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Preface by Johan van Benthem

This book appears in a series highlighting contributions to logic, as seen through
the eyes of a congenial community of colleagues. It is a great honor to be a focus
for the group of authors assembled here. Though public mirrors seldom reflect self-
images, we learn most about people, not only by their own words, but also by the
company they keep.

But enough said about people, let me turn to the topic. This book is about
logical dynamics, a bundle of interests and a program that may not cover my whole
work, but that definitely constitutes the largest chunk of what I have done over the
last decades. Let me explain what it means to me. You may find what follows
ideological, some people prefer context-free theorems—but I need such broader
perspectives even for myself, to remind me of why I do the things I do—or even,
why I do research at all.

The main idea of logical dynamics is the pervasive duality between informa-
tion-related actions and their products. Standard logical systems emphasize notions
like formula or proof in the sense of static objects that can be viewed or even
manipulated externally. But these objects are produced in activities of commu-
nicating statements, engaging in reasoning, and many other intellectual skills.
Interestingly, our natural language is often ambiguous in this respect between
verbs or other activity-related expressions and static nouns. A dance is an activity
I can engage in, but also an object that can be produced by dancing—and the same
duality holds for many logical terms, like ‘‘statement’’ or ‘‘argument.’’ The idea of
logical dynamics is to take this duality seriously, and bring the core logical
activities explicitly into formal systems that satisfy the same standards of rigor as
the ones that we know and love. This is possible, since activities and events, too,
have a formal structure that lends itself to logical analysis. In this way, to borrow a
happy phrase, ‘‘logic can be more than it is.’’

Over time, my view of what are logical core activities has evolved from single-
agent acts of inference and observation to social scenarios involving more agents,
with asking a question, perhaps, as the major instance of a basic logical act. This
took some time, since this social turn went against central tenets of my upbringing.
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Dutch Calvinists like me were raised with the idea that there are two modes of life.
The horizontal mode looks at other people and what they think, the vertical one
looks only at one’s relationship to God. Naturally, the latter, more lonely but also
more heroic stance appealed much more to me, and logic seemed very much in
that spirit, putting one in direct communion with the intellectual joints of the
universe. By contrast, the horizontal stance is all about being influenced by and
dependent on others, that is, the realm of human frailty and folly. But over time,
I have come to appreciate that social behavior and the intricate network of
dependencies that form our life may be the more exciting and challenging phe-
nomenon—or at least, that it has equal importance to solitude in logic and intel-
lectual life, just as the various interactions of particles that constitute our physical
world. In fact, perhaps the original source for logic is argumentation between
different parties, with formal systems coming only later as a methodological
device. And again, logic can deal with all these perspectives at once.

Formal versions of these views in their various phases can be found in a
sequence of my books: Language in Action (1991), Exploring Logical Dynamics
(1996), Logical Dynamics of Information and Interaction (2011), and Logic in
Games (2013). Another important source is the dissertations of my students since
roughly 2000. What all these publications reflect are influences on my thinking
from the worlds that meet in my academic environments at Amsterdam and
Stanford: logics of action and processes in computer science, dynamic semantics
of natural language, philosophical theories of knowledge and information, and
interaction as studied in game theory. I see logic as lying at a crossroads of the
university, absorbing many ideas that pass.

Still, being a logician also implies a certain modus operandi, and in my view, a
unity of methods persists even when we expand the agenda: logical dynamics uses
formal systems. In much of my work, systems of modal logic play an important
role, as a convenient light formalism that allows us to see a lot of interesting
structures without importing too much machinery. But I see exclusive allegiance to
one formalism or school as an intellectual weakness, and I have in fact devoted a
lot of time to seeing connections and parallels between different logical systems, as
in my work on correspondence theory. Still, the main point is the formal slant in
this kind of work per se. Even when I theorize about noisy ‘‘horizontal’’ social
reality, the methodology is ‘‘vertical,’’ the mathematical truth is absolute, and
social strategizing would not help.

So much for my own take on the topic of this book. But a book like this is a
risk, since it is a mirror in one’s colleagues’ eyes, who may see things quite
differently. Sometimes you wish you were the person portrayed, sometimes the
mirror confirms your worst suspicions. That is why so many people with books
devoted to their work are engaged in frantic spin covering the entries with added
responses, conclusions, and other types of cotton candy. I will try to minimize this
spin mode, though I cannot refrain from making a few points about the book as
I experience it—both the editorial process of producing it, and the product that
now lies before us.
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For a start, though one can have lots of soul-searching thoughts, at a most
simple and immediate level, this book just consists of topics that I like! Many
chapters represent some aspect of logic, information, and agency that I would like
to understand better—and that is exactly what the authors have provided. More-
over, I admit to just liking abstract technical logic, and again many authors have
done just that, stepping up their abstraction levels in those typical ways that please
logicians. I will not even begin to enumerate all chapter topics here: a later
separate piece will present some more detailed thoughts concerning what the
authors have to say. But even so, it will be clear that this book contains many trails
of happy hiking in the landscape of logical dynamics, very broadly conceived.
Some of these trails start out in places where I have walked myself these past
decades, such as dynamic epistemic logics, temporal logics, logics of games, or
belief revision—while other trails in the book move out into relatively new ter-
ritory for me, such as learning theory, social dynamics, database theory, proof
theory, cognitive science, or probability theory.

But the material collected here defies easy description. What also appeals very
much to me is chapters that remind me of my earlier interests in natural language,
philosophical logic, and philosophy of science. They made me realize that there
may be much more continuity of concerns than I have perhaps thought over the
past period, and many more things to be learnt by returning there, than I had
imagined. Likewise, there is material on my old and persistent technical interests
in modal model theory and foundations of computation that I find extremely
suggestive, especially, as I feel that applied agenda extensions for our discipline,
as envisaged in logical dynamics, had better be accompanied by rigorous theo-
retical investigations from the start.

Of course, not every author approaches things the way I myself would do it:
I guess this realization on my part is the process called learning. In fact, on a self-
critical note, several chapters have taught me that logical dynamics is not such a
clear concept as I would like to think. There are serious philosophical issues about
its precise claims and its relationship to classical logics, and there are mathe-
matical issues about a best understanding of how its dynamic systems had best be
formulated and understood. Much of this has generated lively correspondence with
authors, and I hope that some of this ongoing discussion will itself find its way into
the literature.

In order to give this book its present focus, selections had to be made. Some
loves from my earlier life do not occur, or not enough justice is done to them, such
as the interfaces of logic with natural language, philosophy, and cognition
described in my scientific autobiography. This restricted focus is the format of this
series, and I think it is inevitable for any readable book. Still, several authors have
made connections to these other topics that set me thinking. I now feel that natural
language is much more important to logical dynamics than I had realized so far,
while there is also a clear potential for revitalizing the interface of logic and
philosophy. And even cognitive science is just around the corner: while my sys-
tems of logical dynamics remain normative, they can only function in the real
world. On the sunny side, even gaps and loose ends that come to light tell me
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where I might be going from here. For instance, I find myself drawn increasingly
to interfaces between logic and probability, and many chapters in this book whet
that appetite. I find this a comforting thought. Although a book series like this new
initiative might be considered a polite invitation to outstanding logicians to finally
shut up and leave the field to a younger generation, I see some rays of future for me
shining through its pages.

I find it hard to tell other people what sort of book this is. It is not a Festschrift,
it is not just an anthology, it has no systematically enforced message or method-
ology. It is much more ambiguous than that, like life itself. The way I experience
this book, it is a panorama of a world I enjoy. It demonstrates the broad interests
and methods that have shaped my own work in logic. But I hope it does not do that
too obtrusively. Even if you are not into logical dynamics (or Johan van Benthem),
the pieces that follow should still be of interest. Their topics are important, and
represent a future for logic. Moreover, the group of their authors itself conveys an
important message. They come from many disciplines: mathematics, philosophy,
computer science, artificial intelligence [the love child of computer science and
philosophy], but also game theory and beyond. This diversity is my world where
I feel comfortable, this is how I was educated, and how my academic environment
functions. I deeply feel that the broad logic that is at stake here can only flourish in
this sort of intellectual company.

Thanks to the authors for contributing what they did, and lending their presence
to this book. And thanks to the editors Alexandru and Sonja for making it happen.

Johan van Benthem
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On the Trails of Logical Dynamics:
a bird’s-eye view of this volume,
by Alexandru Baltag and Sonja Smets1

1 The Main Theme

Reducing Johan van Benthem’s vast interdisciplinary work, published over 40
years, to one single research theme, however broad, seems to us both impossible
and counterproductive. However, as part of the Springer series ‘‘Outstanding
Contributions’’, our volume is meant to be thematic, as well as being personally
dedicated to a world-famous logician.

Indeed, ‘‘Outstanding Contributions’’ is a series of book profiles of major themes
pursued by leading logicians today. The way we see it, the idea behind this book is
two-fold: (a) to highlight van Benthem’s contributions to the chosen topic, and
(b) to develop the field further, by inviting other leading researchers to contribute
papers exploring specific dimensions of the main theme. But these dimensions are
often as important and as broad in their own right as the one chosen as the ‘‘main’’
topic. In this sense, our thematic focus could be deceptive: in reality, the chosen
theme is itself only one perspective among others in a family of interrelated on-
going research areas, lying at the cutting edge of contemporary logic.

Together with Johan himself, we decided on a theme that has been at the core of
his research agenda over at least the last 23 years: Logical-Informational
Dynamics. In fact, we will argue here that, if broadly conceived, this topic can be
seen to be highly relevant for most of van Benthem’s research, from its very
beginning. Moreover, while reiterating our feeling that we cannot subsume or
reduce all the many facets of van Benthem’s work to one unique catchphrase, we
nevertheless think that this body of work can best be interpreted as a whole only
when seen from the vantage point of Logical Dynamics.

The reader might well think that such a thematic consistency of all van
Benthem’s lines of work sounds ‘‘too good to be true’’. But we definitely do not
claim that Johan van Benthem had consciously and deliberately pursued one overall
theme throughout all his life! We only argue that this theme can be used to provide
a deeper, more unitary understanding of van Benthem’s various research pursuits.

1 Sonja Smets’ contribution to this paper was funded by the European Research Council under
the European Community’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant
agreement no. 283963.
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Such an understanding is typically unavailable in the heat of the actual pursuit.
It becomes transparent only retroactively. So we do not feel that we are falsifying
van Benthem’s research history by seeking to uncover its underlying unity.2

The same can be said about the invited contributions that form this volume.
While each of them fits very well with (at least one of) Johan’s research interests,
together they testify to the wide range of these interests. The life-like variety of the
topics investigated in the chapters of this volume, and the seemingly uncontrolled
and irreducible diversity (and sometimes apparent divergence) of their perspec-
tives, may seem confusing to the reader at a first sight. But a discerning eye will
recognize the deeper unity behind this friendly clash of paradigms: not an abstract,
all-subsuming unity under the aegis of some dead formal deity, but the live,
striving unity-in-competition that makes them part of a shared ‘‘eco-system’’.
Together, these contributions map the landscape of a field in the making, locating
the core issues and the most desirable spots on the map, filling the gaps where the
dragons dwell, defining the borders and outlining the main shapes of the New
World of logical-informational dynamics.

2 A Field in the Making

2.1 Dynamics in van Benthem’s Work

Johan van Benthem’s first publications with an explicitly ‘‘dynamic’’ bent date
from around 1990 [42–45], though these are anticipated by his early work on
temporal logics in the late 1970s and early 1980s [29], on logical games in late
1980s, and at a more abstract level they are connected to his earlier work on
relational semantics and modal correspondence. More generally, dynamics was
‘‘in the air’’ in the late 80s, with concomitant work in computer science [147],
logic [140], philosophy [156] and linguistics [148], with even earlier historical
precursors in the philosophical literature [25, 154, 194], logic [168] and computer
science [155].

The ‘General Dynamics’ program [45] is van Benthem’s first full-fledged
programmatic text on logical dynamics, followed in quick succession by his books
Language in Action [43], Exploring Logical Dynamics [47], his Spinoza project
‘‘Logic in Action’’, a vast number of research papers on this topic and, more
recently, his books Logical Dynamics of Information and Interaction [102] and
Logic in Games [113], as well as his forthcoming book The Music of Knowledge
[114] (with A. Baltag and S. Smets) on dynamic epistemology.

xvi On the Trails of Logical Dynamics

2 But, of course, we may be wrong: the view presented here is our own, ‘‘creative’’ (hence,
possibly inaccurate) interpretation.



2.2 What is Logical-Informational Dynamics?

We understand the theme of this volume very broadly as the logical study of
information flow, cognitive and computational processes, strategic interaction and
rational agency, study lying at the intersection of many different disciplines, and
extending from more mathematical to more philosophical dimensions. We see
Logic as closely connected to the concept of information, taken mainly in its
qualitative-cognitive sense, though potentially also connecting to the more
quantitative notions of information, such as the Bayesian account of belief change.
In their chapter in the Handbook of Philosophy of Information [89], van Benthem
and Martinez extensively discuss the various conceptions of information
encountered in philosophy and science (information-as-range, information-as-
correlation, information-as-code etc.), as well as their relevance for logic. This
diversity of conceptions extends to dynamics: each notion of information comes
with its own specific type of information flow.3

The Static-Dynamic Duality

As repeatedly stressed by van Benthem [47], informational-cognitive concepts
often have a dual character: both ‘‘static’’ and ‘‘dynamic’’, or what may be called
the duality between product versus process. van Benthem’s favorite examples of
such cognitive notions with dual meaning are the concepts of reasoning, argument
and judgment, which denote both intellectual processes and their contents or
products. This is very similar to the opposition ‘‘procedural’’-‘‘declarative’’ in
Computer Science, as well as the ambiguity in natural language between activities
and their end-products (e.g. words such as dance, play or move). The ambiguity
suggests the existence of two complementary aspects of these concepts: a static,
object-like, ‘‘finished’’ (and thus ‘‘well-defined’’) side, and a dynamic, processual,
‘‘free-flowing’’ and on-going (thus ‘‘unfinished’’) aspect. The epistemic version of
the procedural-declarative duality is the distinction between ‘‘knowledge how’’
and ‘‘knowledge that’’. The same duality also occurs in Mathematics: in Model
Theory, between structures (sets, graphs, algebras, models etc.) and structure-
preserving (or structure-changing) transformations (morphisms, isomorphisms,
permutations, automorphisms, bisimulations, operations on models such as
ultraproducts etc.); in Category Theory, between ‘‘objects’’ and ‘‘arrows’’, or at
a higher level between ‘‘categories’’ and ‘‘functors’’; and in Proof Theory, between
‘‘definitions’’ and ‘‘theorems’’ on the one hand, and ‘‘constructions’’ or ‘‘proofs’’
(as algorithms, procedures for producing theorems or counterexamples) on the
other hand.
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Logical Dynamics: The Search for Abstract Structures

According to van Benthem, the distinction static-dynamic is related to the
existence of different types of logical structures. The static aspects are usually
captured by Boolean algebras or other types of lattices (underlying ‘‘classical’’
logic, as well as its more traditional ‘‘non-classical’’ alternatives). As for the
dynamic aspects, van Benthem [47] sees relational algebras (underlying arrow
logics, multi-dimensional modal logics etc.) as the ‘‘dynamic’’ analogue of
Boolean algebras.

The interplay between the static and the dynamic aspects is captured by
‘‘mixed’’ two-sorted logical structures, such as Kleene algebras, dynamic algebras
and quantales (underlying e.g. dynamic logic or quantum logic), or by higher-
typed structures (e.g. typed lambda calculus, or the Hilbert-space formalism for
quantum mechanics, which use higher-typed objects or systems of higher
dimension to encode the dynamics of lower-typed objects or lower-dimensional
systems). More complex mixed algebras correspond to the more sophisticated two
sorted Boolean-Algebraic logics introduced by van Benthem, such as the family of
Dynamic Modal logics [40, 49].

But this is just a first stab. More generally, van Benthem’s work throughout the
years can be seem as a constant search for the best mathematical frameworks for
dynamics: from relational algebras and abstract Dynamic Modal Logic, to the
dynamic significance of other frameworks such as Barwise’s Situation theory and
Chu spaces [55, 89]; to logics such as DEL [102], that go beyond traditional
model-theoretic semantics, by talking about potential updates of their own models;
and more recently, to abstract ‘‘update universes’’ [115].

The Drive Towards Concreteness: Learning, Games, Agency, Language

As we’ll see, the constant search for better abstract-mathematical perspectives on
dynamics is paralleled in van Benthem’s work by a dual move: a constant drive
towards concreteness. This focuses on modeling, and reasoning about, the actual
information flow via ‘‘real’’ channels between full-fledged agents. We call this
move informational dynamics, distinguishing it from the ‘‘purely logical’’ one,
since it goes beyond inference and reasoning, and comprises other types of
informational events.

In particular, we may distinguish four aspects of informational dynamics, in
increasing order of concreteness. The first refers to the dynamics of knowledge and
belief over time: essentially, this is about learning, observation, communication
and belief revision. The second aspect adds (static) preferences or goals that guide
agents’ actions: this is the ‘‘rational dynamics’’ underlying strategic interactions
and forming the main topic of game theory. The third aspect concerns the more
sophisticated features that characterize agency, going beyond the game-theoretic
perspective: concepts such as choice, control and free will, activities such as
deliberation, inquiry and preference-change, the dynamics of desires, intentions
and norms, and the ensuing moral dilemmas. Finally, the fourth aspect concerns
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human cognition and natural language. This last aspect is the most ‘‘concrete’’ of
all: here, logic faces the empirical ‘‘facts’’ about people’s actual cognitive,
psychological, social and linguistic practices in real life.

Back and Forth Between Abstract and Concrete: Styles of Inference

As we have seen, the drive towards concreteness is counterbalanced by an opposite
one, that tends to recover the abstract structures and patterns of inference
underlying concrete informational processes. Indeed, from an abstract perspective,
logical dynamics is just one of many different styles of reasoning, and dynamic
reasoning is just one among a wide variety of alternative forms of inference. But
the dual perspective may also be applied: other styles of reasoning, usually
formalized as non-classical consequence relations (e.g. substructural and non-
monotonic logics, relevance logic etc.), can be given dynamic interpretations, by
looking at the specific informational tasks (e.g. forms of learning, communication
etc.) that they are meant to capture.

So we have a continuous back-and-forth move between abstract and concrete.
On the one hand, we can go from concrete dynamics to consequence relations via a
process of abstraction; on the other hand, we can go the other way around, from
consequence relations to dynamics, via dynamic representations or interpreta-
tions. Concrete information flow can be described via abstract inferences, which
themselves can be interpreted as concrete informational processes.

2.3 The Six Dimensions of Logical Dynamics

Putting together the conclusions of the above discussion, we have decomposed our
main theme into six different ‘‘dimensions’’ or aspects: (1) mathematical and
computational perspectives on logical dynamics; (2) dynamics of knowledge and
belief over time; (3) games and strategic interaction; (4) full-fledged dynamic
agency; (5) dynamics in natural language and cognition; (6) dynamics and ‘‘styles
of reasoning’’. The first dimension belongs to the search for abstract foundations
for dynamics, the next four represent the different sides of concrete dynamics that
we uncovered above (learning, games, agency and language). Finally, the sixth
dimension captures in a sense the above-mentioned back-and-forth move between
abstract and concrete: on the one hand, dynamics is understood at an abstract level
as just one among many alternative styles of reasoning; while on the other hand,
other reasoning styles are re-interpreted as forms of dynamic inference. But in
reality this back-and-forth move also happens within each dimension: e.g. the
usual models for Dynamic Epistemic Logic (in which an update is a very specific
model-transformation) could be thought of as ‘‘concrete’’ models, while van
Benthem’s ‘‘update universes’’ [115] are more abstract models for the same
language.

Not coincidentally, these six viewpoints correspond to the six parts of our
volume, representing thematic groupings of our invited papers: indeed, each of
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these divisions group together papers that explore in more depth one of the above
dimensions (while of course occasionally touching on other aspects, both within
and beyond the above-mentioned six). So, as part of our investigation, each of the
subsequent six sections of this Introduction will explore one of the viewpoints
(1–6) above, by discussing the parts of van Benthem’s work and the invited papers
that are relevant for that specific dimension.

3 Mathematical and Computational Perspectives on Logical
Dynamics

In a sense, all modal logic, especially when endowed with its relational semantics
based on Kripke models, can be said to be ‘‘dynamic’’ in general: the truth of a
modal formula at a given world depends on what happens at other worlds, related
to the first one via the usual transition (or accessibility) relation. Such transition
relations always involve a logical change or shift (from a given context, situation,
world or state, to another), and hence they capture a form of abstract ‘‘dynamics’’,
even when the intended interpretation of these relations is in fact static (e.g.
epistemic indistinguishability, or world-similarity, or spatial nearness). This is the
aspect that embodies ‘‘logical dynamics’’ proper, i.e. the dynamics of our logical
manipulation of information.

3.1 Johan van Benthem on Mathematical-Computational Perspectives

Modalization as Dynamification

Any move towards the ‘‘modalization’’ of a specific logical area can thus be
interpreted as a ‘‘dynamification’’ of that area. Examples are van Benthem’s work
on (a) the modal fine structure of classical predicate logic, and (b) the (non-
classical) modal semantics of predicate logic.

The modal fine structure of first order logic. This area of research pertains to the
investigation of fragments of predicate logic that are ‘‘modal-like’’, in the sense of
sharing some of the desirable features of modal logic, in particular its low complexity
(decidability). In [195], Vardi has famously asked the question ‘‘Why is modal logic
so robustly decidable?’’ What was needed to answer this was to isolate some key
features of modal logic, and then to show that the other logics having these features
are also robustly decidable. A first attempt in this sense were the finite-variable
fragments introduced earlier by Henkin, but this type of generalization proved to be
a red herring as far as tractability is concerned: all fragments with at least 3 variables
are undecidable. In fact, the best answer was suggested by van Benthem in [47, 52],
and only truly developed in his joint work with Andréka and Németi [1]. This came
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in the form of the bounded fragment (in which the quantifiers 9~yðR~x~y ^ /ð~yÞÞ are
always ‘‘bounded’’ by some relation R) and the larger guarded fragment (in which
the quantifiers 9~yðR~x~y ^ /ð~x;~yÞÞ are ‘‘guarded’’ by relations R), later extended in
[52] to the even larger loosely guarded fragment (in which the quantifiers are
guarded by conjunctions of atomic formulae of certain forms). By teaming up with
Andréka and Németi [1], van Benthem investigated in depth the meta-logical
properties of these fragments. Even larger extensions in the same spirit were later
proposed: the packed fragment, and the clique-guarded fragment. All these logics
share the ‘‘locality’’ of modal logic, by restricting the scope of quantifiers to
whatever is ‘‘locally’’ reachable via some accessibility relation. But if we think of R
as an ‘‘action’’ or program (going from the string of input-values stored in the
variables~x to the output-values stored in~y), then guarded quantification is really the
prototypical dynamic move: the statement 9~yðR~x~y ^ /ð~x;~yÞÞ says that program R is
locally ‘‘correct’’ (on the current input~x), in the sense that it fulfills some desirable
condition / (holding between its input and output values). The ‘‘modal’’ nature of
the guarded fragments is confirmed by the fact that they are decidable and have the
finite model property. Moreover, their decidability is ‘‘robust’’, in the sense that it is
inherited by their fixed-point extensions, as shown by Graedel and Walukiewicz
[142]. As such, this line of research provided a clear conceptual answer to Vardi’s
question: it is exactly the locality or ‘‘dynamicity’’ of modal logic (shared with the
above-mentioned fragments, in the form of guardedness) that is responsible for its
robustly good behavior!

The modalization of first order logic. An alternative route pursued by van
Benthem was the ‘‘generalization by modalization’’ of the standard semantics of
predicate logic. A Kripke structure is assumed, with each possible world or ‘‘state’’
coming with its own variable assignment, while the existential quantifier 9x is a
modal diamond along some binary ‘‘update’’ relation Rx between states. The
complete logic of this setting is the minimal polyadic logic, which thus represents
the ‘‘modal core’’ of first-order logic. The standard Tarskian semantics is recovered
as a special case, namely the one satisfying three additional constraints: (1) states
are completely identified with the corresponding variable assignments; (2) the
‘‘update’’ relation Rx is the standard one, holding between two assignments iff they
agree on all variables different from x; (3) all possible assignment functions are
represented in the model. The latter is a strong existence condition, which might
reasonably be considered as set-theoretic rather than purely logical, and which is
responsible for the undecidability of classical predicate logic. Another choice,
somewhere in between the two extremes, is given by generalized assignment
models, which keep the ‘‘logical’’ requirements (1) and (2) while dropping the
existential condition (3). The corresponding logic, proven decidable by Németi
[174, 175] is called CRS (from ‘‘cylindric relativized set algebras’’). But more
generally, each of the axioms and rules in any standard axiomatization of
first-order logic corresponds to an additional semantic condition on the update
relation Rx: in [47], van Benthem gives a detailed such analysis for the axiomatic
system in Enderton’s standard textbook [128].
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The Further ‘‘Dynamification’’ of Modal Logic and Inference

If we consider (as argued above, following van Benthem) that the ‘‘dynamic’’
character of a logic is witnessed by the match between its underlying mathematical
structure and Relational Algebras, then basic modal logic (with its standard Kripke
semantics) is insufficiently dynamic: there is ample scope for further ‘‘dynami-
fication’’, by internalizing more of the relational structure and its natural operators.
A classical example in this sense is PDL (Propositional Dynamic Logic), but van
Benthem went further in this direction, by introducing arrow logic and dynamic
modal logic. In addition, one can also ‘‘dynamify’’ our logics’ consequence
relation, obtaining a variety of dynamic styles of inference.

Arrow Logic. This is a line of research initiated by van Benthem [43] and Venema
[201, 202]. This is a ‘‘truly’’ dynamic logic, in the same sense as Dynamic Predicate
Logic: the meaning of a logical formula is given by a type of informational change,
i.e. a set of ‘‘arrows’’. Arrows are abstractions of state-transitions (or ‘‘arcs’’ in
graph theory), but they are considered as objects in themselves, which can be
composed and reversed, have an identity element, and play the role of possible
worlds (so that arrow formulas are evaluated at arrows). A special case is given by
pair models: in these, arrows are identified with pairs of states ðs; tÞ, representing
transitions between these states, so that the meaning of an arrow formula in a pair
model is a binary relation on states (a set of pairs). If composition, reversal and
identity are interpreted in the natural way (as relational composition, converse and
identity relation) and no further existential assumptions are made (so that not all
state relations are necessarily represented), then the complete arrow logic of pair
models is axiomatizable and decidable [170]. Various extensions of arrow logic
have been investigated, especially by researchers in Amsterdam, Budapest and
Sofia. In particular, it has been shown that adding the requirement that composition
is transitive leads to undecidable arrow logics. ‘‘Dynamic arrow logic’’ is obtained
by adding an infinitary operator /� denoting the reflexive-transitive closure of the
relation /: once again, if no further existence assumptions are made, dynamic arrow
logic is axiomatizable and decidable on pair models.

Dynamic Modal Logic (DML). This is a powerful type of logical formalism,
originating in van Benthem’s thinking about AGM Belief Revision and in his search
for an abstract approach that could fully internalize the AGM-style dynamics.
Introduced by van Benthem [40] and extended by de Rijke [180–182], who also did a
thorough investigation of its meta-theory, its complexity and its applications, DML
extends both (the star-free fragment of) Propositional Dynamic Logic and Intuition-
istic Logic, as well as forms of preferential dynamics, which include standard belief-
revision operators (such as expansion, contraction and other types of preference
upgrades). The semantics is a combination of intuitionistic semantics (with an
information preorder � on states) and standard multi-modal Kripke semantics (with
binary accessibility relations on states, denoting atomic actions). Like PDL, the
syntax has a static component (‘‘formulas’’ /, that are to be interpreted as sets of
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states in the usual way), and a dynamic component (‘‘procedures’’ a, interpreted as
binary relations on states). The static repertoire of operators includes the usual
propositional and modal connectives of multi-modal logic, and the dynamic
repertoire includes converse, intersection (and thus also union) and relational
composition (denoting the sequential composition of procedures). In addition, there
are a number of ‘‘projections’’ (operators taking procedures into formulas) and
‘‘modes’’ (operations taking formulas into procedures). The projections include a
domain operator doðaÞ (capturing the domain of the relation a), a range operator
(capturing the range of a) and a fixed-point operator fixðaÞ (capturing the set of
reflexive points of the relation a). The modes include the standard test operator /? as
in PDL, an updating operator updðaÞ (which is a kind of ‘‘loose’’, non-deterministic
expansion, relating a state x to any state y� x satisfying /) and a downdating
operator (a ‘‘loose’’ contraction, relating x to any state y� x satisfying /). Using this
language, one can define the usual type of expansion (‘‘strict updating’’, relating x to
the lowest state y� x satisfying /) and the usual contraction (‘‘strict downdating’’),
as abbreviations. Interestingly, DML may be seen as an early precursor to more
recent abstract approaches to Belief Revision theory, such as Segerberg’s Dynamic
Doxastic Logic [190–192], or the abstract update universes recently proposed by van
Benthem [115] as an abstraction of Dynamic Epistemic Logic.

Dynamic styles of inference. In the context of the program of Logical Dynamics,
the ‘‘dynamification’’ of consequence relations is a natural step. Driven by the
spirit of Logical Pluralism, logicians produced in fact a bewildering variety of
types and styles of dynamic inference. We follow here van Benthem’s
classification of this multitude, that uses the above-mentioned DML projections
(domain, range and fixed-point operators) and modes (test and update operators).
Though not exhaustive, this classification gives us a high-ground vantage point,
from which we can get a better, clearer perspective of the field of possibilities. The
Update-to-Update Consequence, introduced by van Benthem [43], has the shape
P1 � . . . � Pn � C (where both the premises P1; . . .;Pn and the conclusion C are
binary relations). The Update-to-Test Consequence, due to Veltman [199], has the
shape rangeðP1 � . . . � PnÞ � fixðCÞ. The Update-to-Domain Consequence was the
one proposed by Groenendijk and Stokhof [143]: rangeðP1 � . . . � PnÞ � domðCÞ.
The variant proposed by van Eijck and de Vries [125] corresponds to Domain-to-
Domain Consequence: domðP1 � . . . � PnÞ � domðCÞ. The dynamic presupposi-
tion introduced by Beaver [24] corresponds to Domain-to-Test Consequence:
domðP1 � . . . � PnÞ � fixðCÞ. Finally, classical (Tarskian) inference can be recov-
ered as the Test-to-Test Consequence: fixðP1Þ \ . . . \ fixðPnÞ � fixðCÞ. Only the
last one satisfies all the classical structural rules of inference. The others
correspond to various ‘‘substructural’’ logics. In his book [47], van Benthem gives
complete axiomatizations of the system of structural rules governing each of the
above types of dynamic consequence, studies the translations between these
various consequence relations, as well as their translations into more standard
dynamic logics such as PDL.
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Process Equivalence, Invariance, Characterization, Safety

All dynamic-logical frameworks mentioned above come with an implicit
‘‘dynamic’’ ontology, embodied in their formal semantics in terms of various
types of processes, procedures, events, actions or programs. For each framework
and each type of process, one can pose a number of key conceptual problems: first,
answering the question ‘‘when are two processes the same?’’, by finding an
appropriate notion of process equivalence. Processes that are structurally
equivalent differ only by the irrelevant details of their chosen representation.
The second task is invariance: finding logics that do not distinguish between
equivalent processes. Only such logics are truly ‘‘dynamic’’: they express only
properties that are invariant under equivalence, and hence belong to the process
itself, rather than being dependent on a specific representation. The third task is to
circumscribe the dynamic expressivity of some given, canonical logic, by finding a
nice characterization of the maximal (most expressive) dynamic fragment of that
logic (encompassing, up to logical equivalence, all the formulas that are invariant
under process equivalence). The final problem is safety, which can be seen as an
analogue of invariance for the relational side of a dynamic language: a safe
operation is one that adds new relations to the structure, while keeping unchanged
the notion of structural equivalence.

Bisimulation. Johan van Benthem is one of the co-discoverers of the concept of
bisimulation (which he called ‘‘modal p-relation’’), one of the fundamental notions
in Modal Logic and Theoretical Computer Science. The relation of bisimilarity
(defined as the existence of a bisimulation) is one of the most natural answers to
the first question mentioned above: ‘‘when are two processes equivalent?’’ (Here, a
‘‘process’’ is just a ‘‘pointed Kripke model’’, i.e. a Kripke model with a designated
state.) Bisimilarity is an essentially dynamic notion, capturing a notion of
behavioral (or observational) equivalence between processes: two processes are
the same when they can simulate each others’ behavior (i.e. every ‘‘move’’ to
another state in either process can be ‘‘matched’’ by the other process, step by step,
in such a way that matching states satisfy the same atomic formulas). Note that the
notion of bisimilarity is relative to the basic ‘‘dynamic vocabulary’’ (the
underlying transition relations, the types of ‘‘moves’’ that have to be matched).
To be precise, we should in fact always talk about bisimilarity with respect to a
given family of binary relations: this matches only the relations in the given
family, while disregarding other types of ‘‘moves’’.

Invariance. Bisimilarity poses a fundamental upper limit to the expressivity of
modal logic: indeed, modal formulas are invariant under bisimulation. So modal
logic is truly ‘‘dynamic’’ in the above-mentioned sense, i.e. it cannot distinguish
between bisimilar processes: if two processes are bisimilar then they satisfy exactly
the same modal formulas. The converse is true only for infinitary modal logic.
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However, there exists one partial converse for finitary modal logic, known as the
Hennessy-Milner Theorem: two finitely-branching4 processes are bisimilar if and
only if they satisfy the same modal formulas. One of the major contributions of van
Benthem’s Ph.D. thesis [26] was to show that the key property here is not a
cardinality restriction (e.g. finitely-branching), but a logical ‘‘saturation’’ property,
saying that all the appropriate consistent types of formulas are satisfied in the given
structure. Johan van Benthem’s theorem generalizes Hennessy-Milner’s result5 to
all modally saturated models. This is a real, wide-ranging generalization: finitely
branching models are modally saturated, but the converse fails.

Characterization. Another partial converse to the bisimulation-invariance of
modal formulas is van Benthem’s celebrated Modal Characterization Theorem
(also known as the Modal Invariance Theorem): a first-order sentence is
(equivalent to) a modal formula if and only if it is invariant under bisimulation.
This beautiful result shows that modal logic is the largest ‘‘dynamic’’ fragment6 of
first-order logic.

Over the years, logicians introduced other notions of bisimulation appropriate
for other logics, and computer scientists investigated other interesting notions of
process equivalence. Analogues and extensions of van Benthem’s Characterization
Theorem were proved for many of these logics, as well as many of the other
notions of bisimulation. We only mention here two such results. First, Janin and
Walukievicz [160] gave a similar characterization of modal mu-calculus (obtained
from modal logic by adding fixed points of monotonic operators definable by
positive modal formulas): mu-calculus is the largest ‘‘dynamic’’ fragment of
monadic second-order logic. Second, the analogue of van Benthem’s theorem for
the guarded fragment was proved by Andréka et al. [1], and this was later extended
by Graedel, Hirsch and Otto to an analogue of the Janin-Walukievicz theorem for
the fixed-point extension of the guarded fragment [141].

Safety for Bisimulation. An analogue of the notion of invariance for program
operations (i.e. operations on binary relations) is the concept of safety, also due to
van Benthem [51, 54]. An operation OðR1; . . .;RnÞ on programs is safe for
bisimulation if, whenever two processes or models are bisimilar with respect to the
relations R1; . . .;Rn, they are also bisimilar with respect to the relation
OðR1; . . .;RnÞ. E.g. the standard regular operations of PDL are safe for
bisimulation. van Benthem’s Safety Theorem is a kind of analogue for programs
of the Modal Characterization Theorem: a first-order definable relational
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operation OðR1; . . .;RnÞ is safe for bisimulation if and only if it is definable using
atomic relations, PDL tests, union and relational composition.

‘‘Meta-Logical Dynamics’’: Correspondence and Transfer

There is more to abstract dynamics than the relational semantics and modalization.
Johan van Benthem is especially well-known for taking a ‘‘bird’s-eye view’’ of
logical systems: looking, not so much at one system at a time in isolation from
others, but at families of logical systems, the way these logics relate to each other,
and the way in which concepts, techniques and results can be imported and
exported between logics. This is what one may call Meta-Logical Dynamics. It
starts with van Benthem’s Ph.D. thesis [26], which (together with Sahlquist’s work,
but independently from it) laid the foundations for Modal Correspondence Theory.
By developing systematic ways of identifying for many modal logics their
‘‘corresponding’’ fragments of first-order logic, and using this correspondence to
study completeness, canonicity and other important meta-theoretical properties of
these logics, Correspondence Theory remains one of the cornerstones of modern
modal logic. Analogues of this theory have been recently developed for other
classes of logics. We mention here in this sense van Benthem’s work on fixed-point
logics and their correspondent fragments of second-order logic [67, 72, 104]. More
generally, the study of systematic translations [33] and of transfer results between
logics is central to the contemporary model-theoretic and algebraic7 approaches to
Logic. So is the search for ‘‘characterization results’’ giving structural and meta-
logical conditions that characterize the expressive power of a given language inside
another logic, or characterize a given logic among a class of logics. Many of the
results mentioned in the above sections (including van Benthem’s Characterization
and Safety Theorems, the Janin-Walukiewicz theorem etc.), as well as many of the
results presented in the rest of the volume, are examples in this sense.

After following the work of Johan van Benthem on abstract logical dynamics, it is
now the time to look at the same story from the multiple perspectives of our invited
authors. The papers gathered in part I of our volume explore in depth the
mathematical-computational perspective on dynamics, connecting in interesting
ways with some of the above long-standing research strands pursued by van Benthem.

