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Preface 

The last few decades have witnessed a dramatic increase in the application 
of numerical computation to problems in solid and structural mechanics. The 
burgeoning of computational mechanics opened a pedagogical gap between 
traditional courses in elementary strength of materials and the finite element 
method that classical courses on advanced strength of materials and elasticity 
do not adequately fill. In the past, our ability to formulate theory exceeded our 
ability to compute. In those days, solid mechanics was for virtuosos. With the 
advent of the finite element method, our ability to compute has surpassed our 
ability to formulate theory. As a result, continuum mechanics is no longer the 
province of the specialist. 

What an engineer needs to know about mechanics has been forever changed 
by our capacity to compute. This book attempts to capitalize on the pedagogi­
cal opportunities implicit in this shift of perspective. It now seems more ap­
propriate to focus on fundamental principles and formulations than on classical 
solution techniques. 

The term structural mechanics probably means different things to different 
people. To me it brings to mind the specialized theories of beams, plates, and 
shells that provide the building blocks of common structures (if it involves 
bending moment then it is probably structural mechanics). Structural elements 
are often slender, so structural stability is also a key part of structural mechan­
ics. This book covers the fundamentals of structural mechanics. The treatment 
here is guided and confined by the strong philosophical framework of continu­
um mechanics and is given wings to fly by the powerful tools of numerical 
analysis. 



xii Preface 

In essence, this book is an introduction to computational structural mechan­
ics. The emphasis on computation has both practical and pedagogical roots. 
The computational methods developed here are representative of the methods 
prevalent in the modem tools of the trade. As such, the lessons in computation 
are practical. An equally important outcome of the computational framework 
is the great pedagogical boost that the student can get from the notion that most 
problems are amenable to the numerical methods advocated herein. A theory 
is ever-so-much more interesting if you really believe you can crunch numbers 
with it. This optimistic outlook is a pedagogical boon to learning mechanics 
and the mathematics that goes along with it. 

This book is by no means a comprehensive treatment of structural mechan­
ics. It is a simple template to help the novice learn how to think about structural 
mechanics and how to express those thoughts in the language of mathematics. 
The book is meant to be a preamble to further study on a variety of topics from 
continuum mechanics to finite element methods. The book is aimed at ad­
vanced undergraduates and first-year graduate students in any of the mechani­
cal sciences (e.g., civil, mechanical, and aerospace engineering). 

The book starts with a brief account of the algebra and calculus of vectors 
and tensors (chapter 1). One of the main goals of the first chapter is to introduce 
some requisite mathematics and to establish notation that is used throughout 
the book. The next three chapters lay down the fundamental principles of con­
tinuum mechanics, including the geometric aspects of deformation and motion 
(chapter 2), the laws governing the transmission of force (chapter 3), and ele­
ments of constitutive theory (chapter 4). 

Chapters 5 and 6 concern boundary value problems in elasticity and their 
solution. We introduce the classical (strong form) and the variational (weak 
form) of the governing differential equations. Many of the ideas are motivated 
with the one-dimensional ''little boundary value problem'' The Ritz method 
is offered as a general approach to numerical computations, based upon the 
principle of virtual work. Although we do not pursue it in detail, we show how 
the Ritz method can be specialized to form the popular and powerful/z«te ele­
ment method. The Ritz method provides a natural tool for all of the structural 
mechanics computations needed for the rest of the book. 

Chapters 7 and 8 cover the linear theories of beams and plates, respectively. 
These structural mechanics theories are developed within the context of three-
dimensional continuum mechanics with the dual benefit of lendmg a deeper 
understanding of beams and plates and, at the same time, of providing two rele­
vant applications of the general equations of continuum mechanics presented 
in the first part of the book. The classical constrained theories of beams (Ber-
nouUi-Euler) and plates (Kirchhoff-Love) are examined in detail. Each theory 
is cast both as a classical boundary value problem and as a variational problem. 
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Chapters 9 through 11 concern structural stability. Chapter 9 explores the 
concept of energy principles, observing that if an energy functional exists we 
can deduce it from a virtual-work functional by a theorem of Vainberg. The 
relationship between virtual work and energy provides an opportunity for fur­
ther exploration of the calculus of variations. This chapter ends with the ob­
servation that one can use an energy criterion to explore the stability of static 
equilibrium if the system possesses an energy functional. Chapter 10 gives a 
brief, illustrative invitation to static stability theory. Through the examination 
of some simple discrete systems, we encounter many of the interesting phe­
nomena associated with nonlinear systems. We distinguish limit points from 
bifurcation points, explore the effects of imperfections, and examine the role 
of linearized buckling analysis. Chapter 11 extends the ideas of chapter 10 to 
continuous systems, applying the machinery developed in chapter 9 to nonlin­
ear planar beam theory. 

Structural stability problems create a strong need for a general approach to 
nonlinear computations. Chapter 12 provides an introduction to nonlinear 
computations in mechanics. Newton's method serves as the unifying frame­
work for organizing the nonlinear computations. The arc-length method is of­
fered as a general strategy for numerically tracing equilibrium paths of nonlin­
ear mechanical systems. We illuminate the curve-tracing algorithm by 
numerically solving Euler's elastica and subsequently apply the algorithm to 
the solution of the fully nonlinear beam problem. Computer programs are pres­
ented at each level of the development to help cement the understanding of the 
algorithms. 

Juan C. Simo, to whose memory this book is dedicated, was my closest and 
dearest friend. We were graduate students at the University of California at 
Berkeley in the early 1980s. We spent countless hours in the coffee shops near 
campus discussing mechanics. I learned to appreciate mechanics by watching 
his deep and clear insight flow from his pen onto his "pad yellow," as he called 
it in his inimitable Spanish accent. In his hands, the equations of mechanics 
came to life. Juan's love for mechanics, his tireless pursuit of knowledge, and 
his gift for developing and expressing theory made an indelible mark on me. 
His influence is clearly written on these pages. 

Juan Simo passed away on September 26, 1994, at the age of 42, after an 
eight-month battle with cancer. In his short career, Juan made tremendous con­
tributions to the field of computational mechanics, many of them in the area 
of nonlinear structural mechanics. Unfortunately, a classical education in 
structural mechanics leaves the student ill-equipped to appreciate Juan's con­
tributions (not to mention the contributions of many others). The approach I 
have taken in this book was inspired by the hope of narrowing the gap between 
classical structural mechanics and some of the modem innovations in the field. 



xiv Preface 

I owe a great debt to Juan that I can repay only by passing on what he taught 
me to the next generation of scholars and engineers. I hope this book defrays 
some of that debt. 

The first edition of the book was bom as a brief set of class notes for my 
course Applied Structural Mechanics at the University of Illinois. I am in­
debted to Bill Hall, Narbey Khachaturian, and Arthur Robinson for enabling 
the teaching opportunity that led to this book. I have loved every minute of the 
24 times I have taught this course. I am indebted to the many students who have 
taken my course, first for inspiring me to write the book and then for gamely 
trying to learn from it. I appreciate the help of my former students and piost-
docs—Parvis and Bijan Banan (a.k.a. "the bros"), Jiwon Kim, Ertugrul Taciro-
glu, Eric Williamson, and Ken Zuo— f̂or their assistance with the first edition 
and later the completion of the solutions to all of the problems in that edition. 
I also appreciate the support of my colleagues—especially Bob Dodds, Dennis 
Parsons, and Glaucio Paulino— f̂or believing in the course enough to make it 
a cornerstone of our graduate curriculum in structural engineering at Illinois. 

This second edition of the book is informed by nearly a decade of using the 
first edition in my class. I have refined the story and added some important top­
ics. I have tightened up some of the things that were a little loose and loosened 
a few that were a bit tight. I even rewrote the computer programs in MATLAB. 

I have expanded the number of examples in the text and I have augmented the 
problems at the ends of the chapters— t̂apping into my extensive collection of 
problems that have grown from my proclivity to facilitate the learning of me­
chanics through a diet of fortnightly "quizzes." The revisions for the second 
edition were largely made during the fall semester of 2003. The students in that 
class endured last minute delivery of the new chapters and did yeoman's work 
in tracking down typographical errors. I am especially appreciative of my own 
research assistants—Steve Ball, Kristine Cochran, Ghadir Haikal, Kalyanaba-
bu Nakshatrala, and Arun Prakash— f̂or proofreading the text and making 
suggestions for its improvement. Special thanks to Kalyan for providing a tidy 
proof of Vainberg's theorem. 

Finally, I am grateful to my wife, Kara, and my children, David, Kirsten, and 
Aimika for being cheerful and supportive while the book robbed them of my 
time and attention. While it was Juan Simo who taught me the joy of mechan­
ics, my family has taught me the mechanics of joy. 

Keith D. Hjelmstad 



1 
Vectors and Tensors 

The mechanics of solids is a story told in the language of vectors and tensors. 
These abstract mathematical objects provide the basic building blocks of our 
analysis of the behavior of solid bodies as they deform and resist force. Anyone 
who stands poised to undertake the study of structural mechanics has undoubt­
edly encountered vectors at some point. However, in an effort to establish a 
least common denominator among readers, we shall do a quick review of vec­
tors and how they operate. This review serves the auxiliary purpose of setting 
up some of the notational conventions that will be used throughout the book. 

Our study of mechanics will naturally lead us to the concept of the tensor, 
which is a subject that may be less familiar (possibly completely unknown) to 
the reader who has the expected background knowledge in elementary me­
chanics of materials. We shall build the idea of the tensor from the ground up 
in this chapter with the intent of developing a facility for tensor operations 
equal to the facility that most readers will already have for vector operations. 
In this book we shall be content to stick with a Cartesian view of tensors in rec­
tangular coordinate systems. General tensor analysis is a mathematical subject 
with great beauty and deep significance. However, the novice can be blinded 
by its beauty to the point of missing the simple physical principles that are the 
true subject of mechanics. So we shall cling to the simplest possible rendition 
of the story that still respects the tensorial nature of solid mechanics. 

Mathematics is the natural language of mechanics. This chapter presents a 
fairly brief treatment of the mathematics we need to start our exploration of 
solid mechanics. In particular, it covers some basic algebra and calculus of 
vectors and tensors. Plenty more math awaits us in our study of structural me-
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chanics, but the rest of the math we will develop on the fly as we need it, com­
plete with physical context and motivation. 

This chapter lays the foundation of the mathematical notation that we will 
use throughout the book. As such, it is both a starting place and a refuge to re­
gain one's footing when the going gets tough. 

The Geometry of Three-dimensional Space 
We live in three-dimensional space, and all physical objects that we are famil­
iar with have a three-dimensional nature to their geometry. In addition to solid 
bodies, there are basically three primitive geometric objects in three-dimen­
sional space: the point, the curve, and the surface. Figure 1 illustrates these ob­
jects by taking a slice through the three-dimensional solid body 98 (a cube, in 
this case). A point describes position in space, and has no dimension or size. 
The point 9̂  in the figure is an example. The most convenient way to describe 
the location of a point is with a coordinate system like the one shown in the fig­
ure. A coordinate system has an origin 0 (a point whose location we under­
stand in a deeper sense than any other point in space) and a set of three coordi­
nate durections that we use to measure distance. Here we shall confine our 
attention to Cartesian coordinates, wherein the coordinate directions are mutu­
ally perpendicular. The location of a point is then given by its coordinates x = 
(jCi, JC2, JC3). A point has a location independent of any particular coordinate 
system. The coordinate system is generally introduced for the convenience of 
description or numerical computation. 

A curve is a one-dimensional geometric object whose size is characterized 
by its arc length. In a sense, a curve can be viewed as a sequence of points. A 
curve has some other interestmg properties. At each point along a curve, the 
curve seems to be heading in a certain direction. Thus, a curve has an orienta­
tion in space that can be characterized at any point along the curve by the line 
tangent to the curve at that point. Another property of a curve is the rate at 
which this orientation changes as we move along the curve. A straight line is 

Figure 1 The elements of the geometry of three-dimensional space 
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a curve whose orientation never changes. The curve C exemplifies the geomet­
ric notion of curves in space. 

A surface is a two-dimensional geometric object whose size is characterized 
by its surface area. In a certain sense, a surface can be viewed as a family of 
curves. For example, the collection of lines parallel and perpendicular to the 
curve e constitute a family of curves that characterize the surface ^. A surface 
can also be viewed as a collection of points. Like a curve, a surface also has 
properties related to its orientation and the rate of change of this orientation as 
we move to adjacent points on the surface. The orientation of a surface is com­
pletely characterized by the single line that is perpendicular to the tangent lines 
of all curves that pass through a particular point. This line is called the normal 
direction to the surface at the point. A flat surface is usually called a plane, and 
is a surface whose orientation is constant. 

A three-dimensional solid body is a collection of points. At each point, we 
ascribe some physical properties (e.g., mass density, elasticity, and heat capac­
ity) to the body. The mathematical laws that describe how these physical prop­
erties affect the interaction of the body with the forces of nature summarize our 
understanding of the behavior of that body. The heart of the concept of continu­
um mechanics is that the body is continuous, that is, there are no finite gaps 
between points. Clearly, this idealization is at odds with particle physics, but, 
in the main, it leads to a workable and useful model of how solids behave. The 
primary purpose of hanging our whole theory on the concept of the continuum 
is that it allows us to do calculus without worrying about the details of material 
constitution as we pass to infinitesimal limits. We will sometimes find it useful 
to think of a solid body as a collection of lines, or a collection of surfaces, since 
each of these geometric concepts builds from the notion of a point in space. 

Vectors 
A vector is a directed line segment and provides one of the most useful geomet­
ric constructs in mechanics. A vector can be used for a variety of purposes. For 
example, in Fig. 2 the vector v records the position of point b relative to point 
a. We often refer to such a vector as 2i position vector, particularly when a is 
the origin of coordinates. Qose relatives of the position vector are displace­
ment (the difference between the position vectors of some point at different 
times), velocity (the rate of change of displacement), znd acceleration (the rate 
of change of velocity). The other common use of the notion of a vector, to 
which we shall appeal in this book, is the concept oi force. We generally think 

Figure 2 A vector is a directed line segment 
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offeree as an action that has a magnitude and a direction. Likewise, displace­
ments are completely characterized by their magnitude and direction. Because 
a vector possesses only the properties of magnitude (length of the line) and di­
rection (orientation of the line in space), it is perfectly suited to the mathemati­
cal modeling of things like forces and displacements. Vectors have many other 
uses, but these two are the most important in the present context. 

Graphically, we represent a vector as an arrow. The shaft of the arrow gives 
the orientation and the head of the arrow distinguishes the direction of the vec­
tor from the two possibilities inherent in the line segment that describes the 
shaft (i.e., line segments ab and ba in Fig. 2 are both oriented the same way in 
space). The length, or magnitude, of a vector v is represented graphically by 
the length of the shaft of the arrow and will be denoted symbolically as || v || 
throughout the book. 

The magnitude and direction of a vector do not depend upon any coordinate 
system. However, for computation it is most convenient to describe a vector 
in relation to a coordinate system. For that purpose, we endow our coordinate 
system with unit base vectors {Ci, 62, €3} pointing in the direction of the coor­
dinate axes. The base vectors are geometric primitives that are introduced 
purely for the purpose of establishing the notion of direction. Like the origin 
of coordinates, we view the base vectors as vectors that we understand more 
deeply and intuitively than any other vector in space. Basically, we assume that 
we know what it means to be pointing in the Ci direction, for example. Any 
collection of three vectors that point in different directions makes a suitable ba­
sis (in the language of linear algebra we would say that three such vectors span 
three-dimensional space). Because we have introduced the notion of base vec­
tors for convenience, we shall adopt the most convenient choice. Throughout 
this book, we will generally employ orthogonal unit vectors in conjunction 
with a Cartesian coordinate system. 

Any vector can be described in terms of its components relative to a set of 
base vectors. A vector v can be written m terms of base vectors {ci, €2, €3) as 

V = Viei + V2e2 + V3e3 (1) 

where Vj, V2, and V3 are called the components of the vector relative to the ba­
sis. The component v, measures how far the vector extends in the e, direction, 
as shown in Fig. 3. A component of a vector is a scalar. 

Vector operations. An abstract mathematical construct is not really useful 
until you know how to operate with it. The most elementary operations in 
mathematics are addition and multiplication. We know how to do these opera­
tions for scalars; we must establish some corresponding operations for vectors. 

Vector addition is accomplished with the head-to-tail rule or parallelogram 
rule. The sum of two vectors u and v, which we denote u H- v, is the vector con­
necting the tail of u with the head of v when the tail of v lies at the head of u, 
as shown in Fig. 4. If the vectors u and v are replicated to form the sides of a 



Chapter 1 Vectors and Tensors 

•=3 i 

Figure 3 The components of a vector relative to a basis 

parallelogram abed, then u + v is the diagonal ac of the parallelogram. Sub­
traction of vectors can be accomplished by introducing the negative of a vector, 
— V (segment bf in Fig. 4), as a vector with the same magnitude that points in 
exactly the opposite direction of v. Then, u - v is simply realized as u + ( - v). 
If we construct another parallelogram abfe, then u — v is the diagonal af. It is 
evident from the figure that segment af is identical in length and direction to 
segment db, A vector can be added to another vector, but a vector and a scalar 
cannot be added (the well-worn analogy of the impossibility of adding apples 
and oranges applies here). 

We can multiply a vector v by a scalar a to get a vector a\ having the same 
direction but a length equal to the original length || v || multiplied by a. If the 
scalar a has a negative value, then the sense of the vector is reversed (i.e., it 
puts the arrow head on the other end). With these definitions, we can make 
sense of Eqn. (1). The components v, multiply the base vectors C/to give three 
new vectors VjCi, V2e2, and v^e^. The resulting vectors are added together by 
the head-to-tail rule to give the final vector v. 

The operation of multiplication of two vectors, say u and v, comes in three 
varieties: The dot product (often called the scalar product) is denoted u • v; 
the cross product (often called the vector product) is denoted u x v; and the 
tensor product is denoted u (8) v. Each of these products has its own physical 
significance. In the following sections we review the definitions of these terms, 
and examine the meaning behind carrying out such operations. 

Figure 4 Vector addition and subtraction by 
the head-to-tail or parallelogram rule 
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v - u 

Figure 5 The angle between two vectors 

The dot product. The dot product is a scalar value that is related to not only 
the lengths of the vectors, but also the angle between them. In fact, the dot prod­
uct can be defined through the formula 

u • V = II u IIII V II COS 9(u, v) (2) 

where cos0(u, v) is the cosine of the angle 0 between the vectors u and v, 
shown in Fig. 5. The definition of the dot product can be expressed directly in 
terms of the vectors u and v by using the law of cosines, which states that 

II u p + II V p = II v - u P + 2 II u IIII v II cose(u, V) 

Using this result to eliminate 6 from Eqn. (2), we obtain the equivalent defini­
tion of the dot product 

v = + iivr-iiv-ur) (3) 

We can think of the dot product as measuring the relative orientation be­
tween two vectors. The dot product gives us a means of defining orthogonality 
of two vectors. Two vectors are orthogonal if they have an angle of jr/2 radians 
between them. According to Eqn. (2), any two nonzero vectors u and v are ort­
hogonal if u • V = 0. If u and V are orthogonal, then they are the legs of a right 
triangle with the vector v — u forming the hypotenuse. In this case, we can see 
that the Pythagorean theorem makes the right-hand side of Eqn. (3) equal to 
zero. Thus, u • v = 0, as before. 

Equation (3) suggests a means of computing the length of a vector. The dot 
product of a vector v with itself is v • v = || v p. With this observation Eqn. 
(2) verifies that the cosine of zero (the angle between a vector and itself) is one. 

The dot product is commutative, that is, u • v = v • u. The dot product also 
satisfies the distributive law. In particular, for any three vectors u, v, and w and 
scalars a, fi, and y, we have 

an ' (^v-hyw) = afi(u • v) + ay(n • w) (4) 

The dot product can be computed from the components of the vectors as 
3 3 3 3 

; = i / = 1 ; = 1 
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In the first step we merely rewrote the vectors u and v in component form. In 
the second step we simply distributed the sums. If the last step puzzles you then 
you should write out the sums in longhand to demonstrate that the mathemati­
cal maneuver was legal. Because the base vectors are orthogonal and of unit 
length, the products e, • ê  are all either zero or one. Hence, the component 
form of the dot product reduces to the expression 

u • V (5) 

The dot product of the base vectors arises so frequently that it is worth 
introducing a shorthand notation. Let the symbol dij be defined such that 

1 0 if / 7̂  ; 
(6) 

The symbol 5y is often referred to as the Kronecker delta, Qearly, we can write 
ti • Cy = diy When the Kronecker delta appears in a double summation, that 
part of the summation can be carried out explicitly (even without knowing the 
values of the other quantities involved in the sum!). This operation has the ef­
fect of contraction from a double sum to a single summation, as follows 

3 3 3 

1 = 1 ; = 1 / = 1 

A simple way to see how this contraction comes about is to write out the sum 
of nine terms and observe that six of them are multiplied by zero because of 
the definition of the Kronecker delta. The remaining three terms always share 
a common value of the indices and can, therefore, be written as a single sum, 
as indicated above. 

One of the most important geometric uses of the dot product is the computa­
tion of the projection of one vector onto another. Consider a vector v and a unit 
vector n, as shown in Fig. 6. The dot product v • n gives the amount of the vec­
tor V that points in the direction n. The proof is quite simple. Note that ahc is 
a right triangle. Define a second unit vector m that points in the direction be. 
By construction m • n = 0. Now let the length of side ab be y and the length 

Figure 6 The dot product gives the amount of v pointing in the direction n 
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of side fee be j8. The vector ab is then y n and the vector be is j3 m. By the head-
to-tail rule we have v = yn+)Sm. Taking the dot product of both sides of this 
expression with n we arrive at the result 

V • n = (yn-hjSm) - n = y 

since n • n = 1. But y is the length of the side ab, proving the original asser­
tion. This observation can be used to show that the dot product of a vector with 
one of the base vectors has the effect of picking out the component of the vector 
associated with the base vector used in the dot product. To wit, 

3 3 

1 = 1 J = l 

We can summarize the geometric significance of the vector components as 

= e„ (8) 

That is, v^ is the amount of v pointing in the direction e,^^ 

The cross product. The cross product of two vectors u and v results in a vec­
tor u x v that is orthogonal to both u and v. The length of u x v is defined as 
being equal to the area of a parallelogram, two sides of which are described by 
the vectors u and v. To wit 

A(u,v) = ||u X vl (9) 

as shown in Fig. 7. The direction of the resulting vector is defined according 
to the right-hand rule. The cross product is not commutative, but it satisfies the 
condition of skew symmetry u x v = — v x u. In other words, reversing the 
order of the product only changes the direction of the resulting vector. The base 
vectors satisfy the following identities 

Ci X 62 = Ca 

€2 X ©3 = Cj 

©3 X Cĵ  ^ ©2 

©2 X Cj — ©3 

63 X 62 = - Ci 

Ci X 63 = - 62 

(10) 

Like the dot product, the cross product is distributive. For any three vectors u, 
V, and w and scalars a, ^, and y, we have 

U X V • 

^ ^ 
I A(u,v) = | |ux v| 

Figure 7 Area and the cross product of vectors 
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an X (^v+yw) = a^(u x v) + ay(u x w) 

The component form of the cross product of vectors u and v is 

3 3 3 3 

u x v = J^M.e,- xj^v^-e,- = X Z" ' ' ' > (^ ' ^ ^̂ l 

9 

(11) 

) = i / = 1 ; = 1 

where, again, we have first represented the vectors in component form and 
then distributed the product. Carrying out the summations, substituting the ap­
propriate incidences of Eqn. (10) for each term of the sum, the component form 
of the cross product reduces to the expression 

U X V = ( M 2 ^ 3 ~ W 3 ^ 2 ) C I + (W3VI—WiV3)e2 + (WiV2~W2^l)C3 (12) 

The triple scalar product. The triple scalar product of three vectors u, v, 
and w is denoted as (u x v) • w. Since the dot product results in a scalar and 
the cross product results in a vector, the order of multiplication is important 
(and is shown with parentheses). The triple scalar product has an important 
geometric interpretation. Consider the parallelepiped defined by the three vec­
tors u, V, and w shown in Fig. 8. The cross product of u and v results in a vector 
that is normal to both u and v. Let us normalize this vector by its length to define 
the unit vector n = u X v/ || u X v ||. The height of the parallelepiped per­
pendicular to its base is the length of the component of w that lies along the unit 
vector n. This height is simply A = w • n. Thus, the volume of the parallele­
piped is the base area times the height 

V(u,v,w) = AA(u,v) = ( w - u x v 
u X vl 

u x v 

Upon simplification, we get the following formula for the volume of the paral­
lelepiped as the triple scalar product of the three vectors u, v, and w 

V(u,v,w) = (u X v) • w (13) 

The triple scalar product can be computed in terms of components. Taking the 
dot product of w with u x v, as already given in Eqn. (12), we find 

n = u x v 

/i = w • n 

Figure 8 Volume and the triple scalar product 
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(U X v ) • W = >Vi(w2V3""«3^2) + ^ 2 ( " 3 ^ 1 ~ " l ^ 3 ) + >^3(«1^2 ~ "2 ^1) 

= (WiV2W3 + M2V3> l̂ + " 3 ^ 1 ^ 2 ) ~ (W3V2IV1 + W2^1^3 + " l ^ 3 ^ 2 ) 

where the second form shows quite clearly that the indices are distinct for each 
term and that the indices on the positive terms are in cyclic order while the 
indices on the negative terms are in acyclic order. Cyclic and acyclic order can 
be easily visualized, as shown in Fig. 9. If the numbers 1, 2, and 3 appear on 
a circle in clockwise order, then a cyclic permutation is the order in which you 
encounter these numbers when you move clockwise from any starting point, 
and an acyclic permutation is the order in which you encounter them when you 
move anticlockwise. The indices are in cyclic order when they take the values 
(1, 2, 3), (2, 3,1), or (3,1, 2). The indices are in acyclic order when they take 
the values (3, 2, l), (l, 3, 2), or (2, l, 3). 

r'\ <'>. 

Cyclic Acyclic 

Figure 9 Cyclic and acyclic permutations of the numbers 1, 2, and 3 

The triple scalar product of base vectors represents a fundamental geomet­
ric quantity. It will be used in Chapter 2 to describe the volume of a solid body 
and the changes in that volume. Let us introduce a shorthand notation that is 
related to the triple scalar product. Let the (permutation) symbol ê t̂be 

(14) 

The scalars eijk are sometimes referred to as the components of thopermutation 
tensor. There are 27 possible permutations of three indices that can each take 
on three values. Of these 27, only three have (distinct) cyclic values and only 
three have (distinct) acyclic values. All other permutations of the indices in­
volve equality of at least two of the indices. The 27 possible values of the per­
mutation symbol can be summarized with the triple scalar products of the base 
vectors. To wit. 

eijk = < 

' 1 if (/,;, k) are in cyclic order 

0 if any of (/,;, k) are equal 

^ - 1 if (/,;, k) are in acyclic order 

(e,- X e,.) • e* = e,yt (15) 

With the permutation symbol, the cross product and the triple scalar product 
can be expressed neatly in component form as 
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3 3 3 

1=1 j = l i t= l 

3 3 3 

(ux v)-w = XZZ"'''^'^^^^-* 

1 = 1 , = 1 i t = l 

3 3 3 (16) 

1 = 1 ; = 1 i t = l 

You should verify that these formulas involving e^k give the same results as 
found previously. 

Tensors 
The cross product is an example of a vector operation that has as its outcome 
a new vector. It is a very special operator in the sense that it produces a vector 
orthogonal to the plane containing the two original vectors. There is a much 
broader class of operations that produce vectors as the result. The second-or­
der tensor is the mathematical object that provides the appropriate generaliza­
tion. (If the context is not ambiguous, we will often refer to a second-order ten­
sor simply as a tensor.) 

Definition. A tensor is an object that operates on a 
vector to produce another vector. (17) 

Schematically, this operation is shown in Fig. 10, wherein a tensor T operates 
on the vector v to produce the new vector Tv. Unlike a vector, there is no easy 
graphical representation of the tensor T itself. In abstract we shall understand 
a tensor by observing what it does to a vector. The example shown in Fig. 10 
is illustrative of all tensor actions. The vector v is stretched and rotated to give 
the new vector Tv. In essence, tensors stretch and rotate vectors. 

A tensor is a linear operator that satisfies 

T(au+)8v+yw) = aTu + )8Tv + yTw (18) 

for any three scalars a,)8, y, and any three vectors u, v, w. Because any vector 
in three-dimensional space can be expressed as a linear combination of three 
vectors that span the space, it is sufficient to consider the action of the tensor 
on three independent vectors. The action of the tensor T on the base vectors, 
for example, completely characterizes the action of the tensor on any other 
vector. Thus, it is evident that a tensor can be completely characterized by nme 

Figure 10 A tensor operates on a vector to produce another vector 
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scalar quantities: the three components of the vector Tci, the three components 
of the vector Te2, and the three components of the vector Tcs. We shall refer 
to these nine scalar quantities as the components of the tensor. Like a vector, 
which can be expressed as the sum of scalar components times base vectors, 
we shall represent a tensor as the sum of scalar components times base tensors. 
We introduce the tensor product of vectors as the building block to define a nat­
ural basis for a second-order tensor. 

The tensor product of vectors. The tensor product of two vectors u and v 
is a special second-order tensor which we shall denote [u ® v]. The action of 
this tensor is embodied in how it operates on a vector w, which is 

[u 0 v]w = (v • w)u (19) 

In other words, when the tensor u (8) v operates on w the result is a vector that 
points in the direction u and has the length equal to (v • w) || u ||, the original 
length of u multiplied by the scalar product of v and w. The tensor product of 
vectors appears to be a rather curious object, and it certainly takes some getting 
used to. It will, however, prove to be highly useful in developing a coordinate 
representation of a general tensor T. 

The tensor products of the base vectors e, (8) ê  comprise a set of second-or­
der tensors. Since there are three base vectors, there are nine distinct tensor 
product combinations among them. These nine tensors provide a suitable basis 
for expressing the components of a tensor, much like the base vectors them­
selves provided a basis for expressing the components of a vector. Like the 
base vectors, we presume to understand these base tensors better than any other 
tensors in the space. We can confirm that by noting that their action is given 
simply by Eqn. (19). In fact, we can observe from Eqn. (19) that 

[e,(8)e,]e;t = (ey-e^tje,- = dj^ti (20) 

We will use this knowledge of the tensor product of base vectors to help us with 
the manipulation of tensor components. 

The second-order tensor T can be expressed in terms of its components T̂  
relative to the base tensors e, (S) ê  as 

^ = a^^le^^ej] (21) 

It will soon be evident why we elect to represent the nine scalar components 
with a double indexed quantity. Like vector components, the components T̂  
are scalar values that depend upon the basis chosen for the representation. The 
tensor part of T comes from the base tensors e, 0 ê . The tensor, then, is a sum 
of scalars times base tensors. Like a vector, the tensor T itself does not depend 
upon the coordinate system; only the components do. 
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A tensor is completely characterized by its action on the three base vectors. 
Let us compute the action of T on the base vector ê , 

3 3 3 3 3 

t = l J = l i = l ; = 1 

The first step simply introduces the coordinate form of T. The second step car­
ries out the tensor product of vectors as in Eqn. (20). The final step recognizes 
that the sum of nine terms reduces to a sum of three terms because six of the 
nine terms are equal to zero. 

We can get some insight into the physical significance of the components 
by taking the dot product of e^ andXe^. Recall from Eqn. (8) that dotting a vec­
tor with e^ simply extracts the wth component of the vector. Starting from the 
result of Eqn. (22) we compute 

(23) 

Thus, we can see that r^„ is the wth component of the vector Te„. We can sum­
marize the physical significance of the tensor components as follows 

T = e • Te (24) 

The identity tensor. The identity tensor is the tensor that has the property 
of leaving a vector unchanged. We shall denote the identity tensor as I, and en­
dow it with the property that Iv = v, for all vectors v. The identity tensor can 
be expressed in terms of orthonormal (i.e., orthogonal and unit) base vectors 

I = X*'®®' (25) 

Of course, this definition holds for any orthonormal basis. To prove that Eqn. 
(25), we need only consider the action of I on a base vector Cy. To wit 

3 3 3 

/ = 1 1 = 1 1 = 1 

Since the base vectors span three-dimensional space, it is apparent that Iv = v 
for any vector. Observe that Eqn. (25) can br expressed in terms of the Kro-
necker delta as 

I = EZ^'>[*'®«>] 
. = 1 ) = i 
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Hence, 6y can be interpreted as the yth component of the identity tensor. 

The tensor inverse. Let us assume that we have a tensor T and that it acts 
on a vector v to produce another vector Tv. A tensor stretches and rotates a vec­
tor. It seems reasonable to imagine a tensor that undoes the action of another 
tensor. Such a tensor is called the inverse of the tensor T, and we denote it as 
T~\ Thus, T"Ms the tensor that exactly undoes what the tensor T does. To be 
more specific, the tensor T"^ can be applied to the vector Tv to give back v. 
Conversely, if the tensor T ~ Ms applied to the vector v to give the vector T ~ ̂  v, 
then the tensor T can be applied to T " ̂  v to give back the vector v. These opera­
tions define the inverse of a tensor and are summarized as follows 

T-i(Tv) = V, T(T-^v) = v (26) 

The above relations hold for any vector v. As we will soon see, the composition 
of tensors (a tensor operating on a tensor) can be viewed as a tensor itself. Thus, 
we can say that T'^T = I and TT"^ = I. 

Example 1. As a simple example of a tensor and its operation on vectors, consid­
er tht projection tensor P that generates the image of a vector v projected onto 
the plane with normal n, as shown in Fig. 11. 

Figure 11 The action of the projection tensor 

The explicit expression for the tensor is given by 

P = I - n ® n (27) 

where I is the identity tensor. The action of P on v gives the result 

Pv = [l-n(8)n]v 

= Iv - [n® n]v 

= V - (n • v)n 

To see that the vector Pv lies in the plane we need only to show that its dot 
product with the normal vector n is zero. Accordingly, we can make the com­
putation Pv • n = (v • n)-(v • n)(n • n) = 0, since n is a unit vector. 

It is interesting to note that we can derive the tensor P from geometric consid­
erations. From Fig. 11 we can see that, by vector addition, Pv+j8n = v for 
some, as yet unknown, value of the scalar^. To determiners we simply take the 
dot product of the previous vector equation with the vector n, noting that n has 
unit length and is perpendicular to Pv. Hence, )3 = v • a Now, we substitute 
back to get 
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Pv = v - i 8 n = V - (v • n)n = [ l - n ® n ] v (28) 

thereby determining the tensor P. 

Component expression for operation of a tensor on a vector. Equipped 
with the component representation of a tensor we can now take another look 
at how a tensor T operates on a vector v. In particular, let us examine the com­
ponents of the resulting vector Tv. 

3 3 3 3 3 3 

1=1 j = l k=\ i=l ; = 1 k=\ 

Carrying out the summations in Eqn. (29), noting the properties expressed in 
Eqn. (20), we finally obtain the result 

3 3 

/ = i y = i 

From this expression, we can see that the result is a vector (anything expressed 
in a vector basis is a vector). Furthermore, we can observe from Eqn. (30) that 
the ith component of the vector Tv is given by 

3 

(Tv), = X V ) (31) 

That is, we compute the /th component of the resulting vector from the compo­
nents of the tensor and the components of the original vector. The similarity 
between the operation of a tensor and that of a matrix in linear algebra should 
be apparent. 

The summation convention. General relativity is a theory based on ten­
sors. While Einstein was working on this theory, he apparently got rather tired 
of writing the summation symbol with its range of summation decorating the 
bottom and top of the Greek letter sigma. What he observed was that, most of 
the time, the range of the summation was equal to the dimension of space (three 
dimensions for us, four for him) and that when the summation involved a prod­
uct of two terms, the summation was over a repeated index. For example, in 
Eqn. (31) the index; is the index of summation, and it appears exactly twice 
in the summand TijVj, Einstein decided that, with a little care, summations 
could be expressed without laboriously writing the summation symbol. The 
summation symbol would be understood to apply to repeated indices. 

The summation convention, then,.means that any repeated index, also called 
a dummy index, is understood to be summed over the range 1 to 3. With the 
summation convention, then, Eqn. (30) can be written as 



16 Fundamentals of Structural Mechanics 

Tv = T^vje, 

with the summation on the indices i and; implied because both are repeated. 
All we have done is to eliminate the summation symbol, a pretty significant 
economy of notation. The triple scalar product of vectors can now be written 

(u X v) • w = UiVjWke^jk 

Indices that are not repeated in a product are called free indices. These 
indices are not summed and must appear on both sides of the equation. For ex­
ample, the index i in the equation 

(Tv), = r,v, 

is a free index. The presence of free indices really indicate multiple equations. 
The index equation must hold for all values of the free index. The equation 
above is really three equations, 

(Tv), = V , , (Tv), = r,,v, (Tv)3 = r3,v, 

That is, the free index i takes on values 1, 2, and 3, successively. 
The letter used for a dummy index can be changed at will without changing 

the value of the expression. For example, 

(Tv). = TijVj = r^v^ 

A free index can be renamed if it is renamed on both sides of the equation. The 
previous equation is identical to 

(Tv)„ = T^jvj = r ^v , 

The beauty of this shorthand notation should be apparent. But, like any nota-
tional device it should be used with great attention to detail. The mere slip of 
an index can ruin a derivation or computation. 

Perhaps the greatest pitfall of the novice index manipulator is to use an index 
too many times. An expression with an index appearing more than twice is am­
biguous and, therefore, meaningless. For example, the term r,7V,has no mean­
ing because the summation is ambiguous. The summation convention applies 
only to terms involved in the same product; to indices of the same tensor, as in 
the case Ta = Tn + 722 + T^s; and to indices in a quotient, as in the expression 
for divergence, i.e., dvi/dxi = dv^/dxi + 3V2/6JC2 + dvs/dxs. Terms separated 
by a + operation are not subject to the summation convention, and in such a 
case an index can be reused, as in the expression TijVj + SijWj, Whenever the 
Kronecker delta appears in a summation, it has the net effect of contracting 
indices. For example 
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Observe how the summed index ; on the tensor component Jy is simply re­
placed by the free index k on djk in the process of contraction of indices. 

In this book the summation convention will be in force unless specifically 
indicated otherwise. 

Generating tensors from other tensors. We can define sums and products 
of tensors using only the geometric and operational notions of vector addition 
and multiplication. For example, we know how to add two vectors so that the 
operation Tv + Sv makes sense (by the head-to-tail rule). The question is: 
Does the operation T + S make sense? In other words, can you add two tensors 
together? It makes sense if we define it to make sense. So we will. 

Let us define the sum of two tensors T and S through the following operation 

[T + S]v = Tv + Sv (32) 

In other words, the tensor [ T + S] operating on a vector v is equivalent to the 
sum of the vectors created by T and S individually operating on the vector v. 

An expression for the components of the tensor [T + S] can then be 
constructed simply using the component expressions for Eqn. (32). Let us use 
Eqn. (30), which gives the formula for computing the components of a tensor 
operating on a vector, as the starting point (no need to reinvent the wheel). We 
can write each term of Eqn. (32) in component form and then gather terms on 
the right side of the equation to yield 

[T + S],̂ v,e,- = V^e , + 5,̂ v,.e, 

= (r,+5,)v;e, 

From simple identification of terms on both sides of the equation, we get 

[T + S] .̂ = r^ + 5,̂  

In other words, the y th component of the sum of two tensors is the sum of the 
i/th components of the two original tensors. 

We can follow the same approach to define multiplication of a tensor by a 
scalar, as in aT. The scaled tensor aT is defined through the operation 

[aT]v = a(Tv) (33) 

Again, the component expression can be deduced by applying Eqn. (30) to get 

[aT],̂ V;e,- = a(r^v,e,) 

Thus, the components of the scaled tensor are [aT]y = aJy. That is, each 
component of the original tensor is scaled by a. 
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The definition of the transpose of a tensor can be constructed as follows. 
The dot product u • Tv is a scalar. One might wonder if there is a tensor for 
which we could reverse the order of operation on u and v and get exactly the 
same scalar value. There is and the tensor is called the transpose of T. We shall 
use the symbol T^ to denote the transpose. The transpose of T is defined 
through the identity 

T^u = u • Tv (34) 

The components of the transpose T^ can be shown to be [T^]y = [T]jj (see 
Problem 10). That is, the first and second index (row and column in matrix 
notation) of the tensor components are simply swapped. A tensor is called 5ym-
metric if the operation of the tensor and its transpose give identical results, i.e., 
u • Tv = V • Tu. The components of a symmetric tensor satisfy Ty = Tji. 

We can define a new tensor through the composition of two tensors [ST]. 
Let the tensor S operate on the vector Tv. We can define the tensor [ST] as 

ST]v = S(Tv) (35) 

The components of the tensor ST can be computed as follows 

[ST],^v,e, = 5^[e,(8)ej(r,,v;e,) 

Contracting the index m in the above expression leads to the formula for the 
components of the composite tensor 

[ST]^ = Su^Tj^ (36) 

Notice how close is the resemblance between this formula and the formula for 
the product of two square matrices. 

An alternative composition of two second-order tensors can also be defined 
using the dot product of vectors. Consider two tensors S and T. Let the two ten­
sors operate on the vectors u and v to give two new vectors Su and Tv. Now 
we can take the dot product of the new vectors. According to Eqn. (34), this 
product is equal to 

Su Tv = u S^(Tv) = u [S^T]v 

We can view the tensor S^T as a second-order tensor in its own right, operating 
on the vector v and then dotted with u. The tensor S^T has components 

[S^T], = 5,T, (37) 

Notice the subtle difference between Eqns. (36) and (37). The tensor T^T is 
always symmetric, even if T is not (see Problem 11). 
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It should be clear that we could go on defining new tensor objects ad infini­
tum. Any such definition will emanate from the same basic considerations, and 
the computation of the components of the resulting tensors follows exactly 
along the lines given above. We shall have the opportunity to make such defini­
tions throughout this book, and thus defer further discussion until needed. 

Tensors, tensor components, and matrices. A tensor is not a matrix. How­
ever, if the foregoing discussion of tensors has left you thinking of matrices, 
you are not far off the mark. The way we have chosen to denote the components 
of a second-order tensor (with two indices, that is) makes the temptation to 
think of tensors as matrices quite compelling. We can list the components of 
a tensor in a matrix; all of the formulas for tensor-index manipulation are then 
exactly the same as standard matrix algebra. To some extent, matrix algebra 
can be an aid to understanding formulas like Eqn. (36). On the other hand, a 
second-order tensor is no more a three by three matrix than a vector is a three 
by one matrix. 

Matrices are for keeping books, for organizing computations. A tensor or 
a vector exists independent of a particular manifestation of its components; a 
matrix is a particular manifestation of its components. So take the analogy be­
tween tensors and matrices for what it is worth, but try not to confuse a tensor 
with its components. To do so is rather like being unable to feel cold because 
you don't know the value of the temperature in degrees Celsius. The funda­
mental property of "cold" exists independent of what scale you choose to mea­
sure temperature. 

That said, let us back off from this purist view a little and introduce a nota-
tional shorthand that will be useful in stating and solving problems in tensor 
analysis. When we solve a particular problem, we will select a coordinate sys­
tem having a particular set of base vectors. The components of any tensor will 
be expressed relative to those base vectors. For expedience, we will often col­
lect those components in a matrix as 

T -

where the notation T ~ [ ] should be read as "the components of the tensor 
T, relative to the understood basis, are stored in the matrix [ ] with the conven­
tion that the first index / on the tensor component J^ is the row index of the ma­
trix and the second index; on the tensor component is the column index of the 
matrix." We avoid the temptation to use the notation T = [ ] because we do 
not want to give the impression that we are setting a tensor equal to a matrix 
of its components. If there is any question as to what the basis is, then this ab­
breviated notation does not make sense, and should not be used. The reason this 

Tn 
Tix 

Tn 

Tn 

T22 

T,2 

Tn 
T23 

Tyi 
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Ci v--- gi 

Figure 12 Components of a vector in different coordinate systems 

notation is useful is that tensor multiplication is the same as matrix multiplica­
tion if the components are stored in the manner shown. 

Change of basis. Consider two different coordinate systems, the first with 
unit base vectors {ei, €2, €3} andthe second with unit base vectors {gi, g2, gs}. 
Any vector v can be expressed in terms of its components along the base vec­
tors of a coordinate system, as shown in Fig. 12. Qearly, the components of a 
vector depend upon the coordinate system even though the vector itself does 
not. It seems reasonable that the components of the vector with respect to one 
basis should be related somehow to the components of the vector with respect 
to the other basis. In this section we shall derive that relationship. 

A vector can be expressed equivalently in the two bases as 

V = vjej = vjgj (38) 

We can derive the relationship between the two sets of components by taking 
the dot product of the vector v with one of the base vectors, say g,. From Eqn. 
(38) we obtain 

g. . V = V, = v,.(g,. • e,) 

since Vj[gj * g,) = Vjdij = v,. Let us define the nine scalar values 

Qij = gi • C; (39) 

that arise from the dot products of the base vectors. The nine values record the 
cosines of the angles between the nine pairings of the base vectors. Note that 
the first index of Q is associated with the g base vector and the second index 
of Q is associated with the e base vector. Be careful. The dot product is commu­
tative so Qij = Cy • g, (the first index of Q is still associated with g and the sec­
ond index is still associated with e!). 

The formula giving one set of vector components in terms of the other is then 

v/ = QijV^ (40) 
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We can find the reverse relationship by dotting Eqn. (38) with e, instead of ĝ . 
Carrying out a similar calculation we find that 

V/ = QjiVj (41) 

The components of a second-order tensor T transform in a manner similar 
to vectors. A tensor can be expressed in terms of components relative to two 
different bases in the following manner 

T = Ug^^gj] = r ,[e,(8)ej 

where Ty is the yth component of T with respect to the base tensor [g, (8) gj] 
and Tij is the yth component of T with respect to the base tensor [e, 0 e j . The 
relationship between the components in the two coordinate systems can be 
found by computing the product g^ • Tg;,, as follows 

g, • Tg, = f^ = T,j(g^ ' e,)(g, • e,) 

Computing instead e^ • Tê , we can find the inverse relationship. Once again 
noting that j2// = g/ * Cy, we can write the formulas for the transformation of 
second-order tensor components as 

-̂  mn \lmi\lni ^ ij ^ mn SelimSdjn^ ij (42) 

The main difference between transforming the components of a tensor and 
those of a vector is that it took two Q terms to accomplish the task for a tensor, 
one for each index, but only one Q term for a vector. It should be evident that 
higher-order tensors, i.e., those with more indices, will transform analogously 
with the appropriate number of Q terms present. 

As you might expect, the components of the coordinate transformation 
Qij = 8/ ' C; h^ve some interesting properties. These components make up 
what is called an orthogonal transformation. The orthogonal transformation 
components have the following property 

QiaQkj = dij QikQjk = ^ij (43) 

The proof of each equation relies on the expression for the identity tensor: 

[gk • e,)(g, • e,) = e, • [g, (g) gje^ = e, • ê  = d^j 

[gi ' eO(g; • e,) = g, • [e, 0 e,]g^ = g, • gj = (3̂  

Problem 13 asks you to explore further the relationship between the two bases, 
and clarifies the notion of the Qij being components of a tensor Q. 

Example 2. There is a relationship between the permutation symbol and the 
Kronecker delta that is often referred to as the e ~ ^ identity. The identity is 
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Let us prove this identity. 
First note that the cross product is equivalent to operation by a skew-symmet­

ric tensor [ u x ] defined to have components as follows 

[ux ] 

0 — W3 W2 

W3 0 - W i 

-U2 u^ 0 

One can easily verify that [u x ]v = u x v. By matrix multiplication one can 
also verify that [u x ]^[v x ] = (u • v)I - v ® u. Now, 

^ijk^imn = ((Ci X ê ) • e )̂((e,- x em) ' e„) 

= ((e, X ê -) • e,)(e, • (e, x e;„)) 

= (e, xe^.)-[e/®e,](e, X ê )̂ 

= [e, x ] e - [ e , x]e , 

= e - [ e , x]^[e„x]e, 

= ê- • [(e^- e„)I - e„ ® ê Jê ;, 

= ^jm^kn - ^jn^km 

There are other, possibly simpler proofs of the e-(3 identity. For example, one 
can recognize that the identity is simply 81 equations. You can verify them one 
by one. This example has the additional merit of illustrating various vector and 
tensor manipulation techniques. 

Tensor invariants. In subsequent chapters we will have occasions to won­
der whether there are properties of the tensor components that do not depend 
upon the choice of basis. These properties will be called tensor invariants. The 
identities of Eqn. (43) will be useful in proving the invariance of these proper­
ties. The argument will go something like this: Let f(Tij) be a function of the 
components of the tensor T. Under a change of basis, we can write this function 
in the form /(QikQjiTki). If the function has the property that 

fiQu^QjiTki) = m;) 

then the function/is a tensor invariant. Since it does not depend upon the coor­
dinate system, we can say that it is an intrinsic function of the tensor T, and 
write /(T). Three fundamental tensor invariants are given by 

A(T) = T, /^(T) = T^^, f,(T) = TJjJ^ (44) 
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The proof that /i(T) is invariant is straightforward 

/i(T) = ^« = QikQiiTki = dkiTki = Tkk 

by the formula for change of basis, contracted to give T,,, and Eqn. (43). The 
invariance of the other two functions can be proved in a similar manner (see 
Problem 18). Any function of tensor invariants is itself a tensor invariant. We 
shall sometimes refer to the invariant functions /i(T), fiCT), and /3(T) as the 
primary invariants to distinguish them from other invariant functional forms. 

The trace of a tensor is simply the sum of its diagonal components. We use 
the operator "tr" to designate the trace. Thus, tr(T) = T^ is the first invariant 
of the tensor T. The second and third invariants can also be expressed in terms 
of the trace operator. Let us introduce the notation of a tensor raised to a power 
asT^ = XT and T^ = TTT, where the components are given by the formula 
for products of tensors, Eqn. (36), as 

[T ]̂̂ . = T,„T„^ [r].. = T^T^T„j (45) 

It should be evident that a tensor can be raised to any (integer) power. Taking 
the trace of T^ and T' gives ti{T^) = [T].. and tr(T^) = [X']... Using these 
expressions in Eqn. (45) we find that the three invariants can be equivalently 
cast in terms of traces of powers of the tensor X as 

/,(T) = tr(T), /,(T) = tr(T^), f,(T) = tT{T) (46) 

By extension, one can establish that f„(T) = tr (X") is an invariant of the ten­
sor X for any value of n (see Problem 18). One can prove that the invariants 
for « > 4 can all be computed from the first three invariants (see Problem 19). 

Eigenvalues and eigenvectors of symmetric tensors. A tensor has proper­
ties independent of any basis used to characterize its components. As we have 
just seen, the components themselves have mysterious properties called invari­
ants that are independent of the basis that defines them. It seems reasonable to 
expect that we might be able to find a representation of a tensor that is canoni­
cal. Indeed, this canonical form is the spectral representation of the tensor that 
can be built from its eigenvalues and eigenvectors. In this section we shall build 
the mathematics behind the spectral representation of tensors. 

Recall that the action of a tensor is to stretch and rotate a vector. Let us con­
sider a symmetric tensor X acting on a unit vector n.*̂  If the action of the tensor 
is simply to stretch the vector but not to rotate it then we can express it as 

Xn = jun (47) 

where// is the amount of the stretch. This equation, by itself, begs the question 
of existence of such a vector n. Is there any vector that has the special property 
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that action by T is identical to multiplication by a scalar? Is it possible that more 
than one vector has this property? 

Equation (47) is called an eigenvalue problem. Eigenvalue problems show 
up all over the place in mathematical physics and engineering. The tensor in 
three dimensional space is a great context in which to explore the eigenvalue 
problem because the computations are quite manageable (as opposed to, say, 
solving the vibration eigenvalue problem of structural dynamics on a structure 
with a million degrees of freedom). 

A vector n that satisfies the eigenvalue problem is a special vector (an eigen­
vector) that has the property that operation by the second-order tensor T is the 
same as operation by the scalar /u (the eigenvalue). Equation (47) can be writ­
ten as [T—//l]n = 0, which is a linear homogeneous system of equations. 
(Note that 0 is the zero vector). In order for this system to have a nontrivial solu­
tion (i.e., n ^ 0), the determinant of the coefficient matrix must be equal to 
zero. That is. 

det[T-//l] = det 
^11 /^ ^12 ^13 

^21 ^22 ~ /^ ^23 

^31 ^32 ^33 ~f^ 

= 0 (48) 

If we carry out the computation of the determinant, we get the characteristic 
equation (a cubic equation in the case of a three by three matrix) for the eigen­
values ju. The characteristic equation can be written in the form 

- / / ' + IT/U^ - IITIU + IIIT = 0 (49) 

where the coefficients of the characteristic polynomial 

IT = tr(T), Ilr = \[n-tT(T% / / / , = det(T) (50) 

are invariants of the tensor T. We shall refer to 7 ,̂ II T, and IIIT as the principal 
invariants to distinguish these functions from the primary invariants. The de­
terminant of a tensor can be expressed in terms of the primary invariants /i(T), 
/2(T), and /^(T) (see Problem 23), so all three of the principal invariants are 
functions of the primary invariants (and vice versa). The principal invariants 
can be expressed in component form as 

t The definition of the eigenvalue problem does not require that n be a unit vector. In 
fact, it should be obvious that if n satisfies Eqn. (47) then so does any scalar multiple 
of n. Setting the length of the eigenvector is usually considered arbitrary with many 
choices available. However, in many applications there is an auxiliary condition that 
determines the length of the vector. For the two most important cases that we will con­
sider in solid mechanics (principal values of stress and strain tensors) the vector nmust 
be unit length. Assuming unit length from the outset removes some ambiguity without 
loss of generality. 
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IT ~ Tih IIT = ^\I'iiI'i}''I'i}I'ij)^ IHT ~ "^^ijk^ImnTilTjmTkn (51) 

Because the coefficients of the characteristic equation are invariants of the 
tensor T it follows that the roots// do not depend upon the basis chosen to de­
scribe the components and hence are intrinsic properties of T. 

Finding the roots of the characteristic equation. The cubic equation has 
three roots (not necessarily distinct) that correspond to three (not necessarily 
unique) directions. If the cubic equation cannot be factored, then the roots can 
be found iteratively. For example, we can use Newton's method to solve the 
nonlinear equation g{x) = 0. Given a starting value x ,̂ we can compute 
successive estimates of a root of g(x) = 0 (see Chapter 12) as 

Xi., X, ^,^^^ (52) 

where g\x^ is the derivative of g{x) evaluated at the current iterate x,. The 
starting value determines the root to which the iteration converges if there are 
multiple roots. In the present context, let jc, be the estimate of the eigenvalue 
fi, at the /th iteration. The next estimate can be computed from Newton's for­
mula as 

_ 7x] - Ijx] + IIIT 

""''' •" ?>x] - Tljx, + / / , ^̂ ^̂  

The iteration continues until \xn — Xn-i\ is less than some acceptable toler­
ance. Then the eigenvalue is // « Xn^ 

We can always take, as a starting value, Xo = 0. However, Gershgorin's 
theorem might be of some help in estimating a good starting point for the New­
ton iteration. Gershgorin's theorem simply states that the diagonal element Ta 
of the tensor T might be a good estimate of the eigenvalue fit. The quality of 
the estimate depends upon the size of the off-diagonal elements of T. In fact, 
the theorem states that if you draw a circle centered at Tu with radius 

ri 

•3 

= Y.\^i^ (54) 

i.e., the sum of the absolute values of the off-diagonal elements, then ///lies 
somewhere in that circle, as shown in Fig. 13. (For symmetric matrices the ei­
genvalues are always real, so that they lie on the real axis. Nonsymmetric ma­
trices can have complex eigenvalues, and in such cases the extra dimension im­
plied by the circle is important.) There is a catch. If two circles overlap, then 
the only thing we can conclude is that both of the two associated eigenvalues 
lie somewhere in the union of those two circles. For the case illustrated in Fig. 
13, we know that Tss — ra < /̂ a < T^^ + r^. We also know that the other two 
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Figure 13 Graphical representation of Gershgorin's theorem 

eigenvalues satisfy T^-r^ < //ij/^i ^ 722 + 2̂, i.e., they lie somewhere be­
tween extremes of the two circles. Qearly, if the off-diagonal elements of the 
tensor are small, the diagonal elements are very good estimates of the eigenva­
lues. In any case, the diagonal elements should be good starting points for the 
Newton iteration. It also provides a means of checking our eigenvalues once 
we have found them. If they do not lie within the proper bounds, they cannot 
be correct. This theorem applies to matrices of any dunension. 

Once one root is determined, one can use synthetic division to factor the root 
out of the cubic, leaving a quadratic that can be solved by the quadratic formu­
la. Alternatively, we could simply use Eqn. (53) from another starting point in 
the hope that it would converge to one of the other roots (there is no guarantee 
that the iteration will converge to a root different from one already found). 

Determination of the eigenvectors. The cubic equation has three roots, 
which we call //1, // 2 > and /u 3. Each of these roots corresponds to an eigenvec­
tor. Let the eigenvectors corresponding to //i, //2? and fi^ be called ni, n2, and 
ns, respectively. These eigenvectors can be determined by solving the system 
ofequations[T-//J] n, = 0 (no implied sum on/). However, by the very def­
inition of the eigenvalues, the coefficient matrix [T—//,I] is singular, so we 
must exercise some care in solving these equations. 

Let us try to find the eigenvector n, associated with fi „ (any one of the eigen­
values). Let us assume that the eigenvector has the form 

n,- = nfe,-^nfe2-\'nfe^ 

Our aim is to determine the, as yet unknown, values of nf, nf, and nf. To aid 
the discussion let us define three vectors that have components equal to the col­
umns of the coefficient matrix [ T —/i,l] 

t^P -
Tn-f^i 

T21 

. T31 

tf~ 
Tn 

Tii-Hi 

. 7'32 . 

if ~ 
T» 
Tt^ 

.Ti3-fl 

The equation [ T - / / , I ] n, = 0 can be written as (droppmg the superscript"(/)" 
just to simplify the notation) 
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niti + Uiij + Wsta = 0 (55) 

It should first be obvious that the vectors {ti, t2, U} are not linearly indepen­
dent. In fact, we selected //1 precisely to create this linear dependence. Besides, 
if these vectors were linearly independent then, by a theorem of linear algebra, 
the only possible solution to Eqn. (55) would be «! =^2 = ^3 = 0, which is 
clearly at odds with our original aim. 

Consider the case where the eigenvalue //, is distinct (i.e., neither of the oth­
er two eigenvalues is equal to it). In this case at least two of the three vectors 
{ti, t2, ta} are linearly independent. The trouble is we do not know in advance 
which two. There are three possibilities: {ti, ii), {ti, ts}, and {ts, U}. We can 
write Eqn. (55) as 

^a^a'^^^^^ ~~ ^y^y (56) 

ta 

h 
•ta 

ta 

ta 

t/> 
•*M 
^A 

ria 

L« .̂ = — «„ 
*y 

ta 

. * / > 

•ty 

ty 

where no summation is implied and the integers {a, ̂ , y } take on distinct values 
of 1,2, or 3 (i.e., no two can be the same). Our three choices are then {a, )8, y} 
= {1,2,3}, {2,3,1}, or {3,1,2}. Equation (56) is overdetermined. There are 
more equations (3) than unknowns (2). However, by construction these equa­
tions should be consistent with each other. Hence, any two of the equations 
should be sufficient to determine ria and n^. To remove the ambiguity we can 
replace Eqn. (56) with its normal form by taking the dot product first with re­
spect to ta and then with respect to t̂  to give two equations in two unknowns: 

(57) 

Among the three choices of {a, j8, y} at least one must work. Equation (57) will 
not be solvable if the coefficient matrix is singular. That would be true if its de­
terminant was zero, i.e., if (t^ ' ta)[t^ ' t^) = [ta ' t^)^. If this is the case then 
it is also true that riy = 0, which can certainly be verified once you have suc­
cessfully solved the problem. If your first choice of {a, ̂ , y} did not work out, 
then try another one. 

One of the important things to notice from Eqn. (57) is that ria and n^ can 
only be determined up to an arbitrary multiplier riy. To solve the equations one 
can simply specify a value of riy (riy = 1 will work just fine). The vector can 
be scaled by a constant g to give the final vector n = (̂waCa + Aẑ ê H-WyCyj. 
The condition of unit length of n establishes the value of g as 

g = {nl^nl^nl) -1/2 (58) 

Orthogonality of the eigenvectors. One interesting feature of the eigenva­
lue problem is that the eigenvectors for distinct eigenvalues are orthogonal, as 
suggested in the following lemma. 
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Lemma. Let n, and n̂  be eigenvectors of the symmetric tensor T cor­
responding to distinct eigenvalues /// and /Uj, respectively (that is, 
they satisfy Tn = /un). Then n, is orthogonal to n̂ , i.e., iij • n̂  = 0. 

Proof. The proof is based on taking the difference of the products of 
the eigenvectors with T in different orders (no summation on repeated 
indices) 

0 = n - Tn, - n, • Tn̂  

= n̂ - • (//,n,) - n,- • {/Ujiij) (59) 

The first line of the proof is true by definition of symmetry of T. The 
second line substitutes the eigenvalue property Tn = //n. The last 
line reflects that the dot product of vectors is commutative. Since we 
assumed that the eigenvalues were distinct, Eqn. (59)c can be true only 
if n, • Tij = 0, that is, if they are orthogonal. Q 

Notice that orthogonality does not hold if the eigenvalues are repeated be­
cause Eqn. (59)c is satisfied even if n, • n̂  r^ 0. We will see the ramification 
of this observation in the following examination of the special cases. 

Special cases. There are two special cases that deserve mention. Both corre­
spond to repeated roots of the characteristic equation. The main concern is how 
to find the eigenvectors associated with repeated roots. 

If jUa = ju^ ^ fly we have the case that two of the roots are equal, but the 
third is distinct. For the distinct root fiy we can follow the above procedure and 
find the unique eigenvector n .̂ The vectors corresponding to the double eigen­
value are not unique. If we have two eigenvectors n^ and n^ corresponding to 
ILta = lLCp = /i, then any vector that is a linear combination of those two vectors, 
n = ana + bn^, is also an eigenvector. The proof is simple 

Tn = T[ana + bn^) 

= oTna^bTn^ 

= afiUa-^-b/unp 

= iu[ana-^bn^) = /un 

Since the eigenvectors are orthogonal for distinct eigenvalues, the physical in­
terpretation of an eigenvector n corresponding to the double eigenvalue // is 
that it is any vector that lies in the plane normal to n ,̂ as shown in Fig. 14. 

There is a clever way of finding such a vector. The tensor [l — n 0 n] is a 
projection tensor. When applied to any vector m, it will produce a new vector 
that is orthogonal to n. Specifically 
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Figure 14 Physical interpretation of 
eigenvectors for repeated eigenvalues 

m = [ l - n 0 n]m = m - (n • m)n (60) 

is orthogonal to n (prove it by computing the value of the dot product of vectors 
n and m). Thus, to compute the eigenvectors corresponding to the double root, 
we need only take any vector m in the space (not collinear with n )̂ and com­
pute 

= m — (iiy • mjiiy (61) 

then normalize as n^ = n^/ || n̂  ||. To get a third eigenvector that is orthogonal 
to the other two, we can simply compute the cross product n^ = n^ X n .̂ 

The second special case has all three ofthe eigenvalues equal,/^i = //2 = 
fii = //.In this case, any vector in the space is an eigenvector. If we need an 
orthonormal set of three specific vectors, we can apply the same procedure as 
before, starting with any two (noncollinear) vectors. 

Example 3. Distinct roots. Consider that the components of the tensor T are giv­
en by the matrix of values 

T -
3 - 1 0 

- 1 3 0 
L 0 0 3 

The invariants are Ij = 9, IIj = 26, and IIIj = 24. The characteristic equation 
for the eigenvalues is -/ i^ + 9/i^-26//-l-24 = 0. This equation can be factored 
(not many real problems have integer roots!) as 

- ( / / - 2 ) ( / ^ - 3 ) ( / / - 4 ) = 0 

showing that the roots are //j = 2, //2 = 3, and //3 = 4. (Note that Gershgorin's 
theorem holds!) The eigenvector associated with the first eigenvalue can be 
found by solving the equation [T-//il]ni = 0. We can observe that 

[ T - ^ i l ] -

Taking the choice {a, )3, y} = {2, 3,1}, Eqn. (56) gives 

1 
-1 
0 

-1 
1 
0 

0" 
0 
1 _ 

=> 
tf) = e,-e, 
t « = -ei+e^ 

t(') = 63 
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Letting n^^^ = 1, the normal equations, Eqn. (57), take the form 

2 0 
0 1 

which gives n^^^ = 1 and n^^^ = 0. Thus, the eigenvector for /̂ ^ = 2 is 

Hj = Ci + 62 

The remaining two eigenvectors can be found in exactly the same way, and are 

02 = 63, n3 = Ci - 62 

These vectors can, of course, be normalized to unit length. 

It is interesting to note what happens for other choices of the normal equations 
in the preceding example. In particular, it is evident that t̂ ^̂  = - tf\ If we 
were to make the choice {a,)S,y} = {l,2,3} then the coefficient matrix for the 
normal equations would be singular. This observation is also consistent with 
the fact that n̂ ^̂  = 0. 

Example 4. Repeated roots. Consider that the components of the tensor T are 
given by the matrix of values 

5 
1 
1 

-1 
5 

-1 

-1 
-1 
5 

The invariants are Ij = 15, IIj = 72, and IIIj = 108. The characteristic equa­
tion for the eigenvalues is 

- ju^ + 15//2 - 72^ + 108 = 0 

or - ( ^ - 3 ) ( ^ - 6 ) ( / . - 6 ) = 0 

showing that the roots are/^i = ^2~ 6, and//3 = 3. The eigenvector associat­
ed with the distinct eigenvalue fi^ can be found by solving the equation 
[T—//3l]n3 = 0 as in the previous example. The result is 

"3 = ^ ( € 1 + 6 2 + 63) 

The eigenvectors corresponding to the repeated root must lie in a plane orthogo­
nal to 03. We can select any vector in the space and project out the component 
along 03. Let us use m = e .̂ Project out the part of the vector along 03 (see Ex­
ample 1) 
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n2 = ^Pm = ^[l-n3 (g) njjej 

= ^[ei-(n3 -ejns] 

= ^[^1 -^(€1+62 + 63)] 

= ^(1^1-^62-563) 

= ^(261-62-63) 

where the constant Q was selected to give the vector unit length. Finally, iii can 
be computed as n̂  = 02 x n3 to give 

Hi = ^ ( - e 2 + e. 
fi 31 

The spectral decomposition. If the eigenvalues and eigenvectors are 
known, we can express the original tensor in terms of those objects in the fol­
lowing manner 

3 

T = 2]/^,n,(g)n, 
/ = 1 

(62) 

Note that we need to suspend the summation convention because of the num­
ber of times that the index / appears in the expression. This form of expression 
of the tensor T is called the spectral decomposition of the tensor. How do we 
know that the tensor T is equivalent to its spectral decomposition? As we indi­
cated earlier, the operation of a second-order tensor is completely defined by 
its operation on three independent vectors. Let us assume that the eigenvectors 
{Oi, n2, 03} are orthogonal (which means that any eigenvectors associated 
with repeated eigenvalues were orthogonalized). Let us examine how the ten­
sor and its spectral decomposition operate on n̂  

3 3 3 

Tnj = ^ / / / [ n , ® nj n,- = ^/^/(ny • n,) n,- = ^//,(3yn, = /Ujiij 
i = l i = l / = 1 

Thus, we have concluded that both tensors operate the same way on the three 
eigenvectors. Therefore, the spectral representation must be equivalent to the 
original tensor. A corollary of the preceding construction is that any two ten­
sors with exactly the same eigenvalues and eigenvectors are equivalent. 

The spectral decomposition affords us another remarkable observation. We 
know that we are free to select any basis vectors to describe the components 
of a tensor. What happens if we select the eigenvectors {DI, 02, n3} as the ba­
sis? According to Eqn. (62), in this basis the off-diagonal components of the 
tensor T are all zero, while the diagonal elements are exactly the eigenvalues 
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i " l 

0 
0 

0 
fl2 

0 

0 
0 
f^3 

T -

The invariants of T also take a special form when expressed in terms of the 
eigenvalues. The invariants are, by their very nature, independent of the basis 
chosen to represent the tensor. As such, one must get the same value of the in­
variants in all bases. Those values will, of course, be the values computed in 
any specific basis. The simplest basis, often referred to as the canonical basis, 
is the one given by the eigenvectors. In this basis, the invariants can be repre­
sented as 

IT = fl^+lU2-^iU3 

IIT = / / I / / 2 + / ^ I / ^ 3 + / ^ 2 / ^ 3 

IIIT = fli/U2/il3 

(63) 

Example 5. Consider a tensor T that has one distinct eigenvalue ju^ and a re­
peated eigenvalue /̂ 2 = /^s- Use the spectral decomposition to show that the 
tensor T can be represented as 

T = /^i[n(8)n] + iLL2[l-n®n] 

where n is the unit eigenvector associated with the distinct eigenvalue ju^. 
Let Dj = n, n2, and n^ be eigenvectors of T. Further assume that these vec­

tors are orthogonal (remember, if they are not orthogonal due to a repeated root, 
they can always be orthogonalized). The sum of outer products of orthonormal 
vectors is the identity. Thus, 

3 3 

I = V n̂  ® n, = n 0 n -H V n, 0 n, 
i = l i=2 

Write T in terms of its spectral decomposition as 

3 3 

T = ^/^ , [n ,®n,] = /^in®n + 2 / i J n , ® n , ] 
1=1 1=2 

3 

= fi^n (Sin-\-ju 2^ ni(Sini 
1 = 2 

= fi^n ® n + jU2[l - n ® n] 

There is great significance to this result. Notice that the final spectral representa­
tion does not refer to n2 and 03 at all. Since these vectors are arbitrarily chosen 
from the plane orthogonal to n these vectors have no intrinsic significance (other 
than that they faithfully represent the plane). In this case there are only three in-
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trinsic bits of information: /z ,̂ 1^2^ and n. Hence, this representation of T is ca­
nonical. 

The Cayley-Hamilton theorem. The spectral decomposition and the char­
acteristic equation for the eigenvalues of a tensor can be used to prove the 
Cayley-Hamilton theorem, which states that 

T - IjT^ + IIjT - IIIjl = 0 (64) 

where T^ = TTandT^ = TTT are products of the tensor T with itself. Using 
the spectral decomposition, one can show that (Problem 22) 

3 

1 = 1 

Using this result, and noting that I = n, (S) n, (sum implied), we can compute 

3 

T ~ IjT + II/T - IIIjl = Yj^fi] - Ijfi] + Ilrti, - IIIr)n, ® n, 
t = i 

All of the eigenvalues satisfy the characteristic equation. Thus, the term in pa­
rentheses is always zero, thereby proving the theorem. 

Vector and Tensor Calculus 
Afield is a function of position defined on a particular region. In our study of 
mechanics we shall have need of scalar, vector, and tensor fields, in which the 
output of the function is a scalar, vector, or tensor, respectively. For problems 
defined on a region of three-dimensional space, the input is the position vector 
X. A function defined on a three-dimensional domain, then, is a function of 
three independent variables (the components jCi, X2y and X3 of the position vec­
tor x). In certain specialized theories (e.g., beam theory, plate theory, and plane 
stress) position will be described by one or two independent variables. 

A field theory is a physical theory built within the framework of fields. The 
primary advantage of using field theories to describe physical phenomena is 
that the tools of differential and integral calculus are available to carry out the 
analysis. For example, we can appeal to concepts like infinitesimal neighbor­
hoods and limits. And we can compute rates of change by differentiation and 
accumulations and averages by integration. 

Figure 15 shows the simplest possible manifestation of a field: a scalar func­
tion of a scalar variable, g(x), A scalar field can, of course, be represented as 
a graph with x as the abscissa and g{x) as the ordinate. For each value of posi­
tion X the function produces as output g(x). The derivative of the function is 
defined through the limiting process as 
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gW 

Figure 15 A scalar field g{x) is a scalar-valued function of a scalar 
variable. Differentiation gives the slope of the curve at a point and 
integration gives the area A under the curve between two points. 

-— = lim 
ax AJC-O 

g(x + Ax) - g{x) 
Ax ^ g\^) (65) 

The derivative has the familiar geometrical interpretation of the slope of the 
curve at a point and gives the rate of change of g with respect to change in posi­
tion X. Many of the graphical constructs that serve so well for scalar functions 
of scalar variables do not generalize well to vector and tensor fields. However, 
the concept of the derivative as the limit of the ratio of flux, g{x + AJC) — g{x) 
in the present case, to size of the region. Ax in the present case, will generalize 
for all cases. 

Figure 16 illustrates that a segment [ x, x + Ax] has a left end and a right 
end. If we ascribe a directionality to the segment by imagining the positive di­
rection to be in the direction of the +x axis, then the left end is the "inflow" 
boundary and the right end is the "outflow" boundary of the segment. We can 
think of the/Zwx of g as being the difference between the outflow and the inflow. 
For a scalar function of a scalar variable that is simply g(x + Ax) - g(x). Ac­
cording to Eqn. (65), the derivative dgldx is the limit of the ratio of flux to size 
of the region. 

In three-dimensional space we shall generalize our concept of derivative 
(rate of change) using an arbitrary region S having volume T(98) with surface 
Q having unit normal vector field n, as shown in Fig. 17. We will define various 

Ŵ 

Kl 
1 ^ 

,?w 

M 
Ax 

^ X 
^ ( x + Ax) 

• 

X x + Ax 

Figure 16 The "flux" of a scalar field g(x) on the region [x, x + Ax] 
is the difference in the function values at the ends of the segment. 
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Figure 17 A region 3& in three-dimensional space with volume 
T(^) and surface Q with outward unit normal vector field n. 

types of derivatives of various types of fields in the following sections, but all 
of these derivatives will be the limit of the ratio of some sort of flux (outflow 
minus inflow) to the volume of the region as the volume shrinks to zero. In 
these definitions the flux will involve an integral over the surface area and the 
normal vector n will help to distinguish "inflow" from "outflow" for the situa­
tion at hand. For each definition of derivative we will develop a coordinate ex­
pression that will tell us how to formally "take the derivative" of the field. The 
coordinate expressions will all involve partial derivatives of the vector or ten­
sor components. 

The integral of the function between the limits b and c gives the area be­
tween the graph of the function g{x) and the x axis (see Fig. 15). For any scalar 
function of a scalar variable one can think of the integral as the "area under the 
curve." Integration is the limit of a sum of infinitesimal strips with area g{x)dx. 
The total area is the accumulated sum of the infinitesimal areas. The geometric 
notion of integration is quite independent of techniques of integration based 
upon anti-derivatives of functions because there are methods of integration 
(e.g., numerical quadrature) that do not rely upon the anti-derivative. In our de­
velopments here we need to think of integrals both in the sense of executing 
integrals (mostly later in the book) and in the more generic sense of accumulat­
ing the limit of a sum. 

In three dimensional space we will encounter surface integrals and volume 
integrals. Most of the time we will not use the notation of "double integrals" 
for surface integrals and "triple integration" for volume integrals, but rather 
understand that 

\[')dA= j \[')dxdy, \[')dy= j j \{')dxdydz (66) 

where the variables and infinitesimals must be established for the coordinate 
system that is being used to characterize the problem at hand. Again, tech­
niques of integration are important only in particular problems to carry out 
computations. 

The second aspect of integration that we will introduce in this chapter is the 
idea of integral theorems that provide an equivalence between a surface inte-
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g(x) x^ ^ ^(x) = constant 
A X, 

(a) 

Figure 18 (a) A graph and (b) a contour map of a scalar field in two dimensions 

gral and a volume integral. We shall see that the divergence theorem (in any 
of its many specific forms) is the multivariate counterpart to the one-dimen­
sional fundamental theorem of calculus 

-f a 

^)dx = g{b)-g{a) (67) 

The remainder of this chapter is devoted to reviewing of some of the basic 
ideas from vector calculus and the extension of those ideas to tensor fields. 

Scalar fields of vector variables. A scalar field is a function g(x) that as­
signs a scalar value to each point x in a particular domain. The temperature in 
a solid body is an example of a scalar field. As an example consider the scalar 
field g(x) = II X p = jCi + A:2+JC3, in which the function g(x) gives the square 
of the length of the position vector x. In two dimensions, a scalar field can be 
represented by either a graph or a contour map like those shown in Fig. 18. 

As with any function that varies from point to point in a domain, we can ask 
the question: At what rate does the field change as we move from one point to 
another? It is fairly obvious from the contour map that if one moves from one 
point to another along a contour then the change in the value of the function 
is zero (and therefore the rate of change is zero). If one crosses contours then 
the function value changes. Qearly, the question of rate of change depends 
upon direction of the line connecting the two points in question. 

Consider a scalar field g in three dimensional space evaluated at two points 
a and fc, as shown in Fig. 19. Point a is located at position x and point b is located 
at position x + Asn, where n is a unit vector that points in the direction from 
aXob and As is the distance between them. The directional derivative of the 
function g in the direction n, denoted Dg • n, is the ratio of the difference in 
the function values at a and b to the distance between the points, as the point 
b is taken closer and closer to a 
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Figure 19 Interpretation of the gradient of a scalar field 

Dg{x) • n = lim 
g(x + Ayn) -g (x ) 

^s 
(68) 

The directional derivative of g can be computed, using the chain rule of dif­
ferentiation, from the formula 

Dg(x)'n = - |(g(x + ̂ n ) t , = ^n, 
da (69) 

In essence, the directional derivative determines the one-dimensional rate of 
change (i.e., d/de) of the function at the point x and just starting to move in the 
fixed direction n. Because x and n are fixed, the derivative is an ordinary one. 

Example 6. Directional Derivative. Consider the scalar function given by the 
expression g(x) = x • x = oĉ jĉ .̂ We can compute the directional derivative in 
the direction n by Eqn. (69). Noting that the augmented function can be written 
as g(x + en) = (xk + en^) (xi^-\'enk), we compute the directional derivative as 

^^(x) • n = ^{(x,, + en,,)(xk + en,,)]^^^ 

= -^{^kXk + ^xi,n^ + e^nj,nk]^^Q 

= {^x^n^ + lenknkl^Q = 2^ /̂î  

It is also useful to note that dg/dx^ = dj^Xi^-^x^d,^ = 2;c,. Then, according to 
Eqn. (69) again, we have 

which is identical to the previous result. 

From Eqn. (69) it is evident that the partial derivatives of the function g play 
a key role in determining the rate of change in a particular direction. In fact, 
the partial derivatives dg/dxigiv^ the rate of change of g in the direction of the 
coordinate axis x,. These three quantities can be viewed as the components of 
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a vector called the gradient of the field. The gradient of a scalar field g(\) is 
a vector field Vg(x), which, m Cartesian coordinates, is given by 

Vs(x) = ^ . , dXj 
(70) 

where summation on; is implied. With this definition of the gradient, the direc­
tional derivative takes the form 

Dg-n = Vgn (71) 

^g ^g dg X ^g 

We know that the directional derivative of g is zero if n is tangent to a con­
tour line. Therefore, the vector Vg must be perpendicular to the contour lines, 
as shown in Fig. 18b, because Vg • n = 0 in that direction. For the direction 
^ = ^g/ II ^g II it is evident from Eqn. (71) that Dg • n = || Vg(x) ||. Hence, 
II Vg(x) II is the maximum rate of change of the scalar field g. 

We can define the gradient of a scalar field independent of any coordinate 
system. Consider an arbitrary region 99 with surface Q and outward unit nor­
mal vector field n, shown in Fig. 17. The gradient is the ratio of the flux gn over 
the surface to the volume T(98), in the limit as the volume of the region shrinks 
to zero. To wit 

^g = lim : ; 7 ^ gndA (72) 
^ r(a)-o r(as)J ^ ^ ^ 

where T(93) is the volume of the enclosed surface. 
Equation (72) does not depend upon a specific coordinate system. Equation 

(70) is a formula for the gradient in rectangular Cartesian coordinates. The der­
ivation of Eqn. (70) from Eqn. (72) is very instructive. To compute with Eqn. 
(72) we need to select a specific region 98 so that we can compute the flux and 
the volume and take the limit as the volume shrinks to zero. The simplest pos­
sible choice is the cuboid with sides parallel to the coordinate planes shown in 
Fig. 20. The volume of this region is T(95) = AjCi AA:2AJC3. The surface Q 
consists of six rectangles each with constant normal n pointing in the direction 
of one of the base vectors. Furthermore, the six faces occur in pairs with nor­
mals n = ± e, on which jc, is constant over the entire face (with a value of Xi 
for the face with normal - e, and jc, + Ax, for the face with normal e,). Hence, 
we can compute the flux as 

gntM = ^ [g(x + Ax,e,)e, + g ( x ) ( - e , ) ] ^ , (73) 

where Q, is the rectangular region with area A, over which jc, is constant. Note 
that Ai = AX2AX2, A2 = AJC3AJC1, and A3 = AjCiAxj are the areas of the 
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/Z7\ AJCO 

Ax 
I/AXI 

Figure 20 A particular region for the computation of flux and 
volume needed to compute derivatives in multivariate calculus 

faces. Next, we can recognize that the volume is T(9B) = AiAXi (no sum) for 
any /=1, 2, 3. Finally, we can recognize that 

J Q 

{')dA, (74) 

is simply the average of (•) over the integration region Q,. In the limit, as the 
volume and the face areas shrink to zero, the average values will approach the 
values at x. Therefore, Eqn. (72) can be written as 

V g = X ' t a i - f un, («( '+A»e,)-^x)\ 

= 1 MO 
dXi 

e,- (75) 

The limiting process for AJĈ  can be moved inside the integral over Q, because 
Xi is constant for that integral. This limit is, of course, the partial derivative of 
g with respect to jc,. That partial derivative is a function of the other two vari­
ables which are not constant over that face. However, we then take the limit 
of the average over the region of integration to give the final result. 

As we shall see, this approach will work in essentially identical fashion for 
developing coordinate expressions for all of the derivatives in this chapter. 

Vector fields. A vector field is a function v(x) that assigns a vector to each 
point x in a particular domain. The displacement of a body is a vector field. 
Each point of the body moves by some amount in some direction. The force 
induced by gravitational attraction is a vector field. 

Figure 21 shows two examples of vector fields. The pictures show the vec­
tors at only enough points to get the idea of how the vectors are oriented and 
sized. The second vector field shown in the figure can be expressed in func­
tional form as 

v(x) = Xiei+jCjCs (76) 
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The vectors point in the radial direction, and their length is equal to the distance 
of the point of action to the origin. 

In general, if our base vectors are assumed to be constant throughout our do­
main, then the vector field can be expressed in terms of component functions 

v(x) = v,(x)e, (77) 

For example, from Eqn. (76) we can see that the explicit expression for the 
components ofthe vector field are Vi(x) = jci, V2(x) = A:2,andv3(x) = O.For 
curvilinear coordinates, the base vectors are also functions ofthe coordinates. 

There are as many ways to differentiate a vector field as there are ways of 
multiplying vectors. The analogy between vector multiplication and vector 
differentiation is given in the following table 

Multiplication 

u • V dot 
u X V cross 
u (g) V tensor 

Differentiation 

div V divergence 
curl V curl 

Vv gradient 

As was the case for vector multiplication, each different way to differentiate 
a vector field yields a result with different character. For example, the diver­
gence of a vector field is a scalar field, while the gradient of a vector field is 
a tensor field. Each of these derivatives, however, represents the rate of change 
of the vector field in some sense. Each one can be viewed as the "first deriva­
tive" of the vector field. In the sequel, we shall give a definition for each of 
these derivatives and give an idea of what they physically represent. 

The divergence of a vector field. One way to measure ofthe rate of change 
of a vector field is the divergence. Consider again a domain 95 with enclosed 
volume T(93) and boundary Q with unit normal vector n, as shown in Fig. 17. 
Let us assume that the body lives in a vector field v(x). Thus, at each point x 
in 95 there exists a vector v(x). Let the flux be v • n on the boundary Q, The 

(b) v(x) 

Figure 21 A vector field assigns a vector to each point in a domain 
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V • n 

Figure 22 The flux through the area dA in unit time 

divergence of the vector field is defined as the limit of the ratio of flux to vol­
ume, in the limit as the volume shrinks to zero. To wit 

div(v) = lim 
r(S)-K) n )̂J, y ' ndA (78) 

where dA is the infinitesimal element of area defined on the surface. 
We can better understand why the integrand v • n is called the flux if we 

think of the vector field v as the particle velocity in a fluid flow, wherein the 
vectors would be tangent to particle streamlines. The product v • n would then 
represent the total amount of fluid that escapes through the area dA on the 
boundary per unit of time, as shown in Fig. 22. The physical significance of the 
product V • n is that the volume of fluid that passes through the area dA in unit 
time is equal to the base area of the cylinder dA times the height of the cylinder 
V • n. Note that streamlines that are tangent to the boundary (i.e., v • n = 0) 
do not let any fluid out, while streamlines normal to the boundary let it out most 
efficiently. 

Let us compute an expression for the divergence of a vector field in Carte­
sian coordinates, again using the simple cuboid shown in Fig. 20. Following 
the same conventions we can compute the flux as 

V • n ^ = ^ [v(x + AA:,e,) • e, + v(x) • ( - e , ) ] ^ , (79) 

where, again, Q, is the rectangular region with area A, over which jc, is 
constant. Substituting A, = T(95)/Ax, we get 

''Mv) = g.onj:J.K.('<--^ff-"")^.-.. (30, 

Taking the limit of the average of the limit, as before, we arrive at the expres­
sion for the divergence in Cartesian coordinates: 

diviv = 
- av(x) ^ dv,(x) 

dXi e/ = dXi 
(81) 
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Note that the summation convention applies to indices that are repeated in a 
quotient. A common notation for the partial derivative is (• )„ = d( • )/dXi. 
This notation is usually referred to as the comma notation for partial deriva­
tives. This notation is useful if there is no ambiguity the variable of differenti­
ation. In this abbreviated notation, the divergence has the more compact ex­
pression div (V) = v„, with summation implied across the comma. It should be 
evident that the comma notation is convenient for index manipulation. 

The gradient of a vector field. Consider again the domain 95 with boundary 
Q shown in Fig. 17. The gradient of a vector field v(x) is a second-order tensor 
defined as the limit of the ratio of the flux v (g) n over the surface to the volume, 
as the volume shrinks to zero. To wit 

Vv = lim ^ ^ \®ndA (82) 

Again, T(95) is the volume of the region % Q is the surface of the region, and 
n is the unit normal vector field to the surface. With a construction similar to 
the one used for the divergence, we can compute a coordinate expression for 
the gradient. The component expression for Vv in Cartesian coordinates is 

v. = ^ [ . ® . , l (83) 

where summation is implied for both / and;. Thus, the components of Vv are 
simply the various partial derivatives of the component functions with respect 
to the coordinates, that is, the component [Vv]y gives the rate of change of the 
ith component of v with respect to the ;th coordinate axis. 

We can interpret the gradient of a vector field geometrically by considering 
the construction shown in Fig. 23. Consider two points a and b that are near to 
each other (i.e., A^ is very small). The unit vector n points m the direction from 
a to b. The value of the vector field at a is v(x) and the value of the vector field 

v(x-f A5n)-

v(x-̂ -Asn) 

Figure 23 Interpretation of the gradient of a 
vector field with the directional derivative 
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at b is v(x + Asn). Since the vector field changes with position in the domain, 
these two vectors are different in both length and orientation. If we transport 
a copy of v(x) and position it at b (shown dotted), then we can compare the dif­
ference between the two vectors. The vector that connects the head of v(x) to 
the head of v(x H- A^n) is v(x + Asn) - v(x). This vector represents the differ­
ence in the vector between points a and fe. If we divide this difference by As, 
then we get the rate of change as we move in the specified direction. Finally, 
taking the limit as As goes to zero, we get the directional derivative 

r. . . ,. v(x + A5n) - v(x) 
Dv(x) • n = lun -̂ ^ ^ ^^ 

^ ^ As-K) As 

Like the analogous formula for scalar fields, the quantity Z)v(x) • n is called 
the directional derivative because it gives the rate of change of the vector field 
in the direction n. The limiting process above suggests that we can compute the 
directional derivative as 

Z)v(x)-n = ^ [ v ( x + £n)]^^^ (84) 

A straightforward application of the chain rule for differentiation gives 

Dv(x) • n = [Vv]n (85) 

The directional derivative provides the answer to the question: What is the rate 
of change of the vector field? But Eqn. (85) makes it clear that the tensor Vv 
contains all of the information needed to assess rate of change in any direction. 

Example 7. Consider a vector field given by the following explicit expression 
v(x) = JCj JC2;C3 (jCj Cj + ;c2 62 + x^ 63). The components of the vector field are giv­
en by the following expressions 

Vj = X\X2X'^, V2 = X^xjXj, V3 = X1X2X1 

The gradient of this vector field can be computed from Eqn. (83). The result is 
the following tensor field 

Vv(x) = 2x^X2X^[ei ® e j + x^x^le^ (g) 63] + ^i^al^i ® ^3] 

+ xlx^[e2 ® Cj] + 2XiJC2JC3[e2 ® 62] + XiX\[t2 ® 63] 

+ ^̂ 2-̂ 31̂ 3 ® ^i] + ^l^3[e3 ® €2] + 2XiX2X2[t^ ® €3] 

The components of the tensor Vv can be put in matrix form as follows 

X\X2 2X10^2^3 

•^2-^3 

X2XI 

A^3 

2riJC2^3 

Xixl 2x1^2X3 
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The divergence of a vector field can be computed from Eqn. (81). It is worth not­
ing that the divergence is simply the trace of the gradient 

div(v) = tr(Vy) 

where the trace is the sum of the diagonal components of the tensor. Therefore, 
for the present example, div(v) = 6x1X20̂ 3. 

One can define the curl of a vector field in a completely analogous way by con­
sidering the flux VXD (see Problem 45). The details are left to the reader. 

A comment on notation for derivatives. There are many notations used 
to characterize operation in vector calculus. In this book we stick to "div" and 
V (some authors use "grad"). Occasionally it is useful to use a shorthand nota­
tion for gradients of scalar and vectors fields 

V;. = - ^ Vv = - ^ (86) 

While this notation is a bit sloppy it is convenient. For many problems in me­
chanics we use more than one coordinate system. When we take derivatives 
we must specify the variable of differentiation (if it is ambiguous). For the di­
vergence we will often use "div" and "DIV" to distinguish between two 
choices. For the gradient we will often use the notation ^x{')orV^(')to indi­
cate the variable of differentiation. 

Divergence of a tensor field. A tensor field is a function that assigns a ten­
sor T(x) to each point x in the domain. Consider a tensor field T(x) on a region 
3B with surface Q having unit normal vector field n. There are many ways to 
differentiate a tensor field. In solid mechanics we are primarily interested in 
one way. By analogy with vector differentiation, we define the divergence of 
a tensor field 

divT ^ lim ^ ^ T n ^ U], (87) 

where, as before, T(95) is the volume of the region % Q is the surface of the 
region, and n is the unit normal vector field to the surface. Since the integrand 
Tn is a vector, divT is a vector. 

One can use the definition of the divergence to compute a component ex­
pression and to prove the divergence theorem for tensor fields, by following 
the same arguments we have used for vector fields. Let us compute an expres­
sion for the divergence of a tensor field in Cartesian coordinates, again using 
the simple cuboid shown in Fig. 20. Following the same conventions we can 
compute the flux as 
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I T n ^ = 5^1 [T(x + Ax,e,)e, + T(x)(-e,)]ti4, 

45 

(88) 

where, again, Q, is the rectangular region with area A, over which x, is 
constant. Substituting A, = T(9&)/AJC/we get 

Taking the limit of the average of the limit, as before, we arrive at the expres­
sion for the divergence in Cartesian coordinates: 

*^Cf) = g " - ^C^") = e,- (90) 

It should be evident that all of the forms of the divergence of a tensor field given 
in Eqn. (90) are equivalent. The convenience of one form over another depends 
upon the application. 

Integral Theorems 
The divergence theorem. There is an mtegration theorem worth mention­

ing here because it comes up repeatedly in solid mechanics. We call it the diver­
gence theorem because it involves the divergence of a vector field. Consider 
again a region S of arbitrary size and shape, with boundary Q described by its 
normal vectors n. The divergence theorem can be stated as follows 

divydV = ndA (91) 

This remarkable theorem, also known as Green's theorem or Gauss's theorem, 
relates an integral over the volume of a region to an integral over the boundary 
of that same region. It applies to any sufficiently well-behaved vector field 
v(x), and, thus, is very powerful. The proof of the divergence theorem can be 
carried out along many lines. The one in Schey (1973) is particularly descrip­
tive. Schey's argument goes something as follows. 

Partition the region 3B into N small subregions S, each having volume 
T(98/), surfaces Q„ and unit outward normal vector field n„ as illustrated in 
Fig. 24. The surface of a certain subregion is the union of interior surfaces 
shared with adjacent subregions and (possibly) part of the original exterior sur­
face Q. The normal vectors along a shared surface between two adjacent sub-
regions point in opposite directions, as shown in the figure. Consequently, if 
we sum the fluxes over all of the subregions we get 
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'=1 JQ: JQ 

(92) 

In other words, the contributions of fluxes across the interior surfaces cancel 
each other out because there is only one v at a given point on the surface (pro­
vided that V is a continuous field) while one normal is the negative of the other. 

Let us define the "almost divergence" of the vector field to be the finite ratio 
of flux to volume of subregion 3S, 

9)/[v] r(%)j^ n, dA, (93) 

and observe that 3)/[v] -> div(v) in the limit as T(95/) -> 0. Multiplying Eqn. 
(93) through by T(95,) and summing over all N subregions, we can see from 
Eqn. (92) that 

I V • n ^ = Ja ) , [v ] r (S , ) (94) 

This equation holds no matter how many subregions there are in the partition. 
As the number of partitions is taken larger and larger the size of the subregions 
shrinks. In the limit as iV -^ oo the discrete elements pass to their infinitesimal 
limits, that is, 3)̂  [v] ^ div (v) and r(3i,) -> dV, The limit of the sum is the in­
tegral over the volume 

lim ^3) i [v ] r (a , ) = di diw dV (95) 

thereby completing the proof. 
The utility of defining the divergence with the intrinsic formula, Eqn. (78), 

should be evident from the proof of the divergence theorem. This proof might 

Figure 24 A region in three-dimensional space partitioned into subregions %, 
each with volume T(%\ surface Qj, and unit outward normal vector field n,. 
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not have the level of rigor that a mathematician would like (the limiting process 
and crossover to infinitesimals being the sloppiest point), but the geometric ba­
sis lends it a clarity that is more than adequate for our purposes here. 

The divergence theorem holds for any vector field v(x) that is well behaved. 
A simple way to think about "well-behavedness" is to consider some of the bad 
things that might happen on the way to the limit. In particular, any of the ob­
jects, like 9),[v], must exist for all possible subdivisions. If the vector field has 
a singular point (v -^ oo), then eventually the subdivision process will en­
counter it, and, for the subdomains on whose boundaries the singularity lies, 
3)/[v] is not defined. Similarly, if the field has a bounded jump along some sur­
face (where v~ T^ V"̂  on opposites sides of the jump), then for those subdo­
mains that have a boundary on the jump surface, the fluxes will not cancel out. 
Many of these pathologies can be treated by enhancing the integral theorems 
with features that account for them. We do not have to worry about the patholo­
gies if our vector field v and its divergence are continuous over the domain 98 
and on the surface Q. 

Example 8. The divergence theorem for the gradient of a scalar field is 

\dA ^gdV = gm 

where 9B is a region with surface Q having unit outward normal vector field n. 
Verify the relationship by applying it to the function g = x\+x\+x\ defined 
on a cylinder of unit radius and unit height, centered at the origin. 

'"y\^ n = tr 

Figure 25 Circular cylinder definition for Example 8. 

The integral of the gradient over the volume is best done in cylindrical coor­
dinates. Let Xj = r cos 0, Xj = r sin d, and x^ = z. The gradient of g can be 
computed as Vg = 2x = 2[rtr-^zt^), where tr{B) = cos^Cj-H sin^ej. The 
volume integral can be carried out as follows: 

I VgdV = I f f 2(re,(^) 
JaJ Jo Jo Jo 

^zt^)rdrdOdz = JtR^h^e^ 

(Observe that the integral of er(0) with respect to 6 from 0 to 27r is zero). The 
surface has the following characteristics: 
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Bottom Surface: z = 0 n = - e 3 g = r^ 

Top Surface: z = h n = +63 g = r^ + h^ 

Lateral Surface: r = R n = C;. g = R^^-z^ 

The surface integral can be carried out as follows, noting that the integrand for 
the top and bottom surfaces reduces to (r^ + /i^)e3 - r^e3 = h^t^, 

gndA = h^t^rdrde+ {R^ + z^)er(e)RdO dz 
JQ JO JO JO JO 

= TtR^h^e^ 

Qearly, the volume and surface integrals have the same value, as the divergence 
theorem promises. 

There are integral theorems for the gradient of a scalar field, the gradient of 
a vector field and a tensor field (see next section) that are analogous to the di­
vergence theorem. The statements and proofs of these theorem are left as an 
exercise (Problem 46). 

Divergence theorem for tensor fields. Any tensor field satisfies the following 
integral theorem (divergence theorem) 

divTJy = TndA 
Ja JQ 

(96) 

where, as before, T(93) is the volume of the region % Q is the surface of the 
region, and n is the unit normal vector field to the surface. Proof of the diver­
gence theorem for tensor fields is left as an exercise (Problem 46). 
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Problems 
1. Compute the values of the following expressions 

(a) d, 
(b) (5,(3, 

(d) daijdf^dcd "• dxydyz (enough terms to exhaust the whole alphabet) 

2. Let two vectors, u and v, have components relative to some basis as u = (5, - 2,1) 
and V = (1,1,1). Compute the lengths of the vectors and the angle between them. Find 
the area of the parallelogram defined by u and v. 

3. The vertices of a triangle are given by the position vectors a, b, and c. The components 
of these vectors in a particular basis are a = (0,0,0), b = (1,4,3), and c = (2,3, l).Using 
a vector approach, compute the area of the triangle. Find the area of the triangle projected 
onto the plane with normal n = (0, 0,1). Find the unit normal vector to the triangle. 

4. Let the coordinates of four points a, b, c and d be given by 
the following position vectors a=(l, 1,1), b=(2,1,1), c=(l, 2, 
2), and d=(l, 1,3) in the coordinate system shown. Find vectors 
normal to planes abc and bed. Find the angle between those vec­
tors. Find the area of the triangle abc. Find the volume of the tet­
rahedron abed. 

5. Demonstrate that (u x v) • w = tt^VyW^e,;^ from basic operations on the base vectors. 

6. Show that the triple scalar product is skew-symmetric with respect to changing the or­
der in which the vectors appear in the product. For example, show that 

(u X v) • w = - (v X u) • w 

To generalize this notion, any cyclic permutation (e.g., u, v, w -* w, u, v) of the order of 
the vectors leaves the algebraic sign of the product unchanged, while any acyclic permuta­
tion (e.g., u, V, w -> V, u, w) of the order of the vectors changes the sign. How does this 
observation relate to swapping rows of a matrix in the computation of the determinant of 
that matrix? 

7. Use the observation that || u - v p = (u - v) • (u - v) along with the distributive law 
for the dot product to show that 

v - | ( |v |P- | |y-u |P) 

8. Prove the Schwarz inequality, |u • v| < || u || || v ||. Try to prove this inequality with­
out using the formula u • v = || u || || v || cos ̂ (u, v). 

9. Show that [u ® v] ̂  = v ® u using the definition of the transpose of a tensor and by 
demonstrating that the two tensors give the same result when acting on arbitrary vectors 
aandb. 

10. Show that the components of a tensor T and its transpose T^ satisfy [T^], = [T] ,̂. 
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11. Show that the tensor T^T is symmetric. 

12. Consider any two tensors S and T. Prove the following: 
(a) det(T^) = det(T) 
(b) det(ST) = det(S)det(T) 
(c) [ST]^ = T^S^ 
(d) [ST]-i = T-^S- i 

13. Consider two Cartesian coordinate systems, one with basis {e^, €2, 63} and the other 
with basis {gj, gj, g^}- Let Q^ = g, • e^be the cosine of the angle between gj and ê . 
(a) Show that g, = Qijtj and ê  = Qi/g/ relate the two sets of base vectors. 
(b) We can define a rotation tensor Q such that e, = Qg,. Show that this tensor can be 

expressed as Q = Gy [g, ® gy], that is, Q^ are the components of Q with respect to 
the basis [g,®gy]. Show that the tensor can also be expressed in the form 
Q = [e ,®gJ. 

(c) We can define a rotation tensor Q ,̂ such that g, = Q^e, (the reverse rotation from 
part (b). Show that this tensor can be expressed as Q^ = Qij[^j ® e j , that is, Q^ are 
the components of Q^with respect to the basis [ Cj ® e J. Show that the tensor can also 
be expressed in the form Q^ = [g, ® e j . 

(d) Show that Q^Q = I, which implies that the tensor Q is orthogonal. 

14. The components of tensors T and S and the components of vectors u and v are 

1 
2 
0 

2 
0 
1 

0 
1 
2 

S -
0 
2 

-1 

-2 
0 
1 

1 
-1 
0 _ 

V — 

1 
1 
1 

u ---
1 
1 
2 

Compute the components of the vector Su. Find the cosine of the angle between u and Su. 
Compute the determinants of T, S, and TS. Compute TyT^ and UiTn^S^jVy 

15. Verify that, for the particular case given here, the components of the tensor T and the 
components of its inverse tensor T"^ are 

T ~ 
2 
1 
0 

-1 
2 

-1 

0 
-1 
2 

T-i ^ 

16. Consider two bases: [e^, Cj, 63) and (gi, g2, g3l. The basis (gj, g2, g3l is given in 
terms of the base vectors {cj, 62, €3) as 

gi = y5(ei + e2 + e3). 82 = ;^(2ei-62-63) , g3 = yj(e2-e3) 

The components of the tensor T and vector v, relative to the basis (ci, 62, 63) are 

T -
0 -1 1 
1 0 -1 

L-1 1 0 J 

Compute the components of the vector Tv in both bases. Compute the nine values of 
TijTjkT,a([.t., for i, / = 1, 2 ,3). Find the components of the tensor [T + T^]. Compute 7^. 
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17. Consider two bases: (ej, 62, 63) and jgi, g2, §3), where 

gl = 61+62 + 63, g2 = 62 + 63, g3 = 6 2 - 6 3 

Compute Qijior the given bases. Compute the value of QikQiq- Explain why the identity 
QikQiq = ^ij does not hold in this case. 

Now consider a vector v = 61 + 262 + 363 and a tensor T given as 

T = [62 0 61-61 0 6 2 ] + [63 (8)61-61 (8)63] + [63 0 62-62 0 6 3 ] 

Compute the components of the vector Tv in both bases, i.e., find v, and v, so that the fol­
lowing relationship holds Tv = v,6, = v,g,. Find the cosine ofthe angle between the vec­
tor V and the vector Tv. Find the length of the vector Tv. 

18. A general nth-order tensor invariant can be defined as follows 

J"\ / 1̂*2 '23 "1 

where {/j, (2,..., /„} are the n indices. For example, when n = 2wt can use {/,;} to give 
/2(T) = TijTjii when n = 3 we can use {/,;, k} to give fs(T) = TijTjJ^i' Prove that 
fn(T) is invariant with respect to coordinate transformation. 

19. Use the Cayley-Hamilton theorem to prove that for « > 4 all of the invariants /n(T), 
defined in Problem 18, can be computed from /i(T), /2(T), and fsCT). 

20. From any tensor T one can compute an associated deviator tensor T^^ which has the 
property that the deviator tensor has no trace, i.e., tr(T^^) = 0. Such a tensor can be ob­
tained from the original tensor T simply by subtracting a = | tr(T) times the identity 
from the original tensor, i.e., T^ = T - a l . Show that tr(T^g^) = 0. Show that the prin­
cipal directions of T^^and T are identical, but that the principal values of T^^ are reduced 
by an amount a from those of the tensor T. 

21. Consider a tensor T that has all repeated eigenvalues /^i = /^2 ~ /^s ^ f^- Show that 
the tensor T must have the form T = jul. 

22. Prove that the product of a tensor with itself n times can be represented as 

Hint: Observe that [n, ® nj[ny ® n̂ ] = ^y[n, ® n̂ ] (no summation implied). 

23. Show that the determinant of the tensor T can be expressed as follows 

det(T) = i t r ( T 3 ) - i / , t r ( T ^ ) + i ( / , ) ^ 

where / j = tr(T) = T^ is the first invariant of T. Use the Cayley-Hamilton theorem. 

24. A certain state of deformation at a point in a body is described by the tensor T, having 
the components relative to a certain basis of 

3 - 1 0 
-1 5 1 
0 1 2 
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Find the eigenvalues and eigenvectors of T. Show that the invariants of the tensor T are 
the same in the given basis and in the basis defined by the eigenvectors for the present case. 

25. Find the tensor T that has eigenvalues /̂  ̂  = 1, /̂ 2 = 2, and /̂ 3 = 3 with two of the asso­
ciated eigenvectors given by 

n, = -^(61 + 62), n2 = | ( - 2 e i + 2e2 + e3) 

Is the tensor unique (i.e., is there another one with these same eigenproperties)? 

26. Find the tensor T that has eigenvalues // j = 1, //2 = 3, and /̂ 3 = 3, with two of the asso­
ciated eigenvectors given by 

- | (ei + e2 + e3), n2 = j^y Hi = •^(ei + e2 + e3), n2 = -F(-e2 + e3) 

Are the eigenvectors unique? 

27. A certain state of deformation at a point in a body is described by the tensor T, having 
the components relative to a certain basis of 

10-
14 2 14 
2 -1 -16 

14 -16 5 

Let the principal values and principal directions be designated as fi and n. Show that n̂  
= (-1, 2, 2) is a principal direction and find /^j . The second principal value is //j = 
9 X 10"^, find n2. Find fi^ and n^ with as little computation as possible. 

28. The equation for balance of angular momentum can be expressed in terms of a tensor 
T and the base vectors ê  as e, x (Te,) = 0 (sum on repeated index implied). What specif­
ic conditions must the components of the tensor T satisfy in order for this equation to be 
satisfied? 

29. The tensor R that operates on vectors and reflects them 
(as in a mirror) with unit normal n is given by 

R = I-2n(g)n 

Compute the vector that results from [RR]v. Compute the 
length of the vector Rv in terms of the length of v. What is the inverse of the tensor R? Com­
pute the eigenvalues and eigenvectors of R. 

30. Let v(x) and u(x) be two vector fields, and T(x) be a tensor field. Compute the follow­
ing expressions in terms of the components ( v„ w„ and T̂ ) of these fields relative to the 
basis {ci, 62, 63): div(Tv), V(u • Tv), V(Tv), and u (g) Tv. 

31. Evaluate the following expressions: 

(a) div(div[x ® x]) (b) div(x div(xdivx)) (c) V[|| (V || x H )̂ f] 

(d) div(x (8) div[x 0 x]) (e) V(xdivx) (f) V[x • V(x • x)] 

where x = x^e^ +X2e2 +̂ 3̂63 is the position vector in space and all derivatives are with 
respect to the coordinates jc,. 
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32. Letv(x) = [x2-X2,)t^ + (•^3~^i)c2 + (JC^-0:2)63-Evaluate the following expres­
sions: Vv, V(x • v), div [x ® v], and V(x x v), where x = jc,e, is the position vector. 
Evaluate the expressions at the point x = 61+262 + 63. 

f \^x. 

33. Let v(x) be given by the following explicit function 

V(X) = [x\+X2X^)t^ + [x\+X^X^y2^ [4^^1X2)^3 

where x is the position vector of any point and has components 
{xi, JC2, x^} relative to the Cartesian coordinate system shown. 
The vector field is defined on the spherical region 9& of unit ra­
dius as shown in the sketch. Give an explicit expression for the 
unit normal vector field n(x) to the surface of the sphere. Compute the gradient of the vec­
tor field v(x). Compute the product [Vv]n, i.e., the gradient of the vector field acting on 
the normal vector. Compute the divergence of the vector field v(x). Compute the integral 
of div V over the volume of the sphere. Compute the integral of v • n over the surface of 
the sphere. 

34. Let v(x) be a vector field given by the follow­
ing explicit function 

v(x) = (xiCi+0:262) ln(^ + JC2) 
where ln( •) indicates the natural logarithm of (•). 
The vector field is defined on the cylindrical re­
gion S of height h and radius R as shown in the sketch. Give an expression for the unit 
normal vector field n(x) to the for the cylinder (including the ends). Compute the diver­
gence of the vector field v(x) and the integral of div v over the volume of the cylinder. 

35. Consider the scalar field g(x) = (x • x)^. Compute div[v(div[Vg(x)])]. 

36. Let v(x) be given by the following explicit function g(x) = 0 

v(x) = (^^2+^3)61 + ^1+^^3)62 + (̂ 1+^=^2)63 

where x is the position vector of any point and has components 
jxi,jC2, X3) relative to the Cartesian coordinate system as 
shown. The vector field is defined on the ellipsoidal region 3& 
whose surface is described by the equation g(\) = 2x\ +;c^ + 2J^ — A = 0. Give an ex­
pression for the unit normal vector field n(x) to the ellipsoid. Compute the gradient of the 
vector field v(x). Compute the product [Vv]n, i.e., the gradient of the vector field acting 
on the normal vector. Compute the divergence of the vector field v(x). 

37. Evaluate the expression div[ V(x • Ax) ], where A is a constant tensor (i.e., it does not 
depend upon x), and the vector x has components x = JCJCJ. The derivatives are to be taken 
with respect to the independent variables jĉ . Express the results in terms of the components 
of A and x. 

38. Let g(x) = e ~ll*'l be a scalar field in three-dimensional space, where || x || is the dis­
tance from the origin to the point x. Qualitatively describe the behavior of the function (a 
one- or two-dimensional analogy might be helpful). Compute the gradient Vgof the field. 
Where does the gradient of the function go to zero? 



54 Fundamentals of Structural Mechanics 

39. Consider a tensor field T defined on a tetrahedral re­
gion bounded by the coordinate planes x^ = 0,0^2 = 0, 
JC3 = 0, and the oblique plane 6x1 + 3x2 + 2x3 = 6, as 
shown in the sketch. The tensor field has the particular ex­
pression T = b ® X, where b is a constant vector and x 
is the position vector x = x, e,. Compute the integral of 
div(T) over the volume and the integral of Tn over the 
surface of the tetrahedron (and thereby show that they 
give the same result, as promised by the divergence theorem). Note that the volume of the 
tetrahedron of the given dimensions is one. 

40. Let v(x) = X on a spherical region of radius R, centered at the origin. Compute the 
integral of div (v) over the volume of the sphere and compute the integral of the flux v • n, 
where n is the unit normal to the sphere, over the surface of the sphere. Give the result in 
terms of the radius R. What does this calculation tell you about the ratio of surface area 
to volume of a sphere? 

41. The Laplacian of a scalar field is a scalar measure of the second derivative of the field, 
defined as V^g(x) = div( V^(x)). Write the component (index) form of the Laplacian of 
g in Cartesian coordinates. Compute the Laplacian of the scalar field of Problem 38. 

42. Compute div (T), where T(x) = ( x - x ) I - 2 x ® x i s a tensor field. 

43. Let u(x), v(x), and w(x) be vector fields and let T(x) be a tensor field. Compute the 
component forms of the following derivatives of products of vectors 
(a) V(u-v ) (d) div(Tv) (g) div(u(g)v) 
(b) div(u X v) (e) V(u • Tv) (h) div([u (g) v]w) 
(c) V ( u x v ) (f) V(Tv) (i) V [ ( u x v ) - w ] 

44. Use the same reasoning that was used to derive the three-dimensional version of the 
divergence theorem to develop (a) a one-dimensional version, and (b) a two-dimensional 
version of the theorem. Use sketches to illustrate your definitions and draw any possible 
analogies with the three-dimensional case. 

45. Consider a vector field v(x) on a region 35 with surface Q having unit normal field 
n. The "curl" of the vector field can be defined as 

curl(v) = lim -^pr^ I y x ndA 
r(aa)-*o T(^) J 

that the 

„„W.f.e,.(g-g)...(S»-S|).,.(||-|g). 
Show (using the cuboid for % as in the text) that the expression for curl(v) is 

Note that many authors define the curl to be the negative of the definition given here, which 
is easily achieved by using the flux n x v instead. The form presented here seems to be 
more consistent with our other definitions of derivatives of vector fields. 

46. Consider variously a scalar field g(x), a vector field v(x), and a tensor field T(x) on 
a region 3& with surface Q with unit normal vector field n. Prove the following theorems 
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[ Vg^y= [ gndA, [ VydV= [ y®ndA, f divTJy= [ TndA 
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47. Use the divergence theorem for a vector field to show the following identities 
(a) Green's first identity for scalar functions M(X) and v(x), (Hint: Let v(x) = wVv) 

(wV v̂ + V« • Vv)dV = n • [uVv)dA 

(b) Green's second identity for scalar functions w(x) and v(x), 
(Hint: Let v(x) = wVv-vVw) 

[uV\-vV'^u)dV = n • (wVv-vVw)d[A 

48. Many problems are more conveniently formulated and -̂ 3 4 
solved in cylindrical coordinates (r, ̂ , z). In cylindrical coor­
dinates, the components of a vector v can be expressed as 

y{r,e,z) = v,e, + v ê̂  + v̂ Cz 

where the components V;., v̂ , and v̂  are each functions of the 
coordinates (r,^,z). However, now the base vectors ^r(&) 
and e^(^) depend upon the coordinate 0. We must account 
for this dependence of the base vectors on the coordinates 
when computing derivatives of the vector field. 

Using the coordinate-free definition of the divergence of a vector field, Eqn. (78), show 
that the divergence of v in cylindrical coordinates is given by 

divv(..,.) = ll:(.v.) . 1 ^ . S 

(Hint: Observe from the figure that HJ = e^(^ + A^) and n2 = - e^(^) and are constant 
over the faces 1 and 2, respectively. The normal vectors n^ = er(^) and n4 = — e;.(|), 
with ^ E [6, 6 + AS], vary over faces 3 and 4. Finally, note that n^ = ê  and n^ = - ê  
are constant over faces 5 and 6.) 

rAB Az 

Ar 

Note that the volume of the wedge is ?'(S) = r A^ Ar Az plus terms of higher order 
that vanish more quickly in the limit as f (S) -* 0. 



2 
The Geometry 
of Deformation 

Mechanics is the study of bodies in motion. A solid body can be put into motion 
by any of a variety of actions. Among the most common causes of motion are 
the application of force or heat to the body. In general, a body in motion under­
goes some combination of rigid motion (the distance between two particles 
does not change) and stretching (the distance between two particles changes). 
The motion can be either fast or slow. If the motion is slow enough then the 
resistance to motion caused by the inertia of the body (the so-called D'Alem-
bert forces) can be neglected in the accounting of force equilibrium. We gener­
ally refer to this class of motions as quasi-static^, If the motion is fast enough 
then the forces associated with inertial resistance are not negligible and must 
be included in the accounting of force equilibrium. We refer to this class of 
problems as dynamic. In this book we confine our attention mostly to quasi-
static motions. 

The fundamental reason for studying motion is that the motion accommo­
dates and influences the development of force in the body. One of the funda­
mental hypotheses of the mechanics of def ormable bodies is that materials re­
sist stretching in the sense that the distance between two points in a body can 
change, but it takes force to get the job done (i.e., to stretch the molecular 
bonds). In the study of motion we are interested in characterizing the part of 

t It is not really possible to have a static motion because static implies no motion. Yet 
we think of static analysis, from the perspective of equilibrium, as a problem for which 
inertial forces are negligible or zero. Hence, it makes more sense, from the perspective 
of kinematics, to refer to the motion as quasi-static. It will sometimes be convenient 
to suppress the time dependence of the motion when we are considering the state at 
a moment in time. 
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the motion that gives rise to internal force (or stresses, which will be covered 
in Oiapter 3). The relationship between force and deformation will depend 
upon the constitution of the material (which will be covered in Chapter 4). 

Kinematics is the study of the motion of a body independent of the cause of 
that motion. In this chapter we shall focus on kinematics. One way to charac­
terize motion is to describe the current position of each point in a body relative 
to the position that point occupied in some known reference configuration 
(often called the Lagrangian description of motion). We shall call the mathe­
matical description of the motion a map or, since the motion will almost always 
include deformation, a deformation map. The goal of this chapter is to charac­
terize the map and to analyze the deformation implied by the map. This analy­
sis will lead us to the definition of strain, which will serve as one of the basic 
descriptors of deformation and will prove useful in the development of consti­
tutive equations for materials. 

We motivate our discussion by starting with the simple case of uniaxial mo­
tion of a (one-dimensional) rodf. The simple case will help to fix ideas and to 
connect with concepts from elementary strength of materials. Then, with the 
help of vector calculus, we generalize the concepts to three-dimensional solid 
bodies. 

