
tional, or randomly oriented. However, thankfully, at the macro level, the general meth-
odology of analysis remains the same for all these different types of laminae. We only 
need to take care in using suitable values for the various stiffness and other parameters. 
For example, for a unidirectional lamina, E1 ≠ E2, whereas, for a bidirectional fiber 
lamina, E1 ≈ E2, and so on.

4.4  CONSTITUTIVE EQUATIONS OF A LAMINA
The structural analysis of a lamina involves the determination of the response (pri-
marily strains and deformations) of the lamina to applied loads. Given the loads and 
the geometry of the lamina, the stresses are readily determined. Then, using the 
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stress–strain relations, the strains and deformations are determined. The stress–strain 
relations for different types of materials were discussed in Chapter 2. These relations 
contain a number of elastic constants and the number of independent elastic constants 
depends on the type of the material. A lamina, whether unidirectional or bidirectional, 
is orthotropic in nature. It may be recalled that there are nine independent elastic con-
stants in an orthotropic material.

There is another aspect that needs attention—the orientation of the lamina. An 
orthotropic lamina whose material coordinates are aligned with the laminate coordi-
nates is referred to as a specially orthotropic lamina (Figure 4.2a). On the other hand, 
an orthotropic lamina whose in-plane material coordinate axes are at some nonzero 
angle to the in-plane laminate coordinate axes is referred to as a generally orthotropic 
lamina (Figure 4.2b).

4.4.1  Specially Orthotropic Lamina

4.4.1.1  Constitutive Relation

Let us recall Equation 2.201 and rewrite the stress–strain relation for an orthotropic 
material in the material coordinate system as follows:
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(4.1)

where
ε11, ε22, ε33	 Normal strains
γ23, γ31, γ12	 Shear strains
σ11, σ22, σ33	 Normal stresses
τ23, τ31, τ12	 Shear stresses
E1, E2, E3	 Young’s moduli

y

x

z, 3z, 3
y, 2

x, 1
1

2
(a) (b)

θ

FIGURE 4.2  (a) Specially orthotropic lamina. (b) Generally orthotropic lamina.
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G23, G31, G12	 Shear moduli
ν12, ν23, ν13	 Poisson’s ratios

Equation 4.1 provides the 3D stress–strain relations for an orthotropic composite 
material in the material coordinate system. Under the applied loads, the gross or 
apparent stress components are determined from the geometry and loading infor-
mation. Note that the six strain components are then determined from the six stress 
components using the nine engineering constants. It is illustrated with the help of an 
example as given below.

EXAMPLE 4.1

Consider a unidirectional lamina made as shown in Figure 4.3a. The engineering 
constants for the material are as follows: E1 = 40 GPa, E2 = 8 GPa, ν12 = 0.25, 
ν23 = 0.3, and G12 = 4 GPa.

	 1.	Apply a tensile force in the fiber direction (Figure 4.3b) and determine 
the strains and deformations.

	 2.	Apply a tensile force in the transverse direction (Figure 4.3c) and deter-
mine the strains and deformations.

	 3.	Apply a shear force in the plane of the lamina (Figure 4.3d) and 
determine the strain components.

	 4.	Sketch the deformed lamina in each of the above cases.

Solution

Unidirectional lamina is transversely isotropic and thus

E3 = E2 = 8 GPa
ν13 = ν12 = 0.25
G31 = G12 = 4 GPa

(a)
0.5 mm

300 mm

1000 MPa

1000 MPa

100 MPa

400 mm

(b)

(c)

(d)

FIGURE 4.3  Lamina analysis in Example 4.1. (a) Unidirectional lamina. (b) UD lamina under longi-
tudinal tensile stress. (c) UD lamina under transverse tensile stress. (d) UD lamina under in-plane shear 
stress.
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Also,
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Then, using Equation 4.1, strain components under different loading condi-
tions are obtained as follows:

	 1.	Analysis of lamina under longitudinal tensile stress
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		  The corresponding deformations are
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	 2.	Analysis of lamina under transverse tensile stress
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		  The corresponding deformations are
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	 3.	Analysis of lamina under in-plane shear stress
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		  The corresponding deformations are
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	 4.	Deformed shapes of the lamina in each of the above cases are given in 
Figure 4.4.

The illustration above shows how an orthotropic lamina under in-plane loads can be 
analyzed. We have found that the assumption of transverse isotropy reduces the number 
of independent engineering constants. However, this simplification is basically on the 
material properties only and the number of stress–strain equations and their general 
structure remains the same. We have also found that under the in-plane loads for a thin 
lamina, there is negligible out-of-plane deformation.

On the other hand, gross reduction in the computational effort can be achieved by 
utilizing plane stress idealization. Let us then apply the concept of plane stress idealiza-
tion (refer Chapter 2) in the analysis of a lamina. The thickness of a lamina is small com-
pared to the other two dimensions. Also, only in-plane forces are applied on the lamina. 



140 Composite Structures

Given this, a lamina can be analyzed as a plane stress problem. In the material coordi-
nate system, from Chapter 2, we can rewrite Equations 2.213 through 2.218 as follows:
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and

	
ε ν σ ν σ

33
13 11

1

23 22

2

= − +








E E 	

(4.3)

	 γ γ23 31 0= = 	 (4.4)

The square matrix on the right-hand side of Equation 4.2, denoted by [S], is called 
the reduced compliance matrix. Thus,
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in which,

	

[ ]S =



















S S

S S

S

11 12

12 22

66

0

0

0 0
	

(4.6)

300

400

298.125

410

88.57°

(a)

400

300

397.5

337.5

(b)

(c)

FIGURE 4.4  Deformation of unidirectional lamina (Example 4.1). (a) Deformation under longitudinal 
tensile stress. (b) Deformation under transverse tensile stress. (c) Deformation under in-plane shear stress.
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and the elements of [S] are given by

	
S

E
11

1

1
=

	
(4.7)

	
S

E
12

12

1

= −
ν

	
(4.8)

	
S

E
22

2

1
=

	
(4.9)

	
S

G
66

12

1
=

	
(4.10)

	 S S16 26 0= = 	 (4.11)

Notes:

	 1.	In the compliance matrix, there are no terms with suffix containing digits 3, 4, 
or 5. For example, we do not have a term S13 and so on. In our alternate or con-
tracted notation, σ11, σ22, and τ12 are represented, respectively, by σ1, σ2, and σ6. 
Similarly, ε11, ε22, and γ12 are represented, respectively, by ε1, ε2, and ε6. Thus, 
in the case of a lamina, the third, fourth, and fifth rows and columns of the full 
six by six compliance matrix are omitted.

	 2.	For a specially orthotropic lamina, as we have seen, S16 = S26 = 0 and there 
is no coupling between normal stresses and shear strain. Similarly, there is no 
coupling between shear stress and normal strains.

The inverse form of Equation 4.2 is as follows:
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(4.12)

and

	 σ τ τ33 31 23 0= = = 	 (4.13)

The square matrix on the right-hand side of Equation 4.12, denoted by [Q], is called 
the reduced stiffness matrix. Thus,
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in which
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and the elements of [Q] are given by
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EXAMPLE 4.2

Consider the problem in Example 4.1 and solve it adopting plane stress idealization.

Solution

Using Equation 4.2, strain components under different loading conditions are 
obtained as follows:

	 1.	Analysis of lamina under longitudinal tensile stress
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	 2.	Analysis of lamina under transverse tensile stress
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	 3.	Analysis of lamina under in-plane shear stress
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4.4.1.2  Restrictions on Elastic Constants

The constitutive relation in the material coordinates (Equation 4.1) in three dimen-
sions for an orthotropic material involves nine independent elastic constants. These 
elastic constants are bound by some physical principles, which lead to certain math-
ematical restrictions. In an isotropic material, such restrictions are simple and they 
can be stated as

	 E > 0 	 (4.21)

	 G > 0 	 (4.22)

	 − ≤ ≤1 0 5ν . 	 (4.23)

in which the restriction on Poisson’s ratio can be obtained from the restrictions that 
Young’s modulus and bulk modulus are both positive.

In an orthotropic material, these restrictions are relatively complex; they can be 
derived from natural physical reasoning [1,2,7]. Let us consider a load case of a non-
zero positive normal stress (σ11 ≠ 0, σ22 = σ33 = τ23 = τ31 = τ12 = 0); it should result 
in positive strain ε11, which shows that S11 is positive. Extending the logic to the other 
possible load cases, we can see that the diagonal elements in the compliance matrix and 
thus normal and shear moduli are all positive.

	 S E11 10 0> >or 	 (4.24)

	 S E22 20 0> >or 	 (4.25)

	 S E33 30 0> >or 	 (4.26)

	 S G44 230 0> >or 	 (4.27)
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	 S G55 310 0> >or 	 (4.28)

	 S G66 120 0> >or 	 (4.29)

Next, it is possible under suitable conditions to simulate a case of deformation 
wherein ε11 ≠ 0, ε22 = ε33 = γ23 = γ31 = γ12 = 0. The corresponding work done is posi-
tive, which shows C11 is positive. Extending the logic to such other possible cases of 
deformation, it can be seen that the diagonal elements in the 3D stiffness matrix are all 
positive. Then, inverting [S] from the first three diagonal elements, it can be shown that

	 C11 23 320 1 0> − >or ν ν 	 (4.30)

	 C22 13 310 1 0> − >or ν ν 	 (4.31)

	 C33 12 210 1 0> − >or ν ν 	 (4.32)

Noting that ν21 = ν12(E2/E1), ν32 = ν23(E3/E2), and ν31 = ν13(E3/E1), we can readily 
show that
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Further, the stiffness and compliance matrices are positive definite [7]; the determi-
nants are positive and it can be shown that

	 1 2 012 21 23 32 31 13 21 32 13− − − − >ν ν ν ν ν ν ν ν ν 	 (4.39)

4.4.2  Generally Orthotropic Lamina

Unidirectional laminae are poor in transverse mechanical properties; to overcome this, 
usually they are placed in different orientations in a laminate. Bidirectional laminae 
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are also placed in different orientations so as to achieve the desired laminate proper-
ties. Thus, it is necessary to know the stress–strain relations for a generally orthotropic 
lamina.

Let us consider a lamina as shown in Figure 4.5a. It is generally orthotropic as the 
material coordinates and the global coordinates of the lamina are not aligned. Let 
1-direction be at an angle θ w.r.t. the x-direction. The sign convention adopted is clock-
wise positive as per the right-hand rule. Stress components in the global coordinate 
system and the material coordinate system are shown in Figure 4.5b and c, respectively. 
We shall first arrive at a transformation of stresses in the global coordinates to those in 
the material coordinates. Let us then consider a triangular element as shown in Figure 
4.5d such that sides AB and BC are normal to the x- and y-directions, respectively, and 
side AC is normal to the 1-direction. Also, angle ∠ABC is a right angle. Now, let the 
length of side AC be l such that the lengths of sides AB and BC are l cos θ and l sin θ, 
respectively.

Now, by considering the equilibrium of forces in the 1-direction and after simple 
manipulation, we obtain

	 σ σ θ σ θ τ θ θ11
2 2 2= + +xx yy xycos sin sin cos 	

(4.40)

Similarly, by considering the equilibrium of forces in the 2-direction and after sim-
ple manipulation, we obtain

	 τ σ θ θ σ θ θ τ θ θ12
2 2= − + + −xx yy xysin cos sin cos cos sin( ) 	

(4.41)

1

x

y

+θ

θ

σyy σ22

σ11

σ22

σ11

σ11

τ12

τ12

τ12

τ12

τ12

σyy

σxx

A

B C

σxx

σxx

τxy

τxy

τxy
σyy

τxy

τxy

τxy

2

(a)

(b) (c)

(d)

FIGURE 4.5  Stress transformation. (a) Generally orthotropic lamina. (b) Stress element in the global 
coordinates. (c) Stress element in the material coordinates. (d) Free body diagram of a triangular element.
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We can consider another right-angled triangular element with its hypotenuse normal 
to the 2-direction and the other two sides normal to the x- and y-directions. Considering 
force equilibrium in the 2-direction in this element, we can obtain

	 σ σ θ σ θ τ θ θ22
2 2 2= + −xx yy xysin cos sin cos 	

(4.42)

Equations 4.40 through 4.42 can be written in the matrix form as

	

σ
σ
τ

θ θ θ θ
θ

11

22

12

2 2

2

2

















=
cos sin sin cos

sin coss sin cos

sin cos sin cos cos sin

2

2 2

2θ θ θ
θ θ θ θ θ θ

σ
−

− −





















xxx

yy

xy

σ
τ

















 	

(4.43)

or

	

σ
σ
τ

σ
σ
τ

11

22

12



















=















[ ]T

xx

yy

xy




 	

(4.44)

where the transformation matrix [T] in Equation 4.44 is given by

	

[ ]

cos sin sin cos

sin cos sin cos

sin cos sin co

T = −
−

2 2

2 2

2

2

θ θ θ θ
θ θ θ θ

θ θ θ ss cos sinθ θ θ2 2−



















 	

(4.45)

The transformation matrix is usually written as

	

[ ]T = −
− −





















c s sc

s c sc

sc sc c s

2 2

2 2

2 2

2

2

	

(4.46)

where c = cos θ and s = sin θ.

Note: The stress transformation given above can also be directly obtained from 
Equation 2.122 discussed in Chapter 2.

Strain transformation equation is similar to that for stress transformation. Care, 
however, must be taken to use tensorial shear strain in the transformation equation. 
Thus, for the generally orthotropic lamina shown in Figure 4.5a, strain transformation 
is given by

	

ε
ε

γ

ε
ε

γ

11

22

12 2 2/ /



















=










[ ]T
xx

yy

xy








 	

(4.47)

Here, we introduce the Reuter matrix [R] and rewrite Equation 4.47 as [8]
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ε
ε
γ

ε
ε
γ

11

22

12

1



















=





−[ ][ ][ ]R T R
xx

yy

xy









 	

(4.48)

where

	

[ ]R =



















1 0 0

0 1 0

0 0 2
	

(4.49)

The global stresses are obtained from the local stresses by inverting Equation 4.44 as

	

σ
σ
τ

σ
σ
τ

xx

yy

xy



















=











−[ ]T 1

11

22

12






 	

(4.50)

Using Equation 4.14, then, we can write

	

σ
σ
τ

ε
ε
γ

xx

yy

xy



















=










−[ ] [ ]T Q1

11

22

12








 	

(4.51)

Then, using Equation 4.48, finally, we can relate global stresses to global strains as

	

σ
σ
τ

ε
ε
γ

xx

yy

xy

xx

yy



















= − −[ ] [ ][ ][ ][ ]T Q R T R1 1

xxy

















 	

(4.52)

Equation 4.52 can be written in a simplified way as

	

σ
σ
τ

ε
ε
γ

xx

yy

xy

xx

yy

xy



















=















[ ]Q




 	

(4.53)

The matrix [ ]Q  is called the transformed reduced stiffness matrix and it is obtained 
by multiplying the five 3 × 3 matrices on the right-hand side of Equation 4.52, that is,

	 [ ] [ ] [ ][ ][ ][ ]Q T Q R T R= − −1 1

	 (4.54)

By carrying out the necessary multiplication and simplification, it can be shown that 
the elements of [ ]Q  are given by

	 Q Q Q Q Q11 11
4

22
4

12 66
2 22 2= + + +cos sin ( )sin cosθ θ θ θ 	 (4.55)

	 Q Q Q Q Q12 11 22 66
2 2

12
4 44= + − + +( )sin cos sin cos( )θ θ θ θ 	 (4.56)
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	 Q Q Q Q Q Q Q16 11 12 66
3

22 12 66
32 2= − − − − −( )sin cos ( )sin cosθ θ θ θ 	 (4.57)

	 Q Q Q Q Q22 11
4

22
4

12 66
2 22 2= + + +sin cos ( )sin cosθ θ θ θ 	 (4.58)

	 Q Q Q Q Q Q Q26 11 12 66
3

22 12 66
32 2= − − − − −( )sin cos ( )sin cosθ θ θ θ 	 (4.59)

	 Q Q Q Q Q Q66 11 12 22 66
2 2

66
4 42 2= − + − + +( )sin cos sin cos( )θ θ θ θ 	 (4.60)

The transformed reduced stiffness matrix [ ]Q  has six generally nonzero elements as 
compared to the reduced stiffness matrix [Q], which has four. The elements of [ ]Q  are 
functions of stiffness elements Q11, Q12, Q22, and Q66 and the lamina angle θ. Since the 
elements of [Q] are functions of four engineering constants, we can say that the elements 
of [ ]Q  are functions of four engineering constants and the lamina angle θ. Note that when 
the global coordinates and local coordinates are aligned, θ = 0 and [ ]Q  reduces to [Q].

Note further that Q16 = Q26 = 0, but Q16 0≠  and Q26 0≠ . As a result, as mentioned 
earlier, there is no shear-extension coupling in a specially orthotropic lamina, but in a 
generally orthotropic lamina, shear-extension coupling does exist. Thus, in a generally 
orthotropic lamina, normal stresses result in shear strains and shear stresses result in 
normal strain. Such a lamina, though orthotropic from material characteristics, looks 
like anisotropic and hence the name “generally orthotropic.”

Given the global strains in a generally orthotropic lamina, we can obtain the global 
stresses from Equation 4.53 by inverting it as follows:

	

ε
ε
γ

σ
σ
τ

xx

yy

xy

xx

yy

xy



















=















[ ]S




 	

(4.61)

in which [ ]S  is the transformed reduced compliance matrix given by the inverse of 
the transformed reduced stiffness matrix, that is, [ ] [ ]S Q= −1. [ ]S  can also be obtained 
from the transformation of stress–strain relations in the local coordinates. Let us repro-
duce Equation 4.5 as

	

ε
ε
γ

σ
σ
τ

11

22

12

11

22

12



















=















[ ]S




 	

(4.62)

The inverse form of Equation 4.47 gives us

	

ε
ε

γ

ε
ε

γ

xx

yy

xy / /2 2

1

11

22

12



















=










−[ ]T









 	

(4.63)

Incorporating the Reuter matrix, we get

	

ε
ε
γ

ε
ε
γ

xx

yy

xy



















=






− −[ ][ ] [ ]R T R1 1

11

22

12













 	

(4.64)
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Then, using Equation 4.62 in Equation 4.64, we obtain

	

ε
ε
γ

σ
σ
τ

xx

yy

xy



















=


− −[ ][ ] [ ] [ ]R T R S1 1

11

22

12















 	

(4.65)

Finally, using Equation 4.44 in Equation 4.65, we obtain

	

ε
ε
γ

σ
σ
τ

xx

yy

xy

xx

yy



















= − −[ ][ ] [ ] [ ][ ]R T R S T1 1

xxy

















 	

(4.66)

Comparing Equation 4.61 with Equation 4.66, we get

	 [ ] [ ][ ] [ ][ ] [ ]S R T R S T= − −1 1
	 (4.67)

Matrix multiplication as given in the above equation can be carried out and it can be 
shown that the elements of [ ]S  are given by

	 S S S S S11 11
4

22
4

12 66
2 22= + + +cos sin ( )sin cosθ θ θ θ 	 (4.68)

	 S S S S S12 11 22 66
2 2

12
4 4= + − + +( ) ( )sin cos sin cosθ θ θ θ 	 (4.69)

	 S S S S S S S16 11 12 66
3

22 12 66
32 2 2 2= − − − − −( )sin cos ( )sin cosθ θ θ θ 	 (4.70)

	 S S S S S22 11
4

22
4

12 66
2 22= + + +sin cos ( )sin cosθ θ θ θ 	 (4.71)

	 S S S S S S S26 11 12 66
3

22 12 66
32 2 2 2= − − − − −( )sin cos ( )sin cosθ θ θ θ 	 (4.72)

	 S S S S S S66 11 12 22 66
2 2

66
4 42 2 4 2= − + − + +( )sin cos sin cos( )θ θ θ θ 	 (4.73)

EXAMPLE 4.3

Consider a unidirectional lamina as shown in Figure 4.6. The engineering con-
stants for the material are as follows: E1 = 40 GPa, E2 = 8 GPa, ν12 = 0.25, and 
G12 = 4 GPa. Determine the local stresses in the lamina.

30°
1

2

4 MPa

2 MPa

2 MPa

y

x
5 MPa5 MPa

2 MPa

2 MPa

4 MPa

FIGURE 4.6  Generally orthotropic lamina under in-plane loading (Example 4.3).
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Solution

The steps involved in the determination of local stresses in a generally orthotropic 
lamina are pictorially depicted in Figure 4.7.

Let us first use Equations 4.7 through 4.11 and determine the reduced compli-
ance matrix as follows:

	
S

E
11

1

11 1
40 000

0 000025= = = −

,
. MPa

	

	
S

E
12

12

1

10 25
40 000

0 00000625= − = − = − −ν .
,

. MPa
	

	
S

E
22

2

11 1
8000

0 000125= = = −. MPa
	

	
S

G
66

12

11 1
4000

0 00025= = = −. MPa
	

Thus, the reduced compliance matrix is

	

[ ]

.

.S =
−

−


















× − −

25 6 25 0

6 25 125 0

0 0 250

10 6 1MPa

	

Reduced compliance
matrix

Global strains

Local strains

Local stresses

 Equations 4.68 through 4.73

 Equations 4.7 through 4.11

 Equation 4.44

Equation
4.61

 Equation 4.48

 Equation 4.14

 Equation 4.45

Transformed reduced
compliance matrix

Global stresses

Transformation
matrix

Input data
Geometrical details of lamina—length, width, and thickness
Fiber orientation
Applied loads
Material properties

Reduced stiffness
matrix

 Equations  4.16 through 4.20

FIGURE 4.7  Analysis of a generally orthotropic lamina under in-plane loading.



151Macromechanics of a Lamina

Next, the transformed reduced compliance matrix is determined by substituting the 
reduced compliance matrix elements from above in Equations 4.68 through 4.73. Thus,

	 S11
6 166 4 10= × − −. MPa 	

	 S12
6 122 7 10= − × − −. MPa 	

	 S16
6 162 2 10= − × − −. MPa 	

	 S22
6 1116 4 10= × − −. MPa 	

	 S26
6 124 4 10= − × − −. MPa 	

	 S66
6 1184 4 10= × − −. MPa 	

Then,

	

[ ]

. . .

. . .

. . .

S =
− −

− −
− −

















66 4 22 7 62 2

22 7 116 4 24 4

62 2 24 4 184 4


× − −10 6 1MPa

	

Next, global strains are determined by using Equation 4.61 as follows:

	

ε
ε
γ

xx

yy

xy



















=
− −

− −
66 4 22 7 62 2

22 7 116 4 2

. . .

. . 44 4

62 2 24 4 184 4

5

4

2

.

. . .− −


















×



















×110

116 9

303 6

39 9

106 6− −=
−



















×
.

.

.
	

The transformation matrix is obtained from Equation 4.45. Thus,

	

[ ]T = −

−

































3
4

1
4

3
2

1
4

3
4

3
2

3
4

3
4

1
2

	

and the local strains are determined using Equation 4.48 as follows:

ε
ε
γ

11

22

12

1 0 0

0 1 0

0 0 2

3
4

1
4

















=


















×

33
2

1
4

3
4

3
2

3
4

3
4

1
2

1 0 0

0 1 0

0 0 2

−

−

































×



















×
−



















× =

−

−

1

6

116 9

303 6

39 9

10

146.

.

.

.33

274 2

141 7

10 6.

.



















× −
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Finally, for the determination of the local stresses, the reduced stiffness matrix ele-
ments are obtained from Equations 4.16 through 4.19 as follows:

	
Q

E
11

1

12 211
40 000

1 0 25 0 05
40 506=

−
=

− ×
=

ν ν
,

. .
, MPa

	

	
Q

E
12

12 2

12 211
0 25 8000

1 0 25 0 05
2025=

−
=

×
− ×

=
ν

ν ν
.

. .
MPa

	

	
Q22

8000
1 0 25 0 05

8101=
− ×

=
. .

MPa
	

	 Q G66 12 4000= = MPa 	

Thus,

	

[ ]

,

Q =



















40 506 2025 0

2025 8101 0

0 0 4000

MPa

	

Using Equation 4.14, local stresses are then determined as follows:

	

σ
σ
τ

11

22

12

40 506 2025 0

2025 8101 0

0 0 4000



















=
,
















×



















× =−

146 3

274 2

141 7

10

6
6

.

.

.

..

.

.

48

2 52

0 57



















MPa

	

The local stresses can also be determined directly using Equation 4.44 as follows:

	

σ
σ
τ

11

22

12

3
4

1
4

3
2

1
4

3
4

3
2

3
4

3
4

1
2



















= −

−

































×



















=
5

4

2

6 48

2 52

0

.

.

.557



















MPa

	

4.5 � ENGINEERING CONSTANTS OF A 
GENERALLY ORTHOTROPIC LAMINA

Laminae are stacked in different orientations in a laminate. The designer decides on 
the angle of orientation based primarily on structural considerations. The structural 
response of a lamina depends on the engineering constants. The engineering constants 
of a lamina in the material coordinates remain constants irrespective of the ply angle. 
However, in the global coordinates, it can be expected that the engineering constants 
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would depend on the ply angle. Transformation relations for the engineering constants 
are presented in this section.

The engineering constants of an orthotropic material were introduced in Chapter 2. 
Recall that these constants were related to the compliance matrix by a process of apply-
ing specific nonzero stresses on a cubic stress element. Under plane stress idealization, 
the 3D problem has been simplified to a 2D one. Now, in the case of a generally ortho-
tropic lamina, we adopt a similar process to determine the engineering constants in the 
global coordinates.

A point worth mentioning here is that in the case of a generally orthotropic lamina, 
owing to the presence of shear coupling, we have four additional parameters—the shear 
coupling ratios. As we know, shear coupling is the effect of either normal stress on 
shear strain or shear stress on normal strain. The shear coupling ratios are dimension-
less parameters. We need to consider three different load cases for the determination 
of the engineering constants of a generally orthotropic lamina. Table 4.1 presents these 
load cases and the corresponding engineering constants. The load cases are pictorially 
shown in Figure 4.8.

Let us consider the first load case and apply a nonzero normal stress in the x-direc-
tion, that is,

	 σ σ τxx yy xy≠ = =0 0, 	 (4.74)

Then, from Equation 4.61, we get

	 ε σxx xxS= 11 	 (4.75)

TABLE 4.1
Determination of Engineering Constants of a Generally Orthotropic Lamina

Load Case Description Engineering Constants

1 Nonzero normal stress in the x-direction, 
that is,

σxx ≠ 0, σyy = τxy = 0

Modulus of elasticity in the x-direction (Ex)
Major Poisson’s ratio in the xy-plane (νxy)
Shear coupling ratio associated with normal stress in the x-direction and in-plane shear 
strain (ηxy,x)

2 Nonzero normal stress in the y-direction, 
that is,

σyy ≠ 0, σxx = τxy = 0

Modulus of elasticity in the y-direction (Ey)
Minor Poisson’s ratio in the xy-plane (νyx)
Shear coupling ratio associated with normal stress in the y-direction and in-plane shear 
strain (ηxy,y)

3 Nonzero in-plane shear stress in the 
xy-plane, that is,

τxy ≠ 0, σxx = σyy = 0

Shear coupling ratios associated with shear stress in the xy-plane and normal strains in 
the x- and y-directions (ηx,xy and ηy,xy)

In-plane shear modulus (Gxy)

Notes:
1.	 Table 4.1 indicates the presence of a total of nine engineering constants in a generally orthotropic lamina. There are two extensional moduli of 

elasticity (Ex and Ey), two Poisson’s ratios (νxy and νyx), one in-plane shear modulus (Gxy), and four shear coupling ratios (ηxy,x, ηxy,y, ηx,xy, and ηy,xy). 
It will be seen that minor Poisson’s ratio can be related to the major Poisson’s ratio. Similarly, of the four shear coupling ratios, ηx,xy is related to 
ηxy,x and ηy,xy is related to ηxy,y. Thus, there are six independent off-axis engineering constants in a generally orthotropic lamina. Of course, these 
six off-axis engineering constants are not truly independent as they, in turn, are related to the four material axis engineering constants.

2.	 The shear coupling ratios (ηx,xy and ηy,xy) are associated with normal strains caused by in-plane shear stresses and they are called as the coeffi-
cients of mutual influence of the first kind. On the other hand, the shear coupling ratios (ηxy,x and ηxy,y) are associated with in-plane shear strains 
caused by normal stresses and they are called the coefficients of mutual influence of the second kind. Also, note the difference in convention. 
In the Poisson’s ratios, the two characters in the subscript correspond to “cause” and “effect,” respectively. For example, in the case of νxy, 
normal stress in the x-direction is the cause and normal strain in the y-direction is the effect. In the shear coupling ratios, the characters in the 
subscript correspond to “effect” and “cause,” respectively. Thus, in ηx,xy, in-plane shear strain in the xy-plane is the cause and normal stress in 
the x-direction is the effect, and so on.
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	 ε σyy xxS= 12 	 (4.76)

	 γ σxy xxS= 16 	 (4.77)

The modulus of elasticity in the x-direction is defined as

	
Ex

xx

xx

=
σ
ε 	

(4.78)

Using Equation 4.75, we get

	
E

S
x =

1

11 	
(4.79)

Substituting Equation 4.68 together with Equations 4.7 through 4.10 in the equation 
above, we get the expression for the off-axis elastic modulus in the x-direction as follows:

	
E

E E G E
x = + + −




















cos sin

sin cos
4

1

4

2 12

12

1

2 21 2θ θ ν θ θ

−1

	

(4.80)

The major Poisson’s ratio in the xy-plane is defined as

	
ν

ε
εxy

yy

xx

= −
	

(4.81)

1

1

1

x

x

x

y

y

y

+θ

+θ

+θ

σyy

σxxσxx

τxy

τxy

τxy

τxy
σyy

2

2

2

(a)

(b)

(c)

FIGURE 4.8  Determination of engineering constants of a generally orthotropic lamina—three 
load cases. (a) Lamina under uniaxial stress in the x-direction. (b) Lamina under uniaxial stress in the 
y-direction. (c) Lamina under in-plane shear. (Adapted with permission from A. K. Kaw, Mechanics of 
Composite Materials, CRC Press, Boca Raton, FL, 2006.)
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Using Equations 4.75 and 4.76, we get

	
νxy

S

S
= − 12

11 	
(4.82)

Substituting Equation 4.69 together with Equations 4.7 through 4.10 and 4.79 in the 
equation above, we get the expression for off-axis major Poisson’s ratio in the xy-plane 
as follows:

	
ν ν θ θ θ θxy xE

E E E G
= + − + −











12

1

4 4

1 2 12

2 21 1 1
(sin cos ) sin cos












	

(4.83)

Shear coupling ratio associated with the normal stress in the x-direction is defined as

	
η

γ
εxy x

xy

xx
, =

	
(4.84)

Using Equations 4.75 and 4.77, we get

	
η xy x

S

S
, = 16

11 	
(4.85)

Substituting Equation 4.70 together with Equations 4.7 through 4.10 and 4.79 in the 
equation above, we get the expression for shear coupling ratio associated with normal 
stress in the x-direction.

	
η ν θ θ ν

xy x xE
E E G E E

, sin cos= + −














 − +

2 2 1 2 2

1

12

1 12

3

2

12

1

−−
















1

12

3

G
sin cosθ θ

	
(4.86)

Next, let us consider the second load case and apply a nonzero normal stress in the 
y-direction, that is,

	 σ σ τyy xx xy≠ = =0 0, 	 (4.87)

Then, from Equation 4.61, we get

	 ε σxx yyS= 12 	 (4.88)

	 ε σyy yyS= 22 	 (4.89)

	 γ σxy yyS= 26 	 (4.90)

The modulus of elasticity in the y-direction is defined as

	
Ey

yy

yy

=
σ
ε 	

(4.91)
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Using Equation 4.89, we get

	
E

S
y =

1

22 	
(4.92)

Substituting Equation 4.71 together with Equations 4.7 through 4.10 in the equa-
tion above, we get the expression for the off-axis elastic modulus in the y-direction as 
follows:

	
E

E E G E
y = + + −




















sin cos

sin cos
4

1

4

2 12

12

1

2 21 2θ θ ν θ θ

−1

	

(4.93)

Next, the minor Poisson’s ratio in the xy-plane is defined as

	
ν ε

εyx
xx

yy

= −
	

(4.94)

Using Equations 4.88 and 4.89, we get

	
νyx

S

S
= − 12

22 	
(4.95)

Substituting Equation 4.69 together with Equations 4.7 through 4.10 and 4.92 in the 
equation above, we get the expression for off-axis minor Poisson’s ratio in the xy-plane 
as follows:

	
ν ν θ θ θ θyx yE

E E E G
= + − + −











12

1

4 4

1 2 12

2 21 1 1
(sin cos ) sin cos












	

(4.96)

It can be seen from Equations 4.83 and 4.96 that the major and minor Poisson’s ratios 
are related as

	

ν νxy

x

yx

yE E
=

	
(4.97)

Shear coupling ratio associated with the normal stress in the y-direction is defined as

	
η

γ
εxy y

xy

yy
, =

	
(4.98)

Using Equations 4.89 and 4.90, we get

	
η xy y

S

S
, = 26

22 	
(4.99)
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Substituting Equation 4.72 together with Equations 4.7 through 4.10 and 4.92 in the 
equation above, we get the expression for shear coupling ratio associated with normal 
stress in the y-direction.

 
η ν θ θ ν

xy y yE
E E G E E

, sin cos= + −














 − +

2 2 1 2 2

1

12

1 12

3

2

12

1

−−
















1

12

3

G
sin cosθ θ

	
(4.100)

Finally, let us consider the third load case and apply a nonzero in-plane shear stress 
in the xy-plane, that is,

	 τ σ σxy xx yy≠ = =0 0, 	 (4.101)

Then, from Equation 4.61, we get

	 ε τxx xyS= 16 	 (4.102)

	 ε τyy xyS= 26 	 (4.103)

	 γ τxy xyS= 66 	 (4.104)

In this load case, first let us consider the in-plane shear modulus. It is defined as

	
Gxy

xy

xy

=
τ
γ 	

(4.105)

Using Equation 4.104, we get

	
G

S
xy =

1

66 	
(4.106)

Substituting Equation 4.73 together with Equations 4.7 through 4.10 in the equation 
above, we get the expression for the in-plane shear modulus as follows:

	
G

E E E G G
xy = + + −












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
 +2

2 4 2 1 1

1

12

1 2 12

2 2

12

ν θ θsin cos (sin44 4
1

θ θ+






−

cos )
	
(4.107)

In-plane shear stress results in normal strains in two directions—x- and y-directions. 
Thus, there are two shear coupling ratios associated with the in-plane shear stress. 
They are defined as

	
η ε

γx xy
xx

xy
, =

	
(4.108)

and

	
η

ε
γy yx

yy

xy
, =

	
(4.109)
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Using Equations 4.102 and 4.104, we get

	
η x xy

S

S
, = 16

66 	
(4.110)

and using Equations 4.103 and 4.104, we get

	
η y xy

S

S
, = 26

66 	
(4.111)

Substituting Equations 4.70 and 4.106 together with Equations 4.7 through 4.10 in 
Equation 4.110 above, we get

 
η ν θ θ ν

x xy xyG
E E G E E G

, sin cos= + −



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
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
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sin cosθ θ
	

(4.112)

Similarly, substituting Equations 4.72 and 4.106 together with Equations 4.7 through 
4.10 in Equation 4.111 above, we get

 
η ν θ θ ν

y xy xyG
E E G E E G

, sin cos= + −
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(4.113)

We mentioned earlier that ηxy,x is related to ηx,xy. Similarly, ηxy,y is related to ηy,xy. 
To verify this, let us consider Equation 4.110 and write the following:

	
η x xy

S

S

S

S

S

S
, = =16

66

11

66

16

11 	
(4.114)

Now, from Equations 4.79, 4.85, and 4.106, respectively, we have E Sx =1 11/ , 
ηxy x S S, = 16 11/ , and G Sxy =1 66/ . Thus, Equation 4.114 results in

	
η ηx xy

xy

x
xy x

G

E
, ,=

	
(4.115)

In a similar way, it can be shown that

	
η ηy xy

xy

y
xy y

G

E
, ,=

	
(4.116)

Pictorial representation of variation of the engineering constants with ply angle is 
helpful in the study of the effect of ply angle on the off-axis engineering constants. The 
example below is provided to present plots of variation of engineering constants with 
ply angle for carbon/epoxy and glass/epoxy laminae.
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EXAMPLE 4.4

The engineering constants in the material coordinates for carbon/epoxy and glass/
epoxy laminae are given below:

Carbon/epoxy:

	 E1 = 140 GPa, E2 = 10 GPa, ν12 = 0.28, G12 = 6 GPa

Glass/epoxy:

	 E1 = 40 GPa, E2 = 8 GPa, ν12 = 0.25, G12 = 4 GPa

Determine the engineering constants at a ply angle of 30°. Plot the variation of 
the engineering constants with ply angle.

Solution

sin 30° = 0.5 and cos 30° = 0.866.

Using Equation 4.80, the elastic modulus in the x-direction is determined as 
follows:

Carbon/epoxy:

	
Ex = + + −

×





× ×






0 866

140
0 5
10

1
6

2 0 28
140

0 5 0 866
4 4

2 2. . .
. .





 =
−1

24 53. GPa
	

Glass/epoxy:

	
Ex = + + −

×





× ×





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0 5
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1
4

2 0 25
40

0 5 0 866
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2 2. . .
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−1

15 06. GPa
	

Using Equation 4.93, the elastic modulus in the y-direction is determined as 
follows:

Carbon/epoxy:

	
Ey = + + −

×





× ×




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1
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Glass/epoxy:

	
Ey = + + −

×





× ×




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Using Equation 4.83, the major Poisson’s ratio is determined as follows:

Carbon/epoxy:

	
νxy = × + − + −







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Glass/epoxy:

	
νxy = × + − + −






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Using Equation 4.107, the in-plane shear modulus is determined as follows:

Carbon/epoxy:

	

Gxy = × +
×
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Glass/epoxy:

	

Gxy = × +
×

+ −
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Using Equation 4.86, the shear coupling ratio (ηx,xy) is determined as follows:

Carbon/epoxy:

	

ηxy x, .
.

. .= × +
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−
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
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Glass/epoxy:
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Using Equation 4.100, the shear coupling ratio (ηxy,y) is determined as follows:

Carbon/epoxy:
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Glass/epoxy:
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Variations of the off-axis engineering constants with lamina angle are shown 
in Figures 4.9 through 4.14. These plots given in Figures 4.9 through 4.14 are for 
the specific carbon/epoxy and glass/epoxy composites in Example 4.4. These are 
not generalized plots. However, certain observations, helpful in product design, 
can be made from these plots.

First, the extensional moduli in the x- and y-directions move in opposite directions 
as the lamina angle increases; the variations of Ex and Ey are symmetric w.r.t. θ = 45°. 
Ex is the maximum when θ = 0. As θ increases gradually, initially it sharply decreases; 
at higher values of θ, it decreases at a low rate and eventually reaches its minimum 
when θ = 90°. On the other hand, Ey is the minimum when θ = 0. With gradually 
increasing θ, it increases at a low rate initially; at high values of θ, it increases sharply 
and finally it reaches its maximum at θ = 90°.

Second, the in-plane shear modulus is the maximum at a lamina angle of 45°. It 
shows that a 45° lamina offers the maximum resistance to shear deformation.
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FIGURE 4.9  Variation of elastic modulus in the x-direction with lamina angle (Example 4.4).
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FIGURE 4.10  Variation of elastic modulus in the y-direction with lamina angle (Example 4.4).
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Third, shear coupling is zero at either θ = 0° or θ = 90°. The variations of the shear 
coupling ratios are too symmetric w.r.t. θ = 45°.

The observations made above in respect of the off-axis elastic constants are quite 
generic in nature. Also, the equations for reduced transformed stiffness matrix or 
reduced transformed compliance matrix are rather complicated for any direct use 
in design calculations. Invariant forms of stiffness and compliance matrices were 
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FIGURE 4.11  Variation of major Poisson’s ratio with lamina angle (Example 4.4).
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FIGURE 4.12  Variation of in-plane shear modulus with lamina angle (Example 4.4).
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FIGURE 4.13  Variation of shear coupling ratio (ηxy,x) with lamina angle (Example 4.4).
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introduced by Tsai and Pagano [9]. Using the invariants, the reduced transformed stiff-
ness matrix elements can be written as

	 Q U U U11 1 2 32 4= + +cos cosθ θ 	 (4.117)

	 Q U U12 4 3 4= − cos θ 	 (4.118)

	
Q

U
U16

2
3

2
2

4= +
sin

sin
θ θ

	
(4.119)

	 Q U U U22 1 2 32 4= − +cos cosθ θ 	 (4.120)

	
Q

U
U26

2
3

2
2

4= −
sin

sin
θ θ

	
(4.121)

	
Q

U U
U66

1 4
3

2
4=

−
− cos θ

	
(4.122)

In the above equations, the four invariants are given by

	
U Q Q Q Q1 11 12 22 66

1
8

3 2 3 4= + + +( )
	

(4.123)

	
U Q Q2 11 22

1
2

= −( )
	

(4.124)

	
U Q Q Q Q3 11 12 22 66

1
8

2 4= − + −( )
	

(4.125)

	
U Q Q Q Q4 11 12 22 66

1
8

6 4= + + −( )
	

(4.126)

Note that the invariants are functions only of Q11, Q12, Q22, and Q66; they are not 
functions of θ.
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FIGURE 4.14  Variation of shear coupling ratio (ηxy,y) with lamina angle (Example 4.4).
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Similar to the reduced transformed stiffness matrix, the reduced transformed com-
pliance matrix elements can also be expressed in terms of invariants as follows:

	 S V V V11 1 2 32 4= + +cos cosθ θ 	 (4.127)

	 S V V12 4 3 4= − cos θ 	 (4.128)

	 S V V16 2 32 2 4= +sin sinθ θ 	 (4.129)

	 S V V V22 1 2 32 4= − +cos cosθ θ 	 (4.130)

	 S V V26 2 32 2 4= −sin sinθ θ 	 (4.131)

	 S V V V66 1 4 32 4 4= − −( ) cos θ 	 (4.132)

The invariants in the above equations are given by

	
V S S S S1 11 12 22 66

1
8

3 2 3= + + +( )
	

(4.133)

	
V S S2 11 22

1
2

= −( )
	

(4.134)

	
V S S S S3 11 12 22 66

1
8

2= − + −( )
	

(4.135)

	
V S S S S4 11 12 22 66

1
8

6= + + −( )
	

(4.136)

As we know, a laminate contains a number of laminae arranged in different orienta-
tions. Working out the details of laminate ply orientations, so as to achieve the desired 
end characteristics, is a major part of composite part design. Invariant forms of stiff-
ness and compliance matrices are helpful in the design of a laminate as these invariants 
help the designer to directly check the effects of change in lamina angle on the reduced 
transformed stiffness and compliance matrices.

4.6  STRENGTH
One of the essential aspects of design and analysis of a structural part is to ensure that 
stresses in the part are less than the corresponding strengths of the material. Strength 
is the maximum stress that a material can take before failure. It is an experimentally 
determined parameter for which standard test specimens have been devised. During 
the loading of a test specimen, simple stress field is generated in the test specimen and 
based on the information of failure load and specimen geometry, stress at failure, that 
is, strength is determined. Unlike the standard test specimen, stress field in a practical 
structural part, however, is not a simple one and stress data cannot be directly com-
pared with the strength data. As a consequence, a number of failure criteria have been 
developed for isotropic as well as orthotropic materials [10].
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In an isotropic material, there are three strength parameters:

◾◾ Tensile strength
◾◾ Compressive strength
◾◾ Shear strength

Tensile strength is the maximum normal stress in tension that a material can be 
subjected to before failure. Similarly, compressive strength and shear strength are 
the maximum normal stress in compression and maximum shear stress, respectively. 
Principal stresses are the maximum stresses and, in an isotropic material, strengths are 
not direction-dependent. Thus, the failure criteria for isotropic materials are based on 
principal stresses.

4.6.1  Strength of an Orthotropic Lamina

The concept of strengths in orthotropic materials is a little complex as the strengths, 
like stiffness, are direction-dependent. In principle, we can have infinite numbers of 
strengths corresponding to each possible fiber orientation. In a practical design prob-
lem, however, it is not a feasible proposition. Instead, in an orthotropic lamina, the fol-
lowing five basic strength parameters are used:

◾◾ Longitudinal tensile strength, ( )σ11
T

ult

◾◾ Longitudinal compressive strength, ( )σ11
C

ult

◾◾ Transverse tensile strength, ( )σ22
T

ult

◾◾ Transverse compressive strength, ( )σ22
C

ult

◾◾ In-plane shear strength, (τ12)ult

The ultimate longitudinal tensile strength of an orthotropic lamina is the maximum 
normal stress in tension that the lamina can be subjected to in the 1-direction before fail-
ure. Similarly, the ultimate longitudinal compressive strength is the maximum normal 
stress in compression that the lamina can be subjected to in the 1-direction before fail-
ure. Transverse strengths, on the other hand, are the corresponding maximum stresses 
in the 2-direction. Finally, the ultimate shear strength is the maximum in-plane shear 
stress in the 1-2 plane. (Note that for a unidirectional lamina, 1- and 2-directions are 
along the fibers and across the fibers, respectively, whereas for a bidirectional lamina, 
they are along the weft and warp directions, respectively.)

A number of failure criteria are available for orthotropic materials, of which four 
popular failure criteria are presented here; they are (i) maximum stress failure cri-
terion, (ii) maximum strain failure criterion, (iii) Tsai–Hill failure criterion, and (iv) 
Tsai–Wu failure criterion. Before discussing these failure criteria, we shall dwell upon 
a few useful points.

Sign convention for stresses and strengths (Figure 4.15): The standard sign conven-
tion for stresses and strengths is that all normal stresses are positive in tension and 
negative in compression. Similarly, normal strengths are positive in tension and nega-
tive in compression. Positive and negative shear stresses can have different effects on a 
lamina. For example, a 45° lamina under positive and negative shear stresses is shown 
in Figure 4.16. However, maximum shear stress at failure, irrespective of whether it is 
positive or negative, remains the same. Thus, shear strength is considered as positive 
and, as we shall see shortly, in the failure criteria, the absolute value of the shear stress 
is compared with the shear strength.

Stress transformation: We had seen before that stresses in one coordinate system 
can be easily transformed to another by utilizing suitable transformation matrix. 
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The  transformation matrix can be constructed with the angles of orientation of one 
coordinate system w.r.t. the other. On the other hand, strengths are influenced by many 
local factors and simple transformations similar to stresses are not possible. Thus, com-
parison of stresses with strengths is generally made in the material axes.

Principal stresses versus material axis strengths: Principal stresses are the maxi-
mum stresses at a point in a body whether it is made up of isotropic or orthotropic 
material. However, in an orthotropic material, principal stresses are not of primary use 
as the strength data are available in the material axes and in the failure criteria, the 
stresses in the material axes are compared with the strengths that are in the material 
axes.

(a) (b)

(c) (d)

(e) (f )

FIGURE 4.15  Sign convention for stresses. (a) Positive normal stress in the longitudinal direc-
tion (longitudinal tensile stress). (b) Positive normal stress in the transverse direction (transverse ten-
sile stress). (c) Negative normal stress in the longitudinal direction (longitudinal compressive stress). 
(d) Negative normal stress in the transverse direction (transverse compressive stress). (e) Positive shear 
stress. (f) Negative shear stress.

≈

(a)

(b)

≈

FIGURE 4.16  Shear stress on a 45° lamina. (a) Positive shear stress. (b) Negative shear stress. (Adapted 
with permission from R. M. Jones, Mechanics of Composite Materials, Taylor & Francis, New York, 1999.)



167Macromechanics of a Lamina

4.6.2  Failure Criteria

4.6.2.1  Maximum Stress Failure Criterion

In this failure criterion, five different modes of failure, each related to excessive stress, 
are identified. They are

◾◾ Failure of the lamina due to excessive tensile stress in the 1-direction
◾◾ Failure of the lamina due to excessive compressive stress in the 1-direction
◾◾ Failure of the lamina due to excessive tensile stress in the 2-direction
◾◾ Failure of the lamina due to excessive compressive stress in the 2-direction
◾◾ Failure of the lamina due to excessive in-plane shear stress in the 1-2 plane

As per the maximum stress failure criterion, a lamina is considered to have failed if 
any one of the stresses in the material axes exceeds the corresponding strength. Thus, 
for the lamina to be safe, the following need to be satisfied:

	
σ σ σ11 11 11

C

ult

T

ult
( ) < <( )

	
(4.137)

	
σ σ σ22 22 22

C

ult

T

ult
( ) < <( )

	
(4.138)

	 | | ( )τ τ12 12< ult 	 (4.139)

In the above inequalities, the sign convention is as stated in the previous paragraphs. 
It can be seen that in this criterion, comparison of stresses with strengths is made in 
the respective direction only and there is no interaction between different modes of 
failure. Further, the inequalities only indicate whether the lamina is safe or not; they 
do not provide any information on the available factor of safety. In this connection, the 
concept of strength ratio is useful. Strength ratios corresponding to the five strength 
parameters are defined as

	
( )R T

T

ult
11

11

11

=
( )σ

σ 	
(4.140)

	
( )R C

C

ult
11

11

11

=
( )σ

σ 	
(4.141)

	
( )R T

T

ult
22

22

22

=
( )σ

σ 	
(4.142)

	
( )R C

C

ult
22

22

22

=
( )σ

σ 	
(4.143)

	
( )

( )
| |

R S ult
12

12

12

=
τ
τ 	

(4.144)

where ( )R T
11 is the strength ratio for normal tensile stress in the 1-direction and so on. 

Note that strength ratios are always positive. ( )R T
11 1<  indicates that the lamina has 

failed due to excessive tensile load in 1-direction and the load needs to be reduced by 
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a factor of ( )R T
11. ( )R T

11 1>  indicates that the lamina is safe and the applied tensile load 
in 1-direction can be increased by a factor of ( )R T

11. Finally, ( )R T
11 1=  indicates that the 

lamina has just failed. Similar conclusions can be drawn in respect of the remaining 
strength ratios as well.

EXAMPLE 4.5

Consider a carbon/epoxy lamina with its fiber orientation at 30° to the x-direc-
tion. It is subjected to the following stresses: σxx = 1200 MPa, σyy = 350 MPa, 
and τxy = 800 MPa. Check whether the lamina is safe under these stresses. 
The following strength data are given: ( )σ11 2000T

ult = MPa, ( )σ11 800C
ult = MPa, 

( )σ22 40T
ult = MPa, ( )σ22 150C

ult = MPa, and (τ12)ult = 70 MPa.

Solution

First, we note that sin 30° = 0.5 and cos 30° = 0.866. Then, using Equation 4.43, 
the stresses are readily transformed from the global coordinates to local coordi-
nates as follows:
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Corresponding strength ratios are calculated as follows:

	
( )

.
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1 19= =
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.
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1 15=

−
−

=
	

	
( )

.
.R S

12
70
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2 19= =

	

From the above, it is clear that the lamina is safe under the given loads. While 
the normal stresses along the fibers and across can be increased by factors of 
1.19 and 1.15, respectively, the shear stress can be increased by a factor of 2.19 
before the lamina fails. Note, however, that the stresses in the local coordinates 
cannot be directly increased or decreased. Given the lamina geometry, it is the 
global stresses that can be varied which, in turn, cause the stresses in the local 
coordinates to change. For an efficient design these strength ratios would be equal 
to one. For the given strength data and lamina angle, these global stresses can be 
obtained by solving the following eight sets of simultaneous equations:
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On solving the above equations, we get the following, respectively:
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Note that strength ratios corresponding to all the eight solutions are identi-
cally one, which is desirable from an efficient design point of view. (We are not 
discussing concepts like factor of safety, margin of safety, etc. yet!) Note, further, 
that global loads are generally a design input and in a real design scenario, given 
the design loads, we would rather stack a number of laminae in a laminate and 
vary lamina angles and thicknesses. We shall discuss the details of these issues 
in subsequent chapters.

4.6.2.2  Maximum Strain Failure Criterion

The maximum strain failure criterion is similar to the maximum stress failure cri-
terion. Here, too, five different modes of failure are identified. However, unlike the 
previous failure criterion, here, the modes of failure are related to the strains and not 
stresses. They are

◾◾ Failure of the lamina due to excessive tensile strain in the 1-direction
◾◾ Failure of the lamina due to excessive compressive strain in the 1-direction
◾◾ Failure of the lamina due to excessive tensile strain in the 2-direction
◾◾ Failure of the lamina due to excessive compressive strain in the 2-direction
◾◾ Failure of the lamina due to excessive in-plane shear strain in the 1-2 plane

As per this criterion, a lamina is considered to have failed if any one of the strains in 
the material axes exceeds the corresponding ultimate strain. Thus, for the lamina to be 
safe, the following need to be satisfied:

	
ε ε ε11 11 11

C

ult

T

ult
( ) < <( )

	
(4.145)

	
ε ε ε22 22 22

C

ult

T

ult
( ) < <( )

	
(4.146)

	 | | ( )γ γ12 12< ult 	 (4.147)

in which
( )ε11

T
ult 	 ultimate longitudinal tensile strain

( )ε11
C

ult 	 ultimate longitudinal compressive strain
( )ε22

T
ult 	 ultimate transverse tensile strain

( )ε22
C

ult 	 ultimate transverse compressive strain
(γ12)ult	 ultimate in-plane shear strain

In the above inequalities, the sign convention is similar to that in stresses and 
strengths. Thus, normal strains are positive in tension and negative in compression. 
Similarly, normal ultimate strains are positive in tension and negative in compression. 
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Similar to the in-plane shear stresses, in-plane shear strains can be either positive or 
negative, whereas the ultimate in-plane shear strain is positive. As in the case of the 
maximum stress criterion, in this failure criterion too, there is no interaction between 
different failure modes. Comparison of strains with ultimate strains is made in the 
respective direction only. Further, the inequalities only indicate whether the lamina is 
safe or not; they do not provide any information on the available factor of safety. In this 
connection, the following ultimate strain ratios can be defined:
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(4.152)

where ( )R T
11 is the ultimate strain ratio for normal tensile strain in the 1-direction and so 

on. Similar to the strength ratios, the ultimate strain ratios are always positive. ( )R T
11 1<  

indicates that the lamina has failed due to excessive tensile load in the 1-direction and 
the load needs to be reduced by a factor of ( )R T

11. ( )R T
11 1>  indicates that the lamina 

is safe and the applied tensile load in the 1-direction can be increased by a factor of 
( )R T

11. Finally, ( )R T
11 1=  indicates that the lamina has just failed. Similar conclusions 

can be drawn in respect of the remaining ultimate strain ratios as well.

EXAMPLE 4.6

Consider the carbon/epoxy lamina in Example 4.5. Analyze whether the lamina 
is safe under these stresses. Employ the maximum strain failure criterion. Other 
data remain the same as in that example. The elastic constants are E1 = 140 GPa, 
E2 = 10 GPa, G12 = 6 GPa, and ν12 = 0.28.

Solution

Given σxx = 1200 MPa, σyy = 350 MPa, and τxy = 800 MPa. Then, the stresses 
in the local coordinates are (refer Example 4.5)
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Using Equation 4.2, the strains in the local coordinates are obtained as follows:
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Next, given the strength data and elastic moduli, we find the ultimate strains 
as follows:

	
ε11
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Then, the ultimate strain ratios are determined as follows:
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Two points may be noted. First, the lamina is marginally unsafe in the trans-
verse direction. Second, the ultimate strain ratios are pretty similar to the strength 
ratios obtained in Example 4.5 for the same lamina under the same loads. In fact, 
if we put ν12 = 0, the ultimate strain ratios in the maximum strain criterion can 
be found to be identically the same as the strength ratios in the maximum stress 
criterion. In other words, but for the Poisson’s effect, maximum strain criterion, 
and maximum stress criterion give the same results.

4.6.2.3  Tsai–Hill Failure Criterion

Unlike the maximum stress and maximum strain criteria, wherein there is no interac-
tion between different failure modes, the Tsai–Hill failure criterion [11,12] considers 
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the interaction between different strength parameters. This criterion is based on the von 
Mises distortional energy criterion for isotropic materials. As per the von Mises criterion, 
a body fails when the energy of distortion becomes more than a certain critical level or 
the distortion energy of failure. Hill extended the von Mises yield criterion to orthotropic 
materials and then Tsai adapted it to predict the failure of a unidirectional lamina.

The Hill’s criterion for anisotropic material in three dimension can be stated as

	 A B C D E F G H Iσ σ σ σ σ σ σ σ σ τ τ τ11
2

22
2

33
2

11 22 22 33 33 11 23
2

31
2

12+ + + + + + + + 22 1= 	
� (4.153)

In a plane stress problem, σ33 = τ31 = τ23 = 0 and thus, the Hill’s criterion for a 
lamina reduces to

	 A B D Iσ σ σ σ τ11
2

22
2

11 22 12
2 1+ + + = 	 (4.154)

When a body undergoes deformation, strain energy is stored in the body. Strain 
energy has two components—energy of dilation and energy of distortion. The first 
component is associated with change in size and the second with change in shape. The 
von Mises yield criterion for isotropic materials is based on energy of distortion, that 
is, the energy associated with changing the shape but not the volume of the body. On 
the other hand, in an orthotropic material, distortion and dilation cannot be separated 
and the Hill’s yield criterion is not based on distortion energy; rather the coefficients in 
Equations 4.153 and 4.154 are based on orthotropic failure strengths. Restricting our 
focus on the plane stress case in Equation 4.154, the coefficients are determined by 
applying the following load cases.

First, σ σ11 11= ( )T
ult  and σ22 = τ12 = 0. At this point, the lamina fails due to excessive 

stress in the longitudinal direction and from Equation 4.154, we get
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σ

	

(4.155)

Second, σ σ22 22= ( )T
ult  and σ11 = τ12 = 0. Then, from Equation 4.154, we get

	

B
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=
( )

1

22

2
σ

	

(4.156)

Third, τ12 = (τ12)ult and σ11 = σ22 = 0, which, along with Equation 4.154, gives us

	
I

ult

=
1

12
2( )τ 	

(4.157)

Coefficient D is associated with two stress components and for its determination we 
have to have a biaxial stress field such that the following holds good at lamina failure:

σ11 ≠ 0, σ22 ≠ 0,  and  τ12 = 0

A convenient way to achieve this is to consider lamina under a stress field given by

σxx = σyy = σ ≠ 0  and  τxy = 0

From this, it can be readily found that

σ11 = σ22 = σ  and  τ12 = 0
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Transverse strength is normally far lower than the longitudinal strength and we can 
presume that failure takes place at ( )σ σ= 22

T
ult . Substituting this in Equation 4.154 

together with Equations 4.155 and 4.156, we get
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2
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(4.158)

Now, by substituting the expressions of the coefficients from Equations 4.155 through 
4.158 in Equation 4.154, and noting that the left-hand side of Equation 4.154 has to be 
less than 1, we can obtain an expression for the Tsai–Hill failure criterion as
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(4.159)

Note that we considered the normal stresses as tensile only. When compressive 
stresses are also considered, the Tsai–Hill failure criterion can be suitably modified as 
follows:
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(4.160)

where
F T

ult1 11= ( )σ  if σ11 > 0, that is, σ11 is tensile
= ( )σ11

C
ult  if σ11 < 0, that is, σ11 is compressive

F T
ult2 22= ( )σ  if σ22 > 0, that is, σ22 is tensile

= ( )σ22
C

ult  if σ22 < 0, that is, σ22 is compressive
F3 = (τ12)ult

The Tsai–Hill failure criterion considers the interaction between different strength 
parameters and it indicates the failure of a lamina in a combined way based on all the 
applied stresses and strength parameters. A gross strength ratio can be calculated by 
taking the square root of the left-hand side of Equation 4.160. However, this failure 
criterion does not indicate the mode of failure of a lamina.

EXAMPLE 4.7

Consider the carbon/epoxy lamina in Example 4.5. Check whether the lamina 
is safe under these stresses. Employ the Tsai–Hill failure criterion. Other data 
remain the same as in that example.

Solution

Stresses applied on the lamina are σxx = 1200 MPa, σyy = 350 MPa, and 
τxy = 800 MPa, that is, the stresses in the global coordinates are
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And the stresses in the local coordinates are
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σ11 is tensile, whereas σ22 is compressive. Thus, the constants F1, F2, and F3 in 
Equation 4.160 are the tensile strength, compressive strength, and in-plane shear 
strength, respectively. That is,

F1 = 2000 MPa
F2 = −150 MPa
F3 = 70 MPa

Then,
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which is greater than one and thus, the lamina is not safe.

4.6.2.4  Tsai–Wu Failure Criterion

In its most general form, using indicial notation, the Tsai–Wu criterion [13] can be 
expressed as

	 F Fi i ij i jσ σ σ+ =1	 (4.161)

In the above equation, the contracted notation is used for stress components and 
i,  j = 1,2,  … , 6. For an orthotropic lamina in plane stress condition, the Tsai–Wu 
criterion is of the following form:
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( )) ( )σ σ σ σ1 6 26 62 2 6 1+ + =F F 	 (4.162)

Let us substitute H12 = F12 + F21, H16 = F16 + F61, and H26 = F26 + F62 and rewrite 
Equation 4.162, using tensor notation for stress components, as
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H H
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2
22 22

2
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12 11 22 16 11

σ σ τ σ σ τ
σ σ σ
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+ + ττ σ τ12 26 22 12 1+ =H 	 (4.163)

To determine the coefficients, we adopt a similar procedure as in the case of the 
Tsai–Hill criterion and apply some load cases as follows:

The first and second load cases applied are a uniaxial longitudinal stress equal to 
the ultimate longitudinal tensile stress and a uniaxial longitudinal stress equal to the 
ultimate longitudinal compressive stress, respectively, that is,

σ σ11 11= ( )T
ult   and  σ22 = τ12 = 0
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and

σ σ11 11= ( )C
ult  and σ22 = τ12 = 0

On substitution of the first two load cases in Equation 4.163, we obtain, respectively
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Solving Equations 4.164 and 4.165, the coefficients F1 and F11 are obtained as
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The third and fourth load cases applied are a uniaxial transverse stress equal to the 
ultimate transverse tensile stress and a uniaxial transverse stress equal to the ultimate 
transverse compressive stress, respectively, that is,

σ σ22 22= ( )T
ult   and  σ11 = τ12 = 0

and

σ σ22 22= ( )C
ult   and  σ11 = τ12 = 0

On substitution of the third and fourth two load cases in Equation 4.163, we obtain, 
respectively

	
F FT

ult

T

ult
2 22 22 22

2
1σ σ( ) + ( ) =

	
(4.168)

	
F FC

ult

C

ult
2 22 22 22

2
1σ σ( ) + ( ) =

	
(4.169)

Solving Equations 4.168 and 4.169, the coefficients F2 and F22 are obtained as

	

F
T

ult

C

ult

2

22 22

1 1
=

( )
+

( )σ σ
	

(4.170)

	

F
T

ult

C

ult

22

22 22

1
= −

( ) ( )σ σ
	

(4.171)

The fifth load case applied is an in-plane shear stress equal to the ultimate in-plane 
shear stress together with nonzero normal stresses, that is,

τ12 = (τ12)ult, σ11 = σ1, σ22 = σ2

On substitution of the fifth load case in Equation 4.163, we obtain,

	

F F F F F F

H H
ult ult1 1 2 2 6 12 11 1

2
22 2

2
66 12

2

12 1 2 1

σ σ τ σ σ τ
σ σ

+ + + + +
+ +

( ) ( )

66 1 12 26 2 12 1σ τ σ τ( ) ( )ult ultH+ = 	 (4.172)
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Note here that in-plane shear stress has the same ultimate strength whether it is posi-
tive or negative. Thus, Equation 4.172 can also be written as

	

F F F F F F

H H
ult ult1 1 2 2 6 12 11 1

2
22 2

2
66 12

2

12 1 2 1

σ σ τ σ σ τ
σ σ

+ − + + +
+ −

( ) ( )

66 1 12 26 2 12 1σ τ σ τ( ) ( )ult ultH− = 	 (4.173)

The existence of Equations 4.172 and 4.173 is possible only when the coefficients in 
the linear terms in (τ12)ult vanish, that is,

	 F H H6 16 26 0= = = 	 (4.174)

Substituting the above in Equation 4.172, and taking σ1 = σ2 = 0, we get

	
F

ult
66

12
2

1
=

( )τ 	
(4.175)

There are nine coefficients in Equation 4.163, of which we have obtained the expres-
sions for eight coefficients by the procedure discussed above. The coefficient H12 is left 
but it cannot be obtained directly from the strength parameters. One of the experimen-
tal methods proposed for the determination of this coefficient involves the application 
of a tensile stress in the x-direction on a 45° lamina. It can be readily seen that

	
σ σ τ σ

11 22 12
2

= = − =
( )xx ult

	
(4.176)

where (σxx)ult is the applied uniaxial tension at failure of the lamina. From Equation 
4.163, it can be shown that
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(4.177)

The effect of H12 on the final strength assessment is not significant. Further, the 
expression given by Equation 4.177 is not very elegant. Some empirical expressions 
have been suggested. One such empirical expression is as follows:
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ult
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ult

T

ult

C

ult

12

11 11 22 22

1

2
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(4.178)

For the lamina to be safe, the left-hand side of Equation 4.163 has to be less than one 
and the Tsai–Wu failure criterion for an orthotropic lamina in plane stress condition 
can be expressed as

	 F F F F F H1 11 2 22 11 11
2

22 22
2

66 12
2

12 11 22 1σ σ σ σ τ σ σ+ + + + + < 	 (4.179)
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in which, the coefficients are given by Equations 4.166, 4.167, 4.170, 4.171, 4.175 and 
4.177 or 4.178.

EXAMPLE 4.8

Consider the carbon/epoxy lamina in Example 4.5. Analyze whether the lam-
ina is safe under these stresses. Employ the Tsai–Hill failure criterion. Other 
data remain the same as in that example. Elastic constants are E1 = 140 GPa, 
E2 = 10 GPa, ν12 = 0.28, and G12 = 6 GPa.

Solution

The stresses applied on the lamina are σxx = 1200 MPa, σyy = 350 MPa, and 
τxy = 800 MPa, that is, the stresses in the global coordinates are

	

σ
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and the stresses in the local coordinates are

	

σ
σ
τ

11
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
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
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

MPa

	

The coefficients in Equation 4.179 are obtained as follows:

	
F1

41
2000

1
800

7 5 10= +
−

= − × −.
	

	
F11

71
2000 800

6 25 10=
−
× −

= × −

( )
.

	

	
F2

21
40

1
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1 833 10= +
−

= × −.
	

	
F22

41
40 150

1 667 10=
−

× −
= × −

( )
.

	

	
F66 2

41

70
2 041 10= = × −.

	

	
H12

61

2 2000 800 40 150
5 103 10= −

× − × × −
= − × −

( ) ( )
.
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Then, the left-hand side of Equation 4.179 can be calculated as

	

F F F F F H1 11 2 22 11 11
2

22 22
2

66 12
2

12 11 22

47 5 10 16

σ σ σ σ τ σ σ+ + + + +
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− −

− 330 3 2 041 10 32 0 5 103 10

1680 3 130 3 2 273

2 4 2 6. ) . . .

. ( . ) .

+ × × − ×
× × − =

− −

	

which is greater than one and thus the lamina is not safe.

4.6.2.5  Discussion on Failure Criteria

In the preceding sections, we presented four failure criteria commonly used in the 
design and analysis of composite structures. A natural question arises as to which cri-
terion should be used in a specific design case. With a view to getting an answer to this, 
in this section, we shall have a brief comparative study of these failure criteria. Let us 
consider the following example.

EXAMPLE 4.9

Consider a carbon/epoxy lamina with the following strength parameters and elas-
tic constants:

( )σ11 2000T
ult = MPa, ( )σ11 800C

ult = − MPa , ( )σ22 40T
ult = MPa , 

( )σ22 150C
ult = − MPa, and (τ12)ult = 70 MPa

E1 = 140 GPa, E2 = 10 GPa, ν12 = 0.28, and G12 = 6 GPa

Consider the following load case and determine the failure loads as per different 
failure criteria for varying lamina angles:

σxx ≠ 0 and σyy = τxy = 0

Solution

Using Equation 4.43, the stresses in the local coordinate axes can be written as
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Then, using Equation 4.2, the strains in the local coordinates can be written as
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Under the given uniaxial load case, two subcases are possible: (i) tensile stress 
along the x-direction and (ii) compressive stress along the x-direction. Let us first 
consider tensile stress, that is, σxx > 0.
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Maximum Stress Failure Criterion

For σxx > 0 and 0 ≤ θ ≤ 90°, 0 ≤ σxx cos2 θ. Thus, σ11 is positive, that is, tensile. 
In a similar way, σ22 is also tensile. Hence, as per the maximum stress criterion, 
we compare these local stresses with the corresponding ultimate tensile stresses. 
On the other hand, τ12 is negative. However, as discussed before, in-plane shear 
strength is the same irrespective of its sign and we need to compare the absolute 
value of the shear stress with the corresponding strength. Thus, the maximum 
values of σxx are obtained as follows:

Failure due to excessive longitudinal tensile stress

	
( )

cos
σ

θ
xx max =

2000
2

	

Failure due to excessive transverse tensile stress
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sin
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θ
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Failure due to excessive in-plane shear stress
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Maximum Strain Criterion

We note that the ultimate strains are given by
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Then, comparing the local strains with the ultimate strains, we obtain the max-

imum values of σxx as follows:
Failure due to excessive longitudinal tensile strain (for cos2 θ > 0.28 sin2 θ)

	
( )

cos . sin
σ

θ θ
xx max =

−
2000

0 282 2
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Failure due to excessive longitudinal compressive strain (for cos2 θ < 0.28 sin2 θ)

	
( )

cos . sin
σ

θ θ
xx max =

−
−

800

0 282 2
	

Failure due to excessive transverse tensile strain (for sin2 θ > 0.02 cos2 θ)

	
( )

sin . cos
σ

θ θ
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−
40

0 022 2
	

Failure due to excessive transverse compressive strain (for sin2 θ < 0.02 cos2 θ)

	
( )

sin . cos
σ

θ θ
xx max =

−
−

150

0 022 2
	

Failure due to excessive in-plane shear strain

	
( )

cos sin
σ

θ θxx max =
70

	

Tsai–Hill Criterion

The coefficients in Equation 4.160 are given by

	 F1 2000= MPa 	

	 F2 40= MPa 	

	 F3 70= MPa 	

Note that the tensile strengths that are used for F1 and F2 as σ11 and σ22 are 
positive quantities. Then, using Equation 4.160, we get
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Tsai–Wu Criterion

The coefficients in Equation 4.179 are given by

	
F1

41
2000

1
800

7 5 10= +
−

= − × −.
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F11
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Then, the Tsai–Wu criterion in Equation 4.179 can be written as

	
[ cos sin ( )cos sin ] [ cos sinF F F H F Fxx11

4
22

4
66 12

2 2 2
1

2
2θ θ θ θ σ θ+ + + + + 22 1θ σ] xx = 	

Substituting the values of the coefficients from above, after simple manipula-
tion, we get

	

[ . cos sin cos sin ]

[( . )sin

6 25 1667 1990

1 833 10

4 4 2 2 2

5 2

θ θ θ θ σ

θ

+ +

+ ×
xx

−− − =7500 10 02 7cos ]θ σxx 	

By solving the quadratic equation, we get two roots. The positive root is the 
maximum tensile (σxx)max as per the Tsai–Wu criterion.

We have obtained expressions for (σxx)max in terms of θ as per all the four fail-
ure criteria. θ is varied from 0° to 90° and the values of maximum uniaxial stress 
(σxx)max are tabulated in Table 4.2. The results are pictorially presented in Figures 
4.17 through 4.19.

Next, let us consider the uniaxial compressive load, that is, σxx < 0 and deter-
mine the variation of (σxx)min.

Maximum Stress Criterion

Following a similar procedure as in the case of uniaxial tensile loading, we get the 
maximum uniaxial compressive stress as follows:

Failure due to excessive longitudinal compressive stress

	
( )

cos
σ

θ
xx min =

−800
2

	

Failure due to excessive transverse compressive stress

	
( )

sin
σ

θ
xx min =

−150
2
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Failure due to excessive in-plane shear stress

	
( )

cos sin
σ

θ θxx min =
−70

	

Maximum Strain Criterion

We obtain the maximum values of σxx as follows:
Failure due to excessive longitudinal compressive strain (for cos2 θ > 0.28 sin2 θ)

	
( )

cos . sin
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θ θ
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−
−

800
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FIGURE 4.17  Failure load as per the maximum stress failure criterion of a lamina (Example 4.9) 
under uniaxial tensile stress σxx. (1) Failure due to excessive longitudinal tensile stress. (2) Failure due to 
excessive transverse tensile stress. (3) Failure due to excessive in-plane shear stress.

TABLE 4.2
Maximum Uniaxial Tensile Stress, (σxx)max, on a Carbon/
Epoxy Lamina (Example 4.9) as Per Different Failure Criteria

Lamina 
Angle (°)

Maximum 
Stress Criterion

Maximum 
Strain Criterion

Tsai–Hill 
Criterion

Tsai–Wu 
Criterion

0 2000.0 2000.0 2000.0 2000.0
5 806.2 806.2 745.6 842.9
10 409.3 409.3 385.5 404.0
15 280.0 280.0 252.3 251.3
20 217.8 217.8 183.3 177.7
25 182.8 182.8 141.5 135.4
30 160.0 161.7 113.7 108.3
35 121.6 126.8 94.2 89.9
40 96.8 99.6 80.0 76.7
45 80.0 81.6 69.5 67.0
50 68.2 69.1 61.5 59.7
55 59.6 60.2 55.4 54.1
60 53.3 53.7 50.7 49.8
65 48.7 48.9 47.1 46.5
70 45.3 45.4 44.4 44.0
75 42.9 42.9 42.4 42.2
80 41.2 41.3 41.0 41.0
85 40.3 40.3 40.3 40.2
90 40.0 40.0 40.0 40.0
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Failure due to excessive longitudinal tensile strain (for cos2 θ < 0.28 sin2 θ)
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Failure due to excessive transverse compressive stress (for sin2 θ > 0.02 cos2 θ)
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Failure due to excessive transverse tensile strain (for sin2 θ < 0.02 cos2 θ)
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Failure due to excessive in-plane shear strain
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FIGURE 4.18  Failure load as per the maximum strain failure criterion of a lamina (Example 4.9) 
under uniaxial tensile stress σxx. (1) Failure due to excessive longitudinal tensile strain. (2) Failure due to 
excessive transverse tensile strain. (3) Failure due to excessive in-plane shear strain.
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FIGURE 4.19  Comparison of failure load by different failure criteria of a lamina (Example 4.9) 
under uniaxial tensile stress σxx.
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Tsai–Hill Criterion

The coefficients in Equation 4.160 are given by

	 F1 800= − MPa 	

	 F2 150= − MPa 	

	 F3 70= MPa 	

Note that compressive strengths are used for F1 and F2 as σ11 and σ22 are nega-
tive quantities. Then, using Equation 4.160, we get
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Tsai–Wu Criterion

We discussed the procedure for the determination of (σxx)max as per the Tsai–Wu 
criterion in the subcase σxx > 0. We found that the solution gives us two roots. 
The negative root is the maximum compressive stress (algebraically minimum) 
as per the Tsai–Wu criterion.

The results in the case compressive σxx are tabulated in Table 4.3 and plotted 
in Figures 4.20 through 4.22.

Based on the results in Example 4.9 and the discussions on the failure criteria, the 
following points may be noted:

The maximum stress failure criterion indicates that the mode of failure and its picto-
rial representation are composed of three curves. In Figures 4.17, the first curve cor-
responds to the failure of the lamina due to excessive tensile stress in the longitudinal 
direction. Owing to normally very high longitudinal modulus as compared to trans-
verse and in-plane shear moduli, this mode of failure is prevalent only at very low 
lamina angles. The failure of the lamina at high lamina angles is due to excessive 
tensile stress in the transverse direction. At low to medium lamina angles, the mode of 
failure is in-plane shear failure.

The maximum strain failure criterion is similar to the maximum stress criterion and 
it also indicates the mode of failure. On the other hand, Tsai–Hill and Tsai–Wu criteria 
are unified criteria and thus in these failure criteria, mode of failure cannot be found 
directly.

Maximum stress and maximum strain criteria are associated with cusps formed at 
the junctions between curves representing different failure modes. These cusps are not 
found in the Tsai–Hill and Tsai–Wu criteria, wherein variation of failure stress w.r.t. 
lamina angle is rather smooth.

The results of experimental works [14,15] indicate good comparison with Tsai–Hill 
and Tsai–Wu criteria. On the other hand, the maximum stress and maximum strain 
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failure criteria cannot estimate failure stress so well especially near the cusps, where 
the experimental values are typically lower than the predicted ones.

Given the local stress/strain fields, the maximum stress and maximum strain criteria 
involve hardly any calculation other than simple comparison with the corresponding 
ultimate strength or strain parameters. Thus, these criteria are extremely simple to use 
in a design case.

Tsai–Hill and Tsai–Wu failure criteria are similar in respect of their approach and 
performance. The Tsai–Wu criterion has a broader scope and it differentiates compres-
sive stress from tensile stress better than the Tsai–Hill criterion. However, the Tsai–Wu 
criterion is more complicated to use.

TABLE 4.3
Maximum Uniaxial Compressive Stress, (σxx)max, on a Carbon/Epoxy 
Lamina (Example 4.9) as Per Different Failure Criteria

Lamina 
Angle (°)

Maximum 
Stress Criterion

Maximum 
Strain Criterion

Tsai–Hill 
Criterion

Tsai–Wu 
Criterion

0 −800.0 −800.0 −800.0 −800.0
5 −806.1 −806.2 −582.8 −558.2
10 −409.3 −409.3 −372.4 −377.4
15 −280.0 −280.0 −268.0 −289.8
20 −217.8 −217.8 −211.3 −241.3
25 −182.8 −182.8 −177.3 −211.5
30 −161.7 −161.7 −155.7 −192.0
35 −149.0 −149.0 −141.7 −178.7
40 −142.2 −142.2 −132.6 −169.5
45 −140.0 −140.0 −127.3 −163.0
50 −142.2 −142.2 −124.7 −158.5
55 −149.0 −149.0 −124.5 −155.3
60 −161.7 −161.7 −126.3 −153.2
65 −182.6 −182.8 −129.8 −151.8
70 −169.9 −170.3 −134.5 −151.0
75 −160.8 −161.0 −139.9 −150.5
80 −154.7 −154.8 −145.1 −150.2
85 −151.1 −151.2 −148.8 −150.0
90 −150.0 −150.0 −150.0 −150.0
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FIGURE 4.20  Failure load as per the maximum stress failure criterion of a lamina (Example 4.9) 
under uniaxial compressive stress σxx. (1) Failure due to excessive longitudinal compressive stress. (2) 
Failure due to excessive transverse compressive stress. (3) Failure due to excessive in-plane shear stress.
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The four failure criteria have their own individual characteristics. From the point 
of view of simplicity, the maximum stress or maximum strain criterion can be used 
especially in the development phase of a design exercise. These criteria help to identify 
the mode of failure and thereby the designer can make appropriate modifications to 
the ply sequence. On the other hand, although the Tsai–Hill and Tsai–Wu criteria are 
more complicated, they are found to have better match with experimental data and can 
be utilized in the final analysis. In other words, the failure criteria may be taken as 
complement to each other.

4.7  HYGROTHERMAL EFFECTS
The constitutive relations presented in Section 4.4 do not consider any aspect of the 
environment that the composite lamina is in. Among the many environmental factors, 
the effects of change in temperature and change in moisture content on PMCs are the 
most significant.

Thermal stresses can occur in two ways. First, residual thermal stresses can 
develop due to temperature change during processing. Most PMCs are cured at high 
temperatures. Owing to mismatch in their CTEs, fibers and matrix undergo dif-
ferential expansion during the temperature rise phase. At an elevated temperature, 
the matrix cross-links and fibers and matrix unite. During the cooling phase, the 
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FIGURE 4.21  Failure load as per the maximum strain failure criterion of a lamina (Example 4.9) 
under uniaxial compressive stress σxx. (1) Failure due to excessive longitudinal compressive strain. (2) 
Failure due to excessive transverse compressive strain. (3) Failure due to excessive in-plane shear strain.
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FIGURE 4.22  Comparison of failure load by different failure criteria of a lamina (Example 4.9) 
under uniaxial compressive stress σxx.
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fibers and matrix tend to shrink differentially but the bond at the interface between 
the  two restrains them. As a result, on cooling, the composite develops residual 
stresses.

Second, thermal stresses can develop due to temperature change during product 
service life. This is due to mismatch between CTEs in the longitudinal and transverse 
directions of a unidirectional lamina. When a single lamina is subjected to a change 
in temperature, it undergoes differential deformation in the two directions and clearly 
the thermal strains are different in the two directions. However, no thermal stresses 
develop unless the lamina is restrained from deformation. In most practical composite 
structures, a number of laminae are stacked in different directions to make a laminate. 
Owing to the presence of bond between the laminae, the individual laminae in a lami-
nate, when subjected to a temperature change, restrain each other from free thermal 
deformations and thermal stresses develop.

The next major environmental factor to be considered in the constitutive modeling is 
moisture absorption. Most PMCs can absorb or deabsorb moisture. Owing to moisture 
absorption, the composite swells. Similar to the thermal strains, owing to mismatch in 
the CMEs of a unidirectional lamina, the swelling strains are different in the longitu-
dinal and transverse directions and stresses can develop in a laminate with laminae at 
different angles.

Hygrothermal effects on a laminate shall be discussed in Chapter 5. Here, we dis-
cuss the effects on laminae—a specially orthotropic lamina and a generally orthotropic 
lamina.

4.7.1  Hygrothermal Effects in Specially Orthotropic Lamina

As we just mentioned above, when subjected to a change in temperature or moisture 
content, a unidirectional lamina undergoes different deformations in the longitudinal 
and transverse directions. However, the lamina does not undergo any shear deforma-
tion in the local material coordinate system. Thus, the total strains in a unidirectional 
lamina, subjected to in-plane loads and change in temperature as well as moisture 
content, are given by
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where
[S]		  Compliance matrix given by Equations 4.6 through 4.11
ΔT		  Change in temperature
ΔC		  Change in moisture content per unit mass of the lamina (kg/kg)
σ11, σ22, τ12	 In-plane hygrothermal stresses in the lamina
α1, α2	 CTEs in the longitudinal and transverse directions, respectively
β1, β2		 CMEs in the longitudinal and transverse directions, respectively

Then, the stresses are obtained by inverting Equation 4.180 as
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where [Q] (= [S]−1) is the reduced stiffness matrix given by Equations 4.15 through 
4.20. When the lamina is not constrained from any deformation during hygrothermal 
expansion, no hygrothermal stresses develop. Thus, for an unconstrained lamina,
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On the other hand, the hygrothermal stresses are the maximum when the lamina is 
fully constrained. In such a case,
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and the hygrothermal stresses are
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4.7.2  Hygrothermal Effects in Generally Orthotropic Lamina

A specially orthotropic lamina, when subjected to hygrothermal loading, undergoes 
normal deformations along the local material coordinates but not in-plane shear defor-
mation. However, an off-axis lamina or a generally orthotropic lamina undergoes in-
plane shear deformation in addition to normal deformations (Figure 4.23). Thus, the 
total strains in a generally orthotropic unidirectional lamina, subjected to in-plane 
loads and change in temperature as well as moisture content, are given by
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FIGURE 4.23  Hygrothermal deformations in a specially orthotropic lamina and a generally ortho-
tropic lamina (dotted lines for deformed shapes).
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where
[ ]S 		�  Transformed reduced compliance matrix given by Equations 4.68 

through 4.73
ΔT		  Change in temperature
ΔC		  Change in moisture content per unit mass of the lamina (kg/kg)
σxx, σyy, τxy	 In-plane hygrothermal stresses in the global coordinate axes
αx, αy, αxy	 CTEs in the global coordinate axes
βx, βy, βxy	 CMEs in the global coordinate axes

By inverting Equation 4.185, the global stresses are obtained as
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where [ ]Q  is the transformed reduced stiffness matrix. The CTEs and CMEs in the 
global coordinates are related to those in the local coordinates in the same way as the 
global strains are related to the local strains. Then, these coefficients in the global coor-
dinates are obtained by transformation from the local material coordinates as follows:
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in which the transformation matrix [T] is given by Equation 4.45.
Using the Reuter’s matrix, Equations 4.187 and 4.188 can be written as
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Similar to the case of a lamina in the material coordinates, when a specially ortho-
tropic lamina is not constrained from any deformation during hygrothermal expansion, no 
hygrothermal stresses develop. Thus, for an unconstrained generally orthotropic lamina,
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and for fully constrained generally orthotropic lamina,
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and
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EXAMPLE 4.10

Consider a unidirectional glass/epoxy lamina with the following properties:

α1 = 8.0 × 10−6 m/m/°C, α2 = 20.0 × 10−6 m/m/°C
β1 = 0.01 m/m/kg/kg, β2 = 0.06 m/m/kg/kg
E1 = 40 GPa, E2 = 6 GPa, ν12 = 0.25, and G12 = 4 GPa

If the lamina is subjected to a temperature rise of 50°C and it absorbs moisture 
@ 0.01 kg/kg, determine the hygrothermal stresses and strains. Consider the fol-
lowing two cases:

	 1.	Specially orthotropic lamina fully constrained in the longitudinal 
direction

	 2.	Generally orthotropic lamina at a lamina angle of 30°, fully constrained 
in the x-direction.

Solution

	 1.	The reduced stiffness matrix is given by
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For unconstrained lamina, the hygrothermal strains are given by 
Equation 4.182 as follows:
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However, the lamina is constrained in the longitudinal direction. Thus, ε11 = 0 
and  for the given end conditions, the hygrothermal stresses are obtained as 
follows:
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In the case of the generally orthotropic lamina, first let us find the reduced 
transformed stiffness matrix elements. Using Equation 4.55 through 4.60, we get

	

Q11
4 4

2
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30

= × °+ × °+ × + ×

× °

, cos sin ( )

sin cos22 30° = 26660MPa 	
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( , ) sin cos
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Thus, the reduced transformed stiffness matrix is

	

[ ]

, ,

,

Q =

















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26 660 6653 10 398
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Using Equation 4.45, for a lamina angle of 30°, the transformation matrix is 
obtained as

	

[ ]

. . .

. . .

. . .
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


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
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Using Equations 4.189 and 4.190, the off-axis CTEs and CMEs are determined 
as follows. (Note that [R][T]−1[R]−1 = [T]T.)
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Then, for an unconstrained lamina, the global hygrothermal strains would be 
given by
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However, as given in the problem, the lamina is constrained in the x-direction. 
Thus, εxx = 0 and we can obtain the hygrothermal stresses as follows:
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Note that the generally orthotropic lamina, owing to its constraint in one 
direction, develops compressive hygrothermal normal stresses in both the 
directions and a negative in-plane shear stress. Note, further, that the specially 
orthotropic lamina develops only hygrothermal normal stresses but no in-plane 
shear stress.

4.8  SUMMARY
The behavior of a lamina is studied at a macro level in this chapter. Toward this, the 
lamina is introduced as a 2D ply described in terms of various gross or apparent param-
eters related to the geometry, stiffness, strength, and hygrothermal state of the lamina. 
The concepts of material coordinates and global coordinates are presented.

Constitutive relations have been developed based on plane stress idealization for 
specially orthotropic lamina as well as generally orthotropic lamina. For a specially 
orthotropic lamina, these relations involve the material elastic constants, whereas for a 
generally orthotropic lamina, the orientation of the lamina comes into consideration as 
an additional parameter.
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Unlike in isotropic materials, the strengths of an orthotropic lamina are direction-
dependent properties and five strength parameters can be identified. Several failure 
criteria involving strengths or failure strains are presented.

Among the many environmental factors, the effects of change in temperature and 
change in moisture content on polymeric matrix composites are the most signifi-
cant. The constitutive relations are modified to take into account these environmental 
changes by introducing certain coefficients, viz. CTEs and CMEs.

EXERCISE PROBLEMS

	 4.1	 Consider a specially orthotropic lamina of size 400 mm × 300 mm with 
the following engineering constants: E1 = 140 GPa, E2 = 6 GPa, ν12 = 0.25, 
ν23 = 0.3, G12 = 4 GPa, and G23 = 4 GPa. Determine the strains and defor-
mations in the following load cases:

	 a.	 Tensile stress of 1600 MPa in the longitudinal direction
	 b.	 Tensile stress of 30 MPa in the transverse direction
	 c.	 Positive shear stress of 60 MPa in the plane of the lamina
		  Sketch the deformed configuration of the lamina in each of the above cases. 

Use 3D orthotropic constitutive relations given by Equation 4.1.
	 4.2	 Consider the lamina in Exercise 4.1 and apply all the three load cases simul-

taneously. Determine the strains and deformations and compare the results 
with those in Exercise 4.1. What conclusion can we draw in respect of the 
combined strains and deformations vis-à-vis the strains and deformations 
when the three stresses are applied separately? Use 3D orthotropic constitu-
tive relations given by Equation 4.1.

	 4.3	 Determine the reduced stiffness matrix [Q] of a unidirectional glass/epoxy 
lamina with the following material data: E1 = 40 GPa, E2 = 8 GPa, ν12 = 
0.25, and G12 = 4 GPa.

	 4.4	 Solve the problem in Exercise 4.1 using plane stress idealization.
	 4.5	 Solve the problem in Exercise 4.2 using plane stress idealization.
	 4.6	 Consider the lamina in Exercise 4.3. If the lamina is subjected to only a uni-

axial tension, determine its maximum value (maximum tensile force) so as to 
limit the longitudinal deformation within 8 mm.

	 4.7	 Consider a unidirectional carbon/epoxy laminate of size 500 mm × 
500 mm × 5 mm subjected to in-plane normal stresses. Determine the ratio 
of applied longitudinal stress to transverse stress so as to achieve equal defor-
mation in both the directions. Assume the following data: E1 = 150 GPa, 
E2 = 8 GPa, ν12 = 0.25, ν23 = 0.3, and G12 = 4 GPa.

	 4.8	 Derive the restrictions on Poisson’s ratio in terms of elastic moduli, that is, 
show that
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		  Hint: Diagonal elements of the stiffness matrix are all positive.

	 4.9	 Determine the transformed reduced stiffness matrix [ ]Q  of the unidi-
rectional glass/epoxy lamina in Exercise 4.3 for each of the following ply 
orientations: (i) 0°, (ii) 45°, and (iii) 90°. Do you see any specialty in [ ]Q 0°  and 
[ ]Q 90°?
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	 4.10	 Write a code in MATLAB®/C/C++ for the determination of (i) reduced 
compliance matrix [S], (ii) transformed reduced compliance matrix [ ]S , 
(iii) transformation matrix [T], (iv) reduced stiffness matrix [Q], (v) trans-
formed reduced stiffness matrix [ ]Q , (vi) global stresses, (vii) global strains, 
(viii)  local strains, and (v) local stresses. Use geometrical details of lam-
ina, fiber orientation, and applied loads and material properties as input 
variables.

		  Hint: Refer Figure 4.7.

	 4.11	 A generally orthotropic square lamina with fibers oriented at 30° to the global 
x-axis is subjected to a pure shear stress of 150 MPa. Determine the change 
in shape of the lamina. What happens if the sign of the applied shear stress is 
reversed? Draw neat sketches to indicate the changes. Assume the following 
material data: E1 = 160 GPa, E2 = 10 GPa, ν12 = 0.15, and G12 = 8 GPa.

	 4.12	 Consider the lamina in Exercise 4.11 and subject it to the following in-plane 
stresses: σxx = 1000 MPa, σyy = 200 MPa, and τxy = 150 MPa. Determine 
the local stresses in the lamina.

	 4.13	 Consider a unidirectional carbon/epoxy laminate of size 400 mm × 
300 mm × 8 mm. The laminate is subjected to loads as shown in Figure 4.24. 
Determine the global strains, local strains, and local stresses. Assume the 
following material data: E1 = 150 GPa, E2 = 8 GPa, ν12 = 0.25, ν23 = 0.3, 
and G12 = 4 GPa.

	 4.14	 Consider a globally orthotropic lamina. If the global strains are equal 
(εxx = εyy), determine the fiber orientation angle (θ) when the lamina is sub-
jected to equal global normal stresses (σxx = σyy) and zero in-plane shear 
stress (τxy = 0).

	 4.15	 Plot the variations of elastic moduli Ex, Ey, νxy, and Gxy w.r.t. ply angle. 
Assume the following material data: E1 = 180 GPa, E2 = 12 GPa, ν12 = 0.2, 
and G12 = 8 GPa.

	 4.16	 Consider the unidirectional laminate in Exercise 4.13. The following strength 
data are given: ( )σ11 2400T

ult = MPa , ( )σ11 800C
ult = MPa , ( )σ22 40T

ult = MPa , 
( )σ22 200C

ult = MPa , and (τ12)ult = 75 MPa. Check if the lamina is safe under 
the applied loads using the maximum stress failure criterion. Comment on 
the mode of failure.

	 4.17	 Solve the problem in Exercise 4.16 using the maximum strain failure crite-
rion. Comment on the mode of failure.

	 4.18	 Solve the problem in Exercise 4.16 using the Tsai–Hill failure criterion. 
Comment on the mode of failure.

	 4.19	 Solve the problem in Exercise 4.16 using the Tsai–Wu failure criterion. 
Comment on the mode of failure.

1000 MPa

1000 MPa

100 MPa

8 mm

300 mm
400 mm

FIGURE 4.24  Unidirectional laminate (Exercise 4.13).
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	 4.20	 Consider the unidirectional laminate in Exercise 4.13 together with the 
strength data given in Exercise 4.16. Vary the ply orientation angle from 0° to 
90° and generate the failure load versus angle plots as per (a) the maximum 
stress failure criterion, (b) the maximum strain failure criterion, (c) the Tsai–
Hill failure criterion, and (d) the Tsai–Wu failure criterion. Mark in each of 
the four cases the ranges of ply angles clearly indicating the mode(s) of failure.

	 4.21	 For a unidirectional glass/epoxy lamina with 30° ply orientation, determine the 
off-axis CTEs and CMEs. Assume the following data: α1 = 8 × 10−6 m/m/°C, 
α2 = 20 × 10−6 m/m/°C, β1 = 0.01 m/m/kg/kg, β2 = 0.6 m/m/kg/kg.

	 4.22	 Consider a unidirectional glass/epoxy laminate of size 500 mm × 
500 mm × 5 mm. The fibers are oriented at an angle of 30° to the x-
direction. If the temperature is raised by 25°C, determine the changes 
in dimensions. Assume the following data: α1 = 8 × 10−6 m/m/°C and 
α2 = 20 × 10−6 m/m/°C

	 4.23	 Consider the laminate in Exercise 4.22. If the laminate is subjected simul-
taneously to a humid environment and elevated temperature such that it 
absorbs 20 g of moisture and the temperature increases by 25°C, deter-
mine the changes in dimensions. Assume the following additional data: 
β1 = 0.01 m/m/kg/kg and β2 = 0.6 m/m/kg/kg

	 4.24	 Consider the laminate in Exercise 4.22 together with the data on CMEs 
given in Exercise 4.23. The laminate is fully constrained in both x- and 
y-directions. If it is subjected to an increase in temperature of 25°C and 
it absorbs 20 g moisture, determine the hygrothermal stresses and strains 
in the laminate. Assume the following data: α1 = 8 × 10−6m/m/°C, 
α2 = 20 × 10−6m/m/°C, β1 = 0.01 m/m/kg/kg, β2 = 0.6 m/m/kg/kg, 
E1 = 40 GPa, E2 = 6 GPa, ν12 = 0.25, G12 = 4 GPa, and ρc = 1.45 g/cm3.

REFERENCES AND SUGGESTED READING
	 1.	 R. M. Jones, Mechanics of Composite Materials, Taylor & Francis, New York, 1999.
	 2.	 B. D. Agarwal, L. J. Broutman, and K. Chandrashekhara, Analysis and Performance of Fiber 

Composites, John Wiley & Sons, New York, 2006.
	 3.	 A. K. Kaw, Mechanics of Composite Materials, CRC Press, Boca Raton, FL, 2006.
	 4.	 J. N. Reddy, Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, 

CRC Press, Boca Raton, FL, 2004.
	 5.	 M. Mukhopadhyay, Mechanics of Composite Materials and Structures, Universities Press, 

Hyderabad, India, 2009.
	 6.	 V. V. Vasiliev and E. V. Morozov, Mechanics and Analysis of Composite Materials, Elsevier Science, 

Amsterdam, 2001.
	 7.	 B. M. Lempriere, Poisson’s ratio in orthotropic materials, AIAA Journal, 6(11), 1968, 2226–2227.
	 8.	 R. C. Reuter, Jr., Concise property transformation relations for an anisotropic lamina, Journal of 

Composite Materials, 5, 1971, 270–272.
	 9.	 S. W. Tsai and N. J. Pagano, Invariant properties of composite materials, Composite Materials 

Workshop (S. W. Tsai, J. C. Halpin, and N. J. Pagano, eds.), St. Louis, Missouri, July 13–21, 1967, 
Technomic, Westport, Connecticut, 1968, pp. 233–253.

	 10.	 M. N. Nahas, Survey of failure and post-failure theories of laminated fiber reinforced composites, 
Journal of Composites, Technology and Research, 8(4), 1986, 138–153.

	 11.	 S. W. Tsai, Strength theories of filamentary structures, Fundamental Aspects of Fiber Reinforced 
Plastic Composites (R. T. Schwartz and H. S. Schwartz, eds.), Interscience, New York, 1968, 
Chapter 1, pp. 3–11.

	 12.	 R. Hill, Mathematical Theory of Plasticity, Oxford University Press, Oxford, UK, 1950.
	 13.	 S. W. Tsai and E. M. Wu, A general theory of strength for anisotropic materials, Journal of Composite 

Materials, 5(1), 1971, 58–80.
	 14.	 S. W. Tsai and H. T. Hahn, Introduction to Composite Materials, Technomic Publishing Company, 

Lancester, PA, 1980.
	 15.	 R. Byron Pipes and B. W. Cole, On the off-axis strength test for anisotropic materials, Journal of 

Composite Materials, 7, 1973, 246–256.



197

5.1  CHAPTER ROAD MAP
We addressed a single layer or a lamina in Chapters 3 and 4. However, individual 
laminae are not of any direct practical use. Typically, a single lamina is very thin, for 
example, approximately 0.5 mm, and it is not usually capable of providing appropri-
ate strength and stiffness required of any real-life structure. Further, a unidirectional 
lamina is exceptionally strong and stiff in the longitudinal direction but very poor in 
the transverse direction. Thus, a single lamina is not suitable in a bidirectional loading 
environment. As a result, it is essential, in almost all practical cases, to stack the lami-
nae and bond them in the form of a laminate.

Analysis of a laminate—an essential part in the overall design of a product—is done 
at a macro level based on the gross hygro-thermo-mechanical characteristics of the 
laminae comprising the laminate. The objective of this chapter is to address the vari-
ous aspects of laminate analysis at a macro level. Laminae can be stacked in different 
ways and several special laminate configurations can be identified. We shall see in this 
chapter that the general response of a laminate depends greatly on the type of stacking 
sequence. Several theories have been proposed by researchers for analysis of a lami-
nate. A review of these theories is not intended here. Classical laminate theory (CLT) 
is the most popular theory in the analysis of a composite laminate and topics related to 
basic assumptions and restrictions, kinematics, kinetics, and constitutive relations are 
discussed. Brief introductory remarks are made in respect of shear deformation and 
layerwise theories. Hygrothermal effects on laminate behavior are discussed next; con-
stitutive relations are suitably modified; and CTEs and CMEs are introduced. Special 
cases of laminate stacking sequences have great significance in laminate behavior and 
several such cases are addressed. Finally, the general failure behavior of a laminate is 
presented.

A thorough understanding of the macro-level analysis of a lamina (Chapter 4) is a 
prerequisite for effective assimilation of the concepts of laminate analysis discussed in 
this chapter. As mentioned in the road map of Chapter 4, exposure to the introductory 
concepts of composites (Chapter 1) and basic solid mechanics (Chapter 2), in turn, is 
essential whereas, familiarity with micromechanics of lamina (Chapter 3) is desirable 
but not essential.

5.2  PRINCIPAL NOMENCLATURE
A, B	 Lame′ parameters
[A], [B], [D]	� Laminate stiffness matrices—extensional stiffness matrix, 

extension–bending coupling stiffness matrix, and bending stiff-
ness matrix, respectively

5
Macromechanics of a Laminate
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[A*], [B*], [C*], [D*]	� Laminate compliance matrices—extensional compliance matrix, 
extension–bending coupling compliance matrices, and bending 
compliance matrix, respectively

E1, E2, G12, v12	 Material elastic constants
{M}	 Vector of moment resultants
{MHT}	 Vector of fictitious hygrothermal moment resultants
Mxx, Myy, Mxy	� Bending and twisting moment per unit length, that is, moment 

resultants
{N}	 Vector of force resultants
{NHT}	 Vector of fictitious hygrothermal force resultants
Nxx, Nyy, Nxy	 Normal and shear force per unit length, that is, force resultants
[Q]	 Reduced stiffness matrix for a lamina
[ ]Q 	 Transformed reduced stiffness matrix for a lamina
R1, R2	 Principal radii of curvature
[R]	 Reuter matrix
[T]	 Transformation matrix
t	 Laminate thickness
u, v, w	 Displacements in the x-, y-, and z-directions, respectively
u0, v0, w0	 Middle surface displacements
x, y, z	 Cartesian coordinates
α, β, ξ	 Curvilinear orthogonal coordinates
ε11, ε22, γ12	 Local strains
εxx, εyy γxy	 Global strains
{ε0}	 Vector of middle surface strains
εxx

0 , εyy
0 , γ xy

0 	 Middle surface strains
{κ}	 Vector of middle surface curvatures
κxx, κyy, κxy	 Middle surface curvatures
σ11, σ22, τ12	 Local stresses
σxx, σyy, τxy	 Global stresses

5.3  LAMINATE CODES
A laminate is an integral composite structural element that is made by bonding together 
a number of laminae. (Lamina, plural laminae, is a term more common in the context 
of mechanics of laminated composites. The term ply is more common in the context of 
processing of composites. We shall use both these terms as synonymous to each other.) 
Figure 5.1 shows a schematic representation of a laminate made up of six unidirectional 
laminae. Note that details of the laminae, other than the angle of orientation, have not 
been provided. Obviously, more details, such as ply thickness, ply material (carbon/
epoxy, glass/epoxy, etc.), ply type (unidirectional, bidirectional, etc.), ply sequence, etc. 
are needed for complete description of a laminate. A number of ply combinations are 
possible that gives us different types of laminate configurations. Laminate description 
is generally given using codes. The usual practice for writing a laminate code is to 
write the angles separated by slashes inside a pair of square brackets. For example, let 
us consider the laminate shown below:

0°
90°
0°

90°
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The topmost ply is at 0° w.r.t. the global x-direction and the subsequent plies are as 
shown. The code for this laminate would be

	
0 90 0 90° ° ° °[ ]/ / /

	

The code above indicates only the lamina angles and nothing else. In such a case, 
material system and lamina thickness and lamina type are generally the same for all 
the laminae. Also, these lamina details are required to be mentioned separately. In 
the case of hybrid laminates, it is convenient to provide details in the code itself. For 
example, in the above laminate, if the material systems for the 0° and 90° plies are 
carbon/epoxy and glass/epoxy, respectively, we can write the laminate code as follows:

	
0 90 0 90° ° ° °[ ]CE GE CE GE/ / /

	

We can introduce more generalizations. For example, if the thicknesses of carbon/
epoxy and glass/epoxy plies are 0.5 and 0.6 mm, respectively, the code can be written 
as follows:

	
0 90 0 900 5 0 6 0 5 0 6° ° ° °



( ) ( ) ( ) ( )CE GE CE GE/ / /, . , . , . , . 	

Now, let us consider the following laminate:

45°
45°

−45°

−45°
45°
45°

=

0°

90°

0°

z
y

x

90°

45°

−45°

+

+

+

+

+

FIGURE 5.1  Schematic representation of a laminate with exploded views of the laminae.
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The code for this laminate can be

	
45 45 45 45 45 45° ° − ° − ° ° °[ ]/ / / / /

	

Ply sequence as above containing adjacent laminae with the same angle can be 
described in simplified code as follows:

	
45 45 452 2 2° − ° °[ ]/ /

	

In the code above, the suffix 2 indicates that the corresponding lamina repeats twice. 
We also notice that the laminate is symmetric w.r.t. the midplane. Such laminate sym-
metry can be utilized and the code can be further simplified as follows:

	
45 452° − °[ ]/

s 	

The suffix s indicates that the laminate is symmetric w.r.t. the midplane. In the above 
example of a symmetric laminate the number of plies is six, which is even and in such 
a case the midplane is between two plies. If the number of plies in a symmetric lami-
nate is odd, the midplane passes through the mid-ply and a bar is put on the mid-ply. 
For example, consider the following laminate:

This laminate has an odd number of plies; it is symmetric and the midplane passes 
through the 60° ply. The code for this laminate is

	
90 45 45 60° ° − ° °



/ / /
s 	

5.4 � CLASSIFICATION OF LAMINATE 
ANALYSIS THEORIES

A number of theories have been proposed for analysis of laminated composite plates 
and shells (see, for instance, References 1 and 2 for a review of these theories). Broadly, 
these theories can be classified into two classes—2D theories and 3D theories. This 
classification can be stated as follows:

	 1.	2D equivalent single-layer theories
	 a.	 Classical laminate theory
	 i.	 Classical laminated plate theory (CLPT)
	 ii.	 Classical laminated shell theory (CLST)
	 b.	 Shear deformation theory
	 i.	 First-order shear deformation theory (FSDT)
	 ii.	 Third-order shear deformation theory (TSDT)

90°
45°

−45°
60°

−45°
45°
90°
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	 2.	3D elasticity theories
	 a.	 Classical 3D elasticity formulations
	 b.	 Layerwise theories

A large number of laminated composite structures are thin wherein the length and 
breadth dimensions are far larger than the thickness dimension. These structures can 
be either plates or shells. Analysis of such a thin structure is grossly simplified by 
reducing a 3D problem into a 2D one. In the first category of laminate analysis theo-
ries, a 2D approach is adopted. Invariably suitable assumptions are made in respect 
of the kinematic deformation or state of stress through the thickness of the laminate. 
CLT, perhaps the most popular composite laminate analysis theory, belongs to the 2D 
approach. CLT for laminated composite plates is called the CLPT. In the case of shells, 
it takes marginally modified shape and is called the CLST. The other major class of 
laminate analysis theories in the 2D approach is the shear deformation theories.

The second approach is the 3D approach, in which there are two major classes. The 
first one is the classical 3D elasticity theories, in which 3D kinematic deformations and 
equilibrium equations are considered. Similarly, constitutive relations are also in three 
dimensions. In layerwise theories, the laminate is described in terms of a number of 
mathematical layers with discrete layerwise displacement fields.

5.5  CLASSICAL LAMINATED PLATE THEORY

5.5.1  Basic Assumptions

CLPT is an extension of the classical plate theory of isotropic materials to laminated 
composite materials. It is assumed that Kirchhoff hypothesis for plates is applicable. 
In addition to Kirchhoff hypothesis, several other assumptions are made and similar 
restrictions are placed in the formulation of CLPT. They are tabulated in Table 5.1.

TABLE 5.1
Assumptions and Restrictions in CLPT

Description Remarks/Implications

	 1.	 The plies are perfectly bonded together with infinitely 
thin bond

Assumption
The plies do not slip over each other and 
displacements and strains are continuous 
across the interfaces between plies

	 2.	 The laminate is thin, that is, the laminate thickness is 
much smaller than the other two dimensions. Also, the 
laminate is loaded only in its plane

Restriction
Plane stress condition holds

	 3.	 Straight lines perpendicular to the middle surface of the 
laminate before deformation (i.e., transverse normals) 
remain straight and perpendicular to the middle surface

Kirchhoff hypothesis
In-plane displacements u and v are linear 
functions of z coordinate

Transverse shear strains are negligible, 
that is, γxz = γyz = 0

	 4.	 The transverse normals do not undergo any change in 
lengths

Kirchhoff hypothesis
Normal strain in the thickness direction is 
zero (εzz = 0)

	 5.	 The strains and displacements are small Restriction
εxx, εyy, γxy ≪ 1

	 6.	 Each ply is of uniform thickness Restriction
	 7.	 The material of each ply is homogeneous, orthotropic, 

and linearly elastic
Restriction
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Note: The terms hypothesis, assumption, and restriction have similar meanings and 
often they are used loosely as synonymous to each other. This may not matter as, for all 
practical purposes, the final mathematical formulations remain unaffected. However, to 
have a proper understanding of the subject, it is important to make distinctions between 
these terms. Hypothesis is a proposition. It is a statement or a collection of statements 
that is put forward to explain a phenomenon. A hypothesis becomes a theory when it 
is proved by some means. An assumption is something that is believed to be true. It is 
related to something unknown and it is required for the development of a mathematical 
model. An assumption in engineering cannot be arbitrary and there should be reasons 
for assuming something. On the other hand, a restriction is a bounding condition within 
which a theory is valid; it is not essential for the development of the theory.

5.5.2  Kinematics of CLPT: Strain–Displacement Relations

Assumption 1 in Table 5.1 forms a base for analysis of a laminate. It is further assumed 
that the bond is not shear deformable. Thus, the plies do not slip over one another and 
the strains and displacements are continuous across the lamina interfaces. As a conse-
quence, the laminae act as a laminate.

Let us now consider a laminate in the Cartesian coordinate system (Figure 5.2). The 
deformed and undeformed configurations of a transverse normal in the xz-plane are 
shown. The origin of the coordinate system is on the middle surface of the laminate 
such that z = 0 at any point on the middle surface. The displacements along x-, y-, and 
z-directions of any point in the laminate are u, v, and w, respectively. (These displace-
ments are denoted by ux, uy, and uz, respectively, in Chapter 2.) We use a subscript 
nought to indicate middle surface displacements. Thus, u0, v0, and w0 are the middle 
surface displacements. Now, under the restriction that the laminate is thin, we assume 
that Kirchhoff hypothesis holds. Let us consider a transverse normal, that is, a straight 
line perpendicular to the middle surface of the laminate in the undeformed config-
uration (line segment AB). As per our assumption 3, the transverse normal remains 
straight and perpendicular to the middle surface in the deformed configuration. Thus, 
we can conclude that the in-plane displacements u and v are linear functions of z. Then, 
as shown in the figure, in the xz-plane, the displacement along x-direction of a point P 
on the transverse normal is given by

	 u u zP P= −0 α 	 (5.1)

y, v

x, u

x

u0

zp

z

w0

A

B

α

αzP

P
Q

z, w A

B

FIGURE 5.2  Geometry of deformation of a transverse normal in the xz-plane.
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where α is the slope of the laminate middle surface in the x-direction and it is given by

	
α =

∂
∂
w

x
0

	
(5.2)

Thus, the displacement u at any point at a distance z from the middle surface in the 
laminate is given by

	
u u z

w

x
= −

∂
∂0

0

	
(5.3)

Following similar considerations in the yz-plane, we can relate the displacement v at 
any point to that of the middle surface as function of z. On the other hand, the displace-
ment w is independent of z. Thus, the total displacement field at any point (x, y, z) is 
expressed in terms of the middle surface displacements as follows:

	

u x y z
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or, simply,
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(5.5)

Now, let us go back to assumption 3. Since the transverse normal remains straight 
and perpendicular to the middle surface in the deformed configuration, the shear strains 
in the xz- and yz-planes (i.e., the planes perpendicular to the middle surface of the lami-
nate) are zero. Also, the transverse normal remains unchanged in length. Accordingly, 
normal strain in the z-direction vanishes. Thus,

	 γ γ εxz yz zz= = = 0 	 (5.6)

Thus, the nonzero laminate strains are reduced to εxx, εyy, and γxy. Under the restric-
tion 5, these strains are small and we can use the small strain expressions, presented in 
Chapter 2, as follows:

	
εxx

u

x
=

∂
∂ 	

(5.7)

	
εyy

v

y
=

∂
∂ 	

(5.8)
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γ xy

u

y

v

x
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∂
∂

+
∂
∂ 	

(5.9)

Then, using Equations 5.3 and 5.5, we get the following:

	
εxx

u

x
z

w

x
=

∂
∂

−
∂
∂

0
2

0
2

	
(5.10)

	
εyy

v

y
z

w

y
=

∂
∂

−
∂
∂

0
2

0
2

	
(5.11)
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The strain–displacement relations given above can be expressed in the matrix form 
as follows:
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which is further simplified as follows:
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where
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are the middle surface strains and
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are the middle surface curvatures. Equation 5.14 is the strain–displacement relation for 
a laminated plate. It relates the strains at any point in the laminate to the middle surface 
strains and curvatures. The middle surface strains and curvatures, in turn, are related 
to the middle surface displacements by Equations 5.15 and 5.16.

5.5.3  Kinetics of CLPT: Force and Moment Resultants

Let us go back to the assumptions and restrictions in Table 5.1. As mentioned therein, 
the laminate is loaded only in its plane. The resultant force on any cross section can 
be obtained by integrating the stresses over the surface. (Similar is the case with the 
moments.) However, instead of the resultant force (and moment) over the complete sur-
face, it is more convenient to consider the resultant force (and moment) per unit length 
of the cross section. These are referred to as the force and moment resultants (Figure 5.3) 
and the nomenclature followed is

Nxx, Nyy: normal forces per unit length
Nxy: in-plane shear force per unit length
Mxx, Myy: bending moments per unit length
Mxy: twisting moment per unit length

Force resultants are obtained by integrating the stresses, whereas the moment 
resultants are obtained by integrating the products of stresses and corresponding z-
coordinates. In both the cases, integration is done across the thickness. Thus,
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FIGURE 5.3  Force and moment resultants on a plate. (Adapted with permission from R. M. Jones, 
Mechanics of Composite Materials, second edition, Taylor & Francis, New York, 1999; A. K. Kaw, 
Mechanics of Composite Materials, CRC Press, Boca Raton, FL, 2006.)
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In the above expressions for force and moment resultants, h is the thickness of the 
laminate. Note that the integration is done across the total thickness of the laminate. 
However, we shall see below that stresses are stepwise continuous functions of z and 
the integrations indicated above are actually done for each lamina and summed up 
across all the laminae in a laminate. To see this, let us go back to the constitutive rela-
tions for a lamina.

The global stresses in each lamina are given by Equation 4.53 as follows:
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Substituting Equation 5.14, we get
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Equation 5.24 gives the global stresses at any point in the laminate. [ ]Q  is the reduced 
transformed stiffness matrix of the lamina at the point, where the stresses are being deter-
mined, is located. For a given loading on a laminate, following points may be noted:

◾◾ Middle surface strains and curvatures are functions of x and y (Equations 5.15 
and 5.16).

◾◾ For a given set of values of x and y, strains are linear functions of z alone 
(Equation 5.14). Thus, the strains vary linearly through the thickness of the 
whole laminate.

◾◾ For a given set of values of x and y, stresses are linear functions of z and they 
depend on [ ]Q  of the corresponding lamina (Equation 5.23). Thus, the stresses 
vary linearly through the thickness of a lamina. However, the variations of 
stresses in different laminae within the same laminate are likely to be differ-
ent. In other words, the stresses are step-linear functions of z.

At this point, let us consider the following example:
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EXAMPLE 5.1

Consider the glass/epoxy laminate [90°/0°/90°] shown in Figure 5.4. Each ply is 
of equal thickness and the following material properties are given

	 E E G1 2 12 1240 6 0 25 4= = = =GPa GPa and GPa, , . ,ν 	

The variation of normal strain in the x-direction is shown in the same figure. 
If all other strains are zero, determine the normal stresses in the x-direction.

Solution

The reduced stiffness matrix (see Chapter 4) is given by
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Noting that sin 0° = cos 90° = 0 and, sin 90° = cos 0° = 1 the transformed 
reduced stiffness matrices (see Chapter 4) can be readily obtained as
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
 =



















°0

40 379 1 514 0

1 514 6 057 0

0 0 4

. .

. . GPa

	

and

	

Q

 =



















°90

6 057 1 514 0

1 514 40 379 0

0 0 4

. .

. . GPa

	

The global stresses in a ply are given by

	

σ
σ
τ

ε
ε
γ

xx

yy

xy

xx

yy

xy



















= 
















Q 




 	

Laminate Strain (εxx)

90°
6.1 40.4

3.012.1

0°

90°

z
x

Stress (σxx)
–1 × 10–3

2 × 10–3

–6.1 –1.5
Stress (σyy)

FIGURE 5.4  Typical stress variations in a laminate (Example 5.1).
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Given that εyy = γxy = 0 and the variation of εxx as shown in the figure, the 
stresses can be readily determined.

Top 90° ply (top point):

	

σ
σ
τ

xx

yy

xy



















=





6057 1514 0

1514 40 379 0

0 0 4

,












×

















=










−2 10

0

0

12 1

3 0

0

3 .

.












MPa

	

Top 90° ply (bottom point):

	

σ
σ
τ

xx

yy

xy



















=





6057 1514 0

1514 40 379 0

0 0 4

,












×

















=










−1 10

0

0

6 1

1 5

0

3 .

.












MPa

	

0° ply (top point):

	

σ
σ
τ

xx

yy

xy



















=





40 379 1514 0

1514 6057 0

0 0 4

,













×

















=










−1 10

0

0

40 4

1 5

0

3 .

.












MPa

	

0° ply (bottom point):

	

σ
σ
τ

xx

yy

xy



















=





40 379 1514 0

1514 6057 0

0 0 4

,































=



















0

0

0

0

0

0 	

Bottom 90° ply (top point):

	

σ
σ
τ

xx

yy

xy



















=





6057 1514 0

1514 40 379 0

0 0 4

,






























=



















0

0

0

0

0

0 	

Bottom 90° ply (bottom point):

	

σ
σ
τ

xx

yy

xy



















=





6057 1514 0

1514 40 379 0

0 0 4

,












− ×

















=
−
−









−1 10

0

0

6 1

1 5

0

3 .

.











MPa

	

Variations of σxx and σyy are shown in Figure 5.4. (Note that τxy is zero 
everywhere.)

From the above example and the preceding discussions, it is clear that the integra-
tions involved in Equations 5.17 through 5.22 have to be stepwise. Thus, stresses are 
integrated for each lamina and summed up for all the laminae in a laminate to get the 
force and moment resultants. Toward this, a coordinate system as shown in Figure 5.5 
is adopted and the expressions for force and moment resultants are obtained as follows:
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N dzxx

k

n

z

z

xx

k

k

=
=

∑∫
−

1
1

σ

	

(5.25)

	

N dzyy

k

n

z

z

yy

k

k

=
=

∑∫
−

1
1

σ

	

(5.26)

	

N dzxy

k

n

z

z

xy

k

k

=
=

∑∫
−

1
1

τ

	

(5.27)

	

M z dzxx

k

n

z

z

xx

k

k

=
=

∑∫
−

1
1

σ

	

(5.28)

	

M z dzyy

k

n

z

z

yy

k

k

=
=

∑∫
−

1
1

σ

	

(5.29)

	

M z dzxy

k

n

z

z

xy

k

k

=
=

∑∫
−

1
1

τ

	

(5.30)

Equations 5.25 through 5.30 can be expressed in the matrix form as follows:

	

N

N

N

xx

yy

xy
k

n

z

z xx

yy

xyk

k

















=







=
∑∫

−
1

1

σ
σ
τ















dz

	

(5.31)

	

M

M

M

z
xx

yy

xy
k

n

z

z xx

yy

xyk

k

















=







=
∑∫

−
1

1

σ
σ
τ















dz

	

(5.32)

nth ply

kth ply

2nd ply
1st ply

z2

zn–1

zn

zk
zk–1

h/2

h/2

x

z1 z0

z

FIGURE 5.5  Coordinates of plies in a laminate.
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5.5.4  Constitutive Relations in CLPT

In this section, we relate the force and moment resultants to the strains. Let us substi-
tute Equation 5.24 in Equations 5.31 and 5.32. Then,

	

N

N

N

xx

yy

xy
k

n

z

z

k

xx

yy

k

k

















= 





=
∑∫

−
1

0

0

1

Q

ε
ε
γγ

κ
κ
κxy

k

n

z

z

k

xx

yy

xy

dz z

k

k

0 1
1



















+ 





=
∑∫

−

Q



















dz

	

(5.33)

	

M

M

M

z
xx

yy

xy
k

n

z

z

k

xx

yy

k

k

















= 





=
∑∫

−
1

0

1

Q

ε
ε00

0 1

2

1γ

κ
κ
κxy

k

n

z

z

k

xx

yydz z

k

k


















+ 





=
∑∫

−

Q

xxy

dz

















 	

(5.34)

In the equations above, middle surface strains and curvatures are independent of z 
and [ ]Q k  is constant for each lamina. (The suffix k is put to indicate that [ ]Q k is associ-
ated with the kth ply.) Thus, the middle surface strains and curvatures and the reduced 
transformed stiffness matrix can be brought outside the integration and Equations 5.33 
and 5.34 can be written as
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N
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k

n

k

z
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k
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
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





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
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


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1
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
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




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
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



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∑
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k

n

k

0

0

0 1γ
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xyk

k

zdz

−

∫



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






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


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κ
κ
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(5.35)
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κ
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(5.36)

The terms inside the small brackets in the above equations are the laminate stiffness 
matrices and we can write
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




+






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(5.37)
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(5.38)

where
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(5.40)
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(5.41)

Equations 5.37 and 5.38 can be combined and we can write in the explicit matrix 
notation as follows:
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




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(5.42)

In a more contracted form, Equation 5.42 can be written as
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B D











=























ε
κ

0

	
(5.43)

where

	

{ }N =



















N

N

N

xx

yy

xy 	

(5.44)

	

{ }M =



















M

M

M

xx

yy

xy 	

(5.45)

	

[ ]A =



















A A A

A A A

A A A

11 12 16

12 22 26

16 26 66 	

(5.46)

	

[ ]B =



















B B B

B B B

B B B

11 12 16

12 22 26

16 26 66 	

(5.47)

	

[ ]D =



















D D D

D D D

D D D

11 12 16

12 22 26

16 26 66 	

(5.48)
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{ }ε0

0

0

0

=



















ε
ε
γ

xx

yy

xy
	

(5.49)

	

{ }κ =



















κ
κ
κ

xx

yy

xy 	

(5.50)

[A], [B], and [D] are the laminate stiffness matrices. Note that [A] associates the force 
resultants with the middle surface strains and [D] associates the moment resultants 
with the middle surface curvatures. On the other hand, [B] associates force resultants 
with middle surface curvatures and moment resultants with middle surface strains. 
Thus, [A], [B], and [D], respectively, are called the extensional, coupling, and bending 
stiffness matrices of a laminate.

In mechanics of composites, we often come across problems wherein, given the 
force and moment resultants on a laminate, we are required to find the strains in the 
laminate. In such a case, the inverse of Equation 5.43 is useful. Then, we can express 
the middle surface strains and curvatures as follows:

	

ε
κ

0 1










=























−
A B

B D

N

M
	

(5.51)

The equation above involves inversion of a 6 × 6 matrix, which is obviously not a 
simple task without the use of a computer. To reduce the computational effort, the fol-
lowing process can be adopted.

Equation 5.43 can be split into two equations as follows:

	 { } [ ]{ } [ ]{ }N A B= +ε κ0

	 (5.52)

	 { } [ ]{ } [ ]{ }M B D= +ε κ0

	 (5.53)

After simple manipulation, Equation 5.52 gives us

	 { } [ ] [ ]{ } [ ]{ }ε κ0 1 1= −− −A N A B 	 (5.54)

Substituting Equation 5.54 in Equation 5.53, we get

	 { } [ ][ ] [ ][ ] [ ]{ }{ } [ ]{ }M B A N B A B D= − +− −1 1 κ κ 	 (5.55)

Equations 5.54 and 5.55 can be combined as follows:

	

ε
κ

0

M

A B

C D

N










=






















′ ′
′ ′

	
(5.56)

where

	 [ ] [ ]′ = −A A 1
	 (5.57)
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	 [ ] [ ] [ ]′ = − −B A B1
	 (5.58)

	 [ ] [ ][ ] [ ]′ ′= = −−C B A B1 T
	 (5.59)

	 [ ] [ ] [ ][ ] [ ]′ = − −D D B A B1
	 (5.60)

Note that [A′] and [D′] are symmetric, whereas [B′] and [C′] are not necessarily 
symmetric.

Equation 5.56 actually contains six equations, of which the first three equations cor-
respond to {ε0} and the remaining to {κ}. From the second part, we can express {κ} as

	 { } [ ] [ ]{ } [ ]{ }κ = −′ ′ ′− −D M D C N1 1

	 (5.61)

Substituting Equation 5.61 in the first part of Equation 5.56, we get

	 { } ([ ] [ ][ ] ){ } [ ][ ][ ] { }ε0 1 1= − +′ ′ ′ ′ ′ ′− −A B D C N B D M 	 (5.62)

Combining Equations 5.61 and 5.62, we finally get

	

ε
κ

0










=






















A B

C D

N

M

* *

* *

	
(5.63)

where [A*], [B*], and [D*] are called the extensional, coupling, and bending compliance 
matrices, respectively, and is given by

	 [ ] [ ] [ ][ ] [ ]A A B D C* = −′ ′ ′ ′−1
	 (5.64)

	 [ ] [ ][ ]B B D* = ′ ′ −1
	 (5.65)

	
C D C*



 = −   ′ ′−1

	
(5.66)

	
D D*



 =  ′

−1

	
(5.67)

Note that 
A B
C D

* *

* *











  is symmetric and thus, [C*] = [B*]T. Note further that [A*] and 

[D*] are symmetric whereas [B*] and [C*] are not necessarily symmetric.
The procedure of laminate analysis might apparently look complex and tedious. 

However, a systematic approach (Table 5.2) can be adopted. The example below illus-
trates the process. (A good computing facility for matrix calculations is necessary.)

EXAMPLE 5.2

Consider the carbon/epoxy laminate [90°/60°/30°/0°] shown in Figure 5.6. Ply 
thicknesses and gross applied loads are given in the figure. Material properties 
are as follows:

	 E E G1 2 12 12125 10 0 25 8= = = =GPa GPa and GPa, , . ,ν 	

Determine the local stresses and strains in each ply.
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Solution

Step 1.

The force and moment resultants are given by

	

N dzxx =
×
×











=
−

∫
2

2
3160 10

400 4
400N/mm

	

TABLE 5.2
Analysis of a Laminate

Step Input Data

	 1.	 Determine the force and moment resultants {N} 
and {M}

Applied loads
Laminate dimensions
Equations 5.17 through 5.22

	 2.	 Determine the reduced stiffness matrix [Q] for the 
material(s)

Material properties—E1, E2, G12, and ν12

Equations 4.16 through 4.20
	 3.	 Determine the transformed reduced stiffness 

matrix [ ]Q  for the each ply
[Q] from step 2 above
Ply angle
Equations 4.45, 4.49, and 4.54 or 
Equations 4.55 through 4.60

	 4.	 Determine the z-coordinates of the plies Details of laminate ply thicknesses
Figure 5.5

	 5.	 Determine the laminate stiffness matrices—[A], [B], 
and [D]

[ ]Q  from step 3 above
z-coordinate details of each ply
Equations 5.39 through 5.41

	 6.	 Determine the laminate compliance matrices—[A*], 
[B*], [C*], and [D*]

[A], [B], and [D] from step 5 above
Equations 5.64 through 5.67

	 7.	 Determine the laminate middle surface strains and 
curvatures—{ε0} and {κ}

[A*], [B*], [C*], and [D*] from step 6 above
Equation 5.63

	 8.	 Determine the global strains {ε0} and {κ} from step 7 above
z-coordinates from step 4
Equation 5.14

	 9.	 Determine the global stresses εxx, εyy and γxy from step 8 above
[ ]Q  from step 3 above
Equation 4.53

	10.	 Determine the local strains in each ply εxx, εyy, and γxy from step 8 above
[T] from ply angle
Equations 4.45 and 4.48

	11.	 Determine the local stresses in each ply {σxx}, {σyy}, and {τxy} from step 9 above
[T] from ply angle
Equations 4.44 and 4.45

	12.	 Apply lamina failure criteria to each ply ε11, ε22, and γ12 from step 10 above
σ11, σ22, and τ12 from step 11 above
Lamina failure criteria (Section 4.6.2)

600 mm
400 mm120 kN

160 kN

90° 0.6 mm

0.8 mm

1.2 mm

1.4 mm

60°

30°

0°4 mm

FIGURE 5.6  Analysis of a laminate (Example 5.2).
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N dzyy =
×
×











=
−

∫
2

2
3120 10

600 4
200N/mm

	

	 N M M Mxy xx yy xy= = = = 0 	

Step 2.

The reduced stiffness matrix for the material is given by (Equations 4.16 through 
4.20)

	

[ ]

. .

. .Q =


















×

125 628 2 513 0

2 513 10 050 0

0 0 8

103 MPa

	

Step 3.

The transformed reduced stiffness matrices can be readily obtained as (Equations 
4.55 through 4.60)

	

Q

 =


















×

°0

3

125 628 2 513 0

2 513 10 050 0

0 0 8

10

. .

. . MPa

	

	

Q

 =

°30

78 236 21 010 35 703

21 010 20 447 14 344

35 703 14 344 2

. . .

. . .

. . 66 498

103

.


















× MPa

	

	

Q

 =

°60

20 447 21 010 14 344

21 010 78 236 35 703

14 344 35 703 2

. . .

. . .

. . 66 498

103

.


















× MPa

	

	

Q

 =


















×

°90

3

10 050 2 513 0

2 513 125 628 0

0 0 8

10

. .

. . MPa

	

Step 4.

z-coordinates of different plies are determined as follows (Figures 5.5 and 5.6):

	 z0 2= − mm 	

	 z1 2 1 4 0 6= − + = −. . mm 	

	 z2 0 6 1 2 0 6= − + =. . . mm 	
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	 z3 0 6 0 8 1 4= + =. . . mm 	

	 z4 1 4 0 6 2 0= + =. . . mm 	

Step 5.

Laminate stiffness matrices are then determined as follows (Equations 5.39 
through 5.41):

	

[ ]

. .

. . ( . . )A =



















− ×

+

125 628 2 513 0

2 513 10 050 0

0 0 8

2 0 0 6 103

778 236 21 010 35 703

21 010 20 447 14 344

35 703 14 344 26 498

. . .

. . .

. . .



















+ ×

+

( . . )

. . .

. . .

0 6 0 6 10

20 447 21 010 14 344

21 010 78 236 35 7

3

003

14 344 35 703 26 498

1 4 0 6 10

10 050 2 513

3

. . .

( . . )

. .



















− ×

+
00

2 513 125 628 0

0 0 8

2 0 1 4 10

292 151 47 045 5

3. . ( . . )

. .



















− ×

=
44 319

47 045 176 573 45 775

54 319 45 775 68 995

10

.

. . .

. . .


















× 33 MPa.mm

	

	

[ ]

. .

. .
. .

B =



















−



125 628 2 513 0

2 513 10 050 0

0 0 8

0 36 4 0
2



×

+

10

78 236 21 010 35 703

21 010 20 447 14 344

35 703 14 34

3

. . .

. . .

. . 44 26 498

0 36 0 36
2

10

20 447 21 010 1

3

.

. .

. .



















−





×

+
44 344

21 010 78 236 35 703

14 344 35 703 26 498

1 96
.

. . .

. . .

.


















−−





×

+














0 36
2

10

10 050 2 513 0

2 513 125 628 0

0 0 8

3.

. .

. .





−





×

=
−

4.0 1 96
2

10

202 034 14 798 11 475

14 798 172

3.

. . .

. .. .

. . .

438 28 562

11 475 28 562 14 798

103


















× MPa.mm2
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[ ]

. .

. .
.

D =



















−




125 628 2 513 0

2 513 10 050 0

0 0 8

8 0 216
3 

×

+

10

78 236 21 010 35 703

21 010 20 447 14 344

35 703 14 344

3

. . .

. . .

. . 226 498

0 216 0 216
3

10

20 447 21 010

3

.

. .

. .



















+





×

+
114 344

21 010 78 236 35 703

14 344 35 703 26 498

2 7
.

. . .

. . .

.


















444 0 216
3

10

10 050 2 513 0

2 513 125 628 0

0 0 8

3−





×

+









.

. .

. .











−





×

=

8 0 2 744
3

10

372 067 31 651 17 228

31 651

3. .

. . .

. 3315 049 32 151

17 228 32 151 60 918

103 3. .

. . .


















× MPa.mm

	

Step 6.

Having determined the [A], [B], and [D] matrices, the [A*], [B*], [C*], and [D*] 
matrices are determined using Equations 5.57 through 5.60 and Equations 5.64 
through 5.67. The final values of these matrices are

	

[ ]

. . .

. . .

. . .

A* =
− −

− −
− −

7 925 1 218 6 185

1 218 14 939 5 508

6 185 5 508 23 313


















× ( )− −

10 6 1
MPa.mm

	

	

[ ]

. . .

. . .

. . .

B* =
−

− − −
− −





4 545 0 497 0 967

0 388 7 438 1 402

3 928 1 763 1 735














× − −10 6 2 1( )MPa.mm

	

	

[ ]

. . .

. . .

. . .

C* =
− −
−

− − −





4 545 0 388 3 928

0 497 7 438 1 763

0 967 1 402 1 735














× − −10 6 2 1( )MPa.mm

	

	

[ ]

. . .

. . .

. . .

D* =
− −

− −
− −

 5 353 0 060 1 202

0 060 7 149 0 791

1 202 0 791 18 434














× − −10 6 3 1( )MPa.mm

	

Note: Instead of determining the [A*], [B*], [C*], and [D*] matrices, one can 

directly invert the 
A B
B D












 matrix, whose size is 6 × 6, in which case, of course, a 

computer would be usually essential.
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Step 7.

Now, the laminate middle surface strains and curvatures are obtained using 
Equation 5.63

ε
ε
γ
κ
κ
κ

xx

yy

xy

xx

yy

xy

0

0

0





















=

− − −
− −
7 925 1 218 6 185 4 545 0 497 0 967

1 218 14 939 5 508

. . . . . .

. . . −− − −
− − − −

0 388 7 438 1 402

6 185 5 508 23 313 3 928 1 763 1 735

4 54

. . .

. . . . . .

. 55 0 388 3 928 5 353 0 060 1 202

0 497 7 438 1 763 0 060 7 149

− − − −
− −

. . . . .

. . . . . −−
− − − − −





















0 791

0 967 1 402 1 735 1 202 0 791 18 434

.

. . . . . .













×





















400

200

0

0

0

0



×

=
−

−
−







−10

2926 3

2500 5

3575 7

1740 3

1288 7

667 1

6

.

.

.

.

.

.

















× −10 6

	

or the middle surface strains and curvatures are

	

ε
ε
γ

xx

yy

xy

0

0

0

2926 3

2500 5

3575 7



















=
−





 .

.

.















× −10 6

	

and

	

κ
κ
κ

xx

yy

xy



















= −
−









1740 3

1288 7

667 1

.

.

.











× −10 6

	

Step 8.

The global strains at different locations are given by Equation 5.14 as follows:
Bottom of laminate (or, bottom of 0° ply):

	

ε
ε
γ

xx

yy

xy



















=
−









2926 3

2500 5

3575 7

.

.

.











− × −
−


















2 0

1740 3

1288 7

667 1

.

.

.

.













× =

−

−









−10

554 3

5077 9

2241 5

6

.

.

.











× −10 6

	

Top of 0° ply (or, bottom of 30° ply):

	

ε
ε
γ

xx

yy

xy



















=
−









2926 3

2500 5

3575 7

.

.

.











− × −
−


















0 6

1740 3

1288 7

667 1

.

.

.

.













× =

−









−10

1882 1

3273 7

3175 4

6

.

.

.











× −10 6

	



219Macromechanics of a Laminate

Top of 30° ply (or, bottom of 60° ply):

	

ε
ε
γ

xx

yy

xy



















=
−









2926 3

2500 5

3575 7

.

.

.











+ × −
−


















0 6

1740 3

1288 7

667 1

.

.

.

.













× =

−









−10

3970 5

1727 3

3976 0

6

.

.

.











× −10 6

	

Top of 60° ply (or, bottom of 90° ply):

	

ε
ε
γ

xx

yy

xy



















=
−









2926 3

2500 5

3575 7

.

