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Preface

The composites industry has grown multifold in recent times; it continues to grow and
further growth is expected in the future as well. Composite materials and products
are now regularly used in a wide range of applications across various industrial sec-
tors. Naturally, there has been an increased demand for trained personnel in the field
of composites. The subject of composites, which used to be taught only at a few select
universities and institutes a couple of decades ago, is offered today by many other uni-
versities and institutes both at the undergraduate as well as the postgraduate levels. It is
also offered as short-term courses as a part of continuing education program by certain
institutes. Also, there are a large number of practicing professionals who do self-study.

One of the primary objectives of composites education is to equip the student with
adequate know-how in the area of development of composite products. Composites,
in general, and composite product development, in particular, are interdisciplinary
subjects that draw resources from a number of subfields, namely, material science,
mechanics, analysis, design, tooling, manufacturing, and testing. These topics have
been extensively covered in a number of excellent books. Depending on the content,
the books on composites can be broadly placed in three categories. The first category
includes several excellent texts on mechanics of composites. In the second category,
composites are treated as a part of material science. The third category includes the
literature on manufacturing methods and shop floor and lab activities in composites.

The topics in composites mentioned above, however, cannot be considered in isola-
tion and an integrated approach is essential for successful execution of a composite
product development program. This book is a humble effort to present the concepts in
composites in an integrated manner.

The contents of this book are organized in two parts. Part I is devoted to the topics
related to mechanics, analytical methods in composites, and basic finite element proce-
dure. An introductory discussion on the characteristic features of composites is given
first. Basic concepts of solid mechanics are reviewed and it is followed up by discus-
sions on the concepts of micromechanics and macromechanics. Analytical methods are
excellent tools in understanding the behavior of composite structural elements. Some
of these methods in the simple cases of beams and plates are presented next. Finite
element method is the most popular tool for analysis; understanding of the underlying
concepts and the basic procedure is essential for effective use of this method and a brief
presentation on the same is given to complete the discussions in Part 1.

Part II of this book is devoted to the topics on materials, manufacturing processes,
testing, and design. These are the aspects in composites that the shop floor man is
directly concerned with. The author is of the firm belief that composites design is not a
closed door activity and a general understanding of the concepts of mechanics, analysis
tools, available materials, manufacturing processes, tooling, and destructive and non-
destructive test methods is essential for doing an efficient design. With this in mind, a
discussion on composites design is given in the end.

The primary objective of this book is to expose the reader to the complete cycle of
development of a composite product. I sincerely hope that this book will be an excel-
lent guide to a student who wants to make a career in composites. I also expect that it
will be an excellent companion to a practicing professional in the field of composites.

Finally, I take this opportunity to place on record my sincerest gratitude to all my
teachers who molded me—right from my early school days to my doctoral study at IIT
Madras; all that I present in this book belongs to them.
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This book would not have seen the light of day without very professional guid-
ance and support from CRC Press; my sincere thanks to Dr. Gagandeep Singh
(Commissioning Editor), Mouli Sharma, Hector Mojena, Renee Nakash, Rachael
Panthier, and Shashikumar Veeran, all of whom have been directly associated with the
editing and production of this book.

I'would like to place on record my sincere gratitude to Dr. Tessy Thomas, Outstanding
Scientist and Director, Advanced Systems Laboratory, Hyderabad, for her encourage-
ment and support in publishing this book. My sincerest thanks are also due to my
colleagues with whom I have had long hours of invaluable interactions developing com-
posite products.

I take this opportunity to express my gratitude to my parents, who brought me up
in a small sleepy town yet taught me to be ambitious. I thank all my family members
and near and dear ones for their support in this humble endeavor. Life is a long journey
and the past six to seven years, were special and tough too; I spent long hours working
on the manuscript of this book; my wife Ainu managed family affairs and son Beli
grew up silently. I would like to express my love and gratitude to my loving family for
their sacrifice and support and for standing patiently by my side in the hours of need.
I indeed remain indebted to them.

Manoj Kumar Buragohain
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Book Road Map

The topics for this book have been chosen keeping in mind the primary objective of the
book, that is, to expose the reader to the complete cycle of development of a composite
product—from design to manufacturing to testing and evaluation. The chapters, as
depicted pictorially in the figure given below, are organized into two parts and placed
by and large in a chronological order of reading.

PART I

Part I is devoted to the introductory concepts and the topics on mechanics, analytical
methods, and analysis; these topics are primarily computational in nature.

The objective of Chapter 1 is to introduce the subject of composite materials and
structures. Toward this, we shall begin our journey with a discussion on the character-
istic features that define a composite material, their advantages and disadvantages, and
their typical applications.

The mechanics of composite materials is an important subject; a good understand-
ing of the concepts of mechanics is essential for understanding the analytical methods
and analysis tools, which in turn are essential for the efficient design of a compos-
ite product. Chapters 2 through 5 present discussions on basic solid mechanics and
mechanics of composites. Composites are anisotropic in nature and, as a result, the
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mechanics of composite material is more involved than that for conventional metal-
lic materials. The concepts of solid mechanics provide the foundation on which the
subject of mechanics of composite materials is built. A detailed review of the basic
solid mechanics concepts is presented in Chapter 2. A composite structure is built with
composite laminates. A laminate is made by combining several laminae and a lamina
consists of reinforcements and matrix. The laminae are the building blocks and we
shall address them in Chapters 3 and 4. Chapter 3 presents the micromechanics of a
lamina; the interaction of the individual constituents and their effect on the behavior
of the lamina are discussed in this chapter. The macromechanics of a lamina, that is,
the study of the gross behavior of a lamina without making a distinction between the
constituents, is presented in Chapter 4. The macromechanics of a laminate is discussed
next in Chapter 5.

Analytical methods and analysis tools play an important role in the design process
by providing estimates of the response of a structure to applied loads; these topics are
presented in Chapters 6 through 8. Analytical methods are available for the solution
of simple structural elements under simple loading; we shall discuss such analytical
tools for composite beams and plates in Chapters 6 and 7, respectively. These meth-
ods, however, are not suitable for most real-life situations, where a structure as well
as the applied loads are rather complex. In such cases, numerical methods such as
the finite element method are invariably used. The finite element method is the most
popular tool used for the analysis of structures. Several general-purpose finite element
software are commercially available. A basic understanding of the method is essential
for the proper use of these software. We shall wind up Part I of this book with a brief
discussion on the basic concepts and general procedure in the finite element method
in Chapter 8.

PART II

There are several aspects in the overall cycle of a composite product development,
where the engineer is primarily involved with shop-floor-related activities. Part II of
this book is devoted to these topics. These topics are materials, manufacturing methods,
testing of composites and their constituents, and nondestructive evaluation. In addition
to these, other major classes of composites, viz. metal matrix composites (MMCs),
ceramic matrix composites (CMCs), and carbon/carbon composites (C/C composites)
are included in this part. Also, a discussion on the design of composite products is
given in the end.

The major raw materials used in the polymer matrix composites industry
are presented in Chapter 9. Raw materials play a key role in any product devel-
opment exercise. Two primary categories of raw materials needed to make a
composite product are the reinforcements and the matrix. The general charac-
teristics and the mechanical and physical properties of common fibers and res-
ins are presented. We shall also briefly present the principles of manufacturing
methods for these materials. It is expected that this chapter will be able to guide
the designer in selecting the appropriate reinforcement and matrix materials for
specific applications.

Composites technology is process-intensive and a good knowledge of manufactur-
ing processes is essential for anyone in this field. Similar to materials selection, the
manufacturing process selection is a critical decision to be made in the design of a
composite product. With a view to getting solutions to such issues, we shall address
manufacturing methods in polymer composites in Chapter 10. Several manufacturing
processes are regularly employed in the composites industry; they can be categorized
into open mold, closed mold, and continuous molding processes. The basic processing
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steps, some of the popular manufacturing processes, and the manufacturing process
selection are presented in this chapter.

Another major aspect of composites technology is testing, various aspects of which
are addressed in Chapter 11. We will see there that testing is an inseparable part in
any composite product development program. It is done with either one or more of the
following as objectives—design data generation, quality control, and development of
new materials. Testing in composites is unique and typically a building-block approach
is adopted. Tests are done at various levels—constituent raw materials testing to full-
scale component testing. These tests are destructive in nature and the specimen gets
consumed/damaged during testing. In contrast to destructive testing, nondestructive
testing neither destroys nor causes any damage to the part, and the utility of the part
remains intact. We shall briefly review some of the common nondestructive evaluation
techniques in Chapter 12.

MMCs, CMCs, and C/C composites complement polymer matrix composites in
the overall composites industry. The scope of this book is limited to mainly polymer
matrix composites. However, familiarity with these sister composite materials helps a
polymer matrix composite professional immensely in the design and development of
a product. The introductory concepts covering general characteristics, raw materials,
and manufacturing methods with regard to MMCs, CMCs, and C/C composites are
presented in Chapter 13.

Finally, we shall acquaint ourselves with various aspects of design in Chapter 14.
Design is a common term, yet very often misunderstood. It is an art, yet certain set
patterns and key features can be associated with it. The concept of design as a solution
to meet certain requirements using available resources within certain constrains is
introduced in this chapter. The fundamental features of composites structural design
process, laminate design, joint design, and some important design issues are presented.
Design examples are provided to help in the assimilation of the concepts. It is a
phase that comes fairly early in the overall product development program. However,
it is a subject that demands a reasonable level of insight into various other aspects
of composites technology; inputs from mechanics, analysis estimates, materials data,
manufacturing, testing, and evaluation are required in the design process. Accordingly,
we shall deliberate on it in the end.

SUGGESTED PLAN FOR READING

There are 14 chapters in this book and they can be read in a sequential manner.
However, it will be difficult to cover the entire book in the time frame of a single semes-
ter. From the points of view of (i) organizing the contents in one-semester courses and
(ii) effective self-study, the following study plans are suggested:

First, a basic course on the mechanics of composites can be planned based on the
sequence: Chapter 1 — Chapter 2 — Chapter 3 — Chapter 4 — Chapter 5. Some
selected sections from Chapters 6 through 8 can be added.

Second, an advanced course on the mechanics and analysis of composites can be
planned based on the sequence: Chapter 1 — Chapter 4 — Chapter 5 — Chapter 6 —
Chapter 7. Some selected sections from Chapters 2, 3, and 8 can be added.

Third, a course on manufacturing and testing of composites can be planned based on
the sequence: Chapter 1 — Chapter 9 — Chapter 10 — Chapter 12 — Chapter 13. Some
selected sections from Chapters 3 through 5 and 11 can be added.

Fourth, a generalized course on the design of composite products can be planned
based on the sequence: Chapter 1 — Chapter 4 — Chapter 5 — Chapter 9 —
Chapter 10 — Chapter 14. Some selected sections from Chapters 2, 3, 6 through 8, and
11 through 13 can be added.
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Introduction to Composites

1.1 CHAPTER ROAD MAP

The objective of this chapter is to give the reader an overview of composite materials.
Advanced composites are a relatively new class of materials, but the concept of com-
posites is rather old. A brief historical note on composites is provided. Composites are
unique materials; the characteristic features that differentiate them from conventional
metallic materials are presented next. A classification of these materials is provided
so as to establish a link within the overall system of materials. A brief description
of different types of composites is given for a proper understanding of classification
of composites. Composites are multiphase material systems and their behavior is
dependent on the constituents; a note on the general functions and characteristics of the
constituents is given. For successful use of composites in product design, it is important
to know their advantages as well as disadvantages; the general advantages and disad-
vantages associated with composites are presented, followed by a discussion on their
applications in various industrial sectors.

1.2 INTRODUCTION

Materials have always played a major role in the development and growth of human
civilization. Composite materials are no exception. The advent of advanced composites
has influenced almost every aspect of modern life and today, major impacts are felt in
aerospace and aviation sector, automobile industry, sports goods industry, naval appli-
cations, civil engineering, etc.

Composites have their own unique features. There are advantages as well as disad-
vantages. While exceptionally high mechanical and thermal properties can be achieved
in a composite material, translation of such high levels of material properties to com-
posite structures is equally important and highly challenging. Basic material science,
process engineering, and design and analysis of composite materials and structures are
inherently related.

1.3 HISTORY OF COMPOSITES

The use of composite materials can be traced back to 2000 Bc or even earlier. Straw-
reinforced mud bricks were used in Egypt and Mesopotamia. Straws were also used for
making reinforced pottery. Composite bows were used in ancient Mongolia and other
places across Asia. Evidence exists on the use of composites in ancient Japan, where
laminated metals were used by the Samurais to make swords.

The development of modern advanced composites has been greatly influenced by
the developments in the fields of raw materials, viz. reinforcements and resins, and
composites manufacturing processes [1—4].
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Glass fiber was first commercially produced in the 1930s. Around the same time,
unsaturated polyester resins were also developed and commercialized. The first glass
fiber-reinforced plastic (GFRP) boats and radomes were built in the early 1940s.
Rapid progress took place in the 1950s with increasing use of GFRP in boat hulls, car
bodies, electrical components, etc. GFRP products were the first advanced compos-
ite products, and they still constitute a very large proportion of today’s composites’
market.

The next phase of development of composites was marked by the development
of high-performance composites using carbon, boron, and aramid fibers. High-
performance carbon fibers and boron fibers were introduced around the same time
in the late 1950s and early 1960s. They were followed by the development of aramid
fibers in the early 1970s. Epoxy resins have been available since the 1930s, and with
the advent of these high-performance fibers, composites industry received a major
boost. Development in the composites industry was also pushed hard by demands
from aerospace and defense sectors for lighter and more efficient structures. Further,
technological developments in respect of processing equipment and machinery such
as filament winding machine, computer numerical controls, autoclave, etc. have been
some of the major features of the growth of composites. Another noteworthy point
is the development in the field of analytical tools for composites product design and
analysis.

1.4 CHARACTERISTICS OF COMPOSITE
MATERIALS

1.4.1 Definition

Broadly, four types of materials are used for making a structural element. These are
metals, polymers, ceramics, and composites. In a general sense, a composite material
is one that has two or more constituent materials in it. The constituent materials in a
composite material are metals, polymers, ceramics, or a combination of these three.
A definition of composites can be found by identifying the characteristics of the con-
stituents and the process of combining them [5—7]. We check them as follows:

B The constituent materials differ in composition and form. Their combination
results in two phases in a composite material: reinforcement—a discontinu-
ous phase, which is usually hard and strong, and matrix—a continuous phase,
which binds the reinforcements together.

B The reinforcing material is embedded in the matrix material at a macroscopic
level. Thus, the constituent materials do not dissolve or merge together and
they retain their individual properties.

B The matrix binds the reinforcements in such a way as to form a distinct inter-
phase between them.

B The reinforcements and the matrix, as individual materials, may not be of any
engineering use; it is the process of combining them that transforms them into
a new material, which is a useful and efficient one. The interphase helps the
reinforcement and the matrix act in unison and the resultant composite mate-
rial often exhibits better properties than the constituent materials.

Thus, keeping the above points in mind, we can arrive at a definition as the fol-
lowing: A composite material is a useful and efficient material system that is made by
macroscopically combining two constituents—a reinforcement and a matrix, in such a
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way that the constituents do not dissolve or merge together and retain their individual
properties, yet they act in unison to exhibit better engineering properties.

1.4.2 Classification

Composites can be classified primarily in two ways. As mentioned earlier, there are
four broad types of structural materials, of which any one of the first three, namely,
metals, polymers, and ceramics, can be used as the matrix for making a composite
material. Thus, the first way to classify a composite material is based on the type of
matrix material. From this angle, composite materials are classified into:

B Polymer matrix composites (PMCs)

B Metal matrix composites (MMCs)

B Ceramic matrix composites (CMCs)

® Carbon/carbon composites (C/C composites)

1.4.2.1 Polymer Matrix Composites

PMCs have been a subject of great interest for basic as well as applied research.
They possess several advantages over monolithic metals and today, products of wide
variety, in terms of shape and size, are efficiently designed, fabricated, and used. In
a PMC material, a polymer such as epoxy is used as the matrix material that is rein-
forced with very fine diameter fibers such as carbon, glass, etc. The reinforcing fibers
can be either continuous or discontinuous. Continuous fibers can be used in forms
such as strands, roving, fabric, etc. Discontinuous fibers can be particulate, whiskers,
or flakes.

Mechanical properties such as strength and stiffness of PMCs are directly dependent
on the reinforcement properties. Matrix, on the other hand, binds the reinforcements
together and helps in load transfer. Thus, in general, the principal philosophy in design-
ing a composite part is to orient the reinforcements in the direction of load so that the
composite properties are efficiently exploited. Of course, manufacturing constraints
need to be given due consideration.

The processing techniques in composites are a critical part in the study of PMCs.
Several processing techniques are available for the manufacture of structural elements
using PMCs. A common objective in all these processing techniques is to place the
reinforcements as per design requirement and wet them properly with the matrix. An
essential step is to cure the composite, during which the matrix solidifies through a
process of cross-linking and it binds the reinforcements.

PMC:s play a dominant role in the overall market for composites, including MMCs,
CMCs, and C/C composites. MMCs, CMCs, and C/C composites are introduced in this
chapter. We shall discuss them in some detail in Chapter 13. However, our emphasis in
this book would be on PMCs. Thus, unless otherwise specifically stated, composites in
the remainder of this book would mean PMCs.

1.4.2.2 Metal Matrix Composites

In an MMC material, a metal or an alloy is the continuous phase in which the rein-
forcements are embedded [8]. Addition of reinforcements in a monolithic metal greatly
improves its mechanical and other properties to suit specific design requirements.
MMCs have certain advantages over PMCs as well as monolithic metals. These advan-
tages include high transverse strength and modulus, high shear strength and modulus,
high service temperature, low thermal expansion, very low moisture absorption, dimen-
sional stability, high electrical and thermal conductivities, better fatigue and damage
resistance, ease of joining and resistance to most radiations including ultraviolet (UV)
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radiation, etc. These benefits have been made use of and MMCs have found many
applications in several sectors [9-12].

1.4.2.3 Ceramic Matrix Composites

CMCs are a class of structural materials in which either continuous or discontinuous
reinforcements are embedded in a monolithic ceramic material [13]. Ceramics, as a
class of materials by themselves, characteristically have very high temperature resis-
tance but low fracture toughness. Low fracture toughness makes ceramics susceptible
to catastrophic failure under tensile or impact loads. In CMCs, fracture properties are
improved. Other advantages of CMCs include low density, chemical inertness, hard-
ness, and high strength. Thus, these materials are suitable for applications where high
mechanical properties are desired at high service temperatures [14].

1.4.2.4 Carbon/Carbon Composites

In C/C composites, carbon fiber reinforcements are embedded in a carbon matrix [15].
Carbon by itself is brittle and sensitive to material defects. By reinforcing carbon with
carbon fibers, the properties are greatly improved. C/C composites are typically very
highly temperature resistant. They retain high tensile and compressive strengths and
high fatigue strength at high temperatures, and they are used in several aerospace and
other high-end applications such as brake disks for aircrafts, nose cone of reentry
vehicles, nozzle throat, etc. [16]. C/C composites, however, involve long and complex
processing cycle.

We had mentioned earlier that the reinforcements form a discontinuous phase.
Different shapes and sizes of reinforcements can be used and the final composite
structural forms can be different. Thus, based on the geometry and shape of the rein-
forcements and the structural form of the composites, the following classification of
composites is possible (Figure 1.1):

B Phased composites

— Particulate composites

— Short fiber composites

— Flake composites

— Unidirectional composites
® [ayered composites

— Laminated composites

— Sandwich composites
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Laminated composites Sandwich composites

FIGURE 1.1 Types of composites based on shape of reinforcements and form of composites.
(a) Phased composites. (b) Layered composites.
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TABLE 1.1
Common Particulate Reinforcements

Metal Aluminum, tungsten

Nonmetal

Ceramic  Alumina (ALQ;), silicon carbide (SiC), silicon nitride (Si;N,), titanium carbide (TiC), titanium
diboride (TiB,), boron carbide (B,C)
Others Sand, rock particles

1.4.2.5 Particulate Composites

In a particulate composite material, reinforcing particles are added in a continuous
matrix. A particle is an object such that no dimension is more than about five times the
other two dimensions. The particles are added at random and due to the random orien-
tation of the particles, particulate composites are isotropic in nature. Both metallic and
nonmetallic particles are used as reinforcements in particulate composites. Table 1.1
lists common particulate reinforcements. These particles can be combined with either
metallic matrix or nonmetallic matrix materials and thus we have the following four
possible combinations in a particulate composite material:

B Metal particles in metal matrix

B Metal particles in nonmetal matrix

B Nonmetal particles in metal matrix

B Nonmetal particles in nonmetal matrix

Examples of particulate composites are given in Table 1.2.

Particulate composites possess several advantages such as improved strength, stiff-
ness, and toughness compared to the unreinforced metal or ceramic material. They also
possess typically higher operating temperatures and in certain cases, specific beneficial
properties are infused into the matrix by adding particulate reinforcements. Further,
their processing is cheap and simple. However, they exhibit generally inferior mechani-
cal properties as compared to the other types of composites.

1.4.2.6 Short Fiber Composites

In short fiber composites, either short fibers or whiskers are added in a continuous
matrix. The reinforcements are discontinuous and they are mixed in the matrix at ran-
dom. The fibers have highly direction-dependent properties and thus these composites
are anisotropic. However, owing to the random orientation of the fibers/whiskers, these
composites depict isotropic behavior at a product level.

TABLE 1.2

Examples of Particulate Composites

Metal particles in metal matrix Tungsten /Al

Metal particles in nonmetal matrix Solid propellant (Al/rubber)
Nonmetal particles in metal matrix Graphite/Al, SiC/Al
Nonmetal particles in nonmetal matrix Concrete (sand/cement)

Note: The convention followed in this table and the remainder of this book to repre-
sent a composite material is to put the name of the reinforcement first fol-
lowed by a front slash and the name of the matrix. Thus, SiC/Al is silicon
carbide-reinforced aluminum matrix composite, and so on.
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1.4.2.7 Flake Composites

Unlike fibers, flakes have a two-dimensional (2D) structure—strength and stiffness
properties are high in two directions. Two types of flake composites are used. In the
first type of flake composites, nonmetallic flakes such as mica or glass are embedded,
usually parallel to one another, in a matrix material. The resulting composite material
exhibits highly direction-dependent behavior. In the second type of flake composites,
preimpregnated fabric cut pieces are randomly mixed. Although the fabric cut pieces
are 2D with direction-dependent properties, due to the random orientation, the result-
ing composite part is isotropic.