3.2 The Invited Contributions on Mathematical
and Computational Perspectives

The paper by Erich Graedel and Martin Otto is an insightful survey of the different
notions of generalized bisimulation associated to the various guarded fragments
and their fixed-point extensions, with a particular stress on the complexity results
(e.g. the Graedel-Walukiewicz theorem on the decidability of the fixed-point
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guarded logic) and on the expressive-completeness results that provide the
appropriate analogues for these logics of the van Benthem Modal Characterization
Theorem (or of the Janin-Walukiewicz theorem, in the case of the fixed-point
extensions). As such, this area brings together some of the key concepts and
model-theoretic methods from van Benthem’s work (modalization, bisimulation,
invariance and characterization, fixed points, generalized tree property etc.) with
other, new and very powerful methods (primarily from automata theory).

Yde Venema’s paper continues this strand at a more abstract level, by bringing
together model theory, automata and the theory of coalgebras, developed over the
last 20 years by category-theorists, computer-scientists and logicians. Coalgebras
are maybe the most general working model for dynamical systems today, and they
successfully generalize most of the classical modal notions introduced by van
Benthem: they come equipped with a general notion of coalgebraic bisimulation,
general ways to construct coalgebraic logics, general invariance and character-
ization results, as well as natural ways to extend these results to fixed point logics
by using the appropriate notions of coalgebraic automata. By choosing various
concrete functors, one can obtain as special instances classical modal logic (and
mu-calculus), neighborhood and topological semantics, game logics, probabilistic
modal logics etc. Moreover, taking such an abstract perspective gives us more
insight into results that used to appear impenetrably hard: Venema’s coalgebraic
analysis of the Janin-Walukiewicz proof of their (mu-calculus analogue of van
Benthem’s characterization) theorem gives maybe for the first time an easily
readable and conceptually simple rendering of this proof, while also showing that
it is based on a much more general argument of a coalgebraic nature.

The paper by Balder ten Cate and Phokion Kolaitis is a fascinating exploration
of the ‘‘adventures of logical dynamics’’ in database theory. Databases can
themselves be considered as a very general model for information and knowledge
representation, hence developing an abstract dynamics on databases seems to us an
essential contribution towards a better understanding of information change and
knowledge update. The notion of ‘‘schema mappings’’ embodies this form of
abstract database dynamics, in the spirit of abstract model theory and of van
Benthem’s work on correspondence, structural mappings/relations and transfer of
results between logics. The paper shows how these abstract-logical notions can be
seen to play a key role in the understanding of down-to-earth manipulation of
databases, such as data integration, data exchange and other data-interoperability
tasks. Very much in the spirit of van Benthem’s model-theoretic work is also the
smooth interplay between the structural properties of schema mappings and their
syntactic specifications in various schema-mapping languages. Once again, the
model-theoretic aspects tie up well in this work with the complexity-theoretic ones,
which are obviously of crucial importance to database theory.

The last three papers in this part form a bridge between the abstract-logical
dynamics that is at the core of the mathematical-computational perspective and the
more concrete informational dynamics explored in the next parts of our volume.
The paper by Pietro Galliani and Jouko Vaananen investigates from a logical point
of view the notion of dependency, essential for both database theory and

On the Trails of Logical Dynamics xxvii



mathematics at large. Dependency is an intrinsically dynamic notion, being deeply
connected to van Benthem’s vision of variable substitution as ‘‘update’’. In this
context, dependency is expressed by correlated updates, or if you like by the ‘‘non-
local’’ effect of a local update: changing the value of one variable affects other
(dependent) variables. Indeed, this is exactly how dependency manifests itself as
‘‘entanglement’’ in quantum mechanics: a local measurement may induce non-
local changes. The authors’ axiomatic investigation of the abstract logic of
dependency and independence is enthralling. But, beyond the abstractions, they
also provide an interpretation in terms of beliefs and belief dynamics, that points in
the direction of the concrete dynamics of multi-agent information flow explored in
part II of this volume. Moreover, the game semantics of (in)dependence logic ties
this up with the strategic dynamics in part III.

Samson Abramsky’s paper is a conceptual exploration of a question that is
central for Computer Science, as well as for logical dynamics: what is a process?
In contrast to the purely extensional and well-established notions in Computability
theory (‘‘computable function’’, ‘‘recursively enumerable set’’), the notion of
algorithmic/computational process is intensional, and covers a bewildering
multiplicity of process calculi and other approaches. The conceptual elucidation
of this notion is closely related to the study of appropriate notions of process
equivalence, study that as we saw was initiated by van Benthem (among others)
and actively pursued in his subsequent work. As shown by Abramsky, this leads to
the ‘‘full abstraction problem’’: finding a good representation of all relevant
processes, that gives a common (invariant) representation to equivalent processes.
The paper traces a success story, namely how Abramsky’s game semantics
provides an elegant resolution of this problem for sequential functional processes.
At the same time, the concrete nature of game semantics and especially its multi-
agent and strategic features lead us beyond the purely logical dynamics,
connecting to the logics of game-theoretic interactions investigated in part III.

Finally, the contribution by Hajnal Andréka and Istvan Németi can be
considered as a breathtaking exercise in Meta-Logical Dynamics, in the spirit of
van Benthem’s work on translations [33], transfer and correspondence between
logics [26]. Indeed, the paper gives a systematic comparison between apparently
very different first-order logic axiomatizations of Special Relativity Theory, each
of which seems to talk about different kinds of objects: the logic SPECREL
developed in Budapest is about reference frames, Ax’s Signaling Theory is about
particles and signals, Goldblatt’s approach focuses on the geometry of orthogo-
nality, while the key notion of Suppes’ theory is the Minkowski metric. But the
paper uncovers the deep underlying unity of these theories, and explores in detail
their interconnections, using definability theory (in a version that allows defining
new entities, not only new predicates). A byproduct of this investigation is the
development of a concrete operational semantics for special relativity theory.
Overall, this paper is an excellent example of an application of logical techniques
to the Foundations of Physics as well as to the Philosophy and Methodology of
Science. At the same time, this paper can be said to belong to the concrete
informational dynamics that forms the topic of the next part of our volume.
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4 Informational Dynamics: Time, Space, Knowledge and Belief

We move now to the part of Johan van Benthem’s work, and to the contributions in
our volume, that deal with the logical understanding of ‘‘concrete’’ informational
dynamics: the way information flows between actual epistemic agents through
‘‘real’’ channels (sometimes spatially located), potentially generating a temporal
succession of ‘‘informational events’’.

4.1 Johan van Benthem on Informational Dynamics

Dynamic Epistemic Logic

While originating in the work of Gerbrandy and Groeneveld [132] on public
announcements (independent of, but anticipated by Plaza [177]), and having
acquired its standard framework through the work of Baltag et al. [10] on
epistemic action models, the field of Dynamic Epistemic Logic (DEL) has drawn
inspiration from van Benthem’s ideas from the very beginning (especially through
his influence on the work of Jelle Gerbrandy, Alexandru Baltag and Hans van
Ditmarsch). Johan van Benthem is also the most influential champion of the DEL
approach, as well as one of the most active contributors to this field (through a long
sequence of papers [56, 62, 64, 80, 86, 90], including some with many of his Ph.D.
students [66, 82, 98, 92–94, 101, 105, 119, 134, 157, 158, 198, 203] and other
collaborators [76, 89, 106, 114], as well as through his recent book [102]).

DEL is in fact, not one logic, but a family of logics, or rather a general type of
logical approach to information flow, that subsumes many logical formalisms. In
its most common form, Dynamic Epistemic Logic [10, 123] combines the syntax
of epistemic and dynamic logic, having both knowledge modalities Ka/ (asserting
that / is known to agent a) and dynamic modalities ½e�/ (asserting that / becomes
true after some epistemic event e). However, at a semantic level, DEL combines
the standard relational semantics for static epistemic logic (based on epistemic
Kripke models) with a non-standard semantics for events or ‘‘actions’’ (based on
model transformers, i.e. relations or functions between models, rather than the
usual dynamic relations within a given model). The simplest such epistemic action
is the public announcement !P (also known as ‘‘update’’), corresponding to the
simple old idea of learning by elimination of possibilities: after P is learnt, all the
non-P worlds are deleted. Known as ‘‘conditioning’’ in Probability Theory and
Belief Revision theory, this move was really formalized as an action (i.e. model
transformation) only in DEL. As a consequence, DEL is the first approach that
uncovered the ambiguity underlying the old terminology, by distinguishing
between ‘‘static’’ and ‘‘dynamic’’ conditioning. This simple distinction is at the
basis of Gerbrandy’s solutions to the puzzles posed by Moore sentences and the
Muddy Children, as well as of van Benthem’s solution to Fitch’s Knowability
Paradox and his study of ‘‘self-fulfilling’’ and ‘‘self-refuting’’ sentences.
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More complex epistemic actions are the fully private announcements due to
Gerbrandy [131], the fair game announcements studied in [122] and [9], and more
generally the epistemic action models introduced in [10] and renamed ‘‘event
models’’ by van Benthem. These last ones can represent complex multi-agent
scenarios that are (partially) visible to some and (partially) opaque to other agents,
or even potentially deceiving to some of them. An operation known as ‘‘product
update’’ is used to combine the original (static) epistemic model and the event
model into a new, updated (static) epistemic model, that accurately represents the
agents’ knowledge after the event.

Among the many other contributions of van Benthem to the development of
DEL we mention here: the novel and conceptually fertile notion of conditional
common knowledge [76], introduced initially by van Benthem as a tool for the
complete axiomatization of the logic of public announcements and common
knowledge; the study of the limit behavior of iterated public announcements and
their application to game-theoretic notions [79]; the study of the dynamic-
epistemic logic of distributed knowledge and of the ‘‘actualization’’ of distributed
knowledge via public communication [73]; the investigation of the properties of
the dynamic inference system induced by public announcements [63]; the
introduction (in joint work with van Eijck and Kooi) of a hierarchy of ‘‘levels of
conditional knowledge’’ known as epistemic PDL8, and its use as a static logical
basis for a new axiomatization of DEL [76]; the subsequent investigation of
stronger logics that are ‘‘product-closed’’ (i.e. closed under product update with
any epistemic actions): not only epistemic PDL, but also epistemic mu-calculus
[88] and other logics; the extension of DEL to fact-changing events [76]; the
exploration of games, strategies, rationality and game-theoretic solutions using
DEL [56, 77–79]; analogues of DEL for preference change [82, 77]; the systematic
comparison and merge of DEL with Epistemic Temporal Logic [92] and with other
frameworks for interaction such as STIT logics [112]; the dynamic logic of
questions and issues, leading to the development of ‘‘interrogative DEL’’ [105];
extensions of DEL dealing with the inferential dynamics and awareness [101], as
well as the evidential dynamics and evidence-managing actions [106]; etc.

Finally, we want to stress one other line of research within DEL, to which van
Benthem made key contributions: the development of probabilistic versions of
DEL. Kooi [165] was the first to introduce a Probabilistic Public Announcement
Logic, while other authors [2, 16] developed belief-revision-friendly versions
dealing with ‘surprise’ events (of probability 0). Kooi’s setting was later extended
by van Benthem [60] by decisively enriching event models with occurrence
probabilities (a probabilistic version of the usual notion of precondition of an
action). A full-fledged Probabilistic Dynamic Epistemic Logic, obtained by adding
to the above setting observation probabilities (as a probabilistic version of the
doxastic accessibility relations on events in standard DEL), was developed by van
Benthem et al. [93], and was later extended to infinite models by Sack [187].
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Epistemology and Belief Revision

Johan van Benthem played a central role in the investigation of dynamic logics for
Belief Revision Theory (BRT), and especially in the development of a ‘‘belief-
revision-friendly’’ version of DEL: essentially, it seems to us that the two fields are
currently in the process of merging. The first step in this direction (using a
quantitative product update rule based on Spohn ordinals) was taken by Guillaume
Aucher under van Benthem’s supervision [2]. The next most significant step was
the introduction of a qualitative logic of conditional beliefs and its use as a static
basis for formalizing updates (public announcements) over belief-revision
structures (called ‘‘plausibility models’’): this was done independently at about
the same time by van Benthem [80] and Baltag and Smets [13]. Moreover, van
Benthem [80] formalized ‘‘softer’’, more ‘‘revisable’’ versions of learning
(‘‘upgrades’’), by internalizing in the logic some of the most popular revision
methods used in BRT (Spohn’s lexicographic revision and Boutilier’s minimal
revision). Baltag and Smets went on to propose a qualitative product update
construction for general belief-revision with arbitrary event models [14, 15, 17],
construction that was later called ‘‘Priority Update’’ by van Benthem, who
generalized this idea further to a conception of ‘‘belief revision as a special case of
preference merge’’, using concepts from Social Choice Theory [81]. In a separate
line of work with Liu [82], van Benthem proposed a different kind of
generalization of belief upgrades, in the form of relational transformers expressible
in PDL format; this idea was later combined with epistemic PDL and with fact-
changing actions (substitutions) by van Eijck [76], and further generalized in the
so-called GDDL by Girard et al. [138].

Over the years, van Benthem has applied dynamic-logical concepts and
techniques to the elucidation of some of the core issues in Epistemology [71]. In
[64], he proposed an analysis of Fitch’s Knowability Paradox, based on a
‘‘dynamification’’ of the possibility operator used in Fitch’s argument: interpreting
‘‘w is knowable’’ (K/) as ‘‘/ could become known by learning some more
information’’ (9P½!P�/). On the technical side, this lead to the introduction and
axiomatization of the so-called ‘‘arbitrary announcement’’ modality, by Balbiani
et alia [4]. On the conceptual level, it allowed van Benthem to give a sophisticated
dynamic-epistemic treatment of the Fitch Paradox. In other work [95] he dealt with
the problem of logical omniscience, by developing a non-omniscient version of
DEL, that can capture the dynamics of inferential actions, such as the deduction of a
new fact by the application of an inference rule, or the learning of a new rule etc. In
work with Pacuit [106], he developed a version of DEL that combines belief
revision with evidence-management actions, getting a better hold on the
philosophical concepts of justified belief by making explicit the evidential basis
of our beliefs and the way in which evidence-gathering can lead to belief revision.
In subsequent work [102], he took a new look at current epistemological debates
from a belief-revision perspective: at the role played by informational correlations
and dependencies in the establishment of knowledge; at the use of the notion of
‘‘safe belief’’ introduced by Baltag and Smets [17], as a first step towards a more
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general formalization of knowledge as ‘‘dynamic robustness’’ of belief (in the face
of new informational events); at the importance of falsification and revision for
epistemic logic. These themes came together in the so-called ‘‘Erlangen program
for epistemology’’ proposed by Baltag [6], as a van Benthem-inspired epistemo-
logical version of Felix Klein’s famous Erlangen program for mathematics.
Recently, this line of investigation has led to a general conception of knowledge as
a ‘‘dynamic-doxastic equilibrium’’, conception developed in van Benthem’s
forthcoming book [114]. The idea is that various types of ‘‘acceptance’’ (belief,
strong belief, safe belief, various forms of knowledge) are characterized in terms of
being invariant to different types of dynamics: they are ‘‘fixed points’’ of specific
types of informational events. (You ‘‘know’’ something when it is redundant to
learn it; you believe something when it is redundant to be persuaded of it.) Beyond
this ‘‘fixed-point theory of acceptance’’ (with roots in classical epistemological
texts by Lehrer, Klein, Hintikka, Stalnaker, Rott etc.), the book calls for a change of
focus (from the ‘‘static’’ concepts of knowledge or acceptance) to the notion of
epistemic interaction, as a self-correcting, self-testing, evidence-gathering, truth-
seeking, reality-oriented, socially-involved process of iterated belief revision.
Other lines of van Benthem’s thinking on the dynamic-logical aspects of
epistemology were further pursued by his Stanford students Wes Holliday,
Tomohiro Hoshi and Thomas Icard [149, 157, 150, 151].

Long-Term Doxastic Dynamics: Time, Protocols, Learning

We arrive in this way at the notion of belief-changing process that unfolds over
time. Instead of the one-step input-output perspective of standard BRT (and of
standard DEL!), we are now looking at a temporal succession of informational
events, or even a branching tree (or forest) of such events. Johan van Benthem,
well-known in his youth for his contributions to temporal logic [29, 32] (especially
to the logic of time intervals), has returned in the last years to the study of time
after a long detour through dynamic logics of action. But now the focus is on
temporal aspects of information flow. In a series of joint papers [85, 92, 96], van
Benthem and his collaborators gave an explicit formalization of the implicit
temporal processes generated by DEL-style event models; compared this setting
with epistemic-temporal logic (ETL) as investigated by Parikh and Ramanujam
[176] (or in a different version by Fagin et al. [129], under the name of
‘‘interpreted systems’’), by showing how DEL-generated models can be embedded
in ETL forests; characterized the forests corresponding to DEL-generated models
(for both the classical version of DEL with ‘‘hard’’ information, and the belief-
revision-friendly version with ‘‘soft’’ information), in terms of general and natural
semantic constraints (e.g. Perfect Recall, ‘‘No Miracles’’ etc.); compared the
complexity and the expressive power of the various DEL-related fragments of
ETL; extended DEL by adding procedural information about the long-term
constraints of the given informational processes, obtaining the notion of DEL
protocol, and axiomatizing the resulting dynamic protocol logic; used both
temporal and fixed-point extensions of these logics to express long-term properties
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of epistemic protocols; and applied this framework to the analysis of game trees,
extensional games and strategies.

Formal Learning Theory originates in the computational investigation [139] of
the long-term truth-tracking power of the various ‘‘learning methods’’ that are
available to a single agent observing an infinite stream of incoming data. In recent
years, it has been used for epistemological purposes by Kelly [163] and Hendricks
[152, 153]. Its main advantage is that it doesn’t make any ‘‘rationality’’
presuppositions about the learning methods (unlike DEL, the AGM approach to
Belief Revision, or the Bayesian theory of credence update), thus being able to
compare and evaluate various paradigms from a ‘‘neutral’’ point of view: the only
criterion for success is... success! (At truth-tracking, of course.) A first learning-
theoretic analysis of updates was done by van Benthem’s students Gierasimczuk
and Dégrémont [120], and a more thorough investigation of the learning-theoretic
power of various (DEL-versions of) belief-revision methods over plausibility
models was done by Gierasimczuk in her Ph.D. thesis [134] under van Benthem’s
supervision , as well as in her joint work with de Jongh [135] and with Baltag and
Smets [21].

Generalized Structures for Evidence-Based Knowledge: Spatial, Topological
and Neighborhood Models

From a conceptual perspective, the epistemic notion of ‘‘accessibility’’ can be
understood at a first approximation in terms of a spatial-topological notion such as
‘‘closeness’’. From a purely mathematical perspective, epistemic logic can be
considered as a special case of ‘‘spatial’’ logics: Kripke semantics for the epistemic
logic S4 is just a type of topological semantics (itself a special case of the more
general neighborhood semantics) and the ‘‘knowledge’’ modality is a special case
of the topological interior operator [197].9 Philosophically, the topological
semantics models a notion of ‘‘evidence-based knowledge’’: the open sets
represent the agent’s evidence, and hence according to this interpretation a
proposition (set of possible worlds) P is ‘‘known’’ if there exists some ‘‘true
evidence’’ (i.e. an open set O containing the real world w) that entails P (i.e.
w 2 O � P).

Johan van Benthem’s interest in spatial logics is in fact deeper and goes way
beyond the needs of epistemic logic [58, 59], but he has been particularly
interested in the topological interpretation of knowledge, and its generalization to
neighborhood semantics. In joint work with his Stanford student Sarenac [70], he
investigated the properties of common knowledge in a topological setting. Starting
from the work of Barwise [22] on distinguishing the various concepts of common
knowledge (the fixed-point notion and the countable iteration version) that are
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lumped together by the Kripke semantics, they proposed a new topological
concept of common knowledge (given by the standard product topology, induced
by the topologies underlying each agents’ knowledge), stronger than the others,
and closer to Lewis’ original conception of ‘‘having a shared situation’’. This line
of inquiry was pursued further in Sarenac’s Ph.D. thesis [189]. van Benthem’s
Amsterdam students Raul Leal and Jonathan Zvesper went on to propose a
topological version of DEL, obtained by generalizing the update product operation
using the product topology, and to axiomatize (the finite-event fragment of) this
logic, as well as its even more general topological version [167, 203].

In recent joint work [106, 110, 116], van Benthem and his collaborators use
neighborhood semantics to develop a very general model for evidence, evidential
dynamics and justified belief. In fact, the authors show that the evidence structure
induces in a natural way a plausibility order on possible worlds, which encodes,
not only beliefs, but also a system of belief revision.10 The neighborhoods are once
again interpreted as pieces of ‘‘evidence’’ possessed by the agent, but now this can
also be false evidence: unlike topological neighborhoods, general neighborhoods
of a given point (world) may fail to contain that point. Moreover, the available
pieces of evidence might be mutually inconsistent; but nevertheless van Benthem
and Pacuit show how this will still give rise to consistent beliefs in a natural way.11

Finally, unlike in a topological setting, the agent cannot always ‘‘combine’’ two
pieces of evidence into one piece. This captures a form of bounded rationality. The
authors study the dynamics of evidence induced by various actions: updates,
upgrades, combining pieces of evidence, acquiring new evidence etc.

Once again, we see how the search for the right level of abstraction and for the
best logical-mathematical framework for dynamics continues, now even in the
context of ‘‘concrete’’ informational dynamics. Indeed, as we already saw in
section 2.2, the back-and-forth shift of perspectives between abstract and concrete
dynamics represents a constant feature of van Benthem’s work across many
decades, and so this theme will reoccur throughout this volume. But now is the
time to look at informational dynamics from our invited authors’ perspectives.

4.2 The Invited Contributions on Informational Dynamics

In his penetrating contribution, Jan van Eijck gives an excellent survey of the field
of Dynamic Epistemic Logics, with a particular focus on epistemic PDL and fact-
changing actions (substitutions), and their connections with logics for computer
programs, such as Hoare logic and Propositional Dynamic Logic. This sweeping
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bird’s view of DEL is not limited to the purely theoretical work, but is
complemented by some beautiful applications to practical computational tasks.
Indeed, the author nicely illustrates DEL theory with applications to navigation
problems (on a grid) and to epistemic planning using DEL protocols. He ends with
presenting a long-standing open problem (finding a structural characterization of
when two epistemic action models induce equivalent updates), some partial
solutions to this problem proposed in his own joint work [126, 193], and a brief
note on some of his very recent results on probabilistic DEL [127].

The paper by Patrick Girard and Hans Rott has two sides. On the one hand, the
paper contains an insightful philosophical reflection on the epistemological
significance and the interpretation of the main concepts and results from Belief
Revision Theory (BRT) and Dynamic Epistemic Logic (DEL), including
discussions of the negative introspection for knowledge, the mis-identification of
Segerberg’s irrevocable belief with knowledge, and the Limit Assumption. On the
other hand, the paper also includes a sophisticated technical contribution to the
dynamic logic of belief revision, based on having a static logic with doxastic
modalities for strict and non-strict plausibility and for epistemic indistinguish-
ability, and a dynamic logic using doxastic PDL-transformations (in the style of
Girard et al. [138]), to simulate operations such as expansion, revision, contraction
and the very interesting two-dimensional belief change operations introduced by
Rott [183]), e.g. bounded revision and revision by comparison. This is overall a
fascinating contribution to the on-going efforts towards building bridges between
formal logic and Mainstream Epistemology.12

The next three papers are about the long-term temporal aspects of epistemic
dynamics. First, the chapter by Valentin Goranko and Eric Pacuit is a
comprehensive and very insightful overview of the various approaches to the
temporal logic of knowledge, and of their mutual relations. After giving an
introduction to epistemic logic on the one hand, and to (basic) temporal logic on
the other hand, the authors discuss the logics obtained by simple fusions between
the two. They move on to what is by now the standard approach to temporal-
epistemic logic in Computer Science, the framework of interpreted systems, due to
Halpern and Vardi and developed further in the classic [129]. They then present the
protocol-based approach of Epistemic Temporal Logic (ETL), introduced by Rohit
Parikh and Ram Ramanujam, after which they look at temporal frameworks with
uncertainties between histories (closely related to the STIT models widely used in
philosophical literature, and which form the topic of the chapter by Ciuni and
Horty in this volume). Next, they take a look at DEL and DEL protocols, DEL’s
embedding into ETL, and van Benthem’s abstract characterization of the ETL
models that are generated by uniform DEL protocols. Then they briefly present
logics (such as ATL or STIT) that investigate the interaction between players’
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knowledge and their abilities to achieve their goals in games. They discuss the
differences between players’ a priori information (that they have prior to the actual
play) and their empirical information (gained during the play). Finally, they
present the work of Sack, Yap, Hoshi and Renne [159, 178, 179, 185, 186, 188] on
Temporal DEL (TDEL). Overall, the amount of material covered in this chapter is
truly breathtaking, and amazingly this is done without sacrificing in any way the
rigour and clarity of exposition. On the contrary: the paper’s systematic
comparative discussion of all these approaches is extremely insightful, bringing
much-needed clarity and order to (what at first sight looks like) the lush
impenetrable jungle of temporal-epistemic logics.

In their contribution, Nina Gierasimczuk, Vincent F. Hendricks, and Dick de
Jongh map the exciting new research area opened up in recent years at the
interface between Formal Learning Theory and Logic. After presenting the work
of Kelly [161, 162], Martin and Osherson [171, 172], Kelly et al. [164] on the
connections between Belief Revision Theory, Logic and Learning Theory, the
paper focuses on the ideas and results uncovered in the recent work done in
Amsterdam by Gierasimczuk and her collaborators [21, 120, 121, 133, 133, 135,
136], under the influence of van Benthem’s ‘‘dynamic turn’’ in Logic. This
includes results on the learning-theoretic power of standard belief-revision
methods (conditioning, lexicographic revision and minimal revision) over
epistemic spaces, on computable learning by conclusive updates, on preset
learning and fastest learning, and on capturing notions of learnability in both
Dynamic Epistemic Logic and Temporal Epistemic Logic. The paper ends with a
discussion of the significance of this line of research for scientific methodology
and other key issues in Philosophy of Science.

Kevin Kelly’s paper is a far-reaching attempt to give a new foundation for
Epistemology, based on a new semantics for inductive knowledge. Solidly anchored
within the learning-theoretical approach to Epistemology championed by Kelly in
his previous papers and in his book, the chapter looks at an epistemic agent as a
‘‘learner’’, who is faced with a potentially infinite sequence of incoming data and
who is continuously (re)computing her beliefs based on the available information.
The beliefs are represented in a ‘‘hyper-intensional’’ way, so that there is no logical
omniscience problem. The paper argues that the sensitivity and safety conditions
proposed by Nozick, Sosa and others are too strict to be useful for empirically-
based inductive knowledge, especially in their ‘‘negative’’ side (the requirement
that, if the given belief were false, the agent wouldn’t believe it). Instead, the author
proposes a notion of knowledge that combines true stable belief13 at the current
moment in the actual world with avoidance of error in the limit (rather than at the
current moment) in counterfactual worlds: if the belief were false, the agent would
eventually stop believing it (possibly after a time lag, used for acquiring more data).

xxxvi On the Trails of Logical Dynamics

13 This fits well with the ‘‘defeasibility’’ theory of knowledge, shown by Gierasimczuk to agree
with the learning-Theoretic notion of identifiability in the limit. See the chapter by Gierasimczuk,
Hendricks and de Jongh.



A formalization of this conception is proposed, using a complex multi-modal
language (with no less than 10 modal operators!), whose semantics is given in terms
of computational learning models. Kelly uses this setting to address an impressive
number of well-known epistemological issues and paradoxes: the problem of
inductive skepticism, Fitch’s paradox, Duhem’s problem, deductive closure of
knowability, the questions whether inductive knowledge is deductively closed and/
or (positively, or negatively) introspective, etc.

The chapter by Wiebe van der Hoek and Nick Bezhanishvili is a much-needed
survey of the vast landscape of epistemic structures. Starting with epistemic (and
doxastic) Kripke models, as well as their multi-agent generalizations, going then to
epistemic temporal models and interpreted systems, and finally moving to the
more general topological and neighborhood models for knowledge and belief, the
authors give a sweeping overview of the wide range of mathematical structures
used in epistemic/doxastic logic. Among other things, they touch on the
fascinating topics of the spatial aspects of knowledge and of the connections
between epistemic logic and spatial reasoning. In addition, they give a very good
introduction to the more technical aspects of epistemic logic: for each of these
types of structures, they explain the appropriate notions of canonical models,
completeness proofs and bisimulation, and present the appropriate results on
definability, expressivity and characterization. They also give an insightful
discussion of more conceptual issues, such as: the way in which topological
structures can represent the subtle differences (first stressed by Barwise [22])
between various notions of common knowledge, including the work by van
Benthem and Sarenac on modeling common knowledge using topological products
[70]; the problems raised by the topological semantics of knowledge, etc.

The last two papers of this part are about the logic of probabilistic beliefs.
Lorenz Demey and Barteld Kooi give a conceptually insightful and technically
sophisticated overview of probabilistic epistemic logics and of their dynamic
extensions. They later include Probabilistic Public Announcement Logic, as well
as the full-fledged Probabilistic Dynamic Epistemic Logic of van Benthem,
Gerbrandy and Kooi. The authors discuss subtle features, such as the problems
posed by updating with higher-order information, which requires a distinction
between actual public announcements (the ‘‘real thing’’) and hypothetical
announcements (essentially equivalent to simple Bayesian conditioning). They
explain the concept of occurrence probability and its use in the concrete
applications of Probabilistic DEL, and discuss van Benthem’s recent thoughts
[109] about the lessons that the usual, qualitative DEL might still have to learn
from these probabilistic notions. At the end they tackle a number of technical and
conceptual issues, among which we mention the problems posed by learning
surprising information (i.e. which has prior probability 0), the game-theoretic
applications of probabilistic DEL (in particular, gaining a better understanding of
Aumann’s well-known ‘‘Agreeing to Disagree’’ theorem), and the so-called
Lockean thesis, which identifies belief and ‘‘high probability’’ (above a certain
threshold). They discuss the so-called Lottery Paradox, showing that the Lockean
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thesis in its original form is incompatible with the commonly accepted principle of
additivity of beliefs.

Hannes Leitgeb’s paper starts where the one of Demey and Kooi ends: with the
problems posed by the Lockean thesis and by other attempts for connecting the
qualitative and the probabilistic accounts of belief. In a series of recent papers,
Leitgeb has developed and defended a principled solution: the stability theory of
belief, requiring that the set of doxasticaly-possible worlds must be ‘‘stable’’, i.e.
its subjective probability stays high after learning any new information which
doesn’t contradict it. In this paper, Leitgeb first pinpoints the fundamental intuition
that lies behind the Lockean thesis and other natural attempts for unification: the
intuition that belief ought to be understood as a ‘‘simplification’’ of subjective
probability. He then proposes a precise mathematical formalization of the concept
of ‘‘simplification’’, in terms of approximating probability by means of belief or
disbelief. Finally, he shows that the stability theory of belief fits the bill: the ‘‘best
approximations’’ of the given subjective probability measure are exactly the stable
sets. It is worth noting that, even beyond the specific justification given here,
Leitgeb’s theory fits perfectly with van Benthem’s Logical-Informational
Dynamics and the above-mentioned ‘‘Erlangen program for epistemology’’ [6],
underlying the conception developed in van Benthem’s forthcoming book [114].
Recall that, according to this program, various types of ‘‘acceptance’’ are
characterized in terms of invariance under various types of dynamics. Lehrer’s
defeasibility theory, as well as the simplified version identified by Rott as the
‘‘stability theory of knowledge’’, fit well within this general ‘‘fixed-point’’
conception. Though developed independently from the above-mentioned ideas and
motivated by a very different research agenda, Leitgeb’s theory of belief could be
seen as one of the most beautiful and philosophically richest developments of this
general program.

5 Games

We move on now to a more sophisticated kind of dynamics, obtained by adding to
the picture the agents’ preferences or payoffs. The assumption of ‘‘rationality’’
converts preferences into intentions or goals: a rational agent intends to maximize
her payoff. The dynamics becomes goal-oriented: this is what van Benthem calls
‘‘rational dynamics’’. The interplay between information, actions and preferences
leads to the notions of decision problem and planning, and in the multi-agent case
to the concepts of game and strategy. Games are temporal-epistemic-payoff
structures, in which strategic reasoning, competition, cooperation, equilibrium, the
formation of coalitions and other complex dynamic-epistemic-intentional phe-
nomena play key roles.
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5.1 Johan van Benthem’s Work on Logic and Games

We are thus now in the realm of Game Theory, but this doesn’t necessarily mean
that we must leave Logic behind: on the contrary, the focus is on the interplay
between the two. Johan van Benthem’s long-standing interest in the issues lying at
the interface of Logic and Game Theory has manifested in a long series of papers
[37, 42, 56, 57, 61, 65, 66, 68, 69, 74, 75, 78, 79, 83, 87, 98, 107], culminating in
his latest book Logic in Games [113]. According to his view, ‘‘games provide a
rich model for cognitive processes, carrying vivid intuitions’’ (op. cit, p. 7), which
explains why they provide a crucial tool for the study of informational dynamics.

Logical games versus the logic of games. The first important distinction made by
van Benthem is between on the one hand the view of ‘‘logic as games’’, view
embodied in a multitude of logical games, and on the other hand the logic of
games, approach that manifests itself in a variety of logics for reasoning about
games. While the first is a game-theoretic approach to logic, the second provides a
logic-based perspective on games.

Games in Logic. In his work [37, 38, 113] van Benthem has looked at various
types of argumentation games (e.g. Lorenzen’s dialogue games) and (related to
this) proof-theoretic games; at semantical evaluation games (including non-
classical versions such as the Hintikka-Sandu semantics of independence-friendly
logic using games of imperfect information); at model-checking games; at model-
comparison games (e.g. the bisimilarity game) and model-building games etc.

New games for new logics: from Sabotage to Learning. van Benthem is also an
inventor of new games, usually each coming with its own logic. Besides a number
of ‘‘knowledge games’’ [48, 56], the most interesting such example is van
Benthem’s Sabotage Game [68], which is a ‘‘gamification’’ of a known search
problem (the Graph Reachability problem). The Traveler is trying to reach a
certain node of a graph by navigating across the connecting arrows, while at each
step the Saboteur can cut some connection (to try to prevent the traveler from
reaching its destination). A more abstract interpretation (with changed payoffs)
gives rise to the Learning Game (in which the Saboteur is replaced by a Teacher,
who is trying to ‘‘help’’ the Student stay on the right path by cutting ‘‘wrong’’
connections). There is an associated logic (the Sabotage Modal Logic), and
numerous generalizations: any algorithmic task can be ‘‘gamified’’ into a sabotage
version by adding an obstructing player.

Logical foundations of games. In a number of papers, van Benthem investigates
abstract logical foundations of game-related concepts. Crucial earlier themes, that
dominated abstract logical dynamics, return in more concrete game-theoretic
incarnations: notions of game equivalence (when are two games the same?);
natural operations on games; connections between games and process-graphs; the
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use of fixed-point logics on game trees, for expressing notions of equilibrium,
Backwards Induction or other solution concepts [56, 57, 78, 79, 98].

Towards a ‘‘Theory of Play’’: multi-modal dynamic logics for games. Going
towards more concrete features of games, van Benthem and others have looked at
multi-modal logics that combine various types of modalities to capture different
aspects of game-theoretic interactions: game logics based on dynamic-epistemic
logic [56, 87, 113]; the use of belief-revision conditionals to capture strategic
reasoning; modal logics of preference and best action [77]; combinations of
temporal and epistemic logics; logics that make explicit the role of strategies as
first-class objects [108, 113]. In more recent work [103, 107, 113], van Benthem
and his collaborators argue that the combination of Logic and Game Theory that
has developed in the last decade is about to reach a critical mass, giving rise to a
new field: ‘‘we are witnessing the birth of something new which is not just logic,
nor just game theory, but rather a Theory of Play’’ [107].

We have now seen how van Benthem’s conception about games and logic has
unfolded, from logic games to game logics, from knowledge games to the
‘‘gamification’’ of algorithmic tasks, and from the logical foundations of traditional
Game Theory to the new modal foundations of a Theory of Play. It is time to look at
the story of games and logic from the perspective of our invited authors.

5.2 The Invited Contributions on Logic and Games

The chapter by Giacomo Bonanno and Cédric Dégremont is an excellent survey of
the work on the ‘‘Theory of Play’’ by van Benthem and his collaborators [107], as
well as a thorough comparison of this work with other logic-based approaches to
games and strategic interaction. The paper contains insightful discussions of key
conceptual issues at the interface of game theory and logic: the problem of
identifying the best modal languages to reason about extensive games; the relations
between logical characterizations of game-theoretic concepts and their computa-
tional analysis; how van Benthem’s ideas give a new perspective on the question of
under what conditions two games can be considered the same; when and how can
the convergence of iterative solution concepts be analyzed in fixed-point modal
languages, in the style of van Benthem in [79]; how the results of van Benthem and
Geerbrand [98] on characterizing backward induction in fixed-point languages can
be used to give different interpretations to this solution concepts; etc.

The paper by Thomas Ågotnes and Hans van Ditmarsch is a fascinating
investigation in the spirit of van Benthem’s Theory of Play. The authors present
new results on the distinction between knowledge de dicto and de re for individual
agents and for coalitions; they use dynamic modalities that quantify over various
classes of public announcements to capture the group’s coalitional abilities in
knowledge games. They also isolate and study two interesting classes of such
games: public announcement games and question-answer games, and finally they
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look at the ‘‘state of the art’’ in the dynamic-epistemic analysis of some ‘‘real’’
games (such as chess, bridge, cluedo, pit and sudoku).