.

.











+ × −
−


















1 4

1740 3

1288 7

667 1

.

.

.

.













× =

−










−10

5362 7

696 3

4509 6

6

.

.

.










× −10 6

	

Top of laminate (or, top of 90° ply):

	

ε
ε
γ

xx

yy

xy



















=
−









2926 3

2500 5

3575 7

.

.

.











+ × −
−


















2 0

1740 3

1288 7

667 1

.

.

.

.













× = −

−










−10

6406 9

76 9

4909 9

6

.

.

.










× −10 6

	

Step 9.

Having determined the global strains, now we determine the global stresses, 
using Equation 4.53, as follows:

Bottom of laminate (or bottom of 0° ply):

	

σ
σ
τ

xx

yy

xy



















=
125 628 2 513 0

2 513 10 050 0

0

. .

. .

00 8

554 3

5077 9

2241 5

1



















−

−



















×
.

.

.

00

56 9

49 6

17 9

3− =
−

−



















.

.

.

MPa

	

Top of 0° ply:

	

σ
σ
τ

xx

yy

xy



















=
125 628 2 513 0

2 513 10 050 0

0

. .

. .

00 8

1882 1

3273 7

3175 4

1

















 −



















×
.

.

.

00

244 7

37 6

25 4

3− =
−



















.

.

.

MPa

	

Bottom of 30° ply:

	

σ
σ
τ

xx

yy

xy



















=
78 236 21 010 35 703

21 010 20

. . .

. .. .

. . .

.

.447 14 344

35 703 14 344 26 498

1882 1

3273 7

3175

















 − ..

.

.

.4

10

102 7

60 9

30 0

3



















× =















−






MPa

	

Top of 30° ply:

	

σ
σ
τ

xx

yy

xy



















=
78 236 21 010 35 703

21 010 20

. . .

. .. .

. . .

.

.447 14 344

35 703 14 344 26 498

3970 5

1727 3

3976

















 − ..

.

.

.0

10

205 0

61 7

61 2

3



















× =















−






MPa
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Bottom of 60° ply:

	

σ
σ
τ

xx

yy

xy



















=
20 447 21 010 14 344

21 010 78

. . .

. .. .

. . .

.

.236 35 703

14 344 35 703 26 498

3970 5

1727 3

3976

















 − ..

.

.

.0

10

60 4

76 6

13 3

3



















× =















− 




MPa

	

Top of 60° ply:

	

σ
σ
τ

xx

yy

xy



















=
20 447 21 010 14 344

21 010 78

. . .

. .. .

. . .

.

.

.

236 35 703

14 344 35 703 26 498

5362 7

696 3

4509

















 − 66

10

59 6

6 1

17 7

3



















× =
−














−

.

.

.






MPa

	

Bottom of 90° ply:

	

σ
σ
τ

xx

yy

xy



















=
10 050 2 513 0

2 513 125 628 0

0

. .

. .

00 8

5362 7

696 3

4509 6

10

















 −



















×
.

.

.

−− =
−



















3

55 6

101 0

36 1

.

.

.

MPa

	

Top of laminate (or top of 90° ply):

	

σ
σ
τ

xx

yy

xy



















=
10 050 2 513 0

2 513 125 628 0

0

. .

. .

00 8

6406 9

76 9

4909 9

10



















−
−



















×
.

.

.

−− =
−



















3

64 2

6 4

39 3

.

.

.

MPa

	

Step 10.

Now, we apply transformations of strains. The transformation is given by Equation 
4.48 as

	

ε
ε
γ

ε
ε
γ

11

22

12

1



















=





−[ ][ ][ ]R T R
xx

yy

xy









 	

Note that

	

[ ]R =



















1 0 0

0 1 0

0 0 2
	

and

	

[ ]

cos sin sin cos

sin cos sin cos

sin cos sin co

T = −
−

2 2

2 2

2

2

θ θ θ θ
θ θ θ θ

θ θ θ ss cos sinθ θ θ2 2−



















 	
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First, the transformation matrices for different θ are determined as follows:

	

([ ][ ][ ] )R T R −
° =





































1
0

1 0 0

0 1 0

0 0 2

1 0 0

0 1 0

0 0 1

11 0 0

0 1 0

0 0 2

1 0 0

0 1 0

0 0 1

1

















=



















−

	

	

([ ][ ][ ] )

. . .

. .R T R −
° =



















1
30

1 0 0

0 1 0

0 0 2

0 75 0 25 0 866

0 25 0 755 0 866

0 433 0 433 0 5

1 0 0

0 1 0

0 0 2

1

−
−





































=

−

.

. . .

00 75 0 25 0 433

0 25 0 75 0 433

0 866 0 866 0 5

. . .

. . .

. . .

−
−



















	

	

([ ][ ][ ] )

. . .

. .R T R −
° =



















1
60

1 0 0

0 1 0

0 0 2

0 25 0 75 0 866

0 75 0 255 0 866

0 433 0 433 0 5

1 0 0

0 1 0

0 0 2

1

−
− −





































−

.

. . .

== −
− −



















0 25 0 75 0 433

0 75 0 25 0 433

0 866 0 866 0 5

. . .

. . .

. . . 	

	

([ ][ ][ ] )R T R −
° =

















 −















1

90

1 0 0

0 1 0

0 0 2

0 1 0

1 0 0

0 0 1





















=
−



















−
1 0 0

0 1 0

0 0 2

0 1 0

1 0 0

0 0 1

1

	

Using the above, the local strains are obtained as follows:
Bottom of 0° ply:

	

ε
ε
γ

11

22

12

1 0 0

0 1 0

0 0 1

554

















=



















− .33

5077 9

2241 5

10

554 3

5077 9

22

6.

.

.

.

−



















× =
−

−

−

441 5

10 6

.



















× −

	

Top of 0° ply:

	

ε
ε
γ

11

22

12

1 0 0

0 1 0

0 0 1

1882

















=



















.11

3273 7

3175 4

10

1882 1

3273 7

31

6.

.

.

.

−



















× =
−

−

775 4

10 6

.



















× −

	

Bottom of 30° ply:

	

ε
ε
γ

11

22

12

0 75 0 25 0 433

0 25 0 75 0 43



















= −
. . .

. . . 33

0 866 0 866 0 5

1882 1

3273 7

3175 4−

















 −








. . .

.

.

.










× =
−



















×−10

855 1

4300 7

382 6

6

.

.

.

110 6−
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Top of 30° ply:

	

ε
ε
γ

11

22

12

0 75 0 25 0 433

0 25 0 75 0 43



















= −
. . .

. . . 33

0 866 0 866 0 5

3970 5

1727 3

3976 0−

















 −








. . .

.

.

.










× =
−



















−10

1688 1

4009 7

3930 6

6

.

.

. 

× −10 6

	

Bottom of 60° ply:

	

ε
ε
γ

11

22

12

0 25 0 75 0 433

0 75 0 25 0 43



















= −
. . .

. . . 33

0 866 0 866 0 5

3970 5

1727 3

3976 0− −

















 −








. . .

.

.

.










× =



















×−10

566 5

5131 3

45 4

16

.

.

.

00 6−

	

Top of 60° ply:

	

ε
ε
γ

11

22

12

0 25 0 75 0 433

0 75 0 25 0 43



















= −
. . .

. . . 33

0 866 0 866 0 5

5362 7

696 3

4509 6− −

















 −








. . .

.

.

.










× =
−

−



















−10

89 8

6148 86

.

.

1786.3

×× −10 6

	

Bottom of 90° ply:

	

ε
ε
γ

11

22

12

0 1 0

1 0 0

0 0 1

5362

















=
−



















..

.

.

.

.

7

696 3

4509 6

10

696 3

5362 7

4509

6

−



















× =−

..6

10 6



















× −

	

Top of 90° ply:

	

ε
ε
γ

11

22

12

0 1 0

1 0 0

0 0 1

6406

















=
−



















..

.

.

.

.

9

76 9

4909 9

10

76 9

6406 9

4909

6−
−



















× =
−

−

..9

10 6



















× −

	

Step 11.

Finally, we carry out stress transformation using Equation 4.44. Then, the local 
stresses are as follows:

Bottom of laminate (or bottom of 0° ply):

	

σ
σ
τ

11

22

12

1 0 0

0 1 0

0 0 1

56 9

















=



















− .

449 6

17 9

56 9

49 6

17 9

.

.

.

.

.−



















=
−

−



















MPa

	

Top of 0° ply:

	

σ
σ
τ

11

22

12

1 0 0

0 1 0

0 0 1

244 7

















=



















.

337 6

25 4

244 7

37 6

25 4

.

.

.

.

.−



















=
−



















MPa
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Bottom of 30° ply:

	

σ
σ
τ

11

22

12

0 75 0 25 0 866

0 25 0 75 0 86



















= −
. . .

. . . 66

0 433 0 433 0 5

102 7

60 9

30 0−


































. . .

.

.

. 


=
−



















118 2

45 4

3 1

.

.

.

MPa

	

Top of 30° ply:

	

σ
σ
τ

11

22

12

0 75 0 25 0 866

0 25 0 75 0 86



















= −
. . .

. . . 66

0 433 0 433 0 5

205 0

61 7

61 2−


































. . .

.

.

. 


=
−



















222 2

44 5

31 4

.

.

.

MPa

	

Bottom of 60° ply:

	

σ
σ
τ

11

22

12

0 25 0 75 0 866

0 75 0 25 0 86



















= −
. . .

. . . 66

0 433 0 433 0 5

60 4

76 6

13 3− −


































. . .

.

.

. 


=



















84 1

52 9

.

.

0.4

MPa

	

Top of 60° ply:

	

σ
σ
τ

11

22

12

0 25 0 75 0 866

0 75 0 25 0 86



















= −
. . .

. . . 66

0 433 0 433 0 5

59 6

6 1

17 7− −

















 −
















. . .

.

.

. 


=
−



















4 1

61 6

14 3

.

.

.

MPa

	

Bottom of 90° ply:

	

σ
σ
τ

11

22

12

0 1 0

1 0 0

0 0 1

55 6

















=
−



















.

1101 0

36 1

101 0

55 6

36 1

.

.

.

.

.−



















=



















MPa

	

Top of laminate (or top of 90° ply):

	

σ
σ
τ

11

22

12

0 1 0

1 0 0

0 0 1

64 2

















=
−



















.

66 4

39 3

6 4

64 2

39 3

.

.

.

.

.−



















=



















MPa

	

Step 12.

The local strains and stresses determined here can now be used in a suitable lam-
ina failure criterion to estimate failure of the laminae. We shall discuss laminate 
failure in a subsequent section.

5.6  CLASSICAL LAMINATED SHELL THEORY
Shells are structural elements bounded by two curved surfaces. There are two classes 
of shells—thin shells and thick shells. When the largest ratio of shell thickness to 
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radius of curvature is far small compared to unity, the shell is called a thin shell. In 
general, a shell is considered as thin, when

	

h

R







 ≤

max

1
20 	

(5.68)

CLT, as applied to shells, is referred to as the CLST. A shell is similar to a plate 
except for one characteristic—presence of curvature. In fact, a plate can be considered 
as a special case of a shell whose principal radii of curvature are infinite. The assump-
tions, kinematics, kinetics, and constitutive relations in CLST are similar to those in 
CLPT with marginal differences.

5.6.1  Geometry of the Middle Surface

We will see in the subsequent sections that the governing equations for a shell are for-
mulated in terms of Lame′ parameters and principal radii of curvature. In this section, 
these terms in respect of the middle surface are introduced. Our discussion on geomet-
ric characteristics of the middle surface shall be limited primarily to these terms.

Figure 5.7a shows the middle surface of a shell in the orthogonal curvilinear coor-
dinates. We can assign continually varying values to these coordinates such as α = α1, 
α2, α3, … and = β1, β2, β3, … . The α- and β-coordinate lines are mutually perpendic-
ular to each other at all intersection points. On the other hand, the ξ-coordinate is the 
linear axis such that, if we consider a pair of α- and β-coordinate lines, then the ξ-axis 
passing through their intersection point is normal to the curvilinear coordinate lines.

At any point on the curved surface, we can consider a section along some plane 
containing the normal at that point. Such a section is called a normal section. The 
plane cuts the curved surface along a plane curve. Let us consider a normal section 
through an arbitrary point P (Figure 5.7b). Let P′ be a neighboring point on the nor-
mal section. The lines OP and OP′ are the normals at these two points such that they 

α2

ξ

β2
β1

α
α1

β

Rβ

ds

P
P ′

P ′
P

R

O

(a)

(b)

Rα

FIGURE 5.7  Geometry of the middle surface. (a) Orthogonal curvilinear coordinates. (b) Radius of 
curvature in an arbitrary normal section.
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intersect at point O. Then, as ds → 0, the point O is defined as the center of curvature 
and the distance R between the points O and P is the radius of curvature at the point P. 
The curvature at any point is defined as the reciprocal of the radius of curvature, that 
is, κ = 1/R. Now, an infinite numbers of normal sections can be formed at the point P 
and corresponding radii of curvature and centers of curvature. However, there are two 
orthogonal normal sections that are of special interest such that one radius of curva-
ture is the maximum of all possible radii of curvature and the other is the minimum. 
These are called the principal normal sections or principal directions and principal 
radii of curvature. The plane curves along which the principal normal sections cut 
the surface are called the principal lines of curvature or simply lines of curvature. 
We shall denote the principal radii by R1 ( = 1/κ1) and R2 ( = 1/κ2). Further, we shall 
align the orthogonal coordinates α and β along the principal lines of curvature. Thus, 
R1 = Rα and R2 = Rβ.

We have defined principal radii of curvature. We need to know two more param-
eters before proceeding to the kinematics and kinetics of a shell. These are the Lame′ 
parameters—A and B. Let us consider two arbitrary neighboring points P and P′ on the 
curved surface (Figure 5.8). Denoting the position vector of the point P by r, the square 
of the differential arc length can be shown as
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(5.69)

Now, let us introduce
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(5.70)

Further, note that for orthogonal coordinates,
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(5.71)

Then, Equation 5.69 can be written as

	 ( ) ( ) ( )ds A d B d2 2 2 2 2= +α β 	 (5.72)
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FIGURE 5.8  Differential arc.
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The parameters A and B are called the Lame′ parameters. The differential arc length 
in an arbitrary direction can be expressed in terms of the corresponding differential arc 
lengths in the orthogonal curvilinear coordinate directions as follows:

	 ( ) ( ) ( )ds ds ds2 2 2= +α β 	
(5.73)

where dsα and dsβ are the differential arc lengths in the α- and β-directions, respectively.
Then, comparing Equations 5.72 and 5.73,

	 ds Ad ds Bdα βα β= =and 	 (5.74)

or
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The Lame′ parameters, principal radii of curvature, and the orthogonal curvilinear 
coordinates are interrelated as follows [5]:
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Equations 5.76 and 5.77 are referred to as the Codazzi conditions and Equation 5.78 
as the Gauss condition.

We will see in the next sections that kinematic, kinetic, and constitutive relations for 
a shell are formulated in terms of Lame′ parameters and the principal radii of curva-
tures. So, with this brief introduction to the geometric characteristics of a general shell, 
we shall now proceed to the governing equations for a shell.

5.6.2  Kinematics of CLST: Strain–Displacement Relations

Let us consider a general shell of uniform thickness as shown in Figure 5.9. The strain–
displacement relations in the orthogonal curvilinear coordinates for the shell in the 
middle surface are given by

Middle surface

βα

Rβ(= R2) Rα(= R1)

ξ

FIGURE 5.9  General shell in curvilinear coordinates.
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where
εαα, εββ	 Normal strains in the α- and β-directions, respectively
γαβ		  In-plane shear strain in the α-β plane
A, B		  Lame′ parameters
Rα, Rβ	� Radii of curvature that are also the principal radii of curvature as the 

orthogonal curvilinear coordinates are aligned with the principal directions
u0, v0, w0	 Middle surface displacements

The detailed derivation of the above strain–displacement relation for a general shell 
is beyond the scope of this book. Interested reader may refer to Reference 5 among 
others. Here, we shall use these relations in the context of a circular cylindrical shell 
(Figure 5.10). Let us choose the coordinate system in such a way that

	 α β= =x yand 	 (5.82)

Then, square of an arbitrary differential arc length is given by

	 ( ) ( ) ( )ds dx dy2 2 2= + 	 (5.83)

Comparing Equation 5.83 with Equation 5.73 and taking Equations 5.75 and 5.82 
into account, we find that

	 A B= =1 1and 	 (5.84)

Also, the principal radii of curvature are as follows:

	 R R R1 2= ∞ =and 	 (5.85)

Substituting the above in Equations 5.79 through 5.81, the strain–displacement rela-
tions for a circular cylindrical shell are obtained as follows:
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FIGURE 5.10  Circular cylindrical shell.
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Note that the strain–displacement relations for a circular cylindrical shell become 
identically the same as those for a plate if we substitute R → ∞.

5.6.3  Kinetics of CLST: Force and Moment Resultants

Figure 5.11 shows the force and moment resultants in a shell in the orthogonal curvilin-
ear coordinates. Force and moment resultants in a shell are defined, respectively, as the 
forces and moments per unit length of the cross section of the shell. Note that the length 
is measured along the middle surface of the shell. Note further that the curvilinear 
lengths at different ξ from the middle surface are different and, as a result, the expres-
sions for force and moment resultants are different in a shell from those in a plate.

Let us consider a shell element as shown in Figure 5.12. The curvilinear lengths 
along the middle surface are (refer Equation 5.74)

	 ds Ad ds Bdα βα β= =and 	 (5.89)

whereas the curvilinear lengths at distance ξ from the middle surface are
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Then, the force resultant on the differential shell element in the α-direction is 
given by
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FIGURE 5.11  Force and moment resultants in a shell.
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On simplification of the above using Equations 5.89 and 5.90 and extending the 
procedure to other cases, we get the expressions for the force and moment resultants 
as follows:
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FIGURE 5.12  A shell element. (Adapted with permission from J. N. Reddy, Mechanics of Laminated 
Composite Plates and Shells, CRC Press, Boca Raton, FL, 2004.)
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Note that, in the case of shells, Nαβ ≠ Nβα and Mαβ ≠ Mβα. For thin shells, however, 
the terms ξ/R1 and ξ/R2 can be ignored as compared to unity and the expressions for 
force and moment resultants take identical forms as in plates. Also, for thin shells, 
Nαβ = Nβα and Mαβ = Mβα.

For a circular cylindrical shell (Figure 5.10), we can substitute Equations 5.82 and 
5.85 in Equations 5.92 through 5.99. Thus, for circular cylindrical shells,
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Note that the expressions for a circular cylindrical shell become identically the same 
as those for a plate if we substitute R → ∞.

5.6.4  Constitutive Relations in CLST

The final constitutive relations in CLST are the same as in CLPT. In terms of laminate 
stiffnesses, these relations are
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and, in terms of compliances,
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5.7  HYGROTHERMAL EFFECTS IN A LAMINATE
Thermal stresses can occur in a laminate in two ways [6]. First, residual thermal 
stresses can develop due to temperature change during processing. The CTE of a lam-
ina depends on the material as well as angle of orientation of the lamina. Owing to mis-
match in their CTEs, the laminae in a laminate undergo differential expansion during 
temperature rise phase. At an elevated temperature, the laminae get bonded. During the 
cooling phase, the laminae at different orientations (and possibly of different materials) 
tend to shrink differentially but the bond at the interface between the laminae restrains 
them. As a result, on cooling the composite develops residual stresses.

Second, thermal stresses can develop due to temperature change during product ser-
vice life. If individual laminae are subjected to a change in temperature, they undergo 
differential deformations and clearly the thermal strains are different in the different 
laminae even in the same direction. However, no thermal stresses develop unless the 
laminae are restrained from deformation. In a laminate, when subjected to a tempera-
ture change, the individual laminae restrain each other from free thermal deformations 
and, as a result, thermal stresses develop.

Similar to the thermal strains, owing to mismatch in the CMEs, the swelling strains 
are different in different laminae in a laminate and stresses can develop in a laminate 
with laminae at different angles. Response of a laminate to hygrothermal stresses [7] is 
important in the design of a product; hygrothermal constitutive relations and the effec-
tive coefficients are presented in the following sections.

5.7.1  Hygrothermal Constitutive Relations

Let us consider a laminate subjected to hygrothermal loads. Let us rewrite Equation 
4.186 for the total hygrothermal stresses at a point in a generally orthotropic lamina in the 
laminate, as follows:
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Let us have a closer look at the terms inside the brackets on the right-hand side of 
Equation 5.110 (Figure 5.13). The second and third terms are the hygrothermal strains 
in the lamina, if it were unrestrained. Note that the lamina is a restrained one as it is 
part of a laminate. Thus, the total strains in the lamina are likely to be different from 
the hygrothermal strains. The first term inside the brackets is the vector of total strains 
in the lamina. The difference between the total strains and the hygrothermal strains is 
the vector of strains called the mechanical strains, that is,
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and
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where
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are the hygrothermal strains, and
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are the hygrothermal stresses.
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FIGURE 5.13  Schematic representation of total strain, hygrothermal strain, and mechanical strain 
in a lamina.
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The resultant hygrothermal force or moment on the laminate is zero. So, integration 
of the hygrothermal stresses across the laminate thickness is zero. Thus,
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The hygrothermal stress variation across the laminate thickness is discontinuous 
and a stepwise integration is carried out, as follows:
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Substituting Equation 5.112 in Equations 5.115 and 5.116, we get
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The mechanical strains are substituted with the total strains and the hygrothermal 
strains. Total strains are then further substituted with the middle surface strains and 
curvatures and we get the following:
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We can write the above two equations in the following form:
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Note that the hygrothermal strains, unlike the middle surface strains and curva-
tures, cannot be taken outside the integrations. Using the definitions of [A], [B], and 
[D] matrices from Equations 5.39 through 5.41, and taking the terms associated with 
total strains to the right-hand side, we can write Equations 5.121 and 5.122 as follows:
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The terms on the left-hand side of the above equations are the hygrothermal force 
and moment resultants. These force/moment resultants, in fact, are fictitious force/
moment resultants. The fictitious hygrothermal force/moment resultants have two 
components—thermal and hygroscopic such that

	 { } { } { }N N NHT T H= + 	 (5.125)

	 { } { } { }M M MHT T H= + 	 (5.126)
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are the fictitious hygrothermal force resultants (from the left-hand side of Equation 5.123)
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are the fictitious thermal force resultants (writing the thermal strains in terms of CTE)
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are the fictitious hygroscopic force resultants (writing the hygroscopic strains in terms 
of CME)
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are the fictitious hygrothermal force resultants (from the left-hand side of Equation 
5.124)
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are the fictitious thermal moment resultants (writing the thermal strains in terms of 
CTE), and
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are the fictitious hygroscopic moment resultants (writing the hygroscopic strains in 
terms of CME)

Then, Equations 5.123 and 5.124 can be written as follows:
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Combining the above, in a compact form, we can write
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or, in the explicit form,
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Equations 5.129 and 5.130 are the constitutive relations for a laminate under hygro-
thermal loads. In the compliance form, the middle surface strains and curvatures in a 
laminate under hygrothermal loads can be obtained as follows:
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(5.131)

5.7.2 � Coefficients of Thermal Expansion and Coefficients 
of Moisture Expansion of a Laminate

The middle surface strains, in terms of CTE and CME, in a laminate under the action 
of pure hygrothermal loads are given by
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(5.132)

The CTEs are defined as changes in length per unit length per unit change in tem-
perature. Then, the CTEs are obtained by substituting ΔT = 1 and ΔC = 0 in Equation 
5.132 as
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(5.133)

Then, using the upper half of Equation 5.131, we obtain the CTEs as follows:
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(5.134)

In a similar way, the CMEs are obtained by substituting ΔT = 0 and ΔC = 1, as 
follows:
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EXAMPLE 5.3

Consider a glass/epoxy laminate [45°/−45°/45°/−45°]. Each ply 1.25 mm in thick-
ness and the following material properties are given.

	

E E G1 2 12 12 1
6

2

40 6 0 25 4 8 10

20 1

= = = = = × °

= ×

−GPa GPa, GPa, m/m/ C,, . ,ν α

α 00 06
12

− ° =m/m/ C, and α .

The laminate is cured at a temperature of 125°C and then brought down to 
ambient temperature of 25°C. Estimate residual strains in the laminate.

Solution

For the given material properties, the reduced stiffness matrix is obtained as

	

[ ]

. .

. .Q =


















×

40 379 1 514 0

1 514 6 057 0

0 0 4

103 MPa

	

Noting that sin 45° = cos 45° = cos(−45°) = 0.7071 and sin(−45°) = −0.7071, 
the transformed reduced stiffness matrices can be readily obtained as

	

Q

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
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and
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
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−
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
× MPa

	

The z coordinates for the four ply laminate are as follows:

z z z z z0 1 2 3 42 5 1 25 0 1 25 2 5= − = − = = =. , . , , . .mm mm mm mm, and mm 	

Then, the laminate stiffness matrices are determined (Equations 5.39 through 
5.41), as follows (details of calculations are not shown):
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
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[ ]

. .

. .

.

D =


















×

170 478 87 145 0

87 145 170 478 0

0 0 113 039

103 MPPa mm⋅ 3

	

Next, the laminate compliance matrices are determined (details of calculations 
are not shown)
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The transformation matrices are (refer Equation 4.45)
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Then, the off-axis CTEs are given by (refer Equation 4.189)
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and
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Now, the fictitious thermal force resultants are given by (refer Equations 5.125 
and 5.126)
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and
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Then, the middle surface strains and curvatures are determined as

	

ε
ε
γ

xx

yy

xy

0

0

0

17 007 7 993 0
7 993 17 0



















=
−

−
. .
. . 007 0
0 0 20 544

121 640
121 640

0.

.

.


















×

−
−






















+



















×

0 0 2 138
0 0 2 138

2 138 2 138 0

0
0

34 38

.

.
. .

. 55
10

1 17
1 17
0

6






















× =

−
−











−
.
.






× −10 3

	



240 Composite Structures

and
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5.8  SPECIAL CASES OF LAMINATES
Stacking sequence of a laminate is a critical design parameter and it has been of great 
interest among researches as reflected by numerous papers related to topics such 
as effect of stacking sequence on general laminate performance, effect of stacking 
sequence on laminates with specific features such as holes, ply thickness, and cluster-
ing, optimization of stacking sequence, etc. (see References 8–12 among many others). 
Depending on the lamina angles, thicknesses, materials, and types of reinforcements, 
different types of laminate stacking sequences are possible. There are certain types 
of stacking sequences that have special significance in the design and analysis of 
laminated composite structures (see Reference 3 for a comprehensive discussion). The 
stacking sequence of a laminate has direct influence on the laminate stiffness matrices. 
In the subsequent sections, we shall see that, in some special cases of laminate stacking 
sequences, some of the terms in the laminate stiffness matrices vanish. As a result, in 
these laminate stacking sequences, computational effort is greatly reduced.

Further, each term in the laminate stiffness matrices has specific effect on the final 
performance of the laminate under different loading conditions. Thus, a good under-
standing of the terms in the [A], [B], and [D] matrices is essential in the design and 
analysis of a laminated composite structure.

5.8.1  Significance of Stiffness Matrix Terms

Let us rewrite the laminate constitutive relation in Equation 5.42 in a split form as 
follows:
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The [A] matrix associates the force resultants with the middle surface strains and 
[D] matrix associates the moment resultants with the middle surface curvatures. On 
the other hand, [B] matrix associates force resultants with middle surface curvatures 
and moment resultants with middle surface strains. Let us have a more detailed look at 
Equations 5.136 and 5.137 and note that each term in the stiffness matrices has unique 
contribution in associating the force/moment resultants with the strains/curvatures. For 
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example, the term A11 associates the force resultant Nxx with the middle surface strain 
εxx

0 . There is no coupling involved in this case. All the terms are checked and the details 
of such associations are tabulated in Table 5.3.

Before we proceed further, let us understand the terms association and coupling 
used in the table. The diagonal terms in the [A] and [D] matrices are nonzero, that is, 
A11 ≠ 0, A22 ≠ 0, A66 ≠ 0, D11 ≠ 0, D22 ≠ 0, and D66 ≠ 0. Similarly, the Poisson’s terms 

TABLE 5.3
Laminate Stiffness Matrix Terms and Corresponding Association 
between Stress Resultants and Strains/Curvatures

Stiffness 
Matrix 
Term

Association between

Associated Coupling
Force/Moment 

Resultant Strain/Curvature

A11 Nxx εxx
0 No coupling

A22 Nyy εyy
0 No coupling

A66 Nxy γxy
0 No coupling

A12 Nxx εyy
0 Extension Poisson coupling

Nyy εxx
0 Extension Poisson coupling

A16 Nxx γxy
0 Extension–shear coupling

Nxy εxx
0 Extension–shear coupling

A26 Nyy γxy
0 Extension–shear coupling

Nxy εyy
0 Extension–shear coupling

B11 Nxx κxx Extension–bending coupling

Mxx εxx
0 Extension–bending coupling

B22 Nyy κyy Extension–bending coupling

Myy εyy
0 Extension–bending coupling

B66 Nxy κxy Shear–twisting coupling

Mxy γxy
0 Shear–twisting coupling

B12 Nxx κyy Extension–bending Poisson coupling

Nyy κxx Extension–bending Poisson coupling

Mxx εyy
0 Extension–bending Poisson coupling

Myy εxx
0 Extension–bending Poisson coupling

B16 Nxx κxy Extension–twisting coupling

Nxy κxx Bending–shear coupling

Mxx γxy
0 Bending–shear coupling

Mxy εxx
0 Extension–twisting coupling

B26 Nyy κxy Extension–twisting coupling

Nxy κyy Bending–shear coupling

Myy γxy
0 Bending–shear coupling

Mxy εyy
0 Extension–twisting coupling

D11 Mxx κxx No coupling

D22 Myy κyy No coupling

D66 Mxy κxy No coupling

D12 Mxx κyy Bending Poisson coupling

Myy κxx Bending Poisson coupling

D16 Mxx κxy Bending–twisting coupling

Mxy κxx Bending–twisting coupling

D26 Myy κxy Bending–twisting coupling

Mxy κyy Bending–twisting coupling
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in these two matrices are also nonzero for nonzero Poisson’s ratio, that is, A12 ≠ 0 and 
D12 ≠ 0. On the other hand, all other terms in the laminate stiffness matrices can be 
zero for certain stacking sequences.

Consider the term A11. Consider a loading state such that Nxx ≠ 0 and all other force 
and moment resultants are zero. As we see, A11 associates Nxx with εxx

0 . It merely signi-
fies that, A11 being a nonzero quantity, the laminate would experience normal strain εxx

0  
under the application of Nxx. To obtain the value of the strain, let us write Equation 5.63 
in the explicit split form as follows:
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For the given loads, the normal strain in the x-direction is given by: εxx xxA N0
11= *

. 
Note that A11

*  contains a number of terms of [A], [B], and [D] matrices. Further, exis-
tence of A11 does not indicate any deformation in other directions. In other words, there 
is no coupling.

Let us now consider a stiffness term with coupling, say, A16. Considering the same 
loading condition, that is, other force and moment resultants being zero and a nonzero 
Nxx, for a nonzero A16, the laminate would undergo in-plane shear deformation. Note 
that this association is between force resultant and strains in two different directions 
and it is a case of extension–shear coupling. Now, consider a load case with Nxy ≠ 0 
and all others zero. A nonzero A16 would imply a nonzero extension εxx

0 , which is also a 
case of extension-shear coupling.

As mentioned earlier, some of the laminate stiffness matrix terms can be made to 
vanish under certain laminate stacking sequences. These special stacking sequences 
have significance in laminate design and analysis from two angles. First, with the 
reduction of nonzero terms, computational effort can be grossly reduced. Second, with 
a number of coupling terms vanishing, undesired coupling effects can be avoided. In 
the following sections, we shall discuss some of these special stacking sequences.

5.8.2  Single-Ply Laminate

Three types of single-ply laminates are possible—single isotropic ply, single specially 
orthotropic ply, and single generally orthotropic ply. Irrespective of the type, for a 
single-ply laminate (laminate thickness h = lamina thickness t),
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5.8.2.1  Single Isotropic Ply

Let us consider an isotropic material with elastic constants E and v. In this case, 
E1 = E2 = E, v12 = v21 = v, and G12 = G = E/2(1 + v). Then, for a single isotropic ply, 
the [ ]Q  (= [Q]) matrix is readily obtained as follows (Equations 4.16 through 4.20):
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Then, using Equations 5.39 through 5.41, the extensional, coupling, and bending 
stiffness matrices can be readily obtained and it is found that [A] and [D] are partially 
populated and [B] = 0. Laminate thickness h = lamina thickness t. Then, the constitu-
tive relations can be written as
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5.8.2.2  Single Specially Orthotropic Ply

For a single specially orthotropic ply, the stiffness matrices can be expressed in terms 
of the reduced stiffness matrices and the laminate thickness h. [A] and [D] are partially 
populated and [B] = 0. Then, the constitutive relations can be written as
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The reduced stiffness matrix can be expressed in terms of the orthotropic material 
properties and Equations 5.144 and 5.145 can be written as
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5.8.2.3  Single Generally Orthotropic Ply

In the case of a generally orthotropic single ply, [A] and [D] are fully populated and 
[B] = 0. Then, the constitutive relations can be written in terms of the transformed 
reduced stiffness matrices and laminate thickness h, as follows:
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5.8.3  Symmetric Laminate

If in a laminate, the laminae angles, thicknesses, and materials are symmetric w.r.t. 
the middle surface, then the laminate is called a symmetric laminate. An example of a 
symmetric laminate is

	
0 900 8 0 4° ° ( , . ) ( , . )CE GE/

s 	

or

A symmetric laminate can have either even or odd number of plies. In a symmetric 
laminate with even number of plies, for each lamina below the middle surface, there 
will be an identical lamina above. Thus, for a laminate with n laminae, there will be 
n/2 identical laminae. Let us consider the kth lamina below the middle surface (Figure 
5.14a). Let us denote the corresponding lamina above the middle surface by k′. Then,
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Now, the extension–bending coupling matrix can be obtained as
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0° (carbon/epoxy, 0.8 mm thick)
90° (glass/epoxy, 0.4 mm thick)
90° (glass/epoxy, 0.4 mm thick)
0° (carbon/epoxy, 0.8 mm thick)
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For a symmetric laminate with odd number of plies, there will be an extra ply in the 
middle such that the middle surface passes through this ply and the coupling matrix is 
given by
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� (5.152)

Thus, for a symmetric laminate, irrespective of even or odd number of plies, the 
extension–bending coupling stiffness matrix [B] = 0. As a result, there is no coupling 
between extension and bending in a symmetric laminate. In other words, if a laminate 
is subjected to only in-plane forces, it will not have any middle surface curvature. 
Similarly, if it is subjected to only moments, it will have zero extensions in the middle 
surface. The constitutive relations for a general symmetric laminate take the following 
form:
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Absence of extension–bending coupling in a symmetric laminate is advantageous in 
more than one way. First, computations during design and analysis are grossly simpli-
fied. Since [B] = 0, we can see that [B*] = [C*] = 0 and the inverse forms of Equations 
5.153 and 5.154 are as follows:

	

ε
ε
γ

xx

yy

xy

A A A

A A A

0

0

0

11 12 16

12 22 26



















=

* * *

* * **

* * *A A A

N

N

N

xx

yy

xy16 26 66





































 	

(5.155)

	

κ
κ
κ

xx

yy

xy

D D D

D D D

D



















=
11 12 16

12 22 26

1

* * *

* * *

66 26 66
* * *D D

M

M

M

xx

yy

xy





































 	

(5.156)

(a) (b)

Zk ′–1

Zk–1

–t/2

t/2

Zk

Zk ′
Zk ′–1

Zk–1
Zk

Zk ′

FIGURE 5.14  (a) Symmetric laminate with even number of plies. (b) Symmetric laminate with odd 
number of plies.
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in which, the elements of the compliance matrices are given directly in terms of the 
stiffness matrix elements, as follows:
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Second, processing of symmetric laminate is simpler as undesirable warpage due to 
thermal loads during curing can be avoided. Third, during functional usage, a symmet-
ric laminate does not exhibit undesirable bending or twisting deformations.

5.8.4  Antisymmetric Laminate

If in a laminate the plies are symmetric in respect of material and ply thickness but 
the ply angles at the same distance above and below the middle surface are negative of 
each other, then the laminate is called antisymmetric. The total number of plies in an 
antisymmetric laminate is always even. An example of an antisymmetric laminate is

	
60 45 45 600 8 0 4 0 4 0 8° ° − ° − °



( ) ( ) ( ) ( )CE GE GE CE/ / /, . , . , . , . 	
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or

In an antisymmetric laminate, the extension–shear coupling and bending–twisting 
coupling terms in the [A] and [D] matrices are zero, that is, A16 = A26 = D16 = D26 = 0 
and the constitutive relations for an antisymmetric laminate can be written as follows:
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5.8.5  Balanced Laminate

A balanced laminate is one in which for each +θ ply there is one −θ ply in the lami-
nate. The plies in a balanced laminate are in pairs and the total number of plies is even. 
The location of the plies in a pair can be anywhere in the laminate but the materials and 
thicknesses of the plies in a pair are the same. An example of a balanced laminate is

	
− ° ° − ° °
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
( ) ( ) ( ) ( )45 60 60 450 4 0 8 0 8 0 4GE CE CE GE/ / /, . , . , . , . 	

or

In a balanced laminate, the extension–shear coupling terms in the [A] matrix are 
zero, that is, A16 = A26 = 0. Thus, the constitutive relations for an antisymmetric lami-
nate can be written as follows:
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60° (carbon/epoxy, 0.8 mm thick)
45° (glass/epoxy, 0.4 mm thick)

−45° (glass/epoxy, 0.4 mm thick)

−60° (carbon/epoxy, 0.8 mm thick)

−45° (glass/epoxy, 0.4 mm thick)
60° (carbon/epoxy, 0.8 mm thick)

−60° (carbon/epoxy, 0.8 mm thick)
45° (glass/epoxy, 0.4 mm thick)
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5.8.6  Cross-Ply Laminate

A laminate is called a cross-ply laminate if it contains only 0° and 90° plies, that is, 
only specially orthotropic plies. Note that a cross-ply laminate is not necessarily sym-
metric and it has no restriction on the materials and ply thicknesses. An example of a 
cross-ply laminate is

	
90 0 90 900 4 0 8 0 8 0 4
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( , . ) ( , . ) ( , . ) ( , . )GE CE CE GE/ / /
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
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or

For 0° and 90° plies, the terms Q16 and Q26 in the transformed reduced stiffness 
matrix are zero. Thus, A16 = A26 = B16 = B26 = D16 = D26 = 0 and the constitutive rela-
tions can be written as follows:
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A cross-ply laminate can be symmetric and in a symmetric cross-ply laminate, the 
constitutive relations become
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5.8.7  Angle-Ply Laminate

An angle-ply laminate is one in which at least one ply angle is other than 0° or 90°. In 
a general case, in an angle-ply laminate, all the stiffness matrices are fully populated. 
Specific cases such as symmetric angle-ply, antisymmetric angle-ply, etc. can be made, 
in which cases some of the terms in the stiffness matrices vanish.

5.8.8  Quasi-Isotropic Laminate

A quasi-isotropic laminate is isotropic in the xy-plane. In such a laminate, the exten-
sional stiffness matrix behaves like that of an isotropic material, which implies

90° (glass/epoxy, 0.4 mm thick)
0° (carbon/epoxy, 0.8 mm thick)
90° (carbon/epoxy, 0.8 mm thick)
90° (glass/epoxy, 0.4 mm thick)
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	 A A11 22= 	 (5.177)

	 A A16 26 0= = 	 (5.178)
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−

	
(5.179)

Note that the other two stiffness matrices [B] and [D] may not behave like isotropic 
materials. Some examples of quasi-isotropic laminates are

	
0 30 60 90 0 60 60 0 45 90 45° ° ° °[ ] ° ° − °[ ] ° ° ° − °[ ]/ / / / / / / / etc, , , .

	

EXAMPLE 5.4

Consider the problem in Example 5.3. If the ply sequence is altered 
to: [45°/−45°/−45°/45°], estimate residual strains in the laminate. Other details 
remain the same.

Solution

Since the material properties are the same as in Example 5.3, the reduced stiff-
ness matrix remains unchanged as follows:
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The transformed reduced stiffness matrices are
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The z coordinates for the four ply laminate are as follows:

	 z z z z z0 1 2 3 42 5 1 25 0 1 25 2 5= − = − = = =. , . , , . .mm mm mm mm, and mm 	

Since the ply sequence is symmetric, there is no extension–bending coupling, 
that is, [B] = 0. The laminate stiffness matrices are determined (Equations 5.39 
through 5.41), as follows (details of calculations are not shown):
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[ ]B =



















0 0 0

0 0 0

0 0 0
	

	

[ ]

. . .

. . .

. . .

D =
170 478 87 145 67 035

87 145 170 478 67 035

67 035 67 035 113 0039

103 3


















× MPa mm⋅

	

Next, the laminate compliance matrices are determined (details of calculations 
are not shown)

	

[ ]

. .

. .

.

(A* =
−

−


















× −

16 543 8 457 0

8 457 16 543 0

0 0 18 430

10 6 MPPa mm⋅ )−1

	

	

[ ]B* =



















0 0 0

0 0 0

0 0 0
	

	

[ ]C* =



















0 0 0

0 0 0

0 0 0
	

	

[ ]

. . .

. . .

. . .

D* =
− −

− −
− −

 8 807 3 193 3 329

3 193 8 807 3 329

3 329 3 329 12 795














× − −10 6 3 1( )MPa mm⋅

	

The transformation matrices are

	

[ ]

. .

. .

. .

T 45

0 5 0 5 1

0 5 0 5 1

0 5 0 5 0
° = −

−


















	

	

[ ]

. .

. .

. .

T − ° =
−

−



















45

0 5 0 5 1

0 5 0 5 1

0 5 0 5 0
	

Then, the off-axis CTEs are obtained from Example 5.3 as

	

α
α
α

x

y

xy



















=
−












°45

14 0

14 0

12 0

.

.

.







× −10 6
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and

	

α
α
α

x

y

xy



















=












− °45

14 0

14 0

12 0

.

.

.







× −10 6

	

Now, the fictitious thermal force resultants are given by

	

{ }

. . .

. . .

. . .

NT = − ×100

16 366 8 366 8 580

8 366 16 366 8 580

8 580 8 580 10 852























 −



















×

+

14

14

12

1 25.

116 366 8 366 8 580

8 366 16 366 8 580

8 580 8 580 10 852

. . .

. . .

. . .

−
−

− −





































×

+
−

14

14

12

1 25

16 366 8 366 8 58

.

. . . 00

8 366 16 366 8 580

8 580 8 580 10 852

14

14

12

. . .

. . .

−
− −





































×

+

1 25

16 366 8 366 8 580

8 366 16 366 8 580

.

. . .

. . .

88 580 8 580 10 852

14

14

12. . .

















 −



















××






× =

−
−


















−1 25 10

121 640

121 640

0

3.

.

.


N/mm

	

and

	

{ }

. . .

. . .

. . .

MT = − ×


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16 366 8 366 8 580

8 366 16 366 8 580

8 580 8 580 10 852



















 −



















× −
14

14

12

4 68( . 88

16 366 8 366 8 580

8 366 16 366 8 580

8 580 8 580 10 852

)

. . .

. . .

. . .

+
−
−

− −





































× −

+

14

14

12

1 563

16 366 8 3

( . )

. . 666 8 580

8 366 16 366 8 580

8 580 8 580 10 852

14−
−

− −



















.

. . .

. . .

114

12

1 563

16 366 8 366 8 580

8 366 1



















×

+

( . )

. . .

. 66 366 8 580

8 580 8 580 10 852

14

14

12

. .

. . .

















 −



















×






× =



















−( . )4 688 10

0

0

0

3



N mm/mm⋅

	

Then, the middle surface strains and curvatures are determined as

	

ε
ε
γ

xx

yy

xy

0

0

0

16 543 8 457 0

8 457 16 5



















=
−

−
. .

. . 443 0

0 0 18 430

121 640

121 640

0.

.

.


















×

−
−



















× =
−
−



















×− −10

0 984

0 984

0

106 3

.

.
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and

	

κ
κ
κ

xx

yy

xy



















=
− −

−
8 807 3 193 3 329

3 193 8 8

. . .

. . 0071 3 329

3 329 3 329 12 795

0

0

0

−
− −


















×















.

. . .






× =



















−10

0

0

0

6

	

5.9  FAILURE ANALYSIS OF A LAMINATE

5.9.1  First Ply Failure and Last Ply Failure

Failure analysis of a laminate is the study, in which we study the stress and strain 
behavior of the laminate under increasing load until failure occurs. The goal of failure 
analysis is to determine the strength of the laminate, which is the maximum load that 
it can take before failure. Before we proceed further, let us note the following points:

◾◾ Failure of a laminate depends on failure of the individual laminae
◾◾ In general, failures of all the laminae do not occur simultaneously
◾◾ Failure of a single ply need not necessarily trigger failures of all the plies

As we know, laminae are the building blocks in a laminate, and it is natural that 
failure of a laminate depends on failure of the individual laminae. However, failure of 
the laminate can also occur without the failure of the individual laminae. Sometimes, 
the laminae get separated from each other due to interlaminar shear failure even though 
the individual laminae may still be intact. The laminae are stacked in different orien-
tations. Also, the materials of the laminae may be different. As a result, strength and 
stiffness characteristics of different laminae are different. Each lamina responds to the 
applied loads as per its own strength/stiffness characteristics. Quite naturally, it can be 
expected that each lamina will have its own failure loads and failure of all the laminae 
in the laminate will not occur simultaneously.

When a lamina fails, the applied loads will have to be shared by the remaining 
laminae and the stresses and strains increase. If the revised stresses and strains in 
the remaining laminae are still within safe limits, the laminate, as a whole, contin-
ues to take higher loads until ultimate failure of the laminate due to failure of all the 
laminae.

From the above discussions, it is clear that the failure process in a laminate is 
not catastrophic; rather it is a gradual process and failure may be concluded to have 
occurred at the point of initiation of failure, at the point of completion, or in between. 
Thus, failure load of a laminate depends on the adopted philosophy on laminate fail-
ure. Broadly, there are two ways to define laminate failure—first ply failure (FPF) 
and last ply failure (LPF). FPF is defined as the failure of a laminate when ply fail-
ure process starts with the failure of the first ply. The FPF is a rather conservative 
approach to designing a composite product and it is used generally in primary struc-
tures. LPF, also known as ultimate laminate failure (ULF), is defined as the failure of 
a laminate when all the plies fail. LPF signifies the ultimate load-carrying capacity 
of a laminate.

5.9.2  Progressive Failure Analysis

The failure phenomenon of an individual lamina was discussed in Chapter 4. As we 
saw there, a lamina has basically five direction-dependent failure modes—longitudinal 
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tensile failure, longitudinal compressive failure, transverse tensile failure, transverse 
compressive failure, and in-plane shear failure. While longitudinal failures are con-
trolled by the reinforcement, transverse and in-plane shear failures are controlled by 
the matrix.

A step-by-step procedure for laminate analysis is given in Table 5.2. The main 
output of laminate analysis are as follows: local stresses (σ11, σ22, and τ12) and local 
strains (ε11, ε22, and γ12) in each ply. (Local stresses and strains are in the principal 
material directions.) Having obtained the local stresses and strains, a suitable failure 
criterion is applied to each lamina. Generally, in a failure analysis process, a small 
load is applied on the laminate such that all the plies are safe. Each ply is checked for 
available factor of safety or margin of safety and the ply with the minimum available 
factor is identified. Then, the applied load is extrapolated to determine the load at 
which the first ply fails.

When a ply fails, a redistribution of load sharing takes place. This redistribution 
depends on the mode of failure of the ply. Thus, it is necessary to identify the mode 
of failure of each lamina. For example, a ply may fail by cracks parallel to the fibers 
due to high transverse tensile stress. The ply is incapable of providing transverse/
in-plane shear stiffness/strength while the longitudinal stiffness/strength remains 
unaffected. In the progressive failure analysis process, such a ply is degraded. 
There are two methods for ply degradation—total ply degradation and partial ply 
degradation.

In the total ply degradation method, when a ply fails, irrespective of the mode of 
failure, all the stiffnesses are made zero. (Note that in actual practice, a ply is degraded 
by making the stiffnesses near zero but not zero as otherwise mathematical singular-
ity problems arise.) Keeping the degraded plies geometrically unchanged, laminate 
stiffness matrices are determined again. The redistribution of stresses lead to higher 
stresses in the remaining plies and applied loads are increased further, if possible, till 
next failure takes place. The process is then continued till ultimate failure occurs.

In the partial ply degradation method, when a ply fails, the stiffnesses correspond-
ing to the mode of failure are made zero. Thus, if a ply fails by cracks parallel to the 
fibers due to high transverse tensile stress, the stiffnesses E2 and G12 are made zero, 
keeping E1 unchanged. Similarly, if a ply fails due to high longitudinal stress, E1 is 
degraded.

Note: Often, failure of a ply due to high transverse normal stress/strain or in-plane 
shear stress/strain is not considered as ply failure. For example, in a composite pressure 
vessel, where the stress state is predominantly biaxial tensile, a ply is considered to 
have failed only when it fails due to tensile stress in the fiber direction. Also, accuracy 
of failure theories in predicting laminate failure under all loading and boundary condi-
tions is still a subject of debate (see, for instance, Reference 13 for a review of failure 
theories). Given above is a procedure that is found convenient and acceptable in a wide 
range of design cases (also see References 4, 14, and 15).

EXAMPLE 5.5

Consider a glass/epoxy cylindrical composite pressure vessel of diameter 400 mm. 
If the ply sequence is [90°/60°/30°]s, determine the maximum internal pressure 
that the pressure vessel can contain. Each ply is 1.25 mm in thickness and the 
material properties are as follows:

	 E E G1 2 12 1240 8 0 25 4= = = =GPa GPa and GPa, , . ,ν 	
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The strength data are as follows:

	

σ σ σ σ11 11 22 221000 600 30T

ult

C

ult

T

ult

C

u
( ) = ( ) = ( ) = ( )MPa MPa MPa, , ,

llt

ult

=

=

120

7012

MPa

MPa

,

( )τ 	

Solution

In a progressive failure analysis, as we know, the applied loads are gradually 
increased and, at different load levels, specific plies are either partially or totally 
degraded. While the geometrical details remain unchanged, the characteristics 
related to material and loads change at different load levels.

The transformation matrices for the plies are

	

[ ]T 90

0 1 0

1 0 0

0 0 1
° =

−


















	

	

[ ]

. . .

. . .

. . .

T 60

0 25 0 75 0 866

0 75 0 25 0 866

0 433 0 433 0 5
° = −

− −


















	

	

[ ]

. . .

. . .

. . .

T 30

0 75 0 25 0 866

0 25 0 75 0 866

0 433 0 433 0 5
° = −

−


















	

and the z coordinates for the six ply laminate are as follows:

	

z z z z

z z
0 1 2 3

4 5

3 75 2 50 1 25 0 0

1 25 2 5

= − = − = − =
= =

. , . , . , . ,

. , .

mm mm mm mm

mm 00 3 756mm, and mm.z = .

Let us denote internal pressure by p. The internal pressure would result in a state 
of membrane stress in the pressure vessel shell.

Let x-axis be along the axis of the pressure vessel and let y-axis along the cir-
cumference. Also, let z-axis be outward normal axis. Then, from basic strength of 
materials approach, if R is the radius of the cylinder, the force resultants can be 
determined as follows:
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Load step 1: p = 1 MPa

Force and moment resultants are
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The reduced stiffness matrix is the same for all the plies and it is given by

	

[ ] [ ] [ ]

. .

. .Q Q Q90 60 30

40 506 2 025 0

2 025 8 101 0

0 0 4
° ° °= = =











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
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The transformed reduced stiffness matrices are
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










×

90

3

8 101 2 025 0

2 025 40 506 0

0 0 4

10�

. .

. . MPa

	

	

Q

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

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×103 MPa

	

The laminate stiffness matrices are

	

[ ]

. . .

. . .

. . .

A =
115 000 41 962 35 080

41 962 196 013 35 080

35 080 35 080 56 7772

103


















× MPa mm⋅

	

	

[ ]B =



















0 0 0

0 0 0

0 0 0
	

	

[ ]

. . .

. . .

. .

D =
334 520 126 978 48 931

126 978 1262 790 97 234

48 931 97 234 1996 400

103 3

.


















× MPa mm⋅
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Next, the laminate compliance matrices are determined (details of calculations 
are not shown)

	

[ ]

. . .

. . .

. . .

*A =
− −

− −
− −

10 993 1 279 6 002

1 279 5 885 2 846

6 002 2 846 23 082


















× − −10 6 1( )MPa mm⋅

	

	

[ ]*B =



















0 0 0

0 0 0

0 0 0
	

	

[ ]*C =



















0 0 0

0 0 0

0 0 0
	

	

[ ]

. . .

. . .

. .

*D =
− −

− −
− −





3 188 0 270 0 661

0 270 0 846 0 352

0 352 5 4300.661














× − −10 6 3 1( )MPa mm⋅

	

Then, using Equation 5.63, the middle surface strains are obtained as follows:

	

ε
ε
γ

xx

yy

xy

0

0

0

10 993 1 279 6 002

1 27



















=
− −

−
. . .

. 99 5 885 2 846

6 002 2 846 23 082

100

200

0

. .

. . .

−
− −


















×



















× =
−


















−10

843 5

1049 1

1169 4

6

.

.

.


× −10 6

	

and

	

κ
κ
κ

xx

yy

xy



















=



















0

0

0
	

Now, using Equation 5.14, the global strains in each ply can be determined. 
In general, the ply strains would depend on their z-locations w.r.t. the middle 
surface. However, in this case, the middle surface curvatures are zero. Thus, the 
global strains in the plies are all equal and they are equal to those of the middle 
surface, that is,

	

ε
ε
γ

ε
ε
γ

xx

yy

xy

xx

yy

xy



















=
















°90






=



















=

° °60 30

843 5

1049

ε
ε
γ

xx

yy

xy

.

.11

1169 4

10 6

−



















× −

.
	

Then, using Equation 4.53, the global stresses in each ply are determined as 
follows:

	

σ
σ
τ

xx

yy

xy



















=

°90

8 101 2 025 0

2 025 40 506 0

. .

. .

00 0 4 000

843 5

1049 1

1169 4.

.

.

.


















×

−



















× =
−



















−10

8 96

44 20

4 68

3

.

.

.

MPa
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σ
σ
τ

xx

yy

xy



















=

°60

10 848 7 380 3 925

7 380 27

. . .

. .. .

. . .

.

.

.

051 10 107

3 925 10 107 9 354

843 5

1049 1

1169 4


















×

−



















× =















−10

12 30

22 78

2 97

3

.

.

.






MPa

	

	

σ
σ
τ

xx

yy

xy



















=

°30

27 051 7 380 10 107

7 380 1

. . .

. 00 848 3 925

10 107 3 925 9 354

843 5

1049 1

1169 4

. .

. . .

.

.

.


















×

−



















× =















−10

18 74

13 02

1 70

3

.

.

.






MPa

	

Having determined the global stresses in each ply, the local stresses in the plies 
are obtained by transformation; these are

	

σ
σ
τ

11

22

12 90

44 20

8 96

4 68



















=










°

.

.

.








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MPa

	

	

σ
σ
τ
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22

12 60

22 74

12 35

3 05



















=










°

.

.

.










MPa

	

	

σ
σ
τ

11

22

12 30

18 78

12 97

1 63

















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=
−










°

.

.

.










MPa

	

We can now apply a suitable failure criterion. Let us choose maximum stress 
failure criterion for our analysis. (Alternatively, we can also determine the local 
strains and apply maximum strain failure criterion.) The strength ratios as per 
maximum stress failure criterion are calculated, as follows:

90° ply:

	
( )

.
.R 11

1000
44 20

22 62= =
	

	
( )

.
.R 22

30
8 96

3 35= =
	

	
( )

.
.R 12

70
4 68

14 96= =
	

60° ply:

	
( )

.
.R 11

1000
22 74

43 98= =
	

	
( )

.
.R 22

30
12 35

2 43= =
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( )

.
.R 12

70
3 05

22 95= =
	

30° ply:

	
( )

.
.R 11

1000
18 78

53 25= =
	

	
( )

.
.R 22

30
12 97

2 31= =
	

	
( )

.
.R 12

70
1 63

42 94= =
	

The local stresses in the plies and the strength ratios at 1 MPa pressure are 
tabulated in Tables 5.4 and 5.5, respectively.

The minimum strength ratio from above is found as 2.31. We know that a ply 
fails when the strength ratio is 1. Thus, the pressure can be increased by 2.31 
times the currently applied pressure before FPF takes place. Since the currently 
applied pressure is 1 MPa, the internal pressure can be increased to 2.31 MPa.

Load step 2: p = 2.31 MPa.

Local stresses in the plies are obtained by linear extrapolation and tabulated in 
Table 5.4. The strength ratios are also calculated in a similar way and tabulated in 
Table 5.5. These stresses and strength ratios are just before FPF. We can see that 

TABLE 5.4
Local Stresses at Different Internal Pressures (Example 5.5)

Load 
Step

Pressure 
(MPa) Description

90° Ply Stresses 
(MPa)

60° Ply Stresses 
(MPa)

30° Ply Stresses 
(MPa)

σ11 σ22 τ12 σ11 σ22 τ12 σ11 σ22 τ12

1 1.00 Start of loading 44.2 9.0 4.7 22.7 12.4 3.1 18.8 13.0 −1.6
2 2.31 Before FPF 102.1 20.8 10.9 52.4 28.6 7.2 43.4 30.0 −3.7
3 2.31 30° plies partially degraded 120.5 28.4 16.9 49.6 39.6 8.5 39.0 – –
4 2.31 30° and 60° plies partially degraded 155.7 48.4 31.6 21.6 – – 51.4 – –
5 2.31 30°, 60°, and 90° plies partially degraded 277.2 – – –184.8 – – 184.8 – –
6 7.51 30°, 60°, and 90° plies partially degraded 900.9 – – –600.6 – – 600.6 – –

TABLE 5.5
Strength Ratios at Different Internal Pressures (Example 5.5)

Load 
Step

Pressure 
(MPa) Description

90° Ply Strength 
Ratios

60° Ply Strength 
Ratios

30° Ply Strength 
Ratios

R11 R22 R12 R11 R22 R12 R11 R22 R12

1 1 Start of loading 22.62 3.35 14.96 43.98 2.43 22.95 53.25 2.31 42.94
2 2.31 Before FPF 9.79 1.45 6.48 19.04 1.05 9.94 23.05 1.00 18.45
3 2.31 30° plies partially degraded 8.30 1.06 4.14 20.16 0.76 8.24 25.64 – –
4 2.31 30° and 60° plies partially degraded 6.42 0.62 2.22 46.30 – – 19.46 – –
5 2.31 30°, 60°, and 90° plies partially degraded 3.61 – – 3.25 – – 5.41 – –
6 7.51 30°, 60°, and 90° plies partially degraded 1.11 – – 1.00 – – 1.67 – –
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FPF takes place in the form of failure of the 30° plies due to excessive transverse 
tensile stress. Now, we can degrade the 30° plies. Let us adopt the partial ply 
degradation method.

Load step 3: p = 2.31 MPa.

Put E2 = G12 ≈ 0 in the 30° plies, that is, these plies are partially degraded keeping 
the geometry intact.

The revised reduced stiffness matrices are

	

[ ] [ ]

. .

. .Q Q90 60
3

40 506 2 025 0

2 025 8 101 0

0 0 4

10° °= =


















× MPaa

	

	

[ ]Q 30
3

40 0 0

0 0 0

0 0 0

10° =


















× MPa

	

Note that the reduced stiffness matrix for the 30° plies is different from the 
others.

The revised transformed reduced stiffness matrices are

	

Q

 =


















×

°90

3

8 101 2 025 0

2 025 40 506 0

0 0 4

10

. .

. . MPa

	

	

Q

 =

°60

10 848 7 380 3 925

7 380 27 051 10 107

3 925 10 107 9 354

. . .

. . .

. . .


















×103 MPa

	

	

Q

 =



°30

22 500 7 500 12 990

7 500 2 500 4 330

12 990 4 330 7 500

. . .

. . .

. . .














×103 MPa

	

Note that the transformed reduced stiffness matrix for the 30° plies is different 
from what it was before the ply degradation.

The laminate stiffness matrices are then determined followed by determina-
tion of middle surface strains and finally the local ply stresses and strength ratios. 
For the sake of brevity, we would not show all these steps. The final local ply 
stresses and the strength ratios are tabulated in Tables 5.4 and 5.5. On partial 
degradation of the 30° plies, as we can see, redistribution of loads takes place; 
the transverse tensile stress in the 60° plies rise beyond its strength and the cor-
responding strength ratio becomes smaller than unity. This redistribution takes 
place instantaneously, that is, without any increase in the pressure. Thus, we 
degrade the 60° plies partially in respect of the transverse and shear stiffnesses.

Load step 4: p = 2.31 MPa.

Put E2 = G12 ≈ 0 in the 60° plies in addition to the 30° plies. The procedure fol-
lowed is similar to what we had done in the previous load step and the local 
stresses and the strength ratios are tabulated.
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Now, we see that the 90° plies, as indicated by the lower than unity strength 
ratio, too have failed in respect of the transverse and shear stiffnesses.

Load step 5: p = 2.31 MPa

Put E2 = G12 ≈ 0 in the 90° plies in addition to the 60° and 30° plies. In other 
words, all the plies are degraded now. The strength ratios are all greater than 
unity, which indicates that the pressure can be increased before next ply failure. 
The minimum strength ratio at this stage is 3.25, which means that the pressure 
can be increased by 3.25 times, that is, to 7.51 MPa.

Load step 6: p = 7.51 MPa

Put E2 = G12 ≈ 0 in the 90°, 60°, and 30° plies, that is, all the plies. The strength 
ratio corresponding to the longitudinal stress in the 90° plies is unity. Thus, at this 
pressure, the 60° plies have failed fully.

We can conclude that final failure takes place at p = 7.51 MPa by fiber fracture 
in the 60° plies.

5.10  OTHER TOPICS IN A LAMINATE ANALYSIS

5.10.1  Interlaminar Stress

CLT assumes a plane stress state in the laminate. In other words, the out-of-plane 
stresses are considered as zero, that is,

	 σ τ τzz xz yz= = = 0 	 (5.180)

The first stress in the above equation is the interlaminar normal stress, whereas the 
other two are the interlaminar shear stresses. These stresses are zero in the regions of 
laminate far away from the free edges. Near the free edges of a laminate (e.g., the sides 
of a laminate or holes and cutouts), the interlaminar stresses are rather large and in 
many cases, they are the causes for free edge delamination. Behavior of interlaminar 
stresses under different conditions including loads, laminate configurations, and stack-
ing sequence is crucial in the design of composite products and different types of solu-
tions have been proposed (see, for instance, References 16–18).

To see how interlaminar stresses are generated, let us consider a cross-ply laminate 
[90°/0°/90°] under transverse tensile force as shown in Figure 5.15a (also see Reference 
19). Let us first have a physical explanation. Under the tensile force in the y-direction, 
the laminate undergoes contraction in the x-direction. As we know, for unidirectional 
composites, v12 is far greater than v21. As a result, if the plies were unbonded, that is, 
free to deform without any constraint from adjacent plies, the 90° plies would undergo 
more contraction than the 0° ply. However, the bond between the plies does not allow 
such differential deformation. The 90° plies expand relative to free deformed configu-
ration whereas the 0° ply contracts (Figure 5.15b). This means that the 90° plies and the 
0° will be in tension and compression, respectively, in the x-direction (Figure 5.15c). 
As we can see in Figure 5.15c, if we consider one-half of the laminate, it will be in 
equilibrium. Now, let us look at the free body diagrams of the individual plies (Figure 
5.15d). Considering the free body diagram of the top ply, we see that there is no exter-
nal stress applied on the ply in the x-direction. For equilibrium to be achieved, the only 
possible way is to have an interlaminar shear stress τzx as shown. The in-plane nor-
mal stress σxx and the interlaminar shear stress τzx, however, generate a moment. Now, 
for moment equilibrium, the countering moment is provided by interlaminar normal 
stresses (Figure 5.15d). Note that the interlaminar normal stresses near the free edge 
are compressive in nature. The nature of these stresses, whether tensile or compressive, 
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depends on the ply sequence. For example, if we change the ply sequence in our illus-
tration from [90°/0°/90°] to [0°/90°/0°], with a little insight, we can readily see that the 
interlaminar normal stresses near the free edge will be tensile. Often, edge delamina-
tion is caused by interlaminar tensile normal stresses.

5.10.2  Shear Deformation Theories

The kinematic assumptions are marginally relaxed in the shear deformation theories 
[1,20–22]. As per Kirchhoff hypothesis, which is assumed to be valid in CLT, a trans-
verse normal before deformation remains straight and perpendicular to the middle sur-
face after deformation.

In the FSDT, as shown in Figure 5.16, the assumption of perpendicularity of a trans-
verse normal is relaxed (also see Reference 1). Then, the displacement field of the 
FSDT is of the following form:
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(5.181)

where (u, v, w) are the displacements at a distance of z from the middle surface and (u0, 
v0, w0, φx, φy) are the generalized displacements of the middle surface. Note that (φx, φy) 
are the rotations of the transverse normal about the y- and x-axes, respectively, and they 
are given by

	
φ φx y

u

z

v

z
=

∂
∂

=
∂
∂

and
	

(5.182)

(a)

(b)

(c)

(d)

[90°/0°/90°]

Ny

Ny

σxx

σxx

σzz

σzz

τzx

τzx

τzx

σxx

σxx

z
y

x

z

x

FIGURE 5.15  (a) A cross-ply laminate under transverse tensile load. (b) Cross section of the deformed 
laminate (dotted lines show the laminae, if they were unbounded). (c) Free body diagram of one-half of 
the laminate. (d) Free body diagrams of the individual laminae.
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In addition to the in-plane force/moment resultants, the transverse force resultants 
exist in FSDT and they are given by
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where
Qx	 Transverse shear force resultant on the face normal to x-axis
Qy	 Transverse shear force resultant on the face normal to y-axis
k	 Shear correction factor

The final constitutive relation for a plate as per FSDT is given by
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where the new terms (other than the terms associated with CLT) are
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FIGURE 5.16  Kinematics of different laminate analysis theories: (a) CLT, (b) FSDT, and (c) TSDT.
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Higher order shear deformations theories, which represent kinematics and interlami-
nar shear characteristics of a plate in a better way, have also been developed. Shear 
correction factor required in the FSDT [23] is not required in the higher order theories. 
However, these theories are computationally more involved.

In the TSDT, the assumption of regarding a transverse normal is further relaxed. 
Thus, the transverse normal is free to rotate and it need not remain straight (Figure 
5.16). Then, the displacement field of the TSDT is of the following form:
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where as in FSDT, (u, v, w) are the displacements at a distance of z from the middle 
surface and (u0, v0, w0, φx, φy) are the generalized displacements of the middle surface. 
Similarly, (φx, φy) are the rotations of the tangent to the transverse normal about the 
y- and x-axes, respectively, at z = 0. In addition, we have functions (θx, θy) and (ψx, ψy) 
to be determined. They are given by

	
φ φx

z

y

z

u

z

v

z
=

∂
∂







 =

∂
∂









= =0 0

and
	

(5.189)

	

θ θx

z

y

z

u

z

v

z
=

∂
∂











=
∂
∂











= =

1
2

1
2

2

2
0

2

2
0

and

	
(5.190)

	

ψ θx

z

y

z

u

z

v

z
=

∂
∂











=
∂
∂











= =

1
6

1
6

3

3
0

3

3
0

and

	
(5.191)

5.10.3  Layerwise Theories

The 2D equivalent single-layer theories viz. CLT and shear deformation theories are 
adequate in the analysis of thin laminated composite plates and shells. However, for 
thick laminates and special structural elements such as sandwich and grid stiffened 
shell, etc., the equivalent single-layer theories provide erroneous solutions. Also, owing 
to the presence of interlaminar shear and normal stresses near the free edges of a lami-
nate, CLT is not valid in these regions. In such cases, a fully 3D elasticity solution or a 
layerwise theory is useful.

Layerwise theories provide more realistic representation of the kinematic behavior 
of a moderately thick to thick composite laminate [1,2,24]. The laminate is considered 
to be made up of a number of mathematical layers (the number of mathematical layers 
need not be equal to the number of physical plies) and discrete layerwise displacement 
field is assumed. The layerwise displacements are such that the displacement compo-
nents are continuous but the derivatives of the displacements w.r.t. the thickness coor-
dinate may be discontinuous.

Layerwise theories can be classified into two classes—the partial layerwise theories 
and the full layerwise theories. The displacement field in a partial layerwise theory pro-
vides for layerwise in-plane deformations only. On the other hand, the displacement in 
a full layerwise theory provides for layerwise deformations in all the three dimensions.
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Detailed discussion on the layerwise theories is beyond the scope of this book; inter-
ested reader may consult Reference 1 among others.

5.11  SUMMARY
Analysis of a laminate is presented in this chapter. A laminate is made by stacking a 
number of laminae and its analysis is carried out at a macro level based on the macro-
level parameters of the laminae. Several theories have been proposed by researchers. 
CLT, as applied to plates and shells, is possibly the most popular theory in the analysis 
of a composite laminate. It is an equivalent single-layer theory; the kinematics, kinet-
ics, and constitutive relations are based on certain assumptions and restrictions, notable 
among them is the Kirchhoff hypothesis.

Hygrothermal stresses develop in a laminate during processing as well as service 
life. Constitutive relations are suitably modified by incorporating certain fictitious 
hygrothermal force/moment resultants.

The laminate constitutive relations are written in terms of laminate stiffness matrices 
and each term in these matrices has certain significance in the final laminate behavior. 
By considering certain specific stacking sequences, some of these terms can be made 
to vanish and special cases of laminates are obtained. These special laminates are of 
great utility in design.

Composite failure behavior is different from metallic failure behavior. Laminate 
failure depends on individual laminae failures and in general, it is progressive in nature 
and not catastrophic. In the context of product design, different philosophies of failure 
loads exist; two broad ways of defining failure are FPF and LPF.

There are certain issues that cannot be addressed within the framework of CLT. For 
example, interlaminar stresses, which are zero as per CLT, do exist in reality especially 
near free edges and the same can be studied by adopting a 3D approach.

EXERCISE PROBLEMS

	 5.1	 Write the following laminate stacking sequences in expanded and con-
tracted codes.

	 Note: CE = carbon/epoxy, GE = glass/epoxy.

	 5.2	 Consider the carbon/epoxy laminate with stacking sequence: 
[0°/45°/−45°/90°]s and material data: E1 = 160 GPa, E2 = 8 GPa, ν12 = 0.25, 
and G12 = 4 GPa. Thickness of each ply is 0.5 mm. The laminate is loaded 
in such a way that the strains are as follows: εxx = 4 × 10−6 (top), εxx = 
0  (bottom), and εyy = γxy = 0 (everywhere). Determine the stresses in the 
laminate and draw the stress distribution across the laminate thickness. 
Assume linear strain variation across the laminate thickness.

(a) (b) (c) (d)
0° 0° 0° 0° (CE)

45° −45° 30° 30° (CE)

−45° 45° 30° 30° (GE)
90° 90° 60° 60° (CE)
90° 0° 60° 60° (GE)

−45° 90° 90° 90° (CE)
45° 45° 60° 60° (GE)
0° −45° 60° 60° (CE)

0° 30° 30° (GE)
30° 30° (CE)
0° 0° (CE)
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	� Hint: Determine the transformed reduced stiffness matrices for each ply. 
Use Equation 5.23.

	 5.3	 Consider a carbon/epoxy laminate with stacking sequence: [90°/0°/90°/0°] 
and the following material data: E1 = 160 GPa, E2 = 8 GPa, ν12 = 0.25, and 
G12 = 4 GPa. Thickness of each play is 2.0 mm. Determine the laminate 
stiffness matrices [A], [B], and [D].

	 5.4	 Consider the laminate in Exercise 5.3. Stacking sequence is changed to 
[90°/0°/0°/90°]. Determine the laminate stiffness matrices [A], [B], and [D]. 
What striking change can you notice?

	 5.5	 Determine the laminate stiffness matrices [A], [B], and [D] of a laminate laid-
up with unidirectional carbon/epoxy laminae as per the following stacking 
sequence: [0°/45°/0°]. Assume the following material data: E1 = 140 GPa, 
E2 = 6 GPa, G12 = 4 GPa, and ν12 = 0.2. Thickness of each ply = 1 mm.

	 5.6	 Consider the laminate in Exercise 5.5. If the unidirectional carbon/epoxy 
lamina is replaced with a bidirectional carbon/epoxy lamina, determine the 
laminate stiffness matrices [A], [B], and [D]. Assume the following additional 
material data for the bidirectional lamina: E1 = 40 GPa, E2 = 40 GPa, 
G12 = 10 GPa, and ν12 = 0.25. Compare the results with those of Exercise 5.5.

	 5.7	 Write a code in MATLAB/C/C++ for the determination of
	 1.	 Force and moment resultants {N} and {M}
	 2.	 Reduced stiffness matrix of the material [Q]
	 3.	 Transformed reduced stiffness matrix [ ]Q  of each ply
	 4.	 Laminate stiffness matrices [A], [B], and [D]
	 5.	 Laminate compliance matrices [A*], [B*], [C*], and [D*]
	 6.	 Laminate middle surface strains and curvatures {ε0} and {κ}
	 7.	 Global strains εxx, εyy, and γxy at any specified point in the laminate 

thickness
	 8.	 Global stresses σxx, σyy, and τxy at any specified point in the laminate 

thickness
	 9.	 Local strains ε11, ε22, and γ12 in each ply
	 10.	 Local stresses σ11, σ22, and τ12 in each ply
	 11.	 Consider the following as input data:
	 a.	 Laminate dimensions
	 b.	 Total number of plies and thickness and orientation of each ply
	 c.	 Applied loads
	 d.	 Material properties E1, E2, ν12, and G12

	 5.8	 Consider an antisymmetric laminate [90°/60°/30°/−30°/−60°/90°] with 
material data E1 = 150 GPa, E2 = 6 GPa, G12 = 4 GPa, and ν12 = 0.2. 
Determine the laminate stiffness matrices [A], [B], and [D]. Verify that 
A16 = A26 = D16 = D26 = 0.

	 5.9	 Consider a balanced laminate [90°/60°/−60°/−30°/30°/90°] with material 
data E1 = 150 GPa, E2 = 6 GPa, G12 = 4 GPa, and ν12 = 0.2. Determine the 
laminate stiffness matrices [A], [B], and [D]. Verify that A16 = A26 = 0.

	 5.10	 Consider a cross-ply laminate [90°/0°/90°/90°/90°/0°] with material data 
E1 = 40 GPa, E2 = 8 GPa, G12 = 4 GPa, and ν12 = 0.2. Determine the lami-
nate stiffness matrices [A], [B], and [D]. Verify that A16 = A26 = B16 = B26 = 
D16 = D26 = 0.

	 5.11	 Consider a quasi-isotropic laminate [0°/30°/60°/90°] with material data 
E1 = 150 GPa, E2 = 6 GPa, G12 = 4 GPa, and ν12 = 0.2. Determine 
the laminate stiffness matrices [A], [B], and [D]. Verify that A11 = A22, 
A16 = A26 = 0, and A66 = (A11 − A12)/2.
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	 5.12	 Consider a carbon/epoxy laminate with ply sequence: [90°/45°/−45°/0°]s each ply 
being 0.5 mm thick and material data: E1 = 160 GPa, E2 = 10 GPa, ν12 = 0.2, 
and G12 = 4 GPa. The middle surface strains and curvatures are given as

	

{ }

.

.

.

{ }

.

ε κ0 3

3 0

2 0

4 0

10

1 8

=
−



















× = −− mm/mm and 11 2

0 6

10 3 1.

.−



















× − −mm

	

		  Determine the global strains, local strains, and local stresses in the outer-
most ply.

	 5.13	 Consider a carbon/epoxy laminate of size 400 mm × 400 mm. Following 
data are given:

		  Ply sequence: [0°/30°/−30°/60°/−60°/90°]
		  Material data: E1 = 160 GPa, E2 = 10 GPa, ν12 = 0.2, and G12 = 4 GPa

		  Apply a tensile force of 1200 kN in the longitudinal direction (in the 
direction of the 0° ply) and determine the middle surface strains and 
curvatures.

	 5.14	Consider the laminate in Exercise 5.13 and apply the tensile force now in 
the transverse direction (in direction of the 90° ply). Determine the mid-
dle surface strains and curvatures. Do you see any similarity/difference in 
the laminate behavior in this exercise vis-à-vis the laminate behavior in 
the previous exercise?

	 5.15	 Consider a cylindrical pressure vessel of 300 mm inner diameter under an 
internal pressure of 2 MPa. Following data are given:

		  Ply sequence: [90°/30°/−30°/90°]
		  Material data: E1 = 140 GPa, E2 = 8 GPa, ν12 = 0.2, and G12 = 4 GPa
		  Determine the local stresses in each ply.

	� Hint: Consider force equilibrium to find Nxx and Nyy. Nxy = Mxx = Myy = 
Mxy = 0. (Take x-direction along the axis of the pressure vessel and y-
direction along the circumference.)

	 5.16	 Consider the pressure vessel in Exercise 5.15. Apply maximum stress cri-
terion and check whether the pressure vessel is safe. Increase the pressure 
from zero till LPF and study the failure behavior. Draw plots to show varia-
tions of local stresses in each ply w.r.t. pressure. Indicate clearly events such 
as matrix cracking, FPF, and LPF. Comment on load sharing by the plies. 
Following strength data are given:
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	 5.17	 Solve Exercise 5.16 by using maximum strain criterion.
	 5.18	 Consider a carbon/epoxy laminate with the following data:

		  Ply sequence: [0°/90°/0°/90°] each ply being 0.5 mm thick
		�  Material data: E1 = 150 GPa, E2 = 8 GPa, ν12 = 0.25, G12 = 6 GPa, 

α1 = 0.02 × 10−6 m/m/°C, and α2 = 22.5 × 10−6 m/m/°C

		  The laminate was cured at 160°C and cooled down to ambient tempera-
ture of 25°C. Determine the residual strains in the laminate.
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	 5.19	 If the stacking of the laminate in Exercise 5.18 is changed to [0°/90°/90°/0°], 
other data remaining unchanged, determine the residual strains. Is there any 
change in the results vis-à-vis the results in Exercise 5.18?

	 5.20	 Consider a glass/epoxy laminate of size 500 mm × 500 mm with the 
following data:

		  Ply sequence: [0°/45°/− 45°/90°] each ply being 1.0 mm thick
		�  Material data: E1 = 40 GPa, E2 = 8 GPa, ν12 = 0.25, G12 = 4 GPa, 

α1 = 8.0 × 10−6 m/m/°C, and α2 = 20.0 × 10−6 m/m/°C

		  If the temperature is raised by 25°C, determine the changed dimensions 
of the laminate. Is there any warpage? Assume the laminate to be initially 
stress free.

	 5.21	 Solve the problem in Exercise 5.19, if the ply sequence is changed to 
[0°/45°/45°/0°]. Is there any change in the laminate behavior?
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6.1  CHAPTER ROAD MAP
A logical end to the study of the analytical theories of laminated composites is a 
discussion on methods for solution to problems in laminated composite structures. 
A number of solution methods have been developed and these methods can be broadly 
classified into two classes—(i) analytical and semianalytical methods and (ii) numeri-
cal methods. Analytical methods result in either closed-form solutions or infinite series 
solutions and they may provide exact solutions to the governing equations. (An exact 
solution to a problem is one that satisfies the governing equations at all the points in 
the domain. Further, it satisfies the initial and boundary conditions.) In this chapter, 
we extend the basic principles of solid mechanics and macromechanical theories in 
laminated composites, discussed in Chapters 2, 4, and 5, to obtain analytical solutions 
of 1D problems in bending, vibration, and buckling.

In general structural engineering parlance, beam, column, and rod are 1D structural 
elements. A beam is a 1D structural element under bending due to transverse loading. 
Analytical modeling of laminated beams with different cross sections is presented and 
solutions are obtained for in-plane and interlaminar stresses as well as displacements 
under bending loads. When a 1D structural element is subjected to axial compression, it 
is referred to as a column. Buckling is an important phenomenon in a column and gov-
erning equations and solutions for buckling load are presented. For problems in beam 
vibration, solutions are obtained for natural frequencies. Specific cases, described by 
end support conditions and applied loads, are considered in each of these three 1D 
problems.

The solution methods presented in this chapter are a direct extension of the topics 
on analysis of lamina and laminate. Thus, a thorough understanding of the concepts 
presented in Chapters 4 and 5 together with basic solid mechanics in Chapter 2 is a 
prerequisite for effective assimilation of the concepts discussed in this chapter.

6.2  PRINCIPAL NOMENCLATURE
[A], [B], [D]	� Laminate stiffness matrices—extensional stiffness matrix, 

extension–bending coupling stiffness matrix, and bending stiff-
ness matrix, respectively

A11, A12, …, A66	 Elements of the extensional stiffness matrix
B11, B12, …, B66	 Elements of the extension–bending coupling stiffness matrix
D11, D12, …, D66	 Elements of the bending stiffness matrix
[A*], [B*], [C*], [D*]	� Laminate compliance matrices—extensional compliance 

matrix, extension–bending coupling compliance matrices, and 
bending compliance matrix, respectively

6
Analysis of Laminated Beams, 
Columns, and Rods
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D D D11 12 66
* * *, , ,  … 	 Elements of the bending compliance matrix

E Exx
b

xx
ex,  	� Effective bending modulus and extensional modulus, respec-

tively, of a beam
(F)(1), (F)(2), …	 Total force on individual sectional elements
Iyy	 Area moment of inertia
l, b, h	 Length, breadth, and height of a beam
M	 Total bending moment
Mxx, Myy, Mxy	� Bending and twisting moment per unit length, that is, moment 

resultants
Nxx, Nyy, Nxy	 Normal and shear force per unit length, that is, force resultants
P	 Applied concentrated force
Pcr	 Critical buckling load
p	 Applied pressure
[Q]	 Reduced stiffness matrix of a lamina
[ ]Q 	 Transformed reduced stiffness matrix of a lamina
Q Q Q11 12 66, , ,  … 	 Elements of the transformed reduced stiffness matrix
q(x)	 Transverse loads
RA, RB	 Support reactions
u, v, w	 Displacements in the x-, y-, and z-directions, respectively
u0, v0, w0	 Middle surface displacements
W	 Buckling displacement
we

0 	 Prebuckling equilibrium displacement
V, Vxx	� Total shear force and shear force per unit width of a beam, 

respectively
x, y, z	 Cartesian coordinates
zc1, zc2	 Distances of centroids of sectional elements from neutral axis
ε ε γxx yy xy

0 0 0, ,  	 Middle surface strains
κxx, κyy, κxy	 Middle surface curvatures
σxx, σyy, τxy	 In-plane stresses
σzz, τzx, τyz	 Interlaminar stresses

6.3  INTRODUCTION
Figure 6.1 shows the configuration of a 1D laminated structural element. For a struc-
tural element to be considered as 1D, the following conditions have to be satisfied:

◾◾ The width and thickness are small compared to the length, that is, b/l ≪ 1 and 
h/l ≪ 1.

◾◾ The loads and displacements are functions of x only, that is, they are indepen-
dent of y.

Note that all the three dimensions of a beam are finite.
The other case of 1D laminated plate problem is cylindrical bending of a plate strip 

(Figure 6.2). In this case, the y-dimension b′ of the laminated plate is large and the 
applied transverse loads q(x), displacements u0(x), v0(x), and w0(x) are functions of x 
only. Such a problem can be solved by considering a strip of width b such that b/b′ ≪ 1.

The cross-sectional shape and ply details greatly influence the overall performance of 
a 1D structural element. Cross-sectional configurations in common use are as follows:

◾◾ Solid cross sections
−− Rectangular
−− Circular
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◾◾ Thin-walled cross sections
−− Open ended, for example, T-section, I-section
−− Closed ended, for example, box-section

Solid rectangular cross sections are usually used in beams as well as columns. In the 
case of beams, ply orientation w.r.t. the loading direction is critical and we have two 
distinct subtypes of rectangular cross sections as follows:

◾◾ Rectangular (plies normal to the loading direction)
◾◾ Rectangular (plies parallel to the loading direction)

Solid circular cross sections are usually used in applications with axial compression 
or tension. Thin-walled cross sections are most commonly used as beams and some-
times as compression members as well.

(a) z

z

z

z

q(x)

y
x

x

x

x

l
h

b

P
P

PP

(b)

(c)

(d)

FIGURE 6.1  One-dimensional laminated structural elements. (a) Geometry. (b) Beam. (c) Rod. 
(d) Column.

y
x

h
b

b

b′

l

lz

FIGURE 6.2  Cylindrical bending of laminated plate. (Adapted with permission from J. N. Reddy, 
Mechanics of Laminated Composite Plates and Shells, CRC Press, 2004.)
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In the following sections, we consider the first type of laminated 1D problems 
(Figure 6.1). For bending problems, we shall consider (i) solid rectangular cross section 
(plies normal to the loading direction), (ii) solid rectangular cross section (plies paral-
lel to the loading direction), (iii) T-section, (iv) I-section, and (v) box-section. For axial 
compression and vibration problems, we shall consider only solid rectangular cross 
section. Further, we shall limit our discussion to symmetric ply laminates only.

6.4 � BENDING OF A LAMINATED BEAM (SOLID 
RECTANGULAR CROSS SECTION: PLIES 
NORMAL TO LOADING DIRECTION)

A laminated composite beam of solid rectangular cross section is shown in Figure 6.1a 
and b. In the case of plies normal to the loading direction, the plies are laid-up in the 
xy-plane. For clarity, a zoomed view is given in Figure 6.3.

6.4.1  Basic Assumptions and Restrictions

The analytical procedure for beam bending is an extension of CLPT [1–3] and the 
assumptions of CLPT hold good. In addition, certain restrictions are also placed. These 
assumptions and restrictions are enumerated below:

	 1.	The plies are perfectly bonded with infinitely thin bond. (Assumption.)
	 2.	Straight lines perpendicular to the middle surface of the laminate before defor-

mation (i.e., transverse normals) remain straight and perpendicular to the mid-
dle surface. (Kirchhoff hypothesis. γzx = γyz = 0.)

	 3.	The transverse normals do not undergo any change in lengths. (Kirchhoff 
hypothesis. εzz = 0.)

	 4.	The strains and displacements are small. (Restriction.)
	 5.	Each ply is of uniform thickness. (Restriction.)
	 6.	The material of each ply is homogeneous, orthotropic, and linearly elastic. 

(Restriction.)
	 7.	The thickness h and width b of the beam are small compared to the length l. 

(Restriction. Further, Poisson’s effect and shear coupling are negligible.)
	 8.	The laminate is symmetric. (Restriction.)
	 9.	Only transverse loads q(x) act on the beam. (Restriction.)

The assumptions and restrictions from serial numbers 1 to 6 are the same as in CLPT. 
These assumptions and restrictions form the basis for the development of the CLPT, 
and their implications were discussed before (Section 5.5, Chapter 5). The restriction in 

z
q(x)

q(x)
x

z
y

x

FIGURE 6.3  Laminated composite beam of solid rectangular cross section with plies normal to load-
ing direction.
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respect of thickness of the beam (at serial no. 7 above) is also as per CLPT. However, 
in addition to the thickness, width of the beam is also small compared to the length. In 
such a case, Poisson’s effect and shear coupling are negligible.

As per the restriction at serial no. 8, there is no extension–bending coupling, which 
implies that

	 [ ]B = 0 	 (6.1)

Finally, we need to look at the restriction on applied loads. Only transverse loads 
q(x) act on the beam and as a result all in-plane normal and shear force resultants 
are zero. The transverse loads are functions of only x, that is, q(x) is uniform along y. 
Further, no torque is applied. Thus, only nonzero stress resultant is Mxx. In other words,

	 Mxx /= 0 	 (6.2)

and

	 N N N M Mxx yy xy yy xy= = = = = 0 	 (6.3)

6.4.2  Governing Equations

Let us go back to the laminate constitutive equations as per CLPT (Equations 5.42 in 
Chapter 5). Let us write these equations in the explicit form as follows:
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(6.4)

Substituting Equations 6.1 through 6.3 in Equation 6.4, we get
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The middle surface curvatures are given by Equation 5.16 and we rewrite it as follows:
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Substituting Equation 6.6 in Equation 6.5 and then inverting it we get
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Equation 6.7 can be written in an explicit form as follows:
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2

2
0

16
∂
∂ ∂

= −
w

x y
D Mxx

*

	
(6.10)

The above three partial differential equations are satisfied by the following general 
solution:

	 w Ax By Cxy Dx Ey F0
2 2= + + + + + 	 (6.11)

where A, B, C, D, E, and F are constants. Apparently, the transverse displacement of the 
middle surface w0 is not independent of y. However, as noted in the previous section, 
for beams, the Poisson’s effect ( )*D12  and shear coupling effect ( )D16

*  can be neglected. 
In such a case, the constants associated with y2 and xy must vanish, that is, B = C = 0. 
Then, by applying boundary conditions, it can be shown that E = 0. In other words, the 
transverse displacement of the middle surface w0 is a function of x alone, that is,

	 w w x0 0= ( ) 	 (6.12)

The moment resultant Mxx is the bending moment on the beam per unit width. 
Denoting the total bending moment by M, we see that

	 M bMxx= 	 (6.13)

For a beam of rectangular cross section (Figure 6.1), the area moment of inertia is 
given by

	
I

bh
yy =

3

12 	
(6.14)

Now, we introduce a term called effective bending modulus of the beam Exx
b , given by

	
E

h D
xx
b =

12
3

11
*

	
(6.15)
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From Equations 6.14 and 6.15, the effective bending stiffness is given by

	
E I

b

D
xx
b

yy =
11
*

	
(6.16)

Substituting Equation 6.16 in Equation 6.8, with the help of Equation 6.13, we get
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The transverse loads q result not only in bending moment but also shear force on the 
beam (Figure 6.4). Let us denote shear force per unit width of the beam by Vxx and total 
shear force on a cross section of the beam by V. Similarly, the applied load q is the load 
per unit length of the beam; it can be related to an applied pressure on the beam. Let 
us denote the applied pressure by p. Note that for a beam, both p and q are independent 
of y. Clearly,

	 V bVxx= 	 (6.18)

and

	 q bp= 	 (6.19)

Now, by considering static moment equilibrium (Figure 6.4b), it can be shown that 
bending moment and shear force are related as
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On the other hand, shear force and the applied loads are related as
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Then, differentiating Equation 6.17 twice and using Equations 6.20 and 6.21, we get
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FIGURE 6.4  (a) Transverse loads on a beam. (b) Positive bending moment and shear force on a beam.
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For a beam, the applied loads q, bending moment M, and middle surface displace-
ment w0 are all functions of x alone and they are independent of y. Thus, Equations 6.17 
and 6.22 can, respectively, be written as
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and
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Equations 6.23 and 6.24 are the governing equations for beam bending under lateral 
loads. Solutions to these equations, in terms of values of w0(x), q(x), and M(x), can be 
obtained by direct integration and application of appropriate boundary conditions. The 
general solutions are
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and
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We shall consider some specific cases of beam. However, before that, let us dwell 
upon determination of stresses in a beam.

6.4.3  In-Plane Stresses

From the solution of the governing beam equations, w0(x) is obtained as a function of 
x and curvatures are obtained by differentiation of w0(x). Then, from Equation 5.24 
in Chapter 5 and, noting that the in-plane strains are zero, the in-plane stresses at any 
point are obtained as follows:
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that is,
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where the superscript k refers to the kth ply corresponding to the point at which the 
stresses are being determined. Then, using Equations 6.7 and 6.13,
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In the explicit form, the in-plane stresses are
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(6.32)

Equations 6.29 or 6.30 through 6.32 give the in-plane stresses at any point in the 
beam under bending.

For a beam of homogeneous isotropic material, the elements of [ ]Q  and [D] matrices 
can be expressed in terms of isotropic material constants and thickness of the beam 
(refer Section 5.8.2.1, Chapter 5). Then, the expressions for elements of [D*] matrix can 
be obtained. Finally, it can be shown that Equations 6.30 through 6.32 can be reduced 
to

	
σxx

k

yy

x z
zM x

I
( ) ( ),

( )
=

	
(6.33)

	 σyy
k x z( ) ( ), = 0 	

(6.34)

	 τ xy
k x z( ) ( ), = 0 	

(6.35)

Note that Equations 6.33 through 6.35 are the beam bending equations as per classi-
cal beam theory for homogeneous isotropic material.

6.4.4  Interlaminar Stresses

Interlaminar stresses are of great significance near free edges of a laminate [4,5]. The 
extent of the region where interlaminar stresses are large is of the order of the laminate 
thickness. In a beam, the width being small, interlaminar stresses are rather large [3]. 
3D elasticity-based approach is required for the determination of these stresses. Let us 
recollect the equilibrium equations given by Equations 2.135, Chapter 2 and rewrite for 
a static case with zero body forces as follows:
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The interlaminar normal stress σzz and interlaminar shear stresses τzx and τyz in any 
ply are determined by integration of the above three partial differential equations in 
that ply. Thus, the interlaminar stresses in the kth ply are obtained as
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Note that for the kth ply, zk−1 ≤ z ≤ zk. Note further that in a beam, the variables 
being independent of y, their derivatives w.r.t. y are zero. Then, using Equations 6.30 
and 6.32 in Equations 6.39 and 6.40, respectively, we get τ zx

k( )  and τ yz
k( ) . τ zx

k( )  and τ yz
k( ) , in 

turn, are substituted in Equation 6.41. Thus, we get
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Now, ∂M/∂x = V, V/b = Vx, and ∂V/∂x = −q. Then,
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(6.45)

	
τyz

k k k k kV

b
Q D Q D Q D

z z( ) ( ) * ( ) * ( ) *= − + +( ) −




−
16 26 6611 12 16

2
1

2

2





+C k

2
( )

	
(6.46)
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σzz

k k k k kq

b
Q D Q D Q D

z z( ) ( ) * ( ) * ( ) *= − + +( ) −




−
11 11 12 12 16 16

3
1

3

6





+C k

3
( )

	
(6.47)

Equations 6.45 through 6.47 give us the interlaminar stresses at a point in the kth 
ply. The constants of integration for the bottom most ply are determined by equating 
the interlaminar stresses at z = 0 to the applied shear and normal stresses on the bot-
tom face of the beam. For the remaining plies from second ply upward, the following 
interface continuity conditions are utilized (Figure 6.5):

	 τ τzx
k

k zx
k

kx z x z( ) ( )( ) ( ), ,= +1

	 (6.48)

	 τ τyz
k

k yz
k

kx z x z( ) ( )( ) ( ), ,= +1

	
(6.49)

	 σ σzz
k

k zz
k

kx z x z( ) ( )( ) ( ), ,= +1

	 (6.50)

6.4.5  Specific Cases of Beam Bending

6.4.5.1  Simply Supported Beam under Point Load

A simply supported beam AB under a single point load is shown in Figure 6.6. The 
moment boundary conditions, M(x) = 0 at x = 0 and x = l, are utilized to determine 
the support reactions, as follows:

	
R

P l a

l
A =

−( )

	
(6.51)

y

x

τzx

τyz 

τyz 

σzz

σzz

τzx

zk
zk−1

k th ply
(k + 1)th ply

(k + 1)

(k + 1)

(k + 1)

(k) (k)

(k)

z

FIGURE 6.5  Interlaminar stresses at the ply interfaces.
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and

	
R

Pa

l
B =

	
(6.52)

The bending moment at a distance x is given by

	
M x

P l a x

l
x a( )

( )
= −

−
≤ ≤for 0

	
(6.53)

	
M x

P l x a

l
a x l( )

( )
= −

−
≤ ≤for

	
(6.54)

Shear force, V = dM/dx, is given by

	
V x

P l a

l
x a( )

( )
= −

−
≤ ≤for 0

	
(6.55)

	
V x

Pa

l
a x l( ) = ≤ ≤for

	
(6.56)

Note that the bending moment is negative everywhere, which implies that σxx
k x z( ) ( ),  

is tensile at the bottom half of the beam and compressive at the top half. By substituting 

z(a)

(b)

(c)

(d)

a

x

l

A

RA RB

(–)

(–)

(+)

Pa(l – a)

Pa

P(l – a)

l

l

l

P

P

B

FIGURE 6.6  (a) Simply supported beam under a single point load. (b) Support reactions. (c) Bending 
moment distribution. (d) Shear force distribution.
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the expressions of bending moments in Equations 6.30 through 6.32, the in-plane 
stresses can be readily obtained. Of the three in-plane stresses, longitudinal bending 
stress σxx

k x z( ) ( ),  is of special interest in analysis of beam and it is given by

	
σxx

k k k kx z
P l a xz

bl
Q D Q D Q D( ) ( ) * ( ) * ( ) *( ),

( )
= −

−
+ +( )11 11 12 12 16 16 foor 0 ≤ ≤x a

	
(6.57)

	
σxx

k k k kx z
Pa l x z

bl
Q D Q D Q D( ) ( ) * ( ) * ( ) *( ),

( )
= −

−
+ +( )11 11 12 12 16 16 foor a x l≤ ≤

	
(6.58)

The transverse displacements are given by Equation 6.25, in which the constants 
of integration are determined by utilizing the displacement boundary conditions and 
continuity conditions, as follows:

	
w x

P l a x

E I l
C x C x a

xx
b

yy
0

3

1 2
6

0( )
( )

=
−

+ + ≤ ≤for
	

(6.59)

	
w x

Pa lx x

E I l
C x C a x l

xx
b

yy
0

2 3

3 4
3

6
( )

( )
=

−
+ + ≤ ≤for

	
(6.60)

The boundary conditions related to displacement are

	 ( )w x0 0 0= = 	 (6.61)

and

	 ( )w x l0 0= = 	 (6.62)

Using Equation 6.61 in Equation 6.59 and Equation 6.62 in Equation 6.60, we get, 
respectively,

	 C2 0= 	 (6.63)

and

	
C

Pal

E I
C l

xx
b

yy
4

2

3
3

= − −
	

(6.64)

Differentiating Equations 6.59 and 6.60, we get the slopes in the two regions of x, 
as follows:

	

dw

dx

P l a x

E I l
C x a

xx
b

yy

0
2

1
2

0=
−

+ ≤ ≤
( )

for
	

(6.65)

	

dw

dx

Pa lx x

E I l
C a x l

xx
b

yy

0
2

3
2

2
=

−
+ ≤ ≤

( )
for

	
(6.66)
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As we can see there are two expressions for slope in the two regions for x. The slope, 
however, is continuous across the point (x = a). Then, substituting x = a in Equations 
6.65 and 6.66, and equating them, we get

	
C

Pa

E I
C

xx
b

yy
3

2

1
2

= − +
	

(6.67)

Similar to slope, displacement is also continuous across the point (x = a). Then, 
substituting x = a in Equations 6.59 and 6.60, and equating them, we get

	
C

Pa l a l a

E I lxx
b

yy
1

2

6
= −

− −( )( )

	
(6.68)

Then, utilizing Equations 6.63, 6.64, 6.67, and 6.68, in Equations 6.59 and 6.60, we get

	
w x

P l a x a l a x

E I l
x a

xx
b

yy
0

3 2

6
0( )

( )[ ( ) ]
=

− − −
≤ ≤for

	
(6.69)

	
w x

Pa l x l x l a

E I l
a x l

xx
b

yy
0

2 2 2

6
( )

( )[( ) ( )]
=

− − − −
≤ ≤for

	
(6.70)

Note that the displacements are negative, that is, opposite to positive z-direction or 
downward. Maximum bending moment, bending stress, and displacement occur when 
the applied load is centrally located and the corresponding values are obtained by sub-
stituting x = a = l/2, as follows:

	
( )M

Pl
max = −

4 	
(6.71)

	
σxx

k k k kPlh

b
Q D Q D Q D( ) ( ) * ( ) * ( ) *( ) = ± + +( )

max 8
11 11 12 12 16 16

	
(6.72)

	
( )w

Pl

E Ixx
b

yy
0

3

48
max = −

	
(6.73)

Note: Bending stress is the maximum in the top and bottom plies.

EXAMPLE 6.1

Consider a carbon/epoxy simply supported beam with the following dimensions: 
l = 500 mm, b = 20 mm, and h = 6 mm. The ply sequence of the beam lami-
nate is [0°/90°/0°], each ply being 2 mm in thickness. Determine the maximum 
displacement, longitudinal in-plane stress σxx and interlaminar normal stress σzz 
at the center of the beam. The beam is under a central point load of 100 N. The 
point load is applied over an area of 20 mm × 20 mm. Material properties are as 
follows:

	 E1 = 125 GPa, E2 = 10 GPa, ν12 = 0.25, and G12 = 8 GPa
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Solution

For the given material properties and ply sequence, the transformed reduced stiff-
ness matrix and the laminate bending compliance matrix are obtained as follows 
(detailed calculations are not shown):

	

[ ] [ ]

. .

. .( ) ( )Q Q1 3

125 6281 2 5126 0

2 5126 10 0503 0

0 0 8

= =




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










××103 MPa

	

	

[ ]

. .

. .( )Q 2 3
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10= ×








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








MPa

	

	

[ ]

. .

. .

.

D* =
−

− × −

0 4595 0 0806 0
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10 6



















  MPa mm3( )⋅ −1

	

Effective bending stiffness of the beam is

	
E I

b

D
xx
b

yy = =
×

= × ⋅−
11

6
6 220

0 4595 10
43 5256 10* .

. N mm
	

z-coordinates of different plies are as follows:

	 z0 = −3 mm, z1 = −1 mm, z2 = 1 mm, and z3 = 3 mm

Displacement under the point load is the maximum displacement and it is 
given by (Equation 6.73)

	
( )

.
.w0

3

6

100 500

48 43 5256 10
5 98max = −

×
× ×

= − mm
	

Maximum bending stresses occur at the bottom and top of the beam at the 
center. They are given by (Equation 6.72):

At the bottom of the beam under the central point load,

	

σxx
( ) ( . . . .1

3

100 500 6
8 20 10

125 6281 0 4595 2 5126 0 08( )
max

=
× ×

× ×
× × − × 006

107 86

)

. ( )= MPa tensile 	

At the top of the beam under the central point load,

	

σxx
( ) ( . . . .3

3

100 500 6

8 20 10
125 6281 0 4595 2 5126 0 0( ) = −

max

× ×
× ×

× × − × 8806

107 86

)

. ( )= − MPa compressive 	

For determining the interlaminar normal stresses in the beam under the point 
load, we need to consider the local applied load distribution. (Note that under a 
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strictly pointed force, the local normal stress would be infinite!) Then, we see 
that for the given “pointed load” of 100 N over a local beam length 20 mm, the 
“uniformly distributed load” is q = 5 N/mm.

Now, we utilize Equation 6.47 and determine the interlaminar normal stresses 
as follows:

At the bottom face of the beam, there is no applied load and as a result, the 
interlaminar normal stress at the bottom face in the first ply is zero, that is,

	 σzz
( ) ( ),1 250 3 0− = 	

Comparing this with Equation 6.47 and substituting z = −3 = z0 for the first 
ply, we readily find

	 C3
1 0( ) = 	

Then, at the top of the first ply,

	

σzz
( ) ( ), ( . . . . )1 250 1

5
20

125 6281 0 4595 2 5126 0 0806
1 27

6
− = − × × − × ×

− +





×

= −

−10

0 0623

3

. ( )MPa compressive 	

Equating stresses at the interface between first and second plies, the interlami-
nar normal stress at the bottom of the second ply is

	 σzz
( ) ( ), . ( )2 250 1 0 0623− = − MPa compressive 	

Comparing this with Equation 6.47 and substituting z = −1 = z1 for the second 
ply, we readily find

	 C3
2 0 0623( ) .= − MPa 	

Then, at the top of the second ply,

	

σzz
( ) ( ), ( . . . )2 250 1

5
20

10 0503 0 4595 0 0806
1 1

6
= −



× × − × ×

+
2.5126 





× − = −−10 0 0623 0 06283 . . ( ) MPa compressive 	

Comparing this with Equation 6.47 and substituting z = 1 = z1 for the third 
ply, we readily find

	 C3
3 0 0628( ) .= − MPa 	

Then, at the top of the third ply,

	

σzz
( ) ( ), ( . . . . )3 250 3

5
20

125 6281 0 4595 2 5126 0 0806
27 1

6
= − × × − × ×

−







× − = −−10 0 0628 0 1253 . . ( )MPa compressive

Note that the interlaminar normal stress at the top of the third ply under the 
pointed load, as expected, is equal in magnitude to the local applied stress.
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6.4.5.2  Simply Supported Beam under Uniformly Distributed Load

A simply supported beam AB under a uniformly distributed load is shown in Figure 6.7. 
The moment boundary conditions, M(x) = 0 at x = 0 and x = l, are utilized to deter-
mine the support reactions, as follows:

	
R R

ql
A B= =

2 	
(6.74)

The bending moment at a distance x is given by

	
M x

qx l x
( )

( )
= −

−
2 	

(6.75)

Shear force, V = dM/dx, is given by

	
V x

q l x
( )

( )
= −

−2
2 	

(6.76)

Similar to the beam under a pointed load, in this case too, the bending moment 
is negative everywhere, which implies that σxx

k x z( ) ( ),  is tensile at the bottom half of 
the beam and compressive at the top half. By substituting the expression of bending 
moment in Equation 6.30, the longitudinal bending stress σxx

k x z( ) ( ),  is obtained as

	
σxx

k k k kx z
qx l x z

b
Q D Q D Q D( ) ( ) * ( ) * ( ) *( ),

( )
= −

−
+ +( )

2 11 11 12 12 16 16
	

(6.77)
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(–)

(+)

8

2
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x
BA

FIGURE 6.7  (a) Simply supported beam under uniformly distributed load. (b) Support reactions. 
(c) Bending moment distribution. (d) Shear force distribution.
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The transverse displacements are given by Equation 6.25, in which the constants of 
integration are determined by utilizing the displacement boundary conditions, as follows:

	
w x

q lx x

E I
C x C

xx
b

yy
0

3 4

1 2
2

24
( )

( )
=

−
+ +

	
(6.78)

Utilizing the displacement boundary conditions, w0(x) = 0 at x = 0 and x = l, in 
Equation 6.78, we get

	 C2 0= 	 (6.79)

and

	
C

ql

E Ixx
b

yy
1

3

24
= −

	
(6.80)

Then, substituting Equations 6.79 and 6.80 in Equation 6.78, we get

	
w x

qx x lx l

E Ixx
b

yy
0

3 2 32

24
( )

( )
= −

− +

	
(6.81)

Note that the displacements are negative, that is, opposite to positive z-direction or 
downward. Maximum bending moment, bending stress, and displacement occur at the 
midpoint of the beam and the corresponding values are obtained by substituting x = l/2 
as follows:

	
( )M

ql
max = −

2

8 	
(6.82)

	
σxx

k k k kql h

b
Q D Q D Q D( ) ( ) * ( ) * ( ) *( ) = ± + +( )

max

2

11 11 12 12 16 16
16 	

(6.83)

	
( )w

ql

E Ixx
b

yy
0

45
384

max = −
	

(6.84)

Note: Bending stress is the maximum in the top and bottom plies.

6.4.5.3  Fixed Beam under Point Load

A fixed beam AB under a point load is shown in Figure 6.8. Owing to the presence of 
end support moments, the support reactions cannot be directly found by employing 
boundary conditions. Instead, the following procedure is adopted.

Let us denote the end support moments and reactions as shown in the figure. Then, 
the bending moment at a distance x is given by

	 M x M R x x aA A( ) = − ≤ ≤for 0 	 (6.85)

	 M x M R P x Pa a x lA A( ) ( )= − − − ≤ ≤for 	 (6.86)
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Shear force, V = dM/dx, is given by

	 V x R x aA( ) = − ≤ ≤for 0 	 (6.87)

	 V x P R a x lA( ) = − ≤ ≤for 	 (6.88)

Note that the bending moment is positive near the supports and negative under the 
load, which implies that σxx

k x z( ) ( ),  is tensile at the top half of the beam near the supports 
and compressive at the bottom half. On the other hand, it is tensile at the bottom half 
and compressive at the top under the load. The longitudinal bending stress σxx

k x z( ) ( ),  is 
given by

	
σxx

k A A k k kx z
M R x z

b
Q D Q D Q D( ) ( ) * ( ) * ( ) *( ),

( )
=

−
+ +( )11 11 12 12 16 16 forr 0 ≤ ≤x a

	
(6.89)

	
σxx

k A A k k kx z
M R P x Pa z

b
Q D Q D Q D( ) ( ) * ( ) * ( )( ),

[ ( ) ]
=

− − −
+ +11 11 12 12 16 116

*( ) ≤ ≤for a x l
	

(6.90)

The transverse displacements are given by Equation 6.25, in which the constants of 
integration are determined by utilizing the boundary conditions and continuity condi-
tions, as follows:

(c)

(b)

(a)

(d)

z
P

a

l
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l 3

l 3

l 3
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(+)
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l 2
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l 2

RBRA

MB

x
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P

A

FIGURE 6.8  (a) Fixed beam under a point load. (b) End support moments and reactions. (c) Bending 
moment distribution. (d) Shear force distribution.
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w x

R x M x

E I
C x C x aA A

xx
b

yy
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3 2

1 2
3

6
0( ) =

−
+ + ≤ ≤for

	
(6.91)

	
w x
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E I
C x C a x lA A

xx
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yy
0

3 2

3 4
3
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( ) ( )
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− − −
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(6.92)

The slope is given by

	

dw

dx

R x M x

E I
C x aA A

xx
b

yy

0
2
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−
+ ≤ ≤for

	
(6.93)
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R P x M Pa x

E I
C a x lA A

xx
b

yy

0
2

3
2

2
=

− − −
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( ) ( )
for

	
(6.94)

Let us apply boundary conditions, w0 = dw0/dx = 0 at x = 0. Then, from Equations 
6.91 and 6.93, we get

	 C C1 2 0= = 	 (6.95)

Equations 6.93 and 6.94 give two expressions for slope for the two regions of x. 
The slope, however, is continuous across the point (x = a). Then, substituting x = a in 
Equations 6.93 and 6.94, and equating them, we get after some arithmetic manipulations

	
C

Pa

E Ixx
b

yy
3

2

2
= −

	
(6.96)

Similar to slope, displacement is also continuous across the point (x = a). Then, sub-
stituting x = a in Equations 6.91 and 6.92, and equating them, together with Equations 
6.93 and 6.94, we get

	
C

Pa

E Ixx
b

yy
4

3

6
=

	
(6.97)

We have got all the four constants of integration; but the end support moments and 
reactions are not known yet.

Let us now apply the boundary condition dw0/dx = 0 at x = l. Then, from Equation 
6.94, together with Equation 6.96, we get

	 P l a R l M lA A( )− − + =2 2 2 0 	 (6.98)

Then, let us now apply the boundary condition w0(x) = 0 at x = l. Then, from 
Equation 6.92, together with Equations 6.96 and 6.97, we get

	 P l a R l M lA A( )− − + =3 3 23 0 	 (6.99)
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Solving Equations 6.98 and 6.99, we get

	
M

Pa l a

l
A =

−( )2

2
	

(6.100)

	
R

P l a l a

l
A =

− +( ) ( )2

3

2

	
(6.101)

Considering static equilibrium, it can be readily seen that

	
M

Pa l a

l
B =

−2

2

( )

	
(6.102)

	
R

Pa l a

l
B =

−2

3

3 2( )

	
(6.103)

We can substitute the values/expressions of C1, C2, C3, C4, MA, and RA in correspond-
ing equations and obtain the expressions for bending moment, longitudinal bending 
stress, and displacement. Resulting expressions, however, are involved and not conve-
nient. We would rather be more interested in the maximum values of these parameters. 
Maximum bending moment, bending stress occur at the end supports as well as the 
midpoint when the applied load is centrally located. On the other hand, maximum dis-
placement occurs under the load. These values are

	
( )M

Pl
max = ±

8 	
(6.104)

	
σxx

k k k kPlh

b
Q D Q D Q D( ) ( ) * ( ) * ( ) *( ) = ± + +( )

max 16
11 11 12 12 16 16

	
(6.105)

	
( )w

Pl

E Ixx
b

yy
0

3

192
max = −

	
(6.106)

Note: Bending stress is the maximum on the top and bottom plies.

6.4.5.4  Fixed Beam under Uniformly Distributed Load

A fixed beam AB under uniformly distributed load is shown in Figure 6.9. Owing to the 
symmetry of the beam, the reactions are readily obtained as

	
R R

ql
A B= =

2 	
(6.107)

Bending moment at a distance x is given by

	
M x M

qlx qx
A( ) = − +

2 2

2

	
(6.108)
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Shear force, V = dM/dx, is given by

	
V x

q l x
( )

( )
= −

−2
2 	

(6.109)

The transverse displacements are given by Equation 6.25

	
w x
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(6.110)

Differentiating Equation 6.110, we get the slope as
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12
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+

	
(6.111)

Utilizing the boundary conditions, w0 = dw0/dx = 0 at x = 0, from Equations 6.110 
and 6.111, we get

	 C C1 2 0= = 	 (6.112)

Next, owing to symmetry, we see that the slope is zero at the midpoint of the beam. Thus,
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x
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FIGURE 6.9  (a) Fixed beam under uniformly distributed load. (b) End support moments and reac-
tions. (c) Bending moment distribution. (d) Shear force distribution.
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Then, from Equations 6.111 and 6.112, we get

	
M

ql
A =

2

12 	
(6.114)

From Equation 6.108, bending moment is obtained as

	
M x

q l x lx
( )

( )
=

+ −2 26 6
12 	

(6.115)

Substituting Equation 6.115 in Equation 6.30, the longitudinal bending stress is 
given by

	
σxx

k k k kx z
q l x lx z

b
Q D Q D Q D( ) ( ) * ( ) * ( )( ),

( )
=

+ −
+ +
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(6.116)

Utilizing Equations 6.112 and 6.114 in Equation 6.110, we get

	
w x

qx l x

E Ixx
b

yy
0

2 2

24
( )

( )
=

− −

	
(6.117)

Bending moment is the maximum at the end supports. Thus, longitudinal bend-
ing stress is also the maximum at the end supports. However, maximum displacement 
occurs at the midpoint of the beam. They are

	
( )M

ql
max =

2

12 	
(6.118)
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k k k kql h

b
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( )w
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yy
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4

384
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(6.120)

Note: Bending stress is the maximum on the top and bottom faces near the ends.

6.4.5.5  Cantilever Beam under Point Load

A cantilever beam AB under a pointed tip load is shown in Figure 6.10. Under static 
equilibrium conditions, the end reaction and support moment are readily obtained as

	 R PA = 	 (6.121)

and

	 M PlA = 	 (6.122)

Bending moment at a distance x is given by

	 M x M R x P l xA A( ) ( )= − = − 	 (6.123)
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Shear force, V = dM/dx, is given by

	 V x P( ) = − 	 (6.124)

The transverse displacements are given by Equation 6.25, in which the constants of 
integration are determined by utilizing the boundary conditions, w0 = dw0/dx = 0 at 
x = 0, and it can be shown that

	
w x

Px l x

E Ixx
b

yy
0

2 3

6
( )

( )
= −

−

	
(6.125)

Substituting Equation 6.123 in Equation 6.30, the longitudinal bending stress is 
obtained as

	
σxx

k k k kx z
P l x z

b
Q D Q D Q D( ) ( ) * ( ) * ( ) *( ),

( )
=

−
+ +( )11 11 12 12 16 16

	
(6.126)

Bending moment and longitudinal bending stress are the maximum at the end sup-
port. However, maximum displacement occurs at the free end of the beam. Maximum 
bending moment, bending stress, and displacements are

	 ( )M Plmax = 	 (6.127)

	
σxx

k k k kPlh

b
Q D Q D Q D( ) ( ) * ( ) * ( ) *( ) = ± + +( )

max 2
11 11 12 12 16 16

	
(6.128)
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(6.129)
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x

FIGURE 6.10  (a) Cantilever beam under tip load. (b) End support moment and reaction. (c) Bending 
moment distribution. (d) Shear force distribution.
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6.4.5.6  Cantilever Beam under Uniformly Distributed Load

A cantilever beam AB under a uniformly distributed load is shown in Figure 6.11. 
Under static equilibrium conditions, the end reaction and support moment are readily 
obtained as

	 R qlA = 	 (6.130)

and

	
M

ql
A =

2

2 	
(6.131)

Bending moment at a distance x is given by

	
M x M R x

qx q l x
A A( )

( )
= − + =

−2 2

2 2 	
(6.132)

Shear force, V = dM/dx, is given by

	 V x q l x( ) ( )= − − 	 (6.133)

The transverse displacements are given by Equation 6.25, in which the constants of 
integration are determined by utilizing the boundary conditions, w0 = dw0/dx = 0 at 
x = 0, and it can be shown that
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(6.134)
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(c)

(d)

z
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l

A
B

q(x)
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MA

RA

ql2

ql

2 (+)

(–)

FIGURE 6.11  (a) Cantilever beam under uniformly distributed load. (b) End support moment and 
reaction. (c) Bending moment distribution. (d) Shear force distribution.



294 Composite Structures

Substituting Equation 6.132 in Equation 6.30, the longitudinal bending stress is 
given by

	
σxx

k k k kx z
q l x z

b
Q D Q D Q D( ) ( ) * ( ) * ( ) *( ),

( )
=

−
+ +( )

2

11 11 12 12 16 16
2 	

(6.135)

Bending moment and longitudinal bending stress are the maximum at the end sup-
port. However, maximum displacement occurs at the free end of the beam. Maximum 
bending moment, bending stress, and displacements are
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6.5 � BENDING OF A LAMINATED BEAM (SOLID 
RECTANGULAR CROSS SECTION: PLIES 
PARALLEL TO LOADING DIRECTION)

Figure 6.12 shows a laminated composite beam of rectangular cross section with its 
plies parallel to the loading plane, which in this case is the xy-plane. Note carefully the 
subtle change in the nomenclature of beam cross-sectional dimensions. Now, the beam 
width and height are denoted by h and b, respectively. Note further that h also denotes 
the overall laminate thickness.

As we are dealing with only symmetric ply sequence, for the ply orientation paral-
lel to the loading plane, the beam-bending behavior is similar to that of an isotropic 
beam. Under the action of the transverse loads q = q(x), bending moment M = M(x) 
is generated. (M may also include applied pure bending moment.) The beam bends 
about the z-axis in such a way that the xz-plane, which divides the beam cross section 
at the midheight, is the neutral plane. The longitudinal strain in the midplane at a 

y

y

q(x)

x

z

q(x)

b

h

x
l

FIGURE 6.12  Laminated composite beam of solid rectangular cross section with plies parallel to 
loading plane.
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distance y from the neutral plane is the same as that in any ply at the same distance 
and is given by

	
ε εxx xx

y

R
0 = =

	
(6.139)

where R is the radius of curvature of the longitudinal axis in the xy-plane.
At this point, before proceeding any further, let us bring in the concept of effective 

extensional modulus [3]. For a symmetric laminate, it can be shown that it is given by

	
E

hA
xx
ex =

1

11
*

	
(6.140)

Also, the area moment of inertia of the beam cross section about the bending axis 
is given by

	
I

hb
zz =

3

12 	
(6.141)

Thus, the effective extensional stiffness of the beam is

	
E I

b

A
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ex

zz =
3

1112 *
	

(6.142)

Now, for a symmetric laminate, the constitutive relation in terms of the compliance 
matrix is (refer Equation 5.155, Chapter 5)
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(6.143)

Nxx being the only nonzero stress resultant, we get

	 εxx xxA N0
11= *

	 (6.144)

Using Equation 6.139 in Equation 6.144, we get

	
N

y

RA
xx =

11
*

	
(6.145)

The externally applied moment M must be balanced by the moment due to internally 
generated stress resultants. Then,

	

M N ydyxx

b

b

=
− /

/

2

2

∫
	

(6.146)
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Substituting Nxx from Equation 6.145 in Equation 6.146, we get
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= =
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∫
	

(6.147)

Using Equations 6.142 and 6.147, we find a relation between the radius of curvature 
and the applied moment as follows:

	 MR E Ixx
ex

zz= 	 (6.148)

Next, we need to determine the stresses. It can be seen that for a given cross section, 
that is, given x, curvature is a constant and the longitudinal strain depends only on y. In 
other words, all the points in a given cross section at a given distance from the neutral 
plane are strained equally. However, the stresses depend on one more parameter, viz. 
the individual ply moduli and follow a stepwise variation across the laminate thickness, 
that is, beam width. Thus, we introduce a term effective longitudinal stress σxx

eff  such 
that the axial stress resultant N hxx xx

eff= σ . Then, using Equation 6.145, we get an expres-
sion for effective longitudinal stress as follows:

	
σxx
eff xxN

h

y

hRA
= =

11
*

	
(6.149)

Using Equations 6.141 and 6.147 in Equation 6.149, we find the following:

	
σxx
eff

zz

yM

I
=

	
(6.150)

Equations 6.148 and 6.150 can be combined and expressed as follows:

	

M

I y

E

Rzz

xx
eff

xx
ex

=
σ

=
	

(6.151)

Note that Equation 6.151 is very similar to the classical isotropic beam-bending 
equation [6].

Note further that σxx
eff  is not the actual stress. To determine the actual ply stresses, 

we need to find Nxx and then apply classical laminate analysis steps as described earlier 
(refer Table 5.2, Chapter 5).

Beam displacements under different cases can be determined by various expressions 
described in Section 6.4.5. However, care must be taken to replace E Ixx

b
yy with E Ixx

ex
zz .

EXAMPLE 6.2

Consider the carbon/epoxy simply supported beam discussed in Example 6.1. For 
ready reference, we repeat the details here.

Dimensions: l = 500 mm, b = 20 mm, and h = 6 mm
Ply sequence: [0°/90°/0°], each ply being 2 mm in thickness
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Determine the maximum displacement and longitudinal in-plane stress σxx at 
the center of the beam. The beam is under a central point load of 100 N applied 
parallel to the plies. The point load is applied over an area of 6 mm × 20 mm. 
Material properties are as follows:

	 E1 = 125 GPa, E2 = 10 GPa, ν12 = 0.25, and G12 = 8 GPa

Solution

For the given material properties and ply sequence, the transformed reduced stiff-
ness matrix and the laminate compliance matrices are as follows:
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Effective extensional stiffness of the beam is given by Equation 6.142 as 
follows:
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z-coordinates of different plies are as follows:

	 z0 = −3 mm, z1 = −1 mm, z2 = 1 mm, and z3 = 3 mm

Displacement under the point load is the maximum displacement, and it is 
obtained by using effective extensional stiffness in Equation 6.73 as

	
( )

.
.w0
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100 500
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0 75max = −

×
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= − mm
	

Maximum bending moment is M = 12,500 N ⋅ mm
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Maximum effective bending stress occurs at the bottom and top of the beam at 
the center. They are given by Equation 6.150:

At the bottom of the beam under the central point load,

	
σxx

eff( ) =
max

=
×

×
10 12500
6 20 12

31 253 /
MPa.

	

which implies Nxx = 31.25 × 6 = 187.5 N/mm. Nxx is positive (tensile) at the bot-
tom of the beam and negative (compressive) at the top.

To determine the in-plane stresses in the plies at the outermost face 
of  the  beam,  we proceed as follows. The midplane strains and curvatures are 
given by
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Then, the global strains
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Note that the strains are the same in all the plies. Global stresses in the outer-
most plies (0°) are obtained as
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The local stresses are obtained by transformation as follows:
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Similarly, the global and local stresses in the middle ply (90°) are obtained as
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6.6 � BENDING OF A LAMINATED COMPOSITE 
BEAM (THIN-WALLED CROSS SECTION)

In an isotropic beam, the expressions for displacement involve the term EI, which is the 
flexural rigidity of the beam. In the analysis of laminated beam of rectangular cross-
section, as discussed in Section 6.5, we need to determine the effective or equivalent 
flexural rigidity of the laminated beam. In the analysis of a laminated composite beam 
of thin-walled cross section too, we need to determine its equivalent flexural rigidity 
[3]. However, in this case, owing to the presence of more than one element in the cross-
section, the analysis procedure is a little complex. The level of complexity increases 
particularly with nonsymmetric cross sections such as T-section and L-section. Note 
that unequal thickness in the top and bottom flanges (or left and right webs) can also 
make an otherwise symmetric cross section nonsymmetric.

The first step in the analysis process is to determine the locations of the centroids of 
the flange(s) and web(s). Next, the total moment supported by the beam is expressed in 
terms of the beam cross-sectional details and compliance matrix elements. Then, by 
comparing the total moment expression with the classical beam equation, we obtain the 
expression for the equivalent flexural rigidity.

Note: Thin-walled sections are composed of at least two elements—flanges(s) and web(s). 
During analysis, we need to consider an axis system and a set of stiffness/compliance 
properties for each of these elements as well as the beam as a whole. Before we move 
further, it is important to note carefully the convention for the axes and other parameters.

The cross-sectional elements are assigned a number as indicated in the respective 
figures. This number is put within small bracket as superscript to indicate to which 
element the stiffness/compliance parameter belongs. For example, in the case of an 
I-section (Figure 6.15 in Section 6.6.2), ( )* ( )A11

3  is the extensional compliance matrix 
element of the bottom flange, whereas, in the case of a box-section (Figure 6.16 in 
Section 6.6.3), it refers to the same compliance matrix element of the right web.

Any parameter without any superscript within small bracket belongs to the beam as 
a whole.

For the beam, x-axis is in the axial direction, y-axis is in the horizontal plane, and 
z-axis is in the vertical plane. The x-, y-, and z-axes are orthogonal to each other and 
they all pass through the centroid of the beam cross section. For the flange(s) and 
web(s), the axes pass through the respective centroid. The local x-axis (i.e., that of a 
flange or web x-axis) is parallel to the x-axis of the beam. However, the local y-axis is 
always parallel to the local plies and the local z-axis is normal to it. Thus, for a flange, 
y-axis is horizontal and z-axis is vertical, but for a web, y- and z-axes are in the vertical 
and horizontal planes, respectively.

6.6.1  T-Section

T-section consists of a flange and a web. As shown in Figure 6.13a–c, laminated beam 
construction can be achieved either by integral lay-up of the flange and web or by adhe-
sive bonding or a combination of both. The exact ply orientation depends on the manu-
facturing scheme; however, for simplicity of analysis, as indicated in Figure 6.13d, the 
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flange and web are assumed to consist of all continuous horizontal and vertical plies 
with perfect bond between them.

Figure 6.14 shows details of a T-section laminated composite beam. Under the action 
of a pure bending moment, the beam bends about the y-axis. The axial strain distribu-
tion w.r.t. z is linear. We take the axis system in such a way as to align the xy-plane with 
the neutral plane.

Let us now find the locations of the centroids, toward which we find the axial force 
component supported by each element. First, we consider the flange. The axial strain at 
any point in the beam is given by

	
εxx

z

R
=

	
(6.152)

where R is the radius of curvature of the neutral axis in the xz-plane.
Then, the flange midplane axial strain is given by

	
εxx cz

R
0 1 1( ) =

( )

	
(6.153)

(a) (b) (c)

(d)

FIGURE 6.13  T-section laminated composite beam. (a) Integral lay-up of flange and web. (b) 
Adhesive bonding of flange and web. (c) Combination of adhesive bonding and integral lay-up. (d) Ply 
orientation for analysis.

Flange
(1)

Web
(2)

(a) (c)(b)

x

b

z

zc1

zc2

y

t1

t2

h

Neutral axis

FIGURE 6.14  Laminated composite beam of T-cross section. (a) Beam in front view. (b) Typical 
axial strain distribution. (c) Cross-sectional details.
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Since, we have restricted our analysis to symmetric ply sequence, the midplane 
strain is also given by

	
εxx xxA N0 1

11

1 1( ) ( ) ( )
( ) * ( ) ( )

=
	

(6.154)

where ( )* ( )A11
1  is the extensional compliance matrix element for the flange ply sequence 

and (Nxx)(1) is the axial force resultant in the flange.
Then, comparing Equations 6.153 and 6.154, we get
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* ( )N
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R A
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11
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( )

	

(6.155)

Note that (Nxx)(1) is a fixed quantity for a given beam configuration and ply sequence. 
Then, the total axial force in the flange can be obtained as

	

( )( )

* ( )F
bz

R A

c1 1

11
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( )

	

(6.156)

Now, we turn our attention to the web. The plies are parallel to the loading plane 
and, as we had seen before, the web acts more like an isotropic beam. The midplane 
axial strain varies with z and is given by

	
εxx

z

R
0 2( ) =

( )

	
(6.157)

The web ply sequence is also symmetric and accordingly the midplane strains are 
given by

	
εxx xxA N0 2

11

2 2( ) =( )( ) * ( ) ( )( )
	

(6.158)

Comparing Equations 6.157 and 6.158, we get
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(6.159)

Clearly, (Nxx)(2) depends linearly on z and the total axial force in the web is obtained 
by integration as follows:
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(6.160)

After few simple steps of manipulation, we obtain the following:
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(6.161)
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Now, under pure bending net axial force in the beam is zero, that is,

	 ( ) ( )( ) ( )F F1 2 0+ = 	 (6.162)

Also, from the cross-sectional details, we get

	
z z

h t
c c1 2

1

2 2
+ = +

	
(6.163)

Using Equations 6.156, 6.161, and 6.163 in Equation 6.162, it can be shown that
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(6.164)

and
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(6.165)

Equations 6.164 and 6.165 give the locations of the centroids of the flange and web, 
respectively. Note that we have expressed the distances to the centroids from the neutral 
axis in terms of cross-sectional details and compliance matrix elements, which are all 
known.

Let us now find the moment components supported by the flange and web. There 
are two parts in the moment component supported by the flange—one due to the force 
resultant and the other due to the moment resultant. The moment resultant in the flange 
is given by
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( )( )

( )

* ( )
M

D
xx

xx1
1

11

1
=

κ

( )
	

(6.166)

By definition, curvature is given by
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(6.167)

Thus,
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(6.168)

Then, using Equations 6.156 and 6.168, the total moment component supported by 
the flange is obtained as

	

( )( )

* ( ) * ( )M
R

bz

A

b

D

c1 1
2

11

1

11

1

1
= +

( ) ( )














	

(6.169)
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The web does not undergo any curvature in the plane normal to its plies and its 
moment resultant is zero. Thus, the moment component supported by the web is only 
due to its force resultant and it is obtained by integration as follows:
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(6.170)

which after simple manipulation leads to
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Then, using Equations 6.169 and 6.171, the total moment supported by the beam is 
obtained as follows:
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(6.172)

Now, from the classical beam equation, the effective bending rigidity of the beam is

	 E I MRxx
b

yy = 	
(6.173)

in which, Exx
b  and Iyy are the effective bending modulus and moment of inertia, respec-

tively. Substituting Equation 6.172 in Equation 6.173, we get
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(6.174)

Equation 6.174 gives us an expression for the effective or equivalent bending 
rigidity of the T-section laminated composite beam. Note that the expression is 
in terms of cross-sectional details and compliance matrix elements, which are all 
known. Note further that having determined the effective bending rigidity of the 
beam, the maximum displacement of the beam can be found for different loading 
and end conditions.

Let us now consider the stresses and strains in the beam.
Using Equation 6.173 in Equations 6.155 and 6.168, the axial force resultant and 

moment resultant in the flange are obtained as follows:
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(6.175)
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Note that other stress resultants are all zero, that is, (Nyy)(1) = (Nxy)(1) = (Myy)(1) = 
(Mxy)(1) = 0, which implies
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(6.177)

Then, the strains and stresses are determined by following standard procedure as 
explained in Table 5.2, Chapter 5.

In the case of the web, the only nonzero stress resultant is (Nxx)(2) and it is obtained 
by using Equations 6.159 and 6.173 as
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(6.178)

Thus, the stress resultant vectors for the web are
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(6.179)

Then, the strains and stresses in the web are determined by following classical 
laminate analysis procedure.

EXAMPLE 6.3

Consider a carbon/epoxy cantilevered T-section beam with the following dimen-
sions: length l = 500 mm, flange width b = 20 mm, web height h = 30 mm, and 
flange thickness t = 4 mm. Thickness of the web is the same as that of the flange. 
The flange and the web are composed of 0° plies, each ply being 0.5 mm in thick-
ness. Determine the maximum displacement if the beam is under a tip point load 
of 100 N. Material properties are as follows:

	 E1 = 125 GPa, E2 = 10 GPa, ν12 = 0.25, and G12 = 8 GPa

Solution

For the given material properties and ply sequence, the transformed reduced stiff-
ness matrix and the laminate compliance matrix are obtained as follows (detailed 
calculations are not shown):
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Distances to the flange and web centroids from the neutral axis are obtained as
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Effective bending stiffness of the beam is
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Displacement under the point load is the maximum displacement and it is 
given by (Equation 6.129)
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2.872
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The stresses and strains vary along the length. Bending moment is maximum 
at the fixed end of the cantilevered beam and we shall find the stresses and strains 
at the top and bottom faces of the beam at the fixed end.

In order to find the bending stresses in the flange, we determine the nonzero 
stress resultants as follows (refer Equations 6.175 and 6.176):
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Midplane strains and curvatures in the flange are
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Global strains at the top face of the flange are
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Global stresses at the top face of the flange are
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It can be seen that the local stresses are the same as the global stresses.
Then, we turn our attention to the web stresses, for which we find the only 

nonzero stress resultant in the web as follows (refer Equation 6.178):
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(at the web-to-flange interface)
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(at the bottom of the beam)
Midplane strains and curvatures in the web (bottom face of the beam) are
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and
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Global strains in the web (bottom face of the beam) are
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Global stresses in the web (bottom face of the beam) are
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Note that the stresses in the beam are predominantly uniaxial—tensile at the 
top face of the beam and compressive at the bottom.

6.6.2  I-Section

An I-section consists of a top flange, a web, and a bottom flange. As in the case of 
T-section, for simplicity of analysis, the flanges are assumed to consist of all continu-
ous horizontal plies and the web vertical plies. Further, the flanges and the web are 
assumed to have perfect bond between them.

The principle and procedure involved in the analysis of an I-section are similar to 
those for a T-section. Accordingly, we shall avoid details of analysis steps and rather 
concentrate on the procedure. Figure 6.15 shows details of an I-section laminated com-
posite beam. We need to first find the centroids of the three elements—top flange, web, 

Top flange
(1)

Web
(2)

Neutral axis

Bottom flange
(3)

(a) (c)(b)

x

t3

t1

h

t2

b3

zc3

zc2

zc1

z

b1

y

FIGURE 6.15  Laminated composite beam of I-cross section. (a) Beam in front view. (b) Typical axial 
strain distribution. (c) Cross-sectional details.
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and bottom flange. Toward this, we need the axial forces acting in the three elements. By 
following a procedure similar to the one discussed in the previous section, we can show 
that the total forces in the top flange, web, and bottom flange, respectively, are given by
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Note that we have considered the beam to be in tension above the neutral plane and 
in compression below it. The opposite can also be considered; final results will be the 
same. Under the action of a pure bending moment, the net axial force is zero, that is, 
(F)(1) + (F)(2) + (F)(3) = 0, which results in
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Further, from Figure 6.15, we get the following two relations:
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From Equations 6.183, 6.184, and 6.185, we obtain the following expressions for the 
distances to the centroids from the neutral axis:
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Note that, for I-section with identical top and bottom flanges, the cross section is 
symmetric about the y-axis and the centroid of the beam coincides with that of the web. 
In such a case, zc1 = (h + t)/2, t being flange thickness and zc2 = 0.
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Next, we need to find the moment components supported by the flanges and web. 
There are two parts in the moment component supported by each flange—one due 
to the force resultant and the other due to the moment resultant. Then, by following 
a procedure similar to that used in Section 6.6.1, we can show that the total moment 
components supported by the top and bottom flanges are as follows:
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On the other hand, the moment component supported by the web is obtained by 
integration as follows:
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Then, the total moment supported by the beam is

	

M
R

b z

A

b

D

h

A
h z

bc
c= + + + −

1

12
121 1

2

11

1
1

11

1

11

2
2

2
2 3

* ( ) * ( ) * ( )( ) ( ) ( ) ( ) zz

A

b

D

c3
2

11

3
3

11

3* ( ) * ( )( ) ( )












+

	
(6.192)

Now, comparing the above expression with classical beam-bending equation, we can 
readily obtain the expression for effective bending rigidity as follows:
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6.6.3  Box-Section

A box-section consists of a top flange, a left web, a right web, and a bottom flange. As 
in the previous cases, for simplicity of analysis, the flanges are assumed to consist of 
all continuous horizontal plies and the webs vertical plies. Further, the flanges and the 
webs are assumed to have perfect bond between them. Also, we shall restrict our study 
to identical webs, that is, the cross section is symmetric about z-axis. Figure 6.16 shows 
details of a box-section laminated composite beam. Note that we have considered the 
centroid of the beam below the centroids of the web. However, the final results remain 
unchanged provided we take care for the signs of the axial forces. Like in the previous 
cases, we need to first find the centroids of the cross-sectional elements, which are four 
in number in this case. Toward this, we need the axial forces acting in the top flange, 
left web, right web, and the bottom flange, which are, respectively, given by
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Like in the other two cases, here too we have considered the beam to be in tension 
above the neutral plane and in compression below it. For pure bending, the net axial 
force is zero, that is, (F)(1) + (F)(2) + (F)(3) + (F)(4) = 0, which results in
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Further, from Figure 6.16, we get the following two relations:
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From Equations 6.198 through 6.200, we obtain the following expressions for the 
distances to the centroids from the neutral axis:
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FIGURE 6.16  Cross-sectional details of box-section.
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Note that, for box-section with identical top and bottom flanges, the cross section is 
symmetric about the y-axis and the centroid of the beam coincides with that of the web. 
In such a case, zc1 = (h + t1)/2, zc2 = 0, and zc4 = (h + t4)/2.

