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Preface to First Edition 

The term chemometrics was proposed more than 20 years ago to describe the 
techniques and operations associated with the mathematical manipulation and 
interpretation of chemical data. It is within the past 10 years, however, that 
chemometrics has come to the fore, and become generally recognized as a 
subject to be studied and researched by all chemists employing numerical data. 
This is particularly true in analytical science. In a modern instrumentation 
laboratory, the analytical chemist may be faced with a seemingly overwhelming 
amount of numerical and graphical data. The identification, classification and 
interpretation of these data can be a limiting factor in the efficient and effective 
operation of the laboratory. Increasingly, sophisticated analytical instrumen- 
tation is also being employed out of the laboratory, for direct on-line or in-line 
process monitoring. This trend places severe demands on data manipulation, 
and can benefit from computerized decision making. 

Chemometrics is complementary to laboratory automation. Just as 
automation is largely concerned with the tools with which to handle the 
mechanics and chemistry of laboratory manipulations and processes, so 
chemometrics seeks to apply mathematical and statistical operations to aid 
data handling. 

This book aims to provide students and practicing spectroscopists with an 
introduction and guide to the application of selected chemometric techniques 
used in processing and interpreting analytical data. Chapter 1 covers the basic 
elements of univariate and multivariate data analysis, with particular emphasis 
on the normal distribution. The acquisition of digital data and signal 
enhancement by filtering and smoothing are discussed in Chapter 2. These 
processes are fundamental to data analysis but are often neglected in 
chemometrics research texts. Having acquired data, it is often necessary to 
process them prior to analysis. Feature selection and extraction are reviewed in 
Chapter 3; the main emphasis is on deriving information from data by forming 
linear combinations of measured variables, particularly principal components. 
Pattern recognition consists of a wide variety of chemometric and multivariate 
statistical techniques and the most common algorithms are described in 
Chapters 4 and 5. In Chapter 4, exploratory data analysis by clustering is 
discussed, whilst Chapter 5 is concerned with classification and discriminant 
analysis. Multivariate calibration techniques have become increasingly popular 
and Chapter 6 provides a summary and examples of the more common 
algorithms in use. Finally, an Appendix is included which aims to serve as an 
introduction or refresher in matrix algebra. 



vi Preface to First Edition 

A conscious decision has been made not to provide computer programs of 
the algorithms discussed. In recent years, the range and quality of software 
available commercially for desktop, personal computers has improved 
dramatically. Statistical software packages with excellent graphic display 
facilities are available from many sources. In addition, modern mathematical 
software tools allow the user to develop and experiment with algorithms 
without the problems associated with developing machine specific input/output 
routines or high-resolution graphic interfaces. 

The text is not intended to be an exhaustive review of chemometrics in 
spectroscopic analysis. It aims to provide the reader with sufficient detail of 
fundamental techniques to encourage further study and exploration, and aid in 
dispelling the ‘black-box’ attitude to much of the software currently employed 
in instrumental analytical analysis. 



Preface to Second Edition 

It is more than eight years since the first edition of this text was published, and 
during this time chemometrics has continued to mature and gain greater 
acceptance as a key feature of modern spectroscopic analysis. It is probably 
correct to state that all manufacturers of spectrometers now provide some form 
of data manipulation and analysis software with their instruments. The role of 
chemometrics is also being appreciated in the teaching of instrumental 
chemical analysis, with many undergraduate and post-graduate coursework 
programs including the subject in the syllabus. 

I am grateful for the many comments, suggestions and recommendations 
received from readers following the first edition, and this new edition attempts 
to address many of the points raised. Whilst retaining the style and format of 
the first edition, a number of changes and additions have been made to the 
content, including a discussion of multivariate outliers in data and detection 
and identification of these. The chapter on multivariate regression analysis has 
been largely reworked to reflect better the algorithms in common use and their 
implementation. 

Once again, specific algorithms and computer programs have not been 
included. The wide range of mathematical software now available makes 
implementation relatively simple and the reader is encouraged to experiment 
and ‘play’ with their data to appreciate and understand the techniques and 
treatments discussed. It is even more important now than at the time of 
publication of the first edition that analysts and spectroscopists have an 
understanding of the basics of chemometrics. 





Contents 

Glossary of Terms and Symbols 

Chapter 1 

1 
2 

3 
4 

5 

Chapter 2 

1 
2 
3 
4 
5 

6 

Chapter 3 

I 
2 - 

Descriptive Statistics 

Introduction 
Normal Distribution 

Significance Tests 
Analysis of Variance 
Outliers 

Lorentzian Distribution 
Multivariate Data 

Covariance and Correlation 
Multivariate Normal 

Displaying Data 
References 

Acquisition and Enhancement of Data 

Introduction 
Sampling Theory 
Signal-to-Noise Ratio 
Detection Limits 
Reducing Noise 

Signal Averaging 
Signal Smoothing 
Filtering in the Frequency Domain 

Interpolation 
References 

Feature Selection and Extraction 

Introduction 
Differentiation 

5 Integration 

xii 

1 

1 
2 
6 

10 
13 
16 
17 
18 
21 
24 
28 

29 

29 
29 
33 
34 
36 
37 
38 
42 
48 
54 

55 

55 
56 
63 



X 

4 

Chapter 4 

1 
2 
3 

4 

Chapter 5 

1 
2 

3 
4 
5 

Chapter 6 

1 
2 

3 

4 

Combining Variables 
Linear Combinations of Variables 
Principal Components Analysis 
Factor Analysis 
References 

Contents 

67 
67 
72 
81 
95 

Pattern Recognition I: Unsupervised Analysis 97 

Introduction 
Choice of Variables 
Measures between Objects 

Similarity Measures 
Distance Measures 

Clustering Techniques 
Hierarchical Techniques 
&Means Algorithm 
Fuzzy Clustering 
References 

Pattern Recognition 11: Supervised Learning 

Introduction 
Discriminant Functions 

Bayes’ Theorem 
Linear Discriminant Function 

Nearest Neighbours 
The Perceptron 
Artificial Neural Networks 

References 

Calibration and Regression Analysis 

Introduction 
Linear Regression 

Errors and Goodness of Fit 
Regression through the Origin 

Polynomial Regression 
Orthogonal Polynomials 

Multivariate Regression 
Classical Least Squares 
Inverse Least Squares 

97 
100 
100 
100 
103 
109 
110 
115 
121 
128 

129 

129 
130 
134 
137 
144 
148 
153 
160 

161 

161 
162 
165 
168 
168 
174 
177 
177 
178 



Contents xi 

Selection of Variables for Regression 
Principal Components Regression 
Partial Least Squares Regression 
Regression Coefficients 
Leverage 
References 

Appendix Matrix Tools and Operations 

A1 Introduction 
A2 Simple Matrix Operations 
A3 Matrix Multiplication 
A4 Sums of Squares and Products 
A5 Inverse of a Matrix 
A6 Simultaneous Equations 
A7 Quadratic Form 

181 
194 
203 
206 
206 
209 

211 

21 1 
212 
214 
216 
217 
219 
219 

Subject Index 221 





Glossary of Terms and Symbols 

AAS 
a 
ANOVA 
Bi 
CI 
CLS 
COY 
cv 
dAW 
& 

& 

EW 
f 
fs 
H 
ILS 
MDi 
NIR 
P 
PC1 
PC2 
PCA 
PCR 
PLSR 

RSD 
m l S  

d 

a* 

S/N 
SSA 
SSD 
SST 
SSW 

am 

TTFA 
3 

0 1  12 

atomic absorption spectroscopy 
level of significance (Chapter 1) 
ANalysis Of VAriance 
standardized regression coefficients 
confidence interval 
classical least squares 
variance-covariance matrix 
coefficient of variation 
discriminant function (Chapter 
molar absorptivity (Chapter 1) 
error 
equivalent width 
frequency 

5 )  

Nyquist sampiing frequency (Chapter 
Hamming distance (Chapter 5) 
inverse least squares 
Mahalanobis distance (Chapter 4) 
near infrared 
probability (Chapter 5) 
first principal component 
second principal component 
principal component analysis 
principal component regression 
partial least-squares regression 
root mean square 
relative standard deviation 
standard deviation 
variance 
standard error of the standard mean 
sign& to-noise 
variance among different samples 
residual sum of squares 
sum of squares for total variation 
within-sample sum of squares 
target transform factor analysis 
mean value of x 
half-w idt h 





CHAPTER 1 

Descviptive Statistics 

1 Introduction 
The mathematical manipulation of experimental data is a basic operation 
associated with all modern instrumental analytical techniques. Computeriza- 
tion is ubiquitous and the range of computer software available to spectro- 
scopists can appear overwhelming. Whether the final result is the 
determination of the composition of a sample or the qualitative identification 
of some species present, it is necessary for analysts to appreciate how their data 
are obtained and how they can be subsequently modified and transformed to 
generate the information. A good starting point in this understanding is the 
study of the elements of statistics pertaining to measurement and errors. 
Whilst there is no shortage of excellent books on statistics and their 
applications in spectroscopic analysis, no apology is necessary here for the 
basics to be reviewed. 

Even in those cases where an analysis is qualitative, quantitative measures 
are employed in the processes associated with signal acquisition, data 
extraction and data processing. The comparison of, say, a sample’s infrared 
spectrum with a set of standard spectra contained in a pre-recorded database 
involves some quantitative measure of similarity to find and identify the best 
match. Differences in spectrometer performance, sample preparation methods, 
and the variability in sample composition due to impurities will all serve to 
make an exact match extremely unlikely. In quantitative analysis the variability 
in results may be even more evident. Within-laboratory tests amongst staff and 
inter-laboratory round-robin exercises often demonstrate the far from perfect 
nature of practical quantitative analysis. These experiments serve to confirm 
the need for analysts to appreciate the source of observed differences and to 
understand how such errors can be treated to obtain meaningful conclusions 
from the analysis. 

Quantitative analytical measurements are always subject to some degree of 
error. No matter how much care is taken, or how stringent the precautions 
followed to minimize the effects of gross errors from sample contamination or 
systematic errors from poor instrument calibration, random errors will always 
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exist. In practice this means that although a quantitative measure of any 
variable, be it mass, concentration, absorbance value, etc., may be assumed to 
approximate the unknown true value, it is unlikely to be exactly equal to it. 
Repeated measurements of the same variable on similar samples will not only 
provide discrepancies between the observed results and the true value, but there 
will be differences between the measurements themselves. This variability can 
be ascribed to the presence of random errors associated with the measurement 
process, e.g. instrument generated noise, as well as the natural, random 
variation in any sample’s characteristics and composition. As more samples are 
analysed, or more measurements are repeated, then a pattern to the inherent 
scatter of the data will emerge. Some values will be observed to be too high and 
some too low compared with the correct result, if this is known. In the absence 
of any bias or systematic error the results will be distributed evenly about the 
true value. If the analytical process and repeating measurement exercise could 
be undertaken indefinitely, then the true underlying distribution of the data 
about the correct or expected value would be obtained. In practice, of course, 
this complete exercise is not possible. It is necessary to hypothesize about the 
scatter of observed results and assume the presence of some underlying 
predictable and well-characterized parent distribution. The most common 
assumption is that the data are distributed normally. 

2 Normal Distribution 
The majority of statistical tests, and those most widely employed in analytical 
science, assume that observed data follow a normal distribution. The normal, 
sometimes referred to as Gaussian, distribution function is the most important 
distribution for continuous data because of its wide range of practical 
application. Most measurements of physical characteristics, with their 
associated random errors and natural variations, can be approximated by 
the normal distribution. The well-known shape of this function is illustrated in 
Figure 1.1 As shown, it is referred to as the normal probability curve.2 The 
mathematical model describing the normal distribution function with a single 
measured variable, x, is given by Equation 1.1. 

The height of the curve at some value of x is denoted byf(x) while p and CT 
are characteristic parameters of the function. The curve is symmetric about p, 
the mean or average value, and the spread about this value is given by the 
variance, 62, or standard deviation, CT. It is common for the curve to be 
standardized so that the area enclosed is equal to unity, in which casef(x) 
provides the probability of observing a value within a specified range of x 
values. With reference to Figure 1.1, one-half of observed results can be 
expected to lie above the mean and one-half below p. Whatever the values of 
p and a, about one result in three will be expected to be more than one 
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Figure 1.1 Standardized normal probability curve and characteristic parameters, the 
mean and standard deviation 

standard deviation from the mean, about one in twenty will be more than two 
standard deviations from the mean, and less than one in 300 will be more than 
3a from p. 

Equation 1.1 describes the idealized distribution function, obtained from an 
infinite number of sample measurements, the so-called parent population 
distribution. In practice we are limited to some finite number, n, of samples 
taken from the population being examined and the statistics, or estimates, of 
mean, variance, and standard deviation are denoted then by X, s2, and s 
respectively. The mathematical definitions for these parameters are given by 
Equations 1.2-1.4 

n 

i= 1 

s = @  (1.4) 

where the subscript i(i = 1 . . . n)  denotes the individual elements of the set 
of data. 

A simple example serves to illustrate the use of these statistics in reducing data 
to key statistical values. Table 1.1 gives one day’s typical laboratory results for 40 
mineral water samples analysed for sodium content by flame photometry. 
In analytical science it is common practice for such a list of replicated analyses 
to be reduced to these descriptive statistics. Despite their widespread use and 
analysts’ familiarity with these elementary statistics care must be taken with their 
application and interpretation; in particular, what underlying assumptions have 
been made. In Table 1.2 is a somewhat extreme but illustrative set of data. 
Chromium and nickel concentrations have been determined in waste water 
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Table 1.1 Sodium content (mg kg-') of bottled mineral water as 
determined by JEame photometry 

Sodium (mg.kg-I) 

10.8 
11.1 
10.6 
10.9 
11.5 
11.2 
10.5 
11.8 

10.4 
12.2 
11.6 
10.2 
10.6 
12.4 
11.6 
12.3 

11.7 
11.3 
10.2 
10.3 
10.5 
12.4 
10.3 
10.1 

10.6 
11.5 
11.2 
10.2 
10.2 
10.4 
10.5 
12.2 

12.2 
10.2 
10.6 
10.3 
10.1 
12.5 
11.6 
10.8 

Group means 11.05 11.41 10.85 10.85 1 1.04 
Group s2: 0.197 0.801 0.720 0.514 0.883 
Group s: 0.444 0.895 0.849 0.717 0.940 

Total mean = 11.04 mg kg-' 

s2 = 0.602 mg2 kg-2 

s = 0.776 mg kg-' 

%RSD = 7.03% 

supplies from four different sources (A, B, C and D). In all cases the mean 
concentration and standard deviation for each element is similar, but careful 
examination of the original data shows major differences in the results and 
element distribution. These data will be examined in detail later, but the practical 

Table 1.2 Concentration of chromium and nickel, determined by AAS,  in 
samples taken from four sources of waste waters 

Source A B C D 

Cr Ni Cr Ni Cr Ni Cr Ni  (mg kg-') 

10.00 
8.00 

13.00 
9.00 

11.00 
14.00 
6.00 
4.00 

12.00 
7.00 
5.00 

8.04 10.00 9.14 10.00 7.46 8.00 6.58 
6.95 8.00 8.14 8.00 6.77 8.00 5.76 
7.58 13.00 8.74 13.00 12.74 8.00 7.71 
8.81 9.00 8.77 9.00 7.11 8.00 8.84 
8.33 11.00 9.26 11.00 7.81 8.00 8.47 
9.96 14.00 8.10 14.00 8.84 8.00 7.04 
7.24 6.00 6.13 6.00 6.08 8.00 5.25 
4.26 4.00 3.10 4.00 5.39 19.00 12.50 

10.84 12.00 9.13 12.00 8.15 8.00 5.56 
4.82 7.00 7.26 7.00 6.42 8.00 7.91 
5.68 5.00 4.74 5.00 5.74 8.00 6.90 

Mean 9.00 7.50 9.00 7.50 9.00 7.50 9.00 7.50 
S 3.16 1.94 3.16 1.94 3.16 1.94 3.16 1.94 

r 0.82 0.82 0.82 0.82 
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significance of reducing the original data to summary statistics is questionable 
and may serve only to hide rather than extract information. As a general rule, it is 
always a good idea to examine data carefully before and after any transforma- 
tion or manipulation to check for absurdities and loss of information. 

Although both variance and standard deviation attempt to describe the 
width of the distribution profile of the data about a mean value, the standard 
deviation is often favoured over variance in laboratory reports as s is expressed 
in the same units as the original measurements. Even so, the significance of a 
standard deviation value is not always immediately apparent from a single set 
of data. Obviously a large standard deviation indicates that the data are 
scattered widely about the mean value and, conversely, a small standard 
deviation is characteristic of a more tightly grouped set of data. The terms 
‘large’ and ‘small’ as applied to standard deviation values are somewhat 
subjective, however, and from a single value for s it is not immediately 
apparent just how extensive the scatter of values is about the mean. Thus, 
although standard deviation values are useful for comparing sets of data, a 
further derived function, usually referred to as the relative standard deviation, 
RSD, or coeficient of variation, CV, is often used to express the distribution 
and spread of data: 

%CV, %RSD = lOOs/Z (1 - 5 )  

If sets or groups of data of equal size are taken from the parent population 
then the mean of each group will vary from group to group and these mean 
values form the sampling distribution of X. As an example, if the 40 analytical 
results (mean = 1 1.04) provided in Table 1.1 are divided into five groups, each 
of eight results, then the group mean values are 11.05, 11.41, 10.85, 10.85, and 
11.04 mg kg-*. The mean of these values is still 11.04, but the standard 
deviation of the group means is 0.23 compared with 0.78 mg kg-’ for the 
original 40 observations. The group means are less widely scattered about the 
mean than the original data (Figure 1.2). The standard deviation of group 
mean values is referred to as the standard error of the sample mean, a,,,, and is 
calculated from 

where ap is the standard deviation of the parent population and n is the 
number of observations in each group. It is evident from Equation 1.6 that 
the more observations taken the smaller the standard error of the mean and the 
more accurate the value of the mean. This distribution of sampled mean values 
provides the basis for an important concept in statistics. If random samples 
of group size n are taken from a normal distribution then the distribution of the 
sample means will also be normal. Furthermore, and this is not intuitively 
obvious, even if the parent distribution is not normal, providing large sample 
sizes (n > 30) are taken then the sampling distribution of the group means will 
still approximate the normal curve. Statistical tests based on an assumed 
normal distribution can therefore be applied to essentially non-normal data. 
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s = 0.78 

10 11 12 13 

Figure 1.2 Group means for the data from Table I .  I have a lower standard deviation than 
the original data 

This result is known as the central limit theorem and serves to emphasize 
the importance and applicability of the normal distribution function in 
statistical data analysis since non-normal data can be normalized and can be 
subject to basic statistical analysis. 

Significance Tests 

Having introduced the normal distribution and discussed its basic properties, 
we can move on to the common statistical tests for comparing sets of data. 
These methods and the calculations performed are referred to as signijicance 
tests. An important feature and use of the normal distribution function is that 
it enables areas under the curve, within any specified range, to be accurately 
calculated. The function in Equation 1.1 can be integrated numerically and the 
results are presented in statistical tables as areas under the normal curve. From 
these tables, approximately 68% of observations can be expected to lie in the 
region bounded by one standard deviation from the mean, 95% within p & 20 
and more than 99% within p 2 30.  

Returning to the data presented in Table 1.1 for the analysis of the mineral 
water if the parent population parameters, 0 and po are 0.82 and 10.8 mg kg-' 
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respectively, then can we answer the question of whether the analytical results 
given in Table 1.1 are likely to have come from a water sample with a mean 
sodium level similar to that providing the parent data? In statistic's 
terminology, we wish to test the null hypothesis that the means of the sample 
and the suggested parent population are similar. This is generally written as 

Ho: R = p o  (1.7) 

i.e. there is no difference between X and other than that due to random 
variation. The lower the probability that the difference occurs by chance, the 
less likely it is that the null hypothesis is true. To decide whether to accept or 
reject the null hypothesis, we must declare a value for the chance of making the 
wrong decision. If we assume there is less than a 1 in 20 chance of the difference 
being due to random factors, the difference is significant at the 5% level 
(usually written as a = 5%)  We are willing to accept a 5% risk of rejecting the 
conclusion that the observations are from the same source as the parent data if 
they are in fact similar. 

The test statistic for such an analysis is denoted by z and is given by 

3 is 11.04 mg kg-', as determined above, and substituting into Equation 1.8 
values for and cr then 

11.04 - 10.80 
Z =  = 1.85 

0.82/& 

The extreme regions of the normal curve containing 5% of the area are 
illustrated in Figure 1.3 and the values can be obtained from statistical tables. 
The selected portion of the curve, dictated by our limit of significance, is 
referred to as the critical region. If the value of the test statistic falls within this 
area then the hypothesis is rejected and there is no evidence to suggest that the 

0.4 

0.3 

h 

5 0.2 
cr 

0.1 

0.0 

v 10% 

p 2.5% 

- 4  - 3  - 2  - I  o i 2 j 4 
X d  r01 

Figure 1.3 Areas under the normal curve and z values for some critical regions 
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samples come from the parent source. From statistic tables, 2.5% of the area is 
below -1 .96~  and 97.5% is above 1 . 9 6 ~ .  The calculated value for z of 1.85 
does not exceed the tabulated z-value of 1.96 and the conclusion is that the 
mean sodium concentrations of the analysed samples and the known parent 
sample are not significantly different. 

In the above example it was assumed that the mean value and standard 
deviation of the sodium concentration in the parent sample were known. In 
practice this is rarely possible as all the mineral water from the source would 
not have been analysed and the best that can be achieved is to obtain recorded 
estimates of p and u from repetitive sampling. Both the recorded mean value 
and the standard deviation will undoubtedly vary and there will be a degree of 
uncertainty in the precise shape of the parent normal distribution curve. This 
uncertainty, arising from the use of sampled data, can be compensated for 
by using a probability distribution with a wider spread than the normal curve. 
The most common such distribution used in practice is Student's t-distribution. 
The t-distribution curve is of a similar form to the normal function. As the 
number of samples selected and analysed increases the two functions become 
increasingly more similar. Using the t-distribution the well-known t-test can 
be performed to establish the likelihood that a given sample is a member of a 
population with specified characteristics. Replacing the z-statistic by the 
t-statistic implies that we must specify not only the level of significance, a, of 
the test, but also the so-called number of degrees of freedom, i.e. the number of 
independent measures contributing to the set of data. From the data supplied 
in Table 1.1, is it likely that these samples of mineral water came from a source 
with a mean sodium concentration of more than 10.5 mg kg-'? 

Assuming the samples were randomly collected, then the t-statistic is 
computed from 

(1.10) 

where 3 and s are our calculated estimates of the sample mean and standard 
deviation, respectively. From standard tables, for 39 degrees of freedom, n- 1, 
and with a 5% level of significance the value of t is given as 1.68. From 
Equation I. 10, t = 4.38 which exceeds the tabulated value of t and thus lies in 
the critical region of the t-curve. Our conclusion is that the samples are unlikely 
to arise from a source with a mean sodium level of 10.5 mg kg-' or less, leaving 
the alternative hypothesis that the sodium concentration of the parent source is 
greater than this. 

The t-test can also be employed in comparing statistics from two different 
samples or analytical methods rather than comparing, as above, one sample 
against a parent population. The calculation is only a little more elaborate, 
involving the standard deviation of two data sets to be used. Suppose the 
results from the analysis of a second day's batch of 40 samples of water give 
a mean value of 10.9 mg kg-' and standard deviation of 0.83 mg kg-'. 
Are the mean sodium levels from this set and the data in Table 1 . 1  similar, and 
could the samples come from the same parent population? 
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For this example the t-test takes the form 

(1.11) 

The quantity sp, is the pooled estimate of the parent population standard 
deviation and, for equal numbers of samples in the two sets (nl  = n2), is given by 

sp2 = (SI2 + S 2 ’ ) / 2  (1.12) 

where s1 and s2 are the standard deviations for the two sets of data. 
Substituting the experimental values in Equations 1.1 1 and 1.12 provides a 

t-value of 0.78. Accepting once again a 5% level of significance, the tabulated 
value of t for 38 degrees of freedom and a = 0.025 is 2.02. (Since the mean of 
one set of data could be significantly higher or lower than the other, an cc 
value of 2.5% is chosen to give a combined 5% critical region, a so-called two- 
tailed application.) As the calculated t-value is less than the tabulated value 
then there is no evidence to suggest that the samples came from populations 
having different means. Hence, we accept that the samples are similar. 

The t-test is widely used in analytical laboratories for comparing samples 
and methods of analysis. Its application, however, relies on three basic 
assumptions. Firstly, it is assumed that the samples analysed are selected at 
random. This condition is met in most cases by careful design of the sampling 
procedure. The second assumption is that the parent populations from which 
the samples are taken are normally distributed. Fortunately, departure from 
normality rarely causes serious problems, providing sufficient samples are 
analysed. Finally, the third assumption is that the population variances are 
equal. If this last criterion is not valid then errors may arise in applying the 
t-test and this assumption should be checked before other tests are applied. 
The equality of variances can be examined by application of the F-test. 

The F-test is based on the F-probability distribution curve and is used to test 
the equality of variances obtained by statistical sampling. The distribution 
describes the probabilities of obtaining specified ratios of sample variance from 
the same parent population. Starting with a normal distribution with variance 
02, if two random samples of sizes n l  and n2 are taken from this population and 
the sample variances, sI2 and s22, calculated then the quotient s12s22 will be 
close to unity if the sample sizes are large. By taking repeated pairs of samples 
and plotting the ratio, F= s12/s22, the F-distribution curve is ~ b t a i n e d . ~  

In comparing sample variances, the ratio s12/s22 for the two sets of data is 
computed and the probability assessed, from F-tables, of obtaining by chance 
that specific value of F from two samples arising from a single normal 
population. If it is unlikely that this ratio could be obtained by chance, then 
this is taken as indicating that the samples arise from different parent 
populations with different variances. 

A simple application of the F-test can be illustrated by examining the mineral 
water data in the previous examples for equality of variance. 
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The F-ratio is given by, 

F = s12/s22 (1.13) 

which for the experimental data gives F = 1.064. 
Each variance has 39 degrees of freedom (n - 1) associated with it, and from 

tables, the $'-value at the 5% confidence level is approximately 1.80. The 
F-value for the experimental data is less than this and, therefore, does not lie in 
the critical region. Hence, the hypothesis that the two samples came from 
populations with similar variances is accepted. 

In preceding examples we have been comparing distributions of variates 
measured in the same units, e.g. mg kg-' and of similar magnitude. Comparing 
variates of differing units and widely differing magnitude can be achieved by 
transforming the data. 

To prevent a small group of features from dominating the subsequent 
analysis then some sort of scaling is frequently performed. 

One range transformation technique is the so-called Min-Max Transforma- 
tion. The original data is converted so that each transformed variable has a 
minimum value of zero and a maximum value of unity. 

xi - min (x i )  
max (x i )  - min (x i )  

zi = (1.14) 

If the variances of the variables are similar then mean-centring is useful, and 
the transformed variables have mean values of zero. 

zj = xi - R (1.15) 

By far the most common transformation is standardization of the raw data. 
Standardization is usually always necessary when the variables measured are 

recorded in different units, e.g. concentration, pH, particle size, conductivity 
etc. The transformed variable has no units, has a mean of zero and a standard 
deviation of unity. The transformation is achieved by mean centring and 
variance scaling the original data. 

(1.16) 

Standardization is a common transformation procedure in statistics and 
chemometrics. It should be used with care as it can distort data by masking 
major differences in relative magnitudes between variables. 

Analysis of Variance 

The tests and examples discussed above have concentrated on the statistics 
associated with a single variable and comparing two samples. When more 
samples are involved a new set of techniques is used, the principal methods 
being concerned with the analysis of variance. Analysis of variance plays a 
major role in statistical data analysis and many texts are devoted to the 
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Table 1.3 Concentration of phosphate (mg kg-'), determined colori- 
metrically, in Jive sub-samples of soils from six jield sites 

