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Preface

The last few decades have witnessed a dramatic increase in the application
of numerical computation to problems in solid and structural mechanics. The
burgeoning of computational mechanics opened a pedagogical gap between
traditional courses in elementary strength of materials and the finite element
method that classical courses on advanced strength of materials and elasticity
do not adequately fill. In the past, our ability to formulate theory exceeded our
ability to compute. In those days, solid mechanics was for virtuosos. With the
advent of the finite element method, our ability to compute has surpassed our
ability to formulate theory. As a result, continuum mechanics is no longer the
province of the specialist.

What an engineer needs to know about mechanics hasbeen forever changed
by our capacity to compute. This book attempts to capitalize on the pedagogi-
cal opportunities implicit in this shift of perspective. It now seems more ap-
propriate to focus on fundamental principles and formulations than on classical
solution techniques.

* * * *

The term structural mechanics probably means different things to different
people. To me it brings to mind the specialized theories of beams, plates, and
shells that provide the building blocks of common structures (if it involves
bending moment then it is probably structural mechanics). Structural elements
are often slender, so structural stability is also a key part of structural mechan-
ics. This book covers the fundamentals of structural mechanics. The treatment
here is guided and confined by the strong philosophical framework of continu-
um mechanics and is given wings to fly by the powerful tools of numerical
analysis.
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In essence, this book is an introduction to computational structural mechan-
ics. The emphasis on computation has both practical and pedagogical roots.
The computational methods developed here are representative of the methods
prevalent in the modern tools of the trade. As such, the lessons in computation
are practical. An equally important outcome of the computational framework
is the great pedagogical boost that the student can get from the notion that most
problems are amenable to the numerical methods advocated herein. A theory
is ever-so-much more interesting if you really believe you can crunch numbers
with it. This optimistic outlook is a pedagogical boon to learning mechanics
and the mathematics that goes along with it.

This book is by no means a comprehensive treatment of structural mechan-
ics. It is a simple template to help the novice learn how to think about structural
mechanics and how to express those thoughts in the language of mathematics.
The book is meant to be a preamble to further study on a variety of topics from
continuum mechanics to finite element methods. The book is aimed at ad-
vanced undergraduates and first-year graduate students in any of the mechani-
cal sciences (¢.g., civil, mechanical, and aerospace engineering).

* * * *

The book starts with a brief account of the algebra and calculus of vectors
and tensors (chapter 1). One of the main goals of the first chapter is to introduce
some requisite mathematics and to establish notation that is used throughout
the book. The next three chapters lay down the fundamental principles of con-
tinuum mechanics, including the geometric aspects of deformation and motion
(chapter 2), the laws governing the transmission of force (chapter 3), and ele-
ments of constitutive theory (chapter 4).

Chapters 5 and 6 concern boundary value problems in elasticity and their
solution. We introduce the classical (strong form) and the variational (weak
form) of the governing differential equations. Many of the ideas are motivated
with the one-dimensional “little boundary value problem.” The Ritz method
is offered as a general approach to numerical computations, based upon the
principle of virtual work. Although we do not pursue it in detail, we show how
the Ritz method can be specialized to form the popular and powerful finite ele-
ment method. The Ritz method provides a natural tool for all of the structural
mechanics computations needed for the rest of the book.

Chapters 7 and 8 cover the linear theories of beams and plates, respectively.
These structural mechanics theories are developed within the context of three-
dimensional continuum mechanics with the dual benefit of lending a deeper
understanding of beams and plates and, at the same time, of providing two rele-
vant applications of the general equations of continuum mechanics presented
in the first part of the book. The classical constrained theories of beams (Ber-
noulli-Euler) and plates (Kirchhoff-Love) are examined in detail. Each theory
is castboth as a classical boundary value problem and as a variational problem.
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Chapters 9 through 11 concern structural stability. Chapter 9 explores the
concept of energy principles, observing that if an energy functional exists we
can deduce it from a virtual-work functional by a theorem of Vainberg. The
relationship between virtual work and energy provides an opportunity for fur-
ther exploration of the calculus of variations. This chapter ends with the ob-
servation that one can use an energy criterion to explore the stability of static
equilibrium if the system possesses an energy functional. Chapter 10 gives a
brief, illustrative invitation to static stability theory. Through the examination
of some simple discrete systems, we encounter many of the interesting phe-
nomena associated with nonlinear systems. We distinguish limit points from
bifurcation points, explore the effects of imperfections, and examine the role
of linearized buckling analysis. Chapter 11 extends the ideas of chapter 10 to
continuous systems, applying the machinery developed in chapter 9 to nonlin-
ear planar beam theory.

Structural stability problems create a strong need for a general approach to
nonlinear computations. Chapter 12 provides an introduction to nonlinear
computations in mechanics. Newton’s method serves as the unifying frame-
work for organizing the nonlinear computations. The arc-length method is of-
fered as a general strategy for numerically tracing equilibrium paths of nonlin-
ear mechanical systems. We illuminate the curve-tracing algorithm by
numerically solving Euler’s elastica and subsequently apply the algorithm to
the solution of the fully nonlinear beam problem. Computer programs are pres-
ented at each level of the development to help cement the understanding of the
algorithms.

Juan C. Simo, to whose memory this book is dedicated, was my closest and
dearest friend. We were graduate students at the University of California at
Berkeley in the early 1980s. We spent countless hours in the coffee shops near
campus discussing mechanics. I learned to appreciate mechanics by watching
his deep and clear insight flow from his pen onto his “pad yellow,” as he called
it in his inimitable Spanish accent. In his hands, the equations of mechanics
came to life. Juan’s love for mechanics, his tireless pursuit of knowledge, and
his gift for developing and expressing theory made an indelible mark on me.
His influence is clearly written on these pages.

Juan Simo passed away on September 26, 1994, at the age of 42, after an
eight-month battle with cancer. In his short career, Juan made tremendous con-
tributions to the field of computational mechanics, many of them in the area
of nonlinear structural mechanics. Unfortunately, a classical education in
structural mechanics leaves the student ill-equipped to appreciate Juan’s con-
tributions (not to mention the contributions of many others). The approach I
have taken in this book was inspired by the hope of narrowing the gap between
classical structural mechanics and some of the modern innovations in the field.
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I owe a great debt to Juan that I can repay only by passing on what he taught
me to the next generation of scholars and engineers. I hope this book defrays
some of that debt. ‘

The first edition of the book was born as a brief set of class notes for my
course Applied Structural Mechanics at the University of Illinois. I am in-
debted to Bill Hall, Narbey Khachaturian, and Arthur Robinson for enabling
the teaching opportunity that led to this book. I have loved every minute of the
24 timesI have taught this course. I am indebted to the many students whohave
taken my course, first for inspiring me to write the book and then for gamely
trying to learn from it. I appreciate the help of my former students and post-
docs—Parvis and Bijan Banan (a.k.a. “the bros™), Jiwon Kim, Ertugrul Taciro-
glu, Eric Williamson, and Ken Zuo—for their assistance with the first edition
and later the completion of the solutions to all of the problems in that edition.
I also appreciate the support of my colleagues—especially Bob Dodds, Dennis
Parsons, and Glaucio Paulino—for believing in the course enough to make it
a cornerstone of our graduate curriculum in structural engineering at Illinois.

This second edition of the book is informed by nearly a decade of using the
first edition in my class. I have refined the story and added some important top-
ics. T have tightened up some of the things that were a little loose and loosened
a few that were a bit tight. I even rewrote the computer programs in MATLAB.
I have expanded the number of examples in the text and I have augmented the
problems at the ends of the chapters—tapping into my extensive collection of
problems that have grown from my proclivity to facilitate the learning of me-
chanics through a diet of fortnightly “quizzes.” The revisions for the second
edition were largely made during the fall semester of 2003. The students in that
class endured last minute delivery of the new chapters and did yeoman’s work
in tracking down typographical errors. I am especially appreciative of my own
research assistants—Steve Ball, Kristine Cochran, Ghadir Haikal, Kalyanaba-
bu Nakshatrala, and Arun Prakash—for proofreading the text and making
suggestions for its improvement. Special thanks to Kalyan for providing a tidy
proof of Vainberg’s theorem.

Finally, I am grateful to my wife, Kara, and my children, David, Kirsten, and
Annika for being cheerful and supportive while the book robbed them of my
time and attention. While it was Juan Simo who taught me the joy of mechan-
ics, my family has taught me the mechanics of joy.

Keith D. Hjelmstad
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Vectors and Tensors

The mechanics of solids is a story told in the language of vectors and tensors.
These abstract mathematical objects provide the basic building blocks of our
analysis of the behavior of solid bodies as they deform and resist force. Anyone
who stands poised to undertake the study of structural mechanics has undoubt-
edly encountered vectors at some point. However, in an effort to establish a
least common denominator among readers, we shall do a quick review of vec-
tors and how they operate. This review serves the auxiliary purpose of setting
up some of the notational conventions that will be used throughout the book.
Our study of mechanics will naturally lead us to the concept of the tensor,
which is a subject that may be less familiar (possibly completely unknown) to
the reader who has the expected background knowledge in elementary me-
chanics of materials. We shall build the idea of the tensor from the ground up
in this chapter with the intent of developing a facility for tensor operations
equal to the facility that most readers will already have for vector operations.
In this book we shall be content to stick with a Cartesian view of tensors in rec-
tangular coordinate systems. General tensor analysis is a mathematical subject
with great beauty and deep significance. However, the novice can be blinded
by its beauty to the point of missing the simple physical principles that are the
true subject of mechanics. So we shall cling to the simplest possible rendition
of the story that still respects the tensorial nature of solid mechanics.
Mathematics is the natural language of mechanics. This chapter presents a
fairly brief treatment of the mathematics we need to start our exploration of
solid mechanics. In particular, it covers some basic algebra and calculus of
vectors and tensors. Plenty more math awaits us in our study of structural me-
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chanics, but the rest of the math we will develop on the fly as we need it, com-
plete with physical context and motivation.

This chapter lays the foundation of the mathematical notation that we will
use throughout the book. As such, it is both a starting place and a refuge tore-
gain one’s footing when the going gets tough.

The Geometry of Three-dimensional Space

We live in three-dimensional space, and all physical objects that we are famil-
iar with have a three-dimensional nature to their geometry. In addition to solid
bodies, there are basically three primitive geometric objects in three-dimen-
sional space: the point, the curve, and the surface. Figure 1 illustrates these ob-
jects by taking a slice through the three-dimensional solid body @ (a cube, in
this case). A point describes position in space, and has no dimension or size.
The point P in the figure is an example. The most convenient way to describe
the location of a point is with a coordinate system like the one shown in the fig-
ure. A coordinate system has an origin O (a point whose location we under-
stand in a deeper sense than any other point in space) and a set of three coordi-
nate directions that we use to measure distance. Here we shall confine our
attention to Cartesian coordinates, wherein the coordinate directions are mutu-
ally perpendicular. The location of a point is then given by its coordinates x =
(x1, X2, x3). A point has a location independent of any particular coordinate
system. The coordinate system is generally introduced for the convenience of
description or numerical computation.

A curve is a one-dimensional geometric object whose size is characterized
by its arc length. In a sense, a curve can be viewed as a sequence of points. A
curve has some other interesting properties. At each point along a curve, the
curve seems to be heading in a certain direction. Thus, a curve has an orienta-
tion in space that can be characterized at any point along the curve by the line
tangent to the curve at that point. Another property of a curve is the rate at
which this orientation changes as we move along the curve. A straight line is

P

Figure 1 The elements of the geometry of three-dimensional space
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a curve whose orientation never changes. The curve Cexemplifies the geomet-
ric notion of curves in space.

Assurface is a two-dimensional geometric object whose size is characterized
by its surface area. In a certain sense, a surface can be viewed as a family of
curves. For example, the collection of lines parallel and perpendicular to the
curve C constitute a family of curves that characterize the surface f. A surface
can also be viewed as a collection of points. Like a curve, a surface also has
properties related to its orientation and the rate of change of this orientation as
we move to adjacent points on the surface. The orientation of a surface is com-
pletely characterized by the single line that is perpendicular to the tangent lines
of all curves that pass through a particular point. This line is called the normal
direction to the surface at the point. A flat surface is usually called a plane, and
is a surface whose orientation is constant.

A three-dimensional solid body is a collection of points. At each point, we
ascribe some physical properties (e.g., mass density, elasticity, and heat capac-
ity) to the body. The mathematical laws that describe how these physical prop-
erties affect the interaction of the body with the forces of nature summarize our
understanding of the behavior of that body. The heart of the concept of continu-
um mechanics is that the body is continuous, that is, there are no finite gaps
between points. Clearly, this idealization is at odds with particle physics, but,
in the main, it leads to a workable and useful model of how solids behave. The
primary purpose of hanging our whole theory on the concept of the continuum
is that it allows us to do calculus without worrying about the details of material
constitution as we pass to infinitesimal limits. We will sometimes find it useful
to think of a solid body as a collection of lines, or a collection of surfaces, since
each of these geometric concepts builds from the notion of a point in space.

Vectors

Avector is a directed line segment and provides one of the most useful geomet-
ric constructs in mechanics. A vector can be used for a variety of purposes. For
example, in Fig. 2 the vector v records the position of point b relative to point
a. We often refer to such a vector as a position vector, particularly when a is
the origin of coordinates. Close relatives of the position vector are displace-
ment (the difference between the position vectors of some point at different
times), velocity (the rate of change of displacement), and acceleration (the rate
of change of velocity). The other common use of the notion of a vector, to
which we shall appeal in this book, is the concept of force. We generally think

b
v
a

Figure 2 A vector is a directed line segment
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of force as an action that has a magnitude and a direction. Likewise, displace-
ments are completely characterized by their magnitude and direction. Because
a vector possesses only the properties of magnitude (length of the line) and di-
rection (orientation of the line in space), it is perfectly suited to the mathemati-
cal modeling of things like forces and displacements. Vectors have many other
uses, but these two are the most important in the present context.

Graphically, we represent a vector as an arrow. The shaft of the arrow gives
the orientation and the head of the arrow distinguishes the direction of the vec-
tor from the two possibilities inherent in the line segment that describes the
shaft (i.e., line segments ab and ba in Fig. 2 are both oriented the same way in
space). The length, or magnitude, of a vector v is represented graphically by
the length of the shaft of the arrow and will be denoted symbolically as || v ||
throughout the book.

The magnitude and direction of a vector do not depend upon any coordinate
system. However, for computation it is most convenient to describe a vector
in relation to a coordinate system. For that purpose, we endow our coordinate
system with unit base vectors {e,, e,, €;} pointing in the direction of the coor-
dinate axes. The base vectors are geometric primitives that are introduced
purely for the purpose of establishing the notion of direction. Like the origin
of coordinates, we view the base vectors as vectors that we understand more
deeply and intuitively than any other vector in space. Basically, we assume that
we know what it means to be pointing in the e, direction, for example. Any
collection of three vectors that point in different directions makes a suitable ba-
sis (in the language of linear algebra we would say that three such vectors span
three-dimensional space). Because we have introduced the notion of base vec-
tors for convenience, we shall adopt the most convenient choice. Throughout
this book, we will generally employ orthogonal unit vectors in conjunction
with a Cartesian coordinate system.

Any vector can be described in terms of its components relative to a set of
base vectors. A vector v can be written in terms of base vectors {el, e, e3} as

V = ve; +v,e,+v e, €y

where v,, v,, and v; are called the components of the vector relative to the ba-
sis. The component v, measures how far the vector extends in the e, direction,
as shown in Fig. 3. A component of a vector is a scalar.

Vector operations. An abstract mathematical construct is not really useful
until you know how to operate with it. The most elementary operations in
mathematics are addition and multiplication. We know how to do these opera-
tions for scalars; we must establish some corresponding operations for vectors.

Vector addition is accomplished with the head-to-tail rule or parallelogram
rule. The sum of two vectors u and v, which we denote u + v, is the vector con-
necting the tail of u with the head of v when the tail of v lies at the head of u,
as shown in Fig. 4. If the vectors u and v are replicated to form the sides of a
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e; V3

vy &)
€,

Figure 3 The components of a vector relative to a basis

parallelogram abcd, then u+ v is the diagonal ac of the parallelogram. Sub-
traction of vectors can be accomplished by introducing the negative of a vector,
— v (segment bf in Fig. 4), as a vector with the same magnitude that points in
exactly the opposite direction of v. Then, u— v is simply realized as u+ (—v).
If we construct another parallelogram abfe, then u— v is the diagonal af. It is
evident from the figure that segment af is identical in length and direction to
segment db. A vector can be added to another vector, but a vector and a scalar
cannot be added (the well-worn analogy of the impossibility of adding apples
and oranges applies here).

We can multiply a vector v by a scalar a to get a vector av having the same
direction but a length equal to the original length || v | multiplied by a. If the
scalar a has a negative value, then the sense of the vector is reversed (i.e., it
puts the arrow head on the other end). With these definitions, we can make
sense of Eqn. (1). The components v; multiply the base vectors e; to give three
new vectors v, e;, v, e, and vse,. The resulting vectors are added together by
the head-to-tail rule to give the final vector v.

The operation of multiplication of two vectors, say u and v, comes in three
varieties: The dot product (often called the scalar product) is denoted u - v;
the cross product (often called the vector product) is denoted u X v; and the
tensor product is denoted u & v. Each of these products has its own physical
significance. Inthe following sections we review the definitions of these terms,
and examine the meaning behind carrying out such operations.

Figure 4 Vector addition and subtraction by
the head-to-tail or parallelogram rule
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vy—u
]\

v

Figure 5 The angle between two vectors

The dot product. The dot product is a scalar value that s related to not only
the lengths of the vectors, but also the angle between them. In fact, the dot prod-
uct can be defined through the formula

u-v =|uf|v]cosb(u,v) ©

where cos6(u, v) is the cosine of the angle 6 between the vectors u and v,
shown in Fig. 5. The definition of the dot product can be expressed directly in
terms of the vectors u and v by using the law of cosines, which states that

ol +1vi*=lv—ul+2[u]]v]cosb(u,v)

Using this result to eliminate 6 from Eqn. (2), we obtain the equivalent defini-
tion of the dot product

wev = S(Juf+ v -fv-ul) 3

We can think of the dot product as measuring the relative orientation be-
tween two vectors. The dot product gives us a means of defining orthogonality
of two vectors. Two vectors are orthogonal if they have an angle of /2 radians
between them. According to Eqn. (2), any two nonzero vectors u and v are ort-
hogonalif u - v = 0.If uand v are orthogonal, then they are the legs of aright
triangle with the vector v — uforming the hypotenuse. In this case, we can see
that the Pythagorean theorem makes the right-hand side of Eqn. (3) equal to
zero. Thus, u + v = 0, as before.

Equation (3) suggests a means of computing the length of a vector. The dot
product of a vector v with itself is v - v =| v |[>. With this observation Eqn.
(2) verifies that the cosine of zero (the angle between a vector and itself) is one.

The dot product is commutative, that is, u - v = v - u. The dot product also
satisfies the distributive law. In particular, for any three vectors u, v,and w and
scalars @, B, and ¥, we have

au - (fv+yw) = af(u-v)+ ay(u-w) “
The dot product can be computed from the components of the vectors as

3

3 3
u-v = zu,’ei * zvjej = zuiv]'(e,' * e,)

3
i=1 j=1 i=1 j=1
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In the first step we merely rewrote the vectors u and v in component form. In
the second step we simply distributed the sums. If the last step puzzles you then
you should write out the sums in longhand to demonstrate that the mathemati-
cal maneuver was legal. Because the base vectors are orthogonal and of unit
length, the products e; - e; are all either zero or one. Hence, the component
form of the dot product reduces to the expression

u-v = iu,-v,- Q)

i=1

The dot product of the base vectors arises so frequently that it is worth
introducing a shorthand notation. Let the symbol J; be defined such that

1 if i=j
L= 6
9y {0 it Q] ®)

The symbol 6,-,- is often referred to as the Kronecker delta. Clearly, we can write
e; - ¢; = ;. When the Kronecker delta appears in a double summation, that
part of the summation can be carried out explicitly (even without knowing the
values of the other quantities involved in the sum!). This operation has the ef-
fect of contraction from a double sum to a single summation, as follows

3 3

z z uv;0; = Z uv;

i=1 j=1 i=1
A simple way to see how this contraction comes about is to write out the sum
of nine terms and observe that six of them are multiplied by zero because of
the definition of the Kronecker delta. The remaining three terms always share
a common value of the indices and can, therefore, be written as a single sum,
as indicated above.

One of the most important geometric uses of the dot product is the computa-
tion of the projection of one vector onto another. Consider a vector v and a unit
vector n, as shown in Fig. 6. The dot product v - n gives the amount of the vec-
tor v that points in the direction n. The proof is quite simple. Note that abc is
a right triangle. Define a second unit vector m that points in the direction be.
By construction m - n = 0. Now let the length of side ab be y and the length

Figure 6 The dot product gives the amount of v pointing in the direction n
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of side bc be 8. The vector ab is then yn and the vector bc is S m. By the head-
to-tail rule we have v = yn+ m. Taking the dot product of both sides of this
expression with n we arrive at the result

v'n = (yn+fm)-n =y

since n - n = 1. Buty is the length of the side ab, proving the original asser-
tion. This observation can be used to show that the dot product of a vector with
one of the base vectors has the effect of picking out the component of the vector
associated with the base vector used in the dot product. To wit,

R
<
Ky
]
AMw
<
>
=
i
=

—_

€, 'V = €,

™

—_

We can summarize the geometric significance of the vector components as

Ve = €,V ®

That is, v,, is the amount of v pointing in the direction e,,.

The cross product. The cross product of two vectors u and v results in a vec-
tor u X vthat is orthogonal to both u and v. The length of u X vis defined as
being equal to the area of a parallelogram, two sides of which are described by
the vectors u and v. To wit

A(w,v) =|uxv] ©

as shown in Fig. 7. The direction of the resulting vector is defined according
to the right-hand rule. The cross product is not commutative, but it satisfies the
condition of skew symmetry u X v = —v X u.In other words, reversing the
order of the product only changes the direction of the resulting vector. The base
vectors satisfy the following identities

€, X €, = €, €, X €, = — €
e, X e = € e; X e = —¢ (10)
e3 X el = 62 el X e3 = - 82

Like the dot product, the cross product is distributive. For any three vectors u,
v, and w and scalars @, §, and ¥, we have

uxy A(u, —
I , / y) =[uxv]|

Figure 7 Area and the cross product of vectors



Chapter 1 Vectors and Tensors 9

au X (Bv+yw) = af(u X v) + ay(u X w) (1)
The component form of the cross product of vectors u and v is

3

3 3 3
uxv = Z ue; X Z vie, = Z Z uvy(e; X ¢)
i=1 j=1 i
where, again, we have first represented the vectors in component form and
then distributed the product. Carrying out the summations, substituting the ap-
propriate incidences of Eqn. (10) for each term of the sum, the component form
of the cross product reduces to the expression

uxv= (u2v3—u3v2)el+(u3v1—u1V3)ez+(u1V2—u2v1)e3 (12)

The triple scalar product. The triple scalar product of three vectors u, v,
and w is denoted as (u X v) - w. Since the dot product results in a scalar and
the cross product results in a vector, the order of multiplication is important
(and is shown with parentheses). The triple scalar product has an important
geometric interpretation. Consider the parallelepiped defined by the three vec-
tors u, v, and w shown in Fig. 8. The cross product of u and v results in a vector
that is normal to both uand v. Let us normalize this vector by itslength to define
the unit vector n = u X v/ || u X v ||. The height of the parallelepiped per-
pendicular to its base is the length of the component of w that lies along the unit
vector 0. This height is simply # = w * n. Thus, the volume of the parallele-
piped is the base area times the height

V(u,v,w) = hA(u,v) = (w . Wz—%z—”) [uxv|

Upon simplification, we get the following formula for the volume of the paral-
lelepiped as the triple scalar product of the three vectors u, v, and w

V(n,v,w) = (uxv) w (13)

The triple scalar product can be computed in terms of components. Taking the
dot product of w with u X v, as already given in Eqn. (12), we find

uxyv
lwxv]

T
y

u

Figure 8 Volume and the triple scalar product
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(u X V) W= wl(u2v3—-u3v2) + wz(u3v1—-u1v3) + w3(u1v2—uzv1)

= (u1v2w3+uzv3w1+u3v1wz) - (u3v2w1+u2v1w3+u1v3wz)

where the second form shows quite clearly that the indices are distinct for each
term and that the indices on the positive terms are in cyclic order while the
indices on the negative terms are in acyclic order. Cyclic and acyclic order can
be easily visualized, as shown in Fig. 9. If the numbers 1, 2, and 3 appear on
a circle in clockwise order, then a cyclic permutation is the order in which you
encounter these numbers when you move clockwise from any starting point,
and an acyclic permutation is the order in which you encounter them when you
move anticlockwise. The indices are in cyclic order when they take the values
(1,2,3),(2,3, 1), 0r (3, 1, 2). The indices are in acyclic order when they take
the values (3, 2, 1), (1, 3, 2), or (2, 1, 3).

1 1
7N 2
3 2 3 2

~ S—v
Cyclic Acyclic

Figure 9 Cyclic and acyclic permutations of the numbers 1, 2, and 3

The triple scalar product of base vectors represents a fundamental geomet-
ric quantity. It will be used in Chapter 2 to describe the volume of a solid body
and the changes in that volume. Let us introduce a shorthand notation that is
related to the triple scalar product. Let the (permutation) symbol €, be

1 if (i,j, k) are in cyclic order
€ = 0 if any of (i,j, k) are equal 14)
—1 if (i, j, k) are in acyclic order

The scalars €, are sometimes referred to as the components of the permutation
tensor. There are 27 possible permutations of three indices that can each take
on three values. Of these 27, only three have (distinct) cyclic values and only
three have (distinct) acyclic values. All other permutations of the indices in-
volve equality of at least two of the indices. The 27 possible values of the per-
mutation symbol can be summarized with the triple scalar products of the base
vectors. To wit,

(e:xe) e = eu (15)

With the permutation symbol, the cross product and the triple scalar product
can be expressed neatly in component form as
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3 3 3
uxyv = z z zuiVjE,)'kek
i=1 j=1 k=1
3 3 3 (16)
(uxv)-w = z zzuivjwke,-jk

You should verify that these formulas involving € give the same results as
found previously.

Tensors

The cross product is an example of a vector operation that has as its outcome
anew vector. It is a very special operator in the sense that it produces a vector
orthogonal to the plane containing the two original vectors. There is a much
broader class of operations that produce vectors as the result. The second-or-
der tensor is the mathematical object that provides the appropriate generaliza-
tion. (If the context is not ambiguous, we will often refer to a second-order ten-
sor simply as a tensor.)

Definition. A tensor is an object that operates on a 17
vector to produce another vector. {7

Schematically, this operation is shown in Fig. 10, wherein a tensor T operates
on the vector v to produce the new vector Tv. Unlike a vector, there is no easy
graphical representation of the tensor T itself. In abstract we shall understand
a tensor by observing what it does to a vector. The example shown in Fig. 10
is illustrative of all tensor actions. The vector v is stretched and rotated to give
the new vector Tv. In essence, tensors stretch and rotate vectors.

A tensor is a linear operator that satisfies

T{au+Bv+yw) = aTu + BTv + yTw @18)

for any three scalars a, 8,7, and any three vectors u, v, w. Because any vector
in three-dimensional space can be expressed as a linear combination of three
vectors that span the space, it is sufficient to consider the action of the tensor
on three independent vectors. The action of the tensor T on the base vectors,
for example, completely characterizes the action of the tensor on any other
vector. Thus, it is evident that a tensor can be completely characterized by nine

Tv

Figure 10 A tensor operates on a vector to produce another vector
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scalar quantities: the three components of the vector Te,, the three components
of the vector Te,, and the three components of the vector Te,;. We shall refer
to these nine scalar quantities as the components of the tensor. Like a vector,
which can be expressed as the sum of scalar components times base vectors,
we shall represent a tensor as the sum of scalar components times base tensors.
We introduce the tensor product of vectors as the building block to define a nat-
ura] basis for a second-order tensor.

The tensor product of vectors. The tensor product of two vectors uand v
is a special second-order tensor which we shall denote [u ® v]. The action of
this tensor is embodied in how it operates on a vector w, which is

(uQv]w = (v wlu (19)

In other words, when the tensor u ® v operates on w the result is a vector that
points in the direction u and has the length equal to (v - w) | u ||, the original
length of uw multiplied by the scalar product of v and w. The tensor product of
vectors appears to be a rather curious object, and it certainly takes some getting
used to. It will, however, prove to be highly useful in developing a coordinate
representation of a general tensor T.

The tensor products of the base vectors €; @ €;comprise a set of second-or-
der tensors. Since there are three base vectors, there are nine distinct tensor
product combinations among them. These nine tensors provide a suitable basis
for expressing the components of a tensor, much like the base vectors them-
selves provided a basis for expressing the components of a vector. Like the
base vectors, we presume to understand these base tensors better than any other
tensors in the space. We can confirm that by noting that their action is given
simply by Eqn. (19). In fact, we can observe from Eqn. (19) that

[e.®e]e = (¢ -e)e = dye, (20)

We will use this knowledge of the tensor product of base vectors to help us with
the manipulation of tensor components.

The second-order tensor T can be expressed in terms of its components T;
relative to the base tensors €; & e; as

3 3
T =>>Tle®e] 1)
i=1 j=1

It will soon be evident why we elect to represent the nine scalar components
with a double indexed quantity. Like vector components, the components 7;
are scalar values that depend upon the basis chosen for the representation. The
tensor part of T comes from the base tensors €; & e;. The tensor, then, is a sum
of scalars times base tensors. Like a vector, the tensor T itself does not depend
upon the coordinate system; only the components do.
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A tensor is completely characterized by its action on the three base vectors.
Let us compute the action of T on the base vector e,

Te, =

3 iT,»j[e,-®ej]e,, = iiTijajnei = iT:‘nei (22)
=17 i=1

i j=1 i=1 j=1

The first step simply introduces the coordinate form of T. The second step car-
ries out the tensor product of vectors as in Eqn. (20). The final step recognizes
that the sum of nine terms reduces to a sum of three terms because six of the
nine terms are equal to zero.

We can get some insight into the physical significance of the components
by taking the dot product of e,, andTe,. Recall from Eqn. (8) that dotting a vec-
tor with e,, simply extracts the mth component of the vector. Starting from the
result of Eqn. (22) we compute

3 3
e, Te, = e, > T,e; = zTinaim = T (23)
=1

i i=1

Thus, we can see that T, is the mth component of the vector Te,. We can sum-
marize the physical significance of the tensor components as follows

T,, = e, Te, (24)

The identity tensor. The identity tensor is the tensor that has the property
of leaving a vector unchanged. We shall denote the identity tensor as I, and en-
dow it with the property that Iv = v, for all vectors v. The identity tensor can
be expressed in terms of orthonormal (i.e., orthogonal and unit) base vectors

I = iei®ei (25)

i=1

Of course, this definition holds for any orthonormal basis. To prove that Eqn.
(25), we need only consider the action of I on a base vector e;. To wit

3

3 3
Ie, = z[ei Rele = z(ei “e)e = 26,,- e = ¢
i=1 i=1 i=1
Since the base vectors span three-dimensional space, itis apparentthat Iv = v
for any vector. Observe that Eqn. (25) can br expressed in terms of the Kro-
necker delta as

3

z d;e; ® e)]

3
i=1 j=1

I =
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Hence, J; can be interpreted as the ijth component of the identity tensor.

The tensor inverse. Let us assume that we have a tensor T and that it acts
on a vector v to produce another vector Tv. A tensor stretches and rotates a vec-
tor. It seems reasonable to imagine a tensor that undoes the action of another
tensor. Such a tensor is called the inverse of the tensor T, and we denote it as
T~'. Thus, T~ is the tensor that exactly undoes what the tensor T does. To be
more specific, the tensor T ~! can be applied to the vector Tv to give back v.
Conversely, if the tensor T ~! is applied to the vector v to give the vector Ty,
then the tensor T can be applied to T ~'v to give back the vector v. These opera-
tions define the inverse of a tensor and are summarized as follows

T-Y(Tv) = v, T(T) =y (26)

The above relations hold for any vector v. As we will soon see, the composition
of tensors (a tensor operating on a tensor) can be viewed as a tensor itself. Thus,
we can say that T™'T = Iand TT™! = L

Example 1. As a simple example of a tensor and its operation on vectors, consid-
er the projection tensor P that generates the image of a vector v projected onto
the plane with normal n, as shown in Fig. 11.

Figure 11 The action of the projection tensor
The explicit expression for the tensor is given by
P=I1-n®n 27
where I is the identity tensor. The action of P on v gives the result

Pv

[I-n®n]v
Iv-[n®nv

v—(n-v)n

To see that the vector Pv lies in the plane we need only to show that its dot
product with the normal vector n is zero. Accordingly, we can make the com-
putation Pv - n = (v - n)—(v - n)(n - n) = 0, since n is a unit vector.

Itisinteresting to note that we can derive the tensor P from geometric consid-
erations. From Fig. 11 we can see that, by vector addition, Pv+fn = v for
some, as yet unknown, value of the scalar §. To determine § we simply take the
dot product of the previous vector equation with the vector n, noting that n has
unit length and is perpendicular to Pv. Hence, § = v - n. Now, we substitute
back to get
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Pv =v—fn=v—(v-njn = [I-n®nlv (28)

thereby determining the tensor P.

Component expression for operation of a tensor on a vector. Equipped
with the component representation of a tensor we can now take another look
at how a tensor T operates on a vector v. In particular, let us examine the com-
ponents of the resulting vector Tv.

Tv = i i T;le; ® €] kaek = i i iT,,—vk[ei X ele. (29

Carrying out the summations in Eqn. (29), noting the properties expressed in
Eqn. (20), we finally obtain the result

Tv = i i T,v;e (30)

From this expression, we can see that the result is a vector (anything expressed
in a vector basis is a vector). Furthermore, we can observe from Eqn. (30) that
the ith component of the vector Tv is given by

3
(Tv), = > Ty, 61
j=1
That is, we compute the ith component of the resulting vector from the compo-
nents of the tensor and the components of the original vector. The similarity
between the operation of a tensor and that of a matrix in linear algebra should
be apparent.

The summation convention. General relativity is a theory based on ten-
sors. While Einstein was working on this theory, he apparently got rather tired
of writing the summation symbol with its range of summation decorating the
bottom and top of the Greek letter sigma. What he observed was that, most of
the time, the range of the summation was equal to the dimension of space (three
dimensions for us, four for him) and that when the summation involved a prod-
uct of two terms, the summation was over a repeated index. For example, in
Eqn. (31) the index j is the index of summation, and it appears exactly twice
in the summand T;v;. Einstein decided that, with a little care, summations
could be expressed without laboriously writing the summation symbol. The
summation symbol would be understood to apply to repeated indices.

The summation convention, then,means that any repeated index, also called
a dummy index, is understood to be summed over the range 1 to 3. With the
summation convention, then, Eqn. (30) can be written as
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TV = T,‘jvj‘e,‘

with the summation on the indices i and j implied because both are repeated.
All we have done is to eliminate the summation symbol, a pretty significant
economy of notation. The triple scalar product of vectors can now be written

(u X V) T W= u,-vjwké,-jk

Indices that are not repeated in a product are called free indices. These
indices are not summed and must appear on both sides of the equation. For ex-
ample, the index i in the equation

(Tv) = T,

i gy

is a free index. The presence of free indices really indicate multiple equations.
The index equation must hold for all values of the free index. The equation
above is really three equations,

(Tv), = T, (Tv)2 = Tyv,, (Tv)3 = Ty,

That is, the free index i takes on values 1, 2, and 3, successively.
The letter used for a dummy index can be changed at will without changing
the value of the expression. For example,
(TV)I = T,ij = T,»kvk
A free index can be renamed if it is renamed on both sides of the equation. The
previous equation is identical to

Yy

(Tv) = T,v; = Tuvi

The beauty of this shorthand notation should be apparent. But, like any nota-
tional device it should be used with great attention to detail. The mere slip of
an index can ruin a derivation or computation.

Perhaps the greatest pitfall of the novice index manipulator is to use an index
toomany times. An expression with an index appearing more than twice is am-
biguous and, therefore, meaningless. For example, the term T;v; has no mean-
ing because the summation is ambiguous. The summation convention applies
only to terms involved in the same product; to indices of the same tensor, as in
the case T; = T, + T, + T33; and to indices in a quotient, as in the expression
for divergence, i.e., 9v;/dx; = dv,/dx, + dv,/dx, + v,/ dx,. Terms separated
by a + operation are not subject to the summation convention, and in such a
case an index can be reused, as in the expression T;v; +S;w;. Whenever the
Kronecker delta appears in a summation, it has the net effect of contracting
indices. For example

T,:,- 6 jk = Tzk



Chapter 1 Vectors and Tensors 17

Observe how the summed index j on the tensor component T is simply re-
placed by the free index & on d; in the process of contraction of indices.

In this book the summation convention will be in force unless specifically
indicated otherwise.

Generating tensors from other tensors. We can define sums and products
of tensors using only the geometric and operational notions of vector addition
and multiplication. For example, we know how to add two vectors so that the
operation Tv+ Sv makes sense (by the head-to-tail rule). The question is:
Does the operation T + S make sense? In other words, can you add two tensors
together? It makes sense if we define it to make sense. So we will.

Let us define the sum of two tensors T and S through the following operation

[T+S]v =Tv + Sv 32)

In other words, the tensor [T + S] operating on a vector v is equivalent to the
sum of the vectors created by T and S individually operating on the vector v.

An expression for the components of the tensor [T + S] can then be
constructed simply using the component expressions for Eqn. (32). Let us use
Eqn. (30), which gives the formula for computing the components of a tensor
operating on a vector, as the starting point (no need to reinvent the wheel). We
can write each term of Eqn. (32) in component form and then gather terms on
the right side of the equation to yield

[T+ S],‘jVje,' = TijVjei + S,‘jVjei
From simple identification of terms on both sides of the equation, we get
[T+S); = T, +S;

In other words, the #jth component of the sum of two tensors is the sum of the
ijth components of the two original tensors.

We can follow the same approach to define multiplication of a tensor by a
scalar, as in aT. The scaled tensor aT is defined through the operation

[aT]v = a(Tv) (33

Again, the component expression can be deduced by applying Eqn. (30) to get
[aT];vie; = a(T,jvjei)
= (aT;)ve,

Thus, the components of the scaled tensor are [aT]; = aT;. That is, each
component of the original tensor is scaled by a.



18 Fundamentals of Structural Mechanics

The definition of the transpose of a tensor can be constructed as follows.
The dot product u - Tv is a scalar. One might wonder if there is a tensor for
which we could reverse the order of operation on u and v and get exactly the
same scalar value. There is and the tensor is called the transpose of T. We shall
use the symbol T7 to denote the transpose. The transpose of T is defined
through the identity

v:-Tw=u-Tv (34)

The components of the transpose T? can be shown to be [T”]; = [T];(see
Problem 10). That is, the first and second index (row and column in matrix
notation) of the tensor components are simply swapped. A tensor is called sym-
metric if the operation of the tensor and its transpose give identical results, i.e.,
u - Tv = v : Tu. The components of a symmetric tensor satisfy 7; = T}
We can define a new tensor through the composition of two tensors [ST].
Let the tensor S operate on the vector Tv. We can define the tensor [ST] as

[ST]v = S(Tv) (39)

The components of the tensor ST can be computed as follows
[ST],jVje,' = S,-k[e,- ® ek](ijVjem)
= (S&ijéb,,)vje,-

Contracting the index m in the above expression leads to the formula for the
components of the composite tensor

[ST]; = SuTy (36)

Notice how close is the resemblance between this formula and the formula for
the product of two square matrices.

An alternative composition of two second-order tensors can also be defined
using the dot product of vectors. Consider two tensors S and T. Let the two ten-
sors operate on the vectors u and v to give two new vectors Su and Tv. Now
we can take the dot product of the new vectors. According to Eqn. (34), this
product is equal to

Su:-Tv = u-SY(Tv) = u-[S'T]v

We can view the tensor S”T as a second-order tensor in its own right, operating
on the vector v and then dotted with u. The tensor ST has components

[S'T]; = SuTy 37

Notice the subtle difference between Eqns. (36) and (37). The tensor T T is
always symmetric, even if T is not (see Problem 11).
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It should be clear that we could go on defining new tensor objects ad infini-
tum. Any such definition will emanate from the same basic considerations, and
the computation of the components of the resulting tensors follows exactly
along the lines given above. We shall have the opportunity to make such defini-
tions throughout this book, and thus defer further discussion until needed.

Tensors, tensor components, and matrices. A tensor is not a matrix. How-
ever, if the foregoing discussion of tensors has left you thinking of matrices,
youare not far off the mark. The way we have chosen to denote the components
of a second-order tensor (with two indices, that is) makes the temptation to
think of tensors as matrices quite compelling. We can list the components of
a tensor in a matrix; all of the formulas for tensor-index manipulation are then
exactly the same as standard matrix algebra. To some extent, matrix algebra
can be an aid to understanding formulas like Eqn. (36). On the other hand, a
second-order tensor is no more a three by three matrix than a vector is a three
by one matrix.

Matrices are for keeping books, for organizing computations. A tensor or
a vector exists independent of a particular manifestation of its components; a
matrix is a particular manifestation of its components. So take the analogy be-
tween tensors and matrices for what it is worth, but try not to confuse a tensor
with its components. To do so is rather like being unable to feel cold because
you don’t know the value of the temperature in degrees Celsius. The funda-
mental property of “cold” exists independent of what scale you choose to mea-
sure temperature.

That said, let us back off from this purist view a little and introduce a nota-
tional shorthand that will be useful in stating and solving problems in tensor
analysis. When we solve a particular problem, we will select a coordinate sys-
tem having a particular set of base vectors. The components of any tensor will
be expressed relative to those base vectors. For expedience, we will often col-
lect those components in a matrix as

T, Ty, Ty
T ~ Ty, T,, Typ
I, T, Ts

where the notation T ~ [ ] should be read as “the components of the tensor
T, relative to the understood basis, are stored in the matrix [ ] with the conven-
tion that the firstindex i on the tensor component T; is the row index of the ma-
trix and the second index j on the tensor component is the column index of the
matrix.” We avoid the temptation to use the notation T = [ ] because we do
not want to give the impression that we are setting a tensor equal to a matrix
of its components. If there is any question as to what the basis is, then this ab-
breviated notation does not make sense, and should notbe used. The reason this



20 Fundamentals of Structural Mechanics
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Figure 12 Components of a vector in different coordinate systems

notation is useful is that tensor multiplication is the same as matrix multiplica-
tion if the components are stored in the manner shown.

Change of basis. Consider two different coordinate systems, the first with
unit base vectors {e,, e,, e;} and the second with unit base vectors { g,, g, g3}
Any vector v can be expressed in terms of its components along the base vec-
tors of a coordinate system, as shown in Fig. 12. Clearly, the components of a
vector depend upon the coordinate system even though the vector itself does
not. It seems reasonable that the components of the vector with respect to one
basis should be related somehow to the components of the vector with respect
to the other basis. In this section we shall derive that relationship.

A vector can be expressed equivalently in the two bases as

vV = ve = vg (38)

We can derive the relationship between the two sets of components by taking
the dot product of the vector v with one of the base vectors, say g;. From Eqn.
(38) we obtain

g v =y = vj(g‘--e,-)

since v;(g; - &) = v;8; = V. Let us define the nine scalar values

Q; = g ¢ (39

that arise from the dot products of the base vectors. The nine values record the
cosines of the angles between the nine pairings of the base vectors. Note that
the first index of Q is associated with the g base vector and the second index
of Q is associated with the e base vector. Be careful. The dot product is commu-
tativeso Q; = e; - g;(the first index of Q is still associated with g and the sec-
ond index is still associated with e!).

The formula giving one set of vector components in terms of the other is then

v, = Qv (40)
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We can find the reverse relationship by dotting Eqn. (38) with e; instead of g;.
Carrying out a similar calculation we find that

vi = Qu (41)

The components of a second-order tensor T transform in a manner similar
to vectors. A tensor can be expressed in terms of components relative to two
different bases in the following manner

T = Ti[e:®g] = T;[e.Be¢]
where T is the ijth component of T with respect to the base tensor [g; & g|]
and T is the jth component of T with respect to the base tensor [e; & €;]. The

relationship between the components in the two coordinate systems can be
found by computing the product g,, - Tg,, as follows

gm : Tgn = Tmn = th(gm ) ei)(gn : ej)
Computing instead e, + Te, we can find the inverse relationship. Once again

noting that Q; = g; + e;, we can write the formulas for the transformation of
second-order tensor components as

Tmn = QmianTij Tmn = QimanTij (42)

The main difference between transforming the components of a tensor and
those of a vector is that it took two Q terms to accomplish the task for a tensor,
one for each index, but only one Q term for a vector. It should be evident that
higher-order tensors, i.e., those with more indices, will transform analogously
with the appropriate number of Q terms present.

As you might expect, the components of the coordinate transformation
Q; = g: * ¢; have some interesting properties. These components make up
what is called an orthogonal transformation. The orthogonal transformation
components have the following property

Qkiij = 617 Qiijk = 6:7 (43)

The proof of each equation relies on the expression for the identity tensor:
(ge-e)ge-e) = ¢ [2:@ale = e ¢ = J,
(8 e(g -e) = 8- [e®elg = g8 = J

Problem 13 asks you to explore further the relationship between the two bases,
and clarifies the notion of the O, being components of a tensor Q.

Example 2. There is a relationship between the permutation symbol and the
Kronecker delta that is often referred to as the € — § identity. The identity is
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€iik€imn = 5jm61m - 6jnalan

Let us prove this identity.

First note that the cross product is equivalent to operation by a skew-symmet-
ric tensor [u X | defined to have components as follows

0 _u3 U,
[ux] ~| 4 0 -y
—u, u 0

One can easily verify that [u X v = u X v. By matrix multiplication one can
also verify that [u X |7[v x | = (u - v)I — v ® u. Now,

€ik€imn = ((ei X ) - ek)((ei X en) - €,)
((ek X €) - ei)(ei (e X €n))

(e, X €) - [e ®e;j(en X €n)

il

[er x]e; - [en X e

= ¢ e x]7[es X

e - [(er - el — e, D e;le,

(e - en)(e, - €5) — (& " €x)(e; " €m)

= 6jmalm - 6jnalan
There are other, possibly simpler proofs of the e -9 identity. For example, one
can recognize that the identity is simply 81 equations. You can verify them one

by one. This example has the additional merit of illustrating various vector and
tensor manipulation techniques.

Tensor invariants. In subsequent chapters we will have occasions to won-

der whether there are properties of the tensor components that do not depend
upon the choice of basis. These properties will be called tensor invariants. The
identities of Eqn. (43) will be useful in proving the invariance of these proper-
ties. The argument will go something like this: Let f(T;) be a function of the
components of the tensor T. Under a change of basis, we can write this function
in the form f(QxQ;Ty). If the function has the property that

fQuQiTw) = f(Ty)

then the function fis a tensor invariant. Since it does not depend upon the coor-
dinate system, we can say that it is an intrinsic function of the tensor T, and
write f(T). Three fundamental tensor invariants are given by

i) =T, LM = T,;T; [ = T,;T; Ty

(44)
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The proof that f,(T) is invariant is straightforward

fl(T) = iu‘ = QuQiTu = 6k1Tk1 = Tu

by the formula for change of basis, contracted to give T}, and Eqn. (43). The
invariance of the other two functions can be proved in a similar manner (see
Problem 18). Any function of tensor invariants is itself a tensor invariant. We
shall sometimes refer to the invariant functions fi(T), fx(T), and f(T) as the
primary invariants to distinguish them from other invariant functional forms.

The trace of a tensor is simply the sum of its diagonal components. We use
the operator “tr” to designate the trace. Thus, tr(T) = T} is the first invariant
of the tensor T. The second and third invariants can also be expressed in terms
of the trace operator. Let us introduce the notation of a tensor raised to a power
as T? = TTand T?> = TTT, where the components are given by the formula
for products of tensors, Eqn. (36), as

[T7] Tin T [T%] = T,T..T, (45)

ij Y

It should be evident that a tensor can be raised to any (integer) power. Taking
the trace of T? and T° gives tr(T?) = [T?] and tr(T?) = [T3]u_. Using these
expressions in Eqn. (45) we find that the three invariants can be equivalently
cast in terms of traces of powers of the tensor T as

AT = u(T), f(T) =u(T?), f(T) = tr(T% (46)

By extension, one can establish that f,(T) = tr(T")is an invariant of the ten-
sor T for any value of n (see Problem 18). One can prove that the invariants
for n = 4 canall be computed from the first three invariants (see Problem 19).

Eigenvalues and eigenvectors of symmetric tensors. A tensor has proper-
ties independent of any basis used to characterize its components. As we have
justseen, the components themselves have mysterious properties called invari-
ants that are independent of the basis that defines them. It seems reasonable to
expect that we might be able to find a representation of a tensor that is canoni-
cal. Indeed, this canonical form is the spectral representation of the tensor that
can be built from its eigenvalues and eigenvectors. In this section we shall build
the mathematics behind the spectral representation of tensors.

Recall that the action of a tensor is to stretch and rotate a vector. Let us con-
sider a symmetric tensor T acting on a unit vector n.T If the action of the tensor
is simply to stretch the vector but not to rotate it then we can express it as

Tn = un 47

where u is the amount of the stretch. This equation, by itself, begs the question
of existence of such a vector n. Is there any vector that has the special property
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thataction by T is identical to multiplication by a scalar? Is it possible that more
than one vector has this property?

Equation (47) is called an eigenvalue problem. Eigenvalue problems show
up all over the place in mathematical physics and engineering. The tensor in
three dimensional space is a great context in which to explore the eigenvalue
problem because the computations are quite manageable (as opposed to, say,
solving the vibration eigenvalue problem of structural dynamics on a structure
with a million degrees of freedom).

Avector nthat satisfies the eigenvalue problem is a special vector (an eigen-
vector) that has the property that operation by the second-order tensor T is the
same as operation by the scalar u (the eigenvalue). Equation (47) can be writ-
ten as [T— yI]n = 0, which is a linear homogeneous system of equations.
(Note that 0 is the zero vector). In order for this system to have a nontrivial solu-
tion (i.e., n # 0), the determinant of the coefficient matrix must be equal to
zero. That is,

Ty—u T, Ty
det[T—ul] =det| 7, Tp-u T, | =0 (48)
T Iy, Ty—p

If we carry out the computation of the determinant, we get the characteristic
equation (a cubic equation in the case of a three by three matrix) for the eigen-
values u. The characteristic equation can be written in the form

-+ Lp—Iu+1; =0 (49)

where the coefficients of the characteristic polynomial

Iy = «(T), I = 3{B-u(T?)], I = det(T) 0
are invariants of the tensor T. We shall refer to I, II;, and I1I;as the principal
invariants to distinguish these functions from the primary invariants. The de-
terminant of a tensor can be expressed in terms of the primary invariants fi(T),
f(T), and f5(T) (see Problem 23), so all three of the principal invariants are
functions of the primary invariants (and vice versa). The principal invariants
can be expressed in component form as

+ The definition of the eigenvalue problem does not require that n be a unit vector. In
fact, it should be obvious that if n satisfies Eqn. (47) then so does any scalar multiple
of n. Setting the length of the eigenvector is usually considered arbitrary with many
choices available. However, in many applications there is an auxiliary condition that
determines the length of the vector. For the two most important cases that we will con-
sider in solid mechanics (principal values of stress and strain tensors) the vector n must
be unit length. Assuming unit length from the outset removes some ambiguity without
loss of generality.
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1 1
Ir=T; II;= E(TiiT}j— TijTij ), i, = gfijkflmn Tilij Ty, (51)

Because the coefficients of the characteristic equation are invariants of the
tensor T it follows that the roots x4 do not depend upon the basis chosen to de-
scribe the components and hence are intrinsic properties of T.

Finding the roots of the characteristic equation. The cubic equation has
three roots (not necessarily distinct) that correspond to three (not necessarily
unique) directions. If the cubic equation cannot be factored, then the roots can
be found iteratively. For example, we can use Newton’s method to solve the
nonlinear equation g(x) = 0. Given a starting value x,, we can compute
successive estimates of a root of g(x) = 0 (see Chapter 12) as

_ 8(x)
!
8'(x)
where g'(x;) is the derivative of g(x) evaluated at the current iterate x;. The
starting value determines the root to which the iteration converges if there are
multiple roots. In the present context, let x; be the estimate of the eigenvalue

4 at the ith iteration. The next estimate can be computed from Newton’s for-
mula as

Xiv1 = X; (52)

20— L+ I
32 = 2px, + I,

Xisy (33)
The iteration continues until |x, — x,_,| is less than some acceptable toler-
ance. Then the eigenvalue is y = x,,.

We can always take, as a starting value, x, = 0. However, Gershgorin’s
theorem might be of some help in estimating a good starting point for the New-
ton iteration. Gershgorin’s theorem simply states that the diagonal element T;
of the tensor T might be a good estimate of the eigenvalue u;. The quality of
the estimate depends upon the size of the off-diagonal elements of T. In fact,
the theorem states that if you draw a circle centered at T; with radius

3

ro= I (54)

j=1

J#i
i.e., the sum of the absolute values of the off-diagonal elements, then u;lies
somewhere in that circle, as shown in Fig. 13. (For symmetric matrices the ei-
genvalues are always real, so that they lie on the real axis. Nonsymmetric ma-
trices can have complex eigenvalues, and in such cases the extra dimension im-
plied by the circle is important.) There is a catch. If two circles overlap, then
the only thing we can conclude is that both of the two associated eigenvalues
lie somewhere in the union of those two circles. For the case illustrated in Fig.
13, we know that T5;—r; < u; < T3 +r;. We also know that the other two
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Figure 13  Graphical representation of Gershgorin’s theorem

eigenvalues satisfy Ty, —r, < u, 4, < Ty, +r,, i€, they lie somewhere be-
tween extremes of the two circles. Clearly, if the off-diagonal elements of the
tensor are small, the diagonal elements are very good estimates of the eigenva-
lues. In any case, the diagonal elements should be good starting points for the
Newton iteration. It also provides a means of checking our eigenvalues once
we have found them. If they do not lie within the proper bounds, they cannot
be correct. This theorem applies to matrices of any dimension.

Once one root is determined, one can use synthetic division to factor the root
out of the cubic, leaving a quadratic that can be solved by the quadratic formu-
la. Alternatively, we could simply use Eqn. (53) from another starting point in
the hope that it would converge to one of the other roots (there is no guarantee
that the iteration will converge to a root different from one already found).

Determination of the eigenvectors. The cubic equation has three roots,
which we call u,, u,, and u,. Each of these roots corresponds to an eigenvec-
tor. Let the eigenvectors corresponding to @, i4,, and u; be called ny, n,, and
n;, respectively. These eigenvectors can be determined by solving the system
ofequations [T —x,;I]n; = 0(noimplied sum on ). However, by the very def-
inition of the eigenvalues, the coefficient matrix [T —u,I] is singular, so we
must exercise some care in solving these equations.

Let us try to find the eigenvector n, associated with x4, (any one of the eigen-
values). Let us assume that the eigenvector has the form

n;, = n¥e, +nde,+nde,

Our aim is to determine the, as yet unknown, values of n?, n, and n9. To aid
the discussion let us define three vectors that have components equal to the col-
umns of the coefficient matrix [T —u ,»I]

Ty —p; T, Ty
tp ~ Ty t) ~1| Tp—u, t9 ~ Ty
Ty Ty, Ty —

The equation [T —,1]n, = 0canbe written as (dropping the superscript “(i)”
just to simplify the notation)
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nt, + nyt, + nst; =0 (55)

It should first be obvious that the vectors {t,, t,, t;} are not linearly indepen-
dent. Infact, we selected g, precisely to create this linear dependence. Besides,
if these vectors were linearly independent then, by a theorem of linear algebra,
the only possible solution to Eqn. (55) would be #n, = n, = n; = 0, whichis
clearly at odds with our original aim.

Consider the case where the eigenvalue u;,is distinct (i.e., neither of the oth-
er two eigenvalues is equal to it). In this case at least two of the three vectors
{t,, t;, t;} are linearly independent. The trouble is we do not know in advance
which two. There are three possibilities: {t,, t,}, {t;, t;}, and {t,, t;}. We can
write Eqn. (55) as

nat,tngty; = —n,t, (56)

where no summation is implied and the integers {a, ,y} take on distinct values
of 1,2, or 3 (i.e., no two can be the same). Our three choices are then {a, B,v}
= {1,2,3},{2,3,1}, or {3, 1, 2}. Equation (56) is overdetermined. There are
more equations (3) than unknowns (2). However, by construction these equa-
tions should be consistent with each other. Hence, any two of the equations
should be sufficient to determine 7, and 7. To remove the ambiguity we can
replace Eqn. (56) with its normal form by taking the dot product first with re-
spect to t, and then with respect to t,to give two equations in two unknowns:

] e
tot, toot || "t t,
Among the three choices of {a, 8,7} at least one must work. Equation (57) will
not be solvable if the coefficient matrix is singular. That would be true if its de-
terminant was zero, i.e., if (ta - t, )(tﬁ . tﬂ) = (ta ‘b ) 2 If this is the case then
it is also true that n, = 0, which can certainly be verified once you have suc-
cessfully solved the problem. If your first choice of {a, 8,y} did not work out,
then try another one.

One of the important things to notice from Eqn. (57) is that n, and n; can
only be determined up to an arbitrary multiplier #,. To solve the equations one
can simply specify a value of n, (n, = 1 will work just fine). The vector can

be scaled by a constant g to give the final vector n = g(naea +nge;+ nyey).
The condition of unit length of n establishes the value of g as

0 = (m+ni+n)"? (58)
Orthogonality of the eigenvectors. One interesting feature of the eigenva-

lue problem is that the eigenvectors for distinct eigenvalues are orthogonal, as
suggested in the following lemma.
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Lemma. Let n, and n, be eigenvectors of the symmetric tensor T cor-
responding to distinct eigenvalues u; and u;, respectively (that is,
they satisfy Tn = un). Then n, is orthogonal to m, i.e.,, m; - m; = 0.

Proof. The proof is based on taking the difference of the products of
the eigenvectors with T in different orders (no summation onrepeated
indices)

0 = llj‘Tll,-—ni'Tnj

= nj N (ﬂini\) il | P (ﬂjnj> (59)
= (/‘i‘/‘j) n; - m;

The first line of the proof is true by definition of symmetry of T. The
second line substitutes the eigenvalue property Tn = un. The last
line reflects that the dot product of vectors is commutative. Since we
assumed that the eigenvalues were distinct, Eqn. (59). canbe true only
if n; - n; = 0, that is, if they are orthogonal. [}

Notice that orthogonality does not hold if the eigenvalues are repeated be-
cause Eqn. (59). is satisfied even if n, - n; = 0. We will see the ramification
of this observation in the following examination of the special cases.

Special cases. There are two special cases that deserve mention. Both corre-
spond torepeated roots of the characteristic equation. The main concern is how
to find the eigenvectors associated with repeated roots.

If u, = uy = p, we have the case that two of the roots are equal, but the
third is distinct. For the distinct root u, we can follow the above procedure and
find the unique eigenvector n,. The vectors corresponding to the double eigen-
value are not unique. If we have two eigenvectors n, and n, corresponding to
Mo = Mg = u,thenany vector thatis alinear combination of those two vectors,
n = an, +bny, is also an eigenvector. The proof is simple

Tn = T(ana+bnﬂ>

= aTn,+bTny

= aun,+bung
;t(ana+bnﬁ> = un

il

Since the eigenvectors are orthogonal for distinct eigenvalues, the physical in-
terpretation of an eigenvector n corresponding to the double eigenvalue u is
that it is any vector that lies in the plane normal to n,, as shown in Fig. 14.

There is a clever way of finding such a vector. The tensor [I -n® n] isa
projection tensor. When applied to any vector m, it will produce a new vector
that is orthogonal to n. Specifically
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n,

Figure 14 Physical interpretation of
eigenvectors for repeated eigenvalues

m=[I-n®nm = m— (n-m)n (60)

is orthogonal to n (prove it by computing the value of the dot product of vectors
n and ). Thus, to compute the eigenvectors corresponding to the double root,
we need only take any vector m in the space (not collinear with n,) and com-
pute

i, =m- (n, m)n, (61)

then normalize as n; = T,/ || 1, ||. To get a third eigenvector that is orthogonal
to the other two, we can simply compute the cross product n, = ngz X n,.

The second special case has all three of the eigenvalues equal, g, = u, =
43 = p.In this case, any vector in the space is an eigenvector. If we need an
orthonormal set of three specific vectors, we can apply the same procedure as
before, starting with any two (noncollinear) vectors.

Example 3. Distinct roots. Consider that the components of the tensor T are giv-
en by the matrix of values

3 -1 0
T~ -1 3 0
0 0 3

The invariants are I, = 9, Il = 26, and IIl; = 24. The characteristic equation
for the eigenvaluesis —u®+9u®—26u + 24 = 0. This equation can be factored
(not many real problems have integer roots!) as

—(u-2)p-3)u—-4)=0

showing that the roots are 4, = 2, u, = 3,and u; = 4. (Note that Gershgorin’s
theorem holds!) The eigenvector associated with the first eigenvalue can be
found by solving the equation [T—~,I|n, = 0. We can observe that

100 th =e —e,
[T—pd]~{-1 1 0| = = —e+e
0 0 1 t(31) = ¢,

Taking the choice {a, 8, ¥} = {2, 3, 1}, Eqn. (56) gives

1)¢(1 D) — — 1)1
ADED 4 OED = — LD
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It is interesting to note what happens for other choices of the normal equations
in the preceding example. In particular, it is evident that t” = —t(. If we
were to make the choice {a, 8,7} = {1, 2, 3} then the coefficient matrix for the
normal equations would be singular. This observation is also consistent with
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Letting n(ll) = 1, the normal equations, Eqn. (57), take the form

SRR

which gives n{) = 1 and n{" = 0. Thus, the eigenvector for u; = 2 is
l‘ll = el + ez
The remaining two eigenvectors can be found in exactly the same way, and are
n, = ¢, n; = ¢ —§&

These vectors can, of course, be normalized to unit length.

the fact that n{’ = 0.

Example 4. Repeated roots. Consider that the components of the tensor T are
given by the matrix of values

5 -1 -1
T~} -1 5 -1
-1 -1 5

The invariants are I = 15, Il = 72, and III; = 108. The characteristic equa-
tion for the eigenvalues is

— W+ 1542 — T2 + 108 = 0
or —({u—-3)u-6)u-6=0

showing that the roots are 4, = u, = 6, and u; = 3. The eigenvector associat-
ed with the distinct eigenvalue u; can be found by solving the equation
[T ~u;In; = 0 as in the previous example. The result is

1
n, = =(e te,t+e
3 7 (e, +e,+e;)
The eigenvectors corresponding to the repeated root must lie in a plane orthogo-
nal to n;. We can select any vector in the space and project out the component
along n;. Letususe m = e,. Project out the part of the vector along n; (see Ex-
ample 1)
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n, = oPm = o[I-n;®n,le

where the constant @ was selected to give the vector unit length. Finally, n; can
be computed as n; = n, X njto give

The spectral decomposition. If the eigenvalues and eigenvectors are
known, we can express the original tensor in terms of those objects in the fol-
lowing manner

3
Zﬂini R n (62)
i=1

Note that we need to suspend the summation convention because of the num-
ber of times that the index i appears in the expression. This form of expression
of the tensor T is called the spectral decomposition of the tensor. How do we
know that the tensor T is equivalent to its spectral decomposition? As we indi-
cated earlier, the operation of a second-order tensor is completely defined by
its operation on three independent vectors. Let us assume that the eigenvectors
{m,;, n,, n;} are orthogonal (which means that any eigenvectors associated
with repeated eigenvalues were orthogonalized). Let us examine how the ten-
sor and its spectral decomposition operate on n;

Tn; = i,u [n n, n;, = Z,u, n n zﬂ,éqn

Thus, we have concluded that both tensors operate the same way on the three
eigenvectors. Therefore, the spectral representation must be equivalent to the
original tensor. A corollary of the preceding construction is that any two ten-
sors with exactly the same eigenvalues and eigenvectors are equivalent.

The spectral decomposition affords us another remarkable observation. We
know that we are free to select any basis vectors to describe the components
of a tensor. What happens if we select the eigenvectors {n,, n,, n;} as the ba-
sis? According to Eqn. (62), in this basis the off-diagonal components of the
tensor T are all zero, while the diagonal elements are exactly the eigenvalues
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#r 0 0
T~|0 u, 0
0 0 u

The invariants of T also take a special form when expressed in terms of the
eigenvalues. The invariants are, by their very nature, independent of the basis
chosen to represent the tensor. As such, one must get the same value of the in-
variants in all bases. Those values will, of course, be the values computed in
any specific basis. The simplest basis, often referred to as the canonical basis,
is the one given by the eigenvectors. In this basis, the invariants can be repre-
sented as

It = py+p,+us
Iy = pipiy + s + o (63)
I = ppops

Example 5. Consider a tensor T that has one distinct eigenvalue u; and a re-
peated eigenvalue u, = u;. Use the spectral decomposition to show that the
tensor T can be represented as

T = 4[{n®n] + x,[I-nQ@ n]

where n is the unit eigenvector associated with the distinct eigenvalue ;.

Let n; = n, n,, and n, be eigenvectors of T. Further assume that these vec-
tors are orthogonal (remember, if they are not orthogonal due to a repeated root,
they can always be orthogonalized). The sum of outer products of orthonormal
vectors is the identity. Thus,

I = ini®ni = n®n+zni®ni
i=1 i

Write T in terms of its spectral decomposition as
3 3
T = z.ui[ni® n] = un®n+ z.ui[ni ® n,
iz i=2

3
/‘1n®n+/‘2zni®ni

i=2

#n®n + u,[I -~ nQ n]

There is great significance to this result. Notice that the final spectral representa-
tion does not refer to n, and n, at all. Since these vectors are arbitrarily chosen
from the plane orthogonal to n these vectors have no intrinsic significance (other
than that they faithfully represent the plane). In this case there are only three in-
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trinsic bits of information: ., u,, and n. Hence, this representation of T is ca-
nonical.

The Cayley-Hamilton theorem. The spectral decomposition and the char-
acteristic equation for the eigenvalues of a tensor can be used to prove the
Cayley-Hamilton theorem, which states that

T -LT+I1ILT-1I,1I = 0 (64)

where T? = TTand T® = TTT are products of the tensor T with itself. Using
the spectral decomposition, one can show that (Problem 22)

™ = i(#i)m n; ®n;

i=1
Using this result, and noting that I = n; @ n;(sum implied), we can compute

3
T - LT+ I,T - OLY = ) (4} = I + Irp, — 1I)n, @ m,
i=1
All of the eigenvalues satisfy the characteristic equation. Thus, the term in pa-
rentheses is always zero, thereby proving the theorem.

Vector and Tensor Calculus

A field is a function of position defined on a particular region. In our study of
mechanics we shall have need of scalar, vector, and tensor fields, in which the
output of the function is a scalar, vector, or tensor, respectively. For problems
defined on a region of three-dimensional space, the input is the position vector
x. A function defined on a three-dimensional domain, then, is a function of
three independent variables (the components x,, x,, and x; of the position vec-
tor x). In certain specialized theories (e.g., beam theory, plate theory, and plane
stress) position will be described by one or two independent variables.

A field theory is a physical theory built within the framework of fields. The
primary advantage of using field theories to describe physical phenomena is
that the tools of differential and integral calculus are available to carry out the
analysis. For example, we can appeal to concepts like infinitesimal neighbor-
hoods and limits. And we can compute rates of change by differentiation and
accumulations and averages by integration.

Figure 15 shows the simplest possible manifestation of a field: a scalar func-
tion of a scalar variable, g(x). A scalar field can, of course, be represented as
a graph with x as the abscissa and g(x) as the ordinate. For each value of posi-
tion x the function produces as output g(x). The derivative of the function is
defined through the limiting process as
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A= [ g(x) dx
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Figure 15 A scalar field g(x) is a scalar-valued function of a scalar
variable. Differentiation gives the slope of the curve at a point and
integration gives the area A under the curve between two points.

Ax—0 Ax (65)

L (g(x+Ax)—g(x)) - 20

The derivative has the familiar geometrical interpretation of the slope of the
curve at a point and gives the rate of change of g with respect to change in posi-
tion x. Many of the graphical constructs that serve so well for scalar functions
of scalar variables do not generalize well to vector and tensor fields. However,
the concept of the derivative as the limit of the ratio of flux, g(x + Ax) — g(x)
in the present case, to size of the region, Ax in the present case, will generalize
for all cases.

Figure 16 illustrates that a segment [ x, x+ Ax] has a left end and a right
end. If we ascribe a directionality to the segment by imagining the positive di-
rection to be in the direction of the + x axis, then the left end is the “inflow”
boundary and the right end is the “outflow” boundary of the segment. We can
think of the flux of g as being the difference between the outflow and the inflow.
For a scalar function of a scalar variable that is simply g(x + Ax) —g(x). Ac-
cording to Eqn. (65), the derivative dg/dx is the limit of the ratio of flux to size
of the region.

In three-dimensional space we shall generalize our concept of derivative
(rate of change) using an arbitrary region B having volume () with surface
€2 having unit normal vector field n, as shown in Fig. 17. We will define various

8(x) // (%) N
gx+Ax)
Ax
x x+Ax

Figure 16 The “flux” of a scalar field g(x) on the region [x, x + Ax]
is the difference in the function values at the ends of the segment.
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Figure 17 A region B in three-dimensional space with volume
¥ (®B) and surface Q with outward unit normal vector field n.

types of derivatives of various types of fields in the following sections, but all
of these derivatives will be the limit of the ratio of some sort of flux (outflow
minus inflow) to the volume of the region as the volume shrinks to zero. In
these definitions the flux will involve an integral over the surface area and the
normal vector n will help to distinguish “inflow” from “outflow” for the situa-
tion at hand. For each definition of derivative we will develop a coordinate ex-
pression that will tell us how to formally “take the derivative” of the field. The
coordinate expressions will all involve partial derivatives of the vector or ten-
SOr components.

The integral of the function between the limits b and ¢ gives the area be-
tween the graph of the function g(x) and the x axis (see Fig. 15). For any scalar
function of a scalar variable one can think of the integral as the “area under the
curve.” Integration is the limit of a sum of infinitesimal strips with area g(x)dx.
The total area is the accumulated sum of the infinitesimal areas. The geometric
notion of integration is quite independent of techniques of integration based
upon anti-derivatives of functions because there are methods of integration
(e.g., numerical quadrature) that do not rely upon the anti-derivative. In our de-
velopments here we need to think of integrals both in the sense of executing
integrals (mostly later in the book) and in the more generic sense of accumulat-
ing the limit of a sum.

In three dimensional space we will encounter surface integrals and volume
integrals. Most of the time we will not use the notation of “double integrals”
for surface integrals and “triple integration” for volume integrals, but rather
understand that

[irmfoso [irm ffros

where the variables and infinitesimals must be established for the coordinate
system that is being used to characterize the problem at hand. Again, tech-
niques of integration are important only in particular problems to carry out
computations.

The second aspect of integration that we will introduce in this chapter is the
idea of integral theorems that provide an equivalence between a surface inte-
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g(x) X, g(x) = constant

(a) (b) -

.

X X,

Figure 18 (a) A graph and (b) a contour map of a scalar field in two dimensions

gral and a volume integral. We shall see that the divergence theorem (in any
of its many specific forms) is the multivariate counterpart to the one-dimen-
sional fundamental theorem of calculus

f(ﬁ’—ii)dx = 50 - 5@ @7

The remainder of this chapter is devoted to reviewing of some of the basic
ideas from vector calculus and the extension of those ideas to tensor fields.

Scalar fields of vector variables. A scalar field is a function g(x) that as-
signs a scalar value to each point x in a particular domain. The temperature in
a solid body is an example of a scalar field. As an example consider the scalar
field g(x) =| x ||*= x?+x2+x2, in which the function g(x) gives the square
of the length of the position vector x. In two dimensions, a scalar field can be
represented by either a graph or a contour map like those shown in Fig. 18.

As with any function that varies from point to point in a domain, we can ask
the question: At what rate does the field change as we move from one point to
another? It is fairly obvious from the contour map that if one moves from one
point to another along a contour then the change in the value of the function
is zero (and therefore the rate of change is zero). If one crosses contours then
the function value changes. Clearly, the question of rate of change depends
upon direction of the line connecting the two points in question.

Consider a scalar field g in three dimensional space evaluated at two points
aand b, asshown in Fig. 19. Point a islocated at position x and point b is located
at position x+ Asn, where n is a unit vector that points in the direction from
a to b and As is the distance between them. The directional derivative of the
function g in the direction n, denoted Dg * m, is the ratio of the difference in
the function values at @ and b to the distance between the points, as the point
b is taken closer and closer to a
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b _ g(x+Asn)
X3 x
2 a Asn

X 8(x)
X1

Figure 19 Interpretation of the gradient of a scalar field

g(x+Asm) — g(x)
As

The directional derivative of g can be computed, using the chain rule of dif-
ferentiation, from the formula

Dg(x) m = lim ©®)

d _ 98
Dg(x) -m = —(g(x+em))_, = ) (69)
In essence, the directional derivative determines the one-dimensional rate of

change (i.e., d/de) of the function at the point X and just starting to move in the
fixed direction n. Because x and n are fixed, the derivative is an ordinary one.

Example 6. Directional Derivative. Consider the scalar function given by the
expression g(x) = x - X = x, ;. We can compute the directional derivative in
the direction m by Eqn. (69). Noting that the augmented function can be written
as g(x+en) = (x,+en)(x,+en,), we compute the directional derivative as

SN

Dg(x) - n [(xk+£nk)(xk+snk)}e=0

2
[xkxk + 2exyn, + ¢ ”k”k}e=0

[2xen, + 2emny), o = 2xm,

It is also useful to note that dg/dx; = O,x,+x,8, = 2x,. Then, according to
Eqn. (69) again, we have

g
Dg-n = 5;‘_'1,- = 2x;n;

which is identical to the previous result.

From Eqgn. (69) it is evident that the partial derivatives of the function g play
a key role in determining the rate of change in a particular direction. In fact,
the partial derivatives dg/dx; give the rate of change of g in the direction of the
coordinate axis x,. These three quantities can be viewed as the components of
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a vector called the gradient of the field. The gradient of a scalar field g(x) is
a vector field Vg(x), which, in Cartesian coordinates, is given by

d
Ve = % )

where summation on j is implied. With this definition of the gradient, the direc-
tional derivative takes the form

Dg-n = Vg-n (7D
-8 e =8 e = 98 _ %
= ‘Ex;ei njej = 5‘;‘-’1]' i ej - E;injdij = axin,'

We know that the directional derivative of g is zero if nis tangent to a con-
tour line. Therefore, the vector Vg must be perpendicular to the contour lines,
as shown in Fig. 18b, because Vg - n = 0 in that direction. For the direction
n = Vg/| Vg | itis evident from Eqn. (71) that Dg - n =|| Vg(x) ||. Hence,
|| Vg(x) { is the maximum rate of change of the scalar field g.

We can define the gradient of a scalar field independent of any coordinate
system. Consider an arbitrary region B with surface €2 and outward unit nor-
mal vector field n, shown in Fig. 17. The gradient is the ratio of the flux gnover
the surface to the volume ¥(®), in the limit as the volume of the region shrinks
to zero. To wit

= 1 __.1
Vg = vl(%l’_l’o ‘(f(?B)Lgn‘M (72)

where () is the volume of the enclosed surface.

Equation (72) does not depend upon a specific coordinate system. Equation
(70) is a formula for the gradient in rectangular Cartesian coordinates. The der-
ivation of Eqn. (70) from Eqn. (72) is very instructive. To compute with Eqn.
(72) we need to select a specific region B so that we can compute the flux and
the volume and take the limit as the volume shrinks to zero. The simplest pos-
sible choice is the cuboid with sides parallel to the coordinate planes shown in
Fig. 20. The volume of this region is ¥(®B) = Ax,Ax,Ax;. The surface €2
consists of six rectangles each with constant normal n pointing in the direction
of one of the base vectors. Furthermore, the six faces occur in pairs with nor-
mals n = + e; on which x; is constant over the entire face (with a value of x;
for the face with normal — e; and x; + Ax; for the face with normal e; ). Hence,
we can compute the flux as

fgncﬂ = ZI [a(x+Ax.e)e + g(x)(—e)| A, (73)

i=1

where Q; is the rectangular region with area A; over which x;is constant. Note
that A; = Ax,Ax;, A, = Ax;Ax,, and A; = Ax,Ax, are the areas of the
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Figure 20 A particular region for the computation of flux and
volume needed to compute derivatives in multivariate calculus

faces. Next, we can recognize that the volume is ¥(B) = A;Ax; (no sum) for
any i=1, 2, 3. Finally, we can recognize that

,%j (+) a4, 74)
Q

is simply the average of ( - ) over the integration region ;. In the limit, as the
volume and the face areas shrink to zero, the average values will approach the
values at x. Therefore, Eqn. (72) can be written as

3 —
Ve = > 1i I%i j lim (g(”A"“e‘) g(x)) dA, e,
Q.

Ax~0 Ax;
3
= Zag(’f) e; (75)

The limiting process for Ax; can be moved inside the integral over €2; because
x; is constant for that integral. This limit is, of course, the partial derivative of
g with respect to x;. That partial derivative is a function of the other two vari-
ables which are not constant over that face. However, we then take the limit
of the average over the region of integration to give the final result.

As we shall see, this approach will work in essentially identical fashion for
developing coordinate expressions for all of the derivatives in this chapter.

Vector fields. A vector field is a function v(x) that assigns a vector to each
point x in a particular domain. The displacement of a body is a vector field.
Each point of the body moves by some amount in some direction. The force
induced by gravitational attraction is a vector field.

Figure 21 shows two examples of vector fields. The pictures show the vec-
tors at only enough points to get the idea of how the vectors are oriented and
sized. The second vector field shown in the figure can be expressed in func-
tional form as

v(X) = x;€,+x,e, (76)
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The vectors point in the radial direction, and their length is equal to the distance
of the point of action to the origin.

In general, if our base vectors are assumed to be constant throughout our do-
main, then the vector field can be expressed in terms of component functions

v(x) = vi(®)e; %)

For example, from Eqn. (76) we can see that the explicit expression for the
components of the vector field are v, (X) = x;, v,(X) = X, and v5(x) = 0.For
curvilinear coordinates, the base vectors are also functions of the coordinates.

There are as many ways to differentiate a vector field as there are ways of
multiplying vectors. The analogy between vector multiplication and vector
differentiation is given in the following table

Multiplication Differentiation
u-v dot divv  divergence
uXxXv cross curlv  curl
u®v tensor Vv gradient

As was the case for vector multiplication, each different way to differentiate
a vector field yields a result with different character. For example, the diver-
gence of a vector field is a scalar field, while the gradient of a vector field is
atensor field. Each of these derivatives, however, represents the rate of change
of the vector field in some sense. Each one can be viewed as the “first deriva-
tive” of the vector field. In the sequel, we shall give a definition for each of
these derivatives and give an idea of what they physically represent.

The divergence of a vector field. One way to measure of the rate of change
of a vector field is the divergence. Consider again a domain B with enclosed
volume ¥(3) and boundary € with unit normal vector n, as shown in Fig. 17.
Let us assume that the body lives in a vector field v(x). Thus, at each point x
in B there exists a vector v(x). Let the flux be v - n on the boundary Q. The

v(x)

. f”f//f

Figure 21 A vector field assigns a vector to each point in a domain
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Figure 22 The flux through the area dA in unit time

divergence of the vector field is defined as the limit of the ratio of flux to vol-
ume, in the limit as the volume shrinks to zero. To wit

div(v) = lim @Lv-ndfx (78)

where dA is the infinitesimal element of area defined on the surface.

We can better understand why the integrand v - n is called the flux if we
think of the vector field v as the particle velocity in a fluid flow, wherein the
vectors would be tangent to particle streamlines. The product v - n would then
represent the total amount of fluid that escapes through the area dA on the
boundary per unit of time, as shown in Fig. 22. The physical significance of the
product v - n is that the volume of fluid that passes through the area dA in unit
time is equal to the base area of the cylinder dA times the height of the cylinder
v - n. Note that streamlines that are tangent to the boundary (i.e., v - n = 0)
do not let any fluid out, while streamlines normal to the boundary let it out most
efficiently.

Let us compute an expression for the divergence of a vector field in Carte-
sian coordinates, again using the simple cuboid shown in Fig. 20. Following
the same conventions we can compute the flux as

3

I vondd = ZI [V(X+Ax,-e,-) e+ V(X) - (—e,-)]dA,- (79)

i=1

where, again, €; is the rectangular region with area A; over which x; is
constant. Substituting A; = ¥(B)/Ax, we get

div(v) = i lim lj lim (V(’”A""e")—v(x)) dA; - e (80)

40 A | axo Ax;

i=1 ¢

Taking the limit of the average of the limit, as before, we arrive at the expres-
sion for the divergence in Cartesian coordinates:

div(v) = 2R . ¢ = 2 1)

ax; T ax
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Note that the summation convention applies to indices that are repeated in a
quotient. A common notation for the partial derivative is (+),; = 3(*)/dx.
This notation is usually referred to as the comma notation for partial deriva-
tives. This notation is useful if there is no ambiguity the variable of differenti-
ation. In this abbreviated notation, the divergence has the more compact ex-
pression div(v) = v, with summation implied across the comma. It should be
evident that the comma notation is convenient for index manipulation.

The gradient of a vector field. Consider again the domain B with boundary
Q shown in Fig. 17. The gradient of a vector field v(X) is a second-order tensor
defined as the limit of the ratio of the flux v @ nover the surface to the volume,
as the volume shrinks to zero. To wit

Vv = lim 79

—I——Iv®ndA (82)
Q

Again, ¥(B) is the volume of the region B, € is the surface of the region, and
n is the unit normal vector field to the surface. With a construction similar to
the one used for the divergence, we can compute a coordinate expression for
the gradient. The component expression for Vv in Cartesian coordinates is

_ (%)
T o

J

Vv

[e.®e] (83)

where summation is implied for both i and j. Thus, the components of Vv are
simply the various partial derivatives of the component functions with respect
to the coordinates, that is, the component [Vv]; gives the rate of change of the
ith component of v with respect to the jth coordinate axis.

We can interpret the gradient of a vector field geometrically by considering
the construction shown in Fig. 23. Consider two points a and b that are near to
eachother (i.e., Asisvery small). The unit vector n points in the direction from
a to b. The value of the vector field at a is v(X) and the value of the vector field

v(x+Asn) —v(x)

v(x) / v(x+Asn)

X1

Figure 23 Interpretation of the gradient of a
vector field with the directional derivative
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atbis v(x + Asn). Since the vector field changes with position in the domain,
these two vectors are different in both length and orientation. If we transport
a copy of v(x) and position it at b (shown dotted), then we can compare the dif-
ference between the two vectors. The vector that connects the head of v(x) to
the head of v(x+ Asn)is v(x + Asn)— v(x). This vector represents the differ-
ence in the vector between points a and b. If we divide this difference by As,
then we get the rate of change as we move in the specified direction. Finally,
taking the limit as As goes to zero, we get the directional derivative

. V(x+Asn) - v(x)
i, As
Like the analogous formula for scalar fields, the quantity Dv(x) - n is called
the directional derivative because it gives the rate of change of the vector field

in the direction n. The limiting process above suggests that we can compute the
directional derivative as

Dv(x) -n =

Dvx) - n = Llvx+em)] (84)
A straightforward application of the chain rule for differentiation gives
Dv(x)'n = [Vv]|n (85)

The directional derivative provides the answer to the question: What is the rate
of change of the vector field? But Eqn. (85) makes it clear that the tensor Vv
contains all of the information needed to assess rate of change in any direction.

Example 7. Consider a vector field given by the following explicit expression
V(X) = x,x,x;(x, e, +x,€,+x;e;). The components of the vector field are giv-
en by the following expressions

V) = X%, vy = XX3x;, V3 = X XX0
The gradient of this vector field can be computed from Eqn. (83). The result is
the following tensor field
W(x) = 2xxx350e; ® €] + xixs[e; ® €] + xixy[e; @ €3]
+ xx;le;, ® e)] + 2xxx5(e;, ® €] + x,x3[e; @ €3]
+ xyxife; ® ] + x,x3[e; ® €] + 2x1x,x30e; @ €]
The components of the tensor Vv can be put in matrix form as follows
2%, x,X3 x2x; x2x,
Vv ~ x3x; 2%, x,X5 x,x2

x2x§ x1x§ 2x, x,%4
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The divergence of a vector field can be computed from Eqn. (81). Itis worth not-
ing that the divergence is simply the trace of the gradient

div(v) = tr{Vv)

where the trace is the sum of the diagonal components of the tensor. Therefore,
for the present example, div(v) = 6x,x,x.

One can define the curl of a vector field in a completely analogous way by con-
sidering the flux v X n (see Problem 45). The details are left to the reader.

A comment on notation for derivatives. There are many notations used
to characterize operation in vector calculus. In this book we stick to “div” and
V (some authors use “grad”). Occasionally it is useful to use a shorthand nota-
tion for gradients of scalar and vectors fields

_ 98 av
Vg = %’ Vv = x (86)
While this notation is a bit sloppy it is convenient. For many problems in me-
chanics we use more than one coordinate system. When we take derivatives
we must specify the variable of differentiation (if it is ambiguous). For the di-
vergence we will often use “div” and “DIV” to distinguish between two
choices. For the gradient we will often use the notation V,(+) or V,(+)toindi-
cate the variable of differentiation.

Divergence of a tensor field. A tensor field is a function that assigns a ten-
sor T(x) to each point X in the domain. Consider a tensor field T(x) on aregion
B with surface €2 having unit normal vector field n. There are many ways to
differentiate a tensor field. In solid mechanics we are primarily interested in
one way. By analogy with vector differentiation, we define the divergence of
a tensor field

@~ ¢ (EB)

divT = lim J TndA (87)

where, as before, ¥(B) is the volume of the region B, L is the surface of the
region, and n is the unit normal vector field to the surface. Since the integrand
Tnis a vector, divT is a vector.

One can use the definition of the divergence to compute a component ex-
pression and to prove the divergence theorem for tensor fields, by following
the same arguments we have used for vector fields. Let us compute an expres-
sion for the divergence of a tensor field in Cartesian coordinates, again using
the simple cuboid shown in Fig. 20. Following the same conventions we can
compute the flux as
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3
[ Tndd = > I [T(x+Axe)e, + T®)(—e)]dd, 3
Q i=1 Jo

where, again, €; is the rectangular region with area A; over which x; is
constant. Substituting A; = ¥(B)/Ax; we get

3 Ax.e,)~T
div(T) = 2 lim ij lim (T(x+ x€;) (X)> e, (39)

i=1 i Axi_.o Axl
i

Taking the limit of the average of the limit, as before, we arrive at the expres-
sion for the divergence in Cartesian coordinates:

T,
div(T) = M, = —i-_(Te,-) = aa"—x(x)e,- (90)
j

It should be evident that all of the forms of the divergence of a tensor field given
in Eqn. (90) are equivalent. The convenience of one form over another depends
upon the application.

Integral Theorems

The divergence theorem. There is an integration theorem worth mention-
ing here because it comes up repeatedly in solid mechanics. We call it the diver-
gence theorem because it involves the divergence of a vector field. Consider
again a region % of arbitrary size and shape, with boundary €2 described by its
normal vectors n. The divergence theorem can be stated as follows

jdivvdV = Iv-ndA (91)
B Q

This remarkable theorem, also known as Green’s theorem or Gauss’s theorem,
relates an integral over the volume of a region to an integral over the boundary
of that same region. It applies to any sufficiently well-behaved vector field
v(X), and, thus, is very powerful. The proof of the divergence theorem can be
carried out along many lines. The one in Schey (1973) is particularly descrip-
tive. Schey’s argument goes something as follows.

Partition the region B into N small subregions B, each having volume
¥(B)), surfaces L2;, and unit outward normal vector field n, as illustrated in
Fig. 24. The surface of a certain subregion is the union of interior surfaces
shared with adjacent subregions and (possibly) part of the original exterior sur-
face €. The normal vectors along a shared surface between two adjacent sub-
regions point in opposite directions, as shown in the figure. Consequently, if
we sum the fluxes over all of the subregions we get
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N
ZIV'H"‘M"=JV'"‘1A 92)
Q; Q

i=1

In other words, the contributions of fluxes across the interior surfaces cancel
each other out because there is only one v at a given point on the surface (pro-
vided that v is a continuous field) while one normal is the negative of the other.

Let us define the “almost divergence” of the vector field to be the finite ratio
of flux to volume of subregion B;

D,[v] = ?f_(liB:)'L_v - n, dA, (93)

and observe that D;[v] — div(v) in the limit as ¥(B,) — 0. Multiplying Eqn.
(93) through by ¥(®;) and summing over all N subregions, we can see from
Eqn. (92) that

]v-ndA = iﬂ)i[v]?r(%,.) (94)

This equation holds no matter how many subregions there are in the partition.
As the number of partitions is taken larger and larger the size of the subregions
shrinks. In the limitas N — o the discrete elements pass to their infinitesimal
limits, that is, D,;[v] = div(v)and ¥(B,) — dV. The limit of the sum is the in-
tegral over the volume

N

lim Zﬂ)i[v]?/'(EB,-) = I divv dV (95)
i=1 R

thereby completing the proof.
The utility of defining the divergence with the intrinsic formula, Eqn. (78),
should be evident from the proof of the divergence theorem. This proof might

Figure 24 A region in three-dimensional space partitioned into subregions B;,
each with volume ¥°(®;), surface §;, and unit outward normal vector field n;.
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not have the level of rigor that a mathematician would like (the limiting process
and crossover to infinitesimals being the sloppiest point), but the geometric ba-
sis lends it a clarity that is more than adequate for our purposes here.

The divergence theorem holds for any vector field v(x) that is well behaved.
Asimple way to think about “well-behavedness” is to consider some of the bad
things that might happen on the way to the limit. In particular, any of the ob-
jects, like ,[v], must exist for all possible subdivisions. If the vector field has
a singular point (v — ®), then eventually the subdivision process will en-
counter it, and, for the subdomains on whose boundaries the singularity lies,
D,[v]is not defined. Similarly, if the field has a bounded jump along some sur-
face (where v~ # v on opposites sides of the jump), then for those subdo-
mains that have a boundary on the jump surface, the fluxes will not cancel out.
Many of these pathologies can be treated by enhancing the integral theorems
with features that account for them. We do not have to worry about the patholo-
gies if our vector field v and its divergence are continuous over the domain B
and on the surface £2.

Example 8. The divergence theorem for the gradient of a scalar field is

ngdV = fgndA
3 Q

where B is a region with surface £ having unit outward normal vector field n.
Verify the relationship by applying it to the function g = x? +x3 +x3 defined
on a cylinder of unit radius and unit height, centered at the origin.

n=e, X3

23

Figure 25 Circular cylinder definition for Example 8.

The integral of the gradient over the volume is best done in cylindrical coor-
dinates. Let x; = rcos6, x, = rsiné, and x; = z. The gradient of g can be
computed as Vg = 2x = 2(re, +ze;), where e(8) = cosfe, + sinfe,. The
volume integral can be carried out as follows:

h e2n eR
ngdV = f f f 2(re 0)+ze;)rdrdfdz = mwR*h e,
3 070 0

(Observe that the integral of e,(6) with respect to 8 from O to 2 is zero). The
surface has the following characteristics:
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Bottom Surface: z =0 n=—e, g=1r2
Top Surface: z=h n=+e, g =r’+n
Lateral Surface: r =R n=e, g = R*+7

The surface integral can be carried out as follows, noting that the integrand for
the top and bottom surfaces reduces to (r>+h?)e, — r’e; = h’e,

fgndA
Q

Clearly, the volume and surface integrals have the same value, as the divergence
theorem promises.

2 (R b op2n
j h2e3rdrd0+j j (R*+2%)e,(0) Rdf dz

jﬂ 0 0 J0

= 7R%h%e,

There are integral theorems for the gradient of a scalar field, the gradient of
a vector field and a tensor field (see next section) that are analogous to the di-
vergence theorem. The statements and proofs of these theorem are left as an
exercise (Problem 46).

Divergence theorem for tensor fields. Any tensor field satisfies the following
integral theorem (divergence theorem)

JdideV = JTndA (96)
3B Q

where, as before, ¥(B) is the volume of the region B, Q is the surface of the
region, and n is the unit normal vector field to the surface. Proof of the diver-
gence theorem for tensor fields is left as an exercise (Problem 46).

Additional Reading
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J. H. Wilkinson, The algebraic eigenvalue problem, Oxford University Press,
Oxford, 1965.
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Problems

1. Compute the values of the following expressions
(@) 9;
(b) 6:}'6:]'
(€) C;0udy
(d) 0,50,.0, ... 05,0,, (enough terms to exhaust the whole alphabet)

2. Let two vectors, u and v, have components relative to some basis as u = (5, —2, 1)
and v = (1, 1, 1). Compute the lengths of the vectors and the angle between them. Find
the area of the parallelogram defined by u and v.

3. The vertices of a triangle are given by the position vectors a, b, and ¢. The components
of these vectors in a particular basis area = (0,0,0),b = (1, 4, 3),and ¢ = (2, 3,1).Using
a vector approach, compute the area of the triangle. Find the area of the triangle projected
onto the plane with normal n = (0, 0, 1). Find the unit normal vector to the triangle.

4. Let the coordinates of four points @, b, c and d be givenby  *3 d

the following position vectors a=(1, 1, 1), b=(2, 1, 1), ¢=(1, 2, ¢
2), and d=(1, 1, 3) in the coordinate system shown. Find vectors *2 a&
normal to planes abc and bcd. Find the angle between those vec- x b

tors. Find the area of the triangle abc. Find the volume of the tet-
rahedron abcd.

5. Demonstrate that (u X v) - w = u,v;w,¢, from basic operations on the base vectors.

6. Show that the triple scalar product is skew-symmetric with respect to changing the or-
der in which the vectors appear in the product. For example, show that

uUXv)-w= —(vXu- w
To generalize this notion, any cyclic permutation (e.g., u, v, W —> w, u, v) of the order of
the vectors leaves the algebraic sign of the product unchanged, while any acyclic permuta-
tion (e.g., w, v, w — v, u, w) of the order of the vectors changes the sign. How does this

observation relate to swapping rows of a matrix in the computation of the determinant of
that matrix?

7. Use the observationthat |u—v||2 = (u—v) - (u—v)along with the distributive law
for the dot product to show that

u-v = 2(fulf+ v -]v-ul?)

8. Prove the Schwarz inequality, Ju - v| < ||u ||| v|. Try to prove this inequality with-
out using the formula u - v = u ||| v || cos6(u, v).

9. Show that [u ® v]7 = v ® u using the definition of the transpose of a tensor and by
demonstrating that the two tensors give the same result when acting on arbitrary vectors

aandb.

10. Show that the components of a tensor T and its transpose T7 satisfy [T7]; = [T];:
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11. Show that the tensor TTT is symmetric.

12. Consider any two tensors S and T. Prove the following:
() det{TT) = det(T)

(®) det{ST) = det(S) det(T)

(©) [ST]T =TTST

@ [ST]"!=T"'S"!

13. Consider two Cartesian coordinate systems, one with basis {e,, e,, €;} and the other
with basis {g;, 8, &;}- Let @; = g; - €;be the cosine of the angle between g; and e;.
(a) Show that g; = Qe; and ¢; = Q,g; relate the two sets of base vectors.

(b) We can define a rotation tensor Q such that e; = Qg; Show that this tensor can be
expressed as Q = Q;[g; ® g;), thatis, Q; are the components of Q with respect to
the basis [g; ® g]. Show that the tensor can also be expressed in the form
Q=[e;®g]

() We can define a rotation tensor Q7, such that g; = Qe (the reverse rotation from
part (b). Show that this tensor can be expressed as Q7 = Q;le; ® e], thatis, Q; are
the components of Q7 with respect to the basis [e; ® e]. Show that the tensor canalso
be expressed in the form Q7 = [g; ® e,].

(d) Show that QQ = I, which implies that the tensor Q is orthogonal.

14. The components of tensors T and S and the components of vectors u and v are

1 2 0 0 -2 1 1 1
T~|2 0 1 S~| 2 0 -1 v~|1 u~|1
0 1 2 -1 1.0 1 2

Compute the components of the vector Su. Find the cosine of the angle between u and Su.
Compute the determinants of T, S, and TS. Compute T;T;; and u;T;Sv;

15. Verify that, for the particular case given here, the components of the tensor T and the
components of its inverse tensor T ™! are

2 -1 0 3 2 1
T ~|-1 2 -1 T“1~% 2 4
0 -1 2 1 2 3

16. Consider two bases: {e;, e,, €3} and |g;, g, g}. The basis {g;, g,, g3} is given in
terms of the base vectors {e,, e,, €;} as

g = —;g(e1+e2+e3), g = ;—g(zel_ez_e3)a g = /L;(ez"es)

The components of the tensor T and vector v, relative to the basis {e,, e,, €5} are

0 -1 1 1
T~1 1 0 -1 v~ |2
-1 1 0 3

Compute the components of the vector Tv in both bases. Compute the nine values of
T;TyTy(i.e.,fori, I =1, 2,3). Find the components of the tensor [T +T7]. Compute T;.
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17. Consider two bases: {€y, 5, €;} and {g;, g, &5}, where
g = ¢ te,te 8 =¢e,te; 8 = €76
Compute Qj; for the given bases. Compute the value of Q0. Explain why the identity

Q. Q; = 0,;does not hold in this case.
Now consider a vector v = e, +2e,+3e; and a tensor T given as

T=[e,Qe-¢ Q¢ +[e;De ¢ e;|+[e;Re,—e,Des)
Compute the components of the vector Tv in both bases, i.e., find v;and v; so that the fol-

lowing relationship holds Tv = v;e; = v;g,. Find the cosine of the angle between the vec-
tor v and the vector Tv. Find the length of the vector Tv.

18. A general nth-order tensor invariant can be defined as follows

flM) = T, , T, - T

CRCLS inf
where {i,, i,, ..., in} are the n indices. For example, when n = 2 we can use {i, j} to give
() = T;T;; when n = 3 we can use {i, j, k} to give f5(T) = T;T; T Prove that
f»(T) is invariant with respect to coordinate transformation.

19. Use the Cayley-Hamilton theorem to prove that for n = 4 all of the invariants f,(T),
defined in Problem 18, can be computed from f,(T), f,(T), and f3(T).

20. From any tensor T one can compute an associated deviator tensor T, which has the
property that the deviator tensor has no trace, i.e., tr(T,,) = 0. Such a tensor can be ob-
tained from the original tensor T simply by subtracting a = %tr(T) times the identity
from the original tensor, i.e., Ty, = T—aL Show that tr(T,,) = 0. Show that the prin-
cipal directions of T,,, and T are identical, but that the principal values of T,,, are reduced
by an amount a from those of the tensor T.

21. Consider atensor T that has all repeated eigenvalues g, = u, = u; = u. Show that
the tensor T must have the form T = g1

22. Prove that the product of a tensor with itself # times can be represented as

3

™ = Z(/‘i)n 0,

i=1

Hint: Observe that [n; ® n;][n; ® n;] = ;[n; ® ny] (no summation implied).
23. Show that the determinant of the tensor T can be expressed as follows
det(T) = 3tr(T%) — 2Lptr(T2) + (L;)°
where I; = tr(T) = T is the first invariant of T. Use the Cayley-Hamilton theorem.
24. A certain state of deformation at a point in a body is described by the tensor T, having

the components relative to a certain basis of

3 -1 0
T~| -1 5 1
o 1 2
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Find the eigenvalues and eigenvectors of T. Show that the invariants of the tensor T are
the same in the given basis and in the basis defined by the eigenvectors for the present case.

25. Findthe tensor T that has eigenvalues p; =1, u, =2,and u; =3 with two of the asso-
ciated eigenvectors given by

n, = /-%(e1+e2), n, = %(—2e1+2e2+e3)

Is the tensor unique (i.e., is there another one with these same eigenproperties)?

26. Findthe tensor T that has eigenvalues g, =1, u, =3,and g, =3, with two of the asso-
ciated eigenvectors given by
1

n, = /—§(e1+e2+e3), n, =

Are the eigenvectors unique?

(—e,+ey)

&l

27. A certain state of deformation at a point in a body is described by the tensor T, having
the components relative to a certain basis of

14 2 14
T ~ 10°2 2 -1-16
14 -16 5

Let the principal values and principal directions be designated as 4 and n. Show that n,
= (-1, 2, 2) is a principal direction and find u; The second principal value is u, =
9 x 1072, find n,, Find u; and n, with as little computation as possible.

28. The equation for balance of angular momentum can be expressed in terms of a tensor
T and the base vectors e;as ¢; X (Te;) = 0(sum on repeated index implied). What specif-
ic conditions must the components of the tensor T satisfy in order for this equation to be
satisfied?

29. The tensor R that operates on vectors and reflects them n v
(as in a mirror) with unit normal n is given by w
R=I-2n®n

Compute the vector that results from [RR]v. Compute the
length of the vector Rv in terms of the length of v. What is the inverse of the tensor R? Com-
pute the eigenvalues and eigenvectors of R.

30. Let v(x) and u(x) be two vector fields, and T(x) be a tensor field. Compute the follow-
ing expressions in terms of the components (v;, u;, and T};) of these fields relative to the
basis {e;, e,, €;}: div(Tv), V(u - Tv), V(Tv), and u @ Tv.

31. Evaluate the following expressions:
(a) div(div]x ® x]) (b) div(x div(xdivx)) © V[ (vix]?)P]
(d) div(x ® div[x ® x]) (e) V(xdivx) O V[x - V(x - x)]

where x = x;e; +x,e,+x;¢€; is the position vector in space and all derivatives are with
respect to the coordinates x;.
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32. Let v(x) = (x,—x;)e; + (x3—x;)e, + (x; —x,)e;. Evaluate the following expres-
sions: Vv, V(x - v), div[x ® v}, and V(x X v), where x = x;e, is the position vector.
Evaluate the expressions at the point x = e; +2e, t+e,.

33. Let v(x) be given by the following explicit function *3

v(x) = (d4anxse + (Bxx)e, + (F+xx;)es %
where x is the position vector of any point and has components
{x1, x2, x3} relative to the Cartesian coordinate system shown.
The vector field is defined on the spherical region ® of unit ra-
dius as shown in the sketch. Give an explicit expression for the
unit normal vector field n(x) to the surface of the sphere. Compute the gradient of the vec-
tor field v(x). Compute the product [Vv]n, i.e., the gradient of the vector field acting on
the normal vector. Compute the divergence of the vector field v(x). Compute the integral
of div v over the volume of the sphere. Compute the integral of v - n over the surface of
the sphere.

x]

34. Let v(x) be a vector field given by the follow-

X3 *2
ing explicit function ll
V(X) = (x1€;+x,€,) In(x] +3) h 72 @xl
where In( - ) indicates the natural logarithm of (- ). %

The vector field is defined on the cylindrical re-

gion B of height # and radius R as shown in the sketch. Give an expression for the unit
normal vector field n(x) to the for the cylinder (including the ends). Compute the diver-
gence of the vector field v(x) and the integral of div v over the volume of the cylinder.

35. Consider the scalar field g(x) = {x - x)2. Compute div[V(div[Vg(x)])].

36. Let v(x) be given by the following explicit function gx) =0 A 3
v(x) = (xytxs)e; + (x;+xs)e; + (x;+x;)e

where X is the position vector of any point and has components

{x1, X5, x5} relative to the Cartesian coordinate system as

shown. The vector field is defined on the ellipsoidal region B

whose surface is described by the equation g(x) = 2x?+x2+ 2x3—4 = 0. Give an ex-

pression for the unit normal vector field n(x) to the ellipsoid. Compute the gradient of the

vector field v(x). Compute the product [Vv]n, i.e., the gradient of the vector field acting
on the normal vector. Compute the divergence of the vector field v(x).

37. Evaluate the expression div[V(x . Ax)], where A is a constant tensor (i.€., it does not
depend upon x), and the vector x has components x = x;e;. The derivatives are to be taken

with respect to the independent variables x;. Express the results in terms of the components
of A and x.

38. Let g(x) = e~ [*I*be ascalar field in three-dimensional space, where | x {| is the dis-
tance from the origin to the point x. Qualitatively describe the behavior of the function (a
one- or two-dimensional analogy might be helpful). Compute the gradient Vgof the field.
Where does the gradient of the function go to zero?
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39. Consider a tensor field T defined on a tetrahedral re- *2
gion bounded by the coordinate planes x; = 0, x, = 0,
x3; = 0, and the oblique plane 6x;+3x,+2x; = 6, as
shown in the sketch. The tensor field has the particular ex- 1

pression T = b @ x, where b is a constant vector and x X
is the position vector x = x; ;.. Compute the integral of 3

div(T) over the volume and the integral of Tn over the X3

surface of the€ tetrahedron (and thereby show that they

give the same result, as promised by the divergence theorem). Note that the volume of the
tetrahedron of the given dimensions is one.

40. Let v(x) = x on a spherical region of radius R, centered at the origin. Compute the
integral of div(v)over the volume of the sphere and compute the integral of the flux v - n,
where n is the unit normal to the sphere, over the surface of the sphere. Give the result in
terms of the radius R. What does this calculation tell you about the ratio of surface area
to volume of a sphere?

41. The Laplacian of a scalar field is a scalar measure of the second derivative of the field,
defined as V2g(x) = div(Vg(x)). Write the component (index) form of the Laplacian of
g in Cartesian coordinates. Compute the Laplacian of the scalar field of Problem 38.

42. Computediv(T), where T(x) = (x - x)I—2x @ x is a tensor field.

43. Let u(x), v(x), and w(x) be vector fields and let T(x) be a tensor field. Compute the
component forms of the following derivatives of products of vectors

@ VY(u-v) (d) div(Tv) (& diviu®v)
() div(a x v) (e) V({u-Tv) () div([u @ v]w)
© V{uxv) ® V(Tv) () Vi@xv)-w

44. Use the same reasoning that was used to derive the three-dimensional version of the
divergence theoremto develop (a) aone-dimensional version, and (b) a two-dimensional
version of the theorem. Use sketches to illustrate your definitions and draw any possible
analogies with the three-dimensional case.

45. Consider a vector field v(x) on a region B with surface €2 having unit normal field
n. The “curl” of the vector field can be defined as

= lim ——i—
curl(v) = v}ér)r-l»o V(%)Igv X ndA

Show (using the cuboid for %, as in the text) that the expression for curl(v) is

_ v _ [dvy _ dvs v v dvy _ dv,
curl (V) = 3 X e = (a—x:; -&;)el + (a—xl %, e, + =, ox, €3
Note that many authors define the curl to be the negative of the definition given here, which

is easily achieved by using the flux n X v instead. The form presented here seems to be
more consistent with our other definitions of derivatives of vector fields.

46. Consider variously a scalar field g(x), a vector field v(x), and a tensor field T(x) on
aregion B with surface  with unit normal vector field n. Prove the following theorems
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IngV=IgndA, vadV=Iv®ndA, jdideV=andA
2 Q 8 Q 8 Q

47. Use the divergence theorem for a vector field to show the following identities
(@) Green’s first identity for scalar functions u(x) and v(x), (Hint: Let v(x) = uVv)

I(uV2v+Vu-Vv)dV = In-(qu)dA

(b) Green’s second identity for scalar functions u(x) and v(x),
(Hint: Let v(x) = uVv—vVu)

I (uV— W) dv = I n - (uVv—1Vu)dA
) Q

48. Many problems are more conveniently formulated and X3

solved in cylindrical coordinates (r, 8, z). In cylindrical coor- N

dinates, the components of a vector v can be expressed as eo(8)
v(r,0,2) = v,e, + vee, + v.e, , e, (0)

where the components v,, v, and v, are each functions of the ‘ X,

coordinates (7,0, Z).- However, now the base vectors e, () 9

and e, (B) depend upon the coordinate 8. We must account
for this dependence of the base vectors on the coordinates
when computing derivatives of the vector field.

Using the coordinate-free definition of the divergence of a vector field, Eqn. (78), show
that the divergence of v in cylindrical coordinates is given by

- _ 13 19vg | Oy,

d1vv(r,0,z) = 75—;(7"1,) + 7@ Fr
(Hint: Observe from the figure that n, = e,(6+ Af)and n, = —e,(f) and are constant
over the faces 1 and 2, respectively. The normal vectors n; = e,(§) and n, = —e,(§),
with & € [6, 6+ AB), vary over faces 3 and 4. Finally, note that n; = e;and ng = —e;

are constant over faces 5 and 6.)

Note that the volume of the wedge is ¥(B) = A8 ArAz plus terms of higher order
that vanish more quickly in the limit as ¥ (®) — 0.
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The Geometry
of Deformation

Mechanics is the study of bodies in motion. A solid body can be put into motion
by any of a variety of actions. Among the most common causes of motion are
the application of force or heat to the body. In general, a body in motion under-
goes some combination of rigid motion (the distance between two particles
does not change) and stretching (the distance between two particles changes).
The motion can be either fast or slow. If the motion is slow enough then the
resistance to motion caused by the inertia of the body (the so-called D’ Alem-
bert forces) can be neglected in the accounting of force equilibrium. We gener-
ally refer to this class of motions as quasi-statict. If the motion is fast enough
then the forces associated with inertial resistance are not negligible and must
be included in the accounting of force equilibrium. We refer to this class of
problems as dynamic. In this book we confine our attention mostly to quasi-
Static motions.

The fundamental reason for studying motion is that the motion accommo-
dates and influences the development of force in the body. One of the funda-
mental hypotheses of the mechanics of deformable bodies is that materials re-
sist stretching in the sense that the distance between two points in a body can
change, but it takes force to get the job done (i.e., to stretch the molecular
bonds). In the study of motion we are interested in characterizing the part of

T It is not really possible to have a static motion because static implies no motion. Yet
we think of static analysis, from the perspective of equilibrium, as a problem for which
inertial forces are negligible or zero. Hence, it makes more sense, from the perspective
of kinematics, to refer to the motion as quasi-static. It will sometimes be convenient
to suppress the time dependence of the motion when we are considering the state at
a moment in time.
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the motion that gives rise to internal force (or stresses, which will be covered
in Chapter 3). The relationship between force and deformation will depend
upon the constitution of the material (which will be covered in Chapter 4).

Kinematics is the study of the motion of a body independent of the cause of
that motion. In this chapter we shall focus on kinematics. One way to charac-
terize motion is to describe the current position of each point in a body relative
to the position that point occupied in some known reference configuration
(often called the Lagrangian description of motion). We shall call the mathe-
matical description of the motion a map or, since the motion will almost always
include deformation, a deformation map. The goal of this chapter is to charac-
terize the map and to analyze the deformation implied by the map. This analy-
sis will lead us to the definition of strain, which will serve as one of the basic
descriptors of deformation and will prove useful in the development of consti-
tutive equations for materials.

We motivate our discussion by starting with the simple case of uniaxial mo-
tion of a (one-dimensional) rod+}. The simple case will help to fix ideas and to
connect with concepts from elementary strength of materials. Then, with the
help of vector calculus, we generalize the concepts to three-dimensional solid
bodies.

Uniaxial Stretch and Strain

Let us begin our discussion of the concept of strain by examining the deforma-
tion associated with the elongation of the thin rod shown in Fig. 26. It may be
useful to think of the state of the rod at two different instants in time without
worrying too much about what happened between those times (or how fast it
happened). At the first instant, the rod has length €,. At the second instant, the
rod has length €. The difference in length is simply A€ = €—¢,.