Sergei Artemov’s powerful piece gives a refreshingly different perspective on
games: while most logics for games are developed in a semantic manner, the
author adopts a proof-theoretic approach. More precisely, he proposes a
‘‘Syntactic’’ Epistemic Logic for games, in which the conclusions are deduced
directly from the syntactic description of the game (rather than from the, typically
huge, model of the game). In this setting, Artemov formalizes Nash’s notion of
‘‘definitive solution’’ of a game (prescribing that ‘‘a rational prediction should be
unique, that the players should be able to deduce and make use of it’’) and studies
the existence of such definitive solutions, showing that their meaning depends on
the underlying notion of rationality. For Aumann rationality, they are not
equivalent to Nash equilibria: games with multiple Nash equilibria cannot have
definitive solutions, and some games with a unique Nash equilibrium have
definitive solutions, but others don’t. However, each Nash equilibrium can be a
definitive solution for an appropriate refinement of Aumann rationality. The
conclusion, similar to the one of Aumann [3], is that equilibrium is not the way to
look at games; the most basic concept should be: to maximize your utility given
your information.

In his beautiful paper, Ramanujam proposes a new formal framework, based on
constructible player types, realizable by automata. This requirement, adopted as a
constructive implementation of van Benthem’s slogan ‘‘the players matter’’ [113],
gives a way to take into account the players’ resource limitations, their finite
memory structure and their selective process of observation and update. It also
helps to keep the logical complexity under control, by avoiding the exponential
explosion that is so typical for most game-theoretic analyses. Ramanujam goes on
to present a logic for specifying player types, and uses it to study rationalizability
and other solution concepts. Last but not least, one of the most original and far-
reaching features of Ramanujam’s approach is his conception of player types and
strategies as evolving entities. So, while games were already dynamic objects,
Ramanujam’s frameworks amounts to a further, higher-level ‘‘dynamification’’ of
Game Theory, in the spirit of van Benthem’s Theory of Play.

In his provocative contribution, Gabriel Sandu starts from van Benthem’s
friendly criticism of the Game Theoretical Semantics (GTS), and in particular of
the IF (Indepencence Friendly) Logic, proposed by Hintikka and Sandu. The
objection was that GTS presupposes that the denotations of the basic lexical items
are already shared knowledge between the players, but it does not seem to give us
any insight into how these shared meanings came to be established. To address
this, Sandu takes a fresh look at a different kind of games: the signaling games,
proposed by Lewis precisely to explain the emergence of conventions (including
shared meanings). Lewis’ games had the defect of allowing for some undesirable
equilibria: the so-called non-strict (noncommunicative) equilibria, which do not
correspond to conventions. Sandu argues that Lewis’ signaling games are a bad
formalization of their intended scenarios, and he proposes a new formalization of
signaling games, as win-lose extensive games of imperfect information. By
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looking then at the strategic form of these games, Sandu observes that they differ
in an essential way from Lewis’ games: the Sender and the Receiver are now on
the same side, playing against Nature and trying to coordinate no matter what is
the state of Nature. This move eliminates Lewis’ noncommunicative equilibria.
Moreover, these games can be encoded as sentences in IF logic. So game-
theoretical semantics does in fact tell us something interesting about the
emergence of shared meanings: the signaling games that lead to linguistic
conventions are essentially IF games!

6 Dynamic Agency

Games are not the end of the story of Intelligent Agency. Full-fledged agency goes
beyond multi-agent epistemic actions and even beyond strategic rationality: it is
about the agents’ powers and their forcing abilities; their free will, their choices
and control of options over time; their active inquiry (via actions such as raising
questions, or answering them); their capacity for argumentation and deliberation;
their ever-changing preferences, their conflicting desires, their mixed motives and
intentions; their evolving norms and their moral conflicts.

6.1 Johan van Benthem on Agency

In recent years, Johan van Benthem and his collaborators have been working on
extensions of dynamic logics meant to deal with each of the more sophisticated
aspects of agency mentioned above. We will now proceed to look at these features
one by one from the perspective of van Benthem’s recent work.

Agents’ Powers to Choose and Act

Dynamic logics in the usual style (including PDL and DEL) may use linguistic
expressions such as ‘‘agent a makes a public announcement that P’’, or ‘‘agent a
performs action a’’, but in reality they can only express changes affecting the
agents (‘‘events’’), rather than actions performed (in a deliberate manner) by the
agents. DEL gives a nice semantics for informational events and their effects, but
not for the agents’ control over events, their freedom (or lack of freedom) to
choose among the possible actions. In contrast, formalisms such as Belnap’s See-
to-it-that Logic (STIT) and Coalition Logic were designed precisely to reason
about choices, abilities, actions and freedom (while Alternating Temporal Logic,
though not designed for this explicit purpose, can also capture such features of
agency).

In [112], Johan van Benthem and Eric Pacuit make a systematic comparison
between these two apparently very different formal approaches, and make some
concrete proposals towards combining the two. Their first observation is that, at a
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purely formal level, the semantics of the STIT operator is very similar to the one of
the knowledge modality in a fully introspective (S5) epistemic logic. They show
that this similarity is not a purely formal accident: the STIT operator really
corresponds to a form of knowledge, namely what the authors call ex interim
knowledge (the knowledge that a player has right after choosing her action or
strategy, but before observing the other players’ actions). They use this
observation to derive a faithful embedding of STIT into the Matrix Game Logic
introduced in [79]. This last formalism is a dynamic-epistemic-style logic of
games, with Kripke models having as possible worlds all the strategy profiles in a
given game (in strategic form), and with two accessibility relations for each agent
i: an ‘‘epistemic’’ relation � i, relating profiles that agree on i’s strategy, and a
‘‘freedom’’ relation 	i, relating profiles that agree on all the other agents’
strategies (though may disagree on i’s strategy). The first describes what agent i
knows (essentially, she only knows her own strategy), while the second describes
i’s range of freedom (i.e. her alternative choices of action, assuming fixed the
others’ choices). But on the other hand, the first modality ½ � i�/ really captures the
STIT operator: the properties that i ensures, no matter what the others do.14

In another line of investigation in the same paper, the authors extend the PDL-
style labelled transition systems (in which transitions bear labels denoting events)
with new labels indicating the control (or the range of choices) available to the
agent who does the action. In this analysis, Actions = events + control.

The Dynamics of Inquiry: Question-Raising Actions and Issue Management

Real agents do not just learn. They seek the answers to specific questions: they
always come endowed with their own ‘‘issues’’, their interrogative agenda, which
guides their learning and their other interactions. They may also raise new
questions, thus trying to interrogate Nature or other agents. They may answer
others’ questions (or their own).

Building on previous DEL-style work on questions by Baltag [5], van Benthem
and Minica [105] develop an Interrogative version of DEL. Starting from the
standard analysis of questions as partitions (grouping together in the same cell
worlds in which the answer is the same), the authors introduce epistemic issue
models. These are Kripke models endowed with two equivalence relations: an
epistemic relation � and an ‘‘issue’’ relation 	. The last embodies (the partition
induced by) all the agents’ questions. In addition to the standard S5 operator for
knowledge, the language has two interrogative operators: Q/ is the Kripke
modality for the issue relation, expressing the fact that / is entailed by the (true)
answer(s) to the agent’s question(s); while R/ is the modality for the intersection
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�\ 	, thus capturing a form of conditional knowledge. Indeed, R/ means that the
agent ‘‘knows’’ / conditional on the (correct) answers to her questions: if given
these true answers, the agent would be able to derive /. Various actions of ‘‘issue
management’’ are considered: resolution is the action by which the agent’s
questions are answered (so that her new epistemic relation is given by �\ 	);
while refinement is the action by which her issue relation is refined to incorporate
her knowledge (so that her new issue relation is �\ 	, i.e. the strongest question
that she can answer if she learns the answers to all her questions). The authors
formalize the complete dynamic logic of these interrogative actions, then move on
to the multi-agent case. They extend DEL event models with ‘‘issues’’ (about the
current event), similarly to the way they extended epistemic models to issue
models, and they introduce an interrogative version of the usual DEL product
update.

In Minica’s Ph.D. thesis [173], written under van Benthem’s supervision, one
can find a complete DEL-style logic for interrogative product update, as well as
applications to more sophisticated scenarios (such as informative questions, whose
preconditions give new information to the listener). A more thorough discussion
and related open questions can be found in [102].

Agents’ Preferences and Their Dynamics

Starting with his older work with van Eijck and Frolova [46], continuing with his
work with Otterloo and Roy [77], Liu [82], Girard and Roy [94], as well as the
Ph.D. theses by Liu [169], Roy [184], Girard [137] and Zvesper [203], written
under his supervision, and then with his more recent papers [91, 117] and books
[102, 113], Johan van Benthem has worked towards a dynamic approach to
preference logics. The basic semantic setting is given by modal betterness models,
i.e. Kripke models with a reflexive and transitive ‘‘betterness’’ relation � between
worlds. The basic language involves a preference modality ½ � �, in which ½ � �/
means that / holds in all the worlds that are at least as good as the actual world (or,
equivalently, that all non-/ worlds are worse than the actual one). This syntax is
extended to richer languages in [137] and [94]. The preference modality is a very
useful tool, since in combination with the standard dynamic modalities it can be
used to express interesting features of the interplay between preference and action,
such as various notions of optimality and rationality, including the backward
induction solution [77].

To obtain a preference relation in the usual sense (between propositions, i.e.
sets of worlds, rather than between individual worlds), one has to ‘‘lift’’ the
betterness relation to the level of sets. In [94] and [169], various relation-lifting
proposals are discussed, showing that von Wright’s celebrated approach
corresponds to a very specific choice among others. For many such choices, the
resulting preference operator P/w on sentences (‘‘w is preferred to /’’) can be
defined in terms of the basic preference modality ½ � � and a universal modality U.

In joint work with Liu [82], van Benthem introduces relation transformers in
DEL-style to model specific preference-changing actions (such as ‘‘suggestions’’
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and various kinds of ‘‘commands’’), then generalize them to a very wide class of
PDL-format transformers (in which the new relation can be defined from the old
one using the regular PDL operations). This format allows one to ‘‘read off’’
reduction axioms (for the corresponding actions) from the PDL definitions in an
automatic manner.

In [94], the authors introduce and study an interesting ‘‘ceteris paribus logic’’,
meant to capture a different type of preference, namely equality-based ceteris-
paribus preferences P/w (‘‘all things being equal, I prefer w to /).

Deontics and the Dynamics of Norms

In a succession of papers with Grossi and Liu [99, 100] and a forthcoming paper
with Liu [117], van Benthem applied the above-mentioned recent developments in
the logic of preference to a number of topics in deontic logic. The approach in [99]
looks at deontic logic as resulting from both a betterness ordering (deontic
preference) on states, and a priority ordering on properties (meant to encode a law
explicitly representing a standard of behavior). The authors use the correspondence
between these two orderings to look at deontic scenarios and classical deontic
paradoxes from a new perspective. The framework is extended to describe
dynamics involving both orderings, thus leading to a new analysis of norm change
as betterness change.

In [100], van Benthem et al. continue their investigation of priority structures in
deontic logic, focusing on the so-called Hansson conditionals. They generalize
these conditionals by pairing them with reasoning about syntactic priority
structures. They test this approach, first against the usual scenarios involving
contrary-to-duty obligations, then by applying it to the modelling of two intuitively
different sorts of deontic dynamics of obligations (one based on information
changes and the second based on genuine normative events). In this two-level
setting, the authors also discuss the Chisholm paradox and the issue of modelling
strong permission. Finally, the priority framework is shown to provide a unifying
setting for the study of dynamic operations on norms (e.g. adding or deleting
individual norms, merging normative systems etc.).

The story of van Benthem’s past work on dynamic agency comes to a
temporary stop here. But there is more to come: in our view, van Benthem’s
reflections on agency do not seem to have fully settled yet into a natural fixed
point. In particular, his reflections on connections between logic and Argumen-
tation Theory [48, 97, 111], as well as his recent thoughts on collective agency
[102] and its relevance to Social Epistemology, Social Choice Theory [81] and the
study of social networks, have still to crystalize in a definitive conception. The
understanding of ‘‘super-agents’’ (corporate agents, such as artistic or religious
groups, sportive teams, companies, states etc., but also socially-produced agents,
such cultural icons, literary characters, memes, role models, imaginary being,
mythical heroes and gods) is a great challenge both for philosophy and for logical
dynamics. To paraphrase Shakespeare, there are more things to agency in heaven
and earth, than are dreamt of in any individual agent’s mind.
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6.2 The Invited Contributions on Dynamic Agency

In their fascinating discussion of agency in Artificial Intelligence, Peter Millican and
Michael Wooldridge address a central question: what is an agent? In this powerful
piece, they discuss two main views of agents: agents as actors versus agents as
intentional systems. The first view stresses the role of action, identifying agents as
the originators of deliberate actions. The second view stresses the agents’ beliefs,
desires, intentions and plans. The authors show that these different views really
make a difference when it comes to the actual task of building artificial agents.

The contribution by Hector Levesque and Yongmei Liu is a great technical
achievement of fundamental conceptual and applied importance. They reunite two
very different paradigms to reasoning about action: Situation Calculus (the long-
standing dominant approach in AI) and Dynamic Epistemic Logic (which can be
said to be rapidly becoming the dominant approach to informational dynamics in
Logic). By importing into Situation Calculus the key DEL concept of action
models (or ‘‘event models’’, in van Benthem’s terminology), these authors give
Situation Calculus a modern facelift, that not only contributes to its rejuvenation,
but it hugely extends its capacity for modelling complex informational scenarios.

In their insightful paper, Wes Holliday and John Perry address some of the
many conceptual problems and paradoxes that have plagued epistemic predicate
logic from Frege to Quine to Kripke and Hintikka. Their solution constitutes a new
philosophical approach to epistemic agency, based on the distinction between
agents’ names (and object variables) and their epistemic roles. This approach is
formally implemented in a modified version of Melvin Fitting’s First-Order
Intensional Logic, in which Fitting’s intensional variables are reinterpreted as role
variables. While the names are rigid designators, and similarly the assignments of
object variables are world-independent, the assignments of role variables depend
on the world: the same role may be played by different agents in different worlds.
This simple move from individual concepts to agent-relative roles allows the
authors to deal in a natural and elegant way with a large number of philosophical
puzzles. Moreover, this move opens up new ways of thinking about agency in a
dynamic-epistemic context, that are only hinted here: as authors point at the end,
one should look now not only at the dynamics of agents’ epistemic (accessibility)
relations, as in standard DEL, but also at the dynamics of their epistemic roles.

The elegant paper on STIT logic by Roberto Ciuni and John Horty goes right to
the very essence of agency: the notions of choice and freedom, and their
relationships with knowledge, both one’s own and the others’. Belnap-style STIT
logics (with ‘‘agent a sees to it that...’’ as their main operator) were especially
created to analyze these concepts. On the other hand, the above-mentioned Matrix
Game Logic introduced by van Benthem [79] is a dynamic-epistemic logic,
endowed with epistemic modalities for ‘‘ex interim knowledge’’ and a ‘‘freedom
operator’’. As we saw, a first comparison between this logic and STIT logics was
made in [112]. Ciuni and Horty develop a group version of a particular version of
STIT logic, called CSTIT (since it is based on the so-called ‘‘Chelas STIT’’,
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introduced by Horty and Belnap), and show that Matrix Game Logic is equivalent
to a fragment of group CSTIT (namely the anti-group CSTIT, having stit modalities
only for individual agents and their anti-groups): each of these can be embedded in
the other. The ‘‘bad news’’ is that, as a consequence, they show that Matrix Game
Logic is undecidable and not finitely axiomatizable. The good news is that this
mutual embedding provides new insights into the nature and properties of van
Benthem’s freedom operator. The authors give several examples of such derived
principles, of great philosophical interest. One of them encodes the interesting
relation between one-agent’s knowledge and the other agents’ freedom. Another
principle states that, even if we restrict ourselves (as the authors do) to situations in
which different agents are independent with respect to their individual choices,
those agents may still be not independent with respect to their margins of freedom!

In their innovative contribution, Oliver Roy, Albert Anglberger and Norbert
Gratzl discuss the normative aspects of game-theoretic solution concepts and of
their logical correlatives (the ‘‘best’’ action operators, used by van Benthem and
other logicians to investigate rationality in games). The authors adopt a systemic
view of the normative interpretation of solution concepts: even if each norm is
plausible, the normative system as a whole may be counter-intuitive. They connect
this to the older debate of normative conflicts in deontic logic. From the non-
uniqueness of the ‘‘best action’’ in most games, they derive a ‘‘permissive’’
interpretation of solution concepts, as stated in their O/P-Best Principle: ‘‘A player
ought to play a best action. All specific best actions are permitted, although none is
obligatory.’’ By looking at sets of actions as action types, the authors restate their
proposed interpretation as saying that obligations are the weakest permitted action
type available to the agents (where ‘‘weakest’’ means logically weakest). They
argue that this interpretation with the often-assumed normality of the deontic
operators, and they go on to propose a new, non-normal formalization of deontic
logic, based on a neighborhood semantics. In this logic, permission and obligation
are no longer definable in terms of each other (as in the standard systems), but are
they are only weakly related by a number of connecting principles (such as the one
relating obligations to the weakest permissions). As a side-effect, the resulting
logic can deal with the usual deontic paradoxes: not being normal, the proposed
deontic operators are not necessarily additive, thus allowing for conflicting
obligations without automatically entailing inconsistent obligations. However,
unlike in other such approaches, the move to a non-normal logic is not just an ad-
hoc move with the express purpose of solving the deontic paradoxes. On the
contrary, the non-normal, neighborhood-based semantics has independent con-
ceptual motivations, of a game-theoretic nature, and it is rooted in a very
interesting and original interpretation of obligation!

Dov Gabbay and Davide Grossi connect two of van Benthem’s long-standing
interests: argumentation on the one hand, as one of the informational processes
that is among the most essential for rational agency [48, 97, 111], and on the other
hand the general study of notions of process equivalence that lies at the core of van
Benthem’s program of Logical Dynamics. Even more intriguingly, this excellent
paper is a formal-logical study of an approach that was for a long time understood
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as being fundamentally opposed to formal logic (at least in its traditional, abstract-
inference incarnation): Argumentation Theory. By adopting the perspective on
Argumentation Theory proposed by Grossi in [144–146], based on looking at
attack graphs as Kripke models, the authors are able to overcome the apparent
opposition, and pursue an unashamedly modal-logical analysis of argumentation.
They develop a natural notion of equivalence between arguments, and compare it
with the standard notion of bisimulation. Then they ‘‘dynamify’’ these notions by
tying them up with the theory of argument games and with a notion of strategic
equivalence.

7 Dynamics in Natural Language and Cognition

Our journey from abstract logical dynamics towards the concreteness of real-life
informational processes is about to reach its ultimate limit: real agency meets real,
empirical facts. The logics of agency, understood as theoretical investigations of
intelligent interaction, are now facing the empirical sciences dedicated to the same
topic: psychology, cognitive science, linguistics, social sciences. This is the final
frontier of concrete dynamics, a frontier that Johan van Benthem, as well as our
invited authors, do not hesitate to cross over.

7.1 Johan van Benthem on Natural Language and Cognition

‘‘Do the Facts Matter?’’

The traditional view of Logic is as a normative discipline: one that prescribes the
‘‘correct’’ ways of thinking. If human reasoning does not obey the rules of Logic,
then too bad for the humans! According to this account, the ‘‘facts’’ about how
people actually reason and how informational interactions actually happen are
supposedly irrelevant for logic, and empirical sciences studying these facts (e.g.
psychology and sociology) should have nothing to say to logicians.

As is well-known, this divide between formal logic, as a normative science, and
the empirical disciplines, providing only descriptive accounts of human reasoning
practices, was codified by Frege in his celebrated ‘‘Anti-Psychologism’’ stance,
which became a cornerstone of modern philosophy of logic. From the other side, in
psychology, cognitive science and behavioral economics there is a large body of
experimental literature on the empirical ‘‘failures’’ of logic, purporting to show
that formal-mathematical logic is useless for human practice.

In his paper [84], Johan van Benthem reawakens this dispute, by asking once
again a key question: ‘‘Do the facts matter’’ (for logic)? His answer is positive: if
logic were totally disjoint from human reasoning then it would have no practical
use at all. While still admitting that logic is not psychology, that the correctness of
an argument is not decided solely by practice and conversely that a logical theory
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is not useless just because people do not behave quite according to it, van Benthem
argues that the recent cognitive turn in logic has lead to what he calls ‘‘the fall of
Frege’s wall’’ separating logical research from psychology and other empirical
sciences. The twentieth century saw the explosion of the fortress of classical logic
and the flourishing of a wild variety of alternative styles of formal inference: non-
monotonic logics and default reasoning, substructural and relevant logics, linear
logic and other resource-sensitive formalisms, constructive methods and intui-
tionistic logic etc. These developments were justified philosophically by the
Logical Pluralism stance, but many of them were also motivated by intended
applications to various forms of practical reasoning. As van Benthem argues, far
from having any genuine clash between ‘‘Logic’’ and practice (as the above-
mentioned body of literature aims to show), we may now have the opposite
problem: almost any human reasoning practice can be explained by some
combination of the above-mentioned classical and non-classical formalisms. ‘‘The
resulting immunity for logic would not please Popper, and even worse than that: it
seems boring at times.’’ (van Benthem, op. cit., p. 5).

Instead, van Benthem prefers to let logic actually learn from direct confron-
tation with practice, as already argued in his older meditation on ‘‘logical
semantics as an empirical science’’ [28]. He goes on to show that this is already
happening, and in fact it has been happening for some time now: from Prior’s
temporal logics to Stalnaker’s and Lewis’ accounts of counterfactuals, inspired at
least in part from actual ordinary usage; to the more recent developments in the
logical semantics of natural language, which go beyond standard logical
formalisms in an attempt to come closer to the reasoning patterns that are actually
used by real-life speakers; to the many logics for ‘‘common-sense reasoning’’
proposed in the Artificial Intelligence literature; to the work of Veltman [200]
using dynamic default logics to justify some of the ‘‘mistakes’’ in human reasoning
high-lighted by Kahneman and Tversky; to the work on psychologically plausible
models for revision of beliefs and goals [118], and on the formation and
maintenance of collective intentions [124], etc.

Moreover, van Benthem argues that the influences between logic and cognitive
science go both ways, and proposes a New Psychologism, as a codification of the
actual recent practice of many logicians: avail ourselves of broad psychological
insights about real human reasoning, in order to build richer logical theories, that
are closer to the facts. An example in this sense is the dynamic turn itself: van
Benthem argues that the dynamic view of logic is closer to empirical practice.
Instead of seeing logic as the static guardian of ‘‘correctness’’, we should come to
see it as an immune system of the mind, by focussing on its dynamic role of
constantly correcting the mistakes that inevitably pop up in practical reasoning.

Natural Language as a Programming Language for Cognition

In van Benthem’s vision, the study of communication (in natural language),
computation and cognition go together. To use van Benthem’s famous slogan,
‘‘natural language is a programming language for cognition’’. But moreover, most
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of van Benthem’s work on the syntax, semantics and pragmatics of Natural
Language is ‘‘dynamic’’ in spirit, being in fact closely connected to his research on
logical dynamics. Indeed, the original version of the above-mentioned quote is
more precise in this sense: ‘‘Natural language is a programming language for
effecting cognitive transitions between information states and its users’’ [43]. This
points to a dynamic-relational understanding of natural language sentences in
terms of information updates, a view that reflects the Amsterdam milieu of the
time15: indeed, the independently emerging dynamic semantics for Predicate Logic
was being developed around the same time by Groenendijk and Stokhof.

Relations to Dynamic Predicate Logic. Phenomena such as anaphora, presup-
positions, non-commutativity of conjunction in natural language etc., are dealt
with in a systematic manner in the so-called Dynamic Predicate Logic (DPL), due
to Groenendijk and Stokhof [143] (though with roots going back all the way to
Stalnaker and Barwise). This approach, very influential in the field of Natural
Language Semantics, represents in a sense a more radical ‘‘dynamification’’ of
first-order logic than van Benthem’s ‘‘modalization’’ of this logic: the meaning of a
sentence is now given by a function on information states, representing the
information update induced in the listener’s state when that sentence is uttered.
Nevertheless, van Benthem showed that DPL can be presented in a more
traditional style, namely it is essentially equivalent to the propositional dynamic
logic of atomic tests Pt? and actions of variable-value reassignment 9x. Put
symbolically: DPL ¼ PDLðPt?; 9xÞ.

Categorial Grammar

Johan van Benthem’s work on categorial grammar [30, 41, 43] is in line with the
above-mentioned dynamic view of language. In Categorial Grammar, a gram-
matical category is identified with a function type A! B, taking arguments of
type A into values of type B. This is an inherently procedural view: linguistic
expressions denote procedures that change a state of some given type into a state
of another type. The procedures corresponding to compound expressions are
computed by deriving corresponding sequents in some appropriate categorial
logic. Such logics are typically sub-structural and ‘‘resource-sensitive’’, since the
usual structural rules of classical logic do not necessarily hold for natural language
categories. One obtains a whole hierarchy of such substructural calculi (the so-
called Categorial Hierarchy), of which the most famous is Lambek Calculus.

There are two kinds of ‘‘semantics’’ in categorial grammar. The first is the
proof-theoretic ‘‘semantics’’, given by the derivations themselves (‘‘proofs’’).
Various categorial calculi are mapped into different fragments of typed lambda
calculus, via the Curry-Howard isomorphism between categorial derivations and
lambda-calculus terms. Since lambda-terms denote functions, this ‘‘semantics’’ is
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dynamic in character. But there exist also more standard, ‘‘logical’’ dynamics, in
which derivable sequents are interpreted as valid ones, ‘‘forgetting’’ the derivation
structure. The most interesting from the perspective of logical dynamics are of
course the relational models. Such a relational semantics for Lambek Calculus
was proposed by van Benthem [43], motivated by the above-mentioned dynamic
view of language, in terms of binary update relations on information states. van
Benthem [43] showed the soundness of Lambek Calculus for the relational
interpretation, and posed the problem of its completeness, which was positively
answered by Andréka and Mikulas (1993). van Benthem also gave a relational
interpretation for the Non-Associative Lambek Calculus (in terms of ternary
relations, analogue to Dunn’s semantics for relevance logics), whose completeness
was proved in [166]. In this last interpretation, Lambek Calculus becomes a
fragment of van Benthem’s Arrow Logic, and indeed the later is a faithful
extension of the first.

Generalized Quantifiers

Johan van Benthem’s early work on generalized quantifiers, polyadic quantifiers
etc. [31, 39], may seem at first sight to be less relevant to logical dynamics. But
this first impression is wrong: van Benthem’s use of semantic automata to analyze
quantifiers as model-checking procedure of various complexities [35], and his
classification of quantifiers in terms of the computational complexity measured by
both automata-theoretic and logical (definability) means [43], amount in effect to
providing a procedural semantics for generalized quantifiers. In van Benthem’s
own words, linguistic expressions ‘‘denote certain ‘procedures’ performed within
models for the language’’ [35]. This research uncovered deep connections with
modal tree logics and fixed points. His work on changing of contexts or ‘local
domains of quantification’ during the evaluation of sentences adds another level of
‘‘dynamicity’’ to the study of quantifiers.

Natural Logic

More generally, van Benthem’s program of ‘‘natural logic’’ [35, 43, 44, 84] aims to
identify the ‘‘logical core’’ of feasible, ‘‘easy’’, intuitive reasoning, core underlying
the most common forms of inference used in natural language. One can see natural
logic as a dynamic theme: a search for the abstract structures governing very
concrete concrete and simple forms of informational flow, underlying the low-
level fast inferential mechanism that constitutes an essential part of linguistic
ability. According to van Benthem, any natural logical system for linguistic
reasoning should contain at least the following modules: monotonicity reasoning
(predicate replacement), conservativity reasoning (domain restriction) and alge-
braic laws for reasoning with specific lexical items (e.g. for negation). The concept
of polarity plays an important role in van Benthem’s analysis of monotonicity
reasoning, in the form of the so-called monotonicity calculus.
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The Dynamics of Context in the Pragmatics of Natural Language

Many phenomena in linguistic pragmatics, like presupposition, anaphora, index-
icality etc., are best explained in terms of processes that change utterance contexts.
Such ‘‘context shifts’’ were investigated in terms of context logics, proposed in
[50], in line with van Benthem’s relational theory of meaning [36]. These are
formalisms which make explicit the contexts and their dynamics, in the form of
two-sorted first-order logics with variables ranging over contexts and over objects.

In [47], van Benthem went on to propose more ‘‘radical’’ type of context logics,
obtained by both relativizing the original context logic (so that not all contexts are
always available) and by ‘‘localizing’’ the contexts (so that a context may interpret
in different ways each different occurrence of the same predicate symbol, or each
occurrence of an existential quantifier).

In this section, we have followed the fascinating story of logic’s encounter with
the empirical facts about natural language and about the cognitive-interactive
behavior of actual human beings, as this story unfolded in the work of Johan van
Benthem. It is now time to look at the same topic from the multiple perspectives of
our invited authors.

7.2 The Invited Contributions on Natural Language and Cognition

The paper by Larry Moss is a beautiful contribution to the ‘‘natural logic’’ line of
research line inaugurated by van Benthem. Moss isolates three types of tractable
fragments of natural language reasoning. The first is in fact a family of logical
fragments, called syllogistic logics, some of which extend classical Aristotelian
syllogistics with verbs, generalized quantifiers, cardinal comparisons, comparative
adjective phrases etc. The second is a nice spatial-dynamic modal logic, with two
modalities: a spatial location-switching operator �u (‘‘u holds in the other room’’)
and a temporal/dynamic and-then operator u; w (‘‘u and then w’’). The semantics
is a very interesting combination of a classical Tarskian semantics (interpreting
sentences as sets of worlds) and a non-classical dynamic-relational semantics in
the style of van Benthem’s Arrow Logic or of Groenendijk and Stokhof’s Dynamic
Predicate Logic (interpreting sentences as transition relations between states).
Finally, the third is a modern formalization of van Benthem’s Monotonicity
Calculus, obtained by grafting monotonicity and polarity information into the
sentences derived from categorial grammars. To use the author’s expression, these
three jewels are etudes: simple, enlightening versions of more complex phenom-
ena, which give a flavor of the bigger picture but are also interesting in their own
respect. This paper is really an excellent illustration of the exciting new research
results that have recently reawakened the interest in the Natural Logic program.

The article by Sven Ove Hansson and Fenrong Liu is a powerful piece of
original research into the logic of value expressions. There are two major classes of
non-numerical value predicates: the monadic predicates expressing classificatory
notions (e.g. ‘‘good’’, ‘‘bad’’, ‘‘best’’, ‘‘very bad’’, ‘‘fairly good’’, etc.) and the
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dyadic predicates expressing comparative notions (e.g. ‘‘better’’, ‘‘equally good
as’’, and ‘‘at least as good as’’). The second form the topic of preference logic,
extensively explored by van Benthem, Hansson, Liu and many others. The first,
i.e. the logic of monadic value predicates, taken by themselves, has not attracted
much attention, since it was generally thought as being a relatively impoverished
fragment of the second: the monadic value notions can be easily defined in terms
of the dyadic ones, while definitions in the opposite direction are usually assumed
to be impossible. In this paper, the authors show that the later direction is also
feasible, by building on the work of van Benthem [27], who had shown that dyadic
value terms can be reduced to context-dependent monadic value predicates (e.g.
‘‘good’’ interpreted contextually as ‘‘good among the Z’s’’). The authors develop
two logical approaches to this issue: a contextual modal logic of preference, as
well as a dynamic contextual logic (in the spirit of van Benthem’s context logic)
that directly formalizes context shifts as context-changing actions. In fact, they
completely overturn the above-mentioned common-wisdom assumptions, showing
that although dyadic preference orderings can be defined from context-indexed
monadic notions, the monadic notions cannot be regained from the preference
relation that they gave rise to. So, in a contextual setting, the logic of monadic
values is actually more expressive than dyadic preference logic!

Martin Stokhof’s paper is a fascinating meditation on what distinguishes the
various approaches to the semantics of natural language, and in particular in what
sense either of them can be said to be ‘‘dynamic’’, and why does this matter.
Stokhof looks comparatively at three approaches to natural language semantics:
the Discourse Representation Theory (DRT) of Kamp and Heim; the ‘‘dynamic
semantics’’ approach illustrated by Veltman’s Update Semantics as well as by the
Dynamic Predicate Logic (DPL) of Groenendijk and Stokhof; and the approach
taken in Stalnaker’s work in the 1970s, based on the distinction between (dynamic)
speech acts and the (static) content of an assertion. Stokhof characterizes the first
approach as ‘‘dynamic assignment of static meanings’’, the second as ‘‘dynamic
meaning as such’’ and the third as ‘‘dynamic employment of static meanings’’. He
goes on to ask how real are these distinctions: is there really a deep conceptual
difference here, or just different packaging? He takes as a starting point van
Benthem’s already mentioned thesis that relational algebras play a similar
foundational role for dynamic theories to the one played by Boolean algebras for
static logics, and his corollary that the difference static-dynamic can be spotted by
looking at the formal properties of the updates permitted by a given theory.
Stokhof mentions a number of increasingly more general such update-based
characterizations, and uses them to conclude that these are really different
conceptions. Finally, Stokhof asks whether this formal distinction matters at all for
actual linguistic applications; he answers this question, by distinguishing between
two different roles (‘‘modelling’’ versus ‘‘describing’’) that a formal system can
play in natural language semantics. The static-dynamic distinction is crucial when
we insist on our systems fulfilling the second role, but it is not so relevant if we
focus only on the first role.
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Hans Kamp’s deep-reaching contribution is also about the roles played by our
model-theoretic accounts of the semantics of natural language, and more generally
by our formal theories of various aspects of human behavior (including non-
linguistic features, such as action or cognition). Are these theories descriptive, and
so testable against human users’ intuitions about their own behavior, or are they
prescriptive, in which case the human users can learn from them how to better
understand themselves and how to improve their own behavior? Kamp’s
conclusion is that formal models play both roles, but in two stages: first, logical
theories should be tested against users’ firm intuitions about those aspects of the
formalized concepts about which they are confident; second, the theories and
models which are successful in the first stage can then be used by humans as
guides towards a better understanding of other, more obscure aspects, and hence
towards improving their behavior. Of course, in practice these two stages will not
be passed only once, but again and again, giving rise to looping feedbacks, leading
to more and more accurate theories and to ‘‘better’’ (more consistent, more
‘‘rational’’, more effective) behavior. Kamp argues that these lessons apply to
models of both linguistic and non-linguistic features of human life, and concludes
that these similarities suggest a deeper connection than usually assumed between
the formal logics for natural language and the logical models of action and
cognition.

The contribution by Alistair Isaac, Jakub Szymanik and Rineke Verbrugge is an
excellent survey of the current state of research into the logical and computational
complexity of cognitive tasks, and how they relate to humans’ actual performance
in these tasks. The authors argue (in agreement with, but independently from,
Kamp’s similar argument in the previous chapter) that things go beyond the mere
distinction between normative and prescriptive, showing how by first adopting a
computational perspective one can generate feedbacks from empirical results back
into the development of better computational models. Once again, van Benthem’s
models and methods, such as the use of semantic automata and natural logic in the
study of language and cognition, play an essential role here, together with newer
perspectives such as the one provided by the P-Cognition Thesis.

Finally, Peter Gärdenfors’ paper is an insightful reflection on the limits of the
computational (and the connectionist) perspective on cognition, arguing in favor of
the situated cognition paradigm. Gärdenfors shows how embodiment, the
interaction of the brain with the body and the world at large, can help reduce
the complexity of cognitive tasks that would otherwise be intractable, and thus
hugely improve the agent’s learning performance. By an analogy to the way in
which ‘‘tunas and dolphins swim with the water, not in the water’’, Gärdenfors
suggests that our brains ‘‘think with the world, not in the world’’. He gives
examples showing in particular how ‘‘the geometric structure of the external world
reduces the complexity’’ of typical spatial-manipulation problems in robotics. He
goes on to argue that the embodiment solves a number of other cognitive
mysteries, including the difficulties encountered by the Chomskyan paradigm in
explaining children’s amazing capacity for learning grammatical structures:
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natural language grammar is not independent of its intended, real-world semantics,
and the fact that children live in (and interact with) the real world is in this view
essential for their successful language acquisition.

8 Styles of Reasoning

Our movement towards concreteness has reached its limits, in the shape of
empirical facts, natural language and cognitive realities. It is here where dynamics
re-encounters other styles of reasoning. Indeed, many competing approaches have
already been extensively used to explain and organize this empirical evidence,
especially in the study of natural language and common-sense reasoning:
alternative semantical frameworks for classical connectives, alternative conse-
quence relations, situation theory etc. This encounter resumes the theme of
searching for the right level of generality, that dominated the abstract Logical
Dynamics in section 3. So the back-and-forth move between abstraction and
concrete representation reappears here as a fertile debate between two polar
attitudes: from an abstract perspective, logical dynamics is just one of many styles
of reasoning, and dynamic operators are only one special type of non-classical
inferential tools; but from a concrete perspective, all the various reasoning styles
are best understood as talking in fact about dynamics, rather than about some non-
classical consequence; and inference itself (both classical and non-classical) is just
one among many other informational processes (e.g. communication, observation,
introspection etc.).

8.1 Johan van Benthem on Styles of Reasoning

The above-mentioned polarity is reflected in van Benthem’s ambivalent attitude
towards Logical Pluralism. On the one hand he is one of its champions,
continuously looking at combinations of different styles and paradigms (e.g. modal
logic and information channels in the style of Barwise and Seligman, model theory
and situation theory, etc.) [34, 55], and always stressing the peaceful coexistence
of dynamics with other approaches. But on the other hand he usually adopts a
‘‘dynamics-first’’ viewpoint, taking information flow as fundamental, with
inference as only one of its aspects. In this sense, the dynamic approach aims to
gain a deeper understanding of non-classical forms of inference by looking at the
concrete informational tasks underlying these formalisms.