1.4.2.8 Unidirectional Composites

These are composites with long continuous reinforcements. Strength and stiffness
properties of these composites are very high in the direction of the reinforcements but
poor in the other two directions.

1.4.2.9 3D Composites

Three-dimensional (3D) composites are a special variety of composites that are rein-
forced with long continuous reinforcements oriented in all the three dimensions. Most
frequently, these composites are made from preforms of oriented fibers into which the
resin matrix is injected and cured.

1.4.2.10 Laminated Composites

Laminated composites are made up of several thin plies (layers) stacked and bonded
together. Different types of laminated composites such as fiber-reinforced plastic,
bimetals, laminated wood, etc. are used. In bimetallic laminated composites, layers of
two different metals of usually significantly different thermal coefficients are bonded.
In fiber-reinforced laminated composites, each ply is a plastic layer reinforced with
usually continuous fibers. The reinforcements are unidirectional, bidirectional, or even
multidirectional. In certain cases, short fiber-reinforced plies are also used, in which
case the fibers are normally randomly oriented. Fiber-reinforced laminated composites
are widely used, and in the remainder of this book, the term “laminated composites”
would be used to mean fiber-reinforced laminated composites.

1.4.2.11 Sandwich Composites

These are basically panels of lightweight core sandwiched between two relatively thin
but hard and strong skins. The core material may be low-density foam or honeycomb.

1.4.3 Characteristics and Functions of Reinforcements and Matrix

We have learnt that the reinforcements and matrix do not react with each other, retain
their individual characteristics, act in unison, and offer better resultant composite prop-
erties. Now, we need to understand that the reinforcements and matrix have their own
characteristics and specific functions.

Fibers used as reinforcements for advanced composites are typically very fine in
diameter, and their volume per unit length is low. Thus, in the fiber form, flaws are far
less than in the bulk form. Also, many fiber manufacturing processes involve spinning
and stretching operations, during which a high degree of microstructural orientation
takes place. As a result, mechanical properties such as strength and modulus of fibrous
reinforcements are very high. Thus, structural functions are performed primarily by
the reinforcements. In addition to possessing very high mechanical properties, some
fibers also possess some specific characteristics. In such cases, fibers impart specific
characteristics to the composite material. For example, carbon fibers have negative
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longitudinal thermal coefficients of expansion, and carbon fiber composites can be
designed to make dimensionally stable part across a wide temperature range. Similarly,
silica fibers can be used for making thermal insulator.

In general, we can list a few key functions of fiber reinforcements as follows:

®m Reinforcements are the primary load-bearing element in a composite material.
B Reinforcements provide stiffness to the composite material.

B Reinforcements provide thermal stability.

B Reinforcements provide electrical and thermal conductivity (or insulation).

The reinforcements alone, without the matrix, are meaningless as a structural part.
Matrix is inferior to fibers in terms of mechanical properties; however, it influences a
number of composite mechanical properties such as transverse modulus and strength,
shear modulus and strength, compressive strength, fatigue characteristics, interlaminar
shear strength, and coefficient of thermal expansion (CTE). The matrix, in a composite
material, has several critical functions, of which the following may be noted:

B The matrix acts as glue and holds the reinforcing fibers together, and gives
shape and rigidity to the composite material as a structural part.

B The matrix transfers load between the reinforcing fibers.

B The matrix provides good protection to the reinforcing fibers against chemical
attack and mechanical wear and tear.

B The matrix provides good surface finish to the part.

B Transverse mechanical properties of composite materials are greatly influ-
enced by the matrix.

1.4.4 Composites Terminologies

1. Isotropic material: An isotropic material is one that has equal or same mate-
rial properties in all directions at a point. In other words, material properties
are not dependent on directions in an isotropic material. Conventional metallic
materials such as steel, aluminum, etc. are isotropic.

2. Anisotropic material: An anisotropic material is one that has unequal or dis-
similar material properties in different directions at a point. In other words,
material properties are dependent on directions in an anisotropic material.

3. Orthotropic material: An orthotropic material is one with material properties
that are different in three mutually perpendicular directions at a point.

We will learn about planes of material property symmetry in Chapter 2. We will
learn that an isotropic material has infinite numbers of planes of material property
symmetry, an orthotropic material has three, and anisotropic material has none.

Composite materials are generally anisotropic. The degree of anisotropy in a
composite material is highly dependent upon the reinforcement. The matrix is
typically isotropic in nature but the reinforcements may exhibit highly directional
properties. For example, carbon fibers are very strong and stiff in the longitudinal
direction. Laminated composite materials are reinforced with such reinforcements
and these composites are exceptionally strong and stiff in the direction of fibers as
compared to the transverse directions. Particulate composites, with uniform dis-
persion of the reinforcing particles, are isotropic. Flakes and short fibers, as rein-
forcements, are highly anisotropic with high strength and stiffness in the direction
of the fibers. However, these reinforcements are generally randomly oriented in
the matrix and thus, the resulting composites are isotropic at a macro level.

4. Homogeneous material: A homogeneous material is one that has equal
or same material properties in a specified direction at all points. In other
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Lamina Laminae Laminate

FIGURE 1.2 Schematic representations of lamina and laminate.

words, material properties are not dependent on location in a homogeneous
material.

5. Nonhomogeneous material: A nonhomogeneous material is one that has unequal
or dissimilar material properties in a specified direction at different points. In
other words, the material properties are dependent on location in a nonhomoge-
neous material.

Composite materials, in a strict sense, are almost always nonhomogeneous.
These are multiphase materials and the properties at a location in the matrix are
mostly different from those at a location in the reinforcements. However, at a
macro level, a composite material is mostly homogeneous.

6. Lamina: A lamina (laminae in plural) is a single layer or ply in a laminated
composite material. It is the building block of a laminated composite structure.
It can be either flat or curved and is made up of unidirectional, bidirectional,
multidirectional, or randomly oriented fibers in the matrix material.

7. Laminate: A laminate is a laminated composite structural element that is made
by a number of laminae. As shown in Figure 1.2, typically, the reinforcements
in the laminae are oriented w.r.t. the coordinate system of the structural ele-
ment and the laminae are stacked as per certain ply sequence.

8. Micromechanics: It is the study of a composite material wherein the constituents
of the composite material are considered as distinct phases and their interaction
with each other is analyzed to determine the gross properties of the compos-
ite material. Thus, in micromechanics, we study the behavior of the composite
material based on micro-level properties or the properties of the constituents.

9. Macromechanics: It is the study of a composite material wherein the constitu-
ents of the composite material are not considered as distinct phases; rather,
the gross or apparent properties of the laminae and the interaction between
laminae are analyzed to determine the laminate behavior. Thus, in macrome-
chanics, we study the behavior of composite material based on macro-level
properties or the apparent properties of the laminae.

1.5 ADVANTAGES AND DISADVANTAGES
OF COMPOSITES

1.5.1 Advantages

There are several advantages associated with composite materials that make them more
attractive than other traditional materials in many applications where high performance
and light weight are essential requirements. These are briefly discussed below:
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. High tensile strength and stiffness

. High specific strength and specific stiffness

. High fatigue strength

. Inherent material damping and good impact properties
. Tailorable properties

. Design flexibility

. Less corrosion

. Simple manufacturing techniques

. Near net shape part and lower part count

. Cost-effective product development

. High tensile strength and stiffness: Strength and stiffness properties of mono-
lithic polymers are generally low compared to metals and ceramics. These
properties can be greatly improved by reinforcing with suitable reinforcements
such as glass or carbon. Thus, PMCs exhibit comparable or better tensile
strength and stiffness in the direction of reinforcements than conventional met-
als or ceramics. Mechanical properties of MMCs and CMCs are also higher as
compared to those of their monolithic counterparts. Table 1.3 gives a compari-
son of typical mechanical properties of some of the common metals, polymers,
ceramics, and composites.

. High specific strength and specific modulus: Specific strength and specific
modulus are the ratios of strength to density and modulus to density, respec-
tively. Composites, on account of their low densities and high strength and
modulus, possess very high specific strengths and specific moduli. As a result,
structural parts made by using composites are typically lighter than those
made from metals. In aerospace vehicles, light weight is a key requirement
that is associated with longer range, higher payload, and fuel saving. There are
specific applications in other sectors as well where weight saving is beneficial
to the overall performance. In all these applications, composites are suitable
due to their high specific strength and stiffness.

. High fatigue strength: Fatigue strength or endurance limit refers to the failure
stress under cyclic loads. Under cyclic loads, most materials fail at lower levels
of stress than under static loads. Composites exhibit higher fatigue strength
than conventional metals such as steel and aluminum. Fatigue strengths of
metals are far lower compared to the respective static strengths—as low as
35% for aluminum and 50% for steel and titanium. On the other hand, uni-
directional composites exhibit high fatigue strengths of about 90% of static
strengths.

. Inherent material damping and good impact properties: Composite materials,
due to the presence of fiber—matrix interface, exhibit better damping charac-
teristics than conventional metals. A composite part, under the action of an
impact load, develops numerous microcracks. During the process of formation
of the microcracks, the energy of impact is absorbed, and catastrophic failure
is avoided.

. Tailorable properties: In a composite material, reinforcements can be aligned
in the direction of principal direction of load; plies can be stacked in a desired
sequence such that material properties are utilized in the most efficient manner.
This characteristic of composites is very unique, one that allows the engineer
to design the material system itself or virtually tailor the material properties as
per product requirement.

. Design flexibility: Design flexibility is a key advantage of composite materi-
als. Metallic parts are designed using raw materials that are readily available

11
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TABLE 1.3
Comparison of Typical Mechanical Properties of Common Engineering Materials

Specific Tensile  Specific Tensile

Specific Tensile Tensile Modulus Strength
Material Gravity Modulus (GPa)  Strength (MPa) (GPa/g/cc) (MPa/g/cc)
Metals
Steel 7.9 205 275-1880 26 35-238
Aluminum 2.7 70 60-700 26 22-259
Polymers
Epoxy 1.2 2.5-4.5 50-130 2.1-3.8 42-108
Polyester 1.2 2.5-4.0 20-80 2.1-3.3 17-67
Phenolic 1.3 3.04.0 35-70 2.3-3.1 27-54
Polyimide 1.4 3.0-4.0 70-80 2.1-2.9 50-57
Ceramics
Alumina 3.9 380 330 97 85
Magnesia 3.6 205 230 57 64
Unidirectional PMCs (V; = 0.5)
Glass/epoxy 1.8-1.9 30-45 550-1350 16-25 289-750
Carbon/epoxy 1.4-17 105-460 875-2760 62-329 515-1971
Kevlar/epoxy 1.3-1.4 70-76 1065-1380 50-58 761-1062
MMCs
SiC/Al 2.7-2.9 82-228 210-700 28-84 72-259
CMCs
SiC/SiC 2.3-24 190-210 280-340 79-91 117-148
C/C composites
UD C/C composites 1.7 125-220 570-600 74-129 335-353

Note: The material properties given in the table are only representative. Certain materials such as carbon
fibers, depending upon their subtypes, have wide variation in their strength and stiffness properties.
As a consequence, composites made by using such a reinforcing fiber exhibit wide variation in their
mechanical properties. Similarly, the tensile strength of monolithic materials such as steel and alumi-
num vary widely depending upon their composition and processing parameters. Specific properties
from the manufacturer’s data sheet should be used in an actual design and analysis exercise.

in the market. These raw materials such as bar stocks, sheets, sections, etc.
are available with standard specifications; thus, in general, the designer’s final
choice in respect of the structural elements is influenced by the available raw
materials. On the contrary, composite parts are designed along with the design
of the material system itself. Several classes of reinforcements with wide range
of properties are commercially available in various physical forms. Similarly,
many matrix materials with their own characteristics are available. Also, there
has been extensive technological development in the field of composite pro-
cessing and many efficient processing techniques are available today. Thus,
the designer has a wide range of choices of combinations of raw materials,
stacking sequence, processing techniques, etc. that enables him to meet the end
requirement in the most efficient way.

7. Less corrosion: Composite materials, in general, offer better corrosion resis-
tance than metallic materials. As a result, composite structures have longer
storage life.

8. Simple manufacturing techniques: Manufacturing techniques available in the
broad field of composites vary widely in terms of their complexity, equipment
and machinery required, cycle time, and cost. In general, manufacturing tech-
niques for PMCs are much simpler compared to those for MMCs, CMCs, and
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C/C composites. There are many areas where the manufacture of a PMC part
is simpler than a similar metallic part. Today, a wide variety of manufacturing
techniques are available for PMCs; some of these techniques do not need appli-
cation of high temperature or pressure. Similarly, equipment and machinery
required for PMC manufacture need not be very expensive and complex. As
a result, PMCs have grown very fast in terms of volume as well as variety of
applications.

9. Near net shape part and lower part count: In the case of composite materi-
als, parts are made by adding materials, and parts with near net shape can be
manufactured. Parts with complex shapes and large sizes can be realized, as a
result of which, the number of parts in the overall assembly comes down dras-
tically. This feature also enables the engineer to eliminate/reduce machining
operations and reduce manufacturing cycle time.

10. Cost-effective product development: Composites are preferred due to their low
cost as well. Different elements of cost in the development and commercializa-
tion of a composite product include raw material cost, equipment and machin-
ery cost, processing cost, design and analysis cost, marketing cost, etc. Raw
material cost depends on the type of reinforcements and matrix materials—
while raw materials such as carbon fibers and high-end epoxy resins are expen-
sive, many other reinforcements and resins such as E-glass fiber and polyester
resins for commercial applications are economically priced. Similarly, simpler
manufacturing methods lead to low costs of equipment and machinery and
processing. The overall cost is also reduced due to reduced processing cost
(near net shape part), lower assembly cost (lower part count), and longer storage
life (less corrosion).

1.5.2 Disadvantages

While there is a long list of advantages associated with composites, there are certain
disadvantages as well. Special care has to be taken to overcome these limitations. They
are enumerated below:

1. Low service temperature

2. Sensitivity to radiation and moisture

3. Low elastic properties in the transverse direction
4., Complex design and analysis

5. Complex mechanical characterization

6. High cost of raw materials and fabrication

7. Difficulty in jointing

—

. Low service temperature: PMCs, in general, degrade at relatively low tempera-
tures above room temperature, and have low service temperature. PMCs are
of two broad types—structural composites and thermal/ablative composites.
Polymer matrix structural composites tend to lose strength and stiffness prop-
erties as the ambient temperature increases. For high-temperature applications,
these composites need protection in the form of insulating or ablative lining.
Ablative composites can withstand high temperatures, but they are nonstruc-
tural in nature.

2. Sensitivity to radiation and moisture: Many polymers when exposed to radia-

tions such as UV radiation, etc. degrade. Moisture absorption is also a problem

for many PMCs. Protective coatings are applied to increase the service life of
these composite parts. In certain other cases, additives such as UV-resistant
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fillers, etc. are added to the matrix to reduce degradation of the composites
when exposed to harmful radiations.

3. Low elastic properties in the transverse direction: Strength and stiffness of
unidirectional composites in transverse direction, that is, normal to the direc-
tion of the reinforcements, are controlled by the matrix. Polymer matrix materi-
als have low elastic properties. Thus, unidirectional composites are associated
with rather low strength and stiffness properties in the transverse direction.
However, this drawback of unidirectional composites is successfully overcome
by tailoring of the plies and efficient fiber directional properties in the design
of the laminates.

4. Complex design and analysis: There are only two independent elastic con-
stants in an isotropic material. On the other hand, more numbers of elastic
constants are required for describing an anisotropic material. (We will dis-
cuss about elastic constants of anisotropic materials in Chapter 2.) Similarly,
strength parameters are also more in anisotropic materials. Composite materi-
als are anisotropic in nature, and thus, the number of parameters to be con-
sidered in the design and analysis of a part using composite material is more.
Fiber-reinforced composites are typically layered. While we can consider dif-
ferent combinations of ply sequences, tailor the material properties and exploit
the material system, this flexibility also increases the complexity of the design
and analysis procedure.

5. Complex mechanical characterization: Owing to the presence of more numbers of
elastic constants and strength properties, mechanical characterization procedure,
which involves laminate making, coupon preparation, and testing, is complex
and time consuming. Further, individual raw materials, viz. resin, curing agents,
and fiber, also have to be evaluated for mechanical and physical properties.

6. High cost of raw materials and fabrication: While some raw materials such
as E-glass fiber, polyester resin, etc. are cheap, several others such as carbon
fibers, high-performance epoxy resin, etc. are expensive. Similarly, some of the
composite manufacturing processes such as autoclave molding, filament wind-
ing, etc. are rather expensive, and these processes are suitable for high-end
applications where cost is not a primary criterion.

7. Difficulty in jointing: Joints in composite parts are a major area of concern.
Conventional jointing methods using nut and bolt, rivets, threaded holes, etc.
are not directly applicable in composites. Utmost care and caution and innova-
tive thinking are required for designing efficient and reliable composite joints.

1.6 APPLICATIONS OF COMPOSITES

The benefits of composites are well recognized today, and the use of composite materi-
als in different industrial sectors is steadily growing. Industrial sectors that use com-
posites can be broadly listed as aerospace, automotive, building and construction,
chemical, consumer goods, electrical and electronics, marine, and others. It is impor-
tant to note that each sector has its own characteristics in respect of functional require-
ment, demand for goods, and many other parameters. Depending upon the particular
needs of a sector, composite materials, their design, and manufacturing processes are
exploited suitably. Thus, characteristic features of composite structures vary from one
industrial sector to another. Some of the common applications of composite materials
are listed in Table 1.4 [5,17-24].

Composites are used in both commercial and military aircrafts. Typical benefits
include (i) weight reduction leading to higher speeds, increased payloads, longer range,
and fuel economy, (ii) reduced part count leading to simpler assembly and reduced
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TABLE 1.4
Applications of PMCs

Sector Applications

Aerospace

Aircraft ¢ Primary structures
- Fuselage, forward fuselage,
mid-fuselage, rear fuselage

- Wing box
- Empennage box

¢ Control components
- Flaps
- Ailerons
- Spoilers
- Slats
- Horizontal stabilizer
— Vertical stabilizer
— Elevator
— Rudder

¢ Exterior parts
— Radome
- Landing gear hatches
- Karmans
— Storage room doors
— Fairings
— Propeller blades

¢ Interior parts
- Floors
— Doors
— Partitions
— Bulkheads
— Brake disks

Helicopter * Rotor blades
— Spar
- Skin
— Core
* Rotor hub

Launch vehicles ¢ Solid rocket motor
and missiles - Rocket motor case
- Insulating and ablative nozzle
liners
o Airframe structures
- Interstage section
- Payload adapters
— Fairings
¢ Control surfaces
- Fins
* Reentry vehicle components
e Launch canisters

Satellite ¢ Tubings
* Brackets and fittings
* Shear panels
* Bus panel
¢ Flywheels

Typical Materials, Processes, and Benefits

Materials:
* CFRP, AFRP, and GFRP with epoxy
* UD and BD prepregs
¢ GFRP mainly in light aircrafts
® CFRP in modern aircrafts
Processes:
* Automated prepreg lay-up
* Vacuum bagging, autoclave curing
¢ Filament winding and pultrusion
* Honeycomb sandwich, stiffened structures
¢ Adhesive bonding of skins to core
Benefits:
* Weight reduction leading to higher speeds, increased payloads, longer range,
and fuel economy.
* Reduced part count leading to simpler assembly and reduced overall cost
® Reduced radar reflection and heat radiation leading to stealth capability in
military aircrafts
* Higher fatigue resistance
e Higher corrosion resistance

Materials:

* CFRP and GFRP with epoxy, polyimide, and phenolics
Processes:

¢ Filament winding and molding processes
Benefits:

® Reduced weight

® Enhanced dynamic characteristics

¢ Manufacturing ease

Material:
* Carbon/epoxy, Kevlar/epoxy for rocket motor casing
¢ Carbon/phenolic and glass/phenolic for nozzle liners
e Carbon/phenolic for reentry vehicle liners
e Carbon/epoxy for satellite applications
Process:
¢ Filament winding
¢ Tape winding, compression molding for nozzle liners
® Advanced grid-stiffened shells and panels for airframe structures, payload
adapters and fairings
Benefits:
* Weight reduction
* Reduced part count
* Reduced cycle time
® Manufacturing flexibility

(Continued)
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TABLE 1.4 (Continued)
Applications of PMCs
Sector Applications Typical Materials, Processes, and Benefits
Automotive
Car, bus, and e Structural components Materials:
truck — Chassis parts e E-glass/polyester and E-glass/vinyl ester SMCs for most body parts
— Leaf springs e E-glass/epoxy for leaf springs

- Floor elements
* Body components
- Roof
- Doors
- Hood cover
— Bumper
¢ Interior components
- Seat frames
— Side panel and central console
- Dash board
¢ Components under the hood
- Motor and gear box parts
— Battery support
- Head light support
- Transmission shafts

Chemical industry
¢ Corrosion-resistant tanks
* Pipes, industrial vessels, sewer lines
* Waste water treatment equipment
¢ Pollution control equipment

Civil engineering structures

Buildings and * Modular house
houses e Doors
¢ Bathtubs
¢ Bathroom fixtures
Infrastructures * Bridges
Marine
Small crafts e Hulls of
- Lifeboats
— Pleasure boats
- Fishing boats
— Speed boats
Large crafts e Hulls of

- Military and commercial hovercrafts
— Mine countermeasure ships
- Yachts

¢ Sonar domes

* Fairings

* Superstructures of ships

e Radomes

e Rudders

* Masts

Processes:

¢ Compression molding
e Structural reaction injection molding

Benefits:

® Reduced weight leading to fuel efficiency
* Reduced tooling cost

¢ Corrosion resistance

* Lower part count

Materials:

¢ GFRP with vinyl ester

Processes:

e Contact lay-up, filament winding

Benefits:

e Corrosion resistance

Materials:
* GFRP with polyester, vinyl ester, and epoxy
Processes:

e Contact lay-up—manual and automated
¢ Sandwich construction
e Pultrusion for sections

¢ Adhesive bonding for repair of old and damaged concrete bridges

Benefits:

e Corrosion resistance

* Weight reduction leading to ease of transportation and installation, longer

span, etc.