Figure 26 Elongation of a thin rod

There are only two things that can happen to the rod: (1) rigid-body motion
(translation and rotation in space), and (2) change in length. Intuitively, the de-
formation or strain should be independent of any rigid-body motion of the rod
because the rigid motion does not give rise to internal forces. Let us define the
stretch of the rod as the ratio of deformed length to original length

T We assume that the rod is only capable of elongating and shortening, not bending.
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The stretch is dimensionless and is equal to unity when the rod is the same
length before and after the motion. Since change in length is the only part of
the motion associated with deformation, and since the stretch completely cap-
tures the change in length, we should expect the stretch to completely charac-
terize the deformation part of the motion.

In fact, any function of the stretch will be an acceptable measure of de-
formation or strain. Unfortunately, this observation implies that there is no
unique measure of strain. Indeed, many definitions of strain are currently inuse
in engineering. For convenience, let us place two requirements on our defini-
tions of strain: (1) The strain must be zero when the rod is unstretched, i.e.,
when 4 = 1.(2) All strain measures should yield the same values in the neigh-
borhood of 4 = 1. In the following paragraphs we mention a few of the com-
mon definitions of strain used in solid and structural mechanics.

The engineering strain for the rod is measured as the change in length divid-
ed by the original length of the member

Eong = e;f" = A-1 8)

The naturalor “true” strain is measured as the change in length divided by the
deformed (or current) length of the member

-6 _ 1
Erue = ¢ - 2 99

These two strain measures are familiar from elementary strength of materials.
Part of the appeal of these strain measures is their linearity with respect to the
stretch or its inverse.

The Lagrangian or Green strain is measured as half the difference in the
squares of the deformed and undeformed lengths divided by the square of the
undeformed length

02—
= 2(‘6—) = 3(#-1 (100

The Lagrangian way of formulating the strain has the same spirit as engineer-
ing strain in the sense that change in length is reckoned with respect to original
length. Furthermore, we can see that when the change in length is small, i.e.,
A—1 < 1, these two measures of strain are equivalent. The desire to have this
equivalence explains why we put the mysterious factor of 2 in the definition
of Lagrangian strain. This observation is more evident when we write the La-
grangian strain as 3(A— 1)(A + 1). Now, when the stretch is very near to unity,
(A+1) = 2and E = (A—1). As we shall see in this chapter, there is some
theoretical advantage to taking the Lagrangian definition as the basic measure
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of strain as we generalize the concept to three dimensions and large deforma-
tions.

The Eulerian or Almansi strain is measured as half the difference in the
squares of the undeformed and deformed lengths divided by the square of the

deformed length
_i{e=6y _ 1 1
= 5( 7 ) = E(l—ﬁ) (101)

Just as the Lagrangian strain is reminiscent of the engineering strain, the Euler-
ian strain is reminiscent of the natural strain. Again, the Eulerian definition has
certain theoretical advantages over the true strain definition in generalizing to
three dimensions and large deformations.

Finally, the logarithmic strain can be defined as

¢, = In(4) (102)

One interpretation of this measure of strain is to think of a continuous deforma-
tion process in which each step i has a change in length A €;that can be divided
by the current length €;to give an incremental true strain 7; = A €,/¢,. If these
incremental strains are summed and if we take the limit as the size of the step
becomes infinitesimally small we get

. NAei ed€ ¢
to

Ag~0 i=1 !

The various measures of uniaxial strain are summarized in Table 1. The
choice of which strain measure to use is dictated by how we choose to describe
the constitutive law governing the relationship between stress and strain in the
material. All suitable measures of strain (including the four mentioned here,
and many more) are basically equivalent in that they all attempt to characterize
the same state of deformation. The difference in the measures of strain starts
to show up when you use them to characterize induced stresses from constitu-
tive equations.

Table 1 Different measures of uniaxial strain

Strain measure Common designation
€ng = A—1 Engineering strain
E = %(12 -1) Lagrangian or Green strain
Ere = 1-1/4 Natural or “true” strain
e = 2(1-1/2%) Eulerian or Almansi strain
&, = In(4) Logarithmic strain
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Figure 27 Nonuniform stretch of a thin rod

Nonuniform stretching. We have a couple of hurdles to clear in order to
suitably generalize our one-dimensional characterizations of strain. The first
hurdle regards the homogeneity of the strain state. This issue is present even
for our one-dimensional rod, as shown in Fig. 27.

Let the undeformed rod be marked off in uniform subdivisions. The lack of
uniformity of the stretch of the deformed rod is evident because the deformed
pieces all have different lengths. The stretch of the ith piece can be computed
as the ratio of the final length of the piece to the original length of the piece,
A; = €,/€,. These points are plotted in the figure. If we were to take the initial
subdivision finer and finer, we would get more and more points describing the
variation of the stretch along the length of the rod. In the limit, as the number
of subdivisions goes to infinity, the description of the stretch approaches the
continuous function A(z), where z is the measure of distance in the undeformed
configuration.

The deformed length of the rod can be computed as the integral of the stretch
over the original length

t
¢ = ] Az) dz (104)
0

If the deformation is homogeneous, and, hence, AZ) = A, then Eqn. (104)
gives A = €/, as we expect. The limits of integration of 0 and €, make sense
because the stretch A(z) is defined as a function of position measured in the un-
deformed configuration, as shown in Fig. 27.

The independent variable z measures distance linearly in the undeformed
configuration, i.e., if you made marks at equal increments of z those marks
would be equally spaced on the undeformed configuration. We actually did
make those marks in Fig. 27. Notice that the marks are not equally spaced on
the deformed configuration because of the nonuniformity of stretching. We
could also define an independent variable x that measures distance linearly in
the deformed configuration, i.e., if you made a mark at equal increments of x,
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those marks would be equally spaced on the deformed configuration (but then
the marks would not be equally spaced on the undeformed configuration).

We can think of the position defined on the deformed configuration as a
function x = ¢(2) of position defined on the undeformed configuration. Con-
sider a segment of a rod that had its ends located at zand z+ Azin the original
configuration. After deformation, those points are located at ¢(z) and
¢(z + Az). The currentlength of the piece is ¢(z + Az) — ¢(z), while the origi-
nal length was Az. The stretch is defined simply as the current length divided
by original length in the limit as the original length of the piece approaches
zero. To wit,

_ i $ETAD-0() _ dp
R (05)
that is, the stretch is the derivative of the function ¢(z) that maps the original
coordinate z to the deformed coordinate x. We can view the computation of the
current length of the finite bar through the rule for change in variables for in-
tegration

17

€ [
_ | %, _
e—de—Ldzdz—j/ldz (106)

0

which is the same result as Eqn. (104). In this setting, we can think of 4 as the
Jacobian of the change in variable dx = Adz.

The introduction of the stretching function A(z) provides a suitable general-
ization of the definition in Eqn. (97) from homogeneous deformation tononho-
mogeneous deformation. In the same sense, we can generalize the concept of
strain to nonhomogeneous deformations simply by substituting A(2) into each
of the definitions of strain. Thus, we generally think of stretch and strain as
properties associated with a point in the bar, and not as properties of the whole
bar. This perspective, called localization, is central to our study of the geome-
try of deformation.

The second issue we must face in characterizing deformation is the exten-
sion of the concept of strain to three-dimensional solid bodies. This issue is the
primary focus of this chapter. We shall see that our definitions of one-dimen-
sional stretch and strain play an important role in three dimensions.

The Deformation Map

The description of the geometry of deformation must begin with a description
of the body in question. For our purposes it is sufficient to imagine a continu-
ous, solid body located in three-dimensional space. We must be able to com-
pletely characterize the geometry of the body in some configuration in order
to make any headway in describing the geometry of deformation. We will call
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Figure 28 A solid, continuous body in three-dimensional space

the known geometry the reference configuration. The reference configuration
is often taken to be the unstressed and unstrained configuration of the body, al-
though such a restriction is not necessary. Our primary assumption about the
initial geometry is that in this configuration we know the position of every
point in the body. A second, equally crucial, assumption is that the body is con-
tinuous (as opposed to, say, a collection of discrete particles). The assumption
of continuity will allow us to use the tools of differential geometry.

Our prototypical body B is illustrated in Fig. 28. The initial geometry has
two basic features: the domain, which is everything inside the body, and the
boundary, which is the surface of the body. In the reference configuration B
we can locate the position of a point, say point P, by giving its coordinates
{z,, 25, 25} relative to the origin of the coordinate system. The vector pointing
from the origin of coordinates to the point P is called the position vector 1.

Imagine a curve C running through the body. For the sake of discussion, let
us imagine that we have marked the material along this curve (for example,
with a radioactive marker that allows us to see its position with a device like
an X-ray machine) during its formation. The curve can be parameterized by
a measure of its arc length s. (Imagine that you are an ant walking along the
curve. The parameter s is the value that you read on your pedometer as you
travel along.) The curve is an important geometric construct because it will
provide a connection with our one-dimensional ideas of stretch and strain.
There are infinitely many curves passing through the point P, each one distin-
guished by its direction at . The direction that a curve is heading at any instant
is the direction tangent to the curve. As we shall see, these tangent directions
will play a key role in the description of strain.

Let us assume that we can characterize the deformation of a body ® with
a deformation map @) as shown in Fig. 29. The deformation map takes the
position vector z and locates the position of that same point in the deformed
configuration ¢(B) as

x = @) (107)

relative to the coordinate system {x,, x,, x;}. Note that our point P is desig-
nated as ¢(%P) in the deformed configuration and represents the same material
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23

23

Figure 29 The deformation map

point as P in the sense that, if we could make a mark at point P before deforma-
tion, we would find that mark at point ¢(%P) after deformation. We might also
wish to see the effect of the deformation map on an imaginary curve C. A curve
is a parameterized sequence of points z(s), where the scalar variable s mea-
sures distance along the curve. We designate the position of the curve in the
deformed configuration as ¢(C). The deformed curve is also described by a
parameterized sequence of points x(s) = @(z(s)). Note that, like our one-di-
mensional example, the distance measure s always refers to distance in the un-
deformed configuration.

The concept of the map is a familiar one. Anyone who has traveled has prob-
ably used a map. The cartographer’s map is a functional representation of posi-
tion. Each position on a flat map of the world represents a particular location
on the surface of the Earth. A road or ariver ona map is analogous to our curve
C. The main function of a cartographer’s map is to scale down areas so that a
region can fit within the confines of a piece of paper. The ideal map would only
scale; however, as everyone knows, maps tend to distort areas and distances.
Have you ever wondered why Greenland often appears to be as large as South
America on some flat world maps? The distortion on a cartographer’s map is
caused by the function used to map points from the surface of the Earth to the
piece of paper or globe. Some mapping functions preserve areas; some pre-
serve straight lines; some preserve none of the above. The amount of distortion
is implicit in the mapping function.

The deformation map ¢xz) is very much like a cartographer’s map in the
sense that it unambiguously locates the position of points on the deformed con-
figuration of the body. It is un]ike the cartographer’s map in the sense that the
mapping function is dictated by the physical processes driving deformation. In
mechanics, our aim is often to determine the map from data like applied forces
and laws of nature. Whether a cartographer’s map or a deformation map, the
concept of mapping gives us a way of organizing the process of relating the
location of points in two configurations.
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The Stretch of a Curve

Our imaginary curve is a good starting point for the definition of strain in a
three-dimensional body because we can examine the change in length of this
line under the action of the deformation map. From elementary considerations
we already know what strain means for the stretching of a line. The arbitrari-
ness of the choice of our curve will allow us to generalize our concept of strain
to three dimensions. Let us examine the change in length of the curve C be-
tween two points.

Consider two points on the curve C, one described by the position vector
z(s) and the other by the position vector z(s + As), as shown in Fig. 30. The
vector connecting the first point to the second is Az = z(s + As) — z(s), and
the length of this vector measures the straight-line distance between the two
points. The two points are mapped to the positions x(s) and x(s + As), respec-
tively, in the deformed configuration. The vector connecting the two points in
the deformed configuration is Ax = x(s + As)—x(s), and the length of this
vector measures the straight-line distance between the two points. In the limit
as As — 0, the straight-line distance between two points and the distance mea-
sured along the arc become equal. Hence, in the limit, the lengths of the vectors
Az and Ax are appropriate measures of the lengths of the respective curves.

In the limit as As — 0, the length of the vector z(s + As) — z(s) approaches
zero, but the ratio of the length of the vector to the length of the arc approaches
unity. Taking the limit of this ratio as As — 0, we obtain the expression for the
tangent vector to the curve

. s+ As)—1(s _ dz
fm, SEH - a0

Thus, the derivative of a position vector along a curve is always tangent to the
curve. If it is normalized with respect to the measure of distance along the
curve, then it is always a unit vector because as As — 0, the secant line length
approaches the arc length, i.e, As — | z(s+ As)—z(s) |.

Figure 30 Measuring the distance between two points on a curve
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The vector x(s + As) — x(s) can also be normalized with respect to the length
of its arc. However, it will be more useful to compute the limit of the ratio of
this vector to the length of the arc in the undeformed configuration. This is pos-
sible because there is a one-to-one mapping between corresponding points on
the original and deformed curves. Thus, we know where to put the head and
tail of the vector pointing along the secant of the deformed curve, and we know
the corresponding length of arc for the undeformed curve. The result is the tan-
gent vector to the deformed curve

. X(s+As)—x(s) _ dx
fim X500 - & a0

The vector dx/dsis tangent to the deformed curve because it is the limit of se-
cant lines of points taken closer and closer together. The vector dx/ds does not
have unit length because it is reckoned with respect to the arc length between
the two points in the undeformed configuration. Since || x(s + As)—x(s) | is
the length of the secant line between two points on the curve, it approaches the
length of the actual deformed curve in the limit as As — 0. The ratio of
[| x(s+ As)— x(s) || to As is, therefore, the ratio of the length of the deformed
curve to the length of the original curve. Consequently

lim [ x(s+ /zsz —x() |

= A(s) (110)

Since the square of the length of a vector vis givenby || v|?= v - v, Eqns.
(109) and (110) suggest that the square of the stretch of the curve z(s) is given
by the dot product of the tangent vectors in the deformed configuration

A s) = (—‘%) . (%) (111)

Remark. We could just as easily parameterize the curve with a measure of
distance along the curve in the deformed configuration. If this distance is used,
then the vector dx/ds would be a unit vector, while dz/ds would not. The stretch
1/A% would then be the dot product of dz/ds with itself. As mentioned earlier,
this is the main difference between the Lagrangian and Eulerian descriptions
of motion.

It should be clear that the object that arises naturally in the measure of
stretch at a point P is the vector tangent to the undeformed or deformed curve
C, not the curve Citself. Since the curve C is arbitrary, we can imagine a curve
passing through & with a tangent vector pointing in any direction in three-di-
mensional space. It is productive to think of each point as having a whole
collection of tangent vectors that will be stretched by the deformation map. The
map itself will locate the position of the point P, while the rate of change, or
gradient, of the map will tell us how the tangent vectors stretch.
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The Deformation Gradient

Noting that the parameterized curve in the deformed configuration is deter-
mined by the deformation map as x(s) = ¢(z(s)), one can apply the chainrule
for differentiation to relate the vectors tangent to the curves in the deformed
and undeformed configurations. In components, noting that the map can be
written x,(s) = @,(21(5), zx(s), z5(s) ), we can compute the derivative by the
chain rule as
dxi(s) _ 9¢:(z) dz(s)

ds - oz s (112)
Note that the partial derivatives d¢,/dz; are simply the components of the ten-
sor V. This tensor plays such an important role in the subsequent develop-
ments that we shall give it a special name and symbol. We call

F(z) = V¢(z) (113)

the deformation gradient because it characterizes the rate of change of de-
formation with respect to the material coordinates z. With this notation, Eqn.
(112) can be written in direct notation as

dax - F& dz

s = (114)

The deformation gradient carries the information about the stretching of the
domain in the infinitesimal neighborhood of the point z. It also carries informa-
tion about the rotation of the vector dz/ds. We will often dispense with the no-
tion of the curve and its parameterization and simply refer to the tangent vector
as nor tor some such notation. Many authors like to use the notation dz to refer
to tangent vectors in the undeformed configuration and dx to refer to tangent
vectors in the deformed configuration. With this notation, the deformation gra-
dient operates as dx = Fdz. This notation has the advantage of reminding us
that the tangent vector represents the rate of change of a position vector, but
it also hides the role of the arbitrary curve.

The deformation gradient F is a tensor with the coordinate representation

F = a¢ (z) [e.® g (115)
where {e;} are the base vectors in the deformed configuration and {g;} are
the base vectors in the undeformed configuration. The deformation gradient
is often called a two-point tensor because the basis e; & g; has one leg in the
undeformed configuration and one in the deformed configuration. The need
for this distinction is clear when we recall that a tensor is an object that operates
on a vector to produce another vector. According to Eqn. (114), F operates on
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unit tangent vectors in the undeformed configuration to produce tangent vec-
tors in the deformed configuration. Let the kth component of dz/ds be defined
as n, = dz,/ds, and consider the following component computation

F % = Fij[ei ® gj] 7%

= Fijnk[ei ® gj]gk

since [e; ® g;]8: = J;¢; by the definition of the tensor product of vectors. The
most natural basis for the vector dz/ds is { g; } because the undeformed config-
uration is defined in that coordinate system. The most natural basis for the vec-
tor dx/ds is {e;} because the position x is defined on the deformed configura-
tion. We can see from the previous construction that F;n;e; is a vector defined
on the deformed configuration, as it should be, so the components of the tan-
gent to the deformed curve are dx;/ds = Fn,.

Itshould be clear that the deformation gradient F(z) is a function of position
in the body, since the mapping function will generally not be uniform. To econ-
omize the notation we often will not show the explicit functional dependence,
and will simply refer to F with the understanding that it depends on z.

Strain in Three-dimensional Bodies

The stretch of a curve at a point is the ratio of the deformed length of the curve
to the original length of that curve, in the neighborhood of the point in question.
Let us consider an infinitesimal length of curve in the neighborhood of the
point P. The length of the curve is proportional to the length of the tangent vec-
tor at that point. Since the length of the tangent vector nin the undeformed con-
figuration is unity, the stretch is simply the length of the tangent vector Fn in
the deformed configuration. The stretch can be expressed in terms of the de-
formation gradient by substituting Eqn. (114) into Eqn. (111) as

A*m) = Fn - Fn (116)
for any unit vector n in the undeformed configuration. From the definition of
the transpose of a tensor, we have Fn - Fn = n - F'Fn. Let us introduce the
Green deformation tensor C, defined to be the composition of the transpose of
F operating on F as follows

C = F'F (117)

The stretch of a line oriented in the direction n in the undeformed configuration
can then be computed as

A¥m) = n-Cn (118)
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Equation (118) holds for any curve with dz/ds = n, and, hence, enables us to
compute the stretch in any direction at a given point.

Recall that our definition of Lagrangian strain is the difference between the
square of the deformed length and the square of the original length divided by
twice the square of the original length. We can use the same definition for strain
in the direction n as follows

Em) = 3[A*m)—1] = n-En (119)

where the Lagrangian strain tensor E is defined to be half the difference be-
tween the Green deformation tensor and the identity tensor I as follows

E = i[C-1] (120)

A straightforward computation will demonstrate the validity of Eqns. (119)
and (120).

Examples

As abit of relief from all of the preceding abstraction, let us consider some spe-
cific cases of deformation maps. Four simple cases of deformation, their de-
formation maps, and the corresponding deformation gradients are given be-
low. As an exercise, compute the Green deformation tensor C and the
Lagrangian strain tensor E for each case. These maps are all two dimensional
in the sense that there is no action in the third coordinate direction. Assume that
each geometric figure has unit thickness. Throughout these examples we will
take the base vectors in the deformed configuration to be the same as the base
vectors in the undeformed configuration, ie., {g;} = {e:}.

Example 9. Simple extension. The deformation map for simple, homogenous
extension in the 2, direction is shown in Fig. 31. The explicit mathematical ex-
pression for the map is

O@) = (1+8)z,e; + z,€; + z;¢;

2,
[ X2 A
®(2) ¢y, ¥
e O(C) ———»f
A
—
Pd—] Ji| Lq)gp\
' . R
0 4 z 0 4 x;

Figure 31 The map for simple extension
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Let us examine the action of the map. Each point in the undeformed configura-
tion moves to a point in the deformed configuration with coordinates

;= (1+8)z;, x, =25 X =12

For example, the point P is initially located at z=(3, 1, 0). After deformation
it is located at position x=(3+38, 1, 0).

The curve € in the undeformed configuration, shown in the figure, has the
equation z, = 1+ 2z,. To find the equation of the curve in the deformed config-
uration we must invert the map, that is, solve for z in terms of x. For this map
this operation is straightforward, yielding

_ %
14

z Z =Xy 23T X3
Substituting these expressions into the equation of the original line, we get the
equation for the line in the deformed configuration ¢(C), x, = 1+2x,/(1+p).
Since the equation of the curve in the deformed configuration is linear, we con-
clude that the map deforms straight lines into straight lines (we proved it for one
line, at least).

The deformation gradient can be computed from the map as

F=1+p8[e®e¢]
The stretch in the direction of the coordinate axes can be computed by noting
Fe, = (1+B)e;, Fe,=(l)e;, Fes=(1)e;
(note that the base vectors are eigenvectors of F). The stretches are
A’(e;) = Fe, - Fe, = (1+f)e, - (1+f)e; = (1+8)*

Therefore, A(e;) = 1+ 8. The stretches in the other two directions can be com-
puted similarly to show that A(e,) = 1 and A(e;) = 1. A line oriented at an
angle 6 from the z, axis points in the direction n = cos e, + sinfe,. Since we
have Fn = (1+f)cos6fe, + sinfe,, the square of the stretch is

A*(n) = Fn - Fn = (1+8)? cos?6 + sin?6

Hence, we can observe that not all lines stretch by the same amount. The stretch
depends upon the orientation of the line. Lines oriented along the z, axis (6 = 0)
stretch the most, while lines oriented along the z,axis (6 = 7/2)do not stretch.

Example 9 shows several aspects of the deformation map and its analysis.
The correlation of the mathematical description of the map and a graphical rep-
resentation of the map is important, but it is a lot harder to see a picture of a
deformation and then write down a mapping function than it is to have a map-
ping function and then draw a picture of the deformation. In the latter instance
one need only locate the positions of enough points (or lines) to get the gist of
the mapping. This example also illustrates the simple idea of how the stretch
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ata given point (in this case all points experience the same deformation, as evi-
denced by a constant F tensor) varies with direction. Note that we did not ex-
plicitly compute the components of the tensor C to carry out our computations
of the stretch. '

The next example is also a homogeneous deformation, but has the feature
that it couples the motion in the two directions.

Example 10. Simple shear. The deformation map for simple, homogenous
shearing in the 2, direction is shown in Fig. 32.

Z; A o) *2 1\ ]
1 -~ Ly
0 1 Azx 0 1 Xy

Figure 32 The map for simple shear

The explicit expression for the map is

O2) = (z,+Bz,)e, + 2,8, + z;¢,

The action of this map is to shear the block. Lines parallel to the z, axis do not
rotate but they do translate relative to their original positions. Lines parallel to
the z, axis rotate.

The deformation gradientis F = I+8[e, ® e, ] Thestretch in the direction
of the coordinate axes can be computed by noting

Fe, = (1)e;,, Fe, =fe t+e,, Fe;=(1)e;
(Note that e, is not an eigenvector of F). The stretch of e, is
A’(e;) = Fe, - Fe, = (Be; +e,) - (Be,+e,) = 1+f

~ Ae) = /144

Stretches in other directions can be computed in a similar fashion. For example,
the direction n = cos e, + sinfe,, with 8 measured from the z, axis, gives

A*(n) = Fn - Fn = (cos6+ P sinf)?+ sin? 6

Both of the previous examples are linear maps. A linear map is one that has
a constant deformation gradient F. Such a motion is called a homogeneous de-
formation because the state of strain is the same for each point in the body. It
is always simple to invert a linear map to give z as a function of x. It is usually
not possible to find an inverse map in closed form for a nonlinear map, al-
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thoughif det F > 0 everywhere the implicit function theorem guarantees that
an inverse mapping exists. The next two examples are not linear maps.

Example 11. Compound shearing and extension. A more complicated deforma-
tion map, the map for compound shearing and extension, is shown in Fig. 33.

2 A W) Xy B
1 TN L]
B
0 1 >21 0 1 X,

Figure 33 The map for compound shearing and extension

For this map, the character of the deformation varies with position, and the de-
formation gradient is a function of position. The expression for the map is

02) = (z,+Pz,2,)e, + (2, +B2,2,)e; + 2385

The components of the deformation gradient are

148z, Bz, O
F ~| Bz, 1+4fz, O
6 6 1

Afew attempts to invert this map, i.e., put the map in the form z = (x), should
convince the reader that the business of explicitly inverting a deformation map
gets difficult even for some rather simple maps. Itis less difficult to imagine that
this inverse exists because it is quite clear from the picture that the mapping of
every point from the undeformed to deformed configuration is unique. Hence,
one should be able to reverse the map, or, in other words, find the place where
a point on the deformed configuration came from.

Example 12. Pure bending. An even more complicated deformation map, a map
for pure bending, is shown in Fig. 34.

The beam is bent until the cross section at the right end reaches around to just
touch the cross section at the left end. The explicit expression for the map is

®z) = ((1—2;)sinz;)e; + (1—(1—2z,)cosz;) e, + z;€5
and the components of the deformation gradient are

(1-z)cosz, —sinz; ¢
F ~ | (1-2z)sinz, cosz; 0
0 0 1



Chapter 2 The Geometry of Deformation 73

0 } I l | ’ l l l 0 o i I

z Jd L L L1 x

I em—— e —»]
21 ' 21 -

Figure 34 The map for pure bending of a strip into a circle

The action of this map is to take lines parallel to the z, axis and deform them into
perfect circles. Of course, the only way such a deformation can be accomplished
is if those lines change length. We can see how lines stretch by examining the
components of the tensor C = FTF given by

(1—22)2 0 0
¢ ~ 0 1 o0
0 0 1

The lines z, = c (i.e., fibers oriented along the axis of the beam) get mapped
to circular curves with radius 1—c centered at (0, 1) in the x; — x, plane, i.e.

x4 (x-1)2 = (1-c)?

To see that this result comes from the given map, substitute z, = cinto the map
to find x; = (1—¢)sinz;and x, = 1 — (1 ~c)cosz;. Square X; and x, —1
above and add them together to get the equation of the circle.

Transverse lines z; = b get mapped to straight lines in the deformed config-
uration with equation

x; = —(coth)x; +1

These deformed lines all pass through the point (0, 1), the center of the circles,
and look like radial spokes of a wheel. The deformation and strain tensors show
that lines that were initially transverse to the axis of the beam (i.e., along the z,
axis) do not change in length, and that axial fibers above the axis (z, > 0) are
shortened and axial fibers below the axis (z, < 0) are lengthened by the de-
formation. Note that the axial stretch is always positive, while the axial strain
can be positive or negative (tensile or compressive).

The deformation tensor also shows us a limit to the deformation map. The
stretch of the top fiber of the beam is 4 = 1—z,. Hence, a beam with a depth
greater than 2 cannot be mapped to this position because to do so would require
fibers with z, > 1 to shrink to zero length (or beyond, whatever that means).
As a practical hypothesis, we will reject any deformation map that implies the
annihilation of material.

The above example is a very special case of beam bending. We will consider
more general beam-bending maps later.



74 Fundamentals of Structural Mechanics

Characterization of Shearing Deformation

There are two basic types of deformation that can occur in a solid body. The
first is extension wherein a fiber, or material curve, in the body gets either lon-
ger or shorter. The measure of stretch is A(n) and was derived previously. The
second type of deformation is called shearing. Shearing is associated with
changes in angles between lines that are not collinear in the undeformed con-
figuration. To examine this issue, we return to our notion of the arbitrary curve
in our body — only now we shall consider the deformation to two different
curves that are initially orthogonal at the point in question.

Figure 35 shows our body @ subjected to the deformation map ¢z). Again
we examine the deformation of the body in the neighborhood of the point P,
which gets mapped to the point ¢(P) in the deformed configuration. Let us
consider two curves in the undeformed configuration, designated as €, and C,,
that pass through the point 9. These curves are orthogonal and are mapped to
the curves ¢(C,)and ¢(C,) in the deformed configuration. The curves are not
necessarily orthogonal in the deformed configuration owing to shear.

We saw previously that the unit vector n = dz/ds, tangent to a curve in the
undeformed configuration, is mapped to a vector dx/ds = Fn, tangent to the
deformed curve in the deformed configuration. Thus, the unit vectors n; and
n,, tangent to our two curves at the common point & in the undeformed config-
uration, get mapped to vectors Fn, and Fn,, tangent to our two curves at the
common point ¢(P) in the deformed configuration. We shall consider the
change in the angle between these vectors.

We can compute the angle between the deformed tangent vectors Fn; and
Fn, shown in Fig. 35 as

_ Fn;-Fn, _ n 'Cm
oSO T = Ten TFn,] ~ Awokmy P
Again, the deformation tensor C plays the key role in assessing the angle be-
tween two deformed vectors. If the original vectors are orthogonal, then the
change in angle, often referred to as the shearing angle,is y = 7/2—6.

Z3

z

Figure 35 The shearing effect of the deformation map



Chapter 2 The Geometry of Deformation 75

It would appear that shearing is a deformation process completely distinct
from elongation. We shall see later that there is a basic equivalence between
shearing and stretching for a three-dimensional solid.

Example 13. Previous examples revisited. The shearing of the unit base vectors
¢, and e, are shown for three of the four deformation maps given previously.
The deformation map for simple, homogenous shearing in the z; direction is
shown in Fig. 36(a). For simple shear, the base vector e, is not stretched by the
deformation, but e, is; the two vectors are sheared by an amount

b
I

Note that if 8 is small, then the amount of shearing is roughly equal to 8.

The deformation map for compound shearing and extension is shown in Fig.
36(b). For compound shearing and extension, the base vectors stretch and shear,
and the amount of stretching and shearing depends upon z, and z,. There is no
shearing at the origin (0,0,0); shearing and extension increase with distance from
the origin. In this case, the orthogonal vectors shear by the amount

cosf(Fe,,Fe,) =

22 A q)(z) x2 A ﬂ [_H
e Y A
: il
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0 1 z 0 1 X
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. p & () . ¥
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Figure 36 Shearing of base vectors for the example deformation maps
(a) simple shear, (b) compound shearing and extension, and (c) pure bending
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Figure 37 The map for planar rigid-body motion

Bz +2y) + 2%z,
J1+2B2,+26%22 1+ 282, + 2822
At the origin the base vectors do not shear at all, and the shearing angle increases
as we move into the positive quadrant.

The deformation map for pure bending is shown in Fig. 36(c). For pure bend-
ing, the orthogonal vectors remain orthogonal to each other after deformation.

cosf(Fe,,Fe,) =

One of the most important types of motion is rigid-body motion. It is impor-
tant because this motion does not give rise to any straining in the body and
hence does not give rise to internal forces. The following example gives the
mapping function for planar rigid-body motion. From this deformation map we

can show that the strains are zero everywhere.

Example 14. Rigid-body motion. Consider the description of the rigid-body mo-
tion of a planar body shown in Fig. 37. The deformation map is given by the ex-
plicit expression

»(z) = (u+z,cos8—2z,sinf)e; + (v+z;sinf+z,cos8)e, + z;e;

The displacements u and v track the horizontal and vertical motion of a point at
the origin (0,0,0), respectively, and & tracks the rotation of the body. (Note that
these displacement variables do not depend upon the coordinates 2,, 2,, and z3.)
The deformation gradient F and Green deformation tensor C are given by

cosf@ — sinf@ O 1 0 0
F ~| sin@ cos@ O C~| 0 1 0
0 0 1 0 0 1

Clearly, since C = I, there is no stretching or shearing, as expected, and, hence,
E = 0. Our strain measures faithfully confirm the rigid nature of the motion.

Let us examine what happens if we linearize the map by making the approxi-
mations cos@ =~ 1and sin@ = 6. Computing the deformation gradient and re-
sulting Green deformation tensor from the linearized map, we obtain
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1 -6 0 1462 0 0
F~| 6 1 0|, C~| 0 1+64 0
0 0 1 0o 0 1

The consequences of linearizing the deformation map is that rigid-body motion
is no longer rigid, i.e., E # 0. According to the Green deformation tensor, the
stretch in the z, and z, directions is A2 = 1+ 62 not 1 as required by the defini-
tion of rigid-body motion. As the block rotates, it becomes larger and larger ow-
ing to the artificial stretch induced by the linearization.

If the angle is truly small, that is, & < 1, then the error made in linearization
will probably be acceptable. It is on this ground that all of our engineering as-
sumptions of geometrically linear behavior stand. Whenever we make use of the
assumption of linearity for a theory that is not really linear, we must define the
limit of applicability of our results. When does the linearized theory stop giving
us useful results and start giving us garbage? This limit is one of the most diffi-
cult pieces of information to come by in engineering. Hence, we issue the warn-
ing: Watch out for rigid bodies that stretch!

The Physical Significance of the Components of C

We can get a general idea of the physical significance of the components of the
deformation tensor C (and therefore E) by considering the stretching and
shearing of the unit base vectors {g,, 8,, 8s}. Recall that the jth component
of the tensor C can be extracted from the tensor as C; = g; * Cg;. The square
of the stretch in the direction of the unit base vector g; is given by the expres-
sion A%(g;) = g; - Cg. Thus (no sum on i)

C;= Az(gi) (122)

In other words, the diagonal terms of the tensor C represent the squares of the
stretches in the directions of the coordinate axes. The angle of shearing be-
tween two base vectors g; and g; (i not equal to j), deformed by the map, is giv-
en by (no sum on repeated indices)

g - Cg _ C;
Mg)Ag) ‘/CT,,\/?,,

Therefore, the off-diagonal components of the tensor C are related to the
shearing of the three pairs of orthogonal base vectors (no sum on i or j)

cos6(Fg,Fg) = (123)

Cy = M@)Mg;) cosO(F, Fe)) (124

Notice the role of the stretching of the base vectors in Eqn. (124). The off-diag-
onal components of C do not measure purely shearing of the base vectors.
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However, for deformations in which the elongations are relatively small, the
interpretation of the off-diagonal terms as shearing is quite acceptable.

Strain in Terms of Displacement

For many problems, it is convenient to describe the deformation map in terms
of displacement from the undeformed configuration. As shown in Fig. 38, if
we take the coordinates {x,, x,, x;} describing the deformed configuration to
be identical to the coordinates { z,, z,, z;} describing the undeformed configu-
ration, then the position vectors can be added. Let u(z) be the displacement
vector of a point P originally at z and moved to x under the deformation map.
Then the deformation map can be written in the following form

z) =z + u(z) (125)
With this description of the deformation map, we can proceed to compute all

of the strain measures that we have computed before. The deformation gradi-
ent is given by the expression

F=1I+Vu (126)

where the components of the tensor Vu are given by [Vu]; = du,/dz;. Accord-
ingly, the deformation gradient has components F; = J;+ u,,; (recall that a
comma followed by an index j means differentiation with respect to z;).

The Green deformation tensor is computed from F as C = F’F to give the
following explicit expression in terms of the displacement u

C = I+Vu+Vu'+Vu'Vu (127)

where the tensor Vu’” = [Vu]” is the transpose of the gradient of the displace-
ment vector u. The tensor C has components C; = O+ Uy + Ui + Ui Upyj-

Finally, the Lagrangian strain tensor can be computed from the Green de-
formation tensor, and has the expression

X = @(z) = z+u(z)

21, %

Figure 38 The deformation map in terms of displacement
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E = 1[Vu+Vu’+Vu'Vu] (128)

with component form E;; = —;—[u,-, i g ;U j]. The expression for the La-
grangian strain tensor in terms of displacements allows one to clearly distin-
guish the linear part of the strain from the nonlinear part. The first two terms
in Eqn. (128) constitute the linear part of the strain tensor, while the third term
is the nonlinear (quadratic) part. In many problems, the assumption of linearity
is useful. We shall call the linear part of E the linearized strain tensor

Eiw = 3[Vu+Vu'| (129)

1
2

Just as C and E are, E,,,, is a symmetric, second-order tensor and is a function
of the position z. The physical interpretation of the components of Ey;,,, is basi-
cally the same as E. When strains are small, the differences between E and
E;..c are negligible.

Principal Stretches of the Deformation

It seems reasonable to ask whether there are certain directions at a point in our
body B that give extreme values (maximum or minimum) of the stretch (or,
more conveniently, the square of the stretch). Recall that the square of the
stretch in the direction m is given by 4%(n) = n - Cn for unit vectors n. As
such, the stretch is a quadratic function of the unit direction vector nat a given
position in space. We can express the question of finding directions of extreme
values of stretch as a constrained optimization problem as follows

extremize n - Cn, subjectto n-n =1 (130)
n

The constraint is needed to make certain that the search is over unit vectors.
Otherwise, the solution to the maximization would be infinitely long vectors
ninbasically any direction and the solution to the minimization problem would
be the zero vector. The tensor C varies with position in space and, therefore,
so do the vectors nthat we seek. However, because we are considering the state
at a fixed point we shall suppress the dependence of C and n on z for the pur-
poses of this discussion.

Lagrange had a great idea for setting up a constrained optimization problem.
Let us introduce a new independent variable x and create a function

2mu)=n-Cn—u(n-n-1) (131)

We call this function the Lagrangian (not to be confused with the Lagrangian
strain tensor) and we call u the Lagrange multiplier. Lagrange observed that
if the vector n satisfied the constraint of unit length (i.e., n - n = 1) then the
value of the Lagrangian would be the same as the original function 4*(n) re-
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gardless of the value of u. Hence, extremizing £(m,x) would yield the same
vector nas extremizing A’(m). In addition, extremizing £(m, ) with respect to
1 gives back the equation of constraint. The advantage of the Lagrangian is
that we can do an unconstrained optimization to find our unknowns n and u.
The necessary condition for an extremum is that the derivative of the La-
grangian, with respect to its arguments, be equal to zero. Clearly, setting the
derivative of the Lagrangian, with respect to 4, equal to zero simply givesback
the constraint condition that the vector nbe a unit vector (i.e., m - m = 1). The
derivative of the Lagrangian with respect to n is best done in components. Note
that the component expression for the Lagrangian is (summation on repeated

indices is implied)
L(mu) = n,Cyn; — u(nn,—1) (132)

yory

Thus, the derivative of the Lagrangian with respect to n; can be computed as

o4, 9
on,  m, (nCyn; = p(min—1))

,-jnj + nicijéjk - Iu(é,-kn,--f'n,-é,-k)
= Cyn; + nCy — u(nk+nk)

= 2(C/a~n,' - ﬂnk)

The last step is possible because C; = Cj;. Setting the derivatives of the La-
grangian, with respect to n and u, equal to zero gives the equations

Cn = un, n-n=1 (133)

from which we can determine m and u. Equation (133) is nothing more (and
nothing less) that the eigenvalue problem for the tensor C. The solution of the
eigenvalue problem is outlined in Chapter 1. Observe that Eqn. (133) repre-
sents four equations in four unknowns: the three components of the vector n
and the Lagrange multiplier u.

As pointed out in Chapter 1, the result of solving the eigenvalue problem is
three eigenvalues and their associated eigenvectors (u;, m;, i = 1,2,3). The
eigenvalues of C have the three basic possible cases: (1) all eigenvalues dis-
tinct, in which case the eigenvectors are all orthogonal, (2) two of the eigenva-
lues repeated with the third eigenvalue distinct, and (3) all three eigenvalues
repeated. This last case occurs for uniform dilatation, that is, equal stretch in
all three directions with no shearing.

Recall that in Chapter 1 we simply made the assumption that the eigenvec-
tors would be of unit length (a convenience that did not cost us any generality
at the time). However, in Chapter 1 we could not ascribe any physical signifi-
cance to the eigenvalue itself. In the present context, unit length is part of the
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formulation (the stretch is not equal to n - Cn unless n is a unit vector). The
eigenvalue showed up as a result of enforcing the constraint as we search for
the directions of extreme stretch.

The physical significance of the eigenvalues and eigenvectors of C. We
can use the definitions of shearing and stretching to see the physical signifi-
cance of the eigenvalues and eigenvectors. Let us compute the square of the
stretch of one of the eigenvectors n; from the definition of stretch

Am) = n;- Cny = m; - (um) = g (134)
since n; - m; = 1. Thus, the eigenvalue u; is the square of the stretch in the di-
rection of the eigenvector n;. One of the important ramifications of this ob-
servation is that the eigenvalues of C cannot be less than or equal to zero. It is
not possible to have a zero or negative length € of a line that originally had fi-
nite length €,
We can also observe that the eigenvectors are not sheared by the deforma-
tion. Let us compute the cosine of the angle between two distinct eigenvectors
n; and n, deformed by the map

cosO(Fn;, Fn,) = m-Cn, _m-(pmy) _ \//7(

sl //7, ey
since n; is orthogonal to n,. Since the cosine of the angle between the deformed
vectors is zero they must be orthogonal. We can also consider two eigenvectors
n; and n, that are associated with a repeated eigenvalue u; = u,. In this case
the eigenvectors are not necessarily orthogonal, i.e., in general n; - n, = 0.
But, Eqn. (135) still informs this case. Take any two eigenvectors that satisfy
the eigenvalue problem for the repeated root and observe that n; - m, = cosa,
where a is the angle between the vectors. Now, from Eqn. (135) we have
cosO(Fn;, Fn,) = cosa because Ju,/Ju; = 1. In other words, the original
angle between the vectors remains unchanged by the deformation.
We conclude that any deformation state can always be represented by pure
stretching in the principal directions.

n) =0 (135

The eigenproperties of the Lagrangian strain tensor. The Lagrangian
strain tensor is related to the Green deformation tensor as E = 3[C—1]. As
a consequence, it has the same eigenvectors, and its eigenvalues are related to
the eigenvalues of C. To see that this assertion is true, let us simply multiply
the tensor E by an eigenvector of the tensor C and see what happens. Let n; be
an eigenvector of C with eigenvalue u,. Then, by the definition of E, we have

En; [C In, = Cn n,) = %(u,——l)ni

Recall that an eigenvector is 31mp1y a vector that does not change direction
when operated on by a tensor. The eigenvalue is the amount by which the vec-
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tor stretches when operated on by a tensor. Thus, we can see that n; is indeed
an eigenvector of E and that the corresponding eigenvalue is given by

vi = 3lwi—1) (136)

suchthat En; = y;n,. Since u;is the square of the stretch in the direction n;,we
see that y; is the (scalar) Lagrangian strain in that same direction. Hence, we
have y;, = 3(4%(n)—1) = E(n,). Thus, the directions of extreme stretch are
also the directions of extreme strain, as we would expect.

The polar decomposition. We can show that the deformation gradient F
(actually, any tensor) can be decomposed into a product of two tensors as

F = RU (137)

where the action of U on a vector is to change the length of the vector without
changing its direction, and the action of R is to change the direction of the vec-
tor without changing its length. As such, R is an orthogonal tensor (i.e,, it has
the properties R'R = I'and det(R) = 1). Because all of the stretching is ac-
complished by U, it is a suitable measure of strain or deformation. Since R is
orthogonal we can show that

C = F'F = [RU|"[RU] = U'[R'R|U = U'U (138)

which shows the relationship between C and U. The tensor U is not necessarily
symmetric.

The deformational part U of the polar decomposition can be readily com-
puted from the spectral decomposition of C if we further specify U tobe a sym-
metric tensor. First, observe that, for a symmetric Uwe have C = UU = U2
Now let us assume that we know the spectral representation of C to be

3
C = Z,u, n,‘®ni (139)
i=1

where u;are the eigenvalues of C and n, are the (unit orthogonal) eigenvectors
of C. The eigenvalues and eigenvectors can be computed by the methods out-
lined in Chapter 1. As was previously noted, the eigenvalues of C have the
physical interpretation as the square of the stretch in the direction of the eigen-
vectors. Let us call AZ = u,. Now, it is easy to show that the tensor U has the
spectral representation

v 3
U = Z/lin,@ni (140)

In fact, to show that this is true, we can simply compute UU
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= iixi@aﬁ[n@nj] = ilfn,@)ni

i=1 j=1 i=1

Therefore, to compute U we need only compute the eigenvalues and eigenvec-
tors of C and then build U from its spectral representation. Once U is known,
we can compute R from F = RU. To wit,

3
R = FU} = Z%Fn,-@ni (141)

It is also straightforward to show that we can also write F = VR, where,
again, R is an orthogonal tensor and V represents the deformation. The left
Cauchy-Green deformation tensor is

b = FF” = [VR][VR]|" = VRR’V” = VV’
Since F = VR = RU, the tensors V and U are related as V = RUR”.

Example 15. Consider a state of deformation at a point characterized by the fol-

lowing deformation gradient (and the corresponding right Cauchy-Green de-
formation tensor)

1412 3 2 2
~=12 4 1 C~12 32
ﬁ124 2 23

Observe that the vector n = (g, +g,+g)/ /3 is an eigenvector of C corre-
sponding to the eigenvalue 4 = 7. The tensor C also has a repeated eigenvalue
# = 1. Thus, we can writt C = 7n ® n+1{I—-n ® n], the spectral form of
C, and then the tensor U can be writtenas U = /7n ® n+1[I-n ® n}. We
can, therefore express U~! in the form

Ul = %n®n+ 1{I-n ® n}

which can be expressed in components as

) 1 11 ) 2-1-1
U~ 2 1 _ -
sA (1 1131 2-1

1 11 -1-1 2

1 [1+2/7 1-/1 1-47
Al 1-7 1+2/7 1-/7
L 1-/7  1-/7 1+2/7
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Finally, the tensor R can be computed as R = FU~ !, to have components

7+5/7 71-4J7 1-{7
R~35tl17-/7 7+5/7 7-4/7
7-4/7 71-/1  1+5/7

1t is easy to verify that this tensor is orthogonal, i.e., R'R = L

It is also interesting to consider the spectral decomposition of the deforma-
tion gradient F. Because F is not symmetric—it is a two-point tensor whose
components are described in a mixed basis, as shown in Eqn. (115)—the devel-
opments associated with eigenvalue problems of symmetric tensors do not
necessarily apply. However, in the present case we can observe that there exists
a vector m, such that

Fn; = A;m; (142)

where n; is a unit eigenvector of U (and C) and 4, is an eigenvalue of U (and
the square-root of an eigenvalue of C). Indeed, taking the dot product of each
side with respect to itself we can show that (no summation implied)

(Fn;) - (Fn;) = n, - Cn, = 2}
(Am;) - (Am,) = A}(m; - m;)

These two results must be identical and, hence, m;must be a unit vector. There-
fore, operation by F on the unit vector n, results in a vector pointing in the di-
rection m; having magnitude A; Therefore, we can write

(143)

3
F=>ime®n] (144)

i=1

To prove this result simply operate on the vector n;
3
Fn;, = Zl,- [m,- ® n,-]n,- = Zl,- oym; = A;m; (145)
i=1

Once again, the two-point nature of the tensor F is evident. We can substitute
Eqn. (145) into Eqn. (141) to give

R = m; d n, (146)

3
i=1

Change of Volume and Area

We have seen how the deformation map affects the lengths of lines. In fact, w‘e
used the notion of change of length of a line under the deformation to define
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strain, and it gave rise to the tensors C and E as natural measures of strain in
a three-dimensional body. We now examine how surface areas and volumes
are affected by the deformation. The main motivation for looking at these top-
icsis that we often need to compute integrals over areas and volumes to obtain
global statements of equilibrium.

Preliminary considerations. From Chapter 1 we have formulas for areas
and volumes described by pairs and triads of vectors, respectively. Consider
a triad of vectors u, v, and w emanating from the same point as shown in Fig.
39. The area of the parallelogram defined by the vectors u and v is given by
A(u,v) =| u X v |. The volume of the parallelepiped defined by the vectors
is givenby V(u,v,w) = (u X v) - w.

——

Figure 39 Area and volume are defined by a triad of vectors

We will need two results from tensor analysis in our study of area and vol-
ume change. These results are given in the following theorem.

Theorem. Let {u, v, w} be any triad of noncollinear vectors in three-
dimensional space. Let T be any second-order tensor that operates on
a vector u to produce a new vector Tu. The following identities hold

[(Tw) X (Tv)] - Tw = (detT)((u X v) * W) (@)
T?[(Tu) X (Tv)] = (detT)[u X v] ®)

(147)

Proof. Let V be a tensor defined by three vectors v,, v,, and vs, as
V = vQ®e

where e¢;is the jth base vector. The determinant of the tensor V isgiven
by the triple scalar product of the column vectors that define it, i.e.,

detV = (v; X v,) v, (148)

If atensor T acts on each of the columns of V, the result can be summa-
rized as TV = [Tv;] ® e;. The determinant of TV is therefore

det[TV] = (Tv, X Tv,) - Tv,
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Figure 40 Transformation of volume under the deformation map

The determinant of the product of two tensors is equal to the product
of the determinants (see Problem 12), so

det[TV] = detTdetV (149)

Combining Eqns. (148) and (149) proves identity (147),.
Now let us prove the second identity. Consider the vector w to be
arbitrary. From Eqn. (147), we have

(Tw) - [(Tu) X (T¥)] = (detT)[w - (u X V)]

Using the definition of the transpose of a tensor we obtain

w - T7[(Tu) X (Tv)] = (detT)[w - (ux v)]  (150)

Finally, scalar multiplication commutes with the dot product so

w - T7[(Tu) X (Tv)] = w- (detT)[(u x v)] (51
Since Eqn. (151) must hold for any vector w, (147)y, is proved.

Volume change. Figure 40 shows our body B subjected to the deformation
map ¢(z). Again we examine the deformation of the body in the neighborhood
of the point P, which gets mapped to the point ¢(%P) in the deformed configu-
ration. Let us consider a volume of material described by the triad of unit vec-
tors {n;, N,, n;} and the infinitesimal lengths ds,, ds,, and ds,. The vectors can
again be thought of as the tangent vectors of three curves in the undeformed
configuration, designated as C,, C,, and €,, that pass through the point . The
curves are not actually shown in the figure, but they can be imagined in the
same way as previous sketches of the vectors tangent to curves. The variables
s1, 8, and s; measure arc length along those curves. The curves are mapped
to the curves ¢(C,), ¢(C,), and ¢(C;) in the deformed configuration. The de-
formed curves have tangent vectors { Fn,;,Fn,, Fn;} that are not necessarily
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orthogonal owing to shearing and are not necessarily of unit length owing to
stretching. Let us find the volume of the parallelepiped defined by the triad of
vectors { Fn;, Fn, Fn,}.

The volume of material in the undeformed configuration is given by
dV = (nl X nz) ‘ ll3 dgldgzdg3

The volume of the deformed parallelepiped is given by the triple scalar product
of the vectors {Fn,,Fn, Fn,}. Thus, the volume of the deformed cuboid is

dv = (Flll X Fnz) ° Fn3 dslddeS3

Using Eqn. (147), we can relate the original and deformed volumes as

dv = (detF)av (152)

The determinant of F is often designated as det F = J in the literature. Since
it is not physically possible to deform finite volumes into zero or negative vol-
umes, a restriction on any deformation map is that at every point in the domain

detF > 0 (153)
It is also worth noting that, since C = F’F, we have
det(C) = det{FF) = det(F7) det(F) = (det F)?

since the determinant of the product of two tensors is the product of the deter-
minants of the two tensors and since the determinant of the transpose of a ten-
sor is equal to the determinant of the tensor itself.

Example 16. Consider a sphere of unit radius, centered at the origin of coordi-
nates, as shown in Fig. 41(a). The sphere is subject to the deformation map

Oz = (z;+e€z,z3)e; + (2,1 €232, )6, + (23 +€2,2, )€,

where € is a constant parameter of the motion. Compute the volume of the sphere
after deformation in terms of €.

Z3 23

2

r
R(zy) 7]

2

@ ©

Figure 41 Description of the sphere for the example problem

In accord with Eqn. (152) we can compute the volume v of the deformed
sphere as
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=J dv = JdethV
»B) £

The deformation gradient of the motion and its determinant can be computed as
1 €z; €z,
F ~|ezy 1 ez detF = 1 — (22 +22+22) + 2632225
€z, €z, 1

To carry out the integral over the original volume % consider the disk of thick-
ness dz; located at z, shown in Fig. 41(b). Because 23 +z2+23 = 1 we can ob-
serve that the square of the radius of the disk is R*(z;) = 1 —z2. Now make a
change of variables to z; = z, z, = rcos6, z; = rsin8, as defined in Fig.
41(c). Now the integrand is det F = 1—€?(z2+7?)+2€>z r*cosfsin 6. The
volume integral can now be expressed as

1 LR@ ;22
J detFdVv = J J J (1—52(22+r2)+2e3zr2cost9$in0)d0rdrdz
) -1 0

0

Thus, the integral can be evaluated as

1 R(z)
J detFdv = 2::[ J (1-€*2?)r—€*r’)drdz
s -1

0

I
IR

1
J (2(1-€22*)R¥z) - €2 R(2)) dz
-1

1
IR

J (2(1—5222)(1—22)—52(1—22)2)dz

1

sz (2(1-2%) —€*(1-2*)) dz
0

Therefore, the deformed volume is

RENEY

The volume of the undeformed sphere is V = 47/3. The deformation reduces
the volume of the sphere in proportion to €2,

Area change. Figure 42 shows a surface of our body 3 subjected to the de-
formation map ¢(z). Again we examine the deformation of the body in the
neighborhood of the point %, which gets mapped to the point ¢(%) in the de-
formed configuration. Let us consider a square of material described by the
pair of unit vectors {m;, n,} and the infinitesimal lengths ds; and ds,. The vec-
tors can again be thought of as the tangent vectors of two curves in the unde-
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formed configuration, designated as C,and C,, thatlie in the surface f and pass
through the point P. The variables s, and s, measure arc length along those
curves. The curves are mapped to the curves ¢(C,) and ¢(C,), which lie in the
deformed surface () in the deformed configuration. The deformed curves
have tangent vectors {Fn;,Fn,} that are not necessarily orthogonal owing to
shearing and are not necessarily of unit length owing to stretching. Let us find
the area of the parallelogram defined by the vector pair { Fn,, Fn,}.

Let m be a unit vector normal to the undeformed surface and let m be a unit
vector normal to the deformed surface. These normal vectors can be computed
from n, and n, as follows

o om Xm _ Fn, X Fn,

=_1- 2 =-—21°" "2 _ xFm
[y X my || | Fn, X Fn, ||

where we have specifically noted that n is not the result of passing m through
the map. The area of the original parallelogram described by the vectors n, and
n,isdA = ||m; X n, | ds,ds, = ds,ds,.(Note that the scalars ds, and ds,can
be pulled out of the norm operation). The area of the deformed area described
by the vectors Fn, andFn, is

da = | Fn, X Fn, || ds,ds, (154)

An oriented area in the undeformed configuration can be expressed as

n; X n
md14— 1 2

_m||nl><nz||¢4=(nl><nz)dA

and an oriented area in the deformed configuration can be computed as

nda = Fn, X Fn,

= m ” Fn, X Fn, ” ds,ds, = (Fnl X Fnz) ds,ds,
1 2

To find the relationship between the two areas in terms of the deformation gra-
dient, let us compute the quantity F'n da

Figure 42 Transformation of surface areas under the deformation map
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F'nda = F'(Fn, X Fn,)ds,ds,
From Eqn. (147), we obtain F'nda = (detF)m dA or

nda = (detF)F"mdA (155)

where F~7 = [FT]"!is the inverse of the transpose of the tensor F. The trans-
formation of areas given in Eqn. (155) is often associated with the name Nan-
son’s formula or the Piola transformation, and it plays a key role in the defini-
tion of stress as force per unit area. It is evident from Eqn. (155) that the ratio
of deformed area to undeformed area is

% = (detF)|F m | (156)

Example 17. A four by four square piece of material of unit thickness with a cir-
cular hole of unit radius experiences a simple shear deformation as shown in Fig.
43. Take the coordinate axes at the center of the hole and let {g;} = {e;}. Com-
pute the change in area along along the right edge and on the circle.

224 2, ¢(Z) X )
m, P n,
1
LN\
| | — -
Z3 f’ T z, N/ 2 X,
l - n,
1

Figure 43 The deformation map for the example problem

The deformation map is given by

&) = (2, +Bz))e; +2,8, +25¢,
The deformation gradient F and its inverse transpose F~7 are
F=1+B[e;®e,], FT=1-8[e,De]

Clearly, detF = 1, implying no change in volume. Let us examine how the ex-
terior and interior areas change under the deformation. On the vertical edge fac-
ing right, the normal vector is m; = e,. Equation (155) tells us that the product
of the normal vector to the deformed surface and the elemental area on the de-
formed surface are given by

n da, = (el—ﬂez)dzzdz;,

Taking the length of both sides, we get da, = /1 +?dz,dz,. The deformed
area can now be computed as

1 p2
I da, = I I J1+B%dz,dzy = 4 /1+p7
«?) 0 J -2
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We can perform the same operation on the area associated with the cylinder de-
fined by the circle. In this case, the vector normal to the undeformed circle points
in the radial direction, i.e, m, = cosfe, + sinfe,. The deformed normal vec-
tor and deformed element of area are given by

n,da, = [cosfe; +(sin@—Pcosf)e,| dfdz,

Proceeding in the same way as before, we find the deformed area of the cylinder

1 p27
j da, = j j Jcos?6 + (sin6—Bcos6)? dbdz,
o) 0

0
This integral can, of course, be evaluated numerically for specific values of §.

For example, when 8 = 0, there is no deformation and the area is 2. When
B = 1lthe area is 2.35x, and when 8 = 2, the area is 3.197.

Time-dependent motion

The motion of a solid body is generally a continuous process that evolves with
time. In a quasi-static description of a problem, time does not play a central
role. Infact, one can think of the “time™ ¢ as an orderly means of indexing snap-
shots of deformed configurations. The rate of deformation in such a case is
completely determined from the rate of loading. In dynamic problems or prob-
lems with rate-dependent constitutive properties time must be explicitly in-
cluded in the description of the motion. In these cases velocity and acceleration
play an important part in the characterization of the motion.

Velocity and acceleration. Consider a time dependent mapping shown in
Fig. 44. The position at time ¢ is given by the mapping x = ¢z, ¢). At a fixed
time ¢ the body is in a configuration that is amenable to the analyses developed
earlier in the chapter. A fixed particle in the body, indexed as a point at location
z in the reference configuration, follows a trajectory described by the position
vector X = @z, t). The velocity of that point is the time rate of change of the
position vector

Figure 44 The motion of a body is a time-dependent process
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v(z,0) = E = —(¢(z r) (157)

The velocity vector is tangent to the particle path at the current location of the
point. The acceleration of the point is the time rate of change of the velocity

az,r) = E = ﬁ(q;(z, 1) (158)

These quantities are often called the material velocity and material accelera-
tion because they record the velocity and acceleration of a material point in the
body.

An alternative to the Lagrangian description of motion, which tracks mate-
rial points, is the Eulerian description of motion. The Eulerian description con-
siders the motion of points in the neighborhood of a fixed point x in the de-
formed configuration. The inverse mapping function z = ¢ ~'(x(?), ?) tells us
where the particle currently located at position x in the deformed configuration
was located in the reference configuration.

Now the velocity v can be thought of as being a function of current position
x (which is a function of time) and time. Let us write the velocity of a material
pointzas v(f) = V(X(¥), #). By change of variables the expression for the accel-
eration takes the form

A= (v — 9Vox . ov
i = 50e0n) = K5+ (159)

= [V,v ]v+6v

where V, () is the spatial gradient (i.e., derivative with respect to the spatial
coordinates X) of (-). Notice that in the Eulerian description we do not keep
track of material particles. Although the acceleration a = a (because there is
only one physical acceleration at a certain point at a certain time), the descrip-
tion in terms of current position requires a convective term [V, V] v toaccount
for the fact that the point in question had been somewhere else recently and is
headed somewhere else in the future relative to the position x.

The spatial gradient of velocity comes up often enough in mechanics to war-
rant a symbol of its own. Let us define the spatial velocity gradient tensor

L = [v,v] (160)

This tensor (like all tensors) can be decomposed into symmetric and antisym-
metric parts as L = L, + L, where
=1 =
L, =3[L+L7, L, =3[L-L7] (161)

We usually refer the L, as the spatial rate of deformation tensor and L, as the
spatial spin tensor.
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Strain rates. The strain measures the spatial gradients of the motion, apart
from rigid motion, at a snapshot in time. For a deformation that is a function
of time we would expect the strains also to be functions of time and, therefore,
to change with time. Hence straining must have a rate of change associated
with it for a time-dependent motion.

The time rate of change of the deformation gradient can be computed as

.9 [0z, _ 5 [Pz, )\ _
Pog(He0) 2(200) 5,

In other words, the rate of change of the deformation gradient is the spatial gra-
dient of the velocity with respect to the reference coordinates z. Recognizing
that v(z,t) = v(x(?), ) we can make the following observation

%(v(z,t)) = %(G(x(t),t))% =[V,V]F = LF (163)

Now the rate of change of the Green deformation tensor can be computed by
the product rule for differentiation as

€ = 4(F'F) = F'F+F'F
= F'L’F+F'LF (164)
= F’[L’+L]F
= 2F'[L,|F

By the same reasoning the rate of change of the Lagrangian strain can be com-
puted as E = F’L/F.

Additional Reading
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M. E. Gurtin, “The linear theory of elasticity,” Mechanics of solids Vol. 11 (C.
Truesdell, ed.), Springer-Verlag, N.Y., 1972.

L. E. Malvern, Introduction to the mechanics of a continuous medium, Prentice
Hall, Englewood Cliffs, N.J., 1969.

J. Bonet and R. D. Wood, Nonlinear continuum mechanics for finite element
analysis, Cambridge University Press, Cambridge, UK, 1997.
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Problems
Note: Unless otherwise indicated we shall assume that the base vectors in the deformed
and undeformed configurations coincide, i.e., that {e;} = {g;}.

49. Consider a unit cube in the positive octant with a vertex positioned at the origin of
coordinates subjected to the following deformation map

W@) = (21 +€z,25)e) + (2, €225)€, + (231 €22, )e5

where € is a constant. Compute the deformation gradient F, the Green deformation tensor
C, and the Lagrangian strain tensor E for the given deformation. Using graph paper, plot
the deformed position of a square in the x; —x, plane by locating the positions of a grid
of points. (Select a value of e to execute the plot.)

50. The deformation gradient that results from deforming the
body shown through a deformation map ¢(z) has the following

components relative to the standard basis at the point & 3
1.1 03 0.1 T<:22
F®) ~| 01 12 02 2,
02 03 13

Find the stretch of a line oriented in the direction of the vector n = (1,1,0) at the point 2.
What is the value of the Lagrangian strain of that same line at that same point? Calculate
the tensors C and E.

§1. Consider a square piece of materi- z, 7)

al of unit thickness with a round hole A /ﬁ\
in it of radius 1. The material is sub- 4 T
jected to a deformation described by
the map shown in the diagram. The de- N
formation map shown has the foliow- [ -
ing explicit expression 0 4

X2

X1
0@ = z;(1+Bz,)e; + z,(1+36z,)e, + z;e,

Compute the the volume of the hole in the undeformed and deformed configurations.
Compute the perimeter area of the square in the undeformed and deformed configurations.
Compute the perimeter area of the circle in the undeformed and deformed configurations.

§2. Prove that (unit) eigenvectors n; and m,, of the tensor C, associated with distinct ei-
genvalues u, and u,, respectively, point in the direction of extreme stretch by computing
the stretch for a unit vector m = sinfn; + cosfn,, where 0 is a parameter. Plot the
stretch in the direction m as a function of 6.

53. Consider a square piece of material of £23 A N %2
unit thickness. The material is subjected to a 1 o@) 1
deformation described by the map shown in
the diagram. The deformation map shown
has the following explicit expression 0 1 2z O 1 x




Chapter 2 The Geometry of Deformation 95

®@) = z(1+2,)e; + z,(1+3z,)e, + z3e,
Compute the components (with respect to the standard basis e,, e,, and e;) of the Green
deformation tensor C and the Lagrangian strain tensor E at the point z = (1,1,0). Find the

principal stretches and principal directions of C at z = (1,1,0). Find the eigenvalues and
eigenvectors of E at z = (1,1,0).

54. Prove that it is impossible to deform the vertex
of a solid cube into a flat face (e.g., the deformation

¥2)
map shown in the sketch deforms the cube into a
tetrahedron with the vertex at a deformed onto the
flat plane). Hint: You do not need to find an explicit
expression for the map to do this problem. Consider

a neighborhood of the point a.

55. Asemi-infinite half-space (i.e., the body occupies every A

point in space that satisfies z; > 0) has a deformation map . .

given by the following explicit expression 2 !
o(@) = (1+BeF)z + (ye Re, 23

where § and y are constants and R is the distance from the ori-

gin to any point with position vector z, that is, R* = z - z. Plot the variation of displace-
ment along the coordinate axes. Compute the displacement of the point that was originally
located at z = (0, 0, In2). Compute the deformation gradient F(z) of the motion in general
and evaluate it at z = (0, 0, In2). Compute the Green deformation tensor C(z). Find the
value of the stretch of a line in the neighborhood of z=(0, 0, In2) and initially oriented
in the direction e,.

56. Abeam theory is characterized by a spe- 235Xy
cific deformation map that is parameterized ¢(z) 0
by a set of deformation variables that depend @)

only on the axial coordinate z,. The depen- '

dence of the map on z, and 25 is explicit. Let w(zl) s x
u(z,) represent the displacement of the cen- o 1" u) T 71— !

troid of the beam in the z, direction, w(z,) I L J L
the displacement of the centroid of the beam e -
in the 2, direction, and 6(z,) the rotation of ¢

a vector normal to the deformed cross section relative to the horizontal. The deformation
map for finite planar motion of the beam then takes the form shown in the diagram. The
deformation map has the following mathematical expression

O@2) = (z,+u(z))—z,5in0(z;))e; + (W(z,) +2,c086(zy))e; + z3€;
Compute the deformation gradient F of the given deformation map. Compute the Green
deformation tensor C, and the Lagrangian strain E. Linearize the deformation map by as-
suming that cos@ = 1and sin@ = 6,and compute F, C, and E for the linearized kinemat-
ic description. Is the strain linear in the displacement variables u(z,), w(z,), and 8(z,)?
Linearize E by neglecting all squares and products of the generalized variables u, w, and
6. What are the consequences of neglecting the higher-order terms?
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57. Does the linearized strain tensor ever have the same eigenvectors and eigenvalues as
the Lagrangian strain tensor? If so, provide an explicit example.

58. Find the mathematical expres- Az, X2 )

sion for the map that takes a strip of &)

length 27 and deforms it into a semi- /

circular arc without changing the

depth of the strip. The deformation ] o e e e U e 1=
map is illustrated in the sketch. Com- —— % —— a5

pute the deformation gradient F, the 27 27
Green deformation tensor C, and the Lagrangian strain tensor E for the map.

59, Consider the rectangular piece of material with the Zh
triangular cutout. The body is subjected to the deformation map 4
3 a
&) = (z:+Bz)e + 2,8, + 2385 2 |
Find the angle of the triangle at the vertex at a before and after 1 z 5
deformation. Find the equation describing the inclined line a-b 0

before and after deformation. Find the area of the triangle abc 0123 4

before and after deformation.

60. Consider a square piece of material of unit thickness. The material is subjected toa
deformation described by the following explicit expression

0@ = (az;+Pz)e; + (yz,+02,)e, + 28,

where a, f8, ¥, and 0 are constants. For what values of the constants is the given deforma-
tion map physically impossible to realize? Assume that we have scribed a line on the body
before deforming it according to the above map. The equation of that line in the unde-
formed configuration was z, = 1—3z,. What is the equation of the line after deforma-
tion? Will the given map ever deform straight lines into curved lines? Why or why not?

61. The deformation map for the pure twist of a circular Z
shaft of length € and radius r can be expressed in terms of r
the rate of twist § (a constant) as follows

W) = (z;008(Bz3) — 2z, 5in(Bz3)) ¢ 2z,
+ (z; sin(fz;) +2, cos(fz;)) e, + 23 €5

Compute the deformation gradient F(z). Find the displace- X1
ment of the point initially located at the position z=(r, 0,

¢) in the undeformed configuration. Find the volume of the
deformed shaft in terms of the angle of twist . A horizontal X3
line is etched on the surface of the undeformed shaft, paral-  *2

lel to the z, axis as shown. Find the length of the line in the

deformed configuration.
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62. Consider the unit cube shown. Let the cube be

Z3
subjected to the deformation map given by
0@ = (z;+z717)e; + (z,12,2,)e; + 2z5e; ?l‘
Compute the volume of the cube in the deformed configura- 2, 1 4' Lz
T

tion. Find the area in the deformed configuration of the face
with normal e, in the undeformed configuration.

63.  Athin flexibie wire of initial length £, originally ori-

ented along the z, axis, is wrapped around a hub (with negli-

gible friction between the wire and the hub). The deforma-

tion map that accomplishes the motion is given by X3
®(z) = sin{az;)e, + cos(az;)e, +Bz;e; T

where @ and  are known constants. What is the radius of the hub? How many times does
the wire wrap around it? What is the spacing between adjacent passes of the wire? What
is the length of the wire after it is wrapped?

64. The displacement map of a certain solid body can be expressed as follows:

wz) = az,z;e; + az;z;e, + az,z,e,
where a is a constant. Compute the deformation gradient of the motion. Find the principal
stretches at the point originally located at z = {0, 0, 1}, in terms of @. Is n ~ (1, 1, 0)

a principal direction for the specified motion? Find the principal (Lagrangian) strains at
z = {0, 0, 1} in terms of a.

65. The expansion of a hollow sphere can be 2) X2

z, P

described by the deformation map
o) = ANz :
where z is the position vector of a point in the ,‘%
undeformed configuration and A(r)is a given o' . 1

function of the radial distance r(z) = vz - z.
Compute the deformation gradient F for the
map. Compute the stretch through the thickness of the sphere in terms of 4, r, and di/dr.

66. The Green deformation tensor that results from
deforming the body shown through a deformation

map ¢(z) has the following components relative to z3
the standard basis at the point P:

1.0 02 05 z gz)lg;foqu
C@®) ~| 02 30 02 , iguration
05 02 20 1

Find the stretch of a line oriented in the direction of the vector m; = (1,1,1) at the point
%. Find the angle, after deformation, between two lines with tangent vectors m; =(1,1,1)
and m, =(0,1,1) in the undeformed configuration at the point &. Is the vector m; =(1,1,1)
an eigenvector of the tensor C at the point $?
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67. A4by 3 Dby 1in. block of material is scribed with a straight 1 in.

line from corner to corner on one of its broad faces as shown. The

block is then subjected to a deformation described by the follow-  2;

ing map: 4in.
®(z) = (z;+0.2z,)e, + (z,+0.3z;)e, + (z3+0.1z, ) ey

Compute the length of the line in the deformed configuration.

Compute the Lagrangian strain of the line due to the motion. Compute the Lagrangian

strain tensor E associated with the motion. Compute the volume of the block in the de-
formed configuration.

3 i line

68. The components of the deformation tensor C at a certain point in asolid body, relative
to the basis {e;, e,, e;}, are given as

Lo
C~%l-1 11 0
0 0 10

Compute the eigenvalues and eigenvectors of C. What is the direction in which the stretch
of the body is greatest at the given point? What is the magnitude of that stretch? What is
the ratio of deformed volume to undeformed volume in the neighborhood of the point?

69. A right tetrahedral block of material, with edges of length 1, z
2, and 3 along the coordinate axes, is subjected to a deformation
described by the following map:

¢(z) = 62z,e; + 3z;,€, + 2z;e,4

Find the volumes of undeformed and deformed bodies. Find the
areas of the four faces in the deformed and undeformed configura-
tions. Compute the principal stretches and principal directions.
Compute the volume of the block in the deformed configuration.

70. A thin square plate of dimension 7 (the number , %3 z,
3.14...) and thickness ¢ is subjected to the deformation =

s =
() = (zl—ﬂz3coszl)el

0 7 z
+ 2,e, + (z;+Bsinz, e, !

where e; is the ith base vector in the deformed configuration and <1 (very small
compared to 1) is a constant that describes the motion. Compute the strain tensor associat-
ed with the map (you can neglect all terms of order 52 and higher). Where is the strain the
greatest? Sketch the deformed shape of the plate.

71. The unit cube shown is subjected to a homogeneous de-
formation (i.¢., the deformation gradient is constant). The de-

n

formation tensor C is given by \
C=yI-n®n

where y is a constant that characterizes the deformation and n

is a unit vector normal to one of the faces of the cube, as shown
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on the sketch. Find the principal stretches associated with this state of deformation. Find
the stretch A and the (scalar) Lagrangian strain E of the line ab. What is the smallest pos-
sible value of the constant y for which the deformation is physically reasonable? Explain
why smaller values are not possible. If det C = 1 then the volume of the deformed cube
is the same as the volume of the undeformed cube. For what value of y is the volume un-
changed?

72. A2by 2 by 2 unit solid cube is subjected to the deformation % b
described by the map (the center of the block is at the origin of
coordinates): a
2 z
®@) = z;(1+az e, + z,(1+az, e, + Bz;e, , V' ; 2
1
Compute the values of the constants @ and 8 that are consistent 2

with the observation that the fotal volume of the block is un-

changed by the deformation. Compute the length of the line ab in the deformed configura-
tion. Compute the Lagrangian strain tensor E associated with the motion. Compute the de-
formed area of the side with original normal e,.

73. Acircular cylinder with initial inside radius of 1 and outside ra-
dius of 2 is subjected to a deformation with displacement map

23
<S=p
u(z) = (z,e]+zze2)ln(z]+zz)
2

where In(-) indicates the natural logarithm of (). Find the de-
formation gradient F for the given motion. Compute the stretch of
the cylinder in the radial direction. Compute the Lagrangian strain
of a line in the radial direction. What are the height, inside radius, z
and outside radius of the cylinder after the deformation?

2

74. Consider a deformation map ¢(z) given by the explicit expression
™z) = (1+ez-2z)z

Compute the deformation gradient F of the given motion. Compute the stretch in the radial
direction (i.e., in the direction z). Compute the Lagrangian strain tensor E for the given
motion. Is the direction z an eigenvector of E or not?

75. Aspherical shell in the undeformed configuration has an inside radius of R and an out-
side radius of 2R. The shell is subjected to a deformation described by the following map:

@) = (1+a(4R* -z - z))2z

where a is a given constant of the motion and z is the position vector of a point in the unde-
formed configuration. Find the displacement of the point originally located at z=(0, O,
R)? Compute the deformation gradient F of the motion. What is the change in thickness
of the shell? How much does the inside surface of the shetl stretch? (Note: the stretch is
the same in all directions because of the spherical symmetry).
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76. A sphere (exploded view shown in sketch) with initial inside
radius of 1 and outside radius of 2 is subjected to a deformation with
a radially symmetric displacement map given by

wz) = fzin(z - z)

where z is the position vector and In(- ) indicates the natural loga-
‘rithm of (- ). Find the deformation gradient F for the given motion.
Compute the stretch of the sphere in the radial direction. What is
the inside radius and the outside radius of the sphere after the de-
formation? Compute the stretch of the sphere in any direction per-
pendicular to the radial direction and evaluate that stretch at the
surface.

77. A circle of unit radius is etched on a plate. The plate is then
subjected to a homogeneous deformation that stretches according
to the following map:

&) = 2z,; + z,€, + 218,

Find the expression for the stretch of the line under the deforma-
tion map (as a function of §). Find the length of the etched line in
the deformed configuration.

78. A circular cylinder of length € and radius R experiences %
the deformation characterized by the following map: )/QR‘
z
¥(2) = aze; + fz,e;, + yz3¢ : s

where a, 8, and y are constants of the motion. Find the vol- (\4,(1)

ume of the deformed cylinder. Find the total surface area of
the deformed cylinder. Find the principal stretches of the mo-
tion. What are the limits on the constants a, §, and y?

79. Considerathin(i.e., it has essentially no thickness in the
z3 direction) circular membrane of radius R initially lying in
the z1-z; plane as shown in the sketch. Under pressure the
membrane deforms into a bubble according to the following
deformation map

®Z) = z.,+2€, + ﬂoos(n Ja+z2 /ZR) ey

where f is a known constant and R is the radius of the circle.
Compute the deformation gradient of the given map. Com- @—»zz
pute the stretch in the initial radial direction (i.e., the direc-

tionof the vector r = z, e, +z,€,). Also compute the stretch

in the direction that is in the initial plane of the membrane

but is orthogonal to r (i.e., tangent to a circle centered at the %

origin). Are these two directions principal directions? Why

or why not? What is the deformed length of the line that was R X3
X

the radial line from the origin to the edge of the circle along
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the z, direction in the undeformed configuration? What is the slope of the membrane at
the edge after deformation?

Note: The stretch through the thickness of the membrane is zero, but that is acceptable be-
cause we are assuming that the thickness is very small compared to the diameter of the
membrane.

80. Consider the deformation map defined on a sphere of unit radius Z3

oz = (1+8)z— B -Z)n ¥ 2
where ¢ and 3 are known (small) constants of the motion and n is a
known constant direction. Compute the ratio of the volume of the
sphere after deformation to the volume of the sphere before de-
formation. Compute the surface area of the sphere after deformation. What makes this cal-
culation complicated? Is the deformed area larger or smaller than the original area? What
is the stretch of the sphere in the radial direction? What is the radius of the sphere after
the deformation?

Z

Q



3

The Transmission
of Force

The transmission of force in a body is basically governed by Newton’s laws
of conservation of linear and angular momentum. In the static context, with
which we are concerned here, these laws amount to the familiar notions of
equilibrium of forces and moments. Whereas Newton was primarily con-
cerned with systems of particles, we are concerned with deformable continu-
ous bodies. Consequently, we must introduce an auxiliary concept to model
force transmission through the body. The notion of stress, as defined by
Cauchy, is fundamental to the mechanics of a continuous body, and provides
anatural complement to the concept of force. Whereas tractions are forces that
act on the surface of a body, stress is the measure of the state of force transmis-
sion in the interior of the body.

We assume that every piece of a body must be in equilibrium, and, thereby,
embrace the concept of the freebody diagram, wherein any piece of the body
can be isolated from the surrounding material. The effects of the surrounding
material on the isolated piece are represented by the traction forces that the sur-
rounding material must exert in order to maintain equilibrium. When isolating
a freebody, part of the interior of the body may be exposed as a surface. On that
surface, the state of stress must be represented as an equivalent traction. There-
in lies the connection between traction forces and stresses. We shall formalize
these concepts in the sequel.

The Traction Vector and the Stress Tensor

There are two basic kinds of force that arise in the mechanics of continuous
bodies: body force (force per unit of volume) and surface traction (force per
unit of area). To clarify the difference between these two types of force, it is
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n t, da

da

Figure 45 Traction force on a surface

instructive to consider specific examples of these forces. The weight of a body
that arises because it possesses a mass density and exists in a gravitational field
is an example of a body force; the intensity of the force depends on the mass
density of the material. Forces caused by electromagnetic interaction are body
forces; the intensity of those forces depends upon the strength of the electro-
magnetic field. Hence, body forces are caused by action at a distance. The
force caused by contact between two bodies is an example of a surface traction.
The intensity of the force is related to the area of contact. The analysis of the
relationship between stress and surface tractions is our primary concern here.

Consider the body B shown in Fig. 45. Let t, be the traction vector field,
in a small neighborhood of a point P, acting onthe exposed surface with (infin-
itesimal) area da and unit normal vector n, shown as a white circle in the figure.
As a matter of notational convention, the traction vector will always carry a
subscript indicating the normal vector for the plane on which that traction force
is acting. The traction is a vector field, and, therefore, has units of force per unit
of area. The total force acting on the exposed surface is t,da (force per unit
area times area), and does not necessarily point in the direction of the normal.

Establishing the relationship between the traction vector and the state of
stress at a point depends upon two simple constructions due to Cauchy. The
first of these is the “pillbox” construction that helps us formalize the concept
of action and reaction. Consider the wafer with face €2, contour I, and thick-
ness €, shown in Fig. 46. We shall consider that the “diameter” of the wafer is
h > e. Accordingly, the area is cqh® and the area of the perimeter is creh,
where cgand crare fixed constants that depend only on the shape of the wafer.
The top face has unit normal n and traction field t,, while the bottom face has

n

r
-n "'

Figure 46 Freebody construction for Cauchy’s reciprocal theorem
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unitnormal —n and tractionfield t_,. The lateral contour hastractions €t per
unit length along the contour, i.e., tris the average traction through the thick-
ness of the wafer. In addition, a body force b is acting on the volume. Again,
since the wafer is thin, we can average the body force over the thickness and
say that the body force eb per unit area is acting on the wafer. Static equilibri-
um of the wafer requires that the integrals of the tractions of the surface of the
body and the integral of the body force over the volume of the body vanish as

Ietrds+jt,.dA+ [ t_.dA + J ebdA =0 (165)
r Q Q Q

Taking the limit of Eqn. (165) as € —> 0, the forces €t and €b become infini-
tesimally small compared to the forces t, and t_,. Hence, the first and fourth
integrals in Eqn. (165) vanish, and we arrive at the limiting expression

I(t“+t_“)dA =0 (166)
Q

Since the region €2 of the wafer can be chosen arbitrarily, the integrand must
be identically equal to zero, and we must have the Cauchy reciprocal theorem

t, = —t_, (167)

expressing that the traction on the area with normal n is the negative of the trac-
tion on the area with normal —n. This theorem should be obvious to anyone
schooled in one-dimensional mechanics that has established equilibrium of a
segment of a truss bar. It has the Newtonian flavor of “equal and opposite” ac-
tions. The theorem will be useful in deriving our next result.

Consider now the Cauchy tetrahedron shown in Fig. 47. Let us first examine
the geometry of the tetrahedron. The vertices of the tetrahedron are the origin
and the points a, b, and c. The lengths of the sides along the coordinate axes
are €,, €, and €;. Let the area of the face having normal vector -e; be called
a;. Each of these areas is simply the area of a right triangle. Consequently we
have

€;

€

Figure 47 The Cauchy tetrahedron construction
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1 1 _ 1
a, = 55253, a, = 55153, and a, = 55152

The volume of the tetrahedron is v = %515253. To determine the area of and
normal to the oblique face, we need only consider the cross product of the vec-
tor pointing from point a to point b with the vector pointing from point  to point
c. Let the vector pointing from a to b be v,, = €,e,~¢€,¢€;, and the vector
pointing from a to c be v,. = €;e;—¢€,e,. The cross product of these two vec-
tors gives a vector normal to the oblique plane whose length is twice the area

of the oblique face of the tetrahedron. That cross product is

an = 3[Va X V| = 3[(€6;~€e)) X XN

Using the distributive law of multiplication and noting the identities among
cross products of the orthogonal unit base vectors, we find the purely geomet-
ric relationship between the areas of the sides of the tetrahedron, the unit base
vectors, and the unit vector to the oblique side as

a,n = q,e,+a,e,+a;e; (168)

Taking the dot product of Eqn. (168) with the ith base vector, we get the area
of the sides of the tetrahedron in terms of the area of the oblique side as

a,=(n-e)a, (169)

Consider now the equilibrium of the tetrahedron acted upon by the traction
vector fields on the four sides and the body force vector b throughout the vol-
ume. Static equilibrium insists that

a,ty + ait . + art_. +ast_ + vb =20 (170)

where the traction and body forces are the average of the field of forces acting
over the appropriate domain of action. Dividing Egn. (170) by a, and taking
the limit as €, €,, and €;— 0 (holding their ratios constant so as not to distort
the geometric shape of the tetrahedron), we find that the ratio of volume to the
area of the oblique side is of order € in comparison to the coefficients of the
traction vectors, and, hence, the body force term vanishes in the limit. Noting
Cauchy’s reciprocal relations and substituting Eqn. (169), we find that

3

t, = Z(n N (171)

i=1
This relationship shows how the traction on the oblique face must be related
to the tractions on the coordinate faces in order for equilibrium to hold. Each

of the three terms in the sum can be recast using the definition of a tensor prod-
uct from Chapter 1. To wit

(n-e)t, = [t ®e]ln a72)
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We shall define the stress tensor S in the following manner

3
S=>tQe a73)
i=1

Finally, we can summarize the Cauchy stress formula of Eqn. (171) simply as

t. = Sn (174)

This simple formula embodies our concept of stress. Stress represents the state
of force transmission in the interior of a solid body. By cutting a freebody dia-
gram, and thereby exposing a surface with normal n, we can see the effect of
the stress through the exposed traction vector. Clearly, one can cut a body
through a single point in an infinite number of possible ways, but there is only
one state of stress at each point. Each way of taking a cut through the point in
question is characterized by a plane with a different normal vector n.

The tetrahedron construction showed us that, in general, a traction t, can be
uniquely expressed in terms of three base tractions t. , t.,, and t.,. Consequent-
ly, the description of the transmission of tractions throughout a body is ideally
suited to the concept of the second-order tensor. Observe that we have done
nothing more than to establish equilibrium of the tetrahedron as Newton would
have done for a system of particles. The tensor S, defined in the manner above,
allows us to speak of the state of stress independent of the orientation of the
plane used to cut the freebody diagram.

The physical significance of the components of S. The physical signifi-
cance of the components of the stress tensor can be seen through a simple com-
putation. The components of S are given by

3

S; = e-Se = e - ;[tek® ee, = e+ t., (175)
In other words, the ijth component of S is the ith component of the traction vec-
tor acting on the face with normal vector e;, as shown in Fig. 48. The reader
should be warned that there are two possible conventions for indexing the
stress tensor. Many authors reverse the order of the subscripts on the compo-
nents of the stress tensor so that the first subscript refers to direction of the nor-
mal vector to the plane of action, while the second subscript refers to the com-
ponent of the traction vector on that plane. Our convention is just the opposite.
We will soon see that equilibrium requirements will insist that the stress tensor
be symmetric, making the distinction between these two conventions irrele-
vant.

Some simple states of stress. There are some important special cases of the
stress state that deserve to be mentioned. Some of these are analogous with the
special homogeneous states of deformation presented in the previous chapter.
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Figure 48 Physical significance of the components of the stress tensor

S =pl Hydrostatic pressure
S = a[e1 ® el] Pure tension along e,
S=1[e,;®e, + e Qe,] Pureshearalonge; ande;
One way to understand a stress state is to examine the traction vectors on
certain planes of a freebody diagram. This approach is a good one because we
can draw a vector; we cannot draw a tensor. The three homogeneous stress

states are illustrated in Fig. 49. The freebody shown is a 10-sided solid with
sides nprmal to the coordinate axes and with sides whose normals split e, and

pre,
—pm pn

—p€; I pe,

-pn »m
—Pe,
(a) Geometry of freebody (b) Hydrostatic pressure
re n
Tm 1
- g oe, gae1
Te,
—0e, ge,
—7e,
- g oe, g oe,
—tn "€ —Tm
(c) Uniaxial tension (d) Pure shear

Figure 49 Traction vectors for certain homogeneous stress tensors
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e,. Figure 49 shows: (a) the geometry of the freebody diagram, (b) the hydro-
static pressure stress state, (c) the uniaxial tension stress state, and (d) the pure
shear stress state. The action of these stress states can be seen by examining
the traction vector that acts on a plane with unit normal vector v, one of the 10
possible normal vectors in each figure. The traction vector for hydrostatic
pressure is t, = pv, that is, a vector with magnitude p pointing in the direction
v. We can see that the traction vectors are all of equal size and point normal to
the face in question. The traction vector for pure tension is t, = o(v - €, )e,.
The front and back face are free of traction, as are the top and bottom faces.
All of the vectors point along the e, direction, but the magnitude depends upon
the orientation of the face. The traction vector for pure shear can be expressed
ast, = t[(v - e,)e,+(v - e,)e,]. Again, the front and back faces are free of
traction. On the coordinate faces, the traction vector is orthogonal to the nor-
mal vector, while on the oblique faces, the traction vector is parallel to the nor-
mal vector. This picture suggests that, in some way, pure shearing in one orien-
tation is equivalent to pure tension and compression in another.

Normal and Shearing Components of the Traction

It is sometimes useful to break the traction vector acting on a plane with normal
n into a component normal to the plane and a component in the plane as

t,=on+tm (176)

where o is the magnitude of the normal traction component, 7 is the magnitude
of the shearing traction component, and m is a unit vector in the plane normal
to n along which shearing takes place, as shown in Fig. 50. The magnitude of
the normal traction can be easily found by taking the dot product of the traction
vector with the normal vector

g =n-t, = n-Sn @177

Note the similarity of this formula and the formula for stretching based on the
Green deformation tensor C. The shearing vector can be determined by taking
the difference between the traction t, and the vector on

Figure 50 Normal and shearing components of the traction vector
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rm = Sn—on = [I-n® njt, (178)

The magnitude 7 can be found by taking the norm of the above vector

r =|sn-on| = [ItF -0 a79)

and the direction of the vector can be found from Eqn. (178) as

m = %(Sn—an) (180)

The computation of normal and shearing components of a traction vector is
straightforward if we know the values of the components of the stress tensor
and the components of the normal vector. Often these computations can be
simply executed using matrix algebra.

Example 18. Consider a plane passing through a point in the body described by
the equation x; +2x, = 0. The state of stress at a point in the body is character-
ized by the stress tensor § = 2[e; @ e;]—5[e; @ e, +e, @ ;] +3[e;, ® e,].
Let us find the traction vector and its normal and shear components.

First, the normal vector to the plane can be computed as n = (e; + Zez)/fS-
{(do you know why?). The traction vectoris t, = Sn = (—~8e, + ez)/fg . Note
that the square of the length of the traction vector is [| t, | = 13. The normal
component of the traction can be computed from Eqn. (177) as

1 1
g =n-t, = =(e+2¢) =(—
n /5( 1 2) G(
Knowing the normal components of the traction we can compute the shearing
component from Eqn. (179) as

8e,+e,) = —g

e = VuP ot = ¥

Finally, we can compute the direction in which the shearing component acts as

m = %(—}?(—Sel+ez)+g%5(el+2ez)) = %(—2e1+ez)

It is easy to verify that m and n are orthogonal and that the two components of
the traction vector add up to the original vector t,.

Principal Values of the Stress Tensor

It seems natural to ask whether there are directions that extremize the normal
component of the traction vector. Like the analogous question for strain, we
can state the problem as a constrained optimization of n - Sn. Specifically,

extremize = n - Sn subjectto n-n =1 (181)
n
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The constraint is needed to make certain that the search is over unit vectors.
The Lagrangian of the constrained optimization problem is given by

2mu)=n-Sn—pu(n-n-1) (182)

where u is the Lagrange multiplier. The necessary condition for an extremum
is that the derivative of the Lagrangian with respect to its arguments be equal
tozero. Clearly, setting the derivative of the Lagrangian with respectto u equal
to zero simply gives back the constraint condition that the vector n be a unit
vector. Setting the derivative of the Lagrangian with respect to nand u equal
to zero gives the conditions

Sn=un, n-n=1 (183)

It should not be surprising that the search for the direction of extreme normal
stress is an eigenvalue problem. It also should be no surprise that all of the tech-
niques for finding the eigenvalues and vectors for T from Chapter 1 apply
equally to S.

There are several interpretations of the principal values 4;and the principal
directions m; of the stress tensor. First, we can see that the eigenvalue y;is an
extreme value of the normal component of the traction vector (no implied sum)

“i = n-Sm; = 0 (184)

From Eqn. (183), we can see that the principal planes are exactly those planes
that have no shearing component to the traction vector since (no implied sum)

7, =||Sm—om; || = 0 (185)

This observation gives us other ways of stating the question leading to the ei-
genvalue problem for the stress tensor: (a) Are there coordinate planes, passing
through the point in question, on which the traction vector is purely normal to
the plane, thatis, t, = on? (b) are there coordinate planes, passing through the
point in question, on which the component of shearing traction is identically
zero: [I—n @ n]t, = 0? Each of these statements leads to the same eigenva-
lue problem, Eqn. (183).

We can determine the principal values and directions for the simple homo-
geneous states of stress described in Fig. 49 by noting that we are searching for
planes having a traction vector pointing in the same direction as the normal
vector. For hydrostatic pressure, every plane satisfies this requirement; hence,
every direction is a principal direction. Recall that a tensor for which all direc-
tions are principal directions has all three eigenvalues equal; in this case they
are equal to p. For uniaxial tension we have planes with no traction at all. These
are principal planes with corresponding eigenvalue equal to zero. We have two
zero eigenvalues for uniaxial tension corresponding to eigenvectors €, and €.
The e, direction is also a principal direction with principal value of ¢. For pure
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Figure 51 A solid region subjected to surface tractions and body forces

shear, only the e direction corresponds to a zero eigenvalue. The plane with
normal n (and its negative) is a principal plane with eigenvalue equal to 7,
while the plane with normal m (and its negative) is a principal plane with ei-
genvalue equal to — 7. Clearly, the principal directions are orthogonal for pure
shear, as all eigenvalues are distinct.

Differential Equations of Equilibrium

To deduce the general requirements of equilibrium, let us examine the equilib-
rium of a body B with boundary €2, having normal vector field n(x) at each
point as shown in Fig. 51. The body is subjected to a surface traction field t,(x)
and a body force field b(x). Equilibrium of the body B requires that

ItndA + Ibdv =0 (186)
Q 3B

In other words, the sum of all of the forces acting on the body must be equal
to zero for static equilibrium. From Cauchy’s formula we have t, = Sn. The
divergence theorem for a tensor field from Chapter 1 gives the relation

ISndA = JdideV (187)
Q B

Therefore, we can express Eqn. (186) in the equivalent form
f (divS + b)dV = 0 (188)
a

This argument must hold true for any volume B taken as a freebody diagram.
Otherwise, it would be possible to find a freebody diagram that does not satisfy
equilibrium, in opposition to our definition of the freebody diagram. In order
for equilibrium to be satisfied for any body, the integrand must vanish identi-
cally, giving the local form of equilibrium

divS+b = 0 (189)
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The equations of equilibrium of the body, Eqn. (189), are a set of three first-
order partial differential equations. If we have a tensor field S(x), it must satisfy
these equations at every point in the body @B in order to be a solution to our
problem. Furthermore, the state of stress must be such that the traction vectors
on the surface of our body are equal to the applied tractions where they are pre-
scribed. One can also view the equations of equilibrium as being a set of partial
differential equations for the components of the stress tensor. The ith equation
is S, +b; = 0,where (),; = 9(-)/9x;is the index notation for partial deriv-
ative with respect to the coordinate x;.

Balance of angular momentum and the symmetry of the stress tensor.
For particles, the vanishing of the sum of the moments of the forces is a corol-
lary of the vanishing of the sum of the forces. For solid mechanics, we must
make an independent hypothesis that the moment of the forces sum to zero.

Let r(x) be the position vector from the point O to the point with position
vector X. Vanishing of the moment of the surface tractions and the body forces
acting on a body B with surface boundary € can be expressed as

ert,.dA +jrxde=0 (190)
Q ]
We can transform the surface integral to a volume integral with the divergence

theorem. Let us note that t, = Sn, and take the dot product of the first term in
Eqn. (190) with an arbitrary, constant vector field h as follows

j(rxSn)-hdA=[(hxr)-SnM=IST(hxr)~ndA

Q Q Q

The first equality is due to the cyclic nature of the triple scalar product, and the
second equality comes from the definition of the transpose of a tensor. The di-
vergence theorem allows us to convert the last expression to a volume integral

I Shxr) -ndA = J div[$7(h x r)] vV (191)
Q ]
In order to make further headway, we need to expand the expression for the

divergence. Note that for any tensor field T and any vector field v, the follow-
ing equality holds (prove this for yourself)

div(Tv) = v - divT + T - Vv

where the scalar or dot product of tensors A and Bis defined as A - B = A;B;
and is a scalar invariant of the tensor A”B; in fact, A - B = tr(A”B).

Let us identify the vector v above with h X r in Eqn. (191). Substituting
these expressions into the balance of angular momentum, Eqn. (190), we get
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J (hx r)-(divS+b)dVv + [ S-V(hxr)dV=0 (192
B B
The first integral vanishes because divS +b = 0 from balance of linear mo-

mentum. Noting that Vr = I (because r = x+¢, where ¢ is a constant vec-
tor), the tensor V(h X r) is the skew-symmetric tensor

Vihxr)=H (193)

where Hv = h X v for any vector v. Since S - H = tr(S"H) = ¢, - S"He,,
the expression for balance of angular momentum reduces to

Jh-[ejxsej]dv =0 (194)
B

with an implied sum on j. The details of the proof of the equivalence between
Eqn. (192) and Eqn. (194) are left as an exercise (see Problem 92). Since h is
arbitrary and since the choice of the region @ is arbitrary, balance of angular
momentum implies

e; X Se = 0 (195)

To see what this expression implies, let us compute it in terms of its components
ej X Sej = ej X (S”m[em ® e,,]ej) = S,,,,,(S,U-ej X e,,, = S,,,jeij,,,e,-
Writing out these expressions, we get the explicit relations
[Ss—Sxnje + [Ssi—Sule, + [Sp—Sule; = 0

Since the base vectors are independent and nonzero, the only way balance of
angular momentum can hold is if the terms in brackets independently vanish,
that is, if the components of the stress tensor satisfy S;; = Sy, S3; = S13, and
Sy = Ss,. Therefore, balance of angular momentum implies that the stress
tensor must be symmetric

S'= S (196)

The ramification of the symmetry of the stress tensor is that it really only takes
six independent quantities to fully describe the state of stress at a point, rather
than nine.

Summary. We have found that the stress tensor S plays the key role in the
description of the transmission of forces through a solid body. Application of
the notion of equilibrium of forces and the moments of those forces about an
arbitrary point lead to three equations governing the spatial variation of the
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stress tensor. These important formulas are summarized below both in direct
and component notation

tn = Sn tn = S,»jnje,»
divS +b =0 (Sp; +b.)e. =0

The first equation allows us to relate applied tractions acting on the surface of
the body to the stress field inside the body. It also gives us a vehicle to form
freebody diagrams by exposing an interior surface in the body and replacing
the tractions exerted by the removed portion of the body. The second equation
governs the rate of change of the stress tensor. The third guarantees that bal-
ance of moments holds for any piece of the body. The second equation is a first-
order partial differential equation for the stress field. Any stress state that satis-
fies these equations is an equilibrium stress state.

Examples

To gain an appreciation for the requirements of equilibrium and the relation-
ship between the stress tensor and the traction vector we shall examine some
simple examples of equilibrium stress states.

Example 19. Rigid block under its own weight. Consider a block of uniform
density g, height &, and base area A = €2, subjected only to the force of gravity
and fixed at the base (i.e., at x3 = 0), as shown in Fig. 52.

Figure 52 Block stressed under its own weight

The body force b = —pe; is constant. The stress tensor is given as follows

Sx) = Q(Xs_h)[es ® e3]

The divergence of the stress tensor is divS = §;,; €; = S33,3€; = ge;. Substi-
tuting into the equations of equilibrium, we see that the equilibrium equations
are satisfied, i.e., divS+b = ge; —pe; = 0. Thus, the stress tensor field satis-
fies the equations of equilibrium for all points in the body. -
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We must also verify that the sides and top of the block are free of traction
(there are no applied forces). The requirement that a surface be traction-free is
quite different than having the stress tensor equal to zero for values of x on the
surface of the body. (Of course, we know that it only makes sense to talk about
traction vectors on surfaces.) On the lateral sides, the normal vectors are e, €,,

—e;, and —e,, all of which give zero tractions when multiplied by the stress
tensor. On the top face we have a normal of e;, but x; = A, so the stress tensor
is zero there. Again, we find no traction on the top face. On the bottom face we
have —e;sothat S(—e;) = ghe,, a force with magnitude ph pointing upward.
The traction times the area is ph€2%e;, the resistance to the total weight of the
block.

The problem of finding a stress state that satisfies the differential equations
of equilibrium throughout the body and gives the applied tractions at the sur-
face is more difficult than we might imagine, particularly if we are hoping to
express these solutions in terms of simple functional forms such as polyno-
mials. To simplify the situation, early researchers often posed the question in
reverse: Given a particular functional form, does it solve an interesting prob-
lem in mechanics? Taking a function, and verifying that it satisfies all of the
governing equations, is generally a simple task. If a function satisfies the equa-
tions then, in a certain sense, that function is what you were looking for. As the
use of numerical methods in mechanics has grown, the drive to find closed-
form solutions to problems has all but disappeared. There is great value in hav-
ing a closed-form solution to a problem, but there currently exist more effec-
tive means to get answers to engineering problems. The reader interested in
closed-form solutions to elasticity problems might wish to consult the text by
Timoshenko and Goodier (1970).

Example 20. A simple polynomial stress state. Let us examine a particular solu-
tionto an essentially planar problem. Consider a narrow strip of length €, width
b, and depth 2k, having its left end positioned at x; = 0, and its middle line posi-
tioned at x, = 0, as shown in Fig. 53.

Let us examine a stress state having the following components

3q (- 322) x,(H —x3) 0
S~ wis| m(W-x)  Lg-3xmi-2w) 0
0 0 0

We must first verify that the stress components satisfy equilibrium. Let us as-
sume that the body forces are b = 0 for the present problem. Hence, we must
have S;,; = 0. Writing out these equations (dividing each one through by the
common factor 3q,/4bh*), we have
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ta(x,)
x
% Yilevvvy
€
e — E
2}{ (e X, t(x2) t.(x2)
£
(a) Geometry of strip (c) Tractions on certain boundaries
X
i ty(x
wad e gy
Xy
ty(x1) (d) Closest problem from
(b) Convention on tractions engineering beam theory

Figure 53 Example 20 stress field problem

St ¥ Sip + Sizs = (203,) + (- 26yx,) + 0= 0
Soinn + Sy + Saz = (h2=32) + (x3-H?) + 0 =0
Sap1 + S3002 + 833,35 =0+0+0=0

Thus, equilibrium is satisfied in the interior of the body. It remains to be seen
what the surface tractions are. Along the right side we have x;, = fand n = e;;
therefore, the traction on that face is

3q,€
4bh®
The distribution of normal tractions (the e, component) is predominantly a lin-
ear variation with a cubic part superimposed. If the length is large relative to the
depth, that is, £ > h, then the cubic part becomes relatively small because
|x,| < h. The shearing tractions (the e, component) are parabolic and vanish
at the top and bottom fibers of the strip. Along the top we have x, = A and
n = e,; therefore, the traction on that face is

3q,
t,(x,) = Zz%ﬁ(xzt’z - %xg) e + (h2=x3)e,

9
tyx,) = — —b3e2
giving a constant normal traction along the length of the strip. Along the left side
we have x;, = Oand n = —e; therefore, the traction on that face is
q.%3

L(x2) = 553 €

The bottom side has x, = —hand n = —e,; therefore, the traction on that face
is ty(x;) = 0.

The astute student of beam theory will recognize this problem as being simi-
lar to a beam, free at the left end and fixed at the right end, subject to a uniform
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transverse load as shown in Fig. 53(d). The cubic variation of tractions at the
left end is self-equilibrating, and, hence, causes no net tension and no moment.
The almost linear variation of normal stresses through the depth creates the
bending moment field of beam theory that varies parabolically along the
length. The parabolic shear stress field gives the equivalent shear force that
varies linearly along the length of the beam. As such, the given stress field can
be viewed as a nearly exact solution to a beam-bending problem.

Alternative Representations of Stress

All the preceding discussion of stress applies to the deformed configuration
¢(z). That is the configuration where equilibrium must hold. The deformed
configuration is the natural configuration in which to characterize stress. Since
Cauchy had so much to do with the definition of stress, we call the stress S the
Cauchy stress tensor. As we noted in Chapter 2, there can be computational ad-
vantages inreferring all quantities back to the undeformed configuration of the
body because often that configuration has geometric features and symmetries
that are lost going through the deformation. A volleyball, for example, initially
has a nice spherical shape that is lost under the force of a hand spiking it. An
automobile generally has a nicer geometry before a crash than after. We will
often want to analyze initially straight beams that become curved under load-
ing, or initially flat plates that become curved surfaces under loading. Refer-
ring back to the undeformed configuration is really nothing more than a change
of variable, with the deformation map describing that change.

If we know the map from the undeformed configuration to the deformed
configuration then we can relate geometric quantities in the two configura-
tions. Specifically, we know how areas are mapped by the deformation. Since
traction vectors are nothing more than force per unit of area, we might expect
that the Piola transformation plays a role in defining other stress tensors. Like
strain, stress can be defined in many ways. We examine two alternatives in this
section.

The first Piola-Kirchhoff stress tensor. Let us suppose that we have a trac-
tion vector t, da on a plane with normal n in the deformed configuration, as
shown in Fig. 54. We can trace back through the deformation map ¢z) what
the corresponding plane was in the undeformed configuration. If the plane has
area da and normal n in the deformed configuration, then it had area dA and
normal m in the undeformed configuration. The relationship between the two
areas and normals is given by Nanson’s formula (see Chapter 2). Let us define
a traction vector tg, in the undeformed geometry that results in the same total
force as the traction in the deformed configuration. To wit

t,dA = t,da 197)
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Figure 54 Definition of the first Piola-Kirchhoff stress tensor

Clearly, the two traction vectors are the same except for magnitude, the differ-
ence in magnitude resulting from the different areas to which they are reck-
oned. The traction vector t3, is the total force on the surface per unit of unde-
formed area, while t, is the total force per unit of deformed area. From
Cauchy’s formula we know that t, = Sn, where S is the Cauchy stress tensor.
We also know that the transformation of areas is givenby nda = JF~"m dA,
where J = det F. We can get an analogous relationship and an alternative def-
inition of stress by substituting this expression into Eqn. (197)

t;dA = t,da = Snda = JSF "'m dA (198)

Let us define the first Piola-Kirchhoff stress tensor P in terms of the Cauchy
stress tensor and the deformation gradient F as

P = JSF’ (199)

where, again, J = detF. The components of the first Piola-Kirchhoff stress
tensor are defined relative to a tensor basis as follows

P =Ple®g] (200)

(You can explain why by noting the component expressions of S and F). Why
did we define the first Piola-Kirchhoff stress tensor in such a strange way? We
did it so that it would satisfy a Cauchy-like relationship analogousto t, = Sn.
Notice that, according to Eqn. (198), we have the relationship

t; = Pm (201)

where m is a unit vector defined in the undeformed configuration. Now it is
a simple matter to recognize that we can establish equilibrium for a region
®(B) by the formula for change of variables for integration as follows

] t,(x)da + [ b(x)dv = f to(z)dA + J b°(z)dV  (202)
) Q

D) 3

where b°(z) = Jb(¢(z)) = Jb(x)isthe body force defined with respect to the
undeformed configuration, since dv = JdV. Consider, for example, the rec-
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Figure 55 Illustration of conservation of mass

tangular parallelepiped shown in Fig. 55, subjected to a deformation map that
preserves the area A but increases the length from € to J¢ (hence, the ratio of
deformed volume to original volume is J). Let the body force be the action of
mass in a gravitational field, that is, b° = g,g, where @, is the initial density
of the material and g is a constant vector representing the gravitational force
per unit of mass. The body force in the deformed configurationis b = g,g/J.
The interpretation, of course, is that the density of the material is less in the de-
formed configuration (forJ > 1). The current density is ¢ = @,/J. Ingeneral,
conservation of mass implies that

J o(x)dv = f o(¥2) JdV = f o@)dV  (03)
®B) k)

B

Hence, by definition of ¢ relative to ,, we again have ¢ = @,/J simply as a
consequence of the formula for change of variables in integration.

The divergence theorem can be applied to the area integrals just as it was
before to get local equations of equilibrium. These equations also can be ex-
pressed in terms of the undeformed geometry and are summarized in the fol-
lowing box

t?n = Pm t?n = P,,m,e,
DIVP + b° = 0 (P,»,»,,» + b?)ei =0
PF’ = FP’ P,F, = F;P,

The divergence operator, in the present case, involves derivatives with respect
to the coordinates z of the undeformed configuration because it follows from
the analogy with earlier derivation that

— : 1
= _1_ 204
DIVP Pr)n ‘V(EB)[ Pm dA (204)
where €2 is the boundary of the region B and has unit normal vector field m.

It is straightforward to demonstrate that the expression for the divergence of
P in Cartesian coordinates is given by the formula
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»OP(@)

DIVP = %z, g

(205)
where {g,,8,, 83} are the base vectors for the z coordinate system. To remind
us that we are differentiating with respect to z rather than X, we will denote the
divergence as DIV (as opposed to div used previously when differentiating with
respect to X).

The symmetry condition on the first Piola-Kirchhoff stress tensor is ex-
pressed as PF” = FP7, and arises naturally from balance of angular momen-
tum, which, when expressed in the undeformed configuration, reduces to

3
Fg, xPg =0 (206)
j=1

J

The derivation of Eqn. (206) is nearly identical to that of Eqn. (195), with most
of the differences accruing from the substitution t,da = t3 dA. The other
change is that the position vectors r(x) must be referred back to the unde-
formed configuration as r(¢(z)). When it comes time to take the derivative of
r with respect toz, we must use the chain rule to get

Ir(Yz) _ Ir(P) 9NZ) oz
0z; ap dz 9z

= Fg; (207)

Since r(z) = ¢(z)—c is the position vector in the deformed configuration,
shifted from the origin by a constant vector ¢ to get to the point about which
moments are summed, the derivative dr/d¢p = L

We must, of course, satisfy equilibrium in the deformed configuration.
However, we usually know more about the geometry of the undeformed con-
figuration than we do about the deformed configuration because the unde-
formed geometry is usually given as part of the problem data (e.g., find the
stresses and deformations of an initially unstressed and undeformed body
whose geometry is completely described in the undeformed configuration).
Hence, you might prefer the first Piola-Kirchhoff stress tensor to the Cauchy
stress tensor, even though they measure exactly the same state of stress.

Both expressions of the equilibrium equations establish equilibrium in the
deformed configuration. Often we are given a set of loads and are asked to find
the deformation map, an inherently nonlinear problem. If the deformations are
small, a linear approximation to our problem is appropriate. As the deforma-
tions get small, the deformation map approaches the identity I, and, hence, the
difference between the two stress tensors P and S vanishes. Accordingly, for
a linearized problem, we speak only of the stress tensor. There is only one.

The second Piola-Kirchhoff stress tensor. One of the unsettling observa-
tions about the first Piola-Kirchhoff stress tensor is that the symmetry condi-
tion that arises from the balance of angular momentum involves the deforma-
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tion gradient F, and, hence, cannot be trivially satisfied. We can define a new
stress tensor defined on the reference configuration that does have the same
kind of symmetry that the Cauchy stress tensor does. This tensor is called the
second Piola-Kirchhoff stress tensor L, and is defined as

X =F'P = JF'SF’ (208)

where J = detF. The physical significance of the tensor X is not as clear as
S and P, but it has some other advantages in computation. The second Piola-
Kirchhoff stress tensor has the component form

L = E,-j[g,» ® g,] (209)

Again, the basis is inherited from the tensor description.

It should be clear that we could go on defining measures of stress endlessly,
just as we could with strain. The two additional stresses we have defined are
useful when the time comes to relate stress to strain through constitutive equa-
tions. The first Piola-Kirchhoff stress P is most naturally related to the de-
formation gradient F, and the second Piola-Kirchhoff stress L is mostnaturally
related to the Lagrangian strain E. The relationships between the different
stress measures are summarized as follows

X =F'P =JF'SF’
FL = P = JSF7

1 r — lpgr =
JFEF JPF S

Example 21. Comparison of the three stress tensors. Consider a bar of unit area
and length € with its longitudinal axis along g,. The bar is subject to uniaxial
tension and a deformation that stretches the bar by an amount A and rotates it
by an amount 6, as shown in Fig. 56.