Phosphate (mg kg-') 
~~~~ ~~ ~~ 

Sample 1 2 3 4 5 6 
Sub-sample 
1 51 49 56 56 48 56 
11 54 56 58 48 51 52 

53 51 52 52 57 52 
iv 48 49 51 58 55 58 
V 47 48 58 51 53 56 

... 
111 

Here, we will only discuss the topic briefly and illustrate its use in a 
simple example. 

Consider an agricultural trial site sampled to provide six soil samples that 
are subsequently analysed colorimetrically for phosphate concentration. The 
task is to decide whether the phosphate content is the same in each sample. 

A common problem with this type of data analysis is the need to separate the 
within-sample variance, i.e. the variation due to sample inhomogeneity and 
analytical errors, from the variance that exists due to possible differences 
between the phosphate content in the samples. The experimental procedure is 
likely to proceed by dividing each sample into sub-samples and determining the 
phosphate concentration of each sub-sample. This process of analytical 
replication serves to provide a means of assessing the within-sample variations 
due to experimental error. If this is observed to be large compared with the 
variance between the samples it will obviously be difficult to detect differences 
between the six samples. To reduce the chance of introducing a systematic error 
or bias in the analysis, the sub-samples are randomized. In practice, this means 
that the sub-samples from all six samples are analysed in a random order and 
the experimental errors are confounded over all replicates. The analytical data 
using this experimental scheme is shown in Table 1.3. The similarity of the six 
soil samples is then assessed by the statistical techniques referred to as one-way 
analysis of variance. Such a statistical analysis of the data is most easily 
performed using an ANOVA (ANalysis Of VAriance) table as illustrated 
in Table 1.4. 

Table 1.4 Commonly used table layout for the analysis of variance (ANOVA) 
and calculation of the F-value statistic 

Source of variation Sum of squares Degrees of freedom Mean squares F-Test 

Within samples S S W  N-m 
Among samples SSA m- 1 $A2 SA2/SW2 

2 
SW 

ST2 
Total variation S S T  N-  1 
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The total variation in the data can be partitioned between the variation 
amongst the sub-samples and the variation within the sub-samples. The 
computation proceeds by determining the sum of squares for each source of 
variation and then the variances. 

The total variance for all replicates of all samples analysed is given, from 
Equation 1.3, by 

m n  

(1.17) 

where xu is the ith replicate of thejth sample. The total number of analyses is 
denoted by N ,  which is equal to the number of replicates per sample, n, 
multiplied by the number of samples, m. The numerator in Equation 1.17 is the 
sum of squares for the total variation, SST, and can be rearranged to simplify 
calculations, 

The variance among the different samples is obtained from S S A ,  

(1.18) 

(1.19) 

and the within-sample sum of squares, SSw, can be obtained by difference, 

ss, = ss, - SS, (1.20) 

For the soil phosphate data, the completed ANOVA table is shown in 
Table 1.5. 

Once the F-test value has been calculated it can be compared with standard 
tabulated values, using some pre-specified level of significance, to check 
whether it lies in the critical region. If it does not, then there is no evidence to 
suggest that the samples arise from different sources and the hypothesis that all 
the values are similar can be accepted. From statistical tables, Fo.01,5,24 = 3.90, 
and since the experimental value of 1.69 does not exceed this then the result is 
not significant at the 1 % level and we can accept the hypothesis that there is no 
difference between the six sets of sub-samples. 

The simple one-way analysis of variance discussed above can indicate the 
relative magnitude of differences in variance but provides no information as to 

Table 1.5 Completed ANOVA table for phosphate data from Table 1.3 

Source of variation Sum of squares Degrees of freedom Mean squares F-Test 

Among samples 92.8 5 
Within samples 264 24 
Total variation 356.8 29 

18.56 1.69 
11 
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the source of the observed variation. For example, a single step in an 
experimental procedure may give rise to a large degree of error in the analysis. 
This would not be identified by ANOVA because it would be mixed with all 
other sources of variances in calculating S S W .  More sophisticated and 
elaborate statistical tests are readily available for a detailed analysis of such 
data and the interested reader is referred to the many statistics texts 
The use of the F-test and analysis of variance will be encountered frequently in 
subsequent examples and discussions. 

Outliers 

The suspected presence of rogue values or outliers in a data set always causes 
problems for the analyst. Outliers represent doubtful or anomalous values that 
are unrepresentative of the majority of measurements. The concept of an outlier 
has long fascinated statisticians and Barnett and Lewis’s text’ provides not only 
an excellent reference to the subject but an interesting account of its history. 

There is little doubt that when outliers exist in the form of obvious errors in 
data, i.e. the error can be substantiated by practical consideration as being an 
impossible value or due to an obvious human mistake, they can be removed 
from further consideration. Beyond this the situation is more problematic. Two 
extreme views are evident: the sanctity of recorded data should not be 
questioned, and ‘if in doubt, throw it out’. Generally, most approaches taken 
are somewhere between these extremes. 

The examination of outliers is often subjective and their identification and 
treatment largely depends on the aim of an experiment. Figure 1.4 provides a 
summary scheme for outlier analysis. 

Inherent variability expresses the underlying distribution pattern of the data, 
and is a natural feature of the population. Assuming the wrong parent 
population distribution function for data may indicate an erroneous value, 
when what is wrong is the model itself. Measurement errors due, for example, 
to inadequacies in instrumentation add a further degree of uncertainty, and 
apparently false values may be rejected or the measurement repeated. Finally, 
the imperfect selection and collection of data may lead to execution errors and 
data that are biased or not truly representative of the population being studied. 
The presence of an excessive execution error may lead to its rejection, but it 
could also indicate that a modified model of the data is warranted. Outliers 
from measurement or execution are generally deterministic and arise from 
gross measurement or recording error, or are due to external influence, and 
usually are of no specific interest. 

If a suspected outlier cannot be assigned to have arisen from some 
deterministic means, then statistical procedures can be used to assess 
discordance. A value is discordant if it is statistically unreasonable on the 
basis of some prescribed probability model.’ 

Not only must we be able to detect outliers, but also some systematic and 
reliable procedure for reducing their effect or eliminating them may need to be 
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INCORPORATE 
(in revised model) 

RANDOM 
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TEST 

REJECT 

OF 
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DETERMINISTIC s REJECT 
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(OR COR- 

(clear external influence 
of no specific interest) (OR REPEAT) 

1 

Figure 1.4 Summary of source of oufliers and their treatment 
(Reproduced by permission of J.Wiley and Sons, from ref. 9) 

implemented. Methods for detecting outliers depend on the nature of the data 
as well as the data analysis being performed. For univariate data, many 
discordancy tests are available. 

Consider the data in Table 1.6, which shows ten replicate measures of the 
molar absorptivity of nitrobenzene at 252 nm, its wavelength of maximum 
absorbance. The value of E =  1056 mol-' m2 appears out of line with the other 
nine values - can it be classed as an outlier? Figure 1.5 shows these ten values as 
points on a line, and the suspect value is widely separated from the others in 
relation to the spread of the data. This observation leads naturally to test 
statistics of the form N / D ,  where the numerator N is some measure of separation 
of the assumed outlier and the denominator D is a measure of the spread of data. 

One such method is Dixon's @test." The data points are ranked and the 
difference between a suspected outlier and the observation closest to it is 
compared to the total range of measurements. This ratio is the Q-value. As with 
the t-test, if the computed Q-value is greater than tabulated critical values for 
some pre-selected level of significance, then the suspect data value can be 
identified as an outlier and may be rejected. 

Table 1.6 Molar absorptivity values for nitrobenzene 
at 252 nrn 

E (mol-' m2 at 252 nm) 
~ 

1010 990 978 996 1005 
1 002 1056 1012 997 1004 
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960 1020 

Absorptivity 

Figure 1.5 Distribution of absorptivity values from Table I .6 

For the spectral values in Table 1.6, 

Q = I1056 - 1012}/11056 - 9901 = 0.67 (1.21) 

For a sample size of 10, and with a 5% level of significance, the critical value 
of Q, from tables, is 0.464. The calculated Q-value exceeds this critical value, 
and therefore this point may be rejected from subsequent analysis. If necessary, 
the remaining data can be examined for further suspected outliers. 

A second method involves the examination of residuals." A residual is 
defined as the difference between an observed value and some expected, 
predicted or modelled value. If the suspect datum has a residual greater than, 
say, 4 times the residual standard deviation computed from all the data, then it 
may be rejected. For the data in Table 1.6, the expected value is the mean of the 
ten results and the residuals are the differences between each value and this 
mean. The standard deviation of these residuals is 14.00 and the residual for 
the suspected outlier, 49, is certainly less than 4 times this value and, hence, this 
point should not be rejected. Note however, that if a 3acriterion is employed 
then this datum is rejected. 

If an outlier is rejected from a set of data then its value can be completely 
removed and the result discarded. Alternatively, the value can be replaced with 
an average value computed from all acceptable results or replaced by the next 
largest, or smallest, measure as appropriate. 

Many tests exist for detecting outliers in univariate data, but most are 
designed to check for the presence of a single rogue value. Univariate tests for 
outliers are not designed for multivariate outliers. Consider Figure 1.6, the 
majority of data exists in the highlighted pattern space with the exception of 
the two points denoted A and B. Neither of these points may be considered a 
univariate outlier in terms of variable x l  or x2, but both are well away from the 
main cluster of data. It is the combination of the two variables that identifies the 
presence of these outliers. Outlier detection and treatment is of major concern to 
analysts, particularly with multivariate data where the presence of outliers may 
not be immediately obvious from visual inspection of tabulated data. 

Before leaving this brief discussion of outlier detection and treatment, a 
cautionary warning is appropriate. Testing for outliers should be strictly 
diagnostic, i.e. a means of checking that assumptions regarding the data 
distribution or some selected model are reasonable. Great care should be taken 
before rejecting any data; indeed there is a strong case for stating that no data 
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Figure 1.6 Samples A and B are multivariate outliers 

should be rejected. If an outlier does exist, it may be more important to attempt 
to determine and address its cause, whether this is experimental error or some 
failure of the underlying model, rather than simply to reject it from the data. 
Whatever mathematical treatment of outliers is adopted, visual inspection of 
graphical displays of the data prior to and during analysis still remains one of 
the most effective means of identifying suspect data. 

3 Lorentzian Distribution 
Our discussions so far have been limited to assuming a normal, Gaussian 
distribution to describe the spread of observed data. Before extending this 
analysis to multivariate measurements, it is worth pointing out that other 
continuous distributions are important in spectroscopy. One distribution that 
is similar, but unrelated, to the Gaussian function is the Lorentzian distribution. 
Sometimes called the Cauchy function, the Lorentzian distribution is 
appropriate when describing resonance behaviour, and it is commonly 
encountered in emission and absorption spectroscopies. This distribution for 
a single variable, x, is defined by 

(1.22) 

Like the normal distribution, the Lorentzian distribution is a continuous 
function, symmetric about its mean, p, with a spread characterized by the 
half-width, w1/2. The standard deviation is not defined for the Lorentzian 
distribution because of its slowly decreasing behaviour at large deviations 
from the mean. Instead, the spread is denoted by cu1j2, defined as the full-width 
at half maximum height. Figure 1.7 illustrates the comparison between the 
normal and Lorentzian shapes.2 We shall meet the Lorentzian function in 
subsequent chapters. 
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Figure 1.7 Comparison of Lorentzian and Gaussian (normal) distributions 

4 Multivariate Data 
The data analysis procedures discussed so for have been concerned with a 
single measured variable. Although the determination of a single analyte 
constitutes an important part of analytical science, is increasing emphasis being 
placed on multi-component analysis and using multiple measures in data 
analysis. The problems associated with manipulating and investigating 
multiple measurements on one or many samples is that branch of applied 
statistics known as multivariate analysis, and this forms a major subject in 
chemome trics.*-14 

Consideration of the results from a simple multi-element analysis will serve to 
illustrate terms and parameters associated with the techniques used. This 
example will also introduce some features of matrix operators basic to handling 
multivariate data. In the scientific literature, matrix representation of multi- 
variate statistics is common. For those readers unfamiliar with the basic matrix 
operations, or those who wish to refresh their memory, the Appendix provides a 
summary and overview of elementary and common matrix operations. 

The data shown in Table 1.7 are a portion of a multi-element analysis of 
mineral water samples. The data from such an analysis can conveniently be 
arranged in an rz by m array, where n is the number of objects, or samples, and 
m is the number of variables measured. This array is referred to as the data 
matrix and the purpose of using matrix notation is to allow us to handle arrays 
of data as single entities rather than having to specify each element in the array 
every time we perform an operation on the data set. Our data matrix can be 
denoted by the single symbol X and each element by xij, with the subscripts 
i and j indicating the number of the row and column respectively. A matrix 
with only one row is termed a row vector, e.g., Y, and with only one column, a 
column vector, e.g., c. 

Each measure of an analysed variable, or variate, may be considered 
independent. By summing elements of each column vector the mean and 
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Table 1.7 Results from the analysis of mineral water samples by atomic 
absorption spectrometry. Expressed as a duta matrix, each 
column represents a variate and each row a sample or object 

Samples Variables (mg kg-') 

Sodium Potassium Calcium Magnesium 

1 10.8 1.6 41 -3  7.2 
2 7. I 1.1 72.0 8.0 
3 14. I 2.0 92.0 8.2 
4 17.0 3.1 117.0 18.0 
5 5.7 0.4 47.5 16.5 
6 11.3 1.8 62.2 14.6 

Mean 11.0 1.7 72.0 12.1 
Variance 17.8 0.8 812.8 23.3 

standard deviation for each variate can be calculated (Table 1.7). Although these 
operations reduce the size of the data set to a smaller set of descriptive statistics, 
much relevant information can be lost. When performing any multivariate data 
analysis it is important that the variates are not considered in isolation but are 
combined to provide as complete a description of the total system as possible. 
Interaction between variables can be as important as the mean values and 
distributions of the individual variates. Variables that exhibit no interaction are 
said to be statistically independent, as a change in the value in one variable cannot 
be predicted by a change in another measured variable. In many cases in 
analytical science the variables are not statistically independent, and some 
measure of their interaction is required to interpret the data and characterize the 
samples. The degree or extent of this interaction between variables can be 
estimated by calculating their covariances, the subject of the next section. 

Covariance and Correlation 

Just as variance describes the spread of normal data about its mean value for a 
single variable, so the distribution of multivariate data can be assessed from the 
covariance. The procedure employed for the calculation of variance can be 
extended to multivariate analysis by computing the extent of the mutual 
variability of the variates about some common mean. The measure of this 
interaction is the covariance. 

Equation 1.3, defining variance, can be written as, 

s2 = xo2/(n - I)  (1.23) 

where xo = xi - 1. 2, 
In matrix notation, 

(1.24) 
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with xT denoting the transpose of the column vector x to form a row vector (see 
Appendix). The numerator in Equations 1.23 and 1.24 is the corrected sum of 
squares of the data (corrected by mean centering, i.e. subtracting the mean 
value). To calculate covariance, the analogous quantity is the corrected sum of 
products, SP, which is defined by 

(1.25) 
i=  I 

where xu is the ith measure of variablej, i.e. the value of variablej for object i, 
xjk is the ith measure of variable k,  and SPik is the corrected sum of products 
between variables j and k.  Note that in the special case where j = k Equation 
1.25 gives the sum of squares as used in Equation 1.3. 

Sums of squares and products are basic to many statistical techniques and 
Equation 1.25 can be simply expressed, using the matrix form, as 

SP = xoT.xo (1.26) 

where Xo represents the data matrix after subtracting the column, i.e. variate, 
means. The calculation of variance is completed by dividing by (n - 1) and 
covariance is similarly obtained by dividing each element of the matrix SP 
by (n  - 1). 

The steps involved in the algebraic calculation of the covariance between 
sodium and potassium concentrations from Table 1.7 are shown in Table 1.8. 
The complete variance-covariance matrix for our data is given in Table 1.9. 

For the data the variance-covariance matrix, COV, is square, the number of 
rows and number of columns are the same, and the matrix is symmetric. For a 
symmetric matrix x ! ~  = xji ,  and some pairs of entries are duplicated. The 
covariance between, say, sodium and potassium is identical to that between 

Table 1.8 Calculation of covariance between sodium and potassium concentra- 
tions 

10.80 
7.10 

14.10 
17.00 
5.70 

11.30 
3 =  11.0 
$. = 66.0 
s- = 17.81 

1.60 -0.20 
1.10 -3.90 
2.00 3.10 
3.10 6.00 
0.40 -5.30 
1.80 0.30 
1.67 

10.00 
0.82 

XI - x, (x, - 3,)(X/ - X/) 

-0.07 0.0 14 
-0.57 2.233 

0.33 1.023 
1.43 8.580 

-1.27 6.73 I 
0. I3 0.039 

18.610 

SPN;,,K = 128.61 - [(66.0).( 10.0)]/6 = 18.61 

COV,q,.K = 18.61/5 = 3.72 
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Table 1.9 Symmetric variance-covariance matrix for  the analytes in 
Table 1.7. Diagonal elements are the variances of individual 
variates; of-diagonal elements are covariances between variates 

3.5 - 

3.0 - 

'bD 2.5 - 
.-. 

ti 
g 1.5 - 

5 1.0 - 

E 2.0 - 

.d 

vl 

PI 
0.5 - 
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Sodium Potassium Calcium Magnesium 

0 

r = 0.21 

0 

0 
0 

0 

I I I 3  I I 9 1  I 3  

Sodium 17.81 3.72 93.01 3.54 
Potassium 3.72 0.82 20.59 0.91 
Calcium 93.01 20.59 812.76 41.13 
Magnesium 3.54 0.91 41.13 23.29 

potassium and sodium. The variance-covariance matrix is said to have 
diagonal symmetry with the diagonal elements (xii) being the variances of the 
individual variables. 

In Figure 1.8(a) a scatter plot of the concentration of sodium vs. the 
concentration of potassium, from Table 1.7, is illustrated. It can be clearly seen 
that the two variables have a 
vs. potassium concentration, 
influence the absolute value 

3.0 { 
3 2.5 - 

E 2.0 - 
en 

'w  $ 1.5 - 

z 
Y 
0 1.0 - 

PI 

O.* 1 

high interdependence compared with magnesium 
Figure 1.8(b). Just as the units of measurement 
of variance, so covariance is similarly affected. 

0 

r = 0.97 

0 
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Table 1.10 Correlation matrix for the analytes in Table 1.7. The matrix is 
symmetric about the diagonal and values lie in the range - I  to +I 

Sodium Potassium Calcium Magnesium 

Sodium 1 .oo 0.97 
Potassium 0.97 1 .oo 
Calcium 0.77 0.80 
Magnesium 0.17 0.21 

0.77 0.17 
0.80 0.21 
1 .oo 0.30 
0.30 1 .oo 

To estimate the degree of interrelation between variables, free from the effects 
of measurement units, the correlation coeficient can be employed. The linear 
correlation coefficient, rjk,  between two variables j and k is defined by 

rjk = Covariance/sj.sk (1.27) 

As the value for covariance can equal but never exceed the product of the 
standard deviations, r ranges from - 1 to + 1. The complete correlation matrix 
for the elemental data is presented in Table 1.10. 

Figure 1.9 illustrates a series of scatter plots between variates having 
correlation coefficients between the two possible extremes. A correlation 
coefficient close to + 1 indicates a high positive interdependence between 
variables, whereas a negative value means that the value of one variable 
decreases as the other increases, i.e. a strong negative interdependence. A value 
of r near zero indicates that the variables are linearly independent. 

Correlation as a measure of similarity and association between variables is 
often used in many aspects of chemometrics. Used with care, it can assist in 
selecting variables for data analysis as well as providing a figure of merit as to 
how good a mathematical model fits experimental data, e.g. in constructing 
calibration curves. Returning to the extreme data set of Table 1.2, the 
correlation coefficient between chromium and nickel concentrations is identical 
for each source of water. If the data are plotted, however, some of the dangers 
of quoting Y values are evident. From Figure 1.10, it is reasonable to propose a 
linear relationship between the concentrations of chromium and nickel for 
samples from A. This is certainly not the case for samples B, and the graph 
suggests that a higher order, possibly quadratic, model would be better. For 
samples from source C, a potential outlier has reduced an otherwise excellent 
linear correlation, whereas for source D there is no evidence of any relationship 
between chromium and nickel but an outlier has given rise to a high correlation 
coefficient. To repeat the earlier warning, always visually examine the data 
before proceeding with any manipulation. 

Multivariate Normal 

In much the same way as the more common univariate statistics assume a 
normal distribution of the variable under study, so the most widely used 
multivariate models are based on the assumption of a multivariate normal 
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Figure 1.9 Scatter plots for bivariate data with various values of correlation coeficient, r. 
Least-squares best-fit lines are also shown. Note that correlation is only a 
measure of linear dependence between variates 

distribution for each population sampled. The multivariate normal distribution 
is a generalization of its univariate counterpart and its equation in matrix 
notation is 

(1.28) 

The representation of this equation for anything greater than two variables is 
difficult to visualize, but the bivariate form (rn = 2) serves to illustrate the 
general case. The exponential term in Equation 1.28 is of the form xTAx and is 
known as a quadratic form of a matrix product (Appendix A). Although the 
mathematical details associated with the quadratic form are not important 
here, one important property is that they have a well-known geometric 
interpretation. All quadratic forms that occur in chemometrics and statistical 
data analysis expand to produce a quadratic surface that is a closed ellipse. Just 
as the univariate normal distribution appears bell-shaped, so the bivariate 
normal distribution is elliptical. 

For two variables, nl and x2, the mean vector and variance+ovariance 
matrix are defined in the manner as discussed above. 
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Figure 1.10 Scatter plots of the concentrations of chromium vs. nickel from four waste 
water sources, from Table 1.2 

(1.29) 

where pl and p2 are the means of x l  and x2 respectively, o1 and 0222 are their 
variances, and o1Z2 = 4212 is the covariance between x1 and x2. Figure 1.11 
illustrates some bivariate normal distributions, and the contour plots show the 
lines of equal probability about the bivariate mean, i.e. lines that connect 
points having equal probability of occurring. The contour diagrams of 
Figure 1.1 1 may be compared to the correlation plots presented previously. 
As the covariance, 0122, increases in a positive manner from zero, so the 
association between the variates increases and the spread is stretched, because 
the variables serve to act together. The distribution moves in the other 
direction if the covariance is negative. 
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Figure 1.1 1 Bivariate normal distributions as probability contour plots for  data having 
diflerent covariance relationships 

5 Displaying Data 
As our discussions of population distributions and basic statistics have 
progressed, the use of graphical methods to display data can be seen to play an 
important role in both univariate and multivariate analysis. Suitable data plots 
can be used to display and describe both raw data, i.e. original measures, and 
transformed or manipulated data. Graphs can aid in data analysis and 
interpretation, and can serve to summarize final results.I6 The use of diagrams 
may help to reveal patterns in the data which may not be obvious from 
tabulated results. With most computer-based data analysis packages the 
graphics routines can provide a valuable interface between the user and the 
experimental data. The construction and use of graphical techniques to display 
univariate and bivariate data are well known. The common calibration graph 
or analytical working curve, relating, for example, measured absorbance to 
sample concentration, is ubiquitous in analytical science. No spectroscopist 
would welcome the sole use of tabulated spectra without some graphical 
display of the spectral pattern. The display of data obtained from more than 
two variables, however, is less common and a number of ingenious techniques 
and methods have been proposed and utilized to aid in the visualization of such 
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multivariate data sets. With three variables a three-dimensional model of 
the data can be constructed and many graphical computer packages are 
available to assist in the design of three-dimensional plots.I6 In practice, the 
number of variables examined may well be in excess of two or three and less 
familiar and less direct techniques are required to display the data. Such 
techniques are generally referred to as mapping methods as they attempt to 
represent many-dimensional data in a reduced, usually two-dimensional space 
whilst retaining the structure and as much information from the original data 
as possible. 

For bivariate data the simple scatter plot of variable y against variable x 
is popular and there are several ways in which this can be extended to 
accommodate further variables. Figure 1.12 illustrates an example of a three- 
dimensional scatter plot. The data used are from Table 1.11, representing the 
results of the analysis of nine alloys for four elements. The concentration of 
three analytes, zinc, tin, and iron, are displayed. It is immediately apparent 
from the illustration that the samples fall into one of two groups, with one 
sample lying between the groups. This pattern in the data is more readily seen 
in the graphical display than from the tabulated data. 

This style of representation is limited to three variables and even then the 
diagrams can become confusing, particularly for a lot of points. One method 
for graphically representing multivariate data ascribes each variable to some 
characteristic of a cartoon face. These Chernofl faces have been used 
extensively in the social sciences and adaptations have appeared in the 
analytical chemistry literature. Figure 1.13 illustrates the use of Chernoff faces 
to represent the data from Table 1.1 1. The size of the forehead is proportional 
to tin concentration, the lower face to zinc level, mouth to nickel, and nose to 
iron concentration. As with the three-dimensional scatter plot, two groups can 

Figure 1.12 Three-dimensional plot of zinc, tin, and iron data f rom Table 1.11 
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Table 1.11 XRF results from copper-based alloys 

Sample Variables (% by weight) 

Tin Zinc Iron Nickel 

0.20 
0.20 
0.15 
0.6 I 
0.57 
0.58 
0.30 
0.60 
0.10 

3.40 
2.40 
2.00 
6.00 
4.20 
4.82 
5.60 
6.60 
I .60 

0.06 
0.04 
0.08 
0.09 
0.08 
0.07 
0.02 
0.07 
0.05 

0.08 
0.06 
0.16 
0.02 
0.06 
0.02 
0.0 1 
0.06 
0.19 

be seen, samples 1, 2, 3, and 9, and samples 4, 5 ,  6, and 8, with sample 7 
displaying characteristics from both groups. 

Star-plots present an alternative means of displaying the same data 
(Figure 1.14), with each ray proportional to individual analyte concentrations. 

A serious drawback with multi-dimensional representation is that visually 
some characteristics are perceived as being of greater importance than others 
and it is necessary to consider carefully the assignment of the variable to the 
graph structure. In scatter plots, the relationships between the horizontal 
co-ordinates can be more obvious than those for the higher-dimensional data 
on a vertical axis. It is usually the case, therefore, that as well as any strictly 
analytical reason for reducing the dimensionality of data, such simplifi- 
cation can aid in presenting multidimensional data sets. Thus, principal 
components and principal co-ordinates analysis are frequently encountered 
as graphical aids as well as for their importance in numerically extracting 

1 2 3 4 5 

6 7 8 9 

Figure 1.13 Data from Table 1. I1 displayed as Chernofl faces 



Descriptive Stat is t ics 

Tin Tin 

27 

Tin 

Nickel 

Nickel 

Iron 

1 

Tin 

Iron 

2 

Tin 

Iron 

3 

Tin 

Iron 

4 

Tin 

Iron 

5 

Tin 

Iron 

6 

Tin 

zinc 

Iron 

7 

Iron 

8 

Nickel Zinc 

Iron 

9 

Figure 1.14 Star plots of dutu from Table 1.11 

information from data. It is important to realize, however, that reduc- 
tion of dimensionality can lead to loss of information. Two-dimensional 
representation of multivariate data can hide structure as well as aid in the 
identification of pat terns. 

The wide variety of commercial computer software available to the analyst 
for statistical analysis of data has contributed significantly to the increasing use 
and popularity of multivariate analysis. It still remains essential, however, that 
the chemist appreciates the underlying theory and assumptions associated with 
the tests performed. Only a brief introduction to the fundamental statistics has 
been presented here. The remainder of the book is devoted to the acquisition, 
manipulation, and interpretation of spectrochemical data. No attempt has 
been made to present computer algorithms or program listings. Many fine texts 
are available that include details and listings of programs for numerical and 
statistical analysis for the interested reader. '7-20 
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CHAPTER 2 

Acquisition and Enhancement 
of Data 

1 Introduction 
In the modern spectrochemical laboratory, even the most basic of instruments 
is likely to be microprocessor controlled, with the signal output digitized. 
Given this situation, it is necessary for analysts to appreciate the basic concepts 
associated with computerized data acquisition and signal conversion into the 
digital domain. After all, digitization of the analytical signal may represent one 
of the first stages in the data acquisition and manipulation process. If this is 
incorrectly carried out then subsequent processing may not be worthwhile. The 
situation is analogous to that of analytical sampling. If a sample is not 
representative of the parent material, then no matter how good the chemistry 
or the analysis, the results may be meaningless or misleading. 

The detectors and sensors commonly used in spectrometers are analogue 
devices; the signal output represents some physical parameter, e.g. light 
intensity, as a continuous function of time. To process such data in the 
computer, the continuous, or analogue, signal must be digitized to provide a 
series of numeric values equivalent to and representative of the original signal. 
An important parameter to be selected is how fast, or at what rate, the input 
signal should be digitized. One answer to the problem of selecting an appropriate 
sampling rate would be to digitize the signal at as high arate as possible. With 
modern high-speed, analogue-to-digital converters, however, this would 
produce so much data that the storage capacity of the computer would soon 
be exceeded. Instead, it is preferred that the number of values recorded is limited. 
The analogue signal is digitally and discretely sampled, and the rate of sampling 
determines the accuracy of the digital representation as a time discrete function. 

2 Sampling Theory 
Figure 2.1 illustrates a data path in a typical ratio-recording, dispersive 
infrared spectrometer.' The digitization of the analogue signal produced by the 
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Figure 2.1 Data path of a ratio-recording, dispersive IR  spectrometer 
(Reproduced by permission from ref. I )  

detector is a critical step in the generation of the analytical spectrum. Sampling 
theory dictates that a continuous time signal can be completely recovered from 
its digital representation if the original analogue signal is band-limited, and if 
the sampling frequency employed for digitization is at least twice the highest 
frequency present in the analogue signal. This often quoted statement is 
fundamental to digitization and is worth examining in more detail. 

The process of digital sampling can be represented by the scheme shown in 
Figure 2.2.2 The continuous analytical signal as a function of time, xt, is 
multiplied by a modulating signal consisting of a train of pulses of equal 
magnitude and constant period, p t .  The resultant signal is a train of similar 
impulses but now with amplitudes limited by the spectral envelope x,. We wish 
the digital representation accurately to reflect the original analogue signal in 
terms of all the frequencies present in the original data. Therefore, it is best if 
the signals are represented in the frequency domain (Figure 2.3). This is 
achieved by taking the Fourier transform of the spectrum. 

Figure 2.3 illustrates the Fourier transform, xf, of the analytical signal xt.2 
At frequencies greater than some value,f,, xf is zero and the signal is said to be 
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t 

Figure 2.2 Schematic of the digital sampling process: (a) signal, x,, is multiplied by a train 
of pulses, Pt ;  producing the signal -X,j,r; (b) analytical signal, x,; (c) carrier 
signal, p,; (d) resultant sampled signal is a train of pulses with amplitudes 
limited by ,Xr 

(Reproduced by permission of Prentice-Hall from ref. 2) 

band-limited. Figure 2.3(b) shows the frequency spectrum of the modulating 
pulse train. The sampled signal, Figure 2.3(c), is repetitive with a frequency 
determined by the sampling frequency of the modulating impulses, fs. These 
modulating impulses have a period, t ,  given by t = l/fy. It is evident from 
Figure 2.3(c) that the sampling rate as dictated by the modulating signal,.f,, 
must be greater than the maximum frequency present in the spectrum,f,. Not 
only that, it is necessary that the difference (fs-fm) must be greater thanfk, i.e. 
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Figure 2.3 Sampling in the frequency domain; (a) modulated signal, x,, has frequency 
spectrum xf; (b) harmonics of the carrier signal; (c) spectrum of modulated 
signal is a repetitive pattern of xf, andxscan be completely recovered by low pass 
filtering using, for example, a boxfilter with cutt-oflfrequencyJ,; (d) too low a 
sampling frequency produces aliasing, overlapping of frequency patterns 
(Reproduced by permission of Prentice-Hall from ref. 2) 

fs = 2fm is referred to as the minimum or Nyquist samplingfrequency. If the 
sampling frequency,&, is less than the Nyquist value then aliasing arises. This 
effect is illustrated in Figure 2.3(d). At low sampling frequencies the spectral 
pattern is distorted by overlapping frequencies in the analytical data. 

In practice, instrumental analytical signals are likely to contain a large 
number of very high-frequency components and, as pointed out above, it is 
impractical simply to go on increasing the digitizing rate. Applying a low pass 
filter to the raw analogue signal to remove high-frequency components and, 
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hence, derive a band-limited analogue signal for subsequent digital sampling 
may relieve the situation. Provided that the high-frequency analogue 
information lost by this filtering is due only to noise, then the procedure is 
analytically valid. In the schematic diagram of Figure 2.1, this preprocessing 
function is undertaken by the integration stage prior to digitization. 

Having digitized the analogue signal and obtained an accurate representa- 
tion of the analytical information, the data can be manipulated further to aid 
the spectroscopist. One of the most common data processing procedures is 
digital filtering or smoothing to enhance the signal-to-noise ratio. Before 
discussing filtering, however, it is worth considering the concept of the signal- 
to-noise ratio and its statistical basis. 

3 SignaEto-Noise Ratio 
The spectral information used in an analysis is encoded as an electrical signal 
from the spectrometer. In addition to desirable analytical information, such 
signals contain an undesirable component termed noise which can inter- 
fere with the accurate extraction and interpretation of the required analytical 
data. 

There are numerous sources of noise that arise from instrumentation, but 
briefly the noise will comprise flicker noise, interference noise, and white noise. 
These classes of noise signals are characterized by their frequency distribution. 
Flicker noise is characterized by a frequency power spectrum that is more 
pronounced at low frequencies than at high frequencies. This is minimized in 
instrumentation by modulating the carrier signal and using a.c. detection and 
ax. signal processing, e.g. lock-in amplifiers. Interference from power supplies 
may also add noise to the signal. Such noise is usually confined to specific 
frequencies, about 50 or 60 Hz, and their harmonics. By employing modulation 
frequencies well away from the power line frequency, interference noise can be 
reduced, and minimized further by using highly selective, narrow bandpass 
electronic filters. White noise is more difficult to eliminate since it is random in 
nature, occurring at all frequencies in the spectrum. It is a fundamental 
characteristic of all electronic instruments. In recording a spectrum, complete 
freedom from noise is an ideal that can never be realized in practice. The noise 
associated with a recorded signal has a profound effect in an analysis and one 
figure of merit used to describe the quality of a measurement is the signal-to- 
noise ratio, S/N, which is defined as, 

average signal magnitude 
rms noise S/N = (2.2) 

The rms (root mean square) noise is the square root of the average deviation of 
the signal, xi, from the mean noise value, i.e. 

rms noise = :)* (2.3) 
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Figure 2.4 Amplijied trace of an analytical signal recorded with amplitude close to the 
background level, showing the mean signal amplitude, S, and the standard 
deviation, s. The peak-to-peak noise is 5s 

This equation should be recognized as equating rms noise with the standard 
deviation, a, of the noise signal. S/N can, therefore, be defined as z/c. 

In spectrometric analysis S/N is usually measured in one of two ways. The 
first technique is repeatedly to sample and measure the analytical signal and 
determine the mean and standard deviation using Equation 2.3. Where a chart 
recorder output is available, a second method may be used. Assuming the noise 
is random and normally distributed about the mean, it is likely that 99% of the 
random deviations in the recorded signal will lie within 22.5 c of the mean 
value. Measuring the peak-to-peak deviation of the signal and dividing by 5 
provides an estimate of the rms noise is obtained (as illustrated in Figure 2.4). 
Whichever method is used, the signal should be sampled for sufficient time to 
allow a reliable estimate of the standard deviation to be made. When 
measuring S/N it is usually assumed that the noise is independent of signal 
magnitude for small signals close to the baseline or background signal. 

Noise, as well as affecting the appearance of a spectrum, influences the 
sensitivity of an analytical technique and for quantitative analysis the S/N ratio 
is of fundamental importance. Analytical terms dependent on the noise 
contained in the signal are the decision limit, the detection limit, and the 
determination limit. Instrument manufacturers often quote these analytical 
figures of merit and knowledge of their calculation is important in evaluating 
and comparing instrument performance in terms of analytical sensitivity. 

4 Detection Limits 
The concept of an analytical detection limit implies that we can make a 
qualitative decision regarding the presence or absence of analyte in a sample. In 
arriving at such a decision there are two basic types of error that can arise 
(Table 2.1). The Type I error leads to the conclusion that the analyte is present 
in a sample when it is known not to be, and the Type I1 error is made if we 
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Table 2.1 Type I and Type II errors that can be made in accepting or rejecting a 
statistical hypothesis 

Hypothesis is correct Hypothesis is Incorrect 

Hypothesis is accepted Correct decision Type I1 Error 
Hypothesis is rejected Type I Error Correct decision 

conclude that the analyte is absent, when in fact it is present. The definition of a 
detection limit should address both types of error.3 

Consider an analytical signal produced by a suitable blank sample, with a 
mean value of pb.  If we assume that noise in this background measurement is 
random and normally distributed about pb, then 95% of this noise will lie 
within pbk 1 . 6 5 ~  (Figure 2.5). With a 5% chance of committing a Type I error, 
then an analysis giving a response value greater than pt, + 1.650 can be assumed 

5 1  critical region 

1.65 Q 

3 . 3 0  - - 

100 - c-- 

Figure 2.5 ( a )  Normal distribution with the 5% critical region highlighted. Two normally 
distributed signals with equal variances overlapping, with the mean of one 
located at the 5% point of the other (b) - the decision limit; overlapping at 
their 5% points with means separated by 3 . 3 ~  (c )  - the detection limit; and 
their means separated by IOU ( d )  - the determination limit 
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to indicate the presence of the analyte. This measure is referred to as the 
decision limit, 

Decision limit = zO,95.0I, = 1.65ab (2.4) 

If the number of measurements made to calculate q, is small, then the 
appropriate value from the t-distribution should be used in place of the z-value 
as obtained from the normal distribution curve. 

What if a sample containing analyte at a concentration equivalent to the 
decision limit is repeatedly analysed? In such a case, we can expect that in 50% 
of the measurements the analyte will be reported present, but in the other half 
the analyte will be reported as not present. This attempt at defining a detection 
limit using the decision limit defined by Equation 2.4 does not address the 
occurrence of the Type I1 error. 

If, as with the Type I error, we are willing to accept a 5% chance of commit- 
ting a Type I1 error, then the relationship between the blank signal and sample 
measurement is as indicated in Figure 2.5(b). This defines the detection limit, 

Detection limit = 2.z0.95.~b = 3.3ab (2.5) 

Under these conditions, we have a 5% chance of reporting the analyte 
present in a blank solution, and a 5% chance of reporting the analyte absent in 
a sample actually containing analyte at the concentration defined by the 
detection limit. 

We should examine the precision of measurements made at this limit before 
accepting this definition of detection limit. The repeated measurement of the 
instrumental response from a sample containing analyte at the detection limit 
will lead to the analyte being reported as below the detection limit for 50% of 
the analyses. The relative standard deviation, RSD, of such measurements is 
given by 

(2.6) 

This hardly constitutes suitable precision for quantitative analysis, which 
should have a RSD of 10% or less. For a RSD of lo%, a further term can be 
defined called the determination limit, Figure 2.5(d), 

RSD = lWo/p = lOO/(2zo.95) = 30.3% 

Determination limit = lOab (2.7) 

When comparing methods, therefore, the defining equations should be 
identified and the definitions used should be agreed. 

As we can see, the limits of quantitative analysis are influenced by the noise 
in the system and to improve the detection limit it is necessary to enhance the 
signal-to-noise ratio. 

5 Reducing Noise 
If we assume that the analytical conditions have been optimized, say to 
produce maximum signal intensity, then any increase in signal-to-noise ratio 
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will be achieved by reducing the noise level. Various strategies are widely 
employed to reduce noise, including signal averaging, smoothing, and filtering. 
It is common in modern spectrometers for several methods to be used on 
the same analytical data at different stages in the data processing scheme 
(Figure 2.1). 

Signal Averaging 

The process of signal averaging is conducted by repetitively scanning and co- 
adding individual spectra. Assuming the noise is randomly distributed, then the 
analytical signals which are coherent in time are enhanced, since the signal 
grows linearly with the number of scans, N,  

signal magnitude a N 

signal magnitude = k , N  

To consider the effect of signal averaging on the noise level we must refer to 
the propagation of errors. The variance associated with the sum of independent 
errors is equal to the sum of their variances, i.e. 

i= 1 

Since we can equate rms noise with standard deviation then, 

(2.10) 

Thus the average magnitude of random noise increases at a rate proportional 
to the square root of the number of scans, 

noise magnitude 0~ N1I2 

noise magnitude = k2N'I2 

Therefore, 

(2.1 I )  

(2.12) 

and the signal-to-noise ratio is improved at a rate proportional to the square 
root of the number of scans. Figure 2.6 illustrates part of an infrared spectrum 
and the effect of signal averaging 4,9, and 16 spectra. The increase in signal-to- 
noise ratio associated with increasing the number of co-added repetitive scans 
is evident. 

For signal averaging to be effective, each scan must start at the same place 
in the spectrum otherwise analytical signals and useful information will also 
cancel and be removed. The technique is widely used but is most common in 
fast scanning spectrometers, particularly Fourier transform instruments such 
as NMR and IR. Co-adding one hundred scans is common in infrared 
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Figure 2.6 Infrared spectrum and the results of co-adding 4 ,  9 ,  and I6 scans-from the 
same region 

spectroscopy to achieve a theoretical enhancement of 10: 1 in signal-to-noise 
ratio. Whilst further gains can be achieved, practical considerations may limit 
the process. Even with a fast scan, say 1 s, the time required to perform 
10,000 scans and aim to achieve a 100-fold improvement in signal-to-noise 
ratio may be unacceptable. In addition, computer memory constraints on 
storing the accumulated spectra may limit the maximum number of scans 
permitted. 

Signal Smoothing 

Various mathematical manipulation schemes are available to smooth spectral 
data; here we shall concentrate on smoothing techniques that serve to average a 
section of the data. They are all simple to implement on personal computers. 
This ease of use has led to their widespread application, but their selection and 
tuning is somewhat empirical and depends on the application in-hand. 

One simple smoothing procedure is boxcar averaging. Boxcar averaging 
proceeds by dividing the spectral data into a series of discrete, equally spaced, 
bands and replacing each band by a centroid average value. Figure 2.7 illu- 
strates the results using the technique for different widths of the filter window 
or band. The greater the number of points averaged, the greater the degree of 
smoothing, but there is also a corresponding increase in distortion of the signal 
and subsequent loss of spectral resolution. The technique is derived from the 
use of electronic boxcar integrator units. It is less widely used in modern 
spectrometry than the methods of moving average and polynomial smoothing. 

As with boxcar averaging, the moving average method replaces a group of 
values by their mean value. The difference in the techniques is that with the 
moving average successive bands overlap. Consider the spectrum illustrated in 
Figure 2.8, which is composed of transmission values, denoted xi. By averaging 
the first five values, i = 1 . . .5, a mean transmission value is produced which 
provides the value for the third data point, x i ,  in the smoothed spectrum. 



Acquisition and Enhancement of Data 39 

5-point 

original 

Figure 2.7 Infrared spectrum and the results of applying a 5-point boxcar average, a 
7-point average, and a 9-point average 

The procedure continues by incrementing i and averaging the next five values 
to find x i  from original data x2, x3, x4, x5, and xg. The degree of smoothing 
achieved is controlled by the number of points averaged, i.e. the width of the 
smoothing window. Distortion of the data is usually less apparent with the 
moving average method than with boxcar averaging. 

The mathematical process of implementing the moving average technique is 
termed convolution. The resultant spectrum, x' (as a vector), is said to be the result 
of convolution of the original spectrum vector, x, with a filter function, w ,  i.e. 

x ' = w @ x  

x'(3) = Z x(i) / 5 ,  i = 1 .. 5 

............ ... 

2. i 0 
0.. 

3. 1 . 
span : 

4. 

$ 0  

0 

0. ........ 
0.0 

J 1 

1- 

(2.13) 

Figure 2.8 Smoothing with a 5-point moving average. Each new point in the smoothed 
spectrum is formed by averaging a span of 5 points from the original data 
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Figure 2.9 Convolution of a spectrum with aBlter is achieved by pulling theJilter function 
across the spectrum 

For the simple five-point moving average, w = [ 1 , 1 , 1 , 1,1]. The mechanism 
and application of the convolution process is illustrated graphically in Figure 2.9. 

In 1964 Savitzky and Golay described a technique for smoothing spectral 
data using convolution filter vectors derived from the coefficients of least- 
squares-fit polynomial  function^.^ This paper, with subsequent arithmetic 
 correction^,^ has become a classic in analytical signal processing and least- 
squares polynomial smoothing is probably the technique in widest use in 
spectral data processing and manipulation. To appreciate its derivation and 
application we should extend our discussion of the moving average filter. 

The simple moving average technique can be represented mathematically by 

(2.14) 

where xi, and xi1, are elements of the original and smoothed data vectors 
respectively, and the values Oj are the weighting factors in the smoothing 
window. For a simple moving average function, mj= 1 for a l l j  and the width of 
the smoothing function is defined by (2n+ 1) points. 

The process of polynomial smoothing extends the principle of the moving 
average by modifying the weight vector, cr), such that the elements of describe 
a convex polynomial. The central value in each window, therefore, adds more 
to the averaging process than values at the extremes of the window and the 
shape of a spectral peak is better preserved. 

Consider five data points forming a part of a spectrum described by the data 
set x recorded at equal wavelength intervals. Polynomial smoothing seeks to 
replace the value of the point xj by a value calculated from the least-squares 
polynomial fitted to x j 4 ,  xj- l ,  xj, x j+ l ,  and xj+ 2 recorded at wavelengths 
denoted by i l j-2,  ;lj- 1, ilj, ;lj+ 1, and ilj+ 2 .  

For a quadratic curve fitted to the data, the model can be expressed as 

x' = a. + alil + a2i12 (2.15) 
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where x’ is the fitted model data and ao, a ] ,  and a2 are the coefficients or 
weights to be determined. 

Using the method of least squares, the aim is to minimize the error, E ,  given 
by the square of the difference between the model function, Equation 2. IS, and 
observed data for all data values fitted, i.e. 

(2.16) 

and, by simple differential calculus, this error function is a minimum when its 
derivative is zero. 

Differentiating Equation 2.16 with respect to ao, a l ,  and a2 respectively, 
provides a set of so-called normal equations, 

Because the A, values are equally spaced, AA = A, - A,-] is constant and only 

Rj = j.AA (2.18) 

relative K values are required for the model, 

Hence, for j = -2 . .  . + 2 (a five-point fit), 

1 Rj’ = AR. 

EA? = A R . E j 2  = IOAA 

j’  = 0 

(2.19) 12; = A A . Z ~ ~  = o 
12,” = AR. x j 4  = 34AA 

which can be substituted into the normal equations, Equations 2.17, giving 

5ao + 10AR2.a2 = xj = xj-2 + xi- + xj + xj+ + xj+2 

10ao + 34AA2.a2 = 1 xj$ = 4xj-* + xi- I + xi+ + 4xj+2 

10AA.al = 2 xA. J J  = -2xj-2 - xi- + x-+ - 2xj+2 (2.20) 

which can be rearranged, 

a. = (-3xj-2 + 1 2 ~ ~ ~ ~  + 17xj + 12xj+l - 3xj+2)/35 

a1 = (-2xj-z - ~ j - 1  + xi+] - 2xj+2)/10A1 (2.21) 

a2 = - xj-] - 2xj - xj+] + 2~,+~)/14AA~ 

At the central point in the smoothing window, A,, = 0 and x-‘= a0 from 
Equation 2.15. The five weighting coefficients, coj, are given by the first 
equation in Equation 2.21, 
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C O =  [-3, 12, 17, 12, -31 (2.22) 

Savitzky and Golay published the coefficients for a range of least-squares-fit 
curves with up to 25-point wide smoothing windows for each.4 Corrections to 
the original tables have been published by Steiner et al.5 

Table 2.2 presents the weighting coefficients for performing 5, 9, 13, and 17- 
point quadratic smoothing and the results of applying these functions to the 
infrared spectral data are illustrated in Figure 2.10. 

When choosing to perform a Savitzky-Golay smoothing operation on 
spectral data it is necessary to select the filtering function (quadratic, quartic, 
etc.), the width of the smoothing function (the number of points in the 
smoothing window), and the number of times the filter is to be applied 
successively to the data. Although the final choice is largely empirical, the 
quadratic function is the most commonly used, with the window width selected 
according to the scan-conditions. A review and account of selecting a suitable 
procedure has been presented by Enke and Nieman.6 

Filtering in the Frequency Domain 

The smoothing operations discussed above have been presented in terms of 
the action of filters directly on the spectral data as recorded in the time domain. 
By converting the analytical spectrum into the frequency domain, the 

Table 2.2 Savitzky-Golay coeficients, or weightings, for 
5-, 9-, 13-, and 17-point quadratic smoothing of 
continuous spectral data 

~~ 

Points No. points in smoothing window 

17 13 9 5 

-8 
-7 
-6 
-5 
-4 
-3 
-2 
-1 

0 
1 
2 
3 
4 
5 
6 
7 
8 

Norm 

-2 1 
-6 

7 
18 
27 
34 
39 
42 
43 
42 
39 
34 
27 
18 
7 

-6 
-2 1 

323 

-1 1 
0 
9 

16 
21 
24 
25 
24 
21 
16 
9 
0 

-1 1 

143 

-2 1 
14 
39 
54 
59 
54 
39 
14 

-2 I 

23 1 

-3 
12 
17 
12 

-3 

35 
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17-point 

13-point 

9-point 

Figure 2.10 Savitzky-Golay quadratic smoothing of the spectrum from Figure 2.7(a)  
using a 5-point span (a), a 9-point (b), a 13-point (c), and a 17-point (d) 

performance of these functions can be compared and a wide variety of other 
filters designed. 

Time-to-frequency conversion is accomplished using the Fourier transform. 
Its use was introduced earlier in this chapter in relation to sampling theory, and 
its application will be extended here. 

The electrical output signal from a conventional scanning spectrometer 
usually takes the form of an amplitude-time response, e.g. absorbance vs. 
wavelength. All such signals, no matter how complex, may be represented as a 
sum of sine and cosine waves. The continuous function of composite 
frequencies is called a Fourier integral. The conversion of amplitude-time, t ,  
information into amplitude-frequency, w,  information is known as a Fourier 
transformation. The relation between the two forms is given by 

00 

F(w) = f(t)[cos(wt) + isin(wt)]dt (2.23) J 
-W 

or, in complex exponential form, 

F(w) = fit).e-2RiWtdt (2.24) i 
-00 

The corresponding reverse, or inverse, transform, converting the complex 
frequency domain information back into the time domain is 

00 

At) = I F(w)e2ninrdw 
-00 

(2.25) 
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The two functionsflt) and F(w) are said to comprise Fourier transform pairs. 
As discussed previously with regard to sampling theory, real analytical signals 
are band-limited. The Fourier equations therefore should be modified for 
practical use as we cannot sample an infinite number of data points. With this 
practical constraint, the discrete forward complex 

F(n) = c f(k)e-2"i""in 
N- 1 

k=O 

and the inverse is 

transform is given by 

(2.26) 

(2.27) 

A time domain spectrum consists of N points acquired at regular intervals 
and it is transformed into a frequency domain spectrum. This consists of N/2 
real and N/2 imaginary data points, with n = -N/2 . . . 0 . . . N/2, and k takes 
integer values from 0 to N-1. 

Once a frequency spectrum of a signal is computed then it can be modified 
mathematically to enhance the data in some well defined manner. The suitably 
processed spectrum can then be obtained by the inverse transform. 

Several Fourier transform pairs are shown pictorially in Figure 2.11. An 
infinitely sharp amplitude-time signal, Figure 2.1 l(a), has a frequency response 
spectrum containing equal amplitudes at all frequencies. This is the white 
spectrum characteristic of a random noise amplitude-time signal. As the signal 
becomes broader, the frequency spectrum gets narrower. The higher 
frequencies are reduced dramatically and the frequency spectrum has the 
form (sin x)/x, called the sinc function, Figure 2.1 l(b). For a triangular signal, 
Figure 2.1 l(c), the functional form of the frequency spectrum is (sin2x)/x2, the 
sinc' function. The sinc and sinc2 forms are common filtering functions in 
interferometry, where their application is termed apodisation. The frequency 
response spectra of Lorentzian and Gaussian shaped signals are of particular 
interest since these shapes describe typical spectral profiles. The Fourier 
transform of a Gaussian signal is another Gaussian form, and for a Lorentzian 
signal the transform takes the shape of an exponentially decaying oscillator. 

One of the earliest applications of the Fourier transform in spectroscopy was 
in filtering and noise reduction. This technique is still extensively employed. 

Figure 2.12 presents the Fourier transform of an infrared spectrum, before 
and after applying the 13-point quadratic Savitzky-Golay function. The effect 
of smoothing can clearly be seen as reducing the high-frequency fluctuations, 
hopefully due to noise, by the polynomial function serving as a low-pass filter. 
Convolution provides an important technique for smoothing and processing 