Materials:

* GFRP with polyester and vinyl ester
e AFRP
® CFRP in high-performance applications

Processes:

¢ Contact molding
* Honeycomb sandwich construction

Benefits:

* Weight reduction leading to greater speeds, better maneuverability and fuel

efficiency

(Continued)
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TABLE 1.4 (Continued)

Applications of PMCs
Sector Applications Typical Materials, Processes, and Benefits
Offshore oil ¢ QOil platforms
exploration
Piping system * Pipes
* Pumps
* Valves

* Heat exchangers

Others
Wind turbines ¢ Rotor blades Materials:
Sporting goods ¢ Golf shafts, tennis rackets, snow skis, ¢ GFRP with polyester for rotor blades
fishing rods, sports bike, pole vault, * CFRP with epoxy for tennis rackets, golf club shafts, fishing rods, bicycle
etc. frames, etc.
Consumer * Chairs, tables, desert air cooler body, * GERP with epoxy for pole vault
goods computer, printer, washing machine, Processes:
etc. * Contact molding
Electrical and e Circuit boards, insulators, switch gears, ¢ Pultrusion
electronics appliance covers Benefits:

* Weight reduction
* Better strength/stiffness
* Better damping characteristics energy absorption

Note: (i) CFRP = carbon fiber-reinforced plastic, GFRP = glass fiber-reinforced plastic, AFRP = aramid fiber-reinforced plastic. UD = unidirectional,
BD = bidirectional. (ii) Materials and process options indicated in the table are indicative and not exhaustive.

overall cost, (iii) reduced radar reflection and heat radiation leading to stealth capability
in military aircrafts, (iv) higher fatigue resistance, and (v) higher corrosion resistance,
etc. Initial applications include boron/epoxy composites in skins of the horizontal stabi-
lizers of F-14 in the 1960s. Airbus A310 was the first commercial aircraft to have exten-
sive composites (about 10% of the total weight). Since then, the use of composites has
steadily increased and today they are used in significant proportions in many aircrafts.
For example, Airbus A380 and Boeing 787 Dreamliner use about 25% and 50% of
composites, respectively. Carbon fiber-reinforced plastic (CFRP), glass fiber-reinforced
plastic (GFRP), and aramid fiber-reinforced plastic (AFRP) with epoxy resin are all
used, of which CFRP is the dominant composite material system. Both unidirectional
and bidirectional carbon/epoxy prepregs are used employing automated tape laying,
vacuum bagging, autoclave curing, filament winding, pultrusion, and adhesive bonding
as common manufacturing processes. Structural concepts such as honeycomb sand-
wich and conventional stiffened panel and grid-stiffened panel are employed.

CFRP and GFRP are used in helicopter rotor blades and rotor hub. Rotor blades are
typically made by filament winding and molding processes. The principal advantages
of composites in rotor blade are (i) reduced weight, (ii) enhanced dynamic characteris-
tics, and (ii1)) manufacturing ease.

Composites are used in many space vehicle applications. While the primary objec-
tive of using composites in space applications is weight reduction, several other benefits
such as reduced part count, reduced cycle time, manufacturing flexibility, etc. can also
be exploited. Carbon/epoxy and Kevlar/epoxy filament-wound rocket motor cases and
carbon/phenolic and glass/phenolic nozzle liners are common in many solid propulsion
systems in rockets and missiles. Advanced grid-stiffened shells and panels have been
adopted in airframe structures, payload adapters, and fairings. Filament-wound and
tape-wound carbon/phenolic liners are used for thermal protection in reentry vehicles.
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Carbon/epoxy composites are used in satellite applications like tubings, brackets and
fittings, bus panel, etc. CFRP composites can be designed to yield near-zero CTE, which
helps achieve dimensional stability across a wide range of temperature variations.

Composites have unique applications in the automotive industry. E-glass fiber-
reinforced epoxy leaf springs are the first major structural applications of composites
in automobiles. Other structural applications include chassis components, drive shafts,
etc. However, these applications have somewhat limited acceptability. On the other
hand, the major automotive applications of composites are in respect of the body com-
ponents such as roof, doors, hood cover, etc. These are made by compression molding
of discontinuous E-glass fiber-reinforced sheet molding compounds (SMCs), in which
the resin is either polyester or vinyl ester. In addition to compression molding, struc-
tural reaction injection molding (SRIM), a variant of resin transfer molding (RTM) is
also employed in the manufacture of the automobile body parts. The major advantages
of using composites in automobiles are (i) reduced weight leading to fuel efficiency,
(i1) reduced tooling cost, (iii) corrosion resistance, and (iv) lower part count.

Civil engineering applications of composites are broadly of two types—housing
sector and infrastructure. GFRP prefabricated modular house, bunk house, cabin,
mobile toilet cabin, etc. are some of the commercially available products today. In
the infrastructure sector, construction of new bridges and repair of old bridges have
been the major applications of composites. In this regard, corrosion resistance of com-
posites is the main attraction. Weight saving is not the main objective; however, it
has some indirect advantages like ease of transportation and installation, longer span,
etc. E-glass fiber-reinforced polyester composite laminates are used as facing sheets
in sandwich construction to make bridge decks. The core is typically glass/polyester
tubes. Pultruded sections, resin transfer molded panels, etc. are other forms of compos-
ites in bridge construction.

Glass/polyester and glass/vinyl ester composites are routinely used in the produc-
tion of different types of small and large yachts. In some cases, aramid fibers are also
used these days. The primary attraction of composites is weight reduction, which leads
to greater speeds, better maneuverability, and fuel efficiency. Hulls of these boats are
made typically by contact molding. In some high-performance applications such as rac-
ing boats, high specific strength and stiffness are essential. In such cases, hulls, decks,
masts, etc. are made using carbon/epoxy laminates and honeycomb sandwich construc-
tion with carbon/epoxy skins. There are other marine applications of composites that
include submarines, offshore oil exploration, etc.

Composites are also extensively used in other sectors, including energy sector, sport-
ing goods, consumer goods, chemical industry, etc. Rotor blades of wind turbines are
made by using glass fiber composites. Carbon/epoxy composites are used in tennis
rackets, golf club shafts, fishing rods, bicycle frames, etc. Weight reduction coupled
with better strength/stiffness and damping characteristics are the primary attraction of
composites in these sporting goods. Glass/epoxy composites are also used, for example,
in pole vaults for better energy absorption. Glass/polyester composites are predominant
players in the consumer goods sector, where chairs, tables, desert air cooler, etc. are
made typically by using chopped strand mat (CSM).

Note: Materials and manufacturing processes referred to in this section shall be dis-
cussed subsequently in Chapters 9 and 10.

1.7 SUMMARY

An introduction to composite materials is given in this chapter. We have seen that there
are several unique features that differentiate composite materials from conventional
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materials. They are a class of useful materials made by macroscopic combination of
reinforcements and matrix. The reinforcements and the matrix retain their individual
characteristics; they have their own individual functions, and as a whole, the resultant
composite material exhibits better properties that the individual reinforcements and
matrix do not possess.

Composites are classified based on the type of matrix used. They are also classified
based on the physical form of the reinforcements.

Composites are associated with many advantages that include high mechanical
properties, low densities, tailorable properties, design and manufacturing flexibility,
less corrosion, and cost-effective product development. There are certain limitations as
well, which need to be addressed in the design and manufacture of composite structures.

Applications of composites are no longer limited to high-end aerospace and defense
sectors. Today, PMCs are regularly used in many industrial sectors, including aerospace
and defense, automotive, chemical engineering, civil engineering, marine, and others.
These applications in each industrial sector, in general, have their own characteristics
w.r.t. materials and manufacturing processes.

EXERCISE PROBLEMS

1.1 Define composite materials. What are the characteristic features and
functions of the reinforcements and matrix in a composite material?

1.2 List the various classifications of composite materials.

1.3 Write a short note giving details of the advantages and disadvantages
associated with polymer matrix composites.

1.4 Write a note on the applications of polymer matrix composites.
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21 CHAPTER ROAD MAP

For the design and development of a composite product, it is imperative, on the part
of the designer, to have a good grasp of the available materials and manufacturing
processes. In addition to these, the composites’ engineer must have a thorough knowl-
edge of the behavior of a composite structure under loads. A composite product, like
any other structural element, is subjected to different types of loads. Study of the
response of a composite structure to different types of loads is the focus area in the
field of mechanics of composite materials. One of the primary objectives of composite
mechanics is to develop appropriate tools for analysis of composite structures. Basic
knowledge of solid mechanics is essential for understanding the topics on analysis of
composite lamina and laminate. In this chapter, we review the basic solid mechanics
concepts. Subsequently, we will have detailed discussions on mechanics of composite
materials in Chapters 3 through 5.

The basic concepts of solid mechanics are well developed and we present a brief
discussion on these concepts. Next, the governing equations that are required for the
development of analytical tools are discussed; the various concepts under kinematics,
kinetics, and constitutive modeling are also addressed. Generalized Hooke’s law is
reduced to various specialized cases such as orthotropic and isotropic materials. Plane
elasticity idealizations are made use of in composite lamina and laminate analysis and
these topics are introduced toward the end of this chapter.

Solid mechanics concepts are fundamental requirements in the fields of composites
mechanics and analysis; this chapter will be a prerequisite to subsequent Chapters 3
through 8 and 14.

2.2 PRINCIPAL NOMENCLATURE

B Body force

b Position vector of deformed coordinate system w.r.t.
undeformed coordinate system

C, Cyy Generalized fourth-order tensor of elastic constants

(D], D, D, Displacement gradient in the component form, vector

notation, and indicial notation, respectively

de Incremental strain

E.E,E, Young’s moduli in the x-, y-, and z-directions, respectively

e.e.e. Unit vectors along x-, y-, and z-directions, respectively

[F1, .F, F Deformation gradient in the component form, vector
notation, and indicial notation, respectively

G,G,,G, In-plane shear moduli in the xy-, yz-, and zx-planes,
respectively

L1 Unit tensor in vector form and indicial notation, respectively
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Change in kinetic energy

Undeformed and deformed lengths, respectively

Unit normal vector

Components of the unit normal vector

Heat input to the body during loading

Cylindrical coordinate axes

Material compliance matrix

Stress vectors or traction vectors normal to planes repre-
sented by unit vectors n, e,, e, e, respectively
Components of the stress vectors T,T.,T,T, in the x-,
y-, and z-directions

Time

Change in internal energy

Strain energy density function

Displacement vector of a point (x, y, z) in the vector form
and indicial notation, respectively

Displacement vector components in the r-, -, and
z-directions, respectively

Displacement vector components in the X-, Y-, and
Z-directions, respectively

Displacement vector components in the x-, y-, and
z-directions, respectively

Total work done by surface traction and body forces
Position vector of a point (X, ¥, Z) in the undeformed
configuration in vector and indicial notation, respectively
Cartesian coordinate axes in the initial undeformed
configuration

Position vector of a point (x, y, z) in the deformed con-
figuration in vector and indicial notation, respectively
Cartesian coordinate axes in the deformed configuration
Transformation matrix

Direction cosines (elements of transformation matrix)

Infinitesimal area

Force on an infinitesimal area

Change in length

Moment on an infinitesimal area

Differential operator

Finite strain tensor in the component form, vector nota-
tion, and indicial notation, respectively

Finite strains in the cylindrical coordinate system
Infinitesimal strains in the cylindrical coordinate
system

Finite normal strains in the Cartesian coordinate system
Finite shear strains in the Cartesian coordinate system
Almansi strain, engineering strain, Green strain, and
logarithmic strain, respectively

Infinitesimal normal strains in the Cartesian coordinate
system

Infinitesimal tensorial shear strains in the Cartesian
coordinate system
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Vay Vyzr Vax Infinitesimal engineering shear strains in the Cartesian
coordinate system

Vi Uy, Major Poisson’s ratio in the xy- and yz-planes, respectively

b b, Change in angle

o Stress tensor

0y, O, O3, Oy, Os, O Components of the stress vector in the contracted notation

Orps Oy Oy Normal stress components of the stress tensor

Ty Tyzs Tax Shear stress components of the stress tensor

2.3 INTRODUCTORY CONCEPTS

2.3.1 Solid Mechanics and Continuum

Mechanics is the study of the response (motion and deformation) of a body to applied
forces. This is based on two approaches:

B Physical approach
B Phenomenological approach

In the physical approach, adopted in solid state physics, the structure of a body is
studied at the atomic and molecular levels.

On the other hand, the phenomenological approach is adopted in solid mechanics. It
is based on the fundamental concept of continuum. Continuum is a state, in which it is
assumed that the material is continuously distributed, without any crack or flaw, in the body.
Thus, properties such as mass and displacement associated with the body can be defined as
continuous functions or piecewise continuous functions inside the body. Governing equa-
tions are developed by considering the behavior of the solid body at a macroscopic level.

2.3.2 Spatial Point, Material Point, and Configuration

A spatial point or simply a point is a point fixed in space. A particle is a very small
volumetric element with mass concentrated in it. It is a material point and it should
be clearly differentiated from a spatial point. A particle or a material point occupies a
certain spatial point at a certain instant in time.

A body, on the other hand, is a collection of particles that are constrained and
bounded within certain volume. It has a definite mass and volume. Solid mechanics is
concerned with solid bodies. A solid body is made up of particles that are geometrically
bounded within a certain boundary. It, at a particular instant in time, occupies a certain
region in physical space. This region with certain geometrical shape is the configura-
tion of the body at that instant in time. Under the application of forces, the body under-
goes motion and deformation and the particles move from one spatial point to another.
Solid mechanics is concerned about this movement of material points.

2.3.3 Fundamental Principles and Governing Equations

In solid mechanics, we are concerned with the determination of the response of a body
to the applied loads. While the loads are mechanical, thermal, or both, generally, the
response of a body is expressed in terms of stress, strain, displacement, and temperature
distribution. Often, we make mathematical models to represent the physical problem in
terms of differential equations and solve the same to obtain the response. Mathematical
models are based on fundamental principles of physics and assumptions supported by
experimental observations.
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Fundamental principles of physics are the result of centuries of research. A detailed
discussion on these principles is beyond the scope of this chapter. Instead, we name
here four key fundamental laws of physics that are often employed in solid mechanics:

B Principle of conservation of mass

B Principle of conservation of linear momentum
B Principle of conservation angular momentum
B Principle of conservation of energy

Now, we turn our attention to the governing equations in solid mechanics. These
equations can be broadly categorized into four classes:

® Kinematics

m Kinetics

® Constitutive relations
B Thermodynamics

Kinematics is the study of geometric changes or deformation in a body. The factors
that cause such deformations are not considered and attention is paid only to the ini-
tial and final configurations of the body. The basis for kinematic study is geometrical
considerations and no fundamental principles of mechanics are involved. The variables
involved in kinematics are the displacements and strains; strain—displacement relations
are the primary output of kinematics.

Kinetics is the study of forces and moments acting on a body in static or dynamic
equilibrium. It is based on the principles of conservation of linear and angular momenta.
Conservation of linear momentum results in the equilibrium equations or the equations
of motion. However, conservation of angular momentum leads to symmetry of stress
tensor. (We shall discuss about stress tensor in the section on Kinetics.)

In thermodynamics, we study the relations between thermodynamic state variables
such as strain tensor, temperature, etc. (We shall discuss about strain tensor in the
section on kinematics.) Thermodynamic state variables are governed by the first law
(conservation of energy) and the second law of thermodynamics.

Constitutive relations are based on experimental observations on material behavior.
They relate the dependent variables of kinematics to those of kinetics. These relations
are not independent and they are governed by thermodynamic principles.

Table 2.1 presents the governing equations in solid mechanics. As we can see (and it
will be clear by the end of the section on constitutive modeling) that we have 15 govern-
ing equations from kinematics, kinetics, and constitutive modeling in a 3D structure.
We will see that there are 15 unknowns (six stress components, six strain components,
and three displacement components) corresponding to these 15 equations. Thus, we get
a complete solution on the deformation and force distribution in a solid. The numbers of
equations and unknowns reduce in the case of 2D and one-dimensional (1D) problems.

Keeping in view the overall objective of this book, solid mechanics topics are dis-
cussed here only in an introductory manner; for more details, interested reader may
refer to References 1-4, for instance.

2.4 KINEMATICS

A solid body has a certain configuration at a particular instant in time. Under the action of
forces, the body undergoes rigid body motion, deformation, or a combination of both. A
rigid body is one that does not change its configuration under loads, and the relative distance
between any two material points in it remains unchanged. Under the action of forces, a rigid
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TABLE 2.1
Governing Equations in Solid Mechanics
Number of
Solid Mechanics
Equations
Subject Basis Output Equations Key Parameters 3D 2D 1D
Kinematics Geometrical Strain—displacement  Strains, 6 3 1
considerations relations displacements
Kinetics Conservation of Equations of motion  Stresses 3 2 1
linear momentum
Conservation of Symmetry of stress Stresses - - -
angular tensor
momentum
Thermodynamics  First law of Energy equation Stresses, - - -
thermodynamics temperature, heat
flux, velocities
Constitutive Experimental Stress—strain Stresses, strains, 6 3 1
modeling observations relations (Hooke’s temperature, heat
law) flux

Source: Adapted with permission from J. N. Reddy, An Introduction to Continuum Mechanics—With
Applications, Cambridge University Press, Cambridge, 2010.

body undergoes rigid body translation and rigid body rotation. Rigid body, however, is a
mathematical concept and in reality, all bodies are deformable. A deformable body, under
the action of forces, changes its configuration; the material points undergo displacements
and the relative distance between two arbitrary material points in the body changes. In
simple term, deformation of a body produces change in shape and size of the body.

Strain, on the other hand, is a quantitative measure of relative deformation of a body
w.r.t. its undeformed or initial configuration.

Study of deformation and strain is necessary for three reasons. First, governing equations
obtained from considerations of stress and force alone are insufficient to obtain a solution of
a solid body and complete stress picture cannot be obtained. Deformation and strains have
to be considered for evolving additional equations. Second, from functional angle, in many
applications deformations are required to be known. Third, stress is an abstract quantity and
it cannot be seen. Strain can be evaluated experimentally; stress can be related to strain and
based on strain data, stress distribution in a body can be indirectly obtained.

2.41 Normal Strain and Shear Strain

Strain is a measure of relative deformation of a body. Two modes of deformation can
be identified—first, change in size and second, change in shape. Strains that cause only
change in size but not shape are normal strains or direct strains. Let us consider an
elemental cuboid as shown in Figure 2.1. For simplicity, let us assume that the cuboid
deforms only in the x- and y-directions. (It is the case of plane strain as discussed in
Section 2.8.2.) Under normal strains, the cuboid changes its size but not shape and
the rectangular faces remain rectangular after deformation. Also, normal strain in a
particular direction would cause change in length of a line segment in that direction.
Thus, line segments such as OA and OB change in length to OA’ and OB/, respectively,
but the angle between OA and OB does not change.

On the other hand, shear strains cause change in shape. Such a change in shape can
be expected under the action of shear forces in the x- and y-directions. Note that the
angle between OA and OB changes.
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FIGURE 2.1 Normal and shear strains. (a) Deformation under normal strains in the x- and y-

directions. (b) Deformation under shear strain in the xy-plane.

2.4.2 Types of Strain Measures: 1D Approach

Strain measurement schemes are somewhat arbitrary and several types are in vogue.
We shall define some of the common strain measures in this section. For the sake of
simplicity, we shall adopt a 1D approach first, which can be extended to two and three
dimensions. Let us consider a bar as shown in Figure 2.2. The undeformed length of the

bar is L, which changes by AL to [ after deformation.

2.4.21 Engineering Strain
Engineering strain is the most common measure of strain used in structural engineer-

ing. It is defined as the change in length of the bar per unit undeformed length. Thus,

I-L AL
Eg=—-="-— 2.1
L L
Here, we have taken a bar for easy visualization. We can also consider an elemental
material line segment and define engineering normal strain as the ratio of the change

in the length to the original length of the line segment.

2.4.2.2 True Strain
Engineering strain takes only the initial undeformed and final deformed configurations

into account. True strain, also known as logarithmic strain or natural strain, takes into

f
X+ dx
|

I=L+AL |
|

FIGURE 2.2 1D strain in a bar. (a) Undeformed configuration. (b) Intermediate configuration.
(c) Final deformed configuration. (Adapted from A. K. Singh, Mechanics of Solids, PHI Learning,

New Delhi, 2011.)
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account the intermediate configurations as well. Now, w.r.t. the bar in Figure 2.2, the
incremental strain at an intermediate configuration is defined as

de =% 2.2)

where x is the intermediate length of the bar. Then, the true strain at the final deformed
configuration is given by
dx l
eg= [ —=In|— 2.3
- f X [L] @3)

2.4.2.3 Green Strain

Green strain represents change in square of the length w.r.t. the undeformed length.
Thus, Green strain in one dimension is given by

P> —I?
6= (2.4)

2.4.2.4 Almansi Strain

Almansi strain is similar to the Green strain; however, it is defined w.r.t. the deformed
configuration. Thus, Almansi strain in one dimension is given by

P-r
€A :T (25)

We have adopted a 1D approach for defining normal strain in different strain
measures. Shear strain is a measure of change in angle and thus we need to adopt a
2D approach. Let us consider two initially mutually orthogonal line segments as in
Figure 2.3. (Note that the coordinate axes in the deformed and undeformed configura-
tions are superimposed.) Under shearing action, the line segments change their orien-
tations. Engineering shear strain is defined as the total change in angle. On the other
hand, true shear strain (tensorial shear strain) is defined as half of absolute change in
angle in radian. Thus,

Engineering shear strain,

(2.6)

IS

Z,z

FIGURE 2.3 Definition of shear strain. (Adapted with permission from J. N. Reddy, An Introduction
to Continuum Mechanics—With Applications, Cambridge University Press, Cambridge, 2010.)
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True shear strain,

e, = %«m +6,) @.7)

2.4.3 Displacement at a Point

Let us consider a body as shown in Figure 2.4. The undeformed or initial configuration
B, at time ¢ = 1, changes to the deformed or current or final configuration B at time
t = t, and in this process of deformation, a particle at P, in the undeformed configura-
tion moves to P in the deformed configuration.

Let us consider two Cartesian coordinate systems: O-XYZ with unit vectors ey, e,,
and e, for the undeformed configuration and o-xyz with unit vectors e,, e,, and e, for
the deformed configuration. The origins of the two coordinate systems are connected
by the vector b.