So this is not only a debate within Logic at large, but also a debate within van
Benthem’s own work and thinking: a friendly logical conversation, as well as a
fierce philosophical confrontation, between Johan van Benthem and himself.
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Dynamics Versus Pluralism

The traditional attitude towards Logic was to see it as the science of reasoning,
thus having inference as its central topic. Before the twentieth century, it was
generally assumed that there was only one Logic, and hence one correct inference
relation. Logical Pluralism has exploded this assumption, and so Logic became the
art of charting the variety of possible reasoning styles, encoded as different
consequence relations, each with its own rules. This is how the marvelous,
bewildering diversity of non-classical logics came into being, starting with
intuitionistic logic, and continuing with multi-valued logics, partial logics, fuzzy
logics, paraconsistent logics, relevance logics, substructural logics (in particular,
non-monotonic logics) etc. Johan van Benthem’s early work on substructural
logics and styles of inference fell within this paradigm, and by working within this
line of research he and others first saw dynamic logics as just one family of logics
among many others. As the reader may recall from section 2.2, ‘‘dynamic
inference’’ was yet another style of inference, on a par with others.

But somewhere along the line, something happened. ‘‘I have changed my
mind’’, confesses van Benthem in the section entitled ‘‘What is logic?’’ in one of
his latest books [102], and he continues: ‘‘The Logical Dynamics of this book says
that the main issue is not reasoning styles, but the variety of informational tasks
performed by intelligent agents, of which inference is only one among many,
including observation, memory, questions, answers, dialogue, and strategic
interaction. Logical systems should deal with all of these, making information-
carrying events first-class citizens.’’ ([102], p. 295).

Already in [40], van Benthem was voicing two concerns about non-monotonic
and non-classical inference: first, that these features are only symptoms of some
underlying phenomenon. ‘‘Non-monotonicity is like fever: it does not tell you
which disease is.’’ ([102], p. 297). Second, most non-classical and substructural
logics are radical-revolutionary with respect to semantics and proof theory, but
conservative with respect to the language: they retain the classical repertoire
(classical connectives plus the Gentzen consequence meta-relation), changing only
their properties. But why so? What is so sacred about classical logical operators,
but not about their interpretations? ‘‘Why not be radical with respect to the
language as well, and reconsider what we want to say?’’ ([102], p. 297).

The logics of informational dynamics investigated by van Benthem in the last
decades, with Dynamic Epistemic Logics at the forefront, address these concerns:
they are, not just about pluralistic consequence relations, but also about many
kinds of concrete informational tasks, and they use richer languages to talk about
them. According to van Benthem, these logics set themselves a ‘‘more ambitious
goal’’ than non-classical and substructural logics: they look for a diagnosis for
non-classicality, instead of administering only a symptomatic treatment.
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Dynamic Re-interpretations of Other Styles of Reasoning

Johan van Benthem was thus lead to propose a program involving a dynamic
(re)interpretation of substructural and non-classical styles of reasoning. This aims
at providing an explanation of these non-classical phenomena, by ‘‘deconstructing
them into classical logic plus an explicit account of the underlying informational
events’’ ([102], p. 296). As we saw, this is a move towards concreteness and
realism, and away both from the ‘‘one true inference’’ obsession of traditional
logic and from the warring abstractions of Logical Pluralism.

In [102], van Benthem exemplifies this program, by showing how some non-
monotonic logics can be naturally embedded into dynamic logics of belief change;
in particular, he gives a representation of McCarthy’s circumscription in terms of
acts of belief revision. By looking at the Kripke semantics for intuitionistic logic,
he goes beyond Godel’s proof-theoretic embedding of this logic into the modal
logic S4 (usually misunderstood as a purely epistemic interpretation), showing that
from a semantic point of view intuitionistic logic is really a dynamic-epistemic
logic: it is all about persistent acceptance, or persistent non-acceptance, or (in the
case of implication) persistent correlation.

The same program can be applied to many non-classical logics. As we’ve seen,
Lambek calculus, relevance logic and other substructural logics can be given
relational models (sometimes involving ternary relations), that reveal their true
dynamic nature. (In fact, this dynamic flavor is already present in some of the
intuitive explanations given by the founding fathers of relevance logic.) To
deconstruct relevance logic into a classical and a dynamic component, one needs
to make explicit, not only events such as information updates or upgrades, but also
acts of information merge (fusion).

In our own work, we gave a similar deconstruction of quantum logic [11, 12,
18–20], showing that the so-called quantum implication (known as ‘‘Sasaki
Hook’’) P! Q is best understood semantically as a PDL-style dynamic modality
½?P�Q for a ‘‘quantum-test’’ action ?P, representing a successful measurement of
the quantum property P. In contrast to classical PDL tests (and classical idealized
measurements), quantum tests are ‘‘really dynamic’’: they change the state of the
system under observation, which explains the non-classical behavior of quantum
‘‘implication’’. Dynamic interpretations can be similarly given to other quantum-
logical connectives.

The general motto of this program is that ‘‘natural’’ non-classical logics can be
modeled as classical dynamic logics, by making explicit the informational event
that causes the apparent non-classicality. As van Benthem states, this observation
seems quite general, but it is not proved. This remains still a program, for which
van Benthem mentions important challenges (e.g. obtaining dynamic deconstruc-
tions of paraconsistent logics or of linear logic).
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Alternative Consequence Relations for Dynamic-Epistemic Logics

One should not conclude from the above discussion that van Benthem aims at
eliminating non-classical styles of inference! The move suggested above can also
be applied in reverse: by ‘‘dynamifying’’ the inference systems for dynamic-
epistemic logics, one can obtain non-classical, non-monotonic consequence
relations that may provide a more adequate proof theory for these logics than
classical inference. Johan van Benthem exemplifies this by proposing in [63] a
dynamic inference relation based on updates: P1; . . .;Pk ¼) P is equivalent to
½!P1�. . .½!Pk�CkP (where !Q is public announcement of Q and Ck is common
knowledge). This is a version of the so-called Update-to-Test consequence
relation, which is substructural: due to Moore-type sentences, all classical
structural rules fail! However, some modified structural rules hold, and van
Benthem proves an abstract completeness result for the system formed of these
rules. Similar systems have been used [8] to axiomatize versions of DEL. In [102],
van Benthem goes on to propose a similar semantics in terms of belief (rather than
knowledge), and notices that in this case there are natural alternatives, obtained by
replacing updates with ‘‘soft’’ doxastic upgrades of various kinds.

Back-and-Forth Between Dynamics and Styles of Inference

To conclude, Johan van Benthem’s position towards styles of inference is in fact
rather complex, going beyond the reductionist polar attitudes discussed above. He
seeks a genuine compromise between Logical Pluralism and Dynamics, according
to which one can go back and forth between the two via appropriate meta-logical
transformations. We go from concrete dynamics to consequence relations via a
process of abstraction; and we go the other way around, from consequence
relations to dynamics, via representations.

The second direction is generally harder, since it involves proving a
representation theorem. This is natural: intuitively, the dynamics gives us more
information (or at least more explicit information), and recovering this additional
information from the abstract inference patterns is not in general an easy task. But,
according to van Benthem’s view, the two programs live side by side in peaceful
coexistence, and exchange interesting insights via the back-and-forth movement.

Nevertheless, while at a technical-formal level they can easily coexist, at a
conceptual-philosophical level these programs are still based on two fundamen-
tally different viewpoints: on the one hand, a ‘‘static’’ but non-classical logical
world, focused on consequence relations; on the other hand, a classical view of
inference combined with a shift to dynamics as the main focus of logic.

Is it possible to achieve a deep-level conceptual unification of these
perspectives, going beyond a mere formal pluralism? Are these viewpoints
complementary in some sense: are inference and dynamics just two faces of the
same coin?
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These questions, which remain open, touch the very core of van Benthem’s
debate with himself. Their answers will tell us something fundamental about
Logic, giving us a deeper understanding of its role as an almost ‘‘magic’’ gateway
between concrete informational processes and abstract inference patterns.

8.2 The Invited Contributions on Styles of Reasoning

The chapter of Denis Bonnay and Dag Westerståhl is an enlightening, systematic
comparison between classical consequence and a dynamic-type consequence
(namely, Update-to-Test consequence), in two different settings: an abstract setting
given by information frames, and a concrete setting in which updates are given by
public announcements. They show that the two notions of consequence diverge
when applied to non-persistent information (e.g. epistemic information that
something is not yet known). They also compare the condition of classicality for
updates (i.e. the condition that an update can be classically represented) with
classicality for (dynamic) consequence, showing that the second is a much weaker
requirement.

The paper by Guillaume Aucher goes right at the heart of van Benthem’s
program mentioned above, showing how to go back and forth between a version of
dynamic epistemic logic (with the standard product update semantics) and a
certain substructural logic (with the sort of ternary relational semantics used both
by Routley and Meyer for relevance logic and by van Benthem in his work on
categorial grammar). Aucher shows that the product update semantics can be seen
as a ‘‘concrete’’ implementation of the Routley-Meyer semantics, and that DEL
itself can be seen as a two-sorted substructural logic. This helps with the study of a
better-behaved (non-classical) proof theory for DEL, which turns out to be related
to the dynamic consequence relation introduced by van Benthem. Conversely,
Aucher argues that the DEL connection throws light on the meaning of
substructural logics, including relevance logic: they are essentially dynamic in
nature, being all based on (an abstract version of) an update operator. The
fascinating abstract correspondences uncovered by Aucher represent a truly
spectacular realization of van Benthem’s program of going back-and-forth
between substructural logics and dynamic logics of belief change.

In his insightful contribution, Mike Dunn looks at the connection between
relevance logics and another dynamic logic: van Benthem’s arrow logic. He
provides a detailed comparison between arrow logics with van Benthem-Venema
semantics, and relevance logics with Routley-Meyer semantics, showing how to
go between the two logics, which operators are common and how to add the non-
common operators to the side that’s missing them. Then he proceeds to make an
even more interesting comparison, between a version of arrow frames endowed
with a number of additional requirements by van Benthem (to make them closer to
relation algebras) and Dunn’s own version of the Routley-Meyer semantics (meant
to represent relation algebras). As a side benefit, he shows how van Benthem’s
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conditions can be slightly modified to obtain a representation of relation algebras.
In both spirit and implementation, Dunn’s elegant work on these connections is
indeed very close to van Benthem’s above-mentioned program: on the one hand,
this work can be understood as revealing in a new way the ‘‘dynamic’’, transition-
like nature of relevance logic; and on the other hand, it can be seen as a way to
solve problems in the field of dynamic arrow logics by importing technical insights
from the semantics of relevance logic.

Jeremy Seligman’s paper is a tribute, not only to Johan van Benthem, but at the
same time to one of his best friends and collaborators, the late Jon Barwise. His
Situation Theory remains to date one of the most ambitious and wide-ranging
attempts to provide new mathematical foundations for philosophy and semantics,
in which the notion of context, or ‘‘situatedeness’’, would play a crucial role. One
of the several specific implementations of this project was the work by Barwise
and Seligman [23] on the theory of classifications,16 as a general theory of situated
information flow, based on the concepts of info-morphisms, information channels
and ‘‘local logics’’. At the time seen as a rival to the Kripke semantics approach to
information, Classification Theory was in fact of great interest to van Benthem,
one of his dearest and most long-standing projects being the investigation of the
relations between these two approaches, investigation started by him in [55]. In
this fascinating paper, Seligman continues and widens this project, by first
proposing a new formalization of Situation Theory within Classification Theory,
based on the identification of ‘‘situations’’ with a type of local logics, and then
comparing this approach with van Benthem’s own ‘‘constraint-logic’’ proposal,
based on modeling situations in terms of Kripke-style constraint models. This
seems to us the most promising and far-reaching new approach to the topic to date,
and has the potential of reawakening the interest in Situation Theory and bringing
its core ideas into the twenty first century.

The last paper of this volume, by Willem Conradie, Silvio Ghilardi and
Alessandra Palmigiano, can be seen as both a manifesto and a proof-of-concept for
an ambitious algebraic project, that reconnects all the topics of this book and aims
to give a uniform proof-theoretic treatment to both logical dynamics and non-
classical styles of reasoning, from the high vantage point of a Unified
Correspondence Theory. The unifying power of Algebra and its deep significance
for the understanding of logical dynamics and its proof theory can be seen in all
shining glory in this beautiful piece.

The circle is now full: we are back to van Benthem’s early work in his Ph.D.
thesis on modal correspondence, which is now seen to provide a ‘‘royal road’’
through all the new territories we have explored in this book.

We cannot imagine a better ending point for our volume.
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9 Conclusions

In this volume, we have followed the trajectory of Johan van Benthem’s epic
logical adventure, using as our guide the contributions of so many world-renowned
scholars and friends of Johan. We now want to thank Johan and his friends for
giving us the opportunity to share this adventure with them and bask in their
reflected light.

Together, we have mapped van Benthem’s itinerary, across the six dimensions
of ‘‘Logical-Informational Dynamics’’. We see this itinerary as an anabasis, in the
Greek tradition: an upward journey from the safety of the (by now) well-known,
well-mapped coast of classical and non-classical logics into the uncharted interior
highlands of a New Continent. As it became apparent in the last section, this is in
fact a journey towards the concreteness and richness of ‘‘real life’’. It is a move
towards full-fledged agency (and not just ‘‘logical agents’’), towards meeting
others, towards stepping out of the unending circles of reason and daring to
actually look at the world and interact with it.

Logic in Johan’s view is not only about reasoning and inference (in no matter
how many styles). It is also about acting intelligently; about asking questions to
Nature and to each other; about experimentation and communication; about
changing your mind and imagining different perspectives; about learning from
your own mistakes and from the testimony of others; about beneficial social
encounters and sometimes tragic social conflicts; about choices, and goals, and
norms, and desires; and about how to live with all these, despite their mutual
inconsistency; about duty, and privacy, and freedom, and their limits.

As noticed in the last section, the opposite move also continues to happen, in
parallel with the first one: a katabasis, a perpetual return back down to the coast,
by which all those rich, concrete, ‘‘real-life’’ informational processes feed back
into the abstraction of inferential logic, as so many rivers flowing into the sea.
Anything that logicians touch becomes Logic, and so a subject of inference: as
post-modern Midas kings, they convert all reality into formal proof systems. Life,
evolution and learning, intelligence, interaction and agency: according to Johan
van Benthem, these all are legitimate topics of logical investigation.

To paraphrase the last line of Darwin’s magnum opus17: There is logic in this
view of life. Dynamic logic, more precisely: the logic of living and acting,
cooperation and competition, love and strife. Information highways and informa-
tion wars: both are first-class citizens, with full rights, in Johan’s logical society of
informational processes.

And (to paraphrase once again) there is grandeur in this view of logic.
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Chapter 1
The Freedoms of (Guarded) Bisimulation

Erich Grädel and Martin Otto

Abstract We survey different notions of bisimulation equivalence that provide
flexible and powerful concepts for understanding the expressive power as well as
the model-theoretic and algorithmic properties of modal logics and of more and
more powerful variants of guarded logics. An appropriate notion of bisimulation
for a logic allows us to study the expressive power of that logic in terms of seman-
tic invariance and logical indistinguishability. As bisimilar nodes or tuples in two
structures cannot be distinguished by formulae of the logic, bisimulations may be
used to control the complexity of the models under consideration. In this man-
ner, bisimulation-respecting model constructions and transformations lead to results
about model-theoretic properties of modal and guarded logics, such as the tree model
property of modal logics and the fact that satisfiable guarded formulae have mod-
els of bounded tree width. A highlight of the bisimulation-based analysis are the
characterisation theorems: inside a classical level of logical expressiveness such as
first-order or monadic second-order definability, these provide a tight match between
bisimulation invariance and logical definability. Typically such characterisation the-
orems state that a modal or guarded logic is not only invariant under bisimulation
but, conversely, also expressively complete for the class of all bisimulation invari-
ant properties at that level. Finally, the bisimulation-based analysis of modal and
guarded logics also leads to important insights concerning their algorithmic prop-
erties. Since satisfiable formulae always admit simple models, for instance tree-like
ones, and since modal and guarded logics can be embedded or interpreted in monadic
second-order logic on trees, powerful automata theoretic methods become available
for checking satisfiability and for evaluating formulae.
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1.1 Introduction

Bisimulation equivalence is one of the leading themes in modal logic. As the
quintessential back-and-forth notion for two-player combinatorial games it may
not only be regarded as a special case in the model-theoretic tradition of Ehren-
feucht–Fraïssé games but may also be seen as their common backbone. Bisimulation
equivalence (of game graphs or transition systems) grasps the complex equivalence
between dynamic behaviours as a natural structural equivalence. The generalisation
of this graph-based bisimulation concept to higher dimensions in the form of guarded
bisimulation opened up one further branch in the rich world of model-theoretic
games; the study of guarded bisimulation in the wake of the inception of the guarded
fragment of first-order logic in [1] has led to a new conceptual understanding of well-
behaved logics that are ‘modal’ in a more general sense. Guarded logics far transcend
basic modal logics while retaining some of the key features of modal model theory
precisely through the parallelism between the underlying notions of bisimulation
equivalence. Guarded bisimulation can be seen as derived from a hypergraph ver-
sion of ordinary (modal, graph-based) bisimulation. And just as preservation under
ordinary bisimulation accounts for much of the good model-theoretic behaviour of
modal logics, so hypergraph bisimulation and guarded bisimulation are the keys to
understanding the model theory of guarded logics. Model constructions and transfor-
mations that are compatible with guarded bisimulation account for the malleability
of models and the tractability of the finite and algorithmic model theory of various
guarded logics. We here survey and summarise a number of model-theoretic tech-
niques and results, especially in the light of bisimulation respecting model construc-
tions, including some more recent developments. Results to be surveyed include
finite and small model properties, decidability results, complexity and expressive
completeness issues. Among the more recent developments are notions of guarded-
ness that focus on the role of negation rather than on just the quantification pattern.
Unary and guarded negation bisimulation and the corresponding unary and guarded
negation fragments of first-order logic from [10] and [3] have contributed yet another
aspect to our understanding of the good behaviour of ‘modal’ logics with a yet wider
scope.

1.2 Bisimulation: Behavioural and Structural Equivalence

1.2.1 Ehrenfeucht–Fraïssé, Back-and-forth, Zig-zag, Pebble
Games: Games Model-Theorists Play

Notions like ‘behaviour’ and ‘strategies’ seem to be quintessentially dynamic, while
the analysis of structure and structural comparisons are mostly construed as static
concerns. Yet modal logics, transition systems and game graphs bridge the apparent
gap in a natural manner and typically allow us to understand behavioural comparisons
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as structural comparisons, and behavioural equivalences as structural equivalences.
This is not even really surprising if we remind ourselves how, e.g., game graphs
can be regarded as extensional (and static) descriptions of the possible plays (hence
behaviours) of the game, so that, e.g., the existence of a winning strategy for one of the
players can be determined by structural analysis. The dynamics and intuitive appeal
of games can also be harnessed for the analysis of the semantics and expressive power
of logics: model checking games account for the evaluation of logical formulae over
structures, and model comparison games are used to account for distinctions and
degrees of indistinguishability between structures w.r.t. properties expressible in a
given logic. In the classical context of first-order logic the model comparison games
are at the centre of the Ehrenfeucht–Fraïssé technique.

In the world of modal logics, the essential model comparison game is the
bisimulation game. It is a typical model-theoretic back and forth game, played by
two players over the two structures at hand (Kripke structures or transition systems).
A position in the game is a pair of (similar) nodes, one from each of the two struc-
tures, marked by pebbles; players take turns to move the pebbles along available
transitions in the respective structure; in each new round the first player is free to
choose one of the structures and one of the available transitions to move the pebble
across that transition, and the second player must respond likewise in the opposite
structure. Overall, the game protocol ensures that the second player has a winning
strategy in a position precisely if—recursively—every transition in the one structure
can be matched by a transition in the opposite structure, ad infinitum. Bisimulation
relations and bisimulation equivalence capture this notion of game equivalence by
means of back&forth closure conditions on a (or the maximal) set of pairs that are
winning positions for the second player.

Definition 1.1 For structures A = (A, (RA
i ), (P

A
j )) and B = (B, (RB

i ), (P
B
j ))

with binary accessibility relations Ri and unary predicates Pj :
A binary relation Z ⊆ A × B between the nodes of A and nodes of B is a

bisimulation relation if for all (a, b) ∈ Z :

(i) (atom eq.): for each Pj , a ∈ PA
j iff b ∈ PB

j ;

(ii) (Ri -back): for every b′with (b, b′) ∈ RB
i there is some a′ such that (a, a′) ∈ RA

i
and (a′, b′) ∈ Z ;

(iii) (Ri -forth): for every a′with (a, a′) ∈ RA
i there is some b′ such that (b, b′) ∈ RB

i
and (a′, b′) ∈ Z .

As the union of bisimulation relations is again a bisimulation relation, there is a
well-defined ⊆-maximal largest bisimulation between A and B. Pointed structures
A, a and B, b are bisimilar, A, a ∼ B, b, if (a, b) is in some (hence in the largest)
bisimulation between A and B.

Clearly ∼ captures a strong form of behavioural equivalence, if we think of
‘behaviours’ not just as traces of actions, but rather as the complex interactive
and responsive patterns that can evolve in any step-wise alternating exploration of
potential transitions. The conditions (Ri -back) and (Ri -forth) capture the challenge-
response requirements posed for the second player by one additional round.
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Correspondingly, the largest bisimulation on A × B forms a greatest fixed point
w.r.t. the refinement operator induced by (atom eq.) and the (Ri -back) and (Ri -forth)
conditions:

Z �−→ F (Z),

where F (Z) consist of those pairs (a, b) ∈ Z that satisfy (atom eq.) and the
(Ri -back) and (Ri -forth) conditions w.r.t. Z . Locally, over every pair of structures,
the bisimulation relation ∼ is the greatest fixed point of this operation F (which is
guaranteed to exist since F is monotone w.r.t. ⊆).

This direct—more static—description of the target equivalence as a greatest fixed
point is typical for comparison games of this kind; in the case of bisimulation equiva-
lence the typical back and forth conditions were introduced in the modal world under
the name of zig-zag conditions by Johan van Benthem. The term bisimulation equiv-
alence, which points to an intuition based on the behaviour of transition systems,
was introduced by Milner and Park.

A more dynamic view is also extracted from the greatest fixed point
characterisation, if we look at the refinement process that recursively generates the
fixed point ∼ as a limit of relations ∼α:

∼ =
⋂

α

∼α, where

∼0 = atom equivalence,

∼α+1 = F (∼α),
∼λ =

⋂

α<λ

∼α for limit ordinals λ.

Formally, the intersection in the above definition of ∼ is over all ordinal levels
α, but in restriction to any two concrete structures can be bounded by any infinite
ordinal that is of cardinality greater than the structures at hand. Over all finite, and
indeed over finitely branching structures and also over the class of all ω-saturated
or the class of all modally saturated structures, the limit is reached by stage ω, i.e.,
coincides with the limit of the finite approximations ∼� for � ∈ N,

∼ω=⋂
�∈ω ∼� .

Over finite A and B of sizes |A| and |B|, the natural game analysis even shows
that full bisimulation is reached no later than by level∼�, where � = max(|A|, |B|).

The game counterpart of∼� for � ∈ N is the �-round bisimulation game, which is
won by the second player if she does not lose during the first � rounds. Bisimulation
equivalence and its infinite game, and especially its finite approximations ∼� for
� ∈ N in relation to the �-round game, can be viewed as a special adaptation to
the modal scenario of the classical back&forth games in the Ehrenfeucht–Fraïssé
tradition.
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We write A, a ≡�ML B, b for the modal levels of elementary equivalence up to
quantifier rank (modal nesting depth) �: A, a ≡�ML B, b if A, a |= ϕ ⇔ B, b |= ϕ
for all ϕ ∈ ML of nesting depth up to �. Similarly, A, a ≡ML B, b stands for full
modal equivalence, and A, a ≡∞ML B, b for equivalence w.r.t. the infinitary variant
of modal logic which allows for infinite conjunctions and disjunctions.

Theorem 1.2 (Ehrenfeucht–Fraïssé and Karp theorems for ML) In restriction to
finite modal vocabularies, and for every � ∈ N:

A, a ∼� B, b if, and only if, A, a ≡�ML B, b.

Consequently, in restriction to finite modal vocabularies A, a ∼ω B, b if, and only

if, A, a ≡ML B, b. Without any restriction on the size of the modal vocabulary,

A, a ∼ B, b if, and only if, A, a ≡∞ML B, b.

Many other logics, and in particular other fragments of first-order logic besides
the modal fragment, can be analysed via specifically associated Ehrenfeucht–Fraïssé
games. The analysis of the guarded fragment GF of first-order logic in the light
of its invariance under guarded bisimulation equivalence is a prime example to be
discussed in Sect. 1.3. The very proposal of GF in [1] was inspired by consider-
ations concerning the taming of first-order logic through variations that involve a
generalised (or, depending on the point of view: restricted) semantics in ‘general
assignment models’ in the sense of [6]. Returning to our opening remarks about
‘behaviour’ in terms of logic and games, different logics with distinct semantics may
be obtained by admitting different observable configurations and different modes of
navigation between these. (For classical modal semantics, think of possible worlds
and accessibility relations.) It is in this view, that games and game graphs provide
yet another link to bisimulation as the quintessential notion of behavioural equiva-
lence. Bisimulation as the master game equivalence is adaptable to different logics if,
instead of the usual structures, we look at the game graphs induced by the semantic
games of those other logics. For suitable logics, the associated game graphs formalise
the notion of observable configurations (or admissible assignments) and transitions
between these (quantification patterns). Thus, levels of bisimulation equivalence
between the associated game graphs correspond to levels of Ehrenfeucht–Fraïssé
equivalence between the underlying structures, capturing the specific restrictions
embodied in the semantics of the logic in question. Some correspondences of this
kind are explored at first-order level in [20], and, with much greater generality in
mind, in [6], in the terminology of general assignment models. In the same vein,
suitable abstractions of the associated game graphs (intuitively akin to filtrations or
bisimulation quotients) may serve as concise descriptions of structures up to equiv-
alence, or as blue-prints for desired models (quasi-models) towards decidability and
complexity arguments.
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1.2.2 Bisimulation in Modal Model Theory

The essential observation for a view of bisimulation equivalences as specialisations of
corresponding classical first-order Ehrenfeucht–Fraïssé equivalences is the manner in
which its back&forth conditions precisely reflect the power of modal quantification.
The existential diamond modality ♦i , whose semantics in structure A is defined
in terms of the accessibility relation RA

i , precisely captures the available moves in
the game along Ri -transitions, and the back&forth clauses for Ri reflect potential
distinctions w.r.t. properties of nodes accessible from the current nodes through
Ri -edges in their respective structures.

On the other hand, the bisimulation games can be taken as the quintessential
template for a large class of model-theoretic Ehrenfeucht–Fraïssé style comparison
games: if we correctly abstract from the structures at hand a game graph that models
the relevant configurations and transitions between them, then levels of bisimula-
tion equivalence correspond to winning strategies for the second player in a game
that reflects the expressive power and quantification pattern of some other target
logic [20]. In some key examples, the relevant configurations correspond to the
admissible assignments to first-order variables, and the transitions to their relative
accessibility by means of basic quantification steps. In this vein, variations and espe-
cially restrictions to the admissible assignments in a first-order framework lead to
fragments that can be analysed and understood in terms of bisimulation equiva-
lences between derived game graphs. Among the most pertinent examples are the
k-variable fragments FOk of first-order logic, and the guarded fragment GF of first-
order logic. The finite variable fragments FOk work with a uniform restriction of
assignments to size k. This purely quantitative restriction is contrasted in the semi-
nal paper on the guarded fragment [1] by Andréka, van Benthem and Németi with
a qualitative restriction of assignments to clusters that are ‘guarded’ by some rela-
tional hyperedge. The new fragment is proposed with a view to a ‘dynamic’ bounding
of the available assignments—it is ‘dynamic’ in the sense of a position-dependent
restriction familiar from modal logics; yet static in the sense of structural analysis.
We shall discuss the guarded fragment and the associated ramification of bisimula-
tion in Sect. 1.3. Before that, let us summarise some key features and uses of ordinary,
modal bisimulation equivalence, which account for its pivotal role in modal model
theory.

The first is a direct corollary of the modal Ehrenfeucht–Fraïssé theorem. Ifϕ ∈ ML
has modal quantifier depth �, then its semantics is invariant under ∼�.

The essential feature of bisimulation invariance extends to more powerful logics
that share the underlying modal quantification pattern, like the modal μ-calculus.

Corollary 1.3 The semantics of basic modal logic ML is invariant under
bisimulation equivalence: for ϕ ∈ ML, A, a ∼ B, b =⇒ A, a |= ϕ ⇔ B, b |= ϕ.

Bisimulation invariance is the model-theoretic hallmark of modal logics; in fact
so much so, that modal model theory could be equated with model theory up to
bisimulation equivalence.
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1.2.3 Tree Models and Robust Decidability of Modal Logics

The familiar process of tree-unfolding takes a pointed structure A, a to a tree structure
A∗a with root a, built on the tree of all Ri -labelled paths from a in A.

Definition 1.4 Let A = (A, (RA
i ), (P

A
j ), a) be a pointed structure (Kripke struc-

ture or transition system). Its tree unfolding from a is the tree-like structure
A∗a = (A∗a, (RA∗

i ), (PA∗
j )) with root a, where A∗a is the set of edge-labelled paths

of the form w = (a0, i0, a1, . . . , a�, i�, a�+1, . . . , an) where a0 = a, i� such that
e� = (a�, a�+1) ∈ RA

i�
, with the natural projection

π : A∗a −→ A

(a0, . . . , an) �−→ an;

(w,w′) ∈ RA∗
i if w′ is an extension of w by one Ri -edge, w = w (̂i, a′); and

w ∈ PA∗
j if π(w) ∈ PA

j .

Clearly A∗, a ∼ A, a. It follows that any bisimulation invariant logic has the tree
model property. For the finite-depth approximation ∼� of ∼, even the truncation
A�a to paths of lengths n � � from a satisfies A�, a ∼� A, a. For finite vocabulary
(finitely many Ri and Pj ), the equivalence relation ∼� has finite index. Therefore,
A�a can be pruned so as to retain at most one sibling of each ∼�-type among the
immediate children of any node, without affecting ∼�-types. For basic modal logic,
this pruning yields finite tree models.

Corollary 1.5 Every satisfiable formula ϕ ∈ ML (of modal quantifier depth �) has
a finite tree model (of depth �).

These observations are essential for decidability and complexity results for the
satisfiability problem, and for what has been called the robust decidability of modal
logics. Indeed, it is not just the basic propositional modal logic ML that is decid-
able for satisfiability. This property is shared by many extensions of ML to much
stronger and practically more relevant logics, including linear or branching time tem-
poral logics such as LTL, CTL, CTL∗, dynamic logics of programs such as PDL,
Parikh’s game logic GL and the modal μ-calculus Lμ, the extension of ML by least
and greatest fixed points. While basic modal logic ML can be seen as a fragment
of first-order logic, this is not the case for these stronger logics; all of them can
express properties based on reachability and on other non-local properties that are
not first-order. However, it is easy to see that all these logics can be embedded into
monadic second-order logic MSO. Among the extensions of modal logics, the modal
μ-calculus occupies a special rôle. It encompasses the other logics mentioned (and
many more) and it has a clean and interesting model theory. The modal μ-calculus
remains decidable in the presence of backward modalities.

The tree model property provides powerful tools for proving decidability and
complexity results and for constructing efficient decision procedures. For a quick
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proof of decidability one can translate formulae of these logics into monadic
second-order formulae and invoke Rabin’s famous theorem saying that SωS, the
monadic theory of the ω-branching tree, is decidable [27]. However, the complexity
of monadic logics on infinite trees (and words) is non-elementary. But recall that
the proof of Rabin’s Theorem is based on tree automata. A much more practical
approach for constructing decision procedures for modal logics avoids the detour
through monadic second-order logic and directly applies suitable variants of tree
automata to modal logics. The theory of finite automata on trees is very well devel-
oped, with many different automata models tailored for specific applications, with
efficient algorithms for manipulating automata and for reductions between different
models, a good understanding of the complexity of the common reasoning tasks for
automata (emptiness problems, word problems etc.), and sophisticated optimisation
techniques. The tree model property paves the way to make tree automata applicable
to the world of modal logics.

The typical complexity level of satisfiability problems for modal logics is
Exptime. An exception is the basic modal logic ML for which satisfiability is
Pspace-complete. But the addition of rather modest features to ML, for instance
a global modality, push up the complexity to Exptime; on the other hand, also
rather strong extensions of ML such as the modal μ-calculus and even the modal
μ-calculus with backward modalities remain Exptime-complete. Such results rely
on efficient translations of formulae into, say, alternating tree automata, and the
Exptime-completeness of the emptiness problem for such automata.

1.2.4 Expressive Completeness

As mentioned above, one of the highlights of modal model theory in this sense is
the characterisation of basic modal logic as the bisimulation-invariant fragment of
first-order logic.

Theorem 1.6 (van Benthem) For every first-order formula ϕ(x) in a vocabulary of
binary relations Ri and unary predicates Pj as above, the following are equivalent:

(i) ϕ is bisimulation invariant.
(ii) ϕ is logically equivalent to a formula of basic modal logic ML.

In shorthand notation, FO/∼ ≡ ML, where the left-hand side suggestively stands
for the (syntactically undecidable) collection of bisimulation invariant first-order
formulae.

By no means a direct consequence, not even via the finite model property, but
rather yet another striking feature of bisimulation equivalence and of modal logic,
the same characterisation holds also in the sense of finite model theory:

FO/∼ ≡ ML (FMT).



1 The Freedoms of (Guarded) Bisimulation 11

In its basic form this result is due to Rosen [28]; alternative proofs that yield
strengthenings and lend themselves to further generalisations have been presented
in [19]. We state a few of these generalisations from [11, 18]. Global bisimulation
equivalence, A, a ∼∀ B, b, refers to a bisimulation relation in which every a ∈ A is
matched to some b ∈ B and vice versa; modal logic with a global modality, ML[∀],
is the extension of basic modal logic ML by a global modality, with the full binary
relation as its accessibility relation. A rooted structure is a structure A, a with a
single binary accessibility relation R such that every node is reachable on a directed
R-path from the root a. Equivalence structures are structures that interpret all the
binary relations Ri as equivalence relations (S5 models).

Theorem 1.7 Bisimulation invariant fragments of first-order logic are captured by
modal logics over some classes of structures, as follows.

(i) FO/∼ ≡ ML over the class of all (finite) structures.
(ii) FO/∼∀ ≡ ML[∀] over the class of all (finite) structures.

(iii) FO/∼ ≡ ML over the class of all (finite) equivalence structures.
(iv) FO/∼ ≡ ML[∀] over the class of all finite rooted structures.
(iv) FO/∼ ≡ ML over the class of all finite irreflexive transitive trees.

Here (i) is the van Benthem–Rosen characterisation from [5] and [28],
respectively; the rest are due to [11, 18].

Several of the finite model theory results above make use of finite unfold-
ings of finite structures that produce locally tree-like and fully bisimilar finite
models—which is not achievable by tree unfoldings since any globally acyclic bisim-
ilar companion of any cyclic structure is necessarily infinite. Simple combinatorial
constructions of finite locally acyclic bisimilar covers of finite graphs for this purpose
are presented in [18]. They play a crucial role in the analysis of the expressiveness
of first-order formulae that are bisimulation invariant over finite structures. Locally
acyclic behaviour suffices due to Gaifman’s locality theorem: the semantics of any
first-order formula ϕ(x) only depends on certain global multiplicities and the local
neighbourhood around x ; up to bisimulation, global multiplicities (Gaifman’s basic
local sentences) can be adjusted comparatively easily even when working in special
classes of finite models; what remains is the necessity to control the local neighbour-
hoods and this is where local tree-likeness is useful.

The van Benthem characterisation of bisimulation invariant first-order logic,
as FO/∼ ≡ ML, also has a an exciting extension to its monadic second-order
counterpart:

Theorem 1.8 (Janin–Walukiewicz) MSO/∼ ≡ Lμ, i.e., for every monadic second-
order formula ϕ(x) in a vocabulary of binary relations Ri and unary predicates Pj ,
the following are equivalent:

(i) ϕ is bisimulation invariant.
(ii) ϕ is logically equivalent to a formula of the μ-calculus Lμ.

Whether this characterisation holds in the sense of finite model theory, remains
one of the great challenges in modal model theory.
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1.3 Guarded Bisimulation: A Systematic Lifting
to Higher Dimension

The ‘dynamic’ behaviour of modal logics w.r.t. locally available transitions between
single-node assignments is vastly generalised in the setting of guarded logics.

The generalisation manifests itself on various levels: as a liberalisation in the
relational type of structures (from graph-like transition systems to relational struc-
tures with relations of any arity); a generalisation w.r.t. the restrictions on admissible
assignments and quantification patterns (from modal � and ♦ to universal and exis-
tential quantification over guarded tuples); a generalisation w.r.t. the relevant notion
of bisimulation (from modal to guarded bisimulation); and, in the wake of these
generalisations, a shift form graph theory to hypergraph theory as the underlying
combinatorial framework.

1.3.1 Guardedness and the Guarded Fragment

With a relational structure A = (A, (RA
i )i∈I ) with relation symbols Ri of arity ri ,

we associate a hypergraph of guarded sets, and a notion of guarded tuples as follows.
It will be convenient to use the notation [a] := {a1, . . . , ak} to denote the set of
components of the tuple a = (a1, . . . , ak) ∈ Ak .

Definition 1.9 A subset s ⊆ A is guarded in A if s is a singleton set or if there is
some tuple a ∈ RA

i for one of the Ri such that s ⊆ [a]. The hypergraph of guarded
sets of A is the hypergraph H(A) := (A, S[A]) with the set S of all guarded subsets
of A as the set of hyperedges. A tuple a ∈ Ak is a guarded tuple if [a] ∈ S(A).