Next, we need to find the moment components supported by the flanges and webs. 
There are two parts in the moment component supported by each flange—one due 
to the force resultant and the other due to the moment resultant. Then, by following 
a procedure similar to that used in Section 6.6.1, we can show that the total moment 
components supported by the top and bottom flanges are as follows:
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On the other hand, the moment component supported by each web is obtained by 
integration as follows:
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Then, the total moment supported by the beam is
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Now, comparing the above expression with classical beam-bending equation, we can 
readily obtain the expression for effective bending rigidity as follows:
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6.7  BUCKLING OF A COLUMN

6.7.1  Concept of Buckling

When a structure is subjected to compressive loading, depending on the load level, 
it responds in two ways—(i) stable elastic deformation and (ii) buckling. Buckling is 
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essentially an instability-related phenomenon that occurs at loads above certain criti-
cal level, when the structure becomes unstable. A stable structural configuration is 
an equilibrium configuration, in which small disturbances result in small response 
such that on removal of the disturbance, the structure regains its original equilibrium 
configuration. On the other hand, an unstable configuration is an equilibrium con-
figuration, in which a small disturbance can result in excessive deformation such that, 
even after removal of the disturbance, the structure does not come back to its original 
configuration. At low levels of compressive loading, the structure deforms elastically 
and remains stable. As the loads are increased gradually, at the critical level of loads 
referred above, it becomes unstable and with small disturbance excessive deformations 
result. This sudden excessive deformation is called buckling and the load at which 
buckling occurs is the buckling load. We can define buckling load as the load at which 
the stable equilibrium configuration of the structure suddenly becomes unstable and 
the structure takes another stable configuration usually accompanied by large deforma-
tion or displacement.

Let us consider a column under an axial compressive force P (Figure 6.17) and 
gradually increase the load from zero. At low values of P, the column undergoes elas-
tic axial shortening. The applied force being axial, it does not create any moment on 
the column. Let us now apply a small lateral force causing a small lateral displace-
ment. (The word small implies that the displacement is in the immediate vicinity of 
the equilibrium straight configuration.) Now, owing to the lateral displacement, the 
applied axial compressive force creates a disturbing moment, which is resisted by a 
restoring moment caused by the bending stiffness of the column. At small loads, the 
restoring moment is higher than the disturbing moment and, after removal of the small 
lateral displacement, the column regains its original straight equilibrium configuration. 
However, at large enough load, the disturbing moment exceeds the restoring moment 
and the column becomes unstable. The load, corresponding to which the disturbing 
moment is just becomes equal to the restoring moment, is the buckling load.

6.7.2  Governing Equations

Before we proceed to the derivation of the governing equations, a discussion on buck-
ling displacement is in order [1,7,8]. During the prebuckling phase, an axially loaded 
column undergoes marginal transverse displacement we

0  due to imperfections. Note 
that for a straight column under axial load without imperfections, the prebuckling 

(a) (b) (c)x

P Pcr
∆

Pcr

Pcr

dx

z

o
V

M

V + dV

M + dM

FIGURE 6.17  (a) Elastic shortening of a column under axial compressive force. (b) Buckled column. 
(c) Free body diagram of a differential element.
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equilibrium displacement we
0  is zero. The buckling displacement, denoted by W, is 

measured from onset of buckling. Thus, the total transverse displacement w0 includes 
both we

0  and W, that is,

	 w w We
0 0= + 	 (6.209)

In other words, in general, total transverse displacement of the buckled column is 
not identical with the buckling displacement.

Let us consider a free body diagram of a differential element of the column (Figure 
6.17c). Considering equilibrium of moments about point O, it can be shown that
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Utilizing Equation 6.23 in the above, we get
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Differentiating both sides w.r.t. x, and noting that dV/dx = −q, we get
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For a column, in the absence of transverse load, q = 0. Thus,
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It can be seen that in the prebuckling equilibrium configuration,
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Then, from Equations 6.209, 6.213, and 6.214, denoting the axial load at the onset of 
buckling by Pcr, the buckling equilibrium equation can be written as
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Equation 6.215 is the governing equation for column buckling. It should be noted 
that this is an eigenvalue problem. (An eigenvalue problem is one that is of the math-
ematical form A(u) + λB(u) = 0, in which A and B are differential operators, u is the 
eigenvector, and λ is the eigenvalue.) The eigenvalues and eigenvectors in a column 
buckling problem are, respectively, the buckling loads and buckling mode shapes. The 
objective is to determine the buckling loads and the corresponding mode shapes. The 
minimum buckling load is of great importance from design point of view and is called 
the critical buckling load.
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The general solution of Equation 6.215 is

	 W x A x B x Cx D( ) sin cos= + + +λ λ 	 (6.216)

where

	
λ2 =

P

E I
cr
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yy 	
(6.217)

The four constants A, B, C, and D are determined by using the boundary condi-
tions. The governing differential equation is a fourth-order differential equation and 
the boundary conditions can involve derivatives up to the third-order. The terms W and 
dW/dx are the displacement and slope, and the corresponding boundary conditions are 
called geometric boundary conditions. On the other hand, the boundary conditions 
involving d2W/dx2 and d3W/dx3 (along with dW/dx) are related, respectively, to moment 
and shear and called natural boundary conditions.

Note: Buckling displacement is actually a variation from the prebuckled equilibrium 
configuration. More on this shall be addressed in the next chapter.

6.7.3  Specific Cases of Column Buckling

6.7.3.1  Simply Supported Column

For a simply supported column (Figure 6.18), displacements and moments at both the 
ends are zero. Thus,
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FIGURE 6.18  Simply supported column.
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These conditions (Equations 6.218 and 6.219) would hold good for buckling dis-
placements as well. Thus,

	 ( ) ( )W Wx x l= == =0 0 	 (6.220)
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Using the boundary conditions from Equations 6.220 and 6.221 in Equation 6.216, 
we get the following:

	 B D+ = 0 	 (6.222)

	 A l B l Cl Dsin cosλ λ+ + + = 0 	 (6.223)

	 B = 0 	 (6.224)

	 A l B lsin cosλ λ+ = 0 	 (6.225)

From the above four equations, we find that

	 B C D= = = 0 	 (6.226)

and

	 A lsinλ = 0 	 (6.227)

which implies
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Then, the buckling modes are
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where Δ = A ≠ 0 is the buckle amplitude, which is indeterminate.
The critical buckling load is (n = 1)
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and the corresponding buckling mode is
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6.7.3.2  Fixed-Free Column

For a fixed-free column (Figure 6.19), displacement and slope are zero at the fixed end 
(x = 0) and moment and shear force are zero at the free end (x = l). Thus,
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and
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Equations 6.232 and 6.233, in turn, imply that
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and
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Using the boundary conditions from Equations 6.234 and 6.235 in Equation 6.216, 
we get the following:

	 B D+ = 0 	 (6.236)

	 A Cλ + = 0 	 (6.237)

	 A l B lsin cosλ λ+ = 0 	 (6.238)

	 PC = 0 	 (6.239)
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FIGURE 6.19  Fixed-free column.
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From the above four equations, we find that

	 A C= = 0 	 (6.240)

and

	 B lcosλ = 0 	 (6.241)

which implies
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Then, the buckling modes are
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where Δ = B ≠ 0 is the buckle amplitude, which is indeterminate.
The critical buckling load is (n = 1)
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and the corresponding buckling mode is
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6.7.3.3  Fixed-Fixed Column

For a fixed-fixed column (Figure 6.20), displacement and slope are zero at both the 
ends x = 0 and x = l. Thus,
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and
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Equations 6.246 and 6.247, in turn, imply that
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and
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Using the boundary conditions from Equations 6.248 and 6.249 in Equation 6.216, 
we get the following:

	 B D+ = 0 	 (6.250)

	 A Cλ + = 0 	 (6.251)

	 A l B l Cl Dsin cosλ λ+ + + = 0 	 (6.252)

	 A l B l Cλ λ λ λcos sin− + = 0 	 (6.253)

From the above four equations, after some manipulation, it can be shown that
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which is the buckling criterion. Equation 6.254 has two parts; the first part gives us
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Then, the buckling modes from this part are
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FIGURE 6.20  Fixed-fixed column.
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where Δ = A ≠ 0 is the buckle amplitude, which is indeterminate.
The critical buckling load is (n = 1)
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and the corresponding buckling mode is
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The second part of Equation 6.254 can also be used to obtain Pcr, which, it can be shown, 
is higher than what we get from Equation 6.257. For a complete solution, Equations 2.50 
through 2.53 can be expressed in terms of the constants A and B, as follows:
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For a nontrivial solution, the determinant of the coefficient matrix has to be zero that 
gives us the following characteristic equation:

	 λ λ λl l lsin cos+ − =2 2 0 	 (6.260)

The solution of this characteristic equation gives the buckling loads and buckling 
modes; the minimum is the critical buckling load, which can be shown to be the same 
as in Equation 6.257.

6.8  VIBRATION OF A BEAM

6.8.1  Concept of Vibration

The subject of vibration has been dealt in depth by many, for instance, References 9–11. 
Any oscillatory motion of a body is called vibration. An oscillatory motion that repeats 
itself at equal intervals of time is called periodic motion. The simplest form of periodic 
motion is a harmonic motion (Figure 6.21) and it can be represented as a sine function 
as follows:

	 x t A t( ) sin= ω 	 (6.261)

where x, A, ω, and t are, respectively, the oscillatory motion, amplitude of motion, fre-
quency of motion, and time.

A
t

A

A
0 π

x

x(t)

2π 3π

ωt

FIGURE 6.21  Simple harmonic motion.
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There are two broad types of vibrations—free vibration and forced vibration. 
When a body vibrates due to an initial excitation at time t = 0 and it continues to 
vibrate under the action of forces inherent to itself and no external forces after time 
zero, it is called free vibration. The frequencies at which free vibration occurs are 
the natural frequencies of the body. On the other hand, if the body vibrates under 
the action of an external force, it is called forced vibration. If the frequency of the 
external excitation coincides with any of the natural frequencies of a body, resonance 
takes place accompanied by potentially dangerous large oscillations. In this section, 
our objective is to find the natural frequencies and corresponding mode shapes of 
laminated beams.

6.8.2  Governing Equations

Let us consider a laminated beam under transverse load as shown in Figure 6.22. 
Note that the transverse load q(x, t), bending moment M(x, t), shear force V(x, t), 
and transverse displacement w0(x, t) are functions of not only x but also t. Also, note 
that q = 0 for free vibration. Considering dynamic equilibrium of forces in the z-
direction, we get
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(6.262)

where ρ and A are the density and area of cross section of the beam, respectively.
Noting, dV = (∂V/∂x)dx, from Equation 6.262, we get
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Next, considering moment equilibrium about y-axis through point O and neglecting 
higher-order terms of dx, it can be shown that

	
V

M

x
=

∂
∂ 	

(6.264)
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(b)

FIGURE 6.22  Transverse vibration of a beam. (a) Beam under transverse load. (b) Differential ele-
ment at time t.
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Then, Equation 6.263 becomes
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Then, utilizing Equation 6.23 and noting that for free vibration, q = 0, we get
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Equation 6.266 is the equation of motion for a laminated beam and it is an eigen-
value problem.

Note: During bending of a beam, in the CLT, a normal plane section remains plane and 
normal to the middle surface. Thus, a point undergoes rotary motion w.r.t. the y-axis 
and the equation of motion involves rotary inertia as well. In the derivation of the above 
equation of motion, we have considered the inertia force in the z-direction (the term 
associated with ∂2w0/∂t2). However, rotary inertia has been neglected.

In Equation 6.266, Exx
b , Iyy, ρ, and A are functions of x alone, whereas w0 is a func-

tion of x and t. The solution can be found by adopting the method of separation, where 
we assume

	 w x t W x T t0 ( ), ( ) ( )= 	 (6.267)

such that W(x) and T(t) are functions of x and t, respectively. W(x) and T(t) are, respec-
tively, found by boundary conditions and initial conditions.

Utilizing Equation 6.267 in Equation 6.266, we get
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Equation 6.268 can be expressed as
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Equation 6.269 can be expressed as two equations as follows:
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The general solution of Equation 6.271 is

	 T t A t B t( ) cos sin= +ω ω 	 (6.272)

where the constants A and B are obtained from initial conditions.
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On the other hand, the general solution of Equation 6.270 is

	 W x C x D x E x F x( ) cos sin cosh sinh= + + +β β β β 	 (6.273)

where

	
β ρ ω4

2

=
A

E Ixx
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(6.274)

and the constants C, D, E, and F and the value of β are obtained by using the boundary 
conditions.

Now, by rearranging the terms in Equation 6.274, the natural frequency is obtained as

	
ω β

ρ
= 2 E I

A
xx
b

yy

	
(6.275)

There are, in fact, infinite numbers of normal modes given by W(x), each associated 
with a natural frequency. Then, the total response of the beam is obtained by superposi-
tion as follows:
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Note: In the above equation, w0(x, t) is the total response of the middle surface of the 
laminated beam, the subscript 0 being used for middle surface. On the right-hand side, 
the subscript n, n = 1, 2, …, is used for the nth normal mode.

6.8.3  Specific Cases

6.8.3.1  Simply Supported Beam

For a simply supported beam of length l, displacements and moments at both the ends 
are zero. Thus,

	 ( ) ( )w wx x l0 0 0 0= == = 	 (6.277)
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Then, from Equation 6.267,

	 ( ) ( )W Wx x l= == =0 0 	 (6.279)

and

	

d W

dx

d W

dx
x x l

2

2
0

2

2 0










= =

= =
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Using the boundary conditions from Equations 6.279 and 6.280 at x = 0, in Equation 
6.273, it can be readily shown that

	 C E= = 0 	 (6.281)

Then, application of the boundary conditions at x = l leads to
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For a nontrivial solution, the determinant of the square matrix has to be zero, that is,

	 sin sinhβ βl l = 0 	 (6.283)

sinh βl = 0 would mean β = 0 or ω = 0, that is, no vibration. Thus, sinh βl ≠ 0 and 
sin βl = 0. This implies

	 D F/= =0 0and 	 (6.284)

Next, sin βl = 0 gives the roots as

	 β πnl n n= = …, , ,1 2 	 (6.285)

or the natural frequencies are
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and the normal modes are
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6.8.3.2  Fixed-Free Beam

For a beam of length l fixed at x = 0 and free at x = l, displacement and slope are zero 
at x = 0 and bending moment and shear force are zero at x = l. Thus,
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and
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Then, from Equation 6.267,
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and
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Using the boundary conditions from Equations 6.290 at x = 0, in Equation 6.273, it 
can be readily shown that

	 C E+ = 0 	 (6.292)

and

	 D F+ = 0 	 (6.293)

Then, application of the boundary conditions at x = l, together with Equations 6.292 
and 6.293, leads to
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For a nontrivial solution, the determinant of the square matrix has to be zero, that is,

	 (cos cosh ) (sin sinh )( sin sinh )β β β β β βl l l l l l+ − + − + =2 0 	 (6.295)

By simplifying Equation 6.295, it can be shown that

	 cos coshβ βl l + =1 0 	 (6.296)

Equation 6.296 is the frequency equation, from which the frequencies of a fixed-free 
beam can be determined.

6.8.3.3  Fixed-Fixed Beam

For a beam of length l fixed at x = 0 as well at x = l, displacement and slope are zero 
at both the ends. Thus,
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and
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Then, from Equation 6.267,
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and
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Using the boundary conditions from Equation 6.299 at x = 0, in Equation 6.273, it 
can be readily shown that

	 C E+ = 0 	 (6.301)

and

	 D F+ = 0 	 (6.302)

Then, application of the boundary conditions at x = l, together with Equations 6.301 
and 6.302, leads to
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For a nontrivial solution, the determinant of the square matrix has to be zero, that is,

	 ( cos cosh ) (sin sinh )( sin sinh )− + − + − + =β β β β β βl l l l l l2 0 	 (6.304)

By simplifying Equation 6.304, it can be shown that

	 cos coshβ βl l − =1 0 	 (6.305)

Equation 6.305 is the frequency equation, from which the frequencies of a fixed-
fixed beam can be determined.

6.9  SUMMARY
In this chapter, we studied the analytical issues in respect of 1D laminated composite 
structural elements. Basic principles of solid mechanics and macromechanics of lami-
nated composites are suitably modified to account for 1D nature of beams and columns. 
Governing equations are developed for bending of a laminated beam, buckling of a col-
umn, and vibration of a beam and analytical solutions are obtained for (i) in-plane and 
interlaminar stresses and displacements in beam bending, (ii) critical buckling load in 
column buckling, and (iii) natural frequency in beam vibration. Some of the key points 
to be noted are

◾◾ Analytical treatment of the 1D elements is based on the basic assumptions and 
restrictions of CLPT with some added restrictions.

◾◾ A beam cross section can be either solid or thin-walled.
◾◾ For a beam of solid cross section, ply orientation w.r.t. loading direction is 

important. Depending on the ply orientation, either effective bending stiffness 
or effective extensional stiffness determines the bending behavior of a lami-
nated beam.
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◾◾ In the case of a beam with thin-walled cross section, the relative sizes and loca-
tions of the web(s) and flange(s) are of key importance.

◾◾ The governing equation for buckling of laminated composite column is 
expressed in terms of buckling displacement; it is an eigenvalue equation that 
gives us the critical buckling load and it is influenced by the effective bending 
stiffness of the column.

◾◾ The governing equation for vibration of laminated composite beam is expressed 
in terms of transverse displacement; it is an eigenvalue equation that gives us 
natural frequency. It is influenced by effective bending stiffness, density, and 
area of cross section of the beam.

EXERCISE PROBLEMS

	 6.1	 Consider a carbon/epoxy simply supported beam of solid rectangular cross-
section under a central point load of 200 N. The dimensions of the beam 
are l = 600 mm, b = 18 mm, and h = 10 mm and the ply sequence is 
[ ] .0 90 02 2

° ° °/ / s  The beam is laid-up with plies of equal thickness and the plies 
are stacked normal to the loading direction. Determine the maximum dis-
placement and in-plane normal stress. Assume the following material data:

	 E1 = 125 GPa, E2 = 8 GPa, G12 = 6 GPa, and ν12 = 0.25.	

	 6.2	 Consider the beam in Exercise 6.1. If the ply sequence is changed to 
[ ]0 45 02 2

° ° °/ /  and the 45° ply is laid-up with bidirectional fabric with epoxy 
resin, determine the maximum displacement and in-plane axial normal 
stress. Assume the following material data for bidirectional lamina:

	 E1 = 40 GPa, E2 = 40 GPa, G12 = 10 GPa, and ν12 = 0.25.	

	 6.3	 Consider the beam in Exercise 6.1. If the point load is moved to a position 
100 mm from one end, determine the maximum displacement and in-plane 
axial normal stress.

	 6.4	 Consider a carbon/epoxy simply supported beam of solid rectangular cross 
section under a uniformly distributed load of 0.5 N/mm. The dimensions of 
the beam are l = 500 mm, b = 10 mm, and h = 5 mm and the ply sequence 
is [ ]0 45 02 2

° ° °/ / . The beam is laid-up with plies of equal thickness and the 
plies are stacked normal to the loading direction. Determine (i) deflections, 
(ii) axial stresses at the bottom face, and (iii) axial stresses at the top face 
at every 50 mm of the beam length and draw the plots showing variations 
of the three parameters along the length. What is the location of maximum 
displacement? Assume the following material data:

	 E1 = 140 GPa, E2 = 8 GPa, G12 = 6 GPa, and ν12 = 0.25.	

	 6.5	 Solve the problem in Exercise 6.4 if the beam support conditions are changed 
to fixed. Keep other data unchanged.

	 6.6	 Solve the problem in Exercise 6.4 if the beam support conditions are changed 
to a cantilever. Keep other data unchanged.

	 6.7	 Solve the problem in Exercise 6.4 if the beam support conditions are changed 
to a cantilever with a tip load of 80 N. Keep other data unchanged.

	 6.8	 Consider a carbon/epoxy simply supported beam of solid rectangular cross 
section under a uniformly distributed load of 0.5 N/mm. The dimensions of 
the beam are l = 500 mm, b = 10 mm, and h = 5 mm and the ply sequence 
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is [ ]0 45 02 2
° ° °/ / . The beam is laid-up with unidirectional and bidirectional 

plies of equal thickness and the plies are stacked normal to the loading 
direction. Determine the interlaminar normal stress and shear stresses at 
the interfaces of the plies in the middle cross section of the beam. Plot the 
variations of stresses across the thickness. What is the maximum deflection? 
Assume the following material data:

For the 0° plies: E1 = 140 GPa, E2 = 8 GPa, G12 = 6 GPa, and ν12 = 0.25.
For the 45° plies: E1 = 40 GPa, E2 = 40 GPa, G12 = 10 GPa, and ν12 = 0.20.

	 6.9	 Solve the problem in Exercise 6.8 if the ply sequence is changed to 
(i) [0°/45°/0°/45°/0°] and (ii) [45°/0°/45°/0°/45°]. Keep other data unchanged.

	 6.10	 Determine the maximum uniformly distributed load that can be allowed on 
a cantilever beam of dimensions 400 mm × 12 mm × 4 mm, if the maxi-
mum deflection is to be limited to 2 mm. Cross section of the beam is solid 
rectangular and the plies are laid-up normal to the loading direction as per 
the following sequence: [0°/45°/0°/45°/0°]. 0° plies are unidirectional and 
1 mm in thickness, whereas 45° plies are bidirectional and 0.5 mm in thick-
ness. Assume the following material data:

		  For the 0° plies: E1 = 160 GPa, E2 = 10 GPa, G12 = 6 GPa, and ν12 = 0.25.
		  For the 45° plies: E1 = 40 GPa, E2 = 40 GPa, G12 = 10 GPa, and ν12 = 0.20.

	 6.11	 Solve the problem in Exercise 6.10, if the following strength data are given:

		  For the 0° plies: ( )σ11 2400T
ult = MPa, ( )σ11 800C

ult = MPa, ( )σ22 40T
ult = MPa,

( )σ22 200C
ult = MPa, and (τ12)ult = 75 MPa

		  For the 45° plies: ( )σ11 1000T
ult = MPa, ( ) ( )σ σ11 22600C

ult
T

ult= =MPa,  
1000MPa, ( )σ22 600C

ult = MPa, and (τ12)ult = 50 MPa

	 6.12	 Determine the effective extensional stiffness of a beam with the data given 
below. Ply sequence: [0°/45°/0°/45°/0°]; 0° plies are unidirectional and 
1.0 mm in thickness; 45° plies are bidirectional and 0.5 mm in thickness. 
Plies are stacked in the loading direction.

Beam cross section: solid rectangular, b = 12 mm and h = 5 mm

		  Material properties:

		  Unidirectional plies: E1 = 160 GPa, E2 = 10 GPa, G12 = 6 GPa, and ν12 = 0.25
		  Bidirectional plies: E1 = 40 GPa, E2 = 40 GPa, G12 = 10 GPa, and ν12 = 0.20

	 6.13	 Determine the maximum deflection and in-plane stresses in the beam in 
Exercise 6.12. The length of the beam is 500 mm and consider a uniformly 
distributed load of 0.25 N/mm.

	 6.14	 Consider a carbon/epoxy simply supported T-section beam with the follow-
ing dimensions: length l = 500 mm, flange width b = 20 mm, web height 
h = 30 mm, and flange thickness t = 4 mm. Thickness of the web is the 
same as that of the flange. The flange and the web are composed of 0° plies, 
each ply being 0.5 mm in thickness. Apply a uniformly distributed load of 
0.2 N/mm and determine the deflections of the beam and draw the variation 
in deflection along its length. Determine the in-plane stresses in the web and 
flange. Material properties are as follows:

	 E1 = 150 GPa, E2 = 10 GPa, ν12 = 0.25, and G12 = 8 GPa

	 6.15	 Consider a carbon/epoxy fixed beam of I-section with the following dimen-
sions: length l = 500 mm, top flange width b1 = 20 mm, bottom flange 
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width b2 = 20 mm, web height h = 30 mm, and flange thickness t = 4 mm. 
Thickness of the web is the same as that of the flange. The flange and the 
web are composed of 0° plies, each ply being 0.5 mm in thickness. Apply a 
uniformly distributed load of 0.2 N/mm and determine (i) effective flexural 
rigidity of the beam, (ii) maximum deflection of the beam, and (iii) material 
properties are as follows:

	 E1 = 150 GPa, E2 = 10 GPa, ν12 = 0.25, and G12 = 8 GPa

	 6.16	 Consider a carbon/epoxy fixed beam of box-section with the following 
dimensions: length l = 800 mm, flange width b = 30 mm, web height 
h = 40 mm, and flange thickness t = 4 mm. Thickness of the web is the 
same as that of the flange. The flange and the web are composed of 0° plies, 
each ply being 0.5 mm in thickness. Apply a uniformly distributed load of 
0.5 N/mm and determine (i) effective flexural rigidity of the beam, (ii) max-
imum deflection of the beam, and (iii) material properties are as follows:

	 E1 = 160 GPa, E2 = 10 GPa, ν12 = 0.25, and G12 = 8 GPa

	 6.17	 Extend the procedure for a T-section beam to an I-beam and derive expres-
sions for (i) force and moment resultants in the flanges, (ii) force and moment 
resultant in the web, and (iii) effective bending rigidity of the flanges, web, 
and the beam as a whole.

	 6.18	 Extend the procedure for a T-section beam to a box-beam and derive expres-
sions for (i) force and moment resultants in the flanges, (ii) force and moment 
resultant in the webs, and (iii) effective bending rigidity of the flanges, webs, 
and the beam as a whole.

	 6.19	 Determine the critical buckling load of a column of length l = 400 mm 
fixed at one end. Following data are given:

		  Cross section: solid rectangular, b = 12 mm, h = 5 mm
		  Ply sequence: [ ]0 45 02 2 2

° ° °/ / ; 0° plies are unidirectional and 1.0 mm in thick-
ness; 45° plies are bidirectional and 0.5 mm in thickness

		  Material data:

		  Unidirectional plies: E1 = 140 GPa, E2 = 10 GPa, G12 = 6 GPa, and ν12 = 0.25
		  Bidirectional plies: E1 = 40 GPa, E2 = 40 GPa, G12 = 10 GPa, and ν12 = 0.20

	 6.20	 Determine the critical buckling load of a column of length l = 500 mm 
fixed at both ends. Following data are given:

		 Cross section: T-section, b = 20 mm, h = 30 mm, t1 = t2 = 4 mm
		 Ply sequence: unidirectional 0° plies of 0.5 mm thickness everywhere
		 Material data: E1 = 140 GPa, E2 = 10 GPa, G12 = 6 GPa, and ν12 = 0.25

	 6.21	 Determine the critical buckling load of a column of length l = 800 mm 
fixed at both ends. Following data are given:

		  Cross section: box-section, b = 40 mm, h = 40 mm, t1 = t2 = t3 = t4 = 4 mm
		  Ply sequence: unidirectional 0° plies of 0.5 mm thickness everywhere
		  Material data: E1 = 140 GPa, E2 = 10 GPa, G12 = 6 GPa, and ν12 = 0.25

	 6.22	 Determine the natural frequencies of a simply supported beam of solid rect-
angular cross section with the following data:

		  Dimensions: l = 500 mm, b = 20 mm, h = 5 mm
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		  Ply sequence: [ ]0 45 02 2 2
° ° °/ / ; 0° plies are unidirectional and 1.0 mm in thick-

ness; 45° plies are bidirectional and 0.5 mm in thickness;

		  Material data:

		  Unidirectional plies: E1 = 140 GPa, E2 = 10 GPa, G12 = 6 GPa, and ν12 = 0.25
		  Bidirectional plies: E1 = 40 GPa, E2 = 40 GPa, G12 = 10 GPa, and ν12 = 0.20
		  Density of composite: 1.5 g/cm3

	 6.23	 Solve the problem in Exercise 6.22, if the support conditions of the beam are 
changed to fixed at one end and free at the other.

		  Hint: Solve Equation 6.296 for β and use in Equation 6.275 for ω.
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7.1  CHAPTER ROAD MAP
In chapter 6, we discussed analytical solutions of 1D problems in laminated compos-
ites. We extend the discussion to two dimensions, that is, plate problems, and bending, 
buckling, and vibration of rectangular plates. Governing equations, viz. equilibrium 
equations, buckling equations, and vibration equations and associated boundary 
conditions are discussed.

Both exact and approximate analytical methods are available for solution of plate 
problems. Navier, Levy, and Ritz methods are presented and solutions are obtained 
for in-plane and interlaminar stresses as well as deflection in a plate under bending 
loads. Specific cases of boundary conditions and ply sequence are considered. 
For  plate  buckling and vibration problems, solutions for critical buckling load and 
natural frequency are presented.

A thorough understanding of the concepts presented in Chapters 4 and 5 pre-
ceded by a review of basic solid mechanics in Chapter 2 is a prerequisite for effective 
assimilation of the concepts discussed in this chapter. Familiarity with the solutions 
for beam problems presented in Chapter 6 is desirable as it gives a logical continuity.

7.2  PRINCIPAL NOMENCLATURE
[A]	 Extensional stiffness matrix
A11, A12, …, A66	 Elements of the laminate extensional stiffness matrix
a, b, h	 Length, width, and thickness of a rectangular plate
[B]	 Extension–bending coupling stiffness matrix
B11, B12, …, B66	� Elements of the laminate extension–bending coupling stiffness 

matrix
C1, C2, C3, C4	 Clamped boundary conditions
[D]	 Bending stiffness matrix
D11, D12, …, D66	 Elements of the laminate bending stiffness matrix
Kyz	 Equivalent Kirchhoff force
Mxx, Myy, Mxy	 In-plane moment resultants
Nxx, Nyy, Nxy	 In-plane force resultants
N N Nxx yy xy, , 	� Applied compressive in-plane normal and shear force resultants on 

the plate edges
Qmn	� Coefficients in the double Fourier series expansion of applied 

transverse load
Qm	� Coefficients in the single Fourier series expansion of applied trans-

verse load
U	 Strain energy

7
Analytical Solutions for 
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Umn, Vmn, Wmn	� Coefficients in the double Fourier series expansion of middle 
surface displacements

Um, Vm, Wm	� Coefficients in the single Fourier series expansion of middle sur-
face displacements

u0, v0, w0	� Plate middle surface displacements in the x-, y-, and z-directions, 
respectively

q(x, y)	 Lateral (out-of-plane) loads
S1, S2, S3, S4	 Simply supported boundary conditions
V	 Negative work done by applied loads
Vxz, Vyz	 Out-of-plane force resultants
t	 Time
x, y, z	 Cartesian coordinates
α, β	� Angles of slope of the middle surface at a point in the x–z and y–z 

planes, respectively
δMxx, δMyy, δMxy	� Variations of the induced in-plane moment resultants from their 

prebuckled equilibrium state
δNxx, δNyy, δNxy	� Variations of the induced in-plane force resultants from their pre-

buckled equilibrium state
δu0, δv0, δw0	 Variation of the displacements in the middle surface of the plate
ε ε γxx yy xy

0 0 0, , 	 In-plane strains at the middle surface
κxx, κyy, κxy	 Laminate middle surface curvatures
Π	 Total potential energy
ρ	 Area density of the laminated plate
σxx, σyy, τxy	 In-plane normal and shear stresses
σzz, τyz, τzx	 Out-of-plane normal and shear stresses

7.3  INTRODUCTION
Laminated composite plates are extensively used in diverse applications. In many 
structural applications, plates are used as primary load-bearing structural elements and 
efficient design and analysis of these structural elements is critical for overall acceptable 
performance of the structure. Design and analysis of a plate require determination of the 
responses of the plate to the applied loads. When a structural element is loaded, depending 
on its configuration, material stiffness characteristics, and nature and magnitude of the 
applied loads, it responds to the applied loads by undergoing deformations, which involves 
in-plane displacements, out-of-plane displacements, or both. Out-of-plane deflections of 
plate bending are mostly associated with lateral loads. In-plane displacements take place 
when the plate is subjected to in-plane tensile or compressive forces. In-plane compressive 
force can also result in out-of-plane deflections that are associated with buckling.

Analysis of laminated composite plates under in-plane loads is given in Chapter 5. 
In this chapter, bending and free vibration of laminate plates under transverse loads 
and buckling under in-plane compression are addressed. The analytical procedures 
involved in the laminated plates are an extension of the well-established isotropic plate 
theories, see for instance References 1 and 2. However, owing to the anisotropic nature 
of composites, plate theories in laminated plates are more complex [3–9]. Analysis of 
laminated composite plates is an extensively studied subject (see References 10–18 
among others). An in-depth review of the solutions available is not intended here; for 
comprehensive review and specific information on analytical results, interested reader 
can consult References 3–6 and the bibliography provided therein. On the other hand, 
governing equations, boundary conditions, and solution methods are introduced in 
this section. Solutions for bending, buckling, and vibration in some specific cases are 
addressed for demonstration, subsequently in Sections 7.4 through 7.6.
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7.3.1  Rectangular Laminated Plate under General Loading

The geometry and coordinates of a rectangular plate are shown in Figure 7.1a. All the 
three physical dimensions of a plate are finite; however, the thickness is small com-
pared to the other physical dimensions, that is, h/a << 1 and h/b << 1. Also, the loads 
and displacements are functions of x as well as y, and the analytical procedures, which 
are essentially derived from 3D elasticity formulations, are 2D in nature.

Figure 7.1b and c shows the rectangular plate under force and moment resultants. 
The force and moment resultants were first introduced (Figure 5.3) in Chapter 5. Note 
that there is a subtle difference—here, we have introduced the transverse loads q(x, y) 
and the transverse force resultants Vxz and Vyz. Apparently, this is a violation of the 
restriction that the plate is loaded only in its plane and resulting plane stress conditions. 
Obviously, the transverse loads q(x, y) result in nonzero transverse stresses σzz, τzx, and τyz. 
For a thin plate, however, the magnitudes of the out-of-plane stresses are far lower than 
the in-plane stresses. Thus, plane stress conditions exist in an approximate way.

Now, as we can see that five force/moment resultants act on each edge—three force 
resultants and two moment resultants. For example, on the edges normal to the x-axis, 
the force and moment resultants are Nxx, Nxy, Vxz, Mxx, and Mxy. Similarly, on the edges 
normal to the y-axis, the force and moment resultants are Nyy, Nyx, Vyz, Myy, and Myx. 
We have got two new force resultants, defined as follows:
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FIGURE 7.1  Rectangular plate. (a) Geometry and coordinates. (b) Force resultants. (c) Moment resul-
tants. (Adapted with permission from R. M. Jones, Mechanics of Composite Materials, Taylor & Francis, 
New York, 1998.)
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It is important to distinguish between the applied stress resultants on the edges and 
the induced stress resultants at the interior points. The five applied stress resultants 
on an edge of a plate are all functions of the coordinate direction tangent to the edge. 
For  example, the normal force resultant applied on the edge normal to the positive 
x-axis is a function of y, that is, Nxx = Nxx(y). (Of course, it can be constant as a special 
case.) At interior points, the induced stress resultants are functions of both x and y, for 
example, Nxx = Nxx(x, y). It follows that the magnitudes of stress resultants on opposite 
edges are not necessarily equal. For example, Nxx on the edge normal to the positive 
x-axis and that on the edge normal to the negative x-axis may be different in magnitude. 
Similarly, the applied stress resultants on the edges are likely to be different from those 
induced stress resultants at the interior points. Note, further, that Nxy and Nyx are not, in 
general, equal; however, at the corner points they are equal.

7.3.2 � Governing Equations for Bending, Buckling, 
and Vibration of Laminated Plates

7.3.2.1  Equilibrium Equations for Laminated Plate Bending

The basic assumptions and restrictions, which form the basis for the development of 
the CLPT, and their implications are discussed in Section 5.5.1, Chapter 5. The same 
assumptions and restrictions hold good, based on which, in this section, we derive the 
governing equations for laminated plate bending as per CLT.

Let us consider an arbitrary point P(x, y) in the middle surface of a rectangular 
plate as shown in Figure 7.2. Let us, then, consider a differential plate element around 
the point such that all faces in the undeformed state are equidistant from the point. 
Figures 7.3 and 7.4, respectively, show the force resultants and moment resultants on the 
differential element. Transverse loads, force and moment resultants all act simultane-
ously. However, for the sake of clarity, the transverse loads are not shown in these two 
figures. Also, again for the sake of clarity, the force and moment resultants are shown 
separately. Note that the transverse loads q(x, y), which are functions of x and y are 
applied loads, whereas the force and moment resultants Nxx, Nyy, Nxy, Vxz, Vyz, Mxx, Myy, 
and Mxy are induced at the point P(x, y). Clearly, the force and moment resultants are all 
functions of (x, y). Then, the normal force resultant on the faces normal to the negative 

y

P(x, y)

a

b

x

q(x, y)

q(x, y)

P(x, y) dy

dx

z
h

FIGURE 7.2  Differential plate element under transverse loading.



335Analytical Solutions for Laminated Plates

and positive x-directions, respectively, are Nxx − (∂Nxx/∂x)(dx/2) and Nxx + (∂Nxx/∂x)
(dx/2). All other force and moment resultants can be obtained in a similar way.

The plate-bending equilibrium equations can be derived by considering force 
and moment equilibrium of the differential element in the deformed configuration. 
Figure 7.5 shows the deformed configurations of the differential plate element in the 
xz- and yz-planes. Let α and β denote the angles of slope of the middle surface at the 
point P in the xz- and yz-planes, respectively. Clearly, α and β are functions of x and y 
and their values on the faces of the plate element are as shown in the figure.

Let us, now, consider static force equilibrium (ignoring body forces) of the plate 
element in the x-direction. Summing up all the force components, we get
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FIGURE 7.3  Force resultants on an undeformed differential plate element. Note: Transverse loads 
and moment resultants are not shown for clarity.
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Elemental variation in the slope angle being small, we can write
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Then, Equation 7.3 reduces to

	

∂
∂

+
∂
∂

=
N

x

N

y
xx xy 0

	
(7.5)

Similarly, considering static force equilibrium in the y-direction, we get
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Next, we consider static force equilibrium in the z-direction. In this case, the trans-
verse loads also come into consideration. Then, summing up all the force components, 
we get
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FIGURE 7.5  Deformed configurations of the differential plate element. (a) Middle surface slope in 
the xz-plane. (b) Middle surface slope in the yz-plane.



337Analytical Solutions for Laminated Plates

For small angles, say less than approximately 10°, sine and cosine of the angle are 
approximately equal to the angle itself and unity, respectively. Also, such an angle can 
be approximately equated to the tangent of the angle. Then,
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and so on.
Then, Equation 7.7 reduces to
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After simple algebraic manipulation, we obtain
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Utilizing Equations 7.5 and 7.6, we get from Equation 7.11, the following:
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Let us now consider moment equilibrium in the xz-plane, as follows:
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which can be readily simplified to
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Similarly, considering moment equilibrium in the yz-plane, it can be shown that
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Substituting Equations 7.14 and 7.15 in Equation 7.12, we get
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which is the third equilibrium equation. For ready reference, let us write below all 
the  three moderately large-deflection equilibrium equations, in terms of stress 
resultants, for plate bending
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Note that we have not put any restriction in respect of the material. Thus, the 
above equations are valid for isotropic as well as anisotropic plates. We, however, 
have assumed that the angles α and β are relatively small and Equations 7.8 and 
7.9 are valid. For the cases of plate bending, where out-of-plane deflections and 
the associated slope angles α and β are so small that the components of the in-
plane force resultants in the z-direction can be neglected. In such cases, the above 
procedure can be repeated to show that the equilibrium equations for a thin plate 
are as follows:
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Next, in order to derive the equilibrium equations in terms of the material stiff-
ness parameters, let us go back to the laminate constitutive equations as per CLPT 
(Equations 5.42 in Chapter 5). Let us write these equations in the explicit form as 
follows:
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The middle surface strains and curvatures are given by Equations 5.15 and 5.16, 
respectively. Then, using Equation 7.23, Equations 7.20 through 7.22 can be written as
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Equations 7.24 through 7.26 are the governing static equilibrium equations in 
terms of middle surface displacements for a thin laminated plate. These equations 
can be greatly simplified for specially orthotropic laminates. (A specially orthotropic 
laminate is one, in which the plies are specially orthotropic and symmetric about the 
middle surface.) Of course, most laminates in real life are not so simple in their ply 
sequence. However, for the sake of simplicity and with a view to only demonstrat-
ing the analytical  solution procedures, we shall limit our discussions primarily to 
specially orthotropic laminated plates and other laminated plates with simple ply 
sequences.

7.3.2.2  Buckling Equations for Laminated Plates

Let us consider a flat plate under uniformly distributed in-plane compressive and 
shear loads (Figure 7.6). At sufficiently small loads, the plate undergoes in-plane 
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deformation in the form of compression, extension, and shear. In a laminated plate, 
depending on its ply sequence, coupling effect may be present and the plate may 
undergo bending and twisting under in-plane compressive load. However, the plate 
still remains stable in an approximately flat equilibrium configuration, referred to as 
the membrane prebuckled configuration. As the in-plane compressive load is gradu-
ally increased, at certain load, the plate becomes unstable and with small disturbance, 
excessive out-of-plane displacements result. This sudden occurrence of excessive out-
of-plane displacements is called buckling and the load at which buckling occurs is 
the buckling load. The characteristic shape of the buckled plate is called the buckling 
mode.

Mathematically, buckling is an eigenvalue problem, where the eigenvalues are the 
buckling loads. The lowest buckling load is of critical importance in design and analysis 
and it is often referred to as the critical buckling load.

The buckling differential equations can be derived by utilizing the principle of 
minimum potential energy. The derivation procedure is not discussed here (see 
References 4, 19, and 20 for details); instead, we present the final expressions of the 
buckling differential equations, as follows:
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where
δNxx, δNyy, δNxy	� Variations of the induced force resultants from their prebuck-

led equilibrium state
δMxx, δMyy, δMxy	� Variations of the induced moment resultants from their pre-

buckled equilibrium state
N N Nxx yy xy, , 	� Applied compressive in-plane normal and shear force resul-

tants on the plate edges
δw0	� Variation of the out-of-plane deflection of the middle surface 

of the plate

y
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Nxx
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Nyy
— Nxy

—

Nxx
—

Nyy
—

FIGURE 7.6  Rectangular plate under in-plane compressive and shear loads.
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Equations 7.27 through 7.29 are the buckling equations in terms of variations in the 
induced stress resultants. With a view to bringing in the variations in displacements, 
let us now write the laminate constitutive equations as per CLPT (Equations 5.42 in 
Chapter 5) in terms of variations of force and moment resultants and middle surface 
strains and curvatures
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Utilizing Equation 7.30, buckling equations can be written as
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A word of explanation of the above equations is in order. The equations—whether 
in terms of variations in force and moment resultants or in terms of variations in 
displacements—have striking similarities with the moderately large-deflection 
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equilibrium equations of plate bending. However, important differences exist and we 
must recognize that buckling equations are not equilibrium equations. In-plane force 
resultants Nxx, Nyy, and Nxy are the applied force resultants on the edges. The induced 
stress resultants as well as the in-plane and out-of-plane displacements are prefixed 
with the symbol of variation δ to insist that these are in fact variations in the respective 
parameters from their prebuckled equilibrium state. We shall refer to the variations in 
induced force/moment resultants and displacements as buckling force/moment resul-
tants and buckling displacements. However, for the sake of simplicity, the symbol δ 
is dropped in the remainder of this book. Thus, the buckling equations would appear 
as follows:

In terms of buckling stress resultants:
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In terms of buckling displacements:
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Note: Energy methods are highly useful in buckling problems. Energy-based buckling 
criterion and solution process are given in Section 7.3.4.3.
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7.3.2.3  Vibration Equations for Laminated Plates

We provided a brief introduction to the concept of vibration in Chapter 6. As we know, 
any oscillatory motion of a body is called vibration. Oscillatory motion of a plate about 
its static equilibrium state is plate vibration. It can be either free or forced. When a 
plate vibrates due to an initial excitation at time t = 0 and it continues to vibrate under 
the action of forces inherent to itself and no external forces after time zero, it is called 
free vibration. The frequencies at which free vibration occurs are the natural frequen-
cies of the plate. The natural frequencies and the mode shapes are critical parameters 
from structural design and analysis as well as functional point of view. Our objective, 
in this section, is to find the natural frequencies and corresponding mode shapes of 
laminated plates. Different combinations of ply sequences and boundary conditions 
result in a number of different types of plate vibration problems. With a view to only 
demonstrating the solution procedure, we shall limit our discussion to a few select ply 
sequences only under simply supported edges. Similarly, we shall not go to the details 
of derivations (see Reference 21) and rather limit ourselves to studying the features of 
the governing vibration equation.

The equation of motion of a vibrating plate can be derived by adopting the dynamic 
equilibrium approach, the variational approach, or the integral equation approach. We 
derived the plate-bending equations in Section 7.3.2.1 by adopting the classical static 
equilibrium approach. Under static force equilibrium, ∑ =Fx 0, ∑ =Fy 0, ∑ =Fz 0. 
In the case of dynamic equilibrium, for transverse vibration of the plate, we have to 
equate the net force to the mass multiplied by its acceleration. Also, for free vibra-
tion, q(x, y) = 0. Neglecting rotary inertia, then, the equations of motions, in terms 
of force and moment resultants, for a plate in transverse vibration are obtained from 
Equations 7.20 through 7.22 as
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in which, ρ is the area density of the laminated plate, that is, mass per unit area of the 
plate. (Note that mass densities for different laminae in the laminate are different and 
they are integrated across the plate thickness to obtain the area density.) The force and 
moment resultants are related to the laminate stiffness matrices and middle surface 
displacements by orthotropic constitutive relations given by Equation 7.23. Then, the 
equations of motion can be written in terms of the middle surface displacements as 
follows:
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The plate vibration problem is similar to plate buckling problem. In a buckling 
problem, as we know, the governing equation involves variations in middle surface 
displacements and force/moment resultants from the prebuckled equilibrium state. In a 
similar way, in a vibration problem, the middle surface displacements and force/moment 
resultants, in fact, are variations in the respective parameters from the static equilibrium 
state of the plate. (For the sake of simplicity, we have not used the variational symbol 
δ.) Note that the variations in displacements during vibrations are functions of spatial 
coordinates as well as time, that is, u0 = u0(x, y, t), v0 = v0(x, y, t), and w0 = w0(x, y, 
t). Similarly, the variations in force and moment resultants during vibrations are func-
tions of time in addition to the spatial coordinates, that is, Nxx = Nxx(x, y, t), etc. Also, 
note that the boundary conditions in plate vibration problems are the same as in plate 
buckling.

7.3.3  Boundary Conditions in a Laminated Plate

The middle surface displacements (or their derivatives) and the loads along the edges, 
which are constrained by the physical conditions of the plate along the edges, consti-
tute the boundary conditions. Two types of boundary conditions exist. Boundary condi-
tions specified in terms of the middle surface displacements (or their derivatives) are 
called geometric or kinematic boundary conditions. Transverse as well as in-plane 
displacements and slope of the middle surface are the geometric boundary conditions. 
The displacements may be specified in one or more of the three coordinate directions—
x, y, and z. Slope is specified in the direction normal to the edge. Then, for an edge at 
x = a, which is normal to the x-direction, the possible geometric boundary conditions are

	 u a y u0 0( ), = 	 (7.46)

	 v a y v0 0( ), = 	 (7.47)

	 w a y w0 0( ), = 	 (7.48)
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in which, the terms with an over bar are the specified values.
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On the other hand, the boundary conditions specified in terms of the loads on the 
edges are called static or natural boundary conditions. In-plane and transverse force 
resultants and moment resultants are the static boundary conditions. On an edge, as 
we know there are five force/moment resultants, out of which, two in-plane force resul-
tants and one bending moment resultant can be independently specified. Remaining 
two stress resultants—one twisting moment resultant and one shear force resultant are 
mutually dependent on each other and they have to be specified together. Thus, on an 
edge, four static boundary conditions are possible. For example, for an edge at y = b, 
which is normal to the y-direction, the possible static boundary conditions are

	 N x b Nyy yy( ), = 	 (7.50)

	 N x b Nyx yx( ), = 	 (7.51)

	 M x b Myy yy( ), = 	 (7.52)
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(7.53)

in which, as in the case of geometric boundary conditions, the terms with an over bar 
are the specified values.

It can be shown that on any edge of the rectangular plate, variation of the twisting 
moment is statically equivalent to a shear force resultant. In Equation 7.53, Kyz is the 
equivalent Kirchhoff force defined as the sum of applied shear force resultant Vyz(x, b) 
and a statically equivalent variation of the twisting moment ∂Myx(x, b)/∂x.

The specified values of the boundary conditions, whether geometric or natural, can 
be either zero or nonzero. Boundary conditions specified as equal to zero are referred 
to as homogeneous and those with nonzero vales as inhomogeneous.

A plate, whether isotropic or anisotropic, can be free, simply supported, or clamped 
along its edges. A free edge of a plate is an edge that is free from any external loading. 
For laminated plates, owing to their anisotropic nature, the boundary conditions are 
a little more complex. We shall elaborate below the simply supported and clamped 
boundary conditions.

7.3.3.1  Simply Supported Boundary Condition

A simply supported boundary condition on an edge is one in which the transverse 
displacement and bending moment on the edge are zero. Thus, on a simply supported 
edge x = a, w0(a, y) = Mxx(a, y) = 0. However, in a thin laminated plate, the definition 
of simply supported boundary condition is a little more involved and we must specify 
a combination of four geometric and natural conditions. The resulting four types of 
simply supported boundary conditions are as follows:

For edge, x = a:

	 S w M u u v vxx1 0 00 0 0 0 0: = = = = 	 (7.54)

	 S w M N N v vxx xx xx2 0 00 0 0: = = = = 	 (7.55)

	 S w M u u N Nxx xy xy3 0 00 0 0: = = = = 	 (7.56)
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	 S w M N N N Nxx xx xx xy xy3 0 00: = = = = 	 (7.57)

Similar is the case with the other three edges.

7.3.3.2  Clamped Boundary Condition

A clamped or fixed boundary condition on an edge is one in which the transverse 
displacement and slope on the edge are zero. Thus, on a clamped edge x = a, w0(a, 
y) = ∂w0(a, y)/∂x = 0. Like the simply supported boundary conditions, here too, we 
must specify a combination of four geometric and natural conditions. The resulting 
four types of clamped boundary conditions are as follows:

For edge, x = a:
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In a similar way, clamped boundary conditions can be specified on the other 
three edges.

7.3.4  Solution Methods

Physical phenomena in any field are bound by laws of physics and virtually any 
phenomenon can be mathematically expressed in terms of algebraic, differential, or 
integral equations. Most often, differential equations are used to describe a physical 
problem. Three types of physical problems exist:

◾◾ Boundary value problems
◾◾ Initial value problems
◾◾ Eigenvalue problems

If the dependent variable or its derivatives are specified on the boundary, the prob-
lem is called a boundary value problem. Initial value problems are time-dependent 
problems, where the dependent variable or its derivatives are specified at time t = 0. 
The third type  of problems are the eigenvalue problems, which is mathematically 
expressed as

	 A u B u( ) ( )+ =λ 0 	 (7.62)

in which A and B are differential operators, u is the eigenvector, and λ is the eigenvalue.
It can be seen in the subsequent sections that plate bending is a boundary value 

problem whereas plate buckling and plate vibration problems are eigenvalue 
problems.
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Solution methods available for plate problems (for that matter, any elasticity and 
other field problems) can be broadly classified as follows:

◾◾ Analytical methods
−− Exact methods, for example, Navier method, Levy method, etc.
−− Approximate methods, Ritz method, Galerkin method, etc.

◾◾ Numerical methods
−− Finite element method
−− Finite difference method
−− Numerical integration

An analytical method is one that gives us a solution to the governing differential 
equations at any point in the domain. The solution can be either exact or approximate. 
An exact solution is one that satisfies the governing equations at every point in the 
domain and the boundary conditions as well as the initial conditions. An approxi-
mate solution is one that satisfies the governing equations and boundary and initial 
conditions in an approximate way. It can be either closed form or an infinite series. 
An infinite series solution, in actual practice, involves a finite number of terms, and 
in that sense it is approximate. Numerical methods are also, in general, approximate 
methods that are highly useful in most practical applications, where exact analytical 
solutions are difficult or impossible to obtain.

We shall discuss in this chapter solutions of some of the laminated plate bending, 
buckling, and free vibration problems using the Navier, Levy, and Ritz methods.

7.3.4.1  Navier Method

The Navier method, which involves separation of variables, is an exact analytical 
method. In this method, a double trigonometric series expansion is chosen for the 
dependent variable. The choice of the trigonometric function is such that it satis-
fies all the boundary conditions including geometric as well as natural boundary 
conditions.

In the case of plate-bending problems, the chosen solutions for the dependent 
variables, viz. the in-plane and out-of-plane displacements of the middle surface, are 
typically of the following form:
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The in-plane and the out-of-plane displacements are coupled in an anisotropic 
laminated plate. As a consequence, we need all the three chosen functions mentioned 
above. However, in symmetric laminates, as we will see subsequently, owing to the 
absence of any coupling, the third function alone is sufficient.

In a plate-bending problem, our objective is to find primarily the out-of-plane 
displacements and stresses. In general, owing to the presence of coupling, the in-plane 
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displacements are also required. Thus, we need to find the coefficients Umn, Vmn, and 
Wmn. The general procedure is to substitute the chosen displacement functions in the 
governing differential equations and obtain a set of equations, in which the trigonomet-
ric functions are separated from the rest that involve the laminate stiffness parameters, 
the coefficients to be determined and the parameters m and n. The final result is a set 
of three algebraic equations from which the required displacement coefficients can be 
readily obtained. For each pair of the values of m and n, the contributions toward u0, v0, 
and w0 can be computed, which can be summed up over a finite number of terms for 
obtaining the total deflection.

Note that for separation of variables to be feasible, the load q(x, y) is also expanded 
in terms of a double Fourier sine series, as follows:
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For buckling problems, the chosen solutions for the buckling displacements are of 
the following form:
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in which, each pair of m and n are the numbers of half waves in the deformed shape and 
the coefficients Umn, Vmn, and Wmn are the amplitudes of displacements. Note that sum-
mation sign is not present in the above functions. In an eigenvalue problem, our aim is 
to find the eigenvalues (buckling loads) and the corresponding mode shape numbers 
(m and n), but not the amplitudes. The general procedure is to substitute the chosen 
functions in the governing buckling equations, which finally result in a set of algebraic 
equations, which, as we will see in the subsequent sections, is an eigenvalue problem 
in the form [A + λB]{u} = 0. The amplitudes of displacements constitute the eigen-
vector {u}, which remain undetermined, whereas the eigenvalue λ are determined by 
equating determinant of the square matrix [A + λB] to zero. A number of eigenval-
ues, corresponding to different values of m and n, can be obtained, out of which, the 
minimum one is the critical buckling load.

For free vibration problems, the chosen solutions for the displacements during 
vibration are of the following form:
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in which, the time-dependent function is generally taken as

	 T t A t B t( ) cos sin= +ω ω 	 (7.73)

Vibration problem is also an eigenvalue problem and it is solved in a way similar 
to the buckling problem. The eigenvalues are the natural frequencies out of which the 
lowest one is the fundamental frequency.

As mentioned earlier, the Navier method is based on separation of variables. This is 
possible when:

◾◾ Laminate stacking sequence is such that A16 = A26 = B16 = B26 = D16 = D26 = 0, 
that is, the laminate is specially orthotropic, antisymmetric cross-ply, or anti-
symmetric angle-ply laminates

◾◾ All four edges are simply supported
◾◾ Applied edge shear force resultant is not present, that is, Nxy = 0

As a result, applicability of this method is limited to cases when the above conditions 
are met.

7.3.4.2  Levy Method

When two opposite edges are simply supported and the other two edges are simply 
supported, free, or fixed, the Levy method can be employed. In this method for 
bending problems, single Fourier series expansions for plate displacements are assumed, 
as follows:
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in which, the plate is simply supported on edges x = 0, a. The load q(x, y) is also 
expanded in a similar way, as follows:
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The general procedure is to substitute the chosen functions in the governing equa-
tions, which results in separation of the sine function and finally a set of differential 
equations in y is obtained. The solution of these equations depends on the boundary 
conditions on edges y = 0, b.

For buckling problems, the chosen functions are
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whereas, in vibration problems, the chosen functions can be
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and

	 T t A t B t( ) cos sin= +ω ω 	 (7.84)

7.3.4.3  Ritz Method

The Navier and the Levy solutions are available in a very few cases of laminate 
stacking sequence and boundary conditions. The Ritz method, however, is a general 
method applicable to a wide variety of problems. It is a direct energy-based approxi-
mate method for boundary value problems. Being a direct energy method, it does 
not use the governing differential equation. Instead, it employs possible deflection 
approximations to directly express approximate components of the total potential 
energy. Then, the principle of minimum potential energy is applied to obtain the 
solution.

7.3.4.3.1  Ritz Method for Plate Bending

In the case of bending of a rectangular plate, as per the Ritz method, the middle surface 
displacements of the plate can be approximated as
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where f x ymn
u( ) ( ), , f x ymn

v( ) ( ), , and f x ymn
w( ) ( ),  are some functions that essentially satisfy 

the geometric boundary conditions, that is, boundary conditions on the middle surface 
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displacements and slope, but not necessarily the natural boundary conditions, that is, 
boundary conditions on moment and shear force. For a rectangular plate, the approxi-
mation functions f x ymn

u( ) ( ), , f x ymn
v( ) ( ), , and f x ymn

w( ) ( ),  can be expressed as
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w
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Clearly, the choice of the approximation functions depends on the bound-
ary conditions of the plate. For plate-bending problems, we need to determine the 
coefficients Umn, Vmn, and Wmn, which is done by employing the minimum potential 
energy principle. The total potential energy has two parts—potential energy of internal 
forces or strain energy and potential energy of external forces or negative work done 
by the external forces,

	 Π = +U V 	 (7.91)

where U is the strain energy and V is the negative work done by the applied loads. 
Note that the strain energy is stored in the plate, whereas the work done by the external 
forces is expended and hence the potential energy of external forces is negative.

Now, the strain energy of the plate is given by
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(7.92)

In CLT, the transverse strains are zero, that is, εzz = γyz = γzx = 0; then, expressing 
the remaining strains in terms of middle surface strains and curvatures as given by 
Equation 5.14, it can be shown, after carrying out integration across the thickness, that
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(7.93)

In the case of pure plate bending, the middle surface in-plane strains are zero, that is, 
ε ε γxx yy xy

0 0 0 0= = = . Then, utilizing Equations 7.23 and 5.16, we obtain the expression 
for strain energy of the plate as
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(7.94)

The potential energy of external forces or the negative work done by the applied 
loads is given by

	

V q x y w dx dy

b a

= −∫ ∫
0 0

0( , )

	

(7.95)
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The minimum potential energy principle states that the total potential energy of the 
plate is the minimum at equilibrium. Thus, the first derivatives of the total potential 
energy w.r.t. the coefficients are equated to zero, that is,
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(7.96)
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which results in a set of three algebraic equations, solving which, the coefficients can 
be found. Note that, for symmetric laminates, in-plane displacements are not coupled 
with the out-of-plane displacements and the third equation alone, that is, Equation 7.98, 
is sufficient for determination of plate deflections.

7.3.4.3.2  Ritz Method for Plate Buckling

We shall first present a statement of buckling criterion based on energy. Toward this, 
let us consider a flat plate under in-plane compressive and shear loads (Figure 7.6, in 
Section 7.3.2.2). At sufficiently small loads, the plate remains in stable equilibrium. As 
we gradually increase the applied loads, at a certain load level, the equilibrium state of 
the plate changes from stable to unstable and bifurcation takes place. Let us consider 
an initial equilibrium configuration and let Π denote the total potential energy of the 
plate at this initial equilibrium configuration. Let us consider a state of the plate in a 
close neighborhood of the initial equilibrium configuration and let Π′ denote the cor-
responding total potential energy such that ΔΠ ≡ Π′ − Π represents the increment in 
the total potential energy of the plate from an initial equilibrium configuration to a 
neighboring equilibrium configuration. Now, stability of the initial equilibrium will be 
decided based on the following conditions:

Stable, if

	 ∆Π > 0 	 (7.99)

Unstable, if

	 ∆Π < 0 	 (7.100)

Neutral, if

	 ∆Π = 0 	 (7.101)

Thus, bifurcation of the initial equilibrium takes place when

	 ΔΠ = 0 	 (7.102)

which is the energy-based buckling criterion for a plate.
At the stable equilibrium states, the plate undergoes in-plane deformation in the form 

of compression, extension and shear, that is, it undergoes only membrane deformations 
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and the strain energy stored in the plate is purely membrane. In general, however, the 
total potential energy has two parts—strain energy and the work done by the exter-
nal loads. The strain energy, in turn, has two parts—membrane strain energy and 
the bending strain energy. (Note that bending strain energy includes strain energy of 
bending and twisting both.) Thus, the increment of total potential energy in our buck-
ling criterion can be expressed as

	 ∆Π ∆ ∆ ∆= + +U U Vm b 	 (7.103)

where ΔUm is the increment of the membrane strain energy of the plate, ΔUb the incre-
ment of the bending strain energy of the plate, and ΔV the increment of the work done 
by the external loads.

Now, during buckling, the increment of the membrane strain energy is given by

	

∆U N N N dxdym
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xx xx yy yy xy xy= + +( )∫ ∫
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(7.104)

Note that there is no 1/2 in the right-hand side of the equation above as the in-
plane stress resultants are already acting in the plate when buckling takes place. The 
nonlinear strains are given by Equations 2.61, Chapter 2. For small strain but moderate 
rotations (say, ≈10°), we can ignore all the terms of order 2 except the rotations of the 
transverse normals, that is, (∂w0/∂x)2, (∂w0/∂y)2, and (∂w0/∂x) (∂w0/∂y). Then, Equation 
7.104 can be expanded as follows:
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The first integral in the above equation is further manipulated by integration by 
parts, keeping the second unchanged. Then, the increment of the membrane strain 
energy becomes
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(7.106)

Using Equations 7.5 and 7.6, we see that the third and fourth terms in Equation 7.106 
vanish, whereas a closer look shows that the first and second terms are nothing but the 
work done by the in-plane external forces. As we know, the potential energy of external 
forces is the negative work done by the external forces. Then, Equation 7.106 can be 
written as
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The next component in the potential energy increment is the increment of bending 
strain energy, ΔUb, which is given by Equation 7.94. Of course, as we are dealing 
with the increment of bending strain energy, the displacements involved are from the 
initial equilibrium configuration. At this point, let us note that the applied in-plane 
force resultants are uniformly distributed and the following hold good:

	 ( ) ( )N N Nxx x xx x a xx= == =0 	 (7.108)

	 ( ) ( )N N Nyy y yy y b yy= == =0 	 (7.109)

	 ( ) ( ) ( ) ( )N N N N Nxy x xy x a xy y xy y b xy= = = == = = =0 0 	 (7.110)

Now, in a buckling problem, our aim is to find the applied loads at the bifurcation 
point. Then, we can replace Nxx, Nyy, and Nxy with Nxx , Nyy , and Nxy , respectively. 
Finally, using Equations 7.94, 7.103, and 7.107, the expression for the increment of total 
potential energy can be written as
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Minimization of the increment of total potential energy would require the following:
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which results in a set of algebraic equations that can be expressed in matrix form as 
[A + λB]{u} = 0. The determinant of the square matrix is then equated to zero to 
obtain the eigenvalues. Vibration problem is similar to buckling problem; it is also 
an eigenvalue problem. Note that the eigenvector is the vector of amplitudes of the 
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displacements, whereas depending on whether it is a buckling problem or vibration 
problem, the eigenvalues are the buckling loads or natural frequencies.

7.3.4.3.3  Useful Integration Identities

Before proceeding to the next section, however, let us note the following integration 
identities that are used at various stages in the solution process:
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7.4 � SOLUTIONS FOR BENDING OF 
LAMINATED PLATES

7.4.1 � Specially Orthotropic Plate with All Edges Simply 
Supported: Navier Method for Bending

7.4.1.1  Deflection of Middle Surface

For a specially orthotropic plate, [B] = 0 and A16 = A26 = D16 = D26 = 0 and substitut-
ing the same in Equations 7.24 through 7.26 the governing differential equations are 
obtained as
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As [B] = 0, we can see from the constitutive relation (Equation 7.23) that the in-
plane strains of the middle surface are not coupled with the curvatures. As a result, 
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the boundary conditions do not involve any coupling between the in-plane displace-
ments u0 and v0 and the out-of-plane deflection w0 and the boundary conditions are far 
simpler than the ones described by Equations 7.54 through 7.57. Then, the boundary 
conditions for a specially orthotropic rectangular plate, simply supported on all the 
edges (Figure 7.7) are as follows:

	 ( )w x0 0 0= = 	 (7.121)

	 ( )w x a0 0= = 	 (7.122)

	 ( )w y0 0 0= = 	 (7.123)

	 ( )w y b0 0= = 	 (7.124)
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As we said before, the governing equations for a specially orthotropic laminate do 
not involve any coupling between the in-plane displacements u0 and v0 and the out-of-
plane deflection w0. As a result, Equation 7.120 alone is sufficient for determination 
of out-of-plane deflection. The solution procedure, as suggested by Navier, involves 
assuming a double Fourier sine series expansion for the middle surface deflection, as 
follows:
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FIGURE 7.7  Rectangular plate simply supported on all four edges.
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Now, we need to find the coefficients Wmn so that the deflection w0(x, y) can be 
computed. Note that Equation 7.129 satisfies the boundary conditions given in Equations 
7.121 through 7.128. The load q(x, y) is also expanded in terms of a double Fourier sine 
series, as follows:
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The coefficients Qmn are obtained by multiplying both sides of the above equation by 
sine functions and double integrating, as follows:
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Now, using the integration identity given by Equation 7.115 in the expansion of the 
right-hand side of Equation 7.131, an expression for Qkl is found. Since, k, l, m, n are 
arbitrary, we can replace k and l with m and n and get the following:
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Then, substituting the chosen functions for the deflection and loads from Equations 
7.129 and 7.130, respectively, in the governing equation, Equation 7.120, we get
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Since Equation 7.133 holds good for each point (x, y) in the domains 0 < x < a and 
0 < y < b, the terms inside the square brackets must vanish. Thus, the coefficients 
of the double Fourier series expansion of the plate middle surface displacement are 
obtained as
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It may be noted that the coefficients Qmn depends on the applied load. For example, 
for a uniformly distributed load q(x, y) = q0, using Equation 7.132, it can be shown that
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Then, from Equation 7.134, Wmn is obtained and finally plate middle surface 
deflection is obtained from Equation 7.129, as follows:
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Let us use this expression to find the one-term solution for deflection at the center 
point of a specially orthotropic laminated square plate simply supported on all four 
edges. Then, substituting x = y = a/2, b = a, and m = n = 1, we get
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7.4.1.2  In-Plane Stresses

Plate middle surface displacement w0(x, y), obtained in the previous subsection is a 
function of x and y. Curvatures of the plate middle surface are obtained by differentia-
tion of w0(x, y). Under pure bending, the middle surface in-plane strains are zero and 
thus, from Equation 5.24 in Chapter 5, the in-plane stresses at any point are obtained 
as follows:
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that is,
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where the superscript k refers to the kth ply corresponding to the point at which the 
stresses are being determined. Note that Q Q16 26 0= =  for a specially orthotropic 
laminate. Then, using Equation 7.129 in Equation 7.139, we get the in-plane stresses for 
a specially orthotropic laminated plate, which we write in the explicit form, as follows:
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7.4.1.3  Interlaminar Stresses

Interlaminar stresses are identically zero as per CLT. However, they do exist espe-
cially near the free edges and their evaluation is critical in laminate design [22,23]. 
Interlaminar stresses in a plate can be determined by adopting a 3D elasticity-based 
approach. The 3D equilibrium equations, given by Equation 2.135, Chapter 2, take the 
following form for a static case with zero body forces:
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The interlaminar normal stress σzz and interlaminar shear stresses τzx and τyz in any 
ply are determined by integration of the above three partial differential equations in 
that ply. Thus,
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Now, using Equations 7.140 through 7.142 in Equations 7.146 and 7.147, respectively, 
we get τ zx

k( )  and τ yz
k( ) . τ zx

k( )  and τ yz
k( ) , in turn, are substituted in Equation 7.148. Thus,
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Equations 7.149 through 7.151 give us the interlaminar stresses at a point in the kth ply. 
The constants of integration C k

1
( ), C k

2
( ), and C k

3
( ) in the above equations are functions of x 

and y. For the bottommost ply, these are determined by using the boundary conditions 
τ τ σzx

k
yz
k

zz
k( ) ( ) ( )= = = 0  at z = −h/2, that is, bottom of the plate. For the remaining plies 

from second ply upwards, the following interface continuity conditions are utilized:
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(See Figure 5.5 in Chapter 5 for coordinates of kth ply in a laminated plate.)

7.4.2 � Specially Orthotropic Plate with Two Opposite Edges 
Simply Supported: Levy Method for Bending

7.4.2.1  Deflection of Middle Surface

Figure 7.8 shows a rectangular plate simply supported at two opposite edges. 
The  other  two edges can be any one of the support conditions—simply supported, 
free, or fixed. Let the plate be simply supported at x = 0 and x = a. Then, the known 
boundary conditions:
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w0 = Mxx = 0w0 = Mxx = 0

y

x
a

b

FIGURE 7.8  Rectangular plate simply supported on two opposite edges.
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For such a problem, Navier’s double Fourier series solution procedure is not applicable. 
Levy proposed a single Fourier series expansion for transverse plate deflection, as follows:
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which satisfies the boundary conditions given in Equations 7.155 through 7.158. 
The load q(x, y) is also expanded in a similar way, as follows:
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Note that Wm(y) and Qm(y) are functions of y. The functions Qm are obtained by mul-
tiplying both sides of the above equation by a sine function and integrating, as follows:
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Then, utilizing the integration identity given by Equation 7.115 in the expansion of 
right-hand side of Equation 7.161, an expression for Qk(y) can be obtained. Since k and 
m are arbitrary, we can replace k with m and obtain the following:
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Then, substituting the deflection expansion and load expansion from Equations 7.159 
and 7.160 in the governing equation, Equation 7.120, we get
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Since Equation 7.163 holds good for all values of x in the domain 0 < x < a, the 
terms inside the square brackets must vanish. Thus,
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The solution of Equation 7.164, together with Equation 7.162, gives us Wm(y), 
which when substituted in Equation 7.159 gives us the middle surface deflection of 
the plate.

Now, Equation 7.164 can be solved either numerically or analytically. The analytical 
solution involves two parts—homogeneous and particular solutions, that is,

	 W y W y W ym m
h

m
p( ) ( ) ( )= + 	 (7.165)
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The auxiliary equation of the fourth-order ordinary differential equation 
(Equation 7.164) is
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and the homogeneous solution is

	 W y Cem
h y( ) = λ

	 (7.167)

where λ is the root of the auxiliary equation (Equation 7.166). The nature of the roots 
leads to different possible cases—roots are real and unequal, roots are real and equal 
and roots are complex. Our objective here is only to demonstrate the method of solu-
tion and we shall restrict our discussion only to the first case, that is, roots are real and 
unequal, as follows.

Let λ1, λ2, λ3, and λ4 be the four roots. Then,
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and, noting that λ2 = −λ1 and λ4 = −λ3, the homogeneous part of the solution takes 
the following form:
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Then, from Equation 7.165,
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And clubbing Equation 7.173 with Equation 7.159, the solution for transverse 
deflection of the plate is obtained as

	

w x y A y B y C y D y W
m

m m m m m
p

0

1

1 1 3 3( ) (, cosh sinh cosh sinh= +[ + + +
=

∞

∑ λ λ λ λ yy
m x

a
) sin


π

� (7.174)



363Analytical Solutions for Laminated Plates

In the above equation, we still have five unknowns. The constants Am, Bm, Cm, and 
Dm are determined using the boundary conditions at y = 0 and y = b. (Recall, we said 
in the beginning of this section that the plate is simply supported on two opposite 
edges, whereas it can have arbitrary boundary conditions on the other two edges—
simply supported, free, or fixed.)

The fifth unknown is the particular solution W ym
p ( ). When, Qm is a constant (e.g., if 

q(x, y) = q0, from Equation 7.162, Qm = 4q0/mπ, m = 1, 3, 5, …), the particular solution 
is obtained from Equation 7.164 as
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For the sake of demonstration only, let us consider a constant Qm. Similarly, let us 
consider fixed boundary condition on edges y = 0 and y = b, that is,
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∂
∂









 =

=

w

y
o

y 0

0

	
(7.178)

	

∂
∂









 =

=

w

y
o

y b

0

	
(7.179)

The boundary conditions from Equations 7.176 through 7.179, when used in 
Equation 7.174, yield four equations, which can be expressed in the matrix form as 
follows:
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Am, Bm, Cm, and Dm are readily obtained from Equation 7.180, using which in 
Equation 7.174, we get the middle surface deflection of the plate.

7.4.2.2  In-Plane and Interlaminar Stresses

Equation 7.139, in the section on Navier’s method for specially orthotropic plate, 
gives the expression for in-plane stresses in terms of middle surface deflection of 
the plate. In the case of Levy procedure, the middle surface deflection, obtained 
from Equations 7.174, 7.175 and 7.180, is substituted in Equation 7.139 for obtain-
ing the in-plane stresses. On the other hand, Equations 7.146 through 7.148 give the 
expressions for interlaminar stresses in terms of in-plane stresses. Resulting expres-
sions, however, are more conveniently utilized in a computer-aided computational 
environment.
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7.4.3 � Specially Orthotropic Plate with All Edges Simply 
Supported: Ritz Method for Bending

Closed form solution, for example, by Navier method, exists for all four edges simply 
supported specially orthotropic plates. However, for the sake of demonstration, 
we discuss the Ritz method in this section.

7.4.3.1  Deflection of Middle Surface

In a specially orthotropic laminate, as we know, the in-plane displacements are 
not  coupled with the out-of-plane deflections and approximation function for 
the middle surface out-of-plane deflection only is sufficient. Let us choose an 
approximation  function for the middle surface out-of-plane deflection of the plate 
as follows:
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Further, let the applied transverse load be a uniformly distributed load q0.

	 q x y q( , ) = 0 	 (7.182)

The total potential energy has two parts—strain energy and negative work done by 
the applied loads,

	 Π = +U V 	 (7.183)

where the strain energy U of the plate and negative work done by the external forces 
V are, respectively, given by Equations 7.94 and 7.95.

Further, for a specially orthotropic laminate, [B] = 0  and  A16 = A26 = D16 =  
D26 = 0. Then, utilizing Equation 7.94, we obtain the expression for strain energy 
of the plate as
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The negative work done by the external loads is
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Let us now determine the terms in Equation 7.184.
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We can utilize the integration identity, Equation 7.115, in the expansion of the 
summation in the right-hand side of Equation 7.186 and see that all terms other than 
those associated with Wmn

2  vanish, which leads to
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Similarly,
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Next,
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and finally,
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Substituting Equations 7.187 through 7.190 in Equation 7.184, the strain energy 
expression is obtained as
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Differentiating U w.r.t. Wmn, we get
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On the other hand, the negative work done by external loads is further decomposed 
by substituting Equation 7.181 in Equation 7.185, as follows:
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The right-hand side of the equation above vanishes for all even values of m and n. 
Then,
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Differentiating V w.r.t. Wmn, we get

	

∂
∂

= − = …

= = …

V

W

abq

mn
m n

m n
mn

4
1 3 5

0 2 4 6

0
2π

for

for

, , , ,

, , , , 	

(7.195)

The minimum potential energy principle states that the total potential energy of the 
plate is the minimum at equilibrium. Thus, the first derivative of the total potential 
energy w.r.t. the coefficient Wmn is equated to zero, that is,
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Utilizing Equations 7.192 and 7.195 together with Equation 7.183, we get the 
following from Equation 7.196:
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Substituting the expression for Wmn in Equation 7.181, we get the expression for 
plate middle surface deflection as
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Let us use this expression to find the one-term solution for deflection at the center 
point of a specially orthotropic laminated square plate simply supported on all four 
edges. Then, substituting x = y = a/2, b = a, and m = n = 1, we get
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We note that the solution is identical with the Navier’s solution (refer Equation 7.137).

7.4.3.2  In-Plane and Interlaminar Stresses

Once the middle surface deflection is obtained, the procedure for stress calculation 
is the same as discussed in Sections 7.4.1.2 and 7.4.1.3. Thus, Equation 7.139, in the 
section on Navier method, gives the expression for in-plane stresses in terms of middle 
surface deflection of the plate. In the case of Ritz method, the middle surface deflection, 
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obtained from Equation 7.198, is substituted in Equation 7.139 for obtaining the in-
plane stresses. On the other hand, Equations 7.146 through 7.148 give the expressions 
for interlaminar stresses in terms of in-plane stresses.

7.4.3.3  Approximation Functions for General Boundary Conditions

We demonstrated above the Ritz method for obtaining solution of a specially 
orthotropic plate under simply supported boundary conditions. The Ritz method, as 
noted earlier, is applicable for plates with general boundary conditions. The proce-
dure is the same for all boundary conditions; but, appropriate choice of approximation 
function is essential. The approximation function must satisfy the geometric boundary 
conditions, regardless of the values of the coefficients, but not necessarily the natural 
boundary conditions. Thus, the middle surface deflection w0(x, y), given by Equation 
7.198, satisfies the geometric boundary conditions. For w0(x, y) to satisfy the natural 
boundary conditions, we have to take sufficient number of terms in the series.

General boundary conditions of a rectangular plate are combinations of the three 
conditions—free, simply supported, and clamped on the four edges x = 0, a and y = 0, 
b. In specially orthotropic plates, owing to their middle surface symmetry, [B] = 0 and 
transverse deflections w0(x, y) are not coupled with the in-plane displacements u0(x, 
y) and v0(x, y). Thus, simply supported as well as clamped boundary conditions are 
not required to be further distinguished based on the nature of the in-plane boundary 
conditions on u0(x, y) and v0(x, y).

For simply supported boundary conditions on two opposite edges, a sine function 
can be used. For example, for edges simply supported on x = 0 and x = a the approxi-
mation function can be
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Alternately, a polynomial function can also be used, as follows:
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	 (7.201)

For clamped edges on y = 0 and y = b, a beam function is used, as follows:
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and λn are the roots of the following characteristic equation:

	 cos coshλ λn nb b − =1 0 	 (7.204)

For mixed boundary conditions on opposite edges, for example, simply supported on 
x = 0 and free on x = a, the following can be used:
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w

m m m m
( ) ( ) sinh sin sin sinh= +λ λ λ λ 	 (7.205)



368 Composite Structures

where λn are the roots of the following characteristic equation:

	 tan tanhλ λm ma a− = 0 	 (7.206)

In this way, the approximation functions can be constructed for different combina-
tions of boundary conditions (see, for instance, Reference 4 for a more comprehensive 
discussion on boundary conditions).

7.4.4 � Symmetric Angle-Ply Laminated Plate with All Edges 
Simply Supported: Ritz Method for Bending

In a symmetric angle-ply laminate, [B] = 0, that is, there is no extension–bending coupling. 
However, the extensional stiffness matrix [A] and the bending stiffness matrix [D] are 
fully populated. Transverse deflections w0(x, y) are not coupled with the in-plane displace-
ments u0(x, y) and v0(x, y) and the same are governed by Equation 7.26, which reduces to
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Simply supported boundary conditions as well as clamped boundary conditions 
cannot be further distinguished, based on the nature of the in-plane boundary condi-
tions on u0 and v0, into S1, S2, S3, S4 and C1, C2, C3, C4, respectively. Thus, for a plate 
with all four edges simply supported, the boundary conditions are
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Navier method, which we used for obtaining solutions of a specially orthotropic 
plate with all edges simply supported, is not suitable for angle-ply laminates due to 
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the presence of the terms D16 and D26 in the governing differential equation (Equation 
7.207). The problem, however, can be solved by other methods such as the Ritz method.

In the case of pure plate bending under transverse load, Nxx = Nyy = Nxy = 0. 
Utilizing Equation 7.94, we obtain the expression for strain energy of the plate as
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From Equation 7.95, considering uniformly distributed load, that is, q(x, y) = q0, the 
work done by the external loads is obtained as
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and the total potential energy is given by

	 Π = +U V 	 (7.218)

As seen in Section 7.4.3, for simply supported boundary conditions, in the Ritz 
method, with deflection approximation function as given by Equation 7.181 can be 
adopted, that is,
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Substitution of Equation 7.219 in Equations 7.216 and 7.217 followed by minimization 
of the total potential energy w.r.t. the Ritz coefficients Wmn results in a system of M × N 
linear simultaneous equations, solving which we get the values of the coefficients Wmn, 
and finally, w0(x, y).

7.4.5 � Antisymmetric Cross-Ply Laminated Plate with All 
Edges Simply Supported: Navier Method for Bending

In an antisymmetric cross-ply laminate, A11 = A22, D11 = D22, and A16 = A26 = D16 = 
D26 = 0. Also, Bij = 0 except B11 = −B22≠0, that is, extension–bending coupling exists. As 
a result, the three equilibrium differential equations of plate bending are coupled, as follows:
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It is seen from the above equations that the transverse deflections w0(x, y) are coupled 
with the in-plane displacements u0(x, y) and v0(x, y) and simply supported boundary 
conditions and clamped boundary conditions are required to be further categorized 
into S1, S2, S3, S4 and C1, C2, C3, C4, respectively.

Navier solution exists for antisymmetric cross-ply laminated rectangular plate with 
simply supported boundary conditions S2. These boundary conditions are given by

	 ( )w x0 0 0= = 	 (7.223)

	 ( )w x a0 0= = 	 (7.224)

	 ( )w y0 0 0= = 	 (7.225)

	 ( )w y b0 0= = 	 (7.226)
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	 ( )v x0 0 0= = 	 (7.231)

	 ( )v x a0 0= = 	 (7.232)

	 ( )u y0 0 0= = 	 (7.233)

	 ( )u y b0 0= = 	 (7.234)
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Assumed displacement functions in this case are
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Further, the transverse loading is expanded as
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It can be seen that the boundary conditions (Equations 7.223 through 7.238) are sat-
isfied by the assumed displacement functions and expansion of the transverse loading 
(Equations 7.239 through 7.242).

The coefficients Qmn are given by Equation 7.132, as
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The objective is to determine the coefficients Umn, Vmn, and Wmn such that, using 
Equations 7.239 through 7.241, the plate displacements are obtained. Then, substitut-
ing the displacement functions in the governing equilibrium differential equations 
(Equations 7.220 through 7.222), we can obtain a system of algebraic equations, which 
can be written in the matrix form as follows:
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in which, the terms in the square matrix are given by
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Equation 7.244, together with Equations 7.245 through 7.250, give us the coefficients 
Umn, Vmn, and Wmn in terms of Qmn, laminate stiffness and plate dimensions, which, in 
turn, are used for determining the plate displacements.

7.4.6 � Antisymmetric Angle-Ply Laminated Plate with All 
Edges Simply Supported: Navier Method for Bending

In an antisymmetric angle-ply laminate, A16 = A26 = D16 = D26 = B11 = B12 = B22 = 
B66 = 0. Extension–bending coupling of a different type exists. As a result, the three 
equilibrium differential equations of plate bending are coupled, as follows:
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Solution exists for antisymmetric angle-ply laminated rectangular plate with simply 
supported boundary conditions S3. These boundary conditions are given by

	 ( )w x0 0 0= = 	 (7.254)

	 ( )w x a0 0= = 	 (7.255)

	 ( )w y0 0 0= = 	 (7.256)

	 ( )w y b0 0= = 	 (7.257)
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	 ( )u x0 0 0= = 	 (7.262)

	 ( )u x a0 0= = 	 (7.263)

	 ( )v y0 0 0= = 	 (7.264)

	 ( )v y b0 0= = 	 (7.265)
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Assumed displacement functions in this case are
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Further, as in the case of antisymmetric cross-ply laminate, the transverse loading is 
expanded in a similar way as
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It can be seen that the boundary conditions (Equations 7.254 through 7.269) are sat-
isfied by the assumed displacement functions and expansion of the transverse loading 
(Equations 7.270 through 7.273).

As before, the coefficients Qmn are given by Equation 7.232, as
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Then, substituting the displacement functions in the governing equilibrium differ-
ential equations (Equations 7.251 through 7.253), we can obtain a system of algebraic 
equations, which can be written in the matrix form as in Equation 7.244, in which, the 
terms in the square matrix are given by
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Equation 7.244, together with Equations 7.275 through 7.280, give us the coefficients 
Umn, Vmn, and Wmn in terms of Qmn, laminate stiffness and plate dimensions. These coef-
ficients, in turn, are used for determining the plate displacements.

7.5 � SOLUTIONS FOR BUCKLING OF 
LAMINATED PLATES

7.5.1 � Specially Orthotropic Simply Supported Plate under In-Plane 
Uniaxial Compressive Loads: Navier Method for Buckling

For a specially orthotropic plate, [B] = 0 and A16 = A26 = D16 = D26 = 0. Also, 
for the case of uniaxial compressive loads in the x-direction, N Nyy xy= = 0. Then, 
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substituting these in Equations 7.37 through 7.39 the governing differential equa-
tions are obtained as
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Note that in the above equations u0, v0, and w0 are actually the variations in displace-
ments, that is, δu0, δv0, and δw0, respectively. As mentioned earlier, the symbol δ is 
dropped for the sake of simplicity in writing.

Next, note that in-plane buckling displacements u0 and v0 are not coupled with the 
out-of-plane buckling displacement w0. As a result, the buckling boundary conditions 
for a specially orthotropic rectangular plate are rather simple, which, for the case of 
simply supported on all four edges, are

	 ( )w x0 0 0= = 	 (7.284)
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Navier solution exists for such a case, and a double Fourier series expansion is 
assumed for the variation in out-of-plane buckling displacement as follows:
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Note that, unlike plate bending, summation of displacement components for various 
values of m and n is not required in the case of plate buckling. In fact, in Equation 
7.292, each combination of m and n corresponds to one mode shape, where m and n are 
the numbers of half buckle waves in the x- and y-directions, respectively. Substituting 
Equation 7.292 in Equation 7.283, we get
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7.5.2 � Specially Orthotropic Simply Supported Plate under In-Plane 
Uniaxial Compressive Loads: Ritz Method for Buckling

The governing buckling differential equations and the buckling boundary condi-
tions for a specially orthotropic laminated plate with all edges simply supported 
were presented in the previous section. Also, as seen in the previous section, Navier 
solution is available for this class of problems. However, for the sake of demonstra-
tion of the procedure and comparison of results, the Ritz method is discussed in this 
section.

In the case of specially orthotropic laminated plate under in-plane normal compres-
sive force resultant Nxx , the total potential energy functional can be obtained from 
Equation 7.111 as follows:
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The Ritz approximation function for buckling displacement can be chosen as
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The above equation satisfies the geometric boundary conditions as well as the 
natural boundary conditions given in the previous section. (Note that the Ritz method 
requires the approximation function to satisfy the geometric boundary conditions but 
not necessarily the natural boundary conditions. Note further that closed-form solution 
exists in the present case of specially orthotropic plate; we are discussing the approxi-
mate Ritz method only for the sake of demonstration!)

Substituting the approximation function for buckling displacement from Equation 
7.295 in the total potential energy functional in Equation 7.294 and utilizing the 
integration identities in Equations 7.115 through 7.116, we can carry out direct integra-
tion and show that the integration terms in Equation 7.294 are as follows:
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Then, substituting Equations 7.296 through 7.300 in Equation 7.294, the potential 
energy functional is obtained as
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For buckling,
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It results in M × N algebraic equations, each corresponding to a unique pair of m 
and n. Each of these equations gives us a value of Nxx  of which the minimum one is the 
critical buckling load, in general. We note here that, Nxx  is given by
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It is seen that the buckling load as per the Ritz method given by Equation 7.303 is 
identical with that as per the Navier method given by Equation 7.293. In other words, 
for a specially orthotropic laminated plate simply supported on all four edges, the Ritz 
method gives an exact solution.

7.5.3 � Symmetric Angle-Ply Laminated Simply Supported 
Plate under In-Plane Uniaxial Compressive 
Loads: Ritz Method for Buckling

In a symmetric angle-ply laminate, [B] = 0, that is, there is no extension–bending 
coupling. However, the extensional stiffness matrix [A] and the bending stiffness 
matrix [D] are fully populated. Also, for the case of uniaxial compressive loads in the 
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x-direction, N Nyy xy= = 0. Then, substituting these in Equations 7.37 through 7.39, the 
governing differential equations are obtained as
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Note that in-plane buckling displacements u0 and v0 are not coupled with the out-
of-plane buckling displacement w0. As a result, the buckling boundary conditions for a 
symmetric angle-ply laminated plate are rather simple, and simply supported boundary 
conditions as well as clamped boundary conditions cannot be further distinguished, 
based on the nature of the in-plane boundary conditions on u0 and v0, into S1, S2, S3, S4 
and C1, C2, C3, C4, respectively. Thus, for a plate with all four edges simply supported, 
the boundary conditions are
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Owing to the presence of the terms D16 and D26 in the governing differential equa-
tion (Equation 7.306), closed-form solutions such as Navier method are not available 
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in the case of symmetric angle-ply laminates. The problem, however, can be solved by 
other methods such as the Ritz method or the Galerkin method.

For a symmetric angle-ply laminated plate under in-plane normal compressive force 
resultant Nxx , the total potential energy functional is obtained from Equation 7.111 as 
follows:
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The Ritz approximation function for buckling displacement, for a plate with all four 
edges simply supported, can be chosen as
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Note that the above equation satisfies the geometric boundary conditions but not 
the natural boundary conditions. (Note further that Ritz method requires the approxi-
mation function to satisfy the geometric boundary conditions but not necessarily the 
natural boundary conditions.)

Equation 7.316 is then substituted in Equation 7.315 and direct integration is carried 
out. However, owing to the presence of the stiffness parameters D16 and D26 in the 
expression for the potential energy functional, integration identity given by Equation 
7.117 is also required. Subsequent procedure is rather complicated and computation in 
a computerized environment is needed, in which employing minimum potential energy 
principle, we can obtain M × N algebraic equations, each corresponding to a unique 
pair of m and n. Each of these equations gives us a value of Nxx , of which the minimum 
one is the critical buckling load.

7.5.4 � Antisymmetric Cross-Ply Laminated Simply 
Supported Plate under In-Plane Uniaxial Compressive 
Loads: Navier Method for Buckling

In an antisymmetric cross-ply laminate, A11 = A22, D11 = D22, and A16 = A26 = 
D16 = D26 = 0. Also, Bij = 0 except B11 = −B22≠0, that is, extension–bending coupling 
exists. As a result, the three differential equations of plate buckling are coupled; they 
can be obtained from Equations 7.37 through 7.39, as follows:
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Transverse deflections w0(x, y) are coupled with the in-plane displacements u0(x, y) and 
v0(x, y) and simply supported boundary conditions and clamped boundary conditions are 
required to be further categorized into S1, S2, S3, S4 and C1, C2, C3, C4, respectively.

Navier solution exists for antisymmetric cross-ply laminated rectangular plate with 
simply supported boundary conditions S2. These boundary conditions are given by

	 ( )w x0 0 0= = 	 (7.320)

	 ( )w x a0 0= = 	 (7.321)

	 ( )w y0 0 0= = 	 (7.322)

	 ( )w y b0 0= = 	 (7.323)
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	 ( )v x0 0 0= = 	 (7.328)

	 ( )v x a0 0= = 	 (7.329)

	 ( )u y0 0 0= = 	 (7.330)

	 ( )u y b0 0= = 	 (7.331)
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Assumed buckling displacement functions in this case are
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It can be seen that both the geometric as well as natural boundary conditions 
(Equations 7.320 through 7.335) are satisfied by the assumed buckling displacement 
functions (Equations 7.336 through 7.338).

Substituting the buckling displacement functions in the governing buckling differ-
ential equations (Equations 7.317 through 7.319), we can obtain a system of algebraic 
equations, which can be written in the matrix form as follows:
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in which, the terms in the square matrix are given by
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For nontrivial solutions, the determinant of the square matrix in Equation 7.339 
above is equated to zero, which gives the buckling loads as
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7.5.5 � Antisymmetric Angle-Ply Laminated Simply 
Supported Plate under In-Plane Uniaxial 
Compressive Load: Navier Method for Buckling

In an antisymmetric angle-ply laminate, A16 = A26 = D16 = D26 = B11 = B12 = B22 = 
B66 = 0. B16 and B26 are nonzero and extension–bending coupling exists. As a result, 
the three differential equations of buckling are coupled, which for a plate under uni-
axial compressive force resultant Nxx  can be obtained from Equations 7.37 through 
7.39, as follows:
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(7.349)

As in the case of antisymmetric cross-ply laminates, in this case, too, the transverse 
deflections w0(x, y) are coupled with the in-plane displacements u0(x, y) and v0(x, y) and 
simply supported boundary conditions and clamped boundary conditions are required 
to be further categorized into S1, S2, S3, S4 and C1, C2, C3, C4, respectively.

Since extension–shear and bending–twisting couplings are not there, that is, 
A16 = A26 = D16 = D26 = 0, Navier solution exists for antisymmetric angle-ply lami-
nated rectangular plate with simply supported boundary conditions. We discuss below 
the solution for simply supported S3 boundary conditions. These boundary conditions 
are given by

	 ( )w x0 0 0= = 	 (7.350)

	 ( )w x a0 0= = 	 (7.351)
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	 ( )w y b0 0= = 	 (7.353)
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	 ( )u x0 0 0= = 	 (7.358)

	 ( )u x a0 0= = 	 (7.359)

	 ( )v y0 0 0= = 	 (7.360)

	 ( )v y b0 0= = 	 (7.361)
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We choose buckling displacement functions that satisfy the geometric boundary 
conditions. The following are the buckling displacement functions:
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It can be seen that both the geometric as well as natural boundary conditions 
(Equations 7.350 through 7.365) are satisfied by the assumed buckling displacement 
functions (Equations 7.366 through 7.368).

Substituting the buckling displacement functions in the governing buckling differ-
ential equations (Equations 7.347 through 7.349), we can obtain a system of algebraic 
equations, which can be written in the matrix form as follows:
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in which, the terms in the square matrix are given by
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For nontrivial solutions, the determinant of the square matrix in Equation 7.369 is 
equated to zero, which gives the buckling loads as
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7.6 � SOLUTIONS FOR VIBRATION 
OF LAMINATED PLATES

7.6.1 � Specially Orthotropic Simply Supported Plate: 
Navier Method for Free Vibration

For a specially orthotropic plate, [B] = 0 and A16 = A26 = D16 = D26 = 0. Substituting 
these in Equations 7.43 through 7.45, the governing differential equations for free 
transverse vibration of a specially orthotropic plate are obtained as
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As seen, the in-plane displacements during vibration u0 and v0 are not coupled with 
the out-of-plane displacement during vibration w0. (Note that displacements during 
vibration, as in the case of buckling, are actually variations in displacements.) As a 
result, the vibration boundary conditions for a specially orthotropic rectangular plate 
are rather simple, which are as follows:

	 ( )w x0 0 0= = 	 (7.380)

	 ( )w x a0 0= = 	 (7.381)

	 ( )w y0 0 0= = 	 (7.382)

	 ( )w y b0 0= = 	 (7.383)
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As the in-plane displacements during vibration are uncoupled with the out-of-plane 
displacements during vibration, the solution for a specially orthotropic plate involves 
consideration of only the out-of-plane displacement during vibration. The solution can 
be obtained by adopting a method of separation, as follows:

	 w x y t W x y T t0 ( ), , ( , ) ( )= 	 (7.388)

and
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(7.389)
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	 T t A t B t( ) cos sin= +ω ω 	 (7.390)

Note that Equation 7.388 together with Equations 7.389 and 7.390, satisfy both the 
geometric as well as the natural boundary conditions. Note further that these equations 
also satisfy the governing equations. Then, substituting these equations in Equation 
7.379, we get
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where the suffix mn is added to indicate that, for each mode shape corresponding to 
each pair of m and n, there exists a natural frequency. The lowest frequency is called 
the fundamental natural frequency.

7.6.2 � Specially Orthotropic Simply Supported 
Plate: Ritz Solution for Free Vibration

The governing free vibration differential equations and the boundary conditions for a 
specially orthotropic laminated plate with all edges simply supported were presented in 
the previous section. Also, as seen in the previous section, Navier solution is available 
for this class of problems. However, for the sake of demonstration of the procedure and 
comparison of results, the Ritz method is discussed in this section.

The total potential energy functional is given by
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The spatial coordinates and time in the transverse displacement during vibration are 
separated by considering a solution as follows:

	 w x y t W x y T t0 ( ), , ( , ) ( )= 	 (7.393)

and
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	 T t e t( ) = ω
	 (7.395)

The above equations satisfy the geometric boundary conditions as well as the 
natural boundary conditions given in the previous section. Substituting the approx-
imation function for vibration displacement from Equation 7.393 together with 
Equations 7.394 and 7.395 in the total potential energy functional in Equation 7.392 
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and utilizing the integration identities in Equations 7.115 and 7.116, we can carry out 
direct integration and show that the integration terms in Equation 7.392 are as follows:
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Then, substituting Equations 7.396 through 7.400 in Equation 7.392, the 
potential energy functional is obtained as
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For dynamic equilibrium during vibration,
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It results in M × N algebraic equations, each corresponding to a unique pair of m 
and n. Each of these equations gives us a value of ωmn, of which the minimum one is 
the natural frequency. We note that here, ωmn is given by
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which is identical with Equation 7.391. In other words, Ritz solution is an exact solu-
tion as Navier solution for transverse free vibration of specially orthotropic simply 
supported plate.

7.6.3 � Symmetric Angle-Ply Laminated Plate with All Four Edges 
Simply Supported: Ritz Method for Free Vibration

In a symmetric angle-ply laminate, [B] = 0, that is, there is no extension–bending 
coupling. However, the extensional stiffness matrix [A] and the bending stiffness 
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matrix [D] are fully populated. Then, governing equations for free vibration (Equations 
7.43 through 7.45) reduce to
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Simply supported boundary conditions as well as clamped boundary conditions 
cannot be further distinguished, based on the nature of the in-plane boundary condi-
tions on u0 and v0, into S1, S2, S3, S4 and C1, C2, C3, C4, respectively. Thus, for a plate 
with all four edges simply supported, the boundary conditions are

	 ( )w x0 0 0= = 	 (7.407)

	 ( )w x a0 0= = 	 (7.408)

	 ( )w y0 0 0= = 	 (7.409)

	 ( )w y b0 0= = 	 (7.410)
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From the governing equations as well as the boundary conditions of a symmet-
ric angle-ply laminated plate, we see that the variations in in-plane displacements are 
uncoupled with the variations in out-of-plane displacements. As a result, the solution 
involves consideration of only the variation in out-of-plane displacement. However, 
owing to the presence of the terms D16 and D26, Navier type closed-form solutions do 
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not exist. Similar to the cases in bending and buckling, the problem, however, can be 
solved by other methods such as the Ritz method.

Now, the total potential energy functional is given by
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The spatial coordinates and time in the transverse displacement during vibration are 
separated by considering a solution as follows:

	 w x y t W x y T t0 ( ), , ( , ) ( )= 	 (7.416)

and
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	 T t e t( ) = ω
	 (7.418)

The above equation satisfies the geometric boundary conditions (Equations 7.407 
through 7.410) but not the natural boundary conditions (Equations 7.411 through 7.414). 
(Note that the Ritz method requires the approximation function to satisfy the geometric 
boundary conditions but not necessarily the natural boundary conditions.)

Equation 7.416, together with Equations 7.417 and 7.418, is then substituted in 
Equation 7.415 and direct integration is carried out. However, owing to the presence 
of the stiffness parameters D16 and D26 in the expression for the potential energy func-
tional, integration identity given by Equation 7.117 is also required to obtain the terms 
associated with D16 and D26. Subsequent procedure is rather complicated and computa-
tion in a computerized environment is needed, in which employing minimum potential 
energy principle, we can obtain M × N algebraic equations, each corresponding to a 
unique pair of m and n. Each of these equations gives us a value of ωmn, of which the 
minimum one is the natural frequency.

7.6.4 � Antisymmetric Cross-Ply Laminated Simply Supported 
Plate: Navier Method for Free Vibration

In an antisymmetric cross-ply laminate, A11 = A22, D11 = D22, and A16 = A26 = 
D16 = D26 = 0. Also, Bij = 0 except B11 = −B22≠0, that is, extension–bending coupling 
exists. The three differential equations (Equations 7.43 through 7.45) take the following 
forms for free transverse vibration of plate:
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Transverse deflections w0(x, y) are coupled with the in-plane displacements u0(x, y) 
and v0(x, y) and simply supported boundary conditions and clamped boundary condi-
tions are required to be further categorized into S1, S2, S3, S4 and C1, C2, C3, C4, 
respectively.

Navier solution exists for antisymmetric cross-ply laminated rectangular plate 
with simply supported boundary conditions S2. These boundary conditions are 
given by

	 ( )w x0 0 0= = 	 (7.422)

	 ( )w x a0 0= = 	 (7.423)

	 ( )w y0 0 0= = 	 (7.424)

	 ( )w y b0 0= = 	 (7.425)
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	 ( )v x0 0 0= = 	 (7.430)

	 ( )v x a0 0= = 	 (7.431)

	 ( )u y0 0 0= = 	 (7.432)

	 ( )u y b0 0= = 	 (7.433)
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(7.437)

The solution can be obtained by adopting a method of separation, in which the 
displacements are assumed as follows:

	 u x y t U x y T t0 ( ), , ( , ) ( )= 	 (7.438)

	 v x y t V x y T t0 ( ), , ( , ) ( )= 	 (7.439)

	 w x y t W x y T t0 ( ), , ( , ) ( )= 	 (7.440)

and

	
U x y U

m x

a

n y

b
mn( , ) cos sin=

π π

	
(7.441)

	
V x y V

m x

a

n y

b
mn( , ) sin cos=

π π

	
(7.442)

	
W x y W

m x

a

n y

b
mn( , ) sin sin=

π π

	
(7.443)

	 T t A t B t( ) cos sin= +ω ω 	 (7.444)

It can be seen that both the geometric as well as natural boundary conditions 
(Equations 7.422 through 7.437) are satisfied by the assumed vibration displacement 
functions (Equations 7.438 through 7.444). Further, these equations also satisfy the gov-
erning equations. Then, substituting these equations in Equations 7.419 through 7.421, we 
get a system of algebraic equations, which can be written in the matrix form as follows:

	

F F F
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(7.445)

in which, the terms in the square matrix are given by

	
F A

m

a
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11 11

2
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
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

 +









π π

	
(7.446)
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(7.451)

For nontrivial solutions, the determinant of the square matrix in Equation 7.445 is 
equated to zero, which gives

	
ω

ρmn F
F F F F F F F

F F F
2

33
12 23 13 22 13
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11 23
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1 2
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(7.452)

As stated previously, the suffix mn indicates that, for each mode shape correspond-
ing to each pair of m and n, there exists a natural frequency; the fundamental natural 
frequency is the minimum of the discrete frequencies obtained from various combina-
tions of m and n. (Note that fundamental frequency need not necessarily correspond to 
m = n = 1.)

7.6.5 � Antisymmetric Angle-Ply Laminated Simply 
Supported Plate: Navier Method for Free Vibration

In an antisymmetric angle-ply laminate, A16 = A26 = D16 = D26 = B11 = B12 = B22 = B66 
= 0. B16 and B26 are nonzero and extension–bending coupling exists. As a result, the three 
differential equations of free vibration are coupled and they are obtained from Equations 
7.43 through 7.45 as follows:
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(7.453)
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As in the case of antisymmetric cross-ply laminates, in this case, too, the transverse 
deflections w0(x, y) are coupled with the in-plane displacements u0(x, y) and v0(x, y) and 
simply supported boundary conditions and clamped boundary conditions are required 
to be further categorized into S1, S2, S3, S4 and C1, C2, C3, C4, respectively.

Since extension–shear and bending–twisting couplings are not there, that is, 
A16 = A26 = D16 = D26 = 0, Navier solution exists for antisymmetric angle-ply lami-
nated rectangular plate with simply supported boundary conditions. We discuss below 
the solution for simply supported S3 boundary conditions. These boundary conditions 
are given by

	 ( )w x0 0 0= = 	 (7.456)

	 ( )w x a0 0= = 	 (7.457)

	 ( )w y0 0 0= = 	 (7.458)

	 ( )w y b0 0= = 	 (7.459)
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(7.463)

	 ( )u x0 0 0= = 	 (7.464)

	 ( )u x a0 0= = 	 (7.465)

	 ( )v y0 0 0= = 	 (7.466)

	 ( )v y b0 0= = 	 (7.467)
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The solution can be obtained by adopting a method of separation, in which the 
displacements are assumed as follows:

	 u x y t U x y T t0 ( ), , ( , ) ( )= 	 (7.472)

	 v x y t V x y T t0 ( ), , ( , ) ( )= 	 (7.473)

	 w x y t W x y T t0 ( ), , ( , ) ( )= 	 (7.474)

and
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V x y V

m x

a

n y

b
mn( , ) cos sin=

π π

	
(7.476)

	
W x y W
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mn( , ) sin sin=

π π

	
(7.477)

	 T t A t B t( ) cos sin= +ω ω 	 (7.478)

It can be seen that both the geometric as well as natural boundary conditions 
(Equations 7.456 through 7.471) are satisfied by the assumed vibration displacement 
functions (Equations 7.472 through 7.478).

Substituting the assumed vibration displacement functions in the governing 
vibration differential equations (Equations 7.453 through 7.455), we can obtain a sys-
tem of algebraic equations, which can be written in the matrix form as follows:

	

F F F

F F F

F F F

U

V

Wmn

mn

mn

mn

11 12 13

12 22 23

13 23 33
2−

























ρω















=



















0

0

0
	

(7.479)

in which, the terms in the square matrix are given by
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For nontrivial solutions, the determinant of the square matrix in Equation 7.479 
above is equated to zero, which gives us the natural frequencies as follows:
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7.7  SUMMARY
In this chapter, we reviewed the analytical solutions for three broad classes of plate 
problems—bending, buckling, and vibration. The basic principles of solid mechanics 
and macromechanics of laminated composites are extended and governing equations 
are developed for bending, buckling, and vibration of laminated composite rectangular 
plates. Some of the key points to be noted are

◾◾ Analytical treatment of a laminated plate is based on the basic assumptions 
and restrictions of CLPT.

◾◾ Plate bending is an equilibrium problem and the governing equations are 
derived by considering static equilibrium of a differential plate element.

◾◾ The governing equations for buckling of a laminated composite plate are 
expressed in terms of buckling displacements, that is, variations in displace-
ments w.r.t. the prebuckled equilibrium configuration; it is an eigenvalue 
problem.

◾◾ Free vibration of a composite plate is also an eigenvalue problem; the govern-
ing equations in this case can be derived by considering dynamic equilibrium 
of a differential plate element.

◾◾ The boundary conditions in a laminated composite plate are more complex due 
to the anisotropic nature of the material system.

◾◾ Various analytical solution methods are available. The Navier method and the 
Levy method are two of the exact methods; but they have limited applicabil-
ity. The Ritz method is an approximate energy-based method and it has wide 
applicability.

EXERCISE PROBLEMS

	 7.1	 Consider a rectangular plate simply supported on all the four edges under 
a uniformly distributed load of 4 × 10−3 N/mm2. The size of the plate is 
400 mm × 300 mm × 3 mm and its ply sequence is [0°/90°/0°] where each 
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ply is of equal thickness. Determine at the center of the plate (i) middle surface 
deflection, (ii) in-plane stresses on the bottom face, and (iii) interlaminar 
stresses at the interface between the bottom and middle plies.

		  Use Navier method and restrict your calculations to the first term, that is, 
m = n = 1. Assume the following material data:

	 E E G1 2 12 12150 8 4 0 2= = = =GPa GPa GPa, and, , .ν

	 7.2	 Write a MATLAB/C/C++ code for determining the following:

	 i.	 Middle surface deflection at any point, w0(x, y)
	 ii.	 In-plane stresses at any point, σxx(x, y, z), σyy(x, y, z), and τxy(x, y, z)
	 iii.	 Interlaminar stresses at any point, τxz(x, y, z), τyz(x, y, z), and σzz(x, y, z)

	 Use the following as input data:

	 i.	 Plate dimensions, a and b
	 ii.	 Material data, E1, E2,G12, and v12

	 iii.	 Ply sequence giving details of ply orientation, θ and ply thickness, t
	 iv.	 Uniformly distributed load, q0

	 7.3	 Use the code developed in Exercise 7.2 and solve the problem in Exercise 
7.1. Compare the results with m = n = 1 with those obtained in Exercise 7.1. 
Update the results with higher values of m and n till convergence is achieved.

	 7.4	 Consider the plate in Exercise 7.1 and determine, using the code developed 
in Exercise 7.2, the middle surface deflections in the plate in Exercise 7.1 at 
regular intervals. Draw “w0 versus x” along y = 150 mm and “w0 versus y” 
along x = 200 mm plots.

	 7.5	 Equation 7.180 gives us the constants Am, Bm, Cm, and Dm in the Levy method 
for bending of a specially orthotropic plate simply supported on edges x = 0 
and x = a and fixed on edges y = 0 and y = b. Derive the equation if the plate 
is simply supported on all the edges.

	 Hint: Substitute (w0)y=0 = (w0)y=b = (Myy)y=0 = (Myy)y=b in Equation 7.174.

	 7.6	 Write a MATLAB/C/C++ code in line with the one in Exercise 7.2 for Levy 
method.

	 7.7	 Solve the problem in Exercise 7.1 by Levy method.

	 Hint: Consider edges x = 0 and x = a as simply supported and y = 0 and y = b 
as arbitrary. Consider the edges y = 0 and y = b as simply supported for deter-
mining the constants Am, Bm, Cm, and Dm.

	 7.8	 Write a MATLAB/C/C++ code to determine middle surface deflection of a 
symmetric angle-ply laminated plate in bending by the Ritz method. Use input 
data as in Exercise 7.2.

	 Hint: Substitute Equation 7.219 in Equations 7.216 and 7.217. Differentiate 
Π = U + V w.r.t. Wmn and obtain a system of M × N linear simultaneous equa-
tions by setting

	

∂
∂

=
Π

Wmn

0

	 7.9	 Consider a rectangular plate simply supported on all the four edges under 
a uniformly distributed load of 4 × 10−3 N/mm2. The size of the plate is 
400 mm × 300 mm × 4 mm and its ply sequence is [0°/45°/−45°/0°] where 
each ply is of equal thickness. Determine the middle surface deflection at the 
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center of the plate. Use Navier method and restrict your calculations to the first 
term, that is, m = n = 1. Assume the following material data

	 E E G1 2 12 12150 8 4 0 2= = = =GPa GPa GPa, and, , . .ν 	

	7.10	 Write a MATLAB/C/C++ code, in line with the one in Exercise 7.2, for 
middle surface deflection of an antisymmetric cross-ply laminated plate simply 
supported on all edges. Solve the problem in Exercise 7.9 for m = n = 1 and 
compare the results with Exercise 7.9. Update the results with higher values of 
m and n till convergence is achieved.

	7.11	 Consider the specially orthotropic plate in Exercise 7.1. Determine its critical 
buckling load by Navier method.

	7.12	 Consider the antisymmetric laminate in Exercise 7.9. Determine its critical 
buckling load by Navier method.

	7.13	 Consider an antisymmetric angle-ply rectangular laminated plate sim-
ply supported on all the four edges. The size of the plate is 600 mm × 
500 mm × 8 mm and its ply sequence is [0°/30°/60°/90°/90°/−60°/−30°/0°] 
where each ply is of equal thickness. Determine its critical buckling load Nxx  
using Navier method. Assume the following material data:

	 E E G1 2 12 12150 8 4 0 2= = = =GPa GPa GPa, and, , . .ν 	

	 Hint: Manual computation will be tedious; write a MATLAB/C/C++ code for 
determining the [A], [B], and [D] matrices.

	7.14	 Consider the problem in Exercise 7.13. Determine the critical buckling load 
Nyy using Navier load.

	 Hint: Rewrite the ply sequence by rotating the coordinate axis by 90°.

	7.15	 Consider a specially orthotropic laminated plate simply supported on all the 
four edges. The size of the plate is 600 mm × 500 mm × 8 mm and its ply 
sequence is [0°/90°/0°/90°]s where each ply is of equal thickness. Determine its 
natural frequency corresponding to m = n = 1 using Navier method. Assume 
the following material data:

	 E E G1 2 12 12
3150 8 4 0 2 1 52= = = = =GPa GPa GPa and g/cm, , , . , . .ν ρ 	

	7.16	 Write a MATLAB/C/C++ code for computing the natural frequencies of a 
symmetric angle-ply laminated plate by Ritz method. Use the following as 
input data:

	 i.	 Plate dimensions, a and b
	 ii.	 Material data, E1, E2, G12, v12, and ρ
	 iii.	 Ply sequence giving details of ply orientation, θ and ply thickness, t

	 Hint: Substitute Equations 7.416 through 7.418 in Equation 7.415 and obtain a 
system of M × N algebraic equations by setting

	

∂
∂

=
Π

Wmn

0
	

	7.17	 Consider the antisymmetric angle-ply laminated plate in Exercise 7.13. 
Determine its natural frequency corresponding to m = n = 1 using Navier 
method. Assume density of composite ρ = 1.52 g/cm3.
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8.1  CHAPTER ROAD MAP
The solutions to beam and plate problems by analytical methods are addressed in 
Chapters 6 and 7. The applicability of these methods is limited to basic structural 
elements with simple geometry under simple loading. Real-life structures, however, 
are complex; they generally comprise several basic structural elements such as beams, 
plates, shells, etc. and are subjected to complex loads. As a result, in a product design 
environment, analytical methods are not sufficient and the use of numerical methods 
is nearly essential.

The most popular numerical method is the finite element method (FEM), and this 
chapter is devoted to present the fundamental aspects involved in it. The subject of 
FEM is too vast to be covered in one chapter. Also, a detailed discussion on it is beyond 
the scope of this book. The objective of this chapter is to acquaint the reader with the 
basic concepts and address the general procedure of FEM, especially from the point of 
view of stress analysis of structures. With this in mind, the basic concepts in the FEM 
are discussed first. Next, the general procedure is presented. Owing to its versatil-
ity, interdisciplinary nature, and wide application, it is possible that the subject would 
appear too complex. In this respect, an understanding of the basic procedure is highly 
helpful. Finally, some simple elements are developed to demonstrate how the method 
can be used in structural stress analysis problems.

Familiarity with the concepts in solid mechanics and mechanics of laminated 
composite material (Chapters 2, 4, and 5) is a prerequisite for effective assimilation of 
the contents of this chapter.

8.2  PRINCIPAL NOMENCLATURE
A number of symbols are used in this chapter. A conscious effort is made to be consis-
tent in using these symbols and they are described where they occur. In this section, the 
principal notations are listed for ready reference.

[A]	 Extensional stiffness matrix
A	 Area of cross section
{a}	 Vector of polynomial coefficients
a1, a2, …	 Coefficients of a polynomial function
[B]	� Strain–displacement matrix—a matrix obtained by partial differentia-

tion of the matrix of shape functions
	 Also, extension-bending coupling stiffness matrix
[C]	 Elastic stiffness matrix of a material
[D]	 Bending stiffness matrix
E	 Total number of elements
	 Also, Young’s modulus

8
Finite Element Method
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f	 A field variable
[g]	 A matrix of the polynomial variable(s)
h	 Thickness of a plate
[K], [K(e)]	 Global and element stiffness matrices (stress analysis)
[KG], [ ]( )KG

e 	 Global and element geometric stiffness matrices (buckling analysis)
l, b	 Length and breadth, respectively
{M}	 Vector of moment resultants
M	 Total number of degrees of freedom in the structure
m	 Total number of polynomial coefficients in a polynomial function
[N]	 Matrix of shape functions
{N}	 Vector of force resultants
N1, N2, …	 Shape functions
n	 Degree of a polynomial function
{u}	 Vector of displacements at a point
u, v, w	 Displacements at a point
{P}, {P(e)}	 Vector of nodal forces for the whole body and element, respectively
W	 Work done on a body by external forces
[X]	 A square matrix of the nodal coordinates
x, y, z	 Element coordinates
{B}	 Vector of body forces at a point
Bx, By, Bz	 Body forces at a point
{ε}	 Vector of strains
εxx, εyy, εzz	 Normal strains
{F}	 Vector of surface forces at a point
Fx, Fy, Fz	 Surface forces at a point
γxy, γyz, γzx	 Shear strains
ν	 Poisson’s ratio
{φi}	 Vector of nodal values for the structure

φi
e( ){ }	 Vector of nodal values for element e

φ1, φ2, …	 Nodal values for the structure
φ φ1 2

( ) ( ), ,e e …	 Nodal values for element e
[λ(e)]	 Transformation matrix for element e
π	 Strain energy of a body
πp	 Potential energy of a body
{σ}	 Vector of stresses
σxx, σyy, σzz	 Normal stresses
γxy, γyz, γzx	 Shear stresses
θx, θy, θz	 Rotations

8.3  INTRODUCTION
The FEM has been extensively dealt with in the literature; in addition to numerous 
articles, a large number of standard texts giving detailed presentation of the method 
are available [1–8]. It is a versatile tool that can be applied to problems in virtually any 
field. Its application in composites has also been addressed in standard texts [9–12]. 
There are a number of commercially available general-purpose finite element soft-
wares, for example, ANSYS, ABAQUS, NASTRAN, and NISA. These softwares 
have highly user-friendly interfaces, very large computing capability, and appealing 
display features for preprocessing as well as postprocessing. There is a general ten-
dency among many students and practicing engineers to use these packages and pro-
duce output without bothering to understand what FEM or the software does! However, 
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the correctness of the output depends on several factors, including input material data, 
type of elements, boundary conditions, etc. Here lies the necessity to know the basics 
of FEM for proper utilization of any of these packages.

The analysis of a physical problem involves two broad aspects:

◾◾ Mathematical formulation of the problem
◾◾ Solution to the mathematical model

In general, any physical problem can be described in terms of mathematical 
expressions—differential equations, integral equations, and algebraic equations, of 
which differential equations are the most common. These equations are valid within 
certain domains under certain prescribed conditions, depending on which a physical 
problem is categorized as either initial value problem or boundary value problem. In an 
initial value problem, the dependent variable or its derivatives are prescribed initially, 
that is, at time t0 = 0, whereas in a boundary value problem, the dependent variable and 
its derivatives are prescribed on the boundary of the domain.

Depending on the nature, three broad classes of problems are encountered (see, for 
instance, References 4 and 5; these are

◾◾ Equilibrium or steady-state problems
◾◾ Transient or propagation problems
◾◾ Eigenvalue problems

Equilibrium problems are time-independent problems, in which we determine 
the static or quasi-static response of the body to the applied generic loads. Transient 
problems are time-dependent; in these problems, the applied loads vary with time and 
we are interested in finding the response of the body under such time-varying loads. 
On the other hand, eigenvalue problems are a sort of combination of both of the above. 
In these problems, the time dimension is involved indirectly and we are interested in 
determining values of certain parameters that correspond to some critical state of the 
body.

The formulation of mathematical models for real-life problems and their analytical 
solutions are virtually impossible in most cases and invariably numerical methods—
most commonly FEM—are used for making estimates of various parameters. 
In composites, owing to their anisotropic nature, analysis is more complex and FEM is 
extensively used. Typical examples of applications of FEM in the design and develop-
ment of composite products are indicated in Table 8.1.

TABLE 8.1
Typical Applications of FEM in Composites

Nature of Problems Examples

Equilibrium problems Analysis for
•	Displacements
•	Stress distribution
•	Temperature distribution

Transient problems Analysis for
•	Crack propagation
•	Response to impact and fatigue loads
•	Ablation

Eigenvalue problems Analysis for
•	Buckling loads and their mode shapes
•	Natural frequencies and their mode shapes
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8.4  BASIC CONCEPTS IN FINITE ELEMENT METHOD
The FEM is built on some unique concepts; some of the essential concepts necessary to 
understand the basic finite element procedure are reviewed in this section.

8.4.1  Elements and Nodes

In the FEM, the domain or the body is divided into a finite number of subdomains 
that share common edges and are interconnected at certain points. These subdomains 
are called the elements and the interconnecting points are called the nodes (Figure 8.1). 
The nodes are placed at the corners of the elements. In some elements, nodes are  
also placed on the edges between the corner nodes. The concept of elements and 
nodes is the basis of the FEM. The focus is initially limited to the mathematical for-
mulations that govern the individual elements. Element formulations are generic in 
nature and various types of elements have been developed. The body or the domain 
is considered as an assemblage of elements and thus virtually any kind of body can 
be handled by this method. As mentioned above, governing equations are developed 
for individual elements and the body or domain is simulated as an assemblage of 
elements. The connection between adjacent elements is through the common nodes. 
External loads are applied at the nodes and load transfer between elements is through 
the nodes.

A physical problem is described in terms of a number of field variables—known 
and unknown. For example, displacement, stress, pressure, temperature, etc. are 
commonly encountered field variables. It is required that the field variables involved in 
a problem are identified first. Of the several field variables, it is necessary to identify 
a basic variable around which the element equations are developed. The primary aim 
is to first find the nodal values of the basic variable. The nodal values are then utilized 
for estimating the basic field variable and other relevant field variables everywhere in 
the body.

For stress analysis problems in solid mechanics, the basic variable is displacement. 
Nodal displacements are determined first and approximating functions (see Section 
8.4.3) are used for estimating the displacement distribution. Strain–displacement 
relations and constitutive relations are then used for estimating strains and stresses, 
respectively.

For heat conduction problems, temperature is the basic variable. Nodal temperatures 
are determined first. Temperature distribution, thermal stresses, strains, etc. are then 
estimated.

At any point of the body, the basic variable can possess certain degrees of freedom. 
For example, in a general case, displacement can have up to six degrees of freedom 
at a point—three translations along three axes and three rotations about these axes. 

(a)

(b)

(c)

FIGURE 8.1  Typical elements. (a) One-dimensional (1D) elements. (b) Two-dimensional (2D) 
elements. (c) Three-dimensional (3D) elements.
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In the FEM, the body is divided into a finite number of elements with a finite number 
of nodes. The basic variable has certain known degrees of freedom at each node (nodal 
degrees of freedom). Thus, the problem is reduced from the determination of the basic 
variable at theoretically infinite locations to a finite number of nodal values.

8.4.2  Discretization

The first step in a finite element analysis is discretization of the body into elements. 
It is also called as mesh generation. In the process of discretization, the body, which 
can be of irregular geometric shape, is modeled with finite elements of regular shapes. 
The accuracy of modeling depends on how closely the original body is simulated by 
the assemblage of elements. A number of factors related to discretization influence 
the accuracy of the final output of a finite element analysis; type of elements, size and 
number of elements, location of nodes, etc. are some of the key factors.

The elements can be 1D, 2D, or 3D (Figure 8.1). The choice of type of elements 
depends primarily on three parameters—geometry of the body, number of spatial coor-
dinates required to describe the system, and desired accuracy/details of output data. For 
example, a uniaxially loaded bar of constant cross-sectional area and material proper-
ties varying along the axis can be described conveniently by its axial coordinates alone; 
in this case, an obvious choice of elements is 1D elements and general information on 
deformation, stress, and strain can be obtained. If, however, local stress distribution 
across the area of cross section near the load application point is required, 3D elements 
are needed and possibly a local analysis near the joint will serve the purpose. Similarly, 
a thin-shell structure, for example, a pressure vessel under biaxial membrane state of 
stress, can be modeled with 2D elements. But if the skin thickness is high and it is 
subjected to bending, leading to complex stress distribution across the thickness, 3D 
elements will be preferred. Figure 8.2 shows typical examples of discretization using 
1D, 2D, and 3D elements.

An important aspect of discretization is to take advantage of the symmetry of the 
system. The overall computational time and effort can be greatly reduced by modeling 
a part of the body. As an example, consider a rectangular plate with a central hole under 
tension (Figure 8.3). Note that the plate together with the loading is symmetric w.r.t. the 
axial and lateral center lines and modeling of only one-fourth of the plate is sufficient.

The next important aspect in discretization is the size and number of elements. 
Elements of smaller sizes are needed in areas of rapidly changing geometry, load, and 
material properties so that the body is appropriately represented by the mesh of ele-
ments. Smaller elements are also required in areas, such as cutout, joint, etc., where 

(a)

(b)

(c)

FIGURE 8.2  Discretization. (a) One-dimensional elements. (b) Two-dimensional elements. (c) Three-
dimensional elements.
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stress concentration is expected (Figure 8.3c). Smaller size of elements implies larger 
number of elements, larger number of equations to be solved, and longer computa-
tional time and capacity. Thus, the choice of element size must be based on proper 
judgment.

Another important aspect is the numbering scheme for elements and nodes. Each 
element in an FEM is given a unique number. Similarly, each node is given a unique 
number. A proper numbering scheme is critical as it influences the bandwidth of the 
global characteristic matrix, which in turn influences the efficiency of the solution 
process (see, for instance, References 5 and 7).

8.4.3  Approximating Function and Shape Function

The distribution of a field variable within the body as well as within the elements is 
not known. Sometimes, the distribution may be known but the exact distribution may 
be too complicated for mathematical manipulations. Thus, some approximations are 
introduced. An approximating function is a function used for representing the distribu-
tion of a field variable within an element in terms of the element coordinates and other 
constants. The most commonly used approximating functions are polynomial func-
tions, although trigonometric functions are also sometimes used. For 1D, 2D, and 3D 
elements, the generalized forms of a polynomial function are

1D elements:

	 f x a a x a x a xm
n( ) = + + + +1 2 3

2 � 	 (8.1)

2D elements:

	 f x y a a x a y a x a y a x a ym
n

m
n( , ) = + + + + + + +−1 2 3 4

2
5

2
1� 	 (8.2)

3D elements:

	 f x y z a a x a y a z a x a y a z a x a y a zm
n

m
n

m( , , ) = + + + + + + + + + +−1 2 3 4 5
2

6
2

7
2

2 1� −
nn

� (8.3)

(b)(a)

(c)

Lines of symmetry

FIGURE 8.3  Discretization of a rectangular plate with a central hole. (a) Total plate. (b) One quadrant 
of the plate. (c) Mesh with varying sizes of elements.
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in which
f		  A field variable
x, y, z	 Element coordinates
a1, a2, …	 Coefficients of the polynomial, known as generalized coordinates
n		  Degree of the polynomial
m		  Total number of polynomial coefficients

The approximating function can be conveniently expressed in matrix form as a mul-
tiple of two matrices—one, a square matrix of element coordinates and two, a vector of 
coefficients of the polynomial. For example, let us consider a 1D element (Figure 8.4). 
The approximating function is

	 f x a a x( ) = +1 2 	 (8.4)

which can be written as

	 f x x( ) [ ( )]{ }= g a 	 (8.5)

where [g(x)] is a matrix (size: 1 × 2) of the polynomial variable and {a} is a vector 
(size: 2 × 1) of polynomial coefficients. They are given by

	 [ ( )] [ ]g x x= 1 	 (8.6)

	
{ }a =

a

a
1

2







 	

(8.7)

The idea in the FEM is to determine the field variables from the nodal values. 
The  nodal values in this case are φ1

( )e  and φ2
( )e , where φ1 0( ) ( )e f=  and φ2

( ) ( )e f l= . 
The vector of nodal values for element e, φi

( )e{ } is given by

	
φi

( )
( )

( )

( )

( )
e

e

e

f

f l
{ }≡












=











φ
φ

1

2

0

	
(8.8)

Then, using Equations 8.5 and 8.8, the vector of nodal displacements φi
e( ){ } and the 

vector of polynomial coefficients {a} can be related as

	
φ φi

e
i
eX a a X( ) ( )[ ]{ } { } [ ]{ }= = { }−or 1

	
(8.9)

where [X] is a square matrix of the nodal coordinates and it is given by

	
[ ]X =











1 0

1 l 	
(8.10)

1

l

φ1
(e) φ2

(e)

x

2

FIGURE 8.4  1D element.
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Then, substituting Equation 8.9 in Equation 8.5, we get

	
f x x( ) [ ( )][ ] ( )= { }−g X i

e1 φ
	

(8.11)

or

	
f x( ) [ ] ( )= { }N i

eφ
	

(8.12)

where

	
[ ] [ ( )][ ]N g X= =

−−x
l x

l

x

l
1 









 	

(8.13)

is the matrix of shape functions. Thus, the shape functions are the elements of a square 
matrix that relates the field variable to the nodal values of the field variable. There is 
one shape function for each node. The numerical value of each shape function is “one” 
at the corresponding node, “zero” at other nodes, and between “one” and “zero” at 
other locations of the element.

Note: The approximating function is also known as interpolation function, interpola-
tion model, etc. In structural mechanics problem, it is commonly called the displace-
ment model. The term “interpolation function” is also used in place of shape function. 
However, the distinction between the two concepts must be kept in mind. To avoid 
confusion, we shall stick to the terms “approximating function” and “shape function.”

As mentioned earlier, the most commonly used approximating functions are poly-
nomial functions. Selection of the approximating function is important and it is guided 
primarily by three factors.

First, the total number of polynomial coefficients should be equal to the total number 
of nodal degrees of freedom. The number of degrees of freedom per node multiplied by 
the number of nodes in an element gives the total number of degrees of freedom for the 
element and the polynomial function should be so chosen as to have the total number 
of polynomial coefficients equal to this number.

Second, the approximating function should satisfy convergence requirements. 
The  FEM is an approximate method and its accuracy can be improved by several 
means, as follows [4,5,7]:

◾◾ p-method—by increasing the order of the polynomial function
◾◾ r-method—by changing the location of nodes along the element edge without 

changing the number of elements
◾◾ h-method—by increasing the number of elements, that is, by reducing the size 

of elements

There are three basic convergence requirements that should be satisfied by the 
approximating function so that with successive steps the results approach the exact 
solution. These requirements are

◾◾ The approximating function must be continuous within the element.
◾◾ The approximating function must appropriately represent the basic field 

variable and its partial derivatives up to the highest order appearing in the 
functional I.
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◾◾ The basic field variable and its partial derivatives up to one order less than the 
highest-order derivative appearing in the functional I must be continuous at 
the boundaries of the element.

Note: The functional I is the functional used in the variational formulation.

Third, the chosen approximating function should be such that the distribution of a 
field variable obtained by using an approximating function should be independent of 
the local coordinate system.

8.4.4  Element Characteristic Matrices and Vectors

Some of the commonly encountered problems in structural mechanics are as follows:

◾◾ Equilibrium or steady-state problems
−− Static stress analysis
−− Quasi-static thermal analysis

◾◾ Transient or propagation problems
−− Transient vibration analysis

◾◾ Eigenvalue problems
−− Buckling analysis
−− Free vibration analysis

Finite element formulations are most conveniently expressed in matrix forms, which 
for the above classes of problems can be expressed in matrix forms as follows (see, for 
instance, Reference 5 for details):

Stress analysis:

	 [ ]{ } { }K Pφ = 	 (8.14)

Thermal analysis:

	 ([ ] [ ]){ } [ ]{ } { }K K T K T P1 2 3+ + =� 	 (8.15)

Transient vibration analysis:

	 [ ]{ } [ ]{ } [ ]{ } { }K C M Pφ φ+ + =� ��φ 	 (8.16)

Buckling analysis:

	 ([ ] [ ]){ } { }K KG− =λ φ 0 	 (8.17)

Free vibration analysis:

	 ([ ] [ ]){ } { }K M− =λ φ 0 	 (8.18)

In the above equations, a number of matrices have been introduced. The matrices 
within square brackets are the characteristic matrices and the vectors within curly brack-
ets are the characteristic vectors. These characteristic matrices and vectors are known by 
different names in different classes of problems. For example, in structural mechanics 
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problems, the characteristic matrix is called the stiffness matrix; it relates the nodal dis-
placements to the nodal forces. In thermal analysis problems, the characteristic matrix is 
called the conductivity matrix and it relates the nodal temperatures to the nodal fluxes.

Note that the above equations are at the global level for the entire body or domain. 
In the FEM, the equations are first developed for the individual elements, that is, the 
element characteristic matrices and vectors are developed. We shall use the superscript 
(e) to denote the element characteristic matrices and vectors. Then, the matrices and 
vectors in these equations are

Stress analysis:
K, K(e)	 Global and element stiffness matrices
φ, φ(e)	 Nodal displacements
P, P(e)	 Nodal forces

Thermal analysis:
K1, K2, K3, K

e
1
( ), K e

2
( ), K e

3
( )	 Global and element conductivity matrices

T, �T , T(e), �T e( ) 	 Nodal temperatures and their derivatives
P, P(e)	 Nodal heat fluxes

Transient vibration analysis:
K, K(e)	 Global and element stiffness matrices
M, M(e)	 Global and element mass matrices
C, C(e)	 Global and element damping matrices
φ, �φ, ��φ, φ(e), �φ( )e , ��φ( )e 	 Nodal displacements and their time derivatives
P, P(e)	 Nodal forces

Buckling analysis:
K, K(e)	 Global and element stiffness matrices
KG, KG

e( )	 Global and element geometric stiffness matrices
φ, φ(e)	 Nodal displacements

Free vibration analysis:
K, K(e)	 Global and element stiffness matrices
M, M(e)	 Global and element mass matrices
φ, ��φ, φ(e), ��φ( )e 	 Nodal displacements and their time derivatives

8.4.5  Derivation of Element Characteristic Matrices

There are primarily three approaches for the derivation of the characteristic matrices 
and vectors:

◾◾ Direct approach
◾◾ Variational approach

−− Rayleigh–Ritz method
◾◾ Weighted residual approach

−− Galerkin method
−− Least squares method

The direct approach is based on direct physical reasoning and principles of science 
and engineering. Thus, it is useful in getting an insight into the FEM. This method 
can be applied for solving simple problems; however, for complex problems, it is not 
suitable and one has to rely on either variational or weighted residual approach.

The variational approach is based on the fact that many problems in science and 
engineering can be expressed in the variational form. In the variational form, a func-
tional I  is defined in terms of the field variables and their derivatives. The solution, 
which can be either exact or approximate, is the one that minimizes the functional.
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In the weighted residual methods, the finite element equations are derived from the 
governing equations directly without reference to any functional. The Galerkin method 
and the least squares method are two common methods that belong to this approach.

8.4.6  Finite Element Equations by the Variational Approach

The element characteristic matrix and vector play a central role in the FEM. Extensive 
derivation of these matrices and vectors by different methods for different types of 
physical problems is beyond the scope of this book. Instead, we shall consider the 
case of static analysis by the variational approach based on the principle of minimum 
potential energy that states that the equilibrium configuration of a body, out of all the 
possible configurations that satisfy compatibility and kinematic boundary conditions, 
makes the potential energy the minimum.