Position vectors of the points Py(X, Y, Z) and P(x, y, z) are given, respectively, by

T

X| |ex
X= XeX +Yey +Zez =Y ey (28)
Z ey
and
T
x| e,
x=2xe, +ye,+ze, =1yt le, 2.9
z| |e;

FIGURE 2.4 Deformation of a solid body: a particle in the undeformed and deformed configurations.
(Adapted from G. E. Mase, Theory and Problems of Continuum Mechanics, McGraw-Hill, New York,
1970.)
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The vector u joining the points P, and P is the displacement vector, and in terms of
its Cartesian components, it is given by

5 ex
u—= MXeX +uyey +MZeZ = I/lY eY (210)
Uz €z
or
T
MX ex
u=u.e, +ue,+ue, =, e, 2.11)
uZ eZ

The displacement vector is related to the position vectors as follows:
u=b+x-X (2.12)

If the initial and final position vectors of the particle are known for the chosen coordi-
nate systems, the displacement vector can be determined from Equation 2.12. The motion
of a point and deformation of a continuum can be studied in two ways—Lagrangian or
material description of motion and Eularian or spatial description of motion.

In the Lagrangian description, motion of a body is referred to a reference configura-
tion. The initial configuration is usually chosen as the reference configuration. Thus,
current coordinates of a particle are expressed as functions of the coordinates the parti-
cle occupied at time ¢ = ¢,. In other words, Lagrangian description is deformation map-
ping of the initial configuration onto the final or current configuration. Mathematically,
in the Lagrangian description,

x=x(X.,?) (2.13)

On the other hand, in the Eularian description, the undeformed configuration is
expressed in terms of the deformed configuration. Thus, initial coordinates of a particle
at time ¢ = ¢, are expressed as functions of the coordinates the particle occupies at time
t = t. Thus, Eularian description is a mapping of the final configuration onto the initial
configuration such that the original position of a particle can be traced from the current
position. Mathematically, in the Eularian description,

X =X(x,1) (2.14)

Solid mechanics generally uses the Lagrangian description, whereas, in fluid mechan-
ics, the Eularian description is used. Further, in solid mechanics, the two coordinate sys-
tems are often superimposed. We shall use such superimposed coordinate systems for
which, it may be noted, b = 0. Then, from Equation 2.12, we write the relation between
position vectors and displacement vector as follows:

In the component form,

X X+u,
yi=1Y +u, (2.15)
z Z+u,
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In the vector form,

x=X+u (2.16)

In the indicial notation,

X; :X,‘ +Mi (217)

Note: Indicial notation is very helpful in concise and clear representation of solid
mechanics expressions involving vectors and matrices; the reader is urged to get
acquainted with it (see, for instance, References 3-5).

2.4.4 Deformation Gradient and Displacement Gradient

Let us consider the undeformed and deformed configurations of a body as shown in
Figure 2.5. The material points A and B in the undeformed or initial configuration of
the body get displaced to the new positions A’ and B/, respectively, and the infinitesi-
mal line segment, represented by the vector dX deforms to the line segment dx after
deformation.

Deformation gradient and displacement gradient are two important quantities in the
analysis of deformation and strain. Deformation gradient connects the deformed con-
figuration of a body to its undeformed configuration.

The two coordinate systems O-XYZ and O-xyz share the same origin and are aligned.
For convenience, we shall use only the lower case letters for coordinate axes. Thus, the
undeformed and deformed line segments are given by

T

dX| |e,
dX = dXe, +dYe, +dZe, =1dY ; {e, (2.18)
dz| |e,

Z,z

FIGURE 2.5 Deformation of a solid body: a line segment in the undeformed and deformed con-
figurations. (Adapted from G. E. Mase, Theory and Problems of Continuum Mechanics, McGraw-Hill,
New York, 1970.)
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dx| |e,
dx = dxe, + dye, +dze, ={dy; {e, (2.19)
dz| |e,

Using chain rule of differentiation, we can express the components of the deformed
line segment as

de= 2% gx + 9% gy L 0% 47
X oY oz
Oy dy Oy
dy=—"dX +—=dY +—=dZ 2.20
ax @ oy ez 220
0z 0z 0z
de=2ax + L ay + L az
Eax ey Taz

Equation 2.20 can be written as follows:
In the component form,

ox ox ox
dx ZX ‘;Y ZZ dx
dyt =2 9 Dllgy 2.21)
P ox oY 0z iz
ox oY 0Z
In the vector form,
dx=F.dX (2.22)
In the indicial notation,
Ox;
d i = ! dX .
i = o dX; 2.23)

J

Now, w.r.t. Equations 2.21 through 2.23, deformation gradient is defined as follows:
In the component form,

ox or ox

oxX oY 0z
P2 O (2.24)

oxX oY 07

oxX oY 0z

In the vector form,
ox |

=== 2.25
X (2.25)
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In the indicial notation,

ox;

On the other hand, the displacement gradient is defined as follows:
In the component form,
Ou,  Ou,  Ouy
0X oY 0Z
0 Ou,  Ou,
=72 T T 2.27)
0X oY 0Z
Ou,  Ou,  Ou,
0X oY 0Z
In the vector form,
T
_ | 2.28)
0X
In the indicial notation,
Ou;
= 2.2
)= 5% (2.29)

Now, from Equations 2.15, 2.16, and 2.17, we note that for the superimposed coor-
dinates the position vector of a material point in its final configuration is related to its
position vector in the initial configuration as x = X + u. Both sides of these equations
are operated by the differential operator V, given by

\Y

— — (2.30)
ox oYy 0z

0 0 0 ]

and the relation between deformation gradient and the displacement gradient is obtained
as follows:
In the component form,

[F]=[1]+[D] (2.31)
In the vector form,
F=I+D (2.32)
In the indicial notation,
F;=1; + Dy (2.33)

2.4.5 Infinitesimal Strain and Finite Strain Theories

Deformation of a body can be classified into small deformation and large deformation.
Small deformation is the one in which the deformed and undeformed configura-
tions of the body are nearly identical. In this case, displacement gradient terms are far
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smaller than unity, that is, D; < 1. This class of deformation is governed by the infini-
tesimal strain theory (also known as small strain theory and small deformation theory),
wherein the strain—displacement relations are linear. Deformation characteristics of
many engineering materials exhibiting elastic behavior, such as metals and composites,
belong to this category. Engineering strains, defined in the previous section are used in
the analysis of strains as per the small strain theory.

On the other hand, many materials such as elastomers, fluids, etc., which exhibit
plastic deformation, undergo large deformations under loads. In such a case, the
deformed and undeformed configurations are grossly different. Finite strain theory
(also known as large strain theory or large deformation theory) is used in the strain
analysis of such materials. Strain—displacement relations are nonlinear and the dis-
placement gradient terms are not small such that squares of these terms are not neg-
ligible. Engineering strains are not applicable in this class of deformations and other
more complex definitions such as logarithmic strain, Green strain, and Almansi strain
are used.

2.4.6 Infinitesimal Strain at a Point

State of strain at a material point is given by changes in lengths per unit length of all
the possible infinitesimal line segments and changes in angle between all the pos-
sible pairs of orthogonal line segments at that material point. Fortunately, however,
we do not need to consider all these possible line segments or pairs of line segments.
We rather consider three mutually perpendicular axes and three mutually perpen-
dicular planes formed by these three axes passing through the point, and express the
state of strain at that point by means of three unique normal strains and three unique
shear strains. For strains in any other directions or plane, we need to resort to strain
transformation.

We shall first discuss the case of normal strains. Let us go back to Figure 2.5 and
consider the infinitesimal line segment AB. The line segment moves to A'B’ after defor-
mation. Normal strain in the direction of the line segment would only cause change in
its length. Then, by following the definition of engineering strain, normal strain in the
direction of the line segment is given by

'n! _
5:AB AB _ ldx|—ldXI| (2.34)
AB ldX|

The length of the undeformed line segment can be expressed as

1dX | = \J(dX)* +(dY ) +(dZ)’ (2.35)

We shall first find an expression for the infinitesimal normal strain in the x-direction.
Toward this, let us align the line segment in the x-direction such that dY = dZ = 0.
Thus,

ldX|=dX (2.36)

The length of the deformed line segment is

ldx| = \J(dx)* + (dy)* + (dz)’ (2.37)
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Now, we see from Equations 2.22 and 2.32 that dx = F.dX = (I + D).dX. Thus,

ou, Ou, Ou,
] |1 o o SX SY gz dX
u, u u,
ayt=llo 1 o0 y o i 2.38
dy 0 o 1+ax or ozl @38)
< Ou,  Ou,  Ou
ox ay 0z
or
dx:[1+a”x]dx
X
Au, 2.39
dy=—2>dX (2.39)
X
dzzauZ ax
X
So,
ou : ou g ou ?
ldx|=dX,||1 x — : (2.40)
\/[ +ax] +[8X] +[ax]

Substituting Equations 2.36 and 2.40 in Equation 2.34, we get the following for
infinitesimal normal strain in the x-direction:

ou. Y (Ou ? ou. Y
= O Ouy | (Ou- | (2.41)
i J[ +8X] +[8XJ +[8X]

The terms under the square root can be expanded as a binomial series. Now, for
infinitesimal strains, displacement gradients are so small that higher order terms of dis-
placement gradients can be ignored when compared to unity. Thus, ignoring the second
and third terms inside the square root in Equation 2.41, we get

Ou
= 2.42
0X 242

Exx

Next, we align the line segment in the y- and z-directions, respectively, and we can
obtain the expressions for respective infinitesimal normal strains. Further, for infini-
tesimal strains, the partial derivatives of a displacement component w.r.t. x and X are
nearly equal to each other, that is,

o( )%3( ) o) ,90)
1904 ox oY Oy 0Z 0z

00 00 - ppg 90 L 00) (2.43)

The space inside the brackets in the above expressions can be filled with any displace-
ment component. Thus, we can write the expressions for infinitesimal normal strains as
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= 2.44
Exx o (2.44)
ey =20 (2.45)
dy
ou
< 2.46
Fa 0z ( )

Next, we shift our attention to the infinitesimal shear strains and go back to Figure 2.3.
Let us consider two mutually orthogonal line segments AB and AC. Let AB and AC be
aligned in the x- and y-directions, respectively. Shear forces causing shear strains in the
xy-plane would change the angle BAC to B’AC’. Engineering shear strain is defined as
the change in the angle. Thus,

Viy = Px + Dy (2.47)

For small angles, the angles are equal to the tangents of the respective angles, that
is, ¢, ~ tang, and ¢, ~ tang,.
We note that

du du
t = - S t y = X 248
ang dX ang, dy @48)
Now, in the line segment AB, dY = dZ = 0 and
ou,
du, =—2>dX 2.49
) ¢ (249)

Similarly, in the line segment AC, dX = dZ = 0 and

Ou,

du, =
oY

dy (2.50)

Thus, from Equation 2.47, together with Equations 2.48 through 2.50,

_ 8u}’ aMx
90X oY

Yy (2.51)

Then, considering the orthogonal line segments in the yz- and zx-planes, respec-
tively, we can arrive at the expressions for infinitesimal shear strains in the other two
planes. Further, like in the case of infinitesimal normal strains, partial derivatives of
the displacement components w.r.t. x are nearly equal to those w.r.t. X. Thus, we can
write the expressions for infinitesimal shear strains as

Ou, Ou
=t 2.52
T Ox dy (2.52)
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Ou, . Ou,

= Sy 2.53
Vyz ay oz (2.53)
Ou ou
= : 2.54
Y=o, o @54)

2.4.7 Finite Strain at a Point

2.4.7.1 Finite Strain Tensor

Let us once again go back to Figure 2.5. Let us consider the deformation of the solid
body and the arbitrarily chosen infinitesimal line segment at material point A. The
change in the square of the length of the infinitesimal line segment from the unde-
formed configuration to the deformed configuration is the quantity used for analysis of
deformation in the finite strain theory. Let us note carefully that the coordinates of the
points A, B, A, and B’ as indicated below:

A—(X,Y,Z)
B—(X+dX,Y+dY,Z+dZ)
A — (X +u,,Y +u,,Z+u,)
B — (x+dx,y+dy,z +dz)
Or,
(X +dX 4 u, +du,,Y +dY +u, +du,,Z +dZ +u. +du.)

The length of the line segment in its undeformed configuration is given by

AB =1dX|=(dX)* +(dY)* +(dZ) (2.55)

Similarly, length of the deformed line segment is given by

A'B' =1dx| = \J(dX + du,)* +(dY + du,)* +(dZ +du. )’ (2.56)

Using Equations 2.55 and 2.56, we can express the quantity (|dx|)? — (|dX|)* as
(dx1)* —(1dX1)* = 2(dXdu, + dYdu, + dZdu.)
+(du,)’ + (du,)’ + (du.)’ (2.57)
The displacement differentials can be expressed as

Oou, Ou, Ou,
0X oY o0z

du, 5 5 5 dxX

duy t =22 S gy 2.58)
"Tlox oy oz

du, az

Ou,  Ouw,  Ou,
ox oy oz
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Substituting Equation 2.58 in Equation 2.57 and by rearranging the terms, we get
the following:

(1ex1)* — (1dX 1)
du,  1|(0u. ) (0w (0u.)
=24 o | | | tax?
axU{[ax] * ax] * ax]]
Ouy ) 1|(0u Y  (0u,) (0w, )
2 -y — X -y Z de
- [ay]+2 [ay +[8Y +[ay]
Ou (oY (0u,) (0w.)
o) | Qa2 DR | Pt -y 2 Ugz?
& e AR R
) Ou,  Ou,  Ou, Ou,  Ou, Ou,  Ou. Ou, IX AV
oX oY 090X oY 09X oY 0X oY
) Ou, n Ou,  Ou, Ou, _Ou, Ou,  Ou. Ou, IV d7
oY 0Z 0Y 0Z 0Y 0Z 0Y 0Z
1|t Ou: Oy O, Oy Oty | Otz Qe ) g5 )
0Z 0X 0Z 0X 0Z 0X 0Z 0X

The coefficients of the terms dX?, dY?, dZ?, dXdY, dYdZ, and dZdX in Equation 2.59
are of special significance and we rewrite Equation 2.59 as follows:

(ldx1)* —(1dX1)* = 2EdX* + 2EydY* +2E,,dZ*

ou 1|({Ou g
g — X - X
w=ox T2l ax
ou 1| Ou ?
Ew=—>+ e
Ty 2|l
< :8u2+i Ou, ?
“ "oz 2|loz
1{0u, Ou
Ey = —| 2 x
v =5lox oy
& _ 1| 0u,  Ou,
““olay | oz
1{0u ou
g _ = x z
“=oloz Tox T

+ 4EyydXdY + 4E,,dYdZ + AExdZdX

where the coefficients are given by

Outy
oY
Ou, 2

Tloz

Ou, Ou,
0X 0Y

Ou, Ou,
oY 0Z

Ou, Ou,
0Z 0X

ou,
oX

Ou,
oY

Ou,
oz

+

Ou, Ou,
0X 0Y
oY 0Z

Ou, Ou,
0Z 0X

Ou. Ou,
0X 0Y

Ou, Ou,
oY 0z

Ou, Ou,
0Z 0X

(2.60)

(2.61)
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Thus, Equation 2.60, with the help of Equations 2.61, can be rearranged further as
follows:
In the component form,

T

ax 17).4
ldx* —1dXFP=21{dY} [E]{dY (2.62)
dz dz
In the vector form,
ldxl* —1dX*=2dX - & -dX (2.63)
In the indicial notation,
ldx* —1dX P =2&;dX,dX, (2.64)
where
8XX gXY gZX
[5] = gxy gyy Syz (2-65)
gZX gYZ EZZ

Here, the second-order tensor [£] or € or &, is known as the Green’s (or Lagrangian)
finite strain tensor.

The components of the finite strain tensor are given in the explicit component forms
by Equations 2.61. A very convenient way to express the finite strain tensor components
is in the indicial notation as

:l Oy, +8uj +8uk Ouy,

& (2.66)
200X, ' 0x,  0X, 0X,

2.4.7.2 Physical Meaning of Finite Strain Tensor Components

We consider three mutually orthogonal infinitesimal line segments PA, PB, and PC,
aligned in the x-, y-, and z-directions, respectively, in the undeformed configuration as
shown in Figure 2.6. After deformation, the line segments move to P’A’, P’B’, and P'C".

FIGURE 2.6 Physical meaning of finite strain tensor components.
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Let us consider the line segment PA; we note that
for PA,

1dXVl=dX® =0 and dY" =dz" =0 (2.67)

Now, we substitute Equation 2.67 in Equation 2.59, and with the help of Equation
2.61, obtain the following:
8ux ’ + % : + % ’
0X 0X 0X

By definition, the expression on the left-hand side in Equation 2.68 is the Green’s
normal strain in the X-direction. In a similar way, we can consider the line segments
PB and PC and conclude that the three diagonal elements in the finite strain tensor in
Equation 2.65 are the Green’s normal strains in the X-, Y- and Z-directions.

To check the physical meaning of the off-diagonal elements in the strain tensor, let
us consider the infinitesimal line segments PA and PB in the XY-plane in the unde-
formed configuration. In the undeformed configuration, the line segments are per-
pendicular to each other, whereas in the deformed configuration, the included angle
changes to 6,/ . From basic coordinate geometry, we know that the included angle
0,5 1s given by

ldx P —1dX"F  Ou, 1
21dx VP oxX 2

== EXX (2.68)

dxVdx? +dyVdy® +dz"dz®
cos{f) = 1ax Vx| 269

Noting that dx = dX® 4 du and dx® = dX® + du, we can arrive at the following:

i =[14 P gy g = P gy
oX oY
ou, Ou,
dy® = T2 gx® dy® =14 =2 |dy®
YT ox Y oY
2.70
dg = % gx dz® = O gy e
T ox oY
dx = (@) + (@) + (@)’
ldx®l= J(dx®)? + (@) +(dz>)?
Utilizing Equations 2.70 and 2.61, we get from Equation 2.69
28y
cos(Op )= 271
(O) JT+ 260 1+ 280 @7

Now, let us denote the change in angle between the line segments in the PA and PB
by ayy, etc. Then,

sin(ayy ) = sin[g — QArBr] = cos(QArB/) 2.72)
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For small angle, sin(ayy) ~ ay, Thus,

gy =cos(0yp) (2.73)

Then, from Equation 2.71 and by considering the other two possible combinations of
pairs of line segments, it can be shown that

25XY = Oéxy\/l + 25XX \/1 + 2£YY
28y, = oy 14 2Ey 1428, (2.74)

Equation 2.74 shows that the off-diagonal elements, that is, shear strain components in
the finite strain tensor depend on change in the angle between the corresponding line
segments as well as normal strains in the line segments.

We have discussed both the infinitesimal as well as finite strains and derived the
strain—displacement relations. At this juncture following points may be noted:

B We have not made any assumption of smallness in any quantity in the finite
strain theory.

B Engineering shear strains are twice tensorial shear strains.

B In the case of infinitesimal strains, the displacement gradient terms are so small
compared to unity that second or higher order terms of displacement gradient
can be neglected compared to unity. Further, we replace X with x in the partial
derivatives of displacements. Thus, by ignoring higher order terms of displace-
ment gradients in the expressions for finite strain tensor components, we can
obtain the expressions for the components of the infinitesimal strain tensor. In
the indicial form, we can write the expression for infinitesimal strain tensor as

_1

Ou;, Ou;

ox; Ox;

J

2.75)

2.4.8 Strain-Displacement Relations in Cylindrical Coordinates

Strain—displacement relations are a set of very useful equations that are used frequently
in solid mechanics. We have discussed them in detail in the previous sections and
arrived at the expressions in the Cartesian coordinate system. In this section, these
relations in the cylindrical coordinate system (Figure 2.7) are presented [1,6]. Finite
strain—displacement relations in cylindrical coordinates are as follows:

ou, 1|(0u, ) Ouy > (ou. )
E,=—+— d — < 2.76
or 2[8r]+[8r]+[8r] (2.76)
1|0uy 1(0u, Ou, Ou,  Ouy Ouy = Ou, Ou, u,O0uy  uyOu,

gy = | %Mo 4 1|9 _ Ottg Oty | OU; O WO 077
’ 28r+r[80 Y or o0 T or o0 or 00 or ar] @77

1|Ou, Ou, Ou, Ou, Ouy Ouy Ou, Ou,
§. = |9 Ot 4 Tt Oty | O, OU 278
210z Or Or 0z Or 0z Or Oz 275)
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FIGURE 2.7 Cylindrical coordinate system.

1 Oug | 1 |[Ou, ? Ouy ]2 [814 ]2
g v v Z
" [ * ] [ae] +[ae a0

00
0 0
+ () + () +2[u %— ) ;9] (2.79)
£, :ﬁ:l Quy l[@uZ Ou, Ou,  Ouy Ouy . Ou, Ou, ]—Me ou, tu 8145] (2.80)
2 2|0z rlo8 06 0z 00 9z 00 0z 0z 0z
e D= _ 8u+ Ou, +%2+%2 (2.81)
T2 oz dz dz dz ‘

Infinitesimal strain—displacement relations in cylindrical coordinates are as follows:

Ou
= O 2.82
© or @82
1|0uy 1(0u, u.0uy  uyOu,
L =—|%% _ MOt 2.83
“=olar Ty [ae O e T or ] (283)
=1 o, Ou. (2.84)
21 0z or
1 9 0 ou,
e = [u +8”0j’] ) + ) +2[ 8”; - (;;] (2.85)
Yo, 1]0uy Ou, ou, Ouy
_ Yo _ 1|Ouy 2.86
T 282+[80 T, Ty (2.86)
e, == Ou 2.87)
2 0z

2.4.9 Transformation of Strain Tensor

Transformation of strain tensor is similar to that of stress tensor. We shall discuss
transformation of stress tensor in Section 2.5.4. Here, we merely present the strain
transformation equations. Then, w.r.t. the Cartesian coordinate systems as shown in
Figure 2.11, the small strain tensor transformation is given by

[elvy. =lod[€]yolal” (2.88)
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In the explicit component form, the strain transformation is given by

Exlx! Exly’ €y
Exy &y &y
Ex! Eyry €y

ayy ayry Ay'z || Exx Exy Exx || Ax'x Qy'x azx
=|Gyx Ay Ayrl|€y &y Eyf|dyy Ay Ay (2.89)
Ay Ay Gy |[€x &y E|Gyy Gy; 4y

7z

Note: The finite strain transformation is the same as small strain transformation.