Uniaxial Stretch and Strain 
Let us begin our discussion of the concept of strain by examining the deforma­
tion associated with the elongation of the thin rod shown in Fig. 26. It may be 
useful to think of the state of the rod at two different instants in time without 
worrying too much about what happened between those times (or how fast it 
happened). At the first instant, the rod has length (^^ At the second instant, the 
rod has length €. The difference in length is simply A€ = € - €o. 

k ^ î  

Figure 26 Elongation of a thin rod 

There are only two things that can happen to the rod: (1) rigid-body motion 
(translation and rotation in space), and (2) change in length. Intuitively, the de­
formation or strain should be independent of any rigid-body motion of the rod 
because the rigid motion does not give rise to internal forces. Let us define the 
stretch of the rod as the ratio of deformed length to original length 

t We assume that the rod is only capable of elongating and shortening, not bending. 
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X = j - (97) 

The stretch is dunensionless and is equal to unity when the rod is the same 
length before and after the motion. Since change in length is the only part of 
the motion associated with deformation, and since the stretch completely cap­
tures the change in length, we should expect the stretch to completely charac­
terize the deformation part of the motion. 

In fact, any function of the stretch will be an acceptable measure of de­
formation or strain. Unfortunately, this observation implies that there is no 
unique measure of strain. Indeed, many definitions of strain are currently in use 
in engineering. For convenience, let us place two requirements on our defini­
tions of strain: (1) The strain must be zero when the rod is unstretched, i.e., 
when A = 1. (2) All strain measures should yield the same values in the neigh­
borhood of A = 1. In the following paragraphs we mention a few of the com­
mon definitions of strain used in solid and structural mechanics. 

The engineering strain for the rod is measured as the change in length divid­
ed by the original length of the member 

^en, = ^ ^ = A - 1 (98) 

The natural or ''true '* strain is measured as the change in length divided by the 
deformed (or current) length of the member 

^true = ~n ~ T ^^^ 

These two strain measures are familiar from elementary strength of materials. 
Part of the appeal of these strain measures is their linearity with respect to the 
stretch or its inverse. 

The Lagrangian or Green strain is measured as half the difference in the 
squares of the deformed and undeformed lengths divided by the square of the 
undeformed length 

E = 

The Lagrangian way of formulating the strain has the same spirit as engineer­
ing strain in the sense that change in length is reckoned with respect to original 
length. Furthermore, we can see that when the change in length is small, i.e., 
A — 1 -"̂  1, these two measures of strain are equivalent. The desire to have this 
equivalence explains why we put the mysterious factor of 2 in the definition 
of Lagrangian strain. This observation is more evident when we write the La­
grangian strain as |(A -1)(A +1). Now, when the stretch is very near to unity, 
(A H-1) « 2 and E « (A — 1). As we shall see in this chapter, there is some 
theoretical advantage to taking the Lagrangian definition as the basic measure 
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of strain as we generalize the concept to three dimensions and large deforma­
tions. 

The Eulerian or Almansi strain is measured as half the difference in the 
squares of the undeformed and deformed lengths divided by the square of the 
deformed length 

Just as the Lagrangian strain is reminiscent of the engineering strain, the Euler­
ian strain is reminiscent of the natural strain. Again, the Eulerian definition has 
certain theoretical advantages over the true strain definition in generalizing to 
three dimensions and large deformations. 

Finally, the logarithmic strain can be defined as 

ein = In (A) (102) 

One interpretation of this measure of strain is to think of a continuous deforma­
tion process in which each step / has a change in length A €, that can be divided 
by the current length €, to give an incremental true strain 77, = A€,/€,. If these 
incremental strains are summed and if we take the limit as the size of the step 
becomes infinitesimally small we get 

The various measures of uniaxial strain are sunmiarized in Table 1. The 
choice of which strain measure to use is dictated by how we choose to describe 
the constitutive law governing the relationship between stress and strain in the 
material. All suitable measures of strain (including the four mentioned here, 
and many more) are basically equivalent in that they all attempt to characterize 
the same state of deformation. The difference in the measures of strain starts 
to show up when you use them to characterize induced stresses from constitu­
tive equations. 

Table 1 Different measures of uniaxial strain 

Strain measure 

^eng = A — 1 

E ^ i(A^-l) 

^true = 1 ~ l / A 

e - i(l-l/A^) 

1 ^in ^ ln(A) 

Common designation 

Engineering strain 

Lagrangian or Green strain 

Natural or "true" strain 

Eulerian or Almansi strain 

Logarithmic strain 
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A(z) • 

61 

Undeformed 

Deformed 

Figure 27 Nonuniform stretch of a thin rod 

Nonuniform stretchii^. We have a couple of hurdles to clear in order to 
suitably generalize our one-dimensional characterizations of strain. The first 
hurdle regards the homogeneity of the strain state. This issue is present even 
for our one-dimensional rod, as shown in Fig. 27. 

Let the undeformed rod be marked off in uniform subdivisions. The lack of 
uniformity of the stretch of the deformed rod is evident because the deformed 
pieces all have different lengths. The stretch of the fth piece can be computed 
as the ratio of the final length of the piece to the original length of the piece, 
^i = (i/ioi- These points are plotted in the figure. If we were to take the initial 
subdivision finer and finer, we would get more and more points describing the 
variation of the stretch along the length of the rod. In the limit, as the number 
of subdivisions goes to infinity, the description of the stretch approaches the 
continuous function A(z), where z is the measure of distance in the undeformed 
configuration. 

The deformed length of the rod can be computed as the integral of the stretch 
over the original length 

•I 
^o 

k{z)dz (104) 

If the deformation is homogeneous, and, hence, A(z) = A, then Eqn. (104) 
gives A = €/€o, as we expect. The limits of integration of 0 and io make sense 
because the stretch A(z) is defined as a function of position measured in the un­
deformed configuration, as shown in Fig. 27. 

The independent variable z measures distance linearly in the undeformed 
configuration, i.e., if you made marks at equal increments of z those marks 
would be equally spaced on the undeformed configuration. We actually did 
make those marks in Fig. 27. Notice that the marks are not equally spaced on 
the deformed configuration because of the nonuniformity of stretching. We 
could also define an independent variable x that measures distance linearly in 
the deformed configuration, i.e., if you made a mark at equal increments of :̂ , 



62 Fundamentals of Structural Mechanics 

those marks would be equally spaced on the deformed configuration (but then 
the marks would not be equally spaced on the undeformed configuration). 

We can think of the position defined on the deformed configuration as a 
function x = 0(z) of position defined on the undeformed configuration. Con­
sider a segment of a rod that had its ends located at z and z 4- Az in the original 
configuration. After deformation, those points are located at 0(z) and 
(p(z + Az). The current length of the piece is 0(z + Az) - <p(z), while the origi­
nal length was Az. The stretch is defined simply as the current length divided 
by original length in the limit as the original length of the piece approaches 
zero. To wit, 

^ ^ Az-K) Az dz ^ ^ 

that is, the stretch is the derivative of the function (p(z) that maps the original 
coordinate z to the deformed coordinate x. We can view the computation of the 
current length of the finite bar through the rule for change in variables for in­
tegration 

€ = d x : = ^ t f e = Atfe (106) 
Jo Jo Jo 

which is the same result as Eqn. (104). In this setting, we can think of A as the 
Jacobian of the change in variable dx = Xdz. 

The introduction of the stretching function A(z) provides a suitable general­
ization of the definition in Eqn. (97) from homogeneous deformation to nonho-
mogeneous deformation. In the same sense, we can generalize the concept of 
strain to nonhomogeneous deformations simply by substituting X(z) into each 
of the definitions of strain. Thus, we generally think of stretch and strain as 
properties associated with a point in the bar, and not as properties of the whole 
bar. This perspective, called localization, is central to our study of the geome­
try of deformation. 

The second issue we must face in characterizing deformation is the exten­
sion of the concept of strain to three-dunensional solid bodies. This issue is the 
primary focus of this chapter. We shall see that our definitions of one-dimen­
sional stretch and strain play an important role in three dimensions. 

The Deformation Map 
The description of the geometry of deformation must begin with a description 
of the body in question. For our purposes it is sufficient to imagine a continu­
ous, solid body located in three-dunensional space. We must be able to com­
pletely characterize the geometry of the body in some configuration in order 
to make any headway in describing the geometry of deformation. We will call 
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Figure 28 A solid, continuous body in three-dimensional space 

the known geometry the reference configuration. The reference configuration 
is often taken to be the unstressed and unstrained configuration of the body, al­
though such a restriction is not necessary. Our primary assumption about the 
initial geometry is that in this configuration we know the position of every 
point in the body. A second, equally crucial, assumption is that the body is con­
tinuous (as opposed to, say, a collection of discrete particles). The assumption 
of continuity will allow us to use the tools of differential geometry. 

Our prototypical body 95 is illustrated in Fig. 28. The initial geometry has 
two basic features: the domain, which is everything inside the body, and the 
boundary, which is the surface of the body. In the reference configuration 98 
we can locate the position of a point, say point 9̂ , by giving its coordinates 
{zi, Z2, Z3} relative to the origin of the coordinate system. The vector pointing 
from the origin of coordinates to the point $P is called Xht position vector z. 

Imagine a curve C miming through the body. For the sake of discussion, let 
us imagme that we have marked the material along this curve (for example, 
with a radioactive marker that allows us to see its position with a device like 
an X-ray machine) during its formation. The curve can be parameterized by 
a measure of its arc length 5. (Imagine that you are an ant walking along the 
curve. The parameter s is the value that you read on your pedometer as you 
travel along.) The curve is an important geometric construct because it will 
provide a connection with our one-dimensional ideas of stretch and strain. 
There are infinitely many curves passing through the point 9̂ , each one distin­
guished by its direction at $P. The direction that a curve is heading at any instant 
is the direction tangent to the curve. As we shall see, these tangent directions 
will play a key role in the description of strain. 

Let us assume that we can characterize the deformation of a body 95 with 
a deformation map <|)(z) as shown in Fig. 29. The deformation map takes the 
position vector z and locates the position of that same point in the deformed 
configuration <t>(95) as 

X = cKz) (107) 

relative to the coordinate system {jCi, JC2, ^3}. Note that our point 9P is desig­
nated as <t)(9̂ ) in the deformed configuration and represents the same material 
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ct>(z) 

Figure 29 The deformation map 

point as 9̂  in the sense that, if we could make a mark at point 9̂  before deforma­
tion, we would find that mark at point <t)(9̂ ) after deformation. We might also 
wish to see the effect of the deformation map on an imaginary curve C. A curve 
is a parameterized sequence of points z(s), where the scalar variable s mea­
sures distance along the curve. We designate the position of the curve in the 
deformed configuration as ct)(e). The deformed curve is also described by a 
parameterized sequence of points \(s) = <j)(z(5)). Note that, like our one-di­
mensional example, the distance measure s always refers to distance in the un-
deformed configuration. 

The concept of the map is a familiar one. Anyone who has traveled has prob­
ably used a map. The cartographer's map is a functional representation of posi­
tion. Each position on a flat map of the world represents a particular location 
on the surface of the Earth. A road or a river on a map is analogous to our curve 
e. The main function of a cartographer's map is to scale down areas so that a 
region can fit within the confines of a piece of paper. The ideal map would only 
scale; however, as everyone knows, maps tend to distort areas and distances. 
Have you ever wondered why Greenland often appears to be as large as South 
America on some flat world maps? The distortion on a cartographer's map is 
caused by the function used to map points from the surface of the Earth to the 
piece of paper or globe. Some mapping functions preserve areas; some pre­
serve straight lines; some preserve none of the above. The amount of distortion 
is implicit in the mapping function. 

The deformation map (^z) is very much like a cartographer's map in the 
sense that it unambiguously locates the position of points on the deformed con­
figuration of the body. It is unjike the cartographer's map in the sense that the 
mapping function is dictated by the physical processes driving deformation. In 
mechanics, our aim is often to determine the map from data like applied forces 
and laws of nature. Whether a cartographer's map or a deformation map, the 
concept of mapping gives us a way of organizing the process of relating the 
location of points in two configurations. 
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The Stretch of a Curve 
Our imaginary curve is a good starting point for the definition of strain in a 
three-dimensional body because we can examine the change in length of this 
line under the action of the deformation map. From elementary considerations 
we already know what strain means for the stretching of a line. The arbitrari­
ness of the choice of our curve will allow us to generalize our concept of strain 
to three dimensions. Let us examine the change in length of the curve C be­
tween two points. 

Consider two points on the curve C, one described by the position vector 
z(s) and the other by the position vector z{s + As), as shown in Fig. 30. The 
vector connecting the first point to the second is Az = z{s + As) — z{s), and 
the length of this vector measures the straight-line distance between the two 
points. The two points are mapped to the positions x{s) and x{s + As), respec­
tively, in the deformed configuration. The vector connecting flie two points in 
the deformed configuration is Ax = \{s -f- As) - x{s), and the length of this 
vector measures the straight-line distance between the two points. In the limit 
as As -^ 0, the straight-line distance between two points and the distance mea­
sured along the arc become equal. Hence, in the limit, the lengths of the vectors 
Az and Ax are appropriate measures of the lengths of the respective curves. 

In the limit as As -> 0, the length of the vector z(5 + As) — z{s) approaches 
zero, but the ratio of the length of the vector to the length of the arc approaches 
unity. Taking the limit of this ratio as As -^ 0, we obtain the expression for the 
tangent vector to the curve 

lim 
A5-K) 

z(5 + As)-z(5) ^ dz 
As ds 

(108) 

Thus, the derivative of a position vector along a curve is always tangent to the 
curve. If it is normalized with respect to the measure of distance along the 
curve, then it is always a unit vector because as As ^ 0, the secant line length 
approaches the arc length, i.e., As -* || z{s + As) — z{s) ||. 

Figure 30 Measuring the distance between two points on a curve 
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The vector x(s + As) - \(s) can also be normalized with respect to the length 
of its arc. However, it will be more useful to compute the limit of the ratio of 
this vector to the length of the arc in the undef ormed configuration. This is pos­
sible because there is a one-to-one mapping between corresponding points on 
the original and deformed curves. Thus, we know where to put the head and 
tail of the vector pointing along the secant of the deformed curve, and we know 
the corresponding length of arc for the undef ormed curve. The result is the tan­
gent vector to the deformed curve 

lim ^(^ + ^ ) - ^ ( ^ ) = ^ (109) 
As—0 As as 

The vector dx/ds is tangent to the deformed curve because it is the limit of se­
cant lines of points taken closer and closer together. The vector dx/ds does not 
have unit length because it is reckoned with respect to the arc length between 
the two points in the undeformed configuration. Since || x(s + As) - x(s) \\ is 
the length of the secant line between two points on the curve, it approaches the 
length of the actual deformed curve in the limit as As -^ 0. The ratio of 
II x(s + As) — x(s) II to As is, therefore, the ratio of the length of the deformed 
curve to the length of the original curve. Consequently 

II x(5 + As) - x(5) II 
Ihn -̂̂ ^ -r^ ^^^ = A(5) (110) 

Since the square of the length of a vector v is given by || v p = v • v, Eqns. 
(109) and (110) suggest that the square of the stretch of the curve z(s) is given 
by the dot product of the tangent vectors in the deformed configuration 

'̂<̂ ) = ( f ) • ( f ) <"'> 
Remark. We could just as easily parameterize the curve with a measure of 

distance along the curve in the deformed configuration. If this distance is used, 
then the vector dx/ds would be a unit vector, while dz/ds would not. The stretch 
1/Â  would then be the dot product of dz/ds with itself. As mentioned earlier, 
this is the main difference between the Lagrangian and Eulerian descriptions 
of motion. 

It should be clear that the object that arises naturally in the measure of 
stretch at a point 3P is the vector tangent to the undeformed or deformed curve 
e, not the curve Q itself. Since the curve C is arbitrary, we can imagine a curve 
passing through ^ with a tangent vector pointing in any direction in three-di­
mensional space. It is productive to think of each point as having a whole 
collection of tangent vectors that will be stretched by the deformation map. The 
map itself will locate the position of the point 5>, while the rate of change, or 
gradient, of the map will tell us how the tangent vectors stretch. 
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The Deformation Gradient 
Noting that the parameterized curve in the deformed configuration is deter­
mined by the deformation map as x{s) = ^z(sy), one can apply the chain rule 
for differentiation to relate the vectors tangent to the curves in the deformed 
and undeformed configurations. In components, noting that the map can be 
written Xi(s) = 0j(zi(5),22(5),23(5)), we can compute the derivative by the 
chain rule as 

dXjjs) _ 30,(z) dzjjs) 
ds "• dzj ds ^ ^ 

Note that the partial derivatives d(t>i/dZj are simply the components of the ten­
sor V<t). This tensor plays such an important role m the subsequent develop­
ments that we shall give it a special name and symbol. We call 

F(z) ^ VcKz) (113) 

the deformation gradient because it characterizes the rate of change of de­
formation with respect to the material coordinates z. With this notation, Eqn. 
(112) can be written in direct notation as 

^ = F — 
ds ds (114) 

The deformation gradient carries the information about the stretching of the 
domain in the infinitesimal neighborhood of the point z. It also carries informa­
tion about the rotation of the vector dz/ds. We will often dispense with the no­
tion of the curve and its parameterization and simply refer to the tangent vector 
as n or t or some such notation. Many authors like to use the notation dz to refer 
to tangent vectors in the undeformed configuration and dx to refer to tangent 
vectors in the deformed configuration. With this notation, the deformation gra­
dient operates as d\ = Frfz. This notation has the advantage of reminding us 
that the tangent vector represents the rate of change of a position vector, but 
it also hides the role of the arbitrary curve. 

The deformation gradient F is a tensor with the coordinate representation 

where {e,} are the base vectors in the deformed configuration and { g j are 
the base vectors in the undeformed configuration. The deformation gradient 
is often called a two-point tensor because the basis e, ® gy has one leg in the 
undeformed configuration and one in the deformed configuration. The need 
for this distinction is clear when we recall that a tensor is an object that operates 
on a vector to produce another vector. According to Eqn. (114), F operates on 



68 Fundamentals of Structural Mechanics 

unit tangent vectors in the undeformed configuration to produce tangent vec­
tors in the deformed configuration. Let the kXh component of dz/ds be defined 
as Hk = dzjds, and consider the following component computation 

= Fijn,[ei®gj]gk 

= FijTljti 

since [e, 0 g^gk = d̂ itC/by the definition ofthe tensor product of vectors. The 
most natural basis for the vector dzlds is { g,} because the undef ormed config­
uration is defined in that coordinate system. The most natural basis for the vec­
tor dxids is {C/} because the position x is defined on the deformed configura­
tion. We can see from the previous construction that Fy WyC, is a vector defined 
on the deformed configuration, as it should be, so the components of the tan­
gent to the deformed curve are dxjds = Fijfiy 

It should be clear that the deformation gradient F(z) is a function of position 
in the body, since the mapping function will generally not be uniform. To econ­
omize the notation we often will not show the explicit functional dependence, 
and will simply refer to F with the understanding that it depends on z. 

Strain in Three-dimensional Bodies 
The stretch of a curve at a point is the ratio of the deformed length of the curve 
to the original length of that curve, in the neighborhood of the point in question. 
Let us consider an infinitesimal length of curve in the neighborhood of the 
point 3>. The length of the curve is proportional to the length of the tangent vec­
tor at that point. Since the length of the tangent vector n in the undef ormed con­
figuration is unity, the stretch is simply the length of the tangent vector Fn in 
the deformed configuration. The stretch can be expressed in terms of the de­
formation gradient by substituting Eqn. (114) into Eqn. (Il l) as 

X\n) = Fn • Fn (116) 

for any unit vector n in the undeformed configuration. From the definition of 
the transpose of a tensor, we have Fn • Fn = n • F^Fn. Let us introduce the 
Green deformation tensor C, defined to be the composition of the transpose of 
F operating on F as follows 

C = F^F (117) 

The stretch of a line oriented in the direction n in the undeformed configuration 
can then be computed as 

I A2(n) = n • Cn (118) 
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Equation (118) holds for any curve with dzlds = n, and, hence, enables us to 
compute the stretch in any direction at a given point. 

Recall that our definition of Lagrangian strain is the difference between the 
square of the deformed length and the square of the original length divided by 
twice the square of the original length. We can use the same definition for strain 
m the direction n as follows 

£(n) = ^[A'(n)-l] = n • En (119) 

where the Lagrangian strain tensor E is defined to be half the difference be­
tween the Green deformation tensor and the identity tensor I as follows 

E - i [ C - l ] (120) 

A straightforward computation will demonstrate the validity of Eqns. (119) 
and (120). 

Examples 
As a bit of relief from all of the preceding abstraction, let us consider some spe­
cific cases of deformation maps. Four simple cases of deformation, their de­
formation maps, and the corresponding deformation gradients are given be­
low. As an exercise, compute the Green deformation tensor C and the 
Lagrangian strain tensor E for each case. These maps are all two dimensional 
in the sense that there is no action in the third coordinate direction. Assume that 
each geometric figure has unit thickness. Throughout these examples we will 
take the base vectors in the deformed configuration to be the same as the base 
vectors in the undeformed configuration, i.e., {g,} = {e,}. 

Example 9. Simple extension. The deformation map for simple, homogenous 
extension in the z^ direction is shown in Fig. 31. The explicit mathematical ex­
pression for the map is 

H 
z 

g>. 

<K2) 
«-2 i 

< K e ) i — ^ 

¥.n 

Figure 31 The map for simple extension 
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Let us examine the action of the map. Each point in the undeformed configura­
tion moves to a point in the deformed configuration with coordinates 

X^ = ( l + ) 3 ) Z i , X2 = Z2, X^ = Z3 

For example, the point ^ is initially located at z = (3,1,0). After deformation 
it is located at position x = (3 + 3)3,1, 0). 

The curve C in the undeformed configuration, shown in the figure, has the 
equation Z2 = 1 + 2z-^, To find the equation of the curve in the deformed config­
uration we must invert the map, that is, solve for z in terms of x. For this map 
this operation is straightforward, yielding 

l-h)3' 
Z2 — X2, Z3 — X3 

Substituting these expressions into the equation of the original line, we get the 
equation for the line in the deformed configuration <t)(C), jCj = 1 + 2xi/( l+P). 
Since the equation of the curve in the deformed configuration is linear, we con­
clude that the map deforms straight lines into straight lines (we proved it for one 
line, at least). 

The deformation gradient can be computed from the map as 

F = l+p[e,®e,] 

The stretch in the direction of the coordinate axes can be computed by noting 

Fei = {l+)3)ei, Fe2 = (l)e2, ¥e^ = (1)63 

(note that the base vectors are eigenvectors of F). The stretches are 

A2(e0 = Fei • Fe^ = (l+fi)e, • {l+p)e, = (l+fi)' 

Therefore, X(e{) = 1+^. The stretches in the other two directions can be com­
puted similarly to show that A(e2) = 1 and k{e^) = 1. A line oriented at an 
angle 6 from the ẑ  axis points in the direction n = cos ̂ Cj + sin ̂ €2- Since we 
have Fn = (1 -ĥ S) cos ̂ e^ + sin ̂ 62, the square of the stretch is 

A2(n) = Fn • Fn = [l-^fi]^ cos^O-\' sin^O 

Hence, we can observe that not all lines stretch by the same amount. The stretch 
depends upon the orientation of the line. Lines oriented along the Zj axis (^ = 0) 
stretch the most, while lines oriented along the Z2 axis (0 = njl) do not stretch. 

Example 9 shows several aspects of the deformation map and its analysis. 
The correlation of the mathematical description of the map and a graphical rep­
resentation of the map is important, but it is a lot harder to see a picture of a 
deformation and then write down a mapping function than it is to have a map­
ping function and then draw a picture of the deformation. In the latter instance 
one need only locate the positions of enough points (or lines) to get the gist of 
the mapping. This example also illustrates the simple idea of how the stretch 
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at a given point (in this case all points experience the same deformation, as evi­
denced by a constant F tensor) varies with direction. Note that we did not ex­
plicitly compute the components of the tensor C to carry out our computations 
of the stretch. 

The next example is also a homogeneous deformation, but has the feature 
that it couples the motion in the two directions. 

Example 10. Simple shear. The deformation map for simple, homogenous 
shearing in the Zj direction is shown in Fig. 32. 

Figure 32 The map for simple shear 

The explicit expression for the map is 

The action of this map is to shear the block. Lines parallel to the Zj axis do not 
rotate but they do translate relative to their original positions. Lines parallel to 
the Z2 axis rotate. 

The deformation gradient is F = H-)3[ ê  ® ej ]. The stretch in the direction 
of the coordinate axes can be computed by noting 

Fei = (l)ei, Fe2=iSei + e2, Fe3 = (l)e3 

(Note that ^2 is not an eigenvector of F). The stretch of e2 is 

X^e^) = Fe2 • Fe2 = (fie. + e^) • (^e^ + e )̂ = 1+^8^ 

=> A(e2) = y r + ^ 

Stretches in other directions can be computed in a similar fashion. For example, 
the direction n = cos^ej + sin^e2, with 0 measured from the Zj axis, gives 

P(n) = Fn • Fn = (cosO+p sme)^-\- sin^O 

Both of the previous examples are linear maps, A linear map is one that has 
a constant deformation gradient F. Such a motion is called a homogeneous de­
formation because the state of strain is the same for each point in the body. It 
is always simple to invert a linear map to give z as a function of x. It is usually 
not possible to find an inverse map in closed form for a nonlinear map, al-
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though if det F > 0 everywhere the implicit function theorem guarantees that 
an inverse mapping exists. The next two examples are not linear maps. 

Example 11. Compound shearing and extension, A more complicated deforma­
tion map, the map for compound shearing and extension, is shown in Fig. 33. 

<Kz) 

Figure 33 The map for compound shearing and extension 

For this map, the character of the deformation varies with position, and the de­
formation gradient is a function of position. The expression for the map is 

The components of the deformation gradient are 

^l+fiz2 ^Zi 0 

PZ2 

L 0 
1+pz, 

0 

0 

1 J 

Afew attempts to invert this map, i.e., put the map in the form z = 'i|)(x), should 
convince the reader that the business of explicitly inverting a deformation map 
gets difficult even for some rather simple maps. It is less difficult to imagine that 
this inverse exists because it is quite clear from the picture that the mapping of 
every point from the undeformed to deformed configuration is unique. Hence, 
one should be able to reverse the map, or, in other words, find the place where 
a point on the deformed configuration came from. 

Example 12. Pure bending. An even more complicated deformation map, a map 
for pure bending, is shown in Fig. 34. 
The beam is bent until the cross section at the right end reaches around to just 
touch the cross section at the left end. The explicit expression for the map is 

<t)(z) = ((1-Z2)sinzi)ei -I- ( l - ( l - Z 2 ) c o s z i ) e 2 + Z3e3 

and the components of the deformation gradient are 

F -

(1—Z2)coszi — sinzj Q 

(1-Z2)sinzi coszj Q 

0 0 1 
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<t)(z) -̂ 2 « 

73 

271 

Figure 34 The map for pure bending of a strip into a circle 

The action of this map is to take lines parallel to the Zj axis and deform them into 
perfect circles. Of course, the only way such a deformation can be accomplished 
is if those lines change length. We can see how lines stretch by examining the 
components of the tensor C = F^F given by 

C -

The lines Z2 - c (i.e., fibers oriented along the axis of the beam) get mapped 
to circular curves with radius 1 — c centered at (0,1) in the x^ — X2 plane, i.e. 

-^2)^ 0 

0 1 
0 0 

0 
0 
1 

x? + U . - l 1 - c 

To see that this result comes from the given map, substitute Z2 = c into the map 
to find jCj = ( l - c ) s i n z i and ^2 = 1 - ( l - c ) cosz i . Square Xi and X2^1 
above and add them together to get the equation of the circle. 

Transverse lines z^ = b get mapped to straight lines in the deformed config­
uration with equation 

X2 = -(cotb)Xi + 1 

These deformed lines all pass through the point (0,1), the center of the circles, 
and look like radial spokes of a wheel. The deformation and strain tensors show 
that lines that were initially transverse to the axis of the beam (i.e., along the Z2 
axis) do not change in length, and that axial fibers above the axis (Z2 > 0) are 
shortened and axial fibers below the axis (Z2 < 0) are lengthened by the de­
formation. Note that the axial stretch is always positive, while the axial strain 
can be positive or negative (tensile or compressive). 

The deformation tensor also shows us a limit to the deformation map. The 
stretch of the top fiber of the beam is A = 1 — Z2. Hence, a beam with a depth 
greater than 2 cannot be mapped to this position because to do so would require 
fibers with Z2 > 1 to shrink to zero length (or beyond, whatever that means). 
As a practical hypothesis, we will reject any deformation map that implies the 
annihilation of material. 

The above example is a very special case of beam bending. We will consider 
more general beam-bending maps later. 
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Characterization of Shearing Deformation 
There are two basic types of deformation that can occur in a solid body. The 
first is extension wherein a fiber, or material curve, in the body gets either lon­
ger or shorter. The measure of stretch is A(n) and was derived previously. The 
second type of deformation is called shearing. Shearing is associated with 
changes in angles between lines that are not collinear in the undeformed con­
figuration. To examine this issue, we return to our notion of the arbitrary curve 
in our body — only now we shall consider the deformation to two different 
curves that are initially orthogonal at the point in question. 

Figure 35 shows our body 95 subjected to the deformation map <t)(z). Again 
we examine the deformation of the body in the neighborhood of the point 9P, 
which gets mapped to the point <t)(9̂ ) m the deformed configuration. Let us 
consider two curves in the undeformed configuration, designated as Ci and 62, 
that pass through the point 9̂ . These curves are orthogonal and are mapped to 
the curves (t)(Ci) and (^^2) ^ the deformed configuration. The curves are not 
necessarily orthogonal in the deformed configuration owing to shear. 

We saw previously that the unit vector n = dz/ds, tangent to a curve in the 
undeformed configuration, is mapped to a vector dx/ds = Fn, tangent to the 
deformed curve in the deformed configuration. Thus, the unit vectors ni and 
n2, tangent to our two curves at the common point 9P in the undeformed config­
uration, get mapped to vectors FDI and Fn2, tangent to our two curves at the 
common point <t>(̂ ) ^̂  the deformed configuration. We shall consider the 
change in the angle between these vectors. 

We can compute the angle between the deformed tangent vectors FDI and 
Fn2 shown in Fig. 35 as 

cos0(Fni,Fn2) = — " 1 Cn2 
II F n , IIII Fn21| A(nOA(n2) 

(121) 

Again, the deformation tensor C plays the key role in assessing the angle be­
tween two deformed vectors. If the original vectors are orthogonal, then the 
change in angle, often referred to as the shearing angle, is y = 7t/2 — 6. 

^3 A 

Figure 35 The shearing effect of the deformation map 
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It would appear that shearing is a deformation process completely distinct 
from elongation. We shall see later that there is a basic equivalence between 
shearing and stretching for a three-dimensional solid. 

Example 13. Previous examples revisited. The shearing of the unit base vectors 
Ci and €2 are shown for three of the four deformation maps given previously. 
The deformation map for simple, homogenous shearing in the z^ direction is 
shown in Fig. 36(a). For simple shear, the base vector ê  is not stretched by the 
deformation, but 62 is; the two vectors are sheared by an amount 

cos^(Fei,Fe2) = P 
J^^' 

Note that if ^ is small, then the amount of shearing is roughly equal to fi. 
The deformation map for compound shearing and extension is shown in Fig. 

36(b). For compound shearing and extension, the base vectors stretch and shear, 
and the amount of stretching and shearing depends upon Zj and Z2- There is no 
shearing at the origin (0,0,0); shearing and extension increase with distance from 
the origin. In this case, the orthogonal vectors shear by the amount 
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Figure 36 Shearing of base vectors for the example deformation maps 
(a) simple shear, (b) compound shearing and extension, and (c) pure bending 
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A 

Figure 37 The map for planar rigid-body motion 

cos^(Fei,Fe2) = ^(Zl+Z2) + 2^V2 
yi + 2̂ Zi + 2/32z2 yn-2^z2 + 2^2 :̂ 

At the origin the base vectors do not shear at all, and the shearing angle increases 
as we move into the positive quadrant. 

The deformation map for pure bending is shown in Fig. 36(c). For pure bend­
ing, the orthogonal vectors remain orthogonal to each other after deformation. 

One of the most ijnportant types of motion is rigid-body motion. It is impor­
tant because this motion does not give rise to any straining in the body and 
hence does not give rise to internal forces. The following example gives the 
mapping function for planar rigid-body motion. From this deformation map we 
can show that the strains are zero everywhere. 

Example 14. Rigid-body motion. Consider the description of the rigid-body mo­
tion of a planar body shown in Fig. 37. The deformation map is given by the ex­
plicit expression 

<t)(z) = (w + ZiCos^-Z2sin^)ei + (v + ZiSin^+Z2Cos^)e2 + Zjeg 

The displacements u and v track the horizontal and vertical motion of a point at 
the origin (0,0,0), respectively, and 0 tracks the rotation of the body. (Note that 
these displacement variables do not depend upon the coordinates Zj, Z2, and Z3.) 
The deformation gradient F and Green deformation tensor C are given by 

F ~ 

Clearly, since C = I, there is no stretching or shearing, as expected, and, hence, 
E = 0. Our strain measures faithfully confirm the rigid nature of the motion. 

Let us examine what happens if we linearize the map by making the approxi­
mations cos 0^1 and sin 6^6. Computing the deformation gradient and re­
sulting Green deformation tensor from the linearized map, we obtain 

cos^ 
sin^ 

0 

— sin^ 
cos^ 

0 

0 
0 
1 

C -
1 
0 
0 

0 
1 
0 

0 
0 

1 
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1 

e 
0 

-e 
1 
0 

0 " 
0 
1 

, c ~ 
"l + (92 0 0 

0 1 + 2̂ 0 
0 0 1 

F -

The consequences of linearizing the deformation map is that rigid-body motion 
is no longer rigid, i.e., E ^̂  0. According to the Green deformation tensor, the 
stretch in the Zj and Z2 directions is Â  = 1 + 6^, not 1 as required by the defini­
tion of rigid-body motion. As the block rotates, it becomes larger and larger ow­
ing to the artificial stretch induced by the linearization. 

If the angle is truly small, that is, ^ <̂  1, then the error made in linearization 
will probably be acceptable. It is on this ground that all of our engineering as­
sumptions of geometrically linear behavior stand. Whenever we make use of the 
assumption of linearity for a theory that is not really linear, we must define the 
limit of applicability of our results. When does the linearized theory stop giving 
us useful results and start giving us garbage? This limit is one of the most diffi­
cult pieces of information to come by in engineering. Hence, we issue the warn­
ing: Watch out for rigid bodies that stretch! 

The Physical Significance of the Components of C 
We can get a general idea of the physical significance of the components of the 
deformation tensor C (and therefore E) by considering the stretching and 
shearing of the unit base vectors {gi, g2, ga}. Recall that the i/th component 
of the tensor C can be extracted from the tensor as Cy = g, • Cgy. The square 
of the stretch in the direction of the unit base vector g, is given by the expres­
sion ^\gi) = g, * Cg,. Thus (no sum on i) 

Cu = ^\gi) (122) 

In other words, the diagonal terms of the tensor C represent the squares of the 
stretches in the directions of the coordinate axes. The angle of shearing be­
tween two base vectors g, and ĝ  (/ not equal to/), deformed by the map, is giv­
en by (no sum on repeated indices) 

'-'^*'-'''' '^riiw. (123) 

Therefore, the off-diagonal components of the tensor C are related to the 
shearing of the three pairs of orthogonal base vectors (no sum on i or j) 

C,=A(g,)A(g,)cos^(Fg„Fg,) (124) 

Notice the role of the stretching of the base vectors in Eqn. (124). The off-diag­
onal components of C do not measure purely shearing of the base vectors. 
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However, for deformations in which the elongations are relatively small, the 
interpretation of the off-diagonal terms as shearing is quite acceptable. 

Strain in Terms of Displacement 
For many problems, it is convenient to describe the deformation map in terms 
of displacement from the undeformed configuration. As shown in Fig. 38, if 
we take the coordinates {JCJ, JC2, X^} describing the deformed configuration to 
be identical to the coordinates {zi, Z2, z^} describing the undeformed configu­
ration, then the position vectors can be added. Let u(z) be the displacement 
vector of a point ^ originally at z and moved to x under the deformation map. 
Then the deformation map can be written in the following form 

ct)(z) = z + u(z) (125) 

With this description of the deformation map, we can proceed to compute all 
of the strain measures that we have computed before. The deformation gradi­
ent is given by the expression 

F = I + Vu (126) 

where the components of the tensor Vu are given by [Vu] y = dui/dZj. Accord­
ingly, the deformation gradient has components Fy = 5y +w,,̂  (recall that a 
comma followed by an index; means differentiation with respect to ẑ ). 

The Green deformation tensor is computed from F as C = F^F to give the 
following explicit expression in terms of the displacement u 

C = I + Vu + Vu^+Vu^Vu (127) 

where the tensor Vu^ = [Vu]^isthetransposeof the gradient of the displace­
ment vector u. The tensor C has components Cy = dy + w,,̂  + Wy„ + M „̂ Ui„y 

Finally, the Lagrangian strain tensor can be computed from the Green de­
formation tensor, and has the expression 

Z3,X 

Zi,Xy 

Figure 38 The deformation map in terms of displacement 
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(128) E = 5[Vu + Vu^+Vu^Vu 

with component form £y = [̂wj,y +Wy„ +Wjt>/W;t,;]-The expression for the La-
grangian strain tensor in terms of displacements allows one to clearly distin­
guish the linear part of the strain from the nonlinear part. The first two terms 
in Eqn. (128) constitute the linear part of the strain tensor, while the third term 
is the nonlinear (quadratic) part. In many problems, the assumption of linearity 
is useful. We shall call the linear part of E the linearized strain tensor 

Eiinear = ^ [ V u + Vu^] (129) 

Just as C and E are, Ennear is a symmetric, second-order tensor and is a function 
of the position z. The physical interpretation of the components of Ennear is basi­
cally the same as E. When strains are small, the differences between E and 
Eiinear arc negligible. 

Principal Stretches of the Deformation 
It seems reasonable to ask whether there are certain directions at a point in our 
body 9B that give extreme values (maximum or minimum) of the stretch (or, 
more conveniently, the square of the stretch). Recall that the square of the 
stretch in the direction n is given by k\vL) = n • Cn for unit vectors n. As 
such, the stretch is a quadratic function of the unit direction vector n at a given 
position in space. We can express the question of finding directions of extreme 
values of stretch as a constrained optimization problem as follows 

extremize n • Cn, subject to n • n = 1 (130) 
n 

The constraint is needed to make certain that the search is over unit vectors. 
Otherwise, the solution to the maximization would be infinitely long vectors 
n in basically any direction and the solution to the minimization problem would 
be the zero vector. The tensor C varies with position in space and, therefore, 
so do the vectors n that we seek. However, because we are considering the state 
at a fixed point we shall suppress the dependence of C and n on z for the pur­
poses of this discussion. 

Lagrange had a great idea for setting up a constrained optimization problem. 
Let us introduce a new independent variable // and create a function 

<£(n,//) = n • Cn - fi[n • n - l ) (131) 

We call this function the Lagrangian (not to be confused with the Lagrangian 
strain tensor) and we call // the Lagrange multiplier. Lagrange observed that 
if the vector n satisfied the constraint of unit length (i.e., n • n = 1) then the 
value of the Lagrangian would be the same as the original function X\n) re-
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gardless of the value of fi. Hence, extremizing <£(ii,/̂ ) would yield the same 
vector n as extremizing A^(n). In addition, extremizing L(n,fi) with respect to 
ju gives back the equation of constraint. The advantage of the Lagrangian is 
that we can do an unconstrained optimization to find our unknowns n and fi. 

The necessary condition for an extremum is that the derivative of the La­
grangian, with respect to its arguments, be equal to zero. Qearly, setting the 
derivative of the Lagrangian, with respect to /u, equal to zero simply gives back 
the constraint condition that the vector n be a unit vector (i.e., n • n = l).The 
derivative of the Lagrangian with respect to n is best done in components. Note 
that the component expression for the Lagrangian is (summation on repeated 
indices is implied) 

£(n,/i) = n,Cijnj-iu{n,ni-l) (132) 

Thus, the derivative of the Lagrangian with respect to rik can be computed as 

= dikCijHj + riiCijdjk - /u{ducni + niduc) 

= 2[Ckini - jurii,) 

The last step is possible because C/, = Q,. Setting the derivatives of the La­
grangian, with respect to n and fi, equal to zero gives the equations 

Cn = //n, n • n = 1 (133) 

from which we can determine n and fi. Equation (133) is nothing more (and 
nothing less) that the eigenvalue problem for the tensor C. The solution of the 
eigenvalue problem is outlined in Chapter 1. Observe that Eqn. (133) repre­
sents four equations in four unknowns: the three components of the vector n 
and the Lagrange multiplier fi. 

As pointed out in Chapter 1, the result of solving the eigenvalue problem is 
three eigenvalues and their associated eigenvectors (//i, n,, / = 1,2,3). The 
eigenvalues of C have the three basic possible cases: (1) all eigenvalues dis­
tinct, in which case the eigenvectors are all orthogonal, (2) two of the eigenva­
lues repeated with the third eigenvalue distinct, and (3) all three eigenvalues 
repeated. This last case occurs for uniform dilatation, that is, equal stretch in 
all three directions with no shearing. 

Recall that in Chapter 1 we simply made the assumption that the eigenvec­
tors would be of unit length (a convenience that did not cost us any generality 
at the time). However, in Chapter 1 we could not ascribe any physical signifi­
cance to the eigenvalue itself. In the present context, unit length is part of the 
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formulation (the stretch is not equal to n • Cn unless n is a unit vector). The 
eigenvalue showed up as a result of enforcing the constraint as we search for 
the directions of extreme stretch. 

The physical significance of the eigenvalues and eigenvectors of C. We 
can use the definitions of shearing and stretching to see the physical signifi­
cance of the eigenvalues and eigenvectors. Let us compute the square of the 
stretch of one of the eigenvectors n̂  from the definition of stretch 

X\n;) = Hj • Cn^ = n,- • [fijH^ = fij (134) 

since n̂  • n̂  = 1. Thus, the eigenvalue /ij is the square of the stretch in the di­
rection of the eigenvector n̂ . One of the important ramifications of this ob­
servation is that the eigenvalues of C cannot be less than or equal to zero. It is 
not possible to have a zero or negative length € of a line that originally had fi­
nite length £o' 

We can also observe that the eigenvectors are not sheared by the deforma­
tion. Let us compute the cosine of the angle between two distinct eigenvectors 
tkj and n^ deformed by the map 

cose(Fn,Fn,) = ^ L ^ = ! l d ^ . ^ (n^ . . „,) = 0 (135) 

since n̂  is orthogonal to n^. Since the cosine of the angle between the deformed 
vectors is zero they must be orthogonal. We can also consider two eigenvectors 
Uj and nk that are associated with a repeated eigenvalue /Uj = //yt- In this case 
the eigenvectors are not necessarily orthogonal, i.e., in general n̂  • n̂  5̂  0. 
But, Eqn. (135) still informs this case. Take any two eigenvectors that satisfy 
the eigenvalue problem for the repeated root and observe that ny • n̂ t = cos a, 
where a is the angle between the vectors. Now, from Eqn. (135) we have 
cos0(Fny,Fn^) = cos a because J/ul/ JfTj = 1. In other words, the original 
angle between the vectors remains unchanged by the deformation. 

We conclude that any deformation state can always be represented by pure 
stretching in the principal directions. 

The eigenproperties of the Lagrangian strain tensor. The Lagrangian 
strain tensor is related to the Green deformation tensor as E = | [ C — I]. As 
a consequence, it has the same eigenvectors, and its eigenvalues are related to 
the eigenvalues of C. To see that this assertion is true, let us simply multiply 
the tensor E by an eigenvector of the tensor C and see what happens. Let n, be 
an eigenvector of C with eigenvalue //,. Then, by the definition of E, we have 

En, = i [ C - l ] n , = i (Cn, -n , ) = i ( / / , - l )n , 

Recall that an eigenvector is simply a vector that does not change direction 
when operated on by a tensor. The eigenvalue is the amount by which the vec-
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tor stretches when operated on by a tensor. Thus, we can see that n, is indeed 
an eigenvector of E and that the corresponding eigenvalue is given by 

Yi = i ( /^ / - l ) (136) 

such that En, = y^n,. Since //, is the square of the stretch in the direction ii„we 
see that y, is the (scalar) Lagrangian strain in that same direction. Hence, we 
have Yi = | (A^(n^)-1) = E(ni). Thus, the directions of extreme stretch are 
also the directions of extreme strain, as we would expect. 

The polar decomposition. We can show that the deformation gradient F 
(actually, any tensor) can be decomposed into a product of two tensors as 

F = RU (137) 

where the action of U on a vector is to change the length of the vector without 
changing its direction, and the action of R is to change the direction of the vec­
tor without changing its length. As such, R is an orthogonal tensor (i.e., it has 
the properties R^R = I and det(R) = 1). Because all of the stretching is ac­
complished by U, it is a suitable measure of strain or deformation. Since R is 
orthogonal we can show that 

C = F^F = [ R U ] ^ [ R U ] = U ^ [ R ^ R ] U = U^U (138) 

which shows the relationship between C and U. The tensor U is not necessarily 
symmetric. 

The deformational part U of the polar decomposition can be readily com­
puted from the spectral decomposition of C if we further specify U to be a sym­
metric tensor. First, observe that, for a symmetric U we have C = UU = U .̂ 
Now let us assume that we know the spectral representation of C to be 

3 

C = J]//,n,(8)n, (139) 

where /i, are the eigenvalues of C and n, are the (unit orthogonal) eigenvectors 
of C. The eigenvalues and eigenvectors can be computed by the methods out­
lined in Chapter 1. As was previously noted, the eigenvalues of C have the 
physical interpretation as the square of the stretch in the direction of the eigen­
vectors. Let us call Af = fit. Now, it is easy to show that the tensor U has the 
spectral representation 

(140) 

In fact, to show that this is true, we can simply compute UU 
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83 

3 3 

1=1 ; = 1 

3 3 3 

/ = 1 ; = 1 

Therefore, to compute U we need only compute the eigenvalues and eigenvec­
tors of C and then build U from its spectral representation. Once U is known, 
we can compute R from F = RU. To wit, 

R = FU-^ = y f Fn,(8)n, (141) 

It is also straightforward to show that we can also write F = VR, where, 
again, R is an orthogonal tensor and V represents the deformation. The left 
Cauchy-Green deformation tensor is 

b = FF^ = [ V R ] [ V R ] ^ = VRR^V^ = W ^ 

Since F = VR = RU, the tensors V and U are related as V = RUR^. 

Example 15. Consider a state of deformation at a point characterized by the fol­
lowing deformation gradient (and the corresponding right Cauchy-Green de­
formation tensor) 

F ~ 
y? 

4 1 2 
2 4 1 
1 2 4 

C --
3 2 2 
2 3 2 
2 2 3 

Observe that the vector n = (gi + g2 + g3)/>/3 is an eigenvector of C corre­
sponding to the eigenvalue // = 7. The tensor C also has a repeated eigenvalue 
ILL = 1. Thus, we can write C = 7 n ® n + l [ l - n ( g ) n ] , the spectral form of 
C, and then the tensor U can be written as U = y 7 n ® n - l - l [ l - n ® n ] . We 
can, therefore express U~Mn the form 

U -1 ^ i 
Jl 

n(8)n -h l [ l - n ® n] 

which can be expressed in components as 

U" 1 
3/7 

1 
3/7 

1 
1 
1 

1 1" 
1 1 
1 1 , 

-1 
2 - 1 - 1 

- 1 2 - 1 
- 1 - 1 2 

1 + 2/7 1 - / 7 1 - / 7 
1 - / 7 1-^2/7 1 - / 7 
1 - / 7 1 - / 7 1 + 2/7 
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Finally, the tensor R can be computed as R = FU~\ to have components 

^~ti 
i-^sji 7-4/7 7-7? 
7-/7 7+5/7 7-4/7 

L7-4/7 7-/7 7+5/7 

It is easy to verify that this tensor is orthogonal, i.e., R^R = I. 

It is also interesting to consider the spectral decomposition of the deforma­
tion gradient F. Because F is not symmetric—it is a two-point tensor whose 
components are described in a mixed basis, as shown in Eqn. (115)— t̂he devel­
opments associated with eigenvalue problems of symmetric tensors do not 
necessarily apply. However, in the present case we can observe that there exists 
a vector m, such that 

Fll; = A;m; (142) 

where n̂  is a unit eigenvector of U (and C) and Â  is an eigenvalue of U (and 
the square-root of an eigenvalue of C). Indeed, taking the dot product of each 
side with respect to itself we can show that (no summation implied) 

(Fn,) • (Fn,) = n, • Cn, = A? 

(A,m,) • (A,in,) = A?(in,- • m,) 

These two results must be identical and, hence, nii must be a unit vector. There 
fore, operation by F on the unit vector n, results in a vector pointing in the di 
rection m, having magnitude A,. Therefore, we can write 

(143) 

(144) 

To prove this result simply operate on the vector n̂  

Fuj = ^A,[iii,(8)n,]ny = ^A.dyiiiy = Â niy (145) 

Once again, the two-point nature of the tensor F is evident. We can substitute 
Eqn. (145) into Eqn. (141) to give 

R = 2 ] m, (8)11, (146) 

Change of Volume and Area 
We have seen how the deformation map affects the lengths of lines. In fact, we 
used the notion of change of length of a line under the deformation to define 
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Strain, and it gave rise to the tensors C and E as natural measures of strain in 
a three-dimensional body. We now examine how surface areas and volumes 
are affected by the deformation. The main motivation for looking at these top­
ics is that we often need to compute integrals over areas and volumes to obtain 
global statements of equilibrium. 

Preliminary considerations. From Chapter 1 we have formulas for areas 
and volumes described by pairs and triads of vectors, respectively. Consider 
a triad of vectors u, v, and w emanating from the same point as shown in Fig. 
39. The area of the parallelogram defined by the vectors u and v is given by 
A(u, v) = II u X V ||. The volume of the parallelepiped defined by the vectors 
is given by V(u, v, w) = (u x v) • w. 

u 

Figure 39 Area and volume are defined by a triad of vectors 

We will need two results from tensor analysis in our study of area and vol­
ume change. These results are given in the following theorem. 

Theorem. Let {u, v, w} be any triad of noncoUinear vectors in three-
dimensional space. Let T be any second-order tensor that operates on 
a vector u to produce a new vector Tii. The following identities hold 

[(Tu) X (Tv)] • Tw = (detT)((u X v) • w) (a) 

T^[(Tu) X (Tv)] = (detT)[u x v] (b) 
(147) 

Proof. Let V be a tensor defijied by three vectors Vj, Vj, and V3, as 

V = y^^tj 

where ê  is thejth base vector. The determinant of the tensor V is given 
by the triple scalar product of the column vectors that define it, i.e., 

detV = (vi X V2) • V3 (148) 

If a tensor T acts on each of the columns of V, the result can be summa­
rized as TV = [Tvy] (2) ê . The determinant of TV is therefore 

det[TV] = (Tvi X TV2) • TV3 
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Fn-, dS'y 

Figure 40 Transformation of volume under the deformation map 

The determinant of the product of two tensors is equal to the product 
of the determinants (see Problem 12), so 

det[TV] = detTdetV (149) 

Combining Eqns. (148) and (149) proves identity (147)a. 
Now let us prove the second identity. Consider the vector w to be 

arbitrary. From Eqn. (147)a we have 

(Tw) • [(Tu) X (Tv)] = (detT)[w • (u x v)] 

Using the definition of the transpose of a tensor we obtain 

w • T^[(Tu) X (Tv)] = (detT)[w • (u x v)] (150) 

Finally, scalar multiplication commutes with the dot product so 

w • T^[(Tu) X (Tv)] = w • (detT)[(u x v)] (151) 

Since Eqn. (151) must hold for any vector w, (147)b is proved. 

Volume change. Figure 40 shows our body 9S subjected to the deformation 
map ct)(z). Again we examine the deformation of the body in the neighborhood 
of the point 9̂ , which gets mapped to the point <t)(9P) in the deformed configu­
ration. Let us consider a volume of material described by the triad of unit vec­
tors { ni, n2, 03} and the infinitesimal lengths ds^, ds2, and ds^. The vectors can 
again be thought of as the tangent vectors of three curves in the undeformed 
configuration, designated as Cj, 62, and 63, that pass through the point 9̂ . The 
curves are not actually shown in the figure, but they can be imagined in the 
same way as previous sketches of the vectors tangent to curves. The variables 
5i, 52, and 53 measure arc length along those curves. The curves are mapped 
to the curves <t>(Ci), <K̂ 2)> and (t)(C3) in the deformed configuration. The de­
formed curves have tangent vectors {Fni,Fn2,Fn3} that are not necessarily 
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orthogonal owing to shearing and are not necessarily of unit length owing to 
stretching. Let us find the volume of the parallelepiped defined by the triad of 
vectors { Fnj, Fn2, Fns}. 

The volume of material in the undeformed configuration is given by 

dV = (ni X 02) • n^dsids2ds2> 

The volume of the deformed parallelepiped is given by the triple scalar product 
of the vectors {Fni,Fn2,Fn3}. Thus, the volume of the deformed cuboid is 

dv = (Fill X Fn2) • Fn3 ^1^52^3 

Using Eqn. (147)a we can relate the original and deformed volumes as 

dv = ( d e t F ) j y (152) 

The determinant of F is often designated as det F = J in the literature. Since 
it is not physically possible to deform finite volumes into zero or negative vol­
umes, a restriction on any deformation map is that at every point in the domain 

detF > 0 (153) 

It is also worth noting that, since C = F^F, we have 

det(C) = det(F^F) = det(F^) det(F) = (detF)^ 

since the determinant of the product of two tensors is the product of the deter­
minants of the two tensors and since the determinant of the transpose of a ten­
sor is equal to the determinant of the tensor itself. 

Example 16. Consider a sphere of unit radius, centered at the origin of coordi­
nates, as shown in Fig. 41(a). The sphere is subject to the deformation map 

<t)(z) = (zi+ez2Z3)ei + (z2 + 6Z32i)e2 + (z3 + ezi 22)̂ 3 

where 6 is a constant parameter of the motion. Compute the volume of the sphere 
after deformation in terms of e. 

(a) (b) (c) 

Figure 41 Description of the sphere for the example problem 

In accord with Eqn. (152) we can compute the volume v of the deformed 
sphere as 
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det F dV V = dv = I 
' <t<38) J aa 

The deformation gradient of the motion and its determinant can be computed as 

F ~ 
1 623 €Z2 

£22 €Z^ 1 

de tF = 1 - €^{zl-\-zl+zl) + 26^212223 

To carry out the integral over the original volume 3& consider the disk of thick­
ness dz^ located at z^ shown in Fig. 41(b). Because 2̂  + 22 + 23 = 1 we can ob­
serve that the square of the radius of the disk is R\z{) = l-z]. Now make a 
change of variables to 2̂  = 2, 22 = r cosO, z^ = r sin^, as defined in Fig. 
41(c). Now the integrand is det F = l-e^(2^ + r̂ ) + 2€^2r2cos^sina The 
volume integral can now be expressed as 

detF^y= {l'-e^(z^-\-r^) + 2€^zr^cosesme)derdrdz 
Ja J-1 Jo Jo 

Thus, the integral can be evaluated as 

detFrfV = 2jr {(l-€^z^)r-€^r^)drdz 
Ja J-iJo 

= | | (2{l-e^z^)R\z)-€^R\z))dz 

= f f (2(l-6V)(l-2^)-62(l-2^)^)rf2 

= ;r [ (2(1-22)-6^(1-2^))^ 
Jo 

Therefore, the deformed volume is 

The volume of the undeformed sphere is V = 4;r/3. The deformation reduces 
the volume of the sphere in proportion to ê . 

Area change. Figure 42 shows a surface of our body S subjected to the de­
formation map <t)(z). Again we examine the deformation of the body in the 
neighborhood of the point 3 ,̂ which gets mapped to the point <1)(5P) in the de­
formed configuration. Let us consider a square of material described by the 
pair of unit vectors {DJ, 02} and the infinitesimal lengths dsi and ds2* The vec­
tors can again be thought of as the tangent vectors of two curves in the unde-
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formed configuration, designated as C i and 62, that lie in the surface ^ and pass 
through the point $P. The variables Si and S2 measure arc length along those 
curves. The curves are mapped to the curves <l)(Ci) and ^Q^i), which lie in the 
deformed surface (^^) in the deformed configuration. The deformed curves 
have tangent vectors {Fni,Fn2} that are not necessarily orthogonal owing to 
shearing and are not necessarily of unit length owing to stretching. Let us find 
the area of the parallelogram defined by the vector pair {Fiii,Fn2}. 

Let m be a unit vector normal to the undeformed surface and let n be a unit 
vector normal to the deformed surface. These normal vectors can be computed 
from Di and 02 as follows 

m = 
Pi X n2 

Di X n2 n = 
FDI X Fn2 
FDI X Fn2 

p^ Fm 

where we have specifically noted that n is not the result of passing m through 
the map. The area of the original parallelogram described by the vectors nj and 
n 2 i s ^ = II Di X n2 II dsids2 = d5idi2-(Notethatthescalarsdlsiand^2can 
be pulled out of the norm operation). The area of the deformed area described 
by the vectors Fni andFnj is 

da = II Fni x Fn21| dsids2 (154) 

An oriented area in the undeformed configuration can be expressed as 

mdA = °^ ^ °^ II ni X n2 II ^ = (ni x 02) dA 
II »! X 02 II 

and an oriented area in the deformed configuration can be computed as 

nda= ^^' ^ ^^ II Fni X Fn21| ds,ds2 = {¥n, x Fn2)^i^2 

To find the relationship between the two areas in terms of the deformation gra­
dient, let us compute the quantity F^n da 

" Fn2^2 

Figure 42 Transformation of surface areas under the deformation map 
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F^nda = F^(Fni x ¥112) ds,ds2 

From Eqn. (147)b we obtain F^n da = (det F)m tZA or 

nda = (detF)F-^mdA (155) 

where F " ̂  = [ F^]" ^ is the inverse of the transpose of the tensor F. The trans­
formation of areas given in Eqn. (155) is often associated with the name Nan-
son 's formula or the Piola transformation, and it plays a key role in the defini­
tion of stress as force per unit area. It is evident from Eqn. (155) that the ratio 
of deformed area to undeformed area is 

da 
dA 
f = (detF)llF- m (156) 

Example 17. A four by four square piece of material of unit thickness with a cir­
cular hole of unit radius experiences a simple shear deformation as shown in Fig. 
43. Take the coordinate axes at the center of the hole and let jg,) = {e,}. Com­
pute the change in area along along the right edge and on the circle. 

^2 A 
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Pf>4 

T 

^ 2 t 
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(Kz) X2 A 

m^ 

Figure 43 The deformation map for the example problem 

The deformation map is given by 

<t)(z) = (zi+)3z2)eiH-Z2e2+Z3e3 

The deformation gradient F and its inverse transpose F~^ are 

F = I+iS[ei ® e2], F-^ = I-)8[e2 ® e,] 

Qearly, det F = 1, implying no change in volume. Let us examine how the ex­
terior and interior areas change under the deformation. On the vertical edge fac­
ing right, the normal vector is m^ = ê . Equation (155) tells us that the product 
of the normal vector to the deformed surface and the elemental area on the de­
formed surface are given by 

n^da^ = (ei-Pe2)dz2dz^ 

Taking the length of both sides, we get ^ 1 = Jl +p^dz2dzy The deformed 
area can now be computed as 

^ 1 = 1 Jl+^dz2dz^ =. 4/1+^ 
J<)(f) Jo J-2 
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We can perform the same operation on the area associated with the cylinder de­
fined by the circle. In this case, the vector normal to the undeformed circle points 
in the radial direction, i.e, mj = cos^Cj + sin^Cj. The deformed normal vec­
tor and deformed element of area are given by 

Proceeding in the same way as before, we find the deformed area of the cylinder 

^«2 = Tc 
J<b(J') Jo Jo 

Icos^e + (sin^~^cos^)2 dSdz^^ 

This integral can, of course, be evaluated numerically for specific values of ^. 
For example, when )3 = 0, there is no deformation and the area is TJC. When 
^ = 1 the area is 2.35;r, and when )3 = 2, the area is 3.19;r. 

Time-dependent motion 
The motion of a solid body is generally a continuous process that evolves with 
time. In a quasi-static description of a problem, time does not play a central 
role. In fact, one can think of the "time" / as an orderly means of indexing snap­
shots of deformed configurations. The rate of deformation in such a case is 
completely determined from the rate of loading. In dynamic problems or prob­
lems with rate-dependent constitutive properties time must be explicitly in­
cluded in the description of the motion. In these cases velocity and acceleration 
play an important part in the characterization of the motion. 

Velocity and acceleration. Consider a time dependent mapping shown in 
Fig. 44. The position at time t is given by the mapping x = <|)(z, t). At a fixed 
time t the body is in a configuration that is amenable to the analyses developed 
earlier in the chapter. A fixed particle in the body, indexed as a point at location 
z in the reference configuration, follows a trajectory described by the position 
vector x = <j)(z, t). The velocity of that point is the time rate of change of the 
position vector 

''I 

Figure 44 The motion of a body is a time-dependent process 
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''(^'')^^ = JM^'0) (157) 

The velocity vector is tangent to the particle path at the current location of the 
point. The acceleration of the point is the time rate of change of the velocity 

a(z.O = f = £(<Kz,0) (158) 

These quantities are often called the material velocity and material accelera­
tion because they record the velocity and acceleration of a material point in the 
body. 

An alternative to thQ Lagrangian description of motion, which tracks mate­
rial points, is the Eulerian description of motion. The Eulerian description con­
siders the motion of points in the neighborhood of a fixed point x in the de­
formed configuration. The inverse mapping function z = <t)~ (̂x(̂ ),̂ ) tells us 
where the particle currently located at position x in the deformed configuration 
was located in the reference configuration. 

Now the velocity v can be thought of as being a function of current position 
X (which is a function of time) and time. Let us write the velocity of a material 
point z as \(t) = v(x(r), t). By change of variables the expression for the accel­
eration takes the form 

a = |(v(x(0,0) = T-^ + 4 

= [VxV]V + | ^ 

where Vx( •) is the spatial gradient (i.e., derivative with respect to the spatial 
coordinates x) of (•). Notice that in the Eulerian description we do not keep 
track of material particles. Although the acceleration a = a (because there is 
only one physical acceleration at a certain point at a certain time), the descrip­
tion in terms of current position requires a convective term [ V̂  v ] v to account 
for the fact that the point in question had been somewhere else recently and is 
headed somewhere else in the future relative to the position x. 

The spatial gradient of velocity comes up often enough in mechanics to war­
rant a symbol of its own. Let us define the spatial velocity gradient tensor 

L = [V,v] (160) 

This tensor (like all tensors) can be decomposed into symmetric and antisym­
metric parts as L = L^ + L^ where 

L, ^ i [ L + L^], L, ^ i [ L - L ^ ] (161) 

We usually refer the L̂  as the spatial rate of deformation tensor and L^ as the 
spatial spin tensor. 
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Strain rates. The strain measures the spatial gradients of the motion, apart 
from rigid motion, at a snapshot in time. For a deformation that is a function 
of time we would expect the strains also to be functions of time and, therefore, 
to change with time. Hence straining must have a rate of change associated 
with it for a time-dependent motion. 

The time rate of change of the deformation gradient can be computed as 

In other words, the rate of change of the deformation gradient is the spatial gra­
dient of the velocity with respect to the reference coordinates z. Recognizing 
that v(z, t) = v(x(r), t) we can make the following observation 

^ ( ^ ( ^ ' 0 ) = ^ ( ^ « 0 > 0 ) | | = [Vxv]F = LF (163) 

Now the rate of change of the Green deformation tensor can be computed by 
the product rule for differentiation as 

C = ^(F^F) = F^F + F^F 

= F^L^F + FTLF (164) 

= F^[L^+L]F 

= 2 F % ] F 

By the same reasoning the rate of change of the Lagrangian strain can be com­
puted as E = F^L.F. 

Additional Reading 

Y. C. Fung, Foundations of solid mechanics, Prentice Hall, Englewood Qiffs, 
N.J., 1965. 

M. E. Gurtin, "The linear theory of elasticity," Mechanics of solids Vol. II (C. 
Truesdell, ed.). Springer-Verlag, N.Y., 1972. 

L. E. Malvern, Introduction to the mechanics of a continuous medium, Prentice 
Hall, Englewood Qiffs, N.J., 1969. 

J. Bonet and R. D. Wood, Nonlinear continuum mechanics for finite element 
analysis, Cambridge University Press, Cambridge, UK, 1997. 
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Problems 
Note: Unless otherwise indicated we shall assume that the base vectors in the deformed 
and undeformed configurations coincide, i.e., that (e,) = jg,). 

49. Consider a unit cube in the positive octant with a vertex positioned at the origin of 
coordinates subjected to the following deformation map 

cKz) = {z^-\-ez2Z^)e^ + {z2 + €z^z^)e2 + (z^-\-€z^Z2)e^ 

where e is a constant. Compute the deformation gradient F, the Green deformation tensor 
C, and the Lagrangian strain tensor E for the given deformation. Using graph paper, plot 
the deformed position of a square in the x^ -X2 plane by locating the positions of a grid 
of points. (Select a value of e to execute the plot.) 

50. The deformation gradient that results from deforming the 
body shown through a deformation map ct)(z) has the following 
components relative to the standard basis at the point ^ 

¥(^) 
1.1 0.3 0.1 
0.1 1.2 0.2 
0.2 0.3 1.3 

Find the stretch of a line oriented in the direction of the vector n = (1,1,0) at the point 3̂ . 
What is the value of the Lagrangian strain of that same line at that same point? Calculate 
the tensors C and E. 

51. Consider a square piece of materi­
al of unit thickness with a round hole 
in it of radius 1. The material is sub­
jected to a deformation described by 
the map shown in the diagram. The de­
formation map shown has the follow­
ing explicit expression 

^ ^ 

0 

<Kz) = Zi(l+)3z2)ei+Z2(l + 3)3zi)e2 + Z3e3 
Compute the the volume of the hole in the undeformed and deformed configurations. 
Compute the perimeter area of the square in the undeformed and deformed configurations. 
Compute the perimeter area of the circle in the undeformed and deformed configurations. 

52. Prove that (unit) eigenvectors iij and 02, of the tensor C, associated with distinct ei­
genvalues jUi and JLI2, respectively, point in the direction of extreme stretch by computing 
the stretch for a unit vector m = sin^n^H- cos^n2, where ^ is a parameter. Plot the 
stretch in the direction m as a function of 0. 

53. Consider a square piece of material of 
imit thickness. The material is subjected to a 
deformation described by the map shown in 
the diagram. The deformation map shown 
has the following explicit expression 
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CKZ) = Zi(l+Z2)ei +Z2(l + 3Zi)e2 +23^3 

Compute the components (with respect to the standard basis Cj, €2, and 63) of the Green 
deformation tensor C and the Lagrangian strain tensor E at the point z = (1,1,0). Find the 
principal stretches and principal directions of C at z = (1,1,0). Find the eigenvalues and 
eigenvectors of E at z = (1,1,0). 

54. Prove that it is impossible to deform the vertex 
of a solid cube into a flat face (e.g., the deformation 
map shown in the sketch deforms the cube into a 
tetrahedron with the vertex at a deformed onto the 
flat plane). Hint: You do not need to find an explicit 
expression for the map to do this problem. Consider 
a neighborhood of the point a. 

55. A semi-infinite half-space (i.e., the body occupies every t^'Z^-^r^^^^^^^ 

2 V I 5 / ^' 
point in space that satisfies Z3 > 0) has a deformation map 
given by the following explicit expression 

<Kz) = [l+^e-^)z + (ye-^)e3 

where ^ and y are constants and/? is the distance from the ori­
gin to any point with position vector z, that is, R^ = z - z. Plot the variation of displace­
ment along the coordinate axes. Compute the displacement of the point that was originally 
located at z = (0,0, ln2). Compute the deformation gradient F(z) of the motion in general 
and evaluate it at z = (0, 0, ln2). Compute the Green deformation tensor C(z). Find the 
value of the stretch of a line in the neighborhood of z = (0, 0, ln2) and initially oriented 
in the direction Cj. 

56. A beam theory is characterized by a spe- -2:2,̂ 2 
cific deformation map that is parameterized 
by a set of deformation variables that depend 
only on the axial coordinate Zj. The depen­
dence of the map on Z2 and Z3 is explicit. Let 
M(ZI) represent the displacement of the cen-
troid of the beam in the ẑ  direction, w(zi) 
the displacement of the centroid of the beam 
in the Z2 direction, and 0(zi) the rotation of 
a vector normal to the deformed cross section relative to the horizontal. The deformation 
map for finite planar motion of the beam then takes the form shown in the diagram. The 
deformation map has the following mathematical expression 

Ct)(z) = (Zi + w(Zi)-Z2Sin^(Zi))ei + (w(Zi)+Z2COS%l))e2 +^3^3 

Compute the deformation gradient F of the given deformation map. Compute the Green 
deformation tensor C, and the Lagrangian strain E. Linearize the deformation map by as­
suming that cos ^ « land sin ^ « ,̂ and compute F,C, and E for the linearized kinemat­
ic description. Is the strain linear in the displacement variables M(ZI), W(Z{), and ^(zj)? 
Linearize E by neglecting all squares and products of the generalized variables w, w, and 
6. What are the consequences of neglecting the higher-order terms? 

ni n~r-5^i ) • 

H^ 
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57. Does the linearized strain tensor ever have the same eigenvectors and eigenvalues as 
the Lagrangian strain tensor? If so, provide an explicit example. 

58. Find the mathematical expres­
sion for the map that takes a strip of 
length 2jr and deforms it into a semi­
circular arc without changing the 
depth of the strip. The deformation 
map is illustrated in the sketch. Com­
pute the deformation gradient F, the 2jr 2jr 
Green deformation tensor C, and the Lagrangian strain tensor E for the map. 

59. Consider the rectangular piece of material with the 
triangular cutout. The body is subjected to the deformation map 

Find the angle of the triangle at the vertex at a before and after 
deformation. Find the equation describing the inclined line a-b 
before and after deformation. Find the area of the triangle abc 
before and after deformation. 

^2 A 

4 
3 
2 
1 

0 1 2 3 

60. Consider a square piece of material of unit thickness. The material is subjected to a 
deformation described by the following explicit expression 

<Kz) = (azi+)8z2)ei + (yzi-^ 622)^2 + 23̂ 3 

where a, ^,y, and 6 are constants. For what values of the constants is the given deforma­
tion map physically impossible to realize? Assume that we have scribed a line on the body 
before deforming it according to the above map. The equation of that line in the unde-
formed configuration was Z2 = 1 - 2>z^. What is the equation of the line after deforma­
tion? Will the given map ever deform straight lines into curved lines? Why or why not? 

61. The deformation map for the pure twist of a circular 
shaft of length € and radius r can be expressed in terms of 
the rate of twist ̂  (a constant) as follows 

<Kz) = (ziCos(i8z3)-z2sin(^Z3))ei 

•f (zj sin()3z3)-l-Z2Cos()8z3)) 62 + Z3 63 

Compute the deformation gradient F(z). Find the displace­
ment of the point initially located at the position z = (r, 0, 
€) in the undeformed configuration. Find the volume of the 
deformed shaft in terms of the angle of twist )3. A horizontal 
line is etched on the surface of the undeformed shaft, paral­
lel to the Z3 axis as shown. Find the length of the line in the 
deformed configuration. 
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62. Consider the unit cube shown. Let the cube be 
subjected to the deformation map given by 

Compute the volume of the cube in the deformed configura­
tion. Find the area in the deformed configuration of the face 
with normal Cj in the undeformed configuration. 

63. A thin flexible wire of initial length €, originally ori­
ented along the Z3 axis, is wrapped around a hub (with negli­
gible friction between the wire and the hub). The deforma­
tion map that accomplishes the motion is given by 

<t)(z) = sin(az3)ei+ cos(023)62-1-^7363 . ^ 

where a and)S are known constants. What is the radius of the hub? How many times does 
the wire wrap around it? What is the spacing between adjacent passes of the wire? What 
is the length of the wire after it is wrapped? 

64. The displacement map of a certain solid body can be expressed as follows: 

u(z) = az2^3^i + CLz-^z-^e2 + aziZ2^3 
where a is a constant. Compute the deformation gradient of the motion. Find the principal 
stretches at the point originally located at z = {0, 0, 1}, in terms of a. Is n — (1,1, 0) 
a principal direction for the specified motion? Find the principal (Lagrangian) strains at 
z = {0, 0,1} in terms of a. 

•mr-

65. The expansion of a hollow sphere can be 
described by the deformation map 

ct>(z) = X(r)z 

where z is the position vector of a point in the 
undeformed configuration and k(r) is a given 
function of the radial distance r(z) = /z • z. 
Compute the deformation gradient F for the 
map. Compute the stretch through the thickness of the sphere in terms of A, r, and dX/dr. 

66, The Green deformation tensor that results from 
deforming the body shown through a deformation 
map <t)(z) has the following components relative to 
the standard basis at the point ^: 

C(^) 

1.0 0.2 0.5 
0.2 3.0 0.2 
0.5 0.2 2.0 

Undeformed 
Configuration 

Find the stretch of a line oriented in the direction of the vector mj = (1,1,1) at the point 
9̂ . Find the angle, after deformation, between two lines with tangent vectors m^ = (1,1,1) 
and m2 = (0,1,1) in the undeformed configuration at the point ̂ . Is the vector mj = (1,1,1) 
an eigenvector of the tensor C at the point 3̂ ? 
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67. A 4 by 3 by 1 in. block of material is scribed with a straight 1 in. 
line from comer to corner on one of its broad faces as shown. The 
block is then subjected to a deformation described by the follow- z^ 
ing map: 

<t)(z) = (zi + 0.2z2)ei + (z2 + 0.3z3)e2 + (za + O.lzJeg ^̂  

Compute the length of the line in the deformed configuration. 
Compute the Lagrangian strain of the line due to the motion. Compute the Lagrangian 
strain tensor E associated with the motion. Compute the volume of the block in the de­
formed configuration. 

68. The components of the deformation tensor C at a certain point in a solid body, relative 
to the basis jej, 62, €3), are given as 

C ~ — 
^ 10 

11 -1 0 
-1 11 0 
. 0 0 10_ 

Compute the eigenvalues and eigenvectors of C. What is the direction in which the stretch 
of the body is greatest at the given point? What is the magnitude of that stretch? What is 
the ratio of deformed volume to undeformed volume in the neighborhood of the point? 

69. A right tetrahedral block of material, with edges of length 1, 
2, and 3 along the coordinate axes, is subjected to a deformation 
described by the following map: 

<t)(z) = Sz^e^ + 37262 + 22363 

Find the volumes of undeformed and deformed bodies. Find the 
areas of the four faces in the deformed and undeformed configura­
tions. Compute the principal stretches and principal directions. 
Compute the volume of the block in the deformed configuration. 

70. A thin square plate of dimension TT (the number 
3.14...) and thickness t is subjected to the deformation 

<Kz) = (zi-i8z3COszi)ei 

+ 2262 + (z3+)Ssinzi)e3 

where e, is the ith base vector in the deformed configuration and ^<1 (very small 
compared to 1) is a constant that describes the motion. Compute the strain tensor associat­
ed with the map (you can neglect all terms of order fi^ and higher). Where is the strain the 
greatest? Sketch the deformed shape of the plate. 

71. The unit cube shown is subjected to a homogeneous de­
formation (i.e., the deformation gradient is constant). The de­
formation tensor C is given by 

C = y l - n ® n 

where y is a constant that characterizes the deformation and n 
is a unit vector normal to one of the faces of the cube, as shown 
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on the sketch. Find the principal stretches associated with this state of deformation. Find 
the stretch A and the (scalar) Lagrangian strain E of the line ab. What is the smallest pos­
sible value of the constant y for which the deformation is physically reasonable? Explain 
why smaller values are not possible. If det C = 1 then the volume of the deformed cube 
is the same as the volume of the undeformed cube. For what value of y is the volume un­
changed? 

72. A 2 by 2 by 2 unit solid cube is subjected to the deformation 
described by the map (the center of the block is at the origin of 
coordinates): 

<t)(z) = Zi( l+azi )e i + Z2(l+azi)e2-K ^2363 

^ 

y-
^2 

Compute the values of the constants a and P that are consistent ^ 
with the observation that the total volume of the block is un­
changed by the deformation. Compute the length of the line ab in the deformed configura­
tion. Compute the Lagrangian strain tensor E associated with the motion. Compute the de­
formed area of the side with original normal ê . 

73. A circular cylinder with initial inside radius of 1 and outside ra­
dius of 2 is subjected to a deformation with displacement map 

u(z) = (ziei+Z2e2)ln(zj+Z2) 

where ln( •) indicates the natural logarithm of (•). Find the de­
formation gradient F for the given motion. Compute the stretch of 
the cylinder in the radial direction. Compute the Lagrangian strain 
of a line in the radial direction. What are the height, inside radius, 
and outside radius of the cylinder after the deformation? 

74. Consider a deformation map (t)(z) given by the explicit expression 

<t)(z) = (1 + e z • z) z 

Compute the deformation gradient F of the given motion. Compute the stretch in the radial 
direction (i.e., in the direction z). Compute the Lagrangian strain tensor E for the given 
motion. Is the direction z an eigenvector of E or not? 

75. A spherical shell in the undeformed configuration has an inside radius of i? and an out­
side radius of 2R. The shell is subjected to a deformation described by the following map: 

(Kz) = (H-a(4/?2-z • z ) )z 

where a is a given constant of the motion and z is the position vector of a point in the unde­
formed configuration. Find the displacement of the point originally located at z = (0, 0, 
/?)? Compute the deformation gradient F of the motion. What is the change in thickness 
of the shell? How much does the inside surface of the shell stretch? (Note: the stretch is 
the same in all directions because of the spherical symmetry). 
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76. A sphere (exploded view shown in sketch) with initial inside 
radius of 1 and outside radius of 2 is subjected to a deformation with 
a radially symmetric displacement map given by 

u(z) = )3zln(z • z) 

where z is the position vector and ln( •) indicates the natural loga­
rithm of (•). Find the deformation gradient F for the given motion. 
Compute the stretch of the sphere in the radial direction. What is 
the inside radius and the outside radius of the sphere after the de­
formation? Compute the stretch of the sphere in any direction per­
pendicular to the radial direction and evaluate that stretch at the 
surface. 

77. A circle of unit radius is etched on a plate. The plate is then 
subjected to a homogeneous deformation that stretches according 
to the following map: 

<t)(z) = 2zie^ + ZjCj + z^t^ 

Find the expression for the stretch of the line under the deforma­
tion map (as a function of 6). Find the length of the etched line in 
the deformed configuration. 

78. A circular cylinder of length € and radius R experiences 
the deformation characterized by the following map: 

<t)(z) = azjCi + pZ2e2 + yz^e^ 

where a, )3, and y are constants of the motion. Find the vol­
ume of the deformed cylinder. Find the total surface area of 
the deformed cylinder. Find the principal stretches of the mo­
tion. What are the limits on the constants a, ^, and y? 

79. Consider a thin (i.e., it has essentially no thickness in the 
Z3 direction) circular membrane of radius R initially lying in 
the Z1-Z2 plane as shown in the sketch. Under pressure the 
membrane deforms into a bubble according to the following 
deformation map 

ct)(z) = ZjCi + ZjCj + ^cosi7t ylz\^z\/2R j 63 

where j3 is a known constant and R is the radius of the circle. 
Compute the deformation gradient of the given map. Com­
pute the stretch in the initial radial direction (i.e., the direc­
tion of the vector r = Zj Cj + Zj 62). Also compute the stretch 
in the direction that is in the initial plane of the membrane 
but is orthogonal to r (i.e., tangent to a circle centered at the 
origin). Are these two directions principal directions? Why 
or why not? What is the deformed length of the line that was 
the radial line from the origin to the edge of the circle along 

fy 

7^^ 
A ^3 

' ^ 

y R 2̂ 
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the Zj direction in the undeformed configuration? What is the slope of the membrane at 
the edge after deformation? 
Note: The stretch through the thickness of the membrane is zero, but that is acceptable be­
cause we are assuming that the thickness is very small compared to the diameter of the 
membrane. 

80. Consider the deformation map defined on a sphere of unit radius 

(t)(z) = (l + £)z - j 5 ( n • z)n 

where e and^ are known (small) constants of the motion and n is a 
known constant direction. Compute the ratio of the volume of the 
sphere after deformation to the volume of the sphere before de­
formation. Compute the surface area of the sphere after deformation. What makes this cal­
culation complicated? Is the deformed area larger or smaller than the original area? What 
is the stretch of the sphere in the radial direction? What is the radius of the sphere after 
the deformation? 



3 
The Transmission 
of Force 

The transmission of force in a body is basically governed by Newton's laws 
of conservation of linear and angular momentum. In the static context, with 
which we are concerned here, these laws amount to the familiar notions of 
equilibrium of forces and moments. Whereas Newton was primarily con­
cerned with systems of particles, we are concerned with deformable continu­
ous bodies. Consequently, we must introduce an auxiliary concept to model 
force transmission through the body. The notion of stress, as defined by 
Cauchy, is fundamental to the mechanics of a continuous body, and provides 
a natural complement to the concept offeree. Whereas tractions are forces that 
act on the surface of a body, stress is the measure of the state of force transmis­
sion in the interior of the body. 

We assume that every piece of a body must be in equilibrium, and, thereby, 
embrace the concept of thefreebody diagram, wherein any piece of the body 
can be isolated from the surroimding material. The effects of the surroundmg 
material on the isolated piece are represented by the traction forces that the sur­
roimding material must exert in order to maintain equilibrium. When isolating 
a freebody, part of the interior of the body may be exposed as a surface. On that 
surface, the state of stress must be represented as an equivalent traction. There­
in lies the connection between traction forces and stresses. We shall formalize 
these concepts in the sequel. 

The Traction Vector and the Stress Tensor 
There are two basic kinds of force that arise in the mechanics of continuous 
bodies: body force (force per unit of volume) and surface traction (force per 
imit of area). To clarify the difference between these two types of force, it is 
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" in da 

da 

Figure 45 Traction force on a surface 

instructive to consider specific examples of these forces. The weight of a body 
that arises because it possesses a mass density and exists in a gravitational field 
is an example of a body force; the intensity of the force depends on the mass 
density of the material. Forces caused by electromagnetic interaction are body 
forces; the intensity of those forces depends upon the strength of the electro­
magnetic field. Hence, body forces are caused by action at a distance. The 
force caused by contact between two bodies is an example of a surface traction. 
The intensity of the force is related to the area of contact. The analysis of the 
relationship between stress and surface tractions is our primary concern here. 

Consider the body 95 shown in Fig. 45. Let t„ be the traction vector field, 
in a small neighborhood of a point 9P, acting on the exposed surface with (infin­
itesimal) area da and unit normal vector n, shown as a white circle in the figure. 
As a matter of notational convention, the traction vector will always carry a 
subscript indicating the normal vector for the plane on which that traction force 
is acting. The traction is a vector field, and, therefore, has units of force per unit 
of area. The total force acting on the exposed surface is t^da (force per unit 
area times area), and does not necessarily point in the direction of the normal. 

Establishing the relationship between the traction vector and the state of 
stress at a point depends upon two simple constructions due to Cauchy. The 
first of these is the "pillbox" construction that helps us formalize the concept 
of action and reaction. Consider the wafer with face Q, contour F, and thick­
ness 6, shown in Fig. 46. We shall consider that the "diameter" of the wafer is 
h > €, Accordingly, the area is CQH^ and the area of the perimeter is Creh, 
where CQ and Cr are fixed constants that depend only on the shape of the wafer. 
The top face has unit normal n and traction field t„, while the bottom face has 

Figure 46 Freebody construction for Cauchy's reciprocal theorem 
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unit normal — n and traction field t _ „. The lateral contour has tractions eiy per 
unit length along the contour, i.e., tr is the average traction through the thick­
ness of the wafer. In addition, a body force b is acting on the volume. Again, 
since the wafer is thin, we can average the body force over the thickness and 
say that the body force eb per unit area is acting on the wafer. Static equilibri­
um of the wafer requires that the integrals of the tractions of the surface of the 
body and the integral of the body force over the volume of the body vanish as 

J r J Q JQ JC 

ehdA = 0 (165) 

Taking the limit of Eqn. (165) as 6 -^ 0, the forces etp and eb become infini-
tesimally small compared to the forces t„ and t.„. Hence, the first and fourth 
integrals in Eqn. (165) vanish, and we arrive at the limiting expression 

1 (t„ + t _ „ ) ^ = 0 (166) 

Since the region Q of the wafer can be chosen arbitrarily, the integrand must 
be identically equal to zero, and we must have the Cauchy reciprocal theorem 

t„ = " t. (167) 

expressing that the traction on the area with normal n is the negative of the trac­
tion on the area with normal — n. This theorem should be obvious to anyone 
schooled in one-dimensional mechanics that has established equilibrium of a 
segment of a truss bar. It has the Newtonian flavor of "equal and opposite" ac­
tions. The theorem will be useful in deriving our next result. 

Consider now the Cauchy tetrahedron shown in Fig. 47. Let us first examine 
the geometry of the tetrahedron. The vertices of the tetrahedron are the origin 
and the points a, b, and c. The lengths of the sides along the coordinate axes 
are 6i, €2, and 63. Let the area of the face having normal vector -e, be called 
at. Each of these areas is sunply the area of a right triangle. Consequently we 
have 

Figure 47 The Cauchy tetrahedron construction 
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Ui = 56263, fl2 = ^6163, and Us = ^^1^2 

The volume of the tetrahedron is v = ^616263. To determine the area of and 
normal to the oblique face, we need only consider the cross product of the vec­
tor pointing from point a to point b with the vector pointing from point a to point 
c. Let the vector pointing from a to fo be \ab = 6262-6161, and the vector 
pointing from a to c be \ac = 6363 — 6161. The cross product of these two vec­
tors gives a vector normal to the oblique plane whose length is twice the area 
of the oblique face of the tetrahedron. That cross product is 

a,n = |[v,^ X v,e] = 5[(62e2-6iei) X (6363-6161)] 

Using the distributive law of multiplication and noting the identities among 
cross products of the orthogonal unit base vectors, we find the purely geomet­
ric relationship between the areas of the sides of the tetrahedron, the unit base 
vectors, and the unit vector to the oblique side as 

fl„n = ^161 + 2̂62 + ^363 (168) 

Taking the dot product of Eqn. (168) with the ith base vector, we get the area 
of the sides of the tetrahedron in terms of the area of the oblique side as 

fl, = ( n - 6 , > , (169) 

Consider now the equilibrium of the tetrahedron acted upon by the traction 
vector fields on the four sides and the body force vector b throughout the vol­
ume. Static equilibrium insists that 

antn + flit-e, + a2t-^ + Ust-,^ + vb = 0 (170) 

where the traction and body forces are the average of the field of forces acting 
over the appropriate domain of action. Dividing Eqn. (170) by a^ and taking 
the limit as 61, 62, and 63-^ 0 (holding their ratios constant so as not to distort 
the geometric shape of the tetrahedron), we find that the ratio of volume to the 
area of the oblique side is of order 6 in comparison to the coefficients of the 
traction vectors, and, hence, the body force term vanishes in the limit. Noting 
Cauchy's reciprocal relations and substituting Eqn. (169), we find that 

3 

t„ = 2](n-eOt.. (171) 
1 = 1 

This relationship shows how the traction on the oblique face must be related 
to the tractions on the coordinate faces in order for equilibrium to hold. Each 
of the three terms in the sum can be recast using the definition of a tensor prod­
uct from Chapter 1. To wit 

(n-6,)te. = [te.<8)6,]n (172) 
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We shall define the stress tensor S in the following manner 

3 

/= 1 

Finally, we can summarize the Cauchy stress formula of Eqn. (171) simply as 

(174) t„ = Sn 

This simple formula embodies our concept of stress. Stress represents the state 
of force transmission in the interior of a solid body. By cutting a freebody dia­
gram, and thereby exposing a surface with normal n, we can see the effect of 
the stress through the exposed traction vector. Qearly, one can cut a body 
through a single point in an infinite number of possible ways, but there is only 
one state of stress at each point. Each way of taking a cut through the point in 
question is characterized by a plane with a different normal vector n. 

The tetrahedron construction showed us that, in general, a traction t„ can be 
uniquely expressed in terms of three base tractions tê , tê , and te3. Consequent­
ly, the description of the transmission of tractions throughout a body is ideally 
suited to the concept of the second-order tensor. Observe that we have done 
nothing more than to establish equilibrium of the tetrahedron as Newton would 
have done for a system of particles. The tensor S, defined in the manner above, 
allows us to speak of the state of stress independent of the orientation of the 
plane used to cut the freebody diagram. 

The physical significance of the components of S. The physical signifi­
cance of the components of the stress tensor can be seen through a simple com­
putation. The components of S are given by 

3 

k=l 

In other words, the y th component of S is the /th component of the traction vec­
tor acting on the face with normal vector ê , as shown in Fig. 48. The reader 
should be warned that there are two possible conventions for indexing the 
stress tensor. Many authors reverse the order of the subscripts on the compo­
nents of the stress tensor so that the first subscript refers to direction of the nor­
mal vector to the plane of action, while the second subscript refers to the com­
ponent of the traction vector on that plane. Our convention is just the opposite. 
We will soon see that equilibrium requirements will insist that the stress tensor 
be symmetric, making the distinction between these two conventions irrele­
vant. 

Some simple states of stress. There are some important special cases of the 
stress state that deserve to be mentioned. Some of these are analogous with the 
special homogeneous states of deformation presented in the previous chapter. 
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^:;aW 

^:si te. 

Figure 48 Physical significance of the components of the stress tensor 

S = pi Hydrostatic pressure 

S = C7[ei ® Ci] Pure tension along Ci 

S = T [e2 ® Ci + Ci (S) 62] Pure shear along Ci and 62 

One way to understand a stress state is to examine the traction vectors on 
certain planes of a freebody diagram. This approach is a good one because we 
can draw a vector; we cannot draw a tensor. The three homogeneous stress 
states are illustrated in Fig. 49. The freebody shown is a 10-sided solid with 
sides normal to the coordinate axes and with sides whose normals split Ci and 
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Figure 49 Traction vectors for certain homogeneous stress tensors 
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62. Figure 49 shows: (a) the geometry of the freebody diagram, (b) the hydro­
static pressure stress state, (c) the uniaxial tension stress state, and (d) the pure 
shear stress state. The action of these stress states can be seen by examining 
the traction vector that acts on a plane with unit normal vector v, one of the 10 
possible normal vectors in each figure. The traction vector for hydrostatic 
pressure is tv = /? v, that is, a vector with magnitude/? pointing in the direction 
V. We can see that the traction vectors are all of equal size and point normal to 
the face in question. The traction vector for pure tension is ty = a( v • Cj jcj. 
The front and back face are free of traction, as are the top and bottom faces. 
All of the vectors point along the Ci direction, but the magnitude depends upon 
the orientation of the face. The traction vector for pure shear can be expressed 
as tv = r[(v • ei)e2-l-(v • 62)61]. Again, the front and back faces are free of 
traction. On the coordinate faces, the traction vector is orthogonal to the nor­
mal vector, while on the oblique faces, the traction vector is parallel to the nor­
mal vector. This picture suggests that, m some way, pure shearing in one orien­
tation is equivalent to pure tension and compression in another. 

Normal and Shearing Components of the Traction 
It is sometimes useful to break the traction vector acting on a plane with normal 
n into a component normal to the plane and a component in the plane as 

t„ = an + rm (176) 

where a is the magnitude of the normal traction component, r is the magnitude 
of the shearing traction component, and m is a unit vector in the plane normal 
to n along which shearing takes place, as shown in Fig. 50. The magnitude of 
the normal traction can be easily found by taking the dot product of the traction 
vector with the normal vector 

a = n • t„ = n • Sn (177) 

Note the similarity of this formula and the formula for stretching based on the 
Green deformation tensor C. The shearing vector can be determined by taking 
the difference between the traction t„ and the vector an 

an 

Figure 50 Normal and shearing components of the traction vector 
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rm = Sn-an = [I-n 0 n]t„ (178) 

The magnitude r can be found by taking the norm of the above vector 

r = | | S n - a n | | = y/\\tnf -o' (179) 

and the direction of the vector can be found from Eqn. (178) as 

m = i(Sn-an) (180) 

The computation of normal and shearing components of a traction vector is 
straightforward if we know the values of the components of the stress tensor 
and the components of the normal vector. Often these computations can be 
simply executed using matrix algebra. 

Example 18. Consider a plane passing through a point in the body described by 
the equation jCj + Zxj = 0. The state of stress at a point in the body is character­
ized by the stress tensor S = 2[ei (S) e j -5 [e i ® 62 + 62 ® Cj] + 3[e2 ® 62]. 
Let us find the traction vector and its normal and shear components. 

First, the normal vector to the plane can be computed as n = (Ci + 2e2)/v5 
(do you know why?). The traction vector is tn = Sn = (~ 8ei + 02)775 . Note 
that the square of the length of the traction vector is || tn P = 13. The normal 
component of the traction can be computed from Eqn. (177) as 

a = n - t n = ^ ( e i + 2e2)--^(-861 + 62) = - f 

Knowing the normal components of the traction we can compute the shearing 
component from Eqn. (179) as 

r = yilt„f-a^ = f 

Finally, we can compute the direction in which the shearing component acts as 

m 

It is easy to verify that m and n are orthogonal and that the two components of 
the traction vector add up to the original vector !„. 

Principal Values of the Stress Tensor 
It seems natural to ask whether there are directions that extremize the normal 
component of the traction vector. Like the analogous question for strain, we 
can state the problem as a constrained optimization of n • Sn. Specifically, 

extremize = n • Sn subject to n • n = 1 (181) 
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The constraint is needed to make certain that the search is over unit vectors. 
The Lagrangian of the constramed optimization problem is given by 

£(n,//) = n • Sn - / / ( n • n - l ) (182) 

where fi is the Lagrange muhiplier. The necessary condition for an extremum 
is that the derivative of the Lagrangian with respect to its arguments be equal 
to zero. Clearly, setting the derivative of the Lagrangian with respect to // equal 
to zero simply gives back the constraint condition that the vector n be a unit 
vector. Setting the derivative of the Lagrangian with respect to n and // equal 
to zero gives the conditions 

Sn = //n, n • n = 1 (183) 

It should not be surprising that the search for the direction of extreme normal 
stress is an eigenvalue problem. It also should be no surprise that all of the tech­
niques for finding the eigenvalues and vectors for T from Chapter 1 apply 
equally to S. 

There are several interpretations of the principal values //.and the principal 
directions n, of the stress tensor. First, we can see that the eigenvalue //, is an 
extreme value of the normal component of the traction vector (no implied sum) 

II i = Ui ' Sn, = Gi (184) 

From Eqn. (183), we can see that the principal planes are exactly those planes 
that have no shearing component to the traction vector since (no implied sum) 

r, = | |Sn,-a,n, | | = 0 (185) 

This observation gives us other ways of stating the question leading to the ei­
genvalue problem for the stress tensor: (a) Are there coordinate planes, passing 
through the point in question, on which the traction vector is purely normal to 
the plane, that is, tn = an? (b) are there coordinate planes, passing through the 
point in question, on which the component of shearing traction is identically 
zero: [I - n 0 n] t„ = 0? Each of these statements leads to the same eigenva­
lue problem, Eqn. (183). 

We can determine the principal values and directions for the simple homo­
geneous states of stress described in Fig. 49 by noting that we are searching for 
planes having a traction vector pointing in the same direction as the normal 
vector. For hydrostatic pressure, every plane satisfies this requirement; hence, 
every direction is a principal direction. Recall that a tensor for which all direc­
tions are principal directions has all three eigenvalues equal; in this case they 
are equal top. For uniaxial tension we have planes with no traction at all. These 
are principal planes with corresponding eigenvalue equal to zero. We have two 
zero eigenvalues for uniaxial tension corresponding to eigenvectors €2 and 63. 
The Ci direction is also a principal direction with principal value of a. For pure 
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"^ b 

Figure 51 A solid region subjected to surface tractions and body forces 

shear, only the e^ direction corresponds to a zero eigenvalue. The plane with 
normal n (and its negative) is a principal plane with eigenvalue equal to r, 
while the plane with normal m (and its negative) is a principal plane with ei­
genvalue equal to — r. Qearly, the principal directions are orthogonal for pure 
shear, as all eigenvalues are distinct. 

Differential Equations of Equilibrium 
To deduce the general requirements of equilibrium, let us examine the equilib­
rium of a body S with boundary Q, having normal vector field n(x) at each 
point as shown in Fig. 51. The body is subjected to a surface traction field t„(x) 
and a body force field b(x). Equilibrium of the body S requires that 

t „ ^ + 
JQ J ^ 

b ^ y = 0 (186) 

In other words, the sum of all of the forces acting on the body must be equal 
to zero for static equilibrium. From Cauchy's formula we have tn = Sn. The 
divergence theorem for a tensor field from Chapter 1 gives the relation 

diwSdV (187) 
' Q 

Therefore, we can express Eqn. (186) in the equivalent form 

Jaa 
|divS + b ) j y = 0 (188) 

This argument must hold true for any volume ® taken as a freebody diagram. 
Otherwise, it would be possible to find a freebody diagram that does not satisfy 
equilibrium, in opposition to our definition of the freebody diagram. In order 
for equilibrium to be satisfied for any body, the integrand must vanish identi­
cally, giving the local form of equilibrium 

div S + b = 0 (189) 
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The equations of equilibrium of the body, Eqn. (189), are a set of three first-
order partial differential equations. If we have a tensor field S(x), it must satisfy 
these equations at every point in the body 95 in order to be a solution to our 
problem. Furthermore, the state of stress must be such that the traction vectors 
on the surface of our body are equal to the applied tractions where they are pre­
scribed. One can also view the equations of equilibrium as being a set of partial 
differential equations for the components of the stress tensor. The /th equation 
is Sijyj + bi = 0, where (• ),y = d( • )/dXj is the index notation for partial deriv­
ative with respect to the coordinate Xj. 

Balance of angular momentum and the symmetry of the stress tensor. 
For particles, the vanishing of the sum of the moments of the forces is a corol­
lary of the vanishing of the sum of the forces. For solid mechanics, we must 
make an independent hypothesis that the moment of the forces sum to zero. 

Let r(x) be the position vector from the point O to the point with position 
vector X. Vanishing of the moment of the surface tractions and the body forces 
acting on a body 95 with surface boundary Q can be expressed as 

r X t,dA + r X b ^ = 0 (190) 

We can transform the surface integral to a volume integral with the divergence 
theorem. Let us note that t„ = Sn, and take the dot product of the first term in 
Eqn. (190) with an arbitrary, constant vector field h as follows 

(r X Sn) • h ^ = (h x r) • S n ^ = S^(h x r) • n ^ 
JQ JQ JQ 

The first equality is due to the cyclic nature of the triple scalar product, and the 
second equality comes from the definition of the transpose of a tensor. The di­
vergence theorem allows us to convert the last expression to a volimie integral 

S^(h X r) • n ^ = div[S^(h x r ) ] ^ (191) 

In order to make further headway, we need to expand the expression for the 
divergence. Note that for any tensor field T and any vector field v, the follow­
ing equality holds (prove this for yourself) 

div(T^v) = V • divT + T • Vv 

where the scalar or dot product of tensors A and B is defined as A • B = Ay5y 
and is a scalar invariant of the tensor A^B; in fact, A • B = tr(A^B). 

Let us identify the vector v above with h x r in Eqn. (191). Substituting 
these expressions into the balance of angular momentum, Eqn. (190), we get 
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(h X r)- (divS + b jdy + S - V ( h x r ) d y = 0 (192) 

The first integral vanishes because divS + b = 0 from balance of linear mo­
mentum. Noting that Vr = I (because r = x + c, where c is a constant vec­
tor), the tensor V(h x r) is the skew-symmetric tensor 

V(h X r) = H (193) 

where Hv = h x v for any vector v. Since S • H = tr(S^H) = ê  • S^Hê , 
the expression for balance of angular momentum reduces to 

h • [e, X SeJ dV = 0 (194) 
Jaa 

with an implied sum on;. The details of the proof of the equivalence between 
Eqn. (192) and Eqn. (194) are left as an exercise (see Problem 92). Since h is 
arbitrary and since the choice of the region 95 is arbitrary, balance of angular 
momentum implies 

e, X Se, = 0 (195) 

To see what this expression implies, let us compute it in terms of its components 

ê- X Stj = ej X (5^[e;„® e„]e;) = S^d^^tj x e^ = Ŝ ĵ-eŷ ê  

Writing out these expressions, we get the explicit relations 

[523"532]ei +[S3i-Si3]e2 + [5n-52i]e3 = 0 

Since the base vectors are independent and nonzero, the only way balance of 
angular momentum can hold is if the terms in brackets independently vanish, 
that is, if the components of the stress tensor satisfy 5i2 = ^21,531 = 5i3, and 
2̂3 = 3̂2. Therefore, balance of angular momentum implies that the stress 

tensor must be symmetric 

S^= S (196) 

The ramification of the symmetry of the stress tensor is that it really only takes 
six independent quantities to fully describe the state of stress at a point, rather 
than nine. 

Summary. We have found that the stress tensor S plays the key role in the 
description of the transmission of forces through a solid body. Application of 
the notion of equilibrium of forces and the moments of those forces about an 
arbitrary point lead to three equations governing the spatial variation of the 
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Stress tensor. These important formulas are summarized below both in direct 
and component notation 

t„ = Sn 

divS + b = 0 

s = ŝ  

t„ = SijitjCi 

{Sy,j+b,)e, = 0 
O y = Oji 

The first equation allows us to relate applied tractions acting on the surface of 
the body to the stress field inside the body. It also gives us a vehicle to form 
freebody diagrams by exposing an interior surface in the body and replacing 
the tractions exerted by the removed portion of the body. The second equation 
governs the rate of change of the stress tensor. The third guarantees that bal­
ance of moments holds for any piece of the body. The second equation is a first-
order partial differential equation for the stress field. Any stress state that satis­
fies these equations is an equilibrium stress state. 

Examples 
To gain an appreciation for the requirements of equilibrium and the relation­
ship between the stress tensor and the traction vector we shall examine some 
simple examples of equilibrium stress states. 

Example 19. Rigid block under its own weight. Consider a block of uniform 
density^, height h, and base area A = € ,̂ subjected only to the force of gravity 
and fixed at the base (i.e., at x^ = 0), as shown in Fig. 52. 

xs b = - ^ 6 3 

Figure 52 Block stressed under its own weight 

The body force b = - ^ e j is constant. The stress tensor is given as follows 

S(x) = Q(x,-h)[e,®e,] 

The divergence of the stress tensor is divS = 5y,ye, = 533,3 e3 = ^e3. Substi­
tuting into the equations of equilibrium, we see that the equilibrium equations 
are satisfied, i.e., divS + b = ^e3-^e3 = 0. Thus, the stress tensor field satis­
fies the equations of equilibrium for all points in the body. 
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We must also verify that the sides and top of the block are free of traction 
(there are no applied forces). The requirement that a surface be traction-free is 
quite different than having the stress tensor equal to zero for values of x on the 
surface of the body. (Of course, we know that it only makes sense to talk about 
traction vectors on surfaces.) On the lateral sides, the normal vectors are e ,̂ 62, 
- Cj, and - 62, all of which give zero tractions when multiplied by the stress 

tensor. On the top face we have a normal of 63, but x^ = h,so the stress tensor 
is zero there. Again, we find no traction on the top face. On the bottom face we 
have - 63 so that S( - €3) = ghe^, a force with magnitude gh pointing upward. 
The traction times the area is ghi^t^, the resistance to the total weight of the 
block. 

The problem of finding a stress state that satisfies the differential equations 
of equilibrium throughout the body and gives the applied tractions at the sur­
face is more difficult than we might imagine, particularly if we are hoping to 
express these solutions in terms of simple functional forms such as polyno­
mials. To simplify the situation, early researchers often posed the question in 
reverse: Given a particular functional form, does it solve an interesting prob­
lem in mechanics? Taking a function, and verifying that it satisfies all of the 
governing equations, is generally a simple task. If a function satisfies the equa­
tions then, in a certain sense, that function is what you were looking for. As the 
use of numerical methods in mechanics has grown, the drive to find closed-
form solutions to problems has all but disappeared. There is great value in hav­
ing a closed-form solution to a problem, but there currently exist more effec­
tive means to get answers to engineering problems. The reader interested in 
closed-form solutions to elasticity problems might wish to consult the text by 
Tlmoshenko and Goodier (1970). 

Example 20. A simple polynomial stress state. Let us examine a particular solu­
tion to an essentially planar problem. Consider a narrow strip of length €, width 
fe, and depth 2h, having its left end positioned at x^ = 0, and its middle line posi­
tioned at X2 = 0, as shown in Fig. 53. 

Let us examine a stress state having the following components 

We must first verify that the stress components satisfy equilibrium. Let us as­
sume that the body forces are b = 0 for the present problem. Hence, we must 
have Sy,y = 0. Writing out these equations (dividing each one through by the 
common factor 3qo/^bh^\ we have 

(xlx,-lxl) 
x,{h'-xl) 

0 

x,(h'-xl) 

\{4-3x2h^-2h^) 

0 

0 

0 

0 
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Figure 53 Example 20 stress field problem 

^̂ 11,1 + ^12,2 + ^13,3 = (2^1^2) + [-^^H) + 0 = 0 

'̂ 21.1 + •̂ 22.2 + ^̂ 23,3 = i ^ ' " ^ ) + (^2~^') + 0 = 0 

'̂ Sm + ^̂ 32.2 + ^̂ 33,3 = 0 + 0 + 0 = 0 

Thus, equilibrium is satisfied in the interior of the body. It remains to be seen 
what the surface tractions are. Along the right side we have x^ — i and n = e ;̂ 
therefore, the traction on that face is 

3̂ , 3^o 

The distribution of normal tractions (the Cj component) is predominantly a lin­
ear variation with a cubic part superimposed. If the length is large relative to the 
depth, that is, £ > h, then the cubic part becomes relatively small because 
IJC2I < h. The shearing tractions (the 63 component) are parabolic and vanish 
at the top and bottom fibers of the strip. Along the top we have X2 = h and 
n = 62; therefore, the traction on that face is 

giving a constant normal traction along the length of the strip. Along the left side 
we have x^ = 0 and n = — Cj; therefore, the traction on that face is 

The bottom side has X2 = -h and n = - 63; therefore, the traction on that face 
is t,(x,) = 0. 

The astute student of beam theory will recognize this problem as being simi­
lar to a beam, free at the left end and fixed at the right end, subject to a uniform 
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transverse load as shown in Fig. 53(d). The cubic variation of tractions at the 
left end is self-equilibrating, and, hence, causes no net tension and no moment. 
The almost linear variation of normal stresses through the depth creates the 
bending moment field of beam theory that varies parabolically along the 
length. The parabolic shear stress field gives the equivalent shear force that 
varies linearly along the length of the beam. As such, the given stress field can 
be viewed as a nearly exact solution to a beam-bending problem. 

Alternative Representations of Stress 
All the preceding discussion of stress applies to the deformed configuration 
<t)(z). That is the configuration where equilibrium must hold. The deformed 
configuration is the natural configuration in which to characterize stress. Since 
Cauchy had so much to do with the definition of stress, we call the stress S the 
Cauchy stress tensor. As we noted in Chapter 2, there can be computational ad­
vantages in referring all quantities back to the undeformed configuration of the 
body because often that configuration has geometric features and symmetries 
that are lost going through the deformation. A volleyball, for example, initially 
has a nice spherical shape that is lost under the force of a hand spiking it. An 
automobile generally has a nicer geometry before a crash than after. We will 
often want to analyze initially straight beams that become curved under load­
ing, or initially flat plates that become curved surfaces under loading. Refer­
ring back to the undeformed configuration is really nothing more than a change 
of variable, with the deformation map describing that change. 

If we know the map from the undeformed configuration to the deformed 
configuration then we can relate geometric quantities in the two configura­
tions. Specifically, we know how areas are mapped by the deformation. Since 
traction vectors are nothing more than force per unit of area, we might expect 
that the Piola transformation plays a role in defining other stress tensors. Like 
strain, stress can be defined in many ways. We examine two alternatives in this 
section. 

The first Piola-Kirchhoff stress tensor. Let us suppose that we have a trac­
tion vector t„ da on a plane with normal n in the deformed configuration, as 
shown in Fig. 54. We can trace back through the deformation map <t)(z) what 
the corresponding plane was in the undeformed configuration. If the plane has 
area da and normal n in the deformed configuration, then it had area dA and 
normal m in the undeformed configuration. The relationship between the two 
areas and normals is given by Nanson's formula (see Chapter 2). Let us define 
a traction vector t^ in the undeformed geometry that results in the same total 
force as the traction in the deformed configuration. To wit 

V^d\ = Kda (197) 
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da 

Figure 54 Definition of the first Piola-Kirchhoff stress tensor 

Qearly, the two traction vectors are the same except for magnitude, the differ­
ence in magnitude resuhing from the different areas to which they are reck­
oned. The traction vector t̂ , is the total force on the surface per unit of unde-
formed area, while t„ is the total force per unit of deformed area. From 
Cauchy's formula we know that t„ = Sn, where S is the Cauchy stress tensor. 
We also know that the transformation of areas is given by n da = J F " ̂ m dA, 
where / = det F. We can get an analogous relationship and an alternative def­
inition of stress by substituting this expression into Eqn. (197) 

C dL4 = t„ dfl = Sn dfl = /SF-^m dA (198) 

Let us define the first Piola-ICirchhoff stress tensor P in terms of the Cauchy 
stress tensor and the deformation gradient F as 

P = JSF-^ (199) 

where, again, J = detF. The components of the first Piola-Korchhoff stress 
tensor are defined relative to a tensor basis as follows 

P = /'.;[e,(8)g;] (200) 

(You can explain why by noting the component expressions of S and F). Why 
did we define the first Piola-Kirchhoff stress tensor in such a strange way? We 
did it so that it would satisfy a Cauchy-like relationship analogous to t„ = Sn. 
Notice that, according to Eqn. (198), we have the relationship 

tS» = Pm (201) 

where m is a unit vector defined in the undeformed configuration. Now it is 
a simple matter to recognize that we can establish equilibrium for a region 
ct)(S) by the formula for change of variables for integration as follows 

t„(x) da + I h(x)dv = I C(z) dA + b^(z) dV (202) 

where b''(z) = Jb((^z)) = /b(x) is the body force defined with respect to the 
undeformed configuration, since dv = JdV, Consider, for example, the rec-
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<Kz) 

^ ' t 
K ^ l J€ 

Figure 55 Illustration of conservation of mass 

tangular parallelepiped shown in Fig. 55, subjected to a deformation map that 
preserves the area A but increases the length from € to Ji (hence, the ratio of 
deformed volume to original volume is J). Let the body force be the action of 
mass in a gravitational field, that is, b'' = Qog, where QO is the initial density 
of the material and g is a constant vector representing the gravitational force 
per unit of mass. The body force in the deformed configuration is b = Qog/J-
The interpretation, of course, is that the density of the material is less in the de­
formed configuration (for/ > 1). The current density is p = Qo/J- In general, 
conservation of mass implies that 

I Q(x)dv = I Q(^z))JdV ^ I Qo(^)dV (203) 

Hence, by definition of Q relative to QO, we again have Q = Qo/J simply as a 
consequence of the formula for change of variables in integration. 

The divergence theorem can be applied to the area integrals just as it was 
before to get local equations of equilibrium. These equations also can be ex­
pressed in terms of the undeformed geometry and are summarized in the fol­
lowing box 

t°™ = Pm 

DivP + b" = 0 

PF^ = FP^ 

tS, = P,j/M;ei 

{P,j,j + fcf)e,. = 0 

PijF^ = FijPi^ 

The divergence operator, in the present case, involves derivatives with respect 
to the coordinates z of the undef ormed configuration because it follows from 
the analogy with earlier derivation that 

DIVP = rfcr(aa) I. PmdA (204) 

where Q is the boundary of the region S and has unit normal vector field m. 
It is straightforward to demonstrate that the expression for the divergence of 
P in Cartesian coordinates is given by the formula 



Chapter 3 The Transmission of Force 121 

where {gi,g2,g3} are the base vectors for the z coordinate system. To remind 
us that we are differentiating with respect to z rather than x, we will denote the 
divergence as Div (as opposed to div used previously when differentiating with 
respect to x). 

The symmetry condition on the first Piola-Kirchhoff stress tensor is ex­
pressed as PF^ = FP^, and arises naturally from balance of angular momen­
tum, which, when expressed in the undeformed configuration, reduces to 

3 

2]Fg,xPg, . = 0 (206) 
;= i 

The derivation of Eqn. (206) is nearly identical to that of Eqn. (195), with most 
of the differences accruing from the substitution i^da = il,dA. The other 
change is that the position vectors r(x) must be referred back to the unde­
formed configuration as r((l)(z)). When it comes time to take the derivative of 
r with respect toz^ we must use the chain rule to get 

Since r(z) = (^z) — c is the position vector in the deformed configuration, 
shifted from the origin by a constant vector c to get to the point about which 
moments are summed, the derivative dr/d(^ = I. 

We must, of course, satisfy equilibrium in the deformed configuration. 
However, we usually know more about the geometry of the undeformed con­
figuration than we do about the deformed configuration because the unde­
formed geometry is usually given as part of the problem data (e.g., find the 
stresses and deformations of an initially unstressed and undeformed body 
whose geometry is completely described in the undeformed configuration). 
Hence, you might prefer the first Piola-Kirchhoff stress tensor to the Cauchy 
stress tensor, even though they measure exactly the same state of stress. 

Both expressions of the equilibrium equations establish equilibrium in the 
deformed configuration. Often we are given a set of loads and are asked to find 
the deformation map, an inherently nonlinear problem. If the deformations are 
small, a linear approximation to our problem is appropriate. As the deforma­
tions get small, the deformation map approaches the identity I, and, hence, the 
difference between the two stress tensors P and S vanishes. Accordingly, for 
a linearized problem, we speak only of the stress tensor. There is only one. 

The second Piola-Kirchhoff stress tensor. One of the unsettlmg observa­
tions about the first Piola-Kirchhoff stress tensor is that the symmetry condi­
tion that arises from the balance of angular momentum involves the deforma-
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tion gradient F, and, hence, cannot be trivially satisfied. We can define a new 
stress tensor defined on the reference configuration that does have the same 
kind of symmetry that the Cauchy stress tensor does. This tensor is called the 
second Piola-Kirchhojf stress tensor E, and is defined as 

E = F - P = J F - S F (208) 

where J = det F. The physical significance of the tensor E is not as clear as 
S and P, but it has some other advantages in computation. The second Piola-
Kirchhoff stress tensor has the component form 

2 = ^,[g,®g;] (209) 

Again, the basis is inherited from the tensor description. 
It should be clear that we could go on defining measures of stress endlessly, 

just as we could with strain. The two additional stresses we have defined are 
useful when the time comes to relate stress to strain through constitutive equa­
tions. The first Piola-Kirchhoff stress P is most naturally related to the de­
formation gradient F, and the second Piola-Kirchhoff stress E is most naturally 
related to the Lagrangian strain E. The relationships between the different 
stress measures are summarized as follows 

E = F-

FE = 

ipEF^ 

•P 

P 

= 

= JF-'SF-'" 

= JSF-^ 

ipF^ = S 

Example 21. Comparison of the three stress tensors. Consider a bar of unit area 
and length € with its longitudinal axis along ĝ . The bar is subject to uniaxial 
tension and a deformation that stretches the bar by an amount X and rotates it 
by an amount $, as shown in Fig. 56. 

an 
(Kz) 

-Pg: 

Figure 56 Example of the first Piola-Kirchhoff stress tensor 

The bar does not bend. Let us assume that there are no body forces. The Cauchy 
stress tensor is given by S = a [ n ® n ], where a is the constant intensity of the 
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stress. The unit normal vector to the deformed cross-section of the bar can be 
written as n = cos^Cj -h sin^€2- The traction vector acting on the face with 
normal n is then Sn = an, as shown in the figure. The deformation map is 

(t)(z) = (Azjcos^—az2sin^)ei + (AziSin^-l-az2Cos^)e2 + 2363 

where X is the constant proportion of stretch of the bar. The components of the 
deformation gradient can be computed as 

Acos^ 
Asin^ 

0 

— a sin ̂  

a cos 6 

0 

0 

0 

1 

and the determinant of the deformation gradient can be evaluated as det F = aA, 
indicating that the ratio of the deformed volume to the original volume is ak. 
Since the length of the bar changed by A we can conclude that a gives the ratio 
of deformed to undeformed cross-sectional area. We can compute the compo­
nents of the first Piola-Kirchhoff stress tensor as follows 

P = J S F - ^ ~ a 

cos^^ COS ̂  sin ̂  0 

cos ̂  sin ̂  sin^^ 0 

0 0 0 

a cos ̂  - A sin ̂  0 

a sin ̂  A cos 0 0 

0 0 aA 

which gives the result 

P = aacos^[ei ®gi\ + acTsin^[e2 ® gi] 

The second Piola-Kirchhoff stress tensor can be computed as E = F ~ ̂ P 

i : = f [ g . 'g l 

We can clearly see the lack of symmetry of P in the preceding example (ac­
tually, because of the mixed basis of P, it makes no sense to talk about symme­
try in the first place). Tangent vectors to the undeformed longitudinal axis are 
gl. These vectors map to vectors n = Fgi in the deformed configuration. The 
vector Pgi = aa(cos0ei + sin0e2) is the traction vector acting on the cross 
section, but referred to the undeformed configuration, as shown in the figure. 
Notice that it points in the same direction as Sn. It differs in magnitude from 
Sn because the area changed by the factor a. Qearly, the traction vectors Pgi 
at the right end of the bar equilibrate the traction vectors - Pgi at the left end 
in the sense of balance of linear momentum. However, it appears that these 
tractions do not satisfy vanishing of the moment of the forces. The resolution 
of the apparent paradox comes from recognizing how balance of angular mo­
mentum is unplemented for the first Piola-Kirchhoff stress. Specifically, bal­
ance of angular momentum is assured by the symmetry condition PF^ = FP^, 
which is certainly true in the present case. Therefore, the net moment of the 
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forces does indeed vanish in the deformed configuration. It makes no sense to 
ask that those same forces vanish in a Newtonian sense when referred back to 
the undeformed configuration. We have derived the sense in which those trac­
tions satisfy equilibrium. 