The potential energy of an elastic body is given by

	 π πp W= − 	 (8.19)

where
πp		 Potential energy of the body
π		  Strain energy of the body
W		 Work done on the body by the external forces

The strain energy of an initially strain-free body is given by the following volume 
integral:
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(8.20)

or

	

π = ∫∫∫1
2

{ } { }ε σT

V

dV

	

(8.21)

where {ε} and {σ} are the vectors of strains and stresses. (Refer to Chapter 2 for a 
detailed discussion on the terms {ε} and {σ}.)

Note: The symbols ∫∫∫V and ∫∫S are used for volume integral and surface integral, 
respectively.

Introducing the constitutive relation (refer Equation 2.157, Chapter 2) into Equation 
8.21, we get

	

π = ∫∫∫1
2

{ } { }[ ]ε εT

V

dVC

	

(8.22)

where [C] is the elastic stiffness matrix of the material. In the presence of initial strains 
{ε0}, Equation 8.22 takes the following form:

	

π = −∫∫∫ ∫∫∫1
2

0{ } { } { }[ ]{ } [ ]ε ε ε εT

V

T

V

dV dVC C

	

(8.23)
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or

	

π = −∫∫∫1
2

2{ } [ ]{ }ε ε εT

V

dVC 0

	

(8.24)

On the other hand, the works done on the body by the body forces, surface forces, 
and external concentrated forces are as follows:
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or
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(8.26)

where
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	 Vector of displacements at a point

Wc		 Work done by the external concentrated forces

Then, combining Equations 8.19, 8.24, and 8.26, we get the expression for the 
potential energy of the body as follows:

	

πp
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T
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� (8.27)

Note that V denotes the volume of the body and S denotes the surface over which 
surface forces (tractions) are prescribed. The above expression gives the potential 
energy of the whole body. Now, we need an expression for the potential energy of 
an element. Using Equation 8.27, we can express the potential energy of an element 
without the contribution of the external concentrated forces as follows:

πp
e T

V

T

V

TdV dV dS
e e

( ) { } { } { }[ ]{ } { } { }
( ) ( )

= − − −∫∫∫ ∫∫∫1
2

2ε ε εC u u0 B F

SS e( )

∫∫
	

(8.28)
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where V (e) denotes the volume of the element and S(e) denotes the surface of the element 
over which surface forces are prescribed. Note that Equation 8.28 does not include the 
contribution of work done by concentrated forces.

As we noted in Section 8.4.1, the basic variable in the solid mechanics problem is 
displacement. Now, we bring in the strain–displacement relation (refer Equations 2.44 
through 2.46 and 2.52 through 2.54, Chapter 2) and express the strain vector as follows:
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(8.29)

As we discussed in Section 8.4.3, the matrix of shape functions relates the field vari-
able inside an element to the nodal values of the field variable, as follows:

	

u x y z
v x y z
w x y z

N N N
N N

n( , , )
( , , )
( , , )

















=
11 12 1

21 2

�
22 2

31 32 3

1

2�
� �

N
N N N

n

n

e

e

n
e





























φ
φ

φ

( )

( )

( )







 	

(8.30)

or

	
{ } [ ] ( )u N i

e= { }φ
	

(8.31)

Note that n is the number of degrees of freedom per element. Substituting the above 
in Equation 8.29, we get
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or
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Then, we substitute Equations 8.31 and 8.33 in Equation 8.28 and obtain the expres-
sion for the potential energy of the element without the contribution of external concen-
trated forces, as follows:

πp
e T T

V

T T

e

dV( ) ( ) ( ) ( )[ ] [ ][ ][ ] [ ]
( )

= { } { } − { }∫∫∫1
2

φ φ φi
e

i
e

i
eB C B B C {{ }

{ } { }[ ] [ ]

( )

( ) (

( ) ( )

ε

φ φ

0

V

T T

V

T T

S

e

e e

dV

dV

∫∫∫

∫∫∫− { } − { }i
e

i
eN NB F

))

∫∫ dS
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The nodal displacements are independent of the element coordinates and they 
can  be brought outside the integration. Then, Equation 8.35 can be reframed as 
follows:

	

πp
e T T

V e

dV( ) ( ) ( )

( )

[ ] [ ][ ]
( )

= { }















{ }

−

∫∫∫1
2
φ φ

φ

i
e

i
e

i
e

B C B

{{ }














−{ }

∫∫∫T T

V

T T

e

dV[ ] { }

[ ]

[ ]

{ }

( )

( )

B C

N
i
e

ε

φ

0

B

VV

T T

S

e

e

dV

dS

( )

( )

( ) [ ] { }

∫∫∫

∫∫















−{ }





φi

e N F







 	

(8.36)



413Finite Element Method

The total potential energy of the body can be obtained by summing up the potential 
energies of all the elements, with due consideration of the contribution of the external 
concentrated forces. Thus,

	

π πp
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(8.37)

Note that E is the total number of elements. The concentrated forces are applied at 
the nodes and the second term Wc in Equation 8.37 is given by
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where {φi} is the vector of nodal displacements and {Pc} is the vector of externally 
applied nodal concentrated forces. Note the difference between {φi} and φi

e( ){ }. Also, 
note that M is the total number of nodal degrees of freedom in the body. The first term 
in Equation 8.37 is derived after certain modifications to the sizes of the matrices and 
vectors involved therein. The sizes of various matrices and vectors in Equation 8.36 are 
given in Table 8.2.

Note that n is the total number of degrees of freedom per element. The square matrix 
of size n × n and the vectors of size n × 1 (Sl. No. 7–11, Table 8.2) are expanded by 
appropriately inserting zeros to size M × M and M × 1, respectively. In other words, these 
matrix and vectors are expanded to the “structure size.” These expanded matrices and 
vectors are summed up or assembled. (More about the process of expansion and assembly 

TABLE 8.2
Matrices and Vectors in Element Potential 
Energy Expression (Equation 8.35)

Sl. No. Matrix/Vector Size

1 [B] → 6 × n
2 [C] → 6 × 6
3 {ε0} → 6 × 1
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is given in Section 8.4.8.) Then, using Equations 8.36 and 8.38 in Equation 8.37, we get 
the following:
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The matrix and vectors involved in the global potential energy expression are given 
in Table 8.3.

Now, we apply the principle of minimum potential energy, which gives us

	

∂
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=
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= =
∂
∂

=
π
φ

π
φ

π
φ

p p p

M1 2

0�
	

(8.40)

There are total M numbers of equations in Equation 8.40. Each of these equations 
corresponds to one row of the following vector equation:

	

∂
∂








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π
φ
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i

{ }0
	

(8.41)

Upon carrying out the partial differentiation, Equation 8.41 along with Equation 8.39 
leads to the following:
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(8.42)

TABLE 8.3
Matrices and Vectors in Structure Potential 
Energy Expression (Equation 8.39)

Sl. No. Matrix/Vector Size

1
e

E

T

V e

dV
=

∑ ∫∫∫














1

[ ] [ ][ ]
( )

B C B → M × M

2
e

E

T

V

B dV
e=

∑ ∫∫∫












1

0[ ] [ ]{ }
( )

C ε → M × 1

3
e

E

T

V e

dV
=

∑ ∫∫∫












1

[ ] { }
( )

N B → M × 1

4
e

E

T

S e

dS
=

∑ ∫∫












1

[ ] { }
( )

N F → M × 1

5 {Pc} → M × 1
6 {φi} → M × 1
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or

	 e

E

e

E

e

E

e

E

= = = =
∑ ∑ ∑ ∑= { }+ { }+ { }+

1 1 1 1

[ ]{ } {( ) ( ) ( ) ( )K P P P Pe
i i

e
b
e

s
e

cφ }}

	

(8.43)

or

	 [ ]{ } { }K Piφ = 	 (8.44)

where various matrices and vectors are given as follows:
Global stiffness matrix (size = M × M):

	

[ ] [ ]( )K K e=
=

∑
e

E

1 	

(8.45)

Global vector of nodal displacements (size = M × 1):

	

{ }φi

M

=




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
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


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
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φ
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1

2

�

�

	

(8.46)

Global vector of nodal loads (size = M × 1):

	

{ } { }( ) ( ) ( )P P P P Pi
e

b
e

s
e

c= { }+ { }+ { }+
= = =

∑ ∑ ∑
e

E

e

E

e

E

1 1 1 	

(8.47)

Element stiffness matrix (size = n × n):

	

[ ] [ ] [ ][ ]( )
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V e

dV

	

(8.48)

Element load vector due to initial strains (size = n × 1):

	

P B Ci
e( ) [ ] [ ]{ }

( )

{ }=
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
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
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∫∫∫ T

V e

dVε0

	

(8.49)

Element load vector due to body forces (size = n × 1):

	

P Nb
e( ) [ ] { }

( )

{ }=






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
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
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V e
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(8.50)
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Element load vector due to surface forces (size = n × 1):

	

P Ns
e( ) [ ] { }

( )

{ }=
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
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
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S e
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(8.51)

Vector of concentrated forces (size = M × 1):

	

{ }Pc =
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
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
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(8.52)

Equations 8.42 through 8.44 are the general forms of finite element equation for 
stress analysis problems in solid mechanics.

8.4.7  Coordinate Transformation

In the finite element modeling, often local coordinates are used in addition to the global 
coordinates (Figure 8.5). For convenience, the element characteristic matrices are 
developed in the local coordinate systems. Once the individual element characteristic 
matrices have been developed, the global equations are developed by assembling the 
element characteristic matrices. However, before proceeding to assembly, it is impera-
tive to transform the element characteristic matrices to a common coordinate system, 
which typically is the global coordinate system.

Coordinate transformation is conveniently done by utilizing the transformation 
matrix [λ(e)]. Let us consider a stress analysis problem. Then, the transformation matrix 
[λ(e)] relates the vector of nodal displacements in the local coordinates to that in the 
global coordinates as follows:

	
φ λ φi

e e
i
e( ) ( ) ( )[ ]{ } = { }

local global 	
(8.53)

The transformation matrix relates the load vector in the local coordinates to that in 
the global coordinates in the same way, that is,

X–Y–Z: global coordinate
system

z(3)

z(2)

x(3)

x(2)

y(3)

y(2) z(1) x(1)

y(1)

x(1)–y(1)–z(1), x(2)–y(2)–z(2),
and x(3)–y(3)–z(3) : local coordinate systems

Y

Z
X

FIGURE 8.5  Global and local coordinate systems.
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	 { } [ ]{ }( ) ( ) ( )P Pe e e
local global= λ 	

(8.54)

Now, as we know, work done is given by the sum of multiples of nodal displacements 
with corresponding nodal forces. Also, work done is a scalar quantity and it does not 
depend on the coordinate system. Then,

	
φ φi

e e
i
e eP P( ) ( ) ( ) ( ){ } { }{ } = { }

local

T

local
global

T

global
	

(8.55)

Using Equation 8.53 in Equation 8.55, we get

	
φ λ φi

e e e
i
e eP P( ) ( ) ( ) ( ) ( )[ ] { } { }{ } = { }

global

T T
local

global

T

globall
	

(8.56)

that is,

	 [ ] { }{ }( ) ( ) ( )λ e e eP PT
local global= 	

(8.57)

which gives us

	
[ ] [ ][ ]( ) ( ) ( ) ( ) ( )λ φ φe e

i
e e

i
eK KT

local
local

global
global

{ } = { }
	

(8.58)

We substitute Equation 8.53 in Equation 8.58 and obtain the following:

	
[ ] [ ][ ] [ ]( ) ( ) ( ) ( ) ( ) ( )λ λ φ φe e e

i
e e

i
eK KT

local
global

global
g

{ } = { }
llobal 	

(8.59)

It then leads to

	 [ ] [ ] [ ][ ]( ) ( ) ( ) ( )K Ke e e e
global

T
local= λ λ 	

(8.60)

Equation 8.60 gives us element stiffness matrix in the global coordinate system from 
that in the local coordinate system, where

[K(e)]global	 Element stiffness matrix of element e in the global coordinates
[K(e)]local	 Element stiffness matrix of element e in the local coordinates
[λ(e)]	 Transformation matrix for element e

Note that the transformation matrix consists of the direction cosines.

8.4.8  Assembly

The coordinate transformation discussed above is done for expressing all the element 
characteristic matrices and vectors in one common coordinate (global coordinate) sys-
tem. The element matrices and vectors are then assembled for developing the system 
equations. The procedure of assembly is the same for all types of elements. The under-
lying principle is based on the requirement that at a common node (i.e., a node shared 
by more than one element), the nodal value must be the same for all the correspond-
ing elements. We shall describe the procedure with the help of a structural mechanics 
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example. The cross section of a prismatic bar is discretized using triangular elements 
as shown in Figure 8.6a. Element definition is given in Figure 8.6b. Each element has 
three nodes, each node has two degrees of freedom, and each element has total six 
degrees of freedom. Thus, the element stiffness matrix is of size 6 × 6, as indicated 
below:

	

[ ]( )
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( ) ( )

K e =

K K K K K K
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e e e e e e

e e
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e e e e

e e e e e e

K K K

K K K K K K
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KK K K K K K

K K K K

e e e e e e

e e e
14 24 34 44 45 46

15 25 35 45

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) (( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

e e e

e e e e e e

K K

K K K K K K
55 56

16 26 36 46 56 66































 	

(8.61)

There are a total of six nodes in the assembly and 12 degrees of freedom. Thus, 
the size of the global stiffness matrix is 12 × 12. For the purpose of assembly, the 
element stiffness matrix of each element is expanded to a matrix of size 12 × 12. 
Toward this, first local node numbers are associated with the respective global node 
numbers. Then, element stiffness matrix components are placed corresponding to the 
local degrees of freedom associated with the local nodes. All the vacant places are 
then filled with zeros (Tables 8.4 through 8.7). Thus, we have four expanded element 
stiffness matrices, which are algebraically added to obtain the global stiffness matrix. 
In a general case,

	

[ ] [ ]( )� �K K e=
=

∑
e

E

1 	

(8.62)

where
[ ]�K 	 Global stiffness matrix of size M × M
[ ]( )�K e 	 Expanded element stiffness matrix of size M × M
E		  Total number of elements
M		 Total number of degrees of freedom in the structure

In a similar way, the global vector of nodal displacements and load vectors are also 
assembled and we get the following:

	

{ } ( )� �φ φ= { }
=

∑
i

E

1

i
e

	

(8.63)

1 2

3

1

2

2

2

1

1
3 3

3

31

4 5

6

21

3

(a) (b)

4

1
2

3

2

v3
(e)

v2
(e)

u3
(e)

u2
(e)

v1
(e)

u1
(e)

e

FIGURE 8.6  Assembly of element matrices. (a) Cross section of a triangular prismatic bar discretized 
with four triangular elements. (b) Definition of the element.
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{ } ( )� �P Pi

e= { }∑
i

E

	

(8.64)

where
{ }�φ 	 Global vector of nodal displacements of size M × 1
�φ i

e( ){ }	 Expanded element vector of nodal displacements of size M × 1
{ }�P 	 Global load vector of size M × 1
�Pi

e( ){ }	 Expanded element load vector of size M × 1

TABLE 8.4
Expanded Element Stiffness Matrix for Element No. 1 (Refer Section 8.4.8)

Global Node Number 1 2 3 4 5 6

Local Node Number 1 2 – 3 – –

Global DoF 1 2 3 4 5 6 7 8 9 10 11 12

Local DoF 1 2 3 4 – – 5 6 – – – –

1 1 1 1 K11
1( ) K12

1( ) K13
1( ) K14

1( )
0 0 K15

1( ) K16
1( ) 0 0 0 0

2 2 K12
1( ) K22

1( ) K23
1( ) K24

1( ) 0 0 K25
1( ) K26

1( ) 0 0 0 0

2 2 3 3 K13
1( ) K23

1( ) K33
1( ) K34

1( ) 0 0 K35
1( ) K36

1( ) 0 0 0 0

4 4 K14
1( ) K24

1( ) K34
1( ) K44

1( ) 0 0 K45
1( ) K46

1( ) 0 0 0 0

3 – 5 – 0 0 0 0 0 0 0 0 0 0 0 0
6 – 0 0 0 0 0 0 0 0 0 0 0 0

4 3 7 5 K15
1( ) K25

1( ) K35
1( ) K45

1( ) 0 0 K55
1( ) K56

1( ) 0 0 0 0
8 6 K16

1( ) K26
1( ) K36

1( ) K46
1( ) 0 0 K56

1( ) K66
1( ) 0 0 0 0

5 – 9 – 0 0 0 0 0 0 0 0 0 0 0 0
10 – 0 0 0 0 0 0 0 0 0 0 0 0

6 – 11 – 0 0 0 0 0 0 0 0 0 0 0 0
12 – 0 0 0 0 0 0 0 0 0 0 0 0

TABLE 8.5
Expanded Element Stiffness Matrix for Element No. 2 (Refer Section 8.4.8)

Global Node Number 1 2 3 4 5 6

Local Node Number – 1 – 3 2 –

Global DoF 1 2 3 4 5 6 7 8 9 10 11 12

Local DoF – – 1 2 – – 5 6 3 4 – –

1 – 1 – 0 0 0 0 0 0 0 0 0 0 0 0
2 – 0 0 0 0 0 0 0 0 0 0 0 0

2 1 3 1 0 0 K11
2( ) K12

2( ) 0 0 K15
2( ) K16

2( ) K13
2( ) K14

2( ) 0 0

4 2 0 0 K12
2( ) K22

2( ) 0 0 K25
2( ) K26

2( ) K23
2( ) K24

2( ) 0 0

3 – 5 – 0 0 0 0 0 0 0 0 0 0 0 0
6 – 0 0 0 0 0 0 0 0 0 0 0 0

4 3 7 5 0 0 K15
2( ) K25

2( ) 0 0 K55
2( ) K56

2( ) K35
2( ) K45

2( ) 0 0

8 6 0 0 K16
2( ) K26

2( ) 0 0 K56
2( ) K66

2( ) K36
2( ) K46

2( ) 0 0

5 2 9 3 0 0 K13
2( ) K23

2( ) 0 0 K35
2( ) K36

2( ) K33
2( ) K34

2( ) 0 0

10 4 0 0 K14
2( ) K24

2( ) 0 0 K45
2( ) K46

2( ) K34
2( ) K44

2( ) 0 0

6 – 11 – 0 0 0 0 0 0 0 0 0 0 0 0
12 – 0 0 0 0 0 0 0 0 0 0 0 0
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The global stiffness matrix developed above leads us to the general system equations 
of the following form:

	 [ ]{ } { }� � �K Piφ = 	 (8.65)

We need to solve these equations to determine the values of { }�φi . However, [ ]�K  
is a singular matrix as we have not yet imposed the boundary conditions. In solid 

TABLE 8.6
Expanded Element Stiffness Matrix for Element No. 3 (Refer Section 8.4.8)

Global Node Number 1 2 3 4 5 6

Local Node Number – 1 2 – 3 –

Global DoF 1 2 3 4 5 6 7 8 9 10 11 12

Local DoF – – 1 2 3 4 – – 5 6 – –

1 – 1 – 0 0 0 0 0 0 0 0 0 0 0 0
2 – 0 0 0 0 0 0 0 0 0 0 0 0

2 1 3 1 0 0 K11
3( ) K12

3( ) K13
3( ) K14

3( ) 0 0 K15
3( ) K16

3( ) 0 0

4 2 0 0 K12
3( ) K22

3( ) K23
3( ) K24

3( ) 0 0 K25
3( ) K26

3( ) 0 0

3 2 5 3 0 0 K13
3( ) K23

3( ) K33
3( ) K34

3( ) 0 0 K35
3( ) K36

3( ) 0 0

6 4 0 0 K14
3( ) K24

3( ) K34
3( ) K44

3( ) 0 0 K45
3( ) K46

3( ) 0 0

4 – 7 – 0 0 0 0 0 0 0 0 0 0 0 0
8 – 0 0 0 0 0 0 0 0 0 0 0 0

5 3 9 5 0 0 K15
3( ) K25

3( ) K35
3( ) K45

3( ) 0 0 K55
3( ) K56

3( ) 0 0

10 6 0 0 K16
3( ) K26

3( ) K36
3( ) K46

3( ) 0 0 K56
3( ) K66

3( ) 0 0

6 – 11 – 0 0 0 0 0 0 0 0 0 0 0 0
12 – 0 0 0 0 0 0 0 0 0 0 0 0

TABLE 8.7
Expanded Element Stiffness Matrix for Element No. 4 (Refer Section 8.4.8)

Global Node Number 1 2 3 4 5 6

Local Node Number – – – 1 2 3

Global DoF 1 2 3 4 5 6 7 8 9 10 11 12

Local DoF – – – – – – 1 2 3 4 5 6

1 – 1 – 0 0 0 0 0 0 0 0 0 0 0 0
2 – 0 0 0 0 0 0 0 0 0 0 0 0

2 – 3 – 0 0 0 0 0 0 0 0 0 0 0 0
4 – 0 0 0 0 0 0 0 0 0 0 0 0

3 – 5 – 0 0 0 0 0 0 0 0 0 0 0 0
6 – 0 0 0 0 0 0 0 0 0 0 0 0

4 1 7 1 0 0 0 0 0 0 K11
4( ) K12

4( ) K13
4( ) K14

4( ) K15
4( ) K16

4( )

8 2 0 0 0 0 0 0 K12
4( ) K22

4( ) K23
4( ) K24

4( ) K25
4( ) K26

4( )

5 2 9 3 0 0 0 0 0 0 K13
4( ) K23

4( ) K33
4( ) K34

4( )
K35

4( ) K36
4( )

10 4 0 0 0 0 0 0 K14
4( ) K24

4( ) K34
4( ) K44

4( )
K45

4( ) K46
4( )

6 3 11 5 0 0 0 0 0 0 K15
4( ) K25

4( ) K35
4( ) K45

4( )
K55

4( ) K56
4( )

12 6 0 0 0 0 0 0 K16
4( ) K26

4( ) K36
4( ) K46

4( ) K56
4( ) K66

4( )
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mechanics problems, it implies that the structure undergoes rigid body movement if no 
boundary condition is imposed. Thus, boundary conditions are required to be applied 
so that the equilibrium state is achieved. As we know, there are two types of boundary 
conditions—geometric or forced or essential boundary conditions, and free or natural 
boundary conditions. It can be shown that imposition of geometric boundary conditions 
implicitly means satisfaction of free boundary conditions; thus, we need to impose only 
the geometric boundary conditions.

Several methods are available for imposing the boundary conditions. We shall briefly 
examine one such method here.

Equation 8.65 can be reframed by partitioning the square matrix and vectors as 
follows:

	

K K

K K

P

P
i1

2 3 1

1

2






















=










φ
φ 	

(8.66)

that is,

	 [ ]{ } [ ]{ } { }K K Piφ φ+ =1 1 1 	 (8.67)

and

	 [ ]{ } [ ]{ } { }K K Pi2 3 1 2φ φ+ = 	 (8.68)

where
{φi}	 Vector of unknown nodal displacements
{φ1}	 Vector of known nodal displacements (boundary conditions)
{P1}	 Vector of known nodal loads (applied forces)
{P2}	 Vector of unknown nodal loads (reactions)

Equation 8.67 gives us

	 [ ]{ } { }K Piφ = 	 (8.69)

which is the final system equation to be solved. Here,
[K]	 Modified stiffness matrix
{φi}	 Modified vector of nodal displacements (to be determined)
{P}	 Modified vector of applied nodal loads given by

{P} = {P1} − [K1]{φ1}

The nodal reactions are obtained from Equation 8.68.
Note that we have considered an equilibrium problem of structural mechanics for 

demonstrating the procedure of assembly and imposition of boundary conditions. 
In the case of other types of problems, in principle, the procedure remains the same 
with suitable changes.

8.4.9  Solution Methods

The finite element formulations lead to the development of a large number of 
simultaneous algebraic equations that are required to be solved for the determination 
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of the unknown nodal values. Several solution methods suitable for different types of 
problems have been developed. Some of the commonly used methods are as follows:

◾◾ Equilibrium problems
−− Gaussian elimination method
−− Choleski method

◾◾ Eigenvalue problems
−− Transformation methods, for example, Jacobi method
−− Iterative methods, for example, power method and Rayleigh–Ritz subspace 

method
◾◾ Transient problems

−− Runge–Kutta method, Adams–Moulton method, etc.

Equilibrium problems are of the following general form:

	 [ ]{ } { }A x b= 	 (8.70)

where [A] is a square matrix and {x} and {b} are vectors of which {x} is to be 
determined.

In the Gaussian elimination method, the system of equations are transformed into 
an equivalent form

	 [ ]{ } { }′ ′=A x b 	 (8.71)

where [A′] is an upper triangular matrix (i.e., a square matrix with nonzero elements in 
the diagonal and above and all zeros below the diagonal). So,
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(8.72)

Then the system of equations can be easily solved by back-substitution.
In the Choleski method, the square matrix is expressed as a multiple of a lower 

triangular matrix and a unit upper triangular matrix, that is, the system equations are 
written as

	 [ ][ ]{ } { }L U x b= 	 (8.73)

where
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(8.74)
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and,
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(8.75)

For solving, [U]{x} is replaced by a vector {z}, that is,

	 [ ]{ } { }U x z= 	 (8.76)

which implies

	 { }{ } { }L z b= 	 (8.77)

First, [L] being a lower triangular matrix, {z} is readily solved and then, {x} is 
obtained by back-substitution.

Eigenvalue problems are of the following general form:

	 ([ ] [ ]){ } { }A B x− =λ 0 	 (8.78)

Here, [A] and [B] are square matrices, λ is the eigenvalue, and {x} is the eigenvec-
tor. In buckling problems, [A] is the stiffness matrix, [B] is the geometric stiffness 
matrix, λ is the buckling factor, and {x} is the mode shape of buckling displacements. 
On the other hand, in free vibration problems, [A] is the stiffness matrix, [B] is the mass 
matrix, λ is the square of natural frequency, and {x} is the mode shape of the vibrat-
ing body. A meaningful solution to Equation 8.78 can be obtained when {x} ≠ {0} for 
which the determinant of the square matrix has to be equated to zero. Thus, the eigen-
values are determined from the following:

	 | − |=[ ] [ ]A Bλ 0 	 (8.79)

In the expanded form,

	

a b a b a b
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�
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nn n nn nnb a b2 2

0

− −

=

� λ 	

(8.80)

It results in an algebraic equation, called the characteristic equation, of nth degree 
for λ. The n roots of this equation are the eigenvalues. For each eigenvalue, the ratios 
of the components of the eigenvector can be determined. Note that the eigenvector 
corresponding to an eigenvalue is not unique and it gives only a shape.

There are two types of methods for solving eigenvalue problems—transformation 
methods and iterative methods. Transformation methods are useful for finding all the 
eigenvalues and eigenvectors. The Jacobi is a commonly used transformation method 
that is based on principles of linear algebra. On the other hand, iterative methods are 
useful for finding limited number of eigenvalues and eigenvectors. For example, the 
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power method allows one to determine the largest eigenvalue and the correspond-
ing eigenvectors, whereas the Rayleigh–Ritz method is used for finding the lowest 
eigenvalue and the corresponding eigenvectors.

The transient or propagation problems are time-dependent and they are expressed as 
a set of simultaneous linear differential equations, as follows:

	 [ ]{ } [ ]{ } [ ]{ } { }A x B x C x P+ + =� �� 	 (8.81)

In transient vibration problems, [A] is the stiffness matrix, [B] is the damping matrix, 
and [C] is the mass matrix. The vector {P} is the vector of spatial and time-dependent 
external loads. Numerical integration methods such as Runge–Kutta method are used 
for obtaining solution of these problems.

8.5  BASIC FINITE ELEMENT PROCEDURE
The FEM is a highly versatile method useful for solving a very wide variety of problems. 
It is a vast subject that incorporates concepts from various fields such as mathemat-
ics, solid mechanics, fluid mechanics, heat transfer, and so on. The basic principle, 
however, is simple and it works in a very orderly manner.

In the FEM, the domain or the body is divided into a finite number of elements. 
Certain basic field variables, for example, displacement or temperature, is identified 
for the physical problem. The actual variation of the field variable within the body is 
unknown and its determination is the first objective. However, instead of determining 
the continuous variation, the values of the field variable at the nodes are determined 
and the actual variation is approximated within each element by some simple approxi-
mating function. Also, the loads and boundary conditions are applied at the nodes. For 
each element, an element characteristic matrix is obtained by using certain variational 
principle or equilibrium condition. Now, the focus is shifted from individual elements 
to the entire body and the field equations are written for the body. Toward this, the ele-
ment characteristic matrices are assembled to form global field equations. The nodal 
values of the field variable are obtained by solving these field equations from which 
other desired information is extracted.

It can be seen from the above that the basic procedure of the FEM has broadly five 
steps as follows:

Step 1: Discretization or mesh generation—This is the first step in the analysis of 
a structure or a domain by using FEM.

Step 2: Element formulation
◾◾ Identification of variables
◾◾ Selection of approximating function
◾◾ Formation of element characteristic matrix

	   The next step is element formulation, in which the finite element equations 
are developed for each element leading to the generation of element charac-
teristic matrix. Toward this, first, the field variables are identified. For stress 
analysis problems, displacement is the basic field variable around which ele-
ment equations are developed. Second, the approximating function (mostly 
polynomial function) is chosen. Third, the element characteristic matrix and 
load vector for each element are derived.

Step 3: Assembly
◾◾ Transformation of element characteristic matrices
◾◾ Incorporation of boundary conditions
◾◾ Formation of global characteristic matrix
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	   Once the element equations are developed, the focus is shifted to the entire body 
or domain and the element characteristic matrices are appropriately assembled. 
Element characteristic matrices, developed in the local coordinate systems, are 
transformed to the global coordinate system before carrying out assembly. Then, 
boundary conditions are imposed and the final global equations are developed.

Step 4: Solution—The final global equations are solved as discussed in Section 
8.4.9. The solution process is a straightforward step in linear problems, where 
it is a one-step process. However, in nonlinear problems, the loads are applied 
in several substeps and solutions are obtained for each of these substeps. For 
each substep, the configuration of the body or domain is modified as per the 
output of the solution of the previous substep and the process is continued till 
the final level of loads.

Step 5: Generation of output—The final step in the finite element procedure is the 
generation of output. Solution in respect of the basic field variable, for example, 
displacements in stress analysis problems, is utilized to generate other useful 
data such as strains, stresses, etc.

8.6  DEVELOPMENT OF ELEMENTS
With the knowledge of basic concepts in the FEM, we now consider the develop-
ment of finite elements in some limited number of specific cases. We shall restrict our 
discussion to the stress analysis of the following:

◾◾ One-dimensional
−− Bar element
−− Torsion element
−− Planar beam element
−− General beam element

◾◾ Two-dimensional
−− Rectangular membrane element
−− Rectangular bending plate element
−− Rectangular general plate element
−− Rectangular general plate element with layered composites

8.6.1  One-Dimensional Elements

8.6.1.1  Bar Element

A bar element is a 1D element with only one degree of freedom at each node. Thus, it 
allows axial extension or compression but no lateral translation or rotation. Figure 8.7 
describes the bar element. Only one coordinate axis is needed to describe the element 
and the element coordinate system is defined by the x-axis along the axial direction 

1

2
u2

u1

Z
Y

X

x l

FIGURE 8.7  Bar element.
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of the element and its origin at node 1. The length of the element is l and the cross-
sectional area is A. The total number of degrees of freedom in the element is two and 
we consider a polynomial function with two polynomial coefficients as follows:

	 u x a a x( ) = +1 2 	 (8.82)

In line with the finite element procedure, we express the displacement in terms of 
shape functions and nodal displacements as follows:

	
{ ( )} [ ] ( )u x = { }N i

eφ
	

(8.83)

Note that sizes of the displacement vector {u(x)}, shape function matrix [N], and 
nodal displacement vector φi

e( ){ } are {u(x)} → 1 × 1, [N] → 1 × 2, and φi
e( ){ }→ ×2 1. 

Now, with a view to deriving the expression of the shape function matrix, we write the 
displacement vector as follows:

	
{ ( )} [ ]u x x
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(8.84)

The nodal values are φ1
( )e  and φ2

( )e , that is, φ1 0( ) ( )e u=  and φ2
( ) ( )e u l= . The vector of 

nodal values φi
e( ){ } is given by
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(8.85)

or
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(8.86)

Substituting Equation 8.86 in Equation 8.84, we get

	
{ ( )} [ ] ( )u x x
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(8.87)

Comparing Equation 8.83 with Equation 8.87, we obtain the expression for the 
matrix of shape functions as
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(8.88)

From Equation 8.48, we know
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(8.89)
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For 1D problem, the strain vector is given by

	
εxx
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(8.90)

which, together with Equation 8.33, gives us
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(8.91)

Thus,
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(8.92)

For 1D problem with isotropic material, the material stiffness matrix is given by 
[C] = [E], where E is the Young’s modulus. Then, the element stiffness matrix is 
obtained as
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(8.93)

that is,

	
[ ]( )K e =
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


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

AE

l

1 1

1 1 	
(8.94)

Note that the total number of degrees of freedom for the element is two and the size 
of the element stiffness matrix is (2 × 2). Further, the element stiffness matrix devel-
oped above is in the local coordinate system. It has to be transformed to the global 
coordinate system, as discussed in Section 8.4.7, before carrying out assembly.

EXAMPLE 8.1

Find the stress at mid-height of the axially loaded bar shown in Figure 8.8a. 
Take Young’s modulus of the bar material as E = 70 GPa.

Solution

The bar is discretized using three elements as shown in Figure 8.8b.
Element stiffness matrices are calculated as follows (Equation 8.94):

1

2

3

4
3

2

1

(b)(a)

D

C

B

A
70 mm (A = 900 mm2)

70 mm (A = 400 mm2)

70 mm (A = 100 mm2)

100 N

FIGURE 8.8  Axially loaded stepped bar (Example 8.1). (a) Details of the bar. (b) Discretization of the bar.



428 Composite Structures

	
K( )1[ ]= × −

−











 =

−
−











×

900 70 000
70

1 1

1 1

9 9

9 9
105,

	

	
[ ]K ( ) ,2 =

× −
−











 =

−
−











×

400 70 000
70

1 1

1 1

4 4

4 4
105

	

	
[ ]( )K 2 =

× −
−











 =

−
−











×

100 70 000
70

1 1

1 1

1 1

1 1
105,

	

The assembly of the element stiffness matrices, before imposition of boundary 
conditions, is done as follows:
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Similarly, the nodal displacement vector and the nodal load vector, before the 
imposition of boundary conditions, are
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The equilibrium equations before the imposition of boundary conditions are 
given by
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The known boundary condition is φ1 = 0. Using Equations 8.66 through 8.68, 
the above equation is reframed as follows:
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We see that the final global stiffness matrix, nodal displacement vector, and 
load vector are
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Thus, the final equilibrium equations are given by
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Solving the above equations, we get the nodal displacements and support reaction 
as follows:
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and

	 R1 100= − N 	

For Element 2, matrix [B] is given by (Equation 8.92)
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And, the strain vector is given by
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The corresponding stress is given by

	 { } [ ]{ }σ ε= = − × × × = −−C ( ) ( . ) .70 10 3 57 10 0 253 6 MPa 	

8.6.1.2  Torsion Element

A torsion element (Figure 8.9) is a 1D element with only one degree of freedom at each 
node. Thus, it allows rotation about its own axis but no axial extension or compression or 
lateral translation. The element coordinate system is defined by the x-axis along the axial 
direction of the element and its origin at node 1. The length of the element is l and the 
cross-sectional area is A. The total number of degrees of freedom in the element is two 
and we consider a polynomial function with two polynomial coefficients as follows:

	 θx x a a x( ) = +1 2 	 (8.95)

The torsional displacement (angle of twist) is expressed in terms of shape functions 
and nodal displacements as follows:

	
{ } [ ]( ) ( )θx x = { }N i

eφ
	

(8.96)

Then, adopting the same procedure as that used in the case of bar element, we can 
show that the matrix of shape functions is

	
[ ]N =

−











l x

l

x

l 	
(8.97)

The strain–displacement relation, however, is marginally different. Assuming a cir-
cular cross section, the strain vector at a distance r from the axis can be expressed as

	
{ } { }( )ε =

∂
∂
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(8.98)

which gives us
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Thus,
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For 1D torsional problem with isotropic material, the material stiffness matrix is 
given by [C] = [G], where G is the shear modulus. Now, the element stiffness matrix is 
given by Equation 8.48, as follows:

	

[ ] [ ] [ ][ ]( )

( )

K B C Be =







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V e
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(8.101)

which leads to
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that is,

	
[ ]( )K e =

−
−













GJ

l

1 1

1 1 	
(8.103)

Note: J r dAA= ∫∫ 2  is the polar moment of inertia.

8.6.1.3  Planar Beam Element

In this section, we consider a planar beam element that allows lateral translation and 
rotation. Thus, it can resist bending moment in one principal plane containing the lon-
gitudinal axis. It has two nodes and two degrees of freedom at each node. Figure 8.10 
describes the beam element. As in the cases of the bar element and torsion element, 
here too only one coordinate axis is needed to describe the element and the element 
coordinate system is defined by the x-axis along the axial direction of the element and 
its origin at node 1. The length of the element is l and the cross-sectional area is A. The 
bending plane is taken as the xy-plane. The element nodal displacement vector is as 
follows:
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FIGURE 8.10  Planar beam element.
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The basic variable is identified as v(x). Note that the rotation θz(x) is not independent 
and it can be expressed in terms of the other independent displacement as follows:

	
θz x

v x

x
( )

( )
=

∂
∂ 	

(8.105)

The total number of degrees of freedom is four, that is, n = 4 and we consider a 
polynomial function with four polynomial coefficients, as follows:

	 v x a a x a x a x( ) = + + +1 2 3
2

4
3

	 (8.106)

The displacement, in terms of shape functions and nodal displacements, is given by

	
{ ( )} [ ] ( )v x = { }N i

eφ
	

(8.107)

Note that sizes of the displacement vector, shape function matrix, and nodal dis-
placement vector are {v(x)} → 1 × 1, [N] → 1 × 4, and φi

e( ){ }→ ×4 1. Now, with a 
view to deriving the expression of the shape function matrix, we write the displacement 
vector as follows:
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The nodal values are φ1 0( ) ( )e v= , φ θ2 0( ) ( )e
z= , φ3

( ) ( )e v l= , and φ θ4
( ) ( )e

z l= . Then, 
using Equations 8.104, 8.105, and 8.108, the vector of nodal values φi

e( ){ } is expressed as
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or
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Substituting Equation 8.110 in Equation 8.108, we get
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Comparing Equation 8.107 with Equation 8.111, we obtain the expression for the 
matrix of shape functions as

	

[ ] [ ]N =
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(8.112)

After carrying out the algebra involved in the above expression, we can show that 
the shape functions are given by

	
[ ] [( ) ( ) ( ) ( )]N = − + − + − + −

1
2 3 2 2 3

3
3 2 3 3 2 2 3 3 2 3 2 2

l
x lx l lx l x l x x lx lx l x

� (8.113)

From basic beam theory, the strain–displacement relation can be expressed as

	
εxx y
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(8.114)

or in the matrix form
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which gives us
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Thus
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Using Equation 8.113 in Equation 8.117, we get

	
[ ] [( ) ( ) ( ) ( )]B = − − − + −

y

l
x l lx l x l lx l

3
2 212 6 6 4 12 6 6 2

	
(8.118)

For 1D bending problem with isotropic material, the material stiffness matrix is 
given by [C] = [E], where E is the Young’s modulus. Now, the element stiffness matrix 
is given by Equation 8.48, as follows:
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which leads to

	

[ ]( )K e =

−
−

− +
−










∫∫ ∫y dA

l

x l

lx l
x l

lx l
A

l

2

0

6

2

2

1

12 6

6 4
12 6

6 2











−
−

− +
−











[ ]E

x l

lx l
x l

lx l

12 6

6 4
12 6

6 2

2

2












T

dx

	

(8.120)

Upon carrying out the algebraic manipulation involved in the above expression and 
noting that I y dAzz A= ∫∫ 2  is the area moment of inertia about the z-axis, we can show that
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8.6.1.4  General Beam Element

In this section, we consider a general beam element (Figure 8.11) that allows axial exten-
sion or compression, lateral translation, and rotation. Thus, it can resist axial force, bend-
ing moments in the two principal planes containing the longitudinal axis, and twisting 
moment about its longitudinal axis. It has two nodes and six degrees of freedom at each 
node. As in the case of the bar element, here too only one coordinate axis is needed to 
describe the element and the element coordinate system is defined by the x-axis along 
the axial direction of the element and its origin at node 1. The length of the element is l 
and the cross-sectional area is A. The element nodal displacement vector is as follows:
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The basic variables are identified as u(x), v(x), w(x), and θx(x). Note that there are two 
more rotations, θy(x) and θz(x), but they are not independent and can be expressed in 
terms of the other independent displacements as follows:
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The total number of degrees of freedom is 12, that is, n = 12, and we consider the 
following polynomial functions with 12 polynomial coefficients, as follows:
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Note that there are four independent displacements: u(x), v(x), w(x), and θx(x). The poly-
nomial functions for these displacements are the same as discussed in the previous 
three cases and the element stiffness matrix can actually be derived by appropriate 
superposition. For ready reference, let us write the element stiffness matrices for bar, 
torsion, and planar beam elements below:
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where
Ka

e( )



	� Element stiffness matrix for bar element (with elements Ka

e
11

( ) , Ka
e
12

( ) , and 

Ka
e
22

( ) )
Kt

e( )



	� Element stiffness matrix for torsion element (with elements Kt

e
11
( ), Kt

e
12
( ), 

and Kt
e
22

( ) )
Kxy

e( )



	� Element stiffness matrix for planar bending element in the xy-plane (with 

elements Kxy
e
11

( ) , Kxy
e
12

( ) , …, Kxy
e

44
( ) )

Kxz
e( )



	� Element stiffness matrix for planar bending element in the xz-plane (with 

elements Kxz
e
11

( ) , Kxz
e
12

( ) , …, Kxz
e
44

( ) )



436 Composite Structures

The element stiffness matrix for bar element Ka
e( )



 is associated with the axial dis-

placements φ1 1
( )e u=  and φ7 2

( )e u= , which correspond to the first and seventh rows in 
the element displacement vector (Equation 8.122). Thus, in the superimposed matrix, 
the elements of Ka

e( )



 are placed in the first and seventh rows and columns. In a simi-

lar way, the elements of Kt
e( )



, Kxy

e( )



, and Kxz

e( )



 are placed, and the final element stiff-

ness matrix for a general beam element is obtained as given in Table 8.8.

8.6.2  Two-Dimensional Elements

8.6.2.1  Rectangular Membrane Element

A rectangular membrane element (Figure 8.12) is a 2D element. It is considered to lie 
in the xy-plane. The element coordinate system is defined by x- and y-axes along the 
longitudinal and lateral directions, respectively, and its origin at node 1. The length 
and breadth of the element are l and b, respectively, and the thickness is h. There are 
two degrees of freedom at each node and the element allows in-plane extension or 
compression but no transverse translation or rotation.

The basic variables are identified as u = u(x,y) and v = v(x,y). The total number of 
degrees of freedom in the element is eight and we consider polynomial functions with 
eight polynomial coefficients as follows:
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FIGURE 8.12  Rectangular membrane element.

TABLE 8.8
Stiffness Matrix of a General Beam Element

φ1
( )e φ2

( )e φ3
( )e φ4

( )e φ5
( )e φ6

( )e φ7
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or
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v x y
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

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= g a
	

(8.130)

where [g(x,y)] is a matrix (size: 2 × 8) of polynomial variables and {a} is a vector (size: 
8 × 1) of polynomial coefficients that are given by

	
[ ( , )]g x y

x y xy

x y xy
=





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
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(8.131)

and

	

{ }a =





















a

a

a

1

2

8

�

	

(8.132)

The nodal displacement vector for the element is as follows:
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Then, using Equations 8.130 and 8.133, the vector of nodal displacements φi
e( ){ } and 

the vector of polynomial coefficients {a} can be related as

	
φ φi

e
i
eX a a X( ) ( )[ ]{ } { } [ ]{ }= = { }−or 1

	
(8.134)

where
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Substituting Equation 8.134 in Equation 8.130, we get
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The displacements, in terms of shape functions and nodal displacements, are 
given by
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(8.137)

Comparing Equation 8.136 with Equation 8.137, we can express the matrix of shape 
functions as

	 [ ] [ ( , )][ ]N g X= −x y 1

	 (8.138)

Note that the size of the shape function matrix [N] is 2 × 8.
From basic plate theory, the strain–displacement relation can be expressed as
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(8.139)

which can also be written as
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which gives us
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(8.141)

where
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Using Equation 8.138 in Equation 8.142, we get

	

[ ] [ ( , )][ ]B g X=

∂
∂

∂
∂

∂
∂

∂
∂































−

x

y

y x

x y

0

0 1

	

(8.143)

After carrying out the partial differentiation on [g(x,y)], we can show that

	 [ ] [ ( , )][ ]B G X= −x y 1

	 (8.144)

where

	

[ ( , )]G x y
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x y
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
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(8.145)

For 2D membrane problem with isotropic material, the material stiffness matrix is 
given by

	

[ ]C =
− −
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ν
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(8.146)

where E and ν are the Young’s modulus and Poisson’s ratio, respectively. Now, the 
element stiffness matrix is given by Equation 8.48, as follows:

	

[ ] [ ] [ ][ ]( )

( )

K B C Be =






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(8.147)

or

	

[ ] [ ] [ ][ ]( )K B C Be = ∫ ∫h dx dy

b l

T

0 0 	

(8.148)

Note that in the above expression, [C] is a known matrix of size 3 × 3. [B] is given by 
Equation 8.144 in terms of element coordinates (x,y) and element length and breadth (l,b). 
Clearly, upon integration, we get [K(e)] in terms of the element dimensions (l,b,h) and mate-
rial properties (E,ν). Note further that the size of [B] is 3 × 8 and that of [K(e)] is 8 × 8.

8.6.2.2  Rectangular Bending Plate Element

A rectangular bending plate element (Figure 8.13) is a 2D element. It is considered to 
lie in the xy-plane. The element coordinate system is defined by x- and y-axes along 
the longitudinal and lateral directions, respectively, and its origin at node 1. The length 
and breadth of the element are l and b, respectively, and the thickness is h. There 
are three degrees of freedom at each node and the element allows transverse (out-of-
plane) translation and rotations about the x- and y-axes but no in-plane extension or 
compression and rotation about the z-axis.
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The basic variable is identified as w(x,y). Note that the rotations θx(x,y) and θy(x,y) are not 
independent and they can be expressed in terms of the independent displacement as follows:

	
θ θx yx y

w x y

y
x y

w x y

x
( , )

( , )
( , )

( , )
=

∂
∂

=
∂

∂
and

	
(8.149)

The total number of degrees of freedom in the element is 12 and we consider a 
polynomial function with 12 polynomial coefficients as follows:

	

w x y a a x a y a x a xy a y a x a x y a xy
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( , ) = + + + + + + + +

+ +
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111
3

12
3x y a xy+ 	(8.150)

or

	 { ( , )} [ ( , )]{ }w x y x y= g a 	 (8.151)

where [g(x,y)] is a matrix (size: 1 × 12) of polynomial variables and {a} is a vector 
(size: 12 × 1) of polynomial coefficients that are given by

	 [ ( , )] [ ]g x y x y x xy y x x y xy y x y xy= 1 2 2 3 2 2 3 3 3

	 (8.152)

and
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The nodal displacement vector for the element is as follows:
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FIGURE 8.13  Rectangular bending plate element.
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Using Equations 8.149 and 8.150 in Equation 8.154, the vector of nodal displace-
ments φi

e( ){ } and the vector of polynomial coefficients {a} can be related as
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where
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Substituting Equation 8.155 in Equation 8.151, we get

	
{ ( , )} [ ( , )][ ] ( )w x y x y= { }−g X i

e1 φ
	

(8.157)

The displacements, in terms of shape functions and nodal displacements, are also 
given by

	
{ ( , )} [ ] ( )w x y = { }N i

eφ
	

(8.158)

Comparing Equation 8.158 with Equation 8.157, we obtain the matrix of shape 
functions as

	 [ ] [ ( , )][ ]N g X= −x y 1

	 (8.159)

Note that the size of the shape function matrix [N] is 1 × 12.
From basic plate-bending theory, the strain–displacement relation can be 

expressed as
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which can also be written as

	

{ }ε = −

∂
∂
∂
∂

∂
∂ ∂




















z

x

y

x y

2

2

2

2

2

2



{ ( , )}w x y

	

(8.161)

which, in turn, gives us
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Thus,
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After carrying out the partial differentiation on [g(x,y)], we can show that

	 [ ] [ ( , )][ ]B G X= −x y 1

	 (8.164)

where
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For 2D plate problem with isotropic material, the material stiffness matrix is given by
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where E and ν are the Young’s modulus and Poisson’s ratio, respectively. Now, the 
standard expression for the element stiffness matrix is given by Equation 8.48, as 
follows:
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Note that here we have to replace [B] with −z[B] (Equation 8.162). Then, we can 
write

	

[ ] [ ] [ ][ ]( )

/
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h
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(8.168)

or

	

[ ] [ ] [ ][ ]( )K B C Be = ∫ ∫h
dx dy

b l

T
3

0 0
12

	

(8.169)

Note that in the above expression, [C] is a known matrix of size 3 × 3. [B] is given 
by Equation 8.164 together with Equations 8.156 and 8.165 in terms of element coordi-
nates (x,y) and element length and breadth (l,b). Clearly, upon integration, we get [K(e)] 
in terms of the element dimensions (l,b,h) and material properties (E,ν). Note further 
that the size of [B] is 3 × 12 and that of [K(e)] is 12 × 12.

8.6.2.3  Rectangular General Plate Element

A rectangular general plate element (Figure 8.14) is a 2D element. It is considered to 
lie in the xy-plane. The element coordinate system is defined by x- and y-axes along the 
longitudinal and lateral directions, respectively, and its origin at node 1. The length and 
breadth of the element are l and b, respectively, and the thickness is h. There are five 
degrees of freedom at each node—three translations and two rotations. This element 
can be considered as a combination of the previous two plate elements, viz. rectangular 
membrane plate element and rectangular bending plate element. The basic variables are 
identified as u(x,y), v(x,y), and w(x,y). As we know, the rotations θx(x,y) and θy(x,y) are 

1

3 2
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FIGURE 8.14  Rectangular general plate element.
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not independent and they can be expressed in terms of the independent displacement 
as follows:

	
θ θx yx y

w x y

y
x y

w x y

x
( , )
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( , )
=

∂
∂

=
∂

∂
and

	
(8.170)

The total number of degrees of freedom in the element is 20 and we consider poly-
nomial functions with 20 polynomial coefficients as follows:
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or
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where [g(x,y)] is a matrix (size: 3 × 20) of polynomial variables and {a} is a vector 
(size: 20 × 1) of polynomial coefficients that are given by
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and
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The nodal displacement vector for the element is as follows:
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Using Equations 8.170 and 8.171 in Equation 8.175, the vector of nodal displace-
ments φi

e( ){ } and the vector of polynomial coefficients {a} can be related as
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(8.176)

where
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and {a} is a vector of size 20 × 1 as indicated by Equation 8.174.
Substituting Equation 8.176 in Equation 8.172, we get
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The displacements, in terms of shape functions and nodal displacements, are also 
given by
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Comparing Equation 8.178 with Equation 8.179, we obtain the matrix of shape 
functions as

	 [ ] [ ( , )][ ]N g X= −x y 1

	 (8.180)

Note that the size of the shape function matrix [N] is 3 × 20.
For a plate under membrane and bending displacement, the strain–displacement 

relation can be expressed as
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where the in-plane strains and curvatures, respectively, are given by
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Then, the strain–displacement relations can be written as
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where [∂(z)] is a matrix of partial differential operators and it is given by
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Note that [∂(z)] is a function of z. Equation 8.184, in turn, gives us

	
{ } [ ( )][ ] [ ]( ) ( )ε φ φ= { }= { }∂ z N Bi
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Thus,

	 [ ] [ ( )][ ] [ ( )][ ( , )][ ]B N g X= = −∂ ∂z z x y 1

	 (8.187)

After carrying out the partial differentiation on [g(x,y)], we can show that

	 [ ] [ ( , , )][ ]B G X= −x y z 1

	 (8.188)
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where
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For 2D plate problem with isotropic material, the material stiffness matrix is given by
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where E and ν are the Young’s modulus and Poisson’s ratio, respectively. Now, the stan-
dard expression for the element stiffness matrix is given by
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Note that [B] is a function of x, y, and z. Then, we can write
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Note that in the above expression, [C] is a known matrix of size 3 × 3. [B] is given 
by Equation 8.188 together with Equations 8.177 and 8.189 in terms of element coordi-
nates (x,y,z) and element length and breadth (l,b). Clearly, upon integration, we get [K(e)] 
in terms of the element dimensions (l,b,h) and material properties (E,ν). Note further 
that the size of [B] is 3 × 20 and that of [K(e)] is 20 × 20.

8.6.2.4  Rectangular General Plate Element with Laminated Composites

So far, we have considered the development of elements with isotropic material. In this 
section, we discuss the development of the element stiffness matrix of a general plate 
element with layered composites. Element description is the same as in the case of 
rectangular general plate element. While the treatment of the strain–displacement 
relation needs some special attention, other details such as number of nodes, degrees 
of freedom, approximation functions, shape functions, etc. are similar to those pre-
sented in Section 8.6.2.3. However, for the sake of completeness and ready reference, 
we mention some of the key expressions.

The basic field variables are expressed as follows:
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where [g(x,y)] is of size 3 × 20, given by Equation 8.173, and {a} is vector of size 
20 × 1, given by Equation 8.174.

The nodal displacement vector φi
e( ){ } is of size 20 × 1 and it is related to the vector 

{a} as follows:
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where [X] is given by Equation 8.177.
Substituting Equation 8.194 in Equation 8.193, we get
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The strain–displacement relation needs some attention; it can be expressed as
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where [∂] is a matrix of partial differential operators and it is given by
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Substituting Equation 8.195 in Equation 8.196, we find
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After carrying out the partial differentiation on [g(x,y)], we can show that
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where G(x,y) is given by
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Now, we need to bring in some considerations from mechanics of laminated 
composites. The constitutive relation for laminated composites is given by (refer 
Equation 5.43, Chapter 5):
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where
{N}	� Vector of force resultants (note that in this section, N is not used as the 

matrix of shape functions)
{M}	 Vector of moment resultants
[A]	 Extensional stiffness matrix
[B]	� Extension-bending coupling stiffness matrix (note that in this section, B is 

not used as the strain–displacement matrix)
[D]	 Bending stiffness matrix

Let us now consider the strain energy of the element due to applied loads, which is 
given by
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The vector {ε} consists of two parts—mid-plane strains {ε0} and curvature {κ}. 
Then, we write the strain energy expression as
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Note that the stress resultants are given by
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Then, with some matrix operations, it can be shown that the strain energy expression 
reduces to
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Substituting Equation 8.201 in the above expression, we get
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which, with the help of Equation 8.199, becomes
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The total strain energy of the body due to applied loads is obtained as
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The strain energy expression in the above equation represents the first component 
of the total potential energy of the body given by Equation 8.35. To derive the element 
stiffness matrix, we can substitute this and minimize the potential energy. Alternatively, 
simply by comparison, we can conclude that expression inside the large square brackets 
is the stiffness matrix of the body and the element stiffness matrix is
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Note that in the above expression, [A], [B], and [D] are known matrices (each of size: 
3 × 3) that depend on the orthotropic material properties and ply sequence. [G(x,y)] 
(size: 6 × 20) is given by Equation 8.200 in terms of element coordinates (x,y). [X] has 
a size of 20 × 20 and it involves element length and breadth (l,b). Clearly, upon integra-
tion, we get [K(e)] in terms of the element dimensions (l,b) and material properties A, B, 
and D. Note further that the size of [K(e)] is 20 × 20.

8.7  SUMMARY
In this chapter, we provided a brief discussion on the FEM. It is a vast subject and a ver-
satile tool useful for solving virtually any kind of problem in any field; we had a look at 
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the essential concepts that are needed to understand the general procedure. The concept 
of elements is what makes this method unique and versatile. The body or domain is 
discretized into an assemblage of elements, finite element equations are developed for 
the individual elements and global equations are obtained by assembly of the elements 
and imposition of boundary conditions. On solving the global equations and further 
postprocessing, we get the desired results. The formulation of element equations is the 
central concept, for which primarily three approaches can be adopted. In this chapter, 
we used the variational approach and demonstrated the development of elements in 
some of the common 1D and 2D cases including laminated composites.

EXERCISE PROBLEMS

	 8.1	 A rectangular plate with two holes under uniform uniaxial tension is shown in 
Figure 8.15. Discretize the plate using triangular elements. Take advantage of 
symmetry wherever applicable.

	 8.2	 Consider a bar element as shown in Figure 8.16. Determine the matrix of shape 
functions for the following polynomial function:

	 u x a a x a x( )= + +1 2 3
2

	

	 8.3	 Consider an aluminum rod (Figure 8.17a) subjected to an axial tensile force of 
12 kN. Discretize the rod using four 1D elements and determine the extension 
and stresses. Assume E = 70 GPa.

	 8.4	 Solve the problem in Exercise 8.3, if the cross section gradually changes 
(Figure 8.17b). Use four constant cross section 1D elements for discretization.

	 8.5	 Write a code in MATLAB/C/C++ for the problems in Exercises 8.3 and 8.4. 
Discretize with more number of elements and compare the results.

	 8.6	 Consider the rod in Exercise 8.3. If the rod is free at both the ends (Figure 8.17c) 
and it is pulled at either end by equal tensile force of 25 kN, determine the 
axial displacements and stresses. Discretize the rod using four 1D elements of 
constant cross-sectional diameter.

FIGURE 8.15  Rectangular plate with two holes (Exercise 8.1).

1

3
2

u1

u2

l/2

u3

x

l

FIGURE 8.16  Bar element with three nodes (Exercise 8.2).
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�Hint: The half-way cross section, that is, the cross section at a distance of 
200 mm from any end, remains stationery.

	 8.7	 Consider a steel rod of length 300 mm and diameter 6 mm fixed at one end. 
If the torque is 2 kN.mm, determine the shear stress at the fixed end. Discretize 
the rod using three 1D elements. Assume G = 77 GPa.

Hint: Use Equation 8.99 for shear strain.

	 8.8	 Consider the structure shown in Figure 8.18. The structure is discretized 
with three planar beam elements as shown. Determine the element stiffness 
matrices, and carry out transformation and assembly operations to find the 
global stiffness matrix. If a point load of 0.5 kN is applied, determine the 
nodal displacements and stresses. The cross section of the structural member 
is circular with a radius of 25 mm. Assume E = 200 GPa and ν = 0.3.

�Hint: Use a mathematical interactive tool such as MATLAB for carrying out 
the matrix operations.

	 8.9	 Write a code in MATLAB/C/C++ to find the element stiffness matrix of a 
general beam element (see Section 8.6.1.4) and associated general displace-
ments, strains, and stresses.

	8.10	 Consider a cantilever beam with geometrical details as given in Figure 8.17a. 
A point load of 30 kN, oriented at 45° to all the three axes, is applied at the 
free end. Discretize the beam using four 1D general elements and determine 
the following:

	 a.	 Size of the global stiffness matrix after incorporating the boundary 
conditions

	 b.	 Global displacement vector after incorporating the boundary conditions
	 c.	 Global load vector after incorporating the boundary conditions

135°

2 m

4 m

0.5 kN

FIGURE 8.18  Planar structure with one-dimensional elements (Exercise 8.8).

(a)

(b)

(c)

r = 9 mm r = 5 mm

r = 8 mm

r = 8 mm
800 mm 25 kN

25 kN

25 kN25 kN

800 mm

800 mm

FIGURE 8.17  Rod under uniaxial tensile force (Exercises 8.3 through 8.6). (a) Constant cross section 
rod with one end free. (b) Varying cross section rod with one end free. (c) Constant cross section rod with 
both ends free.
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	8.11	 Use the code developed in Exercise 8.9 and solve the problem in Exercise 8.10 
for displacements, strains, and stresses.

	8.12	 Consider a rectangular membrane element of size 10 mm × 8 mm. Determine 
(i) strain–displacement matrix [B], (ii) material stiffness matrix [C], and 
(iii)  element stiffness matrix [K(e)]. What are the sizes of these matrices? 
Assume t = 0.5 mm, E = 200 GPa, and ν = 0.3.

�Hint: Use an interactive mathematical tool such as MATLAB for doing matrix 
operations.

	8.13	 Solve the problem in Exercise 8.12 for a rectangular bending plate element.
	8.14	 In Equations 8.173, 8.177, and 8.189, the matrices [g(x,y)], [X], and [G(x,y,z)] 

are given partially. Write these matrices in their full form.

�Hint: The sizes of the matrices are indicated in the corresponding equations.

	8.15	 Solve the problem in Exercise 8.12 for a rectangular general plate element.
	8.16	 Write a code in MATLAB/C/C++ solving a general plate element problem. 

The output of the code should be

	 a.	 Strain–displacement matrix [B]
	 b.	 Material stiffness matrix [C]
	 c.	 Element stiffness matrix [K(e)]
	 d.	 Global stiffness matrix after incorporation of boundary conditions
	 e.	 Nodal displacement vector
	 f.	 Load vector

	 Consider the following as input data

	 a.	 Geometrical details of the plate—length, breadth, and thickness
	 b.	 Geometrical details of the plate element l, b, and h (depending on the 

number of elements along the length and breadth)
	 c.	 Material properties E and ν
	 d.	 Boundary conditions
	 e.	 Applied loads

	8.17	 Consider a rectangular plate of dimensions 500 mm × 400 mm × 6 mm sub-
jected to a uniformly distributed load of 5 × 10−4 N/mm2. The plate is fixed 
on all the four edges. Discretize the plate using general plate elements of size 
50 mm × 50 mm and determine the (i) nodal displacements and (ii) nodal 
stresses using the code developed in Exercise 8.12. Assume the following 
material properties: E = 70 GPa and ν = 0.3.

�Hint: Convert the uniformly distributed load into an equivalent set of nodal 
loads.

	8.18	 If the material of the plate in Exercise 8.15 is replaced with carbon/epoxy 
(stacking sequence: [0°/90°/0°]s, each ply being 0.5 mm in thickness), determine 
the element stiffness matrix.

�Hint: Use a mathematical tool such as MATLAB for matrix operations includ-
ing determination of the laminate stiffness matrices [A], [B], and [D].
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9.1  CHAPTER ROAD MAP
An introduction to composite materials is given in Chapter 1, which is followed by 
presentation of topics related to mechanics and analysis in Chapters 2 through 8. These 
topics are primarily computational in nature. In addition to these, the product develop-
ment engineer needs to be familiar with a number of other topics that are associated 
primarily with the composite shop floor. One such aspect is in respect of the materials 
that a composite product is made up of. This chapter is devoted to present, from the 
view point of a product development engineer, the common materials used as reinforce-
ments and matrix in PMCs.

As we know, reinforcements and matrix are the two primary constituents. The 
continuous phase, that is, the matrix is a polymer in PMCs, and it is addressed first. 
Different classes of polymers are briefly discussed and characteristic properties and 
applications of some of the commonly used thermosetting resins are addressed. 
For the sake of completeness, thermoplastics and rubbers are briefly touched upon. 
Reinforcements are the discrete constituents, and characteristic properties, manufac-
turing principle, and applications of some of the common fibers are addressed in this 
chapter. Reinforcements are available in various physical forms and familiarity with 
them is important especially from a manufacturing point of view. A discussion on the 
physical forms of reinforcements is given in the end.

For a reader whose objective of study is primarily to familiarize with composites 
manufacturing and testing, Chapters 2 through 8 can be skipped and this chapter, that 
is, Chapter 9 can be taken up immediately after going through the introductory discus-
sion in Chapter 1.

9.2  POLYMERS
In a PMC material, a polymer such as epoxy or polyester is used as the matrix material 
that is reinforced with very fine diameter fibers such as carbon, glass, etc.

A polymer is a natural or synthetic compound of usually high molecular weight 
consisting of many repeating units of smaller molecules (monomers) that can be linked 
in linear, branched, or cross-linked form. A linear polymer is one in which the mono-
mers form long chains without any branches or cross-links. It is the simplest in form 
but it is also the poorest in terms of strength and stiffness properties. A branched poly-
mer has a 2D molecular structure with branches connected to the main linear chains. 
A cross-linked polymer is one in which the adjacent linear chains are connected by 
covalent bonds in a highly complex 3D form. (A covalent bond is a very strong attrac-
tion between the atoms.)

9
Reinforcements and Matrices 
for Polymer Matrix Composites
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Polymers are classified as follows:

◾◾ Thermosets
◾◾ Thermoplastics

−− Noncrystalline
−− Crystalline

◾◾ Rubbers

9.2.1  Thermosets

Thermosets are polymers that chemically react under suitable environment, such as high 
temperature, to a permanently solid and infusible state. In such a solid state, the molecu-
lar structure is highly complex and 3D; thus, the cross-linking process is irreversible and 
softening of the solid polymer upon heating is not possible. Both thermosets and ther-
moplastics are used for making composites. However, thermosets are more popular as 
matrix material. Common thermosetting resins (matrix materials are more commonly 
known as resins in the shop floor) are epoxy, phenolic, polyester, vinyl ester, etc.

9.2.2  Thermoplastics

Thermoplastics are those polymers that can be repeatedly softened by application of 
heat and hardened by cooling. They are largely either linear or branched polymers and 
their change in form upon heating is more physical than chemical. Thermoplastics have 
high melt viscosity; as a result, wetting of the reinforcements by these polymers is gen-
erally difficult. However, thermoplastics are recyclable and advanced processing tech-
niques are being developed for composites with thermoplastic matrix. Characteristics 
of thermoplastics are compared with those of thermosets in Table 9.1 [1].

Common thermoplastics used in composites are nylon, polyethylene, and polysulfone.

9.2.3  Rubber

Both natural as well as synthetic rubbers are available in the market. Natural rubber 
is obtained from a sticky milky colloidal fluid produced by various rubber plants, of 
which Hevea brasiliensis is the most common commercially exploited rubber plant 
[2,3]. Other rubber plants include Castilla elastica, Ficus elastica, etc. Incisions are 
made into the bark of the rubber plants and the whitish fluid flows down from the inci-
sion marks, which is collected and refined to obtain rubber. Refined natural rubber is 
composed primarily of a chemical called polyisoprene.

TABLE 9.1
Comparison of Thermoplastics with Thermosets

Thermosets Thermoplastics

On heating Decompose on heating beyond 
certain limit

Soften on heating

Mechanical loading Exhibit low strains at failure Exhibit low strains at failure
Cross-linking Long cure cycle Short cure cycle
Processability Tacky, thus difficult to handle Nontacky, thus easy to handle

Generally low temperature of 
processing, thus easy to process

Generally high temperature of processing, 
thus difficult to process

Good solvent resistance Excellent solvent resistance
Storage Definite shelf life Indefinite shelf life
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Rubber is also made synthetically and a wide range of synthetic rubbers such as 
silicone rubber, Viton rubber, EPDM, nitrile rubber, polyurethane, etc. dominate the 
market today.

Natural rubber has high elongation at failure, low Young’s modulus, and very effec-
tive waterproofness.

Rubber is extensively used in many household and industrial applications. Tire and 
tubes are the single largest products that consume almost 60% of total rubber produc-
tion worldwide. In the other general goods sector, rubbers are used for making hoses, 
belts, adhesives, mats, gloves, carpet, toys, gaskets, and many others.

Rubbers, however, are rarely used as matrix material for making a composite product.

9.3  COMMON THERMOSETS FOR PMCs

Thermosets are the common resins used in PMCs especially in continuous fiber-rein-
forced composites. There are a number of these resins and numerous possibilities exist 
for selecting a resin together with associated curatives, modifiers, and additives [4,5]. 
A detailed discussion is far beyond the scope of this book; rather a brief introductory 
note is given in the following sections on three common thermosetting resin systems—
epoxy, polyester, and phenolic resins.

9.3.1  Epoxy Resins

Epoxy resins are a class of thermosetting polymers that have found extensive applica-
tions in industrial, aerospace, and other high-end sectors. Typically, in an epoxy sys-
tem, there are two components—a base epoxy resin and an epoxy curative. In addition, 
a modifier is also added to obtain specific desired property. Each of these three compo-
nents imparts specific physical and mechanical characteristics to the resin system during 
processing as well as a processed material. By proper choice of the three components, it 
is possible to tailor the resin system and unique combinations of physical and mechani-
cal properties are achieved. As a result, epoxies have established themselves as a highly 
versatile material system and they are routinely used as adhesive, molding compounds, 
and matrices in PMCs with continuous as well as short fiber reinforcements.

9.3.1.1  Base Epoxy Resin

The base resin in an epoxy system is chemically an organic compound containing 
epoxide molecules. An epoxide molecule has an epoxide group in its molecular struc-
ture. As shown in Figure 9.1, there are one oxygen and two carbon atoms in an epoxide 
group. The epoxide groups are a common feature in all types of epoxide molecules, but 
the other details attached to the epoxide groups vary from one type of epoxide mol-
ecule to another. A wide variety of epoxy resins are commercially available, which can 
be broadly categorized as follows:

◾◾ Glycidyl epoxies
−− Glycidyl ether
−− Glycidyl ester
−− Glycidyl amine

◾◾ Nonglycidyl epoxies
−− Aliphatic
−− Cycloaliphatic

The most common commercial epoxy till today is diglycidyl ether of bisphenol-A 
(DGEBA). Other important epoxy resins include novolac epoxy and brominated epoxy.
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9.3.1.1.1  Curatives

In the initial “green” or uncured state, the epoxide molecules do not normally react 
with each other at room temperature. Curatives (commonly called as hardeners) are 
added to the base epoxy resin and the process of curing starts. During the process of 
curing or thermosetting reaction, the small base molecules and the curatives chemi-
cally react with each other into a complex 3D network. In this process of cross-linking, 
large molecules are formed and the resin system hardens into a rigid mass. Depending 
upon the type of curatives, the curing process may demand application of high tem-
perature and pressure. Also, curing duration may vary from a few minutes to several 
hours depending upon the curatives.

A wide variety of hardeners—primarily amines, derivatives of amine, and anhy-
drides—are commercially available, of which amines are the most common. Typical 
examples of amine hardeners include diethylene triamine (DETA), triethylene triamine 
(TETA), tetraethylene pentamine (TEPA), etc.

9.3.1.1.2  Modifiers

In an epoxy formulation, modifiers are added to the base epoxy resin and the hardener to 
impart specific physical and mechanical properties to the uncured as well as cured resin. 
Different types of modifiers include flame retardants, fillers, pigments and dyes, dilu-
ents, rubbers, etc. These are available in different physical forms such as liquid, powder, 
flakes, fibers, etc. Some of the common types of modifiers are listed in Table 9.2 [5–7].

9.3.1.1.3  Properties

Mechanical and physical properties of cured epoxy resin system are useful from two 
angles—first, to compare and select the appropriate resin system for a particular usage, 
and second, in micromechanical analysis of composites. Properties of cured epoxy 
systems depend upon the type of base resin, hardener, modifiers, and their mixing pro-
portions. There are many commercially available resins and hardeners and, virtually 
innumerable possibilities exist. However, based on the required properties, the choice 
of the resin system can be quickly narrowed down. Thus, the resin, hardeners, and 
modifiers are chosen based on the application, composite manufacturing method, and 
the end properties required. In micromechanics, individual parameters, such as density, 
modulus, etc., of reinforcements and cured resin are used as input data for determining 
the composite laminate properties (refer Chapter 3).

TABLE 9.2
Common Categories of Modifiers in Epoxy Resins

Modifier Categories Properties Imparted to the Resin System

Flame retardants Reduction in flammability of epoxy composites
Fillers Shrinkage reduction, electrical and thermal conductivity, density reduction, 

increase in viscosity, etc.
Pigments and dyes Specific colors to the finished product
Diluents Viscosity reduction for increased ease of processing
Rubbers Toughness, fatigue and fracture resistance, flexibility, etc.

C C

O

FIGURE 9.1  Epoxide group.
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An epoxy system is associated with a number of physical and mechanical properties. 
Some of these correspond to the base uncured resin and the hardeners, and the rest to 
the cured epoxy. Representative properties of uncured and cured epoxy resins are given 
in Table 9.3. It may be noted that the properties of epoxies given in the table are indica-
tive [5–10]; depending on the formulation and processing, epoxies with a wide range 
of properties can be synthesized and manufacturer’s data sheet should be consulted for 
the design of a product.

For the composites engineer, on the shop floor, characteristics of the uncured resin 
system are of primary concern. From this angle, physical form, viscosity, pot life, cure 
characteristics, shelf life, storage condition, etc. need to be considered. Commonly, 
epoxy resins are available as liquids, powders, flakes, semisolid paste, etc. Resins in a 
solid or semisolid form are inconvenient to process as a laminating system. The process 
of mixing the resin and hardener to prepare the resin system varies and the details can 
be obtained from the manufacturer. Generally, resins and hardeners in solid/semisolid 
form are heated to a higher temperature and the molten materials are mixed at the 
specified ratio. Also, at times, the resin mix is kept at elevated temperature so as to 
maintain the melt viscosity within limit. Highly viscous resins are not suitable for com-
posites processing as it leads to nonuniform/inadequate wetting of the reinforcements.

Pot life is the length of time from the instant the hardener is mixed with resin until 
the time the resin mix is usable for its intended use. It may vary from a few minutes to 
a couple of hours. Too short a pot life is inconvenient for manual composites process-
ing such as hand lay-up as well as for automated processing such as filament winding. 
However, too long a pot life is also not desirable as it may lead to problems like resin 
dripping during processing.

Cure characteristics of an epoxy system depend on the chemistry of the resin and 
hardeners, their mixing ratio, and the cure environment in terms of temperature and 
pressure. Cure time may vary from a few minutes to several hours. Also, cure can take 
place at room temperature or at elevated temperature. Elevated temperature curing may 
be done in a stepwise fashion, in which the temperature is increased from room temper-
ature to the final cure temperature with one or two holds at intermediate temperatures.

Another important parameter worth mentioning is the glass transition temperature 
(Tg) of cured epoxy resin. It is the temperature below which a polymer retains its struc-
tural rigidity. Above this temperature, the individual molecular segments tend to move 
relative to each other, and the resin system becomes rubbery with drastic reduction in 

TABLE 9.3
Representative Properties of Epoxy Resins

Parameter Value

Liquid resin
Viscosity at 25°C (cps) 500–7000
Cast resin
Density (g/cm3) 1.1–1.3
Shore D hardness 50–80
Glass transition temperature (°C) 50–160
Tensile strength (MPa) 30–90
Tensile modulus (GPa) 1.2–3.7
Failure elongation (%) 1.4–2.4

Note:	 Data provided in the table are indicative; for pre-
cise and authentic information on properties of 
specific brand, manufacturers’ current data 
sheets can be consulted.
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the modulus. The glass transition temperature of a cured resin system depends upon its 
molecular structure and it is related to the cure temperature. In general, the Tg of a high-
temperature curing system is higher than that for a room temperature curing system.

9.3.1.2  Applications

Aerospace composite applications, in general, demand high strength and stiffness, high 
toughness, high temperature resistance, and good dimensional stability. Epoxy resins 
provide unique combinations of these properties which is rarely possible with other res-
ins. Thus, the aerospace composites market is dominated by epoxy resins. Aerospace 
applications, however, form only a small fraction of the total usage of epoxy resins. 
Table 9.4 lists major applications of epoxy resins.

9.3.2  Polyester Resins

Polyester resins are unsaturated thermosetting resins made by dissolving polyester 
oligomers in a solvent.

9.3.2.1  Polyester Oligomer

Polyester oligomers are produced by condensation reaction of difunctional acids and 
difunctional alcohols. Commonly used acids are phthalic acid and maleic acid, whereas 
glycols such as propylene glycols are used as alcohols. The oligomer, whose structure 
can vary widely, determines the mechanical, thermal, and chemical properties of the 
resin system. In unsaturated polyester resins (commonly known as polyester resin), 
the acids used for making the oligomer are partly saturated and partly unsaturated. 

TABLE 9.4
Applications of Epoxy Resins

Usage Description

Protective coatings •	The coatings industry consumes the largest share of epoxy resins produced 
worldwide

•	Used in industrial and automotive applications to provide a hard, durable, 
and rustproof surface

•	Used as
−− Powder coatings on domestic appliances for corrosion protection
−− Fusion-bonded powder coatings on steel pipes and fittings for corrosion 
protection

−− Primers on metal surfaces to improve adhesion of paints
−− Food-grade coatings on metal cans and containers, etc.

Tooling •	Used in industrial applications for making composite tooling, patterns, 
molds, and castings

Bonding •	Used as structural adhesives in a very wide range of applications, including 
common household appliances to highly specialized space vehicles

Construction industry •	Used as coatings, flooring, etc.
Composites 
application

•	Used in composites industry especially for high-end applications as 
laminating resin for making various carbon/epoxy, glass/epoxy, and 
Kevlar/epoxy composite parts

•	Typical usages include:
−− Aircraft wings, fuselage
−− Rocket motor casing, airframe, etc.

Electrical and 
electronics 
applications

•	Used in motors, generators, transformers, inductors, insulators, 
switchgears, bushings, etc.

•	Used for insulation and encapsulation of electrical parts from short circuits, 
dust, and moisture

•	Used in printed circuit boards, integrated circuits, transistors, etc.
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The saturated acid is the major part in the composition, and based on the type of the 
saturated acid used in the oligomer, different classes of polyester resins are made. 
Common classes of polyester resins are orthophthalic, isophthalic, terephthalic, dicy-
clopentadiene (DCPD), chlorendic, and bisphenol-A fumarate.

Orthophthalic polyester resins are made from phthalic anhydride, maleic anhydride, 
and propylene glycol. These resins, also called ortho resins or general-purpose (GP) resins, 
possess good structural properties. These are among the cheapest of all polyester resins 
and thus, GP resins are the most popular polyester resins used in commercial applications.

Isophthalic polyester resins are made from isophthalic acid. These resins are more 
expensive than and superior to the orthophthalic resins in terms of strength and stiff-
ness, chemical resistance, and thermal properties.

Terephthalic polyester resins are produced from terephthalic acid. In terms of physi-
cal, mechanical, and chemical properties, terephthalic resins are nearly similar to the 
isophthalic resins, whereas, their thermal characteristics are marginally better.

DCPD, chlorendic, and bisphenol-A fumarate polyester resins are specialty polyes-
ter resins. DCPD polyester resins are produced using DCPD. These resins are cheap, 
and characterized by low shrinkage, very good surface finish, rapid cure, and UV resis-
tance. They have largely replaced the ortho resins in marine applications.

Chlorendic resins are made from HET (hexachlorocyclopentadiene) acid, an unsatu-
rated acid such as fumaric acid and glycol. These resins are very rigid and possess 
excellent chemical resistance, thermal stability (high heat deflection temperature 
[HDT]), and fire retardancy.

Bisphenol A fumarate resins are made from bisphenol A, propylene oxide, and 
fumaric acid. Bisphenol A and propylene oxide are reacted to form glycol, which in 
turn is reacted with fumaric acid to produce bisphenol A polyester. Like the chlorendic 
resins, these resins are also characterized by rigidity, excellent chemical resistance, and 
thermal stability.

9.3.2.1.1  Solvent

The most common solvent used for dissolving the polyester oligomers is styrene. It acts 
as a cross-linking agent and reduces the resin viscosity as well. During curing, the sty-
rene molecules react among themselves and polyester oligomers forming a 3D network, 
and the resin solidifies.

9.3.2.1.2  Additives

In a polyester resin, the polyester oligomer and the solvent are the primary components. 
In addition to these, a number of additives, in small proportions, are added with spe-
cific purposes. Initiators and promoters are the primary additives. The initiator initi-
ates the chemical reaction for cure. A commonly used initiator is methyl ethyl ketone 
peroxide (MEKP). MEKP and other initiators decompose very slowly and they cannot 
cure polyester resin completely at room temperature. Thus, a promoter such as cobalt 
naphthenate (CoNap) is added to the resin for rapidly decomposing the initiator. The 
initiator and promoter are mixed with the resin by the fabricator during manufacture 
of the final part.

Polyester resin during storage cures or “gels” at room temperature, although at a 
much slower rate. Inhibitors and retarders are added by the resin manufacturer for 
increasing the resin storage life. The difference between the two is that while the inhib-
itors delay the start of cure, the retarders slow down the rate of cure.

9.3.2.1.3  Properties

Representative mechanical and physical properties of different classes of unreinforced 
polyester resins are listed in Table 9.5. This property data, generated using various 
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sources [11–15], are intended for making an overall idea; however, the final choice of 
the resin for specific application as well as design calculations should be based on the 
data sheet available from the resin manufacturer for a particular resin formulation and 
associated additives.

Mechanical properties of the cured polyester resin depend upon a number of param-
eters that include type of the base acids and alcohols making the oligomer, solvent and 
its proportion, additives, etc. In general, isophthalic resins have the highest mechani-
cal properties. Orthophthalic resins have adequate mechanical and thermal properties; 
they are inferior to the isophthalic resins, but cheap and, thus popular in general pur-
pose application. Chlorendic and bisphenol A fumarate resins are very rigid and highly 
stable in thermal and chemical environments.

9.3.2.2  Applications

While epoxy resins dominate the aerospace composites market, polyester resins are the 
most widely used resin systems in overall market for resins. More than 80% of total poly-
ester resins are used for making FRP products, of which GFRP are the most common. 
Fiber-reinforced polyesters are used in a very wide variety of applications in different 
industrial sectors that include automotive, buildings and construction, chemical, consumer 
goods, electrical, energy, marine, recreational and sporting goods, etc. Polyester resins 
are also used without any reinforcement; typical casting applications include gel coats, 
decorative products, etc. Table 9.6 lists some of the major applications of polyester resins.

9.3.3  Vinyl Ester Resins

Vinyl ester resins have certain commonalities with polyester resins. Similar to the poly-
ester resins, these are also unsaturated thermosetting resins made by dissolving an 
oligomer in a solvent and cured by mixing similar catalysts and accelerators. However, 
the vinyl ester oligomer chemistry is different from that of polyester. It is made by 
reacting an unsaturated carboxylic acid with an epoxy.

Using different types of epoxy base, different types of vinyl ester resins are made; 
these are GP vinyl ester (based on bisphenol A epoxy), fire retardant vinyl ester (based 
on brominated epoxy), novolac vinyl ester (based on novolac epoxy), etc.

Vinyl ester resins are versatile and their properties and applications vary widely. 
Owing to the presence of epoxy, these resins, in general, have better chemical resistance 

TABLE 9.5
Properties of Unreinforced Polyester Resins

Type of Resin

Liquid Resin Cast Resin

Specific 
Gravity Viscosity

Barcol 
Hardness

Heat 
Deflection 

Temperature
Tensile 

Strength
Tensile 

Modulus
Failure 
Strain

Flexural 
Strength

Flexural 
Modulus

– (cps) (BHN) (°C) (MPa) (GPa) (%) (MPa) (GPa)

Orthophthalic 1.01–1.15 200–400 35–48 80–110 55–75 3.4–4.0 2.1–3.5 80–140 3.4–4.4
Isophthalic 1.06–1.14 300–700 39–43 85–107 75–95 3.4–4.1 2.4–4.2 125–160 3.8–4.3
Terephthalic 1.04–1.14 400–900 45–47 80–145 65–90 3.0–4.0 2.7–4.0 114–150 3.0–4.0
Dicyclopentadiene 1.08–1.14 – 44–47 76–110 40–85 3.3–3.7 1.3–3.7 60–160 3.5–4.3
Chlorendic 1.12–1.15 250–550 40–45 140–280 20–50 3.4–3.5 1.6–2.4 110–120 3.8–5.2
Bisphenol-A fumarate 1.08–1.14 – 35–40 124–140 40–70 2.8–3.0 1.4–2.6 110–120 3.0–3.4
Vinyl ester 1.04–1.15 350–750 34–52 100–210 70–86 3.4–3.8 1.5–6.0 110–140 3.4–4.0

Note:	 Data provided above are indicative; for more precise and authentic information on specific grade, manufacturers’ data sheets can be consulted.
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coupled with higher failure strain and mechanical properties. GP vinyl ester resins 
have excellent mechanical properties, good heat resistance, and chemical resistance. 
(Typical representative properties of vinyl ester resins are given along with different 
types of polyester resins in Table 9.5.) Novolac vinyl ester resins have higher heat resis-
tance than the GP resins.

Applications of vinyl ester resins are many, of which, use as corrosion-resistant rein-
forced plastics is predominant. Typical applications of these resins are tanks, pipes, 
flooring, lining, electrical equipment, etc. Bisphenol A and chlorendic polyester resins 
are good competitors for vinyl ester resins; however, owing to the improved mechanical 
properties the latter are gaining popularity.

9.3.4  Phenolic Resins

Phenolic resins are commonly produced by condensation reaction of phenol and form-
aldehyde in the presence of a catalyst [16,17]. A variety of these resins can be made by 
adjusting the ratio of phenol to formaldehyde, the reaction temperature, or the catalyst. 
Out of these, two types of phenolic resins are common—resole and novolac.

Resole phenolic resins are made by using an alkaline catalyst and excess form-
aldehyde. Initially, the reaction is controlled so as to achieve a noncross-linked, 
low-molecular-weight resins, which finally cure at elevated temperature in a single-
stage process and a three-dimensionally cross-linked solid infusible polymer is 
obtained.

Novolac phenolic resins are made by using an acidic catalyst, in which the polymer-
ization process is a two-stage process. In the first stage, a low-molecular-weight resin is 
produced, which does not cure without a hardener. In the second stage, in the presence 
of a hardener, 3D cross-linking takes place at elevated temperature.

Phenolics are an old resin system; but, their use in continuous fiber-reinforced 
advanced composites is somewhat limited due to low failure strain/mechanical proper-
ties, brittle nature. Also, curing process is somewhat complicated as special care by 
means of vacuum bagging in autoclave curing may be needed to remove volatile con-
tents and water that are produced during curing reactions. These resins, however, have 
very attractive thermal characteristics in terms of dimensional stability and retention 
of mechanical properties at high temperatures. Phenolic resins are used in applica-
tions where fire safety and high-temperature capabilities are of critical importance. As 
reinforced plastics phenolic resins are commonly used as ablative liners and insulating 

TABLE 9.6
Applications of Polyester Resins

Sector Applications

Automotive Car accessories and body parts such as door, bumper, dashboard, etc., 
seating, bus body, hoods for goods vehicles

Building and construction Building panels, corrugated sheets, doors, modular house
Bathtubs, bathroom fixtures, cultured marble
Swimming pools

Chemical Corrosion resistant tanks, pipes, industrial vessels, sewer lines, waste water 
treatment equipment, pollution control equipment

Electrical and electronics Circuit boards, insulators, switch gears, appliance covers
Energy Wind mill blades, platform for oil exploration activities
Marine Boats, yachts, dinghies, gel coats
Miscellaneous Decorative items, buttons, recreational and sporting goods such as bowling 

balls, helmets
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barriers to structural parts that are subjected to moderate to extremely high tempera-
tures. Filament-wound phenolic resin-based pipes are used in fire safety critical appli-
cations such as mining, tunneling, offshore oil exploration, etc. Phenolic resin-based 
sheet molding compounds (SMCs) are used in aircrafts and aerospace vehicles as spe-
cialized parts such as fins, lugs, etc. Phenolic resin-based engineering plastics are also 
used in many commercial applications that include electrical devices such as switch-
gear, circuit breakers, connectors, etc.; consumer appliances such as handles, knobs, 
etc.; and automotive parts such as disk brake piston, solenoids, etc.

9.4  REINFORCEMENTS
Reinforcements are the primary load-bearing component in an advanced PMC mate-
rial. Different materials in fiber forms are used as reinforcements, of which the follow-
ing are significant:

◾◾ Glass fibers
◾◾ Carbon fibers
◾◾ Aramid fibers
◾◾ Boron fibers
◾◾ Natural fibers
◾◾ Whiskers and ceramic fibers

Materials in their bulk form contain flaws, which affect their strength and stiffness 
properties. In the fiber form, internal flaws are absent and the net load-bearing area as 
a fraction of the gross cross-sectional area is very high. Further, fibers have high degree 
of molecular and crystallographic alignment. As a result, mechanical properties of 
materials in their fiber forms are higher than in the bulk forms. Materials used for fiber 
reinforcements are of lower density as compared to other conventional structural mate-
rials such as steel, aluminum, etc. and, thus specific strength and stiffness (strength and 
stiffness divided by density) are very high for fibrous reinforcements. Representative 
properties of common fibers and conventional structural materials are given in Table 
9.7 [18–39]).

TABLE 9.7
Representative Properties of Common Fibers and Conventional Structural Materials

Name of 
Fiber

Specific 
Gravity

Fiber 
Diameter

Coefficient of 
Thermal Expansion

Tensile 
Strength

Tensile 
Modulus

Elongation 
at Break

Specific Tensile 
Modulus

Specific Tensile 
Strength

(μm) (m/m/°C) (MPa) (GPa) (%) (GPa/g/cm3) (MPa/g/cm3)

E-glass 2.58 5–20 52 × 10−6 3450 76 4.8 30 1.3

S-glass 2.48 5–10 5.6 × 10−6 4600 88 5.7 36 1.9

C-glass 2.50 – 6.7 × 10−6 3170 69 4.8 28 1.3

IM carbon 1.8 8 −0.6 × 10−6 3900 260 1.4 110 2.2

HM carbon 1.9 6 −0.7 × 10−6 4500 400 1.2 220 2.5

UHM 2.0 8 −1.4 × 10−6 3000 710 1.0 335 1.7

Kevlar 29 1.44 12 −4.0 × 10−6 2900 70 4.0 48.6 2.0

Kevlar 49 1.45 12 −4.9 × 10−6 3000 120 2.8 82.8 2.1

Steel 7.80 – 1.3 × 10−6 1000 205 6 26.3 0.1

Aluminum 2.78 – 2.2 × 10−6 450 70 10 25.2 0.2

Note:	 Data provided above are indicative; for precise information on specific brand, manufacturers’ data sheets can be consulted.
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9.5  COMMON REINFORCEMENTS FOR PMCs

9.5.1  Glass Fibers

Glass fibers are the most widely used commercial reinforcements for PMCs. These are 
of high tensile strength but relatively low modulus fibers.

9.5.1.1  Types of Glass Fibers

Different types of glass fibers are commercially available. Traditionally, these are 
known by certain letter designations such as E-glass, S-glass, D-glass, C-glass, etc. 
All these types can, however, be categorized into two broad categories—general pur-
pose (GP) fibers and specialty fibers. Representative compositions of different types of 
glass fibers are tabulated in Table 9.8 [19–22]. Various oxides are present in the chemi-
cal compositions of glass fibers, of which silica is the main constituent. Other major 
constituents are aluminum oxide, calcium oxide, boron oxide, and magnesium oxide. 
Several other oxides are also present in small quantities; however, in certain special 
cases, sodium oxide and zirconium oxide constitute good proportions of the overall 
composition.

9.5.1.1.1  GP Glass Fibers

E-glass fibers are the GP glass fibers and constitute over 90% of the total glass fiber 
production. E-glass fibers (E denoting electrical) were originally developed for electri-
cal applications, where low electrical conductivity is a requirement. Essential constitu-
ents in an E-glass fiber composition are SiO2, Al2O3, and CaO. In addition to these, 
B2O3 may or may not be present. Thus, based on the presence or otherwise of boron 
in the chemical composition, two primary subtypes of E-glass fibers are commercially 
available—boron-free and boron-containing E-glass fibers.

Chemical compositions of commercially available boron-free and boron-containing 
E-glass fibers differ substantially. Boron-containing E-glass fibers have lower dielec-
tric constant than the boron-free type and, they are used in electrical applications such 
as electronic circuit boards, etc. On the other hand, boron-containing and boron-free 
types are both good from the point of mechanical properties. Further, they are available 
at low prices and, thus, both types of E-glass fibers are extensively used for making 
GFRP products for a wide range of commercial applications.

TABLE 9.8
Chemical Composition of Different Types of Glass Fibers (in Weight %)

SiO2 Al2O3 CaO B2O3 MgO

Others
(Na2O, K2O, TiO2, ZnO, 

ZrO2, Fe2O3, etc.)

E-glass with boron 54 14 18 8 4 2
E-glass without boron 59 14 21 – 4 2
A-glass 68 3 8 3 2 16 (Na2O = 14, Rest = 2)
C-glass 65 4 13 5 3 10 (Na2O = 8, Rest = 2)
D-glass 74 – – 23 – 3
ECR-glass 58 12 21 – 2 7 (ZnO = 3, TiO2 = 2)
AR-glass 65 2 6 4 – 23 (ZrO2 = 2)
R-glass 60 23 9 – 7 1
S-glass 65 25 – – 10 –

Note:	 Data given above are indicative; for precise information on specific brand, manufacturers’ data sheets 
can be consulted.
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9.5.1.1.2  Specialty Glass Fibers

Glass fibers other than the E-glass fibers belong to the specialty types. Each of these 
types has certain specific characteristic property associated with it.

S-glass fibers (S denoting strength) are premium glass fibers that provide the best of 
mechanical, thermal, and chemical properties of all commercial glass fibers. A variant 
of these fibers is S-2 glass fibers. Both S-glass as well as S-2 glass fibers are commonly 
used in aerospace and military applications. D-glass fibers (D denoting dielectric con-
stant) are of borosilicate composition containing high percentage of B2O3 in addition 
to SiO2. Owing to the high proportion of boron oxide, dielectric constants of different 
D-glass fibers are much lower as compared to the E-glass fibers. Thus, these fibers are 
favored in high performance electrical applications. Corrosion resistant glass fibers 
have been developed; these include C-glass, ECR-glass, and AR-glass. ECR-glass 
fibers are suitable for use in acidic environment, whereas, AR-glass fibers, owing to the 
presence of zirconium oxide in their composition, provide good alkali resistance and 
are used in fiber reinforced concrete applications.

9.5.1.2  Production of Glass Fiber

Glass fiber production is a three-stage process: raw materials handling, glass melting, and 
fiber forming. Typical production cycle is schematically shown in Figure 9.2. A number 
of raw materials are used for the production of glass fibers. Typical raw materials include 
silica sand or “glass making sand” (for silica), china clay (for alumina), limestone (for 
calcium oxide), boric acid (for boric oxide), dolomite (for magnesia), etc. Handling of 
these raw materials is done either in batch mode or in continuous mode. Proper care 
is needed to drive away impurities from the raw materials. Individual materials are 
weighed as per the desired product recipe, mixed thoroughly, and introduced into a 
furnace. The furnace typically consists of three sections. The first section is the melting 
unit that receives and melts the mix of raw materials at high temperature. The tem-
perature of glass melting depends upon the composition and it can be around 1500°C. 
Homogenization of the melt takes place in the first section and then the melt goes to the 
second section where cooling, refining, and further homogenization take place. In the 
final section, the temperature is further reduced to a level of glass fiber formation.

A platinum–rhodium alloy tank called bushing is used in the fiber-forming stage. It 
has numerous tiny nozzles of 1–2 mm diameter. The bushing is electrically heated so as 

Raw materials weighing

Raw materials
mixing

Glass melting at
1250–1550°C

Furnace

Platinum bushing

High-speed winder

Mixer

Sizing application
Fiber forming

FIGURE 9.2  Schematic representation of glass fiber production (also see Reference 20).
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to control the drawing temperature of the molten glass that flows, usually under gravity, 
through these nozzles and fibers are formed. These are very rapidly cooled, collected, 
and pulled at a high speed by a rotating drum. In this process, the fibers are solidified 
and elongated, and fiber diameter reduces to about 5–20 μm.

Application of sizing: Glass fibers are abrasive in nature and they need protective 
measure for avoiding fiber breakage during collection on the rotating drum, packag-
ing, and also during subsequent weaving operations. For this, within milliseconds of 
solidifying, glass fibers are coated with certain sizing solutions by an applicator roller. 
The sizing helps in improving adhesion within the individual filaments as well as with 
the resin system.

9.5.1.3  Forms of Glass Fiber Reinforcements

Glass fibers are available in various forms; these are explained in Table 9.9.

9.5.1.4  Properties of Glass Fibers

Properties of glass fibers are dependent on the type of the glass fiber. Typical proper-
ties of three types, viz. E-glass, S-glass, and C-glass representing GP, strength, and 
chemical resistance, are shown in Table 9.10 [18–23]. In general, glass fibers possess 
very high tensile strength, good heat and fire resistance, resistance to chemical and bio-
logical degradation, moisture resistance, and good thermal properties due to low CTE. 
S-glass fibers have the highest mechanical properties, minimum specific gravity, and 
the highest temperature durability as well.

9.5.1.5  Applications of Glass Fibers

Glass fibers are extensively used in GFRP products for a wide range of applications. 
E-glass fibers are the most common of all types of glass fibers and are used in almost 

TABLE 9.9
Forms of Glass Fiber Reinforcements

Forms Description

Continuous strands These are bundles of 204 filaments that are gathered after application of sizing. 
The strands are wound onto rotating mandrels and packed as spools of glass 
fibers

Chopped strands These are cut pieces of strands of about 25 mm in length, normally used for 
making molding compounds

CSM It is a nonwoven 2D mat, in which chopped strands of 25–50 mm are evenly 
spread and bound by using suitable binders such as PVA. CSMs are 
commercially available in continuous rolls and different surface densities. 
These are normally used for making low-strength products

Roving These are bundles of continuous strands in the form of bands. These are 
commonly used for making high-quality products such as tanks, pressure 
vessels, etc.

Yarn These are an assembly of continuous processed strands with slight twist that 
can be used in weaving operations

Woven roving It is a coarse fabric made by weaving number of rovings, in which the rovings 
are woven in both weft and warp directions. These are usually used in making 
flat laminated products by hand lay-up or press molding

Woven yarn It is a relatively fine fabric made by weaving yarns. Sizings are applied onto the 
yarns for ease of weaving and, often the sizing is removed by passing the 
fabric through a hot air chamber. It is resized for making it compatible with 
specific resin system. These are commercially available in different thicknesses 
such as 5 mil, 7 mil, 13 mil, etc.

Surface mat It is a very fine mat of strands that are used for better surface finish
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all the sectors in the glass fiber market. Common usage of E-glass fibers includes car 
body parts, wind mill blades, consumer goods such as chairs, tables, desert air cooler 
body, storage tanks, pipes, different types of boats, etc. Other specific applications 
include radomes (D-glass), storage tanks and pipes in highly corrosive environment 
(C-glass), reinforced concrete (AR-glass), military applications (S-glass), aerospace 
vehicle parts (high silica glass), etc.

9.5.2  Carbon Fibers

Carbon fibers are very thin fibers of 5–15 µm diameter and composed primarily of 
carbon (more than 92% by weight).

9.5.2.1  Types of Carbon Fiber

As indicated in Table 9.11, carbon fibers can be classified in different ways [24]. Carbon 
exists in crystalline, quasicrystalline, and amorphous forms. In the amorphous form, 
the carbon fibers are isotropic in nature and low in modulus and strength. General 
purpose (GP) carbon fibers are of this category. High performance carbon fibers are 
crystalline, anisotropic in nature and they exhibit high modulus and strength. Activated 
carbon fibers contain numerous surface micropores.

A more commonly used method of classification of carbon fibers is to use tensile 
modulus and strength as the basis. Modulus and strength of carbon fibers vary in a 
rather wide range. Theoretical modulus of single-crystal graphite is 1000 GPa and car-
bon fibers of extremely high modulus (nearly 900 GPa) have been produced. Carbon 
fibers of elastic modulus in the range of 500–900 GPa are generally referred to as 
ultra-high modulus carbon fibers. Ultra-high modulus, high modulus, and intermediate 
modulus carbon fibers are anisotropic in structure and modulus is directly proportional 
to the degree of anisotropy. These fibers exhibit very high tensile strength as well. 
These are high performance carbon fibers. Low modulus fibers are also of low strength 
and these fibers are isotropic in structure.

Carbon fibers are manufactured using primarily three different types of precursor 
materials—polyacrylonitrile (PAN), pitch, and rayon. From this angle, we have three 
types of carbon fibers—PAN based, pitch based, and rayon based. Pitch precursors 
used can be both isotropic as well as anisotropic (mesophase pitch). PAN-based and 
mesophase pitch-based carbon fibers are highly anisotropic in structure and they are of 
high modulus and strength. Isotropic pitch-based and rayon-based carbon fibers exhibit 
relatively lower modulus and strength.

TABLE 9.10
Typical Properties of Glass Fibers

Parameter Unit E-Glass S-Glass C-Glass

Specific gravity – 2.58 2.48 2.50
Softening point (°C) 845 1055 730
Coefficient of thermal expansion (m/m/°C) 5.2 × 10−6 5.6 × 10−6 6.7 × 10−6

Tensile modulus (GPa) 76 88 69
Tensile strength (MPa) 3450 4600 3170
Elongation at break (%) 4.8 5.7 4.8
Specific tensile modulus (GPa/g/cm3) 30 36 28
Specific tensile strength (GPa/g/cm3) 1.34 1.85 1.27

Note:	 Data given above are indicative; for precise information on specific brand, manufacturers’ data sheets 
can be consulted.
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During manufacture of carbon fibers, the fibers are subjected to heat treatment at 
different stages. Based on the final heat treatment temperature, carbon fibers can be 
classified into high-heat-treatment carbon fibers (Type I), intermediate-heat-treatment 
carbon fibers (Type II), and low-heat-treatment carbon fibers (Type III). These three 
types are associated with high modulus, high strength, and low modulus/strength, 
respectively.

9.5.2.2  Production of Carbon Fiber

Carbon fibers can be produced from almost any material that contains carbon; how-
ever, only three precursor materials are used commercially. These are PAN, pitch, and 
rayon. Although these source materials are different from each other, the basic stages in 
the manufacture of carbon fibers remain the same [24–26]. These stages are spinning, 
stabilization, carbonization, and sizing. For achieving higher modulus, an additional 
stage of graphitization is optionally added after carbonization.

9.5.2.2.1  PAN-Based Carbon Fibers

PAN is the most widely used source material for carbon fiber. The primary stages 
involved in the manufacture of PAN-based carbon fibers are as follows (Figure 9.3):

◾◾ Polymerization
◾◾ Spinning
◾◾ Stabilization
◾◾ Carbonization
◾◾ Graphitization
◾◾ Surface treatment and sizing

TABLE 9.11
Types of Carbon Fibers

Basis of Classification Types Description

Based on structure and 
general properties

General purpose •	Isotropic due to amorphous form
•	Low in strength and modulus

High performance •	Anisotropic due to highly crystalline form
•	High in strength and modulus

Activated carbon •	Characterized by the presence of numerous 
surface micropores

Based on tensile 
strength and modulus

Ultra-high modulus •	Tensile modulus ≈500–900 GPa
•	Tensile strength ≈2100–3900 GPa

High modulus •	Tensile modulus ≈300–500 GPa
•	Tensile strength ≈2800–5500 GPa

Intermediate modulus •	Tensile modulus ≈100–300 GPa
•	Tensile strength ≈1400–7000 GPa

Low modulus •	Tensile modulus ≈30–100 GPa
•	Tensile strength ≈700–1000 GPa

Based on precursor 
material

PAN based •	Precursor material is PAN
Pitch based •	Precursor material is pitch
Rayon based •	Precursor material is rayon

Final heat treatment 
temperature

High-heat-treatment 
(Type I)

•	Heat treatment temperature ≈1500–2800°C
•	High modulus type

Intermediate-heat-
treatment (Type II)

•	Heat treatment temperature ≈1000–1500°C
•	High strength type

Low-heat-treatment 
(Type III)

•	Heat treatment temperature ≈300–1000°C
•	Low modulus and low strength
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The first stage in the manufacture of carbon fiber is a process of polymerization, 
during which a monomer called acrylonitrile (a colorless or yellowish liquid chemical 
compound, CH2 = CH–N) is reacted with an appropriate comonomer. Polymerization 
methods used are solution polymerization and solvent-water suspension polymeriza-
tion. The resultant product is the PAN polymer (CH2 = CH–N)n. It is a white solid/
semisolid material with melting temperature of about 350°C. However, it has a much 
lower glass transition temperature of about 80°C and it degrades prior to melting.

PAN is converted into PAN fibers by adopting different textile spinning methods 
such as wet spinning, dry spinning, melt-assisted spinning, etc. The process of spinning 
involves forcing a PAN polymer solution to pass through a large number of tiny holes in 
a steel plate, called a spinneret. The PAN fibers typically have a diameter of 10–20 μm 
and density of 1.17 g/cm3. These fibers have a structure of oriented large molecules.

The next stage in the carbon fiber manufacture is stabilization, during which the 
PAN fibers are stretched and heated to about 180–300°C in an oxidizing environment. 
In the process of stabilization, the molecules get further oriented and cross-linked. As 
a result, the stabilized fibers do not decompose during pyrolysis at higher temperatures.

Stabilization is followed by carbonization. It involves heating the fibers up to a tem-
perature of about 1000–1700°C in an inert atmosphere. The resultant fibers are rich in 
carbon content (up to about 95%) and lighter. Further, the fibers shrink in diameter, but 
not in the longitudinal direction. In this process, the molecules get further oriented and 
improved mechanical properties are resulted.

Carbonization is optionally followed by graphitization for producing very high 
modulus carbon fibers. In this case, the fibers are stretched and heated up to about 
1500–2800°C in an inert atmosphere.

The final stage in the carbon fiber manufacture is surface treatment and application 
of a suitable sizing. The sizing helps minimize fiber damage during spooling, handling, 
and subsequent composite processing operations such as prepregging, winding, etc.

9.5.2.2.2  Carbon Fiber from Pitch

Pitch is a thermoplastic material of complex mixture of aromatic hydrocarbons. It is 
made typically from certain by-products of petroleum and coal-processing industry. 

Polymer
solution

Acrylonitrile +
comonomer

Polymerization

Spinning Stabilization at
180–300°C

under tension

Carbonization at
1000–1700°C

under zero or low
tension 

Graphitization at
1500–3000°C
under tension

Spools of 
PAN fiber

Postspinning
modifications

Hot air
Hot air/volatile

by-products N2

N2/volatile
by-products

N2 (<2000°C)
Or

Ar(>2000°C)

N2/Ar

Surface treatment
and sizing

Spools of PAN-based
carbon fibers

Spinneret

FIGURE 9.3  Schematic representation of manufacture of PAN-based carbon fiber (also see 
References 25 and 27).
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Typical sources for making bulk pitch for carbon fiber manufacturing are petroleum 
asphalt, coal tar, and PVC. These raw materials contain certain solid impurities; these 
are removed for making proper pitch and subsequent quality carbon fiber. Two types of 
pitches are used for making carbon fiber—isotropic pitch and anisotropic (mesophase 
pitch). Refined pitch is modified, in respect of molecular weight and chemical composi-
tion, by different methods and isotropic pitch is obtained. Anisotropic pitch is obtained 
by different methods involving heat treatment above 300°C of isotropic pitch. It con-
tains a liquid crystal phase in the form of droplets called mesophase.

Stages of pitch-based carbon fiber manufacture are similar to those for PAN-based 
carbon fiber. However, the spinning methods and other process parameters such as 
heat treatment temperature, rate of heating, tension, etc. are different. Most commonly 
used method for spinning of pitch is melt spinning. Spun fibers are typically stabilized 
at 250–350°C in an oxidizing environment. Stabilization is followed by carbonization 
at 700–2000°C in an inert atmosphere. Carbonization chamber provides for gradual 
increase in temperature during which volatile products are released. Carbonization is 
optionally followed by graphitization in an inert atmosphere at 2000–3000°C.

9.5.2.2.3  Carbon Fiber from Rayon

Rayon fibers of different grades are used for making carbon fibers. Manufacturing cycle 
of rayon-based carbon fibers is very similar to PAN-based carbon fibers. Stabilization of 
rayon fibers is a low-temperature decomposition process at temperature below 400°C. 
During the initial heat treatment up to 125°C, adsorbed water is removed. Heat treatment 
environment can be either inert or reactive. An oil bath is used for removal of tarry prod-
ucts. Little or no tension is applied to the rayon fibers during stabilization as tensioning 
is not effective in rayon fibers at low temperatures. Carbonization of stabilized fibers is 
carried out at 1000–1500°C in an inert atmosphere. Stretching is found to be effective 
during carbonization in improving mechanical properties. For further improvement in 
mechanical properties, graphitization is carried out at 2500°C under appropriate tension.

9.5.2.3  Forms of Carbon Fiber Reinforcements

Continuous carbon fibers are available in 1D, 2D, and 3D forms. Tows and yarns are 
1D, fabrics are 2D, and preforms are 3D in form. In addition to these, carbon fibers are 
also available as discontinuous reinforcements (staple fibers). Some of the important 
forms of carbon fibers are briefly explained in Table 9.12.

9.5.2.4  Properties of Carbon Fibers

Carbon fibers possess excellent mechanical and physical properties that make them 
unique in the field of aerospace composites. Some of the highly useful properties of 
carbon fibers and carbon fiber composites are as follows:

◾◾ High tensile modulus and strength
◾◾ Low density
◾◾ High specific tensile modulus and strength
◾◾ Excellent creep and fatigue characteristics
◾◾ Excellent corrosion resistance
◾◾ Excellent thermal stability
◾◾ Low CTE
◾◾ High electrical and thermal conductivity

Carbon fibers, however, possess certain disadvantages as well—notably, low strain 
to failure, low compressive strength as compared to tensile strength, and high degree 
of anisotropy.
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A number of commercial carbon fibers from different manufacturers are available; 
typical properties [29–32] of these fibers are presented in Figures 9.4 and 9.5 and Table 9.13. 
Note that the information provided in these figures and table is indicative and is meant 
for making an overall idea about carbon fiber properties. For information on specific 
grade of carbon fiber required during product design, data sheet from manufacturer 
should be consulted. Carbon fiber properties vary widely and are greatly dependent on 
the microstructure of the fibers, precursor material used, and processing parameters 
adopted during manufacture. In general, mesophase pitch-based carbon fibers exhibit 
the highest tensile modulus. Orientation of the microstructure is improved by stretch-
ing and heat treatment during manufacture; the result of such structural changes is 
higher tensile modulus, electrical conductivity, and thermal conductivity. However, an 
increase in tensile modulus is generally associated with a decrease in failure strain.

9.5.2.5  Applications of Carbon Fibers

High performance carbon fibers, owing to their very high mechanical properties, are 
extensively used for making CFRP products for a wide range of applications in the aero-
space industry. In addition to the aerospace sector, CFRP products have been gaining 

TABLE 9.12
Forms of Carbon Fiber Reinforcements

Forms Description

Tow It is a bundle of continuous untwisted carbon filaments. Tows are available in 
different specifications such as 3k, 6k, 12k, 24k, etc., where 3k means 3000 
filaments per tow, and so on

Yarn A carbon fiber yarn is a bundle of continuous carbon filaments with slight twist. The 
twist given to the yarn makes it suitable for further processing such as weaving

Chopped carbon 
fibers

These are cut pieces of carbon fibers, typically 6 mm or less in length. These are 
normally used for making molding compounds

Carbon fabrics Carbon fabrics of different types, commercially available in continuous rolls, are 
2D in shape. However, from the point of view of reinforcement direction, they 
can be unidirectional (UD), bidirectional (BD), or multidirectional. Further, these 
fabrics may be either nonwoven, woven, or knitted

UD carbon fabrics These are fabrics, in which nearly all the fibers are only in one direction. Both 
woven as well as nonwoven UD fabrics are available. 

In a nonwoven UD fabric, the uniaxial fibers are held in position by using a 
suitable binder 

On the other hand, in a woven fabric, in addition to the primary uniaxial carbon 
fibers, secondary fibers are also used and woven to form a stable fabric. The 
secondary fibers are used in very little proportion as compared to the primary 
fibers, and thus the fabric remains practically UD

BD carbon fabrics BD carbon fabrics are made by weaving carbon tows as well as carbon yarns in 
the warp and weft directions. Different weaves are possible, of which three basic 
patterns are plain, twill, and satin

Multidirectional 
carbon fabric

Multidirectional fabrics are typically tridirectional (fibers at 0° and ±60°) or 
quadridimensional (fibers at 0°, 90°, and ±45°). These fabrics possess equal 
strength and stiffness properties in the directions of the fibers

Knitted carbon fabric A knitted fabric is made up of flexible yarns that are formed into loops. A looped 
yarn is intertangled with the previous looped yarn and the process is continued 
to obtain the desired knitted fabric. Knitted fabrics are available in different 
knitting patterns; these are highly flexible and drapeable, and are available as flat 
as well as tubular fabric forms

Carbon preforms These are near net shape rigid structures of carbon fibers. Typically, the fibers are 
placed in three or more directions. Unlike the fabrics, the thickness dimension in 
a preform is comparable with the other two dimensions, and reinforcements are 
put in the thickness direction as well
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TABLE 9.13
Typical Properties of Carbon Fibers

Parameter Unit

PAN-Based Carbon Fiber Pitch-Based Carbon Fiber

IM HM UHM LM IM HM UHM
Density (g/cm3) 1.73–1.93 1.76–1.80 1.77–1.78 1.65 1.70–1.85 2.00 2.00–2.19
Filament diameter (μm) 5.0–7.1 4.4–7.0 5.0–7.0 10 10 – 7.0–10.0

CTE (×−10−6) (m/m/°C) 0.38–1.10 0.64–0.70 – 1.4 0.8–1.0 – 1.4–1.5

Tensile modulus (GPa) 221–296 303–475 540–588 54 110–155 380–490 500–920
Tensile strength (MPa) 3530–6370 2740–6964 3920–4020 1100 1400–2400 2000–2100 2000–3830
Elongation at break (%) 0.7–2.2 1.8–2.1 0.91–1.75 2.0 1.0−1.6 0.4–0.6 0.3–0.7
Specific tensile modulus (GPa/g/cm3) 124.4–166.3 170.2–265.4 305.1–330.3 32.7 54.7–83.8 245.0 247.6–420.1
Sp. tensile strength (GPa/g/cm3) 1.5–3.5 2.4–3.9 1.8–2.4 0.7 1.0–1.3 1.0 1.0–1.8

Source:	 www.toraycfa.com; www.ngfworld.com; www.hexcel.com; www.tohotenax.com; L. L. Clements, Organic fibers, Handbook of Composites 
(S. T. Peters, ed.), second edition, Chapman & Hall, London, 1998, pp. 202–241.

Note:	 Data given above are indicative; for precise information on specific brand, manufacturers’ data sheets can be consulted.

www.toraycfa.com
www.ngfworld.com
www.hexcel.com
www.tohotenax.com
www.toraycfa.com
www.ngfworld.com
www.hexcel.com
www.hexcel.com
www.tohotenax.com
www.toraycfa.com
www.ngfworld.com
www.hexcel.com
www.tohotenax.com
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increasing acceptance in other sectors such as automobile, sports, marine, biomedical, 
etc. High performance at low weight is a critical requirement in the aerospace sector, 
for which CFRP products are highly suitable. Typical applications of CFRP in the 
aerospace sectors are primary and secondary structures of civilian as well as military 
aircrafts, motor case, nozzle, airframe structures of space vehicles, satellite parts, etc. 
In the automobile sector, carbon fibers are used for making parts such as automobile 
bodies, gears, bearings, cams, etc. Another major consumer of carbon fibers is the 
sporting goods sector; common sporting goods made by carbon fibers are golf club, 
bicycle frame, tennis racket, etc.

9.5.3  Aramid Fibers

Aramids are a type of generic organic material made from polyamides. Broadly, 
they belong to the nylon family; however, they are different from the common nylon. 
Common nylon is an aliphatic polyamide containing amide–carboxylic bonds. 
Aramids, too, contain amide–carboxylic bonds; but they have an aromatic ring struc-
ture. Aramid fibers are a class of high performance fibers that exhibit good chemical 
and thermal stability, high toughness, and exceptional tensile strength and modulus. 
The high performance characteristics of aramid fibers are attributed to the aromatic 
ring structure.

9.5.3.1  Types of Aramid Fibers

Aramids can be divided into two types—para-aramids and meta-aramids [33]. The 
terms para and meta refer to the position of the carboxylic and amine groups in the 
monomer ring. Para-aramid has a symmetric structure with the bonds at 180° to each 
other. On the other hand, in the meta-aramids, the bonds are at 120°. A number of 
commercial brands are available under these two types of aramids. Some of the com-
mon aramid fibers are Kevlar® and Nomex® from Dupont, Teijinconex® and Technora® 

from Teijin, and Twaron® from Akzo. Kevlar is one of the oldest aramid fibers, and 
it, together with its different varieties, is also the most popular aramid fiber. Common 
Kevlar fibers are Kevlar, Kevlar-29, Kevlar-49, Kevlar-68, Kevlar-129, and Kevlar-149.

9.5.3.2  Production of Aramid Fibers

There are broadly two stages in the production of aramid fibers—polymer prepara-
tion and fiber preparation. The base polymer for para-aramid is poly-p-phenylene tere-
phthalamide (PPD-T). PPD-T is prepared by polycondensation of p-phenylene diamine 
(PPD) and terephthaloyl chloride (TCl) in an amine solvent at low temperature. Para-
aramid fiber is produced by extruding and spinning an anisotropic solution of PPD-T 
in concentrated sulfuric acid. There are two spinning methods available: wet spinning 
process and dry-jet spinning process. The basic process involves spinning the crystal-
line solution at high temperature in a spinneret followed by coagulating it in a quench 
bath. In this process, the hot polymer solution gets oriented and continuous fiber is 
formed, and the coagulated fiber is further washed, dried, heat-treated, and finally, 
collected on a rotating bobbin for packaging. In the wet-spinning process, the spin-
neret is kept right inside the coagulation liquid. This process is associated with certain 
drawbacks, which are overcome in the dry-jet spinning process. In the dry-jet spinning 
process, the spinneret is kept at a distance above the coagulating liquid. The air gap 
between the spinneret nozzle and the coagulating liquid helps achieve higher degree of 
structural alignment and resultant higher mechanical fiber properties. Figure 9.6 shows 
schematic representation of the dry-jet spinning process.

The base polymer for meta-aramid is MPD-I (poly-m-phenylene isophthalamide). 
MPD-I is prepared by polycondensation of m-phenylene diamine and isophthaloyl 
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chloride in an amine solvent at low temperature. The MPD-I solution is directly spun 
in a spinneret and extruded through a coagulation bath.

9.5.3.3  Forms of Aramid Fibers

Aramid fibers are commercially available as continuous as well as discontinuous rein-
forcements. Continuous forms of aramid fibers include yarns, rovings, and fabrics. 
On  the other hand, different discontinuous forms of aramid fibers are staple fibers, 
spun yarns, and pulp.

A yarn of aramid fibers is a collection of a number of continuous filaments, and it 
is spun directly during the manufacture of the fibers. A roving, on the other hand, is 
a collection of a number of yarns. The number of filaments in a yarn may vary from 
a few numbers to a few thousands, and it depends upon the type of aramid fiber and 
its specified denier. (Denier, in textile terminology, is the linear density of the yarn 
or roving in g per 9 km.) Aramid yarns are relatively flexible and nonbrittle; they can 
be woven in different weave patterns such as plain, basket, satin, and crowfoot, and 
fabrics of different surface densities and surface fineness are commercially avail-
able. Fabrics with woven rovings are also available; however, these are relatively 
coarse.

Aramid staple fibers are commercially available; these are typically 6 mm and above 
in length, and used for making spun yarns. Staple fibers are also used in felts and other 
applications. A unique discontinuous form of aramid fibers is aramid pulp. It is a highly 
fibrillated form with 2–4 mm fibers.

9.5.3.4  Properties of Aramid Fibers

Representative properties of a number of aramid fibers are given in Table 9.14. Aramid 
fibers are lighter than both glass fibers as well as carbon fibers. In general, aramid 
fibers are superior to most glass fibers in terms of tensile modulus/strength as well as 
specific tensile modulus/strength, and comparable to some grades of carbon fibers. As 
stated earlier, aramid fibers are nonbrittle and possess higher failure strain as compared 
to carbon fibers. A unique property of para-aramid fibers is negative CTE, which is 
useful in designing zero-thermal-expansion composite laminate. Another characteris-
tic property of aramid fibers and their composites is toughness. Aramid fibers, how-
ever, are not good in compression and bending. Further, moisture absorption is also a 
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FIGURE 9.6  Schematic representation of dry-jet spinning process for aramid fiber manufacture (also 
see Reference 37).
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concern with aramid fibers. In general, useful properties of aramid fibers and aramid 
fiber composites can be listed as follows:

◾◾ High tensile modulus and strength
◾◾ Low density
◾◾ High specific tensile modulus and strength
◾◾ Excellent toughness characteristics
◾◾ Good fire resistance (can be ignited but fire does not continue once the source 

is removed)
◾◾ Negative longitudinal CTE

9.5.3.5  Applications of Aramid Fibers

Aramid fibers are extensively used in both composites and noncomposites appli-
cations, in diverse industrial sectors including aerospace, sports, automotive, and 
marine. Use of aramid fibers depends upon the specific type and fiber form. Meta-
aramid fibers such as Nomex, owing to their excellent thermal resistance, good tex-
tile characteristics but poor mechanical properties, are used in protective clothing, 
reinforced belts and hoses, industrial coated fabrics, etc. Para-aramid fibers such as 
Kevlar and its various subtypes, Twaron, etc. possess excellent mechanical proper-
ties. Continuous filament yarns and rovings of para-aramids are used in composite 
pressure vessels, rocket motor casings, sporting goods, rope, and cable, etc. Fabrics 
are used in facings of sandwich constructions in aircrafts and helicopters, boat hulls, 
etc. Staple fibers are used in automotive applications such as brake and clutch linings, 
gaskets, etc.

In addition to glass, carbon, and aramid fibers, there are other reinforcing fibers 
used in PMCs; notable among these are boron and extended chain polyethylene fiber. 
Ceramic fibers and whiskers are commonly used in MMCs and CMCs. A unique class 
of reinforcing fibers is natural fibers, and it has become a subject of active research now.

9.5.4  Boron Fibers

Boron fibers are high performance fibers with tensile strength of 3100–4200 MPa and 
tensile modulus of 360 GPa. These are made by chemical vapor deposition of a gaseous 

TABLE 9.14
Typical Properties of Aramid Fibers

Unit Kevlar-29 Kevlar-49 Kevlar-129 Kevlar-149 Nomex Twaron Technora

Manufacturer – DuPont DuPont DuPont DuPont DuPont Teijin Teijin
Type – Para-aramid Para-aramid Para-aramid Para-aramid Para-aramid Para-aramid Para-aramid
Density (g/cm3) 1.44 1.44 1.45 1.47 1.38 1.44 1.39
Filament diameter (μm) 12 12 12 12 16 12 12

Longitudinal CTE (×10−6) (m/m/°C) −4.0 −4.9 – – 15 −3.5 −6.2
Tensile modulus (GPa) 70 112 95 150 17 120 70
Tensile strength (MPa) 2920 3000 3800 2800 600 2700 3400
Elongation at break (%) 4.0 2.8 3.3 1.5 2.2 2.0 4.5
Specific tensile modulus (GPa/g/cm3) 48.6 82.8 68.3 97.3 12.3 83.3 50.4
Specific tensile strength (GPa/g/cm3) 2.0 2.1 2.3 1.6 0.4 1.9 2.4

Source:	 Comprehensive Composite Materials, Vol. 1, Fiber Reinforcements and General Theory of Composites, H. H. Yang, Aramid fibers, pp. 199–229, 
Copyright 2000, from Elsevier; www.dupont.com; www.teijinaramid.com.

Note:	 Data provided in the table are indicative; for more authentic information, current data sheets from respective manufacturers can be 
consulted.

www.dupont.com
www.teijinaramid.com
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mixture of hydrogen and boron trichloride on fine diameter tungsten filaments at high 
temperature of 1200°C. While the tungsten core is fine with a diameter of 13 μm, 
boron filaments are rather fat with an overall diameter ranging from 100–140 μm; thus, 
these fibers do not bend easily. With a relatively low density of 2.6 g/cm3, boron fibers 
compare well with other high performance fibers in terms of specific tensile strength 
and modulus. Another advantage of boron fibers is their high compressive properties, 
and they retain their mechanical properties at high temperature of up to 800°C. These 
are used in boron/epoxy composites for aircraft applications, certain sports goods, and 
MMCs.

9.5.5  Extended Chain Polyethylene Fibers

Extended chain polyethylene (PE) fibers are a type of high performance organic fibers 
with some extraordinary properties, though not as popular as glass, carbon, or ara-
mids. These fibers are produced by solid-state extrusion and gel spinning methods, and 
they possess a combination of favorable and unfavorable properties. Notable among the 
favorable properties are very low density (0.97 g/cm3), high tensile modulus (130 GPa) 
and strength (2700 GPa), outstanding fatigue and impact resistance, excellent environ-
mental resistance, etc. However, they are poor in creep, compression, and transverse 
directional properties. Further, these fibers have a very low service temperature, and 
untreated extended chain PE fibers do not have good compatibility with resin matrix. 
Typical applications of these fibers include bulletproof vests, military helmets, ropes, 
cables, nets, surgical gloves, sports goods, etc.

9.5.6  Ceramic Fibers and Whiskers

Ceramic fibers with oxide as well as nonoxide compositions are used in composites. 
Typical examples of oxide fibers are alumina (Al2O3), alumina–silica (Al2O3–SiO2), 
and zirconite (Zr-Al2O3), whereas silicon carbide (SiC) is a typical nonoxide fiber. 
Ceramic fibers are available in continuous as well as discontinuous forms, and due to 
their high-temperature stability, they are commonly used as reinforcements for MMCs 
and CMCs in high-temperature applications.

Whiskers are single-crystal fibers with nearly zero defects. They are very short in 
length, but their aspect ratios are very high. Whiskers, owing to their nearly perfect 
crystal alignment and defect-free structure, possess high mechanical properties com-
pared to their bulk forms.

9.5.7  Natural Fibers

Interest in natural fibers as an alternate class of fibers for composites has been growing 
and considerable amount of work has been done especially in the recent past (see, for 
instance, References 40–42 and the bibliography contained therein). There are three 
broad sources of natural fibers: plants, animals, and minerals. Based on the specific 
part of a plant that is used, plant fibers are categorized into bast fiber, seed fiber, leaf 
fiber, fruit fiber, and stalk fiber. In a similar way, animal fibers can also be categorized 
into wool or hair, silk fiber, and avian fiber. Examples of various plant and animal fibers 
are given in Table 9.15.

Natural fibers possess a few favorable characteristics. In general, they are light, 
biocompatible, and environment friendly. However, mechanical properties of natural 
fibers are generally poor and nonuniform. Poor compatibility with matrix system and 
moisture absorption are two other drawbacks. Present applications of natural fibers are 
in automotive industry (car dash board), construction industry (doors, windows), etc.
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9.6  PHYSICAL FORMS OF REINFORCEMENTS
Filaments are the very basic form of reinforcements in advanced PMCs. They are char-
acterized by their very fine diameter and very high aspect ratio (l/d ratio) and they 
possess very high structural properties. Individual filaments, however, are not directly 
useful in the composite processing shop floor. Reinforcements are available in different 
physical forms. Reinforcements in the forms of continuous fibers, short fibers, fabrics, 
and 3D preforms are used in PMCs processing. In this section, from the point of view of 
composite processing, we will have a brief discussion on these physical forms [20,43].

9.6.1  Continuous and Short Fibers

Continuous fibers are 1D reinforcements and they are available as strands, tows, rov-
ings, and yarns.

Strand is a term associated normally with glass fibers. A strand is a bundle of 
untwisted filaments. Similarly, tow, a term associated with carbon fibers, refers to a 
bundle of untwisted carbon filaments. Tow size is specified in terms of number of fila-
ments in one tow, for example, 12k tow would mean 12,000 filaments per tow.

A roving is a collection of untwisted strands or tows. Rovings are directly used in 
the manufacture of composite products by processes such as filament winding and 
pultrusion.

Yarns, on the other hand, are collections of twisted strands or tows. Twisting helps 
improve handleability in processes such as weaving.

Short fibers are obtained by chopping continuous fiber strands into lengths of about 
25 mm. These are used for making molding compounds and CSMs. Chopped strands 
are also used in spray-up process.

9.6.2  Fabrics and Mats

Fabrics and mats are 2D reinforcements. They are used in wet lay-up process. A major 
use of fabrics is in making prepregs.

Fabrics are primarily of two types—woven fabrics and nonwoven fabrics.
Woven fabrics are made by weaving yarns, tows, or rovings on a loom. The fibers are 

placed in the warp and weft directions, and interlaced in different ways to make differ-
ent weave styles. Warp is the 0° direction, that is, parallel to the length direction of the 
roll, whereas, weft, also known as fill, is the 90° direction. Relative amounts of fibers in 
the warp and weft directions depend on the type of weave style, and in general, equal or 
nearly equal amounts fibers are placed in both the directions. These fabrics are called 
as balanced fabrics. In certain cases, most of the fibers are placed in the warp direction 

TABLE 9.15
Examples of Natural Fibers

Type Type Example

Plant fibers Bast fiber Flax, jute, kenaf, hemp, ramie
Seed fiber Cotton
Leaf fiber Banana, sisal
Fruit fiber Coconut fiber (coir)
Stalk fiber Bamboo, straws of rice, barley, wheat

Animal fibers Wool or hair Sheep wool, goat hair, horse hair, etc.
Silk fiber Silk fiber
Avian fibers Feathers
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only and these fibers are held in position by very fine threads in the weft directions. 
These fabrics, known as unidirectional fabrics, possess exceptionally high strength and 
stiffness properties in the warp direction but very low properties in the weft direction.

Woven fabrics are available in different surface densities, thicknesses, and finish 
qualities. Fabrics made from twisted yarns have finer finish than fabrics made from 
untwisted rovings. Selection of fabric depends on a number of factors such as structural 
strength, wettability, drapeability, composite ply thickness, etc. These characteristics 
are influenced by the fabric’s weave style. Different weave styles are employed in fab-
ric making. Common weave styles are plain weave, satin weave, twill weave, basket 
weave, etc. and their subtypes such as 4H satin, 8H satin, 2 × 2 twill, 2 × 1 twill, etc. 
Figure 9.7 shows some common weave styles. Plain weave has the maximum number 
of interlaces per unit area and it is very stable with maximum resistance to in-plane 
shear movement. But, plain weave fabrics are not very drapeable, and thus, are not suit-
able for lay-up on highly contoured surfaces. Owing to too many interlaces, strength 
of these fabrics is the least as compared to other weaves. Also, wettability of these 
fabrics during impregnation is poor. Basket weaves are marginally stronger than the 
plain weave. Satin weaves have minimum interlaces per unit area. They are strong, 
highly drapeable, and suitable for lay-up on highly contoured surfaces. On the other 
hand, from the point of view of wettability, twill weave fabrics, possibly, are the most 
convenient. For making a nonwoven or noncrimp fabric, the yarns or rovings are placed 
in the desired direction and then stitched using polyester threads. Unlike the woven fab-
rics, the yarns and rovings do not bend over each other and they remain straight; thus, 
nonwoven fabrics are stronger than the woven fabrics. Fibers can be placed in almost 
any direction as per final requirement, and it is possible to make multi-ply fabrics with 
fiber in more than one direction. Multi-ply fabrics are quite thick, and fabrication time 
can be drastically reduced. However, high ply thickness also causes problem of poor 
wettability of the fabrics.

In addition to the fabrics, mats such as CSM, surface mat, etc. are also regularly used 
in composite fabrication. CSMs are made by binding randomly distributed chopped 
glass strands by a suitable binder such as poly vinyl alcohol (PVA). In surface mats, 
very fine strands are used. Owing to the random nature of the reinforcements, the mats 
are not suitable for high performance structural applications and they are used in non-
structural commercial applications.

9.6.3  Preforms

Preforms are a type of reinforcement form, in which the fibers are arranged, typi-
cally, in three dimensions. In the composite processing stage using preforms, resin is 
injected into the pores in the preform. Resin transfer molding and its variants are com-
mon composite processing methods that use preforms. There are different methods to 
make preforms. Braiding is a common method for making continuous fiber preforms. 
Other methods include stitching, in which fabrics, mats or combinations thereof are 

Plain
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2 × 2
basket weave

2 × 2 
twill weave

FIGURE 9.7  Common 2D weave styles.
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stitched. For short fiber preforms, spray guns that spray chopped strands and a binder 
are used.

9.6.4  Molding Compounds

Molding compounds are a form of ready-to-use material used in molding operations. 
They are made by using reinforcements in different forms, resin, fillers, plasticizers, 
and other ingredients. There are different types of molding compounds—SMC, bulk 
molding compound (BMC), and injection molding compound.

9.6.4.1  Sheet Molding Compounds

SMC is a material in the form of sheet that contains uniformly distributed short fibers 
held by uncured thermosetting resins. Normally, chopped strands of glass and polyester 
or vinylester are used as the reinforcements as matrix, respectively. Typically, SMC 
consists of about 30% (by weight) chopped glass fiber. Continuous glass strands are 
also used in some cases. The process of manufacture of SMC involves making a paste 
of resin with some ingredients followed by application of the paste onto chopped glass 
strands. The ingredients used for making the paste have their own specific purposes 
and some of them are optional (Table 9.16). Specified quantity of the paste is applied 
on a carrier film. As the carrier film moves and comes under a chopper, chopped glass 
strands fall on the resin paste on the carrier film. Another carrier film with resin paste 
is then introduced such that the chopped glass strands get sandwiched between the two 
layers of resin paste on the carrier films. Doctor blades are used for adjusting the thick-
ness of paste. The material is compacted by compaction rollers for achieving complete 
wetting of the glass fibers. The process of SMC making is schematically illustrated in 
Figure 9.8.

9.6.4.2  Bulk Molding Compounds

BMC, also known as dough molding compound (DMC), is a ready-to-mold material 
in the bulk form. It is made by mixing the resin paste with the fibers that are gener-
ally 6–12 mm in length. Fiber volume fraction in BMC is low, typically 15%–20%, 

TABLE 9.16
Typical Ingredients for Making SMC

Ingredients Description

Unsaturated polyester 
resin

It is the base resin in the paste and it binds the chopped glass fibers on curing

Styrene It is a comonomer and solvent. It acts as a cross-linking agent and it reduces the 
resin viscosity

Catalyst It initiates the cross-linking process in the resin. Normally, 0.3%–1.5% (by wt.) 
of catalyst is added

Fillers Fillers constitute a major weight fraction of about 40% of the final part. Calcium 
carbonate, hydrated alumina, etc. are common fillers. They reduce shrinkage 
in the final part during curing, enhance dimensional stability and appearance 
of the molded part, and reduce the overall cost of the part. Certain fillers 
impart specific characteristics. For example, hydrated alumina provides flame 
retardancy

Thickener It starts a chemical thickening process that converts the resin mix into a 
handleable paste. Common thickeners include oxides and hydroxides of 
calcium and magnesium

Mold release agent It is added in small fraction for easy release of the molded part from the mold
Inhibitor It is added for preventing premature cross-linking of the resin
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and as a result, mechanical properties of BMC composites are lower. Commonly used 
resins are unsaturated polyester, vinyl ester, and phenolics. Chopped glass strands are 
common reinforcements, however, in some special cases, prepregs are also cut in the 
form of flakes and used as a molding compound.

9.6.4.3  Injection Molding Compounds

Injection molding compounds are molding compounds formulated specifically for injec-
tion molding process. Injection molding is very common in thermoplastic composites 
manufacturing process. Epoxy, polyester, and vinylester are used for making thermoset 
injection molding compounds. Fibers used are very short, typically 1.5 mm in length.

9.6.5  Prepregs

Prepregs are a form of reinforcement, in which the fibers or fabrics are preimpregnated 
and stored for use at a later date. In a prepreg, the reinforcements are wetted with 
the resin and the resin is advanced to a state called as “B-stage.” In this condition, 
the prepregs can be stored for a limited period at low temperature and can be used 
on a later date. The main advantage of using prepregs is that the impregnation of the 
reinforcements is done during raw material manufacture itself, and no impregnation 
is required during actual component manufacture. Thus, fiber volume fraction can be 
more accurately controlled, fibers can be more precisely oriented, and overall quality 
of final product is improved.

Prepregs are available in different forms. Preimpregnated roving prepregs, also 
known as towpregs, are unidirectional prepregs and are frequently used in filament 
winding applications. Unidirectional prepregs are also available in the form of tapes 
with fibers placed in the 0° direction. Woven fabrics are preimpregnated for making 2D 
flat prepregs. They are routinely used in lay-up of flat-to-medium contoured-to-highly 
contoured parts.