2.4.10 Compatibility Conditions

As we had mentioned earlier, in kinematics, we are concerned about the initial and
the final configurations of a body. We had related an arbitrary line segment in the
initial configuration to the line segment in the final configuration and arrived at strain—
displacement equations. No constraint was put regarding the configuration that the
body can assume. Physically, in solid mechanics, deformation of a body does not pro-
duce any void or gap. Also, deformation cannot result in a configuration, in which a
single spatial point is occupied by more than one material points, that is, one portion
of the body cannot penetrate into another. Compatibility conditions are the equations,
which ensure that these physical requirements are met.

We know that there are six strain—displacement equations and only three displace-
ment components. Thus, given the components of the strain tensor, if we have to find the
displacement components, we face a problem which is overdeterminate. Compatibility
equations, also known as St. Venant’s compatibility equations, ensure that a unique
displacement field is obtained from a given strain field. The compatibility equations
can be derived by differentiating the strain—displacement equations [7-9]. There are
six compatibility equations. However, it can be proved that they are not independent,
and they can be reduced to only three. Here, we present the compatibility equations for
small strains. In the explicit component form, these equations are as follows:

0% N D%y O’y

= 2.90
dy>  ox*  Oxdy =
0%, , 0%, 9" 2.91)
0z 0y 0Oyoz

2 2 2
0 Eyzz + 0 Exx 0 Vx (292)

2 2 2 2
e O Ve O 07y (2.93)
Oy0z ~ Ox*  Oxdy  Oz0x

2 82€,Vy 82'7zx _ 82%@’ 827%

= 2.94
0z0x  0Oy* 0y0z  Ox0Oy @94

825zz + az%cy _ 327,% + 82'72)«-

2 —
Ox0y  0z>  0z0x  0y0z

(2.95)
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2.5 KINETICS
2.5.1 Forces on a Body

Forces can be broadly divided into two types—body forces and surface forces.

Body forces are the results of characteristic properties of a body, and they act on all
the points of the volume of the body. Examples of body forces include gravitational
force, inertia, magnetic force, centrifugal force, etc. These forces are expressed as force
per unit volume. They can also be expressed in terms of force per unit mass.

Surface forces are results of interaction between two bodies. These forces act on a
portion or whole of the bounding surface of the volume of a structural element. From
the point of view of mathematical convenience, surface forces can be considered to be
acting on a surface, a line, or a point. Thus, these forces are expressed in units such
as N, N/mm, N/mm?, etc. Examples of surface forces are plenty; they include contact
forces between bodies and nearly all our day-to-day experiences such as carrying a bag
of grocery items, opening a door, pushing a car, and so on.

2.5.2 Cauchy’s Stress Principle and Stress Vector

In a very simple way, stress is known as force per unit area. It has a magnitude and ori-
entation. Thus, it is a vector. Let us consider a body under applied surface forces, F, and
body forces, B (Figure 2.8). These forces are transmitted from one point in the body
to another, and reacted at the restrained boundary by reaction forces, €2, and the body
is in static equilibrium. The transmission of forces within the body results in internal
forces. Let us consider an arbitrary plane that divides the body into two halves. Each
half is kept in equilibrium by the internal forces acting on the dividing plane and the
surface forces and body forces acting on that portion of the body.

We intend to find the stress vector at a point O in the dividing plane. Let us consider
a small area, AA, in the arbitrary dividing plane around the point, O. The internal
forces acting on the area, AA, can be expressed as a resultant force, AF, and resul-
tant moment, AM, acting at the point, O. As per Cauchy’s principle, as AA — 0, the

(a) Arbitrary
plane

FIGURE 2.8 Cauchy’s stress principle. (a) A solid body under applied surface forces and body forces.
(b) Internal forces and resultant force and moment on a small area. (c) Stress vector at a point.
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limiting value of the resultant moment per unit area vanishes, whereas, the limiting
value of the resultant force per unit area has a finite value, and it is called the stress
vector at that point. Mathematically,

lim &M _ g (2.96)
AA—-0 AA
lim 2F _ T, (2.97)
AA—-0 AA

T, in Equation 2.97 is called the stress vector or traction vector. The subscript ,
indicates that the stress vector 7, is associated with a plane whose unit outward normal
vector at the point O is n. The stress vector can be resolved into two components—one
normal to the plane, called normal stress and the other along the plane, called shear
stress. The shear stress can be further resolved into two components. Thus, the stress
vector has one normal stress component and two shear stress components.

2.5.3 State of Stress at a Point and Stress Tensor

We, now, focus our attention to the state of stress at a point. Cauchy’s stress principle
gives us the stress vector at a point on a surface element represented by its unit normal
vector. The state of stress at the point is given by all the possible combinations of stress
vectors and associated unit outward normal vector. However, we do not need to con-
sider all these pairs of stress vectors and the associated unit normal vectors. We, rather,
consider three mutually orthogonal planes at the point and determine the stress vectors
on these three planes. Stress transformation equations can then be applied to determine
stress vectors on any other plane.

Let us consider a Cartesian coordinate system as shown in Figure 2.9. e, e,, and e,
are the unit vectors along the respective axes. The stress vector at a point O on a plane
normal to axis x is 7, and the plane is represented by its unit normal vector e,. We can
consider two more planes through the point O with unit normal vectors e, and e, and
associated stress vectors T, and T, respectively. These three stress vectors associated
with the three unit vectors are sufficient to express the total state of stress at the point
O. Mathematically,

To| |ex
I.=T.e +T,e,+T.e. =T, 1e, (2.98)
T, e

XZ

FIGURE 2.9 Stress vectors at a point on three mutually orthogonal planes.
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Ty | e
I, =Tye. +Tye, +Tye. =Ty 1€ (2.99)
Ty.) e
T.) [e.
T =T.e +Tye, +T.e.,= T, 1e, (2.100)
];Z eZ
Combining the three stress vectors,
Tx Tm Txy sz €,
I,,=\T,, T, T.|e (2.101)

Tz sz sz Tzz e

The nine stress vector components in Equation 2.101 constitute a second-order
Cartesian tensor, called stress tensor. These components are commonly expressed in
the following way: o, for T,,, o, for T, o,, for T,,, o, for T_, and so on. Thus, the
stress tensor is expressed as

O xx ny Ox;
l[el=|oy o0, Oy (2.102)

O O Oz

The first letter in the subscript indicates the axis to which the concerned plane is nor-
mal, and the second letter indicates the direction of the stress component. o,,, 7,,, and
0. are the normal stresses. Remaining six stress components are the shear stresses. For
shear stresses, it is common to use the symbol 7. Also, it can be shown that the stress

tensor is symmetric, that is, 7,, = 7, 7., = 7,, and 7, = 7. Thus, the stress tensor

yx> xz
becomes
O xx xy TZ)(
lol=|ry o0, T (2.103)

T Tyz Oz

The stress tensor components are conveniently expressed pictorially by considering
an infinitesimal cube as shown in Figure 2.10. We intend to find the stress tensor at a
point O and the cube is constructed such that the point is at its centroid and the sides of
the cube are parallel to the axes of the Cartesian coordinates. On each of the six sides,
one normal stress and two shear stress components act. The convention for denoting the
stress components is as follows:

B ’s are normal stress and 7’s are shear stress components.

B The first letter in the suffix stands for the plane and the second letter for the
direction of the stress component.

B Normal stress is positive if it is in the outward direction (producing tension in
the cube).

B Shear stress is positive is if it has the same sense as the corresponding normal
stress. Thus, on a plane where the normal stress is positive and in the direction
of the coordinate axis, positive shear stresses are also in the direction of the
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FIGURE 2.10 State of stress at a point.

corresponding coordinate axes. On the other hand, if a positive normal stress
is in the opposite direction of the axis, positive shear stresses are also in the
opposite directions to the coordinate axes.

Note: The stress behavior we have studied so far is on the deformed configuration of
the body under loads. Stress tensor on the deformed configuration is called the Cauchy
stress tensor.

2.5.4 Transformation of Stress Tensor

Let us consider two Cartesian coordinate systems O-xyz and O-x'y’z’ as shown in Figure
2.11. Our aim is to express the stress tensor in the O-x"y’z’ system in terms of the stress
tensor in the O-xyz system. Direction cosines are used for stress transformation and
these are: direction cosine of X’ w.r.t. x is a,,, = cos «, direction cosine of x’ w.r.t. y is
a,, = cos 3, direction cosine of x’ w.r.t. z is a,, = cos 7, and so on. Direction cosines
are given in a tabular form in Table 2.2.

Let us consider a tetrahedron with three mutually orthogonal planes and one inclined
plane as shown in Figure 2.12. The inclined plane is chosen in such a way that the axis
x' is along its normal. The areas of the orthogonal triangles can be related to that of the
inclined triangle in the following way:

AO0BC _ a, (2.104)
AABC

FIGURE 2.11 Cartesian coordinate systems for stress/strain transformation.
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TABLE 2.2
Direction Cosines
Axes b y z
X/ Ayy a.\") Ay
y ay Qyy ay
z ay, a,, a
B
O-ZZ
TZJC
A
(0] 7,
B Mg B
Gxx(“ TXZ y
(0] A—’x A
Ty c
C I'4 2 C
2 . ="
YK,
C Oy

FIGURE 2.12 Stress components on the planes of an octahedron (exploded view).

aoAC _ (2.105)
AABC %
R0AB (2.106)
AABC

Components of the stress tensor in the O-xyz system are shown on the three orthogo-
nal planes. The resultant stress vector on the inclined plane is resolved into three com-
ponents parallel to the x-, y-, and z-axes. Considering static equilibrium of forces acting
on the tetrahedron, we get

T..(AABC) = 0, .(AOBC) + 7,,(AOAC) + 7., (AOAB) (2.107)
T,,(AABC) =7,,(AOBC) +7,,(AOAC) +7.,(AOAB) (2.108)
T..(AABC) = 7,.(AOBC) +7,.(AOAC) + 0..(AOAB) (2.109)

Dividing both the sides with the area of the inclined triangle and using Equations

2.104 through 2.106 and noting that 7, = 7,,, 7,, = 7., and 7, = T, we get
Toy = 0y +T o Oyy + Tl (2.110)
Ty =Ty + 00y +Tyay, (2.111)

Tx’z =T by, + T yzy'y +0a,, (2.112)
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In the matrix form, we can write

T./\'/.X O-.X"X T Xy 7— X aX/.)C
Tx’y Tx_v O-yy Tyz ax/y
Tx’z T x Tyz Oz || Ay

Composite Structures

@.113)

The stress resultant on the inclined plane can also be resolved into a normal stress
component o, and two shear stress components 7, and T,». We can obtain the com-
ponents of T, T\, and T,-, in the x-/, y-/, and z’-directions by multiplying them with the

respective direction cosines. Thus,

Oy = Tx'xax’x + Tx’yax’y + Tx’zax’z

Tx/y/ = TX’xay/x + Tx’yay’y + TX/Za,V,Z

Ty = Tx’xaz'x + Tx'yaz’y + Tx'zaz’z

In the matrix form,

O x'y! Ayx ayy a,, Tx’x
Txry/ = ay’x ay/y ay/z Tx/_v
Ty a; ay a., Tx'z

Combining Equations 2.113 and 2.117, we get the following:

o-.x/x/ aX/X a.x/y aX/Z O’XJC TXV
Ty [ = |Gyx ay'y Ay ||Try Oy
Ty a;y a,y Ay ||T Ty

(2.114)
2.115)
(2.116)
@.117)
aX/X
ay, 2.118)
a,,

We have considered a tetrahedron with an inclined plane whose normal is along x'.
Now, we consider two more tetrahedrons with normals along y’ and 7. Following a

similar procedure, we get

a.

T oyt ays, Ay, A ||0n Ty Tu
Oy [ =9 Gy Gy ||Tay woo Ty
Ty ay a.y Az || Tz vz Oz
Ty Ay Ayl Ay'z (|10 xx T xy T
Ty yx Gy Gy ||[Tay Oy Ty
(s ay a;y Ay || T Tyz O

1a.

Yy
a,

Cl/<

X

a;y

/
aZZ

.119)

(2.120)
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Now, combining the three Equations 2.118 through 2.120, we get the following:

O'X/X/ ’Tx/y/ TZ/X/

Txy' Oy Ty
Ty Oy Oy
Ay ayly Ay'z |0 xx Ty Tox || Gx'x Ay ay
=l|ay, Ay, Ay |[Ty Oy Ty l||Gyy, Gy, Gy (2.121)
a;x agy Ay || T Tyz Oz ||y, ay, ay

7z
Equation 2.121 can be written as
[G](x/,y/,z') = [a] [a](x,y,z)[a]T (2122)
where

O'x/x/ Tx/v/ Tz/x/
[U](xl,y’,z’) = Tx’y/ O'y/y/ Ty’zl

TZ/X/ T 10 g

vz 7’7

is the stress tensor in the O-x'y'z’ coordinate system

O—XX
[Oloyn =|Tw Ow Ty

TZ)C Tyz UZZ

is the stress tensor in the O-xyz coordinate system

Ay ax'y Ay
[o]= Ayx Ayry Ay,

Az az’y a;;

is the transformation matrix of direction cosines.

2.5.5 Stress Tensor—Stress Vector Relationship

In Equation 2.113, the vector of direction cosines is also the vector of the unit normal to
the inclined plane. Thus, the stress vector at a point on a surface is related to the stress
tensor at that point as follows:

In the component form,

{T}=[ol{n} (2.123)
In the vector form,

T, —on Q.124)
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In the indicial notation,

where
7‘;1.’(
{T}=1T,
T,

is the stress vector at a point on a plane whose unit normal is n

[o]=|Ty Oy T,

T Tyz O
is the stress tensor at the point
n.X
{n}=qn,
nZ

is the unit normal vector with components (n,, n,, n,) such that n’+ ni + nf =1
Note that [o] is symmetric; thus, [o] = [o]%

2.5.6 Principal Stresses

The stress tensor at a point gives the state of stress at that point w.r.t. a set of three
mutually orthogonal planes. Each of these planes is associated with a stress vector that
has one normal stress and two shear stress components. Theoretically, innumerable
planes and the corresponding stress vectors can be thought of at a point; however, from
design and analysis point, we are more concerned about the maximum normal and
shear stresses and the associated planes at that point.

The normal stress is the maximum when the stress vector T, is parallel to the unit
normal vector n. Let A be the magnitude of the stress vector. Then, for a stress vector,
which is parallel to the unit normal vector, we can write

I being an unit tensor
We know from Equation 2.124, that the stress vector is related to the stress tensor as

T, —on (2.127)

Thus, from the above two equations, we get the following:
In the component form,

([o]1=AlID{n}=0 (2.128)
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or
Ouw  Trny Txu 1 0 O0||n,
Ty Oy  Ty|—A0 1 Oy, ;=0 (2.129)
x ¥z UZZ 0 O n«.
or
O — A Ty - n,
Ty Oy — A Ty 11, 1=0 (2.130)
Tx Tyz Oz — A n;
In the vector form,
(c—A).n=0 (2131
and, in the indicial notation,

Equations 2.130 through 2.132 are an eigenvalue problem. The solution of this prob-
lem is obtained by equating the determinant of the square matrix to zero, that is,

O — A Ty Tox
Ty Ty — A Ty, |=0 (2.133)
T Tyz (o A

Equation 2.133 is a cubic equation for A (called the characteristic equation), solving
which we get three eigenvalues \. These eigenvalues are the principal stresses and the
associated eigenvector, that is, the unit normal vector associated with each principal
stress represents the corresponding principal plane.

EXAMPLE 2.1
Let the stress tensor at a point be given by

10 4 0
[c]=|4 4 0/MPa
0 0 4

Find the principal stresses and the principal planes.

Solution
Corresponding to the principal stresses and principal planes,

lo— A1=0
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or
10—-A 4 0
4 4-X 0 |=0
0 0 4-—X
On solving, we get
A=2,4,12

Thus, the principal stresses are

0, =2 MPa
0, =12 MPa

Now, let us find the principal planes. Note that each eigenvalue has got an
associated eigenvector.
First, for o, = 2,

10-2 4 0 |[n,
4  4-2 0 |{n,t=0
0 0 4-2||n
which gives us
2n,+n,=0
n,=0

Also,

ni+n+nl =1

Thus, on solving, we get

which means
1
n, = ﬁ(ex 726},)

Second, for o, = 4,
Following a similar procedure, we get
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that is,

Third, for o, = 12,
Here, we get

L2
NG
1
ny:ﬁ
n,=0

2

that is,

1
n :7(26,\‘ +ev)
3 \/g )

Note: Let us consider the following cross-product r, X (n, X n,), which is equal to
zero. We can consider any other similar possible combination. It shows that the three

unit vectors are mutually orthogonal.

2.5.7 Equilibrium Equations

Let us consider an infinitesimal cuboid with point O at its centroid as shown in
Figure 2.13. By Newton’s second law of motion, the sum of all forces in any direc-
tion on a body in dynamic equilibrium is equal to the mass of the body multiplied by
its acceleration in the same direction. Now, the sum of all forces in the x-direction

results in

T+ Oy B

xy %/ 2
do,, dy

w9y 2
I,

=t 5

do,, dx
W ox 2 I
Jr,, dx
T ox 2
Jt, dz
oo T 22
Y2 dz 2
do,, dz
GZZ + zz "
y dz 2
ot dz
z T+ zx 7
“ dJdz 2

FIGURE 2.13 Infinitesimal cuboid in equilibrium.
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Odo,, dx Oo,, dx
XX o d d - xx_ixxi d d
[0'+8x 2]yz[a Ox 2]yz
0T, dy 0T, dy
—i—[ny—l—a”z dde—[Txy— . szzdx
or,, dz or., dz
H7n +—= " dedy — | T, ——=—|dxd
[T 0z 2 T [T 0z 2] et
+ B, dxdydz = pa,dxdydz (2.134)

Upon simplifying and generalizing for all the three directions, we get the following:
In the component form,

oo 0T, O
XX + Xy + x + Bx — ax
Ox Oy 0z P
oy, 0Ty, 0Ty
=+ 4=+ B, =pa, 2.1
Oy 0z Ox y = P 2.135)
Jo,. OT or,
S+ =+ =+ B =pa,
0z Ox Oy < P
In the vector form,
V-o+B=pa (2.136)
In the indicial notation,
0o ;
99 LB = pa, 2.137)
ox;

J

Equations 2.135 through 2.137 are the equations of motion. Note that for static equi-
librium, @ = 0.

2.6 THERMODYNAMICS

Strain tensor and stress tensor in kinematics and kinetics, respectively, have been dis-
cussed. In the next section, we shall relate these variables by means of constitutive
relations. Constitutive relations, however, are not independent, and thermodynamic
principles put constraints on them. In this section, without going into the details of
mathematical derivation, we shall briefly state these thermodynamic principles.

Let us consider a body as shown in Figure 2.14. Let us apply surface traction and
heat on the body. Then, as per the first law of thermodynamics, also known as the prin-
ciple of conservation of energy, which states that the sum of the work done by external
forces and the heat input to a body per unit time is equal to the change in stored energy,
which we can write as

W+Q=K+U (2.138)

where
W: Total work done by the surface traction and body forces
Q: Heat input to the body during loading
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Surface traction T

Heat input Q Body force B

FIGURE 2.14 Body under thermo-mechanical loads.

K: Change in kinetic energy during the same period
U: Change in internal energy during the same period

If the forces are applied in a quasi-static manner, K = 0. Also, for an adiabatic pro-
cess, no heat transfer takes place between the body and the surrounding, and Q = 0.
Thus, for quasi-static loading under adiabatic conditions,

W=U (2.139)

The sum of work done by surface traction (W)) and work done by body forces (W,)
during the process of deformation is given by

W:W,+Wb:ffT,«du,- dS+ffB,~dui av (2.140)
S u V u

By Cauchy’s stress formula, T; = o;,n;. Substituting in the above equation, we get

W= f f o ;in;du; dS + f f Bdu; dv (2.141)
S u V u

The first term in the above equation is a surface integral and, by employing Gauss
divergence theorem, it can be converted into a volume integral. Then,

0(0 ;;du;)
V u ’ V u

Expanding and rearranging the terms, we get

W= ff[ "B

From equation of motion (Equation 2.137), the first term is zero for a quasi-static
loading (a; = 0). Thus,

du; dV + f %d”' dv (2.143)

3du,
W= f Tji dV (2.144)
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Stress tensor is symmetric, that is, o; = 0. Then, using strain—displacement rela-
tion, it can be shown that

. . Odu;
Odu; _ % o [adu, | O,

i — ,"d ii 2145
7 Ox 0x; Ox; ] Ty ( )

J

Then, substituting Equation 2.145 in Equation 2.144 and combining with Equation

2.139, we obtain
U= f f oyde; dV (2.146)

V e

Equation 2.146 gives the expression for the total internal energy of a body for adia-
batic process under quasi-static loading. The internal energy is the strain energy and we
can define a scalar function called strain energy density function U, such that

Thus, we can express the stress tensor as

~_ 90U,
Y Ogy

(2.148)

We have arrived at the concept of strain energy density function from thermody-
namic principles and its existence implies that the energy stored is recoverable, the
deformation is reversible, and the body is elastic. So far, we have considered the first
law of thermodynamics. Now, we can apply the second law of thermodynamics and,
from considerations of entropy, it can finally be shown that the strain energy density
function is positive. It puts restriction on constitutive modeling.

2.7 CONSTITUTIVE MODELING

Let us consider a body under the action of surface traction and body force. Let displace-
ments be given on part of the boundary. A typical solid mechanics problem is to find the
following unknowns: displacement vector, strain tensor, and the stress tensor. Thus, in
three dimensions, we have a total of 15 unknowns (three displacement components, six
strain components, and six stress components). We have nine equations from kinematics
and kinetics—six strain—displacement relations and three equilibrium equations. Thus,
we need six more equations for a complete solution of our problem. An insight into the
problem tells us that these equations have to come from the relations between stress and
strain. Our objective in this section is to find these six equations of stress—strain relations.
Constitutive modeling is mathematical modeling on the response of material to exter-
nal loads. Constitutive equations relate primary field variables with secondary field vari-
ables. In the present context, stress—strain relations (or force—displacement relations) are
derived from constitutive modeling. Mathematical modeling is based on assumptions
regarding different aspects of the subject. Constitutive modeling is about material and
the assumptions made are based on experimental observations on material behavior.