The guarded fragment of first-order logic essentially restricts the relevant
assignments of first-order variables to guarded tuples. The actual definition is in
terms of the restriction of all quantification by means of an explicit relativisation to
some guarded tuples. It thus allows only outermost free variables to be instantiated
by unguarded assignments, but for many purposes this does not matter (since outer
boolean combinations could be treated separately).

Definition 1.10 For arbitrary relational vocabularies, the guarded fragment GF ⊆
FO is the syntactic fragment of FO generated from atomic formulae by the boolean
connectives and quantifications of the form

∀y(
α(xy)→ ϕ(xy)

)
, and, dually, ∃y(

α(xy) ∧ ϕ(xy)
)
,

where ϕ(xy) ∈ GF has free variables among those listed in xy and α(xy) is an atomic
formula in which all the listed variables occur. The formula α is called the guard of
this quantification.1 The semantics of GF is that of FO.

1 If xy consists of a single variable symbol z, α can be the equality z = z.
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The definition generalises the relativised quantification of modal logic, so that it
is clear that, w.r.t. expressiveness, ML ⊆ GF ⊆ FO, and in fact even the extension
of basic modal logic by global and backward modalities is naturally covered by GF.

1.3.2 Guarded Bisimulation and Model Theory

Just as the model theory of modal logics is governed by (modal) bisimulation
equivalence, the nice model-theoretic properties of the guarded fragment are closely
related to its invariance under guarded bisimulation equivalence. Guarded bisimula-
tion equivalence ∼g and its finite approximations ∼�g exactly cover the same station

for GF as do∼ and∼� for ML—also w.r.t. their nature as the appropriate specialisa-
tions of the first-order framework of back&forth games to the quantification pattern
of GF.

The positions of the guarded bisimulation game on structures A and B are partial
isomorphisms between A and B whose domain and image are guarded sets2; we
use a tuple-based notation p : a �→ b to indicate a partial map from A to B with
domain [a] and image [b] where bi = p(ai ). One may also think of a placement
of matched pebbles on a and b; the requirements are that a and b are guarded and
that p : A � [a] � B � [b] is an isomorphism of induced substructures (p a partial
isomorphism, a and b atom equivalent). Then the available moves for the first player,
e.g. on the A-side, are to guarded tuples a′ together with some specified sub-tuple
a0 of both a and a′ that stay put—and the response by the second player needs to
keep the sub-tuple b0 := p(a0) fixed and produce an extension b′ such that the new
p′ : a′ �→ b′ is again a partial isomorphism between A and B.

An alternative set-based view has partial isomorphisms between guarded
subsets as the positions; the moves correspond to transitions from one guarded sub-
set to another, with a specified (possible empty) subset of their intersection to be
respected by the second player’s response. This view highlights the hypergraph-
theoretic nature, and indeed can be cast as a notion of hypergraph bisimulation that
additionally needs to respect relational content.

Definition 1.11 For two relational structures A and B (of the same vocabulary), a
set of partial maps Z between A and B is a guarded bisimulation if it satisfies the
following, for every p : a �→ b in Z :

(i) (atom eq.): p : A�a � B�b is a partial isomorphism;
(ii) (back): for every guarded tuple b′ of B and b0 with [b0] ⊆ [b] ∩ [b′], there is

some guarded tuple a′ ofA and p′ : a′ �→ b′ in Z such that p′−1(b0) = p−1(b0);
(iii) (forth): for every guarded tuple a′ of A and a0 with [a0] ⊆ [a] ∩ [a′], there is

some guarded tuple b′ of B and p′ : a′ �→ b′ in Z such that p′(a0) = p(a0).

2 One should except the initial position from the guardedness requirement in order to match the
liberal treatment of (outermost) free variables in GF.
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We write A, a ∼g B,b if there is a guarded bisimulation Z containing p : a �→ b.
Finite approximations∼�g are introduced in complete analogy with the modal∼ and

∼�, and similarly correspond to the existence of winning strategies for � rounds in the
guarded bisimulation game. As in the modal case, we introduce ∼ωg as the common

refinement of the finite levels ∼�g.
One obtains the natural variant of the first-order Ehrenfeucht–Fraïssé and Karp

theorems for GF. The equivalence relations ≡�GF and ≡GF are introduced as levels
of elementary equivalence in GF, where the � in ≡�GF refers to the nesting depth of
guarded quantification (which is typically lower than the first-order quantifier rank,
as guarded quantification may quantify over tuples in a single step). The relation
≡∞GF similarly denotes equivalence w.r.t. the infinitary variant of GF, with infinite
disjunctions and conjunctions.

Theorem 1.12 (Ehrenfeucht–Fraïssé and Karp theorems for GF) In restriction to
finite relational vocabularies, and for every � ∈ N:

A, a ∼�g B,b if, and only if, A, a ≡�GF B,b.

Consequently, in restriction to finite vocabularies A, a ∼ωg B,b if, and only if,
A, a ≡GF B,b. Without any restriction on the size of the vocabulary,

A, a ∼g B,b if, and only if, A, a ≡∞GF B,b.

1.3.3 Guarded Bisimulation Invariance

The following is an immediate consequence of the guarded Ehrenfeucht–Fraïssé
theorem.

Corollary 1.13 The semantics of ϕ ∈ GF is invariant under ∼g.

The expressive completeness assertion in the following characterisation theorem
of Andréka–van Benthem–Németi rests on a non-trivial but canonical classical proof
by means of compactness and saturation. It provides a beautiful analogue and gen-
eralisation of van Benthem’s semantic characterisation of ML ⊆ FO, Theorem 1.6.

Theorem 1.14 (Andréka–van Benthem–Németi) The guarded fragment is semanti-
cally characterised as a fragment of first-order logic by its invariance under guarded
bisimulation equivalence: FO/∼g ≡ GF. In more detail, for every first-order formula
ϕ(x) in a relational vocabulary, the following are equivalent:

(i) ϕ is invariant under guarded bisimulation.
(ii) ϕ is logically equivalent to a formula of GF.
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Moreover, a guarded analogue of the Janin–Walukiewicz Theorem (Theorem 1.8)
can also be obtained via a natural translation between the guarded and modal worlds.
The logics involved are the following: guarded second-order logic GSO, which here
takes the place of MSO, is the natural restriction of second-order logic that allows
to quantify over sets of guarded tuples; guarded fixpoint logic μGF is the extension
of GF by constructors for least and greatest fixed points.

Theorem 1.15 (Grädel–Hirsch–Otto) GSO/∼g ≡ μGF, i.e., For every GSO-
formula ϕ(x), the following are equivalent:

(i) ϕ is invariant under guarded bisimulation equivalence.
(ii) ϕ is logically equivalent to a formula of μGF.

The translations in [14] that directly reduce this assertion to Theorem 1.8 involve
an interesting parallelism between modal and guarded tree unfoldings.

Guarded tree unfoldings of relational structures A = (A, (RA)) can be con-
structed from a tree unfolding of the associated transition system I (A) = (S[A] ∪
{∅}, E) where S[A] is the set of guarded subsets of A and E = {(s, s′) : s �= s′, s =
∅ or s ∩ s′ �= ∅}.3 From a tree unfolding I ∗ := I ∗∅ of I (A) from the root node ∅,
with natural projection π : I ∗ → S(A) ∪ {∅} we reconstruct a relational structure

Â = ( Â, (RÂ))

as follows. The universe Â is the quotient of the disjoint union of copies of sets
π(ŝ) ⊆ A, ⋃

ŝ∈I ∗
{ŝ} × π(ŝ)

w.r.t. the equivalence relation that identifies a ∈ π(ŝ1) with a ∈ π(ŝ2) if, and only
if, ŝ2 and ŝ1 are connected in I ∗∅ by a path whose π -projection involves just edges
e = (s, s′) ∈ E for which a ∈ s ∩ s′. We denote the equivalence class of (ŝ, a) for
a ∈ π(ŝ) by [ŝ, a], and the set {[ŝ, a] : a ∈ π(ŝ)} ⊆ Â by [ŝ]. The map that sends
the equivalence class [ŝ, a] of a ∈ ŝ to a ∈ A is the natural projection associated
with the unfolding, for simplicity also denoted π : Â→ A. Locally, in restriction to
every [ŝ] ⊆ Â, this projection π is a bijection onto the corresponding guarded subset
s = π(ŝ) of A. Relations R are interpreted in Â such that precisely the sets [ŝ] ⊆ Â
are guarded subsets, and such that π : Â→ A is a global relational homomorphism
and a local isomorphism in restriction to every subset [ŝ].
Definition 1.16 The guarded tree unfolding of a relational structure A = (A, (RA))

is the structure Â = ( Â, (RÂ)) as constructed from a tree unfolding of the intersection
graph I (A) above, together with the natural homomorphic projection π : Â → A,
which bijectively associates the guarded subsets [ŝ] ∈ S(Â) with their underlying
guarded subsets s = π(ŝ) ∈ S[A].

3 We attach the empty set as a root to I (A) and join it to every guarded set to obtain a natural tree
unfolding for our purposes, rather than a forest.
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It is straightforward to check that the restrictions of the projection homomorphism
π : Â→ A to the guarded subsets of Â form a guarded bisimulation. Therefore, for
any guarded subset [ŝ] of Â above the guarded subset s = π(ŝ) of A,

Â, [ŝ] ∼g A, s,

where we allow ourselves to write just the guarded sets [ŝ] and s, instead of
π -compatible listings of their elements as tuples.

Tree unfoldings as just defined are tree-like also in the sense that their hypergraphs
of guarded subsets S[Â] are acyclic. There are several equivalent characterisations of
the relevant notion of hypergraph acyclicity (also called α-acyclicity in the literature,
cf. [4, 9]): in terms of tree decompositions that use guarded subsets (hyperedges) as
bags; in terms of reducibility by means of reduction steps that allow for

(i) removal of a vertex (from the universe and every hyperedge) provided it is
contained in at most one hyperedge, and

(ii) retraction of a hyperedge provided it is fully contained in some other hyperedge;

and in terms of the local criteria of conformality and chordality for the hypergraph
and its associated Gaifman graph.

Definition 1.17 For a hypergraph H = (A, S), define the associated Gaifman graph
G(H) to have vertex set A and an edge between distinct a, a′ ∈ A precisely if a and
a′ occur together in some hyperedge s ∈ S.

The hypergraph H = (A, S) is acyclic if it is both

(i) conformal: each clique in G(H) is contained in a single hyperedge, and
(ii) chordal: every cycle in G(H) of length greater than 3 has a chord, i.e., G(H)

has no induced subgraphs isomorphic to the k-cycle for k > 3.

Since every relational structure A is guarded bisimulation equivalent to its guarded
tree unfolding, and as GF is invariant under guarded bisimulation equivalence, we
find that every satisfiable formula of GF has an acyclic model. This was first stated
in [12] as the generalised tree model property of GF.

Corollary 1.18 (Grädel) Every logic that is invariant under guarded bisimulation
equivalence has this generalised tree model property: every satisfiable formula has
a model whose hypergraph of guarded subsets is acyclic, i.e., a model that admits a
tree-decomposition with guarded subsets as bags.

For a relational vocabulary of width w, this further entails that every satisfiable
formula of GF or μGF has a (countable) model of tree width w − 1.

1.3.4 Decidability and Complexity for GF and Its Extensions

As in the case of modal logics, the tree model property for guarded models paves
the way to decidability and automata based decision procedures. These do not only
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work for the guarded fragment GF in its basic form, but also for guarded fixed-point
logic μGF and for other variants of guarded logics based on more liberal notions of
guarded sets.

Indeed, structures of bounded tree width can be uniformly represented by standard
trees, in the graph-theoretic sense, with a bounded set of labels. More precisely, given
a tree decomposition of width k − 1 of a relational τ -structure D we fix a set K of
2k constants and assign to every element d ∈ D a constant ad ∈ K such that
distinct elements living at adjacent nodes in the tree decomposition are represented
by distinct constants. On the tree T underlying the decomposition of D we define
monadic predicates Oa (for a ∈ K ) and Ra (for m-ary R ∈ τ and a ∈ K m) where
Oa is true at those nodes of T where an element represented by a occurs, and Ra is
the set of nodes of T where a tuple (d1, . . . , dm) ∈ R occurs that is represented by
a. We thus obtain a tree structure T (D) which has (beyond the edge relation of the
tree) only monadic predicates and which carries all structural information about D
and its tree decomposition.

On the other hand, a tree T with such monadic relations Oa and Ra is indeed a
tree representation T (D) for some τ -structure D if, and only if, it satisfies certain
consistency axioms that turn out to be first-order definable.

There are several options to exploit this for proving decidability and complexity
results. The simplest way to prove decidability of guarded fixed-point logic μGF is
by an interpretation into SωS, the monadic logic of the countable branching tree.
That is, with every formula ϕ(x1, . . . xm) of μGF and every tuple a ∈ K m one can
associate a monadic second-order formula ψa(z) that describes on the tree structure
T (D) the same properties of guarded tuples that ϕ(x̄) does on D, in the following
sense: if d is a guarded tuple of D living at node v of the tree T , and if a represents
d at v, then

D |= ϕ(d)⇐⇒ T (D) |= ψa(v).

On the basis of this translation and of the facts that the consistency axioms for
tree representations are first-order, that μGF (and least fixed point logic in general)
has the Löwenheim-Skolem property, and that the monadic theory of countable trees
is decidable, it is then not difficult to prove that the satisfiability problem for μGF is
decidable.

Instead of the reduction to the monadic second-order theory of trees, one can define
a similar reduction to the modal μ-calculus with backward modalities. The decid-
ability (and Exptime-complexity) of this logic has been established by Vardi [30]
by means of two-way alternating automata. To make such a reduction work, one has
to observe that the consistency axioms for tree representations can be formulated in
this logic (in fact, it is sufficient to use basic modal logic with a global modality and
backward modalities) and that least and greatest fixed points in μGF on D can be
encoded by simultaneous modal fixed-point formulae on T (D).

It should be pointed out that the usual modal μ-calculus, without backward
modalities, does not seem to be sufficient for such an approach. Indeed, besides
the tree model property, the modal μ-calculus also has the finite model property,
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while one easily obtains formulae that have only infinite models in μGF and in the
μ-calculus with backward modalities.

Finally, the satisfiability problem for guarded fixed-point logic can also be solved
by direct application of suitably tailored automata-theoretic methods. The general
idea is to associate with every sentence ψ ∈ μGF an alternating tree automaton
Aψ that accepts precisely the (tree descriptions of the) like-tree models of ψ . This
reduces the satisfiability problem of ψ to the emptiness problem of the automaton,
a problem that is solvable in exponential time with respect to the number of states
of the automaton. This was the approach taken in [15] where the decidability of
μGF had first been established. Instead of Vardi’s two-way automata, Grädel and
Walukiewicz use a different variant of alternating automata that work on trees of
arbitrary, finite or infinite, degree and do not make use of the orientation of edges.
The behaviour of such an automaton on a given tree structure is described by a parity
game, and by means of the positional determinacy of these games one can reduce the
input trees to trees of bounded branching (and the automata to those used by Vardi
for the decidability of the μ-calculus with backward modalities). The size of the
automaton Aψ is bounded by |ψ |2k log k where k is the width of ψ . For the following
see [15].

Theorem 1.19 (Grädel–Walukiewicz) The satisfiability problem for μGF is decid-
able, and complete for 2Exptime. For μGF-sentences of bounded width the satisfi-
ability problem is Exptime-complete.

It is worth pointing out that the same complexity bounds also hold for GF, the
guarded fragment without fixed points [12]. The double exponential complexity of
GF andμGF may seem high (and disappointing for practical applications). However,
it is not really surprising, since these logics admit predicates of unbounded arity
(whereas modal logics are evaluated on graph-like structures). Even a single predicate
of arity n on a universe with just two elements admits 22n

types already at the
atomic level, so one cannot really expect lower complexity bounds. In many practical
applications, the underlying vocabulary will be fixed and the arity therefore bounded.
In such cases the satisfiability problems for GF and μGF are in Exptime and thus
on the same level as for most modal logics.

Beyond GF and μGF the general approach outlined here also works for other,
more general, notions of guarded logics based on more liberal definitions of guard-
edness. This includes loosely guarded, packed, or clique-guarded logics. While
the classical notion of a guarded set means that the entire set is covered by one
atomic fact, the most liberal notion, of a clique-guarded set, just requires that any
two elements of the set coexist in some atomic fact, which means that the set is a
clique in the Gaifman graph of the structure. Most of the algorithmic results on GF
and μGF can be extended to the clique-guarded extensions CGF and μCGF (with
appropriate modifications, in particular for the notion of bisimulation). For details,
see [13].
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1.3.5 Guarded Model Constructions

Guarded tree unfoldings provide one example of a specific form of model construc-
tion, or in this case: model transformation, that is tailored for the model theoretic
analysis of guarded logics. The requirements of acyclicity and finiteness will in gen-
eral be incompatible; we shall return to the interesting question how much acyclicity
can in general be achieved in finite models further below. For a start, however, we
consider the finite model property for the guarded fragment, disregarding the issue of
acyclicity. The following proof idea stems from [12] and uses a nice combinatorial
result, about finite extension properties of partial isomorphisms due to Herwig [16].

Theorem 1.20 (Herwig) Any finite relational structure A admits a finite extension
Ā ⊇ A (A becomes an induced substructure of Ā) with the property that every
partial isomorphism p : A � dom(p) � A � image(p) extends to (is induced by) an
automorphism p̄ of Ā.

It is easy to see that any Herwig extension Ā of A can be thinned out so that each
RĀ is generated by the orbit of RA under the automorphism group. Let us call such
a Herwig extension special.

Special Herwig extensions of sufficiently rich finite substructures A ⊆ B are∼�g-
equivalent to B itself; this is the core of the finite model property for GF as proved
in [12], see Theorem 1.22.

Lemma 1.21 Let B be a relational structure, A = B� A an induced finite substruc-
ture on a subset A ⊆ B that is sufficiently rich to contain, for every guarded tuple b
of B, at least one realisation of that∼�g-type: there is a ∈ A such that B, a ∼�g B,b.

Then any special Herwig extension Ā ⊇ A is ∼�g-equivalent to B in the sense that

(i) Ā ∼�g B;

(ii) for every guarded tuple a ∈ A: Ā, a ∼�g B, a.

Proof Using the fact that every guarded tuple in Ā is in the orbit of some guarded
tuple a of A under an automorphism of Ā (because Ā is special), and that, up to
∼�g, every guarded tuple of B is represented in A ⊆ B, claim (i) directly follows
from claim (ii). For claim (ii) it essentially suffices to observe that every back&forth
requirement for a that can be met in B can also be met in Ā, as follows.

Let a ∈ A be guarded, b guarded in B, and c a tuple in the intersection [a] ∩ [b].
By the richness assumption on A, there is some a′ ∈ A such that B, a′ ∼�g B,b.
This implies in particular that the tuple c′ in [a′] corresponding to c in [a] ∩ [b] is
linked to c by a partial isomorphism p of A. The automorphism p̄ of Ā then shows
that p̄(a′) overlaps with a in the tuple c in Ā (just as b overlaps with a in c in B).
By induction on � for claim (ii), i.e. assuming claim (ii) at level �− 1, we find

Ā, p̄(a′) � Ā, a′ ∼�−1
g B, a′ ∼�g B,b.
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This, for all available b in B, shows that Ā, a ∼�g B, a as required for (ii) at
level �. �

Claim (i) of the lemma directly yields the finite model property for GF, since any
ϕ ∈ GF of nesting depth � is preserved under ∼�g, and since every B,b |= ϕ has a
finite substructure A ⊆ B that contains at least one realisation of each one of the
finitely many ∼�g-types realised by guarded tuples of B.

Theorem 1.22 (Grädel) GF has the finite model property: every satisfiable ϕ ∈ GF
has a finite model.

Better bounds on the size of small models for a given satisfiable ϕ ∈ GF are
obtained by a more recent construction in [2], which builds a small model not directly
from a given (infinite) model, but from a complete abstract description of the required
∼�g-type to be realised.

Proposition 1.23 (Bárány–Gottlob–Otto) Every satisfiable ϕ ∈ GF(σ ), where σ is
any relational vocabulary of width w, has a small finite model whose size can be
bounded exponentially in the length of ϕ, for fixed w; the dependence on w, on the
other hand, is doubly exponential.

The core construction of [2], of which the above really is a technical corollary,
yields finite guarded bisimilar covers that are weakly N -acyclic in the sense of the
following definitions.

Definition 1.24 A guarded bisimilar covering of a relational structure A is a
homomorphism π : Â → A from some relational structure Â (the cover) onto A,
such that the restrictions of π to guarded subsets of Â induce a guarded bisimulation.

Guarded tree unfoldings are natural examples in point; however, we are here
mostly interested in coverings of finite A by finite covers Â. The restrictions of
the cover homomorphism π to guarded subsets must in particular be partial iso-
morphisms. The forth-property is thus subsumed in the requirement that π is a
homomorphism. The back-property corresponds to a lifting property familiar from
topological or geometric notions of coverings.4

Guarded tree unfoldings provide fully acyclic coverings, albeit infinite ones.
One useful approximation to acyclicity in finite covers is the following from [2].

Definition 1.25 A covering π : Â→ A is weakly N-acyclic if every induced sub-
structure of Â of size up to N is tree-decomposable with bags that project onto
guarded subsets of A under π .

Proposition 1.26 (Bárány–Gottlob–Otto) For every N ∈ N, each finite relational
A admits weakly N-acyclic coverings by finite structures.

4 It may be worth to point out that, unlike the finite bisimilar coverings obtained for graph-like
structures in [18], the bisimilar coverings of relational structures or of hypergraphs will necessarily
be branched coverings, and do not provide unique liftings.
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An analysis of homomorphisms h : C → Â, from structures C of size up to
N into a weakly acyclic cover π : Â → A, shows that A must satisfy one of a
finite list of potential GF-descriptions of all possible acyclic homomorphic images
of C.5 If A does not satisfy this GF-expressible finite ‘disjunction of acyclic con-
junctive queries’, then Â cannot even admit cyclic homomorphic images of C.
Together with existence of finite, weakly N -acyclic covers, this argument from
[2] yields a considerable strengthening of the finite model property for GF, as
well as natural applications to database issues regarding conjunctive queries under
GF-definable constraints.

For the following, a class C of σ -structures is said to be defined in terms of
finitely many forbidden homomorphisms if, for some finite list of finite σ -structures
C1, . . . ,Cm , the class C consists of precisely those σ -structures C that admit no
homomorphisms h : Ci → C for 1 � i � m.

Corollary 1.27 (Bárány–Gottlob–Otto) GF has the finite model property in
restriction to any class C of relational structures that is defined in terms of finitely
many forbidden homomorphisms: for any such class C , ϕ has a model in C if, and
only if, it has a finite model in C .

Interestingly, this strengthening of the finite model property for GF can also
be obtained from a corresponding strengthening of Herwig’s theorem. We briefly
present this new alternative proof from [24], which may be of independent systematic
interest.6 The Herwig–Lascar theorem [17] asserts a finite model property for the
extension task for partial isomorphisms over classes with finitely many forbidden
homomorphisms. An alternative proof of the Herwig–Lascar theorem itself, which
is inspired by hypergraph constructions related to the exploration of the finite model
theory of GF, see Sect. 1.3.6, can be found in [22, 24, 25].

Theorem 1.28 (Herwig–Lascar) Let the class of relational structures C be defined
in terms of finitely many forbidden homomorphisms. Suppose that a finite structure
A ∈ C has a possibly infinite extension B ⊇ A in C that extends every partial
isomorphism of A to an automorphism of B. Then A also possesses a finite extension
with this property in C .

Just as Lemma 1.21 links Herwig’s theorem to the basic finite model property
for GF, the following links the Herwig–Lascar theorem to the stronger finite model
property for GF expressed in Corollary 1.27.

A structure B is ∼�g-homogeneous if any guarded tuples b,b′ in B such that

B,b ∼�g B,b′ are related by an automorphism of B.

Lemma 1.29 Let C be a class of relational structures defined in terms of finitely
many forbidden homomorphisms. Let B ∈ C be ∼�g-homogeneous. Let B′ be the

5 Caveat: π(h(C)) ⊆ A need not itself be acyclic.
6 It should be noted that this stand-alone argument does not support the complexity bounds that
flow from the more constructive proof of Corollary 1.27 in [2].
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expansion of B by a new relation for each one of the finitely many∼�g-types realised
in B. Let A′ = B′ � A be large enough to contain, for every guarded tuple b of B,
at least one realisation of that ∼�g-type.

Then A′ has a special Herwig extension Ā′ ⊇ A′ in C that is ∼g-equivalent to
B′ in the sense that Ā′ ∼g B′ and Ā′, a ∼g B′, a for every guarded tuple a ∈ A.

Proof In view of Lemma 1.21 and Theorem 1.28 it suffices to show that the extension
task for A′ has some, possibly infinite, solution in C . But B′, being homogeneous,
is such an infinite solution. �

Proof (of Corollary1.27) Let C be defined by the condition that there are no homo-
morphic images of the finite structures C1, . . . ,Cm . The class C0 ⊇ C of structures
that admit no acyclically embedded homomorphic images of the Ci is definable in
GF by some γ ∈ GF of guarded nesting depth �, for some �. To find finite models
of ϕ ∈ GF in C , we moreover choose � greater or equal to the nesting depth of ϕ. If
ϕ has an infinite model in C , then a ∼�g-homogeneous infinite model B of ϕ in C
can be obtained as a suitable regular tree-like model of ϕ ∧ γ (which in turn could
be obtained from an arbitrary finite model of ϕ ∧ γ ). An application of the lemma
then yields a finite model in C . �

Beside the notion of weakly N -acyclic coverings from [2], there is the stronger
notion of N -acyclic coverings from [21], which rules out any small cyclic sub-
structures in the cover. This yields an even stronger finite model property for GF
and is essential for an expressive completeness proof for GF in finite model the-
ory, as sketched in the next section. More canonical constructions of N -acyclic
coverings and related hypergraph constructions have recently been explored in
[22, 25]. But unlike the case of weakly N -acyclic covers, the known constructions
of fully N -acyclic finite covers do not provide feasible size bounds.

Definition 1.30 A guarded bisimilar covering π : Â → A is N -acyclic if every
induced substructure of size up to N of the cover Â is acyclic.

Proposition 1.31 (Otto) For every N ∈ N, each finite relational A admits
N-acyclic coverings by finite structures.

Corollary 1.32 (Otto) GF has the finite model property in restriction to any class
C of relational structures that is defined in terms of finitely many forbidden cyclic
substructures.

1.3.6 Expressive Completeness

The N -acyclic finite guarded bisimilar covers of Proposition 1.31 are also essential
for the proof of the finite model theory version of Theorem 1.14. The issue at stake is
the expressive completeness assertion, that a first-order definable property of guarded
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tuples in (finite) relational structures is expressible in GF (over all finite structures)
if it is closed under guarded bisimulation equivalence (among finite structures).
For both, the classical and the finite model theory reading, the Ehrenfeucht–Fraïssé
theorem for GF shows that it suffices to prove the following, which may be read as
a compactness property for (∼�g)�∈N versus ∼g: for any ϕ(x) ∈ FO (in an explicitly
guarded tuple x of free variables),

(∗)
{
ϕ(x) invariant under ∼g ⇒
ϕ(x) invariant under ∼�g for some � ∈ N.

The classical proof typically achieves this through

(i) a compactness argument that reduces (∗) to: invariance under ∼g implies
invariance under ∼ωg (i.e., ≡GF); and

(ii) a proof of claim (i) through an upgrading argument involving saturated models:
for A ≡GF B there are A∗ ≡FO A and B∗ ≡FO B for which (by saturation)
A∗ ≡GF B∗ implies A∗ ∼g B∗; the claim is then apparent from this diagram:

For the finite model theory version, a passage through the necessarily infinite
companion structures, which are involved in both parts of this classical argument, is
not supported by the assumptions.

Instead, the upgrading needs to be based on a more constructive approach to
model transformations, and focuses on a concrete level � in (∗) that is determined
by the width of the vocabulary and the quantifier rank q of the given ϕ. It follows
this pattern:

Here Â and B̂ are obtained as (finite) guarded bisimilar covers of A and B,
respectively, that need to be sufficiently acyclic and finitely saturated w.r.t. multi-
plicities: a certain level of N -acyclicity is necessary because Â and B̂ may necessar-
ily have cycles, and differences w.r.t. short cycles would be FO-expressible at low
quantifier rank; similarly for differences w.r.t. small branching degrees between rela-
tional hyperedges, which can also not be controlled in GF.

Technically rather intricate arguments in [21] use Proposition 1.31 as a starting
point to provide companions Â and B̂ that support this proof idea.
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Theorem 1.33 (Otto) FO/∼g ≡ GF, also in the sense of finite model theory: For
every first-order formulaϕ(x) in a relational vocabulary, the follwong are equivalent:

(i) ϕ is invariant under guarded bisimulation among finite structures.
(ii) ϕ is logically equivalent over all finite structures to a formula of GF.

1.4 Guarded Negation Bisimulation

One natural decidable fragment of first-order logic that stands out because of its con-
siderable algorithmic importance, is the positive existential fragment: ∃posFO ⊆ FO
is generated from atomic formulae by conjunction, disjunction and existential quan-
tification. It is semantically characterised, as a fragment of FO, by preservation under
homomorphisms. This characterisation is known as the Lyndon–Tarski theorem in
classical model theory; for finite model theory, it was proved by Rossman in [29],
with characteristically different techniques that also shed new light on the classical
version. Any ∃posFO-formula can be equivalently re-written as a disjunction over
existentially quantified conjunctions of atoms—so that it corresponds, in database ter-
minology, to a union of conjunctive queries. And a conjunctive query asserts the exis-
tence of a homomorphism: consider a conjunctive query ϕ = ϕ(x) = ∃y ∧

i αi(zi)

with relational atoms αi (zi ) for tuples of variables zi from [xy]. With the template∧
i αi (zi ) associate a relational structure Cϕ whose universe is the set of variables
[xy], and whose relations are interpreted by putting zi into the relation involved in the
atom αi . Then A, a |= ϕ if, and only if, there is a homomorphism h : Cϕ → A that
maps x to a. Interestingly, ϕ can equivalently be expressed in GF (i.e., is invariant
under guarded bisimulation equivalence) if, and only if, Cϕ is acyclic.
∃posFO ⊆ FO or the formalism of (unions of) conjunctive queries are closed

under nesting, but closure under (unconstrained) negation generates all of relational
FO and becomes undecidable for satisfiability. The guarded fragment GF ⊆ FO, on
the other hand, is closed under negation, but not under (unconstrained) nesting.

The introduction of the guarded negation fragment GN ⊆ FO in [3] combines
the innocuous ingredients in GF and ∃posFO with the natural constraints to produce
a common extension of GF and ∃posFO that retains many of the good features, most
notably decidability.

We follow the pattern of the treatment so far and put the appropriate notions
of back&forth equivalence centre-stage. The characteristic feature is the interleav-
ing of (local, and possibly size-bounded) homomorphisms with modal or guarded
bisimulation.
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1.4.1 Homomorphisms and Bisimulation

We start with a back&forth equivalence that interleaves homomorphisms with modal
bisimulation; this will provide the Ehrenfeucht–Fraïssé notion and semantic charac-
terisation of the unary negation fragment UN ⊆ FO of [10], a modal precursor to
the guarded negation fragment GN ⊆ FO of [3].

A unary negation bisimulation relation between relational structures A and B is
a set Z ⊆ A× B of positions, which are just pairs of related vertices in A and B as
in modal bisimulation, subject to atom equivalence and more complex back&forth
conditions involving homomorphisms. For all (a, b) ∈ Z :

(i) (atom eq.): A�{a} � B�{b};
(ii) (hom-back): for every B0 ⊆ B there is a homomorphism h : B� B0 → A such

that (h(b), b) ∈ Z for all b ∈ B0, and h(b) = a if b ∈ B0;
(iii) (hom-forth): for every A0 ⊆ A there is a homomorphism h : A� A0 → B such

that (a, h(a)) ∈ Z for all a ∈ A0, and h(a) = b if a ∈ A0.

We write A, a ∼hom B, b if (a, b) ∈ Z for some unary negation bisimulation
relation Z between A and B; A, a ∼�hom B, b for the finite approximation corre-
sponding to a strategy for the second player for � rounds in the natural bisimulation
game associated with this back&forth scenario.

A generalisation of this idea leads from an equivalence between individual ele-
ments (as in modal bisimulation) to an equivalence based on guarded tuples (as
in guarded bisimulation), similarly interleaving bisimulation with local homomor-
phisms: this is the notion of guarded negation bisimulation equivalence from [3].

A guarded negation bisimulation relation between relational structures A and B
is a set Z of partial isomorphisms ρ : a �→ b between guarded tuples or subsets, such
that, for all ρ : a �→ b in Z :

(i) (atom eq.): ρ : A�a � B�b (isomorphism of guarded substructures);
(ii) (hom-back): for all B0 ⊆ B there is a homomorphism h : B � B0 → A that is

compatible with the restriction of ρ−1 to B0, and such that ρ′ : h(b′) �→ b′ is
in Z for all guarded tuples b′ from B0;

(iii) (hom-forth): for all A0 ⊆ A there is a homomorphism h : A � A0 → B that is
compatible with the restriction of ρ to A0, and such that ρ′ : a′ �→ h(a′) is in
Z for all guarded tuples a′ from A0.

We write A, a ∼ghom B,b and A, a ∼�ghom B,b to denote guarded bisimulation
equivalence and its finite approximations.

Simple size-bounded versions of ∼hom and ∼ghom and their finite
approximations are technically useful: we restrict conditions (hom-back) and
(hom-forth) to subsets B0 ⊆ B and A0 ⊆ A of size up to k, for some fixed
k ∈ N. We write e.g. A, a ∼ghom;k B,b and A, a ∼�ghom;k B,b in connection
with this restricted notion of k-bounded guarded negation bisimulation, and simi-
larly, e.g., A, a ∼hom;k B, b for a corresponding notion of k-bounded unary negation
bisimulation.
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We discuss briefly the extensions of modal logic and the guarded fragment that
are obtained by closure of the existential positive fragment of FO under negation in
suitably restricted settings:

• negation of ‘unary’ formulae in a single free variable for the unary negation
fragment [10];
• negation of ‘guarded’ formulae in an explicitly guarded tuple of free variables for

the guarded negation fragment [3].

Definition 1.34 The formulae of the unary negation fragment UN ⊆ FO are
generated from the atomic formulae by positive boolean connectives, existential
quantification, and negation on formulae in at most one free variable.

It is obvious that, for suitable modal vocabularies, ML ⊆ UN and that generally
∃posFO ⊆ UN; both inclusions are easily seen to be strict (for non-trivial vocabular-
ies). It turns out that formulae of UN (in at most a single free variable) are preserved
under unary negation bisimulation, and in fact this property characterises the unary
negation fragment as a fragment of FO, classically. See [10] for this and many related
model-theoretic results, also regarding the fixpoint extension of UN and including
decidability for satisfiability and finite satisfiability.

Definition 1.35 The formulae of the guarded negation fragment GN ⊆ FO are
generated from the atomic formulae by positive boolean connectives, existential
quantification, and negation on formulae in an explicitly guarded tuple of free
variables.

It is not hard to see that UN ⊆ GN and GF ⊆ GN, and that these inclusions are
strict in general. Formulae of GN (in an explicitly guarded tuple of free variables)
are preserved under guarded negation bisimulation equivalence; this preservation
property also characterises GN as a fragment of FO, in the sense of classical model
theory, as shown in [3].

For useful Ehrenfeucht–Fraïssé correspondences, which rely on the natural notion
of nesting depth in GN and UN and induce equivalence relations of finite index, we
need to bound the size of the existential quantifications (conjunctive queries) by
some width parameter. For the games and bisimulation notions this restriction leads
to the size bounded equivalences like ∼�ghom;k. For the logics, we correspondingly
let GN[k] ⊆ GN stand for those formulae that can be generated with existential
quantifications over up to k variables at a time. To avoid pathologies, we shall always
assume that k is no less than the width of the vocabulary.

It is then not hard to see that equivalence w.r.t. GN[k] up to nesting depth � and
∼�ghom;k are related in an Ehrenfeucht–Fraïssé correspondence. The theorem gives
an indicative example; its variants for UN and also for infinitary versions of UN and
GN in the style of Karp theorems are straightforward.

Theorem 1.36 (Ehrenfeucht–Fraïssé for GN[k]) In restriction to finite relational
vocabularies, fixed k ∈ N, and for every � ∈ N:

A, a ∼�ghom;k B,b if, and only if, A, a ≡�GN[k] B,b.
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1.4.2 Towards a (Finite) Model Theory of Guarded Negation

We summarise some key techniques and a few further results for the model theory of
GN and GN[k], especially pertaining to the finite model property and to the expressive
completeness concern in finite model theory. We concentrate on guarded negation
rather than unary negation, since this is the richer of the two settings; technically it
is, moreover, more directly related to one of our main themes, viz., to the interesting
passage from graph-like structures to general relational structures with an emphasis
on the hypergraph of guarded subsets.

Theorem 1.37 (Bárány–ten Cate–Segoufin) GN has the finite model property.

The argument from [3] is based on a reduction from GN-satisfiability to satis-
fiability of GF under constraints imposed by forbidden homomorphisms, and thus,
essentially, a reduction to Corollary 1.27.

The semantics of a formula ϕ(x) ∈ GN (in explicitly guarded free variables x)
can be translated into a collection of auxiliary specifications that subject certain
guarded tuples a in a prospective model A to positive or negative requirements w.r.t.
homomorphisms:

• (pos. hom.) requiring the existence of a homomorphism h : C, c → A, a, for
certain finite templates C, c;
• (neg. hom.) ruling out the existence of any homomorphism h : C, c → A, a, for

certain finite templates C, c.