The preceding example illustrates the differences between the three stress 
tensors. It is important to notice where each is defined, either on the deformed 
configuration or on the undef ormed configuration, and what governing equa­
tions they satisfy. Like the different strain measures of Chapter 2, the stress 
measures all describe exactly the same state of stress (nature does not know 
what coordinate system you will choose to describe the body). The preference 
of one stress tensor over another will be dictated by the choice of constitutive 
model and the computational strategy. Theoretically, all formulations are 
equivalent. 

Additional Reading 

Y. C. Fung, Foundations of solid mechanics, Prentice Hall, Englewood Cliffs, 
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M. E. Gurtin, "The linear theory of elasticity," Mechanics of solids, Vol. II (C. 
Truesdell, ed.). Springer-Verlag, New York, 1972. 

L. E. Malvern, Introduction to the mechanics of a continuous medium. Prentice 
Hall, Englewood Qiffs, N.J., 1969. 

I. S. Sokolnikoff, Mathematical theory of elasticity, 2nd ed., McGraw-Hill, 
New York, 1956. 

S. P. Timoshenko and J. N. Goodier, Theory of elasticity, McGraw-Hill, New 
York, 1970. 
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Problems 
81. The stress tensor S at a certain point in a body has components with respect to a set 
of coordinate axes {x^, X2, x^} of 

S ~ 
5 3 - 8 
3 0 - 3 

-8 -3 11 

On a plane whose normal n makes equal acute angles with the coordinate axes, find the 
traction vector tn, the component of the traction vector that is normal to the plane, and the 
shearing component of the traction vector. 

82. Resolve Problem 81 with S22 changed to 10 Js. 

83. Find the principal values and principal directions of the two stress tensors having 
components with respect to the standard basis of 

'20 -5 0 

S -S -
3 1 2 
1 -6 0 
2 0 15 

-5 -10 
0 0 

84. The condition called plane stress is characterized by the stress state 533 = 5*23 = 
5i3 = 0. Show that if the remaining stress components are given by 

5„ = 
_ dMXi,X2) 

dxl J 22 
dMXl,X2) 

S-[o — 
dhp(x^,X2) 

dXi6x2 

and the body force b = 0, then the equations of equilibrium are satisfied for any sufficient­
ly smooth function ip(Xi,X2). How smooth must the function be? 

85. The state of stress at a point is characterized by the stress tensor S, given below 

S -

Consider the vectors n and m given by 

n = 75i^i~^2 

4 
-4 
0 

m = 75(^1 + ^2) 

Are the two given vectors n and m eigenvectors of S? Find the principal stresses for the 
given stress tensor S. 

86. Consider the tetrahedron shown in the figure, with edges 
along the coordinate axes of length 4, 2, and 1, respectively. 
The state of stress in the tetrahedron is given by the expression 

S(x) = 5 4 x 0 x] 

where So is a constant and x is the position vector. The equa­
tion of the oblique plane is x^ -\- 2̂ 2̂ "•" ^^3 = ^' Compute the 
body force b required for the tetrahedron to be in equilibrium. Compute the tractions on 
the four faces of the tetrahedron required for equilibrium. 
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87. Find an expression for the following derivatives of the principal invariants with re­
spect to tensor components 

dis 

dSmn' dSmn' 
and 

dills 

dSmn 

88. Consider the sphere of radius R shown in the 
figure. The state of stress in the sphere is given by 
the stress field 

S(x) = 5o[m(8)x + x(S)in] >^w~ .̂. "0 
where Ŝ is a constant, x is the position vector of 
the point in question, and m is a constant unit vec­
tor field. What is the body force b(x) required for equilibrium? Compute the tractions act­
ing on the surface of sphere. Sketch the traction vectors at points a, b, c, and d shown on 
the figure (line segment ca points in the direction of m). 

89. Consider a state of stress S that has principal values 
{cTj, (72, (73} with corresponding (orthogonal) principal di­
rections { n ,̂ n2, 03}. Let us consider one of the eight (oc­
tahedral) planes whose normal vector m, makes equal 
angles with the principal directions (one of the eight vec­
tors is shown in the sketch). Show that the normal compo­
nent of the traction on any of the eight octahedral planes is 
given by a = (a^-{-a2-^o^)/3. Show that the shearing 
component of the traction on any of the eight octahedral 
planes is 

r2 
''OCt 

mi = -^(ni + n2 + n3; 

r^ = i [ (^ i -^2) ' + (c^2-^3)' + (^3-^1)'] = rl 

Express toct in terms of the principal invariants of the stress tensor /^ and 7/5. 

90. A thick-walled sphere of inside radius 1 and outside 
radius 2 is subjected to an internal pressure of magnitude 
p. The principal directions of stress are the radial and tan­
gential directions. The principal values of stress are given 
by the expressions 

where r is the radial distance to an arbitrary point (with 
position vector x) from the center ofthe sphere, i.e., r^ = X^+JC2"*"^-^^^^^^^^^P^^SS^^^ 

for the stress tensor S in the cartesian coordinate system [x 1^X2^X2}. Prove that the outside 
surface ofthe sphere is traction free. Find the body force b that must be present to maintain 
equilibrium. 
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91. Consider a state of stress S that has prin­
cipal values {cTj, 0̂ 2, a3} with corresponding 
(orthogonal) principal directions {iij, n2, 
Hg}. Let us consider a plane parallel to 03 de­
scribed by the normal vector 

m = cos^ni+ sin^n2 

parameterized by the angle 6 as shown in the 
figure. Show, using the spectral decomposition theorem, that the traction vector and its 
normal component, acting on this plane, are given by 

tm(̂ ) = CTiCos^iii-f-a2sin^n2, o{0) = a^cos^^ + (T2sin^^ 

Show that the shear and normal components of the traction vector satisfy the relationship 

t'^ + o^ = a^cos^^ + or^sin^^ 

Now let ^ A Mohr's Circle 

o = \{o^-\-a2), and g = ^(0^-02) 

Show that the shear and normal components of the 
traction vector satisfy the relationship 

Note that this problem proves that the shear and normal coniponents of the traction vector 
on a plane with any value of 0 lies on a circle of radius g, centered at (or,0) in the r-ex 
plane. This result, discovered by Otto Mohr, is usually called Mohr's circle and is shown 
in the figure above. Clearly, the same results hold for all three pairings of the principal 
directions. 

92. Prove the identity S • V(h x x) = h • [ê  x Se^], where h is constant. 

tr 3^K 
4€ 

93. A block of material is subjected to a homogeneous 
state of stress described by the constant stress tensor with x 
S = 10[ei ®e i ] -2 [e i ® 62 + 62 0 ei] + 5[e2 0 62]. 
The triangular wedge shown is cut out of the block as a X2 
freebody. Compute the tractions that must act on each side 
of the freebody diagram. Demonstrate that the freebody is in overall equilibrium. Assume 
that the block has unit width. 

94. A triangular prism of material (with base b, height h, and 
unit thickness) has an internal stress given by the stress field 

where g is the (constant) unit weight of the material and e, is the 
unit base vector in the direction of the coordinate axis jc,. Find 
the body force b required for equilibrium. Find the tractions of all of the faces of the prism. 
Sketch the normal (a) and tangential (r) components of traction on the three faces whose 
normals are orthogonal to the 63 direction. 
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95. A spherical shell has an inside radius ofR and an outside radius 
of 2R. In the center of the sphere there is a magnetic core that sets 
up a stress field in the shell. The state of stress in the shell is 

S<.).j(,-f)[,8. 
where ̂  is a magnetic constant of the material, x is the position vec­
tor, and r is the radial distance to the point x defined as 

r = y/x ' X (Note that dr/dXj = Xj/r) 

Find the body force vector field b in the shell. What is the pressure 
at the inside surface of the shell? Take a freebody of the shell by 
slicing it along the plane x^ = 0. What are the tractions t on the 
shell that must act at the slice? 

t (traction) 

^3 

96. The stress tensor S can be expressed in cylindrical coordinates (r,d,z) as 

S(r,e,z) = Srr[er ® c,] + 5^[e, (g) e ]̂ + 5,4e, ® e,] 

+ Serine ® e,] + 5^[e, ® e,] + ^^[e, (g) e,] 

+ Szr[e, (g) e,] + S^[e, ® e ]̂ -f 5^[e, 0 e,] 

where the components (e.g., Srz) are each functions of the coordinates (r, 0, z). However, 
now the base vectors e;.(^) and e^(^) depend upon the coordinate 0. 

Using the coordinate-free definition of the divergence of a tensor field, Eqn. (87), show 
that the divergence of S in cylindrical coordinates is given by 

divS(r,e,z) = i | : ( rSe . ) + i ^ i S e , ) + ^(Se,) 

Observe from the figure that iij = e^(^ + A^) and n2 = - ^eiO), and are constant over 
the faces 1 and 2, respectively. The normal vectors nj = e,(^) and n^ = — e;.(̂ ) with 
I E [6, ^ 4-A^] varying over faces 3 and 4. Finally, note that n5 = e^and Hg = -Czare 
constant over faces 5 and 6. The volume of the wedge is AV = rA^^r Az plus terms of 
higher order that vanish more quickly in the limit as AV -* 0. 

To compute the component expression for the divergence of the stress tensor, we must 
expand the vectors Se,, Se ,̂ and Sê . Show that 
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Before we take derivatives, we must observe that in terms of the standard constant basis 
{Ci, 62, 63}, the radial and angular base vectors have the form 

er(0) = cos^Ci H- sin^62 

^e(^) ~ ~ sin^Cj + cos^63 
and, therefore, der/dO = e^and deg/dO = - ê . Show that the component expression of 
the divergence of S is 

( ^"^Or 1 ^^66 ^^9z 1 r 

+ / a s . ia£^ 65^ 1. A 



4 
Elastic 
Constitutive Theory 

Within the confines of continuum mechanics, a purely geometric argument 
leads to the definition of strain and the concept of balance of momentum leads 
to the definition of stress. The relationship between strain and the motion does 
not depend upon stress. The relationship between stress and the applied force 
does not depend upon strain. As such, the equations of kinematics and equilib­
rium do not completely characterize the mechanical response of a solid body. 
We must introduce another relationship to complete the theory. An equation 
that relates stress and strain is called a constitutive hypothesis or constitutive 
model, 

A continuum constitutive model is simply a mathematical relationship 
among certain of the fields that appear in our theory (e.g., strain and stress). 
The mathematical relationship generally depends upon a set of parameters 
(material constants) that must be established empirically. In other words, if we 
wish to establish the values of the material parameters, we must go to the labo­
ratory, perform tests, and fit the model to the data."!* There are, however, certain 
theoretical restrictions to which a constitutive model must adhere, and there 
are certain ways of stating our assumptions about material behavior that are 
more productive than others. We shall examine a few of these features of 
constitutive theory in this chapter. 

The idea that force and deformation are related is intuitive. When you pull 
on a rubber band it stretches; the harder you pull it, the more it stretches. This 
cause and effect is the feature of mechanical response that the equations of ki­
nematics and equilibrium alone do not address. The simple motivation behind 

t Contrast this situation with kinematics and equilibrium in which there is no room for 
empiricism. 
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the mechanical response of materials is that all materials are made up of ele­
mentary particles (atoms and molecules) and these particles are held together 
by atomic and molecular bonds. When subjected to force, these bonds stretch 
and allow the particles to move relative to one another. The aggregate effect 
of the relative motion of the particles is observed as macroscopic deformation. 
Continuum mechanics homogenizes the discrete nature of materials with the 
intent of capturing the essential macroscopic features of the response that re­
sults from the interaction of the microscopic particles. 

Constitutive theory generally means finding a mathematical framework (or 
parameterization) that covers an entire class of qualitative material response 
and renders the distinction among materials to be simply different values of the 
material constants. Among those classes we have models of elasticity, plastic­
ity, viscoelasticity, viscoplasticity, and many others. An elastic material will re­
turn to its initial configuration upon unloading; a plastic material generally will 
not. A viscoelastic material will eventually return to its initial configuration 
upon unloading, but it takes some time to relax back to that condition. A visco-
plastic material generally will not return to its unstressed configuration and 
will take some time to get to whatever configuration it returns to upon unload­
ing. The configuration adopted by a stressed elastic material does not depend 
upon the history of loading; the configuration of a plastic material does. Here 
we shall consider only elastic materials, and, further, primarily those with lin­
ear behavior. This class of materials, however small it may be, is quite impor­
tant to the field of mechanics. 

One of the fundamental hypotheses underlying the modeling of constitutive 
behavior is that cause and effect between force and deformation occurs only 
at the local level. We call this the axiom of locality which simply posits that 

stress (at a point) depends upon strain (at a point). 

This simple hypothesis is not provable (hence the designation axiom), and has 
been the subject of great debate by those concerned with the behavior of mate-
rials."!" It is, however, the result of centuries of observation. Where it leads to 
useful results, it has been embraced by the engineering community. 

You can imagine the progress in thought that led up to the axiom of locality 
by considering a uniaxial tension test, shown schematically in Fig. 57. A bar 
of initial length (, and cross-sectional area A is pulled with a force P resulting 

t There are some well-known situations where this hypothesis does not seem adequate. 
For example, strain localization, wherein deformations are highly concentrated (es­
sentially over zero volume), is possible in the mathematical theory when an increase 
in strain is associated with a decrease in stress (often associated with the term strain-
softening). Although strain concentration can occur in nature (e.g., necking in a ten­
sion bar) it is always associated with a finite volume of material. Extending the axiom 
of locality from "at a point" to "in the neighborhood of a point" is one way of resolving 
this problem. This issue is beyond the scope of the topics covered in this chapter. 
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(a) 
P 

P • 

II I A€ 
{ ^ (b) ^ (c) 

A€ 
_ A€ 

Figure 57 The relationship between force and extension 

in an elongation of amount A€. In 1678, Robert Hooke recognized the linearity 
between force P and change in length A€, and recorded it in his law ut tensio 
sic vis (the power is in proportion to the extension). He ascribed this linear be­
havior to all materials, although the bulk of his experiments were on springs. 
One can imagine carrying out this experiment with bars made of the same ma­
terial but having different areas and different lengths. One might still observe 
the linearity that Hooke observed but with different slopes (as illustrated by the 
squares, circles, and triangles in the figure). 

The next leap of insight is to normalize the force P by the cross-sectional 
area A (i.e., to give what we now call stress) and the change in length M by 
the length € (i.e., to give what we now call strain) and observe the tidy orga­
nization of the data. All of the dots line up and it appears reasonable to charac­
terize the relationship between o and e as a straight line with slope C. To wit 

G =^ Ce (210) 

This equation is a mathematical model that represents the observed data. The 
parameter C is the empirical constant of the model. 

The differences in the responses observed in the plot of P versus A€ must, 
therefore, be due to the geometry of the test piece and not the constitution of 
the material. The slope C on the other hand must be a property of the material. 
One could repeat the test with a different material to confirm that the constant 
C is different for different materials. 

It wasn't until 1807 that Thomas Young recognized the universal modulus 
that bears his name, and even then his concept of the modulus was quite differ­
ent from how we define it today. In 1826, Navier presented the definition of 
the modulus, which we call C here, as we use it today. 

Linear elasticity in one dimension. Our task here is to generalize the one-
dimensional observation of linear elasticity, Eqn. (210), to three-dimensional 
solid bodies. One of the key observations on elastic bodies is that the state of 
stress does not depend upon the strain history. The final state does not depend 
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Figure 58 Various load paths to a hydrostatic state of stress 

upon any intermediate stage of loading. One reason this observation is impor­
tant is that if the state of stress were dependent upon the strain path, it would 
be difficult to ensure that the body would return to the unstressed configuration 
upon unloading. This issue is not a problem for the uniaxial case, since there 
is only one path — the straight line through the origin. However, in a three-di­
mensional body, we can imagine various paths to the same state of stress. For 
example, consider a hydrostatic pressure S = pi. The most obvious way to get 
to this state of stress is to apply uniform pressure to all sides simultaneously, 
increasing from zero top. We can also imagine getting to this state of stress by 
applying pure tension/? in the JCJ direction, then superposing pure tension/? in 
the X2 direction while keeping the already achieved stress constant, then super­
posing pure tension/? in the JC3 direction while keeping the already achieved 
stress constant, as shown in Fig. 58. In general, we might think of the compo­
nents of stress as being functions of a time-like parameter r such that 

S(r) = 5,(r)[e,(8)e,] (211) 

There are many paths that lead to a hydrostatic state of stress of magnitude/?. 
All of these paths wind up at the same place in stress space, but the paths are 
considerably different. For example, we might have 

'^iiW = P'^y 5*22 = /?sin(7rr/2), S33 = pr^ (212) 

with all other components equal to zero. At time r = 1 we arrive at the hydro­
static state of stress. 

Path independence of the stress state can be guaranteed very simply by as­
suming the existence of a strain energy function W(€) from which we can com­
pute the stress by differentiation with respect to strain as 

a = 
dW(€) 

de 
(213) 

To observe the path independence let us compute the work done (the area under 
the stress strain curve, as shown in Fig. 59) in going from the strain state Ci to 
the strain state €2. The work done is the integral of the stress a(e) from €1 to 
€2, which can be carried out as 
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Area = o{e)de 

^1 ^2 6 

Figure 59 Work done is the area under the stress-strain curve 

j%,*=r«.=f dW{€) = W{e2)-W{e,) (214) 

Through this construction, the work done is a function only of the difference 
in strain energy at the two end states; it is not a function of the path between 
them. It should be obvious that if the terminal state of strain €2 is the same as 
the initial state ei then the total work done over the path is exactly zero. This 
feature assures that the material can return to its original state upon removal 
of excitation. 

A material defined in this manner is called hyperelastic. The uniaxial, lin­
early elastic material with modulus C has a quadratic strain energy function 
W{e) = \Ce^' From Eqn. (213) one can easily confirm that a = Ce for this 
case. Notice that the slope of the stress strain curve is given by 

(215) 

Although there are other models of elasticity, hyperelasticity is clearly the most 
important. 

The extension to three dimensions. The concept of the strain energy func­
tion is easy to generalize to three dimensions. Let us assume that we are work­
ing with the small deformations so that the nonlinear measures of strain cannot 
be distinguished from the linearized strain tensor. Further, for small deforma­
tions, the Cauchy stress and the first and second Piola-Kirchhoff stress tensors 
are the same. Let us refer simply to the strain as E and to the stress as S. 

To create a model that has the quality of path independence observe that the 
work done in going from a state at time ti to a state at time r2 is the integral 
of the stress power*̂  S • E, where E = dE/dr indicates derivative with re­
spect to time and the dot product of tensors is A • B = AyJ5y. Hence, we can 
write the strain energy as 

t The stress power is the rate of change of internal mechanical work. It is independent 
of the constitutive hypothesis and appears in the principles of conservation of energy 
(along with kinetic energy, dissipation, and external energy). 
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W(T) = S-Edt (216) •I; 
Now, by construction, we can see that the time rate of change of the strain ener­
gy function is simply 

W = ^ = S • E (217) 

Finally, we can observe that the integral of the rate of change of the strain ener­
gy from the state at time ti to a state at time r2 is simply 

S'Edr = WdT = W{r2)-W{r,) (218) 

thereby assuring path independence. 
Now let us think of the strain energy as a function of strain and make the 

formal identification of the dependence on time as 

W(r) = W(E(r)) (219) 

We can compute the time rate of change of Wby the chain rule for differenti­
ation as (sum on repeated indices implied) 

W = | g £ , (220) 

Comparing this result with Eqn. (217) we see that the components of the stress 
tensor are simply the derivatives of tiie strain energy function with respect to 
the components of strain. To wit. 

dE,j (221) 

This result is the appropriate generalization of the one-dimensional concept of 
the strain energy function. Again, the strain energy function is created in a way 
that assures path independence of the state, in accord with our definition of hy-
perelasticity. 

Elasticities. We can compute the elasticities (the generalization of the slope 
of the stress-strain curve) as 

Cm ^ W^ = TF^ (222) 

The derivative of a second-order tensor component with respect to another 
second-order tensor component is an object with four indices. We can think of 
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this object with four indices as being the components of a fourth-order tensor. 
To be a proper tensor it must be expressible in terms of a tensor basis and the 
tensor itself must transform according to the rules for change of basis. Let us 
define the elasticity tensor to be 

C = Cij^ [e, ® e,- (8) e, 0 e/] (223) 

where [ e, ® Cy ® ê  0 C/] is the ijkkh fourth-order base tensor. There is an ob­
vious complexity of fourth-order tensors over second-order tensors, but there 
are some similarities also. Whereas a second-order tensor was introduced for 
the purposes of providing an object that operates on a vector to produce another 
vector, a fourth-order tensor is an object that operates on a second-order tensor 
(strain, in this case) to produce another second-order tensor (stress, in this 
case)."̂  

In order to see how a fourth-order tensor works, we must define a new tensor 
product of vectors. Let a, b, s, t, u, and v be vectors. Let these vectors define 
a second-order tensor a 0 b and a fourth-order tensor [s 0 t 0 u 0 v]. The 
fourth-order tensor, as defined, inherits a meaning (other than four letters sepa­
rated by tensor product symbols) only through a definition of how it operates. 
The result of the fourth-order tensor operating on the second-order tensor is 
defined as follows 

[s (g) t ® u (g) v][a 0 b] = (u • a)(v • b)[s ® t] (224) 

Qearly, the result is a second-order tensor. A particular manifestation of this 
tensor product, and the one of primary interest to us as we do component com­
putations, is the following relationship between base vectors 

[e, (8) ey ® ê  (g) e/][e;„ ® e„] = (e, • e;„)(e/ • e„)[e, (g) ê ] (225) 

With this relationship, we can compute the effect of the elasticity tensor op­
erating on the strain tensor in components. For linear elasticity we get 

S = CE 

= C^^[e, (g) ê  ® e, (g) e^]E^[t^®t,] (226) 

= Cyjy£'̂ [e,(g)ey] 

t A few observations about the general notion of tensors are worth noting. First, it is 
possible to define a tensor of any order. Second, the operation of a tensor can be more 
general than what we have described here. In particular, a tensor of order n can be de­
fined as an object that operates on tensors of order m (necessarily less than or equal 
to n) to produce tensors of order n- m. For example, a fourth-order tensor could be 
defined as an object that operates on vectors (first-order tensor) to produce third-order 
tensors. A second-order tensor can be viewed as an object that operates on a second-or­
der tensor to produce a scalar (i.e., zeroth-order tensor). 
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Therefore, the components of the stress tensor can be computed from the com­
ponents of the elasticity tensor and the strain tensor as 5/, = CijkiEki. 

For a nonlinear stress-strain relationship, we can observe that the rate of 
change of stress can be computed, by the chain rule for differentiation, as 

^ ^ d f dw\ _ dW p - r F noi\ 
^^^ ^ jt \w,j - ^E;;^/' - '̂̂ ^̂ ^ (̂^̂^ 

Hence, S = CE. The elasticity tensor operates on the strain rate and produces 
the stress rate. The elasticity tensor is, in general, a function of the stress or 
strain in a nonlinear model. A constitutive model that relates the strain rate to 
the stress rate directly is often called hypoelastic. Not all hypoelastic constitu­
tive relationships are hyperelastic but, as Eqn. (227) demonstrates, all hyper-
elastic constitutive relationships can be put mto rate form (and hence are hypo­
elastic). 

The elasticity tensor has 3 x 3 x 3 x 3 = 81 components Cŷ y. However, 
not all of these are independent. Since the stress and strain tensors are symmet­
ric, there are only six independent components of each. Thus, instead of 
9 X 9 = 81 components, the elasticity tensor has only 6 x 6 = 36 indepen­
dent components. Furthermore, since the order of differentiation of the strain 
energy function with respect to the components of the strain tensor is immateri­
al, the elasticity tensor is symmetric with respect to ij and kl. A symmetric six 
by six matrix has only 21 independent terms (the diagonals and those terms 
above the diagonal). Thus, the last symmetry means that there are really only 
21 independent components in the elasticity tensor. With some assumptions on 
preferential directions in the material, or isotropics, we can further reduce the 
number of independent parameters in our model. 

Our elastic material is linear if the strain energy function is quadratic. In 
components (summation convention implied), we have 

W(E) = i£^C^^£^ (228) 

Isotropy 
A material is said to be isotropic if its properties do not depend upon certain 
preferential directions. Another way to say this is to insist that the elasticity ten­
sor be invariant with respect to coordinate transformation. There is a rather 
straightforward way to assure that the elasticity tensor is isotropic. If the strain 
energy function depends only on the invariants of the strain tensor, then the re­
sulting constitutive model will also be invariant. Hence, we must have 

W(E) = W[ /,(E), /,(E), /3(E)) (229) 
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where the invariants of the strain tensor are 

/i(E) = tr(E) = £ , 

A(E) = t r ( r ) = E,E, 

/3(E) = tr(E^) = E,E^,E^ 

The stress can be computed as the derivative of the strain energy as follows 

dE a/i dE a/2 aE ^ a/3 aE ^ ^ 
where the derivative of a scalar with respect to a tensor is a tensor with compo­
nents [a//aE]/, = a//a£y. To complete the derivation we need the derivatives 
of the invariants with respect to the strain. These derivatives are straightfor­
ward to compute in components. To wit, 

These results can be summarized in direct notation as 

5/.(E)_ 3/,(E)_ a/3(E)_ , 
~ 3 E ~ ~ ' ' ~6iE""^*^ ' ~ a E " ~ ^ * ^ ^^^^ 

Using these results in Eqn. (230) we arrive at the most general isotropic elastic 
constitutive model 

S = M i + 2 f ^ E + 3 f ^ r 
a/i a/2 a/3 

(233) 

The constitutive model given by Eqn. (233) can be put in a slightly different 
form by noting that E^ can be expressed in terms of E and E~^ through the 
Cayley-Hamilton theorem as the following example shows. 

Example 22. Alternative form for hyperelastic constitutive equation. The 
Cayley-Hamilton theorem states that (see Chapter 1) 

where I^ = / , 2//^ = /^ —f^, and 6111^ = f^ - "^fJi + 2/3 are the invariants 
that show up in the eigenvalue problem for principal strains. We can rewrite the 
equation as 
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E [ E 2 - 4 E + / / ^ I - / / / £ E - I ] = 0 

from which we can deduce that 

£2 = I^E-IIEI+IIIE^'^ 

Now E^ can be replaced with this expression in the stress-strain relationship. 

Linear, isotropic elasticity. If we want a linear constitutive law, the strain 
energy must be a purely quadratic function of strain. Consequently, it can de­
pend only upon f^ and /2 ( /i is only linear in the components of E, while f^ 
is cubic in the components of E). Thus, our strain energy function must have 
the form 

W(E) = a,f^(E) + aJ,(E) (234) 

where a^ and 2̂ are material parameters. Now 

|r(/^) = 2/, = 2tr(E), 4(/2) = l (235) 

Renaming the parameters A = 2^1 and /u = fl2> from Eqn. (233) we get the 
final form of the linearly elastic constitutive equations, in direct notation 

S = A(trE)l + : ^ E (236) 

This constitutive model is often referred to as Hooke 's law even though Robert 
Hooke undoubtedly never saw anything like it. These equations embody the 
assumptions of hyperelasticity and linearity and represent, without question, 
the most widely used constitutive model ever conceived. The two material 
constants A and fi are called the Lame parameters for their discoverer G. 
Lame, although Cauchy might have been the &st to express the equations of 
elastic constitution with two constants. 

Example 23. Elasticity tensor for linear elasticity. From the developments 
above it is straightforward to compute the components of the elasticity tensor 
for a linear isotropic elastic material. The components of the stress tensor are 
given by 5^ = kEaa^tj + ̂ ^y- The elasticity tensor can be computed by differ­
entiation to give 
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Observe that the moduli are constant, as expected for a linear model. Because 
the strain tensor is symmetric, the elasticity tensor is often written as 

Cijki = ^^ij^ki-^ H'Y^ik^ji^^ii^jk] 

The term in brackets is expressed as shown in order to assure symmetry with re­
spect to the indices ij and kl. Any fourth-order tensor with components in this 
form is invariant with respect to coordinate transformation, and hence is often 
called an isotropic fourth-order tensor. 

The constitutive equations given by Eqn. (236) can be easily inverted to give 
strain in terms of stress. First, compute the trace of both sides of the equation 
to get the result tr( S) = (3A + ^ ) tr( E). Noŵ  we can substitute this result for 
tr(E) in the equation to get 

This form of Hooke's law is convenient when stresses are prescribed and the 
task is to compute the associated strains. Some of the problems at the back of 
the chapter generalize the concept to situations where some of the components 
of stress and some of the components of strain are prescribed and the task is 
to compute the remaining, unknown, components. 

Definitions of Elastic Moduli 
The interesting observation about the linear elastic constitutive equations we 
have just derived is that there is no mention of the famous modulus of Thomas 
Young. We can, however, derive such a result from our basic equations ex­
pressed in terms of the Lame constants. There is a lesson in doing so. We shall 
see that the constitutive equations of linear elasticity can be expressed a num­
ber of different ways, all valid and equivalent, each with its own definition of 
the moduli. The key difference among them is the experiment we would be in­
clined to do to find the constants. We will consider two important cases here. 

Young's modulus and Poisson's ratio. The first experiment that we will 
imagine is the uniaxial tension test, which will provide us with a means of di­
rectly measuring Young*s modulus dindPoisson's ratio. Let the axis of applied 
tension a be along Xi. We thus induce a state of stress S = a[ei ® Ci]. The 
stress tensor has components 5ii = a, 522 = 3̂3 = Sn = 5i3 = 523 = 0. 
According to our constitutive equations the components of stress are 
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S22 = {X + 2^)E22+^En+E,,) = 0 
(238) 

S33 = {X + 2^)E,, + X{En+E22) = 0 

Sn = 2fiE,2 = 0, Si3 = :^£i3 = 0, 523 = :?"£23 = 0 

The last three equations yield £12 = £13 = £23 = 0- The second and third 
equations can be used to express the strains £22 and £33 in terms of £11 • Solving 
these equations, we get 

Let us assume that we have measured the axial strain £11 = e. Eqn. (239) can 
be substituted back into the first of Eqns. (238) to give a relationship between 
the applied axial stress and the measured axial strain as 

a = ^ . ^ € = C€ (240) 

giving C = ju{3k'\'2^)/{X+/u). We call this constant Young's modulus and 
observe that it can be directly measured as C = a/e in a uniaxial tension test. 
Young's modulus C has units of stress f/P, 

Let us also define Poisson's ratio v as the negative of the ratio between the 
lateral strain and the axial strain in a uniaxial tension test. To wit 

^11 ^11 2[A-\-/u) 

To determine Poisson's ratio from a uniaxial tension test one of the lateral 
strains £22 or £33 must also be measured. 

Young's modulus and Poisson's ratio provide two suitable independent ma­
terial constants for our linear elastic constitutive equations. One can find A and 
ju in terms of C and v from their definitions as 

. _ Cv C 
^ ~ {l+v){l-2vy ^ ^ 2 ( l + v ) (̂ '̂ > 

The linear elastic constitutive equations can be expressed in terms of C and 
V as follows 

s= ^̂  7 "^ rtr(E)l + ^ 
(l + v) ( l -2v) ^ ' 1 + v 

(243) 

Another useful form of the preceding equations is to invert them and express 
strain in terms of stress. Since the equations are linear, this inversion is straight­
forward. The end result is 
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E = - ^ t r ( S ) l + l + v (244) 

The bulk and shear moduli. We can imagine an experiment wherein the 
material is subjected to pure pressure, and the change in volume is measured. 
Such a test is important, for example, in measuring the properties of geotechni-
cal materials (it is impossible to perform a tension test on a granular material). 
Let us re-examine the change in volume for small strains. Let us assume that 
we have a volume of material ^subjected to a homogeneous deformation, i.e., 
F is constant. The assumption of homogeneity of deformation is reasonable be­
cause, in an experiment, we generally try to induce the simplest state possible 
in order to measure the quantity of interest in the most direct way possible. The 
deformed volume of the body is v = (det Y)V/m accord with the results of 
Chapter 2. Let us denote the change in volume as AV = v - V. We have the 
following relationships among the deformation gradient F, the Green deforma­
tion tensor C, and the Lagrangian strain tensor E 

detF = ydetC = ydet[I + 2E] (245) 

Therefore, the ratio of the deformed volume to the original volume is 

y + A v = ydet[I + 2E] (246) 

One can expand the determinant of the tensor 1 + 2E to find (see Problem 106) 

det[I + 2E] = l + 2/£ + 4//f + 8///£ (247) 

If strains are small, then IE > IIE ^ Hh, since the first is linear in E, the sec­
ond quadratic, and the third cubic. Therefore, to a first approximation, we have 
det[I + 2E] « 1 + 2/f. To finish our derivation, we need to deal with the 
square root in Eqn. (246). We can use a Taylor series expansion to show that 
\/l + 2x: « 1 -hx when x < \ (prove this for yourself!). Using this result in 
Eqn. (246), we find that, for small strams, the ratio e of change in volume to 
original volume is measured by the trace of the strain tensor 

f - e ^ tr(E) (248) 

We generally refer to ^ = AV/y as the dilatation. The dilatation is a quantity 
that is readily measurable in an experiment. It is also easy to apply a constant 
pressure and measure its value. 

Let us compute the trace of the stress tensor from the constitutive equations 

tr(S) = Atr(E)tr(l)-h^tr(E) = (3A + :^)tr(E) = 3iiCtr(E) 
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We call the constant JST = A + | / / the bulk modulus. If we do an experiment in 
which a hydrostatic pressure/? is applied, then the stress is S = /?I, and the 
trace of the stress is tr (S) = 3p. If we measure the change in volume (and the 
original volume, of course), then e is known. Hence, we can directly measure 
the bulk modulus 2iS K = p/e in an isotropic pressure test. The bulk modulus 
has units of pressure f/P, 

To provide a complement to the volumetric part of the constitutive equa­
tions, let us subtract the trace of the stress from the stress tensor. Let the devia-
toricstresshQ dQTm&ddisS' = S- | t r (S)lsothat tr(S') = 0. Let us compute 
the deviatoric part of the stress from our constitutive equations 

S' = S - i t r ( S ) l 

= Atr(E)l + : ^ E - ( A + | / / ) t r ( E ) l 

= : ^ ( E - i t r ( E ) l ) = 2fiE' 

where E' = E - | t r (E) l is the deviatoric strain, with tr(E') = 0. We can 
write the constitutive equations as the sum of bulk and shear parts as 

S = Kel + : ^ E ' (249) 

These equations are exactly equivalent to the original equations expressed in 
terms of the Lame parameters. The constants Â  and /u are a suitable alternative 
pair of elastic material parameters. For any given state of strain E we can com­
pute the stress from Eqn. (249) by first computing e and E', and then substitut­
ing into the equation for S. Note that any state of strain is amenable to this de­
composition. One can invert this relationship to get 

^ = î ^ î ' (250) 

where p = 5tr(S) is the pressure and S' = S-pI is the stress deviator. We 
can compute the state of strain by first computing/? and S' and then substituting 
into the equation for E. 

Example 24. Triaxial Test. A common test to determine the elastic constants K 
and fj, is the triaxial test configuration, shown in Fig. 60. In this test, a confining 
pressure 02 (usually compressive) is applied around the sides of the cylinder, 
and an axial pressure a^ (usually compressive) is applied on the ends of the cyl­
inder. The stress and strain tensors have the form 

S = <7i[ei®ei] + a2[e2 ® 62 + €3 ® 63] 

E = 6 i [ e i®e i ] + 62(62 ® 62 + €3 063] 
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The pressure is then p = | (ai -1-20̂ 2) and the deviator stress is 

Similarly, the volume change is e = (e^ + 2^2) and the deviator strain is 

E ' = | ( 6 , - € 2 ) [ 3 e , ® e , - I ] 

where ê  and €2 are the axial and lateral straining of the sample (change of di­
mension over original dimension). This test gives adequate information to com­
pute the bulk and shear moduli as A" = p/e and l/ii = [o^ "O^alA î "^2)-

02 

To. '1 

Figure 60 The triaxial test configuration 

The purpose of the preceding discussion is twofold. First, we have seen that 
while there is only one constitutive model for linear elasticity, there are many 
equivalent forms of it. Second, the different forms are dictated by the experi­
ment we use to define the constants of the model. All of the constants are re­
lated (Problem 98). 

Elastic Constitutive Equations for Large Strains 
In all of the preceding discussion we assumed that the deformations were small 
with the convenience that the Lagrangian strain and the linearized strain were 
essentially the same, and the Cauchy stress was indistinguishable from the first 
and second Piola-Kirchhoff stress tensors. When deformations are not small, 
the distinction among the various strain and stress tensors is important. The 
problem of finding suitable constitutive equations is more complicated be­
cause there are many more choices for a nonlinear model. 

The mathematical model of hyperelasticity can again be built by defining 
a strain energy function that is the integral of the stress power between times 
t iandr > ti.Letusdefinethestresspowertobetheproductofthe&stPiola-
Kirchhoff stress with the time rate of change of the deformation gradient, i.e., 
P • F. Now let the strain energy function be defined as 

W(r)= I V ¥dt (251) •[, 
implying that V̂  = P • F. Following exactly the same argument as we did for 
small strains, observing that W{r) = W[ F(r)) and using the chain rule for dif­
ferentiation, we find that 
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P = ^ (252) 

with component expression Py = dW/BFij, 
As was pointed out in Chapter 1, the deformation gradient F carries infor­

mation about the stretching of the material, but it also carries information about 
the rigid body motion. Using the argument that the constitutive equations 
should be invariant under superimposed rigid-body motions, we can show that 
the strain energy can depend on the deformation gradient only insofar as it ap­
pears in the form F^F. Thus, we can write (at a given point the values of the 
functions are identical) 

where 2E + I = C = F^F. Observe that since A • B = tr(A^B) we can 
write the stress power as 

P • F = tr(P^F) 

= tr(P^F-^F^F) 

= tr((F-^P)^(F^F)) 

= tr(L^(F^F)) = E - ( F ^ F ) 

Now we can observe that because C = F^F + F^F and because L is a sym­
metric tensor we have the following equivalence for the stress power 

P - F = E • ( F ^ F ) = 5 2 : • C = E • E 

A relatively straightforward computation shows that the second Piola-Kirch-
hoff stress can be computed from the energy as 

dC dE 
(253) 

Thus, we can express the functional form of the constitutive equations for the 
first and second Piola-Kirchhoff stress tensors in terms of the Green deforma­
tion tensor C, or equivalently through the Lagrangian strain tensor E. 

As before, we can show that for an isotropic material, the constitutive equa­
tion of the second Piola-Kirchhoff stress has the form 

E = 2tp,l + 4tp2C'^eip^O (254) 

where rpi = dW/dfi are the derivatives of W[ f,(C), /2(C), /3(C)) with respect 
to the invariants. Hence, they are each functions of /i(C), /2(C), and /3(C). 

An example of a particular constitutive equation for large strains is the so-
called Mooney-Rivlin material that has a stored energy function of 
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\F(C) = a ( / c - 3 ) + fo(//c-3) (255) 

where Ic and He are the first and second principal invariants of the tensor C, 
and a and b are material constants. The reason for subtracting 3 from each of 
the invariants is simply to have zero energy when there are no strains (recall 
that no strain means C = I). The similarity between the form of this function 
and the one we used for linear elasticity should be noted. Because the energy 
depends only on the invariants of the deformation tensor, the material is iso­
tropic. While this stored energy function leads to a linear constitutive relation­
ship, the behavior of a body with this constitutive model would not be linear 
because neither C nor L will necessarily be linearly related to the applied forc­
ing function. The Mooney-Rivlin constitutive model has been successfully 
used to model the behavior of rubber and rubberlike materials. 

There is a middle ground that deserves mention. Some problems exhibit 
large motions, but with small strains. In such cases, it is often appropriate to 
model the constitutive equations after those of the linear theory. You must take 
care in doing so, however, as the following example illustrates. 

Example 25. Saint-Venant-Kirchhoff constitutive model. Consider the follow­
ing strain energy function (in terms of the Lagrangian strain) 

W(E) = iA(trE)2+/^tr(E2) 

The similarity with the strain energy function of the linear theory should be evi­
dent. The constitutive equation takes the form 

L = Atr(E)I + 2^E 

which appears to be a generalization of Hooke's law to finite deformations. 
To understand the limitations of this model consider a homogenous uniaxial 

deformation with deformation gradient F = H-(y — l ) n ® n . This deforma­
tion has a stretch of y in the direction n and a stretch of 1 in the directions perpen­
dicular to n. Note that det F = y. The Lagrangian strain can be computed as 

E = i (y2- i )n (8)n 

Noting that tr(n O n) = 1 we find that 

Let us compute the component/? of the Cauchy stress in the direction n. Noting 
the relationship between the Cauchy stress and second Piola-Kirchhoff stress 
(from Chapter 3) we have 

p = n • Sn = 7 n • FLF^n 

= i(F^n)-L(F^n) 

= i(yn)-2:(7n) = y n - L n 
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where J = detF = yandF^n = yn. Finally, substituting into the equation for 
the second Piola-Kirchhoff stress we find that 

P(y) = (\X+fi)(Y'-Y) 

Observe that the stiffness dp/dy goes to zero at a stretch of Ycru = v 1/^ ̂ ^^ ̂ ^̂ ^ 
the stress/? goes to zero as the bar shrinks to zero length. Both of these phenome­
na are physically unreasonable. Both are artifacts of the Saint-Venant-Kirchhoff 
model. 

The main reason that the Saint-Venant-Kirchhoff model fails in the pre­
vious example is that it does not treat change in volume appropriately. For 
small deformations, change in volume is proportional to tr(E). For large de­
formations the ratio of deformed volume to original volume is J = det F. The 
Saint-Venant-Kirchhoff model does not respond appropriately in the limit as 
the volume shrinks. 

One minor modification to the Saint-Venant-Kirchhoff model greatly im­
proves its performance. Let the strain energy density be 

^(E) = iA( ln j )2+ / / t r (E2) (256) 

where J = det F and ln( •) represents the natural logarithm of (•). Now the 
second Piola-Kirchhoff stress has the form 

L = AJ ln/[2E + l ] -^ + : ^ E (257) 

When deformations are small (i.e., J « 1) this model reverts to Hooke's law 
(as does the Saint-Venant-Kirchhoff model). There are numerous finite elas­
ticity models that revert to Hooke 's law in the limit of small deformations. Hol-
zapfel (2000) provides an excellent discussion of these models. 

Limits to Elasticity 
Few materials exhibit elastic response indefinitely. At some level of stress or 
strain, materials start to exhibit irrecoverable strains. There are many constitu­
tive models aimed at capturing yielding, cracking, evolution of porosity, and 
other microscopic phenomena that manifest at the macroscopic level (and 
show up as observable features of the mechanical response, e.g., in the stress-
strain curve). 

One of the most important continuum nonlinear material models is inelastic­
ity. First conceived for metals, inelasticity has been applied to a wide range of 
materials from concrete to granular solids. While the development of inelastic 
constitutive models is beyond the scope of this book, it is useful to make some 
observations on the limits to elastic behavior. 

Most models of inelasticity posit that the material responds elastically over 
a certain range of stresses and strains and that the accrual of inelastic (non-re-
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cp{S) = 0 

Figure 61 The yield surface describes the limit of elastic behavior 

coverable) strains begins only upon reaching a certain state of stress or strain. 
The critical state is often referred to as the yield surface, which is illustrated 
in Fig. 61. The yield surface is a surface in, say, stress space that satisfies the 
scalar equation ^(S) = 0. The yield function (p(S) has the property that the in­
terior of the elastic domain satisfies (p(S) < 0 and the exterior of the elastic 
domain satisfies <p(S) > 0. In many models the direction of inelastic straining 
is taken to be in the direction of the normal to the yield surface (i.e., the so-
called normality rule of plastic deformation). 

One of the most popular yield functions is the one due to von Mises that is 
based on the concept that yielding is independent of hydrostatic pressure. Spe­
cifically, the von Mises yield function is 

(p(S) = yS' • S' " )t (258) 

where S' = S-^tr(S)listhe deviator stress, /: is a material constant, and the 
dot product of tensors is A • B = A,yjBy. 

Example 26. Uniaxial yield test. To get an idea of the meaning of the constant 
k in Eqn. (258) one can imagine a uniaxial test with the load oriented in the direc­
tion n. The stress tensor is S = a [n ® n]. The deviator stress is 

S' = | a [ n ® n ] - ^ a [ I - n ( 8 ) n ] 

The yield function can be computed in this particular case to be 

(p{S) = yS' • S' - A: = J\o -k = 0 

If we call Oy the yield stress in axial tension, then the parameter k has the inter­
pretation 

k = J\ay 

One can repeat this thought experiment for a pure shear loading with stress 
tensor S = r[n(S)in + i i i®n] for perpendicular directions n and m. If we 
call Xy the yield stress in pure shear, then we get 

k = yfl Xy 

From these two results we can observe the well-known result Oy - yi2> Xy. 
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Some authors prefer to include a factor of three halves inside the square-root 
in the definition of the yield function. To do so changes the interpretation of 
A: by a multiplicative constant so that k = Oy. 

There are many other yield functions that have proven useful in engineering 
computations. The pressure-dependent yield function of Drucker and Prager 
has found application in granular materials. The anisotropic generalization of 
the von Mises yield function, due to Hill has found application in composite 
materials. For a more complete account of the issues associated with inelastic­
ity, particularly from a computational point of view, the reader should consult 
Simo and Hughes (1998). 
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Problems 
97. The constitutive equations for a three-dimensional isotropic, linearly elastic material 
can be expressed in the form 5,-̂  = XE,^dij-\-2^Eij where the subscripts /, j \ and k range 
over the values 1,2, and 3. Find equivalent expressions for the constitutive equations that 
already reflect the plane stress condition 5*33 = 2̂3 = 1̂3 = 0, that is, find new material 
constants A* and ju* such that the two-dimensional relationship can be written as 

where the Greek indices range only over the values 1 and 2. Express the new constants (A*, 
jLC*) in terms of the constants (A, fi) of the three-dimensional theory. 

98. Demonstrate that the following relationships between the elastic constants A, JLL, C, 
K, and v hold for an isotropic, linearly elastic material 

l - 2 v 3fi-C (H-v) ( l -2v) 1+v 

^-^* | / - - ,7 fe . - *^ = 

c = 

3(3ju-C) 3v 3(1-2v) 

9Kju 

i" = 
^ 3 , ^ _ ^ 3i^(l-2v) ^ A(l-2v) 

2^^ ^; 2(1+V) 2v 2(1+v) 2V^ 'V 2(1+v) 

2(A+/i) ^ 2(3K-pi) 6K 

We can observe that, in each case, one of the elastic constants is expressed in terms of two 
of the others from the set of five constants. There are some natural limits to the values that 
the constitutive parameters can take. Assume that under compressive hydrostatic pressure 
it is impossible for the volume to increase, and that in uniaxial tension it is impossible for 
a bar to get shorter. What do these hypotheses imply about the other moduli? 

99. Show that the isotropic elasticity tensor with components 

is invariant with respect to coordinate transformation since the components of the tensor 
in the two coordinate systems are related by c^^^ = Cijj^QaiQbjQckQdhy where, as usual, 
Qij = Si • ^j are the components of the orthogonal change-of-basis tensor. (Hint: another 
way to view change of basis is g, = GyCy.) 

100. Consider a linearly elastic, isotropic material with Lame parameters A and ju, sub­
jected to the following displacement map u(x) = fiix^e^ + Jt̂ e2). Assume that the linea­
rized strain tensor is adequate to characterize the strain field, and compute the body forces 
required to satisfy equilibrium. 

101. Arrange the six independent stress and strain components in column matrices as fol­

lows: S = (511,̂ 22,533,5i2,'̂ 23»*^13) ^^^ ^ ~ (̂ li>^22»^33» 2̂ 12» 2̂ 23» ^ i s ) • ^' 
sume that the constitutive equations of linear elasticity hold. Show that the constitutive 
equations can be expressed in matrix form as S = DE, where D is a six by six matrix. 
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102. Consider the thin rectangular sheet with Young's 15 psi 
modulus C = 1000 ksi and Poisson's ratio v = 0.45. The -^ 
sheet is subjected to a uniform state of stress through the 25 psi ^ 
tractions given in the sketch. The thickness of the sheet 
before the tractions were applied was 0.1 in. What is the 
thickness of the sheet after the tractions are applied? 

Uiii 

UTT 
^ 25 psi 

15 psi 

15 psi U m . 

mTT 

103. Consider the thin rectangular sheet with Young's 
modulus C=1000 ksi and Poisson's ratio v=0.2. The 
sheet is fixed between two immovable frictionless plates 35 p s 3 
and is subjected to a uniform state of stress through the 
tractions around the edges as shown in the sketch. The 
thickness of the sheet before the tractions were applied 
was 0.3 in. What is the state of stress in the sheet after 
the tractions are applied? What are the reacting tractions 
provided by the plates? Find the ratio of the change in volume to the original 
the sheet. 

35 pi 

j ^ 35 psi 

15 psi 

35 psi 

volume of 

104. A disk made of isotrop­
ic, linearly elastic material is 
subjected to a known uniform 
pressure p around its perime­
ter. The faces of the disk are 

4i t 

P 

T; 
Side 

T 
F.XjJ. 

clamped between immovable, frictionless plates so that the strain through the thickness 
is zero. Assume that the stress state is homogeneous throughout the disk and that the Lame 
constants are known. Find the tractions t acting on the faces. 

X 
CTi = - 50 psi 
(72 = - 20 psi 

0.00367 
= + 0.00133 

e^ = 

105. In a triaxial test, a cylindrical specimen 
is subjected to a uniform pressure Oi on the 
ends of the cylinder and a uniform pressure 02 
on the sides. The change in height Ah and the 02 
change in diameter Ad are measured. Let 
Si = Ah/h and 82 = Ad/d, where h is the 
original height and d the original diameter. The 
values measured in a test are given in the diagram. Assume that the material is linear, iso­
tropic, and elastic. What is the volume of the deformed cylinder? Compute the value of 
the bulk and shear moduli (K and ju) for this sample. 

106. Prove the identity det[ H- 2E ] = 1 -H 2/^ -h 4//^ + S///^. (Hint: Use the component 
expression for the determinant of a tensor. The e-d identity from Chapter 1 may also be 
useful.) 

107. Consider a beam of length € with its axis oriented along the Z3 direction. The cross 
section of the beam lies in the Zj -Z2 plane, and its second moment of the area is equal 
to /. The beam is subjected to equal and opposite end moments of magnitude M, bending 
it about the axis with second moment of the area /. The beam is made of elastic material 
with moduli C and v. The displacement field in the beam is given by the expression 

u(z) = ^ [ i ( ^ 3 + ̂ 2:2-vz^)ei + vziZ2e2 - z^z^e^] 
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Assume that the applied moment is small enough relative to CI that the displacements are 
quite small. Compute the components of the strain tensor. Compute the components of the 
stress tensor from the strain tensor and the linear elastic constitutive equations. Verify that 
the stress field satisfies the equations of equilibrium. 

108. Consider the displacement map u(z) for a sphere of unit radius, i 3̂ 
given by the explicit expression ^^-^-^^ 

u(z) = £(z - z j z (c^ V ^ 

where £ is a (very small) constant of the motion. Assume that the ma- X, ._^y^ ^ 
terial is isotropic and linearly elastic with material constants A and/̂  ^^ 
(i.e., the Lame parameters). Compute the body force b required to maintain equilibrium. 
Compute the traction forces t that must be acting on the surface of the sphere. Determine 
the principal stress field associated with the given motion. 

109. Let the elasticity tensor be given by C^^ = Xdijdia + /«[̂ tjk5j7 + <5j/(5ŷ j. Show that 
the expression 5^ = C,y;y£^ reduces to Eqn. (236). 

110. A cube of isotropic elastic material, having Lame constants k = 1000 psi and 
fi = 1000 psi is in a homogeneous (i.e., does not vary with position) state of stress given 
by a stress tensor with components 

S -

Find the stress component 533 that is consistent with the observation that the cube de­
creases in volume (from the stress-free state) by 5%. Now compute the components of the 
deviatoric stress tensor and the strain components £"13 and £33. 

HI. A block of elastic material, having ^_ ^ ^ Frictionless 
Lame constants X = 1000 psi and 

•II 

10 
2 

L 1 

2 
5 
1 

1 
1 

^33 

fi = 1000 psi is subjected to a lateral 
compressive pressure of a = 80 psi and 
clamped between two frictionless rigid 
plates that reduce the height of the block to 99% of its original height. Compute the total 
force required on the plates to accomplish the motion. Compute the volume of the block 
after deformation. Compute the change in the area of the block on the faces in contact with 
the plates. 

112. Consider a body ^ subjected to the following displacement map: 

u(z) = )S(z?-2z2Z3)ei-h)3(z2-h2ziZ3)e2+^(2:^-2ziZ2)e3 

where ̂  is a (very small) constant. Find the stress tensor associated with this motion, as­
suming that the material is linear, isotropic, and elastic with moduli X and fi and that the 
stress is zero when the displacement is zero. Find the body force field required to maintain 
equilibrium for the given motion. Find the principal values of the (linearized) strain tensor. 

113. The state of the deformation at a certain point in a solid body is such that it has the 
following principal strains e^ = e and 62 = 3̂ = 3f, where £ is a known value. The prin-
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cipal directions associated with these principal strains are known to be iii, nj, and n^. As­
suming linear, isotropic response, find the principal values and principal directions of the 
stress tensor S. The material constants are A = 1000 psi and fi = 1000 psi. What is the 
average pressure p at the point in question? What is the change in volume in the neighbor­
hood of the point in question? 

114. The strain energy function of a nonlinear hyperelastic material is given by 

W(E) = \aE,Ejj + \bE,jE,j + \cE,jEj,E^ 

where a, b, and c are material constants and E = £y [ê  ® e j is the strain tensor. Find 
the stress tensor S as a function of the strain E implied by the strain energy function. 

115. The strain energy function of a nonlinear hyperelastic material is given by 

W(E) = aE,\n{l-^Ejj)+lbEijE,j 

where ln(.) indicates the natural logarithm of (.), a and b are known material constants, 
and E = Eij [ ê  ® ê ] is the strain tensor. Find the stress tensor S as a function of the strain 
E implied by the strain energy function. Consider a hydrostatic state of stress with pressure 
p in which the stress tensor is given by S = pi. Set up a relationship between the change 
in volume and the pressure p. What is the pressure required to decrease the volume to 95% 
of the original volume (assume that the linearized strain tensor is adequate)? 

116. The strain energy function of a nonlinear hyperelastic material is given by the (com­
ponent) expression iy(E) = aQEiiEjjEu^ + aiEijEji^Ei^^y/htTt aQdinda^ are known mate­
rial constants, and E^j is the i/th component of the strain tensor E. Find the stress tensor 
S as a function of the strain E implied by the strain energy function. Is the material isotrop­
ic? Explain your answer. Is the material linear? Explain. Consider a uniform state of shear­
ing in which the strain tensor has components E12 = ^21 ~ Y ^^^ îll other components 
equal zero, where y is a given constant. Find the principal values of the stress tensor S for 
the given constitutive model under the given state of strain. 

117. The strain energy function of a nonlinear hyperelastic material is given by 

W(E) = \n{l^aE,jE^) + ^( ê « - £ , ) 

where ln(.) indicates the natural logarithm of (.) and e() indicates the exponential of (.), 
a and P are known material constants, and £,y is the ijth component of the strain tensor 
E. Find the stress tensor S as a function of the strain E implied by the strain energy func­
tion. How do the constants a and^ relate to the Lame parameters of linear isotropic elastic­
ity? Consider a uniform state of dilation in which the strain tensor is given by E = e l , 
where £ is a constant. Find the principal values of the stress tensor as a function of s. 

118. The strain energy function of a nonlinear hyperelastic material is given by the expres­
sion W(e,y) = aQe^ + aiy-\-a2ey, where aQ, a^, and 2̂ ^^^ known material constants, 
and the scalar invariant strain measures e and y, which are functions of the strain tensor 
E, are defined as e = tr(E) and y = tr(E'E'), where E' = E - e I / 3 is the deviator 
strain. Observe that de/dE = land dy/dE = 2E'. Find the stress tensor S as a function 
of the strain E implied by the strain energy function. Consider a state of hydrostatic pres­
sure S = pi, where p is a given pressure. Find the relationship among p, e and y. Next 
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consider a sample of the material subjected to a state of pure shear strain described by 
E = g[n(S)in-l- in(S)n], where g is a given constant describing the motion and m and 
n are given orthogonal unit vectors. Will there be a change in volume of the sample? Do 
you expect that you would need a confining pressure to execute this motion? Why? 

119. Acubeofelasticmaterial,havingLame constants A = 1000 
psi and fi = 1000 psi is subjected to purely normal tractions on 
its faces as shown in the sketch. Compute the value of o required 
to change the volume of the block by 2% of its original volume. 

120. Three unit cubes (1 x 1 x 1) are uniformly com­
pressed between two rigid plates with an aggregate 
force of P. The change in height is the same for all three 
cubes. The two outer cubes are made of material A, 
while the inner cube is made of material B. Both of the 
materials are linearly elastic with Lame constants 

X^ = 1000 psi, iJLj^ = 1000 psi 

XQ = 500 psi, 14,^ = 2000 psi 

Compute the force P required to change the volume of the middle block by 3% of its origi­
nal volume. What is the final area of the compressed face of the outer cubes? 

%r 

0 

t' 

7 
121. Two cubes with dimensions 2 x 2 x 2 are uniformly 
compressed between two rigid plates with an aggregate force / 
of P. Assume that there is no friction between any of the con- p— 
tacting surfaces. The top cube is made of material A, while 
the bottom cube is made of material B. Both of the materials 
are linearly elastic with Lame constants / 

X^ = 1000 psi, jLi^ = 1000 psi — 

Xs = 500 psi, jUg = 2000 psi 

Compute the force P required to change the total volume of the two cubes by 5% of the 
original volume. What are the final dimensions of the two cubes? 

7 

122. The strain at a point in a body is given by 

r 2 3 
E ~ 10-^ 3 

L. 4 

4 n 
1 
1 J 

Find the components of the stress tensor assuming linear, isotropic, elastic material behav­
ior, with A = 16,000 ksi and/^ = 11,000 ksi. 

123. A 2 by 2 by 2 unit solid cube, centered at the origin of coordi­
nates, is subjected to the deformation described by the map: 

<t)(z) = ( z i + | f l Z ^ j Cj + [Z2+\aZ^^ t2 + ^^363 

Compute the values of the constants a and b that are consistent with 1̂ 
the observations that the total volume of the block is unchanged by 

4 ; 
y 
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the deformation and the total area of the side with original normal ei decreases by 5% due 
to the deformation. Assuming that the cube is made of a linear, elastic, isotropic material 
with Lame parameters A and/̂ , find the body forces and surface tractions required for equi­
librium. (You may assume that the linearized strain tensor is adequate to describe the 
strains for this problem). 

124. Consider a displacement map u(z) given by the explicit expression u(z) = eAz, 
where A is a given constant tensor and £ is a given scalar (which is very small compared 
to 1). The vector z is the position vector of a point in the undeformed configuration. Com­
pute the strain tensor E of the given motion. Compute the stress tensor S assuming that 
the material is linear and elastic and has Lame parameters A and//. Compute the body force 
b required to maintain equilibrium with the stress. 

125. Consider the unit cube with vertex at the origin of coordinates 
as shown in the sketch. The cube is subjected to the following de­
formation map: 

ct)(z) = (zi-hZ2siny) Cj -I- Z2 cosy 62 + z^e^ 
Note that y is a constant. Compute the tractions and body forces re­
quired to achieve the given deformation for the specific shearing 
angle of y=0.2 rad assuming that the material is linear, elastic, and isotropic with Young's 
modulus of 1000 psi and Poisson's ratio of 0.499. Does it make any difference if you use 
the linearized strain tensor as opposed to the Lagrangian strain tensor in the constitutive 
equation for this problem? Explain. 

^ ^ 

^ 2 i 

^ ^ 

126. A bar of length € has an elliptical cross section. The 
equation of the ellipse is ^ ẑ̂ -l-a^Z2 = a^b^, where a 
and b are the major and minor semi-axis dimensions. The 
bar experiences the following displacement map: 

u(z) = -)3z2Z3ei +)3ziZ3e2 - pcz^Z2e^ 

where )3 and c are constants. Find the stress tensor associ­
ated with this motion, assuming that the material is lin­
ear, isotropic, and elastic with moduli A and//. Find the 
body force required for equilibrium. What value must the constant c have in order that the 
lateral surface of the bar be traction-free? 

127. Consider a displacement map u(z) = [z ® z] a, where a is a given constant vector 
(which has a magnitude very small compared to 1). The vector z is the position vector of 
a point in the undeformed configuration. Compute the linearized strain tensor E of the giv­
en motion. Compute the stress tensor S assuming that the material is linear and elastic and 
has Lame parameters A and//. Compute the body force b required to maintain equilibrium 
for the given motion. 

1 5 
128. A linearly elastic solid body is subjected to forces 
that give rise to the following displacenrent map: 

"(z) = y\{4-^Pzl-P4)^i + ypz,Z2e2 - yz^z^^^ Z2 

where y < \ (i.e., very small) and)3 are constants describing the motion. Assume that the 
elastic response is adequately characterized by Hooke's law with known material 
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constants A and/̂  (the Lame parameters). Find̂ S in terms of the constants A and// such that 
Sji = 0 (S is the stress tensor). Find S22 and ̂ 33 for the conditions given previously. Find 
the traction on the surface with normal - 63 at 23 = 0. 

129. The state of stress S as a function of position x in a certain solid body is given by the 
expression S(x) = x® Bx, where B is a given constant tensor. Find the body force (as 
a function of position x) required to maintain equilibrium of the body. Express the result 
in both index and direct (vector) notation. What are the restrictions, if any, on the constant 
tensor B in order for the stress field S to be an admissible stress state? (Please describe any 
restrictions explicitly in terms of the components of B, not in terms of x and S.) 



5 
Boundary Value Problems 
in Elasticity 

All problems in solid mechanics require three basic components: (a) equations 
of geometry of deformation relating the displacements (i.e., the map) to 
strains; (b) equations of equilibrium relating the applied tractions and body 
forces to the stresses; and (c) equations of constitution relating stresses to 
strains. All of these equations are necessary to the statement of mechanics 
problems like the torsion of a bar or the bending of a beam, but they are not 
sufficient to solve such problems. In addition to these equations, which de­
scribe what is happening inside the body, we must also describe what is hap­
pening on the surface, or boundary, of the body. These boundary conditions 
and generally comprise given data about the displacements and applied trac­
tions on the surface of the body. The combination of domain equations and 
boundary conditions is called a boundary value problem. 

There are two important facts one must know about the specification of 
boundary conditions. First, we can specify as given data either the displace­
ment of a certain point or the traction applied at that point; we can never specify 
both the displacement and the traction at a certain point. If the displacement 
is known, as it is for a fixed point, for example, then the traction at that point 
is unknown. We usually call such unknown tractions "reaction forces" because 
they develop in accord with whatever the equations of equilibrium require to 
react to the applied forces. At a point where traction is applied, the displace­
ment cannot be known a priori. 

The second important fact is that not all specifications of boundary condi­
tions are acceptable. For example, we cannot apply tractions to the entire sur­
face of the body willy-nilly. Unless those tractions are very specially pre­
scribed, it may not be possible to satisfy equilibrium. Furthermore, any two 
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displacement fields that differed by only a rigid-body motion would satisfy the 
governing equations. Hence, the position of the body in space would not be 
uniquely determined. Properly specified boundary conditions give rise to what 
we call a well-posed boundary value problem, while improperly specified 
boundary conditions give rise to an ill-posedhoundaxy value problem. In sim­
ple terms, a well-posed boundary value problem is one that we can solve (at 
least theoretically; the practical aspects of carrying out the mathematical ma­
nipulations may be well beyond our capability for many "solvable" problems). 

We have developed the necessary governing equations for the domain of the 
body, so we shall proceed to state the boundary value problem of three-dimen­
sional elasticity. The resulting system of partial differential equations are diffi­
cult to solve in a classical sense (i.e., find fields that exactly satisfy all of the 
differential equations at every point in the body) for all but a few special cases. 
We shall recast the equations into a very different format called the principle 
of virtual work. This principle will lead directly to some powerful approximate 
methods of solution, among which we fmd the finite element method. 

We will first state the general boundary value problem for three-dimension­
al elasticity. For the purpose of illustration, we specialize these equations to a 
one-dimensional version, which we call the little boundary value problem. We 
use the one-dimensional problem to contrast the classical and variational ap­
proaches to stating a boundary value problem and to warm up to the principle 
of virtual work. Finally, we recast the three-dimensional equations of equilibri­
um as a principle of virtual work, showing that the steps are identical to the one-
dimensional case. 

Throughout this chapter we shall be concerned primarily with the linear 
theory of elasticity. The key issue will be the understanding of the relationship 
between classical and variational formulations of the equations that govern the 
response of structural systems. We extend the ideas to finite deformation at the 
end of the chapter. 

Boundary Value Problems of Linear Elasticity 
Consider the body S shown in Fig. 62. It has displacements prescribed over 
part of its boundary, and tractions (forces) prescribed over the remaining part 
of its boundary (remember, it is not possible to prescribe both the displacement 
and the traction at the same place). It is subject to body forces b(x). Let us call 

Figure 62 A body subjected to prescribed displacements and tractions 
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the part of the boundary where displacements n are prescribed Q^ and the part 
of the boundary where tractions t are prescribed Q .̂ (Note: The free surfaces 
of a body are places where the traction is prescribed to be zero.) The entire 
boundary comprises the two parts Q = Q„ (J Q .̂ The boundary value prob­
lem of linear elasticity is specified by the following equations 

divS + b = 0 

E = ^[Vu + Vu^] 

S =>ltr(E)l + : ^E 

Sn = t 

u = ii 

in as 

in 35 

in 3B 

on Qt 

on Qu 

(259) 

This set of equations has, as given data, the prescribed body forces b, boundary 
tractions t, and boundary displacements u, as well as the material properties 
A and /i. The unknowns of the problem are the displacement field u(x), the 
stress field S(x) and the strain field E(x). In terms of components, we have 15 
unknown scalar fields (three displacement components, six stress components, 
and six strain components. The domain equations of Eqn. (259) provide 15 
component equations to find the 15 unknowns. The equations are differential 
equations so there are constants of integration. It is useful to note that there are 
exactly three independent components to a displacement û  for which Vu^ is 
skew symmetric (and hence E is zero). There are exactly three independent 
components to a stress tensor Ŝ  for which divS^ = 0 (self-equilibrating). 
Hence we need six boundary condition components to solve the boundary val­
ue problem. The boundary conditions provide these six conditions. 

The equations are a set of partial differential equations relating the unknown 
variables. Some of these variables can be eliminated in favor of the others by 
differentiation and substitution. In particular, we can find a set of equations in­
volving only the unknown displacement field u(x). These equations are usually 
referred to as the Navier equations (actually, Navier did not get them quite 
right, and Cauchy came to his rescue). These equations, expressed in compo­
nent form, are 

^ ^ ^ dXkdXi ^ dXkdXk ' 

- dUk , (dUi ^ dUj\ 

Ui = Ui 

0 in a 

r, on Qt 

on Qu 

(260) 
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We often refer to such a system of equations as a three-field theory because 
there are three unknown functions of x that we are trying to find, the three com­
ponents of u(x). These equations have been expressed in index notation. The 
summation convention is applied to repeated indices. 

Integration of the domain equation (260)a leads to six constants of integra­
tion (it is a system of three second-order partial differential equations). There 
are essentially three traction conditions and three displacement conditions 
with which to establish those constants. This count of unknowns is somewhat 
artificial. For example, a case where displacements are prescribed on the entire 
surface appears not to have enough conditions to establish a unique solution. 
However, in such a case, the change in volume is prescribed. Establishing the 
conditions for the solution to a partial differential equation is extremely impor­
tant and sometimes tricky. Some of these issues will be clearer in the context 
of specific problems and specialized theories. 

Since all bodies in the physical world are three-dimensional, you would 
think that it would be sufficient to simply learn to solve Eqns. (260). From an 
engineering point of view, such an approach is not practical. These equations 
are difficult to solve analytically (that is, to find closed-form expressions for 
the field u(x) in terms of defined functions like cosines, sines, exponentials, 
and the like). We shall see that we can actually solve these equations with the 
finite element method, but we still will not want to view all problems as three-
dimensional because the resulting systems of equations will still be too large 
to solve on today's computers (perhaps some day this will no longer be an is­
sue). Hence, we are led to making assumptions about the behavior of our bod­
ies to simplify the above equations. 

Most of these simplifications constitute a reduction in the dimensionality of 
the problem. Such a reduction is accomplished either by making assumptions 
about the stress or strain fields, by making assumptions about the displacement 
field (i.e., the map), or from known symmetries of the problem. Plane stress 
2indplane strain are two-dimensional theories, the first of which makes the as­
sumptions about the stress field of the form 533 = 0, 523 = 3̂2 = 0, and 
5i3 = 3̂1 = 0 (as far as stress is concerned, there is no action taking place in 
the JC3 direction), while the second makes the assumptions about the strain field 
of the form E23 = 0, £23 = £32 = 0, and £13 = £31 = 0 (as far as strain is 
concerned, there is no action taking place in the JC3 direction). Axisymmetric 
problems (i.e., axisymmetric bodies with axisymmetric loads) can be reduced 
to two dimensions if cylindrical coordinates {r, z, 9} are used because the solu­
tion does not depend upon 6, Beam theory makes an assumption like "cross 
sections of the beam that were plane before deformation remain plane after de­
formation" which leads to one-dimensional differential equations where the 
generalized displacement variables are functions of only the axial coordinate. 
Plate theory is essentially a two-dimensional beam theory. Shell theory is es­
sentially a plate theory in which the original geometry is not flat. These special-
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ized theories allow us to make enormous strides in understanding the mechan­
ics of structural systems, and it is worthwhile to spend a fair amount of effort 
in understanding exactly how they relate to the general three-dimensional 
theory. 

Let us first examine a problem for which the exact three-dimensional equa­
tions of elasticity are satisfied in order to see how all of the individual compo­
nents play out in the problem specification. One of the few problems that has 
a simple representation and also exactly satisfies the complete three-dimen­
sional equations of linear elasticity is the torsion of a circular shaft. Here we 
shall simply give the expression for the map (i.e., the displacement field) and 
demonstrate that it satisfies all of the equations of linear elasticity. 

Example 27. Torsion of a circular shaft. Consider a prismatic circular shaft with 
the JC3 coordinate axis along the central axis of the shaft as shown in Fig. 63. The 
shaft has length € and radius R, has no body force b, is fixed at one end, and has 
a stress distribution equipollent to a pure torque T applied to one end. 

n = cos^Cj 
+ sin ̂ €2 

Figure 63 Pure torsion of a circular shaft 

The displacement field for the torsion problem is given in terms of the 
constant ^, which measures the angle of rotation of the cross section per unit of 
length, that is, the rate of twist of the shaft. The displacement map is given by 

u(x) = - Px^x^t^ + Px^x^t2 

From the displacement field we can compute the strain tensor as 

E = i[Vu + Vû ] 

= \p{ -X2[t^ ® e3 + e3 ® ei]+A:i[e2 ® e3 + e3 ® e2]) 

From the constitutive equations S = Atr(E)I + 2iaE we get the stress field 

S = IJLP[ -JCjfej (g) e3 + e3 ® ei]+Ari[e2 ® e3 + e3 ® e2]) 

We can compute the divergence of the stress tensor and substitute it into the equi­
librium equations to verify that divS»= d(Se,)/6jc, = 0. Therefore, we have 
shown that the body satisfies the equilibrium, kinematic, and constitutive rela­
tionships of linear elasticity at every point in the domain. 

It remains only to be shown that the boundary conditions are satisfied. Ob­
viously, at 0̂3 = 0, all of the displacement components are equal to zero, as re-
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quired by the fixed end. The lateral sides of the shaft are free of traction. It will 
be convenient to express some of the following results in polar coordinates using 
the transformation x^ = r cos ̂  and X2 = rsin^. Points on the lateral surface 
are defined by the condition r = R; the vector normal to the lateral surface is 
given by n = cos^e^ + sin^Cj. Thus, the traction on the lateral surface is 

Sn =/^^(-/?sin0cos^+/?cos^sin^)e3 = 0 

At the cross section with x^ = € we can compute the resultant of the traction 
field to show that it has no net force on the section, and we can compute the re­
sultant of the moment of the tractions to show that it is equivalent to a torque 
acting in the axial direction as assumed. The traction field at 0̂3 = € is shown 
in Fig. 64. 

UXxi,X2J) dA = rdrdO 

Figure 64 Torsion example (a) he traction field at the end of 
the shaft (b) moment of the traction for an elemental area dA 

The resultant force and moment can be computed by integrating the tractions 
over the area. The explicit expression for the traction vector is given by 

te3 = Se3 =//)3(-X2ei+;cie2) 

acting at position p = x^t^ +^262. The resultant force R can be computed as 
the resultant of the tractions over the cross-sectional area, in polar coordinates, 

2JI R 

R = U^dA = Wp[-rsme^x + r 00^6^2) rdrdO = {^ 

0 0 

Noting that p X tê  = /^^(Jc^+0^)63 = /^firh^, the resultant torque T is 

23t R 

T = J p X t e 3 ^ = 63 I fi^Pdrdd = \fip7iR^e^ 

0 0 

These results are in exact accord with the formulas from elementary strength 
of materials. We solved this problem in a rather backwards fashion, having 
been given the map. In most situations, we will be given the surface tractions. 
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body forces, and the known surface displacements, with the goal of finding the 
map. Such a problem is considerably more difficult to solve. However, the 
present example serves to show how all of the various parts of the boundary 
value problem of elasticity must be satisfied. 

A Little Boundary Value Problem 
We can often gather a great deal of insight from examining the simplest pos­
sible case of a general theory, especially if the essence of the general case is 
basically preserved. In the general boundary value problem of linear elasticity, 
we are faced with mathematical difficulties at every turn. Some of these diffi­
culties are of great importance, while others are simply a nuisance. Reducing 
the issue to its simplest case helps to separate the important ideas from the 
merely tedious. Let us examine the specific one-dimensional version of our 
boundary value problem of elasticity illustrated in Fig. 65. For simplicity, con­
sider that the bar has length € with x ( = JC3) measured from the fixed end, and 
that it has unit area. The bar is subjected to body forces b{x) and a traction t^ 
at the end x = €. The traction to acting at jc = 0 is, as yet, an unknown reaction 
force. The movement at jc = 0 is known and is equal to Uo (along the axis of 
the bar, of course). 

The bar is in uniaxial tension or compression. Thus, the only nonzero stress 
component is the axial component 533 = a(x). The primary strain of interest 
is the axial strain £33 = e(jc). There is no shear stress; therefore, there is no 
shear strain. The constitutive equations indicate that there will be lateral strain­
ing in the amount £n = £22 = "" ̂ £33, but these strains will play a secondary 
role in the present problem. The constitutive equation can be expressed as 
a{x) = Ce(jc), where C is Young's modulus. We can state the boundary value 
problem as 

o\x) + b(x) = 0 

€(x)-u'(x) = 0 

o(x)-C€(x) = 0 , 

«(0) = u„ 

o(() = te 

' ioi xE [0,€] 

atA; = 0 (Q„) 

atx = ( (Q,) 

(261) 

where a prime denotes ordinary differentiation with respect to x, that is 
(•)' = d(-)/dx. 

This boundary value problem constitutes a system of first-order ordinary 
differential equations in the unknown functions a{x), €(x), and M(JC). Through 
standard reduction techniques, these equations can be recast as a second-order 
differential equation in the unknown displacement u(x) alone, just as we did 
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"(0) = uo \^^^^^^ t(x) 

Figure 65 A one-dimensional boundary value problem 

to get the Navier equations of three-dimensional elasticity. Substituting the 
strain-displacement equation into the constitutive equation, and that result into 
the equilibrium equation, the boundary value problem takes the following form 

(262) 

{cu'Y + b = 0 

«(0) = 

Cu'(£) 

for 

= te 

xe [0,€] 

Example 28. Classical solution to the little boundary value problem. To see 
what is at stake in solving a boundary value problem, let us take the particular 
case of a constant body force (̂jc) = bo, traction t^ = r, and fixed boundary 
Uo = 0. We solve the domain equation by successive integration to obtain 

u{x) = -^x^ + a^ + a^x 

Integrating twice has left us with two arbitrary constants of integration, a^ and 
flj. The boundary conditions are precisely the conditions needed to single out 
a particular solution from an entire family of solutions that satisfy the differen­
tial equations in the domain (i.e., the body 9B). Using the given boundary condi­
tions, we find that w(0) = 0 = AQ and Cw'(€) = r = -bo^-^Ca^, which 
gives 

flo = 0 and a^ = -^[bo^ + i] 

We have found the map to our problem: the displacement field u{x). It is 

uix) = i [ 2 r j c + 6,(2;c€-jc2)] 
2C 

It is quite simple to verify that this map satisfies the governing boundary value 
problem. All we need to do is to differentiate it and substitute back into the gov­
erning equations. As a matter of fact, one should never go to all the trouble of 
finding the solution to a differential equation and then not take the extra few min­
utes to verify that it is indeed the solution by differentiating and substituting. 
Here we get 

u\x)=^[i^bo[^-x)], u'\x)^ - ^ 
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We can see by inspection that these quantities satisfy the differential equation 
and two boundary conditions 

Cu"(x) + bo = 0, u(0) = 0, Cu'(£y= r 

The stress field can now be found as ̂ (x) = Cu'(x) = r + 6o(€-A:). The reac­
tion at the left end is to = —o(0) = —i — bo^, as computed through the 
Cauchy relation. The displacement field is, in this case, a quadratic function of 
X. The stress is, then, a linear function because it is proportional to the derivative 
of the displacement. The reaction is, of course, the one that satisfies overall equi­
librium of the applied forces. 

We say that this solution of the boundary value problem in the preceding ex­
ample satisfies the problem in the strong, or classicaly sense; it satisfies every 
equation at every point jc in the domain and on the boundary. A strong, or classi­
cal, solution is what most people think of when they think of solving a differen­
tial equation. In the next section, we will recast our little boundary value prob­
lem into another form that will lead us to a different definition of the solution 
of the differential equation called the weak, or variational, sense. 

Work and Virtual Work 
The concept of virtual work is a specialization of the physical concept of real 
work, which is the product of force and the distance that force moves in the 
direction of its action. Consider a force f(s) as it moves from point a to point 
b along a curved path parameterized by s, as shown in Fig. 66. The curve can 
be viewed as a path in three-dimensional space and the parameter s can be tak­
en as the time or distance. The direction and magnitude of the force f may vary 
as it moves along the path. The total work done by the force in moving from 
point a to point b is given by the line integral 

^ a 

W = f(s) • t(s) ds (263) 
J a 

where t(s) = dx/ds is the unit vector tangent to the curve at s. There are two 
things we need to notice about work. First, work is a scalar quantity, not a vec­
tor quantity. Therefore, we never need to worry about invariance with respect 

Figure 66 A force traversing a curved path 
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to the coordinate system. Second, the only quantities involved in the definition 
of work are forces and displacements (not stresses and strains). The units of 
work are always force times distance. If you consider the arc-length parameter 
5 as a measure of time, then, according to how we defined the displacement of 
the force, you will see that we are really integrating force times velocity over 
the time it takes to go from point a to point b. 

The principle of virtual work will be a thought experiment that we will per­
form on a mechanical system. The designation virtual refers to the imaginary 
nature of our experiment. Insofar as our experiment is a virtual one, we can 
construct certain aspects of the experiment to suit our mathematical needs (just 
as in a real experiment we contrive a testing system that most directly measures 
the quantity of interest). To wit, we make two assumptions in defining what we 
shall call the virtual displacement. 

(a) The force f is held constant throughout the virtual displacement, 
and is equal to the actual value of the force at the moment the thought 
experiment begins. 

(b) The virtual displacement is restricted to be a motion along a 
straight path with a constant velocity (i.e., the virtual velocity is 
constant). We shall designate the virtual displacement by H as the vec­
tor from the starting point of the experiment a to the ending point b, 
as shown in Fig. 67. 

a 

Figure 67 The definition of virtual displacement 

If we take the motion of the force to be in the direction of the unit vector t point­
ing along the line connecting point a to point fc, then the virtual work W(we 
designate all virtual quantities with overbars) done by the constant force can 
be computed from Eqn. (263) as 

W = \ l i d s = i i \ ds = f'Vi (264) = lids = i i \ 
J a J i 

where u = {s{b)-s{d)\i = b - a defines the virtual displacement to be the 
vector pointing from a to fo. Notice that the benefit of defining virtual displace­
ment as we have done is that we will not have to compute line integrals in order 
to use the concept of work. 
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The point a is known and is associated with the real position of the force be­
fore our thought experiment. The arbitrariness of the virtual displacement is 
then totally manifested in the choice of the point b to which the force moves. 
Since the virtual displacement must be along a straight line, the virtual dis­
placement can be completely characterized by describing how far to go and in 
what direction. Thus, the virtual displacement vector is a completely appropri­
ate choice for that description. 

In the above definition of virtual work, we were concerned only with the 
virtual displacement of a smgle point a, and the force associated with that 
point. A solid body is made up of many such points, each of which can be sub­
jected to a virtual displacement. As such, virtual displacements will be a field 
ll(x) defined over the domain of our body. While the virtual displacement field 
can be chosen arbitrarily (by definition), we will generally find it useful to re­
quire the field to be continuous, that is, two neighboring points (or regions) 
cannot be displaced in a manner implying cleavage of the material. 

The Principle of Virtual Work 
for the Little Boundary Value Problem 
Now that we have a definition of virtual work, let us create the so-called princi­
ple of virtual work. As we shall see, this principle is actually a tautology (in the 
same sense that 0 = 0 is a tautology). The derivation of the principle of virtual 
work amounts to computing the work done by the external loads when sub­
jected to a vutual displacement field, and manipulating the resulting expres­
sion with legal mathematical operations. In the process, we see that the concept 
of internal virtual work and virtual strain appear naturally. The statement of the 
principle of virtual work requires a result from the calculus of variations, 
which we develop here. 

Let us reconsider our little boundary value problem described in Fig. 65. 
The forces that are acting on the bar are the body force b(x) and the tractions 
at the two ends: the unknown reaction to acting atx = 0 and the applied traction 
tf acting atx = €. Let us subject this bar to a virtual displacement field u(x) and 
compute the work done by the external forces, or external virtual work, as 

WE = toU(Q) -h t^u{i) -h \ budx I but 
Jo 

(265) 

If the forces to, t^, and b(x) are known, then the external virtual work can be 
computed for any virtual displacement u(x). We can manipulate this expres­
sion to put it in an equivalent, but much more useful, form. Let us begin with 
the definition of external virtual work and add zero to the expression in the par­
ticular form [a(0)u(0) - a(0)u(0) + a(€)M(€)- a(€)n(€)] to give 
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W, = [̂ , + CT(0)]l7(0) + [t,-G(()]u(() 

+ [a(£)u(e)-a(0)u(0)]+ budx 
Jo 

Qearly, the added expression does not change the right side because we have 
added and subtracted exactly the same terms. Now let us note that the one-di­
mensional version of the divergence theorem gives 

-I' 
Jo 

a(€)u(() - o(0)u(0) = [ou]' dx (266) 
Jo 

(Recall that a prime indicates differentiation with respect to jc.) Next, we note 
that the derivative of the product can be expressed as [ou]' = a'u^- oit. Us­
ing all of these results we can finally write the external virtual work in the form 

WE = [̂ . + a(0)]«(0) + [r,-a(€)]u(€) 

+ [o'-^b)udx ^ \ au' dx 
Jo Jo 

While it may appear that we have done nothing more than create new terms 
in an already simple expression for external virtual work, the last line of the 
derivation shows some interesting things. The first two terms remind us of the 
Cauchy expression relating traction to stress at the end points of the bar. The 
third term reminds us of the equation of equilibrium in the domain of the bar. 
Indeed, the classical equilibrium equations for this problem are 

a' + b = 0, a(0)^to = 0, a(€)-r^ = 0 

In the expression for virtual work, each of these expressions is multiplied by 
the virtual displacement; the domain part is multiplied by the virtual displace­
ment and integrated over the domain. 

The last term in the last line of the derivation is the mysterious one. Let us 
call this term the internal virtual work 

(267) 

Notice that internal virtual work is nothing more than a definition. In particular, 
it has no relation to the concept of work other than the fact that it was the result 
of legal mathematical manipulations of the original definition of the work of 
the external forces. Some authors like to view the internal virtual work in terms 
of stress times "virtual strain," defining virtual strain as 

r(jc) = ir(x) (268) 
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The similarity of this expression to the definition of real strain, as the gradient 
of displacement, justifies calling 6(jc) the virtual strain. It is precisely the strain 
that would be caused by the virtual displacement, if the virtual displacement 
really occurred. With this identification, the internal virtual work takes the 
equivalent form 

7i = I oedx 
Jo 

Wj= I oedx (269) 
Jo 

We are now almost ready to frame the principle of virtual work. Let us re­
write the last line of the derivation on the external virtual work as follows 

W,-Wj = [t, + a(0)]u(0) 

(270) 
+ [/e-c7(€)]w(€) + {a' + b)udx 

Jo 

where we understand that W^ is to be computed from Eqn. (265) and Wj is to 
be computed from Eqn. (267). Let us make the following key observation. 

Observation. If the stresses and tractions in the bar satisfy the equa­
tions of equilibrium; that is, if 

a'-hb^O, a(0) + to = 0, a(()-te = 0 

then the external virtual work must be equal to the internal virtual 
work, W^ — Wi = 0, for any (admissible) virtual displacement, u(x). 

The observation simply states that if the right side of Eqn. (270) is zero, then 
the left side must be also. We threw in a restriction on u(x) called admissibility 
that will haunt us every time we make such a statement. What we are really 
hedging against here is unquantifiable indeterminate expressions like oo • 0, 
00 / 00, and 0/0. We can generally enforce admissibility by choosing virtual 

displacements that are sufficiently smooth and well behaved. 
The above observation itself is not all that useful. If we happened to be lucky 

enough to know the stress field, then we could select virtual displacements at 
random and demonstrate that internal virtual work always balanced external 
virtual work. It is important to realize that for every choice of u(x) the equation 
WE-WJ = 0 provides a valid equilibrium equation. In fact, this observation 
is can be used to find reaction forces for certain problems (see, for example. 
Problem 135). 

Usually, we are not given the stress field; rather, we are trying to find it. 
What the principle of virtual work does is to reverse the observation to say if 
the external virtual work is equal to the internal virtual work for all admissible 
virtual displacements, then the system is in equilibrium. The subtle swapping 
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of the word "any" for the word "all" is not a trivial operation. To do it, we need 
the fundamental theorem of the calculus of variations. 

The fundamental theorem of the calculus of variations. Consider the 
functional defined in the following manner 

Jo 
G{g,a,b,u) = g(x)u{x)dx + au{0) + fcw(€) (271) 

Jo 

where g(x) is some, as yet, unknown function of JC, a and b are two, as yet, un­
known constants, and u(x) is any of a variety of possible functions of JC taken 
from a collection of admissible functions, 3F(0, €). Tht fundamental theorem 
of the calculus of variations is the assertion that 

If G{g,aMu) = 0 Vw E J(0,€) 
then g{x) = 0, a = 0, and fo = 0 

(272) 

In other words, if G = 0 for all admissible choices of the function u{x) (the 
notation V means "for all"), then g{x) = 0 must hold for each point x, and 
a = 0 and fo = 0 must also hold. This is precisely the kind of statement we 
need to reverse the order of our observation above. 

The proof of the fundamental theorem of the calculus of variations goes as 
follows. The function u{x) is arbitrary, and we must satisfy G = 0 for all of 
them. Let us first consider a subset of those functions, those being all functions 
w(x) that satisfy M(0) = Oandw(€) = 0. For these functions, the last two terms 
of G do not appear. Since the equation must hold for all w(jc), it must certainly 
hold for the function u{x) = g(x) at every point except at the ends, where it 
is defined to be zero. For this particular choice, G = 0 gives 

i: g^dx = 0 (273) 

If the integral of the square of a function is zero, then that function must be 
identically zero because the function g\x) lies entirely above the axis. The in­
tegral measures the area under the curve between the limits of integration. The 
only curve that can be entirely above the axis and have zero area is the curve 
g(x) = 0. That proves the first conclusion in Eqn. (272). 

Now let us ease up on our restrictions for u(x) to include those additional 
functions that are not zero at X = 0 (but still satisfy u(€) = 0). Since we already 
have proved that g(x) = 0, we have a w(0) = 0 for nonzero values of M(0). The 
only way this can be satisfied is if a = 0. That proves the second conclusion 
in Eqn. (272). Finally, let us remove all restrictions from u(x). Since we already 
have g(x) = 0 and a = 0, we must now satisfy bu(£) = 0 for nonzero u(€). 
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The only way that this condition can be satisfied is if fc = 0. That proves the 
third conclusion in Eqn. (272). 

The extension of the fundamental theorem of the calculus of variations to 
vector fields and three dimensions is straightforward. Consider the functional 

G(v,w,n) = Y'udV-h W'udA (274) 

defined on a solid region 9B with boundary Q. The vector fields v(x) and w(x) 
are, as yet, unknown, and the vector field ll(x) E 9̂ ($B) is any arbitrary func­
tion taken from our bag of admissible functions J(9&). The fundamental theo­
rem of the calculus of variations suggests that 

If c?(v,w,n) = 0 V n e JF(aa) 
then v(x) = 0 in 35, and w(x) = 0 on Q 

(275) 

The proof is just like the one-dimensional version. First, restrict the collection 
of functions 3F(33) to 9̂ (̂98), a collection of functions taken from 9̂ (9B), each 
of which satisfy the condition u(x) = 0 on the boundary Q. With this reduced 
set of functions, the boundary integral always vanishes. Let us consider a vec­
tor field ii(x) = v(x) at every pomt m the domain except on the boundary, 
where it is zero. Setting G = 0 in Eqn. (274) gives 

[ ( v v ) ^ = [ y\\^ dV= 0 (276) 

The square of the length of a vector is always positive. Thus, the only possible 
vector field for which the integral of i| v P vanishes is the field v(x) = 0, 
thereby proving the domain part of the fundamental theorem. Now remove the 
restriction that TI(x) = 0 on the boundary Q. Since we already have v(x) = 0, 
only the integral over the boundary can be nonnegative. Let us choose a func­
tion for which ll(x) = w(x) on the boundary. Now setting G = 0 in Eqn. (274) 
suggests 

I w p ^ = 0 (277) 

thereby implying that w(x) = 0 on the boundary. The functional G can appear 
in many different forms. It should be clear from the above developments how 
to prove the fundamental theorem of the calculus of variations. 

What is a functional anyway? In the development of the fundamental 
theorem of the calculus of variations, we introduced an object G that we called 
afunctional Perhaps it would be a good idea to say exactly what a functional 
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is before we go any further. A functional is an operator that takes as its input 
a function (which itself has an independent variable). As such, a functional is 
a function of a function. A functional always operates on a function in such a 
way that it produces a number. The definite integral of an ordinary function is 
one of the most prevalent examples of a functional. The value of an ordinary 
function at a certain point is a functional. The maximum of an ordinary func­
tion is a functional. 

Example 29. Evaluation of a functional. Consider an example of a functional 
J(u), which operates on functions u(x) that are defined on the real segment [0,1] 

Jo 
J(u) = w(0) + u\x) dx (278) 

Jo 

The action of the functional is to take a function u(x) and add the value of that 
function at the point jc = 0 to the integral of the square of the function between 
the limits 0 and 1. The result is a number. For example, consider the particular 
function u(x) = 1 -H 3x, then the value of the functional can be computed as 

J(l-\-3x) = (1 + 3(0))+ (l + 3xydx 
Jo 

= 1 + [x + 3x^-\-3x^]l = 8 

The functional can be evaluated for any other function defined on [0,1]. For ex­
ample, consider u(x) = sin jtx. Now 

= sin:7r(0) + 
Jo 

J(sin;rjc) = sin;r(0) + I (sin Jix)'^ dx 
Jo 

= 0 + —[jtx- sin7ix cosTtx]^ = ^ 

It is evident that the result of evaluating a functional is always a number and that 
number can be computed by simply substituting each incidence of the function 
u(x) in the functional. 

A functional is like an ordinary function in many ways. For example, if you 
have an ordinary function, you must define the region on which it applies. In 
the previous example, the function u(x) depends upon a single variable. Its do­
main is the segment [0,1] C R (this notation means that the interval is a subset 
of the real line). For physically motivated problems, it is generally quite clear 
what is the domain of the function. We must characterize the domain of a func­
tional, too. This specification amounts simply to stating which functions are 
allowed as inputs to the functional and which ones are not. You could, for ex­
ample, allow only functions that are continuous, and exclude all functions that 
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have a jump discontinuity (or worse) somewhere within the domain of the 
function. For our purposes, the specification is generally quite simple, follow­
ing the general principle that we will not allow functions that cause our func­
tional to compute infinite values. It is usually quite clear from the form of the 
functional what we should allow and what we should exclude. 

What is an admissible function? In stating the fundamental theorem of the 
calculus of variations, we appealed to the notion of admissible functions, and 
we gathered all possible admissible functions into what we called a collection 
of admissible functions. We gave the collection of admissible functions the 
name JF(S), which told us two things: (a) which functions are in the collection 
and which functions are not and (b) the domain over which those functions 
must be defined for the present purposes. The contents of the collection will 
vary from application to application depending upon what mathematical ob­
jects appear in the functional G. Hence, for each G we must establish what the 
collection contains. The region over which the functions must be defined is 
quite important, but is usually obvious from the particular problem specifica­
tion. For example, in Eqn. (274), the vector field v(x) must be defined through­
out the region % while the vector field w(x) is defined on the boundary Q. 

We often classify functions in terms of their certain special characteristics, 
e.g., the polynomials, the trigonometric functions, exponentials, and the like. 
Such classifications are much less appropriate here. The function 

u{x) = e"" -{- x^ - cos 3x 

may be a perfectly suitable function in our collection, and it crosses several of 
the classical lines of categorizing functions. A better way to visualize the ad­
missible functions in a collection is to think of the graph of the function. Four 
different functions are shown in Fig. 68. Function (a) is a smooth, continuous 
function that varies according to no particular classical functional form (al­
though we could approximate its variation using classical functions). Function 
(b) is continuous everywhere except for the jump discontinuity at/?. The func­
tion varies linearly between points of slope discontinuity. Between those points 
we would consider the function to be quite smooth, but because of the exis-

u(x) 

"NJ^ T 

u(x)k 
(c) 

u{x) k 

Figure 68 Four functions defined on the interval [0, €] 
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tence of the jump discontinuity and the kinks, the function, overall, is not very 
smooth. Function (c) is another smooth function. It is peculiar because the val­
ue of the function is zero over most of the domain. Function (d) is a parabola, 
a function that we can write as u(x) = jc (€ — jc), a classical mathematical form. 

How, then, should we classify the functions in our collection? There are ba­
sically two classification schemes that are important to the principle of virtual 
work. The simpler way is to assess its square-integrability. If the integral of the 
square of the function over the domain is finite, then we call the function 
square-integrable. The criterion for square-integrability is 

I. u\x)dx < 00 

The square of a function is easy to visualize, as the value at each point is com­
puted by squaring the value of the original function. Qearly, the square of the 
function is a completely positive function. We are computing the area under 
this function. If the area is not finite, then the function is not square-integrable. 
All four of the functions in Fig. 68 are square-integrable. The function 
u{x) = 1/jc is not square-mtegrable on the interval (0,1), but it is on the inter­
val (1, 2). Can you explain why? 

Another way of classifying functions is in terms of their smoothness. We can 
assess smoothness by examining the continuity of the derivatives of the func­
tion. Differentiation amplifies the roughness of a function. If we differentiate 
a rough function enough times, we will eventually get a discontinuous func­
tion. Function (b) is already a discontinuous function because of the jump at 
p. If we take the derivative of function (b) we get discontinuities at each of the 
kinks. The derivative is not defined at p. Function (c) is continuous every­
where, but its first derivative is not continuous at/?. A function whose mth de­
rivative is continuous belongs to the collection of functions called C" func­
tions. A function that is continuous, but has kinks, belongs to C . A function 
whose first derivative is continuous, but whose first derivative has kinks, be­
longs to e^ If a function belongs to e \ then it also belongs to C" because it 
satisfies all the requirements for C . 

We can extend the notion of square-integrability to the derivatives of func­
tions, too. If the mth derivative of a function is square-integrable, then the func­
tion belongs to the collection of functions called 36'". For example, if a function 
is square-integrable but its first derivative is not, then the function belongs to 
36''. Certainly, any function that belongs to a collection with more stringent re­
quirements also belongs to those collections with less stringent requirements. 
For example, %^ C K)"", that is, all of the functions that you find in %^ will also 
be found in %^, Continuous functions are always square-integrable, but the re­
verse is not always true. Therefore, we must have 

C" C K)'" 
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This last observation is important because it is almost always easier to deter­
mine whether a function and its derivatives are continuous than it is to deter­
mine whether they are square-mtegrable. When we get into the business of 
approximation, we will generally select functions that meet the requirement of 
continuity and hence guarantee square-integrability. In what follows, we will 
always refer to the generic collection $F(9B) and use our common sense about 
the problem to decide which functions are in the collection. 

Example 30. Dirac delta function. The function shown in Fig. 69 is zero to the 
left of jc = —e, ramps up linearly to the peak at the origin, and then ramps back 
down linearly to zero at x = e. 

g(x) 

Figure 69 A Dirac delta "function" (which is not square integrable) 

In the limit (as e goes to zero) this function becomes the the Dirac delta function. 
The explicit functional form for this function is (for the parts that are not zero) 

1 [x + e] 
g{^)^ 

A ( -

-£ < X < 0 

0 < X < e 

This function is integrable. It should be obvious that the integral of this function 
is 1 (one half the base times the height). This result is independent of the value 
of 6. The integral can be computed explicitly (noting symmetry) as 

I g(x)dx = j f (£-
J -00 Jo 

x]dx = —: xe-- = 1 

Certainly, this integral exists in the limit as e ^ 0. Let us also compute the inte­
gral of the square of this function (again, noting the symmetry of the function) 

I g\x)dx = j | [e-xYdx = J p -x'e^^ 2_ 
3£ 

In the limit as £ -^ 0, the integral of the square of the function approaches infin­
ity. Thus, the Dirac delta function is not square integrable. 

One of the merits of the Dirac delta function is that it has the property that 

i: f{x)dix-Xo)dx = f{Xo) (279) 
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for 0 < jCo ^ €. The Dirac delta function is used frequently to model point 
loads in a setting where the loading is thought of as a distributed load (i.e., a 
function of JC). The Dirac delta function is also important because it is, in es­
sence, what results from taking the second derivative of a function with a kink 
(the first derivative has a jump, often modeled with the Heaviside step func­
tion). The importance of this observation will be evident when we discuss the 
finite element method. 

The little principle of virtual work. Let us define the functional G to be 
the difference between the internal and external virtual work 

G{a,u) ^Wj-W, (280) 

where W^ is given by Eqn. (265) and Wj is given by Eqn. (267). Clearly, the 
difference between the external and internal virtual work is also given by Eqn. 
(270). From these equations, and the fundamental theorem of the calculus of 
variations, we can state the little principle of virtual work as follows 

If G(a,w) = 0 Vw(jc) e 5F(0,€) 

then a' + fc = 0, -a(0) = to, and a{i) = t^ 
(281) 

where 3 (̂0, €) is a collection of functions admissible for use as virtual dis­
placements. The requirements for membership in this collection are not all that 
stringent. Obviously, the definition of internal virtual work involves the first 
derivative of the virtual displacement. We want to make sure that the integral 
that has this term in it exists. The requirement for admissibility is 

i [u'Ydx (282) 

Hence, the functions must belong to 3£^(0, €). We will see this kind of require­
ment every time we state a principle of virtual work. The idea is always the 
same: Look for the highest derivative on a function in G. Let us say that the 
function has been differentiated n times. The space of admissible functions will 
include all functions whose nth (and lower) derivatives are square integrable. 
As we shall soon see, it is sometimes advantageous to further restrict the func­
tions, but any further restriction is a convenience rather than a necessity. 

Here is what the principle of virtual work says: If we satisfy the virtual-work 
equation 

c (alt -bu)dx - tou{0) - t^u{£) = 0 (283) 
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for all functions u E 5F(0, (), then the equilibrium equations a' -\-b = 0, and 
the Cauchy relations to = - a(0) and t^ = a(£) are automatically satisfied. In 
other words, we have managed to swap a differential equation for an integral 
equation. We call the integral equation the weak form of the differential equa­
tion. Here is the catch. The strong form and the weak form are only identically 
equivalent if the weak form is really satisfied for all choices of the virtual dis­
placement field w(jc). Since u(x) is a field, there are an infinite number of pos­
sible variations of this function. Making sure that Eqn. (283) is satisfied for all 
possible choices of u{x) would seem an impossible task, and indeed there 
aren't very many problems for which we can accomplish this task. 

There is a distinct advantage to the weak form. Put in simple terms, integra­
tion is a very forgiving process, whereas differentiation is not. Integration acts 
to smooth rough things out, while differentiation always makes rough things 
rougher. An approximation can be viewed as a rough thing. Thus, if we approx­
imate the solution to our problem, then the weak form will forgive us but the 
strong form will not. The advantage of the weak form of the differential equa­
tion is in its power of approximation. Indeed, this is the basis of the finite ele­
ment method. 

Weighted Residuals. It seemed as though we did a lot of mysterious defin­
ing of terms and manipulation of equations to come up with the expression for 
G(a, w). There is another way of getting it. Simply take the equilibrium equa­
tion in the domain, multiply it by the virtual displacement and integrate it over 
the domain, and add the boundary terms multiplied by the virtual displacement 
evaluated at the appropriate location. The negative of the result is G. To wit 

G(o,u) = - I [a'-^b)udx 2̂84) 

' ^[to + a(0)]u(0) -[t,-a(€)]u(€) 

This functional has an interesting physical interpretation. If a(x) is not the solu­
tion to the problem at hand, then a' -\-b represents the residual force at each 
point X, It is the amount by which the equilibrium equation is not satisfied. 
Likewise, to + a(0) is the amount by which the stress field fails to meet the trac­
tion boundary condition at the left end and t^ — a{i) is the amount by which the 
stress field fails to meet the traction boundary condition at the right end. Thus, 
each term in square brackets in Eqn. (284) represents an equilibrium residual. 
The virtual displacement field u{x) can be viewed as a weighting function and 
the functional G{Oy u) a weighted residual representing, in some sense, the ag­
gregate failure of the stress field to satisfy equilibrium. Because of this inter­
pretation, methods based upon this functional are often referred to as the meth­
od of weighted residuals. 

We can show the correspondence with the form of the functional derived 
earlier by taking any term in the domain part that has a derivative on the real 
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field variable and integrating by parts to transfer the derivative to the virtual 
displacement. In the present case, the term a\x) u(x) must be integrated by 
parts. The result is 

(a,u) = [au'-bu 
Jo 

G(a,u) = [ou'-bu)dx - ,̂w(0) - t,u{i) (285) 
Jo 

Notice that the boundary terms that come from the integration by parts cancel 
some of the existing boundary terms. Equation (285) is exactly the difference 
between the internal and external virtual work. This approach is often the most 
effective way to get the functional G required to state the principle of virtual 
work (particularly for differential equations where the notion of mechanical 
work does not apply). 

Example 31. Getting the classical differential equation from the virtual-work 
functional Consider the (virtual-work) functional for a one-dimensional bound­
ary value problem, defined on the range [0, €], given by 

{u,it) = [Au"u" - Bu'U 
Jo 

G(u,lT) = [Au"u" - Bu'Tt •¥ Cuu - bu)dx 
Jo 

where A, B, C, and b are known cx)nstants, u(x) is the unknown field, and u(x) 
is its virtual counterpart. What is the classical differential equation governing 
the response of the system? What form must the boundary conditions have? 

In order to apply the fundamental theorem of the calculus of variations we 
must integrate the first two terms by parts to put the functional in the form 

G(u,u) = L(u)udx + [3̂ (w)w]o + [Q<")«']o 
Jo 

where «£(w), 9̂ (w), and Q(w) are differential operators. Only in this form can we 
deduce that the governing equation in the domain is L(u) = 0. For the present 
case note that 

{u'"uy = u""u-\-u'"u' = u""u + (u"u']' - u"u" 

Thus, we can write 

u''u" = u""u + {u"u'y - (u'"uy 

-u'u' = u"u- [u'uy 

Finally, substituting these expressions into the original functional and carrying 
out the integrals of the exact differentials we obtain 

G(u,u) =- [Au""+Bu"+Cu-b)udx 

+ [Au"u'][ - [{Au'"^Bu']u]l 
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Using the fundamental theorem of the calculus of variations we can conclude 
that the variational statement G{u, w) = 0 for all M is equivalent to the classical 
(strong) form of the differential equation 

Au"" + Bu" +Cu-b = 0, 0 <x < £ 

We also learn something about the classical boundary conditions from the 
boundary terms. In fact, 

[AW"W']Q = 0 ^ either Au" = 0 or r = 0 at 0 and € 

[(Au"'-\-Bu')u]l = 0 -^ either Aw'"+5w' = 0 or w = 0 at 0 and € 

The significance of the conclusions u = 0 and it = 0 will be more evident 
from our discussion of essential and natural boundary conditions in the next sec­
tion. Suffice it to say at this point, that the boundary terms that result from in­
tegration by parts always provide information about the classical boundary con­
ditions of the problem. 

Essential and Natural Boundary Conditions 
The principle of virtual work holds for any constitutive model since constitu­
tive equations did not enter the derivation. A completely displacement-based 
expression for the virtual-work functional can be found by directly implement­
ing the constitutive equation a = CM'into the original virtual-work function­
al. In doing so, we change the argument of the functional from a to w. The virtu­
al-work functional then has the form 

G(w,w) = [Cu'u'-bu)dx - toU{Q) - t^u{i) 
Jo 

(286) 

Now the principle of virtual work states that equilibrium will be satisfied if 

G(u,u) = 0 VMeSF(0,€) (287) 

The only unknowns in this equation are the displacement field u(x) and the 
reaction force to. We can get rid of the reaction by choosing only functions that 
satisfy the condition u(0) = 0 (note that the boundary condition on the real dis­
placement is w(0) = Uo). This assumption does, of course, weaken the princi­
ple of virtual work. If you go back to the proof of the fundamental theorem of 
the calculus of variations, you can see that we have sacrificed the conclusion 
that to = -"CT(0). IS this a serious sacrifice or not? Since equilibrium is still 
guaranteed at all other points in the domam, we have sacrificed only the equa­
tion that actually computes the reaction force. Equilibrium must still hold at 
this point. If we simply compute the reaction with the equation to = — CT(0) 
instead of letting the equation be satisfied automatically, then we have lost 
nothing. Thus, let us modify our functional to be 
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G(u,u) = [Cu'u'-hu)dx-t,u{i) (288) 
Jo 

and our statement of the equilibrium condition to be 

G{u,u) = 0 Vwe3^e(0,0 (289) 

where aFe(0, (.) is a subset of functions from $F(0, €) containing only functions 
that satisfy the homogeneous essential boundary condition w(0) = 0. As you 
might guess, the subscript e stands for "essential boundary conditions satis­
fied." Essential boundary conditions are also often called displacementbound-
ary conditions. They are the boundary conditions on the lower-order deriva­
tives of the displacements, since we use the substitution a = Cu\ The 
boundary condition t^ = a(() is called a natural boundary condition (some­
times called 2i force boundary condition) because the principle of virtual work 
guarantees that it will be satisfied naturally. Our variational approach to prob­
lems (i.e., virtual work) will always distinguish between these two kinds of 
boundary conditions. 

Interestingly, we cannot specify u(x) at any other point. For example, we 
cannot set u(() = 0 because, if we did, the principle of virtual work could not 
distinguish between problems with different values of the applied end load t^. 
In particular, it could not distinguish a problem with a zero end load from one 
with a nonzero end load. Qearly, this is too great a sacrifice. Similarly, if the 
value of u(x) were specified at any other point along the length of the bar, we 
would have a point where a concentrated body force of any value could be 
placed without changing the value of the virtual work. Again, the principle of 
virtual work would be unable to distinguish between fundamentally different 
problems. 

The Principle of Virtual Work for 3D Linear Solids 
The development of the general principle of virtual work for a three-dimen­
sional solid body is quite similar to the development for the little boundary val­
ue problem. All of the essential steps are the same, but some of the mathemati­
cal manipulations are a little more involved. In following the derivation, you 
would do well to refer back to the one-dimensional case to keep perspective. 

Consider a body 35 having boundary Q with unit normal vector field ii(x). 
The forces that are acting on the solid are the body force b(x) and the tractions 
t(x) acting on the surface of the body. Here we will not distinguish between 
the prescribed tractions and the reacting tractions. In order to derive the princi­
ple of virtual work, we must compute the work done by the body forces and 
surface tractions as they move through a virtual displacement field. Let us sub­
ject the body to a virtual displacement field ll(x) and compute the work done 
by the external forces 
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W^ = t • u ^ + b • li dV (290) 

where the integrals are carried out over the surface and throughout the volume 
of the body, as indicated. In the first term, the virtual displacements u are the 
values of the virtual displacement field on the surface of the body. As in the 
little boundary value problem, we can derive several equivalent forms of the 
expression for the external work. Let us start with Eqn. (290) and add zero to 
the right side in the form of an integral of (Sn- Sn) • u over the boundary, 
where n is the vector field normal to the boundary of the region Q. We get 

WE= ( t - S n ) u d A + S n u ^ + b u dV (291) 

In the second step let us apply the divergence theorem to the second term, not­
ing that Sn • U = S^u • n and that S^ = S, to get 

Sn • u ^ = di div(Su)^y 

Substituting these results into Eqn. (291) gives 

WE = ( t -Sn) • udA + (div(Su) + b • u ) ^ y (292) 

We can expand the divergence of the product of a tensor times a vector to get 

div(Sn) = (divS) • U + S • Vn 

In components, this expression is [5yW,],; = 5̂ ,̂  w, + 5yM/,;. Substituting this 
result into Eqn. (292) gives 

W, = ( t -Sn) '"adA 

+ ( d i v S + b ) - u j y + S'VudV 
(293) 

Like its one-dimensional counterpart, Eqn. (293) contains some interesting 
terms. The first two terms are related to boundary equilibrium and domain 
equilibrium. The third term we shall define to be the internal virtual work. We 
can clearly see the analogy with Eqn. (267) in the following definition of inter­
nal virtual work 

• 
W, = \ S -VTidV (294) 
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The internal virtual work can be expressed in the form of stress times virtual 
strain if we define the virtual strain to be the stram that would occur if the virtu­
al displacement were to take place. Let us define the virtual strain to be 

E = i[Vu + Vu' 

With this definition, Eqn. (294) can be equivalently expressed as 

J. 

Wr = \ S 'EdV 

since the stress tensor is symmetric, and, hence, S • Vu = S • ^[Vii+Vu^]. 
Again, it is not necessary to introduce the virtual strain, but it provides a conve­
nient way to view the internal virtual work. The concept of internal virtual 
work is a natural consequence of the mathematical developments and does not 
necessarily need any physical motivation. 

We are now ready to state the principle of virtual work. Let us define the 
functional G to be the difference between the internal virtual work and the ex­
ternal virtual work 

G(S,1I) ^W,-W, 

where Wj is given by Eqn. (294) and W^ is given by Eqn. (290). Therefore, the 
virtual-work functional has the explicit form 

G(S,, u) = (s • Vu - b n ) t / y - t • u dA (295) 

Qearly, from Eqn. (293), the difference between the internal and external 
virtual work is also given by 

W, - W ; = ( t - S n ) - l l t i 4 + (divS + b) • HdV 

From the fundamental theorem of the calculus of variations, we obtain the prin­
ciple of virtual work for a three-dimensional solid 

If G(S,n) = 0 Vn E $F(38) 

then divS + b = 0 in S and Sn = t on Q 
(296) 

where ^{^) is the collection of admissible functions defined over the domain 
of the body. Since the definition of the internal virtual work involves the gradi­
ent of the virtual displacements, we will require that the gradient of our virtual 
displacement functions be square-integrable over the domain. Thus, the 
collection SF(33) contains all functions that satisfy 
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J a 

Here is what the principle of virtual work says: If we satisfy the virtual-work 
equation G(S, H) = 0 for all arbitrary admissible virtual displacement fields, 
then the domain and boundary (Cauchy) equilibrium relations are automatical­
ly satisfied. Again, we have traded a differential equation for an integral equa­
tion with all of the advantages that accrue. 

Linear elasticity. In solving particular problems, it will again be advanta­
geous to restrict our virtual displacement functions to be zero on that portion 
of the boundary where displacements are prescribed. This proscription will an­
nihilate the unknown tractions that act over that part of the boundary. Also, the 
principle of virtual work does not involve the constitutive equations of the ma­
terial, but those relationships can be implemented in a classical sense into the 
virtual-work equation. This substitution allows us to express the virtual-work 
functional in terms of only the displacement fields. The equations of linear 
elasticity lead to the following virtual-work functional 

G(u,u) = (Vn • CVu -h'Jl)dy- X UdA (297) 

and the statement of the principle of virtual work is: If G(u,ll) = 0 for all 
virtual displacements H E ^e(^\ then u is an equilibrium configuration. The 
admissible functions contained in 3̂ (̂95) are simply those in J(95) restricted 
to have H = 0 on Q„. Note that the stress can be written in terms of displace­
ment as S = CVu because the elasticity tensor is symmetric in the tensor 
components Cŷy = Cijik, Therefore, we have 

The particular form of the internal virtual work for an isotropic linearly elas­
tic material can be obtained by recognizing that isotropic elastic constitutive 
relations can be written as S = A(div u)l -I-// (Vu -f- Vu )̂ and that (accounting 
for symmetry of S) S • Vn = tr(SVn). Thus, 

S • Vu = A(divu)(divu) + //[Vu + Vu^] • Vu 

and the virtual-work functional takes the form 

G(u,u) = (A(divu)(divn)+//[Vu + Vû ] • Vn)jy 

b '^dV - t 'TidA 
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These functionals will be useful in developing numerical methods for solving 
problems, as we shall see in the next Chapter. 

Finite Deformation Version of the 
Principle of Virtual Work—^Reference Configuration 
The arguments that lead up to the principle of virtual work for small deforma­
tions carry over to the case of finite deformation. In fact, if we think of S as the 
Cauchy stress and the region S as the current configuration, then all of the pre­
ceding developments are appropriate to the finite deformation setting (with 
possible exception of the dubious use of Hooke's law in that setting, as pointed 
out in Chapter 4). As we observed in Chapter 3, one can cast the equations of 
equilibrium in either the current or reference configuration. The classical dif­
ferential equations in the two configurations are summarized in Table 2. 