Prepregs are manufactured either by solvent impregnation or by hot melt process. 
Figure 9.9 schematically shows the manufacturing process of prepregs by solvent 
impregnation. The reinforcements in the form of fabrics or rovings are drawn through 
a resin bath containing low viscosity resin. The impregnated reinforcements are pulled 
at a constant speed through a series of rollers and an oven with different chambers 
maintained at different temperatures. The positions of the compactor rollers are so 
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FIGURE 9.8  Schematic illustration of SMC manufacturing process. (Adapted with permission from 
S. K. Mazumdar, Composites Manufacturing—Materials, Product and Process Engineering, CRC 
Press, Boca Raton, FL, 2002.)
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adjusted as to achieve the desired resin content in the prepreg. Advancement of the 
resin takes place inside the oven, and the parameters such as speed, temperatures at 
different chambers, etc. are set such that the resin comes to B-stage. At this state, the 
resin does not flow and the product is obtained as a preimpregnated fabric, which is 
slightly tacky. For ease of handling and storage, polythene films are introduced and the 
prepregs are rolled on rollers for storage. The prepregs have limited shelf life and stored 
at low temperature in a cold storage equipment.

9.7  SUMMARY
In this chapter, we presented an introduction to the constituents of PMCs. The key 
points can be summarized as follows:

◾◾ The matrix of a PMC material is a polymer, which is a natural or synthetic 
compound of usually high molecular weight consisting of many repeating units 
of smaller molecules (monomers).

◾◾ Polymers are of three types—thermosets, thermoplastics, and rubbers, of 
which thermosets are of primary interest in this book.

◾◾ Epoxies, polyesters, vinyl ester, and phenolics are some of the most common 
thermosetting resins used in PMCs industry.

◾◾ Epoxy resins are a class of thermosetting polymers consisting of primarily two 
components—a base epoxy system and an epoxy curative. In the composites 
field, they have found extensive applications in industrial, aerospace, and other 
high-end applications.

◾◾ Polyester resins are unsaturated thermosetting resins made by dissolving poly-
ester oligomers in a solvent. They are the most commonly used resins in PMCs 
for commercial applications.

◾◾ Vinyl ester resins are similar to polyester resins but with an epoxy base. 
Applications of vinyl ester resins are many, of which, use as corrosion-resistant 
reinforced plastics is predominant.

Fabric roll

Resin bath

Barrier 
film

Compactor
rollers 

Prepreg roll

Oven with different
temperature zones

FIGURE 9.9  Schematic illustration of prepreg manufacture.
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◾◾ Phenolic resins are a class of resins made by condensation reaction of phenol 
and formaldehyde in the presence of a catalyst. Among several other applica-
tions, fire safety and high-temperature applications of phenolics are of critical 
importance.

◾◾ Various materials in the fiber form are used as reinforcements. Of these, glass, 
carbon, aramid, boron, extended chain polyethylene, ceramic fibers, and natu-
ral fibers are worthy of mention.

◾◾ Glass fibers are high tensile strength but relatively low modulus fibers used for 
making a wide range of GFRP products primarily for commercial applications. 
Depending on chemical compositions, there are several types of glass fibers 
such as E-glass, S-glass, etc. that are available in different physical forms such 
as roving, mats, etc.

◾◾ Carbon fibers are composed primarily of carbon and they are produced from 
three main precursor materials—PAN, pitch, and rayon. They have excep-
tional mechanical and thermal properties and are used in aerospace, defence, 
and high-end commercial applications.

◾◾ Aramids are a class of organic fibers with exceptional mechanical properties. 
Kevlar is one of the oldest and most commonly used aramid fibers.

EXERCISE PROBLEMS

	 9.1	 What are thermosets and thermoplastics? How are they different from each 
other?

	 9.2	 Write a comparative note on the properties and applications of epoxies, 
polyester, and phenolics.

	 9.3	 What are the different types of glass fibers? Give a brief note on their chem-
ical compositions.

	 9.4	 How are glass fibers produced? Give a brief description.
	 9.5	 Write a note on the different types of carbon fibers and their classification.
	 9.6	 Write a note on production of carbon fibers.
	 9.7	 Discuss and make a comparative note on the properties of various major 

classes of reinforcing fibers.
	 9.8	 Make a comparative note on the applications of different types of reinforc-

ing materials.
	 9.9	 What are the different physical forms that reinforcements are available in? 

Discuss and make a comparative note of these forms in glass, carbon fibers, 
and aramid fibers.

	 9.10	 What are prepregs and molding compounds? Write a brief note giving the 
similarities and differences between the two ready-to-use material forms.

	 9.11	 Write a brief description on production prepregs and molding compounds.
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10.1  CHAPTER ROAD MAP
After providing an introduction to composites in Chapter 1 followed by a detailed pre-
sentation on mechanics and analysis of composites in Chapters 2 through 8, common 
reinforcements, their physical forms, and matrix materials were discussed in Chapter 9. 
The objective of this chapter is to find an answer to the next logical question: how are 
these reinforcements and matrix materials converted into useful composite products? 
There are several PMC manufacturing methods that are employed for making a com-
posite product. These methods involve certain basic processing steps; these essential 
processing steps are introduced first. PMC manufacturing methods can be categorized 
into three groups and some of the common manufacturing methods representing these 
three groups are chosen for discussion. The selection of a manufacturing method is an 
important decision in the development of a product; various aspects of the manufac-
turing method selection are presented. There are other critical aspects in composites 
manufacturing; two such areas, viz. process modeling and composites machining, are 
discussed at the end of this chapter. Our discussion will be limited to thermoset resin 
matrix composites.

As stated in the roadmap to Chapter 9, for a reader whose objective of study is pri-
marily to familiarize with composites manufacturing and testing, Chapters 2 through 
8 can be skipped. In that sense, Chapters 1 and 9 should be covered before proceeding 
to this chapter.

10.2  INTRODUCTION
Composites technology is process intensive. For anyone in the field of composites, good 
knowledge of manufacturing processes is essential to know how the reinforcements 
and matrix materials are converted efficiently into a useful product.

As reflected by numerous research articles, composites manufacturing is an exten-
sively researched vast subject. Several full volumes of text have been devoted to 
discuss the various aspects of composites manufacturing in detail [1–3]. There are 
also several texts in which composites manufacturing is presented in lesser detail to 
complement discussions on other topics of overall composites technology [4–6]. In 
this chapter, the manufacturing of composites is treated as an important link in the 
chain of various topics that are involved in the final goal, that is, development of a 
composite product.

10
Manufacturing Methods for 
Polymer Matrix Composites
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10.3  BASIC PROCESSING STEPS
All composites manufacturing methods involve four basic steps [1]. These are

◾◾ Impregnation
◾◾ Lay-up
◾◾ Consolidation
◾◾ Solidification

These steps are essential in all composites manufacturing methods. However, the 
methodology of implementation and the exact order in which these steps are imple-
mented vary depending upon the manufacturing method and physical form of the rein-
forcement and matrix.

10.3.1  Impregnation

Impregnation or wetting is the step in which the fibers are wetted with the resin. The 
objective of this step is to ensure that each filament is wetted with resin all around. 
The matrix and the fiber–matrix interface play an important role in the load transfer 
mechanism in a composite material; resin-starved areas imply discontinuity in the load 
transfer path, and thus, proper wetting of fibers is essential for the manufacture of 
sound composites parts. Several process parameters influence proper impregnation of 
the fibers; some of the key parameters are viscosity of resin, its surface tension, and 
capillary action.

Impregnation is done in different ways in different composites manufacturing meth-
ods. In all wet lay-up and wet winding processes, impregnation is done during the 
actual fabrication process. For example, in wet filament winding, fibers are wetted in a 
resin bath prior to depositing them on the mandrel. Similarly, in wet hand lay-up, fabric 
plies are placed on a mold and wetted with resin using an application brush. On the 
other hand, in the dry lay-up and dry winding processes, impregnation of the reinforce-
ments is done during prepreg/towpreg manufacturing.

10.3.2  Lay-Up

Lay-up is the step in which the reinforcements are placed as per the designed ori-
entation. The structural performance of a composite part depends greatly on the 
ply sequence. The methods of placing the reinforcements vary from one process to 
another. For example, in filament winding, winding programs are used to control rela-
tive motions of the mandrel and carriage unit. The impregnated fibers are deposited by 
the carriage unit on the mandrel along a predesignated path. In a hand lay-up process, 
specified numbers of fabric plies are placed at specific fiber orientations so as to obtain 
the desired laminate thickness. In contrast to the above two and other such manufactur-
ing methods, in which reinforcements are deposited in layers, there are manufacturing 
methods in which short reinforcements are placed at random orientation, resulting in 
globally isotropic composite parts. There are other types of manufacturing methods, 
such as RTM, that use preforms. In a preform, fibers are placed in a specified pattern, 
typically in three dimensions.

10.3.3  Consolidation

Consolidation is the process of removing excess resin and entrapped air during com-
posite processing. The objective is to create intimate contact between laminae, and 
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thereby sound composite parts. In hand lay-up processes, excess resin is squeezed out 
by the application of a roller during lay-up. Further, during curing, typically, pressure 
is applied for consolidation. Consolidation takes place simultaneously during lay-up in 
processes like filament winding, in which winding tension in the rovings generate suf-
ficient consolidation pressure during winding, and no external consolidation pressure 
is necessary.

10.3.4  Solidification

Solidification is the final step that gives the composite part a physical solid shape. 
It essentially involves the cure of the resin matrix, during which cross-linking takes 
place and the resin solidifies. Typically, a positive pressure, vacuum, and temperature 
are applied. The duration of the curing process and requirement of pressure, vacuum, 
and temperature depend upon the cure kinetics of the resin system. For example, cer-
tain resins emit by-products during curing; application of vacuum is necessary for the 
removal of these by-products, and proper consolidation. Similarly, certain other resins 
cure at room temperature, and so on. The process of curing is discussed in more detail 
in Section 10.6.

Note: Given above is a brief discussion on the four essential steps involved in any 
composites manufacturing method. It may, however, be noted again that these steps or 
processes need not necessarily take place sequentially; in many cases, more than one 
processes go on simultaneously.

10.4  COMPOSITES MANUFACTURING PROCESSES
A number of manufacturing processes are available for making composite parts. These 
processes can be grouped as follows:

◾◾ Open mold processes
−− Wet lay-up
−− Prepreg lay-up
−− Spray-up
−− Rosette lay-up

◾◾ Closed mold processes
−− Compression molding
−− RTM and its variants

◾◾ Continuous molding processes
−− Pultrusion
−− Filament winding
−− Tape winding
−− Fiber placement

Note: The classification of composites manufacturing methods given above is mainly for 
the convenience of discussion. Also, the list of processing techniques is not exhaustive.

10.4.1  Open Mold Processes

Open mold processes, also referred to as contact molding processes, are one of the most 
common composites processing techniques that involve placing either dry fabrics or 
prepregs on an open mold [7–8]. A major advantage of these processes is that the cost 
of tooling and equipment and machinery is generally low. They are, however, labor 
intensive; thus, the final quality of the component is highly dependent on individual 
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skill. These processes are suitable for medium- to large-sized parts in limited numbers. 
Lay-up processes can be either wet lay-up or prepreg lay-up depending upon whether 
dry fabrics or prepregs are used. Spray-up and rosette lay-up are special lay-up pro-
cesses as discussed below.

10.4.1.1  Wet Lay-Up

10.4.1.1.1  Basic Process

Wet lay-up process is schematically shown in Figure 10.1. The basic processing steps 
are as follows:

◾◾ A release agent such as wax polish or polyvinyl alcohol (PVA) is applied on the 
mold surface. The release agent is necessary for easy extraction of the compo-
nent after curing.

◾◾ First, a gel coat is applied on the mold surface. The gel coat is a high-viscosity 
resin that gives better surface finish. Low-surface-density reinforcing material 
such as a surface mat is put on the gel coat.

◾◾ Dry cut pieces (generally referred to as developments) of reinforcement fabrics 
are then laid-up as per the desired ply sequence.

◾◾ Each layer of fabric is wetted with liquid resin. Usually, a brush is used for 
applying resin on the dry fabric. Other methods of applying resin are also in 
vogue. For example, the resin can be poured and then spread using a spatula on 
the dry fabric. Alternatively, the fabric can be wetted separately and then laid-
up on the mold. Clearly, other such variations can be thought of, which depends 
upon the ingenuity of the processing engineer.

◾◾ Excess resin and air voids are squeezed out by using a roller.
◾◾ The composite is then cured, usually at ambient environment.
◾◾ The cured part is extracted, and finishing operation such as parting, trimming, 

removal of high spots, etc. are carried out.

Release agent on mold surface

Roller

Mold

Application of gel coat for better surface finish

Lay-up in progress

Fabric plies

Completed lay-up

Final part after curing and extraction

Gel coat

FIGURE 10.1  Schematic illustration of wet lay-up process.
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10.4.1.1.2  Tooling and Capital Equipment

In most cases of wet lay-up, room-temperature curing at atmospheric pressure is 
adopted. As a result, demand on tooling as well as capital equipment is very low. Steel, 
wood, glass fiber–reinforced plastics (GFRP), etc. are common mold-making materi-
als. Both male mold and female mold are used. Male mold gives better inside finish, 
and is typically used for making parts such as bath tub, etc. On the other hand, female 
mold gives better outer finish, and is typically used for parts such as yacht hull, etc. 
For large components, molds made from GFRP are also used. These composite molds 
are made by laying up glass fabrics on a pattern that resembles the part. The pattern, 
in turn, is made by adopting a process called loft template technique. Steel or wooden 
templates, machined as per the contour at regular cross section of the part, are placed 
parallel to each other and the gaps are filled with plaster. Excess plaster material is 
removed taking reference from the templates and the pattern is realized. Figure 10.2 
gives a schematic representation of the wet lay-up process using composite mold and 
plaster pattern.

10.4.1.1.3  Basic Raw Materials

Commonly used reinforcements in wet lay-up processes are glass, carbon, and Kevlar 
fabrics. These are either bidirectional or unidirectional woven fabrics. Specially manu-
factured multilayered fabrics, contour-woven socks, etc. are also used. Another special 
type of reinforcing material is a unidirectional sheet that is made by winding rovings 
on a cylindrical drum. The circumferentially wound rovings are cut along meridian 
and a unidirectional sheet is obtained for immediate consumption. Surface mat and 
other low surface density materials are used for reinforcing gel coats. Common resins 
are polyester, epoxy, and vinyl ester. These are typically low-viscosity resins, whereas 
gel coats are specially formulated high-viscosity resins that give good surface finish.

10.4.1.1.4  Advantages and Disadvantages

The advantages of the wet lay-up process include the following:

◾◾ It is a simple and versatile process useful for making a wide range of products 
using a wide range of reinforcements.

Plaster pattern by loft
template technique

Composite mold Final part

Plaster pattern
Composite mold on

plaster pattern

Part lay-up

Steel/wooden/plastic
template

PlasterComposite
lay-up

FIGURE 10.2  Wet lay-up using composite mold and plaster pattern.
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◾◾ Initial capital investment is very low as the tooling can be very simple. Also, 
expensive equipment and machinery are generally not essential.

The disadvantages of this process include the following:

◾◾ It is a labor-intensive process.
◾◾ Part quality is highly dependent on individual skill and thus not consistent 

from part to part.
◾◾ It is suitable for medium- to large-sized components in limited numbers only.
◾◾ The process is somewhat messy and, due to its open mold nature, it involves 

health concern.

10.4.1.2  Prepreg Lay-Up

10.4.1.2.1  Basic Process

Prepreg lay-up is similar to wet lay-up in respect of the basic lay-up process. Both are 
open mold manual processes. However, differences do exist. First, in the case of wet 
lay-up, impregnation of the fabric is done during component processing. On the con-
trary, in the case of prepreg lay-up, impregnation is done at the raw material prepara-
tion stage itself, and the ready-to-use impregnated and B-staged fabrics, that is, the 
prepregs, are kept at subzero temperature in a cold storage equipment for future use. 
Another key difference is in respect of the curing process. In most wet lay-up pro-
cesses, curing is done at room temperature and no pressure or vacuum is applied. On 
the other hand, prepreg lay-up processes generally involve curing in an autoclave at 
high temperature under external pressure and vacuum. Thus, prepreg lay-up processes 
are also known as autoclave process or vacuum bagging process.

The basic processing steps are as follows [8–10]:

◾◾ The prepreg rolls are taken out of the cold storage unit and brought to room 
temperature.

◾◾ The prepreg rolls are unrolled and the prepreg sheets are laid on a cutting table 
in a clean room under controlled temperature and humidity. Different sizes of 
prepreg cut pieces, that is, developments, in different numbers, as per manufac-
turing drawings, are required to make a component. For large complex compo-
nents, the shape, size, and number of the developments are determined using 
specialized manufacturing software so as to minimize wastage. Prepreg sheet 
cutting is either manual or mechanized. Templates are used to aid in manual 
cutting. In the case of mechanized cutting, cutting equipments are used for 
speed and accuracy. These machines can cut several layers of prepreg sheets 
stacked one above the other.

◾◾ The mold is cleaned and the release agent is applied on the mold surface.
◾◾ Prepreg sheets are provided with a backing film either on one side or both the 

sides for easy handling. After cutting the prepreg sheets, these backing films 
are removed. It is important to ensure complete removal of the backing films 
as otherwise delaminations would be formed in the final part.

◾◾ The developments are then laid-up on the mold as per the manufacturing ply 
sequence. After laying up each layer, a roller is used for removing the entrapped 
air between the prepreg sheets. The process is continued until all the develop-
ments as per the process design are laid-up.

◾◾ The green composite is then vacuum-bagged and cured in an autoclave or an 
oven. After curing and cooling, the vacuum bag is removed and the part is 
taken out. The process of vacuum bagging and autoclave curing needs little 
more attention and is elaborated in the section on curing.
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10.4.1.2.2  Tooling and Capital Equipment

Prepreg lay-up requires open molds that can be made out of steel, wood, or composites. 
Mold design and material are greatly influenced by the scheme of curing. Autoclave 
is a key capital equipment in the prepreg lay-up process. It is a pressure chamber with 
provisions for the application of heat and vacuum. The pressurization medium is either 
air or an inert gas such as nitrogen or carbon dioxide; an inert gas is preferable as air 
involves the risk of fire accidents. The temperature, pressure, and vacuum are computer 
controlled.

10.4.1.2.3  Basic Raw Materials

Carbon/epoxy prepregs are the most common material used for making structural parts 
in the aerospace industry. Other prepregs used are glass/epoxy and Kevlar/epoxy. For 
thermal insulation and ablative applications, carbon/phenolic and glass/phenolic pre-
pregs are used.

10.4.1.2.4  Advantages and Disadvantages

The major advantages of prepreg lay-up process are

◾◾ As compared to the wet lay-up process, it is a neat process.
◾◾ Complex parts can be made by this process.
◾◾ High fiber volume fractions (more than 60%) can be achieved. Thus, parts 

made using prepregs are structurally very strong and stiff.
◾◾ Tooling cost is generally low, and the process is suitable for making prototype 

parts.

The disadvantages of prepreg lay-up process include the following:

◾◾ It is a highly labor-intensive process.
◾◾ Autoclave curing process is expensive due to high initial capital investment as 

well as high cost of autoclave consumables. Thus, parts made by this process 
are expensive.

10.4.1.3  Spray-Up

10.4.1.3.1  Basic Process

Spray-up is similar to the wet lay-up process except the method of depositing the rein-
forcements. In the wet lay-up process, fabric plies are laid-up and wetted one by one, 
whereas in the spray lay-up, a spray gun is used for depositing a mixture of chopped 
reinforcements mixed with resin on the mold. The basic steps are as follows:

◾◾ The mold is cleaned, and wax polish or other suitable release agent is applied.
◾◾ A gel coat is applied on the mold surface and allowed to harden. The gel coat 

gives a highly polished surface finish to the part.
◾◾ A barrier coat is applied on the hardened gel coat. It prevents fibers from print-

ing through the gel coat.
◾◾ A spray gun is used to spray a mixture of chopped fibers and resin on the mold 

surface. Continuous rovings are fed into the gun; the gun chops the rovings to 
a predetermined size. A tank containing the resin mix is connected to the spray 
gun. The gun mixes the resin mix with the chopped fibers, and the mixture of 
chopped fibers and resin is sprayed.

◾◾ Once the desired thickness is built-up, rollers and brushes are used for the 
removal of entrapped air and further wetting, if needed.
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◾◾ The composite part is then cured followed by extraction and finishing operations 
of the final part. Curing is usually done at ambient environment; however, oven 
curing at elevated temperatures is also adopted for accelerating the cure process.

Spray-up is sometimes used for making certain specialized parts, wherein after 
building up the first skin, corrugated material, or foam, is placed to act as core material. 
A second skin is then laid-up by spray lay-up. Sandwich structures made in this way 
are structurally stiffer than usual spray lay-up components, but more expensive.

10.4.1.3.2  Tooling and Capital Equipment

Tooling requirement for spray lay-up is similar to the wet lay-up process. Simple male 
or female open molds, made out of metal, wood, or FRP, are used.

A spray gun having features to receive continuous rovings or strands and cut the 
rovings to specified length is an essential equipment. The spray gun can receive either 
catalyst-mixed or hardener-mixed polyester resin from a tank or mix the catalyst or 
hardener with the resin inside the gun itself. Further, the spraying process can be mech-
anized for which robotic spray guns are used.

10.4.1.3.3  Basic Raw Materials

The most common raw materials are E-glass rovings and polyester resin. In specific 
cases, other reinforcements such as carbon and Kevlar in forms like continuous strand 
mat, fabric, and other core materials are also used.

10.4.1.3.4  Advantages and Disadvantages

The main advantages of this process are

◾◾ Spray lay-up is a very economical process that is suitable for making parts of 
almost any size—small, medium, or large.

◾◾ The tooling requirement is very simple.
◾◾ Complex parts can be made easily by this method.
◾◾ It can be easily automated.

The main disadvantages are

◾◾ Parts made by spray lay-up do not have very high structural properties.
◾◾ The quality of the product is highly dependent on the skill of the operator, 

and thus, parameters like fiber volume fraction and part thickness are neither 
uniform nor repeatable.

◾◾ The process is not suitable for good dimensional accuracy. Also, good surface 
finish is possible only on one side.

10.4.1.4  Rosette Lay-Up

Rosette lay-up is a unique composite lay-up technique. It can actually be considered as 
an open mold process as well as closed mold process. What differentiates this process 
from other conventional processes is the 3D geometry of the plies. In most other com-
mon layered composite construction, the plies are, in general, parallel or nearly parallel 
to the predominant surface of the component. For example, the plies are 2D in a flat 
laminate, cylindrical in a circular cylindrical shell, conical in a conical shell, and so on. 
The thickness of the part increases as the plies are laid-up one above the other. On the 
contrary, in a rosette construction, the plies are laid-up across the thickness.

The common applications of rosette lay-up are in the ablative liners for rocket noz-
zles. In a nozzle liner made by rosette lay-up, the edges of the plies are exposed to the 
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hot and high-velocity gases of propellant burning. As only the edges are exposed, cata-
strophic ply erosion is avoided and controlled consumption of the ablative composites 
takes place, and the structural parts are protected. Figure 10.3 shows a typical rosette 
construction. The 3D orientation of the plies is important from the point of view of 
efficient functional performance of the part. It may also be noted that, owing to geo-
metrical constraints, arbitrary shapes of rosette plies are not desirable. Note that if care 
is not taken while designing the shape of the plies, gaps will be created in the outer 
periphery of the part. The 3D orientation of the rosette ply at any point is defined in 
terms of three angles—arc angle, helix angle, and surface angle. These three angles 
are mathematically related to each other, and the rosette surface is determined based on 
such mathematical considerations. The mold for rosette lay-up consists of a block with 
the rosette surface on which the first ply is laid-up and the lay-up process is continued 
till the part is filled with the predecided numbers of plies.

10.4.2  Closed Mold Processes

There are several closed mold processes that are regularly employed for making com-
posite parts. Although grouped together, these processes vary greatly from each other 
in respect of working principle, types of parts made, rate of production, tooling and 
machinery required, and basic raw materials used. We may identify these characteris-
tics as we discuss some of the common closed mold processes.

10.4.2.1  Compression Molding Process

Compression molding is a popular composites manufacturing process suitable for mak-
ing small- to medium-sized parts in large volumes as well as small numbers. In this pro-
cess, typically, a female mold and a matching male mold are used [11–13]. In view of the 
matching molds, this is also known as matched-die-mold process. Compression mold-
ing is based on the principle of consolidating the charge (charge is the material placed 
between the two halves of the molds) by external pressure exerted by a hydraulic press 
followed by curing the part in the press itself. Variants are also in vogue, in which case, 
the consolidation pressure may be applied by the tool itself and curing is done in an oven.

10.4.2.1.1  Basic Process

The basic processing steps involved in compression molding are as follows (see 
Figure 10.4 for schematic representation):

◾◾ The top and bottom halves of the mold are cleaned and assembled on to the 
top and bottom platens of the hydraulic press. A suitable release agent such as 
wax polish is applied. (Typically, a hydraulic press is used for the application of 

Outer edges
of plies

Inner edges
of plies

Rosette plies

FIGURE 10.3  Cross-sectional representation of rosette lay-up of a cylindrical part.
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consolidation pressure. In this respect, a variant of this process is a completely 
tooling based compression molding process, in which the consolidation pres-
sure is applied by the tool itself, and thus no platens are assembled to the molds.)

◾◾ If required, the mold is preheated to about 140°C, where the preheating tem-
perature is decided based on the resin cure kinetics.

◾◾ Based on the mass of the final component, the quantity of charge is deter-
mined. The charge is then placed on the bottom female mold.

◾◾ The mold is closed by bringing the top half mold down. The press applies 
the required pressure to close the molds. The charge flows inside the cavity 
between the top and bottom halves of the mold and gets consolidated.

◾◾ Curing of the component takes place at high temperature for which either 
platen heating or direct heating of the molds by cartridge heaters or both are 
resorted to.

◾◾ After curing, the top platen is moved up and the component is demolded from 
the bottom half mold. Ejector pins are used for demolding.

Note: For large components, intermittent compaction is required, and only partial 
quantity of charge is placed at one time.

10.4.2.1.2  Tooling and Capital Equipment

Tooling involves a combination of a male mold and a female matched mold that are 
normally made out of steel. The molds are designed with provisions for outlet for the 
entrapped air and excess resin, stopper blocks for controlling the thickness of the part, 
guide pins for alignment, ejector pins for demolding the part, required numbers of car-
tridge heaters for mold heating, and anchor points for handling and assembly with the 
platens of the press.

A hydraulic press of required tonnage is the typical capital equipment used in com-
pression molding. The upward and downward movements of the platens are guided so 
as to maintain parallelism between the platens. Curing is done in the press itself, and 
thus, provisions are made for heating of the platens that in turn heat up the molds.

Top platen

Bottom
half female 
mold

Cartridge
heaters

Guide pins

Ejector
pins

Charge

Pressure

Final part

Bottom
platen

Top half male mold

FIGURE 10.4  Schematic representation of compression molding. (Adapted with permission from 
S.  K. Mazumdar, Composites Manufacturing—Materials, Product and Process Engineering, CRC 
Press, Boca Raton, FL, 2002.)
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10.4.2.1.3  Basic Raw Materials

The commonly used raw materials in compression molding processes are molding 
compounds such as sheet molding compounds, bulk molding compound, and thick 
molding compounds. Certain specific applications use prepreg flakes as the charge for 
which carbon/phenolic prepreg sheets are cut to 25 mm × 25 mm flakes. Compression 
molding is also used for making laminated parts with good surface finish on both the 
sides. In such a case, prepreg lay-up or wet lay-up is carried out using materials like 
carbon/epoxy.

10.4.2.1.4  Advantages and Disadvantages

The key advantages of the compression molding process are

◾◾ The process can be very fast and thus suitable for high volume production such 
as automotive applications.

◾◾ Components made by compression molding have good surface finish on both 
the sides.

◾◾ Good dimensional accuracy and repetitive quality can be achieved.
◾◾ Suitable for making near net shape components.
◾◾ Structural composite components with stiffening ribs can be made. Also, local 

stiffening for cut-outs can be easily provided. These composites involve detailed 
ply design that include ply drop-offs for achieving varying rib thickness/width.

Compression molding process also suffers from a few limitations; these are

◾◾ Generally, high-performance structural components cannot be made by com-
pression molding of SMC or BMC. However, this limitation can be overcome 
by using prepreg or fabric lay-up.

◾◾ Initial investment is generally high.

10.4.2.2  Resin Transfer Molding Process

The RTM process involves pumping a resin mix into a porous preform that is kept 
inside the male and female half molds [14,15]. Curing of the resin takes place in the 
mold and a near net shape composite part is obtained. The process is an efficient one, 
and is suitable for making structural components of small to medium sizes in low to 
medium volume production quantities.

10.4.2.2.1  Basic Process

The RTM process is schematically shown in Figure 10.5. The processing steps involved 
are as follows:

◾◾ A release agent is applied on the top and bottom molds, and the preform is 
placed appropriately on the bottom mold. Cores and inserts, as required, may 
be incorporated in the preform.

◾◾ The top molds are closed by placing the top mold and the two are clamped.
◾◾ The molds are heated to the specified temperature.
◾◾ The resin mix is prepared, kept in the resin tank, and then pumped into the 

pores in the preform through several inlets. Resin injection into the porous pre-
form takes place at high temperature under pressure. Optionally, the process of 
resin flow is assisted by providing vacuum.

◾◾ Once the mold is completely filled with resin and the preform is thoroughly 
wetted by the resin, the ports are closed and the inside pressure is increased for 
further consolidation.
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◾◾ Curing takes place inside the mold, after which the part is demolded and fin-
ishing operations are carried out.

10.4.2.2.2  Tooling and Capital Equipment

The tooling for RTM is usually made out of steel or aluminum. It involves top and bot-
tom molds that have to be sufficiently strong and stiff for taking the pressure of resin 
transfer. However, compared to the compression molding process, working pressures in 
an RTM process are lower, and thus, the molds are also lighter and less stiff. In addi-
tion to the tooling, a resin dispensing equipment with a system for resin distribution is 
required.

10.4.2.2.3  Basic Raw Materials

Different types of preforms as well as fabrics are used as reinforcements in the RTM 
process. Normally, glass, carbon, and aramid fibers are used for making preforms, out 
of which E-glass is the most common. Polyester and epoxies are the typical resins used 
in this process. For aerospace applications, carbon/epoxy systems are very common. 
Other resins include vinylester and phenolics. A requirement for the resin for RTM 
is low viscosity so as to achieve proper flow of the resin and complete wetting of the 
preform. For high-viscosity resins, suitable modifications are required in the equipment 
for injecting the resin. Certain resin conditioning is also carried out in the case of such 
high-viscosity resins. Fillers such as alumina trihydrate, calcium carbonate, micro bal-
loons, etc. are added for imparting specific characteristics and for economy.

10.4.2.2.4  Advantages and Disadvantages

The advantages of the RTM process include the following:

◾◾ Near net shape parts with good dimensional tolerances can be made by RTM. 
Final machining and other finishing operations are minimum.

◾◾ Parts made by this route have good surface finish on all the sides.
◾◾ RTM is suitable for making structural parts as the reinforcements can be accu-

rately placed as per design requirement. It gives high fiber volume fractions up 
to 65%.

◾◾ RTM offers good joining and assembly features in the final product. Metallic 
inserts can be easily accommodated that are used subsequently in assembly 
operations.

◾◾ As compared to other closed mold processes such as compression molding and 
injection molding, in general, tooling cost is lower in RTM, and thus, initial 
investment is low. As a result, this process is suitable for prototype making.

◾◾ Automation is possible in RTM, and thus, high volume production is possible.

Resin mix
Bottom mold

Preform

Pressurized air

Final part

Top mold 

FIGURE 10.5  Schematic representation of the RTM process.
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There are certain disadvantages of RTM as well; these are

◾◾ Tooling design is generally complex.
◾◾ Several trial runs may be required to establish process parameters so as to 

achieve proper flow of rein and void-free and dry fiber-free components.

There are several other thermoset composites manufacturing processes that are sim-
ilar to the RTM. These processes can be considered as variants of RTM; they work on 
similar principles with marginal differences. Some of the RTM variants are vacuum-
assisted resin transfer molding (VARTM), reaction injection molding (RIM), structural 
reaction injection molding (SRIM), reinforced reaction injection molding (RRIM), 
Seemann composite resin infusion molding process (SCRIMP), etc. VARTM is a pro-
cess in which the resin is drawn by vacuum into the dry fabrics laid-up on the bottom 
mold. For this, a vacuum tight cavity is created by placing a top cover on the bottom 
mold. SCRIMP is a patented process with a specialized resin distribution system. RIM, 
SRIM, and RRIM are processes that involve mixing of resins at high velocity and 
injection of the resin mix into the preform.

10.4.3  Continuous Molding Processes

Continuous molding processes include pultrusion, winding processes, fiber placement, 
etc. Winding processes are those in which continuous reinforcement in the form of 
either roving or tape is deposited on a rotating mandrel. Two distinct winding processes 
are in practice—filament winding and tape winding.

10.4.3.1  Pultrusion

In the pultrusion process, fibers are pulled through a resin bath and a heated die to 
make the part [16–19]. The die gives the cross-sectional shape, which is either solid or 
hollow, to the parts. The parts are continuous in nature and of constant cross section.

10.4.3.1.1  Basic Process

The pultrusion process is shown schematically in Figure 10.6. The processing steps 
involved are as follows:

◾◾ The pultrusion setup is prepared for the specific run. It includes positioning 
the required numbers of spools on the creel stand, assembling the die, and set-
ting up the guide rollers, resin bath, puller mechanism, and cutting saw. The 
number of rovings, which is normally 100 or above, is decided based on the 
cross-sectional area of the part and desired fiber volume fraction.

Resin bath

Roving
creels

Heated
die Pulling

rollers Cutting
saw

Final parts

FIGURE 10.6  Schematic illustration of the pultrusion process. (Adapted with permission from S. K. 
Mazumdar, Composites Manufacturing—Materials, Product and Process Engineering, CRC Press, 
Boca Raton, FL, 2002.)
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◾◾ The fiber rovings from the spools on the creel stand are drawn, guided by a 
system of ceramic eyelets and rollers, and pulled through a resin bath.

◾◾ The resin-impregnated fibers are then pulled at constant speed through a 
heated die. The temperature of the die and the pulling speed depend on the 
cure characteristics of the resin. The resin cures inside the die and the cured 
composite takes the inside cross-sectional shape of the die as its own cross-
sectional shape.

◾◾ The composite is gripped in the pulling rollers and pulled through a sufficient 
distance so as to allow it to cool after which it is cut to the required length by 
a cutting saw.

◾◾ Finishing operations are carried out on the final part.

10.4.3.1.2  Tooling and Capital Equipment

Steel dies of constant cross section along the length are used in pultrusion. Usually, 
a taper is provided at the entrance for smooth entry of the fiber yarns. The dies are 
chrome plated so as to reduce abrasion.

The pultrusion setup consists of a creel stand for holding the roving spools. Dry 
reinforcements are usually fragile. Some reinforcements such as glass and carbon are 
abrasive. Thus, the incoming rovings are required to be guided properly for which usu-
ally ceramic eyelets are used. A resin bath, which is either open or enclosed, is used 
for impregnating the reinforcements. In an alternate method, resin is directly injected 
under pressure into the die, and the reinforcements get impregnated inside the die. The 
pulling mechanism typically consists of two sets of gripping rollers with rubber pads 
rotating in opposite directions. The rubber pads are tailor-made for the pultruded part 
geometry.

10.4.3.1.3  Basic Raw Materials

Glass, carbon, and aramid fibers are typical reinforcements used in the pultrusion pro-
cess, out of which E-glass fibers are the most common. Owing to the continuous nature 
of the pultruded parts, reinforcements used in pultrusion are primarily continuous. 
Further, pultruded parts are mostly unidirectional, and thus, are made by using rovings. 
However, in certain cases, where bidirectional and multidirectional structural proper-
ties are required, continuous fabrics and mats are also used.

Resin used in pultrusion is of low viscosity, long pot life, and fast reactivity. A com-
monly used resin is unsaturated polyester. Fillers are added to the resin for economy as 
well as to impart specific characteristics. Other resins used in specific cases of struc-
tural requirements are epoxy, phenolic, and vinylester.

10.4.3.1.4  Advantages and Disadvantages

Pultrusion is an excellent process for the mass production of commercial composite 
parts. It has several advantages that make it popular. Some of these advantages are

◾◾ It is an automated continuous process with high production rate; thus, it is suit-
able for high-volume applications.

◾◾ It is a cost-effective process; processing cost is low due to its continuous nature, 
raw materials used are generally cheap and scrap is minimum.

The pultrusion process, however, suffers from a few drawbacks as indicated below:

◾◾ Parts produced are of constant cross section along the length. Parts with vary-
ing cross section and complex geometry cannot be made by this method.

◾◾ It is not possible to make thin-walled parts by pultrusion.
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◾◾ Reinforcements are primarily in the longitudinal direction only; tailoring of 
the reinforcements is not generally possible.

10.4.3.2  Tape Winding

Tape winding is a winding process in which continuous prepreg tapes are wound on an 
axisymmetric mandrel—conical, contoured, or cylindrical. Tape-wound components 
are usually used as ablative liners in rocket nozzle applications. It can be implemented 
as either parallel winding or angled tape winding. In either case, the edges of the fabric 
are exposed to the inner and outer surfaces. The difference lies in the orientation of the 
prepreg tapes. In parallel winding, the tape forms a near cylindrical shape in one full 
round, and in a longitudinal cross section, the tape center line is parallel to the axis of 
the component. On the other hand, in angled tape winding, the tape forms a near coni-
cal shape in one full round, and the tape center line, in a longitudinal cross section, is 
at an angle to the center line of the component. A schematic representation of the tape 
winding process is given in Figure 10.7.

The basic processing steps involved in tape winding are as follows:

◾◾ The prepreg sheets are cut to form a tape of desired width and the tapes are 
rolled on spools. The width is determined based on the part thickness required, 
half-cone angle of the mandrel meridian, and the prepreg thickness (Figure 
10.8). It is given by T/sin θ.

◾◾ The mandrel is loaded on the tape-winding machine and a spool is loaded on 
the carriage unit of the machine. The mandrel is wax polished.

◾◾ The tape is drawn through a system of guide rollers and tensioning mecha-
nism, the backing films on the tape are removed and the tape is stuck on the 
smaller end of the mandrel.

◾◾ The machine is then started and the winding program moves the carriage unit 
in a controlled manner as the mandrel is rotated (Figure 10.8). The carriage 
unit motion is given by Δ = t/sin φ.

◾◾ A roller is used for applying consolidation pressure that removes air gaps.
◾◾ After completion of the winding, the part is cured in an autoclave or hydro-

clave, parted/machined, and extracted.

The tooling requirement for tape winding is simple. Generally, metallic mandrels 
made from steel are used for making tape-wound components.

A tape-winding machine is a lathe with a carriage unit that has features to hold the 
tape spool. The carriage unit, further, has a tensioning mechanism, a system of rollers 
to guide the prepreg tape, and a roller that deposits the tape on the mandrel. Usually, 
two axes of motion—mandrel rotation and translation of the carriage unit parallel to 
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FIGURE 10.7  Schematic representation of the tape winding process.
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the machine axis—are sufficient for parallel winding. For angled tape winding, the 
axis of the tape depositing roller has to be at an angle to the machine axis, and accord-
ingly, the carriage unit has to have an additional feature of orienting itself.

The common raw materials used for making tape-wound components include phe-
nolic prepregs of glass and carbon fabrics. The prepregs are provided with backing 
films on both the sides, and stored at subzero temperatures.

Tape winding is a very convenient process for making axisymmetric parts for abla-
tive and thermal applications. The process, however, has somewhat limited applications.

10.4.3.3  Fiber Placement

Fiber placement is a method with a high degree of automation, which makes it possible 
to make simple to complex parts with accurate placement of reinforcement. In this 
method, either prepreg tows or prepreg slit tapes are drawn from spools and laid under 
roller compaction pressure by a fiber depositing head along a predesignated path on a 
rotating mandrel or a stationary mold [20,21]. The lay-up process is a continuous cut-
restart process, in which the individual tows in the bundle of tows are cut at different 
intervals along the fiber path; the process is restarted and continued till the entire sur-
face is covered and subsequent layers are deposited. It is an efficient process, suitable 
for complex parts, and has been successfully used in making aircraft and aerospace 
vehicle parts such as fuselage sections, engine parts, payload adapters, etc.

10.4.3.3.1  Basic Process

The fiber placement process is somewhat similar to filament winding (filament wind-
ing is discussed in the next section). The basic processing steps involved in it can be 
identified as follows:

◾◾ The mandrel is loaded on the fiber placement machine. Alternatively, when a 
stationary mold is used, it is positioned on the bed in the fiber placement setup.

◾◾ The towpreg spools are loaded on the creel stand and a bundle of tows are 
drawn and fed to the fiber depositing head. The tows are kept in requisite ten-
sion by a tensioning device.

◾◾ Referencing of the mandrel w.r.t. the machine is done, that is, the mandrel 
geometry is put in the machine coordinates.

◾◾ The fiber depositing head pulls the bundle of tows and places it on the work 
surface of the mandrel. A local heater is switched on for controlled heating 
of the tows and they are steered along the programmed path on the mandrel. 
The fiber depositing head has got several degrees of freedom and its relative 
motions ensure that the tows are accurately placed in the proper orientation. 
The roller pressure helps maintain appropriate thickness and width of the tow-
preg band and necessary compaction.

Δ

T

t

w

φ

FIGURE 10.8  Tape winding process parameters.
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◾◾ Individual tows are cut or added at different points so as to maintain the 
required width along the path.

◾◾ After completion of each course, the fiber depositing head is brought back near 
the starting point and the next course is started. The programming is done in 
such a way as to ensure that the tow band is placed just next to the previous 
band without any overlap or gap.

◾◾ The process is continued until the entire work surface is covered and subse-
quent layers are placed to achieve the designed thickness.

◾◾ The composite is then cured in an oven or an autoclave and the final component 
is obtained after extraction and machining, if required.

10.4.3.3.2  Tooling and Capital Equipment

Depending on part configuration, both male as well as female mandrels and molds 
are used in fiber placement. Structural steel is commonly used for making mandrels 
and molds. The work surface should be firm enough not to deflect under action of the 
compaction roller. The tool design must cater for provision of features for referencing.

The central feature in a fiber placement machine is the fiber depositing head and the 
associated electronic system for controlling its motions. As noted earlier, it has a num-
ber of simultaneously controllable axes of motions that are programmed for accurate 
steering of the tows on the work surface. It has (i) a roller that finally deposits the tows 
under pressure, (ii) a cutting device that cuts the individual tows, (iii) a heating device 
for local heating of the tows at the point of delivery, (iv) tow restart rollers, and (v) a 
band collimator. Other parts of a typical fiber placement machine are a creel stand for 
holding the spools of prepreg tows, a headstock, and a tailstock.

10.4.3.3.3  Basic Raw Materials

Prepreg tows or slit tapes of glass, carbon, aramid fibers, etc. can be used in a fiber 
placement setup. Typically, the width of a flattened tow or slit tape is between 3 and 
6 mm. Slit tapes are made by slitting wider prepregs in a slitter to the desired width 
and spooled on a core. Backing films are introduced during spooling and the same is 
removed during despooling and fiber placement process.

Tackiness of the material is a key parameter in fiber placement. When the tows are 
despooled and fed to the fiber-depositing head, they should not stick to each other and 
to the guide rollers and compaction roller. However, after compaction under the com-
paction roller and heating, the tows should stick to the underlying surface. Thus, low or 
nil tack is desirable at room temperature and high tack at elevated temperature.

10.4.3.3.4  Advantages and Disadvantages

The primary advantages of fiber placement can be identified as follows:

◾◾ Complex part configurations can be realized with accurate fiber orientation 
by fiber placement. Material can be laid-up on both convex as well as concave 
surfaces.

◾◾ It can be automated to a great extent and part quality is highly reliable.
◾◾ It is an efficient process and wastage of material is minimum.

There are certain drawbacks as well; these are

◾◾ Fiber placement is possible with only prepregs; thus, the availability of appro-
priate towpreg or slit prepreg tapes can be a critical factor.

◾◾ It is a capital-intensive process. It essentially needs a fiber placement machine 
and frequently an autoclave. As a result, it may turn out to be expensive.

◾◾ Skilled manpower is essential.
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An introductory presentation on some of the common/representative manufacturing 
processes is given above. Note that the discussion is generic in nature. Needless to say, 
product-specific modifications with more details would be necessary in the shop floor. 
Also, each of the processes presented above has much more details to be addressed; a 
detailed discussion is not intended here. The processes discussed above belong to all 
the three broad categories—open mold processes, closed mold processes, and continu-
ous molding processes. Filament winding, a continuous molding process, is an impor-
tant one and it is dealt in some detail in the next section.

10.5  FILAMENT WINDING
Filament winding is a common continuous molding process used for making a wide 
range of products with tubular configuration. Historically, this process is reported to 
have been used by the Egyptians way back in 1370 bc [22]; modern composite fila-
ment winding is of relatively recent origin and it has been in use since the mid-1940s. 
Products with axisymmetric tubular configurations such as pressure vessels, rocket 
motor casings, pipes, storage tanks, launch tubes, etc. are regularly manufactured by 
filament winding. Another class of highly efficient filament-wound structures are the 
grid-stiffened structures [23–25]. With the advancement in the areas of computing and 
simulation, nonaxisymmetric and other geometrically complex configurations are also 
possible now with filament winding; rotor blades, elbows, T-junction, driveshafts, bush-
ings, etc. are some of the typical examples of such products [1].

10.5.1  Filament Winding Fundamentals and the Basic Process

The filament winding process essentially involves a mandrel around which rovings are 
deposited along certain predesignated paths. Winding programs are used to ensure uni-
form deposition of fibers on the mandrel surface so as to obtain the designed thickness 
and ply orientation. The green composite on the mandrel is cured and the component 
is extracted by removing the mandrel. The four basic steps of composites manufacture 
(refer Section 10.3) are applicable to filament winding as well and it is interesting to see 
how these steps are incorporated.

10.5.1.1  Impregnation

Impregnation is done commonly in three ways and thus the rovings used are of three 
types—wet, wet rerolled, and dry [26,27]. In the first case, dry rovings are drawn under 
tension from the spools on a creel stand, made to pass through a resin bath for thorough 
wetting, and deposited on a rotating mandrel. In this case, wetting of dry tows takes 
place in the resin bath during winding and the process is normally referred to as wet 
winding. Wet winding is relatively simple and cost-effective. It ensures complete wet-
ting of the fibers and the resultant cured composite is generally void-free. However, it 
is a somewhat messy process and uniform fiber volume fraction is difficult to achieve. 
In the second and third cases, wet rerolled and prepreg tows (towpregs), respectively, 
are wound on the mandrel. Wet rerolled rovings are dry rovings that are wetted using 
controlled volume of resin and respooled before using them in winding. They are either 
used immediately after respooling or stored in a freezer for future use. On the other 
hand, towpregs are preimpregnated rovings, in which the cross-linking in the resin is 
advanced to the B-stage. Winding with wet rerolled rovings and towpregs does not 
involve wetting of the fibers during winding operation and the process is generally 
known as dry winding. It is a neat shop floor process that results in uniform fiber vol-
ume fraction in the cured component. However, it is relatively more expensive. Also, in 
some cases, the tows may not spread properly and the resultant composite material can 
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have defects like insufficient resin content and the presence of voids especially in thick 
shells such as the areas near the pole openings of a pressure vessel.

Note: The term “dry winding” is also used to refer to winding with dry rovings fol-
lowed by impregnation by resin and curing; this method is however not common.

10.5.1.2  Lay-Up

The wetted rovings are deposited on the rotating mandrel by a fiber-depositing unit 
called pay-out-eye. The pay-out-eye is attached to a carriage unit that has different 
axes of motion. The mandrel rotation and the motions of the carriage unit along with 
the pay-out-eye are controlled by a winding program, and the relative motions of the 
carriage unit and the mandrel result in the desired path along which the fibers are 
deposited. The angle of winding (to be defined in Section 10.5.2) along the fiber path 
on the mandrel surface is the ply orientation angle. At this point, a distinctive feature of 
filament winding may be noted. In a wet lay-up or prepreg lay-up process, the ply ori-
entation angle is the same at any point in a ply; whereas in filament winding, depending 
on the type of winding and meridional contour of the component, the angle of winding 
may or may not remain constant in a ply. For example, the angle of winding in a hoop 
ply is the same at any point in the ply; but in a helical ply, the angle of winding can vary. 
Thus, in a strict sense, in a filament-wound structure with helical plies, the ply sequence 
can vary from one cross section to another.

10.5.1.3  Consolidation

During filament winding, certain tension is applied to the rovings so as to keep them 
straight between the pay-out-eye and the fiber touch-down-point on the mandrel. Also, 
when the rovings are pulled through the resin bath and guided through the system of 
rollers, certain amount of tension is created. The roving tension has a component that 
acts in the inward normal direction, which generates a consolidation pressure. Thus, 
consolidation takes place during winding itself. The consolidation pressure is directly 
proportional to the roving tension and inversely to the local radius of curvature in a 
plane containing the fiber path. It can be represented as

	
p

kT

r
=

	
(10.1)

where p is the consolidation pressure, T is the winding tension in the rovings, r is the 
local radius of curvature in the plane containing the fiber path, and k is a constant 
involving number of rovings, bandwidth, and number of circuits. Note that for hoop 
winding on a circular cylindrical mandrel, r is nothing but the radius of the cylinder; 
the consolidation pressure is the maximum for a given mandrel and roving tension. On 
the other hand, for the same mandrel, on account of large r, a low angle helical winding 
is associated with low consolidation pressure; for example, at an angle of winding of 
0°, r becomes infinite, making the consolidation pressure zero. This is why a low angle 
helical winding is likely to result in inferior laminate quality.

10.5.1.4  Solidification

Curing of a filament-wound part can be done in different ways:

◾◾ Curing at room temperature
◾◾ Curing at elevated temperature in an oven
◾◾ Curing at elevated temperature under pressure and vacuum in an autoclave
◾◾ Inline curing using UV radiation
◾◾ Inline curing using electron beam
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The requirement of temperature application is dependent on the resin system. 
Room-temperature curing can be done simply by keeping the mandrel with the wound 
composite either on the winding machine or on support stands. For wet wound sys-
tems, the mandrel can be kept in rotation to avoid resin flow under gravity. Most 
high-performance epoxy resin systems need the application of high temperature. 
Consolidation pressure is generated during the winding process by the winding ten-
sion in the rovings; additional curing pressure is generally not required and thus an 
autoclave is not necessary. In some cases, for example, towpreg winding with close 
cross-overs, insufficient resin flow may result in the creation of undesired air voids 
and consolidation pressure during winding is supplemented with positive pressure 
and vacuum during curing in an autoclave. Pressure and vacuum application in an 
autoclave in the cure of a filament-wound component, however, is associated with the 
risk of creating kink in the plies by fiber buckling [3,26]. UV radiation and electron 
beam are used for simultaneous winding and layer-by-layer curing of filament-wound 
products. Such inline curing is particularly useful in the cure of large components 
with large thickness.

10.5.1.5  Basic Processing Steps

Filament-wound product realization involves a number of basic processing steps; these 
steps are as follows:

◾◾ The mandrel is provided with a release agent such as wax polish or PVA solu-
tion or release film, and loaded on the winding machine.

◾◾ Resin mix is prepared and poured in the resin bath.
◾◾ Spools of fiber rovings are loaded on the creel stand, and the rovings are drawn 

from the spools to the mandrel through the system of tensioning device, resin 
bath, doctor blades, guide rollers, and comb. The guide rollers and comb are 
adjusted so as to avoid fiber fudging.

◾◾ The rovings are attached to the mandrel at certain designated location. The 
fiber attachment can be done by bonding or similar other means. Generally, the 
initial portion of the fibers may not follow the designed path and they may not 
spread properly; appropriate winding program can ensure to keep such portion 
outside the actual component.

◾◾ Tensioning device is started so as to create appropriate tension in the fiber 
rovings.

◾◾ Doctor blade setting is adjusted for controlled pick-up of resin by the tows. In 
certain cases of resin system, the resin bath is heated in a controlled manner for 
maintaining the resin viscosity within a desired range so as to ensure uniform 
resin pick-up and complete wetting of the tows.

◾◾ The winding program is loaded in the computer system of the winding machine, 
and the rotation of the mandrel and motions of the carriage unit are started. 
It is important to carry out appropriate referencing so as to move the carriage 
unit to the starting point before starting the winding program. The mandrel 
rotation draws the rovings on to itself and the relative motions of the carriage 
unit and the mandrel rotation deposit the rovings along the predefined path on 
the mandrel as per the winding program.

◾◾ After the completion of one circuit (one full round around the mandrel is called 
as one circuit) or a group of circuits, the winding program ensures that the 
next fiber band is placed just near the already-placed fiber band with prespeci-
fied marginal overlaps, and the process is continued till the programmed num-
bers of circuits are completed. The completion of the programmed numbers 
of circuits in one ply ensures coverage of the complete mandrel surface area. 
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The process of winding is further continued till the designed numbers of plies 
are deposited and desired part thickness is obtained.

◾◾ During the process of winding, excess resin from the already-wound surface 
are scrapped with a soft scrapper blade.

◾◾ In certain cases, depending on design requirements, the filament-wound plies 
are intermingled with fabric lay-ups. Rollers are used for the consolidation of 
these laid-up plies.

◾◾ The part is then cured in an oven. In certain cases, especially with very large 
components, curing is carried out on the machine itself by enclosing the com-
ponent with insulating walls and heating the air inside the enclosed space.

◾◾ The mandrel is extracted from the cured part.

10.5.2  Computational Aspects of Filament Winding

The computational aspects of filament winding are somewhat involved as compared 
to some other composites manufacturing processes such as wet lay-up. These aspects 
must be addressed with care and approximations should be avoided for realizing qual-
ity products. Details of fiber path computations, stability of fiber path, and winding 
program generation are beyond the scope of this book; interested reader can consult, 
for instance, References 28–31 among others. Winding programs can be generated for 
specific part geometry using mathematical tools and programming languages such as 
MATLAB, C, C++, etc. and the output can be integrated with the computer numerical 
control (CNC) system of the winding machine. Alternatively, commercially available 
packages such as CADFILL® and CADWIND® can be utilized. However, familiarity 
with the basics of these computational aspects is essential.

As noted earlier, filament winding can be done for axisymmetric as well as nonaxi-
symmetric parts of various configurations. Winding can be performed using end domes 
or without. The end domes provide useful features for the fibers to take reversal at the 
poles. For small components, if the end domes are not parts of the final component, 
they can be parted by machining. However, for large components without a closed end, 
with a view to reducing wastage, end domes are not used during winding, and winding 
is carried out using pins for fiber reversal. However, we shall restrict our discussion to 
cylindrical part with end domes only.

10.5.2.1  Geodesic and Nongeodesic Windings

During filament winding, fibers are kept under tension. A key manufacturing criterion 
for the feasibility of winding is stability of the fiber path. If the fiber path is not deter-
mined with proper consideration for stability, the fiber roving will not stay put on the 
desired path and slip away to some other undesired shape. From the point of view of 
stability of the fiber path, two types of winding cases can be found: geodesic winding 
and nongeodesic winding. The physical significance of a geodesic path is that it is the 
shortest path for a given angular difference between the two points; thus, it is stable 
by nature. Figure 10.9 shows two geodesic paths between two points on a cylindrical 
surface. Note that a cylindrical surface can be developed into a rectangular shape. 
The shortest path between two points on a flat surface is a straight line and thus a 
geodesic path on the development of a cylindrical surface is also a straight line. Note 
further that there is only one geodesic path between two points for a given angular 
difference—Geodesic-I and Geodesic-II in Figure 10.9 correspond to an angular dif-
ference of θ and 2π + θ, respectively. For an axisymmetric component, geodesic path 
is given by Clairut’s rule that leads to

	 r Rsin  α = 0 	 (10.2)



510 Composite Structures

where r, α, and R0 are radius at any point on the surface of the component, angle of 
winding at the point, and radius at the pole where the fibers take reversal. It is easy to 
see that for geodesic winding, the pole openings are equal.

On the other hand, any path that is not geodesic is nongeodesic and theoreti-
cally infinite numbers of nongeodesic paths can be constructed between two points. 
Nongeodesic winding is inherently unstable, and it needs the special consideration 
of friction characteristics of the mandrel surface and the wet composite material. 
Nongeodesic winding is unavoidable in some products such as rocket motor casings. 
In such a case, the feasibility of winding is ensured as long as

	 µ µr a≤ 	 (10.3)

In Equation 10.3, µr is the friction factor required between the fibers being deposited 
and the already-wound substrate or mandrel surface so as to avoid slippage of fibers 
from the designed path. Note that it is an analytical parameter that is obtained by com-
putation based on the geometry of the mandrel, fiber path, and winding tension. On the 
other hand, µa is the available friction factor at the corresponding location and it is the 
physical parameter that depends on the material characteristics such as surface rough-
ness, resin viscosity, etc.

10.5.2.2  Helical, Hoop, and Polar Windings

Depending on geometrical considerations, filament winding paths can be of three dif-
ferent types:

◾◾ Helical winding
◾◾ Hoop or circumferential winding
◾◾ Polar winding

Helical winding is where the fiber path is basically a helix (Figure 10.10a). It is 
characterized by its angle of winding or helical angle or helix angle. The angle of 
winding at any point on the fiber path is defined as the angle between the tangent to 
the fiber path and the tangent to the meridional contour at that point (Figure 10.11). 
Theoretically, it can vary between 0° and 90°; however, too small or too large angles of 
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winding in the cylindrical portion are uncommon. The angle of winding is 90° at the 
poles where the fibers take reversal; for geodesic path, it gradually decreases from the 
poles toward the central cylindrical portion.

Hoop winding is a special case of helical winding (Figure 10.10b) in which the angle 
of winding is 90°. (As the fiber band has finite width, the angle of winding is actually 
less than 90°. It is easy to note that larger the fiber bandwidth the smaller is the actual 
angle of winding.) Polar winding, on the other hand, is winding in a plane passing 
through a point at one pole and the opposite point at the other pole (Figure 10.10c).

10.5.2.3  Programming Basics

As mentioned earlier, fibers are deposited along the predefined path by simultaneous 
controlled movements of the various axes of the carriage unit and mandrel rotation. 
During the winding of a ply, axis movements are controlled by a winding program. 
The basic principle of the winding program generation is based on geometrical 
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FIGURE 10.10  Schematic representation of filament winding paths. (a) Helical winding. (b) Hoop 
winding. (c) Polar winding.
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considerations: (i) the line representing the free-standing fiber between the exit point on 
the pat-out-eye and the fiber-touch-down point on the mandrel is a three-dimensionally 
straight line and (ii) the line referred above is tangent to the pat-out-eye surface and the 
mandrel surface at any instant during the winding operation.

10.5.2.3.1  Programming for Hoop Winding

Hoop winding program generation is a rather straightforward affair that can be done 
with certain experimental input data. For a hoop ply of uniform thickness, a single-block 
winding program is sufficient in which mandrel rotation and carriage translation are 
required to be specified. The mandrel rotation in a hoop winding program is given by

	
C

l

b
=

360

	
(10.4)

where C is the mandrel rotation, l is the translation of the carriage parallel to the man-
drel axis, which is nothing but the length of the hoop ply to be wound, and b is the 
programmed bandwidth. The term “programmed bandwidth” should be differentiated 
from the term “physical bandwidth.” As shown in Figure 10.12, when wound around 
a mandrel, the fibers under tension spread to some width, which is the physical band-
width. The actual value of the physical bandwidth is likely to vary along the fiber 
path within some range depending on various local conditions related primarily to the 
fibers, matrix, substrate, winding tension, mandrel geometry, and pay-out-eye geom-
etry. Thus, winding is done in such a way as to place the adjacent fiber bands with 
some overlaps. The distance between the center lines of adjacent fiber bands is the 
programmed bandwidth. Note that the programmed bandwidth is constant and is mar-
ginally narrower than the physical bandwidth so as to ensure that physically there is no 
gap between adjacent fiber bands.

The programmed bandwidth is chosen based on the number of rovings and required 
ply thickness. While it is possible to theoretically estimate the ply thickness, a more 
reliable information can be obtained by experimentation (refer Example 10.1).

EXAMPLE 10.1

Determine the programmed bandwidth for four rovings of 12 k carbon fibers so 
as to obtain an average ply thickness of 0.6 mm. Assume the carbon filament 
diameter and fiber volume fraction as 7 µm and 0.6, respectively.

Solution

The cross-sectional area of filaments in one roving is estimated as

	
CSAfib =
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=
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FIGURE 10.12  Programmed bandwidth and physical bandwidth.
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The cross-sectional area of composite ply for four rovings is then given by

	
CSAcom =

×
=

4 0 4618
0 6

3 0788 2.
.

. mm
	

The programmed bandwidth required for an average ply thickness of 0.6 mm 
is obtained as

	
b = =

3 0788
0 6

5 13
.

.
. mm

	

EXAMPLE 10.2

Solve the problem in Example 10.1, if the ply thickness is experimentally found 
to be 0.4 mm for two rovings at a programmed bandwidth of 5 mm. What is the 
estimated fiber volume fraction?

Solution

The required programmed bandwidth is arrived at as follows:

	
b = × × =5

4
2

0 4
0 6

6 67
.
.

. mm
	

The estimated fiber volume fraction is

	
Vf = × =0 6

5 13
6 67
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10.5.2.3.2  Programming for Helical Winding

As noted earlier, the angle of winding may continuously vary along the helical fiber 
path. Also, the radial distance of the meridional contour may vary. To take these varia-
tions, typically, the fiber path is divided into a number of small segments and linear 
approximation can be made within each segment. Thus, a helical winding program 
contains a number of blocks, and each block contains information on incremental 
movement of each axis of motion. A convenient way to generate winding program is 
to consider an envelope around the mandrel on which the pay-out-eye is programmed 
to move. 3D lines, representing the free-standing fiber between the fiber exit point on 
the pay-out-eye and fiber-touch-down point on the mandrel surface, can be considered 
at the end of each segment of the fiber path such that these lines are tangent to the fiber 
path. The 3D coordinates, together with certain corrections for pay-out-eye dimen-
sions, of the points of intersection of the 3D lines with the pay-out-eye envelope can be 
conveniently used for determining the incremental translations of the carriage unit and 
mandrel rotation. Winding quality is further improved by incorporating incremental 
pay-out-eye rotations.

There are filament winding terminologies/concepts associated with helical winding. 
First among these is the number of starts. Generally, helical winding is done in such a 
way as to progress coverage of the mandrel surface from multiple start points (Figure 
10.13) in any cross section such that if the number of starts is N, after the completion of 
the first N circuits, (N + 1)th circuit is placed just next to the first circuit, (N + 2)th cir-
cuit is placed just next to the second circuit, and so on. The number of starts divides the 
circumference into N equal segments. If the number of circuits for each circumferential 
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segment is n, the total number of circuits in one ply is Nn. Then, the programmed band-
width in a helical ply is given by

	
b

r

Nn
=

2π αcos

	
(10.5)

where r is the local radial distance of the meridional contour and α is the local angle 
of winding. In a design environment, depending on the ply thickness requirement, the 
required programmed bandwidth is computed and the number of starts and number of 
circuits are chosen.

The number of starts cannot be arbitrarily chosen; its choice is greatly influenced by 
total mandrel rotation in one circuit. The total mandrel rotation in a circuit is typically 
adjusted by providing dwells (a dwell is an incremental mandrel rotation keeping other 
axes at rest) at the poles such that the revised total mandrel rotation ∑C corresponds to 
a suitable number of starts.

10.5.3  Basic Raw Materials

The commonly used reinforcements in filament winding are continuous rovings of 
glass, carbon, and aramid. Polyester, epoxy, and vinylester are the common resins. 
Glass and polyester are normally used in low-cost applications. Aerospace applications 
demand high structural performance, in which case carbon/epoxy and Kevlar/epoxy fil-
ament-wound parts are common. The choice of reinforcements is largely dependent on 
structural requirements and cost. The resin system in a wet winding setup has to meet 
certain criteria that are unique to filament winding [26]. A low-viscosity resin system in 
the range of 2000 cps or lower is desirable in wet winding for proper impregnation of 
the filaments. Pot life should be long so that the frequency of changing resin in the resin 
bath can be reduced. Also, from a safety point of view, resin toxicity should be low.
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FIGURE 10.13  Schematic representation of multiple starts in helical winding (3-start helical wind-
ing on a cylinder of length L and diameter D). (a) End view. (b) Development of the cylinder. Note: The 
arrows indicate the directions in which the fiber bands are deposited during winding.
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10.5.4  Tooling and Capital Equipment

Tooling in filament winding includes primarily a mandrel with a central shaft for hold-
ing it on the winding machine. In addition to it, specific associated tools and fixtures 
are required for holding add-on parts, supporting, handling, extraction, etc. While the 
associated tools and fixtures are generally fabricated using structural steel based on 
specific design requirement, the mandrel design has some generic requirements, as 
follows:

Stiffness: The mandrel must be sufficiently stiff so that its deflection under self-
weight, associated fixtures, and added composite is within the acceptable limit. 
For small products, a typical steel tubular construction with or without end 
domes is generally sufficient. For large products, however, mandrel deflection 
is an important design consideration where typically a central shaft or a framed 
structure is provided.

Hard outer surface: The outer winding surface of the mandrel must be hard 
so as to ensure that the rovings under winding tension do not bite into the 
mandrel material. It should also be smooth so that it aids the extraction of 
the mandrel.

Weight: Mandrel weight can be a major design consideration for large products; 
the total weight of the mandrel with associated fixtures and added composite 
material has to be within the capacity of the winding machine. A lighter man-
drel is easy to handle.

Handling: Features must be provided on the mandrel for handling it along 
with the green composite with belts, tackles, lifting beams, etc. It is an 
issue that needs special attention in large products with nonuniform weight 
distribution lengthwise. Typical handling needs are in mandrel assembly, 
loading on the winding machine, unloading, movement to curing facility, 
extraction, etc.

Thermal expansion: Thermal expansion of the mandrel material during curing 
has to be kept in mind while designing the mandrel.

Mandrel extraction: An essential requirement of the mandrel is that it has to be 
extracted from the part. For cylindrical or conical products, the end domes 
can be parted by machining, and the mandrel can be extracted by pulling. 
However, for pressure vessels with smaller pole openings than the central 
cross section, extraction by pulling the mandrel is not possible. In such cases, 
the mandrel is designed with (i) collapsible steel segments, (ii) breakable rigid 
foam, (iii)  breakable plaster material, (iv) soluble sand, and (v) a combina-
tion of collapsible, breakable, and soluble elements. It can also be designed as 
an inflatable mandrel and lost mandrel. In some cases, a mandrel is designed 
incorporating some parts of the final component; these parts become a part of 
the component. Mandrel extraction puts some contradictory requirements and 
design can be rather tricky from this point of view.

Dimensional accuracy: Dimensional accuracy of the final component is directly 
dependent on the mandrel design. In this regard, thermal expansion and shrink-
age of the tooling material(s) during curing need special attention. Further, 
proper design considerations must go into the configurations of the associated 
fixtures holding add-on parts during winding.

Cost: Cost considerations can play a major role in some mandrel designs. It 
may be of interest to note that sometimes the repetitive costs of materials 
consumed in mandrel preparation can be comparable with the one time cost 
of the mandrel.
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The capital equipment required in filament winding includes essentially a wind-
ing machine, an oven, and a machining facility. While horizontal filament wind-
ing machines are the most common, vertical winding machines are also available. 
Vertical winding machines provide some advantages as the center of gravity (c.g.) 
of the mandrel is in line with the machine axis and mandrel deflection is avoided. 
However, wet winding on a vertical filament winding machine is not advisable as 
resin flow during winding may cause serious quality problems. There are different 
types of horizontal winding machines. Figure 10.14 gives a schematic representation 
of a typical filament winding setup. Filament winding machine is similar to a lathe 
with two centers to hold the mandrel. The carriage unit has an attached creel stand 
on which the spools are positioned. Sometimes the creel stand is kept separately as 
a standalone unit. The carriage unit also supports a system of guide rollers, a ten-
sioning device, a resin bath with controlled heating mechanism, a comb, and a pay-
out-eye. The pay-out-eye, in the form of an eye let, concave-shaped roller, etc., is an 
essential feature that finally deposits the fiber on the mandrel. The fiber path on the 
mandrel is resulted by the relative motions of the mandrel and the carriage unit. The 
minimum requirement of motions for helical winding are mandrel rotation and trans-
lation of the pay-out-eye along the axis of the machine. However, for better winding 
performance, more motions as indicated below are necessary. While all of these are 
not required for helical winding of axisymmetric parts, winding of nonaxisymmetric 
parts need more flexibility. These motions are

◾◾ Rotation of the mandrel about the axis of the machine
◾◾ Translation of the pay-out-eye (or translation of the carriage unit) parallel to 

the machine axis
◾◾ Translation of the pay-out-eye (or translation of the carriage unit) normal to the 

machine axis in the horizontal plane
◾◾ Translation of the pay-out-eye normal to the machine axis in the vertical 

plane
◾◾ Rotation of the pay-out-eye about its own horizontal axis normal to the machine 

axis
◾◾ Rotation of the pay-out-eye about its own vertical axis

Modern filament-winding machines are integrated with sophisticated CNC system 
that controls the movements of the axes mentioned above. These axes can be controlled 
simultaneously by winding programs to deposit the fiber rovings along the predefined 
paths on the mandrel in proper orientation so as to achieve desired fiber spread and 
designed winding pattern and ply thickness.

Creel stand
Resin bath

Guide
rollers

Pay-out-eye
Roving

Mandrel

Head stock

Tail stock
Fibre path

Bed

FIGURE 10.14  Schematic representation of filament winding setup.
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10.5.5  Advantages and Disadvantages

Filament winding has been in use for several decades. As a composite processing tech-
nology, it is rather synonymous with certain classes of applications, such as pressure 
vessels, pipes, etc. There are a number of advantages that make filament winding the 
first choice for these classes of products; these are

◾◾ Components of any axisymmetric shell of revolution can be wound with maxi-
mum cost and structural efficiency. Thus, pipes, pressure vessels, tanks, shafts, 
etc. of any size can be made.

◾◾ In the recent past, remarkable developments have been made in the front of 
computer programming, and nonaxisymmetric parts, such as elbow, tee, wind 
mill blade, etc. are also made easily by filament winding.

◾◾ The mandrel rotation and carriage unit motions are computer controlled, and 
accordingly, the fiber orientation angles are precisely controlled.

◾◾ The process is highly automated.
◾◾ Fiber tension during winding results in sufficient consolidation pressure, and 

no additional consolidation pressure is required during curing.

Filament winding also suffers from a few drawbacks; these are

◾◾ It is suitable for closed components with convex shape. Winding cannot be 
done on a concave surface. Whenever an open structure is made by filament 
winding, machining is required for parting, for example, leaf spring.

◾◾ While geometrically any helical angle is feasible, from a practical point of 
view, too small an angle is not suitable. Also, helical angles depend on relative 
dimensions of cylinder radius and pole opening radius, etc., and thus, there are 
restrictions on the angle of orientation of the fibers.

◾◾ Fiber volume fraction is generally limited to about 60%. Owing to the presence 
of cross-overs, it can actually be much lower in some cases.

10.6  CURING
We have seen in Section 10.3 that any composites manufacturing process essentially 
involves four basic steps—impregnation, lay-up, consolidation, and solidification. These 
are implemented in different ways in different processes. Of these four basic steps, solid-
ification or curing is largely dependent on the resin system and it plays a crucial role in 
the final quality of the part. In the following subsections, important aspects of curing are 
addressed in brief (see, for instance, References 3 and 9 among others for more details).

10.6.1  Tools and Equipment

Curing is done in different ways:

◾◾ At room temperature with or without vacuum
◾◾ At elevated temperature with or without vacuum
◾◾ At elevated temperature with or without vacuum under positive pressure
◾◾ Inline curing by UV radiation or E-beam

For curing at elevated temperature without pressure, an oven is used. Air (or an 
inert gas like nitrogen) inside the oven is heated and the heat is contained by pro-
viding insulating lining on the oven walls. Air/gas temperature as well as component 
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temperatures are monitored during the curing process for which provisions are incor-
porated for thermocouples.

Elevated temperature curing under positive pressure is done in an autoclave, a hydro-
clave, or a hydraulic press.

An autoclave is a pressure vessel with provisions for heat input to the circulating air/
gas inside the chamber. A vacuum system for applying negative pressure, temperature 
and pressure monitoring system, and a control system for controlling the operating 
parameters are the other essential features in an autoclave. Air, nitrogen, or carbon 
dioxide is used as the pressurization medium. Air is cheap but it has fire hazard. Among 
the inert gases, nitrogen is more common. During curing, the air/gas is injected into the 
chamber for pressurizing it and heated by electrical means or gas firing. The air/gas is 
circulated inside the chamber for uniform distribution of temperature. A vacuum bag 
is invariably used so as to make the isostatically applied pressure effective. Autoclave 
curing is widely used for realizing high-quality aerospace products. But the process 
involves a number of in-process consumables such as vacuum bag, bleeder, breather, 
sealant putty, etc., which makes it relatively expensive. Hydroclave is similar to an 
autoclave where the pressurization medium is water; it is operated at relatively high 
pressure and commonly used for cure of phenolic nozzle liners.

10.6.2  Vacuum Bagging

Vacuum is applied during curing for the removal of entrapped air, gases, and volatile 
product. It is an essential element in autoclave curing where the applied pressure is iso-
static in nature. It is also done in the curing of a part in an oven. The green composite 
part is vacuum bagged before loading it inside the autoclave for curing. Figure 10.15 
schematically shows the process of vacuum bagging; typical steps involved in it are 
described below:

◾◾ A perforated release film is applied on the green composite part. It helps the 
composite part to avoid getting stuck to the bagging material. The perforations 
allow the entrapped air, excess resins, and volatile products to escape during 
curing. Optionally, a peel ply is applied on the composite part before putting 
the release film. The peel ply creates a good surface that can be adhesively 
bonded to other mating surface at a later stage.

Peel ply (optional)Peel ply (optional)

Breather
Vacuum bag

To vacuum pump

Nonporous release film Mold

Dam

Sealant tape

Double-sided
adhesive tape

Inner bag
Bleeder

Porous release filmComposite part

FIGURE 10.15  Schematic representation of vacuum bagging of prepreg lay-up. (Adapted with 
permission from S.  K.  Mazumdar, Composites Manufacturing—Materials, Product and Process 
Engineering, CRC Press, Boca Raton, FL, 2002.)
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◾◾ A porous fabric, called bleeder is applied, on the top of the release film. It 
absorbs moisture and excess resin coming from the prepregs.

◾◾ A nonporous film, called barrier film, is then applied on the bleeder.
◾◾ The breather, a porous fabric similar to the bleeder, is applied on the barrier. 

It ensures uniform application of pressure. It also allows moisture, air, and 
volatiles to escape.

◾◾ Finally, the vacuum bag is put. Sealant tapes are used for creating airtight 
joint between the bagging material and the mold. If porous material is used for 
making the mold, the complete mold may be enclosed inside the bag. Vacuum 
is created inside the bag by connecting the bag to a vacuum pump with a hose 
and nozzle.

◾◾ The vacuum bagged composite part is then pushed inside the autoclave 
and cured.

10.6.3  Curing of Epoxy Composites

Autoclave curing involves the application of heat, pressure, and vacuum on the com-
posite part. The cure cycle primarily depends on the type of the resin system. However, 
the size and shape of the composite part and the mold do affect the final cure cycle. 
Also, the size of the autoclave can influence the cure cycle. In general, during the ramp, 
that is, heating phase, the part temperature lags behind the air or gas temperature. It is 
easy to visualize that for a thicker component, the temperature deep inside the com-
ponent will be at a lower level than the skin temperature, which will be more or less 
equal to the chamber temperature. A typical autoclave cure cycle involving two ramps, 
two constant temperature holds, and a cooling phase is shown in Figure 10.16. As seen 
in the figure, broadly three zones can be identified in the cure cycle: (i) first ramp fol-
lowed by first hold, (ii) second ramp followed by second hold, and (iii) cooling phase. 
In a typical epoxy composite curing operation, heat is provided as input and air and 
component temperatures together with vacuum and pressure levels are monitored. The 
points of application of vacuum and pressure during the cure cycle are crucial from the 
point of realization of quality product without delaminations, voids, and other defects.

During the first ramp and hold, for an addition curing thermoset resin such as epoxy, 
the semisolid resin melts on heating, loses its viscosity drastically, and flows. Vacuum 
is applied right in the beginning that helps excess resin, entrapped air, and volatiles to 
escape. In this phase, as reflected by a sharp decline in the viscosity, the resin remains 
in a fluid state and the application of pressure may cause voids to get entrapped without 
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any path for escape. From this point of view, pressure is not required during the first 
ramp and hold. However, without any pressure, the hydrostatic resin pressure can be 
very low, resulting in the formation of voids [3]. Also, without any pressure on the com-
posites, heat transfer is not very effective. Thus, from this viewpoint, pressure appli-
cation is needed even during the first ramp and hold. Thus, during this phase, either 
pressure is not applied or applied to a less than full level.

The second ramp and the hold are the actual curing phase during which initially the 
resin viscosity drops marginally and then drastically increases, the resin cross-links 
and gels to its solid state. Full chamber pressure is applied for consolidation; as a result, 
voids get eliminated and intimate contact takes place between the composite plies.

The other important aspects in the cure cycle are in respect of rate of heating and 
cooling and durations of the holds. Residual thermal stresses are detrimental to the 
health of the component and it is believed that slow heating and cooling rates gener-
ally result in reduced residual rates. High ramp rates can also result in thermal gradi-
ent across the thickness especially in thick laminates leading to nonuniform cure and 
improper consolidation.

10.6.4  Curing of Phenolic Composites

Curing of addition curing resin system such as epoxy is rather simple compared to that 
of condensation curing resin system. Phenolic resin is a typical example of condensa-
tion curing resin system. Unlike addition curing resins, condensation curing resins such 
as phenolics and polyimides emit by-products during the cross-linking process. These 
by-products that include water, volatiles, and solvents have to be removed. Volatile 
management during curing of a phenolic composite part is an extremely important task; 
without proper removal of the volatiles, the resultant part can be highly porous with 
voids and delaminations. In a press molding operation, high platen pressures (higher 
than volatile pressures) (i) reduce the volatile evolution rate and (ii) ensure removal of 
the volatiles completely. In an autoclave curing, generally, multiple ramps and holds 
are introduced in the cure cycle while maintaining vacuum for the removal of volatiles. 
Full pressure is applied after all the by-products have been removed. Another method 
adopted in autoclave curing is to carry out intermediate hot-debulking. In this method, 
the part is laid-up partially, debulked under vacuum at high temperature, cooled down, 
and partial lay-up is resumed. The process is continued till all the plies are laid-up and 
final curing is done. This process is however very time consuming.

10.7  MANUFACTURING PROCESS SELECTION
We had seen in Chapter 9 that there are a number of reinforcement and matrix materi-
als that can be used for making composite products. The reinforcements are available 
in various physical forms and there are various manufacturing processes that can be 
adopted for converting the reinforcements and matrix into a useful product. An impor-
tant issue here is the selection of the manufacturing process. Several aspects associated 
with the product development have to be considered for making a judicious choice. The 
major aspects associated with manufacturing process selection are identified below:

◾◾ Related to product description
−− Configuration of the product
−− Size of the product

◾◾ Related to product requirements
−− Structural property requirement
−− Surface finish
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−− Reliability and repeatability
−− Production requirement

◾◾ Related to process requirements
−− Tooling requirements
−− Need and availability of skilled manpower

◾◾ Related to process characteristics
−− Automation
−− Cycle time
−− Cost

An indicative assessment of the suitability of various composites manufacturing 
processes w.r.t. each of the above aspects is made in Tables 10.1 through 10.3 (also see 
Reference 3). Note that some of the processes can be employed in virtually any possible 
case of a particular aspect. For example, wet lay-up can be used for laying up parts of 
virtually any configuration; however, it is certainly not suitable for all part configura-
tions. Here, our emphasis is to check the general suitability of the manufacturing pro-
cesses in various cases.

TABLE 10.1
Selection of Manufacturing Methods—Open Mold Processes

Wet Lay-Up Prepreg Lay-Up Spray-Up Rosette Lay-Up

Configuration of product Flat and low to medium 
curvature panels

Flat and low to medium 
curvature panels

Flat and low to medium 
curvature panels

Axisymmetric parts, 
low to medium 
curvature panels

Size of product Any size Any size Any size Small to medium
Structural property Medium to high High Low Low
Surface finish Good on one side Good on one side Good on one side Poor
Reliability and repeatability Low to medium Medium to high Low to medium Medium
Suitability for high volume production Low Low Medium Low
Tooling requirements Low to medium Low to medium Low to medium Low to medium
Need for skilled manpower High High High High
Feasibility of automation Low Low to medium Medium Low
Cycle time Short to medium Medium Short Long
Cost Low High Low to medium Medium to high

TABLE 10.2
Selection of Manufacturing Methods—Closed Mold Processes

Compression Molding Resin Transfer Molding

Configuration of product Near net shape solid (nonhollow) 
parts, flat and low curvature panels

Any configuration

Size of product Small to medium Any size
Structural property Low to high High
Surface finish Good on all sides Good on all sides
Reliability and repeatability High Medium to high
Suitability for high volume production Medium to high Medium to high
Tooling requirements Medium to high Medium to high
Need for skilled manpower High High
Feasibility of automation Low to medium Low
Cycle time Short Short
Cost Low to medium Low to medium
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10.7.1  Configuration of the Product

An as-molded composite part can be of various configurations: (i) solid or hollow, 
(ii)  thin- or thick-walled, (iii) flat or curved, (iv) axisymmetric or nonaxisymmetric, 
(v)  channels with open or closed cross sections, etc. We had discussions on 10 key 
composite processing methods under three groups in Sections 10.4 and 10.5. As is seen 
there and noted in Tables 10.1 through 10.3, some of these methods are suitable for 
practically any part configuration, whereas some others have specific capability.

Among the open mold processes, the first three processes, viz. wet lay-up, prepreg 
lay-up, and spray-up, can be used for making flat panels and panels with low to medium 
curvatures. Prepreg lay-up and spray-up can also be employed in complex configura-
tions involving large curvatures (small radii of curvature). Rosette lay-up is suitable for 
moderately thick axisymmetric parts and panels with low to medium curvatures.

Compression molding is suitable for making near net shape solid parts and panels 
with low curvatures. Complex configurations are also possible with appropriate molds. 
With RTM, too, near net shape parts with complex configurations can be made.

Continuous molding processes, in general, are most suitable for regular configu-
rations. Constant cross section long sections are most conveniently made by pultru-
sion. Filament winding as well as tape winding are generally suitable for axisymmetric 
parts. Nonaxisymmetric parts can also be made by using complex winding programs. 
However, for filament winding to be feasible, the part profile along a fiber path must 
be outwardly convex. On the other hand, as compared to filament winding, fiber place-
ment provides more flexibility in the part configurations.

10.7.2  Size of the Product

Monolithic composite parts can be made in a wide range of sizes. Wet lay-up, pre-
preg lay-up, and spray-up processes can be used for making parts of virtually any size 
except very small sizes. Rosette lay-up is suitable for axisymmetric parts and panels of 
small to medium sizes.

TABLE 10.3
Selection of Manufacturing Methods—Continuous Molding Processes

Pultrusion Filament Winding Tape Winding Fiber Placement

Configuration of 
product

Long sections of 
constant cross section

Axisymmetric (also, nonaxisymmetric) 
outwardly convex thin shells

Axisymmetric (also, 
nonaxisymmetric) outwardly 
convex thick shells

Any configuration 
(shell/panel)

Size of product Any size Any size Any size Any size
Structural property High High Low High
Surface finish Good Good on inner surface Poor Good on inner 

surface
Reliability and 
repeatability

Medium to high Medium to high Medium to high High

Suitability for high 
volume production

High Medium to high Medium Medium to high

Tooling requirements Medium Medium to high Medium Medium to high
Need for skilled 
manpower

High High High High

Feasibility of 
automation

High High High High

Cycle time Short Medium to long Medium to long Medium to long
Cost Low to medium Medium to high Medium to high Medium to high
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Compression molding and RTM processes are suitable for making parts of small 
to medium sizes. The size of a compression molded part is directly influenced by the 
size of the mold and the capacity of the press. In the case of RTM, on the other hand, 
tooling plays a critical role and with properly designed tooling, large components can 
also be manufactured.

Pultrusion is most suitable for making long sections with small uniform cross-
sectional areas. Filament winding, tape winding, and fiber placement processes are 
suitable for making components of small to large sizes. In these cases, mandrel design 
and capacity of winding machine directly control the size of the component. These are 
not suitable for very small parts. On the other hand, with proper mandrel design and 
adequate machine capability, very large components can be made by filament winding 
and fiber placement processes.

10.7.3  Structural Property Requirement

The structural properties of a composite part are greatly influenced by the reinforce-
ments, their physical forms, and stacking sequence. In addition to these factors, the man-
ufacturing method adopted to make a part also has a very significant role in imparting 
structural properties. Filament winding, pultrusion, RTM, etc. can be employed to make 
highly directional composite parts. On the other hand, compression-molded randomly 
oriented components and open-molded CSM products are poor in structural properties.

Wet lay-up and prepreg lay-up processes are suitable, in general, to meet require-
ments of medium to high and high structural properties; autoclave cured prepreg laid-
up composite parts are excellent in applications requiring high structural properties. 
Spray-up and rosette lay-up, however, do not impart high structural characteristics. In 
fact, rosette lay-up is primarily used for making parts for ablative applications.

Compression molding and RTM can be used for making high strength or high 
stiffness parts. Compression molding is also used for making components for use in 
nonstructural applications.

Continuous molding processes, other than tape winding, are suitable for making 
parts with high structural properties. However, structural characteristics vary greatly. 
Pultrusion imparts high strength and stiffness in the axial direction. Filament winding 
is suitable for making shell structures with high membrane properties. The membrane 
strength and stiffness of a filament-wound shell depend greatly on the fiber orientation. 
In filament winding, the very nature of the winding process imposes certain constraints 
on the fiber orientation capabilities; thus, structural characteristics are influenced. Fiber 
placement, on the other hand, is more flexible.

10.7.4  Surface Finish

Surface finish is a desired characteristic in many composite product applications. 
Machining can improve surface finish, but it is not desirable from the point of view of 
requirement of structural properties.

Wet lay-up, prepreg lay-up, and spray-up processes impart excellent surface finish 
on the side of the part in contact with the mold during processing, but the other side 
is rather poor in surface finish. Surface machining on the outer side can improve its 
finish, but it greatly reduces the strength and stiffness characteristics and sometimes 
causes surface delaminations. Rosette lay-up has its specific ablative application and 
the as-molded part is usually machined on the outer as well as the inner surfaces to 
obtain the desired configuration and surface finish.

Owing to the closed mold nature, compression molding and RTM are very efficient 
in imparting good surface finish on all the sides of the composite as-molded parts.
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Pultruded sections are generally good in surface finish. Finish is good only on the 
inner surface of a filament-wound part; it is rather poor on the outer side. Hoop-wound 
outer surface is relatively better in finish than helical-wound outer surface. On the other 
hand, tape-wound parts usually need machining so as to achieve the desired surface 
finish.

10.7.5  Reliability and Repeatability

The reliability of a composite part and the repeatability of its quality depend signifi-
cantly on the manufacturing method adopted to make it.

In general, open mold processes do not fare well in this aspect. Human skill plays 
a significant role in these processes; it is especially true in wet lay-up, wherein dry 
fabric layers are cut and wetted with resin manually. Lay-up is also done manually 
and curing is done at room temperature, in an oven, or in an autoclave. Defects like 
voids, delaminations, disoriented fibers, nonuniform fiber volume fraction, etc. result 
in poor reliability and repeatability. In prepreg lay-up, preimpregnated plies with 
controlled resin content are used and some of the operations can be mechanized; 
curing is done mostly in an autoclave and reliability and repeatability are better. 
Spray-up is also highly dependent on operator skill and nonuniform fiber volume 
fraction; varying part thickness and random nature of chopped fibers make reliability 
and repeatability poor. Prepreg ply developments are laid-up either in an open mold 
or in a closed mold. As compared to wet lay-up processes, part quality is more reli-
able and repeatable.

Compression molding and RTM yield reliable parts with repeatable quality. Closed 
mold processes are especially suitable for maintaining dimensional repeatability of 
as-molded parts.

Continuous molding processes can be placed as above average in rank in respect of 
reliability and repeatability. These processes can be automated to a large extent and 
helps improve reliability and repeatability. However, various process parameters affect 
the quality of the final product in each of the processes in this class. For example, in 
filament winding, a close eye must be kept on the process variables such as resin vis-
cosity, resin temperature, winding tension, doctor blade setting, number of spools, etc. 
In tape winding, tape tension, roller pressure, Chang’s index, etc. are important param-
eters. In other words, in-process quality control is critical for ensuring reliability of a 
part and repeatability of its quality.

10.7.6  Production Requirement

Manufacturing processes are not uniformly suitable for different production require-
ments. In general, open mold processes are suitable for making only limited numbers 
of products. Common characteristics, viz. labor-intensive nature, low scope for automa-
tion, relatively long cycle time, and low repeatability, associated with these processes 
make them unsuitable for large volume production. Prepreg lay-up can be partly auto-
mated and they fare relatively better than wet lay-up in meeting production volume 
requirements. Spray-up can also be automated to a large extent and it can be made suit-
able for high production volume. On the other hand, rosette lay-up is suitable for low 
to medium production volumes; also, parts made by rosette lay-up are used in specific 
applications with typically limited requirements.

Closed mold processes, viz. compression molding and RTM, are typically suitable 
for meeting high volume production requirements of small parts. For example, com-
pression molding is regularly employed for the production of automotive parts using 
molding compounds. These methods are also employed for making medium to large 
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size parts involving complex ply sequence or specially designed preforms. In some 
cases, extensive machining of cured parts is also required. In such cases, production 
volumes are usually limited.

Pultrusion is a quick process and is suitable for high volume production. Filament-
wound parts of simple configurations such as pipes and tubes can be made in large 
volumes. However, in some other cases of specialized applications, owing to com-
plex configurations and complex tooling, production volumes can be low to medium. 
Generally, tape winding is also employed for making parts for specialized applications, 
and production volumes are low or, at best, medium.

10.7.7  Tooling Requirements

Tooling requirement is a common feature for any composite processing technique. 
The nature of the tooling depends on the processing technique and the configuration 
of the part.

Tooling requirements for open mold processes, except rosette lay-up, are generally 
low or, at best, medium. Typically, simple male and female open molds, made out of 
steel, wood, and FRP, are used. Owing to the nature of open molding process and 
room-temperature curing, a simple mold with machined surface matching with the 
profile of the part is sufficient in wet lay-up and no intricate tool design is involved. In 
prepreg lay-up, vacuum bagging, and high-temperature curing processes increase tool-
ing requirements a little more as compared to wet lay-up. Spray-up is similar to wet 
lay-up in regard of tooling needs. In the case of rosette lay-up, owing to its very nature 
of laying up plies across the laminate thickness, two halves with matching profiles are 
needed for making axisymmetric parts and tooling requirements are little high. For 
open panels, however, simple tools are sufficient even in rosette lay-up.

As compared to the open mold processes, closed mold processes, viz. compression 
molding and RTM, demand more attention to tool design and fabrication. The molds 
in these processes need to meet a number of processing parameters. Additionally, in 
the case of compression molding, the molds have to meet high strength and stiffness 
requirements. Also, these processes are employed for making parts with controlled 
dimensions and in some cases rather highly complex molds are required.

Tooling requirements in continuous molding processes can be considered as medium 
or medium to high. The complexity of the tooling also depends on the part to be made. 
In general, a die is used in pultrusion and a mandrel in filament winding, tape winding, 
and fiber placement. The mandrel has to meet a number of processing requirements. 
The extraction of the mandrel after curing is a critical processing requirement, and in 
some cases, for example, in a pressure vessel with small pole openings, the mandrel 
design may become rather complex.

10.7.8  Automation and Skilled Manpower Needs

The choice of manufacturing process can be greatly influenced by need and availability 
of skilled manpower. Obviously, a choice of a processing technique requiring a large 
pool of skilled manpower is not a good one if skilled manpower is in short supply.

Wet lay-up and prepreg lay-up processes are highly labor-intensive and the scope for 
automation is relatively low. In spray-up process, it is possible to implement automation 
and thereby the need for skilled manpower can be reduced. In respect of skilled man-
power requirement, rosette lay-up process is similar to prepreg lay-up and it is skilled 
manpower-intensive.

Compression molding and RTM are relatively less-skilled manpower-intensive. 
Automation is possible to some extent, which reduces the requirement of skilled 
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manpower. In some special cases, however, complex parts are made in limited num-
bers, where skilled manpower is needed in large numbers.

Continuous molding processes can be greatly automated and demand for skilled 
manpower can be reduced.

10.7.9  Cycle Time

The cycle time of manufacturing a composite part is dependent on the processing tech-
nique to a great extent. Wet lay-up involves generally room-temperature curing and 
cycle time of part fabrication is short. Vacuum bagging and autoclave curing operations 
lead to relatively longer cycle time in prepreg lay-up. In this regard, spray-up is similar 
to wet lay-up and cycle time is typically short. On the other hand, rosette lay-up, due to 
its unique nature of ply orientation, is a relatively long operation.

Compression molded and resin transfer molded parts are generally of short cycle 
time. In these cases, automation is possible and short curing resins can be used leading 
to short cycle time. However, in special cases of compression molding as well as RTM, 
parts involving very detailed ply sequencing or complex preforms are made, where 
cycle times are relatively longer.

Among the continuous molding processes, pultruded parts have generally short 
cycle time. Filament winding, tape winding, and fiber placement processes take rela-
tively longer time. In some cases, parts requiring complex tooling and detailed ply 
sequencing and multistage winding are made; cycle times of manufacture can be rather 
long in such cases.

10.7.10  Cost

Cost is a critical factor in choosing the manufacturing process in most applications 
except possibly in some limited cases of strategic importance. Even in such cases, given 
other parameters equal in ranking, a cheaper processing technique is always preferable. 
The major cost elements in the development of a composite product are costs of raw 
materials, capital equipments, tooling, in-process consumables, processing (including 
manpower and machine running costs), and design and analysis.

In general, wet lay-up is a cheap process that involves simple tooling, inexpensive 
raw materials, no capital equipment, and minimum in-process consumables. Prepreg 
lay-up, on the other hand, is an expensive process primarily on account of expensive 
initial investment in capital equipment, high processing cost, and expensive in-process 
consumables. Spray-up involves inexpensive raw materials, simple molds, and process-
ing tools; as a result, it is generally an inexpensive process. Rosette lay-up, due to 
its unique nature and possible complex molds, expensive raw material, and need for 
autoclave curing, can be relatively more expensive than the other open mold processes.

Initial investment in compression molding can be high and it depends on the capac-
ity of the press. Tooling cost varies from low to high depending on part configuration. 
Similarly, material cost also varies depending on its type. In general, for high volume 
production, the cost of a compression molded part tends to be low to medium and 
for parts with limited volume requirements and special specifications, it tends to be 
medium to high. In the case of RTM, initial investment involves primarily the cost of 
the resin dispensing system. Costs of preforms and tooling are two other major cost ele-
ments. By and large, the cost of a resin transfer molded part tends to be low to medium 
in a setup for high volume production. On the other hand, cost tends to go up for parts 
with limited volume requirements and complex specifications.

Initial investments are generally high for continuous molding processes. By and 
large, these processes need highly sophisticated machines and equipments for making 
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quality components. Tooling costs are dependent on size and complexity of the tooling 
and in some cases tool preparation becomes a major recurring cost element.

10.8 � OTHER TOPICS IN COMPOSITES 
MANUFACTURING

10.8.1  Process Modeling

There are many process parameters that influence the manufacturing process and the 
final quality of a composite product. The possible process parameters associated with 
common manufacturing methods are identified and listed in Table 10.4. These param-
eters can be broadly termed as input parameters; by and large, we can either con-
trol them or make a choice from among possible alternatives during manufacturing. 
For example, we can choose an acceptable range of resin viscosity during wet lay-up. 

TABLE 10.4
Typical Process Parameters Associated with Common Manufacturing Methods

Manufacturing Method Manufacturing Parameters

Wet lay-up •	Resin condition—viscosity of resin, quantity of resin per unit area of fabric
•	Fabric condition—thickness of fabric, style of fabric
•	Lay-up parameters—type of brush and roller

Prepreg lay-up •	Prepreg condition—Chang’s index, tackiness, resin content
•	Lay-up parameters—type of roller, roller pressure
•	Curing parameters—temperature, pressure, vacuum, autoclave 

characteristics
Spray-up •	Resin condition—viscosity of resin

•	Fiber condition—lengths of cut pieces, tex
•	Spraying parameters—spray pressure, nozzle type, etc.

Rosette lay-up •	Prepreg condition—Chang’s index, tackiness, resin content
•	Lay-up parameters—type of roller, roller pressure
•	Curing parameters—temperature, pressure, vacuum, autoclave 

characteristics
Compression molding •	Charge condition—type of charge (molding compound or prepreg 

flakes), prepreg condition
•	Molding parameters—quantity of charge per lot, load, curing 

temperature
Resin transfer molding •	Resin condition—resin viscosity, resin temperature

•	Preform condition—type of reinforcement, fiber orientation
•	Resin injection parameters—resin injection pressure, gate location

Pultrusion •	Resin condition—resin viscosity, resin temperature, cure characteristics of 
resin

•	Roving/tow condition—tex of rovings
•	Pultrusion parameters—number of spools, guide roller setting, pulling 

tension, die temperature
Filament winding (wet 
winding)

•	Resin condition—resin viscosity, resin temperature
•	Roving/tow condition—tex of rovings
•	Winding parameters—doctor blade setting, number of spools, 

bandwidth, number of starts
Tape winding •	Prepreg condition—Chang’s index, tackiness, resin content

•	Winding parameters—tape tension, roller pressure, pitch
•	Curing parameters—temperature, pressure, vacuum, autoclave 

characteristics
Fiber placement •	Towpreg/tape condition—tackiness

•	Fiber placement parameters—fiber tension, roller pressure
•	Curing parameters—temperature, oven characteristics
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Similarly, during prepreg lay-up, advancement of resin in the prepreg, as represented by 
Chang’s index, can be controlled to be within acceptable limits, and so on. There is also 
another set of parameters associated with the manufactured part or the laminate. They 
include laminate density, fiber volume fraction, degree of cure, surface finish, voids, 
etc. These laminate parameters are basically the output parameters and represent the 
quality of the composite part. Some of the output parameters such as voids represent 
defects and it is desirable to reduce them; whereas some others such as fiber volume 
fraction, degree of cure, etc. should be high, in general.

The process parameters have significant effect on the resultant values of the laminate 
parameters and it is reasonable to conclude that an optimum choice of these param-
eters is essential to manufacture a quality product. For making a choice of the process 
parameters, two broad approaches are in vogue. The first approach is basically a trial-
and-error approach that is guided by experience and intuition of the process engineer 
and shop floor technicians. In general, it is time-consuming, expensive, and inefficient. 
On the other hand, the second approach is precise and more efficient; it is based on 
process modeling [32,33].

A process model is a mathematical representation of a manufacturing method in 
which the resultant laminate or part parameters are expressed in terms of the process-
ing variables associated with it. It is developed based on physical laws, appropriate 
initial and boundary conditions, experimental observations, and suitable assumptions. 
Four broad interrelated areas can be identified in process modeling in composites man-
ufacturing. These are

◾◾ Thermochemical aspects
◾◾ Resin flow characteristics
◾◾ Residual stresses and strains
◾◾ Voids

First, the thermochemical aspects include basically temperature distribution in the 
part during processing that has effects on the viscosity of the resin and the degree of 
cure. Temperature distribution depends on material properties and the curing environ-
ment. The curing conditions, including room temperature, heat input, oven/autoclave 
temperature, pressure, and vacuum, form the initial conditions and boundary conditions 
in the mathematical representation of the thermochemical aspects in process modeling.

Second, uniform wetting of the fibers with the resin is essential in any manufactur-
ing process and resin flow characteristics are of critical importance in process model-
ing. Nonuniform wetting may lead to resin-starved areas as well as low fiber volume 
fraction. Resin viscosity, temperature profile, pressure and vacuum during curing, 
vacuum port location, resin injection gate location, etc. are the controlling variables 
that are considered in simulating the resin flow characteristics. The variables that are 
applicable in a specific model depend on the type of the manufacturing method. For 
example, resin flow in RTM would depend on resin injection gate location; whereas in 
filament winding, doctor blade setting controls resin flow to a great extent. On the other 
hand, resin viscosity is an applicable parameter in both the cases.

Third, residual stresses and strains are developed in a composite part during cur-
ing. Dissimilar thermal coefficients of fibers and resin result in thermal strains in the 
plies at the end of cooling. In this respect, ply sequence and material properties play 
an important role; unsymmetric ply sequence with dissimilar materials may cause high 
residual stresses and strains, which in turn result in distortion as well as interlaminar 
cracks. An improper cure cycle involving sudden increase and decrease in temperature 
can lead to uneven cure and result in increased residual stresses and strains. Residual 
stresses and strains and associated distortions are undesirable and they should be 
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reduced to the minimum. In this regard, process models simulating cure characteristics 
can be used efficiently.

The fourth major area in process modeling is in respect of voids that are created dur-
ing part manufacturing. Voids are undesirable as they decrease part quality. They are 
generated at random during lay-up as entrapped air or gas bubbles and they change in 
size and shape during curing due to (i) changes in pressure and temperature, (ii) volatile 
generation, and (iii) differential thermal deformation. Models have been developed tak-
ing into account some of these aspects and the same can be used to design cure cycles 
so as to minimize the presence of voids in the resultant part.

10.8.2  Machining of Composites

Composites manufacturing is different from conventional metallic manufacturing pro-
cesses in several aspects. One such aspect is the fact that composites manufacturing 
involves the addition of material during processing, whereas manufacturing processes 
in metals generally involve removal of material. Also, large parts can be made with 
composites resulting in reduced part count. Thus, the requirement of machining in 
composites is much less and sometimes it is undesirable to machine a composite part. 
However, it cannot be avoided totally and a certain amount of machining is invariably 
needed in the manufacture of almost any composite product. Machining of composites 
needs special care and an introductory discussion is given in the following subsec-
tions. For more information, the interested reader can consult, for instance, References 
1, 34–37 and the bibliography given therein.

10.8.2.1  Requirements of Composites Machining

Machining is required in various circumstances in composites manufacturing; the 
common requirements are

◾◾ Edge machining
◾◾ Surface machining
◾◾ Machining for parts making
◾◾ Providing holes and other features

10.8.2.1.1  Edge Machining

Edges of as-molded flat panels and shells are generally not clean and they require 
machining to remove the boundary strips having disoriented fibers/fabric, resin glob-
ules, missing plies, etc. Machining along the edges is also required to achieve proper 
dimensions. For example, while designing a mold for making a flat laminate by either 
wet lay-up or prepreg lay-up, typically allowances are kept along the four edges. The 
strips along the edges are removed by employing standard cutting operation using one 
of the several either hand-held or mechanized tools such as hand saw, circular saw, 
band saw, etc. Similarly, in a filament-wound cylindrical component, the circular strips 
at the two ends are removed by either parting or facing. In some cases, for example, 
compression molded parts, edge machining may involve simply trimming by grinding 
or filing.

10.8.2.1.2  Surface Machining

Surface machining is required (i) to maintain laminate thickness within specified toler-
ances, (ii) to achieve desired surface finish, and (iii) to prepare matching profiles for 
adhesive bonding. In the open mold processes and continuous molding processes, it 
is nearly impossible to maintain laminate thickness within tight tolerances and good 
surface finish is achieved only on one side. When ply edges are exposed on both sides 
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of a laminate—as in the case of rosette lay-up and tape winding—surface machining 
is required on both the sides, if good finish is desired. Also, bonded joints are incorpo-
rated in many applications, where matching surfaces need machining.

Surface machining of axisymmetric components is done generally by turning. 
Straight cylindrical turning, taper turning, and profile turning are all employed depend-
ing on the part meridional geometry. Grinding and sanding are frequently done for 
better finish on flat as well as contoured surfaces. On the other hand, milling may be 
needed to achieve controlled thickness of flat panels.

10.8.2.1.3  Machining for Part Making

In many cases of composites manufacturing, a large panel or a long shell is made first, 
and subsequently, smaller parts are obtained from the parent panel or shell by machin-
ing. A typical example is the case of test specimens that are machined out from a parent 
laminate by either sawing or cutting. Similarly, for the realization of small- to medium-
sized shells, often, a long shell is made by filament winding and parts of desired lengths 
are obtained by carrying out parting operation.

10.8.2.1.4  Providing Holes and Other Features

Holes are required in composite panels and shells for incorporating bolted and riveted 
joints, and to provide features for integrating with adapters, nozzles, etc. Drilling is 
routinely done to provide holes in composite laminates. Often, reaming is done for bet-
ter hole quality. Holes can also be provided with countersunking. In many composites 
manufacturing processes, it is difficult to provide special features such as slots, steps, 
etc. in the as-molded composite parts and machining operations like milling and turn-
ing become essential.

10.8.2.2  Critical Aspects of Composites Machining

The underlying principles of machining in composites are basically the same as in met-
als. Thus, metal-machining operations like cutting, sawing, turning, milling, grinding, 
drilling, reaming, etc. are also used in composites. However, owing to the anisotropic 
and nonhomogeneous nature of composites, machining in composites is highly chal-
lenging and is associated with several critical aspects. Some of the common problems 
faced during composites machining are

◾◾ Tool life
◾◾ Dust removal
◾◾ Damage to work piece

10.8.2.2.1  Tool Life

Advanced composites such as carbon/epoxy are highly abrasive in nature and wear 
and tear of cutting tools is a major concern. High-speed steel tools, coated with tung-
sten carbide or diamond, have longer life. High-speed steel tools can be used for glass 
fiber–reinforced composites. Carbide and polycrystalline diamond (PCD) tool inserts 
are superior in terms of tool life and machining quality. These tools, although more 
expensive, are commonly used in carbon fiber and Kevlar fiber–reinforced composites.

10.8.2.2.2  Dust Removal

Unlike metal machining, where the chips are formed in ribbons, composite machining 
generates powders that cause health concern. Carbon dust can result in short circuit 
and damage the CNC unit of the lathe. Note also that coolant and lubricants are gener-
ally not used in composites machining, and unless proper care is taken, the machin-
ing dust can heavily pollute the air in the machine shop. An efficient dust extraction 
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system involving vacuum suction hoses is essential for removal of the powders as they 
are formed.

10.8.2.2.3  Damage to Work Piece

Unless proper care is taken during machining, it leads to low-quality machined sur-
face and also damages the work piece. Common damages associated with compos-
ites machining are delamination, fiber pull-out, uncut fibers, fuzzing, and matrix 
degradation.

The most common machining operation in composites is drilling holes. As shown 
in Figure 10.17, delamination during drilling can occur either by peel-up of the top 
plies at entry or by push-out of the bottom plies at exit [34,35]. At the entry, the tool’s 
mechanical action has a tendency to peel up the top plies. High thermal stresses can 
also cause delamination in the top plies. On the other hand, the tool acts as a punch at 
the exit and causes delamination in the bottom plies. Appropriate backing plate and 
reduced feed rate at exit help minimize this type of delamination. It is important that 
appropriate drill bit with proper machining parameters is used for drilling of compos-
ites. Machining parameters depend on several factors, including laminate material, 
laminate thickness, laminate ply sequence, hole diameter, cutting speed, feed rate, and 
tool material. For unidirectional as well as multidirectional carbon/epoxy laminates, 
carbide and PCD drill bits are commonly used. Typical cutting speeds are in the range 
of 40–60 m/min at feed rates of 0.02–0.08 mm/rev.

Machining operations like turning and sawing also cause delaminations and other 
damages. Cutting force normal to the laminate during the parting operation tends to 
push the uncut plies down, especially when a worn-out tool is used and causes edge 
delaminations. In general, a combination of high cutting speed (mm/min) and low feed 
rate (in mm/rev or mm/tooth) minimizes the possibility of delamination and results in 
smooth machined edge. Very high cutting speed may lead to local heating and deterio-
ration of resin, which clogs the teeth of the saw during sawing.

Aramid fibers are ductile in nature and low in compressive strength. During machin-
ing of aramid fiber composites, the fibers tend to recede within the matrix and they do 
not get sheared off. Also, owing to their ductile nature, aramid fibers absorb a great 
deal of energy leading to low-quality machined surface characterized by uncut fibers, 
fiber kinks, and uneven surface. The machining approach to avoid such issues should 
be to stress the fibers in tension so that they can be cut by shear action [35].

10.9  SUMMARY
Manufacturing is a critical aspect in the composite product development cycle. In this 
respect, the following aspects have been reviewed in this chapter: (i) basic concepts, 

(b)(a)

FIGURE 10.17  Delamination of laminate during drilling. (a) Peel-up delamination at entry. (b) Push-
out delamination at exit. (Adapted with permission from S. Abrate, Machining of composite materials, 
Composites Engineering Handbook (P. K. Mallick, ed.), Marcel Dekker, New York, 1997, pp. 777–810.)
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(ii) common manufacturing processes, (iii) manufacturing process selection, (iv) process 
modeling, and (v) composites machining. The following major points have been noted:

◾◾ Composites processing involves essentially four basic steps—impregnation, 
lay-up, consolidation, and solidification.

◾◾ The methodology of implementation and the exact order, in which the basic 
steps are implemented, vary depending upon the manufacturing process and 
physical form of reinforcement and matrix.

◾◾ Composites manufacturing processes can be grouped in three broad categories—
open mold processes, closed mold processes, and continuous molding processes.

◾◾ Filament winding is an important continuous molding process especially suit-
able for making tubular products such as pressure vessels, pipes, storage tanks, 
etc. Like in other composites manufacturing processes, the basic processing 
steps are applicable here too. Additionally, the computational aspects involving 
programming are of critical significance.

◾◾ The manufacturing process selection depends on a number of factors such as 
configuration of the product, tooling requirement, cost, etc. These factors can 
be related to the product description, product requirements, process descrip-
tion, and process requirements, and some of them are interrelated. The man-
ufacturing methods can be qualitatively ranked in each of these aspects for 
making a suitable selection.

◾◾ There are also other critical topics in composites manufacturing; two such top-
ics of importance are process modeling and composites machining.

EXERCISE PROBLEMS

	 10.1	 What are the essential processing steps in any composites manufacturing 
method? Write a brief note giving details of their significance in the quality 
of the final product.

	 10.2	 How are the four basic processing steps incorporated in (i) prepreg lay-up, 
(ii) resin transfer molding, (iii) pultrusion, and (iv) filament winding (wet 
winding) processes?

	 10.3	 An E-glass/epoxy laminate of size 500 mm × 500 mm is designed with 
eight bidirectional balanced fabric plies. Determine the quantity of resin 
and hardener to be mixed. Assume the following:

Resin to hardener mix ratio = 100:20
Surface density of fabric = 430 g/m2

Desired fiber volume fraction = 0.6
Density of E-glass fiber = 2.54 g/cm3

Density of resin mix = 1.1 g/cm3

	� Hint: Refer Chapter 3 to determine weight fractions corresponding to the 
desired fiber volume fraction.

	 10.4	 Write a note giving details of advantages and disadvantages of the spray-up 
process.

	 10.5	 Consider a circular cylindrical part of inner and outer diameters of 150 mm 
and 230 mm, respectively. The part is laid-up in a rosette construction. 
The ply developments are rectangular and they are laid-up in such a way that 
the inner and outer edges are parallel to the axis of the cylindrical part. Now, 
the arc angle at a point in a ply is defined as the angle between the tangent 
lines as shown in Figure 10.18. If the arc angle is 90° on the inner circumfer-
ence, determine its value on the outer circumference. How many plies are 
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required to lay-up the part completely? What will happen if the arc angle is 
changed to 75° on the inner circumference? Assume uniform ply thickness.

		  Hint: Given the information as above, the arc angle is given by

	
α

π
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2
Nt

r 	

		  where N, r, and t are the number of plies, radius at the concerned point, and 
ply thickness, respectively.

	 10.6	 Consider a tape-wound conical part of dimensions as shown in Figure 10.19. 
Determine the prepreg tape width and the pitch in the winding program if 
the winding is done as parallel winding. Assume uniform ply thickness of 
0.5 mm. Consider machining allowance of 2 mm on both faces.

	 10.7	 Compare filament winding and pultrusion in respect of (i) how the basic 
processing steps are incorporated, (ii) typical structural characteristic of the 
end products, and (iii) common applications.

	 10.8	 Identify two typical products made by each of the 10 composites manufac-
turing methods discussed in this chapter. Discuss why these manufacturing 
methods are suitable for making the corresponding identified products.

	 10.9	 It is found experimentally that three spools of carbon rovings at a programmed 
bandwidth of 6 mm results in a ply thickness of 0.4 mm. Determine the 
number of mandrel rotations required to make a unidirectional ply of width 
2400 mm and thickness 0.6 mm by hoop winding using two spools.

Arc
angle

FIGURE 10.18  Definition of arc angle (Exercise 10.5).

660

100

180
740

280

FIGURE 10.19  Tape-wound conical part (Exercise 10.6). All dimensions are in mm.
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	 10.10	 A cylindrical mandrel of diameter 240 mm and length 600 mm with end 
domes is to be wound with geodesic helical plies at an angle of winding 
of 30° (at the cylindrical portion). Given an experimental data that three 
spools of carbon rovings at a programmed bandwidth of 6 mm results in a 
ply thickness of 0.4 mm, determine the number of circuits required for one 
complete coverage of the mandrel with a minimum thickness of 0.6 mm. 
What is the actual ply thickness estimated? Assume four spools are used in 
the winding operation.

		  Hint: The number of circuits is an integer. Also, each helical ply actually con-
sists of two plies—one at 30° and the other at −30°.

	 10.11	 Consider a cylindrical mandrel with hemispherical end domes. Consider a 
geodesic helical fiber path. Show that the mandrel rotation corresponding 
to the fiber path in one end dome is 90°, irrespective of the diameters at the 
cylinder and pole openings.

		  Hint: The geodesic helical path in the end dome of a hemispherical shape is 
a great circle; so it would be a straight line in the side view.

	 10.12	 Consider a cylindrical mandrel of radius R and length L. Also, consider a 
helical path on it with an angle of winding α. If the end domes are hemi-
spherical in shape with equal pole openings, show that the total mandrel 
rotation θ for one complete circuit is given by

	
θ α π= +

2L
R

tan  

	

		  Hint: The geodesic path on the development of a cylinder is a straight line at 
angle α to the lengthwise edge.

	 10.13	 Consider a cylindrical mandrel of diameter 400 mm and length 800 mm 
with two hemispherical end domes. If the pole opening diameters are 
100 mm at either end, what is the geodesic helical angle of winding at the 
cylindrical portion? Determine the total mandrel rotation involved in one 
complete circuit.

	 10.14	 Consider the cylindrical mandrel in the exercise above. Given an experi-
mental data that three spools of carbon rovings at a programmed bandwidth 
of 6 mm results in a ply thickness of 0.4 mm, determine the number of cir-
cuits required for one complete coverage of the mandrel with a minimum 
thickness of 0.6 mm and the total quantity of fiber needed for one complete 
coverage. Assume, tex of the fiber = 800 g/km.

	 10.15	 Write a brief note on the importance of real-time decision regarding the point 
of application of pressure in an autoclave curing of epoxy composite product.

	 10.16	 Write a note on the manufacturing process selection.
	 10.17	 List down various process parameter that can be included in the develop-

ment of a process model for (i) prepreg lay-up, (ii) compression molding, 
(iii) pultrusion, and (iv) filament winding.

	 10.18	 Write a brief note on the need for machining of composites. What are the 
different types of machining involved in PMCs?
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11.1  CHAPTER ROAD MAP
The primary objective of this book is to take the reader through the complete cycle of 
development of a composite product. In this journey, testing is a crucial part and this 
chapter is devoted to discuss issues involved in the testing of composites and their con-
stituents. First, an introductory remark including test objectives, standards for testing, 
and general philosophy of testing is made. Mechanical and nonmechanical parameters 
at different levels are identified and their test methodologies are presented. Different 
levels of tests discussed here include (i) tests on the constituent raw materials—
reinforcement and matrix, (ii) tests at the lamina/laminate level, (iii) tests at the element 
level, and (iv) tests at the component level—subscale and full-scale tests. It will be seen 
that composites testing is rather involved and relatively complex due to the anisotropic 
nature of the materials and unique manufacturing philosophy. Thus, our objective in 
this chapter is primarily to acquaint the reader with the concept and process of testing 
of composite materials.

Familiarity with the introductory concepts of composites, characteristic parame-
ters of composites at the micro and macro levels, and materials and manufacturing 
methodologies is essential for the effective assimilation of the topics covered here. 
Thus, Chapters 1, 3, 4, 9, and 10 should be covered before proceeding to this chapter.

11.2  INTRODUCTION
Testing is an inseparable part in any composite product development program. We 
will see in the next section in the discussion on test objectives that tests are also 
required as research and development work for technological growth. Composite 
materials and products are built starting with the constituent raw materials and we 
will see in this chapter that tests are done at different levels. We also know that 
composites are anisotropic in nature; compared to isotropic materials, the number 
of material parameters, which are required from design and analysis as well as from 
quality control and quality assurance points of view, is rather large. As a result, the 
concept and process of testing are more involved in composites. Extensive work has 
been done in the field of composites testing. Test methods discussed here are not 
exhaustive; for carrying out a specific test and reporting the results, one should refer 
to the corresponding applicable standards, of which ASTM standards are listed in the 
reference. For more information on testing principles, methodology, specifications, 
standards, and material behavior, the interested reader may consult available texts 
(see, for instance, References 1–5).

11
Testing of Composites and 
Their Constituents
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11.2.1  Test Objectives

The simple and obvious objective of carrying out a test is to generate some useful data 
in respect of various mechanical and nonmechanical characteristics of the material or 
structure. The data obtained from a test can be utilized in different ways. Based on 
the intended utility of the test data, for the sake of convenience of discussion and for 
efficient planning of a test program, the test objectives can be broadly categorized as 
follows (also see References 6 and 7):

◾◾ Design and analysis
−− Material selection
−− Design calculation
−− Performance prediction

◾◾ Quality control and quality assurance
−− Acceptance of materials
−− Stage clearance during processing
−− Final acceptance of a product

◾◾ Research and development
−− New materials development

The first and one of the most common test objectives is to generate data for use in the 
design and analysis of a product. Material selection and preliminary design calculation 
are often done using material data readily available in the literature. (Note, however, 
that material data available in the literature are also obtained from tests carried out 
by someone else!) The end characteristics, whether mechanical or nonmechanical, of 
a composite material depend on the constituents and the process adopted. Thus, for 
a final detail design and performance prediction, it is essential to use material data 
obtained from a material characterization exercise using the same constituents in a 
similar processing environment.

The second major category of test objectives is in the area of quality control and 
quality assurance. Sometimes, in a product development program, it may be possible 
to use readily available material data in design and analysis, and a detailed material 
characterization process can be skipped. However, we must know the materials that are 
actually used in the manufacture of the product and a limited testing process may still 
be required from quality control and quality assurance points of view. Tests are carried 
out for the acceptance of a particular batch of material for use in making a product. 
Tests are also regularly carried out for clearing a partially processed part to the subse-
quent processing operations as well as for acceptance of the final product.

The third major objective of carrying out tests is generation of data for materials 
research. The ultimate goal is to achieve improvement in existing materials and inven-
tion of new and more efficient material systems.

Note that the above three categories of test objectives are not mutually exclusive 
and there exist overlaps. For example, we can take the case of tests for the determina-
tion of mechanical properties of the constituents, say tensile strength of fibers. Most 
often, as a part of quality control steps, fibers are tested for tensile strength to accept 
a particular batch of fibers. Fiber strength is generally not used directly in the design 
calculation of a composite product and tensile testing of fibers is not generally done 
for generating any design input. However, adopting a micromechanics approach in the 
preliminary design phase, fiber tensile strength can be used to determine the lamina 
tensile strength, which in turn can be used in the design of the product. Other similar 
cases can be found. Clearly, the above categorization of test objectives is a simplifica-
tion made for the sake of convenience of discussion.
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It must also be noted that the intensity of the test program would depend on the test 
objectives. In general, tests carried out with the objective of design data generation 
are more elaborate and detailed in nature. The tests carried out for quality control are 
generally simple and quick. On the other hand, in the third category, the tests can be 
rather diverse in nature.

11.2.2  Building Block Approach

The overall process of development and production that includes design and analysis, 
testing, initial development, and final series production of a composite product can be 
viewed from a building block approach involving a number of levels in the form of a 
pyramid [1,8,9]. At the bottommost level are the constituent materials, viz. fibers and 
resin, which has the widest base. The next level is the lamina, which is based on the 
constituents. The process is continued till the final product, which is at the topmost 
level, is reached. Each level is built on the knowledge of the previous lower level. Each 
level has fewer elements but more complexities compared to the previous lower level. 
Tests can be associated to each of these levels and a number of levels of tests can be 
found. For the sake of convenience of discussion, we can broadly categorize the tests 
into the following levels and sublevels:

◾◾ Coupon-level tests
−− Constituent-level tests—tests on fibers and resin
−− Lamina-level tests
−− Laminate-level tests

◾◾ Structural element-level tests
◾◾ Component-level tests

−− Subscale component-level tests
−− Full-scale component-level tests

As we know, the basic building block in the design of a composite product is a 
lamina. Placing a number of laminae in a desired sequence, we get a laminate, which 
is the primary form of any composite product. However, a composite product is not 
manufactured by using readily available laminae; rather it is made by using readily 
available fibers and resin. Thus, in a complete testing program for a composite prod-
uct, the starting point is testing of the constituents, viz. fibers and resin. Statistically 
significant numbers of samples from each batch are tested for various mechanical and 
nonmechanical parameters in respect of both fibers and resin. Generally, tests at this 
level are simple but more focused. At the initial stage, these tests may be carried out for 
generating material specifications, whereas at the subsequent stages, often, these tests 
form a part of the quality control and quality assurance procedure.

Tests in the next level are on the mechanical and nonmechanical properties of 
the lamina. Data from these tests are commonly used as inputs to the analytical and 
numerical tools in design calculations for configuring sizes, shapes, and ply sequence 
of various design elements and their performance prediction.

The common design philosophy is to use the lamina properties, obtained from the 
lamina-level tests, as the primary design input data and carry out design calculations 
by adopting a macromechanics-based approach. An alternate design philosophy is also 
in vogue, in which, laminate properties are directly used as a primary design input. 
In such a case, laminate-level test coupons with plies resembling the component ply 
sequence are tested for various mechanical and nonmechanical parameters. In addition 
to this, laminate-level test data are also used as a check for reliability of the mathemati-
cal models used in the design calculations.
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The laminates in a composite product may have holes, cutouts, bonded interfaces, 
and other forms of discontinuities. Tests conducted for the generation of data for the 
design of such structural elements or quality control in such areas can be put in this level 
of testing. While standard coupons are available in some cases such as lamina/laminate 
tensile strength with a hole, interface adhesive strength, etc., specially designed sub-
scale test components are also devised for testing in some cases.

Component-level tests are case-specific tests that are conducted for the determina-
tion of the general failure behavior of the product. In the subscale component testing, 
either the whole product made to a subscale or a selected critical portion is tested. 
Often, the critical portion selected is a major joint in the product. On the other hand, 
in the full-scale testing, individual component, subcomponent, or the final product is 
tested under simulated test condition. In general, limited numbers of full-scale tests are 
carried out for determining the actual available margin that accounts for both design 
and manufacturing uncertainties. Full-scale tests may be conducted at a lower level of 
critical load case on each product as an acceptance procedure. Full-scale tests are time 
and cost intensive, and the scope and extent of such tests are dependent on the type of 
the product and they are often organization specific.

Tests conducted at different levels in the PMC industry are enumerated in Table 11.1.

11.2.3  Test Standards

Standard test methods are available for most of the mechanical and nonmechanical 
parameters of fibers, resin, prepregs, laminae, and laminates. Typically, a standard cov-
ers the following aspects of a test:

◾◾ Scope of the test
◾◾ Test specimen and sampling

TABLE 11.1
Tests in Polymer Matrix Composites

Main Class of Tests
Subclass of 

Tests
Mechanical or 

Nonmechanical Purpose Example

Tests for 
constituent-level 
properties

Tests on 
reinforcement

Both Quality assurance Tests for density, 
breaking 
strength, etc.

Tests on matrix Both Quality assurance Tests for viscosity, 
tensile strength, etc.

Tests for lamina/
laminate-level 
properties

– Both Design data 
generation, 
quality 
assurance

Tests for fiber 
volume fraction, 
tensile 
properties, etc.

Tests for element-
level properties

– Mechanical Design data 
generation

Tests for joint 
strength, 
discontinuities, etc.

Tests at component 
level

Subscale Mechanical Design data 
generation

Nonstandard 
structural 
elements, subscale 
pressure vessel 
test, subscale wing 
box test, etc.

Full-scale Mechanical/
functional

Acceptance and 
qualification

Pressure vessel test, 
aircraft fatigue 
test, etc.
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◾◾ Apparatus, equipment, and machinery
◾◾ Physical principle
◾◾ Test procedure
◾◾ Calculation and reporting of results

The primary utility of standards is the efficiency and reliability achieved by using 
them in a test program. Standards are prepared and constantly modified with time. 
Specifications and standards are an essential part in a composite product development 
program, in general and testing, in particular. A number of organizations are avail-
able worldwide, working for the preparation and improvement of standards. Some of 
the common standards in the field of composites are listed below (see, for instance, 
References 2 and 3 for more information on standards and specifications).

◾◾ American Society for Mechanical Engineers (ASME)
◾◾ ASTM International, formerly known as American Society for Testing and 

Materials (ASTM)
◾◾ British Standards from BSI Group (BS)
◾◾ German Institute for Standardization (DIN)
◾◾ Indian Standards Institute (ISI)
◾◾ International Organisation for Standardization (ISO)
◾◾ SAE International, formerly known as Society of Automotive Engineers (SAE)
◾◾ United States Defence Standard (MIL)

In this introductory discussion, we had a brief look at three broad aspects of compos-
ites testing—test objectives, building block approach, and test standards. The concepts 
of various mechanical and nonmechanical tests are discussed in the remaining sections 
in this chapter. However, it should be kept in mind that there are other topics of general 
importance. For example, laminate and specimen preparation, test article preparation, 
statistical variability, data acquisition and data interpretation, etc. can play a significant 
role in the success of a test program [10,11].

11.3  TESTS ON REINFORCEMENT
Reinforcements are used in different physical forms—filament, yarn, fabric, mat, etc. 
The characterization of reinforcements is required primarily from quality assurance 
and R&D points of view and rarely for the generation of design data. Various mechani-
cal and nonmechanical parameters of reinforcements are tested and the results are 
compared with specified values for acceptance or otherwise.

11.3.1  Nonmechanical Tests on Reinforcement

The test methods for the following nonmechanical parameters of reinforcements are 
discussed in this section:

◾◾ Density
◾◾ Moisture content
◾◾ Filament diameter
◾◾ Tex
◾◾ Fabric construction
◾◾ Areal density of fabric

Table 11.2 gives a summary of the test methods for these nonmechanical parameters.
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11.3.1.1  Density of Fiber

The density of high-modulus continuous as well as discontinuous fibers can be deter-
mined as per ASTM D3800, by using either the buoyancy method (based on Archimedes 
principle) or the sink–float method [12].

In the buoyancy method, the test specimen is a suitable size sample of cut fibers of 
minimum 0.5 g. The sample is weighed in air and then in a liquid with lower density. 
The difference in weights in air and the liquid is the buoyancy force, that is, the weight 
of the displaced liquid. From the knowledge of the weight of the displaced liquid, its 
mass can be obtained and this mass divided by the density of the liquid gives the 
volume of the displaced liquid. The volume of the sample is the same as that of the dis-
placed liquid. Then, the density of the fiber is obtained by dividing the mass of the fiber 
sample by its volume. Thus,

	
ρ

ρf
l

W

W W
=

−
1

1 2( )/ 	
(11.1)

where
W1	 Weight of the fiber sample in air (g)
W2	 Weight of the fiber sample in the test liquid (g)
ρf	 Density of fiber (g/cm3)
ρl	 Density of test liquid (g/cm3)

In the sink–float method, the test specimen is a cut fiber of approximately 50 mm 
in length with a loose overhand knot. The sample is allowed to sink in a mixture of 
two miscible liquids, where one of the liquids is lighter than the fiber and the other 
heavier. The liquids should be such that the sample gets thoroughly wetted by the liquid 
mixture. The heavier liquid is then added in increments, and after each addition, the 
contents are gently mixed without disturbing the sample. The process is continued till 
the sample is suspended at an intermediate point. Lighter liquid is also added, if neces-
sary, for achieving the equilibrium point. At such an equilibrium point, the density of 
the sample is equal to the density of the liquid mix. A hydrometer is used to obtain the 
density of the liquid mix, which, in turn, gives the density of the fiber.

TABLE 11.2
Standard Test Methods for Nonmechanical Parameters of Reinforcements

Parameter Description Principle of Testing
Applicable ASTM 

Standard

Density Mass per unit volume Method of displacement ASTM D792
Archimedes principle ASTM D3800
Density-gradient column ASTM D1505

Moisture content Mass of moisture per 
unit mass of 
reinforcement

Moisture removal by oven 
drying and weighing

ASTM D123

Filament diameter Diameter of individual 
filament

Planimetering, indirect 
method based on density 
and linear density

ASTM D3379

Tex Mass per unit length Direct measurement and 
vibroscope procedure

ASTM D1577

Fabric construction Filament count and 
weave

Direct counting ASTM D3775 (filament 
count)

Fabric areal density Mass per unit area Direct measurement ASTM D3776
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11.3.1.2  Moisture Content

Typically, a test method for the determination of moisture content of rovings, yarns, or 
fabrics uses a sample, which is a small piece of fabric or a small roll of roving weigh-
ing approximately 2 g. The procedure involves drying and weighing a glass weighing 
bottle. The sample is placed in the glass weighing bottle, weighed at room temperature, 
and then heated at 105–110°C for moisture removal. The sample with the container 
is then weighed again and moisture content of the sample is calculated using the two 
weights as follows:

	
M C. . =

−
−
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
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(11.2)

where
W1		  Weight of the empty glass weighing bottle (g)
W2		  Weight of the glass weighing bottle with the sample before moisture removal (g)
W3		  Weight of the glass weighing bottle with the sample after oven drying (g)
M.C.		 Moisture content (%)

11.3.1.3  Filament Diameter

The diameter of an individual filament can be determined by direct planimeter mea-
surement of the filament area of cross section on a photomicrograph using a magni-
fication factor of 2000–3000. An alternate indirect method gives the filament area of 
cross section as the ratio of tex (in g/km) to density (in g/mm2), with proper care for 
the conversion of units, of the fiber. The linear density and density of fibers are deter-
mined from a bundle of fibers; thus, the indirect method gives only an average filament 
diameter.

EXAMPLE 11.1

Determine the filament diameter for carbon fiber tows with the following given 
parameters:

Density of fiber: 1.78 g/cm3, tex: 800, and number of filaments per tow: 12 k.

Solution

The average cross-sectional area of a filament is obtained as

	
Af =

×
×

=
−

−

800 10 12000

1 78 10

6

6
2/

mm0.0375
. 	

Then, the average filament diameter is given by

	
d f =

×
=

0 0375 4
0 218

.
.

π
mm

	

11.3.1.4  Tex

Tex is a commonly used unit for linear density, that is, mass per unit length, of either 
an individual filament or a bundle in the form of strand, yarn, etc. It stands for mass per 
1000 m. Two methods are prescribed by ASTM D1577—first, by direct measurement 
of mass of known length of an individual fiber or a bundle of fibers and second, by the 
vibroscope procedure [13].
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In the direct method, tex is readily obtained by dividing the mass (in mg) by the 
length (in mm) and multiplying the ratio by 1000. This method is not suitable for indi-
vidual filaments of lengths less than 30 mm.

In the other method, a vibroscope is used for finding the fundamental resonant fre-
quency of an individual fiber. From the fundamental resonant frequency of transverse 
vibration, under known conditions of length of the individual fiber and applied tension, 
the linear density can be calculated. This method is suitable, especially for staple fibers 
with low linear density.

11.3.1.5  Fabric Construction

Two primary parameters that define fabric construction are the filament count and 
weave of fabric. These parameters are crucial in the sense that fabric characteristics 
such as handleability, drapeability, stability, resultant fabric/ply thickness, transition of 
fiber properties to fabric properties, etc. are directly influenced by fabric construction. 
ASTM D3775 gives a standard procedure for the measurement of the filament count 
of fabrics; it involves the direct counting of filaments under appropriate magnifica-
tion [14]. The common weave styles are plain weave, satin weave, twill weave, basket 
weave, etc.; there are several subtypes such as 4H satin, 8H satin, 2 × 2 twill, 2 × 1 
twill, etc. A discussion on weave styles is given in Chapter 9.

11.3.1.6  Areal Density of Fabric

Fabric areal density or mass per unit area can be obtained from the tests prescribed 
by ASTM D3776 [15]. The procedure involves direct measurement of the mass of the 
specimen of specified dimensions. Areal density is readily obtained by dividing the net 
mass of the fabric by the product of the length and width of the specimen.

11.3.2  Mechanical Tests on Reinforcement

The test methods for the following mechanical parameters of reinforcements are 
discussed:

◾◾ Tensile strength and modulus of a single filament
◾◾ Tensile strength and modulus of a tow
◾◾ Breaking strength of fabric

Table 11.3 gives a summary of the test methods for these mechanical parameters.

11.3.2.1  Tensile Properties by Single-Filament Tensile Testing

Tensile strength and modulus of fibers can be obtained by adopting the single-filament 
tensile testing method as per ASTM D3379 [16]. The test specimen is a single filament of 
sufficient length, which is separated with utmost care from a dry strand. The filament is 
mounted on a slotted cardboard tab as shown in Figure 11.1. The tabbed specimen is 

TABLE 11.3
Standard Test Methods for Mechanical Parameters of Reinforcements

Sl. No. Parameter Principle of Testing Applicable ASTM Standard(s)

1 Tensile strength and modulus of a single 
filament

Loading till failure ASTM D3379

2 Tensile strength and modulus of a 
bundle of filaments

Loading till failure ASTM D4018

3 Breaking strength of a fabric Loading till failure ASTM D7018/D5034/D5035
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loaded in a tensile testing machine and gripped inside the jaws. The cardboard tab is 
then burnt away very carefully in the midregion on both sides and the unsupported 
specimen is pulled at constant cross-head speed till failure. The applied load and 
corresponding elongation are continuously recorded. A large number of specimens are 
tested so that statistically meaningful results can be obtained.

Tensile strength can be readily obtained by dividing the failure load by the average 
filament cross-sectional area, that is,

	
T

F

A
f =

	
(11.3)

where
Tf	 Tensile strength of fiber (N/mm2)
F	 Failure load (N)
A	 Average filament area of cross section (mm2)

The prescribed technique for the determination of filament area of cross section as 
per ASTM D3379 is by planimetering the cross section on a photomicrograph using a 
magnification factor of 2000–3000. An alternate technique for area calculation is an 
indirect one, in which the area is obtained by dividing the linear density (in g/mm) by 
density (in g/mm2) of the fiber.