spectral data, and can be undertaken in the frequency domain by simple 
multiplication. Thus smoothing can be accomplished in the frequency domain, 
following Fourier transformation of the data, by multiplying the Fourier 
transform by a rectangular or other truncating function. The low-frequency 
Fourier coefficients should be relatively unaffected, whereas the high-frequency 
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Figure 2.11 

0 0 

0 0 

0 0 

0 0 

Some well-characterized Fourier pairs. White spectrum and the impulse 
function (a), boxcar and sinc functions (b), triangular and sinc’functions (c), 
Gaussian pair (d) 
(Reproduced by permission of McGraw-Hill from ref. 7) 

components characterizing random noise are reduced or zeroed. The 
subsequent inverse transform then yields the smoothed waveform. 

The rectangular window function is a simple truncating function which can 
be applied to transformed data. This function has zero values above some pre- 
selected cut-off frequency, fL., and unit values at lower frequencies. Using 
various cut-off frequencies for the truncating function and applying the inverse 
transform results in the smoothed spectra shown in Figure 2.13. 

Although the selection of an appropriate cut-off frequency value is 
somewhat arbitrary, various methods of calculating a suitable value have 
been proposed in the literature. The method of Lam and Isenhour’ is worth 
mentioning, not least because of the relative simplicity in calculating fc. The 
process relies on determining what is termed the equivalent width, EW, of the 
narrowest peak in the spectrum. For a Lorentzian band the equivalent width in 
the time domain is given by 

EW, = 01p.n/2 (2.28) 
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Figure 2.12 A spectrum (a) and its Fourier transform before (b) and after applying a 
13-point quadratic smoothing filter (c) 

where oll2 is the full-width at half-maximum, the half-width, of the narrowest 
peak in the spectrum. 

The equivalent width in the frequency domain, EWf, is simply the reciprocal 
of EWt. Assuming the spectrum was acquired in a single scan taking 10 s and it 
consists of 256 discrete points, then the sampling interval, At, is given by 

At = 10/256 = 0.039 s (2.29) 

and the maximum frequency, fmax, by 

(2.30) 

The IR spectrum was synthesized from two Lorentzian bands, the sharpest 
having 0 1 / 2  = 1.17 s. Therefore EW, = 1.838 s and EWf= 0.554 Hz. 

The complex interferogram of 256 points is composed of 128 real values and 
128 imaginary values spanning the range 0-12.75 Hz. According to the EW 
criterion, a suitable cut-off frequency is 0.554 Hz and the number of significant 
points, N, to be retained may be calculated from 

N = (128)(0.554)/12.75 == 6 (2.31) 

Thus, points 7 to 128 are zeroed in both the real and imaginary arrays before 
performing the inverse transform, Figure 2.13(d). Obviously, to use the 
technique, it is necessary to estimate the half-width of the narrowest band 
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i- 64 points v 

16 points i, 
Figure 2.13 A spectrum and its Fourier transform (a). The transform and its inverse 

retaining (b) 40, (c) 20, and (d) 6 of the Fourier coeficients 

present. Where possible this is usually done using some sharp isolated band in 
the spectrum. 

All the smoothing functions discussed in previous sections can be displayed 
and compared in the frequency domain, and in addition new filters can be 
designed. Bromba and Ziegler have made an extensive study of such 'designer' 
filters.'"' The Savitzky-Golay filter acts as a low-pass filter that is optimal for 
polynomial shaped signals. Of course, in spectrometry Gaussian or Lorentzian 
band shapes are the usual form and the polynomial is only an approximation 
to a section of the spectrum defined by the width of the filter window. There is 
no reason why filters other than the polynomial should not be employed for 
smoothing spectral data. Use of the Savitzky-Golay procedure is as much 
traditional as representing any theoretical optimum. 

Bromba and Ziegler have defined a general filter with weighting elements 
defined by the form, 

2a+ 1 abl 
mj=--- 2 n +  1 n ( n +  1)  (2.32) 

where w is the vector of coefficients, j = -n . . . n, and CI is a shape parameter. 
The practical use of such filters should be undertaken with care, however, and 
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they are best used in an interactive mode when the user can visibly assess the 
effects before proceeding to further data manipulation. 

Whatever smoothing technique is employed, the aim is to reduce the effects 
of random variations superimposed on the analytically useful signal. This 
transform can be simply expressed as 

Spectrum (smoothed) = Spectrum (raw) - noise (2.33) 

Assuming all noise is removed then the result is the true spectrum. 
Conversely, from Equation 2.33, if the smoothed spectrum is subtracted from 
the original, raw data, then a noise spectrum is obtained. The distribution of 
this noise as a function of wavelength may provide information regarding the 
source of the noise in spectrometers. The procedure is analogous to the analysis 
of residuals in regression analysis and modelling. 

6 Interpolation 
Not all analytical data can be recorded on a continuous basis; discrete 
measurements often have to be made and they may not be at regular time or 
space intervals. To predict intermediate values for a smooth graphic display, or 
to perform many mathematical manipulations, e.g. Savitzky-Golay smooth- 
ing, it is necessary to evaluate regularly spaced intermediate values. Such values 
are obtained by interpolation. 

Obviously, if the true underlying mathematical relationship between the 
independent and dependent variables is known then any value can be 
computed exactly. Unfortunately, this information is rarely available and 
any required interpolated data must be estimated. 

The data in Table 2.3, shown in Figure 2.14, consist of magnesium 
concentrations as determined from river water samples collected at various 
distances from the stream mouth. Because of the problems of accessibility to 
sampling sites, the samples were collected at irregular intervals along the 
stream channel and the distances between samples were calculated from aerial 
photographs. To produce regularly spaced data, all methods for interpolation 

Table 2.3 Concentration of maganesium (mg kg-') 
from a stream sampled at different loca- 
tions along its course. Distances are f rom 
stream mouth to sample locations 

1800 
2700 
4500 
5200 
7100 
8 500 

4.0 
10.1 
11.5 
10.2 
8.4 
8.6 
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Figure 2.14 Magnesium concentration as a function of distance from the stream source, 
and the application of linear interpolation 

assume that no discontinuity exists in the recorded data. It is also assumed that 
any intermediate, estimated value is dependent on neighbouring recorded 
values. The simplest interpolation technique is linear interpolation. With 
reference to Figure 2.14, if yi and y2 are observed values at points x1 and x2, 

then y’ situated at x’ between x1 and x2 can be calculated from 

(2.34) 

For a value of x’ of 2500 m the estimated magnesium concentration, y’, is 
8.74 mg kg-I. 

The difference between values of adjacent points is assumed to be linear 
function of the distance separating them. The closer a point is to an observation, 
the closer its value is to that of the observation. Despite the simplicity of the 
calculation, linear interpolation should be used with care, as the abrupt changes 
in slope that may occur at recorded values are unlikely to reflect accurately the 
more smooth transitions likely to be observed in practice. A better, and 
graphically more acceptable, result is achieved by fitting a smooth curve to the 
data. Suitable polynomials offer an excellent choice. 

Polynomial interpolation is simply an extension of the linear method. The 
polynomial is formed by adding extra terms to the model to represent curved 
regions of the data profile and using extra data values in the model. 

If only one pair of measurements had been made, say @ I ,  x i ) ,  then a zeroth 
order equation of the type y’ =yl ,  for all y’ would be the only possible solution. 
With two pairs of measurements, @,, xi) and Cy2, x2), then a first-order linear 
model can be proposed, 

(2.35) 
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a0 = c y 2  - Y M X 2  -1) 

= 6.77 x for the magnesium data. (2.36) 

This is the model of linear interpolation and for x’ = 2500 m, y’ = 8.74 mg kg-I. 
To take account of more measured data, higher order polynomials can 

y’=yl + a o ( x ’ - x , ) + a l ( x ’ - x l ) ( x ’ - X 2 )  (2.37) 

with the quadratic term being zero when x’=xl or x = x 2 .  When 2 = x 3  then 
substitution and rearrangement of Equation 2.37 allows the coefficient a l  to be 
calculated, 

beemployed. A quadratic model will fit three pairs of points, 

(2.38) 

and 
( Y 3  - Y l )  - ( Y 2  - Y l )  

- (x3 - “XI) (x2 - XI 1 
al - 

(x3 - x2) 

= -2.2 x for the magnesium data. (2.39) 

Substituting for a1 and x’ = 2500 m into Equation 2.37, the estimated value 

The technique can be extended further. With four pairs of observations, a 

Y‘ = Y I  +a,(x’-xl)+al(x‘-xI)(x’-x2) + a 2 ( ~ ’ - ~ 1 ) ( ~ ’ - - 2 ) ( x ’ - - 3 )  (2.40) 

of y’ is 9.05 mg kg-’ Mg. 

cubic equation can be generated to pass through each point, 

and by a similar process, at x4 the coefficient a2 is given by 

(Y4 - Y l )  - c y 2  - Y l )  
(x4 - XI ) 

( Y 3  -vl) - c y 2  - Y l )  
(x2 - XI ) (x2 - x1 - (x3 - XI 

(x4 - x2) (x3 - x2) a2 = 
(x4 - x3) 

= -4.28 x lo-’’, for the magnesium data (2.41) 

and substituting into Equation 2.40, for x’ = 2500 m, then y’ = 8.93 mg kg-I Mg. 
As the number of observed points to be connected increases, then so too 

does the degree of the polynomial required if we are to guarantee passing 
through each point. The general technique is referred to as providing divided 
diflerence polynomials. The coefficients a2, a3, a4, etc. may be generated 
algorithmically by the ‘Newton forward formula’, and many examples of the 
algorithms are available. ‘ * I 2  

To fit a curve to n data points a polynomial of degree (n-1) is required, and 
with a large data set the number of coefficients to be calculated is 
correspondingly large. Thus 100 data points could be interpolated using a 
99-degree polynomial. Polynomials of such a high degree, however, are 
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unstable. They can fluctuate wildly with the high-degree terms forcing an exact 
fit to the data. Low-degree polynomials are much easier to work with 
analytically and they are widely used for curve fitting, modelling, and 
producing graphic output. To fit small polynomials to an extensive set of 
data it is necessary to abandon the idea of trying to force a single polynomial 
through all the points. Instead different polynomials are used to connect 
different segments of points, piecing each section smoothly together. One 
technique exploiting this principle is spline interpolation, and its use is 
analogous to using a mechanical flexicurve to draw manually a smooth 
curve through fixed points. 

The shape described by a spline between two adjacent points, or knots, is a 
cubic, third-degree polynomial. For the six pairs of data points representing 
our magnesium study, we would consider the curve connecting the data to 
consist of five cubic polynomials. Each of these takes the form 

(2.42) 

To compute the spline, we must calculate values for the 20 coefficients, four 
for each polynomial segment. Therefore we require 20 simultaneous equations, 
dictated by the following physical constraints imposed on the curve. 

3 2 si(x) = aix + bix + cix + di, i = 1 . . . 5  

Since the curve must touch each point then 

si(xi) = yi, i = 1 . . . 5  

S ~ ( X ~ + ~ )  = yi+l, i = 1 . .  . 5  
(2.43) 

The spline must curve smoothly about each point with no sharp bends or 
kinks, so the slope of each segment where they connect must be similar. To 
achieve this the first derivatives of the spline polynomials must be equal at the 
measured points. 

(2.44) 

We can also demand that the second derivatives of each segment will be 
similar at the knots. 

d2si-l (xi) d2si(xi) 
dx2 dx2 

, i = 2  ... 5 - - (2.45) 

Finally, we can specify that at the extreme ends of the curve the second 
derivatives are zero: 

(2.46) 
d2SS(X6) - 0 -- 

dx 

From Equations 2.43 to 2.46 we can derive our 20 simultaneous equations 
and, by suitable rearrangement and substitution of values for x and y ,  
determine the values of the 20 coefficients ai, hi, ci, and di, i = 1 . . . 5 .  
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This calculation is obviously laborious and the same spline can be computed 
more efficiently by suitable scaling and substitution in the equations." If the 
value of the second derivative of the spline at xi ,  is represented by pi, 

(2.47) 

then if the values ofpl,. . .p5 were known, all the coefficients, a, b, c, d, could be 
computed from the following four equations, 

(2.48) 

If each spline segment is scaled on the x-axis between the limits [O,l], using 
the term t = (x - xi)/(xj+l - x i ) ,  then the curve can be expressed as'' 

tyi+l + ( 1  - t>yi + ( X i + l -  ~ i ) ~ ( ( t ~  - t ) ~ i + 1 -  [(I - t)3 - ( 1  - ~)IP{ 
(2.49) 

6 
To calculate the values of pi, we impose the constraint that the first 

derivatives of the spline segments are equal at their endpoints. The resulting 
equations are 

S j ( t )  = 

v2P2  f u2P3 = w2 

u2P2 + V3P3  + U3P4 = w3 

U3P3 + V4P4 + U4P5 = w4 

U4P5  4- V 5 P 5  = w5 
or in matrix form 

where 

uj = Xj+l - xi, vj = 2(Xj+l - xj-1) 

(2.50) 

(2.51) 

(2.52) 

Equation 2.51 can be solved for pi by conventional elimination methods. 
Once the p values have been computed, t for any segment can be calculated. 

From this the spline, si(x), can be determined using Equation 2.49 and the 
appropriate values for pi  and pi+ 1 .  
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we have, 
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For the magnesium in river water data, after scaling the distance data to km, 

12 - 

10 - 

- 
bo 8- r 

2 6 -  
i? 

4 -  

with the result p2 = -6.314, p3 = - 1.058, p4 = 0.939, and p 5  = 0.714. 

t is calculated, 
To estimate the magnesium concentration at a distance x = 2.5 km, a value of 

t = (x' - x , ) / ( x ~  - X I )  = 0.778 (2.54) 

and this, with p i  = 0 and p2 = -6.3 14, is substituted into Equation 2.49, 

The resultant cubic spline curve for the complete range of the magnesium 
data is illustrated in Figure 2.15. 

Spline curve fitting has many important applications in analytical science, 
not only in interpolation but also in differentiation and calibration. The tech- 
nique is particularly useful when no analytical model of the data is available. l 2  

Having acquired our chemical data and performed appropriate processing, it 
is now necessary to analyse the results and extract the required relevant 
information. This will obviously depend on the aims of the analysis, but further 
preprocessing and manipulation of the data may be needed. This is considered 
in the next chapter. 

2 1  1 

lo00 2000 3000 4000 5000 6000 7000 8000 9000 

distance (m) 

Figure 2.15 Result of applying a cubic spline interpolation model to the stream 
magnesium data in Table 2.3 
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CHAPTER 3 

Feature Selection and Extraction 

1 Introduction 
The previous two chapters have largely been concerned with processes related 
to acquiring our analytical data in a digital form suitable for further mani- 
pulation and analysis. This data analysis may include calibration, modelling, 
and pattern recognition. Many of these procedures are based on multivariate 
numerical data processing and before the methods can be successfully applied 
it is usual to perform some pre-processing on the data. There are three main 
aims of this pre-processing stage in data analysis, 

(a) to reduce the amount of data by eliminating that which are irrelevant to 
the study being undertaken, 

(b) to preserve or enhance sufficient information within the data to achieve 
the desired goal, 

(c) to extract the information in, or transform the data into, a form suitable 
for further analysis. 

One of the most common forms of pre-processing spectral data is 
normalization. At its simplest this may involve no more than scaling each 
spectrum in a collection so that the most intense band in each spectrum is some 
constant value. Alternatively, spectra could be normalized to constant area 
under the curve of the absorption or emission profile. A more sophisticated 
procedure involves constructing a covariance matrix between variates and 
extracting the eigenvectors and eigenvalues. Eigen analysis yields a set of new 
variables that are linear combinations of the original variables. This can often 
lead to representing the original information in fewer new variables, thus 
reducing the dimensionality of the data and aiding subsequent analysis. 

The success of pattern recognition techniques can frequently be enhanced or 
simplified by suitable prior treatment of the analytical data, and feature 
selection and feature extraction are important stages in chemometrics. Feature 
selection refers to identifying and selecting those features present in the 
analytical data which are believed to be important to the success of calibration 
or pattern recognition. Techniques commonly used include digerentiation, 
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integration, and peak identification. Feature extraction, on the other hand, 
changes the dimensionality of the data and generally refers to processes 
combining or transforming original variables to provide new and better 
variables. Methods widely used include Fourier transformation and principal 
components analysis. In this chapter the popular techniques pertinent to feature 
selection and extraction are introduced and developed. Their application is 
illustrated with reference to spectrochemical analysis. 

2 Differentiation 
Derivative spectroscopy provides a means for presenting spectral data in a 
potentially more useful form than the zero’th order, normal data. The 
technique has been used for many years in many branches of analytical 
spectroscopy. Derivative spectra are usually obtained by differentiating the 
recorded signal with respect to wavelength as the spectrum is scanned. Whereas 
early applications mainly relied on hard-wired units for electronic differentia- 
tion, modern derivative spectroscopy is normally accomplished computation- 
ally using mathematical functions. First-, second-, and higher-order derivatives 
can easily be generated. 

Analytical applications of derivative spectroscopy are numerous and 
generally owe their popularity to the apparent higher resolution of the 
differential data compared with the original spectrum. The effect can be 
illustrated with reference to the example shown in Figure 3.1. The zero’th-, first-, 
and second-order derivatives of a spectrum, composed of the sum of two 
overlapping Gaussian peaks, are presented. The presence of a smaller analyte 
peak can be much more evident in the derivative spectra. In addition, for 
determining the intensity of the smaller peak in the presence of the large 
neighbouring peak, derivative spectra can be more useful and may be subject 
to less error. This is illustrated in Figure 3.2, in which the zeroth and first 
derivative spectra are shown for an analyte band with and without the presence 
of a larger, overlapping band. If we assign a peak height of 10 units to the 
analyte in the normal, zeroth-order spectrum, then for the same band with the 
interfering band present, a peak height of 55 units is recorded. Using a tangent 
baseline to attempt to correct for the overlap fails, as there is no unique or 
easily identified tangent, and a not unreasonable value of 12 units for the 
peak height could be recorded, a 20% error. The situation is improved con- 
siderably if the first derivative spectrum is analysed. A value of 50 units is 
assigned here to the peak-to-peak distance of the lone analyte spectrum. In the 
presence of the overlapping band a similar measure for the analyte is now 
52 units, a 4% error. 

The value of computing derivative spectra to correct for non-linear baseline 
signals is frequently exploited in reflectance spectrometry. Rapid measurement 
of the chemical composition of materials and products by diffuse reflectance 
spectroscopy in the near-infrared (NIR) region (800-2600 nm) is routine in 
many industries. Because most bulk materials are not transparent the mode 
of measurement is generally reflectance. For powder samples the intensity of 
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0 50 100 150 200 250 

Wavelength (arb. scale) 

Figure 3.1 A pair of overlapping Gaussian peaks (a), and the first- (b), second- (c), and 
third-order (d) derivative spectra 

reflected and scattered light is highly dependent on particle size distribution 
and in severe cases as much as 99% of the variance in NIR reflectance spectra 
may be caused by systematic scatter noise. Figure 3.3 presents a series of NIR 
reflectance spectra, expressed as pseudo-absorbance (log 1 / R ) ,  recorded from a 
set of crushed mineral samples. The aim of the study was to correlate the 
samples’ moisture content with absorbance in the 1900 nm region. It is evident 
from Figure 3.3 that any changes in this spectral region due to compositional 
differences between samples are overwhelmed by the larger differences between 
spectra, principally due to scattering effects. In Figure 3.4 the second derivative 
of these spectra are shown; baseline effects have been removed and the 
differences in the spectral features around 1900 nm due to moisture content 
are clear. 

These examples, however, oversimplify the case for using derivative 
spectroscopy as they gives no indication of the effects of noise on the results. 
Derivative spectra tend to emphasize the rate of change in the recorded data 
that are difficult to detect in the zeroth-order spectrum. Unfortunately, as we 
have seen in previous chapters, noise often consists of high-frequency 
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Figure 3.2 Quantitative analysis with$rst derivative spectra. Peak heights are in relative 
absorbance units 

components and thus may be greatly amplified by differentiation. It is the 
presence of noise that generally limits the use of derivative spectroscopy to 
UV-visible or NIR spectrometry and other techniques in which a high signal- 
to-noise ratio may be obtained for a spectrum. 

Various mathematical procedures may be employed to differentiate spectral 
data. We will assume that such data are recorded at evenly spaced intervals 

0.20 -I 1 

1200 1400 1600 1800 2000 2200 2400 

Wavelength, nm 

Figure 3.3 NIR reflectance spectra (recorded as pseudo-absorbance) of mineral samples 
with varying moisture content 
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Wavelength, nm 
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Figure 3.4 Second derivatives of the reflectance spectra shown in Figure 3.3 

along the wavelength, A, or other x-axis. If this is not the case, the data may be 
interpolated to provide this. 

The simplest method to produce the first-derivative spectrum is by 
difference, 

or, 
dy - Y ~ + I  - Y ~ - I  
dA - 2AA 

and for the second derivative (from Equation 3. l),  

-- d2y - yi+l- 2 ~ 0  + Yi-1 

dA2 AA2 

(3.2) 

(3.3) 

where y represents the spectral intensity, the absorbance, or other metric. 
Various other methods have been proposed to compute derivatives, 

including the use of suitable polynomial functions as suggested by Savitzky 
and Golay.'*2 The use of a suitable array of weighting coefficients as a 
smoothing function with which to convolute spectral data was described in 
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Chapter 2. In a similar manner, an array can be specified which on convolution 
produces the first, or higher degree differential spectrum. Some Savitzky-Golay 
coefficients for computing derivative spectra are given in Table 3.1. 

Using a quadratic polynomial and a five-point moving window, the first 
derivative is given by 

and for the second derivative, 

Equations (3.4) and (3.5) are similar to Equations (3.2) and (3.3). The 
difference is in the use of additional terms using extra points from the data to 
provide a better approximation. 

The relative merits of these different methods can be compared by 
differentiating a known mathematical function. The model we will use is y = 
( x  + x2/2),  x = 0 . . . 4, at x = 2. Various levels of noise are imposed on the 
signal y (Table 3.2). The resulting derivatives are shown in Table 3.3. As the 
noise level reduces and tends to zero, the derivative results from applying 
the five-point polynomial (Equation 3.4) converge more quickly towards the 
correct noise-free value of 3 for the first derivative, and 1 for the second 
derivative (Equation 3.5). As with polynomial smoothing, the Savitzky-Golay 
differentiation technique is available with many commercial spectrometers. 

The profile of the 1 1-point Savitzky-Golay filters for performing smoothing 
and differentiation (Ist, 2nd, 3rd, and 4th order) are illustrated in Figure 3.5. 
Again, the derivation of the filter coefficients is provided in the original paper 
of Savitzky and Golay, and by Steiner et aL3 

Table 3.1 Polynomial coeficients for Is t ,  2"", and 3rd derivative Jilters' 

Derivative 

1st 2nd 3rd 

Point 
-5 
-4 
-3 
-2 
-1 

0 
1 
2 
3 
4 
5 

Norm 

11 9 7 5 11 
-5 15 
-4 -4 6 
-3 -3 -3 -1 
-2 -2 -2 -2 -6 
-1 -1 -1 -1 -9 

0 0 0 0 -10 
1 1 1 1 - 9  
2 2 2 2 - 6  
3 3 3  -1 
4 4  6 
5 15 

9 7 5  

28 
7 5  

-8 0 2 
-17 -3 -1 
-20 -4 -2 
-17 -3 -1 
-8 0 2 

7 5  
28 

11 9 7 5  
-30 -14 

6 7 -1 
22 13 1 -1 
23 9 1 2  
14 0 0 0  
0 -9 -1 -2 

-14 -13 -1 1 
-23 -7 1 
-22 14 
-6 
30 

110 60 28 10 429 462 42 7 858 198 6 2 
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Table 3.2 Derivative model data, y = x + x2/2 + noise 

X 0 I 2 3 4 
~ ~~~~~~~~~~ 

Noise 0.200 0.000 0.200 -0.200 0.200 
Y 0.000 1 SO0 4.000 7.500 12.000 
y + Noise 0.200 1 SO0 4.200 7.300 12.200 Data 1 
y + (Noise/2) 0.100 1.500 4.100 7.400 12.100 Data 2 
y + (Noise/4) 0.050 1.500 4.050 7.450 12.050 Data 3 
y + (Noisei8) 0.025 1 SO0 4.025 7.475 12.025 Data 4 

In Figure 3.6 a portion of an infrared spectrum is illustrated following 
treatment with the filters of Figure 3.5. 

For many applications the digitization of a full spectrum provides far more 
data than is warranted by the spectrum’s information content. An infrared 
spectrum, for example, is characterized as much by regions of no absorption as 
regions containing absorption bands, and most IR spectra can be reduced to a 
list of some 20-50 peaks. This represents such a dramatic decrease in 
dimensionality of the spectral data that it is not surprising that peak tables are 
commonly employed to describe spectra. The determination of spectral peak 
positions from digital data is relatively straightforward and the facility is 
offered on many commercial spectrometers. Probably the most common 
techniques for finding peak positions involve analysis of derivative data, 

In Figure 3.7 a single Lorentzian function is illustrated along with its first, 
second, third, and fourth derivatives. At peak positions the following 
conditions exist, 

where y’ is the first derivative, y” the second, and so on. 
Thus, the presence and location of a peak in a spectrum can be ascertained 

from a suitable subset of the rules expressed mathematically in Equation (3.6):4 

Rule 1,  a peak centre has been located if the first derivative value is zero 
and the second derivative value is negative, i.e. 

Table 3.3 Derivatives of y = x -k x2/2 + noise (from Table 3.1) determined by 
diflerence formulae 

I 2 3 4 

dy/dl by Equation 3.1 3.1 or 2.7 3.3 or 2.6 3.4 or 2.55 3.45 or 2.525 
dy/dl by Equation 3.2 2.9 2.95 2.98 2.9875 
dy/dl by Equation 3.4 2.980 2.990 2.995 2.9975 
d2y/d12 by Equation 3.3 0.4 0.7 0.85 0.925 
d2y/d12 by Equation 3.5 1.0857 1.0429 1.0214 1.0107 
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Figure 3.5 11-Point Savitzky-Golay filters for  treating speactral data; (a) smoothing, 
(b) 1.'' derivative, (c)  2"" derivative, (d) 3'''' derivative, (e) 4"' derivative 

(y' = 0)  AND (y" < 0), or 

Rule 2, a peak centre has been located if the third derivative is zero and the 

(y" = 0) AND (y"" > 0) 

fourth derivative is positive, i.e. 

Although Rule 2 is influenced less by adjacent, overlapping bands than Rule 1 ,  
it is affected more by noise in the data. In practice some form of Rule 1 is 
generally used. A peak-finding algorithm may take the following form: 

Step 1: Convolute the spectral data with a suitable quadratic differenti- 
ating function until the computed central value changes sign. 
Step 2: At this point of inflection compute a cubic, least-squares function. 
By numerical differentiation of the resultant equation determine the true 
position of zero slope (the peak position). 
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J , . . , , , , , , ,  

X Data 

I , ,  , 

Figure 3.6 Infrared spectrum following treatment with (a) smoothing, (b) 1." derivative, 
(c)  2"" derivative, (d) 3"" derivative, and (e) 4'" derivative, 1 I-point filters 
illustrated in Figure 3.5 

With any such algorithm it is necessary to specify some tolerance value 
below which any peaks are assumed to arise from noise in the data. The user 
selects the choice of window width for the quadratic differentiating function 
and the number of points about the observed inflection used to fit the cubic 
model. These factors depend on the resolution of the recorded spectrum and 
the shape of the bands present. Results using a 15-point quadratic 
differentiating convolution function and a nine-point cubic fitting equation 
are illustrated in Figure 3.8. 

3 Integration 
Mathematically, integration is complementary to differentiation and comput- 
ing the integral of a function is a fundamental operation in data processing. It 
occurs frequently in analytical science in terms of determining the area under a 
curve, e.g. the integrated absorbance of a transient signal from, say, a graphite 
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I 2nd 

I 

Figure 3.7 Lorentzian band (a), and its first (b), second (c), third (d), and fourth 
(e)  derivatives 

furnace atomic absorption spectrometer. Many classic algorithms exist for 
approximating the area under a curve. We will briefly examine the more 
common with reference to the absorption profile illustrated in Figure 3.9. This 
envelope was generated from the model y = ( 0 . 1 ~ ~  - 1 . 1 ~ ~  + 3x + 0.2). Its 
integral, between the limits x = 0 and x = 6, can be computed directly. The 
area under the curve is 8.40. 

One of the simplest integration techniques to implement on a computer is the 
method of summing rectangles that each fit a portion of the curve, Figure 3.10(a). 
For N + 1 points in the interval x l ,  x2.  . . . x N +  1, we have N rectangles of width 
( X j + l  - xi)  and height, hmi, given by the value of the curve at the mid-point 
between xi and xi+ 1. The approximate area under the curve, A ,  between xi and 
xN+1 is therefore given by 

N 
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y /  

yi=~+a,xi+a2xi2+a3xi3 

i = 76 ... 84 
I I 

0 50 1 100 150 200 250 
-I X 

dyldx 
I 

I 

1 I 

J 
I 

Figure 3.8 Results of a peak picking algorithm. At x = 80, the first derivative spectrum 
crosses zero and the second derivative is negative. A 9-point cubic least- 
squares fit is applied about this point to derive the coeficients of the cubic 
model. The peak position (dyldx = 0)  is calculated to be at x = 80.3 

Figure 3.9 Model absorption profile from a graphite furnace AAS study 
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Figure 3.10 Area under the AAS profile using (a) rectangular and (b) trapezoidal 
integration 

As N is increased, the width of each rectangle becomes smaller and the 

For N = 5 ,  A = 8.544 
A = 8.436 
A = 8.388 

answer is more accurate: 

N = 10, 
N = 5 ,  

A second method of approximating the integral is to divide the area under 
the curve into trapezoids, Figure 3. I O(b). The area of each trapezoid is given by 
one-half the product of the width (Xi+ 1 -xi) and the sum of the two sides, hi and 
hi+ .The area under the curve can be calculated from 

For our absorption peak, the trapezoid method using different widths 

For N = 5, A = 8.112 
A = 8.328 
A = 8.368 

produces the following estimates for the integral: 

N = 10, 
N = 15, 

In general the trapezoid method is inferior to the rectangular method. 
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A more accurate method can be achieved by combining the rectangular and 
trapezoid methods into the technique referred to as Simpson’s m e t h ~ d , ~  

N 

For our absorption profile this gives 

For N = 5, A = 8.400 
A = 8.400 
A = 8.400 

N = 10, 
N = 15, 

4 Combining Variables 
Many analytical measures cannot be represented as a time-series in the form of 
a spectrum, but are composed of discrete measurements, e.g. compositional or 
trace analysis. Data reduction can still play an important role in such cases. 
The interpretation of many multivariate problems can be simplified by 
considering not only the original variables but also linear combinations of them. 
That is, a new set of variables can be constructed each of which contains a sum 
of the original variables each suitably weighted. These linear combinations can 
be derived on an ad hoc basis or more formally using established mathematical 
techniques. Whatever the method used, the aim is to reduce the number of 
variables considered in subsequent analysis and obtain an improved 
representation of the original data. The number of variables measured is not 
reduced. 

An important and commonly used procedure which generally satisfies these 
criteria is principal components analysis. Before this specific topic is examined 
it is worthwhile discussing some of the more general features associated with 
linear combinations of variables. 

Linear Combinations of Variables 

To consider the effects and results of combining different measured variables 
the data set shown in Table 3.4 will be analysed. Table 3.4 lists the mean values, 
from 1 1 determinations, of the concentration of each of 13 trace metals from 17 
different samples of heart tissue.6 The data indicate that the trace metal 
composition of cardiac tissue derived from different anatomical sites varies 
widely. However, it is not immediately apparent, by visual examination of 
these raw data alone, what order, groups, or underlying patterns exist within 
the data. 

The correlation matrix for the 13 variables is shown in Table 3.5 and, as 
is usual in multivariate data, some pairs of variables are highly correlated. 
Consider, in the first instance, the concentrations of chromium and nickel. 
We shall label these variables Xl and X2. These elements exhibit a mutual 
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correlation of 0.90. A scatter plot of these data is illustrated in Figure 3.1 1. 
Also shown are projections of the points on to the X l  and X 2  concentration 
axes, providing one-dimensional frequency distributions (as bar graphs) of 
the variables X l  and X2. It is evident from Figure 3. I 1  that a projection of 
the data points onto some other axis could provide this axis with a greater 
spread in terms of the frequency distribution. This single new variable or 
axis would contain more variance or potential information than either of 
the two original variables on their own. For example, a new variable, 
X3 could be identified which can be defined as the sum of the original 
variables, i.e. 

X3 = a.X1+ b.X2 (3.10) 

and its value for the 17 samples calculated. The values of a and b could be 
chosen arbitrarily such that, for example, a= b. Then, this variable would 
describe a new axis at an angle of 45" with the axes of Figure 3.1 1. The sample 
points can be projected on to this as illustrated in Figure 3.12. 

For the actual values of the coefficients a and b, the simplest case is described 
by a = b = 1, but any value will provide the same angle of projection and the 
same form of the distribution of data on this new line. In practice, it is usual to 
specify a particular linear combination referred as the normalized linear 
combination and defined by 

a2 + b2 = 1 (3.11) 

Normalization of the coefficients defining our new variable then scales it to 
the range of values used to define the X1 and X2 axes of the original graph. 
In our example, this implies u = b = 1/J2. The variance of X3 derived from 
substituting a and b into Equation 3.10 for the concentration of chromium 
and nickel for each of the 17 samples is 5.22 compared with c? = 3.07 and 
c? = 2.43 for X1 and X2, respectively. Thus X 3  does contain more potential 
information than either X1 or X2. 

This reorganization or partitioning of variance associated with individual 
variates can be formally addressed as follows. 

For any linear combination of variables defining a new variable X given by 

X = u l x 2  + a2x2 + - - - + a,xn 

the variance, s-:, of the new variable can be calculated 

n n  

(3.12) 

from 

which, from the definition of covariance, can be rewritten as 

s: = x a j $  + 1 ajsjakskrjk 

(3.13) 

(3.14) 

where rjkis the correlation coefficient between variables xj and xk. 
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Figure 3.11 Chromium and nickel concentration scatter plot from heart tissue data 
(Table 3.4) .  The distribution of concentration values for each elements is 
shown as a bar graph on their respective axes 

Note that, for statistically independent variables, rjk = 0 and so Equation 
(3.14) reduces to the more common equation stating that the variance of a sum 
of variables is equal to the sum of the variances for each variable. 

The calculated value for the variance of our new variable X3 confirms that 
there is an increased spread of the data on the new axis. As well as this 
algebraic notation, it is worth pointing out that the coefficients of the 

Cr, mg.kg-' 

0 I 2  3 4 5 6 7 8 9 10 

Ni, mg.kg-' 

Figure 3.12 A 45" line on the Cr-Ni data plot with the individual sample points projected 
onto this line 
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normalized linear combination may be represented by the trigonometric 
identities 

a = cos a 

b = sin p 
(3.15) 

where a is the angle between the projection of the new axis and the original 
ordinate axis. If a = 45O, then a = b = 1/J2, the normalized coefficients as 
derived from Equation (3.11). This trigonometric relationship can be employed 
in determining different linear combinations of variables and has been used in 
principal component algorithms. 

Values of a, or a and b, employed in practice depend on the aims of the data 
analysis. Different linear combinations of the same variables will produce new 
variables with different attributes which may be of interest in studying different 
 problem^.^ The linear combination which produces the greatest separation 
between two groups of data samples is appropriate in supervised pattern 
recognition. This forms the basis of linear discriminant analysis, a topic that 
will be discussed in Chapter 5. Considering our samples or objects as a single 
group or cluster, we may wish to determine the minimum number of 
normalized linear combinations having the greatest proportion of the total 
variance, to reduce the dimensionality of the problem. This is the task of 
principal components analysis and is treated next. 

Principal Components Analysis 

The aims of performing a principal components analysis (PCA) on multi- 
variate data are basically two-fold. Firstly, PCA involves rotating and 
transforming the original, n, axes each representing an original variable into 
new axes. This transformation is performed in a way so that the new axes lie 
along the directions of maximum variance of the data with the constraint that 
the axes are orthogonal, i.e. the new variables are uncorrelated. It is usually the 
case that the number of new variables, p, needed to describe most of the 
sample data variance is less than n. Thus PCA affords a method and a 
technique to reduce the dimensionality of the parameter space. Secondly, PCA 
can reveal those variables, or combinations of variables, that describe some 
inherent structure in the data and these may be interpreted in chemical or 
physico-chemical terms. 

As in the previous section, we are interested in linear combinations of 
variables, with the goal of determining that combination which best 
summarizes the n-dimensional distribution of data. We are seeking the linear 
combination with the largest variance, with normalized coefficients applied 
to the variables used in the linear combinations. This axis is the so-called 
first principal axis or first principal component. Once this is determined, then 
the search proceeds to find a second normalized linear combination that has 
most of the remaining variance and is uncorrelated with the first principal 
component. The procedure is continued, usually until all the principal 
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components have been calculated. In this case, p = n and a selected subset of 
the principal components is then used for further analysis and for 
interpretation. 

Before proceeding to examine how principal components are calculated, it is 
worth considering further a graphical interpretation of their structure and 
characteristics.* From our heart tissue, trace metal data, the variance of 
chromium concentration is 3.07, the variance of nickel concentration is 2.43, 
and their covariance is 2.47. This variance-covariance structure is represented 
by the variance-covariance matrix, 

XI x2 
COVX~,X~ = X1 3.07 2.47 

X 2  2.47 2.43 
(3.16) 

As well as this matrix form, this structure can also be represented 
diagrammatically (Figure 3.13). The variance of the chromium data is 
represented by a line along the X1 axis with a length equal to the variance of X1. 

Since the concentration of chromium is correlated with the concentration 
of nickel, Xl varies with variable X 2  axis. The length of this line is equal to 
the covariance of Xl with X2 and represents the degree of interaction or 
colinearity between the variables. In a similar manner, the variance and 
covariance of X 2  are drawn along and from the second axis. For a square 
(2 x 2) matrix, these elements of the variance-covariance matrix lie on the 
boundary of an ellipse, the centre of which is the origin of the co-ordinate 
system. The slope of the major axis is the eigenvector associated with the first 
principal component, and its corresponding eigenvalue is the length of this 
major axis, Figure 3.14. The second principal component is defined by the 
second eigenvector and eigenvalue. It is represented by the minor axis of 
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Figure 3.13 Graphical Display of a bivariate variance-covariance matrix 
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Figure 3.14 Elements of a bivariate variance-covariance matrix lie on the boundary 
defined by an ellipse. The major axis of the ellipse represents the first 
principal component, and its minor axis the second principal component 

the ellipse and is orthogonal, go", to the first principal component. For a 
3 x 3 variance- covariance matrix the elements lie on the surface of a three- 
dimensional ellipsoid. For larger matrices still, higher-dimensional elliptical 
shapes apply and can only be imagined. Fortunately the mathematical 
operations deriving and defining these components remain the same whatever 
the dimensionality . 

Thus, principal components can be defined by the eigenvectors of a 
variance-covariance matrix. They provide the direction of new axes (new 
variables) on to which data can be projected. The size, or length, of these 
new axes containing our projected data is proportional to the variance of the 
new variable. 

How do we calculate these eigenvectors and eigenvalues? In practice the 
calculations are always performed on a computer and there are many 
algorithms published in mathematical and chemometric texts. For our 
purposes, to illustrate their derivation, we will limit ourselves to bivariate 
data and calculate the eigenvectors manually. The procedure adopted largely 
follows that of Davis* and Healy.' 

Consider a set of simultaneous equations, expressed in matrix notation, 

A.x = 3L.x (3.17) 

which simply states that matrix A,  multiplied by vector x, is equal to some 
constant, the eigenvalue il, multiplied by x. To determine these eigenvalues, 
Equation 3.17 can be rewritten as 

A.x - 3L.x = 0 (3.18) 
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or 

( A  - A.Z).x = 0 (3.19) 

where Z is the identity matrix, which for a 2 x 2 matrix is 

(3.20) 

If x is not 0 then the determinant of the coefficient matrix must be zero, i.e. 

IA - 1.Zl = 0 (3.21) 

For our experimental data with XI and X2 representing chromium and nickel 
concentrations, and Cov = A ,  then 

lCov - 111 = sx' - A  
I = o  l 2  c sx2-A (3.22) 

where C is the covariance between X l  and X2. Expanding Equation (3.22) gives 
the quadratic equation, 

(sx: - q s x :  - A) - c2 = 0 (3.23) 

and substituting the values for our Cr and Ni data, 

(3.07 - i1)(2.43 - A) - 2.472 = 0 (3.24') 

which simplifies to 

A2 - 5.51 + 1.36 (3.25) 

This is a simple quadratic equation providing two characteristic roots or 
eigenvalues, viz., 11 = 5.24 and = 0.26. 

As a check in our calculations, the sum of the eigenvalues (variances of 
new variables) should be equal to the sum of diagonal elements, the trace, of 
the original matrix (variances of the original data) i.e. 3.07+2.43 = 5.24 

Associated with each eigenvalue (the length of the new axis in our geometric 
model) is a characteristic vector, the eigenvector, v = [v, ,  v2] defining the slope 
of the axis. Our eigenvalues, 1, were defined as arising from a set of 
simultaneous equations, Equation 3.19, which can now be expressed, for a 
2 x 2 matrix, as 

-t0.26 = 5.50. 

["e," A22- A]*[ :;I = [::I (3.26) 

and the elements of x are the eigenvectors associated with the first eigenvalue, 
A*. For our 2 x 2, Ni-Cr variance-covariance data, substitution into Equation 
3.26 leads to 

(3.27) 
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(3.28) 

with vl I and vl2 as the eigenvector defining the slope of the first eigenvalue, 
and ~2~ and ~2~ the eigenvector for the second eigenvalue. 

Solving these equations gives 

vl = [0.751 0.6601 (3.29) 

which defines the slope of the major axis of the ellipse (Figure 3.14), and 

~2 = [-0.660 0.7511 (3.30) 

which is perpendicular to v l  and is the slope of the ellipse’s minor axis. 
Having determined the orthogonal axes or principal components of our 

bivariate data, it remains to undertake the projections of the data points on to 
the new axes. For the first principal components PC1, 

PCli = 0.751Xli + 0.660X2i (3.31) 

and for the second principal component PC2, 

PC2i = -0.660Xli + 0.751X2i (3.32) 

Thus, the elements of the eigenvectors become the required coefficients for 
the original variables, and are referred to as loadings. The individual elements 
of the new variables (PC1 and PC2) are derived from these loadings and x1 and 
X2,  and are termed the The principal components scores for the 
chromium and nickel data are given in Table 3.6. 

Table 3.6 PC scores for chromium and nickel 
concentrations 

Sample PCI PC2 

A 0  
MPA 
RSCV 
TV 
MV 
PV 
AV 
RA 
LAA 
RV 
LV 
LV-PM 
IVS 
CR 
SN 
AVN + B 
LBB 

2.91 
2.02 
4.82 
4.03 
3.89 

11.25 
7.71 
3.50 
2.37 
2.95 
3.12 
3.06 
2.67 
3.04 
3.19 
2.62 
2.97 

-0.17 
0.48 
0.94 
0.04 
1.24 
1.28 
0.14 
0.65 
1.64 
0.33 
0.98 
0.76 
1.37 
1.18 
1.05 
1.02 
1.11 
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The total variance of the original nickel and chromium data is 3.07 + 2.43 = 
5.50 with x1 contributing 56% of the variance and X2 contributing the 
remaining 44%. The calculated eigenvalues are the lengths of the two principal 
axes and represent the variance associated with each new variable, PCl and 
PC2.The first principal component, therefore, contains 5.24/5.50 or more than 
95% of the total variance, and the second principal component less than 5%, 
0.26/5.50. If it were necessary to reduce the display of our original bivariate 
data to a single dimension using only one variable, say chromium 
concentration, then a loss of 44% of the total variance would ensue. Using 
the first principal component, however, and optimally combining the two 
variables, only 5% of the total variance would be missing. 

We are now in a position to return to the complete set of trace element data 
in Table 3.4 and apply principal components analysis to the full data matrix. 
The techniques described and used in the above example to extract and 
determine the eigenvalues and eigenvectors for two variables can be extended 
to the more general, multivariate case but the procedure becomes increasingly 
difficult and arithmetically tedious with large matrices. Instead, the eigenvalues 
are usually found by matrix manipulation and iterative approximation 
methods using appropriate computer software - algorithms are provided in 
Chapter 6. Before such an analysis is undertaken, the question of whether to 
transform the original data should be considered. Examination of Table 3.4 
indicates that the variates considered have widely differing means and standard 
deviations. Rather than standardizing the data, since they are all recorded in 
the same units, one other useful transformation is to take logarithms of the 
values. The result of this transformation is to scale all the data to a more 
similar range and reduce the relative effects of the more concentrated metals. 
Having performed the log-transformation on our data, the results of 
performing PCA on the 13 x 13 covariance matrix of all 13 variables for the 
17 samples are as given in Table 3.7. 

According to the eigenvalues [Table 3.7(a)], and displayed in the scree plot of 
Figure 3.15, over 92% of the total variance in the original data can be 
accounted for by the first two principal components. The transformation of the 
13 original variables into two new linear combinations represents considerable 
reduction of the original data whilst retaining much of its information. The 
scatter plot of the first two principal components scores (Figure 3.16) reveales 
evident patterns in the samples according to the distribution of the trace metals 
in the data. Three tissues, the pulmonary valve (F), aortic valve (G), and the 
right superior vena cava (C) ,  constitute unique groups of one tissue each, well 
distinguished from the rest. The aorta (A), main pulmonary artery (B), mitral 
(E), and tricuspid (D) valves constitute a single cluster of four tissue types. 
Finally, there is a group of ten tissues (H-Q), derived from the myocardium, 
that also cluster. A more detailed analysis and discussion of these data is 
presented by Niedermeier.6 

Since eigenvectors represent the loadings, or coefficients, used to transform 
original data into principal components, then examination of the eigen- 
vectors provides information as to the relative contribution made by each 
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Figure 3.15 Eigenvalue, scree plot for  the heart-tissue trace metal data 

original variable. The eigenvectors for the trace metal data, from Table 3.7(b), 
are plotted in Figure 3.17. It is evident that the first eigenvector weights heavily 
the contribution from elements caesium, barium and aluminium. For the 
second eigenvector, then copper, molybdenum and tin have the largest 
coefficients. These elements, therefore, are the most significant in determining 
the samples' distribution in the principal components' plot, leading to the 
separation and clustering of the samples. 

As well as being used with discrete analytical data, such as the trace metal 
concentrations discussed above, principal components analysis is extensively 
and fruitfully employed on digitized spectral profiles." A small example will 
illustrate the basis of these applications. Infrared spectra of 16 organic liquid 
samples, as thin films, were recorded in the range 4000-600 cm-'. Of the 16 
samples, only eight compounds contained a nitro functional group. Each 
spectrum was normalized on the most intense absorption band to remove film 
thickness effects, and reduced to 325 discrete values by signal averaging. 

PC1 

Figure 3.16 Scatter plot of the 17 heart-tissue samples on the standardizedfirst two 
principal components f rom the trace metal data 
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- Eigenvector - 1 
. . . . . . . . Eigenvector - 2 

-o.2 i 
Figure 3.17 First two eigenvectors extracted from the heart-tissue trace metal data 

The average spectrum from all 16 samples is illustrated in Figure 3.18. The 
resulting 16 x 325 data matrix was subject to principal components analysis. 
The resulting eigenvalues are illustrated in the scree plot of Figure 3.19, and the 
first two principal components account for more than 75% of the total 
variance in the original spectra. The scatter plot of the IR data loaded onto 
these two components (Figure 3.20) shows that they are sufficient to provide 
effective separation of the samples with clear distinction between the nitro- 
containing group of samples and the remaining group. 

Examination of the principal component loadings, the eigenvectors, as 
functions of wavelength, i.e. spectra of loadings, highlights the weights given to 
each spectral point in each of the original spectra, Figure 3.21. It can be seen 
from these 'spectra' that the absorption bands about 1350 cm-' (symmetric 
N-0 stretch) and about 1580 cm-' (antisymmetric N-0 stretch) are present, 
but of opposite weights, in both eigenvectors. Hence, a clear separation 
between the groups of samples is achieved. The use of principal components 

1 

I 
4000 3000 2000 loo0 

Wavenumber, cm-l 

Figure 3.18 Average IR spectrum from 16 samples 
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Figure 3.19 Scree plot for  the eigenvalues derived from the 16 IR spectra 

analysis for the structure and interpretation of IR spectra has been discussed 
by, amongst many others, Perkins et al.13 

The power of principal components analysis is in providing a mathematical 
transformation of our analytical data into a form with reduced dimensionality. 
From the results, the similarity and difference between objects and samples can 
often be better assessed and this makes the technique of prime importance in 
chemometrics. Having introduced the methodology and basics here, future 
chapters will consider the use of the technique as a data-preprocessing tool. 

Factor Analysis 

The extraction of eigenvectors from a symmetric data matrix forms the basis 
and starting point of many multivariate chemometric procedures. The way in 
which the data are preprocessed and scaled, and how the resulting vectors are 
treated, has produced a wide range of related and similar techniques. By far the 
most common is principal components analysis. As we have seen, PCA 

I I Nitro containing 

0 Nitroabsent I u  
I 

8 

Figure 3.20 Scatter plot of the IR spectra projected onto the first two principal 
components 
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Figure 3.21 Eigenvectors of the IR data displayed as afunction of wavenumber 

provides n eigenvectors derived from a n x n dispersion matrix of variances and 
covariances, or correlations. If the data are standardized prior to eigenvector 
analysis, then the variance-covariance matrix becomes the correlation matrix 
[see Equation 1.25 in Chapter 1, with s1 = s2]. Another technique, strongly 
related to PCA, is factor analysis.I4 

Factor analysis is the name given to eigen-analysis of a data matrix with the 
intended aim of reducing the data set of n variables to a specified number, p ,  of 
fewer linear combination variables, orfactors, with which to describe the data. 
Thus, p is selected to be less than n and, hopefully, the new data matrix will be 
more amenable to interpretation. The final interpretation of the meaning and 
significance of these new factors lies with the user and the context of the problem. 

A full description and derivation of the many factor analysis methods reported 
in the analytical literature is beyond the scope of this book. We will limit ourselves 
here to the general and underlying features associated with the technique. A more 
detailed account is provided by, for example, H ~ p k e ' ~ ? ' ~  and  other^.'^-^' 

The principal steps in performing a factor analysis are, 

preprocessing of the raw, original data matrix, 
computing the symmetric matrix of covariances or correlations, i.e. the 
dispersion matrix, 
extracting the eigenvalues and eigenvectors, 
selecting the appropriate number of factors with which to describe the 
data, and 
rotating these factors to provide a meaningful interpretation of the 
factors . 

Steps (a) to (c) or (d) are as for principal components analysis. However, as 
the final aim is usually to interpret the results of the analysis in terms of 
chemical or spectroscopic properties, the method adopted at each step should 
be selected with care and forethought. A simple example will serve to illustrate 



Feature Selection and Extraction 83 

the principles of factor analysis and the application of some of the options 
available at each stage. 

Table 3.8 provides the digitized mass spectra of five cyclohexane/hexane 
mixtures, each recorded at 17 m/z values and normalized to the most intense, 
parent ion.21 These spectra are illustrated in Figure 3.22. Presented with these 
data, and in a ‘real’ situation not knowing the composition of the mixtures, our 
first task is to determine how many discrete components contribute to these 
spectra, i.e. how many components are in the mixtures. We can then attempt to 
identify the nature or source of each extracted component. These are the aims 
of factor analysis. 

Before we can compute the eigenvectors associated with our data matrix we 
need to select appropriate, if any, preprocessing methods for the data, and the 
form of the dispersion matrix. Specifically, we can choose to generate a 
Covariance matrix or a correlation matrix from the data. Each of these could be 
derived from the original, origin-centred data or from transformed, mean- 
centred data. In addition, we should bear in mind the aim of the analysis and 
decide whether the variables for numerical analysis are the m/z values or the 
composition of the sample mixtures themselves. Thus we have eight options in 
forming the transformed, symmetric matrix for extracting eigenvectors. We can 
form a 5 x 5 covariance, or correlation, matrix on the origin- or mean-centred 
compositional values. Alternatively, a 17 x 17 covariance, or correlation, 
matrix can be formed from origin- or mean-centred m/z values. 

Each of these transformations can be expressed in matrix form as a 
transform of the data matrix Xinto a new matrix Y followed by calculating the 

Table 3.8 Normalized M S  data for cyclohexanelhexane mixtures 

mlz % Cyclohexane (spectra) 

27 
29 
39 
40 
41 
42 
43 
44 
54 
55 
56 
57 
69 
83 
84 
85 
86 
Mean 

13.79 
12.93 
17.24 
4.3 I 
55.17 
29.3 1 
21.55 
1.72 
5.17 
3 1.90 
100.00 
19.83 
29.3 1 
5.17 
70.69 
6.90 
3.45 
25.20 

19.05 
15.87 
17.46 
4.76 
63.49 
29.37 
26.19 
1.59 
4.76 
34.13 
100.00 
25.40 
26.98 
4.76 
68.25 
6.35 
4.76 
26.66 

20.80 
26.40 
20.00 
4.00 
14.40 
36.80 
49.60 
1.60 
4.00 
28.00 
100.00 
58.40 
21.60 
4.00 
58.40 
4.80 
12.80 
27.39 

28.30 
44.04 
20.02 
3.00 
9 1.09 
47.05 
74.07 
3.00 
3.00 
24.02 
100.00 
96.10 
16.02 
4.00 
36.04 
5.00 
24.02 
36.40 

24.55 
38.18 
18.18 
3.64 

80.00 
41.82 
71.82 

I .82 
1.82 

10.00 
73.36 
100.00 
9.09 
3.64 

18.18 
2.73 

22.73 
30.68 
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20 30 40 50 60 70 80 90 

Figure 3.22 Mass spectra recorded from five mixtures of cyclohexane and hexane 

appropriate dispersion matrix, C (the variance-covariance, or correlation 
matrix). The relevant equations are 

Y = X A + B  

and 

(3.33) 

C =  YTY/(n-  1) (3.34) 
The nature of C depends on the definition of A and B. Here, A is 

a scaling diagonal matrix; only the diagonal elements need be defined. 
B is a centring matrix in which all elements in any one column are identical. 

For covariance about the origin 

aJj = 1 and b,= 0 (3.35) 

For covariance about the mean, 

a -  JJ = 1 and b, = -2, (3.36) 
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For correlation about the origin, 

For correlation about the mean, 

-112 
1 "  

aJj = [ (xu - Z j r ]  and b, = Xjajj 
1 i = l  

(3.37) 

(3.38) 

Where Xj is the mean value of column j from the data matrix. 
Mean-centring is a common pre-processing transformation as it provides 

data that are symmetric about a zero mean. It is recommended as a 
preprocessing step in many applications. 

As the analytical data of Table 3.8 are all in the same units and cover a 
similar range of magnitude, standardization is not required either, and the 
variancesovariance matrix will be used as the dispersion matrix. 

The final decision to be made is to whether to operate on the m/z values or 
the samples (actually the mixture compositions) as the analytical variables. It is 