Table 2 Equilibrium in reference and deformed configurations 

Linear momentum 

Cauchy tractions 

Angular momentum 

Reference 
Configuration 

DivP-hb^ = 0 

Pm = V 

PF^ = FP^ 

Current 
Configuration 

divS-hb = 0 

Sn = t 

s = ŝ  

In these equations P and S are the first Piola-Kirchhoff and Cauchy stress ten­
sors, respectively, F is the deformation gradient, b is the body force in the cur­
rent configuration, b'' = J b is the body force in the reference configuration 
( J = det F), t is the (applied or reacting) traction on the surface in the current 
configuration having unit normal vector n, and V is the (applied or reacting) 
traction on a surface in the reference configuration having unit normal vector 
m. Note that the surface tractions satisfy, by definition, t'' ^ = t da, with da 
being the elemental area in the current configuration and dA being the elemen­
tal area in the reference configuration. As was pointed out in Chapter 2 the ele­
mental volumes are related as dv = J dV. Recall that 

DIVP = ^ ( P g , 
dzt divS = ^ ( S e . ) (298) 

where {xj,} and { ê t} are the coordinates and base vectors in the current config­
uration and {Zk} and { gk} are the coordinates and base vectors in the reference 
configuration. 

With this background we are ready to state the principle of virtual work in 
the finite deformation setting. Observe that the external virtual work can be ex­
pressed in the current configuration, in accord with Eqn. (290), as 
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Wf = t • Jlda + I b • udv (299) 

Note that w e have explicitly indicated that the work is computed as integrals 
over the current configuration (which is where equilibrium must hold). Us ing 
the relationships b"" = Jh and V dA = t da, as a simple change of variable 
g ives the equivalent expression 

WE = V 'Tid\ + b" n ^ (300) 

The divergence theorem gives 

Pm UtM = 
JQ JaB 

i 
D I V ( P ^ T I ) ^ 

(301) 

(DIVP •n + P • V n ) ^ 

where P • V n = Pjjdui/dZj. It wi l l be useful, for reasons identical to those o f 
the earlier derivation, to define the internal virtual work as 

7,= F •VJldV= I W,= FVTldV= E-F'VnJF (302) 
'aa Ja& 

where L = F~^P is the second Piola-Kirchhoff stress tensor. We can use the 
various stress tensors interchangeably, with the main convenience accruing in 
the expression of the constitutive equations (which is not part of the principle 
of virtual work) . 

Bringing all of these results together w e can compute the difference be­
tween external and internal work, wh ich w e wil l take as the very definition of 
our virtual-work functional. A straightforward application of Eqns. (300) , 
(301), and (302) gives 

WE-WJ= (DivP+b^)-n^^ ( r - P m ) - n ^ 
Ja JQ 

(303) 

If w e define our virtual-work functional as G(P , u ) = W/ - W^ then w e are in 
position to state a finite deformation version of the principle of virtual work. 
Explicitly, let us define 

G(P,n) = (P • Vn - b̂  • n ) ^ ~ r • n^M (304) 
Jaa JQ 
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If G(P, u) = 0 for all admissible virtual displacements u, then, by virtue of 
Eqn. (303) and the fundamental theorem of the calculus of variations, it must 
be true that DIvP + b'' = 0 everywhere in the domain and Pm = V every­
where on the surface. 

Virtual Strains. In the linear theory of virtual work we identified the gradi­
ent of the virtual displacement that appears in the internal virtual work as the 
"virtual strain." What is the situation relative to the finite deformation case? 

Examining Eqn. (302) we see that the integrand of the internal virtual work 
takes either of two equivalent forms: P • Vn for the first Piola-Kirchhoff stress 
or L • F^Vnfor the second Piola Kirchhoff stress. Since P and L are stresses, 
that leaves Vn or F^Vn as candidates for virtual strain. One way to think of 
virtual strain is that it is the strain associated with the virtual displacement. In 
finite deformation that displacement takes place on top of an existing displace­
ment. Keeping with the "virtual velocities" idea mentioned at the beginning of 
the chapter we might think of the virtual displacement as being the directional 
derivative of the strain in the direction of the virtual motion. The following ex­
ample pursues this idea. 

Example 32. Finite deformation version of virtual strain. In Chapter 4 we 
learned that F was the deformation measure conjugate, in the sense of energy, 
to the stress P and that E (the Lagrangian strain) was the deformation measure 
conjugate to the stress L. Let us compute the directional derivatives of these 
strains in the direction of the virtual displacement. For the deformation gradient 
we get the "virtual strain" 

F=^[V(<Kz)+£lI(z))]^^^ = VlI = H 

where H = VU is defined for notational convenience in the next calculation. 
For the Lagrangian strain we can compute the virtual strain 

E = | [ i [ ( F + ̂ Hr(F + ̂ H ) ~ l ] ] ^ 

= ifH^lF + eHj + lF + eHj^Hl 

= i[H^F + F^H] 

Observing that, since E is symmetric we have L • E = L • F^H, thereby 
showing that E is the appropriate virtual strain. 

Closure 
Throughout the remainder of the book, we shall develop specialized versions 
of the principle of virtual work. In particular, we shall examine the linear theo-
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ries of beams and plates, as well as some nonlinear theories of beams. For each 
theory there will be an appropriate expression of the virtual-work functional. 
All of these theories will be consistent with the general three-dimensional ex­
pression of the virtual-work functional considered here. Thus, we end this 
chapter, having dispensed the simplest and most complicated versions of the 
linear boundary value problems of elasticity, with the promise to visit these is­
sues again for each of the theories of structural mechanics that we consider. 
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I. Stakgold, Green's functions and boundary value problems, Wiley, New 
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Problems 
130. Consider the uniaxial rod shown below, fixed at X = 0, (̂jc) = bo{l—x/£) 
free at jc = €, and subjected to the linearly varying body force 
indicated. The rod is made from a composite material with a 
variable elastic modulus C(x) = Co(2-x/£), making it 
twice as stiff at x = 0 as it is at jc = €. The governing differ­
ential equation for a rod with variable modulus is 

{C(x)u')' + b(x) = 0 

where a prime indicates differentiation with respect to JC. Find the exact (classical) solution 
to the problem by directly integrating the governing equations. 

131. Consider the rod of unit length and modulus C(x) that 
varies as shown in the sketch. The rod is fixed at the left end, 
is free at the right end, and is subjected to a linearly varying 
body force b(x) as shown. Consider the following displace­
ment map: u(x) = a[x^ + 2x^-3x) where a is some constant. 
Is the displacement map a solution to the given problem? Why 
or why not? 

132. Prove that S • E = S • Vu when the virtual strain is defined to be the strain that 
would occur if the virtual displacement actually took place, i.e., E = ^ [Vu + Vû J. Upon 
what property of the stress tensor S does this identity rely? 

133. Show that Vu • CVu = A(divu)(divn)+//[Vu+Vu^] • Vu for an isotropic, lin­
ear, elastic material. Express this equation in comjx)nent form. 

134. Carry out the derivation of the principle of virtual work for the case in which the real 
displacements are known and a system of virtual forces are applied to the body, and thereby 
deduce the principle of virtual forces. Specifically, apply virtual body forces B and virtual 
surface tractions t, and define the complementary external virtual work as 

W, = = w'BdV + u • td!A 

where u is the real displacement of the body. Perform a derivation similar to the one for 
the principle of virtual displacements to demonstrate that an appropriate definition of 
complementary internal virtual work is 

Wr = I s - EdV -i 
where S is the virtual stress associated with the applied virtual force system and E is the 
strain tensor associated with the real displacements. Prove tht principle of virtual forces, 
which states that if W^ = Wjfor all virtual stresses S in equilibrium with the applied virtu­
al forces B and t, then E = | [ Vu + Vu^]. State precisely the conditions that must hold in 
order for the principle to be valid. 
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& = 

b(x) 135. The virtual-work functional for the little 
boundary value problem is given by 

G(a,u) = [oit-bu)dx - tou(0) - t^u(£) 
h 

The body force b(x) and the traction at the free end t^ are known while the stress a(x) and 
the reaction to are unknown. Using the principle of virtual work, select a virtual displace­
ment field that allows you to compute the reaction force in terms of only the known applied 
forces. Give the expression for to in terms of b(x) and t^, 

136. In the little boundary value problem, we saw that the virtual-work functional could 
be stated as a weighted residual functional. A weighted residual functional for a three-di­
mensional solid body 9B with boundary Q (with normal vector field n) can be defined as 

5,w) s - I YfdA G(S,w) = - I (divS + b) • w ^ y - ( t - S n ) 

where div S + b is the equilibrium residual in the domain S, t - Sn is the equilibrium re­
sidual on the boundary Q, and w is an arbitrary weighting function. Show that the 
weighted residual functional is identical to the virtual-work functional given in Eqn. (295), 
and, therefore, that the arbitrary weighting function is identical to the virtual displace­
ment, i.e., w = n. 

137. Consider the pile of length €, constant modulus C 
(w/ unit area), embedded in an elastic medium with mo­
dulus k (force per unit displacement per unit length), and 
subjected to a load P at jc = 0. The pile is elastically re­
strained at the end x = £ giving an end force of the 
amount F = 2k£u(i) as shown. The governing differen­
tial equation for the system \sCu"(x)- ku(x) = 0. What 
must be the value of the constant a for the solution to have 
the form u{x) = Ae"^ + Be'^^l 

What are the values of the constants A and 5 that satis­
fy the problem shown in the figure? Does this function 
u(x) represent a classical solution to the given problem? Why or why not? Are there any 
other solutions to this specific problem? 

(elastic 
medium) 

- C(pile) 

I f = 2Mu{€) 

b(x)= -a-x^) 

V^^/y^^////^////^///^'^^ 

138. Consider the rod of length £ = 1 and constant modu­
lus C = 1. The rod is restrained by an elastic spring of mo­
dulus /: = 1 at each end and rests on an elastic foundation, 
also with modulus A: = 1. The rod is subjected to a quadrat-
ically varying body force as shown. The displacement [* ~ H 
u(x), positive in the redirection, is governed by the follow­
ing differential equation u" -u = 1—x^. What are the boundary conditions for this prob­
lem? Is the following displacement function a classical solution to this problem? 

u(x) = 1 + jc2 - ae* - \e-' 

Why or why not? If it is not then modify it so that it is. 
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139. The principle of virtual work for a certain boundary value problem can be stated as 

G(u, u) = [A{x) u"u" + B(x)uu - b(x)u]dx = 0 for all u(x) E 3F(0, £) 
Jo 

where A, B, and b are known functions of jc, u(x) is the unknown field, and a prime denotes 
derivative with respect to x. What is the classical differential equation that is equivalent 
to this variational statement? 

140. The classical (4th order) differential equation and boundary conditions for a certain 
boundary value problem are 

Au"" + Bu" -\-Cu = b for all A: E [0,£] 

w(0) = 0, u(£) = 0, Au"(0) = 0, Aw"(€) = 0 

where A, B, C, and b are known constants, u(x) is the unknown field, and a prime denotes 
derivative with respect to x. Find an expression for the virtual-work functional associated 
with the classical differential equation. In other words, find the functional G that has the 
property that the statement "G(M, W) = 0 for all u E 9Fg" is equivalent to the classical dif­
ferential equation and the highest derivative that appears in G is second order. Describe 
any restrictions that must be placed on %. 

141. Consider the solid spherical region 9& with surface Q having 
a unit normal vector field n, as shown in the sketch. Assume that 
there exists a scalar field w(x), of the position vector x, for which 
we can define the functional 

= [Vv ' Vw - v)dV - tvi 
JsB JQ 

G(w,v) = I (Vv'Vw - v)dV- tvdA 

that has the property that if G(u, v) = 0 for all (virtual) scalar functions v(x) then the clas­
sical differential equations governing the real field >v(x) are satisfied (i.e., G(w,v) is a 
"virtual-work" functional). Note that the scalar field t(x) is defined on the surface of the 
solid region. Find the classical governing differential equation for w(x) that is implied by 
the variational statement" G(w, v) = 0 for all v". Determine what must be the relationship 
between t(x) and w(x) on the surface of the sphere. 



6 
The Ritz Method 
of Approximation 

The principle of virtual work is a beautiful alternative to the Newton-Cauchy 
view of mechanics. This beauty notwithstanding, the principle of virtual work, 
in its basic form, is not very useful. The sunple truth is that it is impossibly diffi­
cult to implement the part of the principle that says, "for all n E SF(9&)." Fur­
thermore, the displacement u(x) that solves the problem may not be one of the 
named and tabulated functions of classical mathematics (e.g., polynomial, 
trigonometric, and exponential). For a continuous system, the "for-all" state­
ment implies proving that the functional is zero for an infinite number of virtual 
displacement functions. This aspect of the continuous system stands in stark 
contrast to a discrete system of AT degrees of freedom where the for-all state­
ment means to prove it for iV̂  linearly independent vectors, a decidedly finite 
operation. It is the nonfinite aspect of the principle of virtual work that causes 
problems for practical computations. 

In 1908, Walter Ritz offered an idea that would put some real power into the 
principle of virtual work. His idea was simple. Let the unknown function be 
approximately represented as a linear combination of known functions. For a 
scalar function of a scalar variable we can write 

N 

uix) « ^aMx) (305) 
/i = l 

where a„ is a constant and hn(x) is a known function of JC. Since the functions 
are known, any variation in u(x) must come from varying the values of the co­
efficients. Thus, the Ritz approximation reduces the continuous problem to a 
discrete problem with N degrees of freedom. Qearly, if we approximate the 
virtual displacement field with a Ritz approximation, the "for-all" statement 
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of the principle of virtual work will be finite and, hence, manageable for practi­
cal computations. 

The beauty of the Ritz idea is that it can be applied to any theory for which 
we can write a virtual-work functional. All we need to do in each particular 
case is to make an appropriate selection of the functions hn(x), Qearly, these 
functions must have the same character and domain of definition as the real 
function u(x). As such, we can often use intuitive knowledge of the physical 
system to great advantage in constructing a suitable set of base functions for 
simple problems. For more complex problems, our intuition often forsakes us, 
and we are left in need of a systematic way of constructing a suitable basis and 
assessing the accuracy of the approximate solution that it produces. In this 
chapter, we shall briefly examine the issue of selecting base functions and il­
lustrate the details of implementing the Ritz method. 

To get the basic idea behind the Ritz method, we will continue to explore the 
little boundary value problem introduced in Chapter 5. Using simple polyno­
mial base functions, we will illustrate the workings of the method for the little 
boundary value problem with a sinusoidally varying load. This simple example 
will serve to demonstrate important concepts like the nature of the approxima­
tion and the concept of convergence to the true solution. We discuss the basic 
problem with the polynomial base functions and offer two alternatives. The 
first alternative lies in the concept of orthogonal functions. The second alterna­
tive is the use of lightly coupled local functions. The second alternative is the 
basis of the popular finite element method. In this book, we resist the temptation 
to explore the finite element method in great detail because there are many 
good books on the subject and because it would take us too far afield in our 
study. It is important, however, to see the connection between the Ritz method 
and the finite element method. 

The Ritz Approximation for the 
Little Boundary Value Problem 
An approximate solution to our little boundary value problem can be found if 
we approximate our unknown function u(x) as a linear combination of a finite 
set of known base functions %N = {hi(x),..., /IJV(JC)} as 

PI 

" W = 5^f ln / lnW = a • h(x) (306) 

where N is the number of terms in the expansion, a = [ AI, . . . , a^f] ^ is an 
array ofthe unknown constant coefficients, and h = [ Ai,... , A v̂]̂ is an array 
of the known base functions. Note that the dot product defined here is a gener­
alization to^dimensions ofthe dot product in three-dimensional space. In ma­
trix notation we can also write the dot product of arrays in standard matrix form 
as a • h = a^h = h^a, where (* )^ is the matrix transpose of (•). 
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The approximate function must satisfy all essential boundary conditions. 
Let us again, for the sake of discussion, consider the problem that has a pre­
scribed motion at the left end of w(0) = Uo (essential boundary condition) and 
a prescribed traction at the right end o{() = t^ (natural boundary condition). 
From Eqn. (306) we express the essential boundary condition in terms of the 
approximation as 

N 

M(0) = Y.^„K{Q) = h(0) • a = M„ (307) 

We will use this equation as part of the solution process. Again, there is no need 
to implement the natural boundary conditions because the principle of virtual 
work will try to satisfy those (they are equilibrium equations). 

The basis %s can be composed of any known functions, but we intend to 
get more than simply an ad hoc numerical approximation from this approach. 
If the base functions are carefully selected then we can develop a strategy that 
will yield a sequence of numerical approximations of ever increasing accura­
cy. A good numerical method always comes equipped with a means of decid­
ing when the approximation is accurate enough and a systematic approach for 
improving the accuracy if it is not. A uniform approximation can be achieved 
if the base functions form a complete approximating subspace of functions 
with square integrable first derivatives on the domain x E [ 0, € ]. One such ba­
sis is the polynomials {1, ^, ^^ ^^ . . . } , where ^ = jc/̂ ."̂  There is a theorem, 
due to Weierstrass, that essentially says that any function can be approximated 
as a linear combination of polynomials. Fourier showed that any function can 
be approximated by a linear combination of trigonometric functions (usually 
called Fourier series). Hence, another suitable basis is given by the trigono­
metric functions {1, sin rm^, cos rm^, for « = 1,2,3,...}. Another important 
approximating subspace is the so-called finite element functions, which will 
be described later in this chapter. 

Implicit in the ideas of Weierstrass and Fourier (and in finite elements) is the 
notion of a complete approximating subspace. Practically, what that means is 
that you cannot leave any of the terms out without risking the ruination of the 
approximation. As we shall see later in this chapter, there is an analogy be­
tween function spaces and vector spaces (which are usually easier to visualize 
because there are more geometric hooks to hang your understanding on). Miss­
ing a function (say, for example, we construct a polynomial approximation and 
we elect to leave out the term |^ in the series expansion) is like leaving out a 
base vector in a vector space. The remaining vectors do not span the space and 

t We can express the basis as polynomials in x, but x has units of length. Each base func­
tion in the basis {1, x, x^, ...} has different units and, consequently, each coefficient 
an in the Ritz expansion will also have different units because each term in approxima­
tion of w must have units of length. If we express the basis in terms of the dimensionless 
variable | =xli, then all of the coefficients in the expansion will have the same units. 
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Figure 70 Representation of a vector in a basis 
that does not span three-dimensional space 

SO it is not possible to represent all other vectors with that basis. Any vector 
expressed in components relative to an incomplete basis will be missing, as il­
lustrated in Fig. 70. 

This figure shows a basis {Ci, 62} that does not span three-dimensional 
space (i.e., it is missing the base vector 63). We can, as always, write a compo­
nent form of the vector as v = v̂ Ca (where now the summation only extends 
to a = l,2becausethereareonly two base vectors). Of course, if we do this 
component representation we only get yproj (the projection of v onto the plane) 
and we aimihilate V;„,„ because we have no base vector to represent it. In es­
sence, the basis simply projects out any component that it cannot represent. 

The situation is very similar when we represent functions as a linear com­
bination of base functions. If we omit a term, like the ^̂  mentioned previously, 
then the approximation will not be able to represent the "quadratic features" 
of the function in question (u in the present case). If the function has an essen­
tial quadratic behavior and the basis does not contain the quadratic function 
then the approximation will never succeed at representing the function, no 
matter how many other (non-quadratic) functions we include in the expansion. 
Fortunately, it is rather obvious in the case of the polynomials what constitutes 
completeness. It is not as obvious for other bases (even the trigonometric basis 
leaves some open questions like: What about fractional values of w?). 

Technically, we can only assure the approximation of functions, in the sense 
of Weierstrass and Fourier, if we use an infinite series. In our numerical 
approximations it is never practical to include an infinite number of terms and 
so we truncate the series at N terms. We will find that, for most problems we 
face, we can obtain excellent results with a finite-dimensional space of base 
functions. To understand when we might fail, consider the task of representing 
the function g(x) = sin lOOjr̂  for ^ E [0,1] with a truncated Fourier series 
that includes the functions { sin rm^, w = 1,..., 10}. The function g(x) simply 
oscillates with too great a frequency for any of the base functions to capture 
it. In general, low-order base functions will do best at representing smooth and 
slowly varying functions. We will often know enough about the nature of our 
forcing function, the body force b(x) in the case of the little boundary value 
problem, to make reasonable assessments of the adequacy of our basis. 
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Discretization of the principle of virtual work. We can effect a solution 
if we also approximate our virtual displacements. One choice is to approximate 
the virtual displacement functions with the same basis as the real displacement 
function. This approach is called the Galerkin approximation. There are many 
other possible choices. As we shall see, the Galerkin approximation leads to 
a system of equations that has a symmetric coefficient matrix. 

Let the virtual displacement be expressed in the form 

IS 

"W = X '̂'̂ ''̂ -^) " a • li(x) (308) 

where a = [ J i , . . . , 5"̂ ]̂̂  is an array of arbitrary (virtual) constants. With base 
functions known, it is simple to find the first derivatives of the displacements 
and virtual displacements. These are 

u'{x) = a • h\x\ u\x) = a • h'(jc) 

Herein lies the beauty of the Ritz method. It is generally easy to differentiate 
known functions. The variety of the real and virtual displacements comes from 
the coefficients of the series expansion. Since these coefficients are constants, 
they play a very simple role in the processes of differentiation and integration. 

Recall from Eqn. (286) that the virtual-work functional for the little bound­
ary value problem has the expression 

G(u,to,u) = [Cu'Tt-bu]dx - r̂ IZ(0) - t^u{(,) 
Jo 

with the associated statement that if G(u, w) = 0 f or all u, then u(x) represents 
an equilibrium configuration. Substituting the Ritz approximations given in 
Eqns. (306) and (308), we obtain a discrete version of the functional (a discrete 
functional is simply an ordinary function). The functional G reduces to the fol­
lowing expression 

G(a,r„a) = a^(Ka-r ,b- f ) (309) 

where K is an iV̂  by AT matrix and f and b are Nhy 1 matrices defined as 

K = C[h'][h'Ydx, f = ^,h(€) + bhdx, b = li(0) (310) 
Jo Jo 

As with the real displacement field, all of the variety in our virtual displace­
ment field comes from the coefficients a; the base functions are known and 
fixed. Therefore, the principle of virtual work reduces to the solution of a dis­
crete system of linear equations to determine the real displacements a as the 
following lemma describes. 
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Lemma. Let G(w,T) = v^wbeafunction of thereal vector w 
and the virtual vector T E R .̂ The condition 

G(w,T) = 0 VT 

is satisfied if and only if w = 0. 

(311) 

Proof. The proof is by counterexample. Assume that w ?̂  0. Since G 
must be zero for all v then it must certainly be zero for the specific 
choice T = w. However, in this case v^w = w^w =|| w p?^ 0 in 
violation of the original assumption. Therefore, w must be zero. • 

Corollary. Discrete principle of virtual work. Let G(si,to,sC) be the 
discrete virtual-work functional given in Eqn. (309), which was ob­
tained by applying the Ritz method to the continuous functional 
G(w, to, M). Then 

G(a,r^,a) = 0 Va =^ Ka-r^b = f (312) 

One ramification of the discrete principle of virtual work is that we do 
not need to know (or solve for) the virtual displacements a. In fact, all 
virtual-work functional are linear in the virtual displacement and the 
action described by Eqn. (312) will always be a feature of the discreti­
zation process. 

Solving the discrete equations. Equation Ka-^^b = f represents iV com­
ponent equations in N-\-l unknowns (AT for the components of a and one for 
the reaction force to). We need another equation in order to solve this problem. 
The additional equation comes from the essential boundary condition given by 
Eqn. (307), which, in view of the definitions in Eqn. (310) we can write as a 
scalar equation b^a = Uo. The final set of equations has the structure (often 
called a bordered system) 

(313) 

One option available for solving this system of equations is to simply treat 
it as a system of JV H-1 equations with N-\-l imknowns and apply any of a num­
ber of techniques (e.g., Gaussian elimination) to carry out the solution. Howev­
er, it is important to note that a and to have different units and that can lead to 
some ill-conditioning of the system matrix. 

We can solve this system of equations by assuming that a = 31 + ^̂ 32, 
where ai = K"^f and ki = K"^b. With these definitions we can see that 

K - b 1 

b̂  oj 
a 

L '"_ 
= f 

Ka-f„b = K(ai + f^aj) - hh 

= K(K-if + /oK 'b) - toh = 1 
(314) 
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thereby verifying that Ka -- ̂ ^b = f is satisfied for any value of to. To deter­
mine to we use the second equation b̂ a = Uo as follows 

b^(ai + r,a2) = Uo (315) 

From this equation we can determine the reaction force to to be 

t. = ^ ^ (316) 

With the reaction force determined, the complete expression for the displace­
ment can be computed from a = ai + ^0^2. 

Another approach to essential boundary conditions. We can simplify our 
implementation of the essential boundary conditions by writing 

u{x) = iiQc) + h(x) • a, u{x) = h(jc) • a (317) 

where u{x) is some known function that satisfies the essential boundary condi­
tions and the base functions h(jc) are selected to satisfy the homogenous essen­
tial boundary condition h(0) = 0 (that is, each component function satisfies 
the equation A„(0) = 0).lfthat is the case, then the virtual displacement satis­
fies the homogeneous boundary condition w(0) = 0 and the term in the virtual-
work functional toU(0) vanishes. The function u{x) does not need to satisfy any 
of the governing equations in the domain or the natural boundary conditions. 
There are no restrictions on u(x) but one should generally select the simplest 
possible function that satisfies the essential boundary conditions. 

For a case in which the motion at the left end is prescribed to be w(0) = Uo 
but the right end has an applied traction then an appropriate choice would be 
the function u(x) = ŵ . For a case in which the motion is prescribed at both 
ends, i.e., w(0) = Uo and M(€) = ŵ , then an appropriate choice would be the 
linear function u{x) = Uo^i—x/i) + u^xji. 

An easy way to determine a boundary function u{x) and base functions h(jc) 
that satisfy the homogeneous essential boundary conditions is to start with an 
expansion in terms of the complete basis 36^ = {1, A:, JĈ , . . . , jc^}. With this 
approximation, we simply substitute the essential boundary conditions into the 
Ritz expansion, eliminate one displacement parameter for each essential 
boundary condition by substitution, regroup terms, and make the appropriate 
identifications, as the following example shows. 

Example 33. Nonzero boundary displacements. Consider a rod free at jc = 0 
with a prescribed displacement w(€) = 2 Let us find the functions hnix) and 
u{x) using a quadratic approximation. First, let § = xji and take 

w(^) = flo + « i ^ + ^2^^ 
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Now apply the essential boundary condition w(l) = 2, 

u(l) = aQ-\-a^-\-a2 = 2, => aQ = 2-ai—a2 

Substitute the expression for AQ into the original approximation and regroup 

UQ) = (2-f l i - f l2) + « l ^ + « 2 ? ' 

From this expression we can clearly see that w(̂ ) = 2, and the appropriate base 
functions are hi(^) = ^-1 and /i2(̂ ) = ?̂  - 1 . Observe that both of the base 
functions satisfy the homogeneous essential boundary condition /i„(l) = 0. 

Notice that the approximation in Example 33 is quadratic, which generally 
requires three terms, but only two base functions are needed because the essen­
tial boundary condition is enforced up front. If we start with an AT-term approxi­
mation and there are M essential boundary conditions, then we can expect to 
have N—Af base functions. With the above approach, we always start with the 
complete set of base functions. After unplementation of the essential boundary 
conditions, any term that does not multiply an unknown coefficient must be 
part of u(x), and hn(x) is everything that multiplies a„. 

We will generally use this simplification in our computations, but it is worth 
emphasizing that it is a convenience and not a limitation imposed by the princi­
ple of virtual work (some authors give the impression that the base function 
must satisfy the homogenous essential boundary conditions in order to be "ad­
missible"). We will discover that for two- and three-dimensional problems the 
convenience is a bit more attractive because in those problems the reacting 
tractions are fields and not simply constants as they are in the one-dimensional 
case. If we can eliminate the reaction forces by restricting the virtual displace­
ment to satisfy the homogeneous essential boundary conditions then we can 
avoid interpolating the reaction forces. It will always be possible to recover the 
reaction forces from the stresses and the Cauchy relationship on the boundary 
of the domain, as pointed out in Qiapter 5. 

Convergence of the Ritz method. The Ritz method provides a systematic 
method for discretizing a continuous problem in mechanics. It also provides 
a means of improving the solution. Our strategy will be roughly as follows. 
Pick a set of base functions and a degree of approximation (i.e., the number of 
terms JS .̂ Compute the coefficients a and from those the displacement field and 
stress field. Assess the quality of the solution by computing the equilibrium do­
main residual ri(x) = o' -\-b and a boundary residual Vi = o{€) -1^. If equi­
librium is satisfied then the residuals should vanish. If not, then the residuals 
provide a measure of failure to satisfy the equations of equilibrium. We can set 
up a criterion for solution adequacy as 
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err = fi^ rl(x)dx + ^2^2 (318) 
Jo 

where ^ 1 and ^2 are weights that establish the importance of satisfying equilib­
rium in the domain as opposed to satisfying equilibrium at the points on the 
boundary where tractions are prescribed. If err < tol (where tol is some pre­
defined tolerance) then the solution is adequate. If not, then it needs to be im­
proved by adding more terms to the approximation. The following example 
shows some of the features of convergence of the Ritz method for a simple 
problem. We select a sinusoidally varying force because a polynomial approxi­
mation will not give the exact solution with a finite number of terms. 

Example 34. Convergence of the Ritz method. Consider the one-dimensional rod 
of length € and modulus C, shown in Fig. 71, to be fixed at the left end (i.e., 
M(0) = 0), free at the right end (i.e., a(€) = Cu'{t) = 0), and subjected to a 
sinusoidal body force b{x) = bo^\nnx/i. 

«o = 0 ̂ fe^ - - \ * W = ^°si"f 

Figure 71 Example problem with sinusoidal body force 

The exact solution to this problem can be found by directly integrating the gov­
erning equations as we did in Chapter 5. The displacement and stress fields are 
given by (check these solutions by substituting them into the classical equations) 

« « = ^ ( s i n f . f ) . . ( . ) = M ( e o s f . l ) 

Note that the exact solution, in addition to satisfying the above boundary condi­

tions, has the following features at the ends of the rod 

In what follows, we shall use the end displacement and the reaction as measures 
of accuracy of our approximate solutions. 

Our goal is to construct an approximate solution to the given problem using 
the principle of virtual work. Let us consider the approximation base functions 
to be the simple polynomials. To satisfy the essential boundary conditions, we 
must omit the constant function ho(x) = 1 from the set of base functions. The 
next four higher-order polynomials can be expressed as 

hiQc) = f» h2(x) = 1^, h,(x) = f,, h^(x) = 1^ 
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Note that the base functions are scaled by the length so that all of the base func­
tions are dimensionless. As a result, the coefficients an all have dimensions of 
length. This scaling is not required, but to do so simplifies the subsequent cal­
culations. 

We shall solve the given problem four times, the first time taking only the 
first term in the approximation, i.e., u(x) = aih^(x), the second time taking the 
first two terms, i.e., u(x) = a ̂  hi(x) + fl2^2W» ̂ ^^ so forth, up to four terms. We 
will look at how the solution improves as we take more terms in the approxima­
tion series. Let us write our approximation for the real and virtual displacements 
in accord with Eqns. (306) and (308), respectively. Let^be the number of terms 
in our approximation, hn(x) be the nth base function, and the coefficients an be 
the primary unknowns. Since the derivatives of the base functions can be written 
as hn'(x) = /1JĈ "V̂ ^ the coefficient matrix K can be computed in general 
terms to have components with the following values 

•'o 

The right-side matrix f can be computed to be 

Jo Jo 

where the value of /„ can be computed recursively from the relationship (which 
is a formula that comes from integrating by parts twice) 

/„ = 1 m--' 
for the values n = 2, 3, 4 , . . . , knowing the first two terms to be /Q = 2 and 
/j = 1 (which are easy to compute explicitly). 

The system of equations that results, Ka = f, is given below for the cases of 
the one-term expansion, two-term expansion, three-term expansion, and four-
term expansion 

c 
£ 

> ! 

.1 f 

1 1 
6 1 
4 1 
9 1 
5J 
12 
6 

1 

8 
5 
12 
6 
16 
7 

«1 

«2 

«4 

7t 

FT 1 'jm 

I 1 - A I 
L "̂  J 

(319) 

Each system of equations, corresponding to a different order of approximation 
N, is shaded and bracketed slightly differently. Qearly, all of the K and f compo­
nents computed for the one-term case are apropos to the two-term case because 
the base function for the first term of the two-term expansion is the same as the 
base function for the one-term expansion. Similarly, all of the values for the two-
term case are still valid for the three-term case. We need only compute the new 
quantities that appear from the addition of a new base function. 
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Table 3 Displacement coefficients for different order approximations 

N 

1 
2 
3 
4 

fll ^2 ^3 ^4 

1.00000 
2.21585 -1.21585 
2.21585 -1.21585 0.00000 
1.99096 0.13349 -2.24891 1.12446 

1.000 
2.216 
2.216 
1.991 

1.000 
-0.216 
-0.216 
0.009 

We can solve each of the four systems of equations to give the value of the 
coefficients a for the various expansions. These coefficients, normalized by the 
value 6o€^/;rC and computed to six digits, are given in Table 3. 

There are a few things worth mentioning about the approximations. First, the 
value of the end displacement for all of the approximate solutions is exact 

«(€) = !]«„/.„(€) = !;«„ = ^ 

This conformance to the exact solution at the end point is a peculiar feature of 
the one-dimensional problem. Do not expect it to happen for every problem. 
Note that the displacements are not exact at any other point except the fixed end 
(where we insisted that it be exact). Second, the third-order approximation gave 
rise to a zero coefficient ^3, meaning that the quadratic approximation is exactly 
the same as the cubic approximation. In essence, the approximation scheme re­
jected the extra term because it could not help improve the approximation. 

The end tractions are also given in Table 3 for each approximation. Clearly, 
for the lower-order approximations the traction-free boundary has a nonzero 
traction on it. In fact, the first-order approximation simply splits the difference, 
placing half of the reaction to the applied load on each end of the rod. The sec­
ond-order approximation is significantly better with o(€) = - 0.216bo^/7t. As 
previously mentioned, the third-order approximation is no better than the sec­
ond. The fourth-order approximation gives nearly exact compliance with the 
traction-free boundary condition with a(€) = 0.009bo^/jt- The principle of 
virtual work guarantees the satisfaction of equilibrium in some sense. When we 
make approximations (i.e., do not enforce the work equation for all possible 
virtual displacement fields), we compromise the satisfaction of these equilibri­
um equations. The convergence to the traction-free condition at the right end, 
as the order of approximation increases, shows how the Ritz method realizes one 
of the basic promises of the principle of virtual work. 

The displacement and stress fields for the example problem are plotted in Fig. 
72 for the four approximations. We can see that all of the displacement approxi­
mations are equal to the exact displacement at the end x = €. The quadratic dis­
placement field is almost indistinguishable from the exact displacement field. 
The stresses converge more slowly than the displacements. We can observe a 
difference between the exact and approximate stress fields for Â  = 2. The quart-
ic approximation TV = 4 is very close to the exact stress field. It is evident from 
the approximate stress distributions that the principle of virtual work attempts 
to find the best stress field in an average sense. For the linear displacement field. 
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T 4, Exact 

n 

0 

^S^^^ n = l 

€ ^ 

Figure 72 Displacement and stress approximations for example problem 

the stress is constant and equal to the average value of the exact stress field over 
the entire domain. It is also evident from symmetry considerations why the coef­
ficient of the cubic term in the cubic approximation was discarded by the func­
tional. 

The preceding example serves to demonstrate how the Ritz approximation 
method can be used to solve the virtual-work form of the governing differential 
equations. Inherent in the Ritz method is the choice of base functions and the 
concept of convergence of the approximate solution to the exact solution. The 
approximate solution will never get worse with the addition of more base func­
tions. Although exact correspondence with the classical form of the differen­
tial equations is guaranteed by the principle of virtual work only in the limit as 
all virtual displacements are considered, excellent approximations can often 
be obtained with very few terms in the approximation. The best basis for one 
problem may not necessarily be the best for another problem, but if the basis 
is complete, adding base functions should eventually give good results. 

The Ritz method is well-suited to implementation in a program that does 
symbolic or numerical calculations (e.g., MATHEMATICA). Indeed, for problems 
with more than a few base functions it is not practical to do these calculations 
by hand. The following example shows how the calculations for the little 
boundary value problem (with the added feature of an elastic foundation) can 
be laid out in a MATHEMATICA program. Some of the syntax that are used in the 
program include 

u = h.a -^ u = h a = h^a 

D[h,x]-^h(ac) = h'(^) 

Outer[Times, h, h] -* h ® h = hh^ 

Integrate[g, {X, 0, 1}] -*• I g(x)dx 
Jo 
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Two symbols next to each other without a symbol between implies scalar mul­
tiplication. The command C lea r [ x ] sunply clears any assigned value to the 
variable x (so that it can be symbolically manipulated after that point). Some 
of the other commands, like Inverse [ ] and Plot [ ] should be obvious (but in 
the case of plotting, there are many more options that one can use to refine the 
graphic presentation). 

The example includes an elastic foundation, which provides resistance to 
motion in proportion to the amount of displacement at that point (i.e., a distrib­
uted spring). The foundation resistance f{x) = ku{x) opposes the motion, 
thereby contributing to an "equivalent" body force b^ff = b-ku. The con­
tribution to the virtual work, then, is simply — beffU= ~ few-I-^ww. Conse­
quently, we can see that the elastic foundation actually adds to the stiffness ma­
trix (because it involves both the real displacement u and the virtual 
displacement u). 

Example 35. MATHEMATICA program for the Ritz method. 
Consider the rod of length € and let ^ = x/£. The rod has 
an elastic modulus that varies as C(^) = Co(2- |) , and 
it is subjected to a load P at the endjc = 0 and a body force 
b{^) = bo[l—^). The rod is embedded in an elastic me­
dium such that the force developed along the length is pro­
portional to the displacement i.e., f(x) = koU(x). Let the 
elastic constants be related by )3 = koijCo and let the 
force constants be related to the modulus and length as 
y = Pi I Co and Q = bo^^/Ca where fi, y, and Q are di-
mensionless problem parameters. The rod is pointed so 
that the traction at the end jc = € is zero. 

Find an approximation to the displacement field using the Ritz method with 
2i four-term approximation with the base functions h(|) = [ 1, ^, ^^, ^% Note 
that there are no essential boundary conditions for this problem. The virtual-
work functional for this problem is (after dividing through by Co/€) 

G{u,u) = {(2'^)u'Jt-^fiuu-Q(l-^)u)d^ - yS(0) 
Jo 

where (•)' = d(')/d^. Using u = hQ) • a and u = hQ) • a, the virtual work 
functional G(w, S) becomes G(a,a) = a^[Ka-f], with system matrices 

K^ I [(2-^)h'(?)®h'(^)+^h(^)®h(^)]^ 

f 
f = yh(0)+^ ( l - l ) h ( ^ ) ^ 

Jo 
The discrete principle of Virtual work is satisfied if Ka = f. The following MA­
THEMATICA program solves the problem for )3 = 1, y = 1, and ^ = 1. Note 
that the comments in italics and brackets are not part of the code. 
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[Establish the variable parts ofb and C and input values of fi, y, and Q ] 
load = (1 - X) 
modulus = (2 - X) 
beta = 1 
geunma = 1 
rho = 1 

[Set base functions and compute derivatives] 
h = {1 , X, x^2, x^3} 
hp = D[h,x] 

[Compute stiffness K and load vector f] 
Kl = Integrate[ modulus Outer[ Times,hp,hp],{x,0,1}] 
K2 = Integrate[ Outer[ Times,h ,h ],{x,0,l}] 
K = Kl + beta K2 
f2 = lntegrate[ load h ,{x,0,l}] 
X = 0 
fl = h 
f = gamma fl + rho f2 

[Solve equations for coefficients a and compute displacements, stresses, etc.] 
a = Inverse[K].f 
Clear[x] 
u = h.a 
stress = mod hp.a 
error = D[stress,x] - beta u + load 
Plot[u, {x,0,l}] 
Plot[stress,{x,0,1}] 
Plot[error, {x,0,l}] 

Note that x in the MATHEMATICA code is ^ in the above equations. The dis­
placement field is computed as w(̂ ) = h(^) • a and the stress field is computed 
as a( |) = C(^)h'(|) • a, once the values of the interpolation parameters a are 
known. The error in the classical differential equation is computed as 
error = a' — koU + b. Finally, the code provides for plotting of the results. Note 
that it is also possible to compute the stress at JC = 0 or to integrate the square 
of the error from 0 to 1 to get a better understanding of the approximation error. 

The Ritz method can, of course, be programmed in virtually any computer 
language. The syntax can vary from one language to another, but the basic or­
ganization of the calculations is the same. 

What is wrong with the basis? There is a problem with the simple polyno­
mial base functions used in the preceding example. The problem is not entirely 
evident from results shown in Fig. 72 because we stopped at a four-term 
approximation, but it is there and it does warrant some consideration. The root 
of the problem is that the higher-order base fimctions look pretty much the 
same. The first seven polynomial base functions are plotted in Fig. 73. The 
functions are increasingly difficult to distinguish from each other with regard 
to their shape as n gets large. 

The problem manifests in the conditioning of the matrix K that we must in­
vert in order to find the coefficients a from Ka = f. As we increase the order 
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0 ^ 1 

Figure 73 The first seven simple polynomial base functions 

of our approximation, the matrix K gets harder and harder to invert accurately. 
For the present problem, it would be virtually impossible to get accurate results 
for a for an approximation with N > 7 on a finite-precision computer with 
eight digits of accuracy. In the following section, we discuss this problem in 
a little more detail and suggest curing it by improving the base functions 
through a process called orthogonalization. In the subsequent section, we con­
sider an alternative solution to the problem called the finite element approxi­
mation. 

Orthogonal Ritz Functions 
The problem with base functions that are nearly alike is very much akin to the 
problem of representing the components of a vector with respect to base vec­
tors that point in nearly the same direction. The closer the base vectors are to 
being coUinear, the more difficult it is to accurately compute the components 
of the vector in question with respect to that basis. Let us assume that we have 
a set of non-orthogonalbase vectors { hi, h2, h^} spanning H ,̂ as shown in Fig. 
74. Let us compute the components of a vector v = Vyĥ  (summation implied) 
with respect to this basis. In other words, we want to find the coefficients Vj, 

The equations for making this computation can be found by taking the dot 
product of the component equation with each of the base vectors. To wit 

(h, • hj)vj = h,- • V 

These equations are often called the normal equations. They are nothing more 
than a linear system of three equations for the three unknowns { Vj, V2, V3}. The 

h2 

hi 

Figure 74 Finding the components of a vector 
with respect to a non-orthogonal basis 
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solution can be obtained by inverting the coefficient matrix and multiplying 
that inverse by the three by one matrix on the right side of the equations. This 
operation sounds easy, but in finite precision arithmetic, disaster lurks. 

For base vectors that point essentially in the same direction, the three equa­
tions are very difficult to distinguish from each other. That is, the linear inde­
pendence of the three equations is increasingly compromised as the base vec­
tors point more in the same direction. The result of this loss of linear 
independence is that the coefficient matrix A, which has components given by 
the expressions Ay = (h, • hy), becomes increasingly difficult to invert accu­
rately. In fact, there is a limit where the coefficient matrix is singular in finite 
precision arithmetic. This ill-conditioning is always an artifact of base vectors 
that are too much alike. The best base vectors are orthogonal. 

Example 36. Normal equations and ill-conditioning. Consider a certain vector 
V = 61 + 62 + 63 and a basis described by the base vectors (not orthonormal) 

hi = 61+£62, 61 £62, ha = 63 

where £ is a parameter and { 61, 62, 63} are the standard (orthonormal) base vec­
tors. Let us compute the components of v in the basis {hi, h2, h^}, i.e., let us 
find the values v, such that v = v,h, (sum implied). The normal equations for 
this basis can be computed as 

l + £2 1-e^ 

1-e^ l + £2 

L 3̂ J 

l + £ 

l-£ 

1 

(320) 

0 0 1 _ 

These equations can be solved to yield 

V3 = 1 

These values of the coefficients can be substituted back into v 

. i = i ( l + i ) , v, = i ( l - i ) , (321) 

Vjhjtogive 

^ = i ( l+? ) ( e i+£e2 ) + ^ ( l - i ) ( 6 i - £ 6 2 ) + e3 = 61+62 + 63 

as expected. This calculation simply demonstrates that it is possible to compute 
components of a vector with respect to a non-orthonormal basis. 

Let us now consider the case where e is very small. It should be evident that 
by adjusting the value e to be closer to zero we make the base vectors hj and 
h2 point in the same direction; as £ ^ 0 they both point in the direction 61. In 
this case, Eqn. (321) would yield the approximate values of the coefficients 

'•-i-^ , V. « - ; ^ , V, = 1 1_ 
2£ ' 

because 1 would be small in comparison to 1/e and would, consequently, be 
truncated in the roundoff in a finite precision calculation. Now, from v = v,ĥ  

V = ^ ( e i + £ 6 2 ) - ^ ( 6 i - - £ 6 9 + 6 ^ = 69 + 6, 
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The roundoff has completely annihilated the ê  component of the vector v! In 
reality the outcome of the computation depends upon the algorithm used to solve 
the normal equations. On a finite precision computer the coefficient matrix of 
the normal equations is nearly singular and any algorithm used to solve the equa­
tions will, at best, give strange results and, at worst, fail to give results at all. 

The accuracy of the solution of a system of equations with coefficient matrix 
A deteriorates as A gets closer to being singular because of the deleterious ef­
fects of roundoff error in a finite precision calculation. A good measure of the 
invertibility of a matrix or the solvability of a system of linear equations is the 
condition number Q(A), defined as the ratio of the largest eigenvalue //max of 
A divided by the smallest eigenvalue //nun of A, that is 

Q(A) ^ 
_ /^max(A) 

/^min(A) 
(322) 

The closer Q(A) is to unity, the better-conditioned is the matrix. The larger 
Q(A) is, the more ill-conditioned is A. The best-conditioned matrix is an ortho­
gonal matrix Q. Recall that an orthogonal matrix satisfies Q~^ = Q .̂ The 
condition number of an orthogonal matrix is exactly 1. The identity matrix I 
is a particular case of an orthogonal matrix. 

The eigenvectors (not normalized) of the coefficient matrix in Example 36, 
are <l)i ' - (1, - 1 , 0), cj)2 ~ (0, 0, l),and i^^ -- (1,1, 0), associated with the 
eigenvalues//! = 2f^,//2 = l,and//3 == 2. Therefore, the condition number 
for the coefficient matrix is Q(A) = 1/e^ which gets very large as f -* 0. The 
condition number is an indicator of the trouble with solving those equations. 

The problem with the basis in Example 34 can be seen by examining the 
condition number of the matrix K as the nimiber of terms in the approximation 
increases. The maximum and minimum eigenvalues of the matrix for each or­
der of approximation are given in Table 4. Qearly, for the case N = 1, the ma­
trix is one by one and the maximum and minimum eigenvalues are the same. 
As the order of the approximation increases, the condition number increases 
dramatically, an order of magnitude for each increment in the order of approxi­
mation. 

Table 4 Condition of K for the Example 34 problem, simple polynomial basis 

N 

1 

1 ̂  
3 
4 

/^max 

1.00000 
2.18046 
3.79646 
5.88341 

/^min 

1.000000 
0.152870 
0.013580 
0.000845 

^(K) 

1.0 
14.3 

279.6 
6959.5 
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Gram-Schmidt orthogonalization of vectors in R^. For independent vec­
tors that are not orthogonal, we can always produce an orthogonal set of vec­
tors using the Gram-Schmidt orthogonalization procedure. In this procedure, 
we put the base vectors in a certain order, with one of them designated as being 
the first. A vector orthogonal to this fkst vector is produced by taking the origi­
nal second vector and projecting out the component of the vector that lies along 
the first vector. The new orthogonal vector replaces the old second vector in 
the set. A third orthogonal vector is produced by taking the third original vector 
and projecting out its components along both of the previous two orthogonal 
vectors. The procedure continues until an entire orthogonal basis has been pro­
duced. Let us assume that our non-orthogonal basis is composed of the follow­
ing set of vectors spanning R^: {hi, h2, . . . , h^^}. We wish to produce a new 
orthogonal set of vectors {gi, g2,.. . , gÂ }. First set gi = hj. Then, for 
n = 2,3, ...,iSr, compute the remaining vectors sequentially from the formula 

g. = h„ - y ( ^ ] g j (323) -m> 
Each new vector is orthogonal to all previous vectors, as can be shown by tak­
ing the dot product between any of them (k < n) 

- mM^ 
= h . g , - ( | i ^ ] g , . g , = 0 

The proof depends upon the observation that gy • ĝ t = Oif ; 5̂  /:, i.e., that or­
thogonality holds for all of the vectors already computed. Observe that the case 
n = 2 works because there is only one term in the sum. Now, the orthogonality 
of the remaining vectors follows by induction. 

The new vectors are not necessarily of unit length, but can easily be made 
so by dividing each vector by its own length. In fact, the best approach to com­
puting an orthonormal basis is a two-stage process 

n - l 

Observe that this approach eliminates the need for having the normalizing term 
ĝ  • gj in the denominator of each term in the sum because gy * g; = 1. 

Orthogomil functions. The jump from vector spaces to function spaces is 
a big one, but much of what is true of vector spaces carries over by analogy to 
function spaces. Each one of our base functions is an element in our function 
space, analogous to a base vector m a finite dimensional space. Certainly, if our 
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base functions tend to line up, their ability to resolve the components of another 
function will be less well conditioned than if the base functions are all very dif­
ferent. We can see from Fig. 73 that the simple polynomial base functions qual­
itatively appear to line up. Is there a way to assess this quality of functions? For 
vectors, we assess similarity in the orientation of vectors with the dot product. 
We can do basically the same for functions. Let u{x) and v{x) be two scalar-val­
ued functions defined on the real segment [a, &] C R,T)it inner product of XhQ 
two functions is defined to be 

- r 
= I u\ 

J a 

( w, V) = I u{x) v{x) dx (325) 

If ( w, V) = 0 then we say that the two fimctions are orthogonal. The length, 
or norm, of a function is given by its inner product with itself || « P = {u,u), 
Qearly, a function has zero length only if it is zero at every point in its domain. 
For two vectors of unit length, their inner product is a direct measure of how 
much they "line up." With the introduction of the notion of the inner product, 
we can proceed to talk about the components of a function with respect to a set 
of base functions, just as we do for vectors. We can also cure the problem of 
loss of independence of the base functions. 

Gram-Schmidt orthogonalization of fwictions. The idea of orthogonal-
ization can be extended to functions. Let us assume that we have a given set 
of base functions {Ai,..., A^}, e.g., the polynomial basis {1, ^, ^^..., ^^}on 
the domain ^ E [0, 1], and that we wish to produce a new set of orthogonal 
base functions {gi , . . . , SN}- Assume that we have produced the first w - 1 or­
thogonal fimctions g i , . . . , g„-i and we now want to compute g^ from h^. We 
know that the new function will be a linear combination of the previous orthog­
onal functions (which span exactly the same space as {hi,..., A„_i}) and the 
next fimction h„. Let us write this observation as 

n-l 

gn = a„rthn - ^dnjgj (326) 
;=i 

where the constants a„j for ; = 1,..., n are yet to be determined. The « - 1 
conditions of orthogonality are (gn, g,) = 0 for / = 1,..., n - 1 . The ortho­
gonality of the functions allows the determination of the coefficients a„j for the 
index values j = 1,..., w - 1 as 

(^/»> 8j) .^^_ 

The constant a^^ is arbitrary and can be set to any convenient value or can be 
set to meet a convenient criterion, e.g., g„(l) = lor {g„,gn) = 1. 
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The Gram-Schmidt orthogonalization algorithm can be summarized as fol­
lows. Set gi = hi. Compute the remaining functions, g2, -.., gw, as 

8 
{hn,gj) 

8j (328) 
;=1 ( Sj^Sj ) 

We can demonstrate the orthogonality by computing (g„, gk){or k < n as 

{8n,8k) = i^rr.gk)- 2^——{8j.8k) 

= {hn,8k) -

;=1 ( 8j9 8] 

{8k,h 

[8k, 8k) 
{8k,8k) = 0 

Example 37. Gram-Schmidt orthogonalization of functions. Consider the origi­
nal basis {I, 1 ,̂ ̂ ^ ^^} defined on the domain k ^ [0» Ij- Let us generate a 
set of orthogonal functions from Eqn. (328) starting with g^ = | . Scale the 
functions to have a value of unity at the right end, i.e., g„(l) = 1. We obtain the 
functions given in Fig. 75. 

g,(^) = 15^^-20?2 + 6§ 

0 § 1 

Figure 75 The first four orthogonal polynomials generated from § 

We can observe that these functions appear quite different from the base func­
tions shown in Fig. 73. You can almost see the orthogonality. These functions, 
unlike their progenitors {|, § ,̂ |^, ^^ }, have inflection points, and the higher 
the index number on the function, the more inflection points the function has. 
It is important to observe that gn(x) is still an nth-order polynomial. Orthogonal­
ization does not introduce any higher-order functions. 

The orthogonal functions are not necessarily of unit length, but can easily 
be made so by dividing each functions by its own length. In fact, like the dis­
crete case, one can compute an orthonormal basis as a two-stage process 

8n = hn- ^{gj,K)gj, gn = gjj{gn,8n) (329) 
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There is one important point to make about the orthogonal basis. The func­
tions themselves are orthogonal because we forced them to be. Their first de­
rivatives are not necessarily orthogonal, and, hence, the coefficient matrix K 
will not be diagonal but it will be reasonably well conditioned, as the following 
example demonstrates. 

Example 38. Revisit Example 34 with an orthogonal basis. Let us use the base 
functions given in Fig. 75 in a four-term Ritz approximation of the problem 
solved in Example 34. The system of equations that results, Ka = f, with the new 
base functions, is 

c 
£ 

" 1 

1 

1 

1 

1 
19 
3 
13 
3 
27 
5 

1 
13 
3 
43 
3 

9 

1 "I 
27 
5 

9 

25 

r « i ' 

«2 

^3 

«4 

^ M 
71 

1 
t 16 

1-;? 

7C^ 

. 282 , 2688 

Compare these equations with those given in Eqn. (319). The result of solving 
these equations is exactly the same as before. Note that the values of the coeffi­
cients a, differ from the values computed with the previous basis, but the final 
approximate expression for u(x) is identical in each case. The condition number 
is ̂ (K) = 39.36 rather than the previous value of 6959.5 for the four-term case. 

For the little boundary value problem (without elastic foundation) we can 
observe that the stiffness matrix K has components 

K,= f 
Jo 

Ch\h',dx (330) 

For a problem with constant modulus C it is evident that we could generate a 
diagonal stiffness matrix K if the first derivatives of the base functions were 
orthogonal rather than the functions themselves. We could, by a procedure 
analogous to the one above, produce functions that have orthogonal first deriv­
atives, and, as a consequence, get a diagonal K as the following example dem­
onstrates. 

Example 39. Basis with orthogonal first derivatives. Consider the polynomial 
basis {I, 1 ,̂ ^^} defined on the domain ^ E [0, 1]. Let us generate a set of 
functions whose first derivatives are orthogonal, starting with gj = | . Note that 
the derivative is g / = 1 and that {gi, gi) = 1. Let the second function be 

82 = ?^ - « 2 i ^ S2 = ' 2 § - f l 2 i 
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and compute the coefficient 2̂1 fro^i ( g / , g2' > = ^ 0^^ orthogonality condi­
tion). Thus, 

• ( Jo 

Note that (^2'. ^2') = V3- Now take the third function in the fonn 

g3 = I ' - «31? - «32(l '-^). ga' = 3^^ - «31 - «32(2 | -1) 

and compute the coefficients a^^ and 3̂2 from the orthogonality conditions 
(g/,g3'> = Ofor̂ " = 1,2. Thus, 

3̂1 = f 3 ^ 2 ^ = 1, ifl32 = f 3 | 2 ( 2 | - 1 ) ^ = i 
Jo Jo 

Note that {gs, g^) = 1/20. We can normalize these three functions so that the 
inner products {g/, g- > = 1 for / = 1,2,3. The normalized functions are 

^ 1 = 1 , ?2 = v ^ ( ^ ' - | ) , g3 = ^ ( 2 | ' - 3 | ' + ^) 

If we apply these functions to the problem in Example 34 then K = CI (which 
means that it is perfectly conditioned with ^(K) = 1). The components of the 
vector f can be computed as 

fi = gibo^^nn^ 
Jo 

fi= I g/^oSin;r^^/ => f ^ 

1 

4/3 

0 

Again, the results are the same as any other cubic polynomial base functions. 

An advantage of the basis with orthogonal first derivatives in Example 39 
is that the matrix K was diagonal. The solution of the equations in such a case 
is trivial, with the coefficients given by a, = fi/Ku (no sum on repeated 
indices). This case is not that important because the orthogonality can be dis­
turbed by a non-constant modulus C{x) or by additional terms like an elastic 
foundation, as in Example 35. 

One thing that is evident from the preceding discussion is that while ortho­
gonal functions have merits (especially with respect to conditioning of the 
equations) they have drawbacks too. The first drawback is that there is signifi­
cant computation involved in finding the orthogonal functions. The second 
drawback is that each function generally has many terms. For example, the wth-
order orthogonal polynomial has non-zero coefficients for all of the lower-or­
der terms, making them rather cumbersome to work with. 
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The trigonometric functions are orthogonal over certain domains and do not 
have some of the drawbacks of the orthogonal polynomials. Functions approx­
imated with trigonometric functions are often referred to as Fourier series 
approximations. 

Example 40. Fourier series. Consider the basis {̂ , sin rm^, n = 1,2,...,^} 
defined on the domain ^ E [0, 1 ]. Let us solve the little boundary value prob­
lem with unit length, constant modulus C, displacement restrained at | = 0, 
zero traction at ^ = 1, and with body force b{^). 

(u,u) = {Cu'it 
Jo 

G(u,u) = [Cu'u'-bu)id^ 
JO 

Let the real and virtual displacements be approximated as infinite series 
X 00 

n = l m = l 

The derivatives of displacement are 
00 00 

u' = aQ-\- 2^ njtan COSnjt^, it = 7TQ-\- y mTrlTrnCOsmTt^ 
n=l m=l 

Substituting these expressions into the virtual-work functional we find that 

Koo = C, Knn = | C / l V , Kmn=0 fOT m ^ fl 

/o = ? K ? ) « , / . = I ^©sin/z;r?4 
Jo Jo 

Because the matrix K is diagonal, the displacement coefficients are then 

«o = ^ I |6(^) ^ , an = - ^ ^ I b{^)smnuk « 
Jo Jo 

These equations hold for any function ^(^). Take as a specific example the lin­
early increasing loading function ^(|) = hoi,. The coefficients in this case are 

bo 2bo 
^0 = T^y ^n = r-r-COS nJC 

The displacement takes the final form 

u = 3;^(4 + -3 (sin;r^--gSin27r^-l-2ysin3;r^-^sin4;r^+ * * *)) 

The beauty of Fourier series approximations of displacement is evident in 
the rate of convergence of the displacement. In the present case the terms de-
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crease as a reciprocal of n^. The stress converges only as n̂  because the deriva­
tive of sin rm^ throws off another n in each term. The loading function in the 
example is very smooth and Fourier series converges quickly for smooth func­
tions. In cases where the loading function is discontinuous the convergence is 
slower. In some cases the stress will converge very slowly (i.e., lots of terms 
will be required for an accurate solution) or not at all. Again, when the modulus 
is variable, the diagonality of K is lost. 

The Finite Element Approximation 
A traditional education in mathematics generally leaves one with a bias toward 
functions that have names, like polynomials or exponentials, whose domain of 
action is the entire region of interest. The polynomial base functions of the pre­
vious section are examples of such functions. Each of the base functions is non­
zero over the entire region [0, €]. 

There is a very interesting alternative for the definition of Ritz base func­
tions that has some great advantages for solving problems in structural me­
chanics. Rather than insisting that a base function be an nth-order polynomial 
or a trigonometric function, we will allow the piecing together of some of the 
simplest members of these classes of functions. For example, the function g(x) 
shown in Fig. 76 is a piecewise linear, continuous function. The function is lin­
ear between the points x„ _ i and JC„ (often called nodes), but the overall function 
between the endpoints XQ and jĉ  describes a nonlinear variation that character­
izes the entire function. The function can be defined as 

g(x) = g„_i 
A>n A> 

I Ji,f, Ji„ 
+ 8n x-x„ 

I Xfi Jifi 
< X < Xn (331) 

where gn is the ordinate of the function at the point x„. The JV linear segments 
meet at their nodes. Thus, the function is continuous. The first derivative of the 
function is the slope, which is well defined for every point in the domain except 
at the nodes { JCQ,. .., x^}. At these points the function has kinks, so the first de­
rivative jumps there. The first derivative has the functional form 

Figure 76 A piecewise linear, continuous function and its derivative 
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g'ix) = ^'•~J'-\ x„., <x<x„ (332) 
Xn Xn_i 

Even though the function g\x) is not defined at the nodes, it is clearly inte-
grable. The integral of the function is the shaded area under the curve, shown 
in Fig. 76. It is easy to show that the function is also square-integrable. The sec­
ond derivative of the function g"(x) is not well defined because of the disconti­
nuities at the nodes in the first derivative. This piecewise linear function is a 
good example of a function that belongs to the class 6° (continuous zeroth de­
rivative) but not e^ (continuous first derivative). 

It should be evident that we might piece together functions of any variety. 
The explicit functional form between the nodes could be a higher-order poly­
nomial, an exponential, or a hyperbolic cosine. No matter how smooth the 
function is between the nodes, the smoothness of the function overall is limited 
by the kinks at the nodes. 

Finite elements for the little boundary value problem. Let us proceed to 
demonstrate how we can use piecewise linear functions to construct a basis for 
a Ritz approximation, and thereby generate an approximate solution to the little 
boundary value problem. Consider a rod of length €, with u(0) = 0, traction 
free at the right end t^ = 0, and subjected to the distributed load b(x) = 6̂ -
Let us divide the length of the rod into N equal segments (elements) and label 
the nodes { JCQ,. .., JC^}. The nodes are located at the points Xn = n£/N, starting 
with JCo = 0 and ending with Xff = €, We will examine the finite element 
approximation for different numbers of elements. 

We can construct a set of piecewise linear base functions, often called the 
roof functions, as shown in Fig. 77. The function h„(x) is zero, except in the 
neighborhood of the node x„y where it ramps up to a value of one and back 
down again at the adjacent nodes. The nth base function has the expression 

/ X — X 7 1 - 1 
Xn-i < X < Xn 

Xn Xn-1 

K(X) = I hll^^ ,^^,^ ,^^^ (333) 
I ^ / i + 1 ^n 

\ 0, elsewhere 

Qearly, the difference between the nodes is constant, so x„+1 ~ x„ = (/N, The 
first derivative of the wth base function has the explicit expression 

r N/€, Xn-i < X < Xn 

hn(x) = I - N/e, Xn < X < Xn^i (334) 

I 0, elsewhere 

The most interesting feature of these base functions is that each one has the val­
ue zero over much of the domain [0, €]. Furthermore, the part that is zero for 
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Base function 

* , M^x. 

^ ^ 
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-^dL, 
i i i ~i ^ 

XQ Xi X2 X^ X^ 

First derivative 
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^-4/e 
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,4/< 
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1 1'*̂ * 
i • 

4 4 4 # 4) 
XQ Xi X2 X3 ^̂ 4 

Figure 77 Four piecewise-linear Ritz base functions and their derivatives 

one function is different from the part that is zero for another. Thus, the product 
of two functions is nonzero only over a very small region. The product of some 
of the functions is zero everywhere! This observation suggests that we will 
reap some benefits in the computation of K and f for the Ritz method. Base 
functions of this variety are often called local functions (or functions with 
compact support), because they are nonzero only in local regions of the do­
main. 

The functions are also called finite elementhdist functions. The notion of the 
"element" comes from the observation that hn-i(x) and hn(x) are both nonzero 
only for the region of the bar between the nodes at jC;,_i and x^. We shall call 
that region element n. 

As we have done previously, we can use the finite element base functions 
to construct an approximation of the real and virtual displacement functions. 
These approximations have the usual form 

"W "= ^anh„(x), u(x) = ^anK(x) (335) 

The displacement function that results from this approximation is shown sche­
matically in Fig. 78. Since the nth base function has the value of imity at x„ and 
is zero at all of the other nodes, the coefficient a„ can be interpreted as the value 
of the displacement at that node, i.e., Un = u(Xn). Thus, the primary unknowns 
for the problem are the nodal displacements. Let us compute the coefficient 
matrices K and f using the finite element basis. The mnth component of K and 
the wth component of f are given by the integrals 
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u{x) 4 

219 

Figure 78 Displacement approximation with finite element base functions 

K,,, = CK'K dx, f^ = KKdx 
Jo Jo 

(336) 

These integrals are simple to compute. The main advantage is evident if we 
break the integral into a sum of integrals over each element as 

Km 
'=1 Jx: 

ChJK' dx, U 
N ni 

dx (337) 

Most of the terms m the sum will be zero. In fact, K^ = 0 in element / for all 
except the four times when morn equal / — 1 or /. An example of the computa­
tion of K and f follows. 

Example 41. Computation of coefficients for the finite element basis. Consider 
the finite element basis with Â  elements of equal length. Let us solve the little 
boundary value problem with unit length, constant modulus C, displacement re­
strained at ^ = 0, zero traction at | = 1, and with body force b{^) = bo> 

K23= Ch^'h,'dx = <^(-f)(f)^ = - CN 

For the diagonal elements, Knn = 2CN/£ \in T^ N and J^^^ = CN/£. The off-
diagonal terms K^n (m P^ n) are zero if |m —n| > 1, since the base functions 
this far apart have no nonzero region in common. For the terms with 
I m - «I = 1, Km„ = - CN/£. Since the body force b(x) is constant, the integral 
of /;;, is simply proportional to the area under the mth base function. An example 
computation of a component of f goes as follows 

•'O Je/N \ ' / J2t/N ^ ' 

Accordingly, fn = boi/N\in ^ A^and /^ = boi/2N. You should verify that 
these values are correct. 

The equations of equilibrium, Ka = f, for the case of Â  = 4, are 
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iC 
€ 

2 
-1 
0 

L 0 

-1 
2 

-1 
0 

0 
-1 
2 

-1 

0 
0 

-1 
1 

«3 

1 L«4J 

2(4) 

" ̂  1 
2 
2 

L 1 -

(338) 

It should be evident how the matrices will look for other values ofN. Note in 
particular the banded structure of the K matrix. This particular matrix can be in­
verted in closed form (not many can, so enjoy this one) as follows 

k'-i — ^ 
1 1 1 1 
1 2 2 2 
1 2 3 3 
1 2 3 4 

(339) 

The solutions to the problem for the values Â  = 1,.. •, 5 are shown in Fig. 79. 

All 

Figure 79 Little boundary value problem with uniform load. 
Results for five different finite element approximations 

There are some interesting observations to be made about the Ritz solution to 
this problem. The first observation is that the nodal displacements an = u(Xn) 
all turn out to be exactly correct (as shown in the previous chapter, the exact solu­
tion to the problem is u(x) = bo{2x£ -x^)/2C). We can see this clearly in Fig. 
79 in the plot labeled "All," which superimposes the solutions for all five cases. 
We can compute the stresses at the two ends from the approximate solution as 

om = [^Y4. OS)-boi 
2N 

where Oj^x) is the approximate stress field for a finite element approximation 
of order N. In the limit as Â  -> oo, both of these values converge to their proper 
limits of a(0) = bo^ and a(€) = 0. It is not really fair to compare the perfor­
mance of the finite element basis with the polynomial basis {x, x^,..., x^}, 
with each base function defined on the entire region, because we know that the 
exact solution is quadratic for the present example. Hence, the stresses would 
be exact for the polynomial basis for iV > 2,¥OT N = 5, the tractions at the ends 
are still in error by 10% for the finite element approximation. 
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One of the principal advantages of the finite element basis is that the func­
tions are fairly close to being orthogonal. For example, if |w—w| > 1, then the 
functions and their first derivatives are exactly orthogonal. Adjacent functions, 
however, are not orthogonal. The consequence of this "near orthogonality" is 
that we can expect the K matrix to be fairly well-conditioned. The condition 
numbers for the five approximations of lowest order are given in Table 5. Note 
the slow growth of the condition number with increasing order of approxima­
tion. 

Table 5 Condition of K for the example problem, finite element basis 

N 

1 
2 
3 
4 
5 

/^max 

1.00000 
2.61803 
3.24698 
3.53209 
3.68251 

r^min 

1.000000 
0.381966 
0.198062 
0.120615 
0.081014 

^(K) 

1.00 
6.85 
16.39 
29.28 
45.46 

Non-homogenous boundary conditions. Another great advantage of the 
finite element base functions that is not really amplified by the one-dimension­
al example is the simplicity of satisfying the essential boundary conditions. Be­
cause the functions are local, all of the interior functions automatically satisfy 
homogeneous essential boundary conditions. The only base functions that in­
teract with the boundary are those associated with elements adjacent to the 
boundary. To satisfy a nonzero essential boundary condition w(0) = Uo, we 
need to include the known function u{x) in the Ritz approximation of u{x\ in 
accord with Eqn. (306). The boundary condition can be satisfied with the local 
function shown in Fig. 80. 

u(x) 

Uo 

K. 
i i i i i) 

XQ Xi X2 X^ X^ 

Figure 80 Function for nonzero boundary displacement 

Lagrangian finite element base functions. We can produce higher-order 
finite element base functions by the same reasoning that produced the 
piecewise linear functions. Consider the problem of passing a quadratic 
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function through the three pomts x^, x^, and x^ that is zero at the points x^ and 
Xn and has unit value at the point Xj,. Lagrange offered the following function 
(and its derivative) 

Mx) 
(X-Xm)[x-X„) 

\Xk'~Xm)[Xk — X„j 
J^2'(X) = 

[x-X„)-\-{x'-Xn) 

[Xk — Xfn)\Xk~~Xnj 

Functions of this variety are often called quadratic Lagrangian functions. In 
this form it is obvious that (1) the function is quadratic, (2) the values are zero 
at Xm and jc„ and (3) the function has unit value at jĉ  In fact, it should be evident 
how to create a general nth order Lagrangian function that passes through zero 
at n — 1 specified points Xi and has unit value at one specified point x^ 

M^) = f l 
Xk Xi 

We can use the quadratic Lagrangian functions to form a finite element ba­
sis. In this case we need three nodes to describe the quadratic variation of each 
Lagrangian segment. As such, each "element" will have three nodes. We will 
piece the quadratic functions together to form a Ritz basis in a manner that as­
sures continuity of the base functions but not their derivatives. Hence, the basis 
is e^ just like the piecewise linear finite element base functions are. In a global 
sense, the quadratic base functions are not smoother than the linear ones be­
cause they both have kinks at the inter-element boundaries. 

Let us demonstrate the idea by producing base functions for a rod of length 
€ divided into four segments that constitute two quadratic elements. The base 
functions and their derivatives are shown in Fig. 81. Observe that there are 
three basic curve shapes that make up the base functions (i.e., ones with unit 
value on the left, one with unit value in the middle, and ones with unit value 
on the right). To make a continuous base function we must piece together the 

1̂ t VT\ 

*. t .zlx. 
t yh 
* * * * *) 

XQ Xi X2 JC3 X4 

* * * ~i ^ 
XQ XI X2 X;^ X4 

Figure 81 Quadratic Lagrangian finite element base functions and derivatives 



Chapter 6 The Ritz Method of Approximation 223 

functions as shown. Observe that the base functions now overlap for three ad­
jacent functions, which means that the band width of K will be five compared 
with three for the linear finite element basis. 

The explicit expressions for the base functions for the case with € = 1 are 

| ~ 1 6 J C 2 + 8JC 0 < jc < 1/2 

^1 " 1 0 1/2 < jc < 1 

r 2>x^-2x 0 < JC < 1/2 
^ 2 = 1 8A:2-14A: + 6 1/2 < A: < 1 

f 0 0 < JC < 1/2 

-16JC2 + 2 4 J C - 8 1/2 < JC < 1 

0 0 < JC < 1/2 

^ 4 = 1 8JC2-10JC + 3 1/2 < JC < 1 = 1 
The derivatives of these functions are straightforward to compute. Application 
of the quadratic Lagrangian base functions is left as an exercise for the reader 
(see Problem 152). 

Finite element shape functions and automatic assembly of equations. 
There are some practical merits of the finite element method that are not com­
pletely evident from the definition of the base functions in the Ritz context. Let 
us illustrate the key idea behind implementation of the finite element method 
using the one-dimensional roof functions described previously. In particular, 
consider the setup shown in Fig. 82(a), which shows the typical situation in­
volving the region of element V (i.e., the domain jc, < JC < jcywith/and; be­
ing two adjacent nodes in the mesh). The only base functions that contribute 
to element "^" are A, (which is ramping down in that region) and hj (which is 
ramping up in that region). All of the other base functions are zero in the do­
main of element "e". The parts of the base functions that contribute to element 
"e" are shown as the darker line in the sketch. 

One can observe that all of the roof base functions can be built from the 
shape functions shown in Fig. 82(b). The shape functions have the specific, and 
very simple, expressions 

..4^.— ^̂ Î  
kl^^^ ° ' o o—-cy-—6—^>o • cp'y 
I I 

—>| ^ element "e" 1 
(a) o—o—-o—o o — • (b) 

k 
0 1 I 

Figure 82 Relationship between the finite element base 
functions and the finite element shape functions 
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(Pi© = ^, (p,Q) = l-^ (340) 

We can use (pi and (p2 to build the base functions hi and hj by a simple change 
of variable to shift and stretch | to cover x over the region of the element. In 
particular, we can let 

^ = f ^ = f (;c-x,), dx = e.d^ (341) 

where £e is the length of the element. When x = jc, then ^ = 0 (i.e., the left 
end of the element) and when jc = jc^then^ = 1 (i.e., the right end of the ele­
ment). Now we can think of the base function hi as 

hi = 

(Pu 
(Pl, 

0, 

X E e,_i 

X E ^, 

elsewhere 

(342) 

where ei-i indicates the element to the left of node / and e, indicates the ele­
ment to the right of node L With these definitions we can set up the discretiza­
tion of the virtual-work functional a little differently. Let us define the matrix 

CP = [(Pi, (P2Y (343) 

and note that, by the chain rule (and with the convention that a prime means 
differentiation of a function with respect to its argument) we have 

In particular, we can note that in the region of element e the real and virtual 
displacement fields can be written as 

Ue = cp^Bfa, We = cp^Bfa (345) 

where a = [flj,..., a^J^anda = [^i,..., 5>]^ are arrays containing the nodal 
unknowns and their virtual counterparts and 

Bl^ 
0 .. 
0 .. 

le 

. 1 

. 0 

Je 
0 .. 
1 .. 

. 0 

. 0 (346) 

is a 2 X AT matrix with a one in row 1, column i^ and a 1 in row 2, column 7̂ . 
Note that ie is the global node number associated with the " f end (left end) of 
element e and je is the global node number associated with the "/ ' end (right 
end) of element e. The purpose of the matrix B^ is simply to pick out the two 
entries in the global displacement vector a that are associated with element e. 

Now we can write the virtual-work functional as 

G(u,u) = [Cu'u' -bu)dx = V {Cu'eU'e-bUe)dx (347) 
Jo =̂1 Jx; 
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Using the change of variable for each element and substituting Eqn. (345) we 
can write the discrete virtual-work functional in the form 

G(a,a) = a ^ | ; [ B , j <p'^cp'^^B[a - B, j ^bi^d^ (348) 
' 0 

Note that in the first term each differentiation threw off a 1/^^, as indicated in 
Eqn. (344), and the change of variable gave dx = €e^. We can write this re­
sult more compactly if we identify the element stiffness matrix and the element 
force as 

Notethatinthepresentapplicationkeis2 x 2 and f̂  is 2 x 1. Now the discrete 
virtual-work functional takes the simple form 

G(a,a) = a^[ J ] B,k,Bf a - J ] BJ , ] (350) 
e=\ e=l 

Comparison with our earlier results shows that the stiffness matrix and right 
side vectors are computed as 

M M 

K = 2 BABJ, f = 2 Befe (351) 

The summations over the elements are often called the assembly process. This 
calculation is seldom done with an explicit matrix multiplication. In fact, the 
matrices B^are not even explicitly formed. Rather, for each element we record 
the global node numbers associated with the element. Let the array ix have Â  
rows and 2 columns. We put ix(e, 1) = i^ and ix(e, 2) = j„ the global node 
numbers associated with the left and right end of the element, respectively, let 
the array id have iVrows and 1 column. Let \d(n) be the global equation number 
for node «. The MATLAB code given in Table 6 gives the algorithm for direct 
assembly of the equations (i.e., the assembly of K and f). Note that this code 
assumes there are Â  unknowns and M elements. It also assumes that there is 
a routine to call to get the element stiffness matrix and element force. 

Example 42. Computation of element stiffness matrix and force vector. Consider 
an element of length £e with constant modulus C and constant body force b. Let 
us compute the element matrices according to Eqn. (349). First note that the ma­
trix q)' = [1, -1 ] , which is constant. Carrying out the integrals we get 

= c r i f - ^ 
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Table 6 MATLAB code for assembly process 

K = zeros(N,N); f = zeros(N,1); 

Loop over all elements to assemble K and f 
for n = 1:M 

.. Find the i-node, j-node 
inode = ix(n,l); jnode = ix(n,2); 

.. Construct the assembly pointer array 
ii(l) = id(inode); ii(2) = id(jnode); 

.. l?etrieve element stiffness matrix for element "n' 
[ke,fe] = get stiffness (...) 

.. Assemble element stiffness and force vector 
for i=l:2 
for j=l:2 
K(ii(i),ii(j)) = K(ii(i),ii(j)) + ke(i,j); 

end % loop on j 
f(ii(i)) = f(ii(i)) + fe(i); 

end % loop on i 

end % loop on n 

The Ritz Method for Two- and Three-dimensional Problems 
We can, of course, make the same sort of Ritz approximation of the displace­
ments in a three-dimensional problem that we did for the one-dimensional 
problem, but now the specification of the base functions is considerably more 
complicated. The main complicating factor is the specification of appropriate 
base functions for irregularly shaped domains. Hence, even though the spirit 
of approximation is the same, we will seldom try to compute in this fashion. 
The finite element form of the base functions will turn out to be much better 
suited for performing these approximate calculations for three-dimensional 
solid bodies. The above warning notwithstanding, let us see how similar the 
Ritz method appears in three dimensions. Let the displacement field u(x) and 
the virtual displacement field TI(x) be approximated by three-dimensional vec­
tor base functions {hi(x),..., h^x)} as 

u(x) = u(x) -h ^fl„h„(x), u(x) = ^fl^h„(x) (352) 

where, as before, the scalar constants a = [^i,..., fl^] are unknown and the 
scalar constants a = [ a i . . . , a^] are arbitrary. The vector functions h„(x) 
have the same vector character as the displacement fields, and they are chosen 
to satisfy the homogeneous essential boundary conditions h„(x) = 0 on Q«. 
Computing the divergence and gradient of h„(x) is straightforward. 
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TVo-dimensional membrane problem. An example of a two-dimensional 
problem is the stretched membrane under lateral load. The virtual-work func­
tional for this problem has the expression 

G(w,w) = [T'^u'^u- pu)dA (353) 

where Tis the tension in the membrane, u{xi,X2) is the transverse deflection, 
and/7 is the transverse load. Let the real and virtual displacements be 

N N 

«(x) = 2 ] a A ( x ) , M(x) = 2 « A ( x ) (354) 

Then the stiffness matrix K and force vector f have components 

Kij = TVhr'^hjdA, / = ph^dA (355) 
JQ JQ 

The Ritz approximation leads to the usual discrete version of the functional G 
given by 

G(a,a) = a^(Ka-f) (356) 

just as it did for the one-dimensional boundary value problem. The discrete 
version of the principle of virtual work suggests that a represents an equilibri­
um configuration if and only if G(a, a) = 0 for all a, just as it did for the one-
dimensional problem. Again, there is no restriction on a. Therefore, the princi­
ple of virtual work implies Ka = f. In the jargon of structural analysis, the 
matrix K is often referred to as the stiffness matrix, and the vector f is often re­
ferred to as the load vector. 

Example 43. Membrane problem. Consider a square stretched membrane of unit 
length on each side with tension Tand lateral load/?. Approximate the deflection 
with the expression u{xi,X'^ = a sinjrjCj sin;rjC2 with a similar approximation 
for the virtual deflection. Estimate the deflection. 

There is only one term in the expansion so there is only one base function. 
Hence, h^ix^.x-^ = sin;rxi sin;rA:2 and we can compute the gradient as 

_ r ;r cosJTXjj 
1 ~ L JT sinjTĵ iC 

Letting 6 = nx-^ and ip = TtXi, the stiffness can be computed as 
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K= \ I r;r^(cos^;rjCiSin^;rA:2+cos^;rx2sin^;rjCi)d!xid[x:2 
Jo Jo 

= r {cos^esm^il;-\-cos'^rps\n^e)dedip 
Jo Jo 

= 2T\ cos^edSl sm^xpdip = ^ -
Jo Jo 

Similarly, the force can be computed as 

/ = I psmjixism7tx2dxidx2 
Jo Jo 

r r 
= p\ sinOdOl sintp dtp = 4p 

Jo Jo 
Therefore, the coefficient a must be a - f/K = Ap/[7i^T/2) = %p/7i^T. 
Thus, the approximate deflection is 

71^ T 
u{x^,x^ = -^sin;rjCiSin;rjC2 

Finite element interpolation in two dimensional problems. The concept 
of the finite element basis can be extended to two- and three-dimensional do­
mains. In fact, the finite element method really comes into its own for these 
problems because of the difficulty of establishing a Ritz basis with non-com­
pact functions, particularly for irregular domains. The membrane problem 
provides a nice illustration of the generalization of the roof functions to two 
dimensions because the transverse displacement of the membrane is a scalar 
unknown. 

Figure 83 shows a square region divided into 9 elements and 16 nodes (with 
the numbering convention shown in Fig. 83(d). A typical finite element base 
function (the generalization of the roof function to two dimensions) is shown 
in Fig. 83(a). The function has unit value at node 7 and is zero at all of the other 
nodes. The variation is bilinear in the four elements associated with node 7. 
The finite element base functions can be built from four finite elements shape 
functions, one of which is shown in Fig. 83(b). The shape functions are defined 
on a unit square element shown in Fig. 83(c). The four element shape functions 
for two dimensional problems are"̂  
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^ 

(a) Finite element mesh 
with typical base function 

1 ^ 

0 1 ^ 

(c) Coordinate system for 
element shape functions 

a b 

(b) Example element shape function 

13 

9 

5 

(d) Element and node numbers 

A 

1 14 , 15, 16 

1 7 I 8 1 9 I 
1 lOl 111 12l 

1 4 1 5 
J 1̂ ''I 

6 1 
1 si 1 1 I 2 1 3 1 

1 21 31 4| 

Figure 83 Illustration of finite element basis and finite 
element shape functions for membrane problem 

The element domain can be mapped to the unit square through a bilinear func­
tion much like we did for the one-dimensional case. For the rectangular mesh 
shown, the change of variable can be expressed as 

^ = V = 
^ 2 - A : ? 

dxidx2 = €i(2^dri (358) 

where €i and €2 ^^^ the actual element dimensions. A more general element 
coordinate (isoparametric) mapping can be accomplished with the element 
shape functions (see any book on finite elements). 

With the element shape functions we can describe the element displacement 
like we did for the one-dimensional problem. Let q) = [(pi,(p2,(P3,(P4Y'^^^^ 
region of element e the real and virtual displacement fields can be written as 

Ue = cp^B[a, We = cp^Bja (359) 

where a = [AJ,.. ., a^J^anda = [ A 1,..., a^]^ are arrays containing the nodal 
unknowns and their virtual counterparts and 

t Note that we have associated the element node labels a, b, c, d with the numbers 1, 
2,3,4 so that we can index them numerically. The figure seems clearer with the alpha­
betic labels. In a computational setting the numerical indexing is better. 
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BJ = 

0 .. 
0 .. 
0 .. 
0 .. 

Cle 

. 1 

. 0 

. 0 

. 0 

be 
0 
1 
0 
0 

Ce 

0 
0 
1 
0 

de 
0 ... 
0 ... 
0 ... 
1 .. 

0 
0 
0 
0 

(360) 

is a 4 X N matrix whose purpose is simply to pick out the elements of the global 
vector that are associated with the four nodes of element e. Let us write the gra­
dient of the element functions as 

Vue = ffi^(cp)Bfa, aâ (q)) = J[V(p,,V(p2,V(p,,V(p,] (361) 

where V<p, = [dcpi/d^, d(p,/3?/]^and J is the Jacobian of the change of vari­
ables. In the simple case of rectangular elements J"^ = diag[€i, €2]. The 
gradient of the virtual displacement is analogous to the real displacement. 

Now we can write the virtual-work functional as 

G(u,u) = y (rVw, • Vue-pUe)Jdidv (362) 
e=l Jo Jo 

where J = ^i^j. Substituting Eqn. (361) into the virtual-work functional 
gives a discrete functional identical to Eqn. (350) if we define the element stiff­
ness matrix and force vector as 

k, = I T^(ff)^\if)Jd^dv, f e = \ pifJd^dri (363) 
Jo Jo Jo Jo 

The element stiffness matrix is 4 x 4; the force vector is 4 x 1. The assembly 
of the element matrices into the global K and f matrices is identical to the one 
dimensional problem, except that now the ix must have 4 columns to record the 
global node number associated with the four element nodes a, b, c, d. 

Three-dimensional elasticity. The virtual-work functional for three-di­
mensional elasticity is 

G(u,n) = (A(divu)(divll)+/i[Vu + Vu^] • Vu)dy 

b 'JldV - t • u 
(364) 

d\ 

We can substitute the approximate displacements from Eqn. (352) to establish 
the discrete principle of virtual work for this theory. Let us define the NhyN 
matrix K to have components 

Kij = [A(divh,)(divh,) + //(Vh, + Vhf) • Vhj]dV (365) 
Ja 
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and the iVby 1 matrix f to have components (assuming that u(x) = 0) 

b h,dV 

231 

(366) 

The equations of structural analysis are generally formulated in a manner 
that gives the unknowns a the character of nodal displacements. We can see 
that this interpretation is not always appropriate here because the unknowns 
a are simply the coefficients of the base function expansion for the displace­
ment field. There are base functions h„(x) that give the unknowns the character 
of nodal displacements, for example, the finite element base functions. The co­
efficients a are often called generalized displacements because the displace­
ment at any point is a linear combination of these constants. 

Example 44. Consider the 2£ x 2^ x h block, fixed at the base, i.e., with 
u(jCi, JC2,0) = 0, and subjected to the uniform traction t = — ̂ 0̂ 3 along its top 
surface shown in Fig. 84. 

X3 

Figure 84 Example 44: block subjected to surface tractions 

We shall assume that the material has elastic constants A and fi. Let us find an 
approximation to the deformation map induced by the loading with a Ritz 
approximation to the elasticity equations. Let us assume a displacement field 

u(x) = a,(x^ee^)^a2{x^x^e^ + 0:2̂ 3̂ ̂ 2) 

This two-term approximation is clearly a crude one, but should suffice to illus­
trate the computations involved in the three-dimensional Ritz approach. The 
approximate displacement field satisfies the essential boundary condition. The 
first term allows linearly varying motion in the x^ direction. The second term 
allows motions in the x^ -X2 plane that increase linearly with JC3. At the very 
least, this map contains the feature of restraining lateral motion at the base, as 
the fixity requires. Let us compute the response. 

The base functions are hi(x) = X3€e3and h2(x) = j£:iJC3ei-l-JC2JC3e2. Forour 
computations we need the divergence and gradient of these vector functions 

divhi(x) = e 

divh2(x) = 2JC3 

Vhi(x) = €e3(g)e3 

Vh2(x) = jC3ei ® ei + jC3e2 ® 62 
-\- x^e^® e^ + ;c2e2 <8) e3 
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Now let us compute the terms [ Vh, + Vhf] • Vĥ  required for the formation of 
K in accord with Eqn. (365) 

[Vhi + Vh[] • Vhi = le 

[Vhi + Vh[] • Vh2 = [Vh2 + Vh[] • Vhi = 0 

[Vh2 + Vh ]̂ • Vh2 = x? + A:̂  + 4̂ :2 

The components of the matrix K are given by 

rh r^ r^ 

A:̂  = (Adivh.divhy + // [Vh, +Vhf ] • Vh )̂ dx^dx^, 
J o J - e J - e 

and the components of f are given by 

fi= \ I -qoe3'hi(x^,X2,h)dx^dx2 

dXr^ 

-II 
Carrying out the indicated integrations gives the following system of equations 
for the unknown coefficients a^ and a 2 

\liM' 
3(2 + y) 3pY 

3Py 2 + 8)32y 
= -4qohe' 

where ^ = h/£ and y = X/ju, These equations can be solved to give 

2 + 8^2y ^ _3o_(_ 

' / /€\ (2 + y)(2 + 8^V)-3i82y 

It is interesting to consider the axial deformation of the block for the special 
case y = 0 (which is the same as v = 0). Under these circumstances, we get 
flj = -qojl^i = -^o/C€andfl2 = 0, where C is Young's modulus. The dis­
placement at the top is then W3(Xi,ac2, h) = - qoh/C which is exactly the value 
we would compute from elementary strength of materials. 

We can also investigate the case ^ > 1 (a long, slender column). In this case, 
we have a^ -^ - [8^o( l -2v) ( l -Hv) ] / [ (8 - l lv )C€] and 2̂ = 0. For v = 0 
the result is the same as before. But the Poisson effect manifests for nonzero val­
ues of Poisson's ratio. It is interesting to note that for v = 1/2 (the incompress­
ible limit) the axial displacement goes to zero. Lateral strain is prevented at the 
base. If the volume cannot change then deformation (within the confines of this 
simple approximation) is not possible. 

Clearly, we can investigate this approximate solution in greater detail to re­
veal that there are some tractions on the sides of the block that should be traction-
free (just compute the strain from the displacement field, substitute into the 
constitutive equations, and apply the Cauchy relationship to the surfaces in ques­
tion), but the assumed approximation appears to capture some features of the 
problem at hand. 
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We can see from the above developments that the principle of virtual work 
gives us a vehicle for finding a stiffness matrix and an equivalent load vector 
for problems other than beam and truss elements. For linear theories of beams 
and trusses, the stiffness matrix is often formulated by exactly solving the gov­
erning boundary value problem and using these results to find a relationship 
between the end forces and the end (i.e., nodal) displacements (and rotations). 
Since there are so few exact solutions to two- and three-dimensional problems, 
this approach does not work very well in higher dimensions, even for special­
ized theories like plates and shells. Because the virtual-work approach does not 
rely on the exact solution to the governing boundary value problem, it repre­
sents a powerful approach to some rather difficult problems. 

There is little doubt that the finite element method is the preferred approach 
to implementing the Ritz approximation method. The finite element basis can 
be easily adapted to unusual boundary geometries, and the requisite computa­
tions can be easily organized into a general-purpose computer program. The 
sole purpose of the simple examples presented here is to introduce the finite 
element concept as a bona fide Ritz approximation. Our main concern in this 
book is mechanics. The ready availability of a general approach to computa­
tion is important to the study of mechanics because it helps to keep the focus 
on the relevance of the theories that we encounter along the way. 

The student of mechanics should not approach every new problem or theory 
wondering whether one of the virtuosos of mechanics has managed to find a 
solution for a particular problem. The Ritz approximation provides this posi­
tive context, and we shall exploit it throughout the remainder of the text. For 
this purpose, it is not productive to quibble over what is the best set of base 
functions to use. Rather, keep in mind that there are many alternatives avail­
able. For the simple problems that we solve in this book, the choice of the basis 
is usually secondary, and we will often use the simple polynomial basis. 

Additional Reading 

I. Fried, Numerical solution of differential equations, Academic Press. New 
York, 1979. 

T. J. R. Hughes, The finite element method: Linear static and dynamic finite 
element analysis, Prentice Hall, Englewood Qiffs, N.J., 1987. 

H. L. Langhaar, Energy methods in applied mechanics, Wiley, New York, 
1962. 

A. R. Mitchell and R. Wait, The finite element method in partial differential 
equations, Wiley, New York, 1977. 

G. Strang and G. J. Fix, An analysis of the finite element method, Prentice Hall, 
Englewood Qiffs, N.J., 1973. 
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Problems 
142. Consider the uniaxial rod shown in the sketch, fixed at 
X = 0,freeatjc = €, and subjected to the linearly varying body 
force indicated. The rod has a variable elastic modulus 
C(x) = Co(2-x/£), making it twice as stiff at x = 0 as it is L"^-^ ^ 
at jc = €. Using the principle of virtual work, fmd the expres­
sion for the displacement u(x) and stress a(x) for the given body force and variable modu­
lus, approximating the real and virtual displacements with polynomials. 

143. Reconsider the nonprismatic rod of problem 142 subjected to the linearly varying 
body force. However, consider the condition in which the rod is fixed at both ends with 
prescribed end displacements of w(0) = Uo and u(£) = u^. Solve the problem with the 
Ritz method using polynomial base functions. 

144. Consider using a basis for the virtual displacement different from the basis used for 
the real displacement. What would be the ramifications of using a different number of 
terms in the expansions for real and virtual displacements? That is 

N M 

" W = ^anhn{x), li{x) = Y,^nhn(x) 
/i = l n = l 

where N ^ M. What happens if N > Ml What happens if TV < M? Perform some com­
putations on the little boundary value problem to investigate this issue. 

145. Consider using a basis for the virtual displacement different from the basis used for 
the real displacement. What would be the ramifications of using different base functions 
for the real and virtual displacements? That is 

N N 

" W = ^a„h„(x), JI(X) = Y,^rign(x) 
n=l n=l 

where gn{x) ^ hn(x). Perform some computations on the little boundary value problem 
to investigate this issue using, for example, polynomials for the real displacements and 
trigonometric functions for the virtual displacements. 

146. The uniaxial rod shown has unit area, length £, and 
elastic modulus C The body force is characterized by 

\ bo £/2 < X < e 

Assume that the real and virtual displacements can be approximated by the expressions 

where | = x/€. Using the principle of virtual work, compute the displacement field u(x) 
and the tractions at the two ends o-(€) and (7(0). 
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147. The uniaxial rod shown has unit area and length €. 
It is fixed at the left end, is free at the right end, and is sub­
jected to a constant body force field b{x) = bo along its 
length. The elastic modulus C{x) is characterized by 

te 
C(x) •I 

€/2 t/l 
IC 

C 

0 < jc < €/2 

i/2<x< i 

Find the classical solution to the governing differential equation. Using the principle of 
virtual work, compute a stress field o{x) assuming a Ritz approximation as follows 

where | = x/i. Because the modulus changes abruptly at jc = €/2, the stresses and 
strains are discontinuous at that point. Why is this discontinuity a problem for the polyno­
mial base functions suggested? What happens if you increase the order of the approxima­
tion? 

148. Using a piecewise linear finite element basis, resolve Problem 147. Does the finite 
element basis suffer from the same problem as the polynomial basis? Why? What general 
conclusions can we make about the smoothness of the approximation? 

149. Consider the rod of length Tji and constant modulus b{x) = sin or 
C = 1, free at both ends and subjected to the sinusoidal body 
force, as shown. The general classical solution for the given 
loading is u{x) = aQ + a^x-^- sinjc. Show that the given solu­
tion satisfies the governing differential equation for the bar, 
and state the essential and natural boundary conditions. Use 
the boundary conditions to find the integration constants UQ and a^. Explain any peculiar 
features of the solution to this problem. Use a polynomial Ritz basis to find a two-term 
approximate solution for the displacement field, using the principle of virtual work. Ex­
plain any peculiar features of the Ritz approximate solution. 

150. Consider the rod of length 3, constant unit modulus C = 1 
(and unit area), fixed at JC = 0. The rod is subjected to a certain 
(unspecified) distribution of body force b, as shown. Three piece-
wise linear finite element basis functions are shown in the sketch. 
The functional expressions for the basis function /I,(JC) is 

hi(x) = 

X - i -\' 1, 

i + 1 - X, 

0, 

i-1 < X < i 

i < X < i + 1 

elsewhere 

" l " " • l " 
1 

" l * 

^ 

An approximate displacement field can be constructed from the 
base functions as u(x) = a i /ij (JC) + ̂ 2^2 W ••• ̂ 3 ̂ 3 W- Find the stiffness matrix K consis­
tent with this approximation and the principle of virtual work. Assume that the values of 
the coefficients are Cj = 1, ^2 = 2, and a^ = 4. Plot the stress field associated with the 
approximation. Find the equivalent force vector f. 
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151. Consider the rod of length 3£, constant modulus 
C = 2k£, and unit area, fixed at x = 0 and spring supported 
aX X = 3€, with spring constant k. The rod is subjected to a 
point load F = 3bo^ at midspan and a uniform body force bo, 
as shown. Three piecewise linear finite element basis func­
tions are shown in the sketch. The functional expressions for 
the basis function hi(x) is 

x/£ - / + 1, / - I < x/£ < i 

i + 1 - jc /€ , i < jc/€ < / + 1 

b{x) = bo 

fi-^x^Fp 

hi(x) = 

h, 

h. 

7\7\T 

Set up the equilibrium equations implied by the principle of virtual work using the Ritz 
method (i.e., find K and f). Express your answer in terms of k, bo, and € (not F and C). 

152. Solve the problem of the rod subjected to a triangular 
load shown in the sketch using the quadratic Lagrangian finite 
element base functions. Use at least two quadratic elements 
(i.e., five nodes with four segments of length €/4) to carry out 
the solution. 

153. Consider the rod of length 3€ and constant modulus C, fixed 
at both ends, and subjected to point loads of magnitude F and 2F 
at the third points, as shown. Use a piecewise linear finite element 
approximation with nodes at the ends and at the third points. 
Write the expressions for the base functions /i,(jc). Compute K 
and f associated with the discrete virtual-work function. Compute 
the coefficients a from Ka = f. Sketch the approximate displace­
ment field. Compute the approximate stress field. 

Ur ̂ 1 

bo 

k • 

154. Consider the rod of length € and constant modulus 
C. The rod is fixed at the left end and restrained by an elas­
tic spring of modulus k at the right end. The spring accrues 
force equal to the product of spring constant and stretch of U ^ 
the spring, i.e., fs = ku(t). The rod is subjected to a ^ 
constant body force b(x) = bo, as shown. What are the essential and natural boundary con­
ditions for this problem? (Hint: Take a freebody diagram of the right end of the rod to get 
the mixed boundary condition at that end). Find the classical solution to the boundary val­
ue problem. At what point is the strain in the rod the greatest? Consider the two limiting 
cases (1) ^ -> 00, and (2) A: - • 0. What are the boundary conditions in these two limiting 
cases? What is the solution in these two cases? Find an approximate solution with the Ritz 
method and a polynomial approximation. 

b{x) = k 

r ^ 3uo Wo"*~* 

155. Consider the rod of length € and constant modulus C, 
fixed at both ends, and subjected to a uniform body force 
bo as shown. The left end moves to the right by an amount 
3uo and the right end moves to the left by an amount Uo. 
What are the essential and natural boundary conditions. 
Compute the displacement field u(x) using the principle of 
virtual work and the Ritz method with a quadratic approximation. Sketch the approximate 
displacement field. Compute the approximate stress field. 
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n 
156. Consider the rod of unit length € = 1, constant unit modulus 
C = 1 (w/ unit area), embedded in an elastic medium that gets stiff-
er with depth. The elastic medium has variable modulus given by 
k{x) = 12(1 +jc), and the resistance to motion is linearly propor­
tional to the displacement. The rod is subjected to a unit load at 
X = 0,i.e., P = 1, and is traction free at the end jc = 1. The classi­
cal governing differential equation for the displacement field u{x) 
of the rod is M" -12(1 ^x)u = 0. Calculate an approximate value 
of the displacement at the point of load using a linear approximation 
of the displacement field. Use the Ritz method to carry out the calculations. Is the approxi­
mate solution a good one? Why or why not? Does the accuracy of the approximation de­
pend upon the relative flexibilities of the rod and the elastic medium? How? 

157. Consider the rod of Problem 156, now with length i, constant modulus C (w/ unit 
area), subjected to a load P at jc = 0. The rod is embedded in an elastic medium such that 
the force developed is linearly proportional to the displacement at each point. The modulus 
k is constant. The elastic constants are related by k£^/C = 1. The rod is pointed so that 
the traction at the end jc = € is zero. Find the virtual-work functional for the given prob­
lem. What are the essential and natural boundary conditions? Find an approximation to 
the displacement field using the Ritz method with a two-term approximation with the fol­
lowing base functions/ii(x) = e^, h2(x) = e~^, where a = Jkjc. 

158. Consider the rod of length €, constant modulus C (w/ unit 
area), subjected to a load P at jc = 0. The rod is embedded in an 
elastic medium that provides a resisting force proportional to the 
displacement at each point with a modulus ̂ (jc) that increases lin­
early with depth, so that the force is f(x) = koXu(x)/£. The tnd 
resistance can be modeled as a spring of modulus ko^. The elastic 
constants are related by koi^jC = 1. Find the virtual-work func­
tional for the given problem. What are the essential and natural 
boundary conditions? Find the displacement field using the Ritz 
method with a two-term polynomial approximation. 

T^ 

/w 

Jjto€ 

159. Consider the rod of length € and constant modulus C. 
The rod is fixed at the left end and restrained by a linear 
elastic spring of modulus k at the right end. The elastic 
constants are related by k^lC = 2. The rod is subjected to a 
constant body force b{x) = bo and a prescribed displacement 
at the left end of ŵ , as shown. Set up, the discrete equations 
Ka = f that result from applying the Ritz method to the prin­
ciple of virtual work using the base functions shown in the 
sketch. Express the answer in terms of k, i, bo, and Uo. Do 
you expect the solution using the Ritz method to be the ex­
act classical solution to the boundary value problem? What 
base functions would you need to add to make the Ritz 
approximation exact? 

UoM k 
bo 

Uo(x) 

k 

Uo 

^^0^ 
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160. Consider the rod of length € = 1 and a constant modu­
lus C = 10. The rod is restrained by an elastic spring of mo­
dulus A: = 2 at each end and is subjected to a constant body 
force b(x) = 1, as shown. The virtual-work functional is 

b(x) = 1 

G(u,M) = [Cu'W-bu] 
Jo 

dx + lcu{Q)u{0) + lcu{£)u(e) 

What are the boundary conditions for this problem? Are they essential or natural boundary 
conditions? Explain. Set up, the system of equations that result from using a quadratic 
approximation of the displacement field with the Ritz method. Consider solving this prob­
lem using the trigonometric approximation 

u(x) = fljsinjrjc -I- a2sm2jtx + fl3sin3;rjc 

Is this approximation likely to give a good solution to the problem or not? 

161. Consider the solid cubical region S shown in the sketch hav­
ing unit dimensions. Let the scalar field w(\) characterize the re­
sponse of the system. The field w is a function of the position vec­
tor X. If we define the functional 

G(w,v) = V w V v - 3v]dV 

then G = 0 (for all v) is a "virtual-work" statement of the equations governing w. The es­
sential boundary conditions are such that w — 0 on the coordinate faces. Use the Ritz 
method with a single term approximation of the form w(x) = CQ ^i ^2 ̂ 3 ^̂  determine the 
unknown field w. Describe how you would improve the approximation. 

162. Reconsider the 2€ x 2€ x /j block shown in Fig. 84. The block is fixed at the base, 
(i.e., u(jCi, X2,0) = 0) and subjected to a body force (self-weight) of b = - ^0^3 through­
out the volume. Let the material have independent elastic constants A and ju. Solve the 
problem by the Ritz method using the following assumption about the displacement field 

u(x) = a^x^£e^ + a2(x^x^ei + ^̂ 2̂ 362) 

163. Resolve Problem 162 with the following assumed displacement field 

U(X) = fliJC3€e3 + fl2^®3 ••" ^3(^1^3^! •*• ^l^S^l) 

What is the contribution of the term (jCiJC3ei + X2JC3e2) (i.e., the lateral displacement) to 
the response in parts (a) and (b)? Compute the stress tensor S implied by the displacement 
fields of parts (a) and (b). What body forces and surface tractions are implied by these 
maps? What terms would you add to the solution to improve the Ritz approximation? 

164. Reconsider the li x 2£ x h block shown in Fig. 84. As in Problem 162, the block 
is fixed at the base, (i.e., u(Xi,X2,0) = 0) and subjected to a body force b = —^063 
throughout the volume. Let the material have independent elastic constants A and ju,. Let 
^1 - 2(^1/^ ••• 1)»^2 = I (^2/^ ••• 1) ̂ d ^3 = JC3//1 be a change of variables that maps the 
block onto the unit cube with one vertex at the origin of the coordinate system (^i,^2»?3)-
Define the following functions 
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^3(1) =ll( l-^2)^3 

^5( l )=? l l2 ( l - |3 ) 

^6(l) = ( l - | , ) l 2 ( l - | 3 ) 

^7(1) = l l ( l -^2X1-^3) 

<t>S) = (1-10(1 -|2)§3 «^8(l) = (1 - I l ) ( l -^2)(1 -?3) 
These functions have the property that, at each of the eight vertices, one of the functions 
has unit value while the others are zero. They are, in fact, the finite element base functions 
for a hexahedron element. Let the displacement be approximated as 

8 

u(|) = ;^a,^,(l) 
' • = 1 

where a, is a vector constant with component expression a, = flyCy (no sum on;*). What 
are the base functions h,(§) associated with this expansion? What is the physical signifi­
cance of the coefficient vector a,? What does the essential boundary condition 
u(§i,l2>0) = 0 imply about the values of the coefficients in the expansion? Solve the 
block problem using the base functions identified, as restricted by the essential boundary 
condition. 

165. Consider a cube of dimension 2 x 2 x 2 fixed at the base and subjected to a body 
force b = -^063. Describe a method for refining the finite element approximation by 
establishing a local coordinate system for each element that allows the creation of the fi­
nite element base functions from the eight basic element functions 0,(|) described in 
Problem 164. Notice that each element is associated with eight nodes while the entire 
block is associated with 27 nodes. Continuity of displacements can be assured by associat­
ing the element base functions with element nodal displacements (i.e., finite element func­
tions) and by associating elements nodal displacements with a common global displace­
ment parameter where elements share a common node. 

166. What is the appropriate definition of f in Eqn. (366) when there is a nonzero boundary 
displacement term u(x) in the Ritz approximation? 



7 
The Linear 
Theory of Beams 

The equations describing the mechanics of a three-dimensional continuum are 
formidable to solve even for a simple constitutive model like isotropic hyper-
elasticity. Even in the age of computers and the finite element method, it is still 
not feasible to treat every solid body as a three-dimensional continuum. Bodies 
with certain geometric features are amenable to a reduction from three dimen­
sions to fewer dimensions, from the perspective of the governing differential 
equations. These bodies are usually called beams (one dimension), plates (two 
dimensions, flat), and shells (two dimensions, curved). These reduced theories 
comprise a subset of solid mechanics generally referred to as structural me-
chanics. Among the theories of structural mechanics, beam theory is the sim­
plest. 

This chapter really has two, complementary purposes. First, the chapter pro­
vides a careful and thorough derivation of the equations of linear beam theory 
in the context of three-dimensional solid mechanics. Although the equations 
of beam theory can be obtained without the machinery of solid mechanics (see, 
for example, any book on elementary strength of materials), to do so is, in itself, 
a little lesson in solid mechanics; a relevant application of the general theory. 
The great merit of approaching the derivation this way is that we can clearly 
see where are the strengths and limitations of beam theory. 

Second, the ordinary differential equations of beam theory are much more 
likely to yield classical solutions than are the partial differential equations of 
the three-dimensional theory. The ordinary differential equations are a bit 
more sophisticated than the little boundary value problem and there are some 
new features (e.g., we need multiple fields, displacement and rotation, to de­
scribe the kinematics of motion). Beams are, of course, amenable to the princi-
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pie of virtual work so we can use beam theory as another opportunity to apply 
the Ritz method. Because classical and variational approaches are both rela­
tively easy, beam theory provides a fertile opportunity for the study of the rela­
tionship between classical and variational methods. 

This chapter examines the foundations of linear beam theory. We first 
introduce the notion of resultants (net force and net moment) of the traction 
vector field over a cross section and deduce equations of net equilibrium by 
satisfying the three-dimensional equilibrium equations div S + b = 0 in an av­
erage sense. We then introduce a kinematic hypothesis that describes the mo­
tion of the beam in terms of parameters that vary only along the axial coordi­
nate. Finally, we develop elastic constitutive equations for stress and strain 
resultants by introducing the three-dimensional constitutive equations into the 
definitions of the resultants. Once the general theory is laid out, we examine 
two special cases of planar motion (the Tmioshenko beam and the BemouUi-
Euler beam). We consider both classical and variational statements of the 
theory and illustrate the differences between the two with several computa­
tional examples. 

Notation. A beam is a long, slender cylindrical body.''' A planar slice 
through the undef ormed beam, perpendicular to the longitudinal axis, is a two-
dimensional surface that we will call a cross section. We shall choose to de­
scribe our beam in accord with the convention shown in Fig. 85. Note that the 
JC3 coordinate axis coincides with the axis of the beam. Therefore, any beam 
cross section will lie in a plane parallel to the Xi —X2 plane. The cross section, 
which we shall call Q, is a closed geometric figure and, hence, possesses geo­
metric properties like area and moments of the area. The cross section has a 

lateral surface 

x^ = X 

Figure 85 A beam occupying three-dimensional space 

t In the derivation of the equations of beam theory it will be evident that the equations 
apply strictly to prismatic beams (i.e., beams of constant cross section). For prismatic 
beams the normal to the boundary of the cross section nr has no component in the axial 
direction, which is important when we use the divergence theorem. We will find later 
that we can ease up on that restriction to include beams with slowly varying cross sec­
tion. This is an important approximation that significantly extends the range of prob­
lems amenable to beam theory. 
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boundary, which we shall call F, that can be parameterized by its arc length s. 
The boundary has a normal Dp at every point, and this normal is unique (except 
possibly at a finite number of comers). The surface of the beam consists of its 
two ends (i.e., the cross sections located at JC3 = OandjCs = €) and the lateral 
surface. We shall assume that either the motion or the tractions can be pre­
scribed at the beam ends, but that the motion cannot be prescribed on the lateral 
surface.''' On the lateral surface only the tractions tp are prescribed. 

For those quantities that are functions of only the axial coordinate, that is, 
any resultant or generalized displacement, we shall designate the coordinate 
simply as x^ = x. Derivatives of such quantities are always ordinary deriva­
tives, and we shall often use the notation (•)' = d( • )/dx for the derivative. 

Equations of Equilibrium 
A beam is subject to the same requirements of equilibrium as every other body, 
namely divS + b everywhere inside the domain and Sn = tn on the surface of 
the domain. The concept that distinguishes a beam from a continuum is the 
stress resultant. A stress resultant represents the aggregate effect of all of the 
traction forces acting on a cross section. We shall find that a single net resultant 
is not adequate to describe those tractions, so we shall also use the first moment 
of these tractions about some point in the cross section. We can deduce equa­
tions of equilibrium for the resultants from the three-dimensional theory. 

Figure 86 Traction vector acting on a typical section 

The resultant force and moment can be computed by integrating the trac­
tions over the cross-sectional area, as shown in Fig. 86. The traction vector act­
ing on a plane with normal 63 is given by te (̂x) = S(x)e3. The location of this 
traction vector in the plane can be described by the position vector relative to 
the ;c3 axis p(jCi,jC2) = A:iei+X2e2,avectorwithnocomponentin the axial di­
rection. The resultant force Q{x) and the resultant moment M(;c) are computed 

t The prescription of motion at certain points along a beam is possible, but it really 
works out only as a consequence of the kinematic constraint associated with the kine­
matic hypothesis ("plane sections remain plane"). In fact, a case of interest in struc­
tures is a beam with an intermediate support that restricts the displacement of a cross 
section but not its rotation (often called a "continuous beam"). This subtle point is dis­
cussed in detail in the section entitled Boundary Conditions, later in the chapter. 
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as the integral of the tractions and the first moment of the tractions over the 
cross section as 

= te3(x)^, M(^) = p(x,,X2) X U^(x) dA 
JQ J Q 

(367) 

where tê  = Se^ and Q is the area of the cross section. The integration over 
the cross section eliminates the dependence on the JCi and X2 coordinates and 
leaves Q and M as functions of only the axial coordinate x. 

Cauchy relations for stress resultants. From their definition, the stress re­
sultants Q and M appear to be vectors, and they will behave like vectors in al­
most every regard. However, these vectors characterize the state of stress in 
the beam, and, therefore, we must examine how the Cauchy relations implied 
in t„ = Sn manifest for the beam. If we take a thin slice of a beam, we can see 
that there are two faces, one with normal e^ and one with normal - es, as shown 
in Fig. 87. There are tractions acting on both faces. Let us compute the resultant 
traction force q„ acting on the face with normal n = ne^, where n is either +1 
(front face or positive x^ direction) or -1 (back face or negative x^ direction) 

q, = S(x){ne^)dA = n S(x)e^dA = nQ(x) 

Since n does not depend upon the cross-sectional coordinates Xi and X2, it can 
be factored out of the integral to give the one-dimensional version of the 
Cauchy formula relating stress to tractions (t = Sn). For resultant forces, the 
one-dimensional Cauchy formula is given by 

i = nQ (368) 

An identical argument produces an equivalent result for the moments. The re­
sultant traction moment iii„ acting on the face with normal n = ne^ is related 
to the resultant moment as 

m, = nM (369) 

Q 

1 / . ^ M 

- M 
- Q 

Figure 87 Cauchy relations for stress resultants 
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As was the case for three-dimensional solids, the Cauchy relationship tells us 
how to take freebody diagrams in the sense that it tells us what force to place 
at an exposed section to represent the state of stress resultants there. Since Q 
and M are vectors, they inherently have direction and magnitude, and add with 
the head-to-tail rule of vector addition. We must have the Cauchy relations in 
order to draw Fig. 87 correctly. Note that the minus signs on the back face come 
from n in the Cauchy formula. 

Equilibrium of force resultants. The beam is subject to the equations of 
equilibrium divS + b = 0, S = S ,̂ and Sn = tn, but it remains to be seen 
how these equations from the three-dimensional theory manifest in beam 
theory. In particular, what are the governing differential equations for Q and 
M and how do the applied body forces b and the tractions on the lateral surface 
tr enter the theory? It turns out that we can derive governing equations for Q 
and M by insisting that divS + b = 0 in an average sense over the cross sec­
tion. To see how this comes about, let us compute the integral of divS -f- b over 
the cross section: 

= ^ + I Snr^+ hdA 
ir JQ 

where the implied summation on a Greek subscript is assumed to be a sum from 
1 to 2, as opposed to the implied summation on a Latin subscript, which goes 
fromlto3. Hence, divS = dSe,/6jc, = dSeJdXa-^ dSts/dx^.^Q pulled the 
derivative with respect to Xs out of the first integral over the cross section be­
cause that integral only involves the coordinates jci and X2. We then applied the 
two-dimensional version of the divergence theorem to make the following 
transformation 

I ^ ^ = I S i l r^ = \trds 
JQ ^ Jr JY 

where T is the lateral contour of the cross section, parameterized by 5, and Ur 
is the unit vector normal to the lateral contour and in the plane of the cross sec­
tion (i.e., it has no component along ea). According to the Cauchy relations, 
the vector tr = Sur represents the traction on the lateral surface. These trac­
tions are the prescribed loads on the surface of the beam. Since the body forces 
b are also known, let us define the applied loading per unit of length as 
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(370) q(jc) = hdA + I trds 

Noting the above definitions, we have 

I (divS + b)dL4 = § + q (371) 

One can observe from this equation that if Q' + q = 0, then the three-dimen­
sional equilibrium equations divS + b = 0 are satisfied on average over the 
cross section in question. Qearly, this equivalence holds for all x. 

Equilibrium of moments. We can follow the same approach to the equilib­
rium of moments. Let us integrate p x (div S + b) over the cross section to get 

OX^ uXn I 
p X (divS + b)dA = p X ( 

= ^ [ p x S e 3 ^ + f p x ^ ^ + [ p x b ^ 

Again, we want to use the two-dimensional divergence theorem to convert the 
second term on the right side to an integral over the lateral contour. To achieve 
this result, let us note that, by the rule for differentiation of a product, we have 

again with summation implied on a over the range of 1 to 2. From the definition 
of p we know that dp/dXa = e .̂ We also know that balance of angular mo­
mentum of the continuum implies (see Eqn. (195) in Chapter 3) that 

e, X Se, = 63 X Sea + e« X SCa = 0 

with summation implied over the appropriate ranges in accord with our con­
vention {/ = 1, 2, 3 and a = 1, 2}. Using these relationships, we find that 

Integrating this equation over the cross-sectional area gives 

I p X -^JadA = I ^ ( p x S e . ) ^ + j 63 x S e 3 ^ 

Applying the two-dimensional divergence theorem to the first term on the right 
side and recognizing that the second term can be integrated explicitly, we final­
ly arrive at the identity 
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+ (es X Q) 

247 

Again, since the body force b and the lateral tractions tp = Sop are known as 
given data, we shall define the applied moment per unit length as 

m(jc) = p X b ^ + p x b ^ + p x t r ^ (372) 

Noting the above identities, we have 

p X (divS + b) ^ = ^ + (63 X Q) + m t dx 
(373) 

M' 

Q' 

+ (63 

+ q = 

XQ) + 

0 

m = 0 

These results show that i fM' + (e3 x Q)H-m = 0, then the average of the 
first moment of divS 4- b over the cross section equals zero. It is also interest­
ing to note that the balance of angular momentum e, x Se, = 0 played an im­
portant role in this derivation. 