Tensile modulus is determined from the load-elongation data. A large number of 
specimens with different gauge lengths are tested, apparent compliance (elongation 
per unit load) is calculated, and gauge length–compliance curve, which is typically 
linear, is plotted. The intercept of the curve, that is, compliance at zero gauge length 
is the system compliance. The elongation in the specimen is obtained from the cross-
head movement, and thus, system compliance has to be subtracted from the apparent 
compliance to determine the true compliance. Finally, modulus is obtained by dividing 

Overall
length

Gauge
length

Grip

Wax

Specimen

Burnt or cut-away
portion of the tab

FIGURE 11.1  Single-filament tensile testing. (Adapted from ASTM D3379-75, Standard Test 
Method for Tensile Strength and Young’s Modulus for High-Modulus Single-Filament Materials, ASTM 
International, 1989.)
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the specimen gauge length (in mm) by the product of true compliance (in mm/N) and 
filament cross-sectional area (in mm2), as follows:

	
E

L

CA
f =

	
(11.4)

where
Ef	 Tensile modulus of fiber (N/mm2)
L	 Gauge length of the specimen (mm)
C	 True compliance (mm/N)
A	 Average filament area of cross section (mm2)

11.3.2.2  Tensile Properties by Tow Tensile Testing

The job of selecting individual filament and mounting it on the tabs is a difficult 
one and as a result, this method is not very accurate, especially for the determina-
tion of modulus. Alternatively, tensile strength and modulus of fibers can also be 
obtained by adopting the tow tensile testing method prescribed by ASTM D4018 
[17]. In this method, in addition to the tensile strength and modulus, density and 
linear density or mass per unit length of fibers are also obtained as secondary out-
put. The tensile test specimen is a bundle of fibers, impregnated with a suitable 
resin and consolidated. The resin should be compatible with the fiber and any size 
on it. Impregnation of the fibers with resin followed by consolidation imparts easy 
handleability to the specimens and allows the individual filaments in the specimen 
to be loaded uniformly.

Tabs may or may not be used in the specimens. Tabbed specimens have a gauge 
length of 150 mm between tabs, whereas untabbed specimens have sufficient length so 
that a gauge length of 150 mm is available between grips.

The tensile test involves pulling the specimen of resin impregnated and consolidated 
fibers in a calibrated tensile testing machine till failure. For finding the fiber modulus, 
a calibrated extensiometer is attached to the specimen.

The tensile strength and modulus of the fiber are calculated as follows:
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where
σ1 f
T

ult
( ) 	 Longitudinal tensile strength of fiber (MPa)
ρf		  Density of fiber (g/cm3)
ρ f

l( )		  Linear density of fiber (g/m)
P		  Maximum tensile load (N)
E		  Longitudinal Young’s modulus of fiber (GPa)
Pu		  Tensile load at upper strain limit (N)
Pl		  Tensile load at lower strain limit (N)
εu		  Upper strain limit
εl		  Lower strain limit
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11.3.2.3  Breaking Strength of Fabric

The breaking strength of a fabric is the tensile failure load per unit width, specified as N 
per 25 mm. ASTM D5035 gives a strip method for testing breaking strength and elon-
gation of fabrics using specimens of widths 25 mm and 50 mm and minimum length 
150 mm [18]. Specimens are usually cut along warp and fill directions, as required. The 
breaking strength is readily calculated from the load at failure.

ASTM D5034 gives an alternate method for fabric breaking strength and elongation 
by the grab test [19]. In this case, the specimen is a fabric piece of width 100 mm and 
length 200–250 mm. In the specimen, two side slits are provided midway between the 
two ends except the central 25 mm (Figure 11.2).

11.4  TESTS ON MATRIX

11.4.1  Nonmechanical Tests on Matrix

The density of cast resin and the viscosity of liquid resin are two basic nonmechanical 
parameters of matrix materials that are highly useful in the design and processing of 
PMCs. Glass transition temperature (Tg) is another critical parameter, which influences 
in-process thermal cycles and service temperature. In addition to these, other param-
eters such as volatile content, etc. are of great significance in specific resin systems. In 
the following sections, we discuss the test methods for density, viscosity, and Tg.

11.4.1.1  Density

Density and specific gravity or relative density of cast resin can be determined either by 
the liquid displacement method (ASTM D792) or the density-gradient method (ASTM 
D1505) [20,21].

In the liquid displacement method, the test specimen is a solid piece of cast resin 
with smoothened edges. Its weight should normally be not more than 50 g and volume 
not less than 1 cm3. The method, like the buoyancy method for the density measure-
ment of fibers, is based on Archimedes principle. The sample is weighed in air and its 
mass in air is recorded. Then the sample is weighed in water. A sinker, if required, and 
a fine wire for hanging the sample are also used. The weights of the partially immersed 
wire and fully immersed sinker, when used, are suitably adjusted in the calculation 
process. The difference in weights in air and water is the weight of the displaced water. 
The density of water being known (≈ 1 g/cm3), the volume of the displaced water, 
which is equal to the volume of the sample, is readily calculated. Thus,

	
ρm

W
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=
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(11.7)

Mark for alignment of jaw
Slit

100 mm 25 mm

250 mm

FIGURE 11.2  Schematic representation of grab test specimen. (Adapted from ASTM Standard 
D5034-09, Standard Test Method for Breaking Strength and Elongation of Textile Fabrics (Grab Test), 
ASTM International, 2013.)
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where
W1	 Weight of the cast resin sample in air (g)
W2	 Weight of the cast resin sample fully immersed in water (g)
ρm	 Density of cast resin (g/cm3)

EXAMPLE 11.2

In a density determination test for cast epoxy resin, the following data are recorded:

Weight of the cast resin sample in air: 30 g
Weight of the sample with a sinker fully immersed and wire partially 

immersed in water: 75 g
Weight of the sinker fully immersed and wire partially immersed in water: 70.2 g

Solution

The weight of the sample in water is given by

	 W2 75 70 2 4 8= − =. . g 	

The density of the cast resin sample is obtained as

	
ρm =

−
=

30
30 4 8

1 19 3

.
. g/cm

	

In the density-gradient method, the specimen is cut from the cast resin to a conve-
nient shape and size, taking care to ensure that the center of volume of the cut piece 
is clearly identifiable. A density-gradient column containing a solution with linearly 
varying density from bottom to top is used. The solution is made by mixing two suit-
able liquids and maintained at a precise temperature. (A list of suitable liquids is given 
by ASTM D1505.) A standard glass float of known density is gently dropped and its 
equilibrium position w.r.t. an arbitrary reference plane is recorded. The glass float is 
removed without disturbing the density gradient and equilibrium positions of another 
standard glass float with different density and the specimen are recorded in turn. The 
density of the specimen is then determined by linear interpolation, as follows:
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where
ρm, ρ1, ρ2	� Densities of the cast resin sample and the two standard glass floats, 

respectively (g/cm3)
zm, z1, z2	� Distances, w.r.t. an arbitrary datum, of the cast resin sample and the two 

standard glass floats, respectively (mm)

11.4.1.2  Viscosity

The viscosity of a liquid resin has direct influence on proper impregnation of reinforce-
ment during manufacturing. It is a critical manufacturing parameter that is regularly 
evaluated as a part of acceptance and quality control process. Several types of viscosity 
measurement instruments are available. Of these three notable ones are rotational-type 
viscometers, U-tube viscometers, and flow-cup viscometers.

Classical Brookfield viscometers are of the rotational type and they are commonly 
used in the composites laboratory and shop floor. ASTM D2393 gives a standard 
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method of viscosity measurement of resins [22]. It is based on the principle that 
the torque required to turn an object in a viscous fluid indicates the viscosity of the 
fluid. Typically, a spindle is dipped in the fluid and torque is applied on to the spin-
dle through a calibrated spring. The viscosity of the fluid is indicated by the spring 
deflection.

Ostwald’s U-tube viscometer is based on capillary principle. It consists of a U-shaped 
glass tube with two vertical arms with precise dimensions and features. The fluid is 
sucked through one arm and then allowed to flow down. The other arm has two marks 
at two levels and the time taken by the fluid to pass through the two marks indicates 
the viscosity of the fluid.

The flow-cup viscometer consists of a cup with an orifice. The fluid is allowed to 
flow through the orifice and the time taken by a known volume of the fluid indicates its 
kinematic viscosity.

11.4.1.3  Glass Transition Temperature

When a cured polymer matrix is heated and the temperature is gradually increased, at a 
certain temperature, the state of the material changes from glassy to rubbery. (A glassy 
state is one in which the individual molecular segments have only vibrational motion 
without any relative motion, whereas in a rubbery state, the individual molecular seg-
ments can move relative to each other.) This change in state is called glass transition 
and the temperature at which it occurs is called the glass transition temperature, Tg. 
The modulus of the matrix reduces drastically by several orders as the temperature is 
increased beyond this level. It is also associated with change in heat capacity and CTE. 
The significance of the glass transition temperature is that it indicates the maximum 
service temperature for the resin matrix.

Tg depends on the molecular structure of the material and it is influenced by the cure 
temperature. Tg of a resin matrix cured at high temperature is higher than that of the 
same material cured at a low temperature.

There are several methods available for the determination of Tg of a matrix material:

◾◾ Differential scanning calorimetry (DSC)
◾◾ Thermomechanical analysis (TMA)
◾◾ Dynamic mechanical analysis (DMA)

In the following paragraphs, we briefly discuss the DSC method.

11.4.1.3.1  Tg by Differential Scanning Calorimetry

The heat capacity of a cast resin matrix changes during glass transition and the glass 
transition temperature can be obtained from the heat flow versus temperature curve. 
Tg is associated with a shift in the curve, which may be pronounced in some cases and 
mild in others. A DSC method for the determination of Tg of a material is given by 
ASTM E1356 [23,24]. A specimen of suitable mass, generally between 5 and 20 g, and 
a comparable quantity of a reference material of similar heat capacity are heated in 
the test chamber at 10°C/min. Often, an empty pan is taken as the reference. The test 
chamber is capable of providing uniform controlled heating or cooling of the specimen 
and the reference either to a constant temperature or to a constant rate. It is provided 
with temperature sensors to indicate specimen and reference temperatures and dif-
ferential sensors to indicate heat flow difference between the specimen and reference. 
Initially, the differential heat flow w.r.t. temperature remains constant. Heat capacity 
(i.e., the quantity of heat required to increase the temperature by 1°C) of a polymer is 
higher above its glass transition, and as a result, the heat flow increases across the glass 
transition region. Heat flow versus temperature curve is plotted and key temperatures 
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are identified; typically, Tg is assigned to the midtemperature between the extrapolated 
onset of shift and extrapolated end of shift (Figure 11.3).

Note: Glass transition takes place over a temperature zone, and glass transition tem-
perature, which lies in this temperature zone, depends on not only the material but also 
the method adopted and the test environment. Thus, in a strict sense, the test methods 
discussed above actually assign Tg to the material, and while reporting Tg, it is neces-
sary to mention the method used in the test.

11.4.2  Mechanical Tests on Matrix

The matrix plays a supporting role to the reinforcements in giving resultant mechanical 
characteristics such as strength and stiffness to a PMC material. Generally, the mechani-
cal properties of the matrix material by themselves are not of much significance in the 
structural design of a composite part; however, these properties are necessary for specifi-
cation and quality control purposes. Commonly tested mechanical properties of cast res-
ins are tensile, compressive, and shear properties. In addition, other characteristics such as 
hardness, impact resistance, etc. may also be required in specific cases. Here, we briefly 
discuss the determination of tensile, compressive, and shear properties of cast resins.

11.4.2.1  Tensile Properties

The commonly used test specimen for the determination of tensile properties of neat 
cast resin is a dog-bone-shaped flat piece of material. ASTM D638 recommends a 
number of specimen types, of which, the most commonly used specimen is 165 mm 
in overall length, 19 mm in overall width, and 3.2 mm in thickness [25]. The gauge 
section length and width are 50 and 13 mm, respectively. The test specimen is loaded 
in tension by grabbing it in the grips of the testing machine. Test is carried out at con-
stant cross-head movement and tensile strength is calculated by dividing the maximum 
force by the average original cross-sectional area of the specimen in the gauge section. 
Extensometers are used and force–extension curves are automatically and continuously 
recorded. The initial straight portion of the curve is extended and modulus is calculated 
by dividing the difference in stresses corresponding to any two points on the line by the 
difference in strains corresponding to the same points.

11.4.2.2  Compressive Properties

ASTM D695 gives a standard test method for the evaluation of compressive proper-
ties of neat cast resin [26]. The commonly used specimen is a short cylinder or prism, 
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FIGURE 11.3  Schematic representation of a typical heat flow versus temperature curve obtained 
from a DSC run. (Adapted from ASTM Standard E1356-08, Standard Test Method for Assignment of 
the Glass Transition Temperatures by Differential Scanning Calorimetry, ASTM International, 2014.)
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typical sizes being 12.7 mm (diameter) × 25 mm (height) for a cylinder and 12.7 mm 
(side) × 12.7 mm (side) × 25 mm (height) for a prism. A compression tool, consisting 
of two hardened, ground and flat plates, is used for holding the test specimen. Care must 
be taken to ensure that the end faces of the specimen are parallel to the faces of the 
compression tool plates. Further, the axis of the compression tool must be aligned with 
the center line of the plunger of the testing machine. The specimen is tested by apply-
ing compressive force under constant cross-head rate of 1.3 mm/min till the yield point 
is reached. After the yield point, the cross-head speed is increased to 5–6 mm/min 
and loading is continued till failure. The compressive strength is calculated by divid-
ing the maximum compressive force by the original minimum cross-sectional area of 
the specimen. When stress–strain data are required, a compressometer is attached to 
the specimen for recording and plotting a force–displacement curve. The modulus of 
elasticity is calculated from a tangent drawn to the initial linear portion of this curve.

11.4.2.3  Shear Properties

The shear properties of cast resins can be determined either by the V-notched beam 
method or the torsion cylinder method. The V-notched beam (ASTM D5379) is typi-
cally used for the evaluation of shear properties at the lamina/laminate level [27]; it is 
discussed in detail subsequently. ASTM E143 describes a method for the determination 
of the shear modulus of structural materials using either a solid cylinder or a hollow 
tube [28]. For cast resin materials, a solid cylinder usually in the dog-bone shape is 
molded and the specimen is loaded under external torque that causes uniform twist in 
the specimen. A T−δ curve is plotted, where deviation δ is given by
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where
L	 Gauge length (mm)
T	 Applied torque (N-mm)
θ	 Angle of twist per unit length (radians/mm)
K	 A constant chosen so that the term inside the brackets in Equation 11.9 is a con-

stant within the proportionality limit

Then, shear modulus is calculated as follows:
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where
ΔT	 Increment in applied torque (N-mm)
Δθ	 Increment in angle of twist per unit length (radians/mm)

11.5  TESTS FOR LAMINA/LAMINATE PROPERTIES
A laminate, which is the basic structural element in a laminated composite product, is 
designed as a stack of a number of laminae at different orientations. The mechanical 
properties of lamina such as longitudinal tensile strength and modulus, transverse ten-
sile strength and modulus, etc. directly go into the design calculations. These mechan-
ical properties are dependent on specific nonmechanical properties of the laminae. 
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Thus, laminae mechanical as well as nonmechanical parameters are essential inputs in 
the design and analysis of a composite product.

11.5.1  Nonmechanical Tests on Laminae

There are a number of nonmechanical, that is, chemical and physical, properties that 
characterize a composite material [29]. Table 11.4 gives a summary of these properties 
together with their very brief testing details. Here, we discuss the test methods for the 
following nonmechanical parameters of cured composites:

◾◾ Density
◾◾ Constituent content—fiber volume fraction and resin content
◾◾ Void content
◾◾ Glass transition temperature

11.5.1.1  Density of Composites

The principles and methodology of density measurement for a cured composite mate-
rial are similar to those for cast resin (refer Section 11.4.1.1). The common methods are 
the liquid displacement method given in ASTM D792 and the density-gradient method 
given in ASTM D1505 [20,21].

11.5.1.2  Constituent Content

The fiber content, resin content, and void content of a composite material can be deter-
mined by a process of matrix removal given in ASTM D3171 [30,31]. Depending on 
the reinforcements, matrix removal can be done by either the matrix burning method 
or the matrix digestion method. The matrix burning method involves burning off the 
matrix material at high temperatures. At these temperatures, carbon and aramid fibers 
get oxidized, whereas glass fibers remain stable. Thus, the matrix burning method is 
suitable for glass fiber composites, but not for carbon and aramid fiber composites. 
On the other hand, in the acids used in the matrix digestion method, glass fibers get 
dissolved, whereas carbon and aramid fibers are largely inert to these acids. Thus, the 
matrix digestion method is used for carbon and aramid fiber composites, but not for 
glass fiber composites.

The specimen is a properly cut piece of suitable size; it should be representative 
of the material being tested. For the determination of volume fractions, the density is 
required and the same specimen is first used for density measurement.

TABLE 11.4
Standard Test Methods for Nonmechanical Parameters of Composites

Sl. No. Parameter Principle of Testing
Applicable ASTM 

Standard(s)

1 Density Method of displacement ASTM D792
Archimedes principle ASTM D3800
Density-gradient column ASTM D1505

2 Constituent content—fiber volume 
fraction and resin content

Matrix removal by matrix digestion 
and matrix burning

ASTM D3171

3 Void content Theoretical calculation involving 
experimental and theoretical 
densities

ASTM D2734

4 Glass transition temperature Differential scanning calorimetry ASTM E1356
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In the matrix burning method, the specimen is dried in an air-circulating oven, and 
then placed in a desiccated preweighed crucible and weighed. The specimen is then 
heated to approximately 565°C by keeping the crucible with the specimen in a pre-
heated electric muffle furnace. At this temperature, the matrix gets burnt off, while 
the glass fibers remain unaffected. The crucible with the specimen is then placed in a 
desiccator and cooled to room temperature and weighed.

In the matrix digestion method, a suitable acid is used for dissolving the matrix. 
Various acids/solutions used are as follows:

◾◾ Nitric acid
◾◾ Sulfuric acid/hydrogen peroxide
◾◾ Ethylene glycol/potassium hydroxide
◾◾ Sodium hydroxide
◾◾ Hydrochloric acid

The specimen is placed in a beaker containing an acid as indicated above and heated 
till the matrix gets digested fully. Care has to be taken to ensure that overdigestion and 
fiber loss do not occur. The contents are then cooled, filtered using a preweighed glass 
filter, dried, and weighed.

Both the methods work on the common processing step of removal of matrix from 
the composite material sample and the constituent contents are calculated as follows:
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Matrix mass fraction
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Matrix volume fraction
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Void volume fraction
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where
M1	 Mass of the empty crucible/filter (g)
M2	 Mass of the crucible/filter with the specimen before matrix removal (g)
M3	 Mass of the crucible/filter with the specimen after matrix removal (g)
ρf		  Density of fiber (g/cm3)
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ρm		 Density of matrix (g/cm3)
ρc	 Density of composite (g/cm3)

11.5.1.3  Void Content

The void content of a composite material can be determined by using the method given 
by ASTM D2734 [32]. Owing to the presence of voids, the actual density of a com-
posite material can be expected to be less than the theoretical density. We can obtain 
a relation between the theoretical and measured composite densities and void volume 
fraction by considering an idealized composite element as shown in Figure 11.4.

By definition, the theoretical and measured densities of composites are given as 
follows:

Theoretical composite density

	
ρct c

c v

M

v v
=

− 	
(11.16)

Measured composite density
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The difference between the reciprocals of the two forms of composite density gives us
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Noting that Mc = vcρcm, it is readily found that void volume fraction is given by
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where
ρct	 Theoretical density of the composite material (g/cm3)
ρcm	 Actual measured density of the composite material (g/cm3)

The theoretical density of the composite material is calculated by using the densities 
of the fiber and matrix and their mass fractions, as follows:
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FIGURE 11.4  Idealized composite element.
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or

	 ρ ρ ρct f f m mV V= + 	 (11.21)

11.5.1.4  Glass Transition Temperature

The principles and methodology of Tg measurement for a cured composite material are 
similar to those for cast resin (refer Section 11.4.1.3).

11.5.2  Tests for Mechanical Properties of a Lamina

Lamina mechanical properties are critical parameters for the design and analysis of a 
composite product. These parameters can be grouped as follows:

◾◾ Tensile properties
◾◾ Compressive properties
◾◾ Shear properties
◾◾ Flexural properties

Out of the four groups mentioned above, the first three are fundamental in nature, 
whereas the fourth is a mixture of the first three. Table 11.5 summarizes the common 
test methods for the evaluation of mechanical properties of a lamina [33].

TABLE 11.5
Standard Test Methods for Mechanical Parameters of a Lamina

Sl. No. Parameter Principle of Testing Common Standard(s)

1 Tensile properties
Tensile moduli
Tensile strengths
Ultimate tensile strains
Major Poisson’s ratio in 
tension in 1–2 plane

Tensile loading of test specimen till failure
Modulus is obtained from the slope of the 
stress–strain plot

Strength and ultimate strain are obtained 
from the stress and strain at failure

Poisson’s ratio is obtained as the ratio of 
axial and lateral strains

ASTM D3039, BS 
2782, ISO 527, and 
CRAG

2 Compressive properties
Compressive moduli
Compressive strengths
Ultimate compressive 
strains

Major Poisson’s ratio in 
compression in 1–2 
plane

Compressive loading of test specimen till 
failure

Modulus is obtained from the slope of the 
stress–strain plot

Strength and ultimate strain are obtained 
from the stress and strain at failure

Poisson’s ratio is obtained as the ratio of 
axial and lateral strains

ASTM D3410, D695, 
D6641, and D5467

3 Shear properties
In-plane shear modulus 
in the 1–2 plane

Interlaminar shear 
moduli In-plane shear 
strength in the 1–2 plane

Interlaminar shear 
strengths

Tensile, compressive, or bending loading 
of test specimen, in pure or 
predominantly shear stress, till failure

Moduli are obtained from the slope of the 
stress–strain plot

Strength and ultimate strain are obtained 
from the stress and strain at failure

ASTM D3518, 
D5379, D4255, and 
D2344

4 Flexural properties
Flexural modulus
Flexural strength

Bending loading of test specimen, in pure 
or predominantly bending stress, till 
failure

Moduli are obtained from the slope of the 
stress–strain plot

Strength is obtained from the stress at 
failure

ASTM D790 and 
D6272
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11.5.2.1  Tension Testing

The objective of tension testing is to determine (i) tensile modulus, (ii) tensile strength, 
(iii) ultimate tensile strain, and (iv) Poisson’s ratio [34]. These are primary mechanical 
properties that are required in the design of most structures. At the lamina level, tensile 
properties are evaluated commonly in the 0° and 90° directions for both unidirectional 
as well as bidirectional composites.

11.5.2.1.1  Test Specimen and Specimen Preparation

The basic concept of tension testing is to pull a suitable test specimen and deduce the 
required material parameters from the specimen geometry and loading data. It is nec-
essary to ensure that the specimen fails in the gauge section under uniaxial stress state, 
and to achieve this, a number of standard specimens have been proposed. For isotro-
pic materials and material with low orthotropy, dog-bone-shaped or dumb-bell-shaped 
specimens, that is, specimens with tapering width given by ASTM D 638, can be used 
[25]. Load application can be made with the help of a pin through a hole at either end 
of the specimen. In such a specimen, highly localized stresses may develop around the 
holes and shear, and bearing or tearing failure may occur (Figure 11.5). In the case of 
specimens with tapering width, the high orthotropy of unidirectional composites may 
result in shear failure of the specimen near the grips parallel to the fiber direction, 
effectively reducing the specimen to a straight-edged one. Thus, it is more common to 
use straight-edged specimens with some gripping arrangements at the two ends.

A number of standard specimens and test procedures are in vogue; they include, 
among others, ASTM D3039, BS2782, ISO 527, and CRAG. Of these, ASTM D 3039 
[35] is probably the most common and widely accepted. The standard specimen as per 
ASTM (Figure 11.6) is of simple rectangular configuration. Depending on the type of 
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45°−45°
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Glue line

FIGURE 11.6  Tension test specimen. (Adapted from ASTM Standard D3039/D3039M-08, Standard 
Test Method for Tensile Properties of Polymer Matrix Composite Materials, ASTM International, 2008.)

Longitudinal shear failure
Lateral splitting

Bearing failure

Longitudinal splitting

FIGURE 11.5  Dog-bone-shaped tensile test specimen with end holes and possible unwanted modes 
of failure.
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material, end tabs may or may not be provided. The recommended dimensions of the 
specimen are described in Table 11.6. Note that specimen dimensions vary depending 
on material types, laminate fabrication method used, etc. For example, the specimen 
thickness would depend on the actual thickness of individual plies.

During testing, load is introduced to the specimen by means of a shearing action 
between the grips and the specimen, wherein the normal gripping force times the fric-
tion coefficient at the specimen and grip surfaces is the tensile force on the specimen. 
End tabs are used for efficient load transfer from the clamping grips to the specimen. 
First, they protect the outer fibers of the specimen from the high direct clamping forces. 
Second, they provide higher friction surfaces and thereby reduce the clamping forces. 
[±45°], [0/90°], or bidirectional fabric–reinforced E-glass/epoxy composite is com-
monly used as the tab material. Owing to the abrupt change in thickness, a tabbed 
specimen is associated with high stress concentration around the tip of the tab and 
unwanted failure may occur at the tabbed portion. A bevel angle in the tab is recom-
mended by ASTM D3039 for unidirectional composites at 0°. Emery cloth may be used 
as tab for composites with fabric or mat reinforcements.

Typically, the laminate for a unidirectional composite specimen is prepared by fila-
ment winding around a flat-sided mandrel. The required laminate thickness can be 
directly achieved, and for proper control of thickness, flat metallic plates with spacers 
are used. Alternatively, unidirectional plies can be made by filament winding and the 
required numbers of plies are laid-up in a mold. For fabric and mat composites, too, 
commonly a mold is used for laying up the fabrics/mats and wetting.

Four continuous strips of tab material are bonded using suitable epoxy-based adhe-
sive to the laminate. Proper surface preparation before bonding is essential. Also, it is 
necessary to use a suitable jig for positive positioning of the tab strips on the laminate. 
Finally, the specimens are machined out from the laminate. Proper alignment of the 
fibers is extremely important for obtaining correct tensile properties. A misalignment 
of fibers by 1° w.r.t. specimen axis can result in the reduction of the tensile strength of 
a unidirectional composite by about 30%.

11.5.2.1.2  Test Procedure and Data Reduction

It is important, prior to mounting the specimen on the machine, to accurately measure 
the cross-sectional area of the specimen in the gauge length. Usually, three readings are 
taken and the average is used for subsequent calculation of stress. The specimen is then 
mounted on the testing machine by placing the two ends in the grips of the machine. 
Either an extensometer or a strain gauge is used for recording the specimen elongation 
or strain. A biaxial extensometer is mounted on the gauge section of the specimen 
for recording axial and lateral displacements. Alternatively, 0°/90° strain gauges are 

TABLE 11.6
Standard Tensile Test Specimen as Recommended by ASTM D3039

Type of Material Unidirectional (0°) Unidirectional (90°)
Balanced and 

Symmetric
Random and 

Discontinuous

Overall length, L (mm) 250 175 250 250
Width, W (mm) 15 25 25 25
Thickness, T (mm) 1.0 2.0 2.5 2.5
Tab length, l (mm) 56 25 a a

Tab thickness, t (mm) 1.5 1.5 a a

Tab bevel angle, θ (°) 7–90 90 a a

a	 Emery cloths are used as tabs.
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bonded back to back on the specimen for directly recording the strains. The back-
to-back bonding of two strain gauges helps in checking the presence of any bending 
in the specimen. When Poisson’s ratio is not intended to be determined, the uniaxial 
extensometer or longitudinal strain gauge is sufficient.

Utmost care must be taken to align the specimen axis in the loading direction. Grips 
are tightened and the specimen is loaded either at constant strain rate or at constant 
cross-head movement. The standard strain rate is 0.01/min and the standard cross-head 
movement is 2 mm/min. All the specimens are loaded till failure and a sufficient num-
ber of data points are recorded so as to obtain an adequate representation of the stress–
strain behavior of the material. The failure mode of each specimen must be studied 
carefully and noted; results with failure outside the gauge section should be rejected.

Tensile strength can be calculated from the ultimate load and the average cross-
sectional area, as follows:

	
X

P

A
T ult=

( )

	
(11.22)

where
XT		  Tensile strength of composite (MPa)
(P)ult		 Ultimate tensile load (N)
A		  Average cross-sectional area (mm2)

For calculation of the modulus, stress–strain curve is required. From each data 
point, stress is readily calculated by dividing the applied load by the average area of 
cross section, that is,

	
σ =

P

A 	
(11.23)

where
σ	 Axial tensile stress at any data point (MPa)
P	 Tensile load at any data point (N)
A	 Average cross-sectional area (mm2)

On the other hand, strain at each data point is calculated from the extensometer 
displacement as follows:

	
ε δ ε δ
a

a
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l

l

gL L
= =and

	
(11.24)

where
εa	 Axial tensile strain at any data point
εl	 Lateral tensile strain at the data point
δa	 Axial extensometer displacement at the data point (mm)
δl	 Lateral extensometer displacement at the data point (mm)
Lg	 Extensometer gauge length (mm)

When strain gauges are used, strains are obtained directly from the strain gauge 
readings. The schematic representation of a typical stress–strain curve is given in 
Figure 11.7. Unidirectional composites exhibit largely linear behavior. However, at the 
start of the test, a certain amount of nonlinearity is usually observed. This nonlin-
earity is a local aberration that can be attributed to phenomena such as slippage and 
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initial settlement of the specimen, machine backlash, etc. In the modulus calculation 
process, this starting nonlinear portion of the curve is not considered. Modulus can be 
calculated as either tangent modulus or secant/chord modulus. The tangent modulus 
is calculated as the slope of the tangent to the initial part of the curve. It can also be 
calculated as the slope of the tangent to the curve at a specified strain level. The secant 
or chord modulus is calculated as the slope of the secant or chord between two points 
on the curve, typically at strain values of 0.0005 and 0.0025. Thus,

	
E T a

a

( ) =
∆
∆

σ
ε 	

(11.25)

where
E(T)		  Tensile modulus (GPa)
Δσa		  Stress difference on the tangent (MPa)
Δεa		  Corresponding axial strain difference on the tangent

and the Poisson’s ratio is calculated as

	
ν ε

ε
( )T l

a

= −
∆
∆ 	

(11.26)

where
ν (T)		 Poisson’s ratio in tension
Δεl	� Lateral strain difference corresponding to the longitudinal strain difference 

used in modulus calculation
Δεa		 Axial strain difference

Note: In the discussion above, we used the terminologies axial and lateral to mean 
along the lengthwise axis of the specimen and across, respectively. The specimen is 
used for the evaluation of tensile properties in both the longitudinal and transverse 
directions. The term “longitudinal” is used to describe the fiber direction in unidirec-
tional composites and weft direction in fabrics. Similarly, the term “transverse” is used 
for across the fiber direction and warp direction.

11.5.2.1.3  NOL Ring Test

NOL ring is a simple specimen for the determination of unidirectional tensile strength. 
It is typically of diameter 150 mm, thickness 1.5 mm, and width 6–8 mm. The test fix-
ture consists of either two or four steel segments. The segments are assembled to form 
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FIGURE 11.7  Schematic representation of typical tensile stress–strain curve.
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a flat circular disk and the test specimen is placed around it. The segments are pulled 
in two opposite directions till the specimen breaks. This is a very simple and quick 
method, but the test process is generally associated with certain bending; the failure 
mode is not a true representation of tensile failure and it underestimates the strength of 
the material. Thus, these rings can be used for data comparison and in-process quality 
control purposes, but not for design data generation.

11.5.2.2  Compression Testing

The objective of compression testing is to determine (i) compressive modulus, 
(ii) compressive strength, (iii) ultimate compressive strain, and (iv) Poisson’s ratio in 
compression.

In a compression test, a gradually increasing compressive force is applied on the test 
specimen till it fails and the response of the specimen versus force is recorded. The 
force versus strain (or force versus displacement) data, ultimate force at failure, and 
specimen geometry are utilized to calculate the required compressive properties. In a 
composite material, the response to compressive force and the final failure mechanisms 
are rather complex, and for accurate estimate of the material properties, it is necessary 
that the specimen experiences uniform compression and it fails in an acceptable failure 
mode. To ensure this, suitable test specimen and test fixtures are essential.

11.5.2.2.1  Failure Modes

There are two broad failure modes that are associated with a material under compres-
sive loads—material failure and global buckling. The material failure of a composite 
material depends on the loading direction w.r.t. fiber direction (refer to Sections 3.5.2.2 
and 3.5.2.4 in Chapter 3). Under longitudinal compression, that is, when the force is 
parallel to the fiber direction, the following failure modes are possible:

◾◾ Fiber microbuckling in extension
◾◾ Fiber microbuckling in shear
◾◾ Transverse tensile failure of matrix and fiber/matrix interface
◾◾ Shear failure by fiber kinking

Under transverse compression, that is, when the force is perpendicular to the fibers, 
the possible failure modes are as follows:

◾◾ Compression failure of matrix
◾◾ Shear failure of matrix
◾◾ Fiber crushing
◾◾ Fiber-to-matrix interface failure

For fabric and mat composites under compression, the failure modes are combina-
tions of the above and more complex.

Failure modes in a test specimen due to longitudinal compression are axial splitting, 
shear failure, and kink zone failure. On the other hand, transverse compression can 
result in shear failure of the specimen along an inclined plane. These failure modes 
(Figure 11.8a–e) are generally accepted as true representation of compression failure 
of a composite material.

The other failure mode, viz. global buckling of the specimen (Figure 11.8f), is unac-
ceptable and it has to be avoided, for which adequate restraining of the specimen inside 
the test fixture is required. Another way to minimize the possibility of global buckling 
is to reduce the gauge length (unsupported length) of the specimen. Over-restraining 
and too short specimen gauge length should be avoided as the former may result in an 
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overestimate of the compressive properties and the latter may result in unwanted pre-
mature failure due to high stress concentration.

11.5.2.2.2  Test Specimen and Test Fixture

As shown in Figure 11.9, there are three mechanisms by which compressive force is 
applied on an axial compression test specimen [36]:

◾◾ By shear loading
◾◾ By direct loading at the end
◾◾ By a combination of shear and direct loading

ASTM D3410, D695, and D6641 present three methods that utilize, respectively, the 
above force introduction mechanisms [26,37,38]. In addition to these, beam bending is 
also employed for load transfer in a sandwich beam compression test specimen. ASTM 
D5467 presents a compression test method by sandwich beam bending [39]. There are 
several other compression test methods that have been proposed by various standard 
organizations and research institutes. Of these, the method suggested by ASTM D3410, 
probably, is the most popular; given below is a brief description of this method.

The standard specimen as per ASTM D3410 is a simple flat strip of constant rectan-
gular cross section with or without tabs (Figure 11.10). The underlying idea in deciding 
on the specimen width, thickness, and gauge length is to prevent Euler buckling in the 

(a) (c) (d)(b) (e) (f)

FIGURE 11.8  Typical failure modes in a compression test specimen. (a) Widthwise axial split-
ting. (b)  Thickness-wise axial splitting. (c) Widthwise shear failure. (d) Kinking zone formation.  
(e) Thickness-wise shear failure. (f) Global buckling.

(a) (c)(b)

FIGURE 11.9  Load transfer mechanisms in a compression test. (a) Shear loading. (b) End loading. 
(c) Combination of shear loading and end loading.
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specimen gauge length. Thus, these dimensions depend on the expected compressive 
strength and expected compressive modulus; more specifically, the lower the expected 
compressive strength and expected compressive modulus, the greater the required 
specimen thickness.

Another requirement in choosing the gauge length is to ensure stress decay for uni-
form uniaxial compression in the gauge section. In a shear-loaded compression speci-
men, the gauge length required to ensure uniform uniaxial compressive stress increases 
with increasing specimen thickness. The required gauge length also depends on the 
ratio of longitudinal modulus to shear modulus. Obviously, the choice of gauge length 
is a trade-off between buckling-free short length and uniform-compression long length. 
ASTM D3410 recommends, based on an assumption of pinned-end column buckling, 
the specimen dimensions as given in Table 11.7.
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FIGURE 11.10  Compression test specimen. (a) Specimen without tabs. (b) Specimen with tabs. 
(Adapted from ASTM standard D3410/D3410M-03 [37].)

TABLE 11.7
Standard Compression Test Specimen as Recommended by ASTM D3410

Type of Material Unidirectional (0°) Unidirectional (90°) Specially Orthotropic

Overall length, L (mm) 140–155 140–155 140–155
Gauge length, Lg (mm) 10–25 10–25 10–25
Width, W (mm) 10 25 25
Thickness, T (mm) 1.00–10.91 1.00–10.91 1.00–10.91
Tab length, l (mm) 65 65 65
Tab thickness, t (mm) 1.5 1.5 1.5

Note:	 The recommended specimen thickness is the minimum thickness that depends on the expected com-
pression strength, expected longitudinal modulus, and gauge length.
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The shear loading test fixture was originally developed by Illinois Institute of 
Technology Research Institute (IITRI). It is a little complex and bulky (Figure 11.11); 
however, it is quite versatile as it can accommodate a wide range of specimen dimen-
sions. It consists of an upper housing block and a lower housing block. Each of these 
blocks houses a pair of wedge grips, inside which the specimen is held. Alignment rods 
and ball bearings are used for aligning the two blocks so as to eliminate eccentric load-
ing of the specimen.

11.5.2.2.3  Test Procedure and Data Reduction

Each test specimen is inspected and critical specimen dimensions are recorded. Strain 
gauges are bonded on both the sides of the specimen in the gauge section. Next, the test 
fixture is cleaned and properly lubricated, and the specimen is aligned in the fixture. 
Finally, the test fixture is mounted on the testing machine, the test is initiated, and the 
load is gradually increased till the specimen fails. Care must be taken to accept only 
those results that correspond to acceptable specimen failure modes.

Compressive strength can be calculated from the ultimate force and the average 
cross-sectional area, as follows:

	
X

P

A
C ult=

( )

	
(11.27)

where
XC		  Compressive strength of composite (MPa)
(P)ult		 Ultimate compressive force (N)
A		  Average cross-sectional area (mm2)

Stress–strain curve is used for the calculation of the modulus. At each data point, 
stress is readily calculated by dividing the applied load by the average area of cross 
section, that is,

	
σ =

P

A 	
(11.28)

Upper housing block

Lower housing block

Wedge grips

Specimen

FIGURE 11.11  Simplified sectional schematic representation of shear loading compression test fix-
ture (IITRI compression test fixture adopted by ASTM D3410.)
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where
σ	 Axial compressive stress at any data point (MPa)
P	 Compressive force at any data point (N)
A	 Average cross-sectional area at the gauge section (mm2)

Axial and lateral strains are directly read from the two back-to-back strain gauges:

	
ε ε ε ε ε ε
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+

=
+1 2 1 2

2 2
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(11.29)

where
εa		  Average axial compressive strain at any data point
εa1, εa2	� Gauge 1 and gauge 2 axial compressive strains, respectively, at the same 

data point
εl		  Average lateral compressive strain at the data point
εl1, εl2	� Gauge 1 and gauge 2 lateral compressive strains, respectively, at the same 

data point

The schematic representation of a typical stress–strain curve is given in Figure 11.12. 
Compressive modulus can be calculated as either a tangent modulus or a secant/chord 
modulus. The tangent modulus is calculated as the slope of the tangent to the initial part 
of the curve. It can also be calculated as the slope of the tangent to the curve at a speci-
fied strain level. The secant or chord modulus is calculated as the slope of the secant or 
chord between two points on the curve. Thus,
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(11.30)

where
EC	 Compressive modulus (GPa)
Δσa	 Axial stress difference on the tangent (MPa)
Δεa	 Corresponding axial strain difference on the tangent

and the compressive Poisson’s ratio is calculated as
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(11.31)
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FIGURE 11.12  Schematic representation of a typical compressive stress–strain curve.
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where
ν (C)	 Compressive Poisson’s ratio
Δεl	 Lateral strain difference corresponding to the axial strain difference used in 

modulus calculation
Δεa	 Axial strain difference

Notes: Refer to the note at the end of Section 11.5.2.1 for a discussion on the usage of 
the terms axial, lateral, longitudinal, and transverse.

In this section, we provided a brief discussion on the IITRI compression test method 
that has been adopted by ASTM D3410. Other common compression test methods 
include the end loading method as per ASTM D695 and the combined loading com-
pression method as per ASTM D6641.

11.5.2.3  Shear Testing

The objective of shear testing is to determine (i) shear modulus and (ii) shear strength. 
A number of test methods are available for the evaluation of shear properties of a com-
posite material [40]. These methods can be broadly categorized into two categories—
in-plane shear tests and interlaminar shear tests. (In the local 1–2 coordinate system, 
the in-plane shear stress, strength, and modulus are τ12, S12, and G12, whereas interlami-
nar parameters are τ13, τ23, S13, S23, G13, and G23. Refer to Chapter 4 for definitions of 
in-plane and interlaminar shear parameters. Also, note that the terms S12, S13, and S23 
are used here to denote shear strength and not compliance matrix elements.) In  this 
section, we discuss the following common shear test methods:

◾◾ Uniaxial tension test of ±45° laminate
◾◾ V-notch beam shear test
◾◾ Rail shear test
◾◾ Short beam shear test

Out of the above four test methods, the first three are for in-plane shear properties, 
whereas the fourth is for interlaminar shear properties.

11.5.2.3.1  Uniaxial Tension Test of ±45° Laminate (ASTM D3518)

This method is used for the evaluation of in-plane compressive modulus and strength 
of composite materials [41]. The test specimen is a standard tension test specimen with 
symmetric ply sequence at ±45°.

The stress state in a ±45° symmetric laminate (Figure 11.13) under uniaxial tensile 
force in the x-direction is such that the local in-plane normal stresses σ11 and σ22 are 
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σ22 σ11
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Fiber directions

Strain gauges

Applied tensile force

FIGURE 11.13  State of stress in a uniaxial tension test of ±45° specimen. (Adapted with permis-
sion from D. F. Adams, L. A. Carlsson, and R. B. Pipes, Experimental Characterization of Advanced 
Composite Materials, CRC Press, Boca Raton, FL, 2003.)
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functions of uniaxial normal stress σxx and shear stress τxy, whereas the local in-plane 
shear stress τ12 is a function of only σxx. Thus,

	
σ σ τ11

2
= +xx

xy
	

(11.32)
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(11.33)
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where
σ11, σ22, τ12	 In-plane normal and shear stresses in the local or material coordinates
σxx, τxy	 Applied in-plane normal and shear stresses

On the other hand, the in-plane normal and shear strains in the local coordinates are 
given by
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(11.36)

	 γ ε ε12 = −xx yy 	 (11.37)

where
ε11, ε22, γ12	 In-plane normal and shear strains in the local or material coordinates
εxx, εyy	 Axial and lateral in-plane normal strains

Note that εyy is negative.
The standard tension test is performed on the specimen in a tensile testing machine 

and the shear strength is readily obtained from Equation 11.31. Thus,

	
S

P ult
12

2
=

( )
A 	

(11.38)

where (P)ult is the maximum tensile force on the specimen before ultimate failure. The 
ultimate shear strain is obtained from Equation 11.34, in which the normal strains 
correspond to the ultimate failure. However, identifying the failure point, owing to the 
typically nonlinear nature of shear stress–shear strain curve (Figure 11.14), is not a 
straightforward task. ASTM D3518 recommends that, if ultimate failure does not occur 
within 5% shear strain, P may be taken as the tensile force corresponding to 5% shear 
strain. The in-plane shear modulus is calculated as
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(11.39)
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where the in-plane shear stress difference Δτ12 and the corresponding in-plane shear 
strain difference Δγ12 are taken from the initial linear portion of the stress–strain curve.

11.5.2.3.2  V-Notch Beam Shear Test (ASTM D 5379)

This shear test method [27] was originally proposed by Iosipescu and the same has been 
subsequently modified by Wyoming University and adapted by ASTM. This is used for 
the evaluation of in-plane as well as interlaminar shear properties of composite materials.

The schematics of the specimen and the test fixture are shown in Figure 11.15. The 
specimen is a beam of nominal length and height of 76 and 20 mm, respectively. The 
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FIGURE 11.14  Schematic representation of typical shear stress–strain curve obtained from a uni-
axial tension test of ±45° specimen.
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FIGURE 11.15  Schematic representation of V-notch beam shear test. (a) Specimen. (b) Test fix-
ture. (Adapted from ASTM Standard D5379/D5379M-12, Standard Test Method for Shear Properties of 
Composite Materials by the V-Notched Beam Method, ASTM International, 2012.)
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width is chosen as required. The beam is provided with two notches in the midspan as 
shown in the figure. Two two-element strain rosettes, one on either side of the speci-
men, are bonded with the elements being aligned in the ±45° directions. The fixture 
consists of an upper grip and a lower grip. The upper grip is attached to the cross-head 
of the testing machine. The specimen is inserted into the fixture taking care to align 
the V-notch in the line of load application. The upper grip is driven downward by the 
cross-head and the relative displacement between the two grips results in the develop-
ment of a shear plane between the notches. The idealized free-body diagram, bending 
moment diagram, and shear force diagram (Figure 11.16) show the presence of pure 
shear stresses at the gauge section. Finite element analysis of the test specimen also 
shows that a state of uniform shear stress exists at the center of the specimen except 
around the roots of the notches.

The average shear stress and shear strain across the notched section are given by

	
τ =

P

A 	
(11.40)

	 γ ε ε= − −( ) ( )45 45 	 (11.41)

where
τ, γ		  Shear stress and strain, respectively, at any data point
P		  Applied force at any data point
A		  Area of cross section between the notches
ε(45), ε(−45)	� Normal strains measured in the +45° and −45° directions, respec-

tively, at any data point
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FIGURE 11.16  Idealization of V-notch beam shear test specimen under load. (a) Free body dia-
gram. (b) Shear force diagram. (c) Bending moment diagram. (Adapted from ASTM Standard D5379/
D5379M-12, Standard Test Method for Shear Properties of Composite Materials by the V-Notched Beam 
Method, ASTM International, 2012.)
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Then, shear strength and modulus are obtained as
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(11.43)

where
S, G		  Shear strength and modulus, respectively
(P)ult		 Ultimate force at failure
A		  Area of cross section between the notches
Δτ		�  Difference in shear stresses between points on the shear stress–shear strain 

curve
Δγ		�  Difference in shear strains between the same points on the shear stress–	

shear strain curve

Typically, the two points for modulus calculation are taken from the initial straight 
portion of the stress–strain curve. Further, note that we have not used any subscripts 
that indicate whether the shear properties are in-plane or interlaminar. The shear prop-
erties in the 1–2 plane are in-plane, those in the 1–3 and 2–3 planes are interlaminar. 
Thus, it is important to cut the specimen by suitable orientation of the fiber direction 
and ply plane w.r.t. the notch plane (Figure 11.17).

11.5.2.3.3  Rail Shear Test (ASTM D4255)

There are two rail shear test methods—two rail shear test method and three rail shear 
test method [42]. Both of these are used for the evaluation of in-plane shear properties.

1

2

3

(a) (b) (c)

Fiber orientation

G12, S12, γ12 G23, S23, γ23 G13, S13, γ13

G21, S21, γ21 G32, S32, γ32 G31, S31, γ31

Ply stacking direction

FIGURE 11.17  Fiber orientation in V-notch beam shear test specimen. (a) In-plane shear properties 
in 1–2 plane. (b) Interlaminar shear properties in 2–3 plane. (c) Interlaminar shear properties in 1–3 plane. 
(Note that the 1 direction is along the fiber direction and the 1–2 plane is parallel to the plies.) (Adapted 
from ASTM Standard D5379/D5379M-12, Standard Test Method for Shear Properties of Composite 
Materials by the V-Notched Beam Method, ASTM International, 2012.)
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The schematics of the specimens and the test fixtures for the two rail and three rail shear 
tests are shown in Figure 11.18. In each case, the specimen is a flat laminate. The nominal 
size of the specimen is 152 mm × 76 mm for the two rail test, and 152 mm × 137 mm 
for the three rail test. The thickness of the specimen is chosen as appropriate.

In the two rail shear tests, the specimen is clamped between two pairs of clamping 
rails along the lengthwise edges by means of three bolts on each edge. The holes pro-
vided are clearance holes so as to ensure that load transfer from the rails to the speci-
men is by frictional force between them. Both tensile force as well as compressive force 
may be applied; however, the tensile version is more common. On the application of an 
axial force on the test fixture, an in-plane shear stress is induced in the specimen and 
strain in the specimen is continuously recorded. (A strain gauge is bonded either at 45° 
or at −45° for strain measurement.) Then, shear strength and modulus are obtained as
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where
S, G		  In-plane shear strength and modulus, respectively
(P)ult		 Ultimate force at failure
A		  Area of lengthwise cross section
Δτ		�  Difference in in-plane shear stresses between points on the shear stress–

shear strain curve
Δγ		�  Difference in in-plane shear strains between the same points on the shear 

stress–shear strain curve (note: γ = 2ε45)

Specimen

Fixture bolts

Side rails

Strain gauge

Central rails

(a) (b)P

P

FIGURE 11.18  Schematic representation of rail shear test. (a) Two rail shear test fixture with speci-
men under tension. (b) Three rail shear test fixture with specimen under compression. (Adapted from 
ASTM Standard D4255/D4255M-01, Standard Test Method for In-Plane Shear Properties of Polymer 
Matrix Composite Materials by the Rail Shear Method, ASTM International, 2007.)
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In the three rail shear test, the specimen is clamped between two pairs of clamping 
rails, which are attached to a base plate, along the lengthwise edges by means of three 
bolts on each edge. In addition, one more pair of rails is clamped to the specimen in the 
middle. The middle rails are guided through a slot in the top plate. Usually, a compres-
sive force is applied on the middle rail that induces a pure in-plane shear stress in the 
specimen. The shear strength and modulus are obtained as
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where the variables are as defined in case of two rail shear test.

11.5.2.3.4  Short Beam Shear Test (ASTM D2344)

The short beam shear test works on the three-point beam bending principles [43]. 
Typically, under three-point loading, a beam is supported at the two ends and loaded in 
the middle; both bending as well as shear stresses are generated in the beam. The bend-
ing stresses are the maximum at the top and bottom faces of the beam—compressive 
at the top face and tensile at the bottom under the loading point. For an elastic mate-
rial, the bending stresses vary linearly through the thickness and, by definition, they 
change sign on the neutral plane. In other words, the bending stresses are zero on the 
neutral plane. On the other hand, the interlaminar shear stresses, which vary paraboli-
cally through the thickness, are zero at the top and bottom faces and maximum on the 
neutral plane. Thus, the neutral plane is in a state of pure shear.

The objective in a short beam shear test is to minimize the bending stresses by 
keeping the span-to-thickness ratio low such that the shear stresses reach their ultimate 
level before the bending tensile or compressive stresses, and shear failure takes place in 
the neutral plane. However, testing of the specimen is often associated with high stress 
concentration around the load application point and the supports, and much of the 
specimen is in a state of mixed stresses. As a result, failure of the specimen is not due 
to pure shear. In spite of such serious short comings, owing to its simplicity, this test is 
popular especially for quick QC check for material screening.

ASTM D2344 suggests two standard specimens for short beam shear test—flat 
beam and curved beam (Figure 11.19). The span-to-thickness ratio is restricted to 4:1. 
Other recommended dimensions are as follows:

Specimen thickness (minimum), h = 2 mm
Specimen length, L = 6 h
Specimen width, b = 2 h

The specimen is supported on 3-mm-diameter rollers and a central concentrated 
force is applied with the help of a 6-mm-diameter loading nose. Usually, load versus 
cross-head movement data and the final failure load are recorded. The interlaminar 
strength (rather the short beam strength) is calculated as
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Note that strain gauges are not used, and failure strain and shear modulus are not 
evaluated.

11.5.2.4  Flexural Testing

The objective of flexural testing is to determine the flexural modulus and flexural 
strength. However, unlike tensile, compressive, and shear properties, flexural modulus 
and strength are not fundamental properties. Flexure or bending of a beam results in 
a stress state that is a mixture of tensile, compressive, and shear stresses. As a result, 
flexural modulus and strength cannot be directly used in design calculations. In spite 
of this, owing to the inherent simplicity of flexural test specimen and test procedure, 
these tests are frequently carried out especially for comparison of materials in quality 
control processes.

Two common flexural test methods are—three-point flexure test and four-point 
flexure test [44].

11.5.2.4.1  Three-Point Flexure Test (ASTM D790)

The specimen in a three-point flexure test is a flat beam of constant rectangular cross 
section [45]. The exact specimen dimensions are not critical as long as an appropri-
ate support span-to-specimen thickness (L/h) ratio is chosen. The L/h ratio should be 
large enough to ensure bending failure of the specimen. The recommended support 
span-to-specimen thickness ratio depends on the ratio of the material tensile strength-
to-interlaminar shear strength, and it ranges from 16:1 to 60:1. Typical L/h ratios for 
unidirectional 0° glass/epoxy composites and carbon/epoxy composites are 16:1 and 
40:1, respectively. The nominal thickness is 2 mm for 0° composites and 4 mm for 90° 
composites. Similarly, a nominal width of 12.5 mm is common.

The specimen is mounted on a properly aligned test fixture in the testing machine 
and loaded with the help of a loading nose by moving the cross-head at a constant rate. 
The cross-head rate is so selected as to restrict the maximum strain rate on the outer 
surface to below 0.01 mm/mm. The common cross-head rate is 1–5 mm/min. The mid-
span deflection is measured by using a linear voltage differential transformer (LVDT) 
or an extensometer. Alternatively, the cross-head motion relative to the supports is used 
as the midspan deflection. Occasionally, a strain gauge is bonded on the specimen 
under the loading point to measure the strain directly.

In the three-point bending of a beam, the bending moment is the maximum at 
the midspan (Figure 11.20). The maximum bending stress, which occurs at the outer 
surface of the specimen, is given by
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FIGURE 11.19  Short beam shear test. (a) Flat specimen. (b) Curved specimen. (Adapted from 
ASTM Standard D2344/D2344M-00, Standard Test Method for Short-Beam Strength of Polymer Matrix 
Composite Materials and Their Laminates, ASTM International, 2006.)
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where
σ(b)	 Bending stress on the outer surface (MPa)
P	 Applied force (N)
L	 Span of the specimen (mm)
b	 Width of the specimen (mm)
h	 Thickness of the specimen (mm)

The bending strength is obtained by substituting P with the ultimate force (P)ult. 
When deflection is measured, the bending strain is calculated as
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where δ is the midspan deflection.
The flexural modulus is calculated from the initial linear portion of the bending 

stress–bending strain plot as follows:
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where
ΔP	 Difference in applied forces at two points in the initial linear portion of the 

bending stress–bending strain plot (N)
Δδ	 Difference in midspan deflections at the corresponding points on the stress–

strain plot (mm)
L	 Span of the specimen (mm)
b	 Width of the specimen (mm)
h	 Thickness of the specimen (mm)

11.5.2.4.2  Four-Point Flexure Test (ASTM D6272)

The specimen in the four-point flexure test [46] is similar to that in the three-point 
bending specimen. The recommended support span-to-specimen thickness ratio is 
16:1. The specimen is loaded by two loading nose cylinders. The load span can be either 
one-third of the support span or one-half (Figure 11.21).
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Shear force diagram

Bending 
stress Shear 

stress

FIGURE 11.20  Three-point flexure test configuration and associated bending stress and shear stress 
diagrams.
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In the four-point bending of a beam, the bending moment is the maximum and con-
stant in the entire load span (Figure 11.21). The maximum bending stress, which occurs 
at the outer surface of the specimen, depends on the load span. When the load span is 
one-third of the support span, the maximum bending stress is given by
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and when the load span is one-half of the support span, the maximum bending stress 
is given by
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where the parameters on the right-hand side are as given before and shown in 
Figure 11.20.

When the load span is one-third of the support span, the maximum bending strain 
is calculated as
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and when the load span is one-half of the support span, the bending strain is calculated 
as
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where δ is the midspan deflection.
The flexural modulus is calculated from the initial linear portion of the bending 

stress–bending strain. When load span is one-third of the support span,
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FIGURE 11.21  Four-point bending. (a) Load span is one-third of support span. (b) Load span is one 
half of support span.
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and when load span is one-half of the support span,
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11.5.2.5  Fracture Toughness Test

Laminated composite materials often contain zones where the laminae are not bonded. 
Such laminae separations are referred to as delaminations. Delaminations may develop 
either during processing of the laminate or during service life under load. The presence 
of delaminations adversely affects the performance of a laminate and it has been a 
widely studied subject. Fracture mechanics is the subject that deals with crack initiation 
and crack growth in a material.

As shown in Figure 11.22, there are three modes of crack propagation—Mode-I, 
Mode-II, and Mode-III [47]. Mode-I is the crack opening mode, in which the direction 
of crack growth is normal to the loading direction; the loading direction is normal to 
the plane of the crack and the separated parts move away from each other by a crack 
opening action. In Mode-II, crack growth is in line with the direction of the loads; the 
separated parts slide w.r.t. each other by a shearing action. Mode-III crack growth is by 
in-plane loads but the direction of loading is normal to the direction of crack growth; 
the separated parts slide away w.r.t. each other by a tearing action. In an isotropic mate-
rial, the resistance to crack propagation is the minimum in the crack opening mode. 
Thus, Mode-I is the most common mode in an isotropic material such that, even if the 
loading direction is in the plane of the crack, the direction of crack propagation may 
reorient to Mode-I. On the other hand, in a laminated composite material, the matrix 
is the weak link and crack growth is invariably constrained between the laminae. As a 
result, all the three modes of crack propagation are seen in composites. In simple terms, 
the resistance to crack propagation is fracture toughness. There are several concepts 
that have been developed to characterize fracture toughness:

◾◾ Strain energy release rate
◾◾ Stress intensity factor
◾◾ J-integral
◾◾ Crack-tip opening displacement
◾◾ Strain energy density

Strain energy release rate, G, is a simple energy-based concept; it does not require 
complex mathematical treatment involving stress analysis at the crack tip and it is ame-
nable to simple experimental evaluation. Consequently, out of all the above fracture 
toughness concepts, strain energy release rate is the most commonly used parameter 
for characterizing fracture toughness.

When a body containing a crack is subjected to external forces, a portion of the 
work done by the external forces is stored as strain energy and the rest drives the crack 

(a) (b) (c)

FIGURE 11.22  Fracture modes. (a) Mode-I (opening). (b) Mode-II (shearing). (c) Mode-III (tearing).
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to grow. Strain energy release rate is a parameter that represents the energy avail-
able for crack growth. Fracture criterion based on strain energy release rate states 
that crack growth occurs when the energy available for crack growth is more than the 
work required to create a new crack area. Mathematically, strain energy release rate is 
defined as
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where
G	 Strain energy release rate (J/m2)
W	 Work done by external forces (J)
U	 Elastic strain energy stored in the body (J)
dA	 Increment of new crack area (m2)

Now, denoting the energy required for the creation of new crack area by S, the condi-
tion for crack growth becomes
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At the threshold point, strain energy release rate is referred to as the critical strain 
energy release rate denoted by Gc, that is,

	
G

dS

dA
c =

	
(11.60)

In other words, the strain energy release rate-based fracture criterion can be stated as

	 G Gc≥ 	 (11.61)

By adopting simple mechanics of materials approach, the strain energy release rate 
can be expressed as
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where
P	 Applied external force (N)
C	 Compliance (m/N) defined as C = δ/P, δ being the displacement of the body 

under the loading point
dA	 Increment of new crack area (m2)

G, in general, is dependent on crack size. However, at the critical point, it becomes 
independent of crack length and thus Gc is a material property. Note further that S is the 
energy required for creating new crack area; thus, dS/dA is resistance to crack growth. 
Thus, Gc = dS/dA represents fracture toughness of the material.

A number of test methods have been developed for the evaluation of fracture 
toughness. Given in the following subsections is a brief description of two of these 
methods—double-cantilever beam (DCB) test for Mode-I and end-notched flexure 
(ENF) test for Mode-II.
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11.5.2.5.1  DCB Test (ASTM D5528)

The DCB specimen (Figure 11.23) is employed to evaluate the Mode-I interlami-
nar fracture toughness, GIc, of continuous fiber–reinforced composite materials. The 
specimen is a simple beam of constant rectangular cross section with the following 
dimensions—length, L = 125 mm (minimum), width, b = 20–25 mm, and thickness, 
h = 3–5 mm. A precrack is created in the midplane of the specimen by inserting a 
nonadhesive layer such as a Teflon film. The precrack length, a0, measured from the 
crack tip to the line of load application is typically 50 mm. Either piano hinges or end-
blocks are used for applying tensile load as shown in Figure 11.23c and d. In a DCB 
test, load is applied typically at a cross-head rate of 0.5 mm/min, and applied load, P, 
crack opening displacement, δ, and crack length, a are recorded. While the crack open-
ing displacement or the displacement of the loaded points is estimated from the cross-
head motion, the crack length is monitored by using a traveling optical microscope 
and a cross-hair. At low loads, the displacement δ increases at constant initial crack 
length of a0. On gradual increase in loads, at certain load level, the crack propagation 
starts. For the first 5 mm of crack growth, the loads associated with each 1 mm of crack 
growth are recorded and beyond this point loads at every 5 mm of crack growth are 
recorded. Generally, after 25 mm of crack growth, loading is stopped and the specimen 
is unloaded. Figure 11.24a shows a typical load–displacement plot.

Visual identification of the point of delamination initiation is often a tricky and oper-
ator-dependent task. Thus, to ensure repeatability, three methods have been suggested—
onset of nonlinearity in the load–displacement curve, visual observation, and 5% offset 
intersection. The 5% offset intersection point is where the load–displacement curve is 
intersected by a line drawn from the origin and offset by 5% increase in compliance (δ/P).

Data from the load–displacement plot are used for the calculation of GIc. ASTM 
D5528 [48] gives three methods for calculation of GIc—modified beam theory (MBT), 
compliance calibration (CC), and modified compliance calibration (MCC). The MBT 
results in the most conservative estimate of GIc, according to which, the strain energy 
release rate is given by
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FIGURE 11.23  Double-cantilever beam test. (a) Specimen configuration. (b) Specimen when loaded. 
(c) Loading with piano hinges. (d) Loading with end-blocks. (Adapted from ASTM Standard 5528-01, 
Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced 
Polymer Matrix Composites, ASTM International, 2007.)
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where
GI	 Mode-I strain energy release rate (N)
P	 Applied load (N)
δ	 Crack opening displacement or displacement of loaded points (mm)
a	 Crack length (mm)
b	 Specimen width (mm)

The strain energy release rate as given by Equation 11.63 needs to be corrected for 
any possible rotation at the delamination front. Thus, the crack length a is increased by 
an additional increment Δ such that the critical strain energy release rate is given by
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The value of Δ in Equation 11.64 is experimentally obtained by plotting C1/3 (C = δ/P) 
as a function of crack length a. The critical strain energy release rates are plotted as a 
function of crack length to prepare the resistance curve or the R-curve (Figure 11.24b). 
GIc at nonlinearity onset is typically the minimum and thus it is a conservative estimate 
of fracture toughness. The initiation of crack growth is normally associated with fiber 
bridging, which results in higher apparent GIc. As crack propagation continues, fiber 
bridging settles down and GIc becomes largely independent of crack length, a, and thus 
it is a material property, which in this context is the fracture toughness.

11.5.2.5.2  ENF Test

The ENF specimen (Figure 11.25) is used to evaluate Mode-II interlaminar fracture 
toughness, GIIc, of continuous fiber–reinforced composite materials. The specimen is 
typically a 120-mm-long beam of constant rectangular cross section. Normal cross-
sectional dimensions are—width, b = 20 mm, thickness, 2h = 3–5 mm. The beam is 
tested in a three-point loading setup with a span of 100 mm. A precrack is created in 
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Loading
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FIGURE 11.24  Schematic representation of DCB test data. (a) Load–displacement plot during crack 
growth. (b) R-curve.
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the midplane of the specimen by inserting a nonadhesive layer such as Teflon film. The 
precrack length, a0, measured from the crack tip to the line of load application is typi-
cally 50 mm such that a0/L = 0.5.

Under a three-point bend setup, shear loading is generated at the crack tip. Fracture 
test can be done with or without a precrack. When testing with a precrack, the speci-
men is loaded to create a stable crack at the end of the insert film and then the speci-
men is positioned in the test fixture to achieve an initial a0/L ratio of 0.5. Typically, the 
specimen is loaded at a cross-head rate of 0.5–1.0 mm/min and center beam deflec-
tion and crack tip advancement with an LVDT and traveling microscope, respectively. 
The load–displacement plot, as in the case of the DCB test for Mode-I, allows one to 
identify the points corresponding to onset of nonlinearity, visual observation of crack 
initiation, 5% offset intersection, and propagation. Then, using beam theory principles, 
Mode-II fracture toughness is calculated as follows:
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where C is the specimen compliance given by
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Combining Equations 11.65 and 11.66, and introducing a correction to the crack 
length, we get
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11.5.2.5.3  Other Fracture Test Methods

In addition to the DCB and the ENF test methods, there are a number of test methods 
for fracture toughness evaluation. Notable among these methods is the edge-cracked 
torsion (ECT) test for the evaluation of Mode-III fracture toughness. The ECT speci-
men is a flat rectangular panel with an edge crack in the middle plane. The specimen 
is loaded at one corner on the cracked edge and held at the three remaining corners. 
Under such a loading and supporting system, the panel undergoes twisting, and crack 
propagation takes place in Mode-III.

For mixed-mode fracture toughness evaluation, the mixed-mode bending (MMB) 
test is utilized. The MMB specimen is similar to those for DCB and ENF tests and the 
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FIGURE 11.25  Schematic representation of ENF test. (a) Specimen configuration. (b) Specimen 
under load.
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loading conditions are a combination of them. ASTM D6671 describes a standard test 
method based on this principle for the evaluation of mixed-mode fracture toughness for 
Mode-I and Mode-II [49].

11.5.2.6  Fatigue Testing

Often, the stresses or strains developed at a point in a mechanical structure are time 
dependent. Such variation occurs either due to variations in the nature and magnitudes 
of the applied loads or due to movement of the structure. A special case of time-depen-
dent variations in stresses/strains is cyclic variation. When a material is subjected to 
cyclically repetitive stresses or strains, its strength and stiffness reduce significantly 
and premature failure takes place. The phenomenon of reduction in its strength and 
stiffness of a material, under cyclic loading, is referred to as fatigue.

Under fatigue loading, crack initiation takes place at a point of stress concentration 
at zones of imperfections. In metals, the initial imperfections can be simply a min-
ute crack or some discontinuity. Under cyclic loading, initially, the crack propagates 
slowly; the crack size exceeds certain critical size and eventually fracture takes place, 
after a certain sufficient number of cycles of loading, at a load level that is lower than 
static failure loads. During the latter part, crack propagation is rather rapid and the final 
failure is nearly catastrophic without any prior sign.

On the other hand, in composite materials, there are many initial imperfection sites 
that include local broken fibers, matrix cracking, delamination, debond, void, etc. 
Crack propagation is coupled with fiber bridging and it takes place along the paths of 
minimum resistance—typically matrix and fiber–matrix interface. The damage mech-
anism is complex. However, final fatigue failure is rather gradual; it provides sufficient 
prior signal before failure and results in relatively longer fatigue life and higher fatigue 
loading.

Typical fatigue loading applied in a test is schematically shown in Figure 11.26. The 
cyclic stress mode can be sinusoidal, triangular, or of other appropriate shape about a 
mean stress [50]. The difference between the maximum and the minimum stresses is 
referred to as the range. Another characteristic parameter is the load ratio, R, defined as 
the ratio of the minimum stress to the maximum stress, that is, R = Smin/Smax. The mean 
stress can be either tensile or compressive. Also, depending on the mean stress and 
the range, three combinations of maximum and minimum stresses can be identified. 
Thus, we have three broad types of cyclic loading—tension–tension, compression–
compression, and tension–compression. Tests have been devised for the determination 
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FIGURE 11.26  Schematic representation of a typical applied fatigue loading. (Adapted with permis-
sion from P. T. Curtis, Fatigue, Mechanical Testing of Advanced Fiber Composites (J. M. Hodgekinson, 
ed.), Woodhead Publishing, Cambridge, 2000, pp. 248–268.)
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of fatigue characteristics in all these three modes. However, tension–tension fatigue 
testing is the most common.

Fatigue characteristics are usually expressed in terms of S–N curves, in which the 
number of cycles is plotted on a logarithmic scale on the x-axis and fatigue strength 
(or ratio of fatigue strength to static strength) is plotted on the y-axis (Figure 11.27). 
Note that the shape of the S–N curve depends on factors such as the material type, ply 
sequence, load ratio, etc. In some cases, it is linear; whereas in other cases, it is cur-
vilinear. Clearly, fatigue strength is dependent on fatigue life or the number of cycles 
to failure. For larger applied fatigue stress, fatigue life is short and vice versa. Fatigue 
characteristics are also expressed in terms of failure strains as ε–N curves.

ASTM D3479 describes a tension–tension fatigue testing of PMC material [51]. 
The specimen is the same as in the static tensile test method given by ASTM D3039. 
The specimen is inserted and grabbed in the grips of the testing machine. The testing 
machine essentially has a movable head and a stationary head. The movable head can 
be moved w.r.t. the stationary head at controlled velocity so as to apply cyclic load on 
the specimen. Two approaches are in vogue—stress loading and strain loading. In the 
case of stress loading, the applied load is in terms of stress, and in the case of strain 
loading, it is strain. The maximum and minimum load levels, that is, Smax and Smin or 
εmax and εmin are selected and corresponding load ratio is calculated and reported. The 
frequency of cyclic load should be so chosen as to minimize localized heating of the 
specimen. In general, the frequency of the order of 10 Hz is chosen for specimens with 
predominantly unidirectional fibers.

11.5.3  Note on Tests for Laminate Properties

A single lamina is too thin to be of any practical use and the evaluation of lamina prop-
erties involves testing of specimens that are invariably made from laminates and not 
from laminae. For the evaluation of lamina mechanical properties, with the exception 
of in-plane shear properties by uniaxial tension test of ±45° specimen, laminates are 
made by orienting all the laminae in the same direction. Usually, the same laminates 
are also used for cutting specimens for nonmechanical properties such as density, fiber 
volume fraction, etc. In general, lamina mechanical and nonmechanical properties are 
sufficient for design calculations.

However, sometimes, mechanical properties are also evaluated at the laminate 
level. Laminates for specimen preparation are made with the desired ply sequence. 
Nonmechanical properties are often required at the laminate level from a quality con-
trol point of view; for example, to verify the fiber volume fraction in the cured compo-
nent or degree of cure. In such cases, samples are cut either from the excess portions 
of the component or from representative laminates. The general principles of specimen 
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FIGURE 11.27  Schematic representation of S–N curve.



582 Composite Structures

preparation, test procedure, and data reduction remain the same as in the tests for 
lamina properties.

11.6  TESTS FOR ELEMENT-LEVEL PROPERTIES
The design of a composite structure often demands data that cannot be obtained from 
tests at lamina or laminate levels alone. Lamina- and laminate-level tests are relatively 
simple and they are carried out to determine specific material properties that corre-
spond to specific failure modes. In the real design world, one comes across many cases 
of failure modes not addressed in simple coupon tests at lamina or laminate levels. 
Tests carried out to characterize material behavior in such cases are referred to as 
element-level tests [52]. For example, structural elements such as panels with cutouts, 
bolted joints, adhesively bonded joints, etc. can be designed with data that are obtained 
from tests at element level. Several failure modes may be present in an element-level 
test and, typically, the final failure mode is associated with the weakest path.

Standard structural elements are available for many cases. Several of these standard 
structural element tests are pretty similar to those at the coupon tests at lamina- or 
laminate-level. The primary difference lies in the fact that the element-level tests are 
associated with some form of discontinuities. For example, in a simple tension test as 
per ASTM D3039, one is concerned with the evaluation of tensile properties of a lamina 
or a flat laminate. On the other hand, in the case of a tension-loaded structural element 
testing, one would be concerned with the material behavior associated with, possibly, 
some holes, notches, ply drop-offs, etc. Clearly, the failure mode is more complex.

In the following sections, we discuss three types of element-level tests—tests for 
laminates with holes, bolted joints, and adhesively bonded joints.

11.6.1  Open-Hole Tests

Cutouts and holes in a laminate are common features in real structures. These are 
geometric discontinuities that are associated with stress concentration, that is, high 
stresses near the geometric discontinuities. Owing to stress concentration, the strength 
of a laminate is greatly reduced by the presence of such cutouts and holes; the reduc-
tion is generally more than the reduction in the effective area of cross section. It is 
common to express stress concentration in terms of a factor called stress concentration 
factor, K, which is defined as the ratio of the maximum stress to the nominal stress 
(Figure 11.28), that is,

	
K max

nom

=
σ
σ 	

(11.68)

where K is the stress concentration factor and σmax and σnom are the maximum and 
nominal stresses, respectively. The strength of a notched plate, on a conservative basis, 
can be expressed in terms of the stress concentration factor as

	 σ σN K= 0 	 (11.69)

where σN and σ0 are the notched and unnotched strengths, respectively. It is well known 
that K is 3 for isotropic materials and Equation 11.69 can be used for a conservative 
estimate of notched strength. On the other hand, in a composite material, the stress 
concentration factor, which is influenced by a number of factors, including the degree 
of anisotropy, laminate stacking sequence, fiber–matrix interface adhesion, matrix 
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toughness, etc., is much higher—4 for glass/epoxy composites to as high as 9 for car-
bon/epoxy composites. Most composites, unlike isotropic materials, exhibit rather brit-
tle failure behavior; the high stress concentrations do not get accommodated by local 
yielding and the final laminate failure is caused by a complex mechanism influenced by 
individual lamina stresses and strains. Also, laminate unnotched strength is dependent 
on hole diameter. As a result, the stress concentration factor by itself is not an appropri-
ate means for estimating the notched strength of a laminated composite plate.

Several models, mostly empirical and semiempirical, have been developed for esti-
mating notched strength. Two of the commonly used models are point stress criterion 
and average stress criterion. The point stress criterion states that failure takes place 
when the stress at a certain distance d0 from the hole exceeds the unnotched strength. 
In the average stress criterion, on the other hand, the stresses are averaged over a certain 
distance and equated to the unnotched strength. The distance d0 is determined experi-
mentally and notched strength can be estimated for any arbitrary hole size. Frequently, 
these notched strengths are used by designers in the design of laminated composite 
structures having cutouts.

ASTM D5766 and D6484, respectively, provide two methods for the determination 
of open-hole tensile strength and open-hole compressive strengths of multidirectional 
composite laminates [53,54].

The specimen in the open-hole tensile strength test is a simple flat piece with a con-
stant rectangular cross section and a central hole (Figure 11.29). Typically, the speci-
men is 150–300 mm in length, 36 mm in width, and 2–4 mm in thickness and the 
hole diameter is 6 mm. Shorter specimens are normally used with quasi-isotropic ply 
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FIGURE 11.28  Stress concentration near a hole in a plate.
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FIGURE 11.29  Open-hole tensile test specimen. (Adapted from ASTM Standard D5766/D5766M-11, 
Standard Test Method for Open-Hole Tensile Strength of Polymer Matrix Composite Laminates, ASTM 
International, 2011.)
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configurations. The laminate used for making specimens should be balanced and sym-
metric; typically, a ply sequence [±45i/0j/90k]ns is chosen for laminates with unidirec-
tional laminae and [45i/0j]ns for bidirectional laminae. The specimens are tested in a 
uniaxial tension test setup as per ASTM D3039; force versus cross-head displacement 
and optionally, force versus strain/extensometer displacement are recorded. When 
strain data are required and extensometer is used, the hole should be located within the 
extensometer gauge length. The calculation of notched strength as well as stresses for 
stress–strain curve is calculated based on the gross cross-sectional area.

The specimen in the open-hole compressive strength test is also a flat piece with 
constant rectangular cross section and a central hole (Figure 11.30). Typically, the 
specimen is 300 mm in length, 36 mm in width, and 3–5 mm in thickness and the hole 
diameter is 6 mm. As in the case of open-hole tensile strength test, balanced and sym-
metric laminates are used for making the specimens; typically, a ply sequence [±45i/0j/
90k]ns is chosen for laminates with unidirectional laminae and [45i/0j]ns for bidirectional 
laminae.

The specimen in the open-hole compressive strength test is pretty similar to that in 
an open-hole tensile strength test, but the fixturing is very different and much complex. 
The test fixture consists primarily of two short grips, two long grips, and two support 
plates (Figure 11.31). The specimen is held at one end in the long grip assembly and at 
the other end in the short grip assembly. The long grips, which cover the gauge section 
of the specimen, are provided with cutouts around the specimen hole so that dam-
age propagation is not constrained and failure load is artificially not increased. The 
compressive force is introduced into the specimen by shear at the grips and the test is 
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FIGURE 11.31  Schematic representation of open-hole compression test fixture in its longitudinal 
cross section. (Adapted from ASTM Standard D6484/D6484M-09, Standard Test Method for Open-Hole 
Compressive Strength of Polymer Matrix Composite Laminates, ASTM International, 2009.)
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FIGURE 11.30  Open-hole compression test specimen. (Adapted from ASTM Standard D6484/
D6484M-09, Standard Test Method for Open-Hole Compressive Strength of Polymer Matrix Composite 
Laminates, ASTM International, 2009.)
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continued till failure of the specimen at the notched region. The calculation of strength 
is carried out based on gross cross-sectional area.

11.6.2  Bolted Joint

As we know, several failure modes may be present in an element-level test, which is 
particularly true in the case of a joint. Typical failure modes in the composite laminate 
in a bolted joint are

◾◾ Net tension/compression failure
◾◾ Bearing failure
◾◾ Shear-out failure
◾◾ Cleavage-tension failure

In addition to the laminate failure modes, a bolted joint failure can take place by bolt 
failure in different modes. Laminate ply sequence and various parameters that define 
the joint configuration, such as fastener type and size, laminate width and thickness, 
hole size and edge distance, are the primary factors that influence the occurrence of a 
particular failure mode. It is necessary to select the type of the joint test depending on 
the likely failure mode.

11.6.2.1  Bearing Strength

ASTM D5961 gives four procedures for the evaluation of bearing response of mul-
tidirectional composite laminates—Procedure A for double-shear in tensile loading, 
Procedure B for single-shear in tensile or compressive loading of a two-piece specimen, 
Procedure C for single-shear in tensile loading of a one-piece specimen, and Procedure 
D for double-shear in compressive loading [55]. Single-shear is associated with bending 
in addition to shear and it is comparatively more difficult to simulate in a test setup, but 
it is more representative of most real-life applications. Figure 11.32 shows a schematic 
representation of the single-shear two-piece test specimen with double-fastener joint as 
per Procedure B. A single-fastener joint specimen is also in vogue. In this case, eccen-
tric loading results in high bending and lower joint strength, which is not generally 
representative of joints with multiple rows of fasteners. Thus, the single-fastener con-
figuration is mostly used for fastener screening purposes, whereas the double-fastener 
configuration is used for both design data generation as well as fastener screening.

The test specimen as per Procedure B consists of two flat pieces of constant rectan-
gular cross section fastened through one or two holes. The laminate stacking sequence 
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FIGURE 11.32  Schematic representation of single-shear test specimen with double-fastener joint for 
bearing strength. (Typical dimensions: d = 6 mm, e = 18 mm, h = 4 mm, and l = 135). (Adapted from 
ASTM Standard D5961/D5961M-10, Standard Test Method for Bearing Response of Polymer Matrix 
Composite Laminates, ASTM International, 2010.)
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is balanced and symmetric—typically [45i/0j/−45i/90k]ns for laminates with unidirec-
tional laminae and [45i/0j]ns for laminates with bidirectional laminae. A doubler, pref-
erably of the same material, is bonded or frictionally held to the end of each piece so 
that the line of force action lies in the interface between the two pieces. The specimen 
is held either directly or with the help of a supporting fixture in grips of the testing 
machine and loaded either in tension or in compression. The longitudinal hole deforma-
tion is determined with the help of one or more extensometers. Both applied force and 
hole deformation are recorded, and the bearing stress–bearing strain curve is plotted. 
During testing, the specimen should fail in bearing of the composite laminate, and load-
ing is continued till maximum force is reached. The bearing strength is obtained from 
the information on maximum applied force, hole diameter, and laminate thickness.

11.6.2.2  Bearing/By-Pass Strength

The load that is transferred around a hole divided by the laminate gross cross-sectional 
area is referred to as the by-pass strength. MIL-HDBK-17-1F prescribes testing of bear-
ing/by-pass strength when the load transferred by a laminate around a hole is more than 
20% of the total load per bolt [1]. A number of test specimens are available, which can 
be divided into three categories—passive, independent bolt load, and coupled bolt load/
by-pass load. The recommended configuration is the independent bolt load configura-
tion, in which the bolt load is independently measured so that the load transferred by 
the laminate around the hole can be directly calculated from the total load, and thereby, 
bearing/by-pass strength can be evaluated.

11.6.2.3  Shear-Out Strength

It is virtually impossible to have shear-out failure when the edge distance is three times 
the hole diameter (i.e., e = 3d) and the plies are not predominantly in the same direc-
tion. However, in certain design cases, shear-out strength data are required, which can 
be obtained using a bearing test specimen with lower edge distance-to-hole diameter 
ratio (e/d).

11.6.2.4  Fastener Pull-Through Strength

Fastener pull-through of a joint, in which two composite laminates are mechanically fas-
tened, is the maximum normal force that can be applied before the two laminates come 
apart. Composites are typically weak in the transverse direction, and the pull-through 
strength of a joint involving composite laminates is rather critical from a design point 
of view. MIL-HDBK-17-1F suggests two procedures that involve two square composite 
plates, one of which is rotated by 45° w.r.t. the other. The plates are joined together by 
a central fastener. While the loading mechanisms are different in the two procedures, 
the resultant loading on the joint is the same and the fastener is loaded in tension. The 
load–deflection curve is plotted, the final failure load and failure mode are recorded.

11.6.3  Bonded Joint

In composite structures, bonded joints are made in three different routes—secondary 
bonding, cobonding, and cocuring. In secondary bonding, two precured parts are 
bonded with a thin adhesive layer. In the cobonding process, one of the two parts is 
precured, and the adhesive layer is applied on it and the other part is built-up by lay-
up, followed by curing. On the other hand, in the cocuring process, both the parts 
are simultaneously cured, with or without any adhesive layer between them.

There are two aspects in the characterization of a bonded joint—characterization of 
the adhesive and characterization of the joint. Some of the adhesive characterization 
tests use only metallic adherends; these tests may be used for the evaluation of adhesive 
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properties for design data generation, material screening, or research and development, 
but they are not useful for the evaluation of joint properties. On the other hand, bonded 
joint characterization tests are carried out with a view to validating the integrity of the 
overall joint.

11.6.3.1  Adhesive Characterization

The characterization of an adhesive primarily involves the evaluation of shear proper-
ties and tensile properties. ASTM D5656 gives a standard test method (Figure 11.33) 
for the evaluation of stress–strain behavior of adhesives in shear by tension loading [56]. 
The test specimen consists of two thick adherends. An adhesive layer of controlled 
thickness is provided between the adherends and cured under specified environment. 
Extensometers are mounted on each edge of the specimen such that the arms of the 
extensometer are equidistant on either side of the bond line and midway between the 
notches. The specimen is loaded till failure and load versus deflection data are recorded 
continuously. Typically, the load–deflection curve in shear is nonlinear, associated with 
a “knee” formation. Shear properties of the adhesive are calculated using this curve.

ASTM D2095 gives a standard method for the evaluation of tensile properties of 
adhesives by using a bar-and-rod specimen [57]; the two adherends are made using 
either similar or dissimilar materials. The test specimen consists of either two bars or 
two rods that are adhesively joined by a butt-joint. The specimen is tested in tensile 
load, and the tensile strength is calculated by dividing the breaking force by the bond 
area.

11.6.3.2  Bonded Joint Characterization

The validation of the structural integrity of a bonded joint would demand testing of 
a specimen that simulates the actual joint in respect of configuration, adherends, and 
adhesive. The adherends are made out of composite laminate and/or metal; the lami-
nate ply sequence, joint fabrication process, and quality control procedures must also 
resemble those of the actual joint. It is difficult to develop a standard test specimen that 
is truly representative of an actual bonded joint in all aspects. Occasionally, in criti-
cal joints, nonstandard test specimens are designed and tested to generate data for the 
design of the joints. Nevertheless, there are standard specimens, which address certain 
types of joints.

ASTM D3528 gives a standard test method for the evaluation of adhesive shear 
strength in tension [58]. The adhesive bond surfaces are symmetrically loaded that 
simulates a peel-free condition. The specimen is useful for the evaluation of adhesive 
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FIGURE 11.33  Schematic representation of test specimen for adhesive characterization in shear. 
(Adapted from ASTM Standard D5656-10, Standard Test Method for Thick-Adherend Metal Lap-Shear 
Joints for Determination of the Stress–Strain Behavior of Adhesives in Shear by Tension Loading, 
ASTM International, 2010.)
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shear strength of a low-peel adhesively bonded joint for process control and specifi-
cation purposes. However, it typically overestimates the strength of the actual joint. 
ASTM D3165 gives another standard test method that involves a single lap joint [59]. 
The use of doublers reduces peel stresses. This test specimen resembles many actual 
joint configurations and it is widely used in the industry.

11.7  TESTS AT COMPONENT LEVEL

11.7.1  Subscale Component Testing

A real-life structure consists of many components and subcomponents assembled by 
means of a number of joints of different types. Some of these components, subcompo-
nents, and joints may be of complex configurations associated with complex internal 
load distribution, in which cases, lower-level tests are not sufficient for either design 
data generation or design validation and quality assurance. This is where nonstandard 
element and subscale component tests are required. These tests are performed with dif-
ferent objectives and at different stages of the overall development cycle of a product. 
Sometimes, in the early phase of the product development cycle, a subscale component 
is made and tested with a view to merely getting acquainted with the nitty-gritties of 
the relevant technologies and generating confidence.

Focus areas of the nonstandard element and subscale component tests are generally 
around joints and areas with complex shape and dissimilar materials, realized by com-
plex fabrication process. A nonstandard test specimen must be designed for the critical 
load cases. It must simulate the actual component as closely as possible in terms of 
geometrical configuration, materials, processing parameters, applied loads, and load-
ing environment. Of course, simplifications are made by omitting noncritical features, 
by replacing repetitive units by a single unit, by making geometrical simplification, and 
so on.

Another very important aspect in the nonstandard element and subscale testing is 
the interpretation and use of test results. Test results can be used as design input, but 
care must be taken of the effect of the simplifications made in the test specimen. In this 
respect, some of the issues that should be considered are as follows: effect of scaling 
down, effect of omitting noncritical features, effect of using a single unit in place of a 
number of repetitive units, etc.

11.7.2  Full-Scale Component Testing

Full-scale component tests are carried out to validate the design and manufactur-
ing process and to assess the in-service performance of the final product. The final 
product is invariably an assembly of a number of components and subcomponents. 
During the development phase, these components and subcomponents typically 
undergo design and manufacturing iterations, and the individual components and 
subcomponents are qualified by full-scale testing at each stage. Thus, at each stage 
during the development cycle, the design, manufacturing process and the quality 
assurance procedure of the individual components and subcomponents get validated 
and the margins of safety get established. A part with appropriate margin of safety 
qualifies to the next phase; otherwise, design and processing modifications would 
be needed.

Full-scale tests are expensive and their costs increase as the levels go up. Fortunately, 
the building block approach helps reduce the requirement of full-scale tests. Results of 
lower-level tests together with findings of analysis—typically finite element analysis—
are utilized to decide on the extent of full-scale tests at the higher levels.
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11.8  SUMMARY
Test objectives, general test procedure, and test philosophy in composites are discussed 
in this chapter. It is an inseparable part of the development of a composite product and 
it covers a wide spectrum involving different levels. Salient points discussed in this 
chapter can be listed as follows:

◾◾ Tests are conducted to meet requirements in one or more of the following three 
areas:

−− Design and analysis
−− Quality control and quality assurance
−− Research and development

◾◾ A composite product is built by combining constituents. Thus, the building 
block approach to composites testing is highly useful. It involves testing at 
different levels and sublevels. At the bottommost level are the coupon-level 
tests for fibers and resins and at the topmost level are the full-scale component-
level tests. Lower-level tests are simple and relatively inexpensive, but more in 
number. The complexities and costs of the tests increase as we proceed up the 
building block. At the top level, however, the tests are limited in number.

◾◾ There are a number of standards organizations that extensively provide 
standard test methods for most of the tests especially at the lower levels in 
the building block. For carrying out specific tests and reporting test results, 
standards should be referred to.

◾◾ Both mechanical and nonmechanical tests are carried out on fibers, resins, 
laminae, and laminates. Structural element- and component-level tests are 
primarily mechanical.

◾◾ Nonmechanical tests are carried out for the determination of density, moisture 
content, constituent content, glass transition temperature, etc. Coupon-level 
mechanical tests pertain primarily to evaluation of tensile, compressive, shear, 
and flexural properties.

◾◾ Structural element-level and subscale component-level tests are developed with 
a focus mainly on joint and other critical zones in the component.

EXERCISE PROBLEMS

	11.1	 Write a brief note on the building block approach to testing in composites. 
What are the tests that are typically required in a composite product develop-
ment program?

	11.2	 Why do we need standards in composites testing? List down the common 
standards available for testing in composites.

	11.3	 Name the nonmechanical and mechanical parameters of reinforcements that 
are normally evaluated? Give a brief note covering test principles and appli-
cable standards.

	11.4	 Determine the diameter of filaments in glass rovings, if the following data are 
given: density of fiber = 2.54 g/cm3, tex = 1200 g/km, and number of ends 
(strands) = 30.

	11.5	 In a tow tensile test for the determination of tensile strength and tensile mod-
ulus of 12k carbon fiber, the following data have been recorded:

Maximum tensile load, P = 2012 N
Density of fiber, ρ f =1 78 3. g/cm
Linear density of fiber, ρ f

l( ) .= 0 8g/m
Upper strain limit, εu = 6 × 10−3
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Lower strain limit, εl = 1 × 10−3

Tensile load at upper strain limit, Pu = 642 N
Tensile load at lower strain limit, Pl = 106 N
Determine the longitudinal tensile strength and modulus of the fiber.

	11.6	 Name the nonmechanical and mechanical parameters of resin that are nor-
mally evaluated? Give a brief note covering test principles and applicable 
standards.

	11.7	 In a density determination test for cast polyester resin, the following data 
were recorded:

Weight of the cast resin sample in air = 40 g
Weight of the sample with a sinker fully immersed and wire partially 

immersed in water = 72.6 g
Weight of the sinker fully immersed and wire partially immersed in 

water = 70.5 g
Determine the density of the cast resin sample.

	11.8	 Write a brief note on the determination/assigning glass transition temperature 
by the DSC method.

	11.9	 In an acid digestion test for constituent contents of a carbon/epoxy sample, 
the following data were recorded:

Mass of empty filter = 55.31 g
Mass of filter with sample before matrix removal = 55.82 g
Mass of filter with sample after matrix removal = 55.66 g
If the experimentally determined densities of the fiber, matrix, and com-

posite sample are 1.79 g/cm3, 1.15 g/cm3, and 1.53 g/cm3, respectively, 
determine the mass fractions and volume fractions of the fiber and 
matrix.

	11.10	 The following data are collected from a tensile test of a unidirectional com-
posite specimen:

The final failure took place at 34.24 kN. If the gauge length of the extensom-
eter is 25 mm and the recorded average cross-sectional area of the speci-
men is 23.79 mm2, determine the tensile strength and tensile modulus.

Applied Load (kN) Extensometer Reading (mm)

2 0.020
4 0.039
6 0.057
8 0.075
10 0.093
12 0.112
14 0.131
16 0.150
18 0.169
20 0.188
22 0.206
24 0.225
26 0.243
28 0.262
30 0.282
32 0.300
34 0.318
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	11.11	 The following data have been reduced from the records of a compression test:

The final failure took place at 24.73 kN. If the average area of cross section 
is 24.79 mm2, determine the (i) compressive strength, (ii) compressive 
modulus, and (iii) secant modulus.

	11.12	 Write a short note on load transfer mechanisms and failure modes in a com-
pression test specimen.

	11.13	 Write a short note on various test methods used for the evaluation of shear 
properties.

	11.14	 In a uniaxial tension test of a specimen with ±45° plies, the failure load and 
average cross-sectional area are recorded as 5552 N and 49.4 mm2, respec-
tively. Determine the in-plane shear strength.

	11.15	 In a V-notch shear beam test, a short beam of length 76 mm, width 12 mm, 
and height 20 mm was tested. The beam was provided with two notches 
of 2 mm depth each. If the ultimate load at failure is 9.8 kN, determine 
the in-plane shear strength. Also, determine the in-plane shear modulus, 
if shear stress difference and shear strain difference between two points 
chosen on the experimental stress–strain curve are 4.8 MPa and 0.8 × 10−3, 
respectively.

	11.16	 Discuss the principle of flexural testing. Comment on the utility of flexural 
testing in the design and development of a product.

	11.17	 What are the typical modes of failure in a composite bolted joint?
	11.18	 Discuss the significance of subscale and full-scale component testing in a 

product development program.
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12.1  CHAPTER ROAD MAP
It was noted in Chapter 11 that testing is an inseparable part of any composite product 
development program. Tests can be broadly classified into destructive and nondestruc-
tive, of which the destructive tests in general were discussed in Chapter 11. Our objec-
tive in this chapter is to familiarize the reader with the basic concepts in nondestructive 
testing in the field of PMCs. First, an introductory discussion is given on the topics on 
defects in PMCs and various available nondestructive techniques. Some of the common 
nondestructive techniques are chosen and a general discussion on each of these tech-
niques, covering underlying concept, test equipment, advantages, and disadvantages, is 
presented.

The topics discussed in this chapter do not demand an in-depth understanding of 
the topics presented in the previous chapters. However, for effective assimilation of the 
concepts, it is suggested that the reader goes through the introductory topics of compos-
ites, basic mechanics of composites, constituent materials, composites manufacturing, 
and testing in Chapters 1, 3 through 5, and 9 through 11.

12.2  INTRODUCTION
The test methods, except some component-level acceptance tests, discussed in Chapter 
11 are destructive in nature. In the coupon-level tests, the test sample gets either 
destroyed or consumed. In the component-level tests, depending on the nature and test 
objectives, the component may get destroyed; for example, in the burst test of a pres-
sure vessel, the test article is tested until it bursts and is destroyed. If the test objective 
is only verification of acceptance, the test article is loaded below the ultimate loads 
and the component can be put to service. However, even in a test where the applied 
loads are below the ultimate loads, the component undergoes essentially deformations; 
microlevel damages may occur and, from this point of view, all mechanical tests are 
destructive. In contrast to destructive testing, nondestructive testing (NDT) or nonde-
structive evaluation/examination (NDE) neither destroys nor causes any damage to the 
part and utility of the part remains intact.

NDT is a critical phase in the life cycle of a composite product. It is essential from 
quality assurance and reliability points of view and various NDT techniques are rou-
tinely used in the composites industry. The objectives of NDT are manifold [1], which, 
for the sake of simplicity of discussion, can be categorized as follows:

◾◾ Quality assurance of manufactured composite product
◾◾ In-service quality monitoring

12
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Quality is infused into a composite product in stages as it is manufactured. The 
critical stages are identified and NDT is carried out for checking the existence of any 
possible defects; the findings of NDT are analyzed and the realized parts are either 
cleared with/without suggested repair work or rejected. NDT in this respect is primar-
ily process-oriented.

During service, a composite product undergoes degradation due to cyclic loading, 
continuous high stressing, impact, exposure to hostile environment, etc. As a result, 
an existing noncritical crack may grow beyond the safe limit and new defects may 
nucleate. A product in-service is usually inspected by NDT methods at regular inter-
vals; based on the findings of inspection, possible repair works are undertaken and the 
residual life of the product is estimated.

12.2.1  Defects in Polymer Matrix Composites

PMCs are grossly different from conventional metals due to their anisotropic and het-
erogeneous nature, and unique processing techniques. Different types of defects are 
created in a composite material during processing as well as during service [2]. These 
defects are also grossly different from those in metals, and in general, relatively more 
in number. Typical defects in a PMC material are as follows:

◾◾ Defects in the fibers
−− Fiber breakage
−− Nonuniform fiber distribution
−− Fiber waviness
−− Improper fiber orientation

◾◾ Defects in the matrix
−− Foreign objects and contaminations
−− Porosity and voids
−− Matrix cracking—crazing and microcracks
−− Incomplete cure

◾◾ Defects in the fiber/matrix interface
−− Delaminations
−− Interlaminar cracks

◾◾ Other defects
−− Debonds

The presence of fiber breakage indicates loss of continuity in the load-carrying path. 
Nonuniform fiber distribution may lead to resin-rich or resin-starved regions. These 
defects result in stress concentrations leading to the creation of cracks. During service 
life, the cracks may grow and, beyond a certain limit, the failure of the part may occur. 
Fiber waviness and fiber misalignment adversely affect the strength and stiffness char-
acteristics of the composite material.

Foreign objects in resin lead to stress concentration and creation of cracks. 
Contamination of resin, on the other hand, results in improper cure of the resin and 
poor fiber/matrix bond, leading to inefficient load transfer between fibers and matrix. 
Porosity in the resin may result due to improper curing and the pores can coalesce, 
leading to the formation of voids. Voids are also formed if entrapped air between plies 
during lay-up is not removed. Pores and voids result in stress concentration, and in 
some cases, delaminations that may be severely detrimental to the overall health of the 
component. Matrix cracks can occur either during service or during acceptance testing. 
Matrix crazing is the formation of superficial microcracks usually in the gel coat of a 
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composite part. In the structural plies, microcracks are formed in the 90° plies. Matrix 
cracking leads to the reduction of stiffness of the composite material. On sustained 
loading, the cracks may grow beyond a certain critical size and spontaneous crack 
growth and eventual failure may result.

Delaminations are separations created between plies in a laminated composite mate-
rial. The primary factor that causes delaminations is improper curing. Improper ply 
sequence can also result in delaminations. Delaminations and fiber/matrix debond are 
detrimental particularly under in-plane compressive loading.

12.2.2  NDT Techniques

NDT techniques are well developed for conventional metallic materials. A number of 
NDT techniques are available for the detection of defects in composite materials too; 
these are primarily extensions of those originally developed for metals. Visual inspec-
tion and coin tapping are often employed, both in metals as well as composites, to 
obtain first-hand information about the health of a component. For reliable and more 
specific details, almost invariably other methods of NDT are resorted to. Most of these 
methods are active in nature, that is, during testing, some form of energy is applied 
on the test specimen and its response is monitored for drawing conclusions about its 
health. The response of a PMC material to input energy is grossly different from what 
it is in metals. This difference is primarily on account of the unique characteristics 
of PMCs in respect of anisotropic and heterogeneous material construction, unique 
fracture mechanisms, and higher damping. What follows is that, although the basic 
principles of the NDT methods remain the same in metals and PMCs, suitable modifi-
cations are essential [3].

In this chapter, we discuss the following NDT methods used in the field of PMCs:

◾◾ Ultrasonic testing
◾◾ Radiographic testing
◾◾ Acoustic emission testing
◾◾ Infrared thermography
◾◾ Eddy current testing
◾◾ Shearography

The most common NDT methods in PMCs are ultrasonic testing and radiographic 
testing. These methods complement each other and are effective in the detection of a 
wide variety of defects. Acoustic emission (AE) testing and infrared thermography 
provide their own unique advantages and they are popular in many applications. Eddy 
current testing is based on the principle of electromagnetic induction; it is applicable to 
only conducting materials and its use is primarily limited to CFRPs. Shearography is 
an optical method that is routinely used in the rubber industry and has wide acceptance 
in the aerospace composites applications as well. Table 12.1 gives a summary of these 
methods.

NDT has been extensively researched in the past and continues to get attention now 
as well [4–11]. We have had a brief discussion on the introductory concepts such as 
defects in composites and various NDT techniques. We shall now proceed to see how 
some of the common NDT techniques work. A detailed review of these techniques is 
beyond the scope of this book. The interested reader may consult articles as indicated 
above and available standard texts (see, for instance, a list of reference books given in 
Reference 12.
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12.3  ULTRASONIC TESTING

12.3.1  Basic Concept of Ultrasonic Testing

Ultrasonic testing involves sending ultrasonic waves through the specimen material 
and the signals received from the transmitted/reflected waves are analyzed for making 
conclusions regarding possible defects [13,14]. Ultrasonic waves, also known as stress 
waves, are mechanical (sound) waves that propagate in solids, liquids, and gases at 
frequencies above the normal human audible range of 20 Hz–20 kHz. The amplitude, 
velocity, and frequency of ultrasonic waves are related by

	
λ =

c

f 	
(12.1)

where λ, c, and f are the amplitude, velocity, and frequency of the ultrasonic waves in 
the medium through which they are propagating. Ultrasonic waves with low frequency 
have higher penetrative power and more suitable for composite laminate of higher 
thickness. On the other hand, the high-frequency waves are more sensitive to defects. 
The test frequency is chosen depending on a number of factors such as part thickness, 
type of material, degree of anisotropy, type of defect, etc. For PMCs, it typically lies 
between 1 and 15 MHz, of which, lower frequencies are used in thick laminates and 
higher frequencies in thin laminates.

TABLE 12.1
NDT Techniques for Polymer Matrix Composites

NDT Techniques Principle Detectable Types of Defects

Ultrasonic 
testing

Transmission of ultrasonic waves through a 
material is affected by defects and the signals 
received from the transmitted/reflected 
waves give information on the health of the 
material.

Fiber misalignment, foreign objects, 
porosity, matrix cracking, 
delamination, interlaminar cracks

Radiographic 
testing

The attenuation of x-rays and gamma rays 
traveling through a material is affected by 
material characteristics and defects are seen as 
differential shades in the captured image.

Fiber misalignment, foreign objects, 
porosity, debonds, delaminations, 
interlaminar cracks

Acoustic 
emission

The stress distribution in a loaded structure 
changes suddenly when damage mechanism 
processes occur. Damage nucleation and 
propagation are indicated by transient stress 
waves known as acoustic emission.

Fiber breakage, delaminations, 
interlaminar cracks, debonds

Infrared 
thermography

The surface temperature distribution and 
surface temperature decay rate are affected by 
thermal characteristics of a material. 
Variations in a thermographic image indicate 
the presence of defects.

Foreign objects and contaminations, 
delaminations, interlaminar cracks, 
impact damage

Eddy current 
testing

Eddy current induced in a conducting material 
by an alternating current in a probing coil is 
affected by material discontinuities and the 
same is reflected in changes in the impedance 
of the receiving coil.

Fiber breakage, fiber misalignment, 
foreign objects

Shearography Optical interference Foreign objects and contaminations, 
delaminations, interlaminar cracks, 
impact damage
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During propagation within a material, the ultrasonic waves are affected by the mate-
rial characteristics, any discontinuity, material boundary, and the environment that sur-
rounds the material. When the waves come across any material boundary, the waves 
partly get reflected at the boundary and the rest get transmitted. The relative propor-
tions of reflected and transmitted waves depend on two parameters—angle of incidence 
of the waves and acoustic impedances of the materials on both sides of the boundary. 
The acoustic impedance of the material is given by [15]

	 Z c= ρ 	 (12.2)

where Z and ρ are the acoustic impedance and density of the material, respectively, and 
c is the velocity of the waves in the material. The fraction of reflected energy intensity, 
that is, energy reflected per unit area, to the incident energy intensity is given by
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where Z1 is the acoustic impedance of the material in which the stress waves are propa-
gating and Z2 is the acoustic impedance of the material on which the waves are incident. 
Similarly, the fraction of transmitted energy intensity to the incident energy intensity 
is given by
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(12.4)

When ultrasonic waves are applied on a material, the first boundary encountered 
by the waves is between the coupling medium and the material. As a result, some of 
the incident energy is reflected from the front wall and the rest is transmitted through 
the material. The transmitted waves are of lower energy, that is, they are attenuated; 
clearly, for dissimilar materials, the attenuation levels are higher. The couplant or the 
coupling medium is a material with comparable acoustic impedance such that efficient 
transmission of energy to the test material takes place. A defect in the material acts 
as a discontinuity in the path of the waves, which partly get reflected at the surface of 
the defect and the rest get transmitted through the test material. Finally, the transmit-
ted waves meet the boundary at the back wall and a similar phenomenon of partial 
reflection and transmission occurs. The reflected and transmitted waves are captured 
as peaks in a display unit. The number of peaks, their location, and size are compared 
with those with a reference specimen, and conclusions are drawn w.r.t. type, size, and 
location of possible defects in the material.

12.3.2  Test Equipment

The ultrasonic test equipment typically consists of the following:

◾◾ Pulse generator
◾◾ Transmitter
◾◾ Transmitting transducer
◾◾ Receiving transducer
◾◾ Amplifier
◾◾ Display unit
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High-voltage electrical pulses of controlled energy are produced by an electronic 
device referred to as the pulse generator and transmitted to the transducer. A trans-
ducer, in general, is a device that converts one form of energy to another. In the case 
of ultrasonic testing, it converts electrical energy to mechanical energy, in the form of 
ultrasound waves, and vice versa. Typically, it uses a piezoelectric crystal or ceramic 
material. A piezoelectric material is a material with polarized molecules. When an 
electric field is forced on such a material, the molecules align themselves in the electric 
field and the material undergoes dimensional changes. On the contrary, when mechani-
cal forces are applied on the material causing dimensional changes in a piezoelectric 
material, an electric field is created. A suitable couplant with high acoustic imped-
ance, such as oil, is used between the piezoelectric transducer and the laminate for 
efficient transmission of signal between them. (Note: Acoustic impedance of a material 
is the product of its density and velocity of sound in the material.) In addition to the 
piezoelectric transducers, one more type of transducers, viz. electromagnetic acoustic 
transducers (EMATs), are in use. A key advantageous feature of the EMATs is that no 
couplant is required with them.

The short high-voltage electrical pulses received by the transducer are converted to 
high-frequency ultrasonic waves, which propagate through the test material. The waves 
get reflected/transmitted at various boundaries and they are finally converted by the 
receiving transducer to electrical energy and amplified by the amplifier. The electrical 
signals are displayed by the display unit in the form of peaks with different heights.

12.3.3  Through-Transmission Technique

The ultrasonic through-transmission technique is schematically shown in Figure 12.1. 
In this method, the transmitting and receiving transducers are held on the front and the 
back surfaces of the laminate such that the transmitted signals are received and con-
verted into electric signals by the receiving transducer, amplified, and finally displayed 
on the cathode ray tube (CRT) display unit. The characteristic display in the through-
transmission technique shows two sharp peaks. The first, which is the larger of the two 
peaks, corresponds to the uninterrupted waves that propagate through the laminate. When 
the waves come across a defect, a partial loss of energy referred to as attenuation occurs. 
The attenuated waves are seen in the form of the smaller peak that appears second.

Pulse generator

Transmitting
transducer

Receiving
transducer Amplifier

Display unit
(CRT) 

Laminate under testing

Couplant

Defect

FIGURE 12.1  Schematic representation of ultrasonic through-transmission testing.
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12.3.4  Pulse-Echo Technique

The ultrasonic pulse-echo technique is schematically shown in Figure 12.2. In this 
method, only one transducer is used that works in a transmitting mode as well as a 
receiving mode. The input waves are transmitted by the transducer in the transmit-
ting mode and the reflected waves are received by it in the receiving mode. At a defect 
location, three peaks are seen in the CRT screen. The first peak is the largest and it 
corresponds to the waves reflected by the front surface of the laminate. When the waves 
come across any defect, attenuation occurs; parts of these attenuated waves are reflected 
from the internal defect surfaces and they appear as the second peak. Similarly, the 
waves that get reflected from the back surface of the laminate appear as the third peak.

12.3.5 � Data Representation: A-Scan, B-Scan, and C-Scan

During ultrasonic testing of a composite part, it is probed by placing the transducer(s) 
at different locations at regular intervals on the surface and an ultrasonic map is cre-
ated. There are three basic ways to represent these data—A-scan, B-scan, and C-scan.

12.3.5.1  A-Scan

An A-scan (Figure 12.3) is a graphical representation, at a point on the surface of a 
laminate, of the amount of ultrasonic energy received w.r.t. time. The horizontal and 
vertical axes are used for travel time and amplitudes of the ultrasonic pulses, respec-
tively. It consists of a series of peaks, which, in a pulse-echo test, may correspond to 
the initial pulse, pulse reflected from a defect or pulse reflected from the back wall. The 
amplitude of a peak is compared with that of a transmitted/reflected pulse through/
from a reference material and nature of a discontinuity, which can be a defect or lami-
nate boundary, is estimated. The relative position of a peak on the time axis, on the 
other hand, is utilized to determine the depth of a defect in the laminate.

12.3.5.2  B-Scan

A B-scan (Figure 12.4) is a 2D graphical representation of defects in the laminate 
cross section. The horizontal axis of the scan is for the linear position of the transducer 

Pulse generator

Display unit
(CRT)

Couplant

Laminate under testing

Transmitting cum receiving transducer

Defect

FIGURE 12.2  Schematic representation of pulse-echo technique.
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and the vertical axis is for travel time. The transducer is moved linearly on the surface 
of the part and a number of very closely placed A-scans are recorded for the same 
defects. A trigger point is introduced in the A-scan data such that whenever the signal 
density crosses the trigger level, a point is created on the B-scan and as the transducer 
is moved, lines representing the defects are created.

12.3.5.3  C-Scan

A C-scan (Figure 12.5) is a 2D graphical representation of defects in the laminate plan 
view. The transducer is moved parallel to the laminate surface in a scan pattern so as to 
cover the complete laminate plane. Usually, a trigger point is introduced in the A-scans 
such that relative amplitude or travel time is recorded at regular intervals and planner 
representation of the defects is obtained.
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FIGURE 12.4  Schematic B-scan in a pulse-echo ultrasonic test.

Transducer

Defect
Laminate

Time

A
m

pl
itu

de

A-scan

b
c

a

a

c
b

FIGURE 12.3  Schematic A-scan in a pulse-echo ultrasonic test. (a) Wave reflected from the front 
wall. (b) Wave reflected from the defect. (c) Wave reflected from the back wall.
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12.3.6  Advantages and Disadvantages

Ultrasonic testing has a number of advantages that make it the most popular 
NDE technique. It is also associated with some disadvantages. These are enumerated 
below:

Advantages:

◾◾ Ultrasonic testing is a highly versatile technique; it is useful for detecting a 
wide range of defects, including both surface as well as interior defects.

◾◾ In addition to flaw detection, it can also be used for thickness measurement of 
a part.

◾◾ The process can be automated and the details of the defects can be obtained in 
various formats.

◾◾ In an ultrasonic testing, no elaborate part preparation is required.
◾◾ It is a very quick technique that provides instantaneous results.
◾◾ In the pulse-echo technique, access to only one side of the part is sufficient.
◾◾ Ultrasonic testing is a highly convenient process as it can be carried out using 

portable equipment.
◾◾ Ultrasonic testing does not involve any hazardous process or any hazardous 

material that can pose a risk to the safety of the operator or to the part.

Disadvantages:

◾◾ Ultrasonic testing is effective in detecting defects that are planner in general 
orientation; it is difficult to detect linear defects parallel to the applied beam 
by this method.

◾◾ The method is not suitable for composite laminates with transverse matrix 
cracks and fiber misalignment.

◾◾ It is difficult to carry out ultrasonic testing of components with rough surfaces.
◾◾ At least one surface of the part must be accessible so that it is possible to probe 

by holding the ultrasonic transducer on the surface. Also, too small parts and 
parts with complex configuration are difficult to scan. For complex part geom-
etries, specially made probes may be needed.

◾◾ For efficient transfer of signal, a coupling medium is required between the part 
and the piezoelectric transducer. As a result, the process tends to become slow.

Scan
directions

Transducer
Defects

Laminate

C-scanDefects

Scan pattern
(plan view)

Transducer

FIGURE 12.5  Schematic C-scan in an ultrasonic test.
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◾◾ Proper training of operators is essential for carrying out ultrasonic testing as 
well as interpretation of output data.

◾◾ It is essential to have reference standards for equipment calibration as well as 
characterization of defects.

12.4  RADIOGRAPHIC TESTING

12.4.1  Basic Concept of Radiographic Testing

During radiographic testing of a material, it is exposed to x-ray or gamma ray radiation 
that penetrates it and forms an image on a special type of film. The image is examined 
and interpreted to draw conclusions regarding the existence of possible defects and 
their characteristics [16,17].

From Equation 12.1, we know that frequency and wavelength are inversely related. 
Let us now consider the energy of the wave, which is directly related to frequency and 
inversely related to wavelength, as follows:

	
E hf

hc
= =

λ 	
(12.5)

where
c		  Velocity of light
h		  A constant called Planck’s constant
E		  Energy of the wave
f		  Frequency of the wave
λ		  Wavelength of the wave

X-rays and gamma rays are electromagnetic waves of extremely short wavelengths. 
Thus, these rays have very high frequency and energy (Table 12.2). As a matter of 
fact, in the electromagnetic spectrum, gamma rays top the list in an increasing order 
of wavelengths, followed by x-rays. (The electromagnetic spectrum consists of radio 
waves, microwaves, infrared radiations, optical waves, ultraviolet radiations, x-rays, 
and gamma rays.) Owing to their extremely short wavelengths and high energy levels, 
x-rays and gamma rays can penetrate through objects that are otherwise opaque to 
visual lights.

When x-rays or gamma rays are directed on a material, the energy of the radiation 
is partially attenuated by absorption and scattering of some of the photons within the 
material. The remaining photons travel through the material, the number of which is 
dependent on the energy of the photons, thickness, density, and atomic weight of the 
material. Mathematically, the intensity of the transmitted radiation is given by

	 I I e x= −
0

µ
	 (12.6)

TABLE 12.2
Characteristic Features of X-Rays and Gamma Rays

Parameters X-Rays Gamma Rays

Wavelength (m) 1 × 10−11 to 1 × 10−8 <1 × 10−11

Frequency (Hz) 3 × 1016 to 3 × 1019 >3 × 1019

Energy (J) 2 × 10−17 to 2 × 10−14 >2 × 10−17
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where
I		  Intensity of the transmitted radiation
I0		  Intensity of the incident radiation
μ = �μ(λ,ρ)�	� Linear absorption coefficient of the material, which is a function of 

the wavelength of the rays and density of the material
x		  Thickness of the material

The ratio of the linear absorption coefficient to the density of the material, that 
is, μ/ρ, is a material constant called the mass absorption or attenuation coefficient, 
which tends to increase with increasing atomic weight. The attenuation of the radia-
tion increases exponentially with thickness and density. A defect in material represents 
a change in density and it results in a difference in attenuation. When a photographic 
film is exposed to the radiations and subsequently processed in a developing solution, 
the exposed areas become dark. The degree of darkening depends on the amount of 
exposure; minimum exposure (i.e., maximum attenuation) would result in minimum 
darkening and vice versa. Thus, a defect in the material can be detected by differences 
in the shades in the film (Figure 12.6).

12.4.2  Radiographic Test Setup

The radiographic test setup consists of basically three parts—the radiation source, the 
specimen on a support table, and the radiation-sensitive film on a holder. The source 
of radiation is the primary element in the setup and it is different for different types of 
radiation.

12.4.2.1  X-Ray Radiography

The source of x-rays is an x-ray tube (Figure 12.7), which is a vacuum tube with a 
cathode and an anode. The vacuum tube is a sealed container in which the cathode is 
an incandescent filament inside a focusing cup and the anode is a plate usually made of 
tungsten. A low voltage is applied to heat the filament that excites the electrons. A high 
voltage, referred to as the tube voltage, is applied between the cathode and anode; it 
causes the electrons to break free from the filament and accelerate toward the anode, 
which is the target. The focusing cup helps focus the stream of electrons (called the 
tube current) on a small area known as the focal point on the target. The collision of 
the high-velocity electrons with the target produces x-rays.

X-rays of different characteristics are needed for different materials and different 
thickness ranges. In general, radiations with higher penetrating power are required for 
thicker parts and denser materials. The low voltage applied to the filament is regulated 
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X-ray beam

Specimen

Defect

X-ray film

FIGURE 12.6  Schematic representation of radiographic testing.
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so as to control the intensity (i.e., number of photons passing through a unit normal 
area in a unit time) of the tube current. On the other hand, tube voltage is regulated for 
controlling both the energy and intensity of the radiation. The higher the tube voltage, 
the higher the speed of the electrons colliding with the target and the higher the energy 
and intensity of the radiation. The energy of the radiation is expressed in electron volts. 
The nominal energy level required for x-ray radiography of PMCs is lower than that for 
metals; typically, 4–8 MeV are common in PMCs.

12.4.2.2  Gamma Ray Radiography

Gamma rays are similar to x-rays in nature; the difference between the two lies in the 
sources of radiation. Unlike x-rays, gamma rays are produced by certain radioactive 
isotopes such as cobalt-60 and iridium-192. Unlike x-rays, gamma rays are emitted by 
these isotopes in two or three discrete wavelengths. Typically, a gamma ray source is a 
small pellet of the isotope shielded inside a portable stainless-steel device called cam-
era. It has a cranking mechanism for making an exposure during radiographic testing.

Film radiography is the oldest and most commonly used radiographic technique. 
Filmless techniques are also in vogue; two of these techniques are real-time radiogra-
phy and computed tomography.

12.4.3  Real-Time Radiography

Computer-assisted real-time radiography provides an opportunity for a quick inspec-
tion of a product, especially in an assembly line. A computerized system is connected 
to the radiographic test setup. The image obtained is digitized, processed, and stored 
using a computer. The data can be analyzed in real time; however, the real-time radio-
graphs are inferior to film-based radiographs.

Focusing cup

Incandescent
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FIGURE 12.7  Schematic representation of x-ray tube. (Adapted from Non-Destructive Testing of 
Fiber Reinforced Plastics Composites, Volume 1, A. F. Blom and P. A. Gradin, Radiography, pp. 1–23, 
Copyright 1987, from Elsevier Applied Science.)
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12.4.4  Computed Tomography

Computed tomography is a sophisticated version of radiographic testing that enables 
the technician to obtain a 3D representation of defects in the specimen [18]. The test 
setup provides for moving the radiation source along a circular path about a vertical 
axis around the specimen. Alternatively, the specimen is rotated about its vertical axis 
on a turntable. A collimator is used such that only a thin slice of the specimen normal 
to the vertical axis is exposed to radiation. At each angular position of the specimen 
w.r.t. the radiation source, the fan-shaped beam of radiation penetrates a slice of the 
specimen and an attenuation profile is recorded. A number of attenuation profiles at 
regular angular interval are recorded and the data are processed using a computer-
based algorithm to reconstruct the cross-sectional profile of the specimen. The collima-
tor is moved vertically and cross-sectional profiles of various slices at regular vertical 
intervals are obtained. A 3D image is then created by combining the cross-sectional 
profiles of all the slices. Figure 12.8 gives a schematic representation of the computed 
tomographic process.

12.4.5  Advantages and Disadvantages

Radiographic tests and ultrasonic tests are often employed as complementary to each 
other; data from one test can be used for the interpretation of data from the other and 
thereby a wide range of defects can be detected with maximum accuracy. Like ultra-
sonic testing, radiographic testing too has its own advantages and disadvantages. These 
are briefly enumerated below:

Advantages:

◾◾ Radiographic testing is useful for detecting a wide range of defects that include 
delaminations, debonds, voids, foreign material, etc.

◾◾ It can also be used, by taking tangential shots, for thickness measurement of 
a part.

Fan-shaped beam of radiation

Specimen rotation

Specimen on a turntable

Attenuation profile

Defect

Source

Slice

Specimen

Turntable

Collimators(a)

(b)

Reconstruction
algorithm

Image of the specimen

FIGURE 12.8  Schematic representation of computed tomography. (a) Exposure of a slice of the 
specimen. (b) Attenuation profiles in the slice at two angular locations.
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◾◾ There is nearly no limitation on the type of materials that can be tested by 
radiographic techniques.

◾◾ Practically no part preparation is required in this method.
◾◾ Direct physical access to the part is not required.
◾◾ Permanent record of defects can be obtained.

Disadvantages:

◾◾ The location of defects in the thickness direction cannot be obtained in radio-
graphic testing with shots normal to the laminate.

◾◾ Access to both the sides of the part is required.
◾◾ It is a slow process involving exposure of the part to the radiation followed by 

development of the films.
◾◾ Radiographic testing is an expensive process as it requires highly expensive 

equipment for the generation of x-rays or gamma rays. Similarly, a proper sup-
port table with suitable fixturing is necessary for holding and manipulating the 
part during inspection. Also, the civil works that house the testing facility are 
generally highly expensive.

◾◾ Radiographic testing is a highly hazardous process and adequate protective 
measures to the operators and nearby personnel are essential.

◾◾ A high level of training of operators is essential for carrying out radiographic 
testing as well as interpretation of output data.

12.5  ACOUSTIC EMISSION

12.5.1  Basic Concept of Acoustic Emission

12.5.1.1  Acoustic Emission

When a structure is loaded, it undergoes deformations and strain energy is stored in it. 
The stress distribution in a loaded structure changes suddenly when damage mecha-
nism processes such as crack initiation and propagation, delamination, fiber breakage, 
debond, etc. occur. These processes are associated with a rapid release of strain energy. 
The released strain energy is partially consumed in crack propagation by new crack 
surface creation and plastic zone growth. Some of the released strain energy generates 
transient stress waves. AE is a term that refers to the generation of such transient stress 
waves [19–21].

AE waves are similar to ultrasonic waves in nature and they follow the same rules 
of reflection, refraction, attenuation, and other associated phenomena. They are of two 
types—burst emission and continuous emission. Burst emission corresponds to an 
individual event and it is a discrete signal of high amplitude that quickly dies down. 
Continuous emission, on the other hand, is characterized by sustained levels of ampli-
tudes that correspond to rapidly occurring events.

12.5.1.2  AE Sources

As indicated earlier, the common AE sources in a PMC material are the various pro-
cesses of damage such as matrix crack initiation and propagation, delamination, fiber 
breakage, debond, etc. Owing to the anisotropic nature, failure in a PMC material is a 
progressive phenomenon characterized by the initiation of matrix microcracking at a 
much lower level of load than the final failure load. Under gradually increasing loads, 
crack propagation associated with fiber bridging, delamination, debonding, and, finally, 
fiber fracture take place. Clearly, failure process in a PMC material is a complex phe-
nomenon and the associated AE signals are a mixture of different types. In addition 
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to the signals generated from the damaged zones, noises from unwanted mechanical, 
thermal, and electromagnetic sources clutter the raw data.

12.5.1.3  Kaiser Effect and Felicity Effect

The Kaiser effect is an important concept in the field of AE. It states that a material 
does not release AE at load levels lower than or equal to the previous maximum. To 
understand it in simpler words, let us consider a material subjected to a maximum load 
P1. Let us unload and reload the material to a load P2. Then, as per the Kaiser effect, 
acoustic activity will take place during reloading only if P2 > P1. The Kaiser effect was 
originally postulated for isotropic materials such as metals. This, however, does not 
hold good in composite materials. The breakdown of the Kaiser effect in composite 
materials is referred to as the Felicity effect. In this connection, a parameter called 
Felicity ratio is used and it is defined as the ratio of the load at which Felicity effect 
occurs, that is, the load, lower than the previous maximum, at which acoustic activ-
ity takes place during reloading, to the previously applied maximum load. The Kaiser 
effect and Felicity effect principles are often utilized in periodic inspection of struc-
tures for the detection of possible damage growth.

12.5.2  AE Test Setup

In an AE test, the test article is loaded gradually as per a test plan. Under the applied 
loads, as explained previously, AE waves are generated. The signals are detected and 
processed to locate and characterize possible defects in the test article. The test setup 
is schematically shown in Figure 12.9. There are basically two parts in the test setup—
data acquisition unit and data analysis unit. The data acquisition part consists primarily 
of the AE sensors and the signal cables. A number of sensors in an array are attached 
directly to the structure for detecting the signals. The signals are preamplified, filtered, 
postamplified, and fed to the computer for processing, storage, and display.

12.5.3  Data Acquisition

The stress waves generated from a source propagate through the material and eventu-
ally reach the material surface, where they are detected by the AE sensors. Depending 
on the test objectives and test article characteristics, the sensors may be employed in 
single-channel, small multichannel array, or in elaborate multichannel array. In general, 
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Computer: AE test control,
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load 

Preamplifier
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AE sourceSpecimen

FIGURE 12.9  Schematic representation of acoustic emission test setup.
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in an AE test, piezoelectric transducers are used as sensors. The sensors should be 
sensitive in the appropriate frequency range, which for PMC materials is usually 
20–1000 kHz. Suitable gel-type couplants are used for mounting the sensors on the 
component surface such that the sensors can be removed after the test. For permanent 
bonding of sensors, epoxy-based adhesives are used.

12.5.4  Data Analysis

Data analysis is carried out for extracting useful information from the raw data. 
It  involves primarily three steps—data processing, data interpretation, and evalua-
tion of the structural integrity of the test article. Depending on test objectives, data 
analysis can be done as (i) real-time analysis during the test, (ii) post-test analysis, and 
(iii) both real-time and post-test analyses. Real-time data analysis is done when test 
load conditions are controlled based on the data analysis output. Usually, it involves 
plotting a number of graphs, in some predesignated format, of key parameters w.r.t. the 
applied loads. Post-test analysis is done when real-time analysis is not required. On the 
other hand, when real-time analysis is inconclusive and more detailed information is 
required, both real-time and post-test analyses are carried out.

The signals received from the sensors are generally of very low voltage and some 
amount of preamplification is required before any signal processing. A preamplifier 
of appropriate type is connected to the sensor output. It boosts the impedance of the 
signals to a level that is suitable for the long signal cables and other electronic units. 
Another important function of the preamplifier is to remove the unwanted noise, for 
which three different types of filters—high-pass filters, low-pass filters, and band-pass 
filters—are fitted to the preamplifier. The preamplified and boosted signals are then 
fed to the main amplifier unit, which gives further boost to the strength of the signals.

The main amplifier output can be treated by analog processing as well as digital pro-
cessing. In analog processing, the burst events, which occur at random, are separated 
from the continuous events by employing a certain threshold. The continuous signals 
are usually processed by using root-mean-square (RMS) techniques. The RMS tech-
niques are especially useful to detect the progressive failure of PMCs where the events 
occur rapidly in nearly continuous fashion.

The waveform of the AE signals is characterized by a number of parameters 
(Figure 12.10); notable among them are event count, ring-down count, amplitude, energy, 
event duration, and rise duration. The digital processing techniques revolve around the 
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FIGURE 12.10  AE waveform parameters. (Adapted with permission from P. K. Mallick, 
Nondestructive tests, Composites Engineering Handbook (P. K. Mallick, ed.), Marcel Dekker Inc., 
New York, 1997, pp. 1147–1181.)
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digital measurement of these parameters. For example, in the ring-down counting, the 
number of amplified pulses in excess of certain threshold amplitude is counted. Similarly, 
event counting involves counting of groups of pulses that exceed the threshold ampli-
tude. Often, these counting techniques are employed, together with Felicity principle, in 
detecting damage initiation and damage growth in a composite structure under loads.

12.5.5  Advantages and Disadvantages

AE is a powerful method for the NDT of PMCs. Some of its main advantages and dis-
advantages are listed below:

Advantages:

◾◾ AE is a method for real-time and continuous health monitoring of a structure 
under load.

◾◾ It allows the detection of a growing defect much before its critical size is 
reached.

◾◾ It is a cost-effective and quick method; in an AE test setup, it is possible to 
deploy an array of limited number of sensors for global monitoring of the 
structure.

◾◾ It can be operated from a remote location in an unattended mode.

Disadvantages:

◾◾ AE testing demands the application of loads on the structure.
◾◾ It is not suitable for determination of damage size.
◾◾ AE testing and data analysis become very complicated due to the anisotropic 

nature of composites and high noise levels.

12.6  INFRARED THERMOGRAPHY

12.6.1  Basic Concept of IR Thermography

Infrared thermography, in the field of NDT, is a method in which a defect is detected by 
inspecting the specimen’s surface temperature distribution and/or surface temperature 
decay rate [22]. A defect in the specimen, when compared to the surrounding mate-
rial, possesses dissimilar thermal properties. As a result, it appears as a variation in a 
thermographic image.

Thermographic NDT methods are of two types—active or dynamic and passive or 
static. In active thermography, the specimen is heated either on its surface or in its inte-
rior locations for a limited period by means of some external means. As the heat dis-
sipates into the interior of the specimen and the surrounding, the surface temperature 
distribution and temperature decay rates are monitored. An infrared camera is used 
in the bands of 3–6 μm for short wavelengths and 9–12 μm for long wavelengths. It 
converts the temperature distribution into a thermograph, in which a bright shade rep-
resents a hot spot and a dark shade a cold spot. Typically, a defect is seen either as a hot 
spot or as a cold spot.

In passive thermography, too, an infrared camera is used; however, in this case, the 
specimen is kept under normal conditions. Any matter above the absolute temperature 
emits electromagnetic radiations due to the motions of the atomic particles. Surface 
temperature distribution is monitored in a steady state and a thermographic image is 
made. For the determination of defects, it is compared with the thermographic image 
obtained from a defect-free specimen.
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12.6.2  Types of Active Thermographic Methods

A number of active thermographic methods are in vogue; these methods can be fur-
ther classified into optical methods and mechanical methods. In the optical methods, 
heat is applied by external excitation via optical means using different types of lamps, 
infrared heaters, or jets of hot air/water. Three commonly used optical active meth-
ods are—pulse thermography, lock-in thermography, and step heating thermography. 
Mechanical methods, on the other hand, involve heating of some interior locations, 
typically crack tips, by means of mechanical vibrations. Vibrothermography is a com-
mon mechanical active thermographic method.

12.6.2.1  Pulse Thermography

PT is a popular IR thermographic method in which the specimen is exposed to a 
short heat pulse from an external source. For nonconducting materials, such as PMCs, 
the pulse duration is a few seconds, whereas for conducting materials, it is generally 
less than a second. A schematic representation of the pulse thermography is given in 
Figure 12.11. The light wave from the source travels in air by radiation before it reaches 
the specimen surface. The infrared radiation partially gets reflected at the specimen 
surface and the rest travels by conduction as thermal wave inside the material. When 
encountered with a defect, some portion of the thermal wave gets reflected back to the 
surface and increases the local temperature. As result, the defect is seen as a hot spot 
in the thermographic image.

12.6.2.2  Lock-In Thermography

The reflected light wave from the specimen surface, in pulse thermography, may cre-
ate noise, making it difficult to detect defects; this issue is overcome in the lock-in-
thermographic method. In this method, instead of a single pulse, the intensity of the 
lamp is controlled and a continuous sinusoidal light wave is applied on the specimen. 
The thermal wave traveling through the material partially gets reflected from the defect 
and returns to the specimen surface. The reflected wave and the incoming wave inter-
fere at the specimen surface and interference patterns are formed. An infrared camera 
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FIGURE 12.11  Pulse thermography. (a) Light wave traveling by radiation from source toward the 
specimen. (b) Partial reflection of light wave from the specimen surface and conduction of the rest as 
thermal wave. (c) Partial reflection of thermal wave from the defect surface. (d) Schematic representation 
of defect as a hotspot in the thermographic image.
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monitors the interference patterns and the defects are detected by analyzing the phase 
and amplitude data.

12.6.2.3  Vibrothermography

Vibrothermography is based on the fact that when a specimen with flaws is subjected 
to external mechanical vibration at certain frequencies, the crack surfaces rub against 
each other and produce heat. Thus, the crack tips and surfaces are seen as hot spots in 
a thermographic image.

12.6.3  Advantages and Disadvantages

Infrared thermography is a unique NDT method and it offers several advantages over 
others. It can often be used effectively where other methods such as ultrasonic testing 
and radiography do not produce reliable results. Similarly, like other NDT techniques, 
it also has its own limitations. Some of its major advantages and disadvantages are as 
follows:

Advantages:

◾◾ Infrared thermography is a noncontact method and inspection can be done 
from a distance from the structure.

◾◾ It is fast method as a relatively large surface can be covered in a single shot.
◾◾ It provides a pictorial representation of the surface area and, as a result, data 

interpretation is quick.

Disadvantages:

◾◾ Infrared thermography is suitable mainly for surface and superficial defects 
only; its effectiveness reduces with increase in part thickness.

◾◾ The anisotropic nature of composites may produce different thermal properties 
in different directions, resulting in difficulty in data interpretation.

◾◾ Infrared camera may sometimes be expensive.

12.7  EDDY CURRENT TESTING

12.7.1  Basic Concept of Eddy Current Testing

Eddy current testing is based on the phenomenon of electromagnetic induction [23]. 
A conductor carrying electrical current is associated with a magnetic field around it. 
The magnetic flux is normal to the direction of the electric current. An alternating cur-
rent in a conductor produces a magnetic field with corresponding varying strength and 
direction. Now, if a second conductor is placed close to the first, the varying magnetic 
field induces electric current in the second conductor. Further, if the first conductor is a 
coil and the second conductor is a flat object, the induced current follows a closed-loop 
circular path in the plane of the object (Figure 12.12). These induced currents, due to 
their resemblance with eddies, are called eddy currents.

Eddy current testing, as an NDT technique, involves inducing eddy currents in the 
specimen. The specimen is nothing but the second conductor referred above. A probe 
containing a coiled conductor carrying alternating current is used for excitation of 
the specimen. The probe is also used for receiving signals back from the specimen. 
Alternatively, a separate probe is used for receiving signals. The alternating current 
in the probing coil generates an oscillating magnetic field, referred to as the primary 
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magnetic field, which in turn, produces eddy current in the specimen. The eddy current 
produces a secondary magnetic field, which interacts with the primary magnetic field 
through mutual inductance.

The eddy current is affected by defects such as near-surface cracks. The variations 
such as changes in the amplitude and pattern of the eddy current and its associated 
magnetic field cause changes in the impedance of the receiving probe coil. An eddys-
cope instrument connected to the receiving coil plots the changes in impedance ampli-
tude and phase angle, which are used for identifying defects in the material.

12.7.2  Advantages and Disadvantages

The advantages and disadvantages associated with eddy current testing can be enumer-
ated as follows:

Advantages:

◾◾ Eddy current testing is a simple, reliable, and quick method for the NDT of 
conducting materials. By employing a number of channels in an array, a large 
specimen area can be covered in a single pass, which results in drastic reduc-
tion in inspection time and increased reliability.

◾◾ Part preparation required is a minimum.
◾◾ Access to both the sides of the part is not essential.
◾◾ It is a noncontact method, that is, the probe does not need to be in contact with 

the part.

Disadvantages:

◾◾ The applicability of eddy current testing is limited to only conductive 
materials; among PMCs, it is suitable mainly for carbon fiber–reinforced 
composites.

◾◾ The depth of penetration is limited and surface and near-surface defects can 
only be reliably detected by this technique; it is not suitable for detecting 
defects deep inside the material.

◾◾ It is not suitable for the detection of planner defects aligned in the directions 
of the eddy currents.

◾◾ The surface finish of the test specimen may interfere with the electromagnetic 
fields.

◾◾ Highly skilled trained manpower is essential for the interpretation of the data 
recorded.
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FIGURE 12.12  Schematic representation of eddy current testing setup.
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12.8  SHEAROGRAPHY
Many optics-based techniques are in vogue for various engineering applications. 
Clearly, some source of light is used in these methods. Several of them have found use 
in the field of NDT of composites. Some of the optical NDT methods are moire inter-
ferometry, holographic interferometry, speckle photography, shearography, etc. All of 
these methods have their own unique flaw detection capabilities, advantages, and dis-
advantages. In this section, we discuss in brief the basic concepts and advantages and 
disadvantages of shearography.

12.8.1  Basic Concept of Shearography

The principle of optical interference is used in shearography [24–26]. The test speci-
men is illuminated by a divergent beam from a point laser source. The surface rough-
ness of the specimen is required to be of the order of the wavelength of the incident 
light or more. The beam gets scattered from the surface; it is made to pass through a 
special shear lens and the image is recorded either by conventional wet photographic 
means or digitally. The sheared image and the direct image interfere with each other 
and form a speckle pattern. (A speckle pattern is formed by mutual interference of 
waves of same frequency.)

Now, if the specimen is loaded by some means such as acoustic or mechanical vibra-
tion, thermal loading, etc., a stress/strain distribution is created, which is affected by 
the presence of any defect. As a result, the speckle pattern from a loaded specimen 
also gets affected and defect detection is done by comparing the speckle patterns of the 
specimen in the unloaded and loaded states.

12.8.2  Advantages and Disadvantages

Shearography, as an NDT method, has its own advantages and disadvantages as enu-
merated as follows:

Advantages:

◾◾ Shearography is a noncontact method; inspection of the test specimen can be 
done without bringing any probe or test equipment in contact with it.

◾◾ It provides a full-field measurement of the test specimen.
◾◾ It provides a quick and reliable method of inspection and is suitable for on-field 

inspection.