a stated aim of our factor analysis to determine some physical meaning of the 
derived factors. We do not wish simply to perform a mathematical 
transformation to reduce the dimensionality of the data, as would be the 
case with principal components analysis. 

We will proceed, therefore, with an eigenvector analysis of the 5 x 5 
covariance matrix obtained from zero-centred object data. This is referred to as 
Q-mode factor analysis and is complementary to the scheme illustrated 
previously with principal components analysis. In the earlier examples the 
dispersion matrix was formed between the measured variables, and the 
technique is sometimes referred to as R-mode analysis. For the current MS 
data, processing by R-mode analysis would involve the data being scaled along 
each m/z row (as displayed in Table 3.8) and information about relative peak 
sizes in any single spectrum would be destroyed. In Q-mode analysis, any 
scaling is performed within a spectrum and the mass fragmentation pattern for 
each sample is preserved. 

The 5 x 5 variance-covariance matrix of the mass spectra data is presented in 
Table 3.9, along with the results of computing the eigenvectors and eigenvalues 
from this matrix. In factor analysis we assume that any relationships between 
our samples from within the original data set can be represented by p mutually 
uncorrelated underlying factors. The value of p is usually selected to be much 
less than the number of original variables. These p underlying factors, or new 
variables, are referred to as common factors and may be amenable to physical 
interpretation. The remaining variance not accounted for by the p factors will 
be contained in a unique factor and may be attributable, for example, to noise 
in the system. 

The first requirement is to determine the appropriate value of p ,  the number 
of factors necessary to describe the original data adequately. If p cannot be 
specified then the partition of total variance between common and unique 
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Table 3.9 Variance-covariance matrix for the M S  data, and eigenvalues and 
eigenvectors extracted from this 

3000 - 

0 

5 
2000- 

&l 

i;i 

1000- 

0; 

Covariance matrix 

A 
B 
C 
D 
E 

Eigen values 
Factor 
Eigenvalue 
Cumulative % 
contribution 

Eigen vectors 

A 
B 
C 
D 
E 

A 
726.60 
726.03 
570.75 
598.24 
407.63 

1 
3452 

79.7 

F ( I )  
0.383 
0.404 
0.398 
0.555 
0.473 

B 

734.27 
575.35 
659.32 
471.95 

2 
723.54 
96.5 

W I )  
-0.538 
-0.463 
-0.196 

0.364 
0.570 

C 

694.28 
689.59 
556.76 

3 
150.16 
99.9 

F(III) 
-0.24 
-0.332 

-0.158 
-0.088 

0.894 

D 

1164.10 
1057.10 

4 
2.62 

100 

F ( W  
0.378 

-0.174 
-0.01 7 
-0.657 

0.628 

E 

1009.00 

5 
0.75 

100.00 

F( V )  
-0.602 

0.694 
0.06 1 

-0.321 
0.221 

factors cannot be determined. For our simple example with the mass spectra 
data it appears obvious that p = 2, i.e. there are two common factors which we 
may interpret as being due to two components in the mixtures. The eigenvalues 
drop markedly from the second to the third value (Table 3.9 and Figure 3.23). 
The first two factors account for more than 96% of the total variance. The 
choice is not always so clear, however, and in the chemometrics literature a 
number of more objective functions have been described to select appropriate 
values of p.15917 

1 
0 1 2 3 4 5 

Factor 

Figure 3.23 Scree plot of eigenvalues extracted from the M S  data 
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The eigenvectors in Table 3.9 have been normalized, i.e. each vector has unit 
length, viz., 

0.3832 + 0.4042 + 0.3982 + 0.5552 + 0.4732 = 1 (3.39) 

To perform factor analysis, the eigenvectors should be converted so that 
each vector length represents the magnitude of the eigenvalue. This conversion 
is achieved by multiplying each element in the normalized eigenvector matrix 
by the square root of the corresponding eigenvalue. From Table 3.9, the 
variance associated with the first factor is its eigenvalues (3452) and the first 
eigenvector is converted into the first factor by multiplying by J(3452), viz. 

Factor 1 = 0.398 4- = 

0.383 Jm' 
0.404 J?J452 

0.555 4- 
0.473 Jm I I 22.53 

23.71 
23.38 
32.61 
27.78 

(3.40) 

The elements in each of the factors are the factor loadings, and the complete 
factor loading matrix for our MS data is given in Table 3.10. This conversion 
has not changed the orientation of the factor axes from the original 
eigenvectors but has simply changed their absolute magnitude. The lengths 
of each vector are now equal to the square root of the eigenvalues, i.e. the 
factors represent the standard deviations. 

From Table 3.9, the first factor accounts for 3452/4329 = 79.7% of the 
variance in the data. Of this, 22.532/3452 = 14.7% is derived from object or 
sample A, 16.3% from B, 15.8% from C, 30.8% from D, and 22.3% from E. 
The total variance associated with object A is accounted for by the five factors. 
Taking the square of each element in the factor matrix (remember, these are 
standard deviations) and summing for each object provides the amount of 
variance contributed by each object. 

For sample A ,  

22.532 + 14.482 + 2.942 + 0.612 + 0.522 = 726.6 (3.41) 

and for the other samples, 

B, 23.712 + 12.462 + 4.072 + 0.282 + 0.602 = 734.3 

Table 3.10 Factor loading matrix from a Q-mode analysis of the M S  data 

A 22.53 - 14.48 -2.94 0.61 -0.52 
B 23.71 -12.46 -4.07 -0.28 0.6 
C 23.38 -5.27 10.95 -0.03 0.05 

.E 27.78 15.33 - 1.08 1.02 0.19 

.D 32.61 9.78 - 1.94 - 1.06 -0.28 
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C, 

D, 
E, 

23.3g2 + 5.272 + 10.952 + 0.032 + 0.052 = 694.3 

32.612 + 9.7g2 + 1.942 + 1.062 + 0.272 = 1164 

27.7g2 + 15.332 + 1.0g2 + 1.022 + 0.192 = 1009 

Chapter 3 

(3.42) 

These values are identical to the diagonal elements of the variance- 
covariance matrix from the original data, Table 3.9, and represent the variance 
of each object. With all five factors, the total variance is accounted for. If we 
use fewer factors to explain the data, and this is after all the point of 
performing a factor analysis, then these totals will be less than 100%. Using 
just the first two factors, for example, then 

A ,  22.532 + 14.4g2 = 717.3, 713.3/726.6 = 0.987 

B,  23.712 + 12.462 = 717.3, 717.3/734.3 = 0.977 

C,  23.3g2 + 5.272 = 574.3, 574.31694.3 = 0.827 

D, 32.612 + 9.7g2 = 1159, 1159/1164 = 0.996 

E, 27.7g2 + 15.332 = 1007, 1007/1009 = 0.998 

(3.43) 

The final values listed in Equation 3.43 represent the fraction of each 
object’s variance explained by the two factors. They are referred to as the 
communality values, denoted h2, and they depend on the number of factors 
used. As the number of factors retained increases, then the communalities 
tend to unity. The remaining (1 - h2) fraction of the variance for each sample 
is considered as being associated with its unique variance and is attributable 
to noise. 

Returning to our mass spectra, having calculated the eigenvalues, 
eigenvectors, and factor loadings we must decide how many factors need be 
retained in our model. In the absence of noise in the measurements, the 
eigenvalues above the number necessary to describe the data are zero. In 
practice, of course, noise will always be present. However, as we can see with 
our mass spectra data a large relative decrease in the magnitude of the 
eigenvalues occurs after two values, so we can assume here that p = 2. 
Hopkel’ provides an account of several objective functions to assess the correct 
number of factors. 

Having reduced the dimensionality of the data by electing to retain two 
factors, we can proceed with our analysis and attempt to interpret them. 
Examination of the columns of loadings for the first two factors in the factor 
matrix, Table 3.10, shows that some values are negative. The physical 
significance of these loadings or coefficients is not immediately apparent. 
The loadings for these two factors are illustrated graphically in Figure 3.24(a). 
The location of the orthogonal vectors in the two-factor space has been 
constrained by the three remaining but unused factors. If these three factors are 
not to be used then we can rotate the first two factors in the full sample space 
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Figure 3.24 Original factor loadings obtained from the M S  data (a), and the rotated 
factor loadings, following varimax rotation, with only two factors retained in 
the model (b) 

and possibly find a better position for them; a position which will provide for a 
more meaningful interpretation of the data. Of the several factor rotation 
schemes routinely used in factor analysis, that referred to as the varimax 
technique is commonly used in statistical analysis. Varimax rotation moves 
each factor axis to a new, but still orthogonal position so that the loading 
projections are near either the origin or the extremities of these new axes.8 The 
rotation is rigid, to retain orthogonality between factors, and is undertaken 
using an iterative algorithm. 

Using the varimax rotation method, the rotated factor loadings for the first 
two factors from the mass spectra data are plotted in Figure 3.24(b). The 
relative position of the objects to each other has remained unchanged, but all 
loadings are now positive. In fact, all loadings are present in the first quadrant 
of the diagram and in an order we can recognize as correspondingto the 
mixtures’ compositional analysis. Sample A is predominantly cyclohexane 
(goo/,) and sample E hexane (goo/,). Examination of Figure 3.24(b) indicates 
how we could identify the nature of the two components if they were unknown, 
as would be the case with a real set of samples of course. Presumably, if the 
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mass spectra of the two pure components were present in, or added to, the 
original data matrix, then the loadings associated with these samples would 
align themselves closely with the pure factors. 

Varimax rotation is a commonly used and widely available factor rotation 
technique, but other methods have been proposed for interpreting factors from 
analytical chemistry data. The limitation of varimax rotation lies in its 
constraint of retaining orthogonality between the factors extracted and 
retained. The power of factor analysis, and PCA, resides in eliminating the 
extensive colinearity that exists in spectral data. However, once uncorrelated 
factors have been determined it is not necessary to constrain further rotation to 
such rigid conditions. In practice it is unlikely that two real spectra would be 
uncorrelated at all wavelengths. In the IR spectra analysis above, the 
eigenvectors were noted as being ‘spectra-like’ and as such provide insight 
into the spectral features contributing to the differences (variances) between 
samples. By rotating the selected axes so that they align directly with real 
components or features then a true interpretation could be made of features 
present in samples. One such technique that enables such factor rotation is 
Target Transform Factor Analysis (TTFA) and this has proved a popular and 
valuable technique in chemometrics. 17322 

The application of TTFA and the interpretation afforded by its use will be 
illustrated by examination of the UV-visible spectra of mixtures of some 
common metal ions.23 The data set is presented in Table 3.11 and consists of 
the recorded absorbance values of 6 mixtures at 8 wavelengths. The matrix of 
mixture absorbance values was generated from the standard spectra of copper, 
nickel and chromium ions, ‘noise’ as a random number in the range 04.001 
was added to each absorbance value. The spectra for these aqueous ions, plus 
that for cobalt (not included in any mixtures) are illustrated in Figure 3.25. 
The questions to be answered are, 

How many varying components are in these mixtures? 
What varying components are present? 
What is the concentration of each component in each mixture? 

Table 3.11 UV-visible absorbance data of six mixtures (A-F) 

Wavelength Mixtures 
(nm> 

A B c D E F 

360 
400 
470 
510 
600 
680 
790 
900 

0.042 
0.169 
0.018 
0.0 18 
0.063 
0.126 
0.203 
0.154 

0.116 
0.525 
0.032 
0.018 
0.095 
0.220 
0.182 
0.090 

0.079 
0.299 
0.041 
0.047 
0.124 
0.095 
0.082 
0.049 

0.071 
0.301 
0.027 
0.022 
0.082 
0.149 
0.174 
0.1 14 

0.074 
0.294 
0.033 
0.033 
0.100 
0.125 
0.136 
0.088 

0.093 
0.396 
0.032 
0.028 
0.098 
0.163 
0.147 
0.082 
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Figure 3.25 UV-visible absorption spectra of aqueous solutions of copper, nickel, 
chromium, and cobalt nitrates, used to generate the fnixtures' in Table 3.11 

The mixture spectra matrix, M ,  can be considered as arising from the 
product of a pure-component spectra matrix, X ,  and a component concentra- 
tion matrix, C, 

M =  X . C  (3.44) 

Where M is the 8 x 6 matrix of mixture absorbance values, X is a matrix 
(8 x N) of N pure solution absorbance values, and C is a matrix ( N  x 6) of 
the concentrations of the N species in each of the mixtures. 

Our first step is to determine N ,  the number of varying components in the 
mixture solutions, by forming a dispersion matrix, 2, and calculating the 
eigenvalues, 

z = M . M ~  (3.45) 

The results are presented in Table 3.12, and three factors are evidently 
responsible for the variance in the data, with other non-zero factors being due 
to noise. The eigenvectors associated with these eigenvalues are also presented 
and comprise the (3 x 6) matrix E that is an abstract representation of the 
concentration matrix C, in Equation 3.44, i.e. 

M =  X.E (3.46) 

and the abstract spectra matrix, X, can be determined by rearrangement, 

M.E-' = x (3.47) 

Because the eigenvectors are orthogonal then, 

E= = E-' (3.48) 
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Table 3.12 Results of performing factor analysis on the data from Table 3.11 

Covariance (between samples) matrix: 

A 0.116 0.179 
B 0.179 0.389 
C 0.100 0.220 
D 0.132 0.250 
E 0.1 17 0.234 
F 0.141 0.299 

A B 

Eigenvalues: 
Factor 1 2 
Eigenvalue 1.145 0.034 

Eigenvectors: 

C 
0.100 
0.220 
0.133 
0.142 
0.136 
0.172 

3 
0.007 

D 
0.132 
0.250 
0.142 
0.169 
0.156 
0.195 

4 
8.7E-07 

Sample 

E 
0.1 17 
0.234 
0.136 
0.156 
0.146 
0.183 

5 
6.4E-07 

I;s 
0.141 
0.299 
0.172 
0.195 
0.183 
0.231 

6 
4.5E-07 

Factor A B C D E F 
1 0.284 0.579 0.332 0.382 0.356 0.449 
2 -0.839 0.316 0.304 -0.272 -0.048 0.167 
3 0.042 -0.574 0.752 -0.043 0.313 -0.054 

and 

M.ET = X (3.49) 

This matrix, X, is also shown in Table 3.12. 
The abstract spectra in matrix X represent a mathematical solution to 

Equation 3.44 but their interpretation and identification are not clear. True 
spectra can be obtained by rotating the abstract spectra to best match 
suspected (target) real spectra. This is the process of target transformation and 
is a powerful technique in factor analysis since it allows real factors to be 
identified individually. 

The least-squares target transformation vector, t ,  required to rotate the 
abstract spectra in X to a real spectrum, s, is given by 

x.t  = s (3.50) 

and by rearrangement t can be determined, 

XT.X.t  = X T . S  

(xT.x)-’.(XT.x).t = (XT.x)-’.xT.s (3.51) 
- T  - -1 -T t = ( X  .x) .x .s 

It is now only a matter of selecting our target spectra, s, for testing and 
determining t ,  then regenerating the spectrum by 

ŝ  = X.t  (3.52) 
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Where ŝ  is the calculated real spectrum, and if a good match is obtained then 

For our UV-visible data and substituting for X in Equation 3.51, then 
each element of s^ will equal the corresponding element in s. 

1 0.175 0.741 0.064 0.056 0.197 0.323 0.324 0.196 
t = 0.537 2.54 0.135 0.039 0.121 -0.782 -3.489 -3.206 .S 

1.491 -1.786 3.041 5.017 9.506 -3.815 -1.017 1.419 

(3.53) 

The test spectra may be selected from a suitable database of spectra of stock 
metal ion solutions. Here the spectra of Co2+, Cu2+, Ni2+, and Cr3+, as their 
nitrates in 0.1M nitric acid were employed (Table 3.13) 

For Co2+, and substituting for s in Equation 3.53, 

[ 

tT = [0.091 0.047 3.7021 (3.54) 

and substituting in Equation 3.52, 

ŝ co = [0.057 0.037 0.083 0.132 0.259 -0.063 0.003 0.0511 (3.55) 

Table 3.13 Initial, standard, absorbance spectra and data regenerated by TTFA 
analysis of the mixtures in Table 3.11 

Standard solution absorbance data: 
Wavelength Metal Ion 
(nm) 

c o 2  i- cu2 + Ni2 + cr3  + 

360 0.006 
400 0.030 
470 0.335 
510 0.485 
600 0.037 
680 0.019 
790 0.009 
900 0.0 17 
Regenerated solution data (SI): 

0.00 1 
0 
0.00 1 
0.00 1 
0.041 
0.246 
0.582 
0.486 

Wavelength 
(nm) 

c o 2  + cu2 + 

0.133 
0.628 
0.003 
0.007 
0.08 1 
0.239 
0.143 
0.041 

0.199 
0.597 
0.147 
0.199 
0.445 
0.06 1 
0.001 
0 

Metal Ion 

Ni2 cr3 + 

360 
400 
470 
510 
600 
680 
790 
900 

0.0570 
0.0370 
0.0830 
0.1320 
0.2590 

0.0030 
0.05 10 

-0.0630 

0.0002 
0.0008 
0.0015 
0.0042 
0.0410 
0.2470 
0.5820 
0.48 50 

0.1330 
0.6280 
0.0300 
0.0069 
0.08 10 
0.2400 
0.1430 
0.0410 

0.1980 
0.5980 
0.1480 
0.1990 
0.4440 
0.0600 

-0.0080 
0.0030 
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Comparison of sco and 3co indicates a poor match and we may conclude that 
cobalt ions are not one of the varying components in our mixture (a result that 
agrees with our knowledge of the make-up of M>. 

For Cu2 + 

&, = [0.0024 -0.0008 0.0015 0.0042 0.041 0.247 0.582 0.4851 (3.56) 

The agreement between scu and iCu is very good and we conclude that Cu2+ 
ions are present in the mixtures. 

The results for all four metal ions tested are presented in Table 3.13 and it is 
clear that the mixtures consist of varying amounts of copper, nickel and 
chromium nitrates. 

The final step in our study is to calculate the relative concentrations for these 
three species. 

Rearranging Equation 3.44 gives 

(xT.x)-' .XT.M = c (3.57) 

and the values for scu, sNi, and sCr form the columns of the standard solution 
absorbance matrix X .  Solving for C provides the concentration matrix 
presented in Table 3.13. The results are in excellent agreement with the actual 
values used (Table 3.14). 

A full account of TTFA, and related techniques, is given by Malinow~ki. '~ 
In this chapter we have been able to discuss only some of the more common 

and basic methods of feature selection and extraction. This area is a major 
subject of active research in chemometrics. The effectiveness of subsequent 
data processing and interpretation is largely governed by how well our 
analytical data have been summarized by these methods. The interested reader 
is encouraged to study the many specialist texts and journals available to 
appreciate the wide breadth of study associated with this subject. 

Table 3.14 Original mixture compositions used in the TTFA analysis and the 
results obtained 

Original mixture concentration matrix: 
Sample 

A B C D E F 
~ ~~~ 

c u 2  + 0.300 0.120 0.077 0.202 0.152 0.125 
Ni2 + 0.195 0.780 0.260 0.390 0.325 0.520 
c r 3  + 0.078 0.058 0.225 0.094 0.151 0.1 14 

Calculated mixture concentration matrix: 
Sample 

A B C D E F 
~~ 

c u 2  + 0.301 0.121 0.078 0.203 0.153 0.125 
Ni2 + 0.194 0.780 0.26 1 0.390 0.324 0.521 
c r 3  + 0.079 0.059 0.225 0.095 0.152 0.1 14 
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CHAPTER 4 

Pattern Recognition I: 
Unsupervised Analysis 

1 Introduction 
It is an inherent human trait that presented with a collection of objects we will 
attempt to classify them and organize them into groups according to some 
observed or perceived similarity. Whether it is with childhood toys and sorting 
blocks by shape or into coloured sets, or with hobbies devoted to collecting, we 
obtain satisfaction from classifying things. This characteristic is no less evident 
in science. Indeed, without the ability to classify and group objects, data, and 
ideas, the vast wealth of scientific information would be little more than a 
single random set of data and be of little practical value or use. There are 
simply too many objects or events encountered in our daily routine to be able 
to consider each as an individual and discrete entity. 

Instead, it is common to refer an observation or measure to some previously 
catalogued, similar example. The organization in the Periodic Table, for exam- 
ple, allows us to study group chemistry with deviations from general behaviour 
for any element to be recorded as required. In a similar manner, much organic 
chemistry can be catalogued in terms of the chemistry of generic functional 
groups. In infrared spectroscopy, the concept of correlation between spectra and 
molecular structures is exploited to provide the basis for spectral interpretation; 
in general each functional group exhibits well-defined regions of absorption. 

Although the human brain is excellent at recognizing and classifying patterns 
and shapes, it performs less well if an object is represented by a numerical list of 
attributes, and much analytical data is acquired and presented in such a form. 
Consider the data shown in Table 4.1, obtained from an analysis of a series of 
alloys. This is only a relatively small data set but it may not be immediately 
apparent that these samples can be organized into well-defined groups defining 
the type or class of alloy according to their composition. The data from Table 
4.1 are expressed diagrammatically in Figure 4.1. Although we may guess that 
there are two similar groups based on the Ni, Cr, and Mn content, the picture 
suffers from extraneous data. The situation would be more complex still if 
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Table 4.1 Concentration (mg kg-I) of trace metals in six alloy samples 
~~ 

Sample Ni Cr Mn V co 
~ 

A 
B 
C 
D 
E 
F 

6.1 1.1 1.2 5.2 4.0 
1.6 3.8 4.1 4.0 3.9 
1.2 3.1 2.9 3.6 6.4 
5.1 1.5 1.6 4.2 3.2 
4.8 1.8 1.2 3.7 3 .O 
2.1 3.4 4.4 4.3 4.1 

more objects were analysed or more variables were measured. As modern 
analytical techniques are able to generate large quantities of qualitative and 
quantitative data, it is necessary to seek and apply formal methods that can 
serve to highlight similarities and differences between samples. The general 
problem is one of classzjication and the contents of this chapter are concerned 
with addressing the following, broadly stated task. Given a number of objects 
or samples, each described by a set of measured values, we are to derive a 
formal mathematical scheme for grouping the objects into classes such that 
objects within a class are similar, and different from those in other classes. The 
number of classes and the class characteristics are not known apriori but are to 
be determined from the analysis.' 

It is the last statement in the challenge facing us that distinguishes the 
techniques studied here from supervised pattern recognition schemes to be 
examined in Chapter 5 .  In supervised pattern recognition, a training set is 
identified with which the parent class or group of each sample is known, and 
this information is used to develop a suitable discriminant function with which 

'1 I 

/ 

+ A  
- 0 - B  
t c  
+?-D 
-D-E 
U F  

O !  I I I I 1 

Ni Cr Mn V c o  

Figure 4.1 Trace metal data from Table 4.1 plotted to illustrate the presence of two 
groups 
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new, unclassified samples can be examined and assigned to one of the parent 
classes. In the case of unsupervised pattern recognition, often referred to as 
cluster analysis or numerical taxonomy, no class knowledge is available and no 
assumptions need be made regarding the class to which a sample may belong. 
Cluster analysis is a powerful investigative tool, which can aid in determining 
and identifying underlying patterns and structure in apparently meaningless 
tables of data. Its use in analytical science is widespread and increasing. Some 
of the varied areas of its application are model fitting and hypothesis testing, 
data exploration, and data r e d ~ c t i o n . ~ ’ ~  

The general scheme, or algorithm, followed to perform unsupervised pattern 
recognition and undertake cluster analysis, proceeds in the following manner. 
‘The data set consisiting of the original, or suitably processed, analytical data 
characterizing our samples is first converted into some corresponding set of 
similarity, or dissimilarity, measures between each sample. The subsequent 
aim is to ensure that similar objects are clustered together with minimal 
separation between objects in a class or cluster, whilst maximizing the sepa- 
ration between different clusters. It is the concept of similarity between objects 
that provides the richness and variety of the wide range of techniques available 
for cluster analysis. To appreciate this concept it is worth considering what 
may constitute a cluster. In Figure 4.2, two variate measures on a set of 
samples are represented in a simple scatter plot. It is evident from visual 
inspection that there are many ways of dividing the pattern space and 
producing clusters or groups of objects. There is no single ‘correct’ result, and 
the success of any clustering method depends largely on what is being sought, 
and the intended subsequent use of the information. Clusters may be defined 
intuitively and their structure and contents will depend on the nature of the 
problem. The presence of a cluster does not readily admit precise mathematical 
definition. 

L_ Variable 1 
W 

Figure 4.2 What constitutes a cluster and its boundary will depend on interpretation as 
well as the clustering algorithm employed 
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In essence, what all clustering algorithms aim to achieve is to group together 
similar, neighbouring points into clusters in the n-dimensional space defined by 
the n-variate measures on the objects. As with supervised pattern recognition 
(Chapter S ) ,  and other chemometric techniques, the selection of variables and 
their pre-processing can greatly influence the outcome. It is worth repeating 
that cluster analysis is an exploratory, investigative technique and a data set 
should be examined using several different methods obtain a more complete 
picture of the information contained in the data. 

The initial choice of recorded measurements used to describe each object 
constitutes the frame of reference within which the clusters are to be established. 
This choice will reflect an analyst’s judgement of relevance for the purpose of 
classification, based usually on experience. In most cases the number of variables 
is determined empirically and often tends to exceed the minimum required to 
achieve successful classification. Although this situation may guarantee satis- 
factory classification, the use of an excessive number of variables can severely 
effect computation time and a method’s efficiency. Applying some preprocessing 
transformation to the data is often worthwhile. Standardization of the raw data 
can be undertaken, and is particularly valuable when different types of variable 
are measured. But it should be borne in mind that standardization can have the 
effect of reducing or eliminating the very differences between objects which are 
required for classification. Another technique worth considering is to perform a 
principal components analysis on the original data, to produce a set of new, 
statistically independent variables. Cluster analysis can then be performed on 
the first few principal components describing the majority of the samples’ 
variance. 

Finally, having performed a cluster analysis, statistical tests can be employed 
to assess the contribution of each variable to the clustering process. Variables 
found to contribute little may be omitted and the cluster analysis repeated. 

In general, clustering procedures begin with the calculation of a matrix of 
similarities or dissimilarities between the objects.’ The output of the clustering 
process, in terms of both the number of discrete clusters observed and the 
cluster membership, may depend on the similarity metric used. 

Similarity and distance between objects are complementary concepts for 
which there is no single formal definition. In practice, distance as a measure of 
dissimilarity is a much more clearly defined quantity and is more extensively 
used in cluster analysis. 

Similarity or association coeflcients have long been associated with cluster 
analysis, and it is perhaps not surprising that the most commonly used is the 
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correlation coefficient. Other similarity measures are rarely employed. Most are 
poorly defined and not amenable to mathematical analysis, and none have 
received much attention in the analytical literature. The calculation of 
correlation coefficients is described in Chapter 1, and Table 4.2(a) provides 
the full symmetric matrix of these coefficients of similarity for the alloy data 
from Table 4.1. With such a small data set, a cluster analysis can be performed 
manually to illustrate the stages involved in the process. The first step is to find 
the mutually largest correlation in the matrix to form centres for the clusters. 
The highest correlation in each column of Table 4.2(a) is shown in bold. 
Objects A and D form mutual highly correlated pairs, as do objects B and C. 
Note that although object E is most highly correlated with D, they are not 
considered as forming a pair as D most resembles A rather than E. Similarly, 
object F is not paired with B, as B is more similar to C. 

The resemblance between the mutual pairs is indicated in the diagram shown 
in Figure 4.3, which links A to D and B to C by a horizontal line drawn from 
the vertical axis at points representing their respective correlation coefficients. 

At the next stage, objects A and D, and B and C, are considered to comprise 
new, distinct objects with associative properties and are similar to the other 
objects according to their average individual values. Table 4.2(b) shows the 
newly calculated correlation matrix. Clusters AD and BC have a correlation 
coefficient calculated from the sum of the correlations of A to B, D to B, A to C, 
and D to C, divided by four. The correlation between AD and E is the average 
of the original A to E and D to E correlations. The clustering procedure is now 

Table 4.2 Matrix of correlations between objects from Table 4.1, (a). Samples A 
and D ,  B and C form new objects and a new correlation matrix can be 
calculated, (b). Sample E then joins A D  and F joins BC to provide the 
final step and apparent correlation matrix (c) 

(4 A B C D E F 

A 1 -0.62 -0.39 0.99 0.97 -0.44 
B -0.62 1 0.95 -0.68 -0.74 0.94 
C -0.39 0.95 1 -0.48 -0.51 0.89 
D 0.99 -0.68 -0.48 1 0.98 -0.51 
E 0.97 -0.74 -0.51 0.98 1 -0.61 
F -0.44 0.94 0.89 -0.51 -0.6 1 1 

(b) AD BC E F 
~~ ~ 

AD 1 -0.54 0.97 -0.47 
BC -0.54 1 -0.62 0.91 

E 0.97 -0.62 1 -0.6 1 
F -0.47 0.91 -0.61 1 

(c) ADE BCF 

ADE 1 -0.56 
BCF -0.56 1 
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(a) 
A D B C 

I I  0.99 u 
u 0.95 

(b) A D E  B C F  

u 
0.97 4 0.91 

B C F  

-0.56 

Figure 4.3 Stages of hierarchical clustering shown graphically as dendrograms. Steps 
(at(c) correspond to the connections calculated in Table 4.2 

repeated, and object E joins cluster A D  and object F joins BC, Figure 4.3(b). 
The process is continued until all clusters are joined and the final similarity 
matrix is produced as in Table 4.2(c) with the resultant diagram, a dendrograrn, 
shown in Figure 4.3(c). That two groups, ADE and BCF, may be present in the 
original data is demonstrated. 

From this extremely simple example, the basic steps involved in cluster 
analysis and the value of the technique in classification are evident. The final 
dendrogram, Figure 4.3(c), clearly illustrates the similarity between the 
different samples. The original raw tabulated data have been reduced to a 
two-dimensional pictorial form which simplifies and demonstrates the structure 
within the data. It is pertinent to ask, however, what information has been lost 
in producing the diagram and to what extent does the graph accurately 
represent our original data. From the dendrogram and Table 4.2(b) the 
apparent correlation between sample B and sample F is 0.91, rather than the 
true value of 0.94 from the calculated similarity matrix. This error arose owing 
to the averaging process in treating the BC pair as a single entity, and the 
degree of distortion increases as successive levels of clusters are averaged 
together. Table 4.3 is the matrix of apparent correlations between objects as 
obtained from the dendrogram. These apparent correlations are sometimes 
referred to as cophenetic values, and if these are plotted against actual 
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Table 4.3 Matrix of apparent correlations between the six alloy samples, derived 
from the dendrogram of Figure 4.3 and Table 4. 2(b) and (c) 

(4 A B C D E F 

.A 1 -0.56 -0.56 0.99 0.97 -0.56 
B -0.56 1 .oo 0.95 -0.56 -0.56 0.91 
C -0.56 -0.95 1 -0.56 -0.56 0.91 
D 0.99 -0.56 -0.56 1 .oo 0.97 -0.56 
E 0.97 -0.56 -0.56 0.97 1 .oo -0.56 
F -0.56 0.91 0.9 1 -0.56 -0.56 1 .oo 

correlations, Figure 4.4, then a visual impression is obtained of the distortion 
in the dendrogram. A numerical measure of the similarity between the values 
can be calculated by computing the linear correlation between the two sets. If 
there is no distortion, then the plot would form a straight line and the 
correlation would be 1 .  In our example this correlation, r = 0.99. Although 
such a high value for r may indicate a strong linear relationship, Figure 4.4 
shows that there is a considerable difference between the real and apparent 
correlations. 

Distance Measures 

‘The correlation coefficient is too limiting in its definition to be of value in many 
applications of cluster analysis. It is a measure only of colinearity between 
variates and takes no account of non-linear relationships or the absolute 
magnitude of variates. Instead, distance measures that can be defined 
mathematically are more commonly encountered in cluster analysis. Of course, 
it is always possible at the end of a clustering process to substitute distance with 
reverse similarity; the greater the distance between objects the less their 
similarity . 

Figure 4.4 True vs. apparent correlations, indicating the distortion achieved by averaging 
correlation values to produce the dendrogram 
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An object is characterized by a set of measures, and it may be represented as 
a point in multidimensional space defined by the axes, each of which 
corresponds to a variate. In Figure 4.5, a data matrix X defines measures of 
two variables on two objects A and B. Object A is characterized by the pattern 
vector, a = x l l ,  xI2, and B by the pattern vector, b = x21, x22. Using a distance 
measure, objects or points closest together are assigned to the same cluster. 
Numerous distance metrics have been proposed and applied in the scientific 
literature. 

For a function to be useful as a distance metric between objects then the 
following basic rules apply (for objects A and B): 

dAB 3 0, the distance between all pairs of measurements for objects 
A and B must be non-negative, 
dAB = dBA, the distance measure is symmetrical and can only be zero 
when A = B. 
dAc + dBc 2 dAB, the distance is commutative for all pairs of points. 
This statement corresponds to the familiar triangular inequality of 
Euclidean geometry. 

The most commonly referenced distance metric is the Euclidean distance, 
defined by 

where xij  is the value of the f th  variable measured on the i’th object. This 
equation can be expressed in vector notation as 

x2 

d,, (Euclidean) = d l  
d,, (city-block) = d 2 d 3  

Figure 4.5 Euclidean and city-block metrics for two-dimensional data 
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or 

In general, 
equation, 

dAB = [ ( a  - b)T(a - b)]'I2 

most distance metrics conform to 

(4.3) 

the general Minkowski 

When m = 1, Equation 4.4 defines the city-block metric, and if m = 2 then 
the Euclidean distance is defined. Figure 4.5 illustrates these measures on two- 
dimensional data. 

If the variables have been measured in different units, then it may be 
necessary to scale the data to make the values ~ o m p a r a b l e . ~ ~  An equivalent 
procedure is to compute a weighted Euclidean distance, 

or 

dAB = [ (a  - b)T W(a - b)I1I2 (4.6) 

W is a symmetric matrix, and in the most simple case W is a diagonal matrix, 
the diagonal elements of which, wii, are the weights or coefficients applied to the 
vectors corresponding to the variables in the data matrix. Weighting variables 
is largely subjective and may be based on a priori knowledge regarding the 
data, such as measurement error or equivalent variance of variables. If, for 
example, weights are chosen to be inversely proportional to measurement 
variance, then variates with greater precision are weighted more heavily. 
However, such variates may contribute little to an effective clustering process. 

One weighted distance measure which does occur frequently in the scientific 
literature is the Mahalanobis distance,425 

where Cov is the full variance-covariance matrix for the original data. The 
Mahalanobis distance is invariant under any linear transformation of the 
original variables. If several variables are highly correlated, this type of 
weighting scheme down-weights their individual contributions. It should be 
used with care, however. In cluster analysis, use of the Mahalanobis distance 
may produce even worse results than equating the variance of each variable 
and may serve only to decrease the clarity of the  cluster^.^ 
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The Mahalanobis distance occurs frequently in chemometric analysis, 
not only in cluster analysis but also in multivariate calibration, in discrimi- 
nant analysis, and in modelling. It is appropriate to consider it further here, and 
the following account is based on the tutorial article by De Maesschalck et a1.* 

Table 4.4 details ten objects ( A  . . . J) described by two, mean-centred, 
variables (xl and x2). These data are illustrated graphically in Figure 4.6, and it 
is immediately apparent that the two variables exhibit high, positive 
correlation. In Figure 4.6(b), contours (circles) of equal Euclidean distance 
from the centroid are displayed and, for example, objects C and F have similar 
distance values. This is not the case if Mahalanobis distances are calculated and 
examined. 

For the data in Table 4.4 and calculating the distance (MDJ of each object, 
i, from the centroid, we have, 

(4.8) MD, = (X:.COV-'.~J''~, i = 1 . . . l o  

and, 

= [ 0.730 -0.7621 
-0.762 1.011 

cov-' (4.9) 

Contours of equal Mahalanobis distance from the centre are illustrated in 
Figure 4.6(c). Mahalanobis distance values for the ten objects from the origin 
are shown in Table 4.4, along with the Euclidean distance values. The 
Mahalanobis distances for objects C and F are very different. This illustrates 
the effect of taking into account the variancesovariance structure in the data. 
Object F i s  located in a direction from the centre of lower probability than the 
majority of data. The Mahalanobis distance metric takes account of this 
probability due to correlation in the data whilst the conventional Euclidean 
distance metric does not. 

Before proceeding with a more detailed examination of clustering 
techniques, we can now compare correlation and distance metrics as suitable 
measures of similarity for cluster analysis. A simple example serves to illustrate 

Table 4.4 Ten objects ( A  . . . J )  described by two variables, x I  and x2, and their 
in te r- o bjec t Euclidean distances and M a  h alan o b is distances 

(4 A B C D E F G H I J  

-2.2 -1.2 1.8 1.8 2.8 -0.2 -0.2 3.8 -4.2 -2.2 
-1.8 -0.8 2.2 1.2 2.2 -2.8 0.2 3.2 -2.8 -0.8 

A B C D E F G H I J  
~~ 

Euclidean Distance 2.8 1.4 2.8 2.1 3.5 2.8 0.2 4.9 5.0 2.3 
43 42 43 63 61 07 83 68 48 41 

(c) A B C D E F G H I J  

Mahalanobis Distacnce 0.7 0.2 1.2 0.5 1.2 7.1 0.1 2.3 2.8 1.5 
77 36 26 31 33 04 31 71 91 00 



Pattern Recognition I: Unsupervised Analysis 107 

Figure 4.6 Scatter plot of the data from Table 4.4,(a), and, superimposed, the contours of 
Euclidean distance (b), and Mahalanobis distance, (c) 

the main points. In Table 4.5, three objects (A, B, and C) are characterized by 
five variates. The correlation matrix and Euclidean distance matrix are given in 
Table 4.6, and, as before, manual clustering can be undertaken to display the 
similarity between objects. Using the correlation coefficient, objects A and C 
form a mutually highly similar pair and may be joined to form a new object 
AC, with a correlation to object B formed by averaging the A to B, C to B 
correlations. The resultant dendrogram is shown in Figure 4.7(a). If the 
Euclidean distance matrix is used as the measure of similarity, then objects A 
and B are the most similar as they have the mutually lowest distance separating 
them. The dendrogram using Euclidean distance is illustrated in Figure 4.7(b). 

Different results may be obtained using different measures. The explanation 
can be appreciated by considering the original data plotted as in Figure 4.8. 
If the variables xl,  x2.. . x5, represent trace elements in, say, water samples and 
the measures their individual concentrations, then samples A and B would 
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Table 4.5 Three samples, or objects, characterized by Jive measures, x I  . . . x5 

A 
B 
C 

2.1 5.2 3.1 4.1 2.1 
2.5 4.0 4.0 4.6 3.5 
5.1 9.2 7.1 7.0 5.0 

form a group with the differences possibly due to natural variation between 
samples or experimental error. Sample C could come from a different source. 
The distance metric in this case provides a suitable clustering measure. 
Conversely, if xl, x 2 . .  . xs denoted, say, wavelengths and the response values a 
measure of absorption or emission at these wavelengths, then a different 
explanation may be sought. It is clear from Figure 4.8 that if the data represent 
spectra, then A and C are similar, differing only in scale or concentration, 
whereas spectrum B has a different profile. Hence, correlation provides a 
suitable measure of similarity. As spectra, if the data had been normalized to 
the most intense response, then A and C would have been closer and the 
distance metric more meaningful. 

In summary, therefore, the first stage in cluster analysis is to compute the 
matrix of selected distance measures between objects. As the entire clustering 
process may depend on the choice of distance it is recommended that results 
using different functions be compared. 

Table 4.6 Correlations matrix (a), of data from Table 
4.4, and distance matrix (b) 

(4 A B C 

A 1 0.69 
B 0.69 1 
C 0.96 0.63 
and the first cluster is AC 

AC 

0.96 
0.63 
1 

B 

AC 
B 

1 .oo 
0.66 

0.66 
1 .oo 

(b) A B C 
~~ 

A 0 2.15 
B 2.15 0 
C 7.60 7.17 
and the first cluster is AB 

AB 

7.60 
7.17 
0 

C 

AB 
B 

0 
7.38 

7.38 
0 
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Figure 4.7 Dendrograms for the three-object data set from Table 4.4, clustered according 
to correlation (a) and distance (b) 

4 Clustering Techniques 
By grouping similar objects, clusters are a general representation of the objects 
and form a distinct group according to some empirical rule. It is implicit in 
producing clusters that such a group can be represented further by a typical 
element of the cluster. This single element may be a genuine member of the 
cluster or a hypothetical point, for example an average of the contents’ 

lo 1 
+ A  
U B  
t c  

0 4  I 

0 1 2 3 4 5 6 
Variable 

Figure 4.8 Three-object from Table 4.4 
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characteristics in multidimensional space. One common method of identifying 
a cluster’s typical element is to substitute the mean values for the variates 
describing the objects in the cluster. The between-cluster distance can then be 
defined as the Euclidean distance, or other metric, between these means. Other 
measures not using the group means are available. The nearest-neighbour 
distance defines the distance between two closest members from different 
groups. The furthest-neighbour distance, however, is that between the most 
remote pair of objects in two groups. A further inter-group measure is 
obtained by taking the average of all the inter-element measures between 
elements in different groups. As well as defining the inter-group separa- 
tion between clusters, each of these measures provides the basis for a 
clustering technique, defining the method by which clusters are constructed 
or divided. 

In relatively simple cases, in which only two or three variables are 
measured for each sample, the data can usually be examined visually and any 
clustering identified by eye. As the number of variates increases, however, this 
is rarely possible and many scatter plots, between all possible pairs of 
variates, would need to be produced to identify major clusters, and even then 
clusters could be missed. To address this problem, many numerical clustering 
techniques have been developed, and the techniques themselves have been 
classified. For our purposes the methods considered belong to one of the 
following types. 

(a) Hierarchical techniques in which the elements or objects are clustered to 
form new representative objects, with the process being repeated at different 
levels to produce a tree structure, the dendrogram. 

(b) Methods employing optimization of the partitioning between clusters 
using some type of iterative algorithm, until some predefined minimum4 change 
in the groups is produced. 

(c) Fuzzy cluster analysis in which objects are assigned a membership 
function indicating their degree of belonging to a particular group or set.’”’ 

To demonstrate the calculations and results associated with the different 
methods, the small set of bivariate data in Table 4.7 will be used. These data 
consist of 12 objects in two-dimensional space, Figure 4.9, and the positions of 
the points are representative of different shaped clusters, the single point (L), 
the extended group (B,C,D), the symmetrical group (A,E,F,G), and the 
asymmetrical cluster (H,I,J,K). ’’ 

Hierarchical Techniques 

When employing hierarchical clustering techniques, the original data are 
separated into a few general classes, each of which is further subdivided into 
still smaller groups until finally the individual objects themselves remain. Such 
methods may be agglomerative or divisive. By agglomerative clustering, small 
groups, starting with individual samples, are fused to produce larger groups as 
in the examples studied previously. In contrast, divisive clustering starts with a 
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Table 4.7 Simple bivariate data set for cluster analysis (a), f rom Zupan,” and 
the corresponding Euclidean distance matrix (b) 

( a )  A B C D E F G H I J K L 

X I  2 6 7 8 1 3  2 7 6 7 6 2 
x:! 1 1 1 1 2 2 3 3 4 4 5 6  

(b) A B C E E F G H I J K L 
~~ 

A 0 4.0 5.0 6.0 1.4 1.4 2.0 5.4 5.0 5.8 5.7 5.0 
B 4.0 0 1.0 2.0 5.1 3.2 4.5 2.2 3.0 3.2 4.0 6.4 
C 5.0 1.0 0 1.0 6.1 4.1 5.4 2.0 3.2 3.0 4.1 7.1 
D 6.0 2.0 1.0 0 7.1 5.1 6.3 2.2 3.6 3.2 4.5 7.8 
E 1.4 5.1 6.1 7.1 0 2.0 1.4 6.1 5.4 6.3 5.8 4.1 
F 1.4 3.2 4.1 5.1 2.0 0 1.4 4.1 3.6 4.5 4.2 4.1 
G 2.0 4.5 5.4 6.3 1.4 1.4 0 5.0 4.1 5.1 4.5 3.0 
H 5.4 2.2 2.0 2.2 6.1 4.1 5.0 0 1 1.0 2.2 5.8 
I 5.0 3.0 3.2 3.6 5.4 3.6 4.1 1.4 0 1.0 1.0 4.5 
J 5.8 3.2 3.0 3.2 6.3 4.5 5.1 1.0 1.0 0 1.4 5.4 
K 5.7 4.0 4.1 4.5 5.8 4.2 4.5 2.2 1.0 1.4 0 4.1 
L 5.0 6.4 7.1 7.8 4.1 4.1 3.0 5.8 4.5 5.4 4.1 0 

single cluster, containing all samples, which is successively divided into smaller 
partitions. Hierarchical techniques are very popular, not least because their 
application leads to the production of a dendrogram that can provide a two- 
dimensional pictorial representation of both the clustering process and the final 
result. Agglomerative hierarchical clustering is very common and we will 
proceed with details of its application. 

E 

L 

G 

F 

A 

K 

I J 

H 

B C D  

0 4  I 1 I 1 1 

0 2 4 6 8 10 
XI 

Figure 4.9 Bivariate data from Table 4.7(a)’” 
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Agglomerative methods begin with the computation of a similarity or 
distance matrix between the objects, and result in a dendrogram illustrating the 
successive fusion of objects and groups until the stage is reached when all 
objects are fused into one large set. Agglomerative methods are the most 
common hierarchical schemes found in scientific literature. A four-step 
algorithm can summarize the entire process involved in undertaking 
agglomerative clustering using distance measures. 

Step 1. Calculate the between-object distance matrix. 
Step 2. Find the smallest elements in the distance matrix and join the 

corresponding objects into a single cluster. 
Step 3. Calculate a new distance matrix, taking into account that clusters 

produced in the second step will have formed new objects and taken 
the place of original data points. 

Step 4. Return to Step 2 or stop if the final two clusters have been fused into 
the final, single cluster. 

The wide range of agglomerative methods available differ principally in the 
implementation of Step 3 and the calculation of the distance between two 
clusters. The different between-group distance measures can be defined in terms 
of the general formula 

(4.10) 

where dj , j  is the distance between objects i and j and dk(i,j, is the distance 
between group kand a new group ( i , j )  formed by the fusion of groups i and j .  
The values of coefficients ai ,a j ,P,  and y are chosen to select the specific 
between-group metric to be used. Table 4.8 lists the more common metrics and 
the corresponding values for ah aj, p and y. 

The use of Equation 4.10 makes it a simple matter for standard computer 
software packages to offer a choice of distance measures to be investigated by 
selecting the appropriate values of the coefficients. 

Table 4.8 Common distance measures used in cluster analysis 

Metric Coeficien ts 

Nearest neighbour (single linkage) 0.5 0.5 0 -0.5 
Furthest neighbour (complete linkage) 0.5 0.5 0 0.5 
Centroid 
Median 0.5 0.5 -0.25 0 

0 0 Group average 

0 Ward’s method 
The number of objects in any cluster I is n,. 

n, I? ,  - - -a, .a, 0 n,+n, n, +n, 

n, n, - - 
n, +n, n, +n, 

n,+n,+n,! n,+n,+nk n,+n,+nh 
n, f n h  t?, +nl, -nh 



Pattern Recognition I: Unsupervised Analysis 113 

For the nearest-neighbour method of producing clusters, Equation 4.10 
reduces to, 

(4.11) 

From the 12 x 12 distance matrix, Table 4.7(b), objects B and C form a new, 
combined object and the distance from BC to each original object is calculated 
according to Equation 4.11. Thus, for A to BC, 

dA(BC) = O.5dAB + 0.5dAc - 0.5ldAB - dAcI 
= 0.5(4) + 0.5(5) - 0.5(1) 

= 4  (4.12) 

In fact, for the nearest-neighbour algorithm, Equation 4.9 can be rewritten 
as 

4 ( i , j )  = min(d/ci, dkj) (4.13) 

i.e. the distance between a cluster and an object is the smallest of the distances 
between the elements in the cluster and the object. 

The distance between the new object BC and each remaining original object 
is calculated, and the procedure repeated with the resulting 11 x 11 distance 
matrix until a single cluster containing all objects is produced. The resulting 
dendrogram is illustrated in Figure 4.10. 

The dendrogram for the furthest-neighbour, or complete linkage, technique is 
produced in a similar manner. In this case, Equation 4.10 becomes 

r 
1 
n 

F G E A L  C D B I K J H  
Clusters 

Figure 4.10 Dendrogram of the data from Table 4.7(a) using the nearest-neighbour 
algorithm 
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dk(i,n = 0.5dk,i + 0*5Cl,,i + O.51dk, j - dk,il (4.14) 

and this implies that 

d k ( i , j 7  = max(4, i 7  4 , j )  (4.15) 

i.e. the distance between a cluster and an object is the maximum of the 
distances between cluster elements and the object. 

For example, for group BC to object D, the B to D distance is 2 units and the 
C to D distance is 1 unit. From Equation 4.15, therefore dD(BC) = 2, or 

dD(BC) = O.5dDB + 0.5dDc - 0.5ldDB - dDCI 

= 0.5(2) + 0.5(1) + 0.5(1) 
= 2  

(4.16) 

The complete dendrogram is shown in Figure 4.1 1. The nearest-neighbour 
and furthest-neighbour criteria are the simplest algorithms to implement. 

Another procedure, Ward’s method, is commonly encountered in chemo- 
metrics. A centroid point is calculated for all combinations of two clusters and 
the distance between this point and all other objects calculated. In practice this 
technique generally favours the production of small clusters. 

From Equation 4.10, 

dD(BC) = 2dDB/3 + 2dDC/3 - ldBC/3 
= 2(2)/3 + 2(1)/3 - 1(1)/3 
= 1.67 

(4.17) 

r 1 
A E F G L  C D B H J  I K 

Clusters 

Figure 4.11 Dendrogram of the data from Table 4.7(a) using the furthest-neighbour 
algorithm 
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The process is repeated between BC and other objects, and the iteration 
starts again with the new distance matrix until a single cluster is produced. The 
dendrogram from applying Ward’s method is illustrated in Figure 4.12. 

The different methods available from applying Equation 4.10 with the 
coefficients from Table 4.8 each produce their own style of dendrogram with 
their own merits and disadvantages. Which technique or method is best is 
largely governed by experience and empirical tests. The construction of the 
dendrogram invariably induces considerable distortion as discussed, and other, 
non-hierarchical, methods are generally favoured when large data sets are to be 
analysed. 

K-Means Algorithm 

One of the most popular and widely used clustering techniques is the 
application of the K-Means algorithm. It is available with all popular cluster 
analysis software packages and can be applied to relatively large sets of data. 
The principal objective of the method is to partition the rn objects, each 
characterized by n variables, into K clusters so that the square of the within- 
cluster sum of distances is minimized. Being an optimization-based technique, 
the number of possible solutions cannot be predicted and the best possible 
partitioning of the objects may not be achieved. In practice, the method finds a 
local optimum, defined as being a classification in which no movement of an 
observation from one cluster to another will reduce the within-cluster sum of 
squares. 

A E F G L  C D B H J  I K 

Clusters 

Figure 4.12 Dencluogram of’ the data ,from Table 4.7(a)  tisiiig Wavcl’.s method 
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Many versions of the algorithm exist, but in most cases the user is expected 
to supply the number of clusters, K ,  expected. The algorithm described here is 
that proposed by Hartigan.4 

X defines the data matrix with elements xi,,j( 1 d i d rn, 1 d j d n) ,  where rn is 
the number of objects and n is the number of variables used to characterize the 
objects. The cluster analysis seeks to find K partitions or clusters, with each 
object residing in only one of the clusters. 

The mean value for each variablej, for all objects in cluster L is denoted by 
BL,J 1 d L d IQ. The number of objects residing in cluster L is RL. 

The distance, Di,L between the i'th object and the centre or average of each 
cluster is given by the Euclidean metric, 

(4.18) 

and the error associated with any partition is 

E = ( ~ i L ( i ) ) ~ l  (4.19) 

where L(i )  is the cluster containing the i'th object. Thus 1 represents the sum of 
the squares of the distances between object i and the cluster centres. 

The algorithm proceeds by moving an object from one cluster to another to 
reduce E ,  and ends when no movement can reduce 1. The steps involved are: 

Step 1. Given K clusters and their initial contents, calculate the cluster means 
BLIi and the initial partition error, E .  

Step 2. For the first object, compute the change in error, AE, obtained by 
transferring the object from its current cluster, L(l), to every other 
cluster L, 2 d L d K :  

(4.20) 

Step 3. If this value for AE is negative, i.e. the move would reduce the partition 
error, transfer the object and adjust the cluster means taking account 
of their new populations. 

Step 4. Repeat Step 2 for every object. 
Step 5. If no object has been moved then stop, else return to Step 2. 

Applying the algorithm manually to our test data will illustrate its operation. 
Using the data from Table 4.7, it is necessary first to specify the number of 
clusters into which the objects are to be partitioned. We will use K = 4. Before 
the algorithm is implemented we also need to assign each object to an initial 
cluster. A number of methods are available, and that used here is to assign 
object i to cluster L(i)  according to 

where 1 
denote the minimum and maximum sum values. 

is the sum of all variables for each object, and MIN and MAX 
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For the test data, 

Va r ia bles Objects 
~~ 

A B C D E F G H I  J K L  

.A- 1 2 6 7 8 1 3 2 7 6 7 6 2  
x, 1 1 1 1 2 2 3 3 4 4 5 6  

>:Xi, j 3 7 8  9 3 5 5  1 0 1 0 1 1  1 1 8  

MAX Xi,, = 11  MIN 1 Xi,i = 3 

For object A, 

L(A) = INT((4 - 1)[(3 - 3)/( 11 - 3)]} + 1 = 1 (4.22) 

and similarly for each object, all i, 

i = A B C D E F G H I J K L  
L(i) = 1 2  2 3 1 1  1 3 3 4 4 2 

Thus, objects A, E, F, G are assigned initially to Cluster 1, B, C, and L to 

The centres of each of these clusters can now be calculated. For Cluster 1, 

(4.23) 

Cluster 2, D, H, and I to Cluster 3, and finally J and K to Cluster 4. 

L =  1, 
B1, = (2 + 1 + 3 + 2)/4 = 2.00 

4 2  = (1 + 2 + 2 + 3)/4 = 2.00 (4.24) 

and similarly for each of the remaining three clusters. 
The initial clusters and their mean values are therefore, 

Cluster Con tents Cluster means 
x I 

1 A E F G  2.00 2.00 
2 B C L  5.00 2.67 
3 D H I  7.00 2.67 
4 J K  6.50 4.50 

This initial partitioning is illustrated in Figure 4.13(a). 
By application of Equations 4.18 and 4.19, the error associated with this 

initial partitioning is 

1 = (2 - 2)2 + (1 - 2)2 + (6 - 5)2 + (1 - 2.67)2 + (7 - 5)2 
+ ( 1 - 2.67)2 + (8 - 7)2 + ( 1 - 2.67)2 + (1 - 2)2 + (2 - 2)2 

+ (3 - 2)* + (2 - 2)2 + (2 - 2)2 + (3  - 2)2 + (7 - 7)2 

+ (3 - 2.67)2 + (6 - 7)2 + (4 - 2.67)2 + (7 - 6.5)2 

+ (4 - 4.5)2 + (6 - 6.5)2 + ( 5  - 4.5)* + (2 - 5)2 + (6 - 2.67)2 
= 42.35 (4.25) 
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5 

4 
x2 

3 

2 

I 

2 
1 2 3 4 5 6 7 x 9  

4 
1 2 3 4 5 6 7 8 0  

7 
I 2  3 4 5 6 7 8 0 

I 2  3 4 5 6 7 x 0 

I 2  3 4 5 6 7 8 9 

X I  

Figure 4.13 K-means algorithm applied to the test data from Table 4.7(a), showing the 
initial four partitions (a) and subsequent steps, (b) to (d), until a stable result 
is achieved (e)  
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To reduce this error, the algorithm proceeds to examine each object in turn 

For the first object, A, its squared Euclidean distance to each cluster 
and calculate the effect of transferring an object to a new cluster. 

centre is 

DA1 = (2.00 - 2.00)2 + (1 .OO - 2.00)2 = 1 .OO 

D A ~  

DA3 

= (2.00 - 5.00)2 + (0.001 - 2.67)2 = 1 1.79 

= (2.00 - 7.00)2 + (1  .OO - 2.67)2 = 17.79 
(4.26) 

D A ~  = (2.00 - 6.50)2 + ( I  .OO - 4.50)2 = 32.50 

If we were to transfer object A from Cluster 1 to Cluster 2, then the 

A & =  (3)(11.79)/4-(4)(1)/3 = 7.51 (4.27) 

change in error, from Equation 4.20, is 

amd to Cluster 3, 

A& = (3)(27.9)/4 - (4)( 1)/3 = 19.5 I (4.28) 

and to Cluster 4, 

A& = (3)(32.50)/4 - (4)( 1)/3 = 20.34 (4.29) 

The A& are all positive and each proposed change would serve to increase 
the partition error, so object A is not moved from Cluster 1 .  This result can 
be appreciated by reference to Figure 4.13(a). Object A is closest to the 
centre of Cluster 1 and nothing would be gained by assigning it to another 
ch~ster. 

The algorithm continues by checking each object and calculating A& for 
each object with each cluster. For our purpose, visual examination of Figure 
4.13(a) indicates that no change would be expected for object B, but for 
object C a move is likely as it is closer to the centre of Cluster 3 than 
Cluster 2. 

Moving object C, the third object, to Cluster 1 ,  

DCI2 = (7.00 - 2.00)2 + (1 .OO - 2.00)2 = 26.00 

and 

A& = (4)(26.00)/5 - (3)(6.79)/2 = 3.82 

for Cluster 2, its current group, 

Dc22 = (7.00 - 5.00)2 + (1 .OO - 2.67)2 = 6.79 

and to Cluster 3, 

Dc32 = (7.00 - 7.00)2 + (1 .OO - 2.67)2 = 2.79 

and 

A& = (3)(2.79)/4 - (3)(6.79)/2 = -14.88 

and to Cluster 4, 

Dc42 = (7.00 - 6.50)2 + (1 .OO - 4.50)2 = 12.50 

(4.30) 

(4.31) 

(4.32) 
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and 

AE = (2)( 12.50)/3 - (3)(6.79)/2 = -8.64 (4.33) 

So, moving object C from Cluster 2 to Cluster 3 decreases E by 14.88, and 
the new value of E is (42.35 - 14.88) = 27.47. The partition is therefore changed. 
With new clusters and contents we must calculate their new mean values: 

Cluster Contents (I"' change) Cluster means 
XI x2 

1 A E F G  2.00 2.00 
2 B L  4.00 3.50 
3 C D H I  7 .OO 2.50 
4 J K  6.50 4.50 

The new partition, after the first pass through the algorithm, is illustrated in 
Figure 4.13(b). On the second run through the algorithm object B will transfer 
to Cluster 3; it is nearer its mean than Cluster 2. 

On the second pass, therefore, the cluster populations and their centres are, 
Figure 4.13(c), 

Cluster Contents (2"" change) Cluster means 
X I  x2 

1 A E F G  2.00 2.00 
2 L 2.00 6.00 
3 B C D H I  6.80 2.00 
4 J K  6.50 4.50 

On the next pass, object I will move to Cluster 4, Figure 4.13(d), 