The equilibrium equations for the stress resultants are summarized in the 
following box 

(374) 

where the applied loads q and m are given by Eqns. (370) and (372), respec­
tively. These equations constitute a set of first-order ordinary differential equa­
tions in the unknown vector fields Q and M. 

It is important to appreciate the limitations of the one-dimensional equilibri­
um equations. On the average, they assure the same equilibrium requirements 
as the three-dimensional equations. However, within a cross section these 
equations overlook some of die details. An analogy from probability and statis­
tics may be useful here: Imagine that we have a data sample, say the scores of 
n students in a class on an examination. To characterize the performance of the 
class on the exam we usually compute the two lowest-order moments of the 
statistical distribution— t̂he mean and standard deviation—^to capture the 
overall nature of the statistical distribution of the data. Qearly, we could com­
pute higher moments of the data to get more information (skewedness, kurto-
sis, etc.) about its distribution, but often the low-order statistics capture the 
bulk of what we want to know about the distribution. If the data are normally 
distributed, then the mean and the standard deviation are enough to exactly 
characterize the statistical distribution, but inadequate to reconstruct any indi­
vidual score. If we had the n moments of the distribution then we would have 
enough information to reconstruct the data sample from the moments of the 
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distribution (rather like a Fourier transform and its inverse). If the data are not 
normally distributed, but are close to it, then the mean and standard deviation 
capture the main features of the data but miss the higher-order wiggles. If the 
distribution is considerably different from normal (e.g., a bimodal distribution) 
then the low-order statistics are inappropriate to characterize the distribution. 

In our problem, if the tractions te3 vary linearly over the cross section, then 
Q and M completely characterize the state of stress. If the stress components 
have higher-order wiggles, then our resultant equations of equilibrium miss 
them. If the variation of stress is not dominated by the constant and linear 
terms, then beam theory simply does not provide an adequate model of three-
dimensional behavior. Centuries of observation have borne out the validity of 
beam theory for long slender bodies. 

Example 45. Computation of beam loading, A solid cylindrical beam of radius 
R, length £, unit weight Qb is submerged halfway in a fluid of unit weight QO. Re­
call that the pressure at any point in a fluid is proportional to the depth h. Com­
pute the resultant applied load q(x) and the resultant applied moment m(jc) that 
would be appropriate in order to treat the problem using beam theory. 

The surface normal vector can be parameterized as n = cos ̂ Cj + sin ̂ Cj. The 
pressure acting on the beam surface is p = QOR sin 0. The stress tensor is sim­
ply S = - p i . The surface traction and body force vectors are given by, 

tp = Sn = -^o^sin^(cos^ei+ sin^Cj), b = ^^62 

The applied force per unit length is 

q(jc) = lYRdO + brdrdO = 7cR^[Qi,-lgo)e2 
Jo Jo Jo 

Noting that p x tp = 0 and p x b = ^^r cos ^63, the applied moment per 
unit length is 

m(x) = I (p X ir)Rde + 1 (p x b)rdrdO 

fjt fin fR 

= (pxtr)Rdd + 
Jo Jo Jo 

-fl 
Jo Jc 

In fR 

^i^r^COS Odrdde^ = 0 
0 ^ 0 
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The Kinematic Hypothesis 
The stress resultants provide a vehicle to reduce the equilibrium equations to 
one dimension. However, the motion of a solid body u(x) is also a function of 
spatial position (and therefore, inherently three dimensional). To really define 
a beam, we need an extra ingredient called the kinematic hypothesis. 

A kinematic hypothesis is nothing more than a constraint placed on the de­
formation map. We assume that the body moves in a very specific manner, an 
assumption that must be verified either by observation of nature or by examin­
ing the consequences of imposing the constraints with a theory that does not 
make those assumptions (i.e., the general three-dimensional theory). 

The basic idea behind beam theory is the hypothesis that cross sections that 
are plane before deformation remain plane after deformation, the so-called 
plane-sections hypothesis. (Although not often stated explicitly, an equally im­
portant assumption is that those plane sections do not distort in their own 
planes, either.) This hypothesis is central to the computation of deflections in 
beams. Although Galileo (1564-1642) had made the first contributions to 
beam theory, his results concerned only the static equilibrium of beams. The 
crucial plane-sections hypothesis did not appear until nearly one hundred years 
later. It goes back nearly three centuries to Jacob Bernoulli (1654-1705), who 
did not quite get it right (but came close enough to get partial credit). Two gen­
erations later, the great mathematician Leonhard Euler (1707-1783) also made 
significant contributions to the theory of deflection curves of beams, but made 
no significant improvements on Bernoulli's kinematic hypothesis. Navier 
(1785-1836) was the one who finally clarified the issue of the kinematic hy­
pothesis and put beam theory on the solid ground on which it now rests. Beam 
theory is perhaps the most successful theory in all of structural mechanics, 
forming the basis of what we call structural analysis, the structural engineer's 
bread-and-butter. 

Let us examine the motion of a typical cross section. The plane-sections hy­
pothesis suggests that a cross section will move as a rigid body, neither chang­
ing in shape nor deviating from flatness. There are many ways of tracking the 
motion of a rigid body in three-dunensional space. The method that is most 
useful here is to select a point, say the point 0 (whichi is the origin of coordi­
nates in the Xi - jcj plane), marked by the target in Fig. 88, and to keep track 
of the motion of that point. As described in the figure, the point displaces by 
an amoimt w. It takes three quantities to keep track of the motion of the point, 
the three components of the vector w. Keepmg track of the motion of a single 
point is not sufficient to describe the motion of the plane because the body also 
rotates. 

We must also keep track of the vectors that record the orientation of the cross 
section in space. The cross-sectional plane is completely characterized by its 
normal vector and two independent vectors that lie in the plane. In the unde-
formed configuration, these three vectors are the base vectors Ci, 62, and 63. 
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X2 

Figure 88 Tracking the motion of a rigid plane in three dimensions 

In the deformed configuration these vectors become Ci, C2, and C3 = n, each 
of which can be determined from the original vectors by a rotation in three-di­
mensional space. Let A(JC3) be a tensor that rotates vectors (without stretching 
them) in three-dimensional space. In particular, let the rotation be precisely 
that needed to orient the cross section as c, = A(jC3)e,. The tensor A(jC3) is an 
orthogonal tensor and is, therefore, completely characterized by three inde­
pendent parameters, the so-called Euler angles 61, 62, and 63, Therefore, it 
takes three parameters to orient the cross section, and, thus, a total of six to 
uniquely track the motion of the cross section. From those six quantities, we 
can find the location of any other particle on the body through the map 

(KX) = X3e3 + W(X3) + A(X3)p(Xi,X2) (375) 

The first term takes us from the origin to the appropriate cross section, the sec­
ond term takes us to the displaced origin of the cross section, and the third term 
takes us to the position within the cross section that was originally at the posi­
tion p(jCi,JC2) = Xi ei+A:2e2 in the undeformed configuration, i.e., p locates the 
position of a point in the cross section relative to the point 0. 

If the rotation of a cross section is small, the deformation map can be simpli­
fied. In particular, for small rotations we have Ap « p + G x p, where the 
vector 0 = 0,6, is called the rotation vector (see Problem 174). We can now 
describe our deformation through a displacement map. Let u(x) be the dis­
placement of a point originally located at position x in our undeformed beam. 
The displacement is given by 

u(x) = w(x3) + 0(^3) X p(xi,X2) (376) 

Observe the explicit dependence of the map on the axial coordinate x^ and the 
cross-sectional coordinates Xi and JC2. The displacement vector w = iv,e„ 
with components {wi, W2, W3}, and the rotation vector 0 = ^^e,, with compo­
nents {91, O2, 63}, are collectively called the generalized displacements and 
are functions only of the axial coordinate X3, The displacement map can be 
written out in terms of its components as follows 
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"1(^1,^2,^3) = H^i(^3) - ^ 2 ^ 3 ( ^ 3 ) 

"2(^1,^2,^3) = ^^2(^3) + ^1^3(^3) 

"3(^1,^2,^3) = ^3(^3) - ^1^2(^3) + ^2^1(^3) 

The physical significance of the generalized displacements can be seen by ex­
amining the individual terms of the map. Figure 89 shows the displaced beam 
projected onto the JCJ - x^ plane. Qearly, the component W3 measures the dis­
placement along the axis of the beam while the component Wi measures dis­
placement transverse to the beam axis in the Xi direction. The component 62 
measures rotation about the X2 axis and has a positive sense according to the 
right-hand rule. Displacements are, of course, positive if they are in the direc­
tion of the coordinate axes. Consider the displacement of the point $P a distance 
jCi from the axis of the beam. For the purpose of illustration, suppose that the 
motion is planar, i.e., W2 = 0, ^i = 0, and 63 = 0. Relative to the point 0, the 
point $P moves in the negative x^ direction by jCi sin ̂ 2 ^ ^1 ̂ 2, and in the nega­
tive jCi direction by JCJ (1 — cos ̂ 2) "== 0. Because the motion is planar there is 
no motion in the X2 dkection (out of the plane of the page). Qearly, this is the 
motion that our deformation map captures. 

If we have an explicit expression for the deformation map, it is simple to 
compute the strains implied by that map. Here we shall confine our attention 
to the linearized strain tensor E = 5 [ Vu -h Vu^. The gradient of u is the tensor 

Vu(x) = u„(8)e, 

Recall that for a = 1,2, the derivative of the position vector p is given by 
dp/dXa = e .̂ Therefore, we can compute 

Vu(x) = (w' + e' X p) (g) Cs - (e« X e) (g) e« (377) 

with summation implied on the Greek subscript. Before we use Vu to compute 
the linearized strain tensor, observe that 

0 = (e, X e ) ® e , = - ( e X e,)(8)e, = - [ 0 x ] 

''I A 

Tangent to deformed axis 

Figure 89 Components of displacement in a plane 



€o(x) 

«oW 

= 

= 

\¥'(X) + €3 

Q'ix) 

X Q{x) 

252 Fundamentals of Structural Mechanics 

(with sum implied on i) is skew-symmetric, that is, 0 + 0^ = 0. Thus, we can 
rewrite Eqn. (377) in the following form 

Vu(x) = (w' + 63 X e + e' X p) (g) 63 - 0 (378) 
We are now in a position to compute the linearized strain tensor as 

E = \[{€o + Xo X p) (8) 63 + 63 0 {€0 + X, X p)] (379) 

where 

(380) 

are strain resultants for the linear beam. It is evident that there is no strain in 
the plane ofa cross section because £11 = £12 = £22 = 0, in accord with the 
assumption that the cross-sectional plane is rigid. 

Constitutive Relations for Stress Resultants 
The strains imply stresses through the constitutive relationships. Let us assume 
that the material is linearly elastic and isotropic so that the stress-strain rela­
tionship is S = Atr(E)l + 2/uE. We are interested in the resultant tractions on 
a cross section with normal 63. Therefore, it is sufficient to compute 

te3 = 863 = Atr(E)e3 + 2;aEe3 

From Eqn. (379) we can compute 

2Ee3 = [I + e3(8)e3](€, + x, x p) 

tr(E) = 03 • {€0 + X, X p) 

Therefore, the expression for the traction on a cross section with normal 63 is 

863 = [(>l+//)e3 (8)e3+//l](€. + X, X p) (381) 

where I is the identity tensor. We will use this expression in our definitions for 
the stress resultants to derive constitutive equations relating the stress result­
ants to our generalized displacements. Making an analogy with constitutive 
equations in general, these relationships will help identify the appropriate mea­
sures of strain (i.e., strain resultants) and determine how they are related to the 
stress resultants. Substituting Eqn. (381) into our definitions of stress resultant 
and moment, Eqn. (367), we get 

Q = H(€,+ x, X p)dA 

y^ (382) 

M = p x (E(e ,+ x, xp) ) t i4 
J Q 
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where S = (A+//)[ 63 (S) 63]+//!. We can explicitly integrate out the Xi - X2 
dependence of these expressions at a typical cross section located at a fixed 
value of the coordinate JC3. Observing that only the vector p depends upon x^ 
and JC2, we find that these integrations are rather simple. First, some modest re­
arrangement of the equations is in order. It is useful to recognize that the opera­
tion of the cross product of two vectors can be viewed as the operation of a 
skew-symmetric tensor times a vector, w x v = Wv, where the tensor W is 
given by 

W -
0 -^3 

W3 0 

w 

We therefore can think of the quantity w x = W as a second order tensor. Ac­
cordingly, we can write 

0 0 A:2 

0 0 - jc i 

-X2 x^ 0 
[ P X ] ~ 

Noting that [p x ]^ = - [p x ] we can write the resultants in the form 

\dA Q = I (Se„ + H[pxfx„ ) 
JQ 

M = I ([p x ] S € , + [p x ] S [ p x ] ^ x „ ) ^ 

(383) 

Carrying out the integrals in Eqn. (382), we obtain the constitutive equations 
for stress resultants 

Q = ^€, + Sx, 
(384) 

where the tensors A, S, and I are given by 

A = EdA, S = E[p xfdA 
JQ JQ 

S^^ I [ p x ] S ^ , I = I [ p x ] S [ p x ] 
JQ JQ 

(385) 

dA 
' Q J Q 

where S = (A +// )[e3 (8) 63] +//I. The explicit components of the constitu­
tive property tensors A, S, and I depend only on the elastic constants of the ma­
terial and the geometric properties of the cross section. Let us make the follow­
ing definitions of cross-sectional geometric properties 



254 Fundamentals of Structural Mechanics 

A = \ dA, Sa = \ XadA, / ^ = XaX^dA 
JQ JQ JQ 

(386) 

juA 0 0 ' 

0 fiA 0 

0 0 £A s~ 
0 
0 

^^2 

0 -fiS^' 

0 f^S, 

-ES^ 0 
1 -

EI22 ""^^12 0 

-EI^2 ^hi 0 
_ 0 0 fiJ _ 

where, as usual, a and ^ take values from {1,2}. We usually refer to A as the 
area of the cross section, 5^ as the first moment of the area, and I^ as the sec­
ond moment of the area. There is only one area, but there are two first moments, 
and three distinct second moments. Often we use the notation J = /u 4-/22 to 
designate the polar moment of the area. The components of the constitutive 
tensors have the final expressions (work these out for yourself) 

(387) 

where the notation £ = A + :^ has been introduced for notational simplicity. 
The constitutive tensors can be considerably simplified by a judicious 

choice of coordinate axes. If the origin of coordinates in the cross-sectional 
plane is taken to be the centroid of the section, then both of the first moments 
of the area Sa vanish (and, hence, so does the entire tensor S and its transpose 
S^. Further, if the axes are taken to coincide with the principal axes of the 
cross section, then the product of inertia / ^ vanishes, rendering the tensor I di­
agonal. With such a choice of coordinate axes, the relationships between the 
stress resultants and the strain resultants simplify considerably. Therefore, in 
what follows, we shall always make that choice (unless specifically indicated 
otherwise). 

The constitutive equations are of interest not only because they relate the 
generalized displacements with the stress resultants, but also because they help 
us identify the concept of strain resultant. The stram resultant is the one-dimen­
sional counterpart of the strain tensor in the three-dimensional theory. As the 
name indicates, it is the net result of all of the local straining across the cross 
section—an average, if you will. With the canonical choice of coordinate axes 
(principal, centroidal axes), the stress resultant Q is linearly related to the de­
formation measure c .̂ Accordingly, we shall view this quantity as the associat­
ed strain resultant. Similarly, the moment M is linearly related to the measure 
of deformation x .̂ We shall consider x^ to be the strain resultant associated 
with M. 

These resultants have a clear physical interpretation. Let us write out the 
components of each of these strain resultants 

Consider again'the case of planar deformation in the jCi - X3 plane, shown in 
Fig. 90. For planar motion, we have null displacements and rotations (and their 
derivatives) for all quantities that give rise to motion out of the plane. Accord-
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ingly, W2 = 0, 01 = 0, and 63 = 0. We can see that w^! measures the rate of 
axial stretch, i.e., the net axial strain, of the beam. It is associated with the axial 
force Qs. The quantity w/ is the slope of the deformed axis of the beam. As 
we can clearly see in the figure, the tangent to the deformed axis does not nec­
essarily coincide with the direction of the normal vector n. The angle between 
these two lines is due to shearing of the beam. The strain resultant Wi —O2 di­
rectly measures this component of deformation, and is associated with the 
shear force Q1. The rate of change of the rotation of the normal vector n is ^2' ? 
the curvature of the beam flexing about the X2 axis. The curvature is associated 
with the bending moment M2 about the Xi axis. Note that this expression for 
the curvature is exact (whereas the second derivative of the transverse deflec­
tion is an approximation to the curvature). By extension, the meanings of the 
other terms in the three-dimensional case are evident. 

The shear strain resultant W2' + ^i has a sign for the rotation term that is dif­
ferent than the shear strain in the other direction. The reason for this difference 
is due to right-hand-rule convention for the rotations. The resultant shearing 
angle is always measured as the angle between the tangent to the deformed axis 
and the normal to the cross section. The rotation angle is always measured rela­
tive to the undeformed axis of the beam. Figure 90 shows positive values for 
the displacements, displacement gradients, and rotations for two cases: (a) pla­
nar deformation in the jCi - JC3 plane and (b) planar deformation in the X2" X2 
plane. The shearing angle is shown shaded. Note that, for the first case, the X2 
axis is directed out of the page, while in the second case the Xi axis is directed 
into the page. In both cases, a positive transverse displacement is upward, in 
the direction of the associated coordinate direction. The rate of change of the 
transverse displacement, or the slope of the deformed axis, is positive if it 
points in the direction up and to the right. On the other hand, according to the 
right-hand rule, the rotation 62 is positive if it is anticlockwise, while the rota­
tion 61 is positive if it is clockwise. Thus, in the first case, the shear angle is the 
difference between these two positive quantities, while in the second case, the 
shear angle is the sum of these two positive quantities. 

^H 
(b) 

0-

W2 

"k-^Ce^ 
W2 

W3 X3 

Figure 90 Why is there a sign difference in the two resultant shear strains? 
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Boundary Conditions 
Like any three-dimensional body, a beam has a surface on which either trac­
tions are prescribed or displacements are prescribed. For the three-dimension­
al theory, we referred to these portions of the boundary of the body 35 as Q̂  and 
Qu, respectively, and any point on the boundary was a candidate for either pre­
scribed traction or prescribed displacement, but not both. The beam is a special 
case of a three-dimensional body because of the kinematic hypothesis, and this 
restriction affects all aspects of the theory, including the prescription of bound­
ary conditions. 

We have already addressed the issue of prescribing tractions on the lateral 
surfaces of the beam. In fact, the definitions of applied force and moment in­
clude the resultants of these prescribed tractions. We must also consider the 
tractions that exist at the ends of the beam. Let t̂  be the applied traction field 
(and Qo the cross section) at X3 = 0, and t̂  the applied traction field (and Q^ 
the cross section) at x^ = £. Computing the net force acting at these cross sec­
tions leads to the definition of the end resultant forces as 

, dA (388) 

These forces represent the net resultant of the applied tractions at the two ends 
of the beam. The resultant moments are similarly defined as 

m^ = p X to dA, m^ = p X t̂  dA (389) 

These moments are the first moment of the applied tractions about the axis at 
the two ends of the beam. 

Technically, we should consider the ends of the beam as having either ap­
plied tractions or prescribed displacements because our theory is expressed in 
terms of resultants, and, as such, is not equipped to differentiate between a re­
gion of an end section with prescribed tractions and a region of that same end 
section with prescribed displacements. However, it should be clear that this 
point of view would force us into the comer of admitting only completely fixed 
or completely free ends. We would not be able to model a simply supported 
beam! 

The kinematic hypothesis comes to our rescue here. Because the kinematic 
hypothesis implies that each cross section is rigid in its own plane, and because 
the displacement map is expressed in terms of motions of a fixed point (usually 
the centroid) of the cross section, we can imagine prescribing the displacement 
at a single point. In the three-dimensional theory, such a prescription would not 
be admissible because a point force is a finite force applied over a vanishingly 
small area and, thus, leads to infinite tractions and stresses. The assumption of 
rigidity, while not really justifying the concept of a point load, certainly allows 
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the theory to accommodate it. In view of this special feature of beam theory, 
we can now imagine a cross section where the net displacement w is pre­
scribed, but the net rotation is not. This is the condition known as the simple 
support, which plays such an important role in structural engineering. For the 
sake of argument, let us assume that we are talking about the cross section Q -̂
If the displacement w(0) = 0 is known, then some corresponding force must be 
unknown. We can demonstrate through a vutual-work argument that the un­
known force is q .̂ Further, since the cross section is free to rotate, there must 
be some force that is prescribed. Again, we can demonstrate through a virtual-
work argument that the prescribed force is m .̂ 

Such a condition of mixed boundary conditions can only be realized through 
a condition of constraint. Imagine simply that our beam is attached to a rigid 
plate at the end. The tractions that the beam feels are those transmitted to it 
from the rigid plate. Now we can imagine that the rigid plate is attached to a 
ball-and-socket joint that is free to rotate in any direction, but is not free to 
translate. This device constitutes our three-dimensional version of the simple 
support. Since beam theory actually provides the rigid plate, we need not worry 
about its physical implementation to carry out beam calculations. 

Since we are in the business of concocting support devices for our rigid 
plate, why not imagine a whole collection of such devices. How about one that 
rotates about the X2 axis, but not about the Xi axis? How about one that is free 
to translate in the X2 direction, but not in the jCi direction? We have six general­
ized displacements (including rotations) at each section. We can imagine a de­
vice that independently prescribes the associated force or displacement for 
each one. Hence, each component of the end resultant vectors can exist as ei­
ther a prescribed force or a reaction force if the corresponding displacement 
is prescribed. For the beam in three dimensions, we must prescribe either the 
force or the displacement at each end point. Thus, we always have exactly 12 
boundary conditions. For the planar problem, this number reduces to six. These 
conditions are always exactly enough to determine the constants of integration 
that we get when we solve the governing differential equations. 

The Limitations of Beam Theory 
Unfortunately, beam theory is not completely consistent with the three-dimen­
sional theory. Every time we constrain a system, we pay a price. In the present 
case, we constrained the deformation map so that cross sections of the beam 
remain rigid. We pay for this simplification in the constitutive equations and 
in the satisfaction of equilibrium locally within a cross section. 

Poisson's effect. The ramification of the rigid cross section assumption is 
that the normal and shear strain components in the plane of a cross section van­
ish; in our coordinate system that means £11 = £22 = 0 and £12 = £21 = 0. 
This constraint on the strains is not a problem for the shear strain components 
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because the shear stresses and strains are uncoupled in the constitutive equa­
tions (for example, Sn = ^/uEn)- Therefore, vanishing shear strains simply 
implies vanishing shear stress. The normal strains are another story. 

The constitutive equations for isotropic hyperelasticity have an inherent 
coupling of the normal strains and stresses. The stresses are given by Hooke's 
law as S = Atr(E)l + ^ E . Since tr(E) = £33 for kinematic hypothesis of the 
beam, we have 5ii = 522 = A^ss. Now, from Hooke's law 533 = (X-\-2^)E^^ 
so 5ii = 522 = '̂ '̂ 33, where v is Poisson's ratio. Thus, the constraint induces 
normal stresses in the plane of the cross section owing to Poisson's effect (ten­
sion in one direction causes lateral contraction of the dimensions perpendicu­
lar to the direction of tension). Observational evidence on the behavior of 
beams would indicate that these stresses tend to be rather small. In fact, it is 
possible that the presence of these stresses will violate the traction boundary 
conditions on the lateral surface of the beam. For a beam with a traction-free 
lateral surface, we can argue that the normal stresses Sn and 522 are very small 
because the cross-sectional dimensions are small compared with the length of 
the beam. We would like to make the assumption that 5ii = 522 = 0, but that 
violates the precept of mechanics that we can specify either the motion or the 
force at a point, but not both. 

Let us examine what would have happened if we had made the assumption 
of vanishing normal stress and not the assumption of vanishing normal strain. 
We have done it before. We made exactly that assumption for the uniaxial ten­
sion test in order to recast the constitutive equations in terms of Young's modu­
lus and Poisson's ratio. When we made the assumption that 5ii = 522 = OjWe 
got the constitutive relationship 533 = C£'33, rather than 533 = (A + ^ )£33, 
which results for the vanishing strain assumption. This gives us a way to par­
tially recover from our difficulties. In the constitutive relationships for beams, 
the quantity E= X-\-2fi appears repeatedly. If we simply substitute the value 
of Young's modulus E=C instead, then the results of beam theory accord well 
with observation. 

Equilibrium inconsistencies. Because we are working with stress result­
ants, we consider the equilibrium of the stress field over a cross section only 
in an average sense. On average, the equations of equilibrium are exactly con­
sistent with the three-dimensional theory. However, locally we may fail to sat­
isfy equilibrium. For the beam, the most obvious failure concerns the distribu­
tion of shear stresses over the cross section. 

The kinematic hypothesis suggests that the shear strains will be constant 
over the cross section. In reality, owing to the presence of shear stresses, the 
cross section must warp out of its plane. The restraint of warping gives beam 
theory slightly more stiffness than the three-dimensional theory or observation 
would indicate. The local equilibrium equations suggest that the normal stress 
is related to the gradient of the shear stress over the cross section. If the normal 
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stress is linear, as the kinematic hypothesis suggests, then the shear stress must 
be quadratic rather than constant. 

The inconsistency can be neutralized by modifying the constitutive equa­
tions slightly. The modulus for the shear strains that comes from the three-di­
mensional theory is simply the product fiA of the Lame parameter and the 
cross-sectional area. If we adjust the area by multiplying by what has become 
known as the shear coefficient to give an effective area A', then the results of 
beam theory are better when shear deformations are important. For a rectangu­
lar cross section, the shear coefficient is approximately 5/6. In general, this co­
efficient depends upon the cross-sectional geometry. The stress inconsistency 
remains, but shear stresses can be computed from three-dimensional equilibri­
um equations from the normal stresses as a post-processing task, if needed. 
Most elementary texts take an energy approach to determine a modification 
factor for the shear area. An alternative approach is to modify the kinematic 
hypothesis to include warping. Such an addition to the kinematic hypothesis 
leads to a more accurate theory, but for most beam geometries, this refinement 
is hardly necessary. 

Torsion. Along the same lines as the transverse shears discussed in the last 
section, one of the most significant problems with beam theory is that the 
plane-sections hypothesis overestimates the torsional stiffness ///, which 
comes out to be the shear modulus times the polar moment of the area for any 
cross section. We can demonstrate that the estimate is exact only for circular 
cross sections. For other cross-sectional shapes, out-of-plane warping must ac­
company the displacement and rotation of the cross section in order to satisfy 
the traction conditions on the lateral surface of the beam. 

To illustrate the effects of torsional warping, let us consider a bar fixed at 
the left end and subjected to a pure torque JCs (i.e., about the beam axis) at the 
right end. This problem is often called the Saint-Venant torsion problem. The 
deformation map for pure twisting of a beam about its axis is 

u(x) = ax3(e3 X p^) -h a\p{x^,x^t^ (390) 

where Po = (xi-ai)ei + (jC2-fl2)c2, «istherateof twist, and^(jCi,jC2)is,as 
yet, an unknown function. The point a is the center of twist of the cross section. 
According to the map, the angle of twist is zero at the end ̂ 3 = 0 and increases 
at the rate a to a maximum at the right end. The vector €3 x p^ is perpendicular 
to both Po and 63. Thus, for small a, the first term of the displacement map rep­
resents the displacement of a point initially located at p^ owing to a pure rota­
tion about the center of twist. This component of displacement takes place en­
tirely in the plane of the cross section. The second term of the map gives 
displacement out of the plane of the cross section. As such, the function 
V (̂̂ i>̂ 2) is called the warping function and represents the departure from the 
plane-sections hypothesis. Figure 91 illustrates some features of the torsion 
map for a rectangular section. 
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Figure 91 The linearized torsion map with warping 

We can compute the linearized strain from the displacement map and substi­
tute the result into the linear elastic constitutive equations to get the stress 

S = a//[(Vt/^ + 63 X p,) (8) 63 + 63 (8) [Vxp + e, x p,)] (391) 

The divergence of the stress tensor can be computed from the above expression 
and substituted into the equilibrium equation divS + b = 0, with b = 0, to 
give the following equation governing the warpmg function 

div(VV )̂ = 0 inQ (392) 

where dvv[Vtp) = Vhp = ^,a« is the Laplacian of the warping function. The 
tractions on the lateral contour F, with normal vector field n^ — AZICI + ̂ 262, 
must vanish because no tractions are applied there. Thus, from Slip = 0 we 
get the additional requirement for the warping function 

onF (393) (VV̂  + 63 X p^) • Or = 0 

The term V^ • nr gives the rate of change of ^ in the normal direction nr. The 
second term is 63 X p^ • Op = — (JC2 —02)̂ 1̂+ (^1"" ̂ i)̂ 2> which gives a clue 
as to why the circular cross section does not warp and noncircular ones do. The 
normal vector to the circular cross section has rii = Xi/r and ^2 = ^z/'*? 
where r is the radius of the circle. Qearly, 63 X p^ • nr = 0 for the circular 
cross section with a = 0. Consequently, the function xl){xi^x^ = 0 satisfies 
Eqns. (392) and (393). 

There is no net resultant on a cross section. Hence, the integral of 863 over 
the cross-sectional area should be zero. A straightforward computation with 
Eqn. (391) shows that 863 = a//(VV^ -h 63 x p^). Therefore 

I. [Vxp + 63 X p^)dA = 0 (394) 

This equation is sufficient to establish the location of the center of twist a. If 
the cross section is symmetric, then the center of twist lies along the axis of 
symmetry. The integral of the moments of the tractions about the origin 
(Po X 863) must be equal to the total applied torque Tt^, hence 
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Te^ = a/u I PoX (V^̂  + 63 x Po)dA 
JQ 

261 

(395) 

This result tells us that the torque T is proportional to the rate of twist a, but 
that the proportionality constant is not the shear modulus times the polar mo­
ment of inertia J. Let us define the torsional stiffness to be ///where 

/ = e. i p„ X {Vip + 63 X p„)dA 

It is straightforward to show that 

63 • p„ X (63 X p„) = -63 • [p„ x][p„ x]e3 = Po • Po 

Therefore, the torsion constant can be expressed in the form 

(396) 

(397) 

(398) 

where | = x — a. The consequence of the definition of torsional stiffness will 
be evident in the following example. 

Example 46. Torsion of an elliptical cross section. Consider an elliptical cross 
section, shown in Fig. 92, with major and minor semi-axes of a and by 

Figure 92 Torsion of an elliptical beam 

The boundary of the cross section is described by the equation 

b^xl + a^4 - a^b^ = 0 

Therefore, the normal vector n^has components n^ = nb^x^ and /Z2 = na^X2, 
where n is the scaling factor required to make the normal vector a unit vector 
(which plays no role in this calculation). The warping function for this cross sec­
tion can be taken as (see, for example Sokolnikoff, 1956) 

rp(Xi,X2) = -cx^X2 

where c = (a^ — b^)/(a^ + b^). A straightforward calculation will verify that 
VV = 0 and (V̂ ^ + eg x p^) • n^ = 0 on the boundary of the ellipse. The 
torsional stiffness Jean be computed by observing that 

©3 • (Po X VV̂  + po X (e3 X pj) = (l-c)xl + ( l + c ) r 
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Carrying out the indicated integral over the area of the cross section in Eqn. 
(396), we obtain the torsional stiffness 

Observe that the polar moment of the area of an ellipse is J = 7iab[a'^-\-b^)/4. 
Let the ratio of the major to minor dimension of the ellipse be y = a/b. Then 
the ratio of torsional stiffness to the polar moment of the area is 

J _ 4y2 
J ( l+y2)2 

This ratio is always less than or equal to one with equality only for a circular 
cross section (y = 1). For y > 1 the torsional stiffness is J ~ Jtab^. 

It should be evident that the first task of solving a torsion problem is the de­
termination of the warping function tp(xi,X2). There are a few alternative ap­
proaches to solving this two-dimensional boundary value problem. The reader 
should consult Sokolnikoff (1956) for a detailed discussion of this classical 
problem. In the context of beam theory, we might be satisfied to replace juJ 
with juJ and use beam theory without further modification. Problem 171 ex­
plores the issue of the effect of warping restraint. 

The Principle of Virtual Work for Beams 
The principle of virtual work for a three-dimensional continuum can be used 
to develop an equivalent principle for a one-dimensional beam theory. We shall 
compute the appropriate external work from the three-dimensional theory. The 
advantage of starting with the three-dimensional theory is that we need to 
know only that work is the product of force and displacement. Straightforward 
operations will yield the result that work for a beam includes terms computed 
as the product of moment and rotation. The key to reducing the principle of 
virtual work to one dimension lies in our kinematic hypothesis and our defini­
tion of stress resultants. 

The displacement map is constrained by the kinematic hypothesis. We will 
find it convenient to construct our virtual displacement field in accord with the 
same hypothesis. Hence, our (three-dimensional) virtual displacement field 
can be expressed as 

li(x) = W(x,) + «(X3) X p(x„X2) (399) 

where W(jC3) and ©(jCa) represent the virtual displacements and rotations of the 
beam. The external virtual work is simply the product of the applied body 
forces and tractions with their respective virtual displacements, integrated 
over the volume and surface of the beam 
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dsdx2, WE = \ \ h 'XLdAdx^ + t r - u 
Jo JQ Jo JY 

to 'VLdA + t̂  HtZA 

(400) 

+ 

where b is the body force, tp is the applied traction on the lateral contour of the 
beam, t̂  is the applied traction field acting on the cross section Q^ at x^ = 0, 
and t̂  is the applied traction field acting on the cross section Q^ at x^ = €. Sub­
stituting Eqn. (399) into (400) and carrying out the appropriate integrals over 
Q, r, Q„ and Q ,̂ we obtain a one-dimensional expression for the external 
virtual work. Note that 

b n = b ( w + e x p ) = w b + 5 ( p x b ) 

Each of the integrands in Eqn. (400) can be handled in a similar fashion. The 
first two terms in Eqn. (400) can be expressed as 

//•(/r^^^ 
Observe that the terms in parentheses are precisely our definitions of the result­
ant of the applied loads q(jc) and m(x), respectively. We can use a similar argu­
ment for the third and fourth terms in the definition of external virtual work. 
These terms can be rearranged to read 

W(0) • j iodA -\- 5(0) • J pxt^dA 

+ W(€) ' I t^dA + B(€) • I pxt^dA 

Qearly, the four cross-sectional integrals are precisely our definition of the re­
sultants of the tractions on these sections q ,̂ m ,̂ q ,̂ and m .̂ Thus, in the con­
text of the kinematic hypothesis, these four terms exactly account for all of the 
virtual work done by the traction forces on the ends of the beam. We can also 
see that q ,̂ q ,̂ m ,̂ and m^ are the natural forces conjugate to the virtual dis­
placements W(0), W(€), ^(0), and ^(€), respectively, in the sense that they 
completely characterize the work done. 

Combining these results, we can see that the external virtual work done by 
the forces acting on our beam in going through a constrained virtual displace­
ment TI = W - f i 5 x p i s 
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Ws {q(x) • W(x) + m(x) • e(;c)) dx 

+ q„ • W(0) + q, • W{€) 

+ mo • 9(0) + m̂  • F(€) 

(401) 

Again, q(jc) is the net applied force along the axis of the beam, m(jc) is the net 
applied moment along the axis of the beam; q̂  is the net applied force and m^ 
the net applied moment acting at x^ = 0; and q̂  is the net applied force and 
m^ the net applied moment acting at Xs = £. All of these quantities have been 
defined previously, and are shown in Fig. 93. Again, we see that the kinematic 
hypothesis allows us to integrate out the cross-sectional dependence, leaving 
us with quantities depending only on the axial coordinate. The crucial observa­
tion is that, within the context of the kinematic hypothesis, this expression for 
the external virtual work is exactly consistent with the three-dimensional 
theory. 

Observe that moment is the natural dual of rotation, in the sense of virtual 
work. In addition to work done by forces multiplied by their respective dis­
placements, we must include moments multiplied by their respective rotations 
in our accounting for the work done by the system. All theories that introduce 
the concept of moment have this feature, including plates and shells. Of course, 
both moment and rotation must be reckoned with respect to the same axis (i.e., 
they must both use the same p in their definition). 

The principle of virtual work is a valuable tool with which to consider the 
conjugateness of stress and strain resultants. We saw in the derivation of the 
principle of virtual work that a measure of internal virtual work involving the 
product of stress and strain appeared naturally. It had the form 

Wr = I S 'VudV (402) 

You might expect that if a reduced theory is truly compatible with the three-di­
mensional theory, then an analogous expression for internal virtual work in 
terms of the resultant quantities should result. In fact, we can use this equiva-

nko 

m(x) 

Figure 93 The applied forces on a beam 
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lence to define which resultant strain measures are appropriately conjugate to 
the defined stress resultant measures. This equivalence is particularly impor­
tant since we defined stress resultants without regard to the specific kinematic 
hypothesis, and the kinematic hypothesis had nothing to do with the definition 
of stress resultants. 

Let us substitute the virtual strain implied by our kinematic map. From Eqn. 
(378) we have 

W;= S • [(W + 63 x ^ + « 'X p ) 0 e 3 " ©jtMdxa 
Jo JQ 

^0 JQ 

+ 63 X 5 + 0' X p) • Se3fiWdtc3 

I (W' + €3 X 5) • I Se3^ 4- 6' • I p X Se3^ j dx^ 

where we have noted that the product S • 0 = 5^0^ = 0 because S is sym­
metric and 0 is skew-symmetric (verify that this is always the case). Recogniz­
ing the definitions of resultant force and resultant moment, we find that the ex­
pression for internal virtual work takes the following form 

(403) 

where F̂  - W + 63 x 9and x̂  = ^ ' are the virtual strain resultants. 
The final form of the internal virtual work is interesting and important. Each 

term in the expression is analogous to stress times virtual strain. In the present 
case, this analogy translates to stress resultant times virtual strain resultant. 
Thus, we can see that the resultant strains are conjugate to the resultant stresses 
in the sense of virtual work. Notice that the demonstration of conjugateness did 
not involve the constitutive equations. The principle of virtual work is a very 
powerful method for finding what the appropriate strain measure should be ac­
cording to how stress is defined. 

The statement of the principle of virtual work is basically the same as for 
the little boundary value problem: If the external work is equal to the internal 
work for all virtual displacements satisfying the strain displacement relation­
ships, then the equations of equilibrium are automatically satisfied. As usual, 
let us define a functional G to be the difference between the internal and exter­
nal virtual work. This functional has the form G(s, v) = W/ — WE, where the 
force resultants are represented as s = [Q, MJ^andthe virtual displacements 
and rotations are represented as V = [W, 5]^. The principle of virtual work is 
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M' + 63 

If G(S,V) 

Q' + q = 
X Q + m = 

= 0 

0 

0 

we 

Q(0) 
M(0) 

^(OJ), 

= -qo 

= - n i o 

then 

Q(€) = 

M(€) = 
q« 

= nif 

where 95(0, () is our collection of admissible virtual displacements. As usual, 
the principle of virtual work gives us a vehicle for making approximations. The 
main difference with the little boundary value problem is that we must specify 
the basis functions for w and 0 independently from each other because they 
are independent fields. 

We can express the virtual-work functional for the three-dimensional beam 
in terms of only displacements by substituting the constitutive equations. To 
economize notation let us define 

D = 
A S ' 

e = 
' €0' 

f = ' q" 
m [:] (404) 

where €0 = w'+ 63 x Oandx^ = 0'are the strain resultants associated'with 
the real displacement. The virtual-work functional for a beam takes the form 

• 1 : G(v,V) = (e^De-f^v)dx - tlv(0) - fjv(€) (405) 

where f̂  = [ q ,̂ m^] ̂  and f̂  = [ q ,̂ m^ ] ̂ . This expression can be used in con­
junction with the Ritz method to generate approximate solutions to the three-
dimensional beam problem. 

The Planar Beam 
A great number of practical problems can be idealized as planar problems. The 
assumption of planar behavior comes at a fairly high price, the cost of which 
we can clearly see from the equations for the beam in three dimensions. First, 
the loading must be such that it does not excite out-of-plane motions. Second, 
the cross sections must be symmetric with respect to the plane of loading. 
Qearly, the centroid of the section will lie on the line of symmetry, and this line 
should be taken as the coordinate axis. 

A planar beam could, of course, lie in either of the two planes Xi — JC3 or 
X2 — X3. The beam has no way of knowing about the coordinate system we 
choose to describe it. Thus, the results must be the same either way. Here we 
shall take the plane of the problem to be the Xi - x^ plane. Let us make some 
notational simplifications for discussing the planar problem. Let the axial dis­
placement be called 1V3 = w, the transverse displacement Wi = w, and the 
rotation of the cross section 62 = 0. Let the axial force be called Q^ = N, the 
shear force G1 - G> and the bending moment M2 = Af. Let us further assume 



N' + n = 0 

Q' +q = 0 

M' + Q + m = 0 

N = EAu' 

Q = GA(w' 

M = Eie' 

-6) 
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that the axes are centroidal. The equations governing the planar (Timoshenko 
beam) problem are 

(406) 

where, in addition to the terms already defined, we have let n{x) represent the 
applied axial load, q{x) the applied transverse load, and m{x) the applied mo­
ment. Each of these is a scalar function of jc and, hence, their direction is fixed 
{n along the axis, q perpendicular to the axis, and m out of the plane of the 
page). We have also used E to stand for Young's modulus and G= juXo stand 
for the shear modulus of the material. As already defined, A is the cross-sec­
tional area and / is the second moment of the area about the centroidal axis. 

The first thing to notice about the linear planar beam equations is that the 
axial components of force and displacement are uncoupled from the shear and 
bending components, but that the shear and bending components are coupled 
to each other. This feature is one that makes beam theory interesting. The sec­
ond thing to notice is that the equations constitute a system of six first-order 
differential equations. The equations can be recast in terms of only displace­
ment variables at the price of raising the order of the differential equations. The 
shear and bending equations can be rewritten by substituting the constitutive 
equations (assuming that the moduli £/and GA are constant) into the equilibri­
um equations as follows 

Eie" -\-GA(w'-e) + m = 0 
^ ^ (407) 

GA(w"-e')'\- q = 0 ^ ^ 
The equations can be recast into a form more favorable for direct integration 
by differentiating the first equation once and subtracting the second equation. 
The resulting equation can be used with the first equation to give the equivalent 
system 

^''"' = ^ - ' " ' (408) 
GAw' = GAe-EId"-m 

The first of these equations can be integrated directly to obtain an expression 
for the rotation 6(x). This function will be known, except for the three 
constants of integration. Substituting the results mto the second equation and 
integrating once gives the expression for w(x), with one additional constant. 
Because the system is essentially a fourth-order differential equation, it will 
always involve four integration constants that must be determined from bound­
ary conditions. 

There are a variety of possible boundary conditions, some of which are 
shown in Fig. 94. Notice that a boundary condition can be one of two types: 
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I 
w(0) = 0 
(9(0) = 0 

G(̂ ) = 0 
M(€) = 0 

w(0) = 0 
M(0) = 0 

w(€) = 0 
M(€) = 0 

Figure 94 Boundary conditions for a cantilever and simple beam 

conditions on the displacement (or rotation, which we think of as a generalized 
displacement) or conditions on the force (or moment, which we think of as a 
generalized force). Boundary conditions, in terms of force, must be translated 
into statements involving displacements in order to be implemented into our 
theory. This translation can be accomplished with the constitutive equations. 
Thus, the condition (2(€) = Ocanbeexpressedas GA(>v'(€) —0(€)) = 0,and 
the condition M(€) = 0 can be written as EIO'(() = 0. 

We must, in general, consider the possibility that end loads will be pre­
scribed. Certainly, at points of fixity (places where the displacement is pre­
scribed), end reaction forces accrue. At the end JC = 0, let us call the applied 
(or reacting) axial force AẐ, shear force qo, and moment m .̂ At the end JC = €, 
let us call the applied (or reacting) axial force n ,̂ shear force q^, and moment 
m^. These forces are related to the internal stress resultants through the Cauchy 
relations 

- Az, = N(Ol -q^ = 2(0), - m, = M(0) 
n, = N(e), q, = e(€), m, = M(€) 

(409) 

The positive sense of the three internal stress resultants is shown in Fig. 95. 

N \—I X 

X3 X2 
Q^ 

X-Dt-
Figure 95 The convention for positive stress resultants for a planar beam 

Virtual-work functional for the planar Timoshenko beam. We are now 
ready to state the principle of virtual work for a beam with shear deformation. 
For convenience, let u = [w,>v,0]^and u = [w,vv,0]^. Let 
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D = 
EA 0 0 ' 
0 GA 0 
0 0 EI 

e = 
r u' ] 
w'-e 

6' 
q = 

n 

q 
m_ 

269 

(410) 

With these definitions, the virtual-work functional G(u,H) = Wj- WE for the 
planar beam can be written as 

G(u,u) = (e^De-q^UJdlx - q,̂ ll(0) - q[u(€) (411) 
i Q 

where q̂  = [«^,9o,/w^]^and q̂  = [n^.q^^m^y. 
According to the principle of virtual work, the system is in equilibrium if 

internal work is equal to external work for all choices of the virtual displace­
ment field. Thus, equilibrium can be stated as 

G(u,u) = 0 V n E ^(0,€) (412) 

where 9 (̂0, €) represents the collection of all of the admissible functions, de­
fined for values of jc between 0 and €, from which we can choose our virtual 
displacements. We have chosen the letter 9" to represent the collection to re­
mind us that we are talking about a Timoshenko beam. This collection contains 
functions that are well enough behaved that the highest derivative that appears 
in G is square-integrable. In the present case, only first derivatives of each of 
the three fimctions appear. Any continuous function will satisfy the require­
ment of square-integrability (i.e., kinks in the function are allowed), but any 
function with a jump discontinuity will not. 

As was mentioned in the section on the little boundary value problem, this 
statement of virtual work is most powerful if we can exclude the unknown 
reaction forces from the expression for external work. This exclusion can be 
accomplished if we simply insist that the virtual displacement corresponding 
to an unknown reaction be equal to zero at that point so that the product of the 
two is zero. Once this is done, the functional G involves only known forces and 
unknown displacements. We often see this restriction stated formally as a re­
stricted set of functions 9"̂  = {ll|ll = 0 on Q„}, which reads: the collection 
of all functions H that are zero on that portion of the boundary where displace­
ments are prescribed (and tractions are, therefore, unknown). 

The beam boundary conditions are special because of the cross-sectional ri­
gidity constraint, and Q„must be interpreted accordingly. For example, if the 
beam is completely fixed at the end x = 0 and is simply supported at the end 
jc = €, then the space of admissible functions would have the displacements 
and rotations equal to zero at x = 0, but only the displacements equal to zero 
atjc = €. Choosing a virtual rotation field that vanished at jc = € might severe­
ly impair the ability of the principle of virtual work in distinguishing between 
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different problems having different applied moments at that end (the value of 
zero is but one of the many choices). 

Example 47. Classical solution of the Timoshenko beam. Consider the cantile­
ver beam of length €, flexural modulus EI, and shear modulus GA subjected to 
a uniform transverse load q shown in Fig. 96. 

[ — r — T — 1 — ^ — I — I ^ 
If V f T V f y 

h ^ H 

Figure 96 Cantilever beam example 

Integrating the rotation equation three times, we obtain the result 

Eie{x) = -\qx^^\a^x^ + a2X + a2^ (413) 

This expression can be differentiated to give EI6" = —qx + a^. Substituting 
into the deflection equation, we have GAw' = GA0-EI6" so 

GAW =^\-\q:^^-\a^x^ + a2X + aA + qx-a^ (414) 

Integrating this expression once gives 

GAw(x) = ^ [ - ^ ^ j c ^ + ^ a i J C ^ + i f l 2 ^ ^ + «3^] + \qx^-a^x + a^ 

The boundary conditions are w(0) = 0, ^(0) = 0, w'{l)-e{t) = 0 (shear 
force vanishes), 6'(^) = 0 (bending moment vanishes). From the first of these 
we can conclude that a^ = 0, and from the second of these we obtain a^ = 0. 
From the third boundary condition we find, from Eqn. (414), that a^ = q£. Fi­
nally, from the fourth boundary condition we find, from the derivative of Eqn. 
(413), that ^2 = - ^ ^ V 2 . Thus, letting I = jc/€, the expressions for deflection 
and rotation are given by 

where we have defined fi = 12EI/GA£^ to be the dimensionless ratio of bend­
ing to shear stiffness. Note that the condition ^ -^ 0 reflects high shear stiffness 
and, hence, less deflection owing to shear. Substituting these expressions back 
into the constitutive equations, we can determine the distribution of the shear 
force and the bending moment 

Q(^) = GA{w'-e) = qe(^-l) 

M ( ^ ) = £ / ^ ' = ^ ( - | 2 + 2 | - l ) 

Note that the resultants Q and M do not depend upon fi since the problem is stati­
cally determinate (that is, we could have integrated the equilibrium equations 
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directly and found the two integration constants without appealing to the dis­
placement boundary conditions). 

The importance of shearing deformation. How important is shear for a 
typical case? Consider a rectangular cross section of depth h and width b. For 
this case, the value of the shear ratio is j8 = {E/G)Qi^/('^), Qearly, there are 
two aspects that are important to the decision whether or not shear is important. 
The first aspect is related to the material properties. For an isotropic material, 
the ratio EIG is approximately 2, although for a material like rubber this ratio 
is much larger. For a typical beam, the ratio of depth to length is usually not less 
than h/i = 1/10. Consequently, we do not expect ^ to be much larger than 0.02 
for typical situations. However, there are situations with either very short 
beams or rubber-like materials where shear deformation can be important. 

A Ritz approximation for the planar beam. Approximate solutions to the 
planar beam problem can be constructed with the Ritz method. There are two 
field variables, w{x) and 6{x), so each must be expressed as a linear sum of ba­
sis functions. Each must have a virtual displacement counterpart W{x) and 
6{x\ and those virtual displacements must have a basis function expansion. As 
usual, the approximation of the real displacement fields must satisfy the essen­
tial boundary conditions, and the approximation of the virtual displacement 
fields must satisfy the homogeneous essential boundary conditions. Let us 
write the approximations as follows 

w{x) = w^x) + h(jc) • a, e(x) = 9o(x) + g(x) • b 

where Wo(x) and 6o(x) are known functions that satisfy the nonhomogeneous 
boundary conditions, h = [hi,.. .,hf^Y and g = [gi,.. .^SMV are the base 
functions for w(x) and 6(x), respectively, and the constants a = [fli,..., Uj^Y 
and b = [b^,..., b^Y are the unknowns. The virtual displacement fields can 
be expressed in a similar manner as 

w(x) = h(x) • a, e(x) = g(jc) • B 

It is, of course, possible to select the hi(x) and gi(x) from the same class of 
functions, but there is no need to (in fact, it may be preferable not to) have the 
same number of terms in the expansions for w(x) and 0(x). Thus, in general, 
N r^ M. Finally, we should recall that our choice to approximate the virtual 
displacement fields with the same basis functions as the real displacement 
fields is the Galerkin approach. 

If we substitute these approximations into the virtual-work functional, Eqn. 
(411), we get the following discrete version of the functional (neglecting the 
axial contribution) 

G(a,b,a,b) = â [K̂ â + K''^b-f''] + b̂ [K '̂'a + K^'b-f^] (415) 
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where the elements of the coefficient matrices K'''', K''̂  K^% and K̂^ can be 
computed from the basis functions as follows 

K'̂ '̂  = GA[h'][WYdx, K''̂  = ~ GA[h'][gY dx 
Jo Jo 

K*" = - I GA[g][h'Ydx, K"" = I [EI[g'][g'Y+GA[g][gY]dx 
Jo Jo 

and the elements of the load matrices V and f ̂ can be computed as 

Jo 

f*= {mg + GA{w,'-d:)g-EId,'g')dx + m,g(0) + m,g(€) 
Jo 

If G(a, b, a, B) = 0 for all choices of (a, B) then the principle of virtual work 
satisfies equilibrium to the degree possible within the context of the approxi­
mating basis. From the (discrete) fundamental theorem of the calculus of varia­
tions, G(a, b, a, B) = 0 if and only if 

(416) 
K̂ '̂ a + K^̂ b = f̂  

These equations serve to determine the unknown constants a and b, as illus­
trated by the following example. 

Example 48. Ritz method for Timoshenko beam Consider again the cantilever 
beam subjected to uniform load q, shown in Fig. 96. Recall that the beam has 
length €, bending modulus EI, and shear modulus GA. Let us solve the problem 
using the Ritz method. Let the transverse displacement and rotation fields, and 
their virtual counterparts, be approximated as 

w{x) = a,x-\-a2^. Six) = b,^ 

w(x) = a,x-^a2^, 0(x) = b,^ 

We can identify the basis functions as /ij = JC, /12 = x^/£, and gj = x/£. We 
have chosen to normalize the functions by £ in the manner shown so that all of 
the constants in the Ritz expansion are dimensionless. Let fi = llEI/GAi^ be 
a dimensionless ratio of bending modulus to shear modulus. The discrete equi­
librium equations, i.e., Eqn. (416), have the explicit form 
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GAi 
12 

12 12 - 6 

12 16 - 8 

- 6 - 8 4+)3 J[ 1̂ J 

Solving these equations, we obtain 

6 

""' ~ GA' ''^~ GA\7fy ^' ~ GA[fij 

and, therefore, noting that fiOA = 12£"//€ ,̂ the approximate solution 

H<.) = ^((^-2)f^-^f), ^« = - i d ) 
Observe that the rotation field does not involve the shear modulus GA, in accord 
with the result of the classical solution. Note that the tip deflection, for )̂  = 0 
(i.e., no shear deformation) is q£^/12EI, which is 33% less than the classical 
solution of qi^l%EI. Problem 175 examines the Ritz approximation to this prob­
lem in more detail. 

The BernouUi-Euler Beam 
We can observe from the preceding discussion that shear deformations are 
often negligible. If we make the assumption that they vanish altogether, we can 
reduce the number of unknown functions in our theory from two to one, name­
ly the deflection w(x). The assumption that shear deformations are zero can be 
expressed as W{x) — 6(x) = 0, from our definition of shear deformation. If we 
introduce this constraint, then the governing equations of the Bernoulli-Euler 
beam take the form 

N' + n = 0 

Q' +q = 0 

M' + Q + m = 0 

N = EAu' 

Q = reaction 

M = EIw" 

It would appear that the only thing that happened was that we changed the mo­
ment constitutive equation and completely lost our shear constitutive equation. 
The shear is now a reaction force associated with the constraint, and, thus, 
computable only from an equilibrium equation. However, now we can make 
the same substitutions as before and derive a single equation for transverse 
bending involving only the unknown w 

[EIw'')" = q m (417) 

This equation is somewhat simpler to solve than the shear beam equations, but 
it still gives rise to four constants of integration. We must still get these 
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constants from the boundary conditions. The constraint changes the boundary 
conditions somewhat. First, conditions on rotation are now expressed as condi­
tions on the first derivative of w. Conditions on the moment are now conditions 
on the second derivative of w. The important change is the condition on shear. 
Since we lost our constitutive equation in implementing the constraint we must 
find the shear Q from equilibrium. Equilibrium of moments gives the relation­
ship Q = —M'—m= — EIw'" —m. Thus, a condition on shear can be trans­
lated to a condition on the third derivative of w. 

Example 49. Classical solution for Bernoulli-Euler beam. Consider again the 
cantilever beam subjected to a uniform transverse load q shown in Fig. 96. Let 
us assume that shear deformations are negligible, and, hence, that the Bernoulli-
Euler theory is appropriate. Integrating Eqn. (417) four times, we obtain 

EIw(x) = - 2^qx^-\-^aiX^-^^a2X^-[-a^x-\-a^ 

The boundary conditions are w(0) = 0, w'(0) = 0, -EIw"'(£) = 0 (shear 
force vanishes), EIw"(£) = 0 (bending moment vanishes). From the first of 
these we can conclude that ^4 = 0, and from the second of these we obtain 
^3 = 0. From the third boundary condition we find that a^ = q£. Finally, from 
the fourth boundary condition we find, from the derivative of Eqn. (413), that 
2̂ = ~ ̂ ^^/2. Thus, letting ^ = x/£, the expressions for deflection and rota­

tion are given by 

w(^) = 
24EI 

-^^ + 4^3-6^2 

Substituting these expressions back into the constitutive equations, we can de­
termine the distribution of the shear force and the bending moment 

e ( | ) = -EIw'" =q£(^-l) 

These results correspond exactly with those obtained previously for the Timo-
shenko beam in the limit as ^ -* 0. 

Virtual work for the planar Bernoulli-Euler beam. We are now ready to 
state the principle of virtual work for a beam without shear deformation. For 
convenience, let u = [M,w,>v']^and H = [M,>V,VV']^. Let 

D = 
'EA 0 ~ 
_ 0 EI _ e = q = 

n 

q 
m 

(418) 

With these definitions, the virtual-work functional G(u, u) = W/ - WE for the 
planar Bernoulli-Euler beam can be written as 
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G(u,n) = (e^De-q^B)dx - qju(0) - q[n(€) (419) 
Jo 

where, as before, q̂  = [Wo,9o,/n^]^and q̂  = [Az ,̂̂ ,̂m ]̂̂ . Note that every­
where the variable Q appeared in the previous theory, it has been replaced by 
W in the current theory. Since there is no shear deformation, the term involving 
shear vanishes identically. According to the principle of virtual work, the sys­
tem is in equilibrium if 

G(u,n) = 0 V n E aB(0,€) (420) 

where 9B(0, i) is the collection of functions from which the virtual displace­
ment fields u(x) and w(x) can be chosen. This collection of functions is differ­
ent from 3"(0, €) for a variety of reasons. First, 3 (̂0, €) contained functions for 
w, w, and Q, while S(0, €) has only functions for u and >v. Thus, obviously, the 
dimension of the two spaces is different. A more important difference is the 
restriction implied by the order of derivatives that appear in the BemouUi-Eul-
er version of the principle of virtual work. There are second derivatives of w 
and >v in the expression for G (whereas only first derivatives appeared in Tlmo-
shenko beam theory). Thus, any function whose second derivative is square-
integrable is admissible. Now our space rejects functions with kinks in them 
because the first derivative of such a function would be discontinuous at the 
point of the kink and, consequently, the second derivative would not be square-
integrable. The shear beam theory allowed kinks as being a physically reason­
able result of shear deformation. The BemouUi-Euler theory does not allow 
kinks because the constraint w' - 0 = 0 implies more smoothness in the solu­
tion. 

Again, for practical applications we generally restrict the virtual displace­
ment to be zero on that portion of the boundary where displacements are pre­
scribed. Like the shear beam, the part of the boundary where "displacement" 
is prescribed for the BemouUi-Euler beam is any point where the displacement 
or rotation is known a priori. Therefore, the essential boundary conditions in­
volve both w and W, Some common boundary conditions for the prismatic 
BemouUi-Euler beam include 

>v = 0 
w = 0 

w'' = 0 w 

w 

in 

= 0 
= 0 
= 0 

fixed end 
simple support 
free end 

(421) 

Note that you cannot prescribe the displacement and the shear at a point; nor 
can you prescribe the slope and the moment at a point. 
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A Ritz approximation for the Bernoulli-Euler beam. We can apply the 
Ritz method to the virtual-work functional for the BemouUi-Euler beam. Let 
us approximate the real and virtual transverse displacement as 

w{x) = Wo{x) + h(x) • a, w{x) = h(x) • a (422) 

where the functions hn(x) are known base functions, selected from the collec­
tion of admissible functions. Substituting these expression mto the virtual-
work functional, and carrying out the integrals, we obtain the discrete form of 
the functional (ignoring axial deformation) 

G(a,a) = a^[Ka~f] 

where the matrices K and f are 

Jo 
K = EI[h"][h"Ydx 

Jo 
'^mh'-EIWo''h"]dx 

+ 9,h(0) + 9,h(^) + w,h'(0) + m,hX€) 

Since G(a, a) must vanish for all a, the equilibrium equation that results from 
the principle ofvirtual work is Ka = fas before. Like the little boundary value 
problem, this equation determines the coefficients of the approximation for the 
field w(x). Once this field is known, the moments and shears can be computed 
by differentiation. 

Mixed boundary conditions. It is possible to generalize the notion of 
boundary conditions beyond those that are expressed as pure constraints on 
motion or force. Boundary conditions that involve combinations of force and 
displacement are called mixed boundary conditions. Mathematically, we wish 
to include conditions (at either jc = 0 or x = €) of the general form 

CoW + Ciw' + C2w'' + C3w'" = 0 (423) 

where Co,..., c^ are constants associated with the problem description (i.e., 
they are not unknowns). Although Eqn. (423) applies to BemouUi-Euler beam 
theory, this same generalization is possible for any theory. The key observation 
is that the number of derivatives included must be one less than the order of the 
differential equation. 

The mixed boundary condition is an artifice of modeling that replaces a 
truncated part of the system by a spring. The most common types of mixed 
boundary conditions come from linear springs. The spring constant k must be 
specified as part of the problem description as the following example illus­
trates. 
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Example 50. Mixed boundary conditions. Consider the beam shown in Fig. 97. 
The left end of the beam is restrained from translation. The moment developed 
by the spring is related to the rotation at that point by Ms = kgds, where 
6s = w'(0) is the rotation experienced by the spring. The right end of the beam 
is free to translate horizontally and to rotate, but the spring elastically restrains 
vertical motion. The force developed by the spring is related to the deflection 
at that point by Fs — ky,Ws, where ŵ  = w(€) is the deflection experienced by 
the spring. 

xvxW^_ u. - *.»'(0) <<»> n < ii-

Figure 97 An example of a beam with elastic supports 

To find the appropriate boundary conditions, we must take a freebody dia­
gram of the ends of the beam, as shown in Fig. 97. All of the displacement and 
force quantities are drawn in their positive sense: The moment A/(0) is anticlock­
wise because it acts on the positive x face of the cross section. The shear Q(£) 
is down because it acts on the negative x face of the cross section (see Fig. 95 
for the sign convention). The spring forces are shown resisting positive motions. 
The equations of equilibrium give the appropriate mixed boundary conditions. 
At the left end of the beam we are considering in our example, we have the condi­
tion Afs-M(0) = 0, while at the right end we have F, + G(€) = 0. These rela­
tionships must be restated in terms of the displacement w as 

w(0) = 0 kQw'(0) - Elw"(0) = 0 

^"(^) = 0 ky,w(£) - EIw'"(e) = 0 

These four boundary conditions can be used to determine the four constants of 
integration that appear when we solve the governing differential equation, just 
as we did for pure boundary conditions. 

What if we wanted to include the springs in the principle of virtual work? 
We must include the virtual work done by the springs in going through their 
respective motions. To wit, let us take 

G(w,w) = {EIw''w'' --qw)dx - qoW{0) - rnfW\£) 4̂24) 

Two of the boundary terms have been replaced by elastic spring terms. Why 
do those terms have a positive sign in the work expression? If the displacement 



278 Fundamentals of Structural Mechanics 

is positive, then the force induced in the spring acts in the negative direction, 
and vice versa. If you think about it, the springs are really elastic elements, like 
the beam itself. Thus, the work associated with them is more like internal work. 
These terms have a character more like the internal work than the external 
work. It does not matter what name you call them, so long as the work is proper­
ly accounted for. 

Let us now reconsider the question of restricting our space of virtual dis­
placement functions on the part of the boundary where displacements are pre­
scribed. In the present problem, we know the moment m^ = 0 because it is pre­
scribed. We do not know the force qo, it is a reaction force. To remove it from 
our functional G, we must select functions that have vP(0) = 0. Notice that our 
spring terms involve only our unknown displacement function, and, hence, 
these terms are not troublesome in the same sense that the reaction force terms 
are. Therefore, we do not need any restrictions on the space of functions for 
virtual displacements to take care of these terms. In fact, if we did restrict these 
terms, we would impair the ability of the principle of virtual work to distinguish 
among similar problems with different spring constants; clearly, an untenable 
proposition. 

Structural Analysis 
One of the most important applications of beam theory is in matrix structural 
analysis of frames. A frame is an assemblage of beam elements that are con­
nected together at their ends. The main additional feature in structural analysis 
over the analysis we have done for the single elements is the communication 
of force from one element to the next. In many ways this problem is very much 
like the application of finite elements in the previous chapter. The element 
stiffness matrix and force vector can be computed from element shape func­
tions and then assembled into the global equations, as shown in Chapter 6. 

To fix ideas, let us consider the typical framed structure shown in Fig. 98. 
The structure consists of nine members rigidly connected at eight joints 
(shown as squares in the figure). Element e is shown separated from the struc­
ture in (b) and (c). Each element has an "i" end and a '7 " î̂ d. The / end is asso-

_Sr;2^^Lr 
(') n-,. 

JCi = OC 

Figure 98 Structural frames: (a) an example of a reticular structure and global 
coordinates, (b) element e in global coordinates, (c) element e in local coordinates 
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dated with global node number ix(e, 1) = 4 and the; end is associated with 
global node number ix(e, 2) = ;V For the planar frame each node has three de­
grees of freedom, which are in the order u = [ui^Ui.Oy, where u^ is the dis­
placement in the direction x^ and Ui is the displacement in the direction ^2. 
These degrees-of-freedom can be expressed in the local element coordinates 
as u = [u.WyOy, where u is the displacement in the direction x^ and w is the 
displacement in the direction Xi. The local displacements can be computed 
from the global displacements as u = Tu, where 

T = 
cost/̂  sin^^ 0 

— sin^ coŝ ^ 0 
0 0 1 

(425) 

where xp is the angle measured from Xi to x^. The global equation numbers are 
assigned in node order (the global node numbering is arbitrary). The three de­
grees of freedom of global node n are id(«, /) = 3( w — 1) + / for / = 1,2,3 
(i.e., the three degrees-of-freedom at that node) and n = 1,..., AT (the number 
of nodes in the structure). 

Let Ug = [ w, w, >v' ]^be the displacement field within the element (in local 
element coordinates). For element e we can compute the real and virtual dis­
placement fields as 

u.(^) = h^(^)B.^a, ile(^) = h^(^)B.̂ a (426) 

where a = [a[,..., aj]^anda = [a[,.. .,aj]^are arrays containing the nodal 
unknowns and their virtual counterparts. Note that â  is a 3 x 1 matrix con­
taining the unknown nodal displacement ii, for node / so that the matix a has 
dimension 3Â  x 1. The matrix 

B J ^ 0 .. 
0 .. 

h 
. T 

0 

Je 
0 .. 
T .. 

0 
0 

(427) 

isa6 X 3A7̂  matrix with a 3 x 3 transformation matrix Tat the block associated 
with node id{ie, 1:3) and a 3 x 3 identity matrix T at the block associated with 
node id(;e, 1:3). The purpose of the matrix Bgis simply to pick out the displace­
ment degrees-of-freedom from the global vector that are associated with ele­
ment e and rotate them to the local frame. The interpolation matrix h is 

h\i) = 
h, 

0 
0 

0 
h. 

h2 

0 h^ 

h^ 0 

h^' 0 

0 

hs 

hs' 

0 1 
K 
V . 

(428) 

where the beam element shape functions, shown in Fig. 99, are given by 

h, = ^'{3-2^) K = i'(^-i)e 
(429) 
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1 I 

o\iyi*i 
Figure 99 Planar Bernoulli-Euler beam shape functions 

and ^ = x/(. The choice of these shape functions is not arbitrary. In order to 
establish continuity of the displacement field from one element to the next we 
must use an interpolation that controls the displacements and rotations at the 
ends of the elements. The functions in Eqns. (429) are precisely the ones that 
can accomplish this goal. We must use a cubic interpolation for the field w be­
cause the theory computes the rotations as 0 = w' and the rotations must be 
continuous at the nodes. Hence, we must have continuity of the first derivatives 
of the interpolation functions for w. The roof functions are adequate to mterpo-
late the axial displacement. Additional shape functions could be used to im­
prove the interpolation, but the function and its first derivative must vanish at 
the element end so as not to introduce excessive interelement continuity. 

Let the element strains be e = [ w', w" ] ̂ .The element real and virtual strain 
resultants can be computed from the interpolation for element e as 

ee = ;^ af(^)Bra, e^ = j-^ ^[(1)8^ a 

where 

n^) = [ 0 ' 0 

(430) 

(431) 

Note that the prime in Eqn. (431) indicates differentiation with respect to the 
argument | . The term l/€e comes from the fact that the strains are derivatives 
with respect to x and d^/dx = 1/i. Using the change of variable for each ele­
ment and substituting the interpolations from Eqns. (426) and (430) we can 
write the discrete virtual-work functional in the form 

G(a,a) D,ffi,^d|B[a-B. 
Jo 

(432) 

with Qe = [n,q,mY being the distributed loads for element e, and D the 
constitutive matrix from Eqn. (418). Note that we used dx = igd^- We can 
write this result more compactly if we identify the element stiffness matrix and 
the element force as 
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Jo ^ Jo 
k , = j-%D,W,d^, f, = h , q , € , ^ (433) 

'o ^ Jo 

Notethatinthepresentapplicationkeis6 x 6 and fe is 6 x 1. Now the discrete 
virtual-work functional takes the simple form 

(434) G(a,a) = a 4 £ B,k,Bf a - £ B,fJ 
^ e=\ e=l 

Comparison with our earlier results shows that the stiffness matrix and right 
side vectors are computed as 

K = £ BABJ, f = I ; B,f, (435) 
e = l e=l 

Again, the summation over the elements is accomplished with the standard 
assembly process. The main difference from the assembly described in Chap­
ter 6 is that the B^ matrix contains the local-to-global transformation T. For this 
case the element stiffness matrix^and element force vector can be converted to 
the global frame as k, = t ^ k , t and f, = t ^ f̂  where 

T = 
T 0 
0 T 

(436) 

The transformed matrices can then be assembled directly as before. The MAT-
LAB code segment introduced in Chapter 6 has been slightly modified for the 
present case and is shown m Table 7. As before, this code assumes there are 
TVunknowns (three times the number of nodes) and Af elements. It also assumes 
that there is a routine to call to get the element stiffness matrix and element 
force (and assumes that this routine takes care of rotating these matrices to the 
global frame). 

Some of the nodal displacements are restrained by boundary conditions. 
These represent known values of some of the coefficients a. Once the equa­
tions are assembled we have a linear system of equations Ka = f. The known 
values of a can be multiplied by their associated columns of K and subtracted 
from both sides of the equation. The equations associated with the restrained 
degree-of-freedom have reaction forces on the right side in f. These equations 
can be used to determine those reaction forces. 

The preceding developments capture the essence of matrix structural analy­
sis. Extending these ideas to the three-dimensional beam and the Tlmoshenko 
beam is straightforward, but a bit more tedious. Because the virtual-work func­
tional for the Tlmoshenko beam involves, at most, first derivatives of the fields, 
it is possible to interpolate those fields with the roof functions. However, this 
interpolation suffers from a phenomenon called shear locking in which the dis­
crete structure is far too stiff because of a deficiency in the numerical approxi-
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Table 7 MATLAB code for the assembly process for a planar frame 

K = zeros(N,N); f = zeros(N,l); 

%.... Loop over all elements to assemble K and f 
for n = 1:M 

% Find the i-node, j-node 
inode = ix(n,l); jnode = ix(n,2); 

% Construct the assembly pointer array 
ii(l:3) = id(inode,1:3); ii(4:6) = id(jnode,1:3); 

% Ĵ etrieve element stiffness matrix for element "n" 
[ke,fe] = get stiffness (...) 

% Assemble element stiffness and force vector 
for i=l:6 
for j=l:6 
K(ii(i),ii(j)) = K(ii(i),ii(j)) + ke(i,j); 

end % loop on j 
f(ii(i)) = f(ii(i)) + fe(i); 

end % loop on i 

end % loop on n 

mation. Most textbooks on the finite element method have a good description 
of the locking problem (it also affects low-order 3D elements that are nearly 
incompressible through a similar phenomenon called volumetric locking). One 
cure for locking is to use higher-order interpolation functions. A cubic C° La-
grangian interpolation is sufficient to eliminate shear locking in Timoshenko 
beam elements. 

Additional Reading 

H. Goldstein, Classical mechanics, 2nd ed. Addison-Wesley, Reading, Mass, 
1980. 

J. T. Oden, Mechanics of elastic structures, McGraw-Hill, New York.(1967). 

I. S. Sokolnikoff, Mathematical theory of elasticity, 2nd ed., McGraw-Hill, 
New York, 1956. 
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Problems 
167. The beam shown below has a rectangular cross 
section of depth 4 and width 2, and has a length of 50 
length units. It has a uniform mass density that gives 
rise to a constant body force of b(jc) = - 2 62 (force 
units per length units cubed), and is subjected to a 
surface traction on its top surface that is bilinear with 
respect to X2 and x^ = x reaching a maximum value 
of 15 (force units per length units squared), as shown. 

Find an expression for the applied tractions tp(x). 
Find the resultant applied loads q{x) and in(jc) equiv­
alent to the surface tractions and body force. Find the 
distribution of resultant force Q{x) and resultant moment M(jc) along the beam. Find the 
displacements W(JC) and the rotations 6(JC) along the beam. 

To 
168. Consider the beam with square cross section, of di- ^ 
mension hbyh and length €. The beam has Young's modu­
lus C and shear modulus fi. The beam is subjected to hori­
zontal tractions on its top face, as shown. The body forces 1 1 
acting on the beam are negligible. The coordinate axes € 
shown are principal and centroidal. | ^ ^^Q^ ^ 

Find expressions for the applied force and moment per I | • 
unit length of beam, q(jc) and m{x), where x- x^is the axial | ^^ 
coordinate. Find the displacement and rotation field caused by the loading by integrating 
the governing beam equations (that is, find the classical solution). 

-̂ 2 
1 [1 

1 

1 X 

~Zi 

u 

169. Consider a beam of length i with 
square 2 x 2 cross section. The beam is sub­
jected to the applied traction field over the 
cross section at the end of the beam 

t^ = rACi( l+A:2)e3 

where r is the known magnitude of the loading. Find the resultant force and moment acting 
on the end of the beam. Assume that u(;ci, JC2,0), i.e., the beam is fixed at x-^ = 0. Find the 
resultant force field Q(ac) and the resultant moment field M(jc) that equilibrate the applied 
forces. Compute the displacement and rotation fields that result from the applied loads. 

170. The hollow box beam shown has a square cross 
section of dimension fe, thickness t < b, and unit 
weight Qt,. It is submerged in a fluid of unit weight QO. 
Recall that the pressure at any point in a static fluid is 
proportional to the depth h according to the relationship 
p = hQo. The unit weight of the air inside the beam can 
be taken as zero. The end is capped so that fluid cannot 
get inside. Plot the typical traction field tp acting on the u—^ 
lateral surface of the beam. Compute the resultant ap­
plied load q(x) and the resultant applied moment in(jc) 
that would be appropriate in order to treat the problem using beam theory. 

• ^ 

^3 

l^ 1 
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171. The Saint-Venant torsion problem is restricted to problems with constant rate of twist 
and traction-free lateral surfaces. One feature of this solution is that, at the fixed end, the 
rotation is restrained but the out-of-plane warping is not. Physically, such a boundary con­
dition would be very difficult to realize. One solution to this problem is to create a model 
in which the amplitude of warping is independent from the rate of twist of the beam. Con­
sider the deformation map 

u(x) = e(x^)(e^ X p) + (P(x3)y^(xi,x2)e^ 
where (̂̂ 3) is the angle of twist, (pix^) is the amplitude of warping, ^(x^, X2) is the warping 
function, and p = x^e^ -I-X2e2. Further, assume that the warping function ip(Xi,X2) is the 
Saint-Venant warping function derived in the text. Compute the strain tensor and use the 
linear elastic constitutive equations to show that the tractions on a cross section are 

863 = fi[(pVtp -H O'e^ X p] + Eq)'tpe^ 

where E = X-\-2^, and a prime denotes differentiation with respect to JC3. 
In addition to the polar moment of inertia J, defme the cross-sectional properties 

Ji = (p X Vrp) • e^dA, J2 = \ {^^P ' Vrp)dA, J^ = ip^dA 
JQ JQ JQ 

which can be computed once '(p(Xi,X2) is known. Define the stress resultants 

r = €3 • p X S e 3 ^ , W = e^' rpSe^dA, B = \ Vrp - Se^dA 
JQ JQ JQ 

where T is the usual torque. The stress resultants W and B are often called the bi-moment 
and the hi-shear. Substitute the expression for 863 to show that 

T = juJ^q) -\- jLLie', W = EJ^(p\ B = juJ2(p + fiJiO' 

Show that if ^(^3) = ^'(^3) = a, then the above results are consistent with the Saint-Ve­
nant problem discussed in the text. 

Using the definitions of the stress resultants, compute T' and W and show that 

r 4- r = 0, W -B -\- w = 0 

What are the appropriate definitions of the applied loads t(x) and w(jc)? 
Substitute the resultant constitutive equations into the resultant equilibrium equations, 

and show that the equations 

juJO" -H jujy -H / = 0, EJ^(p" - jLLf2(P - i^i^' + w = 0 
govern the spatial variation of rotation 6 and warping cp. These equations constitute a pair 
of second-order ordinary differential equations, and, therefore, we can expect four 
constants of integration that must be found from boundary conditions. What are the bound­
ary conditions for a free end and a fixed end? 

172. The method of initial parameters integrates the governing equations and substitutes 
the values at x = 0 to give the general form of the displacement function. For the Bernoul-
li-Euler beam, the transverse deflection can be computed as 

JO 



Chapter 7 The Linear Theory of Beams 285 

where Wo = KO), ̂ ^ = w'(0),Mo = A/(0), go = (2(0) are the initial parameters. Verify 
that the expression satisfies the governing differential equations of Bernoulli-Euler beam 
theory. This equation is particularly useful for those cases where Mo and Qo can be deter­
mined from overall equilibrium. Use the method of initial parameters to solve the problem 
of the cantilever beam under uniform load given as an example in the text. 

173. The method of initial parameters can be applied to the Timoshenko beam to give 

where \\^i(x) is the deflection according to Timoshenko beam theory and WBEW is the 
deflection according to Bernoulli-Euler beam theory (as given in Problem 172). Verify that 
the expression satisfies the governing differential equations of Timoshenko beam theory. 
Use the method of initial parameters to solve the problem of the cantilever beam under 
uniform load given as an example in the text. 

174. The three-dimensional rotation tensor A can be expressed in terms of three parame­
ters ^1, ^2, and 3̂ as 

\{e^,e2,e^ = 

ê  + ef - e | - e^ 2(61^2 + e^e^) 2(e^e^ - e^e^ 

2(̂ 1^2 - ^0^3) 4 " ?̂ + 2̂ ~ 4 2(̂ 2^3 + eo^i) 

2(^1^3 + 60^2) 2(^2^3 - eo^i) ^0 ~ ^? ~ ^2 + ^3 

where the parameter e^ has been introduced for convenience. This fourth parameter does 
not represent an independent parameter, but rather satisfies the constraint equation 
0̂ + ̂ 1 + ̂ 2 •*" ̂ 3 ~ 1- These parameters are called the Eulerparameters. Demonstrate that 

the tensor A is orthogonal by showing that A" ̂  = A .̂ Show that for small values of the 
parameters e^, ^2, and e^ the tensor can be expressed in the form A « I + W, where I is 
the identity and W is a skew-symmetric tensor. Show, therefore, that when the three pa­
rameters are small, they can be viewed as the components of the rotation vector 6, with 
6i = le^, and that W = 6 x . 

175. Reconsider the cantilever beam of length €, fixed at JC = 0, with bending modulus 
EI and shear modulus GA solved as an example in the text (Fig. 96). Examine the results 
of the Ritz method as you increase the number of basis functions taken from the sets 

h,{x)^\x,^ X •2 

€ ' € 2 ' • • " € ^ - 1 
g.(x\ e (^ ^ ^ ''"" 
giW ^ 1^, ^2' ^3' 

In particular, find general expressions for the ijth components of K'*'', K'*̂ , K'''̂ , K̂ ,̂ and 
the ith components of f'̂  and f ̂  when /I,(JC) = jc'/^'" ̂  and gi(x) = x'/^'. Solve the prob­
lem for (N, M) = (2,2), (3,2), (3,3), (4,3), (4,4). What do you expect to happen for high­
er-order approximations? Comment on the differences in the solutions obtained when 
M = N—1 versus those obtained with M = N. 

176. Prove that S • W = 0, or S^jW^j = 0, when S is a symmetric tensor and W is a skew-
symmetric tensor. Note that S • W = ê  • SWê . 
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i w ; w ; 
177. The prismatic beam shown has a cross section that 
is symmetric with respect to the plane of the page. The 
cross section has axial modulus £A, shear modulus GA, 
and flexural modulus £/. The beam is subjected to a uni­
form transverse load q(x) = -qo. Find the displace­
ments and rotations for the beam by directly integrating the governing equations. 

178. Resolve Problem 177 after making the Bemoulli-Euler assumption that w' = 0 
(i.e., there is no shear deformation). What is the difference between the two solutions? 

179. Use a polynomial basis to find an approximate solution to Problem 177 using the 
principle of virtual work for the beam including shear deformation. Which terms should 
you include? What order approximation is adequate? 

180. Repeat the virtual-work computation in Problem 179 for the Bemoulli-Euler beam. 

181. Carry out the integrations in Eqn. (385) to show that the tensors given in Eqn. (387) 
result. 

182. Consider the beam in Problem 177. Find an expression for the transverse displace­
ment w(x) using the principle of virtual work, using a quartic polynomial basis. Note that 
the problem has two essential boundary conditions and two natural boundary conditions. 

183. The principle of virtual work does not require that the assumed displacement func­
tions satisfy the natural boundary conditions a priori. Is there an advantage to satisfying 
the natural boundary conditions, too? What happens in Problem 182 if we do enforce the 
natural boundary conditions? 

• t Y 

t ir 
184. A continuous beam is one that has one or 
more intermediate supports. The extra boundary 
conditions are in excess of the four end conditions. 
Describe an approach to solving the following 
problem that exactly satisfies the differential 
equations everywhere in the domain, as well as the boundary and intermediate conditions. 
Find the classical solution to the given problem by integrating the governing differential 
equations. (Hint: It is useful to describe the solution independently in each segment and 
to enforce continuity by equating state variables at the place where the two segments join.) 

H 2 
185. The following prismatic beam has a cross sec­
tion that is symmetric with respect to the plane of the 
page. The cross section has flexural modulus EI. Axial 
and shear deformations can be neglected (i.e., use Ber-
noulli-Euler beam theory). The beam is subjected to a 
uniform transverse load q acting downward. The beam 
has deformable spring supports at the ends. At the left end, the support prevents translation 
in the vertical and horizontal directions and the spring elastically restrains rotations. The 
moment developed by the spring is related to the rotation at that point by Ms = k£^Os, 

-y 

^ . . , .,. T , ^ 

1 ^X 

r̂  

q 

Y, if ,, i 

H 



Chapter 7 The Linear Theory of Beams 287 

where Ss = ^(0) is the rotation experienced by the spring. The right end of the beam is 
free to translate horizontally and to rotate, but the spring elastically restrains vertical mo­
tion. The force developed by the spring is related to the deflection at that point by 
Fs = kws, where Ws = w(€) is the deflection experienced by the spring. What are the ap­
propriate boundary conditions for this problem? Solve the problem by integrating the dif­
ferential equations and using the boundary conditions to find the constants of integration. 
Revise the principle of virtual work to account for the work done by the springs. Estimate 
the deflection of the beam using a two-term polynomial expansion for the transverse 
deflection. That is, assume the real and virtual transverse deflections to be of the form 

w{x) = a^x + a2y , w{x) = UiX + ^27" 

What constraints do the assumed displacement field add to the problem? 

/ / 1' 186. In the derivations of beam theory, both in a clas­
sical sense and in a variational sense, no mention was 
made of concentrated forces. Describe a way to ac­
count for concentrated forces in solving the classical 
differential equations (for example, for a Bemoulli-
Euler beam). Describe how the concentrated forces should be implemented into the princi­
ple of virtual work. 

187. A beam on a Winkler elastic foundation accrues force in the foundation in proportion 
to the deflection of the beam according to f{x) = kw{x), where k is the modulus of the 
foundation. 

z^A\\y^\\^^///\\\^;^/A\\\V/^Av^^^^ ^'^'^^^jjL^^s 
kw{x) 

Show that a simply supported Bemoulli-Euler beam on an elastic foundation is governed 
by the following differential equation and boundary conditions 

£/w'" ^ kw = q(x) 

w(0) = 0, ^"(0) = 0, w(€) = 0, w"{i) = 0 

Verify that the w(x) = e^''(aiC0sfix-\ra2sinfix) + e~^''(a2Cosfix-\-a^smfix)isthtd[S' 
placement field that satisfies the homogeneous differential equation, if 4fi^ = k/EI. 

188. Consider the beam on a Winkler elastic foundation of Problem 187, subjected to a 
uniform load q. Show that the principle of virtual work, accounting for the work done by 
the elastic foundation, is. 

G(w,w) = [EIw"w" 
Jo 

+ kww — qw]dx = 0 



288 Fundamentals of Structural Mechanics 

Find the displacement map of the system using the Ritz method, assuming that the real and 
virtual displacements are approximated as 

N N 

w(x) = ^ a . s i n ^ , W(x) = ^TTnSin^ 

EI 

I ^ X k 

189. A semi-infinite beam on a Winkler elastic 
foundation extends to infinity in one direction. Find the 
classical solution to the problem of a beam of modulus 
EI on a foundation with modulus k subjected to a con­
centrated force P at jc = 0. There is no boundary at the right end of the beam, but you can 
argue that fli = 2̂ = 0 to have fmite displacements. Plot the deflected shape of the beam. 

190. A beam of length £ and modulus EI rests on two I P 
linearly elastic springs, each of modulus k. The springs ^̂  y 
accrue force in proportion to the amount by which they ^^ | ^ | 7 
stretch. The beam is pinned at the left end and is sub- I 
jected to a point load P at the right end. Axial and shear I ^ ,̂ ,̂ ,̂ 
deformations of the beam can be neglected. What is the £/^ 7̂3 7̂3 
virtual-work form of the equilibrium equations? What 
are the essential and natural boundary conditions? Use the Ritz method to find an approxi­
mation of the displacement field using the two-term polynomial w(x) = a^x-^-a^x^ji. 

191. Consider the beam of modulus EI, pinned at one , ^̂  | P 
end, free at the other, and restrained by a rotational spring ^ 
as shown. The beam is subjected to a tip load P at the free 
end. Shear and axial deformations can be neglected. Esti- ^ *1 
mate the deflection of the beam at the point where load is 
applied. Discuss the accuracy of your estimate and discuss one other possible method for 
making the estimate. 

192. A flexible beam of length i and modu- ^ i 1 .—-^— Rigid 
lus EI is welded to a rigid beam of length €, ^̂  j ^ ^ ^ ^ 
and rests on an elastic foundation of modulus J ^ . U . 
k = tOEIli^. The beam is simply supported ' ^ ^ 
and is subjected to a transverse force q over 
the rigid part of the span. The elastic founda­
tion accrues a transverse force in proportion to the transverse displacement w. Shear and 
axial deformations in the beam are negligible. Write the virtual-work functional G for the 
system. What are the essential and natural boundary conditions for the flexible beam? Find 
an approximate solution for the displacement w{x) using a two-term polynomial Ritz basis. 

193. Consider the beam of modulus EI, fixed at one 
end, pinned at the other. The beam is subjected to a 
prescribed displacement of w^ at the right end. Shear 
and axial deformations can be neglected. Find the 
expression for the displacement >v(jc) that satisfies 
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the governing equations exactly. Approximately solve the problem using the principle of 
virtual work, assuming a cubic polynomial deflection field. 

194. A beam of unit length and variable modulus is fixed at the right 
end and is subjected to a moment M at the left end. The bending and 
shear stiffnesses of the beam are variable with EI{x) = EIQ[\-\-X) 

and GA{x) = GAQ[1 + JC), where EIQ and GAQ are known constants. 
Recall that the governing equations for the Timoshenko beam are 
given by Eqns. (406). Find the deflection and rotation at the left end of the beam (i.e., at 
ac = 0) by finding the classical solution to the governing differential equations. 

EI 

-jf-jk 4D M 

-i+« H 

195. A beam of length € and modulus EI rests on two 
linearly elastic springs, each of modulus k. The springs ^ 
accrue force in proportion to the amount by which they 
stretch. The beam is pinned at both ends and is subjected ^/3 ^/3 £/3 
to a concentrated moment M at the right end. Axial and 
shear deformations of the beam can be neglected. What is the virtual-work form of the 
equilibrium equations? What are the essential and natural boundary conditions? Use the 
Ritz method to find a polynomial approximation of the displacement field. 

196. Consider a beam of length €, elastic moduli E and G and rec­
tangular cross section of width 2a and depth 2b. Let c be a (very 
small) constant and let ^ = x^/^ be the normalized axial coordi­
nate. The beam has the following displacement and rotation fields 

2b 

k ^2 

r m -
I — — 1 ^ 

f 

2a 
e,=c(6^-6^'\ ^2 = ^(3^-21), ^3 = 0 

Find the resultant moment and resultant force at ^ = 1, i.e. M(€) and Q(€). Find the total 
displacement u of the point located at the position x = (a, b, €). 

197. A beam of length € is fixed at the left end, free at the right 
end, and is subjected to a concentrated transverse load P at the 
right end. The bending and shear stiffnesses of the beam are EI 
and GA, respectively. What is the virtual-work functional for the 
system? What are the essential and natural boundary conditions? 
Let ^ = x/£. Find the deflection and rotation fields for the given 
loading by the Ritz method using the following approximation 

t=̂  
EI,GA 

198. A beam of length € and modulus EI rests on two lin­
early elastic springs, each of modulus k. The beam is sub­
jected to point loads P at the ends. Axial and shear deforma­
tions of the beam can be neglected. What is the virtual-work 
form of the equilibrium equations? What are the essential 
and natural boundary conditions? Solve the discrete virtual-

EI 

-M^ »4^ 
€/3 €/3 e/3 

work equations Ka = f for this system using a three-term polynomial Ritz approximation. 
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i 1 
I ^ X k 

199. A semi-infinite (i.e., x extends to infinity) beam 
of modulus EI rests on an elastic foundation of modulus 
k and is subjected to a concentrated force P at a: = 0. The 
classical differential equation for the beam is given by 
EIy^'' + 1cw = 0, where w^ means fourth derivative. 
The shear in the beam is given by Q(x) = - EIw'''. Use the Ritz method with the princi­
ple of virtual work to find an approximation of the displacement field using the single term 
approximation w{x) = ae'^^, where )3 is a given constant and a is the unknown Ritz dis­
placement parameter. Find an expression for the error in equilibrium at each point ac in the 
beam. For what value of ̂  is the shear boundary condition at jc = 0 satisfied exactly? 

^ 

EI 

H 

i 
200. A flexible beam of length € and modulus EI is con- M 
nected to a rigid beam of length € at a point that rests on a 
roller support. The left end of the rigid part of the beam is 
restrained by a linear elastic spring of modulus k as is the 
right end of the flexible part of the beam. The beam is sub­
jected to an end moment M. Axial and shear deformations 
of the flexible beam can be neglected. What is the virtual-work form of the equilibrium 
equations? What are the essential and natural boundary conditions for the flexible segment 
of the beam? Solve the discrete virtual-work equations Ka=f for this system using a 
three-term polynomial Ritz approximation. 

j f 

201. Consider the simply supported beam of length 1 and 
constant modulus-E/= 1, subjected to a linearly varying force 
q{x) = 2x, as shown. The beam is supported by a spring at 
midspan that has modulus ^=64. Shear and axial deforma­
tions can be neglected. What are the natural boundary condi­
tions? What are the essential boundary conditions? Find an 
approximate solution with the Ritz method. Use a cubic polynomial. 

q{x) = 2x 

3L 

^ 1/2 1/2 

202. A beam of length € is fixed at the left end, pinned 
at the right end, and is subjected to a uniform load, as 
shown. The shear and bending moduli are related as Ell 
GAi^ = 1. Find the displacement and rotation fields for 
the beam by solving the classical governing equations. 
Find the reaction forces at the supports. 

I 
t̂  

ELGA 

to 

\ \ \ \ \ \ 
2k. 

B ^ 
- ^ 

203. A beam of length € and modulus £/rests on two lin- ^j M 
early elastic springs, each of modulus k. The springs ac­
crue force in proportion to the amount by which they 
stretch. The beam is subjected to a concentrated moment I-* 
M at the right end. Axial and shear deformations of the 
beam can be neglected. Assume that motion along the axis of the beam is restrained. What 
is the virtual-work form of the equilibrium equations? What are the essential and natural 
boundary conditions? Solve the discrete equations of equilibrium Ka = f using the Ritz 
method with a quadratic approximation of the displacement field. Describe the error in 
approximation. 
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204. A flexible beam of length € and modulus EI is con- f^ 
nected to a rigid beam of length € at a point that rests on m^!i^m^Km=======^ 
a roller support. The left end of the rigid beam is restrained <^ 2X k\ 
by a linear elastic spring of modulus k. The beam is sub­
jected to an end moment M. Axial and shear deformations 
of the flexible beam can be neglected. What is the virtual-
work form of the equilibrium equations? What are the essential and natural boundary con­
ditions for the flexible segment of the beam? Solve the discrete equations of equilibrium 
Ka = fusing the Ritz method with a quadratic approximation of the displacement field. De­
scribe the error in approximation. 

205. A semi-infinite beam (i.e., the beam extends to in- P i 
finity in the positive x direction) of modulus EI rests on •'• ^^ 
an elastic foundation of modulus L The beam is sup- y^^-^^^-^^^^^^^y^^^^x J/X^WW/ANW^ 

ported at x=Q and is subjected to a concentrated force P J 
at a distance i from the support. Discuss how you would ^ ~. i ^ ^ 
solve this problem. Include in your discussion com­
ments on both classical and variational approaches. Assume that Bernoulli-Euler beam 
theory is adequate to describe the response of this system. The classical equations of a Ber­
noulli-Euler beam on an elastic foundation are 

EIW' -^-kw = 0 M(x) = EIw" Q(x) = - EIw'" 

206. Consider a beam of unit length and circular cross section, fixed at 
X = 0 and free at jc = 1. The axis of the beam (x^ = jc) points along the 
€3 direction. The origin of the cross sectional coordinates x^ and X2 are at ^ = 1 
the center of the centroid of the sectioa The internal resultant force is giv­
en by the explicit expression Q(jc) = (jc^-l)ei + (jc^-l)e2.Findtheap-
plied force q(x) that must be present. Assume that the applied moment 
iii(jc) = 0. Find the internal moment field M(jc). Find the rotation field 0(;c) 

207. A flexible beam of length 2€ and modulus EI P I 
rests on an elastic foundation of modulus k. The prop- • 
erties have values such that the dimensionless ratio ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 
ki^/EI = 15. The beam is subjected to a load P at its 
midpoint. Axial and shear deformations of the flex- ^ 
ible beam can be neglected. Find the deflection at the 
middle and ends of the beam using virtual work and the Ritz method with a polynomial 
approximation. (Note: due to symmetry odd functions—i.e., linear, cubic, etc.—need not 
be included.) 



8 
The Linear 
Theory of Plates 

A plate is a body with one geometric dimension that is significantly smaller 
than the other two. We call this dimension the thickness of the plate. We shall 
treat the thickness dimension of a plate much the same as we did the cross sec­
tion of the beam. Like the beam, we shall characterize the behavior of the plate 
with a particular kinematic assumption, and we shall consider the average re­
sponse of the body through the thickness. These assumptions allow a reduction 
of the govemmg differential equations from spatial dimension three to two. 
Unlike the beam, the governing equations of a plate are still partial differential 
equations. In some sense, a plate is simply a two-dimensional beam, and there 
are many analogies between the two theories. 

One of the most valuable aspects of the approach to plate theory taken here 
is the clear display of the striking similarities between beam theory and plate 
theory. In fact, one can compare the derivation of the two theories almost equa­
tion for equation. The reader would be well advised to reconsider the previous 
chapter on linear beam theory while reading through the derivation of plate 
theory. In many ways, the plate and the beam are exact complements of each 
other. Some of the classical treatments obscure this complementarity. 

Our order of tasks is analogous to those in the chapter on linear beam theory. 
First, we derive the equilibrium equations for the plate by defining resultants 
of the traction vector over the thickness of the plate and seeing how the three-
dimensional equilibrium equations relate to the rate of change of the resultants. 
We then introduce a kinematic hypothesis that describes the motion of the 
plate. Finally, we introduce the three-dimensional elastic constitutive equa­
tions into the theory and deduce definitions of strain resultants that are conju­
gate to the stress resultants as well as constitutive equations for the resultants. 
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Figure 100 A plate occupying three-dimensional space 

Once the classical form of the boundary value problem is laid out, we will pro­
ceed to develop a virtual-work form of the plate equations. 

Notation. We will describe our plate in accord with the convention shown 
in Fig. 100. Accordingly, we choose the x^ coordinate axis to be perpendicular 
to the reference surface of the plate, a flat two-dimensional surface in the Xi 
- X2 plane from which any point in the plate can be described by its elevation. 
Often, the reference surface will be taken as the surface midway between the 
two faces. The domam of the reference surface, and, hence, the plate itself, is 
a closed geometric figure Q having a boundary T that can be parameterized 
by its arc length 5. The boundary has a normal n^ at every point, and this normal 
is unique, except possibly at a finite number of comers. The normal to the 
boundary is orthogonal to the unit base vector pointing in the x^ direction, that 
is, nr • 63 = 0. The origin of the JC3 axis is at the reference surface, the top sur­
face of the plate is positioned at JC3 = /i above the reference surface, and the 
bottom surface of the plate at x^ = h. The total plate thickness is, therefore, 
h = h - h, The plate need not be of constant thickness. Thus, the quantities 
h and h can depend upon Xi and JC2. The plate is subjected to a body force of 
density b and tractions on the top, bottom, and lateral surfaces of t"̂ , t", and 
tr, respectively, as shown in Fig. 101. 

The notation is largely the same as that used for the three-dimensional 
theory. Unless otherwise indicated, Latin subscripts (/,;, k,,.,) are assumed 
to range from 1 to 3, while Greek subscripts (a,^, y,. . .) range from 1 to 2 only. 
Summation over repeated indices is implied, unless otherwise indicated. We 

X3 = h 

• ^ 

'H 

^ ^ f T T ^ 

X2 = h 

Reference surface 

Figure 101 View through the thickness of a plate 
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Figure 102 Resultants of the traction vector over the thickness 

shall use the "comma" notation (• ),a = ^( * )/^Xa for the partial derivative. 
Multiple subscripts following the comma indicate higher-order differentiation, 
e.g., {')yafi = d\')/dXadX^, 

Equations of Equilibrium 
A plate is subject to the same requirements of equilibrium as every other body. 
The concept that distinguishes a beam or a plate from a continuum is the stress 
resultant. The stress resultants for plates will represent the aggregate effect of 
all of the traction forces acting over the thickness of the plate. Like the beam, 
we shall find that a simple net resultant is not adequate to describe those trac­
tions, so we shall also compute the first moment of these tractions about the 
reference surface. By considering the rate of change of these resultants, we can 
deduce equations of equilibrium for the resultants from the three-dimensional 
theory. 

The main difference between the stress resultants of a plate and those of a 
beam is that, for the plate, we consider the resultants per unit length, integrating 
only through the thickness. For the beam, the resultant was a resultant over the 
entire cross section. The resultant force and moment can be computed by inte­
grating the tractions through the thickness, as shown in Fig. 102. The traction 
vector on a plane with normal e^ is 

te,(x) = S(x)e, 

where the free index a takes values 1 and 2. The resultant forces Qa(xi, X2) and 
the resultant moments Ma(jCi, JC2) are computed as the integral of the tractions 
and the first moment of the tractions through the thickness 

Qa(X,,X2) = tej 

a(X,,X2) = P(. 
Jh 

X^) X te^(x) dx^ 

(437) 
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Figure 103 Cauchy triangle construction for plates 

Where p = x^t^. It is evident that M^ • 63 = 0. Physically, this condition 
means that there is no resultant moment about the x^ axis, a consequence of our 
decision to characterize the body as a plate and thus to define the resultant rela­
tive to the normal to the reference surface. As a result, the resultant moment 
vectors have the form M^ = Mai^i -^Mai^i^ with no component in the €3 di­
rection. One main difference between beam theory and plate theory is that in 
the former we have only one resultant force vector and one resultant moment 
vector, while in the latter we have two of each. 

As was the case for beams, the stress resultants Q^ and M^ appear to be vec­
tors, and they will behave like vectors in almost every regard. However, these 
vectors characterize the state of stress in the beam and, therefore, we must ex­
amine how the Cauchy relations t„ = Sn manifest for the plate. For plates, the 
appropriate analogy is the infinitesimal Cauchy triangle shown in Fig. 103. By 
geometry, the values n 1 and «2 are the ratios of the lengths of the sides with nor­
mals — Ci and —62, respectively, to the length of the oblique side. They are 
also the components of the normal vector n to the oblique side. Let us compute 
the resultant traction force q^ on the face with normal vector n = ria^a 

J h 

S{x)(naea) dx. 
J h 

S ( x ) e « d X 3 = HaQa 

Since ria does not depend upon the cross-sectional coordinates Xj and X2, it can 
be factored out of the integral to give the one-dimensional version of the 
Cauchy formula relating stress to tractions 

q„ = riaQa (438) 

An identical argument produces an equivalent result for the moments. The re­
sultant traction moment m„ acting on the face with normal vector n = n^e^ 
is related to the resultant moments as 

m„ = HaMa (439) 
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As was the case for three-dimensional solids, the Cauchy relationship shows 
us how to take freebody diagrams m the sense that it tells us what force to place 
at an exposed section to represent the state of stress resultants there. 

Equilibrium of forces. We can derive equilibrium equations that corre­
spond with the three-dimensional equations of equilibrium of a continuum. Let 
us integrate divS + b through the thickness of the plate 

where summation is implied on a from 1 to 2. Further note that 

(440) 

1 
J h 

^e,dx, = [S(x,,X2,h) - S(x,,X2,h)]e, 

One can observe that Cauchy's relation implies that S(JCI,JC2, A)e3 = t^, the ap­
plied traction on the top surf ace, and — S(xi,X2,h)e3 = t", the applied traction 
on the bottom face. The applied tractions t^ and t~ are vectors, independent 
of the orientation of the vector normal to planes in the body. These tractions 
are, of course, the known prescribed loads on the surfaces of the plate. Since 
the body forces b are also known, we are led to define the applied loading per 
unit of area as 

q(jCi,X2) = (t-' + t") + bdx; I 
K 

^3 (441) 

Thus, from Eqn. (440), we have 

(divS + b)dx3 = Qa,a + q (442) I 
Observe that if Qa,a + q = 0 then divS + b = 0 is satisfied on the average 
through the thickness of the plate. Contrast this result with the beam result that 
the three-dimensional equilibrium equations are satisfied on the average over 
the cross section. 

Equilibrium of moments. We can follow the same approach to the equilib­
rium of moments. Let us integrate p x (div S + b) through the thickness of the 
plate 



298 

(443) 
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J pX(divS+b)dX3= f p x ( ^ + ^ + b ) ^ 3 

The first term is simply the divergence of the moments so that 

I px(d ivS + b ) t i c 3 = ^ + [ p x ( ^ + b ) r f X 3 (444) 

To make further progress let us note the following identity 

dp dS ^ ( P X 863) = ^ X Se3 + p X ^ e 
dx dx 

By the definition of p, we know that dp/dx^ = 63. We also know that balance 
of angular momentum of the continuum implies that 

e, X Se/ = €3 X Sea + e« X Se« = 0 

Using these relationships we find that 

P X -^63 = ^ ( p X 863) + e« X Se« _d_ 
dx^ 

Integrating this equation through the thickness yields the following result 

( p x "^€3)^X3= ^ ( p x 863)^^3+ taXSeadx, 

Explicitly evaluating the first integral on the right side (the integral of an exact 
differential), and recognizing the definition of the resultants Qa in the second 
term, we obtain 

(P ^ W,^')^' " P(^) X t^ + p ® X t- + e« X Q, 

where p(^) = Jie^ and p(^) = he^. Since the body force b and the tractions 
t"̂  and t" are given as data, let us define the applied moment per unit area as 

m(jCi,jC2) = 63 X [hi'^'\-ht~) + 63 x I x^hdxs 
J h 

(445) 

From this expression, it is easy to see that m • 63 = 0, that is, the loading 
causes no resultant about 03. As a result, when we describe the applied moment 
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X -"r^>/h = 0 

Ci ^2 

Figure 104 Definition of the components of the resultants (shown positive) 

vector in terms of its components, it will have the form m = /WiCi + /n2e2. 
With these definitions we get the following equation 

r p X (divS + h)dx^ = Ma,a + e« X Q« + m (446) 

From these equations we can see that if Ma,a + ê  X Q^ H- m = 0, then the 
first moment of divS -f b over the thickness of the plate is equal to zero. Con­
trast this result with the analogous one for beams. The equilibrium equations 
for the stress resultants can be summarized as follows (note that summation 
over the repeated index is implied) 

Qa,a + q = 0 

Ma,a + Ca X Q^ + m = 0 
(447) 

Some interesting features of these equations will become evident if we ex­
amine them in component form. Let us define some nomenclature to help us 
with the component description. First, we shall call the components of the re­
sultant force 

Ma = M^iCi + M«2e2 

The components of the resultants are shown, with positive sign convention, in 
Fig. 104. Remember that the first subscript of N^fi and Af̂  keeps track of the 
plane on which the resultant vector acts, while the second subscript keeps track 
of the component of the vector. If we write out Eqns. (447) in extenso, we get 
a system of equations describing the equilibrium of the in-plane forces 

N^ 

^12-^^21 = 0 

(a) 

(b) 
(448) 

and a system of equations describing the bending of the plate 



Qa,a + 93 = 0 

Mafi,a + £^6a + W^ = 0 

(a) 
(b) 
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(449) 

where e^ is the two-dimensional aheraator, and has the values 

0 if a = )3 

1 if (a,y3) = (1,2) (450) 
-1 if {a,p) = (2,1) 

^afi — 

Equations (448)a ̂ î d (449)a both come from the resultant force vector equa­
tion, while Eqns. (448)b and (449)b come from the resultant moment vector 
equation. Just as balance of angular momentum told us that the stress tensor S 
is symmetric, we get the symmetry condition (448)b from balance of moments 
about the X3 axis. Equations (448) concern the equilibrium of the in-plane re­
sultants. These equations are nothing more than the plane stress equations, and 
are uncoupled from the bending equations in the linear theory if the reference 
surface lies exactly halfway between the faces of the plate. The symmetry con­
dition (448)b is the familiar symmetry of conjugate shears. Equations (449) 
concern the bending of the plate. In the linear theory of plates, only the trans­
verse shears (not in-plane forces) are coupled with the bending moments. 

We can see the similarity between linear plate theory and linear beam 
theory. In linear beam theory, the equilibrium of axial forces was uncoupled 
from the bending equations. The beam has one axial equation and two shear 
equations. The plate has one shear equation and two axial equations. For both 
the plate and the beam, there are two bending equations. For the beam, the axial 
moment equation gave rise to torsional equilibrium; for the plate, we get sym­
metry of the in-plane shears. The complementarity of these two theories is evi­
dent. 

The Kinematic Hypothesis 
As with the beam, we need a kinematic hypothesis to complete plate theory. 
A kinematic hypothesis is nothing more than a restriction placed on the de­
formation map. We assume that the body moves in a very specific manner, an 
assumption that must be verified either by observation of nature or by examin­
ing the consequences of imposing the constraints with a theory that does not 
make those assumptions (i.e., the general three-dimensional theory). 

The basic idea behind beam theory was the hypothesis that cross sections 
that are plane and normal to the beam axis before deformation remain plane 
and unstretched after deformation. The cross-sectional area was the primary 
geometric object used in the description of the constrained deformation map. 
In fact, we could completely describe the map by tracking the motion of a typi­
cal cross section, parameterized by the axial coordinate JC3. The reduction in 
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n = Mxi,X2)e^ n = \{xi,X2)e^ 

v̂ y Deformed 
ŵ r r \v reference 
^ surface 

^ > 

Reference surface 

Figure 105 Displacement map for a plate 

the dimensionality of the problem from three dimensions to one dimension was 
accomplished by introducing a two-dimensional geometric constraint: the rig­
id cross section. 

For the plate, we shall introduce a kinematic constraint analogous to the one 
introduced for the beam. We shall assume that a straight line that is normal to 
the reference surface of the plate before deformation remains straight and un-
stretched after deformation. Let us consider the motion of a typical line normal 
to the undeformed reference surface of the plate. The initial orientation of the 
line is along the 63 dkection. The kinematic hypothesis suggests that the line 
will remain straight, but will translate and rotate rigidly from its original posi­
tion, as shown in Fig. 105. (The line is shown in the figure with exaggerated 
thickness for the purpose of visualization; it is, in reality, a one-dimensional 
geometric object.) Let us consider the point of intersection of the line and the 
reference surface 0. As described in the figure, the point displaces by an 
amount w. It takes three quantities to keep track of the motion of the point, the 
three components of w. 

Keeping track of the motion of a single point is not sufficient to describe the 
motion of the line because the line also rotates. If, in addition to w, we keep 
track of the orientation of the vector n that lies along the axis of the line, then 
our task of tracking the motion of the plane will be complete. It takes three 
quantities to describe the rotation of a vector in three-dimensional space: the 
three parameters of the rotation tensor A. As we did for the rotation of the cross 
section of a beam, let the rotation tensor be precisely that needed to orient the 
normal vector as n = A(A:i,X2)e3. Thus, it appears that we must keep track of 
six quantities in order to uniquely track the motion of the line in space. From 
those six quantities, we can find the location of any other particle in the body. 

There is an important geometric consideration here, however, that affects ̂  
the count of the number of parameters required to characterize our map of plate 
motion. Since we need only track the position of the line, we do not need all 
three components of the rotation of the normal vector. The rotation of the line 



302 Fundamentals of Structural Mechanics 

about its own axis does not affect its position, and, hence, will not affect the 
deformation map of the plate. Thus, we arrive at the important conclusion that 
we need only five parameters to track the motion of the plate (see Problem 
208). From those five quantities, we can find the location of any other particle 
on the body through the map 

<t)(x) = Xata + W(jCi, X2) + A(Xi, X2) P(X3) (451) 

The first term gets us to the appropriate thickness line, the second term gets us 
to the displaced origin of the reference surface, and the third term gets us to the 
position within the line that was originally at the position p(jC3) = JCSCS in the 
undeformed configuration, i.e., p locates the position of points along the line 
relative to the point 0. 

If the rotation of the normal vector is small, the above map can be simplified. 
In particular, for small rotations we have Ap « p + 6 X p, where 6 = Oat a 
is called the rotation vector. We can now describe our deformation through a 
displacement map. Let u(x) be the displacement of a point originally located 
at position x in our undeformed plate. The displacement of that point caused 
by the deformation is 

U(X) = y¥(x,,X2) + Q(XuX2) X p(X3) (452) 

We can clearly see the explicit dependence of the map on the transverse coordi­
nate Xs and the plate surface coordinates JCJ and JC2. The components of the dis­
placement vector w = {vvi, W2, W3} and the components of the rotation vector 
6 = {01, 025 0} are collectively called the generalized displacements and are 
functions of the plate surface coordinates Xi and JC2. The displacement map can 
be written out in terms of its components as follows 

"1(^1,^2,^3) = WI(A:I ,X2) + ^302(^1, ^2) 

"2(^1,^2,^3) = ^^2(^1,^2) - ^ 3 ^ 1 ( ^ 1 , ^ 2 ) 

U^{X^,X2,X^) = >V3(^l,^2) 

From the explicit expression for the map, we can see that there is no depen­
dence on a rotation about the x^ axis. This rotation is often referred to as the 
drilling degree of freedom, because the motion it describes is reminiscent of a 
drill making a straight bore into the plate along the deformed normal direction. 

The physical significance of the generalized displacements can be seen by 
examining the individual terms of the map. Figure 106 shows the displaced 
plate projected onto the JC2 - JC3 plane. Qearly, the component W2 measures the 
displacement along the X2 axis, while the component W3 measures displace­
ment transverse to the middle surface in the x^ direction. The component Q^ 
measures rotation about the x^ axis and has a positive sense according to the 
right-hand rule. Displacements are, of course, positive if they are in the direc-
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Figure 106 Components of displacement in a plane 

tion of the coordinate axes. Consider the displacement of the point 9̂  a distance 
JC3 from the reference surface of the plate. For the purpose of illustration, sup­
pose that we have a state of cylindrical bending, i.e., W2 = 0, 9i = 0, and 0^ 
= 0. Relative to the point 0, point 3̂  moves in the negative X2 direction by an 
amount equal to X3 sin Sj ^ x^di, and in the negative x^ direction by an amount 
JC3 (1 — cos ̂ i) « 0. Because the motion is cylindrical, there is no motion in the 
Xi direction (out of the plane of the page). Qearly, this is the motion that our 
deformation map captures. 

If we have an explicit expression for the deformation map, it is simple to 
compute the strains implied by that map. Here we shall confine our attention 
to the linearized strain tensor E = | [Vu + Vu^. Recall that the gradient of u 
can be expressed in the form Vu(x) = u„ 0 e,. We can thus compute the gra­
dient of the displacement map for our plate as 

Vu(x) = (w,« + e,« X p) (8) e« - (€3 X e) ® €3 

(We got the sign change on the last term by reversing the order of the cross 
product.) Before we use Vu to compute the linearized strain tensor, let us make 
a valuable simplification of the above expression. Recall from Chapter 7 that 
the tensor© = (e, x 8) 0 e, = —[8 x ] is skew-symmetric. We can rewrite 
the gradient of displacement as 

Vu(x) = (ca + x, X p)(8)e, - 0 

where the strain resultants are defined as 

€a = w,« 4- e« X 8 
(453) 

It is important to note that, because the generalized displacements depend only 
upon Xi and X2, €a and Ka also depend only on Xi and X2. We are now in a posi­
tion to compute the linearized strain tensor for the plate kinematic description 

E = i [{€a + Xa X p) (g) e« + Ca 0 [Ca + X„ X p ) ] (454) 
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From this expression for the strain, we can see that there is no strain through 
the thickness of the plate, since £33 = 0, in accord with the assumption that 
normal lines are rigid. 

Constitutive Equations for Resultants 
The strains imply stresses through the constitutive relationships. Let us assume 
that the material is linearly elastic and isotropic so that the stress-strain rela­
tionship is S = Atr(E)H-^E. Since we are interested in the resultant trac­
tions only on planes with normal e ,̂ it is sufficient to compute only the values 
of tê  = SCa = Atr(E)ea -^TfiEea. From Eqn. (454) one can compute 

2Ee« = [d^I + e^ (g) e,](€^ + >ĉ  x p) 

tr(E) = ê  • Ee^ = ê  • (e^ + x^ x p) 

The expression for the traction on a plane with normal ê  is 

Se« = E^(€^ + »«/j X p) (455) 

where S ^ = Aê  ® ê  + //((3^I + ê  0 e^). We will use this expression in 
our definitions for the stress resultants to derive constitutive equations relating 
the stress resultants to the strain resultants that we have defined above. It will 
then become clear that e^ and x^ are indeed appropriate measures of strain for 
a plate. Recall that our definitions of stress resultant and moment resultant 
were given by Eqn. (437). Substituting Eqn. (455) into these expressions yields 
the following results 

Qa = f s^(. 
J h 

(€^ + x^ X ipi)dx^ 

p (456) 

Ma= [p x]S^(€^ + x^ X pjtixs 
J h 

We can integrate out the JC3 dependence of these expressions at a typical 
point in the jCi -"JC2 plane. If we recognize that only the vector p depends upon 
JC3, we realize that these integrations are rather simple. Equations (456) can be 
integrated to give the constitutive equations for the plate 

(457) 

where 

% = 5[e3 X] S^ 1^ = /[e3 x]S^[e3 x Y 
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where A, 5, and / are geometric properties related to the thickness of the plate 
and the definition of the location of the reference surface 

c c c 
Jh Jh Jh 

dxT, (458) 

One usually refers to h as the thickness of the plate, S as the first moment of 
the normal line about the reference surface, and/ as the second moment of the 
normal line about the reference surface. 