2.71 Idealization of Materials

There are many parameters, which are studied by experiments on materials. In this
section, we are concerned with stress—strain behavior of materials, and the common
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tests conducted are the uniaxial tension test, torsion test, and triaxial test. The results
of these tests are typically expressed as stress—strain curves where stress and strain
are plotted along y-axis (ordinate) and x-axis (abscissa), respectively. These curves
vary widely for different materials. Even for the same material, under different load-
ing environments such as different rates of loading, temperature, etc. these curves
vary. Thus, for simplicity and as an aid to design of structures, idealized materials are
constructed and used in mathematical modeling. Some of the idealized materials are
as follows:

Linear elastic material

Nonlinear elastic material

Linear elastic perfectly plastic material
Rigid material

Rigid perfectly plastic material, etc.

We shall restrict our discussions to elastic materials.

2.7.2 Elastic Materials

Elastic materials are those that regain their original shape and size once the applied
loads are removed. For these materials, the constitutive behavior depends only on the
current state of deformation. Many materials such as metals exhibit linear relationship
between load and deformation below the yield point. Stress—strain relation of these
materials below the yield point can be idealized as linear elastic (Figure 2.15a). On
the other hand, materials such as rubber exhibit nonlinear behavior between load and
deformation and their stress—strain relationship can be idealized as nonlinear elastic
(Figure 2.15b). In both these cases, the material regains its original shape and size once
the applied loads, which caused deformations, are removed. Following points should
be noted:

B Elastic deformation is instantaneous and time independent. Upon loading, an
elastic body deforms instantaneously without any time gap between loading
and deformation. Thus, elastic deformation is time-independent and time is not
a parameter in the constitutive modeling of elastic material.

m Elastic deformation does not involve loss of energy. Upon loading, an elastic
body deforms and the work done is stored in the body as strain energy. Once
the load is removed, the strain energy is fully recovered.

m Elastic deformation is reversible. Upon loading, an elastic body deforms. Once
the load is removed, the body regains its original configuration. There is no
permanent deformation.

FIGURE 2.15 Idealized stress—strain curves for (a) linear elastic and (b) nonlinear elastic materials.
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B FElastic deformation is such that there is one-to-one relation between state of
stress and state of strain in the current configuration.

2.7.3 Generalized Hooke’s Law

We stated above that for an elastic solid, there is one-to-one relation between state of
stress and state of strain in the current configuration. It is possible to relate the stress

tensor o;; to the strain tensor €;, by a one-to-one function f;; as follows:

oy = fii(en) (2.149)

Such materials are called Cauchy elastic material. These materials are not based on
thermodynamic principles, and it can be shown that reversibility of energy is not satis-
fied by these materials.

Reversibility of energy is ensured by assuming the existence of the strain energy
density function U,,. Such materials are called hyperelastic materials or Green elastic
materials. U, can be expanded in the Taylor’s series about € = 0. For linear elastic
materials, cubic and higher order terms in the Taylor’s series expansion are neglected
and a quadratic form of U, is obtained. By partial differentiation of this quadratic form
w.r.t. €, for a linear elastic body with zero stress prior to load application, we can relate
stress to strain as

0ij = Cijucn (2.150)

Equation 2.150 gives the most generalized relation between stress tensor and
strain tensor for a linear elastic material and it is known as the generalized Hooke’s
law. Cy, are the components of a fourth-order tensor C with 81(= 3%) elastic
constants.

o and g; are second-order tensors; however, it is convenient to adopt an alternate
notation, in which, we write them as 9 x 1 vectors as follows:

O—XX 8)@6 gxx
O-.V}’ E)’y E)’,V
O—ZZ €ZZ €ZZ
Ty €y Ve 12
0 =1Tup and g5 =1, 1 =17x/2 (2.151)
Try Exy Yy /2
Ty Ex Yoy /2
7_)(2', g)CZ PYXZ /2
Tyx Eyx Vyu!2

On the other hand, Cy, is a fourth-order tensor and, as per the alternate notation, we
write it as a 9 x 9 matrix. In this way, the generalized Hooke’s law can be written as
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O xx me Cxx) y Cxxzz Cxxyz Cxxz,x Cm} C)cxzy sz C)ocyx Exx
UY)’ CY)’)UC C)’.\‘,Vy nyZZ C)’.Vyl C)’\ X nyXV C}'.VZY CXVXZ C}'Y)’X 8}'}'
Oz szxx CZZ» 'y szzz szyz Czwc szx_\' szzy szcz szyx €z
Tyz Cyzxx Cvzyy Cyzzz Cyzyz Cvzzx Cyz)cy Cvzzy Cvzxz Cvzvx Eyz
To [= C.)»)CX C«ry) Cz.xzz szyz Cuczx Cz,xx) sz) sz sz\x X1Ex [ (2 A5 2)
T xy ny)oc Cxx vy nyzz nyyz Cx\zx nyxv nyzy nyxz vayx Exy
Ty Czyxx Czyyy Cz,vzz Czyyz Czyz,x Cz_vxy Czyzy Czyxz szyx Ez
Tz szxx szyy szzz szyz szzx szxy szzy szxz Cx yx Exz
Tyx C yXxx C yxyy c yxzZ C VXyZ Cvxzx C yxxy C yxzy C yXxZ C yXyx Eyx

The number of elastic constants in Equation 2.152 is 81 and it can be drastically
reduced under different criteria. In the following sections, we explore some of these
cases.

2.7.3.1 Symmetry of Stress and Strain Tensors

o; and €; are symmetric tensors. In their vector forms, the seventh, eighth, and ninth
rows can be deleted and the (9 x 1) vectors are replaced with (6 x 1) vectors. Similarly,
seventh, eighth, and ninth rows and columns in Cy, are deleted. Thus, the number of
elastic constants reduces from 81 to 36. Now, we can rewrite the generalized Hooke’s
law as

O Ciee Cuy  Cuz Chye Croe Cry||€x

Oyy Coe  Chy Gy Cyye Gy Gy |eyy

O-ZZ _ CZZ/YX szyy CZZZZ szyz CZZZ)C CZZ/Y}’ € 2z ( 2 1 5 3)
T Yz Cyvcx Cyzyy Cyzzz C}’Z}'Z Cyzvc Cyzxy ﬂ)/ )z .

T x CW szy)‘ CZ)(ZZ CUC_}'Z CZJCZ)C CZ)CX}’ ’Y x

Txy Cou  Cuyy  Cou Cuy Cyu Cony||Vw

Note thate , €, and €, have been replaced by 2¢, (=,,), 2¢,(=",,), and 2¢, (=,

yz2 TZX

respectively.
We make further changes and adopt an alternate (usually referred to as the con-
tracted) notation. As per the contracted notation,

xx—1 yy—2 zz—3 yz—4 zx—5 xy—6 (2.15%)
y: =04 Tx =05 Ty =06 (2.155)
Ex =€ Ey =& Ex=E3 Vy:=E VYux=E Vn =FE6 (2.156)

Then, we can write Hooke’s law as follows:
In the component form,

{o} =[Cl{e} (2.157)
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In the vector form,

o=C:e (2.158)
In the indicial notation (Summation on repeated indices is implied from 1 to 6.),

0; = Cijffj (2.159)
where

0y
02
03
04

Os

O¢

is the vector of stress components. (Note that this vector is different from the stress
vector or traction vector defined in the section on Kinetics.)

[C]=

is called the elastic stiffness matrix.

€
&
€3

{e}=

€s

€6

is the vector of strain components.

Now, let us go back to Table 2.1 in Section 2.3.3. We mentioned there that we
need 15 independent equations for determining 15 unknowns in a 3D problem.
We obtained nine equations from kinematics and kinetics. Here, we see that the
remaining six equations are the stress—strain relations obtained from constitutive
modeling.

Equation 2.157 is invertible and we can express strains in terms of the stresses. Thus,

{e}=[Sl{o} (2.160)
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where [S]=[C] " is called the material compliance matrix. And, we can write

& St Siz Si3 Sia Sis NI
) AYY S» Sa3 Sa Sas Sy || 02
&3 Ssi S S Su S Sxl|os (2.161)
&4 Sa Si Si3 Sas S4s Ss6 | |04
Es Ss1 Ss2 Ss3 Ss4 Sss Ss6 || 05
€6 Se1 Se2 Se3 Sea Ses N

2.7.3.2 Symmetry of Elastic Stiffness Matrix

For elastic materials, strain energy density function takes a quadratic form and it can
be shown that

o’U,  9U,
Og;j0cy  OcyOey

Cuij = = Cyju (2.162)

In other words, the tensor C;, is symmetric in ij and kl. Thus, the elastic stiffness
matrix C;; is symmetric in i and j. Thus, the total number of independent elastic con-
stants for a general anisotropic elastic material reduces to 21 and we can write the
generalized Hooke’s law as

01 Ch G Cs Cu Cs  Cglla
op) Co Cn Cyn Gy GCs Cylle
03 Ci Gy Gy Gy G Cylfes (2.163)
04 Cu Cu Gy Cu Cpis Cylley
Os Cs Gy G  Cyis Css Cselfes
O¢ Cis C Cse Cius Cse Ces | | E6

The number of independent elastic constants can be further reduced by consider-
ation of material planes of symmetry. We shall see in the following sections simpler
forms of Hooke’s law corresponding to different classes of materials.

2.7.3.3 Anisotropic Materials

Equation 2.163 gives the Hooke’s law for general anisotropic elastic material. As men-
tioned before, it has 21 independent elastic constants.

Some materials exhibit directional symmetry in properties w.r.t. certain planes. In
the most general case, in which there is no material plane of symmetry, the material is
called anisotropic. The presence of material plane(s) of symmetry reduces the number
of elastic constants as discussed below.

2.7.3.4 Monoclinic Materials

A monoclinic material has one material plane of symmetry. Figure 2.16 shows a mono-
clinic material in which the material plane of symmetry is normal to the z-direction.
For the axes shown in the figure, the transformation matrix (refer to Equation 2.122)
is given by

[a]=]0 1 0 (2.164)
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FIGURE 2.16 Monoclinic material.

For this transformation, we can find from Equations 2.88 and 2.122 that

o1 g1 el €1
!/ /
(o)) (o) & %)
/ !
03 g3 &3 &3
= and = (2.165)
Oy —04 Ey4 —E&4
O'g —05 Sg —&5
o O¢ € 6
Now,
o = C]]E] + C]2€2 +C13€3 +C14€4 +C15€5 +C16€6 (2166)
! ! ! ! ! ! ! ! ! !/ !/
o1 =Crgl + Ciesy + Cisey + Cyeg + Cises + Cress (2.167)

Employing Equation 2.165 in Equation 2.167,
01 = Cl1&1 + Clre, + Clies — Clyey — Clses + Cless (2.168)
Comparing Equation 2.166 with Equation 2.168, we get

&(Cii—Ci) +& (CIZ —C1/2>+53 (CIS _CI/S)
+e4(Cry +Cly ) +e5(Cis +Cls) +e6 (Cio — Cls ) =0 (2.169)

Equation 2.169 is valid for all values of strain components. It is possible when,
C14 = C15 =0

Extending the process to other stress components, it can be shown that

C24 = C25 =0 and C34 = C35 =0 and C46 = C56 =0
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Thus, the number of independent elastic constants reduces to 13 and Hooke’s law for
monoclinic material can be written as given below

01 Cn Ch Ci 0 0 Cis||&
02 Ch Cn Cy 0 0 Cy || &2
03 _ Csz Cn Cy 0 0 Cs |3 (2.170)
04 0 0 0 Cy Cys 0 ||eg '
os 0 0 0 Cis  GCss 0 |les

O Cis Cy Cse 0 0 Ces | €6

2.7.3.5 Orthotropic Materials

An orthotropic material has three mutually orthogonal material planes of symmetry.
Arguments similar to those for monoclinic materials can be extended and it can be
shown that the number of elastic constants is reduced to nine in the elastic stiffness
matrix. Thus, Hooke’s law for orthotropic materials takes the form as below

01 Ciy Ci Cis 0 0 0 |la
02 Ci Cn C3 0 0 0 ||e
o3| Cis Cy Cs3 0 0 0 ||&
ol [0 0 0 Cu 0 0l|la @17
Os 0 0 0 0 Css 0 [|es
O¢ 0 0 0 0 0 Ces | | €6

&1 Sii Sy Si3 0 0 rU] ‘

& NE Sx S 0 0 |{o2

&3 _ Si3 823 833 0 0 [|os 2172
€4 0 0 0 Sus 0 0 ||og '

Es 0 0 0 0 Sss 0 ||os

6 0 0 0 0 0 Ses | | T6

Orthotropic materials are an important class of materials, especially in the field
of composites. We have noted that there are nine independent constants in the elastic
matrix. We shall now see that there are nine engineering elastic constants that describe
an orthotropic material.

Engineering constants are experimentally determined by tests such as tension test
and torsion test. These tests can be mathematically represented by means of application
of stress in the respective direction. Figure 2.17 shows a cuboid under normal stress and
shear stress states.

Let us first consider a stress state in Figure 2.17a, in which, a normal stress is applied
in the x-direction.

o=0, op=03=0,=05=0=0 (2.173)
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FIGURE 2.17 A cuboid under (a) normal stress and (b) shear stress (stresses within brackets are as
per our alternate notation).

Then, from Equation 2.172, the strain components can be obtained as

e =380, or &, =35810. (2.174)
€y =801 O &y, =820 (2.175)
€3 =_383307 Or &, =350, (2.176)
g4=65=¢6=0 or 7,=7,=7,=0 (2.177)

Thus, we see that there are normal strains in all the three orthogonal directions and
no shear strain. Under this applied stress, the normal strain in the x-direction is due to
the direct stress and the normal strains in the y- and z-directions are due to Poisson’s
effect.

Now, in a general case, Young’s modulus E; is defined as the ratio of the direct stress
in the i-direction to the normal strain in the same direction. Similarly, Poisson’s ratio
V;» © = J is defined as the ratio of the transverse strain in the j-direction to the normal
strain in the i-direction when the applied stress is in the i-direction. (Note: i and j take
the values x, y, z. No indicial notation is implied here.)

Thus, Young’s modulus in the x-direction and Poisson’s ratios in the xy- and xz-
planes are given by

O-)Oc 622

E,=— and v, =-— and v, =— (2.178)

EY)’

In a similar way, by applying normal stress in the y- and z-directions, respectively,
we can obtain the following:

E, =72 and v, =—"% and v, =-"= 2.179)
Eyy Eyy Eyy
E 7% and v,——5% and v, —-° (2.180)
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Using Equations 2.174 through 2.176 in Equations 2.178 through 2.180 and extend-
ing the procedure to the y- and z-directions, we get the following:

Ex == L and va — 7h and VXZ = 7& (2181)
Si ) Sii Su

Ev=l and v, =-52 ang y, —_S2 (2.182)
TS, Sy S»
3 S33 ’ S

Next, as shown in Figure 2.17b, let us consider a stress state in which a shear stress
is applied.

0'1:(72:0'3:05:0'6:0, Oy =0 (2184)

Then, from Equation 2.172, the strain components can be obtained as

g=&=¢6=0 or &,=¢,=¢,=0 (2.185)
€4 = S44O'4 or 7, = S44’7'yZ (2186)
es=¢g=0 or VYox =V = 0 (2.187)

Thus, we see that there is only one shear strain and all other strains are zero.

Now, in a general case, shear modulus Gypi=]j is defined as the ratio of the shear
stress in the #j-plane to the shear strain in the same plane. (Note: i and j take the values
X, ¥, z. No indicial notation is implied here.)

Thus, shear modulus in the yz-plane is given by

G, =" (2.188)

In a similar way, by applying shear stress in the zx- and xy-planes, respectively, we
can obtain the following:

G, =" (2.189)
’YZ)C

G, =2 (2.190)
Y xy

Using Equation 2.186 in Equation 2.188 and extending the procedure to the other
two planes, we finally get

G.= and GU:SL and ny:i (2.191)

Saa 55 Se6
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Now, from Equations 2.181 through 2.183 and 2.191, we obtain the expressions for
the compliance matrix components for an orthotropic material as follows:

S, = El (2.192)
Sy = El (2.193)
Sy = bf (2.194)
Suy = Gl (2.195)
Sss = Glu (2.196)
Ses = Gl) (2.197)
Sip = f’%‘ - ’;j (2.198)
Sy = — ”E — ”E (2.199)
Sy = — ’2 —— ’;j (2.200)

Thus, for an orthotropic material, the stress—strain relation can be written as

RS Yy Ve 0 0 0
E, E, E,
R N 0 0
€. E. E, E, »
Eyy Vg Uy i 0 0 0 »y
EZZ EX E\' EZ O'ZZ
- : 1 (2.201)
= Ty
Tr 0 0 o — o oll
Yax Gv" T
Vo 0 0 0 o L ol
G,
]
0 0 0 o 0
G,
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2.7.3.6 Transversely Isotropic Materials

A transversely isotropic material is an orthotropic material that exhibits isotropic
behavior in one plane of symmetry. Taking the plane yz- as the material plane of sym-
metry possessing isotropic properties, it can be seen that

Cp=Cy; and C;p,=C;; and Cs5=Cg

Further, it can be shown that

C22 - C23
Cyy=—"—"
2
Thus, the number of independent elastic constants reduces to 5. The independent
engineering constants for a transversely isotropic material with yz- as the plane of isot-
ropy are

E.  Young’s modulus in the x-direction

E,  Young’s modulus in the y-direction

V;\, Major Poisson’s ratio in the xy-plane
G;,V In-plane shear modulus in the xy-plane
Vyz' Major Poisson’s ratio in the yz-plane

X

In-plane shear modulus, G, in the plane of isotropy is related to the major Poisson’s
ratio, v,, in the same plane as

E,
G,=—">"— 2.202
= 14 (2.202)

Thus, G,, can also be considered as the fifth independent engineering constant in
place of v,,. Note that E, = E, v,, = v, and G, = G,,,
The stiffness matrix for this material is given by

C, Cn Cp 0 0 0
Cp, C,, Cy; 0 0 0
Chr Cpn Cyp 0 0 0
Cl= _ 2.203
c] 0 0 0 % 0 0 ( )
0 0 0 0 Css 0
o 0 0 0 0 Css

Sii Siz Siz 0 0 0
S Sn S 0 0 0
(] = S S3 S» 0 0 0 (2.204)
0 0 0 285,-S3) 0 0
0 0 0 0 Sss 0
0 0 0 0 0 Sss
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Then, the stress—strain relation for a transversely isotropic material with yz as the
plane of symmetry can be written as

1 Y % 0 0 0
E, E. E.
, SLE T 0 0 0
Exx EX E_V E) Uxx
e _ Vi _ Vi" i 0 0 0 Tyy
€z EX E)' E)’ Oz
_ (2.205)
Tz 0 0 0 M 0 0 Ty
Var Ey Tox
Yo 0 0 0 0 L
Gx,v
1
0 0 0 0 0 —
ny

2.7.3.7 Cubic Symmetry

An orthotropic material, in which all three material planes of symmetry are identical,
is known as a material with cubic symmetry. The number of independent elastic con-
stants reduces to three. Note that the three orthogonal planes are identical but they do
not have isotropy. Equation 2.206 shows the elastic stiffness matrix.

(2.206)

S O O O O

0 0 0 0 0 Cy

2.7.3.8 Isotropic Materials

Further reduction in the number of independent elastic constants from three to two is
possible when one of the three orthogonal planes in a cubic symmetric material is iso-
tropic. Such a material is called isotropic. It can be seen that in an isotropic material,
there are infinite numbers of material planes of symmetry. Thus, material properties are
not dependent on the directions and the elastic stiffness matrix takes the following form:

Cn Ch Cp 0 0 0
Ch, Ch Cp 0 0 0
Cc, C, Cy 0 0 0
Cll - CIZ
cj=% 0 0 —— 0 0 (2.207)
0 0 0 0 Cu—Cr 0
2
0 0 0 0 0 %
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The compliance matrix reduces to

S S S 0 0 0
S S S 0 0 0
[s]=""2 " (2.208)
0 0 0 2(S,—Sn) 0 0
0 0 0 0 2(811 = S12) 0
0 0 0 0 0 2(S;, — Si2)
Then, the stress—strain relation for an isotropic material can be written as
i - v 0 0 0
E E E
—v 1 —v
— = — 0 0 0
8)()( E E E UXX
Ci= T 2209
ry,VZ 0 0 0 2(1 + V) O 0 T}'Z
Vx E T
Yl o 0 o (R 2 |
E
0 0 0 0 o v
E

It may be noted that we have three engineering elastic constants describing an iso-
tropic material, namely Young’s modulus E, shear modulus G, and Poisson’s ratio v. It
may further be noted that out of these three constants only two are independent as the
third one can be expressed in terms of the first two as follows:

o E
2(1+v)

(2.210)

2.8 PLANE ELASTICITY PROBLEMS

In the preceding sections, we framed the governing equations for a 3D linear elastic-
ity problem. The boundary conditions are provided in the form of forces, displace-
ments, or both specified on the boundary. In certain boundary value problems, owing
to their particular way of loading, geometry and boundary conditions, it is possible to
ignore some of the stress or strain components. Considerable computational efficiency
is achieved by idealizing these problems as 2D. Two such important idealized problems
are plane stress problem and plane strain problem [2]. In this section, we shall briefly
discuss these two plane problems.

2.8.1 Plane Stress

Let us consider a thin plate in the xy-plane (Figure 2.18). The thickness of the plate
is small compared to the other two dimensions and the applied forces act only in the
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FIGURE 2.18 A thin plate—pictorial representation of plane stress.

plane of the plate, that is, in the xy-plane. A problem like this can be idealized as one
in which the stresses in the thickness direction are zero. Also, the nonzero stresses are
functions of x and y only. This is called a plane stress problem, which is mathematically
described as

O =Tu =Ty = 0 (2.211)

0w =04x(x,y) and o, =0,(x,y) and 7, =7,/(x,y) (2.212)

2.8.1.1 Plane Stress Problem in Orthotropic Materials

Under plane stress condition, the strains in orthotropic materials can be obtained by
using Equation 2.201 as

o _On U0y 213
E. E

Oy VO
ey = Ef)y _ %7){ (2.214)
B (2 N 2.215)

. E, E,
Yye =0 (2.216)
N =0 (2.217)

_Tw

Vo (2.218)
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By solving the above equations, the nonzero stresses can be obtained and the results
can be written in the matrix form as

E, voE, 0
I—vyv,, I—vywy,
XX ’ EXX
e ) 0 e, (2.219)
’ I —vyvy, I —vy
Txy ’ X
N 0 0 Gy T

Equation 2.219 gives the stress state in an orthotropic material under plane stress
condition. Note that there are three nonzero stress components, but, there are four non-
Zero strain components.