Figure 56 Example of the first Piola-Kirchhoff stress tensor

The bar does not bend. Let us assume that there are no body forces. The Cauchy
stress tensor is givenby 8 = o[n ® n], where o is the constant intensity of the
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stress. The unit normal vector to the deformed cross-section of the bar can be
written as n = cos fe; + sinfe,. The traction vector acting on the face with
normal n is then Sp = ¢n, as shown in the figure. The deformation map is

&(z) = (Az;cos—az,sinf)e; + (Az;sinf +az,cosB)e, + z;e,

where A is the constant proportion of stretch of the bar. The components of the
deformation gradient can be computed as

Acosf — asinf 0
F ~ | Asin@ acosf 0
0 0 1

and the determinant of the deformation gradient can be evaluated as detF = a4,
indicating that the ratio of the deformed volume to the original volume is aA.
Since the length of the bar changed by A we can conclude that a gives the ratio
of deformed to undeformed cross-sectional area. We can compute the compo-
nents of the first Piola-Kirchhoff stress tensor as follows

cos’0  cosfsinf O acos§ —Asinf O
P =JSF T ~¢g|cosfsinf sin’6 0 asin® Acosf O
0 0 0 0 0 al

which gives the result

P =aocosfe; ®g,] + agsinfle, ® g}

The second Piola-Kirchhoff stress tensor can be computed as £ = F~'P

L= %[gl®81]

We can clearly see the lack of symmetry of P in the preceding example (ac-
tually, because of the mixed basis of P, it makes no sense to talk about symme-
try in the first place). Tangent vectors to the undeformed longitudinal axis are
g:. These vectors map to vectors n = Fg, in the deformed configuration. The
vector Pg; = ao(cosfe, + sinfe,) is the traction vector acting on the cross
section, but referred to the undeformed configuration, as shown in the figure.
Notice that it points in the same direction as Sn. It differs in magnitude from
Sn because the area changed by the factor a. Clearly, the traction vectors Pg,
at the right end of the bar equilibrate the traction vectors — Pg, at the left end
in the sense of balance of linear momentum. However, it appears that these
tractions do not satisfy vanishing of the moment of the forces. The resolution
of the apparent paradox comes from recognizing how balance of angular mo-
mentum is implemented for the first Piola-Kirchhoff stress. Specifically, bal-
ance of angular momentum is assured by the symmetry condition PF” = FP7,
which is certainly true in the present case. Therefore, the net moment of the
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forces does indeed vanish in the deformed configuration. It makes no sense to
ask that those same forces vanish in a Newtonian sense when referred back to
the undeformed configuration. We have derived the sense in which those trac-
tions satisfy equilibrium.

The preceding example illustrates the differences between the three stress
tensors. It is important to notice where each is defined, either on the deformed
configuration or on the undeformed configuration, and what governing equa-
tions they satisfy. Like the different strain measures of Chapter 2, the stress
measures all describe exactly the same state of stress (nature does not know
what coordinate system you will choose to describe the body). The preference
of one stress tensor over another will be dictated by the choice of constitutive
model and the computational strategy. Theoretically, all formulations are
equivalent.

Additional Reading
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I. S. Sokolnikoff, Mathematical theory of elasticity, 2nd ed., McGraw-Hill,
New York, 1956.

S. P. Timoshenko and J. N. Goodier, Theory of elasticity, McGraw-Hill, New
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Problems

81. The stress tensor S at a certain point in a body has components with respect to a set
of coordinate axes {x;, x,, X3} of

5 3 -8
S~ 3 0 -3
-8 -3 11

On a plane whose normal n makes equal acute angles with the coordinate axes, find the
traction vector t,, the component of the traction vector that is normal to the plane, and the
shearing component of the traction vector.

82. Resolve Problem 81 with S,, changed to 10 /3.

83. Find the principal values and principal directions of the two stress tensors having
components with respect to the standard basis of

3 1 2 20 -5 O
S~ |1 -6 0 §~|-5-10 0
2 0 15 0 0 0

84. The condition called plane stress is characterized by the stress state S33 = Sy3 =
Si3 = 0. Show that if the remaining stress components are given by

S =67-1/)(x1,x2) S =67-1/)(x1,x2) S =_67-1/)(x1,x2)
H w2 TE o TF 0x;0x,

and the body force b = 0, then the equations of equilibrium are satisfied for any sufficient-
ly smooth function (x;, x,). How smooth must the function be?

85. The state of stress at a point is characterized by the stress tensor S, given below

4 -4 0
S~| -4 4 0
0 0 8
Consider the vectors n and m given by
n = %(91"92_93), m = %(91*'92)

Are the two given vectors m and m eigenvectors of 8? Find the principal stresses for the
given stress tensor S.

86. Consider the tetrahedron shown in the figure, with edges
along the coordinate axes of length 4, 2, and 1, respectively.
The state of stress in the tetrahedron is given by the expression

S(x) = S,[x ®x|
where S, is a constant and x is the position vector. The equa-
tion of the oblique plane is x; +2x, +4x; = 4. Compute the

body force b required for the tetrahedron to be in equilibrium. Compute the tractions on
the four faces of the tetrahedron required for equilibrium.
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87. Find an expression for the following derivatives of the principal invariants with re-
spect to tensor components

ol 3l 3l
S’ 5. ad Fe

88. Consider the sphere of radius R shown in the

X3
figure. The state of stress in the sphere is given by m d a
the stress field '
Sx) = S,(m®x + x Q@ m| X, ¢ b
!

where S,is a constant, X is the position vector of

the point in question, and m is a constant unit vec-

tor field. What is the body force b(x) required for equilibrium? Compute the tractions act-
ing on the surface of sphere. Sketch the traction vectors at points a, b, ¢, and d shown on
the figure (line segment ca points in the direction of m).

89. Consider a state of stress S that has principal values
{0, 0,, 05} with corresponding (orthogonal) principal di-
rections {m,, m,, n;}. Let us consider one of the eight (oc-
tahedral) planes whose normal vector m; makes equal
angles with the principal directions (one of the eight vec-
tors is shown in the sketch). Show that the normal compo-
nent of the traction on any of the eight octahedral planes is
given by ¢ = (0, +0,+0,)/3. Show that the shearing
component of the traction on any of the eight octahedral
planes is

_1 _
T = 3[(01_02)2 + (0~ 05)* + (03"01)2] =12,

Express 7, in terms of the principal invariants of the stress tensor /¢ and I/.

90. A thick-walled sphere of inside radius 1 and outside X
radius 2 is subjected to an internal pressure of magnitude
p. The principal directions of stress are the radial and tan-
gential directions. The principal values of stress are given
by the expressions

P
a,=02=7(1 +%), a3=§-( —§)

where r is the radial distance to an arbitrary point (with

position vector x) from the center of the sphere, i.e., ”* = x} +x3 +x3. Find the expression
for the stress tensor S in the cartesian coordinate system {x,, X, x5 }. Prove that the outside
surface of the sphere is traction free. Find the body force b that must be present to maintain
equilibrium.
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91. Consider a state of stress S that has prin- n,

cipal values {0, 0,, 05} with corresponding

n
(orthogonal) principal directions {n;, n,,
n,}. Let us consider a plane parallel to n; de- m
scribed by the normal vector 1 9
m
m = cosfn, + sinfn, n; o

parameterized by the angle 8 as shown in the
figure. Show, using the spectral decomposition theorem, that the traction vector and its
normal component, acting on this plane, are given by

tn(@) = 0,cosOn, + 0,sinfn,, 0(f) = o,cos26 + 0,sin’*6
Show that the shear and normal components of the traction vector satisfy the relationship
2 +0? = 02cos?6 +07sin?6
Now let T Mohr’s Circle
= _1 =1
0 =3(0,+0;), and o =3(0,~0,)

Show that the shear and normal components of the
traction vector satisfy the relationship

2+ (0-7)2 = o2
Note that this problem proves that the shear and normal coniponents of the traction vector
on a plane with any value of 8 lies on a circle of radius g, centered at (7,0) in the 7—0
plane. This result, discovered by Otto Mohr, is usually called Mohr’s circle and is shown

in the figure above. Clearly, the same results hold for all three pairings of the principal
directions.

92. Prove the identity S - V(h X x) = h - [e; X Se;], where h is constant.

93. A block of material is subjected to a homogeneous

state of stress described by the constant stress tensor with x| [: < 3¢ &
S =10[e, ®e]—2[e, De,+e, Qe ]+5[e, Rey) r 4¢
The triangular wedge shown is cut out of the block as a X,

freebody. Compute the tractions that must act on each side

of the freebody diagram. Demonstrate that the freebody is in overall equilibrium. Assume
that the block has unit width.

94. A triangular prism of material (with base b, height A, and X3
unit thickness) has an internal stress given by the stress field

S(x) = fh-(xl—h)(bx2+hxl—bh)[e2®e2] h o

where g is the (constant) unit weight of the material and e;isthe 3 b

unit base vector in the direction of the coordinate axis x;. Find

the body force brequired for equilibrium. Find the tractions of all of the faces of the prism.
Sketch the normal (o) and tangential (t) components of traction on the three faces whose
normals are orthogonal to the e, direction.
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95. A spherical shell has an inside radius of R and an outside radius
of 2R. In the center of the sphere there is a magnetic core that sets
up a stress field in the shell. The state of stress in the shell is

X, X
S(x) = (1—&)[x®x] X3
where @ is a magnetic constant of the material, X is the position vec- t (traction)
tor, and r is the radial distance to the point x defined as
r =yx-x (Note that dr/dx; = x;/r) %, x;

Find the body force vector field b in the shell. What is the pressure X3
at the inside surface of the shell? Take a freebody of the shell by

slicing it along the plane x; = 0. What are the tractions t on the

shell that must act at the slice?

96. The stress tensor S can be expressed in cylindrical coordinates (7,6, z) as
S(r,0,2) = Snle, e, ] + Syle, Dey| + Srle, e
+ So,[eg ® e,] + S,,,,[eg ® eg] + Sez[eg ® ez]

+ Sale; ® e, ] + Syle. ® eg] + Sale. @ e;]

where the components (e.g., S,;) are each functions of the coordinates (r, 8, z). However,
now the base vectors e,(9) and e,4(8) depend upon the coordinate 8.

X3 =2

Using the coordinate-free definition of the divergence of a tensor field, Eqn. (87), show
that the divergence of § in cylindrical coordinates is given by
r 69 ( Se9) (;92 ( Sel)

Observe from the figure that n; = e,(6 + Af)and n, = —ey(8), andare constant over
the faces 1 and 2, respectively. The normal vectors n; = ¢,(§)and n, = —e,(§) with
& € [6, 9+ A9]varying over faces 3 and 4. Finally, note that n; = e;and n; = —e,are
constant over faces 5 and 6. The volume of the wedge is AV = rA84r Az plus terms of
higher order that vanish more quickly in the limit as AV — 0.

To compute the component expression for the divergence of the stress tensor, we must
expand the vectors Se,, Se,, and Se,. Show that

divS(r,6,z) = -——(rSe)



Chapter 3 The Transmission of Force 129

Se, = S,.e, + Sye,+ Sye,
S,p€, + Spey + Sye,
Se, = S.e, + Sye, + S;e,

3
1

Before we take derivatives, we must observe that in terms of the standard constant basis
{e,, e,, e;}, the radial and angular base vectors have the form
€, (0) = cosfe, + sinfe,
ey(f) = —sinfe, + cosfe,

and, therefore, de, /00 = eyand de,/00 = —e,. Show that the component expression of
the divergence of S is

divS

aSrr lasrﬂ aSrz 1
( ar +7w+ 3z +7[S,,"Sgg] €,

g , 195e , 9Sp 1
( ar +7—67-+—&—+7[S,9+59,] €y

+

+

aSzr lasﬁ aSzz 1
( 3 +7—ao— + 5z +7{Sz,] e,
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Elastic
Constitutive Theory

Within the confines of continuum mechanics, a purely geometric argument
leads to the definition of strain and the concept of balance of momentum leads
to the definition of stress. The relationship between strain and the motion does
not depend upon stress. The relationship between stress and the applied force
does not depend upon strain. As such, the equations of kinematics and equilib-
rium do not completely characterize the mechanical response of a solid body.
We must introduce another relationship to complete the theory. An equation
that relates stress and strain is called a constitutive hypothesis or constitutive
model.

A continuum constitutive model is simply a mathematical relationship
among certain of the fields that appear in our theory (e.g., strain and stress).
The mathematical relationship generally depends upon a set of parameters
(material constants) that must be established empirically. In other words, if we
wish to establish the values of the material parameters, we must go to the labo-
ratory, perform tests, and fit the model to the data.t There are, however, certain
theoretical restrictions to which a constitutive model must adhere, and there
are certain ways of stating our assumptions about material behavior that are
more productive than others. We shall examine a few of these features of
constitutive theory in this chapter.

The idea that force and deformation are related is intuitive. When you pull
on a rubber band it stretches; the harder you pull it, the more it stretches. This
cause and effect is the feature of mechanical response that the equations of ki-
nematics and equilibrium alone do not address. The simple motivation behind

+ Contrast this situation with kinematics and equilibrium in which there is no room for
empiricism.
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the mechanical response of materials is that all materials are made up of ele-
mentary particles (atoms and molecules) and these particles are held together
by atomic and molecular bonds. When subjected to force, these bonds stretch
and allow the particles to move relative to one another. The aggregate effect
of the relative motion of the particles is observed as macroscopic deformation.
Continuum mechanics homogenizes the discrete nature of materials with the
intent of capturing the essential macroscopic features of the response that re-
sults from the interaction of the microscopic particles.

Constitutive theory generally means finding a mathematical framework (or
parameterization) that covers an entire class of qualitative material response
and renders the distinction among materials to be simply different values of the
material constants. Among those classes we have models of elasticity, plastic-
ity, viscoelasticity, viscoplasticity, and many others. An elastic material will re-
turn to its initial configuration upon unloading; a plastic material generally will
not. A viscoelastic material will eventually return to its initial configuration
upon unloading, but it takes some time to relax back to that condition. A visco-
plastic material generally will not return to its unstressed configuration and
will take some time to get to whatever configuration it returns to upon unload-
ing. The configuration adopted by a stressed elastic material does not depend
upon the history of loading; the configuration of a plastic material does. Here
we shall consider only elastic materials, and, further, primarily those with lin-
ear behavior. This class of materials, however small it may be, is quite impor-
tant to the field of mechanics.

One of the fundamental hypotheses underlying the modeling of constitutive
behavior is that cause and effect between force and deformation occurs only
at the local level. We call this the axiom of locality which simply posits that

stress (at a point) depends upon strain (at a point).

This simple hypothesis is not provable (hence the designation axiom), and has
been the subject of great debate by those concerned with the behavior of mate-
rials.T It is, however, the result of centuries of observation. Where it leads to
useful results, it has been embraced by the engineering community.

You can imagine the progress in thought that led up to the axiom of locality
by considering a uniaxial tension test, shown schematically in Fig. 57. A bar
of initial length € and cross-sectional area A is pulled with a force P resulting

T There are some well-known situations where this hypothesis does not seem adequate.
For example, strain localization, wherein deformations are highly concentrated (es-
sentially over zero volume), is possible in the mathematical theory when an increase
in strain is associated with a decrease in stress (often associated with the term strain-
softening). Although strain concentration can occur in nature (e.g., necking in a ten-
sion bar) it is always associated with a finite volume of material. Extending the axiom
of locality from “at a point” to “in the neighborhood of a point” is one way of resolving
this problem. This issue is beyond the scope of the topics covered in this chapter.
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Figure 57 The relationship between force and extension

in an elongation of amount A¢. In 1678, Robert Hooke recognized the linearity
between force P and change in length A€, and recorded it in his law ut tensio
sic vis (the power is in proportion to the extension). He ascribed this linear be-
havior to all materials, although the bulk of his experiments were on springs.
One can imagine carrying out this experiment with bars made of the same ma-
terial but having different areas and different lengths. One might still observe
the linearity that Hooke observed but with different slopes (as illustrated by the
squares, circles, and triangles in the figure).

The next leap of insight is to normalize the force P by the cross-sectional
area A (i.e., to give what we now call stress) and the change in length A€ by
the length £ (i.e., to give what we now call strain) and observe the tidy orga-
nization of the data. All of the dots line up and it appears reasonable to charac-
terize the relationship between ¢ and e as a straight line with slope C. To wit

o = Ce (210)

This equation is a mathematical model that represents the observed data. The
parameter C is the empirical constant of the model.

The differences in the responses observed in the plot of P versus A€ must,
therefore, be due to the geometry of the test piece and not the constitution of
the material. The slope C on the other hand must be a property of the material.
One could repeat the test with a different material to confirm that the constant
C is different for different materials.

It wasn’t until 1807 that Thomas Young recognized the universal modulus
that bears his name, and even then his concept of the modulus was quite differ-
ent from how we define it today. In 1826, Navier presented the definition of
the modulus, which we call C here, as we use it today.

Linear elasticity in one dimension. Our task here is to generalize the one-
dimensional observation of linear elasticity, Eqn. (210), to three-dimensional
solid bodies. One of the key observations on elastic bodies is that the state of
stress does not depend upon the strain history. The final state does not depend
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Figure 58 Various load paths to a hydrostatic state of stress

upon any intermediate stage of loading. One reason this observation is impor-
tant is that if the state of stress were dependent upon the strain path, it would
be difficult to ensure that the body would return to the unstressed configuration
upon unloading. This issue is not a problem for the uniaxial case, since there
is only one path — the straight line through the origin. However, in a three-di-
mensional body, we can imagine various paths to the same state of stress. For
example, consider a hydrostatic pressure S = pl. The most obvious way to get
to this state of stress is to apply uniform pressure to all sides simultaneously,
increasing from zero to p. We can also imagine getting to this state of stress by
applying pure tension p in the x; direction, then superposing pure tension p in
the x, direction while keeping the already achieved stress constant, then super-
posing pure tension p in the x; direction while keeping the already achieved
stress constant, as shown in Fig. 58. In general, we might think of the compo-
nents of stress as being functions of a time-like parameter 7 such that

S(r) = S;(v)[e: ® €] (@11)

There are many paths that lead to a hydrostatic state of stress of magnitude p.
All of these paths wind up at the same place in stress space, but the paths are
considerably different. For example, we might have

Su(®) = p7, Sy = psin(n7/2), Sy = p7’ (212)

with all other components equal to zero. Attime 7 = 1we arrive at the hydro-
static state of stress.

Path independence of the stress state can be guaranteed very simply by as-
suming the existence of a strain energy function W(e€)from which we can com-
pute the stress by differentiation with respect to strain as

dW(e)

o = 213
de (213)
To observe the path independence let us compute the work done (the area under
the stress strain curve, as shown in Fig. 59) in going from the strain state € to
the strain state €,. The work done is the integral of the stress o(€) from ¢; to
€,, which can be carried out as



Chapter 4 Linear Elastic Constitutive Theory 135

A
g

€2
Area = [ o(e) de

1

>

€1 € €

Figure 59 Work done is the area under the stress-strain curve

j 20(45) de = f 2%2 de = J 2dW(;s) = W(e,)— W(e,) (214)

1 €1 €1

Through this construction, the work done is a function only of the difference
in strain energy at the two end states; it is not a function of the path between
them. It should be obvious that if the terminal state of strain €, is the same as
the initial state €, then the total work done over the path is exactly zero. This
feature assures that the material can return to its original state upon removal
of excitation.

A material defined in this manner is called hyperelastic. The uniaxial, lin-
early elastic material with modulus C has a quadratic strain energy function
W(e) = %Cez. From Eqn. (213) one can easily confirm that 0 = Ce for this
case. Notice that the slope of the stress strain curve is given by

92 W(e)

= 90 _
C =%~ 3 (215)

Although there are other models of elasticity, hyperelasticity is clearly the most
important.

The extension to three dimensions. The concept of the strain energy func-
tion is easy to generalize to three dimensions. Let us assume that we are work-
ing with the small deformations so that the nonlinear measures of strain cannot
be distinguished from the linearized strain tensor. Further, for small deforma-
tions, the Cauchy stress and the first and second Piola-Kirchhoff stress tensors
are the same. Let us refer simply to the strain as E and to the stress as S.

To create a model that has the quality of path independence observe that the
work done in going from a state at time 7, to a state at time 7, is the integral
of the stress powert S - E, where E = dE/dr indicates derivative with re-
spect to time and the dot product of tensors is A - B = A;B;. Hence, we can
write the strain energy as

+ The stress power is the rate of change of internal mechanical work. It is independent
of the constitutive hypothesis and appears in the principles of conservation of energy
(along with kinetic energy, dissipation, and external energy).
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W) = J S-Ed (216)
1

Now, by construction, we can see that the time rate of change of the strain ener-
gy function is simply

o — dW :
=== = - E
W= S (217)
Finally, we can observe that the integral of the rate of change of the strain ener-

gy from the state at time 7, to a state at time 7, is simply

12 12
[ S-Edr = [ Wdr = W(t,)—W(z) 218)
i 1
thereby assuring path independence.

Now let us think of the strain energy as a function of strain and make the
formal identification of the dependence on time as

W(z) = W(E(7)) (219)

We can compute the time rate of change of W by the chain rule for differenti-
ation as (sum on repeated indices implied)

W = a—E—U' E i (220)

Comparing this result with Eqn. (217) we see that the components of the stress

tensor are simply the derivatives of the strain energy function with respect to
the components of strain. To wit,

IW(E)

v = I, (221)

This result is the appropriate generalization of the one-dimensional concept of
the strain energy function. Again, the strain energy function is created in a way
that assures path independence of the state, in accord with our definition of hy-
perelasticity.

Elasticities. We can compute the elasticities (the generalization of the slope
of the stress-strain curve) as
s, _ *W(E)

Ciu = E, = 3E, 3E,

(222)

The derivative of a second-order tensor component with respect to another
second-order tensor component is an object with four indices. We can think of
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this object with four indices as being the components of a fourth-order tensor.
To be a proper tensor it must be expressible in terms of a tensor basis and the
tensor itself must transform according to the rules for change of basis. Let us
define the elasticity tensor to be

C=Cule®eRe Qe (223)

where [e,» Re Ve ® e,] is the Jjkith fourth-order base tensor. There is an ob-
vious complexity of fourth-order tensors over second-order tensors, but there
are some similarities also. Whereas a second-order tensor was introduced for
the purposes of providing an object that operates on a vector to produce another
vector, a fourth-order tensor is an object that operates on a second-order tensor
(strain, in this case) to produce another second-order tensor (stress, in this
case).t

Inorderto see how a fourth-order tensor works, we must define a new tensor
product of vectors. Let a, b, s, t, u, and v be vectors. Let these vectors define
a second-order tensor a ® band a fourth-order tensor [s @ t @ u ® v]. The
fourth-order tensor, as defined, inherits a meaning (other than four letters sepa-
rated by tensor product symbols) only through a definition of how it operates.
The result of the fourth-order tensor operating on the second-order tensor is
defined as follows

[s®t@®u@v|a®b] = (u-a)(v-b)s®t] (224)

Clearly, the result is a second-order tensor. A particular manifestation of this
tensor product, and the one of primary interest to us as we do component com-
putations, is the following relationship between base vectors

[e®e@eRefe, Ve,

(e - en)e - e,)e; De]  (225)
= OO [e: X ej]

With this relationship, we can compute the effect of the elasticity tensor op-
erating on the strain tensor in components. For linear elasticity we get

S = CE
= Cijld[ei ® eRe®¢|E,[e, R e,] (226)
= CwEule; ® ¢]

1 A few observations about the general notion of tensors are worth noting. First, it is
possible to define a tensor of any order. Second, the operation of a tensor can be more
general than what we have described here. In particular, a tensor of order n can be de-
fined as an object that operates on tensors of order m (necessarily less than or equal
to n) to produce tensors of order n - m. For example, a fourth-order tensor could be
defined as an object that operates on vectors (first-order tensor) to produce third-order
tensors. A second-order tensor can be viewed as an object that operates on a second-or-
der tensor to produce a scalar (i.e., zeroth-order tensor).
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Therefore, the components of the stress tensor can be computed from the com-
ponents of the elasticity tensor and the strain tensor as S; = C;uEy.

For a nonlinear stress-strain relationship, we can observe that the rate of
change of stress can be computed, by the chain rule for differentiation, as

5, = (W) _ W _ o Gk
S = dt(aE,»,-) 9E;E, " Cuuk @27

Hence, § = CE. The elasticity tensor operates on the strain rate and produces
the stress rate. The elasticity tensor is, in general, a function of the stress or
strain in a nonlinear model. A constitutive model that relates the strain rate to
the stress rate directly is often called hypoelastic. Not all hypoelastic constitu-
tive relationships are hyperelastic but, as Eqn. (227) demonstrates, all hyper-
elastic constitutive relationships can be put into rate form (and hence are hypo-
elastic).

The elasticity tensor has 3 X 3 X 3 x 3 = 81 components C,,. However,
not all of these are independent. Since the stress and strain tensors are symmet-
ric, there are only six independent components of each. Thus, instead of
9 x 9 = 81 components, the elasticity tensor has only 6 x 6 = 36 indepen-
dent components. Furthermore, since the order of differentiation of the strain
energy function with respect to the components of the strain tensor is immateri-
al, the elasticity tensor is symmetric with respect to §j and kI. A symmetric six
by six matrix has only 21 independent terms (the diagonals and those terms
above the diagonal). Thus, the last symmetry means that there are really only
21 independent components in the elasticity tensor. With some assumptions on
preferential directions in the material, or isotropies, we can further reduce the
number of independent parameters in our model.

Our elastic material is linear if the strain energy function is quadratic. In
components (summation convention implied), we have

WE) = 3E,CyuEy (228)

Isotropy

A material is said to be isotropic if its properties do not depend upon certain
preferential directions. Another way to say this is to insist that the elasticity ten-
sor be invariant with respect to coordinate transformation. There is a rather
straightforward way to assure that the elasticity tensor is isotropic. If the strain
energy function depends only on the invariants of the strain tensor, then the re-
sulting constitutive model will also be invariant. Hence, we must have

W(E) = W(f(E), f(E), f(E)) (229)
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where the invariants of the strain tensor are

f(E) = u(E) = E,
1E) = u(E?) = E,E,

i ]l

fAE) = tr(E?) = E;EE,

§H

The stress can be computed as the derivative of the strain energy as follows

S = W _ 6W8f1+6Waf2 W fs
) ofi oE ~ of, 0E = of; oE

where the derivative of a scalar with respect to a tensor is a tensor with compo-
nents [3f/0E]; = df/dE ;. To complete the derivation we need the derivatives
of the invariants with respect to the strain. These derivatives are straightfor-
ward to compute in components. To wit,

(230)

I(E) _

OF aE,,,. = On0i = Om

IfAE) _ OE; oE;; 231
SE, = oE, EntEigp - = 2w >
afsE(,,.,,) - aElE»EﬁEuaE Eu+EyEypp = 3Euk

These results can be summarized in direct notation as
of(E) _ fAE) _ fs(E) .o
E) L E) 2E, E) 3E

Using these results in Eqn. (230) we arrive at the most general isotropic elastic
constitutive model

(232)

W oW AW 2
S = I1+2=~—E + 3=E 233
of T4, o, (233)

The constitutive model given by Eqn. (233) can be put in a slightly different
form by noting that E? can be expressed in terms of E and E~* through the
Cayley-Hamilton theorem as the following example shows.

Example 22. Alternative form for hyperelastic constitutive equation. The
Cayley-Hamilton theorem states that (see Chapter 1)
E-I,E*+I,E-II 1 =0

where I = f,, 2l = f2~f, and 61l = f?—3f,f,+2f; are the invariants
that show up in the eigenvalue problem for principal strains. We can rewrite the
equation as
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E[E>-LE+I 1-II;E| =0
from which we can deduce that
E? = ILE-II. 1+l E™!

Now E? can be replaced with this expression in the stress-strain relationship.

Linear, isotropic elasticity. If we want a linear constitutive law, the strain
energy must be a purely quadratic function of strain. Consequently, it can de-
pend only upon f7 and f, ( f, is only linear in the components of E, while f,
is cubic in the components of E). Thus, our strain energy function must have
the form

W(E) = a,fX(E) + a.f»(E) (234)
where a, and a, are material parameters. Now
d d
5——l(ff) = 2f, = 2u(E), a—fz-()g) =1 (235)

Renaming the parameters A = 24, and 4 = a,, from Eqn. (233) we get the
final form of the linearly elastic constitutive equations, in direct notation

S = AurE) + 2uE (236)

This constitutive model is often referred to as Hooke’s law even though Robert
Hooke undoubtedly never saw anything like it. These equations embody the
assumptions of hyperelasticity and linearity and represent, without question,
the most widely used constitutive model ever conceived. The two material
constants A and u are called the Lamé parameters for their discoverer G.
Lamé, although Cauchy might have been the first to express the equations of
elastic constitution with two constants.

Example 23. Elasticity tensor for linear elasticity. From the developments
above it is straightforward to compute the components of the elasticity tensor
for a linear isotropic elastic material. The components of the stress tensor are
givenby S; = AE,,0;+2uE;. Theelasticity tensor can be computed by differ-
entiation to give

Cijld

%ﬂ(uma‘, + 2uE,)

40,4040, + 20,0,

18,40, + 2ub48,
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Observe that the moduli are constant, as expected for a linear model. Because
the strain tensor is symmetric, the elasticity tensor is often written as

| Ciu = Aaljék,+/t[<5,-k5ﬂ+5uajk]

The term in brackets is expressed as shown in order to assure symmetry with re-
spect to the indices ij and kI. Any fourth-order tensor with components in this
form is invariant with respect to coordinate transformation, and hence is often
called an isotropic fourth-order tensor.

The constitutive equations given by Eqn. (236) can be easily inverted to give
strain in terms of stress. First, compute the trace of both sides of the equation
to get the result tr(S) = (34 + 2 )tr{E). Now we can substitute this result for
tr(E) in the equation to get

- A 1
E = %7 ) tr(S)I + 2#8 (237)

This form of Hooke’s law is convenient when stresses are prescribed and the
task is to compute the associated strains. Some of the problems at the back of
the chapter generalize the concept to situations where some of the components
of stress and some of the components of strain are prescribed and the task is
to compute the remaining, unknown, components.

Definitions of Elastic Moduli

The interesting observation about the linear elastic constitutive equations we
have just derived is that there is no mention of the famous modulus of Thomas
Young. We can, however, derive such a result from our basic equations ex-
pressed in terms of the Lamé constants. There is a lesson in doing so. We shall
see that the constitutive equations of linear elasticity can be expressed a num-
ber of different ways, all valid and equivalent, each with its own definition of
the moduli. The key difference among them is the experiment we would be in-
clined to do to find the constants. We will consider two important cases here.

Young’s modulus and Poisson’s ratio. The first experiment that we will
imagine is the uniaxial tension test, which will provide us with a means of di-
rectly measuring Young s modulus and Poisson’s ratio. Let the axis of applied
tension o be along x;. We thus induce a state of stress S = o[e; &® e,]. The
stress tensor has components S;; = @, S; = Si3 = 8, = S;3 = S = 0.
According to our constitutive equations the components of stress are
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Sy = (A+2u)E), + A(Ep+Ey) = ©
Sy = (A+2u)Ey + A(E,y+E5) = 0
Sy = (A+2u)Ey + A(Ey+Ep) = 0
Sy, =2wE, =0, Sy;=2wE; =0, Sy=2uEy =0

The last three equations yield E,, = E;; = E,; = 0. The second and third
equations can be used to express the strains E,, and E;; interms of E ;. Solving
these equations, we get

(238)

Ey = Eyy = Ey (239)

_ A

2(A+u)
Let us assume that we have measured the axial strain E,; = €. Eqn. (239) can
be substituted back into the first of Eqns. (238) to give a relationship between
the applied axial stress and the measured axial strain as

o = ﬂ(?—:;ﬂ—) € = Ce (240)
giving C = p(34+2u)/(A+u) We call this constant Young’s modulus and
observe that it can be directly measured as C = 0/e in a uniaxial tension test.
Young’s modulus C has units of stress f/I.

Let us also define Poisson’s ratio v as the negative of the ratio between the
lateral strain and the axial strain in a uniaxial tension test. To wit

_Eyn _ _ Es; A

E,  E, 2(,1+,u)
To determine Poisson’s ratio from a uniaxial tension test one of the lateral
strains E,, or E,; must also be measured.

Young’s modulus and Poisson’s ratio provide two suitable independent ma-
terial constants for our linear elastic constitutive equations. One can find 4 and
4 in terms of C and v from their definitions as
Cv

_ __c_
P ) 4T ) 242)

v = (241)

The linear elastic constitutive equations can be expressed in terms of C and
v as follows

- Oy <
S = (1+’V)(1—2’V)tr(E)I + 1+ E (243)

Another useful form of the preceding equations is to invert them and express
strain in terms of stress. Since the equations are linear, this inversion is straight-
forward. The end result is
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tr(S)I + l%’i S (244)

The bulk and shear moduli. We can imagine an experiment wherein the
material is subjected to pure pressure, and the change in volume is measured.
Such a test is important, for example, in measuring the properties of geotechni-
cal materials (it is impossible to perform a tension test on a granular material).
Let us re-examine the change in volume for small strains. Let us assume that
we have a volume of material V subjected to a homogeneous deformation, i.c.,
Fis constant. The assumption of homogeneity of deformation is reasonable be-
cause, in an experiment, we generally try to induce the simplest state possible
in order to measure the quantity of interest in the most direct way possible. The
deformed volume of the body is v = (det F)V, in accord with the results of
Chapter 2. Let us denote the change in volume as AV = v — V. We have the
following relationships among the deformation gradient F, the Green deforma-
tion tensor C, and the Lagrangian strain tensor E

detF = J/detC = /det[I+2E] (245)

Therefore, the ratio of the deformed volume to the original volume is

V+AV _
4

One can expand the determinant of the tensor I+ 2E to find (see Problem 106)

det[I+2E] (246)

If strains are small, then I; > II; » III,, since the first is linear in E, the sec-
ond quadratic, and the third cubic. Therefore, to a first approximation, we have
det[I+2E] = 1+ 2 To finish our derivation, we need to deal with the
square root in Eqn. (246). We can use a Taylor series expansion to show that
‘/‘1 +2x = 1+x when x < 1 (prove this for yourself!). Using this result in
Eqn. (246), we find that, for small strains, the ratio e of change in volume to
original volume is measured by the trace of the strain tensor

ATV = ¢ = tr(E) (248)

We generally refer to e = AV/V as the dilatation. The dilatation is a quantity
that is readily measurable in an experiment. It is also easy to apply a constant
pressure and measure its value.

Let us compute the trace of the stress tensor from the constitutive equations

tr(S) = Atr(E)tr(I)+2%tr(E) = (34 +2u)tr(E) = 3Ktr(E)
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We call the constant K = A + %,u the bulk modulus. If we do an experiment in
which a hydrostatic pressure p is applied, then the stress is S = pl, and the
trace of the stress is tr(S) = 3p. If we measure the change in volume (and the
original volume, of course), then e is known. Hence, we can directly measure
the bulk modulus as K = p/e in an isotropic pressure test. The bulk modulus
has units of pressure f/I.

To provide a complement to the volumetric part of the constitutive equa-
tions, let us subtract the trace of the stress from the stress tensor. Let the devia-
toric stressbe definedas S’ = S— 3 tr(S)Isothat tr(S') = 0.Letus compute
the deviatoric part of the stress from our constitutive equations

S = 8- 3tr(S)I
Atr(E)I + 24E — (A+ g,u)tr(E)I
= 2u(E - iu(E)I) = 2uE'

where E' = E— 3 tr(E)l is the deviatoric strain, with tr(E') = 0. We can
write the constitutive equations as the sum of bulk and shear parts as

S = Kel + 2uE’ (249)

These equations are exactly equivalent to the original equations expressed in
terms of the Lamé parameters. The constants K and u are a suitable alternative
pair of elastic material parameters. For any given state of strain E we can com-
pute the stress from Eqn. (249) by first computing e and E', and then substitut-
ing into the equation for S. Note that any state of strain is amenable to this de-
composition. One can invert this relationship to get

- L1+ lg
E = 5l + 5,8 (250)

where p = Jtr(S)is the pressure and §' = S—pl s the stress deviator. We
can compute the state of strain by first computing pand S’ and then substituting
into the equation for E.

Example 24. Triaxial Test. A common test to determine the elastic constants K
and u is the triaxial test configuration, shown in Fig. 60. In this test, a confining
pressure o, (usually compressive) is applied around the sides of the cylinder,
and an axial pressure o, (usually compressive) is applied on the ends of the cyl-
inder. The stress and strain tensors have the form

S = g,(e,®e] + 0,]e,Qe, + &;Q ¢,
E = ¢fe,®e] + €,]e;Re, + e; D e
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The pressure is then p = 3(0, +20,) and the deviator stress is

S' =1(0,~0,)3¢, @ e, — 1]

Similarly, the volume change is e = (€, +2¢,) and the deviator strain is
E' = 3i(e;—¢,)[3e, ® e ~ 1]

where €, and ¢, are the axial and lateral straining of the sample (change of di-
mension over original dimension). This test gives adequate information to com-
pute the bulk and shear moduli as K = p/e and 2u = (0, —0,)/{€; —¢€,).

(41

(223 g,

(41

Figure 60 The triaxial test configuration

The purpose of the preceding discussion is twofold. First, we have seen that
while there is only one constitutive model for linear elasticity, there are many
equivalent forms of it. Second, the different forms are dictated by the experi-
ment we use to define the constants of the model. All of the constants are re-
lated (Problem 98).

Elastic Constitutive Equations for Large Strains

In all of the preceding discussion we assumed that the deformations were small
with the convenience that the Lagrangian strain and the linearized strain were
essentially the same, and the Cauchy stress was indistinguishable from the first
and second Piola-Kirchhoff stress tensors. When deformations are not small,
the distinction among the various strain and stress tensors is important. The
problem of finding suitable constitutive equations is more complicated be-
cause there are many more choices for a nonlinear model.

The mathematical model of hyperelasticity can again be built by defining
a strain energy function that is the integral of the stress power between times
7;and 7 > 7,. Letus define the stress power to be the product of the first Piola-
Kirchhoff stress with the time rate of change of the deformation gradient, i.e.,
P - F. Now let the strain energy function be defined as

Yr) = ] P-Fd: (251)
f1
implying that ¥ = P - F. Following exactly the same argument as we did for

small strains, observing that ¥(r) = W(F(r))and using the chain rule for dif-
ferentiation, we find that
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P= —@afF (252)

with component expression P; = 0¥/dF .

As was pointed out in Chapter 1, the deformation gradient F carries infor-
mation about the stretching of the material, but it also carries information about
the rigid body motion. Using the argument that the constitutive equations
should be invariant under superimposed rigid-body motions, we can show that
the strain energy can depend on the deformation gradient only insofar as it ap-
pears in the form F’F. Thus, we can write (at a given point the values of the
functions are identical)

Y(F) = YC) = VE)

where 2E+1 = C = F'F. Observe that since A - B = tr(A”B) we can
write the stress power as

P F

tr(P7F)

(
tr(PTF TFTF)
tr((F-

I(F'F )

tr(zT(FTF)) = £ (FF)

Now we can observe that because C = F'F+ F’F and because L is a sym-
metric tensor we have the following equivalence for the stress power

P F=2%t (FF)=3£-C =L E

A relatively straightforward computation shows that the second Piola-Kirch-
hoff stress can be computed from the energy as

LC) _ VE)
M 3C 3E (253)

Thus, we can express the functional form of the constitutive equations for the
first and second Piola-Kirchhoff stress tensors in terms of the Green deforma-
tion tensor C, or equivalently through the Lagrangian strain tensor E.

Asbefore, we can show that for an isotropic material, the constitutive equa-
tion of the second Piola-Kirchhoff stress has the form

T =2y, I+4y,C+6y,C? (254)

where 1, = 0%/ 0f, are the derivatives of P( f,(C), f,(C), fx(C)) with respect
to the invariants. Hence, they are each functions of f,(C), f,(C), and f5(C).

An example of a particular constitutive equation for large strains is the so-
called Mooney-Rivlin material that has a stored energy function of
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Y(C) = a(l.—3) + b(lI-—3) (255)

where I and II; are the first and second principal invariants of the tensor C,
and a and b are material constants. The reason for subtracting 3 from each of
the invariants is simply to have zero energy when there are no strains (recall
that no strain means C =1). The similarity between the form of this function
and the one we used for linear elasticity should be noted. Because the energy
depends only on the invariants of the deformation tensor, the material is iso-
tropic. While this stored energy function leads to a linear constitutive relation-
ship, the behavior of a body with this constitutive model would not be linear
because neither C nor X will necessarily be linearly related to the applied forc-
ing function. The Mooney-Rivlin constitutive model has been successfully
used to model the behavior of rubber and rubberlike materials.

There is a middle ground that deserves mention. Some problems exhibit
large motions, but with small strains. In such cases, it is often appropriate to
model the constitutive equations after those of the linear theory. You must take
care in doing so, however, as the following example illustrates.

Example 25. Saint-Venant-Kirchhoff constitutive model. Consider the follow-
ing strain energy function (in terms of the Lagrangian strain)

YE) = %/1(trE)2 + ptr(E?)
The similarity with the strain energy function of the linear theory should be evi-
dent. The constitutive equation takes the form
L = Atr(E)I + 2uE

which appears to be a generalization of Hooke’s law to finite deformations.
To understand the limitations of this model consider a homogenous uniaxial
deformation with deformation gradient F = I+(y—1)n ® n. This deforma-
tion has a stretch of yin the direction n and a stretch of 1 in the directions perpen-
dicular to n. Note that detF = y. The Lagrangian strain can be computed as

E=3(-1)n®n

Noting that tr(n ® n) = 1 we find that

=L~ 11 + uly-1)n®n

Let us compute the component p of the Cauchy stress in the direction n. Noting
the relationship between the Cauchy stress and second Piola-Kirchhoff stress
(from Chapter 3) we have

=
rry
™
"y
3

P =n-Sn

n

<= NI (ST

(F™n) - £(Fn)

i

(vn)- E(yn) = yn-En
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whereé J = detF = yand F'n = yn. Finally, substituting into the equation for
the second Piola-Kirchhoff stress we find that

po) = (3A+u )y’ -)

Observe that the stiffness dp/dy goes to zero at astretch of y,,; = y1/3 and that
the stress p goes to zero as the bar shrinks to zero length. Both of these phenome-
na are physically unreasonable. Both are artifacts of the Saint-Venant-Kirchhoff
model.

The main reason that the Saint-Venant-Kirchhoff model fails in the pre-
vious example is that it does not treat change in volume appropriately. For
small deformations, change in volume is proportional to tr(E). For large de-
formations the ratio of deformed volume to original volume is J = detF. The
Saint-Venant-Kirchhoff model does not respond appropriately in the limit as
the volume shrinks.

One minor modification to the Saint-Venant-Kirchhoff model greatly im-
proves its performance. Let the strain energy density be

PE) = 3A(InJ)* + ptr(E?) (256)

where J = detF and In(-) represents the natural logarithm of (-). Now the
second Piola-Kirchhoff stress has the form

L = AJInJ[2E+I]7' + uE @57)

When deformations are small (i.e., J = 1) this model reverts to Hooke’s law
(as does the Saint-Venant-Kirchhoff model). There are numerous finite elas-
ticity models that revert to Hooke’s law in the limit of small deformations. Hol-
zapfel (2000) provides an excellent discussion of these models.

Limits to Elasticity

Few materials exhibit elastic response indefinitely. At some level of stress or
strain, materials start to exhibit irrecoverable strains. There are many constitu-
tive models aimed at capturing yielding, cracking, evolution of porosity, and
other microscopic phenomena that manifest at the macroscopic level (and
show up as observable features of the mechanical response, e.g., in the stress-
strain curve).

One of the most important continuum nonlinear material models is inelastic-
ity. First conceived for metals, inelasticity has been applied to a wide range of
materials from concrete to granular solids. While the development of inelastic
constitutive models is beyond the scope of this book, it is useful to make some
observations on the limits to elastic behavior.

Most models of inelasticity posit that the material responds elastically over
a certain range of stresses and strains and that the accrual of inelastic (non-re-
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@(8) =0

Figure 61 The yield surface describes the limit of elastic behavior

coverable) strains begins only upon reaching a certain state of stress or strain.
The critical state is often referred to as the yield surface, which is illustrated
in Fig. 61. The yield surface is a surface in, say, stress space that satisfies the
scalar equation ¢(8) = 0. The yield function @(S)has the property that the in-
terior of the elastic domain satisfies @(S) < 0 and the exterior of the elastic
domain satisfies ¢(S) > 0. In many models the direction of inelastic straining
is taken to be in the direction of the normal to the yield surface (i.e., the so-
called normality rule of plastic deformation).

One of the most popular yield functions is the one due to von Mises that is
based on the concept that yielding is independent of hydrostatic pressure. Spe-
cifically, the von Mises yield function is

o) = /S-S —k (258)

where 8’ = §— % tr(S)Iis the deviator stress, k is a material constant, and the
dot product of tensorsis A - B = A;B;.

Example 26. Uniaxial yield test. To get an idea of the meaning of the constant
kinEqn. (258) one can imagine a uniaxial test with the load oriented in the direc-
tion n. The stress tensor is S = o [n ® n]. The deviator stress is

S =%¢[(n®n]-ic[I-nQ®n]

The yield function can be computed in this particular case to be

o) = /58 k= flo-k=0

If we call o, the yield stress in axial tension, then the parameter k has the inter-

pretation
- /2
k= /; oy

One can repeat this thought experiment for a pure shear loading with stress
tensor S = 7[n ® m+m ® n] for perpendicular directions n and m. If we
call 7, the yield stress in pure shear, then we get

k=ﬁry

From these two results we can observe the well-known result g, = 3 Ty
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Some authors prefer to include a factor of three halves inside the square-root
in the definition of the yield function. To do so changes the interpretation of
k by a multiplicative constant so that k = 0,.

There are many other yield functions that have proven useful in engineering
computations. The pressure-dependent yield function of Drucker and Prager
has found application in granular materials. The anisotropic generalization of
the von Mises yield function, due to Hill has found application in composite
materials. For a more complete account of the issues associated with inelastic-
ity, particularly from a computational point of view, the reader should consult
Simo and Hughes (1998).
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Problems

97. The constitutive equations for a three-dimensional isotropic, linearly elastic material
can be expressed in the formS;; = AE,d;+2uE; where the subscripts i, j, and & range
over the values 1, 2, and 3. Find equivalent expressions for the constitutive equations that
already reflect the plane stress condition S33 = S,3 = S;3 = 0, that is, find new material
constants A" and " such that the two-dimensional relationship can be written as

Sug = AEpl+ 20 E 4
where the Greek indices range only over the values 1and 2. Express the new constants (47,

#") in terms of the constants (4, w) of the three-dimensional theory.

98. Demonstrate that the following relationships between the elastic constants 4, g, C,
K, and v hold for an isotropic, linearly elastic material

A = 2wy - wC—=2u) _ Cv 3Ky

1-2 3k—-C ~ A+v)(A-2v) 1+v

- 2 _ _uC _A+n) _ ¢
K=Ad+3u = 33u-C) 3w 3(1-2)

= _HGAT)  AQ+v)(A-2) _ 9Ku
C = u(l+v) = Tin > = K

_ _C 3 . _ 3KA-2) _ A1-2v)
k= 20+ 3K =2) = 20+v) 2

- A __Cc_,_3Ku _ k-

20+pm) 2(3K—u) 6K

We can observe that, in each case, one of the elastic constants is expressed in terms of two
of the others from the set of five constants. There are some natural limits to the values that
the constitutive parameters can take. Assume that under compressive hydrostatic pressure
it is impossible for the volume to increase, and that in uniaxial tension it is impossible for
a bar to get shorter. What do these hypotheses imply about the other moduli?

99. Show that the isotropic elasticity tensor with components

Ci = 40,0, + u[040,+0,0,]
is invariant with respect to coordinate transformation since the components of the tensor
in the two'coordinate systems are related by C .y = C;1Q Qs Qe Qup» Where, as usual,

Q; = & - e;are the components of the orthogonal change-of-basis tensor. (Hint: another
way to view change of basis is g; = Qe;.)

100. Consider a linearly elastic, isotropic material with Lamé parameters 4 and u, sub-
jected to the following displacement map u(x) = 8(x?e, +x2e, ). Assume that the linea-
rized strain tensor is adequate to characterize the strain field, and compute the body forces
required to satisfy equilibrium.

101. Arrange the six independent stress and strain components in column matrices as fol-
lows: § = (811,52,533,512,823,S13)" and E = (Eyy,Eg, Es3, 2E 13,263, 2E13)". As-
sume that the constitutive equations of linear elasticity hold. Show that the constitutive
equations can be expressed in matrix form as 8 = DE, where D is a six by six matrix.
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102. Consider the thin rectangular sheet with Young’s 15 psi AAAAY
modulus € = 1000 ksi and Poisson’s ratio ¥ =0.45. The

sheet is subjected to a uniform state of stress through the 25 psi E E 25 psi
tractions given in the sketch. The thickness of the sheet -~ Tvivy Sl
before the tractions were applied was 0.1 in. What is the 15 psi

thickness of the sheet after the tractions are applied?

103. Consider the thin rectangular sheet with Young’s 15 psi

modulus C=1000 ksi and Poisson’s ratio ¥=0.2. The yVviy .

sheet is fixed between two immovable frictionless plates 35 psi:——: =35 psi
and is subjected to a uniform state of stress through the -

tractions around the edges as shown in the sketch. The ? ’ f f

15 psi
thickness of the sheet before the tractions were applied

was 0.3 in. What is the state of stress in the sheet after 35 psi—=—35 psi
the tractions are applied? What are the reacting tractions

provided by the plates? Find the ratio of the change in volume to the original volume of
the sheet.

104. A disk made of isotrop- t t p

ic, linearly elastic material is |

subjected to a known uniform P -» Side = P @
pressure p around its perime- P p -

ter. The faces of the disk are t t

clamped between immovable, frictionless plates so that the strain through the thickness
is zero. Assume that the stress state is homogeneous throughout the disk and that the Lamé
constants are known. Find the tractions ¢ acting on the faces.

105. In a triaxial test, a cylindrical specimen g,

is subjected to a uniform pressure g1 on the o, = — 50 psi
ends of the cylinder and a uniform pressure o 0, = — 20 psi
on the sides. The change in height Ak and the o, 0, 2 = 0.00367
change in diameter Ad are measured. Let &1 _ )

&, = Ah/h and ¢, = Ad/d, where h is the o, €2 = + 0.00133

original height and d the original diameter. The

values measured in a test are given in the diagram. Assume that the material is linear, iso-
tropic, and elastic. What is the volume of the deformed cylinder? Compute the value of
the bulk and shear moduli (K and ) for this sample.

106. Prove the identity det{1+2E] = 1+ 2/;+ 41+ 81lI;. (Hint: Use the component
expression for the determinant of a tensor. The € — 4 identity from Chapter 1 may also be
useful.)

107. Consider a beam of length € with its axis oriented along the z, direction. The cross
section of the beam lies in the z; —z, plane, and its second moment of the area is equal
to 1. The beam is subjected to equal and opposite end moments of magnitude M, bending
it about the axis with second moment of the area /. The beam is made of elastic material
with moduli C and v. The displacement field in the beam is given by the expression

u@@) = %[%(Zgﬁwzf—vz%)el + vz 2,8, — zlz3e3]
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Assume that the applied moment is small enough relative to CI that the displacements are
quite small. Compute the components of the strain tensor. Compute the components of the
stress tensor from the strain tensor and the linear elastic constitutive equations. Verify that
the stress field satisfies the equations of equilibrium.

108. Consider the displacement map u(z) for a sphere of unit radius, 23
given by the explicit expression
z
uz) = é(z-z)z 2
Z

where ¢ is a (very small) constant of the motion. Assume that the ma-
terial is isotropic and linearly elastic with material constants 4 and
(i.e., the Lamé parameters). Compute the body force b required to maintain equilibrium.
Compute the traction forces t that must be acting on the surface of the sphere. Determine
the principal stress field associated with the given motion.

109. Let the elasticity tensor be given by Cyy = 19,0, + y[6&6j1+6 i,djk]. Show that
the expression S; = C;y, £, reduces to Eqn. (236).

110. A cube of isotropic elastic material, having Lamé constants 4 = 1000 psi and
u# = 1000 psi is in a homogeneous (i.e., does not vary with position) state of stress given
by a stress tensor with components

10 2 1
S ~ 2 5 1
1 1 S33

Find the stress component S35 that is consistent with the observation that the cube de-
creases in volume (from the stress-free state) by 5%. Now compute the components of the
deviatoric stress tensor and the strain components E;3 and E33.

111. A block of elastic material, having Frictionless

Lamé constants 4 = 1000 psi and 4o

# = 1000 psi is subjected to a lateral hoI‘ o E j ‘ o I h
compressive pressure of o = 80 psi and L

clamped between two frictionless rigid

plates that reduce the height of the block to 99% of its original height. Compute the total
force required on the plates to accomplish the motion. Compute the volume of the block
after deformation. Compute the change in the area of the block on the faces in contact with

the plates.

112. Consider a body B subjected to the following displacement map:
wz) = B(2-2z,z;)e, + B(2+22,2;) e, + B(22-22,2,) ¢,

where f8 is a (very small) constant. Find the stress tensor associated with this motion, as-
suming that the material is linear, isotropic, and elastic with moduli 4 and x and that the
stress is zero when the displacement is zero. Find the body force field required to maintain
equilibrium for the given motion. Find the principal values of the (linearized) strain tensor.

113. The state of the deformation at a certain point in a solid body is such that it has the
following principal strains €; = ¢ and €, = €; = 3¢, wheree isa known value. The prin-
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cipal directions associated with these principal strains are known to be n;, ny, and n;. As-
suming linear, isotropic response, find the principal values and principal directions of the
stress tensor S. The material constants are A = 1000 psi and # = 1000 psi. What is the
average pressure p at the point in question? What is the change in volume in the neighbor-
hood of the point in question?

114. The strain energy function of a nonlinear hyperelastic material is given by
W(E) = 3aE;E; + 1bE;E; + cE EEy

where a, b, and ¢ are material constants and E = E;;[e; ® ¢;] is the strain tensor. Find
the stress tensor S as a function of the strain E implied by the strain energy function.

115. The strain energy function of a nonlinear hyperelastic material is given by
3
WE) = aE;In(1+E;) + SbEE;

where In(.) indicates the natural logarithm of (.), a and b are known material constants,
andE = E;[e; @ ;] is thestrain tensor. Find the stress tensor S as a function of the strain
E implied by the strain energy function. Consider a hydrostatic state of stress with pressure
p in which the stress tensor is given by S = pl. Set up a relationship between the change
in volume and the pressure p. What is the pressure required to decrease the volume to 95%
of the original volume (assume that the linearized strain tensor is adequate)?

116. The strain energy function of a nonlinear hyperelastic material is given by the (com-
ponent) expression W(E) = a(E;E;E,+a,E;EyEy, where a,and a; are known mate-
rial constants, and E,-j is the ijth component of the strain tensor E. Find the stress tensor
S as afunction of the strain E implied by the strain energy function. Is the material isotrop-
ic? Explain your answer. Is the material linear? Explain. Consider a uniform state of shear-
ing in which the strain tensor has components E;, = E,; = y and all other components
equal zero, where y is a given constant. Find the principal values of the stress tensor S for
the given constitutive model under the given state of strain.

117. The strain energy function of a nonlinear hyperelastic material is given by
WE) = In(1+aE;E;) + B(efi - Ey)

where In(.) indicates the natural logarithm of (.) and e(") indicates the exponential of (.),
a and § are known material constants, and Ej; is the ijth component of the strain tensor
E. Find the stress tensor S as a function of the strain E implied by the strain energy func-
tion. How do the constants a and 8 relate to the Lamé parameters of linear isotropicelastic-
ity? Consider a uniform state of dilation in which the strain tensor is given by E = ¢1,
where € is a constant. Find the principal values of the stress tensor as a function of €.

118. The strain energy function of a nonlinear hyperelastic material is given by the expres-
sion W(e,y) = ape*+a,y+a,ey, where ag, a;, and a, are known material constants,
and the scalar invariant strain measures e and ¥, which are functions of the strain tensor
E, are defined as e = tr(E) and ¥y = tr(E'E’), where E' = E—el/3 is the deviator
strain. Observe that de/dE = Iand dy/dE = 2E’. Find the stress tensor S as a function
of the strain E implied by the strain energy function. Consider a state of hydrostatic pres-
sure S = pl, where p is a given pressure. Find the relationship among p, e and y. Next
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consider a sample of the material subjected to a state of pure shear strain described by
E = g[n ® m + m ® n}, where g is a given constant describing the motion and m and
n are given orthogonal unit vectors. Will there be a change in volume of the sample? Do
you expect that you would need a confining pressure to execute this motion? Why?

119. Acube of elastic material, having Lamé constants A = 1000 20 3g
psi and # = 1000 psi is subjected to purely normal tractions on

its faces as shown in the sketch. Compute the value of o required —0 —4 '
to change the volume of the block by 2% of its original volume. 30 # .

120. Three unit cubes (1 X 1 X 1) are uniformly com- P
pressed between two rigid plates with an aggregate / T
force of P. The change in height is the same for all three f

cubes. The two outer cubes are made of material A, V4

e e e e - 3]
while the inner cube is made of material B. Both of the
materials are linearly elastic with Lamé constants I

A, = 1000 psi, u, = 1000 psi ﬁ?”
Ap = 500psi, up = 2000 psi

Compute the force P required to change the volume of the middle block by 3% of its origi-
nal volume. What is the final area of the compressed face of the outer cubes?

121. Two cubes with dimensions 2X 2x 2 are uniformly

P
compressed between two rigid plates with an aggregate force / &z
of P. Assume that there is no friction between any of thecon-

tacting surfaces. The top cube is made of material A, while
the bottom cube is made of material B. Both of the materials
are linearly elastic with Lamé constants / B ‘y
A, = 1000 psi, u, = 1000 psi L ﬁ?
P

Ag = S00psi, g = 2000 psi
Compute the force P required to change the total volume of the two cubes by 5% of the
original volume. What are the final dimensions of the two cubes?

122. The strain at a point in a body is given by

2 3 4
E ~ 1073 [ 35 1 }
4 1 1
Find the components of the stress tensor assuming linear, isotropic, elastic material behav-

ior, with A = 16,000 ksi and g = 11,000 ksi.

123. A2by 2 by 2 unit solid cube, centered at the origin of coordi- Z3
nates, is subjected to the deformation described by the map:

(z) = (21+ %az‘;’) e + (22+ %aZg) e, + bzse, 2

P
Compute the values of the constants @ and b that are consistent with 21 2
the observations that the total volume of the block is unchanged by
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the deformation and the total area of the side with original normal e, decreases by 5% due
to the deformation. Assuming that the cube is made of a linear, elastic, isotropic material
with Lamé parameters A and i, find the body forces and surface tractions required for equi-
librium. (You may assume that the linearized strain tensor is adequate to describe the
strains for this problem).

124. Consider a displacement map u(z) given by the explicit expression u(z) = €Az,
where A is a given constant tensor and ¢ is a given scalar (which is very smail compared
to 1). The vector z is the position vector of a point in the undeformed configuration. Com-
pute the strain tensor E of the given motion. Compute the stress tensor S assuming that
the material is linear and elastic and has Lamé parameters 4 and 4. Compute the body force
b required to maintain equilibrium with the stress.

125. Consider the unit cube with vertex at the origin of coordinates Z3
as shown in the sketch. The cube is subjected to the following de-
formation map: 1

®(z) = (z,+2z,siny) e, + z,cosy e, + zse; 1 2z
1

Note that y is a constant. Compute the tractions and body forces re- z;
quired to achieve the given deformation for the specific shearing

angle of y=0.2 rad assuming that the material is linear, elastic, and isotropic with Young’s
modulus of 1000 psi and Poisson’s ratio of 0.499. Does it make any difference if you use
the linearized strain tensor as opposed to the Lagrangian strain tensor in the constitutive
equation for this problem? Explain.

126. Abaroflength € has an elliptical cross section. The 22
equation of the ellipse is b*z2+a?z2 = a’b?, where a

and b are the major and minor semi-axis dimensions. The

bar experiences the following displacement map:

Z)

Z3

Z
u(z) = —fz,z;¢, + fz,z5¢, — fcz,z;e, A

where ff and c are constants. Find the stress tensor associ- /_5 m N
ated with this motion, assuming that the material is lin- N—_| F"/ 721
ear, isotropic, and elastic with moduli 4 and 4. Find the

body force required for equilibrium. What value must the constant ¢ have in order that the
lateral surface of the bar be traction-free?

127. Consider a displacement map u(z) = [z ® z]a, where a is a given constant vector
(which has a magnitude very small compared to 1). The vector z is the position vector of
apoint in the undeformed configuration. Compute the linearized strain tensor E of the giv-
en motion. Compute the stress tensor S assuming that the material is linear and elastic and
has Lamé parameters 4 and 4. Compute the body force b required to maintain equilibrium
for the given motion.

128. A linearly elastic solid body is subjected to forces Z)
that give rise to the following displacenrent map:
1 Z3
uz) = y5(2§+ﬁz%—ﬂz§)el +yBziz;, — yz12585 z,
where y < 1(i.e., very small) and 8 are constants describing the motion. Assume that the
elastic response is adequately characterized by Hooke’s law with known material
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constants A and g (the Lime parameters). Find 8 in terms of the constants A and  such that
§1; = 0(Sis the stress tensor). Find S, and S, for the conditions given previously. Find
the traction on the surface with normal —e; at z; = 0.

129. The state of stress S as a function of position x in a certain solid body is given by the
expression S(x) = x @ Bx, where B is a given constant tensor. Find the body force (as
a function of position x) required to maintain equilibrium of the body. Express the result
in both index and direct (vector) notation. What are the restrictions, if any, on the constant
tensor B in order for the stress field S to be an admissible stress state? (Please describe any
restrictions explicitly in terms of the components of B, not in terms of X and S.)



S

Boundary Value Problems
in Elasticity

All problems in solid mechanics require three basic components: (a) equations
of geometry of deformation relating the displacements (i.e., the map) to
strains; (b) equations of equilibrium relating the applied tractions and body
forces to the stresses; and (c) equations of constitution relating stresses to
strains. All of these equations are necessary to the statement of mechanics
problems like the torsion of a bar or the bending of a beam, but they are not
sufficient to solve such problems. In addition to these equations, which de-
scribe what is happening inside the body, we must also describe what is hap-
pening on the surface, or boundary, of the body. These boundary conditions
and generally comprise given data about the displacements and applied trac-
tions on the surface of the body. The combination of domain equations and
boundary conditions is called a boundary value problem.

There are two important facts one must know about the specification of
boundary conditions. First, we can specify as given data either the displace-
ment of a certain point or the traction applied at that point; we can never specify
both the displacement and the traction at a certain point. If the displacement
is known, as it is for a fixed point, for example, then the traction at that point
is unknown. We usually call such unknown tractions “reaction forces” because
they develop in accord with whatever the equations of equilibrium require to
react to the applied forces. At a point where traction is applied, the displace-
ment cannot be known a priori.

The second important fact is that not all specifications of boundary condi-
tions are acceptable. For example, we cannot apply tractions to the entire sur-
face of the body willy-nilly. Unless those tractions are very specially pre-
scribed, it may not be possible to satisfy equilibrium. Furthermore, any two
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displacement fields that differed by only a rigid-body motion would satisfy the
governing equations. Hence, the position of the body in space would not be
uniquely determined. Properly specified boundary conditions give rise to what
we call a well-posed boundary value problem, while improperly specified
boundary conditions give rise to an ill-posed boundary value problem. In sim-
ple terms, a well-posed boundary value problem is one that we can solve (at
least theoretically; the practical aspects of carrying out the mathematical ma-
nipulations may be well beyond our capability for many “solvable” problems).

We have developedthe necessary governing equations for the domain of the
body, so we shall proceed to state the boundary value problem of three-dimen-
sional elasticity. The resulting system of partial differential equations are diffi-
cult to solve in a classical sense (i.¢., find fields that exactly satisfy all of the
differential equations at every point in the body) for all but a few special cases.
We shall recast the equations into a very different format called the principle
of virtual work. This principle will lead directly to some powerful approximate
methods of solution, among which we find the finite element method.

We will first state the general boundary value problem for three-dimension-
al elasticity. For the purpose of illustration, we specialize these equations to a
one-dimensional version, which we call the little boundary value problem. We
use the one-dimensional problem to contrast the classical and variational ap-
proaches to stating a boundary value problem and to warm up to the principle
of virtual work. Finally, we recast the three-dimensional equations of equilibri-
um as a principle of virtual work, showing that the steps are identical to the one-
dimensional case.

Throughout this chapter we shall be concerned primarily with the linear
theory of elasticity. The key issue will be the understanding of the relationship
between classical and variational formulations of the equations that govern the
response of structural systems. We extend the ideas to finite deformation at the
end of the chapter.

Boundary Value Problems of Linear Elasticity

Consider the body B shown in Fig. 62. It has displacements prescribed over
part of its boundary, and tractions (forces) prescribed over the remaining part
of its boundary (remember, it is not possible to prescribe both the displacement
and the traction at the same place). It is subject to body forces b(x). Let us call

2
&

Figure 62 A body subjected to prescribed displacements and tractions
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the part of the boundary where displacements a are prescribed £2,, and the part
of the boundary where tractions T are prescribed €2,. (Note: The free surfaces
of a body are places where the traction is prescribed to be zero.) The entire
boundary comprises the two parts = Q, J £2,. The boundary value prob-
lem of linear elasticity is specified by the following equations

divS+b =0 in B
= 2[Vu+Vu?] in B
S = Atr(E)I+24E in B (259)
Sn =1t on Q,
u=u on Q,

This set of equations has, as given data, the prescribed body forces b, boundary
tractions 7, and boundary displacements u, as well as the material properties
A and u. The unknowns of the problem are the displacement field u(x), the
stress field S(x) and the strain field E(x). In terms of components, we have 15
unknown scalar fields (three displacement components, six stress components,
and six strain components. The domain equations of Eqn. (259) provide 15
component equations to find the 15 unknowns. The equations are differential
equations so there are constants of integration. It is useful to note that there are
exactly three independent components to a displacement u, for which Vu, is
skew symmetric (and hence E is zero). There are exactly three independent
components to a stress tensor S, for which divS, = 0 (self-equilibrating).
Hence we need six boundary condition components to solve the boundary val-
ue problem. The boundary conditions provide these six conditions.

The equations are a set of partial differential equations relating the unknown
variables. Some of these variables can be eliminated in favor of the others by
differentiation and substitution. In particular, we can find a set of equations in-
volving only the unknown displacement field u(x). These equations are usually
referred to as the Navier equations (actually, Navier did not get them quite
right, and Cauchy came to his rescue). These equations, expressed in compo-
nent form, are

%, %u; _ .
('H”)axkax +”axkaxk +b =0 in%B
duy du; , ou oA 260
laxkn+y(ax+ax) =17, on & (260)

u, = u on Q,
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We often refer to such a system of equations as a three-field theory because
there are three unknown functions of x that we are trying to find, the three com-
ponents of u(x). These equations have been expressed in index notation. The
summation convention is applied to repeated indices.

Integration of the domain equation (260), leads to six constants of integra-
tion (it is a system of three second-order partial differential equations). There
are essentially three traction conditions and three displacement conditions
with which to establish those constants. This count of unknowns is somewhat
artificial. For example, a case where displacements are prescribed on the entire
surface appears not to have enough conditions to establish a unique solution.
However, in such a case, the change in volume is prescribed. Establishing the
conditions for the solution to a partial differential equation is extremely impor-
tant and sometimes tricky. Some of these issues will be clearer in the context
of specific problems and specialized theories.

Since all bodies in the physical world are three-dimensional, you would
think that it would be sufficient to simply learn to solve Eqns. (260). From an
engineering point of view, such an approach is not practical. These equations
are difficult to solve analytically (that is, to find closed-form expressions for
the field u(x) in terms of defined functions like cosines, sines, exponentials,
and the like). We shall see that we can actually solve these equations with the
finite element method, but we still will not want to view all problems as three-
dimensional because the resulting systems of equations will still be too large
to solve on today’s computers (perhaps some day this will no longer be an is-
sue). Hence, we are led to making assumptions about the behavior of our bod-
ies to simplify the above equations.

Most of these simplifications constitute a reduction in the dimensionality of
the problem. Such a reduction is accomplished either by making assumptions
about the stress or strain fields, by making assumptions about the displacement
field (i.e., the map), or from known symmetries of the problem. Plane stress
and plane strain are two-dimensional theories, the first of which makes the as-
sumptions about the stress field of the form S;; = 0, S35 = S5, = 0, and
S13 = 83 = 0(as far as stress is concerned, there is no action taking place in
the x; direction), while the second makes the assumptions about the strain field
of the form Ey; = 0, Ey3 = E3, = 0,and E,;3 = E;; = 0 (as far as strain is
concerned, there is no action taking place in the x; direction). Axisymmetric
problems (i.e., axisymmetric bodies with axisymmetric loads) can be reduced
to two dimensions if cylindrical coordinates {r, z, 9} are used because the solu-
tion does not depend upon 6. Beam theory makes an assumption like “cross
sections of the beam that were plane before deformation remain plane after de-
formation” which leads to one-dimensional differential equations where the
generalized displacement variables are functions of only the axial coordinate.
Plate theory is essentially a two-dimensional beam theory. Shell theory is es-
sentially a plate theory in which the original geometry is not flat. These special-
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ized theories allow us to make enormous strides in understanding the mechan-
ics of structural systems, and it is worthwhile to spend a fair amount of effort
in understanding exactly how they relate to the general three-dimensional
theory.

Let us first examine a problem for which the exact three-dimensional equa-
tions of elasticity are satisfied in order to see how all of the individual compo-
nents play out in the problem specification. One of the few problems that has
a simple representation and also exactly satisfies the complete three-dimen-
sional equations of linear elasticity is the torsion of a circular shaft. Here we
shall simply give the expression for the map (i.e,, the displacement field) and
demonstrate that it satisfies all of the equations of linear elasticity.

Example 27. Torsion of a circular shaft. Consider a prismatic circular shaft with
the x5 coordinate axis along the central axis of the shaft as shown in Fig. 63. The
shaft has length € and radius R, has no body force b, is fixed at one end, and has
a stress distribution equipollent to a pure torque T applied to one end.

X3

-~ T X3
Figure 63 Pure torsion of a circular shaft

The displacement field for the torsion problem is given in terms of the
constant S, which measures the angle of rotation of the cross section per unit of
length, that is, the rate of twist of the shaft. The displacement map is given by

ux) = —Bxyxie; + fxixse;

From the displacement field we can compute the strain tensor as
=1 T
= E[Vu + Vu ]

= %13( ~xle; ®e;+e; R |+x[e, Res+e; ® ey
From the constitutive equations § = Atr{E)I+ 2« E we get the stress field

S =uf(-xle, @e;+e;® e ]+txe,De;+e; ® e])

'We can compute the divergence of the stress tensor and substitute it into the equi-
librium equations to verify that divS.= 9(Se;)/dx; = 0. Therefore, we have
shown that the body satisfies the equilibrium, kinematic, and constitutive rela-
tionships of linear elasticity at every point in the domain.

It remains only to be shown that the boundary conditions are satisfied. Ob-
viously, at x3 = 0, all of the displacement components are equal to zero, as re-
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quired by the fixed end. The lateral sides of the shaft are free of traction. It will
be convenient to express some of the following results in polar coordinates using
the transformation x; = rcos 6 and x, = rsin6. Points on the lateral surface
are defined by the condition r = R; the vector normal to the lateral surface is
givenby n = cosfe; + sinfe,. Thus, the traction on the lateral surface is

Sn = uB(—Rsinfcosf+RcosOsinb)e; = 0

At the cross section with x; = € we can compute the resultant of the traction
field to show that it has no net force on the section, and we can compute the re-
sultant of the moment of the tractions to show that it is equivalent to a torque
acting in the axial direction as assumed. The traction field at x; = € is shown
in Fig. 64.

dA = rdrdf

(®)

Figure 64 Torsion example (a) he traction field at the end of
the shaft (b) moment of the traction for an elemental area dA

The resultant force and moment can be computed by integrating the tractions
over the area. The explicit expression for the traction vector is given by

te, = Se; = uf(—x,e;+xe,)

acting at position p = x, e, +x,e,. The resultant force R can be computed as
the resultant of the tractions over the cross-sectional area, in polar coordinates,

2n R

R = f te,dA = f fﬂﬂ(—rsinBel+rcos€e2)rdrd9 =0
A
0

Noting that p X t,, = yﬂ(xf}x%)% = ufre,, the resultant torque T is

2 R
— _ _ 1 4
T = f pPXt,dd = e3f fﬂﬂf’drd@ = suPnR'e;
A

0 0

These results are in exact accord with the formulas from elementary strength
of materials. We solved this problem in a rather backwards fashion, having
been given the map. In most situations, we will be given the surface tractions,
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body forces, and the known surface displacements, with the goal of finding the
map. Such a problem is considerably more difficult to solve. However, the
present example serves to show how all of the various parts of the boundary
value problem of elasticity must be satisfied.

A Little Boundary Value Problem

We can often gather a great deal of insight from examining the simplest pos-
sible case of a general theory, especially if the essence of the general case is
basically preserved. In the general boundary value problem of linear elasticity,
we are faced with mathematical difficulties at every turn. Some of these diffi-
culties are of great importance, while others are simply a nuisance. Reducing
the issue to its simplest case helps to separate the important ideas from the
merely tedious. Let us examine the specific one-dimensional version of our
boundary value problem of elasticity illustrated in Fig. 65. For simplicity, con-
sider that the bar has length € with x (= x5) measured from the fixed end, and
that it has unit area. The bar is subjected to body forces b(x) and a traction ¢,
atthe end x = €. The traction ¢, acting at x = 0 is, as yet, an unknown reaction
force. The movement at x = 0 is known and is equal to u, (along the axis of
the bar, of course).

The bar is in uniaxial tension or compression. Thus, the only nonzero stress
component is the axial component S;; = 0(x). The primary strain of interest
is the axial strain E;; = €(x). There is no shear stress; therefore, there is no
shear strain. The constitutive equations indicate that there will be lateral strain-
ing in the amount E,; = E,, = —vE,3, but these strains will play a secondary
role in the present problem. The constitutive equation can be expressed as
o(x) = Ce(x), where C is Young’s modulus. We can state the boundary value
problem as

o'(x) + b(x) = 0
€x)—u'(x) =0 } for x € [0,¢]
o(x)—Ce(x) = 0 (261)
u0) =u, atx=20(Q)
o) =1t  atx=1¢ (Q)

where a prime denotes ordinary differentiation with respect to x, that is
() = d(-)/dx.

This boundary value problem constitutes a system of first-order ordinary
differential equations in the unknown functions o(x), €(x), and u(x). Through
standard reduction techniques, these equations can be recast as a second-order
differential equation in the unknown displacement u(x) alone, just as we did
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u(0) = u,

Figure 65 A one-dimensional boundary value problem

to get the Navier equations of three-dimensional elasticity. Substituting the
strain-displacement equation into the constitutive equation, and that result into
the equilibrium equation, the boundary value problem takes the following form

(Cu')) +b=0 for x €[0,¢]
u(0)y = u, (262)
Cu'(6) = t,

Example 28. Classical solution to the little boundary value problem. To see

what is at stake in solving a boundary value problem, let us take the particular

case of a constant body force b(x) = b,, traction t, = 7, and fixed boundary
= 0. We solve the domain equation by successive integration to obtain

b,
u(x) = ——x +agtax

Integrating twice has left us with two arbitrary constants of integration, a, and
a,. The boundary conditions are precisely the conditions needed to single out
a particular solution from an entire family of solutions that satisfy the differen-
tial equations in the domain (i.e., the body ®). Using the given boundary condi-
tions, we find that w(0) = 0 = a; and Cu'(€) = v = —b,€+Ca,, which
gives

= =41 u
o=0 and a, = E(bo€+r)
We have found the map to our problem: the displacement field u(x). It is
u(x) = ———[er + b,(2x€—x?)]

It is quite simple to verify that this map satisfies the governing boundary value
problem. All we need to do is to differentiate it and substitute back into the gov-
erning equations. As a matter of fact, one should never go to all the trouble of
finding the solution to a differential equation and then not take the extra few min-
utes to verify that it is indeed the solution by differentiating and substituting.
Here we get

u'(x) = [r+ b (€—x)], u'(x) = —%3
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We can see by inspection that these quantities satisfy the differential equation
and two boundary conditions

Cu'(x) +b, = 0, u0) =0, Cu'(®)=7
The stress field can now be found as o(x) = Cu'(x) = 7+ b,(€ — x). The reac-
tion at the left end is t, = —0(0) = —7—b,¢, as computed through the
Cauchy relation. The displacement field is, in this case, a quadratic function of
x. The stress is, then, alinear function because it is proportional to the derivative

of the displacement. The reaction is, of course, the one that satisfies overall equi-
librium of the applied forces.

We say that this solution of the boundary value problem in the preceding ex-
ample satisfies the problem in the strong, or classical, sense; it satisfies every
equation at every point x in the domain and on the boundary. A strong, or classi-
cal, solution is what most people think of when they think of solving a differen-
tial equation. In the next section, we will recast our little boundary value prob-
lem into another form that will lead us to a different definition of the solution
of the differential equation called the weak, or variational, sense.

Work and Virtual Work

The concept of virtual work is a specialization of the physical concept of real
work, which is the product of force and the distance that force moves in the
direction of its action. Consider a force f(s) as it moves from point a to point
b along a curved path parameterized by s, as shown in Fig. 66. The curve can
be viewed as a path in three-dimensional space and the parameter s can be tak-
en as the time or distance. The direction and magnitude of the force f may vary
as it moves along the path. The total work done by the force in moving from
point a to point b is given by the line integral

b
W= J f(s) - t(s)ds (263)
where t(s) = dx/ds is the unit vector tangent to the curve at s. There are two

things we need to notice about work. First, work is a scalar quantity, not a vec-
tor quantity. Therefore, we never need to worry about invariance with respect

£(s)

ds Y(s) = %

Figure 66 A force traversing a curved path
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to the coordinate system. Second, the only quantities involved in the definition
of work are forces and displacements (not stresses and strains). The units of
work are always force times distance. If you consider the arc-length parameter
s as a measure of time, then, according to how we defined the displacement of
the force, you will see that we are really integrating force times velocity over
the time it takes to go from point a to point b.

The principle of virtual work will be a thought experiment that we will per-
form on a mechanical system. The designation virtual refers to the imaginary
nature of our experiment. Insofar as our experiment is a virtual one, we can
construct certain aspects of the experiment to suit our mathematical needs (just
asin areal experiment we contrive a testing system that most directly measures
the quantity of interest). To wit, we make two assumptions in defining what we
shall call the virtual displacement.

(a) The force fis held constant throughout the virtual displacement,
and is equal to the actual value of the force at the moment the thought
experiment begins.

(b) The virtual displacement is restricted to be a motion along a
straight path with a constant velocity (i.e., the virtual velocity is
constant). We shall designate the virtual displacement by Was the vec-
tor from the starting point of the experiment a to the ending point b,
as shown in Fig. 67.

a

Figure 67 The definition of virtual displacement

If we take the motion of the force to be in the direction of the unit vector t point-
ing along the line connecting point 4 to point b, then the virtual work W (we
designate all virtual quantities with overbars) done by the constant force can
be computed from Eqn. (263) as

b b
V_VE[f'tds=f-tstEf'ﬁ (264)

where W = [s(b)—s(a)]t = b—a defines the virtual displacement to be the
vector pointing from a to b. Notice that the benefit of defining virtual displace-
ment as we have done is that we will not have to compute line integrals in order
to use the concept of work.
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The point a is known and is associated with the real position of the force be-
fore our thought experiment. The arbitrariness of the virtual displacement is
then totally manifested in the choice of the point b to which the force moves.
Since the virtual displacement must be along a straight line, the virtual dis-
placement can be completely characterized by describing how far to go and in
what direction. Thus, the virtual displacement vector is a completely appropri-
ate choice for that description.

In the above definition of virtual work, we were concerned only with the
virtual displacement of a single point a, and the force associated with that
point. A solid body is made up of many such points, each of which can be sub-
jected to a virtual displacement. As such, virtual displacements will be a field
U(x) defined over the domain of our body. While the virtual displacement field
can be chosen arbitrarily (by definition), we will generally find it useful to re-
quire the field to be continuous, that is, two neighboring points (or regions)
cannot be displaced in a manner implying cleavage of the material.

The Principle of Virtual Work
for the Little Boundary Value Problem

Now that we have a definition of virtual work, let us create the so-called princi-
ple of virtual work. As we shall see, this principle is actually a tautology (in the
same sense that 0 =10 is a tautology). The derivation of the principle of virtual
work amounts to computing the work done by the external loads when sub-
jected to a virtual displacement field, and manipulating the resulting expres-
sion with legal mathematical operations. In the process, we see that the concept
of internal virtual work and virtual strain appear naturally. The statement of the
principle of virtual work requires a result from the calculus of variations,
which we develop here.

Let us reconsider our little boundary value problem described in Fig. 65.
The forces that are acting on the bar are the body force b(x) and the tractions
at the two ends: the unknown reaction ¢, acting atx = 0 and the applied traction
t,acting atx = {. Let us subject this bar to a virtual displacement field #(x) and
compute the work done by the external forces, or external virtual work, as

[4
W = t,w(0) + 1,(€) + j bu dx (265)

0

If the forces ¢,, t,, and b(x) are known, then the external virtual work can be
computed for any virtual displacement #{(x). We can manipulate this expres-
sion to put it in an equivalent, but much more useful, form. Let us begin with
the definition of external virtual work and add zero to the expression in the par-
ticular form [0(0)#(0) — a(0)7Z(0) + o(£) T £) — o(£)W£)] to give
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W: = [t,+0(0)] @(0) + [t,—a(€)] &)
[4
+[o(8) =€) — o(0)WO0) | + I bi dx
0
Clearly, the added expression does not change the right side because we have
added and subtracted exactly the same terms. Now let us note that the one-di-
mensional version of the divergence theorem gives

[4
o(&)#€) — 0(0)#(0) = f (om)" dx (266)

0
(Recall that a prime indicates differentiation with respect to x.) Next, we note
that the derivative of the product can be expressed as (0%)' = 0’7 +0#@'. Us-
ing all of these results we can finally write the external virtual work in the form

W: = [t,+0(0)]| @0) + [t,—a(€)] 7€)

1 1
+I (0’+b)ﬂdx+J o' dx
0 0

While it may appear that we have done nothing more than create new terms
in an already simple expression for external virtual work, the last line of the
derivation shows some interesting things. The first two terms remind us of the
Cauchy expression relating traction to stress at the end points of the bar. The
third term reminds us of the equation of equilibrium in the domain of the bar.
Indeed, the classical equilibrium equations for this problem are

o'+b=0, o0)+t, =0, o{)—t, =0

In the expression for virtual work, each of these expressions is multiplied by
the virtual displacement; the domain part is multiplied by the virtual displace-
ment and integrated over the domain.

The last term in the last line of the derivation is the mysterious one. Let us
call this term the internal virtual work

[4
W, = J o dx (267)
0

Notice that internal virtual work is nothing more than a definition. In particular,
ithas no relation to the concept of work other than the fact that it was the result
of legal mathematical manipulations of the original definition of the work of
the external forces. Some authors like to view the internal virtual work in terms
of stress times “virtual strain,” defining virtual strain as

gx) = u'(x) (268)
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The similarity of this expression to the definition of real strain, as the gradient
of displacement, justifies calling &(x) the virtual strain. It is precisely the strain
that would be caused by the virtual displacement, if the virtual displacement
really occurred. With this identification, the internal virtual work takes the
equivalent form

4
W, = J o€dx (269)
0

We are now almost ready to frame the principle of virtual work. Let us re-
write the last line of the derivation on the external virtual work as follows

W, — W, = [t,+0(0)] %0)
+ [t,—o(0)]me) + J (o' +b)mdx

0

(270)

where we understand that W, is to be computed from Eqn. (265) and W, is to
be computed from Eqn. (267). Let us make the following key observation.

Observation. If the stresses and tractions in the bar satisfy the equa-
tions of equilibrium; that is, if

o'+b=0, o)+t =0, o)t =0

then the external virtual work must be equal to the internal virtual
work, W, — W, = 0, for any (admissible) virtual displacement, #(x).

The observation simply states that if the right side of Eqn. (270) is zero, then
the left side must be also. We threw in a restriction on #(x) called admissibility
that will haunt us every time we make such a statement. What we are really
hedging against here is unquantifiable indeterminate expressions like © - 0,
o /o, and 0/0. We can generally enforce admissibility by choosing virtual
displacements that are sufficiently smooth and well behaved.

The above observation itself is not all that useful. If we happened to be lucky
enough to know the stress field, then we could select virtual displacements at
random and demonstrate that internal virtual work always balanced external
virtual work. It is important to realize that for every choice of #{x) the equation
W.—W, = 0 provides a valid equilibrium equation. In fact, this observation
is can be used to find reaction forces for certain problems (see, for example,
Problem 135).

Usually, we are not given the stress field; rather, we are trying to find it.
What the principle of virtual work does is to reverse the observation to say if
the external virtual work is equal to the internal virtual work for all admissible
virtual displacements, then the system is in equilibrium. The subtle swapping
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of the word “any” for the word “all” is not a trivial operation. To do it, we need
the fundamental theorem of the calculus of variations.

The fundamental theorem of the calculus of variations. Consider the
functional defined in the following manner

¢
G(g,a,b,0) = J g()@(x) dx + aw(0) + bu(€) (271)
0
where g(x) is some, as yet, unknown function of x, a and b are two, as yet, un-
known constants, and #(x) is any of a variety of possible functions of x taken
from a collection of admissible functions, (0, €). The fundamental theorem
of the calculus of variations is the assertion that

If G(g,a,b,m) = 0 V& € F(0,¢)

then g(x) =0, a =0, and b =0 (272)

In other words, if G = 0 for all admissible choices of the function #(x) (the
notation V means “for all”), then g(x) = 0 must hold for each point x, and
a = 0 and b = 0 must also hold. This is precisely the kind of statement we
need to reverse the order of our observation above.

The proof of the fundamental theorem of the calculus of variations goes as
follows. The function #(x) is arbitrary, and we must satisfy G = 0 for all of
them. Let us first consider a subset of those functions, those being all functions
u(x) thatsatisfy #(0) = Oand #(€) = 0.For these functions, the last two terms
of G do not appear. Since the equation must hold for all #(x), it must certainly
hold for the function #(x) = g(x) at every point except at the ends, where it
is defined to be zero. For this particular choice, G = 0 gives

¢
[ g'dx = 0 (273)
0

If the integral of the square of a function is zero, then that function must be
identically zero because the function g*(x) lies entirely above the axis. The in-
tegral measures the area under the curve between the limits of integration. The
only curve that can be entirely above the axis and have zero area is the curve
g(x) = 0. That proves the first conclusion in Eqn. (272).

Now let us ease up on our restrictions for #(x) to include those additional
functions that are not zero atx = 0 (but still satisfy #(€) = 0). Since we already
have proved that g(x) = 0, we have a@(0) = 0 for nonzero values of #(0). The
only way this can be satisfied is if a=0. That proves the second conclusion
in Eqn. (272). Finally, let us remove all restrictions from #(x). Since we already
have g(x) = 0 and a = 0, we must now satisfy b#(€) = 0 for nonzero #(€).
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The only way that this condition can be satisfied is if b = 0. That proves the
third conclusion in Eqn. (272).

The extension of the fundamental theorem of the calculus of variations to
vector fields and three dimensions is straightforward. Consider the functional

G(v,w,0) = I v -udv + I w-udA (274)
::) Q

defined on a solid region B with boundary €2. The vector fields v(x) and w(x)

are, as yet, unknown, and the vector field W(x) € F(B) is any arbitrary func-

tion taken from our bag of admissible functions F(®B). The fundamental theo-

rem of the calculus of variations suggests that

If G(v,w,u) =0 Vu€E FB)

then v(x) = 0 in B, and w(x) = 0 on Q2 @73)

The proof is just like the one-dimensional version. First, restrict the collection
of functions F(B) to F.(B), a collection of functions taken from F(B), each
of which satisfy the condition W(x) = 0on the boundary €2. With this reduced
set of functions, the boundary integral always vanishes. Let us consider a vec-
tor field W(x) = v(x) at every point in the domain except on the boundary,
where it is zero. Setting G = 0 in Eqn. (274) gives

I(v-v)dV=j||v||2dV=0 (276)
B B

The square of the length of a vector is always positive. Thus, the only possible
vector field for which the integral of | v ||* vanishes is the field v(x) = 0,
thereby proving the domain part of the fundamental theorem. Now remove the
restriction that W(x) = Oon the boundary Q. Since we already have v(x) = 0,
only the integral over the boundary can be nonnegative. Let us choose a func-
tion for which U(x) = w(x) on the boundary. Now setting G = 0in Eqn. (274)
suggests

f Iwltas = o e
Q

thereby implying that w(x) = 0 on the boundary. The functional G can appear
in many different forms. It should be clear from the above developments how
to prove the fundamental theorem of the calculus of variations.

What is a functional anyway? In the development of the fundamental
theorem of the calculus of variations, we introduced an object G that we called
a functional. Perhaps it would be a good idea to say exactly what a functional
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is before we go any further. A functional is an operator that takes as its input
a function (which itself has an independent variable). As such, a functional is
a function of a function. A functional always operates on a function in such a
way that it produces a number. The definite integral of an ordinary function is
one of the most prevalent examples of a functional. The value of an ordinary
function at a certain point is a functional. The maximum of an ordinary func-
tion is a functional.

Example 29. Evaluation of a functional. Consider an example of a functional
J(u), which operates on functions u(x) that are defined on the real segment [0,1]

1
J@) = u0) + j u*(x) dx (278)
0
The action of the functional is to take a function u(x) and add the value of that
function at the point x = 0 to the integral of the square of the function between
the limits 0 and 1. The result is a number. For example, consider the particular
function u(x) = 1+ 3x, then the value of the functional can be computed as

1

(1+3(0))+j (1+3x)% dx
o

= 1+ [x+32432), =8

J(1+3x)

The functional can be evaluated for any other function defined on [0, 1]. For ex-
ample, consider u(x) = sinzx. Now

sinn(0)+f (sinzx)? dx

0

J(sinmx)

S e

. 1
=0+ %ﬂ—[nx—- sinzx cos x|, =

It is evident that the result of evaluating a functional is always a number and that
number can be computed by simply substituting each incidence of the function
u(x) in the functional.

A functional is like an ordinary function in many ways. For example, if you
have an ordinary function, you must define the region on which it applies. In
the previous example, the function u(x) depends upon a single variable. Its do-
main is the segment [0,1] C R (this notation means that the interval is a subset
of the real line). For physically motivated problems, it is generally quite clear
what is the domain of the function. We must characterize the domain of a func-
tional, too. This specification amounts simply to stating which functions are
allowed as inputs to the functional and which ones are not. You could, for ex-
ample, allow only functions that are continuous, and exclude all functions that
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have a jump discontinuity (or worse) somewhere within the domain of the
function. For our purposes, the specification is generally quite simple, follow-
ing the general principle that we will not allow functions that cause our func-
tional to compute infinite values. It is usually quite clear from the form of the
functional what we should allow and what we should exclude.

What is an admissible function? In stating the fundamental theorem of the
calculus of variations, we appealed to the notion of admissible functions, and
we gathered all possible admissible functions into what we called a collection
of admissible functions. We gave the collection of admissible functions the
name F(B), which told us two things: (a) which functions are in the collection
and which functions are not and (b) the domain over which those functions
must be defined for the present purposes. The contents of the collection will
vary from application to application depending upon what mathematical ob-
jects appear in the functional G. Hence, for each G we must establish what the
collection contains. The region over which the functions must be defined is
quite important, but is usually obvious from the particular problem specifica-
tion. For example, in Eqn. (274), the vector field v(x) must be defined through-
out the region B, while the vector field w(x) is defined on the boundary Q.

We often classify functions in terms of their certain special characteristics,
e.g., the polynomials, the trigonometric functions, exponentials, and the like.
Such classifications are much less appropriate here. The function

u(x) = e + x> — cos3x
may be a perfectly suitable function in our collection, and it crosses several of
the classical lines of categorizing functions. A better way to visualize the ad-
missible functions in a collection is to think of the graph of the function. Four
different functions are shown in Fig. 68. Function (a) is a smooth, continuous
function that varies according to no particular classical functional form (al-
though we could approximate its variation using classical functions). Function
(b) is continuous everywhere except for the jump discontinuity at p. The func-
tion varies linearly between points of slope discontinuity. Between those points
we would consider the function to be quite smooth, but because of the exis-

u(®) ©) u(®) T/\ (®)
lkl _

0 ¢ ¥ 0] NP ¢

u(x) u(x)
© G))
T A p T/\

Ol V— é=x 0| tlz=x

Figure 68 Four functions defined on the interval [0, €]
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tence of the jump discontinuity and the kinks, the function, overall, is not very
smooth. Function (c) is another smooth function. Itis peculiar because the val-
ue of the function is zero over most of the domain. Function (d) is a parabola,
a function that we can write as u(x) = x(€ —x), aclassical mathematical form.
How, then, should we classify the functions in our collection? There are ba-
sically two classification schemes that are important to the principle of virtual
work. The simpler way is to assess its square-integrability. If the integral of the
square of the function over the domain is finite, then we call the function
square-integrable. The criterion for square-integrability is

Juz(x)dx <

The square of a function is easy to visualize, as the value at each point is com-
puted by squaring the value of the original function. Clearly, the square of the
function is a completely positive function. We are computing the area under
this function. If the area is not finite, then the function is not square-integrable.
All four of the functions in Fig. 68 are square-integrable. The function
u(x) = 1/xis not square-integrable on the interval (0, 1), but it is on the inter-
val (1, 2). Can you explain why?

Another way of classifying functions is in terms of their smoothness. We can
assess smoothness by examining the continuity of the derivatives of the func-
tion. Differentiation amplifies the roughness of a function. If we differentiate
a rough function enough times, we will eventually get a discontinuous func-
tion. Function (b) is already a discontinuous function because of the jump at
p. If we take the derivative of function (b) we get discontinuities at each of the
kinks. The derivative is not defined at p. Function (¢) is continuous every-
where, but its first derivative is not continuous at p. A function whose mth de-
rivative is continuous belongs to the collection of functions called C” func-
tions. A function that is continuous, but has kinks, belongs to C°. A function
whose first derivative is continuous, but whose first derivative has kinks, be-
longs to C'. If a function belongs to C', then it also belongs to C° because it
satisfies all the requirements for C°.

We can extend the notion of square-integrability to the derivatives of func-
tions, too. If the mth derivative of a function is square-integrable, then the func-
tion belongs to the collection of functions called }6™. For example, if a function
is square-integrable but its first derivative is not, then the function belongs to
J6°. Certainly, any function that belongs to a collection with more stringent re-
quirements also belongs to those collections with less stringent requirements.
Forexample, 36! C J6°, that is, all of the functions that you find in 36! will also
be found in 36°. Continuous functions are always square-integrable, but the re-
verse is not always true. Therefore, we must have

cr C
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This last observation is important because it is almost always easier to deter-
mine whether a function and its derivatives are continuous than it is to deter-
mine whether they are square-integrable. When we get into the business of
approximation, we will generally select functions that meet the requirement of
continuity and hence guarantee square-integrability. In what follows, we will
always refer to the generic collection F(B) and use our common sense about
the problem to decide which functions are in the collection.

Example 30. Dirac delta function. The function shown in Fig. 69 is zero to the
leftof x = —e¢, ramps up linearly to the peak at the origin, and then ramps back
down linearly to zero at x = &.

8(x)

0 |

E| € X

Figure 69 A Dirac delta “function” (which is not square integrable)

In the limit (as & goes to zero) this function becomes the the Dirac delta function.
The explicit functional form for this function is (for the parts that are not zero)

%(x-hc;) —c<x=<0

gx) = 1
.e_z(g—x) O0<x<c¢e¢

This function is integrable. It should be obvious that the integral of this function
is 1 (one half the base times the height). This result is independent of the value
of ¢. The integral can be computed explicitly (noting symmetry) as

2 : 2 2]
gx)dx = e~x)dx = —[xe——] =1
I-—m ® 82[0( | & 2o

Certainly, this integral exists in the limit as ¢ — 0. Let us also compute the inte-
gral of the square of this function (again, noting the symmetry of the function)

2 2 i - 2[rozee2] o 2
I_mg(x)dx 84I(£ x)% dx [xe xe+3]0 3

&4
0

In the limit as ¢ — 0, the integral of the square of the function approaches infin-
ity. Thus, the Dirac delta function is not square integrable.

One of the merits of the Dirac delta function is that it has the property that

j ) b=z dx = f(x) @)
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for 0 < x, < €. The Dirac delta function is used frequently to model point
loads in a setting where the loading is thought of as a distributed load (i.e., a
function of x). The Dirac delta function is also important because it is, in es-
sence, what results from taking the second derivative of a function with a kink
(the first derivative has a jump, often modeled with the Heaviside step func-
tion). The importance of this observation will be evident when we discuss the
finite element method.

The little principle of virtual work. Let us define the functional G to be
the difference between the internal and external virtual work

G(o,m) =W, - W, (280)

where Wy is given by Eqn. (265) and W, is given by Eqn. (267). Clearly, the
difference between the external and internal virtual work is also given by Eqn.
(270). From these equations, and the fundamental theorem of the calculus of
variations, we can state the little principle of virtual work as follows

If G(o,m) = 0 V) € F(0,¢)

(281)
then 0'+b =0, —0(0) = ¢,, and o(f) = ¢,

where F(0,¢) is a collection of functions admissible for use as virtual dis-
placements. The requirements for membership in this collection are not all that
stringent. Obviously, the definition of internal virtual work involves the first
derivative of the virtual displacement. We want to make sure that the integral
that has this term in it exists. The requirement for admissibility is

¢
j(ﬁ')zdx < o (282)
0

Hence, the functions must belong to J6'(0, €). We will see this kind of require-
ment every time we state a principle of virtual work. The idea is always the
same: Look for the highest derivative on a function in G. Let us say that the
function has been differentiated n times. The space of admissible functions will
include all functions whose nth (and lower) derivatives are square integrable.
As we shall soon seg, it is sometimes advantageous to further restrict the func-
tions, but any further restriction is a convenience rather than a necessity.

Here is what the principle of virtual work says: If we satisfy the virtual-work
equation

¢
f (ow —bu)dx — t,5(0) — t,u(€) = 0 (283)
0
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for all functions # € F(0, €), then the equilibrium equations ¢’ + b = 0, and
the Cauchy relations ¢, = —o(0)and ¢, = o({) are automatically satisfied. In
other words, we have managed to swap a differential equation for an integral
equation. We call the integral equation the weak form of the differential equa-
tion. Here is the catch. The strong form and the weak form are only identically
equivalent if the weak form is really satisfied for all choices of the virtual dis-
placement field #(x). Since #(x) is a field, there are an infinite number of pos-
sible variations of this function. Making sure that Eqn. (283) is satisfied for all
possible choices of #(x) would seem an impossible task, and indeed there
aren’t very many problems for which we can accomplish this task.

There is a distinct advantage to the weak form. Put in simple terms, integra-
tion is a very forgiving process, whereas differentiation is not. Integration acts
to smooth rough things out, while differentiation always makes rough things
rougher. An approximation can be viewed as a rough thing. Thus, if we approx-
imate the solution to our problem, then the weak form will forgive us but the
strong form will not. The advantage of the weak form of the differential equa-
tion is in its power of approximation. Indeed, this is the basis of the finite ele-
ment method.

Weighted Residuals. It seemed as though we did a lot of mysterious defin-
ing of terms and manipulation of equations to come up with the expression for
G(0, @). There is another way of getting it. Simply take the equilibrium equa-
tion in the domain, multiply it by the virtual displacement and integrate it over
the domain, and add the boundary terms multiplied by the virtual displacement
evaluated at the appropriate location. The negative of the result is G. To wit

[4

Go,m)y = — | (0'+b)wdx
T =[to(0)]@0) - [t.—a(®)] @e)

This functional has an interesting physical interpretation. If o(x) is not the solu-
tion to the problem at hand, then o' + b represents the residual force at each
point x. It is the amount by which the equilibrium equation is not satisfied.
Likewise, ¢, + 0(0) is the amount by which the stress field fails to meet the trac-
tion boundary condition at the left end and ¢, — o(£) is the amount by which the
stress field fails to meet the traction boundary condition at the right end. Thus,
each term in square brackets in Eqn. (284) represents an equilibrium residual.
The virtual displacement field @#(x) can be viewed as a weighting function and
the functional G(o, #) a weighted residual representing, in some sense, the ag-
gregate failure of the stress field to satisfy equilibrium. Because of this inter-
pretation, methods based upon this functional are often referred to as the meth-
od of weighted residuals.

We can show the correspondence with the form of the functional derived
earlier by taking any term in the domain part that has a derivative on the real

(284)
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field variable and integrating by parts to transfer the derivative to the virtual
displacement. In the present case, the term ¢’(x) #(x) must be integrated by
parts. The result is

¢
G(o,n) = J (oW —buw)dx — t,u(0) — t,u({) (285)
0
Notice that the boundary terms that come from the integration by parts cancel
some of the existing boundary terms. Equation (285) is exactly the difference
between the internal and external virtual work. This approach is often the most
effective way to get the functional G required to state the principle of virtual
work (particularly for differential equations where the notion of mechanical
work does not apply).

Example 31. Getting the classical differential equation from the virtual-work
functional. Consider the (virtual-work) functional for a one-dimensional bound-
ary value problem, defined on the range [0, €], given by

¢
Gu,a) = [ (Au"@' — Bu'Ww + Cull — bu)dx
0

where A, B, C, and b are known constants, u(x) is the unknown field, and #(x)
is its virtual counterpart. What is the classical differential equation governing
the response of the system? What form must the boundary conditions have?

In order to apply the fundamental theorem of the calculus of variations we
must integrate the first two terms by parts to put the functional in the form

£
G, ) = j rwude + [Peal, + [,
0

where £(u), P(u), and Q(u) are differential operators. Only in this form can we
deduce that the governing equation in the domain is £(x) = 0. For the present
case note that

(uwrﬁ)r = ullllﬁ_*_ urrrﬁl —- u””ﬁ-f— (urrﬁr )I — u”ﬁ”
(Way = w'a+ua
Thus, we can write
u”ﬁ” = u””ﬁ-f— (ullﬂ-/ )r _ (unrﬂ-)r

_ulﬁr - u”ﬁ _ (urﬁ-)r
Finally, substituting these expressions into the original functional and carrying

out the integrals of the exact differentials we obtain

¢
G(u,m=[ (Aw'"+Bu'+Cu—b)udx
0 ¢

+ [Au”ﬁ']g - [(Au”’-f—Bu')ﬁ}o
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Using the fundamental theorem of the calculus of variations we can conclude
that the variational statement G(u, #) = Ofor all @is equivalent to the classical
(strong) form of the differential equation

Au"" +Bu' +Cu—b =0, 0=<x=<¢

We also learn something about the classical boundary conditions from the
boundary terms. In fact,

[Au"ﬁ']g =0 — either Aw’”’ =0 or @ =0 at Oand ¢
¢
[(Au”'+Bu’)E]0 =0 — either Aw’'+Bu’' =0 or =0 at Oand ¢

The significance of the conclusions # = 0 and @ = 0 will be more evident
from our discussion of essential and natural boundary conditions in the next sec-
tion. Suffice it to say at this point, that the boundary terms that result from in-
tegration by parts always provide information about the classical boundary con-
ditions of the problem.

Essential and Natural Boundary Conditions

The principle of virtual work holds for any constitutive model since constitu-
tive equations did not enter the derivation. A completely displacement-based
expression for the virtual-work functional can be found by directly implement-
ing the constitutive equation 0 = Cu' into the original virtual-work function-
al. Indoing so, we change the argument of the functional from o tou. The virtu-
al-work functional then has the form

€
G(u,n) = I (Cu'w —bu)dx — t,70) — t,u(€) (286)
0

Now the principle of virtual work states that equilibrium will be satisfied if
Gw,m) = 0 V& e F(0,¢) (287)

The only unknowns in this equation are the displacement field u(x) and the
reaction force ¢,. We can getrid of the reaction by choosing only functions that
satisfy the condition #(0) = 0 (note that the boundary condition on the real dis-
placement is #(0) = u,). This assumption does, of course, weaken the princi-
ple of virtual work. If you go back to the proof of the fundamental theorem of
the calculus of variations, you can see that we have sacrificed the conclusion
that ¢, = —0(0). Is this a serious sacrifice or not? Since equilibrium is still
guaranteed at all other points in the domain, we have sacrificed only the equa-
tion that actually computes the reaction force. Equilibrium must still hold at
this point. If we simply compute the reaction with the equation ¢, = —0o(0)
instead of letting the equation be satisfied automatically, then we have lost
nothing. Thus, let us modify our functional to be
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[4
Gu,n) = f (Cu'n’ —bu)dx — t,u({) (288)
0

and our statement of the equilibrium condition to be
Gumw =0 VeeF, (09 (289)

where F,(0, ) is a subset of functions from F(0, ) containing only functions
that satisfy the homogeneous essential boundary condition #0) = 0. As you
might guess, the subscript e stands for “essential boundary conditions satis-
fied.” Essential boundary conditions are also often called displacement bound-
ary conditions. They are the boundary conditions on the lower-order deriva-
tives of the displacements, since we use the substitution 0 = Cu’. The
boundary condition ¢, = o({) is called a natural boundary condition (some-
times called a force boundary condition) because the principle of virtual work
guarantees that it will be satisfied naturally. Our variational approach to prob-
lems (i.e., virtual work) will always distinguish between these two kinds of
boundary conditions.

Interestingly, we cannot specify #(x) at any other point. For example, we
cannot set @({) = 0because, if we did, the principle of virtual work could not
distinguish between problems with different values of the applied end load ¢,.
In particular, it could not distinguish a problem with a zero end load from one
with a nonzero end load. Clearly, this is too great a sacrifice. Similarly, if the
value of #(x) were specified at any other point along the length of the bar, we
would have a point where a concentrated body force of any value could be
placed without changing the value of the virtual work. Again, the principle of

virtual work would be unable to distinguish between fundamentally different
problems.

The Principle of Virtual Work for 3D Linear Solids

The development of the general principle of virtual work for a three-dimen-
sional solid body is quite similar to the development for the little boundary val-
ue problem. All of the essential steps are the same, but some of the mathemati-
cal manipulations are a little more involved. In following the derivation, you
would do well to refer back to the one-dimensional case to keep perspective.

Consider a body B having boundary €2 with unit normal vector field n(x).
The forces that are acting on the solid are the body force b(x) and the tractions
t(x) acting on the surface of the body. Here we will not distinguish between
the prescribed tractions and the reacting tractions. In order to derive the princi-
ple of virtual work, we must compute the work done by the body forces and
surface tractions as they move through a virtual displacement field. Let us sub-
ject the body to a virtual displacement field W(x) and compute the work done
by the external forces
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WEEIt-ﬁM+[b-rth (290)
Q 2]

where the integrals are carried out over the surface and throughout the volume
of the body, as indicated. In the first term, the virtual displacements U are the
values of the virtual displacement field on the surface of the body. As in the
little boundary value problem, we can derive several equivalent forms of the
expression for the external work. Let us start with Eqn. (290) and add zero to
the right side in the form of an integral of (Sn—Sn) - Wover the boundary,
where n is the vector field normal to the boundary of the region £2. We get

WE=J(t—Sn)-ﬁdA+JSn-ﬁdA+Jb'iidV (291)
Q Q 3

In the second step let us apply the divergence theoremto the second term, not-
ing that Sn - @ = S’W * nand that 8" = §, to get

f Sn-UdA = Idiv(Sﬁ)dV
Q 3
Substituting these results into Eqn. (291) gives
W, = J (t—Sn)-wdA + I (div(Sm) + b-u)dv (292
Q 3

We can expand the divergence of the product of a tensor times a vector to get
div(Su) = (divS)-a+ S - Vu

In components, this expression is [S;%],; = S;,; @ +S;%;;. Substituting this
result into Eqn. (292) gives

Q (293)
+I (divS+b) - wdv + J S - Vauav
3 3

Like its one-dimensional counterpart, Eqn. (293) contains some interesting
terms. The first two terms are related to boundary equilibrium and domain
equilibrium. The third term we shall define to be the internal virtual work. We
can clearly see the analogy with Eqn. (267) in the following definition of inter-
nal virtual work

W

W,

I S Vaadv (294)
3
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The internal virtual work can be expressed in the form of stress times virtual
strain if we define the virtual strain to be the strain that would occur if the virtu-
al displacement were to take place. Let us define the virtual strain to be

E = i[vu + W]

With this definition, Eqn. (294) can be equivalently expressed as
W] = J S * E dV
k2

since the stress tensor is symmetric, and, hence, S - Vi = § - %[Vﬁ+VﬁT].
Again, it is not necessary to introduce the virtual strain, but it provides a conve-
nient way to view the internal virtual work. The concept of internal virtual
work is a natural consequence of the mathematical developments and does not
necessarily need any physical motivation.

We are now ready to state the principle of virtual work. Let us define the
functional G to be the difference between the internal virtual work and the ex-
ternal virtual work

G(S,ﬁ) = W] - —WE

where W, is given by Eqn. (294) and W; is given by Eqn. (290). Therefore, the
virtual-work functional has the explicit form

G, = [

B

(S-Vﬁ—b-ﬂ)dV—[t-ﬁdA (295)

Q

Clearly, from Eqn. (293), the difference between the internal and external
virtual work is also given by

w7 - |

Q

(t—Sn) - uwdA + [ (divS+b) - wdv
B

From the fundamental theorem of the calculus of variations, we obtain the prin-
ciple of virtual work for a three-dimensional solid

If GS, W) = 0 VuE FB)

(296)
then divS+b =0 in 8 and Sm =t on Q

where F(B) is the collection of admissible functions defined over the domain
of the body. Since the definition of the internal virtual work involves the gradi-
ent of the virtual displacements, we will require that the gradient of our virtual
displacement functions be square-integrable over the domain. Thus, the
collection F(B) contains all functions that satisfy
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J “ Va|?dV <
2

Here is what the principle of virtual work says: If we satisfy the virtual-work
equation G(S, W) = 0 for all arbitrary admissible virtual displacement fields,
then the domain and boundary (Cauchy) equilibrium relations are automatical-
ly satisfied. Again, we have traded a differential equation for an integral equa-
tion with all of the advantages that accrue.

Linear elasticity. In solving particular problems, it will again be advanta-
geous to restrict our virtual displacement functions to be zero on that portion
of the boundary where displacements are prescribed. This proscription will an-
nihilate the unknown tractions that act over that part of the boundary. Also, the
principle of virtual work does not involve the constitutive equations of the ma-
terial, but those relationships can be implemented in a classical sense into the
virtual-work equation. This substitution allows us to express the virtual-work
functional in terms of only the displacement fields. The equations of linear
elasticity lead to the following virtual-work functional

G(u,m) = ]

B

(Va-CVu—b-w)dV — ] T-UWdA (297

Q

and the statement of the principle of virtual work is: If G(u, W) = 0 for all
virtual displacements @ € F,.(8), then uis an equilibrium configuration. The
admissible functions contained in F,(®) are simply those in F(B) restricted
to have @ = 0 on Q,. Note that the stress can be written in terms of displace-
ment as S = CVu because the elasticity tensor is symmetric in the tensor
components C;; = Cjy. Therefore, we have

—_ — 1 —
Sij = CijldEld = §Cij/d(ub1+ ulak) = Cijldukal

The particular form of the internal virtual work for anisotropic linearly elas-
tic material can be obtained by recognizing that isotropic elastic constitutive
relations can be written as S = A(divu)I+4(Vu + Vu”) and that (accounting
for symmetry of S) S - VU = tr(SVu). Thus,

S - Vi = A(diva)(divE) + 4[Vu+Vu’] - Vu

and the virtual-work functional takes the form

G(uu) = I (A(divu)(diva) + 4 [Vu +Vu'] - Va) v

B
- Ib'ﬁdV— j T-UdA
B Q

i
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These functionals will be useful in developing numerical methods for solving
problems, as we shall see in the next Chapter.