The constitutive tensors look somewhat ominous, but upon computing their 
components explicitly, we can see that they are actually quite simple. The vari­
ous tensor parts of these expressions are three by three tensors with simple fea­
tures. The various constitutive tensors have the explicit expressions 
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where £ = A + ^ has been introduced to economize the notation. The re­
maining tensors can be obtained by symmetry 

A21 = (A12) J S22 = ( S i i ) , I21 = ("12) 

The entire set of tensors S^. can be obtained from S^ as follows 

Si i — — S2: S22 — " S n , S[2 - Si; S T 
01 Sn 

Qearly, if the reference surface is taken as the one exactly halfway between 
the two faces, then 5 = Oand/ = A^/12. For this canonical choice of reference 
surface, the constitutive equations are uncoupled in the sense that the resultant 
forces Qa do not depend upon the curvatures x^, and the resultant moments 
Ma do not depend upon the stretches and shears 6 .̂ This situation is much like 
the case for beams when centroidal axes are chosen. Unlike the beam, there is 
no further simplification in the constitutive equations, i.e., there is no concept 
analogous to principal axes. 

The constitutive equations are of interest not only because they relate the 
generalized displacements to the stress resultants, but also because they help 
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US identify the concept of strain resultant. The strain resuhant is the counter­
part of the strain tensor in the three-dimensional theory. As its name indicates, 
it is the net resuh of all of the local straining across the normal line. With the 
canonical choice of reference surface, i.e., the middle surface, the stress result­
ants Qa are linearly related to the deformation measures £« = w,̂  + ê  x 6. 
Accordingly, we shall view these quantities as the associated strain resultant. 
Similarly, the moments M^ are linearly related to the measures of deformation 
Tia = 6,^. We shall consider x^ to be the strain resultant associated with M^. 

These resultants have a clear physical interpretation. Let us write out the 
components of each of the strain resultants 

€i = >vi,iei + W2,ie2 + (>v3,i +^2)63 ^̂ ^̂ ^ 
(459) 

€2 = Wi,2ei + W2,2e2 + (>V3,2 - ^ 1 ) 6 3 

and the curvatures have component expressions 
^1 ~ ^ I j l ^ i + 0251^2 , , ^^ , 

(460) 
^2 ~ ^152^1 + ^252^2 

Consider again the case of planar deformation in the X2 —x^ plane, shown in 
Fig. 106. For cylindrical motion we have null displacements and rotations (and 
their derivatives) for all quantities that give rise to motion out of the plane. Ac­
cordingly, Wi = 0, 02 = 0, and 0^ = 0. One can see that 2̂̂ 2 measures the rate 
of stretch in the X2 direction, i.e., the net axial strain of the plate. It is associated 
with the in-plane force ^̂ 22- The quantity 1̂ 3,2 is the slope of the deformed 
middle surface of the plate. As we can clearly see in the figure, the tangent to 
the deformed middle surface does not coincide with the direction perpendicu­
lar to the normal vector n. The angle between these two lines is due to shearmg 
of the plate. The strain resultant W3,2 — 61 directly measures this component of 
deformation, and is associated with the shear force Q2. The rate of change of 
the rotation of the normal vector n is ^1,2, the curvature of the plate flexing 
about the x^ axis. The curvature is associated with the bending moment M21 
about the Xi axis on the face with normal pointing in the X2 direction. By exten­
sion, the meaning of the other terms in the three-dimensional case is evident. 

The shear strain resultant >V3,i -h 62 has a sign for the rotation term different 
than the shear strain in the other direction. This difference is due to the right-
hand-rule convention for the rotations. The resultant shearing angle is always 
measured as the angle between the tangent to the deformed axis and the normal 
to the section. The rotation angle is always measured relative to the unde-
formed middle surface of the plate. Figure 107 shows positive values for the 
displacements, displacement gradients, and rotations for two cases: (a) cylin­
drical deformation in the X2 -̂ 3 plane and (b) cylindrical deformation in the 
Xi -X3 plane. The shearing angle is shown shaded. Note that for the first case 
the Xi axis is directed out of the page, while in the second case the X2 axis is 
directed into the page. In both cases, a positive transverse displacement is up-
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(a) \ 

^3 • 

Figure 107 Why is there a sign difference in the two resultant shear strains? 

ward, in the direction of the associated coordinate direction. The rate of change 
of the transverse displacement, or the slope of the deformed axis, is positive 
if it points in the direction up and to the right. On the other hand, according to 
the right-hand rule, the rotation 6i is positive if it is anticlockwise, while the 
rotation 62 is positive if it is clockwise. Thus, in the first case the shear angle 
is the difference between these two positive quantities, while in the second case 
the shear angle is the sum of these two positive quantities. 

Constitutive equations in terms of displacements. We can write out the 
canonical constitutive equations for the resultants in terms of displacements. 
Using Eqn. (453) in Eqn. (457), we arrive at the following explicit relation­
ships for the components of the stress resultants, for the in-plane forces 

N^ = h\Xwy,yd^ + /̂ (w ,̂a +>v ,̂̂ ) ] (461) 

where 5^ is the Kronecker delta, for the transverse shears 

Qa = /i//[w3„+e^0^] (462) 

where e^ is the alternator, and for the bending moments 

M^ = -^[Ae^ey^e^,,, ^fi[ey^ear,Orj,y +e^,a)] (463) 

To get a clearer idea of how these constitutive equations look, it is instructive 
to write out the explicit expressions for Eqns. (461), (462), and (463) as sug­
gested in Problem 209. 

Navier equations for plates. Substituting the expressions for the in-plane 
forces into the equilibrium equations, Eqns. (448)a and (448)b, we find a sys­
tem of second-order differential equations for the in-plane displacements w^ 
and W2, often referred to as the Navier equations. These equations are 

/l[(A+//)w^,^ +/̂ Wa,̂ ]̂ + 9a = 0 (464) 
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The in-plane equations for the plate are completely uncoupled from the bend­
ing equations, in much the same way the axial equations were uncoupled from 
the bending equations for linear beam theory. In essence, these are averaged 
plane-stress equations, and are amenable to solution techniques for plane-
stress problems. 

We can perform the same operation on the equations for the plate-bending 
problem. Substituting the moments and transverse shears given by Eqns. (462) 
and (463) into the equilibrium equations, Eqns. (449)a and (449)b, we find a 
system of second-order differential equations governing the transverse dis­
placement 1V3 and the rotations 61 and O2, often referred to as the Mindlinplate 
equations. The equations are given by 

(465) 
+ hfi€^[w^,a + e^Oy] + m^ = 0 

We can observe that when the equations are expressed in this form, they lose 
much of their physical appeal. It is difficult to see the simplicity of the concept 
of the stress resultant, the simplicity of the equations of equilibrium, and the 
simplicity of the kinematic hypothesis in these equations. Furthermore, classi­
cal solutions to these equations are few and far between. It is instructive to 
write out the explicit expressions for Eqns. (465) and (466), as suggested in 
Problem 210. 

Boundary Conditions 
We have already addressed the subject of prescribing tractions on the top and 
bottom surfaces of the plate. In fact, the definitions of applied force and mo­
ment include the resultants of these prescribed tractions. We must also consider 
the tractions that exist at the edges of the plate. Let tr be the applied traction 
field on the edge F, which is parameterized by its arc length s. Computing the 
net force and moment acting along the edge leads to the definition of the edge 
resultants as 

= tr(s,X2)dx^, mr(5) = p(x^) >^ tr(s,Xs) dx^ (467) 
J h J h 

These forces represent the net resultants of the applied tractions at the edge of 
the plate. 

The plate suffers from the same problem on the boundary as the beam does. 
Technically, we should consider the edge of the plate as having either applied 
tractions or prescribed displacements. Our theory is expressed in terms of re-
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sultants, and, as such, is not equipped to differentiate between a region on a line 
through the thickness with prescribed tractions and a region on that same line 
with prescribed displacements. However, it should be clear that this point of 
view would force us to admit only completely fixed or completely free edges. 
We would not be able to model a simply supported plate! 

The kinematic hypothesis again comes to our rescue. Because the kinematic 
hypothesis implies that each line through the thickness is rigid along its own 
length, and because the displacement map is expressed in terms of motions of 
a fixed point (usually the middle surface) on that line, we can imagine prescrib­
ing the displacement at a single point. In the three-dunensional theory, such a 
prescription would not be admissible because a point force is a finite force ap­
plied over a vanishingly small area and, thus, leads to infinite tractions and 
stresses. The assumption of rigidity, while not really justifying the concept of 
a point load, certainly allows the theory to accommodate it. In view of this spe­
cial feature of plate theory, we can now imagine a thickness line where the net 
displacement w is prescribed, but the net rotation is not. This condition, known 
as the simple support, plays an important role in structural engineering. If the 
displacement w(5) = 0 is known, then some corresponding force must be un­
known. We can demonstrate through a virtual-work argument that the un­
known force is qr. Further, since the cross section is free to rotate, there must 
be some force that is prescribed. Again, we can demonstrate through a virtual-
work argument that that prescribed force is nir. 

Such a condition of mixed boundary conditions can only be realized through 
a condition of constraint. Imagine simply that our plate is attached to a rigid 
band at the edge. The tractions that the plate feels are those transmitted to it 
from the band. Now we can imagine that the rigid plate is attached to a piano 
hinge that is free to rotate about the axis of the hinge, but is not free to translate. 
This device constitutes our version of the simple support. Since plate theory 
actually provides the rigid band, we need not worry about its physical imple­
mentation to carry out calculations. 

Since we are in the business of concocting support devices for our plate, 
why not imagine a whole collection of such devices. We have five generalized 
displacements (including rotations) at each point. We can imagine a device that 
independently prescribes the associated force or displacement for each one. 
Hence, each component of the edge resultant vectors can exist as either a pre­
scribed force or a reaction force if the corresponding displacement is pre­
scribed. We must prescribe either the force or the displacement at each point 
on the edge. Thus, we always have exactly five boundary conditions. These 
conditions are always exactly enough to determine the constants of integration 
that we get when we solve the governing differential equations. 

At each point s on the boundary of the plate, which has normal nr(5), either 
the force Qn^is) = ^Y{S) will be prescribed, or the displacement yf{s) will be 
prescribed, but not both; either the moment on the edge of the plate 
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Mnj,(5) = mr(5) will be prescribed, or the rotation 6(5) will be prescribed, but 
not both. If both the displacement and the rotation are prescribed to be zero, 
then the condition is called di fixed edge. If both the force and the moment are 
prescribed to be zero, then the condition is called ?ifree edge. Various mixed 
conditions can also be realized, as mentioned above. 

The Limitations of Plate Theory 
Plate theory, like beam theory, suffers from an inconsistency brought on by the 
constraint implicit in the kinematic hypothesis. The ramification of the Kirch-
hoff assumption is that the normal strain through the thickness of the plate van­
ishes. In our coordinate system, this means that the strain component £33 = 0. 
Because normal strains are coupled in the isotropic elastic constitutive equa­
tions, this constraint implies that 3̂3 ^ 0. However, from physical observa­
tions, we know that 533 = 0 comes closer to representing the actual stress state. 

What would have happened if we had made the assumption of vanishing 
stress and not the assumption of vanishing strain? We have done it before. We 
made exactly that assumption for the condition of plane stress (see Problem 97 
in Chapter 4). Ifwe made the assumption that 533 = Owe can write the consti­
tutive relationship in the form 

5^ = rEyyd^ + 2fiE^, 5,3 = ^£a3 (468) 

where the new constant A* is given by 

where v is Poisson's ratio and C is Young's modulus. This gives us a way to 
partially recover from our difficulties. In the constitutive relationships for 
plates, ifwe simply substitute the value k* each time A appears, then the results 
of plate theory are remarkably good. In most classical treatments, 
Ifi = C/( 1 + V) is used so that the elastic constants are Young's modulus and 
Poisson's ratio. Thus, in the constitutive equations, we will replace E = k-\-2fi 
withE* = A* + :^ = C/(l-v2). 

The Kirchhoff assumption also requires that normal lines remain straight af­
ter deformation. As the restraint of out-of-plane warping does in beams, the 
restraint of curvature of the normal line in plate theory compromises the repre­
sentation of the shear stress distribution. In fact, this constraint implies that the 
shear stresses have the form 5i3 = fi^w^^i +^2) and 523 = /̂ (w3,2 - ^ i ) , and, 
hence, are constant with respect to x^. The stress components 5ii and 522 are 
both linear in ̂ 3. The constant shear stresses are inconsistent with local equilib­
rium of the linear normal stresses because, for example, 5ii,i + 5i2,2 + 5i3,3 is 
a nonzero linear function of JC3, and, therefore, cannot vanish at every point 
along the normal line. The extra stiffness induced by the constraint can be ame-
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liorated by replacing h in Eqn. (462) with 5h/6, This adjustment is entirely 
analogous to the shear coefficient in Tunoshenko beam theory. 

The Principle of Virtual Work for Plates 
The principle of vutual work for a three-dimensional continuum can be used 
to develop an equivalent principle for plate theory. We shall compute the ap­
propriate external work from the three-dimensional theory. The advantage of 
starting with the three-dimensional theory is that we need only to know that 
work is the product of force and displacement. Straightforward operations will 
yield the result that work for a plate includes terms computed as the product 
of moment and rotation. 

The displacement map is constrained by the kinematic hypothesis. We must 
construct our virtual displacement field in accord with the same hypothesis. 
Hence, our (three-dimensional) virtual displacement field is 

^Xl,X2,Xs) = W(Xi,X2) + 'S(Xi,X2) X p(X3) (470) 

where W and 0 represent the generalized virtual displacements of the plate. 
The external virtual work is simply the product of the applied body forces and 
tractions with their respective virtual displacements, integrated over the vol­
ume of the structure 

W, = [t^ • Tl(x,,X2,h) + i- ' Jl{x,,X2,h)]dA 

"" r rW r .K (471) 

+ I h-Udx^dA^ I t^'Tidx^ds 
JQJh JTJh 

where b is the body force, t^ and fare the applied tractions on the surfaces 
of the plate, tr is the traction field along the edge of the plate. Substituting Eqn. 
(470) into (471) and carrying out the appropriate mtegrals, we obtain a two-di­
mensional expression for the external virtual work. The first two terms are 

I W • I t + + t - + I hdx^ j dL4 + I 5 • I p X ( t + + t - ) + I p X b^3 I dA 

The terms in parentheses are precisely our definitions of the resultant of the 
applied loads q and m, respectively. We can use a similar argument for the third 
term in Eqn. (471). This term can be rearranged to read 

I W • j tr(5,^3)^3 + ' • j P(̂ 3) X tK^.^3)^3 J ds 

Qearly, the two integrals over the thickness are precisely our definition of the 
resultants of the tractions on these lines—Qr and mp Thus, in the context of 
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the kinematic hypothesis, these two terms exactly account for all of the virtual 
work done by the traction forces on the edges of the plate. We can also see that 
Qr and nir are the natural forces conjugate to W and 6 on the boundary, respec­
tively, in the sense that they completely characterize the virtual work done. 

Combining these results, we can see that the external virtual work done by 
the forces acting on our plate in going through a virtual displacement is 

(472) 

Observe that, within the context of the kinematic hypothesis, this expression 
for the external virtual work is exactly consistent with the three-dimensional 
theory. As with the beam, the moment and rotation are duals. 

The principle of virtual work is a valuable tool with which to consider the 
conjugateness of stress and strain resultants. We saw in the derivation of the 
principle of virtual work that a measure of internal virtual work involving the 
product of stress and virtual displacement gradient appeared naturally. It had 
the form 

Wr=- \ S 'VudV 
J i 

You might expect that, if a reduced theory is truly compatible with the three-di­
mensional theory, then an analogous expression for internal virtual work in 
terms of the resultant quantities should result. In fact, we could use this equiva­
lence to define which resultant strain measures are appropriately conjugate to 
the defined stress resultant measures. This equivalence is particularly impor­
tant since we defined stress resultants without regard to the specific kinematic 
hypothesis, and the kinematic hypothesis had nothing to do with the definition 
of stress resultants. 

Let us substitute the virtual strain implied by our kinematic map into the ex­
pression for the internal virtual of a three-dimensional continuum 

{€a + x« X p) • Stadx^dA 

-a • J Seadx^ + >«a • I P X ^^adx^ j €a • I Seadx^ + >«fl * I P X Seadx-^ I dA 

where ?« = W,̂  + ê  X 0̂  and x^ = 5,a are the virtual strains associated 
with the virtual displacements and we have noted that S • 0 = 5^0^ = Obe-
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cause S is symmetric and 0 is antisymmetric. Recognizing the definitions of 
resultant force and resultant moment, the expression for internal virtual work 
takes the following form 

(473) 

The final form of the internal virtual work is interesting and important. Each 
term in the expression is analogous to stress times virtual strain. In the present 
case, this analogy translates to stress resultant times strain resultant. Thus, we 
can see that the resultant strains are conjugate to the resultant stresses in the 
sense of virtual work. Notice that the demonstration of conjugateness did not 
involve the constitutive equations. 

We are now in a position to state the principle of virtual work for plates. If 
the external work is equal to the internal work for all virtual displacements sat­
isfying the strain displacement relationships, then the equations of equilibrium 
are automatically satisfied. Let us adopt our usual convention of defining the 
functional G{JAD,^ = WJ-WE to be the difference between the internal 
virtual work and the external virtual work. The^ notation J^ = {QajM^} 
stands for the stress resultants of the plate and ^ = {W, ^} the virtual dis­
placements. The principle of virtual work for plates is 

If G ( ^ , W ) = 0 V ¥ G 5P(Q) then 

Qa,a + q = 0 

M«,« + e« X Q« + m = 0 
' in Q 

Qaria = qr | 
ikM on r 
MaKa = mr ] 

(474) 

The virtual-work functional G(Jl3, ̂  can be expressed explicitly by col­
lecting the internal and external virtual work definitions as follows 

f 
"" I (qr * W + mr • 6 ) ^ 

(475) 

In the principle of vktual work, we have designated ^(Q) as the collection of 
admissible functions defined over the domain of the plate. Since there are no 
derivatives of order greater than one in the functional, the functions must have 
square-integrable first derivatives. The principle of virtual work can be modi­
fied to exclude the unknown boundary reaction forces by suitably restricting 
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the space of admissible functions. Let F^be that portion of the boundary where 
the resuhant force is prescribed, and T„ that portion of the boundary where the 
resuhant moment is prescribed. Define a new set of admissible variations to be 
the collection of functions in 9^e(^) = {̂ > 0} with W = 0 on T̂ ^ the portion 
of the boundary where the displacements are prescribed and 0 = 0 o n 1Q, the 
portion of the boundary where the rotations are prescribed. Qearly, we must 
account for the conditions on the entire boundary. Therefore, we must have 
TH- U r^ = Tandr^ U r;„ = r . The regions cannot overlap. Therefore, the 
intersection of the regions is empty: F,̂  p) F^ = 0 and TQ f)T^ = 0. 

The Kirchhoff-Love Plate Equations 
A much simpler set of equations results if we neglect transverse shearing de­
formations. To do so leads to the famous Kirchhoff-Love plate equations. As 
with the beam, neglecting the transverse shearing deformations has two impor­
tant effects. First, it allows us to express the rotations in terms of the transverse 
deflection, thereby reducing the above equations to a higher-order equation in 
a single variable. Second, the constraint uses up the two constitutive equations 
for the transverse shear forces, and, hence, those forces must be determined 
from equilibrium equations. Let us call the transverse displacement w^ = w, 
and implement the constraints w,i +02 = 0andw,2 - ^ i = 0. Let us assume 
that there are no applied moments, Wi = m2 = 0, and let us designate the 
transverse force simply as q^ = q. 

We can eliminate the shear forces Qa from Eqn. (449) by differentiating 
(449)b with respect to Xy, multiplying the result by er^ and substituting Eqn. 
(449)a. Upon doing so, we arrive at the equilibrium equation in terms of mo­
ments alone. To wit 

€^M^,^'q = 0 (476) 

With the constraint on the shear deformations we have ©a = eô w,;?. Substitut­
ing these relationships into the constitutive relationships for the moments, Eqn. 
(463), we have the following constitutive equation for the moments 

M^ = D[ve^w,yy'\-{l-v)€^w,ay) (477) 

These equations can be written out as 

Mn =D(l-v)>v, i2= -M2: 

M12 = - Z ) ( l V , i i +V>V,22) 

M21 = i ) ( w , 2 2 + V W , i i ) 

where we have defined the plate modulus D as 
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= 1 I , 3 / 1 * ^ 0 . . \ - Ch' D ^^hHr+2ti] = —^—- (478) 

where C is Young's modulus and v is Poisson's ratio. Recall also the relation­
ships A 7(A*+:^) = v a n d ^ = C/( l+v) = C{l-v)/{l-v^). 

The shear forces must be computed from an equilibrium equation because 
of the vanishing shear deformation constraint. From equation (449), with no 
m, we get 

g i = -£>(W,111+W,22l ) ^4^9^ 

Q2 = -£>(>V,222+^,112) 

Differentiating Eqns. (477) in the appropriate manner and substituting the 
results into Eqn. (476), we arrive at the governing equations of the Kirchhoff-
Love plate theory 

D W = q (480) 

where D is the plate modulus and the differential operator V̂  is given in terms 
of the mixed fourth partial derivatives as 

V V ^ | ^ + 2 ^ ^ + | ^ (481) 

The analogy to BemouUi-Euler beam theory is quite evident here. In fact, if it 
were not for the cross-derivative term, these equations would be exactly equiv­
alent to a grid of orthogonally placed beams interacting through frictionless 
contact acting to resist the load q. Early attempts at plate theory actually used 
this approximation, known as the Grashoff approximation, to simplify design 
calculations. The mixed term comes about from the presence of twisting mo­
ments in the plate and contributes a great deal to the stiffness of the plate. 

Since the constitutive equations for shear have been sold for the price of a 
reduction in the number of independent descriptors of the kinematic field, you 
might expect that the boundary conditions of the plate will also require some 
attention. In particular, the shear-free boundary conditions must be obtained 
from the equilibrium equations. 

Constraining the shearing deformations to be zero allows us to state the ki­
nematic hypothesis in a slightly different form. Now the vector normal to the 
middle surface remains orthogonal to the tangent plane of the surface (that is, 
the collection of all vectors that are tangent to the middle surface). As a conse­
quence, we often hear of the Kirchhojf hypothesis that lines normal to the 
middle surface in the undeformed configuration remain normal to the middle 
surface after deformation. The orthogonality of lines with the tangent plane is 
analogous to coincidence of normals to the tangent line (deformed axis) of a 
beam, both representing the zero-shear deformation constraint. One must be 
careful not to be seduced into seeing the sunilarity between the Kirchhoff hy-
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pothesis and the statement of the fundamental beam hypothesis that lines nor­
mal to the cross section remain normal after deformation. Both speak of Imes 
remaining normal to something after deformation, but in one case shear is 
constrained out, while in the other it is not. 

Virtual work for the Kirchhoff-Love plate. We can derive the appropriate 
expression for the virtual-work functional for the Kirchhoff-Love plate by im­
plementing the vanishing shear deformation constraint directly into the virtual-
work functional of the ordinary plate theory. To simplify the discussion, let us 
ignore the in-plane aspects of the plate problem in favor of the plate-bending 
problem. Let us also assume, for simplicity, that there is no applied bending 
moment m. It should be obvious how to implement a nonzero moment into the 
tl̂ eory. With these assumptions, the internal virtual work is given by 

w, 1 M^' H^dA (482) 

Noting that M^ • x^ = M^d^.a and 6^ = e^w,y along with the constitutive 
equations for moments given in Eqn. (477), we get 

(483) 

The external work can also be computed from the complete form of the 
virtual work (again assuming m = 0) 

W, •I, (484) ^wdA + J (mr • "5 + w^QaH^)^ 

W exclusive of the in-plane components along where Qaria is that part of Qr 
the edge with normal n. 

The boundary term is the source of some difficulty because of the vanishing 
shear constraint. To appreciate the problem, consider the simply supported 
boundary along an edge of length € with normal n = ei, as shown in Fig. 108. 
Along this edge we have the following contribution to the external virtual work 

[ (M„w,2 -MizW,! +Qiw)ds (485) 

< 

Figure 108 Simple support conditions on the boundary of a plate 
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Along this edge the displacement is constrained to be zero. Rotation can occur 
about the X2 axis, but rotation is restramed about the jCi axis. The key observa­
tion is that the restraint of the edge displacement vv = 0 implies vanishing of 
the rotation vv,2 about the Xi axis. Thus, the rotation >v,2 is not independent from 
w, while >v,i is independent. With this lack of independence, the fundamental 
theorem of the calculus of variations cannot be applied. 

To get the expression to a form where the fundamental theorem can be ap­
plied, we must integrate the term containing vv,2 by parts to get 

1: [ (Gi-Mn,2)vv-Mi2VV,i]^ +Mn>v| (486) 

This expression affords some interesting observat ions about the boundary con­
ditions of the Kirchhoff-Love plate that appear because of the constraint of 
vanishmg shear deformation. Like the Bemoul l i -Euler beam, the Kirchhoff-
Love plate must have exactly two boundary condit ions at each point along the 
edge. These two condit ions can be any of a variety of possible condit ions. The 
fixed edge has vanishing transverse displacement w and vanishing rotation 
( w,i for an edge wi th normal Ci, and iv,2 for an edge with normal €2). The sim­
ple support has vanishing transverse displacement w and vanishing tangential 
momen t (Af ̂  for an edge with normal Ci, and M^ for an edge with normal 62). 

The free edge boundary condit ion is the myster ious one. It has vanishing 
tangential momen t and vanishing effective shear (j2i — A^ii,2 for an edge wi th 
normal Ci and G2+A^22>i for an edge with normal 62). It would appear, from 
purely statical considerat ions, that the shear force Qa should vanish on a free 
edge, as it does for the beam. However , because of the k inemat ic constraint, 
w e find that the effective shear must vanish instead. Kirchhoff w a s the first to 
recognize this peculiar feature of the constrained plate theory so the effective 
shear is often called the Kirchhoff shear (he called it the erzatzkrdfte). The 
vir tual-work argument is the clearest way of seeing the need for this boundary 
condit ion because the conjugate condit ions a lways appear in the vir tual-work 
statement of the boundary value problem. In equation (486) , w e can see that 
the effective shear multiplies the virtual displacement, whi le the tangential m o ­
ment multiplies the tangential virtual rotation. On any edge , either the dis­
p lacement or the effective shear can be prescribed, but not both; either the tan­
gential rotation or the tangential momen t can be prescribed, but not both. The 
four possible boundary condit ions for an edge with normal Ci are as follows 

vv = 0 vanishing displacement 

H'ji = 0 vanishing tangential rotation 

w,u-\-vw,22 = 0 vanishing tangential moment 

H'jiii + (2-v)w,i22 = 0 vanishing effective shear 



318 Fundamentals of Structural Mechanics 

^2 

Figure 109 General edge conditions on the boundary of a plate 

The second peculiar feature of the boundary conditions of the Kirchhoff-
Love plate is the last term in Eqn. (486). This term, Af n(€)iv(€) -Mii(0)>v(0), 
resulted from the integration by parts that got rid of the w,2 rotation in Eqn. 
(485). Each edge will generate terms of this variety. For two edges that meet 
in a comer, the terms may not cancel, giving rise to the so-called corner forces 
of Kirchhoff-Love plate theory. Again, these concentrated forces are an arti­
fact of the constrained theory. However, they do approximate a phenomenon 
that is observed in plates: a tendency for the comers to curl if not restrained. 
If there are no comers on the boundary of the plate (as in a circular plate), these 
terms vanish. 

The treatment of the boundary conditions for the general curved boundary 
is of interest. Consider the plate shown in Fig. 109. The boundary of the plate 
can be described by the unit normal vector n = ria^a- The vector tangent to the 
edge (and in the plane) of the plate is t = tat a- The components of n and t are 
related by 

^a "~ ^fia^^ ^ Ha = e^ptp (487) 

where e^ is the two-dimensional altemator. The moment Hip acting on the 
boundary can be decomposed along the normal and tangential directions as 

mr = (nir • njn + (mr • t)t 

Therefore, the dot product of the moment with the virtual rotation is 

mr • e = (mr • n)(e • n) + (mr • t)(5 • t) 

This key term will appear in the computation of the external virtual work. The 
vanishing shear deformation constraint relates the components of 6 and W as 
follows 

W v - ^^a^P 6a = e^w,^ < 

With this observation, we can easily show that 

e • n = Vvv • t, e • t = -Vvv • n 

where Vw • n gives the rate of change of W in the direction n. The extemal 
virtual work done by the moments on the boundary can be expressed as 
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(mr • 5)tfa = (mr • n)(Vvv • i)ds 
JT JT r 

319 

(488) 
tVViv • n ) ^ 

We need one more result concerning the integration of a function around a 
closed curve before we can compute the external work. 

Lemma. Let v{s) and w{s) be two scalar functions defined along a 
closed curve F, parameterized by its arc length s, in three-dimensional 
space. Let X{s) be a unit vector field tangent to the curve at every point. 
Then 

I vV>v • t ^ = - I ;V>v • t ^ = - I wVv • t ds (489) 

Proof, Note first that V(vw) = vVw + >vVv. We can integrate this ex­
pression over the closed curve as follows 

I vVw 'ids = 1 V(wv) • ttfa - w ̂ v ' ids 

Finally, observe that the fkst integral on the right side is the integral 
of an exact differential along the curve, and can be evaluated as 

I V(wv) * ids = wv| 

If the curve is closed, then the initial point s = a and the end point 
5 = 6 occupy the same position on the curve. Since the curve is con­
tinuous we have w{b)v{b) — w(a)v(a) = 0. • 

Identify v = mp • n in the above lemma, and the first term on the right side 
of Eqn. (488) can be integrated to give the work of the edge moments as 

f (mr ''S)ds = - \vV(mr - n) ^ ids 

r ^ { 
(mr • t)(Viv • n)ds 

Let us define the tangential moment M^ and the effective shear Q^ as 

(490) 

M, = mp • t 
(491) 
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These quantities can be computed in terms of the components of the moment, 
shear, and normal vector by noting that mr = WaM̂  = WaAf̂ ê  and that t is 
related to n by Eqn. (487). Substituting these results into Eqns. (491), we get 
the component expressions 

Ms = riaM^tp = HaM^e^^riy 

Qs = Qaria- {naM^n^),y€^n^ 

For the edge with n = Ci, we have rii = I and HJ = 0. It is straightforward 
to show that the general boundary conditions reduce to the special ones derived 
previously for this case, that is, M^ = A n̂ and Q, = d -Mii,2. 

Finally, adding the loading term and the shear term to Eqn. (490), which ex­
presses the external work done by the boundary moments, we find a more con­
venient form for the external virtual work. Substituting our newly defined 
terms into Eqn. (484), we have the following expression for external virtual 
work 

W, qWdA + ( 
JQ Jr 

Q^w - MsW, \y Hy I ds (492) 

As we saw in the case of beams, the expression for the external virtual work 
can be quite valuable in determining the appropriate boundary conditions be­
cause the external virtual work always involves the product of a force quantity 
with the appropriate conjugate displacement quantity. For the Kirchhoff-Love 
plate, the transverse displacement w is conjugate to the effective shear Q^, and 
the tangential rotation w.yUy is conjugate to the tangential moment M^ on the 
boundary. Therefore, we can deduce the possible boundary conditions for each 
point along an edge to be two conditions taken from the following four 

(493) 

We can define the virtual-work functional as the difference between the in­
ternal and the external virtual work. As usual, we will want to restrict our func­
tions in a way that forces the boundary terms to be zero. We can accomplish 
this goal by selecting virtual displacements that satisfy the essential boundary 
conditions, that is, boundary conditions on the displacement and the tangential 
rotation. Boundary conditions on the tangential moment and effective shear 
are natural boundary conditions, and need not be restricted in order for the 
boundary term to drop out of the virtual-work functional. As before, let us call 
Fw that portion of the boundary where displacements are prescribed, and F^ 

w = 0 

WfyHy = 0 

Ms = 0 

Qs = 0 

vanishing displacement 

vanishing tangential rotation 

vanishing tangential moment 

vanishing effective shear 
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that portion of the boundary where tangential rotations are prescribed. Define 
the admissible virtual displacements to be those functions W{xi,x^ that satisfy 
vv = 0 on FH, and vv,̂  «y = 0 on T .̂ Let us call this restricted collection of func­
tions $Pe(Q). With this restricted set of functions, the virtual-work functional 
can be expressed as 

(494) 

and the principle of virtual work can be stated as 

If G(w,vv) = 0 Vvv e 5P,(Q) 

then €rfyMan,ay " ^ = 0 iu Q 

As usual, the principle of virtual work simply states that if internal work is 
equal to external work for all test functions, then equilibrium is automatically 
satisfied. Since we restricted the test functions to be zero on the portion of the 
boundary where displacements or rotations are prescribed, the principle of 
virtual work no longer tries to satisfy the reaction boundary conditions auto­
matically. However, as we observed for the little boundary value problem, 
since the edge is adjacent to a portion of the domain, and the principle of virtual 
work is satisfying force equilibrium inside the domain, then the natural edge 
conditions should also be satisfied. Therefore, the reactions we compute at 
those points from the equations of equilibrium should be appropriate to the giv­
en problem. 

The Ritz method. Having the virtual-work functional at our disposal, we 
can proceed to develop approximations based on the Ritz method. The method 
follows exactly the same idea as all of its previous incarnations. We must 
approximate the transverse displacement from basis functions that belong to 
$Pe(Q). Let h„(xi,X2) be among those functions. We can then approximate the 
real and virtual displacements as 

Â  N 

w(x^,X2) = ^anhn(xuX2), w(xi,X2) = ^a„h„(xi,X2) (495) 

where a^ and a^ are constants to be determined, and Â  is the number of basis 
functions included in the approximation. If we define the matrices K and f to 
have components 

J Q 

vh^,aahn,fi^ "h (1 -v)/i^,^A;,,^] dA (496) 
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-a ^ '^ 
Ho 

Simple support 
all around edge 

x^ ^ n x^ 

Figure 110 Simply supported square plate example 

u •t qh^dA (497) 

then the virtual-work functional reduces to G(a,a) = a^(Ka —f), which is 
zero for all a only if Ka = f. As with beams, K is often called the stiffness ma­
trix, and f the load vector. 

Example 51. Consider a square plate of depth h and sides of length jt, subjected 
to a downward uniform load of intensity — qo, shown in Fig. 110. Let us consid­
er a single-term approximation for the real and virtual displacement 

w(x^,X2) = fli sinxisinx2, w(x^,X2) = 5"i sinjCiSinx2 

The second partial derivatives of the displacement needed to compute the stiff­
ness matrix are 

w,ii = — fliSinjCiSinjC2 

W,12 = aiC0SXiC0SAC2 

>v,22 = — fliSinjCiSinAC2 

The virtual displacements can be treated in the same manner. Eqn. (494) sug­
gests that we need 

^,aa'^,yy = 4aiS"i sin^ jĉ  sin^ JC2 

^^aTj^yarj = 2^Zi5"i(sin^JCi sin^JC2 + C0S^JCiC0S^JC2) 

Substituting these results into Eqn. (494) and carrying out the integrals, we get 

G(fli,ai) = (jT^Dflj-I-4(7o)5'i = 0 

where D is the plate modulus. Clearly, G can be zero only if ^i = - Aqo/7t^D. 
Thus, the approximate solution is 

. V 4 ^ 0 . . 

W(^I,A:2) = - ^ s m a c i s m x 2 

We generally would not expect a one-term approximation to be very accurate; 
however, the present approximate solution happens to be quite good. In fact, if 
we take the displacement to be a sine series of the form 
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X 00 

w{xi,X'^ = V V fl;„;, sin/iXj sin/n;c2 
m=1n= 1 

then we can use the Ritz method to find the coefficients (Problem 212) to be 

= - i ? i L 
7i'^D\mn(m^ + n^y 

m,n = 1,3,5,. , 

The even coefficients are zero, i.e., a^n = 0 for m,n = 2, 4 , . . . . The series 
converges quite rapidly, with most of the contribution coming from the first term 
(i.e., the one we used originally). Part of the reason the series converges so rapid­
ly is that the base functions satisfy not only the essential boundary condition 
IV = 0, but also the natural boundary condition Ms = 0. While the principle of 
virtual work does not require that the basis functions satisfy the natural boundary 
conditions, to do so will generally improve the approximation. 

The preceding example illustrates the essentially two-dimensional charac­
ter of the principle of virtual work for plates, and shows some distinct differ­
ences from beam theory. Plate theory is governed by partial differential equa­
tions, while beam theory is governed by ordinary differential equations. While 
we can often find classical solutions to beam problems, we can seldom find 
classical solutions to plate problems. The principle of virtual work can be very 
valuable in the solution of these problems. 

Additional Reading 

Y. C. Fung, Foundations of solid mechanics, Prentice Hall, Englewood Cliffs, 
N.J., 1965. 

H. L. Langhaar, Energy methods in applied mechanics, Wiley, New York, 
1962. 

S. P. Timoshenko and S. Woinowsky-Krieger, Theory of plates and shells, 2nd 
ed. McGraw-Hill, New York, 1959. 

R. Szilard, Theory and analysis of plates: Classical and numerical methods. 
Prentice Hall, Englewood Qiffs, N.J., 1974. 
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Problems 
208. The three-dimensional rotation tensor A without drilling rotation can be obtained 
from two successive rotations, first xp about the JCJ axis, and then 0 about the new X2 axis 

A(jtp,(P) = 

COS0 0 sin0 

0 1 0 

- sin0 0 COS0 

1 0 0 
0 cos^ simp 

0 - sinV^ cosV̂  

Compute the product of the two tensors to find A. Demonstrate that the tensor A is orthogo­
nal by showing that A~ ̂  = A .̂ Show that for small values of the parameters rp and 0, the 
tensor can be expressed in the form A » I-h W, where I is the identity and W is a skew-
symmetric tensor. Show, therefore, that when the parameters are small, they can be viewed 
as the components of the rotation vector 0 with \p = 0^,(p = -62? and ^3 = 0 such that 
w = e X. 

209. Write out the explicit constitutive expressions for the stress resultants 

210. Write out the explicit equilibrium expressions for the Mindlin plate equations 

-t 21 afi^y^^^y^"'" 

hju[w^,aa -^€^^,a) + ^ 3 = 0 

211. For a smooth boundary, the expression for the external virtual work for the Kirch-
hoff-Love plate is 

JQ JT 

Modify the equation to account for point loads in the domain and corners on the boundary. 
What terms need to be added for a plate that has the shape of a regular polygon with n sides? 

212. Consider the simply supported square plate of depth h, sides of length jr, moduli A* 
and jLt, subjected to a downward uniform load of intensity —qo (shown in Fig. 110). As­
sume an approximate transverse displacement of the form 

00 00 

w(jCi,JC2) = / / ^ a^n sin mx^ sin nx2 

with a similar approximation for the virtual displacement. Assume that shear deformations 
are negligible and compute the coefficients amn using the principle of virtual work. Is it 
possible to consider an infinite number of terms in the displacement function? How should 
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the solution be modified to solve the problem of a rectangular plate of dimensions 
€i X €2? 

213. Reconsider the plate in Problem 212. We can compute an approximate solution using 
the Ritz method with a polynomial basis. Note that, in order to satisfy the boundary condi­
tions, the polynomial must have the form 

w(Xi,X2) = x^X2{x^-7C){x2-7t)[a(^^-a^QX^-^aQ^X2-^a^^x^X2+ ' ' '] 

(a) Compute the approximate displacement considering only the first term 0̂0-
(b) Unlike the beam, where we can add one term at a time with good results, the next term 

we might want to add to improve the solution is more complicated for the plate. Since 
the displacement is a function of two variables, it is possible to introduce an asymme­
try if we are not careful in the introduction of new terms. One strategy is to select all 
terms with the same exponents, as shown below by the dashed lines. 

\ 1 / 

r? \ 

Cj ^ x^X2 -<̂ iJ£̂ 2 . ^ - ' ^ a 

X^X'y \ XfX'^ / X\X'\ 

Resolve the problem using a four-term and a nine-term approximation, 
(c) A mixed strategy for selecting the basis functions might also be fruitfully employed. 

Solve the problem with the four-term approximation 

w(xi,X2) = sin;CiSinx2[aoo + l̂o-̂ i + 0̂1̂ 2 '^ ̂ 11^1^2] 

214. Consider a square plate of depth h, sides of length €, moduli 
A* and ju, subjected to a downward uniform load of intensity 
— qo. Assume that shear deformations are negligible (i.e., Kirch-

hoff-Lx)ve plate theory is applicable). Find an approximate dis­
placement for the following boundary conditions 

(a) 

where the designation ss indicates a simple support, fx indicates a fixed edge, and fr indi­
cates a free edge. 

215. Solve any of the above variations on the square-plate problem with any combination 
of the following differences 
(a) Consider a rectangular plate of dimension €1 x €2. 
(b) Consider a load form different from a uniform load. 



326 Fundamentals of Structural Mechanics 

216. Solve the square (;r x ;r), simply supported plate under uniform load (shown in Fig. 
110) considering shearing deformations. Note: You can still neglect the in-plane problem 
because it is uncoupled from the bending problem. Use the Ritz method. Note that 
w(x^,X2) must vanish on the boundary, but that 0^(Xi,X2) and 2̂(-̂ i»̂ 2) ^̂ ^ ^^t restricted. 
Let w(jci, X2) = a^sinxi sinxj. Select the functions for S^ and O2 so that the shearing de­
formation is linear, that is 

^1 = •̂ »2 + ^1(2X2-JT), 62 = - W , i + ^2(2^:1-^) 

What is the result of making such an assumption? Noting that the tangential moment must 
vanish on the boundary, is there a means of finding a better displacement function? Can 
we use statical considerations to improve the approximation of the rotation field? 

217. Consider a square (jt x n) plate subjected to a uniform 
transverse load q. The plate is simply supported along the edges 
X2 = 0 and JC2 = jr with any boundary conditions along the 
other two edges. Assume that shear deformations are negligi­
ble. According to the method of Kantorovich let us assume that 
the real and virtual displacement fields can be represented as 

w(xi,JC2) = W(jCi)sinjC2, ^{xi,X2) = W{x^smx2 

where W{x^ and W{x^ are unknown functions. 
(a) Substitute these functions into the virtual-work functional 

G{w,w) = [Z)(vw,aavv,̂ ^ + ( l -v)w,^w,^) - qw\^dA 

and show that W(x^ must satisfy the ordinary differential equation 

W^ - 2W" + W 

(b) Verify that the following function satisfies the above equation 

Aq 
^(^1) ~ —^ + (̂ 1 + ̂ 2^1) coshxi + (fl3 + fl4Xi)sinhjCi 

(c) What are the possible boundary conditions for W{x^1 Find the constants of integra­
tion for the case where the plate is simply supported on all four edges. 

218. There are many possibilities available within the context of the method of Kantoro­
vich. In general, we use an approximation of the form w(Xi,jC2) = W'(XI)0(JC2), where 
<t>{x2) is a known function. In Problem 217, the choice was 0(JC2) = sin X2. A more general 
approach is to use the deflected shape of a simply supported beam subjected to the applied 
loading (assuming that it does not vary with jCj). Find the general expression for the coeffi­
cients a, b, c, and q of the differential equation 

ii 
7lD 

aW^ - bW" -\- cW = q 

that results from applying the method of Kantorovich with the known function <j)(x2). Ex­
press the coefficients as integrals of (p(x2). Can Kantorovich's method be applied to bound­
ary conditions other than simple supports along parallel edges? How would the approach 
change to accommodate more general boundary conditions? 



9 
Energy Principles 
and Static Stability 

We have presented the principles of the mechanics of deformable bodies first 
in the context of vector mechanics, and second in the context of what we have 
called the principle of virtual work. Qearly, these two approaches are opposite 
sides of the same coin. They are duals of one another. Armed with the funda­
mental theorem of the calculus of variations, we can argue circularly that the 
classical form of the governing differential equations (those obtained from 
vector mechanics) implies the validity of the virtual-work form of those equa­
tions, and that the virtual-work form of the equations implies the validity of the 
classical form. Of course, two principles that are truly equivalent must travel 
in this same circle. 

Under certain conditions, the principles of virtual work can be recast as ex-
tremum principles. We call such an alternative form of the principle of virtual 
work an energy principle. The name "energy" derives from the physical princi­
ple relating real work to energy, i.e., energy is the capacity to do work. In phys­
ics, we identify several forms of energy. Those most important in mechanics 
are potential energy, the energy of position (the relative height above datum in 
a gravitational field, for example), and kinetic energy, the energy of motion 
(proportional to the product of the mass and the square of the velocity). A sys­
tem can have thermal energy, electrical energy, atomic energy, or energy asso­
ciated with a chemical reaction. The law of conservation of energy states that 
energy can be neither created nor destroyed. Historically, energy has played 
a fairly significant role in physics as well as in engineering. In structural me­
chanics we have the so-called energy principles like Castigliano's theorems. 
Maxwell's law, Betti's law, and the principle of least work. In dynamics, we 
have Hamilton's principle. 
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Figure 111 A column can be in equilibrium under the 
same loading system in both straight and bent positions 

Not all differential equations have an associated energy principle. On the 
other hand, a principle of virtual work always exists. (Recall that we can create 
a virtual-work functional simply from a weighted residual expression. The as­
sociated principle of virtual work is then a direct consequence of the funda­
mental theorem of the calculus of variations). We shall demonstrate, using a 
theorem of Vainberg, that if an energy principle exists for a certain differential 
equation then we can find the energy functional from the associated virtual-
work functional. 

The motivation for studying energy principles is that it provides a means to 
assess the stability of equilibrium of structures. Recall that the governing equa­
tions of solid mechanics developed in Chapters 2 through 4, extended to varia­
tional principles in Chapters 5 and 6 via the principle of virtual work, and ap­
plied to beams and plates in Chapters 7 and 8, allow us only to determine 
equilibrium configurations of a structural system.*̂  Those equations tell us 
nothing about the stability of equilibrium. 

To illustrate this point, consider an initially straight column subjected to a 
compressive axial force P, shown in Fig. I l l . The axial force in the straight col­
umn N(x) = P is constant and satisfies the equations of equilibrium at each 
point in the column. It is our common experience that if the column has flexural 
flexibility (i.e., i£ EI < oo), it cannot sustain arbitrarily large compressive 
loads and remain straight (try it with your plastic straw the next time you eat 
at McDonalds). Euler was the first to actually compute a value for the maxi­
mum load that the column could sustain. If the column is elastic, and if shear 
and axial deformations are negligible, then the critical load (for a pinned col-
imin) is Per = Tt^EI/i^, where EI is the flexural modulus of the column and ( 
is its length. This value often goes by the name Euler load, in honor of its dis­
coverer. A column that is asked to sustain a load less than the Euler load will 
remain straight, while a column that is asked to sustain a load greater than the 
Euler load will buckle into a bent configuration. 

t We will think of a configuration u(x) as a vector field which may or may not satisfy 
the governing differential equations (either in classical or variational form). Any con­
figuration that satisfies the equilibrium equations is called an equilibrium configura­
tion. This concept is clearest if we think of a given displacement map u(x), which can 
be differentiated to give the strain field, which can be substituted into the constitutive 
equations to give a stress field, which can be tested (by substituting it into the equilibri­
um equations) to see if it satisfies the equilibrium equations. If it does then it is an equi­
librium configuration. 
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Clearly, the concept of equilibrium alone is not sufficient for describing the 
behavior of mechanical systems. We also must examine the stability of that 
equilibrium. In the example above, the straight position is an equilibrium posi­
tion for any value of the load P (let us leave aside, for the moment, the question 
of whether the material can sustain the stress without failure). Equilibrium 
holds for all values of P. However, the straight position is in stable equilibrium 
only for certain values of P. Euler found the critical load by considering the 
possibility that the column might also be in equilibrium in a bent position and 
he rewrote the equilibrium equations in the deformed configuration.*^ What he 
found was that there exists another equilibrium configuration. However, again 
the stability of this equilibrium configuration cannot be established from the 
equilibrium equations. 

The principal goal of this chapter is to develop the appropriate machinery 
to examine the stability of certain mechanical systems. We shall restrict our 
considerations to static stability and to conservative systems. By a system, we 
mean the body in conjunction with its loads. A conservative system is simply 
one for which an energy functional exists. This class of systems includes all 
hyperelastic systems that are subjected to conservative loads, such as forces 
induced by a gravitational field. We shall develop a criterion for assessing the 
stability of the system called the energy criterion. 

The order of tasks in this chapter is as follows. First we shall introduce the 
directional derivative of a functional as necessary background to establish 
Vainberg's theorem. Vainberg's theorem will provide the connection between 
energy functional and virtual-work functional by giving a criterion to estab­
lish when an energy functional exists and a formula to compute it from the 
virtual-work functional. We will apply Vainberg's theorem to derive energy 
functional for all of the important theories we have already seen (i.e., the little 
boundary value problem, the BemouUi-Euler beam, the Kirchhoff-Love plate, 
and the linearly elastic three-dimensional solid). Finally, we shall introduce the 
energy criterion to ascertain the stability of equilibrium. 

We can generalize the idea of the equilibrium configuration to include more 
than just the displacement map (with the implication that stress is a function 
of displacement via the constitutive and strain-displacement relationships). In 
fact, we can think of the configuration of the system as comprising the dis­
placement, strain, and stress fields. An "equilibrium" configuration in this 
more general setting is any combination of these three fields that satisfies all 
of the governing equations. This viewpoint gives rise to some other energy 
principles. We shall take a brief look at the Hu-Washizu and Hellinger-Reis-
sner (left as an exercise) energy principles. 

t Herein lies the great departure from the analysis of linear systems, where we assume 
that we can write the equations of equilibrium in the undeformed position. In general, 
we must establish equilibrium equations in the deformed configuration in order to as­
sess the stability of a system. 
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Virtual Work and Energy Functionals 
When an energy functional exists, its derivative is a virtual-work functional. 
In order to explore this connection we must first learn how to differentiate a 
functional. In this section we consider methods of differentiating and integrat­
ing functionals. 

The directional derivative. As we discussed in Chapter 5, a functional is 
an operator that assigns a scalar value to a function. A functional is a function 
of a function. Consider a functional J(u), which takes as its argument the func­
tion u(x). The output of J(u) is a number— t̂he value of J. We can compute the 
value of J for any input function (at least among those having the proper char­
acter and defined on the proper region). 

Let us compute the rate of change of the functional J. It may be sufficient 
to observe that because the input to a functional is a function we cannot think 
about rate of change in the same way we do ordinary functions (i.e., the limit 
of the ratio of the difference between the values of the function at different 
points in space to the distance between those points). In other words, we cannot 
compute rates of change like "div" and "grad" like we can for ordinary func­
tions because the inputs to a functional do not enjoy the same spatial organiza­
tion that ordinary functions of position do. However, we will find that the con­
cept of directional derivative is still useful (recall that we used that concept to 
develop our ideas for rates of change of vector and tensor fields). 

Consider a fixed function u(x).t We can evaluate the functional for the 
function u to get J(u), the value of J at the function u. Now consider a second 
fixed function v(x) defmed on the same region as u(x). We can define a new 
function w(£) = u + fv as a one-parameter family of functions generated 
from the fixed fimctions u and v. We can, of course, evaluate the functional at 
the function w(£) to get 

J(e) = J(y¥(e)) = /(u + £v) (498) 

Observe that, because u and v are fixed, J(£) is an ordinary function of e. Note 
that the function w(e) has the properties w(0) = uandw'(O) = v. In essence, 
we can think of w(£) as being initially at the function u and moving in the direc­
tion of the function v. Because J(£) is an ordinary function (a scalar function 
of a scalar variable, in fact) we can compute the rate of change with respect to 
8 by ordinary differentiation as /'(^)-

We are most interested in the rate of change of the functional just as we begin 
to move in the direction of v, that is, at £ = 0. The rate of change is the slope 
of the curve J(e) versus £ at £ = 0, as shown in Fig. 112. We call this rate of 
change the directional derivative of the functional and designate it with the 

t The ttnn fixed function means that the function remains the same throughout the dis­
cussion. The fixed function is to the functional what a fixed point in space is to an ordi­
nary function. For a given fixed function there is just one value of the functional. 
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J(s) =J(u-\-ey) f 

DJ(u) • V 

Figure 112 Variation of 7(e) for fixed functions u(x) and v(x) 

notation DJ(u) • v, which reads: the rate of change of J evaluated at u and 
moving in the direction of v. Before we formalize our definition, let us consider 
a specific example. 

Example 52. The directional derivative. Consider the functionalJ(w) of a scalar 
function u(x), defined on :̂  E [0,1] that has the expression 

J(u) = w(0) + 
^0 

(x)dx (499) 

This functional takes functions u(x) and adds the value at x = 0 to the integral 
of the square of the function over the region. Let us consider the functions 

u(x) = sin(5;rj:), v(x) = ^ x ^ ( l - x ) 

These functions are shown in Figs. 113(a,b). The first function oscillates over 
two and a half complete cycles between 0 and 1, while the second is simply a 
polynomial with zero values at the end points. Both functions have a maximum 
value of one. Figures 113(d,e,f) show the function that is created by adding a 
multiple of v to the original function u. In other words, they plot the function 

u(x) = sin (5 Ttx) 
(b) 

^*)=f^(l-*) J(e) 

3 
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1 

(e) 
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^w-h2v 

\ \ 

1 

(( 
(̂  

»\ 
0 

3 

2 

1 

(0 AV^^ 

OH \ 
^ ^M + 4v ] 

Figure 113 Variation of u(x) in the direction of v{x) 
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u(x) + s v(x). To aid the visualization, the curve shown in dotted lines in each of 
these plots is the function e v(x). We have chosen for illustrative purposes the 
values e = 1, 2, and 4. 

The functional can be evaluated for each value of e; the result is shown in 
Fig. 113(c). The value of J grows as one would expect from the three specific 
cases plotted. In fact, the expression for the functional in terms of e is 

The slope ofthe curve ate = OisJ'(O) ~ l/5;r^ as can be seen by differentiat­
ing Eqn. (500) with respect to s and evaluating the result at £ = 0 . We can con­
clude that the initial rate of change of J as we move in the direction of v is 
DJ(u) ' V = l/Sn^. Qearly, we cannot compute a nice, tidy function of e for 
each possible choice of the function v(jc), because we generally are interested in 
finding this rate of change for a whole family of such functions. Thus, we must 
establish a more convenient method of computing this rate of change. Let us try 
to formalize these notions. 

Let us consider functions u(x) i-̂  95 C R̂  -^ H .̂ Read this notation as, 
"The function u takes arguments x from the collection 99, which is a subset of 
the entire three-dimensional space (the domain of u), and maps them to vectors 
u that live ui three-dimensional space R̂  (the range of u)." For example, u 
might be the displacement vector in a three-dimensional body, in which case 
98 would contain any position vector that extended from the origin to a point 
in the body. Let us also consider the functional J(u) H^ 3̂  -^ R that takes the 
functions u from the collection 9̂  and produces a real number. We wish to find 
the rate of change of the fimctional as we move in the direction of another func­
tion v(x) -̂̂  95 C R̂  ^ R̂  taken from the same class of functions as u(x). To 
find the rate of change of a functional, we use the Gateaux, or directional, de­
rivative defined as follows 

DJ{u) • V ^ ^ /(U(X) + £V(X)) (501) 

This expression computes the rate of change of the functional J as we move 
in the direction of the function v(x), starting at the function u(x). The differenti­
ation is with respect to the scalar parameter e (which has nothing to do with 
either of the functions u and v). After differentiation has been performed, the 
resulting expression is evaluated for £ = 0. Thus, the final expression is a func­
tional that operates on two functions, u and v, and does not depend upon e. 

Example 53. Example 52 revisited. Consider again the functional given in Eqn. 
(499). For this functional, the directional derivative can be computed as 
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DJ(u)'v = ^|(w(0) + fv(0)) + (u(x) + ev(x)Ydx 
Je = 0 

Differentiating with respect to e and evaluating the result at f = 0, we get 

DJ(u)'V = v(0) + 2u(x)v(x)dx (502) 

For the previous example, we used u(x) = sin(5;rA:) (which gave a value of the 
functional of 0.5) and v(jc) = ^jc^(l-jc). The rate at which the value of 7 
changes as we move away from u(x) in the direction v(jc) is 

DJ{u)'v = '^x^[l-x)^m[57tx]dx = ^ (503) 
Jo 

As we shall soon see, the merit of Eqn. (501) is not that the directional deriv­
ative can be computed prior to knowing the functions u and v, but rather that 
it will provide variational formulas that must be true, say, for all functions v. 
The significance of this observation will be evident when we develop energy 
principles. 

Directional derivatives of ordinary functions. It should be clear that the 
aforementioned formula for the directional derivative is a natural extension of 
the ordinary derivative of a function. In fact, the formula amounts to a simple 
application of the chain rule of differentiation for an ordinary function. Often, 
an analogy with ordinary functions that have geometric significance can help 
shed light on the geometric significance of the derivative of a functional. 

Consider the ordinary scalar function g{x) of the scalar variable x. Applying 
the above formula for the directional derivative, we obtain 

Dg{x)'x = j^[g[x^ex) dx 

which is nothing more that the product of the ordinary derivative and the num­
ber X. The concept of directional derivative is rather degenerate here because 
there is only one direction to go, and we lose no generality if we simply make 
the specific choice x = 1. 

If g(x) is a scalar-valued function of a vector-valued variable x, then the di­
rectional derivative in the direction X is 

Dg{x)'iL = ^ [ g ( x + fX)]^_^ = Vg 

where the gradient Vg is a vector that points in the direction of greatest change 
of the function g(x), that is, normal to the contour lines g(x) = constant. 
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If we have an ordinary vector-valued function of a vector-valued argument 
g(x), then the directional derivative in the direction X is 

Dg(x)'X = ^ [ g ( x + £X)]^_^ = [Vg]ir 

where Vg is the gradient of the function, i.e., the matrix of partial derivatives 
[ "̂ 8 ] ij - ^gi/^Xj, In this case, the rate of change of the function depends upon 
which direction you are headed in. 

Extremizing a functional. Like an ordinary function, a functional J(u) 
might have certain inputs u that yield the greatest (or least) value of the func­
tional. Hence, we can think of maximizing (or minimizing) the functional. The 
process for finding the extremum of a functional is very much like finding the 
extremum of an ordinary function. The location of the extremum is the point 
where the rate of change in any direction causes no change in the value of the 
functional. As shown in Fig. 114, the maximum and minimum of a function 
g(x) occur at points where the first derivative is equal to zero. The character 
of an extremum can be deduced from the second-derivative test If the second 
derivative of the function is positive at the extremum, then the point is a mini­
mum; if the second derivative of the function is negative at the extremum, then 
the point is a maximum. The second derivative of the function g(x) has mean­
ing for all values ofx, of course, but we use it in the second-derivative test only 
at a candidate extremum, that is, for points where g\x) = 0. We shall 
construct a second-derivative test for functional analogous to the one for ordi­
nary functions. Finding extrema and testing the character of those extrema will 
be our primary use of the directional derivative of functional. 

Of course, we must be aware of the anomalous cases. A function may have 
a saddle point, an extremum that is neither maximum or minimum. An extre­
mum may occur at a cusp in the curve where the derivatives of the function fail 
to exist. An extremum may occur at an endpoint of a curve, or in general on 
the boundary of the domain. The curve may be so flat at an extremum that the 
second-derivative test is insufficient to determine its character, in which case 
we must consider higher derivatives. All of these special cases of extrema for 
ordinary functions should be considered possible for functional. 

gQc) 
g' = 0, g" < 0 

•g' = 0, g" > 0 
X 

Figure 114 Maxima and minima of an ordinary function 
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Vainberg's theorem. Recall that the principle of virtual work guarantees 
that the function u(x) is an equilibrium configuration if 

G(u,n) = 0 Vn E ĝ  (504) 

where $F is the collection of admissible functions."^ The virtual-work functional 
G(u,ll) = PF/—W£ is the difference between the internal virtual work and the 
external virtual work for an arbitrary virtual displacement il(x). 

The virtual-work functional involves both the real displacement u(x) and 
the virtual displacement n(x). It seems reasonable to ask whether or not there 
is a functional that depends only on the real displacement, from which we 
could deduce equilibrium. The answer to this question is: sometimes. When it 
does exist, we call the functional the energy functional 8(u). The relationship 
between the energy and equilibrium is that equilibrium can be shown to hold 
for configurations u that make the energy an extremum. Since the virtual-work 
functional also describes equilibrium, we shall define the energy functional in 
terms of the virtual-work functional because when an energy functional exists, 
it can be obtained from the virtual-work functional. A virtual-work functional 
always exists. 

The virtual-work functional is a functional G(u, v) having two arguments. 
It is important to note that, by construction, this functional is linear in the sec­
ond slot (i.e., the one occupied by the virtual displacement). This linearity al­
lows us to write the expression 

G(u, a V +^w) = a G(u, v) +)SG(u, w) (505) 

Let us define a directional derivative of the functional G(u, v) in the following 
manner 

DG(u,v) • w = ^ [G(u + ̂ w,v)]^^^ (506) 

This directional derivative is like a partial derivative in the sense that the argu­
ment in the second slot (i.e., v) is not the subject of differentiation. In other 
words, it can be viewed as a constant for the purposes of directional differenti­
ation. Observe that, by construction, DG(u, v) • w is linear in both v and w. 

Lemma. Consider a functional G(u, v). The directional derivative of 
this functional satisfies the equation 

i: £)G(u + 5i¥,v) • wdls = G(u + few,v)-G(u + flw,v) 

t To keep the notation simple, let us refer to the parameters associated with the deforma­
tion map generally as u(x). This notation will allow us to refer to a beam theory in the 
same manner as a three-dimensional continuum, and we will simply reinterpret the 
meaning of u and x for the special cases. For the little boundary value problem the 
function will be w(jc). For beam theory the function will be {w(x), >v(jc), 0{x)}. 



336 Fundamentals of Structural Mechanics 

Proof, Observe that the directional derivative can be written as 

^ G ( u + ^ , v ) ^ G ( U + 5W + fW,V) 

= DG(u + 5W,v) • w 

for scalars 5 and £. We can see the first equality by introducing a new 
variable z(8) = s-\-£. Note that dz/de = 1 and that z(0) = s. By the 
chain rule we can compute 

| G ( u + ̂  + aw,v)]^^^ = [ |G(v+z>v,v)f]^^^ 

Now we can integrate the exact differential to get 

i: •^G(u-\-s\¥,\)ds = G(u + fcw,v)-"G(u + flw,v) 

thereby proving the lemma. • 

The following theorem due to Vainberg will allow us to make the connection 
between the virtual-work functional and the energy functional. It tells us when 
an energy functional exists and it tells us how to compute the energy functional. 

Theorem (Vainberg). Consider a functional G(u, v) that is linear in 
V. If the functional is symmetric in the sense that 

DG(u,v) • w = DG(u,w) • V (507) 

then there exists a functional g(u) that satisfies 

Dg(u) • V = G(u,v) (508) 

Furthermore, 8(u), if it exists, can be obtained from G(u, v) as 

(u) = G(tn,u)dt 
Jo 

g(u) = G[tvk,u)dt'\-c (509) 
Jo 

where c is an arbitrary constant. 

The proof of Vainberg's theorem depends upon three things: (1) the lemma giv­
en above, (2) the linearity of G(u, v) with respect to v, and (3) a change in the 
order of integration of an iterated integral. 

Proof. Let us start the proof by asserting Eqn. (509). It is sufficient 
then to show that the directional derivative of 8(u) in the direction v 
is G(u, v). By definition of 8(u) we can compute 
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B(u + h)~g(u) = G(m + ^h,u + h)dr-- G(m,u 
Jo JO 

337 

)dt 

' 0 ^ 0 

•[If 
•w 

[G(m + ^h,u)-G(m,u)]dr + G(m+/h,h)d/ 
Jo Jo 

Note that linearity of G(u, v) in the second slot enabled the second 
equality. Let us call the first integral on the second line / and compute 

/ = I [G(m + /h,u)-G(ru,u)]dr 
Jo 

t 

DG(m + 5h,u) • hd5 d̂  

1 

DG(m + 5h,u) • h d n d i 

1 

Z)G(m + 5h,h) • uJ^ ld i 
•̂  s 

[G(u + 5h,h)-G(5U + 5h,h)]tfe 
Jo 

The first step is the result of the lemma, with {u, v, w, 5, fl, b} in the 
lemma replaced by {m, u, h, s, 0, t}, repectively above. The second 
step is the result of changing the order of integration over the triangu­
lar region shown in Fig. 115, which holds for any integrand. The third 
step relies on linearity in the second slot of G. The last step is an ap­
plication of the lemma again, with {u, v, w, s, a, b} in the lenmia re­
placed by {5h, h, u, t, 5, 1}, repectively above. 

Therefore, we can write 

g(uH-h)-8(u) = I G(u + 5h,h)tfa 
Jo 

I \{')dsdt= I I {^)dt 
Jo Jo Jo is 

ds 

1 s 

Figure 115 Change in order of integration over the triangle 
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Now substitute h = £ v in the above expressions and compute 

g(uH-£v)-8(u) = G{u + se\,£\)ds = £ G{u-\-se\,\)ds 
Jo Jo 

where, again, we have used linearity in the second slot of G. Differen­
tiating this result with respect to e we get 

^ 8 ( u + £v) = G{u + s£y,\)ds + e I ^G{u + se\,\)ds 
Jo Jo 

Finally, setting e = 0 gives 

^ g ( u + £v)l = G(u,v)fik = G(u,v) 

which is what we set out to prove. • 

Corollary (energy principle). Assume that an energy functional 
8(u) exists. The configuration u is an equilibrium configuration if the 
energy is an extremum, that is, if the directional derivative vanishes 
for all functions H 

D8(u) • H = 0 Vn G a (510) 

Proof. The corollary is proved by combining Eqn. (508) and the prin­
ciple of virtual work. Q 

The integration to get the energy expression in Eqn. (509) is a line integral, 
and it is important to note that in the first slot of G one replaces u with m, where 
Hs a dummy variable of integration; in the second slot one replaces H with u. 

It should be evident that since G(u,ll) is the derivative of the energy g(u), 
we can add a constant to the energy without changing this relationship. This 
constant would represent the energy at zero deformation. Since we are never 
interested in the value of the energy itself, we can take this constant to be zero 
without loss of generality. You can see from the following examples that find­
ing the energy for a linear theory is always quite simple. 

Example 54. Little boundary value problem Consider a rod of length €, sub­
jected to an axial body force b(x), and suitably restrained at the boundary. The 
virtual-work functional has the form 

G(u,u) = [Cu'it-bu] 
JO 

dx 
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and u{x) represents an equilibrium configuration if G(u,u) = 0, for all 
u E ^e(0, €), where 3̂ e(0, €) is the collection of all functions, defined on the 
segment x E [0, €], whose first derivatives are square-integrable and satisfy 
the homogenous essential boundary conditions. The directional derivative of G 
in the direction u(x) is given by 

u = I Cu'u 
Jo 

DG(u,u)'u = Cu'Tt dx = DuG(u,u) - u 
Jo 

The symmetry of the derivative of G is evident either by repeating the computa­
tion changing the roles of u and u or simply by reversing their roles in the ex­
pression for the derivative and noting that the reversal has no effect on the result. 
Since symmetry of the weak form holds, there must be an energy functional. The 
energy functional is given by Eqn. (509) as 

% ) = [C(tu')(u')-bu]dxdt 
Jo Jo 

Carrying out the integration with respect to / and evaluating the result at the lim­
its 0 and 1, we obtain the expression for the potential energy of the rod as 

B(w) = I [\c{u')^-bu)dx (511) 
Jo 

The first term in the energy expression of the rod is the potential energy stored 
in the rod owing to elastic extension. This term is typical of elastic systems, and 
represents the energy stored in going from a strain- (and stress-) free condition 
to the configuration u(x). The second term is the potential energy of the applied 
load b(x) with datum taken to be the undeformed position of the rod. 

As shown in Fig. 116, the internal energy per unit length is simply the area 
under the stress-strain curve. For the little boundary value problem, the stress 
is a = Cu', and the strain is «'. Analogous results hold for all linearly elastic 
systems. For example, a translational sprmg of modulus ^ that develops force 
according to the relationship F = k \ where A is the amount the spring has 
stretched, has energy 8 = j^A^, A rotational spring of modulus k that devel­
ops moment according to the relationship M = k9, where 6 is the amount of 
relative rotation experienced by the spring, has energy B = ̂ kO^-

Example 55. Bernoulli-Euler beam. Consider an inextensible (i.e., no axial de­
formation) Bemoulli-Euler beam of length €, subjected to a transverse force q, 
and suitably restrained at the boundary. The virtual-work functional is 

I' G{w,w)^ [EIw"w"-qw)dx 
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Stress i 

a \ 

Strain 

Figure 116 Internal energy as area under the stress-strain curve 

The necessary symmetry of the derivative of G can be demonstrated in the same 
manner as for the little boundary value problem. Thus, an energy functional ex­
ists. The energy functional can be computed from Eqn. (509). Substituting tw 
each time w appears in the virtual-work functional and w each time w appears, 
and carrying out the integration with respect to /, we obtain 

g(>v) = I [^El(w")^-qw)dx (512) 
Jo 

One can observe the similarities among the energy functional for the Ber-
noulli-Euler beam and the little boundary value problem. Finding the energy 
functional for the Tunoshenko beam is straightforward and is left as an exer­
cise (Problem 220). 

Example 56. Kirchhojf-Loveplate. Consider a Kirchhoff-Love plate with planar 
domain Q, subjected to a transverse force q, and suitably restrained at the bound­
ary. The virtual-work functional has the form 

G(w,w) = [D[vw,aaW,^^ + ( l-v)w,^w,^) - qw^ 
JQ 

dA 

where D is the plate modulus and v is Poisson's ratio. The necessary symmetry 
of the derivative of G can be demonstrated in the same manner as for the previous 
two cases. Thus, an energy functional exists. The energy functional can be com­
puted from Eqn. (509). Substituting tw each time w appears in the virtual-work 
functional and weach time Tv appears, and carrying out the integration with re­
spect to t, we obtain 

M = f [H '^afi)-^^y v(w,aa) -^(l-v)w,^w,.\-qw\dA (513) 

It should be clear from the foregoing examples that there is a close relation­
ship between the virtual-work functionals and the energy fimctionals. Further-
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more, going from one to the other can be accomplished simply through Vain-
berg's theorem. 

Energy Principles 
The energy functionals given by Vainberg's theorem allow the statement of 
equilibrium as a problem of finding the extrema of the energy. According to 
the corollary to Vainberg's theorem, the energy extremum principle is 

extremum g(u) => Equilibrium 
ueg^eC^) 

(514) 

where the search is over all functions in 9̂ e(35) that satisfy the essential bound­
ary conditions. For ordinary functions, the necessary condition for an extre­
mum is that the directional derivative of the function vanish in all directions. 
Since we have a suitable extension of the concept of the directional derivative 
for functionals, the same condition can be applied here, that is, DB(u) • H = 0 
for all n E 9Fg(38). This necessary condition is obviously identical to the prin­
ciple of virtual work. As such, the energy extremum principle is simply another 
way of looking at the principle of virtual work, for those cases where an energy 
functional exists. 

Hu-Washizu energy functional. Some interesting energy principles can be 
formed with functionals that consider not only the displacement field as the in­
dependent function to be varied in the minimization process, but also the stress 
and the strain. Consider the Hu-Washizu energy functional given by 

(u,S,E) = {W(E) - S • (E-Vu) - b • u ) ^ 

- t • udA - Sn • [u-u)dA 
J Q, JQU 

where u is the displacement field, S is the stress field, E is the strain field, t 
is the prescribed traction over Q, (the portion of the boundary where tractions 
are prescribed), u is the prescribed displacement over Q« (the portion of the 
boundary where displacements are prescribed), b is the body force, and W(E) 
is the strain-energy function. By taking the directional derivative of the Hu-
Washizu functional in the directions of n, E, and S (varying u, E, and S, respec­
tively) we can deduce the necessary conditions for an extremum. Let us ex­
amine these conditions in order. 

Compute first the derivative of %(u, S, E) in the direction n, regarding the 
other field variables as fixed, to get 

Z )„K)U= ( S V n - b n ) ^ - X TidA- Sn- TLdA 
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Noting that S • Vn = div(SiI) - divS • n, and transforming the first term on 
the right side with the divergence theorem, we get 

Z)„:}6 • n = - (divS + b ) • u j y - ( t - S n ) - U ( 

From this expression we can see that the necessary condition for an extremum 
with respect to u (i.e., D^ 36 • n = 0) gives, by the fundamental theorem of the 
calculus of variations, the classical equilibrium equations and traction bound­
ary conditions 

D,% - 0 = 0 VH 
[divS + b = 0 in 38 

i Sn = t on Q, 

Next, let us consider the derivative of %(n, S, E) in the direction S 

D s 5 6 - S = S - ( V u - E ) d y - S n - ( u - u ) ^ 
J a JQU 

Again we can apply the fundamental theorem of the calculus of variations. 
Note that since S is symmetric, 2S • Vu = S • [Vu + Vu^]. The necessary 
conditions for an extremum with respect to S gives the strain-displacement 
conditions and the displacement boundary conditions 

( E = i[Vu + ̂  

[ u = u 
. - ... -̂  -Vu^l in 38 

Ds% • S = 0 V5 
onQ„ 

Finally, let us take the derivative of %(u, S, E) in the direction E 

Applying the fundamental theorem of the calculus of variations to this expres­
sion, we obtain the equivalence between the extremum of the energy with re­
spect to E and the constitutive equations 

DE%'E=^0 V E => S = ^ ^ ^ i n a 

The key idea behind the Hu-Washizu energy functional is that one can 
construct energy principles with some rather interesting properties built into 
them. By considering more of the field variables as independent fields, we can 
make the energy functional responsible for enforcing certain conditions 
among them, raflier than requking that those relations be enforced in a classical 
sense. In our usual implementations of the principles of virtual work, we satisfy 
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the constitutive equations and the strain-displacement equations exactly and 
let the principle of virtual work do its best to satisfy equilibrium. We eliminate 
the boundary terms by suitably restricting the class of admissible functions. 
With the Hu-Washizu energy functional, we need not enforce conditions on the 
field variables (not even boundary conditions). 

The Hellinger-Reissner variational principle is another multi-field energy 
principle, but it uses only the stress and displacement fields as independent 
fields. This variational principle is the subject of Problem 222. 

The Euler equation of a fimctional. Some of the earliest work on the calcu­
lus of variations was done by the mathematician L. Euler. One of the classical 
results is the so-called Euler equation associated with a functional in integral 
form. Consider, as an example, a functional of the form 

•I J{u) = F(u,u')dx (516) 
J a 

where the function F(M, W') can be any function in which those arguments ap­
pear. We consider the functional to depend only upon the argument u because 
the derivative u' is not really independent of w. We will, however, find it useful 
also to think of F as having two arguments when it comes time to take deriva­
tives ofF, Let us compute the directional derivative of J(u) in the direction u 
and set the result equal to zero to find a stationary point of the functional 

mu) •« = ^ F(u-\-eu,u'-^eu')dx] = 0 
J a 

Carrying out the derivatives, we obtain the result 

J a 

To put this equation in a form suitable for application of the fundamental theo­
rem of the calculus of variations, we must integrate by parts any term with de­
rivatives on M. Thus, the second term must be integrated once with the result 

f (dF d (dF\\^. ^ ^P TT 

J a 

b 

= 0 

From the fundamental theorem of the calculus of variations, we conclude that 
the function F must satisfy the differential equation 

aF _ ±{dF.\ = 0 (517) 
a« dx\du') " ^^ > 
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in the region jc E [^,6], and that either aF/^w' = 0 (a natural boundary con­
dition) or we can select w such that w = 0 (homogeneous essential boundary 
conditions) at the boundary points JC = ^andjc = b. Equation (517) is called 
the Euler equation of the functional J(u) of Eqn. (516). 

Example 57. Euler equations for the little boundary value problem. Consider 
the energy associated with the little boundary value problem given in Eqn. (511). 
The function F can be identified as 

F(u,u') = -\c(u')^ + bu 

with partial derivatives 

^ = b, 14 = -Cu' 
du du' 

The Euler equation for F is the equilibrium equation of the little boundary value 
problem 

The natural boundary condition is BF/du' = -Cu' = 0 at the traction-free 
ends, while the essential boundary conditions would require u = 0 at the ends 
where displacements are prescribed. 

Energy principles and the Ritz method. Because the energy functional is 
so closely related to the virtual-work functional, you might expect that the Ritz 
method for finding approximate solutions to boundary value problems might 
have application in energy methods. We shall find that a Ritz approximation 
reduces the energy functional to an algebraic function of the unknown parame­
ters of the Ritz expansion. The tools of minimization of this functional are 
those of the ordinary calculus of several variables. 

To make the ideas concrete, let us examine the energy functional for the Ber-
noulli-Euler beam, given in Eqn. (512). Assume that we can approximate the 
transverse displacement w(x) in terms of known base functions in the usual 
manner h(x) = [Ai(jc),...,/i^jc)]^as 

w(x) = ^a„hn(x) = a • h(x) 

where iV is the number of basis functions included in the approximation. Dif­
ferentiating the approximate expression and substituting the result into the en­
ergy functional gives the result 

8(a) = ^a^Ka - â f (518) 
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where [a = [fli,..., ^A^]^ represents the unknown coefficients of the approxi­
mation. The matrix K and the matrix f are given respectively by the definitions 

K = £/[h"][h'7d!x, f = 
Jo Jo 

EI[\i"][\i"Ydx, i^ \ qhdx 
Jo 

just as they were for the Ritz method for virtual work. 
The discretization of the energy functional is remarkably similar to the 

discretization of the virtual-work functional, but there are some key differ­
ences. The most important difference between the two is that, for the energy 
functional, only the real displacement field need be approximated, while in 
virtual work both the real and the virtual displacement fields must be approxi­
mated. We have generally advocated the Galerkin approach in virtual work, 
wherein we approximate the virtual displacements with exactly the same base 
functions used for the approximation of the real displacement field. This 
choice is what makes the K and f matrices identical in the two cases. If we were 
to approximate the virtual displacements with different base functions, then the 
resulting coefficient matrices would turn out to be different. 

Equation (518), defining the discrete energy, is called a quadratic form be­
cause it is a quadratic function of the individual parameters a„. The terms in 
a^Ka are purely quadratic (i.e., only products fl/fly appear). The terms in a^f 
are purely linear in the «/. Since g(a) is an ordinary function, its minimization 
is straightforward. Much is known about the minimization of quadratic func­
tions. The necessary conditions for a minimum is that the directional derivative 
vanish in all dkections. Thus 

Dg(a) • a = a^(Ka-f) = 0 Va 

This condition is one that we have seen before. It is the same one that results 
for the Ritz approach to virtual work. Since there are no restrictions on the a, 
the necessary conditions for an extremum are simply Ka = f. Since the func­
tion is quadratic, we know that there is only one extremum. Thus, the solution 
to the problem is unique. The discrete energy is quadratic because the underly­
ing beam theory is linear. When we get into nonlinear theories, the energy 
functional will not necessarily be quadratic, and, hence, uniqueness of solution 
will not necessarily hold. 

Static Stability and the Energy Criterion 
Let us consider a system for which an energy functional exists, and examine 
the concept of the stability of equilibrium of that system. The system has ener­
gy 8(u), and is in equilibrium for functions u that are extrema of the functional 
8. We can locate these extrema by taking the derivative of 8 and setting the 
result equal to zero. Accordingly, we can make a statement of equilibrium in 
the following form 
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Z)g(u) • H = 0 Vn E 3̂  

The directional derivative of the energy is identical to G 

Z)8(u) • li = G(u,u) 

The stability of equilibrium can be deduced from the second derivative of the 
energy. Like an ordinary function, if the second derivative is positive, then the 
energy is a minimum; if it is negative, then the energy is a maximum. A config­
uration of minimum energy is a point of stable equilibrium, whereas a point of 
maximum energy is a point of unstable equilibrium. Configurations that are not 
in equilibrium are not classifiable as either stable or unstable. The second de­
rivative test does not make sense for these configurations. Let us define the sec­
ond derivative of the energy as a functional 

A(u,II) . £[HU^ST^)1__^ (519) 

The energy criterion for static stability can be stated as follows. 

Theorem (the energy criterion for static stabiUty). Consider an 
elastic body 98 with energy functional 8(u). Let the configuration u(x) 
be an equilibrium configuration, i.e., u satisfies 

D8(u) • U = 0 Vn e 3̂  

This equilibrium configuration is stable if and only if 

A(u,u) > 0 VH e SF (520) 

If the energy functional A(u, H) fails to be positive for any test func­
tion H then the system is unstable. 

Proof. The elements of a proof are contained in the following discus­
sion. • 

Consider an equilibrium configuration u. Let us first show that the energy is 
a minimum at u. The energy at a neighboring configuration u + eH can be ex­
pressed by expanding the energy functional in a Taylor series about u as 

8(u + £ u) = g(u) + £ G(u, u) + 5£^A(u, u) + 0(e^) (521) 

by definition of the functional G(u,ll) and A(u,ll). If the third derivative of 
the energy is finite, then for sufficiently small values of £, the third term domi­
nates the 0(e^) term. Since G(u,ll) = 0 for an equilibrium configuration, we 
conclude that 8(u + £ll) > 8(u) if and only if A(u,n) > 0. 
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The energy criterion for static stability depends upon the law of conserva­
tion of total (kinetic plus potential) energy. Let us write the total energy as 

n(u,ii) = g (̂ii) + g(u) 

where 9r(u) is the kinetic energy and is always positive (the smallest value of 
kinetic energy is zero, when the system is at rest). For a solid body, the kinetic 
energy is given by the expression 

rcu) = i e l l u l P ^ 

Consider a system initially at rest, u(0) = 0, with its energy totally invested 
in potential energy, n(u, 0) = 8(u). Let us perturb the system by imparting a 
velocity v, which displaces the system to the position u(̂ ) = u + v̂ + 0(t^) for 
small time t. The potential energy in the perturbed position is, from Eqn. (521) 

g(u + rv) = g(u) + rG(u,v)+i^A(u,v) + Oit") 

Let A9" be the change in kinetic energy that results from the subsequent motion 
caused by the perturbation. The kinetic energy in the perturbed state is then 
equal to the kinetic energy of the perturbation plus the change in kinetic energy 
with time 

T = ^(v) + A^ 

Since the total energy must be constant 

8(u-hrv) + ^(v)-f A^ = 8(u) + ^(v) 

that is, equal to the energy just after the perturbation. Since G(u, v) = 0 by 
definition of an equilibrium configuration u, conservation of energy gives 

A5̂  = -^t^A(u,y) + O(r̂ ) (522) 

From Eqn. (522) we can see that if A(u, v) < 0, then the kinetic energy 
grows with time (at least for small values of time) because the system experi­
ences a decrease in potential energy. The increase in kinetic energy implies a 
nonzero value of velocity, which, over time, will cause the system to experi­
ence further displacement. The additional displacement will decrease the po­
tential energy further implying even more increase in kinetic energy and hence 
velocity. Therefore, if A(u, v) < 0, a small perturbation leads to increasing 
motion, and the configuration moves away from the equilibrium position. This 
sequence of events describes our understanding of instability. 

If, on the other hand, A(u, v) > 0, then the kinetic energy decreases with 
time. Smce the kinetic energy associated with the perturbation is small, and 
since the minimimi value of the kinetic energy is zero, the system returns to a 
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State of rest. As the kinetic energy decreases, the potential energy increases. 
According to Eqn. (521), the increase in potential energy implies that the sys­
tem moves back to the equilibrium configuration. 

Perturbations and virtual velocities. The preceding discussion suggests 
that there is a close correlation between the perturbation velocity v used to 
prove the energy criterion and the virtual displacement H that we have been 
using throughout our discussion of the principle of virtual work. Recall from 
Chapter 5 that, under the assumptions made to introduce the notion of virtual 
work, we can think of the virtual displacement as a velocity if the arc length 
parameter s is interpreted as time. In fact, the early work in the principles of 
virtual work used the term virtual velocity to describe the arbitrary motion. Al­
though we will not explore dynamical systems in this text, we can come to ap­
preciate the connection between the perturbation velocity and the virtual dis­
placement. 

Let us reexamine the energy criterion for static stability by interpreting the 
process as an exchange in virtual work done in an arbitrary virtual displace­
ment. Recall that the virtual-work functional is the difference between the in­
ternal and external virtual work, G(u,II) = W/(u,Ii) — W£(u, il). The rate of 
change of G, then, is the difference between the rate of change of the internal 
work and the rate of change of the external work. Also, we can show that 

A(u,n) = ^[Tr; (u + £il,u)-W^(u + £li,ll) 

Therefore, if the rate at which the system accrues internal virtual work is great­
er than the rate at which the external loads remove it in undergoing a virtual 
displacement u, then the system is stable. On the other hand, if the loads re­
move work faster than the system stores it, then the system is unstable. 

We can illustrate the preceding discussion of the energy criterion with balls 
resting on two different surfaces, as shown in Fig. 117. In each case, the ball 
is in static equilibrium because the normal force of contact between the two 
surfaces is oriented exactly to counterbalance the downward force caused by 
the weight of the ball. The arrows show admissible perturbations (we will not 
allow the ball to lift off of the surface or to penetrate into it). For the ball on the 

y^ 
Figure 117 Simple illustration of the energy criterion 
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(a) (b) 

Figure 118 Limitations of a local stability criterion 

left, the potential energy of the gravitational field is a maximum. For the ball 
on the right, the potential energy is a minimum. Assume that each of the balls 
is at rest, and let us impart a small velocity. For the ball on the left, the motion 
causes a decrease in the potential energy because the potential energy is maxi­
mum to begin with. The law of conservation of energy suggests that this de­
crease in potential energy will result in an increase in the kinetic energy. An 
increase in the kinetic energy implies further motion and the ball rolls even fur­
ther from its initial position. For the ball on the right, the motion causes an in­
crease in the potential energy with a corresponding loss m kinetic energy, 
thereby slowing the motion, eventually stopping it and returning the ball to its 
original position. The first case is clearly unstable because the motions are ever 
increasing. The second case is stable because the motions are arrested. 

The stability criterion based on the second derivative test is a local criterion. 
The proof clearly depends upon the perturbation being small because it uses 
a Taylor series expansion in the neighborhood of the equilibrium configura­
tion. This limitation of the local energy criterion is illustrated in Fig. 118. In 
case(a)wehave A(u,n) > 0 at the position ofthe ball, implying that the con­
figuration is stable, but it is intuitively clear that a somewhat larger perturba­
tion would send the ball over the small humps, never to return. Thus, case (a) 
shows stability in the small with instability in the large. Case (b) is the opposite 
of case (a). Instability is implied by A(u, n) < 0, but a perturbation would lead 
only to a small motion. Thus, case (b) shows instability in the small with stabil­
ity in the large. We will encounter situations in structural stability that have the 
features of this simple example. In those cases, we will simply find all of the 
equilibrium configurations and classify each one as stable or unstable. Equilib­
rium points in close proximity will be suspected of this type of behavior, but 
our static analysis will not allow us to examine it any further. 

The stability of cases shown in Fig. 119 cannot be determined from the sec­
ond derivative test because A(u,ll) = 0. If all of the derivatives higher than 
the second derivative are also zero, then the potential energy functional is per­
fectly flat at the equilibrium point. We call the stability of such a configuration 
neutral stability. For a neutral equilibrium configuration, a perturbation will 
not lead to a change in potential energy. The potential energy functional may 
be very flat at the equilibrium point, but not perfectly flat. In such a case, 
A(u,il) = 0, but one of the higher derivatives of the energy functional may be 
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Figure 119 Stability with a locally flat potential energy functional 

nonzero. Stability must then be determined from the sign of the lowest-order 
nonzero derivative of the energy. Case (a) has a higher derivative of even order 
with positive value, while case (b) has a higher derivative of even order with 
a negative value. Case (c) has a nonzero higher derivative of odd order. In such 
a case, the stability depends upon the direction of the perturbation. For this ex­
ample, if the perturbation is to the left the potential energy increases, but to the 
right it decreases. 

The general form of the stability requirement can be obtained from the Tay­
lor series expansion of the energy functional. To wit, 

N 

g(u+ £U) = 8(u) + 2^£ ' '5 ' ' (u , i i ) + 0(e''^') (523) 

where «! = w(n- l )* • • (2)(l) and the wthorder directional derivative of the 
functional is given by the formula 

B\l^^'S)^£;[^u-^eu)l^^ (524) 

Observe that 5'(u,ll) = G(u,n)and52(u,n) = A(u,n).If B''(u,1I) = Ofor 
all values of n = 2,.. .,7V-1, and5^(u,II) ?̂  0, then the stability of the sys­
tem is determined by the algebraic sign of B^. UN is even then the stability 
criterion is the same as before, i.e., 5^(u, H) > 0 for all Himplies stability and 
J5̂ (u, H) < 0 for any H implies instability. If JV is odd then stability also de­
pends upon the direction of the perturbing motion because the coefficient e^ 
will be positive if £ > 0 and negative if e < 0. 

The second-derivative functional for discrete systems. For discrete sys­
tems, governed by algebraic equations, we can develop a useful form of the 
energy criterion if we recognize that the second derivative of the energy will 
always have the form 

A(u,n) = a^A(A,a)li 

where A(A, a) is the Hessian matrix of second derivatives for an ordinary fimc-
tion of the energy, A represents a loading parameter, and a represents the pa­
rameters describing the motion. Application of the Ritz method to an energy 
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functional always results in a discrete system. We include the load parameter 
X as an argument of A to remind us that A generally depends upon the loads 
(if it does not depend upon the loads, we generally do not have a stability prob­
lem). Such details are most clear in particular applications and are deferred to 
the next chapter. 

Since the second derivative must be positive for all arbitrary variations a, 
the second-derivative test amounts to testing the matrix A for positive definite-
ness. The eigenvalues of a matrix provide the most direct means of assessing 
positive definiteness. 

Definition (positive definiteness). An N x N matrix A is positive 
definite if either of the following criteria are met 

a^A(A,a)a>0 Va 

or if all of the eigenvalues of A are greater than zero. • 

Recall that the eigenvalues and eigenvectors of a matrix A are the scalars y and 
the vectors u, respectively, that satisfy the eigenvalue problem 

Au = yu (525) 

If A is an iV̂  X iV matrix, then there are exactly iV pairs (y,, u,) of associated 
eigenvalues and eigenvectors that satisfy Eqn. (525). If the matrix A is sym­
metric (as it usually is for structural mechanics problems), then all of the eigen­
values and eigenvectors have purely real values. 

Stability of linear systems. Before we go on to the discussion of more gen­
eral stability problems, let us examine the stability of the linear systems we 
have discussed in this chapter. Let us perform the second-derivative test on the 
previously defined energy functionals. 

The second-derivative functional for the little boundary value problem is 

(«,i7) = c{jr 
Jo 

A(u,u) = C{itydx (526) 
Jo 

The value of the energy functional is the integral of the square of a function 
multiplied by Young's modulus. The square of a function is never negative. 
Therefore, the second derivative will always be positive if Young's modulus 
is positive, C > 0. If we interpolate the virtual displacement as M = a • b(x) 
then we have 

•i: A(A,a) = C[h'][h'Ydx (527) 
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Note that this matrix does not depend upon any loading parameter. The loading 
b does not appear in the second derivative functional and hence we can con­
clude that it does not contribute to the stability of the system. Also note that the 
matrix A is identical to the stiffness matrix K. 

The second-derivative functional for the Bemoulli-Euler beam is 

• i : A(w,w) = El{w"Ydx (528) 
Jo 

Again, we have the condition that the second-derivative functional will always 
be positive if the bending modulus EI is positive. Again, if we interpolate w we 
find that the stability matrix is identical to the stiffness matrix K. 

The second-derivative functional for the Kirchhoff-Love plate is 

A(w,w)= D(vw,aay^,fifi+(^-v)w,^W,^)dA (529) 

In order for the second derivative to be positive, thenD must be positive (there 
are also some restrictions on Poisson's ratio). 

We can conclude that these linear systems are guaranteed to be stable if their 
elastic constants meet certain criteria that are commonly met by all materials. 
Therefore, we arrive at the conclusion that all of our linear theories give rise 
to stable equilibria. Furthermore, we should expect the K matrix that comes 
from a Ritz approximation with these theories always to be positive definite. 

As mentioned in the introductory comments, buckling is a well-known phe­
nomenon for structural systems. Since our linear theories always predict stable 
behavior, we should not look to these theories to explain the phenomenon of 
buckling. We shall discuss the basic issue of structural stability in the next 
chapter. We shall demonstrate that the assumption of small deformations, 
which led us to our linear theories, precludes the modeling of buckling. If we 
remove this assumption and express equilibrium in the deformed position of 
the system, then we can model buckling phenomena. 

Additional Reading 

H. L. Langhaar, Energy methods in applied mechanics, Wiley, New York, 
1962. 

I. M. Gelfand and S. V. Fomin, Calculus of variations. Prentice Hall, Engle-
wood Qiffs, N.J., 1963. 
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Problems 
219. Consider a one-dimensional rod of length € and 
modulus C subjected to a body force b{x) and a traction 
To at the right end. The left end has a prescribed displace­
ment of M(0) = UQ. The Hu-Washizu energy functional 
for the rod is given in terms of the independent variables 
o{x) (stress), u{x) (displacement), and €{x) (strain) as 

%{u,o,e) = [lC6^-bu-a(€-u'))dx- roU(€) + a(0)(u(0)-Uo) 
Jo 

Show that by taking the directional derivative of % in the direction of variations of each 
of the variables, i.e., 

and setting the result equal to zero (to find the extremum), all of the classical governing 
equations for the one-dimensional bar result from applying the fundamental theorem of 
the calculus of variations 

a' + 6 = 0 

e - u' =0 A: e (0, €) 

a - Ce = 0 J 
Note that the fields that appear in the functional are each functions of JC themselves. 

or(€) - to = 0 

w(0) -Uo = 0 

220. Find the energy functional B(w, w, 0) for a Timoshenko beam. 

221. Find a Hu-Washizu energy functional for a simply supported Bemoulli-Euler beam 
of length € and modulus EI subject to a transverse load q(x). The appropriate field vari­
ables are the transverse displacement w(x)y the moment M(x), and the curvature x(x). 
Show that the extremum of the energy functional with respect to the three field variables 
gives the classical equations of Bemoulli-Euler beam theory. How must the functional 
change if the beam is fixed at JC = 0 and pinned at x = €? 

222. The Hellinger-Reissner energy functional for a three-dimensional hyperelastic solid 
body 3& with boundary Q is given by 

3Hu,S) = (S • Vu-b • u-U(S))dV Sn • iu-u] dA 

where u is the displacement field, S is the stress field, t is the prescribed traction over Q, 
(the portion of the boundary where tractions are prescribed), u is the prescribed displace­
ment over Qu (the portion of the boundary where displacements are prescribed), b is the 
body force, and U(S) in the stress-energy function. What do the necessary conditions for 
an extremum imply? (Hint: take the directional derivative of the functional in the direc­
tions of H and 5, and apply the fundamental theorem of the calculus of variations.) 

223. Show that the energy functional for the Kirchhoff-Love plate, given in Eqn. (513), 
can be expressed in the equivalent form 
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B(w)= [^^((w,n+w,22) '-2(l-v)(w,nw,22->v,?2))-^>v]^ 
JQ 

where D is the plate modulus and v is Poisson's ratio. The term w,^^ w,22 ~^?YI is an 
approximation of the Gaussian curvature of the deformed reference surface of the plate. 

224. Show that the energy functional for a three-dimensional linear elastic solid is 

g(u) = (^A(divu)2+^/^[Vu^+Vu] • V u - b - u ) ^ V - t-utZA 

Show also that the extremum of the energy gives the same equations as the principle of 
virtual work. 

225. Show that the energy functional for a Bemoulli-Euler beam on an elastic foundation 
can be expressed in the form 

Jo 'o 
where El is the flexural modulus of the beam, k is the modulus of the foundation, and q 
is the transverse load. 

226. Find the Euler equation and boundary conditions for the functional 

7(w) = F(iv,w',w")tic 

Use the Euler equation on the energy functional for a Bernoulli-Euler beam on an elastic 
foundation to find the classical differential equation governing the beam. 

227. Using the fundamental theorem of the calculus of variations, find the classical form 
of the governing differential equation for w(jc) implied by the minimum of the energy 
functional 

8(w) = [^ElW^'w - qw\dx - \E1Ww\ + \EIW'W\ 
I \ - i I I IQ z IQ 

228. The potential energy of a simply supported, symmetrically loaded circular plate of 
radius R is 

8(>v) = 71 I D(r(w")2 + i(w')2 + lvWw\ - Irqw 
Jo ̂  

dr 

where the function w(r) is the transverse deflection of the plate, D and v are constants, and 
^ is a known function of r. Find the variational (virtual work) form of the governing differ­
ential equation. Find the classical (strong) form of the governing differential equation. 
What can you say, if anything, about the boundary conditions for the problem? 

229. Find an approximate solution to the problem of a simply supported, circular plate 
of radius R and modulus D, subjected to a uniform load of q. Use the Ritz method with 
the energy functional given in Problem 228. Assume that the displacement is of the form 
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w{r) = flocos(§) 

where a^ is the, as yet, undetermined constant. If you had to pick additional terms in the 
approximation, what would you choose? Why is the cosine function a good choice? 

230. A beam of length € and modulus EI rests on a ^ — ^ ^ W 
nonlinearly elastic foundation that accrues trans- „, /^ I r * ^ ! ^ 
verse force in proportion to the cube of the transverse y/̂ Xw//AwJ\̂ \̂ ^̂ ^̂ ^̂  

ko displacement, i.e., f{x) = ko'^. The beam is sub­
jected to downward transverse loading q(x). Axial 
and shear deformations are negligible. Take w(jc) as ^ 
positive when it is upward. Find the virtual-work form of the equilibrium equations. Find 
the energy functional B(w) for the system. 

231. Consider a functional that takes scalar functions u(x) as input. The independent sca­
lar variable is defined on the range acG [0,1]. The functional has the explicit form: 

<«) = { !rb(«' <")= \rz-A^Xx)Y-M^) dx 

where a prime indicates differentiation with respect to x. The functions are constrained at 
the boundary to satisfy the conditions w(0) = 0 and u'(l) = 0. Find the classical differ­
ential equation implied by stationarity (i.e., max, min, or saddle point) of the functional. 
Solve the classical differential equation. Compute the second derivative functional associ­
ated with the given functional. 

232. The virtual-work functional for a system is given by the following expression 

G(w,w) = I la{w"w-^w"w)-\-bw^w\dx 
Jo 

where a, b, and € are constants and w(x) and vv(jc) are functions of the independent variable 
X. Does this functional have an associated energy? Find the energy functional for the sys­
tem, if it exists. 

233. Resolve Problem 232 with the functional 

G(w,w) = ( -aw"W-\- bwW)dx - aw(e)w*(e) + aw(0)W(0) 

234. The deformation state of a particular system is characterized by the scalar function 
6(x), where the scalar variable JCE [0, €]. The virtual-work functional for the system is giv­
en by the following expression 

0(0,0) = [aO'O' + bOsmO]dx 
Jo 

where a, b, and € are constants. Equilibrium of the system holds if G(0,0) = Ofor all 0. 
Does this functional have an associated energy? Find the energy functional for the system, 
if it exists. 



356 Fundamentals of Structural Mechanics 

235. The deformation state of a particular system is characterized by the scalar function 
u(x), where the scalar variable x E [0,1]. The virtual-work functional for the system is giv­
en by the following expression 

G(u,u) [au'V 
Jo 

+ bu'u -\- g(u)u]dx 

where a and b are constants and g(u) is a given nonlinear function of the displacement func­
tion u(x). Equilibrium of the system holds if G{u, w) = 0 for all u. For what values of the 
constants a and b does this functional have an associated energy? Find the energy function­
al for the system, if it exists. 

236. A beam of length £ rests on an elastic founda­
tion of modulus k (per unit length). It is pinned at the 
left end and is subjected to a point load P at the right 
end. The elastic foundation accrues a transverse 
force in proportion to the transverse displacement w. 
The energy of the system can be expressed as: 

k\\/^/A\\\^V///WsV^W^\S\^y/y/^^^^^ 

g(w) = f i 
Jo 

{EI(w"f + lcw^)dx-Pw(e) 

Find the virtual-work form of the equilibrium equations. What are the essential boundary 
conditions? Find the classical form of the equilibrium equations and the boundary condi­
tions. Which of the three functions given below are suitable for approximating the solution 
with the Ritz method? Explain why or why not in each case. 

w(x) = jc(€-jc)(ai + a2x), w(x) = jĉ (fli + a2x), w(jc) = x(a^+a2x) 

237. Consider a rectangular (rigid) block of height h 
and width € and weight W. The block is prevented from 
sliding by a small obstruction at the lower right comer 
and is pushed by a force P at the upper left comer. 
Write the potential energy of the system in terms of the 
angle of rotation $ of the block. Find the force P as a 
function ofh, €, W, and the angle 6 needed to have stat­
ic equilibrium. Find an expression for the angle at 
which equilibrium goes from being stable to being un­
stable. 

238. Consider the solid spherical region shown in the sketch. As- A ^3 
sume that there exists a scalar field H^X) for which we can define ^ .^J-^ 
the functional f<^ Y^ ^'^ 

that has the property that if G(w, v) = Ofor all (virtual) scalar functions v(x) then the clas­
sical differential equations goveming the real field w(x) are satisfied (i.e., G(>v, v) is a 

Vv • Vw + vw)t/V - pv dA 
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"virtual-work" functional). Note that the scalar fieldp is defined on the surface of the solid 
region. Show that an "energy" functional exists for this theory if the function p depends 
only upon the position vector x and not the function w(x), i.e., p = p(x). Determine the 
energy functional in terms of the field w. 

239. Reconsider Problem 238 for the case where the function/? depends upon the field w 
and the position x. Under what conditions would an "energy" functional exist in this case? 
(Hint: would an energy exist if p depends upon w itself? What if it depends upon deriva­
tives of w, i.e., p = p(\, w(x), Vw(x),...)? 

240. A beam of length € rests on an elastic founda­
tion of modulus k (per unit length). It is fixed at the 
left end, pinned at the right end, and is subjected 
to a point load P at midspan. The energy of the sys­
tem can be expressed in terms of the transverse dis­
placement w(x) as: 

8(w) 
^0 

[EI{w"f + kv^)dx^ P>v(€/2). 

I EI 
^//A:^///Ai^////^^^////^!^////k^///>^ii^ ^^S^yyX/^y 

< >U ^ 
e/2 €/2 

Find the virtual-work form of the equilibrium equations. What are the essential and natural 
boundary conditions? Use the Ritz method to find a one-term approximation of the dis­
placement field (use a polynomial approximation). 



10 
Fundamental Concepts 
in Static Stability 

The limit to the load carrying capacity of many structures is buckling resulting 
from the loss of stability of equilibrium. Any structure that carries load through 
compression is a candidate for loss of stability. (Some tensile structures are 
candidates for instability, but that is less common, and it remains a good rule 
of thumb to think of tensile forces as essentially stabilizing). The primary func­
tion of many structures is to elevate space and the fight with gravitational 
forces can induce compression in many members of a structure. Hence, struc­
tures subjected to gravity forces can suffer stability problems. Loss of stability 
must be well understood and accounted for in the design of structural systems. 

In the previous chapter we developed the energy criterion to assess the sta­
bility of static equilibrium of certain systems (i.e., those systems for which an 
energy functional exists). One of the observations that we made, based upon 
the energy criterion, is that an elastic system whose governing equations are 
linear*!* will lose stability only if certain of the elastic moduli (i.e.. Young's mo­
dulus) are less than zero. Furthermore, the loss of stability of a linear system 
is independent of the motion of the system. In fact, Vainberg's theorem shows 
that, if G(M, U) is linear in w, then the energy 8(M) must be quadratic in u and 
A(w, u) is, therefore, independent of w, Lmear theories of structural mechanics 
are not very interesting from the standpoint of stability. Many more interesting 
possibilities arise when the governing equations are nonlinear. 

Nonlinear theories of mechanics can arise from three basic sources: (1) non-
linearity in equations of equilibrium, which generally arise because equilibri-

t In a linear theory all of the equations—kinematics, equilibrium, and constitution— 
must be linear. If nonlinearity is present in any of these three aspects of the theory then 
the governing equations are nonlinear. 
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um in the deformed body generally depends upon the motion, (2) nonlinearity 
in the strain-displacement equations, and (3) nonlinearity in the constitutive 
equations. The first two sources of nonlinearity are coupled in a consistently 
formulated theory. Constitutive nonlinearities can take any number of forms 
from nonlinear elasticity to inelasticity. In this chapter we focus primarily on 
systems for which the first two sources are active, but the constitutive equa­
tions are linear. 

The analysis of nonlinear systems is considerably more difficult than the 
analysis of linear systems, but the rewards are much higher. There is a beauty 
in a fully revealed solution to a nonlinear problem that cannot be matched in 
the realm of predictable, positive-definite linear systems where the principle 
of superposition applies and doubling the load means simply doubling the dis­
placements and stresses. The stakes can be much higher for nonlinear systems, 
too. Failure of a system owing to instability is often dramatic, and often takes 
place without much warning. 

The primary purpose of the present chapter is to motivate the ideas and con­
cepts of static stability theory. Many new ideas and a lot of new terminology 
beyond those needed for the linear theory must be introduced. There is no bet­
ter way to introduce these concepts than to explore some simple examples that 
contain them. While we do not aim for complete coverage of all of the issues 
of static stability, the problems examined here should provide a good starting 
point for the novice in stability theory. 

We shall explore the ideas associated with static stability using the three 
simple systems shown in Fig. 120. All three of the systems consist of a rigid 
bar of length ( subjected to a vertical force P (taken positive downward). Each 
of these systems has elastic resistance provided by a discrete spring of modulus 
k. In each case the elastic resistance manifests in a different way and, as a re­
sult, the system displays a different response and thereby shows a different fea­
ture of nonlinear response. All three of the systems have the characteristic that, 
in the nominal configuration, they carry the load P purely through axial force 
in the bar. The elasticity in each case is provided by the springs, but that elastic­
ity is not mobilized until the bar rotates from the vertical position. Because of 
the rigidity of the member and the support conditions, the system has only one 

fWSAAq 

Figure 120 Example problems that will be used to illustrate 
various features of nonlinear response in this chapter 
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degree of freedom. The deformation of the system can be completely charac­
terized by the parameter 6, measuring the rotation of the column from its origi­
nal vertical position. 

Bifurcation of Geometrically Perfect Systems 
Bifurcation is the name given to structural response associated with a branch­
ing of the solution to a nonlinear equation (or system of equations) at a point. 
Figure 121 illustrates the features of lack of uniqueness and bifurcation for a 
nonlinear equation of two variables, i.e., g{X, 6) = 0. There are several issues 
that are important to recall. First, there is no guarantee that there will be only 
one solution to a nonlinear equation (actually there might not be any). Second, 
a single equation relating two variables can be represented as a curve in two-di­
mensional space (as in the figure). In our problems we will generally refer to 
these lines as equilibrium paths because they will come from equilibrium 
equations and they will relate the load k to the deformation 6. Each branch is 
a continuous sequence of points {A, d} that satisfy the equation. 

A bifurcation point is a point where two branches intersect. Imagine a load­
ing sequence that generates a sequence of equilibrium points along a certain 
branch, say Branch 1 in the figure. At some stage of loading the system will 
encounter the bifurcation point. At that point there will be four choices to ad­
vance the solution (one of which is returning along the path just traversed). If 
the system switches to the other branch (say Branch 2 m the figure) then there 
will be a change in the mode of behavior. A bifurcation point is associated with 
a zero value of the second derivative functional and, hence, Tepresents a point 
where a branch can change from stable behavior to unstable behavior. 

W. T. Koiter wrote a dissertation entitled Over de Stabiliteit van hetElas-
tisch Evenwicht (in Dutch) in 1945 to earn his Ph.D. from the Delft University 
of Technology. In this work he laid the modem foundations of structural stabil­
ity. He determined that there were only three possible types of bifurcation in 
structural systems: Stable symmetric bifurcation, unstable symmetric bifurca­
tion, and asymmetric bifurcation. In this section we shall study those three 
types of bifurcation through a series of examples. The main purpose of these 
examples is to see, in a familiar structural setting, the meaning and implications 
of nonlinear structural response that includes bifurcation. 

. / 

Bifurcation point 

Branch 1 

Figure 121 Lack of uniqueness and bifurcation 
of the nonlinear equation g(A,̂ ) = 0. 



362 Fundamentals of Structural Mechanics 

To study bifurcation we shall make use of energy principles, virtual work 
(to establish equilibrium), and the second derivative test (to establish the stabil­
ity of equilibrium). For the single-degree-of-freedom systems that we will ex­
amine the energy will have the form 

^9) = A(d) + X^{e) (530) 

where 6 will be the measure of deformation of the system and A will be the 
loading parameter. All of our systems will have an energy that is linear in the 
loading parameter and nonlinear in the displacement parameter. The nature of 
the functions Ji(0) and ^(9) will determine the character of the response and 
distinguish the different types of bifurcations. 

The virtual-work functional and the second derivative functional can be 
easily computed from the energy as 

G(e,e) = [ji'(e)-xnQ)]d^ 
A(e,6) = [A"{d)-x^"{e)\e^ 

where (•)' = d{- )/clB. Equilibrium holds if 0(0,6) = 0 for all 6. This equa­
tion allows the determination of the load parameter as a function of 6 as 

For states that satisfy this relationship, the stability is determined from the sec­
ond derivative test. Since d^is always positive, the term in brackets in Eqn. 
(531) determines the algebraic sign of the second derivative functional. The 
system is stable if 

xxe)-'^<Si"{d) > 0 (533) 

We can draw some simple, but general, conclusions if we expand the func­
tions A.{6) and 9&(0) in Taylor series to give the energy expression 

(534) 

It should be evident that the values of UQ and b^ are immaterial to the equilibri­
um of the system (because they do not show up in G). Bifurcation is not pos­
sible unless ^i = Oandfci = 0 (these are the terms that are usually associated 
with the loading in a linear problem). If either of these coefficients are nonzero 
then 6 = 0 (the trivial solution) will not be an equilibrium configuration. In 
general, we will have 2̂ > 0 (that is the linear stiffness of the system). We will 
find that if ^3 = 0 then the bifurcation is symmetric. If ^3 ?̂  0 then the bi­
furcation is asymmetric. 

The following examples illustrate these general ideas. 
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Stable Symmetric Bifurcation. A symmetric bifurcation gives the same 
response regardless of the algebraic sign of 0 (i.e., it does not matter which di­
rection the system moves). The functions Ji(d) and S(0) must be even func­
tions (e.g., the odd power terms will not appear in Eqn. (534)). The trivial con­
figuration 0 = 0 will be an equilibrium configuration for all values of the 
loading parameter and the nontrivial solution will be stable and ascending. The 
following example illustrates this type of response. 

Example 58. Stable symmetric bifurcation. Consider the rigid column with a 
rotational spring, shown in Fig. 122. The structure is composed of a rigid bar 
hinged at the base and restrained from rotation by a rotational spring at that 
point. The column is free to move at the point of loading. The force on the system 
is the vertical force P. The rotational spring accrues moment M in proportion to 
the relative rotation 6 it experiences, i.e., M = kd, c*. "̂  constitutes the elasticity 
of the system. Recall that the potential energy of the spring is \kO^' 

€ €cos(9 

Figure 122 A rigid column with a rotational spring 

The energy, virtual-work functional, and second-derivative functional are''' 

B((9) =\ke'^ +P€cos(9 

G{e,e) = [ks-Pi sme]e 
A(0,e) = [k-p£cose]e^ 

Note that datum for the potential energy of the load is at the base of the column. 
As usual, 6 represents an equilibrium configuration if G(0,6) = 0 for all 

values of the arbitrary virtual displacement 0. Since the expression must hold 
for all values of the arbitrary constant 0, the term in brackets must be identically 
zero (again, our old friend the fundamental theorem of the calculus of varia­
tions). To wit, the equation governing the equilibrium of the column is 

kO -PisinO = 0 

t For these examples we will simply write down the energy expression because the en­
ergy associated with springs is quite simple to derive, llie skeptical reader can take 
a Newtonian approach and write the equations of equilibrium in the deformed configu­
ration, use a weighted residual to create the virtual-work functional, and then deter­
mine the energy functional using Vainberg's theorem. In this case the moment in the 
spring, M= kd, must balance the moment created by the force, A/= P€sin^, to give 
the equilibrium equation /:^=P€sin^. 
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This equation is interesting in that it admits more than one equilibrium path 
(load-deflection curve) and possesses a bifurcation point or branching point. We 
must examine the stability of each of these equilibrium paths with the energy 
criterion. 

Clearly, 6 = 0 is a solution to this problem. This solution corresponds to the 
straight position of the column. The equation is satisfied for any value of the load 
parameter P. This observation is in accord with our expectations from taking a 
freebody diagram of the structure in the straight position. Not all values of the 
load constitute stable equilibrium. For ^ = 0, the energy criterion reduces to 

A(e,e) = [k-p£]e^^ 
> 0 for P < k/£ (stable) 

for P > k/e (unstable) 

The energy criterion tells us that equilibrium is stable for all values of the load 
P less than the value k/£ (even negative values, which represent tension on the 
column) and is unstable for all values of the load exceeding this critical value. 
We call this load the critical load (note that we do not yet have enough evidence 
to call it the buckling load). These results can be presented in a bifurcation dia­
gram like the one shown in Fig. 123. A bifurcation diagram is nothing more than 
a plot of load versus deformation of the system, but it shows all possible equilib­
rium paths. A stable equilibrium path is plotted as a solid line, while an unstable 
path is plotted as a dashed line. 

Unstable 
Stable 

0 = 0 

Figure 123 Bifurcation diagram for a rigid column with a rotational spring 

A second equilibrium path can be found for values of 0 not equal to zero, i.e., 
the bent position. In the bent position, the value of the load parameter depends 
upon the state of deformation, so we will say that P is a function of 6. Equilibri­
um is satisfied if the load is given by 

€Vsin0/ 

Interestingly, this equilibrium path does not emanate from the origin, but rather 
branches from the load axis at the load value P = k/£, the critical load (use 
THospital's rule to show that this is true). A point, such as this one, where two 
or more equilibrium paths branch from a single point, is called a bifurcation 
point. The path corresponding to the bent position is such that the load increases 
as the angle increases. We can also see that the second branch is symmetric with 
respect to 6, meaning that it has zero slope at 0 = 0. The symmetry tells us that 
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if the structure is initially perfectly straight, then it has no preference in its buck­
ling direction. 

The stability of the second equilibrium path can, again, be established from 
the second-derivative test. In this case, we have 

A{e,e) = kn-Y^jO^ > O forall e (stable) 

The expression comes from substituting P = kO/^ sin 0, required for equilibri­
um, into the expression for the second derivative of the energy. Since 

0 < e/tdLnO < 1 0 e[ -7i/2, Jt/2] 

e/tmO < 0 9 e [-71, -7t/2] 

this equilibrium path is stable everywhere (and, thus, is plotted as a solid line). 

Unstable Symmetric Bifurcation. Aii unstable symmetric bifurcation also 
gives the same response regardless of the algebraic sign of 6 (i.e., it does not 
matter which direction the system moves), and hence the functions A,(6) and 
5B(0) must be even functions. The trivial configuration 9 = 0 will be an equi­
librium configuration for all values of the loading parameter and the nontrivial 
solution will be unstable and descending. The following example illustrates 
this type of response. 

Example 59. Unstable symmetric bifurcation. Consider the structure shown in 
Fig. 124. The structure is identical to the previous one, except that instead of a 
rotational spring at the base, the top is restrained from lateral motion by a 
translational spring. The column is free at the top and hinged at the base. Again, 
the force on the system is the vertical force P. The translational spring accrues 
force F in proportion to its extension A, i.e., F = kA, and constitutes the elastic­
ity of the system. Recall that the potential energy of the spring is ̂ kA^. 

^" P. 