In both cases, the templates C, c are abstracted from the underlying conjunctive
queries or positive existential parts (in a suitable normal form). A standard process
of relational Skolemisation thus translates ϕ(x) into a positive boolean combination
of requirements of the form (pos. hom.) and (neg. hom.) for all tuples in certain
(auxiliary) relations. A further crude Skolemisation step serves to provide realisations
of positive requirements in image substructures that are guarded as a whole by new
auxiliary relations; this puts all (pos. hom.) requirements into GF, and leaves just the
negative requirements of the form (neg. hom.) to cope with. But this is precisely the
situation in which Corollary 1.27 yields finite models whenever there are any models.

The requirements for an expressive completeness proof for GN[k] in relation to
all ∼ghom;k-invariant FO-definable properties (of guarded tuples), which is meant
to work in finite model theory, are considerable higher. The basic idea again is to
use an upgrading through ∼ghom;k-compatible model transformations that work in
finite structures. I.e., we want to follow this pattern, presented without the guarded
parameter tuples:
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More precisely, given some first-order ϕ of quantifier rank q that is invariant under
∼ghom;k, and finite structures A and B that are ∼�ghom;k-equivalent for sufficiently

high level �, we need to provide finite ∼ghom;k-equivalent companion structures Â

and B̂ for which ∼�ghom;k-equivalence implies ≡q
FO-equivalence, so that

Â |= ϕ iff B̂ |= ϕ.

If this can generally be achieved, for a uniform level � that only depends on ϕ, then
the diagram shows thatϕ is preserved under∼�ghom;k , and by the Ehrenfeucht–Fraïssé
theorem for GN[k], Theorem 1.36, is equivalently expressible in GN[k].

The crucial features with respect to which Â and B̂ need to agree, even though
these features are not GN-definable are

• presence of small cyclic configurations other than those explicitly ruled out by
(neg. hom.) assertions;
• multiplicities (up to a threshold) and isomorphism types of realisations of (pos.

hom.) assertions.

That A and B agree w.r.t. the relevant (pos. hom.) and (neg. hom.) assertions
follows from their∼�ghom;k-equivalence. Then agreement w.r.t. to the above features
is relatively easy to achieve in infinite tree unfoldings of A and B that are simulta-
neously saturated w.r.t. all admissible isomorphism types of the relevant (pos. hom.)
assertions. Relational Skolemisation and an application of the finite model property
for GN, Theorem 1.37, yield finite companions Â′0 and B̂′0. These further admit finite

coverings by suitable Â′ and B̂′ whose degree of acyclicity and saturation w.r.t. small
multiplicities show them to be equivalent in the sense of ≡q

FO (this last part of the
argument is as for Theorem 1.33). This yields the following result from [23].

Theorem 1.38 (Otto) FO/∼ghom;k ≡ GN[k], classically and in the sense of finite
model theory.

1.5 Summary

We have seen that bisimulation equivalence is a very flexible and powerful concept
for the analysis of many logics. In its classical form it is one of the crucial tools
in the study of modal logics, and its generalisations to various forms of guarded
bisimulation provide indispensable methods for understanding the expressive power
as well as the model-theoretic and algorithmic properties of more and more powerful
variants of guarded logics.

First of all, an appropriate notion of bisimulation for a logic L characterises
semantic invariance and logical indistinguishability: bisimilar nodes or tuples in
two structures cannot be distinguished by formulae of L . In this sense, bisim-
ulation is closely related to the characterisation of elementary equivalence via
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Ehrenfeucht-Fraïssé games, and bisimulation games can indeed be viewed as special
cases of these. The specific form of a bisimulation depends mostly on the nature
of the quantification patterns that the associated logic provides. In game theoretic
terms, the restrictions on the permitted forms of quantification are reflected by the
rules in the associated bisimulation game. In modal and guarded bisimulation games
the configurations at any position in a play are restricted in the sense that they may
only contain elements that are, in a sense, ‘close together’. As a consequence, bisim-
ulation permits us to control the complexity of model constructions and leads to
results about model-theoretic properties of modal and guarded logics such as the
tree model property of modal logics and the fact that satisfiable guarded formulae
have models of bounded tree width. While such results are usually not too difficult
to establish for infinite models, corresponding constructions for finite models may
be quite challenging and require intricate combinatorial arguments and sophisticated
mathematical techniques.

A further highlight of the bisimulation-based analysis of logics are the
characterisation theorems that provide, inside a classical level of logical expressive-
ness such as first-order or monadic second-order definability, a sort of converse of
bisimulation invariance. Typically such characterisation theorems state that a modal
or guarded logic is not only invariant under bisimulation, but is in fact (up to logical
equivalence) precisely the bisimulation invariant part of that level. Again such the-
orems are, by means of compactness and model-theoretic notions such as saturation
or by automata-theoretic methods, better understood and easier to prove for arbitrary
(i.e. finite or infinite) models, and much more challenging, and in some cases open,
on finite structures.

A related issue that we have not treated here concerns Lindström characterisations
of modal and guarded logics. It is shown in [7, 8] that no logic that is bisimulation
invariant, compact, and closed under relativisation can properly extend the basic
modal logic ML. In this proof, a crucial role is played by a locality criterion (which
is implied by compactness and relativisation for any bisimulation closed logic) saying
that the truth of a formula at a given node only depends on a neighbourhood of points
reachable in a bounded number of steps. For guarded logics, and even for modal log-
ics with a global modality no such locality criterion is available. To obtain Lindström
characterisations for GF and ML[∀], Otto and Piro [26] use instead the Tarski Union
Property saying that the union of any elementary chain is itself an elementary exten-
sion of each structure in the chain. They show that ML[∀] and GF are the maximal
compact logics that satisfy the Tarski Union Property and the corresponding bisim-
ulation invariance. It is open whether there are Lindström characterisations of these
logics that are not based on the Tarski Union Property but, say, on compactness and
relativisation.

Finally the bisimulation-based analysis of modal and guarded logics also leads
to important insights concerning their algorithmic properties. Since satisfiable for-
mulae always admit simple models, for instance tree-like ones, and since modal
and guarded logics, including the fixed-point variants such as the modal μ-calculus
and the guarded fixed-point logic μGF can be embedded or interpreted in monadic
second-order logic on trees, powerful automata theoretic methods become available
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for checking satisfiability and for evaluating formulae. It still remains to determine
where the limits are for fragments of first-order logic (and fixed-point logic or even
second-order logic) that are invariant under a suitable notion of (guarded) bisimula-
tion that is sufficient to ensure similar model-theoretic and algorithmic properties as
those that have been established for modal and guarded logic. In particular, can we
find in this way stronger decidable fragments of first-order logic, fixed-point logic
and second-order logic than those known so far?
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Chapter 2
Expressiveness Modulo Bisimilarity:
A Coalgebraic Perspective

Yde Venema

Abstract One of van Benthem’s seminal results is the Bisimulation Theorem
characterizing modal logic as the bisimulation-invariant fragment of first-order logic.
Janin and Walukiewicz extended this theorem to include fixpoint operators, showing
that the modal μ-calculus μML is the bisimulation-invariant fragment of monadic
second-order logic MSO. Their proof uses parity automata that operate on Kripke
models, and feature a transition map defined in terms of certain fragments of monadic
first-order logic. In this paper we decompose their proof in three parts: (1) two
automata-theoretic characterizations, of MSO and μML respectively, (2) a simple
model-theoretic characterization of the identity-free fragment of monadic first-order
logic, and (3) an automata-theoretic result, stating that (a strong version of) the second
result somehow propagates to the level of full fixpoint logics. Our main contribu-
tion shows that the third result is an instance of a more general phenomenon that
is essentially coalgebraic in nature. We prove that if one set Λ of predicate liftings
(or modalities) for a certain set functor T uniformly corresponds to the T -natural
fragment of another such set Λ′, then the fixpoint logic associated with Λ is the
bisimulation-invariant logic of the fixpoint logic associated with Λ′.

2.1 Introduction

Johan van Benthem is one of the founders of correspondence theory [3] as a branch
of modal logic where the expressiveness of modal logic as a language for describing
Kripke structures is compared to that of more classical languages such as first-
order logic. Perhaps his most important contribution to this area is the Bisimulation
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Theorem stating that modal logic is the bisimulation-invariant fragment of first-order
logic [2], in a slogan:

ML = FO/↔. (2.1)

More precisely, van Benthem showed that a formula ϕ(x), in the language of first-
order logic for Kripke models, is invariant under bisimulations iff it is equivalent
to (the standard translation of) a modal formula. This observation fits the model-
theoretic tradition of preservation results, characterizing fragments of (first-order)
logic through a certain semantic property. What makes the result important is that
in many applications of modal logic, it is natural to identify bisimilar states, and so
properties that are not bisimulation invariant are irrelevant. From this perspective,
the Bisimulation Theorem states an expressive completeness result: when it comes to
relevant properties, modal logic has the same expressive power as first-order logic.

van Benthem’s result has inspired many modal logicians, and over the years a
wealth of variants of the Bisimulation Theorem have been obtained. Roughly, these
can be classified as follows:

• Results showing that van Benthem’s result still holds on restricted classes of
models. In particular, Rosen proved that van Benthem’s result is one of the few
preservation results that transfers to the setting of finite models [19]; for a recent,
rich source of van Benthem-style characterization results, see Dawar and Otto [8].

• Results characterizing extensions of basic modal logic as the bisimulation-invariant
fragment of some extension of first-order logic. Here a key example is the theo-
rem by Janin and Walukiewicz [14], characterizing the modal μ-calculus as the
bisimulation-invariant fragment of monadic second-order logic.

• Results characterizing variants of modal logic as fragments of first-order logic
that are invariant under some appropriate variant of the standard notion of bisim-
ulation. Here we mention the result by Andréka, van Benthem and Németi, who
characterized the guarded fragment [1] as the fragment of first-order logic that is
invariant under guarded bisimulations; Otto [17] provides a overview of the results
in this area, and of the (game-theoretic) methods used to prove these.

• Results on variants of modal logic where the modalities find their interpretation in
different structures than the standard Kripke models. For instance, ten Cate et al.
proved a van Benthem-style characterisation result for topological structures [4].
Recently, coalgebraic variations and generalizations of van Benthem’s result have
been obtained by Litak et al. [15].

• Clearly, researchers have been considering combinations of the above variations
and generalizations; for example, Grädel et al. [11] proved a characterization result
for guarded fixpoint logic. An outstanding open problem is whether the Janin-
Walukiewicz theorem also holds for finite models, or equivalently, whether Rosen’s
result can be extended to the modal μ-calculus.

In this paper we will look in some detail at the result by Janin and Walukiewicz,
which we can formulate as:

μML = MSO/↔. (2.2)
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Taking a coalgebraic perspective, we will show how the proof of (2.2) can be decom-
posed into three more or less independent parts:

1. a (non-trivial) result showing that both the modal μ-calculus and (on the class
of tree models) monadic second-order logic can be characterized by certain
automata,

2. a fairly simple model-theoretic characterisation result in monadic first-order logic,
and

3. a general result on coalgebra automata.

Towards the end of this section we briefly discuss the relation of this chapter
to Johan’s work, and to the theme of this volume, viz., Logical Dynamics. First
we turn to a fairly detailed explanation of the above decomposition, motivating our
coalgebraic perspective. For this purpose we need to introduce automata. We fix
a set Q of proposition letters. Elements of PQ will be called colors, and given a
valuation V : Q → P S, we define its associated coloring as the transposed map
V � : S → PQ given by V � : s → {p ∈ Q | p ∈ V (s)}.

The automata that we will consider here will be of the shape A = (A, δ,Ω),
where A is a finite set of states and Ω is a parity map, Ω : A → N. We will
see a state a ∈ A as a propositional variable, or, very much in the spirit of modal
correspondence theory, as a monadic predicate. In this way, A provides a (monadic)
first-order signature, which we will also denote as A. We define �=(A) and �(A)
as the sets of sentences (with and without equality, respectively) in this signature.
We may initialize the automaton A by selecting an initial state a ∈ A. What shall
interest us most is the transition map δ associating, with each state a ∈ A and each
color c ∈ PQ, a first-order sentence δ(a, c) ∈ �(A).

Acceptance of a pointed Kripke model (S, s) by such an initialized automaton
(A, a) is defined in terms of an infinite two-player acceptance game A (A,S). A
match of this game consists of the two players, ∀ and ∃, moving a token from one
position to another. In a so-called basic position, which is of the form (a, s) ∈ A× S,
∃ needs to define an A-valuation M : A → P S on S, with the proviso that M turns
the set of successors of s into a structure for the signature A where the formula
δ(a, V �(s)) is true. That, is we require that

(σR(s),M�σR(s) ) |= δ(a, c),

where c = V �(s) ∈ PQ is the color of s in S, σR(s) is the set of successors of
s, and M �σR(s) is the A-valuation M restricted to σR(s). In other words, the pair
(σR(s),M�σR(s) ) is an A-structure (in the sense of first-order model theory), and it
is the aim of ∃ to make the sentence δ(a, V �(s)) true in this structure by chosing an
appropriate A-valuation M . Given such a choice M : A → P S, the game moves on
with ∀ picking a next basic position from the set {(b, t) | t ∈ M(b)}. In this way, a
match proceeds from one basic position (ai , si ) to the next (ai+1, si+1). An infinite
match of this game is won by ∃ if the highest parityΩ(ai ) occurring infinitely often
during this match is even.
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If ∃ has a winning strategy in the instantiation of the game that starts at the basic
position (a, s), we say that the initialized automaton (A, a) accepts the pointed model
(S, s). Initialized automata thus determine classes of pointed Kripke models, and we
may compare the expressive power of such automata to that of a logic such as the
modal μ-calculus or monadic second-order logic.

Definition 2.1.1 Given a fragmentΘ of monadic first-order logic (in the sense that
Θ assigns to each A a set of sentences Θ(A) ⊆ �=(A)), we obtain an associated
class AutΘ of initialized automata (A, a) by requiring that Θ(A) is the co-domain
of the transition function of A, that is, we have δ : A × PQ → Θ(A). �

Definition 2.1.2 We let Π=(A) and Π(A) denote the sets of sentences in �=(A),
with and without equality, respectively, where each occurrence of a monadic predicate
is positive. �

In particular, we can now substantiate the claim that both monadic second-order
logic (on the class of tree models) and the modal μ-calculus can be captured by
automata-theoretic means. This link between logic and automata theory essentially
goes back to the work of Rabin and Büchi on stream and tree automata. The two
statements in Fact 2.1.3 below can be found in Walukiewicz [23] and Janin and
Walukiewicz [13], respectively.

Fact 2.1.3 1. On tree models, monadic second-order logic corresponds to AutΠ= .
2. The modal μ-calculus corresponds to AutΠ .

The main point of this paper is that, for any fragment Θ of �=, properties of
Θ-automata are determined by properties of Θ . In particular, given two distinct
fragmentsΘ andΘ ′, we will see how the question whether Aut(Θ) is the bisimulation
invariant fragment of Aut(Θ ′), may already be determined at the level ofΘ andΘ ′.

For this purpose we introduce the notion of P-invariance. We say that two
A-structures (D, V ) and (D′, V ′) are P-equivalent, notation: (D, V ) ≡P (D′, V ′),
if for all d ∈ D there is a d ′ ∈ D′ with the same A-color, and vice versa. A first-
order sentence α ∈ �=(A) is P-invariant if (D, V ) |= α ⇐⇒ (D′, V ′) |= α,
for all pairs of P-equivalent A-structures (D, V ) and (D′, V ′). (As we will see, this
property is equivalent to being preserved under surjective homomorphisms.) Given
two fragmentsΘ,Θ ′ of�=, we say thatΘ corresponds to the P-invariant fragment
of Θ ′ if any sentence α ∈ Θ ′(A) is P-invariant iff it is equivalent to a formula
α∗ ∈ Θ(A). The ‘fairly simple result in monadic first-order logic’ mentioned as the
second item above, can now be stated as follows.

Proposition 2.1.4 Π corresponds to the P-invariant fragment of Π=.

Our observation is that the Janin-Walukiewicz Theorem is a direct corollary of
Fact 2.1.3 and Proposition 2.1.4. To be more precise, we will define a translation (·)∗
mapping a Π=(A)-sentence α to Π(A)-sentence α∗ satisfying

α ≡ α∗ iff α is P-invariant. (2.3)
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On the basis of this, we can present the proof of Janin and Walukiewicz as follows.
First, given a MSO-formula ϕ, consider the equivalent initializedΠ=-automaton

(Aϕ, aϕ) given by Fact 2.1.3(1). Where Aϕ = (A, δ,Ω), with δ : A × PQ →
Π=(A), define the Π -automaton A

∗
ϕ := (A, δ∗,Ω), with δ∗ : A × PQ → Π(A)

by putting δ∗(a, c) := (δ(a, c))∗. Let ϕ∗ be the μML-formula that is equivalent
to (A∗ϕ, aϕ), given by Fact 2.1.3(2). Using (2.3) one may then show that for any
pointed Kripke model (S, s) there is a pointed Kripke model (S′, s′), and a bounded
morphism f : S′ → S such that f s′ = s, while for any MSO-formula ϕ we have

S, s � ϕ∗ iff S
′, s′ � ϕ. (2.4)

Now suppose that ϕ is a bisimulation-invariant MSO-formula. Then for any pointed
Kripke model (S, s) we have that

S, s � ϕ iff S
′, s′ � ϕ (assumption onϕ)

iff S, s � ϕ∗ (2.4)

Clearly this shows that ϕ is equivalent to ϕ∗, and since ϕ∗ is a formula in the modal
μ-calculus, this suffices to prove the Janin-Walukiewicz theorem.

In fact, the argument just given can be generalized to prove the following result.

Theorem 2.1.5 LetΘ andΘ ′ be fragments of monadic first-order logic. IfΘ corre-
sponds to the P-invariant fragment ofΘ ′, then AutΘ corresponds to the bisimulation-
invariant fragment of AutΘ ′ .

The second and main contribution of this paper is the observation that Theo-
rem 2.1.5 is itself an instance of a more general phenomenon that is essentially
coalgebraic in nature. Universal Coalgebra [20] provides the notion of a coalgebra
as the natural mathematical generalization of state-based evolving systems such as
streams, (infinite) trees, finite state automata, Kripke frames and models, (probabilis-
tic) transition systems, and many others. Formally, a coalgebra is a pair S = (S, σ ),
where S is the carrier or state space of the coalgebra, and σ : S → T S is its
unfolding or transition map. This approach combines simplicity with generality and
wide applicability: many features, including input, output, nondeterminism, proba-
bility, and interaction, can easily be encoded in the coalgebra type T (formally an
endofunctor on the category Set of sets as objects with functions as arrows).

Logic enters the picture if one wants to specify and reason about behavior, one
of the most fundamental notions admitting a coalgebraic formalization. With Kripke
structures constituting key examples of coalgebras, it should come as no surprise that
most coalgebraic logics are some kind of modification or generalization of modal
logic [5]. Moss [16] introduced a modality ∇T generalizing the so-called ‘cover
modality’ from Kripke structures to coalgebras of arbitrary type. This approach is
uniform in the functor T , but as a drawback only works properly if T satisfies a certain
category-theoretic property (viz., it should preserve weak pullbacks); also the nabla
modality is syntactically rather nonstandard. As an alternative, Pattinson [18] and
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others developed coalgebraic modal formalisms, based on a completely standard
syntax, that work for coalgebras of arbitrary type. In this approach, the semantics of
each modality is determined by a so-called predicate lifting (see Definition 2.2.15
below). Many well-known variations of modal logic in fact arise as the coalgebraic
logic LΛ associated with a set Λ of such predicate liftings; examples include both
standard and (monotone) neighborhood modal logic, graded and probabilistic modal
logic, coalition logic, and conditional logic.

In order to reason about ongoing coalgebraic behavior, modal logicians have
introduced fixpoint extensions of coalgebraic logics [6, 22] and developed the corre-
sponding automata theory [10]. For instance, each set Λ of predicate liftings comes
with a modal logic LΛ, a coalgebraic μ-calculus μLΛ, and an equivalent class of
automata AutΛ.

Kripke frames are coalgebras for the power set functor P , and each sentence α
in monadic first-order logic induces a predicate lifting α̂ for the power set functor.
However, corresponding to the fact that we are looking at logics that are not bisimu-
lation invariant, not all of these predicate liftings will be natural (in some technical
sense to be defined below). In fact, we will introduce a coalgebraic novelty in this
paper, in that we will consider non-natural predicate liftings for an arbitrary functor
T . Generalizing the notion of P-invariance discussed above, we will define what it
means for one set of predicate lifting to be the natural fragment of another set. Our
coalgebraic generalization of Theorem 2.1.5 then roughly states the following:

if Λ provides the T -natural fragment of Λ′, then μLΛ is the bisimulation-
invariant fragment of μLΛ′ .

For a more precise formulation, we refer to Theorem 2.5.1 below.
To conclude this introduction, we briefly discuss the relation of this chapter with

van Benthem’s work. First of all, it may have struck the reader’s attention that while
van Benthem’s Bisimulation Theorem concerns the bisimulation-invariant fragment
of first-order logic, our focus is on monadic second-order logic. We certainly believe
that our coalgebraic perspective has some bearing on first-order logic as well, but we
will leave this topic for later work. The main reason for this is that we wanted to give
a detailed account of the coalgebraic perspective on fixpoint logics and automata
theory. Note that in a general coalgebraic context, it is always clear how to define
modal fixpoint logics and their associated automata. This is not necessarily the case
with first-order logic, although recently some interesting proposals have been made,
see for instance Litak et al. [15].

Another matter concerns the link between this chapter and the volume’s theme,
viz., Logical Dynamics. Here, again, coalgebra is the key word: as mentioned, uni-
versal coalgebra is a very natural mathematical framework for the kind of state-based
evolving systems that play a fundamental role in the study of dynamics. In partic-
ular, many of the game-like processes that van Benthem is interested in, allow for
a coalgebraic presentation. From this perspective coalgebraic modal logics, and in
particular their fixed-point variants, provide natural logics for representing dynamic
phenomena. The question of bisimulation invariance then makes us focus on the
power of logical languages to express those properties that are relevant from the
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perspective of modelling dynamics. As such, our chapter not only connects with van
Benthem’s earliest technical work, but also with his foundational studies to the nature
of the dynamics of information-related processes.

2.2 Coalgebra and Modal Logic

This section contains an introducton to coalgebra and coalgebraic modal logic.
We assume familiarity with basic notions from category theory, but not going

beyond categories, functors, and natural transformations. We let Set denote the cat-
egory with sets as objects and functions as arrows. Functors that feature prominently
in this paper are the co- and the contravariant power set functor, P and P̆ , respec-
tively. Both act on objects by mapping a set S to its power set P S = P̆ S; a function
f : S′ → S is mapped by P to the direct image function P f : P S′ → P S
given by (P f )X ′ := { f s′ ∈ S | s′ ∈ X ′}, and by P̆ to the inverse image function
P̆ f : P S → P S′ given by (P̆ f )X := {s′ ∈ S′ | f s′ ∈ X}.

2.2.1 Coalgebra

We start with introducing coalgebras and their morphisms.

Definition 2.2.1 Let T : Set → Set be a (covariant) set functor. A T -coalgebra
is a pair S = 〈S, σ 〉 where S is a set and σ is a function σ : S → T S. Elements of
S are called states of the coalgebra and σ is called the transition map of coalgebra
map of S. We may refer to T as the type of S. A pointed T -coalgebra is a pair (S, s)
consisting of a T -coalgebra S and a state s ∈ S.

If, for a function f : S′ → S, the following diagram commutes:

S′

σ ′
��

f �� S

σ

��
T S′

T f �� T S

(2.5)

we call f a (coalgebra) morphism from S
′ = 〈S′, σ 〉 to S = 〈S, σ 〉, and write

f : S′ → S. �

Convention 2.2.2 Throughout this paper we will discuss an arbitrary but fixed
(covariant) set functor that we denote as T : Set → Set.

Many structures that are well-known from theoretical computer science or from
modal logic admit a natural presentation as coalgebras.

Example 2.2.3 •Kripke frames are coalgebras for the power set functor P: a Kripke
frame 〈S, R〉 with R ⊆ S × S can be represented as the coalgebra 〈S, ρR〉, where
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ρR maps a state in S to the collection of its successors: ρR : s �→ {t ∈ S | Rst}. It is
straightforward to verify that the notion of a coalgebra morphism for P-coalgebras
coincides with that of a bounded morphism between Kripke frames. In other words,
the category of P-coalgebras is isomorphic to that of Kripke frames (with bounded
morphisms).
• Kripke models are coalgebras as well. Fix a set Q of proposition letters, and

observe that the information given by a valuation V : Q → P S can just as well be
provided by its transpose V � : S → PQ given by V � : s → {p ∈ Q | p ∈ V (s)}.
On the basis of this, we may represent a Kripke model 〈S, R, V 〉 as a a coalgebra
〈S, σV,R〉, where σR,V : S → PQ× P S is given by σR,V : s �→ (V �(s), ρR(s). In
other words, Kripke models (over Q) are coalgebras for the functor PQ := PQ×P−.
• Recall that a deterministic finite state automaton (DFA) over a finite alphabet

(or color set) C is a triple 〈S, δ, F〉 with δ : S × C → S and F ⊆ S. Representing
the transition map δ, through currying, by a function δ′ : S → SC , and the set F of
accepting states by its characteristic function χF : S → {0, 1}, we may think of this
DFA as a coalgebra 〈S, (χF , δ

′)〉 for the functor DC := {0, 1} × (−)C . Here (as in
subsequent examples) we omit to check that the morphisms induced by the coalgebra
framework are the natural, standard ones.
•Given a set A of atomic actions, we can represent a transition system (S,(Ra)a∈A),

where each atomic action a is interpreted as a binary relation Ra ⊆ S× S, as a coal-
gebra for the functor (P−)A.
• Define the covariant set functor N : Set → Set as the composition of the con-

travariant power set with itself, N := P̆ ◦ P̆ . Coalgebras for this functor correspond
to the well-known neighborhood models in modal logic.

Restricting this example somewhat, we may obtain various interesting classes
of structures. For instance, take the functor M given by M S := {U ∈ N S | U
is upward closed with respect to ⊆ } and M f = N f . M-coalgebras are known in
modal logic as monotone neighborhood frames.
• For a slightly more involved example, consider the finitary multiset or bag

functor Bω. This functor takes a set S to the collection BωS of maps μ : S → N

of finite support (that is, for which the set Supp(μ) := {s ∈ S | μ(s) > 0} is
finite), while its action on arrows is defined as follows. Given an arrow f : S → S′
and a map μ ∈ BωS, we define (Bω f )(μ) : S′ → N by putting (Bω f )(μ)(s′) :=∑{μ(s) | f (s) = s′}. Coalgebras for this functor are weighted transition systems,
where each transition from one state to another carries a weight given by a natural
number. Observe that a Kripke frame 〈S, R〉 can be seen as a Bω-coalgebra 〈S, ρ′R〉
by putting ρ′R(s)(t) = 1 if Rst , and ρR(s)(t) = 0 otherwise.
• As a variant of Bω, consider the finitary probability functor Dω, where DωS =

{δ : S → [0, 1] | Supp(δ) is finite and
∑

s∈S δ(s) = 1}, while the action of Dω on
arrows is just like that of Bω. Coalgebras for this functor are known as Markov chains.

The connection between Kripke frames and Kripke models can be generalized to
coalgebras of arbitrary type.
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Definition 2.2.4 Let T be a set functor and let Q be a set of proposition letters.
We define the set functor TQ := PQ × T . A T -model over Q is a pair (S, V )
consisting of a T -coalgebra S = 〈S, σ 〉 and a Q-valuation V on S, that is, a function
V : Q → P S. The coloring associated with V is the transpose map V � : S → PQ
given by

V �(s) := {p ∈ Q | s ∈ V (p)}.

Hence the pair (S, V ) induces a TQ-coalgebra 〈S, (V �, σ )〉. �

Convention 2.2.5 In the remainder of this paper we will identify T -models over
Q with the TQ-coalgebras they induce. For instance, morphisms between T -models
are implicitly defined as coalgebra morphisms between the induced TQ-coalgebras.
That is, a map f : S′ → S is a morphism from (S′, V ′) to (S, V ) if (1) f : S

′ → S

and (2) s′ ∈ V ′(p) iff f s′ ∈ V (p), for all s′ ∈ S′ and all p ∈ Q.

The key coalgebraic notion of equivalence is that of two pointed coalgebras being
behaviorally equivalent. In case the functor T admits a coalgebra Z = 〈Z , ζ 〉which is
final (in the sense that for every T -coalgebra S there is a unique coalgebra morphism
!S : S → Z), the elements of Z often provide an intuitive encoding of the notion of
behaviour, and the unique coalgebra morphism !S can be seen as a map that assigns
to a state x in S its behaviour. In this case we call two pointed coalgebras, (S, s) and
(S′, s′), behaviorally equivalent if !Ss =!S′s′. In the general case, when we may not
assume the existence of a set-based final coalgebra, we define the notion as follows.

Definition 2.2.6 Let (S, s) and (S′, s′) be two pointed coalgebras. If there are coal-
gebra morphisms f, f ′ with a common codomain such that f (s) = f ′(s′), we call
the two pointed coalgebras behaviorally equivalent, notation: S, s � S

′, s′. We will
often apply this notion to the states s and s′. �

Remark 2.2.7 In many cases, including those of Kripke frames and models, behav-
ioral equivalence is the same as bisimilarity, but in cases where the two notions
diverge, behavioral equivalence is the more natural notion. For the purpose of this
paper it suffices to work with behavorial equivalence, and we do not need to dis-
cuss generalisations of the notion of a bisimulation to coalgebras of arbitrary type,
referring the reader to [21] for more information.

2.2.2 Coalgebraic Logics

It will be convenient to have a rather abstract notion of coalgebraic languages and
logics for T (so that for instance, we can think of automata as proper formulas).

Definition 2.2.8 An abstract coalgebraic logic is a pair (L,�L) such that L is a set
and � is a collection of relations associating with each T -coalgebra S = 〈S, σ, V 〉
a binary relation �L

S
⊆ S × L. The set L is called the language of the logic, and
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its elements will be called formulas. If s �L
S
ϕ we say that the formula ϕ is true or

satisfied at s in S, and we will often write S, s � ϕ.
The satisfaction relation �L

S
induces a meaning function [[ · ]]S : L → P S given

by
s ∈ [[ϕ]]S iff s �L

S
ϕ. (2.6)

�

Example 2.2.9 Let us see how monadic second-order logic fits as a coalgebraic
logic for PQ-coalgebras (Kripke models over some fixed set Q of proposition letters).
Clearly we may also see elements of Q as monadic predicate symbols.

To define the syntax of this logic, let IVar = {u, v, . . .} be a set of individual (first-
order) variables, and let Var = {x, y, . . .} be a set of objects that one may think of
alternatively as propositional variables or monadic predicate (that is, second-order)
variables. Define the set of MSO(Q)-formulas by the following grammar:

ϕ :: = p(v) | x(v) | Ruv | ⊥ | ¬ϕ | ϕ0 ∨ ϕ1 | ∃v.ϕ | ∃x .ϕ,

where p ∈ Q, v ∈ IVar, and x ∈ Var. The interpretation of this language on a Kripke
model 〈S, R, V 〉 is standard.

Finally, we define MSOv(Q) as the set of MSO(Q)-formulas ϕ(v) that contain a
single free individual variable v, and no free variables in Var. (We need the free vari-
able v in order to interpret formulas in pointed models.) Thus we obtain a coalgebraic
logic (MSOv(Q),�MSO) by putting S, s � ϕ iff S |= ϕ(s).

Coalgebraic logics naturally induce equivalence relations between formulas, and
between pointed coalgebras.

Definition 2.2.10 Let (L,�) be a coalgebraic logic. Two formulas ϕ and ψ are
called equivalent, notation: ϕ ≡L,� ψ , if for all pointed coalgebras (S, s) we have
S, s � ϕ ⇐⇒ S, s � ψ .

Similarly, two pointed coalgebras (S, s) and (S′, s′) are called equivalent, nota-
tion: S, s ≡L,�

S
′, s′, if S, s � ϕ ⇐⇒ S

′, s′ � ϕ, for all ϕ ∈ L. �
Since the satisfaction relation is usually determined by the language, in practice

we will often blur the distinction between logics and their languages. For instance,
we will write ≡L rather than ≡(L,�), etc.

Generally, in abstract model theory, an abstract logic is required not to distinguish
isomorphic structures. Clearly such a condition would make sense here as well, but
it is not relevant to our story. On the other hand, a condition that features crucially in
our story is the requirement that coalgebraic logics cannot distinguish behaviorally
equivalent states. Since we are generally much more interested in the behavior of a
system then in its precise representation, this so-called adequacy property is a very
natural one.

Definition 2.2.11 A formula ϕ is behaviorally invariant if for all pairs of behav-
iorally equivalent pointed coalgebras S, s � S

′, s′ it holds that S, s � ϕ ⇐⇒
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S
′, s′ � ϕ. A coalgebraic language is behaviorally invariant or adequate if all its

formulas are behaviorally invariant, or equivalently, if �T ⊆ ≡L . �

We have now arrived at the central notion in this paper, namely, that of one logic
corresponding to the behaviorally invariant fragment of another.

For its definition, observe that if (L,�) is a coalgebraic logic, then any set L′ ⊆ L
induces a logic (L′,��L′ ), where ��L′ is the obviously defined restriction of the
relation � to L′. In the sequel we will simply write � rather than ��L′ .

Definition 2.2.12 Let (L,�) be a coalgebraic logic, and let L′ ⊆ L. We say that L′
corresponds to the behaviorally invariant fragment of L, notation: L′ ≡ L/T , if (1)
(L′,�) is behaviorally invariant, and (2) every behaviorally invariant formula ϕ ∈ L
is equivalent to some formula ϕ′ ∈ L′. �

The technical work in this paper will be based on a stronger, somewhat more
‘constructive’ version of this notion.

Definition 2.2.13 Let (L,�) be a coalgebraic logic, and let L′ ⊆ L. We say that L′
strongly corresponds to the behaviorally invariant fragment of L, notation: L′ ≡s

L/T , if (1) (L′,�) is behaviorally invariant, and (2′) there is a translation (·)∗ : L →
L′ and a map associating with each pointed coalgebra (S, s) a pointed coalgebra
(S′, s′), together with a morphism f : (S′, s′)→ (S, s) such that

S, s � ϕ∗ iff S
′, s′ � ϕ. (2.7)

for all formulas ϕ ∈ L. �

The following proposition justifies our terminology.

Proposition 2.2.14 If L′ ≡s L/T then L′ ≡ L/T .

Proof Assume that L′ strongly corresponds to the behaviorally invariant fragment of
L, via the translation (·)∗ : L → L′, and let ϕ be an arbitrary behaviorally invariant
formula in L. In order to prove the Proposition, it suffices to show that ϕ ≡ ϕ∗. For
this purpose, take an arbitrary pointed coalgebra (S, s). By our assumption there is
a morphism f : S′ → S and a state s′ in S

′ with f s′ = s, and satisfying

S, s � ϕ iff S
′, s′ � ϕ iff S, s � ϕ∗. (2.8)

Here the first equivalence is by our assumption on ϕ, and the second equivalence is
by (2.7). The equivalence of ϕ and ϕ∗ is immediate from (2.8). QED

2.2.3 Predicate Liftings

Many coalgebraic logics are induced by a set of so-called predicate liftings. In this
subsection we will be interested in T -models; we fix a set Q of proposition letters.
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Definition 2.2.15 An n-ary predicate lifting for T is a collection λ of maps, asso-
ciating a function

λS : (P S)n → PT S

with each set S. �
In other words, an n-ary predicate lifting λ associates, with each set S, a map that

yields a subset λS(X1, . . . , Xn) ⊆ T S for each n-tuple X1, . . . , Xn of subsets of S.
Note that our definition deviates from the usual one in that we do not require

predicate liftings to be natural (see Definition 2.2.23).

Example 2.2.16 Here are some predicate liftings for the functors discussed in Exam-
ple 2.2.3.
• Given a set S, a unary predicate lifting λ for the power set functor yields a map

λS : P S → P P S. Here are three examples, ♦, � and∞:

♦S : X �→ {D ∈ P S | D ∩ X �= ∅},
�S : X �→ {D ∈ P S | D ⊆ X},
∞S : X �→ {D ∈ P S | |D ∩ X | ≥ ω}.

For an example of a binary predicate lifting, consider the following definition, for a
set S:

�S : (X,Y ) �→ {D ∈ S | X ⊆ D ⊆ Y }.

• A nullary predicate lifting λ assigns to each set S, a function λS from (P S)0 to
PT S; such a function can be identified with a subset of T S that we will also denote
as λS . As a particularly interesting example, consider the functor TQ. With each
proposition letter p ∈ Q we may associate a nullary predicate lifting p by defining,
for each set S, the following subset of TQS:

p
S
:= {(Π, τ) ∈ PQ× T S | p ∈ Π}.

•Regarding the functor DC corresponding to finite state automata over C , consider
the nullary predicate lifting

√
and the unary © (for any c ∈ C), defined, for a set S,

by √
S := {(i, f ) ∈ 2× SC | i = 1},

©S : X �→ {(i, f ) ∈ 2× SC | f (c) ∈ X}.

• For the functor P A of A-labelled transition systems, consider the unary lifting
〈a〉 given by

〈a〉S : X �→ {D ∈ (P S)A | D(a) ∩ X �= ∅},

•With respect to the neighborhood functor N , we define a unary predicate lifting
♦ by putting, for a set S:

♦S : X �→ {A ∈ N S | X ∈ A }.
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• Finally, consider the functor Bω. Given a natural number k ∈ ω, we define the
predicate lifting k by putting

kS : X �→ {μ ∈ BωS |
∑

x∈X

μ(x) ≥ k}.