Finite Deformation Version of the
Principle of Virtual Work—Reference Configuration

The arguments that lead up to the principle of virtual work for small deforma-
tions carry over to the case of finite deformation. In fact, if we think of S as the
Cauchy stress and the region B as the current configuration, then all of the pre-
ceding developments are appropriate to the finite deformation setting (with
possible exception of the dubious use of Hooke’s law in that setting, as pointed
out in Chapter 4). As we observed in Chapter 3, one can cast the equations of
equilibrium in either the current or reference configuration. The classical dif-
ferential equations in the two configurations are summarized in Table 2.

Table 2 Equilibrium in reference and deformed configurations

Reference Current

Configuration Configuration

Linear momentum DIVP+b° =0 divS+b =0
Cauchy tractions Pm =t Sn =1t
Angular momentum PF’ = FP’ S=¢§"

In these equations P and S are the first Piola-Kirchhoff and Cauchy stress ten-
sors, respectively, F is the deformation gradient, b is the body force in the cur-
rent configuration, b’ = Jb is the body force in the reference configuration
(J = detF), tisthe (applied or reacting) traction on the surface in the current
configuration having unit normal vector n, and t°is the (applied or reacting)
traction on a surface in the reference configuration having unit normal vector
m. Note that the surface tractions satisfy, by definition, t° dA = t da, withda
being the elemental area in the current configuration and dA being the elemen-
tal area in the reference configuration. As was pointed out in Chapter 2 the ele-
mental volumes are related as dv = J dV. Recall that

3 , 3
DIVP = é-z—k(ng), divS = E(Se") (298)

where {x,} and { e,} are the coordinates and base vectors in the current config-
uration and {z,} and {g;} are the coordinates and base vectors in the reference
configuration.

With this background we are ready to state the principle of virtual work in
the finite deformation setting. Observe that the external virtual work can be ex-
pressed in the current configuration, in accord with Eqn. (290), as
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W EI t-uda+I b-udv (299)
w) HB)

Note that we have explicitly indicated that the work is computed as integrals
over the current configuration (which is where equilibrium must hold). Using
the relationships b® = Jb and t°dA = tda, as a simple change of variable
gives the equivalent expression

WEEIt"-ﬁdA+Ib°-ﬁdV (300)
Q B
The divergence theorem gives

JPm-ﬁdA = j DIv(P™u) dV
Q k]
(301)

=I(DIVP'ﬁ+P'VU)dV
3

where P - VI = P;9m, /dz; It will be useful, for reasons identical to those of
the earlier derivation, to define the internal virtual work as

W,EIP-VﬁdV=IE-F7VUdV (302)
B B

where £ = F~'P is the second Piola-Kirchhoff stress tensor. We can use the
various stress tensors interchangeably, with the main convenience accruing in
the expression of the constitutive equations (which is not part of the principle
of virtual work).

Bringing all of these results together we can compute the difference be-
tween external and internal work, which we will take as the very definition of
our virtual-work functional. A straightforward application of Eqns. (300),
(301), and (302) gives

We-W, = J (DIVP+b°) - wdV + J (t'—Pm)-uWdA  (303)
B Q

If we define our virtual-work functional as G(P, W) = W,— W then we are in
position to state a finite deformation version of the principle of virtual work.
Explicitly, let us define

GPu = J

3

(P-Vu—b"-u)dV—jt"-udA (304)

Q



188 Fundamentals of Structural Mechanics

If G(P,uw) = O for all admissible virtual displacements W, then, by virtue of
Eqn. (303) and the fundamental theorem of the calculus of variations, it must
be true that DIVP+b° = 0 everywhere in the domain and Pm = t° every-
where on the surface.

Virtual Strains. In the linear theory of virtual work we identified the gradi-
ent of the virtual displacement that appears in the internal virtual work as the
“virtual strain.” What is the situation relative to the finite deformation case?

Examining Eqn. (302) we see that the integrand of the internal virtual work
takes either of two equivalent forms: P - Vufor the first Piola-Kirchhoff stress
or & - F'Viufor the second Piola Kirchhoff stress. Since P and I are stresses,
that leaves Vu or F7 V1 as candidates for virtual strain. One way to think of
virtual strain is that it is the strain associated with the virtual displacement. In
finite deformation that displacement takes place on top of an existing displace-
ment. Keeping with the “virtual velocities” idea mentioned at the beginning of
the chapter we might think of the virtual displacement as being the directional
derivative of the strain in the direction of the virtual motion. The following ex-
ample pursues this idea.

Example 32. Finite deformation version of virtual strain. In Chapter 4 we
learned that F was the deformation measure conjugate, in the sense of energy,
to the stress P and that E (the Lagrangian strain) was the deformation measure
conjugate to the stress L. Let us compute the directional derivatives of these
strains in the direction of the virtual displacement. For the deformation gradient
we get the “virtual strain”

d —
F = E?-[V((j)(z)+e‘il(z))]e=0 =Vo = H
where H = VU is defined for notational convenience in the next calculation.

For the Lagrangian strain we can compute the virtual strain

E-4 [%[(F+6H)T(F+6H) - I]]

e=0

= %[HT(F+6H)+(F+6H)TH]

£=0
= }[H'F+F7H |

Observing that, since L is symmetric we have £ - E = £ - FTH, thereby
showing that E is the appropriate virtual strain.

Closure

Throughout the remainder of the book, we shall develop specialized versions
of the principle of virtual work. In particular, we shall examine the linear theo-
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ries of beams and plates, as well as some nonlinear theories of beams. For each
theory there will be an appropriate expression of the virtual-work functional.
All of these theories will be consistent with the general three-dimensional ex-
pression of the virtual-work functional considered here. Thus, we end this
chapter, having dispensed the simplest and most complicated versions of the
linear boundary value problems of elasticity, with the promise to visit these is-
sues again for each of the theories of structural mechanics that we consider.
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Problems

130. Consider the uniaxial rod shown below, fixed at x = 0, b(x) = bo{1—x/€)
freeat x = €,andsubjected to the linearly varying body force
indicated. The rod is made from a composite material with a
variable elastic modulus C(x) = C,(2—x/¢), making it
twice as stiff at x = Q asitisat x = €. The governing differ- f*_*_*z—_’{
ential equation for a rod with variable modulus is

(Coryw')’ +bx) = 0

X

where a prime indicates differentiation with respect to x. Find the exact (classical) solution
to the problem by directly integrating the governing equations.

131. Consider the rod of unit length and modulus C(x) that
varies as shown in the sketch. The rod is fixed at the left end,
is free at the right end, and is subjected to a linearly varying
body force b(x) as shown. Consider the following displace- X Clx)=2-x*
ment map: #(x) = a(x*+2x*—3x ) where a is some constant. - -

Is the displacement mapa solution to the given problem? Why 1

or why not?

b(x) = 15x

132. Prove that S - E = S - Vil when the virtual strain is defined to be the strain that
would occur if the virtual displacement actually took place, i.e., E = %[V‘ﬁ + ViiT]. Upon
what property of the stress tensor S does this identity rely?

133. Show that VI - CVu = A(divu)(div)+x[Vu + Vu?| - VA for an isotropic, lin-
ear, elastic material. Express this equation in component form.

134. Carry out the derivation of the principle of virtual work for the case in which the real
displacements are known and a system of virtual forces are applied to the body, and thereby
deduce the principle of virtual forces. Specifically, apply virtual body forces b and virtual
surface tractions 1, and define the complementary external virtual work as

W, = [u-BdV+ [u'fdA
3 Q

where u is the real displacement of the body. Perform a derivation similar to the one for
the principle of virtual displacements to demonstrate that an appropriate definition of
complementary internal virtual work is

W, = f§~EdV
3

where S is the virtual stress associated with the applied virtual force system and E is the
strain tensor associated with the real displacements. Prove the principle of virtual forces,
which states that if Wy = W;for all virtual stresses S in equilibrium with the applied virtu-
al forces band t, then E = %[Vu + Vu'] State precisely the conditions that must hold in
order for the principle to be valid.
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135. The virtual-work functional for the little b(x)
boundary value problem is given by — —>t
t x 4

f —
G(o,m) = I (ow —bm)dx — t,M0) — t,WE) ¢
0
The body force b(x) and the traction at the free end ¢, are known while the stress o(x) and
the reaction ¢, are unknown. Using the principle of virtual work, select a virtual displace-
ment field that allows you to compute the reaction force in terms of only the known applied
forces. Give the expression for £, in terms of b(x) and ¢,.

136. In the little boundary value problem, we saw that the virtual-work functional could
be stated as a weighted residual functional. A weighted residual functional for a three-di-
mensional solid body B with boundary €2 (with normal vector field n) can be defined as

G, w) = — I

{divS+b) - wdV - I (t—Sn) - wdA
3

Q

where divS + b is the equilibrium residual in the domain B, t— Sn is the equilibrium re-
sidual on the boundary L, and w is an arbitrary weighting function. Show that the
weighted residual functional is identical to the virtual-work functional given in Eqn. (295),
and, therefore, that the arbitrary weighting function is identical to the virtual displace-
ment, ie., w = U.

137. Consider the pile of length ¢, constant modulus C P

(W/ unit area), embedded in an elastic medium with mo- —— l

dulus k (force per unit displacement per unit length), and o
subjected to a load P at x = 0. The pile is elastically re- .

. . . x (elastic
strained at the end x = € giving an end force of the k medium)
amount F = 2k€u({) as shown. The governing differen- ¢
tial equation for the system is Cu'’(x) — ku(x) = 0. What >~ C (pile)
must be the value of the constant a for the solution to have
the form u(x) = Ae™ + Be™™? T F = 2k€u(€)

What are the values of the constants A and B that satis-
fy the problem shown in the figure? Does this function
u(x) represent a classical solution to the given problem? Why or why not? Are there any
other solutions to this specific problem?

138. Consider the rod of length € =1 and constant modu- b(x) = —(1-x
lus C = 1. The rod is restrained by an elastic spring of mo-

dulus k=1 at each end and rests on an elastic foundation, I‘N‘%’V‘d
also with modulus k= 1. The rod is subjected to a quadrat- — x

ically varying body force as shown. The displacement }4——1—>!

u(x), positive in the x direction, is governed by the follow-
ing differential equation &'’ —u = 1 —x2 What are the boundary conditions for this prob-
lem? Is the following displacement function a classical solution to this problem?
ux) = 1+x* -2 —%e"‘
Why or why not? If it is not then modify it so that it is.
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139. The principle of virtual work for a certain boundary value problem can be stated as

e
Gu,m) = J [A)w'T" + Bx)umw — b(x)m|dx = 0 for all u(x) € F(0,¢)
0
where A, B, and b are known functions of x, u(x) is the unknown field, and a prime denotes
derivative with respect to x. What is the classical differential equation that is equivalent
to this variational statement?

140. The classical (4th order) differential equation and boundary conditions for a certain
boundary value problem are

Au'" +Bu'' +Cu =b forallx € [0,€]
u(0) =0, u®) =0, Au'(0)=0, Au'(f)=0
where A, B, C, and b are known constants, #(x) is the unknown field, and a prime denotes
derivative with respect to x. Find an expression for the virtual-work functional associated
with the classical differential equation. In other words, find the functional G that has the
property that the statement “G(u, ) = QOforall @ € ¥,” is equivalent to the classical dif-

ferential equation and the highest derivative that appears in G is second order. Describe
any restrictions that must be placed on &,.

141. Consider the solid spherical region B with surface 2 having X3
a unit normal vector field n, as shown in the sketch. Assume that
there exists a scalar field w(x), of the position vector x, for which X,
we can define the functional n
X1
Q

G(w,v) = J(Vv-Vw-v)dV—J tvdA
3 Q

that has the property that if G(u,v) = 0 for all (virtual) scalar functions v(x) then the clas-
sical differential equations governing the real field w(x) are satisfied (i.e., G(w,v) is a
“virtual-work” functional). Note that the scalar field #(x) is defined on the surface of the
solid region. Find the classical governing differential equation for w(x) that is implied by
the variational statement “G(u, v) = O for all v”. Determine what must be the relationship
between #(x) and w(x) on the surface of the sphere.



6
The Ritz Method
of Approximation

The principle of virtual work is a beautiful alternative to the Newton-Cauchy
view of mechanics. This beauty notwithstanding, the principle of virtual work,
in its basic form, is not very useful. The simple truth is that it is impossibly diffi-
cult to implement the part of the principle that says, “for all @ € F(B).” Fur-
thermore, the displacement u(x) that solves the problem may not be one of the
named and tabulated functions of classical mathematics (e.g., polynomial,
trigonometric, and exponential). For a continuous system, the “for-all” state-
ment implies proving that the functional is zero for an infinite number of virtual
displacement functions. This aspect of the continuous system stands in stark
contrast to a discrete system of N degrees of freedom where the for-all state-
ment means to prove it for N linearly independent vectors, a decidedly finite
operation. It is the nonfinite aspect of the principle of virtual work that causes
problems for practical computations.

In 1908, Walter Ritz offered an idea that would put some real power into the
principle of virtual work. His idea was simple. Let the unknown function be
approximately represented as a linear combination of known functions. For a
scalar function of a scalar variable we can write

ux) = > a,hx) (305)

where a, is & constant and £,(x) is a known function of x. Since the functions
are known, any variation in u(x) must come from varying the values of the co-
efficients. Thus, the Ritz approximation reduces the continuous problem to a
discrete problem with N degrees of freedom. Clearly, if we approximate the
virtual displacement field with a Ritz approximation, the “for-all” statement
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of the principle of virtual work will be finite and, hence, manageable for practi-
cal computations.

The beauty of the Ritz idea is that it can be applied to any theory for which
we can write a virtual-work functional. All we need to do in each particular
case is to make an appropriate selection of the functions 4,(x). Clearly, these
functions must have the same character and domain of definition as the real
function u(x). As such, we can often use intuitive knowledge of the physical
system to great advantage in constructing a suitable set of base functions for
simple problems. For more complex problems, our intuition often forsakes us,
and we are left in need of a systematic way of constructing a suitable basis and
assessing the accuracy of the approximate solution that it produces. In this
chapter, we shall briefly examine the issue of selecting base functions and il-
lustrate the details of implementing the Ritz method.

To get the basic idea behind the Ritz method, we will continue to explore the
little boundary value problem introduced in Chapter 5. Using simple polyno-
mial base functions, we will illustrate the workings of the method for the little
boundary value problem with a sinusoidally varying load. This simple example
will serve to demonstrate important concepts like the nature of the approxima-
tion and the concept of convergence to the true solution. We discuss the basic
problem with the polynomial base functions and offer two alternatives. The
first alternative lies in the concept of orthogonal functions. The second alterna-
tive is the use of lightly coupled local functions. The second alternative is the
basis of the popular finite element method. In this book, we resist the temptation
to explore the finite element method in great detail because there are many
good books on the subject and because it would take us too far afield in our
study. It is important, however, to see the connection between the Ritz method
and the finite element method.

The Ritz Approximation for the
Little Boundary Value Problem
An approximate solution to our little boundary value problem can be found if

we approximate our unknown function u(x) as a linear combination of a finite
set of known base functions 3o, = {h,(x), . . ., Ax(x)} as

N .
ux) = Y ahx) = a- hE) (306)
n=1
where N is the number of terms in the expansion, a = [ay, ..., ay]” is an
array of the unknown constant coefficients,and h = [h,, . . ., hy]"is anarray

of the known base functions. Note that the dot product defined here is a gener-
alization to N dimensions of the dot product in three-dimensional space. In ma-
trix notation we can also write the dot product of arrays in standard matrix form
as a - h = a’h = h"a, where (-)7 is the matrix transpose of ().
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The approximate function must satisfy all essential boundary conditions.
Let us again, for the sake of discussion, consider the problem that has a pre-
scribed motion at the left end of u(0) = u, (essential boundary condition) and
a prescribed traction at the right end o({) = f, (natural boundary condition).
From Eqn. (306) we express the essential boundary condition in terms of the
approximation as

N
u0) = > a,h0) = h0)-a = u, (307)
n=1
We will use this equation as part of the solution process. Again, there isnoneed
to implement the natural boundary conditions because the principle of virtual
work will try to satisfy those (they are equilibrium equations).

The basis by can be composed of any known functions, but we intend to
get more than simply an ad hoc numerical approximation from this approach.
If the base functions are carefully selected then we can develop a strategy that
will yield a sequence of numerical approximations of ever increasing accura-
cy. A good numerical method always comes equipped with a means of decid-
ing when the approximation is accurate enough and a systematic approach for
improving the accuracy if it is not. A uniform approximation can be achieved
if the base functions form a complete approximating subspace of functions
withsquare integrable first derivatives on the domain x € [0, €). One such ba-
sisis the polynomials {1, &, &%, &%, ...}, where & = x/€.T Thereisatheorem,
due to Weierstrass, that essentially says that any function can be approximated
as a linear combination of polynomials. Fourier showed that any function can
be approximated by a linear combination of trigonometric functions (usually
called Fourier series). Hence, another suitable basis is given by the trigono-
metric functions {1, sin &, cos n, forn = 1,2,3, . . .}. Another important
approximating subspace is the so-called finite element functions, which will
be described later in this chapter.

Implicit in the ideas of Weierstrass and Fourier (and in finite elements) is the
notion of a complete approximating subspace. Practically, what that means is
that you cannot leave any of the terms out without risking the ruination of the
approximation. As we shall see later in this chapter, there is an analogy be-
tween function spaces and vector spaces (which are usually easier to visualize
because there are more geometric hooks to hang your understanding on). Miss-
ing a function (say, for example, we construct a polynomial approximation and
we elect to leave out the term &2 in the series expansion) is like leaving out a
base vector in a vector space. The remaining vectors do not span the space and

+ We can express the basis as polynomials in x, but x has units of length. Each base func-
tion in the basis {1, x, x2, ...} has different units and, consequently, each coefficient
a, in the Ritz expansion will also have different units because each term in approxima-
tion of ¥ must have units of Iength. If we express the basis in terms of the dimensionless
variable £ =x/¢ then all of the coefficients in the expansion will have the same units.
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Figure 70 Representation of a vector in a basis
that does not span three-dimensional space

so it is not possible to represent all other vectors with that basis. Any vector
expressed in components relative to an incomplete basis will be missing, asil-
lustrated in Fig. 70.

This figure shows a basis {e,, €,} that does not span three-dimensional
space (i.e., it is missing the base vector €,). We can, as always, write a compo-
nent form of the vector as v = v, e, (where now the summation only extends
to a = 1,2 because there are only two base vectors). Of course, if we do this
component representation we only get v,,,; (the projection of v onto the plane)
and we annihilate v, because we have no base vector to represent it. In es-
sence, the basis simply projects out any component that it cannot represent.

The situation is very similar when we represent functions as a linear com-
bination of base functions. If we omit a term, like the £? mentioned previously,
then the approximation will not be able to represent the “quadratic features”
of the function in question (u in the present case). If the function has an essen-
tial quadratic behavior and the basis does not contain the quadratic function
then the approximation will never succeed at representing the function, no
matter how many other (non-quadratic) functions we include in the expansion.
Fortunately, it is rather obvious in the case of the polynomials what constitutes
completeness. It is not as obvious for other bases (even the trigonometric basis
leaves some open questions like: What about fractional values of n?).

Technically, we can only assure the approximation of functions, in the sense
of Weierstrass and Fourier, if we use an infinite series. In our numerical
approximations it is never practical to include an infinite number of terms and
so we truncate the series at N terms. We will find that, for most problems we
face, we can obtain excellent results with a finite-dimensional space of base
functions. To understand when we might fail, consider the task of representing
the function g(x) = sin 100n£ for £ € [0, 1] with a truncated Fourier series
that includes the functions {sinnz&, n = 1,..., 10}. The function g(x) simply
oscillates with too great a frequency for any of the base functions to capture
it. In general, low-order base functions will do best at representing smooth and
slowly varying functions. We will often know enough about the nature of our
forcing function, the body force b(x) in the case of the little boundary value
problem, to make reasonable assessments of the adequacy of our basis.
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Discretization of the principle of virtual work. We can effect a solution
if we also approximate our virtual displacements. One choice is to approximate
the virtual displacement functions with the same basis as the real displacement
function. This approach is called the Galerkin approximation. There are many
other possible choices. As we shall see, the Galerkin approximation leads to
a system of equations that has a symmetric coefficient matrix.

Let the virtual displacement be expressed in the form

N
ax) = ) @h(x) = T hix) (308)
n=1
where @ = [a,, . . ., @y] isanarray of arbitrary (virtual) constants. With base

functions known, it is simple to find the first derivatives of the displacements
and virtual displacements. These are

u'(x) = a-h'(x), 7(x) = a-h'®)

Herein lies the beauty of the Ritz method. It is generally easy to differentiate
known functions. The variety of the real and virtual displacements comes from
the coefficients of the series expansion. Since these coefficients are constants,
they play a very simple role in the processes of differentiation and integration.

Recall from Eqn. (286) that the virtual-work functional for the little bound-
ary value problem has the expression

14
G(u,t,, @) = J (Cu'w’ —bu)dx — t,7(0) — t,u(€)
0
with the associated statement that if G(u, @) = 0 for all 7 then u(x) represents
an equilibrium configuration. Substituting the Ritz approximations given in
Eqns. (306) and (308), we obtain a discrete version of the functional (a discrete

functional is simply an ordinary function). The functional G reduces to the fol-
lowing expression

G(a,t,,3) = a’(Ka—t,b—f) (309)

where K is an N by N matrix and f and b are N by 1 matrices defined as

KE[ C[h'][h']"dx, = th() +J bhdx, b =h(0) (310

As with the real displacement field, all of the variety in our virtual displace-
ment field comes from the coefficients @; the base functions are known and
fixed. Therefore, the principle of virtual work reduces to the solution of a dis-
crete system of linear equations to determine the real displacements a as the
following lemma describes.
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Lemma. Let G(W,V) = V'wbea functionof thereal vector w € RY
and the virtual vector V € R". The condition

Gw,V) = 0 VvV (311)
is satisfied if and only if w = 0.

Proof. The proof is by counterexample. Assume that w # 0. Since G
must be zero for all ¥ then it must certainly be zero for the specific
choice Vv = w. However, in this case V'w = w'w =| w||?># 0in
violation of the original assumption. Therefore, w must be zero. [}

Corollary. Discrete principle of virtual work. Let G(a, t,,3) be the
discrete virtual-work functional given in Eqn. (309), which was ob-
tained by applying the Ritz method to the continuous functional
G(u,t,, ). Then

G(a,1,,a) =0 Va = Ka—tb="1 (12)

One ramification of the discrete principle of virtual work is that we do
not need to know (or solve for) the virtual displacements @. In fact, all
virtual-work functionals are linear in the virtual displacement and the
action described by Eqn. (312) will always be a feature of the discreti-
zation process.

Solving the discrete equations. Equation Ka—t,b = frepresents N com-
ponent equations in N+ 1 unknowns (N for the components of a and one for
the reaction force ¢,). We need another equation in order to solve this problem.
The additional equation comes from the essential boundary condition given by
Eqn. (307), which, in view of the definitions in Eqn. (310) we can write as a
scalar equation b’a = u,. The final set of equations has the structure (often
called a bordered system)

EHBEM

One option available for solving this system of equations is to simply treat
itasasystem of N+ 1 equations with N + 1 unknowns and apply any of anum-
ber of techniques (e.g., Gaussian elimination) to carry out the solution. Howev-
er, it is important to note that a and ¢, have different units and that can lead to
some ill-conditioning of the system matrix.

We can solve this system of equations by assuming that a = a,+1,a,,
where 2, = K~'fand a, = K~'b. With these definitions we can see that

Ka—t,b = K(a, + 1,a,) — 1,b

(314)
= K(K'f +1,K"'b) - z,b =t
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thereby verifying that Ka—¢,b = fis satisfied for any value of t,. To deter-
mine ¢, we use the second equation b’a = u, as follows

b(a;+1,8,) = u, (315)
From this equation we can determine the reaction force ¢, to be

u,—b7a
f, = = —-1 (316)
bTa,
With the reaction force determined, the complete expression for the displace-
ment can be computed from a = a,+1,a,.

Another approach to essential boundary conditions. We can simplify our
implementation of the essential boundary conditions by writing

u(x) = u(x) + h(x) - a, @x) = h(x)-a (317)

where #(x) is some known function that satisfies the essential boundary condi-
tions and the base functions h(x) are selected to satisfy the homogenous essen-
tial boundary condition h(0) = 0 (that is, each component function satisfies
the equation £,(0) = 0).If that is the case, then the virtual displacement satis-
fies the homogeneous boundary condition #(0) = 0and the termin the virtual-
work functional #,%(0) vanishes. The function #(x) does not need to satisfy any
of the governing equations in the domain or the natural boundary conditions.
There are no restrictions on #(x) but one should generally select the simplest
possible function that satisfies the essential boundary conditions.

For a case in which the motion at the left end is prescribed to be u(0) = u,
but the right end has an applied traction then an appropriate choice would be
the function #(x) = u,. For a case in which the motion is prescribed at both
ends, i.e., #(0) = u, and u({) = u,, then an appropriate choice would be the
linear function u(x) = u,(1—x/€) + u,x/¢.

An easy way to determine a boundary function #(x) and base functions h(x)
that satisfy the homogeneous essential boundary conditions is to start with an
expansion in terms of the complete basis 36y = {1, x, x°, . . ., x"}. With this
approximation, we simply substitute the essential boundary conditions into the
Ritz expansion, eliminate one displacement parameter for each essential
boundary condition by substitution, regroup terms, and make the appropriate
identifications, as the following example shows.

e L

Example 33. Nonzero boundary displacements. Consider a rod free at x = 0
with a prescribed displacement u(€) = 2. Let us find the functions 4,(x) and
u(x) using a quadratic approximation. First, let £ = x/€ and take

wE) = ag+a,E+aE?
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Now apply the essential boundary condition u(1) = 2.
u(l) =ayta,+a, =2, = a,=2—a —a,
Substitute the expression for a, into the original approximation and regroup
wE = (2—a,—a,) + a,€ + a,&
= 2+ a,(E—1)+ a,(E2-1)

From this expression we can clearly see that u(§) = 2, and the appropriate base
functions are h,(€) = £—1 and hy(&) = &2 — 1. Observe that both of the base
functions satisfy the homogeneous essential boundary condition 4,(1) = O.

Notice that the approximation in Example 33 is quadratic, which generally
requires three terms, but only two base functions are needed because the essen-
tial boundary condition is enforced up front. If we start with an N-term approxi-
mation and there are M essential boundary conditions, then we can expect to
have N — M base functions. With the above approach, we always start with the
complete set of base functions. After implementation of the essential boundary
conditions, any term that does not multiply an unknown coefficient must be
part of u(x), and k,(x) is everything that multiplies .

We will generally use this simplification in our computations, but it is worth
emphasizing that it is a convenience and not a limitation imposed by the princi-
ple of virtual work (some authors give the impression that the base function
must satisfy the homogenous essential boundary conditions in order to be “ad-
missible”). We will discover that for two- and three-dimensional problems the
convenience is a bit more attractive because in those problems the reacting
tractions are fields and not simply constants as they are in the one-dimensional
case. If we can eliminate the reaction forces by restricting the virtual displace-
ment to satisfy the homogeneous essential boundary conditions then we can
avoid interpolating the reaction forces. It will always be possible to recover the
reaction forces from the stresses and the Cauchy relationship on the boundary
of the domain, as pointed out in Chapter 5.

Convergence of the Ritz method. The Ritz method provides a systematic
method for discretizing a continuous problem in mechanics. It also provides
a means of improving the solution. Our strategy will be roughly as follows.
Pick a set of base functions and a degree of approximation (i.e., the number of
terms N). Compute the coefficients a and from those the displacement field and
stress field. Assess the quality of the solution by computing the equilibriumdo-
main residual 7,(x) = ¢’ + b and a boundary residual r, = o(£)—t,. If equi-
librium is satisfied then the residuals should vanish. If not, then the residuals
provide a measure of failure to satisfy the equations of equilibrium. We can set
up a criterion for solution adequacy as
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4
err = B,J ri(x)dx + B.r: (318)
0

where f,and 8, are weights that establish the importance of satisfying equilib-
rium in the domain as opposed to satisfying equilibrium at the points on the
boundary where tractions are prescribed. If err < tol (where tol is some pre-
defined tolerance) then the solution is adequate. If not, then it needs to be im-
proved by adding more terms to the approximation. The following example
shows some of the features of convergence of the Ritz method for a simple
problem. We select a sinusoidally varying force because a polynomial approxi-
mation will not give the exact solution with a finite number of terms.

Example 34. Convergence of the Ritz method. Consider the one-dimensional rod
of length € and modulus C, shown in Fig. 71, to be fixed at the left end (i.e.,
u(0) = 0), free at the right end (i.e., o(€) = Cu'(€) = 0), and subjected to a
sinusoidal body force b(x) = b,sinax/¢.

Figure 71 Example problem with sinusoidal body force

The exact solution to this problem can be found by directly integrating the gov-
erning equations as we did in Chapter 5. The displacement and stress fields are
given by (check these solutions by substituting them into the classical equations)

b,€?
nC

u(x) = (sin-’H + ﬂ), o(x) = M(cosﬂ + 1)

£ ¢ 44 £

Note that the exact solution, in addition to satisfying the above boundary condi-
tions, has the following features at the ends of the rod

bo€? 2b,€
e ‘0O="%7

u(f) =

In what follows, we shall use the end displacement and the reaction as measures
of accuracy of our approximate solutions.

Our goal is to construct an approximate solution to the given problem using
the principle of virtual work. Let us consider the approximation base functions
to be the simple polynomials. To satisfy the essential boundary conditions, we
must omit the constant function h,(x) = 1 from the set of base functions. The
next four higher-order polynomials can be expressed as

2 3 4
me =% hE =% hE=% ho=%
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Note that the base functions are scaled by the length so that all of the base func-
tions are dimensionless. As a result, the coefficients a, all have dimensions of
length. This scaling is not required, but to do so simplifies the subsequent cal-
culations.

We shall solve the given problem four times, the first time taking only the
first term in the approximation, i.e., u(x) = a h;(x), the second time taking the
first two terms, i.e., u(x) = a,h,(x) + a,h,(x), and so forth, up to four terms. We
will look at how the solution improves as we take more terms in the approxima-
tion series. Let us write our approximation for the real and virtual displacements
in accord with Eqns. (306) and (308), respectively. Let N be the number of terms
in our approximation, k,(x) be the nth base function, and the coefficients a, be
the primary unknowns. Since the derivatives of the base functions can be written
as h,'(x) = nx"~1/€" the coefficient matrix K can be computed in general
terms to have components with the following values

14
_ AN _ g mn
K,, = L Chy'h, dx = C(———m+n—1)

The right-side matrix f can be computed to be

¢ ¢
box"

= in X - ZoZ inBX =

fa L b,h, sin i dx L S0 dx 1

where the value of I, can be computed recursively from the relationship (which
is a formula that comes from integrating by parts twice)

2
In = 1 - (nnzn)ln—z

for the values n = 2, 3, 4, . . ., knowing the first two terms to be I, = 2 and
I} = 1 (which are easy to compute explicitly).

The system of equations that results, Ka = f, is given below for the cases of
the one-term expansion, two-term expansion, three-term expansion, and four-
term expansion

1]17I 1‘}1 a

41 6! 8

cll 3] 315 || %

T, & 9l a | - (319)
4 5] 6 3
g 12 16

135 % 3 a4

Each system of equations, corresponding to a different order of approximation
N, is shaded and bracketed slightly differently. Clearly, all of the K and fcompo-
nents computed for the one-term case are apropos to the two-term case because
the base function for the first term of the two-term expansion is the same as the
base function for the one-term expansion. Similarly, all of the values for the two-
term case are still valid for the three-term case. We need only compute the new
quantities that appear from the addition of a new base function.
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Table 3 Displacement coefficients for different order approximations

a(0) ag(’!
N % % s G4 bog/n bt/m
1 1.00000 1.000 1.000
2 2.21585 -1.21585 2216 | -0.216
3 2.21585 -1.21585 0.00000 2216 | -0.216
4 1.99096 0.13349 -2.24891 1.12446 1.991 0.009

We can solve each of the four systems of equations to give the value of the
coefficients a for the various expansions. These coefficients, normalized by the
value b,€?/mC and computed to six digits, are given in Table 3.

There are a few things worth mentioning about the approximations. First, the
value of the end displacement for all of the approximate solutions is exact

N N
W) = > aha(f) = > a, = 1::?

n=1 n=1

This conformance to the exact solution at the end point is a peculiar feature of
the one-dimensional problem. Do not expect it to happen for every problem.
Note that the displacements are not exact at any other point except the fixed end
(where we insisted that it be exact). Second, the third-order approximation gave
rise to a zero coefficient a;, meaning that the quadratic approximation is exactly
the same as the cubic approximation. In essence, the approximation scheme re-
jected the extra term because it could not help improve the approximation.

The end tractions are also given in Table 3 for each approximation. Clearly,
for the lower-order approximations the traction-free boundary has a nonzero
traction on it. In fact, the first-order approximation simply splits the difference,
placing half of the reaction to the applied load on each end of the rod. The sec-
ond-order approximation is significantly better with o(€) = —0.216b,€/7. As
previously mentioned, the third-order approximation is no better than the sec-
ond. The fourth-order approximation gives nearly exact compliance with the
traction-free boundary condition with o(€) = 0.009b,€/x. The principle of
virtual work guarantees the satisfaction of equilibrium in some sense. When we
make approximations (i.e., do not enforce the work equation for all possible
virtual displacement fields), we compromise the satisfaction of these equilibri-
um equations. The convergence to the traction-free condition at the right end,
as the order of approximation increases, shows how the Ritz method realizes one
of the basic promises of the principle of virtual work.

The displacement and stress fields for the example problem are plotted in Fig.
72 for the four approximations. We can see that all of the displacement approxi-
mations are equal to the exact displacement at the end x = €. The quadratic dis-
placement field is almost indistinguishable from the exact displacement field.
The stresses converge more slowly than the displacements. We can observe a
difference between the exact and approximate stress fields for N = 2. The quart-
ic approximation N = 4 is very close to the exact stress field. It is evident from
the approximate stress distributions that the principle of virtual work attempts
to find the best stress field in an average sense. For the linear displacement field,
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Figure 72 Displacement and stress approximations for example problem

the stress is constant and equal to the average value of the exact stress field over
the entire domain. It is also evident from symmetry considerations why the coef-
ficient of the cubic term in the cubic approximation was discarded by the func-
tional.

The preceding example serves to demonstrate how the Ritz approximation
method can be used to solve the virtual-work form of the governing differential
equations. Inherent in the Ritz method is the choice of base functions and the
concept of convergence of the approximate solution to the exact solution. The
approximate solution will never get worse with the addition of more base func-
tions. Although exact correspondence with the classical form of the differen-
tial equations is guaranteed by the principle of virtual work only in the limit as
all virtual displacements are considered, excellent approximations can often
be obtained with very few terms in the approximation. The best basis for one
problem may not necessarily be the best for another problem, but if the basis
is complete, adding base functions should eventually give good results.

The Ritz method is well-suited to implementation in a program that does
symbolic or numerical calculations (e.g., MATHEMATICA). Indeed, for problems
with more than a few base functions it is not practical to do these calculations
by hand. The following example shows how the calculations for the little
boundary value problem (with the added feature of an elastic foundation) can
be laid out in a MATHEMATICA program. Some of the syntax that are used in the
program include

u=h.a »u=h-a = h'a
Dih, x] = L hix) = @)
! dx
Outer[Times,h,h] - h®h = hh’

1

Integrate[g, {x, 0,1}] — f 8(x) dx
0
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Two symbols next to each other without a symbol between implies scalar mul-
tiplication. The command Clear [ x ] simply clears any assigned value to the
variable x (so that it can be symbolically manipulated after that point). Some
of the other commands, like Inverse{ ] and Plot{ ] should be obvious (but in
the case of plotting, there are many more options that one can use to refine the
graphic presentation).

The example includes an elastic foundation, which provides resistance to
motion in proportion to the amount of displacement at that point (i.e., a distrib-
uted spring). The foundation resistance f(x) = ku(x) opposes the motion,
thereby contributing to an “equivalent” body force b,; = b—ku. The con-
tribution to the virtual work, then, is simply —b.;& = —b#&+ ku#. Conse-
quently, we can see that the elastic foundation actually adds to the stiffness ma-
trix (because it involves both the real displacement u and the virtual
displacement ).

Example 35. MatHEMATICA program for the Ritz method.
Consider the rod of length € and let § = x/¢€. The rod has
an elastic modulus that varies as C(§) = C,{2—§&), and
it is subjected to a load P at the end x = 0 and a body force
b(&) = b,(1—&). The rod is embedded in an elastic me-
dium such that the force developed along the length is pro-
portional to the displacement i.e., f(x) = k,u(x). Let the
elastic constants be related by § = k,€/C, and let the
force constants be related to the modulus and length as
y = Pt/C,and ¢ = b,€2/C, where B, v, and g are di-
mensionless problem parameters. The rod is pointed so
that the traction at the end x = £ is zero.

Find an approximation to the displacement field using the Ritz method with
a four-term approximation with the base functions h(§) = [1, &, &2, £*]. Note
that there are no essential boundary conditions for this problem. The virtual-
work functional for this problem is (after dividing through by C,/€)

P
M

p
j‘
et

f®

[

T
T
T
T

U

1

G = J (2-8)wa@ + pum — o(1-§)u) df — y@O)

0

where (+)' = d(-)/dE. Using u = h(€) - aand @ = h(§) - 7, the virtual work
functional G(u, 7) becomes G(a,a) = a’[Ka —f], with system matrices

KEJ [(2-&)h'&) ® W) + S1E) ® hE)|dE
0 1
fsyh<0>+oj (1-&)n(E) &
0

The discrete principle of virtual work is satisfied if Ka = f. The following MA-
THEMATICA program solves the problem for f# = 1, ¥ = 1, and ¢ = 1. Note
that the comments in italics and brackets are not part of the code.
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[Establish the variable parts of b and C and input values of 3, y, and @]
load = (1 - x)

modulus = (2 - x)

beta = 1

gamma = 1

rho =1

[Set base functions and compute derivatives)
h = {1, x, x*2, x"3}
hp = D[h,Xx]

[Compute stiffness K and load vector f]

K1 = Integrate[ modulus Outer[ Times,hp,hp],{%,0,1}]
K2 = Integrate[ Outer[ Times,h ,h ],{x,0,1}]

K = K1 + beta K2

£2 = Integrate([ load h ,{x,0,1}]

x =0

£f1 = h

f = gamma f1 + rho f2

[Solve equations for coefficients a and compute displacements, stresses, etc.]
a = Inverse[K].f

Clear[x]

u = h.a

stress = mod hp.a

error = D[stress,x] - beta u + load

Plot[u, {x,0,1}]

Plot[stress, {x,0,1}]
Plot[error, {x,0,1}]

Note that x in the MATHEMATICA code is & in the above equations. The dis-
placement field is computed as #(§) = h(£) - a and the stress field is computed
as o(§) = C(E)h’'(€) - a, once the values of the interpolation parameters a are
known. The error in the classical differential equation is computed as
error = ¢’ —k,u+b. Finally, the code provides for plotting of the results. Note
that it is also possible to compute the stress at x = 0 or to integrate the square
of the error from 0 to 1 to get a better understanding of the approximation error.

The Ritz method can, of course, be programmed in virtually any computer
language. The syntax can vary from one language to another, but the basic or-
ganization of the calculations is the same.

What is wrong with the basis? There is a problem with the simple polyno-
mial base functions used in the preceding example. The problem is not entirely
evident from results shown in Fig. 72 because we stopped at a four-term
approximation, but it is there and it does warrant some consideration. The root
of the problem is that the higher-order base functions look pretty much the
same. The first seven polynomial base functions are plotted in Fig. 73. The
functions are increasingly difficult to distinguish from each other with regard
to their shape as n gets large.

The problem manifests in the conditioning of the matrix K that we must in-
vert in order to find the coefficients a from Ka = f. As we increase the order
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0 3 1

Figure 73  The first seven simple polynomial base functions

of our approximation, the matrix K gets harder and harder to invert accurately.
For the present problem, it would be virtually impossible to get accurate results
for a for an approximation with N = 7 on a finite-precision computer with
eight digits of accuracy. In the following section, we discuss this problem in
a little more detail and suggest curing it by improving the base functions
through a process called orthogonalization. In the subsequent section, we con-
sider an alternative solution to the problem called the finite element approxi-
mation.

Orthogonal Ritz Functions

The problem with base functions that are nearly alike is very much akin to the
problem of representing the components of a vector with respect to base vec-
tors that point in nearly the same direction. The closer the base vectors are to
being collinear, the more difficult it is to accurately compute the components
of the vector in question with respect to that basis. Let us assume that we have
asetof non-orthogonalbase vectors { hy, h,, h;} spanning R?, asshown inFig.
74. Let us compute the components of a vector v = v;h; (summation implied)
with respect to this basis. In other words, we want to find the coefficients v;.
The equations for making this computation can be found by taking the dot
product of the component equation with each of the base vectors. To wit

(h,« . hj)vj = h;-v

These equations are often called the normal equations. They are nothing more
than alinear system of three equations for the three unknowns {v, v,, vs}. The

h, v

h,
h,

Figure 74 Finding the components of a vector
with respect to a non-orthogonal basis
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solution can be obtained by inverting the coefficient matrix and multiplying
that inverse by the three by one matrix on the right side of the equations. This
operation sounds easy, but in finite precision arithmetic, disaster lurks.

For base vectors that point essentially in the same direction, the three equa-
tions are very difficult to distinguish from each other. That is, the linear inde-
pendence of the three equations is increasingly compromised as the base vec-
tors point more in the same direction. The result of this loss of linear
independence is that the coefficient matrix A, which has components given by
the expressions A; = (h,« . h,-), becomes increasingly difficult to invert accu-
rately. In fact, there is a limit where the coefficient matrix is singular in finite
precision arithmetic. This ill-conditioning is always an artifact of base vectors
that are too much alike. The best base vectors are orthogonal.

Example 36. Normal equations and ill-conditioning. Consider a certain vector
v = e, +e,+e;and a basis described by the base vectors (not orthonormal)

h, = e +¢ce,, h,=-¢e—¢ce, h;=e;

where ¢ is a parameter and {e,, e,, e,} are the standard (orthonormal) base vec-
tors. Let us compute the components of v in the basis {h;, h,, hs}, i.e., let us
find the values v, such that v = v;h, (sum implied). The normal equations for
this basis can be computed as

1+&% 1-62 0 v, 1+e¢
1-¢2 1+¢* 0 v, | =1 1-¢ (320)
0 0 1 V3 1

These equations can be solved to yield

et el wer e
These values of the coefficients can be substituted back into v = v;h; to give

v o= %( 1+ %)(el +ee,) + %( 1- %)(e1 —ce,) +e; = e +e+e;
as expected. This calculation simply demonstrates that it is possible to compute
components of a vector with respect to a non-orthonormal basis.

Let us now consider the case where ¢ is very small. It should be evident that
by adjusting the value ¢ to be closer to zero we make the base vectors h; and
h, point in the same direction; as ¢ — 0 they both point in the direction e,.In
this case, Eqn. (321) would yield the approximate values of the coefficients
1 1
== 3% v, = — 2% vy =1
because 1 would be small in comparison to 1/ and would, consequently, be
truncated in the roundoff in a finite precision calculation. Now, from v = v;h;

Vi

v = l(e1+se2) -4

o %(el—se2)+e3 = e,te,
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The roundoff has completely annihilated the e; component of the vector v! In
reality the outcome of the computation depends upon the algorithm used to solve
the normal equations. On a finite precision computer the coefficient matrix of
the normal equations is nearly singular and any algorithm used to solve the equa-
tions will, at best, give strange results and, at worst, fail to give results at all.

The accuracy of the solution of a system of equations with coefficient matrix
A deteriorates as A gets closer to being singular because of the deleterious ef-
fects of roundoff error in a finite precision calculation. A good measure of the
invertibility of a matrix or the solvability of a system of linear equations is the
condition number o(A), defined as the ratio of the largest eigenvalue up,, of
A divided by the smallest eigenvalue u., of A, that is

_ Hax(A)
Q(A) - Iumm(A)

(322)

The closer @(A) is to unity, the better-conditioned is the matrix. The larger
©(A)is, the more ill-conditioned is A. The best-conditioned matrix is an ortho-
gonal matrix Q. Recall that an orthogonal matrix satisfies Q™' = Q. The
condition number of an orthogonal matrix is exactly 1. The identity matrix I
is a particular case of an orthogonal matrix.

The eigenvectors (not normalized) of the coefficient matrix in Example 36,
are ¢, ~ (1, —1,0), ¢, ~ (0,0, 1),and ¢; ~ (1, 1, 0), associated with the
eigenvalues u; = 2¢% u, = 1,and u; = 2. Therefore, the condition number
for the coefficient matrix is o(A) = 1/e* which gets very large as € — 0. The
condition number is an indicator of the trouble with solving those equations.

The problem with the basis in Example 34 can be seen by examining the
condition number of the matrix K as the number of terms in the approximation
increases. The maximum and minimum eigenvalues of the matrix for each or-
der of approximation are given in Table 4. Clearly, for the case N = 1, the ma-
trix is one by one and the maximum and minimum eigenvalues are the same.
As the order of the approximation increases, the condition number increases
dramatically, an order of magnitude for each increment in the order of approxi-
mation.

Table 4 Condition of K for the Example 34 problem, simple polynomial basis

N Hmax Hmin o(K)
1 1.00000 1.000000 1.0
2 2.18046 0.152870 14.3
3 3.79646 0.013580 279.6
4 5.88341 0.000845 6959.5
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Gram-Schmidt orthogonalization of vectors in R". For independent vec-
tors that are not orthogonal, we can always produce an orthogonal set of vec-
tors using the Gram-Schmidt orthogonalization procedure. In this procedure,
we put the base vectors in a certain order, with one of them designated as being
the first. A vector orthogonal to this first vector is produced by taking the origi-
nal second vector and projecting out the component of the vector that lies along
the first vector. The new orthogonal vector replaces the old second vector in
the set. A third orthogonal vector is produced by taking the third original vector
and projecting out its components along both of the previous two orthogonal
vectors. The procedure continues until an entire orthogonal basis has been pro-
duced. Let us assume that our non-orthogonal basis is composed of the follow-
ing set of vectors spanning R": {h,, h,, . . ., hy}. We wish to produce a new
orthogonal set of vectors {g;, &, ..., gy}. First set g, = h,. Then, for
n = 2,3,...,N, compute the remaining vectors sequentially from the formula

n—1
gj'hn
., = h, — 2 g 323
g 2 (gj : gj)g, (323)

j=1

Each new vector is orthogonal to all previous vectors, as can be shown by tak-
ing the dot product between any of them (k < n)

n—-1
g"hn
g 8 hn'gk_Z(gjl_gl)gj'gk
i Bj

j=1

gk ) hn
ll’l . —_— . = 0
8« (gk - gk>g" 8«

The proof depends upon the observation that g; - g, = 0if j = &,i.e., thator-
thogonality holds for all of the vectors already computed. Observe that the case
n = 2works because there is only one term in the sum. Now, the orthogonality
of the remaining vectors follows by induction.

The new vectors are not necessarily of unit length, but can easily be made
so by dividing each vector by its own length. In fact, the best approach to com-
puting an orthonormal basis is a two-stage process

n—1
~

én = hn - Z(g; ) hn )gj, gn = gn/

j=1

A

g | (324)

Observe that this approach eliminates the need for having the normalizing term
g, * g;in the denominator of each term in the sum because g; * g; = 1.

Orthogonal functions. The jump from vector spaces to function spaces is
a big one, but much of what is true of vector spaces carries over by analogy to
function spaces. Each one of our base functions is an element in our function
space, analogous to a base vector in a finite dimensional space. Certainly, if our
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base functions tend to line up, their ability to resolve the components of another
function will be less well conditioned than if the base functions are all very dif-
ferent. We can see from Fig. 73 that the simple polynomial base functions qual-
itatively appear to line up. Is there a way to assess this quality of functions? For
vectors, we assess similarity in the orientation of vectors with the dot product.
We can do basically the same for functions. Let u(x) and v(x) be twoscalar-val-
ued functions defined on the real segment [a, b] C R. The inner product of the
two functions is defined to be

b
(u,vy = J u(x) v(x) dx (325)

If (u, vy = 0then we say that the two functions are orthogonal. The length,
or norm, of a function is given by its inner product with itself || u || = (u, u).
Clearly, a function has zero length only if it is zero at every point in its domain.
For two vectors of unit length, their inner product is a direct measure of how
much they “line up.” With the introduction of the notion of the inner product,
we can proceed to talk about the components of a function with respect to a set
of base functions, just as we do for vectors. We can also cure the problem of
loss of independence of the base functions.

Gram-Schmidt orthogonalization of functions. The idea of orthogonal-
ization can be extended to functions. Let us assume that we have a given set
of base functions { A, . . ., hy},e.g., the polynomial basis { 1, &, &%,..., §*}on
the domain £ € [0, 1], and that we wish to produce a new set of orthogonal
base functions {g, . . ., gx}. Assume that we have produced the first n—1 or-
thogonal functions gy, . . ., g,_; and we now want to compute g, from 4,. We
know that the new function will be a linear combination of the previous orthog-
onal functions (which span exactly the same space as {4, . . ., h,_:}) and the
next function 4,. Let us write this observation as

n-1

8 = Gmhy— ) ayg (326)

j=1

where the constants a,; for j = 1,..., n are yet to be determined. The n—1
conditions of orthogonality are (g,, &) = Ofor i = 1,..., n—1. The ortho-
gonality of the functions allows the determination of the coefficients a,, for the
index values j = 1,...,n—1as

(hr &)
(81 &)

The constant a,, is arbitrary and can be set to any convenient value or can be
set to meet a convenient criterion, €.g., g,(1) = 1 or (g, &) = 1.

Ay = G

(327)
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The Gram-Schmidt orthogonalization algorithm can be summarized as fol-
lows. Set g, = h,. Compute the remaining functions, g, . . -, gx, a8

n—-1

(P
E &) ; (328)
= (88)

We can demonstrate the orthogonality by computing ( g,, 8:) for k < nas

n-1
(g},h>
ns = h’” B "
(8nr8k) = (P, 81) j=1<g,,g,><g 8
(gk,h'l>
= (hnge) = (868 = O
(Mns 8k) (gk,8k><gk 8

Example 37. Gram-Schmidt orthogonalization of functions. Consider the origi-
nal basis {, &2, &%, &*} defined on the domain £ € [0, 1]. Let us generate a
set of orthogonal functions from Eqn. (328) starting with g; = &. Scale the
functions to have a value of unity at the right end, i.e., g(1) = 1. We obtain the
functions given in Fig. 75.

1
g6 = & ,
: 8:(6) = 46 —-3¢
&) £3(6) = 158~ 2082+ 68
g4(&) = 56&*—1058% + 60£%~ 10§
9 n=12 3 4
0 g 1

Figure 75 The first four orthogonal polynomials generated from &

We can observe that these functions appear quite different from the base func-
tions shown in Fig. 73. You can almost see the orthogonality. These functions,
unlike their progenitors {£, &2, &3, &*}, have inflection points, and the higher
the index number on the function, the more inflection points the function has.
It is important to observe that g,(x)is still an nth-order polynomial. Orthogonal-
ization does not introduce any higher-order functions.

S et wes A o h e ol B3

The orthogonal functions are not necessarily of unit length, but can easily
be made so by dividing each functions by its own length. In fact, like the dis-
crete case, one can compute an orthonormal basis as a two-stage process

n—1

én = h" - z< g}" h">g}" g’l = gAn/V (én’ én) (329)

j=1
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There is one important point to make about the orthogonal basis. The func-
tions themselves are orthogonal because we forced them to be. Their first de-
rivatives are not necessarily orthogonal, and, hence, the coefficient matrix K
will not be diagonal but it will be reasonably well conditioned, as the following
example demonstrates.

Example 38. Revisit Example 34 with an orthogonal basis. Let us use the base
functions given in Fig. 75 in a four-term Ritz approximation of the problem
solved in Example 34. The system of equations that results, Ka = f, with the new
base functions, is

1 1 1 1][a 1
cl 1 T 3 Fe byt o
€ 1 1?3 43—3 9 a, T T —-711—2

1 Z 9 25| a 1_%+z_z§_s

Compare these equations with those given in Eqn. (319). The result of solving
these equations is exactly the same as before. Note that the values of the coeffi-
cients g, differ from the values computed with the previous basis, but the final
approximate expression for u(x) is identical in each case. The condition number
is o(K) = 39.36 rather than the previous value of 6959.5 for the four-term case.

For the little boundary value problem (without elastic foundation) we can
observe that the stiffness matrix K has components

[4
K, = I CH', W, dx (330)
0

For a problem with constant modulus C it is evident that we could generate a
diagonal stiffness matrix K if the first derivatives of the base functions were
orthogonal rather than the functions themselves. We could, by a procedure
analogous to the one above, produce functions that have orthogonal first deriv-
atives, and, as a consequence, get a diagonal K as the following example dem-
onstrates.

Example 39. Basis with orthogonal first derivatives. Consider the polynomial
basis {&, &%, &} defined on the domain & € [0, 1]. Let us generate a set of
functions whose first derivatives are orthogonal, starting with g; = &. Note that
the derivative is g;" = 1and that ( g,, g;") = 1. Let the second function be

82 = & - aé 8 =2%—ay
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and compute the coefficient a,, from (g,’, g,") = 0 (the orthogonality condi-

tion). Thus,

1
a21=J2§d§, = a; =1 = gz=§2“§
0

Note that { g,’, g,") = 1/3. Now take the third function in the form

83 = & - a31§ - a32(§2—§), &' = 352 — 3 a32(2§—1)

and compute the coefficients a;; and a;, from the orthogonality conditions
(8> 83y =0fori=1,2 Thus,

as = J 382 dE =1, %an = J 352(25_1)‘15 =%
0 0

= & = 53_%52'*'%5

Note that ( g5', g5') = 1/20. We can normalize these three functions so that the
inner products ( g/, g’y = 1 for i = 1,2,3. The normalized functions are

g =6 8 = @(52_5), 8 = 5(253_352'*'5)

If we apply these functions to the problem in Example 34 then K = Cl (which
means that it is perfectly conditioned with o(K) = 1). The components of the
vector f can be computed as

1
1
fi=Jg,-bosinn§dEi = ‘f~b—0£ _ 43
0 ’ T 2
0

Again, the results are the same as any other cubic polynomial base functions.

An advantage of the basis with orthogonal first derivatives in Example 39
is that the matrix K was diagonal. The solution of the equations in such a case
is trivial, with the coefficients given by a; = f;/K; (no sum on repeated
indices). This case is not that important because the orthogonality can be dis-
turbed by a non-constant modulus C(x) or by additional terms like an elastic
foundation, as in Example 35.

One thing that is evident from the preceding discussion is that while ortho-
gonal functions have merits (especially with respect to conditioning of the
equations) they have drawbacks too. The first drawback is that there is signifi-
cant computation involved in finding the orthogonal functions. The second
drawback is that each function generally has many terms. For example, the nth-
order orthogonal polynomial has non-zero coefficients for ail of the lower-or-
der terms, making them rather cumbersome to work with.
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The trigonometric functions are orthogonal over certain domains and do not
have some of the drawbacks of the orthogonal polynomials. Functions approx-
imated with trigonometric functions are often referred to as Fourier series
approximations.

Example 40. Fourier series. Consider the basis {&, sinnzé, n = 1,2,...,N}
defined on the domain & € [0, 1]. Let us solve the little boundary value prob-
lem with unit length, constant modulus C, displacement restrained at & = 0,
zero traction at £ = 1, and with body force b(§).

1
G(u,m) = I (Cu'w — bu) €dE
0
Let the real and virtual displacements be approximated as infinite series
®© @
u=ay + Zansinnné, T=a,6+ Z Tnsinmaé
n=1 m=1
The derivatives of displacement are

v o=a,+ Znnancosnné, T =a,+ Z mna, cosmmné

n=1 m=1

Substituting these expressions into the virtual-work functional we find that

Ky = C, Ku=3Cnn%, Kp,=0form=n

fo =I EbE)dE,  fa =I b(&)sinnm& df
0 0

Because the matrix K is diagonal, the displacement coefficients are then

=%I Eb)dE, a,= = ZCI b(&)sinnx& d&
0

These equations hold for any function b(£). Take as a specific example the lin-
early increasing loading function b(§) = b,&. The coefficients in this case are

b,

== cosnw
3

a, = a, = 2b,
o = = = %00
" nr3C

The displacement takes the final form

u 3C(§+ (smn&-—sm?ﬂ&+ sin 37 — 6451n4n§+ ))

The beauty of Fourier series approximations of displacement is evident in
the rate of convergence of the displacement. In the present case the terms de-
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crease as areciprocal of n°. The stress converges only as n° because the deriva-
tive of sin nzt€ throws off another # in each term. The loading function in the
example is very smooth and Fourier series converges quickly for smooth func-
tions. In cases where the loading function is discontinuous the convergence is
slower. In some cases the stress will converge very slowly (i.e., lots of terms
will be required for an accurate solution) or not atall. Again, when the modulus
is variable, the diagonality of K is lost.

The Finite Element Approximation

A traditional education in mathematics generally leaves one with a bias toward
functions that have names, like polynomials or exponentials, whose domain of
action s the entire region of interest. The polynomial base functions of the pre-
vioussection are examples of such functions. Each of the base functions is non-
zero over the entire region [0, €].

There is a very interesting alternative for the definition of Ritz base func-
tions that has some great advantages for solving problems in structural me-
chanics. Rather than insisting that a base function be an nth-order polynomial
or a trigonometric function, we will allow the piecing together of some of the
simplest members of these classes of functions. For example, the function g(x)
shownin Fig. 76 is a piecewise linear, continuous function. The functionis lin-
earbetween the points x,_, and x,(often called nodes), but the overall function
between the endpoints x;and x,describes a nonlinear variation that character-
izes the entire function. The function can be defined as

Xp— X X —Xp_
) =g |2 ]+ g2, x,_,<x<x, (331
8(x) = &, 1(xn_xn_l) 8 (xn_xn_l) 1 (331)

where g, is the ordinate of the function at the point x,. The N linear segments
meet at their nodes. Thus, the function is continuous. The first derivative of the
function is the slope, which is well defined for every point in the domain except
at the nodes { x,.. ., xy}. At these points the function has kinks, so the first de-
rivative jumps there. The first derivative has the functional form

8()

Xo X o wa X

8'(¥) 4
| —

Figure 76 A piecewise linear, continuous function and its derivative
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g'x) = i—:—_—f—::—i, Xpoy < X < X, (332)
Even though the function g'(x) is not defined at the nodes, it is clearly inte-
grable. The integral of the function is the shaded area under the curve, shown
in Fig. 76. It is easy to show that the function is also square-integrable. The sec-
ond derivative of the function g''(x) is not well defined because of the disconti-
nuities at the nodes in the first derivative. This piecewise linear function is a
good example of a function that belongs to the class C° (continuous zeroth de-
rivative) but not C' (continuous first derivative).

It should be evident that we might piece together functions of any variety.
The explicit functional form between the nodes could be a higher-order poly-
nomial, an exponential, or a hyperbolic cosine. No matter how smooth the
function is between the nodes, the smoothness of the function overall is limited
by the kinks at the nodes.

Finite elements for the little boundary value problem. Let us proceed to
demonstrate how we can use piecewise linear functions to construct a basis for
aRitz approximation, and thereby generate an approximate solution to the little
boundary value problem. Consider a rod of length ¢, with u(0) = 0, traction
free at the right end 7, = 0, and subjected to the distributed load b(x) = b,.
Let us divide the length of the rod into N equal segments (elements) and label
the nodes { xo,.. ., xy}. The nodes are located at the points x, = n€/N, starting
with x, = 0 and ending with x,, = €. We will examine the finite element
approximation for different numbers of elements.

We can construct a set of piecewise linear base functions, often called the
roof functions, as shown in Fig. 77. The function k,(x) is zero, except in the
neighborhood of the node x,, where it ramps up to a value of one and back
down again at the adjacent nodes. The nth base function has the expression

X = Xp_
—_—, X, =X =X,
xn —xn—l
= Xps1 — X
hax) = X, < xS X, (333)
xn+l —xn
0, elsewhere

Clearly, the difference between the nodes is constant, so x,.; —x, = €/N.The
first derivative of the nth base function has the explicit expression

N/¢, x,., <x<x,
h,'(x) =3 = N/E, x,<x <X, (334)
0, elsewhere

The most interesting feature of these base functions is that each one has the val-
ue zero over much of the domain [0, €]. Furthermore, the part that is zero for



218 Fundamentals of Structural Mechanics

Base function First derivative
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Figure 77 Four piecewise-linear Ritz base functions and their derivatives

one function is different from the part that is zero for another. Thus, the product
of two functions is nonzero only over a very small region. The product of some
of the functions is zero everywhere! This observation suggests that we will
reap some benefits in the computation of K and f for the Ritz method. Base
functions of this variety are often called local functions (or functions with
compact support), because they are nonzero only in local regions of the do-
main.

The functions are also called finite element base functions. The notion of the
“element” comes from the observation that h,_,(x) and h,(x) are both nonzero
only for the region of the bar between the nodes at x,_, and x,. We shall call
that region element n.

As we have done previously, we can use the finite element base functions
to construct an approximation of the real and virtual displacement functions.
These approximations have the usual form

N

) = Sah@ @) = > zhe) (335)

n=1 n=1

The displacement function that results from this approximation is shown sche-
matically in Fig. 78. Since the nth base function has the value of unity at x,, and
iszero at all of the other nodes, the coefficient a, canbe interpreted as the value
of the displacement at that node, i.e., a, = u(x,). Thus, the primary unknowns
for the problem are the nodal displacements. Let us compute the coefficient
matrices K and f using the finite element basis. The mnth component of K and
the mth component of f are given by the integrals
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(x)

a, |a, ay

X X X, Xy X

Figure 78 Displacement approximation with finite element base functions

14 14
K, = J Ch,'h,'dx, f, = J bk, dx (336)
0 0

These integrals are simple to compute. The main advantage is evident if we
break the integral into a sum of integrals over each element as

i N

K = i j x Cho'hy dx,  fu = > [ ) bohndr  (337)
i=1 x; x

i1 =1y
Most of the terms in the sum will be zero. In fact, K,,, = 0in element i for all
except the four times when m or n equal i — 1 or i. An example of the computa-
tion of K and f follows.

Example 41. Computation of coefficients for the finite element basis. Consider
the finite element basis with N elements of equal length. Let us solve the little
boundary value problem with unit length, constant modulus C, displacement re-
strained at & = 0, zero traction at £ = 1, and with body force b(§) = b,,.

¢ 3¢/N
Ko =j Chy'hs' dx = j C(—%’)(%’)dx - -
0 20/N

For the diagonal elements, K,, = 2CN/€ if n # N and K, = CN/¢. The off-
diagonal terms K., (m # n) are zero if |[m—n| > 1, since the base functions
this far apart have no nonzero region in common. For the terms with
|m—n| = 1, K,, = —CN/{. Since the body force b(x) is constant, the integral
of f,,issimply proportional to the area under the mth base function. An example
computation of a component of f goes as follows

E/N

¢ 2w ¢/N ? 3¢/N bt
- — :
fz_jb"hzdx“j b"( ¢/N )d’”j b"( ¢/N )dx‘ N
0 IN 2¢/N

[4

Accordingly, f, = b,{/Nif n # Nand fy = b,€/2N. You should verify that
these values are correct.
The equations of equilibrium, Ka = f, for the case of N = 4, are
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2 -1 0 O a;
4c) -1 2 -1 0O a, =£¢£
7| 0 -1 2 -1 ]a 24
0 0 -1 1 a,

(338)

- NN N

It should be evident how the matrices will look for other values of N. Note in
particular the banded structure of the K matrix. This particular matrix can be in-
verted in closed form (not many can, so enjoy this one) as follows

1 1 1 1
K-1=2X|1 2 2 2
1 2 3 4

The solutions to the problem for the values N = 1,.. ., 5 are shown in Fig. 79.

u()
1 2 3
X X X
Tk
@
u(x) R
4 5 All
1 I 1 1 1 1 1
X X X

Figure 79 Little boundary value problem with uniform load.
Results for five different finite element approximations

There are some interesting observations to be made about the Ritz solution to
this problem. The first observation is that the nodal displacements a, = u(x,)
all turn out to be exactly correct (as shown in the previous chapter, the exact solu-
tion to the problem is u(x) = b,(2x€ —x?)/2C). We can see this clearly in Fig.
79 in the plot labeled “All,” which superimposes the solutions for all five cases.
We can compute the stresses at the two ends from the approximate solution as

o0 = (BF)% 0w = 5

where g,(x) is the approximate stress field for a finite element approximation
of order N. In the limit as N — oo, both of these values converge to their proper
limits of ¢(0) = b,¢ and a(€) = 0. It is not really fair to compare the perfor-
mance of the finite element basis with the polynomial basis {x, ¥, . . ., x},
with each base function defined on the entire region, because we know that the
exact solution is quadratic for the present example. Hence, the stresses would
be exact for the polynomial basisfor N = 2.For N = 5, the tractions at the ends
are still in error by 10% for the finite element approximation.
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One of the principal advantages of the finite element basis is that the func-
tions are fairly close to being orthogonal. For example, if [m —n| > 1,thenthe
functions and their first derivatives are exactly orthogonal. Adjacent functions,
however, are not orthogonal. The consequence of this “near orthogonality” is
that we can expect the K matrix to be fairly well-conditioned. The condition
numbers for the five approximations of lowest order are given in Table 5. Note
the slow growth of the condition number with increasing order of approxima-
tion.

Table 5 Condition of K for the example problem, finite element basis

N ,umax ,umin Q(K)
1 1.00000 1.000000 1.00
2 2.61803 0.381966 6.85
3 3.24698 0.198062 16.39
4 3.53209 0.120615 29.28
5 3.68251 0.081014 45.46

Non-homogenous boundary conditions. Another great advantage of the
finite element base functions that is not really amplified by the one-dimension-
alexample is the simplicity of satisfying the essential boundary conditions. Be-
cause the functions are local, all of the interior functions automatically satisfy
homogeneous essential boundary conditions. The only base functions that in-
teract with the boundary are those associated with elements adjacent to the
boundary. To satisfy a nonzero essential boundary condition u(0) = u,, we
need to include the known function %(x) in the Ritz approximation of u(x), in
accord with Eqn. (306). The boundary condition can be satisfied with the local
function shown in Fig. 80.

k }\

Figure 80 Function for nonzero boundary displacement

Lagrangian finite element base functions. We can produce higher-order
finite element base functions by the same reasoning that produced the
piecewise linear functions. Consider the problem of passing a quadratic
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function through the three points x,, x,,, and x, that is zero at the points x,, and
x, and has unit value at the point x,. Lagrange offered the following function
(and its derivative)

(x—x,,,)(x—-x,,) , _ (x—x,,,)+(x—x,,)
P Py LRy P o

‘£’2(x) = (

Functions of this variety are often called quadratic Lagrangian functions. In
this form it is obvious that (1) the function is quadratic, (2) the values are zero
at x,, and x, and (3) the function has unit value at x,. Infact, it should be evident
how to create a general nth order Lagrangian function that passes through zero
at n— 1 specified points x; and has unit value at one specified point x,

n-1

xX—Xx;

2.(x) =

i=1,imk Xk X

We can use the quadratic Lagrangian functions to form a finite element ba-
sis. In this case we need three nodes to describe the quadratic variation of each
Lagrangian segment. As such, each “element” will have three nodes. We will
piece the quadratic functions together to form a Ritz basis in a manner that as-
sures continuity of the base functions but not their derivatives. Hence, the basis
is C° just like the piecewise linear finite element base functions are. In a global
sense, the quadratic base functions are not smoother than the linear ones be-
cause they both have kinks at the inter-element boundaries.

Let us demonstrate the idea by producing base functions for a rod of length
¢ divided into four segments that constitute two quadratic elements. The base
functions and their derivatives are shown in Fig. 81. Observe that there are
three basic curve shapes that make up the base functions (i.e., ones with unit
value on the left, one with unit value in the middle, and ones with unit value
on the right). To make a continuous base function we must piece together the

Figure 81 Quadratic Lagrangian finite element base functions and derivatives



Chapter 6 The Ritz Method of Approximation 223

functions as shown. Observe that the base functions now overlap for three ad-
jacent functions, which means that the band width of K will be five compared
with three for the linear finite element basis.

The explicit expressions for the base functions for the case with £ = 1 are

[—16x2+8x 0 =x<1/2

=1 o 1/2<x=1
[ 8x2—2x 0 sx<1/2

h, = 8x*—14x+6 12=sx=1
0 0 <x=<1/2

hy = | —16x2+24x-8 1/2<xs1
{ 0 0 =x=<1/2

he =1 8x*-10x+3 12<xs1

The derivatives of these functions are straightforward to compute. Application
of the quadratic Lagrangian base functions is left as an exercise for the reader
(see Problem 152).

Finite element shape functions and automatic assembly of equations.
There are some practical merits of the finite element method that are not com-
pletely evident from the definition of the base functions in the Ritz context. Let
us illustrate the key idea behind implementation of the finite element method
using the one-dimensional roof functions described previously. In particular,
consider the setup shown in Fig. 82(a), which shows the typical situation in-
volving the region of element “e” (i.e., the domain x; < x < x;withiand jbe-
ing two adjacent nodes in the mesh). The only base functions that contribute
to element “e” are h; (which is ramping down in that region) and A; (which is
ramping up in that region). All of the other base functions are zero in the do-
main of element “e”. The parts of the base functions that contribute to element
“e” are shown as the darker line in the sketch.

One can observe that all of the roof base functions can be built from the
shape functions shown in Fig. 82(b). The shape functions have the specific, and
very simple, expressions

—rl }4—— element “e” 1&
() —o—0—COmmp—0—» ()

X X x 0 1 §

Figure 82 Relationship between the finite element base
functions and the finite element shape functions
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P8) =& @A) =1-& (340)

We can use ¢, and ¢, to build the base functions h; and h; by a simple change
of variable to shift and stretch & to cover x over the region of the element. In
particular, we can let

E = ,’f]:i = %—(x—x,-), dx = €.df (341)

where ¢, is the length of the element. When x = x;then & = 0 (i.e., the left
end of the element) and when x = x;then £ = 1 (i.e., the right end of the ele-
ment). Now we can think of the base function 4; as

@, xE€e,
h; = { ¢, xEeg (342)
0, elsewhere
where e;_, indicates the element to the left of node i and e; indicates the ele-

ment to the right of node i. With these definitions we can set up the discretiza-
tion of the virtual-work functional a little differently. Let us define the matrix

Q= [(pla (Pz]r (343)

and note that, by the chain rule (and with the convention that a prime means
differentiation of a function with respect to its argument) we have
d d
_‘Pz_j’L@:l(pr (344)
dx dE dx ¢,
In particular, we can note that in the region of element e the real and virtual
displacement fields can be written as

u.= ¢'Bla, u, = ¢'Bla (345)

where @ = [a,,..., ay}"and @ = [@,,.. ., @y] "are arrays containing the nodal
unknowns and their virtual counterparts and

e Je
[0 .. 1 0 . 0
B. = [ 0 . 0 1 .. O (346)
isa 2 x N matrix with a one in row 1, column i,and a 1 in row 2, column j,.
Note that i, is the global node number associated with the “#”” end (left end) of
element e and j, is the global node number associated with the “j” end (right
end) of element e. The purpose of the matrix B, is simply to pick out the two
entries in the global displacement vector a that are associated with element e.
Now we can write the virtual-work functional as

[4

G(u, ) = J

[

M e
(Cu'n’'—bu)dx = Z[ (Cu'. @ .—bm,)dx (347)
e=1 %,
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Using the change of variable for each element and substituting Eqn. (345) we
can write the discrete virtual-work functional in the form

M 1 1

G(a,a) = a’ Z [Be ] 9 -f— ¢'"d5Bla - B, f @be, dé] (348)
e=1 0 ¢ 0

Note that in the first term each differentiation threw off a 1/¢,, as indicated in

Eqn. (344), and the change of variable gave dx = €,d§. We can write this re-

sult more compactly if we identify the element stiffness matrix and the element

force as

1 1
kezf VEY L L= j obe, di @49)
0 ¢ 0

Note that in the present application k.is 2 x 2and f,is 2 x 1.Now the discrete
virtual-work functional takes the simple form

G(a,a) = 57[ i B,k.B’a — i Befe] (350)
e=1 e=1

Comparison with our earlier results shows that the stiffness matrix and right
side vectors are computed as

M M
K=> BB, f=>B.f (351)
e=1 e=1
The summations over the elements are often called the assembly process. This
calculation is seldom done with an explicit matrix multiplication. In fact, the
matrices B, are not even explicitly formed. Rather, for each element we record
the global node numbers associated with the element. Let the array ix have N
rows and 2 columns. We put ix(e, 1) = i, and ix(e,2) = j,, the global node
numbers associated with the left and right end of the element, respectively. let
the array id have Nrows and 1 column. Let id(#) be the global equation number
for node n. The MATLAB code given in Table 6 gives the algorithm for direct
assembly of the equations (i.e., the assembly of K and f). Note that this code
assumes there are N unknowns and M elements. It also assumes that there is
a routine to call to get the element stiffness matrix and element force.

Example 42. Computation of element stiffness matrix and force vector. Consider
an element of length €, with constant modulus C and constant body force b. Let
us compute the element matrices according to Eqn. (349). First note that the ma-
trix ¢’ = [1, ~ 1], which is constant. Carrying out the integrals we get

_c[ 1 -1 _be 1
ke_ee[-1 1} =1
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Table 6 MATLAB code for assembly process

K = zeros(N,N); £ = zeros(N,1);

%.. Loop over all elements to assemble K and f
for n = 1:M

%.... Find the i-node, j-node
inode = ix(n,l); jnode = ix(n,2);

%.... Construct the assembly pointer array
ii(l) = id(inode); 1ii(2) = id(jnode);

%.... Retrieve element stiffness matrix for element “n*
[ke,fe] = get stiffness (...)

%.... Assemble element stiffness and force vector
for i=1:2
for j=1:2
K(ii(i),1ii(3)) = K(ii(i),1i(3)) + ke(i,j);
end % loop on j
f(ii(i)) = f(ii(i)) + fe(i);
end % loop on 1

end % loop on n

The Ritz Method for Two- and Three-dimensional Problems

We can, of course, make the same sort of Ritz approximation of the displace-
ments in a three-dimensional problem that we did for the one-dimensional
problem, but now the specification of the base functions is considerably more
complicated. The main complicating factor is the specification of appropriate
base functions for irregularly shaped domains. Hence, even though the spirit
of approximation is the same, we will seldom try to compute in this fashion.
The finite element form of the base functions will turn out to be much better
suited for performing these approximate calculations for three-dimensional
solid bodies. The above warning notwithstanding, let us see how similar the
Ritz method appears in three dimensions. Let the displacement field u(x) and
the virtual displacement field W(x) be approximated by three-dimensional vec-
tor base functions {hy(x), . . ., hy(x)} as

N N
u(x) = u(x) + Za,,h,,(x), ux) = ZE,,h,,(x) (352)
n=1 n=1
where, as before, the scalar constants a =[a,, . . ., ay] are unknown and the
scalar constants @ =[a, . .., dy] are arbitrary. The vector functions h,(x)
have the same vector character as the displacement fields, and they are chosen
to satisfy the homogeneous essential boundary conditions h,(x) = 0 on ..
Computing the divergence and gradient of h,(x) is straightforward.
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Two-dimensional membrane problem. An example of a two-dimensional
problem is the stretched membrane under lateral load. The virtual-work func-
tional for this problem has the expression

Gu,m) = j (TVu - V@ - pu)dA (353)
Q

where T is the tension in the membrane, u(x,, x,) is the transverse deflection,
and p is the transverse load. Let the real and virtual displacements be

N N

u(x) = Za,.h,.(x), (x) = ZE,.h,,(x) (354)

n=1 n=1

Then the stiffness matrix K and force vector f have components

K, = j TVh, - VhdA, f = J phdA (355)
Q Q

The Ritz approximation leads to the usual discrete version of the functional G
given by

G(a,3) = a'(Ka—f) (356)

just as it did for the one-dimensional boundary value problem. The discrete
version of the principle of virtual work suggests that a represents an equilibri-
um configuration if and only if G(a,a) = 0 for all @, just as it did for the one-
dimensional problem. Again, there is no restriction on @. Therefore, the princi-
ple of virtual work implies Ka = f. In the jargon of structural analysis, the
matrix K is often referred to as the stiffness matrix, and the vector f is often re-
ferred to as the load vector.

Example 43. Membrane problem. Consider a square stretched membrane of unit
length on each side with tension Tand lateral load p. Approximate the deflection
with the expression u(x;,x,) = a sinzx, sinzx, with a similar approximation
for the virtual deflection. Estimate the deflection. .

There is only one term in the expansion so there is only one base function.
Hence, h{(x,,x,) = sinzx, sinsx, and we can compute the gradient as

7 SinTx, COS X,

T COS X SINTTX,
Vhl = [: t :]

Letting & = 7x, and y = 7x,, the stiffness can be computed as
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1 1
K= j j T 7% (cos? mx, sin® wx, + cos? wx, sin? zx, ) dx, dx,
0 70

Tj f (cos?@sin?y + cos?ysin? ) df dy
0 Jo
mT

ZTI coszﬂd()j sin”fy dy = -

0 0

Similarly, the force can be computed as

1 1
f= f f p sinzx, sin x, dx,dx,
o Jo

n n
=pf sinedﬂj sinydyp = 4p
0 0
Therefore, the coefficient @ must be @ = f/K = 4p/(x*T/2) = 8p/n’T.
Thus, the approximate deflection is

8p

uxy,x,) = 7 sinrx, sin 7x,

Finite element interpolation in two dimensional problems. The concept
of the finite element basis can be extended to two- and three-dimensional do-
mains. In fact, the finite element method really comes into its own for these
problems because of the difficulty of establishing a Ritz basis with non-com-
pact functions, particularly for irregular domains. The membrane problem
provides a nice illustration of the generalization of the roof functions to two
dimensions because the transverse displacement of the membrane is a scalar
unknown.

Figure 83 shows a square region divided into 9 elements and 16 nodes (with
the numbering convention shown in Fig. 83(d). A typical finite element base
function (the generalization of the roof function to two dimensions) is shown
in Fig. 83(a). The function has unit value at node 7 and is zero at all of the other
nodes. The variation is bilinear in the four elements associated with node 7.
The finite element base functions can be built from four finite elements shape
functions, one of which is shown in Fig. 83(b). The shape functions are defined
on a unit square element shown in Fig. 83(c). The four element shape functions
for two dimensional problems are®

@, = (1-§)(1-9) @, = E(1-7)

(357)
@3 = (1-&)n @ = &y
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(ﬁ : :
==
/4%0 : b
(b) Example element shape function

(a) Finite element mesh @a = (1-&)(1-1)
with typical base function X,

(c) Coordinate system for

Xy
element shape functions

(d) Element and node numbers

Figure 83 Illustration of finite element basis and finite
element shape functions for membrane problem

The element domain can be mapped to the unit square through a bilinear func-
tion much like we did for the one-dimensional case. For the rectangular mesh
shown, the change of variable can be expressed as

—ya p—
X;—x8 X, — X8

b—xa’ 1T e
XX X3~ X3

&= , dxydx, = €,€,d5dn (358)

where €, and ¢, are the actual element dimensions. A more general element
coordinate (isoparametric) mapping can be accomplished with the element
shape functions (see any book on finite elements).

With the element shape functions we can describe the element displacement
like we did for the one-dimensional problem. Let ¢ = [¢,, ¢,, @3, ¢,]" Inthe
region of element e the real and virtual displacement fields can be written as

u, = ¢"Bfa, u, = ¢'Bla (359)

where @ = [ay,...,ay]"and @ = [@,.. ., @y] " are arrays containing the nodal
unknowns and their virtual counterparts and

+ Note that we have associated the element node labels a, b, ¢, d with the numbers 1,
2,3, 4 so that we can index them numerically. The figure seems clearer with the alpha-
betic labels. In a computational setting the numerical indexing is better.
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a, b, ¢, d.
0 1 0 0 0 0
0 001 0 0 0
T =
B: = 0 0 1 0 0 (360)
0 0 0 0 1 0

isa 4 x N matrix whose purpose is simply to pick out the elements of the global
vector that are associated with the four nodes of element e. Let us write the gra-
dient of the element functions as

Vue = EBr(q))BeTaa EBT((p) = J[Vgob V¢2a V¢3a V§04] (361)
where Vo, = [0, /3, dp;/dn)" and J is the Jacobian of the change of vari-
ables. In the simple case of rectangular elements J~' = diag[¢,, €,]. The
gradient of the virtual displacement is analogous to the real displacement.

Now we can write the virtual-work functional as
M 1 1
Gu,n) = Z[ I (TVu, - Vi, — pu,)J dédn (362)
e=1Jg 0
where J = €,£, Substituting Eqn. (361) into the virtual-work functional

gives a discrete functional identical to Eqn. (350) if we define the element stiff-
ness matrix and force vector as

1 1 1 1
keEJ ] T B(9)B(9)J dsdn, feEI fpdeEdn (363)
) ) 0 0

The element stiffness matrix is 4 x 4; the force vector is 4 X 1. The assembly
of the element matrices into the global K and f matrices is identical to the one
dimensional problem, except that now the ix must have 4 columns to record the
global node number associated with the four element nodes a, b, ¢, d.

Three-dimensional elasticity. The virtual-work functional for three-di-
mensional elasticity is

G(u,0) = I (A(divu)diva) + u[Vu+VuT] - VH)dV

a ) (364)
- Jb-udV— J T-UdA
) Q

t

We can substitute the approximate displacements from Eqn. (352) to establish
the discrete principle of virtual work for this theory. Let us define the N by N
matrix K to have components

K; = j[l(divhi)(divhj)+y(\7h,- + Vhi’)-th]dV (365)
B
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and the N by 1 matrix f to have components (assuming that u(x) = 0)

ﬁ:Jt-hjm+Ib-hjdV (366)
Q

. B

The equations of structural analysis are generally formulated in a manner
that gives the unknowns a the character of nodal displacements. We can see
that this interpretation is not always appropriate here because the unknowns
a are simply the coefficients of the base function expansion for the displace-
ment field. There are base functions h,(X) that give the unknowns the character
of nodal displacements, for example, the finite element base functions. The co-
efficients a are often called generalized displacements because the displace-
ment at any point is a linear combination of these constants.

Example 44. Consider the 2€ X 2€ X h block, fixed at the base, i.e., with
u(xy, x5, 0) = 0, and subjected to the uniform traction t = —g,e; along its top
surface shown in Fig. 84.

Xy
Figure 84 Example 44: block subjected to surface tractions

We shall assume that the material has elastic constants 4 and . Let us find an
approximation to the deformation map induced by the loading with a Ritz
approximation to the elasticity equations. Let us assume a displacement field

u(x) = a,(xs€e;) +ay(x,x;€; + x,x358,)

This two-term approximation is clearly a crude one, but should suffice to illus-
trate the computations involved in the three-dimensional Ritz approach. The
approximate displacement field satisfies the essential boundary condition. The
first term allows linearly varying motion in the x, direction. The second term
allows motions in the x; —x, plane that increase linearly with x,. At the very
least, this map contains the feature of restraining lateral motion at the base, as
the fixity requires. Let us compute the response.

The base functions are h;(x) = x;€e;and hy(x) = x,x;€; +x,x;€,. Forour
computations we need the divergence and gradient of these vector functions

fe; e,

2x; Vhy(x) = x;e;, Qe + x3¢,De,
+ xe, Q ey + x,8, Qey

I

divhy(x) = ¢ Vh,(x)
divh,(x)
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Now let us compute the terms [Vh,-+ Vh,.T] * Vh; required for the formation of
K in accord with Egn. (365)

[Vh,+VhI] - Vh, = 2¢2
[Vh, +Vh]] - Vh, = [Vh,+Vh}] - Vh; = 0
[Vh,+VhI] - Vh, = x} + x3 + 4x3
The components of the matrix K are given by
kot pe
-¢

0o J-e
and the components of f are given by

2Py
fi= f f —qo€; - h;(x;, x5, h) dx dx,
—¢

—¢
Carrying out the indicated integrations gives the following system of equations
for the unknown coefficients a, and a,

. 302+ 38y a, 1
%/‘he l: (3;3)/)’)2+8;32y:||:a2} - —4qah€3|:0:|

where 8 = h/€ and y = A/u. These equations can be solved to give

_ﬁ( 2+88% )
e\ (2+yX2+88%)-38%

a, =

o - +ﬁ( By )
2 ne\(2+y)(2+88%)-3p%

It is interesting to consider the axial deformation of the block for the special
case y = 0 (which is the same as v = 0). Under these circumstances, we get
a, = —q,/2u€ = —q,/C€and a, = 0, where Cis Young’smodulus. Thedis-
placement at the top is thenus(x, x5, B) = —qoh/C which is exactly the value
we would compute from elementary strength of materials.

We can also investigate the case 8 > 1(along, slender column). In this case,
we have a; = —[8¢,(1-2v)(1+v)]/[(8—11v)C€}and @, = 0. Forv = 0
the result is the same as before. But the Poisson effect manifests for nonzero val-
ues of Poisson’s ratio. It is interesting to note that for v = 1/2 (the incompress-
ible limit) the axial displacement goes to zero. Lateral strain is prevented at the
base. If the volume cannot change then deformation (within the confines of this
simple approximation) is not possible.

Clearly, we can investigate this approximate solution in greater detail to re-
veal that there are some tractions on the sides of the block that should be traction-
free (just compute the strain from the displacement field, substitute into the
constitutive equations, and apply the Cauchy relationship to the surfaces in ques-
tion), but the assumed approximation appears to capture some features of the
problem at hand.
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We can see from the above developments that the principle of virtual work
gives us a vehicle for finding a stiffness matrix and an equivalent load vector
for problems other than beam and truss elements. For linear theories of beams
and trusses, the stiffness matrix is often formulated by exactly solving the gov-
erning boundary value problem and using these results to find a relationship
between the end forces and the end (i.e., nodal) displacements (and rotations).
Since there are so few exact solutions to two- and three-dimensional problems,
this approach does not work very well in higher dimensions, even for special-
ized theories like plates and shells. Because the virtual-work approach does not
rely on the exact solution to the governing boundary value problem, it repre-
sents a powerful approach to some rather difficult problems.

There is little doubt that the finite element method is the preferred approach
to implementing the Ritz approximation method. The finite element basis can
be easily adapted to unusual boundary geometries, and the requisite computa-
tions can be easily organized into a general-purpose computer program. The
sole purpose of the simple examples presented here is to introduce the finite
element concept as a bona fide Ritz approximation. Our main concern in this
book is mechanics. The ready availability of a general approach to computa-
tion is important to the study of mechanics because it helps to keep the focus
on the relevance of the theories that we encounter along the way.

The student of mechanics should not approach every new problem or theory
wondering whether one of the virtuosos of mechanics has managed to find a
solution for a particular problem. The Ritz approximation provides this posi-
tive context, and we shall exploit it throughout the remainder of the text. For
this purpose, it is not productive to quibble over what is the best set of base
functions to use. Rather, keep in mind that there are many alternatives avail-
able. For the simple problems that we solve in this book, the choice of the basis
is usually secondary, and we will often use the simple polynomial basis.

Additional Reading

1. Fried, Numerical solution of differential equations, Academic Press. New
York, 1979.

T. J. R. Hughes, The finite element method: Linear static and dynamic finite
element analysis, Prentice Hall, Englewood Cliffs, N.J., 1987.

H. L. Langhaar, Energy methods in applied mechanics, Wiley, New York,
1962.

A. R. Mitchell and R. Wait, The finite element method in partial differential
equations. Wiley, New York, 1977.

G. Strang and G. J. Fix, An analysis of the finite element method, Prentice Hall,
Englewood Cliffs, N.J., 1973.
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Problems

142. Consider the uniaxial rod shown in the sketch, fixed at b,

x = 0,freeatx = €, and subjected to the linearly varying body ‘ﬁm%
force indicated. The rod has a variable elastic modulus

C(x) = C,{2—x/¢), making it twice as stiff at x = O as it is IL_’ * . >
at x = €. Using the principle of virtual work, find the expres-

sion for the displacement u(x) and stress o(x) for the given body force and variable modu-
lus, approximating the real and virtual displacements with polynomials.

143. Reconsider the nonprismatic rod of problem 142 subjected to the linearly varying
body force. However, consider the condition in which the rod is fixed at both ends with
prescribed end displacements of #(0) = u, and u(€) = u,. Solve the problem with the
Ritz method using polynomial base functions.

144. Consider using a basis for the virtual displacement different from the basis used for
the real displacement. What would be the ramifications of using a different number of
terms in the expansions for real and virtual displacements? That is

N

M
UE) = D anhy(), WE) = > Tpha(x)
n=1

n=1

where N # M. What happens if N > M? What happens if N < M? Perform some com-
putations on the little boundary value problem to investigate this issue.

145. Consider using a basis for the virtual displacement different from the basis used for
the real displacement. What would be the ramifications of using different base functions
for the real and virtual displacements? That is

N N
Ux) = D aph(x), Wx) = D & gu)
n=1

n=1

where ga(x) # h,(x). Perform some computations on the little boundary value problem
to investigate this issue using, for example, polynomials for the real displacements and
trigonometric functions for the virtual displacements.

146. The uniaxial rod shown has unit area, length €, and b,

elastic modulus C. The body force is characterized by l#
x
< e e
b, ¢/2<x=<¢

Assume that the real and virtual displacements can be approximated by the expressions

uf) = ag+aE+a,8 Wx) = Z,+T,E+7T,E

where & = x/¢€. Using the principle of virtual work, compute the displacement field u(x)
and the tractions at the two ends o(€) and ¢(0).
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147. The uniaxial rod shown has unit area and length €. b,
Itis fixed at the left end, is free at the right end, and is sub- I-» -
jected to a constant body force field b(x) = b, along its x

€/2

length. The elastic modulus C(x) is characterized by "_—"‘T/Z_ﬂ

2C 0<x<¢/2
C =
) C ¢2<xs¢

Find the classical solution to the governing differential equation. Using the principle of
virtual work, compute a stress field o(x) assuming a Ritz approximation as follows

ul®) = ag+a,&+a,&? mx) = dy+a,E+a,E
where & = x/€. Because the modulus changes abruptly at x = €/2, the stresses and
strains are discontinuous at that point. Why is this discontinuity a problem for the polyno-

mial base functions suggested? What happens if you increase the order of the approxima-
tion?

148. Using a piecewise linear finite element basis, resolve Problem 147. Does the finite
element basis suffer from the same problem as the polynomial basis? Why? What general
conclusions can we make about the smoothness of the approximation?

149. Consider the rod of length 27 and constant modulus b(x) = sinx
C =1, free at both ends and subjected to the sinusoidal body

force, as shown. The general classical solution for the given %
loading is u(x) = a,+a;x+ sinx. Show that the given solu- : X

tion satisfies the governing differential equation for the bar, I

and state the essential and natural boundary conditions. Use
the boundary conditions to find the integration constants a, and a,. Explain any peculiar
features of the solution to this problem. Use a polynomial Ritz basis to find a two-term
approximate solution for the displacement field, using the principle of virtual work. Ex-
plain any peculiar features of the Ritz approximate solution.

150. Consider the rod of length 3, constant unit modulus C = 1 b(x
(and unit area), fixed at x = 0. The rod is subjected to a certain
X

(unspecified) distribution of body force b, as shown. Three piece-

wise linear finite element basis functions are shown in the sketch. L1
The functional expressions for the basis function A;(x) is h
1
x—i+1, i-lsx<i
h,
hi(x) = i+1-—x, isx<i+1
0, elsewhere hs

An approximate displacement field can be constructed from the

base functions as u(x) = a,h,(x)+a,h,(x) +a;h;(x). Find the stiffness matrix K consis-
tent with this approximation and the principle of virtual work. Assume that the values of
the coefficients are a; = 1, @, = 2, and a; = 4. Plot the stress field associated with the
approximation. Find the equivalent force vector f.
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151. Consider the rod of length 3¢, constant modulus bx) = b,
C = 2k€, and unit area, fixed at x = 0 and spring supported @i
at x = 3¢, with spring constant k. The rod is subjected to a X "™ F k
pointload F = 3b,{at midspan and a uniform body force b,, >
as shown. Three piecewise linear finite element basis func- ¢ € ¢

tions are shown in the sketch. The functional expressions for  h;
the basis function A;(x) is

x/€—-i+1, i-l<x/€<i

h(x) =
) i+1-—x/¢, i<x/€<i+l hs

Set up the equilibrium equations implied by the principle of virtual work using the Ritz
method (i.e., find K and f). Express your answer in terms of &, b,, and € (not F and C).

152. Solve the problem of the rod subjected to a triangular b,

load shown in the sketch using the quadratic Lagrangian finite
element base functions. Use at least two quadratic elements X
(i.e., five nodes with four segments of length €/4) to carry out |<———e———>1

the solution.

153. Consider the rod of length 3€ and constant modulus C, fixed F 2F

at both ends, and subjected to point loads of magnitude F and 2F IfEZE:I
atthe third points, as shown. Use a piecewise linear finite element *
approximation with nodes at the ends and at the third points. - }<—>’<—>~<——>‘
Write the expressions for the base functions #;(x). Compute K € ¢ ¢
and fassociated with the discrete virtual-work function. Compute
the coefficients a from Ka = f. Sketch the approximate displace-
ment field. Compute the approximate stress field.

154. Consider the rod of length € and constant modulus b,

C.Therod is fixed at the left end and restrained by an elas- I:;'__—I—mwvl
tic spring of modulus £ at the right end. The spring accrues x C k
force equal to the product of spring constant and stretch of ﬁ—————»‘

the spring, i.e., f; = ku(€). The rod is subjected to a ¢

constant body force b(x) = b,, as shown. What are the essential and natural boundary con-
ditions for this problem? (Hint: Take a freebody diagram of the right end of the rod to get
the mixed boundary condition at that end). Find the classical solution to the boundary val-
ue problem. At what point is the strain in the rod the greatest? Consider the two limiting
cases (1) k — o, and (2) K — 0. What are the boundary conditions in these two limiting

cases? What is the solution in these two cases? Find an approximate solution with the Ritz
method and a polynomial approximation.

155. Consider the rod of length € and constant modulus C, bx) = b,

fixed at both ends, and subjected to a uniform body force 'E_: e “':_I
b, as shown. The left end moves to the right by an amount 3u, u,

3u, and the right end moves to the left by an amount ,. x

What are the essential and natural boundary conditions. ¢

Compute the displacement field u(x) using the principle of
virtual work and the Ritz method with a quadratic approximation. Sketch the approximate
displacement field. Compute the approximate stress field.
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156. Consider the rod of unit length € = 1, constant unit modulus P
C = 1(w/unitarea), embedded in an elastic medium that getsstiff-
er with depth. The elastic medium has variable modulus given by
k(x) = 12(1 +x), and the resistance to motion is linearly propor-
tional to the displacement. The rod is subjected to a unit load at
x = 0,i.e.,, P = 1, andistractionfree attheend x = 1. Theclassi-
cal governing differential equation for the displacement field u(x)
of therod is #’' —12(1 +x)u = 0. Calculate an approximate value
of the displacement at the point of load using a linear approximation
of the displacement field. Use the Ritz method to carry out the calculations. Is the approxi-
mate solution a good one? Why or why not? Does the accuracy of the approximation de-
pend upon the relative flexibilities of the rod and the elastic medium? How?

o

157. Consider the rod of Problem 156, now with length €, constant modulus C (w/ unit
area), subjected to a load P at x = 0. The rod is embedded in an elastic medium such that
the force developed s linearly proportional to the displacement at each point. The modulus
k is constant. The elastic constants are related by k¢2/C = 1. The rod is pointed so that
the traction at the end x = € is zero. Find the virtual-work functional for the given prob-
lem. What are the essential and natural boundary conditions? Find an approximation to
the displacement field using the Ritz method with a two-term approximation with the fol-
lowing base functions k,(x) = e, hy(x) = e, wherea = flc/_C

158. Consider the rod of length €, constant modulus C (w/ unit P
area), subjected to a load P at x = 0. The rod is embedded in an

elastic medium that provides a resisting force proportional to the r
! f®

)

displacement at each point with a modulus k(x) that increases lin-
early with depth, so that the force is f(x) = k,xu(x)/€. The end
resistance can be modeled as a spring of modulus &, €. The elastic 4
constants are related by &,€ 2/C = 1.Findthe virtual-work func-
tional for the given problem. What are the essential and natural
boundary conditions? Find the displacement field using the Ritz

. !  1iex Skt
method with a two-term polynomial approximation.

159. Consider the rod of length € and constant modulus C. 5, -»| |

The rod is fixed at the left end and restrained by a linear b,
elastic spring of modulus & at the right end. The elastic l_fﬁ?;;";"
constants are related by k€/C =2. The rod is subjected to a e———]

¢

constant body force b(x) = b, and a prescribed displacement
at the left end of i,, as shown. Set up, the discrete equations u(x) | o
Ka = fthat result from applying the Ritz method to the prin-
ciple of virtual work using the base functions shown in the
sketch. Express the answer in terms of &, £, b,, and &,. Do
you expect the solution using the Ritz method to be the ex-
act classical solution to the boundary value problem? What hy 1
base functions would you need to add to make the Ritz

approximation exact?
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160. Consider the rod of length € = 1 and a constant modu- bix) =1

lus C = 10. The rod is restrained by an elastic spring of mo-

dulus k£ = 2 at each end and is subjected to a constant body h%
force b(x) = 1, as shown. The virtual-work functional is |<~1———|

¢
G(u, @) = ] (Cu'w —bi) dx + ku(0YK0) + ku(€)K€)
0
What are the boundary conditions for this problem? Are they essential or natural boundary
conditions? Explain. Set up, the system of equations that result from using a quadratic
approximation of the displacement field with the Ritz method. Consider solving this prob-
lem using the trigonometric approximation

u(x) = a,sinmx + a,sin27x + a;sin37x

Is this approximation likely to give a good solution to the problem or not?

161. Consider the solid cubical region B shown in the sketchhav- X3
ing unit dimensions. Let the scalar field w(x) characterize the re- ‘ x,
sponse of the system. The field w is a function of the position vec- 1 h-

tor x. If we define the functional

G(w,v) = ] (Vw-Vv—3v)dVv
2
then G = 0 (for all v) is a “virtual-work” statement of the equations governing w. The es-
sential boundary conditions are such that w = 0 on the coordinate faces. Use the Ritz
method with a single term approximation of the form w(x) = a, x; x, x; to determine the
unknown field w. Describe how you would improve the approximation.

162. Reconsider the 2¢ X 2€ X hblock shown in Fig. 84. The block is fixed at the base,
(i.e., u(x,;, x,,0) = 0) and subjected toa body force (self-weight)of b = —g,e;through-
out the volume. Let the material have independent elastic constants A and . Solve the
problem by the Ritz method using the following assumption about the displacement field

u(x) = a,x;€e; + a,(x,x5€, + x,x5€,)

163. Resolve Problem 162 with the following assumed displacement field

ux) = a;x;€e; + a,xle; + az(x,x;e; + x,x5€,)
What is the contribution of the term (x, x,e; + x,x;€,) (i.e., the lateral displacement) to
the response in parts (a) and (b)? Compute the stress tensor S implied by the displacement

fields of parts (a) and (b). What body forces and surface tractions are implied by these
maps? What terms would you add to the solution to improve the Ritz approximation?

164. Reconsider the 2€ X 2€ X hblock shown in Fig. 84. As in Problem 162, the block
is fixed at the base, (i.e., u(x;,x,,0) = 0) and subjected to a body force b = —g e,
throughout the volume. Let the material have independent elastic constants 4 and g. Let
E = %(xl/é’ +1),&, = 3(x,/€+1)and &; = x,/hbeachange of variables that maps the
block onto the unit cube with one vertex at the origin of the coordinate system (&,,&,,&,).
Define the following functions



Chapter 6  The Ritz Method of Approximation 239

$:1(8) = £.8:5; ¢5(€) = £:£,(1-&5)

$26) = 1-8)&:8; $s(®) = (1-8)E,(1-&5)
$3(8) = &1(1-&2)&; $:8) = Ei(1-E)(1-&3)
$.(6) = (1-8)(1 -85 $s(8) = 1-8)(1-8)(1-§y)

These functions have the property that, at each of the eight vertices, one of the functions
has unit value while the others are zero. They are, in fact, the finite element base functions
for a hexahedron element. Let the displacement be approximated as

8
u® = > a4
i=1

where a; is a vector constant with component expression a; = a,e; (no sum on j). What
are the base functions hy(§) associated with this expansion? What is the physical signifi-
cance of the coefficient vector a,? What does the essential boundary condition
u(§,,&,,0) = 0 imply about the values of the coefficients in the expansion? Solve the
block problem using the base functions identified, as restricted by the essential boundary
condition.

165. Consider a cube of dimension 2 X 2 x 2 fixed at the base and subjected to a body
force b = —g,e;. Describe a method for refining the finite element approximation by
establishing a local coordinate system for each element that allows the creation of the fi-
nite element base functions from the eight basic element functions ¢;(E) described in
Problem 164. Notice that each element is associated with eight nodes while the entire
block is associated with 27 nodes. Continuity of displacements can be assured by associat-
ing the element base functions with element nodal displacements (i.e., finite element func-
tions) and by associating elements nodal displacements with a common global displace-
ment parameter where elements share a common node.

166. What is the appropriate definition of fin Eqn. (366) when there is a nonzeroboundary
displacement term u(x) in the Ritz approximation?



7

The Linear
Theory of Beams

The equations describing the mechanics of a three-dimensional continuum are
formidable to solve even for a simple constitutive model like isotropic hyper-
elasticity. Even in the age of computers and the finite element method, it is still
not feasible to treat every solid body as a three-dimensional continuum. Bodies
with certain geometric features are amenable to a reduction from three dimen-
sions to fewer dimensions, from the perspective of the governing differential
equations. These bodies are usually called beams (one dimension), plates (two
dimensions, flat), and shells (two dimensions, curved). These reduced theories
comprise a subset of solid mechanics generally referred to as structural me-
chanics. Among the theories of structural mechanics, beam theory is the sim-
plest.

This chapterreally has two, complementary purposes. First, the chapter pro-
vides a careful and thorough derivation of the equations of linear beam theory
in the context of three-dimensional solid mechanics. Although the equations
of beam theory can be obtained without the machinery of solid mechanics (see,
for example, any book on elementary strength of materials), to do sois, in itself,
a little lesson in solid mechanics; a relevant application of the general theory.
The great merit of approaching the derivation this way is that we can clearly
see where are the strengths and limitations of beam theory.

Second, the ordinary differential equations of beam theory are much more
likely to yield classical solutions than are the partial differential equations of
the three-dimensional theory. The ordinary differential equations are a bit
more sophisticated than the little boundary value problem and there are some
new features (e.g., we need multiple fields, displacement and rotation, to de-
scribe the kinematics of motion). Beams are, of course, amenable to the princi-
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ple of virtual work so we can use beam theory as another opportunity to apply
the Ritz method. Because classical and variational approaches are both rela-
tively easy, beam theory provides a fertile opportunity for the study of the rela-
tionship between classical and variational methods.

This chapter examines the foundations of linear beam theory. We first
introduce the notion of resultants (net force and net moment) of the traction
vector field over a cross section and deduce equations of net equilibrium by
satisfying the three-dimensional equilibrium equations divS+b = 0inanav-
erage sense. We then introduce a kinematic hypothesis that describes the mo-
tion of the beam in terms of parameters that vary only along the axial coordi-
nate. Finally, we develop elastic constitutive equations for stress and strain
resultants by introducing the three-dimensional constitutive equations into the
definitions of the resultants. Once the general theory is laid out, we examine
two special cases of planar motion (the Timoshenko beam and the Bernoulli-
Euler beam). We consider both classical and variational statements of the
theory and illustrate the differences between the two with several computa-
tional examples.

Notation. A beam is a long, slender cylindrical body.” A planar slice
through the undeformed beam, perpendicular to the longitudinal axis, is a two-
dimensional surface that we will call a cross section. We shall choose to de-
scribe our beam in accord with the convention shown in Fig. 85. Note that the
x5 coordinate axis coincides with the axis of the beam. Therefore, any beam
cross section will lie in a plane parallel to the x; — x; plane. The cross section,
which we shall call €2, is a closed geometric figure and, hence, possesses geo-
metric properties like area and moments of the area. The cross section has a

lateral surface X,

X1

Figure 85 A beam occupying three-dimensional space

t Inthe derivation of the equations of beam theory it will be evident that the equations
apply strictly to prismatic beams (i.e., beams of constant cross section). For prismatic
beams the normal to the boundary of the cross section nr has no component in the axial
direction, which is important when we use the divergence theorem. We will find later
that we can ease up on that restriction to include beams with slowly varying cross sec-
tion. This is an important approximation that significantly extends the range of prob-
lems amenable to beam theory.
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boundary, which we shall call T, that can be parameterized by its arc length s.
The boundary has a normal n; at every point, and this normal is unique (except
possibly at a finite number of corners). The surface of the beam consists of its
two ends (i.e., the cross sections located at x; = Oand x; = €) and the lateral
surface. We shall assume that either the motion or the tractions can be pre-
scribed at the beam ends, but that the motion cannot be prescribed on the lateral
surface.” On the lateral surface only the tractions t; are prescribed.

For those quantities that are functions of only the axial coordinate, that is,
any resultant or generalized displacement, we shall designate the coordinate
simply as x; = x. Derivatives of such quantities are always ordinary deriva-
tives, and we shall often use the notation (-)’ = d(-)/dx for the derivative.

Equations of Equilibrium

Abeam is subject to the same requirements of equilibrium as every other body,
namely divS + b everywhere inside the domain and Sn = t, onthe surface of
the domain. The concept that distinguishes a beam from a continuum is the
stress resultant. A stress resultant represents the aggregate effect of all of the
traction forces acting on a cross section. We shall find that a single net resultant
is not adequate to describe those tractions, so we shall also use the first moment
of these tractions about some point in the cross section. We can deduce equa-
tions of equilibrium for the resultants from the three-dimensional theory.

Figure 86 Traction vector acting on a typical section

The resultant force and moment can be computed by integrating the trac-
tions over the cross-sectional area, as shown in Fig. 86. The traction vector act-
ing on a plane with normal e; is given by ¢, (x) = S(x)e;. The location of this
traction vector in the plane can be described by the position vector relative to
the x; axis p(x;,x,) = x,e, +x,e,, a vector with no component in the axial di-
rection. The resultant force Q(x) and the resultant moment M(x) are computed

1 The prescription of motion at certain points along a beam is possible, but it really
works out only as a consequence of the kinematic constraint associated with the kine-
matic hypothesis (“plane sections remain plane”). In fact, a case of interest in struc-
tures is a beam with an intermediate support that restricts the displacement of a cross
section but not its rotation (often called a “continuous beam”). This subtle point is dis-
cussed in detail in the section entitled Boundary Conditions, later in the chapter.
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as the integral of the tractions and the first moment of the tractions over the
cross section as

Q) = j t(x)da, M) = J P(X,%) X t. (X)dA | (367)

where t., = Se; and Q is the area of the cross section. The integration over
the cross section eliminates the dependence on the x; and x, coordinates and
leaves Q and M as functions of only the axial coordinate x.

Cauchy relations for stress resultants. From their definition, the stress re-
sultants Q and M appear to be vectors, and they will behave like vectors in al-
most every regard. However, these vectors characterize the state of stress in
the beam, and, therefore, we must examine how the Cauchy relations implied
in t, = Snmanifest for the beam. If we take a thin slice of a beam, we cansee
that there are two faces, one with normal e, and one with normal - 5, as shown
in Fig. 87. There are tractions acting on both faces. Let us compute the resultant
traction force ﬁn acting on the face with normal n = nes;, where niseither +1
(front face or positive x; direction) or -1 (back face or negative x; direction)

q, = [S(x)(ne,)dA = nI S(x)e; dA = nQ(x)

Since n does not depend upon the cross-sectional coordinates x; and x,, it can
be factored out of the integral to give the one-dimensional version of the
Cauchy formula relating stress to tractions (t = Sm). For resultant forces, the
one-dimensional Cauchy formula is given by

A

q, = nQ (368)

An identical argument produces an equivalent result for the moments. The re-
sultant traction moment m, acting on the face with normal n = ne, is related
to the resultant moment as

m, = nM (369)

—e

€;
-M

-Q

Figure 87 Cauchy relations for stress resultants
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As was the case for three-dimensional solids, the Cauchy relationship tells us
how to take freebody diagrams in the sense that it tells us what force to place
at an exposed section to represent the state of stress resultants there. Since Q
and M are vectors, they inherently have direction and magnitude, and add with
the head-to-tail rule of vector addition. We must have the Cauchy relations in
order to draw Fig. 87 correctly. Note that the minus signs on the back face come
from 7 in the Cauchy formula.

Equilibrium of force resultants. The beam is subject to the equations of
equilibrium divS+b = 0, S = §7, and Sn = t,, but it remains to be seen
how these equations from the three-dimensional theory manifest in beam
theory. In particular, what are the governing differential equations for Q and
M and how do the applied body forces b and the tractions on the lateral surface
tr enter the theory? It turns out that we can derive governing equations for Q
and M by insisting that divS+b = 0 in an average sense over the cross sec-
tion. To see how this comes about, let us compute the integral of divS+ b over
the cross section:

0x; 0x,

=if Se3dA+Jase"dA+deA
0xX5 0x,
Q Q Q

——%2 +anrﬁ+IbM
X
r Q

where the implied summation on a Greek subscript is assumed to be a sum from
1 to 2, as opposed to the implied summation on a Latin subscript, which goes
from 1 to 3. Hence, divS = 9Se;/dx; = 9Se,/dx,+ 0Se;/dx,. We pulled the
derivative with respect to x; out of the first integral over the cross section be-
cause that integral only involves the coordinates x; and x,. We then applied the
two-dimensional version of the divergence theorem to make the following

transformation
j"’f:aa = [Snrds - Itra’s
Q “ r r

where T’ is the lateral contour of the cross section, parameterized by s, and nr
is the unit vector normal to the lateral contour and in the plane of the cross sec-
tion (i.e,, it has no component along e;). According to the Cauchy relations,
the vector ty = Snrrepresents the traction on the lateral surface. These trac-
tions are the prescribed loads on the surface of the beam. Since the body forces
b are also known, let us define the applied loading per unit of length as

I(divS+b)dA I(a&3+§°l+b)dfa
Q Q

I
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qx) = I bdA + j trds (370)
Q r
Noting the above definitions, we have
I (divS+b)dA = @+ q (371)
Q

One can observe from this equation that if Q' + q = 0, then the three-dimen-
sional equilibrium equations divS +b = 0 are satisfied on average over the
cross section in question. Clearly, this equivalence holds for all x.

Equilibrium of moments. We can follow the same approach to the equilib-
rium of moments. Let us integrate p X (divS + b)over the cross section to get

Ipx(divS+b)dA = Jpx(aax3 +b)dA
3
Q Q

dax,

= %JpxS%dA+jpx Se“dA+JpxbdA
’ Q Q Q

Again, we want to use the two-dimensional divergence theorem to convert the

second term on the right side to an integral over the lateral contour. To achieve

this result, let us note that, by the rule for differentiation of a product, we have

aSe,
dax,

3 ap
axa(" X Se") = ax,

again with summation implied on a over the range of 1to0 2. From the definition
of p we know that dp/dx, = e,. We also know that balance of angular mo-
mentum of the continuum implies (see Eqn. (195) in Chapter 3) that

e, X Se;, = e;XSe;+e,X8e, =0

with summation implied over the appropriate ranges in accord with our con-
vention {i = 1,2, 3 and a = 1, 2}. Using these relationships, we find that

aSe, _
p X ax, ax,

Integrating this equation over the cross-sectional area gives

9 (p x Se,) + €, X Se,

Jpx aSe,,dA = J a?c (p x Se,)dA + Je3xSe3dA

Q Q @ Q

Applying the two-dimensional divergence theorem to the first term on the right
side and recognizing that the second term can be integrated explicitly, we final-
ly arrive at the identity
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jpxg—xS;eGM = jpxtrds+(e3xQ)
Q r

Again, since the body force b and the lateral tractions tr = Snr are known as
given data, we shall define the applied moment per unit length as

m(x)E[pxbdA+Jpxtrds (372
Q r
Noting the above identities, we have
[px(divS+b)dA =‘%’I—+(e3XQ)+m (373)
Q

These results show that if M’ +(e3 X Q) +m = 0, then the average of the
first moment of divS + b over the cross section equals zero. It is also interest-
ing to note that the balance of angular momentum e; X Se; = 0 played an im-
portant role in this derivation.