~~~~~~~~~~~ 

Cluster Contents (3r" change) Cluster means 
XI xz 

1 A E F G  2.00 2.00 
2 L 2.00 6.00 
3 B C D H  7.00 1.50 
4 I J K  6.33 4.33 

On the fourth pass, object H moves from Cluster 3 to Cluster 4, Figure 
4.13(e), 

Cluster Contents (4''' change) Cluster means 
XI x_1 

1 A E F G  
2 L 
3 B C D  
4 H I J K  

2.00 2.00 
2.00 6.00 
7.00 1 .oo 
6.50 4.00 
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Figure 4.14 K-means algorithm applied to the test data from Table 4.7(a) assuming 
there are two clusters (a), and three clusters (b) 

The process is repeated once more but this time no movement of any object 
between clusters gives a better solution in terms of reducing the value of E .  So 
Figure 4.13(e) represents the best result. 

Our initial assumption when applying the K-means algorithm was that four 
clusters were known to exist. Visual examination of the data suggests that this 
assumption is reasonable in this case, but other values could be acceptable 
depending on the model investigated. For K = 2 and K = 3, the K-means 
algorithm produces the results illustrated in Figure 4.14. Although statistical 
tests have been proposed in order to select the best number of partitions, 
cluster analysis is not generally considered a statistical technique, and the 
choice of criteria for best results is at the discretion of the user. 

Fuzzy Clustering 

The principal aim of performing a cluster analysis is to permit the identification 
of similar samples according to their measured properties. Hierarchical 
techniques, as we have seen, achieve this by linking objects according to 
some formal rule set. The K-means method on the other hand seeks to partition 
the pattern space containing the objects into an optimal predefined number of 
sections. In the process of providing a simplified representation of the data, 
both schemes can distort the ‘true’ picture. By linking similar objects and 
reducing the data to a two-dimensional histogram, hierarchical clustering often 
severely distorts the similarity value by averaging values or selecting maximum 
or minimum values. The result of K-means clustering is a simple list of clusters, 
their centres, and their contents. Nothing is said about how well any specific 
object fits into its chosen cluster, or how close it may be to other clusters. In 
Figure 4.13(e), for example, object C is more representative of its parent cluster 
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than, say, object B which may be considered to have some of the characteristics 
of the first cluster containing objects A, E, F, G. 

One clustering method which seeks to not only highlight similar objects but 
also provide information regarding the relationship of each object to each 
cluster is that sffuzzy clustering.”10 Generally referred to in the literature as 
the,fuzzy c-means method, to preserve continuity of the symbols used thus far, 
we will identify the technique as fuzzy k-means clustering. The method 
illustrated here is based on Bezdek’s algorithm. I 0  

To demonstrate the use and application of fuzzy clustering, a simple set of 
data will be analysed manually. The data in Table 4.9 represent 15 objects 
(A . . . 0) characterized by two variables xI  and x2, and these data are plotted in 
the scatter diagram of Figure 4.15. It is perhaps not unreasonable to assume 
that these data represent two classes or clusters. The means of the clusters are 
well separated but the clusters touch about points G, H, and I .  Because the 
apparent groups are not well separated, the results using conventional cluster 
analysis schemes can be misleading or ambiguous. With the data from Table 
4.9 and applying the K-means algorithm using two different commercially 
available software packages, the results are as illustrated in Figure 4.16(a) and 
4.16(b). These results are confusing. Since the data are symmetrical, in the x2 
axis, about x2 = 3, why should points B, E, G,  H, I, K, N belong to one cluster 
rather than the other cluster? Similarly, in Figure 4.16(b), in the xI  axis the data 
are symmetrical about xI = 4 and there is no reason why object H should 
belong exclusively to either cluster. The problem arises because of the crisp 
nature of the clustering rule that assigns each object to one specific cluster. This 
rule is relaxed when applying fuzzy clustering and objects are recognized as 
belonging, to a lesser or greater degree, to every cluster. 

The degree or extent to which an object, i, belongs to a specific cluster, k ,  is 
referred to as that object’s membership .function, denoted pk, , .  Thus, visual 
inspection of Figure 4. I5 would suggest that for two clusters objects E and K 
would be close to the cluster centres, i.e. p . 1 1 ~  - 1 and p 2 K  - 1,  and that object 
H would belong equally to both clusters, i.e. plH = 0.5 and, p 2 H  = 0.5. This is 
precisely the result obtained with fuzzy clustering. 

Table 4.9 Bivariate data ( X I  and x2) measured on 15 objects, A . . . 0 

Object, i Variable, j 
-y I 1 2  

Object, i Variable, j 
.I- I .I-? 

A 1 
B 1 
C I 
D 2 
E 2 
F 2 
G 3 
H 4 

I 5 3 
J 6 2 
K 6 3 
L 6 4 
M 7 1 
N 7 3 
0 7 5 
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X I  

Figure 4.15 Bivariate data ,from Table 4.9 

As with K-means clustering, the fuzzy k-means technique is iterative and 
seeks to minimize the within-cluster sum of squares. Our data matrix is defined 
by the elements xii and we seek K clusters, not by hard partitioning of the 
variable space, but by fuzzy partitions, each of which has a cluster centre or 
prototype value, Bk,(l < k < K ) .  

The algorithm starts with a pre-selected number of clusters, K .  In addition, 
an initial fuzzy partition of the objects is supplied such that there are no empty 

5 

4 

3 

I 

5 

4 

7 

3 

I 

- H E G H I K N  

u .1 

M 

I I I I I I I I  

Figure 4.16 Clustering resulting Jiom application of two commercial programs of' the 
K-means algorithm, (a) and (b), to the data,from Table 4.9 
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clusters and the membership functions for an object with respect to each cluster 
sum to unity, 

PIA + P 2 A  + ' * ' + P k A  = (4.34) 

Thus, if PIE = 0.8, then P2E = 0.2. 
The algorithm proceeds by calculating the K-weighted means to determine 

cluster centres, 

M 

(4.35) 

New fuzzy partitions are then defined by a new set of membership functions 
given by, 

i.e. the ratio of the inverse squared distance of object i from the k'th cluster 
centre to the sum of the inverse squared distances of object i to all cluster centres. 

From this new partitioning, new cluster centres are calculated by applying 
Equation 4.35, and the process repeated until the total change in values of the 
membership functions is less than some pre-selected value, or a set number of 
iterations has been achieved. 

Application of the algorithm can be demonstrated using the data from 
Table 4.9. 

With K = 2, our first step is to assign membership functions for each object 
and each cluster. This process can be done in a random fashion, bearing 
in mind the constraint imposed by Equation 4.34, or using prior knowledge, 
e.g. the output from crisp clustering methods. With the results from the 
K-means algorithm, Figure 4.16(b), the membership functions can be assigned 
as shown in Table 4.10. Objects A . . . H belong predominately to Cluster 1 and 
objects I . . . 0 to Cluster 2. 

Table 4.10 Initial membership functions, ,&, for  15 objects 
assuming two clusters 

A 
B 
C 
D 
E 
F 
G 
H 

0.9 
0.9 
0.9 
0.9 
0.9 
0.9 
0.9 
0.9 

0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0. I 

I 0.1 0.9 
J 0.1 0.9 
K 0.1 0.9 
L 0.1 0.9 
M 0.1 0.9 
N 0.1 0.9 
0 0.1 0.9 
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Using this initial fuzzy partition, the initial cluster centres can be calculated 
according to Equation 4.35. 

= [(0.92)1 + (0.92)1 + (0.92)1 + (0.92)2 + (0.92)2 + (0.92)2 

+ (0.92)3 + (0.92)4 + (0.12)5 + (0.12)6 + (0.12)6 + (0.12)6 

+ (0.l2)7 + (0.12)7 + (0.12)7/(0.92)8 + (0.12)7] 

= 2.04 (4.37) 

Similarly for B12, B2,, B22, and the centres are 

B2I = 6.20 B22 = 3.00 (4.38) 

and we can proceed to calculate new membership functions for each object 
about these centres. 

The squared Euclidean distance between object A and the centre of Cluster 
1 is 

= (1 - 2.04)2 + (1 - 3.00)2 

= 5.08 (4.39) 

and to Cluster 2, dAB(2) = 31.04. The new membership functions for object A, 
from Equation 4.36, are therefore, 

= 0.86 
1/5.08 

('15.08) + ('13 1.04) 
p l A  = 

and 

'131.04 = 0.14 
112A = 

('15.08) ('13 1.04) 

(4.40) 

(4.41) 

The sum ( p I A  + p Z A )  is unity, which satisfies Equation 4.34, and the 
membership functions for the other objects can be calculated in a similar 
manner. The process is repeated and after five iterations the total change in the 
squared pki values is less than lo-' and the membership functions are 
considered stable, Table 4.1 1. This result, Figure 4.17, accurately reflects the 
symmetric distribution of the data. 

The same algorithm that provides the membership functions for the test data 
can be used to generate values for interpolated and extrapolated data. Going 
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Table 4.11 Final membership function, p k i ,  for  15 objects assuming 
two clusters 

0.86 
0.97 
0.86 
0.94 
0.99 
0.94 
0.88 
0.05 

0.14 
0.03 
0.14 
0.06 
0.0 1 
0.06 
0.12 
0.50 

I 0.12 0.88 
J 0.06 0.94 
K 0.0 1 0.99 
L 0.06 0.94 
M 0.14 0.86 
N 0.03 0.97 
0 0.14 0.86 

one stage further, we can combine ,uli and 1.12~ to provide the complete 
membership surface, according to the rule 

PI  = m a x ( ~ ~ , i ,  ~ 2 , i )  (4.42) 

This result is illustrated in Figure 18. 
Fuzzy clustering can be applied to the test data examined previously, from 

Table 4.7, and the results obtained when two, three, and four clusters are 
initially specified are provided in Table 4.12. As with using the K-means 
algorithm, although various parameters have been proposed to select the best 
number of clusters, no single criterion is universally accepted. Although the 

C (0.86) O(0.14) 

F (0.94) L (0.06) 

B E G  H 1  K N  
(0.97) (0.99) (0.88) (0.50) (0.12) (0.01) (0.03) 

D (0.94) J (0.06) 

A(0.86) M (0.14) 

I I 1 I 1 I I I 

0 1 2 3 4 5 6 7 8  
X I  

Figure 4.17 Results oj' appyling the fuzzy k-means clustering algorithm to the data from 
Table 4.9. Values in parenthesis indicate the membership, function for  each 
object relative to group A 



Pattern Recognition I: Unsupervised Analysis 127 

1 .o 

0.8 

0.6 

0.4 

0.2 

0.0 

x l  

Figure 4.18 Two cluster sutjace plot of data ,from Table 4.9 using the .fuzzy clustering 
algorithm 

results of fuzzy clustering may appear appealing, we are still left with the need 
to make some decision as to which cluster an object belongs. This may be 
achieved by specifying some threshold membership value, a, to identify the 
core of the cluster. Thus, if say a = 0.5, then from Figure 4.17 objects A, B, C, 
D, E, F, G belong to Cluster 1, I,  J, IS, L, M, N, 0 can be assigned to Cluster 2, 
and object H is an outlier from the two clusters. 

Cluster analysis is justifiably a popular and common technique for 
exploratory data analysis. Most commercial multivariate statistical software 
packages offer several algorithms, along with a wide range of graphical display 
facilities to aid the user in identifying patterns in data. Having indicated that 

Table 4.12 Membership .function values,for the objects jrom Table 4.7 assuming 
two, three, and,four cluster in the data 

Object Two clusters Three clusters Four clusters 

PI/  P21 PI1 P21 P %  PI1 P2/ 1131 

A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 

0.09 0.99 0.06 0.06 0.88 0.03 0.91 0.03 0.03 
0.83 0.17 0.87 0.08 0.05 0.83 0.05 0.09 0.02 
0.89 0.1 1 1.0 0.0 0.0 1.00 0.0 0.0 0.0 
0.89 0.11 0.90 0.07 0.03 0.89 0.02 0.0 0.01 
0.04 0.96 0.03 0.03 0.94 0.02 0.90 0.02 0.05 
0.07 0.93 0.136 0.07 0.87 0.05 0.84 0.05 0.05 
0.01 0.99 0.01 0.02 0.97 0.03 0.82 0.04 0.11 
0.99 0.01 0.37 0.58 0.05 0.26 0.04 0.67 0.03 
0.89 0.11 0.01 0.98 0.01 0.02 0.01 0.96 0.01 
0.94 0.06 0.08 0.90 0.02 0.03 0.01 0.94 0.01 
0.79 0.21 0.04 0.94 0.02 0.05 0.03 0.86 0.05 
0.27 0.83 0.14 0.33 0.53 0.0 0.0 0.0 1.00 
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some pattern and structure may be present in our data, it is often necessary to 
examine the relative importance of the variables and determine how the 
clusters may be defined and separated. This is the primary function of 
supervised pattern recognition and is examined in Chapter 5. 
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CHAPTER 5 

Pattern Recognition II: 
Super vised Learning 

1 Introduction 
Generally, the term pattern recognition tends to refer to the ability to assign 
an object to one of several possible categories, according to the values of some 
measured parameters. In statistics and chemometrics, however, the term is often 
used in two specific areas. In Chapter 4, unsupervised pattern recognition, or 
cluster analysis, was introduced as an exploratory method for data analysis. 
Given a collection of objects, each of which is described by a set of measures 
defining its pattern vector, cluster analysis seeks to provide evidence of natural 
groupings or clusters of the objects to allow the presence of patterns in the data 
to be identified. The number of clusters, their populations, and their interpre- 
tation are some what subjectively assigned and are not known before the analysis 
is conducted. Supervised pattern recognition, the subject of this chapter, is very 
(different, and is often referred to in the literature as clussijication or discriminant 
analysis. With supervised pattern recognition, the number of parent groups is 
known in advance and representative samples of each group are available. With 
this information, the problem facing the analyst is to assign an unclassified object 
to one of the parent groups. A simple example will serve to make this distinction 
between unsupervised and supervised pattern recognition clearer. 

Suppose we have determined the elemental composition of a large number of 
mineral samples, and wish to know whether these samples can be organized 
into groups according to similarity of composition. As demonstrated in 
Chapter 4, cluster analysis can be applied and a wide variety of methods are 
available to explore possible structures and similarities in the analytical data. 
The result of cluster analysis may be that the samples can be clearly 
distinguished, by some combination of analyte concentrations, into two 
groups, and we may wish to use this information to identify and categorize 
future samples as belonging to one of the two groups. This latter process is 
classiJication, and the means of deriving the classification rules from previously 
classified samples is referred to as discrimination. It is a pre-requisite for 
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undertaking this supervised pattern recognition that a suitable collection of 
pre-assigned objects, the training set, is available to determine the discrimina- 
ting rule or discriminant .function.‘-3 

The precise nature and form of the classifying function used in a pattern 
recognition exercise is largely dependent on the analytical data. If the parent 
population distribution of each group is known to follow the normal curve 
then parametric methods such as statistical discriminant analysis can be usefully 
employed. Discriminant analysis is one of the most powerful and commonly 
used pattern recognition techniques and algorithms are generally offered with 
all commercial statistical software packages. If, however, the distribution of the 
data is unknown, or known not to be normal, then non-parametric methods 
come to the fore. One of the most widely used non-parametric algorithms is 
that of K-nearest ne ighb~urs .~  Finally, in recent years, considerable interest has 
been shown in the use of artificial neural networks for supervised pattern 
recognition and many examples have been reported in the analytical chemistry 
l i t e ra t~re .~  In this chapter each of these techniques is examined along with its 
application to analytical data. 

2 Discriminant Functions 
The most popular and widely used parametric method for pattern recognition 
is discriminant analysis. The background to the development and use of this 
technique will be illustrated using a simple bivariate example. 

In monitoring a chemical process it was found that the quality of the final 
product can be assessed from spectral data using a simple two-wavelength 
photometer. Table 5.1 shows absorbance data recorded at these two 
wavelengths (400 and 560 nm) from samples of ‘good’ and ‘bad’ products, 

Table 5.1 Absorbance measurements on two classes of’ material at 400 and 
560 nm 

Good material (Group A )  Bad material (Group B )  

Sample 400 nm 560 nm Sample 400 nm 560 nm 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
I 1  

Mean 
Y 

0.40 
0.45 
0.50 
0.50 
0.55 
0.60 
0.60 
0.60 
0.65 
0.70 
0.70 

0.568 
0.098 

0.60 
0.45 
0.60 
0.70 
0.65 
0.50 
0.60 
0.70 
0.80 
0.60 
0.80 

0.636 
0.109 

12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

0.20 
0.20 
0.20 
0.25 
0.25 
0.30 
0.35 
0.40 
0.40 
0.50 

0.305 
0.104 

0.50 
0.40 
0.30 
0.40 
0.25 
0.30 
0.35 
0.30 
0.20 
0.10 

0.310 
0.1 12 
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labelled Groups A and B respectively. On the basis of the data presented, 
we wish to derive a rule to predict which group future samples can be assigned 
to, using the two-wavelength measures. 

Examining the analytical data, the first step is to determine their descriptive 
statistics, i.e. the mean and standard deviation for each variable in Groups A 
and B. It is evident from Table 5.1 that at both wavelengths Group A exhibits 
higher mean absorbance than samples from Group B. In addition, the standard 
deviation of data from each variable in both groups is similar. If we consider 
just one variable, the absorbance at 400 nm, then a first attempt at 
classification would assign the samples to groups according to this absorbance 
value. Figure 5.1 illustrates the predicted effect of such a scheme. The mean 
values and distribution of the sample absorbances at 400 nm are taken from 
Table 5.1, and it is clear that the use of this single variable alone is insufficient 
to separate the two groups. With the single variable, however, a decision or 
discriminant function can be proposed. 

For equal variances of absorbance data in Groups A and B, the discriminant 
rule is stated as: 

Assign sample to Group A if 

Absorbance4oo nm >(,FA + .FB)/2 

and assign to Group B if 

Absorbance4oo nm < (XA + XB) /2  

i.e. a sample is assigned to the group with the nearest mean value. 
Having obtained such a classification rule, it is necessary to test the rule and 

indicate how good it is. There are several testing methods in common use. 
Procedures include the use of a set of independent samples or objects not 
included in the training set, the use of the training set itself, and the leave-one 
out method. The use of a new, independent set of samples not used in deriving 

5 1  
4 

$ 3  

% 2  
f 

1 

0 
0.0 0.2 0.4 0.6 0.8 1.0 

Figure 5.1 Distribution of  samples .from Table 5.1 according to absorbance measure- 
ments at 400 nm. 
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the classification rule may appear the obvious best choice, but it is often not 
practical. Given a finite size of a data set, such as in Table 5.1, it would be 
necessary to split the data into two sets, one for training and one for validation. 
The problem is deciding which objects should be in which set, and deciding on 
the size of the sets. Obviously, the more samples used to train and develop the 
classification rule, the more robust and better the rule is likely to be. Similarly, 
however, the larger the validation set, the more confidence we can have in the 
rule’s ability to discriminate objects correctly. 

The most common way around this problem is to use all the available data 
for training the classifier and subsequently test each object as if it were an 
unknown, unclassified sample. The inherent problem with using the training set 
as the validation set is that the total classification error, the error rate, will be 
biased low. This is not surprising as the classification rule would have been 
developed using this same data. New, independent samples may lie outside the 
boundaries defined by the training set and we do not know how the rule will 
behave in such cases. This bias decreases as the number of samples analysed 
increases. For large data sets, say when the number of objects exceeds 10 times 
the number of variables, the measured apparent error can be considered a good 
approximation of the true error. 

If the independent sample set method is considered to be too wasteful of 
data, which may be expensive to obtain, and the use of the training set for 
validation is considered insufficiently rigorous, then the leave-one-out method 
can be employed. By this method all samples but one are used to derive the 
classification rule, and the sample left out is used to test the rule. The process is 
repeated with each sample in turn being omitted from the training set and used 
for validation. The major disadvantage of this method is that there are as many 
rules derived as there are samples in the data set and this can be 
computationally demanding. In addition, the error rate obtained refers to 
the average performance of all the classifiers and not to any particular rule that 
may subsequently be applied to new, unknown samples. 

The results of classification techniques examined in this chapter will be 
assessed by their apparent error rates using all available data for both training 
and validation, in line with most commercial software. 

The rules expressed by Equations 5.1 and 5.2 ensure that the probability of 
error in misclassifying samples is equal for both groups. In those cases for 
which the absorbance lies on the discriminant line, samples are assigned 
randomly to Group A or B. Applying this classification rule to our data results 
in a total error rate of 9%; two samples are misclassified. To detail how the 
classifier makes errors, the results can be displayed in the form of a contingency 
table, referred to as a confusion matrix, of known parent group against 
classified group, Table 5.2. A similar result is obtained if the single variable of 
absorbance at 560 nm is considered alone; three samples are misclassifed. 

In Figure 5.2, the distribution of each variable for each group is plotted 
along with a bivariate scatter plot of the data and it is clear that the two groups 
form distinct clusters. However, it is equally evident that it is necessary for both 
variables to be considered to achieve a clear separation. The problem facing us 
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Table 5.2 Use of the contingency table, or confusion matrix, of 
classijkation results (a). Eij is the number of objects 
from group i classijied as j ,  Mi, is the number of 
objects actually in group i, and Mi,. is the number of 
class$ed in group i. Results using the single absorbance 
at 400 ( b )  , and 560 nm ( c )  

(4 Actual membership 

A B 
Predicted A EAA EBA M A C  

membership B EAB EBB MBC 
MA;, MB, 

(b) Actual membership 

A B 
Predicted A 10 1 

1 1  10 
membership B 1 9 

(4 Actual membership 

11  
10 

A B 
Predicted A 9 1 10 
membership B 2 9 1 1  

1 1  10 

0.8 

0.6 

C x 
d 0.4 8 8  

0 .  

GroupA 
0 0 . .  

0 

0.0 0.2 0.4 0.6 0.8 1.0 

A,, 

Figure 5.2 Data from Table 5.1 as a scatter plot and, along each axis, the univariate 
distributions. Two distinct groups .are evident .from the data 
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is to determine the best line between the data clusters, the discriminant function, 
and this can be achieved by consideration of probability and Buyes’ theorem. 

Bayes’ Theorem 

Bayes’ rule simply states that ‘a sample or object should be assigned to that group 
having the highest conditional probability’ and application of this rule to 
parametric classification schemes provides optimum discriminating capability. 
An explanation of the term ‘conditional probability’ is perhaps in order, with 
reference to a simple example. In spinning a fair coin, the chance of tossing the 
coin and getting heads is 50%, i.e. 

Similarly, the probability of tossing two coins resulting in both showing 
heads is given by 

P(both heads) = P(heads) ‘ P(heads) 

P(both heads) = o.25 
If, however, one coin is already showing heads, then the conditional 

probability of spinning the other coin and both showing heads is now 

P(both headslone head) = 0*5 (5.5) 
Which is to be read as ‘the probability of both coins being heads given that 

one coin is heads is 0.5’ i.e. the probability of an event is modified, for better or 
worse, by prior knowledge. 

Of course, if one coin displays tails then, 

P(both headslone tail) = O o 0  

Returning to our analytical problem, of the 21 samples analysed and listed in 
Table 5. I ,  over 50% (1 1 of the 21) are known to belong to Group A. Thus, in 
the absence of any analytical data it would seem reasonable to assign any 
unknown sample to Group A as this has the higher probability of occurrence. 
With the analytical data presented in Table 5.1, however, the probability of any 
sample belonging to one of the groups will be modified according to its 
absorbance values at 400 and 560 nm. The absorbance values consist of the 
pattern vectors, denoted by x, where for each sample x1 is the vector of 
absorbances at 400 nm and x2 is the vector of absorbances at 560 nm. 

Expressed mathematically, therefore, and applying Bayes’ rule, a sample is 
assigned to Group A, G(A), on the condition that 

P(G(A)l.r) > P(G(B)ls) (5.7) 
Unfortunately, to determine these conditional probability values, 

i.e. confirm that a particular group is characterized by a specific set of vari- 
ate values, involves the analysis of all potential samples in the parent popula- 
tion. This is obviously unrealistic in practice, and it is necessary to apply 
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Bayes’ theorem which provides an indirect means of estimating the conditional 
probability, P(G(A)ls). 

According to Bayes’ theorem, 

( 5 . 8 )  

P(G(A))  and P(G(B)) are the a priori probabilities, i.e. the probabilities o f  a 
sample belonging to A, or B, in the absence of having any analytical data. 

P ( x l ~ ( A ) )  is a conditional probability expressing the chance of a vector 
pattern x arising from a member of Group A, and this can be estimated by 
sampling the population of Group A. 

and substitution of Equation 
5.8 into Equation 5.7 gives: 

P(-~IG(A))P(G(A)) 
P(.YIG(A))P(G(A)) + P(.~IG(B))P(G(B)) 

P(G(A)I.~) = 

A similar equation can be arranged for 

Assign sample pattern to Group A if 

The denominator term of Equation 5.8 is common to P(G(A))  and P(G(B))  and 
hence cancels from each side of the inequality. 

Although P(.TIG(A)) can be estimated by analysing large numbers of samples, 
similarly for P ( . % I G ( ~ ) ) ,  the procedure is still time consuming and requires large 
numbers of analyses. Fortunately, if the variables contributing to the vector 
pattern are assumed to possess a multivariate normal distribution, then these 
conditional probability values can be calculated from 

which describes the multidimensional normal distribution for two variables 
(Chapter 1). P(.viG(A)) can, therefore, be estimated from the vector of Group A 
rnean values, PA, and the group covariance matrix, C O V ~ .  

Substituting Equation 5.10, and the equivalent for P(slG(B)), in Equation 5.9, 
taking logarithms and rearranging leads to the rule: 

Assign sample pattern and object to Group A if 

In P(G(A)) - 0.5 In(lCovA1) - 0 . 5 ( ~  - p A ) T C ~ ~ , ’ ( ~  - PA) > 

In P(G~B), - 0.5 ln(JCoVB1) - 0 . 5 ( ~  - p B ) T C o ~ i ’ ( ~  - pB) (5.1 1)  

Calculation of the left-hand side of this equation results in a value for each 
object which is a function of x, the pattern vector, and which is referred to as 
the discriminant score. 

The discriminant function, d A ( X )  is defined by 

dA(x) = 0.5 ln((CovA1) + 0 . 5 ( ~  - P A ) ~ C O V A ( X  - PA)  (5.12) 

and substituting into Equation 5.1 1, the classification rule becomes: 
Assign to Group A if, 

In P(G(A))  - l lA(-x)  > In P(G(B)) - ~ B ( - x )  (5.13) 
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If the prior probabilities can be assumed to be equal, i.e. P(G(A)) = P(G(B)), 

then the dividing line between Groups A and B is given by 

and Equation 5.13 becomes: 
Assign object to Group A if 

or 

The second term in the right-hand side of Equation 5.12 defining the 
discriminant function is the quadratic form of a matrix expansion. Its relevance 
to our discussions here can be seen with reference to Figure 5.3 which 
illustrates the division of the sample space of two groups using a simple 
quadratic function. This Bayes’ classifier is able to separate groups with very 
differently shaped distributions, i.e. with differing covariance matrices, and it is 
commonly referred to as the quadratic discriminant function. 

The use of  Equation 5.15 can be illustrated by application to the data from 
Table 5.1. From Table 5.1 the vector of variable means is 

x2 

- 

0.568 0.305 
” = [ O.,,,]: ” = [ 0.310] 

1 quadratic function 

(5.16) 

~ 

x l  

Figure 5.3 Contour plots of two groups of bivariate normal data and the quadratic 
division of the sample space 
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The variance-covariance matrix for each group can be determined by mean 
centring the data and pre-multiplying this modified matrix by its transpose, 
or calculated according to Equation 1.24 of Chapter 1. Thus, 

and their inverse matrices, 

COVA' =[ 136 +O], covgl = [ 223 157 ] 
-60 109 157 190 

I (5.18) 

The determinant of each matrix is 

ICovAl = 8.8 x ICOV,~ = 5.7 x (5.19) 

The discriminant functions, dA(x) and dB(x), for each sample in the training 

Thus for the first sample, 
set of Table 5.1 can now be calculated. 