¥^\ 

€cos^ 

Figure 124 A rigid column with a translational spring 

The energy, virtual-work functional, and second-derivative functional are 

^(0) =^k(£smey -^ P£cose 

0(0,6) = £smO[k€cosO-P]0 

A(0,0) = £[ke{cos^O- sin^O) - PcosO]P 
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As usual, 6 represents an equilibrium configuration if G(6,6) = Ofor all values 
of the arbitrary virtual displacement d. Since the expression must hold for all 
values of the arbitrary constant 0, the remaining terms must be identically zero. 
To wit, the equation governing the equilibrium of the column is 

sin^[A:€cos^-P] = 0 

As was the case for the last problem, this equation is interesting in that it has 
multiple equilibrium paths. One way to satisfy the equation is to have sin ̂  = 0, 
which is true for ^ = 0, ± ;r, ± 27r,..., that is, all positive and negative inte­
ger multiples of TI. These values of 6 all correspond to straight configurations 
of the column. Let us ignore all solutions that require that 6 make a full circle 
(although such a mechanism is quite possible). Hence, we will consider only the 
solutions 0 = 0, ;r, —ji. For these values of the rotation, any value of the load 
P is possible. For values of 6 that do not correspond to straight configurations, 
the system can be in equilibrium only if 

P = HcosB 

Notice again that the nontrivial equilibrium path at ^ = 0 does not emanate 
from the origin, but rather at the critical load Per = H. The nontrivial equilibri­
um path also branches at the critical load Per = -k£ from the two other two 
straight configurations, i.e., 6 = ± Jt. For the straight configurations, the sec­
ond derivative test gives, for ^ = 0 

0 for P < M (stable) 

0 for P > H (unstable) 

2 _ J > 0 for P > - H (stable) 

A(0,e) = €(H-P)(92 = I ^ 

and for ^ = ± ;r 

A(±7i,0) = €(H + P)5"2 = 

I < 0 for P < - H (unstable) 

For the configurations where P = k£ cos 6, the second-derivative test gives 

A((9,5) = -k^Wsm^e 
Since A(6,6) < Ofor all 6, these configurations are always unstable. These re­
sults are summarized in the bifurcation diagram shown in Fig. 125. 

There is one major difference between Examples 58 and 59. At the bifurca­
tion points in Example 59, three of the four branches are unstable, and only one 
is stable. We can imagine that, if the system is loaded from zero in the unde-
formed configuration, catastrophe awaits at the bifurcation point. This is in­
deed the case. The system has no choice but to snap through to a stable configu­
ration, either at 0 = Jt or dit 6 = —;r, because it caimot remain on an unstable 
equilibrium path. This phenomenon is often called snap-through buckling. 
Snap-through buckling is, of course, a dynamic phenomenon, and our static 
model is not able to predict the path the structure will take in getting to a stable 
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- 7C 

— Unstable T 
— Stable ^^^. 

Per = - H 

Per = ki I 
x ^ P = kicosO w Q 

Per = -k£ 

71 

Figure 125 Bifurcation diagram for a rigid column with a translational spring 

configuration, but if there is little inertia, we can imagine that the process will 
be quite fast. Qearly, there is danger associated with this type of bifurcation 
diagram, and this danger is the primary concern in the design of such a system 
(unlike the previous system, where the buckling caused some fairly significant 
cosmetic disturbance, but did not shed load in the buckling process). 

Asymmetric Bifurcation. In both of the previous examples there was no 
preferential direction for buckling from the trivial state. Asymmetric buckling 
is possible when the function ji{&) contains an odd function of 6, at least one 
that gives rise to a 0^ term in a Taylor series expansion of A(6), In the simplest 
case, we can would have 

8((9) = a2<9' + fl3^'-Afc2<9' 

The virtual-work and second-derivative functional for this case are 

G{d,e) = [2a2e'¥3a^e''-k2b2e]e 
A(e,e) = (2^2 + 6a,e -X2b2)P 

Setting G(0,6) = 0 for all 9 gives the load in terms of 6 and the second deriva­
tive functional for that load tests the stability of the configuration. For this case 
we have 

2^2+ 3^3^ 
2b, ' A(e,e) = {3a,e)e' 

We can, without loss of generality, assume that a2 > 0 and 62 > 0. This as­
sumption gives a positive value of the bifurcation load Â r = ^2/^2 for a bi­
furcation at 0 = 0. If we also assume that ^3 > 0 then it is evident from the 
presence of the linear term in the expression for the load that the load will in­
crease for positive values of 6 and will decrease for negative values of 6, The 
second derivative indicates that the branch for positive values of 6 is stable and 
the branch for negative values of 6 is unstable. 

The following example illustrates the important features of the asymmetric 
bifurcation. 
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Example 60. Asymmetric bifurcation. Consider the structure shown in Fig. 126. 
The structure is similar to the previous examples except that the top is restrained 
from lateral motion by an elastic guy, modeled by a translational spring an­
chored at a distance a € from the base. Again, the force on the system is the verti­
cal force P. The translational spring accrues force F in proportion to its extension 
A, i.e., F = kA, and constitutes the elasticity of the system. Recall that the po­
tential energy of the spring is | ^ A .̂ 

£cosO 

Figure 126 A rigid column with an elastic guy 

The energy, virtual-work functional, and second-derivative functional are 

^(0) = ^k(L(e)-Lo)^ + P€cos^ 

0(0,6) = [ak£^(l-X(d))cosO - PesmO]e 

A(0,e) = [ak£^(yX\0)cos^e - (1-A((9))sin^) -P£cose]P 

where the current length L(0) of the spring is given by the expression 

1(6) = eJl-\-a^-\-2asmO 

Lo = L(0) = € \/l + a^ is the initial length of the spring, k(6) = Lo/L(^)isthe 
inverse of the stretch of the spring, and y = a/( 1 +a^). Note that the rate of 
change of L is V(6) = a^^ cos 6/L(6). As usual, if G(6,6) = 0 for all 6th&n 
equilibrium holds. Therefore, the guyed column is in equilibrium if 

ake^l-X(6))cos6 - P€sm6 = 0 (535) 

The straight configurations ^ = 0 and 0 = ± JT are equilibrium configurations 
for all values of the load since L(0) = L(± Jt) = Lo for those cases. The bent 
configuration is in equilibrium only for the loads 

P = aki \ tan(9 / 

For the straight configuration we have ^ = 0 and A = 1, from which we can 
observe that the critical load is 

ayke = 
a^kt 

At ± ;r we also have bifurcation points with critical loads equal to —Per- We 
can observe that, in the limit as a -•oo, the critical load approaches that of the 
column with the horizontal spring. As a ^ 0, the critical load approaches zero. 
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The bifurcation diagram for the geometrically perfect column is shown in 
Fig. 127 for the specific case of a = 1.2 

— Unstable 
— Stable 

Figure 127 Bifurcation diagram for rigid 
column with an elastic guy (perfect case) 

The bifurcation diagram in Example 60 shows some very interesting fea­
tures. We can observe that the bifurcation diagram is not symmetric, unlike the 
previous two examples. Qearly, the behavior of the system is different if the 
column moves to the right, as opposed to the left. This lack of symmetry mani­
fests in a nonzero slope of the equilibrium path in the neighborhood of the bi­
furcation point. The straight configuration is stable for all values of the load 
less than the critical load Per and unstable for all values of the load greater than 
Pen like the symmetric systems. The branch to the right (positive 6) of the bi­
furcation point is stable (at least for a while), while the branch to the left (nega­
tive 0) is unstable. The system exhibits two limit points on the equilibrium path 
for positive values of 6, and crosses the axis (zero load) at the positions 7t/2 
and — 7t/2, 

The Effect of Imperfections 
The preceding example assumed that the initial position of the column was per­
fectly straight. In reality, there is no such thing as a geometrically perfect sys­
tem. Imperfections can manifest in many ways. The geometry may be imper­
fect, the load may be imperfectly placed or directed, the material properties 
may be imperfectly distributed, and the boundary conditions may be imper­
fectly implemented. Thus, the study of imperfections is complicated for even 
the simplest system. Throughout this chapter, we will focus on the imperfec­
tion in the initial geometry of the system to get an idea of the effects of imper­
fections. 

We shall see that some systems are sensitive to imperfections. A relatively 
small perturbation in the geometry leads to a relatively large change in the re­
sponse. Linear systems are not generally sensitive to imperfections and hence, 
this sort of analysis is not commonly done for linear systems. Not all nonlinear 
systems are sensitive to imperfections. 
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Let us reconsider our three example systems to see how geometric imper­
fections affect the response of the system. 

Example 61. Ejfect of imperfections on the stable symmetric system. Consider 
the rigid column with a rotational spring, shown in Fig. 122. The geometrically 
perfect system has a stable symmetric bifurcation diagram, shown in Fig. 123. 
Let us now consider a geometric imperfection in the system that manifests as an 
initial angle OQ (let us assume that it is positive) corresponding to zero applied 
load and zero force in the spring. The energy, virtual-work functional, and sec­
ond-derivative functional for the imperfect system are 

B((9) =\k[e-eoY -^P^cosO 

G(e,e) = [k(e - e o)-p^ sin e]o 

A((9,5) = [k-pecose]e^ 
We can see that ^ = 0 is no longer a solution. The system is in equilibrium at 
the deformation 6 only if the load has the value 

_kle-eo\ 
£\ sin^/ 

There are two equilibrium paths that satisfy this expression. These equilibrium 
paths are shown in Fig. 128 along with those for the perfect system. 

Unstable 
Stable 

Figure 128 The effect of an imperfection 
for a rigid column with rotational spring 

The second-derivative tr . gives 

for ^ > 0 (stable) 
for Ocr < 0 < 0 (unstable) 
for e < Ocr (stable) 

where Ocr is the 'solution to the equation 0-do = tan 0, as illustrated in Fig. 129. 
Thus, the equilibrium path that passes through the point of zero load (with 

positive values of 6) is stable. The path above the secondary path of the perfect 
system shows a limit load (a point of transition from a stable branch to an unsta-
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m^ m = t3ne 

Figure 129 Graphical solution of 0 - Oo = tan^ 

ble one without a bifurcation of paths) at ĉr»with the path being stable to the 
left of the limit load and unstable to the right. Because of the nature of the imper­
fection, the straight configuration ^ = 0 cannot be reached at finite values of 
the load. As 6 -^0 from the right, the force P goes to large negative (tensile) 
values, indicating that a tensile axial force cannot completely straighten the ini­
tial imperfection. 

As ^ -> 0 from the left, the load P takes large positive values, indicating that 
if we could get to a configuration with negative values of 6 (we could force it 
over with a lateral force and then remove the lateral force), it would take an infi­
nitely large compressive load to keep it from snapping through to the other side 
if it got close enough to the straight configuration. On the other hand, if the com­
pressive load was large enough and the system was bent enough, equilibrium in 
the bent position would be quite stable. In either case, as 6 increases, the equilib­
rium path is asymptotic to the perfect path. 

There is no bifurcation in the imperfect system in this example. Note the 
presence of the term fli = -A:^^^ (the linear term) in the energy. Hence, there 
is no meaning to the concept of a critical load in the sense that we have been 
using it. However, we can clearly see that the equilibrium paths for the perfect 
system provide a backbone to the imperfect system. The smaller the imperfec­
tions are, the closer the imperfect paths hug the perfect ones. The critical load 
roughly represents the point in the imperfect curve where the system transi­
tions from a relatively stiff to a relatively flexible system. The critical load is 
an indicator of the value at which buckling starts to progress rapidly. 

The previous example demonstrates many of the features that are important 
to problems of stability of equilibrium. It illustrates the juxtaposition of titie per­
fect system and the imperfect one. It illustrates that, even for this simple sys­
tem, there are solutions you might never imagine. In fact, we have not found 
all of the possible solutions here. There are other solutions that correspond to 
complete windings of the rotational spring. We have defined the important 
concepts of bifurcation point and limit point. We have illustrated the role of the 
bifurcation diagram. All of these concepts will carry over to the case where 
equilibrium is governed by differential equations rather than algebraic ones. 
We can use these simple systems as sounding boards for the more complicated 
cases where we might not be able to make as much analytical headway. 
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Imperfections have a particularly important effect on systems with unstable 
post-buckling behavior. In fact, these systems are called imperfection sensi­
tive. The sensitivity to imperfections manifests in a limit point having a limit 
load that is lower than the critical (bifurcation) load of the associated geometri­
cally perfect system. (Note that the symmetric stable system had a limit point 
on the left side of the bifurcation diagram, but it was associated with a load 
greater than the critical load and did not appear to be reachable from the initial 
unloaded state.) The reduction in load carrying capacity in imperfection sensi­
tive structures can be substantial. 

Example 62. Ejfect of imperfections on the unstable symmetric system. Consider 
the rigid column with a translational spring, shown in Fig. 124. The geometrical­
ly perfect system has an unstable symmetric bifurcation diagram, shown in Fig. 
125. Consider a geometric imperfection in the system that manifests as an initial 
angle OQ corresponding to zero applied load and zero force in the spring. The en­
ergy, virtual-work functional, and second-derivative functional are 

8(^) = \H'^[%me- sinOoY + P€cos^ 

G{e,e) = [ki^[sme- sln^Jcos^ - P€sin^]5" 

A(e,e) = [k£^(cos^e- sln^^^ sin^sin^^) - P£cose]e^ 

We can see that ^ = 0 is no longer a solution. The system is in equilibrium at 
the deformation 0 only if the load has the value 

\ smO ) cos 6 

There are two equilibrium paths that satisfy this expression. These equilibrium 
paths are shown in Fig. 130 along with those for the perfect system. 

Figure 130 The effect of an imperfection on 
the rigid column with translational spring 
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The second-derivative test gives 

A(e,e) = ke{^^-sin'dy== 

< 0 foT 9 < 0 (unstable) 

> 0 for 0 < 0 < ĉr (stable) 

< 0 for ĉr < ^ < ^ - ^cr (unstable) 

> 0 for 7t - Scr < 0 < 71 (stable) 

where Ocr is the solution to the equation sin 0 = sin^/^ Oo (which gives the value 
of 0 that makes the second derivative equal to zero). The equilibrium path reach­
es a maximum load-carrying capacity at the limit point. The maximum load can 
be computed by substituting Ocr into the expression for the load. We shall call 
the maximum load, or limit load, Pmax = P(^cr)' It depends upon the initial im­
perfection in the following way 

Pmax = P c r [ l - S i n 2 / 3 ^ , ] 3 / 2 

where Per = H is the critical load of the perfect system. 

We can clearly see that the imperfection tends to reduce the limit load for 
this type of system. The greater the imperfection, the greater the reduction. In 
the present example, if the imperfection is only 1°, the maximum load is re­
duced by 10% from the perfect critical load. If the imperfection is 5 °, the maxi­
mum load is reduced by 30% from the perfect critical load. The exponent of 
2/3 is significant, giving the two-thirds power law of Koiter. The result that 
we have here came from a straightforward computation with this specific sys­
tem, but it has a much greater significance. According to Koiter, any system 
that experiences a symmetric bifurcation with unstable post-buckling behavior 
for the perfect system will be sensitive to imperfections, and the reduction in 
the limit capacity will vary according to the value of the imperfection raised 
to the two-thirds power. 

Upon loading from zero, the initial equilibrium path is stable. If the loadmg 
is tensile, the forces act to straighten the bar. As in the previous example, a 
straight configuration can never be realized by this system of forces. When 
loaded in compression, the equilibrium path is stable up to the limit point. The 
system loses stability at that point only to regain it at the second limit point at 
0 = jr — 0cr Because the equilibrium path between the limit points is unstable, 
the system will snap to a stable configuration upon reaching a limit load. 

Example 63. Ejfect of imperfections on the asymmetric system. Consider the rig­
id column with a translational spring, shown in Fig. 126. The geometrically per­
fect system has an asymmetric bifurcation diagram, shown in Fig. 127. Let us 
now consider a geometric imperfection in the system that manifests as an initial 
angle Oo corresponding to zero applied load and zero force in the spring. All of 
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the equations of Example 60 are valid for the imperfect case if we redefine the 
original length as 

The bifurcation diagram for the geometrically imperfect column is shown in 
Fig. 131 for the value of the imperfection of do = 0.2. The perfect case is also 
plotted in a lighter line weight to illustrate the connection between the perfect 
and imperfect cases. This diagram shows features typical of the unstable sym­
metric case to the right and features of the stable symmetric case to the left. As 
is typical of these systems, the bifurcation point does not manifest for the imper­
fect case, but the geometrically perfect case provides a backbone curve to which 
the imperfect case is asymptotic. The imperfect case exhibits six limit points, 
and shows a peculiar departure from the perfect system in the neighborhood of 
6 =±7t. 

Unstable 
Stable 

Figure 131 Bifurcation diagram for rigid 
column with an elastic guy (imperfect case) 

In a typical circumstance, we might have an imperfect system with the load 
level initially at zero and increased to positive values. In such a circumstance, 
the value of the maximum load Pmax, which occurs at the first limit point, is of 
singular importance. The limit point occurs at the critical angle Ocr and is associ­
ated with the load Pmax- To find this state note that this point has both 
0(6,0) = 0 and A(0,0) = 0. For this system that implies 

ake^(l-X(ecr))cOSecr -Pmax^Sin^cr = 0 

ake^{yX\ecr)COS^0cr - (1-A(l9er)) sin (9er) - Pmax^C0S(9er = 0 

The solution of these two equations yields {Ocr > ^max}- To find a closed-form 
solution for the maximum load is not practical even for this simple system. How­
ever, we can develop an approximate formula for the maximum load by expand­
ing the terms in the equation in a Taylor series for dcr, keeping only the first few 
terms. Carrying out these operations for the present example, we get a critical 
angle of 

0.r « Pmax « ayX\ecr)COS^0a 
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We can substitute this value of the critical angle into Eqn. (535) to compute the 
maximum load with good accuracy. For the present case, we get dcr = 0.52 and 
m̂ax = 0.369Pcr- (Notc the significant reduction from the bifurcation load!) 

We can also get an approximate expression for the maximum load by substi­
tuting the above value of the critical load into a Taylor series expansion for Pmax-
The first few terms give 

i(8)^-lK) 
for the maximum load. These expressions are good for any value of a, but only 
for relatively small values of Go (in fact, for do = 0.2 we get 0.359Pcr). The ex­
pression for the maximum serves to illustrate Koiter's half-power law. The max­
imum load of an imperfect system is a reduction from the critical load of the per­
fect system. According to Koiter, the dominant term in that reduction is 
proportional to the value of the imperfection raised to the one-half power for 
asymmetric systems. Contrast this result with the two-thirds power law of Koiter 
for symmetric systems. 

The Role of Linearized Buckling Analysis 
For the simple, single-degree-of-freedom systems we have just analyzed, the 
equations were amenable to algebraic manipulation, and we were able to get 
closed-form solutions for the nonlinear equilibrium paths. For more compli­
cated systems, a closed-form solution is rarely possible, and we must resort to 
numerical computations. There will be few cases where we caimot trace the 
equilibrium paths of a system by taking small increments along the path and 
solving the nonlinear equations with Newton's method, but these numerical 
solutions do not always give the same crisp insight as an analytical solution. 

There is a parcel of middle ground on this issue that has been exploited for 
centuries in the solution of buckling problems: linearized buckling analysis, 
Euler's analysis of column buckling was, in fact, an example of linearized 
buckling analysis. In this section we shall take a look at what happens to our 
two symmetric systems when we subject them to a linearized analysis. Our aim 
is to find out what we retain and what we have given away in the Imearization 
process. 

A linearized buckling analysis is one in which the equations of equilibrium 
are linear in the deformation variable. For a stability problem, the equilibrium 
equations will invariably involve the product of the load parameter and the de­
formation variable. In order to have linear equilibrium equations, the potential 
energy must be quadratic (a linear energy does not have an extremimi, and, 
hence, would not give rise to equilibrium configurations of any kind). For the 
examples discussed above, we can approximate the trigonometric functions 
with second-order polynomials (using Taylor series expansions) to get qua­
dratic energies. 
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Example 64. Linearized buckling analysis of the stable symmetric bifurcation. 
Consider the rigid column with a rotational spring, shown in Fig. 122. For a li­
nearized buckling analysis we express the energy functional only up to quadratic 
terms. Let us truncate the Taylor series approximation at quadratic terms 

cos(9 = 1 - i(92 + ^(9^-0((9^) « 1 - (̂9̂  

The energy, virtual-work functional, and second-derivative functional are 

g((9) = \ke^ ^pi[i-\6^) 

0(6,6) = [k-P^]6 6 

A(6,6) = [k-Pe]6^ 

The equilibrium equation for the system is, therefore, [k-P£]6 = 0. This 
equation is satisfied for any loadP if ^ = 0 (i.e., the straight configuration). The 
stability of this configuration can be assessed from the second derivative to show 
that the straight configuration is stable for loads P < k/£ and is unstable if 
P > k/L 

The equilibrium equations are also satisfied for any value of ^ if P = k/i. 
The second derivative is exactly zero for P = k/€ so the stability of this branch 
cannot be determined. 

We can see from the previous example that the linearized analysis gives a 
complete picture of the stability of the straight configuration and it tells us that 
the system will buckle into a bent configuration at the critical load Per = k/£. 
However, the linearized buckling analysis yields no information on the post 
buckling response. In particular, it is unable to distinguish stable from unstable 
post buckling response. 

Example 65. Linearized buckling aruilysis of the unstable symmetric bifurca­
tion. Consider the rigid column with a translational spring, shown in Fig. 124. 
For a linearized buckling analysis we express the energy functional up to qua­
dratic terms. Let us truncate the Taylor series approximations at quadratic terms 

cos<9 « l-\6^, sm6 « 6-^0(6^) 

The energy, virtual-work functional, and second-derivative functional are 

g(6) =^ke6^ + P£(l-\6^) 

G(6,6) = [ke-Pe]6U 

A(6,6) = [ke-P£]6^ 
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Figure 132 The effect of an imperfection in a linearized analysis 

The equilibrium equation for the system is, therefore, \kt'^-Pi,\0 = 0. This 
system yields results identical to Example 64 except that the critical load for the 
present case is Per = H. All of the same conclusions apply. 

The second-derivative test is able to tell us everything we knew before about 
the straight configurations. In particular, loads below the critical load are stable 
for both systems, and loads above the critical load are unstable for both systems 
(the critical loads are different for the two systems). What we lose in lineariz­
ing the analysis is all of the information about the behavior in the bent configu­
ration. The solution of the equilibrium equations suggests that for P = Pen the 
equations are satisfied for any value of d. We plot this equilibrium branch as 
a horizontal line on the bifurcation diagram, as shown in Fig. 132. This equilib­
rium path is dubious because our assimiption made in linearizing ceases to hold 
as we get further from the P axis. The second-derivative test is unable to tell 
us whether this branch is stable or unstable. It does, however, point in the right 
direction initially (that is, it predicts a symmetric bifurcation). 

The effect of imperfections can be examined through a linearized buckling 
analysis also. The equilibriimi equation for both cases turns out to be (with the 
critical load suitably interpreted for the two cases) 

p{d) -"(-I) 
where Per = k(, for the translational spring, and Per = k/£ for the rotational 
spring. All of these results are summarized in Fig. 132. The imperfect system 
is asymptotic to the perfect one, but because the perfect system does not give 
adequate information on the post-buckling behavior, the response of the imper­
fect system is actually asymptotic to the wrong response. The linearization lim­
its the applicability of the analysis to small values of the angle 6, It is important 
to observe that the linearized buckling analysis does not yield information 
about the imperfection sensitivity of the system and cannot predict the maxi­
mum load of an imperfection sensitive structure like the one in Example 65. 
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Qearly, we lose a great deal in the linearized analysis. However, one of the 
key features of a stability analysis is preserved by the linearized buckling anal­
ysis: the critical load. This fact has been exploited in the development of design 
formulas for complicated systems. You should be aware of what a linearized 
buckling analysis does and does not reveal. 

Systems with Multiple Degrees of Freedom 
There is another important aspect of buckling that the single-degree-of-free-
dom systems do not exhibit. Because the system has only one degree of free­
dom, it has little choice as to how it will deform; the only issue is whether or 
not it will deform. For systems with more than one degree of freedom, addi­
tional possibilities arise. These systems give rise to multiple bifurcation points 
and buckling modes. They also make the second-derivative test a little more 
interesting. 

To see some of the aspects of the stability of systems with more than one de­
gree of freedom, we shall consider the following example of a discrete two-de-
gree-of-freedom system. 

Example 66. System with two degrees of freedom. Consider the system shown 
in Fig. 133. The structure is composed of two rigid links of length €, like the 
previous two examples, cantilevered from the base. The elasticity of the system 
is manifested in two rotational springs both with modulus L The motion of the 
system is completely characterized by the two independent rotations B^ and ̂ 2-
We often will refer to the deformation with the vector 6^ = {6^,0'^. Let us take 
datum for the potential energy of the load P to be the ground. The potential ener­
gy in the undeformed state is then 2P€. 

€(cos^i+008^2) ^nS 

Figure 133 A two-degree-of-freedom example 

The potential energy of the system, in a deformed position, can be written as 

8(9) = \k[e^Y + \t^[^i-^\Y + P€(cos^i+ cos^2) 

The directional derivative of the energy in the direction 0^ = {B^, B2} gives the 
virtual-work function 
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G(e,e) = \2ke^-ke2 -Pisme^]e^ + [-ke^-^ke2-p^sme2\02 
As usual, 6 is an equilibrium configuration if G(6,6) = 0 for all 6. Thus, equi­
librium can hold only if the two terms in brackets vanish independently. The 
equations of equilibrium are, therefore 

IkO^ - ke2 - P € s i n ^ i = 0 

-kd^ + ke2 -P€s in^2 = 0 

The equilibrium equations are a system of two nonlinear algebraic equations in 
the unknowns 6^ and O2 (assuming that the load level P is given). There are two 
of them because the system has two degrees of freedom. Like the previous exam­
ples, this system has multiple equilibrium paths. We shall find those paths and 
investigate their stability presently. 

The second derivative of the energy is i4(0,6) = /:5^A(6, p)5, where the load 
parameter p = P^/k is a normalized version of the applied load P, and the Hes­
sian matrix is given by 

A(e,p) = 
2 - / 7 cos ^1 - 1 

- 1 1-/?C0S^2 

As discussed Chapter 9, the stability of the discrete system is judged by the signs 
of the eigenvalues of the matrix A at an equilibrium configuration. The eigenva­
lues of A are the values A that satisfy the eigenvalue problem Ac)) = Acj). Since 
the dimension of the matrix is two, there are two eigenvalues. Corresponding to 
each of these eigenvalues is an eigenvector <]). We shall see the significance of 
the eigenvectors soon. 

The bifurcation diagram for this problem is shown in Fig. 134. Note that the 
equilibrium paths in three-dimensional space are accentuated by showing their 
projections on the 6^ - $2 plane and connecting those two curves with a vertical 
curtain. This curtain is only for help in visualizing the three-dimensional curve. 
The equilibrium path is always a line in space. The bifurcation diagram shows 
several features that the one-dimensional case did not possess. In particular, it 
has two bifurcation points with symmetric branches emanating from each. Fur­
ther, all deformations have a shape, dictated by the relative proportions of 61 and 
$2. The shape of the deformation changes as we move along an equilibrium path. 

Qearly, the straight configuration 0^ = {0,0} is a solution for all values of 
the load parameter p. The stability can be judged by the eigenvalues of the matrix 
A(0,/?). A straightforward computation shows that these eigenvalues are 

Ai = i ( 3 - y 5 ) - p , >l2 = i ( 3 + y 5 ) - p 

The system is stable for values of the load parameter p < | (3 - v5 ), and unsta­
ble for p > | (3 - Ts). These results are summarized as Branch 0 on the bi­
furcation diagram shown in Fig. 134. It would appear that X2 has no significance 
to the question of stability of the system, since a single negative eigenvalue is 
sufficient to conclude that the system is unstable, and A2 > Aj for all values of 
the loadp. However, we shall see that both eigenvalues are important to the ques­
tion of the bifurcation of equilibrium at critical points. 
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Figure 134 Bifurcation diagram for the two-degree-of-freedom example 

Consider the bifurcation diagram shown in Fig. 134. Atp = 0, both Aj and 
^2 are positive, as they should be for stability. These two eigenvalues get more 
positive for negative (tensile) values of p, indicating more robust stability. ' As 
the load is increased from zero in the positive (compressive) direction, the val­
ues of Aj and A2 begin to decrease. We reach a critical point when the first eigen­
value goes to zero. The critical point defined by Aj =0 , corresponding to a load 
value of pi = (3-y5) /2 , is a bifurcation point at the boundary between stable 
and unstable behavior in the straight position. If we continue to increase p along 
the straight configuration, Aj becomes negative and gets increasingly negative. 
The second eigenvalue A2 is still positive, but continues to decrease. The condi­
tion A2 = 0, corresponding to a load value of p2 = (^ + v5 )/2, defines another 
critical point where bifurcation can occur. For load values of p > P2, both of 
the eigenvalues are negative and get increasingly negative as p increases. So 
much for the straight configuration. What about bifurcations to bent configura­
tions? 

As we compute Branch 1 and Branch 2, we can evaluate the eigenvalues of 
A(0,p) to monitor the stability of those branches. On Branch 1, which emanates 
from the critical point where Aj = 0 and A2 > 0, both eigenvalues become in­
creasingly positive the further out on the branch you go. Thus, Branch 1 is stable 
and gets increasingly so. On Branch 2, which emanates from the critical point 
where Aj < 0 and A2 = 0, A2 regains its positivity and becomes increasingly 
positive the further out on the branch one goes. However, Aj remains negative. 
Thus Branch 2 is unstable. 

t According to our criterion, stability is like being pregnant: Either you are, or you are 
not. In reality, we can consider stability (and pregnancy) to be a matter of degree. Some 
configurations are more stable than others. The problem lies not with the systems, but 
with our definition of stability. The degree of instability can best be understood in a 
dynamic setting. 
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The effect of imperfections. The analysis of systems with multiple degrees 
of freedom is essentially the same as for system with a single degree of freedom 
except that there is more variety to the way in which the geometric imperfec­
tions can manifest. In a system with multiple degrees of freedom there can be 
an imperfection parameter associated with each degree of freedom. Often the 
imperfection is simply taken as a nonzero initial value of the response parame­
ter itself, as the following example illustrates. 

Example 67. Effects of imperfections for the system with two degrees of free­
dom. Reconsider the system shown in Fig. 133. Let us examine the effects of im­
perfections in the system. Here we find an interesting feature that was not pres­
ent in the one-dimensional problems. The imperfections must be specified as a 
pair of values 8j = {̂ oi»̂ o2}- Th^ ^^y question now is: What is the behavior 
of the equilibrium path for the imperfect system? The energy for the imperfect 
system can be written as 

B(e)=§^(^l-^,l)'+i4(^2-^o2)-(^l-^.l)]'+^^(cOS^l+COS^2) 

where we continue to measure the angles of rotation from the vertical position, 
and have adjusted the expression for the energy of the springs to be zero at the 
point where the rotations are exactly equal to the initial values. 

The virtual-work functional is G(0,6) = DB(0) • 0. The equilibrium equa­
tions can be obtained from setting G(6,5) = 0 for all 0. This process results in 
the equations 

- k{e^-e^^) + k{e2-o^2) - P^sme2 = o 
As in the previous examples, 6^ = { 0, 0 } is no longer a solution. In fact, as the 
load is increased in the tensile (negativep) direction, the system asymptotically 
approaches the straight configuration. At the configuration 9 = 6 ,̂ the load/? 
must be zero. As the load increases in the compressive direction, our intuition 
tells us that the equilibrium path should eventually grow close to the equilibrium 
path of the perfect system. However, now we have two such paths. If the initial 
imperfection is in the direction of the first eigenvector, we would expect the 
equilibrium path to approach Branch 1 asymptotically, as indeed happens. 

What happens if the initial imperfection is in the direction of the second 
mode? The result of one case for the previous example is shown in Fig. 135. 
The equilibrium path shows a very brief inclination to follow the second path, 
but soon unwinds to a mode that resembles the first mode and proceeds to try 
to follow Branch 1. We can speculate that the urge to follow Branch 2 initially 
will depend upon how close the second critical point is to the first. If it is too far 
away, the attraction of the higher path is small. If it is close, its attraction is great­
er. In the present case, the two critical points are rather far from each other, and, 
thus, the urge to follow Branch 2 is almost imperceptible. (Examination of some 
imperfections closer to mode 2 reveals this phenomenon under magnification.) 
Although it is impossible for this structure because of its geometry, we might 
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Figure 135 The effect of an initial imperfection 
for the two-degree-of-freedom example 

also ask what would happen if the two critical points were very close together 
(or, in the limit, on top of each other). 

Linearized buckling of MDOF systems. From our earlier examples, we 
suspect that we will have a bifurcation of equilibrium at the critical points, and 
this is indeed true. For the previous examples, we found a closed-form expres­
sion for the load as a function of 6, and took the limit as 0 -^ 0 to see that equi­
librium bifurcates from the straight configuration at the critical load. For the 
present case, we caimot proceed in the same marmer because we caimot write 
those closed-form expressions. However, we can appeal to the linearized 
buckling problem to see if the solution branches at those points. For small val­
ues of 61 and 02> the equations of equilibrium reduce to the eigenvalue problem 

2 -1 
-1 1 = P 

As usual, we can still see that 6^ = {0, 0} is a solution for all values of the load 
parameter/?. Branch 0 on the bifurcation diagram. However, this equation is 
a linear eigenvalue problem, and thus suggests that there may be other solu­
tions for certain values of/?. It should be quite clear that this eigenvalue prob­
lem is very closely related to the one we solved to determine the stability of 
equilibrium of the straight configuration. The eigenvalues and eigenvectors of 
this system are easily foimd to be 

/?! = i ( 3 - Ts), <t)i = Ci 
2 
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P2 = 5 ( 3 + ys ) , <1>2 = Cj 
2 

l i - y s 

where the constants Ci and C2 appear in the eigenvectors to remind us that the 
magnitude of these vectors cannot be established from the eigenvalue problem, 
only the direction. The eigenvalues are just the values of the load/? at the criti­
cal points found earlier. The eigenvectors represent the direction that displace­
ment must occur in order to satisfy equilibrium at these loads. As such, these 
eigenvectors represent the tangents to the equilibrium branches at the critical 
points. These vectors are plotted in Fig. 135, which shows the projection of the 
equilibrium paths on the 0i - ©2 plane (load/? is normal to the page). The equi­
librium equations are really nonlinear, so the paths do not remain straight, but 
the eigenvectors initially point in exactly the right direction. 

The most interesting feature of the eigenvectors <^i and i^2 is that they give 
a specific shape into which the structure must buckle at the critical load. No 
other shape is possible. This feature of the multidimensional problem clearly 
is not captured by the one-dimensional problem because the latter problem has 
no freedom in the shape of deformation, while the former problem does. The 
shapes are qualitatively sketched in the figures, and are often called buckling 
modes. The first mode has ^i > 0 and ^2 > 0 (or, by symmetry, both negative), 
whereas the second mode has 61 >0 and ^2 < 0 (or, by symmetry, the reverse 
signs). Furthermore, since they correspond to distinct eigenvalues, these ei­
genvectors are orthogonal. While the shape of deformation changes along a 
branch, it retains its original character. 

The relationship between the linearized buckling eigenvalue problem and 
the second derivative test for the trivial configuration can be seen by noting that 

G(e,5) = 5^g(e,A) = F^A(o,A)e 
(536) 

A(0,B) = «^A(0,A)H 

If we set G(0, F) = 0 for all 'S then we get the equation 

A(0,A)e = 0 (537) 

which is a linear eigenvalue problem. The trivial solution 0 = 0 is obviously 
a solution. There are solutions with 0 7^ Oonlyif detA(0,A) = 0, which gives 
an equation (the characteristic equation) for the load parameter A for which 
such nontrivial solutions are possible. TTie eigenvectors 0, that correspond to 
the values A, that are roots of the characteristic equation give the directions in 
which bucklmg is possible. These are the buckling mode shapes. 

The second derivative test says that the system is stable if the eigenvalues 
of A(0,A) are all positive. Hence, we set up the eigenvalue problem 

A(0, A) <t) =//<!) (538) 
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We can solve this eigenvalue problem by observing that it is equivalent to the 
equation 

[A(0,A)-//I]<t) = 0 (539) 

This equation has a solution with <t) 5?̂  0 only if det[A(0,A) -jul] = 0. This 
characteristic equation can be viewed as an equation for //(A). In other words, 
the eigenvalues of the second derivative matrix are a function of the loading 
parameter A. In fact, //(A) can be evaluated for any value of A (that is how we 
determine the stability of the trivial branch). If we are seeking the bifurcation 
points then we need to find those places where /̂ (A) = 0, If ju = 0 then we 
can observe that Eqn. (538) is identical to Eqn. (537), and the eigenvectors 
have the same meaning in both cases. 

Additional Reading 

Z. p. Bazant and L. Cedolin, Stability of structures: Elastic, inelastic, fracture 
and damage theories, Oxford University Press, New York, 1991. 

H. L. Langhaar, Energy methods in applied mechanics, Wiley, New York, 
1962. 
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Problems 
241. The frame shown is composed of two rigid members con 
nected by rotational springs. The moment developed by a spring -j-
is related to the rotation by Af = /:0, where 0 is the rotation expe- £ 
rienced by the spring. Both springs have modulus k. The frame is 
subjected to a load P acting downward. The motion of the struc­
ture can be completely characterized by the rotation of the vertical h ^ »h ^ »l 
member from its original position. Examine the stability of the 
system. In particular, find the critical load and plot the bifurcation diagram. Note that the 
bifurcation diagram is not symmetric. Can you explain, in physical terms, why it is not? 

242. Examine the effect of an imperfection in the system of Problem 241. Let the imper­
fection be an initial value of the angle of rotation used to describe the motion, and assume 
that the springs are such that they have no moment at this initial position. Plot the maxi­
mum load versus the size of the initial imperfection. 

243. Consider the two rigid bars hinged togeth- P 
er and subjected to axial load P, as shown. The 
bars have length € and 3€, and are restrained by 
three elastic springs, with modulus k, that resist 
vertical motion. Find all equilibrium paths for 
the system. Find the bifurcation loads of the system. Assess the stability of the straight and 
bent configurations. 

\k Ik ffl 
244. Consider the three-bar rigid linkage 
shown. The bars are hinged together and are re­
strained by elastic springs that resist vertical ^ 
motion. The springs accrue force in proportion \^ 9^ 
to their extension, with modulus ̂ . The system e t c 
is subjected to an axial force P. Write an expression for the potential energy of the system. 
What are the equations of equilibrium governing the response of the system? Find the criti­
cal loads and the buckling mode shapes of the system. Feel free to linearize the geometry 
of deformation as you see fit. 

245. Consider the three-bar rigid linkage 
shown. The bars are hinged together and are 
restrained by elastic rotational springs. The 
springs accrue force in proportion to the rela­
tive angle of distortion, with modulus k. The 
system is subjected to an axial force P. Write an expression for the potential energy of the 
system. What are the equations of equilibrium governing the response of the system? Find 
the critical loads and the buckling mode shapes of the system. Feel free to linearize the 
geometry of deformation as you see fit. 

246. Consider the rigid bar subjected to axial load P and transverse load e P as shown. The 
bar has length 2£, is restrained against horizontal and vertical motion at the midpoint, and 
is supported by two elastic springs that resist vertical motion at the ends. The springs ac-
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crue force in proportion to their extension, with modulus k. The deformation can be charac­
terized by the rotation of the bar relative to the horizontal position. 

- n 

-4-

J I 

^ 0 

Find all equilibrium paths P{d) for the system {—7t<d<7i), Determine the stability 
of these branches. Find the critical load of the system when £ = 0. Lx)cate the limit point 
on the bifurcation diagram plotted for s = 0 . 1 . Is the limit load at this point greater or less 
than the critical load? 

247. Consider the frame composed of rigid bars subjected to the . P 
load P as shown. The rigid members are hinged at the top right 
corner, with an elastic spring that resists relative rotation. The 
rotational spring accrues force in proportion to its relative angle 
change, with modulus k. Find the buckling load for this system. 
Express the deformation of the system in terms of the angle of 
rotation of the vertical member on the right side of the structure. 
What happens if you use the angle of rotation of the vertical mem­
ber on the left? 

I 

s 248. Consider the rigid bar subjected to axial load P 
as shown. The bar has length 2€ and is supported by 
elastic springs that resist vertical motion. The springs 
accrue force in proportion to their extension, with mo­
dulus k. Find the critical loads and linearized buckling 
mode shapes of the system. Note that this system has 
two degrees of freedom. 

249. Consider the three-bar rigid linkage 
shown. The bars are hinged together and 
are restrained by elastic springs that resist 
vertical motion. The springs accrue force 
in proportion to their extension, with mo­
dulus k. The system is subjected to an axial 
force P. Write an expression for the poten­
tial energy of the system. What are the li­
nearized equations of equilibrium governing the response of the system? Find the critical 
loads of the system. A convenient choice of degrees of freedom is shown in the diagram. 

k 

250. Two rigid bars are hinged together and rest on a lin­
early elastic foundation. The foundation accrues a force 
per unit length proportional to the transverse displace­
ment, i.e.,/(jc)=kw{x). The system is subjected to an axial ^ ^ 
load P as shown. Find an expression for the energy functional for the system. Find an ex­
pression for the virtual-work functional for the system. Find the buckling loads of the sys­
tem by solving the linearized buckling eigenvalue problem. 
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k^ = Ike 

251. The vertical rigid bar is subjected to axial load P and 
is hinged to the horizontal rigid bar which has length 2€. A 
rotational spring restrains the change in angle between the 
two bars. The horizontal bar is restrained against horizontal 
and vertical motion at the midpoint, and is supported by two 
elastic springs that resist vertical motion at the ends. The 
springs accrue force in proportion to their extension, with 
modulus k. Find an expression for the energy B of the sys­
tem. Find the (nonlinear) equations of equilibrium of the system. Find the critical loads 
of the system. 

H 

252. A rigid bent of height 2€ and length 3€ rests on three 
elastic springs, each with modulus k. The springs accrue 
force in proportion to the amount by which they stretch. 
The bent is pinned at the corner end and is subjected to a 
load P at the top and a load of P at the right end. Find the 
virtual-work form of the equilibrium equations. Find the 
second-derivative functional A for the system. Find all 
equilibrium configurations of the system and assess their 
stability. Sketch the result on a bifurcation diagram. 

^ 
• ^ 4 * — H 

253. A rigid bar of length € is pinned and restrained by a 
rotational spring of modulus A: at the bottom. It is subjected 
to a force P at the top. The force changes its direction with 
the motion of the bar. If the bar rotates by an angle 6 then 
the load rotates an angle ad in the opposite sense (a is a 
known constant). Find a suitable virtual-work function for 
the system? (Hint: start with a classical equilibrium equa­
tion from a freebody diagram of the bar). Does an energy 
function exist? If so, then find it. Estimate the buckling load of the system. 

254. Two rigid bars, each of length € are hinged together and 
attached to two linearly elastic springs of modulus k. The bot­
tom end of the vertical member is on a roller that rolls on a hor­
izontal plane. The right end of the horizontal member is on a 
roller that rolls on a slope. The column is subjected to a verti­
cal force P. Find an expression for the energy of the system. 
Find the equilibrium configurations of the system. Find the 
critical loads of the structure. 

I -< ŝ 
I M M ^ 

255. A ladder of length € = 20 ft leans against a wall with the base 
4 ft from the wall. Both ends are frictionless and the bottom end is 
restrained by an elastic spring of modulus /: = 10 lb/ft. What is the 
maximum height x (measured along the ladder as shown) that a per­
son of weight W=200 lb can climb? The ladder can be assumed 
rigid, the rollers are very small relative to the length of the ladder, 
and the person climbs slowly enough to neglect dynamic effects. 



388 Fundamentals of Structural Mechanics 

256. Four rigid bars are hinged together and subjected 
to the load P as shown. The two horizontal bars are re­
strained by a linear, elastic rotational spring of modu­
lus k. Find an expression for the energy of the system. 
Find an equation describing the equilibrium configu­
rations of the system. Find the bifurcation load. 

257. Consider the linkage of two rigid bars subjected to 
axial load P as shown. The linkage has length 4€, is 
pinned at the left end, and has elastic springs that resist 
motion. The translational springs accrue force in propor­
tion to their extension, with modulus k. The rotational € € € € 
spring accrues force in proportion to the its relative angle change, with modulus kg = k£^. 
Find the critical loads and linearized buckling mode shapes of the system. 

258. Consider the frame composed of rigid bars subjected to the 
load P as shown. The rigid members are hinged at the top left cor­
ner, with an elastic spring that resists relative rotation. The rota­
tional spring accrues force in proportion to the its relative angle 
change, with modulus k. Find the buckling load for this system. 
Determine the post-buckling response of the system in terms of 
the rotation of the left column. Does it make a difference if the 
frame buckles to the left or to the right? 

259. Two rigid bars, each of length 2€ are connected by a linear 
elastic spring of length € and modulus k. The right vertical bar is 
subjected to a force P as shown. The left bar is attached to a verti­
cal spring of modulus k that has been stretched into place, giving 
it an initial tension force of To (i.e., when P = 0). Write the energy 
functional for the system. Find the lowest buckling load Per of the 
system. 

3€/2 

260. Two rigid bars, each of length 2€ are connected by a single 
rigid bar of length £ which is hinged at the ends. A weight of fixed 
value W hangs from the left bar while the right vertical bar is sub­
jected to a force P as shown. Note: there are no elastic elements in 
this system! How many degrees of freedom does the system have? 
Write the exact energy functional for the system. (Hint: You can de- W 
scribe the deformation in terms of the rotation angles of each mem­
ber, but you must write equations of constraint relating those angles H •! 
to your chosen degrees of freedom). Find the critical value of P at 
which buckling of the system takes place. Is the post-buckling behavior symmetric or 
asymmetric? Do you expect the post-buckling behavior to be stable or unstable? 



11 
The Planar Buckling 
of Beams 

Armed with some understanding of the stability of discrete systems, we now 
move on to the stability of continuous systems. The equations that govern con­
tinuous systems are differential equations, and, hence, are considerably more 
complicated to solve than discrete systems. However, most of the issues of sta­
bility are the same. As mentioned previously, in order to investigate the stabil­
ity of a system, we must work with the nonlinear equations that govern the be­
havior of that system. For mechanical systems, this nonlinearity can accrue 
from a variety of causes, as we discussed in Chapter 10, but we shall focus here 
on nonlinearity in the equilibrium and strain-displacement equations (and not 
constitutive nonlinearities). The description of a body in a deformed configu­
ration requires that we work with nonlinear equations of the geometry of de­
formation and, thus, nonlinear equations of equilibrium. Without even consid­
ering the effects of nonlinear constitutive behavior, we are led to the interesting 
and important phenomenon of elastic buckling of structures, first discovered 
by the great mathematician Leonhard Euler centuries ago. 

In order to make some headway in the understanding of the buckling of con­
tinuous systems, we shall consider the case of the planar beam. Our study be­
gins with a simple derivation of a geometrically exact planar beam theoryt. 
The kinematic hypothesis that plane sections remain plane after deformation 
will again play the key role, but the simple derivation here will disguise the im­
portance of that hypothesis somewhat. Unlike the derivation of the linear beam 
theory, we shall start immediately with stress resultants and establish the equa-

t A geometrically exact theory is one in which we make no approximations of the type 
sin^ ^6, nor do we neglect any terms that arise naturally in the derivation of the 
theory. 
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tions of equilibrium. This derivation requires a leap of faith in the definition 
of stress resultants as the resultant of stress over a cross section, but this leap 
is easier to make since we have seen the rigorous development of the linear 
beam theory. The advantage of this approach is that it will gain us access to an 
important nonlinear theory without much difficulty. 

Once our simple nonlinear theory has been derived, we can make some 
common approximations and identify some of the classical theories, such as 
Euler's elastica and the linearized buckling theory. We will take a close look 
at the linearized buckling theory, considering classical solutions to the result­
ing boundary value problem as well as approximating techniques based upon 
the virtual-work form of the equations. In particular, we will find a method of 
accurately approximating the critical loads of an axially compressed beam. In 
accord with the analyses from the previous chapter, we shall consider the effect 
of imperfections and transverse loads on the linearized buckling of an axially 
compressed beam. 

Consider the planar cantilever beam shown in Fig. 136. This beam has 
length € and cross sections that are symmetric with respect to the plane of the 
page. Often we shall consider prismatic beams, that is, beams with cross sec­
tions that do not vary along the length of the beam. We consider the line of cen-
troids to be the axis of the beam, and we consider only beams that are initially 
straight (unless explicitly characterized otherwise, e.g., as an initial imperfec­
tion). The forces that act on the beam include the distributed transverse and ax­
ial forces, q(x) and/7(;c), and the distributed moment m(x). For the present dis­
cussion, we assume that these forces do not change direction as the 
deformation progresses. The beam has boundary conditions at its ends that 
complete the specification of the problem. There are two boundary conditions 
on each end, on either the displacement or the force (mixed conditions can also 
be implemented), as was the case for the linear theory. We take this model 
problem as our point of departure. 

Derivation of the Nonlinear Planar Beam Theory 
There are many ways to derive a beam theory. The approach used in Chapter 
7 to derive the equations of linear beam theory showed the relationship be­
tween the one-dimensional beam equations and the equations governing the 
mechanics of a three-dimensional continuum. In that derivation, we assumed 
that the deformations were infmitesimally small so that the equations could be 

Figure 136 A planar beam subjected to axial thrust 
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characterized in the undeformed geometry of the body. In this chapter, we shall 
derive a beam theory that does not assume small deformations. As such, this 
theory will be useful for examining the stability of beams. The approach taken 
to the derivation of the theory is distinctly different from that of Chapter 7, and 
it assumes that you already understand the meaning of resultant force and mo­
ment. In particular, we assume that we know how to add forces to moments in 
equilibrium equations. This type of derivation is often found in the literature 
and can be quite enlightening, particularly when viewed in light of the ap­
proach of Chapter 7. 

Our derivation of the nonlinear beam theory will proceed as follows. First, 
we shall establish the equations of equilibrium of stress resultants. Next, we 
cast those equations in a weighted residual (virtual-work) form by multiplying 
them by arbitrary virtual displacement functions and integrating them over the 
length of the beam. Integrating the resulting expression by parts to unload the 
differentiation from the stress resultants to the virtual displacements, we define 
the virtual strains that must, by construction, be associated with the stress re­
sultants. Using Vainberg's theorem, these virtual strains can be integrated to 
give the real strains. Finally, we hypothesize constitutive equations in accord 
with the linear theory. 

Equilibrium. Consider the segment of beam bounded by the cross sections 
located at distance x and jc H- AJC from the left end. The displacement field is 
characterized by the displacement of the centroid in the axial direction M(JC), 

the displacement of the centroid in the transverse direction w(jc), and the rota­
tion of the normal to the cross-sectional plane 6{x), as shown in Fig. 137. 

The resultant force R acting on a cross section can be expressed in compo­
nents, either relative to the rotated cross section, axial force N{x) and shear 
force Q{x\ or relative to the axial and transverse direction of the undeformed 
beam, horizontal force H{x) and vertical force V(JC), as shown in Fig. 138. 
Hence, we have the equivalence 

e{x+^x) 

vv(jc + AJ: ) 

uix-\' ts.x) 

Figure 137 The geometry of deformation 
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%2 gi 

o. 
Base vectors Components 

Figure 138 The components of the resultant force at a cross section 

where Ci and 62 are the base vectors along the coordinate axes, and gi and g2 
are base vectors normal and transverse to the cross section. We can change 
from one set of components to the other through the relationships 

(540) 
if = iVcos(9-esin(9 

y = iVsm0 + Gcos0 

With this notation at hand, we can proceed to establish equilibrium of the 
segment by summing forces and moments. The forces acting on the segment 
[jc, X + AJC] are shown in Fig. 139. 

-H{xl 

-M(x) 
-V(x) 

Figure 139 The equilibrium of a beam segment 

Let us set the sum of forces in the horizontal and vertical direction and the sum 
of the moments about the point $P (the centroid at the left end of the segment 
in the deformed position) equal to zero to establish equilibrium of the segment. 
Divide these equations by AJC and take the limit as AJC -> 0. The following ex-
amaple shows the derivation for the moment equilibrium equation. 

Example 68. Equilibrium of moments. Let us consider the equation of balance 
of moments about the point ^ in Fig. 139, recalling the geometry of Fig. 137. 

M(x-\-Ax) -M(x) + V(x-\-Ax)(Ax + u(x-^Ax)-u(x)) 

- H(x-\-Ax){w(x-\-Ax)-w(x)) 

Jo 
(H<|)-W(^))P(|) - ( | + «(|))^(|) + m(|) ]de = 0 
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where ^ measures distance (on the undeformed configuration) from the left end 
of the segment. Dividing the equation by AJC gives 

M{x+^x)-M{x) y{x•\-^x)[^x^u{x^^x)-u{x)] 
Ax: Ax 

H{x^^x)[w{x^^x) - w{x)] 

+ i I [ (>^(^)-K^))P© - (? + "©)^(?) + m© ] ^ = 0 
Jo 

Taking the limit as Ax ^ 0, recognizing the definition of the derivative of a 
function, gives 

M' + V ( 1 + M') - / / W ' + m = 0 

The first two loading terms in the integral vanish because the moment arm in the 
integrand goes to zero as the length of the segment goes to zero. 

The governing differential equations of equilibrium for the planar beam are 

(541) 
H' +p= 0 

M' + V(l + u') -

V + q = 0 

- Hw' + OT = 0 

These equations look remarkably like the linear equations of equilibrium. The 
main difference is the deformation measures 1 + M' and w' in the equation of 
moment equilibrium. These terms give rise to buckling phenomena in beams. 
These equations are exact within the context of beam theory and the assump­
tion of planar behavior. 

Virtual-work functional. We have seen previously that the virtual-work 
form of the equations can be obtained simply by multiplying the equilibrium 
equations by an arbitrary virtual displacement and integrating the result over 
the domain of the body. We will use this approach here to show how it helps 
us define the appropriate strain resultants to go along with the stress resultants. 

We know that we want the final result to have a well-defined expression for 
external virtual work. Therefore, we shall multiply the first equation by M(JC), 

a horizontal virtual displacement; the second by vv(x), a vertical virtual dis­
placement; and the third by 6{x\ a virtual rotation. These selections are moti­
vated by the presence of the loading temis/>(jc), q{x\ and m{x) in the equations 
and our desire to compute the virtual work done by these forces. The other 
terms in the equation are of much less help in figuring out what the character 
of the arbitrary function should be. As we shall soon see, simple manipulation 
of these equations will tell us what the virtual strains must be in order for the 
internal work to make sense. 
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Let us denote the three displacement functions as u = {M, W, 9} and the 
virtual displacement functions as H = {u, iv, 6}. In accord with the specifica­
tion of the virtual displacements above, we can define the following functional 

' -\-{M'i-V(l-^u')-Hw''\-m)e]dx 

Note that, in accord with the fundamental theorem of the calculus of variations, 
u is an equilibrium configuration if G(u, u) = 0 for all H E 5r(0, £), where 3" 
is the space of admissible functions. (Note that ^ is the same space we used 
for the Imear Timoshenko beam.) This form of the equations is not very inter­
esting in itself, but it will be upon some simple manipulation. Integrating all of 
the terms involving derivatives of the stress resultants by parts, we arrive at a 
suitable definition of the internal and external virtual work 

7, = [ {HW 
Jo 

Wj= {Hu' + VW'-\-Me' -V(l-\-u')e + Hw'e)dx 

{pu^-qw + me]dx^ Me\ + Vw\ + Hu\ 
0 

(542) 

'O '0 '0 

If the virtual-work functional is to have the form G - Wi- W ,̂ then the inte­
gral in Eqn. (542) must be the internal virtual work. Let us substitute Eqns. 
(540) to eliminate H and Y in favor of Q and N, The internal virtual work can 
be written in the form 

w ; = [(iVcos0-esin(9)w' + (Arsin(9 + ecos(9)vv'-hM0' 
Jo • (543) 

-(JVsin(9 + Gcos(9)(H-w')0 + [N co^Q - Q^\s).e]We\dx 

Regrouping terms, this expression can be written in the form 

W, = [jV[coser+sin0>v'-((l-hw')sme-w'cos0)0] 
Jo (544) 

+ G [ c o s 0 i v ' - s i n 0 r - ( ( l + w')cos0+w'sin0)^]+M^']dx: 

Let us finally summarize the internal work as 

Jo 
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Figure 140 The components of the stretch of the line of centroids 

This final form^f the expression for the internal virtual work suggests that the 
quantities Xo, fio, and Wo have the character of virtual strains associated with 
Af, Q, andiV, respectively. Accordingly, the virtual curvature, shear strain, and 
axial strain are given, respectively, by 

Xo = 6' 

Po = Wcose-iTsmd - [w'sind-\-(l-\-u')cose)e (545) 

Wo = W'smd+ u'cose + (w'cosd - {l + u')sme)e 

Strain resultants. We can find the real strains by applying Vainberg's theo­
rem to the question of the integrability of the virtual strains (in the same spirit 
as we integrate the virtual-work functional to get an energy functional). To be 
integrable, the directional derivatives of the virtual strains must be symmetric 
in the sense of Vainberg. This symmetry is easy to verify and is left as an exer­
cise (Problem 261). We shall call the real strains Xo, jS^ and ê . These strains 
are the functions that, when differentiated in the direction of the virtual dis­
placements H = {u,W,6}, give the virtual strains. The real strains are 

(546) 

An interpretation of the strain resultants fio and ê  can be obtained by ex­
amining Fig. 140, which shows a segment of beam originally of length dx 
stretched to a deformed configuration with length ds. The stretch ratio is called 
A = ds/dx. If we translate the deformed configuration back on top of the un-
deformed configuration, we can see that the right end of the deformed segment 
has moved horizontally by u'dx and vertically by w'dx relative to the unde-
formed configuration. The stretch is, thus, given as Â  = (l-fM')^H-(>v')^. Us­
ing the relationships for strain resultants in terms of displacements in Eqn. 
(546), we can show that 

«o = e' 

fio = w'cosd - (l + «')sin0 

€„ = w'sind + (l + u')cos9-- 1 
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A 
Figure 141 A three-point bend test to determine EI 

(l+€„)^ + (̂ „P = (l + «')̂  + (w')^=P 

Furthermore, the strains ê  and ^^ are related to the quantities w' and 1 + M' 
through a rotation of magnitude 6, indicating that they are the components of 
the same vector in two different coordinate systems, the latter in the unde-
formed coordinate system and the former in the coordinate system attached to 
the cross section. Thus, we can interpret 6̂  and ^o as the components of the 
stretch of the line of centroids in a coordinate system that moves with the cross 
section through the deformation. In a sense, then, ê  measures axial stretch and 
Po measures transverse stretch. The transverse stretch must be caused by 
shearing strain. 

Constitutive equations. The only component of the theory that remains to 
be established is the constitutive equations. In the linear theory, we were able 
to derive the constitutive equations from the constitutive equations of three-di­
mensional elasticity. We found that beam theory was not entirely consistent 
with the three-dimensional theory, but it could be fixed by modifying the 
constitutive equations. Since the constitutive parameters for any theory (in­
cluding the general three-dimensional theory) must be determined empirically, 
we can consider the constitutive models of the resultant theory as relationships 
between resultant stresses and resultant strains that need to be established 
through laboratory testing. 

We could, for example, use a three-point bend test to determine the value 
of EI for the linear theory, rather than looking at EI as the product of Young's 
modulus E and the second moment of the cross-sectional area /. The test is il­
lustrated m Fig. 141. From the linear theory, we know that A = P£^/48EL We 
can measure the length £ and plot P versus A for the test. Then EI is the slope 
of the P - A curve multiplied by € V48. Thus, it is possible to evaluate £/with­
out evaluating £ and/separately. Similar tests for GA and£A can be devised. 

We can extend these ideas to the nonlinear theory. We can also use the linear 
theory as a guide in the sense that the nonlinear theory should reduce to the lin­
ear theory when the strains and displacements are small. From the linear 
theory, we foimd that the constitutive equations were uncoupled if centroidal, 
principal axes were used to describe the axis of the beam. Thus, the moment 
is a function of curvature, M = JI\D(XO), the shear force is a function of shear 
strain, Q = Q08o), and the axial force is a function of axial strain, iV = J (̂6o)-
The specific functions could be determined experimentally. 
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As a first approximation, we shall adopt linear constitutive equations for the 
nonlinear theory. These constitutive equations should remain accurate if the 
strains are relatively small, no matter how large are the displacements and rota­
tions. We postulate the following constitutive model for our nonlinear beam 

M = EIXo, Q = GApo, N = EAe, (547) 

where EI, GA, and EA can be interpreted in the same manner as the linear 
theory. The specification of constitutive equations completes the field equa­
tions for our nonlinear planar beam theory. In order to have a properly posed 
boundary value problem, we must augment the field equations with boundary 
conditions. These conditions are identical to the linear theory and, therefore, 
will not be discussed here. 

A Model Problem: Euler's Elastica 
The fully nonlinear theory can be constrained to produce some interesting clas­
sical results. Qearly, the present theory includes shear and axial strains. For 
long, slender beams, the influence of the shear and axial strains on the deflec­
tions of the beam are typically small. We can constrain these strains to be zero 
a priori to generate a model generally attributed to Euler. In the linear theory, 
the shear and axial strams were uncoupled, and it made no difference whether 
we constrained one or the other. In the nonlinear theory they are coupled, and 
we must constrain both in order to realize a simplification in the governing 
equations. In the nonlinear theory, fio and 6̂  are components of the stretch of 
the axis. Therefore, setting ê  = Oand^S^ = 0 is tantamount to saying that the 
length of the beam cannot change. We call such a beam inextensible. From 
Eqn. (546) we can determine that the inextensibility constraints imply 

w' = smO, 1 + w' = COS0 (548) 

These constraints allow us to recast the theory purely in terms of the rotation 
of the cross section 6. Substituting these expressions into the moment equation, 
we obtain 

M' + y c o s 0 - i / s i n 0 + w = 0 (549) 

in addition to the original horizontal and vertical equilibrium equations. The 
force equilibrium equations can be integrated to give 

- I q{^)d^, H{x) = //(O) - I 
Jo Jo 

V(x) = V{0) - q(l)d^, H(x) = H(0) - p(i)di (550) 
Jo Jo 

For statically determinate problems, H and V can be expressed in terms of the 
applied forces without appealing to the other equations governing the behavior 
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Figure 142 The model problem for Euler's elastica 

of the system. When there are no distributed loads, these problems are known 
as Euler's elastica because they were studied by the famous mathematician 
Euler centuries ago. 

Classical differential equation. One particular case of Euler's elastica is 
the cantilever beam under a compressive tip loadP, shown in Fig. 142. We shall 
adopt this case as our model problem and use it to demonstrate some features 
of the nonlinear theory. There are no transverse loads, so/? = q = m = 0. Fur­
thermore, from overall equilibrium we see that H = —P and V = 0, Consid­
er a prismatic column, i.e., EI is constant. Using the constitutive equation for 
moment, and substituting the above relations for H and V into Eqn. (549) we 
find the classical equations and boundary conditions governing the elastica 

Eie" + PsinO = 0 

9(0) = 0 d\e) = 0 (551) 

This classical problem has been studied extensively. Solutions to this problem 
are given by elliptic integrals. The classical solution is rather involved and will 
not be pursued here. You may wish to consult a classic text, e.g.. Love (1944), 
for the solution to this problem. 

When we speak of the elastica, we generally mean the whole class of prob­
lems subject to the inextensibility constraint. Accordingly, other boundary 
conditions are also possible. The interesting observation about the elastica is 
that the equations govern only the rotation field of the beam, not the displace­
ment field. As such, a solution can be obtained for which the actual position 
of the beam in space is not determined. Once the rotation field is known, how­
ever, Eqns. (548) can be integrated to find the axial and transverse displace­
ments. The integration of these two first-order differential equations would 
introduce two more constants that can be used to establish a unique position 
of the beam in space. These solutions also give the shape of the beam by locat­
ing the position of the centroidal axis. 

Virtual-work and energy functionals. The problem of the elastica can be 
cast in weak form. For the present example, Eqn. (542) reduces to 
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0(6,6) 
Jo 

EI6'6' -P6sm6)dx (552) 

The essential boundary condition is vanishing rotation at jc = 0, that is, 
6(0) = 0, while the natural boundary condition is vanishing moment at X = €, 
that is, 6\() = 0. If we select our virtual rotations 6 such that they satisfy the 
essential boundary condition, then the variational equation G(6,0) = 0 for all 
6 E JBe(0, () is equivalent to the classical governing differential equation, and 
the functions 6 that satisfy this equation represent equilibrium configurations. 

Symmetry of the vhtual-work functional given in Eqn. (552) can be verified 
by taking the directional derivative of G as follows 

(•̂  
\EId'6'-Peecos6]dx = DG(6,6) • 6 

0 

Vainberg's theorem guarantees the existence of an energy functional and tells 
us how to compute it. Carrying out the computations, we get 

(553) 

The energy and virtual-work functional for the model problem are remark­
ably similar to the energy and virtual-work expressions for the column of rigid 
links with a rotational spring between them. The main difference, of course, 
is that the present problem involves continuous functions and derivatives. You 
might expect some sunilarities in the stability of these two problems, and, in­
deed, this is the case. The elastica has a stable ascending equilibrium branch 
that bifurcates from the critical load (i.e., the Euler load Pi = Jt^EI/4£^, 

Remark* There is another way to construct the virtual-work functional that 
lends insight to the boundary conditions. Let us take the residual of the classical 
differential equation, multiply it by an arbitrary function 6, and integrate the 
product over the length of the beam. The resulting weighted residual is 

G(6,6) - f {EI6"-\'Psm6)6dx 

Obviously, if 6 satisfies the classical differential equation, then G(6,6) = 0 
for all 6, The fundamentaljheorem of the calculus of variations also suggests 
thatif G(e,^) = 0 for all ^, then £/0" + P sine = 0. This virtual-work func­
tional is perfectly suitable, but we generally prefer to balance the derivatives 
between the real displacement variable and the virtual displacement. We can 
do so by integrating the first term by parts to get 
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9,6)= I [Eld'O'-
Jo 

G(d,e)= [EId'6'-P6smd)dx-EId'e 

The boundary term is the resuh of integration by parts. The boundary condition 
at either end must be either vanishing moment M or vanishing rotation 6 (but 
not both at the same point). For the present problem, the rotation vanishes at 
X = 0 and the moment vanishes at jc = €. In order to have the boundary term 
vanish completely from our functional, we must restrict the class of virtual 
rotations that we allow in our function space 95̂ (0, i) to functions that satisfy 
0(0) = 0. With this understanding, the boundary term vanishes and the virtu­
al-work expression reduces to Eqn. (552). Q 

Example 69. Solution to the linearized Elastica. We can make some analytical 
headway with the classical differential equation if we linearize it. Let us make 
the approximation that the angle of rotation is small. Thus, sin^ « 6, and the 
governing equation takes the linearized form Eld'' -\-P6 = 0. This equation has 
the general solution 

0(x) = aisinfix-\-a2COS/>tx (554) 

where fi^ = P/£/is the ratio of axial load to bending modulus. Verify this solu­
tion by substituting it back into the linearized differential equation. For the prob­
lem at hand, the load P is positive if it is compressive. The modulus EI is always 
positive. Therefore, ju^ is positive and, hence, fi is real for the model problem. 

The general solution to the linearized model problem, given by Eqn. (554), 
has two arbitrary constants. These constants can be determined from the bound­
ary conditions. For the present case, we have ^(0) = 0, which gives a2 = 0, 
and $'(£) = 0, which gives 

fiaiCOSfi£ = 0 

This equation has the solution a^ = 0, and that solution corresponds to the 
straight configuration. Thus, we arrive at the conclusion that the straight config­
uration is an equilibrium configuration for all values of the load P. Like the dis­
crete problems in the preceding chapter, there are other solutions for certain val­
ues of the load P. These solutions are given by 

These values of fi are the bifurcation points from which nontrivial equilibrium 
paths branch from the straight configuration. Let us designate these critical val­
ues of jLidiS fin = (In — l);r/2€ for all positive integer values n. There are an 
infinite number of such points. Note that it is sufficient to consider only the posi­
tive values of the solutions /̂ € given above because cosine is an even function. 
The nth critical load is given by the definition of /i as P^ = f^lEI. The lowest 
critical load, n = 1, is called the Euler load. We will see later that the straight 
configuration is stable for all loads below the Euler load, and unstable for all 
loads above the Euler load. 
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At these critical loads, it is possible for the column to bend into certain 
buckled shapes. These shapes are proportional to the eigenfunctions 

dnix) = smfinX 

obtained by substituting the eigenvalue /̂ „ back into Eqn. (554). These are the 
solutions for which a^ "^ 0. Qearly, for each eigenvalue there exists an eigen-
function, much like the discrete case. Also like the discrete case, we can observe 
that the buckled configurations are determined only up to an undetermined mag­
nitude. The linearized equations are not sufficient to determine the value of this 
constant. For this reason, we often refer to the eigenfunctions as the buckling 
mode shapes. We can determine only the shape that the column must have initial­
ly on each equilibrium branch. These functions tell us the direction that the equi­
librium path takes upon buckling, and we can use this information to develop 
approximate solutions in the neighborhood of the bifurcation points. We will 
also find that these functions provide an excellent basis for Ritz approximations 
for solving the complete nonlinear problem. 

Remark* If the load is tensile, then // ̂  < 0 and // is imaginary. Trigonomet­
ric functions with imaginary arguments can be readily converted to hyperbolic 
trigonometric functions with real arguments with Euler's formulas 

sinhA: = —/sinix, coshjc = cosix 

where / = / ^ is the imaginary unit. Thus, for tension problems, the solution 
can be taken in the more suitable form 0(jc) = feisinh//jc + fe2COsh//jc,toavoid 
complex numbers. The character of the trigonometric functions is oscillatory, 
while the hyperbolic trigonometric functions are exponentially decaying. 
There is a great difference in these two types of behavior, and oneshouldkeep 
this observation in mind when solving problems with tensile loads. 

Example 70. An approximate solution to the nonlinear Elastica. The linearized 
buckling theory gives us a good start on a nonlinear analysis. In particular, we 
know that the solution bifurcates at the load ix ̂  = 7i/2i, and that the configura­
tion of the column on the equilibrium path is initially proportional to the first 
eigenfunction 6^{x) = sm^i^x. Thus, we know how the column must deflect in 
order to get onto the first nontrivial equilibrium branch. We can use this informa­
tion to launch an approximate analysis of the stability of Euler's elastica. Let us 
assume that the solution 6(x) is approximately proportional to the first eigen-
function 

e(x) « ye,{x) 
where y is a scalar parameter measuring the amplitude of deformation. What we 
are really assuming is that, over a limited range of deformation, the shape of the 
column will not change, but the amplitude will increase in accord with the load 
level. Thus, we shall characterize our equilibrium path by finding the load P as 
a function of y. 
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We can use this assumption in the virtual-work form of the equation govern­
ing the deformation of the elastica, Eqn. (552). Let us also assume that the virtual 
rotation has the same form as the real rotation, that is, 6(x) = yOi(x), where y 
is an arbitrary scalar parameter (virtual rotation). Substituting the approximate 
rotation function into the weak form, we get an ordinary function in place of the 
functional 

G(y,y) = I y[yEl(e,V - Pe,sm(ye,)]dx 
JO 

For small angles, the sine function can be expanded as a Taylor series as 

sin(A) = y&i -zY'ei + r^fe\ -••• 
Substituting the first two terms of the expansion into the virtual-work functional, 
we obtain the result 

Jo 
dx 

Since the function ^̂ (jc) = sin;rjc/2€ is explicitly known, the integrals can be 
carried out. These integrals have the values 

I El[e,'Ydx = I PiCos2(||)dbc = \P,i 
Jo Jo 

\\\dx = f̂ in (̂f )^ = \e 
Jo Jo 

\dx = | € 

where Pi = 7i^EI/4£^ is the first critical load. W t̂h these results, we finally ar­
rive at the discrete form of the virtual-work functional 

G(Y,Y) = ^ilYPi-yPil-lY")]? (555) 

We are now in the same position as we were in the analysis of the discrete sys­
tems. The virtual-work form of the equilibrium equations is algebraic rather than 
integral. The parameters are scalars rather than functions. The analysis proceeds 
along the same lines as the discrete system. Since G(y,y) = Ofor all y implies 
an equilibrium configuration, we have 

Y[P, - P(l - iy^)] = 0 (556) 

This algebraic equation has two solutions. The solution y = 0 is the straight 
configuration, for which all values of the load P satisfy equilibrium. The second 
solution is 
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This equation tells us that the load P increases along Branch 1 in 2i pitchfork bi­
furcation. Branch 1 is symmetric with respect to the deformation parameter y. 
In the limit as y -* 0, we can see that Branch 1 emanates from the critical load 
P^. The bifurcation diagram is shown in Fig. 143. 

^* />, p. 
Branch 3 

Branch 2 

Branch 1 

"̂  Inflection point 

Figure 143 The bifurcation diagram and buckling mode 
shapes of the cantilever column 

Note that, in order to plot the buckled shapes, we needed the transverse 
deflection w(x) rather than the slope 0(x). These can be computed approximately 
from the constraint w' = sin ̂  « 6. Upon integrating this equation and substi­
tuting the boundary condition >v(0) = 0, we find that 

w„(x) « l-cos/^;,jt (558) 

Since the approximation is not linearized, we can examine the stability of the 
non-trivial equilibrium path. The second derivative of the energy can be com­
puted from G, Eqn. (555). It has the following expression 

A(y,y)=i€[Pi-p(l-|y2)]f2 (559) 

The second-derivative test is now a test of an ordinary function. For the solution 
7 = 0, the straight configuration, the energy criterion suggests that 

A(0,y)=\£[P,-P]Y' = { ^ 
for P < Pi 
for P > Pi 

(stable) 
(unstable) 

The second-derivative test on the trivial equilibrium path tells us that loads be­
low the first critical load are stable, and loads above the first critical load are 
unstable. The second-derivative test on the first branch gives 

A(y,y) = lp^((^^y 

which is greater than zero for all values of y < Therefore, the first branch 
is stable. 

Qearly, the analysis holds only in a small neighborhood of the critical point. 
How small is small? Since we took a cubic approximation for the sine function, 
that approximation should hold out for relatively large values of (̂JC) = yOi(x). 
Since the eigenfunction 0^ is never greater than 1, this limitation applies essen­
tially to y. The source of error that we really cannot assess is the desire of the 
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system to change its shape as it moves along a branch. We saw in the exact analy­
sis of the two-degree-of-freedom system that such changes are natural in the 
evolution of the response. Since we have insisted that the shape remains the 
same, we are adding a constraint that we cannot evaluate. However, comparison 
with the exact solution shows that the solution is accurate to within 1% for values 
of y = 60°, indicating that the buckled shape tends to persist. 

We can apply the above analysis of the branches from any of the critical 
points. However, to get a proper assessment of the stability of these branches, 
we must expand the rotation in terms of all of the modes lower than the one 
under investigation. Thus, we would consider solutions of the form 

Qearly, upon substituting this series into the cubic term of the expansion for 
the sine function, we obtain a system of N equations that contains the full, 
coupled cubic combinations of the deformation parameters. These algebraic 
equations are, of course, amenable to iterative solution by Newton's method, 
but even for the case « = 2, a closed-form solution is not feasible. If we assume 
that the solution emanates in a pure mode, i.e., 6(x) = y6„(jc), we lose the in­
fluence of the lower modes (particularly the first) on the second-derivative 
test, and the conclusions on the stability of equilibrium are erroneous. If we 
were to carry out the solution for « = 2, we would see that the shape of the 
higher branches is similar to the first branch, and that they are all unstable. 

It should be evident that looking along an eigenfunction to assess the stabil­
ity of a nontrivial branch near a critical point is a method that is generally appli­
cable. If any nonlinear function that appears in the virtual-work functional is 
expanded as a Taylor series, then the resulting equations will be polynomial in 
the deformation parameter, making equilibrium and stability easy to assess. 
Thus, we have seen how the linearized buckling eigenvalue problem can be 
used as a preprocessor for a stability analysis of a system. Even though the li­
nearized buckling problem tells us nothing about the stability of the branching 
solutions, it does tell us the points that those branches emanate from and the 
directions that they follow initially. Eigenfunction expansions are also useful 
for investigating problems with imperfections and transverse loads. 

Example 71. The effect of geometric imperfections. One can modify the above 
analysis to include the effect of imperfections on the behavior of the cantilever 
column. We will continue to measure the deformation of the column from the 
straight position, but we will consider a column that is not initially straight. We 
characterize the imperfection as the angle of rotation of the cross section that 
exists without load on the column or flexural strain in the beam. Accordingly, 
let '(p(x) be the initial rotation field of the beam. 
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We saw in the preceding analysis that we could make some progress by recog­
nizing that the column buckles into the first linearized buckling mode 
6^{x) = sm{jtx/2t) at the critical load //j = ;r/2€, and that we could look in 
that direction to examine the behavior of the bifurcation diagram in the neigh­
borhood of the critical point. We can extend this analysis to include the imperfect 
column. For the imperfect column, the potential energy of the system is 

^6) [^EI(e'-rp')^ •¥ Pcose)dx 
Jo 

We can see that at the configuration 0 = rp, there is no flexural energy stored 
in the column. The variational form of the equilibrium equations can be obtained 
by taking the directional derivative of the energy. Doing so, we obtain 

.«) = f 
Jo 

0(0,6) = (EI6'6' - POsine - EIip'e')dx 

The first two terms of this expression are exactly the same as the perfectly 
straight column. The third term reflects the effect of the geometric imperfection. 

Let us examine the particular case where the imperfection is in exactly the 
same shape as the initial buckling mode, that is, rp(x) = yoOi(x), where yo rep­
resents the amplitude of the initial imperfection and is a fixed positive scalar val­
ue. In this case, it is reasonable to again assume that the deformations of the col­
umn will be proportional to the first buckling mode 0(x) = yOi(x), where, as 
before, y is the total amplitude of the rotation field, measured relative to the 
straight configuration. The virtual rotation can also be expressed as a multiple 
of the first eigenfunction 0(x) = y ^I(JC). The expression sin(y6i) is again ex­
pressed as a cubic Taylor series approximation. If we substitute these expres­
sions into the expression for G and carry out the requisite integrals of the eigen­
function, we obtain 

0(y.y) = \e[(y-yo]Pi - yp( i - |>^)]y (560) 

thereby reducing the functional to an ordinary function of the real deformation 
y and the virtual displacement parameter y. The analysis proceeds along the 
same lines as it did for the perfect system. Since G(y, f) = 0 for all y, we have 

, (y-yo\ 
p(y) = ^1 ^ - f r (561) 

Qearly, y = 0 (the straight configuration) is no longer an equilibrium configu­
ration. For the value y = y© we have P(yo) = 0, indicating that loading starts 
from zero rather than branching from a critical point. As y gets large (y > yo), 
the imperfect curve becomes asymptotic to the perfect curve. The second deriva­
tive of the energy is identical to the perfect case and is given by Eqn. (559). Sub­
stituting Eqn. (561) into Eqn. (559) we arrive at the result that 
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^.n-h^i^^^^^^y-
( > 0 for y > 0 (stable) 

< 0 for ycr < y < 0 (unstable) 

> 0 for y < Ycr (stable) 

This result holds only for values of the deformation that are appropriate to the 
approximation of the sine function. We can see a remarkable similarity between 
this problem and the discrete one-degree-of-freedom problem with a rotational 
spring. The bifurcation diagram for that problem is shown in Fig. 128. For that 
problem, negative values of the deformation gave rise to a secondary branch 
above the branch for the perfect system. That branch had a limit point and was 
unstable for values of the deformation closer to zero (on the negative side) and 
stable for values more negative than the limit deformation. The value of the limit 
deformation was related to the magnitude of the initial imperfection. 

For the present problem, the same phenomenon exists and the same interr 
pretations hold. The value of the critical deformation ycr is given by the solution 
to the cubic equation 

2y^ - SYOY^ + 8y^ = 0 

It is straightforward to show that this cubic equation has one real root that can 
be computed for specific values of the initial imperfection. Numerical computa­
tions show that this root is indeed negative. Some values of the critical deforma­
tion, relative to the size of the imperfection, are given in Table 8. For small val­
ues of the imperfection, we can observe that the critical deformation is given 
approximately by 

Ycr « - (^yof 

Using this approximate value in the equation for the load, Eqn. (561), we find 
that the limit load is given approximately by the expression 

Pmax«Pl(l+0.95y2/3) 

in accord with the two-thirds power law of Koiter for the symmetric bifurcation. 
Hence, we see that the two-thirds power law applies to limit points above the 
perfect bifurcation curve (limit points associated with stable post-buckling be­
havior) as well as limit points below (limit points associated with unstable post-
buckling behavior). 

Table 8 Solutions to equation for critical deformation 
V - 3 y o y ' + 8y, = 0 

Yo 

0.00001 
0.0001 
0.001 

I 0.01 
0.1 

Ycr 

-0.0342 
-0.0736 
-0.1582 
-0.3371 
-0.6900 
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The bifurcation diagram for the model problem is shown in Fig. 144 (the im­
perfection diagram was computed with ŷ  = 0.04). 

Unstable 
Stable 

Figure 144 The effect of an imperfection for Euler's elastica 

We can repeat the foregoing analysis and show that similar results hold for the 
elastica with simple supports. Although the values of the critical loads are dif­
ferent in the two cases (the fundamental critical load of the pinned column is 
fi 1 = Jt/(. rather than fi i = 7c/2( for the cantilever column), the post-critical 
load has the same expression. As such, one might consider the stability of the 
first branch as a property of the differential operator, independent of the bound­
ary conditions, while the value of the buckling load is very much a property of 
the boundary conditions, too. This observation applies only to cases in which 
the internal forces can be related directly to the applied load, i.e., statically de­
terminate columns. Assemblages of elastic members can display remarkably 
different behavior; the asymmetric bifurcation of frames is a case in point. 

The remarkable similarity between the behavior of the elastica and the sim­
ple systems with rigid links and rotational springs suggests that these simple 
systems are actually very good models of the behavior of their continuous 
counterparts. Thus, there is great value in studying these discrete systems, as 
the analytical overhead is considerably smaller. We must be extremely careful, 
however, in extrapolating results from simple systems to more complicated 
systems. We must also recognize that, in effect, we have reduced the continu­
ous system to a single-degree-of-freedom system with a Ritz approximation 
using the critical mode as the base function. The Ritz approach always gener­
ates a discrete system (i.e., algebraic equations rather that differential or inte­
gral) and provides a rigorous connection between discrete and continuous sys­
tems. The discretization process must be done with extreme caution, however, 
because the Ritz method will discretize the system in exactly the manner that 
you ask it to, hidden constraints and all. Qearly, we are on fairly solid ground 
choosing an eigenfunction of the linearized problem as our base function since 
this function, at least initially, satisfies all boundary conditions, essential and 
natural. 
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The General Linearized Buckling Theory 

Let us linearize the inextensible beam theory by making small angle approxi­
mations sinO ^ 6 and cos6 « 1, and by noting that w' ^ 6 and w' « 0. 
From Eqns. (541), we can deduce the linearized equilibrium equations. We can 
eliminate the force Vfrom Eqn. (541)c by differentiating it once and substitut­
ing Eqn. (541)b to get 

[EIw^'Y - [Hw')' - q-^-m' = 0 (562) 

This equation governs the behavior of the column in the domain x E [0, €] 
and can be used in conjunction with a variety of boundary conditions. The 
boundary conditions are, for the most part, the same as for the linear theory, 
and are illustrated in Fig. 145. The fixed support has displacement >v = 0 and 
rotation w' = 0 with unknown moment M and transverse reaction V, the sim­
ple support has displacement w = 0 and moment M = 0 with unknown rotation 
and transverse reaction, the free end has moment Af = 0 and transverse reac­
tion V = 0. This last condition deserves special attention. 

>v = o >v = o y = o 
w' = 0 M = 0 M = 0 
Figure 145 Boundary conditions for a beam 

Because we have used the constraints that axial and shear deformations are 
negligible, we have given away our ability to determine shear and axial force 
from a constitutive equation. Any force associated with a kinematic constraint 
must be determined from an equilibrium equation. Just as we did for the Ber-
nouUi-Euler beam, we shall appeal to the moment equilibrium equation to de­
termine how to translate the condition V = 0 to terms involving the displace­
ment field w(x). From Eqn. (541), with w' = 0 and M = EIw", we find that 

V= -'EIw'"-\-Hw'-m (563) 

Thus, we see that transverse force is no longer related simply to the third deriv­
ative of displacement because of the effect of axial force. This boundary condi­
tion is very important, as we will see in one of the following examples. 

The force H is also associated with a constraint, and, therefore, cannot be 
determined from a constitutive equation. All of the problems we consider here 
will be statically determinate with respect to the axial force, and, hence, we will 
be able to find Hfrom purely statical considerations. Remember that H is posi­
tive if it produces a net tension. For the model problem, we have the relation­
ship if(x) = - P . 
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The virtual-work and energy functionals. In accord with the conditions 
of linearization the general virtual-work functional, Eqn. (542), takes the form 

Jo 
G(>v, w) = [EIw' 'w'' + Hw'W -qw-mW')dx (564) 

Jo 

In accord with the principle of virtual work, w(x) is an equilibrium configura­
tion if G(w,w) = 0 for all w E 38 (̂0, €). The admissible functions in the 
collection 95 (̂0, () must have square-integrable second derivatives and must 
satisfy the essential boundary conditions of the particular problem. The energy 
functional for the linearized problem is 

g(w) = I UEl{w"y-\-^H(w'y-qw-mw')dx (565) 
Jo 

The astute reader might be wondering what happened to the external work 
done by the distributed axial force p(x). It is, indeed, contained in the ̂  term 
as the following example shows. 

Example 72. Accounting for the energy of the applied axial load. Consider the 
model problem with an axial force P applied atjc = € and a distributed axial load 
p(jc). The axial displacement must conform to the inextensibility constraint 
1 + u' = cos 6. Since 6 « w', we have that w' « - |(>v' )^, in accord with the 
Taylor expansion of the cosine function. Thus, the axial displacement is 

Jo 
u(x) = w(0) - ^{wydx (566) 

Jo 
The potential energy possessed by the end load P and the distributed load/?, rela­
tive to the undeformed position of the beam can be expressed as 

BE = Pu(£) - p(x)u(x)dx (567) 
Jo 

Substituting Eqn. (566) into Eqn. (567), noting that u(0) = 0, we get 

^E= -P\ iM'dx + I p(x) I \(w'Q)yd^dx (568) 
Jo Jo Jo 

Integrating the double integral on the right by parts, we obtain 

&E= -p\ \(wrdx+ [ \{w')'dxi pdx- [ i(w')^[p(m' 
Jo Jo Jo Jo Jo 

.-., sdx 

Finally, noting from Eqn. (550) that the axial force H(x) is given by 

H(x)= - P + I K ^ ) ^ 
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we arrive at the result that the potential energy possessed by the end load and the 
distributed axial load can be computed as 

Jo 

The resultant axial force H(x) contains the contribution of both the end load and 
the distributed load. The derivation shows that Eqn. (564) rigorously accounts 
for all of the potential energy for any distribution of axial forces. 

Classical solution to the model problem. Consider again the model prob­
lem shown in Fig. 142. The column has no distributed loads applied along its 
length. Hence, q = p = m = OAn addition, the axial force in the column is 
given by / / = —P. For constant EI, Eqn. (562) takes the special form 

EIw'''-\-Pw" = 0 (569) 

where (•)'" indicates the fourth derivative of (•). This equation is, in essence, 
a linear eigenvalue problem for a differential operator. It asks whether there 
are functions that satisfy the condition that their fourth derivative is equal to 
the negative of their second derivative multiplied by a constant. The trigono­
metric functions sin/ux and cos fix are just such functions. Actually, linear 
combinations of these functions are the only functions that satisfy this relation­
ship. Such functions are called harmonic, Qearly, since the lowest-order de­
rivative in the equation is a second derivative, any constant and linear expres­
sion will also satisfy the equation. Therefore, we can express the general 
solution to Eqn. (562) as 

w(jc) = ao-\-aiXi-a2sm/ux-\-a3COS/ix (570) 

where, again, the notation ju^ = P/EI is introduced for convenience. The 
fourth-order equation gave rise to four constants of integration, as they always 
do. These constants can be determined from the boundary conditions appropri­
ate to a specific problem. 

Example 73. Classical solution to the linearized problem. The boundary condi­
tions for the model problem are vanishing displacement at the base, w(0) = 0, 
which gives the equation 

flo + «3 = 0 (a) 

vanishing rotation at the base, vv'(O) = 0, which gives the equation 

a^-\-fia2 = 0 (b) 

vanishing moment at the tip, w"(€) = 0, which gives the equation 
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fjL^[a2smijLi + a^QOSfi^] = 0 (c) 

and vanishing shear at the tip, w"'{i)-¥fi^w'{i) = 0, which gives the equation 

/^^[fl2COS/^€-fl3sin/^€]-/^^[fll+/^(fl2COS/^€-fl3sin/^€)] = 0 (d) 

These equations can be solved to give a^ = a2 — ^ and a^ = —a^ along 
with the important condition 

a^cosfi^ = 0 (571) 

This equation is identical to the one obtained for the model problem previously. 
It has the trivial solution a^ = 0, corresponding to the straight configuration, 
as well as an infinite number of nontrivial solutions for load values 

f^n 
(2n-l)jt 

2€ 

which satisfy cosjn^ = 0. We can extract the critical loads as P„ = filEI. The 
eigenfunction corresponding to/^;, is given by Eqn. (570) with flj = ^2 = Oand 
^0 - " ^3- To wit 

w„(x) = a^{l-COSju„x) 

Again, the buckled configuration can be determined up to an arbitrary ampli­
tude. The constant a^ cannot be determined from the governing equations. The 
bifurcation diagram and the first three buckling mode shapes are shown in Fig. 
146. As we shall soon see, for loads P < P^ the straight configuration is stable, 
but for P > Pj it is unstable. Because we have performed a linearized buckling 
analysis, we are unable to determine the stability of the bent configurations. 

'r 
^ 1 

^ Inflection point 

Figure 146 The bifurcation diagram and buckling 
mode shapes of the cantilever column 

The buckling eigenfunctions have some interesting properties. First, the ei-
genfunctions become increasingly tortuous the higher the mode number n. 
Tortuosity is the measure of how much the axis curves around in space. For a 
fixed amplitude of motion, the higher the tortuosity is, the more flexural poten­
tial energy the beam has stored. From the point of view of energy, then, it is easy 
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to see why the first mode has the lowest critical buckling load. It is the mode 
that requires the least energy to deform into. A second measure of tortuosity 
is the number of inflection points (an inflection point is a point where 
w'' = 0). We can see that mode number n has n-1 inflection points between 
its ends. This observation will hold for all statically determinate boundary con­
ditions. Each degree of indeterminacy adds another inflection point (i.e., a 
fixed-fixed beam has two inflection points in the first mode; a fixed-pinned 
beam has one). 

The four equations that come from the boundary conditions that relate the 
four arbitrary constants a = (fli, ^2, a^, ̂ 4} and the load parameter /u will not 
always reduce to such a simple equation, as they did in this example. These 
four equations will always be linear in a, but usually nonlinear in fi. The equa­
tions will always be homogeneous. Thus, we can write the general form of the 
equations as 

B(a)a = 0 (572) 

where the exact character of the four by four matrix B(a) will depend upon the 
specific boundary conditions of the problem. Eqn. (572) is solvable for non­
zero a only if the determinant of the coefficient matrix vanishes. Thus, the 
characteristic equation for the bifurcation load parameter fi is 

det B(a) = 0 (573) 

The characteristic equation is generally nonlinear in //. Often, one or more of 
the Ui can be eliminated by substitution to give a smaller matrix. In the previous 
example, three of the a, were eliminated, leading to a one by one matrix. 

Orthogonality of the e^enfunctions. Whenever we deal with an eigenva­
lue problem we are assured that somewhere there lurks an orthogonality rela­
tionship among the eigenvectors. The present problem is no exception. The 
following lemma describes the orthogonality relationship among the eigen-
functions. 

Lemma (Orthogonality of the eigenfunctions). Let fin and Wn(x) be 
the nth eigenvalue and eigenfunction that satisfy the eigenvalue prob­
lem w^^-fi^w" = 0. For distinct eigenvalues, i.e., fil ^ /li, the ei­
genfunctions Wn(x) and w„(x) satisfy the following orthogonality 
relationships 

1: w„'wjdx = 0 (574) 



Chapter 11 The Planar Buckling of Beams 413 

\ w^'^wj'dx = 0 (575) 
Jo 

I [w„"Ydx = nl I {w„'Ydx (576) 
Jo Jo 

Proof. The proof of orthogonality of the first derivatives is straight­
forward. Let us start with an expression we know to be zero 

i: [ ( < + / ^ n ' w ; > . - ( < + filwj')w,]dx = 0 

This integral is zero because each of the terms in parentheses is zero. 
We shall proceed to integrate each term by parts imtil all of the deriva­
tives balance. The result of these integrations is 

Jo Jo 

'0 '0 

- w/V^'f + w:'w„'\ = 0 
'o 'o 

Qearly, the second integral vanishes identically. The boundary terms 
all vanish because, in order for the boundary value problem to be 
properly posed, we must have either zero displacement or zero shear, 
and either zero slope or zero moment at an end point. All of the bound­
ary terms have products of both pairs of items, one of which must be 
zero. We are left with the condition 

[fil-til)\ w^wJdx^Q (577) 
Jo 

thus completing the proof of Eqn. (574). One can prove orthogonality 
of the second derivatives by considering the virtual-work equation 
with w = w„ and W = W;„. With these choices of fimctions, we have 

Jo 
dx = 0 

Since orthogonality of the first derivatives has already been estab­
lished, this result proves orthogonality of the second derivatives. 
G(Wn, w„) = 0 gives Eqn. (576) dkectly. Q 
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If the eigenvalues are distinct, then the orthogonality relationship holds. If 
MI = f^m then Eqn. (577) is satisfied without the eigenfunctions being ortho­
gonal. In this case, like the discrete case, we have the result that the eigenfunc­
tions associated with the repeated eigenvalue form a subspace. Any function 
that is a linear combination of eigenfunctions from this subspace is also an ei-
genfunction. Thus, orthogonality is not necessary in the subspace. We can, as 
usual, create orthogonal functions from any set of functions in this subspace 
by Gram-Schmidt orthogonalization. You should be aware that the orthogonal­
ity condition applies to the fkst and second derivatives of the eigenfunctions, 
not to the functions themselves. 

The eigenfunctions provide a convenient basis for computations of prob­
lems that are almost like the eigenvalue problem, such as problems with trans­
verse loading in addition to the axial thrust and problems with initial imperfec­
tions. Any function can be expressed as an infinite sum of eigenfunctions. 
These functions are particularly convenient because they have all of the 
boundary conditions satisfied at the outset. An eigenfunction expansion is also 
convenient for establishing the stability criterion. 

The stabUity of equilibrium. Although we are working with a linearized 
buckling theory, we can still expect the second-derivative test to give insight 
into the stability of the straight configuration. The second derivative of &(w) 
for the present problem is 

A(>v,vP) = [El{w"Y-P{w'Y]dx 
Jo 

Testing the sign of the second derivative for a continuous problem is not quite 
the same as for the discrete problem. We must establish the algebraic sign of 
A for all functions W E 98 (̂0, €). The easiest way to implement this criterion 
is to use an eigenfunction expansion. Let us assume that our test function is a 
linear sum of eigenfunctions, as follows 

00 

^(x) = ^a„w^(x) 

where w„ is the wth eigenfunction and the constants a„ are arbitrary. The sec­
ond-derivative functional is now a function of the arbitrary constants a„ and 
has the form 

00 00 r ^ 

/i = l m = l J 0 

Noting the orthogonality of the eigenfimctions, this expression reduces to 
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XPo 

Figure 147 Beam of varying modulus subjected to proportional loads 

A(a,a) = ^a'„{P„-P)\ (w„'y 
/i = l J o 

dx 

Since the integral of the square of the slope of an eigenfunction is never nega­
tive (in fact, the eigenfunctions can be normalized so that this integral is unity), 
the second-derivative test reduces to 

^ _ r > 0 for P < Pi (stable) 
^(a^a) = X^n[Pn-P) = { < 0 for P > P, (unstable) 

because if P > Pi, one need only choose Ui ^ 0 with all others equal to zero 
to show that the second derivative is less than zero for some choice of a. Qear-
ly, the second-derivative test tells us nothing about the stability of the nontrivial 
equilibrium branches. 

Ritz and the Linearized Eigenvalue Problem 
The virtual-work functional for the linearized buckling problem is given by 
Eqn. (564). The variational principle suggests that if G = 0 for all suitable virtu­
al displacements, then the system is in equilibrium. As we have seen previous­
ly, the virtual displacement functions need only satisfy the essential boundary 
conditions. The real displacements can be expressed in terms of functions that 
also satisfy only the essential boundary conditions. As we saw in the example 
for the little boundary value problem with a sinusoidal load, the natural bound­
ary conditions are recovered through the principle of virtual work as the size 
of the approximating basis increases. We shall see that the principle of virtual 
work gives rise to the buckling eigenvalue problem, which provides us with a 
tool for estimating the critical points and buckling modes of our continuous 
column. 

To set up the discussion of applying the Ritz method to the buckling prob­
lem, consider the beam shown in Fig. 147. A requirement of the buckling anal­
ysis is that the loads be proportional, that is, the spatial distribution of the loads 
is fixed and the magnitude of each load varies in accord with the load factor 
A. In the figure, P^ is an applied end load of fixed magnitude and Po(x) is an 
applied distributed load of fixed amplitude. The total load is given by the ag-
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gregate of the loads XPo and Xpo(x). Let us designate the axial force under the 
nominal loads Po and Po(x) as 

o- I Po 
J X 

H„{x)= -P„- p„(l)d^ 
J X 

so that H(x) = XHO{X). Note that the algebraic sign of all loading terms is in 
accord with the figure, that is, all of the loads are oriented to induce compres­
sion in the beam. According to our convention, H{x) is positive for tensile loads 
and negative for compressive loads. 

We are now prepared to apply the Ritz method. Consider the set of base 
functions h(jc) =[/ii(jc), h2(x),..., hn{x)Y. The real and virtual displace­
ments can be expressed as linear combinations of these base functions, to wit 

n n 

w{x) = 2_^ ciihi(x) = a • h(jc), w(x) = ^ J,/I/(JC) = a • h(x) 
1=1 / = i 

Let a = [fli,..., UnY and a = [AJ,.. ., fl;,]^be vectors containing the coeffi­
cients of the base functions used in the approximations. We can substitute these 
approximations into Eqn. (564) to get the discrete functional 

G(a,a) = a^[Ka-AGa (578) 

where the matrices K and G have components given by integrals of derivatives 
of the base functions 

K = EI[h''][h''Ydx, G = - Ho[h'][h'Ydx (579) 
Jo Jo 

The matrix K is generally referred to as the stiffness matrix while the matrix 
G is generally referred to as the geometric (stiffness) matrix. As usual, the vari­
ational statement that G(a, a) = 0 for all a implies equilibrium of the system. 
In this case, those equilibrium equations give the classical buckling eigenvalue 
problem 

Ka = AGa (580) 

Clearly, a = 0 is a solution to Eqn. (580) for any value of A, and, thus, repre­
sents an equilibrium configuration. Like any eigenvalue problem, we can ex­
pect Eqn. (580) to have a nontrivial solution, a T̂  0, only for certain values of 
the load parameter A. These values are the bifurcation loads. The two coeffi­
cient matrices K and G are n by n. Therefore, the matrix eigenvalue problem 
gives rise to « pairs of eigenvalues and eigenvectors: {A,, a,}, for/ = 1 , . . . , w. 
The eigenvalues are estimates of the actual eigenvalues of the continuous sys-
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tern. The eigenvectors, when used as coefficients of the base functions hi{x), 
are estimates of the eigenfunctions Wi{x), As such, the Ritz method gives us 
a tool for approximating the eigenvalues and eigenfunctions from any set of 
base functions that satisfy the essential boundary conditions. 

If the eigenfunctions themselves are used as the base functions, both K and 
G are diagonal. The ratio of the diagonal element Ku/Gu (no sum implied) is 
the eigenvalue fi], and the eigenvectors are given by the standard base vectors 
in 9 "̂ (i.e., the rth standard base vector has a one in the ith slot and zeros in all 
of the other slots). This result is a direct consequence of the orthogonality prop­
erty of the eigenfunctions. 

There are many techniques for solving the algebraic eigenvalue problem, 
Eqn. (580), numerically. Certainly, we can endeavor to find the roots of the de-
terminantal characteristic equation 

5P(A) = det[K-AG] = 0 (581) 

These roots are the critical values we seek. This approach is the one we used 
to find the principal values of the stress and strain tensors. The key difference 
in the present problem is that the characteristic polynomial 9̂ (A) is of nth order 
if K and G are nhyn matrices, compared with order three for the principal-val­
ues problem. Qearly, the mechanics of finding the n roots gets mcreasingly dif­
ficult as n gets large. Most methods for large systems use either a matrix itera­
tion technique or a matrix diagonalization technique. For the small problems 
we tackle here, n usually will not be too large, and we can continue to view the 
algebraic eigenvalue problem as one of finding the roots of 9P(A). 

Example 74. Column buckling by the Ritz method. Let us reexamine the linea­
rized buckling problem for the cantilever column with constant modulus EI, 
length €, and compressive end load XP. We know that the exact eigenfunctions 
are given by cosine functions. Can we get reasonable results using a polynomial 
basis? Consider the polynomial approximation of the real and the virtual dis­
placement given by the base functions 

We have discarded the constant and linear base functions because the boundary 
conditions insist that displacement and slope vanish at JC = 0. The stiffness and 
geometric matrices are easily computed to have the components 

_ ij(i + l)(j + l) EI r - ( i l l l iZii l p/' (<so\ 
^'i i+j-1 T ' '̂> i+j + 1 ^^ (̂ ^^^ 

Let us carry out the computation for a two-term basis, i.e., n = 2. For this case, 
the stiffness and geometric stiffness have the specific values 



418 Fundamentals of Structural Mechanics 

Table 9 Approximations of the buckling eigenvalues with polynomial basis 

n 

1 
2 
3 
4 
5 
6 

Exact 

Ai 

3.0000 
2.4860 
2.4678 
2.4674 
2.4674 
2.4674 

2.4674 

A2 

32.181 
23.391 
22.322 
22.214 
22.207 

22.207 

A^ 

109.14 
69.404 
63.028 
61.863 

61.685 

A4 

265.81 
148.21 
127.21 

120.90 

As 

545.75 
271.61 

199.9 

k 

1002.7 

298.6 

K = ^ 
4 6 

6 12 ^ " 6 0 
80 90 

90 108 

In order for there to be a nontrivial solution we must have det[K-AG] = 0. 
Let us define I = kPi^/EL Multiplying K - A G by £/El2ind taking the deter­
minant, we get 

det 
4 - |A 6 - | I 

6 - f I 1 2 - f l 
= ^ P - f A + 12 = 0 

The roots to this quadratic equation are Xi = 2.4860 and A2 = 32.1807. These 
eigenvalues are approximations to the first two critical loads of the column. The 
eigenvectors can be obtained by substituting the eigenvalues back into 

[K-A,G]a, = 0 

assuming that one of the components of a, is known, and solving for the remain­
ing components. For example, for Aj = 2.4860 we have 

41.12 

136.26 

136.26 

451.51 

from which we get a = 0.3018 (from either of the two equations). Therefore, 
the eigenvector associated wi^diTi = 2.4860 is aj = (1.0,0.3018). One can fol­
low the same procedure for A2 = 32.1807 to get a2 = (1.0, -0.9204). 

Table 9 shows the results of increasing the number of terms n in expansion 
for w(x) and W(x) in the previous example along with the exact results obtained 
previously. The one-term expansion gives a surprismgly good result, indicat­
ing that the quadratic function is a reasonably good approximation of the ei-
genfunction. Of course, the one-term expansion gives rise to only one eigenva-



Chapter 11 The Planar Buckling of Beams 419 

Figure 148 Beam with an initial geometric imperfection 

lue estimate. The two-term expansion gives rise to two estimates. The lower 
value is a remarkably accurate estimate of the first critical load. Presumably, 
the second value is an estimate of the second critical load, but the accuracy is 
not very good. Three terms in the expansion improves on the existing estimates 
and introduces an estimate of the third critical load. Qearly, as the higher 
modes come in, they are increasingly inaccurate, a consequence of the higher-
order polynomials being less and less suitable approximations of the higher ei-
genfunctions. None of them has an inflection point. Thus, none of them, alone, 
is a good approximation of any mode other than the first. However, in combina­
tion, they are able to capture the shapes with inflection points. When a new 
base function is introduced, its shape is used by the functional mostly to im­
prove the representation of the lower modes, and very little to represent the 
new mode that has appeared owing to the increase in the order of the discretiza­
tion. Therefore, the mode shapes converge much more slowly than the esti­
mates of the critical loads, by an order of magnitude, in fact. 

We can observe that the value of the critical loads converges from above, 
a hallmark of displacement-based approximations. It is tempting to talk about 
rules of thumb regarding how many terms we need to get an acceptable approx­
imation of the nth critical load. For this problem, we might be tempted to say 
that about 2n terms are needed to get the wth critical load approximately cor­
rect. Such a rule of thumb depends a great deal on the specific base functions 
we use. The best possible base functions are the eigenfunctions, and even they 
require n terms to get the wth critical load (but it is exact as soon as it comes 
into the picture). 

Ritz analysis of imperfections. When studying the discrete systems in the 
previous chapter, we saw that systems with imperfections displayed behavior 
different than those without imperfections if the system without imperfections 
had bifurcation points. We can apply the Ritz method to the analysis of continu­
ous systems with imperfections using the general linearized buckling theory. 
Let us continue to measure the transverse displacement w{x) from the straight 
position, but assume that the deflection is known to be Wo(-̂ ) when the system 
is unloaded (i.e., whenP = 0), as shown in Fig. 148. With this convention, the 
moment at any section is M = El[w" — wj'). Note that for the configuration 
w{x) = Wo(Jc), there is no moment in the beam. The virtual-work functional 
given in Eqn. (564) can be revised to reflect the imperfection as 



420 Fundamentals of Structural Mechanics 

G(w,w) = [EI{W"-WO")W" +Hw'W* - qw-mW]dx (583) 
Jo 

Let us apply the Ritz method as in the last section, expressing the real and virtu­
al displacement fields as 

n n 

w(x) = V aihi(x) = a • h(jc), w(x) = V fl,/i,(jc) = a • h(jc) 
i = l 1 = 1 

Let the axial forces be H(x) = A//o(jc)where A is a loading parameter and the 
force Ho(x) is the internal axial force for the nominal pattern of applied axial 
loads. A straightforward computation shows that the discrete principle of 
virtual work takes the form 

G(a,a) = a^[Ka-AGa-f] (584) 

where the matrices K and G are exactly the same as those given in Eqn. (579). 
The constant term f is due to the transverse forces and initial imperfections. Its 
ith component is given by 

=i: f = {EIWo"h/' + qhi-¥mh/)dx (585) 
Jo 

Equilibrium holds if G(a,a) = 0 for all a. From the discrete fundamental 
theorem of the calculus of variations, we must have 

[K-AG]a = f (586) 

which is a linear system of equations in the unknowns a. Note that for A = 0 
(no axial forces), the equations are exactly the same as those obtained for linear 
BemouUi-Euler beam theory. For most values of A, the equations yield a 
unique value of a for each f. However, it is evident that when A = Â r (the 
buckling eigenvalues from the preceding section), the coefficient matrix 
K—AG is singular, and, in general, no solution exists. It is apparent from this 
formulation that geometric imperfections affect the behavior of the beam in the 
same way that transverse loads do. 

Example 75. Column with imperfection by Ritz method. Reconsider the cantile­
ver beam example from the previous section, except let the beam have an initial 
imperfection of Wo(x) = yoX^ji, that is, a quadratic initial displacement with 
value yo i at the end. Let us further assume that there are no transverse loads, 
^ = m = 0. Using an /i-term polynomial Ritz approximation with base func­
tions h^ = oc*"̂  V '̂» we get the same K and G of Eqn. (582). The components 
of the matrix f are given by 
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^ 2(i + l)EIyo 

Let us again examine the case of a two-term expansion. For this case, Eqn. (586) 
takes the explicit form 

El 
£ 

4 - | I 
3 

6 - | I 

6 - | l l 
2 

12-flJ 

^ 1 

[«2 
ElYo 

€ 

4 

6 

where A = XPi^/EI. These equations can be solved to give a^ and 2̂ 

y„( 80 + 121) _ ^ ^ _ -80yol 
ai(A) = 

(r-i,)(i-i2 
«2(A) = 

6(i-A-)(i-i2; 

where Ji = 2.4860 and Â  = 32.1807 are the estimates of the critical load fac­
tors for the problem without imperfection. The approximate deflection of the 
beam under load is given by the expression 

w{x) = 
80y, xL + x/3^ _ ^\ 

e ^ \20€ 6̂ 2 j 

Observe that riA2 = 80. Therefore, fli(O) = y^andfljCO) = 0, indicating that 
the displaced configuration at zero load is simply the initial imperfection. For 
small values of the load (A < Xi < A2), the displacement increases approxi­
mately linearly with load in the direction Aw = w - ŵ  as 

AK.)=>'j(g^-^) 
As the load approaches the first critical value, i.e., A -* Ai, the displacements 
tend toward infinity, as we expect from the linearized analysis. 

It is interesting to note that the expression for the displacement for an imper­
fection problem will generally have the form 

"̂ "̂"̂  ĝ (A) 

where 9̂ (A) = (A -A,i)(A -A2) • • • (A -A;,), with A, bemg therth critical load 
factor, is the characteristic polynomial for the buckling load of the associated 
problem without imperfections, and g(x) is a function of jc that depends upon 
the particular characteristics of the problem. Because of the nature of the de­
nominator, the displacements will always increase without bound as the load 
approaches the first critical load. 

Additional Reading 
Z. p. Bazant and L. Cedolin, Stability of structures: Elastic, inelastic, fracture 
and damage theories, Oxford University Press, New York, 1991. 
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H. L. Langhaar, Energy methods in applied mechanics, Wiley, New York, 
1962. 

A. E. H. Love, A treatise on the mathematical theory of elasticity, Dover, New 
York, 1944. 
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Problems 
261. Vainberg's theorem is simply a statement of integrability. This theorem can be ap­
plied to the strain variations that we derive through a virtual work argument for a nonlinear 
planar beam. Let u = (w, w,^) and n = {w, vv,^) be the real and virtual displacements 
and rotation. From the principle of virtual work, we have found that the virtual curvature 
is given by >CO{VL, U) = 6'. Show that the symmetry condition holds for the virtual curva­
ture, i.e., DXO{VL,VL) ' u = DXo(u,u) • U and, hence, that it is integrable. Show that the 
real curvature is given by Xo = 6', Note that the directional derivative of Xo is 

DXo{n,li) ' i = j^[xo(u^en.vi)\^^ 

and the integral of the virtual curvature can be computed by Vainberg's formula as 

^o = I Xo{t\X,U)dt 
JO 

where tu = [tu, tw, tO]. Repeat the calculation for the virtual shear and axial strains 

^o(u,n) = w'cos^ - r sin^ - [w'sin^ + (l-hw')cos^]^ 

eo(u,n) = WcosO + vv'sin^ + [w'cos^ - (l-l-w')sin^]5" 

to get the real shear and axial strains 

^o = w'cos^ - (l + w')sin^ 

Eo = w'sind + (l + w')cos^ - 1 

Take the directional derivatives of the real strains to verify that these results are correct. 

262. Consider the simply supported column of length € 
and flexural modulus EL Assume that shear and axial de- ^ 
formations are negligible, so that the constraints of Euler 's ^ " ^ 
elastica are appropriate. Compute the critical loads for this ^ 7 ^ 
column by solving the equation EIw^''-\-Pw" = 0 with 
the appropriate boundary conditions. Carry out the stability analysis parallel to the analy­
sis done for the cantilever model problem in the text. 

Ŵ 263. Consider the simply supported column of length € 
and flexural modulus EI. Assume that shear and axial de­
formations are negligible so that constraints of Euler's | ^ 
elastica are appropriate. Can the classical elastica theory L J 
be extended to accommodate the transverse load q(x)'> ^ 
What difficulties do you encounter when you attempt to do so? Can the virtual-work prin­
ciple for the elastica be modified to account for the transverse load? 

264. Consider the bar of length € with bending modulus l EI^ P 
EI, fixed at the left end, propped at the right end, and sub- | ('5^ 
jected to axial load P as shown. Assume that shear and axial i i 
deformations are negligible. Compute the critical loads for ' € ' 
this column by solving the classical differential equation. 
Estimate the critical loads using the principle of virtual work in conjunction with the Ritz 
method. Use a polynomial basis. 
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265. The prismatic beam shown below has a cross sec- ^ EI P 
tion that is symmetric with respect to the plane of the @ ^ ^ — 
page. The cross section has flexural modulus EI. Axial \^ »̂  
and shear deformations can be neglected. The beam has ^ 
a deformable spring support at the left end that elastically restrains rotations. The moment 
developed by the spring is related to the rotation at that point by Ms = kBs» where 
Os = w'(0) is the rotation experienced by the spring. The right end of the beam is free to 
translate and to rotate. Solve the linearized buckling problem by the classical method, i.e., 
by integrating the differential equation. What are the appropriate boundary conditions for 
this problem? Solve the problem by integrating the differential equations and using the 
boundary conditions to find the constants of integration. What are the critical loads of the 
system? What is the smallest critical load as /: -* 0? What is the smallest critical load as 
A: ^ 00 ? Into what shapes does the beam deform at the critical loads? What are the shapes 
as /: -» 0? What are the shapes as )t -* oo ? 

266. For Problem 265, the virtual-work functional that accounts for the work done by the 
springs and by the axial force is given by the expression 

v,>v) = 
Jo 

G{w,w) = [EIw"w" - Pw'w']dx + kw'{{))w'{{)) 
Jo 

Estimate the buckling loads of the beam using a two-term polynomial expansion for the 
transverse deflection. That is, assume the real and virtual transverse deflections to be 

w{x) = a^x + fl2 J . H?W = a^x + ^2"^ 

Repeat the calculation with a three-term polynomial. The classical solution gives an infi­
nite number of critical loads. How many did the two-term approximation give? Why? 
Were the critical loads higher or lower than the exact values? Why? Discuss what is good 
and bad about the assumed shapes. Could the approximating functions be improved easi­
ly? Suggest a better approximation. 

267. The prismatic beam shown below has flexural EI P 
modulus EI. Axial and shear deformations can be ne- A > -L? 
glected. The beam has a spring of modulus k located at i ^ ^ ^ 
the middle of the span. The force developed by the ^ »»{ 
spring is related to the deflection at that point by ^ 
/ (€/2) = kw(ilT). Find a suitable expression for the virtual-work functional that ac­
counts for the virtual work done by the spring. Estimate the critical loads of the column 
using the principle of virtual work in conjunction with the Ritz method. Use a polynomial 
basis. 

268. Estimate the critical loads of the column in Problem 267 using the principle of virtual 
work in conjunction with the Ritz method. Use the eigenbasis of the problem without the 
spring, that is Wn(x) = sinjUnX, where jUn = nn/i. 
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269. The prismatic beam shown below has flexu- EI P 
ral modulus EI. Axial and shear deformations can ŷ/A\\yy//\s\v////\\\̂ x/ŷ ^̂ ^ 
be neglected. The beam is supported on an elastic ' 

: ^ foundation of modulus k. The force developed, 
per unit length, by the foundation is related to the ^ 
deflection at that point by f(x) = ^>v(x). A beam on an elastic foundation with axial thrust 
is governed by the following (linearized) differential equation and boundary conditions 

EIw'"" + Pw" + ibv = 0 

w(0) = 0, w"(0) = 0, w(£) = 0, w"(£) = 0 

The eigenfunctions of the beam without the elastic foundation are w„ = sin njixji. Verify 
that the virtual-work functional, accounting for the elastic foundation, is 

•I.' 

• W W ii^n""r^ 

G(w,w) = [EIW'\;f' - Pw'w* + kwwjdx 
h 

Does the presence of the elastic foundation affect the boundary conditions? Find the buck­
ling loads of the system using the Ritz method, assuming that the real and virtual displace­
ments have the shape of the nth eigenfunction 

w(x) = flsin^, w(x) = asin^ 

How does the buckling load vary with the elastic properties of the system, namely EI and 
^? Express your result in terms of Pj = n^EIji^ and the ratio of foundation stiffness to 
beam stiffness, given by the dimensionless parameter ^ = kt^/Ti^EI. (Hint: the critical 
buckling mode depends upon p.) Is your answer exact? 

270. The prismatic beam shown has a cross section that ^o 
is symmetric with respect to the plane of the page. The 
cross section has flexural modulus EL Axial and shear 
deformations can be neglected. The beam is fixed 
against transverse deflection and rotation at both ends, ^ 
but the supports provide no resistance to the axial force P. The beam is also subjected to 
a uniform transverse load of magnitude qo. The linearized buckling theory for a beam with 
transverse load and axial thrust gives rise to the following differential equations and 
boundary conditions for the present configuration 

EM'' -^ Pw" = q(x) 

w(0) = 0, >v'(0) = 0, w(€) = 0, w'(€) = 0 

Solve the governing differential equations by the classical method to find an expression 
for the transverse deflection w(x) and the bending moment M(x). 

In the design of beams subjected to transverse load and thrust, sometimes called beam-
columns, the concept of the magnification factor is often used. The idea behind the magni­
fication factor is that the influence of the axial thrust is to magnify the values of displace­
ment and moment that would be present if the axial thrust were not (i.e., the solution if 
P = 0). Show that the maximum deflection and moment can be expressed as 
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where Wo and Mo are the maximum deflection and moment that would occur if P = 0, 
and Pj would be the fundamental critical load of the column if qo = 0. 