The equilibrium equations for the stress resultants are summarized in the
following box

Q+q=0

(374)
M+ (e;xQ)+m =0

where the applied loads q and m are given by Eqns. (370) and (372), respec-
tively. These equations constitute a set of first-order ordinary differential equa-
tions in the unknown vector fields Q and M.

Itis important to appreciate the limitations of the one-dimensional equilibri-
um equations. On the average, they assure the same equilibrium requirements
as the three-dimensional equations. However, within a cross section these
equations overlook some of the details. An analogy from probability and statis-
tics may be useful here: Imagine that we have a data sample, say the scores of
nstudents in a class on an examination. To characterize the performance of the
class on the exam we usually compute the two lowest-order moments of the
statistical distribution—the mean and standard deviation—to capture the
overall nature of the statistical distribution of the data. Clearly, we could com-
pute higher moments of the data to get more information (skewedness, kurto-
sis, etc.) about its distribution, but often the low-order statistics capture the
bulk of what we want to know about the distribution. If the data are normally
distributed, then the mean and the standard deviation are enough to exactly
characterize the statistical distribution, but inadequate to reconstruct any indi-
vidual score. If we had the » moments of the distribution then we would have
enough information to reconstruct the data sample from the moments of the
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distribution (rather like a Fourier transform and its inverse). If the data are not
normally distributed, but are close to it, then the mean and standard deviation
capture the main features of the data but miss the higher-order wiggles. If the
distribution is considerably different from normal (e.g., a bimodal distribution)
then the low-order statistics are inappropriate to characterize the distribution.

In our problem, if the tractions t., vary linearly over the cross section, then
Q and M completely characterize the state of stress. If the stress components
have higher-order wiggles, then our resultant equations of equilibrium miss
them. If the variation of stress is not dominated by the constant and linear
terms, then beam theory simply does not provide an adequate model of three-
dimensional behavior. Centuries of observation have borne out the validity of
beam theory for long slender bodies.

Example 45. Computation of beam loading. A solid cylindrical beam of radius
R, length £, unit weight g, is submerged halfway in a fluid of unit weight g,. Re-
call that the pressure at any point in a fluid is proportional to the depth 4. Com-
pute the resultant applied load q(x) and the resultant applied moment m(x) that
would be appropriate in order to treat the problem using beam theory.

The surface normal vector can be parameterized as n = cosfe, + sinfe,. The
pressure acting on the beam surface is p = @, R sin 6. The stress tensor is sim-
ply S = —pl. The surface traction and body force vectors are given by,

tr = Sn = —g,Rsinf(cosfe, + sinfe,), b =g,e,
The applied force per unit length is

n 21 ¢R
q®) =I tr Rd6 +I I b rdrdo =HR2(91>“%90)92

0 0 0

Noting that p X tr = 0 and p X b = g, cos fe;, the applied moment per

unit length is
n 21 #R
I (p X tr)RdO + I I (p X b)rdrdo

0 0 0

2 R
I IgbrzcoSOdrdOe3=0

0 0

m(x)



Chapter 7 The Linear Theory of Beams 249

The Kinematic Hypothesis

The stress resultants provide a vehicle to reduce the equilibrium equations to
one dimension. However, the motion of a solid body u(x) is also a function of
spatial position (and therefore, inherently three dimensional). To really define
a beam, we need an extra ingredient called the kinematic hypothesis.

A kinematic hypothesis is nothing more than a constraint placed on the de-
formation map. We assume that the body moves in a very specific manner, an
assumption that must be verified either by observation of nature or by examin-
ing the consequences of imposing the constraints with a theory that does not
make those assumptions (i.e., the general three-dimensional theory).

The basic idea behind beam theory is the hypothesis that cross sections that
are plane before deformation remain plane after deformation, the so-called
plane-sections hypothesis. (Although not often stated explicitly, an equally im-
portant assumption is that those plane sections do not distort in their own
planes, either.) This hypothesis is central to the computation of deflections in
beams. Although Galileo (1564-1642) had made the first contributions to
beam theory, his results concerned only the static equilibrium of beams. The
crucial plane-sections hypothesis did not appear until nearly one hundred years
later. It goes back nearly three centuries to Jacob Bernoulli (1654-1705), who
did not quite get it right (but came close enough to get partial credit). Two gen-
erations later, the great mathematician Leonhard Euler (1707-1783) also made
significant contributions to the theory of deflection curves of beams, but made
no significant improvements on Bernoulli’s kinematic hypothesis. Navier
(1785-1836) was the one who finally clarified the issue of the kinematic hy-
pothesis and put beam theory on the solid ground on which it now rests. Beam
theory is perhaps the most successful theory in all of structural mechanics,
forming the basis of what we call structural analysis, the structural engineer’s
bread-and-butter.

Let us examine the motion of a typical cross section. The plane-sections hy-
pothesis suggests that a cross section will move as a rigid body, neither chang-
ing in shape nor deviating from flatness. There are many ways of tracking the
motion of a rigid body in three-dimensional space. The method that is most
useful here is to select a point, say the point O (whichi is the origin of coordi-
nates in the x; —x, plane), marked by the target in Fig. 88, and to keep track
of the motion of that point. As described in the figure, the point displaces by
an amount W. It takes three quantities to keep track of the motion of the point,
the three components of the vector w. Keeping track of the motion of a single
point is not sufficient to describe the motion of the plane because the body also
rotates. »

We must also keep track of the vectors that record the orientation of the cross
section in space. The cross-sectional plane is completely characterized by its
normal vector and two independent vectors that lie in the plane. In the unde-
formed configuration, these three vectors are the base vectors e;, €,, and es.
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¢

Figure 88 Tracking the motion of a rigid plane in three dimensions

In the deformed configuration these vectors become ¢, ¢,, and ¢; = n, each
of which can be determined from the original vectors by a rotation in three-di-
mensjonal space. Let A(x3) be a tensor that rotates vectors (without stretching
them) in three-dimensional space. In particular, let the rotation be precisely
that needed to orient the cross section as ¢; = A(x;)e;. The tensor A(xs) is an
orthogonal tensor and is, therefore, completely characterized by three inde-
pendent parameters, the so-called Euler angles 6,, 8,, and 8. Therefore, it
takes three parameters to orient the cross section, and, thus, a total of six to
uniquely track the motion of the cross section. From those six quantities, we
can find the location of any other particle on the body through the map

O(X) = xs€;+W(x5) + A(x3) (1, %5) (375)

The first term takes us from the origin to the appropriate cross section, the sec-
ond term takes us to the displaced origin of the cross section, and the third term
takes us to the position within the cross section that was originally at the posi-
tion p(x,,x;) = x,e, +x,e,in the undeformed configuration, i.e., p locates the
position of a point in the cross section relative to the point O.

If the rotation of a cross section is small, the deformation map can be simpli-
fied. In particular, for small rotations we have Ap = p + 6 X p, where the
vector O = 6,e, is called the rotation vector (see Problem 174). We can now
describe our deformation through a displacement map. Let u(x) be the dis-
placement of a point originally located at position x in our undeformed beam.
The displacement is given by

u(x) = w(x;) + 0(x;) X p(x;,x,) (376)

Observe the explicit dependence of the map on the axial coordinate x5 and the
cross-sectional coordinates x; and x,. The displacement vector w = w;e;,
with components {w,, w,, w3}, and the rotation vector = 8;e,, with compo-
nents {6, 6,, 0}, are collectively called the generalized displacements and
are functions only of the axial coordinate x;. The displacement map can be
written out in terms of its components as follows
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ul(xbeaxB) = Wl(xs) - xzos(xs)
u2(x13x23x3) = Wz(xs) + x103(x3)
Us(X1, X5, X3) = wia(X3) — xloz(xs) + xzol(xs)

The physical significance of the generalized displacements can be seen by ex-
amining the individual terms of the map. Figure 89 shows the displaced beam
projected onto the x, - x5 plane. Clearly, the component w; measures the dis-
placement along the axis of the beam while the component w; measures dis-
placement transverse to the beam axis in the x, direction. The component 6,
measures rotation about the x, axis and has a positive sense according to the
right-hand rule. Displacements are, of course, positive if they are in the direc-
tion of the coordinate axes. Consider the displacement of the point P a distance
x, from the axis of the beam. For the purpose of illustration, suppose that the
motion is planar, i.e, w, = 0, 8, = 0, and 6, = 0. Relative to the point O, the
point P moves in the negative x direction by x, sinf, = x,0,, andin the nega-
tive x, direction by x, ( 1-cos 02) = (. Because the motion is planar there is
no motion in the x, direction (out of the plane of the page). Clearly, this is the
motion that our deformation map captures.

If we have an explicit expression for the deformation map, it is simple to
compute the strains implied by that map. Here we shall confine our attention
to the linearized strain tensor E = % [Vu+ Vu’]. The gradient of uis the tensor

Vu) = u,, Qe

Recall that for a = 1,2, the derivative of the position vector p is given by
op/ox, = e,. Therefore, we can compute

Vux) = (W + 0 Xp)Q@e; — (e, X 0)®e, (377

with summation implied on the Greek subscript. Before we use Vuto compute
the linearized strain tensor, observe that

O=(X0)Qe=—(0xe)Qe = —[0X]
Tangent to deformed axis

Xy

0w37 X3

Figure 89 Components of displacement in a plane
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(with sum implied on i) is skew-symmetric, that is, ® + ®” = 0. Thus, we can
rewrite Eqn. (377) in the following form

Vux) = (W +e; X0 +0 Xp|®e;, — 0O (378)
We are now in a position to compute the linearized strain tensor as
E=%[(ea+xoxp)®e3+e3®(ea+xa><p)] (379)
where
€,(x) = W(x) +e; X 8(x)

(380)

%,(%) 6'(x)

are strain resultants for the linear beam. It is evident that there is no strain in
the plane of a cross section because E,; = E,, = E;, = 0, inaccord with the
assumption that the cross-sectional plane is rigid.

Constitutive Relations for Stress Resultants

The strains imply stresses through the constitutive relationships. Let us assume
that the material is linearly elastic and isotropic so that the stress-strain rela-
tionship is § = Atr(E)I+2uE. We are interested in the resultant tractions on
a cross section with normal e;. Therefore, it is sufficient to compute

t.. = Se; = Atr(E)e; +2uEe,

From Eqn. (379) we can compute

€3

2Ee; = [1 + e, Q e;](€, + %, X p)
tr(E) = e, - (€, + %, X p)

Therefore, the expression for the traction on a cross section with normal e, is

Ses = [(A+u)e; ® es+ul](e, + %, X p) (381)

where I is the identity tensor. We will use this expression in our definitions for
the stress resultants to derive constitutive equations relating the stress result-
ants to our generalized displacements. Making an analogy with constitutive
equationsin general, these relationships will help identify the appropriate mea-
sures of strain (i.e., strain resultants) and determine how they are related to the
stress resultants. Substituting Eqn. (381) into our definitions of stress resultant
and moment, Eqn. (367), we get

Q J S(e, + %, X p)dA
@ (382)

M=Jpx(3(ea+xo><p))dA
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where E = (A+u)[e; ® e;]+ul. We canexplicitly integrate outthe x; — x,
dependence of these expressions at a typical cross section located at a fixed
value of the coordinate x;. Observing that only the vector p depends upon x,
and x,, we find that these integrations are rather simple. First, some modest re-
arrangement of the equations is in order. It is useful to recognize that the opera-
tion of the cross product of two vectors can be viewed as the operation of a
skew-symmetric tensor times a vector, w X v = Wy, where the tensor W is
given by

0 —w; w,

-w, w0

We therefore can think of the quantity w X = W asa second order tensor. Ac-
cordingly, we can write

0 0 x
[pXxX]~]| 0 0 -x
-x, x 0
Noting that [p X ]" = —[p X ] we can write the resultants in the form

Q J (Ze, + E[p x]'%,)dA
° (383)

M= f ([p X]Z€, + [P X]E[p X ]™%,) dA

Carrying out the integrals in Eqn. (382), we obtain the constitutive equations
for stress resultants

Q = ‘e, + S%,

(384)
M = ST¢, + I,
where the tensors A, S, and | are given by
AEJEdA, SE[E[px]TdA
“ @ (385)

STEJ[pX]EdA, IEJ[px]E[pX]TdA

where E = (A+u)[e; ® e;]+ul. The explicit components of the constitu-
tive property tensors A, S, and | depend only on the elastic constants of the ma-
terial and the geometric properties of the cross section. Let us make the follow-
ing definitions of cross-sectional geometric properties
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A= [ dA, S, = jxaM, I, = JxaxﬂdA (386)
Q Q Q

where, as usual, @ and J take values from {1, 2}. We usually refer to A as the
area of the cross section, S, as the first moment of the area, and I, as the sec-
ond moment of the area. There is only one area, but there are two firstmoments,
and three distinct second moments. Often we use the notation J = I,;+ 1 to
designate the polar moment of the area. The components of the constitutive
tensors have the final expressions (work these out for yourself)

A 0 0 6 0 -us, ElL, —El, 0
A~ 0 ua 0| S~ 0 0 pus | V~|-E1, EL 0 | (387)
0 0 EA ES, —ES; 0 0 0 W

where the notation £ = A + 2u has been introduced for notational simplicity.

The constitutive tensors can be considerably simplified by a judicious
choice of coordinate axes. If the origin of coordinates in the cross-sectional
plane is taken to be the centroid of the section, then both of the first moments
of the area S, vanish (and, hence, so does the entire tensor S and its transpose
S7). Further, if the axes are taken to coincide with the principal axes of the
cross section, then the product of inertia I, vanishes, rendering the tensor ldi-
agonal. With such a choice of coordinate axes, the relationships between the
stress resultants and the strain resultants simplify considerably. Therefore, in
what follows, we shall always make that choice (unless specifically indicated
otherwise).

The constitutive equations are of interest not only because they relate the
generalized displacements with the stress resultants, but also because they help
us identify the concept of strain resultant. The strain resultant is the one-dimen-
sional counterpart of the strain tensor in the three-dimensional theory. As the
name indicates, it is the net result of all of the local straining across the cross
section—an averagg, if you will. With the canonical choice of coordinate axes
(principal, centroidal axes), the stress resultant Q is linearly related to the de-
formation measure €,. Accordingly, we shall view this quantity as the associat-
ed strain resultant. Similarly, the moment M is linearly related to the measure
of deformation %,. We shall consider %, to be the strain resultant associated
with M.

These resultants have a clear physical interpretation. Let us write out the
components of each of these strain resultants

€, = (Wll—ez)el + (W2'+01)ez + W3'e3
%, =0,¢e +8,e, + 8¢,

Consider again'the case of planar deformation in the x, - x; plane, shown in
Fig. 90. For planar motion, we have null displacements and rotations (and their
derivatives) for all quantities that give rise to motion out of the plane. Accord-
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ingly, w, = 0, 6, = 0, and 6; = 0. We can see that w;" measures the rate of
axial stretch, i.e., the net axial strain, of the beam. It is associated with the axial
force Q. The quantity w,’ is the slope of the deformed axis of the beam. As
we can clearly see in the figure, the tangent to the deformed axis does not nec-
essarily coincide with the direction of the normal vector n. The angle between
these two lines is due to shearing of the beam. The strain resultant w," — 6, di-
rectly measures this component of deformation, and is associated with the
shear force Q,. The rate of change of the rotation of the normal vector nis 8,’,
the curvature of the beam flexing about the x, axis. The curvature is associated
with the bending moment M, about the x, axis. Note that this expression for
the curvature is exact (whereas the second derivative of the transverse deflec-
tion is an approximation to the curvature). By extension, the meanings of the
other terms in the three-dimensional case are evident.

The shear strain resultant w,’ + 6, has a sign for the rotation term that is dif-
ferent than the shear strain in the other direction. The reason for this difference
is due to right-hand-rule convention for the rotations. The resultant shearing
angle is always measured as the angle between the tangent to the deformed axis
and the normal to the cross section. The rotation angle isalways measuredrela-
tive to the undeformed axis of the beam. Figure 90 shows positive values for
the displacements, displacement gradients, and rotations for two cases: (a) pla-
nar deformation in the x, - x; plane and (b) planar deformation in the x, - x;
plane. The shearing angle is shown shaded. Note that, for the first case, the x,
axis is directed out of the page, while in the second case the x, axis is directed
into the page. In both cases, a positive transverse displacement is upward, in
the direction of the associated coordinate direction. The rate of change of the
transverse displacement, or the slope of the deformed axis, is positive if it
points in the direction up and to the right. On the other hand, according to the
right-hand rule, the rotation 6, is positive if it is anticlockwise, while the rota-
tion 8, is positive if it is clockwise. Thus, in the first case, the shear angle is the
difference between these two positive quantities, while in the second case, the
shear angle is the sum of these two positive quantities.

Figure 90 Why is there a sign difference in the two resultant shear strains?
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Boundary Conditions

Like any three-dimensional body, a beam has a surface on which either trac-
tions are prescribed or displacements are prescribed. For the three-dimension-
al theory, we referred to these portions of the boundary of the body B as €2, and
€2, respectively, and any point on the boundary was a candidate for either pre-
scribed traction or prescribed displacement, but not both. The beam is a special
case of a three-dimensional body because of the kinematic hypothesis, and this
restriction affects all aspects of the theory, including the prescription of bound-
ary conditions.

We have already addressed the issue of prescribing tractions on the lateral
surfaces of the beam. In fact, the definitions of applied force and moment in-
clude the resultants of these prescribed tractions. We must also consider the
tractions that exist at the ends of the beam. Let t, be the applied traction field
(and €, the cross section) at x; = 0, and t, the applied traction field (and €2,
the cross section) at x, = €. Computing the net force acting at these cross sec-
tions leads to the definition of the end resultant forces as

qo = I toM’ Qe = I tedA (388)
Qo Q

[4

These forces represent the net resultant of the applied tractions at the two ends
of the beam. The resultant moments are similarly defined as

moEI p Xt,dA, meEj p Xt.dA (389)
Q

2,

These moments are the first moment of the applied tractions about the axis at
the two ends of the beam.

Technically, we should consider the ends of the beam as having either ap-
plied tractions or prescribed displacements because our theory is expressed in
terms of resultants, and, as such, is not equipped to differentiate between a re-
gion of an end section with prescribed tractions and a region of that same end
section with prescribed displacements. However, it should be clear that this
point of view would force us into the corner of admitting only completely fixed
or completely free ends. We would not be able to model a simply supported
beam!

The kinematic hypothesis comes to our rescue here. Because the kinematic
hypothesis implies that each cross section is rigid in its own plane, and because
the displacement map is expressed in terms of motions of a fixed point (usually
the centroid) of the cross section, we can imagine prescribing the displacement
at a single point. In the three-dimensional theory, such a prescription would not
be admissible because a point force is a finite force applied over a vanishingly
small area and, thus, leads to infinite tractions and stresses. The assumption of
rigidity, while not really justifying the concept of a point load, certainly allows
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the theory to accommodate it. In view of this special feature of beam theory,
we can now imagine a cross section where the net displacement w is pre-
scribed, but the net rotation is not. This is the condition known as the simple
support, which plays such an important role in structural engineering. For the
sake of argument, let us assume that we are talking about the cross section 2.
If the displacement w(0) = 0 is known, then some corresponding force must be
unknown. We can demonstrate through a virtual-work argument that the un-
known force is q,. Further, since the cross section is free to rotate, there must
be some force that is prescribed. Again, we can demonstrate through a virtual-
work argument that the prescribed force is m,.

Such a condition of mixed boundary conditions can only be realized through
a condition of constraint. Imagine simply that our beam is attached to a rigid
plate at the end. The tractions that the beam feels are those transmitted to it
from the rigid plate. Now we can imagine that the rigid plate is attached to a
ball-and-socket joint that is free to rotate in any direction, but is not free to
translate. This device constitutes our three-dimensional version of the simple
support. Since beam theory actually provides the rigid plate, we need not worry
about its physical implementation to carry out beam calculations.

Since we are in the business of concocting support devices for our rigid
plate, why not imagine a whole collection of such devices. How about one that
rotates about the x, axis, but not about the x, axis? How about one that is free
to translate in the x, direction, but not in the x, direction? We have six general-
ized displacements (including rotations) at each section. We can imagine a de-
vice that independently prescribes the associated force or displacement for
each one. Hence, each component of the end resultant vectors can exist as ei-
ther a prescribed force or a reaction force if the corresponding displacement
is prescribed. For the beam in three dimensions, we must prescribe either the
force or the displacement at each end point. Thus, we always have exactly 12
boundary conditions. For the planar problem, this number reducesto six. These
conditions are always exactly enough to determine the constants of integration
that we get when we solve the governing differential equations.

The Limitations of Beam Theory

Unfortunately, beam theory is not completely consistent with the three-dimen-
sional theory. Every time we constrain a system, we pay a price. In the present
case, we constrained the deformation map so that cross sections of the beam
remain rigid. We pay for this simplification in the constitutive equations and
in the satisfaction of equilibrium locally within a cross section.

Poisson’s effect. The ramification of the rigid cross section assumption is
that the normal and shear strain components in the plane of a cross section van-
ish; in our coordinate system that means E;; = E,, = Oand E\, = E,, = 0.
This constraint on the strains is not a problem for the shear strain components
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because the shear stresses and strains are uncoupled in the constitutive equa-
tions (for example, S,, = 2uE},). Therefore, vanishing shear strains simply
implies vanishing shear stress. The normal strains are another story.

The constitutive equations for isotropic hyperelasticity have an inherent
coupling of the normal strains and stresses. The stresses are given by Hooke’s
law as S = Atr(E)I+ 24E. Since tr(E) = E; for kinematic hypothesis of the
beam, we have S,; = S, = AE3;. Now, from Hooke’s law Sy = (4 +2u)E;
so 8;, = S, = vS3,;, where v is Poisson’s ratio. Thus, the constraint induces
normal stresses in the plane of the cross section owing to Poisson’s effect (ten-
sion in one direction causes lateral contraction of the dimensions perpendicu-
lar to the direction of tension). Observational evidence on the behavior of
beams would indicate that these stresses tend to be rather small. In fact, it is
possible that the presence of these stresses will violate the traction boundary
conditions on the lateral surface of the beam. For a beam with a traction-free
lateral surface, we can argue that the normal stresses S;; and S5, are very small
because the cross-sectional dimensions are small compared with the length of
the beam. We would like to make the assumption that S;; = S, = 0, but that
violates the precept of mechanics that we can specify either the motion or the
force at a point, but not both.

Let us examine what would have happened if we had made the assumption
of vanishing normal stress and not the assumption of vanishing normal strain.
We have done it before. We made exactly that assumption for the uniaxial ten-
sion test in order to recast the constitutive equations in terms of Young’s modu-
lus and Poisson’s ratio. When we made the assumptionthat S;; = S, = 0, we
got the constitutive relationship Sy; = CEj, rather than Sy, = (A +2u)Es,
which results for the vanishing strain assumption. This gives us a way to par-
tially recover from our difficulties. In the constitutive relationships for beams,
the quantity E = A+ 2u appears repeatedly. If we simply substitute the value
of Young’s modulus E = Cinstead, then the results of beam theory accord well
with observation.

Equilibrium inconsistencies. Because we are working with stress result-
ants, we consider the equilibrium of the stress field over a cross section only
in an average sense. On average, the equations of equilibrium are exactly con-
sistent with the three-dimensional theory. However, locally we may fail to sat-
isfy equilibrium. For the beam, the most obvious failure concerns the distribu-
tion of shear stresses over the cross section.

The kinematic hypothesis suggests that the shear strains will be constant
over the cross section. In reality, owing to the presence of shear stresses, the
cross section must warp out of its plane. The restraint of warping gives beam
theory slightly more stiffness than the three-dimensional theory or observation
would indicate. The local equilibrium equations suggest that the normal stress
is related to the gradient of the shear stress over the cross section. If the normal
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stress is linear, as the kinematic hypothesis suggests, then the shear stress must
be quadratic rather than constant.

The inconsistency can be neutralized by modifying the constitutive equa-
tions slightly. The modulus for the shear strains that comes from the three-di-
mensional theory is simply the product #A of the Lamé parameter and the
cross-sectional area. If we adjust the area by multiplying by what has become
known as the shear coefficient to give an effective area A’ then the results of
beam theory are better when shear deformations are important. For a rectangu-
lar cross section, the shear coefficient is approximately 5/6. In general, this co-
efficient depends upon the cross-sectional geometry. The stress inconsistency
remains, but shear stresses can be computed from three-dimensional equilibri-
um equations from the normal stresses as a post-processing task, if needed.
Most elementary texts take an energy approach to determine a modification
factor for the shear area. An alternative approach is to modify the kinematic
hypothesis to include warping. Such an addition to the kinematic hypothesis
leads to a more accurate theory, but for most beam geometries, this refinement
is hardly necessary.

Torsion. Along the same lines as the transverse shears discussed in the last
section, one of the most significant problems with beam theory is that the
plane-sections hypothesis overestimates the torsional stiffness uJ, which
comes out to be the shear modulus times the polar moment of the area for any
cross section. We can demonstrate that the estimate is exact only for circular
cross sections. For other cross-sectional shapes, out-of-plane warping must ac-
company the displacement and rotation of the cross section in order to satisfy
the traction conditions on the lateral surface of the beam.

To illustrate the effects of torsional warping, let us consider a bar fixed at
the left end and subjected to a pure torque Te; (i.€., about the beam axis) at the
right end. This problem is often called the Saint-Venant torsion problem. The
deformation map for pure twisting of a beam about its axis is

u(x) = ax;(e; X p,) + ay(x,x,)e; (390)
where p, = (x,—a, )e, +(x,—a,)e,, ais the rate of twist, and y(x,, x,) is, as
yet, an unknown function. The point a is the center of twist of the cross section.
According to the map, the angle of twistis zero at the end x; = 0and increases
atthe rate a to a maximum at the right end. The vector e; X p,isperpendicular
toboth p, and e;. Thus, for small q, the first term of the displacement map rep-
resents the displacement of a point initially located at p, owing to a pure rota-
tion about the center of twist. This component of displacement takes place en-
tirely in the plane of the cross section. The second term of the map gives
displacement out of the plane of the cross section. As such, the function
Y(x,,x.) is called the warping function and represents the departure from the
plane-sections hypothesis. Figure 91 illustrates some features of the torsion
map for a rectangular section.
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Figure 91 The linearized torsion map with warping

We can compute the linearized strain from the displacement map and substi-
tute the result into the linear elastic constitutive equations to get the stress

S=au[(Vy+exp)®e +e;®(Vy+ e X pa)] (391)

The divergence of the stress tensor can be computed from the above expression
and substituted into the equilibrium equation divS + b = 0, with b = 0, to
give the following equation governing the warping function

div(Vy) = 0 inQ (392)

where div(Vy) = V3 = y,,, is the Laplacian of the warping function. The
tractions on the lateral contour I', with normal vector field np = n;e, +n,e,,
must vanish because no tractions are applied there. Thus, from Sn; = 0 we
get the additional requirement for the warping function

(Vp + e;xp,)-mr = 0 onT (393)

The term Vi - nr gives the rate of change of 3 in the normal direction nr. The
secondtermis €; X P, - by = —(x,—a,)n, +(x, —a,)n,, which gives a clue
as to why the circular cross section does not warp and noncircular ones do. The
normal vector to the circular cross section has n, = x,/r and n, = x,/r,
where r is the radius of the circle. Clearly, e; X p, - nr = 0 for the circular
cross section with a = 0. Consequently, the function ¥(x,,x,) = 0 satisfies
Eqns. (392) and (393).

There is no net resultant on a cross section. Hence, the integral of Se; over
the cross-sectional area should be zero. A straightforward computation with
Eqn: (391) shows that Se; = au(Vy + e; X p,). Therefore

f (Vg + e; X p,JdAa = 0 (394)
Q

This equation is sufficient to establish the location of the center of twist a. If
the cross section is symmetric, then the center of twist lies along the axis of
symmetry. The integral of the moments of the tractions about the origin
(P, X Se;) must be equal to the total applied torque Te;, hence
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Te, = a,uj P, X (Vi + e; X p,)dA (395)
Q
This result tells us that the torque T is proportional to the rate of twist a, but

that the proportionality constant is not the shear modulus times the polar mo-
ment of inertia J. Let us define the torsional stiffness to be ©J where

J = ewI P, X (Vy + e x p,)dA (396)
Q
It is straightforward to show that
€ P, X (65 X P,) = —e; [P, X][Po X]&s =P, - P, (397)
Therefore, the torsion constant can be expressed in the form
7= j (51%—52%% +5§)d4 0%8)
Q 2 1

where § = x—a. The consequence of the definition of torsional stiffness will
be evident in the following example.

Example 46. Torsion of an elliptical cross section. Consider an elliptical cross
section, shown in Fig. 92, with major and minor semi-axes of @ and b,

X

;T_/' = e
\___/ xl

T X3

Figure 92 Torsion of an elliptical beam
The boundary of the cross section is described by the equation
b*x? + a*x: —a?h? = 0

Therefore, the normal vector ny has components #, = nb*x; and n, = na’x,,
where n is the scaling factor required to make the normal vector a unit vector
(which plays no role in this calculation). The warping function for this cross sec-
tion can be taken as (see, for example Sokolnikoff, 1956)

Pxpx) = —cxix,

where ¢ = (a?—b?)/(a%+b?). A straightforward calculation will verify that
V% = 0 and (V¢ + e; X p,) - np = 0 on the boundary of the ellipse. The
torsional stiffness J can be computed by observing that

e - (po X Vi + p, X (&5 X p,)) = (1—c)x? + (1+c)x2
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Carrying out the indicated integral over the area of the cross section in Eqn.
(396), we obtain the torsional stiffness

T _ mah?
at+b?
Observe that the polar moment of the area of an ellipse is J = wab{a®+b2)/4.

Let the ratio of the major to minor dimension of the ellipse be ¥ = a/b. Then
the ratio of torsional stiffness to the polar moment of the area is

4y2
(1+y2)?

i~

This ratio is always less than or equal to one with equality only for a circular
cross section (y = 1). For y > 1 the torsional stiffness is J = zab’.

It should be evident that the first task of solving a torsion problem is the de-
termination of the warping function ¥(x,,x,). There are a few alternative ap-
proaches to solving this two-dimensional boundary value problem. The reader
should consult Sokolnikoff (1956) for a detailed discussion of this classical
problem. In the context of beam theory, we might be satisfied to replace uJ
with uJ and use beam theory without further modification. Problem 171 ex-
plores the issue of the effect of warping restraint.

The Principle of Virtual Work for Beams

The principle of virtual work for a three-dimensional continuum can be used
todevelop an equivalent principle for a one-dimensional beam theory. We shall
compute the appropriate external work from the three-dimensional theory. The
advantage of starting with the three-dimensional theory is that we need to
know only that work is the product of force and displacement. Straightforward
operations will yield the result that work for a beam includes terms computed
as the product of moment and rotation. The key to reducing the principle of
virtual work to one dimension lies in our kinematic hypothesis and our defini-
tion of stress resultants.

The displacement map is constrained by the kinematic hypothesis. We will
find it convenient to construct our virtual displacement field in accord with the
same hypothesis. Hence, our (three-dimensional) virtual displacement field
can be expressed as

U(X) = W(xs) + 0(x;3) X p(xy,x2) (399)

where W(x,) and 8(x;) represent the virtual displacements and rotations of the
beam. The external virtual work is simply the product of the applied body
forces and tractions with their respective virtual displacements, integrated
over the volume and surface of the beam ‘
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4 4
WEEI[b'ﬁde3+thr-ﬁdsdx3
¢ Q ¢ T

+j to'ﬁdA+[ t, - UdA
Qo Q

4

(400)

where b is the body force, tis the applied traction on the lateral contour of the
beam, t, is the applied traction field acting on the cross section £2,at x; = 0,
and t,isthe applied traction field acting on the cross section €2,at x; = £.Sub-
stituting Eqn. (399) into (400) and carrying out the appropriate integrals over
Q, I, Q, and €, we obtain a one-dimensional expression for the external
virtual work. Note that

b-u=b-(W+8xp)=WwW-b+ 0:(pxb)

Each of the integrands in Eqn. (400) can be handled in a similar fashion. The
first two terms in Eqn. (400) can be expressed as

e e
jW'(deA+Jtrds)dx3+JG'(JpxbdA+Jpxtrds)dx3
0 Q r 0 Q r

Observe that the terms in parentheses are precisely our definitions of the result-
ant of the applied loads q(x) and m(x), respectively. We can use a similar argu-
ment for the third and fourth terms in the definition of external virtual work.
These terms can be rearranged to read

w(0) - J

Qo

+ W) - J

Q

t,dA + 6(0)-J p X t,dA

Qo

tdA + 6(6’)-] P X t,dA

Q

[4 [4

Clearly, the four cross-sectional integrals are precisely our definition of the re-
sultants of the tractions on these sections q,, m,, ., and m,. Thus, in the con-
text of the kinematic hypothesis, these four terms exactly account for all of the
virtual work done by the traction forces on the ends of the beam. We can also
see that q,, q,, m,, and m, are the natural forces conjugate to the virtual dis-
placements W(0), W(€), 8(0), and 6(¢), respectively, in the sense that they
completely characterize the work done.

Combining these results, we can see that the external virtual work done by
the forces acting on our beam in going through a constrained virtual displace-
mentU =W+ 0 X pis
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W, = (q(x) - W(x) + m(x) - 8(x)) dx
T+ g W0) + g WO ¢

+ m, - 8(0) + m, - 6(¢)

Again, q(x) is the net applied force along the axis of the beam, m(x) is the net
applied moment along the axis of the beam; q, is the net applied force and m,
the net applied moment acting at x; = 0; and q, is the net applied force and
m, the net applied moment acting at x; = €. All of these quantities have been
defined previously, and are shown in Fig. 93. Again, we see that the kinematic
hypothesis allows us to integrate out the cross-sectional dependence, leaving
us with quantities depending only on the axial coordinate. The crucial observa-
tion is that, within the context of the kinematic hypothesis, this expression for
the external virtual work is exactly consistent with the three-dimensional
theory.

Observe that moment is the natural dual of rotation, in the sense of virtual
work. In addition to work done by forces multiplied by their respective dis-
placements, we must include moments multiplied by their respective rotations
in our accounting for the work done by the system. All theories that introduce
the concept of moment have this feature, including plates and shells. Of course,
both moment and rotation must be reckoned with respect to the same axis (i.e.,
they must both use the same p in their definition).

The principle of virtual work is a valuable tool with which to consider the
conjugateness of stress and strain resultants. We saw in the derivation of the
principle of virtual work that a measure of internal virtual work involving the
product of stress and strain appeared naturally. It had the form

W, = J S - Vudv (402)
B

You might expect that if a reduced theory is truly compatible with the three-di-
mensional theory, then an analogous expression for internal virtual work in
terms of the resultant quantities should result. In fact, we can use this equiva-

Figure 93 The applied forces on a beam
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lence to define which resultant strain measures are appropriately conjugate to
the defined stress resultant measures. This equivalence is particularly impor-
tant since we defined stress resultants without regard to the specific kinematic
hypothesis, and the kinematic hypothesis had nothing to do with the definition
of stress resultants.

Let us substitute the virtual strain implied by our kinematic map. From Eqn.
(378) we have

3
W,=j jS-[(W’+e3x'6+'6’Xp)®e3——(§]dAdx3
0 Q

[4
IJ(W""%XG"’ﬁ'XP)'S@;dAd’Q
0 JQ

[4
I ((W'+e3X6)'ISe3dA +6’-]pxSe3dA)dx3
0 Q Q

where we have noted that the product S - ©® = S,;0, = 0 because S is sym-
metricand @is skew-symmetric (verify that thisis always the case). Recogniz-
ing the definitions of resultant force and resultant moment, we find that the ex-
pression for internal virtual work takes the following form

[4
W, = j Q& +M: %,)dx (403)
0

where €, = W' + e, X Oand %, = 0’ are the virtual strain resultants.

The final form of the internal virtual work is interesting and important. Each
term in the expression is analogous to stress times virtual strain. In the present
case, this analogy translates to stress resultant times virtual strain resultant.
Thus, we can see that the resultant strains are conjugate to the resultant stresses
in the sense of virtual work. Notice that the demonstration of conjugateness did
not involve the constitutive equations. The principle of virtual work is a very
powerful method for finding what the appropriate strain measure should be ac-
cording to how stress is defined.

The statement of the principle of virtual work is basically the same as for
the little boundary value problem: If the external work is equal to the internal
work for all virtual displacements satisfying the strain displacement relation-
ships, then the equations of equilibrium are automatically satisfied. As usual,
let us define a functional G to be the difference between the internal and exter-
nal virtual work. This functional has the form G(s,V) = W, — W, where the
force resultants are represented as s = [Q, M]”and the virtual displacements
and rotations are represented as v = [W, 0]. The principle of virtual work is
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If G(s,v) =0 Vve B0, then

Q+q=0 Q0 =-q, Q¢ =gq,
M+e;XxQ+m=0 MO =-m MK =m,

where B(0, €) is our collection of admissible virtual displacements. As usual,
the principle of virtual work gives us a vehicle for making approximations. The
main difference with the little boundary value problem is that we must specify
the basis functions for w and 0 independently from each other because they
are independent fields.

We can express the virtual-work functional for the three-dimensional beam
in terms of only displacements by substituting the constitutive equations. To
economize notation let us define

o-[83] ex[z] o=[1] o-[3)

where €, = W'+ e; X Oand %, = 0’ are the strain resultants associated with
the real displacement. The virtual-work functional for a beam takes the form

4
G(v,V) = f (e"De—f£7v) dx — £1¥(0) — £7v(£) (405)
0
where f, = [q,,m,]"and f, = [q,, m,]". This expression can be used in con-

junction with the Ritz method to generate approximate solutions to the three-
dimensional beam problem.

The Planar Beam

A great number of practical problems can be idealized as planar problems. The
assumption of planar behavior comes at a fairly high price, the cost of which
we can clearly see from the equations for the beam in three dimensions. First,
the loading must be such that it does not excite out-of-plane motions. Second,
the cross sections must be symmetric with respect to the plane of loading.
Clearly, the centroid of the section will lie on the line of symmetry, and this line
should be taken as the coordinate axis.

A planar beam could, of course, lie in either of the two planes x; — x; or
x, — x3. The beam has no way of knowing about the coordinate system we
choose to describe it. Thus, the results must be the same either way. Here we
shall take the plane of the problem to be the x; — x; plane. Let us make some
notational simplifications for discussing the planar problem. Let the axial dis-
placement be called w; = u, the transverse displacement w, = w, and the
rotation of the cross section 8, = 6. Let the axial force be called Q; = N, the
shear force O, = Q, and the bending moment M, = M. Let us further assume
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that the axes are centroidal. The equations governing the planar (Timoshenko
beam) problem are

N +n=20 N = EAu’
Q' +qg=0 0 = GA(w' —6) (406)
M+Q+m=20 M = EIO’

where, in addition to the terms already defined, we have let n(x) represent the
applied axial load, g(x) the applied transverse load, and m(x) the applied mo-
ment. Each of these is a scalar function of x and, hence, their direction is fixed
(n along the axis, g perpendicular to the axis, and m out of the plane of the
page). We have also used E to stand for Young’s modulus and G = u to stand
for the shear modulus of the material. As already defined, A is the cross-sec-
tional area and / is the second moment of the area about the centroidal axis.

The first thing to notice about the linear planar beam equations is that the
axial components of force and displacement are uncoupled from the shear and
bending components, but that the shear and bending components are coupled
to each other. This feature is one that makes beam theory interesting. The sec-
ond thing to notice is that the equations constitute a system of six first-order
differential equations. The equations can be recast in terms of only displace-
ment variables at the price of raising the order of the differential equations. The
shear and bending equations can be rewritten by substituting the constitutive
equations (assuming that the moduli EI and GA are constant) into the equilibri-
um equations as follows

EI0" + GAW -6)+m=0
GAW'-6'Y+4qg=0

The equations can be recast into a form more favorable for direct integration
by differentiating the first equation once and subtracting the second equation.

The resulting equation can be used with the first equation to give the equivalent
system

407)

EIO! r - q —_ m!
GAw' = GAO—EIf"' —m
The first of these equations can be integrated directly to obtain an expression
for the rotation 6(x). This function will be known, except for the three
constants of integration. Substituting the results into the second equation and
integrating once gives the expression for w(x), with one additional constant.
Because the system is essentially a fourth-order differential equation, it will
always involve four integration constants that must be determined from bound-
ary conditions.
There are a variety of possible boundary conditions, some of which are
shown in Fig. 94. Notice that a boundary condition can be one of two types:

(408)
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I 1 ‘: 3
w(0) =0 Q) =0 w(0) = 0 w(€) =0
6(0) = 0 M) =0 M(©) =0 M) =0

Figure 94 Boundary conditions for a cantilever and simple beam

conditions on the displacement (or rotation, which we think of as a generalized
displacement) or conditions on the force (or moment, which we think of as a
generalized force). Boundary conditions, in terms of force, must be translated
into statements involving displacements in order to be implemented into our
theory. This translation can be accomplished with the constitutive equations.
Thus, the condition Q(€) = Ocanbe expressedas GA(w'(£)—6(£)) = 0,and
the condition M(€) = 0 can be written as EI6'(£) = 0.

We must, in general, consider the possibility that end loads will be pre-
scribed. Certainly, at points of fixity (places where the displacement is pre-
scribed), end reaction forces accrue. At the end x = 0, let us call the applied
(or reacting) axial force n,, shear force g,, and moment m,. Atthe end x = ¢,
let us call the applied (or reacting) axial force n,, shear force g,, and moment
m,. These forces are related to the internal stress resultants through the Cauchy
relations

- n,=N0O), —gq,=00), -m =M0)

= NO), g =00, m=Me 4

The positive sense of the three internal stress resultants is shown in Fig. 95.
N
x
) N [___] —
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X, X3 M #D X
v o
1%

Figure 95 The convention for positive stress resultants for a planar beam

Virtual-work functional for the planar Timoshenko beam. We are now
ready to state the principle of virtual work for a beam with shear deformation.
For convenience, let u = [4,w,0]) and U = [7,W,0]". Let
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EA 0 0 ' 21
D=| 0GAO0 |e=|w-0| q=| ¢ (410)
0 0 EI o’ m

With these definitions, the virtual-work functional G(u, W) = W,— W, for the
planar beam can be written as

ré
G(u,1) = J (€’De—qTu)dx — qlU(0) ~ q;u(¢) (411)

0

where q, = [n,,q,,m,] and q, = [n,, q,m,]"

According to the principle of virtual work, the system is in equilibrium if
internal work is equal to external work for all choices of the virtual displace-
ment field. Thus, equilibrium can be stated as

Guuw) =0 Yae J(0,9 (412)

where (0, €) represents the collection of all of the admissible functions, de-
fined for values of x between 0 and ¢, from which we can choose our virtual
displacements. We have chosen the letter J to represent the collection to re-
mind us that we are talking about a Timoshenko beam. This collection contains
functions that are well enough behaved that the highest derivative that appears
in G is square-integrable. In the present case, only first derivatives of each of
the three functions appear. Any continuous function will satisfy the require-
ment of square-integrability (i.e., kinks in the function are allowed), but any
function with a jump discontinuity will not.

As was mentioned in the section on the little boundary value problem, this
statement of virtual work is most powerful if we can exclude the unknown
reaction forces from the expression for external work. This exclusion can be
accomplished if we simply insist that the virtual displacement corresponding
to an unknown reaction be equal to zero at that point so that the product of the
two is zero. Once this is done, the functional G involves only known forces and
unknown displacements. We often see this restriction stated formally as a re-
stricted set of functions I, = {ii |g =0 on Q,,}, which reads: the collection
of all functions W that are zero on that portion of the boundary where displace-
ments are prescribed (and tractions are, therefore, unknown).

The beam boundary conditions are special because of the cross-sectional ri-
gidity constraint, and €2, must be interpreted accordingly. For example, if the
beam is completely fixed at the end x = 0 and is simply supported at the end
x = ¢, then the space of admissible functions would have the displacements
and rotations equal to zero at x = 0, but only the displacements equal to zero
atx = {.Choosing a virtual rotation field that vanishedat x = € mightsevere-
ly impair the ability of the principle of virtual work in distinguishing between
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different problems having different applied moments at that end (the value of
zero is but one of the many choices).

Example 47. Classical solution of the Timoshenko beam. Consider the cantile-
ver beam of length ¢, flexural modulus EI, and shear modulus GA subjected to
a uniform transverse load g shown in Fig. 96.

F&&T%%jq

e
4

Figure 96 Cantilever beam example

Integrating the rotation equation three times, we obtain the result
Elf(x) = — %qx3+ %a1x2+a2x+a3 (413)

This expression can be differentiated to give EIf'' = —gx+a,. Substituting
into the deflection equation, we have GAw' = GA@—EI§'' so

GAwW' =%[—%qx3+%a1x2+a2x+ a3] + gx—a, (414)
Integrating this expression once gives
GAw(x) = %[ —qxt+ ga, X+ %a2x2+a3x] +1qx’—a,x+a,

The boundary conditions are w(0) = 0, 6(0) = 0, w'(€£)—08(€) = 0 (shear
force vanishes), 6'(€) = 0 (bending moment vanishes). From the first of these
we can conclude that a, = 0, and from the second of these we obtain a; = 0.
From the third boundary condition we find, from Eqn. (414), that a, = g¢. Fi-
nally, from the fourth boundary condition we find, from the derivative of Eqn.
(413), that a, = —q€%/2. Thus, letting & = x/¢, the expressions for deflection
and rotation are given by

W) = A £+ 48~ (6~ P8 ~25E)

o) = 25 ( £ 4382 -3¢)

where we have defined B = 12EI/GA¢£? to be the dimensionless ratio of bend-
ing to shear stiffness. Note that the condition § — Oreflects high shear stiffness
and, hence, less deflection owing to shear. Substituting these expressions back
into the constitutive equations, we can determine the distribution of the shear
force and the bending moment

Q) = GA(w' -0) = qt(§—1)
M(E) = EI6' = q_;ff(_§2+2§_1)

Note that the resultants Q and M do not depend upon f since the problem is stati-
cally determinate (that is, we could have integrated the equilibrium equations
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directly and found the two integration constants without appealing to the dis-
placement boundary conditions).

The importance of shearing deformation. How important is shear for a
typical case? Consider a rectangular cross section of depth 4 and width b. For
this case, the value of the shear ratio is 8 = (E/G)(h*/€?). Clearly, there are
two aspects that are important to the decision whether or not shear isimportant.
The first aspect is related to the material properties. For an isotropic material,
the ratio E/G is approximately 2, although for a material like rubber this ratio
is much larger. For a typical beam, the ratio of depth to length is usually not less
than h/€= 1/10. Consequently, we do not expect 8 to be much larger than 0.02
for typical situations. However, there are situations with either very short
beams or rubber-like materials where shear deformation can be important.

ARitz approximation for the planar beam. Approximate solutions to the
planar beam problem can be constructed with the Ritz method. There are two
field variables, w(x) and 8(x), so each must be expressed as a linear sum of ba-
sis functions. Each must have a virtual displacement counterpart W(x) and
8(x), and those virtual displacements must have a basis function expansion. As
usual, the approximation of the real displacement fields must satisfy the essen-
tial boundary conditions, and the approximation of the virtual displacement
fields must satisfy the homogeneous essential boundary conditions. Let us
write the approximations as follows

w(x) = wy(x) + h(x) -a, 6(x) =0,x) +gx) b
where w,(x) and 8,(x) are known functions that satisfy the nonhomogeneous
boundary conditions, h = [hy,..., hy]" and & = [g1,---» &x]" are the base
functions for w(x) and (x), respectively, and the constants a = [ay,.. ., ay]’

and b = [by,.. ., by]" are the unknowns. The virtual displacement fields can
be expressed in a similar manner as

Wx) = hx) -3, O(x) = g(x) b

It is, of course, possible to select the h;(x) and g;(x) from the same class of
functions, but there is no need to (in fact, it may be preferable not to) have the
same number of terms in the expansions for w(x) and 6(x). Thus, in general,
N = M. Finally, we should recall that our choice to approximate the virtual
displacement fields with the same basis functions as the real displacement
fields is the Galerkin approach.

If we substitute these approximations into the virtual-work functional, Eqn.

(411), we get the following discrete version of the functional (neglecting the
axial contribution)

G(a,b,a,b) = a’[K*a+K*b—1*] + B7[K*a+K?b—f] (415
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where the elements of the coefficient matrices K*, K, K, and K* can be
computed from the basis functions as follows

Kes I GA[W'][h']"dr, K* = — f GA[h'][g]” dx

K ba

—J GA[g][h] dx, K J[El[g'][g']’+GA[g][g]’]dx

and the elements of the load matrices f* and f°can be computed as
[4
fo = [ (qh—GA(w,,’ —Go)h’) dx + q,h(0) + g, h(£)
0

4
fo = I (mg+GA(w,,’—Go)g—EIGO'g')dx+mog(0)+meg(€)
0

If G(a,b,d,b) = Oforall choices of (@, b)then the principle of virtual work
satisfies equilibrium to the degree possible within the context of the approxi-

mating basis. From the (discrete) fundamental theorem of the calculus of varia-
tions, G(a,b,d,b) = 0 if and only if

K“a + K®b = t*

(416)
K*”a + K»b = f°
These equations serve to determine the unknown constants a and b, as illus-
trated by the following example.

Example 48. Ritz method for Timoshenko beam. Consider again the cantilever
beam subjected to uniform load g, shown in Fig. 96. Recall that the beam has
length €, bending modulus E7, and shear modulus GA. Let us solve the problem
using the Ritz method. Let the transverse displacement and rotation fields, and
their virtual counterparts, be approximated as

w(x) ax + az%, 0(x) b,

ol

Wx) = @x + “a‘/‘%, 6x) = b, %

We can identify the basis functions as h; = x, h, = x*/€,and g, = x/€. We
have chosen to normalize the functions by ¢ in the manner shown so that all of
the constants in the Ritz expansion are dimensionless. Let = 12EI/GA€? be
a dimensionless ratio of bending modulus to shear modulus. The discrete equi-
librium equations, i.e., Eqn. (416), have the explicit form



Chapter 7 The Linear Theory of Beams 273

. 12 12 -6 [ aq NE

AL _ 49

S 12 16 -8 |4 = -1=)2
-6 -8 4+8 | b 0

Solving these equations, we obtain

qt gt (-2 4
4= "Ga 2= GA(?,B) by = - GA(,B)

and, therefore, noting that SGA = 12EI/¢€?, the approximate solution

wo = A5 (1625 - 3), o0 = -2 (2)

Observe that the rotation field does not involve the shear modulus GA, in accord
with the result of the classical solution. Note that the tip deflection, for § = 0
(i.e., no shear deformation) is g€*/12E1, which is 33% less than the classical
solution of g¢*/8EI. Problem 175 examines the Ritz approximation to this prob-
lem in more detail.

The Bernoulli-Euler Beam

We can observe from the preceding discussion that shear deformations are
often negligible. If we make the assumption that they vanish altogether, we can
reduce the number of unknown functions in our theory from two to one, name-
ly the deflection w(x). The assumption that shear deformations are zero can be
expressed as w'(x) —6(x) = 0, from our definition of shear deformation. If we
introduce this constraint, then the governing equations of the Bernoulli-Euler
beam take the form

N +n=20 N = EAW
Q' +q=0 Q = reaction
M+Q+m=20 M = EIw"

It would appear that the only thing that happened was that we changed the mo-
ment constitutive equation and completely lost our shear constitutive equation.
The shear is now a reaction force associated with the constraint, and, thus,
computable only from an equilibrium equation. However, now we can make
the same substitutions as before and derive a single equation for transverse
bending involving only the unknown w

(EIW")" =q—m' (417)

This equation is somewhat simpler to solve than the shear beam equations, but
it still gives rise to four constants of integration. We must still get these
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constants from the boundary conditions. The constraint changes the boundary
conditions somewhat. First, conditions on rotation are now expressed as condi-
tions on the first derivative of w. Conditions on the moment are now conditions
on the second derivative of w. The important change is the condition on shear.
Since we lost our constitutive equation in implementing the constraint we must
find the shear Q from equilibrium. Equilibrium of moments gives the relation-
shipQ = —M'—m = —EIw'"’' —m. Thus, a condition on shear can be trans-
lated to a condition on the third derivative of w.

Example 49. Classical solution for Bernoulli-Euler beam. Consider again the
cantilever beam subjected to a uniform transverse load g shown in Fig. 96. Let
us assume that shear deformations are negligible, and, hence, that the Bernoulli-
Euler theory is appropriate. Integrating Eqn. (417) four times, we obtain

Elw(x) = — 21—4qx“+ %a1x3+ %a2x2+a3x+a4

The boundary conditions are w(0) = 0, w'(0) = 0, —EIw''’(€) = O (shear
force vanishes), EIw'’(€) = 0 (bending moment vanishes). From the first of
these we can conclude that @, = 0, and from the second of these we obtain
ay = 0.From the third boundary condition we find that a; = ¢¢. Finally, from
the fourth boundary condition we find, from the derivative of Eqn. (413), that
a, = —q€*/2. Thus, letting £ = x/¢, the expressions for deflection and rota-
tion are given by

wE) = A g+ 48 687)

Substituting these expressions back into the constitutive equations, we can de-
termine the distribution of the shear force and the bending moment

Q@) = —E'"" = qé(§~-1)
M) = EIw'" = qTeZ( —E2+2£-1)

These results correspond exactly with those obtained previously for the Timo-
shenko beam in the limit as 8 ~ 0.

Virtual work for the planar Bernoulli-Euler beam. We are now ready to
state the principle of virtual work for a beam without shear deformation. For

[ —

convenience, let u = {u,w,w']"and § = [7,W,w']". Let

EA © u "
D=\ & e= [ w,,] qQ=|4q (418)
m

With these definitions, the virtual-work functional G(u, @) = W,— W, for the
planar Bernoulli-Euler beam can be written as
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¢
G(u,u) = [ (8"De—q"w)dx — qJU(0) — qIU(E)  (419)

0

where, as before, q, = [n,,q,,m,]" and q, = [n,, q,,m,]". Note that every-
where the variable 8 appeared in the previous theory, it has been replaced by
w' inthe current theory. Since there is noshear deformation, the terminvolving
shear vanishes identically. According to the principle of virtual work, the sys-
tem is in equilibrium if

Gu,™) = 0 Yu € H(0,¢) (420)

where B(0, €) is the collection of functions from which the virtual displace-
ment fields #(x) and #W(x) can be chosen. This collection of functions is differ-
ent from (0, €) for a variety of reasons. First, 7(0, €) contained functions for
u, w, and 6, while $B(0, €) has only functions for u and w. Thus, obviously, the
dimension of the two spaces is different. A more important difference is the
restriction implied by the order of derivatives that appear in the Bernoulli-Eul-
er version of the principle of virtual work. There are second derivatives of w
and win the expression for G (whereas only first derivatives appeared in Timo-
shenko beam theory). Thus, any function whose second derivative is square-
integrable is admissible. Now our space rejects functions with kinks in them
because the first derivative of such a function would be discontinuous at the
point of the kink and, consequently, the second derivative would not be square-
integrable. The shear beam theory allowed kinks as being a physically reason-
able result of shear deformation. The Bernoulli-Euler theory does not allow
kinks because the constraint w’ —6 = ( implies more smoothness in the solu-
tion.

Again, for practical applications we generally restrict the virtual displace-
ment to be zero on that portion of the boundary where displacements are pre-
scribed. Like the shear beam, the part of the boundary where “displacement”
is prescribed for the Bernoulli-Euler beam is any point where the displacement
or rotation is known a priori. Therefore, the essential boundary conditions in-
volve both w and w'. Some common boundary conditions for the prismatic
Bernoulli-Euler beam include

w=20 w =0 fixed end
w=20 w' =0 simple support 421)
w' =0 w'' =0 free end

Note that you cannot prescribe the displacement and the shear at a point; nor
can you prescribe the slope and the moment at a point.
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A Ritz approximation for the Bernoulli-Euler beam. We can apply the
Ritz method to the virtual-work functional for the Bernoulli-Euler beam. Let
us approximate the real and virtual transverse displacement as

w(x) = wy(x) + h(x) -a, Wx)=hx)-a (422)
where the functions #,(x) are known base functions, selected from the collec-
tion of admissible functions. Substituting these expression into the virtual-
work functional, and carrying out the integrals, we obtain the discrete form of
the functional (ignoring axial deformation)

G(a,a) = a’[Ka—f]

where the matrices K and f are

K

j EI[h''][h"') dx

[gh+mh’' —Elw,""h""] dx

-
i

"+ g,b(0) + g, h(£) + m,h'(0) + m.h'(€)

Since G(a,a) must vanish for all 3, the equilibrium equation that results from
the principle of virtual work is Ka = fas before. Like the little boundary value
problem, this equation determines the coefficients of the approximation for the
field w(x). Once this field is known, the moments and shears can be computed
by differentiation.

Mixed boundary conditions. It is possible to generalize the notion of
boundary conditions beyond those that are expressed as pure constraints on
motion or force. Boundary conditions that involve combinations of force and
displacement are called mixed boundary conditions. Mathematically, we wish
to include conditions (at either x = Oor x = £) of the general form

cowtew +e,w' +esw' =0 (423)

where cy,.. ., ¢; are constants associated with the problem description (i.e.,
they are not unknowns). Although Eqn. (423) applies to Bernoulli-Euler beam
theory, this same generalization is possible for any theory. The key observation
is that the number of derivatives included must be one less than the order of the
differential equation.

The mixed boundary condition is an artifice of modeling that replaces a
truncated part of the system by a spring. The most common types of mixed
boundary conditions come from linear springs. The spring constant kX must be
specified as part of the problem description as the following example illus-
trates.
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Example 50. Mixed boundary conditions. Consider the beam shown in Fig. 97.
The left end of the beam is restrained from translation. The moment developed
by the spring is related to the rotation at that point by M, = k,0,, where
0; = w'(0)is the rotation experienced by the spring. The right end of the beam
is free to translate horizontally and to rotate, but the spring elastically restrains
vertical motion. The force developed by the spring is related to the deflection
at that point by Fs = k.w,, where w, = w({) is the deflection experienced by
the spring.

q(x)
¢
k M, = kow'(0) M©O0) X );

o e
Pl S F, = kow(f)

Figure 97 An example of a beam with elastic supports

To find the appropriate boundary conditions, we must take a freebody dia-
gram of the ends of the beam, as shown in Fig. 97. All of the displacement and
force quantities are drawn in their positive sense: The moment M(0) is anticlock-
wise because it acts on the positive x face of the cross section. The shear Q(£)
is down because it acts on the negative x face of the cross section (see Fig. 95
for the sign convention). The spring forces are shown resisting positive motions.
The equations of equilibrium give the appropriate mixed boundary conditions.
At the left end of the beam we are considering in our example, we have the condi-
tion M;—M(0) = 0, while at the right end we have F;+Q(€) = 0. These rela-
tionships must be restated in terms of the displacement w as

w(0) = 0 k,w'(0) — EIw''(0) = 0
w'(€) =0 kow(€) — EIW'"'(€) = 0

These four boundary conditions can be used to determine the four constants of
integration that appear when we solve the governing differential equation, just
as we did for pure boundary conditions.

What if we wanted to include the springs in the principle of virtual work?
We must include the virtual work done by the springs in going through their
respective motions. To wit, let us take

[4

G(W,W = f (EIW”W” ——qW)dx - qu(O) - meW'(f) (424)
P+ kW O (0) + kw()W(E)

Two of the boundary terms have been replaced by elastic spring terms. Why
do those terms have a positive sign in the work expression? If the displacement
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is positive, then the force induced in the spring acts in the negative direction,
and vice versa. If you think about it, the springs are really elastic elements, like
the beam itself. Thus, the work associated with them is more like internal work.
These terms have a character more like the internal work than the external
work. It does not matter what name you call them, so long as the work is proper-
ly accounted for.

Let us now reconsider the question of restricting our space of virtual dis-
placement functions on the part of the boundary where displacements are pre-
scribed. In the present problem, we know the moment m, = 0 because it is pre-
scribed. We do not know the force q.; it is a reaction force. To remove it from
our functional G, we must select functions that have #w{(0) = 0. Notice that our
spring terms involve only our unknown displacement function, and, hence,
these terms are not troublesome in the same sense that the reaction force terms
are. Therefore, we do not need any restrictions on the space of functions for
virtual displacements to take care of these terms. In fact, if we did restrict these
terms, we would impair the ability of the principle of virtual work to distinguish
among similar problems with different spring constants; clearly, an untenable
proposition.

Structural Analysis

One of the most important applications of beam theory is in matrix structural
analysis of frames. A frame is an assemblage of beam elements that are con-
nected together at their ends. The main additional feature in structural analysis
over the analysis we have done for the single elements is the communication
of force from one element to the next. In many ways this problem is very much
like the application of finite elements in the previous chapter. The element
stiffness matrix and force vector can be computed from element shape func-
tions and then assembled into the global equations, as shown in Chapter 6.
To fix ideas, let us consider the typical framed structure shown in Fig. 98.
The structure consists of nine members rigidly connected at eight joints
(shown as squares in the figure). Element e is shown separated from the struc-
ture in (b) and (¢). Each element has an “i” endand a “j” end. The iend is asso-

U
e “
£2 e j
(@) () °F :

Figure 98 Structural frames: (a) an example of a reticular structure and global
coordinates, (b) element e in global coordinates, (c) element e in local coordinates
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ciated with global node number ix(e, 1) = i, and the j end is associated with
global node number ix(e,2) = j.. For the planar frame each node has three de-
grees of freedom, which are in the order u = [uy, 1y, 0]7, where u, is the dis-
placement in the direction x; and u, is the displacement in the direction x,.
These degrees-of-freedom can be expressed in the local element coordinates
as u = [u, w,0]7, where uis the displacement in the direction x; and w is the
displacement in the direction x,. The local displacements can be computed
from the global displacements as u = Tu, where

cosyp siny 0
T =|-siny cosy 0 (425)
0 0 1

where 1 is the angle measured from x; to x;. The global equation numbers are
assigned in node order (the global node numbering is arbitrary). The three de-
grees of freedom of global node n are id(n,i) = 3(n—1)+ifori = 1,2,3
(i.e., the three degrees-of-freedom at that node) and n = 1,.. ., N (the number
of nodes in the structure).

Let u, = [u,w, w']" be the displacement field within the element (in local
element coordinates). For element e we can compute the real and virtual dis-
placement fields as

u(§) = h'(§)B;a, u,¢) = h'(§)B:a (426)

where a = [a],...,a}]"and @ = [37,...,d]] arearrays containing the nodal
unknowns and their virtual counterparts. Note that a,is a 3 X 1 matrix con-
taining the unknown nodal displacement wu; for node i so that the matix a has
dimension 3N X 1. The matrix

ie je
r_[0 .. T 0o .. 0
Be'[o w 0 T . o} (427)

isa 6 x 3N matrixwitha 3 x 3 transformation matrix T at the block associated
with node id(i., 1:3)and a 3 x 3 identity matrix T at the block associated with
node id(j., 1:3). The purpose of the matrix B, is simply to pick out the displace-
ment degrees-of-freedom from the global vector that are associated with ele-
ment e and rotate them to the local frame. The interpolation matrix h is

h, 0 0 hi 0 0
W) =| 0 h hy 0 hs h (428)
0 hy By O kS By
where the beam element shape functions, shown in Fig. 99, are given by

hy =1-§ h, =1-38+28 h, =E(1-2E+&%)¢

he=& ko= E(3-28)  hy = E(E-1)C @
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hy
1@_,
0 1 &
s
1
3 0 1 &

Figure 99 Planar Bernoulli-Euler beam shape functions

hy h,
1& 1&.—;
0 1 & 0 1 ¢
h, hs
1[ j 1[ j
0 1 & 0 1

and § = x/¢. The choice of these shape functions is not arbitrary. In order to
establish continuity of the displacement field from one element to the next we
must use an interpolation that controls the displacements and rotations at the
ends of the elements. The functions in Eqns. (429) are precisely the ones that
can accomplish this goal. We must use a cubic interpolation for the field w be-
cause the theory computes the rotations as & = w’ and the rotations must be
continuous atthe nodes. Hence, we must have continuity of the first derivatives
of the interpolation functions for w. The roof functions are adequate to interpo-
late the axial displacement. Additional shape functions could be used to im-
prove the interpolation, but the function and its first derivative must vanish at
the element end so as not to introduce excessive interelement continuity.

Let the elementstrainsbe ¢ = [u', w'']".The element real and virtual strain
resultants can be computed from the interpolation for element e as

e.= 5 BB, E =5 BIEBA (430)
where
ey | M0 0 RO O
(-:B (S) - I: 0 hz” h3”0 h5” h6”:| (431)

Note that the prime in Eqn. (431) indicates differentiation with respect to the
argument &. The term 1/¢€, comes from the fact that the strains are derivatives
with respect tox and d§ /dx = 1/£. Using the change of variable for each ele-
ment and substituting the interpolations from Egns. (426) and (430) we can
write the discrete virtual-work functional in the form

M 1 1

G(a,a) = a’ Z[Bej %EBeDeEBng Bla — Bej h.q.¢, dg] (432)
e=1 0o ¢ 0

with q, = [n,q,m]" being the distributed loads for element e, and D the

constitutive matrix from Eqn. (418). Note that we used dx = €.d5. We can

write this result more compactly if we identify the element stiffness matrix and

the element force as
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1 1
ke = ] elEBeDe EBeT dg; fe = j heqeee dg (433)
o ¢ 0

Note thatin the present application k.is 6 x 6and f.is 6 x 1. Now the discrete
virtual-work functional takes the simple form

M M
G@m =77 > BkBla- > B.L] (434)
e=1 e=1

Comparison with our earlier results shows that the stiffness matrix and right
side vectors are computed as

M M
K=>BKkB, f=> B (435)

e=1 e=1
Again, the summation over the elements is accomplished with the standard
assembly process. The main difference from the assembly described in Chap-
ter 6 is that the B, matrix contains the local-to-global transformation T. For this
case the element stiffness matrix and element force vector can be converted to

the global frame as k, = T’k T and f, = T f, where

- T 0
T=|:0T:| (436)

The transformed matrices can then be assembled directly as before. The MaT-
LAB code segment introduced in Chapter 6 has been slightly modified for the
present case and is shown in Table 7. As before, this code assumes there are
Nunknowns (three times the number of nodes) and M elements. It also assumes
that there is a routine to call to get the element stiffness matrix and element
force (and assumes that this routine takes care of rotating these matrices to the
global frame).

Some of the nodal displacements are restrained by boundary conditions.
These represent known values of some of the coefficients a. Once the equa-
tions are assembled we have a linear system of equations Ka = f. The known
values of a can be multiplied by their associated columns of K and subtracted
from both sides of the equation. The equations associated with the restrained
degree-of-freedom have reaction forces on the right side in f. These equations
can be used to determine those reaction forces.

The preceding developments capture the essence of matrix structural analy-
sis. Extending these ideas to the three-dimensional beam and the Timoshenko
beam is straightforward, but a bit more tedious. Because the virtual-work func-
tional for the Timoshenko beam involves, at most, first derivatives of the fields,
it is possible to interpolate those fields with the roof functions. However, this
interpolation suffers from a phenomenon called shear locking in which the dis-
crete structure is far too stiff because of a deficiency in the numerical approxi-
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Table 7 MATLAB code for the assembly process for a planar frame

%....

K = zeros(N,N); f = zeros(N,1);

Loop over all elements to assemble K and f
for n = 1:M

...... Find the i-node, j-node
inode = ix(n,1l); jnode = ix(n,2);

...... Construct the assembly pointer array
ii(1:3) = id(inode,1:3); 1ii(4:6) = id{(jnode,1:3);

...... Retrieve element stiffness matrix for element “n”
[ke,fe] = get stiffness (...)

...... Assemble element stiffness and force vector
for i=1:6
for j=1:6
K(ii(i),11(3)) = K(ii(i),1i(3)) + ke(i,]);
end % loop on j
f(ii(i)) = f(ii(i)) + fe(i);
end % loop on 1

end § loop on n

mation. Most textbooks on the finite element method have a good description
of the locking problem (it also affects low-order 3D elements that are nearly
incompressible through a similar phenomenon called volumetric locking). One
cure for locking is to use higher-order interpolation functions. A cubic €° La-
grangian interpolation is sufficient to eliminate shear locking in Timoshenko

beam elements.

Additional Reading

H. Goldstein, Classical mechanics, 2nd ed. Addison-Wesley, Reading, Mass,

1980.

J. T. Oden, Mechanics of elastic structures, McGraw-Hill, New York.(1967).
I. S. Sokolnikoff, Mathematical theory of elasticity, 2nd ed., McGraw-Hill,

New York, 1956.
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Problems

167. The beam shown below has a rectangular cross *2
section of depth 4 and width 2, and has a length of 50
length units. It has a uniform mass density that gives
rise to a constant body force of b(x) = —2e, (force
units per length units cubed), and is subjected to a
surface traction on its top surface that is bilinear with

50
respect to x, and x; = x reaching a maximum value *2
of 15 (force units per length units squared), as shown. 4I
*1
]

X1

Find an expression for the applied tractions tr(x).
Find the resultant applied loads q(x) and m(x) equiv-
alent to the surface tractions and body force. Find the 2
distribution of resultant force Q(x) and resultant moment M(x) along the beam. Find the
displacements w(x) and the rotations 6(x) along the beam.

168. Consider the beam with square cross section, of di- *1 &
mension 4 by & and length €. The beam has Young’s modu-
lus C and shear modulus x. The beam is subjected to hori- ig > X3

zontal tractions on its top face, as shown. The body forces

acting on the beam are negligible. The coordinate axes 4
shown are principal and centroidal. %o

Find expressions for the applied force and moment per Iﬁ -
unit length of beam, q(x) and m(x), where x = x, is the axial X3

coordinate. Find the displacement and rotation field caused by the loading by integrating
the governing beam equations (that is, find the classical solution).

169. Consider a beam of length € with *2 \ -
square 2 X 2 cross section. The beam is sub- 171

jected to the applied traction field over the 1. - .

cross section at the end of the beam 1 x, t; }

te = 7x;(1+x3)e,
where 7 is the known magnitude of the loading. Find the resultant force and moment acting
on the end of the beam. Assume that u(x;, x,, 0), i.e., the beam is fixed at x, = 0. Find the
resultant force field Q(x) and the resultant moment field M(x) that equilibrate the applied
forces. Compute the displacement and rotation fields that result from the applied loads.

170. The hollow box beam shown has a square cross x b,

. . . . . l‘
section of dimension b, thickness t < b, and unit =_% ﬁ—&,.ﬁ
weight g,. It is submerged in a fluid of unit weight g,. B ¥ -

Recall that the pressure at any point in a static fluid is
proportional to the depth 4 according to the relationship
P = ho,. The unit weight of the air inside the beam can
be taken as zero. The end is capped so that fluid cannot
get inside. Plot the typical traction field tr acting on the
lateral surface of the beam. Compute the resultant ap-
plied load q(x) and the resultant applied moment m(x)
that would be appropriate in order to treat the problem using beam theory.
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171. The Saint-Venant torsion problem is restricted to problems with constant rate of twist
and traction-free lateral surfaces. One feature of this solution is that, at the fixed end, the
rotation is restrained but the out-of-plane warping is not. Physically, such a boundary con-
dition would be very difficult to realize. One solution to this problem is to create a model
in which the amplitude of warping is independent from the rate of twist of the beam. Con-
sider the deformation map

ux) = 0(x;)(es X p) + @(x3)p(x;,x2)e;5
where 8(x;) is the angle of twist, @(x5)is the amplitude of warping, ¥(x,, x,) is the warping
function, and p = x,e, +x,e,. Further, assume that the warping function ¥(x,, x,) is the
Saint-Venant warping function derived in the text. Compute the strain tensor and use the
linear elastic constitutive equations to show that the tractions on a cross section are

Se; = u[eVy + 0'e; X p] + Ep'ye,
where E = A+ 2u, and a prime denotes differentiation with respect to x;.
In addition to the polar moment of inertia J, define the cross-sectional properties

J, = I (p X Vy)-e;da, J, = I (Vo - Vy)dA, J; = I PrdA
Q

Q Q
which can be computed once (), x,) is known. Define the stress resultants

TEe3-IpXSe3dA, WEe3-I¢Se3dA, BEI Vy - SesdA

Q Q Q

where T is the usual torque. The stress resultants W and B are often called the bi-moment
and the bi-shear. Substitute the expression for Se; to show that

T=uh¢+uld, W=ELg, B=ulp+uo
Show thatif ¢(x;) = 8'(x;) = a, then the above results are consistent with the Saint-Ve-
nant problem discussed in the text.
Using the definitions of the stress resultants, compute 7" and W’ and show that

T+t=0, W-B+w=0
What are the appropriate definitions of the applied loads #(x) and w(x)?

Substitute the resultant constitutive equations into the resultant equilibrium equations,
and show that the equations

o' +ul' + 1 =0, ELe" —ulhg —p8 +tw=0
govern the spatial variation of rotation 8 and warping ¢. These equations constitute a pair
of second-order ordinary differential equations, and, therefore, we can expect four
constants of integration that must be found from boundary conditions. What are the bound-
ary conditions for a free end and a fixed end?

172. The method of initial parameters integrates the governing equations and substitutes
the values at x = Oto give the general form of the displacement function. For the Bernoul-
li-Euler beam, the transverse deflection can be computed as

wesls) = w, + O,x + oo Dt I [Lee-82a® — L 8m@)] e



Chapter 7 The Linear Theory of Beams 285

where w, = w(0), 6, = w'(0), M, = M(0), Q, = Q(0)are theinitial parameters. Verify
that the expression satisfies the governing differential equations of Bernoulli-Euler beam
theory. This equation is particularly useful for those cases where M, and Q,can be deter-
mined from overall equilibrium. Use the method of initial parameters to solve the problem
of the cantilever beam under uniform load given as an example in the text.

173. The method of initial parameters can be applied to the Timoshenko beam to give

wi(x) = wag(x) + QG; 1A [ (x—&)q(6) &
0

where wi(x) is the deflection according to Timoshenko beam theory and wpyg(x) is the
deflection according to Bernoulli-Euler beam theory (as givenin Problem 172). Verify that
the expression satisfies the governing differential equations of Timoshenko beam theory.
Use the method of initial parameters to solve the problem of the cantilever beam under
uniform load given as an example in the text.

174. The three-dimensional rotation tensor A can be expressed in terms of three parame-
ters e;, €,, and e; as

2,22 _ 2
egtel—e—e5  2ee, + ges) 2eje3 — ¢gey)
_ 2 2
Ae) e5,3) = 2eje; ~eges) ef—el el — €] 2(eye; + €gey)
2222
2eye; + eje,) 2(eye5 — €ge)) ey —ej—e5 teg

where the parameter e has been introduced for convenience. This fourth parameter does
not represent an independent parameter, but rather satisfies the constraint equation
e} +e}+e}+e3 = 1. These parameters are called the Euler parameters. Demonstrate that
the tensor A is orthogonal by showing that A~! = A", Show that for small values of the
parameters e, e,, and e; the tensor can be expressed in the form A = I+ W, where Lis
the identity and W is a skew-symmetric tensor. Show, therefore, that when the three pa-
rameters are small, they can be viewed as the components of the rotation vector 9, with
6; = 2e;,, and that W = 0 X.

175. Reconsider the cantilever beam of length ¢, fixed at x = 0, with bending modulus
EI and shear modulus GA solved as an example in the text (Fig. 96). Examine the results
of the Ritz method as you increase the number of basis functions taken from the sets

2 x3 N 1 43 M
h,»(x)e {x,—e-,?'z', ...,'e—N—_—l}, g,(x)E{; ;2,;3, e e—M]

In particular, find general expressions for the ijth components of K*, K*, K?, K*?, and
the ith components of % and f® when A;(x) = x'/€~!and g,;(x) = x'/€’. Solve the prob-
lem for (N, M) = (2,2),(3,2), (3, 3), (4, 3), (4, 4). What do you expect to happen for high-
er-order approximations? Comment on the differences in the solutions obtained when
M = N—1 versus those obtained with M = N.

176. Provethat S - W = 0, or §;W,;; = 0, when Sis a symmetric tensor and W is a skew-
symmetric tensor. Note that § - W = e; - SWe,.



286 Fundamentals of Structural Mechanics

177. The prismaticbeam shown has a cross section that TEEEEER 4o
is symmetric with respect to the plane of the page. The P~ 2
cross section has axial modulus EA, shear modulus GA,

and flexural modulus EI. The beam is subjected to auni- r——» x ¢

form transverse load g(x) = —gq,. Find the displace-

ments and rotations for the beam by directly integrating the governing equations.

178. Resolve Problem 177 after making the Bernoulli-Euler assumption that w' = 6
(i-e., there is no shear deformation). What is the difference between the two solutions?

179. Use a polynomial basis to find an approximate solution to Problem 177 using the
principle of virtual work for the beam including shear deformation. Which terms should
you include? What order approximation is adequate?

180. Repeat the virtual-work computation in Problem 179 for the Bernoulli-Euler beam.

181. Carry out the integrations in Eqn. (385) to show that the tensors given in Eqn. (387)
result.

182. Consider the beam in Problem 177. Find an expression for the transverse displace-
ment w(x) using the principle of virtual work, using a quartic polynomial basis. Note that
the problem has two essential boundary conditions and two natural boundary conditions.

183. The principle of virtual work does not require that the assumed displacement func-
tions satisfy the natural boundary conditions a priori. Is there an advantage to satisfying
the natural boundary conditions, too? What happens in Problem 182 if we do enforce the
natural boundary conditions?

184. A continuous beam is one that has one or q

more intermediate supports. The extra boundary == .A. 2
conditions are in excess of the four end conditions. ‘1—11_——_—4
Describe an approach to solving the following x ¢ x ¢

problem that exactly satisfies the differential

equations everywhere in the domain, as well as the boundary and intermediate conditions.
Find the classical solution to the given problem by integrating the governing differential

equations. (Hint: It is useful to describe the solution independently in each segment and
to enforce continuity by equating state variables at the place where the two segments join.)

185. The following prismatic beam has a cross sec- , q
tion that is symmetric with respect to the plane of the k¢ * ‘ J
=

page. The cross section has flexural modulus EI. Axial

and shear deformations can be neglected (i.e., use Ber- x —
noulli-Euler beam theory). The beam is subjected to a P——‘_4
uniform transverse load g acting downward. The beam ¢

has deformable spring supports at the ends. At the left end, the support prevents translation
in the vertical and horizontal directions and the spring elastically restrains rotations. The
moment developed by the spring is related to the rotation at that point by M, = k€26,

>
S k
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where 6; = 6(0) is the rotation experienced by the spring. The right end of the beam is
free to translate horizontally and to rotate, but the spring elastically restrains vertical mo-
tion. The force developed by the spring is related to the deflection at that point by
F; = kw,, where w, = w({)is the deflection experienced by the spring. What are the ap-
propriate boundary conditions for this problem? Solve the problem by integrating the dif-
ferential equations and using the boundary conditions to find the constants of integration.
Revise the principle of virtual work to account for the work done by the springs. Estimate
the deflection of the beam using a two-term polynomial expansion for the transverse
deflection. That is, assume the real and virtual transverse deflections to be of the form

x2 - = X
wx) = a,x + az-?, wx) = a,x + a27

What constraints do the assumed displacement field add to the problem?

186. Inthe derivations of beam theory, both in a clas- iP ; P & P
sical sense and in a variational sense, no mention was = !
made of concentrated forces. Describe a way to ac- ——— e

count for concentrated forces in solving the classical “_‘:—‘T——"
differential equations (for example, for a Bernoulli- x

Euler beam). Describe how the concentrated forces should be implemented into the princi-
ple of virtual work.

187. Abeam ona Winkler elastic foundation accrues force in the foundation in proportion
to the deflection of the beam according to f(x) = kw(x), where k is the modulus of the
foundation.

AT
WWWW 2 7
k
* kw(x)

.~
4

Show that a simply supported Bernoulli-Euler beam on an elastic foundation is governed
by.the following differential equation and boundary conditions

EW" + kw = q(x)

wi0)=0, w'@0 =0 we)=0 w')=0
Verify that the w(x) = e®*(a, cosBx+a,sinfx) + e *(a; cos fx+a, sinBx) is the dis-
placement field that satisfies the homogeneous differential equation, if 48* = k/EI

188. Consider the beam on a Winkler elastic foundation of Problem 187, subjected to a
uniform load q. Show that the principle of virtual work, accounting for the work done by
the elastic foundation, is.

[4
Gw, W) = I [EIwW''W' + kww — qw]dx = 0
0
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Find the displacement map of the system using the Ritz method, assuming that the real and
virtual displacements are approximated as

N N
= in EX = in X
w(x) = Za,, sin=5=, w(x) Za‘,,sm 7
n=1 n=1
189. A semi-infinite beam on a Winkler elastic P l £
foundation extends to infinity in one direction. Find the
. . 2 A A 2D A Z
classical solution to the problem of a beam of modulus
[k

ET on a foundation with modulus k subjected to a con-
centrated force P atx = 0. There is no boundary at the right end of the beam, but you can
argue that a, = a, = Otohave finite displacements. Plot the deflected shape of the beam.

190. A beam of length € and modulus EJ rests on two P
linearly elastic springs, each of modulus . The springs El
accrue force in proportion to the amount by which they A 2 _%_k
stretch. The beam is pinned at the left end and is sub-
jected to a point load P at the right end. Axial and shear
deformations of the beam can be neglected. What is the e/3 €3 ¢/3
virtual-work form of the equilibrium equations? What

are the essential and natural boundary conditions? Use the Ritz method to find an approxi-
mation of the displacement field using the two-term polynomial w(x) = a,x+ a,x?/€.

191. Consider the beam of modulus EJ, pinned at one k EI P
end, free at the other, and restrained by a rotational spring @
as shown. The beam is subjected to a tip load P at the free

end. Shear and axial deformations can be neglected. Esti- }“_——'1
mate the deflection of the beam at the point where load is ¢

applied. Discuss the accuracy of your estimate and discuss one other possible method for
making the estimate.

192. A flexible beam of length € and modu- q Rigid
lus ET is welded to a rigid beam of length ¢, V’"ﬁi%
and rests on an elastic foundation of modulus VAGE L SEENEA ) ISR
k=60EI/€4. The beam is simply supported '—» x

and is subjected to a transverse force g over

¢ ¢
the rigid part of the span. The elastic founda-

tion accrues a transverse force in proportion to the transverse displacement w. Shear and
axial deformations in the beam are negligible. Write the virtual-work functional G for the
system. What are the essential and natural boundary conditions for the flexible beam? Find
an approximate solution for the displacement w(x) using a two-term polynomial Ritz basis.

193. Consider the beam of modulus EJ, fixed at one
end, pinned at the other. The beam is subjectedtoa | e __ :Evt’
prescribed displacement of w, at the right end. Shear

and axial deformations can be neglected. Find the [© ¢ ol
expression for the displacement w(x) that satisfies
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the governing equations exactly. Approximately solve the problem using the principle of
virtual work, assuming a cubic polynomial deflection field.

194. Abeam of unit length and variable modulus is fixed at the right

end and is subjected to a moment M at the left end. The bending and (<I
shear stiffnesses of the beam are variable with EI(x) = El(1+x)

and GA(x) = GA,(1+x), where El, and GA,are known constants.

Recall that the governing equations for the Timoshenko beam are

given by Eqns. (406). Find the deflection and rotation at the left end of the beam (i.c., at
x = 0) by finding the classical solution to the governing differential equations.

195. A beam of length € and modulus EI rests on two EI ﬁM
linearly elastic springs, each of modulus k. The springs A _§_k _%_"

accrue force in proportion to the amount by which they

stretch. The beam is pinned at both ends and is subjected e/3  ¢/3  ¢/3

to a concentrated moment M at the right end. Axial and

shear deformations of the beam can be neglected. What is the virtual-work form of the
equilibrium equations? What are the essential and natural boundary conditions? Use the
Ritz method to find a polynomial approximation of the displacement field.

196. Consider a beam of length £, elastic moduli E and G and rec- A X2
tangular cross section of width 2a and depth 2b. Let ¢ be a (very :[:
2b

small) constant and let & = x,/€ be the normalized axial coordi-
nate. The beam has the following displacement and rotation fields

6, = c(65—682), 6, = c(382-2%), 6;,=0 >
wy = cl(E-8), w, = c€(2£°-3E%), wy=0

Find the resultant moment and resultant force at § = 1,i.e. M(€) and Q(¢). Find the total
displacement u of the point located at the position x = (a, b, €).

197. Abeam of length £ is fixed at the left end, free at the right P
end, and is subjected to a concentrated transverse load P at the Fzzﬁ’
right end. The bending and shear stiffnesses of the beam are E/ EI,GA
and GA, respectively. What is the virtual-work functional for the x
system? What are the essential and natural boundary conditions?

Let & = x/¢€. Find the deflection and rotation fields for the given
loading by the Ritz method using the following approximation

W) = a,€E+ 20,08+ 1a, €8, 0() = apE+a,E?

198. A beam of length € and modulus EJ rests on two lin- ‘ P El ¢ P
early elastic springs, each of modulus £. The beam is sub- =
jected to point loads P at the ends. Axial and shear deforma- x E_k Zk

tions of the beam can be neglected. What is the virtual-work

form of the equilibrium equations? What are the essential e/3  €/3  ¢/3
and natural boundary conditions? Solve the discrete virtual-

work equations Ka = f for this system using a three-term polynomial Ritz approximation.
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199. A semi-infinite (i.e., x extends to infinity) beam P l
of modulus ET rests on an elastic foundation of modulus
kand is subjected to a concentrated force Patx = 0. The 77" 777/NA/ASSISnssssors

classical differential equation for the beam is given by F— * k
EIW”+kw = 0, where wv means fourth derivative.
The shear in the beam is given by Q(x) = —EIw'’’. Use the Ritz method with the princi-

ple of virtual work to find an approximation of the displacement field using the single term
approximation w(x) = ae™*, where 8 is a given constant and a is the unknown Ritz dis-
placement parameter. Find an expression for the error in equilibrium at each point x in the
beam. For what value of § is the shear boundary condition at x =0 satisfied exactly?

200. A flexible beam of length € and modulus ET is con- M

. . . ~~ EI
nected to a rigid beam of length € at a point that rests on a )
roller support. The left end of the rigid part of the beam is ki - k 3.

restrained by a linear elastic spring of modulus £ as is the *

right end of the flexible part of the beam. The beam is sub- P) ]

jected to an end moment M. Axial and shear deformations

of the flexible beam can be neglected. What is the virtual-work form of the equilibrium
equations? What are the essential and natural boundary conditions for the flexible segment

of the beam? Solve the discrete virtual-work equations Ka=t for this system using a
three-term polynomial Ritz approximation.

201. Consider the simply supported beam of length 1 and
constant modulus E7 =1, subjected to a linearly varying force
q(x)=2x, as shown. The beam is supported by a spring at

midspan that has modulus k= 64. Shear and axial deforma-

tions can be neglected. What are the natural boundary condi- F__’WW|
tions? What are the essential boundary conditions? Find an

approximate solution with the Ritz method. Use a cubic polynomial.

202. A beam of length € is fixed at the left end, pinned i 0
at the right end, and is subjected to a uniform load, as )
shown. The shear and bending moduli are related as EI/ EI, GA

GA€2=1. Find the displacement and rotation fields for r—"x
e

the beam by solving the classical governing equations. P -
Find the reaction forces at the supports.

203. Abeam of length € and modulus EI rests on two lin- El M
early elastic springs, each of modulus k. The springs ac- ’W
crue force in proportion to the amount by which they ik ¢ ki
stretch. The beam is subjected to a concentrated moment ]

M at the right end. Axial and shear deformations of the

beam can be neglected. Assume that motion along the axis of the beam is restrained. What
is the virtual-work form of the equilibr'ium equations? What are the essential and natural
boundary conditions? Solve the discrete equations of equilibrium Ka=f using the Ritz
method with a quadratic approximation of the displacement field. Describe the error in
approximation.
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204. A flexible beam of length € and modulus EI is con- o M
nected to a rigid beam of length € at a point that rests on rigid Ef ;)
aroller support. The left end of the rigid beam is restrained _%_ k N k _%_

by a linear elastic spring of modulus £. The beam is sub- 'z *

jected to an end moment M. Axial and shear deformations ¢ 4

of the flexible beam can be neglected. What is the virtual-

work form of the equilibrium equations? What are the essential and natural boundary con-
ditions for the flexible segment of the beam? Solve the discrete equations of equilibrium

Ka =fusing the Ritz method with a quadratic approximation of the displacement field. De-
scribe the error in approximation.

205. Asemi-infinite beam (i.e., the beam extends to in- P
finity in the positive x direction) of modulus ET rests on l
an elastic foundation of modulus £. The beam is sup- 77NN FANNINNI72
ported at x=0 and is subjected to a concentrated force P

at a distance € from the support. Discuss how you would *
solve this problem. Include in your discussion com-

ments on both classical and variational approaches. Assume that Bernoulli-Euler beam

theory is adequate to describe the response of this system. The classical equations of a Ber-
noulli-Euler beam on an elastic foundation are

EIW" + kw = 0 M) = EW'' Q@) = — EW'"’

206. Consider a beam of unit length and circular cross section, fixed at

x = 0 and free at x = 1. The axis of the beam (x; = x) points along the

€, direction. The origin of the cross sectional coordinates x, and x, are at =1
the center of the centroid of the section. The internal resultant force is giv-

en by the explicit expression Q(x) = (x2—1)e, +(x>— 1)e,. Find the ap-

plied force q(x) that must be present. Assume that the applied moment

m(x) = 0. Find the internal moment field M(x). Find the rotation field 8(x)

207. A flexible beam of length 2€ and modulus E/ P ¢
. . EI
rests on an elastic foundation of modulus . The prop-

erties have values such that the dimensionless ratio ) . ) )
k€*/EI = 15. The beam is subjected to a load P at its ’ *
midpoint. Axial and shear deformations of the flex- ¢ ¢

ible beam can be neglected. Find the deflection at the

middle and ends of the beam using virtual work and the Ritz method with a polynomial

approximation. (Note: due to symmietry odd functions—i.e., linear, cubic, etc.—need not
be included.)



8

The Linear
Theory of Plates

A plate is a body with one geometric dimension that is significantly smaller
than the other two. We call this dimension the thickness of the plate. We shall
treat the thickness dimension of a plate much the same as we did the cross sec-
tion of the beam. Like the beam, we shall characterize the behavior of the plate
with a particular kinematic assumption, and we shall consider the average re-
sponse of the body through the thickness. These assumptions allow a reduction
of the governing differential equations from spatial dimension three to two.
Unlike the beam, the governing equations of a plate are still partial differential
equations. In some sense, a plate is simply a two-dimensional beam, and there
are many analogies between the two theories.

One of the most valuable aspects of the approach to plate theory taken here
is the clear display of the striking similarities between beam theory and plate
theory. In fact, one can compare the derivation of the two theories almost equa-
tion for equation. The reader would be well advised to reconsider the previous
chapter on linear beam theory while reading through the derivation of plate
theory. In many ways, the plate and the beam are exact complements of each
other. Some of the classical treatments obscure this complementarity.

Our order of tasks is analogous to those in the chapter on linear beam theory.
First, we derive the equilibrium equations for the plate by defining resultants
of the traction vector over the thickness of the plate and seeing how the three-
dimensional equilibrium equations relate to the rate of change of the resultants.
We then introduce a kinematic hypothesis that describes the motion of the
plate. Finally, we introduce the three-dimensional elastic constitutive equa-
tions into the theory and deduce definitions of strain resultants that are conju-
gate to the stress resultants as well as constitutive equations for the resultants.
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X3
Q X2

np

r *

Figure 100 A plate occupying three-dimensional space

Once the classical form of the boundary value problem islaid out, we will pro-
ceed to develop a virtual-work form of the plate equations.

Notation. We will describe our plate in accord with the convention shown
in Fig. 100. Accordingly, we choose the x; coordinate axis to be perpendicular
to the reference surface of the plate, a flat two-dimensional surface in the x,
- x, plane from which any point in the plate can be described by its elevation.
Often, the reference surface will be taken as the surface midway between the
two faces. The domain of the reference surface, and, hence, the plate itself, is
a closed geometric figure © having a boundary I that can be parameterized
by its arc length s. The boundary has a normal nratevery point, and thisnormal
is unique, except possibly at a finite number of corners. The normal to the
boundary is orthogonal to the unit base vector pointing in the x; direction, that
is, np - e; = 0.The origin of the x axis is at the reference surface, the top sur-
face of the plate is positioned at x; = A above the reference surface, and the
bottom surface of the plate at x; = h. The total plate thickness is, therefore,
h = h — h. The plate need not be of constant thickness. Thus, the quantities
hand h can depend upon x, and x,. The plate is subjected to a body force of
density b and tractions on the top, bottom, and lateral surfaces of t*, t~, and
tr, respectively, as shown in Fig. 101.

The notation is largely the same as that used for the three-dimensional
theory. Unless otherwise indicated, Latin subscripts (i, j, &, . . .) are assumed
torange from 1 to 3, while Greek subscripts (a, 8,7, . . .) range from 1to 2 only.
Summation over repeated indices is implied, unless otherwise indicated. We

X3 Ar
t +
Pa ke
tp E" - N ~ ppu— },_. np
\ k\ ~ Reference surface

X3 =~h t”

Figure 101 View through the thickness of a plate
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Figure 102 Resultants of the traction vector over the thickness

shall use the “comma” notation (-),, = 9(-)/dx, for the partial derivative.
Multiple subscripts following the comma indicate higher-order differentiation,

€8y ()rap = (" )/0%,0%.

Equations of Equilibrium

-A plate is subject to the same requirements of equilibrium as every other body.

The concept that distinguishes a beam or a plate from a continuum is the stress
resultant. The stress resultants for plates will represent the aggregate effect of
all of the traction forces acting over the thickness of the plate. Like the beam,
we shall find that a simple net resultant is not adequate to describe those trac-
tions, so we shall also compute the first moment of these tractions about the
reference surface. By considering the rate of change of these resultants, we can
deduce equations of equilibrium for the resultants from the three-dimensional
theory.

The main difference between the stress resultants of a plate and those of a
beam is that, for the plate, we consider the resultants per unitlength, integrating
only through the thickness. For the beam, the resultant was a resultant over the
entire cross section. The resultant force and moment can be computed by inte-
grating the tractions through the thickness, as shown in Fig. 102. The traction
vector on a plane with normal e, is

t. (x) = S(x)e,

where the free index a takes values 1 and 2. The resultant forces Q.(x;, x,) and
the resultant moments M,(x;, x,) are computed as the integral of the tractions
and the first moment of the tractions through the thickness

13

Qa(x1,x2) = J t. (x) dx,

. 437)

Ma(xth) = J p(x3) X tea(x) dx3

k
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Figure 103 Cauchy triangle construction for plates

Where p = x;e,. It is evident that M, - e; = 0. Physically, this condition
means that there is no resultant moment about the x; axis, a consequence of our
decision to characterize the body as a plate and thus to define the resultant rela-
tive to the normal to the reference surface. As a result, the resultant moment
vectors have the form M, = M, e, + M,,e,, with no component in the e; di-
rection. One main difference between beam theory and plate theory is that in
the former we have only one resultant force vector and one resultant moment
vector, while in the latter we have two of each.

As was the case for beams, the stress resultants Q, and M, appear to be vec-
tors, and they will behave like vectors in almost every regard. However, these
vectors characterize the state of stress in the beam and, therefore, we must ex-
amine how the Cauchy relations t, = Sn manifest for the plate. For plates, the
appropriate analogy is the infinitesimal Cauchy triangle shown in Fig. 103. By
geometry, the values n; and n, are the ratios of the lengths of the sides with nor-
mals —e, and — e,, respectively, to the length of the oblique side. They are
also the components of the normal vector n to the oblique side. Let us compute
the resultant traction force q, on the face with normal vector n = n.e,

13 13
i = | Slned i = | 00,86 =m0

Since n, does not depend upon the cross-sectional coordinates x; and x,, itcan
be factored out of the integral to give the one-dimensional version of the
Cauchy formula relating stress to tractions

(1“ = n,Q, (438)

An identical argument produces an equivalent result for the moments. The re-
sultant traction moment m, acting on the face with normal vector n = n.€e,
is related to the resultant moments as

A

ml'l = naMa (439)
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As was the case for three-dimensional solids, the Cauchy relationship shows
us how to take freebody diagrams in the sense that it tells us what force to place
at an exposed section to represent the state of stress resultants there.

Equilibrium of forces. We can derive equilibrium equations that corre-
spond with the three-dimensional equations of equilibrium of a continuum. Let
us integrate divS+ b through the thickness of the plate

13 13
I (divS+b)dx; = f (68ea n GSe3+b)dx3
h h

dax, x5
: o (*/ase (440)
— a a a 3
-0 ([ )
k

where summation is implied on a from 1 to 2. Further note that

F :
f g;s;es dx, = [S(xl,xz, E) - S(xl,xz,h‘)]e3
A

One can observe that Cauchy’s relation implies that S(x;, x,, h)e; = t*, the ap-
plied traction on the top surface, and — S(x,, x,, k)e; = t~, the applied traction
on the bottom face. The applied tractions t* and t~ are vectors, independent
of the orientation of the vector normal to planes in the body. These tractions
are, of course, the known prescribed loads on the surfaces of the plate. Since
the body forces b are also known, we are led to define the applied loading per
unit of area as

13
q(x,x) = (T +t7) + J b dx, (441)
I
Thus, from Eqn. (440), we have
13
f (divS+b)dx; = Q..+ q (442)
h

Observe that if Q,,, +q = 0 then divS+b = 0 is satisfied on the average
through the thickness of the plate. Contrast this result with the beam result that
the three-dimensional equilibrium equations are satisfied on the average over
the cross section.

Equilibrium of moments. We can follow the same approach to the equilib-
rium of moments. Let us integrate p X (divS + b)through the thickness of the
plate
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F F
J p X (divS+b)dx, = I px(BSe aSe3+b)dx
h

0x, 0x4
b b (443)

1) 1)
J pxSeadx3+I px(ase3+b)dx
X, 0x;
A i

The first term is simply the divergence of the moments so that

2 2
J p X (divS+b)dx, = M, J p X (BSe3 +b)dx3 (444)
h k

0x, 0x4

To make further progress let us note the following identity

d p BS

By the definition of p, we know that dp/dx; = e;. We also know that balance
of angular momentum of the continuum implies that

e; X Se; =e, X Se; +e,xXSe, =0
Using these relationships we find that

pxgxse3——(pxSe3)+eaxSe

Integrating this equation through the thickness yields the following result

F 13 2
aS — )
J (p X Ee:;) dx:; - j ‘a?a(p X Se:;)dx:; + I ea X Sea dx:;
3 3 3

Explicitly evaluating the first integral on the right side (the integral of an exact
differential), and recognizing the definition of the resultants Q, in the second
term, we obtain

1)
f(px Sea)dx3—p(}7)xt++p(b_)xt‘+eaan
h

where p(h) = he; and p(h) = he;. Since the body force b and the tractions
t* and t~ are given as data, let us define the applied moment per unit area as

F
m(x;,x,) = e; X (I—:t++ht‘) + e; X j x; bdx, (445)
h

From this expression, it is easy to see that m - e; = 0, that is, the loading
causes no resultant about €;. As aresult, when we describe the applied moment
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€;
M,, =0
- i :
ex e2
No

Figure 104 Definition of the components of the resultants (shown positive)

vector in terms of its components, it will have the form m = m, e, + m;e,.
With these definitions we get the following equation

13
[ p X (divS + b)dx, = M,,, + €, X Q, + m (446)
h

From these equations we can see that if M,,, + e, X Q, + m = 0, then the
first moment of divS + b over the thickness of the plate is equal to zero. Con-
trast this result with the analogous one for beams. The equilibrium equations
for the stress resultants can be summarized as follows (note that summation
over the repeated index is implied)

Qa,a+q=0

(447)
M, ,+te.xXQ,+m=20

Some interesting features of these equations will become evident if we ex-
amine them in component form. Let us define some nomenclature to help us
with the component description. First, we shall call the components of the re-
sultant force

Q. = N, e, + Nye, + Q.
M, = M;e + M,e,

The components of the resultants are shown, with positive sign convention, in
Fig. 104. Remember that the first subscript of N, and M, keeps track of the
plane on which the resultant vector acts, while the second subscript keeps track
of the component of the vector. If we write out Eqns. (447) in extenso, we get
a system of equations describing the equilibrium of the in-plane forces

Naﬂ,a + g = 0 (a)

(448)
Np,—N,; =0 ()

and a system of equations describing the bending of the plate
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Qa’a + Q3 = 0 (a)

(449)
Mypo + €5,0. + mg =0 (b)
where €, is the two-dimensional alternator, and has the values
0 ifa=§8
€p = 1 if @p) = (1,2) (450)
-1 if @pB) = @21

Equations (448), and (449), both come from the resultant force vector equa-
tion, while Eqns. (448), and (449), come from the resultant moment vector
equation. Just as balance of angular momentum told us that the stress tensor S
is symmetric, we get the symmetry condition (448)y, from balance of moments
about the x5 axis. Equations (448) concern the equilibrium of the in-plane re-
sultants. These equations are nothing more than the plane stress equations, and
are uncoupled from the bending equations in the linear theory if the reference
surface lies exactly halfway between the faces of the plate. The symmetry con-
dition (448)y, is the familiar symmetry of conjugate shears. Equations (449)
concern the bending of the plate. In the linear theory of plates, only the trans-
verse shears (not in-plane forces) are coupled with the bending moments.

We can see the similarity between linear plate theory and linear beam
theory. In linear beam theory, the equilibrium of axial forces was uncoupled
from the bending equations. The beam has one axial equation and two shear
equations. The plate has one shear equation and two axial equations. For both
the plate and the beam, there are two bending equations. For the beam, the axial
moment equation gave rise to torsional equilibrium; for the plate, we get sym-
metry of the in-plane shears. The complementarity of these two theories is evi-
dent.

The Kinematic Hypothesis

As with the beam, we need a kinematic hypothesis to complete plate theory.
A kinematic hypothesis is nothing more than a restriction placed on the de-
formation map. We assume that the body moves in a very specific manner, an
assumption that must be verified either by observation of nature or by examin-
ing the consequences of imposing the constraints with a theory that does not
make those assumptions (i.e., the general three-dimensional theory).

The basic idea behind beam theory was the hypothesis that cross sections
that are plane and normal to the beam axis before deformation remain plane
and unstretched after deformation. The cross-sectional area was the primary
geometric object used in the description of the constrained deformation map.
In fact, we could completely describe the map by tracking the motion of a typi-
cal cross section, parameterized by the axial coordinate xs. The reduction in
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Figure 105 Displacement map for a plate

the dimensionality of the problem from three dimensions to one dimension was
accomplished by introducing a two-dimensional geometric constraint: the rig-
id cross section.

For the plate, we shall introduce a kinematic constraint analogous to the one
introduced for the beam. We shall assume that a straight line that is normal to
the reference surface of the plate before deformation remains straight and un-
stretched after deformation. Let us consider the motion of a typical line normal
to the undeformed reference surface of the plate. The initial orientation of the
line is along the e, direction. The kinematic hypothesis suggests that the line
will remain straight, but will translate and rotate rigidly from its original posi-
tion, as shown in Fig. 105. (The line is shown in the figure with exaggerated
thickness for the purpose of visualization; it is, in reality, a one-dimensional
geometric object.) Let us consider the point of intersection of the line and the
reference surface O. As described in the figure, the point displaces by an
amount w. It takes three quantities to keep track of the motion of the point, the
three components of w.

Keeping track of the motion of a single point is not sufficient to describe the
motion of the line because the line also rotates. If, in addition to w, we keep
track of the orientation of the vector n that lies along the axis of the line, then
our task of tracking the motion of the plane will be complete. It takes three
quantities to describe the rotation of a vector in three-dimensional space: the
three parameters of the rotation tensor A. As we did for the rotation of the cross
section of a beam, let the rotation tensor be precisely that needed to orient the
normal vector as m = A(xy,x,)e;. Thus, it appears that we must keep track of
six quantities in order to uniquely track the motion of the line in space. From
those six quantities, we can find the location of any other particle in the body.

There is an important geometric consideration here, however, that affects.
the count of the number of parameters required to characterize our map of plate
motion. Since we need only track the position of the line, we do not need all
three components of the rotation of the normal vector. The rotation of the line
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about its own axis does not affect its position, and, hence, will not affect the
deformation map of the plate. Thus, we arrive at the important conclusion that
we need only five parameters to track the motion of the plate (see Problem
208). From those five quantities, we can find the location of any other particle
on the body through the map

O(X) = x.8,+ W(x1,X2) + A(xy1, X;) P(X3) (451)

The first term gets us to the appropriate thickness line, the second term gets us
to the displaced origin of the reference surface, and the third term gets us to the
position within the line that was originally at the position p(x;) = x;e; in the
undeformed configuration, i.e., p locates the position of points along the line
relative to the point O.

If the rotation of the normal vector is small, the above map can be simplified.
In particular, for small rotations we have Ap = p + 0 X p, where 0 = 6,e,
is called the rotation vector. We can now describe our deformation through a
displacement map. Let u(x) be the displacement of a point originally located
at position x in our undeformed plate. The displacement of that point caused
by the deformation is

u(x) = w(x;,x;) + 0(x;,x;) X p(xs) (452)

We can clearly see the explicit dependence of the map on the transverse coordi-
nate x; and the plate surface coordinates x, and x,. The components of the dis-
placement vector w = {w,, w,, w;} and the components of the rotation vector
0={0,, 6,, 0} are collectively called the generalized displacements and are
functions of the plate surface coordinates x; and x,. The displacement map can
be written out in terms of its components as follows

Uy (X1, X2, X3) = wi(X,X;) + X392(x1,x2)
u2(x1’x2’x3) = w2(x1’x2) - x361(x1’x2)

Us(X1, X2, X3) = Wy(X1,%3)

From the explicit expression for the map, we can see that there is no depen-
dence on a rotation about the x; axis. This rotation is often referred to as the
drilling degree of freedom, because the motion it describes is reminiscent of a
drill making a straight bore into the plate along the deformed normal direction.

The physical significance of the generalized displacements can be seen by
examining the individual terms of the map. Figure 106 shows the displaced
plate projected onto the x, —x; plane. Clearly, the component w, measures the
displacement along the x, axis, while the component w; measures displace-
ment transverse to the middle surface in the x5 direction. The component 6,
measures rotation about the x, axis and has a positive sense according to the
right-hand rule. Displacements are, of course, positive if they are in the direc-
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tion of the coordinate axes. Consider the displacement of the point P a distance
x5 from the reference surface of the plate. For the purpose of illustration, sup-
pose that we have a state of cylindrical bending, i.e, w, = 0, 8, = 0, and 6,
= 0. Relative to the point O, point P moves in the negative x, direction by an
amount equalto x;sin 8, = x,60,,and inthe negative x; direction by an amount
x3(1— cos ;) = 0.Because the motion is cylindrical, there is nomotion in the
x, direction (out of the plane of the page). Clearly, this is the motion that our
deformation map captures.

If we have an explicit expression for the deformation map, it is simple to
compute the strains implied by that map. Here we shall confine our attention
to the linearized strain tensor E = 3[Vu+ Vu’]. Recall that the gradient of u
can be expressed in the form Vu(x) = u,; ® e,. We can thus compute the gra-
dient of the displacement map for our plate as

Vu(x) = (w,,+ 0,, X p)Qe, — (e; X 0)De,

(We got the sign change on the last term by reversing the order of the cross
product.) Before we use Vuto compute the linearized strain tensor, let us make
a valuable simplification of the above expression. Recall from Chapter 7 that
thetensor @ = (e; X 8) @ e, = —[0 x ]is skew-symmetric. We canrewrite
the gradient of displacement as

Vu(x) = (e, + %, X p) R e, — O

where the strain resultants are defined as

€, = wW,,+e,%X80 .
4
xa = 0’0 ( )

Itis important to note that, because the generalized displacements depend only
upon x; and x,, €, and x#;also depend only on x; and x,. We are now in a posi-
tion to compute the linearized strain tensor for the plate kinematic description

=2[(€c+ % X p) @ e, + €. ® (€. + % X P))] (454)
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From this expression for the strain, we can see that there is no strain through
the thickness of the plate, since E3; = 0, in accord with the assumption that
normal lines are rigid.

Constitutive Equations for Resultants

The strains imply stresses through the constitutive relationships. Let us assume
that the material is linearly elastic and isotropic so that the stress-strain rela-
tionship is S = ltr(E)I+ 2uE. Since we are interested in the resultant trac-
tions only on planes with normal e,, it is sufficient to compute only the values
of t,, = Se, = Atr(E)e,+ 2uEe,. From Eqn. (454) one can compute

2Ee, [6aﬂ1+eﬂ® ea](eﬁ + %, X p)
tr(E)=eﬁ-Eeﬂ=eﬂ-(eﬂ+xﬁXp)

The expression for the traction on a plane with normal e, is
Se, = E(€; + %5 X p) (455)

where £, = de, ® e; + ,u(éaﬂl+ e ea). We will use this expression in
our definitions for the stress resultants to derive constitutive equations relating
the stress resultants to the strain resultants that we have defined above. It will
then become clear that €, and %, are indeed appropriate measures of strain for
a plate. Recall that our definitions of stress resultant and moment resultant
were given by Eqn. (437). Substituting Eqn. (455) into these expressions yields
the following results

13
Q. = J Eaﬂ(eﬂ + %y X p)dwc3
& (456)

F
M, = I (p X]Eaﬂ(eﬁ + %, X p)dwc3
]

We can integrate out the x; dependence of these expressions at a typical
point in the x; —x, plane. If we recognize that only the vector p depends upon
x3, we realize that these integrations are rather simple. Equations (456) can be
integrated to give the constitutive equations for the plate

Q. = Aye, + Sy,
(457)

—-— T
M, = Saﬂeﬂ + L%y

where

A, = hE, S, = SE,[e; X’

S, = S[es X]E, Ly = I[es X]Eyles X7
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where h, S, and I are geometric properties related to the thickness of the plate
and the definition of the location of the reference surface

13 13 13
h = ] dx&h S = [ X3 dX3, I= j xg dx3 (458)
.3 I3 I3

One usually refers to k as the thickness of the plate, S as the first moment of
the normal line about the reference surface, and I as the second moment of the
normal line about the reference surface.

The constitutive tensors look somewhat ominous, but upon computing their
components explicitly, we can see that they are actually quite simple. The vari-
ous tensor parts of these expressions are three by three tensors with simple fea-
tures. The various constitutive tensors have the explicit expressions

E 0 0 “ 0 O 0 4 0
A“ = h 0 X 0 ’ A22 = h 0 FE 0 ’ A12 = h M 0 0
0 0 # 0 0 # 0 0 0
-1 0 o0 -« 0 0] (0 E 0]
312 = S 0 wu ’ 321 = S 0 A s s“ = S ~# 0
0o 0 Lo 0 o ] Lo |
4 0 0 E 0 0 [0 -4 0]
I“ = I O E O ’ I22 = I O /l O ’ |12 = I —l O O
0 0 0 Lo 0 o | Lo o o]

where E = A+ 2u has been introduced to economize the notation. The re-
maining tensors can be obtained by symmetry

A, = (A12)Ta szz = (su)Ta l,, = (I12)T
The entire set of tensors 87, can be obtained from S as follows
S, = -8, szrz = -8, S}, =S8, s2T1 = 8,

Clearly, if the reference surface is taken as the one exactly halfway between
the two faces, then S = OandI = A*/12. For this canonical choice of reference
surface, the constitutive equations are uncoupled in the sense that the resultant
forces Q, do not depend upon the curvatures #,, and the resultant moments
M,, do not depend upon the stretches and shears €. This situation is much like
the case for beams when centroidal axes are chosen. Unlike the beam, there is
no further simplification in the constitutive equations, i.e., there is no concept
analogous to principal axes.