= [ 0.400 ] [ -0.1681 [ 0.0951 

0.290 
(x - PA) = 

0.600 -0.036 (x - PB) = 

dA(x) = 0.51n(8.8 x + 0.5[-0.168 -0.036].[ 136 -60]. 
-60 109 

= -3.03 
1 -0.168 

-0.036 

[ 223 157].[ 0.0951 

157 190 0.290 
dB(x) = 0.5 ln(5.7 x + 0.5[ 0.095 0.2901. 

= 8.44 (5.20) 

The calculated value for dA(x) is less than that of dB(x) so this object is assigned 
to Group A. The calculation can be repeated for each sample in the training set of 
Table 5.1, and the results are provided in Table 5.3. All 21 samples have been 
classified correctly as to their parent group. The quadratic discriminating 
function between the two groups can be derived from Equation 5.14 by solving 
the quadratic equations for x. The result is illustrated in Figure 5.4 and the 
success of this line in classifying the training set is apparent. 

Linear Discriminant Function 

A further simplification can be made to the Bayes' classifier if the covariance 
matrices for both groups are known, or assumed, to be similar. This condition 
implies that the correlations between variables are independent of the group to 
which the objects belong. Extreme examples are illustrated in Figure 5.5. In 
such cases the groups are linearly separable and a linear discriminant function 
can be evaluated. 

With the assumption of equal covariance matrices, the rule defined by 
Equation 5.1 1 becomes: 



138 Chapter 5 

Table 5.3 Discriminant scores using the quadratic discriminant function as 
classiJier (a), and the resulting confusion matrix (b) 

1.0 - 

0.8 - 

0.6 - 
s 

<- 
0.4 - 

0.2 - 

Sample dA dB Assigned Sample dA 43 Assigned 
group group 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
I 1  

-3.03 
-3.13 
-4.43 
-3.87 
-4.62 
-3.32 
-4.46 
-4.50 
-3.55 
-3.12 
-3.3 I 

8.44 A 
2.51 A 

16.23 A 
25.76 A 
25.88 A 
17.05 A 
26.25 A 
37.35 A 
57.77 A 
38.50 A 
65.74 A 

Actual group 

12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

A B 
Predic ted A 1 1  0 1 1  
membership B 0 10 10 

I 1  10 

2.60 
2.43 
3.36 
0.80 
3.04 
I .03 

0.06 
3.27 
9.17 

-0.68 

-3.34 
-4.38 
-3.48 
-4.56 
-3.69 
-4.87 
-4.23 
-4.02 
-4.38 
-2.90 

B 
B 
B 
B 
B 
B 
B 
B 
B 
B 

Assign to Group A, if 

where Cov = CovA = Covs. 

e e  

e e  

e e m e  . .. . . .  . 
. 

m . 
0.0 I 

0.0 0.2 0.4 0.6 0.8 1.0 

A,,,, 

(5.21) 

Figure 5.4 Scatter plot of the data f rom Table 5.1 and the calculated quadratic 
disc r im inan t .function 
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x2 

xl 

x2 

I 

I 
XI 

Figure 5.5 Contour plots of'tltw groups cfbivariate data with each group having identical 
var ian ce-co variance ma tr ices. Such groups are linearly sepa ra h le 

Once again, if the prior probabilities are equal, P ( G ( A ) )  = P(G(B)), the 
classification rule is simplified: 
Assign to Group A, if 

which by expanding out the matrix operations simplifies to: 
Assign to Group A if 
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Since pATCov-' and pATCov-'pA are constants (they contain no x terms), 
and similarly pBT Cov-' and pBT Cov-'pB, then we can define 

and 

(5.25) 

The classification rule is now: 
Assign an object to Group A if 

f A ( x )  > fB<x> (5.26) 

Equations 5.25 are linear with respect to x and this classification 
technique is referred to as linear discriminant analysis, with the discriminant 
function obtained by least-squares analysis, analogous to multiple regression 
analysis. 

Turning to our spectroscopic data of Table 5.1, we can evaluate the 
performance of this linear discriminant analyser. 

For the whole set of data and combining all samples from both groups, 

[ 0.028 0.021 1, cov-~ = [ 60.33 -32.14 1 
0.021 0.040 -32.14 

cov = 
42.36 1 

and 

60.33 -32.14][ 0.568 

-32.14 42.36 0.636 

= [ 13.83 

CAO = 0.5[ 0.568 0.6361 

60.33 -32.14 

-32.14 42.36 

60.33 -32.14][ 0.305 

-32.14 42.36 0.310 

CAI = [ 0.568 0.6361 

= [ 8.44 

CBO = 0.5[ 0.305 0.3101 

1 60.33 -32.14 

-32.14 42.36 
CB1 = C0.305 0.3101 

Substituting into Equations 5.25, for the first sample, 

= 0.689 1 
8.68 ] 

(5.27) 

= 1.803 1 
5.33 ] 

f ~ ( x )  = [ 13.83 8.68 J [ g::] - 6.689 = 4.052 

f ~ ( x >  = [ 8.44 3.33 ] [ i:)] - 1.803 = 3.57 

(5.28) 
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Table 5.4 Discriminant scores using the linear discriminant function as classifier 
(a), and the resulting confusion matrix (b) 

Sample f A  f B  Assigned Sample fA f B  Assigned 
group group 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

4.05 3.57 
3.44 3.49 
5.43 4.41 
6.30 4.75 
6.54 5.00 
5.95 4.92 
6.82 5.26 
7.69 5.59 
9.25 6.34 
8.20 6.10 
9.94 6.77 

A 
B 
A 
A 
A 
A 
A 
A 
A 
A 
A 

12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

Acutal membership 

0.42 
-0.45 
- 1.32 

0.24 
- 1.06 

0.06 
1.19 
1.44 
0.57 
1.09 

Predicted 
membership 

A 
B 

A B 
10 0 
1 10 
11 10 

10 
11 

1.55 B 
1.22 B 
0.88 B 
1.64 B 
1.14 B 
1.73 B 
2.31 B 
2.57 B 
2.24 B 
2.75 B 

Since the value forfA(x) exceeds that forfB(x), from Equation 5.26 the first 
sample is assigned to Group A. The remaining samples can be analysed in a 
similar manner and the results are shown in Table 5.4. One sample, from 
Group A, is misclassified. The decision line can be found by solving for x when 
fA(x) = fB(x). This line is shown in Figure 5.6 and the misclassified sample can 
be clearly identified. 

1.0 1 

0.8 

0.6 
3 
4 

0.4 

0.2 

0.0 4 1 

0.0 0.2 0.4 0.6 0.8 1.0 

'44, 

Figure 5.6 Scatter plot of the data f rom Table 5.1 and the calculated linear discriminant 
function 
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As this linear classifier has performed less well than the quadratic classifier, it 
is worth examining further the underlying assumptions that are made in 
applying the linear model. The major assumption made is that the two groups 
of data arise from normal parent populations having similar covariance 
matrices. Visual examination of Figure 5.2 indicates that this assumption may 
not be valid for these absorbance data. The data from samples forming Group 
A display an apparent positive correlation (r=0.54) between x1 and x2, 

whereas there is negative correlation ( r  = -0.85) between the absorbance 
values at the two wavelengths for those samples in Group B. For a more 
quantitative measure and assessment of the similarity of the two variance- 
covariance matrices we require some multivariate version of the simple F-test. 
Such a test may be derived as follows.6 

For k groups of data characterized by j =  1 . . . m variables, we may compute 
k variance-covariance matrices, and for two groups A and B we wish to test the 
hypothesis 

against the alternative, 

Hi .  COVA # COVs (5.29) 

If the data arise from a single parent population, then a pooled variance- 
covariance matrix may be calculated from 

(n j -  1)COVj 
covp = (i i= 1 Hi) - k  

(5.30) 

where ni is the number of objects or samples in group i. 
From Equation 5.30 a statistic, M ,  can be determined, 

which expresses the difference between the logarithm of the determinant of 
the pooled variance-covariance matrix and the average of the logarithms of the 
determinants of the group variance-covariance matrices. The more similar the 
group matrices, the smaller the value of M .  

Finally a test statistic based on the x2 distribution is generated from 

x 2  = M.C (5.32) 
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where 

143 

(5.33) 

For small values of k and rn, Davis6 reports that the x 2  approximation is 
good, and for our two-group, bivariate sample data the calculation of the x 2  
value is trivial. 

’ ) = 0.885 (5.34) 
(2)(2)’ -t (3)(2) - 1 

C = l -  

and 

A4 = (21 - 2)ln ICov,l- lOln ICovAl + 91n lCovBl = 42.1 (5.35) 

Thus, 

x2 = 0.885 x 42.1 = 37.3 (5.36) 

with the degrees of freedom given by 

v =  (1/2)(k- I ) (  rn)(rn + I )  = 3 (5.37) 

At a 5% level of significance, the critical value for x2 from tables is 7.8. Our 
value of 37.3 far exceeds this critical value, and the null hypothesis is rejected. 
We may assume, therefore, that the two groups of samples are unlikely to have 
similar parent populations and, hence, similar variance4ovariance matrices. It 
is not surprising, therefore, that the linear discriminant analysis model was 
inferior to the quadratic scheme in classification. 

The linear discriminant function is a commonly used classification technique 
and it is available with all popular statistical software packages. It should be 
borne in mind, however, that it is only a simplification of the Bayes’ classifier 
and assumes that the variates are obtained from a multivariate normal 
distribution and that the groups have similar covariance matrices. If these 
conditions do not hold then the linear discriminant function should be used 
with care and the results obtained subject to careful analysis. 

Linear discriminant analysis is closely related to multiple regression analysis. 
Whereas in multiple regression, the dependent variable is assumed to be a 
continuous function of the independent variables, in discriminant analysis the 
dependent variable, e.g. Group A or B, is nominal and discrete. Given this 
similarity, it is not surprising that the selection of appropriate variables to 
perform a discriminant analysis should follow a similar scheme to that 
employed in multiple regression (Chapter 6). 

As with multiple regression analysis, the most commonly used selection 
procedures involve stepwise methods with the F-test being applied at each 
stage to provide a measure of the value of the variable to be added, or 



144 Chapter 5 

removed, in the discriminant function. The procedure is discussed in detail in 
Chapter 6. 

Finally, it is worth noting that linear combinations of the original variables 
may provide better and more effective classification rules than the original 
variables themselves. Principal components are often employed in pattern 
recognition and are always worth examining. However, the interpretation of 
the classification rule in terms of relative importance of variables will generally 
be more confusing. 

3 Nearest Neighbours 
The discriminant analysis techniques discussed above rely for their effective use 
on a priori knowledge of the underlying parent distribution function of the 
variates. In analytical chemistry, the assumption of multivariate normal 
distribution may not be valid. A wide variety of techniques for pattern 
recognition not requiring any assumption regarding the distribution of the data 
have been proposed and employed in analytical spectroscopy. These methods 
are referred to as non-parametric methods. Most of these schemes are based on 
attempts to estimate Plxlc,)  and include histogram techniques, kernel estimates 
and expansion methods. One of the most common techniques is that of 
K-nearest neighbours. 

The basic idea underlying nearest-neighbour methods is conceptually very 
simple, and in practice it is mathematically simple to implement. The general 
method is based on applying the so-called K-nearest neighbour classification 
rule, usually referred to as K-NN. The distance between the pattern vector of 
an unclassified sample and every classified sample from the training set is 
calculated, and the majority of smallest distances, i.e. the nearest neighbours, 
determine to which group the unknown is to be assigned. The most common 
distance metric used is the Euclidean distance between two pattern vectors. 
The use of the Mahalanobis distance would take into account inherent 
correlations in the data. 

For objects 1 and 2 characterized by multivariate pattern vectors xl and x2 
defined by 

(5.38) 

where m is the number of variables, the Euclidean distance between objects 1 
and 2 is given by 

12 
1 

(5.39) 

Application of Equation 5.39 to the K-NN rule serves to define a sphere, or 
circle for bivariate data, about the unclassified sample point in space, of radius 
rK which is the distance to the K t h  nearest neighbour, containing K nearest 
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Figure 5.7 Radius, r ,  of the circle about an unclassified object containing three nearest 
neighbours, two from group A and one from group B. The unknown sample is 
assigned to group A 

neighbours, Figure 5.7. It is the volume of this sphere which is used as an 
estimate of P(,lc/) 

For a total training set of N objects consisting of ni samples known to belong 
to each group i, the procedure adopted is to determine the K t h  nearest 
neighbour to the unclassified object defined by its pattern vector x, ignoring 
,group membership. From this, the conditional probability of the pattern vector 
arising from the group i, P(xlG,I, is given by 

(5.40) 

where k ,  is the number of nearest neighbours in group i and V , ,  is the volume 
of space which contains the K nearest neighbours. 

Using Equation 5.40 in the Bayes’ rule gives: 
Assign to group i if 

(5.41) 

Since the volume term is constant to both sides of the equation, the rule 
simplifies to: 
Assign to group i if 

(5.42) 

If the number of objects in each training set, ni, is proportional to the wncon- 
ditional probability of occurrence of the groups, P(G,iI ,  then Equation 5.42 
simplifies further to: 



146 

Assign to group i if 

k;  > kj 

Chapter 5 

(5.43) 

This is a common form of the nearest-neighbour classification rule and 
assigns\a new, unclassified object to that group that contains the majority of its 
nearest neighbours. 

The choice of value for k is somewhat empirical and, for overlapping classes, 
k=3  or 5 have been proposed to provide good classification. In general, 
however, k =  1 is the most widely used case and is referred to as the 1-NN 
method or, simply, the nearest-neighbour method. 

For our bivariate, spectrophotometric data the inter-sample distance matrix, 
using the Euclidean metric, is given in Table 5.5. For each sample the nearest 
neighbour is highlighted. The confusion matrix summarizes the results, and 
once again, this time using the 1-NN rule, a single sample from Group A is 
misclassified. 

As well as the Euclidean distance, other metrics have been proposed and 
employed to measure similarities of pattern vectors between objects. One 
method used for comparing and classifying spectroscopic data is the Hamming 
distance. For two pattern vectors x1 and x2 defined by Equation 5.38, the 
Hamming distance, H,  is simply the absolute difference between each element 
of one vector and the corresponding component of the other. 

(5.44) 

When, say, infrared or mass spectra can be reduced to binary strings 
indicating the presence or absence of peaks or other features, the Hamming 
distance metric is simple to implement. In such cases it provides a value of 
differing bits in the binary pattern and is equivalent to performing the 
exclusive-OR function between the vectors. The Hamming distance is a 
popular choice in spectral database ‘look-up and compare’ algorithms for 
identifying unknown spectra. Figure 5.8 provides a simple example of applying 
the method. 

Despite its relative simplicity, the nearest-neighbour classification method 
often provides excellent results and has been widely used in analytical science. 
Another advantage of the K-NN technique is that it is a multi-category 
method. I t  does not require repeated application to assign some unknown 
sample to a class, as is often the case with binary classifiers. Its major 
disadvantage i s  that it is computationally demanding. For each classification 
decision, the distance between the sample pattern vector and every object in the 
training set for all groups must be calculated and compared. Where very large 
training sets are used, however, each distinct class or group can be represented 
by a few representative patterns to provide an initial first-guess classification 
before every object in the best classes is examined. 



T
ab

le
 5

.5
 E

uc
lid

ea
n 

di
sta

nc
e 

m
at

ri
x f

or
 th

e 
m

at
er

ia
ls 

ac
co

rd
in

g 
to

 th
e 

tw
o 

w
av

el
en

gt
hs

 m
ea

su
re

d 
(a

),
 an

d 
th

e 
re

su
lti

ng
 c

on
fu

sio
n 

"r
 E
 

3
 a 

I 
2 

3 
4 

5 
6 

7 
8 

9 
I0
 

II
 

12
 

13
 

14
 

I5
 

I6
 

I7
 

18
 

I9
 

20
 

h
 

2 

m
at

ri
x 
af
te
r 

ap
pl

yi
ng

 t
he

 k
-N

N
 c

la
ss

iJi
ca

tio
n 

al
go

rit
hm

 

(4
 

0 
16

 
10

 
16

 
0 

16
 

10
 

16
 

0 
14

 
26

 
10

 
16

 
22

 
7 

22
 

16
 

14
 

20
 

21
 

10
 

22
 

29
 

14
 

32
 

40
 

25
 

30
 

29
 

20
 

36
 

43
 

28
 

22
 

26
 

32
 

28
 

26
 

36
 

36
 

29
 

42
 

25
 

21
 

32
 

38
 

28
 

43
 

32
 

21
 

36
 

26
 

14
 

29
 

30
 

15
 

32
 

40
 

26
 

41
 

51
 

35
 

50
 

A
ss

ig
ne

d 
gr

ou
p 

A
 

B
A

 

Pr
ed

ic
te

d 
m

em
be

rs
hi

p 

14
 

26
 

10
 0 7 22
 

14
 

10
 

18
 

22
 

22
 

36
 

42
 

50
 

39
 

51
 

45
 

38
 

41
 

51
 

60
 

A
 

16
 

22
 7 7 0 16
 7 7 18
 

16
 

21
 

38
 

43
 

50
 

39
 

50
 

43
 

36
 

38
 

47
 

55
 

A
 

A
 B 

22
 

16
 

14
 

22
 

16
 

0 10
 

20
 

30
 

14
 

32
 

40
 

41
 

45
 

36
 

43
 

36
 

29
 

28
 

36
 

41
 

A
 

20
 

21
 

10
 

14
 7 10
 0 10
 

21
 

10
 

22
 

41
 

45
 

50
 

40
 

50
 

42
 

35
 

36
 

45
 

51
 

A
 

22
 

29
 

14
 

10
 

7 20
 

10
 0 11
 

14
 

14
 

45
 

50
 

57
 

46
 

57
 

50
 

43
 

45
 

54
 

61
 

A
 

32
 

40
 

25
 

18
 

18
 

30
 

21
 

11
 0 21
 5 54
 

60
 

67
 

57
 

68
 

61
 

54
 

56
 

65
 

72
 

A
 

30
 

29
 

20
 

22
 

16
 

14
 

10
 

14
 

21
 0 20
 

51
 

54
 

58
 

49
 

57
 

50
 

43
 

42
 

50
 

54
 

A
 

A
ct

ua
l m

em
be

rs
hi

p 

A
 

10
 1 11
 

B
 0 10
 

10
 

36
 

43
 

28
 

22
 

21
 

32
 

22
 

14
 5 20
 0 58
 

64
 

71
 

60
 

71
 

64
 

57
 

58
 

67
 

73
 

A
 

22
 

26
 

32
 

36
 

38
 

40
 

41
 

45
 

54
 

51
 

58
 0 10
 

20
 

11
 

26
 

22
 

21
 

28
 

36
 

50
 

B
 

28
 

26
 

36
 

42
 

43
 

41
 

45
 

50
 

60
 

54
 

64
 

10
 

0 10
 5 16
 

14
 

16
 

22
 

28
 

42
 

B
 

36
 

29
 

42
 

50
 

50
 

45
 

50
 

57
 

67
 

57
 

71
 

20
 

10
 

0 11
 7 10
 

16
 

20
 

22
 

36
 

B
 

25
 

21
 

32
 

39
 

39
 

36
 

40
 

46
 

57
 

49
 

60
 

11
 

5 11
 0 15
 

11
 

11
 

18
 

25
 

39
 

B
 

38
 

28
 

43
 

51
 

50
 

43
 

50
 

57
 

68
 

57
 

71
 

26
 

16
 

7 15
 

0 7 14
 

16
 

16
 

29
 

B
 

32
 

21
 

36
 

45
 

43
 

36
 

42
 

50
 

61
 

50
 

64
 

22
 

14
 

10
 

11
 7 0 7 10
 

14
 

28
 B
 

26
 

14
 

29
 

38
 

36
 

29
 

35
 

43
 

54
 

43
 

57
 

21
 

16
 

16
 

11
 

14
 

7 0 7 16
 

29
 

B
 

30
 

16
 

32
 

41
 

38
 

28
 

36
 

45
 

56
 

42
 

58
 

28
 

22
 

20
 

18
 

16
 

10
 7 0 10
 

22
 

B
 

5 
40

 
26

 
2. 

51
 

-5
 

47
 

M
 

36
 

54
 
2
 

65
 

3
 

50
 

41
 

%
 

45
 

2 

67
 

$ 
36

 
5

. 
28

 
@

q
 

22
 

25
 

16
 

14
 

16
 

10
 0 14
 

B
 



148 Chapter 5 

Sample 
Binary 
Code 

101 101 1 

0 1 0 1 1 0 1 1  
1 

0 

R1 

1 
10101011 

0 
R2 

1 

100101 10 

0 
R3 

1 
1o001011 

0 
R4 

1 
101001 1 

0 
R5 

1 

11 1010 

0 

XOR 
with sample 

1 1 1 1 m  

11001 101 

1 1 0 1 m  

~1000 

0 1 1 m 1  

Figure 5.8 Binary representation of spectra data ( I  -peak, 0-no peak). The sample has 
smallest number of X O R  bits set with reference spectrum R4, and this, 
therefore, is the best match 

4 The Perceptron 
As an approximation to the Bayes’ rule, the linear discriminant function 
provides the basis for the most common of the statistical classification schemes, 
but there has been much work devoted to the development of simpler linear 
classification rules. One such method, which has featured extensively in 
spectroscopic pattern recognition studies, is the perceptron algorithm. 

The perceptron is a simple linear classifier that requires no assumptions to be 
made regarding the parent distribution of the analytical data. For pattern 
vectors that are linearly separable, a perceptron will find a hyperplane (in two 
dimensions this is a line) that completely separates the groups. The algorithm is 
iterative and starts by placing a line at random in the sample space and 
examining which side of the line each object in the training set falls. If an object 
is on the wrong side of the line then the position of the line is changed to 
attempt to correct the mistake. The next object is examined and the process 
repeats until a line position is found that correctly partitions the sample space 
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input 

I \ w ,  weight 

input 
12 I 

Figure 5.9 Simple perceptron unit. Inputs are weighted and summed and the output is ‘ I ’  
or ‘0’ depending on whether or not it exceeds a defined threshold value 

for all objects. The method makes no claims regarding its ability to classify 
objects not included in the training set, and if the groups in the training set are 
not linearly separable then the algorithm may not settle to a final stable result. 

The perceptron is a learning algorithm and can be considered as a simple 
model of a biological neuron. It is worth examining here not only as a classifier 
in its own right, but also as providing the basic features of modern artificial 
neural networks. 

The operation of a perceptron unit is illustrated schematically in Figure 5.9. 
The function of the unit is to modify its input signals and produce a binary 
output, 1 or 0, dependent on the sum of these inputs. Mathematically, the 
perceptron performs a weighted sum of its inputs, compares this with some 
threshold value and the output is turned on (output=l) if this value is 
exceeded, else it remains off (output = 0). 

For rn inputs, 

m 
I T  total input, I = wixj = w x 

i= 1 

(5.45) 

where x = (XI . . . x,) represents an object’s pattern vector, and w’ = (wl . . . w,) 
is the vector of weights which serve to modify the relative importance of each 
element of x. These weights are varied as the model learns to distinguish 
between the groups assigned in the training set. 

The sum of the inputs, I, is compared with a threshold value, 8, and if I >  B 
a value of 1 is output; otherwise 0 is output, Figure 5.9. Subtracting @from I ,  
i.e. by adding -8as an offset to I ,  and comparing the result with zero achieves 
the comparison. The summation and comparison operations can, therefore, be 
combined by modifying Equation 5.45, 
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m 
T total input, z = wixi = w x  (5.46) 

i= 1 

where now w = (wl . . . wm+ with w m +  being referred to as the unit’s bias, and 

The resulting output, y, is given by 
x = ( x ~  ... xm+1) with X m + l = l -  

wherefH is the Heaviside or step function defined by 

fH(X) = 0, x 0 (5.48) 

The training of the perceptron as a linear classifier then follows the steps: 

(a) randomly assign the initial elements of the weight vector, w, 
(b) present an input pattern vector from the training set, 
(c) calculate the output value according to Equation (47), 
(d) alter the weight vector to discourage incorrect decisions and reduce the 

(e) present the next object’s pattern vector and repeat from step (c). 

This process is repeated until all objects are correctly classified. 
Figure 5.10(a) illustrates a bivariate data set that consists of two groups, 

each of two objects defined by their pattern vectors, including xm+ as 

classification error, 

A l , x  = [0 .2  0.4 1.01 

A2,x = [0.5 0.3 1.0) 
Bl ,x= [0.3 0.7 1.01 
B2,x = [0.8 0.8 1.01 

and we take as our initial weight vector 

W =  [ 1.0 -1.0 0.51 

(5.49) 

(5.50) 

Thus, our initial partition line, Figure 5.10(b), is defined by 

WlXl + w2x2 + w3x3 = 0 

i.e. 

X I  + 0.5 = ~2 (5.51) 

For our first object, Al, the product of x and w is positive and the output is 1, 
which is a correct result. 
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B1 

A2 

B2 
H 

0.0 0.2 0.4 0.6 0.8 1.0 
xl 

(b) 1.0 

0.8 

0.6 
m 

Final line 

I A1 
2nd lini 

/ 
A2 

0 

0 

o.2 1 / 
0.0 I 
0.0 0.2 0.4 0.6 0.8 1.0 

xl 

Figure 5.10 Simple two-group, bivariate data set (a), and iterative discriminant analysis 
using the simple perceptron (b) 

IAl = W X ~  =[ 1 -1 0.51 

=0.2 - 0.4 + 0.5 = 0.3 

and 

For sample A2, the output is also positive and no change in the weight vector 
is required. For sample B1, however, an output of 1 is incorrect; B1 is not in the 
same group as A1 and A2, and we need to modify the weight vector. The 
following weight vector adapting rule is simple to implement7 
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(a) if the result is correct, then w(new) = w(old), 

(c) if y = 1 but should be y = 0, then w(new) = w(o1d) - x 

This perceptron fails on sample B1: the output is 1 but should be 0. 

(b) if y = 0 but should be y = 1, then w(new) = w(o1d) + x (5.53) 

Therefore, from Equation 5.53c, 

w(new) = [ 1.0 -1.0 0.51 - [ 0.3 0.7 1.01 

= C0.7 -1.7 -0.51 (5.54) 

The new partition line is defined by 

0 . 7 ~ 1  - 0.5 = 1 .7~2  

and is illustrated in Figure 5.10(b). 
Sample B2 is now presented to the system; it is correctly classified with a zero 

output as ‘B2 is negative’. We can now return to sample A1 and continue to 
repeat the entire process until all samples are classified correctly. The full set of 
results is summarized in Table 5.6. The final weight vector is w = [0.3- 1.9 1 .O] 
with the partition line being 

0 . 3 ~ 1  + 1.0 = 1 . 9 ~ 2  (5.55) 

Table 5.6 Calculations and results by iteratively applying the perceptron rule to 
the data illustrated in Figure 5.10(b) 

Sample Correct W W ’ X  Calculated Result 

A1 + 1 .o -1.0 0.5 0.30 + YES 
A2 + 0.70 + YES 
B1 - 0.10 + NO 
B2 - 0.7 -1.7 -0.5 -1.30 - YES 
A1 + -1.04 - NO 
A2 + 0.9 -1.3 0.5 0.56 + YES 
B1 - -0.14 - YES 
BS - 0.18 + NO 
A1 + 0.1 -2.1 -0.5 -1.32 - NO 
A2 + 0.3 -1.7 0.5 0.14 + YES 
Bl - -0.60 - YES 
B2 - -0.62 - YES 
A1 + -0.12 - NO 
A2 + 0.5 -1.3 1.5 1.36 + YES 
B1 - 0.74 + NO 
B2 - 0.2 -2.0 0.5 -0.94 - YES 

NO A1 + -0.26 - 
A2 + 0.4 -1.6 1 .o 0.72 + YES 
Bl - 0.00 ? NO 
B2 - 0.1 -2.3 0 -1.76 - YES 
A1 + -0.90 - NO 
A2 + 0.3 -1.9 1 .o 0.56 + YES 

YES B1 - -0.24 - 
B2 - -0.28 - YES 
A1 + 0.30 + YES 

sign sign 
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0.6 - 
3 
4 

0.4 - 

0.2 - 

0.0 f 

153 

0 .  

0 . 0 0  

. . .  perceptron function 

1 

0.8 0 .  

Figure 5.11 Partition of the data from Table 5.1 by a linear function derived from a 
simple perceptron unit 

This is illustrated in Figure 5.10(b) and serves to provide the correct 
classification of the four objects. 

The calculations involved with implementing this perceptron algorithm are 
simple but tedious to perform manually. Using a simple computer program 
and analysing the two-wavelength spectral data from Table 5.1 a satisfactory 
partition line is obtained, eventually, and the result is illustrated in Figure 5.1 1. 
The perceptron has achieved a separation of the two groups and every sample 
has been rightly assigned to its correct parent group. 

Several variations of this simple perceptron algorithm can be found in the 
literature, with most differences relating to the rules used for adapting the 
weight vector. A detailed account can be found in Beale and Jackson, as well as 
a proof of the perceptron's ability to produce a satisfactory solution, if such a 
solution is p~ss ib l e .~  

The major limitation of the simple perceptron model is that it fails drastically 
on linearly inseparable pattern recognition problems. For a solution to these 
cases we must investigate the properties and abilities of multilayer perceptrons 
and artificial neural networks. 

5 Artificial Neural Networks 
The simple perceptron model attempts to find a straight line capable of 
separating pre-classified groups. If such a discriminating function is possible 
then it will, eventually, be found. Unfortunately, there are many classification 
problems that are less simple or less tractable. 

Consider, for example, the two-group, four-object data set illustrated in 
Figure 5.12. Despite the apparent simplicity of this data set, it is immediately 
apparent that no single straight line can be drawn that will isolate the two 
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Figure 5.12 

1 .o 

0.8 

0.6 

N 

0.4 

0.2 

0.0 
0.0 0.2 0.4 0.6 0.8 1.0 

xl 

Simple two-group, bivariate data set that is not linearly separable by a single 
function. Lines shown are the linear classlJiers f rom the two units in the first 
layer of the multi-layer system shown in Figure 5.13 

classes of sample points. To achieve class separation and develop a satisfactory 
pattern recognition scheme, it is necessary to modify the simple perceptron. 

Correct identification and classification of sets of linearly inseparable items 
requires two major changes to the simple perceptron model. Firstly, more than 
one perceptron unit must be used. Secondly, we need to modify the nature of 
the threshold function. One arrangement which can correctly solve our four- 
sample problem is illustrated in Figure 5.13. Each neuron in the first layer 
receives its inputs from the original data, applies the weight vector, thresholds 
the weighted sum and outputs the appropriate value of zero or one. These 
outputs serve as inputs to the second, output layer. 

6 

Figure 5.13 Two-layer neutral network to solve the discriminant problem illustrated in 
Figure 5.12. Weighting coeficients are shown adjacent to each connection 
and the threshold or bias for  each neuron is given above each unit 
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Each perceptron unit in the first layer applies a linear decision function 
derived from the weight vectors, 

(5.56) 

which serve to define the lines shown in Figure 5.12. The weight vector 
associated with the third, output, perceptron is designed to provide the final 
classification from the output values of perceptrons 1 and 2, 

~3 = [ 1.5 1.5 -21 

We can calculate the output from each perceptron for each sample presented 
to the input of the system. Thus for object A1 

= -1.2 
:. y,1 = 0 

[!:a] at perceptron 2, w xT = [ -10 4 61 - 

= 7.2 

Yp2 = 1 

at perceptron 3, wx = [ 1.5 1.5 -1 ][ 0 1 -21 

= -0.5 
Yp3 = 0 

Similar calculations can be performed for A2, Bl, and B2: 

p l  output p2  output p 3  output 

A1 0 
A2 1 
Bl  1 
B2 1 

(5.57) 

(5.58) 

(5.59) 

Perceptron 3 is performing an AND function on the output levels from 
perceptrons 1 and 2 since its output is 1 only when both inputs are 1. 

Although the layout illustrated in Figure 5.13 correctly classifies the data by 
applying two linear discriminating functions to the pattern space, it is unable to 
learn from a training set and must be fully programmed before use, i.e. it must be 
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manually set-up before being employed. This situation arises because the second 
layer is not aware of the status of the original data, only the binary output from 
the first layer units. The simple on-off output from layer one provides no 
measure of the scaling required to adjust and correct the weights of its inputs. 

The way around the non-learning problem associated with this scheme 
provides the second change to the simple perceptron model, and involves altering 
the nature of the comparison operation by modifying the threshold function. In 
place of the Heaviside step function described previously, a smoother curve such 
as a linear or sigmoidal function is usually employed, Figure 5.14. The input and 
output for each perceptron unit or neuron with such a threshold function will no 

(c) 1 

0 

-1 
- 4 - 2  0 2 4 6 

Figure 5.14 Some commonly used threshold functions for neural networks: the Heaviside 
function (a), linear function (b), and sigmoidal function (c) 
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longer be limited to a value of zero or one, but can range between these extremes. 
Hence, the signal propagated through the system carries information which can 
be used to indicate how near an input is to the full threshold value; information 
which can be used to regulate signal reinforcement by changing the weight 
vectors. Thus, the multilayer system is now capable of learning. 

The basic learning mechanism for networks of multilayer neurons is the 
generalized delta rule, commonly referred to as back propagation. This learning 
rule is more complex than that employed with the simple perceptron unit 
because of the greater information content associated with the continuous 
output variable compared with the binary output of the perceptron. 

In general, a typical back-propagation network will consist of an input stage, 
with as many inputs as there are variables, an output layer, and at least one 
hidden layer, Figure 5.15. Each layer is fully connected to its succeeding layer. 
During training for supervised learning, the first pattern vector is presented to 
the input stage of the network and the output of the network will be 
unpredictable. This process describes the forward pass of data through the 
network and, using a sigmoidal transfer function, is defined at each neuron by 

where 

I j  = oiwi j  

input hidden output 
layer layer layer 

(5.60) 

(5.61) 

Figure 5.15 General scheme for a fully connected two-layer neural network with four 
inputs 
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Figure 5.16 Considering a single neuron, number 5 ,  in a non-input layer of the network, 
each of the four inputs, 0, . . . 04, is weighted by a coeficient, w 1 5 . .  . w4s. 

The neuron’s output, 05, is the summed value, Is, of the inputs modified by 
the threshold function, f ( I )  

Oj is the output from neuron j and 4 is the summed input to neuron j from 
other neurons, Oi, modified according to the weight of the connection, wij, 
between the i’th and j’th neurons, Figure 5.16. 

The final output from the network for our input pattern is compared with 
the known, correct result and a measure of the error is computed. To reduce 
this error, the weight vectors between neurons are adjusted by using the 
generalized delta rule and back-propagating the error from one layer to the 
previous layer. 

The total error, E, is given by the difference between the correct or target 
output, t ,  and the actual measured output, 0, i.e. 

E = c (tj - Oj)2 (5.62) 
j 

and the critical parameter that is passed back through the layers of the network 
is defined by 

d Ej 6.  = -- ’ d4  
(5.63) 

For output units the observed results can be compared directly with the 
target result, and 

6j =J; ’(h)(tj - 0j) (5.64) 

where&’ is the first derivative of the sigmoid, threshold function. 
If unit j is not an output unit, then, 

S, ‘(4) ~ k w k  (5.65) 

where the subscript k refers to neurons in preceding layers. 
Thus the error is calculated first in the output layer and is then passed back 

through the network to preceding layers for their weight vector to be adapted 
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in order to reduce the error. A discussion of Equations 5.63 to 5.65 is provided 
by Beale and J a ~ k s o n , ~  and is derived by Zupan.’ 

A suitable neural network can provide the functions of feature extraction 
and selection and classification. The network can adjust automatically the 
weights and threshold values of its neurons during a learning exercise with a 
training set of known and previously categorized data. It is this potential of 
neural networks to provide a complete solution to pattern recognition 
problems that has generated the considerable interest in their use. One general 
problem in applying neural networks relates to the design of the topology of 
the neural network for any specific problem. For anything other than the most 
trivial of tasks there may exist many possible solutions and designs which can 
provide the required classification, and formal rules of design and optimization 
are rarely employed or acknowledged. In addition, a complex network 
consisting of many hundreds or thousands of neurons will be difficult, if not 
impossible, to analyse in terms of its internal behaviour. The performance of 

1-laycr 

k 
2-layer 

\ 

%layer 

B 

2B A 

B 

B 

A T  A B 

structure XOR - problem meshed problem 

Figure 5.17 Neural network conJgurations and their corresponding decision capabilities 
illustrated with the XOR problem of Figure 5.12 and a more complex 
overlapping 2-group example 
(Reproduced by permission of Adam Huger from ref. 7) 
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4 . 6 2  

Chapter 5 

-9.10 

Figure 5.18 A neural network, consisting of an input layer (I), a hidden layer (H), and an 
output layer (0). This is capable of correctly classifying the analytical data 
from Table 5.1. The required weighting coeficients are shown on each 
connection and the bias values for a sigmoidal threshold function are shown 
by each neuron 

a neural network is usually judged by results, often with little attention paid to 
statistical tests or the stability of the system. 

As demonstrated previously, a single-layer perceptron can serve as a linear 
classifier by fitting a line or plane between the classes of objects, but it fails with 
non-linear problems. The two-layer device, however, can combine the linear 
decision planes to solve such problems as that illustrated in Figure 5.12. 
Increasing the number of perceptrons or neuron units in the hidden layer 
increases proportionally the number of linear edges to the pattern shape 
capable of being classified. If a third layer of neurons is added then even more 
complex shapes may be identified. A three-layer network can define arbitrarily 
complex shapes and such a system is capable of separating any class of 
patterns. This general principle is illustrated in Figure 5. 17.6 

For our two-wavelength spectral data, a two-layer network is adequate to 
achieve the desired separation. A suitable neural network, with the weight 
vectors, is illustrated in Figure 5.18. 
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CHAPTER 6 

Calibration and Regression 
Analysis 

1 Introduction 
Calibration is one of the most important tasks in quantitative spectrochemical 
analysis. The subject continues to be extensively examined and discussed in the 
chemometrics literature as ever more complex chemical systems are studied. 
The computational procedures discussed in this chapter are concerned with 
describing quantitative relationships between two or more variables. In 
particular we are interested in studying how measured independent or response 
variables vary as a function a single so-called dependent variable. The class of 
techniques studied is referred to as regression analysis. 

The principal aim in undertaking regression analysis is to develop a suitable 
mathematical model for descriptive or predictive purposes. The model can be 
used to confirm some idea or theory regarding the relationship between 
variables or it can be used to predict some general, continuous response 
function from discrete and possibly relatively few measurements. 

The single most common application of regression analysis in analytical 
laboratories is undoubtedly curve-fitting and the construction of calibration 
lines from data obtained from instrumental methods of analysis. Such graphs, 
for example absorbance or emission intensity as a function of sample 
concentration, are commonly assumed to be linear, although non-linear 
functions can also be used. The fitting of some ‘best’ straight line to analytical 
data provides us with the opportunity to examine the fundamental principles of 
regression analysis and the criteria for measuring ‘goodness of fit’. 

Not all relationships can be adequately described using the simple linear 
model, however, and more complex functions, such as quadratic and higher 
order polynomial equations, may be required to fit the experimental data. 
Finally, more than one variable may be measured. For example, multi- 
wavelength calibration procedures are finding increasing applications in 
analytical spectrometry and multivariate regression analysis forms the basis 
for many chemometric methods reported in the literature. 
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2 Linear Regression 
It frequently occurs in analytical spectrometry that some characteristic, y ,  of a 
sample is to be determined as a function of some other quantity, x, and it is 
necessary to determine the relationship or function between x and y ,  which 
may be expressed as y = f i x ) .  An example would be the calibration of an 
atomic absorption spectrometer for a specific element prior to the determina- 
tion of the concentration of that element in a series of samples. 

A series of n absorbance measurements is made, yi, one for each of a suitable 
range of known concentration, xi. The n pairs of measurements (xi, yi) can be 
plotted as a scatter diagram to provide a visual representation of the 
relationship between x and y .  

In the determination of chromium and nickel in machine oil by atomic 
absorption spectrometry the calibration data presented in Table 6.1 were 
obtained. These experimental data are shown graphically in Figure 6.1. 

At low concentrations of analyte and working at low absorbance values, a 
linear relationship is to be expected between absorbance and concentration, as 
predicted by Beer's Law. Visual inspection of Figure 6.l(a) for the chromium 
data confirms the correctness of this linear function and, in this case, it is a 
simple matter to draw by hand a satisfactory straight line through the data and 
use the plot for subsequent analyses. The equation of the line can be estimated 
directly from this plot, and there is little apparent experimental uncertainty. In 
many cases, however, the situation is not so clear-cut. Figure 6.1 (b) illustrates 
the scatter plot of the nickel data. It is not possible here to draw a straight line 
passing through all points even though a linear relationship between 
absorbance and concentration is still considered valid. The deviations in the 

Table 6.1 Absorbance data measured from standard solutions of chromium and 
nickel by AAS (a). Calculations of the best-fit, least-squares line for  
the nickel data, (b) 

(4 
Chromium concn. 0 1 
(ms kg - '1 
Absorbance 0.01 0.1 1 

Nickel concn. 0 1 
(ms kg- 9 
Absorbance 0.02 0.12 

(b) 
For nickel: x = 2.50 and y = 0.245 

( X i  - 3) -2.50 - 1.50 
o l i  - j j )  - 0.225 - 0.125 
(xi - - W j i  - 7)  0.562 0.187 
(Xi - X)* 6.25 2.25 
b = 1.655/17.50 = 0.095 
a = 0.0075 

2 3 4 5 (4 
0.21 0.29 0.38 0.52 ( y )  

2 3 4 5 (XI 

0.14 0.32 0.38 0.49 01) 

sum 
-0.50 0.50 1.50 2.50 
-0.105 0.075 0.135 0.245 

0.052 0.037 0.202 0.621 1.655 
0.25 0.25 2.25 0.25 17.50 
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Figure 6.1 Calibration plots of chromium (a) and nickel (b) standard solutions, from data 
in Table 6.1. For chromium, a good f i t  can be drawn by eye. For nickel, 
however, a regression model should be derived, Table 6.1 (b)  

absorbance data from expected, ideal values can be assumed to be due to 
experimental errors and uncertainties in the individual measurements and not 
due to some underlying error in the theoretical relationship. If multiple 
measurements of absorbance were made for each standard concentration, then 
a normal distribution for the absorbance values would be expected. These 
values would be centred on some mean absorbance value Ji. The task for an 
analyst is to determine the ‘best’ straight line regressed through the estimated 
means of the experimental data. 

The data consists of pairs of measurements of an independent variable x 
(concentration) and a dependent variable y (absorbance) and it is required to fit 
the data using a linear model with the well-known form 

j j  = a + b.xi (6.1) 

where a and b are constant coefficients characteristic of the regression line, 
representing the intercept of the line with the y-axis and the gradient of the line 
respectively. The values of ji represent the estimated, model values of 
absorbance derived from this linear model. The generally accepted requirement 
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for deriving the best straight line between x and j is that the discrepancy 
between the measured data and the fitted line is minimized. The most popular 
technique employed to minimize this error between model and recorded data is 
the least-squares method. For each measured value, the deviation between the 
derived model value and the measured data is given by (pi -yi). 

The total error between the model and observed data is the sum of these 
individual errors. Each error value is squared to make all values positive and 
prevent negative and positive errors from cancelling. Thus the total error, E, is 
given by, 

n 

error, E = x (p i  - yi)2 (6.2) 
i= 1 

The total error is the sum of the squared deviations. For some model defined 
by coefficients a and b, this error will be a minimum and this minimum point 
can be determined using partial differential calculus. 

From Equations 6.1 and 6.2 we can substitute our model equation into the 
definition of error, 

n 

E = (a + b.xi - yj)2 
i= I 

The values of the coefficients a and b are our statistically independent 
unknowns to be determined. By differentiating with respect to a and b 
respectively, then at the minimum 

B E  
- = x 2xi(a + b.xi 
6' j = l  

Expanding and rearranging Equations 6.4 
equations, 

nu + b z x i  = yi 

(6.4) 

- y J  = 0 

provides the two simultaneous 

a x x i  + b x x ?  = x ( y i x i ) r  

from which the following expressions can be derived, 

a = y - b Z  

and 

where Z and j represent the mean values of x and y.' 
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For the experimental data for Ni, calculation of a and b is trivial ( a  = 0.0086 
and b = 0.095) and the fitted line passes through the central point given by a , j ,  
Figure 6.1 (b). 