Definition 2.2.17 With each predicate lifting λwe associate a modality♥λ with the
same arity as λ. Given a set Λ of predicate liftings, we obtain the modal language
LΛ(Q) by defining its set of formulas by the following grammar:

ϕ :: = p | ⊥ | ¬ϕ | ϕ0 ∨ ϕ1 | ♥λ(ϕ1, . . . , ϕn)

where p ∈ Q, and λ ∈ Λ is n-ary. �
Definition 2.2.18 Let Λ be a set of predicate liftings. For any T -model S =
〈S, σ, V 〉, by induction on the complexity of LΛ-formulas, we define the meaning
function [[ · ]]S : LΛ→ P S:

[[⊥]]S := ∅

[[p]]S := V (p)
[[¬ϕ]]S := S \ [[ϕ]]S
[[ϕ0 ∨ ϕ1]]S := [[ϕ0]]S ∪ [[ϕ1]]S
[[♥λ(ϕ1, . . . , ϕn)]]S := (P̆σ)(λS([[ϕ1]]S, . . . , [[ϕn]]S)).

The meaning function [[ · ]]S induces a satisfaction relation �S given by (2.6). �
In terms of the satisfaction relation �, the meaning of the modality ♥λ is given by

S, s � ♥λ(ϕ1, . . . , ϕn) iff σ(s) ∈ λS([[ϕ1]], . . . , [[ϕn]]).

Example 2.2.19 • It is easy to see that, for a Kripke model S = 〈S, R, V 〉, we have

S, s � ♥♦ϕ ⇐⇒ S, t � ϕ for some t ∈ R(s)
S, s � ♥�ϕ ⇐⇒ S, t � ϕ for all t ∈ R(s)
S, s � ♥∞ϕ ⇐⇒ S, t � ϕ for infinitely many t ∈ R(s)
S, s � ♥�(ϕ, ψ) ⇐⇒ S, t � ϕ for all t ∈ R(s), and Rsu for all u with S, u � ψ.

The first two examples shows in particular that the well-known diamond and box
operator from modal logic are coalgebraic modalities indeed.
• The definition of the predicate lifting p, for a proposition letter p ∈ Q, ensures

that for any T -model S = (S, σ, V ) we have

S, s � p iff p ∈ V �(p) (semantics p)

iff s ∈ V (p) (definition V �)

iff S, s � p (semantics p)
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• For a model S based on a finite state automaton 〈S, F, δ〉, we have

S, s � ♥√ϕ ⇐⇒ s ∈ F,
S, s � ♥©ϕ ⇐⇒ S, δ(c, s) � ϕ.

• If S is a model based on an A-labelled transition system, we find

S, s � ♥〈a〉ϕ ⇐⇒ S, t � ϕ for some t ∈ Ra(s)

• For a neighborhood model S we obtain

S, s � ♥♦ϕ ⇐⇒ [[ϕ]]S ∈ σ(s),

showing that classical modal logic is a coalgebraic logic indeed.
• Finally, suppose that we consider a Kripke frame as a coalgebra S for the functor

Bω. Then for any natural number k ∈ ω we obtain

S, s � ♥kϕ ⇐⇒ s has at least k successors t such that S, t � ϕ.

In other words, graded modal logic can be presented as a coalgebraic logic too.

We now turn to coalgebraic μ-calculi, that is, extensions of coalgebraic logics
with fixpoint operators. In order to guarantee well-definedness of the semantics, we
need to restrict attention to monotone predicate liftings.

Definition 2.2.20 An n-ary predicate lfiting λ is monotone if for every set S, the
map λS : (P S)n → PT S is order-preserving in each coordinate (with respect to the
subset order). The predicate lifting λ : (P−)n → PT−, given by

λS(X1, . . . , Xn) := T S \ λS(S \ X1, . . . , S \ X1),

is called the (Boolean) dual of Λ. �

Since we are working with a fixed set Q of proposition letters, we need to introduce
a set Var = {x, y, z, x0, . . .} of propositional variables in our formal set-up.

Definition 2.2.21 LetΛ be a set of monotone predicate liftings. The modal language
μLΛ(Q) is defined by the following grammar:

ϕ :: = p | x | ⊥ | ¬ϕ | ϕ0 ∨ ϕ1 | ♥λ(ϕ1, . . . , ϕn) | μx .ϕ

where p ∈ Q, x ∈ Var, and the application of the fixpoint operator μx is subject to
the proviso that all occurrences of x in ϕ are positive (that is, under an even number
of negations).

The sets of free and bound variables in a formula is defined as usual, and we define
a μLΛ(Q)-sentence as a formula with no bound variables. �
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The semantics of this language contains no surprises.

Definition 2.2.22 Let Λ be a set of monotone predicate liftings, and let S be a
T -model. An assignment is a map h : Var → P S assigning a meaning to each
variable in Var. By induction on the complexity of μLΛ(Q)-formulas we define, for
each assignment h, a meaning function [[ · ]]S,h : μLΛ(Q)→ P S. Here we only give
the following two clauses:

[[x]]S,h := h(x)

[[μx .ϕ)]]S,h :=
⋂

X⊆S

[[ϕ]]S,h[x �→X ],

where h[x �→ X ] is the assignment sending every y ∈ Var to V (y), except for x
which is sent to X . �

It is a routine exercise to verify that with this definition, the formula μx .ϕ is
interpreted as the least fixed point of the formula ϕ(x).

Returning to the notion of adequacy, for logics generated by predicate liftings this
property follows from naturality of the predicate liftings.

Definition 2.2.23 A predicate lifting λ is natural for T if it is a natural transfor-
mation λ : (P̆−)n →̇ (P̆T−), i.e. if for each function f : S′ → S, the following
diagram commutes:

S (P S)n

(P̆ f )n

��

λS �� PT S

P̆T f
��

S′

f

��

(P S′)n
λS′ �� PT S′

(2.9)

A set of predicate liftings is natural for T if this property applies to each of its
members. �

Proposition 2.2.24 IfΛ is natural for T , then LΛ(Q) andμLΛ(Q) are behaviorally
invariant for each set Q.

Proof By definition of behavioral equivalence it suffices to prove that for every
morphism f : S′ → S, every formula ϕ, and every state s′ ∈ S′, it holds that

S
′, s′ � ϕ iff S, f s′ � ϕ. (2.10)

In terms of the meaning function [[ · ]], we may prove equivalently that for all for-
mulas ϕ

[[ϕ]]S′ = (P̆ f )[[ϕ]]S. (2.11)

We prove (2.11) by induction on ϕ. For the key inductive clause, assume that ϕ =
♥λψ (for notational simplicity we assume that λ is unary). Then
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[[ϕ]]S′ = (P̆σ ′)λS′([[ψ]]S′) (semantics of♥λ)
= (P̆σ ′)λS′(P̆ f )([[ψ]]S) (induction hypothesis)

= (P̆σ ′)(P̆T f )λS([[ψ]]S) (naturality of λ (2.9))

= (P̆ f )(P̆σ)λS([[ψ]]S) ( f a morphism)

= (P̆ f )[[ϕ]]S′ (semantics of♥λ)

QED

We leave it as an exercise for the reader to check that all predicate liftings of
Example 2.2.16 are natural, except∞ and �.

For concreteness, we define (basic) modal logic and the modal μ-calculus as
follows.

Definition 2.2.25 We define ML(Q), basic modal logic over Q, as the coalgebraic
logic L♦,�(Q), andμML(Q), the modal μ-calculus over Q, as its fixpoint extension:
μML(Q) := μL♦,�(Q). �

2.3 Coalgebra Automata and MSO

As usual in the theory of fixpoint logics, it will be easier to work with automata rather
than with formulas. In this section we define the notion of a coalgebra automaton
associated with a set Λ of monotone predicate liftings (and a set Q of proposition
letters). These devices will provide the automata-theoretic counterpart to the coal-
gebraic μ-calculus, and we will see how monadic second-order can be captured by
automata (and thus correspond to a coalgebraic fixed point logic), when we restrict
attention to the class of tree models. This is also a good place to introduce the one-step
perspective on coalgebraic logic, a key coalgebraic concept.

2.3.1 One-Step Syntax and Semantics

Definition 2.3.1 Given a set A of propositional variables and a collection Λ of
predicate liftings, we define the set L1

Λ(A) via the following grammar:

ϕ :: = ♥λ(a1, . . . , an) | ⊥ | � | ϕ0 ∨ ϕ1 | ϕ0 ∧ ϕ1

where λ ∈ Λ is n-ary, and ai ∈ A, for each i . Elements of L1
Λ(A) will be called

rank-1 Λ-formulas over A, or simply: rank-1 formulas. �
Observe that we do not allow negations to occur in rank-1 formulas. Given a set

S, we can interpret rank-1 formulas over A as subsets of T S, once we have been
given a valuation assigning a meaning to the variables in A.
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Definition 2.3.2 Given sets A and S, an A-valuation or A-marking on S is a map
V : A → P S. Given such a valuation, we inductively define the one-step satisfaction
relation �1

V ⊆ T S × L1
Λ(A). For the basic formulas of the form ♥λ(a1, . . . , an) we

put, for τ ∈ T S,

τ �1
V ♥λ(a1, . . . , an) iff τ ∈ λS(V (a1), . . . , V (an)),

while inductively each Boolean connective receives its standard set-theoretic inter-
pretation. Frequently we will write T S, V, τ �1 ϕ rather than τ �1

V ϕ. �

The link with the ordinary semantics for coalgebraic logic is given by the coalgebra
map. That is, given a T -coalgebra S = (S, σ : S → T S) and a valuation V : A →
P S, we have

(S, V ), s � ♥λ(a1, . . . , an) iff T S, V, σ (s) �1 ♥λ(a1, . . . , an).

2.3.2 Coalgebra Automata

We are now ready to introduce coalgebra automata, which will be parametrized by
a set Λ of predicate liftings, and a set Q of proposition letters.

Definition 2.3.3 Let Λ be a set of monotone predicate liftings for T . A (Λ,Q)-
automaton A is a triple A = (A, δ,Ω), where A is a finite set of states, δ : A×PQ →
L1
Λ(A) is the transition map, and Ω : A → N is a parity map.

An initialized automaton is a pair (A, aI ) where aI ∈ A. The class of initialized
(Λ,Q)-automata is denoted as AutΛ(Q). �

The semantics of these automata is defined in terms of an infinite parity graph
game. We assume that the reader has some familiarity with these games, and with
associated notions such as matches, (positional) strategies, etc. (Details can be found
in [12]).

Definition 2.3.4 Let S = 〈S, σ, V 〉 be a T -model and let A = (A, δ,Ω) be a
(Λ,Q)-automaton. The associated acceptance game A (A,S) is the parity game
given by the table below.

A pointed coalgebra (S, r) is accepted by an initialized automaton (A, aI ),
notation: S, r � (A, aI ), if the pair (aI , r) is a winning position for player ∃ in
A (A,S). �
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Observe that the acceptance game of (Λ,Q)-automata proceeds in rounds moving
from one basic position in A × S to another. In each round, at position (a, s) first ∃
picks an A-marking M on S that makes the depth-one formula δ(a, V �(s)) true at
σ(s). Looking at this M : A → P S as a binary relation {(b, t) | t ∈ M(b)} between
A and S consisting of witnesses picked by ∃, it is ∀who closes the round by choosing
a witness (b, t) from this relation, which will then serve as the starting position of
the next round of the game.

Acceptance games feature both maps of the form V : Q → P S (valuations that
are part of the models S on which the automaton operates) and maps M : A → P S
(that correspond to sets of witnesses picked by ∃). To emphasize the distinct roles
that these two kinds of maps play, we will refer to the first ones as valuations and to
the second ones as markings in situations where both types occur.

The following proposition instantiates the connection between fixpoint logics and
parity automata in our setting of coalgebraic logic. Observe that we may think of the
set AutΛ,Q of initialized (Λ,Q)-automata, together with the acceptance relation, as
a coalgebraic logic.

Proposition 2.3.5 LetΛ be a set of monotone predicate liftings for T which is closed
under taking Boolean duals. Then μLΛ(Q) ≡ AutΛ(Q).

We omit the (completely routine) proof.

2.3.3 MSO As a Coalgebraic Fixpoint Logic

We will now see how we may think of MSO as a coalgebraic fixpoint logic, at least
if we restrict our attention to tree models.

Definition 2.3.6 A tree model is a Kripke model 〈S, R, V 〉 in which there is a unique
path to each point from a certain, fixed, state called the root of the tree. �

Throughout this subsection we fix a set A of syntactic objects that, as mentioned
in the introduction, we may think of as either propositional variables or monadic
predicate symbols of some first-order language. In other words, we will see A as a
first-order signature (that we will also denote as A). The formulas in this language
are given by the following grammar:

α :: = x = y | a(x) | ¬α | α ∨ α | ∃x . α

If we use the notation α(a1, . . . , an) for a sentence in this language, this indicates
that the predicate symbols in α (not the first-order variables) are among a1, . . . , an .

Definition 2.3.7 We let�=(A) and�(A) denote the sets of all first-order sentences
over the signature A, respectively with and without identity.Π=(A) andΠ(A) are the
positive fragments of �=(A) and �(A), respectively, consisting of those sentences
in which all occurrences of atomic formulas are positive. �
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We have now arrived at the key observation underlying this paper. In the case that
our coalgebra functor T is the power set functor, given an A-valuation V on S and
an element D ∈ P S, we may think of the pair 〈D, V 〉 as a structure for the signature
A (in the sense of first-order model theory), where the predicate symbol a ∈ A is
interpreted as the subset V (a) ∩ D ⊆ D. Consequently, we will now see that each
first-order sentenceα(a1, . . . , an) of this signature induces a (not necessarily natural)
n-ary predicate lifting α̂ for the power set functor.

Definition 2.3.8 Let α(a1, . . . , an) ∈ �=(A). For any set S, α induces a map α̂ :
(P S)n → P P S, given by

α̂(X1, . . . , Xn) := {D ∈ P S | 〈D, VX 〉 |= α},

where VX is the A-valuation on S given by VX (ai ) := Xi . By a slight abuse of
notation, for any fragment Θ of �=, we let Θ also denote the corresponding set of
predicate liftings {̂α | α ∈ Θ}. �

That this approach makes sense follows by the following Proposition which states
that the coalgebraic and the first-order perspective coincide.

Proposition 2.3.9 Let α(a1, . . . , an) ∈ �=(A). For any set S, any valuation V :
A → P S and any subset D ⊆ S we have

P S, V, D �1 ♥α̂(a1, . . . , an) iff 〈D, V 〉 |= α(a1, . . . , an). (2.12)

Proof The proof of Proposition 2.3.9 consists of a four line unravelling of the defi-
nitions. Consider a first-order sentence α(a1, . . . , an) ∈ �=. Then

P S, V, D �1 ♥α̂(a1, . . . , an) iff D ∈ â(V (a1), . . . , V (an)) (semantics♥)
iff 〈D, VV (a1),...,V (an)〉 |= α (definition α̂)

iff 〈D, V 〉 |= α (†)

where the last equivalence (†) follows from the fact that the predicate symbols in α
are among a1, . . . , an . QED

In Sect. 2.4 we will see that all predicate liftings in � and Π are natural for P ,
while this is definitely not the case for �= and Π (cf. Theorem 2.4.9).

As we will see further on, the following theorem is the reason why our coalgebraic
approach can be applied to the Janin-Walukiewicz theorem. It states that, on the class
of tree models, monadic second order logic can be captured by automata-theoretic
means. As a corollary of this result and Proposition 2.3.5, MSO (see Example 2.2.9)
is in fact a coalgebraic fixpoint logic. Theorem 2.3.10 below can be seen as a more
precise formulation of Fact 2.1.3; as mentioned there, the two statements can be
found in Walukiewicz [23] and Janin and Walukiewicz [13], respectively.
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Theorem 2.3.10 1. MSOv(Q) ≡P μLΠ=(Q) on tree models1;
2. μML(Q) ≡P μLΠ(Q).

Unfortunately, a proof of this Theorem would go beyond the scope of this paper.
For proof details, the reader is referred to the above-mentioned papers, or to Chap. 16
of [12].

Remark 2.3.11 For the interested reader, we give a very rough sketch of the proof
for part 1, which consists of two parts. First, rather than working with MSO(Q) one
defines a variant MSO′ with only second-order variables. For a definition of the set
of MSO′-formulas, consider the following grammar:

ϕ :: = p  q | p � q | ⇓p | ¬ϕ | ϕ ∨ ψ | ∃p.ϕ

where p, q belong to some set Q′ ⊇ Q of variables. Then we define MSO′(Q) as the
set of MSO′-formulas whose free variables belong to Q.

Intuitively, it may be useful to think of MSO′ as a first-order logic in which the
variables are interpreted on the power set of (the state space of) a Kripke frame.
The valuation of a Kripke model is then to be seen as a first-order assignment of an
element V (p) ∈ P S to an arbitrary letter p ∈ Q. More precisely, the semantics of
this language on a pointed Kripke model (S, r) is defined inductively—we only give
the clause of the atomic formulas:

(S, r) |= p  q iff V (p) ⊆ V (q)
(S, r) |= p � q iff for all s ∈ V (p)there is a t ∈ V (q)with Rst.
(S, r) |= ⇓p iff V (p) = {r}

It is not too difficult to see why this language corresponds to standard MSO. To
start with, it is easy to interpret MSO′-formulas in standard MSO; for a translation in
the opposite direction, the key idea is to encode elements of S as the corresponding
singleton sets, and define a formula sing(p) ∈ MSO′ characterizing the singleton
subsets of S in the sense that S, r |= sing(p) iff V (p) is a singleton.

In the second part of the proof of Theorem 2.3.10(1) one defines, by induction on
the complexity of a formula ϕ ∈ MSO′(Q′), an automaton Aϕ ∈ AutΠ=,Q′ which is
equivalent to ϕ in the sense that for any tree model T with root r , we have (T, r) |= ϕ
iff Aϕ accepts (T, r). This part of the proof is nontrivial, involving closure properties
of specific classes of automata 〈A, δ,Ω〉 that are defined by restricting the range of
the transition map δ to fragments of�= (such as, in particular, the set N=,+ defined
in the next section).

1 Here the tacit understanding is that the variable v is interpreted as the root of the tree.
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2.4 One-Step Adequacy

2.4.1 The General Case

In this section we define and compare various one-step versions of the notion of
adequacy, and of the notion of one logic corresponding the one-step behaviorally
invariant fragment of another. First we need a notion of one-step equivalence; to
understand this notion, consider an A-valuation V : A → P S. Lifting the associated
coloring V � : S → P A, we obtain a map T V � : T S → T P A, which associates,
with an element τ ∈ T S an object T V �(τ ) that one may think of as a ‘T -color’.

Definition 2.4.1 Given two A-valuations Vi : A → P Si (i = 0, 1), we define a
relation ∼V0,V1 ⊆ T S0 × T S1 by putting τ0 ∼V0,V1 τ1 iff τ0 and τ1 have the same
T -color, that is,

τ0 ∼V0,V1 τ1 iff (T V �
0 )τ0 = (T V �

1 )τ1.

We call a rank-1 formula ϕ one-step T -invariant if for all pairs of valuations Vi :
A → P Si , and all pairs of elements τi ∈ T Si (i = 0, 1) such that τ0 ∼V0,V1

τ1 it holds that T S0, V0, τ0 �1 ϕ iff T S1, V1, τ1 �1 ϕ. A coalgebraic logic is
called one-step behaviorally invariant if each of its rank-1 formulas is one-step
T -invariant. �

In the sequel we will need a characterization of the notion of one-step adequacy
that involves pairs of valuations on two sets that are linked by some function.

Definition 2.4.2 Fix two sets S, S′ and a map f : S′ → S. Then with every valuation
V : A → P S we may associate an A-valuation V f on S′ given by

V f := P̆ f ◦ V,

while for a valuation U : A → P S′ defining

U f := P f ◦U.

we obtain an A-valuation U f on S. �

Concerning these definitions we need the following fact, which can be proved via
routine verification.

Proposition 2.4.3 Let f : S′ → S be some map, and let V : A → P S and
U : A → P S′ be two valuations. Then

1. V = (V f )
f and U ⊆ (U f ) f (in the sense that U (a) ⊆ (U f ) f (a) for all a ∈ A).

2. U = V f iff U � = V � ◦ f .

The following proposition provides a useful characterization of one-step invari-
ance.
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Proposition 2.4.4 Let Λ and A be sets of predicate liftings and proposition letters,
respectively. A formula ϕ ∈ L1

Λ(A) is one-step T -invariant iff for each map f : S′ →
S, for each V : A → P S, and for each σ ′ ∈ T S′:

T S, V, (T f )σ ′ �1 ϕ iff T S′, V f , σ
′ �1 ϕ. (2.13)

Proof For the direction from left to right, assume thatϕ ∈ L1
Λ is one-step T -invariant,

and let f, V , and σ ′ be as in the formulation of the proposition. It follows from Propo-
sition 2.4.3(2) that V �

f = V �◦ f , and from this it is immediate that (T f )σ ′ ∼V,V f σ
′.

But then (2.13) follows from the one-step T -invariance of ϕ.
Conversely, suppose that ϕ satisfies the condition on the right hand side of the

Proposition. Let Vi : A → P Si (i = 0, 1) be two A-valuations, and let σi ∈ T Si be
objects such that σ0 ∼V0,V1 σ1. Our aim is to prove that

T S0, V0, σ0 �1 ϕ iff T S1, V1, σ1 �1 ϕ. (2.14)

For this purpose, consider the natural valuation N : A → P P A on P A given by
N (a) := {B ∈ P A | a ∈ B}. We leave it as an exercise for the reader to verify that
(i) N � = id P A, that (ii) (P̆V �)N (a) = V (a) for all a ∈ A, and that (iii) V

V �
i
= Vi .

From this we conclude that, taking S = P A, S′ = Si , f = V �
i and σi = σ ′, we may

read Eq. (2.13) as follows:

T P A, N , (T V �
i )σi �1 ϕ iff T Si , Vi , σi �1 ϕ.

From this, (2.14) is immediate by the assumption that (T V �
0 )σ0 = (T V �

1 )σ1. QED

The next theorem makes a link between some of the notions we have been dis-
cussing.

Theorem 2.4.5 The following are equivalent, for any set Λ of predicate liftings:

1. Λ is natural;
2. Λ is one-step behaviorally invariant;
3. for each set A of proposition letters, for each function f : S′ → S, for each

V : A → P S, and for each σ ′ ∈ T S′, (2.13) holds for each formula ϕ ∈ LΛ(A).

Proof Since the equivalence of (2) and (3) is an immediate consequence of Propo-
sition 2.4.4, it suffices to show that (1) ⇐⇒ (3).

For this purpose, first assume that (1) Λ is natural, and let A, S′, S, and f be as
in item 3. Clearly it suffices to prove (2.13) for an arbitrary atomic rank-1 formula
♥λ(a):
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T S, V,(T f )σ ′ �1 ♥λ(a)
iff (T f )σ ′ ∈ λS(V (a1), . . . , V (an)) (semantics♥λ)
iff σ ′ ∈ (P̆T f )λS(V (a1), . . . , V (an)) (definition P̆T f )

iff σ ′ ∈ λS′
(
(P̆ f )V (a1), . . . , (P̆ f )V (an)

)
(naturality of λ)

iff σ ′ ∈ λS′
(
V f (a1), . . . , V f (an)

)
(definition V f )

iff T S′, V f , σ
′ �1 ♥λ(a) (semantics♥λ)

Conversely, assume (3) and consider an arbitrary n-ary predicate lifting λ ∈ Λ.
In order to prove that λ is natural, take an arbitrary function f : S′ → S, and an
arbitrary n-tuple X = (X1, . . . , Xn) of subsets of S. We need to show that

λS′
(
(P̆ f )X1, . . . , (P̆ f )Xn

)
= (P̆T f )λS(X1, . . . , Xn). (2.15)

For this purpose, define A := {a1, . . . , an}, and consider the valuation V : A → P S
such that V (ai ) = Xi ; observe that by definition of V f , this implies that V f (ai ) =
(P̆ f )Xi . Hence it suffices to prove, for an arbitrary element σ ′ ∈ S′, that

σ ′ ∈ λS′
(
V f (a1), . . . , V f (an)

)
iff σ ′ ∈ (P̆T f )λS(V (a1), . . . , V (an)).

This we prove as follows:

σ ′ ∈ λS′
(
V f (a1), . . . , V f (an)

)

iff T S′, V f , σ
′ �1 ♥λ(a) (semantics♥λ)

iff T S, V, (T f )σ ′ �1 ♥λ(a) (assumption)

iff (T f )σ ′ ∈ λS(V (a1), . . . , V (an)) (semantics♥λ)
iff σ ′ ∈ (P̆T f )λS(V (a1), . . . , V (an)) (definition P̆T f )

QED

We now turn to the one-step version of one coalgebraic logic corresponding to
the T -invariant fragment of another. On the basis of Theorem 2.4.5, we may nicely
formulate this property in terms of predicate liftings.

Definition 2.4.6 LetΛ andΛ′ be two sets of predicate liftings for the functor T . We
say that Λ′ corresponds to the behaviorally invariant fragment of Λ at the one-step
level, notation: Λ′ ≡1 Λ/T , if

1. Λ′ ⊆ Λ,
2. Λ′ is natural, and
3. every one-step T -invariant formula ϕ ∈ L1

Λ(A) is equivalent to a formula ϕ∗ in
L1
Λ′(A).
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If Λ and Λ′ satisfy the conditions 1, 2 and 3’ below:

3’. there is a translation (·)∗ : L1
Λ(A)→ L1

Λ′(A) and a construction associating, with
each set S, a set S′ together with a map f : S′ → S, such that for each σ ∈ T S
there is a σ ′ ∈ T S′ with σ = (T f )σ ′, and for each valuation V : A → P S, and
each formula ϕ ∈ L1

Λ(A) it holds that

T S, V, σ �1 ϕ∗ iff T S′, V f , σ
′ �1 ϕ. (2.16)

we say that Λ′ uniformly corresponds to the behaviorally invariant fragment of Λ
at the one-step level, notation: Λ′ ≡u

1 Λ/T . �

Similarly to Proposition 2.2.14, the following Proposition states that uniform
correspondence implies correspondence.

Proposition 2.4.7 If Λ′ ≡u
1 Λ/T , then Λ′ ≡1 Λ/T .

Proof Similarly to the proof of Proposition 2.2.14, one may show that if ϕ ∈ L1
Λ is

one-step T -invariant, then ϕ is equivalent to ϕ∗, where (·)∗ : L1
Λ(A) → L1

Λ′(A) is
the translation given by uniform correspondence. QED

Remark 2.4.8 There are many variants of the notion of uniform one-step corre-
spondence that may be of interest as well. For instance, it makes sense to weaken the
condition (1), stating that Λ′ is an actual subset of Λ, to a condition requiring that
there is a translation (·)† mapping any formula ϕ ∈ L1

Λ′(A) to an equivalent formula
ϕ† ∈ L1

Λ(A). As a second example, all of the results in this paper still hold if we
weaken condition 3’ to a non-uniform version in which the set S′ and the function
f : S′ → S depend on the object σ ∈ T S. In detail, this condition would read as
follows

3”. there is a translation (·)∗ : L1
Λ(A) → L1

Λ′(A) and a construction associating,
with each set S, and each σ ∈ T S, a set S′, a map f : S′ → S, and an object
σ ′ ∈ T S′ such that σ = (T f )σ ′, and for each valuation V : A → P S, (2.16)
holds for each formula ϕ ∈ L1

Λ(A).

Finally, in some cases it may be convenient to consider (one-step) languages in
which we admit only a (not necessarily functionally complete) selection of Boolean
connectives.

2.4.2 The Case of Kripke Models

Our key example of the notions just defined is given by the predicate liftings for
Kripke structures, that are induced by monadic first-order sentences. Our main goal
in this section will be to prove the following Theorem, which states thatΠ uniformly
corresponds to the behaviorally invariant fragment of Π=. This theorem will be
crucial in our proof of the Janin-Walukiewicz theorem.
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Theorem 2.4.9 Π ≡u
1 Π

=/P.

Let us first see what one-step invariance means in this context. Recall from the
introduction the notions of P-equivalence of structures, and of P-invariance of
monadic sentences. We will say that a monadic first-order sentence α ∈ �= is
invariant under surjective homomorphisms iff for each valuation V : A → P D and
each surjection f : D′ → D,

〈D, V 〉 |= α iff 〈D′, V f 〉 |= α.

Proposition 2.4.10 For any first-order sentence α(a) ∈ �=, the following are
equivalent:

1. the predicate lifting â is natural;
2. the rank-1 formula ♥â(a) is P-invariant;
3. α is P-invariant;
4. α is invariant under surjective homomorphisms.

Proof This Proposition is a straightforward consequence of Propositions 2.3.9 and
2.4.4. QED

As a first corollary of this, we obtain the following.

Corollary 2.1 � and Π are P-invariant sets of predicate liftings.

Proof By Proposition 2.4.10 it suffices to show that all identity-free sentences of
monadic first-order logic are invariant under surjective homomorphisms. This is a
routine exercise in first-order logic. QED

As a more important consequence of Proposition 2.4.10, we may prove Theo-
rem 2.4.9 as a corollary of the following result on monadic first-order logic.

Proposition 2.4.11 There is a translation (·)∗ : Π=(A)→ Π(A) such that for all
structures (D, V ) and all sentences α ∈ Π= we have

(D, V ) |= α∗ iff (D × ω, Vπ ) |= α, (2.17)

where π : D × ω→ D is the first projection function, π : (d, n) �→ d.

In order to prove Proposition 2.4.11, we will need certain normal forms for
monadic first-order sentences. First we supply some preliminary definitions.

Definition 2.4.12 For a sequence x = x1, . . . , xn of variables, write diff(x) :=∧
1< j xi �= x j . Given a set B ⊆ A and a variable x , abbreviate τB(x) :=∧
a∈B a(x) ∧∧

a �∈B ¬a(x) and τ+B (x) :=
∧

a∈B a(x). �

In words, diff(x) states that the variables x1, . . . xn denote distinct elements of
the domain. The formulas τB(x) and τ+B (x) state, respectively, that the type of the
element denoted by x is equal to (contains, respectively) B. Here the type of an
element d in a structure 〈D, V 〉 for A is the set V �(d).
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Definition 2.4.13 Fix a set A of propositional variables. Let B = B1, . . . , Bn and
C = C1, . . . ,Cm be two sequences of subsets of A, respectively. We define the
following formulas:

χ=,+(B,C) := ∃y1 · · · yn

(
diff(y) ∧∧

i τ
+
Bi
(yi ) ∧ ∀z (diff(yz)→∨

j τ
+
C j
(z))

)

χ=(B,C) := ∃y1 · · · yn

(
diff(y) ∧∧

i τBi (yi ) ∧ ∀z (diff(yz)→∨
j τC j (z))

)

χ+(B,C) := ∃y1 · · · yn

( ∧
i τ
+
Bi
(yi ) ∧ ∀z

∨
j τ
+
C j
(z)

)

χ(B,C) := ∃y1 · · · yn

( ∧
i τBi (yi ) ∧ ∀z

∨
j τC j (z)

)

We let N=,+(A) denote the set of sentences of the form χ=,+(B,C), and proceed
similarly for the sets N=(A), N+(A) and N(A). �

We need the following fact from first-order logic, which explains why we may think
of (disjunctions of) χ -type formulas as providing normal forms for monadic first-
order logic.

Proposition 2.4.14 Every sentence in�= is equivalent to a disjunction of sentences
in N=, and similarly for � and N, Π= and N=,+ and Π and N+, respectively.

Proof The proof of this Proposition can be seen as an exercise in the theory of
Ehrenfeucht-Fraïssé games. We confine ourselves to a sketch (rephrasing the proof
of Lemma 16.23 in [12]), and we only consider the case of �=.

Given a set B ⊆ A, and a first-order structure D = 〈D, V 〉 for A, let NB,D be
the number of elements in D of type B. We say that two such structures D and D

′
are n-equivalent, notation D ∼n D

′, if for every B ⊆ A, either NB,D = NB,D′ ≤ n,
or both NB,D > n and NB,D′ > n. Clearly ∼n is an equivalence relation of finite
index, and each equivalence class of ∼n is described by a formula in N=. Using
Ehrenfeucht-Fraïssé games it is not difficult to show that D ∼n D

′ implies that D

and D
′ satisfy the same sentences of quantifier rank at most n. From this it follows

that the class of models of such a sentence is the union of a (finite) number of ∼n-
cells, and that the sentence itself is thus equivalent to the disjunction of the formulas
asssociated with these ∼n-cells. QED

Now we are ready for the proof of Proposition 2.4.11.

Proof of Proposition 2.4.11 Given a formula α ∈ Π=(A), we need to come up
with a translation α∗ ∈ Π(A) such that (2.17) holds.

First assume that α is of the form χ=,+(B,C) ∈ N=,+, and define

α∗ := χ+(B,C).

Proving (2.17) in this situation boils down to showing that

〈D, V 〉 |= χ+(B,C) iff 〈D × ω, Vπ 〉 |= χ=,+(B,C). (2.18)
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For this purpose, first observe that Vπ satisfies

d ∈ V (a) iff (d, n) ∈ Vπ (a) (2.19)

for each d ∈ S, a ∈ A, and n ∈ ω. Suppose that B = B1, . . . , Bn and C =
C1, . . . ,Cm .

For the left-to-right direction of (2.18), assume that 〈D, V 〉 |= χ+(B,C). Let
d1, . . . , dn be elements in D satisfying the existential part of χ+(B,C), that is,
for each i we find di ∈ ⋂

b∈Bi
V (b). From the universal part of the formula it

follows that for each d ∈ D there is a subset Cd ⊆ A such that d ∈ ⋂
c∈Cd

V (c).
Now we move to D × ω; it is easy to see that its elements (d1, 1), . . . , (dn, n)
provide a sequence of n distinct elements that satisfy (di , i) ∈⋂

b∈Bi
Vπ (b) for each

i . In addition, every element (d, n) distinct from the ones in the mentioned tuple
will satisfy (d, n) ∈ ⋂

c∈Cd
Vπ (c). From these observations it is immediate that

〈D × ω, Vπ 〉 |= χ=,+(B,C).
For the opposite direction of (2.18), assume that 〈D × ω, Vπ 〉 |= χ=,+(B,C).

Let (d1, k1),…, (dn, kn) be the sequence of distinct elements of D×ωwitnessing the
existential part of χ=,+(B,C) in D

′. Then clearly, d1, . . . , dn witness the existential
part of χ+(B,C) in 〈D, V 〉. In order to show that 〈D, V 〉 also satisfies the universal
part ∀z

∨
j τ
+
C j
(z) of χ+, consider an arbitrary element d ∈ D. Take any m ∈

ω \ {k1, . . . , kn}, then (d,m) is distinct from each (di , ki ). It follows that for some
j we have (d,m) ∈ ⋂

c∈C j
Vπ (c), and so we obtain d ∈ ⋂

c∈C j
V (c). Since d was

arbitrary this shows that indeed 〈D, V 〉 |= ∀z
∨

j τ
+
C j
(z). So we have proved that

〈D, V 〉 |= χ+(B,C).
Now consider the general case, where α is arbitrary. It follows from Proposi-

tion 2.4.14 that α is equivalent to a formula α ≡ ∨
i αi , with each formula αi

belongs to N=,+. With
α∗ := ∨

iα
∗
i

it is straightforward to verify (2.17). QED

Both Proposition 2.1.4 and Theorem 2.4.9 are straightforward corollaries of
Proposition 2.4.11.

Proof of Proposition 2.1.4 Assume thatα ∈ Π= is a P-invariant monadic sentence,
and let α∗ ∈ Π be the formula given by Proposition 2.4.11. Consider an arbitrary
structure (D, V ), and observe that (D, V ) ≡P (D×ω, Vπ ). But then we obtain the
following equivalences:

(D, V ) |= α iff (D × ω, Vπ ) |= α (assumption onα)

iff (D, V ) |= α∗ (2.17)

From this it is immediate that α and α∗ are equivalent, which suffices to prove
Proposition 2.1.4. QED
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Proof of Theorem 2.4.9 It is obvious that Π ⊆ Π=, and Corollary 2.1 states the
one-step P-invariance of Π . Hence we may focus on item 3′ of Definition 2.4.6.

We need to define a translation (·)∗ : L1
Π= → L1

Π . By the definition of rank-1
formulas, it suffices to come up with a translation for atomic rank-1 formulas, that
is, formulas of the form ♥α̂(a) for some sentence α ∈ Π=. But for such a formula,
we can simply put (

♥α̂(a)
)∗ := ♥α∗(a).

We leave it for the reader to verify that this defines a formula of the right shape and
with the right properties. QED

2.5 Main Result

We are now ready for the main technical result of the paper. Intuitively, Theorem 2.5.1
states that, given two sets Λ,Λ′ of monotone predicate liftings for a functor T , if
Λ corresponds to the T -invariant fragment of Λ′ at the one-step level, then the
coalgebraic μ-calculus μLΛ,Q is the bisimulation-invariant fragment of μLΛ′,Q.

Theorem 2.5.1 Let T be some set functor, and let Λ,Λ′ be two sets of monotone
predicate liftings for T such that Λ ≡u

1 Λ
′/T . Then for any set Q,

AutΛ,Q ≡s AutΛ′,Q/�T .

As a corollary, if Λ′ is closed under Boolean duals, then μLΛ,Q ≡s μLΛ′,Q/�T .