The constitutive equations are of interest not only because they relate the
generalized displacements to the stress resultants, but also because they help
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us identify the concept of strain resultant. The strain resultant is the counter-
part of the strain tensor in the three-dimensional theory. As its name indicates,
it is the net result of all of the local straining across the normal line. With the
canonical choice of reference surface, i.e., the middle surface, the stress result-
ants Q, are linearly related to the deformation measures €, = w,, +e, X 0.
Accordingly, we shall view these quantities as the associated strain resultant.
Similarly, the moments M,, are linearly related to the measures of deformation
%, = 0,,. We shall consider %, to be the strain resultant associated with M,,.

These resultants have a clear physical interpretation. Let us write out the
components of each of the strain resultants

€ = wp € T wye, + (W, + 6)e; (459)
€ = W€ T wy€ + (W —91)e3
and the curvatures have component expressions
% = 0, +0,6¢ (460)

% = 0,¢ + 0,6,

Consider again the case of planar deformation in the x, — x; plane, shown in
Fig. 106. For cylindrical motion we have null displacements and rotations (and
their derivatives) for all quantities that give rise to motion out of the plane. Ac-
cordingly, w, = 0, 8, = 0, and 85 = 0. One can see that w,,, measures the rate
of stretch in the x, direction, i.e., the net axial strain of the plate. It is associated
with the in-plane force N,,. The quantity ws,, is the slope of the deformed
middle surface of the plate. As we can clearly see in the figure, the tangent to
the deformed middle surface does not coincide with the direction perpendicu-
lar to the normal vector n. The angle between these two lines is due to shearing
of the plate. The strain resultant w;,, — 8, directly measures this component of
deformation, and is associated with the shear force Q,. The rate of change of
the rotation of the normal vector n is 6,5, the curvature of the plate flexing
about the x, axis. The curvature is associated with the bending moment M,,
about the x, axis on the face with normal pointing in the x, direction. By exten-
sion, the meaning of the other terms in the three-dimensional case is evident.

The shear strain resultant w;,, +6,has a sign for the rotation term different
than the shear strain in the other direction. This difference is due to the right-
hand-rule convention for the rotations. The resultant shearing angle is always
measured as the angle between the tangent to the deformed axis and the normal
to the section. The rotation angle is always measured relative to the unde-
formed middle surface of the plate. Figure 107 shows positive values for the
displacements, displacement gradients, and rotations for two cases: (a) cylin-
drical deformation in the x, —x; plane and (b) cylindrical deformation in the
x,—x3 plane. The shearing angle is shown shaded. Note that for the first case
the x, axis is directed out of the page, while in the second case the x, axis is
directed into the page. In both cases, a positive transverse displacement is up-
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Figure 107 Why is there a sign difference in the two resultant shear strains?

ward, in the direction of the associated coordinate direction. The rate of change
of the transverse displacement, or the slope of the deformed axis, is positive
if it points in the direction up and to the right. On the other hand, according to
the right-hand rule, the rotation 8, is positive if it is anticlockwise, while the
rotation 8, is positive if it is clockwise. Thus, in the first case the shear angle
is the difference between these two positive quantities, while in the second case
the shear angle is the sum of these two positive quantities.

Constitutive equations in terms of displacements. We can write out the
canonical constitutive equations for the resultants in terms of displacements.
Using Eqn. (453) in Eqn. (457), we arrive at the following explicit relation-
ships for the components of the stress resultants, for the in-plane forces

Naﬂ = h[/l wy,ydaﬂ + K (Wﬁ’a + wa,ﬁ) ] (461)
where J, is the Kronecker delta, for the transverse shears
0. = h,u[wm +eaﬂoﬁ] (462)
where €, is the alternator, and for the bending moments
.y
My = ﬁ[’l €ap€mOry +/‘(€rﬁ€aﬂ9mr +95’a” (463)
To get a clearer idea of how these constitutive equations look, it is instructive

to write out the explicit expressions for Eqns. (461), (462), and (463) as sug-
gested in Problem 209.

Navier equations for plates. Substituting the expressions for the in-plane
forces into the equilibrium equations, Eqns. (448), and (448),, we find a sys-
tem of second-order differential equations for the in-plane displacements w,
and w,, often referred to as the Navier equations. These equations are

h{(A+1)Wpge +8Wargs] + ga = 0 (464)
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The in-plane equations for the plate are completely uncoupled from the bend-
ing equations, in much the same way the axial equations were uncoupled from
the bending equations for linear beam theory. In essence, these are averaged
plane-stress equations, and are amenable to solution techniques for plane-
stress problems.

We can perform the same operation on the equations for the plate-bending
problem. Substituting the moments and transverse shears given by Eqns. (462)
and (463) into the equilibrium equations, Eqns. (449), and (449)y, we find a
system of second-order differential equations governing the transverse dis-
placement w;, and the rotations 6, and 0,, often referred to as the Mindlin plate
equations. The equations are given by

% [l I (eyﬂeavﬁy,m + Bﬂ,aa> ]

(465)
+ hueaﬂ[wm + eayﬁy] +m;=0

h:u[wbaa +€aﬂ0ﬂm] + q = 0 (466)

We can observe that when the equations are expressed in this form, they lose
much of their physical appeal. It is difficult to see the simplicity of the concept
of the stress resultant, the simplicity of the equations of equilibrium, and the
simplicity of the kinematic hypothesis in these equations. Furthermore, classi-
cal solutions to these equations are few and far between. It is instructive to
write out the explicit expressions for Eqns. (465) and (466), as suggested in
Problem 210.

Boundary Conditions

We have already addressed the subject of prescribing tractions on the top and
bottom surfaces of the plate. In fact, the definitions of applied force and mo-
ment include the resultants of these prescribed tractions. We must also consider
the tractions that exist at the edges of the plate. Let t; be the applied traction
field on the edge T, which is parameterized by its arc length s. Computing the
net force and moment acting along the edge leads to the definition of the edge
resultants as

3 3
gr(s) = j tr(s,x;) dx;, mp(s) j p(x;) X tr(s,x;) dx; (467)

These forces represent the net resultants of the applied tractions at the edge of
the plate.

The plate suffers from the same problem on the boundary as the beam does.
Technically, we should consider the edge of the plate as having either applied
tractions or prescribed displacements. Our theory is expressed in terms of re-
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sultants, and, as such, is not equipped to differentiate between a regionon aline
through the thickness with prescribed tractions and a region on that same line
with prescribed displacements. However, it should be clear that this point of
view would force us to admit only completely fixed or completely free edges.
We would not be able to model a simply supported plate!

The kinematic hypothesis again comes to our rescue. Because the kinematic
hypothesis implies that each line through the thickness is rigid along its own
length, and because the displacement map is expressed in terms of motions of
afixed point (usually the middle surface) on thatline, we can imagine prescrib-
ing the displacement at a single point. In the three-dimensional theory, such a
prescription would not be admissible because a point force is a finite force ap-
plied over a vanishingly small area and, thus, leads to infinite tractions and
stresses. The assumption of rigidity, while not really justifying the concept of
a pointload, certainly allows the theory to accommodate it. In view of this spe-
cial feature of plate theory, we can now imagine a thickness line where the net
displacement w is prescribed, but the net rotation is not. This condition, known
as the simple support, plays an important role in structural engineering. If the
displacement w(s)= 0 is known, then some corresponding force must be un-
known. We can demonstrate through a virtual-work argument that the un-
known force is qr. Further, since the cross section is free to rotate, there must
be some force that is prescribed. Again, we can demonstrate through a virtual-
work argument that that prescribed force is my.

Sucha condition of mixed boundary conditions can only be realized through
a condition of constraint. Imagine simply that our plate is attached to a rigid
band at the edge. The tractions that the plate feels are those transmitted to it
from the band. Now we can imagine that the rigid plate is attached to a piano
hinge that is free to rotate about the axis of the hinge, but is not free to translate.
This device constitutes our version of the simple support. Since plate theory
actually provides the rigid band, we need not worry about its physical imple-
mentation to carry out calculations.

Since we are in the business of concocting support devices for our plate,
why not imagine a whole collection of such devices. We have five generalized
displacements (including rotations) at each point. We can imagine a device that
independently prescribes the associated force or displacement for each one.
Hence, each component of the edge resultant vectors can exist as either a pre-
scribed force or a reaction force if the corresponding displacement is pre-
scribed. We must prescribe either the force or the displacement at each point
on the edge. Thus, we always have exactly five boundary conditions. These
conditions are always exactly enough to determine the constants of integration
that we get when we solve the governing differential equations.

At each point s on the boundary of the plate, which has normal nr(s), either
the force Q, (s) = qr(s) will be prescribed, or the displacement w(s) will be
prescribed, but not both; either the moment on the edge of the plate
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M, (s) = mr(s)will be prescribed, or the rotation 6(s) will be prescribed, but
not both. If both the displacement and the rotation are prescribed to be zero,
then the condition is called a fixed edge. If both the force and the moment are
prescribed to be zero, then the condition is called a free edge. Various mixed
conditions can also be realized, as mentioned above.

The Limitations of Plate Theory

Plate theory, like beam theory, suffers from an inconsistency brought on by the
constraint implicit in the kinematic hypothesis. The ramification of the Kirch-
hoff assumption is that the normal strain through the thickness of the plate van-
ishes. In our coordinate system, this means that the strain component E,; = 0.
Because normal strains are coupled in the isotropic elastic constitutive equa-
tions, this constraint implies that S,; #0. However, from physical observa-
tions, we know that S;; =0 comes closer to representing the actual stress state.

What would have happened if we had made the assumption of vanishing
stress and not the assumption of vanishing strain? We have done it before. We
made exactly that assumption for the condition of plane stress (see Problem 97
in Chapter 4). If we made the assumption that §;; = 0we can write the consti-
tutive relationship in the form

Saﬂ = 1‘Ew6aﬂ+2ﬂEaﬂ, Sa3 = 2ﬂEa3 (468)
where the new constant 4° is given by
. _ 2k wC
A S g (469)

where ¥ is Poisson’s ratio and C is Young’s modulus. This gives us a way to
partially recover from our difficulties. In the constitutive relationships for
plates, if we simply substitute the value A" each time A appears, then the results
of plate theory are remarkably good. In most classical treatments,
2u = C/(1+v)is used so that the elastic constants are Young’s modulus and
Poisson’s ratio. Thus, in the constitutive equations, we will replace E = A4 +2u
with E* = 2" +2u = C/(1-+2).

The Kirchhoff assumption also requires that normal lines remain straight af-
ter deformation. As the restraint of out-of-plane warping does in beams, the
restraint of curvature of the normal line in plate theory compromises the repre-
sentation of the shear stress distribution. In fact, this constraint implies that the
shear stresses have the form S,; = p(ws,; +6,)and S;; = p(ws,, — 6,), and,
hence, are constant with respect to x;. The stress components S, and S, are
bothlinear in x;. The constant shear stresses are inconsistent with local equilib-
rium of the linear normal stresses because, for example, S11,; + 1,2 + 513,318
a nonzero linear function of x, and, therefore, cannot vanish at every point
along the normal line. The extra stiffness induced by the constraint can be ame-
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liorated by replacing 4 in Eqn. (462) with 5h/6. This adjustment is entirely
analogous to the shear coefficient in Timoshenko beam theory.

The Principle of Virtual Work for Plates

The principle of virtual work for a three-dimensional continuum can be used
to develop an equivalent principle for plate theory. We shall compute the ap-
propriate external work from the three-dimensional theory. The advantage of
starting with the three-dimensional theory is that we need only to know that
work is the product of force and displacement. Straightforward operations will
yield the result that work for a plate includes terms computed as the product
of moment and rotation.

The displacement map is constrained by the kinematic hypothesis. We must
construct our virtual displacement field in accord with the same hypothesis.
Hence, our (three-dimensional) virtual displacement field is

U(x,, X5, X3) = W(x,,x,) + 0(x;,%,) X p(xs) (470)

where W and 0 represent the generalized virtual displacements of the plate.
The external virtual work is simply the product of the applied body forces and
tractions with their respective virtual displacements, integrated over the vol-
ume of the structure

W, = j [t+ CWey, Xp By + 7 We,x, B)| dA
Q

13 13
+ J ] b'ﬁdx3dA+ J ] tr'ﬁdx:,ds
Q rJh

(471)

where b is the body force, t* and t~are the applied tractions on the surfaces
of the plate, tris the traction field along the edge of the plate. Substituting Eqn.
(470) into (471) and carrying out the appropriate integrals, we obtain a two-di-
mensional expression for the external virtual work. The first two terms are

2 2
fW- (t++t‘+I bdx3)a'A + j 9 (px(t++t")+I pxbdx3)dA
Q 2 2 h=

The terms in parentheses are precisely our definitions of the resultant of the
applied loads q and m, respectively. We can use a similar argument for the third
term in Eqn. (471). This term can be rearranged to read

13 13
j (W : I tr(s, x5) dxy + 0 I p(x;) X tr(s,x;) dx3) ds
r k &

Clearly, the two integrals over the thickness are precisely our definition of the
resultants of the tractions on these lines—qr and my. Thus, in the context of
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the kinematic hypothesis, these two terms exactly account for all of the virtual
work done by the traction forces on the edges of the plate. We can also see that
qrand mrare the natural forces conjugate to W and 8 on the boundary, respec-
tively, in the sense that they completely characterize the virtual work done.

Combining these results, we can see that the external virtual work done by
the forces acting on our plate in going through a virtual displacement is

'WE=I(q'W+m-§)dA+[(qr-w+mr-§)ds (472)
Q

r

Observe that, within the context of the kinematic hypothesis, this expression
for the external virtual work is exactly consistent with the three-dimensional
theory. As with the beam, the moment and rotation are duals.

The principle of virtual work is a valuable tool with which to consider the
conjugateness of stress and strain resultants. We saw in the derivation of the
principle of virtual work that a measure of internal virtual work involving the
product of stress and virtual displacement gradient appeared naturally. It had
the form

Wl:JS.VﬁW
B

Youmight expect that, if a reduced theory is truly compatible with the three-di-
mensional theory, then an analogous expression for internal virtual work in
terms of the resultant quantities should result. In fact, we could use this equiva-
lence to define which resultant strain measures are appropriately conjugate to
the defined stress resultant measures. This equivalence is particularly impor-
tant since we defined stress resultants without regard to the specific kinematic
hypothesis, and the kinematic hypothesis had nothing to do with the definition
of stress resultants.

Let us substitute the virtual strain implied by our kinematic map into the ex-
pression for the internal virtual of a three-dimensional continuum

13
W, = I I S’((Ea+iaXp)®ea—§)dx3dA
Q7 h

13
=jj(?a+iaXp)'Seadx3dA
Q

F F
=I fa’f Se,dx, + ia'f p X Se,dx; | dA
Q h [

where €, = W,, + e, X 0, and %, = 0,, are the virtual strains associated
with the virtual displacements and we have noted that S + @ = §;0; = Obe-
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cause S is symmetric and ® is antisymmetric. Recognizing the definitions of
resultant force and resultant moment, the expression for internal virtual work
takes the following form

W, = j (Q. & +M, %,)dA (473)
Q

The final form of the internal virtual work is interesting and important. Each
term in the expression is analogous to stress times virtual strain. In the present
case, this analogy translates to stress resultant times strain resultant. Thus, we
can see that the resultant strains are conjugate to the resultant stresses in the
sense of virtual work. Notice that the demonstration of conjugateness did not
involve the constitutive equations.

We are now in a position to state the principle of virtual work for plates. If
the external work is equal to the internal work for all virtual displacements sat-
isfying the strain displacement relationships, then the equations of equilibrium
are automatically satisfied. Let us adopt our usual convention of defining the
functional G(M, W) = W,— W, to be the difference between the internal
virtual work and the external virtual work. The notation M = {Q,, M.}
stands for the stress resultants of the plate and ‘W = {W, 0} the virtual dis-
placements. The principle of virtual work for plates is

If GM, W) =0 VW € P(Q) then
Qa,a + = 0
LT

Mg, +€ xXQ,+m=20 (474)
Qana = (Ir
M,n, = m; on I’

The virtual-work functional G(M, W) can be expressed explicitly by col-
lecting the internal and external virtual work definitions as follows

G(J%,W)EJ(Qa-ta+Ma-ﬁa—q-W—m-5)dA

2 #75)
—I(qr-w+mr-?§)ds
T

In the principle of virtual work, we have designated P(€2) as the collection of
admissible functions defined over the domain of the plate. Since there are no
derivatives of order greater than one in the functional, the functions must have
square-integrable first derivatives. The principle of virtual work can be modi-
fied to exclude the unknown boundary reaction forces by suitably restricting
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the space of admissible functions. Let I, be that portion of the boundary where
the resultant force is prescribed, and T, that portion of the boundary where the
resultant moment is prescribed. Define a new set of admissible variations to be
the collection of functions in P,(Q) = {W,8} with W = 0 on I, the portion
of the boundary where the displacements are prescribed and 8 = 0on T, the
portion of the boundary where the rotations are prescribed. Clearly, we must
account for the conditions on the entire boundary. Therefore, we must have
I'.UT,=TandT, T, = I'.Theregions cannot overlap. Therefore, the
intersection of the regions is empty: I', T, = @and T, N [, = 0.

The Kirchhoff-Love Plate Equations

A much simpler set of equations results if we neglect transverse shearing de-
formations. To do so leads to the famous Kirchhoff-Love plate equations. As
with the beam, neglecting the transverse shearing deformations has two impor-
tant effects. First, it allows us to express the rotations in terms of the transverse
deflection, thereby reducing the above equations to a higher-order equation in
asingle variable. Second, the constraint uses up the two constitutive equations
for the transverse shear forces, and, hence, those forces must be determined
from equilibrium equations. Let us call the transverse displacement w; = w,
and implement the constraints w,, +6, = O0and w,, —8, = (. Let us assume
that there are no applied moments, m;, = m, = 0, and let us designate the
transverse force simply as g; = g.

We can eliminate the shear forces Q, from Eqn. (449) by differentiating
(449), with respect to x,, multiplying the result by &,,, and substituting Eqn.
(449),. Upon doing so, we arrive at the equilibrium equation in terms of mo-
ments alone. To wit
Mopey — g =0 (476)

En

With the constraint on the shear deformations we have 6, = €,,w,4. Substitut-
ing these relationships into the constitutive relationships for the moments, Eqn.
(463), we have the following constitutive equation for the moments

My = D(vegw,, +(1-v)esw,s) @77)

These equations can be written out as
M, =D(1-v)w,, = —My,
My, = —=D(w,; +vw,y)
M, = D( Wiy +vw,11)

where we have defined the plate modulus D as
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— 1 73(9+ _ Ch?

D =l +2u) = #78)
where Cis Young’s modulus and v is Poisson’s ratio. Recall also the relation-
ships A°/(A"+2u) = vand 2u = C/(1+v) = C(1—v)/(1-v?).

The shear forces must be computed from an equilibrium equation because
of the vanishing shear deformation constraint. From equation (449), with no
m, we get

o, = —D(W,m + W’zzl)
0, = —D(W’zzz + sz)

Differentiating Eqns. (477) in the appropriate manner and substituting the
results into Eqn. (476), we arrive at the governing equations of the Kirchhoff-
Love plate theory

(479)

DVw = g (480)

where D is the plate modulus and the differential operator V*is given in terms
of the mixed fourth partial derivatives as

4, — O'w d*w 3w
Viw = A + 222 pr + £ (481)
The analogy to Bernoulli-Euler beam theory is quite evident here. In fact, if it
were not for the cross-derivative term, these equations would be exactly equiv-
alent to a grid of orthogonally placed beams interacting through frictionless
contact acting to resist the load g. Early attempts at plate theory actually used
this approximation, known as the Grashoff approximation, to simplify design
calculations. The mixed term comes about from the presence of twisting mo-
ments in the plate and contributes a great deal to the stiffness of the plate.

Since the constitutive equations for shear have been sold for the price of a
reduction in the number of independent descriptors of the kinematic field, you
might expect that the boundary conditions of the plate will also require some
attention. In particular, the shear-free boundary conditions must be obtained
from the equilibrium equations.

Constraining the shearing deformations to be zero allows us to state the ki-
nematic hypothesis in a slightly different form. Now the vector normal to the
middle surface remains orthogonal to the tangent plane of the surface (that is,
the collection of all vectors that are tangent to the middle surface). As a conse-
quence, we often hear of the Kirchhoff hypothesis that lines normal to the
middle surface in the undeformed configuration remain normal to the middle
surface after deformation. The orthogonality of lines with the tangent plane is
analogous to coincidence of normals to the tangent line (deformed axis) of a
beam, both representing the zero-shear deformation constraint. One must be
careful not to be seduced into seeing the similarity between the Kirchhoff hy-
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pothesis and the statement of the fundamental beam hypothesis that lines nor-
mal to the cross section remain normal after deformation. Both speak of lines
remaining normal to something after deformation, but in one case shear is
constrained out, while in the other it is not.

Virtual work for the Kirchhoff-Love plate. We can derive the appropriate
expression for the virtual-work functional for the Kirchhoff-Love plate by im-
plementing the vanishing shear deformation constraint directly into the virtual-
work functional of the ordinary plate theory. To simplify the discussion, let us
ignore the in-plane aspects of the plate problem in favor of the plate-bending
problem. Let us also assume, for simplicity, that there is no applied bending
moment m. It should be obvious how to implement a nonzero moment into the
theory. With these assumptions, the internal virtual work is given by

W, = fMa - %, dA (482)
Q

Noting that M, - %, = M ,0,,, and 8, = €,,W,, along with the constitutive
equations for moments given in Eqn. (477), we get

W, = ID(vw,aaW,ﬂﬂ+ (1—v)w,aﬂw,aﬂ)dA (483)
Q

The external work can also be computed from the complete form of the
virtual work (again assuming m = 0)

W, = f gwdA + J (mp- 0 + n,0,w)ds (484)
Q r

where Q,n, is that part of qr - W exclusive of the in-plane components along
the edge with normal n.

The boundary term is the source of some difficulty because of the vanishing
shear constraint. To appreciate the problem, consider the simply supported
boundary along an edge of length £ with normal n = e;, as shown in Fig. 108.
Along this edge we have the following contribution to the external virtual work

I4
j (anaz —M12W’1 +Q1W)ds (485)
0

X3
e
xl 1

Figure 108 Simple support conditions on the boundary of a plate
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Along this edge the displacement is constrained to be zero. Rotation can occur
about the x, axis, but rotation is restrained about the x, axis. The key observa-
tion is that the restraint of the edge displacement #w = 0 implies vanishing of
the rotation W, about the x, axis. Thus, the rotation W,, is not independent from
w, while W,, is independent. With this lack of independence, the fundamental
theorem of the calculus of variations cannot be applied.

To get the expression to a form where the fundamental theorem can be ap-
plied, we must integrate the term containing w,, by parts to get

4

¢
J [(Ql—Mu,z)W - MIZWH]ds +M,w 0 (486)
0

This expression affords some interesting observations about the boundary con-
ditions of the Kirchhoff-Love plate that appear because of the constraint of
vanishing shear deformation. Like the Bernoulli-Euler beam, the Kirchhoff-
Love plate must have exactly two boundary conditions at each point along the
edge. These two conditions can be any of a variety of possible conditions. The
fixed edge has vanishing transverse displacement w and vanishing rotation
(w,, for an edge with normal e;, and w,, for an edge with normal e,). The sim-
ple support has vanishing transverse displacement w and vanishing tangential
moment (M, for an edge with normal e,, and M, for an edge with normal e,).

The free edge boundary condition is the mysterious one. It has vanishing
tangential moment and vanishing effective shear (Q, —M,,, for an edge with
normal e, and Q, +M,,,, for an edge with normal e,). It would appear, from
purely statical considerations, that the shear force Q,, should vanish on a free
edge, as it does for the beam. However, because of the kinematic constraint,
we find that the effective shear must vanish instead. Kirchhoff was the first to
recognize this peculiar feature of the constrained plate theory so the effective
shear is often called the Kirchhoff shear (he called it the erzatzkrdfte). The
virtual-work argument is the clearest way of seeing the need for this boundary
condition because the conjugate conditions always appear in the virtual-work
statement of the boundary value problem. In equation (486), we can see that
the effective shear multiplies the virtual displacement, while the tangential mo-
ment multiplies the tangential virtual rotation. On any edge, either the dis-
placement or the effective shear can be prescribed, but not both; either the tan-
gential rotation or the tangential moment can be prescribed, but not both. The
four possible boundary conditions for an edge with normal e, are as follows

w = vanishing displacement

Wy vanishing tangential rotation

vanishing tangential moment

(== e R e I

W, + vW,p

Wiy + (2-V)W, = vanishing effective shear
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X3 X2 mp

Xy

Figure 109 General edge conditions on the boundary of a plate

The second peculiar feature of the boundary conditions of the Kirchhoff-
Love plate is the last term in Eqn. (486). This term, M,,(€)W(£) — M,,(0)#(0),
resulted from the integration by parts that got rid of the W,, rotation in Eqn.
(485). Each edge will generate terms of this variety. For two edges that meet
in a corner, the terms may not cancel, giving rise to the so-called corner forces
of Kirchhoff-Love plate theory. Again, these concentrated forces are an arti-
fact of the constrained theory. However, they do approximate a phenomenon
that is observed in plates: a tendency for the corners to curl if not restrained.
If there are no corners on the boundary of the plate (as in a circular plate), these
terms vanish.

The treatment of the boundary conditions for the general curved boundary
is of interest. Consider the plate shown in Fig. 109. The boundary of the plate
can be described by the unit normal vector n = n,e,. The vector tangent to the
edge (and in the plane) of the plate is t = ¢, e,. The components of nand tare
related by

ly = €galy < N, = €qly (487)

where €, is the two-dimensional alternator. The moment m acting on the
boundary can be decomposed along the normal and tangential directions as

m; = (m; - n)n + (m; - t)t
Therefore, the dot product of the moment with the virtual rotation is
m:-8=(m: n)0 n)+ (m-t)0 -t

This key term will appear in the computation of the external virtual work. The
vanishing shear deformation constraint relates the components of 8 and W as
follows

Ba = eaﬂW,ﬂ <> W,a = Eﬂaeﬂ

With this observation, we can easily show that

- n=Vw-t, 0-t=—-Vw-n

where VW - n gives the rate of change of W in the direction n. The external
virtual work done by the moments on the boundary can be expressed as
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(488)

We need one more result concerning the integration of a function around a
closed curve before we can compute the external work.

Lemma. Let v(s) and w(s) be two scalar functions defined along a
closed curve I, parameterized by its arc length s, in three-dimensional

space. Let t(s) be a unit vector field tangent to the curve at every point.
Then

JVVW’tds= —JwVv*tds (489)
r r

Proof. Note first that V(vw) = vWw+ wVv. We can integrate this ex-
pression over the closed curve as follows

JVVW’tdS = jV(wv)%ds—JwVv%ds
r r

r

Finally, observe that the first integral on the right side is the integral
of an exact differential along the curve, and can be evaluated as

b

a

j V(wv) - tds = wv
r

If the curve is closed, then the initial point s = a and the end point
s = b occupy the same position on the curve. Since the curve is con-

tinuous we have w(b)v(b) —w(a)w(a) = 0. ]

Identify v = mr - nin the above lemma, and the first term on the right side
of Eqn. (488) can be integrated to give the work of the edge moments as

L(mr-c)ds - —IWV(mr-n)-tds

r (490)
—I(mr-t)(VW'n)ds
r
Let us define the tangential moment M s and the effective shear QS as
Ms = m[‘ * t
n 491
Q, = Q.n,—V(m; - n) -t D)
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These quantities can be computed in terms of the components of the moment,
shear, and normal vector by noting that my = n,M, = n,M e, and that tis
related to n by Eqn. (487). Substituting these results into Eqns. (491), we get
the component expressions

M, = nMyt, = n,Mgegn,
Qs = Qana - (nanBnﬁ)’y €N,

For the edge with n = e, we have n; = 1 and n, = 0. It is straightforward
to show that the general boundary conditions reduce to the special ones derived
previously for this case, that is, M, = M,and Q, = @, —M,;,..

Finally, adding the loading term and the shear term to Eqn. (490), which ex-
presses the external work done by the boundary moments, we find a more con-
venient form for the external virtual work. Substituting our newly defined
terms into Eqn. (484), we have the following expression for external virtual
work

W, = [ qwdA + I (QSW—MSW,yny)dS (492)
Q r

As we saw in the case of beams, the expression for the external virtual work
can be quite valuable in determining the appropriate boundary conditions be-
cause the external virtual work always involves the product of a force quantity
with the appropriate conjugate displacement quantity. For the Kirchhoff-Love
plate, the transverse displacement w is conjugate to the effective shear Q,, and
the tangential rotation w,, n, is conjugate to the tangential moment M, on the
boundary. Therefore, we can deduce the possible boundary conditions for each
point along an edge to be two conditions taken from the following four

w = 0  vanishing displacement
Wiy Tty 0 vanishing tangential rotation @93)
M, 0  vanishing tangential moment
Q. = 0 vanishing effective shear

We can define the virtual-work functional as the difference between the in-
ternal and the external virtual work. As usual, we will want to restrict our func-
tions in a way that forces the boundary terms to be zero. We can accomplish
this goal by selecting virtual displacements that satisfy the essential boundary
conditions, that is, boundary conditions on the displacement and the tangential
rotation. Boundary conditions on the tangential moment and effective shear
are natural boundary conditions, and need not be restricted in order for the
boundary term to drop out of the virtual-work functional. As before, let us call
I, that portion of the boundary where displacements are prescribed, and I’
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that portion of the boundary where tangential rotations are prescribed. Define
the admissible virtual displacements to be those functions #{(x,, x,) that satisfy
#w = OonT',and w,,n, = Oon I',. Letus call this restricted collection of func-
tions P, (£2). With this restricted set of functions, the virtual-work functional
can be expressed as

Gw,w) = j[D(vw,aaw,ﬂﬂ+(1—v)w,aﬂw,aﬂ)—qw]dA (494)
Q

and the principle of virtual work can be stated as

If Gw,w)=0 VweE P.(Q)
then €,M,,, —q =0 inQ

As usual, the principle of virtual work simply states that if internal work is
equal to external work for all test functions, then equilibrium is automatically
satisfied. Since we restricted the test functions to be zero on the portion of the
boundary where displacements or rotations are prescribed, the principle of
virtual work no longer tries to satisfy the reaction boundary conditions auto-
matically. However, as we observed for the little boundary value problem,
since the edge is adjacent to a portion of the domain, and the principle of virtual
work is satisfying force equilibrium inside the domain, then the natural edge
conditions should also be satisfied. Therefore, the reactions we compute at
those points from the equations of equilibrium should be appropriate to the giv-
en problem.

The Ritz method. Having the virtual-work functional at our disposal, we
can proceed to develop approximations based on the Ritz method. The method
follows exactly the same idea as all of its previous incarnations. We must
approximate the transverse displacement from basis functions that belong to
P.(2). Let h,(x,, x,) be among those functions. We can then approximate the
real and virtual displacements as

N N

w(xI’xZ) = Zanhn(xI’xZ)’ w(xlaxZ) = Zﬁnhn(xI’xZ) (495)

n=1 n=1

where a, and @, are constants to be determined, and N is the number of basis
functions included in the approximation. If we define the matrices K and fto
have components

Km,, = f D[th’aa hmﬂﬂ +(1 _v)h”"aﬂ h"’aﬂ] dA (496)
Q
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X3 X, Xy 4
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| | all around edge
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X, 07 T g X,

Figure 110 Simply supported square plate exampie

fu= J qh, dA (497)
Q

then the virtual-work functional reduces to G(a,a) = a’ (Ka— f), which is
zerofor all @only if Ka = f. As with beams, K is often called the stiffness ma-
trix, and f the load vector.

Example 51. Consider a square plate of depth & and sides of length 7z, subjected
to a downward uniform load of intensity — gq,, shown in Fig. 110. Let us consid-
er a single-term approximation for the real and virtual displacement
w(x),X;) = a, sinx,sinx,,  W(x,,x,) = @, sinx, sinx,
The second partial derivatives of the displacement needed to compute the stiff-
ness matrix are
W, = — a,sinx,sinx,
W,1, = @, COSX, COSX,
W,y = — a,sinx,sinx,
The virtual displacements can be treated in the same manner. Eqn. (494) sug-
gests that we need
Waaa Wy = 4a,@, sin? x; sin’x,
Wyan Woay = 2a,@,(sin?x, sin’x, + cos?x, cos’x,)
Substituting these results into Eqn. (494) and carrying out the integrals, we get
G(a,, @) = (n*Da,+4q,)a, =0

where D is the plate modulus. Clearly, G can be zero only if 4, = —4q,/n?D.
Thus, the approximate solution is

40 .
w(xy, X,) = — ——sinx,sinx
( 1 2) 2D 1 2
We generally would not expect a one-term approximation to be very accurate;
however, the present approximate solution happens to be quite good. In fact, if
we take the displacement to be a sine series of the form
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o
Qmn SinnX | sinmx,

n=1

@
W(xl’xZ) = 2
m=1

then we can use the Ritz method to find the coefficients (Problem 212) to be

44, 4
Amn = — —_— mn = 1,3,5,...
™ 7D | mn(m* +n?)? [ ’
The even coefficients are zero, i.e., an, = Oform,n = 2,4, .... The series

converges quite rapidly, with most of the contribution coming from the first term
(i.e., the one we used originally). Part of the reason the series converges so rapid-
ly is that the base functions satisfy not only the essential boundary condition
w = 0, but also the natural boundary condition M, = 0. While the principle of
virtual work does not require that the basis functions satisfy the natural boundary
conditions, to do so will generally improve the approximation.

The preceding example illustrates the essentially two-dimensional charac-
ter of the principle of virtual work for plates, and shows some distinct differ-
ences from beam theory. Plate theory is governed by partial differential equa-
tions, while beam theory is governed by ordinary differential equations. While
we can often find classical solutions to beam problems, we can seldom find
classical solutions to plate problems. The principle of virtual work can be very
valuable in the solution of these problems.

Additional Reading

Y. C. Fung, Foundations of solid mechanics, Prentice Hall, Englewood Cliffs,
N.J., 1965.

H. L. Langhaar, Energy methods in applied mechanics, Wiley, New York,
1962.

S. P. Timoshenko and S. Woinowsky-Krieger, Theory of plates and shells, 2nd
ed. McGraw-Hill, New York, 1959.

R. Szilard, Theory and analysis of plates: Classical and numerical methods,
Prentice Hall, Englewood Cliffs, N.J., 1974.
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Problems

208. The three-dimensional rotation tensor A without drilling rotation can be obtained
from two successive rotations, first 1 about the x; axis, and then ¢ about the new x, axis
cos¢p O sing 1 0 0

A@W,9) = 0 1 0 0 cosy siny

~sing 0 cos¢ 0 —siny cosy
Compute the product of the two tensors to find A. Demonstrate that the tensor A isorthogo-
nal by showing that A=! = AT, Show that for small values of the parameters v and ¢, the
tensor can be expressed in the form A = I+ W, where I is the identity and W is a skew-
symmetric tensor. Show, therefore, that when the parameters are small, they can be viewed

as the components of the rotation vector O withy = 8,,¢ = — 6,,and 6; = Osuchthat
W =0 x.

209. Write out the explicit constitutive expressions for the stress resultants
Naﬂ = h[lw}"}’éaﬂ + H(Wﬁ,a +Wa’ﬂ)]
Qa = [ Waa +e g6

M, = }ll—;[lfaﬂfmew + H(Gyﬁfavemr +eﬂ’a”

210. Write out the explicit equilibrium expressions for the Mindlin plate equations

?—;[leaﬂeyﬂowra + H(Erﬂeaﬁwm +05,m)] + }yteaﬂ(w3,a +6W97) +my = 0
hﬂ(wz»aaa +eaﬂ0ﬂ’a) +g;=0

211. For a smooth boundary, the expression for the external virtual work for the Kirch-
hoff-Love plate is

W, = [ qwdA + [ (QSW—MSW,yny)ds
Q r

Modify the equation to account for point loads in the domain and corners on the boundary.
‘What terms need to be added for a plate that has the shape of aregular polygon with nsides?

212. Consider the simply supported square plate of depth &, sides of length 7z, moduli 4
and u, subjected to a downward uniform load of intensity —g, (shown in Fig. 110). As-
sume an approximate transverse displacement of the form

©

w(xy, X;) = z z @y SINMX, SINAX,
m=1n=1

with a similar approximation for the virtual displacement. Assume that shear deformations

are negligible and compute the coefficients a,,, using the principle of virtual work. Is it

possible to consider an infinite number of terms in the displacement function? How should
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the solution be modified to solve the problem of a rectangular plate of dimensions
€, x €7

213. Reconsider the plate in Problem 212. We can compute an approximate solution using
the Ritz method with a polynomial basis. Note that, in order to satisfy the boundary condi-
tions, the polynomial must have the form

W, X;) = XX, (6 — )X, — ) agy + ByoX; + a0 Xy tap XXyt ]
(a) Compute the approximate displacement considering only the first term ag,.
(b) Unlike the beam, where we can add one term at a time with good results, the next term
we might want to add to improve the solution is more complicated for the plate. Since
the displacement is a function of two variables, it is possible to introduce an asymme-

try if we are not careful in the introduction of new terms. One strategy is to select all
terms with the same exponents, as shown below by the dashed lines.

\\1//
\ %1 X2

2\ 2

X1 \xlxz// *2
2.\ .2 3

X AN x7xy 7 x1x5 /x5

4 x3 2,2 3 4

X X, \ XTX5 / X1x X
2 1

1 1 172, 2 2

N

Resolve the problem using a four-term and a nine-term approximation.
(c) A mixed strategy for selecting the basis functions might also be fruitfully employed.
Solve the problem with the four-term approximation

w(x,x;) = sinx;sinx,[ag + apx; + agx, + a;;x,x,]

214. Consider a square plate of depth 4, sides of length €, moduli —q, X2
A" and u, subjected to a downward uniform load of intensity
—g,. Assume that shear deformations are negligible (i.e., Kirch-
hoff-Love plate theory is applicable). Find an approximate dis-
placement for the following boundary conditions

Xy
@ *24 ®) %24 © 7
¢ = (E—— 14
fx : ss ss : fr fx fr
I - l. —_— P o

0 ¢ M 0 ¢ xm 0 x € %

where the designation ss indicates a simple support, fx indicates a fixed edge, and fr indi-
cates a free edge.

215. Solve any of the above variations on the square-plate problem with any combination
of the following differences

(a) Consider a rectangular plate of dimension £, X £,.
(b) Consider a load form different from a uniform load.
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216. Solve the square (z X ), simply supported plate under uniform load (shown in Fig.
110) considering shearing deformations. Note: You can still neglect the in-plane problem
because it is uncoupled from the bending problem. Use the Ritz method. Note that
w(x,, x,) must vanish on the boundary, but that 8,(x,,x,) and 8,(x,, x,) are not restricted.
Let w(x,, x,) = a, sinx, sinx,. Select the functions for 8, and 8, so that the shearing de-
formation is linear, that is

01 = W,y + bl(sz’ﬂ), 02 = TWy + bz(le _‘ﬂ)

What is the result of making such an assumption? Noting that the tangential moment must
vanish on the boundary, is there a means of finding a better displacement function? Can
we use statical considerations to improve the approximation of the rotation field?

217. Consider a square (& X x) plate subjected to a uniform  *24
transverse load . The plate is simply supported along the edges
x, = 0 and x, = s with any boundary conditions along the
other two edges. Assume that shear deformations are negligi- any any
ble. According to the method of Kantorovich let us assume that

the real and virtual displacement fields can be represented as 0= —ss— —;t -

S8

Yl

w(xy, x;) = Wxp)sinx,,  W(xy,x) = Wix;)sinx,

where W(x,) and W(x,) are unknown functions.
(a) Substitute these functions into the virtual-work functional

G(w, W) = f [D(vw,aaw,ﬂﬂ + (1—-v)w,aﬂW,aﬂ) - qw] dA
Q
and show that W(x,) must satisfy the ordinary differential equation

WY oW+ W o= oL
nD

(b) Verify that the following function satisfies the above equation

4 .
W(x) = n_g + (@, +a,x,) coshx, + (a3+a,x;) sinhx,

(c) What are the possible boundary conditions for W(x,)? Find the constants of integra-
tion for the case where the plate is simply supported on all four edges.

218. There are many possibilities available within the context of the method of Kantoro-
vich. In general, we use an approximation of the form w(x,,x,) = W(x;)¢(x,), where
¢(x,)is aknown function. In Problem 217, the choice was ¢(x,) = sinx,. Amore general
approach is to use the deflected shape of a simply supported beam subjected to the applied
loading (assuming that it does not vary with x,). Find the general expression for the coeffi-
cients a, b, ¢, and g of the differential equation

aWl —bW'' + cW = g

that results from applying the method of Kantorovich with the known function ¢(x,). Ex-
press the coefficients as integrals of ¢(x,). Can Kantorovich’s method be applied to bound-
ary conditions other than simple supports along parallel edges? How would the approach
change to accommodate more general boundary conditions?
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Energy Principles
and Static Stability

We have presented the principles of the mechanics of deformable bodies first
in the context of vector mechanics, and second in the context of what we have
called the principle of virtual work. Clearly, these two approaches are opposite
sides of the same coin. They are duals of one another. Armed with the funda-
mental theorem of the calculus of variations, we can argue circularly that the
classical form of the governing differential equations (those obtained from
vector mechanics) implies the validity of the virtual-work form of those equa-
tions, and that the virtual-work form of the equations implies the validity of the
classical form. Of course, two principles that are truly equivalent must travel
in this same circle.

Under certain conditions, the principles of virtual work can be recast as ex-
tremum principles. We call such an alternative form of the principle of virtual
work an energy principle. The name “energy” derives from the physical princi-
ple relating real work to energy, i.e., energy is the capacity to do work. In phys-
ics, we identify several forms of energy. Those most important in mechanics
are potential energy, the energy of position (the relative height above datum in
a gravitational field, for example), and kinetic energy, the energy of motion
(proportional to the product of the mass and the square of the velocity). A sys-
tem can have thermal energy, electrical energy, atomic energy, or energy asso-
ciated with a chemical reaction. The law of conservation of energy states that
energy can be neither created nor destroyed. Historically, energy has played
a fairly significant role in physics as well as in engineering. In structural me-
chanics we have the so-called energy principles like Castigliano’s theorems,
Maxwell’s law, Betti’s law, and the principle of least work. In dynamics, we
have Hamilton’s principle.
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Figure 111 A column can be in equilibrium under the
same loading system in both straight and bent positions

Not all differential equations have an associated energy principle. On the
other hand, a principle of virtual work always exists. (Recall that we can create
a virtual-work functional simply from a weighted residual expression. The as-
sociated principle of virtual work is then a direct consequence of the funda-
mental theorem of the calculus of variations). We shall demonstrate, using a
theorem of Vainberg, that if an energy principle exists for a certain differential
equation then we can find the energy functional from the associated virtual-
work functional.

The motivation for studying energy principles is that it provides a means to
assess the stability of equilibrium of structures. Recall that the governing equa-
tions of solid mechanics developed in Chapters 2 through 4, extended to varia-
tional principles in Chapters 5 and 6 via the principle of virtual work, and ap-
plied to beams and plates in Chapters 7 and 8, allow us only to determine
equilibrium configurations of a structural system.t Those equations tell us
nothing about the stability of equilibrium. ’

To illustrate this point, consider an initially straight column subjected to a
compressive axial force P,shown in Fig. 111. The axial force in the straight col-
umn N(x) = P is constant and satisfies the equations of equilibrium at each
point in the column. It is our common experience that if the column has flexural
flexibility (i.e., if EI < o), it cannot sustain arbitrarily large compressive
loads and remain straight (try it with your plastic straw the next time you eat
at McDonalds). Euler was the first to actually compute a value for the maxi-
mum load that the column could sustain. If the column is elastic, and if shear
and axial deformations are negligible, then the critical load (for a pinned col-
umn) is P, = 7°El/€?, where EI is the flexural modulus of the column and €
is its length. This value often goes by the name Euler load, in honor of its dis-
coverer. A column that is asked to sustain a load less than the Euler load will
remain straight, while a column that is asked to sustain a load greater than the
Euler load will buckle into a bent configuration.

+ We will think of a configuration u(x) as a vector field which may or may not satisfy
the governing differential equations (either in classical or variational form). Any con-
figuration that satisfies the equilibrium equations is called an equilibrium configura-
tion. This concept is clearest if we think of a given displacement map u(x), which can
be differentiated to give the strain field, which can be substituted into the constitutive
equations to give a stress field, which can be tested (by substituting it into the equilibri-
um equations) to see if it satisfies the equilibrium equations. If it does then it is an equi-
librium configuration.
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Clearly, the concept of equilibrium alone is not sufficient for describing the
behavior of mechanical systems. We also must examine the stability of that
equilibrium. In the example above, the straight position is an equilibrium posi-
tion for any value of the load P (let us leave aside, for the moment, the question
of whether the material can sustain the stress without failure). Equilibrium
holds for all values of P. However, the straight position is in stable equilibrium
only for certain values of P. Euler found the critical load by considering the
possibility that the column might also be in equilibrium in a bent position and
he rewrote the equilibrium equations in the deformed configuration.” What he
found was that there exists another equilibrium configuration. However, again
the stability of this equilibrium configuration cannot be established from the
equilibrium equations.

The principal goal of this chapter is to develop the appropriate machinery
to examine the stability of certain mechanical systems. We shall restrict our
considerations to static stability and to conservative systems. By a system, we
mean the body in conjunction with its loads. A conservative system is simply
one for which an energy functional exists. This class of systems includes all
hyperelastic systems that are subjected to conservative loads, such as forces
induced by a gravitational field. We shall develop a criterion for assessing the
stability of the system called the energy criterion.

The order of tasks in this chapter is as follows. First we shall introduce the
directional derivative of a functional as necessary background to establish
Vainberg’s theorem. Vainberg’s theorem will provide the connection between
energy functionals and virtual-work functionals by giving a criterion to estab-
lish when an energy functional exists and a formula to compute it from the
virtual-work functional. We will apply Vainberg’s theorem to derive energy
functionals for all of the important theories we have already seen (i.e., the little
boundary value problem, the Bernoulli-Euler beam, the Kirchhoff-Love plate,
and the linearly elastic three-dimensional solid). Finally, we shall introduce the
energy criterion to ascertain the stability of equilibrium.

We can generalize the idea of the equilibrium configuration to include more
than just the displacement map (with the implication that stress is a function
of displacement via the constitutive and strain-displacement relationships). In
fact, we can think of the configuration of the system as comprising the dis-
placement, strain, and stress fields. An “equilibrium” configuration in this
more general setting is any combination of these three fields that satisfies all
of the governing equations. This viewpoint gives rise to some other energy
principles. We shall take a brief look at the Hu-Washizu and Hellinger-Reis-
sner (left as an exercise) energy principles.

T Herein lies the great departure from the analysis of linear systems, where we assume
that we can write the equations of equilibrium in the undeformed position. In general,
we must establish equilibrium equations in the deformed configuration in order to as-
sess the stability of a system.
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Virtual Work and Energy Functionals

When an energy functional exists, its derivative is a virtual-work functional.
In order to explore this connection we must first learn how to differentiate a
functional. In this section we consider methods of differentiating and integrat-
ing functionals.

The directional derivative. As we discussed in Chapter 5, a functional is
an operator that assigns a scalar value to a function. A functional is a function
of afunction. Consider a functional J(u), which takes as its argument the func-
tion u(x). The output of J(u)is a number—the value of J. We can compute the
value of J for any input function (at least among those having the proper char-
acter and defined on the proper region).

Let us compute the rate of change of the functional J. It may be sufficient
to observe that because the input to a functional is a function we cannot think
about rate of change in the same way we do ordinary functions (i.e., the limit
of the ratio of the difference between the values of the function at different
points in space to the distance between those points). In other words, we cannot
compute rates of change like “div” and “grad” like we can for ordinary func-
tions because the inputs to a functional do not enjoy the same spatial organiza-
tion that ordinary functions of position do. However, we will find that the con-
cept of directional derivative is still useful (recall that we used that concept to
develop our ideas for rates of change of vector and tensor fields).

Consider a fixed function u(x).f We can evaluate the functional for the
function u to getJ(u), the value of J at the function u. Now consider a second
fixed function v(x) defined on the same region as u(x). We can define a new
function w(¢) = u+ev as a one-parameter family of functions generated
from the fixed functions u and v. We can, of course, evaluate the functional at
the function w(¢) to get

J(&) = J(w(e)) = J(u+ev) (498)

Observe that, because u and v are fixed, J(¢) is an ordinary function of ¢. Note
that the function w(g) has the properties w(0) = uand w’(0) = v.Inessence,
we can think of w(¢) as being initially at the function uand moving in the direc-
tion of the function v. Because J(¢) is an ordinary function (a scalar function
of a scalar variable, in fact) we can compute the rate of change with respect to
¢ by ordinary differentiation as J'(g).

‘We are most interested in the rate of change of the functional just as we begin
to move in the direction of v, that is, at ¢ = 0. The rate of change is the slope
of the curve J(€) versus € at ¢ = 0, as shown in Fig. 112. We call this rate of
change the directional derivative of the functional and designate it with the

+ The term fixed function means that the function remains the same throughout the dis-
cussion. The fixed function is to the functional what a fixed point in space is to an ordi-
nary function. For a given fixed function there is just one value of the functional.
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J() = Ju+ev)

DJ(u) - v
J(w)

P

€

Figure 112 Variation of J(¢) for fixed functions u(x) and v(x)

notation DJ(u) - v, which reads: the rate of change of J evaluated at u and
moving in the direction of v. Before we formalize our definition, let us consider
a specific example.

Example 52. The directional derivative. Consider the functional J(u) of a scalar
function u(x), defined on x & [0, 1] that has the expression

1
Jw) = u(0) + f u*(x) dx (499)
0
This functional takes functions u(x) and adds the value at x = 0 to the integral
of the square of the function over the region. Let us consider the functions

u(x) = sin(5xx), wx) = %S-xz(l—x)

These functions are shown in Figs. 113(a,b). The first function oscillates over
two and a half complete cycles between 0 and 1, while the second is simply a
polynomial with zero values at the end points. Both functions have a maximum
value of one. Figures 113(d,e,f) show the function that is created by adding a
multiple of v to the original function u. In other words, they plot the function

[
(@) ® — (©) /
(L) =sin(smx) vx) = Bx?(1-x) ) /
AN AN B N 74
AVAAVARRG W=
@ © ® /X~
3| 3 3
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O_i/\ ~1 0 cku.;.zv 1 6 \u+4v 1

Figure 113  Variation of #(x) in the direction of v(x)
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u(x) + £ v(x). To aid the visualization, the curve shown in dotted lines in each of
these plots is the function &v(x). We have chosen for illustrative purposes the
values ¢ = 1, 2, and 4.

The functional can be evaluated for each value of &; the result is shown in
Fig. 113(c). The value of J grows as one would expect from the three specific
cases plotted. In fact, the expression for the functional in terms of € is

J(e) =%+§]1-t38 + 122 (500)
The slope of the curve at ¢ = QisJ'(0) = 1/5x>, as can be seen by differentiat-
ing Eqn. (500) with respect to ¢ and evaluating the resultat ¢ = 0. We can con-
clude that the initial rate of change of J as we move in the direction of v is
DJ(u) - v = 1/57>. Clearly, we cannot compute a nice, tidy function of & for
each possible choice of the function v(x), because we generally are interested in
finding this rate of change for a whole family of such functions. Thus, we must
establish a more convenient method of computing this rate of change. Let us try
to formalize these notions.

Let us consider functions u(x) — B C R’ — R’. Read this notation as,
“The function u takes arguments x from the collection B, which is a subset of
the entire three-dimensional space (the domain of u), and maps them to vectors
u that live in three-dimensional space R* (the range of u).” For example, u
might be the displacement vector in a three-dimensional body, in which case
B would contain any position vector that extended from the origin to a point
in the body. Let us also consider the functional J(u) — F — R that takes the
functions u from the collection ¥ and produces a real number. We wish to find
the rate of change of the functional as we move inthe direction of another func-
tion v(x) = B C R’ — R*taken from the same class of functions as u(x). To
find the rate of change of a functional, we use the Gateaux, or directional, de-
rivative defined as follows

DJ(u) - v = -‘%[J (u(x)+ev(x))] (501)

e=

This expression computes the rate of change of the functional J as we move
inthe direction of the function v(x), starting at the function u(x). The differenti-
ation is with respect to the scalar parameter ¢ (which has nothing to do with
either of the functions u and v). After differentiation has been performed, the
resulting expression is evaluated for ¢ = 0. Thus, the final expressionis a func-
tional that operates on two functions, u and v, and does not depend upon ¢.

Example 53. Example 52 revisited. Consider again the functional given in Eqn.
(499). For this functional, the directional derivative can be computed as



Chapter 9 Energy Principles and Static Stability 333

Di(u) - v = %[(u(0)+ev(0)) +I (u(x)+ev(x))2dx] .
0 e=

Differentiating with respect to ¢ and evaluating the result at ¢ = 0, we get

Di(w) - v = v(0) + I 2u(x)v(x) dx (502)
0

For the previous example, we used u(x) = sin(S7x) (which gave a value of the
functional of 0.5) and w(x) = Zx2(1-x). The rate at which the value of J
changes as we move away from u(x) in the direction v(x) is

DI v = I B 2(1-x) sin(57x) dx = -5% (503)
0

As we shall soon see, the merit of Eqn. (501) is not that the directional deriv-
ative can be computed prior to knowing the functions u and v, but rather that
it will provide variational formulas that must be true, say, for all functions v.
The significance of this observation will be evident when we develop energy
principles.

Directional derivatives of ordinary functions. It should be clear that the
aforementioned formula for the directional derivative is a natural extension of
the ordinary derivative of a function. In fact, the formula amounts to a simple
application of the chain rule of differentiation for an ordinary function. Often,
an analogy with ordinary functions that have geometric significance can help
shed light on the geometric significance of the derivative of a functional.

Consider the ordinary scalar function g(x) of the scalar variable x. Applying
the above formula for the directional derivative, we obtain

Dg(x) - x = ‘—Zz—[g(x+£f)]s=o = %xg— x
which is nothing more that the product of the ordinary derivative and the num-
ber x. The concept of directional derivative is rather degenerate here because
there is only one direction to go, and we lose no generality if we simply make
the specific choice ¥ = 1.
If g(x)is a scalar-valued function of a vector-valued variable x, then the di-
rectional derivative in the direction X is

Dg(x) ' X = %[g(x+sx)] L= Vg - X

where the gradient Vg is a vector that points in the direction of greatest change
of the function g(x), that is, normal to the contour lines g(x) = constant.



334 Fundamentals of Structural Mechanics

If we have an ordinary vector-valued function of a vector-valued argument
g(x), then the directional derivative in the direction X is

= d =
Dg(x) - X = g[g(x«&ex)]ﬁo = [Vg|x
where Vg is the gradient of the function, i.e., the matrix of partial derivatives
[Vg]; = dg./dx; Inthis case, the rate of change of the function depends upon
which direction you are headed in.

Extremizing a functional. Like an ordinary function, a functional J(u)
might have certain inputs u that yield the greatest (or least) value of the func-
tional. Hence, we can think of maximizing (or minimizing) the functional. The
process for finding the extremum of a functional is very much like finding the
extremum of an ordinary function. The location of the extremum is the point
where the rate of change in any direction causes no change in the value of the
functional. As shown in Fig. 114, the maximum and minimum of a function
g(x) occur at points where the first derivative is equal to zero. The character
of an extremum can be deduced from the second-derivative test. If the second
derivative of the function is positive at the extremum, then the point is a mini-
mum,; if the second derivative of the function is negative at the extremum, then
the point is a maximum. The second derivative of the function g(x) has mean-
ing for all values of x, of course, but we use it in the second-derivative testonly
at a candidate extremum, that is, for points where g'(x) = 0. We shall
construct a second-derivative test for functionals analogous to the one for ordi-
nary functions. Finding extrema and testing the character of those extrema will
be our primary use of the directional derivative of functionals.

Of course, we must be aware of the anomalous cases. A function may have
a saddle point, an extremum that is neither maximum or minimum. An extre-
mum may occur at a cusp in the curve where the derivatives of the function fail
to exist. An extremum may occur at an endpoint of a curve, or in general on
the boundary of the domain. The curve may be so flat at an extremum that the
second-derivative test is insufficient to determine its character, in which case
we must consider higher derivatives. All of these special cases of extrema for
ordinary functions should be considered possible for functionals.

8(x)
gl _ 0, gu < Q

g =0, g >0

X

Figure 114 Maxima and minima of an ordinary function
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Vainberg’s theorem. Recall that the principle of virtual work guarantees

that the function u(x) is an equilibrium configuration if

Guwu) =0 VuedF (504)
where ¥ is the collection of admissible functions.t The virtual-work functional
G(u, ) = W,— W, is the difference between the internal virtual work and the
external virtual work for an arbitrary virtual displacement U(x).

The virtual-work functional involves both the real displacement u(x) and
the virtual displacement W(x). It seems reasonable to ask whether or not there
is a functional that depends only on the real displacement, from which we
could deduce equilibrium. The answer to this question is: sometimes. When it
does exist, we call the functional the energy functional §(u). The relationship
between the energy and equilibrium is that equilibrium can be shown to hold
for configurations uthat make the energy an extremum. Since the virtual-work
functional also describes equilibrium, we shall define the energy functional in
terms of the virtual-work functional because when an energy functional exists,
it can be obtained from the virtual-work functional. A virtual-work functional
always exists.

The virtual-work functional is a functional G(u, v) having two arguments.
It is important to note that, by construction, this functional is linear in the sec-
ond slot (i.e., the one occupied by the virtual displacement). This linearity al-
lows us to write the expression

G(u,av+pw) = aG(u,v)+SG(u, w) (505)
Let us define a directional derivative of the functional G(u, v)in the following
manner

DG(u,v) -w = %[G(uhew,v)]mo (506)

This directional derivative is like a partial derivative in the sense that the argu-
ment in the second slot (i.e., ¥) is not the subject of differentiation. In other
words, it can be viewed as a constant for the purposes of directional differenti-
ation. Observe that, by construction, DG(u, v) * w is linear in both v and w.

Lemma. Consider a functional G(u, v). The directional derivative of
this functional satisfies the equation

b
j DG(u+sw,v) - wds = G(u+bw,v)—G(u+aw,v)

t Tokeep the notation simple, let us refer to the parameters associated with the deforma-
tion map generally as u(x). This notation will allow us to refer to a beam theory in the
same manner as a three-dimensional continuum, and we will simply reinterpret the
meaning of u and x for the special cases. For the little boundary value problem the
function will be u(x). For beam theory the function will be {u(x), w(x), 6(x)}.
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Proof. Observe that the directional derivative can be written as
iG(u+sw V) = —‘LG(u+sw+ew V)
ds ’ de ’ 2o
= DG(u+sw,v) - w

for scalars s and €. We can see the first equality by introducing a new
variable z(¢) = s+¢. Note that dz/de = 1 and that z(0) = s. By the
chain rule we can compute

d d dz
[%G(u+sw+ew,v) ]FO = [EZ—G(v+zw, v)-d?]

e=0

Now we can integrate the exact differential to get
b
j gs—G(u+ sw,v)ds = G(u+bw,v)—G(u+aw,v)

thereby proving the lemma. [_]

The following theorem due to Vainberg will allow us to make the connection
between the virtual-work functional and the energy functional. It tells us when
anenergy functional exists and it tells us how to compute the energy functional.

Theorem (Vainberg). Consider a functional G(u, v) that is linear in
v. If the functional is symmetric in the sense that

DG(uw,v) - w = DG(u,w) * v (507)
then there exists a functional 8(u) that satisfies
D8(u) - v = G(u, V) (508)

Furthermore, 8(u), if it exists, can be obtained from G(u, v) as

1
8(u) = J G(tw,u)dt + ¢ (509)

where c is an arbitrary constant.

The proof of Vainberg’s theorem depends upon three things: (1) the lemma giv-
en above, (2) the linearity of G(u, v) with respect to v, and (3) a change in the

order of integration of an iterated integral.

Proof. Let us start the proof by asserting Eqn. (509). It is sufficient
then to show that the directional derivative of 8(u) in the direction v
is G(u, v). By definition of 8(u) we can compute
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1

8(u+h)—8(u) = [

0

1
G(tu+th,u+h)dt—j G(tu,u)dt
1 1 0
=I [G(tu+th,u)—G(tu,u)]dt+j G(tu+th, h)dr
0 0

Note that linearity of G(u, v)in the second slot enabled the second
equality. Let us call the first integral on the second line  and compute

I= jl[G(tu+th u)-G(ru,u)]dt

= I DGtu+sh,u)~hds]dt

[

[ DG{ tu+sh,h)-udt]ds

il
U DGtu+sh,u)'hdt]ds
i)

=J[ Glu+sh,h)~G(su+sh,h)]ds

The first step is the result of the lemma, with {u, v, w, 5, 4, b} in the
lemma replaced by {¢u, u, h, s, 0, ¢}, repectively above. The second
step is the result of changing the order of integration over the triangu-
lar region shown in Fig. 115, which holds for any integrand. The third
step relies on linearity in the second slot of G. The last step is an ap-
plication of the lemma again, with {u, v, W, s, @, b} in the lemma re-
placed by {sh, h, u, ¢, s, 1}, repectively above.
Therefore, we can write

1

8(u+h)—8(u) =] Glu+sh, h) ds

0

1 p1
(-)dsdt=f f (+)dtds
0 /s

Figure 115 Change in order of integration over the triangle
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Now substitute h = ¢v in the above expressions and compute

1 1
B(u+¢ev)—8(u) = J Glu+sev,ev)ds = 8[ Glu+sev,v)ds
0 0

where, again, we have used linearity in the second slot of G. Differen-
tiating this result with respect to ¢ we get

1 1

Glu+sev,v)ds + 8[ iG(u+ssv,v)ds

%@(uhsv) = I T

0 0

Finally, setting ¢ = 0 gives

[%E%(uhsv)] = [ Glu,v)ds = G(u,v)

e=0

which is what we set out to prove. [_]

Corollary (energy principle). Assume that an energy functional
&(u) exists. The configuration u is an equilibrium configuration if the
energy is an extremum, that is, if the directional derivative vanishes
for all functions U

D&(u)-u = 0 VueE (510)

Proof. The corollary is proved by combining Eqn. (508) and the prin-
ciple of virtual work. [

The integration to get the energy expression in Eqn. (509) is a line integral,
and it is important to note that in the first slot of G one replaces u with ru, where
tis a dummy variable of integration; in the second slot one replaces U with u.

It should be evident that since G(u, W) is the derivative of the energy 8(u),
we can add a constant to the energy without changing this relationship. This
constant would represent the energy at zero deformation. Since we are never
interested in the value of the energy itself, we can take this constant to be zero
without loss of generality. You can see from the following examples that find-
ing the energy for a linear theory is always quite simple.

o

Example 54. Little boundary value problem. Consider a rod of length £, sub-
jected to an axial body force b(x), and suitably restrained at the boundary. The
virtual-work functional has the form

4
G(u, ) EJ (Cu'@ —ba)dx

0
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and u(x) represents an equilibrium configuration if G(u, @) = 0, for all
7 € F.(0,£), where F.(0, £) is the collection of all functions, defined on the
segment x € [0, £], whose first derivatives are square-integrable and satisfy
the homogenous essential boundary conditions. The directional derivative of G
in the direction u(x) is given by

4
DGu,m) - u = j Cu'wdx = D,Guu) @
0

The symmetry of the derivative of G is evident either by repeating the computa-
tion changing the roles of @ and # or simply by reversing their roles in the ex-
pression for the derivative and noting that the reversal has no effect on the result.
Since symmetry of the weak form holds, there must be an energy functional. The
energy functional is given by Eqn. (509) as

8u) = j j [C(tw')(w')—bu] dx dt

Carrying out the integration with respect to 7 and evaluating the result at the lim-
its 0 and 1, we obtain the expression for the potential energy of the rod as

14
8(u) = j (3c(w)>~bu)dx (511)
0

The first term in the energy expression of the rod is the potential energy stored
in the rod owing to elastic extension. This term is typical of elastic systems, and
represents the energy stored in going from a strain- (and stress-) free condition
to the configuration u(x). The second term is the potential energy of the applied
load b(x) with datum taken to be the undeformed position of the rod.

As shown in Fig. 116, the internal energy per unit length is simply the area
under the stress-strain curve. For the little boundary value problem, the stress
is 0 = Cu/', and the strain is #’. Analogous results hold for all linearly elastic
systems. For example, a translational spring of modulus & that develops force
according to the relationship F = kA, where A is the amount the spring has
stretched, has energy 8 = SkA®. A rotational spring of modulus k that devel-
ops moment according to the relationship M = kf, where 6 is the amount of
relative rotation experienced by the spring, has energy & = %koi

Example 55. Bernoulli-Euler beam. Consider an inextensible (i.e., no axial de-
formation) Bernoulli-Euler beam of length €, subjected to a transverse force g,
and suitably restrained at the boundary. The virtual-work functional is

14
Gw,w) = j (EIw"'%'" —qW) dx
0
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Stress

Strain

Figure 116 Internal energy as area under the stress-strain curve

The necessary symmetry of the derivative of G can be demonstrated in the same
manner as for the little boundary value problem. Thus, an energy functional ex-
ists. The energy functional can be computed from Eqn. (509). Substituting tw
each time w appears in the virtual-work functional and w each time wappears,
and carrying out the integration with respect to ¢, we obtain

[4
B(w) = J (3E1(w")?—qw) dx (512)
0

One can observe the similarities among the energy functionals for the Ber-
noulli-Euler beam and the little boundary value problem. Finding the energy
functional for the Timoshenko beam is straightforward and is left as an exer-
cise (Problem 220).

Example 56. Kirchhoff-Love plate. Consider a Kirchhoff-Love plate with planar
domain €2, subjected to a transverse force ¢, and suitably restrained at the bound-
ary. The virtual-work functional has the form

G(w,w) = J [D(vw,aaw,ﬂﬂ + (1—v)w,aﬂW,aﬂ) - qW]dA
Q

where D is the plate modulus and v is Poisson’s ratio. The necessary symmetry
of the derivative of G can be demonstrated in the same manner as for the previous
two cases. Thus, an energy functional exists. The energy functional can be com-
puted from Eqn. (509). Substituting tw each time wappears in the virtual-work
functional and w each time W appears, and carrying out the integration with re-
spect to t, we obtain

8(w) = L[%D(«z(w,m)2 T+ (1=v)wigg w,aﬂ) - qw]dA (513)

It should be clear from the foregoing examples that there is a close relation-
ship between the virtual-work functionals and the energy functionals. Further-
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more, going from one to the other can be accomplished simply through Vain-
berg’s theorem.

Energy Principles

The energy functionals given by Vainberg’s theorem allow the statement of
equilibrium as a problem of finding the extrema of the energy. According to
the corollary to Vainberg’s theorem, the energy extremum principle is

ex&rgelgax)m &(u) = Equilibrium (514)

where the search is over all functions in F,(B) that satisfy the essential bound-
ary conditions. For ordinary functions, the necessary condition for an extre-
mum is that the directional derivative of the function vanish in all directions.
Since we have a suitable extension of the concept of the directional derivative
for functionals, the same condition can be applied here, thatis, D&(u) - @ = 0
forall @ € ¥,(B). This necessary condition is obviously identical to the prin-
ciple of virtual work. As such, the energy extremum principle is simply another
way of looking at the principle of virtual work, for those cases where an energy
functional exists.

Hu-Washizu energy functional. Some interesting energy principles can be
formed with functionals that consider not only the displacement field as the in-
dependent function to be varied in the minimization process, but also the stress
and the strain. Consider the Hu-Washizu energy functional given by

J(u, S, E) = j (W(E) ~S-(E-Vu)-b- u)dV
@ (515)
- f T udA - J Sn - (u—1u)dA
Q, Qu
where u is the displacement field, S is the stress field, E is the strain field, 1
is the prescribed traction over 2, (the portion of the boundary where tractions
are prescribed), u is the prescribed displacement over Q, (the portion of the
boundary where displacements are prescribed), b is the body force, and W(E)
is the strain-energy function. By taking the directional derivative of the Hu-
Washizu functional in the directions of W, E, and S (varying u, E, and S, respec-
tively) we can deduce the necessary conditions for an extremum. Let us ex-
amine these conditions in order.
Compute first the derivative of J6(u, S, E) in the direction W, regarding the
other field variables as fixed, to get

D,,:}G-u=[(S-Vu—b-u)dV—I %-udA—f Sn - WdA
B Q Qy

(]
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Notingthat S - Vi = div(SW) — divS - W, and transforming the first term on
the right side with the divergence theorem, we get

D} -u= —J(divS+b)-'ﬁdV—J (t—Sn) - waA
] Q,

From this expression we can see that the necessary condition for an extremum
withrespecttou(i.e,D,Jb - W = 0) gives, by the fundamental theorem of the
calculus of variations, the classical equilibrium equations and traction bound-
ary conditions

divS+b=0 in3®

D, -u=0 Vu =>[ .
Sn=1 on Q,

Next, let us consider the derivative of Jo(u, S, E) in the direction S

Dsf}fv'§=J

B

S (Vu-E)av - J Sn - (u—u)dA

Qll
Again we can apply the fundamental theorem of the calculus of variations.
Note that since S is symmetric, 25 - Vu = S - [Vu+ Vu?]. The necessary
conditions for an extremum with respect to S gives the strain-displacement
conditions and the displacement boundary conditions

E = Vu+Vu’] inB

3l
u onQ,

Ds%'§=0 Vg =>{
u=

Finally, let us take the derivative of 36(u, S, E) in the direction E

pe% - [ (LB -s) -z
3B

Applying the fundamental theorem of the calculus of variations to this expres-
sion, we obtain the equivalence between the extremum of the energy with re-
spect to E and the constitutive equations

D} -E=0 VE = s=u‘;’EEz in B
The key idea behind the Hu-Washizu energy functional is that one can
construct energy principles with some rather interesting properties built into
them. By considering more of the field variables as independent fields, we can
make the energy functional responsible for enforcing certain conditions
among them, rather than requiring that those relations be enforced in a classical
sense. In our usual implementations of the principles of virtual work, we satisfy
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the constitutive equations and the strain-displacement equations exactly and
let the principle of virtual work do its best to satisfy equilibrium. We eliminate
the boundary terms by suitably restricting the class of admissible functions.
With the Hu-Washizu energy functional, we need not enforce conditions on the
field variables (not even boundary conditions).

The Hellinger-Reissner variational principle is another multi-field energy
principle, but it uses only the stress and displacement fields as independent
fields. This variational principle is the subject of Problem 222.

The Euler equation of a functional. Some of the earliest work on the calcu-
lus of variations was done by the mathematician L. Euler. One of the classical
results is the so-called Euler equation associated with a functional in integral
form. Consider, as an example, a functional of the form

b
Jw) = f F(u,u') dx (516)

where the function F(u, u") can be any function in which those arguments ap-
pear. We consider the functional to depend only upon the argument u because
the derivative u’ is not really independent of u. We will, however, find it useful
also to think of F as having two arguments when it comes time to take deriva-
tives of F. Let us compute the directional derivative of J(x) in the direction #
and set the result equal to zero to find a stationary point of the functional

b
DiGw) -7 = %U F(u+em, u’+£ii')dx] =0
e=0
Carrying out the derivatives, we obtain the result
b
OF -, 8F .\, _
j(auu+au,u)& 0

To put this equation in a form suitable for application of the fundamental theo-
rem of the calculus of variations, we must integrate by parts any term with de-
rivatives on & Thus, the second term must be integrated once with the result

b
OF _ d (3F\\. F I
I (au dx(au’))udx T b,
From the fundamental theorem of the calculus of variations, we conclude that
the function F must satisfy the differential equation

OF _ 4 (9F) _
= dx(au') 0 (517)

=0
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in the region x € [a, b}, and that either dF/du’ = 0 (a natural boundary con-
dition) or we can select #such that # = 0 (homogeneous essential boundary
conditions) at the boundary points x = aand x = b. Equation (517) is called
the Euler equation of the functional J(u) of Eqn. (516).

Example 57. Euler equations for the little boundary value problem. Consider
the energy associated with the little boundary value problem givenin Eqn. (511).
The function F can be identified as

Fuu)y = — %C(u’)2 + bu
with partial derivatives
oF _ SE _ _cy
i Cu
The Euler equation for F is the equilibrium equation of the little boundary value
problem
OF _d(OF) _ (cyyiyp =
oF dx(au,) (Cu')'+b = 0
The natural boundary condition is 8F/du’ = —Cu’' = 0 at the traction-free

ends, while the essential boundary conditions would require @ = 0 at the ends
where displacements are prescribed.

Energy principles and the Ritz method. Because the energy functional is
so closely related to the virtual-work functional, you might expect that the Ritz
method for finding approximate solutions to boundary value problems might
have application in energy methods. We shall find that a Ritz approximation
reduces the energy functional to an algebraic function of the unknown parame-
ters of the Ritz expansion. The tools of minimization of this functional are
those of the ordinary calculus of several variables.

Tomake the ideas concrete, let us examine the energy functional for the Ber-
noulli-Euler beam, given in Eqn. (512). Assume that we can approximate the
transverse displacement w(x) in terms of known base functions in the usual
manner h(x) = [h,(x),.. ., hy(x)]" as

N

w(x) = Za,,h,,(x) = a - h(x)

n=1

where N is the number of basis functions included in the approximation. Dif-
ferentiating the approximate expression and substituting the result into the en-
ergy functional gives the result

8(a) = 7a’Ka — a'f (518)
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where [@ = [ay,.. ., ay]” represents the unknown coefficients of the approxi-
mation. The matrix K and the matrix fare given respectively by the definitions

4 4
K= J EIh'|[0']dx, f= [ gqhdx
[ [

just as they were for the Ritz method for virtual work.

The discretization of the energy functional is remarkably similar to the
discretization of the virtual-work functional, but there are some key differ-
ences. The most important difference between the two is that, for the energy
functional, only the real displacement field need be approximated, while in
virtual work both the real and the virtual displacement fields must be approxi-
mated. We have generally advocated the Galerkin approach in virtual work,
wherein we approximate the virtual displacements with exactly the same base
functions used for the approximation of the real displacement field. This
choice is what makes the K and f matrices identical in the two cases. If we were
to approximate the virtual displacements with different base functions, then the
resulting coefficient matrices would turn out to be different.

Equation (518), defining the discrete energy, is called a quadratic form be-
cause it is a quadratic function of the individual parameters a,. The terms in
a’Ka are purely quadratic (i.., only products a,a; appear). The terms in a’f
are purely linear in the a;. Since §(a)is an ordinary function, its minimization
is straightforward. Much is known about the minimization of quadratic func-
tions. The necessary conditions for a minimum is that the directional derivative
vanish in all directions. Thus

Dg(a)-a =a’(Ka—-f)=0 Va

This condition is one that we have seen before. It is the same one that results
for the Ritz approach to virtual work. Since there are no restrictions on the @,
the necessary conditions for an extremum are simply Ka = f. Since the func-
tion is quadratic, we know that there is only one extremum. Thus, the solution
to the problem is unique. The discrete energy is quadratic because the underly-
ing beam theory is linear. When we get into nonlinear theories, the energy
functional will not necessarily be quadratic, and, hence, uniqueness of solution
will not necessarily hold.

Static Stability and the Energy Criterion

Let us consider a system for which an energy functional exists, and examine
the concept of the stability of equilibrium of that system. The system has ener-
gy 8(u), and is in equilibrium for functions u that are extrema of the functional
€. We can locate these extrema by taking the derivative of & and setting the
result equal to zero. Accordingly, we can make a statement of equilibrium in
the following form
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Dg(w)-u=0 VaedF
The directional derivative of the energy is identical to G
D8(u) - u = G(u,u)

The stability of equilibrium can be deduced from the second derivative of the
energy. Like an ordinary function, if the second derivative is positive, then the
energy is a minimum; if it is negative, then the energy is a maximum. A config-
uration of minimum energy is a point of stable equilibrium, whereas a point of
maximum energy is a point of unstable equilibrium. Configurations that are not
in equilibrium are not classifiable as either stable or unstable. The second de-
rivative test does not make sense for these configurations. Let us define the sec-
ond derivative of the energy as a functional

A(wu) = %[@(nﬂﬁ)} (519)

£=0

The energy criterion for static stability can be stated as follows.

Theorem (the energy criterion for static stability). Consider an
elastic body B with energy functional §(u). Let the configuration u(x)
be an equilibrium configuration, i.e., u satisfies

Dg(w)-u = 0 Vued
This equilibrium configuration is stable if and only if
Awm) > 0 VoeYdF (520)
If the energy functional A(u, W) fails to be positive for any test func-

tion W, then the system is unstable.

Proof. The elements of a proof are contained in the following discus-

sion. [_]

Consider an equilibrium configuration u. Let us first show that the energy is
a minimum at u. The energy at a neighboring configuration u+ & can be ex-
pressed by expanding the energy functional in a Taylor series about u as

B(u+ew) = (u)+eG(u, W+ 3e%A(u, M +0(E) (521)

by definition of the functionals G(u, W) and A(u, W). If the third derivative of
the energy is finite, then for sufficiently small values of &, the third term domi-
nates the O(e) term. Since G(u, W) = 0 for an equilibrium configuration, we
conclude that 8(u+¢eW) > 8(u) if and only if A(u, W) > 0.
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The energy criterion for static stability depends upon the law of conserva-
tion of total (kinetic plus potential) energy. Let us write the total energy as

I(u, ) = J(a)+ &(u)

where 7 () is the kinetic energy and is always positive (the smallest value of
kinetic energy is zero, when the system is at rest). For a solid body, the kinetic
energy is given by the expression

T = J%o [afav

Consider a system initially atrest, i(0) = 0, with its energy totally invested
in potential energy, II(u, 0) = 8(u). Let us perturb the system by imparting a
velocity v, which displaces the system to the position u(f) = u+tv+ O(¢*)for
small time ¢. The potential energy in the perturbed position is, from Eqn. (521)

8(u+1v) = B(w)+1G(u,¥)+ 1 LA, V) + O(F)

Let AT be the change in kinetic energy that results from the subsequent motion
caused by the perturbation. The kinetic energy in the perturbed state is then
equal to the kinetic energy of the perturbation plus the change in kinetic energy
with time

T =JW+AT
Since the total energy must be constant
Bu+tv)+T(V)+AT = u)+ I (V)

that is, equal to the energy just after the perturbation. Since G(u,v) = 0 by
definition of an equilibrium configuration u, conservation of energy gives

AT = —12A®W V) + OF) (522)

From Eqn. (522) we can see that if A(s,v) < 0, then the kinetic energy
grows with time (at least for small values of time) because the system experi-
ences a decrease in potential energy. The increase in kinetic energy implies a
nonzero value of velocity, which, over time, will cause the system to experi-
ence further displacement. The additional displacement will decrease the po-
tential energy further implying even more increase in kinetic energy and hence
velocity. Therefore, if A(u,v) < 0, a small perturbation leads to increasing
motion, and the configuration moves away from the equilibrium position. This
sequence of events describes our understanding of instability.

If, on the other hand, A(u, V) > 0, then the kinetic energy decreases with
time. Since the kinetic energy associated with the perturbation is small, and
since the minimum value of the kinetic energy is zero, the system returns to a
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state of rest. As the kinetic energy decreases, the potential energy increases.
According to Eqn. (521), the increase in potential energy implies that the sys-
tem moves back to the equilibrium configuration.

Perturbations and virtual velocities. The preceding discussion suggests
that there is a close correlation between the perturbation velocity v used to
prove the energy criterion and the virtual displacement U that we have been
using throughout our discussion of the principle of virtual work. Recall from
Chapter S that, under the assumptions made to introduce the notion of virtual
work, we can think of the virtual displacement as a velocity if the arc length
parameter s is interpreted as time. In fact, the early work in the principles of
virtual work used the term virtual velocity to describe the arbitrary motion. Al-
though we will not explore dynamical systems in this text, we can come to ap-
preciate the connection between the perturbation velocity and the virtual dis-
placement.

Let us reexamine the energy criterion for static stability by interpreting the
process as an exchange in virtual work done in an arbitrary virtual displace-
ment. Recall that the virtual-work functional is the difference between the in-
ternal and external virtual work, G(u, W) = W;(u,u) — W;(u,1). The rate of
change of G, then, is the difference between the rate of change of the internal
work and the rate of change of the external work. Also, we can show that

A(u, W) = %[W,(u+eﬁ,ﬁ) - Wg(u+eﬁ,ﬁ)] )
Therefore, if the rate at which the system accrues internal virtual work is great-
er than the rate at which the external loads remove it in undergoing a virtual
displacement T, then the system is stable. On the other hand, if the loads re-
move work faster than the system stores it, then the system is unstable.

We can illustrate the preceding discussion of the energy criterion with balls
resting on two different surfaces, as shown in Fig. 117. In each case, the ball
is in static equilibrium because the normal force of contact between the two
surfaces is oriented exactly to counterbalance the downward force caused by
the weight of the ball. The arrows show admissible perturbations (we will not
allow the ball to lift off of the surface or to penetrate into it). For the ball on the

s

Figure 117 Simple illustration of the energy criterion
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@ ()

Figure 118 Limitations of a local stability criterion

left, the potential energy of the gravitational field is a maximum. For the ball
on the right, the potential energy is a minimum. Assume that each of the balls
is at rest, and let us impart a small velocity. For the ball on the left, the motion
causes a decrease in the potential energy because the potential energy is maxi-
mum to begin with. The law of conservation of energy suggests that this de-
crease in potential energy will result in an increase in the kinetic energy. An
increase in the kinetic energy implies further motion and the ball rolls even fur-
ther from its initial position. For the ball on the right, the motion causes an in-
crease in the potential energy with a corresponding loss in kinetic energy,
thereby slowing the motion, eventually stopping it and returning the ball to its
original position. The first case is clearly unstable because the motions are ever
increasing. The second case is stable because the motions are arrested.

The stability criterion based on the second derivative test is a local criterion.
The proof clearly depends upon the perturbation being small because it uses
a Taylor series expansion in the neighborhood of the equilibrium configura-
tion. This limitation of the local energy criterion is illustrated in Fig. 118. In
case (a) we have A(u, W) > 0 at the position of the ball, implying that the con-
figuration is stable, but it is intuitively clear that a somewhat larger perturba-
tion would send the ball over the small humps, never to return. Thus, case (a)
shows stability in the small with instability in the large. Case (b) is the opposite
of case (a). Instability isimplied by A(u, W) < 0, but a perturbation would lead
only to a small motion. Thus, case (b) shows instability in the small with stabil-
ity in the large. We will encounter situations in structural stability that have the
features of this simple example. In those cases, we will simply find all of the
equilibrium configurations and classify each one as stable or unstable. Equilib-
rium points in close proximity will be suspected of this type of behavior, but
our static analysis will not allow us to examine it any further.

The stability of cases shown in Fig. 119 cannot be determined from the sec-
ond derivative test because A(u, W) = 0. If all of the derivatives higher than
the second derivative are also zero, then the potential energy functional is per-
fectly flat at the equilibrium point. We call the stability of such a configuration
neutral stability. For a neutral equilibrium configuration, a perturbation will
not lead to a change in potential energy. The potential energy functional may
be very flat at the equilibrium point, but not perfectly flat. In such a case,
A(u, ) = 0, but one of the higher derivatives of the energy functional may be
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Figure 119 Stability with a locally flat potential energy functional

nonzero. Stability must then be determined from the sign of the lowest-order
nonzero derivative of the energy. Case (a) has a higher derivative of even order
with positive value, while case (b) has a higher derivative of even order with
anegative value. Case (c) has a nonzero higher derivative of odd order. Insuch
a case, the stability depends upon the direction of the perturbation. For this ex-
ample, if the perturbation is to the left the potential energy increases, but to the
right it decreases.

The general form of the stability requirement can be obtained from the Tay-
lor series expansion of the energy functional. To wit,

N
B(u+ £W) = 8(u) + > L&"B"(u,W) + O™ (523)

where n! = n(n—1)- - - (2)(1)and the nth order directional derivative of the
functional is given by the formula

B'(u,m) = d‘i"n [Bu+em) _, (524)
Observe that B' (u, W) = G(u, W) and B?(u,W) = A(u,W). If B"(u,u) = 0 for
all valuesof n = 2,...,N—1, and B¥(u,u) # 0, then the stability of the sys-
tem is determined by the algebraic sign of B". If N is even then the stability
criterion is the same as before, i.e., B'(u,W) > 0 for all Wimplies stability and
BY(u,u) < 0 for any Wimplies instability. If N is odd then stability also de-
pends upon the direction of the perturbing motion because the coefficient &¥
will be positive if ¢ > 0 and negative if ¢ < 0.

The second-derivative functional for discrete systems. For discrete sys-
tems, governed by algebraic equations, we can develop a useful form of the
energy criterion if we recognize that the second derivative of the energy will
always have the form

A(n,U) = a’A(A,a)a

where A(4, a) is the Hessian matrix of second derivatives for an ordinary func-
tion of the energy, A represents a loading parameter, and a represents the pa-
rameters describing the motion. Application of the Ritz method to an energy
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functional always results in a discrete system. We include the load parameter
A as an argument of A to remind us that A generally depends upon the loads
(if it does not depend upon the loads, we generally do not have a stability prob-
lem). Such details are most clear in particular applications and are deferred to
the next chapter.

Since the second derivative must be positive for all arbitrary variations 3,
the second-derivative test amounts to testing the matrix A for positive definite-
ness. The eigenvalues of a matrix provide the most direct means of assessing
positive definiteness.

Definition (positive definiteness). An N X N matrix A is positive
definite if either of the following criteria are met

a’A(A,a)a > 0 Va

or if all of the eigenvalues of A are greater than zero. [_]

Recall that the eigenvalues and eigenvectors of a matrix A are the scalars y and
the vectors u, respectively, that satisfy the eigenvalue problem

Au = yu (525)

If Ais an N X N matrix, then there are exactly N pairs (y,, u,) of associated
eigenvalues and eigenvectors that satisfy Eqn. (525). If the matrix A is sym-
metric (as it usually is for structural mechanics problems), then all of the eigen-
values and eigenvectors have purely real values.

Stability of linear systems. Before we go on to the discussion of more gen-
eral stability problems, let us examine the stability of the linear systems we
have discussed in this chapter. Let us perform the second-derivative test on the
previously defined energy functionals.

The second-derivative functional for the little boundary value problem is

4

A(u, i) = I C(w')* dx (526)
0

The value of the energy functional is the integral of the square of a function

multiplied by Young’s modulus. The square of a function is never negative.

Therefore, the second derivative will always be positive if Young’s modulus

is positive, C > 0. If we interpolate the virtual displacement as # = @ - h(x)

then we have

A(A,a) = f Clh')[h') dx (527)

0
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Note that this matrix does not depend upon any loading parameter. The loading
b does not appear in the second derivative functional and hence we can con-
clude that it does not contribute to the stability of the system. Alsonote that the
matrix A is identical to the stiffness matrix K.

The second-derivative functional for the Bernoulli-Euler beam is

4
Aw, W) = j EI(w')*dx (528)
0
Again, we have the condition that the second-derivative functional will always
be positive if the bending modulus EI is positive. Again, if we interpolate w we
find that the stability matrix is identical to the stiffness matrix K.
The second-derivative functional for the Kirchhoff-Love plate is

A(w, W) = J D(v W00 Wiy +(1—7) W, W,,,5) dA (529)
Q

In order for the second derivative to be positive, then D must be positive (there
are also some restrictions on Poisson’s ratio).

We can conclude that these linear systems are guaranteed to be stable if their
elastic constants meet certain criteria that are commonly met by all materials.
Therefore, we arrive at the conclusion that all of our linear theories give rise
to stable equilibria. Furthermore, we should expect the K matrix that comes
from a Ritz approximation with these theories always to be positive definite.

As mentioned in the introductory comments, buckling is a well-known phe-
nomenon for structural systems. Since our linear theories always predict stable
behavior, we should not look to these theories to explain the phenomenon of
buckling. We shall discuss the basic issue of structural stability in the next
chapter. We shall demonstrate that the assumption of small deformations,
which led us to our linear theories, precludes the modeling of buckling. If we
remove this assumption and express equilibrium in the deformed position of
the system, then we can model buckling phenomena.

Additional Reading

H. L. Langhaar, Energy methods in applied mechanics, Wiley, New York,
1962.

I. M. Gelfand and S. V. Fomin, Calculus of variations, Prentice Hall, Engle-
wood Cliffs, N.J., 1963.
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Problems

219. Consider a one-dimensional rod of length € and b(x)

modulus C subjected to a body force b(x) and a traction ° 7,

7, at the right end. The left end has a prescribed displace- >
x

ment of #(0) = u,. The Hu-Washizu energy functional
for the rod is given in terms of the independent variables ¢

o(x) (stress), u(x) (displacement), and €(x) (strain) as
e
Jo(u,0,€) = f (%Cez—bu —o(e —u’)) dx — tou(€) + 0(0)(u(0)—u,)
0
Show that by taking the directional derivative of 36 in the direction of variations of each

of the variables, i.e.,
D3¥(u,0,¢€) - (4,5,8) = %[I}G(u-%aﬁ, o+ad, e+ad),_,

and setting the result equal to zero (to find the extremum), all of the classical governing
equations for the one-dimensional bar result from applying the fundamental theorem of
the calculus of variations
g +b=0
e—u =0 x € (0,9
c—-Ce =0

o) —1,=0
w0 —u, =0

Note that the fields that appear in the functional are each functions of x themselves.

220. Find the energy functional 8(u, w,8) for a Timoshenko beam.

221. Find a Hu-Washizu energy functional for a simply supported Bernoulli-Euler beam
of length € and modulus EJ subject to a transverse load g(x). The appropriate field vari-
ables are the transverse displacement w(x), the moment M(x), and the curvature %(x).
Show that the extremum of the energy functional with respect to the three field variables
gives the classical equations of Bernoulli-Euler beam theory. How must the functional
change if the beam is fixed at x = 0 and pinned at x = £?

222. The Hellinger-Reissner energy functional for a three-dimensional hyperelastic solid
body B with boundary Q is given by

s |

(S Vu—b - u—-UES))dv —f T-udA —f Sn - (u—1u)dA
] Q

Q y

where u is the displacement field, S is the stress field, tis the prescribed traction over €2,
(the portion of the boundary where tractions are prescribed), 1 is the prescribed displace-
ment over €2, (the portion of the boundary where displacements are prescribed), b is the
body force, and U(S) in the stress-energy function. What do the necessary conditions for
an extremum imply? (Hint: take the directional derivative of the functional in the direc-
tions of Wand S, and apply the fundamental theorem of the calculus of variations.)

223. Show that the energy functional for the Kirchhoff-Love plate, given in Eqn. (513),
can be expressed in the equivalent form
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8(w) = I [%D((W,n +w,)* - 2(1_7)(“’,11“’,22 - W,%z)) - qw]dA
Q

where D is the plate modulus and v is Poisson’s ratio. The term w,;; W, —w,2, is an
approximation of the Gaussian curvature of the deformed reference surface of the plate.

224, Show that the energy functional for a three-dimensional linear elastic solid is

8u) = I (%A(divu)2 + %,u[VuT+Vu] Vu—b- u)dV - I t-udd
k] e
Show also that the extremum of the energy gives the same equations as the principle of
virtual work.

225, Show that the energy functional for a Bernoulli-Euler beam on an elastic foundation
can be expressed in the form

¢
B(w) = I (%El(w”)2 + %sz - qw)dx
0

where ET is the flexural modulus of the beam, k is the modulus of the foundation, and g
is the transverse load.

226, Find the Euler equation and boundary conditions for the functional

b
Jw) = I Fw,w',w'") dx

Use the Euler equation on the energy functional for a Bernoulli-Euler beam on an elastic
foundation to find the classical differential equation governing the beam.

227, Using the fundamental theorem of the calculus of variations, find the classical form
of the governing differential equation for w(x) implied by the minimum of the energy
functional

¢
¢ ¢
&w) = | (LEIw*w —qw)dx — LEIW'" ‘ + 1EW'w
(w) L(z w qw) FEIw w0 sEIw .

228. The potential energy of a simply supported, symmetrically loaded circular plate of
radius R is

Bw) = «x ]:[D(r(w")2 + %(w’)2 + 2vw’w”) - 2rqw] dr

where the function w(r) is the transverse deflection of the plate, D and v are constants, and
q is aknown function of 7. Find the variational (virtual work) form of the governing differ-
ential equation. Find the classical (strong) form of the governing differential equation.
What can you say, if anything, about the boundary conditions for the problem?

229, Find an approximate solution to the problem of a simply supported, circular plate
of radius R and modulus D, subjected to a uniform load of q. Use the Ritz method with
the energy functional given in Problem 228. Assume that the displacement is of the form
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w(r) = aycos (%)

where a, is the, as yet, undetermined constant. If you had to pick additional terms in the
approximation, what would you choose? Why is the cosine function a good choice?

230. A beam of length € and modulus EI rests on a q(x)
nonlinearly elastic foundation that accrues trans- EI m
verse force in proportion to the cube of the transverse AT = N
displacement, i.e., f(x) = k,w">. The beam is sub- —— k,

jected to downward transverse loading g(x). Axial : >
and shear deformations are negligible. Take w(x) as 4

positive when it is upward. Find the virtual-work form of the equilibrium equations. Find
the energy functional 8(w) for the system.

231. Consider a functional that takes scalar functions «(x) as input. The independent sca-
lar variable is defined on the range x € [0, 1]. The functional has the explicit form:

8(u) = I {1_1” (1'(x))? — 2u(x) }dx
0

where a prime indicates differentiation with respect to x. The functions are constrained at
the boundary to satisfy the conditions #(0) = 0 and #’(1) = 0. Find the classical differ-
ential equation implied by stationarity (i.e., max, min, or saddle point) of the functional.
Solve the classical differential equation. Compute the second derivative functional associ-
ated with the given functional.

232. The virtual-work functional for a system is given by the following expression
4
G(w,w) = I (a(w”W+W’w) + bw3W) dx
0

where a, b, and € are constants and w(x) and #(x) are functions of the independent variable
x. Does this functional have an associated energy? Find the energy functional for the sys-
tem, if it exists.

233. Resolve Problem 232 with the functional
¢
G(w,w) = I (—aw"'w+ bww)dx — aw(®)w'(£) + aw(0)w'(0)
0

234. The deformation state of a particular system is characterized by the scalar function
6(x), where the scalar variable x € [0, £]. The virtual-work functional for the system is giv-
en by the following expression

4
G(6,9) = I [a6'8" + bf sin6|dx
0
where a, b, and € are constants. Equilibrium of the system holds if G(8,8) = Ofor all 8.
Does this functional have an associated energy? Find the energy functional for the system,
if it exists.
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235. The deformation state of a particular system is characterized by the scalar function
u(x), where the scalar variable x € {0, 1). The virtual-work functional for the system is giv-
en by the following expression
1
Gu,w) = j [aw'® + bu'' + g(u)]dx

0
where a and b are constants and g(u) is a given nonlinear function of the displacement func-
tion u(x). Equilibrium of the system holds if G(u, &) = Ofor all @. For what values of the
constants  and b does this functional have an associated energy? Find the energy function-
al for the system, if it exists.

236. A beam of length € rests on an elastic founda- P
tion of modulus & (per unit length). It is pinned at the ) l
left end and is subjected to a point load P at the right A 1

end. The elastic foundation accrues a transverse L—: x

force in proportion to the transverse displacement w. Z

The energy of the system can be expressed as:

¢
B(w) = j L(EIW 'y + kw? ) dx — Pw(6)
0
Find the virtual-work form of the equilibrium equations. What are the essential boundary
conditions? Find the classical form of the equilibrium equations and the boundary condi-
tions. Which of the three functions given below are suitable for approximating the solution
with the Ritz method? Explain why or why not in each case.

wx) = (¢ =x)(@;,+ax), wx) = x(a,+ax), W) = X@a,+ax)

237. Consider a rectangular (rigid) block of height #
and width € and weight W. The block is prevented from
sliding by a small obstruction at the lower right corner
and is pushed by a force P at the upper left corner.
Write the potential energy of the system in terms of the
angle of rotation 6 of the block. Find the force P as a
function of A, €, W, and the angle 6 needed to have stat-
ic equilibrium. Find an expression for the angle at
which equilibrium goes from being stable to being un-
stable.

238. Consider the solid spherical region shown in the sketch. As- X3
sume that there exists a scalar field w(x) for which we can define
the functional X2

n x,
G(w,v) = j(VVij+vw)dV—jpvdA
3 Q

that has the property thatif G(w, v) = Ofor all (virtual) scalar functions »(x) then the clas-
sical differential equations governing the real field w(x) are satisfied (i.e., G(w,V) is a
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“virtual-work” functional). Note that the scalar field p is defined on the surface of the solid
region. Show that an “energy” functional exists for this theory if the function p depends
only upon the position vector x and not the function w(x), i.e., p = p(x). Determine the
energy functional in terms of the field w.

239. Reconsider Problem 238 for the case where the function p depends upon the field w
and the position x. Under what conditions would an “energy” functional exist in this case?
(Hint: would an energy exist if p depends upon w itself? What if it depends upon deriva-
tives of w, i.e., p = p(x, w(x), Vw(x),...)?

240. Abeam of length € rests on an elastic founda- P
tion of modulus & (per unit length). It is fixed at the EIl
left end, pinned at the right end, and is subjected S\ AN e
to a point load P at midspan. The energy of the sys- k

: . ——
tem can be expressed in terms of the transverse dis- ‘_x_"‘______q
placement w(x) as: /2 ¢/2

¢
B(w) = j S(EXw''y? + kw?) dx + Pw(€/2).
0
Find the virtual-work form of the equilibrium equations. What are the essential and natural
boundary conditions? Use the Ritz method to find a one-term approximation of the dis-
placement field (use a polynomial approximation).
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Fundamental Concepts
in Static Stability

The limit to the load carrying capacity of many structures is buckling resulting
from the loss of stability of equilibrium. Any structure that carries load through
compression is a candidate for loss of stability. (Some tensile structures are
candidates for instability, but that is less common, and it remains a good rule
of thumb to think of tensile forces as essentially stabilizing). The primary func-
tion of many structures is to elevate space and the fight with gravitational
forces can induce compression in many members of a structure. Hence, struc-
tures subjected to gravity forces can suffer stability problems. Loss of stability
must be well understood and accounted for in the design of structural systems.

In the previous chapter we developed the energy criterion to assess the sta-
bility of static equilibrium of certain systems (i.e., those systems for which an
energy functional exists). One of the observations that we made, based upon
the energy criterion, is that an elastic system whose governing equations are
linear will lose stability only if certain of the elastic moduli (i.e., Young’s mo-
dulus) are less than zero. Furthermore, the loss of stability of a linear system
is independent of the motion of the system. In fact, Vainberg’s theorem shows
that, if G(u, @) is linear in u, then the energy &(u) must be quadratic in % and
A(u, %) is, therefore, independent of u. Linear theories of structural mechanics
are not very interesting from the standpoint of stability. Many more interesting
possibilities arise when the governing equations are nonlinear.

Nonlinear theories of mechanics can arise from three basic sources: (1) non-
linearity in equations of equilibrium, which generally arise because equilibri-

1 Ina linear theory all of the equations—kinematics, equilibrium, and constitution—
must be linear. If nonlinearity is present in any of these three aspects of the theory then
the governing equations are nonlinear.
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um in the deformed body generally depends upon the motion, (2) nonlinearity
in the strain-displacement equations, and (3) nonlinearity in the constitutive
equations. The first two sources of nonlinearity are coupled in a consistently
formulated theory. Constitutive nonlinearities can take any number of forms
from nonlinear elasticity to inelasticity. In this chapter we focus primarily on
systems for which the first two sources are active, but the constitutive equa-
tions are linear.

The analysis of nonlinear systems is considerably more difficult than the
analysis of linear systems, but the rewards are much higher. There is a beauty
in a fully revealed solution to a nonlinear problem that cannot be matched in
the realm of predictable, positive-definite linear systems where the principle
of superposition applies and doubling the load means simply doubling the dis-
placements and stresses. The stakes can be much higher for nonlinear systems,
too. Failure of a system owing to instability is often dramatic, and often takes
place without much warning.

The primary purpose of the present chapter is to motivate the ideas and con-
cepts of static stability theory. Many new ideas and a lot of new terminology
beyond those needed for the linear theory must be introduced. There is no bet-
ter way to introduce these concepts than to explore some simple examples that
contain them. While we do not aim for complete coverage of all of the issues
of static stability, the problems examined here should provide a good starting
point for the novice in stability theory.

We shall explore the ideas associated with static stability using the three
simple systems shown in Fig. 120. All three of the systems consist of a rigid
bar of length € subjected to a vertical force P (taken positive downward). Each
of these systems has elastic resistance provided by a discrete spring of modulus
k. In each case the elastic resistance manifests in a different way and, as a re-
sult, the system displays a different response and thereby shows a different fea-
ture of nonlinear response. All three of the systems have the characteristic that,
in the nominal configuration, they carry the load P purely through axial force
in the bar. The elasticity in each case is provided by the springs, but that elastic-
ity is not mobilized until the bar rotates from the vertical position. Because of
the rigidity of the member and the support conditions, the system has only one

L P

al

Figure 120 Exampie problems that will be used to illustrate
various features of nonlinear response in this chapter
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degree of freedom. The deformation of the system can be completely charac-
terized by the parameter 6, measuring the rotation of the column from its origi-
nal vertical position.

Bifurcation of Geometrically Perfect Systems

Bifurcation is the name given to structural response associated with a branch-
ing of the solution to a nonlinear equation (or system of equations) at a point.
Figure 121 illustrates the features of lack of uniqueness and bifurcation for a
nonlinear equation of two variables, i.e., g(4,6) = 0. There are several issues
that are important to recall. First, there is no guarantee that there will be only
one solution to a nonlinear equation (actually there might not be any). Second,
asingle equation relating two variables canbe represented as a curve in two-di-
mensional space (as in the figure). In our problems we will generally refer to
these lines as equilibrium paths because they will come from equilibrium
equations and they will relate the load 4 to the deformation 6. Each branch is
a continuous sequence of points {4, 6} that satisfy the equation.

Abifurcation point is a point where two branches intersect. Imagine a load-
ing sequence that generates a sequence of equilibrium points along a certain
branch, say Branch 1 in the figure. At some stage of loading the system will
encounter the bifurcation point. At that point there will be four choices to ad-
vance the solution (one of which is returning along the path just traversed). If
the system switches to the other branch (say Branch 2 in the figure) then there
will be a change in the mode of behavior. A bifurcation point is associated with
a zero value of the second derivative functional and, hence, represents a point
where a branch can change from stable behavior to unstable behavior.

W. T. Koiter wrote a dissertation entitled Over de Stabiliteit van het Elas-
tisch Evenwicht (in Dutch) in 1945 to earn his Ph.D. from the Delft University
of Technology. In this work he laid the modern foundations of structural stabil-
ity. He determined that there were only three possible types of bifurcation in
structural systems: Stable symmetric bifurcation, unstable symmetric bifurca-
tion, and asymmetric bifurcation. In this section we shall study those three
types of bifurcation through a series of examples. The main purpose of these
examples s to see, in a familiar structural setting, the meaning and implications
of nonlinear structural response that includes bifurcation.

At Bifurcation point
Branch 1

Branch 2

0

Figure 121 Lack of uniqueness and bifurcation
of the nonlinear equation g(4,6)=0.
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To study bifurcation we shall make use of energy principles, virtual work
(toestablish equilibrium), and the second derivative test (to establish the stabil-
ity of equilibrium). For the single-degree-of-freedom systems that we will ex-
amine the energy will have the form

8O = A@O) + AB(H) (530)

where 6 will be the measure of deformation of the system and 4 will be the
loading parameter. All of our systems will have an energy that is linear in the
loading parameter and nonlinear in the displacement parameter. The nature of
the functions A(6) and B(6) will determine the character of the response and
distinguish the different types of bifurcations.

The virtual-work functional and the second derivative functional can be
easily computed from the energy as

G(6,6) = [A'(0)—AB'(6)]0
A(6,0) = [A"(6)—-AB'"'(6)]6?

where ()’ = d(-)/d0. Equilibrium holds if G(6,68) = 0 for all 8. This equa-
tion allows the determination of the load parameter as a function of 8 as

_A'®

B'0)
For states that satisfy this relationship, the stability is determined from the sec-
ond derivative test. Since 87 is always positive, the term in brackets in Eqn.

(531) determines the algebraic sign of the second derivative functional. The
system is stable if

(531)

A (532)

r ‘A, 0) 12
- 533
L6) ~ B > 0 (533)
We can draw some simple, but general, conclusions if we expand the func-
tions A(60) and B() in Taylor series to give the energy expression

80) = ay+a,0+a,60°+a,60°+a,6*

534
—A(bo+b,0+b,62+b,6°+b,6°) 39

It should be evident that the values of a,and b, are immaterial to the equilibri-
um of the system (because they do not show up in G). Bifurcation is not pos-
sible unless a; = Oand b, = 0 (these are the terms that are usually associated
with the loading in a linear problem). If either of these coefficients are nonzero
then 6 = 0 (the trivial solution) will not be an equilibrium configuration. In
general, we will have a, > 0 (that is the linear stiffness of the system). We will
find that if a, = O then the bifurcation is symmetric. If a; = O then the bi-
furcation is asymmetric.
The following examples illustrate these general ideas.
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Stable Symmetric Bifurcation. A symmetric bifurcation gives the same
response regardless of the algebraic sign of 6 (i.e., it does not matter which di-
rection the system moves). The functions A(6) and B(6) must be even func-
tions (e.g., the odd power terms will not appear in Eqn. (534)). The trivial con-
figuration & = 0 will be an equilibrium configuration for all values of the
loading parameter and the nontrivial solution will be stable and ascending. The
following example illustrates this type of response.

Example 58. Stable symmetric bifurcation. Consider the rigid column with a
rotational spring, shown in Fig. 122. The structure is composed of a rigid bar
hinged at the base and restrained from rotation by a rotational spring at that
point. The column is free to move at the point of loading. The force on the system
is the vertical force P. The rotational spring accrues moment M in proportion to
the relative rotation 8 it experiences, i.e., M = kb, .. * constitutes the elasticity
of the system. Recall that the potential energy of the spring is %koz.

P P

€ €cosb 6

Figure 122 A rigid column with a rotational spring
The energy, virtual-work functional, and second-derivative functional aret
8(6) = 3k6% + P¢cos6
G(6,8) = [k0—P¢sin0)8
A(6,8) = [k—P€tcos0)6?

Note that datum for the potential energy of the load is at the base of the column.

As usual, 8 represents an equilibrium configuration if G(6,8) = 0 for all
values of the arbitrary virtual displacement 8. Since the expression must hold
for all values of the arbitrary constant 8, the term in brackets must be identically
zero (again, our old friend the fundamental theorem of the calculus of varia-
tions). To wit, the equation governing the equilibrium of the column is

k@ — P€siné = 0

¥ For these examples we will simply write down the energy expression because the en-
ergy associated with springs is quite simple to derive. The skeptical reader can take
aNewtonian approach and write the equations of equilibrium in the deformed configu-
ration, use a weighted residual to create the virtual-work functional, and then deter-
mine the energy functional using Vainberg’s theorem. In this case the moment in the
spring, M = kB, must balance the moment created by the force, M= P¢{sind, to give
the equilibrium equation k6 = P{sinf.
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This equation is interesting in that it admits more than one equilibrium path
(load-deflection curve) and possesses a bifurcation point or branching point. We
must examine the stability of each of these equilibrium paths with the energy
criterion.

Clearly, 8 = 0is a solution to this problem. This solution corresponds to the
straight position of the column. The equation is satisfied for any value of the load
parameter P. This observation is in accord with our expectations from taking a
freebody diagram of the structure in the straight position. Not all values of the
load constitute stable equilibrium. For @ = 0, the energy criterion reduces to

>0 for P < k/€ (stable)

3 = g2 =

A@0,0) = [k-Pe19" = ‘ < 0 for P> k/€ (unstable)

The energy criterion tells us that equilibrium is stable for all values of the load
Pless than the value k/€ (even negative values, which represent tension on the
column) and is unstable for all values of the load exceeding this critical value.
We call this load the critical load (note that we do not yet have enough evidence
to call it the buckling load). These results can be presented in a bifurcation dia-
gram like the one shown in Fig. 123. A bifurcation diagram is nothing more than
a plot of load versus deformation of the system, but it shows all possible equilib-
rium paths. A stable equilibrium path is plotted as a solid line, while an unstable
path is plotted as a dashed line.

== Unstable
= Stable

Figure 123 Bifurcation diagram for a rigid column with a rotational spring

A second equilibrium path can be found for values of 8 not equal to zero, i.e.,
the bent position. In the bent position, the value of the load parameter depends
upon the state of deformation, so we will say that P is a function of 8. Equilibri-
um is satisfied if the load is given by

_k(_6_
P‘e(sino)

Interestingly, this equilibrium path does not emanate from the origin, but rather
branches from the load axis at the load value P = k/¢, the critical load (use
I’Hospital’s rul€ to show that this is true). A point, such as this one, where two
or more equilibrium paths branch from a single point, is called a bifurcation
point. The path corresponding to the bent position is such that the load increases
as the angle increases. We can also see that the second branch is symmetric with
respect to 0, meaning that it has zero slope at @ = 0. The symmetry tells us that
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if the structure is initially perfectly straight, then it has no preference in its buck-
ling direction.

The stability of the second equilibrium path can, again, be established from
the second-derivative test. In this case, we have

A(6,8) = k(1—&)§2 >0 forall 6 (stable)

The expression comes from substituting P = k8/¢ sin 8, required for equilibri-
um, into the expression for the second derivative of the energy. Since

0<6/tanf <1 8 [—xn/2,7/2]
f/tanf < 0 e([—n —n/2]

this equilibrium path is stable everywhere (and, thus, is plotted as a solid line).

Unstable Symmetric Bifurcation. An unstable symmetric bifurcation also
gives the same response regardless of the algebraic sign of 6 (i.e., it does not
matter which direction the system moves), and hence the functions A(6) and
B(6) must be even functions. The trivial configuration & = 0 will be an equi-
librium configuration for all values of the loading parameter and the nontrivial
solution will be unstable and descending. The following example illustrates
this type of response.

Example 59. Unstable symmetric bifurcation. Consider the structure shown in
Fig. 124. The structure is identical to the previous one, except that instead of a
rotational spring at the base, the top is restrained from lateral motion by a
translational spring. The column is free at the top and hinged at the base. Again,
the force on the system is the vertical force P. The translational spring accrues
force Fin proportion to its extension A, i.e., F = kA, and constitutes the elastic-
ity of the system. Recall that the potential energy of the spring is -;-kAz.