2.8.1.2 Plane Stress Problem in Isotropic Materials

Under plane stress condition, the strains in isotropic materials can be obtained by using
Equation 2.209 as

e, =Tu _Yow (2.220)
E E
Oy VO
g, =2 x 2.221

w =g £ ( )

e =-—v|Tu I (2.222)
E E

Yy =0 (2.223)

7. =0 (2.224)

vy = 2(1;_ ¥) T xy (2.225)

By solving the above equations, the nonzero stresses can be obtained and the results
can be written in the matrix form as

E E
1-v? 1i 7 0
o v v £
vE E
= 0e, 2.226
> - 1= » ( )
Ty 0 0 G|U»

Equation 2.226 gives the stress state in an isotropic material under plane stress con-
dition. Note that, as in the case of orthotropic materials, there are three nonzero stress
components, but, there are four nonzero strain components.
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2.8.2 Plane Strain

Let us consider a long thick cylinder under internal pressure (Figure 2.19). For the sake
of simplicity, let us orient the axis of the cylinder along the z-axis such that the xy-plane
is normal to the axis of the cylinder. Some characteristic features of this problem are

B Geometry—the cross-sectional dimensions are small compared to the longitu-
dinal dimension.

B [ oading—the applied forces are normal to the longitudinal axis. They are
functions of x and y only, and independent of z.

B Boundary conditions—the ends are restrained such that displacement gradi-
ents are zero at the ends.

Let us consider a cross section far from the ends. The displacements along x- and
y-directions are functions of x and y only. On the other hand, the displacement along
the z-direction is zero. Mathematically,

U, =u,(x,y) (2.227)
Uy =ty (X, y) (2.228)
u, =0 (2.229)
Thus,
W= ) (2.230)
Ox
s.V)’ = % = 8yy (X, )’) (2231)
dy
=% g 2.232)
0z
ou Ou,
=—+—_—-=0 2.233
Y ay + Oz ( )
y

FIGURE 2.19 A long cylinder under internal pressure—pictorial representation of an example of
plane strain.



Basic Solid Mechanics 73

ou ou
=9 O 2.234
T2 =0, T ox (2234)
Ou, Ou
L= O 2235
Y xy ox | oy Yy (X, ) ( )

A problem with these characteristics is known as a plane strain problem. Some com-
mon examples of plane strain problems are thick pipe under internal or external pres-
sure, dam, tunnel, etc.

2.8.2.1 Plane Strain Problem in Orthotropic Materials

By substituting the strains from Equations 2.230 through 2.235 in Equation 2.201, after
some arithmetic manipulation, we get the following:

2
o = L — Vax - Ul Uyl o . (2236)
E. E, E. E, ’
2
e, = Vxy + Uyl ox o i . vy = b4 Oy (2237)
- E, E, E, E; ’
=T (2.238)
Yy ny .
We can solve the above equations for o, 0,,, and 7,,, and express them in terms

of the nonzero strain components. Further, o, can be expressed in terms of o, and
o, as

EZV\’Z
O, =V, 0 + £ =0, (2.239)

y

Thus, we see that there are four nonzero (three independent) stress components.

2.8.2.2 Plane Strain Problem in Isotropic Materials

For isotropic materials, we put £, = E, = E, = E,v,, = v, = v, =1,and G,, = G and
obtain the following:

2 2

e =|! o - ”J; o, (2.240)
2 2

ey =1 o - ”Z” . (2.241)
Y= (2.242)
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We can solve the above equations for o,,, 0,, and 7,,, and express them in terms of

the nonzero strain components in the matrix form as follows:

E(l—v) VE
A+v)A-2v) (A+v)A-2v) -
O'yv _ VE E(l —V) Evy (2243)
’ A+v)1-2v) (d+v)A-2v) ’
TXV Xy
: 0 0 G|
Further, o, can be expressed in terms of o, and o, as
O, =V(0y +0y) (2.244)

Thus, we see that there are four nonzero stress components. However, it may be
noted that only three stress components are independent.

29 SUMMARY

The basic concepts of solid mechanics have been reviewed in this chapter. Solid
mechanics is based on the fundamental concept of continuum, which is a state of
a continuously distributed material without any crack or flaw. The governing equa-
tions belonging to four broad areas—kinematics, kinetics, constitutive relations, and
thermodynamics—based on certain fundamental principles govern the behavior of a
material; concepts in the first three areas are discussed in detail, whereas an intro-
ductory remark is made in respect of thermodynamic principles as applied to solid
mechanics.

Kinematics is the subject of geometric changes in a body without any concern
for the factors that cause such changes. The variables involved in kinematics are
the displacements and strains and, the primary output of kinematics are the strain—
displacement relations. Kinetics is the study of forces and moments acting on a body
in static or dynamic equilibrium and it is based on conservation of momenta, which
gives us the equilibrium equations or equations of motion. Experimental observations
together with thermodynamic considerations provide the constitutive relations. The
constitutive relations are developed for different idealized materials and they relate
kinematics to kinetics. The strain—displacement relations, equations of motion, and
constitutive models provide the necessary equations to determine the required param-
eters such as displacements, strains, and stresses.

Computational efforts can be greatly reduced by the plane stress and plane strain
approximations. These approximations are valid in certain boundary conditions, load-
ing, and geometry such that a 3D problem can be treated as 2D with reduced numbers
of parameters.

EXERCISE PROBLEMS

2.1 Ifabar of length 400 mm elongates under an axial tensile force by 0.4 mm,
determine the following strains in the bar: (i) engineering strain, (ii) true
strain, (iii) Green strain, and (iv) Almansi strain.
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2.2

23

24

25

2.6

27

2.8

29

The displacement vector (coordinate axes O-XYZ and o-xyz are superim-
posed) at a point is given by

u=(4x"+3y+z+2)e, +(x+2y" +2z+5e, +(2x+3y+5z° + e,

If the initial coordinate of a point is (1,0,—2), determine its coordinates in
the deformed configuration.
The displacement vector (coordinate axes O-XYZ and o-xyz are superim-
posed) at a point is given by

u=(4x*+3y)e, +(2y* + Se, + (5z2° 4 3)e,

Determine the deformation gradient and displacement gradient. Verify that
[F]=[I]+[D]

Consider the displacement field given in Exercise 2.3. Determine the infini-
tesimal strains at a point whose initial coordinates are (1,—2,4).

The displacement vector (coordinate axes O-XYZ and o-xyz are superim-
posed) at a point is given by

u=(4x+3yle, +(2y—>5e, +(5z+06)e,

If the coordinates of a point in the deformed configuration are (1, 4, 0),
determine the original coordinates and the infinitesimal strains at the point.
Consider the displacement field given in Exercise 2.5. Determine the change
in length of the line segment joining two points whose original coordinates
are 4, 0,2) and (2, 1, 0).

The stress tensor at a point is given by

3 1 0
[c]1=|1 3 O0|MPa
0 0 1

Determine the principal stresses and associated principal planes.
The stress tensor at a point is given by

51 0
[c]l=|1 4 O0O|MPa
0 0 2

Determine the stress vectors on the positive and negative xy-, yz-, and
zx-planes.
The stress tensor at a point is given by

6 -2 1
[o]=|-2 4 0|MPa
1 0 2



76

2.10

2.11

2.12

213

2.14

215

2.16

217
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Determine the shear stress on the plane associated with the normal given by

1
n:?(ex +ey +ez)

5

The stress tensor at a point is given by

2x y —Z
[o]l=|Yy 4y 0 |MPa
-z 0 6z

Determine the body forces acting on the body if it is at rest.
The stress tensor at a point is given by

250 40 75
[o]=|40 200 0 |[MPa
75 0 200

Write the stresses as a (6 x 1) vector in the contracted notation.
The strain tensor at a point is given by

12 08 04
[e]1=]0.8 1 0.2/x107*
04 02 1.1

Write the strains as a (6 X 1) vector in the contracted notation.

For an anisotropic material, the generalized Hooke’s law states that there
are 81 elastic constants. Work out systematically and show that under vari-
ous criteria, the number of these constants can be reduced leading to five
and two independent elastic constants, respectively, for transversely isotro-
pic material and isotropic material.

Young’s modulus and shear modulus of aluminum are given as 70 and
26 GPa, respectively. Determine its Poisson’s ratio.

The stress tensor at a point is given as

150 25 0
[c]=|25 140 0 |MPa
0 0 160

Determine the strain tensor if Young’s modulus and shear modulus are 70
and 26 GPa, respectively.

Derive the elastic stiffness matrix for an orthotropic material in terms of its
elastic constants.

Hint: Compliance matrix is given by Equation 2.201. [C] = [S] .

Given the compliance matrix of an orthotropic material by Equation 2.201,
derive the compliance matrix expression of an isotropic material in terms of
its elastic constants.

Hint: For an isotropic material £, = E, = E, = F, and so on.
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2.18

2.19

2.20

2.21

2.22

The material properties of an orthotropic material are as follows:

E, =150GPa, E, =12GPa, E, = 12GPa, G,, =4.5GPa, G,, =8GPa,
G, =8GPa,v,, =02,v,, =02,and v,, =0.3

Determine the stiffness matrix and the compliance matrix.
For an orthotropic material, the elastic constants are given as

E, =150GPa, E, =12GPa, E, = 12GPa, G,, =4.5GPa, G,, =8GPa,
G, =8GPa,v,, =0.2,v,, =02, and v,, =0.3

The stress tensor at a point is given as

1200 30 40
[e]l=]| 30 25 0 |MPa
40 0 20

Determine the strain tensor.
In a thin plate (in the xy-plane) under in-plane loads, the strains are
given as

Ex =&y =1.2X% 10* and Yy =0.
Determine the stresses if £ = 200 GPa and v = 0.3.
What is the normal and shear strains in the z-direction and xz-/yz-planes?
Hint: Use plane stress idealization.
In a thin plate (in the xy-plane) under in-plane loads, the following stresses

are applied:

0 =1400MPa, o,, =250MPa, and 7,, =0

If the out-of-plane stresses are zero, determine the strains in the plate.
The orthotropic material properties are as follows:

E, =160GPa, E, =8GPa, E, =8GPa, G,, =3GPa, G,, = 6GPa,
G, =6GPa,v,, =0.2,v,, =02, and v, =0.33

Solve it first by using 3D orthotropic constitutive relation and then verify
the results by using plane stress idealization.

A long tube of internal diameter 80 mm and thickness 8 mm is pressurized
to 120 MPa. Determine the stresses and strains in the pipe.

Following data are given:

E=200GPa,v=0.3

Hint: Use force equilibrium to determine the membrane stresses. Use plane
strain idealization for strains.
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2.23 Solve the problem in Exercise 2.22 if the material is changed to orthotropic

with the following data:

E, =60GPa, E, = 60GPa, G,, = 4GPa,v,, = 0.2

2.24 Consider two Cartesian coordinate systems O-xyz and O-x'y’z/, where the

second system is obtained by rotating the first one about x-axis by 30°. The
stress at a point in the first coordinate system by

1200 30 40
[o]=| 30 25 0 |MPa
40 0 20

What is the stress tensor in the second coordinate system?

2.25 Consider the problem given in Exercise 2.24. Determine the strains in the

first coordinate system and then get the strains by transformation. Verify
the results by first transformation of stress to the second coordinate system
followed by determination of strains. Assume the following isotropic mate-
rial data:

E=200GPa,v=0.3
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Micromechanics of a Lamina

3.1 CHAPTER ROAD MAP

A laminate is a laminated composite structural element, and laminate design is a cru-
cial aspect in the overall design of a composite structure. As mentioned in Chapter 1,
laminae are the building blocks in a composite structure; knowledge of lamina behav-
ior is essential for the design of a composite structure and analysis of a lamina is the
starting point. Figure 3.1 presents a schematic representation of the process of compos-
ite laminate analysis (and design) at different levels. A lamina is a multiphase element
and its behavior can be studied at two levels—micro level and macro level. For micro-
mechanical analysis of a lamina, the necessary input data are obtained from the experi-
mental study of its constituents, viz. reinforcements and matrix, and lamina behavior is
estimated as functions of the constituent properties. The lamina characteristics are then
used in the analysis of the lamina at the macro level and subsequent laminate design
and analysis. Alternatively, the input data for the macro-level analysis of a lamina and
subsequent laminate design and analysis can be directly obtained from an experimental
study of the lamina. Thus, in the context of product design, the micromechanics of a
lamina can be considered as an alternative to the experimental study of the lamina.

In this chapter, we provide an introductory remark followed by a brief review of the
basic micromechanics concepts. There are many micromechanics models in the litera-
ture. Our focus is not a review of these models; instead, we dwell on the formulations of
some mechanics of materials-based models for the evaluation of lamina thermoelastic
parameters and briefly touch upon the elasticity-based models and semiempirical models.

3.2 PRINCIPAL NOMENCLATURE

A Area of cross section of a representative volume element
A,AL A, Areas of cross section of composite, fibers, and matrix, respectively,
in a representative volume element

b.b,b, Widths of composite, fibers, and matrix, respectively, in a representa-
tive volume element

d Fiber diameter

E, Young’s modulus of isotropic composite

E.E, Young’s moduli in the longitudinal and transverse directions, respec-
tively, of transversely isotropic composite

E, Young’s modulus of isotropic fibers

E, Ey Young’s moduli in the longitudinal and transverse directions, respec-
tively, of transversely isotropic fibers

E, Young’s modulus of matrix

F. Total force on composite (representative volume element)

F, F, Forces shared by the fibers and matrix, respectively

G, Shear modulus of isotropic fibers
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FIGURE 3.1
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Shear moduli in the longitudinal and transverse planes, respectively,
of transversely isotropic fibers

Shear modulus of matrix

Length, width, and thickness, respectively, of a representative volume
element

Lengths of composite, fibers, and matrix, respectively, in a represen-
tative volume element

Fiber spacing

Thicknesses of composite, fibers, and matrix, respectively, in a repre-
sentative volume element

Fiber volume fraction, matrix volume fraction, and voids volume
fraction, respectively

Critical fiber volume fraction and minimum fiber volume fraction,
respectively

Total volume of composite

Volumes of fibers, matrix, and voids, respectively

Mass fraction of fibers and mass fraction of matrix, respectively
Total weight of composite

Mass of fibers and mass of matrix, respectively

Coefficient of thermal expansion of isotropic composite
Longitudinal and transverse coefficients of thermal expansion,
respectively, of transversely isotropic composite

Longitudinal and transverse coefficients of thermal expansion,
respectively, of transversely isotropic fibers

Coefficient of thermal expansion of matrix

Coefficient of moisture expansion of isotropic composite
Longitudinal and transverse coefficients of moisture expansion,
respectively, of transversely isotropic composite

Longitudinal and transverse coefficients of moisture expansion,
respectively, of transversely isotropic fibers

Coefficient of moisture expansion of matrix

Longitudinal (in a longitudinal plane) and transverse (in a transverse
plane) shear strains, respectively, in composite
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Ultimate shear strain in isotropic composite

Ultimate longitudinal (in a longitudinal plane) and transverse (in a
transverse plane) shear strains, respectively, in transversely isotropic
composite

Longitudinal (in a longitudinal plane) and transverse (in a transverse
plane) shear strains, respectively, in fibers

Ultimate shear strain in isotropic fibers

Ultimate longitudinal (in a longitudinal plane) and transverse (in a
transverse plane) shear strains, respectively, in transversely isotropic
fibers

Longitudinal (in a longitudinal plane) and transverse (in a transverse
plane) shear strain, respectively, in matrix

Ultimate shear strain in matrix

Deformations in composite, fibers, and matrix, respectively

Changes in moisture content in composite, fibers, and matrix,
respectively

Change in length of a representative volume element

Changes in length of composite, fibers, and matrix, respectively, in a
representative volume element

Change in temperature

Longitudinal and transverse tensile strains, respectively, in composite
Longitudinal and transverse compressive strains, respectively, in
composite

Ultimate tensile strain in isotropic composite

Ultimate longitudinal and transverse tensile strains, respectively, in
transversely isotropic composite

Ultimate longitudinal and transverse compressive strains, respec-
tively, in transversely isotropic composite

Longitudinal and transverse tensile strains, respectively, in fibers
Longitudinal and transverse compressive strains, respectively, in
fibers

Ultimate tensile strain in isotropic fibers

Ultimate longitudinal and transverse tensile strains, respectively, in
transversely isotropic fibers

Ultimate longitudinal and transverse compressive strains, respec-
tively, in transversely isotropic fibers

Longitudinal and transverse tensile strains, respectively, in matrix
Longitudinal and transverse compressive strains, respectively, in
matrix

Ultimate tensile strain in matrix

Fiber packing factor (in Halpin-Tsai equations)

Poisson’s ratio of isotropic fibers

Major Poisson’s ratios (in the longitudinal plane and transverse plane,
respectively) of transversely isotropic fibers

Poisson’s ratio of matrix

Reinforcing factor (in Halpin—Tsai equations)

Density of composite, fibers, and matrix, respectively

Longitudinal and transverse tensile stresses, respectively, in composite
Longitudinal and transverse compressive stresses, respectively, in
composite

Ultimate tensile stress in isotropic composite (i.e., tensile strength of
isotropic composite)
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Composite Structures

Ultimate longitudinal and transverse tensile stresses, respectively, in
transversely isotropic composite (i.e., longitudinal and transverse ten-
sile strengths of transversely isotropic composite)

Ultimate longitudinal and transverse compressive stresses, respec-
tively, in transversely isotropic composite (i.e., longitudinal and trans-
verse compressive strengths of transversely isotropic composite)
Longitudinal and transverse tensile stresses in fibers

Longitudinal and transverse compressive stresses in fibers

Ultimate tensile stress in isotropic fibers (i.e., tensile strength of iso-
tropic fibers)

Ultimate longitudinal and transverse tensile stresses, respectively, in
transversely isotropic fibers (i.e., longitudinal and transverse tensile
strengths of transversely isotropic fibers)

Ultimate longitudinal and transverse compressive stresses, respec-
tively, in transversely isotropic fibers (i.e., longitudinal and transverse
compressive strengths of transversely isotropic fibers)

Longitudinal and transverse tensile stresses, respectively, in matrix
Longitudinal and transverse compressive stresses, respectively, in
matrix

Ultimate tensile and compressive stresses, respectively, in matrix (i.e.,
tensile and compressive strengths of matrix)

Longitudinal (in a longitudinal plane) and transverse (in a transverse
plane) shear stresses, respectively, in composite

Ultimate shear stress (i.e., shear strength) of isotropic composite
Ultimate longitudinal and transverse shear stresses, respectively, in
transversely isotropic composite (i.e., longitudinal and transverse
shear strengths)

Longitudinal (in a longitudinal plane) and transverse (in a transverse
plane) shear stresses, respectively, in fibers

Ultimate shear stress (i.e., shear strength) of isotropic fibers

Ultimate longitudinal and transverse shear stresses, respectively, in trans-
versely isotropic fibers (i.e., longitudinal and transverse shear strength)
Longitudinal (in a longitudinal plane) and transverse (in a transverse
plane) shear stresses, respectively, in matrix

Ultimate shear stress in matrix (i.e., shear strength of matrix)

3.3 INTRODUCTION

A composite lamina is made up of two constituents—reinforcements and matrix. As
we know, these constituents combine together and act in unison as a single entity.
Micromechanics is the study in which the interaction of the reinforcements and the
matrix is considered and their effect on the gross behavior of the lamina is determined.
Toward this, we need to determine several thermoelastic parameters of the lamina in
terms of constituent properties. These parameters include

® Elastic moduli

m Strength parameters

B Coefficients of thermal expansion (CTEs)
B Coefficients of moisture expansion (CMEs)

Extensive work, as reflected by numerous research papers available in the literature,
has been done in the field of micromechanics. The subject is also discussed at different
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levels of treatment in many texts on the mechanics of composites [1-5]. Micromechanics
models have been of keen research interest and several approaches have been adopted
to develop models for the prediction of various parameters, especially elastic moduli,
of a unidirectional lamina. A detailed survey of various approaches is provided by
Chamis and Sendeckyj [6]; these approaches are netting analysis, mechanics of materi-
als, self-consistent models, bounding techniques based on variational principles, exact
solutions, statistical methods, finite element methods, microstructure theories, and
semiempirical models. The netting models and mechanics of materials-based models
involve grossly simplifying assumptions. The rest of the approaches are based on the
principles of elasticity and they, barring the semiempirical models, are typically asso-
ciated with rigorous treatment and complex mathematical and graphical expressions.
Thus, for the sake of convenience of discussion, the micromechanics models can be put
into a simple classification as follows:

B Netting models

B Mechanics of materials-based models
m Elasticity-based models

B Semiempirical models

Netting models are highly simplified models in which the bond between the fibers
and the matrix is ignored for estimating the longitudinal stiffness and strength of a
unidirectional lamina; it is assumed that longitudinal stiffness and strength are pro-
vided completely by the fibers. On the other hand, transverse and shear stiffness and
Poisson’s effect are assumed to be provided by the matrix. These models typically
underestimate the properties of a lamina but due to their simplicity they are still used
in the preliminary ply design of pressure vessels [7].

The mechanics of materials-based models too involve grossly simplifying assump-
tions (see, for instance, References 8—10). Averaged stresses and strains are used in force
and energy balance in a representative volume element (RVE) to derive the desired
expressions for elastic parameters. Typically, the continuity of displacement across the
interface between the constituents is maintained. Some of the common assumptions
in micromechanics (see Section 3.4.1) are relaxed/modified suitably and a number of
mechanics of materials-based models have been proposed in the past. Several of these
models relate to different assumed geometrical array of fibers (square, rectangular,
hexagonal, etc.), fiber alignment, inclusion of voids, etc.

Elasticity-based models involve more rigorous treatment of the lamina behavior (see,
for instance, References 11-20). In an exact method, an elasticity problem within the
general frame of assumptions (see Section 3.4.1) is formulated and solved by various
techniques, including numerical methods such as the finite element method. A variation
of the exact method is the self-consistent model. Variational principles are employed
to obtain bounds on the elastic parameters. In the statistical methods, the restrictions
of aligned fibers in regular array are relaxed and the elastic parameters are allowed to
vary randomly with position. All these models, however, are somewhat complex and
they have limited utility in the design of a product. Also, many variables that actu-
ally influence the lamina elastic behavior are ignored, leading to unreliable estimates.
In semiempirical models, the mathematical complexity is reduced and the effects of
process-related variables are taken into account by incorporating empirical factors [21].