Disadvantages:

◾◾ In shearography, the specimen is required to be loaded although to a lower 
level than operating conditions.

◾◾ Surface roughness should be comparable with the wavelength of light or more.
◾◾ Data interpretation is complex and high level of training and experience is 

needed for reliable flaw detection.

12.9  SUMMARY
A brief discussion on NDT of PMCs is given in this chapter. The key points that can be 
noted from the presentation are as follows:

◾◾ Defects are created in a PMC material during processing as well as during 
service life.
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◾◾ In a PMC material, defects are of many types and they are usually more in 
number.

◾◾ Several NDT techniques are available for defect detection in PMCs.
◾◾ NDT techniques for PMCs are primarily extensions, with necessary adapta-

tions, of those originally developed for metals.
◾◾ NDT techniques have their own unique advantages and disadvantages; while 

ultrasonic testing and radiographic testing are the most common NDT tech-
niques used in PMCs other methods, too, have their share of use.

EXERCISE PROBLEMS

	 12.1	 What are the different types of defects encountered in PMCs? How are 
they different from those in metals?

	 12.2	 What are the common nondestructive testing techniques employed in 
PMCs? Prepare a brief note giving the principles behind each of these 
techniques and their applicability in the detection of specific defects.

	 12.3	 What are the two different techniques employed in ultrasonic testing? 
What are the different ways of data representation? Give a brief note.

	 12.4	 Give a brief note on the basic principle of radiographic testing. What 
are the different techniques of radiographic testing that are used in 
composites?

	 12.5	 Give a comparative note on the advantages and disadvantages of ultra-
sonic testing and radiographic testing.
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13.1  CHAPTER ROAD MAP
Various aspects of PMCs have been covered in the chapters so far and we are close 
to moving on to the design of composite products. However, before that, we need to 
familiarize with some essential concepts related to the other three broad classes of 
composites—MMCs, CMCs, and C/C composites. These composites have their own 
characteristics and unique applications and play major roles in the overall field of com-
posites technology. In fact, to a large extent, they complement each other and help the 
designer achieve an optimal solution. Thus, it is desirable that a composites engineer or 
scientist has introductory knowledge in these areas as well. With this in mind, this chap-
ter is devoted to present brief discussions on these three classes of composites. Basic 
characteristics including advantages and disadvantages, constituent raw materials, viz. 
reinforcements and matrices, manufacturing methods, and applications are addressed.

This chapter can be taken up immediately after Chapter 1. However, familiarity 
with the topics on constituent materials and composites manufacturing discussed in 
Chapters 9 and 10 is desirable.

13.2  INTRODUCTION
Work on MMCs was initiated around the 1950s; however, significant development and 
growth took place much later—after the 1980s. Today, MMCs have their own place in 
the R&D and industry with numerous applications in aerospace, automotive, ground 
transportation, electronics, and other commercial sectors. CMCs and C/C composites 
are relatively new compared to the PMCs and MMCs and they are known for their 
exceptionally high-temperature capabilities.

Characteristic features, constituent reinforcing and matrix materials, manufactur-
ing processes, and applications in respect of MMCs, CMCs, and C/C composites are 
addressed at a level deemed sufficient for a product development engineer in the field of 
PMCs. In-depth discussion is beyond the scope of this book. For further details, the inter-
ested reader can consult available articles and texts in the fields of MMCs, CMCs, and C/C 
composites. For instance, a thorough treatment of the characteristic behavior of MMCs, 
their constituents, viz. reinforcements and matrix, processing techniques, application, cur-
rent industrial status, etc. is given in References 1–3. Further information on various gen-
eral and specific areas related to MMCs can also be found in many articles, for instance, 
References 4–13. Carbon fibers are an important reinforcing material not only in PMCs 
but also in MMCs, CMCs, and C/C composites; extensive work has been done in this 
field and information regarding structure, properties, precursor materials and carbon fiber 
production, carbon fiber composites, and application can be found in several texts (see, for 
instance, References 14–16). Various aspects of CMCs, including general characteristics, 
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reinforcing materials and matrix materials, fabrication process, and applications, are pre-
sented in References 17–19. CMCs are also discussed in a number of articles [19–22]. 
C/C composites are sometimes treated as a special case of CMCs where the matrix and 
reinforcement are both carbon. A number of text books and articles are available solely 
devoted to discuss characteristics, production of raw materials, preforming and fabrication 
of products, applications, and other related aspects of C/C composites [23–27].

13.3  METAL MATRIX COMPOSITES

13.3.1  Characteristics of MMCs

As noted in the introductory chapter, in an MMC material, a metal or an alloy is the 
continuous phase in which the reinforcement is embedded. The reinforcements can be 
either continuous or discontinuous. Based on the geometry of the reinforcements, four 
broad classes of MMCs can be identified, as follows:

◾◾ Particulate-reinforced MMCs
◾◾ Short fiber- and whisker-reinforced MMCs
◾◾ Continuous fiber-reinforced MMCs
◾◾ Monofilament-reinforced MMCs

Particulate reinforcements are either metallic or ceramic particles where no dimension 
of the reinforcements is more than about five times the other two dimensions. Particulate-
reinforced MMCs are isotropic and they exhibit generally inferior mechanical properties 
as compared to the other types of MMCs. However, their processing is cheap and simple.

Short fibers and whiskers are discontinuous reinforcements with aspect ratio (length-
to-diameter ratio) more than five. These MMCs are generally anisotropic and the extent 
of anisotropy increases with the nominal aspect ratio of the fibers. However, with spe-
cialized powder metallurgy routes and preform making, isotropic properties can also 
be achieved in these MMCs. Property characteristics of short fiber/whisker-reinforced 
MMCs are dominated by the matrix and they are pretty similar to or marginally better 
than the particulate-reinforced MMCs.

Continuous fibrous reinforcements are tows of Al2O3, SiC, carbon, boron, etc. (A tow 
is a bundle of several hundred or thousand fibers.) Fibers are embedded into the matrix 
in a certain direction and it results in highly anisotropic properties of the MMC. High 
fiber volume fractions are possible and composite properties are dominated to a large 
extent by the fibers. Strength and stiffness are very high in the fiber direction. Across 
the fibers, the matrix plays a dominant role and the transverse properties are similar to 
those of particulate-, short fiber-, or whisker-reinforced MMCs.

Monofilaments used are mainly boron, silicon carbide, etc. These are very similar to 
the continuous fibers, the primary difference being the diameter of the reinforcements. 
Monofilaments are larger in diameter and are available as individual filaments wound 
in spools.

Addition of reinforcements in a monolithic metal greatly improves its mechanical 
and other properties and MMCs have a number of advantages over monolithic metals 
as well as PMCs. There are certain disadvantages as well. Some of the key advantages 
and disadvantages are as follows:

Advantages:

	 1.	High specific strength and stiffness (w.r.t. monolithic metals): MMCs possess 
higher specific strength and stiffness compared to their monolithic counterparts. 
For example, a representative range of specific tensile strengths of monolithic 
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aluminum and its alloys is 22–259 MPa/g/cc, whereas the corresponding fig-
ures for SiC/Al MMC are of the order of 72–259 MPa/g/cc. As a result, in 
general, MMCs are structurally more efficient than monolithic metals.

	 2.	Low thermal expansion: Average CTEs of MMCs are relatively lower than 
those of the monolithic metals and PMCs. As a result, issues related to thermal 
mismatch and thermal stresses and strains are less severe.

	 3.	High fatigue resistance: MMCs exhibit higher fatigue resistance—higher 
fatigue strength and longer fatigue life—compared to unreinforced metals.

	 4.	High service temperature: Common polymers such as epoxy, polyester, etc. degrade 
at high temperatures. Generally, they have low Tg and low service temperatures. 
As a result, PMCs cannot be exposed to high temperatures during their service. 
On the other hand, metals and MMCs have relatively higher service temperatures.

	 5.	Tailorable properties: In an MMC, it is possible to significantly tailor the prop-
erties such as CTE, stiffness parameters, etc. by choosing the type and propor-
tion of the reinforcements. It gives the designer a great deal of flexibility, which 
is not available with monolithic metals.

	 6.	High transverse strength and modulus: Transverse strength and modulus of 
composite material are directly influenced by the matrix material. Metals typi-
cally possess higher tensile and compressive strengths and moduli than those 
of unreinforced common polymers. Thus, transverse strength and modulus of 
MMCs are higher than those of unidirectional PMCs.

	 7.	High shear strength and modulus: In-plane shear strength and modulus are 
also matrix-dominated properties and metals typically possess higher shear 
strength and modulus than those of unreinforced common polymers. Thus, 
like transverse strength and modulus, shear strength and modulus of MMCs 
are higher than those of unidirectional PMCs.

	 8.	Moisture absorption: Metals and MMCs do not absorb moisture and, as 
a result, issues like swelling due to moisture absorption, delamination, etc., 
which affect PMCs, are not present in MMCs.

	 9.	High electrical and thermal conductivities: MMCs are highly conducting both 
electrically as well as thermally. Thus, they are suitable in applications where 
thermal and electrical conductivities are desired.

	 10.	Ease of joining: Bolted and threaded joints can be easily incorporated in 
MMCs. Welded joints are also possible. On the other hand, the provision of 
mechanical joints is a major concern in PMCs.

	 11.	Resistance to most radiations: MMCs are also generally resistant to most 
radiations like UV radiations, etc.; unlike PMCs, they do not degrade when 
exposed to such radiations.

Disadvantages:

	 1.	High densities: The densities of MMCs are higher than those of polymers. 
For example, typical densities of carbon/epoxy, glass/epoxy, and Kevlar/epoxy 
composites are 1.5 g/cm3, 1.8 g/cm3, and 1.4 g/cm3, respectively, whereas the 
typical density of an aluminum matrix composite is 2.8 g/cm3.

	 2.	Low specific strength and stiffness (w.r.t. PMCs): The high densities of MMCs 
result in lower specific strength and modulus as compared to PMCs.

	 3.	High processing costs: MMC processing methods are generally complex and 
more expensive than most PMC processing methods.

	 4.	Reduced ductility and fracture toughness (w.r.t. monolithic metals): Reinforcing 
a monolithic metal may reduce its ductility and fracture toughness. As a result, 
MMCs are likely to be more brittle than the monolithic metals.
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13.3.2  Matrix Materials for MMCs

The two constituent materials in an MMC are the matrix and the reinforcements. 
Various metals and their alloys have been used as matrix in MMCs. In this respect, 
aluminum and its alloys have been the most common. However, other metals such as 
titanium, magnesium, copper, lead, and cobalt have also been used as matrix materi-
als. The choice of a matrix material is dependent on the intended use and it is greatly 
influenced by the requirements of strength, temperature resistance, low density, and 
low cost. Also, in an MMC, ductility and fracture toughness are imparted primarily by 
the matrix and, accordingly, ductile matrix materials with high fracture toughness are 
generally chosen.

13.3.3  Reinforcing Materials for MMCs

The reinforcements can be either continuous or discontinuous, and they include 
continuous fibers, monofilaments, particulates, short fibers, and whiskers. Various 
metallic and ceramic materials are used as reinforcements in MMCs [1,5]. Some 
examples of reinforcing materials are as follows:

◾◾ Particulates: Metallic particles like tungsten and ceramic particles like silicon 
carbide, alumina, boron carbide, titanium boride, and titanium carbide

◾◾ Short fibers and whiskers: Alumina, silicon carbide, and silicon nitride
◾◾ Continuous fibers: Carbon fibers, boron fibers, alumina fibers, silicon carbide 

fibers, alumina-silicate fibers
◾◾ Monofilaments: Boron and silicon carbide

The basic objective of reinforcing a metallic material to form an MMC is to achieve 
a set of improved properties that are suitable in certain applications in a better way. 
These improved properties are often associated with light weight, high strength and 
stiffness, resistance to high temperatures, etc., and these are directly dependent on the 
choice of the reinforcing material. Some of the desirable characteristics of the reinforc-
ing materials are as follows:

◾◾ Low density
◾◾ High mechanical properties
◾◾ Compatibility
◾◾ High temperature resistance
◾◾ Processability
◾◾ Cost

MMCs are often used in weight-sensitive applications, where high specific strength 
and stiffness are essential requirements. This is possible with low-density reinforce-
ments of high strength and stiffness.

One of the most important factors in choosing the reinforcing material and matrix is 
the compatibility between the two. Both mechanical as well as chemical compatibility 
are important. There should be minimum thermal mismatch between the two phases. 
Also, there should not be undesirable chemical reaction at the interface between the 
reinforcements and the matrix that can lead to the formation of harmful intermetal-
lic compounds and sites for possible crack initiation. Note that the interphase must be 
able to transfer loads efficiently between the matrix and reinforcements so that their 
capacities are exploited fully in the composite form.
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13.3.4  Manufacturing Methods for MMCs

A good number of methods have been developed for the processing of MMCs [1–4,6]. 
All these methods involve essentially combining two distinct phases—a monolithic 
metallic matrix and a discontinuous reinforcement phase. Also, these methods, in a 
broad sense, have three sequential stages:

◾◾ Preprocessing
◾◾ Primary processing
◾◾ Secondary processing

Preprocessing is a stage that precedes the primary processing; in most cases, it 
involves certain suitable processes on the reinforcements. Primary processing is the 
actual stage of combining or forming the two separate phases to make the MMC. 
Secondary processing is the stage wherein the MMC is deformed, shaped, rolled, 
machined, hardened, or joined to form the final part.

MMC manufacturing methods can be broadly divided into four classes, each having 
its subclasses:

◾◾ Solid-state methods
−− Powder metallurgy methods
−− Consolidation diffusion bonding

◾◾ Liquid-state methods
−− Liquid metal infiltration
−− Stir casting
−− Spray casting

◾◾ Deposition methods
−− Electrodeposition
−− Spray deposition
−− Vapor deposition

◾◾ In situ methods
−− Reactive methods
−− Nonreactive methods

Table 13.1 schematically depicts the MMC manufacturing methods. Note that the 
table is only representative and not exhaustive. Also, dividing the MMC manufactur-
ing methods into different categories with different stages is a matter of convenience of 
study. While distinct features and differences exist, the boundary lines may sometimes 
get blurred.

  Solid-state methods: In the solid-state methods, both the reinforcement and 
matrix remain in the solid state and the two phases defuse and bond with each 
other at an elevated temperature to form the desired MMC [7]. The temperatures 
during solid-state methods, however, are relatively lower than the liquid-state 
methods and undesirable chemical reactions between the two phases are absent in 
these methods. Thus, solid-state methods are useful in situations where the matrix 
is reactive in the liquid state, for example, titanium matrix composites. (Molten 
titanium is very highly reactive and it can degrade nearly any possible reinforcing 
material.)

Solid-state methods can be further subdivided into two groups: powder metallurgy 
methods and consolidation diffusion bonding.



624 Composite Structures

TABLE 13.1
MMC Manufacturing Methods

Manufacturing Methods Typical Constituents Typical Processes

Solid-State Methods

Powder metallurgy 
methods

Reinforcements: Particles, short fibers 
and whiskers, for example, SiC, 
Al2O3, TiC, and B4C

Matrix: Powder, for example, Al, Fe, 
and Ni

Preprocessing: Blending, 
compaction

Primary processing: Cold pressing 
with sintering, hot pressing, HIP

Secondary processing: Extrusion, 
forging, rolling, machining, joining

Consolidation diffusion 
bonding

Reinforcements: Monofilaments, for 
example, SiC

Matrix: Foil, for example, Ti

Preprocessing: Foil/monofilament 
stacking

Primary processing: Diffusion 
bonding

Secondary processing: Machining, 
joining

Liquid-State Methods
Liquid metal infiltration Reinforcements: Particles, short fibers 

and whiskers, for example, SiC and 
Al2O3

Matrix: Molten metal, for 
example, Al

Preprocessing: Preform making
Primary processing: Infiltration
Secondary processing: Extrusion, 
forging, rolling, machining, joining

Stir casting Reinforcements: Particles, short 
fibers, and whiskers, for example, 
SiC and Al2O3

Matrix: Molten metal, for 
example, Al

Primary processing: Stir casting
Secondary processing: Extrusion, 
forging, rolling, machining, joining

Spray casting Reinforcements: Particles, short 
fibers, and whiskers, for example, 
SiC and Al2O3

Matrix: Molten metal droplets, for 
example, Al

Primary processing: Spray casting
Secondary processing: Extrusion, 
forging, rolling, machining, joining

Deposition Methods
Electrodeposition Reinforcements: Particles, short 

fibers, continuous fibers, and 
monofilaments, for example, B

Matrix: Electroplating solution of 
metals, for example, Ni

Primary processing: Deposition, 
winding of coated fibers/
monofilaments, diffusion bonding

Secondary processing: Machining, 
joining

Spray deposition Reinforcements: Continuous fibers 
and monofilaments

Matrix: Molten metal

Primary processing: Deposition, 
stacking of coated fibers/foils/
monofilaments, diffusion bonding

Secondary processing: Machining, 
joining

Vapor deposition Reinforcements: continuous fibers 
and monofilaments

Matrix: Molten metal

Primary processing: Deposition, 
winding of coated fibers, diffusion 
bonding

Secondary processing: Machining, 
joining

In Situ Methods
Reactive methods Reinforcements: Particles, short 

fibers, and whiskers, for 
example, TiC

Matrix: Powder, molten metal, for 
example, Al

Preprocessing: Blending
Primary processing: Chemical 
reactions

Nonreactive methods Reinforcements: Particles, whiskers, 
short fibers, and continuous fibers

Matrix: Polyphase alloy

Primary processing: Unidirectional 
precipitation leading to the 
formation of reinforcements
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Liquid-state methods: As the name suggests, in these methods, liquid metal is used 
as the matrix during processing. Three major groups of methods in this category are 
liquid metal infiltration process, stir casting, and spray casting.

Deposition methods: In these methods, the MMC part is made by the deposition of 
a coating material on the reinforcements followed by stacking or winding of the rein-
forcements and consolidation of the stacked or wound part. Reinforcements in the forms 
of particles, continuous fibers, monofilaments, and preforms can be used. A number of 
methods for metal coating of the reinforcements have been developed; notable among 
these methods are electrodeposition process, spray deposition, and vapor deposition.

In situ methods: In the in situ methods, the reinforcement phase is created in situ 
as a result of certain reactive or nonreactive process in the matrix phase. Depending 
on the nature of the process of reinforcement formation, these methods can be broadly 
placed into two groups—(i) reactive in situ methods and (ii) nonreactive in situ meth-
ods. These are one-step methods and difficulties associated with combining two differ-
ent phases are greatly reduced.

Now, we shall briefly discuss some of the important MMC manufacturing methods.

13.3.4.1  Powder Metallurgy Methods

In the powder metallurgy methods, powders of the matrix material are blended with 
reinforcements [8]. The reinforcements are taken in the form of particles, short fibers, or 
whiskers and the blending process results in a homogeneous mix. The mix is then cold 
pressed followed by sintering. The cold-pressed green compact mass is a porous structure 
containing water vapor and volatile contaminants such as lubricants of mixing and blend-
ing additives. In the first stage of sintering, the water vapor and volatile contaminants are 
removed by a process of degassing. The second stage of the sintering process involves 
the consolidation of the green compact part at high temperature during which the par-
ticles diffuse to the powder matrix. As an alternative to the cold pressing and sintering 
route, the homogeneous mix of matrix and reinforcement is hot pressed. (Cold pressing 
is a process of consolidation at low temperature without simultaneous sintering. On the 
other hand, hot pressing is the process of powder consolidation at high temperature with 
simultaneous sintering.) In the secondary processing, the cold-pressed and sintered or 
hot-pressed MMC part is extruded, forged, or rolled to obtain the final finished product. 
Figure 13.1 schematically shows the powder metallurgy methods of MMC manufacture.

Short fibers and whiskers tend to get broken during the process of blending and 
consolidation and the final composite looks more like a particulate-reinforced compos-
ite. While aluminum alloy powders are commonly used as the matrix, different grades 
of steel and other metals such as nickel, titanium, etc. are also used. Common reinforc-
ing materials are silicon carbide, aluminum oxide, etc.

The powder metallurgy methods are very popular in the field of MMCs. They are 
associated with several advantages as well as some disadvantages, which are as follows:

Advantages:

◾◾ Good mechanical properties
◾◾ Uniform fiber volume fractions can be achieved
◾◾ Useful for making isotropic MMCs
◾◾ No degradation of the reinforcements by chemical reactions with the matrix

Disadvantages:

◾◾ Oxide “skin” formation on Al particles may lead to reduced shear properties
◾◾ Useful primarily for making discontinuously reinforced MMCs only
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◾◾ Fibers may get damaged during hot pressing
◾◾ The cost of production may be high when conventional powder metallurgy 

method is followed by subsequent extrusion and machining, etc.

13.3.4.2  Consolidation Diffusion Bonding

In this method, alternate layers of metallic foils and continuous reinforcing fibers 
are stacked in a certain predetermined order and the pack is then pressed at elevated 
temperature. During the process of hot pressing, the foils and the fibers defuse and a 
multilayered MMC part is formed. The process of consolidation diffusion bonding is 
schematically shown in Figure 13.2. A variant of the foil diffusion bonding technique 
is roll bonding, in which strips of two different metals are rolled and bonded to form a 
laminated composite material. Another variant of the foil diffusion technique is wire/
fiber winding. In this process, continuous ceramic fibers and metallic wires are wound 
around a mandrel and pressed at elevated temperature.

The advantages associated with the consolidation diffusion bonding process are as 
follows:

Advantages:

◾◾ Possible to make MMCs using continuous fibers, monofilaments, and foils, 
resulting in high directional properties

◾◾ Controlled volume fraction can be achieved
◾◾ Minimum broken reinforcements
◾◾ Low porosity
◾◾ Negligible reaction between reinforcements and matrix

Metal
powder

Ceramic
particles

Cold
pressing

Sintering

Hot pressing

Or

Extrusion

Finished MMC
part 

Blending

FIGURE 13.1  Schematic representation of the powder metallurgy methods. (With kind permission 
from Springer Science + Business Media: Metal Matrix Composites, second edition, 2013, N. Chawla 
and K. K. Chawla.)
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Disadvantages:

◾◾ High processing temperature and pressure
◾◾ High cost of production
◾◾ Possibility of stress concentration in the MMC part due to improper fiber 

distribution

13.3.4.3  Liquid Metal Infiltration Process

In a liquid metal infiltration process, molten metal matrix is made to infiltrate into the 
reinforcement phase [9]. The reinforcement is a self-supporting body—either a pre-
form of fibers or a porous body of particles or fibers. It is soaked into the molten metal, 
wherein the liquid fills the pores in the reinforcing body to make the desired MMC 
part. The process of infiltration of molten metal into the pores in the fiber body can be 
either spontaneous or forced.

Spontaneous infiltration, schematically represented in Figure 13.3, is a process in 
which no external force is used. However, capillary forces do not allow proper wetting 
of most reinforcements with molten metal and specific modification to the chemistry 
of the system is required.

Forced infiltration takes place under external pressure, which is generally applied 
either by a pressurized inert gas or by the piston of a hydraulic press. The schematic 
of this process by mechanical pressurization is shown in Figures 13.4. Another form 
of forced infiltration is vacuum-driven infiltration, in which the infiltration process 

Stack of metal
foils and fibers

Pressure
application at high

temperature

Finished
MMC part

Metal foil

Fiber

FIGURE 13.2  Schematic representation of the consolidation diffusion bonding methods. (With kind 
permission from Springer Science + Business Media: Metal Matrix Composites, second edition, 2013, 
N. Chawla and K. K. Chawla.)

Dry
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Partially
infiltrated
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part)

Molten metal

FIGURE 13.3  Schematic representation of the spontaneous infiltration process. (Adapted from V. J. 
Michaud, Liquid-state processing, Fundamentals of Metal-Matrix Composites (S. Suresh, A. Mortensen, 
and A. Needleman, eds.), Butterworth-Heinemann, Boston, MA, 1993, pp. 3–22.)
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takes place under pressure created by vacuum around the preform. The application 
of pressure by a gas is limited to about 10 MPa. The mechanical means involves the 
application of much higher pressure at around 100 MPa and the pressure is maintained 
during solidification. The high pressure during infiltration under pressure by mechani-
cal means results in pore-free MMC; however, the preform tends to get deformed or 
broken during the process.

The major advantages and disadvantages of the liquid metal infiltration methods are 
given below:

Advantages:

◾◾ Feasible to make complex and near net shape parts
◾◾ Rapid rate of production
◾◾ Low cost

Disadvantages:

◾◾ Reinforcements may degrade by chemical reaction with the molten metal
◾◾ Wettability of reinforcements molten metal can be difficult due to capillary 

forces

13.3.4.4  Stir Casting Method

In this method of MMC fabrication, reinforcing particles or short fibers are forcibly 
introduced into and mixed with a molten matrix metal by means of mechanical stirring 
(Figure 13.5). Stirring is followed by casting and solidification. Stir casting is a very 
simple and cost-effective method but it suffers from a drawback of relatively low vol-
ume fraction of the reinforcements. Further, the mix of the reinforcements in the matrix 
may remain nonhomogeneous coupled with the formation of clusters of particles/fibers. 
Rheocasting (a method of stirring the mix of reinforcements in matrix in a semisolid con-
dition) is adopted to improve the distribution of the reinforcements in the metal matrix.

The principal advantages and disadvantages of stir casting methods can be listed as 
indicated below:

Advantages:

◾◾ Simple and cost-effective process
◾◾ Possible to remove undesirable impurities, oxides, and gases by vacuum 

application

Hydraulic piston

Molten metal

Fiber preform
MMC part

FIGURE 13.4  Schematic representation of the mechanically forced infiltration. (Adapted from V. J. 
Michaud, Liquid-state processing, Fundamentals of Metal-Matrix Composites (S. Suresh, A. Mortensen, 
and A. Needleman, eds.), Butterworth-Heinemann, Boston, MA, 1993, pp. 3–22.)
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Disadvantages:

◾◾ Low production rate
◾◾ Nonuniform fiber volume fraction
◾◾ Not suitable for continuous fibers and monofilaments
◾◾ Undesirable chemical reaction may take place between reinforcements and 

matrix

13.3.4.5  Spray Casting

The spray casting method is schematically shown in Figure 13.6. In this method, 
a liquid metal is atomized to form droplets and the liquid/semisolid droplets are col-
lected on a substrate [10]. Discontinuous reinforcements in the forms of particulates, 
short fibers, and whiskers are introduced to the sprayed droplets and they are codepos-
ited on the substrate to form the MMC part.

Heating coils

Furnace

Molten metal

Particles/short fibers 

Motorized stirrer

FIGURE 13.5  Schematic representation of the stir casting method. (Adapted from V. J. Michaud, 
Liquid-state processing, Fundamentals of Metal-Matrix Composites (S. Suresh, A. Mortensen, and 
A. Needleman, eds.), Butterworth-Heinemann, Boston, MA, 1993, pp. 3–22.)

Movable substrate
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Particles/
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Molten metal

Atomizer

Heating coils

Chamber

FIGURE 13.6  Schematic representation of the spray casting method. (Adapted from V. J. Michaud, 
Liquid-state processing, Fundamentals of Metal-Matrix Composites (S. Suresh, A. Mortensen, and A. 
Needleman, eds.), Butterworth-Heinemann, Boston, MA, 1993, pp. 3–22.)
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Typically, a metal alloy is melted by induction heating and made to flow downward. 
Jets of an inert gas such nitrogen are directed onto the thin free-falling stream of liq-
uid metal and forced through a ceramic nozzle that atomizes the liquid into droplets. 
Reinforcement particles such as SiC are sprayed on to the fine droplets and codeposi-
tion of particulate reinforcements and metallic matrix followed by rapid solidification 
takes place. An advantage of this method is its high rate of production. On the other 
hand, for uniform distribution of particulates in the MMC, utmost care and control of 
the environmental parameters in the atomization and particulate feeding have to be 
taken. As a result, sophisticated equipment may be needed, leading to a higher cost of 
production.

The important advantages and disadvantages of this method can be listed as follows:

Advantages:

◾◾ Rapid solidification and high rate of production
◾◾ Minimum chemical reaction between reinforcements and matrix

Disadvantages:

◾◾ Residual porosity cannot be eliminated during primary processing
◾◾ High cost of production

13.3.4.6  Deposition Methods

As noted earlier, three notable deposition methods are electrodeposition, spray deposi-
tion, and vapor deposition.

In the electrodeposition methods, an electroplating solution is utilized for depositing 
metallic matrix on the reinforcements. Figure 13.7 shows a schematic representation of 
the electrodeposition method involving winding of continuous fibers or monofilaments. 
A rotating mandrel is kept in a plating bath. The mandrel acts as the cathode and the 
electroplating solution as the anode. Continuous fibers are wound on the mandrel and 
the voltage difference across the cathode and anode results in simultaneous deposition 
of metal on the fibers. Several layers of fibers are wound and an MMC part with highly 
oriented reinforcements is obtained. A typical example of MMC by electrodeposition 
is B/Ni composites.

Filament spool

Power
supply

Rotating mandrel
(cathode)

Metal
anode

MMC part

Plating bath

FIGURE 13.7  Schematic representation of the electrodeposition by winding.
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In spray deposition, typically fibers are wound on a drum covered with a foil and 
molten metal is sprayed onto the fibers. The wound fibers are cut open and removed 
from the drum to obtain a unidirectional ply. The plies are stacked and hot pressed. 
Figure 13.8 shows a typical spray deposition process.

In addition to the electrodeposition and spray deposition processes, vapor deposition 
methods are also employed in the manufacture of MMCs by the deposition of metal 
coatings on reinforcements. These methods include chemical vapor deposition (CVD) 
and physical vapor deposition (PVD).

Deposition methods are also associated with a number of advantages and disadvan-
tages; the important ones are as follows:

Advantages:

◾◾ Possible to incorporate continuous fibers and monofilaments
◾◾ Controlled reinforcement orientation can be achieved
◾◾ Negligible reaction between reinforcements and matrix, and as a result, no 

formation of undesirable impurities and no reinforcement degradation

Disadvantages:

◾◾ Relatively complex process

13.3.4.7  In Situ Methods

As noted earlier, in situ methods are of two types—reactive and nonreactive.
In the reactive methods, multiple components are reacted in a controlled manner and 

the reinforcements and/or matrix are formed as a reaction output. The reinforcements 
that are typically particulates or whiskers get uniformly dispersed in the continuous 
metal and the resultant product is a particulate/whisker-reinforced MMC. A typical 
example of chemical reaction leading to the formation of MMC is TiC/Al composite 
from carbon, titanium, and aluminum, as follows:

	 C Ti Al TiC Al+ + → + 	

The reacting components can be reacted in different ways. For example, fine powders 
of ceramic and metallic materials can be blended and heated, making the metal powder 
to melt and react with the ceramic. Ceramic powders can also be externally added to a 
molten metal. Alternatively, a preform can be infiltrated with a molten metal; chemical 
reaction can take place either during infiltration or afterward. A schematic representa-
tion of the reactive in situ method by infiltration is shown in Figure 13.9.

In the nonreactive in situ methods (Figure 13.10), a polyphase alloy is heated and 
cooled to solidify in a controlled fashion that results in unidirectional precipitation 

Spray

Foil-coated
mandrel

Fiber

UD ply Stack of plies Consolidation MMC part

FIGURE 13.8  Schematic representation of spray deposition.
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and formation of the reinforcing phase in the continuous matrix. The reinforcements 
formed can be particles, short fibers, whiskers, or continuous fibers.

The in situ methods are not associated with any problems of wettability and the 
resulting MMCs possess good interface between the reinforcements and the matrix.

13.3.5  Applications of MMCs

MMCs have huge potential applications in a wide range of industrial sectors, of which, 
aerospace and automotive sectors are the two major sectors. In addition to these, other 
areas such as electronic packaging, recreational goods, etc. have significant appli-
cations of MMCs. Table 13.2 lists some of the important applications of MMCs in 
different fields [11–13]. Both continuously reinforced MMCs as well as discontinu-
ously reinforced MMCs are in use. However, discontinuously reinforced aluminum 
(DRA) MMCs are the dominant ones. Discontinuously reinforced titanium matrix 
(DRTi) MMCs are among other similar examples. Common discontinuous reinforce-
ments include particulate silicon carbide (SiCp). Among the continuous reinforcements, 
carbon, alumina, boron, etc. have significant applications.

(a) (c)(b)

Fully reacted fibers 
Partially reacted fibers

Unreacted fibers

FIGURE 13.9  Schematic representation of reactive in situ method by infiltration of preform with 
molten metal. (a) Preform. (b) Partially infiltrated preform containing unreacted, partially reacted, and 
fully reacted fibers/particles. (c) Resultant MMC part. (Adapted from A. Evans, C. San Marchi, and A. 
Mortensen, Metal Matrix Composites in Industry—An Introduction and a Survey, Kluwer Academic 
Publishers, Boston, MA, 2003.)

Heating coils

Cooling coils

Molten metal

MMC

FIGURE 13.10  Schematic representation of the nonreactive in situ method. (With kind permission 
from Springer Science + Business Media: Metal Matrix Composites, second edition, 2013, N. Chawla and 
K. K. Chawla and adapted with permission from V. J. Michaud, Liquid-state processing, Fundamentals of 
Metal-Matrix Composites (S. Suresh, A. Mortensen, and A. Needleman, eds.), Butterworth-Heinemann, 
Boston, MA, 1993, pp. 3–22.)
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TABLE 13.2
Common Applications of MMCs

Sector Applications Remarks

Aerospace

Aircraft •	Primary structures
−− Fuel access door 
covers

−− Fuselage strut

Benefits: enhanced strength/stiffness, longer fatigue life, 
weight reduction 

Example: DRA, e.g., SiCp/Al
Benefits: increased stiffness, cost reduction, enhanced 
damage tolerance 

Example: DRA, e.g., SiCp/Al
•	Control components

−− Ventral fins Benefits: enhanced strength/stiffness, longer fatigue life, 
cost reduction 

Example: DRA, e.g., SiCp/Al
•	Engine parts

−− Nozzle actuator 
piston rod and 
link rod

−− Fan-exit guide 
vane

Benefits: enhanced strength/stiffness and fatigue 
characteristics, weight saving

Example: continuous fiber reinforced MMCs, e.g., SiCcf/
Ti

Benefits: increased erosion resistance, increased 
resistance to ballistic damage, weight reduction, cost 
saving 

Example: DRA, e.g., SiCp/Al, B4Cp/Al
•	Subsystems

−− Support racks

−− Hydraulic 
manifolds

Benefits: enhanced isotropic stiffness and bearing 
strength 

Example: DRA, e.g., SiCp/Al
Benefits: high specific strength, better fatigue 
characteristics 

Example: DRA, e.g., SiCp/Al and SiCw/Al
Helicopter •	Rotor hub—Blade 

sleeves
Benefits: enhanced fatigue characteristics, weight 
reduction, cost saving

Example: DRA, e.g., SiCp/Al
Launch vehicles 
and missiles

•	Wings and fins Benefits: enhanced high-temperature capability, high 
specific strength/stiffness

Example: DRA, e.g., SiCp/Al
•	Covers for inertial 

navigation system
Benefits: CTE matching, weight saving, minimal 
machining, cost saving

Example: DRA, e.g., SiCp/Al
Automotive
 Car, bus, and 
truck

•	Engine parts
−− Piston

−− Piston cylinder 
lining

−− Push rod and 
connecting rod

−− Intake and 
exhaust valves

Benefits: better fatigue characteristics, increased wear 
resistance, better performance on account of low/
matching CTE, low overall cost

Example: DRA, e.g., SiCp/Al, SiCw/Al, B4Cp/Al
Benefits: increased wear resistance, weight reduction, 
high thermal conductivity, longer life

Example: continuous fiber–reinforced MMCs, e.g., C/Al, 
Al2O3/Al

Benefits: high stiffness, high damping, weight reduction
Example: DRA, e.g., SiCp/Al, Al2O3p/Al
Benefits: weight saving, fuel efficiency, durability
Example: discontinuously reinforced titanium (DRTi) 
MMC with monoboride as reinforcements

•	Brake drum and 
brake rotor

Benefits: wear resistance, weight saving, high thermal 
conductivity

Example: DRA like SiCp/Al, Al2O3p/Al made by casting
(Continued)
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13.4  CERAMIC MATRIX COMPOSITES

13.4.1  Characteristics of CMCs

By definition, CMCs are a class of composite materials, in which a monolithic ceramic 
material is reinforced with either continuous or discontinuous reinforcements; in other 
words, the matrix in these composites is a ceramic material. These are the newest class 
of composite materials that have gained acceptance after PMCs and MMCs. Ceramics, 
by themselves, are a class of nonmetallic, inorganic materials characterized by their 
high temperature resistance and low fracture toughness. Two broad classes of ceramics 
can be identified—first, traditional ceramics and second, advanced ceramics. Ceramics 
used in making artworks, pottery, bricks, tiles, etc. can be put in the first category. They 
are typically based on clay and glass (silica and feldspar). Advanced ceramics are the 
high-performance ceramics that are characterized by their exceptionally high tempera-
ture resistance, corrosion resistance, wear resistance, and hardness, but low fracture 
toughness. Common advanced ceramics include oxides and nonoxides (nitrides, car-
bides, and borides) of aluminum, silicon, titanium, and zirconium. Some intermetallic 
and pure elemental materials also fall in this category.

The primary drawback of a monolithic ceramic material is its low fracture toughness, 
and the primary objective of reinforcing it with suitable particles, whiskers, or fibers is 
to increase its fracture toughness. Thus, the inherent benefits associated with monolithic 
ceramics are also by and large present in CMCs, and in addition, CMCs are relatively 
tougher. The advantages and disadvantages associated with CMCs are listed below:

Advantages:

	 1.	High temperature resistance: The service temperature of a material is the 
maximum temperature that it can be subjected to for an extended duration 
without degradation of its properties. It is an important parameter in any high-
temperature application, and as class of materials, CMCs outclass both polymers 
and metals in this respect. For example, ceramics such as SiC, Si3N4, and Al2O3 
have service temperatures around 1400–1500°C, whereas the maximum service 
temperatures for common metals and polymers are much lower, for example, 
it is in the order of 150–250°C for aluminum and 80–200°C for epoxy. In the 
case of composites, the service temperature is primarily a matrix-dominated 
property and CMCs typically possess very high service temperatures.

	 2.	Corrosion resistance: Ceramics are known for their resistance to corrosion in a 
wide range of environments. Thus, CMCs are also highly resistant to corrosion. 

TABLE 13.2 (Continued)
Common Applications of MMCs

Sector Applications Remarks

•	Drive shaft Benefits: increased stiffness, weight reduction, corrosion 
resistance, cost saving

Example: DRA, e.g., Al2O3p/Al
Others
 Electronic 
packaging 
systems

•	Cores, substrate, 
carriers, housings

Benefits: controlled thermal expansion/CTE matching, 
cost reduction, weight saving

Example: DRA, e.g., SiCp/Al
Recreational and 
sporting goods

•	Bicycle frames Benefits: increased stiffness
Example: DRA, e.g., Al2O3p/Al

•	Track shoe spike Benefits: enhanced comfort
Example: DRA, e.g., Al2O3p/Al and SiCp/Al
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Some ceramics such as SiC are practically inert to both acidic environment as 
well as basic environment. On the other hand, some ceramics may get affected 
by strong acids or strong bases.

	 3.	Hardness and wear resistance: CMCs possess higher hardness and wear resis-
tance even at high temperatures and they are suitable for making cutting tools. 
For example, the performance of alumina reinforced with silicon carbide whis-
kers composites is found to be three times better than conventional monolithic 
ceramic tools.

	 4.	Low density: The densities of most ceramic matrices and their reinforcements 
fall typically within 2–4 g/cm3. The resultant CMC densities are also relatively 
lower than that of metals and MMCs. Thus, CMCs are suitable for lightweight 
applications.

	 5.	High specific strength and stiffness: CMCs possess high strength and stiffness, 
and due to their low densities, their specific strength and stiffness are typically 
higher than that of metals.

	 6.	Increased fracture toughness (w.r.t. monolithic ceramics): Monolithic ceramic 
materials are highly brittle with very low fracture toughness. The fracture 
toughness of these materials can be greatly increased by suitable incorpora-
tion of reinforcements. For example, the typical value of fracture toughness of 
monolithic silicon carbide (SiC) is about 3MPa m , whereas it is of the order of 
30MPa m  for silicon carbide reinforced with silicon carbide fibers (SiC/SiC) 
composites. Several toughening mechanisms are possible—microcracking, 
crack bridging, crack deflection, crack branching, fiber pull-out, etc. Depending 
on the type of the reinforcements and matrix, one or more of these toughening 
mechanisms can come into play, which help avoid catastrophic failures in 
CMCs.

Disadvantages:

	 1.	High fabrication cost: The processing of CMCs typically involves high tem-
peratures. High processing temperatures lead to processing complexities and 
high cost.

	 2.	Low fracture toughness (w.r.t. MMCs and PMCs): CMCs, due to the inher-
ent low fracture characteristics of the matrix materials, possess low fracture 
toughness compared to metals and PMCs.

	 3.	Thermal mismatch: The matrix and the reinforcements in a CMC possess dif-
ferent thermal coefficients, and as a result, thermal stresses develop during 
processing.

13.4.2  Matrix Materials for CMCs

Various ceramics have been used as matrix in CMCs. They are either crystalline or 
noncrystalline. Various types of glasses are the examples of noncrystalline ceramics, 
whereas other ceramics are crystalline. Some common ceramics and their represen-
tative properties are listed in Table 13.3. The selection of the matrix material is a 
critical issue; in this regard, three broad aspects can be identified—(i) compatibility 
with the reinforcements, (ii) thermal stability, and (iii) processability. The matrix 
should be able to uniformly wet the reinforcements without causing any detrimental 
chemical reactions. Sometimes, even a minor reaction can result in gross degradation 
of the final performance of the CMC. For example, in whisker-reinforced CMCs, the 
reactive matrix can totally dissolve the reinforcements. Similarly, high thermal mis-
match between the matrix and the reinforcements can lead to high thermal residual 
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stresses and low structural integrity. The melting points of ceramics are typically 
high, which implies high thermal stability. High melting points also imply greater 
processing complexities.

13.4.3  Reinforcing Materials for CMCs

Reinforcements used in CMCs are either continuous or discontinuous, and they include 
particulates, whiskers, short fibers, continuous fibers, and monofilaments. Some typical 
examples of reinforcing materials in CMCs are given in Table 13.4.

In a PMC, the primary function of the reinforcements is to provide strength and 
stiffness to the composite material. In an MMC too, strength and stiffness are core 
parameters in the set of properties that are targeted to be improved by reinforcing the 
monolithic metal. In a CMC, however, the characteristic function of the reinforcements 
is different; while strength and stiffness are important, the reinforcements are provided 
primarily to improve the fracture toughness. The compatibility of the reinforcements 
with the matrix is an essential requirement. Other desirable characteristics of the 
reinforcements are processability, high mechanical properties, high temperature 
resistance, low density, and low cost.

13.4.4  Manufacturing Methods for CMCs

Several methods have been developed for the processing of CMCs [17]. These methods 
can be classified in different ways. However, as noted in the section on MMCs, the 
basis of classification is largely a matter of convenience of discussion and understand-
ing. Here, as in the case of MMCs, we shall use the same four major classes. Thus, the 
important CMC manufacturing methods can be grouped as follows:

TABLE 13.4
Common Reinforcing Materials in CMCs

Type of Reinforcements Example

Particulates Silicon carbide (SiC), alumina (Al2O3), titanium carbide (TiC), boron nitride (BN)
Whiskers Alumina (Al2O3), silicon carbide (SiC), titanium boride (TiB2)
Short fibers Alumina (Al2O3), silicon carbide (SiC), alumina-silicate (Al2O3 + SiO2), glass, 

carbon fibers
Continuous fibers Carbon (C), boron (B), alumina (Al2O3), silicon carbide (SiC), alumina-silicate 

(Al2O3 + SiO2)
Monofilaments Boron (B), silicon carbide (SiC)

TABLE 13.3
Representative Properties of Common Ceramic Matrix Materials

Density 
(g/cm3) Melting Point (°C)

CTE 
(10−6 m/m/°C)

Fracture 
Toughness 
(MPa m)

Tensile 
Modulus (GPa)

Alumina (Al2O3) 3.9 2050 7–9 2–4 280–390
Silica (SiO2) 2.2 1610 0.5 0.8 75
Zirconia (ZrO2) 5.7 2760 7.9–13.5 2.8–8.5 205
Magnesium oxide (MgO) 3.6 2850 3.6 1.8 205–225
Silicon carbide (SiC) 3.2 1980 4.3–4.5 2.2–3.4 330–420
Silicon nitride (Si3N4) 3.1 1870 3.1 3.1–5.5 170–310
Glass 2.5 1500 3.5–8.9 0.5–2 60–70
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◾◾ Solid-state methods
−− Powder consolidation methods
−− Slurry infiltration methods

◾◾ Liquid-state methods
−− Liquid infiltration—melt infiltration and reactive liquid infiltration
−− Sol–gel technique

◾◾ Deposition methods
−− Chemical vapor infiltration (CVI) and chemical vapor deposition (CVD)

◾◾ In situ methods
−− Polymer infiltration and pyrolysis (PIP)
−− Reaction bonding processes

As in PMCs and MMCs, CMC manufacturing methods too involve essentially com-
bining two distinct phases—a monolithic phase of ceramic matrix and discontinuous 
reinforcement phase. The matrix can be incorporated in the composite in different 
ways. The classification of CMC manufacturing methods given above is basically 
associated with the method of incorporation of the matrix.

In the solid-state methods, both the reinforcement and matrix remain in the solid 
state and the two phases defuse and bond with each other at elevated temperature 
to form the desired CMC. Typically, the matrix is incorporated in a powder form. 
Ceramic powders are either blended directly with the reinforcement phase or used to 
form a slurry. In the liquid-state methods, molten ceramic material is used to infiltrate 
a fiber preform. Deposition methods involve the deposition of the ceramic material 
on the fibers. Finally, in the in situ methods, the ceramic matrix is produced by either 
pyrolysis or other reaction phenomena in situ, that is, on the surface of the fibers.

13.4.4.1  Powder Consolidation Methods

Powder consolidation methods in CMCs are basically the same as the powder metallurgy 
methods in MMCs. Here, powders of the ceramic matrix material are blended with par-
ticulate, short fiber, or whisker reinforcements. The common particulate reinforcements 
used are SiC, TiC, ZrO2, etc. Among the whisker reinforcements, SiC whiskers are one 
of the most common materials. Powders of Al2O3, ZrO2, B4C, etc. are commonly used 
as matrix materials. Blending of the reinforcement particles, whiskers, or short fibers 
with the matrix powders is of utmost importance and it can be done by employing one 
of the several mixing methods such as shear mixing, ultrasonic dispersion, milling, etc. 
The mix is then either cold pressed followed by sintering or hot pressed.

Cold pressing followed by sintering as well as hot pressing involve the application of 
high temperature and pressure. A notable disadvantage of these processes is the degra-
dation of the reinforcements, especially by chemical reactions at the interface.

13.4.4.2  Slurry Infiltration

Slurry infiltration is a variant of the conventional powder consolidation by hot pressing. 
In this method, the matrix is used in the form of powder. A slurry is prepared by mixing 
the ceramic matrix powder in a liquid carrier (water or alcohol) and an organic binder. 
Sometimes, wetting agents are also added to the slurry. The process of CMC making 
in this method involves two stages—first, wetting of the reinforcements by the slurry, 
and second, matrix consolidation by hot pressing. In the first stage, the reinforcements, 
which can be either fiber tows or preform sheets, are made to pass through a slurry 
tank where they get impregnated in the slurry. The impregnated reinforcements are 
wound on a drum and the liquid carrier is allowed to evaporate. The impregnated fiber 
tows or the preform sheets are then cut and stacked in desired orientations. The organic 
binder is then burnt out. In the second stage, the stack of fiber tows of preform sheets 
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is consolidated by hot pressing. Figure 13.11 shows the schematic representation of the 
slurry infiltration process.

Glass and glass–ceramic are the most commonly used matrix materials in the slurry 
infiltration method; relatively lower melting points of these matrices compared to other 
ceramic materials make them suitable for slurry infiltration. The major advantages and 
disadvantages of this method are

Advantages:

◾◾ Possible to incorporate continuous fibers
◾◾ Good mechanical properties
◾◾ Uniform fiber volume fractions
◾◾ Low porosity

Disadvantages:

◾◾ Not possible to use matrix materials with high melting points
◾◾ Fibers may get damaged during hot pressing

13.4.4.3  Liquid Infiltration

Liquid infiltration (Figure 13.12) in CMC processing is similar to resin transfer 
molding in PMCs and liquid metal infiltration in MMCs. Here, molten ceramic matrix 
is made to infiltrate into the preform kept in a closed chamber. Typically, the chamber 
is heated and the melt is forced under pressure by a piston into the preform at high 
temperature. Typical advantages and disadvantages of this process are

Advantages:

◾◾ Single-step process
−− Matrix can be formed in a single processing step of infiltration and repeated 

cycling is not needed.
◾◾ Varieties of preforms

−− Preform of any form, including fibers, whiskers, and particles, can be used.

Stack of
preform sheet

Binder
burn-out

Hot pressingCMC part

Impregnated
preform sheet

Fibers Slurry tank

Pick-up drum

Ceramic powder 
+ water/alcohol 
+ binder

To preform
sheet cutting 

FIGURE 13.11  Schematic representation of slurry infiltration process. (Adapted with permission 
from K. K. Chawla, Ceramics Matrix Composites, second edition, Kluwer Academic Publishers, Boston, 
MA, 2002.)
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Disadvantages:

◾◾ High melting points of ceramics
−− Complex process of manufacturing
−− Possibility of reaction between reinforcements and matrix
−− Possibility of reinforcement degradation

◾◾ Thermal mismatch between matrix and reinforcements
−− Differential shrinkage
−− Matrix cracking

Melt infiltration is done at high temperatures that can cause degradation of the rein-
forcements. Polymer precursors can be used to overcome this problem. Ceramic matrix 
can be obtained from such precursors at relatively low temperatures. However, it also 
leads to the generation of volatiles. The volatiles escape from the matrix, causing porosity 
and shrinkage. Reimpregnation, as in sol–gel process, is required for reducing porosity.

13.4.4.4  Sol–Gel Technique

In this process, a sol is made to infiltrate a fiber preform. The sol is a colloidal suspen-
sion of very fine ceramic particles. (The particles are so fine that no sedimentation 
takes place.) It is produced by chemically reacting a precursor material (e.g., a metal 
alkoxide), a solvent (e.g., an alcohol), a catalyst (e.g., an acid), and water. The preform 
soaked in the sol is allowed to dry, which leads to matrix shrinkage and formation of 
pores. To reduce the porosity, the infiltration–drying cycle is repeated several times till 
the desired density is achieved. Once the desired density is achieved, the preform is 
fired to obtain the final CMC. The sol–gel process is commonly used for making glass–
ceramic matrix composites. It has its own advantages and disadvantages, as follows:

Advantages:

◾◾ Processing temperature is relatively low
−− Minimum damage of fiber preform
−− Low cost tooling

◾◾ Near net shape part can be made
−− Minimum machining
−− Complex part can be made

◾◾ Better control over fiber matrix composition

Hydraulic piston

Molten ceramic

Fiber preform

Heating coils

Chamber

FIGURE 13.12  Schematic representation of liquid infiltration method for CMC manufacture. 
(Adapted with permission from K. K. Chawla, Ceramics Matrix Composites, second edition, Kluwer 
Academic Publishers, Boston, MA, 2002.)
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Disadvantages:

◾◾ High shrinkage
−− Matrix cracking can result

◾◾ Low yield
−− Repeated cycling needed
−− Long process

13.4.4.5  CVI and CVD

In this process, as shown in Figure 13.13, a fiber preform is kept in a heated reactor 
chamber. A carrier gas such as H2 or He is made to pass through a container of gaseous 
reagents. The vapors of the reagents are carried by the carrier gas and pumped into the 
reactor chamber. They infiltrate the porous preform and react to form ceramic matrix 
vapor and other products. The ceramic matrix vapor gets deposited on the preform 
surfaces and the other products are diffused and carried away by the carrier gases. 
The process of deposition is continued till the pores get filled up reasonably uniformly 
and a solid compact CMC part is obtained. Various reagents have been used for form-
ing various ceramic matrix vapors. For example, CH3 and SiCl3 can be used along with 
H2 to form SiC.

Uniform deposition of the matrix vapors leading to uniform density throughout the 
preform is desirable for making a quality part. The rate of deposition is an important 
parameter in this respect. Too fast deposition may result in faster rate of matrix for-
mation in the outer regions of the preform, where the pores get filled up quicker. As a 
result, the flow of gases into the interior regions gets interrupted. In such cases, several 
cycles of machining in the outer periphery followed by infiltration and deposition may 
be required. On the other hand, too slow deposition may take a long cycle time, leading 
to a high cost of fabrication.

Temperature and pressure affect the quality of deposition to a large extent. Depending 
on the temperature and pressure environments of the deposition process, the CVI pro-
cess can have a number of variants, for example, (i) uniform temperature through-
out the preform, (ii) temperature gradient across the preform thickness, (iii) uniform 
temperature together with pressure, (iv) temperature gradient together with pressure, 
etc. CVI under uniform temperature, called isothermal CVI, is typically a very slow 
process. On the other hand, forced infiltration under pressure and temperature gradient 
can greatly increase the rate of deposition.

Carrier gas + gaseous reactants

Carrier gas + reaction products

Heated preform
Heating coils

FIGURE 13.13  Schematic representation of the CVI process. (Adapted with permission from K. K. 
Chawla, Ceramics Matrix Composites, second edition, Kluwer Academic Publishers, Boston, MA, 
2002.)
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The CVI process has a number of advantages and disadvantages; some of the 
important ones are

Advantages:

◾◾ Relatively lower temperature and pressure
−− Minimum damage to the reinforcements

◾◾ Good mechanical properties
◾◾ Near net shape complex and large parts can be made

Disadvantages:

◾◾ Multiple cycles of infiltration processes are needed
−− Low yield
−− Slow and expensive

◾◾ Residual porosity cannot be removed completely

13.4.4.6  Polymer Infiltration and Pyrolysis

PIP is a relatively low-cost and low-temperature CMC processing technique, in which 
ceramic yielding polymeric precursors are used to infiltrate a fiber preform. (A pre-
form can also be made using resin-impregnated fibers by common PMC manufactur-
ing techniques.) The polymer is cured and then pyrolyzed. Pyrolysis of the polymeric 
precursor results in the formation of ceramic and some gaseous by-products. While 
the ceramic matrix remains in the preform and binds the fibers, the gaseous by-prod-
ucts escape through the pores. It leads to shrinkage and porosity, and several cycles of 
infiltration–pyrolysis are required till the desired density is achieved. The PIP process 
is schematically given in Figure 13.14.

The commonly used precursors include polymers containing various types of silane. 
(Silane is an inorganic compound containing one silicon atom and four hydrogen 
atoms, i.e., SiH4.) These polymers are produced by dechlorination of chlorinated silane 
monomers that are easily available as by-products in the silicone industry. Typically, 
pyrolysis of the cured precursor polymer leads to the crystalline precipitation of ceram-
ics such as SiC, Si3N4, and SiO2 and evolution of gases such as SiO and CO.

Fiber preform

Infiltration

Density
ok? 

Curing

Pyrolysis

No

Yes

CMC part

Molten precursor

FIGURE 13.14  Schematic representation of polymer infiltration and pyrolysis process using preform.
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The polymer infiltration phase is somewhat similar to PMC processing and suitable 
PMC manufacturing methods can be adopted for making the polymer-impregnated 
structure. Infiltration of the preform or the reinforcing structure takes place under 
capillary action at atmospheric pressure. The infiltration process can be aided by 
vacuum and positive pressure application.

Like other CMC manufacturing processes, the PIP process is also associated with 
some advantages as well as disadvantages; the important ones are as follows:

Advantages:

◾◾ Relatively low temperature process
−− Minimum fiber damage
−− Low process complexities

◾◾ Near net shape parts can be made

Disadvantages:

◾◾ Multiple infiltration–pyrolysis cycle
−− Long processing time
−− High processing cost

◾◾ Residual porosity

13.4.4.7  Reaction Bonding Processes

These processes have shown great promise, especially in the fabrication of silicon car-
bide-based composites. In these processes, molten silicon is made to infiltrate a carbon 
containing preform at high temperature. Infiltration takes place under either capillary 
action or pressure, and the chemical reaction between the carbon in the preform and 
liquid silicon results in the formation of silicon carbide. The primary advantages of 
these processes include minimum fiber damage and nearly nil matrix shrinkage. On 
the other hand, high residual porosity is a major disadvantage.

13.4.5  Applications of CMCs

CMCs have found applications in both aerospace and nonaerospace sectors [27]. In 
aerospace applications, performance is the driving force and high temperature resis-
tance together with high specific strength/stiffness and enhanced damage tolerance 
are the essential requirements. There are many applications where a part is subjected 
to high temperatures. Most PMCs lose their strength and stiffness properties rapidly 
beyond about 100–150°C. High-performance metals and metallic alloys work up to 
about 800°C. Beyond this point, CMCs are the only solution. In this respect, C/C, SiC/
Al2O3, SiC/SiC, and SiC/Si3N4 are some of the most notable CMCs.

In the nonaerospace applications, cost-effectiveness is also an important criterion. 
Resistance to corrosion and wear leading to long part life is a highly desirable characteristic.

Some of the common examples of the usage of CMCs are listed in Table 13.5 below.

13.5  CARBON/CARBON COMPOSITES

13.5.1  Characteristics of C/C Composites

The fibers in C/C composites can be either continuous or discontinuous. Depending on 
the number of directions in which the fibers are oriented, continuous fiber C/C compos-
ites can be either 1D or multidimensional. Multidimensional C/C composites can be of 
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two (2D), three (3D), or even higher dimensions (nD). These composites are made by 
using unidirectional carbon tows, tapes, and woven fabrics. On the other hand, discon-
tinuous carbon fiber–reinforced composites do not have any preferred fiber orientation.

C/C composites are prone to oxidation and it is the matrix on which the rate of oxidation 
is dependent. The carbon matrix is formed typically from some precursor material. It can 
be amorphous or graphitic. Higher degree of graphitization makes it resistant to oxida-
tion and thermally more conductive; however, it also makes the composite more brittle.

C/C composites have extremely high temperature resistance; they remain thermally 
stable in nonoxidizing environments at temperatures as high as 3000°C. They pos-
sess high strength and stiffness, and due to their low densities, their specific strength 
and stiffness characteristics are among the highest in composites. Carbon fibers have 

TABLE 13.5
Applications of CMCs

Application Remarks

	 a.	 Thermal protection 
system (TPS)

Space vehicles encounter very high temperatures (1500–1600°C) and thermal 
shocks during atmospheric reentry

Example: TPS on nose cap, leading edges, wings, and flaps
Material: C/C and C/SiC composites
Benefits: reduced weight, reusability

	 b.	 Gas turbine 
components

Gas turbine components, including stationery as well as moving elements, 
are subjected to high temperatures (400–1200°C) and they are required to 
perform for long durations

Example: combustion chamber liner, turbine blades, and turbine wheels
Material: SiC/SiC and C/SiC composites
Benefits: weight saving, increased turbine efficiency, fuel saving, 
increased life

	 c. 	Cutting tools Cutting tools used in metal cutting operations like turning, milling, drilling, 
etc. are desired to be strong, wear resistant, tough, and thermally conductive

Example: drill bits, inserts, etc.
Material: Al2O3 matrix reinforced with particulates or whiskers of SiC, TiC, 
and ZrO2

Benefits: better performance, increased fracture toughness, long life
	 d.	 Wear-resistant parts Wear-resistant parts in automotive and other sectors demand good wear 

resistance and high-temperature capabilities
Example: bearings, bushings, precision balls, liners, valves, pump housing 
wear rings, etc.

Material: Al2O3 matrix reinforced with particulates of ZrO2, SiC
Benefits: long life, better performance

	 e.	 Braking system Brake disks of aircrafts and racing cars are subjected to high wear and tear 
and exposed to high temperatures (∼1500°C) and thermal shocks

Example: brake disks and brake disk components
Material: C/C and C/SiC composites
Benefits: weight saving, greatly reduced wear and tear, resistant to corrosion 
due to road salts, effective braking in a wide range of environmental 
conditions

	 f.	 Rocket nozzle parts Rocket nozzles are subjected to very high temperatures and highly erosive 
environment

Example: nozzle throat, liners
Material: C/C composites
Benefits: weight saving, dimensional stability

	 g.	 Furnace components Furnace components are subjected to very high temperatures and they tend 
to degrade and deform over time

Example: burners, radiant tubes, flaps, ventilators, etc.
Material: Si/SiC composites
Benefits: long life, low maintenance, cost saving
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negative CTEs. As composite materials, they have low thermal coefficients, leading to 
generation of low residual thermal stresses. Wear resistance and better fracture tough-
ness are among other advantages associated with C/C composites.

Processing of C/C composites typically involves high temperatures. High processing 
temperatures lead to processing complexities and high cost. Also, they are susceptible 
to oxidation at moderately high temperatures of 400–500°C. Thus, protective measures 
like coatings are needed in oxidizing environments.

The important advantages and disadvantages of C/C composites can be listed as 
follows:

Advantages:

◾◾ High temperature resistance
◾◾ High specific strength and stiffness
◾◾ Low CTE
◾◾ Wear resistance
◾◾ Higher fracture toughness (w.r.t. monolithic graphite)

Disadvantages:

◾◾ High fabrication cost
◾◾ Low oxidation resistance
◾◾ Low interlaminar properties
◾◾ Difficulty in jointing

Applications of C/C composites are found in a number of sectors including aerospace, 
defense, automotive, industrial, and biomedical. Typical requirements in these applica-
tions are structural stability at high temperature, thermal insulation, corrosion resistance, 
wear and tear resistance, and biocompatibility. The common applications are as follows:

◾◾ Aerospace and defense
−− Rocket nozzle—throat and liners
−− Reentry vehicle—thermal protection system
−− Aero-engine and turbine components
−− Brake disks and clutches

◾◾ Automotive
−− Engine pistons

◾◾ Industrial
−− Tools and dies
−− Refractory tiles
−− Heat pipes

◾◾ Biomedical application
−− Biocompatible implants

13.5.2  Manufacturing Methods for C/C Composites

The manufacturing methods for C/C composites can be broadly categorized into 
(i) chemical vapor infiltration (CVI) and (ii) pyrolysis of precursor materials. In either 
case, the manufacturing process involves, first, making of a fiber preform and, second, 
filling the gaps inside the preform with a carbon matrix. The preform can be made 
using unidirectional carbon tows, tapes, and rods or bidirectional woven/nonwoven 
fabrics. The fibers can be oriented in different directions to make 1D and multidirec-
tional preforms (Figure 13.15).
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In the CVI methods, the preform is infiltrated with a hydrocarbon gas such as meth-
ane, propane, benzene, etc. Carbon is deposited on the fiber surfaces of the heated 
preform by a process of thermal decomposition. Various variants of the CVI techniques 
are in vogue, of which, techniques involving isothermal conditions and temperature 
gradients are common. In the isothermal case, the gaseous hydrocarbon and the preform 
are maintained at a uniform temperature of around 1100°C. In this case, typically, a 
crust is formed on the outer periphery of the preform that prevents free flow of gas to 
the interior. As a result, repeated cycles of machining and infiltration are required till a 
desired density is achieved. On the other hand, in the temperature gradient techniques, 
temperature gradients are created across the preform thickness such that the interior 
of the preform is maintained at a high temperature of around 1100°C while the outer 
periphery is kept at a low temperature. In this case, crust formation does not take place 
and machining can be avoided.

In the pyrolysis methods, two types of precursor materials are used—pitch and ther-
mosetting resins. Pitch is made from coal tar and petroleum; it can be either isotropic or 
mesophase. Molten pitch at about 300–400°C is infiltrated into a dry preform followed 
by carbonization at 1000°C, hot isostatic pressing at 80–100 MPa, and graphitiza-
tion at 2700°C. In the case of resins, high carbon-yielding phenolic or epoxy resins 
are used for the impregnation of carbon fibers. Carbon prepreg laminates are vacuum 
bagged, cured under compaction pressure, and postcured. The laminate is then heated 
to around 800–1000°C in an inert atmosphere, where carbonization of the resin takes 
place. Volatiles are generated during carbonization, which escape from the laminate 
and cause porosity. Repeated cycles of infiltration and carbonization are required till 
the desired density is achieved.

Both the CVI and the pyrolysis methods have been successfully employed for 
making C/C composite products. In general, CVI methods are more suitable for thin 
parts, whereas the pyrolysis route is adopted for making thick parts.

13.6  SUMMARY
In this chapter, we have had a brief introduction to MMCs, CMCs, and C/C compos-
ites. These composite systems, as three major classes of composites other than PMCs, 
have their own characteristics in terms of their constituents, general mechanical and 
physical properties, manufacturing processes, and applications.

By definition, the matrix materials for these three classes of composites are metals, 
ceramics, and carbon. The reinforcements are either continuous or discontinuous and 
they can be of different physical forms, including particles, whiskers, short fibers, con-
tinuous fibers, and monofilaments. There are many types of manufacturing methods 
for MMCs, CMCs, and C/C composites. These methods revolve around combining 
the reinforcements with the matrix (or creating the reinforcements in the matrix) and 
typically they involve the application of high temperature and pressure. The constitu-
ents are incorporated in solid state, liquid state, or gaseous state, and depending on 

(i) (ii) (iii) (iv)

FIGURE 13.15  Schematic representation of fiber array in a preform. (i) 1D, (ii) 2D, (iii) 3D, and 
(iv) 4D.



646 Composite Structures

the physical state and other process characteristics, the manufacturing methods can be 
categorized into different groups. This categorization, however, is a matter of conve-
nience and often the boundary lines between different groups tend to vanish.

Composites, as a whole, are used in both structural and thermal applications. As 
we had seen in Chapter 1, the structural applications of PMCs are primarily at room 
temperature. For high-temperature applications, to a large extent, the other three classes 
of composites complement each other. As a rough indicator, MMCs have a temperature 
resistance at a low-to-medium temperature range above room temperature. At medium-
to-high temperature range CMCs and at high-to-very-high temperature range C/C 
composites are the solutions.

EXERCISE PROBLEMS

	 13.1	 Write a brief note on the basic characteristics, constituent materials, 
advantages, and disadvantages of MMCs.

	 13.2	 Write a short note on MMC manufacturing methods.
	 13.3	 Write a short note on the application of MMCs.
	 13.4	 What is the primary function of reinforcements in CMCs? Write a short 

note on the basic characteristics, advantages, and disadvantages of CMCs.
	 13.5	 How are CMCs manufactured? Write a brief note on the principles of 

various CMC manufacturing methods.
	 13.6	 Compare the basic characteristics and representative properties of PMCs, 

MMCs, CMCs, and C/C composites. Write a generic note on the selection 
of these composite materials in a design environment.
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14.1  CHAPTER ROAD MAP
A simplified schematic representation of a typical composite product development pro-
gram is given in Figure 14.1. The different stages of product development are identi-
fied and it is clear that these stages are interrelated. Also, each of these stages can be 
associated with some topic in the broad field of composite materials technology. So far, 
we have had discussions on various topics on composites except design, which is the 
subject matter for discussion in this chapter. A point that can be noted is that design 
is a phase that comes fairly early in the overall product development program; but we 
have kept it for discussion in the last chapter. It is deliberate; it is a subject that demands 
reasonable level of insight into all other aspects of composites technology.

The concept of structural design needs some deliberation, and we shall begin our 
discussion with an attempt to define the term design. The process of structural design 
of a product has evolved over a long period and arguably there is no set procedure for a 
design problem; it is an art, yet certain set patterns and key features can be associated 
with it. Some of the fundamental features associated with composites design process 
are discussed. Laminate design and joint design are two crucial aspects in the overall 
subject of composite product design; these topics are addressed next. Finally, some 
representative composite products are presented as design examples.

14.2  INTRODUCTION
Design is a very common term in today’s life. It is often used in association with 
some other terms, for example, graphic design, fashion design, content design, web 
design, structures design, and so on. Depending on the context, it takes different 
meanings in different fields. For example, in the field of graphic design, we are 
concerned with the creation of a graphic object by combining and arranging shapes, 
lines, pictures, and text in different styles. In a similar way, fashion design brings 
to our mind images of clothing with different styles and aesthetics. We can go on 
from one field to another and find the differences in meaning as well as similari-
ties and establish three common features—requirements, resources, and constraints. 
A practical definition of the term design can be found by analyzing the significance 
of these three features.

First, a design is made to fulfil a certain requirement. Typically, the requirement 
is the creation of a product that does certain specific functions. Examples of such 
products are a printed advertisement in a magazine (graphic design), a designer dress 
(fashion design), a web page (web design), a multistoried building (building design), 
and so on. Needless to say that each of these products has its own specific function to 
perform.

Second, a design is made using certain resources. Broadly speaking, materials, 
technological know-how, and manpower constitute the overall resource base. These 
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resources are required for making the intended product as well as for carrying out the 
very act of designing.

Third, a design is made within certain constraints. As we shall see, design is a process 
of making an appropriate choice from among many possible alternatives. Often, this 
is restricted by considerations on functional, economic, aesthetic, and sociopolitical 
issues. Similar to the case of resources, the restrictions too apply to the product being 
designed as well as to the act of designing.

Obviously, given the broad nature of the process of designing, there is no univer-
sally acceptable definition of design. However, we can define design, especially from 
the point of view of convenience of discussion, as a scheme that is used for making 
a product using certain resources within certain constraints to fulfil certain require-
ments. Note that the requirements, resources, and the constraints vary widely from one 
sector to another.

Composites structural design is addressed in many standard texts, articles, and 
research papers. Discussions on the general features of the design of composites struc-
tures and process of design are addressed by several authors [1–5]. Laminate design 
and analysis are an essential part in any composite product design and many texts 
and articles are available on the subject [1–4,6–13]. Joints are involved in many com-
posite products. They are typically the weak links in a composite structure and their 
behavior, failure modes, and design aspects are more complicated than those in met-
als [1,5,7,8,11–17]. Another critical aspect in design is stiffening of panels, which is 
required for higher stiffness in many structural applications. Composite stiffened struc-
tures are different from their metallic counterparts in respect of several issues related 
to the anisotropic nature of composites and their unique manufacturing methods; these 
issues associated with stiffened composite plates and shells are addressed by many 
[1,3,9,18,19]. Extensive work has been done in the areas of general design philosophy, 
design, analysis and optimization of laminates, design and analysis of joints, stiffened 
structures, fracture behavior, performance under fatigue loads and impact, and other 
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• Qualification and acceptance test plan
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(Refer all chapters) 
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• Tool design and manufacture
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manufacturing process qualification
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FIGURE 14.1  Schematic representation of a typical composite product development program.
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related topics. While a detailed review of such works is not intended in this book, lim-
ited reference is made to indicate the direction of work that has been carried out.

14.3  BASIC FEATURES OF STRUCTURAL DESIGN
From the broad concept of design, now we move on to the design of structures or struc-
tural design. A structure is something that has a certain physical configuration, usually 
made up of a number of parts or elements such as beam, column, plate, shell, etc., such 
that it takes load and performs certain specific functions. The objective in structural 
design is to meet certain requirements to be achieved using available resources within 
specific constraints. In other words, here too, we have to deal with certain require-
ments, resources, and constraints. In this section, we dwell on these issues.

14.3.1  Requirements

A structure is designed to meet certain functional requirements. The functional require-
ments can vary widely from one type of structure to another—a bridge over a river 
is required to facilitate the movement of traffic across the river, a pressure vessel is 
required to contain a certain liquid or gas at high pressure, a space vehicle is required 
to deploy a satellite in space, and so on. While a structure has to meet its functional 
requirements, it is invariably subjected to certain loads during its life. The loads can be 
mechanical (e.g., force and bending moment), thermal (e.g., high temperature), environ-
mental (e.g., chemical corrosion), etc.

We can identify the design requirements of a structure by studying the functions and 
the loads. For example, let us consider the case of a slab of a multistoried building. The 
primary functional requirement of the slab is to provide a firm, hard, and aesthetically 
acceptable surface for our use. There are other functional requirements: it should pro-
vide reasonable thermal insulation; should not allow seepage; should have provisions 
for hanging a ceiling fan; and so on. The slab, as we can see, is subjected to various 
loads during its life; these are the dead load (its own weight) and the live load (weight 
of human, furniture, etc.). Under these lateral loads, the slab undergoes bending and the 
primary structural function of the slab is to carry the loads without excessive bending 
during its entire life span such that the occupants feel safe and comfortable.

We can identify many design requirements that can be associated with various types 
of structures. Functional requirements are of widely varying nature, which depend on 
the application of the structure; on the other hand, the structural requirements can be 
broadly placed in two groups—strength and stiffness.

14.3.1.1  Strength

For any structure, the most common design requirement that comes to our mind is 
strength. The configuration of the structure has to be such that the stresses and strains 
under the design loads are under certain limiting values and material failure does not 
occur. The definition of material failure may vary from one material to another or from 
one application to another. For metallic materials, often, yielding of the material is 
considered as failure of the material, whereas, for composite materials, in most cases, 
fiber fracture represents a failure of the material. Thus, appropriate failure criterion 
(see Chapter 4) has to be employed so that the available margin before failure can be 
estimated.

14.3.1.2  Stiffness

There are many cases of structural applications, where design requirements are stiff-
ness dependent. In the strength-based designs, stress and strain are the two parameters 
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that are compared with certain specified limits, whereas, in the case of stiffness-based 
designs, the key parameters are deformation, vibration, and buckling load. For example, 
let us once again consider the slab of a multistoried building. If the slab is so designed 
such that the stresses and strains are within the specified limits but not the deflection 
that when we walk on it, it vibrates and gives a feeling of excessive deflection, the 
design is not acceptable! Similarly, for an axially loaded cylindrical shell under com-
pression, buckling is likely to be the primary design requirement.

14.3.1.3  Other Design Requirements

In addition to the functional requirements and strength- and stiffness-based require-
ments, there are other design requirements that can be related to the intended life of 
the structure and certain specific structural characteristics such as energy absorption, 
thermal insulation, corrosion resistance, etc. Energy absorption is a design requirement 
in some applications where a structural part protects some other part by absorbing the 
incident energy. An example of such application is helmets where the impact energy 
is absorbed by the helmet material. Another example of energy absorption is rocket 
nozzle liners, which absorb heat and mechanical energy of the high-velocity gases and 
protects other structural nozzle parts by a process known as ablation. In many applica-
tions such as rocket motor casing, furnace walls, etc., thermal insulation is a critical 
design requirement. Similarly, in the chemical industry, offshore applications, naval 
applications, etc., corrosion resistance is of major concern.

A structure may be intended for either single use or multiple uses. A single-use 
structure may be intended for either immediate use or future use; when used in the 
future, it has to be stored after manufacture till the date of use. On the other hand, 
a structure intended for multiple uses may be put to regular maintenance. Clearly, a 
structure has a definite life span and it has to perform its specified functions satisfacto-
rily over the entire life.

14.3.2  Resources

In structural design, we must consider the availability of the following resources—
material, manufacturing technology, computing technology, and human resources.

14.3.2.1  Material

Materials are a crucial input in any structural design. Research in the field of materi-
als science has resulted in the development of more efficient and high-performance 
materials with higher mechanical properties coupled with more useful physical charac-
teristics. The availability of advanced materials has widened the horizon of the design 
process, leading to the realization of more efficient structures. The use of anisotro-
pic high-performance composites such as CFRPs is an excellent example of this. Of 
course, the use of such materials has increased the complexity of the design and analy-
sis process.

14.3.2.2  Manufacturing Technology

A design is not acceptable if a suitable manufacturing technology, including machinery 
and equipment, and tools and fixtures, is not available for translating it to a product. 
Innovations in the field of manufacturing have made it possible to design more efficient 
and reliable structures. Also, design must take into account the details of the manufac-
turing stages, including nondestructive testing, and in-process quality check steps have 
to be appropriately coupled with the actual manufacturing and assembly operations so 
that quality and reliability are ensured (see Reference 20 for a more detailed discussion 
on the concept of design for manufacturing).
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14.3.2.3  Computing Technology

Design is a process of decision making aided by certain tools. Both analytical and 
numerical tools, as we had seen in the previous chapters, are available. Undoubtedly, 
in today’s design world, finite element analysis is the most widely used tool, for which 
a number of commercially available software packages exist. There has been remark-
able progress in the field of computing, which makes it possible to analyze complex 
structures quickly with added reliability. As a result, it is now possible to design more 
efficient and more reliable structures.

14.3.2.4  Human Resources

Arguably, the most important resource in the overall product development program 
is human resource. Technically competent manpower is essential for carrying out a 
design that considers all the aspects in the complete product development cycle. Process 
automation has reduced greatly the demand on human labor in certain manufacturing 
methods. Certain other methods remain labor dominated. The designer must take these 
aspects into account. After all, if a product cannot be realized for nonavailability of 
skilled work force economically, the design is not welcome and an alternate design that 
involves more automated process would be preferred.

A related technological progress is the advancement in the field of information 
technology. Information in the form of raw data as well as source of data is easily 
available today. It helps the designer greatly in making more informed decision in the 
design process.

14.3.3  Constraints

Structural design is carried out within certain constraints that arise, as indicated in 
the introduction, from functional, economic, aesthetic, and sociopolitical issues. The 
design engineer faces various constraints out of which some of the most common ones 
can be related to weight, cost, assembly requirements, and manufacturing feasibility. 
Of course, one can come across other relatively less common constraints. At this point, 
it is worth mentioning that sometimes there exists only a very fine distinction between 
design requirements and design constraints. Design constraints can be referred to as 
design requirements with conflicting nature.

14.3.3.1  Weight

In many cases, especially in aerospace applications, the functional utility of a prod-
uct is reduced by higher weight. It is true in other sectors such as automotive as well. 
For example, the higher the structural weight of a space vehicle, the lower its payload 
weight, the higher the weight of an airplane, the higher its fuel cost, and so on. Thus, 
there are penalties associated with higher structural weight in many applications and 
in these cases there exist design constraints to keep the structural weight as low as 
possible. As mentioned earlier, design constraints can be viewed as design requirements 
with a conflicting nature. For example, in general, higher strength and stiffness require-
ments and lower weight requirements are contradictory to each other. To take a specific 
example, let us consider the case of a pressure vessel in a space vehicle, where, in order 
to increase the capacity to take higher internal pressure, the designer may be tempted 
to increase the shell thickness. Higher shell thickness is associated with weight penalty. 
Thus, higher internal pressure and lower weight requirements are contradictory to each 
other; a solution has to be found by efficiently utilizing high-performance materials 
and at times a compromise may be made by appropriately altering the specifications on 
pressure and weight.
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14.3.3.2  Cost

In any application, an overall lower cost is welcome. There are some cases of national 
and strategic values, where, apparently, cost does not play a major role. In these cases, 
the sociopolitical cost of not having the product is generally very high and the cost of 
design and development is relatively lower. In most other applications, funds allocated 
for the development of a product are limited and cost is a major design constraint. 
Obviously, a design without economic value is of no use in these cases.

Cost has several elements—initial investment, operational cost, maintenance cost, 
etc. The initial investment includes plant and machinery, tools and fixtures, design 
and analysis, etc. These expenditures are primarily one-off in nature and they can be 
amortized over a period of time or over a certain number of products. Operational and 
maintenance costs are recurring in nature. The cost of raw materials, machine running 
cost, wages and salary, plant maintenance cost, etc. are some of the heads that need to 
be accounted for while doing costing of a product. The cost elements may vary grossly 
depending on the manufacturing methods. The design engineer must take all of these 
aspects so as to keep the overall cost within an acceptable limit.

14.3.3.3  Assembly Requirements

Quite often, a structure is built by assembling a number of components and subas-
semblies. Components and subassemblies are joined using adhesive and/or fasteners. 
Individual components must be designed under the constraint that the mating parts are 
compatible with each other at the interfaces. Assembly sequence is another consider-
ation that imposes certain constraints on the design of the components.

14.3.3.4  Manufacturing Feasibility

Advanced manufacturing processes have greatly increased the horizon of possibilities 
in front of the design engineers and added immensely to the development of complex 
and highly efficient products. These processes, however, have their own limitations that 
put constraints. For successful component realization, it is important that these limita-
tions are clearly understood and accounted for in the design process. For example, let 
us consider the composite manufacturing process of filament winding. No doubt, it is 
highly suitable for making axisymmetric components such as a cylindrical pipe, etc. and 
it allows automated efficient placement of impregnated fibers along the desired orienta-
tion. Helical winding, however, does not allow one to arbitrarily vary the fiber orientation 
along the axis of the component and the designer must keep this constraint in mind and 
choose fiber orientations that are windable. Another example is that of autoclave curing. 
It gives good consolidation and high-quality laminate. But it is not suitable for making a 
laminate of uniform thickness with good surface finish on both the sides. If good surface 
finish is required on both the sides of a uniformly thick laminate and autoclave curing 
is involved, then machining can be introduced and the resulting reduction in material 
properties due to fiber cutting may have to be accounted for in the design calculations. In 
other words, manufacturing feasibility and limitations should be considered during the 
design process and suitable corrective steps should be introduced as required.

14.4  DESIGN VERSUS ANALYSIS
Structural design and analysis are an essential phase in any product development pro-
gram. A good understanding of the two terms and the differences between them should 
be clear to a structural engineer (Table 14.1).

First, structural design is a process in which we consider a number of possible con-
figurations of the product and choose an acceptable configuration. It involves the altera-
tion of shape and size of the structural elements and details of joints so that the design 
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requirements are met in the best possible way. While the designer is expected to have 
an idea about the possible configurations of the product, the final configuration is not 
known at the start of the design process. In fact, to determine an acceptable configura-
tion is the primary objective of design. On the contrary, the structural configuration is 
known beforehand and it is an input to the analysis process.

Second, a major design task is to select the materials to be used in the manufac-
ture from among a number of candidate materials. Material properties are generally 
taken from available resources such as data sheet, handbook, etc. Alternatively, critical 
material data are also generated by experimental characterization. On the contrary, for 
analysis, these are input data.

Third, another major design task is to identify the manufacturing methods to be 
employed in the realization of the product. The detailed process parameters are deter-
mined as a part of process planning, which forms a part of the broad design exercise. 
Details of manufacturing methods and process parameters play a critical role in the 
design of composite structures. Analysis, on the other hand, is done often without pay-
ing any particular attention to the processing details.

Fourth, any structural design starts with the identification of the specifications in 
respect of functional and structural requirements. Typically, the broad specifications 
of the overall system are generated first followed by those of the subsystems and com-
ponents. During the design exercise, the specifications are altered and frozen through 

TABLE 14.1
Design versus Analysis

Design Analysis

•	Structural configuration
−− Not known before design is started
−− Chosen during the process of design (an output 
parameter)

−− Known before analysis is started
−− An input parameter

•	Materials
−− Not known before design is started
−− Selected during the process of design
−− Material properties are either generated by 
testing or taken from available data sheets

−− Known before analysis is started
−− Material data used design are also used 
in analysis

•	Process
−− Not known before design is started
−− Selected during the process of design
−− Process parameters are arrived at during 
process planning or process design

−− Process details are generally not used 
directly in analysis

•	Specifications
−− Known before design is started
−− May be altered and finalized through an 
iterative process

−− Known input to the analysis process

•	General characteristics
−− Iterative process
−− Indeterministic
−− Leader

−− One-way process
−− Deterministic
−− Follower

•	Typical output
−− Structural configuration (shape and size of the 
product)

−− Joint details
−− Finalized specifications
−− Materials to be used in the manufacture of the 
product

−− Manufacturing process

−− Response of the structure to the specified 
loads (stress, strain, deflection, buckling 
factor, mode shape, and frequency)

−− Estimated failure load
−− Estimated margin of safety
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a number of iterations. For analysis, the specifications in respect of loads, etc. are 
known input parameters.

Fifth, design is an iterative process of decision making; it is indeterministic in nature 
and it is the leader. On the other hand, analysis is a one-way process and it is deter-
ministic in nature. It is the follower; it can be done using data generated by the design 
process after design has been completed.

Finally, a look at the type of the output data of design and analysis processes reveals 
that design gives us the structure in terms of its configuration, materials, and processes. On 
the other hand, analysis gives us the response behavior of the structure to the applied loads.

14.5  COMPOSITES STRUCTURAL DESIGN
The structural design of a composite product involves a number of steps that can be 
broadly identified as follows:

◾◾ Generation of specifications
◾◾ Materials selection
◾◾ Configuration design
◾◾ Analysis options
◾◾ Manufacturing process selection
◾◾ Testing and NDE options
◾◾ Design of part/laminate and joints

These steps are applicable to any structure in general but the details are greatly dif-
ferent in composite materials and structures. The exercise starts invariably with the gen-
eration of specifications. However, various other steps are not necessarily performed in 
sequence; they are all interrelated and the final design is made by a process of iteration. 
Figure 14.2 shows schematically the process of composites structures design.

Configuration
design

Generation of
specifications

Material
selection

Analysis
options

Manufacturing
process options

Testing and
NDE options

Design of laminates
and joints

Start

End

FIGURE 14.2  Composite structures design process.
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14.5.1  Generation of Specifications

A composite product can be either an independent component or a part of a larger 
structure. Further, it can be either an all-composite component or an assembly of com-
posite and metallic components. For an independent component, that is, a component 
that has an end use on its own, the design specifications are obtained directly from 
the consumers’ needs. For example, an all-composite pleasure boat will be designed 
to specifications as per the taste, preference, and demands of consumers. On the other 
hand, a large number of composite products are used as parts/assemblies/subassemblies 
of other larger structures. In these cases, the specifications of the composite products 
are dictated by the specifications of the overall structure. For example, the rudder of 
an aircraft is a critical part that can be designed with composites, the specifications for 
which must however come from the overall specifications for the aircraft. Clearly, the 
design specifications of a product are derived from the basic need for it and the struc-
tural and environmental loads that it is likely to be subjected to during its life time.

The design specifications cover a wide range of issues related to the structure, which 
for the sake of convenience of discussion can be categorized as follows:

◾◾ Geometrical specifications
◾◾ Functional specifications
◾◾ Structural specifications

−− Structural loads
−− Environmental loads

Any structure has a certain shape and size, and it is invariably designed to certain 
specifications related to its geometry. In many cases, geometrical configurations follow 
a certain set of guidelines or patterns. For example, a pipeline is invariably circular in 
cross section, the wings of an aircraft are of airfoil cross section, and so on. However, 
the details in respect of diameter, length, thickness, etc., as applicable, must be specified. 
Note that these specifications depend on functional as well as structural requirements.

The functional specifications include all the tasks that the product being designed is 
required to perform. They are directly related to the functional requirements. Further, 
the life span over which the product is expected to serve, environmental conditions 
during its service life or perhaps the storage conditions, etc. may also be included as 
specifications.

While in service, a product is invariably subjected to certain loads that can be either 
structural or environmental. The structural loads are the forces, bending moments, 
torque, pressure, etc. that may act on the product. It is important to identify various 
possible load cases and carefully estimate the maximum possible levels of these loads 
under each load case during the entire life of the product. In addition to the structural 
loads, environmental loads such as thermal, chemical, etc. too need to be specified. 
Structural composite materials degrade at high temperatures. The rate of degradation 
is rather drastic above the glass transition temperature (Tg) and if the specified ser-
vice temperature is above Tg, an appropriate thermal insulation is essential. Composites 
are also used as ablative liners and insulating liners, in which case thermal loads are 
required for designing the liner thickness. Polymers may become brittle at subzero 
temperatures and minimum service temperature is also an important design input. The 
exposure of a composite product to a corrosive environment such as chemical, saline, 
etc. may adversely affect its life; needless to say that such environmental loads must be 
specified and taken care of in the design calculations.

The generation and finalization of design specifications, very much like the over-
all design process, are also an iterative process. Certain specifications may result in 
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nonoptimal design. Sometimes, certain specifications may put too tight restrictions on 
the manufacturing process to be implemented in an economical way. This is especially 
true in those cases, where a composite product is perhaps a part of a larger structure. 
In such a case, relaxing the specifications in one part and tightening in some other part 
may be necessary for an overall optimal solution. Clearly, this is possible by means of 
an iterative process.

14.5.2  Materials Selection

Materials selection is a critical task in any structural design exercise. It is especially 
true in composite structures due to the added complexity associated with the basic 
composite material system and its constituents. As we know, two constituents, viz. rein-
forcements and matrix, combine at the macroscopic level to form a composite material 
with unique properties; it implies that there are three broad areas to be considered in 
the selection of composite materials—selection of the composite material, selection of 
the fibers, and selection of the matrix.

14.5.2.1  Selection of the Composite Material

The selection of the basic composite material is the first step in the material selection 
process. Here, the designer chooses a material system (such as carbon/epoxy or glass/
polyester, etc.) and its physical form (such as layered composite, flake composite, etc.) 
We can identify a number of factors that influence the selection of the basic composite 
material; these are listed in Table 14.2.

During the material selection process in the design of most structures, strength and 
stiffness are the two factors that possibly receive the maximum attention. However, 
for aerospace and other weight-sensitive applications, specific strength and specific 
stiffness properties are more important. Clearly, the density of a material is a critical 
parameter in such cases. Other material properties are also crucial, depending on the 
applications. Fatigue and fracture characteristics of materials are important in structures 

TABLE 14.2
Factors Influencing Material Selection

Factors Where Applicable

Strength and stiffness Most structural applications
Fatigue strength Structures under cyclic loading
Fracture toughness Structures under impact loading
Density—specific strength and specific stiffness Weight-sensitive applications as in aerospace
Glass transition temperature Structures subjected to high temperatures
Thermal expansion Structures under wide range of operating temperatures
Thermal insulation As insulating layer to other structural parts under high 

temperatures
Thermal conductivity Applications where accumulation of heat at a localized 

zone is not desirable
Electrical conductivity Applications where accumulation of static charge at a 

localized zone is not desirable
Corrosion resistance Structures subjected to corrosive environment as in 

chemical industry, marine applications, etc.
Wear resistance Applications with moving parts
Resistance to fire Applications with fire hazards, e.g., buildings, 

industrial plants
Manufacturing considerations All applications
Cost All applications
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under cyclic loading and impact loading, respectively. The mechanical properties of 
most composite materials are adversely affected at elevated temperatures. Thus, glass 
transition temperature is a critical parameter if the service temperature of the structure 
is high. In certain applications, composite parts are used as an insulating layer to other 
structural metallic or composite parts. In these cases, thermal insulation is the design 
driver, and strength and stiffness characteristics are secondary requirements. Similarly, 
there are applications where the accumulation of heat or static charge is undesired; in 
such cases, thermal conductivity and electrical conductivity are the required mate-
rial characteristics. Corrosion resistance is a major requirement in many applications 
such as chemical storage tanks, plants, marine applications, etc. Wear resistance is a 
desirable material property in applications with moving parts. On the other hand, fire 
resistance is a desirable property in applications with fire hazards. Manufacturing con-
siderations in respect of materials and their physical form and characteristics must be 
given due respect while designing a composite structure. Finally, cost plays a crucial 
role in the selection of material in any structural application.

Clearly, while selecting materials, the material properties to be considered depend 
on the application of the product. It is also likely that in some applications, multiple 
requirements exist; in such cases, a practical approach is to prioritize the requirements 
and proceed from highest priority to the lower ones.

14.5.2.2  Selection of the Reinforcements

The selection of the reinforcing fibers is dictated by their functions. The primary func-
tion of the reinforcements is to impart strength and stiffness to the composite material 
in the fiber direction. The strength and stiffness properties of a unidirectional lamina 
are highly direction-oriented—being extremely high in the fiber direction and low 
across—and is essential to suitably orient the fibers so as to achieve the desired lami-
nate properties. Next, the density of composite laminate and its specific strength and 
stiffness are directly dependent on the fiber density. Thus, it follows that fiber tensile 
strength and modulus and density are the most important parameters that influence 
fiber material selection. Among reinforcement materials, different varieties of carbon, 
glass, and aramid are the most commonly used. Carbon and aramid have low density 
and high tensile strength and modulus; they are used in most weight-sensitive and other 
high-performance applications, including aerospace, automobile, sports, etc. On the 
other hand, glass fibers have relatively higher density and low modulus; they are used 
in many ground systems and commercial applications.

In addition to strength and stiffness, there are other laminate characteristics that are 
dependent on the reinforcements. Thermal stability, thermal and electrical conductivity 
(or insulation), energy absorption, etc. are some of these characteristics. An excellent 
example of the use of composites for thermal stability is in satellites, where the nega-
tive CTE of carbon fiber is effectively utilized for compensating the positive CTE of 
resin matrix such that nearly zero thermal expansion or contraction is achieved across a 
wide range of temperature variations. Similarly, glass fibers are used in composites for 
imparting thermal insulation properties, carbon fibers for electrical conductivity and 
aramid fibers for impact resistance, and so on.

Another critical factor is the cost of reinforcing fibers. Carbon fibers are highly 
expensive and they are cost-effective mostly in high-end applications. This is also why 
glass fibers are almost universally used in any commercial application.

14.5.2.3  Selection of the Matrix

Reinforcements by themselves are worthless without the matrix; the matrix binds the 
reinforcements and gives shape to the composite material. Thus, in a composite mate-
rial, although the matrix is the weak link, it is essential. It has its own specific functions 
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and the factors involved in the selection of matrix can be directly linked to its func-
tions. They are as follows:

◾◾ Fiber wettability and compatibility
◾◾ Manufacturing issues
◾◾ Environmental exposure
◾◾ High-temperature application
◾◾ Cost

The matrix must be compatible with the reinforcing fibers and capable of wetting 
them thoroughly. This is of critical importance as otherwise the basic load transfer 
mechanism is affected. Manufacturing issues play a major role in the selection of 
matrix material. Depending on the curing temperature and pressure requirements, the 
manufacturing process may become rather sophisticated and complex. For example, 
a room-temperature curing resin system needs hardly any additional setup for curing, 
whereas for certain other resin systems, we need an autoclave with high temperature, 
pressure, and vacuum application facilities and all the related consumables. Similarly, a 
resin system with high viscosity may not be acceptable for wet filament winding unless 
a suitable mechanism such as online heating arrangement is put in place. The matrix 
provides good protection to the reinforcing fibers against chemical attack and mechani-
cal wear and tear. Clearly, environmental resistance and mechanical wear resistance 
are factors that influence matrix selection in such applications. Another major factor 
is the glass transition temperature of the matrix material for high-temperature applica-
tions. Finally, cost plays its own role in matrix selection. There are two aspects here. 
The first cost element is the basic cost of the resin system, which may vary greatly from 
one system to another. Second, the manufacturing facilities required, especially curing 
setup together with necessary consumables, can make a lot of difference in financial 
calculations and eventual selection of the matrix material.

14.5.3  Configuration Design

Configuration design is the process of choosing the shape and size of the structure, 
which involves the following:

◾◾ Selection of the overall shape and size of the structure
◾◾ Selection of various types of basic structural elements
◾◾ Selection of shape and size of each structural element
◾◾ Selection of proper joints

The basic structural elements frequently used in the design of a structure are rod, 
column, beam, plate, and shell. Solids of various shapes are also used sometimes. 
Similarly, other more complex structural elements that are essentially combination of 
the basic elements, for example, corrugated plates, can also be thought of. Further, in 
many structural applications with high stiffness requirements, plates and shells are 
used with stiffening members. Stiffened structures can be made either as bonded or 
fastened assembly or as an integral part. (We shall discuss stiffened structures in a 
little more detail in a later section.) Other special structural constructions peculiar to 
composites are honeycomb and sandwich constructions.

Configuration design is a very important step. Typically, an initial overall shape and 
size of the structure are chosen and various structural elements required are identified. 
The shape and size of each element are chosen through an iterative process that involves 
computation and selection, and the final structure is obtained as an assembly of various 
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structural elements. Clearly, a proper scheme of joining the elements is essential and 
details of various joints have to be worked out.

14.5.4  Analysis Options

A design exercise is incomplete if we are not able to analyze it and make estimates of 
response of the structure to the applied loads. The response of a structure is measured 
in different ways, depending on the types of loads and the level of structural details. In 
general, structural analysis is done for the determination of the following:

◾◾ Static analysis—displacement, stress distribution, strain distribution
◾◾ Dynamic analysis—natural frequency, mode shape
◾◾ Stability analysis—buckling load
◾◾ Thermal analysis—temperature distribution

Structural analysis is done at different levels of details, under different types of loads, 
and with different objectives. At the overall assembly level, the objective of analysis is to 
find the overall response in terms of gross displacements, global buckling load, etc. and 
details in respect of local features such as cut-outs, joints, etc. are often ignored. On the 
other hand, at the individual component level or at the subassembly level, local details 
must be given due importance; local stress distribution around cut-outs or near some 
discontinuities, joint opening, and other local behavior of the structure are found out.

Finite element modeling is the most common tool for the analysis of any real-life 
structure. However, it may be noted that simple hand calculations, especially for basic 
structural elements, still play a critical role.

14.5.5  Manufacturing Process Selection

The realization of a composite product is largely process-dominant and the selection 
of an appropriate manufacturing process is a critical aspect that must be taken care of 
during design. It is especially true in composites due to the fact that during the develop-
ment of a composite product, it is not only the product but also the material itself that 
gets made. Various processing options and manufacturing techniques are available in 
the field on PMCs (Chapter 10). By and large, the choice of the primary manufactur-
ing process is obvious for some types of composite products. For example, for constant 
cross section unidirectional longitudinal members, pultrusion is almost universally 
used. Similarly, filament winding is an automatic choice for any pressure vessel, and 
so on. However, there still exist several factors that need to be considered for making a 
final decision in respect of manufacturing process selection. Some of these factors are

◾◾ Shape and size of the product
◾◾ Production requirement
◾◾ Tooling requirements
◾◾ Need and availability of skilled manpower
◾◾ Automation
◾◾ Reliability and repeatability
◾◾ Structural property requirement
◾◾ Cycle time
◾◾ Cost

The overall shape and size of the product are the first aspects that would come to our 
mind while making a selection of the manufacturing method. An associated factor is 
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the complexity of the configuration. Certain processing techniques, such as compres-
sion molding, are suitable for small- to medium-sized parts, whereas certain others, for 
example, filament winding, can be used for making medium to large sizes. Similarly, 
certain techniques, such as press molding and pultrusion, are suitable for meeting the 
large-scale production requirement whereas certain others, for example, hand lay-up, 
can be used for the realization of a few components. Tooling requirement is a common 
feature for any composite processing technique. The nature of the tooling depends on 
the processing technique and the configuration of the part. It affects several aspects, 
including quality and cost, of component realization. Some of the composite processing 
techniques are heavily dependent on skilled manpower; obviously, these processes are 
not suitable if manpower is scarce. Automation is possible in some cases that results 
in reliability. Reliability and repeatability also vary depending on the processing tech-
niques. For example, compression molded and pultruded parts are known for quality 
repeatability, whereas it is quite poor in wet hand laid-up parts. Another aspect of con-
cern is structural property requirement. Filament winding, pultrusion, RTM, etc. can 
be employed to make highly directional composite parts. On the other hand, compres-
sion-molded randomly oriented components and open-molded CSM products are poor 
in structural properties. Finally, the cycle time of realization and overall cost play their 
own roles in the manufacturing process selection.

14.5.6  Testing and NDE Options

Testing and nondestructive evaluation options must be considered during the design 
of a composite product. In a product development program, tests on materials are con-
ducted for both the generation of design data as well as in-process quality control pur-
poses. Testing is also done at the product level for acceptance and qualification of the 
product. Similarly, NDE is done to detect the presence of flaws and deviations in the 
components and interfaces. The basic objective of carrying out testing and NDE is to 
infuse reliability and quality into the product. It is essential during product design itself 
to identify the needs and corresponding testing and NDE options at different levels of 
product development.

14.5.7  Design of Laminate and Joints

Arguably, the most important step in the design of a composite structure is the design 
of the laminates and joints. There are several aspects to be addressed and we address 
them below under two major headings—laminate design and joint design.

14.6  LAMINATE DESIGN

14.6.1  Scope of Laminate Design

A laminate is a layered composite structural element that is made by a number of 
laminae or plies. In a composite structure, a plate, a shell or panel, a beam, a stiffening 
rib, etc. are all some forms of laminates. Typically, the reinforcements in the laminae 
are oriented w.r.t. the coordinate system of the structural element and the laminae are 
stacked as per a certain ply sequence. The laminate structural response to applied loads 
can be greatly influenced by altering the ply sequence that involves primarily three 
variables, viz. ply material, ply thickness, and ply orientation. One more variable of 
critical importance is the fiber volume fraction, which depends mainly on the manu-
facturing process adopted. The shape of a laminate is obtained from the chosen con-
figuration of the structure and various structural elements. On the other hand, laminate 
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design basically involves the selection of ply sequence variables and an appropriate 
fiber volume fraction.

14.6.2  Laminate Design Concepts

Laminate design, being a part of an overall indeterministic design process, is a rea-
sonably complex subject. It is particularly so in the case of composites due to their 
anisotropic nature and the presence of more numbers of elastic constants and strength 
parameters. The design process is made to look more complicated by the use of sev-
eral terminologies that sound similar and are related to each other. They are basically 
related to loads, material properties, and safety factors. In this section, we dwell on 
these concepts and then proceed on to laminate design procedure in the next section.

14.6.2.1  Load Definitions

Various terms related to loads that are used by designers across various sectors can be 
grouped as follows:

◾◾ Applied loads—operating load, maximum operating load, limit load, and 
design limit load

◾◾ Failure loads—ultimate load
◾◾ Design loads—design ultimate load

Starting with the very first moment a product takes shape in the shop floor, it goes 
through various stages that include manufacturing, assembly, handling, storage, the 
specified use, etc. In each of these stages, it is subjected to certain loads. Operating 
loads are the general forces and moments that act on the product in its normal 
operating conditions. An obvious extension to this statement is that maximum operat-
ing loads are the maximum levels of the operating loads that can be expected during 
its entire life time. Limit load is another term that is used to refer to the maximum load 
that can be expected on the product during its entire life span. Loads expected on the 
product are often estimated by mathematical simulation, and from this point of view, 
limit load is also an estimated load to be used in design and often referred to as the 
design limit load.

Ultimate load is the maximum load that a structure can take before failure. Here, it 
is important to define the term failure. It may be noted that failure need not necessarily 
mean rupture of fibers or yield of metal or complete collapse of the structure. In simple 
words, it means inability of the structure to perform some or all of the designed tasks. 
Thus, the load at which a structure fails to perform its designed tasks satisfactorily is 
the ultimate load.

At this point, we need to make note of two aspects related to laminate failure. First, 
the ability of a structure to perform its tasks is judged basically from two angles—
stress/strain and deflection. In the first case, stresses and strains are compared with the 
respective allowables, for which an appropriate failure criterion can be applied at the 
lamina level. In the second case, deflections are compared with specified maximum 
acceptable values. There are other parameters too that are required under specific load-
ing conditions. For example, under compressive loading, stability is a primary concern 
and buckling load is compared with the applied load. In a dynamic loading environ-
ment, natural frequency is a critical parameter. The second point related to product 
failure is that a structure is made as an assembly of a number of structural elements 
and failure of any one element may or may not lead to failure of the whole structure. 
Further, in a composite laminate, failure process is progressive and ultimate load may 
correspond to first ply failure and last ply failure depending on failure perception.
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Design ultimate load is the load for which design calculations are done such that 
the structure fails at this load level. If the design shows that the structure fails at a 
load above the design ultimate load, it is overdesigned, and if it fails at a lower load, 
it underdesigned. An efficient design is a case where failure takes place at the design 
load.

As mentioned earlier, various operating conditions may exist, of which a few may be 
critical that would perhaps envelop other redundant, benign, and less critical ones. It is 
necessary to identify various possible load cases and determine the critical load cases. 
Operating loads and design loads are identified or estimated and the corresponding 
design loads determined by applying appropriate factors. Design and analysis are done 
and the analysis results are compared with design allowables.

Another point that is worth mentioning is that the terminologies listed above are not 
exhaustive and other specific terms are also used in specific cases. For example, in the 
field of rocket motor casing design, maximum expected operating pressure (MEOP) 
is a very common term that is nothing but the maximum operating load we discussed 
above. Also, certain terms may be used to mean differently from what is stated here. It 
is important to go to the basics, understand the context in which a term is being used, 
and then concentrate on the design and analysis work.

14.6.2.2  Design Allowables

Design allowables refer to the material properties to be used in design and analysis. For 
composites, material properties are often generated by testing. Some of the key factors 
that should be kept in mind while arriving at the design allowables are as follows:

◾◾ Scatter in the sample test results
◾◾ Batch-to-batch variations of constituent properties
◾◾ Variations of material properties at the component level as compared to the 

sample level

Design allowables are basically statistical parameters derived from the database 
generated from sample test results. Certain amount of scatter is generally present in 
the test results; it is essential to test a sufficient number of samples and have a reason-
able size of the database so as to ensure reliability of the design allowables. Typically, 
the data points follow a normal distribution from which mean and standard deviation 
are computed. A design allowable is derived as “mean − 2 × standard deviation” or 
“mean − 3 × standard deviation,” which gives, respectively, above 95% and 99% prob-
ability that a test result would be above the derived design allowable.

The next source of uncertainty is from batch-to-batch variations in material proper-
ties. The reinforcing fibers and the matrix materials do vary in their properties from 
one batch to another. One way to counter this is to lower the computed design allow-
able by some appropriate factor. Alternatively, strict in-process quality control can be 
resorted to for screening of raw materials.

The third issue is especially true for composite materials. Composite materials, 
unlike metals, are built during the fabrication process. Composite shop floor practices 
may adversely affect properties of the materials that actually make a component. The 
ideal conditions of making a laminate for sample preparation are often absent during 
the fabrication of a composite product. Also, in certain cases of composite processing 
techniques, component-level ply construction is grossly different from what it is at the 
sample level. For example, in a filament-wound component, the ply construction in a 
hoop ply is the same as in a unidirectional test specimen, but the same is not true in 
a helical ply, especially near a cross-over junction. Similarly, fiber volume fraction at 
the component level is often different from (lower than) the sample-level fiber volume 
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fraction. Thus, it is necessary that design allowables are suitably modified giving due 
considerations to the shop floor practices and processing technique.

14.6.2.3 � Factor of Safety, Margin of Safety, Buckling Factor, 
and Knockdown Factor

Factors of safety are used in design to counter uncertainties associated with it. 
The uncertainties of different kinds can be grouped as

◾◾ Uncertainties related to material properties
◾◾ Uncertainties related to loads
◾◾ Uncertainties related to design and analysis assumptions

In the previous section, we had seen some of the factors that influence variations 
in material properties. Design allowables are obtained from test results or data sheet 
values by using suitable reduction factors. In some cases, the factor of safety associated 
with material properties is implicitly implied. For example, when using yield stress as 
the design strength for ductile materials, we indirectly use a reduction factor equal to 
the ratio of yield stress to ultimate stress. For uncertainties in load estimates, design 
and analysis assumptions and methodologies, the factor of safety is used is used in an 
explicit manner. Typically, it is defined as

	
FoS

Design ultimate load
Design limit load

=
	

(14.1)

For any major structure, the factor of safety (FoS) is a well-deliberated number 
that is arrived at by considering interests and views of various stakeholders. General 
guidelines exist to help decide on a suitable factor of safety for different loading con-
ditions such as static load, cyclic load, impact, etc. In general, a high factor of safety 
reduces the risk of failure but at the cost of weight penalty and lower performance. A 
higher factor of safety is used when failure is complicated and catastrophic in nature, 
and cost of failure is high. On the other hand, when the cost of failure is low and 
failure is more predictable, and a lower factor of safety can be used. In-process qual-
ity control measures also play a role in this respect. Tighter material screening and 
process control help reduce shop floor uncertainties and a lower factor of safety can 
be used.

There are other terminologies as well that are used in similar contexts. One such 
term is margin of safety. The factor of safety is used in design calculations to arrive at 
various parameters such as thickness, ply orientation, etc. The factor of safety is always 
more than 1. The margin of safety, on the other hand, is used to indicate the margin 
available after the product has been designed. From the analysis of the designed prod-
uct, we get the estimates of various design parameters and the available factor of safety 
is calculated as the ratio of the ultimate load-carrying capacity of the product to the 
design limit load. The margin of safety is then given by

	
MoS

Ultimate load-carrying capacity
Design limit load

Availab= − =1 lle FoS−1
	

(14.2)

Note that the margin of safety is always positive.
Similar to the concept of the factor of safety, there are two more factors that we 

frequently encounter—buckling factor and knockdown factor. Buckling is a stability 
problem and is associated with compression loading. Buckling factor is the ratio of the 
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critical buckling load to the design limit load. Thus, buckling factor refers to the factor 
of safety in a stability problem. The factor of safety required in a buckling problem 
depends greatly on the geometrical configuration and nature of loading. Knockdown 
factor, on the other hand, is a reduction factor, obtained largely from experimental 
results, which is used for reducing the classical buckling load of a structure and the 
reduced theoretical buckling load is then compared with the design limit load.

14.6.3  Laminate Design Process

The laminate design process basically involves four steps:

◾◾ Initial laminate selection
◾◾ Laminate analysis and measurement
◾◾ Design criteria check
◾◾ Design refinement

The process is schematically shown in Figure 14.3. It is an important part of the 
overall composite structures design process and certain other aspects have to be 
addressed prior to laminate design. Thus, part configuration, materials data, manu-
facturing process details, and applied loads are known and these are essential design 
input. Note that we emphasize on the fact that these are essential design input that must 
be considered in totality. It is not uncommon to come across laminate design, which 
considers part configuration, material data, and loads but not the manufacturing pro-
cess. A typical example is a part to be realized by filament winding containing helical 
layers. As we know, helical angles at different locations of the part would depend on 
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FIGURE 14.3  Laminate design process.
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the geometry of the part. A laminate stacking sequence that is chosen based only on 
loads, material data, and part configuration but not the limitations of filament winding 
will most likely lead us to a situation where we have a good design on paper that cannot 
be translated to a product!

14.6.3.1  Laminate Selection

Laminate selection is a critical task but the starting point is somewhat arbitrary. We 
mentioned in one of the previous sections that laminate design involves the selection of 
primarily three variables—ply materials, ply thickness, and ply orientation. In addition, 
we have a fourth variable, viz. fiber volume fraction, which is typically governed by the 
processing technique. Material selection is done prior to coming to the stage of lami-
nate design. However, issues such as forms of reinforcement—whether unidirectional or 
bidirectional—ply thickness, and orientation have to be addressed at this point.

Laminate performance is greatly influenced by the stacking sequence. As we had 
seen in Chapter 5, a number of special cases of laminate stacking sequence can be 
constructed. The significance of these stacking sequences in design is that some of the 
unnecessary coupling effects can be avoided as described in Table 14.3. In general, 
a symmetric laminate is the first choice as in this case unnecessary extension–bend-
ing coupling can be avoided and mathematical computational complexity is greatly 
reduced. However, strictly symmetric stacking sequence may be difficult in many real-
life cases due to processing limitations, especially with ply drop-offs. On the other 
hand, in some specific cases, certain coupling effects can actually be used advanta-
geously to meet design requirements.

The process of initial selection and subsequent refinement of stacking sequence can, 
however, be greatly simplified by considering the following two aspects:

◾◾ Practical aspects
◾◾ Invariant forms of laminate stiffness

First, infinite possibilities for the selection of stacking sequence exist theoretically, 
especially w.r.t. the angle of orientation of the plies. Thus, the initial choice of the 
laminate is to a large extent arbitrary, perhaps dictated by previous experience. While 
strength and stiffness characteristics of a laminate can be theoretically estimated, 

TABLE 14.3
Special Cases of Laminates and Their Significance

Laminates Remarks

Symmetric laminate •	No extension–bending coupling
•	No shear–twisting coupling
•	No extension–bending–shear coupling
•	No extension–twisting coupling
•	No shear–bending coupling
•	No bending–twisting coupling

Antisymmetric laminate •	No extension–shear coupling
•	No bending–twisting coupling
•	No twisting–curvature coupling

Balanced laminate •	No extension-shear coupling
Cross-ply laminate •	No extension–shear coupling

•	No extension–twisting coupling
•	No shear–bending coupling
•	No bending–twisting coupling
•	No twisting–curvature coupling
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fatigue life is typically experimentally determined. The risk and cost involved in a 
totally new laminate are very high. Thus, stacking sequences, in general, and angles of 
orientation, in particular, are chosen from somewhat standard and familiar ranges of 
values. Also, changes made are often incremental.

Second, the invariant forms of laminate stiffness can be conveniently utilized in a 
design environment. We briefly discuss the concept in the following paragraphs.

14.6.3.1.1  Concept of Invariant Forms of Laminate Stiffness

Let us recall the equations for transformed reduced stiffnesses from Chapter 4:

	 Q Q Q Q Q11 11
4

22
4

12 66
2 22 2= + + +cos sin ( )sin cosθ θ θ θ 	 (14.3)

	 Q Q Q Q Q12 11 22 66
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66
4 42 2= − + − + +( )sin cos sin cos( )θ θ θ θ 	 (14.8)

These expressions show how the transformed reduced stiffness parameters of a glob-
ally orthotropic lamina vary depending on the orientation of the lamina. In a real-life 
design scenario, the engineer has to choose θ for each lamina in the laminate. Clearly, 
the above expressions are rather too complex to be of practical use. The problem can be 
overcome by employing the concept of invariant forms of laminate stiffness, which was 
originally introduced by Tsai and Pagano [21]. Now, by using various trigonometric 
identities, Equations 14.3 through 14.8 can be recast as

	 Q U U U11 1 2 32 4= + +cos cosθ θ 	 (14.9)

	 Q U U12 4 3 4= − cos θ 	 (14.10)
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	 Q U U66 5 3 4= − cos θ 	 (14.14)

in which
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Note that the terms U1, U2, U3, U4, and U5 are invariant of ply orientation θ and con-
stants for a given material system. Note further that the transformed reduced stiffnesses 
Qij  are not invariants of θ. However, by writing them in terms of the lamina stiffness 
invariants U1, etc., it is easy to visualize the effect of θ on Qij .

Next, the concept is extended from lamina to laminate, where the laminate stiffnesses 
Aij, Bij, and Dij are obtained by expressing Qij  in terms of the lamina stiffness invariants. 
At this point, we note the following:

◾◾ θk (angle of orientation for the kth lamina) is constant in each lamina, but it 
varies from lamina to lamina.

◾◾ Qij  are constant in each lamina, but they vary from lamina to lamina.
◾◾ U1, U2, U3, U4, and U5 are constant in all the plies if the material is the same.

Then, in the expressions for laminate stiffness matrices (see Chapter 5), we can 
write Qij  as given by Equations 14.9 through 14.19. The terms U1 to U5 can be brought 
outside the thicknesswise summation and we can express the elements of [A], [B], and 
[D] matrices as shown below.

14.6.3.1.2  Extensional Stiffnesses
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	 A U V U VA A66 5 1 3 3= − 	 (14.25)

in which
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14.6.3.1.3  Coupling Stiffnesses
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	 B U V U VB B66 5 1 3 3= − 	 (14.36)
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14.6.3.1.4  Bending Stiffnesses
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Note that the terms ViA, ViB, and ViD are generally dependent on zk and θk and they 
vary as indicated below:

i = 1—constant

i = 2—cos 2θk

i = 3—cos 4θk

i = 4—sin 2θk

i = 5—sin 4θk
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Thus, a much clearer picture of variation of laminate stiffnesses w.r.t. the angle of 
orientation is obtained, which is greatly helpful in selecting and modifying the stacking 
sequence of a laminate.

14.6.3.2  Laminate Analysis and Measurement

A real-life composite structure is generally a complex one made up of a number of parts 
and joints. Finite element modeling is the most common method for the analysis of 
such a structure at the assembly level. However, at the laminate level, classical laminate 
theory-based progressive failure analysis, netting model, and such other analysis tools 
are also sometimes used. All possible critical load cases are considered and laminate 
level loads and boundary conditions are applied.

The analysis process is deterministic, and various parameters such as displacement, 
stress/strain distribution, natural frequency, mode shape, buckling load and tempera-
ture distribution, fracture toughness, etc. are determined. Note that some of the param-
eters are highly influenced by joints and adjacent parts. Laminate analysis in respect 
of these parameters is often done as a comparative study. Also, the parameters sought 
to be determined are clearly dependent on the nature of the applied loads and laminate 
configuration. In many cases, the general state of stress or strain would tell us what we 
should seek to determine. For example, in a pressure vessel under internal pressure, the 
laminate is in a state of biaxial stress and membrane stresses and strains are the param-
eters we need to know. On the other hand, for a pressure vessel under external pressure, 
buckling becomes a critical parameter to be observed.

While most of the parameters we need can be found by analysis, certain parameters 
can be found by measurements. For example, fatigue life of a composite laminate is 
typically found by measurement. Similarly, ablative response, impact characteristics, 
and other specific features of a laminate are often experimentally determined.

14.6.3.3  Laminate Design Criteria

Laminate design criteria revolve around one or more of the following four aspects:

◾◾ Strength
◾◾ Stiffness
◾◾ Fatigue life
◾◾ Energy absorption

From a strength point of view, stress and strain outputs from laminate analysis are 
suitably used in appropriate failure criteria to verify the adequacy of the laminate 
against design allowables. In respect of stress and strains in a composite laminate, there 
are two aspects that need attention here—plywise variations and concentrations near 
cutouts and other discontinuities such as ply drop-offs. Stress/strain concentration near 
cutouts is well known in metallic structures and the same is valid in composites as well. 
Strain variation is gradual across various plies, but steep stepwise variation of stress 
is a characteristic feature of composite laminate. It is unfortunate but not uncommon 
to make mistakes of comparing surface stress/strain only or gross stress/strain with 
design allowables to determine the available factor of safety. Stiffness is reflected in the 
strain, deflection, and buckling load of the laminate. Strain, as we have seen above, are 
used in strength failure criteria. On the other hand, deflection is mostly specified as a 
limiting parameter based on functional requirements. Similarly, fatigue life and energy 
absorption may also be specified depending on the applications.

The application of design criteria verifies whether or not the chosen laminate is 
acceptable or not. If the strength, stiffness, fatigue life, and energy absorption charac-
teristics are either too low or too high, modifications to the laminate design are made. 
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Modifications to the laminate, when required, are normally made in an incremental 
mode by adding or reducing plies. Another factor that needs to be considered is the 
weight, especially if weight budget is made at the laminate level itself. (Note that, with 
a view to controlling the weight of the overall composite product, weight budget can be 
made for the laminates and parts.)

14.7  JOINT DESIGN

14.7.1  Introduction

Joints are used for connecting structural elements of different kinds. They are generally 
considered as the weak links in any structure. Yet, most real-life structures do contain 
joints. Composites are known for their capabilities to be built as monolithic structures 
without joints. However, certain minimum joints cannot be avoided even in composite 
structures. Laminates in a composite structure can be designed to possess the highest 
strength and stiffness characteristics; however, if the joints that connect them are not 
adequate for efficient load transfer, the strength and stiffness of the laminates cannot 
be exploited properly and the overall structural performance reduces greatly. Here lies 
the importance of design of appropriate joints in a composite structure.

14.7.2  Types of Joints

Broadly, two types of joints are used in a composite structure—bonded joints and 
mechanically fastened joints. In addition to them, there are joints that are both bonded 
and mechanically fastened. Joints with special and product-specific features are also 
used in some cases. Thus, we can have a third category, and group different types of 
joints into three categories as follows:

◾◾ Bonded joints
◾◾ Mechanically fastened joints
◾◾ Special joints

Several subtypes, which can be either generic or product-specific in nature, can be 
found in each of the above. These subtypes are based on either configuration or process 
of realization of the joints. These are discussed in the following sections.

14.7.3  Bonded Joints

14.7.3.1  Introduction to Bonded Joints

As shown in Figure 14.4, bonded joints are designed with a thin layer of a suitable 
adhesive between two adherends. Various configurations of bonded joints are used 
[1,7,8,14,15]; some of the common ones are as follows (Figure 14.5):

◾◾ Single-lap and double-lap joints
◾◾ Single-stepped and double-stepped joints
◾◾ Single-bevel and double-bevel joints
◾◾ Single-scarf and double-scarf joints
◾◾ Single-butt strap and double-butt strap joints

Other configurations of bonded joints can also be made as variations of these joints 
listed above. In real-life structures, the joint configuration is dictated by the configu-
rations of the parts being bonded. Parts of various configurations, including flat and 
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curved panels, cylinders, cones, and contoured parts, can be bonded as long as the mat-
ing surfaces have the same geometry.

In a composite joint, a composite laminate is bonded with another composite lami-
nate, a metallic panel, or a rubber layer. Thus, based on the adherend materials, com-
posite joints can be of the following types:

◾◾ Composite-to-composite joints
◾◾ Composite-to-metal joints
◾◾ Composite-to-rubber joints

The compatibility of the adhesive material with the adherend materials is important. 
Epoxy- and acrylic-based adhesives are most commonly used in bonded joints. During 
manufacturing, a suitable adhesive is applied on the adherends (i.e., the laminates that 
are adhesively joined) and cured. The adherends may be cured laminates or in the 
green condition; in the latter case, the adherends are cured along with the adhesives. 
From this point of view, the following two types of bonded joints are found:

◾◾ Joint with precured adherends
◾◾ Joint with cocured adherends

Adherends

Adhesive

FIGURE 14.4  Typical bonded joint.

(a) (b)

(c) (d)

(e) (f)

(g)

(i) (j)

(h)

FIGURE 14.5  Types of bonded joints. (a) Single-lap joint. (b) Double-lap joint. (c) Single-stepped-lap 
joint. (d) Double-stepped-lap joint. (e) Single-bevel joint. (f) Double-bevel joint. (g) Single-scarf joint. (h) 
Double-scarf joint. (i) Single-butt-strap joint. (j) Double-butt-strap joint.
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14.7.3.2  Failure Modes in Bonded Joints

A bonded joint is commonly designed to resist in-plane loads, where the primary load 
transfer mechanism is by shear. A distinct feature in all the “single joints” is that load 
transfer is eccentric, which results in bending of the joints. Thus, peel stresses are 
developed in the adhesive in these joints. The intensity of the peel stresses is the high-
est at the edges (Figure 14.6). On the other hand, load transfer is symmetric in all the 
“double joints”; in these joints, stresses in the adhesive are predominantly shear. A joint 
may also be subjected to out-of-plane loads, in which case, bending stresses develop in 
the adherends and peel stresses in the adhesive.

Depending on the nature of the applied loads, various failure modes are possible in 
a bonded composite joint, out of which the primary modes are [1,7,18]:

◾◾ Failure of the adherends
−− Adherend failure in tension
−− Adherend failure by interlaminar stress
−− Adherend failure by transverse stress

◾◾ Failure of the adhesive
−− Adhesive failure in shear
−− Adhesive failure in tension

◾◾ Failure of the adherend–adhesive interface
−− Interface failure in shear
−− Interface failure in tension

The failure modes broadly correspond to the adherends, adhesive, and the interface. 
The adherend failure can occur due to excessive longitudinal tensile stress, interlaminar 
stress, or transverse stress. While longitudinal tensile failure results from fiber fracture, 
interlaminar and transverse failures are due to matrix and fiber–matrix interface failure. 

(a)

(b)

(c) (d)

FIGURE 14.6  Schematic representation of load transfer mechanism in a bonded joint. (a) Single-
lap joint in tension. (b) Free body diagrams. (c) Shear stress distribution in the adhesive. (d) Peel stress 
distributions.
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Cohesive failure of the adhesive is a common failure mode in a bonded joint. This 
occurs when the adhesive mechanical properties are low. Failure of the adhesive can 
take place due to either excessive shear stress or out-of-plane tensile peel stress. Another 
mode of bonded joint failure is in the interface, which is common if surface preparation 
is not proper. Various failure modes are schematically depicted in Figure 14.7.

14.7.3.3  Advantages and Disadvantages of Bonded Joints

The advantages and disadvantages associated with bonded joints can be listed as 
follows [7,8,14]:

Advantages:

◾◾ Minimum stress concentration—The joint transfers load over a large surface 
area resulting in minimum stress concentration.

◾◾ Minimum weight penalty—Increase in weight on account of adhesive and 
other features associated with a bonded joint is generally low.

◾◾ No holes and cut-outs—No holes or cut-outs are required in a bonded joint; as a 
result, adherends are not weakened and stress concentration does not occur.

◾◾ Low cost—Adhesively bonded joints are economical and generally much 
easier to implement.

Disadvantages:

◾◾ No disassembly—Bonded joints are permanent in nature and disassembly is 
not possible.

◾◾ Crack propagation—The adhesive is isotropic in nature and, unlike the 
adherends, it does not contain any fibers that acts as crack-bridging mechanism. 
As result, an initial crack can easily propagate, causing catastrophic failure.

◾◾ Environmental effects—The adhesive can get adversely affected by environmental 
factors resulting in poor performance and loss of structural integrity of the joint.

◾◾ Surface preparation—Extensive surface preparation is needed so that proper 
bond between the adherends is created.

(a)

Longitudinal
tensile failure

Transverse
tensile failure

Interlaminar
tensile/shear failure

(b)

Adhesive
failure

Interface
failure

FIGURE 14.7  Failure modes in a bonded joint. (Adapted from F. L. Matthews and R. D. Rawlings, 
Composite Materials: Engineering and Science, CRC Press, Boca Raton, FL, 1999.)
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◾◾ Difficult quality control—Compared to mechanical joints, it is more difficult 
to confirm the joint quality of bonded joints by inspection.

14.7.3.4  General Design Considerations

The design of a composite bonded joint involves primarily three aspects:

◾◾ Configuration design of the joint
◾◾ Ply design of the laminates
◾◾ Selection of adhesive material

The basic question in any bonded joint is to determine the bond area required to 
effect efficient load transfer. The classical approach assumes a uniform adhesive shear 
stress and a linear relationship between joint strength and bond area. It is simple to fol-
low and is the basis for some of the standard test procedures. However, this simplistic 
approach is not realistic. The stress distribution is highly nonlinear, especially near the 
ends, where the interlaminar shear stresses are very high. These stresses can be rather 
low and uniform at the interior portions in the bond area. Both analytical and numeri-
cal studies have been carried out for stress analysis and solutions have been proposed 
for different joint configurations (see, for instance, References 19 and 22–26). We shall 
not go into the details of joint design and rather address in a qualitative way some 
general design considerations that should be kept in mind while working out the details 
of a bonded joint.

Strength degradation: The shear strength of the adhesive in a bonded joint is 
affected by several factors such as adhesive layer thickness, surface prepara-
tion, etc. These factors cannot be controlled in a real-life structure as tightly 
as in a laboratory specimen. As a result, the strength obtained from laboratory 
specimens is often not achieved in bonded joints in a real-life structure. Thus, 
it is imperative that laboratory specimen test data are degraded by a suitable 
factor for use in the design of bonded joints. Typically, this factor is of the order 
of 0.6–0.8.

Complex failure modes: Composite joints are known for their complex failure 
modes that make failure prediction more difficult than the adherends. Generally, 
a composite product is designed to have a higher margin of safety at the joints 
than in the adherends. With this in mind, typically, adhesive material is selected 
so as to have about 50% higher shear strength than that of the adherends.

Ply sequence: The ply sequence of the adherends plays an important role in the 
performance of the joint. In general, it is preferable to use 0° plies (in the load-
ing direction) next to the adhesive layer. On the other hand, using 90° plies 
(transverse to the loading direction) next to the adhesive layer is a poor practice 
as it can lead to delamination near the joint.

Configuration: The configuration of a joint is based on the basic configurations 
discussed in one of the previous sections. Single-lap joints are associated with 
eccentric loading and resultant bending, joint rotation, and high peel stresses. 
Thus, at structurally critical locations, double-lap joints are preferable.

14.7.4  Mechanical Joints

14.7.4.1  Introduction to Mechanical Joints

Mechanical joints are incorporated using basically three types of fasteners—bolts, 
screws, and rivets. A typical bolted joint configuration is schematically shown in 
Figure 14.8. Different types of bolts, screws, and rivets are in use. The dimensions 
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of various elements such as bolt heads, shank diameter, etc. are standardized, espe-
cially for metallic structures; we are not going into these details. It may, however, be 
noted that composites have their own specific characteristics that must be kept in mind 
while designing a mechanical joint. In general, shear properties of composites are not 
good. As a result, thread integrity is poor and it is preferable not to have any threads 
in composites. Also, high-performance fasteners, specially designed for composites 
applications, which are commercially available under various brand names, can be 
used; however, these fasteners are generally highly expensive.

Various generic configurations of mechanical joints are used [1,14]; these are given 
in Figure 14.9.

◾◾ Single-lap joint
◾◾ Double-lap joint
◾◾ Reinforced-edge joint
◾◾ Shimmed joint

Washer
Bolt head

Nut

FIGURE 14.8  Typical bolted joint.

(a)

(b)

(c)

(d)

FIGURE 14.9  Types of mechanical joints. (a) Single-lap joint. (b) Double-lap joint. (c) Reinforced-
edge joint. (d) Shimmed joint.
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14.7.4.2  Failure Modes in Mechanical Joints

The laminates in a joint can be subjected to in-plane load, out-of-plane load, or a 
mixture of both. Depending on the nature of the laminate loads, the bolts may be in 
shear or tension. Often, the joint undergoes rotation due to eccentric loading, as in a 
single-lap joint, resulting in the generation of bending stress in the bolts.

Failure modes in composite mechanical joints are the same as those seen in metals; 
however, they are greatly influenced by ply sequence and characteristics peculiar to 
composites. A unidirectional laminate, depending on the direction of fibers, is likely 
to result in longitudinal tensile failure or shear failure. Tensile failure generally occurs 
due to high stress concentration near the bolt hole.

The primary failure modes associated with mechanical joints in composites are 
[1,7,14]:

◾◾ Laminate failure
−− Tension failure
−− Shear failure
−− Bearing failure
−− Shear-out or cleavage failure
−− Bolt pull-out failure

◾◾ Bolt failure
−− Shear failure
−− Bending failure

The tension failure of laminate occurs due to high tensile stress in the laminate 
along a plane through the bolt hole. The failure plane is normal to the loading direc-
tion. In a composite mechanical joint, the laminate net cross-sectional area gets 
reduced by the presence of the bolt holes. As a result, the net stress level increases. 
Also, holes and cut-outs are associated with stress concentration. Clearly, the joint 
strength in this mode (the maximum tensile load that the joint can take) is dependent 
on the reduced laminate cross-sectional area and the effective tensile strength of the 
laminate material.

Bearing failure is the failure of the laminate by bearing at the bolt hole. Bearing 
stress is dependent on bolt diameter and the laminate thickness, that is, the projected 
area of the hole.

The shear failure of the laminate is the failure by shear, which initiates from the hole 
edges, along two lines parallel to the loading direction. Shear-out or cleavage failure is 
a mixed-mode failure of the laminate by tension and shear.

Bolt pull-out is failure of the laminate by bearing and shear under the bolt head or 
nut that results in pulling out of the bolt and separation of the laminates. This mode of 
joint failure takes place when the joint is subjected to out-of-plane tensile loads due to 
bending, etc. Common laminate failure modes in a mechanical joint are schematically 
depicted in Figure 14.10.

In addition to the laminate failure modes, bolt failure too occurs in a mechanical 
joint. Most commonly, it takes place either in shear or in bending.

14.7.4.3  Advantages and Disadvantages of Mechanical Joints

Like the bonded joints, mechanically fastened joints also have their own advantages 
and disadvantages [7,8,14]; these are listed below:

Advantages:

◾◾ No surface preparation—Unlike bonded joints, mechanical joints do not need 
any surface preparation.
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◾◾ Disassembly—Mechanically joined (bolted) parts can be repeatedly assem-
bled and disassembled.

◾◾ Simple inspection—It is comparatively simple to implement quality control 
inspection in a mechanically fastened joint.

Disadvantages:

◾◾ Stress concentration—Mechanical joints contain a number of holes that are 
invariably associated with stress concentration.

◾◾ Weight penalty—Increase in weight on account of fasteners, washers, etc. is 
generally high.

◾◾ High cost—Mechanical joints are relatively more expensive and difficult to 
implement.

14.7.4.4  General Design Considerations

Similar to the composite bonded joints, there are three primary aspects that need to be 
considered while designing a composite mechanical joint; these are

◾◾ Configuration design of the joint
◾◾ Ply design of the laminates
◾◾ Fasteners

The failure modes in bolted joints in composites are similar to those in metals, 
but they are more complex due to several factors peculiar to composites. Laminate 
tensile, shear, and bearing strengths depend on not only laminae properties but also 

(a)

(b)

(c)

(d)

(e)

FIGURE 14.10  Typical laminate failure modes in mechanical joints. (a) Tension failure. (b) Shear 
failure. (c) Bearing failure. (d) Shear-out or cleavage failure. (e) Bolt pull-out failure.
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their stacking sequence. Composites do not plastically deform and defuse stresses, and 
thus stress concentration near a hole in a composite laminate is critical. Also, interlami-
nar stresses can develop near the free edges of a hole and adversely affect the structural 
integrity of a composite bolted joint. As in the case of bonded joints, both analyti-
cal and numerical studies have been carried out for stress analysis of bolted joints in 
composites [27–31]. The details of these works are not addressed here; instead, some 
general design considerations are discussed.

Configuration: Real-life joints generally involve improvisations of the basic con-
figurations shown in Figure 14.9 and mentioned in Section 14.7.4.1. The per-
formance of a mechanical joint is greatly influenced by its configuration. The 
geometrical parameters (Figure 14.11) that describe a mechanical joint are (i) 
laminate thickness (t), (ii) hole diameter (d), (iii) edge distances (el and et), and 
(iv) spacings (sl and st). Failure modes depend greatly on these parameters.

Ply sequence: Failure modes in a composite mechanical joint are strongly influ-
enced by the ply sequence of the laminates. A unidirectional lamina is very 
good in longitudinal strength but poor in transverse strength, in-plane shear 
strength, and bearing strength. Also, the laminate strength requirement around 
the holes in a mechanical joint is typically multidirectional. Consequently, 
unidirectional laminates are not preferred around a hole. Accordingly, uni-
directional laminae are usually stacked in at different orientations and, often, 
bidirectional fabric reinforcements are introduced so as to increase the bearing 
strength.

Complex failure modes: Various possible failure modes in a mechanical joint are 
listed in Section 14.7.4.2. The anisotropic nature of composites makes it rather 
difficult to make an accurate prediction of the failure mode. In order to over-
come this uncertainty, as in the case of bonded joints, mechanical joints are 
also typically designed with higher margins of safety than the laminates such 
that product failure takes place by laminate failure and not by joint failure.

14.7.5  Other Joints

In addition to the bonded and mechanical joints, there are other joints that are practiced 
in composite structures. For example, a joint may involve both bonding of the adher-
ends as well as mechanical fastening. Also, in real structures, often composites are used 
together with metals. A joint, involving metals and composites, is generally associated 
with severe mismatch of stiffness. Stiffness mismatch may be present even between 
two composite adherends. In such cases, a layer of low modulus material such as rubber 
can be introduced between the two adherends for absorbing differential deformations 
of the adherends. Clearly, these joints have application-specific design requirements.

sl el

et
st

d

t

FIGURE 14.11  Geometrical parameters in a mechanical joint.
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14.8  STIFFENED STRUCTURES

14.8.1  Introduction

Unstiffened thin shells typically do not possess sufficient strength and stiffness 
required in many applications. While the shell thickness can be increased to improve 
the mechanical characteristics, it is not generally an efficient solution in most weight-
sensitive applications. In such cases, unstiffened shell structures (also referred to as 
monocoque structures) are not used and an efficient alternative is found in stiffened 
structures, in which the skin is stiffened by attaching stiffening members of various 
types.

A stiffener is basically a beam that is attached to the skin by methods such as bond-
ing, stitching, riveting, in situ lay-up, etc. Both open sections as well as closed sec-
tions are used, of which commonly used cross sections include T-section, I-section, 
C-section, Z-section, box-section, hat-section, etc. The stiffeners are oriented in the 
longitudinal, axial, or meridional direction and circumferential, lateral, or transverse 
direction. Longitudinal stiffeners are typically known as longerons or stringers or spars, 
whereas the transverse stiffeners are called rings. In addition to these, in a relatively 
new concept of stiffened structures—referred to as grid-stiffened structures made by 
filament winding, stiffening members are also used at some angle to the longitudinal 
direction; in such a case, the stiffeners typically form a grid of triangles, diamonds, and 
hexagons [32,33].