P P

¢ €cosh 6

Figure 124 A rigid column with a translational spring
The energy, virtual-work functional, and second-derivative functional are
&(6) = k(€sin6)? + PEcosd
G(6,0) = €sinB(ktcos6—P|F
A(6,8) = £[k€(cos?0— sin>6) — Pcos 68>
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As usual, 8 represents an equilibrium configuration if G(§,8) = Ofor all values
of the arbitrary virtual displacement 8. Since the expression must hold for all
values of the arbitrary constant 8, the remaining terms must be identically zero.
To wit, the equation governing the equilibrium of the column is

sin@[k€cos@—P] = 0

As was the case for the last problem, this equation is interesting in that it has
multiple equilibrium paths. One way to satisfy the equation is to have siné = 0,
whichistruefor § = 0, + x, + 2, .. ., thatis, all positive and negative inte-
ger multiples of 7. These values of § all correspond to straight configurations
of the column. Let us ignore all solutions that require that 6 make a full circle
(although such a mechanism is quite possible). Hence, we will consider only the
solutions 6 = 0, «r, — . For these values of the rotation, any value of the load
P is possible. For values of 6 that do not correspond to straight configurations,
the system can be in equilibrium only if

P = k€ cosb

Notice again that the nontrivial equilibrium path at § = 0 does not emanate
from the origin, but rather at the critical load P., = k€. The nontrivial equilibri-
um path also branches at the critical load P,, = —k€ from the two other two
straight configurations, i.e., § = % . For the straight configurations, the sec-
ond derivative test gives, for § = 0
AQ,B) = €kt —P)F? = >0 for P < k€ (stable)
< 0 for P> k€ (unstable)

andfor =+ n

>0 for P> —k€ (stable)
< 0 for P < —kf (unstable)

A(£m,0) = €(k€+P)0? =

For the configurations where P = k€ cos 6, the second-derivative test gives
A6,8) = —k€*8%sin’0

Since ‘A(6,8) < Oforall 6, these configurations are always unstable. These re-
sults are summarized in the bifurcation diagram shown in Fig. 125.

There is one major difference between Examples 58 and 59. At the bifurca-
tion points in Example 59, three of the four branches are unstable, and only one
is stable. We can imagine that, if the system is loaded from zero in the unde-
formed configuration, catastrophe awaits at the bifurcation point. This is in-
deed the case. The system has no choice but to snap through to a stable configu-
ration, eitherat & = moratd = —, because it cannot remain on an unstable
equilibrium path. This phenomenon is often called snap-through buckling.
Snap-through buckling is, of course, a dynamic phenomenon, and our static
model is not able to predict the path the structure will take in getting to a stable
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P‘ P
== Unstable |, P, = k¢ |
— Stable L,>"Y1~, P = kétcosf 6
Y i
", \\\ I -
- ,,’ 0 \‘\ i 8
, ~

1% P, = —k€ P, = —kt
I l

Figure 125 Bifurcation diagram for a rigid column with a translational spring

configuration, but if there is little inertia, we can imagine that the process will
be quite fast. Clearly, there is danger associated with this type of bifurcation
diagram, and this danger is the primary concern in the design of such a system
(unlike the previous system, where the buckling caused some fairly significant
cosmetic disturbance, but did not shed load in the buckling process).

Asymmetric Bifurcation. In both of the previous examples there was no
preferential direction for buckling from the trivial state. Asymmetric buckling
is possible when the function .4(6) contains an odd function of 6, at least one
that gives rise to a 6°term ina Taylor series expansion of .4(6). In the simplest
case, we can would have

8(0) = a202 + a303 —l bzez
The virtual-work and second-derivative functional for this case are

G(O,g) = (2a20+3a302_l 2b20)§
AG,8) = (2a, + 62,0 — A12b,) 8"

Setting G(6,6) = 0 for all  gives the load in terms of §and the second deriva-
tive functional for that load tests the stability of the configuration. For this case
we have

_ 2a;+3a50
- 2b2 >

We can, without loss of generality, assume that ¢, > 0 and b, > 0. This as-
sumption gives a positive value of the bifurcation load A., = a,/b, for a bi-
furcation at 8 = 0. If we also assume that a; > 0 then it is evident from the
presence of the linear term in the expression for the load that the load will in-
crease for positive values of 8 and will decrease for negative values of 6. The
second derivative indicates that the branch for positive values of 8is stable and
the branch for negative values of 8 is unstable.

The following example illustrates the important features of the asymmetric
bifurcation.

A A(6,0) = (3a;0)6?
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Example 60. Asymmetric bifurcation. Consider the structure shown in Fig. 126.
The structure is similar to the previous examples except that the top is restrained
from lateral motion by an elastic guy, modeled by a translational spring an-
chored at a distance £ from the base. Again, the force on the system is the verti-
cal force P. The translational spring accrues force F in proportion to its extension
A, ie., F = kA, and constitutes the elasticity of the system. Recall that the po-
tential energy of the spring is kA2

P P
eI ecos{I:O
at

Figure 126 A rigid column with an elastic guy

The energy, virtual-work functional, and second-derivative functional are
8(0) = 3k(L(®)—L,)? + Ptcosb
G(©6,0) = [ak€*(1-A(B))cosb — Psin6|f
A@6,0) = [a k€*(yA3@)cos? 8 — (1~AB))sin6) — Pecos 6] 6?

where the current length L(8) of the spring is given by the expression

L@) = ¢ /1+a*+2asinb

L, = L(0) = €V1+a?isthenitial length of the spring , 4(8) = L,/L(6)isthe
inverse of the stretch of the spring, and y = a/ ( 1 +a2). Note that the rate of
change of L is L'(6) = a € cos 8/L(6). As usual, if G(6,8) = 0for all 8 then
equilibrium holds. Therefore, the guyed column is in equilibrium if

ak€?(1-A@))cosh — Ptsin® =0 (535)

The straight configurations 8 = Qand 8 = + & are equilibrium configurations
for all values of the load since L(0) = L(x &) = L, for those cases. The bent
configuration is in equilibrium only for the loads

P= ak(f(l—ﬂ@)

tan 6

For the straight configuration we have 8 = 0 and 4 = 1, from which we can
observe that the critical load is

a?ke
1+a?
At + s we also have bifurcation points with critical loads equal to —P,,.. We

can observe that, in the limit as @ — o, the critical load approaches that of the
column with the horizontal spring. As a — 0, the critical load approaches zero.

P, = aykl =
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The bifurcation diagram for the geometrically perfect column is shown in
Fig. 127 for the specific case of a = 1.2.

P

! P

—= Unstable o
— Stable Bifurcati'on | Limlt point 0

pomt{/o \ § H
[}
== ! i
S s
- P! \ _p

Figure 127 Bifurcation diagram for rigid
column with an elastic guy (perfect case)

The bifurcation diagram in Example 60 shows some very interesting fea-
tures. We can observe that the bifurcation diagram is not symmetric, unlike the
previous two examples. Clearly, the behavior of the system is different if the
column moves to the right, as opposed to the left. This lack of symmetry mani-
fests in a nonzero slope of the equilibrium path in the neighborhood of the bi-
furcation point. The straight configuration is stable for all values of the load
less than the critical load P,, and unstable for all values of the load greater than
P, like the symmetric systems. The branch to the right (positive 8) of the bi-
furcation point is stable (at least for a while), while the branch to the left (nega-
tive 6) is unstable. The system exhibits two limit points on the equilibrium path
for positive values of 6, and crosses the axis (zero load) at the positions 7/2
and — 7/2.

The Effect of Imperfections

The preceding example assumed that the initial position of the column was per-
fectly straight. In reality, there is no such thing as a geometrically perfect sys-
tem. Imperfections can manifest in many ways. The geometry may be imper-
fect, the load may be imperfectly placed or directed, the material properties
may be imperfectly distributed, and the boundary conditions may be imper-
fectly implemented. Thus, the study of imperfections is complicated for even
the simplest system. Throughout this chapter, we will focus on the imperfec-
tion in the initial geometry of the system to get an idea of the effects of imper-
fections.

We shall see that some systems are sensitive to imperfections. A relatively
small perturbation in the geometry leads to a relatively large change in the re-
sponse. Linear systems are not generally sensitive to imperfections and hence,
this sort of analysis is not commonly done for linear systems. Not all nonlinear
systems are sensitive to imperfections.
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Let us reconsider our three example systems to see how geometric imper-
fections affect the response of the system.

Example 61. Effect of imperfections on the stable symmetric system. Consider
the rigid column with a rotational spring, shown in Fig. 122. The geometrically
perfect system has a stable symmetric bifurcation diagram, shown in Fig. 123.
Let us now consider a geometric imperfection in the system that manifests as an
initial angle 0, (let us assume that it is positive) corresponding to zero applied
load and zero force in the spring. The energy, virtual-work functional, and sec-
ond-derivative functional for the imperfect system are

8(6) = $k(6—6,)* + Pécos
G(6,8) = [k(6—6,)—Pesin0]8
A(6,8) = [k—Ptcos6]|8*

We can see that 8 = 0 is no longer a solution. The system is in equilibrium at
the deformation 6 only if the load has the value

_k[6-6,
P=% ( sinf )
There are two equilibrium paths that satisfy this expression. These equilibrium
paths are shown in Fig. 128 along with those for the perfect system.

—— Unstable
— Stable

Figure 128 The effect of an imperfection
for a rigid column with rotational spring

The second-derivative te . gives

>0 for 8>0 (stable)
A(6,0) = k(1+ gt" —:> g2 =4 <0 for 8, <6 <0 (unstable)
an >0 for 6 <86, (stable)

where 6., is the solution to the equation § —8, = tan#, asillustrated in Fig. 129.

Thus, the equilibrium path that passes through the point of zero load (with
positive values of 8) is stable. The path above the secondary path of the perfect
system shows a limit load (a point of transition from a stable branch to an unsta-
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NC) f(6) = tan8
f6) =6-6,
Bcr
6, 6

Figure 129 Graphical solution of 8 — 8, = tan8

ble one without a bifurcation of paths) at 8,,with the path being stable to the
left of the limit load and unstable to the right. Because of the nature of the imper-
fection, the straight configuration & = 0 cannot be reached at finite values of
the load. As & — 0 from the right, the force P goes to large negative (tensile)
values, indicating that a tensile axial force cannot completely straighten the ini-
tial imperfection.

As 6 — Ofrom the left, the load P takes large positive values, indicating that
if we could get to a configuration with negative values of € (we could force it
over with a lateral force and then remove the lateral force), it would take an infi-
nitely large compressive load to keep it from snapping through to the other side
if it got close enough to the straight configuration. On the other hand, if the com-
pressive load was large enough and the system was bent enough, equilibrium in
the bent position would be quite stable. In either case, as 8 increases, the equilib-
rium path is asymptotic to the perfect path.

There is no bifurcation in the imperfect system in this example. Note the
presence of theterm a, = — k6,0 (the linear term) in the energy. Hence, there
is no meaning to the concept of a critical load in the sense that we have been
using it. However, we can clearly see that the equilibrium paths for the perfect
system provide a backbone to the imperfect system. The smaller the imperfec-
tions are, the closer the imperfect paths hug the perfect ones. The critical load
roughly represents the point in the imperfect curve where the system transi-
tions from a relatively stiff to a relatively flexible system. The critical load is
an indicator of the value at which buckling starts to progress rapidly.

The previous example demonstrates many of the features that are important
to problems of stability of equilibrium. It illustrates the juxtaposition of the per-
fect system and the imperfect one. It illustrates that, even for this simple sys-
tem, there are solutions you might never imagine. In fact, we have not found
all of the possible solutions here. There are other solutions that correspond to
complete windings of the rotational spring. We have defined the important
concepts of bifurcation point and limit point. We have illustrated the role of the
bifurcation diagram. All of these concepts will carry over to the case where
equilibrium is governed by differential equations rather than algebraic ones.
We can use these simple systems as sounding boards for the more complicated
cases where we might not be able to make as much analytical headway.



372 Fundamentals of Structural Mechanics

Imperfections have a particularly important effect on systems with unstable
post-buckling behavior. In fact, these systems are called imperfection sensi-
tive. The sensitivity to imperfections manifests in a limit point having a limit
load that is lower than the critical (bifurcation) load of the associated geometri-
cally perfect system. (Note that the symmetric stable system had a limit point
on the left side of the bifurcation diagram, but it was associated with a load
greater than the critical load and did not appear to be reachable from the initial
unloaded state.) The reduction in load carrying capacity in imperfection sensi-
tive structures can be substantial.

Example 62. Effect of imperfections on the unstable symmetric system. Consider
the rigid column with a translational spring, shown in Fig. 124. The geometrical-
ly perfect system has an unstable symmetric bifurcation diagram, shown in Fig.
125. Consider a geometric imperfection in the system that manifests as an initial
angle 9, corresponding to zero applied load and zero force in the spring. The en-
ergy, virtual-work functional, and second-derivative functional are

8(6) = 1k€*(sin6 - sin6,)* + P€cosh
G@®,0) = [k(’z(sine— sinf,)cos§ — P€sin0]§
A®,8) = [k€*(cos?6~ sin? 0+ sinBsind,) — PEcosf] 8>

We can see that & = 0 is no longer a solution. The system is in equilibrium at
the deformation 8 only if the load has the value

P = k€(1—51.no°) cos@
sin @

There are two equilibrium paths that satisfy this expression. These equilibrium
paths are shown in Fig. 130 along with those for the perfect system.
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Figure 130 The effect of an imperfection on
the rigid column with translational spring
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The second-derivative test gives

<0 for §<0 (unstable)
sinf, sin? 0)52 >0 for 0 <8 <8, (stable)

sin < 0 for 6, < 6 < 7 -6, (unstable)

A(6,6) = kez(
>0 for -6, < 6 <z (stable)

where 6, is the solution to the equation sin@ = sin'/> 8, (which gives the value
of 6 that makes the second derivative equal to zero). The equilibrium path reach-
es a maximum load-carrying capacity at the limit point. The maximum load can
be computed by substituting 8., into the expression for the load. We shall call
the maximum load, or limit load, Pmax = P(6,,). It depends upon the initial im-
perfection in the following way

Prsx = P[1- sin¥?6,]*/?

where P, = k£ is the critical load of the perfect system.

We can clearly see that the imperfection tends to reduce the limit load for
this type of system. The greater the imperfection, the greater the reduction. In
the present example, if the imperfection is only 1°, the maximum load is re-
duced by 10% from the perfect critical load. If the imperfection is 5°, the maxi-
mum load is reduced by 30% from the perfect critical load. The exponent of
2/3 is significant, giving the two-thirds power law of Koiter. The result that
we have here came from a straightforward computation with this specific sys-
tem, but it has a much greater significance. According to Koiter, any system
that experiences a symmetric bifurcation with unstable post-buckling behavior
for the perfect system will be sensitive to imperfections, and the reduction in
the limit capacity will vary according to the value of the imperfection raised
to the two-thirds power.

Upon loading from zero, the initial equilibrium path is stable. If the loading
is tensile, the forces act to straighten the bar. As in the previous example, a
straight configuration can never be realized by this system of forces. When
loaded in compression, the equilibrium path is stable up to the limit point. The
system loses stability at that point only to regain it at the second limit point at

= 7 — 0. Because the equilibrium path between the limit points is unstable,
the system will snap to a stable configuration upon reaching a limit load.

o R T

Example 63. Effect of imperjféctions on the asymmetric system. Consider therig-
id column with a translational spring, shown in Fig. 126. The geometrically per-
fect system has an asymmetric bifurcation diagram, shown in Fig. 127. Let us
now consider a geometric imperfection in the system that manifests as an initial
angle 8, corresponding to zero applied load and zero force in the spring. All of
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the equations of Example 60 are valid for the imperfect case if we redefine the
original length as

L, = ¢ /1+a*+2asin8,

The bifurcation diagram for the geometrically imperfect column is shown in
Fig. 131 for the value of the imperfection of 8, = 0.2. The perfect case is also
plotted in a lighter line weight to illustrate the connection between the perfect
and imperfect cases. This diagram shows features typical of the unstable sym-
metric case to the right and features of the stable symmetric case to the left. As
istypical of these systems, the bifurcation point does not manifest for the imper-
fect case, but the geometrically perfect case provides a backbone curve to which
the imperfect case is asymptotic. The imperfect case exhibits six limit points,
and shows a peculiar departure from the perfect system in the neighborhood of
6 ==
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Figure 131 Bifurcation diagram for rigid
column with an elastic guy (imperfect case)

In a typical circumstance, we might have an imperfect system with the load
level initially at zero and increased to positive values. In such a circumstance,
the value of the maximum load P,,,, which occurs at the first limit point, is of
singular importance. The limit point occurs at the critical angle 6., and is associ-
ated with the load Pp,,. To find this state note that this point has both
G(6,8) = 0Oand A(8,8) = 0. For this system that implies

ak€?(1—AB.,))cos 8, — Pmaxfsinf, =0
ake*(yA%@.,)cos? 8, — (1—A@B,,))sin 6.) = Praxtcosf, = 0

The solution of these two equations yields {6, , Pmax}. To find a closed-form
solution for the maximum load is not practical even for this simple system. How-
ever, we can develop an approximate formula for the maximum load by expand-
ing the terms in the equation in a Taylor series for 8., , keeping only the first few
terms. Carrying out these operations for the present example, we get a critical
angle of

26,

3 Prax = ayA3@.)cos’0,,

ocr =
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We can substitute this value of the critical angle into Eqn. (535) to compute the
maximum load with good accuracy. For the present case, we get 8., = 0.52 and
P = 0.369P,,. (Note the significant reduction from the bifurcation load!)

We can also get an approximate expression for the maximum load by substi-
tuting the above value of the critical load into a Taylor series expansion for Pp,,.
The first few terms give

P ~ PC,(I - 6y0,,+3—1y(8y2—1)0,,)

for the maximum load. These expressions are good for any value of a, but only
for relatively small values of 6, (in fact, for 8, = 0.2we get 0.359P,). The ex-
pression for the maximum serves to illustrate Koiter’s half-power law. The max-
imum load of an imperfect system is a reduction from the critical load of the per-
fect system. According to Koiter, the dominant term in that reduction is
proportional to the value of the imperfection raised to the one-half power for
asymmetric systems. Contrast this result with the two-thirds power law of Koiter
for symmetric systems.

The Role of Linearized Buckling Analysis

For the simple, single-degree-of-freedom systems we have just analyzed, the
equations were amenable to algebraic manipulation, and we were able to get
closed-form solutions for the nonlinear equilibrium paths. For more compli-
cated systems, a closed-form solution is rarely possible, and we must resort to
numerical computations. There will be few cases where we cannot trace the
equilibrium paths of a system by taking small increments along the path and
solving the nonlinear equations with Newton’s method, but these numerical
solutions do not always give the same crisp insight as an analytical solution.

There is a parcel of middle ground on this issue that has been exploited for
centuries in the solution of buckling problems: linearized buckling analysis.
Euler’s analysis of column buckling was, in fact, an example of linearized
buckling analysis. In this section we shall take a look at what happens to our
two symmetric systems when we subject them to a linearized analysis. Our aim
is to find out what we retain and what we have given away in the linearization
process.

A linearized buckling analysis is one in which the equations of equilibrium
are linear in the deformation variable. For a stability problem, the equilibrium
equations will invariably involve the product of the load parameter and the de-
formation variable. In order to have linear equilibrium equations, the potential
energy must be quadratic (a linear energy does not have an extremum, and,
hence, would not give rise to equilibrium configurations of any kind). For the
examples discussed above, we can approximate the trigonometric functions
with second-order polynomials (using Taylor series expansions) to get qua-
dratic energies.
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Example 64. Linearized buckling analysis of the stable symmetric bifurcation.
Consider the rigid column with a rotational spring, shown in Fig. 122. For a li-
nearized buckling analysis we express the energy functional only up to quadratic
terms. Let us truncate the Taylor series approximation at quadratic terms

=1-1g2 4 Lg¢ ~1-36
cosf = 1-356° + 5:6°—0(¢°) = 1
The energy, virtual-work functional, and second-derivative functional are

8(6) = 1k6 + Pe(1-16°)
G(6,6) = [k—Pt)60
A(6,6) = [k—Pt]6?

The equilibrium equation for the system is, therefore, [k—P€]8 = 0. This
equation is satisfied for any load Pif @ = 0(i.e., the straight configuration). The
stability of this configuration can be assessed from the second derivative to show
that the straight configuration is stable for loads P < k/¢€ and is unstable if
P > k/¢.

The equilibrium equations are also satisfied for any value of 8 if P = k/¢.
The second derivative is exactly zero for P = k/¢€ so the stability of this branch
cannot be determined.

We can see from the previous example that the linearized analysis gives a
complete picture of the stability of the straight configuration and it tells us that
the system will buckle into a bent configuration at the critical load P, = k/¢.
However, the linearized buckling analysis yields no information on the post
buckling response. In particular, it is unable to distinguish stable from unstable
post buckling response.

e R b ek a0

Example 65. Linearized buckling analysis of the unstable symmetric bifurca-
tion. Consider the rigid column with a translational spring, shown in Fig. 124.
For a linearized buckling analysis we express the energy functional up to qua-
dratic terms. Let us truncate the Taylor series approximations at quadratic terms

cosb =~ 1-36%  sin6 ~ 6+0(6°)
The energy, virtual-work functional, and second-derivative functional are
8(6) = 1ke?6* + Pe(1-16%)
G(6,6) = [kt*—Pt|6 8
A@6,8) = [kt*—Pe]8?
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Figure 132 The effect of an imperfection in a linearized analysis

The equilibrium equation for the system is, therefore, [k«‘,’2 -P ] @ = 0. This
system yields results identical to Example 64 except that the critical load for the
present case is P., = k€. All of the same conclusions apply.

The second-derivative test is able to tell us everything we knew before about
the straight configurations. In particular, loads below the critical load are stable
forboth systems, and loads above the critical load are unstable for both systems
(the critical loads are different for the two systems). What we lose in lineariz-
ing the analysis is all of the information about the behavior in the bent configu-
ration. The solution of the equilibrium equations suggests that for P = P, the
equations are satisfied for any value of 6. We plot this equilibrium branch as
a horizontal line on the bifurcation diagram, as shown in Fig. 132. This equilib-
rium path is dubious because our assumption made in linearizing ceases tohold
as we get further from the P axis. The second-derivative test is unable to tell
us whether this branch is stable or unstable. It does, however, point in the right
direction initially (that is, it predicts a symmetric bifurcation).

The effect of imperfections can be examined through a linearized buckling
analysis also. The equilibrium equation for both cases turns out to be (with the
critical load suitably interpreted for the two cases)

ry = p.1-2)

where P, = k€ for the translational spring, and P, = k/¢ for the rotational
spring. All of these results are summarized in Fig. 132. The imperfect system
is asymptotic to the perfect one, but because the perfect system does not give
adequate information on the post-buckling behavior, the response of the imper-
fectsystemis actually asymptotic to the wrong response. The linearizationlim-
its the applicability of the analysis to small values of the angle . It is important
to observe that the linearized buckling analysis does not yield information
about the imperfection sensitivity of the system and cannot predict the maxi-
mum load of an imperfection sensitive structure like the one in Example 65.
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Clearly, we lose a great deal in the linearized analysis. However, one of the
key features of a stability analysis is preserved by the linearized buckling anal-
ysis: the critical load. This fact has been exploited in the development of design
formulas for complicated systems. You should be aware of what a linearized
buckling analysis does and does not reveal.

Systems with Multiple Degrees of Freedom

There is another important aspect of buckling that the single-degree-of-free-
dom systems do not exhibit. Because the system has only one degree of free-
dom, it has little choice as to how it will deform; the only issue is whether or
not it will deform. For systems with more than one degree of freedom, addi-
tional possibilities arise. These systems give rise to multiple bifurcation points
and buckling modes. They also make the second-derivative test a little more
interesting.

To see some of the aspects of the stability of systems with more than one de-
gree of freedom, we shall consider the following example of a discrete two-de-
gree-of-freedom system.

Example 66. System with two degrees of freedom. Consider the system shown
in Fig. 133. The structure is composed of two rigid links of length ¢, like the
previous two examples, cantilevered from the base. The elasticity of the system
is manifested in two rotational springs both with modulus . The motion of the
system is completely characterized by the two independent rotations 8, and 8,.
We often will refer to the deformation with the vector 87 = {6,,6,}. Let us take
datum for the potential energy of the load P to be the ground. The potential ener-
gy in the undeformed state is then 2P¢€.

€(cos B, + cosb,) 6,

Figure 133 A two-degree-of-freedom example
The potential energy of the system, in a deformed position, can be written as
8(8) = 3k(6,)? + 3k(6,—6,)? + P€(cos; + cos )

The directional derivative of the energy in the direction 87 = {8, 8,} gives the
virtual-work function
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G(0,8) = [2k6,—k6, — P€sin6,)6, + | —k6,+k6,—PEsinb,]8,

As usual, @ is an equilibrium configuration if G(8,8) = 0 for all 8. Thus, equi-
librium can hold only if the two terms in brackets vanish independently. The
equations of equilibrium are, therefore

2k0, — k6, — P€sinf, = 0
—k6, + k6, — P{ sin6, 0

The equilibrium equations are a system of two nonlinear algebraic equations in
the unknowns 6, and 6, (assuming that the load level P is given). There are two
of them because the system has two degrees of freedom. Like the previousexam-
ples, this system has multiple equilibrium paths. We shall find those paths and
investigate their stability presently.

The second derivative of the energy is A(8,8) = k87A(0, p)8, where the load
parameter p = P¢€/kis anormalized version of the applied load P, and the Hes-
sian matrix is given by

2—pcosf, -1 }

A@®,p) =
®.p) [ -1 1-pcosé,

As discussed Chapter 9, the stability of the discrete system is judged by the signs
of the eigenvalues of the matrix A at an equilibrium configuration. The eigenva-
lues of A are the values A that satisfy the eigenvalue problem A¢p = A¢. Since
the dimension of the matrix is two, there are two eigenvalues. Corresponding to
each of these eigenvalues is an eigenvector ¢. We shall see the significance of
the eigenvectors soon.

The bifurcation diagram for this problem is shown in Fig. 134. Note that the
equilibrium paths in three-dimensional space are accentuated by showing their
projections on the 6, - 8, plane and connecting those two curves with a vertical
curtain. This curtain is only for help in visualizing the three-dimensional curve.
The equilibrium path is always a line in space. The bifurcation diagram shows
several features that the one-dimensional case did not possess. In particular, it
has two bifurcation points with symmetric branches emanating from each. Fur-
ther, all deformations have a shape, dictated by the relative proportions of 6, and
6,. The shape of the deformation changes as we move along an equilibrium path.

Clearly, the straight configuration 87 = {0,0} is a solution for all values of
the load parameter p. The stability can be judged by the eigenvalues of the matrix
A(0, p). A straightforward computation shows that these eigenvalues are

A =%(3—f5-)—p, 12=%(3+f5-)—p

The system is stable for values of the load parameter p < %(3 -5 ), and unsta-
ble for p > -;-(3 -5 ). These results are summarized as Branch O on the bi-
furcation diagram shown in Fig. 134. It would appear that 4, has no significance
to the question of stability of the system, since a single negative eigenvalue is
sufficient to conclude that the system is unstable, and 1, > 4, for all values of
the load p. However, we shall see that both eigenvalues are important to the ques-
tion of the bifurcation of equilibrium at critical points.

379
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Figure 134 Bifurcation diagram for the two-degree-of-freedom example

Consider the bifurcation diagram shown in Fig. 134. At p = 0, both 4, and
A, are positive, as they should be for stability. These two eigenvalues get more
positive for negative (tensile) values of p, indicating more robust stability. T As
the load is increased from zero in the positive (compressive) direction, the val-
ues of 4, and 4, begin to decrease. We reach a critical point when the first eigen-
value goes to zero. The critical point defined by 4, = 0, corresponding to aload
valueof p; = (3— /5 )/2, is a bifurcation point at the boundary between stable
and unstable behavior in the straight position. If we continue to increase p along
the straight configuration, 4, becomes negative and gets increasingly negative.
The second eigenvalue 4, is still positive, but continues to decrease. The condi-
tion A, = 0, correspondingtoaload value of p, = (3+ /5 )/2, defines another
critical point where bifurcation can occur. For load values of p > p,, both of
the eigenvalues are negative and get increasingly negative as p increases. So
much for the straight configuration. What about bifurcations to bent configura-
tions?

As we compute Branch 1 and Branch 2, we can evaluate the eigenvalues of
A(8, p) to monitor the stability of those branches. On Branch 1, which emanates
from the critical point where 4, = 0 and 4, > 0, both eigenvalues become in-
creasingly positive the further out on the branch you go. Thus, Branch 1 is stable
and gets increasingly so. On Branch 2, which emanates from the critical point
where A, <0and 4, = 0, 4, regains its positivity and becomes increasingly
positive the further out on the branch one goes. However, 4, remains negative.
Thus Branch 2 is unstable.

+ According to our criterion, stability is like being pregnant: Either you are, or you are
not. Inreality, we can consider stability (and pregnancy) to be a matter of degree. Some
configurations are more stable than others. The problem lies not with the systems, but
with our definition of stability. The degree of instability can best be understood in a
dynamic setting.
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The effect of imperfections. The analysis of systems with multiple degrees
of freedom is essentially the same as for system with a single degree of freedom
except that there is more variety to the way in which the geometric imperfec-
tions can manifest. In a system with multiple degrees of freedom there can be
an imperfection parameter associated with each degree of freedom. Often the
imperfection is simply taken as a nonzero initial value of the response parame-
ter itself, as the following example illustrates.

Example 67. Effects of imperfections for the system with two degrees of free-
dom. Reconsider the system shown in Fig. 133. Let us examine the effects of im-
perfections in the system. Here we find an interesting feature that was not pres-
ent in the one-dimensional problems. The imperfections must be specified as a
pair of values 87 = {6,,,6,,}. The key question now is: What is the behavior
of the equilibrium path for the imperfect system? The energy for the imperfect
system can be written as

8(0) = 3k(6,—6,,)+ 2k[(6,=8,5)~ (8, —6,1)]>+ Pe(cos b, + cos6,)

where we continue to measure the angles of rotation from the vertical position,
and have adjusted the expression for the energy of the springs to be zero at the
point where the rotations are exactly equal to the initial values.

The virtual-work functional is G(8,8) = D8(8) - 8. The equilibrium equa-
tions can be obtained from setting G(8,8) = 0 for all 8. This process results in
the equations

2k(6,-6,,) — k(6,—8,,) — Pesinf; =
— k(6,-6,,) + k(6,-8,,) — Ptsinb,

As in the previous examples, 87 = {0, 0} is no longer asolution. In fact, as the
load is increased in the tensile (negative p) direction, the system asymptotically
approaches the straight configuration. At the configuration 8 = 0,, the load p
must be zero. As the load increases in the compressive direction, our intuition
tells us that the equilibrium path should eventually grow close to the equilibrium
path of the perfect system. However, now we have two such paths. If the initial
imperfection is in the direction of the first eigenvector, we would expect the
equilibrium path to approach Branch 1 asymptotically, as indeed happens.
What happens if the initial imperfection is in the direction of the second
mode? The result of one case for the previous example is shown in Fig. 135.
The equilibrium path shows a very brief inclination to follow the second path,
but soon unwinds to a mode that resembles the first mode and proceeds to try
to follow Branch 1. We can speculate that the urge to follow Branch 2 initially
will depend upon how close the second critical point is to the first. If it is too far
away, the attraction of the higher path is small. If it is close, its attraction is great-
er. In the present case, the two critical points are rather far from each other, and,
thus, the urge to follow Branch 2 is almost imperceptible. (Examination of some
imperfections closer to mode 2 reveals this phenomenon under magnification.)
Although it is impossible for this structure because of its geometry, we might
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Figure 135 The effect of an initial imperfection
for the two-degree-of-freedom example

also ask what would happen if the two critical points were very close together
(or, in the limit, on top of each other).

Linearized buckling of MDOF systems. From our earlier examples, we
suspect that we will have a bifurcation of equilibrium at the critical points, and
this is indeed true. For the previous examples, we found a closed-form expres-
sion for the load as a function of 6, and took the limit as & — 0 to see that equi-
librium bifurcates from the straight configuration at the critical load. For the
present case, we cannot proceed in the same manner because we cannot write
those closed-form expressions. However, we can appeal to the linearized
buckling problem to see if the solution branches at those points. For small val-
ues of 8, and 6,, the equations of equilibrium reduce to the eigenvalue problem

l: 2 -1 } 6, l _

-1 1|le,| TP
Asusual, we can still see that 8” = {0, 0} is a solution for all values of the load
parameter p, Branch O on the bifurcation diagram. However, this equation is
a linear eigenvalue problem, and thus suggests that there may be other solu-
tions for certain values of p. It should be quite clear that this eigenvalue prob-
lem is very closely related to the one we solved to determine the stability of

equilibrium of the straight configuration. The eigenvalues and eigenvectors of
this system are easily found to be

6,
6,

5 |
1+ /5

D= %(3— \/g), ¢, = ¢
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where the constants ¢, and ¢, appear in the eigenvectors to remind us that the
magnitude of these vectors cannot be established from the eigenvalue problem,
only the direction. The eigenvalues are just the values of the load p at the criti-
cal points found earlier. The eigenvectors represent the direction that displace-
ment must occur in order to satisfy equilibrium at these loads. As such, these
eigenvectors represent the tangents to the equilibrium branches at the critical
points. These vectors are plotted in Fig. 135, which shows the projection of the
equilibrium paths on the 6, — 6, plane (load p is normal to the page). The equi-
librium equations are really nonlinear, so the paths do not remain straight, but
the eigenvectors initially point in exactly the right direction.

The most interesting feature of the eigenvectors ¢, and ¢, is that they give
a specific shape into which the structure must buckle at the critical load. No
other shape is possible. This feature of the multidimensional problem clearly
is not captured by the one-dimensional problem because the latter problem has
no freedom in the shape of deformation, while the former problem does. The
shapes are qualitatively sketched in the figures, and are often called buckling
modes. The first mode has 6, > 0 and 8, > 0 (or, by symmetry, both negative),
whereas the second mode has 6, > 0 and 6, < 0 (or, by symmetry, the reverse
signs). Furthermore, since they correspond to distinct eigenvalues, these ei-
genvectors are orthogonal. While the shape of deformation changes along a
branch, it retains its original character.

The relationship between the linearized buckling eigenvalue problem and
the second derivative test for the trivial configuration can be seen by noting that

p, = %(34’ »/g), o, =c;

G(0,0) = 87g(6,4) = B7A(0,1)0

(536)
A(0,B) = B7A(0,4)D
If we set G(8,0) = 0 for all 8 then we get the equation
A(0,1)6 = 0 (537)

which is a linear eigenvalue problem. The trivial solution 8 = 0 is obviously
asolution. There are solutions with 8 = Oonly if det A(0,4) = 0, whichgives
an equation (the characteristic equation) for the load parameter 4 for which
such nontrivial solutions are possible. The eigenvectors 0; that correspond to
the values 4, that are roots of the characteristic equation give the directions in
which buckling is possible. These are the buckling mode shapes.

The second derivative test says that the system is stable if the eigenvalues
of A(0,4) are all positive. Hence, we set up the eigenvalue problem

AQ) 0 = uo (538)
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We can solve this eigenvalue problem by observing that it is equivalent to the
equation

[A0,2)—ul]$p =0 (539)

This equation has a solution with ¢ = 0 only if det[A(0,4)—xI] = 0. This
characteristic equation can be viewed as an equation for u#(4). In other words,
the eigenvalues of the second derivative matrix are a function of the loading
parameter A.In fact, #(1) can be evaluated for any value of A (that is how we
determine the stability of the trivial branch). If we are seeking the bifurcation
points then we need to find those places where u(4) = 0. If 4 = 0 then we
can observe that Eqn. (538) is identical to Eqn. (537), and the eigenvectors
have the same meaning in both cases.

Additional Reading

Z. P. Bazant and L. Cedolin, Stability of structures: Elastic, inelastic, fracture
and damage theories, Oxford University Press, New York, 1991.

H. L. Langhaar, Energy methods in applied mechanics, Wiley, New York,
1962.
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Problems

241. The frame shown is composed of two rigid members con- P

nected by rotational springs. The moment developed by a spring

isrelated to the rotation by M = k¢, where ¢ isthe rotationexpe- ¢ k

rienced by the spring. Both springs have modulus k. The frame is :I:

subjected to a load P acting downward. The motion of the struc- k

ture can be completely characterized by the rotation of the vertical W
member from its original position. Examine the stability of the

system. In particular, find the critical load and plot the bifurcation diagram. Note that the
bifurcation diagram is not symmetric. Can you explain, in physical terms, why it is not?

242. Examine the effect of an imperfection in the system of Problem 241. Let the imper-
fection be an initial value of the angle of rotation used to describe the motion, and assume
that the springs are such that they have no moment at this initial position. Plot the maxi-
mum load versus the size of the initial imperfection.

243. Consider the tworigid bars hinged togeth-

P
er and subjected to axial load P, as shown. The A~ k% % % k%
¢ 2¢

bars have length € and 3¢, and are restrained by

three elastic springs, with modulus , that resist IW——’}
vertical motion. Find all equilibrium paths for

the system. Find the bifurcation loads of the system. Assess the stability of the straight and
bent configurations.

244. Consider the three-bar rigid linkage

p
shown. The bars are hinged togetherand arere- 2o %k %k %_
¢

strained by elastic springs that resist vertical

motion. The springs accrue force in proportion l<__>|<___>‘<___.l

to their extension, with modulus k. The system ¢ ¢

is subjected to an axial force P. Write an expression for the potential energy of the system.
What are the equations of equilibrium governing the response of the system? Find the criti-
cal loads and the buckling mode shapes of the system. Feel free to linearize the geometry
of deformation as you see fit.

245. Consider the three-bar rigid linkage P
shown. The bars are hinged together and are — C/; ‘©k ﬁ
restrained by elastic rotational springs. The . - e »
springs accrue force in proportion to the rela- ¢ ¢ ¢

tive angle of distortion, with modulus k. The

system is subjected to an axial force P. Write an expression for the potential energy of the
system. What are the equations of equilibrium governing the response of the system? Find
the critical loads and the buckling mode shapes of the system. Feel free to linearize the
geometry of deformation as you see fit.

246. Consider the rigid bar subjected to axial load P and transverse load € P as shown. The
bar has length 2¢, is restrained against horizontal and vertical motion at the midpoint, and
is supported by two elastic springs that resist vertical motion at the ends. The springs ac-
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crue force in proportion to their extension, with modulus k. The deformation can be charac-
terized by the rotation of the bar relative to the horizontal position.

#sP P P
%f‘ = k% _ n‘ _______ S = 0.1 ‘ x_
e = | NEC

Find all equilibrium paths P(6) for the system ( —% < 6 < x). Determine the stability
of these branches. Find the critical load of the system when ¢ = 0. Locate the limit point
on the bifurcation diagram plotted for ¢ = 0.1.Is the limit load at this point greater or less
than the critical load?

247. Consider the frame composed of rigid bars subjected to the P

load P as shown. The rigid members are hinged at the top right k
corner, with an elastic spring that resists relative rotation. The

rotational spring accrues force in proportion to its relative angle ¢

change, with modulus 4. Find the buckling load for this system.

Express the deformation of the system in terms of the angle of

rotation of the vertical member on the right side of the structure. - p e p >
What happens if you use the angle of rotation of the vertical mem-

ber on the left?

248. Consider the rigid bar subjected to axial load P H p

as shown. The bar has length 2€ and is supported by KIS ¢ %k %k
elastic springs that resist vertical motion. The springs

accrue force in proportion to their extension, with mo-

dulus k. Find the critical loads and linearized buckling 4 4
mode shapes of the system. Note that this system has

two degrees of freedom.

249. Consider the three-bar rigid linkage _ P
shown. The bars are hinged together and <= ké Ess k% k%
are restrained by elastic springs that resist

vertical motion. The springs accrue force £ £ £ £

in proportion to their extension, with mo- 0,

dulus k. The system is subjected to an axial T~
force P. Write an expression for the poten- 0,

tial energy of the system. What are the li-

nearized equations of equilibrium governing the response of the system? Find the critical
loads of the system. A convenient choice of degrees of freedom is shown in the diagram.

250. Two rigid bars are hinged together and rest on a lin- W
A\ AN\NNVZZ/ANNN P

early elastic foundation. The foundation accrues a force k
per unit length proportional to the transverse displace- el
ment, i.e., f{(x) = kw(x). The system is subjected to an axial ¢ ¢

load P as shown. Find an expression for the energy functional for the system. Find an ex-
pression for the virtual-work functional for the system. Find the buckling loads of the sys-
tem by solving the linearized buckling eigenvalue problem.
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251. The vertical rigid bar is subjected to axial load P and
is hinged to the horizontal rigid bar which has length 2¢. A
rotational spring restrains the change in angle between the
two bars. The horizontal bar is restrained against horizontal
and vertical motion at the midpoint, and is supported by two
elastic springs that resist vertical motion at the ends. The
springs accrue force in proportion to their extension, with
modulus k. Find an expression for the energy & of the sys-

tem. Find the (nonlinear) equations of equilibrium of the system. Find the critical loads

of the system.

252. Arigid bent of height 2€ and length 3£ rests on three
elastic springs, each with modulus k. The springs accrue
force in proportion to the amount by which they stretch. ¢
The bent is pinned at the corner end and is subjected to a

load P at the top and a load of P at the right end. Find the ¢

virtual-work form of the equilibrium equations. Find the
second-derivative functional A for the system. Find all
equilibrium configurations of the system and assess their
stability. Sketch the result on a bifurcation diagram.

253. Arigid bar of length £ is pinned and restrained by a
rotational spring of modulus k at the bottom. It is subjected
to a force P at the top. The force changes its direction with
the motion of the bar. If the bar rotates by an angle 6 then
the load rotates an angle a@ in the opposite sense (a is a
known constant). Find a suitable virtual-work function for
the system? (Hint: start with a classical equilibrium equa-
tion from a freebody diagram of the bar). Does an energy

function exist? If so, then find it. Estimate the buckling load of the system.

254. Tworigid bars, each of length € are hinged together and
attached to two linearly elastic springs of modulus k. The bot-
tom end of the vertical member is on a roller that rolls on a hor-
izontal plane. The right end of the horizontal member is on a
roller that rolls on a slope. The column is subjected to a verti-
cal force P. Find an expression for the energy of the system.
Find the equilibrium configurations of the system. Find the
critical loads of the structure.

255. Aladder of length € =20 ft leans against a wall with the base
4 ft from the wall. Both ends are frictionless and the bottom end is
restrained by an elastic spring of modulus k = 10 1b/ft. What is the
maximum height x (measured along the ladder as shown) that a per-
son of weight W=200 Ib can climb? The ladder can be assumed
rigid, the rollers are very small relative to the length of the ladder,
and the person climbs slowly enough to neglect dynamic effects.

Py
k 443
g,
¢
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256. Fourrigid bars are hinged together and subjected P

to the load P as shown. The two horizontal bars are re-

strained by a linear, elastic rotational spring of modu- k 23

lus k. Find an expression for the energy of the system. 4

Find an equation describing the equilibrium configu- N VO DU S
rations of the system. Find the bifurcation load. ¢ ¢ ¢ ¢

257. Consider the linkage of two rigid bars subjected to ky

axial load P as shown. The linkage has length 4¢, is 2= T O~ k
pinned at the left end, and has elastic springs that resist % %
motion. The translational springs accrue force in propor- e sfet—sfa—3fee—n
tion to their extension, with modulus k. The rotational ¢ ¢ ¢ ¢
spring accrues force in proportion to the its relative angle change, with modulus k, = k€2
Find the critical loads and linearized buckling mode shapes of the system.

258. Consider the frame composed of rigid bars subjected to the P
load P as shown. The rigid members are hinged at the top left cor-
ner, with an elastic spring that resists relative rotation. The rota- ¢
tional spring accrues force in proportion to the its relative angle

change, with modulus k. Find the buckling load for this system. ¢
Determine the post-buckling response of the system in terms of

the rotation of the left column. Does it make a difference if the [———]
frame buckles to the left or to the right? 3¢/2

259. Two rigid bars, each of length 2¢ are connected by a linear

elastic spring of length € and modulus k. The right vertical bar is ¢
subjected to a force P as shown. The left bar is attached to a verti-
cal spring of modulus k& that has been stretched into place, giving
it an initial tension force of 7, (i.e., when P =0). Write the energy
functional for the system. Find the lowest buckling load P,, of the

system. |

v

260. Two rigid bars, each of length 2€ are connected by a single
rigid bar of length € which is hinged at the ends. A weight of fixed ¢
value W hangs from the left bar while the right vertical bar is sub-
jected to a force P as shown. Note: there are no elastic elementsin € ¢
this system! How many degrees of freedom does the system have?

Write the exact energy functional for the system. (Hint: You cande- w ¢
scribe the deformation in terms of the rotation angles of each mem-

ber, but you must write equations of constraint relating those angles je—]

to your chosen degrees of freedom). Find the critical value of P at
which buckling of the system takes place. Is the post-buckling behavior symmetric or
asymmetric? Do you expect the post-buckling behavior to be stable or unstable?

v



11

The Planar Buckling
of Beams

Armed with some understanding of the stability of discrete systems, we now
move on to the stability of continuous systems. The equations that govern con-
tinuous systems are differential equations, and, hence, are considerably more
complicated to solve than discrete systems. However, most of the issues of sta-
bility are the same. As mentioned previously, in order to investigate the stabil-
ity of a system, we must work with the nonlinear equations that govern the be-
havior of that system. For mechanical systems, this nonlinearity can accrue
from a variety of causes, as we discussed in Chapter 10, but we shall focus here
on nonlinearity in the equilibrium and strain-displacement equations (and not
constitutive nonlinearities). The description of a body in a deformed configu-
ration requires that we work with nonlinear equations of the geometry of de-
formation and, thus, nonlinear equations of equilibrium. Without even consid-
ering the effects of nonlinear constitutive behavior, we are led to the interesting
and important phenomenon of elastic buckling of structures, first discovered
by the great mathematician Leonhard Euler centuries ago.

In order to make some headway in the understanding of the buckling of con-
tinuous systems, we shall consider the case of the planar beam. Our study be-
gins with a simple derivation of a geometrically exact planar beam theory .
The kinematic hypothesis that plane sections remain plane after deformation
will again play the key role, but the simple derivation here will disguise the im-
portance of that hypothesis somewhat. Unlike the derivation of the linear beam
theory, we shall start immediately with stress resultants and establish the equa-

+ A geometrically exact theory is one in which we make no approximations of the type
sin@ =0, nor do we neglect any terms that arise naturally in the derivation of the
theory.
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tions of equilibrium. This derivation requires a leap of faith in the definition
of stress resultants as the resultant of stress over a cross section, but this leap
is easier to make since we have seen the rigorous development of the linear
beam theory. The advantage of this approach is that it will gain us access to an
important nonlinear theory without much difficulty.

Once our simple nonlinear theory has been derived, we can make some
common approximations and identify some of the classical theories, such as
Euler’s elastica and the linearized buckling theory. We will take a close look
at the linearized buckling theory, considering classical solutions to the result-
ing boundary value problem as well as approximating techniques based upon
the virtual-work form of the equations. In particular, we will find a method of
accurately approximating the critical loads of an axially compressed beam. In
accord with the analyses from the previous chapter, we shall consider the effect
of imperfections and transverse loads on the linearized buckling of an axially
compressed beam.

Consider the planar cantilever beam shown in Fig. 136. This beam has
length € and cross sections that are symmetric with respect to the plane of the
page. Often we shall consider prismatic beams, that is, beams with cross sec-
tions that do not vary along the length of the beam. We consider the line of cen-
troids to be the axis of the beam, and we consider only beams that are initially
straight (unless explicitly characterized otherwise, €.g., as an initial imperfec-
tion). The forces that act on the beam include the distributed transverse and ax-
ial forces, g(x) and p(x), and the distributed moment m(x). For the present dis-
cussion, we assume that these forces do not change direction as the
deformation progresses. The beam has boundary conditions at its ends that
complete the specification of the problem. There are two boundary conditions
on each end, on either the displacement or the force (mixed conditions can also
be implemented), as was the case for the linear theory. We take this model
problem as our point of departure.

Derivation of the Nonlinear Planar Beam Theory

There are many ways to derive a beam theory. The approach used in Chapter
7 to derive the equations of linear beam theory showed the relationship be-
tween the one-dimensional beam equations and the equations governing the
mechanics of a three-dimensional continuum. In that derivation, we assumed
that the deformations were infinitesimally small so that the equations could be

q(x)
m(x Px) P
r
I — e i

£

Figure 136 A planar beam subjected to axial thrust
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characterized in the undeformed geometry of the body. In this chapter, we shall
derive a beam theory that does not assume small deformations. As such, this
theory will be useful for examining the stability of beams. The approach taken
to the derivation of the theory is distinctly different from that of Chapter 7, and
it assumes that you already understand the meaning of resultant force and mo-
ment. In particular, we assume that we know how to add forces to moments in
equilibrium equations. This type of derivation is often found in the literature
and can be quite enlightening, particularly when viewed in light of the ap-
proach of Chapter 7.

Our derivation of the nonlinear beam theory will proceed as follows. First,
we shall establish the equations of equilibrium of stress resultants. Next, we
cast those equations in a weighted residual (virtual-work) form by multiplying
them by arbitrary virtual displacement functions and integrating them over the
length of the beam. Integrating the resulting expression by parts to unload the
differentiation from the stress resultants to the virtual displacements, we define
the virtual strains that must, by construction, be associated with the stress re-
sultants. Using Vainberg’s theorem, these virtual strains can be integrated to
give the real strains. Finally, we hypothesize constitutive equations in accord
with the linear theory.

Equilibrium. Consider the segment of beam bounded by the cross sections
located at distance x and x + Ax from the left end. The displacement field is
characterized by the displacement of the centroid in the axial direction u(x),
the displacement of the centroid in the transverse direction w(x), and the rota-
tion of the normal to the cross-sectional plane 6(x), as shown in Fig. 137.

The resultant force R acting on a cross section can be expressed in compo-
nents, either relative to the rotated cross section, axial force N(x) and shear
force Q(x), or relative to the axial and transverse direction of the undeformed
beam, horizontal force H(x) and vertical force V(x), as shown in Fig. 138.
Hence, we have the equivalence

R = He1+Ve2 = Ng1+Qg2

n(x+ Ax)
O(x+ Ax)
n(x) )
? §B(x) w(x + Ax)
_ wE)_
. u(x) u(x+Ax)
X Ax

Figure 137 The geometry of deformation
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Figure 138 The components of the resultant force at a cross section

where e, and e, are the base vectors along the coordinate axes, and g, and g,
are base vectors normal and transverse to the cross section. We can change
from one set of components to the other through the relationships

H = Ncos0—Qsinf
V = Nsin6+Qcosf
With this notation at hand, we can proceed to establish equilibrium of the

segment by summing forces and moments. The forces acting on the segment
[x, x+ Ax] are shown in Fig. 139.

(540)

V(x+ Ax)
Tt M(x+ Ax)
q(é:) H(x+ Ax) '
— H(x) E‘.P
= M(x) T o
- Vx

Figure 139 The equilibrium of a beam segment

Let us set the sum of forces in the horizontal and vertical direction and the sum
of the moments about the point % (the centroid at the left end of the segment
in the deformed position) equal to zero to establish equilibrium of the segment.
Divide these equations by Ax and take the limitas Ax — 0. The following ex-
amaple shows the derivation for the moment equilibrium equation.

Example 68. Equilibrium of moments. Let us consider the equation of balance
of moments about the point % in Fig. 139, recalling the geometry of Fig. 137.

M(x+Ax) — M(x) + V(x+ Ax)(Ax + u(x + Ax) — u(x))

= H(x+ Ax)(w(x + Ax) = w(x))

Ax
+j [ (W&) ~wx))p@) ~ (§+u(®))a(E) + mE) | = 0

0
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where & measures distance (on the undeformed configuration) from the left end
of the segment. Dividing the equation by Ax gives

M@ +AxY) - M) V(x + Ax)[ Ax + u(x + Ax) — u(x) |
Ax Ax
H(x + Ax)[ w(x + Ax) — w(x) ]
N B Ax
+ ﬁ[ [ (W@ ~wx))p(E) — (E+u(®))g@) + mE) & = 0

[

Taking the limit as Ax — O, recognizing the definition of the derivative of a
function, gives

M +V(1+u')—Hw +m=0

The first two loading terms in the integral vanish because the moment arm in the
integrand goes to zero as the length of the segment goes to zero.

The governing differential equations of equilibrium for the planar beam are

H+p=20 V+g=20

(541)
M +V(1+u)—Hw +m = 0

These equations look remarkably like the linear equations of equilibrium. The
main difference is the deformation measures 1+#’ and w’ in the equation of
moment equilibrium. These terms give rise to buckling phenomena in beams.
These equations are exact within the context of beam theory and the assump-
tion of planar behavior.

Virtual-work functional. We have seen previously that the virtual-work
form of the equations can be obtained simply by multiplying the equilibrium
equations by an arbitrary virtual displacement and integrating the result over
the domain of the body. We will use this approach here to show how it helps
us define the appropriate strain resultants to go along with the stress resultants.

We know that we want the final result to have a well-defined expression for
external virtual work. Therefore, we shall multiply the first equation by @(x),
a horizontal virtual displacement; the second by W{(x), a vertical virtual dis-
placement; and the third by 8(x), a virtual rotation. These selections are moti-
vated by the presence of the loading terms p(x), g(x), and m(x) in the equations
and our desire to compute the virtual work done by these forces. The other
terms in the equation are of much less help in figuring out what the character
of the arbitrary function should be. As we shall soon see, simple manipulation
of these equations will tell us what the virtual strains must be in order for the
internal work to make sense.
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Let us denote the three displacement func_Eions as u = {u,w,0} and the
virtual displacement functions as @ = {#&, W, 8}. In accord with the specifica-
tion of the virtual displacements above, we can define the following functional

[4
G(u,0) = — [(H' +p)u+(V +q)w

(M +VA+u)—Hw +m)f]|dx
Note that, in accord with the fundamental theorem of the calculus of variations,
uis an equilibrium configuration if G(u, ) = Oforall W € J(0, £), where I
is the space of admissible functions. (Note that T is the same space we used
for the linear Timoshenko beam.) This form of the equations is not very inter-
esting in itself, but it will be upon some simple manipulation. Integrating all of

the terms involving derivatives of the stress resultants by parts, we arrive at a
suitable definition of the internal and external virtual work

¢
W, = J (Ha'+Vw' +M0' — V(1+u')0 + Hw'9)dx
"e (542)
— T4 [4 4
W, = I (pa+qw+m8)dx + M9| + Vw} + Hﬁ’
0 0 0
0
If the virtual-work functional is to have the form G = W,— W, then the inte-
gral in Eqn. (542) must be the internal virtual work. Let us substitute Eqns.

(540) to eliminate H and V in favor of Q and N. The internal virtual work can
be written in the form

[4
V_V,EI [(Vcos6—Qsin6)a +(Nsin6+Qcos8)w' + M8’
o : (543)
—(Nsinf+Qcosf)(1+u')d + (Ncos@—Qsin0)w'8 | dx

Regrouping terms, this expression can be written in the form

[4
W, = j [N[coseﬂ’+ sin9W'—((1+u’)sin9—w’cos(?)g]
) (544)

+Qcos 6% — sin 0T —((1+u')cos® +w'sin6 )(7]+M(7’] dx

Let us finally summarize the internal work as

[4
W‘,EI (M%,+QB,+Ne,) dx
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Figure 140 The components of the stretch of the line of centroids

This final form of the expression for the internal virtual work suggests that the
quantities ¥, B_,,, and €, have the character of virtual strains associated with
M, O, and N, respectively. Accordingly, the virtual curvature, shear strain, and
axial strain are given, respectively, by

%, =60
B, = Wcosf —msin — (w'sinf + (1+u')cosf)f  (545)
€ = Wsin6 + ' cosf + (w'cos® — (1+u)sin6)d

Strain resultants. We can find the real strains by applying Vainberg’s theo-
rem to the question of the integrability of the virtual strains (in the same spirit
as we integrate the virtual-work functional to get an energy functional). To be
integrable, the directional derivatives of the virtual strains must be symmetric
in the sense of Vainberg. This symmetry is easy to verify and is left as an exer-
cise (Problem 261). We shall call the real strains #,, 8,, and €,. These strains
are the functions that, when differentiated in the direction of the virtual dis-
placements W = {1, w, 8}, give the virtual strains. The real strains are

x, =06
B, = w'cosd — (1+u’)sin@ (546)
€ = w'sinf + (1+u')cosd — 1

An interpretation of the strain resultants 8, and €, can be obtained by ex-
amining Fig. 140, which shows a segment of beam originally of length dx
stretched to a deformed configuration with length ds. The stretch ratio is called
A = ds/dx. If we translate the deformed configuration back on top of the un-
deformed configuration, we can see that the right end of the deformed segment
has moved horizontally by u'dx and vertically by w’'dx relative to the unde-
formed configuration. The stretch s, thus, givenas A = (1+u')2+(w’)%. Us-
ing the relationships for strain resultants in terms of displacements in Eqn.
(546), we can show that
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Figure 141 A three-point bend test to determine EI

(1+€)2+(B)2 = (1+u)2+(w')? = 4

Furthermore, the strains €, and f, are related to the quantities w' and 1+ #'
through a rotation of magnitude 6, indicating that they are the components of
the same vector in two different coordinate systems, the latter in the unde-
formed coordinate system and the former in the coordinate system attached to
the cross section. Thus, we can interpret €, and B, as the components of the
stretch of the line of centroids in a coordinate system that moves with the cross
section through the deformation. In a sense, then, €, measures axial stretch and
B, measures transverse stretch. The transverse stretch must be caused by
shearing strain.

Constitutive equations. The only component of the theory that remains to
be established is the constitutive equations. In the linear theory, we were able
to derive the constitutive equations from the constitutive equations of three-di-
mensional elasticity. We found that beam theory was not entirely consistent
with the three-dimensional theory, but it could be fixed by modifying the
constitutive equations. Since the constitutive parameters for any theory (in-
cluding the general three-dimensional theory) must be determined empirically,
we can consider the constitutive models of the resultant theory as relationships
between resultant stresses and resultant strains that need to be established
through laboratory testing.

We could, for example, use a three-point bend test to determine the value
of EI for the linear theory, rather than looking at EI as the product of Young’s
modulus E and the second moment of the cross-sectional area I. The test is il-
lustrated in Fig. 141. From the linear theory, we know that A = P€>/48EI. We
can measure the length € and plot P versus A for the test. Then EI is the slope
of the P— A curve multiplied by €°/48. Thus, it is possible to evaluate EI with-
out evaluating E and I separately. Similar tests for GA and EA can be devised.

We can extend these ideas to the nonlinear theory. We can also use the linear
theory as a guide in the sense that the nonlinear theory should reduce to the lin-
ear theory when the strains and displacements are small. From the linear
theory, we found that the constitutive equations were uncoupled if centroidal,
principal axes were used to describe the axis of the beam. Thus, the moment
is a function of curvature, M = My(x,), the shear force is a function of shear
strain, Q = Q(ﬂ,,), and the axial force is a function of axial strain, N = N'(¢,).
The specific functions could be determined experimentally.
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As afirst approximation, we shall adopt linear constitutive equations for the
nonlinear theory. These constitutive equations should remain accurate if the
strains are relatively small, no matter how large are the displacements and rota-
tions. We postulate the following constitutive model for our nonlinear beam

M = ElIx,, Q = GAB,, N = EAe, (547)

where EI, GA, and EA can be interpreted in the same manner as the linear
theory. The specification of constitutive equations completes the field equa-
tions for our nonlinear planar beam theory. In order to have a properly posed
boundary value problem, we must augment the field equations with boundary
conditions. These conditions are identical to the linear theory and, therefore,
will not be discussed here.

A Model Problem: Euler’s Elastica

The fully nonlinear theory canbe constrained to produce some interesting clas-
sical results. Clearly, the present theory includes shear and axial strains. For
long, slender beams, the influence of the shear and axial strains on the deflec-
tions of the beam are typically small. We can constrain these strains to be zero
a priori to generate a model generally attributed to Euler. In the linear theory,
the shear and axial strains were uncoupled, and it made no difference whether
we constrained one or the other. In the nonlinear theory they are coupled, and
we must constrain both in order to realize a simplification in the governing
equations. In the nonlinear theory, S, and €, are components of the stretch of
the axis. Therefore, setting €, = Oand §, = 0istantamount to saying that the
length of the beam cannot change. We call such a beam inextensible. From
Eqn. (546) we can determine that the inextensibility constraints imply

I

w' = sinf, 1+u = cosf (548)

These constraints allow us to recast the theory purely in terms of the rotation
of the cross section 6. Substituting these expressions into the moment equation,
we obtain

M +Vcos@—-Hsinf+m = 0 (549)

in addition to the original horizontal and vertical equilibrium equations. The
force equilibrium equations can be integrated to give

Vix) = V(0) - j q(€)dE, Hx) = H(0) - [ p&)dE  (550)

For statically determinate problems, H and V can be expressed in terms of the
applied forces without appealing to the other equations governing the behavior
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Figure 142 The model problem for Euler’s elastica

of the system. When there are no distributed loads, these problems are known
as Euler’s elastica because they were studied by the famous mathematician
Euler centuries ago.

Classical differential equation. One particular case of Euler’s elastica is
the cantilever beam under a compressive tip load P, shown in Fig. 142. We shall
adopt this case as our model problem and use it to demonstrate some features
of the nonlinear theory. There are no transverse loads, sop = ¢ = m = 0.Fur-
thermore, from overall equilibrium we see that H = —Pand V = 0. Consid-
er a prismatic column, i.e., EI is constant. Using the constitutive equation for
moment, and substituting the above relations for H and V into Eqn. (549) we
find the classical equations and boundary conditions governing the elastica

EIG" + Psing =0

6(0) = 0 6'(¢) =0 (551

This classical problem has been studied extensively. Solutions to this problem
are given by elliptic integrals. The classical solution is rather involved and will
not be pursued here. You may wish to consult a classic text, e.g., Love (1944),
for the solution to this problem.

When we speak of the elastica, we generally mean the whole class of prob-
lems subject to the inextensibility constraint. Accordingly, other boundary
conditions are also possible. The interesting observation about the elastica is
that the equations govern only the rotation field of the beam, not the displace-
ment field. As such, a solution can be obtained for which the actual position
of the beam in space is not determined. Once the rotation field is known, how-
ever, Eqns. (548) can be integrated to find the axial and transverse displace-
ments. The integration of these two first-order differential equations would
introduce two more constants that can be used to establish a unique position
of the beam in space. These solutions also give the shape of the beam by locat-
ing the position of the centroidal axis.

Virtual-work and energy functionals. The problem of the elastica can be
cast in weak form. For the present example, Eqn. (542) reduces to
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€
G@6,6) = I (EI6'G' — PBsin6) dx (552)

0

The essential boundary condition is vanishing rotation at x = 0, that is,
6(0) = 0, while the natural boundary condition is vanishing momentat x = ¢,
thatis, 8'(€) = 0.If we select our virtual rotations 8 such that they satisfy the
essential boundary condition, then the variational equation G(6,8) = 0 forall
8 € B0, ¢)is equivalent to the classical governing differential equation, and
the functions 6 that satisfy this equation represent equilibrium configurations.

Symmetry of the virtual-work functional given in Eqn. (552) can be verified
by taking the directional derivative of G as follows

4
DG(6,8) - 6 = I [Ezé'@—Pé?coso]dx - DG(,6) -
0

Vainberg’s theorem guarantees the existence of an energy functional and tells
us how to compute it. Carrying out the computations, we get

[4
8(6) EI (3E1(6')2+ Pos6) dx (553)
0

The energy and virtual-work functionals for the model problem are remark-
ably similar to the energy and virtual-work expressions for the column of rigid
links with a rotational spring between them. The main difference, of course,
is that the present problem involves continuous functions and derivatives. You
might expect some similarities in the stability of these two problems, and, in-
deed, this is the case. The elastica has a stable ascending equilibrium branch
that bifurcates from the critical load (i.e., the Euler load P, = w’EIl/4£%).

Remark. There is another way to construct the virtual-work functional that
lends insight to the boundary conditions. Let us take the residual of the classical
differential equation, multiply it by an arbitrary function 8, and integrate the
product over the length of the beam. The resulting weighted residual is

[4
G6,6) = — I (EI0" + Psin6)8 dx

0
Obviously, if 6 satisfies the classical differential equation, then G(6, 5) =0
for all 6. The fundamental theorem of the calculus of variations also suggests
that if G(6,8) = O forall 8, then EI§"' + Psin@ = 0. This virtual-work func-
tional is perfectly suitable, but we generally prefer to balance the derivatives
between the real displacement variable and the virtual displacement. We can
do so by integrating the first term by parts to get
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¢
- - ¢
G(@6,8) = [ (EI9'8" — POsin6)dx — EIO'9|
0

The boundary term is the result of integration by parts. The boundary condition
at either end must be either vanishing moment M or vanishing rotation 8 (but
not both at the same point). For the present problem, the rotation vanishes at
x = 0 and the moment vanishes at x = €. In order to have the boundary term
vanish completely from our functional, we must restrict the class of virtual
rotations that we allow in our function space $B.(0, €) to functions that satisfy
8(0) = 0. With this understanding, the boundary term vanishes and the virtu-
al-work expression reduces to Eqn. (552). [_]

Example 69. Solution to the linearized Elastica. We can make some analytical
headway with the classical differential equation if we linearize it. Let us make
the approximation that the angle of rotation is small. Thus, sin8 = 6, and the
governing equation takes the linearized form EI6'’ + P§ = 0.This equation has
the general solution

6(x) = a,sinux + a,cosux (554)

where u? = P/Elis the ratio of axial load to bending modulus. Verify this solu-
tion by substituting it back into the linearized differential equation. For the prob-
lem at hand, the load P is positive if it is compressive. The modulus EI is always
positive. Therefore, u” is positive and, hence,  is real for the model problem.

The general solution to the linearized model problem, given by Eqn. (554),
has two arbitrary constants. These constants can be determined from the bound-
ary conditions. For the present case, we have §(0) = 0, which gives a, = 0,
and 8'(€) = 0O, which gives

na,cosul = 0

This equation has the solution a, = 0, and that solution corresponds to the
straight configuration. Thus, we arrive at the conclusion that the straight config-
uration is an equilibrium configuration for all values of the load P. Like the dis-
crete problems in the preceding chapter, there are other solutions for certain val-
ues of the load P. These solutions are given by

ut = :t%,:t:%t,:t%t,”'

These values of u are the bifurcation points from which nontrivial equilibrium
paths branch from the straight configuration. Let us designate these critical val-
ues of was u, = (2n—1)7/2¢ for all positive integer values n. There are an
infinite number of such points. Note that it is sufficient to consider only the posi-
tive values of the solutions u€ given above because cosine is an even function.
The nth critical load is given by the definition of x as P, = u2EI. The lowest
critical load, n = 1, is called the Euler load. We will see later that the straight
configuration is stable for all loads below the Euler load, and unstable for all
loads above the Euler load.
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At these critical loads, it is possible for the column to bend into certain
buckled shapes. These shapes are proportional to the eigenfunctions

6n(x) = sinp,x

obtained by substituting the eigenvalue u, back into Eqn. (554). These are the
solutions for which a; # 0. Clearly, for each eigenvalue there exists an eigen-
function, much like the discrete case. Alsolike the discrete case, we can observe
that the buckled configurations are determined only up to an undetermined mag-
nitude. The linearized equations are not sufficient to determine the value of this
constant. For this reason, we often refer to the eigenfunctions as the buckling
mode shapes. We can determine only the shape that the column must have initial-
ly on each equilibrium branch. These functions tell us the direction that the equi-
librium path takes upon buckling, and we can use this information to develop
approximate solutions in the neighborhood of the bifurcation points. We will
also find that these functions provide an excellent basis for Ritz approximations
for solving the complete nonlinear problem.

Remark. If the load is tensile, then 4> < Oand g is imaginary. Trigonomet-
ric functions with imaginary arguments can be readily converted to hyperbolic
trigonometric functions with real arguments with Euler’s formulas

sinhx = —isinix, coshx = cosix

where i = /-1 is the imaginary unit. Thus, for tension problems, the solution
can be taken in the more suitable form 6(x) = b, sinhux + b, cosh ux, to avoid
complex numbers. The character of the trigonometric functions is oscillatory,
while the hyperbolic trigonometric functions are exponentially decaying.
There is a great difference in these two types of behavior, and oneshould keep
this observation in mind when solving problems with tensile loads.

Example 70. An approximate solution to the nonlinear Elastica. The linearized
buckling theory gives us a good start on a nonlinear analysis. In particular, we
know that the solution bifurcates at the load ¢, = 7/2¢, and that the configura-
tion of the column on the equilibrium path is initially proportional to the first
eigenfunction 6,(x) = sing,x. Thus, we know how the column must deflect in
order to get onto the first nontrivial equilibrium branch. We can use this informa-
tion to launch an approximate analysis of the stability of Euler’s elastica. Let us
assume that the solution 6(x) is approximately proportional to the first eigen-
function

0(x) = y0.(x)

where ¥ is a scalar parameter measuring the amplitude of deformation. What we
are really assuming is that, over a limited range of deformation, the shape of the
column will not change, but the amplitude will increase in accord with the load
level. Thus, we shall characterize our equilibrium path by finding the load P as
a function of y.
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We can use this assumption in the virtual-work form of the equation govern-
ing the deformation of the elastica, Eqn. (552). Let us also assume that the virtual
rotation has the same form as the real rotation, that is, 8(x) = 76,(x), where ¥
is an arbitrary scalar parameter (virtual rotation). Substituting the approximate
rotation function into the weak form, we get an ordinary function in place of the
functional

[4
Gw.p) = I 7lyEN6,')? — PO, sin(y6,)| dx

0

For small angles, the sine function can be expanded as a Taylor series as

. _ 1,3 1 H ..
sin(yf,) = v8, — gy} + 7’07 —-
Substituting the first two terms of the expansion intothe virtual-work functional,
we obtain the result

[4
G = 7 ] [vE1(6,")2 — Py(6? - 1y%6) ax
0

Since the function 6,(x) = sinsx/2¢€ is explicitly known, the integrals can be
carried out. These integrals have the values

¢ ¢
] EI[6,)dx = ] Ploosz(’zt—';)dx =
0

0

=

[4 [4

] 62 dx = ] sin?( 25 ) ax = e
0 0
[4 [4

I o dx = I sin“(’zt—‘;)dx = 2¢
0 0

where P, = n2El/4€%is the first critical load. With these results, we finally ar-
rive at the discrete form of the virtual-work functional

Gon7) = Le[vP, - vP(1- 1))y (555)

We are now in the same position as we were in the analysis of the discrete sys-
tems. The virtual-work form of the equilibrium equations is algebraic rather than
integral. The parameters are scalars rather than functions. The analysis proceeds
along the same lines as the discrete system. Since G(y,7) = Ofor all yimplies
an equilibrium configuration, we have

1
y[Po - P(1-17)] = 0 (556)
This algebraic equation has two solutions. The solution y = 0 is the straight
configuration, for which all values of the load P satisfy equilibrium. The second
solution is

) = 7 2 (557)

1-47?)
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This equation tells us that the load P increases along Branch 1 in a pitchfork bi-
furcation. Branch 1 is symmetric with respect to the deformation parameter .
In the limit as y — 0, we can see that Branch 1 emanates from the critical load
P,. The bifurcation diagram is shown in Fig. 143.

") P, P P
~_ P3|l __ Branch3
| | |
P 2-] Branch 2 [ [
p | | | I
1 Branch 1 | |

4
¢ Inflection point

Figure 143 The bifurcation diagram and buckling mode
shapes of the cantilever column

Note that, in order to plot the buckled shapes, we needed the transverse
deflection w(x) rather than the slope 8(x). These can be computed approximately
from the constraint w' = sin8 = 6. Upon integrating this equation and substi-
tuting the boundary condition w(0) = 0, we find that

Wa(x) = 1 — cosu,x (558)

Since the approximation is not linearized, we can examine the stability of the
non-trivial equilibrium path. The second derivative of the energy can be com-
puted from G, Eqn. (555). It has the following expression

Aw7) = 1e[P, - P(1-37)]p (559)

The second-derivative test is now a test of an ordinary function. For the solution
y = 0, the straight configuration, the energy criterion suggests that

_1 _pi2 _ ) >0 for P <P, (stable)
AGOP) = 2€[P1 Pl? = { < 0 for P> P, (unstable)

The second-derivative test on the trivial equilibrium path tells us that loads be-
low the first critical load are stable, and loads above the first critical load are
unstable. The second-derivative test on the first branch gives

292\ _

which is greater than zero for all values of y < J8. Therefore, the first branch
is stable.

Clearly, the analysis holds only in a small neighborhood of the critical point.
How small is small? Since we took a cubic approximation for the sine function,
that approximation should hold out for relatively large values of 8(x) = y8,(x).
Since the eigenfunction 8, is never greater than 1, this limitation applies essen-
tially to y. The source of error that we really cannot assess is the desire of the
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system to change its shape as it moves along a branch. We saw in the exact analy-
sis of the two-degree-of-freedom system that such changes are natural in the
evolution of the response. Since we have insisted that the shape remains the
same, we are adding a constraint that we cannot evaluate. However, comparison
with the exact solution shows that the solution is accurate to within 1% for values
of y = 60°, indicating that the buckled shape tends to persist.

We can apply the above analysis of the branches from any of the critical
points. However, to get a proper assessment of the stability of these branches,
we must expand the rotation in terms of all of the modes lower than the one
under investigation. Thus, we would consider solutions of the form

6(x) = D v:0:(x)

Clearly, upon substituting this series into the cubic term of the expansion for
the sine function, we obtain a system of N equations that contains the full,
coupled cubic combinations of the deformation parameters. These algebraic
equations are, of course, amenable to iterative solution by Newton’s method,
but even for the case n = 2, a closed-formsolution is not feasible. If we assume
that the solution emanates in a pure mode, i.e., 8(x) = y8,(x), we lose the in-
fluence of the lower modes (particularly the first) on the second-derivative
test, and the conclusions on the stability of equilibrium are erroneous. If we
were to carry out the solution for n = 2, we would see that the shape of the
higher branches is similar to the first branch, and that they are all unstable.

It should be evident that looking along an eigenfunction to assess the stabil-
ity of a nontrivial branch near a critical point is a method that is generally appli-
cable. If any nonlinear function that appears in the virtual-work functional is
expanded as a Taylor series, then the resulting equations will be polynomial in
the deformation parameter, making equilibrium and stability easy to assess.
Thus, we have seen how the linearized buckling eigenvalue problem can be
used as a preprocessor for a stability analysis of a system. Even though the li-
nearized buckling problem tells us nothing about the stability of the branching
solutions, it does tell us the points that those branches emanate from and the
directions that they follow initially. Eigenfunction expansions are also useful
for investigating problems with imperfections and transverse loads.

Example 71. The effect of geometric imperfections. One can modify the above
analysis to include the effect of imperfections on the behavior of the cantilever
column. We will continue to measure the deformation of the column from the
straight position, but we will consider a column that is not initially straight. We
characterize the imperfection as the angle of rotation of the cross section that
exists without load on the column or flexural strain in the beam. Accordingly,
let 1(x) be the initial rotation field of the beam.
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We saw in the preceding analysis that we could make some progress by recog-
nizing that the column buckles into the first linearized buckling mode
0,(x) = sin(zx/2¢€) at the critical load #; = 7/2¢, and that we could look in
that direction to examine the behavior of the bifurcation diagram in the neigh-
borhood of the critical point. We can extend this analysis to include the imperfect
column. For the imperfect column, the potential energy of the system is

¢
8©6) = [ (%EI(G’—¢’)2+Pc056)dx

0

We can see that at the configuration 8 = 1, there is no flexural energy stored
in the column. The variational form of the equilibrium equations can be obtained
by taking the directional derivative of the energy. Doing so, we obtain

[4
G6,6) = j (E16'6" — PAsin® — Ely'0') dx

0

The first two terms of this expression are exactly the same as the perfectly
straight column. The third term reflects the effect of the geometric imperfection.

Let us examine the particular case where the imperfection is in exactly the
same shape as the initial buckling mode, that is, 9¥(x) = y,8,(x), where ¥, rep-
resents the amplitude of the initial imperfection and is a fixed positive scalar val-
ue. In this case, it is reasonable to again assume that the deformations of the col-
umn will be proportional to the first buckling mode 8(x) = y6,(x), where, as
before, y is the total amplitude of the rotation field, measured relative to the
straight configuration. The virtual rotation can also be expressed as a multiple
of the first eigenfunction 8(x) = 76,(x). The expression sin(y8)) is again ex-
pressed as a cubic Taylor series approximation. If we substitute these expres-
sions into the expression for G and carry out the requisite integrals of the eigen-
function, we obtain

6.7 = Le|(y-vo)P, - vP(1- 17)]p (560)

thereby reducing the functional to an ordinary function of the real deformation
¥ and the virtual displacement parameter 7. The analysis proceeds along the
same lines as it did for the perfect system. Since G(y,7) = Ofor all 7, we have

P@) = Pl( z T‘;) (561)
Yy —gY

Clearly, y = 0 (the straight configuration) is no longer an equilibrium configu-
ration. For the value y = y, we have P(y,) = 0, indicating that loading starts
from zero rather than branching from a critical point. As y gets large (¥ » 7o),
the imperfect curve becomes asymptotic to the perfect curve. The second deriva-
tive of the energy is identical to the perfect case and is given by Eqn. (559). Sub-
stituting Eqn. (561) into Eqn. (559) we arrive at the result that
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>0 fory>0 (stable)
3 - 2
AQ,P) = %ple(ﬁ'%iyi_;yo_)’)yz =4{ <0fory, <y <0 (unstable)
> 0 for y < ¥ (stable)

This result holds only for values of the deformation that are appropriate to the
approximation of the sine function. We can see a remarkable similarity between
this problem and the discrete one-degree-of-freedom problem with a rotational
spring. The bifurcation diagram for that problem is shown in Fig. 128. For that
problem, negative values of the deformation gave rise to a secondary branch
above the branch for the perfect system. That branch had a limit point and was
unstable for values of the deformation closer to zero (on the negative side) and
stable for values more negative than the limit deformation. The value of the limit
deformation was related to the magnitude of the initial imperfection.

For the present problem, the same phenomenon exists and the same inter-
pretations hold. The value of the critical deformation ., is given by the solution
to the cubic equation

2)’3 - 3}'0)’2 + 8, =0

It is straightforward to show that this cubic equation has one real root that can
be computed for specific values of the initial imperfection. Numerical computa-
tions show that this root is indeed negative. Some values of the critical deforma-
tion, relative to the size of the imperfection, are given in Table 8. For small val-
ues of the imperfection, we can observe that the critical deformation is given
approximately by
1/3
VYer = — (4)’0)

Using this approximate value in the equation for the load, Eqn. (561), we find
that the limit load is given approximately by the expression

Ppax = Py(1+0.9572°)

in accord with the two-thirds power law of Koiter for the symmetric bifurcation.
Hence, we see that the two-thirds power law applies to limit points above the
perfect bifurcation curve (limit points associated with stable post-buckling be-
havior) as well as limit points below (limit points associated with unstable post-
buckling behavior).

Table 8 Solutions to equation for critical deformation
2y - 3}'0)’2 +8y, =0

)’o )’Cr
0.00001 -0.0342
0.0001 -0.0736
0.001 -0.1582
0.01 -0.3371
0.1 -0.6900
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The bifurcation diagram for the model problem is shown in Fig. 144 (the im-
perfection diagram was computed with y, = 0.04).

YoH ¢ Py P A
| :{ — — Unstable
| — Stable

Yer v Yo %

Figure 144 The effect of an imperfection for Euler’s elastica

We can repeat the foregoing analysis and show that similar results hold for the
elastica with simple supports. Although the values of the critical loads are dif-
ferent in the two cases (the fundamental critical load of the pinned column is
. = /€ ratherthan u, = m/2¢€ for the cantilever column), the post-critical
load has the same expression. As such, one might consider the stability of the
first branch as a property of the differential operator, independent of the bound-
ary conditions, while the value of the buckling load is very much a property of
the boundary conditions, too. This observation applies only to cases in which
the internal forces can be related directly to the applied load, i.e., statically de-
terminate columns. Assemblages of elastic members can display remarkably
different behavior; the asymmetric bifurcation of frames is a case in point.

The remarkable similarity between the behavior of the elastica and the sim-
ple systems with rigid links and rotational springs suggests that these simple
systems are actually very good models of the behavior of their continuous
counterparts. Thus, there is great value in studying these discrete systems, as
the analytical overhead is considerably smaller. We must be extremely careful,
however, in extrapolating results from simple systems to more complicated
systems. We must also recognize that, in effect, we have reduced the continu-
ous system to a single-degree-of-freedom system with a Ritz approximation
using the critical mode as the base function. The Ritz approach always gener-
ates a discrete system (i.e., algebraic equations rather that differential or inte-
gral) and provides a rigorous connection between discrete and continuous sys-
tems. The discretization process must be done with extreme caution, however,
because the Ritz method will discretize the system in exactly the manner that
you ask it to, hidden constraints and all. Clearly, we are on fairly solid ground
choosing an eigenfunction of the linearized problem as our base function since
this function, at least initially, satisfies all boundary conditions, essential and
natural.
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The General Linearized Buckling Theory

Let us linearize the inextensible beam theory by making small angle approxi-
mations sin@ = 6 and cos@ = 1, and by noting that w' = 6 and 4’ = 0.
From Eqns. (541), we can deduce the linearized equilibrium equations. We can
eliminate the force Vfrom Eqn. (541). by differentiating it once and substitut-

ing Eqn. (541);, to get

(EW")' — (HW) —g+m' =0 (562)

This equation governs the behavior of the column in the domain x € [0, €]
and can be used in conjunction with a variety of boundary conditions. The
boundary conditions are, for the most part, the same as for the linear theory,
and are illustrated in Fig. 145. The fixed support has displacement w = 0 and
rotation w' = 0 with unknown moment M and transverse reaction V, the sim-
ple support has displacementw = 0 and moment M = O with unknown rotation
and transverse reaction, the free end has moment M = 0 and transverse reac-
tion V = 0. This last condition deserves special attention.

T _—1 q D ——
w=0 (())

w
w =0 M

0
0

Vv
M

Figure 145 Boundary conditions for a beam

Because we have used the constraints that axial and shear deformations are
negligible, we have given away our ability to determine shear and axial force
from a constitutive equation. Any force associated with a kinematic constraint
must be determined from an equilibrium equation. Just as we did for the Ber-
noulli-Euler beam, we shall appeal to the moment equilibrium equation to de-
termine how to translate the condition V = 0 to terms involving the displace-
ment field w(x). From Eqn. (541), with ' = Oand M = EIw'’, we find that

V=—EW'"+Hw -m (563)

Thus, we see that transverse force is no longer related simply to the third deriv-
ative of displacement because of the effect of axial force. This boundary condi-
tion is very important, as we will see in one of the following examples.

The force H is also associated with a constraint, and, therefore, cannot be
determined from a constitutive equation. All of the problems we consider here
will be statically determinate with respect to the axial force, and, hence, we will
be able to find H from purely statical considerations. Remember that H is posi-
tive if it produces a net tension. For the model problem, we have the relation-
ship H(x) = —P.
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The virtual-work and energy functionals. In accord with the conditions
of linearization the general virtual-work functional, Eqn. (542), takes the form
[4
G(w,w) = j (EIw"'W' + HWW —qw—mw' ) dx (564)
0
In accord with the principle of virtual work, w(x) is an equilibrium configura-
tion if G(w,w) =-0 for all w € B,(0,¢). The admissible functions in the
collection B, (0, €) must have square-integrable second derivatives and must

satisfy the essential boundary conditions of the particular problem. The energy
functional for the linearized problem is

[4
8(w) = j (%EI(W")Z + %H(w')z—qw—mw’)dx (565)
0

The astute reader might be wondering what happened to the external work
done by the distributed axial force p(x). It is, indeed, contained in the H term
as the following example shows.

Example 72. Accounting for the energy of the applied axial load. Consider the
model problem with an axial force Papplied atx = € and a distributed axial load

p(x). The axial displacement must conform to the inextensibility constraint

1+u’ = cosB.Since 8 = w', wehave that u’ = — %(w’)z, in accord with the

Taylor expansion of the cosine function. Thus, the axial displacement is

u(x) = u(0) —I 3(w')2dx (566)
0

The potential energy possessed by the end load P and the distributed load p, rela-
tive to the undeformed position of the beam can be expressed as

[4

8; = Pu(€) - I P(x)u(x) dx (567)

0
Substituting Eqn. (566) into Eqn. (567), noting that u(0) = 0, we get

[4 [4 x
8= —P I Hw')2dx + I 26 I Hw@)dsde  (568)
0 0 0

Integrating the double integral on the right by parts, we obtain

4 ¢ 4 4 x
8 = —PI %(w')zdx+ I %(w')zdxf pdx — I %(w')zj p(&)dE dx
0 0 0 0 0
Finally, noting from Eqn. (550) that the axial force H(x) is given by

¢
Hkx)= -P+ I p&) dE
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we arrive at the result that the potential energy possessed by the end load and the
distributed axial load can be computed as

4
8 = j SH(w')?dx
0

The resultant axial force H(x) contains the contribution of both the end load and
the distributed load. The derivation shows that Eqn. (564) rigorously accounts
for all of the potential energy for any distribution of axial forces.

Classical solution to the model problem. Consider again the model prob-
lem shown in Fig. 142. The column has no distributed loads applied along its
length. Hence, ¢ = p = m = 0. In addition, the axial force in the column is
givenby H = — P. For constant EI, Eqn. (562) takes the special form

EIW*+Pw'" =0 (569)

where (-)” indicates the fourth derivative of (-). This equation s, in essence,
a linear eigenvalue problem for a differential operator. It asks whether there
are functions that satisfy the condition that their fourth derivative is equal to
the negative of their second derivative multiplied by a constant. The trigono-
metric functions sinux and cosux are just such functions. Actually, linear
combinations of these functions are the only functions that satisfy this relation-
ship. Such functions are called harmonic. Clearly, since the lowest-order de-
rivative in the equation is a second derivative, any constant and linear expres-
sion will also satisfy the equation. Therefore, we can express the general
solution to Eqn. (562) as

w(x) = ao+a,x+a,sinux +a;cosux (570)

where, again, the notation u? = P/EI is introduced for convenience. The
fourth-order equation gave rise to four constants of integration, as they always
do. These constants can be determined from the boundary conditions appropri-
ate to a specific problem.

Example 73. Classical solution to the linearized problem. The boundary condi-
tions for the model problem are vanishing displacement at the base, w(0) = 0,
which gives the equation

a,+a; =0 (@
vanishing rotation at the base, w'(0) = 0, which gives the equation
a;+pa; =0 ®

vanishing moment at the tip, w'’(€) = 0, which gives the equation



Chapter 11  The Planar Buckling of Beams 411
ula,sinu€+azcosul] =0 ©
and vanishing shear at the tip, w'’’(€) +u*w’(€) = 0, which gives the equation
uaycospt —assinu€]—u?a; +u(a,cosu€—assinu€)] = 0 (d)

These equations can be solved to give a; = a, = Oand g, = —a; along
with the important condition

ascosuf =0 (571)

This equation is identical to the one obtained for the model problem previously.
It has the trivial solution a; = 0, corresponding to the straight configuration,
as well as an infinite number of nontrivial solutions for load values

_(2n-1)m
Hn = 27

which satisfy cosu€ = 0. We can extract the critical loads as P, = W12EI The
eigenfunction correspondingto u, is given by Eqn. (570) with @; = a, = Oand
a, = —as. To wit

wa(x) = a3{1— cospx)

Again, the buckled configuration can be determined up to an arbitrary ampli-
tude. The constant a4 cannot be determined from the governing equations. The
bifurcation diagram and the first three buckling mode shapes are shown in Fig.
146. As we shall soon see, for loads P < P, the straight configuration is stable,
but for P > P itis unstable. Because we have performed a linearized buckling
analysis, we are unable to determine the stability of the bent configurations.

P3| P, P, Py

|
0

as )
+ Inflection point

Figure 146 The bifurcation diagram and buckling
mode shapes of the cantilever column

The buckling eigenfunctions have some interesting properties. First, the ei-
genfunctions become increasingly tortuous the higher the mode number 7.
Tortuosity is the measure of how much the axis curves around in space. For a

_fixed amplitude of motion, the higher the tortuosity is, the more flexural poten-
tial energy the beam has stored. From the point of view of energy, then, it is easy
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to see why the first mode has the lowest critical buckling load. It is the mode
that requires the least energy to deform into. A second measure of tortuosity
is the number of inflection points (an inflection point is a point where
w'’ = 0). We can see that mode number # has n— 1 inflection points between
its ends. This observation will hold for all statically determinate boundary con-
ditions. Each degree of indeterminacy adds another inflection point (i.e,, a
fixed-fixed beam has two inflection points in the first mode; a fixed-pinned
beam has one).

The four equations that come from the boundary conditions that relate the
four arbitrary constants a = {a,a,,a;,a,} and the load parameter u will not
always reduce to such a simple equation, as they did in this example. These
four equations will always be linear in a, but usually nonlinear in u. The equa-
tions will always be homogeneous. Thus, we can write the general form of the
equations as

Bu)a = 0 (572)

where the exact character of the four by four matrix B(x) will depend upon the
specific boundary conditions of the problem. Eqn. (572) is solvable for non-
zero a only if the determinant of the coefficient matrix vanishes. Thus, the
characteristic equation for the bifurcation load parameter u is

det B) = 0 (573)

The characteristic equation is generally nonlinear in x. Often, one or more of
the a; can be eliminated by substitution to give a smaller matrix. In the previous
example, three of the a; were eliminated, leading to a one by one matrix.

Orthogonality of the eigenfunctions. Whenever we deal with an eigenva-
lue problem we are assured that somewhere there lurks an orthogonality rela-
tionship among the eigenvectors. The present problem is no exception. The
following lemma describes the orthogonality relationship among the eigen-
functions.

Lemma (Orthogonality of the eigenfunctions). Let u, and w,(x) be
the nth eigenvalue and eigenfunction that satisfy the eigenvalue prob-

lem w”+u*w'’ = 0. For distinct eigenvalues, i.e., 42 # u2, the ei-
genfunctions w,(x) and w,(x) satisfy the following orthogonality
relationships

14
J w,w,' dx = 0 (574)
0
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¢
j w,)'w, "dx = 0 (575)
0

4 4
0 0

Proof. The proof of orthogonality of the first derivatives is straight-
forward. Let us start with an expression we know to be zero

4
f [+ s, = (s + 2" e = 0
0

This integral is zero because each of the terms in parentheses is zero.
We shall proceed to integrate each term by parts until all of the deriva-
tives balance. The result of these integrations is

[4 [4

w,’w, dx + J [w,,"w,,," - w,,,"w,,"]dx

0

(um —#3)J

€
2 '
+,umwm )W,, o

rer

e
ree 2 ’ _
+ (w,, + uiw, )w,,,|0 (w,,,
e e
’ "
- w,'w, \0 + w, w,,'0

=90

Clearly, the second integral vanishes identically. The boundary terms
all vanish because, in order for the boundary value problem to be
properly posed, we must have either zero displacement or zero shear,
and either zero slope or zero moment at an end point. All of the bound-
ary terms have products of both pairs of items, one of which must be
zero. We are left with the condition

[4

(42 —2) [ Wy dx = 0 577)
0

thus completing the proof of Eqn. (574). One can prove orthogonality

of the second derivatives by considering the virtual-work equation

with w = w,and W = w,,. With these choices of functions, we have

[4
GC(WpWy) = J (w,,"w,,," —yﬁw,,'w,,,')dx =0
0
Since orthogonality of the first derivatives has already been estab-

lished, this result proves orthogonality of the second derivatives.
G(wn, w,) = 0 gives Eqn. (576) directly. (]

413
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If the eigenvalues are distinct, then the orthogonality relationship holds. If
u2 = ul, then Eqn. (577) is satisfied without the eigenfunctions being ortho-
gonal. In this case, like the discrete case, we have the result that the eigenfunc-
tions associated with the repeated eigenvalue form a subspace. Any function
that is a linear combination of eigenfunctions from this subspace is also an ei-
genfunction. Thus, orthogonality is not necessary in the subspace. We can, as
usual, create orthogonal functions from any set of functions in this subspace
by Gram-Schmidt orthogonalization. You should be aware that the orthogonal-
ity condition applies to the first and second derivatives of the eigenfunctions,
not to the functions themselves.

The eigenfunctions provide a convenient basis for computations of prob-
lems that are almost like the eigenvalue problem, such as problems with trans-
verse loading in addition to the axial thrust and problems with initial imperfec-
tions. Any function can be expressed as an infinite sum of eigenfunctions.
These functions are particularly convenient because they have all of the
boundary conditions satisfied at the outset. An eigenfunction expansion is also
convenient for establishing the stability criterion.

The stability of equilibrium. Although we are working with a linearized
buckling theory, we can still expect the second-derivative test to give insight
into the stability of the straight configuration. The second derivative of &(w)
for the present problem is

[4

A(w, W) = J [EI{w")?—P(#)?] dx

0

Testing the sign of the second derivative for a continuous problem is not quite
the same as for the discrete problem. We must establish the algebraic sign of
A for all functions w € B,(0, €). The easiest way to implement this criterion
is to use an eigenfunction expansion. Let us assume that our test function is a
linear sum of eigenfunctions, as follows

©

W) = D Ewa)

n=1

where w, is the nth eigenfunction and the constants @, are arbitrary. The sec-
ond-derivative functional is now a function of the arbitrary constants @, and
has the form

o [4
A(a,@) = ZZE,,E,,, j (Elw,"'w," — Pw,'w,’)dx
0

Noting the orthogonality of the eigenfunctions, this expression reduces to
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El(x)
‘ ipa® AP

X

¢
Figure 147 Beam of varying modulus subjected to proportional loads

A(a,3) = iij(P,,—P)I (w,')? dx

Since the integral of the square of the slope of an eigenfunction is never nega-
tive (in fact, the eigenfunctions can be normalized so that this integral is unity),
the second-derivative test reduces to

=, { >0 for P < P, (stable)
A(a,3) = Z;an (P,—P) = < 0 for P > P; (unstable)

because if P > P,, one need only choose Z; = 0 with all others equal to zero
to show that the second derivative is less than zero for some choice of 4. Clear-
ly, the second-derivative test tells us nothing about the stability of the nontrivial
equilibrium branches.

Ritz and the Linearized Eigenvalue Problem

The virtual-work functional for the linearized buckling problem is given by
Eqn. (564). The variational principle suggests that if G = 0 for all suitable virtu-
al displacements, then the system is in equilibrium. As we have seen previous-
ly, the virtual displacement functions need only satisfy the essential boundary
conditions. The real displacements can be expressed in terms of functions that
also satisfy only the essential boundary conditions. As we saw in the example
for the little boundary value problem with a sinusoidal load, the natural bound-
ary conditions are recovered through the principle of virtual work as the size
of the approximating basis increases. We shall see that the principle of virtual
work givesrise to the buckling eigenvalue problem, which provides us with a
tool for estimating the critical points and buckling modes of our continuous
column.

To set up the discussion of applying the Ritz method to the buckling prob-
lem, consider the beam shown in Fig. 147. A requirement of the buckling anal-
ysis is that the loads be proportional, that is, the spatial distribution of the loads
is fixed and the magnitude of each load varies in accord with the load factor
A. In the figure, P, is an applied end load of fixed magnitude and p,(x) is an
applied distributed load of fixed amplitude. The total load is given by the ag-
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gregate of the loads AP,and Ap,(x). Let us designate the axial force under the
nominal loads P, and p,(x) as

Ha(x) = =P, = J pO(g)dg

so that H(x) = AH (x). Note that the algebraic sign of all loading terms is in
accord with the figure, that is, all of the loads are oriented to induce compres-
sion in the beam. According to our convention, H(x)is positive for tensile loads
and negative for compressive loads.

We are now prepared to apply the Ritz method. Consider the set of base
functions h(x) =[h,(x), hx(x), . . ., h,(x)]". The real and virtual displace-
ments can be expressed as linear combinations of these base functions, to wit

mx) = iaiki(x) =a - hx), wWx)= iaihi(x) =7 - h(x)

i=1 i=1

Let a = [ay,...,a,]"and @ = [@,,.. ., T@,]" be vectors containing the coeffi-
cients of the base functions used in the approximations. We can substitute these
approximations into Eqn. (564) to get the discrete functional

G(a,a) = a’[Ka—AGa] (578)

where the matrices K and G have components given by integrals of derivatives
of the base functions

14 14
K = [ EIlh'][0'Tdx, G=— [ H,[W][h']"dx (579
0 0

The matrix K is generally referred to as the stiffness matrix while the matrix
G is generally referred to as the geometric (stiffness) matrix. As usual, the vari-
ational statement that G(a, @) = 0 for all @implies equilibrium of the system.
In this case, those equilibrium equations give the classical buckling eigenvalue
problem

Ka = 1Ga (580)

Clearly, a = 0 is a solution to Eqn. (580) for any value of 4, and, thus, repre-
sents an equilibrium configuration. Like any eigenvalue problem, we can ex-
pect Eqn. (580) to have a nontrivial solution, a # 0, only for certain values of
the load parameter 4. These values are the bifurcation loads. The two coeffi-
cient matrices K and G are n by n. Therefore, the matrix eigenvalue problem
givesrise to n pairs of eigenvalues and eigenvectors: {4,, a,},fori = 1,.. ., n.
The eigenvalues are estimates of the actual eigenvalues of the continuous sys-
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tem. The eigenvectors, when used as coefficients of the base functions &;(x),
are estimates of the eigenfunctions w;(x). As such, the Ritz method gives us
a tool for approximating the eigenvalues and eigenfunctions from any set of
base functions that satisfy the essential boundary conditions.

If the eigenfunctions themselves are used as the base functions, both K and
G are diagonal. The ratio of the diagonal element K;;/G;; (no sum implied) is
the eigenvalue x?, and the eigenvectors are given by the standard base vectors
in " (i.e., the ith standard base vector has a one in the ith slot and zeros in all
of the otherslots). This result is a direct consequence of the orthogonality prop-
erty of the eigenfunctions.

There are many techniques for solving the algebraic eigenvalue problem,
Eqn. (580), numerically. Certainly, we can endeavor to find the roots of the de-
terminantal characteristic equation

P@A) = det[K-AG] =0 (581)

These roots are the critical values we seek. This approach is the one we used
to find the principal values of the stress and strain tensors. The key difference
in the present problem is that the characteristic polynomial P(4) is of nth order
if K and G are n by n matrices, compared with order three for the principal-val-
ues problem. Clearly, the mechanics of finding the n roots gets increasingly dif-
ficult as n gets large. Most methods for large systems use either a matrix itera-
tion technique or a matrix diagonalization technique. For the small problems
we tackle here, n usually will not be too large, and we can continue to view the
algebraic eigenvalue problem as one of finding the roots of P(4).

Example 74. Column buckling by the Ritz method. Let us reexamine the linea-
rized buckling problem for the cantilever column with constant modulus EJ,
length €, and compressive end load A4 P. We know that the exact eigenfunctions
are given by cosine functions. Can we get reasonable results using a polynomial
basis? Consider the polynomial approximation of the real and the virtual dis-
placement given by the base functions

xn+1

en

2 3
hl(x) = x?’ hz(x) = %’ cee, hn(x) =

We have discarded the constant and linear base functions because the boundary
conditions insist that displacement and slope vanish at x = 0. The stiffness and
geometric matrices are easily computed to have the components

G, = .(_i_iMpg (582)

k. = dlir1)(i+1) g
j i+j+1

A A

Let us carry out the computation for a two-term basis, i.e., n = 2. For this case,
the stiffness and geometric stiffness have the specific values
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Table 9 Approximations of the buckling eigenvalues with polynomial basis

n A’l 12 13 14 15 1’6

1 3.0000

2 2.4860 32.181

3 2.4678 23.391 109.14

4 2.4674 22322 69.404 265.81

5 2.4674 22.214 63.028 148.21 545.75

6 2.4674 22.207 61.863 127.21 271.61 1002.7
Exact 2.4674 22.207 61.685 120.90 199.9 298.6

EIl4 6 pel| 80 90
K = —_— N G = ——
8[6 12} 60 | 90 108
In order for there to be a nontrivial solution we must have det{ K—-1G| = 0.

Let us define A = AP¢€2/EI Multiplying K —AG by €/EI and taking the deter-
minant, we get

AT 3T
441 6-3I

det 3 5
6 — EI 12 - gl'

- 3P _2%T,10=
= =54 sA+12=0
The roots to this quadratic equation are 4, = 2.4860and 4, = 32.1807. These

eigenvalues are approximations to the first two critical loads of the column. The
eigenvectors can be obtained by substituting the eigenvalues back into

[K-1,Gla; =0

assuming that one of the components of a, is known, and solving for the remain-
ing components. For example, for A, = 2.4860 we have

4112 136.26 11 |0
13626  451.51 al| |o

from which we get a = 0.3018 (from either of the two equations). Therefore,
the eigenvector associated with 4, = 2.4860is a, = (1.0, 0.3018). One can fol-
low the same procedure for 4, = 32.1807 to get a, = (1.0, -0.9204).

Table 9 shows the results of increasing the number of terms » in expansion
for w(x) and W{(x) in the previous example along with the exact results obtained
previously. The one-term expansion gives a surprisingly good result, indicat-
ing that the quadratic function is a reasonably good approximation of the ei-
genfunction. Of course, the one-term expansion gives rise to only one eigenva-
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WolX) w(x)

Figure 148 Beam with an initial geometric imperfection

lue estimate. The two-term expansion gives rise to two estimates. The lower
value is a remarkably accurate estimate of the first critical load. Presumably,
the second value is an estimate of the second critical load, but the accuracy is
not very good. Three terms in the expansion improves on the existing estimates
and introduces an estimate of the third critical load. Clearly, as the higher
modes come in, they are increasingly inaccurate, a consequence of the higher-
order polynomials being less and less suitable approximations of the higher ei-
genfunctions. None of them has an inflection point. Thus, none of them, alone,
isa good approximation of any mode other than the first. However, in combina-
tion, they are able to capture the shapes with inflection points. When a new
base function is introduced, its shape is used by the functional mostly to im-
prove the representation of the lower modes, and very little to represent the
new mode that has appeared owing to the increase in the order of the discretiza-
tion. Therefore, the mode shapes converge much more slowly than the esti-
mates of the critical loads, by an order of magnitude, in fact.

We can observe that the value of the critical loads converges from above,
a hallmark of displacement-based approximations. It is tempting to talk about
rules of thumb regarding how many terms we need to get an acceptable approx-
imation of the nth critical load. For this problem, we might be tempted to say
that about 2n terms are needed to get the nth critical load approximately cor-
rect. Such a rule of thumb depends a great deal on the specific base functions
we use. The best possible base functions are the eigenfunctions, and even they
require n terms to get the nth critical load (but it is exact as soon as it comes
into the picture).

Ritz analysis of imperfections. When studying the discrete systems in the
previous chapter, we saw that systems with imperfections displayed behavior
different than those without imperfections if the system without imperfections
had bifurcation points. We can apply the Ritz method to the analysis of continu-
ous systems with imperfections using the general linearized buckling theory.
Let us continue to measure the transverse displacement w(x) from the straight
position, but assume that the deflection is known to be w,(x) when the system
isunloaded (i.e., when P = 0), as shown in Fig. 148. With this convention, the
moment at any sectionis M = EI{w'’ —w,"’). Note that for the configuration
w(x) = w,(x), there is no moment in the beam. The virtual-work functional
given in Eqn. (564) can be revised to reflect the imperfection as
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Gw,w) = J [EI(w"—wo")W"+ HW'W — gw — mW’]dx (583)
0

Let us apply the Ritz method as in the last section, expressing the real and virtu-
al displacement fields as

w(x) = Za,-h,-(x) =a-hkx), Wx) = Za‘ih,(x) =17 hx)

Let the axial forces be H(x) = AH (x)where A is a loading parameter and the
force H,(x) is the internal axial force for the nominal pattern of applied axial
loads. A straightforward computation shows that the discrete principle of
virtual work takes the form

G(a, ) = a’[Ka—1Ga—f] (584)

where the matrices K and G are exactly the same as those given in Eqn. (579).
The constant term fis due to the transverse forces and initial imperfections. Its
ith component is given by

e
f=j (EIw,’'h' +gqh,+mh,’) dx (585)
0

Equilibrium holds if G(a,a) = 0 for all @. From the discrete fundamental
theorem of the calculus of variations, we must have

[K-AGla = f (586)

which is a linear system of equations in the unknowns a. Note that for A = 0
(noaxial forces), the equations are exactly the same as those obtained for linear
Bernoulli-Euler beam theory. For most values of A, the equations yield a
unique value of a for each f. However, it is evident that when 4 = 4, (the
buckling eigenvalues from the preceding section), the coefficient matrix
K —AG is singular, and, in general, no solution exists. It is apparent from this
formulation that geometric imperfections affect the behavior of the beam in the
same way that transverse loads do.

Example 75. Column with imperfection by Ritz method. Reconsider the cantile-
ver beam example from the previous section, except let the beam have an initial
imperfection of w,(x) = y,x?/¢, that is, a quadratic initial displacement with
value y,€ at the end. Let us further assume that there are no transverse loads,
g = m = 0. Using an n-term polynomial Ritz approximation with base func-
tions kfx) = x'*1/€’, we get the same K and G of Eqn. (582). The components
of the matrix f are given by
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2@+ DEIy,
o= =

Let us again examine the case of a two-term expansion. For this case, Eqn. (586)
takes the explicit form

4—%1 6—§I a;

EI ~ _ Ely,
€ 16-31T 12-2T|la | "€ |6
where 1 = AP¢2/EI These equations can be solved to give a; and a,
— vJl80+127 ~ — 80y,
o = 4 L ey - -

(I-T)T-1) 6(1-1.)(T-1)

where 4, = 2.4860and 1, = 32.1807 are the estimates of the critical load fac-
tors for the problem without imperfection. The approximate deflection of the
beam under load is given by the expression

80y, [xz —(3x2 3 )]
Wx) = ————=|F tAls5 —~ =5
® = Tonrenle T\ e
Observe that 4,4, = 80. Therefore, a;(0) = y,and a,(0) = 0, indicating that
the displaced configuration at zero load is simply the initial imperfection. For

small values of the load (4 < A, < 1), the displacement increases approxi-
mately linearly with load in the direction Aw = w—w, as

2 3

As the load approaches the first critical value, i.e., 1 — 4, the displacements
tend toward infinity, as we expect from the linearized analysis.

Itis interesting to note that the expression for the displacement for an imper-
fection problem will generally have the form

_ 8x4)
where PA) = A—4)@A—4,) - - - (A —A4,), with 4,being the ith critical load
factor, is the characteristic polynomial for the buckling load of the associated
problem without imperfections, and g(x) is a function of x that depends upon
the particular characteristics of the problem. Because of the nature of the de-
nominator, the displacements will always increase without bound as the load
approaches the first critical load.

Additional Reading

Z. P. Bazant and L. Cedolin, Stability of structures: Elastic, inelastic, fracture
and damage theories, Oxford University Press, New York, 1991.
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H. L. Langhaar, Energy methods in applied mechanics, Wiley, New York,
1962.

A. E. H. Love, A treatise on the mathematical theory of elasticity, Dover, New
York, 1944,
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Problems

261. Vainberg’s theorem is simply a statement of integrability. This theorem can be ap-
plied to the strain variations that we derive through a virtual work argument for a nonlinear
planar beam. Let u = {u, w,0} and @ = {E, W,g} be the real and virtual displacements
and rotation. From the principle of virtual work, we have found that the virtual curvature
is given by %,(u, W) = 6'. Show that the symmetry condition holds for the virtual curva-
ture, i.e., D%,(u, W) - 0 = D¥%,(u,u) - U and, hence, that it is integrable. Show that the
real curvature is given by %, = 8'. Note that the directional derivative of %, is

DZ,(wu) - b = %[7o(u+eﬁ,ﬁ)]€=o

and the integral of the virtual curvature can be computed by Vainberg’s formula as

1
Ko = j %, (tu, u)dt
0

where tu = {tu, tw, t9}. Repeat the calculation for the virtual shear and axial strains
Bo(u, 1) = % cosf — @ sinf — [w'sin@ + (1+u')cosh]d
E(u, W) = @ cos + W' sin6 + [w' cos§ — (1+u')sin6]0
to get the real shear and axial strains
Bo = w'cosf — (1+u')sinf
€ = w'sinf + (1+u')cosf — 1
Take the directional derivatives of the real strains to verify that these results are correct.

262. Consider the simply supported column of length €

and flexural modulus EJ. Assume that shear and axial de- . Er 4__}:
formations are negligible, so that the constraintsof Euler’s === -~
elastica are appropriate. Compute the critical loads for this i‘——e—_’*
column by solving the equation EIw”+Pw'’ = 0 with

the appropriate boundary conditions. Carry out the stability analysis parallel to the analy-
sis done for the cantilever model problem in the text.

263. Consider the simply supported column of length ¢ q(x)

and flexural modulus EJ. Assume that shear and axial de-

formations are negligible so that constraints of Euler’s [ El

elastica are appropriate. Can the classical elastica theory }<_______,|

be extended to accommodate the transverse load g(x)? ¢

What difficulties do you encounter when you attempt to do so? Can the virtual-work prin-
ciple for the elastica be modified to account for the transverse load?

-

264. Consider the bar of length € with bending modulus ~ § EI P
ET, fixed at the left end, propped at the right end, and sub- i _Q‘_
jected to axial load Pas shown. Assume that shear and axial L |
deformations are negligible. Compute the critical loads for r 4 i

this column by solving the classical differential equation.
Estimate the critical loads using the principle of virtual work in conjunction with the Ritz
method. Use a polynomial basis.
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265. The prismatic beam shown below has a crosssec- & EI P
tion that is symmetric with respect to the plane of the —
page. The cross section has flexural modulus EI. Axial [ >

and shear deformations can be neglected. The beam has 4

adeformable spring support at the left end that elastically restrains rotations. The moment
developed by the spring is related to the rotation at that point by M, = k8, where
6, = w’'(0) is the rotation experienced by the spring. The right end of the beam is free to
translate and to rotate. Solve the linearized buckling problem by the classical method, i.e.,
by integrating the differential equation. What are the appropriate boundary conditions for
this problem? Solve the problem by integrating the differential equations and using the
boundary conditions to find the constants of integration. What are the critical loads of the
system? What is the smallest critical load as k — 0? What is the smallest critical load as
k — ?Into what shapes does the beam deform at the critical loads? What are the shapes
as k — 0? What are the shapes as k — ©?

266. For Problem 265, the virtual-work functional that accounts for the work done by the
springs and by the axial force is given by the expression

£
Gw,w) = ] [EIw'w' — Pw'W'|dx + kw'(0)w'(0)
]

Estimate the buckling loads of the beam using a two-term polynomial expansion for the
transverse deflection. That is, assume the real and virtual transverse deflections to be

Xz - ~ x2
wx) = ax + a7 wx) = @ x + o

Repeat the calculation with a three-term polynomial. The classical solution gives an infi-
nite number of critical loads. How many did the two-term approximation give? Why?
Were the critical loads higher or lower than the exact values? Why? Discuss what is good
and bad about the assumed shapes. Could the approximating functions be improved easi-
ly? Suggest a better approximation.

267. The prismatic beam shown below has flexural EI P
modulus EI. Axial and shear deformations can be ne- _A_ % p =
glected. The beam has a spring of modulus k located at x

the middle of the span. The force developed by the L_’————q
spring is related to the deflection at that point by ¢

f(€/2) = kw(£/2). Find a suitable expression for the virtual-work functional that ac-
counts for the virtual work done by the spring. Estimate the critical loads of the column
using the principle of virtual work in conjunction with the Ritz method. Use a polynomial
basis.