An exhaustive discussion of the models available in the literature is beyond the scope
of this book; for in-depth reviews, interested readers can refer to References 6, 22, and
23 and the bibliographies provided therein. In this chapter, we shall attempt to provide
an overall idea required in a product design environment. With this in mind, we shall
discuss the mechanics of materials models in detail for all the parameters listed above.
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A brief discussion is also provided on the elasticity approach and the semiempirical
approach for the elastic moduli.

3.4 BASIC MICROMECHANICS

3.4.1 Assumptions and Restrictions

Micromechanics models are based on a number of simplifying assumptions and restric-
tions in respect of lamina, its constituents, that is, fibers and matrix, and the interface.
These assumptions and restrictions are as follows:

B The lamina is (i) macroscopically homogeneous, (ii) macroscopically ortho-
tropic, (iii) linearly elastic, and (iv) initially stress-free.

B The fibers are (i) homogeneous, (ii) linearly elastic, (iii) isotropic, (iv) regularly
spaced, (v) perfectly aligned, and (vi) void-free.

B The matrix is (i) homogeneous, (ii) isotropic, (iii) linearly elastic, and (iv) void-free.

B The interface between fibers and matrix has (i) perfect bond, (ii) no voids, and
(iii) no interphase, that is, fiber—matrix interaction zone.

Some of the restrictions are not realistic and some of them are relaxed in the deriva-
tions of various models. For example, glass fibers are isotropic, but carbon and aramid
fibers are highly anisotropic. They can be considered as transversely isotropic and their
elastic moduli and strengths are direction-dependent. As we shall see in the next section,
the mechanics of materials-based models discussed here can accommodate anisotropic
(transversely isotropic) fibers. Fibers are generally randomly spaced and their align-
ment is not perfect. Similarly, the matrix can have voids and the lamina can have initial
stresses. Also, an interphase is present at the interface between the fibers and the matrix.

3.4.2 Micromechanics Variables

The general procedure, irrespective of the micromechanics model used, is to express
the desired parameter in terms of a number of basic micromechanics variables. These
variables are as follows:

Elastic moduli of fibers and matrix
Strengths of fibers and matrix

Densities of fibers and matrix

Volume fractions of fibers, matrix, and voids
Mass fractions of fibers and matrix

3.4.2.1 Elastic Moduli and Strengths of Fibers and Matrix

The elastic moduli and strengths of fibers and matrix are determined experimentally. The
number of these parameters to be determined experimentally for use in micromechan-
ics would depend on the restriction in respect of behaviors of fibers and matrix. Certain
fibers such as carbon are highly anisotropic and they can be considered as transversely
isotropic. For these fibers, we need five stiffness parameters: E\, Ey, Gy, Vyop, and vy,
For isotropic fibers such as glass, the number of stiffness parameters reduces to three—
E;, G, and v;. On the other hand, all common matrix materials are isotropic for which
we need the three stiffness parameters—F,,, G,,, and v,,. Further, under the restriction of
homogeneousness, all of these parameters are uniform across the fibers or matrix.

3.4.2.2 Volume Fractions

As we know, a composite material is made up of primarily two constituents—fibers
and matrix. However, during the manufacture of a composite laminate, deviations do
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occur and voids are introduced. Thus, the total volume of a composite material consists
of three parts—fibers, matrix, and voids. Fiber volume fraction is defined as the ratio
of the volume of fibers in the composite material to the total volume of composite.
Similarly, matrix volume fraction is defined as the ratio of the volume of matrix to the
total volume of composite, and voids volume fraction is defined as the ratio of the vol-
ume of voids to the total volume of composite. Thus,

V=" v, =Y and v, = 3.1)
Ve Ve Ve
where

V,  fiber volume fraction
V, matrix volume fraction
V, voids volume fraction
v, volume of fibers
v, volume of matrix
v,  volume of voids
v,  total volume of composite material
It is clear that

Vf + Vi + Vy =V (32)
Dividing both the sides by v, we get

Vi+V,+V, =1 (3.3

For an ideal composite material, v,= V,= 0 and we get

V,+V, =1 (3.4)

We shall see in the subsequent sections that fiber volume fraction is a key param-
eter that greatly influences lamina properties such as longitudinal modulus and major
Poisson’s ratio. It is useful to know the theoretical maximum fiber volume fraction of
a lamina. In a composite material, fibers are packed in a random fashion. However,
with a view to determining the maximum theoretical fiber volume fraction, as shown
in Figure 3.2, let us consider two regular arrays of fibers—square array and triangular
array. Fiber volume fractions can be expressed as

2
For square array, V; = % (3.5)
4s
() d (b) d
®-® O O @ 0 0O
G- 0 0| |60 0 0 O
> ]

FIGURE 3.2 Schematic representation of fiber packing. (a) Square array. (b) Triangular array.
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and

7d?

2\/§s2

where d and s are fiber diameter and fiber spacing, respectively.
For maximum fiber packing, d = s. Thus, theoretical maximum fiber volume frac-
tions with fibers of circular cross section are

For triangular array, V, = (3.6)

For square array, (Vy),0 = % =0.79 3.7

For triangular array, (Vy ) = U 0.91 (3.8)

23

where (V)),,,, 1s the theoretical maximum fiber volume fraction.

max

3.4.2.3 Mass Fractions

Fiber mass fraction is defined as the ratio of the mass of fibers to the total mass of
composite material. Similarly, matrix mass fraction is defined as the ratio of the mass
of matrix to the total mass of composite. Thus,

w
W, =—" (3.9)
W,
w
W, =—" (3.10)
WC
where
W, fiber mass fraction
W,, matrix mass fraction
w,  mass of fibers
w,, mass of matrix
w, mass of the composite material
It is clear that
We =Wr +Ww, (3.11)

Now, we know that the product of density and volume is the mass contained in that
volume. Then, for the composite, fibers, and matrix, we can write the following:

We = PeVe (3.12)
Wy = pPrVy (3.13)
Wi = PV (3.14)

where p,, p, and p,, are densities of composite, fibers, and matrix, respectively.
Substituting Equations 3.12 through 3.14 in Equation 3.11, we get

PcVe = PrVy + PV (315)
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Dividing both the sides by v, and using Equation 3.1, we get

Equation 3.16 is the rule of mixtures expression for density of composite.
Now, substituting Equations 3.12 through 3.14 in Equations 3.9 and 3.10, we get the
following:

w, ="y, (3.17)
Pe

w, =Py (3.18)
Pe

Then, substituting Equation 3.16 in Equations 3.17 and 3.18, with simple manipula-
tion, we get the expressions for mass fractions for fibers and matrix as

o)V,
= (Prlpw)Vy (3.19)
(pf /pm )Vf + ‘/m
Taking voids fraction as zero, V,, = 1 — V,, and we get the following:
1p, )V
br/p)Vy (3.20)

T (s lpn =1V,

3.4.3 Representative Volume Element

An RVE is considered for obtaining expressions of the various elastic moduli and
strengths. Figure 3.3a shows the schematic representation of a unidirectional lamina.
The fibers are taken as straight and regularly aligned. Let the fiber spacings be b, and
t. in the width and thickness directions, respectively. Then, we take an RVE of size
[.x b, x t, as shown in Figure 3.3b such that by placing the RVEs repeatedly next
to each other, we can obtain the complete lamina. Further, it is presumed that the
responses of the RVEs to applied loads are identical and thus the analysis of an RVE

(a)

(b)

FIGURE 3.3 (a) Schematic representation of a unidirectional lamina. (b) Representative volume ele-
ment. (c) Idealized volume element. (Adapted with permission from A. K. Kaw, Mechanics of Composite
Materials, CRC Press, Boca Raton, FL, 2006.)
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is sufficient for determining the characteristics of the complete lamina. The RVE is
further simplified as shown in Figure 3.3c.

Now, the total cross-sectional area of composite in the RVE, A_, the cross-sectional
area of the fibers, Afé and the cross-sectional area of the matrix, A,, are, respectively,
given by

A, =b,t, (3.21)
A; =byt, (3.22)
A, =b,t, (3.23)

It is easy to see that for zero voids fraction,

A =A;+A, (3.24)

3.5 MECHANICS OF MATERIALS-BASED MODELS
3.5.1 Evaluation of Elastic Moduli

A unidirectional lamina (Figure 3.3a) is an orthotropic body characterized by four elas-
tic constants—Ilongitudinal modulus (£,,) along the fiber direction, transverse modulus
(E,.) normal to the fiber direction, shear modulus (G,,,) in the plane of the lamina, and
major Poisson’s ratio (v},,).

Notes:

B We have used a Cartesian coordinate system O-123 usually known as the mate-
rial coordinate system. Here, 1-direction is the longitudinal direction, which is
along the fibers, 2-direction is the transverse direction, which is normal to the
fibers in the plane of the lamina, and 3-direction is normal to the plane of the
lamina.

B [n the general nomenclature, composite elastic moduli are represented by E,,
E,, G,,, etc. However, in this chapter, we shall add an additional suffix “c”
to stress on the fact that the parameter belongs to the composite. Similarly,
suffixes “f” and “m” are used for fibers and matrix, respectively. Thus, E,, is
the longitudinal Young’s modulus of composite, E,, is the transverse Young’s
modulus of fibers, E,, is the Young’s modulus of matrix, and so on.

3.5.1.1 Longitudinal Modulus (E,,))

Let us consider a unidirectional lamina under uniaxial load in the fiber direction. An
RVE under this loading condition is shown in Figure 3.4a. The RVE can be compared
with a system of springs with different stiffnesses in parallel. This springs-in-parallel
analogy is shown in Figure 3.4b.

Now, the total force taken by the volume element is shared by the fibers and the
matrix. Thus,

F.=F;+F, (3.25)

where
F. total force on the representative volume element
F, force shared by the fibers
F, force shared by the matrix
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FIGURE 3.4 (a) Representative volume element under uniaxial stress in the fiber direction.
(b) Springs-in-parallel analogy. (Adapted in parts with permission from R. M. Jones, Mechanics of
Composite Materials, second edition, Taylor & Francis, New York, 1999; A. K. Kaw, Mechanics of
Composite Materials, CRC Press, Boca Raton, FL, 2006.)

From Equation 3.25, we obtain

Uchc = UlfAf + UlmAm (326)

where
0,. longitudinal stress in the composite material
oy longitudinal stress in the fibers
0,,, longitudinal stress in the matrix
Now, under the restriction that the composite, fibers, and matrix are elastic, we bring
in Hooke’s law and write Equation 3.26:

EICSICAC — ElfelfAf + EmglmAm (327)

The fibers and matrix are perfectly bonded, and thus, the longitudinal strains in the
composite, fibers, and matrix are equal, that is, &,,= &, = ¢,,. Then, from Equation
3.27, we obtain

As A
E, :EuAff‘f'EmAfm

(3.28)

In the above equation, we can multiply the numerator and the denominator in the
area fractions by the length /. of the RVE and see that the area fractions are equal to
the corresponding volume fractions. Thus, we obtain the expression for the longitudinal
modulus as follows:

Equation 3.29 is a very popular one and it is referred to as the “rule of mixtures” for
the longitudinal modulus of a unidirectional composite. Under the restriction that there
is no void in the composite, we can also write it as

E,.=E/V,+E,1-V;) (3.30)
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FIGURE 3.5 Longitudinal modulus by mechanics of materials approach (constituent material data
from Example 3.1).

Figure 3.5 shows the variation of the longitudinal modulus w.r.t. the fiber volume
fraction for the data given in Example 3.1. As seen from the figure, the rule of mix-
tures gives a simple linear relation in terms of the constituent moduli and volume frac-
tions. It is widely used in design and analysis; it is not only simple but also reliable as
predictions made for the longitudinal modulus by the rule of mixtures tally well with
experimental results. For most advanced polymeric matrix composite materials, the
fiber modulus is far higher than the matrix modulus. In these materials, changes in
the matrix modulus do not have any appreciable impact on the composite modulus.
Further, as we mentioned before, the RVE can be compared with a system of springs-
in-parallel. From the springs-in-parallel analogy (Figure 3.4b) of the RVE, it can be
seen that the resultant stiffness of the three springs is controlled by the stiffer spring,
viz. the fibers. Thus, we may conclude that the longitudinal modulus of a unidirectional
lamina is a fiber-dominated property.

3.5.1.2 Transverse Modulus (E,)

An RVE stressed in the transverse direction as shown in Figure 3.6a is considered next.
Under the load as shown in the figure, the RVE undergoes gross extension in the trans-
verse direction. Owing to Poisson’s effect, it undergoes contraction in the longitudinal

| A
62(,' lc
(b) ~
o Matrix Fiber Matrix
2 AMVVWW\ MV NV 0y,

FIGURE 3.6 (a) Representative volume element under transverse stress. (b) Springs-in-series anal-
ogy. (Adapted in parts with permission from R. M. Jones, Mechanics of Composite Materials, second
edition, Taylor & Francis, New York, 1999; A. K. Kaw, Mechanics of Composite Materials, CRC Press,
Boca Raton, FL, 2006.)



Micromechanics of a Lamina 91

direction. The RVE can be compared with a system of springs with different stiffnesses
in series. This springs-in-series analogy is shown in Figure 3.6b. The gross transverse
extension in the transverse is the sum total of transverse extensions in the fibers and
matrix. Thus,

Ac‘ = Af + Am (331)

where
A, gross transverse extension in the composite
A, transverse extension in the fibers
A,, transverse extension in the matrix

Bringing in the definition of normal strains, Equation 3.31 can be written as
6\2L‘bc = 82fbf + 82mbm (332)

where
€, transverse strain in the composite
g, transverse strain in the fibers
€, transverse strain in the matrix

Dividing both the sides by b, Equation 3.32 can be written as

b b,

¢ :€2fb7':+€2m Z (333)

Now, multiplying the numerator and denominator, in the width fractions in the right-

hand side of the above equation, by the product of length and thickness of the RVE, [ 7,

we see that the width fractions are nothing but fiber volume fraction and matrix volume
fraction, respectively. Thus,

by

— =V 3.34
b (3.34)
b

L=V, 3.35
b, (3.35)

Further, transverse strains in composite, fibers, and matrix are related to the respec-
tive moduli as

T7¢

€0 = E726 (3.36)
ery = fo (3.37)
Eom = % (3.38)
Then, substituting Equations 3.34 through 3.38 in Equation 3.33, we get
T2 _ %2ty 4 Ty (3.39)

E2L‘ B E2f Em
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Now, we look at the RVE under transverse stress in Figure 3.6, and notice that the
cross-sectional area normal to the transverse stress is the same for the composite as a
whole as well as the fibers and matrix. Thus,

Oy =02f =02 (3.40)

Using Equation 3.40 in Equation 3.39, we get

or

v V.
—— = (3.41)
E 2¢ E 2f Em
E,/E,
e = (3.42)
E,\Vi +Ey Vi
Taking void content as zero, Equation 3.42 can be written as
E,/E,
E,, ” (3.43)

CEV,+E,(1-V))

The variation of E,, with V, for the data given in Example 3.1, based on Equation
3.43, is shown in Figure 3.7. The variation in the transverse modulus is rather sharp at
high fiber volume fractions. Such high fiber volume fractions, however, are unrealistic.
On the other hand, E,, rises at a very low rate up to a fiber volume fraction of about
0.8 and it is very close to the matrix modulus. Further, as mentioned earlier, the rep-
resentative volume under transverse stress can be with a system of springs-in-series.
From the springs-in-series analogy (Figure 3.6b), we can see that the resultant stiffness
of the springs is influenced heavily by the weak springs (matrix). In a unidirectional
composite lamina under transverse stress, gross deformation of the lamina is primar-
ily dependent on the matrix deformations. Thus, we may conclude that the transverse
modulus of a unidirectional lamina is a matrix-dominated property.
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FIGURE 3.7 Transverse modulus by mechanics of materials approach (constituent material data

from Example 3.1).
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FIGURE 3.8 Variation of transverse modulus with different fiber-to-matrix modulus ratios.

Another way to express the composite transverse modulus is in the nondimensional-
ized form as follows:

Ey 1
E, 14(E,/Ey; — 1V,

(3.44)

From the above equation, we see that, if E,/E,, = 1 or E,,= E,, irrespective of the
fiber volume fraction, E, /E,, = 1 or E,. = E,,= E,. In other words, in a unidirectional
lamina, if the fiber and matrix moduli are equal, the transverse modulus of the com-
posite is equal to the modulus of the fibers or matrix. For MMCs and CMCs, fiber and
matrix moduli are of similar order, and E,/E,, values are typically small. On the other
hand, fiber-to-matrix modulus ratios are very large in PMCs. Typical E, /E,, plots for
these two cases are shown in Figure 3.8. The mechanics of materials-based model for
E,. is a simple one, but it does not compare well with experimental results. In general,
this approach leads to underestimate of the transverse modulus.

3.5.1.3 Major Poisson’s Ratio (v,,.)

The major Poisson’s ratio is defined as the negative ratio of transverse normal strain to
longitudinal normal strain under uniaxial loading in the fiber direction. Thus,

Vige = € with o, =0 and all others zero (3.45)

The model for the major Poisson’s ratio is similar to that for the longitudinal modu-
lus and we consider an RVE under uniaxial force in the longitudinal direction as shown
in Figure 3.9. The lamina deforms in the longitudinal direction due to direct stress and
in the transverse direction due to Poisson’s effect.

Now, the total transverse deformation is the sum of transverse deformations in the
fibers and matrix. (Note that transverse deformations are negative.) Thus,

Al =A% +A] (3.46)
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FIGURE 3.9 Representative volume element under uniaxial stress in the fiber direction for the
determination of the major Poisson’s ratio. (Adapted with permission from A. K. Kaw, Mechanics of
Composite Materials, CRC Press, Boca Raton, FL, 2006.)

where
A total transverse deformation in composite
A; transverse deformation in the fibers
AT transverse deformation in the matrix

Deformations in the composite and the constituents can be related to the respective
strains and we can write Equation 3.46 as

bC€ZC = bf€2f + meZm (347)

where
€, transverse strain in the composite
&, transverse strain in the fibers
€, transverse strain in the matrix

Now, under the restriction that the fibers and matrix are perfectly bonded, the longi-
tudinal strains in the composite, fibers, and matrix are all equal, that is, €,, = ;= ¢,,,.
Then, dividing both the sides of Equation 3.47 with the width of the RVE, b_, and lon-
gitudinal strain, g, (or €, 0r €,,,), we get the following:

& _ by &y | by o

= 3.48
€lc bc Elf bc Elm ( )
Now, by definition

Vige = — ¢ (3.49)

Ele

&g
Vg =—— (3.50)

E1f
v, =—2m (3.51)
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Substituting the above in Equation 3.48 and noting that the width fractions are equal
to the corresponding volume fractions, we get

Vise =ViafVy +1,V, (3.52)

For zero void content,

Vige =VipfVy +1, (1 =V}) (3.53)

Equations 3.52 and 3.53 are the rule of mixtures expressions for the major Poisson’s
ratio. We had seen before that the longitudinal modulus is a fiber-dominated property
whereas the transverse modulus is matrix-dominated. Fiber and matrix Poisson’s ratios
are not much different from each other and thus, composite Poisson’s ratio is neither
fiber-dominated nor matrix-dominated.

3.5.1.4 In-Plane Shear Modulus (G,,,)

For developing a model for the in-plane shear modulus, an RVE is subjected to in-plane
shear stress as shown in Figure 3.10. The total shear deformation in the volume element
is the sum of shear deformations in the fibers and the matrix. Thus,

A=A +A, (3.54)

where
A, shear deformation in the composite

Af shear deformation in the fibers
A~ shear deformation in the matrix

m

Shear deformations are related to the shear strains and shear strains can in turn be
related to the shear stresses. Thus, we can express the shear deformations as follows:

A =Yioch = 12 p, (3.55)
GIZC
Ti2f
b (3.56)
Gy !
“;f TlZc
AN

, A2

FIGURE 3.10 (a) Representative volume element under shear stress. (b) Shear deformation. (Adapted
in parts with permission from R. M. Jones, Mechanics of Composite Materials, second edition, Taylor &
Francis, New York, 1999; A. K. Kaw, Mechanics of Composite Materials, CRC Press, Boca Raton, FL, 2006.)
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Am = ’Y12mbm = 72;2”1 bm (357)

m

We may note here that the shear stresses in composite, fibers, and matrix are all
equal, that is, 7j,. = 75 = Ty,. Then, substituting Equations 3.55 through 3.57 in
Equation 3.54, we get

bic — bif + bi (3 58)
Gl2c G12f Gm '

Dividing both the sides of the above equation with b, and noting that /b, = V,and
b,/b.=V,, we get the following relation for the in-plane shear modulus of a unidirec-
tional composite:

G12L' G12f Gm ‘

or

Gl2 me
Gpe=—""-""— 3.60
. G,V; + GV, (560

Under the restriction that there is no void,

_ GG,
G,V +Gp(A-Vy)

(3.61)

12¢

Equations 3.60 and 3.61 are the models by the mechanics of materials-based
approach for the in-plane shear modulus of a unidirectional lamina. These equations
are very similar to those for the transverse modulus. As with E,_, G, is also a matrix-
dominated property. A typical variation of Gy, with V,is shown in Figure 3.11.
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FIGURE 3.11 In-plane shear modulus by mechanics of materials approach (constituent material data
from Example 3.1).
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EXAMPLE 3.1

For a unidirectional glass/epoxy lamina, the constituent material properties
are as follows: E,=76 GPa, v,=0.2, G,= 35 GPa, E, = 3.6 GPa, v, =0.3,
G,, = 1.4 GPa. Consider zero void content and a fiber volume fraction of 0.6.

(a) Determine the composite longitudinal modulus, transverse modulus, major
Poisson’s ratio, and in-plane shear modulus. (b) Apply a longitudinal force on the
lamina and determine the ratio of axial forces shared by fibers and matrix. (c)
Consider the cross section of fibers as circular and determine the maximum pos-
sible composite longitudinal modulus, transverse modulus, major Poisson’s ratio,
and in-plane shear modulus.

Solution

Glass fiber is isotropic and we can replace Ej; and E,, with Ej, G,, with G, and
V5 With v Then, using Equations 3.30, 3.43, 3.53, and 3.6), respective