Once values for a and b are derived, it is possible to deduce the concentration 
of subsequently analysed samples by recording their absorbances and 
substituting the values in Equation 6.1. It should be noted, however, that 
because the model is derived for concentration data in the range defined by xi  it 
is important that subsequent predictions are also based on measurements in 
this range. The model should be used for interpolation only and not 
extrapolation. 

Errors and Goodness of Fit 

It is often the case in chemical analysis that the independent variable, standard 
solution concentrations in the above example, is said to be fixed and free of 
error. The concentration values for the calibration solutions are chosen by the 
analyst and assumed to be accurately known. The errors associated with x, 
therefore, are considered negligible compared with the uncertainty in y due to 
fluctuations and noise in the instrumental measurement. 

To use Equations 6.6 and 6.7 to determine the characteristics of the fitted 
line, and employ this information for prediction, it is necessary to estimate the 
uncertainty in the calculated values for the slope, b, and intercept, a. Each of 
the absorbance values, yi, has been used in the determination of a and b and 
each has contributed its own uncertainty or error to the final result. 

Estimates of error in the fitted line and estimates of confidence intervals may 
be made if three assumptions are valid: 

(a) the absorbance values are from parent populations normally distributed 
about the mean absorbance value, 

(b) the variance associated with absorbance is independent of absorbance, 
i.e. the data are homoscedastic and 

(c) the sample mean absorbance values lie on a straight line. 

These conditions are illustrated in Figure 6.2, which illustrates a theoretical 
regression line of such data on an independent variable. 

The deviation or residual for each of the absorbance values in the nickel data 
is given by y j  -pi, i.e. the observed values minus the calculated or predicted 
values according to the linear model. The sum of the squares of these 
deviations, Table 6.2, is the residual sum of squares, and is denoted as SSD.  The 
least squares estimate of the line can be shown to provide the best possible fit 
and no other line can be fitted that will produce a smaller sum of squares. 

The variance associated with these deviations will be given by this sum of 
squares divided by the number of degrees of freedom, 
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Figure 6.2 Regression line through mean values of homoscedastic data 

The denominator, n - 2, is the residual degrees of freedom derived from the 
sample size, n,  minus the number of parameters estimated for the line, a and b. 

The standard deviations or errors of the estimated intercept and slope 
values, denoted by ua and <Tb respectively, are defined by2 

(6.10) 

Table 6.2 Errors and goodness of f i t  calculations associated with the linear 
regression model for  nickel AAS data from Table 6.1 

Nickel concn. 0 1 2 3 4 5 L  
(ms kg - '1 
Absorbance 0.02 0.12 0.14 0.32 0.38 0.49 
(measured) 
Absorbance 0.007 0.102 0.197 0.292 0.387 0.482 
(estimated) 

S S D  = 0.00463 
SD = 0.0015 s, = 0.028 s/,, 0.0093. 
Cl(a) = 0.0075 t 0.078 
S S T  = 0.161 SSR = 0.156 r2 = 0.971 

Cl(b) = 0.0095 +- 0.026 
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from which the confidence intervals, CI, can be obtained, 

CI(a) = a 2 t.a, 

C&b) = b 2 t.ab 
(6.1 1) 

where t is the value of the two-tailed t-distribution with ( n - 2 )  degrees of 
freedom. Table 6.2 gives the results for CI(a) and CI(b) using 95% confidence 
intervals for the nickel absorbance data. 

The coefficient of determination and the correlation coefficient can assess 
how well the estimated straight line fits the experimental data. 

The total variation associated with the y values, SST, is given by the sum of 
the squared deviations of the observed y values from the mean y value, 

(6.12) 

This total variation has two components, that due to the residual or deviation 
sum of squares, SSD, and that from the sum of squares due to regression, SSR: 

S S T  = S S D  + SSR (6.13) 

SSD is a measure of the failure of the regressed line to fit the data points, and 
SSR provides a measure of the variation in the regression line about the mean 
values. 

The ratio of S S R  to SST indicates how well the model straight line fits the 
experimental data. It is referred to as the coefficient of determination and varies 
between zero and one. From Equation 6.13, if SSD = 0 (the fitted line passes 
through each datum point) the total variation in yi is explained by the 
regression line and SST = SSR and the ratio is one. On the other hand, if the 
regressed line fails completely to fit the data, S S R  is zero, the total error is 
dominated by the residuals, i.e. S S T  - SSD, then the ratio is zero and no linear 
relationship is present in the data. 

The coefficient of determination is denoted by r2, 

r2 = SSR/SST (6.14) 

and r2 is the square of the correlation coefficient, r,  introduced in Chapter 1. 
From our data of measured absorbance vs. nickel concentration, r2 = 0.971, 

indicating a good fit between the linear model and the experimental model. As 
discussed in Chapter 1 ,  however, care must be taken in relying too much on 
high values of r2 or r as indicators of linear trends. The data should be plotted 
and examined visually. 

In quantitative spectroscopic analysis an important parameter is the estimate 
of the confidence interval of a concentration value of an unknown sample, xu, 
derived from a measured instrument response. This is discussed in detail by 
Miller2 and can be obtained from the standard deviation associated with xu, 

(6.15) 
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where yu is the mean absorbance of the unknown sample from m measure- 
ments. Thus, from a sample having a mean measured absorbance of 0.25 
(from five observations), 

= 0.248 (6.16) 

and the 95% confidence limits of xu, are 

Cl(xu) = 2.54 2 0.54 (6.17) 

Regression through the Origin 

Before leaving linear regression, a special case often encountered in laboratory 
calibrations should be considered. A calibration is often performed using not 
only standard samples containing known amounts of the analyte but also a 
blank sample containing no analyte. The measured response for this blank 
sample may be subtracted from the response values for each standard 
sample and the fitted line assumed, and forced, to pass through the origin of 
the graph. 

Under such conditions the estimated regression line, Equation 6.1, reduces to 

yj = bxi 

and 

E = (bxi - ~ i ) ~  (6.18) 

The resulting equation for b, following partial differentiation, is 

(6.19) 

The option to use this model is often available in statistical computer packages, 
and for manual calculations the arithmetic is reduced compared with the full 
linear regression discussed above. A caveat should be made, however, since 
forcing the line through the origin assumes that the measured blank value is 
free from experimental error and that it represents accurately the true, mean 
blank value. 

For the nickel data from Table 6.1, using Equation 6.19, b = 0.094, and the 
sum of squares of the deviations, SSD, is 0.00614. This value is greater than the 
computed value of SSD for the model using data not corrected for the blank, 
indicating the poorer performance of the model of Equation 6.18 when 
assumptions about the blank reading are not valid. 

3 Polynomial Regression 
Although the linear model is the model most commonly encountered in 
analytical science, not all relationships between a pair of variables can be 
adequately described by linear regression. A calibration curve does not have to 
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approximate a straight line to be of practical value. The use of higher-order 
equations to model the association between dependent and independent 
variables may be more appropriate. The most popular function to model non- 
linear data and include curvature in the graph is to fit a power-series 
polynomial of the form 

y = a + b x + c x 2 + d x 3 +  - - (6.20) 

where, as before, y is the dependent variable, x is the independent variable to 
be regressed on y ,  and a, b, c, d, etc. are the coefficients associated with each 
power term of x .  

The method of least squares was employed in the previous section to fit the 
best straight line to analytical data and a similar procedure can be adopted to 
estimate the best polynomial line. To illustrate the technique, the least squares 
fit for a quadratic curve will be developed. This can be readily extended to 
higher power functions. 93 

The quadratic function is given by 

y = a + bx + cx2 

and the following simultaneous equations can be derived: 

a x  1 + b x  x + c x x 2  = x y 

a x x  + b x x 2  + c x x 3  = x y x  

a x x 2  + b X x 3  + c x x 4  = c y x 2  

or in matrix notation 

(6.21) 

(6.22) 

(6.23) 

which can be solved for coefficients a, b, and c. 
The extension of the technique to higher order polynomials, e.g. cubic, 

quartic, etc., is straightforward. Consider the general m'th degree polynomial 

y = a + b x + c x 2 +  - . - z x m  (6.24) 

This expands to (m+ 1) simultaneous equations from which (m+ 1) 
coefficients are to be determined. The terms on the right-hand side of the 
matrix equation will range from Zyi to Z(xim.yi) and on the left-hand side from 

A serious problem encountered with the application of polynomial curve- 
fitting is the fundamental decision as to which degree of polynomial is best. 
Visual inspection of the experimental data may indicate that a straight line is 
not appropriate. It may not be immediately apparent, unless theory dictates 
otherwise, whether say, a quadratic or cubic equation should be employed to 
model the data. As the number of terms in the polynomial is increased, the 
measured correlation coefficient between the experimental data and the fitted 

I=1 to xx;m. 
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curve will also increase. In the limit, when the number of terms is one less than 
the number of the data points the correlation coefficient will be unity, i.e. the 
curve will pass through every point. Such a polynomial, however, may have no 
physical significance. In practice, statistical tests, based on the use of the 
F-ratio, can be employed to examine the significance of terms added to a 
polynomial and to indicate whether observed increases in the correlation 
coefficient are statistically significant. 

Table 6.3 shows results of recorded fluorescence emission intensity as a 
function of concentration of quinine sulfate in acidic solutions. These data are 
plotted in Figure 6.3 with regression lines calculated from least squares 
estimated lines for a linear model, a quadratic model and a cubic model. The 
correlation coefficient for each fitted model with the experimental data is also 
given. It is obvious by visual inspection that the straight line represents a poor 
estimate of the association between the data despite the apparently high value 
of the correlation coefficient. The observed lack of fit may be due to random 
errors in the measured dependent variable or due to the incorrect use of a linear 
model. The latter is the more likely cause of error in the present case. This is 
confirmed by examining the differences between the model values and the 
actual results, Figure 6.4. With the linear model, the residuals exhibit a distinct 
pattern as a function of concentration. They are not randomly distributed as 
would be the case if a more appropriate model was employed, e.g. the 
quadratic function. 

The linear model predicts the relationship between fluorescence intensity, I ,  
and analyte concentration, x, to be of the form 

Ii = a +- bxi -k E~ (6.25) 

where E is a random error, assumed to be normally distributed, with a variance, 
d, independent of the value of I. If these assumptions are valid and Equation 
6.25 is a true model of the experimental data then the variance of E will be equal 
to the variance about the regression line. If the model is incorrect, then the 
variance around the regression will exceed the variance of E .  These variances 
can be estimated using ANOVA and the F-ratio calculated to compare the 
variances and test the significance of the model. 

The form of the ANOVA table for multiple regression is shown in Table 6.4. 
The completed table for the linear model fitted to the fluorescence data is given 
in Table 6.5.This analysis of variance serves to test whether a regression line 
is helpful in predicting the values of intensity from concentration data. For the 
linear model we wish to test whether the line of slope b adds a significant 
contribution to the zero-order model. The null hypothesis being tested is 

Table 6.3 Measured jluorescence emission intensity as a function of quinine 
sulfate concentration 

Quinine sulfate concn. (mg kg - ') 0 5 10 15 20 25 
Fluorescence intensity (arb. units) 10 180 300 390 460 520 



Calibration and Regression Analysis 171 

500 

A 200 

100 

0 4  
0 5 10 15 20 25 30 

$ / r=0.999 

$ 300 
CI 

0 5 10 15 20 25 30 

6001 

0 5 10 15 20 25 30 
Conc. 

Figure 6.3 Linear (a), quadratic (b), and cubic (c)  regression lines for the fluorescence 
data from Table 6.3 

Ho: b=O (6.26) 

i.e. the mean concentration value is as accurate in predicting emission intensity 
as the linear regression line. When the fitted line differs significantly from a 
horizontal (b  = 0) line, then the term 1 ( I -  fj)2 will be large relative to the 
residuals from the line, 1 (Ii - fJ2. As expected, this in fact is the case for the 
linear model, F1,4 = 98.94, compared with F1,4 = 7.71 from tables for a 5% 
level of significance. So the null hypothesis is rejected, the linear regression 
model is significant, and the degree to which the regression equation fits the 
data can be evaluated from the coefficient of determination, r2, given by 
Equation 6.14. 
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Figure 6.4 Residuals (yi - j i )  as a function of concentration (x) for the best fit linear 
and quadratic models of Figure 6.3 

A similar ANOVA table can be completed for the quadratic model, Table 6.6. 
Does the addition of a quadratic term contribute significantly to the first- 
order, linear model? The equation tested is now 

(6.27) 2 Ii = a i- bxi +- cxi +- E 

and the null hypothesis is 

Ho: b = c = O  (6.28) 

Once again the high value of the F-ratio, Table 6.6, indicates the model is 
significant as a predictor. This analysis can now be taken a step further since the 
sum of the squares associated with the regression line can be attributed to two 
components, the linear function and the quadratic function. This analysis is 
accomplished by the decomposition of the sum of squares, Table 6.7. The total 
sum of squares values for the regression can be obtained from Table 6.6 and that 
due to the linear component, x, from Table 6.5. The difference is attributed to the 
quadratic term. The large F-value indicates the high significance of each term. 

The exercise can be repeated for the fitted cubic model, and the ANOVA 
table and sums of squares decomposition are shown in Tables 6.8 and 6.9 
respectively. In this case, the F-statistic for the cubic term ( F =  3.0) is not 
significant at the 5% level (F1-2 = 18.5). The cubic term is not required and we 

Table 6.4 ANOVA table for  multiple regression 
~~~~~~~~~~ 

Source of Sum of Degrees of Mean F-ratio 
variation squares freedom squares 

(SS)  f df) ( M S )  
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Table 6.5 ANOVA table for the linear regression model applied to the 
fluorescence data (emission intensity as a function of concentration) 

Source of 
variation 

Sum of df Mean F-ratio 
squares squares 

~ ~ ~ ~~~~~ 

Regression 173006 1 173006 98.94 
Residuals 6994 4 1749 
Total 180000 5 
I = 61.43 + 19 .89~  
r2 = 0.961 

can conclude that the quadratic model is sufficient to describe the analytical 
data accurately, a result which agrees with visual inspection of the line, 
Figure 6.3(b). 

In summary the three models tested are 

I = 61.43 + 19.89~ 

I = 16.79 + 33 .28~  - 0 . 5 4 ~ ~  (6.29) 

I =  10.40+ 39 .11~-  1 . 1 7 ~ ~  +0.O17x3 

The relative effectiveness and importance of the variables can be estimated 
from the relative magnitudes of the regression coefficients. This cannot be done 
directly on these coefficients, however, as their magnitudes are dependent on 
the magnitudes of the variables themselves. In Equation 6.29, for example, the 
coefficient for the cubic term is small compared with those for the linear and 
quadratic terms, but the cubic term itself may be very large. Instead, the 
standardized regression coeficients, Bi, are employed. These are determined by 

(6.30) 

where ak is the standard deviation of the variable xk and ay is the standard 
deviation of the dependent variable, y .  

Table 6.6 A N 0  V A  table for  the quadratic regression model of fluorescence 
intensity as a function of concentration 

Source of Sum of df Mean F-ratio 
variation squares squares 

~~~~~ ~ 

Regression 179702 2 8985 1 905 
Residuals 298 3 99 
Total 180000 5 
I = 16.79 + 33 .28~  - 0 . 5 4 ~ ~  
r2 = 0.998 
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Table 6.7 Sum of squares decomposition for the quadratic model 
~~ ~ 

Source of Sum of df Mean F-ratio 
variation squares squares 

X 

X2 

Total 

173006 1 173006 1747 
6696 1 6696 68 

179702 2 

For the cubic model 

(6.3 1) 

d0,3 6143.5 &=-- - 0.017(190) = 0.55 
OY 

As expected, the relative significance of the standard regression coefficient B3 
is considerably less than those of the standardized linear and quadratic 
coefficients, B1 and B2, respectively. 

Orthogonal Polynomials 

In the previous section, the fluorescence emission data were modelled using 
linear, quadratic, and cubic equations and the quadratic form was determined 
as providing the most appropriate model. Despite this, on moving to the 
higher, cubic, polynomial the coefficient of the cubic term is not zero and the 
values for the regression coefficients are considerably different from those 
obtained for the quadratic equation. In general, the least squares polynomial 
fitting procedure will yield values for the coefficients that are dependent on the 
degree of the polynomial model. This is one of the reasons why the use of 
polynomial curve fitting often contributes little to understanding the causal 
relationship between independent and dependent variables, despite the 
technique providing a useful curve fitting procedure. 

Table 6.8 A N 0  VA table for the cubic regression model of fluorescence intensity 
as a function of concentration 

Source of Sum of df Mean F-ratio 
variation squares Squares 

~ ~~~ 

Regression 179996 3 59999 30239 
Residuals 4 2 
Total 108000 5 
I =  10.397+39.114~- 1 . 1 7 5 ~ ~  +0.O17x3 
3 = 0.999 
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Table 6.9 Sum of squares decomposition for  the cubic model 

Source of Sum of d f  Mean F-ratio 
variation squares squares 

x 
X- 

3 

x3 

Total 

173006 1 173006 1747 
6696 1 6696 68 
298 1 298 3 .O 

179996 3 

The value of the first coefficient, a, in the general polynomial equation 
discussed above, represents the intercept of the line with the y-axis. The b 
coefficient is the slope of the line at this point, and subsequent coefficients, are 
the values of higher orders of curvature. A more physically significant model 
might be achieved by modelling the experimental data with a special 
polynomial equation; a model in which the coefficients are not dependent on 
the specific order of equation used. One such series of equations having this 
property of independence of coefficients is that referred to as orthogonal 
polynomials. 

Bevington4 presents the general orthogonal polynomial between variables y 
and x in the form 

As usual, the least squares procedure is employed to determine the values of 
the regression coefficients a, b, c, d, etc., giving the minimum deviation between 
the observed data and the model. Also, we impose the criterion that subsequent 
addition of higher-order terms to the polynomial will not change the value of 
the coefficients of lower-order terms. This extra constraint is used to evaluate 
the parameters p, yl, y2, d l ,  etc. The coefficient a represents the average y value, 
b the average slope, c the average curvature, etc. 

In general, the computation of orthogonal polynomials is laborious but the 
arithmetic can be greatly simplified if the values of the independent variable, 
x, are equally spaced and the dependent variable is homos~edastic.~ In this 
case, 

p = x  
0.5 

y = p 2 A[ q] 
3n2 - 0.5 

(6.33) 

where 

(6.34) 
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a = J  

(6.35) 

Orthogonal polynomials are particularly useful when the order of the 
equation is not known beforehand. The problem of finding the lowest-order 
polynomial to represent the data adequately can be achieved by first fitting a 
straight line, then a quadratic curve, then a cubic, and so on. At each stage it is 
only necessary to determine one additional parameter and apply the F-test to 
estimate the significance of each additional term. 

For the fluorescence emission data, 

b=12.5 D = 5  
gl = 21.04, g2 = 3.96 

dl = 12.5, d2 = 23.74, d3 = 1.26 

and, from Equations 6.34, 

a = 313.5 

b = 19.86 

c = -0.580 
d = 0.015 

(6.36) 

(6.37) 

Thus the orthogonal linear equation is given by 

the quadratic by 

Ij = 313.5 + 19.86(xj - 12.5) - 0.58(xj - 21*04)(xi - 3.96) 

and the cubic model by 

These equations are illustrated graphically in Figure 6.5. As before, an 
ANOVA table can be constructed for each model and the significance of each 
term estimated by sums of squares decomposition and comparison of standard 
regression coefficients. 
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600, linear model 

Conc. 

Figure 6.5 Orthogonal linear, quadratic, and cubic models for the fluorescence intensity 
data from Table 6.3 

4 Multivariate Regression 
To this point, the discussion of regression analysis and its applications has been 
limited to modelling the association between a dependent variable and a single 
independent variable. Chemometrics is more often concerned with multi- 
variate measures. Thus it is necessary to extend our account of regression to 
include cases in which several or many independent variables contribute to the 
measured response. It is important to realize at the outset that the term 
independent variables as used here does not imply statistical independence, as 
the response variables may be highly correlated. 

Classical Least Squares 

The classical least squares (CLS) method, also known as the K-matrix method, 
extends the application of ordinary least squares as applied to a single 
independent variable. 

Calibration is realized by recording the spectra at n-wavelengths of m 
standard mixtures, of known composition of c components. The spectra 
(absorbance or emission) are arranged into the columns of matrix Y 
(dimensions n x m), with the composition of each mixture forming the 
columns of concentration matrix X (c x m). 

Y =  K - X  (6.39) 

With a priori knowledge of  X and by recording data for Y, then the matrix 
of sensitivities, K, can be calculated. 

If the number of components present in the mixtures is the same as 
the number of mixtures examined and the number of wavelengths recorded 
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(i.e. n = c = m) then X and K are square and, Equation 6.39 is rearranged to 

y -  r' = K -  X .  r' 

K =  Y - K '  (6.40) 

A mixture of unknown composition is then analysed by recording its 
spectrum, Yunknown, at n wavelengths and 

Xunknown = biK' * Yunknown (6.41) 

If the number of calibration standards is greater than the number of 
components (m > c )  then a least-squares solution to Equation 6.40 is required. 

Y = K * X  

Y -  XT(X* XT)-' = K (6.42) 

To avoid being under-determined, there must be measurements at more 
wavelengths than there are components (i.e n a c) .  If n > c then the component 
concentrations in an unknown mixture are obtained from its spectrum by, 

Xunknown = (KT * 0 - l  . KTYunknown (6.43) 

This CLS method is intuitively appealing since it is based on some generally 
assumed relationship, e.g. Beer's Law, and it can be used for moderately 
complex mixtures. However, its application does rely on knowledge of the 
complete composition of the calibration mixtures, i.e. the concentration of each 
absorbing species. 

Inverse Least Squares 

The inverse least squares (ILS) method is sometimes referred to as the P-matrix 
method. The calibration model is transformed so that component concentra- 
tions are defined as a function of the recorded response values, 

X = P * Y  (6.44) 

For a series of m calibration mixtures of c components, the concentration of 
each component is contained in the matrix X (c x m) and the calibration 
spectra in Y (n x m). 

Each column of the matrix P (c  x n) contains calibration coefficients for each 
component in a mixture, at each wavelength. 

Equation 6.44 may be solved for P by the least squares method providing 
m > n, i.e. there are more standard mixtures than wavelengths. 

p =  x. y T  * (y '  yT>-'  (6.45) 
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For an unknown mixture with a recorded spectrum as a column vector y (n x I),  

0.4 O o 5 :  

= Yunknown 

Tyrosine \ 

Multivariate regression analysis plays an important role in modern process 
control analysis, particularly for quantitative UV-visible absorption spectro- 
metry and near-IR reflectance analysis. It is common practice with these 
techniques to monitor absorbance, or reflectance, at several wavelengths and 
relate these individual measures to the concentration of some analyte. The 
results from a simple two-wavelength experiment serve to illustrate the details 
of multivariate regression and its application to multivariate calibration 
procedures. 

Figure 6.6 presents a UV spectrum of the amino acid tryptophan. For 
quantitative analysis, measurements at a single wavelength, e.g. L14, would be 
adequate if no interfering species are present. In the presence of other 
absorbing species, however, more measurements are needed. Table 6.10 
presents the concentrations and measured absorbance values at L14  of seven 
standard solutions containing known amounts of tryptophan along with three 
samples which we will assume contain unknown amounts of tryptophan. All 
solutions have unknown concentrations of a second absorbing species present, 
in this case the amino acid tyrosine. The effect of this interferent is to add noise 
and distort the univariate calibration graph, as shown in Figure 6.7. The best- 
fit linear regression line is also shown, as derived from 

Concentration tryptophan, TP = -3.00 + 38.54A14 (6.46) 

where Ai is the absorbance at 3Li. 
Despite an apparently high goodness of fit for this model (r2 =0.943) its 

predictive ability is poor as can be demonstrated with the three test samples: 

0.2 

0.1 

0.0 
5 10 15 20 25 30 

Wavelength (arb. units) 

Figure 6.6 UV spectra, recorded at discrete wavelengths, of tryptophan and tyrosine 
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Absorbance values of tryptophan standard solutions 
recorded at two wavelengths, A14 and A21. Three 
'unknown' test solutions, XI, X2, and X3,  are 
included with their true tryptophan concentration 
shown in parentheses 

Tryptophan concn. Absorbance 

0 
5 

10 
15 
20 
25 
29 
XI (7) 
x2 (14) 
X3 (27) 

0.0356 
0.3068 
0.3980 
0.3860 
0.6020 
0.6680 
0.8470 
0.3440 
0.3670 
0.08 10 

0.0390 
0.21 10 
0.1860 
0.0450 
0.1580 
0.1070 
0.2010 
0.2010 
0.0500 
0.21 10 

Actual: 7 14 27 mgkg-' 
Predicted : 10.26 11.14 28.22 mg kg-' 

If a second term, say the absorbance at il 2' ,  is added to the model equation, 
the predictive ability is improved considerably. Thus by including AZ1, c =  1, 
n=2,  m=7, and 

X =  [ 0 5  10 152025291 

l'O 1 

0 5 10 15 20 25 30 

[Tr], mg.kg-* 

Figure 6.7 Least-squares linear model of absorbance ( A  14) vs. concentration of 
tryptophan (data from Table 6.10) 
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1 1 1 1 1 
0.307 0.398 0.386 0.602 0.668 0.847 

0.039 0.211 0.186 0.045 0.158 0.107 0.201 

(The row of ones providing the intercept term.) 
Using the ILS model, from Equation 6.45, 

P= [ -0.028 43.72 -39.711 

The two-factor regression equation is thus given by 

(6.47) 

and with the test samples, 

Actual: 7 14 21 mgkg-' 
Predicted: 7.03 14.03 27.01 mgkg-' 

This model as given by Equation 6.47 could be usefully employed for the 
quantitative determination of tryptophan in the presence of tyrosine. 

Of course, the calibration model is improved when the second term is 
included because A21 serves to compensate for the absorbance due to the 
tyrosine since is in the spectral region of a tyrosine absorption band with 
little interference from tryptophan, Figure 6.6. In general, the selection of 
variables for multivariate regression analysis may not be so obvious. 

In many applications satisfying the inequality, m > n, can represent a 
serious problem as ILS requires more standard calibration mixtures than the 
number of wavelengths (independent variables) selected. This can serve to limit 
the spectral reange or resolution of the data used in the analysis. Wavelength, 
variable, selection is an important issue. 

Selection of Variables for Regression 

In the discussions above, and in the examples previously described, it has been 
assumed that the variables to be included in the multivariate regression 
equation were known in advance. Either some theoretical considerations 
determine the variables or, as in many spectroscopic examples, visual 
inspection of the data provides an intuitive feel for the greater relevance of 
some variables compared with others. In such cases, serious problems 
associated with the selection of appropriate variables may not arise. The 
situation is not so simple where no sound theory exists and variable selection 
is not obvious. Then some formal procedure for choosing which variables 
to include in a regression analysis is important and the task may be far from 
trivial. 

The problems and procedures for selecting variables for regression analysis 
can be illustrated by considering the use of near-IR spectrometry for 
quantitative analysis. Despite its widespread use in manufacturing and process 
industries, the underlying theory regarding specific spectral transitions 
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associated with the absorption of radiation in the near-IR region has been little 
studied. Unlike the fundamental transitions observed in the mid-IR region, 
giving rise to discrete absorption bands, near-IR spectra are often character- 
ized by overtones and combination bands and the observed spectra are 
typically complex and, to a large extent, lacking in readily identifiable 
features. It rarely arises, therefore, that absorption at a specific wavelength 
can be attributed to a single chemical entity or species. For quantitative 
analysis a range of measurements, each at different wavelengths, must be 
recorded to attempt to correct for spectral interference. In the limit, of 
course, the whole spectrum can be employed as a list or vector of variates. 
The dependent variable, y ,  can then be represented by a linear model of 
the form 

x = a  + x b i y i  + ci (6.48) 

where x is the concentration of some analyte, yi is the measured response 
(absorbance or reflectance) at i specific wavelengths, and a and b are the 
coefficients or weights associated with each variate. For a complete spectrum, 
extending from say 1200 to 2000 nm, i may take on values of several hundreds 
and the solution of the possible hundreds of simultaneous equations necessary 
to determine the full range of the coefficients in order to predict x from the 
analytical data is computationally demanding. In preparing such a multivariate 
calibration model, therefore, it would be reasonable to address two key points. 
Firstly, which of the variates contribute most significantly to the prediction 
model and which variates can be left out without reducing the effectiveness of 
the model? If most of the calibration information can be demonstrated to 
reside in only a few measurements then the computational effort is reduced 
considerably. Secondly, is there any penalty, other than increased data 
processing time, in having more variates in the set of equations than strictly 
necessary? After all, with the data processing power now available with even 
the most modest personal computer, why not include as many measurements as 
possible in the calibration? 

As an easily managed example of multivariate data analysis we shall 
consider the spectral data presented in Table 6.11. These data represent the 
recorded absorbance of 14 standard solutions containing known amounts of 
tryptophan, measured at seven wavelengths, in the UV region under noisy 
conditions and in the presence of other absorbing species. Two test mixtures, 
X1 and X 2 ,  are also included. 

Some of these spectra are illustrated in Figure 6.8 and the variation in 
absorbance at each wavelength as a function of tryptophan concentration is 
shown in Figure 6.9. No single wavelength measure exhibits an obvious linear 
trend with analyte concentration and a univariate calibration is unlikely to 
prove successful. The matrix of correlation coefficients between the variables, 
dependent and independent, is given in Table 6.12. The independent variable 
most highly correlated with tryptophan concentration is the measured 
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Table 6.11 UV absorbance data recorded at seven wavelengths, A 9 . .  .Az7, of 14 
solutions containing known amounts of tryptophan. Spectra of two 
test solutions containing I I and 25 mg kg-' tryptophan, respectively, 
are also included 

2 
4 
6 
8 

10 
12 
14 
16 
18 
20 
22 
24 
26 
28 

Mean 15 
S 8.367 

x1 11 
x2 25 

0.632 
0.558 
0.565 
0.549 
0.570 
0.273 
0.276 
0.469 
0.504 
0.554 
0.501 
0.464 
0.743 
0.754 

0.529 
0.139 

0.254 
0.497 

0.292 
0.275 
0.300 
0.332 
0.351 
0.309 
0.378 
0.444 
0.551 
0.566 
0.553 
0.636 
0.743 
0.793 

0.466 
0.174 

0.324 
0.656 

0.318 
0.418 
0.392 
0.502 
0.449 
0.427 
0.420 
0.550 
0.585 
0.654 
0.667 
0.691 
0.901 
0.939 

0.565 
0.188 

0.337 
0.771 

0.436 
0.468 
0.50 1 
0.509 
0.480 
0.324 
0.265 
0.456 
0.524 
0.5 13 
0.521 
0.525 
0.785 
0.773 

0.506 
0.139 

0.337 
0.513 

0.296 
0.258 
0.279 
0.224 
0.222 
0.156 
0.063 
0.181 
0.172 
0.168 
0.143 
0.122 
0.3 13 
0.261 

0.204 
0.072 

0.1 10 
0.150 

0.069 
0.116 
0.040 
0.055 
0.056 
0.056 
0.0 19 
0.063 
0.110 
0.070 
0.103 
0.077 
0.088 
0.024 

0.068 
0.030 

0.035 
0.053 

0.079 
0.072 
0.052 
0.018 
0.025 
0.080 
0.006 
0.053 
0.078 
0.083 
0.035 
0.100 
0.072 
0.095 

0.061 
0.030 

0.034 
0.083 

0.8 

0.6 

0.2 

0.0 

0 [Trl=2mg/kg 
o [Tr] =8mg/kg 
v [Tr] = 16 mg/kg 
v [Tr]=24mg/kg 

I . , .  . , m . . . .  

8 10 12 14 16 18 20 22 24 26 28 

Wavelength (arb. units) 

Figure 6.8 Some of the spectra from Table 6.11 
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0 1 

0 5 10 15 20 25 30 

[Trl 

Figure 6.9 Absorbance vs. tryptophan concentration at the seven wavelengths monitored 

absorbance at Alz, A12, i.e. 

Tr = a + bl A12 (6.49) 

and by least-squares modelling, 

Tr = -6.31 + 45.74A12 (6.50) 

For our two test samples, of concentrations 11 and 25 mg kg- ', X1= 8.51 
and X2=23.69 mg kg-'. 

A predicted concentration (from the regression model) vs. actual concentra- 
tion scatter plot is shown in Figure 6.10 and the plot of residuals (yi - pi) in 
Figure 6.1 1. Despite the apparent high correlation between tryptophan 
concentration and A 12, the univariate model is a poor predictor, particularly 
at low concentrations. 

Table 6.12 Correlation matrix between tryptophan concentration and absorbance 
at seven wavelengths for the 14 standard solutions from Table 6.11 

Tr A9 A12 A15 A18 A21 A24 A27 

Tr 
A9 
A12 

A21 

A15 
A18 

A24 

A27 

1 
0.225 1 
0.955 0.474 1 
0.919 0.554 0.969 1 
0.589 0.877 0.765 0.832 1 

0.015 0.250 0.083 0.108 0.220 0.207 1 
0.393 0.376 0.510 0.474 0.456 0.271 0.298 1 

-0.228 0.830 0.020 0.135 0.615 1 
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0 5 10 15 20 25 30 

True 

Figure 6.10 Predicted tryptophan concentration from the univariate regression model, 
using A12, vs. the true, known concentration. Prediction lines for test 
samples XI and X 2  are illustrated also 

To improve the performance of the calibration model other information 
from the spectral data could be included. The absorbance at A21, for example, is 
negatively correlated with tryptophan concentration and may serve to 
compensate for the interfering species present. Including A2,  gives the bivariate 
model defined by 

Tr = a + blA12 + b2A21 (6.51) 

By ordinary least-squares regression, Equation 6.45 can be solved to provide 

(6.52) Tr = -0.51 + 45.75A12 - 28.43A21 

4 

2 

-2 

I 

0 5 10 15 20 25 30 

[Trl 

Figure 6.11 Residuals as a function of concentration for the univariate regression model, 
using A 12 from Table 6. I I 
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0 5 10 15 20 25 30 
True 

Figure 6.12 True and predicted concentrations using the bivariate model with A 12 and A2 I 

with a coefficient of determination, r2? of 0.970. The model vs. actual data and 
the residuals plot are shown in Figures 6.12 and 6.13. Xi and X2 are evaluated 
as 11.19 and 25.24 mg kg- respectively. 

Although the bivariate model performs considerably better than the 
univariate model, as evidenced by the smaller residuals, the calibration might 
be improved further by including more spectral data. The question arises as to 
which data to include. In the limit of course, all data will be used and the model 
takes the form 

'I 4 
3 
2 

" 1  j o  
2 -1 

-2 
-3 1 

0 5 10 15 20 25 30 

[Trl 

Figure 6.13 Residuals as a function of concentration for the bivariate regression model, 
using Al2 and A21 from Table 6.11 
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Tr = a + bl A9 + b2 AI2  + b3 A15  + . . . + b7A27 (6.53) 

To determine by least squares the value of each coefficient requires we use 
eight simultaneous equations. In matrix notation the normal equations can be 
expressed as 

Tr = b . A  (6.54) 

where 

1 
1 A 9  * a -  xA27  

A = [  m 9  : E4 xA9A27 

E A 2 7  1 A 9 A 2 7  c A17 
b = [a bl b2 b3 b4 b5 b6 b7] 

Tr = [I Tr I A9Tr 1 A12Tr 2 Al5Tr . .  . A27Tr] 

(6.55) 

Calculating the individual elements of matrix A and computing its inverse to 
solve Equation 6.54 for b can give rise to computational errors, and it is 
common practice to modify the calculation to achieve greater acc~racy .~  

If the original data matrix is converted into the correlation matrix, then each 
variable is expressed in the standard normal form with zero mean and unit 
standard deviation. The intercept coefficient using these standardized variables 
will now be zero and the required value can be calculated later. The regression 
equation in matrix form is then 

R.b' = r (6.56) 

where R is the matrix of correlation coefficients between the independent 
variables, r is the vector of correlations between the dependent variable and 
each independent variable, and b' is the vector of standard regression 
coefficients we wish to determine. 

The individual elements of R and r are available from Table 6.12 and we may 
calculate 6' by rearranging Equation 6.56, 

b' = R-* .r (6.57) 

and, 

b'= [ -0.28 0.709 0.419 -0.006 -0.052 0.006 -0.0441 

To be used in a predictive equation these coefficients must be 'unstandar- 
dized', and, from Equation 6.30, 

Hence 

bT=[-16.83 34.08 18.67 -0.36 -6.08 1.71 -12.381 (6.58) 
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Figure 6.14 True and predicted concentrations using all variables from Table 6.11 

The constant intercept term is obtained from Equation 6.47, 

a = y - blxl - b& - b3X3 - b4X4 - b& - b6Z6 - b+7 
= -0.465 (6.59) 

Predicted regression results compared with known tryptophan concentration 
values are shown graphically in Figure 6.14, and Figure 6.15 shows the resi- 
duals. The calculated concentrations for X1 and X2 are 1 1.44 and 25.89 mg kg - ' 
respectively. Although the predicted concentrations for our two test samples 

-1 :: 

* 
0 5 10 15 20 25 30 

[Trl 

Figure 6.15 Residuals as a function of concentration for the full regression model using 
all variables from Table 6.11 
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are inferior to the results obtained with the bivariate model, the full, seven- 
factor model fits the data better as can be observed from Figure 6.14 and the 
smaller residuals in Figure 6.15. Unfortunately, including all seven terms in the 
model has also added random noise to the system; A24 and A27 are measured at 
long wavelengths where negligible absorption would be expected from any 
component in the samples. In addition, where several hundred wavelengths 
may be monitored, with a high degree of collinearity between the data, it is 
necessary and worthwhile using an appropriate subset of the independent 
variables. For predictive purposes it is often possible to do at least as well with 
a carefully chosen subset as with the total set of independent variables. As the 
number of independent variables increases the number of subsets of all possible 
combinations of variables increases dramatically and a formal procedure must 
be implemented to select the most appropriate variables to include in the 
regression model. A very direct procedure for testing the significance of each 
variable involves fitting all possible subsets of the variates in the equation and 
evaluating the best response. However, this is rarely possible. With p variables 
the total number of equations to be examined is 2p, if we include the equation 
containing all variates and that containing none. Even with only eight 
variables, the number of equations is 256, and to examine a complete spectrum 
containing many hundreds of measures the technique is neither feasible nor 
practical. 

In some cases there may exist a strong practical or theoretical justification 
for including certain variables in the regression equation. In general, however, 
there is no preconceived assessment of the relative importance of some or all of 
the independent variables. One method, mentioned briefly previously, is to 
examine the relative magnitudes of the standard regression coefficients. For our 
experimental data, from 6’ Equation 6.57, this would indicate that Ag, A12, and 
A I 5  are the most important. More sophisticated strategies are employed in 
computer software packages. For cases where there are a large number of 
significant variates, three basic procedures are in common use. These methods 
are referred to as the forward selection procedure, the backward selection 
procedure, and the stepwise method. 

The forward selection technique starts with an empty equation, possibly 
containing a constant term only, with no independent variables. Variates are 
added to the test equation one at a time as the procedure progresses. The first 
variable included is that which has the highest correlation with the dependent 
variable y.  The second variable added to the equation is the one with the 
highest correlation with y ,  after y has been adjusted for the effect of the first 
variable, i.e. the variable with the highest correlation with the residuals from 
the first step. This method is equivalent to selecting the second variable so as to 
maximize the partial correlation with y after removing the linear effect of the 
first chosen variable. The procedure proceeds in this manner until no further 
variate has a significant effect on the fitted equation. 

From Table 6.12, the absorbance at 3LI2  exhibits the highest correlation with 
tryptophan concentration and this is the first variable added to the equation, 
Equation 6.43. To choose the second variable, we could select ,415 as this has 
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the second highest absolute correlation with Tr but this may not be the best 
choice. Some other variable combined with A12 may give a higher multble 
correlation than A15 and A12. 

Multiple correlation represents the simple correlation between known values 
of the dependent variable and equivalent points or values as derived from the 
regression equation. Partial correlation, on the other hand, is the simple 
correlation between the residuals from the regression line or planes on the 
variable whose effects are removed [6]. For our UV absorbance data we wish to 
remove the linear effect of A I 2  regressed on Tr so that we can subsequently 
assess the correlations of the other variables. 

From Equation 6.50, for the univariate model using A12, 

and regressing A12 on to each of the remaining independent variables gives 

A9 = 0.32 + 0.4042 

A15 = 0.06 + I .07A12 

A18 = 0.21 + 0.60A12 

A21 = 0.19 + O.O8AI2 

A24 = 0.06 + 0.01 A12 

A27 = 0.02 + 0.08A12 

(6.60) 

The matrix of residuals (Tr - f, A9 -A9, A I s  -Als , etc.) is given in Table 6.13, 
and the corresponding correlation matrix between these residuals in Table 6.14. 
From Table 6.14 the variable having the largest absolute correlation with Tr 
residuals is Ag. Therefore we select this as the second variable to be added to 
the regression model. 

Table 6.13 Matrix of residuals for each variable after removing the linear model 
using A12 

Tr - pr A9 - A 9  A 1 5  - A 1 5  A21 -221 A24 -A24 A27 -A27 

- 5.330 
- 2.557 
- 1.694 
- 1.149 
- 0.013 

3.897 
2.759 
1.757 

- 1.109 
0.208 
2.800 
1.025 

- 1.842 
- 2.1 16 

0.205 
0.138 
0.135 
0.106 
0.120 

-0.161 
- 0.185 
- 0.019 
- 0.026 

0.018 
- 0.030 
- 0.100 

0.136 
0.127 

- 0.054 
0.067 
0.01 1 
0.087 
0.013 
0.036 

- 0.044 
0.015 

- 0.065 
- 0.012 

0.015 
- 0.049 

0.046 
0.03 1 

0.05 1 
0.093 
0.111 
0.100 
0.059 

- 0.071 
- 0.172 
- 0.020 
- 0.017 
- 0.037 
- 0.021 
- 0.067 

0.129 
0.087 

0.083 
0.046 
0.065 
0.007 
0.004 

- 0.059 
- 0.157 
- 0.044 
- 0.062 
- 0.067 
- 0.091 
-0.119 

0.064 
0.008 

0.005 
0.052 

- 0.024 
- 0.010 
- 0.009 
- 0.008 
- 0.046 
- 0.003 

0.042 
0.002 
0.035 
0.008 
0.01 8 

- 0.047 

0.036 
0.030 
0.008 

- 0.029 
- 0.023 

0.035 
- 0.044 
- 0.002 

0.014 
0.018 

- 0.029 
0.029 

- 0.007 
0.012 
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Table 6.14 Matrix of correlations between the residuals from Table 6.13 

Tr - 5% 1 
&-A9 -0.88 1 
A15-AI5 0.08 0.34 1 
A18-A18 -0.73 0.91 0.57 1 
A21 -A11 -0.81 0.92 0.42 0.91 1 
A24-A24 -0.15 0.12 0.01 0.16 0.1 1 1 
A27-A27 -0.35 0.15 -0.18 0.11 0.29 0.29 1 

Hence, at step 2, 

Tr = - 0.60 + 52. 1OAl2 - 16.58A9 (6.61) 

Forward regression proceeds to step 3 using the same technique. The 
variables A9 and A12 are regressed on to each of the variables not in the 
equation and the unused variable with the highest partial correlation coefficient 
is selected as the next to use. If we continue in this way then all variables 
will eventually be added and no effective subset will have been generated, so 
a stopping rule is employed. The most commonly used stopping rule in 
commercial programs is based on the F-test of the hypothesis that the 
partial correlation coefficient of the variable to be entered in the equation is 
equal to zero. No more variables are added to the equation when the F-value 
is less than some specified cut-off value, referred to as the minimum F-to-enter 
value. 

A completed forward regression analysis of the UV absorbance data is 
presented in Table 6.15. Using a cut-off F-value of 4.60 (F1,14 at 95% 
confidence limit), three variables are included in the final equation: 

Tr=-0.77+33.92AI2- 19.47A9 + 18.05A15 (6.62) 

The predicted vs. actual data are illustrated in Figure 6.16 and the resi- 
duals plotted in Figure 6.17. Calculated values for X1 and X2 are 11.30 and 
25.72 mg kg - respectively. 

An alternative method is described by backward elimination. This technique 
starts with a full equation containing every measured variate and successively 
deletes one variable at each step. The variables are dropped from the equation 
on the basis of testing the significance of the regression coefficients, i.e. for each 
variable is the coefficient zero? The F-statistic is referred to as the computed 
F-to-remove. The procedure is terminated when all variables remaining in the 
model are considered significant. 