268. Estimate the critical loads of the column in Problem 267 using the principle of virtual
work in conjunction with the Ritz method. Use the eigenbasis of the problem without the
spring, that is wa(x) = sinu,x, where u, = nx/¢L.
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269. The prismatic beam shown below has flexu- EI P
ral modulus EI. Axial an‘d shear deformations can VA 7 ﬁ
be neglected. The beam is supported on an elastic ——

foundation of modulus k. The force developed, Dl —— |

per unit length, by the foundation is related to the
deflection at that pointby f(x) = kw(x). Abeam on an elastic foundation with axial thrust
is governed by the following (linearized) differential equation and boundary conditions
EIW” + Pw' + kw = 0
wi0) =0, w' 0 =0 wt)=0 w'(€)=0
The eigenfunctions of the beam without the elastic foundation are w, = sin nmx/€. Verify
that the virtual-work functional, accounting for the elastic foundation, is
¢
G(w,w) = j (EIW'W' — PWW + kww)dx
0
Does the presence of the elastic foundation affect the boundary conditions? Find the buck-
ling loads of the system using the Ritz method, assuming that the real and virtual displace-
ments have the shape of the nth eigenfunction
wx) = a sin—n%, wx) = Zz'sin—n%
How does the buckling load vary with the elastic properties of the system, namely EI and
k? Express your result in terms of P, = m?EI/€? and the ratio of foundation stiffness to
beam stiffness, given by the dimensionless parameter § = k€*/x*ElL (Hint: the critical
buckling mode depends upon B.) Is your answer exact?

270. The prismatic beam shown has a cross section that 9o

is symmetric with respect to the plane of the page. The P
cross section has flexural modulus EI. Axial and shear %
deformations can be neglected. The beam is fixed |<,_____.{

against transverse deflection and rotation at both ends, 1

but the supports provide no resistance to the axial force P. The beam is also subjected to
a uniform transverse load of magnitude g,. The linearized buckling theory fora beam with

transverse load and axial thrust gives rise to the following differential equations and
boundary conditions for the present configuration

EIW" + Pw'' = g(x)
w0) =0, w0)=0, w)=0, w(®=0
Solve the governing differential equations by the classical method to find an expression
for the transverse deflection w(x) and the bending moment M(x).

In the design of beams subjected to transverse load and thrust, sometimes called beam-
columns, the concept of the magnification factor is often used. The idea behind the magni-
fication factor is that the influence of the axial thrust is to magnify the values of displace-
ment and moment that would be present if the axial thrust were not (i.e., the solution if
P = (). Show that the maximum deflection and moment can be expressed as

w(€/2) = Wo(l—_:%/P—l), M(O) = MO(II—S;‘);)ICT)1>
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where w, and M, are the maximum deflection and moment that would occur if P = 0,
and P, would be the fundamental critical load of the column if g, = 0.

271. The column shown is subjected to axial forces at the midpoint and P

top, both of magnitude P. The column has variable flexural modulus

given by the expression EI(x) = EI,(2—x/2¢). Estimate the buckling ¢

load of the system using the Ritz method with a one-term polynomial P

basis. Is your estimate higher or lower than the actual buckling load? ¢
x

Explain your answer. Propose a function for a one-term Ritz approxi-
mation that will give better results than you got in the first part. Why
do you think it is better? Estimate the buckling load of the system using
the Ritz method with a two-term polynomial basis. Repeat with a three-
term polynomial basis.

272, A flexible beam of length € and modulus
Elisweldedto arigid beam of length € and rests
on an elastic foundation of modulus & (per unit
length). It is pinned at the left end and is sub-
jected to a compressive axial load P at the right -~

end. The elastic foundation accrues a transverse

force in proportion to the transverse displacement w. Shear and axial deformations in the
beam are negligible. Write the expression for the energy of the system. What are the essen-
tial and natural boundary conditions for the flexible beam? Find an approximate solution
for the buckling loads and mode shapes using a two-term polynomial Ritz basis.

273. The column shown has modulus EJ and weight per unit A
length p. It is fixed at one end and free at the other. Shear and axial
,EI
y

deformations can be neglected. Find the (classical) governing dif-
ferential equations and boundary conditions for the transverse
deflection w(x). Express the governing equations in virtual-work
form. Estimate by the Ritz method the maximum length the col- —
umn can have before it buckles under its own weight.

274. The stepped column shown has a variable modulus and is sub- P
jected to vertical forces at two points. It is fixed at one end and free 1
EI
(classical) governing differential equations and boundary condi- P
[
2E1
y
P

at the other. Shear and axial deformations can be neglected. Find the 4
tions for the transverse deflection w(x). Express the governing equa-

tions in virtual-work form. Using a two-term polynomial approxi- ¢
mation for w, estimate the critical load using the Ritz method. Y

275. Consider the bar of length € with bending modulus E7 g EI,GA

and shear modulus GA, subjected to axial load P as shown. i -
Show that the linearized virtual-work functional for the
buckling of a beam with shear deformation is given by ¢

[4
Gw,0,w,0) = I [EI6°'F" + GA(w—6)(W —8) — P(w'8+w0—68)|dx

0
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Make the assumption that the (generalized) shear strain in the beam is constant. Estimate
the critical loads of the beam using a polynomial approximation with the Ritz method. For
example, a three-parameter approximation would have the expression

x

o2

Describe at least two ways of improving the approximation, and rank them according to
which is likely to give the most improvement (no calculations necessary). If EI is very
large in comparison to GA€2, what will the buckled shape of the beam look like?

276. Consider the beam of length ¢, fixed at both ends, P
with constant modulus EJ shown in the sketch. The beam %—
is subjected to a compressive axial load P. When the _x— 3
beam is not loaded, the initial shape can be described as
2 3 ¢
Wo(X) = co(3% - 2%3-)

where ¢, < 1is known as given data. Assume that shear and axial deformations are negli-
gible. Find an expression for the energy functional 8 and the virtual-work functional G for
this problem. Estimate the deflection of the beam as a function of load P using the Ritz
method and a one-term approximation as follows

2 2
— X X _ 1 X 1
0—a0?+alﬁ, w—a1x+5a07+§al

w(x) = wy(x) + a(% - 2%3 + %:)

assuming that the displacements are small enough to use the linearized buckling theory.

277. Aflexible beam of length 2€ and modulus E rests op P & EI op
on an elastic foundation of modulus . The beam is — )

compressed by a known fixed force 2P and is subjected " ,: N X R
to a transverse load P at its midpoint. The properties < » , -

have values such that k€* = EI Axial and shear de- € €

formations of the flexible beam can be neglected. Esti-
mate the deflection at the middle and ends of the beam using virtual work and the Ritz
method. (Note: due to symmetry a odd base function need not be included.)

278. A square frame of dimension € is composed of two
columns connected together by a beam (the beam can be
considered rigid). The left column, which is rigid and
pinned at both ends, is subject to a force 2P. The right ¢
column, which has flexural modulus EJ, is subjected to

a force P. What are the essential and natural boundary
conditions on the flexible beam. Express all boundary
conditions in terms of the transverse displacement w(x)

of the flexible beam. Find the classical characteristic
equation that determines the buckling load of the system. Find the exact value of the prima-
ry buckling load from the characteristic equation. Recall that the classical differential
equation w* + u?w’’ = O has the general solution in the form

w(x) = ay+a,x+a,sinux+a;cosux.
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Estimate the buckling capacity of the structure using the Ritz method in conjunction with
the principle of virtual work. Compare the classical and variational solutions. [Note: The
left column is often referred to as a “leaner” because it leans on the right column to find
resistance to sway. By itself the left column has no lateral stiffness, but it carries a destabi-
lizing force.]

279. Aflexible beam of length 2€ and modulus : EI p
EI is stuck on an elastic foundation of modulus AN R

k (per unit length) over half of its length. It is x N k

pinned at the left end and is subjected to a com- ’—> L N
pressive axial load P at the right end. The elastic - P ' ¢

foundation accrues a transverse force in propor-

tion to the transverse displacement w. Shear and axial deformations in the beam are negli-
gible. Write the expression for the energy of the system. What are the essential and natural
boundary conditions for the beam? Find an approximate solution for the buckling loads
using a polynomial Ritz basis.

280. A flexible beam of length € and modu- Rigid EI Rigid P
lus ET is connected to rigid beams of length € k k

at both ends. The beams are supported by two

linear springs with modulus k = BEI> tx

where f is a give constant. The beam is sup- ¢ ¢ ¢

ported as shown and is subjected to an end

load P. Shear and axial deformations in the beam are negligible. Write the (quadratic)ener-
gy functional 8 and the virtual-work functional G for the system. What are the essential
and natural boundary conditions for the flexible beam? Find an approximate solution for
the lowest buckling load using a two-term polynomial Ritz basis. Express the result in
terms of f, i.e. P{f8). What is the buckling load for very large spring stiffnesses (i.e., as
f — 0)? Does the approximation appear to make sense in the limit? Explain.

281. A flexible beam of length € and modulus ET is El Rigid
welded to a rigid beam of length € which rests on a ﬁ P
spring of modulus k = 2E1/€3. The beam is supported x k

as shown and is subjected to an end load P. Shear and t_'
axial deformations in the beam are negligible. Write e 4

the energy functional 8 and the virtual-work func-

tional G for the system. What are the essential and natural boundary conditions for the flex-

ible beam? Find an approximate solution for the displacement w(x) using a two-term poly-
nomial Ritz basis.

282. Aflexible beam of length € and modu- £l Rigid
lus EI is welded to a rigid beam of length £ W P
and rests on an elastic foundation of modulus  wkesm x ) ” k o
k=20EI/€*. The beam is simply supported = L N

and is subjected to an end load P. The elastic T ' ¢
foundation accrues a transverse force in pro-

portion to the transverse displacement w. Shear and axial deformations in the beam are
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negligible. Write the energy functional 8 and the virtual-work functional G for the system.
What are the essential and natural boundary conditions for the flexible beam? Find an
approximate solution for the displacement w(x) using a polynomial Ritz basis.

283. A flexible bar of length € and bending modulus E is welded P
to a rigid bar of length €. The structure is fixed at the bottom and

subjected to a compressive axial load P at the top as shown. What ¢ rigid
are the appropriate essential and natural boundary conditions for

this problem? Find an appropriate energy functional 8(w) for the ¢ x E
system, where w(x) is the transverse deflection of the flexible bar.

Compute an approximation of the critical load of the system using
the Ritz method and a polynomial basis function.

1

284. Abeam of flexural modulus 4E] carries the P @
load P to the frame as shown in the figure. The

. . 11 1 1 ]
frame is made of two columns pinned together by l‘é* e
abeam at midheight. The frame members all have /
length 2€ and flexural modulus EI as shown. The ¢ roller
force P is applied directly above the left column.
The members have axial modulus EA> EI/€2. 7
Estimate the smallest buckling capacity P,, of the
structure using the Ritz method. Resolve the ¢ EI EI

problem assuming that the load can be placed
anywhere along the top beam. —— bl

pha | ¢

T
-

285. Resolve Problem 284 by solving the classi- 2¢
cal differential equations and boundary condi-
tions.
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Numerical Computation
for Nonlinear Problems

The overwhelming feeling you get from the preceding chapter is that the only
thing you can really hope to do with a complex nonlinear system is to compute
its critical loads and the corresponding modes with the linearized buckling
theory. The examples we have seen have clearly demonstrated that nonlinear
systems do not have to be very complicated before we find ourselves unable
to find a closed-form solution to the problem of finding the equilibrium paths.
Even for some rather modest one-dimensional problems, the possibility of
finding a closed-form solution is a dismal prospect. Often, even if we do find
a closed-form solution, it is so complicated that the only way to appreciate it
is to evaluate the expression at a number of discrete points and plot the bifurca-
tion diagram by connecting those points. There is little motivation for execut-
ing monumental feats of algebra if there is an alternative means of generating
the discrete points along the path. An incremental numerical solution method
provides such a tool.

We shall exploit some simple observations on nonlinear equations to devel-
op an approach to tracing the equilibrium paths of a structural system. First, let
us observe that it is always easy to tell whether a certain deformation state (e.g.,
the displacement field w(x) for a beam or u(x) for three-dimensional elasticity)
represents an equilibrium configuration. With displacements we can compute
strains; with strains we can compute stresses; and with stresses we can check
to see if equilibrium is satisfiedt. If the equilibrium equations are satisfied, then
the state is an equilibrium configuration. If it is an equilibrium configuration,

T If we are working with a displacement-based variational statement of the boundary
value problem with virtual-work functional G, then all we need to do is to substitute
the displacement field directly into G to see if equilibrium is satisfied in a weak sense.
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we can plug it into the second-derivative functional to test its stability. Second,
let us observe that, for most problems, we start out with a known point on the
equilibrium path. Usually, this point is the one with no applied load and no de-
formation. Finally, let us observe that, in a small enough neighborhood of any
point on a curve, the curve is essentially linear. The direction in which this line
points (i.e., the tangent to the curve) gives us a good indication of where the
curve isheaded. We can move along this line to a new trial state of deformation.
The trial state can be tested to see if it satisfies equilibrium. If it does not, the
estimate of the state can be modified to improve it. What we need is an orderly
way of making the improvements to the linear guesses.

One of the most ingenious and popular methods for iteratively improving
linear estimates of the equilibrium state is Newton’s method. Other methods
are available, but many of them are slight variations of Newton’s method or
have a spirit similar to it. Here, we shall adopt Newton’s method as the proto-
typical algorithm for iteratively computing an equilibrium path. Fletcher
(1987) and Luenberger (1984) give detailed accounts of some of the other
methods.

The notion of the equilibrium path is illustrated in Fig. 149 for a system with
two kinematic degrees of freedom, 8, and 6., and a single load parameter 4,
which is the multiplier of some fixed nominal pattern of loads. The equilibrium
path is the curve described by a system of two algebraic equations in three vari-
ables: g1(01,60,,4) = 0 and g,(6;,6,,4) = 0. As such, it describes a curve in
three-dimensional space. All of the systems that we discuss in this chapter will
conform to this model. For discrete systems, we will typically have one load
parameter and N kinematic degrees of freedom. There will be N equations of
equilibrium, and, hence, the equilibrium path will be a curve in N+ 1 dimen-
sional space. It is impossible to graphically represent the equilibrium path in
dimensions higher than three, but we can extrapolate our understanding of the
geometry of the path from three-dimensional space.

Our approach to solving nonlinear problems can be summarized as follows.
We start our computation at some point in configuration space where we know
everything about the solution (like the origin or a bifurcation point), and we
inch our way along the curve from one point on the equilibrium path to the next,
iterating to convergence with Newton’s method at each step. At converged

A Tangent to path

Equilibrium path
g0,41) =10

Figure 149 Example of an equilibrium path



Chapter 12 Numerical Computation for Nonlinear Problems 433

states (i.€., states that are actually on the equilibrium path), we can evaluate
things like the eigenvalues of the second derivative of the energy to assess the
stability of the path we are on and to look for bifurcation points.

We shall initiate our discussion of nonlinear computations with the simple
problem of finding the roots to the nonlinear equation g(x) = 0, where gisa
scalar function of a scalar variable x. We will use this problem to illustrate
Newton’s method as he actually conceived it (the first application was to the
problem of finding the roots to a cubic polynomial). We will then extend New-
ton’s method to the analysis of the equilibrium paths of discrete systems of sev-
eral variables. During the discussion of discrete systems, we shall introduce the
notion of the arc-length constraint that will help us move along the curve in
configuration space. Finally, we consider the computations associated with the
fully nonlinear planar beam theory introduced in the last chapter.

Newton’s Method

Newton’s method provides the basic building block for the more general nu-
merical algorithms in this chapter. This section gives an introduction to New-
ton’s method in the context of solving nonlinear algebraic equations.

Finding roots of univariate functions. Let us first attempt to establish
Newton’s method for finding the roots of a nonlinear, univariate algebraic
equation. The problem is illustrated in Fig. 150. We want to find the solutions
to the problem

gx) = 0 (587)

where g(x) is some known function (e.g., g(x) = x*—2x+1). We can com-
pute the value of g(x,) and the first derivative g'(x,) for a known value x,.
Thus, we can find an approximate linear function that is tangent to the curve
at the point x,

g(x) = g(xo) + (x—x,)g'(x.) (588)

We can see from the figure that the linear function g(x) is quite close to the non-
linear function g(x) in the neighborhood of x,, but deviates from it at remote

Figure 150 Newton’s method for a univariate function
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points. What Newton suggested was that the solution to the linear equation
g(x) = Owould yield a value of x that approximated the solution to the original
nonlinear equation. Setting Eqn. (588) equal to zero and solving for x, we get

o, _ 86
= X, ’
g'(x5)
This point is labeled x, in the figure. Clearly, this point does not satisfy the orig-
inal nonlinear equation, that is, g(x,) # 0, but it is apparently closer. Indeed,
x, is a point at which we can evaluate g and its first derivative. Thus, we could
repeat the calculation starting at x, rather than x,. Newton’s method is the it-

erative scheme that starts with some known point x, and computes successive
iterates, as follows

(589)

8(x)
g,(xi)

Xipp = X; — (590)

We can terminate the iteration when the solution is close enough to the exact
solution to the problem. How do we know when we are close enough? If
|g(x»)| < tol, where tol is a tolerance established a priori, then the solution x,,
is close enough.

A few comments about Newton’s method are in order. First, like any itera-
tive method, we must specify the starting value x, and the termination toler-
ance fol. The starting point and solution tolerance will generally require a good
understanding of the problem at hand. Some experimentation may be required
to establish these values. Second, Newton’s method is guaranteed to converge
only if we start within the basin of attraction of the solution. If there are other
solutions to the nonlinear problem, a starting value may converge to one of the
other solutions. Third, the rate of convergence is quite fast for Newton’s meth-
od in the vicinity of the solution. Finally, Newton’s method will fail if it en-
counters any point x; that has g'(x;) = 0, because the algorithm would require
division by zero at such a point. Newton’s method is not particularly attracted
to such points, but we shall see that these points can present problems in tracing
equilibrium paths past limit and bifurcation points when solving stability prob-
lems.

Example 76. Let us compute a root of the cubic equation x> —2x+1 = Ousing
Newton’s method. The iteration formula is

x?_2x1+1

Xiv1 = X; T3g-2
13

If we start the iteration at x, = 0, we get the sequence of iterates shown in Table
10. The value of the function for g(x¢) = 0.1480 x 10~ ! is very nearly zero
compared to the error of the initial estimate x, of g(0) = 1. The important ob-
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Table 10 Iteration history for the univariate example problem

! X; 8(x)

1 0.000000 0.1000E+01
2 0.500000 0.1250E+00
3 0.600000 0.1600E-01
4 0.617391 0.5496E-03
5 0.618033 0.7631E-06
6 0.618034 0.1480E-11

servation from this example is that we obtained a numerical solution to the non-
linear problem by executing a sequence of arithmetic operations involving the
evaluation of the function and its first derivative. This feature is the hallmark
of iterative methods.

Equations with several variables. Newton’s method is based upon itera-
tively solving a linearized version of the nonlinear equations. Let us assume
that we wish to solve a system of nonlinear equations

gx) =0 (591)

where g(x) € R" is a vector valued function of the unknowns x € R". It is
important that we have the same number of equations as unknowns. Again, we
can linearize the equations about some configuration x, (2 point that does not
necessarily satisfy the equations). Let us define the linear function g(x) to be
the first-order Taylor series expansion of the function g(x). To wit

g(x) = g(x,) + Vg(x,)(x—x,) (592)

where Vg(x,) is the matrix of first derivatives of g with respect to x, evaluated
at the point x,, [Vg]ij = dg;/dx;. The matrix Vg(x,) is N by N if the original
system has N equations in N unknowns.

We can extend Newton’s idea to multiple dimensions and suggest that the
solution to the linear equation g(x) = 0 will yield an estimate of the solution
to g(x) = 0 that is closer than X,. The Newton estimate of the solution is

X=X, — [Vg(xo)]_lg(xo) (593)

Of course, the new point generally will not satisfy the nonlinear equation, but
itshould be better than x,. We could replace the old estimate with the new one,
X, < X, and repeat the calculation. Therefore, the Newton iteration takes the
form

X = X — | VE(x)] 'g(x) (594)
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with x, specified as given data. Eventually, the new estimate will look very
much like the previous one, and we call this estimate a converged state. Again,
there is no need to continue the iteration if the solution is, within some toler-
ance, acceptable. In analogy with the univariate problem, a good termination
criterion for the multivariate problem is || g(x,) || < tol, where || - || is some
suitable norm, for example, the Euclidean norm. We need to test the norm of
the residual because we are trying to satisfy several equations at the same time.
The norm measures the aggregate satisfaction of the equations rather than the
satisfaction of any one of them.

Again, there are two things we must specify in Newton’s method. First, like
any iterative method, we must select the starting point X,. Second, we must se-
lect a suitable tolerance for judging convergence. Newton’s method is not
guaranteed to converge from any arbitrary starting point, but if a point is close
enough to the solution, the rate of convergence is quadratic. The exact features
of the basin of attraction of Newton’s method depend upon the problem, so it
is difficult to make any sweeping statements beyond “good luck with your ini-
tial choice.” (All joking aside, in our problems we generally have very good
choices for starting points.) There are many methods available to improve on
these weaknesses of Newton’s method, but we shall stick with the basic version
here. Newton’s method will fail if the matrix Vg(x;) is singular (i.e., not invert-
ible) at some point x;.

The algorithm is rarely implemented with the matrix inversion indicated in
Eqn. (594). Rather, we would solve the system of equations A;Ax; = b,
where A; = Vg(x;)and b, = —g(x,), for the increment Ax,. The new estimate
can then be found by adding this increment to the previous value to give the
update X;., = X;+ Ax; There are many algorithms available for solving alin-
ear system of equations.

The basic algorithm. The organization of the Newton iteration algorithm
is straightforward. It includes an initialization step, an iteration loop, and a ter-
mination criterion. At each step in the iteration loop, we establish and solve the
linearized version of the nonlinear equations for an estimate of the increment
Ax = x—X;in the unknown Xx. This increment is added to the previous esti-
mate to give a new estimate by the update x;,, = x;+ Ax. The following
pseudocode illustrates the organization of the algorithm.

Algorithm 1 (Newton’s method)
Select x,. Initialize counter, i = 0.
Compute residual and gradient, b, = —g(x,) and A, = Vg(x)).
Test for convergence. If || g(x;) || < ¢tol, then Stop.
Solve linear system of equations A;Ax; = b,.
Update the estimate, X;,; = X;+ Ax,
Increment counter i < i+ 1, Go to 2.

ISR .
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Note, in particular, that we need only evaluate the functions and their gradients.
The solution of equations in step 4 is generally carried out by Gaussian elimi-
nation, but any equation-solving method is suitable. This format for iterative
nonlinear solution of algebraic equations is suitable for problems of any di-
mension N,

Example 77. Let us employ Newton’s method to solve the nonlinear, two by two
system of algebraic equations g(x) = 0, where the functions g are given by

8:1(x) X -2 +x —3
&(X) = X = utx, +x, -2

The gradient is simple to compute, and has the explicit form
-2 +1 — 4x,x,
Vex) = 2
— 4x,x, 3 -ut+1
The MATLAB code to compute the solution is
§-- Chapter 12, Example 77

clear; tol = l.e-8; maxit = 30; x = [0; 0); test = 1.; 1 = 0;
while (test > tol) & (i < maxit)

Yy = x(1); z = x(2);
b=1[y"3 - 2*y*z*2 +y - 3 ;
2*3 - 2*%z*y*2 + z - 2];
A= 3*y"2 - 2*%*z"*2 + 1 , —4*y*z H
~ 4*y*z , 3*272 - 2*y*2 + 1);

test = norm(b);
dx = -A\b; x = x + dx;
fprintf(’$51%9.5£%9.5f%13.2e%13.2e%13.2e\n’,i,x’,b’,test)
i=1i+1;

end

The result of the Newton iteration on the example problem is

i x1 x2 gl 92 [l gl
0 3.00000 2.00000 -3.00e+000 -2.00e+000 3.61e+000
1 1.98373 1.27811 3.00e+000 ~2.80e+001 2.82e+001
2 1.25394 0.62220 3.09e-001 -8.69e+000 8.70e+000
3 0.64287 -0.58445 -7.45e-001 -3.09e+000 3.18e+000
4 1.72547 -0.02197 -2.53e+000 -2.30e+000 3.42e+000
5 1.34269 -0.41551 3.86e+000 -1.89e+000 4.30e+000
6 1.43236 -0.79342 3.00e-001 -9.89e-001 1.03e+000
7 1.45732 -0.73069 -4.32e-001 -3.73e-002 4.34e-~001
8 1.46010 -0.73392 -3.81e-003 -1.72e-002 1.76e-002
9 1.46010 -0.73390 -2.28e-005 4.10e-005 4.69e-005
10 1.46010 -0.73390 -5.21e-010 4.29%e-011 5.23e~010

The first column of the output table gives the iteration number i. The second and
third columns give the ith estimate of the solution x;. The fourth and fifth col-
umns give the values of the function g(x;), and the last column gives the Euclide-
an norm of the residual || g(x;) . The starting point is x,, = (0,0), and it took 10
iterations to get a solution within a tolerance of tol = 1072 on the Euclidean
norm of the residual.
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There are some interesting features of the previous example that give an in-
dication of what sort of behavior to expect from a Newton iteration. First, be-
cause of the choice of the initial estimate X, the algorithm initially heads in the
wrong direction, that is, into the positive quadrant. As a result, the norm of the
residual actually increases in going from x, to X,. Clearly, a Newton step does
not always give a better estimate of the solution. However, these misdirections
generally occur when we are far from the solution, where the actual functions
are not well represented by the linear function g(x). Satisfaction of the two
functions occurs at different rates, but they both wind up satisfied to within the
tolerance. Because convergence is tested with the Euclidean norm of the resid-
ual, one of the equations will contribute more than the other. In this case, con-
vergence was controlled by g,. As the iteration closes in on the solution to the
problem, Newton’s method has quadratic convergence. One can see the speed
of quadratic convergence by examining the exponent of the norm of the residu-
al in the last few iterations. We can observe that, with Newton’s method, we
really need not worry very much about the exact value of the tolerance be-
cause, if the solution is close, one more iteration will generally nail it.

We must be careful not to specify a tolerance smaller than the machine pre-
cision of the computer can tolerate. There is a point in each calculation thatlim-
its the accuracy of the computation. If the residual gets stuck at some value
(usually small) then one might expect that the tolerance is tighter than the cal-
culation will allow.

Tracing the Equilibrium Path of a Discrete System

We have found in the previous two chapters that the governing equations of
equilibrium of a discrete system can be expressed in the form

go,4) =0 (595)

where 0 is the vector of displacement parameters and 4 is the load-level pa-
rameter. For the single-degree-of-freedom problems solved in Chapter 10, 6
had one component, which measured the rotation of the rigid bar from the ver-
tical position. For the two-degree-of-freedom example of Chapter 10, 68 =
(0,,8,) had two components, the first of which measured the rotation of the
lower bar from vertical, and the second of which measured the rotation of the
upper bar from vertical. When we applied the Ritz discretization to the contin-
uous systems of Chapter 11, we got 0 = (ay, a, . . ., ay), where a; is the coeffi-
cient of the ith base function 4;(x) in an N-term expansion for the displacement
field, e.g.,w(x) for the beam. For most of the examples we have considered,
there has been only a single load P. The load parameter A can be viewed as a
multiplier of some fixed pattern of applied loads. In any case, the load level will
always be controlled by a scalar parameter.

It should be evident that Eqn. (595) can be solved by Newton’s method. At
the simplest level, we can consider that the load level 4 is prescribed at some
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Figure 151 Fixed load incrementation with Newton’s method

value A°, and Eqn. (595) represents N nonlinear of equations for the N un-
known displacement parameters 0 (recall that we always have N equations if
we have N displacement parameters). The problem reduces to finding the state
0 that equilibrates the loads at precisely the level A°. This problem can be
solved by applying the Newton algorithm exactly as it was outlined in the pre-
vious section.

You have probably already figured out that the gradient of the function
g(0,4°), withrespect to 0, is Vg(0,4°) = A(68,1°), the Hessian of the discrete
energy function. Clearly, at bifurcation points and limit points, this matrix be-
comes singular. Newton’s method is destined to fail at these points. While bi-
furcation points are somewhat more delicate, there is a simple remedy for limit
points.

To see the difficulty in prescribing the load level, consider Fig. 151, which
shows an equilibrium path with a limit point (indicated by an open circle). To
compute this path, we would start at the configuration with zero load and the
deformation equal to its imperfection values. The initial configuration happens
to be an equilibrium configuration, so no iteration is needed to establish equi-
librium. Assume that we have successfully located the equilibrium state
{42,0,}. We locate the next point on our curve by incrementing the load 43 by
a fixed amount AA. At this new fixed load level A2, , we iterate to find the
equilibrium configuration 0,,,. Clearly, if the load increments are small
enough, we can usually guarantee convergence to the next point on the curve.
This process, called load-control incrementation, continues by incrementing
the load and iterating to find the associated configuration 0. The algorithm
fails when the load increment takes the total load above the limit point. There
is no configuration that will satisfy equilibrium at this load level. The algorithm
fails because force control eventually asks the impossible of an equilibrium
path with a limit point. You could argue that if the increments were made small
enough, then we could approach the limit point slowly by trial and error. This
is indeed true, but as we approach the limit point, the condition of the Hessian
matrix A(0,4°) gets worse and worse because it has an eigenvalue that is ap-
proaching zero at the limit point. Thus, the numerical computations break
down at the limit point. We could even conceive of decrementing the load if
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Figure 152 The arc-length constraint

we could get past the limit point, but as we concoct these remedies, we must
assume more and more knowledge of the path that we are trying to compute.
For most problems, we are navigating in the dark. Every ad hoc algorithm has
its Achilles heel.

One popular alternative to a load-control Newton method is the so-called
arc-length method. As in the previous method, we inch along the curve, but
rather than incrementing the load, we introduce the constraint that the distance
between the next estimate of the solution {0, 1} and some fixed state {0,,4,}
will be constant, as shown in Fig. 152. Let us introduce the scalar equation of
constraint

c(0,4) =[|0-6,[> + (A—-4,)* —a> = 0 (596)

Now we can view the load 4 as an independent variable in exactly the same
way we do 0. Generally, a wise choice for the fixed state {0, 4,} is the last
converged state. This point is good because we know that it lies on the equilib-
rium path, and, thus, our constraint will allow us to find a new equilibrium con-
figuration for arbitrarily small values of the arc-length a. The constraint equa-
tion is really a ball of radius a centered at {0,,4,} in the state space. The
constraint insists that any new solution be found on the surface of the ball. It
should be clear that, if the ball is small enough, the equilibrium path will pierce
it at least at two points. We specify the distance a in the same spirit as A in
the load incrementation scheme. It is possible to specify a so large that New-
ton’s method cannot converge, but the algorithm with this constraint has no
trouble with either vertical or horizontal tangents on the equilibrium path.
There are now N + 1 equations in N + 1 unknowns (N displacement unknowns
and 1 load level unknown). This nonlinear system of equations can be summa-
rized as

g0,1) =0, c®01)=0 597
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There are many variants of the constraint equation ¢(8,4) = 0, so we will use
the general form throughout our subsequent discussions. We can vary the
constraint to suit the particular application (see Problem 300).

Newton’s method can be applied to the augmented system by recognizing
that the equations can be linearized about the state {0”,4”} to give the linear
functions g and ¢

2(0,1) = g(0",1") + V,g(0",1")(0-0") + V,g(0”,A")(1—-1")
&(0,1) = c(0,4") + Voc(0%,4)(0—0°) + V,c(0°,4")(A ~1)

The notation V, g(8,4) means the derivative of g with respect to 8, holding 4
constant. Similarly, V, g(0,1) means the derivative of g with respectto 4, hold-
ing 0 constant. The same notation holds for the function c. We have taken great
pains to distinguish the state {0”,A*} from the converged state {0,,4,} here.
The states with superscripts will be intermediate results of our Newton itera-
tion, while states with subscripts will represent converged load steps. If we set
the linearized functions equal to zero, g(0,4) = 0 and ¢(8,4) = 0, we can
compute a (presumably) better estimate of the equilibriumstate. Let us call this
new state {0”*',A”*'}. For convenience, let us define the increments to the
configuration and the load parameter as

Aev = ev+1_ev, Alv = A'Hrl_lv

Let us gather the configuration and the load parameter into a single matrix x
as X = [0,A], and let us define the matrices

= Vog(ev,AV) Vlg(evalv)
Voc(0”,4) V.c(0%,1")

Av

- g(ev,lv) ]
- C(O", 117)

Now, in order for the linearized functions to be equal to zero at X’*' =
{0°*1,A**'}, the increments AX® must satisfy the equations

A'Ax’ = b (598)

The increment can be found as Ax” = [A”]~'b*. With the increment known,
the new state can be found by the simple update formula

Xt = x'+ AxX’ (599

All we need to start this iteration is the initial value of the state x° = {0°,1°}
and an initial point on the equilibrium path x, = {0,,4,} with which we can
reckon our arc-length constraint. Iteration can be terminated when

16 = /l2@,A) [F +]c@,2)F < twol (600)

where fol is the preset convergence tolerancet. As before, we can identify our
old friend V,g(0,4) = A(8,4), the second derivative of the energy, but now
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the matrix we must invert for Newton’s method has been augmented and no
longer has an eigenvalue that goes to zero at a limit point.

The curve-tracing algorithm. The organization of the Newton iteration al-
gorithm is straightforward. To economize the notation in the Newton iteration,
we will combine the unknowns into the single vector x = (0, A). The following
pseudocode illustrates the organization of the algorithm

Algorithm 2
(Newton’s method with arc-length constraint)

1. Select tolerance tol, step size a, appropriate limits to variables,
maximum number of iterations, etc. Initialize load step counter,
n=0.

2. Selectstarting values x, and initial direction d, in which to move,
such that x, is an equilibrium configuration and | d, || = a.

3. [Initialize iteration state x° = x,+d, to be last converged state
plus a move in the desired direction that satisfies the arc-length
constraint. Initialize the iteration counter, v = 0.

4. At state x” do the following;:

(a) Compute residual and gradient

SR

—g(e",i”)} A = | VeB@2) Vi(®2)
—c(0,47) Voc(0,47) V(0,17

(b) Test for convergence. If || b* || < tol, then Go to 5.
(¢) Solve linear system of equations A’Ax” = b".

(d) Update the estimate, x**! = x* + AX".

(e) Increment counter v <= v + 1, Go to 4(a).

5. Update converged state X, ., < X’, estimate the direction for the
nextstepas d,,; = X,,1—X,.

6. Incrementcounter n < n + 1.Ifnisequal to the maximum num-
ber of steps, then Stop, else Go to 3.

There are many variants of this algorithm, but the one presented here gives
the basic flavor. This algorithm will experience difficulties at a bifurcation
point because it is unable to choose among branches. It will choose one, but
itmay notbe the one that you want. This algorithm was the one used to compute
the bifurcation diagrams shown in Figs. 134 and 135. To compute the branches

T The load and displacement parameters can have vastly different magnitudes, particu-
larly if the system is stiff. Care must be exercised in setting up the arc-length constraint
and iteration equations to make sure that none of the solution parameters get swamped
out by the others. Often, the unknowns can be scaled to avoid such problems.
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that emanate from the bifurcation points, the algorithm was started with x, =
(0,4.,), the trivial state at either the first or the second critical load. To get the
algorithm to follow the nontrivial branch, we need only give an initial estimate
of the direction to go of d, = (a¥,0), where y is a unit vector that points in
the direction of the linearized eigenvector. After the first step, we can encour-
age continuation along the same path by setting d, = x, —X,_;. Since X, was
found by iterating with the arc-length constraint, this choice has | d,, | = @ au-
tomatically. Also, with this choice, the starting iterate is X° = 2x,—X,_;. Ines-
sence, we are suggesting, for starters, another step just like the last one.

We can augment the equilibrium equations with a condition that will lock
onto the bifurcation point. Let A(8,4) be the Hessian of the energy function,
that is, the second derivative function is A(4,0,0) = 67A(0,4)8. The
constraint equation

c(8,4) = detA(0,A) = 0

then describes a point on the equilibrium path at which one of the eigenvalues
of A(8,4) goes to zero, i.e., a bifurcation point or a limit point. If we add this
extra equation, we must discard the arc-length constraint to retain the feature
of having N + 1 equations in N+ 1 unknowns. Algorithms that locate bifurca-
tion points exactly are very useful because they allow us to execute switches
from one branch to another at the critical points. If we have converged on a bi-
furcation point, we can compute the eigenvectors of A(0,4). The eigenvector
associated with the zero eigenvalue corresponds to the direction of the branch-
ing solution. You can suggest to the Newton algorithm that the next step should
be inthat direction, and, in doing so, switch to that branch. Many systems bifur-
cate from nontrivial branches. Clearly, we would not want to include this addi-
tional equation for points remote from a bifurcation point because the Newton
algorithm would attempt to iterate directly to that load level. One strategy is
to start with a normal arc-length constraint and monitor the eigenvalues of
A(0,1). When an eigenvalue of the second-derivative functional gets small
enough, switch from the arc-length constraint to the determinant constraint to
lock onto the critical point. Once converged on the critical point, select the ei-
genvector as the direction vector d,, and return to the arc-length constraint.

Example 78. Let us reconsider the two-degree-of-freedom example problem
from Chapter 10, described in Fig. 133. The system consists of two rigid links
connected by rotational springs and connected to a fixed base with a rotational
spring. Both links have the same length, and both springs have the same stiff-
ness. The cantilevered links are subjected to a compressive axial force P at the
free end. The nonlinear equations, g(x) = 0, for the present case, are

£0,4) = 26,-0,—Asinf;, = 0

(601)
8(0,0) = — 6, +6,—Asin6, = 0
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where A = P€/k. The arc-length constraint equation has the form
c0,2) =[/8-0,|> + (A-4,)2—a? =0 (602)

where 0, and A, represent the previous converged state, a distance a from which
we want to find a new point on the equilibrium path. The matrix of gradients A"
and the residual b” at the state {0”, A"} are given by

T T T T T 7
IZ—VaNﬂ -1 |—dnﬂ £:(0%,A"
A = |L_:1_ 1Rty JI —sing, | b= — | £(6%2"
26;-6,,)  2063-65,) 2Ai-1) (0%, 2%)

The portion of the gradient within the shaded and dotted box is A(8%,4"), the
Hessian of the energy function. The eigenvalues of this two by two matrix can
be readily computed so that the stability of the equilibrium branch can be moni-
tored as we compute our way along the path. An implementation of the algorithm
for this problem is given by the MATLAB program, called NEWTON, that follows.
The program should clarify some of the details about the implementation of
Newton’s method for computing an equilibrium path. This code was used to
compute the equilibrium paths shown in Figs. 134 and 135.

The Program NEWTON

% %*

% | Program NEWTON

% | Fundamentals of Structural Mechanics, 2nd Edition
s | K. D. Hjelmstad, July 1, 2004

% %*

Set problem parameters, Chapter 12, Example 79,
clear; tol = 1.e-8; alpha = 0.5; maxsteps = 10; maxit = 20;
xo0 = [0; 0; 0.3820); x = [0.8510; 05260; 0.3820);

Initialize values for load step zero,set next trial state
b = x - x0; x = xo + alpha*b/norm(b);

Compute MAXSTEPS points along the Equilibrium Path
for n = 1l:maxsteps

%.... Perform Newton iteration at each load step

nu = 0; test = 1.0;
while (test > tol) & (nu < maxit)
nu = nu + 1;

$...... Compute residual and Hessian at current state

b = [2*x(1) - x(2) - x(3)*sin(x(1)) ;
-x(1) + x(2) - x(3)*sin(x(2)) ;
dot (x~x0,x-x0) - alpha*2] ;

-
[}

[ 2 - x(3)*cos(x(1)), -1 ‘

-1 s 1 - x(3)*cos(x(2))1;
c = [ -sin(x(1)); -sin(x(2))];
A= K, c; 2*%(x-x0)'];

*—— %
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$...... Compute residual norm, eigenvalues of tangent stiffness
test = norm(b); e = eig(K);

$.....0 Compute increment and update state vector
dx = -A\b; x = x + dx;

end % while

%.... Output results, set converged state, guess at next state
fprintf(’$5i%9.5£%9.5£%9.5f%13.4e%13.4e%41%12.2e\n",
n,x’,e’,nu, test)
temp = X0; X0 = X; X = 2*x - temp;

end % loop on n
%.. End of program Newton

Program notes. The MATLAB code contains the input in the first few lines.
The values set are for the following example. The variable names are basically
the same as the notation used in the text with a few exceptions. Note that the
name alpha stands for the arc length a, maxsteps is the number of load steps,
and maxit is the maximum number of Newton iterations allowed at each load
step. The iteration counter v is called nu and the norm of the residual is called
test. In MATLAB the backslash indicate solution of a linear system of equations
so that ax = a\b means solve the equations AAx = b. The name xo stands for
the reference value x, that serves as the anchor point for the arc length
constraint. Many of these same naming conventions will be used in the pro-
grams later in the chapter.

Example 79. The program Newtfon was run for the case of the two-degree-of-
freedom linkage example from Chapter 10 for the equilibrium path that branches
from the first bifurcation point located at A., = 0.3820. The solution tolerance
was setat fol = 1073 and the step length was setat a = 0.5. The iteration was
started at the bifurcation point (0, 0, 0.382) with a suggestion to move to the state
(0.851, 0.526, 0.382), that is, in the direction of the first buckling mode. The re-
sults of 10 load steps are given here

n 61 62 Pl/k EV 1 EV 2 NU || b ]
1 0.26343 0.42487 0.39166 1.9198e-02 2.2458e+00 5 1.85e-09
2 0.53016 0.84665 0.42252 7.8012e-02 2.2775e+00 4 4.98e-14
3 0.80357 1.26124 0.48051 1.8060e-01 2.3395e+00 4 4.97e-13
4 1.08655 1.66184 0.57768 3.358le-01 2.4478e+00 4 1.20e-11
5 1.37871 2.03580 0.73515 5.6014e-01 2.6292e+00 4 4.78e-10
6 1.66858 2.36008 0.98176 8.7667e-01 2.916le+00 5 6.66e-16
7 1.92720 2.60639 1.33169 1.2924e+00 3.3177e+00 5 3.87e-14
8 2.13007 2.76947 1.75859 1.7748e+00 3.7965e+00 5 1.18e-14
9 2.28006 2.87216 2.22438 2.2849e+00 4.3079e+00 4 4.94e-09
10 2.39171 2.93830 2.70725 2.8028e+00 4.8298e+00 4 9.8le-11

We can observe the changing of the eigenvalues of the second derivative of
the energy in the columns labeled EV I and EV 2. The number of Newton itera-
tions required to converge to the specified tolerance are listed in the column la-
beled NU. The norm of the residual is listed in the column marked || b ||. To get
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the symmetric counterpart of the equilibrium path given here, we need only sug-
gest negative values for the next state in the input (-0.851, -0.526, 0.382). To
get the second branch, we would specify the initial value of (0, 0, 2.618) and the
next value as (0.851, -0.526, 2.618).

Newton’s Method and Virtual Work

The Newton algorithm, and its variants, provide a numerical tool that can be
applied to virtually any nonlinear computation problem. The algorithm for al-
gebraic systems can be extended to functionals without much difficulty. Aswe
saw inthe discrete problem, the main idea of Newton was toreplace the nonlin-
ear equation with a linear approximation, and solve the linear problem to give
a better estimate of the equilibrium state. The process can be iterated to give
asolution that is arbitrarily close to the exact solution of the problem. To extend
the method to functionals, we need only find an analogy to the approximating
linear function g(x). The directional derivative of a functional provides the
mathematical machinery we need to make this definition.

Let us consider a virtual-work functional G(4, u, W), where 4 is the load pa-
rameter, u(x) is the displacement field, and W(x) is the arbitrary virtual dis-
placement field. The family of configurations { 4, u} represents an equilibrium
pathif G(A, u, ) = Ofor all virtual displacements @ € F,(B), where &, is the
collection of suitable functions, satisfying the essential boundary conditions,
defined on the domain %B. The functional G is, by definition, linear in the virtual
displacement W, but may be nonlinear in the state {4, u}.f

The linear functional G(4, u, ) will be our analog to the linear function g(x)
used in the solution of nonlinear algebraic equations. The linear functional can
be obtained as the Taylor series approximation of the functional about the
known state {4°,u°} as

G, u, W) = G@°,u’, W) + DG’ w’, W) (603)
We can compute the directional derivatives of the functional to be
o o = | d
DG(A. , U ,ﬂ) = [E[G(ﬂ, +eA,u+eAu, u)]e=0] - (604)

where AL = A—A°and Au = u—u’are the increments in the state. The prin-
ciple of virtual work suggests that if G(4,u, @) = 0 for all virtual displace-
ments ¥ € F,(B), then equilibrium holds for the linearized problem at the

+ When we say that a functional is nonlinear in u(x), we are not referring to the nonlinear
variation of u as a function of x, but rather nonlinearity in the sense that terms like [jul}2
appear in the functional. For example, in linear beam theory, the virtual-work func-
tional is linear in the displacement w(x), and yet w(x) generally turns out to be a nonlin-
ear function of x.
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load level A. In accord with Newton’s method, we will endeavor to find the
state that satisfies G(4,u, W) = 0 for all W € F,(B). The linearized virtual-
work equation is linear in the incremental state Au and the incremental load
level AA. We shall endeavor to solve the linearized problem to determine this
incremental state. The state u’+ Aushould then come closer to satisfying the
nonlinear equilibrium equation at the load level 1°+ AA than did the configu-
ration u’ at theload level A°. If the new configuration does not satisfy equilibri-
um well enough, the process can be repeated until it does. This procedure leads
to the Newton iteration for functionals

G’ w,u) + DG(A",w,u) = 0

605
vt =w+ A, AT =AY+ ALY (605)

where v counts the iterations. Iteration should cease when |G(A’, w’,W)| < tol
(for all virtual displacements).

Remark. We can solve the linear problem approximately using the Ritz
method. The Ritz method transforms a continuous problem into a discrete
problem expressed in terms of the coefficients of the Ritz expansion. Thus, we
can look at the Newton process in another way. Let us apply the Ritz approxi-
mation first to get a nonlinear function G(4,a,7) in place of the functional
G(A, u, 0). The functional will always be linear in the virtual constants &, so the
discrete form of the virtual-work functional can always be written

G(,a,a) = a’g(4,a)

The variational condition that a’g(4,a) = 0 for all @ implies the equation
g(A,a) = 0, which is simply a nonlinear algebraic equation. The machinery
of Newton’s method for algebraic functions can, quite obviously, be used to
solve this system of equations. This equivalence should become more evident
through the following model problem.

A model problem (Euler’s elastica). Let us consider the model problem of
Euler’s cantilever subject to a compressive tip load of P, which we studied in
Chapter 11, to illustrate the solution of nonlinear continuous problems. This
problem has beauty because it depends on a single displacement function 6(x).
At the same time, the elastica is a bona fide geometrically exact theory in me-
chanics. We do not need to worry about when the approximations give out as
we compute our way along an equilibrium path. Consequently, this classic ex-
ample will allow us to see the details of the nonlinear computation procedure
sketched in the previous section.

The virtual-work functional for the cantilever elastica is given by
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[4
G@®,6,6) = J (06" —40sin6) dx (606)
0
where A = P/EI is the load parameter. Note that we have factored out the
constant EI from the virtual-work functional. This functional is clearly nonlin-
ear in the rotation field 6(x). The derivatives of the functional in the direction
of the increments Af(x) and A4 can be computed from Eqn. (604) to be

[4
DG(1°,6°,6) = J (A0’67’ —A°G A0 cos0°— AAOsin 0") dx
0
where AA = A—A4° and Af(x) = 6(x) —6°(x). The state {4°,0°} is known,
but does not necessarily represent an equilibrium configuration of the system.

Using this result in the definition of the linearized functional, Eqn. (603), we
obtain a linear functional for the present case of

4
G(,6,8) = j (67 — 2°Bsin6° + AO'D
0 — AABsin6° — A°G A8 cos 0"] dx

(607)

This functional is linear in the increments A§(x) and A4, and, hence, is amena-
ble to solution methods for linear problems. A solution to the linearized princi-
ple of virtual work can be stated as follows: If G(4,6,6) = 0Oforall virtual dis-
placements 8 € B, (0, £), then the state { 4,6} is an equilibrium configuration
of the linearized problem (but generally not of the nonlinear problem). We can
construct the Newton iteration by observing that once we have solved the lin-
ear problem, we can take the new estimated state as the point about which we
linearize, set up a new linear problem, and solve the new problem for a new
state. The iteration can be repeated until convergence obtains.

To solve this problem we can to use the Ritz method. Let us approximate the
real and virtual rotation fields with base functions as

O(x) = a - h(x), O(x)=7"h)
where a =[ay, a,,..., ay]"and h = [hy, h,, . . ., hy] " are the coefficients and
base functions, respectively. The known state 6°(x) of the rotation field can be
interpolated in the same manner as the state 6(x). If we do so, then the incre-
mental state also has the same interpolation. To wit, we have

0°(x) = a° - h(x), Af(x) = Aa - h(x)

where the a° are known constants and Aa = a—a°. According to our defini-
tions, we have a = a°+ Aa. Substituting these approximations into the linear
functional of Eqn. (607), we arrive at the function

G(,a,3) = a’(K°Aa + kAl + g°)
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where the N by N matrix K°is
[4
K° = J ([h'][h']"—A°cos6°[h][h]) dx (608)
0
the N by one matrix k° is
[4
k= - I sin 8°h dx (609)
0
and the N by one matrix g°is
[4
g° = I ((6°) [h']—A°sin6°h) dx (610)
0

The statement of equilibrium, i.e., é(l, a,a) = Ofor all @, implies that the
following equation must hold for the increment in the state { A4, Aa}

K°Aa + k°AA +g° =0 (611)

To implement the arc-length constraint, we must recognize that the state is now
parameterized by the load A and the displacement parameters a. An appropri-
ate constraint is given by

cha)=|a—a,[>+(1-4,) —a*=0

where {4,,a,} represents a known point, generally on the equilibrium path. It
is important to note the distinction between the states {4,,a,} and {A°,a°}
here. The former is the previously found converged equilibrium state, while
the latter is simply the latest best guess at the next equilibrium state. We can
linearize the arc-length constraint at the state {A°,a°} to give

cA,a) = c(A°,a°) + 2(a°—a,)’Aa + 2(A°—1,)AA =0 (612

We can use Eqns. (611) and (612) to set up a Newton algorithm. First, let us
interpret the state {A°,a°} as being the result of the previous Newton iteration,
and designate this state as { 1”,a"}. The starting value of this iteration sequence
is {A°,a°} and will be taken as the converged state of the previous load step
{As,a,}. Letusdefine the N + 1byN + 1matrix A” and the N by one matrix
b’ in the following manner
— gv
—c(A*,a”)

Av _ KV kv )
K |:2(a"—a,,)T 2(,1"—,1,,)] b

where K, K, and g” are given by Eqns. (608), (609), and (610), respectively,
with the state {4*,a"} substituted in the place of {1°,a°}. With these matrices
identified, Algorithm 2 can be employed without much modification. In order
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fé
fé.

Figure 153 The idea behind numerical integration

to see how the algorithm must be modified, we must consider the problem of
integration of the system matrices.

Numerical integration of the system matrices. There is one key differ-
ence between the discrete system and the continuous system that we have casu-
ally brushed over. The matrices K*, k*, and g’ involve integrals over the do-
main of the body. In contrast with the solution of linear problems, these
integrals involve terms beyond simply the base functions and their derivatives.
Each of these integrals has terms like cos8*(x) or sin&”(x) in the integrand.
Even if we use polynomial base functions {1, x, x?, . . .}, we would, at each
step, need to integrate terms like x? cos(af,+a(x+a§x2), where the a” are
constants determined from the previous iteration. Even for the best expert in
the integral calculus, the evaluation of such integrals would be a terrible chore.
There is an alternative that can be easily implemented into the existing algo-
rithm. That alternative is numerical integration.

Numerical integration procedures can be used to compute any definite inte-
gral, provided that the integral exists, to any desired degree of accuracy. Let
f(§) be any function defined on the interval & € [0,1], for example, the curve
shown in Fig. 153. The integral of f(§) is simply the shaded area under the
curve. Let §,, be the location of the mth quadrature point, and ,, the weight
associated with that quadrature point. Then the integral can be computed nu-
merically with the formula

f fEE = > onfEn) ©13)

where M + 1 is the number of quadrature points in the interval. Clearly, numer-
ical quadrature requires only that the function in question be evaluated at se-
lected points. Function evaluation is always a simple computation! Different
integration formulas like Gaussian quadrature, Simpson’s rule, and the trape-
zoidal rule are distinguished by their specific weights and integration stations.
Integrals on different intervals can always be converted to integrals on the unit
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interval with a suitable change of variable. For example, if x is defined on the
interval x €[a,b], then the change of variable x = a(1—&) + b§ converts it
to the interval § €[0,1]. Since dx = (b — a)dE, the integral can be written as

j fx)dx = (b—a)f f(&) dE

where f(&) = f(a(1—&)+ b&). Two of the simplest numerical integration for-
mulas are the trapezoidal rule and Simpson’s rule.

For the trapezoidal rule, the interval is subdivided into M equal segments
of length A§. The M + 1 points (including the endpoints) that distinguish those
segments are the quadrature points. The weights associated with these quadra-
ture points are given by

o = ﬁ ifm=00rm=M
All otherwise

that is, all interior points have weight w,, = 1/M, while the endpoints have the
weight w, = w, = 1/2M. The physical interpretation of the trapezoidal rule
is simple. The area is approximated by the sum of the trapezoids formed by
connecting two adjacent points with a straight line.

Simpson’s rule requires that the domain be divided into an even number of
M equal segments of length AS. The M + 1 points that distinguish those seg-
ments are the quadrature points. The weights associated with these quadrature
points are given by

1

3y ifm=0orm=M
w, = ﬁ if m is an odd interior point
2

33 ifmis an even interior point

For Simpson’s rule, three adjacent points are fit with a parabola, and the area
under the parabola is computed exactly. The use of three adjacent points to de-
fine the parabola is the reason behind needing an even number of segments.
For either rule, greater accuracy can be obtained by taking finer and finer sub-
divisions.

We can incorporate a numerical integration scheme into Algorithm 2. The
matrices K”, K’, and g” are computed by numerical integration at Step 4.a. be-
fore incorporation into the matrices A” and b’. One can clearly see how Algo-
rithm 2 must be amended to incorporate the numerical integration through the
specific implementation of the nonlinear analysis procedure for the cantilever
elastica example below. You should spend some time comparing and contrast-
ing the program NEWTON with ELAsTICA in order to clearly see the connections
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between the Ritz method and the discrete examples used to motivate stability

theory.

The Program ELASTICA

Program ELASTICA
Fundamentals of Structural Mechanics, 2nd Edition
K. D. Hjelmstad, July 1, 2004

9 9P P P R
o —

%.. Set problem parameters, Chapter 12, Example 80
clear; tol = l.e-8; alpha = 0.5; maxsteps = 10; maxit = 20;

X0 = [0; 0; 2.467]; % Starting value for load path
x = [1.0; 0.0; 2.46773; % Guess at initial direction
xlength = 1.0; % Length of beam

%.. Initialize values for load step zero,set next trial state
b = x - x0; x = xo0 + alpha*b/norm(b);

%.. Compute MAXSTEPS points along the Equilibrium Path
for n = l:maxsteps

%.... Perform Newton iteration at each load step
na = 0; test = 1.0;
while (test > tol) & (nu < maxit)
na = nu + 1;

%...... Compute Hessian and residual
[A,b] = fcn(x,xo0,xlength,alpha);

%...... Compute residual norm, eigenvalues of tangent stiffness
test = norm(b); e = eig(A(1:2,1:2));

%...... Compute increment and update state vector
dx = -A\b; x = x + dx;

end % while for Newton loop
%.... Output results, set converged state, guess at next state
fprintf(’%5i%9.5£%9.5f%9.5f%10.5£%10.5f%4i%12.2e\n"’,
n,x’,e’,nu,test)
temp = X0; X0 = X; X = 2*x - temp;
end % loop on n Load Steps

%.. End of program Elastica

$---Compute A and b matrices by Simpson integration----- FCN
function [A,b] = fen(x,xo,xlength,alpha)

%.. Set weights for Simpson integration
wt = [1,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,17;
intpts = length(wt); dz = 1/(intpts-1);

%.. Initialize A and b to zero
b = zeros(3,1); A = zeros(3,3); z = 0;

e — %
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%.. Loop on integration points
for n = l:intpts

factor = wt(n)*dz*xlength/3;

%.... Compute base functions and their derivatives

evl = 1,570796327; ev2 = 4,712388981;
hl = sin(evl*z); h2 = sin(ev2*z);
dhl = evl*cos(evl*z)/xlength; dh2 = ev2*cos(ev2*z)/xlength;

%.... Compute rotation and first derivative at current point
theta = x(1)*hl + x(2)*h2;
dtheta = x(1)*dhl + x(2)*dh2;

cl = x(3)*cos(theta);

c2 = x(3)*sin(theta);

%.... Compute integral part of residual vector
b(l) = b(l) - (c2*hl - dtheta*dhl)*factor;
b(2) b(2) - (c2*h2 - dtheta*dh2)*factor;

%.... Compute integral part of Hessian matrix

A(1,1) = A(1,1) + (dhl*dhl - cl*hl*hl)*factor;
A(1,2) = A(1,2) + (dhl*dh2 - cl*hl*h2)*factor;
A(1,3) = A(1,3) - (sin(theta)*hl)*factor;
A(2,1) = A(2,1) + (dh2*dhl - cl*h2*hl)*factor;
A(2,2) = A(2,2) + (dh2*dh2 - cl*h2*h2)*factor;
A(2,3) = A(2,3) - (sin(theta)*h2)*factor;

z = z + dz;
end % Loop on n

%.. Add part associated with arc length constraint
b(3) = b(3) + dot(x-x0,x-x0) - alpha~2; A(3,:) = 2*(x-x0)';
return

%.. End of function FCN

Program notes. The program Elastica uses many of the same naming con-
ventions as the program Newton. This program uses Simpson integration and
the weights are the product of the values stored in the array wt and scalar fac-
tor. The function fcn carries out the integration of the Hessian and residual and,
therefore, contains all of the information about the base functions h;(x). It
should be clear that the addition of the numerical integration procedure
changed the program very little.

The program considers a two-term approximation of the rotation field with
the two base functions taken to be

hy(x) = sin(%), hyx) = sin(g’z%x)

These base functions are the linearized eigenfunctions for the elastica and,
hence, should be excellent choices for this problem.

The program is set up to move along any branch of the bifurcation diagram.
The input requires the specification of a direction to head at the start of the
computation. This allows the user to start at a bifurcation point and move along
anontrivial path, Without the hint of direction, the iteration will always quickly



454 Fundamentals of Structural Mechanics

converge to the trivial branch. The initialization of the first trial state simply
moves in the specified direction with a scaling to make sure the initial step has
length a.

Example 80. The program Elastica was run for the case of the cantilever elastica
example from Chapter 11 for the equilibrium path that branches from the first
bifurcation point located at A, = 2.467. The solution tolerance was set at
tol = 1078 and the step length was set at @ = 0.5. The iteration was started
at the bifurcation point with a suggestion to move to the state (1.0, 0.0, 2.467),
that is, in the direction of the first buckling mode. The results of 10 load steps
are given as follows

n al a2 P/EI EV 1 Ev2 nu || b ||
1 0.49401 0.00064 2.54413 0.07586 9.90782 4 1.60e-09
2 0.94382 0.00457 2.76245 0.28290 10.01509 5 1.08e-13
3 1.32196 0.01310 3.08946 0.57255 10.17231 5 9.60e-15
4 1.62598 0.02553 3.48622 0.89812 10.35867 5 4.10e-16
5 1.86824 0.04052 3.92335 1.23187 10.55978 4 1.02e-09
6 2.06338 0.05698 4.38340 1.56176 10.76792 4 6.75e-11
7 2.22332 0.07418 4.85682 1.88378 10.97936 4 4.84e-12
8 2.35673 0.09165 5.33837 2.19727 11.19238 4 4.l6e-13
9 2.46983 0.10914 5.82510 2.50281 11.40619 4 4.47e-14
10 2.56705 0.12645 6.31525 2.80133 11.62045 4 5.70e-15

We can see from the above results that the first branch is dominated by the
first mode shape long after bifurcation occurs, but that the second mode contrib-
utes more and more to the actual shape of the column for states remote from the
bifurcation point. If we carry out the computations for the path branching from
the second critical point, we find that the participation of the first mode along
the second path is negligible. Clearly, there is much in common between the dis-
crete and continuous problems examined in this chapter.

Armed with the Ritz method and numerical integration, we find that the
solution of nonlinear problems is quite accessible. The crucial observation that
nonlinear problems can be solved by stepping from point to point along an
equilibrium path and iterating to convergence at each point is quite powerful.
Although there are many difficulties in computational mechanics that will re-
quire modification of the algorithms presented here, this basic framework
should facilitate the general understanding of why these modifications are
needed, and how they come about.

The Fully Nonlinear Planar Beam

The primary purpose of this last section in the chapter is to dispel the notion
that somehow all of the preceding computational methods are ad hoc. We can,
indeed, extend the basic approach to virtually any computational mechanics
problem that we face. The main change is that the bookkeeping for the more
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Figure 154 Example configuration for the fully nonlinear beam problem

general theories is alittle more tedious. In view of the observation that we will
generally write a computer program to carry out the details of our computa-
tions, we can afford a high tolerance for the tedium.

Let us carry out the steps of the previous section for the general nonlinear
planar beam theory presented in the previous chapter. Specifically, let us con-
sider our model problem of the cantilever column of length € and moduli EA,
GA, and EI. The beam is subjected to distributed loads p(4,x), g(4,x), and
m(A, x), as well as concentrated endloads AH,, AV,, and AM,, as shown in Fig.
154. It should be clear from the discussion how to accommodate different
boundary conditions.

Let us assume that the beam is elastic with the standard linear elastic consti-
tutive equations given by Eqn. (547). Accordingly, the moment M is propor-
tional to the curvature x,, the shear Q is proportional to the shear strain 8, and
the axial force N is proportional to the axial strain €,. The constants of propor-
tionality are the moduli EI, GA, and EA, respectively. The virtual-work func-
tional then has the form

4

G(h,u,1) = j (EIx,%,+ GAB.B, + EA€,E,) dx — Wy(A)  (614)

0

where Wy(A) is the external-work functional for the applied forces. In our ex-
pression for the virtual work, we use the notation u = {u(x), w(x), 6(x)}, a st
containing our three displacement functions, to describe the real configuration
of the beam. The curvature, shear, and axial strains, %,, 8., and €,, are given
in terms of the displacement functions in accord with Eqn. (546). The varia-
tions of these strains, %,, B, and €, are given by the directional derivative of
the real strains in the direction of the variations of the displacement functions,
as described in Chapter 11. The real strains are functions of the real displace-
ments, which are, in turn, functions of the independent variable x. Similarly,
the virtual strains are functions of the real and virtual displacements, which are,
in turn, functions of the variable x.

The precise expression for the external work depends upon the forces pres-
ent, and we can customize the expression to each problem. For our example
problem, the expression has the form
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[4
W) = [ q) - wdx + Q, - We)
0
where q(A) ={p, ¢, m} and Q, ={H,, V,, M,} are the applied distributed
and end loads, respectively, stored in matrix form., with p, g, and m being the
axial load, transverse load, and moment, respectively, and H,, V,, M, being
the horizontal end load, vertical end load, and end moment, respectively, and
A is the loading parameter. The designation g(4,x) suggests that the transverse
force is not simply proportional to 4, but is a function of it. The other distrib-
uted loads are treated similarly. With this designation, we can, for example,
specify a loading g(A,x) = q,(x)+A1g,(x) that has a fixed part and a propor-
tional part. The work of the forces is positive if the forces act in the positive
direction of the virtual displacement.
As usual, the equation we wish to solve is the variational equation

G@A,u,u) =0, Vu€ 7,0,¢) (615)

where 90, €)is a collection of functions W = {#, W, 8}, that satisfy the homo-
geneous essential boundary conditions #(0) = 0, #w(0) = 0, and 6(0) = 0,
and whose first derivatives are square-integrable. This collection of functions
is the same one required for the linear Timoshenko beam.

Let us consider the known configuration u’ = { u°,w°,0°} and load level A°.
This configuration is not necessarily an equilibrium configuration, i.e., it may
be true that G(A°, u’, ) = O for all virtual displacements. We must try to im-
prove our configuration to one that does satisfy equilibrium. A linear incre-
mental expression for the equilibrium equation can be obtained by linearizing
the functional G about the known configuration. The linear part of G is

G(h,u, W) = GA%, v’ W) + DG(A%, u, W) (616)

The directional derivatives are computed in accord with Eqn. (604) with the
appropriate interpretation of u. .

The principle of virtual work suggests that if G(A, u, W) = 0 for all virtual
displacements @ € 7 (0, £), then equilibrium holds for the linearized prob-
lem at the load level A. The linearized virtual-work equation is linear in the in-
cremental state Au = {Au,Aw,Af} and the incremental load level AL We
shall endeavor to solve the linearized problem to determine this incremental
state. The state v°+ Au should then come closer to satisfying the nonlinear
equilibrium equations at the load level A°+ AA than did the configuration u°
at the load level A°. If the new configuration does not satisfy equilibrium well
enough, the process can be repeated until it does. This procedure leads to the
Newton iteration for functionals as described in Eqn. (605).

Let us compute the derivatives of the functional G in the direction of an in-
crement in displacement Au = { Au, Aw, A8} and the increment in load level
AA. The first directional derivative is given by the expression
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DG(A,u,m) = [ [EI(Dx, - Au)%, + M(D%, - Au)
+ GA(DB, - Au)B, + Q(DB, - Au)

+ EA(De, - Au)g, + N(Dk, - Au)|dx

where M = Elx,, Q = GAB,, and N = EA¢,. The derivatives of the real
strains in the direction of the increment in the displacement fields have the ex-
plicit form

Dx, - Au = A0’
DB, Au = Aw'cosf — Au'sinf — (1+¢€,)A8
De, - Au = Aw'sinf + Au' cosf + B,A6

where 1+€, = w'sinf+(1+u')cos@and B, = w' cos@—(1+u')sinfare
the real axial and shear strains. Of course, the incremental displacements are,
as yet, unknown functions of x. The directional derivatives of the virtual strains
in the direction of the displacement increments are given as follows

Dz, -Au = 0

DB, - Au = — w'sin6AG — & cos OAD
— [Aw'sinf + w' cosOA + Au' cosd — (1+u')sin6AG]H

De, - Au = W' cosfAQ — @ sinOAf
+ [Aw' cos@ — w'sinOAO — Au'sinf — (1+u')cos6AG)0

A consolidated notation will help to keep the formulation clear. Let us
introduce the differential operator

F(u) = [u’, w', 0, 9’]T
that takes the functions u(x), w(x), and 6(x) and produces a four by one matrix
with the first derivative of u in the first slot, the first derivative of w in the sec-
ond slot, and 8 and its first derivative in the third and fourth slots, respectively.
Note that we can use the operator on the virtual displacements to compute the
array F(W) = (@', %, 0,8']" and on the incremental displacements to com-
pute the array F(Au) = [Au Aw', AG, AG']". Let us store the strains in a ma-
trix as e, = {%,, B, €,] " and the resultant forces in a matrix s = [M, O, N]". T

Let us also introduce a matrix of constitutive properties, which is diagonal for
the present constitutive model

El 0 0
D=|0 GA O
0 O EA
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With this notation at hand, the derivative of the functional G in the direction
of the increment in displacement can be expressed as

[4

DG - Au = f F7(u)| E"(u) DE(u) + G(u, 5)|F(Au) dx (617)
0

where the matrix E(u) is defined to be

0 0 0 1
E(u) = |-sin0 cos§ —(l+e) O (618)
cosf sinf Bo 0
so that De, - W = E(u)F(W) and De, - Au = E(u)F(Au). These identities
can be verified from the above equations. The matrix G(u, s) in Eqn. (617) is
defined to be

0 0 -v 0
0 0 H O
G(u,s) = 619
@I=1 v 5 = o e
0 0 0 0
where E = —Vw'—H(1+u'). Recall that the forces H and V are related to

the axial and shear forces N and Q through the relations H = Ncos 8 — Qsin6
and V = Nsin0 + Q cos§. This notation allows us to express

s - (D€, - Au) = F'(W)G(u, s)F(Au)

The first term in Eqn. (617) gives rise to what we shall call the tangent stiffness
matrix when we discretize the problem by the Ritz method. The second term
givesrise to the so-called geometric (stiffness) matrix, and is stress-dependent,
as it involves the forces H and V. If the tangent stiffness is evaluated at the con-
figuration u = {0,0, 0}, it reduces to the stiffness from the linear theory.

The derivative of the functional G in the direction of the increment in load
level can be expressed as

[4
DG - AL = — ] u- aq(l)de ) - Q,AL (620)
0

Note that only the external virtual work contributes to this derivative.

Before we discretize Eqn. (617) with the Ritz method, it is worth a brief di-
gression on the stability of equilibrium. We will, at each converged state, need
to answer the question of whether or not the equilibrium configuration found
is stable. For this we need the second derivative of the energy functional. It is
interesting to note that, in essence, we already computed the second derivative
of the energy functional 8(u) when we computed the linearized form of
G, v, 1) for the purpose of the Newton iteration. The energy functional has
the form
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[4

84, u) = J L (EIx2+ GAPL+EA€2) dx — 8,(4, 1) (621)
0

where the energy of the external loads &(u) is given by

[4

8:(A, u) =J qd) - udx + AQ, - u(®)

o

Since the external energy is linear in the displacements, the second derivative
of &¢(u) vanishes. Hence, the second derivative of the energy functional
comes entirely from the strain energy and has the expression

A, u,m) = J F7(u)| E"(u) DE(u) + G(u, s)|F(u) dx (622)

0

For any state u = {u(x), w(x), 6(x)} that satisfies equilibrium at the load level
A, stability is assured if A is positive for all virtual displacements W. When we
use the Ritz method, this stability condition reduces to the condition that all of
the eigenvalues of the tangent stiffness matrix be positive.

Discretization by the Ritz method. The Ritz method is straightforward to
apply to the present problem. The main change to what we have already seen
is that, in addition to expressing the displacements and their variations in terms
of base functions, we must also express the incremental displacements in terms
of those base functions. To wit, we have

u(x) = Hx)a, Au(x) = H(x)Aa, ux) = H(x)a

where we define the three by 3N matrix H = [Hl, H,..., HN] with the three
by three submatrices H;(x) = h;(x)I, i = 1,..., N.Note that the interpolation
has N terms. The ordering of H implies that the unknowns a are stored in a 3N-
vector a = [al,.. ., a]]", where each three by one vector a; is associated with
the u, w, 0 functions, respectively.

For simplicity, we have chosen to interpolate all of the functions exactly
alike. Clearly, there is no reason that we must do so. Expanding all of the vari-
ous versions of the same function with the same base functions leads to sym-
metry of the matrices that are generated by the Ritz method. The different dis-
placement types can be interpolated differently, however. For example, one
might choose to interpolate the displacements with a polynomial of order Nand
the rotations with a polynomial of order N — 1. It is quite clear from the above
expression for the Ritz expansions that we must keep track of many things. For-
tunately, the computer does this task quite well. You should not really think in
terms of carrying out these computations by hand, even for a very small num-
ber of base functions.
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We need to define some more notation to help us with the bookkeeping. Let
us define the four by three matrix B,(x) as

and let us concatenate these matrices into a four by 3N matrix of base function
derivatives as B = [Bl, B,..., BN]. With this notation, we can express the
differential expressions F(Au)and F(W)in terms of the coefficients of the base
functions as

F(u) = B(x)a, F(Au) = B(x)Aa

With these definitions, the linearized virtual-work functional, defined in
Eqn. (616), takes the discrete form

G(A,a,3) = a7 (K(a)Aa + k()A2 + g(3,a)) (623)
where K(a) is the 3N by 3N tangent stiffness matrix defined as

[4
K(a) = j B’[E’DE+G|B dx (624)
0

where k(A) is the 3N by one matrix defined as

¢
k() = — J Hfﬂlaaﬁ dx — H'()Q, (625)
0

and where the residual force g(4, a), the difference between the internal resist-
ing forces and the externally applied forces, is defined as

g(A,a) = f (B"E"s—~H’q(R)) dx ~ AH(€)Q, (626)

0

The dependence upon x of each matrix in the integrand of these expressions
is implicit. It should be clear that, for any fixed set of values of the coefficients
a, we can compute K(a), k(1), and g(4, a) by carrying out the integration as in-
dicated. It is worth noting that the stiffness matrix at the initial configuration
K(0) is the stiffness matrix of linear analysis. The tangent stiffness matrix K(a)
and the matrix k() can be evaluated by numerical integration. Of course, the
integral part of g(A,a) must also be computed by numerical quadrature. A
straightforward computation shows that the integrand can be computed in
three by one blocks explicitly as follows
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h,"H_hip
B7ETs—Hlq(}) = hi'V—hq
h,-'M+h,-(w'H— ( 1+4 ) V—m)

Newton’s method with arc-length control. Applying the discrete version
of the calculus of variation to the linearized functional in Eqn. (623) gives a
linearized principle of virtual work. Since G(4,a,a@) = 0 for all virtual
constants @, the term inside the brackets in Eqn. (623) must be identically equal
to zero. Therefore, we arrive at an equation to estimate Aa”and AA”

K@) Aa” + kA)AL’ + g(A*,2) = 0 (627)

To uniquely determine these increments, we must augment Eqn. (627) with a
constraint on how far along the equilibrium path we wish to move. As'in the
previous formulation, let us take the arc-length constraint as

c(h,a) =| a—a, [P+ (A-4,)2—a?=0 (628)

where a, and 4, represent a known configuration on the equilibrium path.
Generally, we take this configuration to be the most recent converged state. Li-
nearizing this constraint at the configuration (4”, a*) allows us to define the lin-
ear function

c(A,a) = c(A”,a") + 2(a’—a,)Aa + 2(A"—1,)A4
Insisting that ¢(4,a) = Ogives the additional equation needed to determine the
incremental state
2(a"—a,)Aa + 2(A"—4,)AL = —c(A’,a")
Let us define the matrix A(4, a) and the matrix b(4, a) as follows

- | K@ k(d)
Al = [ 2a-a) 2 —zn)}
(629)
N —g(,l, a)
bt a) = |: —c(/l,a)}

The matrix b(A, a) precisely records the amount by which equilibrium and
the arc-length constraint fail to be satisfied at the state (4, a). Thus, any state
that is not a fixed distance from the previous point and is not an equilibrium
configuration can be improved by solving

AV, aM)Ax’ = b’ a") (630)

where x = (a,A) is a matrix that stores both the coefficients of the displace-
ment state and the load factor. Clearly, X = (a’,4%) and AX” = (Aa’, AA).
Hence, the updated configuration can be obtained as
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X = x’+Ax (631)

Iteration on Eqns. (630) and (631) can be continued until the solution con-
verges to within a specified tolerance, i.e., | b(A’,a”) || < tol. Clearly, the suc-
cess of the method depends upon the radius of convergence of the system. Con-
vergence can generally be guaranteed by selecting suitably small values of the
arc-length parameter a. The matrix A(A’,a”) should be invertible at limit
points. Bifurcation points cause the algorithm difficulty because there is no
way to specify which branch the next solution point must be on. With the defi-
nitions of the state and the appropriate matrices, Algorithm 2 applies to this
problem, as modified with numerical integration of the coefficient matrices.

The discretization also gives us a discrete version of the second-derivative
test for stability of equilibrium. The second derivative of the energy can now
be expressed in terms of the tangent stiffness matrix as

A(a,2) = a'K(a)a (632)

As we saw previously, the requirement that A be positive is tantamount to all
of the eigenvalues of the tangent stiffness matrix K(a) being positive. A critical
point on the path is a point where one of the eigenvalues of the tangent stiffness
matrix is identically equal to zero.

Remark. There are two kinds of errors we must be concerned with: (a) the
error in the Ritz approximation, and (b) the error in equilibrium that we are try-
ing to iterate away. For a fixed set of base functions, the error in the spatial dis-
tribution of the functions, like the transverse displacement, is fixed. The only
way to reduce this error is to take more base functions, and thereby add un-
known coefficients to the problem. Adding more base functions is called im-
proving the spatial approximation. Newton’s method, on the other hand, can
find the solution to any level of accuracy (permitted by the finite precision
arithmetic of the computer, of course). We must always specify the solution tol-
erance to tell Newton when the solution is adequate. As such, we will always
view equilibrium as a condition that can be exactly satisfied. These issues may
be clearer in the context of the following computer program, NONLINEARBEAM,
which implements the foregoing derivations.

The Program NONLINEARBEAM

[ * *
s | Program NonlinearBeam

% | Fundamentals of Structural Mechanics, 2nd Edition

% | K. D. Hjelmstad, July 1, 2004

] * *

%.. Set problem parameters, Chapter 12, Example 81,
clear; tol = l.e-8; alpha = 10; maxsteps = 10; maxit = 40;
nbasis = 6; ndm = 3*nbasis + 1; nnstep = 1; npts = 21;
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%.. Applied loads

loads = [ 0.0, 0.0, 0.0 H % pl, p2, H(L)
0.0, 0.0, 0.0 : % ql, g2, V(L)
0.0, 0.0, 6.28 1; % ml, m2, M(L)

%.. Beam moduli D = [EI, GA, EA], beam length is xlength
D = [le3, le6, le6]; xlength = 10.0;

%.. Initialize values for load step zero, set next trial state
x = zeros(ndm,l); xo = zeros(ndm,l); x(ndm) = alpha;

%.. Compute MAXSTEPS points along the Equilibrium Path
for n = l:maxsteps

%.... Perform Newton iteration at each load step
nu = 0; test = 1.0;
while (test > tol) & (nu < maxit)
na = nu + 1;

%$...... Compute Hessian and residual
[A,b] = fen(D, x,x0,loads, xlength,ndm,nbasis,alpha);

$...... Compute residual norm, min eigenvalue of tangent stiffness
test = norm(b); e = min(eig(A(l:ndm-1,1:ndm-1)));

%...... Compute increment and update state vector
dx = -A\b; x = x + dx;

end % while for Newton loop

%.... Output results, set converged state, guess at next state
results(x,xlength,n,nu,test,ndm,nbasis,nnstep,npts)
temp = x0; XO = X; X = 2*x - temp;

end % loop on n Load Steps
%.. End of program NonlinearBeam

%$-—- Compute A and b for NonlinearBeam element ——-——-———ee--- FCN
function [A,b] = fcn(D,x,x0, loads, xlength,ndm,nbasis,alpha)

%.. Initialize A and b to zero
b = zeros(ndm,1); A = zeros(ndm,ndm); z = 0;

%.. Set weights for Simpson integration
wt = [1,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,1];
intpts = length(wt); dz = 1/(intpts-1);

%.. Loop on integration points
for n = l:intpts
factor = wt(n)*dz*xlength/3;

%.... Compute displacements and derivatives
du = 0; dw = 0; dtheta = 0; theta = 0;
for i = l:nbasis

[h,dh] = basis(i,z,xlength);

du = du + x(3*i-2)*dh;

dw = dw + x(3*i-1)*dh;

dtheta = dtheta + x(3*i)*dh;

theta = theta + x(3*i)*h;
end
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ct = cos(theta); st = sin(theta);

$.... Compute axial strain, shear strain, and curvature
epsi = dw*st + (1l+du)*ct - 1;
beta = dw*ct - (l+du)*st;
curv dtheta;

$.... Compute axial force, shear force, bending moment, etc.
bend = D(l)*curv; shear = D(2)*beta; axial = D(3)*epsi;
Hor = axial*ct - shear*st; Ver = axial*st + shear*ct;
Xi = (l1+du)*Hor + dw*Ver; Yi = dw*Hor - (1l+du)*Ver;
force = [Hor; Ver; bend]; fyi = [0; 0; Yi];
cl = loads(:,1) + loads(:,2)*x(ndm);
c2 = fyi - cl;
c3 loads(:,2);
c4 loads(:,3);

$.... Compute components of [E(T)DE + G] store in matrix G
G(1,1) = D(2)*st*st + D(3)*ct*ct;
G(1,2) = ct*st*(D(3)-D(2));

G(1,3) = D(2)*st*(l+epsi) + D(3)*ct*beta - Vver;
G(1,4) = 0;
G(2,1) = 6(1,2);

G(2,2) = D(2)*ct*ct + D(3)*st*st;

G(2,3) = D(3)*st*beta — D(2)*ct*(l+epsi) + Hor;
G(2,4) = 0;

G(3,1) = G(1,3);

G(3,2) = G6(2,3);

G(3,3) = D(2)*(l+epsi)~2 + D(3)*beta2 - Xi;
G(3,4) 0;

G(4,1) = G(1,4);

G(4,2) = G(2,4);

G(4,3) = 6(3,4);

G(4,4) = D(1);

%.... Form stiffness matrix and residual
for i = l:nbasis
[hi,dhi] = basis(i,z,xlength); mm = 3*(i-1);
for j = l:nbasis
[hj,dhj] = basis(j,z,xlength); nn = 3*(j-1);

$........ Compute B(T)[E(T)DE + G}B noting the sparse structure of B
GB(1:4,1:2) dhj*G(1:4,1:2);

GB(1:4,3) hj*G(1:4,3) + dhj*G(1:4,4);
BGB(1:2,1:3) = dhi*GB(1:2,1:3);
BGB(3,1:3) = hi*GB(3,1:3) + dhi*GB(4,1:3);

%........ Assemble the result into the A matrix
A(mm+l:mm+3,nn+l:nn+3) = A(mm+l:mm+3,nn+l:nn+3) + BGB*factor;
end % loop on j

$...... Form integral part of residual force and assemble into matrix
b(mm+l:mm+3) = b(mm+l:mm+3) + (dhi*force + hi*c2)*factor;
A(mm+1:mm+3,ndm) = A(mm+l:mm+3,ndm) - hi*c3*factor;

end $ loop on 1
z2 = 2 + dz;
end $ Loop on n
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%.. Add end load terms to the residual and coefficient matrix
for i = l:nbasis
[hi,dhi] = basis(i,1,xlength); mm = 3*(i-1);
b(mm+1:mm+3) = b(mm+1:mm+3) - hi*c4*x(ndm);
A(mm+l:mm+3,ndm) = A(mm+l:mm+3,ndm) - hi*c4;
end

%.. Add arc-length constraint terms to Hessian and residual
b(ndm) = b(ndm) + dot(x-xo,x-x0) - alpha“2;
A(ndm,l:ndm) = 2*(x-x0)’;
return

%.. End of function fcn

%--- Evaluate ith basis function h and derivative dh --===cee—- -BASIS
function [h,dh] = basis(i,z,xlength)

%.. Compute sequence m=[1,1,2,2,3,3] for use in base functions
n = mod(i,2); m = (i+n)/2; a = (2*m-1)*pi/2;

if n ==

h = sin(a*z); dh = a*cos(a*z)/xlength;
else

h = 1 - cos(a*z); dh = a*sin(a*z)/xlength;
end
return

%.. End of function basis

$--- Print and plot results of current step RESULTS
function [] = results(x,xlength,n,nu,test,ndm,nbasis,nnstep,npts)

%.. Determine if current step is an output step
if mod(n,nnstep) == 0

%.... Compute and print current geometry of beam
axis(‘square’); hold on;
z = 0; dz = 1/(npts-1);
for ii = l:npts
u = zeros(3,1);
for i = l:nbasis
[h,dh] = basis(i,z,xlength); mm = 3*(i-1);
u(:) = u(:) + h*x(mm+l:mm+3);
end
yl(ii) = z*xlength + u(l); y2(ii)
z =z + dz;
end
fprintf('$5i%9.5f%14.4e%14.4e%14.4e%41i%12.2e\n’,
n,x(ndm),u’,nu, test)
plot(yl,y2,'-");

u(2);

end
return

%.. End of function results

Program notes. The program NonlinearBeam uses many of the same nam-
ing conventions as the previous programs. The initialization for Example 81
is to set the displacements to zero and the load factor to a. The function results
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produces output every nnstep load steps. The output consists of the usual sum-
mary table and a plot of the deformed shape of the structure, computed at npts
stations along the length of the beam using the base functions to interpolate.

Again the formation of A and b is done in the function fcn, with the integrals
being carried out by Simpson’s rule. The matrix E’DE + G hasbeen carried out
by hand rather than forming the individual matrices. The multiplication by the
matrices B; has been done recognizing the sparse structure of those matrices.
The information about the base functions 4;(x) is now in the function basis.
The number of base functions used in the analysis is controlled by the parame-
ter nbasis in the main program. The base functions implemented in the pro-
gram are

hy(x) = Sin(’{—ﬁ), hyx) = 1— cos(’zt—'z)

hy(x) = sin(%), ho(x) = 1— COS(;%Z%)

ho(x) = sin3F), hx) = 1= cos( )

The only “clever” part of the function basis is the method of computing the
sequence m = [1,1,2,2,3,3,... ] to aid the pairwise definition of the base
functions with indices i = [1, 2, 3, 4, 5, 6, ... ]. An even number of base func-
tions seems appropriate. The motivation for using these functions is the ob-
servation that the functions sin(u,& ) are the linearized eigenfunctions for the
rotation field for the inextensible elastica, and the functions 1 — cos(u;& ) are
the linearized eigenfunctions of the transverse displacement of the inextensi-
ble elastica, where the eigenvalues are u; = (2i— 1) /2€. Since we are using
the same functions for all three displacement fields, both base functions are
needed for each displacement field.

The unknowns are stored in the matrix x with the ordering given earlier. The
last element in the array x, i.e., x(ndm), is the load factor A. The array xo gives
the values of x at the last converged state. The array 10ads contains the vectors
q: = [p1, g1, m}"and q, = [Py, g2, m, |7 ints first two columns for the defi-
nition of the distributed load q(A) = q, +44q,. The third column contains the
end loads Q, = [H,, V,, M,]"

Example 81. The program NONLINEARBEAM was run for the case of a cantilever
beam of length € = 10 and bending modulus EI = 1000 (the shear and axial
moduli were taken to be GA = EA = 10°). The beam was subjected to an end
moment AM,, with M, = 6.28. The configuration for this example is shown in
Fig. 155. The solution tolerance was set at tol = 1078 and the step length was
set at @ = 10. The exact solution to this problem of pure bending is that the
beam bends into a circular arc of radius ¢ = M/EI. The summary output results
of 10 load steps are given below
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n  Load Fact. u(L) w(L) 6(x) nu || b [}
1 9.39690 -5.6631le-01 2.8547e+00 5.8528e-01 8 3.96e-09
2 18.87009 -2.128le+00 5.2136e+00 1.1605e+00 6 1.12e-09
3 28.35467 -4.3203e+00 6.7138e+00 1.7326e+00 7 1.74e-09
4 37.57238 -6.8925e+00 7.2049e+00 2.3570e+00 8 1.83e-09
5 47.06530 -9.3157e+00 6.6691e+00 2.9711e+00 10 2.19e-09
6 56.54820 -1.1177e+01 5.3321e+00 3.5940e+00 8 4.22e-09
7  66.12599 -1.2047e+01 3.6671e+00 4.1577e+00 9 3.12e-09
8 75.89923 -1.2012e+01 2.0095e+00 4.6987e+00 10 3.60e-09
9 85.71366 -1.1195e+01 5.9709e-01 5.3338e+00 8 4.42e-09
10  95.54433 -1.0069e+01 2.9521e-03 5.9969e+00 10 3.19e-09

Notice that the ratio of the load factor to the rotation is constant for all steps in
accord with the exact solution. The displaced configuration for certain selected
load levels is shown in Fig. 155(b). It is evident that the base functions are able
to represent the circular arc of the exact solution. Problem 299 asks you to ex-
amine the polynomial basis for this problem. Can the polynomial basis accom-

modate the circular shape?
565 (2 37'%
M=6281

4:) U =00
¢ 95.5 D

Figure 155 Example 81, (a) problem geometry and loading,
(b) displaced shapes of beam (certain load steps only)
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Example 82. The program NONLINEARBEAM was run for the case of a cantilever
beam of length € = 10 and bending modulus E/ = 1000 (the shear and axial
moduli were taken to be GA = EA = 10°). The beam was subjected to a com-
pressive end load —AP,, with P, = 2.46, and a nonproportional transverse
load. Two cases of transverse load were considered, one with ¢; = 0.2 and the
other with ¢; = 0.05. The configuration for this example is shown in Fig.
156(a). The solution tolerance was set at tol = 1078, and the step length was
setata = 0.5.

The bifurcation diagrams for this problem are given in Figure 156(c,d,¢).
Since six base functions were used and there are three independent displacement
fields, it is not clear how to present the results in a bifurcation diagram. Figure
156(c.d,e) is one possible method of presentation wherein we plot the three dis-
placement fields at the end of the beam against the load parameter. Several fea-
tures of this example problem are of interest. First, it is clear that the buckling
load is located in the vicinity of A = 10because both bifurcation diagrams take
a sharp bend near that load level. This result is in accord with the value predicted
by the linearized buckling theory for the beam without lateral load. Second, the
difference between the two lateral load levels is evident early in the response,
but the load-deformation curves coalesce at large deformations.
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Displaced configurations of the beam are shown, to scale, for equal incre-
ments along the load path in Fig. 156(b). We can observe that the transverse dis-
placement reaches a maximum and then decreases. An examination of Fig.
156(c,d,e) shows why. The transverse load g, remains fixed throughout the anal-
ysis. Hence, its magnitude diminishes relative to the axial load as the load factor
increases. The effect of different transverse loads cannot be distinguished for
load levels above the buckling load. In a sense, the fixed load acts the same as
a geometric imperfection.

A sample of the output is given below. Note that the output has been edited
to show only every tenth load step.

n Load u(L) w(L) 6(L) au || b []
10 4.91611 -1.3609e-02 4.7803e~01 6.8900e-02 5 9.95e-10
20 9.27598 -3.7206e-01 2.436le+00 3.8262e-01 7 4.62e-09
30 11.53529 -2.9260e+00 6.2347e+00 1.1105e+00 6 1.03e-09
40 15.12410 =-6.1826e+00 7.8527e+00 1.668le+00 6 1.62e-09
50 19.67508 ~8.4840e+00 7.9860e+00 2.0050e+00 5 2.66e-09
60 24.45017 -1.0059e+01  7.6037e+00 2.2421e+00 5 1.12e-09
70 29.31286 -1.1129e+01 7.1069e+00 2.4177e+00 5 2.09e-09
80 34.24278 -1.1856e+01 6.6468e+00 2.5447e+00 5 3.68e-09
90 39.20700 -1.2371e+01 6.2533e+00 2.6368e+00 4 4.90e-09
100 44.18688 =-1.2750e+01 5.9219e+00 2.7046e+00 4 2.87e-09
110 49.17399 -1.3041le+01 5.6427e+00 2.7548e+00 4 2.06e-09
120 54.16438 -1.3272e+01 5.4062e+00 2.7918e+00 4 1.71e-09

This example serves to demonstrate the power of the formulation to compute the
bifurcation diagrams in the postbuckling region.

q;
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Figure 156 Bifurcation diagrams for a beam subjected to proportional
axial load with constant transverse load (a) problem geometry, (b) deformed
shapes at output points, (c) load versus vertical displacement at end, (d) load

versus horizontal displacement at end, (¢) load versus rotation at end
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Summary

Many problems in mechanics are nonlinear. Some of the most interesting and
important phenomena associated with the mechanical behavior of deformable
bodies are artifacts of nonlinearity. This chapter has been a brief introduction
to the possibility of numerically computing the response of a nonlinear system.
Nonlinear analysis remains something of an art because every system exhibits
nonlinearity in different degrees and manifests in different ways. An algorithm
that converges well for one problem may not work as well for another.

The objective of the current chapter was simply to give a baseline under-
standing of nonlinear computations in mechanics and to arm you, the reader,
with an algorithmic framework from which to launch further study. Treatment
of the subject of nonlinear computations by exhaustively enumerating the
many ad hoc methods that have appeared in the literature did not seem to have
the same pedagogical merit as the approach of outlining a unified framework
based upon Newton’s method with arc-length constraints, and so we chose the
latter over the former. The computer programs included in this chapter were
meant more for study than for practical use. The limitations of these simple
programs should be evident. Perhaps the simplicity will aid the understanding
of nonlinear computations. Please pardon the biases of this presentation to-
ward Newton’s method, toward arc-length constraints, and toward the MarLas
programming language.

Good luck traversing the rocky terrain of nonlinear problems. May the con-
vergence of all of your problems be quadratic.
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Problems

286. Modify the program NEWTON to account for initial geometric imperfections in the
two-bar rigid linkage connected by rotational springs.

287. Modify the program NEWTON to analyze P

the three-bar rigid linkage shown. The barsare  wle % k %k ﬁ
hinged together and are restrained by elastic

springs thatresist vertical motion. The springs L—*H——’H—’l
accrue force in proportion to their extension, ¢ ¢ ¢
with modulus k. The system is subjected to an

axial force P.

288. Implement the constraint ¢(0,4) = detA(8,4) = Ointo the program NEWTON to lo-
cate bifurcation points exactly. At the bifurcation point, compute the eigenvectors of the
tangent stiffness matrix and switch to another equilibrium branch.

289. Modify the program NEWTON to
analyze the three-bar rigid linkage
shown below. This structure has three
degrees of freedom. The bars are hinged
together and are restrained by elastic
springs that resist relative rotation. The
springs accrue force in proportion to

£(cos 8, +cosh,

their extension, with modulus k. The + cos6s)
system is subjected to an axial force P.
Lateral loads can be viewed as im- y

perfections to a purely axial loading
system. Modify the equations of equi-
librium to allow the applications of the lateral loads €, P, €, P, and €, P at locations ¢, 26,
and 3€respectively, where ¢, is a fixed value recording the ratio of the lateral load to the
axial load. Implement the load imperfections in the program.

290. Modify the program ELASTICA to incorporate a distributed transverse loading gq(x)
on the cantilever column in addition to the load P. Examine the case where the transverse
load is proportional to the axial load, as well as the case where the transverse load is fixed
and the axial load is increased.

291. Modify the program ELASTICA to incorporate N base functions. Examine the perfor-
mance of the system as the number of base functions is increased.

292. Modify the program ELASTICA to use polynomial base functions. Examine the per-
formance of the system as the number of base functions is increased. Compare the perfor-
mance of the polynomial functions with the eigenfunctions.

293. Modify the program ELASTICA to account for a nonlinear moment curvature relation-
ship of the form

El,x,

V142

M(x,) =
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where EI, and u,are material constants. Note that for small values of u,, the constitutive
model reduces to the linear model originally used. The material is hyperelastic because
an energy function exists such that M = dW(x,)/dx,. What is the strain energy function
W? Plot the bifurcation diagrams for various values of the material constants.

294. Modify the program ELASTICA to use piecewise linear finite element base functions.
Examine the performance of the system as the number of base functions is increased.
Compare the performance of the finite element base functions with the polynomial func-
tions.

295. Describe a method for using the program NONLINEARBEAM to locate the bifurcation
points of a system without imperfections.

296. Explore the features of the program NONLINEARBEAM by using it to solve the cantile-
ver beam problem under a variety of loading scenarios.

297. Modify the program NONLINEARBEAM to account for initial geometric imperfections
in the column. Is it sufficient to specify imperfections only in the field w(x)?

298. Modify the subroutine basis in the program NONLINEARBEAM to use piecewise linear
finite-element base functions. Examine the performance of the system as the number of
base functions is increased. Compare the performance of the finite element base functions
with the sinusoids used in the original program.

299. Modify the basis subroutine in the program NONLINEARBEAM to use the polynomials
h;(x) € [x, ey XN } Examine the performance of the system as the number of base
functions is increased using the pure bending problem. Are these functions able to capture
the exact solution, which is a circular shape, as shown in the text example? Why is conver-
gence so difficult with a large number of base functions? Implement the orthogonal base
functions described in Chapter 6. Do these base functions work better than the original
polynomials? ‘

300. The arc-length constraint forces the next equi- x°
librium configuration to be a fixed distance from the A
previous converged state. Therefore, all iterates
must lie on a sphere of radius a centered on the con-
verged state X,,.. One of the problems with this strate-
gy is that the equilibrium path pierces the sphere at
two points (at least). For a highly nonlinear equilib-
rium path the Newton iterations can converge to the
other point on the sphere, which causes the loading -
direction to change. We can observe this phenome- X
non in the program NONLINEARBEAM if the step size is not judiciously chosen. Once the
loading direction has turned around, it is not likely to change back. Consider another pos-
sible constraint pictured on the following page.

The difference between the estimate x*” and x° is forced to lie in a hyperplane normal

to the tangent direction d° = x° — x,,. The normal plane is set a distance a from x,.

dl)

Xn
n+1
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Therefore, | d° | = a. How can one compute the tangent direction d°? Show that the
normality condition is d” - d° = a?, where the vth increment in state is d* = x* — x,,.
Develop a method based upon a secant direction where d° = x,, — Xx,,_, (the previous two
converged states). How would you start a method based on this definition? Implement
these constraints in the program NONLINEARBEAM and assess their performance. Are there
advantages over the arc-length constraint? Are there disadvantages?

301. When using finite element base functions in the programs ELASTICA and NONLINEAR-
BEAM, most of the integration points contribute nothing to the integrals because the base
functions are zero over much of the region. Restructure the order of the programs to make
them more efficient by putting the loop over integration points inside the loop over base
functions.

302. Add a subroutine to find the eigenvalues and eigenvectors of K(a) at each point on
the equilibrium path in the program NONLINEARBEAM to examine the stability of equilibri-
um. Implement a procedure for branch switching so that the program will trace the bifurca-
tion diagram when there are no imperfections.
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Italic numbers refer to worked examples in the text. Bold numbers refer to problems at

the back of a chapter.

A

acceleration, 91
alternator, two-dimensional, 300
angular momentum, balance of, 113,
121
applied loading
for beam theory, 245
for plate theory, 297
applied moment
for beam theory, 247
for plate theory, 298
approximation
finite element, 216225
Galerkin, 197
Grashoff, for plates, 315
Kantorovich, 326
Ritz, 193
arc-length method, 440
area
change of, under deformation, 88, 90
first moment of, 254
polar moment of, 254
second moment of, 254
assembly of equations, 225
for little boundary value problem,
225
for structural frames, 281
for the membrane problem, 230

axiom of locality, 132
axisymmetric problems, 162

base functions, 194
finite element, 218
ill-conditioned, 206
polynomial, 195
roof (finite element), 217
trigonometric, 195
base vectors, 4
basin of attraction, 434
basis, 4
canonical, 32
change of
for tensors, 21
for vectors, 20
beam on elastic foundation, 287, 425
beam theory, 162
Bernoulli-Euler, 273
Timoshenko, 267
beam-column, 425
Bernoulli, Jacob, 249
Bernoulli-Euler beam theory, 273-278
example of classical solution, 274
example of Ritz approximation, 276
mixed boundary conditions, 277
virtual work functional, 274
bifurcation
asymmetric, 367-369



474

diagram, 364
of equilibrium, 361
pitchfork, 403
point, 364
stable symmetric, 363-369
unstable symmetric, 365-369
bi-moment, 284
bi-shear, 284
body force, 103
bordered system of equations, 198
boundary, of a solid body, 63
boundary conditions
displacement, 182
essential, 181-182, 195
for beams, 256-257
for plates, 308-310
force, 182
homogeneous essential, 199, 200
mixed, 276
mixed, for Bernoulli-Euler beam, 276
natural, 181-182
boundary value problem
classical or strong form, 167
variational or weak form, 167
buckling mode shapes, 383
buckling
linearized analysis, 375~378
mode shapes, 383, 401
of discrete MDOF systems, 378-384
snap-through, 366
buckling eigenvalue problem, 416

C

calculus of variations, fundamental
theorem of

one-dimensional, 172
three-dimensional, 173
cartographer’s map, 64
Cauchy
formula
for beams, 244
for plates, 296
for three-dimensional solids, 107
reciprocal theorem, 105
stress tensor, 118
tetrahedron, 105
triangle, for plates, 296

Index

Cayley-Hamilton theorem, 33
characteristic equation, 24
for linearized buckling analysis, 412
for principal values of stretch, 24
Ritz approximation, linearized buck-
ling, 417
comma notation, for partial differenti-
ation, 42
computational mechanics, xi
condition number, of a matrix, 209
configuration
deformed, 63
reference, 63
conservation of energy, 347
constitutive equations
for beams, 252-255
for fully nonlinear planar beam, 396
for linear, three-dimensional elastic-
ity, 140
for plates, 304
Saint-Venant Kirchhoff, 147
constitutive theory, 131
converged state, 436
convergence
of the Ritz method, 201
of the Ritz method, 200
coordinate(s), 2
Cartesian, 2
cylindrical, 55, 128
system, 2
corner forces in plates, 318
critical load, 364, 403
cross section, of a beam, 242
curvature, of beam, 254
curve, geometrical definition, 2

D

deformation

characterization of shearing, 74-77
compound shearing and extension, 72
gradient, 67-68

in terms of displacement, 78
map, 62-64

for beams, 250

for plates, 302

general definition, 58

in terms of displacement, 78
pure bending, 72



simple extension, 69
simple shear, 71
deformation gradient
definition of, 67
in terms of displacement, 78
polar decomposition of, 82
dilatation, 80, 143
Dirac delta function, 177
directional derivative
example, scalar field, 37
of a functional, 330
of a vector field, 43
displacement
generalized, 231, 250, 302
strain in terms of, 78-79
virtual, definition of, 168
divergence
of stress tensor, 44
of tensor field, 44
of vector field, 40
theorem
for tensor field, 48
for vector field, 45
divergence theorem, for a scalar field,
example, 47
domain, of a solid body, 63
drilling degree-of-freedom, 302
dummy index (summation index), 15

E

effective shear in plates, 319
eigenfunctions, linearized buckling, 401
eigenvalue problem, 24
distinct roots, 29
linearized buckling analysis, 416
repeated roots, 30
eigenvalues, 24
eigenvectors, 24
determination of, 26
orthogonality of, 27
repeated roots of characteristic equa-
tion, 28
Einstein, A., 15
elasticity tensor, 136
isotropic, 151
energy criterion for static stability, 346

475

energy functional, 335
for Bernoulli-Euler beam, 339
for Euler’s elastica, 398
for Kirchhoff-Love plate, 340
for linearized planar beam, 409
for little boundary value problem,
338
Hellinger-Reissner, 353
Hu-Washizu, 341, 353
energy principle(s), 338, 341-345
and the Ritz method, 344
epsilon-delta identity, 21
equilibrium
equations governing
fully nonlinear planar beam, 391
linear beam theory, 247
linear plate theory, 299
three-dimensional solid, 112
linear theory, 114
nonlinear theory, 120
general requirements of, 112-115
local form of, 112
path, 379, 432
Euler angles, 250
Euler equation, 343
Euler load, 328, 400
Euler parameters, 285
Euler, Leonhard, 249
Euler’s elastica, 397-407
numerical computations for, 447

F

field, 33
scalar, 36
tensor, 44
vector, 39
differentiation of, 40
rate of change of, 40
finite element approximation, 216
Lagrangian functions, 222
finite element method, 194
automatic assembly of equations, for
the little boundary value prob-
lem, 223
flux, 41
Fourier series, 195, 215
for plates, 322
free index, 16
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freebody diagram, 103
functional
definition of, 173
evaluation of, 174
functions
See also base functions
admissible, 171, 175
collection of, 175
orthogonal, 210
square-integrable, 176

G

Galerkin approximation, 197, 345
Galileo, 249

Gateaux derivative, 332

Gauss’s theorem, 45

generalized displacements, 231, 250,
302
geometrically exact theory, 389
Gershgorin’s theorem, 25
gradient
of a scalar field, 38
of a vector field, 42, 334
example, 43
Gram-Schmidt orthogonalization
of functions, 211
of polynomials, 212
of vectors, 210
Green deformation tensor
definition, 68
in terms of displacement, 78
physical significance of eigenvalues
of, 81
polar decomposition, 82
Green’s first identity, 55
Green’s second identity, 55
Green’s theorem, 45

H

harmonic functions, 410

head-to-tail rule, for addition of vectors,
4

Hellinger-Reissner energy functional,
353

Hessian matrix, 379
Hooke, Robert, 133

Hooke’s law, 140

Hu-Washizu energy functional, 341, 353
hyperelastic material, 135

hypoelastic material, 138

ill conditioning, of a matrix, 208
ill-conditioning, 208
ill-posed boundary value problem, 160
imperfections
effect on bifurcation of continuous
system, 404
effect on stability of MDOF systems,
381
effect on stable symmetric bifurca-
tion, 369
effect on unstable symmetric bifurca-
tion, 372
Ritz approximation, linearized buck-
ling, 419
index
column, of matrix, 19
dummy, 15
free, 16
row, of matrix, 19
inextensible, 397
inflection point, 412
initial parameters, method of
Bernoulli-Euler beam theory, 284
Timoshenko beam theory, 285
inner product, of functions, 211
integration, numerical, 450
Simpson’s rule, 451
trapezoidal rule, 451
invariants
in terms of eigenvalues, 32
primary, 23
derivatives of, 139
principal, 24
isoparametric mapping, 229
isotropy, 138-141

K

Kantorovich, method of, 326
kinematic hypothesis

for beams, 249-252

for plates, 300-304



kinetic energy, 347
Kirchhoff hypothesis, 315
Kirchhoff shear, 317
Kirchhoff-Love plate
classical equations, 315
Ritz approximation for, 321
example, 322
Koiter
half-power law, 375
two-thirds power law, 373, 406
Kronecker delta, 7, 13, 16

L

Lagrange multiplier, 79, 111
Lagrangian, 111
Lagrangian strain tensor
definition of, 69
eigenproperties of, 81
Lame parameters, 140
Laplacian, 54
of the warping function, 260
limit load, 370, 373
little boundary value problem, xii,
165-167
classical solution to, 166
load vector, from Ritz approximation,
227
load-control incrementation, 439
loading, applied
for beam theory, 245
for plate theory, 297
localization, 62

magnification factor, for beam-columns,
425
mass, conservation of, 120
Mathematica, 204, 205
matrix
condition number, 209
invertibility of, 209
relation to tensor, 19
membrane problem
finite element approximation, 228
Ritz approximation, 227
method of weighted residuals, 179

4717

Mindlin plate equations, 308
modulus
bulk, 143, 144
shear, 143
Young’s, 141, 142
Mohr’s circle, 127
moment. See resultant moment
Mooney-Rivlin material, 146
motion
Eulerian description, 92
Lagrangian description, 92

N

Nanson’s formula, 90, 118
Navier, 249
Navier equations, 307
for three-dimensional elasticity, 161
neutral stability, 349
Newton’s method, 25, 433—438
and the principle of virtual work,
446-452
for finding roots of univariate func-
tions, 433
for solving a nonlinear system of
equations, 435
the basic algorithm, 436
with arc-length constraint, 442
nodes, 216
norm of a function, 211
normal equations, 207
for vectors, 208

o

octahedral planes, 126
orthogonal
functions, 210
transformation, 21
vectors, 207-216
orthogonality
of buckling eigenfunctions, 412
of principal directions, 27

P

perturbation, 348
Piola transformation, 90
plane strain, 162



478

plane stress, 125, 151, 162
plane-sections hypothesis, 249
plate modulus, 314

plate theory, 162

point, geometrical definition, 2
Poisson’s ratio, 141, 142

polar decomposition, of deformation
gradient, 82

positive definite matrix, 351
principle of virtual forces, 199
program ELASTICA, 452
program NEWTON, 444
program NONLINEARBEAM, 462

Q

quadratic form, 345

R

resultant force
beam theory, 243
plate theory, 295
resultant moment
beam theory, 243
plate theory, 295
rigid-body motion, 76
Ritz, Walter, 193
rotation tensor, 285, 324

S

Schwarz inequality, 49
semi-infinite half-space, 95

shape functions, for Bernoulli Euler
beam, 279

shear coefficient, 259
shear locking, 281
shearing angle, 74

shearing deformation, in cantilever
beam, 271

shell theory, 162
Simo, Juan C., xiii
Simpson’s rule for numerical integra-
tion, 451
skew symmetry
of vector cross product, 8

Index

tensor having, 252
span, of vector space, 4
spatial rate of deformation tensor, 92
spatial spin tensor, 92
spatial velocity gradient, 92
spectral decomposition of a tensor, 31
square-integrable function, 176
stability, of linear systems, 351
stiffness matrix, from Ritz approxima-
tion, 227
strain
in terms of displacement, 78-79
one-dimensional measures
engineering, 59
Eulerian, 60, 66
Lagrangian, 59, 66
logarithmic, 60
natural, 59
resultant
for beam, 252
for fully nonlinear planar beam,
395
for plate, 303
tensor
deviator, 144
Lagrangian, 69
in terms of displacement, 78
linearized, in terms of displace-
ment, 79
virtual
for finite deformation problems,
188
for little boundary value problem,
170
strain energy function, uniaxial strain
state, 134
strain rates, 93
Lagrangian strain, 93
strength of materials, xi
stress, 103
comparison of definitions, 122
hydrostatic pressure, 107
pure shear, 107
pure tension, 107
tensor
Cauchy, 118
definition, 107
deviator, 51, 144
divergence of. See divergence of
stress tensor



first Piola-Kirchhoff, 118
principal values of, 110-112
second Piola-Kirchhoff, 121
symmetry of, 113

Stress power, 135, 145

stretch, 58

nonuniform, uniaxial, 61
of a curve, 65-66
structural analysis, 278

structural mechanics, 241

subspace, complete approximating, 195

summation convention, 15
surface, geometrical definition, 2
surface traction, 103

T

tangent vector, 65

tangential moment for plates, 319
tensor(s), 11-33
addition of, 17
components of, 13
composition of, 18
field (tensor function), 44
fourth-order, 137
isotropic, 141
generating tensors from other tensors,
17
Green deformation, 68
identity, 13
invariants, 22
of general nth order, 51
principal, 24
inverse of, 14
Lagrangian strain, in terms of dis-
placement, 78
multiplication
by scalar, 17
by tensor, 18
permutation, 10
product of vectors, 12
projection of vector onto a plane, 14
Rate of deformation, 92
second-order, 11
skew symmetric, 252
spectral decomposition of, 31
symmetric, 18
transpose, 18

Index

termination tolerance, 434
Timoshenko beam theory
classical form, 267
example, 270
Ritz approximation, 271
example, 272
virtual work functional, 269
torsion
effect of warping restraint, 284
of a circular shaft, 163
of elliptical beam, 261
Saint-Venant warping, 259
torsional stiffness, 261
trace of a tensor, 23
traction, 103
normal component of, 109
shearing component of, 109
trapezoidal rule, 451
triaxial test, 144, 152
triple scalar product of vectors, 9

v

Vainberg’s theorem, 336
proof of, 336
vector(s), 3-11
addition of, 4
angle between, 6
base, 4
components of, 4
multiplication
by scalar, 5
cross product, S, 8
dot product, 5
tensor product, 5, 12
triple scalar product, 9
orthogonal unit, 4
orthogonality between, 6
position, 3, 63
tangent, 65
velocity, 91
virtual displacement
admissible, 171
definition of, 168
virtual velocity, 168, 348
virtual work, 167-169
discrete principle of, 198
external
complementary, 190

479



480

for beams, 263
for Kirchhoff-Love plates, 320
for little boundary value problem,
169
for plates, 312
for three-dimensional solids, 182
functional
finite deformation, 187
for beams, 266
for Euler’s elastica, 398
for fully nonlinear planar beam,
393
for Kirchhoff-Love plates, 321
for linearized planar beam, 409
for plates, 313
internal
complementary, 190
Finite deformation, 187
for beams, 265
for Kirchhoff-Love plates, 316
for little boundary value problem,
170
for plates, 313
for three-dimensional solids, 183
principle of, 160
complementary, 190
for beams, 265
for linear elasticity, 185
for little boundary value problem,
178
for plates, 311-314
for three-dimensional solids, 184

volume, change of, under deformation,

86, 90
volumetric locking, 282

w

weak form of differential equation, 179
weighted residuals, 179

well-posed boundary value problem,
160

Winkler foundation, 287
work, 167-169

Y

Yield function, 149
von Mises, 149
Yield surface, 149
Young, Thomas, 133
Young’s modulus, 142