In a stiffened structure, the skin can be stiffened either symmetrically or eccentri-
cally. In many applications such as aircraft wing, aircraft and space vehicle fuselage, 
ship and submarine hull, etc., a clean exterior surface is required from aerodynamics 
or hydrodynamics points of view. In these cases, the shell is eccentrically stiffened on 
the inside. Also, when the stiffeners are provided on the same side of the skin, they 
typically cross each other at certain nodes. In conventional ring–stringer combina-
tion, usually, the rings are provided as continuous members, whereas the stringers are 
provided as continuous members between the rings only. On the other hand, in a grid-
stiffened structure, the stiffeners are laid-up/wound in a continuous fashion, which 
eventually leads to thickness build-up at the nodes or cross-over locations.

14.8.2  Failure Modes in a Stiffened Structure

Stiffened structures are often used in applications that are subjected to bending, com-
pression, and torsion loads. Under such loading environments, buckling is a common 
failure mode. Another failure mode peculiar to stiffened structure is skin–stiffener 
separation. In addition to these, the strength fracture of skin-stiffeners material may 
also occur. Under these three broad types of failure modes, various subtypes can be 
identified as follows [3]:

◾◾ Buckling
−− Global buckling
−− Stiffener column buckling
−− Local skin buckling
−− Local stiffener buckling or stiffener crippling

◾◾ Skin–stiffener separation
−− Skin–stiffener bond failure
−− Fastener joint failure

◾◾ Strength fracture
−− Skin material failure
−− Stiffener material failure
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Global buckling is the overall buckling of the stiffened panel, in which both the skin 
and the stiffeners buckle simultaneously. In general, it leads to a catastrophic failure. 
Stiffener column buckling is also catastrophic in nature. Local skin buckling is buck-
ling of the skin confined between stiffeners. In a similar way, local stiffener buckling 
involves localized buckling of flange or web. Local buckling of the skin or stiffener is 
normally considered as benign. Skin–stiffener separation results either due to interface 
bond failure or due to fastener joint failure by shear, tear, bearing and rivet pull-out, etc. 
The third major failure mode is due to overstressing of the skin or stiffener material and 
it is generally governed by first ply failure.

14.8.3  Design of Stiffeners

There are basically two elements in a stiffened structure—the skin and the stiffeners. 
Each of these elements has its own functions. Typically, the stiffeners provide bending 
stiffness. They also greatly enhance the buckling resistance of the structure. The skin, 
on the other hand, by its membrane action, carries tensile, compressive, and in-plane 
shear stresses. The proper design of a stiffened structure ensures efficient load sharing 
among the skin and stiffeners in such a way that failure takes place in a gradual manner.

Owing to the presence of the stiffeners, the number of design parameters is generally 
more in a stiffened structure. Some of the key parameters are listed below:

Skin:

◾◾ Ply sequence
◾◾ Thickness
◾◾ Manufacturing process

Stiffeners:

◾◾ Type of stiffeners
−− Orientation—axial, circumferential, angular, or a combination thereof
−− Continuous or discontinuous

◾◾ Cross-sectional shape
−− Open or closed
−− Cross section—C-section, box-section, etc.
−− Relative dimensions—height, width, and thickness

◾◾ Cross-sectional area
−− Cross-sectional area relative to skin thickness
−− Cross-sectional area relative to stiffener density

◾◾ Stiffener density—number of stiffeners of each type per unit length
◾◾ Manufacturing process

−− Prefabricated and bonded/stitched
−− In situ laid-up/wound

Failure modes, discussed in the previous section, depend on the choice of various 
design parameters indicated above. For example, if the stiffeners are highly stiff and 
widely spaced, skin local buckling is likely. It is also an important aspect in the design 
process to sequence the failure modes. For example, as mentioned before, local failures 
are generally considered as benign; accordingly, a stiffened panel is often so designed 
as to ensure local skin buckling before global buckling or stiffener crippling before 
stiffener column buckling.

On the other hand, from the above listing, it is clear that there are just too many 
parameters to be chosen. Simple approximate tools and other design thumb rules help 
in preliminary design and analysis, and invariably finite element analysis is carried 
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out for final fine tuning and detailed performance estimate. Smeared stiffeners model 
is a simple approximate tool that is commonly used in preliminary design [32,34]. 
This approach is of great help in reducing the theoretically infinite numbers of design 
alternatives to limited numbers that can be handled in a practical design scenario. The 
basic methodology in smeared stiffeners modeling is to smear the stiffeners based on 
some criterion such as equivalent cross-sectional area, equivalent strain energy, etc. 
and thereby convert the stiffened structure into an equivalent monocoque structure, on 
which an appropriate analysis can be done. In general, a smeared stiffeners model is 
more reliable in structures with grids of dense stiffeners.

The total cross-sectional area of the stiffeners, spacing of stiffeners, skin thickness, 
and other details are generally chosen by adopting an iterative process so as to achieve 
the desired sequence of failure modes. Often, it is an act of maintaining balance. For 
example, if the stiffeners are too stiff and highly predominant as compared to the 
skin, almost the entire load is likely to be shared by the stiffeners only and the skin is 
going to be redundant. On the other hand, if the skin is too thick and the stiffeners are 
small and widely spaced, the entire load is likely to be shared by the skin alone and the 
stiffeners will only add to the weight!

The individual elements of a stiffener, viz. flanges, webs, crowns (flange-to-web 
meeting points), and trough angle (angle between web and normal to the panel), have 
their own functions. Typically, the flange and crown are designed for carrying the 
bending load and the web for shear. The trough angle is critical from the point of view 
of bending efficiency and twisting; too small a trough angle in a closed section such as 
hat-section may result in unexpected twisting.

14.9  OPTIMIZATION
Optimization is a frequently used term in connection with product design and develop-
ment. Very often, it is used to imply a weight reduction process! However, it is much 
more than just a process of weight reduction. In fact, it is inherently associated with the 
very basic objective of any design. Design objective in any application is basically to 
make the best choice from among the many feasible design alternatives. The meaning 
of best design has to be understood clearly. In many aerospace applications, best design 
is the design with minimum weight. Other possible meanings of best design can be least 
cost, longest service life, maximum range, maximum speed, least fuel consumption, etc.

Optimization is the process of arriving at the best design choice. Thus, the first step 
in the process of optimization is to define clearly the design objective—the meaning of 
best design, which is referred to as the objective function or merit function. Optimization 
is a mathematical process; however, in practice, it is approached in two ways [1]:

◾◾ Mathematical methods
◾◾ Searching techniques

Several mathematical methods have been developed, for example, linear program-
ming, nonlinear programming, integer programming, dynamic programming, Monte-
Carlo method, etc. These methods are based on rational logic and they are applicable in 
the various fields of science and engineering. On the other hand, searching techniques 
are based on engineering judgment. In these methods, a certain feasible configuration 
is made and its response to the applied loads is estimated; a better configuration is 
searched based on the response of the previous configuration and the process is con-
tinued till a reasonable solution is obtained. These techniques are not based on rational 
logic and, in a strict sense they do not optimize the structure. However, the searching 
techniques are by far more common in practice than the mathematical methods.
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14.10  DESIGN EXAMPLES
Today, composite structures of a wide variety are in use. The complexity of the config-
uration of these structures and applied loads vary greatly—from simple unidirectional 
structural element under uniaxial load, for example, a tension member, to complex 3D 
structures, for example, a cylindrical grid-stiffened shell under the combined action of 
axial force and bending moment. Quite clearly, it is not possible to discuss all of these. 
Our intention is to introduce the reader to the design of simple composite structural 
elements. Toward this, here, we consider the following representative categories of 
composite structural elements:

◾◾ One-dimensional structural elements under uniaxial loads
−− Tension member
−− Compression member
−− Torsion member
−− Beam

◾◾ Two-dimensional flat panels under in-plane loads
◾◾ Pressure vessel

14.10.1  Design of a Tension Member

A tension member is a simple slender rod, bar, or tube under either uniaxial static 
tension or uniaxial tension–tension fatigue. Such a structural element requires high 
strength and stiffness characteristics in its axial direction and is designed by provid-
ing reinforcements predominantly in the 0° direction. Often, based on manufacturing 
feasibility, reinforcements are provided at nonzero but small angle of orientation. Also, 
processing considerations may require reinforcements at 90° or other large angles, for 
example, hoop winding may be required for consolidation of 0° or near 0° helical wind-
ings during the manufacture of a tubular tension member by filament winding.

Matrix-dominated properties, namely, transverse and shear strength and stiffness 
characteristics are not of any particular importance in design calculations; however, the 
selection of a suitable resin is critical from a manufacturing point of view.

Broadly, two approaches can be adopted for the design of a tension member—
micromechanics- and macromechanics-based approach.

14.10.1.1  Micromechanics-Based Approach

It is a greatly simplified approach, in which the effects of the matrix are ignored and 
design is carried out using longitudinal tensile strength and modulus of the reinforcing 
fibers. Further, all the fibers are considered to be aligned in the axial direction of the 
tension member.

Then, in the case of a strength-based design, the required area of cross section of the 
tension member can be obtained as

	

A
P P

Vc
T

f f
T

=
( )

≈
( )σ σ1 1

ult ult 	
(14.53)

in which
A		  Area of cross section of the tension member (mm2)
P		  Tensile force on the tension member (N)
( )σ1c

T
ult 	 Longitudinal tensile strength of unidirectional composite (N/mm2)

( )σ1 f
T

ult	 Longitudinal tensile strength of fiber (N/mm2)
Vf 		 Fiber volume fraction
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(Note: Refer to Section 3.5.2.1 in Chapter 3 for the derivation of the composite 
longitudinal tensile strength from the tensile strength of fiber.)

In the case of a stiffness-based design, the required area of cross section of the 
tension member can be obtained as

	
A

PL

E

PL

V Ec f f

= ≈
1 1∆ ∆ 	

(14.54)

in which
A		  Area of cross section of the tension member (mm2)
P		  Tensile force on the tension member (N)
L		  Length of the tension member (mm)
Δ		  Limiting axial deformation (mm)
Vf		 Fiber volume fraction
E1c	 Longitudinal modulus of unidirectional composite (N/mm2)
E1f		 Longitudinal modulus of fiber (N/mm2)

(Note: Refer to Section 3.5.1.1 in Chapter 3 for the derivation of the composite 
longitudinal modulus from the modulus of the fiber.)

14.10.1.2  Macromechanics-Based Approach

In this approach, lamina strength and stiffness properties are used and different ply 
orientations can be incorporated. For simplicity, transverse tensile strength and shear 
strength of lamina are ignored.

Then, under strength-based consideration, the cross-sectional area can be obtained 
from the following static equilibrium equation:

	

P X A
i

n

i
T

i i=
=

∑
1

2cos θ
	

(14.55)

in which
P		  Tensile force on the tension member (N)
Ai		� Area of cross section of the ith ply (mm2). The area of cross section of the 

tension member is obtained by summing up the Ai’s.
Xi

T 	 Longitudinal tensile strength of the ith lamina (N/mm2)
θi		  Orientation of ith lamina
n		  Number of laminae

It is easy to see that Equation 14.55 can be suitably simplified when the tension 
member is designed with the laminae of the same material, same orientation, and equal 
thickness.

When the limiting axial elongation is specified, the lamina axial stiffness is required, 
which is obtained as

	
E

E E G E
x = + + −




















cos sin

sin cos
4

1

4

2 12

12

1

2 21 2θ θ ν θ θ

−1

	

(14.56)

(Note: Refer to Section 4.4 in Chapter 4 for the derivation of engineering constants 
of a generally orthotropic lamina.)
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Each lamina undergoes axial deformation to the same extent and it can be shown 
that

	 i

n

i xi xA E AE
PL

=
∑ = =

1
Δ

	

(14.57)

in which
P		  Tensile force on the tension member (N)
L		  Length of the tension member (mm)
Δ		  Axial elongation of the tension member (mm)
Ai		 Area of cross section of the ith ply (mm2)
A		  Total area of cross section of the tension member (mm2)
Exi		 Axial modulus of the ith lamina (N/mm2)
Ex		 Effective axial modulus of the tension member (N/mm2)
n		  Number of laminae

The design of a tension member in itself is a simple affair; however, the joints that 
connect it to other structural elements are critical.

EXAMPLE 14.1

Design, adopting a micromechanics-based approach, a tension member of length 
600 mm for carrying a static uniaxial tensile load of 200 kN. Consider the follow-
ing as available material systems:

Carbon fiber reinforcement:

	
E f f

T
f1 1

3230 4900 1 80= ( ) = =GPa MPa g/cm
ult

, , .σ ρ
	

Kevlar fiber reinforcement:

	
E f f

T
f1 1

3125 3600 1 45= ( ) = =GPa MPa g/cm
ult

, , .σ ρ
	

Glass fiber reinforcement:

	
E f f

T
f= ( ) = =75 3400 2 58 3GPa MPa g/cm

ult
, , .σ ρ

	

Cast epoxy resin:

	
Em m

T
m= ( ) = =3 6 72 1 12 3. , , .GPa MPa g/cm

ult
σ ρ

	

Take lower mass as a design criterion.

Solution

Let us first choose the manufacturing method for making the tension members. 
For the production of limited numbers, matched-die-molding can be conveniently 
employed for making laminates of suitable size from which the tension members 
of rectangular cross section can be obtained by parting appropriately.
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For matched-die-molded unidirectional composites, a high fiber volume 
fraction of 0.6 can be achieved. Next, taking a factor of safety as 1.25, we can 
readily obtain the design tensile force as 250 kN. Then, for each of the three 
available fiber reinforcements, the total area of cross section of the tension 
member required is given by

Carbon fiber reinforcement:

	

250 1000
0 6 4900

85 0 2×
×

=
.

. mm
	

Kevlar fiber reinforcement:

	

250 1000
0 6 3600

115 7 2×
×

=
.

. mm
	

Glass fiber reinforcement:

	

250 1000
0 6 3400

122 5 2×
×

=
.

. mm
	

Let us take the ply thickness as 0.5 mm and consider the following cross sections:
Carbon fiber reinforcement:

	 10 9 5 95 2× =. ( ) area of c /s mm 	

Kevlar fiber reinforcement:

	 11 11 121 2× =( )area of c /s mm 	

Glass fiber reinforcement:

	 12 10 5 126 2× =. ( )area of c /s mm 	

Note that the thickness of the tension member is a multiple of 0.5 mm. Now, we 
can estimate the density of each of the three material systems as follows:

Carbon/epoxy:

	 1 8 0 6 1 12 0 4 1 528 3. . . . .× + × = g/cm 	

Kevlar/epoxy:

	 1 45 0 6 1 12 0 4 1 318 3. . . . .× + × = g/cm 	

Glass/epoxy:

	 2 58 0 6 1 12 0 4 1 996 3. . . . .× + × = g/cm 	

Then, we can compute the corresponding mass of the tension member as 
follows:
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Carbon/epoxy:

	

10 9 5 600
1000

1 528 87 1
× ×

× =
.

. . g
	

Kevlar/epoxy:

	

11 11 600
1000

1 318 95 7
× ×

× =. . g
	

Glass/epoxy:

	

12 10 5 600
1000

1 996 150 9
× ×

× =
.

. . g
	

As we can see, carbon/epoxy gives us the lightest tension member. Thus, for 
weight-sensitive design, we choose carbon/epoxy as the material system.

Filament winding is a convenient technique for making unidirectional laminate. 
Here, we give a possible methodology with hypothetical process parameters. Toward 
this, a mandrel with flat surfaces can be used. Hoop winding is to be carried out for 
which first we need to estimate the required bandwidth and number of spools. Let us 
take the filament diameter and yield of the carbon fibers as 7 µm and 12 k, respec-
tively. Then, the total cross-sectional area (Af) of the filaments in one tow is given by

	
Af = ×

× ×
=

−

12 000
7 10

4
0 4618

3 2
2,

( )
.

π
mm

	

For fiber volume fraction Vf = 0.6, the total cross-sectional area (Ac) of the 
composite per tow is given by

	
Ac = =

0 4618
0 6

0 7697 2.
.

. mm
	

Then, the bandwidth (Bw) for one tow for ply thickness of 0.5 mm is given by

	
Bw = =

0 7697
0 5

1 54
.

.
. mm

	

Note that for more number of tows, the corresponding bandwidth is obtained 
by multiplying the above figure by the number of tows; that is, bandwidth is given 
by Bw = 1.54n, n being the number of tows.

The number of spools is chosen primarily based on the size of the product 
being wound and the desired finish and accuracy. In general, the lower the num-
ber of spools, the better the finish and accuracy. Note further that for large number 
of spools, the bandwidth is high and actual hoop winding angle, which should be 
90° in a strict sense, actually drifts away from 90°. On the other hand, too few 
spools may result in very high winding time and the choice of the number of 
spools turns out to be a compromise decision.

For small laminates, such as the one in this example, we can conveniently 
carry out hoop winding with two spools, that is, two tows. Let us then carry out 
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hoop winding with two spools at a bandwidth of 3.1 mm. After the completion 
of 19 plies, the mandrel-cum-matched-die-mold is closed on the flat surfaces and 
curing is done at high temperature in an oven. Then, the tension members are 
obtained from the laminates by carrying out parting (see Figure 14.12).

Note: Refer to Chapter 10 for a more detailed discussion on filament winding 
parameters.

EXAMPLE 14.2

Consider the data given in Example 14.1. If the axial elongation is to be limited to 
0.01 mm, design the tension member adopting a micromechanics-based approach.

Solution

Using Equation 14.54, the total area of cross section of the tension member 
required in each material system is given by

Carbon fiber reinforcement:

	

250 600
0 6 230 000 0 01

108 7 2×
× ×

=
. , .

. mm
	

Kevlar fiber reinforcement:

	

250 600
0 6 125 000 0 01

200 0 2×
× ×

=
. , .

. mm
	

Glass fiber reinforcement:

	

250 600
0 6 75 000 0 01

333 3 2×
× ×

=
. , .

. mm
	

Shaft Flat mandrel
As wound hoop plies

(16 plies)
(a)

Shaft

SpacersClosing platesLaminates
(b)

Tension member
(600 × 10 × 9.5)

Parting 
groove

(c)

FIGURE 14.12  Schematic representation of the process of tension member fabrication in Example 
14.1. (a) Hoop winding around a flat mandrel (end view). (b) Closure of the mandrel-cum-mold by plates 
(front view). (c) Laminate and final tension member.
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Let us take the ply thickness as 0.5 mm and consider the following cross sections:
Carbon fiber reinforcement:

	 11 10 5 115 5 2× =. ( . )area of c/s mm 	

Kevlar fiber reinforcement:

	 14 5 14 203 2. ( )× =area of c/s mm 	

Glass fiber reinforcement:

	 19 18 342 2× =( )area of c/s mm 	

Then, using the densities estimated in Example 14.1, we can compute the 
corresponding mass of the tension member as follows:

Carbon/epoxy:

	

11 600
1000

1 528 105 9
× ×

× =
10.5

g. .
	

Kevlar/epoxy:

	

14 5 14 600
1000

1 318 160 5
.

. .
× ×

× = g
	

Glass/epoxy:

	

19 18 600
1000

1 996 409 6
× ×

× =. . g
	

Axial elongation in each case is obtained as follows:
Carbon/epoxy:

	

250 600
0 6 230 000 11

9 41 10 3×
× × ×

= × −

. , ( )
.

10.5
mm

	

Kevlar/epoxy:

	

250 600
0 6 125 000 14 5 14

9 85 10 3×
× × ×

= × −

. , ( . )
. mm

	

Glass/epoxy:

	

250 600
0 6 75 000 19 18

9 75 10 3×
× × ×

= × −

. , ( )
. mm

	

As we can see, all the three alternatives are acceptable from the point of view 
of axial elongation; however, carbon/epoxy gives us the minimum mass. Thus, 
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we choose carbon/epoxy as the material system. The number of plies in this case 
is 21 and the processing method is similar to the one described in Example 14.1.

EXAMPLE 14.3

Design a tension member of length 800 mm and outer circular cross section to 
carry a tensile load of 750 kN. The material available is carbon/epoxy composite. 
Unidirectional carbon/epoxy composite properties at Vf = 0.6 are

	 E XT
c1

3130 2400 1 53= = =GPa MPa, and g/cm, .ρ 	

Solution

Let us consider a tubular cross section and choose filament winding as the man-
ufacturing process. We shall explore two ways to do filament winding of the 
tension member—axial winding and helical winding.

Axial Winding

In axial winding, the winding angle is zero. Unlike helical winding, it does not 
involve cross-overs and a fiber volume fraction of 0.6 can be expected. Then, the 
given unidirectional carbon/epoxy strength can be directly used, and taking a 
factor of safety of 1.25, the total area of cross section is readily obtained as

	
Ac =

× ×
=

750 1 25 1000
2400

390 6 2.
. mm

	

Taking a nominal shell thickness as 4 mm, the mean diameter is obtained as

	
Dm =

×
=

390 6
4

31 1
.

.
π

mm
	

We take the inner diameter as 30 mm and readily compute the required outer 
diameter as

	
Do = +

×
=30

4 390 6
37 42 .

.
π

mm
	

which implies a shell thickness of 3.7 mm. The thickness provided, however, has 
to be an integer multiple of ply thickness. Accordingly, considering a ply thick-
ness of 0.5 mm, we provide eight plies. From Example 14.1, we know that the 
required bandwidth for a ply thickness of 0.5 mm with two spools is 3.08 mm. 
However, it must also satisfy the following condition:

	

π ×
=

D

B
n

w 	

in which n is an integer, which is nothing but the number of circuits per ply, and 
D and Bw are the inner diameter and bandwidth, respectively, for that ply. Note 
that diameter D increases by twice the ply thickness after the completion of each 
ply. Then, the parameters n and Bw for each ply can be tabulated as in Table 14.4.

In Table 14.4, Di, n, Bw, t, and Do are the inner diameter, number of cir-
cuits, bandwidth along the circumference, ply thickness, and outer diameter, 
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respectively, for the ply. Axial filament winding needs consolidation during wind-
ing and each of the above plies is consolidated by providing a hoop ply of 0.2 mm 
thickness. Thus, the total thickness turns out to be 5.8 mm, the cross section OD: 
41.6 mm × ID: 30 mm, and the total mass 797 g.

Helical Winding

In helical winding, the winding angle is nonzero. It involves cross-overs and a lower 
fiber volume fraction is likely to result. Vf depends on a number of factors, and in 
general, Vf = 0.5 can be expected. The longitudinal modulus is linearly influenced 
by fiber volume fraction but not strength. However, for simplicity, we can consider 
a linear dependence of longitudinal tensile strength on fiber volume fraction.

A very important aspect in helical winding is the angle of winding. For a 
tension member, low angle helical winding is preferable. However, very small 
angle may put added requirement of consolidating hoop plies. Let us choose for 
the present design example 15° as the helical winding. Then, the total area of 
cross section is obtained as

	
Ac =

× ×
× × °

=
750 1 25 1000

2400 0 5 0 6 15
502 4

2
2.

( . / . ) cos
. mm

	

Taking the inner diameter as 30 mm, the required outer diameter is readily 
computed as 39.2 mm. We choose to provide six helical plies of 0.8 mm thickness 
each at ±15°. Note that each helical ply is actually a compound ply of two subplies 
at +15° and −15° of thickness 0.4 mm.

We have seen in Example 14.1 that the bandwidth normal to the winding direc-
tion for a ply thickness of 0.5 mm for n spools is 1.54n. Accordingly, for two 
spools, the bandwidth normal to the meridian, that is, along the circumference, 
path is worked out as follows:

	
Bw = × ×







×

°
=( . )

.

. cos
.1 54 2

0 5
0 4

1
15

4 0 mm
	

TABLE 14.4
Axial Winding Parameters (Example 14.3)

Ply Di n Bw t Do

Ply-1 (hoop) 30.00 – 7.7 0.2 30.40
Ply-2 (axial) 30.40 31 3.08 0.50 31.40
Ply-3 (hoop) 31.40 – 7.7 0.2 31.80
Ply-4 (axial) 31.80 32 3.12 0.49 32.78
Ply-5 (hoop) 32.78 – 7.7 0.2 33.18
Ply-6 (axial) 33.18 33 3.16 0.49 34.16
Ply-7 (hoop) 34.16 – 7.7 0.2 34.56
Ply-8 (axial) 34.56 35 3.10 0.50 35.56
Ply-9 (hoop) 35.56 – 7.7 0.2 35.96
Ply-10 (axial) 35.96 37 3.05 0.50 36.96
Ply-11 (hoop) 36.96 – 7.7 0.2 37.36
Ply-12 (axial) 37.36 38 3.09 0.50 38.36
Ply-13 (hoop) 38.36 – 7.7 0.2 38.76
Ply-14 (axial) 38.76 40 3.04 0.51 39.78
Ply-15 (hoop) 39.78 – 7.7 0.2 40.18
Ply-16 (axial) 40.18 41 3.08 0.50 41.18
Ply-17 (hoop) 41.18 – 7.7 0.2 41.58
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which implies that the required number of circuits per ply is 23.6. We provide an 
integer number of circuits, say, 24, which in turn, implies a reduced bandwidth 
and increased ply thickness. The number of circuit for each ply is worked out and 
tabulated in Table 14.5.

In Table 14.5, Di, n, Bw, t, and Do are the inner diameter, number of circuits, 
bandwidth along the circumference, ply thickness, and outer diameter, respec-
tively, for the ply. Note that we have provided two hoop plies.

The total thickness turns out to be 5.2 mm, the cross section OD: 40.4 mm × ID: 
30 mm, and the total mass 672 g. (A reduced density of 1.46 is considered for a 
reduced fiber volume fraction.)

EXAMPLE 14.4

Determine the elongation of the tension member designed in Example 14.3. 
Consider the following data:

	 E E G1 2 12 12130 6 5 5 0 0 25= = = =, . , . .GPa GPa GPa, and ν 	

If the axial elongation is to be limited to 0.02 mm, what should be the design 
modifications, if any?

Solution

Axial Winding

Using Equation 14.56, the axial moduli for the 0° and 90° plies are determined 
as follows:

	
Ex,0

1
1

130
0 0 130°

−

= + +












= GPa
	

	
Ex,

.
.90

1

0
1

6 5
0 6 5°

−

= + +












= GPa
	

The areas of cross section of the 0° and 90° plies are calculated from the 
design data from Example 14.3, as follows:

	 A A0
2

90
2448 7 202 3° °= =. .mm and mm 	

TABLE 14.5
Helical Winding Parameters (Example 14.3)

Ply Description Di n Bw t Do

Ply-1 (hoop) 30 – 7.7 0.2 30.4
Ply-2 (helical) 30.4 24 3.98 0.80 32.0
Ply-3 (helical) 32.0 25 4.02 0.80 33.6
Ply-4 (helical) 33.6 26 4.06 0.79 35.2
Ply-5 (helical) 35.2 28 3.95 0.81 36.8
Ply-6 (helical) 36.8 29 3.99 0.80 38.4
Ply-7 (helical) 38.4 30 4.02 0.80 40.0
Ply-8 (hoop) 40.0 – 7.7 0.20 40.4
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Then, using Equation 14.57, the axial elongation is computed as follows:

	
∆ =

× ×
× + ×

=
750 1 25 800

448 7 130 000 202 3 6500
0 013

.
. , .

. mm
	

Helical Winding

Using Equation 14.56, the axial modulus for the 15° plies is determined as follows:

	
Ex,

cos sin
.

.
sin15

4 4
215

130
15

6 5
1
5

2 0 25
130

15° =
°

+ + −
×






× °ccos2

1

15°










 =
−

50.9 GPa
	

We have already found that the axial modulus of the 90° plies is 6.5 GPa. 
The areas of cross section of the 15° and 90° plies are calculated from the design 
data from Example 14.3, as follows:

	 A A15
2

90
2530 8 44 2° °= =. .mm and mm 	

Then, using Equation 14.57, the axial elongation is computed as follows:

	
∆ =

× ×
× + ×

=
750 1 25 800

530 8 44 2 6500
0 028

.
. .

.
50,900

mm
	

The axial elongation can be reduced most conveniently by reducing the angle 
of winding. Let us consider a winding angle of 10°, which, it can be calculated 
to show, results in an axial modulus of 76.3 GPa. Then, without changing any 
other design parameters, it can be seen that the axial elongation comes down 
to 0.018 mm. Note, however, that with a reduced helical winding angle, it may 
become necessary to increase the consolidation hoop plies.

14.10.2  Design of a Compression Member

A compression member is typically a slender rod, bar, or tube under uniaxial compres-
sion. From the point of view of strength requirements, high compressive stresses must 
be avoided so as to prevent compression fracture. Similarly, axial stiffness is important 
when elastic shortening is to be limited within a specified value. Accordingly, Equations 
14.55 and 14.57, in which compressive parameters have to be used in place of tensile, can 
be utilized for selecting the number, thickness, and orientation of plies. Thus,

	

P X A
i

n

i
C

i i=
=

∑
1

2cos θ
	

(14.58)

and

	 i

n

i xi xA E AE
PL

=
∑ = =

1
∆

	

(14.59)

in which other parameters remaining the same,
P		  Compressive force on the compression member (N)
Xi

C 	 Longitudinal compressive strength of the ith lamina (N/mm2)
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Δ		  Axial shortening of the compression member (mm)
Exi		 Axial modulus of the ith lamina in compression (N/mm2)
Ex		 Effective axial modulus in compression (N/mm2)

The above relations give a simple means for making the design choice. However, 
most often, the design of such a slender compression member is driven by stability 
considerations, in which the primary objective is to avoid global buckling as well 
as local buckling. Ply sequences containing 0° plies combined with ±45° plies are 
common. Ply sequences containing only ±θ, in which θ is a small angle such as 15°, 
are also common.

The critical buckling load of an axially compression-loaded column with sym-
metric ply sequence of a rectangular cross section is given by (refer to Chapter 6 for 
derivations)

	
P k

E I

l
cr

xx
b

yy=










π 2
2

	
(14.60)

in which
Pcr	 Critical buckling load (N)
Exx

b 	 Effective bending modulus (N/mm2)
Iyy		 Moment of inertia (mm4)
l		  Length (mm)

The coefficient k depends on boundary conditions of the compression member, as 
follows:

Often, compression members are designed as slender tubular members. The design 
of a cylindrical shell under compression is controlled by its buckling behavior; the criti-
cal buckling load, in such a case, can be obtained using classical methods. However, the 
design of a slender tubular compression member is often simplified, in which its critical 
buckling load is given by Euler column buckling as follows:

	
P k

E I

l
cr

xx yy=








π 2

2

	
(14.61)

in which Exx is the axial modulus of the composite and other parameters are as in 
Equation 14.60.

EXAMPLE 14.5

A platform weighting a total of 6400 kN is supported by four struts of height 
4000 mm each. Assuming the total load is equally shared, design the compres-
sion members with circular cross section. Use the carbon/epoxy composite with 
the following material data:

	 E E G XC
1 2 12 12130 6 5 5 0 0 25 800= = = = =, . , . , . ,GPa GPa GPa and MPaν 	

End Support Conditions Value of k

Both ends simply supported: 1.0
Fixed-free column: 0.25
Fixed-fixed column: 4.0
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Solution

Let us consider a tubular compression member composed primarily of ±15° 
plies. From a strength consideration, the required area of cross section is worked 
out as

	
A =

×
× °

=
1600 1000

800 15
2144

2
2

cos
mm

	

Let us consider a hollow tube of thickness 11 mm and outer diameter 120 mm 
manufactured by filament winding. The tube is to be made by 10 helical plies of 
1.0 mm each and two hoop plies of 0.5 mm each. The innermost and outermost 
plies are provided as hoop plies. The outermost hoop helps in consolidation and 
better finish. The innermost hoop makes it symmetric, and in certain cases, it 
helps prevent fiber pull-out. Each helical is actually a combination of two plies at 
+15° and −15°, each of 0.5 mm thickness.

Owing to the slenderness of the tube, its design is critical from a buckling point 
of view. Using Equation 14.56, the axial modulus for the 15° plies is determined 
as follows:

	
Exx,

cos sin
.

.
sin15

4 4
215

130
15

6 5
1
5

2 0 25
130

15° =
°

+ + −
×






× °°× °











 =
−

cos2

1

15 50.9 GPa
	

Similarly,

	 Exx, .90 6 5° = GPa 	

The cross-sectional areas of the helical and hoop plies are 3424.3 and 
342.4 mm2, respectively. An effective axial modulus can be obtained by rule of 
mixture as

	 ( )Exx
eff = 46.9 GPa 	

The moment of inertia for the chosen area of cross section is obtained as

	
Iyy =

× −
= ×

π ( )
.

120 98
4

90 42 10
4 4

6 4mm
	

Then, considering pin ends, using Equation 14.60, the critical buckling load is 
estimated as follows:

	
Pcr =

× × × ×
×

=
π2 6

2

1000 90 42 10

4000 1000

( ) ( . )46.9
2616 kN

	

which implies a buckling factor of 1.6.

Note: The design of a slender compression member is driven by stability. Buckling 
being an inherently catastrophic phenomenon, often a high buckling factor is 
desired. In our present case, the buckling factor can be increased by the following 
feasible means: (i) increase in the cross section, (ii) reduction in angle of winding, 
and (iii) use of fixed end connections.
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14.10.3  Design of a Torsion Member

A torsion member is a slender structural element subjected to torsion. Automotive drive 
shaft is a typical example of a torsion member. While tubular structures are commonly 
used in these applications, sometimes, torsion members of other cross sections such as 
hollow square and rectangle are also used. Laminated composites with plies at ±45° 
possess the maximum shear modulus and are most commonly used for the transmis-
sion of torques.

From strength and stiffness points of view, a torsion member is designed so as to 
keep the shear stresses and angle of twist within respective allowables. Thin tubular 
members can undergo torsional buckling and in such a case, stability becomes the 
design driver.

For a laminated composite tube, shear stress and angle of twist depend not only on the 
applied torque and geometry of the tube but also on the ply sequence. For balanced and 
symmetric ply sequence, the maximum shear stress and angle of twist are given by [35]

	
τ

π
xy

T

r t
=

2 2
	

(14.62)

and

	
φ

π
=

T

G r txy2 3

	
(14.63)

in which
τxy		 In-plane shear stress developed in the tube (N/mm2)
φ		  Angle of twist per mm (mm−1)
T		  Applied torque (N.m)
r		  Mean radius of the tube (mm)
t		  Wall thickness of the tube (mm)
Gxy	 In-plane shear modulus (N/mm2)

On the other hand, the critical buckling torque is given by [36]

	
T

kA D r

l
cr =

122

5
11
3 8

22
5 8 5 4

1 2

/ / /

/
	

(14.64)

Note that x- and y-directions in the above expressions are along the axis of the tube 
and tangential to the circumference, respectively.

14.10.4  Design of a Beam

A beam is a slender structural element subjected to lateral loads. The various types of 
composite beams in common use are

◾◾ Solid cross sections
−− Rectangular (plies normal to the loading direction)
−− Rectangular (plies parallel to the loading direction)

◾◾ Thin-walled cross sections
−− Open ended, for example, T-section, I-section
−− Closed ended, for example, box-section

◾◾ Sandwich beam
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The response of a composite beam to applied loads differs grossly from that 
of an isotropic beam in respect of stress distribution and deformation patterns 
(Table  14.6).  The differences must be kept in mind while designing a composite 
beam [37,38].

EXAMPLE 14.6

Design a cantilever beam of length 400 mm and width 25 mm to carry a tip lateral 
load of 5 N. Restrict the tip deflection within 1.0 mm. Use unidirectional carbon/
epoxy prepreg with the following material data:

	 E E G1 2 12 12130 6 5 5 0 0 25= = = =GPa GPa GPa, . , . , .ν 	

Each prepreg ply is of 0.25 mm thickness.
Consider the following alternatives: (1) solid rectangular cross section (plies 

normal to the loading direction), (2) solid rectangular cross section (plies parallel 
to the loading direction), and (3) box-section.

Solution

Option-1

Solid rectangular cross section (plies normal to loading direction)
Let us consider a ply sequence consisting only 0° plies. For this ply sequence 

and the given material properties, the reduced stiffness matrix and transformed 
reduced stiffness matrix are given by

	

[ ] [ ]

, . .

. .

.

Q Q= =





130 407 524 1630 094 0

1630 094 6520 376 0

0 0 5015 674













	

Let the height of the beam be denoted by h. Then, noting that the Q  matrix is 
the same for all the plies, the bending stiffness matrix is given by

	

[ ]

, . .

. .

.

D =





h3

12

130 407 524 1630 094 0

1630 094 6520 376 0

0 0 5015 674













	

TABLE 14.6
Isotropic Homogeneous Beam versus Composite Beam

Isotropic Homogeneous Beam 
(Rectangular Cross Section)

Composite Beam (Rectangular Cross Section, 
Plies Normal to Loads)

Stress distributions are continuous across 
the beam depth

Stress distributions are not continuous across the beam 
depth

Maximum normal stresses occur at the 
outermost faces

Maximum normal stresses can occur at any point in the 
beam cross section (not necessarily at the outermost faces)

Maximum shear stress occurs at the neutral 
plane

Maximum in-plane shear stress can occur at any point in 
the beam cross section (not necessarily at the midplane)

Deformation is in the plane of the applied 
loads only

Out-of-plane deformation can result due to various 
coupling effects depending on ply sequence
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The bending compliance [D*] matrix can be obtained by using the equations 
described earlier (refer Equations 5.60 and 5.67, Chapter 5). The element in [D*] 
that we need for beam design is D11

* . Note that for symmetric laminates, [D*] is 
simply the inverse of [D]. Then, D11

*  can be conveniently determined as follows 
(refer Equation 5.163, Chapter 5):

	
D

D D D

D
11

22 66 26
2

* =
−

Det[ ] 	

With little arithmetic, we can show that

	
D

h
11 3

3

32 500
*

,
=

	

and the effective bending modulus (refer Equation 6.15, Chapter 6)

	
E

h D
xx
b = =

12
130 000

3
11
*

, MPa
	

The area moment of inertia about the bending axis is

	
I

bh
yy =

3

12 	

Then, the tip deflection (δ) of the beam is given by (refer Equation 6.129, 
Chapter 6)

	
δ = =

×
× × ×

=
Pl

E I h hxx
b

yy

3 3

3 33

5 400

3 130 000 25 12

5120

13, ( )/ 	

Now, we can readily find that h ≥ 7.3 so that δ ≤ 1.0. Let us provide a beam 
thickness of 8.0 mm, that is, h = 8.0. Then,

	

[ ]

, , . , .

, . , .

,

D =
5 564 054 357 69 550 677 0

69 550 677 278 202 709 0

0 0 214 0022 091.


















 	

and the bending compliance matrix is

	

[ ]

. .

. .

.

D* =
−

−



















180 288 45 072 0

45 072 3605 769 0

0 0 4672 852

×× −10 9

	

Axial bending stresses are given by (refer Equation 6.126, Chapter 6)

	
σxx

k k k kx z
P l x z

b
Q D Q D Q D( ) * * *( ),

( )
=

−
+ +( )( ) ( ) ( )

11 11 12 12 16 16
	



701Design of Composite Structures

Then, the maximum axial bending stresses are obtained as follows:

	

( )
( )

( , . . . .σxx max = ±
× − ×

× × − ×
5 400 0 4

25
130 407 524 180 288 1630 094 45 0772

10 7 59

)

.× = ±− MPa 	

The axial bending stresses are much within the respective tensile and compres-
sive strengths.

The laminate for the beam is to be made by laying up 32 prepreg plies, all 
aligned in the same direction, in a matched-die-mold.

Note that we have verified the beam design only for longitudinal bending 
stresses. In a beam, interlaminar stresses may be high. The process of interlami-
nar stress determination is rather laborious as it involves sequential operations 
going through each ply in the laminate. In the present case, there are 32 plies 
and a manual method is not practical. For further details and demonstration, the 
reader may refer to Example 6.1.

Option-2

Solid rectangular cross section (plies parallel to loading direction)
With all 0° plies, the orientation of the plies w.r.t. the loading direction is 

insignificant and Option-2 is equivalent to Option-1. However, if plies at nonzero 
directions are used, plies parallel to the loading direction would result in higher 
bending stiffness.

Option-3: Box-Section

Let us consider a box-section with overall height of 20 mm, width of 25 mm, and 
flange/web thickness of 2 mm. Let us consider 0° plies for the flanges and the 
webs. The beam cross section is symmetric and the vertical distances from the 
centroid of the beam to the flange and web centroids are readily obtained as

	 z zc c1 4 9= = mm flanges( ) 	

and

	 z zc c2 3 0= = ( )webs 	

The extensional and bending stiffness matrices are determined as

	

[ ]

, . .

. , .

, .

A =





260 815 048 3260 188 0

3260 188 13 040 752 0

0 0 10 031 348













	

	

[ ]

, . .

. .

.

D =














86 938 349 1086 729 0

1086 729 4346 917 0

0 0 3343 783





	

The compliance matrices are

	

[ ]

. .

. .

.

A* =
−

−


















× −

3 846 0 962 0

0 962 76 923 0

0 0 99 687

10 6
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[ ]

. .

. .

.

D* =
−

−


















× −

11 538 2 885 0

2 885 230 769 0

0 0 299 062

10 6

	

The effective flexural rigidity of the beam is given by (refer Equation 6.208, 
Chapter 6)

	
E Ixx

fl
yy =

×
+ +

×
× +





25 9
3 846

25
11 538

16
3 3 846

16
2

25
11 538

2 2

. . . .





× = ×10 708 355 106 6.

	

The tip deflection is then given by

	
δ = =

×
× ×

=
Pl

E Ixx
b

yy

3 3

63

5 400

3 708 355 10
0 15

.
. mm

	

It can be seen that the box-section offers a far more efficient solution in terms 
of lower tip deflection at a lower mass.

14.10.5  Design of a Flat Panel under In-Plane Loads

Flat panels under in-plane loads are designed for either strength or stiffness require-
ments. Under tensile loads, stiffness requirements arise out of possible functional 
restriction on axial and lateral deformations. On the other hand, buckling becomes a 
critical aspect under compression and in-plane shear.

In the design of a flat panel under biaxial loads, theoretically, there exist infinite pos-
sibilities of ply sequences. In practice, most designs are done using standard ply orienta-
tions such as ±45°, ±30°, ±60°, etc. in addition to 0° and 90° plies and the ply sequence 
options are greatly simplified. The plies are generally stacked to form a symmetric lami-
nate so as to avoid unnecessary extension–bending coupling. However, the question of 
apportioning thicknesses to different plies w.r.t. the total thickness remains, and it is 
a critical one. In this respect, carpet plots help greatly, especially in the preliminary 
design. A carpet plot is a graphical representation of a dependent parameter w.r.t. cer-
tain independent variables. Carpet plots are available for various parameters for various 
material systems. Concepts of composites mechanics (refer Chapters 3 through 5) can be 
made use of and these plots can be generated. Figures 14.13 through 14.18 are six carpet 
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FIGURE 14.13  Carpet plot for axial modulus, Exx (refer Example 14.7).
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plots generated for moduli and strengths of carbon/epoxy laminate. Material data are 
given in Example 14.7. It is easy to see that plots with other combinations of ply orienta-
tions can also be constructed. These plots show the dependence of the moduli on relative 
proportions of 0°, ±45°, and 90° plies. Note, however, that in-plane shear modulus does 
not depend on the proportion of 0° and 90° plies. Note, further, that laminate strengths 
depend not only on the proportions of the plies of different orientations but also on 
applied loads.
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FIGURE 14.14  Carpet plot for transverse modulus, Eyy (refer Example 14.7).
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FIGURE 14.15  Carpet plot for in-plane shear modulus, Gxy (refer Example 14.7).
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FIGURE 14.16  Carpet plot for axial tensile strength (refer Example 14.7).
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EXAMPLE 14.7

Design a rectangular flat panel of length 1200 mm and width 800 mm subjected 
to in-plane tensile force of 5000 and 3000 kN, respectively, in the longitudinal 
and lateral directions in addition to an in-plane shear force of 1200 kN acting on 
the longitudinal edge. The normal and shear deformations are to be restricted to 
8 mm (axial), 10 mm (transverse), and 1°, respectively. Use unidirectional carbon/
epoxy prepreg with the following material data:

	 E E G XT
1 2 12 12130 6 5 5 0 0 25 2000= = = = =GPa GPa GPa and MPa, . , . , . ,ν 	

Each prepreg ply is of 0.15 mm thickness.

Solution

Taking a factor of safety of 1.25, the force resultants acting on the panel are

	
Nxx =

× ×
=

5000 1000 1 25
800

7812 5
.

. N/mm
	

	
Nyy =

× ×
=

3000 1000 1 25
1200

3125
.

N/mm
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FIGURE 14.17  Carpet plot for transverse tensile strength (refer Example 14.7).
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Nxy =

× ×
=

1200 1000 1 25
1200

1250
.

N/mm
	

For these force resultants and the given material properties, carpet plots for 
laminate moduli and strengths are generated and given in Figures 14.13 through 
14.18. The laminates in these figures consist of symmetric combinations of 0°, 
±45°, and 90° plies at different proportions.

Now, let us choose the ply sequence based on stiffness and strength requirements.
The maximum normal and in-plane shear strains that can be allowed are

	
( )εxx max = = × −8

1200
6667 10 6

	

	
( ) ,εyy max = = × −10

800
12 500 10 6

	

	
( ) ,γ π

xy max =
×

= × −1
180

17 453 10 6

	

Let the laminate thickness be t. Then, the overall normal and in-plane shear 
stresses are

	
( )

.σxx tot
t

=
7812 5

	

	
( )σyy tot

t
=

3125

	

	
( )τ xy tot

t
=

1250

	

The overall normal and in-plane shear moduli required are obtained as follows:

	
( )

. .
E

t

t
xx tot =

×
=

×
−

7812 5

6667 10

1 172 10
6

6/

	

	
( )

,

.
E

t

t
yy tot =

×
=

×
−

3125

12 500 10

0 25 10
6

6/

	

	
( )

,
G

t

t
xy tot =

×
=

×
−

1250

17 453 10

10
6

6/ 0.072

	

We can see that the required axial stiffness is 4.7 times the required transverse 
stiffness and the required transverse modulus is about 3.5 times the required in-
plane shear modulus. Obviously, it demands a high proportion of 0° plies. Let us 
consider a laminate consisting of plies at 0°, ±45°, and 90° at the ratio 80:10:10. 
From Figures 14.13 through 14.15, we see that 80% 0° plies together with  
10% ±45° and 10% 90° plies provide ( )Exx tot =108 GPa, ( )Eyy tot = 22GPa ,  
and  ( ) .Gxy tot = 7 8GPa. The corresponding strengths are XT ≈ 680 MPa, 
YT ≈ 270 MPa, and S ≈ 110 MPa.
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Now, based on stiffness requirements, the required laminate thickness is 
obtained as the maximum of the following:

	

1 172 10

108 10
10 9

0 25 10

22 10
11 4

10

7 8

6

3

6

3

6.
. ,

.
. ,

.

×
×

=
×

×
=

×
×

and
0.072

1103
= 9.2

	

And, based on strength requirements, the required laminate thickness is 
obtained as the maximum of the following:

	

7812 5
680

11 5
3125
270

11 6
1250
110

11 4
.

. , . , .= = =and
	

Let us then consider a laminate of total thickness 12 mm, in which individual 
thicknesses for different ply orientations are as follows: 0°→9.6 mm (64 plies), 
+45°→0.6 mm (4 plies), −45°→0.6 mm (4 plies), and 90°→1.2 mm (8 plies).

We have chosen the number of plies and their orientations. However, the 
ply sequence is yet to be chosen. Note that, for a given proportion of plies, ply 
sequence does not influence in-plane normal and shear deformations and lamina 
stresses, as long as symmetry is maintained. However, shear buckling character-
istics can be improved by providing ±45° plies on the outer faces. Let us then 
choose the following ply sequence for our panel:

	
45 45 0 90 02 2 16 4 16

° ° ° ° °−



/ / / /
s 	

For this ply sequence and the given material properties, the reduced stiffness 
matrix and transformed reduced stiffness matrices are given by

	

[ ] [ ]

, . .

. .( )Q Q= =°0

130 407 524 1630 094 0

1630 094 6520 376 0

0 0 5015.6744


















	

	

[ ]

, .
( )Q 45

30 971 787
° =

40,062.696 30,031.348

30,031.348 40,062.6966 30 971 787

30 971 787 30 971 787 33 416 928

, .

, . , . , .


















	

	

[ ]

, .
( )Q − ° =

−
45

30 971 78740,062.696 30,031.348

30,031.348 40,062.6696 −
− −
















30 971 787

30 971 787 30 971 787 33 416 928

, .

, . , . , . 
	

	

[ ]

. .

. , .( )Q 90

6520 376 1630 094 0

1630 094 130 407 524 0

0 0

° =



 5015.674














	

Then, for the chosen ply sequence, the laminate extensional stiffness and 
compliance matrices are obtained as
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[ ]A =
1,307,811.917 53,642.633

53,642.633 267,159.662

94,269

0

0

0 0 ..593


















	

	

[ ]

. .

. .A* =
−

−


















× −

0 771 0 155 0

0 155 3 774 0

0 0

10 6

10.608
	

Laminate middle surface strains are

	

ε
ε
γ

xx

yy

xy

0

0

0 771 0 155 0

0 155 3 774 0



















=
−

−
. .

. .

00 0

7812 5

3125

125010.608


















×



















.

×× =



















×− −10

5539

10 583 106 6,

13,260
	

The laminate curvatures are zero, which means

	

ε
ε
γ

xx

yy

xy



















=










5539

10 583,

13,260










× −10 6

	

at all locations in the laminate thickness
Deformations are

	 Axial deformation mm= × × =−1200 5539 10 6 66 . 	

	 Transverse deformation mm= × × =−800 10 583 10 8 56, . 	

	
In-plane shear deformation

13,260
0.76=

× ×
= °

−180 10 6

π 	

Global stresses in the plies are
	

σ
σ
τ

xx

yy

xy



















=

°( )
, . .

0
130 407 524 1630 094 0

16330 094 6520 376 0

0 0

5539

10 583. . ,

5015.674 13,260





































× =

















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Then, the local stresses in the plies are obtained as follows:
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The deformations are within the limits and the stresses are within the material 
allowables. Also, the stresses in the individual plies are all tensile and thus 
buckling is unlikely.

14.10.6  Design of a Pressure Vessel under Internal Pressure

14.10.6.1  Introduction

Filament-wound composite pressure vessels are a major class of composite products 
that are routinely used in aerospace, defense, and commercial applications. Various 
types of pressure vessels are solid rocket motor casing, air bottle, hydrogen fuel tank, 
CNG tank, LPG tank, etc. As a matter of fact, solid rocket motor casings used for 
housing solid fuel in aerospace vehicles have been the primary factor responsible for 
the growth of filament winding from its nascent stage in the 1960s to an advanced 
highly automated technology today.
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14.10.6.2  Advantages of Composite Pressure Vessels

There are several advantages of filament-wound composite pressure vessels over 
conventional isotropic materials. Given below is a list of some of these advantages:

◾◾ Light weight: The primary factor that makes composites the first choice for 
pressure vessels is their high strength-to-weight ratios. The performance of a 
pressure vessel is expressed in terms of a factor known as performance factor 
(η) defined as

	
η =

pV

W 	
(14.65)

	 in which p is the internal pressure, V the enclosed volume, and W the weight. 
η is consistently higher for composite pressure vessels than metallic and it is 
a good measure for the comparison of the vessel design. Note that operating 
pressure, proof pressure, or design pressure can be used for p. Similarly, either 
pressure vessel weight or total weight including those of the pressure vessel 
and other associated parts can be used for W. However, the parameters p, V, and 
W must be used in a consistent manner.

◾◾ Design flexibility: In most cases, the implementation of certain modifica-
tions becomes necessary during the development period of a pressure ves-
sel. These modifications include marginal changes in the ply sequence, inner 
contour, metallic end fittings, etc. The design as well as the manufacturing 
methodology of a composite pressure vessel is typically amenable to such 
changes.

◾◾ Stress corrosion cracking: The phenomenon of crack growth in a corrosive 
environment leading to unexpected failure under tensile stresses is called as 
stress corrosion cracking. It is typically common in metallic pressure vessels, 
but absent in composite pressure vessels.

◾◾ Efficient utilization of material properties: The axial stresses in the cylindrical 
portion of a pressure vessel are typically half of the circumferential stresses. 
In an isotropic material, material properties are equal in all directions and the 
shell thickness is provided to meet the circumferential stresses. It is easy to 
see, then, that in a pressure vessel designed with isotropic material, the mate-
rial is underutilized as far as its strength in the axial direction is concerned. 
On the other hand, in the case of a composite pressure vessel, the plies can be 
oriented in such a way as to achieve an axial strength, which is about half of 
the circumferential strength. In this way, it is possible to exploit the material 
more efficiently.

◾◾ Shorter cycle time: The overall cycle time of development and production of a 
composite pressure vessel is much shorter than that of its metallic counterpart.

◾◾ Low cost: The tools and fixtures required for the development and production 
of composite pressure vessels are rather simple and very cheap when compared 
with metallic pressure vessels.

14.10.6.3  Configuration of a Pressure Vessel

The essential part of a pressure vessel is a cylindrical shell with two end domes. 
(In certain special cases, conical shell is also used.) Typically, two axial openings—
one at each end dome—are provided. Each opening is reinforced with metallic fitting 
commonly known as polar boss. The metallic end fittings have primarily two functions 
to perform—first, they provide rigid support during winding for the helical windings to 
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take reversals around them and second, they act as inlet/outlet and provide features for 
assembly of other components such as nozzle, inlet and outlet ports, etc.

The pressure vessel shell, depending on its functional requirements, is provided with 
other features such as supporting brackets, etc. Rocket motor casings are a major type 
of products within the broad class of pressure vessels. In a rocket motor casing, cylin-
drical or conical shells commonly referred to as skirts are provided. They are either in 
situ wound on or prefabricated and bonded to the pressure vessel shell.

The final performance of a pressure vessel is greatly influenced by its configuration. 
Some of the important features of the configuration design are as follows.

14.10.6.3.1  Pole Openings

The pole openings have significant bearing on the overall design of a pressure vessel. 
The implications are both structural as well as functional. Some of the key points are 
briefly discussed below:

First, the helical winding path is influenced by the relative pole opening diameters. 
The helical fibers take reversal around the polar boss. The imaginary circle, with its cen-
ter on the axis, on which the helical path reversal point lies, is referred to as the composite 
opening. The polar boss design obviously dictates the composite pole opening diameter. 
Now, the significance of relative pole opening diameters is that geodesic winding is pos-
sible only if the two composite pole openings are equal. Typically, a rocket motor casing 
has unequal pole openings, as a result of which, the helical path is nongeodesic. Other 
parameters remaining constant, the extent of deviation from the geodesic path, and thus 
degree of winding difficulty depends on the ratio of the composite pole opening diam-
eters. It is preferable to keep this ratio as small as possible, that is, closer to unity.

Second, the composite pole opening diameters have direct bearing on the helical 
winding angles. For optimal design, the lamina strengths should be fully exploited. 
Note that the helical plies provide strength and stiffness in both the meridional as well 
as circumferential directions. In the cylindrical portion of a pressure vessel, it is pos-
sible to orient the helical plies in such a way as to minimize the requirement of circum-
ferential or hoop plies. As a matter of fact, for equal composite pole opening diameters, 
that is, for a geodesic path, the optimal helical winding angle in the cylinder is given by

	 αcyl = ≈ °−tan .1 2 54 736 	
(14.66)

for which the corresponding ratio of the geodesic composite pole opening radius to the 
cylinder radius is

	

r

r
0 1 2 0 816= ≈−sin(tan ) .

	
(14.67)

In other words, for a composite pole opening radius, given by Equation 14.67, helical 
plies are sufficient to bear both the meridional as well as circumferential stresses. Note, 
however, that for such a pole opening size, the dome design and polar boss design 
may not be optimal.

Third, a pressure vessel is typically designed for a closed condition. The inter-
nal pressure, acting on the area enclosed by the composite pole opening, results in 
a concentrated force that acts on the edge of the composites at the pole. This edge 
loading results in bending stresses in the dome, which require additional reinforce-
ments accompanied by weight penalty. The severity of the bending stresses is directly 
dependent on the pole opening diameter and thus it is preferable to have smaller pole 
openings.
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Fourth, the larger the pole opening, the larger and heavier the polar boss. From this 
point of view, too, it is preferable to have small pole openings.

The pole opening diameters are often decided based on functional requirements. 
And like any other design process, it is also an iterative process and a final decision 
is a compromise decision that meets functional requirements at acceptable structural 
margins of safety.

14.10.6.4  End Domes

The meridional shapes of the end domes are crucial in the design of a pressure vessel. 
Various dome shapes in use include (i) simple geometrical shapes such as hemispheri-
cal, elliptical, ellipsoidal, and tori-spherical and (ii) analytically generated shapes such 
as isotensoid and constant deviation contour, etc. Geometrical shapes are easy to imple-
ment, but not optimal structurally [39]. They are most commonly used in smaller pres-
sure vessels.

Isotensoid contour is an optimal contour; it is possible to carry out geodesic wind-
ing on it and the stresses are uniform. Recall, however, that geodesic winding is gov-
erned by the famous Clairut’s principle r sin α = C, in which r and α are the local 
radius and angle of winding, respectively, and C is a constant (= r0, the radius at the 
pole opening). It can be seen that the pole openings at the two ends must be equal 
for geodesic winding. In many pressure vessels, most notably in rocket motor cas-
ings, the pole openings are unequal and the winding path becomes nongeodesic (also 
called modified geodesic). Nongeodesic winding tends to be unstable and slips away 
from its designated path unless sufficient friction holds it back [40]. In other words, 
nongeodesic winding is feasible as long as the required friction coefficient is less than 
the available friction coefficient. The required friction coefficient is high for large 
deviation from geodesic path and vice versa, and it depends on the contour geometry. 
Constant deviation contour is a dome contour that is generated by an iterative analyti-
cal process such that the required friction coefficient is the least and uniform along 
the contour.

14.10.6.5  Metallic End Fittings

The metallic end fittings are designed to meet the following requirements:

◾◾ To facilitate smooth load transfer between the composite shell and metallic end 
fittings

◾◾ To provide features for joining other elements such as valve, nozzle, etc. to the 
pressure vessel

◾◾ To provide sufficient landing area for the helical fibers to take reversal during 
winding

The flange of the end fitting has to provide sufficient area so that the bearing stresses 
in the composite are within limit. In general, the flange width should be at least 1.5 
times the width of a fiber band. A major failure mode in a pressure vessel is boss blow 
out during pressure testing. For avoiding such failure, as a thumb rule, the outer diam-
eter of the end fitting is commonly extended to the inflection point or above it [41]. 
The flange thickness is typically the highest at the root and is gradually decreased to 
a minimum at the tip. Empirical relations are available for initial sizing of the flange 
thickness, which is fine tuned during finite element analysis.

Various configurations, available for giving provisions for attachment of other 
elements, can be broadly grouped into three types—threaded joint, axially bolted joint, 
and radially bolted joint.



712 Composite Structures

14.10.6.6  Ply Design

Various types of reinforcing plies used in composite pressure vessel shell include the 
following:

◾◾ Continuous winding
−− Helical winding
−− Polar winding
−− Hoop winding

◾◾ Local lay-up
−− Fabric lay-up
−− Unidirectional sheet lay-up

Under internal pressure, the pressure vessel shell is in a state of predominantly 
membrane stress. Helical winding provides strength and stiffness in the meridional 
direction as well as circumferential direction. Polar winding also provides strength and 
stiffness in both the directions, and it can be used in place of helical winding. Helical 
winding, however, gives greater flexibility and is more common, especially in larger 
pressure vessels. Hoop winding is provided in the cylindrical region for providing addi-
tional circumferential strength and stiffness. In the dome regions, hoop winding is not 
feasible and local plies, often referred to as doilies, are laid-up for providing neces-
sary additional reinforcements in the circumferential direction as well as meridional 
direction. Doily lay-up can be in the form of either bidirectional fabric lay-up or uni-
directional sheet lay-up. Bidirectional fabric plies are useful in regions where meridi-
onal and circumferential stresses are of the same order as well as in regions where it is 
difficult to accurately estimate stresses. Unidirectional sheet plies, on the other hand, 
provide an efficient way of orienting the reinforcements.

Netting model

Netting model is a simple tool commonly used for determining the required thick-
nesses of meridional and circumferential reinforcements. It assumes that the laminate 
stiffness and strength are provided totally by the longitudinal stiffness and strength of 
the laminae; transverse and shear properties are ignored [2,42]. Then, considering the 
free-body diagram of a representative element under static equilibrium, it can be shown 
that

	
2 2X t X t prh

T
h m

T
mcos cosα β+( ) =

	
(14.68)

	
X t X t prh
T

h c
T

csin cos2 α β+( ) =
	

(14.69)

in which
X X Xh
T

m
T

c
T, ,  	� Longitudinal tensile strengths of helical, meridional, and circum-

ferential (hoop) plies
th,tm,tc	 Thicknesses of helical, meridional, and circumferential (hoop) plies
α		  Angle of winding
β		  Slope of the local tangent to the meridional contour
p		  Internal pressure
r		  Local radius

In a strength-based design, meridional strength and stiffness are provided totally by 
helical plies and no meridional reinforcements are generally provided, that is, tm = 0. 
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Then, from the above Equations 14.68 and 14.69, helical ply thickness and hoop ply 
thickness can be determined. On the other hand, when additional meridional stiffness 
and strength are required, th and tc are determined for known or trial value of tm.

Another issue that needs mention here is the helical ply thickness variation w.r.t. 
local radius and angle of winding. Typically, helical thickness increases with decrease 
in local radius and increase in angle of winding; it is quite appreciable near the pole 
openings where fiber reversal takes place. An expression that gives an approximate 
estimate is as follows:

	 rt Kh cosα = 	 (14.70)

where K is a constant. During the design process, helical thickness is provided at 
a key cross-sectional location—typically in the cylinder with the minimum wind-
ing angle—and K is determined. Note, however, that it is only an approximate 
estimate; it gives an infinite thickness at the pole opening, which obviously is not 
correct.  Other  more theoretical, empirical, and semiempirical accurate models 
are available; these are generally complex, and often the designer depends on his 
experience and experimental data for helical ply thickness, especially near the pole 
openings.

EXAMPLE 14.8

Design the composite shell of a cylindrical pressure vessel with an inner 
diameter of 200 mm and a cylindrical length of 800 mm. Internal pressure 
is 20 MPa. The end domes are hemispherical in shape and reinforced by 
polar end fittings that have equal composite pole opening diameters of 40 mm 
(Figure 14.19).

Use unidirectional carbon/epoxy with the following material data:

	 E E G XT
1 2 12 12130 6 5 5 0 0 25 2000= = = = =GPa GPa GPa MPa, . , . , . ,ν 	

Solution

Let us provide meridional stiffness to the pressure vessel entirely by helical wind-
ings, that is, we design the shell using helical and hoop plies only. With equal 

A
s

40200

B
C

D

A

I I

A

E F G H I

FIGURE 14.19  Geometrical details of a pressure vessel (refer Example 14.8).
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composite pole openings, geodesic winding is feasible, in which the cylinder 
angle of winding is given by

	
αcyl =







= °−sin .1 40

200
11 537

	

Then, taking a factor of safety of 2.0, using Equations 14.68 and 14.69, the 
required helical and hoop thicknesses at various points along the meridional con-
tour are determined and tabulated in Table 14.7. Note that point A is the point 
of inflection, where the helical angle is given by αi = −tan 1 2  and the required 
hoop thickness is zero.

Let us provide in the cylindrical portion, three helical plies of 0.4 mm thick-
ness each and four hoop plies of 0.5 mm each as per the following ply sequence:

	 [ / / / / / / ]90 90 90 90° ± ° ± ° ± °α α α 	

Helical plies cover the entire pressure vessel—from one pole opening to the 
other. The helical thickness provided increases from the equator toward the 
pole opening and the same is determined using Equation 14.70 and tabulated in 
Table 14.8.

TABLE 14.7
Required Thickness along the Meridional Contour (Example 14.8)

Thickness Required

Location s (mm) r (mm) β (°) α (°) th (mm) tc (mm)

A 4.6 24.5 75.821 54.736 3.00 0
B 21.2 40.1 66.344 29.897 1.33 1.67
C 37.7 54.7 56.866 21.463 1.16 1.85
D 54.2 67.7 47.388 17.182 1.10 1.90
E 70.8 78.9 37.911 14.684 1.07 1.93
F 87.3 87.9 28.433 13.146 1.06 1.95
G 103.9 94.6 18.955 12.208 1.05 1.95
H 120.4 98.6 9.478 11.699 1.04 1.96
I 136.9 100 0 11.537 1.04 1.96

TABLE 14.8
Thickness Provided along the Meridional Contour (Example 14.8)

Thickness Provided

Location s (mm) r (mm) β (°) α (°) th (mm) tc (mm)

A 4.6 24.5 75.821 54.736 8.31 2
B 21.2 40.1 66.344 29.897 3.38 2
C 37.7 54.7 56.866 21.463 2.31 2
D 54.2 67.7 47.388 17.182 1.82 2
E 70.8 78.9 37.911 14.684 1.54 2
F 87.3 87.9 28.433 13.146 1.37 2
G 103.9 94.6 18.955 12.208 1.27 2
H 120.4 98.6 9.478 11.699 1.22 2
I 136.9 100 0 11.537 1.20 2
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Hoop winding, on the other hand, is not feasible in the domes and the need 
for circumferential reinforcement is met by local lay-ups (doilies). It is seen 
from the first table that the requirement of circumferential reinforcement gradu-
ally decreases as we move from the equator toward the pole and it vanishes at 
the inflection point and beyond. Note that the above calculations are based on 
the netting model, which does not consider interaction of the shell with polar 
bosses and other elements. Also, during doily lay-up, owing to its very geo-
metrical shape of the doily developments, it is not feasible to orient the local 
reinforcement accurately everywhere. To accommodate such uncertainties, we 
provide 2-mm-thick circumferential reinforcements (i.e., same as at the cylin-
drical region) everywhere in the dome. The dome plies can be modified by finite 
element analysis.

14.11  SUMMARY
This chapter is devoted to the design of composite structures; design here is looked 
upon as a means for composite product development. Different stages of product devel-
opment are identified; it is found that these stages are interrelated and the common 
thread is design. A review of the basic concepts of design, composites structural design, 
laminate design, joint design, stiffened structures, and several representative composite 
examples are presented. The key points can be enumerated as follows:

◾◾ The term design can be defined as a scheme that is used for making a 
product using certain resources within certain constraints to fulfil certain 
requirements.

◾◾ The requirements can be in respect of strength, stiffness, and other functional 
needs.

◾◾ The resources can be related to materials, manufacturing technologies, compu-
tational facilities, and human resources.

◾◾ The constraints during the design process are imposed typically from weight, 
cost, and assembly and manufacturing feasibility.

◾◾ It is important to differentiate between the terms design and analysis.
◾◾ Composite structural design involves many aspects; the important ones are 

generation of specifications, materials selection, configuration design, analysis 
options, manufacturing process selection, testing and NDE options, and design 
of laminate and joints.

◾◾ Laminate design is a central aspect in the composite structural design process. 
It basically involves the selection of ply sequence variables and an appropriate 
fiber volume fraction.

◾◾ Three key concepts of laminate design are load definitions, design allowables, 
and design factors.

◾◾ Laminate design process involves three critical steps—laminate selection, lam-
inate analysis and measurements, and application of laminate design criteria.

◾◾ Joints are generally considered as the weak links in any structure; most real-
life structures do contain joints. The final structural and functional perfor-
mance of a structure often depends on the joints, and here lies the importance 
of the design of appropriate joints in a structure.

◾◾ Joints are broadly of two types—bonded joints and mechanical joints; they 
have their unique failure modes and are associated with their own advantages 
and disadvantages.

◾◾ Stiffened structures are typically efficient, but generally they are associated 
with more design complexities.
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◾◾ Optimization is inherently associated with the very basic objective of any 
design. In brief, it is the process of arriving at the best design choice.

◾◾ Optimization is a mathematical process; however, in practice, it is approached 
in two ways—mathematical methods and searching techniques.

◾◾ A real-life structure can have many types of structural elements under differ-
ent types of loads. Common examples include tension member, compression 
member, torsion member, beam, flat panel, etc.

EXERCISE PROBLEMS

	 14.1	 Write a brief note defining the term design.
	 14.2	 What are the general requirements, resources, and constraints in structural 

design? Consider the following broad classes of products and identify the 
requirements, resources, and constraints in each case: (i) aircraft wing, 
(ii)  helicopter rotor blade, (iii) rocket motor case, (iv) sports car bumper, 
(v) storage tank, and (vi) pleasure boat hull.

	 14.3	 Make a comparative note to explain the two terms—design and analysis.
	 14.4	 Consider two products—helmets for two-wheeler riders and observation 

towers in an oil exploration firm engaged in remote area operations. Carry 
out the following:

	 i.	 Generate specifications. Make suitable assumptions wherever necessary.
	 ii.	 Suggest suitable materials and manufacturing processes. Justify your 

choice.
	 iii.	 Carry out qualitative configuration design. Suggest analysis options.
	 iv.	 Propose an acceptance plan.

	 14.5	 Write a short note to explain the (i) various terms related to load—operating 
load, limit load, etc., (ii) various factors—factor of safety, margin of safety, 
etc., and (iii) design allowables.

	 14.6	 Consider a laminate required to carry in-plane tensile load in one direction. 
Suggest a ply sequence if, for applying the tensile load, (i) metallic strips are 
bonded along the opposite edges and (ii) metallic strips are riveted along the 
opposite edges.

	 14.7	 For a carbon/epoxy laminate, determine the invariant terms U1, U2, U3, 
U4, and U5. Assume the following material properties: E1 = 150 GPa, 
E2 = 8 GPa, G12 = 6 GPa, and ν12 = 0.25.

	 14.8	 In the problem in Exercise 14.7 above, if the laminate is subjected to equal 
normal force resultants and the other force resultant and moment resultants 
are zero, determine the ply sequence of a three-ply symmetric laminate so 
as that normal deformation in the x-direction is half the normal deformation 
in the y-direction and in-plane shear deformation is zero.

	 14.9	 What are the different types of bonded and bolted joints? Write a brief com-
parative note on the advantages and disadvantages of these joints.

	 14.10	 Determine the average bearing stress in the hole of a single-lap pin joint. 
The following data are given: laminate ply sequence is [0°/±45°/90°]s, each 
ply being 0.5 mm in thickness; hole diameter is 4 mm, and the applied load 
is 75 N. Is the joint safe, if the bearing strength for the above ply sequence 
is experimentally found as 12 MPa?

	 14.11	 Write a brief note on failure modes in bonded and bolted joints.
	 14.12	 What are the possible failure modes in a stiffened structure?
	 14.13	 Design a minimum mass tension member of rectangular cross section to 

carry a uniaxial static tensile load of 45 kN. Adopt a micromechanics-based 
approach and give details of the fabrication method suggested. Also, suggest 
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a possible joint with a metallic adopter at the ends. Consider the following 
materials:
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	 14.14	 Design the tension member of Exercise 14.13, if the axial elongation is lim-
ited to 0.02 mm.

	 14.15	 Design a tension member of circular cross section to carry a load of 1000 kN. 
Use carbon/epoxy composite with material properties given in Exercise 
14.13. Assume Vf = 0.6. Consider filament winding and pultrusion as the 
possible manufacturing method.

	 14.16	 Design a compression member of length 6000 mm to carry an axial com-
pressive load of 800 kN. Consider fixed-free end conditions and use carbon/
epoxy composite with the following material data:

E E G XC
1 2 12 12150 8 0 6 0 0 25 850= = = = =GPa GPa GPa MPaand, . , . , . ,ν

	 14.17	 Design a torsion member of length 800 mm to transmit a torque of 4.5 kN ⋅ m. 
Consider simply supported end conditions and use carbon/epoxy composite 
with the following material data:

E E G XC
1 2 12 12150 8 0 6 0 0 25 850= = = = =GPa GPa GPa MPaand, . , . , . ,ν

		  Also, the static shear strength of a laminate with ±45° plies is experimentally 
found to be 500 MPa.

	 14.18	 Design a cantilever beam of length 600 mm and width 40 mm to carry a 
uniformly distributed load of 0.1 N/mm. Use unidirectional carbon/epoxy 
prepreg with the following material data:

	 E E G1 2 12 12140 8 6 0 25= = = =GPa GPa GPa, and, , .ν 	

		    Assume the thickness of prepreg plies as 0.5 mm. Use box-section. 
The tip deflection of the beam is to be restricted to a maximum of 1.2 mm.

	 14.19	 Consider a rectangular panel of size 1500 mm × 1200 mm subjected to in-
plane tensile forces of 7500 kN and 5000 kN, respectively, in the longitudi-
nal and lateral directions and an in-plane shear force of 1500 kN acting on 
the longitudinal edge. The laminate is to be designed with 0°, ±45°, and 90° 
plies. Construct the carpet plots and design the panel. The normal and shear 
deformations are to be restricted to 8 mm (axial), 10 mm (transverse), and 
1°, respectively. The material properties are given as

	 E E G XT
1 2 12 12140 8 6 0 25 1800= = = = =GPa GPa GPa MPa, , , . ,ν 	
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	 14.20	 Design a carbon/epoxy pipe of diameter 100 mm to contain an internal 
pressure of 100 MPa. Consider the material data given in Exercise 14.19.
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Ablation, 652
Acoustic emission (AE), 597, 608

advantages and disadvantages, 611
data acquisition, 609–610
data analysis, 610–611
felicity effect, 609
Kaiser effect, 609
sources, 608–609
test setup, 609

Acoustic impedance of material, 599, 600
Acrylonitrile, 472
Active thermographic method, 612

lock-in thermography, 612–613
pulse thermography, 612
vibrothermography, 613

Active thermography, 611
Additives, 463
Adhesive characterization, 586, 587
Advanced manufacturing processes, 654
AE, see Acoustic emission
Aerospace composite applications, 462
AFRP, see Aramid fiber-reinforced plastic
Alloy, 5
Almansi strain, 27–28
Alumina (Al2O3), 7, 479
Alumina–silica (Al2O3–SiO2), 479
American Society for Mechanical Engineers 

(ASME), 541
American Society for Testing and Materials 

(ASTM), 541
ASTM D2095, 587
ASTM D2344, 571–572
ASTM D3039, 557
ASTM D3410, 561, 562
ASTM D3479, 581
ASTM D3528, 587–588
ASTM D4255, 569–571
ASTM D5034, 547
ASTM D 5379, 567–569
ASTM D5528, 577–578
ASTM D5656, 587
ASTM D5961, 585
ASTM D6272, 573–575
ASTM D638, 550, 556
ASTM D6641, 561
ASTM D695, 550–551, 561
ASTM D790, 572–573
ASTM E143, 551

Analysis options, 661
Analytical methods, 269, 331, 347
Angle of twist, 430, 698
Angle-ply laminate, 248
Angle-ply laminated plate

antisymmetric, 372–374
antisymmetric angle-ply laminated simply 

supported plate, 382–384, 392–395
symmetric, 368–369
symmetric angle-ply laminated simply 

supported plate, 377–379
Anisotropic high-performance composites, 652
Anisotropic materials, 9, 14, 61

Hill’s criterion for, 173

Antisymmetric angle-ply laminated plate, 
372–374

Antisymmetric angle-ply laminated simply 
supported plate

buckling, 382–384
vibration, 392–395

Antisymmetric cross-ply laminated plate, 
369–372

Antisymmetric cross-ply laminated simply 
supported plate

buckling, 379–382
vibration, 389–392

Antisymmetric laminate, 246–247
Applied loads, 663
Approximating function, 404–407, 424

for general boundary conditions, 
367–368

Aramid fiber-reinforced plastic (AFRP), 17
Aramid fibers, 476, 531; see also Carbon fibers; 

Glass fibers
applications, 478
dry-jet spinning process, 477
forms, 477
production, 476–477
properties, 477–478
staple fibers, 477
types, 476

Aramid yarns, 477
Areal density of fabric, 544
AR-glass fibers, 468
ASME, see American Society for Mechanical 

Engineers
Assembly, 417, 424–425

boundary conditions, 421
of element matrices, 418
expanded element stiffness matrix, 

419–420
requirements, 654

ASTM, see American Society for Testing and 
Materials

Attenuation, 600
coefficient, 605

Autoclave, 495, 518
cure cycle, 519
curing, 654
process, see Prepreg lay-up process

Automation and skilled manpower needs, 
525–526

Auxiliary equation, 362
Average stress criterion, 583

B

Balanced fabrics, 480
Balanced laminate, 247
Bar element, 425–430
Barrier coat, 495
Barrier film, 519
Base epoxy resin, 459

curatives, 460
DGEBA, 459
epoxide group, 460
modifiers, 460
properties, 460–462

Beam, 269
theory, 433

Beam vibration
fixed-fixed beam, 324–325
fixed-free beam, 323–324
governing equations, 320–322
simply supported beam, 322–323

Bearing
failure, 679
strength, 585–586

Bending
antisymmetric angle-ply laminated plate 

with all edges, 372–374
antisymmetric cross-ply laminated plate with 

all edges, 369–372
governing equations for, 334–339
moments per unit length, 205
solutions for bending of laminated 

plates, 355
specially orthotropic plate with all edges, 

355–360, 364–368
specially orthotropic plate with two opposite 

edges, 360–363
stiffnesses, 671–672
strain energy, 353
symmetric angle-ply laminated plate with all 

edges, 368–369
Biaxial extensometer, 557–558
Bidirectional lamina, 135, 144–145
Bisphenol A fumarate resins, 463
Bleeder, 519
BMC, see Bulk molding compounds
Body forces, 43, 410
Bolted joint, 585, 678

bearing/by-pass strength, 586
bearing strength, 585–586
fastener pull-through strength, 586
shear-out strength, 586

Bonded joints, 586, 673, 674; see also 
Mechanical joints

adhesive characterization, 587
advantages and disadvantages, 

676–677
characterization, 587–588
composite joints, 674
configurations, 673
failure modes in, 675–676
general design considerations, 677
load transfer mechanism in, 675

Boron carbide (B4C), 7
Boron fibers, 478–479
Boundary conditions in laminated plate, 344

clamped boundary condition, 346
simply supported boundary condition, 

345–346
Boundary value problem, 346
Bounding techniques, 123
Box-section, 309–311
Braiding, 481
Branched polymer, 457
Breaking strength of fabric, 547
British Standards (BS), 541
BS, see British Standards
“B-stage”, 483
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Buckling, 269, 311–312, 340, 682; see also 
Column buckling

antisymmetric angle-ply laminated simply 
supported plate, 382–384

antisymmetric cross-ply laminated simply 
supported plate, 379–382

differential equations, 340
displacements, 342, 348, 381, 383–384
equations for laminated plates, 339–342
factor, 665–666
governing equations for, 339–342
mode, 340
problems, 348, 349–350
solutions for buckling of laminated 

plates, 374
specially orthotropic simply supported plate, 

374–377
stress resultants, 342
symmetric angle-ply laminated simply 

supported plate, 377–379
Bulk molding compounds (BMC), 482–483
Buoyancy method, 542
Bushing, 468
By-pass strength, 586

C

CADFILL®, 509
CADWIND®, 509
Camera, 606
Cantilever beam

under point load, 291–292
under uniformly distributed load, 293–294

Carbide, 530
Carbon, 645

prepreg laminates, 645
Carbon/carbon composites (C/C composites), 5, 

6, 619, 642
characteristics, 642–644
manufacturing methods, 644–645

Carbon/epoxy composites, 18
Carbon/epoxy prepregs, 495
Carbon fiber-reinforced plastic (CFRP), 17, 474, 

476, 597, 652
Carbon fibers, 9, 470, 659; see also Aramid 

fibers; Glass fibers
applications, 474–476
forms of carbon fiber reinforcements, 

473, 474
from pitch, 472–473
production, 471–473
properties, 473–474, 475
from Rayon, 473
tensile modulus vs. tensile failure strain, 475
tensile modulus vs. tensile strength, 475
types, 470–471

Carbonization, 472, 473
Cartesian coordinate systems, 28, 202

O-123, 88
for stress/strain transformation, 46

Cathode ray tube (CRT), 600
Cauchy elastic material, 58
Cauchy’s stress principle, 43–44
CC, see Compliance calibration
CCA approach, see Composite cylindrical 

assemblage approach
C/C composites, see Carbon/carbon composites
Center of gravity (c.g.), 516
Ceramic matrix composites (CMCs), 5, 6, 

619, 634
applications, 642, 643

characteristics, 634–635
CVD, 640–641
CVI, 640–641
liquid infiltration, 638–639
manufacturing methods, 636
matrix materials, 635–636
polymer infiltration and pyrolysis, 641–642
powder consolidation methods, 637
reaction bonding processes, 642
reinforcing materials, 636
slurry infiltration, 637–638
sol–gel technique, 639–640

Ceramics, 6, 634
fibers, 479

CFRP, see Carbon fiber-reinforced plastic
c.g., see Center of gravity
C-glass fibers, 468
Chang’s index, 528
Characteristic equation, 51, 319, 367, 368, 423
Chemical vapor deposition (CVD), 631, 637, 

640–641
Chemical vapor infiltration (CVI), 637, 640–641, 

644, 645
Chlorendic resins, 463
Choleski method, 422
Chopped strand mat (CSM), 18
Chopped strands, 480
Circumferential winding, see Hoop windings
Clairut’s rule, 509–510
Clamped boundary condition, 346
Classical 3D elasticity formulations, 201
Classical Brookfield viscometers, 548
Classical laminated plate theory (CLPT), 

200, 201
constitutive relations in, 210–223
kinematics, 202–205
kinetics, 205–209
Kirchhoff hypothesis, 201

Classical laminated shell theory (CLST), 
200, 223

constitutive relations in, 230–231
geometry of middle surface, 224–226
kinematics, 226–228
kinetics, 228–230

Classical laminate theory (CLT), 197, 200
Closed mold processes, 491, 497; see also 

Continuous molding processes; 
Open mold processes

compression molding process, 497–499
RTM process, 499–501
selection of manufacturing methods, 521

CLPT, see Classical laminated plate theory
CLST, see Classical laminated shell theory
CLT, see Classical laminate theory
CMCs, see Ceramic matrix composites
CMEs, see Coefficients of moisture expansion
CNC system, see Computer numerical 

control system
Cobalt naphthenate (CoNap), 463
Codazzi conditions, 226
Coefficient of thermal expansion (CTE), 9
Coefficients of moisture expansion (CMEs), 82
Coefficients of thermal expansion (CTEs), 82, 

116–117
Cohesive failure of adhesive, 676
Cold pressing, 625
Column buckling, 311

fixed-fixed column, 317–319
fixed-free column, 316–317
governing equations, 312–314
simply supported column, 314–315

Common nylon, 476
Compatibility conditions, 42
Compatibility equations, 42
Complex failure modes, 677, 681
Compliance calibration (CC), 577
Compliance matrix, 140
Component level

acceptance tests, 595
full-scale component testing, 588
subscale component testing, 588
tests, 539, 540, 588

Composite cylindrical assemblage approach 
(CCA approach), 124

Composites, 3–4; see also Machining of 
composites; Testing of composites

advantages, 10–13
applications, 14–18
C/C composites, 6
characteristics, 4, 8–9
classification, 5
CMCs, 6
comparison of common engineering 

materials mechanical properties, 12
disadvantages, 13–14
flake composites, 8
functions of reinforcements and matrix, 8–9
joints, 674
laminated composites, 8
material, 4–5
MMCs, 5–6
particulate composites, 7
PMCs, 5, 15–17
sandwich composites, 8
short fiber composites, 7
stiffened structures, 650
technology, 489
terminologies, 9–10
3D composites, 8
unidirectional, 8

Composite structures design, 649, 656
basic features of structural design, 651–654
composite product development 

program, 650
configuration design, 660–661
constraints, 653–654
design examples, 685–715
design vs. analysis, 654–656, 661
generation of specifications, 657–658
joints design, 662, 673–681
laminate design, 662–673
manufacturing process selection, 661–662
materials selection, 658–660
optimization, 684
requirements, 651–652
resources, 652–653
stiffened structures, 682–684
stiffening of panels, 650
testing and NDE options, 662

Compression molding, 497, 498, 523
advantages and disadvantages, 499
processing steps, 497–498
raw materials, 499
tooling and capital equipment, 498

Compression testing, 560; see also 
Tension testing

failure modes, 560–561
test procedure and data reduction, 563
test specimen and test fixture, 561–563

Compressive properties, 550–551
Compressive strength, 165, 563
Computed tomography, 607
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Computer numerical control system 
(CNC system), 509

Computing technology, 653
CoNap, see Cobalt naphthenate
Configuration design, 660–661
Consolidation, 490–491, 507

diffusion bonding, 626–627
pressure, 508

Constituent content, 552–554
Constituent materials, 4
Constitutive equations of lamina, 135

generally orthotropic lamina, 144–152
specially orthotropic lamina, 136–144

Constitutive modeling, 56
elastic materials, 57–58
generalized Hooke’s Law, 58–69
idealization of materials, 56–57

Constitutive relations, 24, 136–143
analysis of laminate, 214
in CLPT, 210, 230–231
extensional, coupling, and bending 

compliance matrices, 213
global strains, 218–219
laminate stiffness matrices, 210–211, 212, 

216–217
stress transformation, 222–223
transformations of strains, 220–222
transformed reduced stiffness matrices, 215

Constraints, 653
assembly requirements, 654
cost, 654
manufacturing feasibility, 654
weight, 653

Contact molding processes, see Open mold 
processes

Continuous fibers, 5, 480
C/C composites, 642–643

Continuous fibrous reinforcements, 620
Continuous molding processes, 491, 501; 

see also Closed mold processes; 
Open mold processes

fiber placement, 504–506
pultrusion, 501–503
selection of manufacturing methods, 522
tape winding, 503–504

Continuous molding processes, 523
Continuum, 23
Conventional metallic materials, 9
Conventional stiffened panel, 17
Coordinate system, 208–209

O-123, 135
Coordinate transformation, 416–417
Corrosion resistance, 634–635, 659
Cost-effectiveness, 642
Cost, 654, 660
Coupling stiffnesses, 670–671
Coupon-level tests, 539, 595
Covalent bond, 457
Crack propagation, 577, 578, 580, 608, 676

modes, 575
Cross-linked polymer, 457
Cross-ply laminate, 248
CRT, see Cathode ray tube
CSM, see Chopped strand mat
CTE, see Coefficient of thermal expansion
CTEs, see Coefficients of thermal expansion
Cubic symmetry, 68
Curatives, 460
Curing, 517; see also Filament winding

of epoxy composites, 519–520
of phenolic composites, 520

tools and equipment, 517–518
vacuum bagging, 518–519

Curing process, 460, 465
CVD, see Chemical vapor deposition
CVI, see Chemical vapor infiltration
Cylindrical coordinates, strain–displacement 

relations in, 40–41

D

Data acquisition, 609–610
Data analysis, 610–611
Data reduction, test procedure and, 557–559, 563
Data representation, 601

A-scan, 601
B-scan, 601–602
C-scan, 602–603

DCB test, see Double-cantilever beam test
DCPD, see Dicyclopentadiene
Deflection of middle surface

Levy method for bending, 360–363
Navier method for bending, 355–358
Ritz method for bending, 363–366

Deformation, 25
gradient, 30–32
of solid body, 28, 30

Delaminations, 575, 597
Density, 547–548

of composites, 552
of fiber, 542
of material, 658

Deposition methods, 623, 625
CMCs, 637
MMCs, 630–631

Design, 649, 650, 653
allowables, 664–665
constraints, 653
flexibility, 11
limit load, 663
loads, 663
requirements, 651, 652
ultimate load, 664

DETA, see Diethylene triamine
D-glass fibers, 468
DGEBA, see Diglycidyl ether of bisphenol-A
Dicyclopentadiene (DCPD), 463
Diethylene triamine (DETA), 460
Differential equation, 362

buckling, 340
Differential scanning calorimetry (DSC), 549

glass transition temperature by, 549–550
Diglycidyl ether of bisphenol-A (DGEBA), 459
Dimensional accuracy, 515
DIN, see German Institute for Standardization
Direct approach, 408
Discontinuous carbon fiber–reinforced 

composites, 643
Discontinuous fibers, 5
Discontinuously reinforced aluminum (DRA), 632
Discontinuously reinforced titanium matrix 

(DRTi), 632
Discretization, 403–404, 424
Displacement

buckling, 342, 348, 381, 383–384
global vector of nodal, 415
gradient, 30–32
nodal, 402, 412
plane strain, 72–73
plate middle surface, 358
at point, 28–30
under point load, 305

torsional, 430
DMA, see Dynamic mechanical analysis
Dog-bone-shaped tensile test specimen, 556
Double-cantilever beam test (DCB test), 

576–578
Double joints, 675
Dough molding compound (DMC), see Bulk 

molding compounds (BMC)
DRA, see Discontinuously reinforced aluminum
DRTi, see Discontinuously reinforced titanium 

matrix
Dry-jet spinning process, 476
Dry reinforcements, 502
Dry winding, 506–507
DSC, see Differential scanning calorimetry
Dust removal, 530–531
Dwell(s), 514
Dynamic analysis, 661
Dynamic mechanical analysis (DMA), 549
Dynamic thermography, 611

E

ECR-glass fibers, 468
ECT test, see Edge-cracked torsion test
Eddy current testing, 613

advantages and disadvantages, 614
based on phenomenon of electromagnetic 

induction, 613
setup, 614

Edge-cracked torsion test (ECT test), 579
E-glass, 500
E-glass fibers, 13, 467, 470

E-glass fiber-reinforced epoxy leaf springs, 18
E-glass fiber-reinforced polyester composite 

laminates, 18
E-glass fiber-reinforced SMCs, 18

Eigenvalue problems, 346, 348, 401, 423
Eigenvector, 354–355
Elastic constants, restrictions on, 143–144
Elastic deformation, 57
Elasticity-based models, 83, 123–124
Elastic materials, 57–58
Elastic moduli, 82, 84

evaluation, 88
Halpin–Tsai equations for, 125–128
in-plane shear modulus, 95–99
longitudinal modulus, 88–90
major Poisson’s ratio, 93–95
transverse modulus, 90–93

Elastic stiffness matrix, 60, 63, 68
symmetry of, 61

Electrodeposition methods, 630
Electromagnetic acoustic transducers 

(EMATs), 600
Electromagnetic spectrum, 604
Element-level properties, tests for, 582

bolted joint, 585–586
bonded joint, 586–588
open-hole tests, 582–585

Element(s), 402–403
characteristic matrices, 407–408
characteristic matrices, 407–409
coordinate system, 439, 443
development, 425
element-level tests, 582
formulation, 424
load vector, 415–416
one-dimensional, 425–436
stiffness matrix, 415, 418, 436, 439
two-dimensional, 436–450
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Elevated temperature curing, 461
EMATs, see Electromagnetic acoustic 

transducers
End-notched flexure test (ENF test), 576, 

578–579
Energy

absorption, 652
of dilation, 173
of distortion, 173

ENF test, see End-notched flexure test
Engineering constants of generally orthotropic 

lamina, 152
example, 159–161
in-plane shear stress, 157–158
load cases, 153, 154
modulus of elasticity in y-direction, 155–156
normal stress in y-direction, 156
of orthotropic material, 153
Poisson’s ratio in xy-plane, 154–155
transformed stiffness matrix, 164
variation of elastic modulus in x-direction, 161
variation of Poisson’s ratio with lamina 

angle, 162
variation of shear coupling ratio, 163

Engineering shear strain, 27, 35, 40
Engineering strain, 26
Environmental loads, 657
Epoxy composites, curing of, 519–520
Epoxy resins, 459; see also Polyester resins

applications, 462
base epoxy resin, 459–462
common categories of modifiers in, 460
representative properties of, 461

Epoxy system, 461
Equilibrium equations, 53–54

deformed configurations of differential plate 
element, 336

differential plate element under transverse 
loading, 334

force resultants, 335
for laminated plate bending, 334
moment equilibrium, 337–338
moment resultants, 335
static equilibrium equations, 339

Equilibrium problems, 401, 422
Essential design input, 666
Eularian description of motion, 29
Extended chain polyethylene fibers 

(Extended chain PE fibers), 479
Extensional stiffnesses, 669–670
Extension–shear coupling, 242
External concentrated forces, 410–411

F

Fabric(s), 480–481
areal density, 544
areal density of, 544
balanced, 480
breaking strength of, 547
construction, 544
nonwoven, 480
porous, 519
unidirectional, 481
woven, 480, 481

Factor of safety (FoS), 665–666
Failure, 663

loads, 663
Failure analysis of laminate

FPF and LPF, 252
progressive failure analysis, 252–260

Failure criteria
design and analysis of composite 

structures, 179
maximum strain criterion, 180–181, 

183–184
maximum strain failure criterion, 170–172
maximum stress criterion, 182–183
maximum stress failure criterion, 

167–170, 180
Tsai–Hill criterion, 181, 185
Tsai–Hill failure criterion, 172–175
Tsai–Wu criterion, 181–182, 183, 184, 

185–187
Tsai–Wu failure criterion, 175–179

Failure modes, 560–561
in bonded joints, 675–676
in mechanical joints, 679
in stiffened structures, 682–683

Fastener pull-through strength, 586
Fatigue, 580

testing, 580–581
Felicity

effect, 609
ratio, 609

FEM, see Finite element method
Female mold, 493
Fiber placement, 504

advantages and disadvantages, 505–506
processing steps, 504–505
raw materials, 505
tooling and capital equipment, 505

Fiber(s), 8, 620
in C/C composites, 642–643
density, 542
fiber-reinforced composites, 13
fiber-reinforced laminated composites, 8
fracture, 651
mass fraction, 86, 553
microbuckling in extensional mode, 110
microbuckling in shear mode, 110
orientation in V-notch beam shear test 

specimen, 569
packing, 85
strengths of, 84
volume fraction, 85, 553, 662

Filament(s), 480
diameter, 543
filament-wound phenolic resin-based 

pipes, 466
Filament winding, 506, 654, 661; 

see also Curing
advantages and disadvantages, 517
angle of winding, 511
computational aspects, 509
consolidation, 507
geodesic windings, 509–510
helical windings, 510–511
hoop windings, 510–511
impregnation, 506–507
lay-up, 507
nongeodesic windings, 509–510
paths, 511
polar windings, 510–511
processing steps, 508–509
programmed bandwidth and physical 

bandwidth, 512
programming basics, 511–514
programming for helical windings, 513–514
programming for hoop winding, 512–513
raw materials, 514
solidification, 507–508

tooling and capital equipment, 515–516
winding programs, 506

Fill, see Weft
Fillers, 500, 502
Film radiography, 606
Finite element

analysis, 653
modeling, 661, 672

Finite element equations by variational 
approach, 409

element load vector, 415–416
external concentrated forces, 410–411
matrices and vectors in element potential 

energy expression, 413
matrices and vectors in structure potential 

energy expression, 414
nodal displacements, 412

Finite element method (FEM), 400
approximating function and shape function, 

404–407
assembly, 417–421
basic concepts in, 402
basic finite element procedure, 424–425
coordinate transformation, 416–417
derivation of element characteristic matrices, 

408–409
development of elements, 425
discretization, 403–404
element characteristic matrices and vectors, 

407–408
elements and nodes, 402–403
one-dimensional elements, 425–436
solution methods, 421–424
two-dimensional elements, 436–450
typical applications, 401

Finite strain
physical meaning of finite strain tensor 

components, 38–40
at point, 36
tensor, 36–38
theory, 32–33

Fire resistance, 659
First-order shear deformation theory 

(FSDT), 200
First law of thermodynamics, 54
First ply failure (FPF), 252
Fixed-fixed beam, 324–325
Fixed-fixed column, 317–319
Fixed-free beam, 323–324
Fixed-free column, 316–317
Fixed beam

under point load, 286–289
under uniformly distributed load, 

289–291
Flake composites, 8
Flaws, 466
Flexural modulus, 574
Flexural testing, 572; see also Shear testing

four-point flexure test, 573–575
three-point flexure test, 572–573

Flow-cup viscometer, 549
Focal point on target, 605
Forced infiltration, 627
Forced vibration, 320
Force resultants, 205–209, 228–230, 333–334
FoS, see Factor of safety
Fourier series expansion, 361, 375
Fourier sine series, 348, 356–357
Four-point flexure test, 573–575
FPF, see First ply failure
Fracture modes, 575
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Fracture test methods, 579–580
Fracture toughness test, 575

DCB test, 577–578
ENF test, 578–579
fracture modes, 575
fracture test methods, 579–580

Free vibration, 320, 343
Navier method for, 384–386, 389–395
Ritz method for, 387–389
Ritz solution for, 386–387

Free vibration problems, 348
FSDT, see First-order shear deformation theory
Full layerwise theories, 263
Full-scale component testing, 588
Functional requirements, 651

design, 652
stiffness, 651–652
strength, 651

Functional requirements, 651, 652
Functional specifications, 657
Fundamental natural frequency, 386

G

Gamma rays, 604
radiography, 606

Gauss condition, 226
Gaussian elimination method, 422
Gel coat, 492
General-purpose resins (GP resins), 463
General beam element, 434–436
Generalized Hooke’s law, 21, 58

anisotropic materials, 61
cubic symmetry, 68
fourth-order tensor, 58–59
isotropic materials, 68–69
monoclinic materials, 61–63
orthotropic materials, 63–66
symmetry of elastic stiffness matrix, 61
symmetry of stress and strain tensors, 59–61
transversely isotropic materials, 67–68

Generally orthotropic lamina, 136, 144, 148
engineering constants, 152–164
global strains, 151
hygrothermal effects in, 189–193
under in-plane loading, 149, 150
local stresses, 152
stress transformation, 145
transformation matrix, 146
transformed reduced stiffness matrix, 

147, 148
General purpose fibers (GP fibers), 467, 470
Generation

of output, 425
of specifications, 657–658

Geodesic windings, 509–510
Geometrical specifications, 657
Geometric boundary conditions, 314, 344
Geometry of middle surface, 224–226
German Institute for Standardization (DIN), 541
Glass fiber-reinforced plastics (GFRP), 4, 17, 493
Glass fibers;  see also Aramid fibers; 

Carbon fibers
applications, 469, 470
chemical composition of types of, 467
forms, 469
GP fibers, 467
production, 468–469
properties, 469, 470
specialty glass fibers, 468
types, 467–468

Glass/polyester composites, 18
Glass transition, 549
Glass transition temperature (Tg), 461, 549, 659

by differential scanning calorimetry, 
549–550

Glass/vinyl ester composites, 18
Global buckling, 683
Global coordinate system, 135
Global stiffness matrix, 415, 418
Global stresses, 206
Global vector

of nodal displacements, 415
of nodal loads, 415

Glycol, 463
Governing equations, 23–24

in solid mechanics, 25
GP fibers, see General purpose fibers
GP resins, see General-purpose resins
Green elastic materials, 58
Green’s finite strain tensor, 38
Green strain, 27
Grid-stiffened panel, 17
Grid-stiffened structures, 682

H

Halpin–Tsai equations, 124–125
for elastic moduli, 125
fiber cross section and fiber 

packing in, 126
in-plane shear modulus, 127–128
longitudinal modulus, 125–126
major Poisson’s ratio, 126
transverse modulus, 126

Hand lay-up, 662
Hardeners, see Curatives
Heat conduction problems, 402
Heat deflection temperature (HDT), 463
Helical windings, 510–511, 654

programming for, 513–514
HET acid, see Hexachlorocyclopentadiene acid
Hevea brasiliensis (H. brasiliensis), 458
Hexachlorocyclopentadiene acid 

(HET acid), 463
High-voltage electrical pulses, 600
Higher order shear deformations theories, 263
High performance at low weight, 476
H-method, 406
Homogeneous material, 9–10
Homogeneous solution, 362
Honeycomb sandwich, 17, 18
Hooke’s law for orthotropic materials, 63
Hoop windings, 510–511

programming for, 512–513
Human resources, 653
Hygro-thermo-mechanical properties, 135
Hygrothermal constitutive relations, 231–236
Hygrothermal effects, 187

coefficients of moisture expansion of 
laminate, 236–240

coefficients of thermal expansion of 
laminate, 236–240

in generally orthotropic lamina, 189–193
hygrothermal constitutive relations, 

231–236
in laminate, 231
in specially orthotropic lamina, 188–189

Hygrothermal properties, 135
Hygrothermal strains, 231, 232
Hyperelastic materials, 58
Hypothesis, 202

I

Idealization of materials, 56–57
Illinois Institute of Technology Research 

Institute (IITRI), 563
Impregnation, 490
Incisions, 458
Indian Standards Institute (ISI), 541
Indicial notation, 30
Infinitesimal cuboid in equilibrium, 53
Infinitesimal shear strain, 35
Infinitesimal strain

at point, 33–36
theory, 32–33

Infrared camera, 611
Infrared thermography, 611

advantages and disadvantages, 613
in field of NDT, 611
types of active thermographic methods, 

612–613
Initial value problems, 346, 401
Injection molding compounds, 483
In-plane shear

failure, 253
force per unit length, 205
modulus, 95–99, 127–128
strength, 114–116, 165
stress, 157–158
tests, 565

In-plane stresses, 276–277
Levy method for bending, 363
Navier method for bending, 358–359
Ritz method for bending, 366–367

In-plane uniaxial compressive loads
antisymmetric angle-ply laminated simply 

supported plate, 382–384
antisymmetric cross-ply laminated simply 

supported plate, 379–382
specially orthotropic simply supported plate, 

374–377
symmetric angle-ply laminated simply 

supported plate, 377–379
In situ methods, 623, 625

CMCs, 637
MMCs, 631–632

Integration identities, 355
Interlaminar normal stress, 260, 359
Interlaminar shear

stresses, 359
tests, 565

Interlaminar stresses, 260–261, 277–279
Levy method for bending, 363
Navier method for bending, 359–360
Ritz method for bending, 366–367

International Organisation for Standardization 
(ISO), 541

Interpolation function, 406
Invariant forms of laminate stiffness, 

668–669
I-section, 307–309
ISI, see Indian Standards Institute
ISO, see International Organisation for 

Standardization
Isophthalic polyester resins, 463
Isotropic beam, 299
Isotropic fibers, 84
Isotropic materials, 9, 68–69; see also 

Orthotropic materials
plane strain problem in, 73–74
plane stress problem in, 71

Iterative methods, 423–424
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J

Jacobi methods, 423–424
Joints design, 662, 673; see also 

Laminate design
bonded joints, 673–677
mechanical joints, 677–681
other joints, 681
types, 673

K

Kaiser effect, 609
Kinematics, 24

boundary condition, 344
of CLPT, 202–205
of CLST, 226–228
compatibility conditions, 42
deformation gradient and displacement 

gradient, 30–32
displacement at point, 28–30
finite strain at point, 36–40
infinitesimal strain and finite strain 

theories, 32–33
infinitesimal strain at point, 33–36
normal strain and shear strain, 25–26
rigid body, 24–25
strain–displacement relations in cylindrical 

coordinates, 40–41
strain measurement types, 26–28
transformation of strain tensor, 41–42

Kinetics, 24, 43
Cauchy’s stress principle and stress vector, 

43–44
of CLPT, 205–209
of CLST, 228–230
equilibrium equations, 53–54
forces on body, 43
principal stresses, 50–53
state of stress at point and stress tensor, 

44–46
stress tensor–stress vector relationship, 

49–50
transformation of stress tensor, 46–49

Kirchhoff force, 345
Kirchhoff hypothesis, 201, 261
Knockdown factor, 665–666

L

Lagrangian description of motion, 29
Lagrangian finite strain tensor, 38
Lame′ parameters, 224
Lamina, 10, 82, 134, 198, 539

constitutive equations, 135–152
elasticity-based models, 123–124
engineering constants of generally 

orthotropic lamina, 152–164
hygrothermal effects, 187–193
macromechanics, 135
mechanics of materials-based models, 

88–123
micromechanics, 84–88
micromechanics models, 83–84
principal nomenclature, 79–82, 133–134
semiempirical models, 124–128
standard test methods for mechanical 

parameters, 555
strength, 164–187
tests for mechanical properties, 555

Laminae, nonmechanical tests on, 552

constituent content, 552–554
density of composites, 552
standard test methods for nonmechanical 

parameters of composites, 552
void content, 554–555

Lamina/laminate properties, tests for, 551
compression testing, 560–565
fatigue testing, 580–581
flexural testing, 572–575
fracture toughness test, 575–580
shear testing, 565–572
tension testing, 556–560
tests for, 581–582

Laminate, 10
analysis and measurement, 672
coordinate system O-xyz, 135

Laminated beam bending-solid rectangular cross 
section, 272, 294

assumptions and restrictions, 272–273
cantilever beam under point load, 291–292
cantilever beam under uniformly distributed 

load, 293–294
carbon/epoxy, 296–299
effective longitudinal stress, 296
fixed beam under point load, 286–289
fixed beam under uniformly distributed load, 

289–291
governing equations, 273–276
in-plane stresses, 276–277
interlaminar stresses, 277–279
simply supported beam under point load, 

279–284
simply supported beam under uniformly 

distributed load, 285–286
for symmetric laminate, 295

Laminated beam bending-thin-walled cross 
section, 299

box-section, 309–311
I-section, 307–309
T-section, 299–307

Laminated composites, 8, 269
cross-sectional configurations, 270–271
cylindrical bending of laminated plate, 271
1D laminated structural element, 270, 271
plates, 332
principal nomenclature, 269–270
rectangular general plate element with, 

447–450
solid rectangular cross sections, 271

Laminate design, 662, 663; see also 
Joints design

buckling factor, 665–666
criteria, 672–673
design allowables, 664–665
factor of safety, 665–666
knockdown factor, 665–666
laminate analysis and measurement, 672
laminate selection, 667–672
load definitions, 663–664
margin of safety, 665–666
process, 666–673
scope, 662–663

Laminated plates, analytical solutions for
boundary conditions in laminated plate, 

344–346
governing equations for bending, buckling, 

and vibration of laminated plates, 
334–344

laminated composite plates, 332
rectangular laminated plate under general 

loading, 333–334

solution methods, 346–355
solutions for bending of laminated plates, 

355–374
solutions for buckling of laminated plates, 

374–384
solutions for vibration of laminated plates, 

384–395
Laminate, macromechanics of

angle-ply, 248
antisymmetric, 246–247
balanced, 247
cases of, 240
classical laminated shell theory, 223–231
classification of laminate analysis theories, 

200–201
CLPT, 201–223
codes, 198–200
cross-ply, 248
failure analysis, 252–260
hygrothermal effects in, 231–240
interlaminar stress, 260–261
laminate analysis, 260
layerwise theories, 263–264
principal nomenclature, 197–198
quasi-isotropic, 248–252
shear deformation theories, 261–263
significance of stiffness matrix terms, 

240–242
single-ply, 242–244
symmetric, 244–246

Laminate selection, 667
bending stiffnesses, 671–672
coupling stiffnesses, 670–671
extensional stiffnesses, 669–670
invariant forms of laminate stiffness, 

668–669
special cases of laminates and 

significance, 667
Laminate stiffness

invariant forms of, 668–669
matrices, 210–211, 212, 216–217

Large deformations, 32–33
Large deformation theory, see Finite strain 

theory
Large strain theory, see Finite strain theory
Last ply failure (LPF), 252
Lay-up, 490, 504, 507, 524
Layered composites, 6
Layerwise theories, 201, 263–264
Levy method for bending, 349–350

deflection of middle surface, 360–363
in-plane stresses, 363
interlaminar stresses, 363

Limit load, 663
Linear polymer, 457
Linear voltage differential transformer 

(LVDT), 572
Liquid-state methods, 623, 625, 637
Liquid displacement method, 547
Liquid infiltration, 638–639
Liquid metal infiltration process, 627–628
Load definitions, 663–664
Local coordinate system, 135
Local fiber buckling, 108
Local skin buckling, 683
Local stresses and strains, 253
Lock-in thermography, 612–613
Loft template technique, 493
Logarithmic strain, see True strain
Longerons, see Longitudinal stiffeners
Longitudinal compressive failure, 252
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Longitudinal compressive strength, 107–110, 165
Longitudinal modulus, 88–90, 125–126
Longitudinal stiffeners, 682
Longitudinal tensile failure, 252–253
Longitudinal tensile strength, 100–107, 165
Low-molecular-weight resins, 465
Low-viscosity resin system, 514
LPF, see Last ply failure
LVDT, see Linear voltage differential 

transformer

M

Machining of composites, 529; see also 
Composites; Testing of composites

critical aspects of, 530–531
delamination of laminate during drilling, 531
edge machining, 529
holes and other features, 530
for part making, 530
requirements of, 529
surface machining, 529–530

Macromechanics, 10
macromechanics-based approach, 686–687

Macromechanics of laminate
angle-ply, 248
antisymmetric, 246–247
balanced, 247
cases of, 240
classical laminated shell theory, 223–231
classification of laminate analysis theories, 

200–201
CLPT, 201–223
codes, 198–200
cross-ply, 248
failure analysis, 252–260
hygrothermal effects in, 231–240
interlaminar stress, 260–261
laminate analysis, 260
layerwise theories, 263–264
principal nomenclature, 197–198
quasi-isotropic, 248–252
shear deformation theories, 261–263
significance of stiffness matrix terms, 

240–242
single-ply, 242–244
symmetric, 244–246

Magnetic flux, 613
Major Poisson’s ratio, 93–95, 126
Male mold, 493
Mandrel, 508

extraction, 515
Manufacturing

feasibility, 654
issues, 660
process selection, 661–662
techniques, 12
technology, 652

Margin of safety (MoS), 665–666
Mass absorption, 605
Mass per unit area, 544
Matched-die-mold process, see Compression 

molding
Material(s), 3, 652

axis strengths, 166
compliance matrix, 61
composite, 658–659
coordinate system, 135
description of motion, 29
factors influencing, 658
failure, 651

matrix, 659–660
point, 23
reinforcements, 659
selection, 658
types, 4

Mathematical methods, 684
Mathematical models, 23, 56
Matrix, 4

burning method, 552, 553
characteristics and functions of, 8–9
crazing, 596–597
density, 547–548
glass transition temperature, 549–550
mass fraction, 553
matrix-dominated properties, 685
mechanical tests on matrix, 550–551
nonmechanical tests on, 547
nonmechanical tests on matrix, 547–550
selection, 659–660
strengths of, 84
tests on, 547
viscosity, 548–549
volume fraction, 553
volume fraction, 85

Mats, 480–481
Maximum expected operating pressure 

(MEOP), 664
Maximum operating loads, 663
Maximum strain

criterion, 180–181
failure criterion, 165, 170–172

Maximum stress
criterion, 182–183
failure criterion, 165, 167–170, 180

MBT, see Modified beam theory
MCC, see Modified compliance calibration
Mechanical joints, 677; see also Bonded joints

advantages and disadvantages, 679–680
bolted joint, 678
failure modes in, 679, 680
general design considerations, 680–681
geometrical parameters in, 681
types, 678

Mechanical strains, 231–232
Mechanical tests on matrix, 550; see also 

Nonmechanical tests on matrix
compressive properties, 550–551
shear properties, 551
tensile properties, 550

Mechanical tests on reinforcement, 544; 
see also Nonmechanical tests on 
reinforcement

breaking strength of fabric, 547
standard test methods for mechanical 

parameters of reinforcements, 544
tensile properties by single-filament tensile 

testing, 544–546
tensile properties by tow tensile testing, 

546–547
Mechanics, 23
Mechanics of materials-based models, 83, 88

elastic moduli evaluation, 88–99
evaluation of moisture coefficients, 

119–123
evaluation of strengths, 99–116
evaluation of thermal coefficients, 116–119

MEKP, see Methyl ethyl ketone peroxide
Melt infiltration, 639
Membrane

prebuckled configuration, 340
strain energy, 353

MEOP, see Maximum expected operating 
pressure

Merit function, see Objective function
Mesh generation, 403, 424
Mesophase, 473
Meta-aramids, 476
Metal, 5

alloy, 630
metallic particles, 7

Metal matrix composites (MMCs), 5–6, 
619, 620

applications, 632–634
characteristics, 620–621
consolidation diffusion bonding, 626–627
deposition methods, 630–631
liquid metal infiltration process, 627–628
manufacturing methods for, 623
matrix materials for, 622
powder metallurgy methods, 625–626
reinforcing materials for, 622
in situ methods, 631–632
spray casting, 629–630
stir casting method, 628–629

Methyl ethyl ketone peroxide (MEKP), 463
Micromechanics, 10, 82, 84

assumptions and restrictions, 84
elastic moduli and strengths of fibers and 

matrix, 84
mass fractions, 86–87
micromechanics-based approach, 685–686
RVE, 87–88
variables, 84
volume fractions, 84–86

MIL, see United States Defence Standard
Minimum potential energy principle, 123, 340, 

350–352, 366, 379, 389, 409, 414
Mixed-mode bending (MMB), 579–580
MMB, see Mixed-mode bending
MMCs, see Metal matrix composites
Modified beam theory (MBT), 577
Modified compliance calibration (MCC), 577
Modifiers, 460
Moisture absorption, 621
Moisture coefficients, evaluation of, 119–123
Moisture content, 543
Moisture expansion coefficients of laminate, 

236–240
Molding compounds, 482

BMC, 482–483
injection, 483
SMC, 482, 483

Molten titanium, 623
Moment equilibrium, 337–338
Moment resultants, 205–209, 228–230, 333
Monoclinic materials, 61–63
Monocoque structures, see Unstiffened shell 

structures
Monofilaments, 620
Monolithic metals, 620–621
MoS, see Margin of safety
MPD-I, see Poly-m-phenylene isophthalamide
Multidirectional lamina, 135

N

Natural boundary conditions, 314, 345
Natural fibers, 479–480
Natural frequencies, 395
Natural frequency, 663
Natural rubber, 459
Natural strain, see True strain
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Navier method, 347–349
for bending, 369–374
for buckling, 374–376, 379–382, 382–384
deflection of middle surface, 355–358
for free vibration, 384–386, 389–395
in-plane stresses, 358–359
interlaminar stresses, 359–360

NDE, see Nondestructive evaluation/
examination

NDT, see Nondestructive testing
Negative CTE, 477
Negative work done, 364–365
Netting models, 83
Newton’s second law of motion, 53
Nodal displacements, 402, 412

vector, 440, 444
Nodes, 402–403
NOL ring test, 559–560
Nondestructive evaluation/examination (NDE), 

595, 662
Nondestructive testing (NDT), 595

acoustic emission, 608–611
defects in PMCs, 596–597
eddy current testing, 613–614
infrared thermography, 611–613
radiographic testing, 604–608
shearography, 615
techniques, 597–598
ultrasonic testing, 598–604

Nongeodesic windings, 509–510
Nonhomogeneous material, 10
Nonmechanical tests on laminae, 552

constituent content, 552–554
density of composites, 552
standard test methods for nonmechanical 

parameters of composites, 552
void content, 554–555

Nonmechanical tests on matrix, 547; see also 
Mechanical tests on matrix

density, 547–548
glass transition temperature, 549–550
viscosity, 548–549

Nonmechanical tests on reinforcement, 541; 
see also Mechanical tests on 
reinforcement

areal density of fabric, 544
density of fiber, 542
fabric construction, 544
filament diameter, 543
moisture content, 543
standard test methods, 542
Tex, 543–544

Nonmetallic flakes, 8
Nonmetallic particles, 7
Nonporous film, 519
Nonreactive in situ methods, 631–632
Nonuniform wetting, 528
Nonwoven fabrics, 480
Nonzero extension, 242
Normal forces per unit length, 205
Normal section, 224
Normal strain, 25–26
Novolac phenolic resins, 465
Numerical integration methods, 424
Numerical methods, 347

O

Objective function, 684
One-dimension (1D)

approach, 26–28

strain in bar, 26–27
One-dimensional elements (1D elements), 

402–404
bar element, 425–430
general beam element, 434–436
planar beam element, 431–434
torsion element, 430–431

Open mold processes, 491, 521; see also Closed 
mold processes; Continuous molding 
processes

prepreg lay-up, 494–495
rosette lay-up, 496–497
selection of manufacturing methods, 521
spray-up, 495–496
wet lay-up, 492–494

Operating loads, 663
Optimization, 684
Orthophthalic polyester resins, 463
Ortho resins, 463
Orthotropic lamina, 139

strength of, 165–166
Orthotropic materials, 9, 63–66; see also 

Isotropic materials
plane strain problem in, 73
plane stress problem in, 70–71

Orthotropic plate
specially orthotropic plate with all edges, 

355–360, 364–368
specially orthotropic plate with two opposite 

edges, 360–363
specially orthotropic simply supported plate, 

374–376
specially orthotropic simply supported plate, 

384–386
Oscillatory motion, 343
Ostwald’s U-tube viscometer, 549

P

PAN, see Polyacrylonitrile
Para-aramids fibers, 476, 478
Partial layerwise theories, 263
Partial ply degradation, 253
Particle, 7, 23
Particulate composites, 7
Particulate reinforcements, 620
Particulate silicon carbide (SiCp), 632
Passive thermography, 611
Pay-out-eye, 507, 516
PCD, see Polycrystalline diamond
Performs, 481–482
Periodic motion, 319
Phased composites, 6
Phenolic resins, 465–466, 520

phenolic resin-based engineering 
plastics, 466

Phenolics, 465
curing of phenolic composites, 520

Phenomenological approach, 23
Physical approach, 23
“Physical bandwidth”, 512
Physical forms of reinforcements, 480

common 2D weave styles, 481
continuous and short fibers, 480
fabrics and mats, 480–481
molding compounds, 482–483
performs, 481–482
prepregs, 483–484

Physical problem, 401–402
Physical vapor deposition (PVD), 631
Piezoelectric material, 600

PIP, see Polymer infiltration and pyrolysis
Pitch, 472–473, 645
Planar beam element, 431–434
Plane elasticity, 21
Plane elasticity problems, 69

plane strain, 72–74
plane stress, 69–71

Plane strain, 72
displacement, 72–73
problem in isotropic materials, 73–74
problem in orthotropic materials, 73

Plane stress problem, 69
in isotropic materials, 71
in orthotropic materials, 70–71
thin plate, 69–70

Plate-bending
equilibrium equations, 335
problem, 347–348
Ritz method for, 350–351
theory, 441

Plate buckling, Ritz method for, 352–355
Plate middle surface displacement, 358
Plate theory, 438
Plural laminae, 198
Ply, 198

degradation, 253
sequence, 677, 681

PMC manufacturing methods, 489; see also 
Polymer matrix composites (PMCs)

automation and skilled manpower needs, 
525–526

closed mold processes, 497–501, 521
composites manufacturing methods, 

490, 491
composites technology, 489
configuration of product, 522
consolidation, 490–491
continuous molding processes, 

501–506, 522
cost, 526–527
curing, 517–520
cycle time, 526
filament winding, 506–517
impregnation, 490
lay-up, 490
machining of composites, 529–531
manufacturing process selection, 520
open mold processes, 491–497, 521
process modeling, 527–529
process parameters, 527
production requirement, 524–525
reliability and repeatability, 524
size of product, 522–523
solidification, 491
structural property requirement, 523
surface finish, 523–524
tooling requirements, 525

PMCs, see Polymer matrix composites
P-method, 406
Point load

cantilever beam under, 291–292
displacement under, 305
fixed beam under, 286–289
simply supported beam under, 279–284

Point stress criterion, 583
Poisson’s effect, 83, 90
Poisson’s ratio, 143, 559
Polar windings, 510–511
Polyacrylonitrile (PAN), 470

PAN-based carbon fibers, 471–472
Polycrystalline diamond (PCD), 530
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Polyester, 13
Polyester oligomer, 462

additives, 463
properties, 463–464
solvent, 463

Polyester resins, 462; see also Epoxy resins
applications, 464, 465
polyester oligomer, 462–464
properties of unreinforced, 464

Polyisoprene, 458
Polymer infiltration and pyrolysis (PIP), 

637, 641–642
Polymerization methods, 472
Polymer matrix composites (PMCs), 5, 

457, 619
applications, 15–17
common reinforcements for, 467–480
common thermosets for, 459–466
defects in, 596–597
NDT techniques for, 598
physical forms of reinforcements, 

480–484
polymers, 457–459
reinforcements, 466
representative properties of fibers 

and conventional structural 
materials, 466

Polymer(s), 457
comparison of thermoplastics with 

thermosets, 458
infiltration phase, 642
rubber, 458–459
thermoplastics, 458
thermosets, 458

Poly-m-phenylene isophthalamide 
(MPD-I), 476

Polynomial coefficients, 440, 444
Polynomial function, 404
Poly-p-phenylene terephthalamide (PPD-T), 476
Poly vinyl alcohol (PVA), 481, 492
Porosity, 596
Porous fabric, 519
Potential energy, 409–410

functional, 386
Pot life, 461
Powder consolidation methods, 637
Powder metallurgy methods, 625–626
PPD, see p-phenylene diamine
PPD-T, see Poly-p-phenylene terephthalamide
p-phenylene diamine (PPD), 476
Preimpregnated roving prepregs, 483
Prepreg lay-up, 524, 526

process, 494–495
vacuum bagging of, 518

Prepregs, 483–484
Preprocessing, 623
Primary magnetic field, 613–614
Primary processing, 623
Principal directions, 225
Principal normal sections, 225
Principal radii of curvature, 225
Principal stresses, 166
Principle of conservation of energy, 

see First law of thermodynamics
Probe, 613
Process automation, 653
Processing techniques, 5
Process modeling, 527–529
“Programmed bandwidth”, 512
Progressive failure analysis, 252

force and moment resultants, 255

local stresses at different internal 
pressures, 258

maximum strain failure criterion, 257
ply degradation, 253
strength ratios at different internal 

pressures, 258
transformed reduced stiffness matrix, 259
transverse and shear stiffnesses, 260

Propagation problems, see Transient problems
Propylene oxide, 463
PT, see Pulse thermography
Pulse-echo technique, 601
Pulse generator, 600
Pulse thermography (PT), 612
Pultrusion, 501, 523, 525

advantages and disadvantages, 502–503
processing steps, 501–502
raw materials, 502
tooling and capital equipment, 502

PVA, see Poly vinyl alcohol
PVD, see Physical vapor deposition
Pyrolysis

methods, 645
of precursor materials, 644

Q

Quality, 596
Quasi-isotropic laminate, 248–252

R

Radiation, 13
Radiographic testing, 604; see also 

Ultrasonic testing
advantages and disadvantages, 607
characteristic features of X-rays and 

gamma rays, 604
computed tomography, 607
gamma ray radiography, 606
real-time radiography, 606
setup, 605
x-ray radiography, 605–606

Rail shear test, 569–571
Randomly oriented lamina, 135
Raw materials, 14
Rayleigh–Ritz method, 424
Rayon, carbon fiber from, 473
Reaction bonding processes, 642
Reaction injection molding (RIM), 501
Reactive in situ methods, 631
Real-time radiography, 606
Rectangular bending plate element, 439–443
Rectangular general plate element, 443–447

with laminated composites, 447–450
Rectangular laminated plate under general 

loading, 333–334
Rectangular membrane element, 436–439
Reinforced reaction injection molding 

(RRIM), 501
Reinforcements, 4, 466, 627

characteristics and functions, 8–9
mechanical tests on reinforcement, 544–547
nonmechanical tests on reinforcement, 

541–544
selection, 659
tests on, 541

Reinforcing factors, 125
Reinforcing material, 4
Representative volume element (RVE), 83, 

87–88, 89, 124

Resin
bath, 502
system, 660
transfer molding, 481

Resin transfer molding (RTM), 18, 499, 500
advantages and disadvantages, 500–501
processing steps, 499–500
raw materials, 500
tooling and capital equipment, 500

Resole phenolic resins, 465
Resources, 652

computing technology, 653
human resources, 653
manufacturing technology, 652
materials, 652

Restriction, 202
Reuter’s matrix, 190
Rigid body, 24–25
RIM, see Reaction injection molding
Rings, see Transverse stiffeners
Ritz approximation function, 376, 379
Ritz method, 350

for bending, 364–369
for buckling, 376–377, 377–379
for free vibration, 387–389
for plate bending, 350–351
for plate buckling, 352–355
useful integration identities, 355

Ritz solution for free vibration, 386–387
R-method, 406
RMS techniques, see Root-mean-square 

techniques
Rocket nozzle liners, 652
Root-mean-square techniques 

(RMS techniques), 610
Rosette lay-up, 496–497, 526
Roving, 480
RRIM, see Reinforced reaction injection 

molding
RTM, see Resin transfer molding
Rubber, 458–459
Rudder of aircraft, 657
“Rule of mixtures”, 89
RVE, see Representative volume element

S

SAE, see Society of Automotive Engineers
Sandwich composites, 8
Saturated acid, 463
SCRIMP, see Seemann composite resin infusion 

molding process
Searching techniques, 684
Secondary processing, 623
Seemann composite resin infusion molding 

process (SCRIMP), 501
Semiempirical models, 83, 124

Halpin–Tsai equations, 124–125, 
125–128

S-glass fibers, 468
Shape functions, 404–406, 430
Shear coupling, 153

ratios, 153
Shear deformation theories, 200, 261–263
Shear failure

of laminate, 679
mode, 110

Shear force, 287
Shearography, 597, 615
Shear-out strength, 586
Shear properties, 551
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Shear strain, 25–27, 35, 153, 566
components in finite strain tensor, 40
engineering, 27, 35, 40
excessive in-plane, 181, 184
in-plane, 171
infinitesimal, 35
tensorial, 27
true, 28
ultimate in-plane, 116, 171

Shear strength, 165
Shear stress, 43, 153
Shear testing, 565; see also Flexural testing

rail shear test, 569–571
short beam shear test, 571–572
uniaxial tension test of ±45° laminate, 

565–567
V-notch beam shear test, 567–569

Sheet molding compounds (SMCs), 18, 466, 
482, 483

Short beam shear test, 571–572
Short fibers, 480, 620, 625

composites, 7
Short high-voltage electrical pulses, 600
Sign convention for stresses and strengths, 165
Silane, 641
Silicon carbide (SiC), 7, 479, 635
Silicon nitride (Si3N4), 7
Simple harmonic motion, 319
Simply supported beam

beam vibration, 322–323
under point load, 279–284
under uniformly distributed load, 285–286

Simply supported boundary condition, 345–346
Simply supported column, 314–315
Single-filament tensile testing, 545

tensile properties by, 544–546
Single generally orthotropic ply, 244
Single isotropic ply, 242–243
“Single joints”, 675
Single-ply laminate, 242

single generally orthotropic ply, 244
single isotropic ply, 242–243
single specially orthotropic ply, 243–244

Single specially orthotropic ply, 243–244
Sink–float method, 542
Slurry infiltration, 637–638
Small deformation, 32–33

theory, see Infinitesimal strain theory
Small strain theory, see Infinitesimal 

strain theory
SMCs, see Sheet molding compounds
Smeared stiffeners model, 684
Society of Automotive Engineers (SAE), 541
Sol–gel technique, 639–640
Solid circular cross sections, 271
Solidification, 491, 507–508
Solid mechanics, 23

constitutive modeling, 56–69
fundamental principles and governing 

equations, 23–24
kinematics, 24–42
kinetics, 43–54
plane elasticity problems, 69–74
principal nomenclature, 21–23
spatial point, material point, and 

configuration, 23
thermodynamics, 54–56

Solid rectangular cross sections, 271
Solid-state methods, 623, 637
Solution, 425
Solution methods, 346, 421–424

Levy method, 349–350
Navier method, 347–349
Ritz method, 350–355

Solvent, 463
Spars, see Longitudinal stiffeners
Spatial description of motion, 29
Spatial point, 23
Specially orthotropic lamina, 136

constitutive relation, 136–143
hygrothermal effects in, 188–189
restrictions on elastic constants, 143–144

Specially orthotropic plate
with all edges, 355–360, 364–368
with two opposite edges, 360–363

Specially orthotropic simply supported plate
buckling, 374–377
vibration, 384–386, 386–387

Specialty glass fibers, 468
Specimen in open-hole compressive 

strength test, 584
Spinning, 472
Spontaneous infiltration, 627
Spray casting, 629–630
Spray deposition, 631
Spray-up, 495–496, 524
Spun fibers, 473
SRIM, see Structural reaction injection molding
Stability, 663

analysis, 661
Stabilization, 472
Stacking sequence of laminate, 240
State of stress at point, 44–46
Static analysis, 661
Static boundary condition, 345
Static equilibrium equations, 339, 686
Static force equilibrium, 335–336
Steady-state problems, see Equilibrium problems
Stiffened structures, 660, 682

design of stiffeners, 683–684
failure modes in, 682–683

Stiffener column buckling, 683
Stiffening of panels, 650
Stiffness, 100

matrix, 141
properties, 135
significance of stiffness matrix terms, 

240–242
Stir casting method, 628–629
Stitching, 481
Strain, 25, 651–652

Almansi strain, 27–28
engineering strain, 26
green strain, 27
measurement types, 26
true strain, 26–27

Strain–displacement relations, 202–205, 
226–228, 430, 433, 438, 441, 446, 448

in cylindrical coordinates, 40–41
Strain energy, 173, 353, 364–365, 409

density function, 56
expression, 449–450
release rate, 575, 578

Strain tensor
symmetry of, 59–61
transformation, 41–42

Strand, 480
Strength(s), 164, 651

degradation, 677
evaluation of, 99
failure criteria, 167–187
of fibers and matrix, 84

in-plane shear strength, 114–116
longitudinal compressive strength, 107–110
longitudinal tensile strength, 100–107
of orthotropic lamina, 165–166
parameters, 82
strength-based designs, 651–652
strength parameters, 99–100
transverse compressive strength, 113–114
transverse tensile strength, 110–113

Stress, 25, 43, 651–652
analysis problems, 402
concentration factor, 582
principal, 50–53
transformation, 145, 165–166
waves, see Ultrasonic waves

Stress–strain curve, 563
Stress–strain relations, 136
Stress tensor, 44–46

stress tensor–stress vector relationship, 
49–50

symmetry of, 59–61
transformation of, 46–49

Stress vector, 43–44
stress tensor–stress vector relationship, 

49–50
Stringers, see Longitudinal stiffeners
Structural analysis, 661
Structural design, 653, 654
Structural loads, 657
Structural property requirement, 523
Structural reaction injection molding (SRIM), 

18, 501
Structural requirements, 651
Structural specifications, 657
St. Venant’s compatibility equations, see 

Compatibility equations
S-2 glass fibers, 468
Subscale component testing, 588
Surface displacements, middle, 343–344
Surface finish, 523–524
Surface forces, 43, 410
Symmetric angle-ply laminated plate, 387–389

bending, 368–369
vibration, 387–389

Symmetric angle-ply laminated simply 
supported plate, 377–379

Symmetric laminate, 244–246
Symmetry

of elastic stiffness matrix, 61
of stress and strain tensors, 59–61

Synthetic rubbers, 459

T

Tape winding, 503–504
TCl, see Terephthaloyl chloride
Tensile modulus, 545
Tensile properties, 550

by single-filament tensile testing, 544–546
by tow tensile testing, 546–547

Tensile strength, 165, 545, 558
Tension member design, 685

examples, 687–715
macromechanics-based approach, 686–687
micromechanics-based approach, 685–686

Tension testing, 556; see also Compression 
testing

NOL ring test, 559–560
test procedure and data reduction, 557–559
test specimen and specimen preparation, 

556–557
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TEPA, see Tetraethylene pentamine
Terephthalic polyester resins, 463
Terephthaloyl chloride (TCl), 476
Testing, 662
Testing of composites, 537; see also Composites; 

Machining of composites
building block approach, 539
objectives, 538–539
in polymer matrix composites, 540
standards, 540–541
tests at component level, 588
tests for element-level properties, 582–588
tests for lamina/laminate properties, 551–582
tests on matrix, 547–551
tests on reinforcement, 541–547

Test specimen
and specimen preparation, 556–557
and test fixture, 561–563

Tetraethylene pentamine (TEPA), 460
Tex, 543–544
Thermal analysis, 661
Thermal coefficients, evaluation of, 116–119
Thermal expansion, 515

coefficients of laminate, 236–240
Thermal insulation, 652, 659
Thermal stresses, 187–188
Thermodynamics, 24, 54–56
Thermographic NDT methods, 611
Thermomechanical analysis (TMA), 549
Thermoplastics, 458
Thermosets, 458
Thermosetting resins, 645
Third-order shear deformation theory 

(TSDT), 200
Three-dimension (3D)

composites, 8
elasticity theories, 201
elements, 402–404
linear elasticity problem, 69

Three-point flexure test, 572–573
Through-transmission technique, 600
Titanium carbide (TiC), 7
Titanium diboride (TiB2), 7
TMA, see Thermomechanical analysis
Tooling requirement, 662
Torsional displacement, 430
Torsion element, 430–431
Total ply degradation, 253
Towpregs, see Preimpregnated roving prepregs
Tow tensile testing, tensile properties by, 

546–547
Transducer, 600
Transformation

matrix, 61, 146, 416–417
methods, 423–424
of strain tensor, 41–42
of stress tensor, 46–49
transformed reduced stiffness matrix, 

147, 259
Transient problems, 401, 424
Transverse

compressive failure, 253
compressive strength, 113–114, 165
deflections, 370, 380, 390
isotropic materials, 67–68

loading, 371
modulus, 90–93, 126
stiffeners, 682
tensile failure, 110, 253
tensile strength, 110–113, 165

Triethylene triamine (TETA), 460
True strain, 26–27
Tsai–Hill critaerion, 181, 185
Tsai–Hill failure criterion, 165, 172–175
Tsai–Wu criterion, 181–182, 185–187

comparison of failure load by different 
failure criteria of lamina, 184

failure criterion, 165, 175–179
failure load as per maximum stress failure 

criterion of lamina, 183
TSDT, see Third-order shear deformation theory
T-section, 299–307
Tube current, 605
Tube voltage, 605
Twisting moment per unit length, 205
Two-dimensional elements (2D elements), 

402–404
rectangular bending plate element, 439–443
rectangular general plate element, 443–447
rectangular general plate element with 

laminated composites, 447–450
rectangular membrane element, 436–439

Two-dimensional structure (2D structure), 8

U

Ultimate laminate failure (ULF), 252
Ultimate load, 663
Ultra-high modulus carbon fibers, 470
Ultrasonic testing;  see also Radiographic 

testing
advantages and disadvantages, 603–604
data representation, 601–603
equipment, 599–600
pulse-echo technique, 601
through-transmission technique, 600
ultrasonic waves, 598–599

Ultrasonic waves, 598–599, 609
Ultraviolet (UV), 5–6

radiation, 13
Uniaxial tension test, 565–567
Unidirectional composites, 8
Unidirectional fabrics, 481
Unidirectional lamina, 87–88, 135, 144
Uniformly distributed load

cantilever beam under, 293–294
fixed beam under, 289–291
simply supported beam under, 285–286

United States Defence Standard (MIL), 541
Unsaturated polyester resins, see Polyester resins
Unstiffened shell structures, 682
UV, see Ultraviolet

V

Vacuum-assisted resin transfer molding 
(VARTM), 501

Vacuum bagging, 518–519
Vacuum bagging process, see Prepreg lay-up 

process

Variational approach, 408
finite element equations by, 408–416

VARTM, see Vacuum-assisted resin transfer 
molding

Vectors, 407–408
of strain components, 60

Vibration, 319–320, 343; see also Beam 
vibration

antisymmetric angle-ply laminated simply 
supported plate, 392–395

antisymmetric cross-ply laminated simply 
supported plate, 389–392

equations for laminated plates, 343–344
problem, 348–349
solutions of laminated plates, 384
specially orthotropic simply supported plate, 

384–386, 386–387
symmetric angle-ply laminated plate, 

387–389
Vibrothermography, 612, 613
Vinyl ester resins, 464–465
Viscosity, 548–549
V-notch beam shear test, 567–569
Void content, 554–555
Voids volume fraction, 85, 553
Volume fractions, 84–86
von Mises yield criterion, 173

W

Warp, 480
Waveform of AE signals, 610
Wear resistance, 659
Weft, 480
Weight, 653
Weighted residual methods, 409
Wet

rerolled rovings, 506–507
spinning process, 476
winding, 506–507
wound systems, 508

Wet lay-up process, 492, 526
advantages and disadvantages, 493–494
basic raw materials, 493
using composite mold and plaster 

pattern, 493
processing steps, 492
tooling and capital equipment, 493

Wetting, see Impregnation
Whiskers, 479, 620, 625
Woven fabrics, 480, 481

X

X-rays, 604
radiography, 605–606

Y

Yarns, 480

Z

Zirconite (Zr-Al2O3), 479
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