271. The column shown is subjected to axial forces at the midpoint and 
top, both of magnitude P. The column has variable flexural modulus 
given by the expression £/(jc) = £/o(2-ac/2€). Estimate the buckling 
load of the system using the Ritz method with a one-term polynomial 
basis. Is your estimate higher or lower than the actual buckling load? 
Explain your answer. Propose a function for a one-term Ritz approxi­
mation that will give better results than you got in the first part. Why 
do you think it is better? Estimate the buckling load of the system using 
the Ritz method with a two-term polynomial basis. Repeat with a three-
term polynomial basis. 

y//y^ ̂ ^ 
EI Rigid P 

k 

272. A flexible beam of length € and modulus 
EI is welded to a rigid beam of length £ and rests 
on an elastic foundation of modulus k (per unit 
length). It is pinned at the left end and is sub­
jected to a compressive axial load P at the right 
end. The elastic foundation accrues a transverse 
force in proportion to the transverse displacement w. Shear and axial deformations in the 
beam are negligible. Write the expression for the energy of the system. What are the essen­
tial and natural boundary conditions for the flexible beam? Find an approximate solution 
for the buckling loads and mode shapes using a two-term polynomial Ritz basis. 

r I 273. The column shown has modulus EI and weight per unit 
length p. It is fixed at one end and free at the other. Shear and axial 
deformations can be neglected. Find the (classical) governing dif­
ferential equations and boundary conditions for the transverse 
deflection w(x). Express the governing equations in virtual-work 
form. Estimate by the Ritz method the maximum length the col­
umn can have before it buckles under its own weight. 

274. The stepped column shown has a variable modulus and is sub­
jected to vertical forces at two points. It is fixed at one end and free 
at the other. Shear and axial deformations can be neglected. Find the 
(classical) governing differential equations and boundary condi­
tions for the transverse deflection w(x). Express the governing equa­
tions in virtual-work form. Using a two-term polynomial approxi­
mation for w, estimate the critical load using the Ritz method. 

275. Consider the bar of length € with bending modulus EI 
and shear modulus GA, subjected to axial load P as shown. 
Show that the linearized virtual-work functional for the 
buckling of a beam with shear deformation is given by ' ^ 

G(w,e,w,e) = [EIO'O'+GA(w-e)(w'-e)-p{w'e-\-we-ee]] 
Jo 

± 
P,EI 

i 

: 
2El\ 

[ 1 

3P 

\ 
EI,GA 

dx 
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Make the assumption that the (generalized) shear strain in the beam is constant. Estimate 
the critical loads of the beam using a polynomial approximation with the Ritz method. For 
example, a three-parameter approximation would have the expression 

^ - ^ 0 7 + ^ i72» j ^ • ^1 ^ 2 ' >V = ^iX + 2 ^ 0 y + 3^172 

Describe at least two ways of improving the approximation, and rank them according to 
which is likely to giye the most improvement (no calculations necessary). If EI is very 
large in comparison to GAi^, what will the buckled shape of the beam look like? 

276. Consider the beam of length €, fixed at both ends, 
with constant modulus EI shown in the sketch. The beam 
is subjected to a compressive axial load P. When the 
beam is not loaded, the initial shape can be described as 

v,(x) = c , ( 3 | ^ - 2 | ^ ) 

where ĉ , C 1 is known as given data. Assume that shear and axial deformations are negli­
gible. Find an expression for the energy functional B and the virtual-work functional G for 
this problem. Estimate the deflection of the beam as a function of load P using the Ritz 
method and a one-term approximation as follows 

w(^) = w,(x) + fl(|^-2|^ + | ^ ) 

assuming that the displacements are small enough to use the linearized buckling theory. 

2P 1 EI IP 
y//^^^^//>i:i:^y///^iSSf////^^<s:y///^is:^/)Y/ 

H 

211. A flexible beam of length 2€ and modulus EI rests 
on an elastic foundation of modulus k. The beam is 
compressed by a known fixed force 2P and is subjected 
to a transverse load P at its midpoint. The properties 
have values such that ki^ — EI. Axial and shear de­
formations of the flexible beam can be neglected. Esti­
mate the deflection at the middle and ends of the beam using virtual work and the Ritz 
method. (Note: due to symmetry a odd base function need not be included.) 

2P 

k 1^ 

Rigid EI r 

278. A square frame of dimension € is composed of two 
columns connected together by a beam (the beam can be 
considered rigid). The left column, which is rigid and 
pinned at both ends, is subject to a force 2P. The right 
column, which has flexural modulus EI, is subjected to 
a force P. What are the essential and natural boundary 
conditions on the flexible beam. Express all boundary «^^ 
conditions in terms of the transverse displacement w(x) |-̂  >| 
of the flexible beam. Find the classical characteristic ^ 
equation that determines the buckling load of the system. Find the exact value of the prima­
ry buckling load from the characteristic equation. Recall that the classical differential 
equation w"" -\- fi'^w" = 0 has the general solution in the form 

w{x) = a Q-\- a iX-\' a 2s\n fix •\- a^Q/dSiJix. 
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Estimate the buckling capacity of the structure using the Ritz method in conjunction with 
the principle of virtual work. Compare the classical and variational solutions. [Note: The 
left column is often referred to as a "leaner" because it leans on the right column to find 
resistance to sway. By itself the left column has no lateral stiffness, but it carries a destabi­
lizing force.] 

279. A flexible beam of length 2€ and modulus EI P 
EI is stuck on an elastic foundation of modulus 7^^^^^^^^^^^^^^ 

- H -

k (per unit length) over half of its length. It is 
pinned at the left end and is subjected to a com­
pressive axial load P at the right end. The elastic 
foundation accrues a transverse force in propor­
tion to the transverse displacement w. Shear and axial deformations in the beam are negli­
gible. Write the expression for the energy of the system. What are the essential and natural 
boundary conditions for the beam? Find an approximate solution for the buckling loads 
using a polynomial Ritz basis. 

280. A flexible beam of length £ and modu- Rigid EI_ Rigid 
lus EI is connected to rigid beams of length £ J^l^^lc 
at both ends. The beams are supported by two 
linear springs with modulus k = ^EU^, 
where j8 is a give constant. The beam is sup- I" 
ported as shown and is subjected to an end 
load P. Shear and axial deformations in the beam are negligible. Write the (quadratic) ener­
gy functional B and the virtual-work functional G for the system. What are the essential 
and natural boundary conditions for the flexible beam? Find an approximate solution for 
the lowest buckling load using a two-term polynomial Ritz basis. Express the result in 
terms oi^, i.e. PcriP)- What is the buckling load for very large spring stiffnesses (i.e., as 
fi -* cx))? Does the approximation appear to make sense in the limit? Explain. 

281. A flexible beam of length € and modulus EI is 
welded to a rigid beam of length € which rests on a 
spring of modulus k = 2EI/£^. The beam is supported 
as shown and is subjected to an end load P. Shear and 
axial deformations in the beam are negligible. Write 
the energy functional B and the virtual-work func­
tional G for the system. What are the essential and natural boundary conditions for the flex­
ible beam? Find an approximate solution for the displacement w(x) using a two-term poly­
nomial Ritz basis. 

282. A flexible beam of length € and modu­
lus EI is welded to a rigid beam of length € 
and rests on an elastic foundation of modulus 
k = 20EI/£^. The beam is simply supported 
and is subjected to an end load P. The elastic 
foundation accrues a transverse force in pro­
portion to the transverse displacement w. Shear and axial deformations in the beam are 
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negligible. Write the energy functional 8 and the virtual-work functional G for the system. 
What are the essential and natural boundary conditions for the flexible beam? Find an 
approximate solution for the displacement w(jc) using a polynomial Ritz basis. 

283. A flexible bar of length € and bending modulus EI is welded 
to a rigid bar of length €. The structure is fixed at the bottom and 
subjected to a compressive axial load P at the top as shown. What 
are the appropriate essential and natural boundary conditions for 
this problem? Find an appropriate energy functional B(>v) for the 
system, where w{x) is the transverse deflection of the flexible bar. 
Compute an approximation of the critical load of the system using 
the Ritz method and a polynomial basis function. 

284. A beam of flexural modulus AEI carries the 
load P to the frame as shown in the figure. The 
frame is made of two columns pinned together by 
a beam at midheight. The frame members all have 
length 2€ and flexural modulus EI as shown. The 
force P is applied directly above the left column. 
The members have axial modulus EA>EI/£^. 
Estimate the smallest buckling capacity Per of the 
structure using the Ritz method. Resolve the 
problem assuming that the load can be placed 
anywhere along the top beam. 

285. Resolve Problem 284 by solving the classi­
cal differential equations and boundary condi­
tions. 

ix 

rigid 

EI 



12 
Numerical Computation 
for Nonlinear Problems 

The overwhelming feeling you get from the preceding chapter is that the only 
thing you can really hope to do with a complex nonlinear system is to compute 
its critical loads and the corresponding modes with the linearized buckling 
theory. The examples we have seen have clearly demonstrated that nonlinear 
systems do not have to be very complicated before we find ourselves unable 
to find a closed-form solution to the problem of finding the equilibrium paths. 
Even for some rather modest one-dimensional problems, the possibility of 
finding a closed-form solution is a dismal prospect. Often, even if we do find 
a closed-form solution, it is so complicated that the only way to appreciate it 
is to evaluate the expression at a number of discrete points and plot the bifurca­
tion diagram by connecting those points. There is little motivation for execut­
ing monumental feats of algebra if there is an alternative means of generating 
the discrete points along the path. An incremental nimierical solution method 
provides such a tool. 

We shall exploit some simple observations on nonlinear equations to devel­
op an approach to tracing the equilibrium paths of a structural system. First, let 
us observe that it is always easy to tell whether a certain deformation state (e.g., 
the displacement field w(x) for a beam or u(x) for three-dimensional elasticity) 
represents an equilibrium configuration. With displacements we can compute 
strains; with strains we can compute stresses; and with stresses we can check 
to see if equilibrium is satisfied" .̂ If the equilibriimi equations are satisfied, then 
the state is an equilibrium coiifiguration. If it is an equilibrium configuration, 

t If we are working with a displacement-based variational statement of the boundary 
value problem with virtual-work functional G, then all we need to do is to substitute 
the displacement field directly into G to see if equilibrium is satisfied in a weak sense. 
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we can plug it into the second-derivative functional to test its stability. Second, 
let us observe that, for most problems, we start out with a known point on the 
equilibriimi path. Usually, this point is the one with no applied load and no de­
formation. Finally, let us observe that, in a small enough neighborhood of any 
point on a curve, the curve is essentially linear. The direction in which this line 
points (i.e., the tangent to the curve) gives us a good indication of where the 
curve is headed. We can move along this line to a new trial state of deformation. 
The trial state can be tested to see if it satisfies equilibrium. If it does not, the 
estimate of the state can be modified to improve it. What we need is an orderly 
way of making the improvements to the linear guesses. 

One of the most ingenious and popular methods for iteratively improving 
linear estimates of the equilibriimi state is Newton's method. Other methods 
are available, but many of them are slight variations of Newton's method or 
have a spirit similar to it. Here, we shall adopt Newton's method as the proto­
typical algorithm for iteratively computing an equilibrium path. Fletcher 
(1987) and Luenberger (1984) give detailed accounts of some of the other 
methods. 

The notion of the equilibrium path is illustrated in Fig. 149 for a system with 
two kinematic degrees of freedom, 6i and 62, and a single load parameter A, 
which is the multiplier of some fixed nominal pattern of loads. The equilibrium 
path is the curve described by a system of two algebraic equations in three vari­
ables: gi(6i,92,^) = 0 and §2(̂ 1? ̂ 2? A) = 0. As such, it describes a curve in 
three-dimensional space. All of the systems that we discuss in this chapter will 
conform to this model. For discrete systems, we will typically have one load 
parameter and iV kinematic degrees of freedom. There will be iV equations of 
equilibrium, and, hence, the equilibrium path will be a curve in N-\-l dimen­
sional space. It is impossible to graphically represent the equilibrium path in 
dimensions higher than three, but we can extrapolate our understanding of the 
geometry of the path from three-dhnensional space. 

Our approach to solving nonlinear problems can be summarized as follows. 
We start our computation at some point in configuration space where we know 
everything about the solution (like the origin or a bifurcation point), and we 
inch our way along the curve from one point on the equilibrium path to the next, 
iterating to convergence with Newton's method at each step. At converged 

Tangent to path 
Equilibrium path 

g(e,A) = 0 

Figure 149 Example of an equilibrium path 
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states (i.e., states that are actually on the equilibrium path), we can evaluate 
things like the eigenvalues of the second derivative of the energy to assess the 
stability of the path we are on and to look for bifurcation points. 

We shall initiate our discussion of nonlinear computations with the simple 
problem of finding the roots to the nonlinear equation g(x) = 0, where g is a 
scalar function of a scalar variable x. We will use this problem to illustrate 
Newton's method as he actually conceived it (the first application was to the 
problem of finding the roots to a cubic polynomial). We will then extend New­
ton's method to the analysis of the equilibrium paths of discrete systems of sev­
eral variables. During the discussion of discrete systems, we shall introduce the 
notion of the arc-length constraint that will help us move along the curve in 
configuration space. Finally, we consider the computations associated with the 
fully nonlinear planar beam theory introduced in the last chapter. 

Newton's Method 
Newton's method provides the basic building block for the more general nu­
merical algorithms in this chapter. This section gives an introduction to New­
ton's method in the context of solving nonlinear algebraic equations. 

Finding roots of univariate functions. Let us first attempt to establish 
Newton's method for finding the roots of a nonlinear, univariate algebraic 
equation. The problem is illustrated in Fig. 150. We want to find the solutions 
to the problem 

g(x) = 0 (587) 

where g(x) is some known function (e.g., g(x) = jĉ  — Zx +1). We can com­
pute the value of g(Xo) and the first derivative g\Xo) for a known value Xo. 
Thus, we can find an approximate linear function that is tangent to the curve 
at the point Xo 

8(x) = 8(Xo) + {x-'Xo)gXxo) (588) 

We can see from the figure that the linear function g(x) is quite close to the non­
linear function g(x) in the neighborhood of jĉ , but deviates from it at remote 

fXi Xo 

Figure 150 Newton's method for a univariate function 
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points. What Newton suggested was that the solution to the linear equation 
g(x) = 0 would yield a value of jc that approximated the solution to the original 
nonlinear equation. Setting Eqn. (588) equal to zero and solving for jc, we get 

This point is labeled jci in the figure. Qearly, this point does not satisfy the orig­
inal nonlinear equation, that is, g{xi) ^ 0, but it is apparently closer. Indeed, 
Xi is a point at which we can evaluate g and its &st derivative. Thus, we could 
repeat the calculation starting at jci rather than jĉ . Newton's method is the it­
erative scheme that starts with some known point Xo and computes successive 
iterates, as follows 

(590) 

We can terminate the iteration when the solution is close enough to the exact 
solution to the problem. How do we know when we are close enough? If 
\g(Xn) I < tot, where tol is a tolerance established a priori, then the solution jc„ 
is close enough. 

A few comments about Newton's method are in order. First, like any itera­
tive method, we must specify the starting value Xo and the termination toler­
ance tol. The starting point and solution tolerance will generally require a good 
understanding of the problem at hand. Some experimentation may be required 
to establish these values. Second, Newton's method is guaranteed to converge 
only if we start within the basin of attraction of the solution. If there are other 
solutions to the nonlinear problem, a starting value may converge to one of the 
other solutions. Third, the rate of convergence is quite fast for Newton's meth­
od in the vicinity of the solution. Finally, Newton's method will fail if it en­
counters any point JC, that has g'(xi) = 0, because the algorithm would require 
division by zero at such a point. Newton's method is not particularly attracted 
to such points, but we shall see that these points can present problems in tracing 
equilibrium paths past limit and bifurcation points when solving stability prob­
lems. 

Example 76. Let us compute a root of the cubic equation x^-2x-\-l = 0 using 
Newton's method. The iteration formula is 

If we start the iteration at Xo = 0, we get the sequence of iterates shown in Table 
10. The value of the function for g{x^) = 0.1480 x 10"^ Ms very nearly zero 
compared to the error of the initial estimate Xo of g(0) = 1. The important ob-
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Table 10 Iteration history for the univariate example problem 

435 

/ 

1 
2 
3 
4 
5 
6 

^i 

0.000000 
0.500000 
0.600000 
0.617391 
0.618033 
0.618034 

^W 
O.lOOOE+01 
0.1250E+00 
0.1600E-01 
0.5496E-03 
0.7631E-06 
0.1480E-11 

servation from this example is that we obtained a numerical solution to the non­
linear problem by executing a sequence of arithmetic operations involving the 
evaluation of the function and its first derivative. This feature is the hallmark 
of iterative methods. 

Equations with several variables. Newton's method is based upon itera-
tively solving a linearized version of the nonlinear equations. Let us assume 
that we wish to solve a system of nonlinear equations 

g(x) = 0 (591) 

where g(x) E R^ is a vector valued function of the unknowns x E R .̂ It is 
important that we have the same number of equations as unknowns. Again, we 
can linearize the equations about some configuration x̂  (a point that does not 
necessarily satisfy the equations). Let us define the linear function g(x) to be 
the first-order Taylor series expansion of the function g(x). To wit 

g(x) = g(x,) + Vg(x^)(x-x^ (592) 

where Vg(Xo) is the matrix of first derivatives of g with respect to x, evaluated 
at the point x ,̂ [Vg].. = dgi/dxj. The matrix Vg(Xo) is A b̂y iVif the original 
system has N equations in N unknowns. 

We can extend Newton's idea to multiple dimensions and suggest that the 
solution to the linear equation g(x) = 0 will yield an estimate of the solution 
to g(x) = 0 that is closer than x .̂ The Newton estimate of the solution is 

X = X̂  - [Vg(Xo)] g(Xo) (593) 

Of course, the new point generally will not satisfy the nonlinear equation, but 
it should be better than x .̂ We could replace the old estimate with the new one, 
Xo "<- X, and repeat the calculation. Therefore, the Newton iteration takes the 
form 

x.+i = X , - [Vg(x,)]-^g(x,) (594) 
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with Xo specified as given data. Eventually, the new estimate will look very 
much like the previous one, and we call this estimate a converged state. Again, 
there is no need to continue the iteration if the solution is, within some toler­
ance, acceptable. In analogy with the univariate problem, a good termination 
criterion for the multivariate problem is || g(x„) || < tol, where || • || is some 
suitable norm, for example, the Euclidean norm. We need to test the norm of 
the residual because we are trying to satisfy several equations at the same time. 
The norm measures the aggregate satisfaction of the equations rather than the 
satisfaction of any one of them. 

Again, there are two things we must specify in Newton's method. First, like 
any iterative method, we must select the starting point x .̂ Second, we must se­
lect a suitable tolerance for judging convergence. Newton's method is not 
guaranteed to converge from any arbitrary starting point, but if a point is close 
enough to the solution, the rate of convergence is quadratic. The exact features 
of the basin of attraction of Newton's method depend upon the problem, so it 
is difficult to make any sweeping statements beyond "good luck with your ini­
tial choice." (All joking aside, in our problems we generally have very good 
choices for starting points.) There are many methods available to improve on 
these weaknesses of Newton's method, but we shall stick with the basic version 
here. Newton's method will fail if the matrix Vg(x,) is singular (i.e., not invert-
ible) at some point x,. 

The algorithm is rarely implemented with the matrix inversion indicated in 
Eqn. (594). Rather, we would solve the system of equations A/Ax, = b„ 
where A/ = Vg(x,)andb, = —g(x,), for the increment Ax,. The new estimate 
can then be found by adding this increment to the previous value to give the 
update x,+1 = x, -h Ax,. There are many algorithms available for solving a lin­
ear system of equations. 

The basic algorithm. The organization of the Newton iteration algorithm 
is straightforward. It includes an initialization step, an iteration loop, and a ter­
mination criterion. At each step in the iteration loop, we establish and solve the 
linearized version of the nonlinear equations for an estimate of the increment 
Ax = X - X, in the unknown x. This increment is added to the previous esti­
mate to give a new estimate by the update x,+i = x, + Ax. The following 
pseudocode illustrates the organization of the algorithm. 

Algorithm 1 (Newton's method) 
1. Select x .̂ Initialize counter, / = 0. 
2. Compute residual and gradient, b, = - g(x,) and A, = Vg(x,). 
3. Test for convergence. If || g(x,) || < tol, then Stop. 
4. Solve linear system of equations Â  Ax, = b,. 
5. Update the estimate, x,+i = x, + Ax,. 
6. Increment counter i <- / H-1, Go to 2. 
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Note, in particular, that we need only evaluate the functions and their gradients. 
The solution of equations in step 4 is generally carried out by Gaussian elimi­
nation, but any equation-solving method is suitable. This format for iterative 
nonlinear solution of algebraic equations is suitable for problems of any di­
mension N. 

Example 77. Let us employ Newton's method to solve the nonlinear, two by two 
system of algebraic equations g(x) = 0, where the functions g are given by 

gi(x) = X? - Zxioĉ  + xi - 3 

g2{x) ^ 4 - 2X\X2 +X2-2 

The gradient is simple to compute, and has the explicit form 

Vg(x) = 
3JĈ  - 2JĈ  + 1 - 4x1̂ 2 

- 4x1^2 3x1 2x\+ 1 

The MATLAB code to compute the solution is 

i = 0; 
%— Chapter 12, Example 77 
clear; tol = l.e-8; maxit = 30; x = [0; 0]; test = 

while (test > tol) & (i < maxit) 
y = x(l); 2 = x(2); 
b = [ y^3 - 2*y*z"2 + y - 3 ; 

z^2 - 2*z*y^2 + 2 - 2]; 
A = [ 3*y"2 - 2*z"2 + 1 , -4*y*z 

- 4*y*2 , 3*z"2 - 2*y"2 + 1]; 
test = norm(b); 
dx = -A\b; X = X + dx; 
fprintf('%5i%9.5f%9.5f%13.2e%13.2e%13.2e\n',i,x',b',test) 
i = i + 1; 

end 

Tie 

i 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

result of the Newton iteration 
x l 

3 . 0 0 0 0 0 
1 . 9 8 3 7 3 
1 . 2 5 3 9 4 
0 . 6 4 2 8 7 
1 . 7 2 5 4 7 
1 . 3 4 2 6 9 
1 . 4 3 2 3 6 
1 . 4 5 7 3 2 
1 . 4 6 0 1 0 
1 . 4 6 0 1 0 
1 . 4 6 0 1 0 

x2 
2 . 0 0 0 0 0 
1 . 2 7 8 1 1 
0 . 6 2 2 2 0 

- 0 . 5 8 4 4 5 
- 0 . 0 2 1 9 7 
- 0 . 4 1 5 5 1 
- 0 . 7 9 3 4 2 
- 0 . 7 3 0 6 9 
- 0 . 7 3 3 9 2 
- 0 . 7 3 3 9 0 
- 0 . 7 3 3 9 0 

on the example 

g i 
-3.00e+000 

3.00e+000 
3 .09e-001 

- 7 . 4 5 e - 0 0 1 
-2.53e+000 

3.86e+000 
3 .00e-001 

-4 .32e -001 
-3 .81e -003 
-2 .28e -005 
-5 .21e -010 

, problem is 
g2 

-2.00e+000 
-2.80e+001 
-8.69e+000 
-3.09e+000 
-2.30e+000 
-1.89e+000 
-9 .89e -001 
-3 .73e -002 
-1 .72e -002 

4 .10e-005 
4 .29e-011 

II 9 II 
3.61e+000 
2.82e+001 
8.70e+000 
3.18e+000 
3.42e+000 
4.30e+000 
1.03e+000 
4 .34e-001 
1.76e-002 
4 .69e-005 
5 .23e-010 

The first column of the output table gives the iteration number /. The second and 
third columns give the ith estimate of the solution x,. The fourth and fifth col­
umns give the values of the function g(x,), and the last column gives the Euclide­
an norm of the residual || g(x,) ||. The starting point is x̂  = (0,0), and it took 10 
iterations to get a solution within a tolerance of tol = 10"^ on the Euclidean 
norm of the residual. 
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There are some interesting features of the previous example that give an in­
dication of what sort of behavior to expect from a Newton iteration. First, be­
cause of the choice of the initial estimate x ,̂ the algorithm initially heads in the 
wrong direction, that is, into the positive quadrant. As a result, the norm of the 
residual actually increases in going from x̂  to Xi. Qearly, a Newton step does 
not always give a better estimate of the solution. However, these misdirections 
generally occur when we are far from the solution, where the actual functions 
are not well represented by the linear function g(x). Satisfaction of the two 
functions occurs at different rates, but they both wind up satisfied to within the 
tolerance. Because convergence is tested with the Euclidean norm of the resid­
ual, one of the equations will contribute more than the other. In this case, con­
vergence was controlled by gi. As the iteration closes in on the solution to the 
problem, Newton's method has quadratic convergence. One can see the speed 
of quadratic convergence by examining the exponent of the norm of the residu­
al in the last few iterations. We can observe that, with Newton's method, we 
really need not worry very much about the exact value of the tolerance be­
cause, if the solution is close, one more iteration will generally nail it. 

We must be careful not to specify a tolerance smaller than the machine pre­
cision of the computer can tolerate. There is a point in each calculation that lim­
its the accuracy of the computation. If the residual gets stuck at some value 
(usually small) then one might expect that the tolerance is tighter than the cal­
culation will allow. 

TVacing the Equilibrium Path of a Discrete System 
We have found in the previous two chapters that the governing equations of 
equilibrium of a discrete system can be expressed in the form 

g(e,A) = 0 (595) 

where 6 is the vector of displacement parameters and A is the load-level pa­
rameter. For the single-degree-of-freedom problems solved in Chapter 10, 0 
had one component, which measured the rotation of the rigid bar from the ver­
tical position. For the two-degree-of-freedom example of Chapter 10, 6 = 
(01,02) had two components, the first of which measured the rotation of the 
lower bar from vertical, and the second of which measured the rotation of the 
upper bar from vertical. When we applied the Ritz discretization to the contin­
uous systems of Chapter 11, we got 0 = (fli, a2,.. . , fljv), where a, is the coeffi­
cient of the rth base function hi(x) in an TV-term expansion for the displacement 
field, c,g.,w(x) for the beam. For most of the examples we have considered, 
there has been only a single load P, The load parameter A can be viewed as a 
multiplier of some fixed pattern of applied loads. In any case, the load level will 
always be controlled by a scalar parameter. 

It should be evident that Eqn. (595) can be solved by Newton's method. At 
the simplest level, we can consider that the load level A is prescribed at some 
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A , 
No equilibrating 
configuration available 

Figure 151 Fixed load incrementation with Newton's method 

value X"", and Eqn. (595) represents N nonlinear of equations for the N un­
known displacement parameters 0 (recall that we always have N equations if 
we have A/̂ displacement parameters). The problem reduces to finding the state 
8 that equilibrates the loads at precisely the level A''. This problem can be 
solved by applying the Newton algorithm exactly as it was outlined in the pre­
vious section. 

You have probably already figured out that the gradient of the function 
g(e,A^), with respect to e,is Vg(e,A^) = A(e,A^), the Hessian of the discrete 
energy function. Qearly, at bifurcation points and limit points, this matrix be­
comes singular. Newton's method is destined to fail at these points. While bi­
furcation points are somewhat more delicate, there is a simple remedy for limit 
points. 

To see the difficulty in prescribing the load level, consider Fig. 151, which 
shows an equilibrium path with a limit point (indicated by an open circle). To 
compute this path, we would start at the configuration with zero load and the 
deformation equal to its imperfection values. The initial configuration happens 
to be an equilibrium configuration, so no iteration is needed to establish equi­
librium. Assume that we have successfully located the equilibrium state 
{ An? 8n}- We locate the next point on our curve by incrementing the load Â  by 
a fixed amount AA. At this new fixed load level A^̂ ,̂ we iterate to find the 
equilibrium configuration 6„+i. Clearly, if the load increments are small 
enough, we can usually guarantee convergence to the next point on the curve. 
This process, called load-control incrementation, continues by incrementing 
the load and iterating to find the associated configuration 9. The algorithm 
fails when the load increment takes the total load above the limit point. There 
is no configuration that will satisfy equilibrium at this load level. The algorithm 
fails because force control eventually asks the impossible of an equilibrium 
path with a limit point. You could argue that if the increments were made small 
enough, then we could approach the limit point slowly by trial and error. This 
is indeed true, but as we approach the lunit point, the condition of the Hessian 
matrix A(0,A'') gets worse and worse because it has an eigenvalue that is ap­
proaching zero at the limit point. Thus, the numerical computations break 
down at the limit point. We could even conceive of decrementing the load if 
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Equilibrium path 

(Next converged state) 

Figure 152 The arc-length constraint 

we could get past the limit point, but as we concoct these remedies, we must 
assume more and more knowledge of the path that we are trying to compute. 
For most problems, we are navigating in the dark. Every ad hoc algorithm has 
its Achilles heel. 

One popular alternative to a load-control Newton method is the so-called 
arc-length method. As in the previous method, we inch along the curve, but 
rather than incrementing the load, we introduce the constraint that the distance 
between the next estimate of the solution { 0, A} and some fixed state { 0„, A„} 
will be constant, as shown in Fig. 152. Let us introduce the scalar equation of 
constraint 

c(e,A) 1̂1 e - e „ p + (A-A.)^-a^ = o (596) 

Now we can view the load A as an independent variable in exactly the same 
way we do 0. Generally, a wise choice for the fixed state {6;,, A„} is the last 
converged state. This point is good because we know that it lies on the equilib­
rium path, and, thus, our constraint will allow us to find a new equilibrium con­
figuration for arbitrarily small values of the arc-length a. The constraint equa­
tion is really a ball of radius a centered at {6„,A„} in the state space. The 
constraint insists that any new solution be found on the surface of the ball. It 
should be clear that, if the ball is small enough, the equilibrium path will pierce 
it at least at two points. We specify the distance a in the same spirit as AA in 
the load incrementation scheme. It is possible to specify a so large that New­
ton's method cannot converge, but the algorithm with this constraint has no 
trouble with either vertical or horizontal tangents on the equilibrium path. 
There are now AT-h 1 equations mN-\-l unknowns (iV displacement unknowns 
and 1 load level unknown). This nonlinear system of equations can be summa­
rized as 

g(e,A) = 0, c(e,A) = 0 (597) 
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There are many variants of the constraint equation c(0, A) = 0, so we will use 
the general form throughout our subsequent discussions. We can vary the 
constraint to suit the particular application (see Problem 300). 

Newton's method can be applied to the augmented system by recognizing 
that the equations can be linearized about the state {O ĵA"} to give the linear 
functions g and c 

g(e,A) ^ g(e^Ao + Veg(e^Ao(e-r) + v,g(e\Ao(A-A^) 
c{Q,k) = ciQ^k"^ + Vec(e^Ao(e-e^) + v^c(o^Ao(A-A^) 

The notation Ve g(6,A) means the derivative of g with respect to 0, holding A 
constant. Similarly, V̂  g(0, A) means the derivative of g with respect to A, hold­
ing 0 constant. The same notation holds for the function c. We have taken great 
pains to distinguish the state {O*', A"} from the converged state {6„, A„} here. 
The states with superscripts will be intermediate results of our Newton itera­
tion, while states with subscripts will represent converged load steps. If we set 
the linearized functions equal to zero, g(0,A) = 0 and c(0,A) = 0, we can 
compute a (presumably) better estimate of the equilibrium state. Let us call this 
new state {©""̂ ^A*"̂ }̂. For convenience, let us define the increments to the 
configuration and the load parameter as 

Ae^ = e^^^-e^ AA^ ^X^'^'-X' 

Let us gather the configuration and the load parameter into a single matrix x 
as X = [0,A], and let us define the matrices 

A^ = Veg(e^Ao v,g(e^Ao 
LVec(e^Ao v,c(e^AoJ 

b^ = 
j-g(e^Aol 
l-c(e^Ao 

Now, in order for the linearized functions to be equal to zero at x""̂ ^ = 
{8*'^\A'"^^}, the increments Ax" must satisfy the equations 

A" Ax" = b" (598) 

The mcrement can be found as Ax" = [A"]" ^ b". With the increment known, 
the new state can be found by the simple update formula 

^v+i ^ x" + Ax" (599) 

All we need to start this iteration is the initial value of the state x"" = { O"", A""} 
and an initial point on the equilibrium path x̂  = { Oo, A }̂ with which we can 
reckon our arc-length constraint. Iteration can be terminated when 

II b' II = y||g(e^>l•)IP+|c(e^/l•)P < toi im 
where tol is the preset convergence tolerancet- As before, we can identify our 
old friend V0g(O,A) = A(e,A), the second derivative of the energy, but now 
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the matrix we must invert for Newton's method has been augmented and no 
longer has an eigenvalue that goes to zero at a limit point. 

The curve-tracing algorithm. The organization of the Newton iteration al­
gorithm is straightforward. To economize the notation in the Newton iteration, 
we will combine the unknowns into the single vector x = ( 0, A). The following 
pseudocode illustrates the organization of the algorithm 

Algorithm 2 
(Newton's method with arc-length constraint) 

1. Select tolerance tol, step size a, appropriate limits to variables, 
maximum number of iterations, etc. Initialize load step counter, 
n = 0, 

2. Select starting values x̂  and initial direction d̂  in which to move, 
such that Xo is an equilibrium configuration and || d̂  || = a, 

3. Initialize iteration state x"" = x̂  + d̂ , to be last converged state 
plus a move in the desired direction that satisfies the arc-length 
constraint. Initialize the iteration counter, v = 0. 

4. At state x" do the following: 
(a) Compute residual and gradient 

b^ = 
-c(e^Ao A^ = 

Veg(e^Ao v,g(e^Ao 
LVec(e^Ao v,c(e^AoJ 

(b) Test for convergence. If || b" || < tol, then Go to 5. 
(c) Solve linear system of equations A''Ax*' = b". 
(d) Update the estimate, x"""̂  = x̂  -h Ax^ 
(e) Increment counter v "«- v + 1, Go to 4(a). 

5. Update converged state x„+i <- x**, estimate the direction for the 
next step as d„+i = x^+j-X;,. 

6. Increment counter n<-- n + 1. If w is equal to the maximum num­
ber of steps, then Stop, else Go to 3. 

There are many variants of this algorithm, but the one presented here gives 
the basic flavor. This algorithm will experience difficulties at a bifurcation 
point because it is unable to choose among branches. It will choose one, but 
it may not be the one that you want. This algorithm was the one used to compute 
the bifurcation diagrams shown in Figs. 134 and 135. To compute the branches 

t The load and displacement parameters can have vastly different magnitudes, particu­
larly if the system is stiff. Care must be exercised in setting up the arc-length constraint 
and iteration equations to make sure that none of the solution parameters get swamped 
out by the others. Often, the unknowns can be scaled to avoid such problems. 
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that emanate from the bifurcation points, the algorithm was started with x̂  = 
(0, Acr), the trivial state at either the first or the second critical load. To get the 
algorithm to follow the nontrivial branch, we need only give an initial estimate 
of the direction to go of d̂  = (at|J,0), where i|) is a unit vector that points in 
the direction of the linearized eigenvector. After the first step, we can encour­
age continuation along the same path by setting d;, = x„ — x„_ j . Since X;, was 
found by iterating with the arc-length constraint, this choice has || d̂ , || = a au­
tomatically. Also, with this choice, the starting iterate is x'' = 2x„ - x„ _ i. In es­
sence, we are suggesting, for starters, another step just like the last one. 

We can augment the equilibrium equations with a condition that will lock 
onto the bifurcation point. Let A(0, A) be the Hessian of the energy function, 
that is, the second derivative function is A(A,6,5) = 6^A(8,A)0. The 
constraint equation 

c(e,A) = detA(e,A) = 0 

then describes a point on the equilibrium path at which one of the eigenvalues 
of A(8,A) goes to zero, i.e., a bifurcation point or a limit point. If we add this 
extra equation, we must discard the arc-length constraint to retain the feature 
of having AT-h 1 equations in iV+1 unknowns. Algorithms that locate bifurca­
tion points exactly are very useful because they allow us to execute switches 
from one branch to another at the critical points. If we have converged on a bi­
furcation point, we can compute the eigenvectors of A(0,A). The eigenvector 
associated with the zero eigenvalue corresponds to the direction of the branch­
ing solution. You can suggest to the Newton algorithm that the next step should 
be in that direction, and, in doing so, switch to that branch. Many systems bifur­
cate from nontrivial branches. Qearly, we would not want to include this addi­
tional equation for points remote from a bifurcation point because the Newton 
algorithm would attempt to iterate directly to that load level. One strategy is 
to start with a normal arc-length constraint and monitor the eigenvalues of 
A(0,A). When an eigenvalue of the second-derivative functional gets small 
enough, switch from the arc-length constraint to the determinant constraint to 
lock onto the critical point. Once converged on the critical point, select the ei­
genvector as the direction vector d;,, and return to the arc-length constraint. 

Example 78. Let us reconsider the two-degree-of-freedom example problem 
from Chapter 10, described in Fig. 133. The system consists of two rigid links 
connected by rotational springs and connected to a fixed base with a rotational 
spring. Both links have the same length, and both springs have the same stiff­
ness. The cantilevered links are subjected to a compressive axial force P at the 
free end. The nonlinear equations, g(x) = 0, for the present case, are 

gi(e,A) = 2^1-^2 - Asin^i = 0 
(601) 

g2(B,A) = - 1̂ + 2̂ - A sin ̂ 2 = 0 
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where A = P£/k, The arc-length constraint equation has the form 

c(Q,X) = | | e - e „ P + ( A - A „ ) 2 - a 2 = 0 (602) 

where 0„ and A„ represent the previous converged state, a distance a from which 
we want to find a new point on the equilibrium path. The matrix of gradients A*' 
and the residual b*' at the state { 0*', X^} are given by 

A^ = 

2-A^ cos (9̂  

- 1 

- 1 

Wl-Oln) 

sin(9!; 

sin (95 

2(01-02n) t}y-K 

l-A^cos^^ I - s in^5 b̂  = -

gl(e^AO 

g2(e^A0 

c(O^A^ 

The portion of the gradient within the shaded and dotted box is A(6 ,̂ A^, the 
Hessian of the energy function. The eigenvalues of this two by two matrix can 
be readily computed so that the stability of the equilibrium branch can be moni­
tored as we compute our way along the path. An implementation of the algorithm 
for this problem is given by the MATLAB program, called NEWTON, that follows. 
The program should clarify some of the details about the implementation of 
Newton's method for computing an equilibrium path. This code was used to 
compute the equilibrium paths shown in Figs. 134 and 135. 

The Program NEWTON 

Program NEWTON 
Fundeonentals of Structural Mechanics, 2nd Edition 

K. D. Hjelmstad, July 1, 2004 

%.. Set problem parameters. Chapter 12, Example 79, 
clear; tol = l.e-8; alpha = 0.5; maxsteps = 10; maxit = 20; 
xo = [0; 0; 0.3820]; x = [0.8510; 05260; 0.3820]; 

%.. Initialize values for load step zero,set next trial state 
b = X - xo; X = xo + alpha*b/norm(b); 

%.. Compute MAXSTEPS points along the Equilibrium Path 
for n = 1: maxsteps 

%.... Perform Newton iteration at each load step 
nu = 0; test = 1.0; 
while (test > tol) & (nu < maxit) 

nu = nu + 1; 

% Compute residual and Hessian at current state 
b = [2*x(l) - x(2) - x(3)*sin(x(l)) 

-x(l) + x(2) - x(3)*sin(x(2)) 
dot(x-xo,x-xo) - alpha''2] 

K = [ 2 - x(3)*cos(x(l)), -1 
-1 , 1 - x(3)*cos(x(2))]; 

c = [ -sin(x(l)); -sin(x(2))]; 
A = [ K , c; 2*(x-xo)']; 
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% Compute residual norm, eigenvalues of tangent stiffness 
test = norm(b); e = eig(K); 

% Compute increment and update state vector 
dx = -A\b; X = X + dx; 

end % while 

%.... Output results, set converged state, guess at next state 
fprintf('%5i%9.5f%9.5f%9.5f%13.4e%13.4e%4i%12.2e\n', 

n,x',e',nu,test) 
temp = xo; xo = x; x = 2*x - temp; 

end % loop on n 
%.. End of program Newton 

Program notes. The MATLAB code contains the input in the first few lines. 
The values set are for the following example. The variable names are basically 
the same as the notation used in the text with a few exceptions. Note that the 
name alpha stands for the arc length a, maxsteps is the number of load steps, 
and maxit is the maximum number of Newton iterations allowed at each load 
step. The iteration counter v is called nu and the norm of the residual is called 
test. In MATLAB the backslash indicate solution of a linear system of equations 
so that dx = A\b means solve the equations AAx = b. The name xo stands for 
the reference value x„ that serves as the anchor point for the arc length 
constraint. Many of these same naming conventions will be used in the pro­
grams later in the chapter. 

Example 79. The program Newton was run for the case of the two-degree-of-
freedom linkage example from Chapter 10 for the equilibrium path that branches 
from the first bifurcation point located at Xcr = 0.3820. The solution tolerance 
was set at tol = 10 "^ and the step length was set at a = 0.5. The iteration was 
started at the bifurcation point (0,0,0.382) with a suggestion to move to the state 
(0.851,0.526,0.382), that is, in the direction of the first buckling mode. The re­
sults of 10 load steps are given here 

n 
1 
2 
3 
4 
5 
6 
7 
8 
9 
LO 

0. 
0. 
0. 
1. 
1. 
1. 
1. 
2, 
2, 
2. 

01 
.26343 
.53016 
.80357 
.08655 
.37871 
.66858 
.92720 
.13007 
.28006 
.39171 

0. 
0. 
1. 
1. 
2. 
2. 
2. 
2. 
2, 
2, 

92 
.42487 
.84665 
.26124 
.66184 
.03580 
.36008 
.60639 
.76947 
.87216 
.93830 

0. 
0. 
0. 
0. 
0. 
0, 
1, 
1, 
2, 
2. 

Pl/k 
.39166 
.42252 
.48051 
.57768 
.73515 
.98176 
.33169 
.75859 
.22438 
.70725 

1. 
7, 
1. 
3, 
5, 
8. 
1, 
1. 
2 
2 

EV 1 
.9198e-02 
.8012e-02 
.8060e-01 
.35816-01 
.6014e-01 
.7667e-01 
.2924e+00 
.77486+00 
.28496+00 
.80286+00 

2. 
2. 
2. 
2. 
2. 
2. 
3. 
3, 
4. 
4, 

EV 2 
.24586+00 
.27756+00 
.33956+00 
.44786+00 
.62926+00 
.91616+00 
.31776+00 
.79656+00 
.30796+00 
.82986+00 

NU 
5 
4 
4 
4 
4 
5 
5 
5 
4 
4 

1. 
4. 
4. 
1, 
4. 
6, 
3, 
1, 
4. 
9, 

II b II 
.856-09 
.986-14 
.976-13 
.206-11 
.786-10 
.666-16 
.876-14 
.186-14 
.946-09 
.816-11 

We can observe the changing of the eigenvalues of the second derivative of 
the energy in the columns labeled EVl and EV2. The number of Newton itera­
tions required to converge to the specified tolerance are listed in the column la­
beled JVC/. The norm of the residual is listed in the column marked || b ||. To get 
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the symmetric counterpart of the equilibrium path given here, we need only sug­
gest negative values for the next state in the input (-0.851, -0.526, 0.382). To 
get the second branch, we would specify the initial value of (0,0,2.618) and the 
next value as (0.851, -0.526, 2.618). 

Newton's Method and Virtual Work 
The Newton algorithm, and its variants, provide a numerical tool that can be 
applied to virtually any nonlinear computation problem. The algorithm for al­
gebraic systems can be extended to functional without much difficulty. As we 
saw in the discrete problem, the main idea of Newton was to replace the nonlin­
ear equation with a linear approximation, and solve the linear problem to give 
a better estimate of the equilibrium state. The process can be iterated to give 
a solution that is arbitrarily close to the exact solution of the problem. To extend 
the method to functional, we need only find an analogy to the approximating 
linear function g(x). The directional derivative of a functional provides the 
mathematical machinery we need to make this definition. 

Let us consider a vutual-work functional G(A, u, H), where A is the load pa­
rameter, u(x) is the displacement field, and ll(x) is the arbitrary virtual dis­
placement field. The family of configurations { A, u} represents an equilibrium 
path if G(A, u, n) = 0 for all virtual displacements H E 9̂ (̂93), where $Fe is the 
collection of suitable functions, satisfying the essential boundary conditions, 
defined on the domain 95. The fimctional G is, by definition, linear in the virtual 
displacement H, but may^be nonlinear in the state { A, u}.t 

The linear functional G(X, u, H) will be our analog to the linear fimction g(x) 
used in the solution of nonlinear algebraic equations. The linear functional can 
be obtained as the Taylor series approximation of the functional about the 
known state {A'',u''} as 

G(X, u, H) = GiX"", u^ n) -f DG(X^, u^ n) (603) 

We can compute the directional derivatives of the functional to be 

DGiX'^, u^ n) = [-J [ G(A + f AA, u + £ Au, H)] 1 (604) 

where AA ^ X-X° and Au = u - u'' are the increments in the state. The prin­
ciple of virtual work suggests that if C?(A, u,II) = 0 for all virtual displace­
ments H E 9Fg(98), then equilibrium holds for the linearized problem at the 

t When we say that a functional is nonlinear in u(x), we are not referring to the nonlinear 
variation of u as a function of x, but rather nonlinearity in the sense that terms like ||u||2 
appear in the functional. For example, in linear beam theory, the virtual-work func­
tional is linear in the displacement w(x), and yet w(x) generally turns out to be a nonlin­
ear function of ac. 
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load level k. In accord with Newton's method, we will endeavor to find the 
state that satisfies G(A,u,n) = 0 for all n E 3Fe(S). The linearized virtual-
work equation is linear in the incremental state Au and the incremental load 
level AA. We shall endeavor to solve the linearized problem to determine this 
incremental state. The state u"" H- Au should then come closer to satisfying the 
nonlinear equilibrium equation at the load level X"" + AA than did the configu­
ration u"" at the load level X°, If the new configuration does not satisfy equilibri­
um well enough, the process can be repeated until it does. This procedure leads 
to the Newton iteration for functional 

(605) 

where v counts the iterations. Iteration should cease when | G(A'', u", H) | < tol 
(for all virtual displacements). 

Remark. We can solve the linear problem approximately using the Ritz 
method. The Ritz method transforms a continuous problem into a discrete 
problem expressed in terms of the coefficients of the Ritz expansion. Thus, we 
can look at the Newton process in another way. Let us apply the Ritz approxi­
mation first to get a nonlinear function G(A,a,a) in place of the functional 
G(A, u, H). The functional will always be linear in the virtual constants a, so the 
discrete form of the virtual-work functional can always be written 

G(A,a,a) = a^g(A,a) 

The variational condition that a^g(A,a) = 0 for all a implies the equation 
g(A, a) = 0, which is simply a nonlinear algebraic equation. The machinery 
of Newton's method for algebraic functions can, quite obviously, be used to 
solve this system of equations. This equivalence should become more evident 
through the following model problem. 

A model problem (Euler's elastica). Let us consider the model problem of 
Euler's cantilever subject to a compressive tip load of P, which we studied in 
Chapter 11, to illustrate the solution of nonlinear continuous problems. This 
problem has beauty because it depends on a single displacement function 6{x), 
At the same time, the elastica is a bona fide geometrically exact theory in me­
chanics. We do not need to worry about when the approximations give out as 
we compute our way along an equilibrium path. Consequently, this classic ex­
ample will allow us to see the details of the nonlinear computation procedure 
sketched in the previous section. 

The virtual-work functional for the cantilever elastica is given by 
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G(A,e,0) = {e'e'-xesme)dx (606) 
Jo 

where A = P/EI is the load parameter. Note that we have factored out the 
constant £/from the virtual-work functional. This functional is clearly nonlin­
ear in the rotation field 6(x), The derivatives of the functional in the direction 
of the increments A9(x) and AA can be computed from Eqn. (604) to be 

•I' DG{X'',e\d)= (A(9'0'-A"0A<9cos0''~AA0sin0^)dbc 
Jo 

where AA = k-X'' and A0(jc) = e{x)'-e\x). The state {X^O''} is known, 
but does not necessarily represent an equilibrium configuration of the system. 
Using this result in the definition of the linearized functional, Eqn. (603), we 
obtain a linear functional for the present case of 

' - AA0sin(9" - A"̂ A6> cos^''] dx 

This functional is linear in the increments /SB{x) and AA, and, hence, is amena­
ble to solution methods for linear problems. A solution to the linearized princi­
ple of virtual work can be stated as follows: If G(A, 6,6) = Q for all virtual dis­
placements 6 E 95e(0, €), then the state { A, 6} is an equilibrium configuration 
of the linearized problem (but generally not of the nonlinear problem). We can 
construct the Newton iteration by observing that once we have solved the lin­
ear problem, we can take the new estimated state as the point about which we 
linearize, set up a new linear problem, and solve the new problem for a new 
state. The iteration can be repeated until convergence obtains. 

To solve this problem we can to use the Ritz method. Let us approximate the 
real and virtual rotation fields with base functions as 

6(x) = a • h(x), d(x) = a • h(jc) 

where a = [a^, a2,..., a^f] ^ and h = [Ai, /zj, . . . , h^^] ^ are the coefficients and 
base functions, respectively. The known state 6\x) of the rotation field can be 
interpolated in the same manner as the state 6(xy If we do so, then the incre­
mental state also has the same interpolation. To wit, we have 

6\x) = â  • h(jc), A6(x) = Aa • b(x) 

where the a'' are known constants and Aa = a — a''. According to our defini­
tions, we have a = a"" + Aa. Substituting these approximations into the linear 
functional of Eqn. (607), we arrive at the fimction 

G(A,a,a) = a^(K^Aa + k̂ AA + g )̂ 
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where the NhyN matrix K"" is 

K^= I {[h'][h'Y-^''cose'[h][hY)dx 
Jo 

449 

(608) 

the iVby one matrix k"" is 

Jo 
(609) 

and the iVby one matrix g"" is 

g' 
Jo 

A^'sine^hjtic (610) 

The statement of equilibrium, i.e., G(A, a, a) = 0 for all a, implies that the 
following equation must hold for the increment in the state { AA, Aa} 

K^Aa + k̂ AA + ĝ  = 0 (611) 

To implement the arc-length constraint, we must recognize that the state is now 
parameterized by the load A and the displacement parameters a. An appropri­
ate constraint is given by 

c(A,a) = | | a - a „ p + (A-A,)^ - a^ = 0 

where { X„, a„} represents a known point, generally on the equilibrium path. It 
is important to note the distinction between the states {A;,,a;,} and {A'',a''} 
here. The former is the previously found converged equilibrium state, while 
the latter is simply the latest best guess at the next equilibrium state. We can 
linearize the arc-length constraint at the state { A'',a''} to give 

c(A,a) = c(A^a^) + 2(a^-a„)^Aa + 2(A^-A„)AA = 0 (612) 

We can use Eqns. (611) and (612) to set up a Newton algorithm. First, let us 
interpret the state { A"*, a''} as being the result of the previous Newton iteration, 
and designate this state as { A", a*'}. The starting value of this iteration sequence 
is {A'',a''} and will be taken as the converged state of the previous load step 
{A;„a„}. Let us define the iV̂  + IbyN-\- 1 matrix A*'and the iV by one matrix 
b*' in the following manner 

A^ = 
2(a^-a.)^ 

k̂  

2(A^-A.) 
b^ = 

-c(A^aO 

where K*', k*', and g*' are given by Eqns. (608), (609), and (610), respectively, 
with the state {A*',a*'} substituted in the place of { A '̂ja''}. With these matrices 
identified. Algorithm 2 can be employed without much modification. In order 
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0' } M kAl 

Figure 153 The idea behind numerical integration 

to see how the algorithm must be modified, we must consider the problem of 
integration of the system matrices. 

Numerical integration of the system matrices. There is one key differ­
ence between the discrete system and the continuous system that we have casu­
ally brushed over. The matrices K", k*', and g" involve integrals over the do­
main of the body. In contrast with the solution of linear problems, these 
integrals involve terms beyond simply the base functions and their derivatives. 
Each of these integrals has terms like cos6\x) or sm9\x) in the integrand. 
Even if we use polynomial base functions {1, jc, x^,...}, we would, at each 
step, need to integrate terms like x^cos{al-\-a\x-\-a2X^), where the a*' are 
constants determined from the previous iteration. Even for the best expert in 
the integral calculus, the evaluation of such integrals would be a terrible chore. 
There is an alternative that can be easily implemented into the existing algo­
rithm. That alternative is numerical integration. 

Numerical integration procedures can be used to compute any definite inte­
gral, provided that the integral exists, to any desired degree of accuracy. Let 
fQ) be any function defined on the interval | E [0,1], for example, the curve 
shown in Fig. 153. The integral of /(^) is simply the shaded area under the 
curve. Let ;̂„ be the location of the wth quadrature point, and (!),„ the weight 
associated with that quadrature point. Then the integral can be computed nu­
merically with the formula 

Jo '"=0 

(613) 

where M + 1 is the number of quadrature points in the interval. Qearly, numer­
ical quadrature requires only that the function in question be evaluated at se­
lected points. Function evaluation is always a simple computation! Different 
integration formulas like Gaussian quadrature, Simpson's rule, and the trape­
zoidal rule are distinguished by their specific weights and integration stations. 
Integrals on different intervals can always be converted to integrals on the unit 
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interval with a suitable change of variable. For example, if jc is defined on the 
intervals E[fl,fe], then the change of variable JC = a{l-^) + fc^ converts it 
to the interval ^ E [0,1]. Since dx = (b- a)d^, the integral can be written as 

\ f(x)dx = (b-a)\ md^ 
J a Jo 

where /(^) = f[a(l — ̂ )-\-b^). Two of the simplest numerical integration for­
mulas are the trapezoidal rule and Simpson's rule. 

For the trapezoidal rule, the interval is subdivided into M equal segments 
of length A^. The Af H-1 points (including the endpoints) that distinguish those 
segments are the quadrature points. The weights associated with these quadra­
ture points are given by 

(Om = 

2̂ 5̂  ifm = O o r m = M 

jjj otherwise 

that is, all interior points have weight (W;;, = 1/M, while the endpoints have the 
weight (Do = COM = 1/2M. The physical interpretation of the trapezoidal rule 
is simple. The area is approximated by the sum of the trapezoids formed by 
connecting two adjacent points with a straight line. 

Simpson*s rule requires that the domain be divided into an even number of 
M equal segments of length A^. The Af +1 points that distinguish those seg­
ments are the quadrature points. The weights associated with these quadrature 
points are given by 

3jĵ  if m = 0 or m = M 

o)m — { ^ if m is an odd interior point 
2 

3j^ if m is an even interior point 

For Simpson's rule, three adjacent points are fit with a parabola, and the area 
under the parabola is computed exactly. The use of three adjacent points to de­
fine the parabola is the reason behind needing an even number of segments. 
For either rule, greater accuracy can be obtained by taking finer and finer sub­
divisions. 

We can incorporate a numerical integration scheme into Algorithm 2. The 
matrices K'', k*', and g" are computed by numerical integration at Step 4.a. be­
fore incorporation into the matrices A*' and b*'. One can clearly see how Algo­
rithm 2 must be amended to incorporate the numerical integration through the 
specific implementation of the nonlinear analysis procedure for the cantilever 
elastica example below. You should spend some time comparing and contrast­
ing the program NEWTON with ELASTICA in order to clearly see the connections 
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between the Ritz method and the discrete examples used to motivate stability 
theory. 

The Program ELASTICA 

% * 
% I Program ELASTICA 
% I Fundamentals of Structural Mechanics, 2nd Edition 
% I K. D. Hjelmstad, July 1, 2004 
% * 

%.. Set problem parameters, Chapter 12, Example 80 
clear; tol = l.e-8; alpha = 0.5; maxsteps = 10; maxit = 20; 
xo = [0; 0; 2.467]; % Starting value for load path 
X = [1.0; 0.0; 2.467]; % Guess at initial direction 
xlength =1.0; % Length of beam 

%.. Initialize values for load step zero,set next trial state 
b = X - xo; X = xo + alpha*b/norm(b); 

%.. Compute MAXSTEPS points along the Equilibrium Path 
for n = 1:maxsteps 

%.... Perform Newton iteration at each load step 
nu = 0; test = 1.0; 
while (test > tol) & (nu < maxit) 

nu = nu + 1; 

% Compute Hessian and residual 
[A,b] = fcn(x,xo,xlength,alpha); 

%...... Compute residual norm, eigenvalues of tangent stiffness 
test = norm(b); e = eig(A(l:2,1:2)); 

% Compute increment and update state vector 
dx - -A\b; X = X + dx; 

end % while for Newton loop 

%.... Output results, set converged state, guess at next state 
fprintf('%$i%9.5f%9.5f%9.5f%10.5f%10.5f%4i%12.2e\n', 

n,x',e',nu,test) 
temp = xo; xo = x; x = 2*x - temp; 

end % loop on n Load Steps 

%.. End of program Elastica 

%—-Compute A and b matrices by Simpson integration FCN 
function [A,b] = fcn(x,xo,xlength,alpha) 

%.. Set weights for Simpson integration 
wt = [1,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,1]; 
intpts = length(wt); dz = l/(intpts-l); 

%.. Initialize A and b to zero 
b = zeros(3,1); A = zeros(3,3); z = 0; 
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%.. Loop on integration points 
for n = l:intpts 
factor = wt(n)*dz*xlength/3; 

%.... Compute base functions and their derivatives 
evl = 1.570796327; ev2 = 4.712388981; 
hi = sin(evl*z); h2 = sin(ev2*z); 
dhl = evl*cos(evl*z)/xlength; dh2 = ev2*cos(ev2*z)/xlength; 

%.... Compute rotation and first derivative at current point 
theta = x(l)*hl + x(2)*h2; 
dtheta = x(l)*dhl + x(2)*dh2; 
cl = x{3)*cos(theta); 
c2 = x(3)*sin(theta); 

%.... Compute integral part of residual vector 
b(l) = b(l) - (c2*hl - dtheta*dhl)*factor; 
b(2) = b(2) - (c2*h2 - dtheta*dh2)*factor; 

%.... Compute integral part of Hessian matrix 
A(l,l) = A(l,l) + (dhl*dhl - cl*hl*hl)*factor; 
A(l,2) = A(l,2) + (dhl*dh2 - cl*hl*h2)*factor; 
A(l,3) = A(l,3) - (sin(theta)*hl)*factor; 
A(2,l) = A(2,l) + (dh2*dhl - cl*h2*hl)*factor; 
A(2,2) = A(2,2) + (dh2*dh2 - cl*h2*h2)*factor; 
A(2,3) = A(2,3) - (sin(theta)*h2)*factor; 

z = z + dz; 
end % Loop on n 

%.. Add part associated with arc length constraint 
b(3) = b(3) + dot(x-xo,x-xo) - alpha^2; A(3,:) = 2*(x-xo)'; 
return 

%.. End of function FCN 

Program notes. The progrdim Elastica uses many of the same naming con­
ventions as the program Newton, This program uses Simpson integration and 
the weights are the product of the values stored in the array wt and scalar fac­
tor. The function/cn carries out the integration of the Hessian and residual and, 
therefore, contains all of the information about the base functions /i/(x). It 
should be clear that the addition of the numerical integration procedure 
changed the program very little. 

The program considers a two-term approximation of the rotation field with 
the two base functions taken to be 

h,(x) = sm(f), h^ix) = s i n ( ^ ) 

These base functions are the linearized eigenfunctions for the elastica and, 
hence, should be excellent choices for this problem. 

The program is set up to move along any branch of the bifurcation diagram. 
The input requires the specification of a direction to head at the start of the 
computation. This allows the user to start at a bifurcation point and move along 
a nontrivial path. Without the hint of direction, the iteration will always quickly 
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converge to the trivial branch. The initialization of the first trial state simply 
moves in the specified direction with a scaling to make sure the initial step has 
length a. 

Example 80. The program Elastica was run for the case of the cantilever elastica 
example from Chapter 11 for the equilibrium path that branches from the first 
bifurcation point located at Xcr = 2.467. The solution tolerance was set at 
tol = 10 "^ and the step length was set at a = 0.5. The iteration was started 
at the bifurcation point with a suggestion to move to the state (1.0, 0.0, 2.467), 
that is, in the direction of the first buckling mode. The results of 10 load steps 
are given as follows 

n 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

al 
0.49401 
0.94382 
1.32196 
1.62598 
1.86824 
2.06338 
2.22332 
2.35673 
2.46983 
2.56705 

a2 
0.00064 
0.00457 
0.01310 
0.02553 
0.04052 
0.05698 
0.07418 
0.09165 
0.10914 
0.12645 

P/EI 
2.54413 
2.76245 
3.08946 
3.48622 
3.92335 
4.38340 
4.85682 
5.33837 
5.82510 
6.31525 

EV 1 
0.07586 
0.28290 
0.57255 
0.89812 
1.23187 
1.56176 
1.88378 
2.19727 
2.50281 
2.80133 

9, 
10, 
10, 
10, 
10. 
10, 
10, 
11, 
11, 
11, 

EV 2 
.90782 
.01509 
.17231 
.35867 
.55978 
.76792 
.97936 
.19238 
.40619 
.62045 

nu 
4 
5 
5 
5 
4 
4 
4 
4 
4 
4 

II b II 
1.60e-09 
1.08e-13 
9.60e-15 
4.10e-16 
1.02e-09 
6.75e-ll 
4.84e-12 
4.16e-13 
4.47e-14 
5.70e-15 

We can see from the above results that the first branch is dominated by the 
first mode shape long after bifurcation occurs, but that the second mode contrib­
utes more and more to the actual shape of the column for states remote from the 
bifurcation point. If we carry out the computations for the path branching from 
the second critical point, we find that the participation of the first mode along 
the second path is negligible. Qearly, there is much in common between the dis­
crete and continuous problems examined in this chapter. 

Armed with the Ritz method and numerical integration, we find that the 
solution of nonlinear problems is quite accessible. The crucial observation that 
nonlinear problems can be solved by stepping from point to point along an 
equilibrium path and iterating to convergence at each point is quite powerful. 
Although there are many difficulties in computational mechanics that will re­
quire modification of the algorithms presented here, this basic framework 
should facilitate the general understanding of why these modifications are 
needed, and how they come about. 

The Fully Nonlinear Planar Beam 
The primary purpose of this last section in the chapter is to dispel the notion 
that somehow all of the preceding computational methods are ad hoc. We can, 
indeed, extend the basic approach to virtually any computational mechanics 
problem that we face. The main change is that the bookkeeping for the more 
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kM, 

EA, GA, EI - ^ ^H^ 

—. H 
Figure 154 Example configuration for the fully nonlinear beam problem 

general theories is a little more tedious. In view of the observation that we will 
generally write a computer program to carry out the details of our computa­
tions, we can afford a high tolerance for the tedium. 

Let us carry out the steps of the previous section for the general nonlinear 
planar beam theory presented in the previous chapter. Specifically, let us con­
sider our model problem of the cantilever column of length € and moduli £A, 
GA, and EL The beam is subjected to distributed loads /?(A,JC), q(k,x\ and 
w(A, jc), as well as concentrated end loads A//^, X V^, and XM^, as shown in Fig. 
154. It should be clear from the discussion how to accommodate different 
boundary conditions. 

Let us assume that the beam is elastic with the standard linear elastic consti­
tutive equations given by Eqn. (547). Accordingly, the moment M is propor­
tional to the curvature Xo, the shear Q is proportional to the shear strain fi^, and 
the axial force iV is proportional to the axial strain ê . The constants of propor­
tionality are the moduli £/, GA, and£A, respectively. The virtual-work func­
tional then has the form 

G(A,u,n)= (EIXoXo + GAfio^o+EAeo^o)dx-W^(X) (614) 
Jo 

where W^X) is the external-work functional for the applied forces. In our ex­
pression for the virtual work, we use the notation u = {w(̂ ), Mx)y ̂ W}? a set 
containing our three displacement functions, to describe the real configuration 
of the beam. The curvature, shear, and axial strains, Xo, fio> and €^ are given 
in terms of the displacement functions in accord with Eqn. (546). The varia­
tions of these strains, Xo, jŜ , and W^, are given by the directional derivative of 
the real strains in the dkection of the variations of the displacement functions, 
as described in Chapter 11. The real strains are functions of the real displace­
ments, which are, in turn, functions of the independent variable JC. Similarly, 
the virtual strains are functions of the real and virtual displacements, which are, 
in turn, functions of the variable x. 

The precise expression for the external work depends upon the forces pres­
ent, and we can customize the expression to each problem. For our example 
problem, the expression has the form 
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-i: WE(^) = q(A) Hdx + Qr n(€) 
Jo 

where q(A) = {p, q, m} and Q^ = {H^, V^, M^} are the applied distributed 
and end loads, respectively, stored in matrix form., with/?, q, and m being the 
axial load, transverse load, and moment, respectively, and H^, V^, Af̂ , being 
the horizontal end load, vertical end load, and end moment, respectively, and 
A is the loading parameter. The designation q(X,x) suggests that the transverse 
force is not simply proportional to A, but is a function of it. The other distrib­
uted loads are treated similarly. With this designation, we can, for example, 
specify a loading q(^,x) = qi(x) ^ A ^ J W that has a fixed part and a propor­
tional part. The work of the forces is positive if the forces act in the positive 
direction of the virtual displacement. 

As usual, the equation we wish to solve is the variational equation 

G(A, u,n) = 0, Vn e ^e(OJ) (6i5) 

where ^^(0, () is a collection of functions H = { w, vv, 6}, that satisfy the homo­
geneous essential boundary conditions u(0) = 0, vv(0) = 0, and 9(0) = 0, 
and whose first derivatives are square-integrable. This collection of functions 
is the same one required for the linear Timoshenko beam. 

Let us consider the known configuration u"" = { u°, w°^ Q°^ and load level A''. 
This configuration is not necessarily an equilibrium configuration, i.e., it may 
be true that GQf"^ u"", U) ?̂  0 for all virtual displacements. We must try to im­
prove our configuration to one that does satisfy equilibrium. A linear incre­
mental expression for the equilibrium equation can be obtained by linearizing 
the functional G about the known configuration. The linear part of G is 

GQ^, u, n) = G(k% vi\ n) + DGQ.% \y% n) (6i6) 

The directional derivatives are computed in accord with Eqn. (604) with the 
appropriate interpretation of u. 

The principle of virtual work suggests that if G(k^ u, H) = 0 for all virtual 
displacements H E ^ei^, ^)y then equilibrium holds for the linearized prob­
lem at the load level A. The linearized virtual-work equation is linear in the in­
cremental state Au = { Aw,Aw,A0} and the incremental load level AA. We 
shall endeavor to solve the linearized problem to determine this incremental 
state. The state u'' + Au should then come closer to satisfying the nonlinear 
equilibriimi equations at the load level X"" + AA than did the configuration u'' 
at the load level A"". If the new configuration does not satisfy equilibrium well 
enough, the process can be repeated until it does. This procedure leads to the 
Newton iteration for functional as described in Eqn. (605). 

Let us compute the derivatives of the functional G in the direction of an in­
crement in displacement Au = { Aw, Aiv, A6} and the increment in load level 
AA. The first directional derivative is given by the expression 
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Z)G(A, u,n) = [EI[DXO • Au)^, + M[DXo • Au) 
Jo 

+ GA[DP^ • Au)^, + Q(D^^ • Au) 

+ EA[Deo ' Au)e^ + N{D€O - Au)]dx 

where M = EIXo, Q = GA^ ,̂ and N = EA€o. The derivatives of the real 
strains in the direction of the increment in the displacement fields have the ex­
plicit form 

DXo ' Au = A0' 

DPo • Au = Aw'cose - Aw'sine - (l + e,)A<9 

Deo ' Au = Aw' sine + Au' cos^ + ^^A0 

where l + €o = >v'sin0 + (l + w')cos0and)So = w 'cos0 - ( l + w')sin0are 
the real axial and shear strains. Of course, the incremental displacements are, 
as yet, unknown functions of x. The directional derivatives of the virtual strains 
in the direction of the displacement increments are given as follows 

DXo • Au = 0 

D^o'AvL = - iv'sin(9A0 - rcos(9A(9 

- [Aw'sine + H^'cos^Ae + Aw'cos(9 - (l + w')sin(9A0]0 

Dio ' Au = w*cosOAO - it sinOAO 

+ [Aiv'cos^ - w'smOAO - Aw'sin0 - (H-w')cos0A0]0 

A consolidated notation will help to keep the formulation clear. Let us 
introduce the differential operator 

F(u)^[u',w',e,d'Y 
that takes the functions u(x), w(x), and 6(x) and produces a four by one matrix 
with the first derivative of M in the first slot, the first derivative of w in the sec­
ond slot, and 0 and its first derivative in the third and fourth slots, respectively. 
Note that we can use the operator on the virtual displacements to compute the 
array F(n) = [it, w', 6,6'y and on the incremental displacements to com­
pute the array F(Au) = [Aw', Aw', A6, AO'Y, Let us store the strains in a ma­
trix as ê  = [Xo, fio, ^o] ^ and the resultant forces in a matrix s = [M, Q, N] .̂ 
Let us also introduce a matrix of constitutive properties, which is diagonal for 
the present constitutive model 

D = 
£/ 0 0 
0 GA 0 
0 0 EA 
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With this notation at hand, the derivative of the functional G in the direction 
of the increment in displacement can be expressed as 

DG An = F^(lI)[E»DE(u) + G(u,s)]F(Au)tic 
Jo 

(617) 

where the matrix E(u) is defined to be 

E(u)^ 
0 0 0 

- s i n ^ cos^ - ( l + e j 

cos 6 sin 0 fio 

(618) 

so that DCo • n = E(u)F(n) and De^ • Au = E(u)F(Au). These identities 
can be verified from the above equations. The matrix G(u, s) in Eqn. (617) is 
defined to be 

G(u,s) ^ 

0 
0 

-V 
0 

0 
0 

H 
0 

-V 
H 
2 

0 

0 
0 

0 
0 

(619) 

where S = - Vw' - / f (1 + w'). Recall that the forces H and V are related to 
the axial and shear forcesiV^and Q through the relations H = iVcos 6 — Qsmd 
and y = iVsin 0 H- (2 cos 6. This notation allows us to express 

s • (De, • Au) = F^(n)G(ii,s)F(Au) 

The first term in Eqn. (617) gives rise to what we shall call the tangent stiffness 
matrix when we discretize the problem by the Ritz method. The second term 
gives rise to the so-called geometric (stiffness) matrix, and is stress-dependent, 
as it involves the forces H and V, If the tangent stiffness is evaluated at the con­
figuration u = (0,0,0}, it reduces to the stiffness from the linear theory. 

The derivative of the functional G in the direction of the increment in load 
level can be expressed as 

DG • AA 
^ 0 

AAdbc-ll(€) • Q,AA (620) 

Note that only the external virtual work contributes to this derivative. 
Before we discretize Eqn. (617) with the Ritz method, it is worth a brief di­

gression on the stability of equilibrium. We will, at each converged state, need 
to answer the question of whether or not the equilibrium configuration found 
is stable. For this we need the second derivative of the energy functional. It is 
interesting to note that, in essence, we already computed the second derivative 
of the energy fimctional 8(u) when we computed the linearized form of 
G(A, u, H) for the purpose of the Newton iteration. The energy functional has 
the form 



Chapter 12 Numerical Computation for Nonlinear Problems 459 

8(A,u)= \[EIxl + GA^l+EA€l)dx-%s{Kyi) (621) 
Jo 

where the energy of the external loads B£(u) is given by 

g£(A,u) = q(A) • udx + AQ^ • u(€) 

Since the external energy is linear in the displacements, the second derivative 
of © (̂u) vanishes. Hence, the second derivative of the energy functional 
comes entirely from the strain energy and has the expression 

A(A, u, u) = F̂ (1I) [ E^(u) D E(u) + G(ii, s)] F(n) dx 
Jo 

(622) 

For any state u = {u{x\ w(jc), d{x)} that satisfies equilibrium at the load level 
A, stability is assured if A is positive for all virtual displacements H. When we 
use the Ritz method, this stability condition reduces to the condition that all of 
the eigenvalues of the tangent stiffness matrix be positive. 

Discretization by the Ritz method. The Ritz method is straightforward to 
apply to the present problem. The main change to what we have already seen 
is that, in addition to expressing the displacements and their variations in terms 
of base functions, we must also express the incremental displacements in terms 
of those base functions. To wit, we have 

u(jc) = H(jc)a, Au(jc) = H(jc)Aa, il(x) = H(jc)a 

where we defme the three by 3iVmatrix H = [HI, H2,. . . , H^] with the three 
by three submatricesH,(jc) = hi(x)\, i = 1,.. .,iV. Note that the interpolation 
has AT terms. The ordering of H implies that the unknowns a are stored in a3iV-
vector a = [a[,..., a^]^, where each three by one vector a, is associated with 
the u, Wy 6 functions, respectively. 

For simplicity, we have chosen to interpolate all of the functions exactly 
alike. Qearly, there is no reason that we must do so. Expanding all of the vari­
ous versions of the same fimction with the same base functions leads to sym­
metry of the matrices that are generated by the Ritz method. The different dis­
placement types can be interpolated differently, however. For example, one 
might choose to interpolate the displacements with a polynomial of order A/'and 
the rotations with a polynomial of order JV— 1. It is quite clear from the above 
expression for the Ritz expansions that we must keep track of many things. For­
tunately, the computer does this task quite well. You should not really think in 
terms of carrying out these computations by hand, even for a very small num­
ber of base functions. 
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rv 0 
0 
0 

0 

0 
0 

0 1 
0 

hi 

vj 

We need to define some more notation to help us with the bookkeeping. Let 
us define the four by three matrix B,(jc) as 

B.W = 

and let us concatenate these matrices into a four by 3iV matrix of base function 
derivatives as B = [BI, 82? • • •, B^]. With this notation, we can express the 
differential expressions F(Au) and F(il) in terms of the coefficients of the base 
functions as 

F(u) = B(x)a, F(Au) = B(jc)Aa 

With these definitions, the linearized virtual-work functional, defined in 
Eqn. (616), takes the discrete form 

G(A,a,a) = a^(K(a)Aa + k(A)AA + g(A,a)) 

where K(a) is the 3Nhy 3iV tangent stiffness matrix defined as 

(623) 

(624) 

where k(A) is the 3Nhy one matrix defined as 

(625) 

and where the residual force g(A, a), the difference between the internal resist­
ing forces and the externally applied forces, is defined as 

g(A,a) ^ I 
Jo 

(B^E^s~H^q(A))dx - AH (̂€)Q, (626) 

The dependence upon x of each matrix in the integrand of these expressions 
is implicit. It should be clear that, for any fixed set of values of the coefficients 
a, we can compute K(a), k(A), and g(A, a) by carrying out the integration as in­
dicated. It is worth noting that the stiffness matrix at the initial configuration 
K(0) is the stiffness matrix of linear analysis. The tangent stiffness matrix K(a) 
and the matrix k(A) can be evaluated by numerical integration. Of course, the 
integral part of g(A, a) must also be computed by numerical quadrature. A 
straightforward computation shows that the integrand can be computed in 
three by one blocks explicitly as follows 
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BrE^s-Hfq(A) = 

h/H-hiP 

h/M-\-hi{w'H-{l-\-u')V-m) 

Newton's method with arc-iength control. Applying the discrete version 
of the calculus of variation to the linearized functional in Eqn. (623) gives a 
linearized principle of virtual work. Since G(A,a,a) = 0 for all virtual 
constants a, the term inside the brackets in Eqn. (623) must be identically equal 
to zero. Therefore, we arrive at an equation to estimate Aa** and AA*' 

K(aOAâ  + k(A*')AA^ + g(A^a^) = 0 (627) 

To uniquely determine these increments, we must augment Eqn. (627) with a 
constraint on how far along the equilibrium path we wish to move. As in the 
previous formulation, let us take the arc-length constraint as 

c(A,a) =11 a - a , f + (A-A^)^ - a^ = 0 (628) 

where a„ and A„ represent a known configuration on the equilibrium path. 
Generally, we take this configuration to be the most recent converged state. Li­
nearizing this constraint at the configuration (A*', a*) allows us to define the lin­
ear function 

c(A,a) = c(A^aO + 2(a^-a„)Aa + 2(A^-A,)AA 

Insisting that c(X, a) = 0 gives the additional equation needed to determine the 
incremental state 

2(a^-a,)Aa + 2(A -̂A„)AA = -c(A^aO 

Let us define the matrix A(A, a) and the matrix b(A, a) as follows 

K(a) k(A) 
A(A,a) ^ 

2(a-a , ) 2(A~A,) 

b(A,a) ^ 
-g(A,a) 

-c(A,a) 

(629) 

The matrix b(A, a) precisely records the amount by which equilibrium and 
the arc-length constraint fail to be satisfied at the state (A, a). Thus, any state 
that is not a fixed distance from the previous point and is not an equilibrium 
configuration can be improved by solving 

A(A^aOAx'' = b(A^a*) (630) 

where x = (a, A) is a matrix that stores both the coefficients of the displace­
ment state and the load factor. Qearly, x̂  = (a^A^ and Ax^ = (Aa% AA^. 
Hence, the updated configuration can be obtained as 
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xv+i = x" + Ax" (631) 

Iteration on Eqns. (630) and (631) can be continued until the solution con­
verges to within a specified tolerance, i.e., || h(X\ a") || < toL Clearly, the suc­
cess of the method depends upon the radius of convergence of the system. Con­
vergence can generally be guaranteed by selecting suitably small values of the 
arc-length parameter a. The matrix A(A*', a*) should be invertible at limit 
points. Bifurcation points cause the algorithm difficulty because there is no 
way to specify which branch the next solution point must be on. With the defi­
nitions of the state and the appropriate matrices. Algorithm 2 applies to this 
problem, as modified with numerical integration of the coefficient matrices. 

The discretization also gives us a discrete version of the second-derivative 
test for stability of equilibrium. The second derivative of the energy can now 
be expressed in terms of the tangent stiffness matrix as 

A(a,a) = a^K(a)a (632) 

As we saw previously, the requirement that A be positive is tantamount to all 
of the eigenvalues of the tangent stiffness matrix K(a) being positive. A critical 
point on the path is a point where one of the eigenvalues of the tangent stiffness 
matrix is identically equal to zero. 

Remark. There are two kinds of errors we must be concerned with: (a) the 
error in the Ritz approximation, and (b) the error in equilibrium that we are try­
ing to iterate away. For a fixed set of base functions, the error in the spatial dis­
tribution of the functions, like the transverse displacement, is fixed. The only 
way to reduce this error is to take more base functions, and thereby add un­
known coefficients to the problem. Adding more base functions is called im­
proving the spatial approximation. Newton's method, on the other hand, can 
find the solution to any level of accuracy (permitted by the finite precision 
arithmetic of the computer, of course). We must always specify the solution tol­
erance to tell Newton when the solution is adequate. As such, we will always 
view equilibrium as a condition that can be exactly satisfied. These issues may 
be clearer in the context of the following computer program, NONLINEARBEAM, 
which implements the foregoing derivations. 

The Program NONLINEARBEAM 

% * * 
% I Progreun NonlinearBeam 1 
% I Fundeimentals of Structural Mechanics, 2nd Edition | 
% I K. D. Hjelmstad, July 1, 2004 j 
% * * 

%.. Set problem parameters, Chapter 12, Example 81, 
clear; tol = l.e-8; alpha = 10; maxsteps = 10; maxit = 40; 
nbasis = 6; ndm = 3*nbasis + 1; nnstep = 1; npts =21; 
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Applied loads 
loads = [ 0.0, 0.0, 0.0 

0.0, 0.0, 0.0 
0.0, 0.0, 6.28 ] 

% pi, p2, H(L) 
% gi, q2, V(L) 
% ml, m2, M(L) 

%.. Beam moduli D = [EI, GA, EA], beam length is xlength 
D = [le3, le6, le6]; xlength = 10.0; 

%.. Initialize values for load step zero, set next trial state 
X = zeros(ndm,1); xo = zeros(ndm,1); x(ndm) = alpha; 

%.. Compute MAXSTEPS points along the Equilibrium Path 
for n = l:maxsteps 

%.... Perform Newton iteration at each load step 
nu = 0; test = 1.0; 
while (test > tol) & (nu < maxit) 

nu = nu + 1; 

% Compute Hessian and residual 
[A,b] = fen(D,x,xo,loads,xlength,ndm,nbasis,alpha); 

% Compute residual norm, min eigenvalue of tangent stiffness 
test = norm(b); e = min(eig(A(l:ndm-l,l:ndm-l))); 

% Compute increment and update state vector 
dx = -A\b; X = X + dx; 

end % while for Newton loop 

%.... Output results, set converged state, guess at next state 
results(X,xlength,n,nu,test,ndm,nbasis,nnstep,npts) 
temp = xo; xo = x; x = 2*x - temp; 

end % loop on n Load Steps 

%.. End of program NonlinearBeam 

% Compute A and b for NonlinearBeam element FCN 
function [A,b] = fen(D,x,xo,loads,xlength,ndm,nbasis,alpha) 

%.. Initialize A and b to zero 
b = zeros(ndm,1); A = zeros(ndm,ndm); z = 0; 

%.. Set weights for Simpson integration 
wt = [1,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,1]; 
intpts = length(wt); dz = l/(intpts-l); 

%.. Loop on integration points 
for n = 1:intpts 
factor = wt(n)*dz*xlength/3; 

%.... Compute displacements and derivatives 
du = 0; dw = 0; dtheta = 0; theta = 0; 
for i = 1:nbasis 

[h,dh] = basis(i,z,xlength); 
du = du + x(3*i-2)*dh; 
dw = dw + x(3*i-l)*dh; 
dtheta = dtheta + x(3*i)*dh; 
theta = theta + x(3*i)*h; 

end 
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c t = c o s ( t h e t a ) ; s t = s i n ( t h e t a ) ; 

%.... Compute axial strain, shear strain, and curvature 
epsi = dw*st + (l+du)*ct - 1; 
beta = dw*ct - (l+du)*st; 
curv = dtheta; 

%.... Compute axial force, shear force, bending moment, etc, 
bend = D(l)*curv; shear = D(2)*beta; axial = D(3)*epsi; 
Hor = axial*ct - shear*st; Ver = axial*st + shear*ct; 
Xi = (l+du)*Hor + dw*Ver; Yi = dw*Hor - (l+du)*Ver; 
force = [Hor; Ver; bend]; fyi = [0; 0; Yi]; 
cl = loads(:,1) + loads(:,2)*x(ndm); 
c2 = fyi - cl; 
c3 = loads(:,2); 
c4 = loads(:,3); 

%.... Compute components of [E(T)DE + G] store in matrix G 
G(l,l) = D(2)*st*st + D(3)*ct*ct; 
G(l,2) = ct*st*(D(3)-D(2)); 
G(l,3) = D(2)*st*(l+epsi) + D(3)*ct*beta - Ver; 
G(l,4) = 0; 
G(2,l) = G(l,2); 
G(2,2) = D(2)*ct*ct + D(3)*st*st; 
G(2,3) = D(3)*st*beta - D(2)*ct*(l+epsi) + Hor; 
G(2,4) = 0; 
G(3,l) = G(l,3); 
G(3,2) = G(2,3); 
G(3,3) = D(2)*(l+epsi)'^2 + D(3)*beta"2 - Xi; 
G(3,4) = 0; 
G(4,l) = G(l,4); 
G(4,2) = G(2,4); 
G(4,3) = G(3,4); 
G(4,4) = D(l); 

%.... Form stiffness matrix and residual 
for i = l:nbasis 

[hi,dhi] = basis(i,z,xlength); mm = 3*(i-l); 
for j = l:nbasis 

[hj,dhj] = basis(j,2,xlength); nn = 3*(j-l); 

% Compute B(T)[E(T)DE + G]B noting the sparse structure of B 
GB(1:4,1:2) = dhj*G(1:4,1:2); 
GB(l:4/3) = hj*G(l:4,3) + dhj*G(l:4,4); 
BGB(1:2,1:3) = dhi*GB(1:2,1:3); 
BGB(3,1:3) = hi*GB(3,l:3) + dhi*GB(4,1:3); 

% Assemble the result into the A matrix 
A(mm+l:mm+3,nn+l:nn+3) = A(mm+l:mm+3,nn+l:nn+3) + BGB*factor; 

end % loop on j 

% Form integral part of residual force and assemble into matrix 
b(mm+l:mm+3) = b(mm+l:mm+3) + (dhi*force + hi*c2)*factor; 
A(mm+l:mm+3,ndm) = A(mm+l:mm+3,ndm) - hi*c3*factor; 

end % loop on i 
z = z + dz; 

end % Loop on n 
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%.. Add end load terms to the residual and coefficient matrix 
for i = Itnbasis 

[hi,dhi] = basis(i,l,xlength); mm = 3*(i-l); 
b(mm+l:mm+3) = b(mm+l:mm+3) - hi*c4*x(ndm); 
A(mm+l:mm+3,ndm) = A(mm+l:mm+3,ndm) - hi*c4; 

end 

%.. Add arc-length constraint terms to Hessian and residual 
b(ndm) = b(ndm) + dot(x-xo,x-xo) - alpha''2; 
A(ndm,l:ndm) = 2*(x-xo)'; 

return 

%.. End of function fen 

% Evaluate ith basis function b and derivative db BASIS 
function [h,dh] = basis(i,z,xlength) 

%.. Compute sequence 2n=[1,1,2,2,3,3] for use in base functions 
n = mod(i,2); m = (i+n)/2; a = (2*m-l)*pi/2; 
if n == 0 
h = sin(a*z); dh = a*cos(a*z)/xlength; 

else 
h = 1 - cos(a*z); dh = a*sin(a*z)/xlength; 

end 
return 

%.. End of function basis 

% Print and plot results of current step RESULTS 
function [] = results(x,xlength,n,nu,test,ndm,nbasis,nnstep,npts) 

%.. Determine if current step is an output step 
if mod(n,nnstep) == 0 

%.... Compute and print current geometry of beam 
axis('square'); hold on; 
z = 0; dz = l/(npts-l); 
for ii = l:npts 
u = zeros(3,l); 
for i = l:nbasis 

[h,dh] = basis(i,z,xlength); mm = 3*(i-l); 
u(:) = u(:) + h*x(mm+l:mm+3); 

end 
yl(ii) = z*xlength + u(l); y2(ii) = u(2); 
z = z + dz; 

end 
fprintf('%5i%9.5f%14.4e%14.4e%14.4e%4i%12.2e\n', 

n,x(ndm),u',nu,test) 
plot(yl,y2,'-'); 

end 
return 

%.. End of function results 

Program notes. The program NonlinearBeam uses many of the same nam­
ing conventions as the previous programs. The initialization for Example 81 
is to set the displacements to zero and the load factor to a. The function results 



466 Fundamentals of Structural Mechanics 

produces output every nnstep load steps. The output consists of the usual sum­
mary table and a plot of the deformed shape of the structure, computed at npts 
stations along the length of the beam using the base functions to interpolate. 

Again the formation of A and b is done in the function/cn, with the integrals 
being carried out by Simpson's rule. The matrix E^D E + G has been carried out 
by hand rather than forming the individual matrices. The multiplication by the 
matrices B, has been done recognizing the sparse structure of those matrices. 
The information about the base functions hi(x) is now in the function basis. 
The number of base functions used in the analysis is controlled by the parame­
ter nbasis in the main program. The base functions implemented in the pro­
gram are 

h,(x) = sm[§), h,{x) = l " C o s ( f ) 

h,{x) = s i n (^ ) , h,(x) = 1 - c o s ( ^ ) 

hs(x) = sm(^), he(x) = l-cos[^) 

The only "clever" part of the function basis is the method of computing the 
sequence m = [1, 1, 2, 2, 3, 3,... ] to aid the pairwise definition of the base 
functions with indices / = [1, 2, 3, 4, 5, 6,... ]. An even number of base func­
tions seems appropriate. The motivation for using these functions is the ob­
servation that the functions sin(//,|) are the linearized eigenfunctions for the 
rotation field for the inextensible elastica, and the functions 1 — cos(//,^) are 
the linearized eigenfunctions of the transverse displacement of the inextensi­
ble elastica, where the eigenvalues are //, = (2/ ~ 1) jr/2€. Since we are using 
the same functions for all three displacement fields, both base fimctions are 
needed for each displacement field. 

The unknowns are stored in the matrix x with the ordering given earlier. The 
last element in the array x, i.e., x( ndm), is the load factor A. The array xo gives 
the values of x at the last converged state. The array loads contains the vectors 
Qi = [/̂ i?9i> Wi]^andq2 = [p2j ̂ 2>'W2]̂ in its first two columns for the defi­
nition of the distributed load q(A) = Qi +Aq2. The third column contains the 
end loads Q^ = [H^, V^, Af̂ ]̂ . 

Example 81. The program NONLINEARBEAM was run for the case of a cantilever 
beam of length € = 10 and bending modulus EI = 1000 (the shear and axial 
moduli were taken tobt GA = EA = 10^). The beam was subjected to an end 
moment AAf̂ , with Mo = 6.28. The configuration for this example is shown in 
Fig. 155. The solution tolerance was set at tol = 10 "^ and the step length was 
set at a = 10. The exact solution to this problem of pure bending is that the 
beam bends into a circular arc of radius g = M/EI. The summary output results 
of 10 load steps are given below 
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n 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Load Fact. 
9.39690 • 
18.87009 • 
28.35467 
37.57238 
47.06530 
56.54820 . 
66.12599 
75.89923 • 
85.71366 
95.54433 

u(L) 
.6631e-01 
.12816+00 
.3203e+00 
.89256+00 
.31576+00 
.11776+01 
.20476+01 
.20126+01 
.11956+01 
.00696+01 

w(L) 
.85476+00 
.21366+00 
.71386+00 
.20496+00 
.66916+00 
.33216+00 
.66716+00 
.00956+00 
.97096-01 

2.95216-03 

e(L) 
85286-01 
16056+00 
73266+00 
,35706+00 
,97116+00 
,59406+00 
,15776+00 
,69876+00 
,33386+00 
,99696+00 

nu 
8 
6 
7 
8 
10 
8 
9 
10 
8 
10 

I b M 
966-09 
126-09 
746-09 
,836-09 
,196-09 
,226-09 
,126-09 
,606-09 
,426-09 
.196-09 

Notice that the ratio of the load factor to the rotation is constant for all steps in 
accord with the exact solution. The displaced configuration for certain selected 
load levels is shown in Fig. 155(b). It is evident that the base functions are able 
to represent the circular arc of the exact solution. Problem 299 asks you to ex­
amine the polynomial basis for this problem. Can the polynomial basis accom­
modate the circular shape? 

37.6 

M = 6.28A 

€) 
75.9 

(a) (b) 
95.5 

Figure 155 Example 81, (a) problem geometry and loading, 
(b) displaced shapes of beam (certain load steps only) 

Example 82. The program NONUNEARBEAM was run for the case of a cantilever 
beam of length € = 10 and bending modulus EI = 1000 (the shear and axial 
moduli were taken to be GA = EA = 10^). The beam was subjected to a com­
pressive end load -AP^, with Po = 2.46, and a nonproportional transverse 
load. Two cases of transverse load were considered, one with q^ = 0.2 and the 
other with q^ = 0.05. The configuration for this example is shown in Fig. 
156(a). The solution tolerance was set at tol = 10 "^ and the step length was 
set at a = 0.5. 

The bifurcation diagrams for this problem are given in Figure 156(c,d,e). 
Since six base functions were used and there are three independent displacement 
fields, it is not clear how to present the results in a bifurcation diagram. Figure 
156(c,d,e) is one possible method of presentation wherein we plot the three dis­
placement fields at the end of the beam against the load parameter. Several fea­
tures of this example problem are of interest. First, it is clear that the buckling 
load is located in the vicinity of A = 10 because both bifurcation diagrams take 
a sharp bend near that load level. This result is in accord with the value predicted 
by the linearized buckling theory for the beam without lateral load. Second, the 
difference between the two lateral load levels is evident early in the response, 
but the load-deformation curves coalesce at large deformations. 
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Displaced configurations of the beam are shown, to scale, for equal incre­
ments along the load path in Fig. 156(b). We can observe that the transverse dis­
placement reaches a maximum and then decreases. An examination of Fig. 
156(c,d,e) shows why. The transverse load q^ remains fixed throughout the anal­
ysis. Hence, its magnitude diminishes relative to the axial load as the load factor 
increases. The effect of different transverse loads cannot be distinguished for 
load levels above the buckling load. In a sense, the fixed load acts the same as 
a geometric imperfection. 

A sample of the output is given below. Note that the output has been edited 
to show only every tenth load step. 

n 
10 
20 
30 
40 
50 
60 
70 
80 
90 
100 
110 
120 

Load 
4.91611 
9.27598 
11.53529 
15.12410 
19.67508 
24.45017 
29.31286 
34.24278 
39.20700 
44.18688 
49.17399 
54.16438 

u(L) 
1.3609e-02 
3.7206e-01 
2.9260e+00 
6.1826e+00 
8.4840e+00 
1.0059e+01 
1129e+01 
1856e+01 
2371e+01 
2750e+01 
3041e+01 

-1.3272e+01 

w(L) 
7803e-01 
,4361e+00 
,2347e+00 
,8527e+00 
,9860e+00 
.6037e+00 
.1069e+00 
.6468e+00 
.2533e+00 
.9219e+00 
.6427e+00 
,4062e+00 

e(L) 
,8900e-02 
.82626-01 
.1105e+00 
.6681e+00 
.00506+00 
.24216+00 
.41776+00 
.54476+00 
.63686+00 
.70466+00 
.75486+00 

2.79186+00 

nu 
5 
7 
6 
6 
5 
5 
5 
5 
4 
4 
4 
4 

M b II 
,956-10 
.626-09 
.036-09 
.626-09 
.666-09 
.126-09 
.096-09 
.686-09 
.906-09 
.876-09 
.066-09 
.716-09 

This example serves to demonstrate the power of the formulation to compute the 
bifurcation diagrams in the postbuckling region. 

1 t t t t t^_if < 

(a) 

50 
_ w 

^1 = 

ff^l 
• 0.05 y 

= 0.2 

0 H<€) 10 -15 

Figure 156 Bifurcation diagrams for a beam subjected to proportional 
axial load with constant transverse load (a) problem geometry, (b) deformed 
shapes at output points, (c) load versus vertical displacement at end, (d) load 

versus horizontal displacement at end, (e) load versus rotation at end 
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Summary 
Many problems in mechanics are nonlinear. Some of the most interesting and 
important phenomena associated with the mechanical behavior of def ormable 
bodies are artifacts of nonlinearity. This chapter has been a brief introduction 
to the possibility of numerically computing the response of a nonlinear system. 
Nonlinear analysis remains something of an art because every system exhibits 
nonlinearity in different degrees and manifests in different ways. An algorithm 
that converges well for one problem may not work as well for another. 

The objective of the current chapter was simply to give a baseline under­
standing of nonlinear computations in mechanics and to arm you, the reader, 
with an algorithmic framework from which to launch further study. Treatment 
of the subject of nonlinear computations by exhaustively enumerating the 
many ad hoc methods that have appeared in the literature did not seem to have 
the same pedagogical merit as the approach of outlining a unified framework 
based upon Newton's method with arc-length constraints, and so we chose the 
latter over the former. The computer programs included in this chapter were 
meant more for study than for practical use. The limitations of these simple 
programs should be evident. Perhaps the simplicity will aid the understanding 
of nonlinear computations. Please pardon the biases of this presentation to­
ward Newton's method, toward arc-length constraints, and toward the MATLAB 

programming language. 
Good luck traversing the rocky terrain of nonlinear problems. May the con­

vergence of all of your problems be quadratic. 
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Problems 
286. Modify the program NEWTON to account for initial geometric imperfections in the 
two-bar rigid linkage connected by rotational springs. 

-K-

287. Modify the program NEWTON to analyze 
the three-bar rigid linkage shown. The bars are 
hinged together and are restrained by elastic 
springs that resist vertical motion. The springs 
accrue force in proportion to their extension, € € € 
with modulus k. The system is subjected to an 
axial force P. 

288. Implement the constraint c(6, A) = detA(8,A) = 0 into the program NEWTON to lo­
cate bifurcation points exactly. At the bifurcation point, compute the eigenvectors of the 
tangent stiffness matrix and switch to another equilibrium branch. 

289. Modify the program NEWTON to 
analyze the three-bar rigid linkage 
shown below. This structure has three 
degrees of freedom. The bars are hinged 
together and are restrained by elastic 
springs that resist relative rotation. The 
springs accrue force in proportion to 
their extension, with modulus k. The 
system is subjected to an axial force P. 

Lateral loads can be viewed as im­
perfections to a purely axial loading 
system. Modify the equations of equi­
librium to allow the applications of the lateral loads e^P, e2P,and €3^ at locations €, 2£, 
and 3£ respectively, where e, is a fixed value recording the ratio of the lateral load to the 
axial load. Implement the load imperfections in the program. 

290. Modify the program ELASTICA to incorporate a distributed transverse loading q(x) 
on the cantilever column in addition to the load P. Examine the case where the transverse 
load is proportional to the axial load, as well as the case where the transverse load is fixed 
and the axial load is increased. 

291. Modify the program ELASTICA to incorporate A'̂  base functions. Examine the perfor­
mance of the system as the number of base functions is increased. 

292. Modify the program ELASTICA to use polynomial base functions. Examine the per­
formance of the system as the number of base functions is increased. Compare the perfor­
mance of the polynomial functions with the eigenfunctions. 

293. Modify the program ELASTICA to account for a nonlinear moment curvature relation­
ship of the form 

M(Xo) = 
CJIQKO 
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where EIo and f^o are material constants. Note that for small values of //o» the constitutive 
model reduces to the linear model originally used. The material is hyperelastic because 
an energy function exists such that M — dW{Xo)/dXo. What is the strain energy function 
Wl Plot the bifurcation diagrams for various values of the material constants. 

294. Modify the program ELASTICA to use piecewise linear finite element base functions. 
Examine the performance of the system as the number of base functions is increased. 
Compare the performance of the finite element base functions with the polynomial func­
tions. 

295. Describe a method for using the program NONLINEARBEAM to locate the bifurcation 
points of a system without imperfections. 

296. Explore the features of the program NONLINEARBEAM by using it to solve the cantile­
ver beam problem under a variety of loading scenarios. 

297. Modify the program NONLINEARBEAM to account for initial geometric imperfections 
in the column. Is it sufficient to specify imperfections only in the field >v(jc)? 

298. Modify the subroutine basis in the program NONLINEARBEAM to use piecewise linear 
finite-element base functions. Examine the performance of the system as the number of 
base functions is increased. Compare the performance of the finite element base functions 
with the sinusoids used in the original program. 

299. Modify the basis subroutine in the program NONLINEARBEAM to use the polynomials 
hi(x) E {jc, x^,..., jc^j. Examine the performance of the system as the number of base 
functions is increased using the pure bending problem. Are these functions able to capture 
the exact solution, which is a circular shape, as shown in the text example? Why is conver­
gence so difficult with a large number of base functions? Implement the orthogonal base 
functions described in Chapter 6. Do these base functions work better than the original 
polynomials? 

300. The arc-length constraint forces the next equi­
librium configuration to be a fixed distance from the I ^XV^^y .̂"--̂  ^̂ ^̂  "̂  ̂  
previous converged state. Therefore, all iterates 
must lie on a sphere of radius a centered on the con­
verged state X;,. One of the problems with this strate­
gy is that the equilibrium path pierces the sphere at 
two points (at least). For a highly nonlinear equilib­
rium path the Newton iterations can converge to the 
other point on the sphere, which causes the loading 
direction to change. We can observe this phenome­
non in the program NONLINEARBEAM if the step size is not judiciously chosen. Once the 
loading direction has turned around, it is not likely to change back. Consider another pos­
sible constraint pictured on the following page. 

The difference between the estimate x*' and x̂  is forced to lie in a hyperplane normal 
to the tangent direction d'' = x"" - x„. The normal plane is set a distance a from x̂ ,. 
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Therefore, || d'' || = a. How can one compute the tangent direction d^? Show that the 
normality condition is d*' • d̂  = a^, where the vth increment in state is d*' = x̂  - x„. 
Develop a method based upon a secant direction where d̂  = x„ - x„_i (the previous two 
converged states). How would you start a method based on this definition? Implement 
these constraints in the program NONLINEARBEAM and assess their performance. Are there 
advantages over the arc-length constraint? Are there disadvantages? 

301. When using finite element base functions in the programs ELASTICA and NONLINEAR-

BEAM, most of the integration points contribute nothing to the integrals because the base 
functions are zero over much of the region. Restructure the order of the programs to make 
them more efficient by putting the loop over integration points inside the loop over base 
functions. 

302. Add a subroutine to find the eigenvalues and eigenvectors of K(a) at each point on 
the equilibrium path in the program NONLINEARBEAM to examine the stability of equilibri­
um. Implement a procedure for branch switching so that the program will trace the bifurca­
tion diagram when there are no imperfections. 
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Italic numbers refer to worked examples in the text. Bold numbers refer to problems at 
the back of a chapter. 

acceleration, 91 
alternator, two-dimensional, 300 
angular momentum, balance of, 113, 

121 
applied loading 

for beam theory, 245 
for plate theory, 297 

applied moment 
for beam theory, 247 
for plate theory, 298 

approximation 
fmite element, 216-225 
Galerkin, 197 
Grashoff, for plates, 315 
Kantorovich, 326 
Ritz, 193 

arc-length method, 440 
area 

change of, under deformation, 88, 90 
first moment of, 254 
polar moment of, 254 
second moment of, 254 

assembly of equations, 225 
for little boundary value problem, 

225 
for structural frames, 281 
for the membrane problem, 230 

axiom of locality, 132 
axisymmetric problems, 162 

B 
base functions, 194 

finite element, 218 
ill-conditioned, 206 
polynomial, 195 
roof (finite element), 217 
trigonometric, 195 

base vectors, 4 
basin of attraction, 434 
basis, 4 

canonical, 32 
change of 

for tensors, 21 
for vectors, 20 

beam on elastic foundation, 287, 425 
beam theory, 162 

Bemoulli-Euler, 273 
Timoshenko, 267 

beam-column, 425 
Bernoulli, Jacob, 249 
Bemoulli-Euler beam theory, 273-278 

example of classical solution, 274 
example of Ritz approximation, 276 
mixed boundary conditions, 277 
virtual work functional, 274 

bifurcation 
asymmetric, 367-369 
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diagram, 364 
of equilibrium, 361 
pitchfork, 403 
point, 364 
stable symmetric, 363-369 
unstable symmetric, 365-369 

bi-moment, 284 
bi-shear, 284 
body force, 103 
bordered system of equations, 198 
boundary, of a solid body, 63 
boundary conditions 

displacement, 182 
essential, 181-182,195 
for beams, 256-257 
for plates, 308-310 
force, 182 
homogeneous essential, 199, 200 
mixed, 276 
mixed, for Bernoulli-Euler beam, 276 
natural, 181-182 

boundary value problem 
classical or strong form, 167 
variational or weak form, 167 

buckling mode shapes, 383 
buckling 

linearized analysis, 375-378 
mode shapes, 383, 401 
of discrete MDOF systems, 378-384 
snap-through, 366 

buckling eigenvalue problem, 416 

calculus of variations, fundamental 
theorem of 

one-dimensional, 172 
three-dimensional, 173 

cartographer's map, 64 
Cauchy 

formula 
for beams, 244 
for plates, 296 
for three-dimensional solids, 107 

reciprocal theorem, 105 
stress tensor, 118 
tetrahedron, 105 
triangle, for plates, 296 

Cayley-Hamilton theorem, 33 
characteristic equation, 24 

for linearized buckling analysis, 412 
for principal values of stretch, 24 
Ritz approximation, linearized buck­

ling, 417 
comma notation, for partial differenti­

ation, 42 
computational mechanics, xi 
condition number, of a matrix, 209 
configuration 

deformed, 63 
reference, 63 

conservation of energy, 347 
constitutive equations 

for beams, 252-̂ 255 
for fully nonlinear planar beam, 396 
for linear, three-dimensional elastic­

ity, 140 
for plates, 304 
Saint-Venant Kirchhoff, 147 

constitutive theory, 131 
converged state, 436 
convergence 

of the Ritz method, 201 
of the Ritz method, 200 

coordinate(s), 2 
Cartesian, 2 
cylindrical, 55,128 
system, 2 

comer forces in plates, 318 
critical load, 364, 403 
cross section, of a beam, 242 
curvature, of beam, 254 
curve, geometrical definition, 2 

deformation 
characterization of shearing, 74-77 
compound shearing and extension, 72 
gradient, 67-68 

in terms of displacement, 78 
map, 62-64 

for beams, 250 
for plates, 302 
general definition, 58 
in terms of displacement, 78 

pure bending, 72 
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simple extension, 69 
simple shear, 71 

deformation gradient 
definition of, 67 
in terms of displacement, 78 
polar decomposition of, 82 

dilatation, 80,143 
Dirac delta function, 177 
directional derivative 

example, scalar field, 37 
of a functional, 330 
of a vector field, 43 

displacement 
generalized, 231, 250, 302 
strain in terms of, 78-79 
virtual, definition of, 168 

divergence 
of stress tensor, 44 
of tensor field, 44 
of vector field, 40 
theorem 

for tensor field, 48 
for vector field, 45 

divergence theorem, for a scalar field, 
example, 47 

domain, of a solid body, 63 
drilling degree-of-freedom, 302 
dummy index (summation index), 15 

energy functional, 335 
for Bemoulli-Euler beam, 339 
for Euler's elastica, 398 
for Kirchhoff-Love plate, 340 
for linearized planar beam, 409 
for little boundary value problem, 

338 
Hellinger-Reissner, 353 
Hu-Washizu, 341, 353 

energy principle(s), 338, 341-345 
and the Ritz method, 344 

epsilon-delta identity, 21 
equilibrium 

equations governing 
fully nonlinear planar beam, 391 
linear beam theory, 247 
linear plate theory, 299 
three-dimensional solid, 112 

linear theory, 114 
nonlinear theory, 120 

general requirements of, 112-115 
local form of, 112 
path, 379, 432 

Euler angles, 250 
Euler equation, 343 
Euler load, 328, 400 
Euler parameters, 285 
Euler, Leonhard, 249 
Euler's elastica, 397-407 

numerical computations for, 447 

effective shear in plates, 319 
eigenfunctions, linearized buckling, 401 
eigenvalue problem, 24 

distinct roots, 29 
linearized buckling analysis, 416 
repeated roots, 30 

eigenvalues, 24 
eigenvectors, 24 

determination of, 26 
orthogonality of, 27 
repeated roots of characteristic equa­

tion, 28 
Einstein, A., 15 
elasticity tensor, 136 

isotropic, 151 
energy criterion for static stability, 346 

field, 33 
scalar, 36 
tensor, 44 
vector, 39 

differentiation of, 40 
rate of change of, 40 

finite element approximation, 216 
Lagrangian functions, 222 

finite element method, 194 
automatic assembly of equations, for 

the little boundary value prob­
lem, 223 

flux, 41 
Fourier series, 195, 215 

for plates, 322 
free index, 16 
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freebody diagram, 103 
functional 

definition of, 173 
evaluation of, 174 

functions 
See also base functions 
admissible, 171,175 
collection of, 175 
orthogonal, 210 
square-integrable, 176 

Galerkin approximation, 197, 345 
Galileo, 249 
Gateaux derivative, 332 
Gauss's theorem, 45 
generalized displacements, 231, 250, 

302 
geometrically exact theory, 389 
Gershgorin's theorem, 25 
gradient 

of a scalar field, 38 
of a vector field, 42, 334 

example, 43 
Gram-Schmidt orthogonalization 

of functions, 211 
of polynomials, 212 
of vectors, 210 

Green deformation tensor 
definition, 68 
in terms of displacement, 78 
physical significance of eigenvalues 

of, 81 
polar decomposition, 82 

Green's first identity, 55 
Green's second identity, 55 
Green's theorem, 45 

H 
harmonic functions, 410 
head-to-tail rule, for addition of vectors, 

4 
Hellinger-Reissner energy functional, 

353 
Hessian matrix, 379 
Hooke, Robert, 133 

Hooke's law, 140 
Hu-Washizu energy functional, 341, 353 
hyperelastic material, 135 
hypoelastic material, 138 

I 
ill conditioning, of a matrix, 208 
ill-conditioning, 208 
ill-posed boundary value problem, 160 
imperfections 

effect on bifurcation of continuous 
system, 404 

effect on stability of MDOF systems, 
381 

effect on stable symmetric bifurca­
tion, 369 

effect on unstable symmetric bifurca­
tion, 372 

Ritz approximation, linearized buck­
ling, 419 

index 
column, of matrix, 19 
dummy, 15 
free, 16 
row, of matrix, 19 

inextensible, 397 
inflection point, 412 
initial parameters, method of 

Bernoulli-Euler beam theory, 284 
Timoshenko beam theory, 285 

inner product, of functions, 211 
integration, numerical, 450 

Simpson's rule, 451 
trapezoidal rule, 451 

invariants 
in terms of eigenvalues, 32 
primary, 23 

derivatives of, 139 
principal, 24 

isoparametric mapping, 229 
isotropy, 138-141 

K 
Kantorovich, method of, 326 
kinematic hypothesis 

for beams, 249-252 
for plates, 300-304 
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kinetic energy, 347 
Kirchhoff hypothesis, 315 
Kirchhoff shear, 317 
Kirchhoff-Love plate 

classical equations, 315 
Ritz approximation for, 321 

example, 322 
Koiter 

half-power law, 375 
two-thirds power law, 373, 406 

Kronecker delta, 7,13,16 

Mindlin plate equations, 308 
modulus 

bulk, 143,144 
shear, 143 
Young's, 141,142 

Mohr's circle, 127 
moment. See resultant moment 
Mooney-Rivlin material, 146 
motion 

Eulerian description, 92 
Lagrangian description, 92 

Lagrange multiplier, 79, 111 
Lagrangian, 111 
Lagrangian strain tensor 

definition of, 69 
eigenproperties of, 81 

Lame parameters, 140 
Laplacian, 54 

of the warping function, 260 
limit load, 370, 373 
little boundary value problem, xii, 

165-167 
classical solution to, 166 

load vector, from Ritz approximation, 
227 

load-control incrementation, 439 
loading, applied 

for beam theory, 245 
for plate theory, 297 

localization, 62 

N 
Nanson's formula, 90,118 
Navier, 249 
Navier equations, 307 

for three-dimensional elasticity, 161 
neutral stability, 349 
Newton's method, 25, 433-438 

and the principle of virtual work, 
446-452 

for finding roots of univariate func­
tions, 433 

for solving a nonlinear system of 
equations, 435 

the basic algorithm, 436 
with arc-length constraint, 442 

nodes, 216 
norm of a function, 211 
normal equations, 207 

for vectors, 208 

M 
magnification factor, for beam-columns, 

425 
mass, conservation of, 120 
Mathematica, 204, 205 
matrix 

condition number, 209 
invertibility of, 209 
relation to tensor, 19 

membrane problem 
finite element approximation, 228 
Ritz approximation, 227 

method of weighted residuals, 179 

octahedral planes, 126 
orthogonal 

functions, 210 
transformation, 21 
vectors, 207-216 

orthogonality 
of buckling eigenfunctions, 412 
of principal directions, 27 

perturbation, 348 
Piola transformation, 90 
plane strain, 162 
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plane stress, 125,151,162 
plane-sections hypothesis, 249 
plate modulus, 314 
plate theory, 162 
point, geometrical definition, 2 
Poisson's ratio, 141,142 
polar decomposition, of deformation 

gradient, 82 
positive definite matrix, 351 
principle of virtual forces, 190 
program ELASTICA, 452 

program NEWTON, 444 

program NONLINEARBEAM, 462 

Q 

quadratic form, 345 

resultant force 
beam theory, 243 
plate theory, 295 

resultant moment 
beam theory, 243 
plate theory, 295 

rigid-body motion, 76 
Ritz, Walter, 193 
rotation tensor, 285, 324 

Schwarz inequality, 49 
semi-infinite half-space, 95 
shape functions, for Bernoulli Euler 

beam, 279 
shear coefficient, 259 
shear locking, 281 
shearing angle, 74 
shearing deformation, in cantilever 

beam, 271 
shell theory, 162 
Simo, Juan C , xiii 
Simpson's rule for numerical integra­

tion, 451 
skew symmetry 

of vector cross product, 8 

tensor having, 252 
span, of vector space, 4 
spatial rate of deformation tensor, 92 
spatial spin tensor, 92 
spatial velocity gradient, 92 
spectral decomposition of a tensor, 31 
square-integrable function, 176 
stability, of linear systems, 351 
stiffness matrix, from Ritz approxima­

tion, 227 
strain 

in terms of displacement, 78-79 
one-dimensional measures 

engineering, 59 
Eulerian, 60, 66 
Lagrangian, 59, 66 
logarithmic, 60 
natural, 59 

resultant 
for beam, 252 
for fully nonlinear planar beam, 

395 
for plate, 303 

tensor 
deviator, 144 
Lagrangian, 69 

in terms of displacement, 78 
linearized, in terms of displace­

ment, 79 
virtual 

for finite deformation problems, 
188 

for little boundary value problem, 
170 

strain energy function, uniaxial strain 
state, 134 

strain rates, 93 
Lagrangian strain, 93 

strength of materials, xi 
stress, 103 

comparison of definitions, 122 
hydrostatic pressure, 107 
pure shear, 107 
pure tension, 107 
tensor 

Cauchy, 118 
definition, 107 
deviator, 51,144 
divergence of. See divergence of 

stress tensor 



Index 479 

first Piola-Kirchhoff, 118 
principal values of, 110-112 
second Piola-Kirchhoff, 121 
symmetry of, 113 

Stress power, 135,145 
stretch, 58 

nonuniform, uniaxial, 61 
of a curve, 65-66 

structural analysis, 278 
structural mechanics, 241 
subspace, complete approximating, 195 
summation convention, 15 
surface, geometrical definition, 2 
surface traction, 103 

tangent vector, 65 
tangential moment for plates, 319 
tensor(s), 11-33 

addition of, 17 
components of, 13 
composition of, 18 
field (tensor function), 44 
fourth-order, 137 

isotropic, 141 
generating tensors from other tensors, 

17 
Green deformation, 68 
identity, 13 
invariants, 22 

of general nth order, 51 
principal, 24 

inverse of, 14 
Lagrangian strain, in terms of dis­

placement, 78 
multiplication 

by scalar, 17 
by tensor, 18 

permutation, 10 
product of vectors, 12 
projection of vector onto a plane, 14 
Rate of deformation, 92 
second-order, 11 
skew symmetric, 252 
spectral decomposition of, 31 
symmetric, 18 
transpose, 18 

termination tolerance, 434 
Timoshenko beam theory 

classical form, 267 
example, 270 

Ritz approximation, 271 
example, 272 

virtual work functional, 269 
torsion 

effect of warping restraint, 284 
of a circular shaft, 163 
of elliptical beam, 261 
Saint-Venant warping, 259 

torsional stiffness, 261 
trace of a tensor, 23 
traction, 103 

normal component of, 109 
shearing component of, 109 

trapezoidal rule, 451 
triaxial test, 144,152 
triple scalar product of vectors, 9 

Vainberg's theorem, 336 
proof of, 336 

vector(s), 3-11 
addition of, 4 
angle between, 6 
base, 4 
components of, 4 
multiplication 

by scalar, 5 
cross product, 5, 8 
dot product, 5 
tensor product, 5,12 
triple scalar product, 9 

orthogonal unit, 4 
orthogonality between, 6 
position, 3, 63 
tangent, 65 

velocity, 91 
virtual displacement 

admissible, 171 
definition of, 168 

virtual velocity, 168, 348 
virtual work, 167-169 

discrete principle of, 198 
external 

complementary, 190 
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for beams, 263 
for Kirchhoff-Love plates, 320 
for little boundary value problem, 

169 
for plates, 312 
for three-dimensional solids, 182 

functional 
finite deformation, 187 
for beams, 266 
for Euler's elastica, 398 
for fully nonlinear planar beam, 

393 
for Kirchhoff-Love plates, 321 
for linearized planar beam, 409 
for plates, 313 

internal 
complementary, 190 
Finite deformation, 187 
for beams, 265 
for Kirchhoff-Love plates, 316 
for little boundary value problem, 

170 
for plates, 313 
for three-dimensional solids, 183 

principle of, 160 
complementary, 190 
for beams, 265 
for linear elasticity, 185 
for little boundary value problem, 

178 
for plates, 311-314 
for three-dimensional solids, 184 

volume, change of, under deformation, 
86, 9(? 

volumetric locking, 282 

w 
weak form of differential equation, 179 
weighted residuals, 179 
well-posed boundary value problem, 

160 
Winkler foundation, 287 
work, 167-169 

Yield function, 149 
von Mises, 149 

Yield surface, 149 
Young, Thomas, 133 
Young's modulus, 142 