Table 6.16 illustrates a worked example using the tryptophan data. Initially, 
with all variables in the model, A 1 8  has the smallest computed F-to-remove 
value and this variable is removed from the model and eliminated at the 
first step. The procedure proceeds by computing a new regression equa- 
tion with the remaining six variables and again examining the calculated 
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Table 6.15 Forward regression analysis of the data from Table 6.1 1. After three 
steps no remaining variable has a F-to-enter value exceeding the 
declared minimum of 4.60, and the procedure stops 

Step I :  Variable entered: 
Dependent variable 
Variables in equation 
Coefficient 
Variables not in equation 
Partial correlation coefficient 
F-to-enter 

Step 2: Variable entered: 
Variables in equation 
Coefficient 
Variables not in equation 
Partial correlation coefficient 
I;-to-enter 

Step 3: Variable entered: 
Variables in equation 
Coefficient 
Variables not in equation 
Partial correlation coefficient 
F-to-enter 

A12 
Tr 
Constant 
- 6.31 
A9 
- 0.88 
43.20 

A9 
Constant 
- 0.60 
A15 
0.65 
8.84 

A15 
Constant 
- 0.77 
A18 
- 0.07 

0.06 

A 12 
45.74 
A15 
- 0.10 

0.14 

A12 
52.10 
A18 
0.25 
0.87 

A 12 

33.92 
A21 
- 0.30 

1.10 

A18 
- 0.74 
16.19 

A9 
- 16.58 
A21 
- 0.10 

0.12 

A9 
- 19.47 

A24 
- 0.03 

0.01 

A21 A24 A27 
-0.83 -0.22 -0.36 
29.87 0.64 1.90 

A24 A27 
-0.01 -0.43 

0.03 2.66 

A15 
18.05 
A27 
- 0.40 

2.1 1 

F-to-remove values for the next candidate for elimination. This process 
continues until no variable can be removed since all F-to-remove values 
are greater than some specified maximum value. This is the stopping rule; 
F-to-remove = 4 was employed here. 

0 5 10 15 20 25 30 

True 

Figure 6.16 True and predicted concentrations using three variables (A9, A12, and A2])  

from Table 6.11 
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-6 I 

0 5 10 15 20 25 30 

TTrl 

Figure 6.17 Residuals as a function of concentration for three-variable regression model 
from forward regression analysis 

Table 6.16 Backward regression analysis of the data from Table 6.11. After four 
steps, three variables remain in the regression equation; their 
F-to-remove values exceed the declared maximum value of 4.0 

Step 0: All variables entered 
Dependent Tr 
variable 
Variables in Constant A9 A12 A15 A18 
equation 

F-to-Remove 5.96 12.43 5.03 0.001 

Step I :  Remove A 18 

equation 

F- to- Remove 6.92 16.54 6.32 0.17 

Step 2: Remove A24 

Variables in Constant A9 A12 A15 ,421 

equation 

F- to- Remove 7.83 18.67 7.23 0.23 

Step 3: Remove A Z 1  
Variables in Constant A g  A12 A15 A27 

equation 

F- to- Remove 73.03 33.29 7.64 2.12 

Coefficient - 0.465 - 16.83 34.08 18.67 -0.36 

Variables in Constant A9 A12 A15 A21 

Coefficient - 0.62 - 16.45 34.85 17.12 -4.83 

Coefficient - 0.53 - 16.14 34.50 17.28 -5.32 

Coefficient - 0.62 - 18.69 36.67 16.37 - 14.88 

A21 A24 A27 

-6.08 1.71 - 12.38 
0.08 0.04 0.78 

A24 A27 

2.09 - 13.25 
0.04 1.01 

A27 

- 12.35 
1.09 

Step 4: Remove A27 
Variables in Constant A9 A12 A15 

equation 

F- to- Remove 77.08 25.89 8.84 
Coefficient 0.77 - 19.47 33.92 18.05 



194 Chapter 6 

It so happens in this example that the results of performing backward 
elimination regression are identical with those obtained from the forward reg- 
ression analysis. This may not be the case in general. In its favour, forward 
regression generally involves a smaller amount of computation than backward 
elimination, particularly when many variables are involved in the analysis. 
However, should it occur that two or more variables combine together to be a 
good predictor compared with single variables, then backward elimination will 
often lead to a better equation. 

Finally, stepwise regression, a modified version of the forward selection 
technique, is often available with commercial programs. As with forward 
selection, the procedure increases the number of variables in the equation at 
each step but at each stage the possibility of deleting a previously included 
variable is considered. Thus, a variable entered at an earlier stage of selection 
may be deleted at subsequent, later stages. 

It is important to bear in mind that none of these subset multiple linear 
regression techniques are guaranteed or even expected to produce the best 
possible regression equation. The user of commercial software products is 
encouraged to experiment. 

Principal Components Regression 

With multiple regression analysis involving large numbers of independent 
variables there often exists extensive collinearity or correlation between 
these variables. Collinearity adds redundancy to the regression model since 
more variables may be included in the model than is necessary for adequate 
predictive performance. Of the regression methods available to the analytical 
with protection against the problems induced by correlation between variables, 
principal components regression, PCR, is the most common employed. 

Having discussed in the previous section the problems associated with 
variable selection, we may now summarize our findings. The following rules- 
of-thumb provide a useful guide: 

(a) Select the smallest number of variables possible. Including unnecessary 
variables in our model will introduce bias in the estimation of the 
regression coefficients and reduce the precision of the predicted values. 

(b) Use the maximum information contained in the independent variables. 
Although some of the variables are likely to be redundant, potentially 
important variables should not be discounted solely to reduce the size of 
the problem. 

(c) Choose independent variables that are not highly correlated with each 
other. Collinearity can cause numerical instability in estimating regres- 
sion coefficients. 

Although subset selection along with multiple linear regression provides a 
means of reducing the number of variables studied, the method does not 
address the problems associated with collinearity. To achieve this, the 
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regression coefficients should be orthogonal. The technique of generating 
orthogonal linear combinations of variables to extract maximum information 
from a data set was encountered previously in eigen-analysis and the 
calculation of principal components. The ideas derived and developed in 
Chapter 3 can be applied here to regression analysis. 

As an example consider the variables A12 ,  AI5,  and A I 8  from the UV 
absorbance data of Table 6.1 1. These three variables are highly correlated as 
can be seen from Table 6.12. This correlation can also be observed in the 
scatter plot of these variables, Figure 6.18. By principal components analysis 
two new variables can be defined containing over 99% of the original variance 
of the three original variables. The first principal component alone accounts for 
over 90% of the total variance, and a plot of Tr (tryptophan concentration) 
against PCI is shown in Figure 6.19. 

The use and application of principal components in regression analysis has 
been extensively reported in the chemometrics We can calculate 
the principal components from our data set, so providing us with a set of new, 
orthogonal variables. Each of these principal components will be a linear 
combination of, and contain information from, all the original variables. By 
selecting an appropriate subset of principal components, the regression model 
is reduced whilst retaining the relevant information from the original data. This 
procedure, therefore, can satisfy the requirement for using the ILS model, that 
the number of variables should be less than the number of calibration samples. 

x =  P. Y 

Equation 6.44 gives the general ILS regression model, 

1 .o 
0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0.0 

Figure 6.18 Scatterplot of absorbance data at three wavelengths, A12, A15, and A18, from 
Table 6.1 1.  The high degree of collinearity, or correlation, between these 
data is evidenced by their lying on a plane and not being randomly distributed 
in the pattern space 
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0 .  
0 

[Tr] = 15 + 26.871.E I 

O !  I 

0 5 10 15 20 25 30 

[Tr] Actual 

Figure 6.19 First principal component, PCI, from A12, Als, and A18 vs. tryptophan 
concentration 

Using the tryptophan data (Table 6.1 1) the known (mean-centred) 
tryptophan concentrations form a row vector, x, (1 x 14), the mean-centred 
absorbance spectra fill matrix Y (7 x 14), and p represents the vector (1 x 7) of 
regression coefficients. 

x = p * Y  (6.63) 

The aim in principal components regression is to replace the 'original' 
Y-matrix by a matrix with a smaller number of, orthogonal, variables, 

x = p e  (6.64) 

Where Z* (n* x 14) < Y (n x 14), with n* representing the reduced number of 
variables. 
p is obtained by rearranging Equation 6.64, 

(6.65) 

and for an unknown sample, xu, 

x , = p . z  (6.66) 

The steps in performing this general PCR process are 

1. Mean centre the spectral data to provide Yo(n x rn) and the concentration 

2. Form the cross-product matrix, C = (Yo . YoT). 
3. Extract the eigenvectors, V, and eigenvalues, 1. 
4. Calculate the principal component matrix, 2, 

data to give xo. 
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If each column of V contains an eigenvector, each row of Z contains a 
principal component. 

5. The reduced matrix z" is formed by selecting an appropriate number of 
principal components and this is used for regression analysis. 

Applying this scheme to the tryptophan data provides the following results. 
The mean-centred spectral and concentration data are presented in Table 

6.17 and the cross-product matrix in Table 6.18. The eigenvalues and 
eigenvectors of this matrix are shown in Table 6.19. Table 6.20 provides the 
matrix of principal components and the correlation of each with the 
tryptophan concentration, 

Since about 93% of the spectral variance is contained in the first two 
eigenvectors, and the corresponding principal components have the highest, 
absolute correlation values with concentration, then a regression model 
containing these two variables is suggested. 

Solving Equation 6.65 for p gives, 

p = [23.41 -32.401 (6.67) 

The resulting regression equation is 

Tr = X + 2 3 . 4 1 ~ ~  - 3 2 . 4 0 ~ ~  

where z1 and 22 are the first two row vectors of the principal components 
matrix 2. 

The predicted vs. known tryptophan concentration results, using two 
principal components, are illustrated in Figure 6.20. 

For the unknown samples X1 and X2, the predicted concentrations are 

Xl( 11 mg kg-') X2(25 mg kg-') 

Two factor PCR : 10.96 25.99 

The regression equation, Equation 6.64, expresses the relationship between 
analyte concentration and principal components that are themselves combina- 
tions of all original spectral variables. 

Thus, 

z= vT-xo 

and 

z* = vT 'XO 

with v* representing the reduced (7 x 2) eigenvector matrix. 
Therefore, 

(6.68) 

(6.69) 

x = p -  v*T 4 0  (6.70) 
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Table 6.18 Cross-product matrix (Yo. YT) of data f rom Table 6.1 7 
~ ~~ 

c = (Yo Y o T )  
0.25 1 0.147 0.178 0.219 0.107 0.007 0.017 
0.147 0.396 0.413 0.245 0.000 0.004 0.030 
0.178 0.413 0.458 0.286 0.018 0.005 0.029 
0.219 0.245 0.286 0.25 1 0.077 0.008 0.022 
0.107 0.000 0.018 0.077 0.068 0.003 0.007 
0.007 0.004 0.005 0.008 0.003 0.01 1 0.003 
0.017 0.030 0.029 0.022 0.007 0.003 0.01 1 

Table 6.19 Decomposition of the cross -product matrix (Table 6.18) provides a 
matrix of eigenvectors and a vector of eigenvalues 

Eigen vectors 
0.334 0.672 
0.555 - 0.383 
0.614 -0.300 
0.442 0.308 
0.076 0.465 
0.010 0.023 
0.045 0.007 

Eigenvalues 
1.138 0.263 

- 0.401 
- 0.578 

0.499 
0.331 
0.218 

- 0.126 
- 0.288 

- 0.017 

- 0.313 
- 0.029 
- 0.008 

0.164 
0.27 1 
0.689 
0.571 

0.014 

- 0.216 

- 0.046 
- 0.076 

0.480 
- 0.671 

0.493 

0.148 

0.009 

0.361 
- 0.356 

0.521 
- 0.568 
-0.109 

0.027 
0.369 

0.003 

- 0.036 
0.248 
0.101 

- 0.495 
0.644 
0.240 

- 0.458 

0.002 

Table 6.20 Principal components extracted from the absorbance data of 
Table 6.17, and the correlation of each with analyte (tryptophan) 
concentration 

Principal component matrix (2') 
P C I  PC 11 PCII I  P C I V  PC v PC VI PC VII 

- 0.237 
- 0.198 
- 0.184 
-0.106 
-0.133 
- 0.341 
- 0.343 
- 0.066 

0.058 
0.120 
0.103 
0.154 
0.564 
0.610 

0.231 
0.151 
0.172 
0.093 
0.106 

- 0.149 
- 0.235 
- 0.054 
- 0.064 
- 0.063 
-0.106 
- 0.179 

0.074 
0.022 

- 0.073 
0.01 5 
0.0 16 
0.057 

- 0.001 
0.050 

- 0.009 
0.01 1 

- 0.040 
- 0.036 

- 0.033 
0.007 

0.032 
0.004 

0.000 
0.046 

- 0.009 
- 0.029 
- 0.036 

0.046 
- 0.059 
- 0.002 

0.039 
- 0.005 

0.001 
0.024 
0.018 

- 0.034 

0.021 
- 0.026 

0.026 
- 0.024 
- 0.020 

0.047 
0.005 
0.002 

- 0.020 
- 0.003 
- 0.053 

0.006 
0.002 
0.036 

0.007 
0.023 

- 0.028 
0.002 

- 0.006 
0.007 

- 0.005 
0.006 

- 0.029 
0.028 
0.001 

- 0.006 
- 0.01 3 

0.01 3 

0.014 
- 0.004 
- 0.012 
- 0.013 
- 0.004 

0.004 
0.014 
0.007 

- 0.004 
- 0.004 

0.006 
- 0.021 

0.027 
- 0.01 I 
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Figure 6.20 True vs. predicted tryptophan concentration using the first two principal 
components in the regression model 

and the regression coefficients related to the recorded variables, Ag . . . A27, are 
given by 

b = p -  V*T (6.71) 

This expands to, 

b = [-13.96 25.40 24.09 0.35 -13.29 -0.52 0.831 (6.72) 

for the regression equation 

XO = b * Yo (6.73) 

and the constant bo is given by, 

(6.74) 

For an unknown sample 

x = -0.536 + b * y (6.75) 

A number of different numerical algorithms lead to the same PCA solution. 
It is usual with many algorithms to compute all the eigenvalues and the full 
eigenvector matrix from the dispersion (covariance) matrix. This has the 
advantage that the full matrix of PCs can be examined and a reduced set 
selected for calibration modelling. Greater computational efficiency is gained if 
the principal components are extracted one at a time in a stepwise fashion, 
starting with that corresponding to the eigenvector with the largest eigenvalue. 
The procedure continues with the next PCs until the remaining data contains 
no more valid information. A common and popular procedure for stepwise 
PCR is afforded by the NIPALS algorithm.” 
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The NIPALS algorithm extracts one factor (a principal component) at a 
time from the mean-centred data matrix. Each factor is obtained iteratively by 
repeated regression of response (absorbance) data, Yo, on the scores (principal 
components) 2 to obtain improved loadings (eigenvectors) V, and of Yo on V 
to obtain improved 2. 

Continuing with our ILS representation, the known analyte concentrations 
are entered in to x and the corresponding spectral data (by rows) in matrix Y. 
These data are preprocessed by mean-centring to provide xo and Yo. For K 
factors (k=  1 . . . K ) ,  the algorithm proceeds as follows. 

1. zk is assigned starting values (Martens and Naes suggest the column of 
Yk-l having the greatest sum of squares"). 

2. Eigenvector vk is estimated by projecting Yk-1 on to zk, 

and is scaled to unit length, 

3. The estimate of zk is improved by projecting Ykml on to vk, 

4. The corresponding eigenvalue is estimated, 

5. Repeat from Step 2 until convergence, i.e. the value of f does not 

6 .  Subtract the effect of the factor from the data, 
significantly change. 

7. Go to Step 1 for the next factor ( k =  k +  1). 

The results after extracting three factors are shown in Table 6.21. 
In employing principal components as our regression factors we have 

succeeded in fully utilizing all the measured variables and developed new, un- 
correlated variables. In selecting which eigenvectors to use, the first employed 
is that corresponding to the largest eigenvalue, the second that corresponding 
to the next largest eigenvalue, and so on. This strategy assumes that the major 
eigenvectors correspond to phenomena in the Y (absorbance) data matrix of 
relevance in modelling the dependent variable x (concentration). Although this 
is generally accepted as being the case for many analytical applications, 
another data compression method can be employed if variables having high 
variance but little relevance to y are thought to be present. This next method is 
partial least-squares regression. 
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Table 6.21 Results of decomposing the data matrix, Yo, after extracting three 
principal components using the sequential NIPALS algorithm 

Y i l =  1.138 
0.182 
0.095 
0.097 
0.055 
0.085 

- 0.142 
- 0.139 
- 0.038 
- 0.045 
- 0.015 
- 0.063 
-0.117 

0.025 
0.02 1 

0.026 
Y2t = 0.263 

- 0.007 
- 0.019 
- 0.008 

0.014 
- 0.042 

0.019 
- 0.002 
- 0.002 

0.027 
0.009 
0.003 

- 0.025 
0.006 

Y3t = 0.017 
- 0.003 

0.000 
-0.013 

0.0 15 
0.013 

- 0.022 
0.015 
0.002 

- 0.018 
0.012 
0.01 1 

- 0.010 
- 0.012 

0.007 

- 0.042 
- 0.08 1 
- 0.064 
- 0.075 
- 0.041 

0.032 
0.102 
0.0 15 
0.053 
0.034 
0.030 
0.085 

- 0.036 
- 0.01 1 

0.046 
- 0.023 

0.002 
- 0.040 

0.000 
- 0.025 

0.0 13 
- 0.006 

0.029 
0.010 

- 0.01 1 
0.016 

- 0.008 
- 0.003 

0.004 
- 0.013 

0.01 1 
- 0.006 
- 0.00 1 

0.004 
0.007 
0.000 
0.006 

- 0.01 1 
- 0.006 
- 0.003 

0.01 1 
- 0.002 

- 0.102 
- 0.025 
- 0.061 

0.002 
- 0.034 

0.071 
0.065 
0.025 

0.015 
0.039 
0.03 1 

- 0.010 
0.000 

- 0.016 

- 0.032 
0.020 

- 0.009 
0.030 

- 0.003 
0.026 

- 0.005 
0.009 

- 0.035 
- 0.004 

0.007 
- 0.022 

0.0 12 
0.006 

0.004 
0.0 12 

- 0.016 
0.001 

- 0.002 
0.00 1 
0.000 
0.004 

- 0.015 
0.014 
0.003 

- 0.006 
- 0.004 

0.005 

0.035 
0.050 
0.076 
0.050 
0.033 

- 0.03 1 
- 0.089 
- 0.021 
- 0.007 
- 0.046 
- 0.030 
- 0.049 

0.030 
- 0.002 

- 0.036 
0.003 
0.023 
0.02 1 
0.001 
0.015 

- 0.017 
- 0.004 

0.012 
- 0.026 

0.003 
0.006 
0.007 

- 0.009 

- 0.012 
- 0.002 

0.018 
0.002 
0.00 1 

- 0.002 
- 0.014 
- 0.008 

0.026 
- 0.014 

0.000 
0.017 

- 0.003 
- 0.010 

0.1 10 
0.069 
0.089 
0.028 
0.028 

- 0.022 
-0.115 
-0.018 
- 0.037 
- 0.045 
- 0.069 
- 0.094 

0.066 
0.010 

0.002 
- 0.00 1 

0.009 
- 0.015 
- 0.021 

0.047 
- 0.006 

0.007 
- 0.007 
- 0.016 
- 0.020 
- 0.01 1 

0.032 
0.000 

0.018 
- 0.005 

0.006 
- 0.028 
- 0.021 

0.037 
- 0.004 

0.005 
0.002 

- 0.008 
- 0.021 
- 0.004 

0.025 
0.000 

0.004 
0.050 

- 0.026 
- 0.01 1 
- 0.010 
- 0.008 
- 0.045 
- 0.004 

0.042 
0.001 
0.034 
0.008 
0.015 

- 0.050 

- 0.002 
0.047 

- 0.030 
- 0.014 
- 0.013 
- 0.005 
- 0.040 
- 0.003 

0.043 
0.003 
0.037 
0.0 12 
0.013 

- 0.050 

- 0.009 

- 0.028 
- 0.008 
- 0.013 

0.001 
- 0.041 
- 0.002 

0.039 
- 0.00 1 

0.038 
0.009 
0.016 

- 0.050 

0.049 

0.029 
0.020 
0.000 

- 0.038 
- 0.030 

- 0.039 
- 0.005 

0.015 
0.017 

- 0.030 
0.032 

- 0.014 
0.007 

0.035 

0.028 
0.019 

- 0.001 
- 0.038 
- 0.030 

- 0.037 
- 0.004 

0.036 

0.015 
0.017 

- 0.029 
0.034 

-0.015 
0.007 

0.007 
0.024 
0.003 

- 0.022 
- 0.03 1 

0.050 
- 0.040 
- 0.001 

0.004 
0.007 

- 0.027 
0.024 

- 0.005 
0.008 
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Partial Least Squares Regression 

The calibration model referred to as partial least-squares regression (PLSR) is 
a technique developed and popularized in analytical science by Wold. l 2 > l 3  The 
method differs from PCR by including the dependent (concentration) variable 
in the data compression and decomposition operations, i.e. both y and x data 
are actively used in the data analysis. This serves to minimize the potential 
effects of y variables having large variances but which are irrelevant to the 
calibration model. The simultaneous use of Y and x information makes the 
method more complex than PCR as two loading vectors are required to 
provide orthogonality of the factors. 

The first method illustrated here employs the orthogonalized PLSR 
algorithm developed by Wold and extensively discussed by Martens and 
Naes." 

As with PCR, the dependent and independent variables are mean centred to 
give data matrix Yo and vector xo. Then for each factor, k = 1 . . . K,  to be 
included in the regression model, the following steps are performed. 

(a) A loading weight vector, w k  is calculated by maximizing the covari- 
ance between the linear combination of Y k -  1 and xk- 1 given that 

T 
w k  . w = 1 .  

(b) The factor scores, z,  are estimated by projecting Y k - 1  on w k .  

(c) The spectral loading vector vk is determined by regressing Yk - 1  on zk ,  and 

(d) From ( Y k - 1  (Zk vkT)  and ( x k - l z k ' q k T  ) new matrices Y k  and xk are 
the analyte loadings q k  by regressing x k  - 1 on z k .  

formed. 

The optimum number of factors to include in the model is found by 
observation and usual validation statistics. 
A worked example, using the tryptophan data, will illustrate application of the 
algorithm. The results are presented in Table 6.22. 
For each factor ( k =  1 . . . K ) ,  

1. Calculate a scaling factor, c,  that makes the loading weight vector w k  = 1, 

2. Calculate the scores, the spectra loading vector, and the analyte loading 
vector, 
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Table 6.22 Results of applying the PLSl algorithm for  two factors to the 
tryptophan data (Table 6.1 7) 

For k =  1, 
c = 0.036 
wk = [O. 114 0.647 0.675 0.326 - 0.069 - 0.002 0.0391 
z k  = [ - 0.296 - 0.235 - 0.227 - 0.129 - 0.159 - 0.279 - 0.255 

-0.046 0.074 0.133 0.13 0.201 0.514 0.5741 
~k=[O.292 0.599 0.652 0.43 0.043 0.009 0.0461 
q k  = 26.466 
bk=[3.01 17.13 17.85 8.64 - 1.83 0.05 1.031 
bo = - 8.73 

For k = 2, 
c = 0.036 
wk = [ - 0.74 0.203 0.092 - 0.43 - 0.466 - 0.029 - 0.0281 
~k =[ -0.218 - 0.141 - 0.162 - 0.088 - 0.098 0.178 0.267 0.06 

vk = [ - 0.742 0.195 0.098 - 0.428 - 0.466 - 0.026 - 0.0211 

b k = [ -  13.90 25.64 23.89 0.3 - 13.27 -0.62 0.591 
bo= -0.53 

0.061 0.055 0.101 0.171 -0.119 -0.0681 

q k  =23.736 

3. Remove the effects of this factor from the data, 

xk = xk-1 - z k  . 4 k  

4. Increment k (k = k + l ) ,  and go to Step 1 .  

The regression coefficients related to the original response variables are given 

b = w .  (ZT. m-1 (6.76) 

b o = Z - y  . b  (6.77) 

by, 

T 

With the single factor in the model the full regression equation is 

Tr(onefactor) = -8.73 + 3.01A9 + 17.13AI2 + 17.85AI5 

+ 8.64A18 - 1.83A21 + O.O5A24 + 1.O3A27 (6.78) 

The predicted vs. actual concentration as a scatter plot is illustrated in 
Figure 6.21. 
The procedure is repeated with a second factor included and 

Tr (two factors) = -0.53 - 13.90A9 + 25.64AI2 + 23.89A15 

+ 0.30~418 - 13.27A21 - 0.62A24 + O.59A27 (6.79) 

The two-factor scatter plot is shown in Figure 6.22. The sums of squares 
of the residuals for the one and two-factor models are 201, and 11.53, 
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Figure 6.21 True vs. predicted tryptophan concentration using a one-factor partial least- 
squares regression model 

respectively, and the estimated tryptophan concentrations from the test 
solutions are 

XI x2 
(11 mg kg-* 25 mg kg- '  

One factor 6.35 22.0 1 
Two factors 10.93 25.98 

30 
0 

25 

20 
73 
B 

5 

0 

0 

0 
0 

0 

I 1 

0 5 10 15 20 25 30 

0 
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0 
0 

0 

0 5 10 15 20 25 30 

[Tr] Actual 

Figure 6.22 True vs. predicted tryptophan concentration using a two-factor partial least- 
squares regression model 
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As with PCR, a regression model built from two orthogonal new variables 
serves to provide good predictive ability. 
An alternative procedure for conducting PLS regression, proposed by de 
Jong14, is offered by the SIMPLS algorithm. The method calculates the PLS 
factors directly as linear combinations of the original variables. It is simple to 
implement and has been demonstrated to be faster than the conventional PLSl 
procedure. Results obtained are entirely equivalent to PLS 1 for univariate 
analyte determination and the algorithm is becoming popular with chemome- 
tricians and instrument suppliers. 
Before leaving the subject of regression analysis, and in particular the use of 
PCR and PLS algorithms, it is instructive to examine some of the diagnostic 
statistics often available from their application. 

Regression Coefficients 

The regression coefficients are those values applied to the original response 
variables in order to apply the computed regression model. An example is 
afforded in Equation 6.79 for the two-factor PLSl model. In Figure 6.23 these 
coefficients are plotted and their relative magnitudes are immediately appa- 
rent, with coefficients for A I 2  and A15 being significantly larger than others, 
whilst those for ,Al8, A24 and A 2 7  indicate these variables have little influence 
on the model. 

Leverage 

The leverage expressed by an object provides information on its importance in 
contributing to the calibration model by relating the position of its independent 
variables relative to others. It is related to the Mahalanobis distance and is 
derived from the cross product matrix of factors used in the calibration model. 

-., . 
A9 A12 A15 A18 A21 A24 A27 

Response Variable 

Figure 6.23 Relative magnitude of the regression coeficients derived using a two-factor 
PLSI model 
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Martens and Naes" discuss the topic and several definitions are quoted in the 
literature. In a simple example we can express leverage, h, as the diagonal 
elements of the matrix (Z-ZT), where 2 is the matrix of factors in the two- 
factor PLS tryptophan model. In this case, 

(b) 30- 

25 - 

a 20- 

3 15- 
& - 

10- 

5 -  

hT =[0.135 0.075 0.078 0.024 0.035 0.110 0.136 0.006 0.009 
0.021 0.0270.07 0.279 0.3341 

These values are plotted as a function of sample (object) number in Figure 
6.24(a). In Figure 6.24(b) the predicted vs. actual tryptophan concentration 
plot using the two factor PLSl model is shown. Examining these two plots it 
should not be surprising that the lower and higher numbered samples have 
considerable influence on the calibration, they are after all at the extremes of 

1 2  3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4  

Sample No. 

a 14 

0 13 
0 12 

a d 1  
a9 

a 6  

a 5  
4a 

2. a 3  

I a 1  
0 ,  1 

0 5 10 15 20 25 30 
[Tr] Actual 

Figure 6.24 Relative leverage exhibited by each sample in forming the two-factor PLSI 
model (a), and the predicted vs. actual plot with samples identified (b) 
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the concentration range examined. What is more interesting is that samples 
numbered 6 and 7 should exhibit such high leverage. These samples have 
analyte concentrations near the middle of the range and would be expected to 
have minimal effect on the calibration model. Also, the leverage for samples 13 
and 14 is much higher than others. For an explanation we can examine Figure 
6.25 where sample analyte concentration is plotted as a function of the two 
factors in the calibration model. It is evident that samples 6 ,  7, 13, and 14 are 
different from the others and may be worthy of further inspection. There is no 
evidence, however, that any of these samples should be considered an outlier 
and eliminated from the calibration model. 

Regression analysis is probably the most popular technique in statistics and 
data analysis, and commercial software packages will usually provide for 
multiple linear regression with residuals analysis and variables subset selection. 
The efficacy of the least-squares method is susceptible to outliers, and graphic 
display of the data is recommended to allow detection of such data. In an 
attempt to overcome many of the problems associated with ordinary least- 
squares regression, several other calibration and prediction models have been 
developed and applied. As well as principal components regression and partial 
least-squares regression, ridge regression should be noted. Although PCR has 
been extensively applied in chemometrics it is seldom recommended by 
statisticians. Ridge regression, on the other hand, is well known and often 
advocated amongst statisticians but has received little attention in chemo- 
metrics. The method artificially reduces the correlation amongst variates by 
modifying the correlation matrix in a well defined but empirical manner. 
Details of the method can be found in Afifi and Clark.6 To date there have been 
relatively few direct comparisons of the various multivariate regression 

25 303 
9 

5 c 8 

6 

\ 

0 
7 

"A \ 
-0.3 

Figure 6.25 Scatter plot of tryptophan concentration against the two factors derived from 
the two-factor PLSI model 



Calibration and Regression Analysis 209 

techniques, although Frank and Friedman” and WoldI6 have published a 
theoretical, statistics based comparison which is recommended to interested 
readers. 
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APPENDIX 

Matrix Tools and Operations 

A.1 Data Matrix 
Chemometrics is predominantly concerned with multivariate analysis. 
With any sample we will make many, sometimes hundreds, of measurements 
to characterize the sample. In optical spectrochemical applications these 
measures are likely to consist of absorbance, transmission, or reflection metrics 
made at discrete wavelengths in a spectral region. To handle and manipulate 
such large sets of data, the use of matrix representation is not only inevitable 
but also desirable. 

A matrix is a two-way table of values usually arranged so that each row 
represents a distinct sample or object and each column contains metric values 
describing the samples. Table A. 1 (a) shows a small data matrix of 10 samples, 
the percent transmission values of which are recorded at three wavelengths. 
Table A.l(b) is the matrix of correlations between the wavelength measures. 
This is a square matrix (the number of rows is the same as the number of 
columns) and it is symmetric about the main diagonal. The matrix in 
Table A. 1 (c) of the mean transmission values has only one row and is referred 
to as a row vector. This vector can be thought of in geometric terms as 
representing a point in three-dimensional space defined by the three wave- 
length axes, as shown in Figure A. 1. 

Matrix operations enable us to manipulate arrays of data as single entities 
without detailing each operation on each individual value or element contained 
within the matrix. To distinguish a matrix from ordinary single numbers, or 
scalars, the name of the matrix is usually printed in bold face, with capital 
letters signifying a full matrix and lower-case letters representing vectors or 
one-dimensional matrices. 

Thus if we elect to denote the data matrix from Table A.l(a) as A and each 
row as a vector r and each column as a vector c then 
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Table A S  Percent transmission at three wavelengths of 10 solutions, (a), 
correlation matrix of transmission values (b), and the mean 
transmission values as a row vector (c) 

~ ~ ~~ 

% Transmission 

Sample A1 A2 A3 

(b) 
1 .oo 
0.61 

-0.10 
0.95 

-0.99 
-0.74 

0.37 
-0.03 
-0.78 
-0.30 

(c) 

0.6 1 
1 .oo 

-0.85 
0.33 

-0.73 
-0.99 

-0.8 1 
-0.97 

0.96 

0.58 

-0.10 
-0.85 

1 .oo 
0.23 
0.26 
0.74 

-0.96 
1 .oo 
0.69 

-0.92 

rmeans = C54.3 47.6 45.91 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

0.95 
0.33 
0.23 
1 .oo 

-0.88 
-0.48 

0.06 
0.29 

-0.54 
-0.58 

82 
76 
58 
64 
25 
32 
45 
56 
58 
47 

-0.99 
-0.73 

0.26 
-0.88 

1 .oo 
0.84 

-0.52 
0.19 
0.87 
0.14 

58 
76 
25 
54 
32 
36 
54 
17 
59 
65 

-0.74 
-0.99 

0.74 
-0.48 

0.84 
1 .oo 

-0.90 
0.70 
1 .oo 

-0.43 

54 
51 
87 
56 
35 
54 
22 
83 
62 
45 

0.37 
0.96 

0.06 
-0.96 

-0.52 
-0.90 

1-00 
-0.94 
-0.87 

0.78 

-0.03 
-0.81 

1 .oo 
0.29 
0.19 
0.70 

-0.94 
1 .oo 
0.64 

-0.95 

-0.78 
-0.97 

0.69 
-0.54 

0.87 
1 .oo 

-0.87 
0.64 
1 .oo 

-0.36 

-0.30 

-0.92 
-0.58 

-0.43 

-0.95 
-0.36 

1 .oo 

0.58 

0.14 

0.78 

where m is the number of rows and n is the number of columns. Each 
individual element of the matrix is usually written as aij ( i  = 1 . . . m, j = 1 . . . n). 
I f  n = m then the matrix is square and if aij = ajj it is symmetric. 

A matrix with all elements equal to zero except those on the main diagonal is 
called a diagonal matrix. An important diagonal matrix commonly encoun- 
tered in matrix operations is the unit matrix, or identity matrix, denoted I ,  in 
which all the diagonal elements have the value 1 (Table A.2). 

A.2 Simple Matrix Operations 
If two matrices, A and B, are said to be equal, then they both must be of the 
same dimensions, i.e. have the same number of rows and columns, and their 
corresponding elements must be equal. Thus the statement A = B provides a 
shorthand notation for stating aij = aji for all i and all j .  

The addition of matrices can only be defined when they are the same size, the 
result being achieved simply by summing corresponding elements, i.e. 
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60 

40 

h3 

20 

0 

Figure A.l  Vector of means as a point in three-dimensional space 

C = A + B  

or, 

cij = aij + b,, for all i and j 

Subtraction of matrices is defined in a similar way. 
When a matrix is rotated such that the columns become rows, and the rows 

become columns, then the result is the transpose of the matrix. This is usually 
represented as AT. If B = AT then, 

bi,j = aj,i, for all i and j ~ 4 . 3 1  

In a similar fashion, the transpose of a row vector is a column vector, and 
vice versa. Note that a symmetric matrix is equal to its transpose. 

Matrix operations with scalar quantities are straightforward. To multiply the 
matrix A by the scalar number k implies multiplying each element of A by k .  

kA = k.a,, for all i and j ~4.41 

Table A.2 Some identity matrices 

1 0 0  
Z 2 = [ i  .=[o 0 0 1  1 0 1  
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Similarly for division, addition, subtraction, and other operations involving 
scalar values. The transmission matrix of Table A.l(a) can be converted into 
the corresponding matrix of absorbance values by application of the well- 
known Beer’s Law relationship, 

100 

aij 
cij = log- w.51  

with the resultant matrix C given in Table A.3. 

A.3 Matrix Multiplication 
The amino-acids tryptophan and tyrosine exhibit characteristic UV spectra in 
alkaline solution and each may be determined in the presence of the other by 
solving a simple pair of simultaneous equations. 

In dilute solution, the total absorbance at 300 nm of the mixture, Am,300, is 
equal to the sum of the absorbances from tryptophan, ATr,300, and tyrosine, 
ATy,300. These quantities in turn are dependent on the absorption coefficients of 
the two species, &Tr and E T ~ ,  and their respective concentrations, CTr and C T ~ .  

Equation A.6 can be expressed in matrix notation as 

A = EC w.71  

where A is the matrix of absorbance values for the mixtures, E the matrix of 
absorption coefficients, and C the matrix of concentrations. The right-hand 
side of Equation A.7 involves the multiplication of two matrices, and the 
equation can be written as 

Table A.3 Solution absorbance values at three 
wavelengths (from Table A . l a )  

Absorbance 

Sample 11 3L2 3L3 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

0.09 
0.12 
0.24 
0.19 
0.60 
0.49 
0.35 
0.25 
0.24 
0.33 

0.24 
0.12 
0.60 
0.27 
0.49 
0.44 
0.27 
0.77 
0.23 
0.19 

0.27 
0.29 
0.06 
0.25 
0.46 
0.27 
0.66 
0.08 
0.2 1 
0.35 
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The 2 x 1 matrix of concentrations, pre-multiplied by the 2 x 2 matrix of 
absorption coefficients, results in a 2 x 1 matrix of mixture absorbance values. 

The general rule for matrix multiplication is, if A is a matrix of m rows and 
n columns and B is of n rows and p columns then the product A.B is a matrix, 
C, of m rows and p columns: 

~ i j  = ail.bij i- a12.b, + * . * i- ain.bnj ~4.91  

This product is only defined if B has the same number of rows as A has 
columns. Although A.B may be defined, B.A may not be defined at all. Even 
when A.B and B.A are possible, they will in general be different, i.e. matrix 
multiplication is non-commutative. If A is a 3 x 2 matrix and B is a 2 x 3, then 
A.B is 3 x 3 but B.A is 2 x 2. 

The effects of pre-multiplying and post-multiplying by a diagonal matrix 
are of special interest. Suppose A and W are both m x m matrices and W is 
diagonal. Then the product A .  W is also a m x m matrix formed by multiplying 
each column of A by the corresponding diagonal element of W. The result W.A 
is also m x m but now its rows are multiples of the rows of A .  In Table A.4(a) 
the elements of the matrix W are the reciprocals of the maximum absorbances 
from each of the 10 samples from Table A.3. The product W.A, Table A.4(b), 

Table A.4 Diagonal matrix of weights for normalizing 
the absorbance data (a) and the normalized 
absorbance data matrix (b) 

~~~~~~ ~ 

(4 
0.60 0 

W =  [ 0 0.77 ] 
0 0 0.66 

Absorbance 
(b) 

Sample 11 1 2  1 3  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

0.14 
0.20 
0.39 
0.32 
1 .oo 
0.82 
0.58 
0.42 
0.39 
0.54 

0.3 1 
0.15 
0.78 
0.35 
0.64 
0.58 
0.35 
1 .oo 
0.30 
0.24 

0.41 
0.44 
0.09 
0.38 
0.69 
0.41 
1 .oo 
0.12 
0.32 
0.53 
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represents the matrix of spectra now normalized such that each has maximum 
absorbance of unity. 

A.4 Sums of Squares and Products 
The product obtained by pre-multiplying a column vector by its transpose is a 
single value, the sum of the squares of the elements. 

xT.x = Ex: [A. 101 

Geometrically, if the elements of x represent the coordinates of a point, 
then (xT.x) is the squared distance of the point from the origin, Figure A.2. 

If y is a second column vector, of the same size as x, then 

[A. 111 T T x .y = y .x = c (Xi&) 
and the result represents the sums of the products of the elements of x and y 

‘F 

x1 .y 
= cos6 

( xT . x. yT .y)0.5 
[A. 121 

where 6 is the angle between the lines connecting the two points defined by each 
vector and the origin, Figure A.3. 

If xT.y = 0 then, from Equation A.12, the two vectors are at right angles to 
each other and are said to be orthogonal. 

Sums of squares and products are basic operations in statistics and 
chemometrics. For a data matrix represented by X ,  the matrix of sums of 
squares and products is simply XTX. This can be extended to produce a 
weighted sums of squares and products matrix, C: 

c = xT.w.x [A. 131 

4 1  x1=2 ,  x2=3 

3 

x2 

2 

1 

0 
0 1 2 3 4 

X1 

Figure A.2 Sum of squares as a point in space 
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4 1  
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0 1 2 3 4 5 
X 1  

Figure A.3 Angle between two vectors (see text) 

where Wis a diagonal matrix, the diagonal elements of which are the weights 
for each sample. 

These operations have been employed extensively throughout the text; see, 
for example, the calculation of covariance and correlation about the mean and 
the origin developed in Chapter 3. 

A S  Inverse of a Matrix 
The division of one scalar value by another can be represented by the 
product of the first number and the inverse, or reciprocal, of the second. 
Matrix division is accomplished in a similar fashion, with the inverse of 
matrix A represented by A-'.  Just as the product of a scalar quantity and its 
inverse is unity, so the product of a square matrix and its inverse is the unit 
matrix of equivalent size, i.e. 

A.A-' = A-'.A = 1 [A. 141 

The multivariate inverse proves useful in many chemometric algorithms, 
including the solution of simultaneous equations. In Equation A.6 a pair of 
simultaneous equations were presented in matrix notation, illustrating the 
multivariate form of Beer's Law. Assuming the mixture absorbances were 
recorded, and the values for the absorption coefficients obtained from tables or 
measured from dilute solutions of the pure components, then rearranging 
Equation A.7 leads to 

E-'.A = C [A. 151 

from which the concentration vector can be calculated. 
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In general, a square matrix can only be inverted if each of its columns is 
linearly independent. If this is not the case, and a column is some multiple of 
another, then the matrix cannot be inverted and it is said to be ill-conditioned or 
singular. 

The manual calculation of the inverse of a matrix can be illustrated with a 
2 x 2 matrix. For larger matrices the procedure is tedious, the amount of work 
increasing as the cube of the size of the matrices. 

A = [ :  i] and A - ' = [ :  :] 
then from Equation A.14 we require 

P 4  a b  1 0  
[ r  s ] [ c  d ] = [ O  I ]  

i.e. 

Therefore, 

p a + q c  p b + q d  
ra+sc rb-ksd 

p a + q c =  1 
p b + q d = O  

ra + sc = 0 

rb + sd= 1 

Multiplying the first equation by d and the second by c, 

pad + qcd = d, and pbc + qdc = 0 

and subtracting, 

p(ad - be) = d 

or 

p = d/(ad - bc) = d / k  

where k = (ad - be) 
From the second equation we have 

q = -pb/d = -db/kd = -b/k 

Similarly from the third and fourth equations, 

R = - e l k  and s = a / k  

Thus the inverse matrix is given by 

[A. 161 

[A.17] 

[A. 181 

[A.19] 

[A.20] 

[A.21] 

[A.22] 
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The quantity k is referred to as the determinant of the matrix A ,  written IAI, 
1 2  and for the inverse to exist IAI must not be zero. The matrix 

inverse since (1 x 6) - (2 x 3) = 0; the columns are linearly dependent and the 
determinant is zero. 

A.6 Simultaneous Equations 
We are now in a position where we can solve our two-component, two- 
wavelength spectrochemical analysis for tryptophan and tyrosine. 

A 1 mg kg-' solution of tryptophan provides an absorbance of 0.4 at 200 nm 
and 0.1 at 300 nm, measured in a 1 cm path cell. The corresponding absorbance 
values, under identical conditions, for tyrosine are 0.1 and 0.3, and for a 
mixture, 0.63 and 0.57.What is the concentration of tryptophan and tyrosine in 
the mixture? 

From the experimental data, 

0.4 0.1 
Am = [ = [ 0.1 0.31 

Using Equation A.22, 

l&l = (0.12 - 0.01) = 0.1 1 

and 

- 0.3/0.11 -0.1/0.11 ] 
* = [ -0.1/0.11 0.4/0.11 

cm = E-'.Am 

= (0.72 - 0.52), (-0.57 + 2.07) 

= (1.2,1.5) 

[A.23] 

[A.24] 

CA.251 

[A.26] 

In the mixture there are 1.2 mg kg-' of tryptophan and 1.5 mg kg-' of 
tyrosine. 

A.7 Quadratic Forms 
To this point our discussions have largely focused on the application of 
matrices to linear problems associated with simultaneous equations, applica- 
tions that commonly arise in least-square, multiple regression techniques. One 
further important function that occurs in multivariate analysis and the analysis 
of variance is the quadratic form. 

The product xT-A .x is a scalar quantity and is referred to as a quadratic form 
of x. In statistics and chemometrics A is generally square and symmetric. 
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If A is a 2 x 2 matrix, 

= al1xl2 + a21xlx2 + a12x1x2 + a22x22 [A.27] 

and if a12 = a12 (A is symmetric), 

[A.28] 2 2 
= allxl + 2a21x1x2 + a22x2 

and if A = 1, 

2 = x1 + x; [A.29] 

Thus, the quadratic form generally expands to the quadratic equation 
describing an ellipse in two dimensions or an ellipsoid, or hyper-ellipsoid, in 
higher dimensions, as described in Chapter 1. 
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