Proof Fix a set Q of proposition letters, and assume that Λ ≡u
1 Λ′/T . It easily

follows from this assumption that AutΛ,Q ⊆ AutΛ′,Q and that AutΛ,Q is invariant
under behavioral equivalence. This leaves the following tasks:

1. define a translation from initializedΛ,Q-automata to initializedΛ′,Q-automata,
2. outline a construction, that assocates with an arbitrary pointed T -model (S, r), a

pointed T -model (S′, r ′) and a morphism f : S′ → S, and
3. prove, for every initialized Λ,Q-automaton (A, ai ), and every pointed model
(S, r) that

S, r � (A, aI )
∗ iff S

′, r ′ � (A, aI ). (2.20)

The first of these tasks is easy to accomplish. Given a Λ,Q-automaton A =
〈A, δ,Ω〉, recall that δ(a,Π) is a rank-1 Λ-formula for each a ∈ A and Π ∈ PQ.
Hence we obtain a Λ′,Q-automaton A

∗ by putting A
∗ := 〈A, δ∗,Ω〉, where

δ∗ : A × PQ → L1
Λ′(A) is given by Definition 2.4.6(3′): δ∗(a,Π) := (δ(a,Π))∗.

For the initialized automaton (A, aI ) we put (A, aI )
∗ := (A∗, aI ).

Concerning the second task, consider an arbitrary T -model S = 〈S, σ,W 〉. Take
the set S′ and the map f : S′ → S provided by clause 3 of Definition 2.4.6. In order
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to endow the set S′ with coalgebra structure, consider an arbitrary element s′ ∈ S′.
Applying the properties of S, S′ and f (given by the mentioned clause) to the element
σ( f s′) ∈ T S, we obtain an element σ ′s′ ∈ T S′ such that

(T f )(σ ′s′) = σ( f s′) (2.21)

and such that for every rank-1 formula ϕ ∈ L1
Λ(A) and every marking V : A → P S

we have
T S, V, σ ( f s′) �1 ϕ∗ iff T S′, V f , σ

′s′ � ϕ. (2.22)

Clearly this procedure defines a coalgebra structure σ ′ : S′ → T S′. For the valuation
W ′ on S

′ we take W ′ := W f . It is immediate by (2.21) and the fact that W �
f = W �◦ f ,

that the map f : S′ → S is in fact a TQ-coalgebra morphism.
Finally, we need to come up with a designated point r ′ of S

′ := 〈S′, σ ′〉 which
is mapped to r by f . Clearly if S′ already contains such an element we are done;
if not, then we can simply adjoin a fresh element r ′ to S

′. We define σ ′r ′ so that
(T f )(σ ′r ′) = σr (this is possible by the assumptions), adapt the valuation W ′ so
that the type of r ′ is that of r in S, and add the pair (r ′, r) to (the graph of) f . Modulo
some renaming, this ensures that we obtain a pointed coalgebra (S′, r ′), with a map
f : S′ → S satisfying (2.21) and (2.22), and such that W ′ = W f and f r ′ = r .
(Formally, we define a model S

′′ based on the set S′′ := S′ & {r ′}, and in the sequel
work with the pointed model (S′′, r ′). We omit the details of this construction which
are coalgebraically obvious but somewhat tedious).

We are now ready to prove (2.20). Fix an initializedΛ,Q-automaton (A, aI ) and
a pointed T -model (S, r). Clearly it suffices to show that

(aI , r) ∈ Win∃(A (A∗,S)) iff (aI , r
′) ∈ Win∃(A (A,S′)). (2.23)

Abbreviate A ∗ = A (A∗,S) and A ′ = A (A,S′).
For the direction from left to right of (2.23), without loss of generality we may

assume that in A ∗, ∃ has a positional strategy θ : A× S → (P S)A which is winning
when played from each position (a, s) ∈ Win∃(A ∗). Now consider the following
(positional) strategy θ f for ∃ in A ′:

at position (a, s′)∃ picks the marking V f ,

whereV : A → P S is the marking V = θ(a, f s′)provided in A ′ by θ at(a, f s′).

The legitimacy of this move is immediate by (2.22).
In order to show that θ f is in fact a winning strategy in A ′@(aI , r), consider an

arbitary match
π = (aI , r

′)U1(a1, s′1)U2(a2, s′2) . . .

in which ∃ plays the strategy θ f just defined. The point is that there is an associated
θ -conform A ∗-match
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π∗ = (aI , r)V1(a1, s1)V2(a2, s2) . . .

such that Ui = (Vi ) f and f s′i = si for all i < ω. To see this, consider a round of the
game, starting at position (a, s′) ∈ A× S′ with (a, f s′) ∈ Win∃(A ∗). If ∃ plays her
strategy θ f , picking the marking V f with V = θ(a, f s′), then for every pair (b, t ′)
picked by ∀, by definition of V f , the pair (b, f t ′) is a legitimate move for ∀ in A ∗.

By our assumptions on (aI , r) and θ , the match π∗ is won by ∃. But since π and
π∗ project to exactly the same sequence of A-states, and the winning conditions of
A ∗ and A ′ are the same, this means that ∃ also wins π . Thus we conclude that θ f

is a winning strategy for ∃ in the game A ′ initialized at (aI , r ′).
For the opposite direction ‘⇐’ of (2.23), we may assume that in A ∗, ∃ has

a positional strategy η : A × S → (P S)A which is winning from all positions
(a, s′) ∈ Win∃(A ′). We will use this η to define a (partial) strategy η f for ∃ in A ∗.

For the definition of η f , consider a position in A ∗ of the form (a, f s′) for some
s′ ∈ S′ such that (a, s′) ∈ Win∃(A ′). (Note that the position (aI , r) has this shape.)
Suppose that in A ′, at position (a, s′), ∃’s strategy η tells her to pick a marking
U : A → P S′. Our first claim is that the marking U f : A → P S constitutes a
legitimate move for ∀ in the game A ∗ at position (a, f s′).

To see this we need to verify that T S,U f , σ ( f s′) �1 δ∗(a,W �( f s′)). But
because U is a legitimate move at (a, s′) in A ′, we know that T S′,U, σ ′s′ �1

δ(a,W �
f (s

′)). Observe that U ⊆ (U f ) f (Proposition 2.4.3), so that by monotonicity

it follows that T S, (U f ) f , σ
′s′ �1 δ(a,W �

f (s
′)). From this it is immediate by (2.22)

and the fact that W �( f s′) = W �
f (s

′) (Proposition 2.4.3), that T S,U f , σ ( f s′) �1

δ∗(a,W �( f s′)), as required. Now consider an arbitrary response (b, t) of ∀ to ∃’s
move U f at position (a, f s′). It follows from t ∈ U f (b) that t is of the form f t ′ for
some t ′ ∈ S′ such that t = f t ′. This means that in A ′, the move (b, t ′) is legitimate at
position U . Furthermore, since we assumed that U was given by a winning strategy,
the position (b, t ′) belongs to the set Win∃(A ′). Summarizing, this shows that in
any round of A ∗ starting at a position (a, f s′) with (a, s′) ∈ Win∃(A ′), ∃ has the
power to end the round at a position (b, t) of the same kind; and more specifically,
she maintains an η-conform ‘shadow round’ of the game A ′ starting at (a, s′) and
ending at a position (b, t ′) ∈ Win∃(A ′) with f t ′ = t .

On the basis of the above observations, we may easily equip ∃ with a (partial)
strategy η f with the property, that for any η f -conform match

π = (aI , r)V1(a1, s1)V2(a2, s2) · · ·

there is an η-conform ‘shadow match’

π ′ = (aI , r
′)U1(a1, s′1)U2(a2, s′2) · · ·

such that si = f s′i and Vi = U f
i for all i ∈ ω. From this we may derive, using a

similar argument as given before, that π is won by ∃. Thus in this case we conclude
that η f is a winning strategy for ∃ in the game A ∗ initialized at (aI , r). QED
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Finally we show how to derive the Janin-Walukiewicz theorem, stating thatμML is
the bisimulation-invariant fragment of MSO, from the results obtained (or mentioned)
above.

Corollary 2.2 (Janin and Walukiewicz) For any set Q of proposition letters, μML
(Q) ≡s MSOv(Q)/P.

Proof This result is a straightforward corollary of the Theorems 2.3.10, 2.4.9, and
2.5.1, together with Proposition 2.3.5.

To see this, fix a set Q of proposition letters, and note that by Theorem 2.3.10(1),
there is an initialized automaton (Aϕ, aϕ) in AutΠ=(Q) such that

ϕ ≡ (Aϕ, aϕ) on trees. (2.24)

By the Theorems 2.3.10(2), 2.4.9, and 2.5.1 and by Proposition 2.3.5, there is a
translation ξ : AutΠ=(Q) → μML such that for all pointed Kripke models (S, s),
there is a pointed Kripke model (S′, s′) and a morphism f : (S′, s′)→ (S, s) such
that for all initialized automata (A, a) it holds that

S, s � ξ(A, a) iff S
′, s′ � (A, a). (2.25)

Now let ϕ(v) ∈ MSOv(Q) be invariant under bisimilarity, or behavioral equivalence
(these are the same for the power set functor P). We claim that ϕ′ := ξ(Aϕ, aϕ) ∈
μML is equivalent to ϕ. To see this, let (S0, s0) be an arbitrary pointed Kripke model,
and let (S1, s1) be a tree model bisimilar (or behaviorally equivalent) to (S0, s0).

Then we have the following chain of equivalences:

S0, s0 � ϕ iff S1, s1 � ϕ (assumption onϕ)

iff S
′
1, s′1 � ϕ (assumption onϕ)

iff S
′
1, s′1 � (Aϕ, aϕ) (2.24)

iff S1, s1 � ϕ′ (2.25)

iff S0, s0 � ϕ′ (adequacy ofμML)

which shows that ϕ ≡ ϕ′ ∈ μML indeed. QED

2.6 Conclusion

We finish the paper with some general observations and questions for further research.
First of all, given the fact that it is an open problem whether the Janin-Walukiewicz

theorem also holds in the setting of finite models, it may be interesting to note
that both Proposition 2.1.4 and Theorem 2.1.5 can be proved in that setting, as can
Fact 2.1.3(2). Hence, the ‘only’ hurdle to prove a finite model theory version of their



64 Y. Venema

result is the fact that the correspondence between monadic second-order logic and
Π=-automata is only proven for tree models (Fact 2.1.3(1)).

Second, commenting on an earlier version of this chapter, van Benthem asked
some questions concerning the translation (·)∗ from MSO to μML. His question
concerning interpolation can be answered positively: given two MSO-formulas ϕ
and χ , one may show that ϕ implies χ ‘along bisimilarity’ iff ϕ and χ have an
interpolant ψ in the modal μ-calculus.

The analysis of fixed-point logics at the level of syntax for the transition functions
of automata, which started with the work of Janin and Walukiewicz, has yielded
some other basic results about the modal μ-calculus. For instance, it was used by
d’Agostino and Hollenberg to prove uniform interpolation [7] and by Fontaine and
Venema to obtain various preservation results, such as the characterization of the
continuous fragment of μML [9].

Finally, it would be interesting to extend the coalgebraic analysis of the modal
μ-calculus from model-theoretic aspects to axiomatics and proof theory.
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Chapter 3
Schema Mappings: A Case of Logical
Dynamics in Database Theory

Balder ten Cate and Phokion G. Kolaitis

Abstract A schema mapping is a high-level specification of the structural relation-
ships between two database schemas. This specification is expressed in a schema-
mapping language, which is typically a fragment of first-order logic or second-order
logic. Schema mappings have played an essential role in the study of important
data-interoperability tasks, such as data integration and data exchange. In this chapter,
we examine schema mappings as a case of logical dynamics in action. We provide a
self-contained introduction to this area of research in the context of logic and data-
bases, and focus on some of the concepts and results that may be of particular interest
to the readers of this volume. After a basic introduction to schema mappings and
schema-mapping languages, we discuss a series of results concerning fundamental
structural properties of schema mappings. We then show that these structural prop-
erties can be used to obtain characterizations of various schema-mapping languages,
in the spirit of abstract model theory. We conclude this chapter by highlighting
the surprisingly subtle picture regarding compositions of schema mappings and the
languages needed to express them.

Database theory has been one of the most fruitful areas of application of logic to
computer science. In fact, over the past four decades there has been an extensive
exchange of ideas between logic and database theory that has benefitted both areas.
This chapter is about schema mappings, a research topic in database theory that has
been developed in the context of data inter-operability, which can be described as the
problem of combining, managing, and querying data from heterogeneous sources.
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One can view schema mappings as a case of “logical dynamics” in database theory:
while traditional research on databases focuses on instances over a single schema,
schema mappings are concerned with describing relationships across schemas, and
with the access to and the transformation of data across different schemas. The aim
of this chapter is to provide a “logician friendly” introduction to this area of research,
focusing on some of the results that may be of particular interest to the readers of
this volume. The chapter aims to be self-contained, and as such, it includes a brief
introduction to the fundamentals of relational databases. In addition, at various points
(marked in text by the ‘♣’ sign), we take the opportunity to make short excursions
into topics that we think may be of interest to the reader.

This chapter is organized as follows. After an introduction to relational database
theory in Sect. 3.1, we introduce schema mappings in Sect. 3.2, where we also present
the most important languages used for specifying schema mappings. In Sects. 3.3 and
3.4, we review the role of schema mappings in data exchange and data integration,
two important data inter-operability tasks. Throughout these sections, we emphasize
important structural properties of schema mappings that enable solving these tasks.
Then, in Sect. 3.5, we turn the tables around and show that the main schema-mapping
languages admit characterizations of abstract model-theoretic flavor in terms of the
aforementioned important structural properties. Finally, in Sect. 3.6 we examine
schema mapping from a dynamic perspective by highlighting some of the results
concerning the composition of schema mappings.

3.1 Background: Relational Database Theory

One of the main ideas behind the relational model of databases is physical data
independence, which amounts to a strict separation between the physical level at
which data are stored and processed, and the logical level that describes how the
data are organized and presented to the database user. At the logical level, all data
are specified in terms of relations (informally, tables), and are accessed by means of
queries in some declarative language, which is typically based on a logical formalism,
such as first-order logic. The relational Database Management System (DBMS) takes
care of choosing appropriate data structures and indexes for storing the data, and of
translating the declarative queries into physical query plans that are then evaluated
and the answers produced are returned to the database user.

Below, we recall briefly the basic ingredients of the relational database model.
For a more detailed exposition, we refer the reader to [1].

3.1.1 Database Schemas and Instances

A database schema is a finite collection S of relation symbols, each of which has a
specified arity and also names for its attributes (i.e., its columns). For example, the
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notation book(isbn, title, publisher) indicates that book is a ternary relation
symbol having isbn, title, and publisher as the names of the three attributes.
If S = (R1, . . . ,Rm) is a database schema, then a database instance over S is a
sequence I = (RI

1, . . . ,RI
m) of finite relations such that the arity of the relation RI

i
matches the arity of the relation symbol Ri it interprets, 1 ≤ i ≤ m. If a tuple of
values c belongs to RI

i for some relation name Ri ∈ S, then we say that R(c) is a
fact of I . In what follows, we assume that the values occurring in relations come
from some countably infinite domain D of data values (in practice, D may include
integers, strings, dates, and other such data values; this, however, is not relevant for
us here).

Note that there are striking similarities, but also differences, between database
schemas and instances on the one had, and relational signatures and structures on
the other. To begin with, a database schema S = (R1, . . . ,Rm) can be thought of
as a finite relational signature equipped with names for the columns of its relation
symbols. Consequently, at first sight, a database instance over S can be thought of as
a finite relational structure over the same schema. There is, however, an important
difference between instances and structures. The specification of a relational structure
includes the domain (universe) of the structure, which means that a structure over S
is sequence A = (V ,RA

1 , . . . ,RA
m) such that V is a set and each RA

i is a relation on
V . In contrast, the specification of a database instance does not include a domain.
As we will soon see, the absence of an explicit domain in the specification of database
instances will cause some difficulties in defining rigorously the semantics of queries
asked against database instances. Given a database instance, however, it is possible
to extract an implicit domain, called the active domain. In precise terms, the active
domain of an instance I , denoted by adom(I), is the (finite) set of values from D
occurring in facts of I .

3.1.2 Database Queries

Queries are used to extract information from a database. When a query is evaluated
on a database instance, it produces a finite relation. More formally, if k ≥ 1, then a
k-ary query over a database schema S is a function defined on instances over S and
such that if I is an instance over S, then q(I) is a k-ary relation on the active domain of
I . The precise definition of queries as semantic objects involves one further condition
called “genericity”, according to which the function must behave in an isomorphism-
invariant way. We say that a bijection f : D → D is an isomorphism between two
relations R and R′ of the same arity k, if for all tuples a ∈ Dk , we have that a ∈ R if
and only if f (a) ∈ R′; an isomorphism between two instances over the same schema
is a function that is an isomorphism between every pair of corresponding relations.
The genericity requirement, then, says that the query q is isomorphism-invariant, in
the sense that each isomorphism f between instances I and I ′ is also an isomorphism
between the relations q(I) and q(I ′), which means that q(I ′) = f (q(I)). A zero-ary
query, also called a Boolean query, is a function from instances over S to the set
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{0, 1} that is invariant under isomorphisms; thus, a Boolean queries is a decision
problem (a “yes” or “no” question) about database instances up to isomorphism.

♣ A reader familiar with abstract model theory may observe an intuitive analogy between
Boolean queries and generalized quantifiers. Both can be defined as isomorphism-invariant
functions that take as input a relational structure or instance, yielding as output a truth value.
The isomorphism-invariance condition can be seen as expressing a form of topic neutrality,
and as such it features also prominently in the literature on generalized quantifiers and the
demarcation of logical constancy (see for instance [8]).

3.1.3 First-Order Queries and Domain Independence

Queries are semantic objects. From a syntactic point of view, a k-ary query can often
be specified by a first-order formula with k free variables, where k ≥ 1. For example,
the first-order formula

q1(x1, x2) = ∃yzu book(y, x1, u) ∧ book(z, x2, u)

defines the query that returns a binary relation containing all pairs of titles of books
that have the same publisher. Similarly,

q2(x1) = ∃yzuv book(x1, y, z) ∧ book(x1, u, v) ∧ y 
= u)

defines the query that returns the set of all authors with at least two books, and

q3(x1) = ∀yzuv(book(x1, y, z) ∧ book(x1, u, v)→ z = v)

defines the query that returns the set of all authors whose books are all published by
the same publisher. When we specify a query by means of a formula φ, we assume
that the free variables of φ are ordered, as in x1, . . . , xn, hence the order of the
attributes of the resulting relation is clear.

Boolean queries are often specified by sentences of first-order logic. For example,
the first-order sentence

q4 = ∀yzwy′z′w′(book(y, z,w) ∧ book(y′, z′,w′)→ w = w′)

defines the query that is true on an instance of book precisely when all books in the
database are published by the same publisher.

In general, the denotation of a first-order formula on a relational structure
A = (V ,R1, . . . ,Rm) depends not only on the relations R1, . . . ,Rm of the structure,
but also on its domain V . In particular, a formula may have different denotations
on two structures A = (V ,R1, . . . ,Rm) and A′ = (V ′,R1, . . . ,Rm) that have the
same relations, but different domains. For example, this is the case for the first-order
formula¬R1(x), as well as for the first-order sentence ∀x(R1(x)), which may be true
on A, but false on A′ in case the domain V ′ of A′ contains properly the domain V of A.
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This state of affairs implies that the denotation of a first-order formula on a database
instance can be ambiguous, since, as discussed earlier, the specification of a data-
base instance does not include an explicit domain. This is unsatisfactory, hence it is
customary in database theory to restrict attention to domain independent first-order
formulas. Formally, domain independence is defined as follows: if I is an instance
and A is any superset of adom(I), we write 〈A, I〉 for the relational structure with
domain A in which all relation symbols are interpreted as in I . We also write φA(I) for
the denotation of the formula φ on the structure 〈A, I〉. Now, we say that a first-order
formula φ is domain independent if for all instances I and sets A,B ⊇ adom(I), we
have that φA(I) = φB(I). In particular, this implies that φD(I) = φadom(I)(I), and
so, when evaluating a domain-independent formula, we can safely ignore values out-
side the active domain. From now on, whenever we speak about first-order queries,
we will always mean queries that are definable by a domain-independent first-order
formula.

♣ Not surprisingly, domain independence is an undecidable semantic property of first-order
formulas [20]. This is an easy consequence of Trakhtenbrot’s Theorem [52], which states that
the satisfiability problem for first-order formulas on finite structures is undecidable. However,
it is possible to define a syntactic fragment of first-order logic that captures the full domain
independent fragment of first-order logic, up to logical equivalence. For instance, this can
be done following the same general idea underlying the first-order fragment “F3” from [2],
in which all quantifiers are required to be relativized by relational atomic formulas to make
sure that they range over the active domain. Moreover, broader such syntactic fragments
have been identified; for example, see [53].

♣ In reality, database queries may refer to fixed elements of the domain, in a way that is
similar to the use of individual constants in first-order logic. Thus, for example, the first-order
formula ∀yz(book(x1, y, z) → z 
= ’Springer’) defines the query that computes the set of
authors who have never published a book with Springer. Allowing arbitrary values from
the domain to be used as constants in queries does not have any fundamental implications
for the results presented in this chapter (nor for other basic results in database theory), but
it complicates many definitions, such as the above definitions of genericity and of domain
independence. For this reason, we will not consider queries with constants here.

At its core, the industry-standard relational database query language SQL can
be viewed as a friendly syntax for first-order queries. In practice, of course, SQL
has many features that go beyond first-order logic, such as involving arithmetical
operations, string operations, and aggregate operations.

3.1.4 Query Evaluation and Query Containment

The query evaluation problem is one of the most fundamental problems about
databases; this is the problem of computing q(I), for a query q and an instance I .
The computational complexity of the query evaluation problem has been extensively
studied for various query languages. It is common to distinguish between the data
complexity and the combined complexity of query evaluation [54]. The data com-
plexity is the complexity of query evaluation for fixed queries, where the complexity
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is measured only in terms of the size of the instance. The combined complexity is the
complexity of query evaluation when both the query and the instance are considered
to be part of the input. Often, data complexity is a more sensible measure of com-
plexity, because the size of the instance tends to be many orders of magnitude larger
than the size of the query; moreover, it is often the case that one is interested in only
a small number of queries that stay fixed, while the instance changes frequently.

For first-order queries, the data complexity of query evaluation is in the complexity
class PTime. This means that, for any fixed first-order query, the query evaluation
problem can be solved in time bounded by a polynomial in the size of the input
instance (the degree of the polynomial, however, depends on the fixed query). In fact,
the data complexity of evaluating first-order formulas is in LogSpace (logarithmic
space), a complexity class that is contained in PTime. The combined complexity of
evaluating first-order queries, on the other hand, is complete for the complexity class
PSpace (polynomial space), which contains NP and other higher complexity classes.

Another fundamental problem is the query containment problem: given two
queries q, q′, decide if q is contained in q′, meaning that, for all instances I , we
have that q(I) ⊆ q′(I). From the point of view of logic, this is of course precisely
the entailment problem for (the formulas that define the) queries. For first-order
queries, the query containment problem is undecidable. This follows from the afore-
mentioned Trakhtenbrot’s Theorem. There are, however, broad classes of frequently
asked queries for which the containment problem is decidable and, in fact, has rela-
tively low computational complexity. We shall discuss such a class next.

3.1.5 Conjunctive Queries and Homomorphisms

The query q1 discussed earlier is an example of a conjunctive query (CQ), unlike the
queries q2, q3, and q4. Conjunctive queries form one of the most important classes
of database queries in practice. They are the queries defined by first-order formulas
of the form q(x) = ∃yφ(x, y), where φ(x, y) is a conjunction of atomic formulas;
these atomic formulas may include equalities. In addition, it is required that each
free variable xi ∈ x actually occurs in a relational atomic formula of φ, in order to
ensure that the query is domain-independent.

For arbitrary queries, the query evaluation problem and the query containment
problem are very different algorithmic problems. In particular, for first-order queries,
the query evaluation problem is decidable, while the query containment problem is
undecidable. In the case of conjunctive queries, however, it turns out that these two
problems are essentially the same problem and, moreover, are intimately connected
to the homomorphism problem. A homomorphism from an instances I to an instance
J over the same schema S is a function from the active domain of I to the active
domain of J such that, for every fact of I , its h-image is a fact of J; in other words,
for every relation symbol Ri of S and for every tuple (a1, . . . , an) ∈ RI

i , we have that
(h(a1), . . . , h(an)) ∈ RJ

i . The notation h : I → J indicates that h is a homomorphism
from I to J . The existence of a homomorphism from I to J means that I is included
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in J , modulo some (not-necessarily bijective) substitution of values; thus, I is, in
some sense, more “general” than J . The homomorphism problem is the following
decision problem: given two instances I and J over the same schema S, is there a
homomorphism from I to J?

♣ The existence-of-a-homomorphism relation between instances is a pre-order. It induces a
partial order between homomorphism-equivalence classes; in fact, this preorder is a lattice,
where the meet and join can be defined in terms of direct products and disjoint unions. The
structure of this lattice has been the focus of an extensive study in graph theory, resulting in
a rich theory [33].

The Chandra-Merlin Theorem is a basic result in database theory that establishes
an intimate connection between conjunctive-query evaluation, conjunctive-query
containment, and the homomorphism problem. To simplify the presentation, we will
explain the connection for the special case of Boolean conjunctive queries. Given an
instance I over a schema S, we can naturally associate with it a Boolean conjunctive
query qI over the same schema, which is called the canonical Boolean conjunc-
tive query of I . This query has an existentially quantified variable for each value
from adom(I), and it contains one conjunct for each fact of I . For example, if I is
the instance consisting of the facts book(0-201-53771-0,Foundations of Databases,
Addison-Wesley) and location(0-201-53771-0,A7.14), then the canonical Boolean
conjunctive query of I would be ∃xyzu book(x, y, z)∧ location(x, u). Conversely,
if q is a Boolean conjunctive query, then, by choosing an arbitrary distinct value for
each existentially quantified variable, we can associate with it a canonical instance
Iq whose facts are, up to a renaming, the conjuncts of q. Together, these two trans-
formations establish a one-to-one correspondence between instances and Boolean
conjunctive queries, modulo renaming of values and variables; this is so because the
canonical instance associated with the canonical query of an instance I is isomorphic
to I .

Theorem 3.1 (Chandra-Merlin [17]) For every instance I and every Boolean
conjunctive query q, the following statements are equivalent:

1. q is true on I .
2. There is a homomorphism h : Iq → I
3. The canonical query qI of I is contained in q.

The Chandra-Merlin Theorem, whose proof is not difficult, has played a
pivotal role in the development of database theory, as it shows that, in a precise
sense, conjunctive-query evaluation and conjunctive-query containment coincide
with the homomorphism problem. This is remarkable given that, for arbitrary first-
order queries, query evaluation and query containment are computationally very
different problems (indeed, as we discussed earlier, the query containment problem
is undecidable for first-order queries).

An immediate consequence of the Chandra-Merlin theorem is that the
conjunctive-query containment problem is decidable. Moreover, both the conjunctive-
query containment problem and the combined complexity of conjunctive-query
evaluation are in NP, since these two problems amount to guessing a homomor-
phism between two instances. Actually, it is easy to see that both these problems are
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NP-hard, hence they are NP-complete. Indeed, the well known NP-complete prob-
lem Graph 3-Colorability is a special case of the homomorphism problem, because
a graph G is 3-colorable if and only if there is a homomorphism from G to the
three-element clique K3. Note also that, by the Chandra-Merlin Theorem, Graph
3-Colorability can be viewed as the following special case of the conjunctive-query
evaluation problem: given a graph G, does K3 satisfy the canonical conjunctive query
qG of G?

♣ There has been an extensive investigation of subclasses of the class of conjunctive queries
for which the combined complexity of query evaluation is in polynomial time. One important
such subclass is the class of acyclic conjunctive queries [55]. Various generalizations of
acyclicity have been studied over the years, including queries of bounded tree-width and
queries of bounded hypertree-width (see [27, 28] for a survey). This is an area of research
that has enjoyed extensive interaction with constraint satisfaction, logic, and graph theory
(see for instance [38]).

There is a second fundamental relationship between conjunctive queries and
homomorphisms, namely the fact that conjunctive queries are preserved under
homomorphisms. A query q is said to be preserved by homomorphisms if, for every
homomorphism h : I → J and for every tuple a ∈ q(I), we have that the h-image
h(a) of a belongs to q(J). Every conjunctive query is preserved under homomor-
phisms. Indeed, conjunctive queries are positive existential first-order formulas, and
it is a well known fact in model theory that positive existential first-order formulas
are preserved under homomorphisms.

A union of conjunctive queries (UCQ) is a query defined by a disjunction of
conjunctive queries all of which have the same set of free variables. Clearly, every
UCQ is, in particular, a positive existential first-order query. Conversely, it is not
hard to show that every domain-independent positive existential first-order formula
is equivalent to a union of conjunctive queries. Rossman [51] proved that, on finite
structures, a first-order formula is preserved under homomorphism if and only if it is
equivalent to a positive existential first-order formula. This implies that every first-
order query (i.e., every query defined by a domain-independent first-order formula)
preserved under homomorphism is a union of conjunctive queries.

Theorem 3.2 (Rossman [51]) A first-order query is preserved under homomor-
phisms if and only if it is equivalent to a union of conjunctive queries.

♣ Rossman’s theorem is a rare example of a preservation theorem in model theory that
holds true in the finite. A preservation theorem is a theorem that characterizes a fragment
of first-order logic, up to logical equivalence, in terms of preservation under some model-
theoretic operation or relation on structures (in this case, the relation of homomorphism).
Well known examples of preservation theorems in classical model theory are the Łoś-Tarski
Theorem (a first-order formula is preserved under extensions if and only if it is equivalent to
an existential first-order formula) and Lyndon’s Positivity Theorem (a first-order formula is
preserved under surjective homomorphisms if and only if it is equivalent to a positive first-
order formula). Most preservation theorems from classical model theory, including these two,
fail in the finite (see [50] for a survey). It was a longstanding open problem to determine
whether or not the homomorphism preservation theorem holds in the finite, and Rossman’s
remarkable theorem confirmed that it does. Its proof is highly sophisticated and required the
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development of elaborate machinery. van Benthem’s characterization of modal logic [7] is
another notable example of the few preservation theorems that survive the passage to finite
structures, as shown by Rosen [49].

3.1.6 Database Constraints

By organizing all data in relations, some inherent semantic information about the
data may get lost. In the preceding example about books, the schema does not reflect
the fact that ISBN numbers uniquely identify books. Thus, there is no a priori rea-
son to exclude the existence of two entries with the same ISBN number but with
different titles. To capture this semantic information, database constraints are used.
Database constraints are statements concerning structural properties of the relations
in a database schema (in this sense, they play a similar role as frame conditions in
modal logic).

An example is the key constraint, customarily written as

book : isbn→ title, publisher

that expresses that the ISBN number functionally determines the title and the
publisher of a book. The above key constraint can be equivalently expressed in
first-order logic as ∀xyzuv(book(x, y, z) ∧ book(x, u, v)→ y = u ∧ z = v).

Inclusion dependencies form another commonly used type of constraints. Suppose
that the database schema contains, besides the book relation, also a binary relation
location(isbn,stack). Then we may wish to require that, for every entry in the
book relation, there is a corresponding entry in the location relation. This con-
strained is usually written as

book[isbn] ⊆ location[isbn]

and, in first-order logic, the same constraint would be expressed as ∀xyz (book

(x, y, z)→ ∃u location(x, u)).
Constraints are included in the specification of the database, and the database

management system may take these constraints into account when deciding on
the physical layout for the stored data. For instance, knowing that ISBN numbers
uniquely identify books, the system may decide to store the data using a hash table,
instead of an array. Constraints have applications in other areas as well, including
database design and query optimization.

In the early 1980s, tuple-generating dependencies and equality-generating depen-
dencies emerged as suitable fragments of first-order logic that capture the most
important types of database constraints in practice. A tuple-generating dependency
(tgd) is a first-order sentence of the form

∀x(φ(x)→ ∃yψ(x, y)),
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where φ(x) and ψ(x,y) are conjunctions of atomic relational formulas, and every
variable in x occurs in φ. An equality-generating dependency (egd) is a first-order
sentence of the form

∀x(φ(x)→ xi = xj),

where φ(x) is a conjunction of relational atomic formulas containing all the variables
in x, and xi, xj ∈ {x}.

Clearly, every key constraint can be equivalently expressed as a conjunction of
egds, and every inclusion dependency can be expressed as a tgd.

♣ There is another perspective on tgds, which is based on query containment. A tgd ∀xy
(φ(x, y) → ∃zψ(x, z)) can be viewed as expressing the requirement that an instance sat-
isfies the containment q1 ⊆ q2, where q1 and q2 are the conjunctive queries ∃yφ(x, y) and
∃zψ(x, z), respectively. Conversely, for any two given conjunctive queries q1, q2 of the same
arity, the containment q1 ⊆ q2 can be expressed as a tgd.

Tgds and egds, as fragments of first-order logic, have been extensively studied
from a computational, axiomatic, and model-theoretic point of view. In particular,
the implication problem (does a given set of constraints logically imply another
constraint) has been investigated in considerable depth. The implication problem for
arbitrary tgds turned out to be undecidable; however, it is decidable for the restricted
case of tgds without existential quantifiers (which are known as full tgds) and edgs.
The computational complexity of the implication problem for various classes of
dependencies has been studied, and axiom systems have been developed for the
entailment problem of classes of dependencies. We refer the reader to [25] for a
survey of results in this area. Also, some model theoretic characterizations of classes
of dependencies have been established [45].

♣ It is worth mentioning an interesting open problem in the theory of database constraints.
It is easy to see that every full tgd is logically equivalent to a finite conjunction of domain-
independent universal Horn sentences; moreover, the converse holds as well. A well known
result in classical model theory asserts that a first-order sentence is preserved under direct
products and substructures on all (finite and infinite) structures if and only if it is equivalent
to a finite conjunction of universal Horn sentences (see [18]). It is not known whether this
result holds true in the finite. If it does, then it would yield a model-theoretic characterization
of full tgds in the finite.

In recent years, database constraints have found new applications in the context of
data exchange and data integration, as they provide a suitable language for specifying
schema mappings. We discuss this next.

3.2 Schema Mappings

If you ask two different people to design a database schema for a particular
application, they will most likely come up with different schemas. The differences
may be innocuous, e.g., merely involving the name of a relation or of an attribute,
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or they may be substantial, e.g., one relation in one schema may contain the same
information as two relations together in the other. As a result of such differences,
combining related data from different sources can be a difficult task, a task that is
known as the data inter-operability problem [12, 29]. The research community has
investigated several different facets of the data inter-operability problem, including
data exchange and data integration, which we will discuss in more detail in what
follows. What all data inter-operability tasks have in common is that they require
an understanding of the relationships between different database schemas. Schema
mappings have emerged as an important tool for achieving this [46, 47].

A schema mapping is a high-level, declarative specification of the relationships
between two database schemas. Formally, a schema mapping is a triple M =
(S,T,Σ), where S and T are disjoint database schemas, called the source schema
and the target schema, andΣ is a finite collection of constraints over S∪T, typically
defined in some suitable logical language. On the face of this definition, a schema
mapping is a syntactic object. We can, however, assign semantics to a schema map-
ping M = (S,T,Σ) as follows. Let I be a source instance, i.e., an instance over
the schema S, and let J be a target instance, i.e., an instance over the schema T.
We say that J is a solution for I with respect to the schema mapping M if the pair
(I, J) (viewed as an instance over the schema S ∪ T) satisfies the constraints in Σ .
Then, from a semantic point of view, the schema mapping M can be identified with
the set Sem(M) of all pairs (I, J) such that I is a source instance, J is a target instance,
and J is a solution for I with respect to M. In symbols,

Sem(M) = {(I, J) : (I, J) |= Σ}.

An example of a schema mapping is given in Fig. 3.1. The pair (I, J1) consisting
of the source relation I and the target relation J1 satisfies both constraints; the same
holds true for the pairs (I, J2) and (I, J3). In contrast, the pair (I, J4) fails to satisfy
the first constraint because the Sales relation does not contain the required quadruple
(05-01-2009, UCSC, TFT-933SN-Wide, 100). Therefore, J1, J2, and J3 are solutions
for I , whereas J4 is not.

What is a “good” language for specifying schema mappings? At first, one may
think that first-order logic is a natural candidate. However, several important algorith-
mic problems about data inter-operability are undecidable, when the full expressive
power of first-order logic is used to specify schema mappings. In particular, it is not
hard to show that there is a schema mapping M defined by a finite set of first-order
sentences for which the existence-of-solutions problem is undecidable: given a source
instance I , is there a solution J for I with respect to M?

To motivate the choice of a “good” schema-mapping specification language, let
us proceed in a bottom-up way by considering some basic constraints that every such
language ought to be able to express.

(i) Copy (Nicknaming): ∀xyz(P(x, y, z)→ R(x, y, z))
(ii) Projection: ∀xyz(P(x, y, z)→ R(x, y))

(iii) Column Addition: ∀xy(P(x, y)→ ∃zR(x, y, z))
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Source schema S:

DirectCustomer(cust-id,name,address)
DirectOrder(cust-id, date, prod, quant)
Retail(store-id, date, prod, quant)

Target schema T:

Sales(date, cust, prod, quant)

Source instance I:

DirectCustomer
cust-id name address
c1 UCSC 1156 High St, Santa Cruz

DirectOrder
cust-id date prod quant
c1 05-01-09 Quadcore-9950-PC 100
c1 05-01-09 TFT-933SN-Wide 100

Retail
store-id date prod quant
s1 05-03-09 Quadcore-9950-PC 1
s1 05-03-09 Quadcore-9800-PC 1

A target instance J1

Sales
date cust prod quant
05-01-09 UCSC Quadcore-9950-PC 100
05-01-09 UCSC TFT-933SN-Wide 100
05-03-09 N1 Quadcore-9950-PC 1
05-03-09 N2 Quadcore-9800-PC 1

A second target instance J2

Sales
date cust prod quant
05-01-09 UCSC Quadcore-9950-PC 100
05-01-09 UCSC TFT-933SN-Wide 100
05-03-09 N1 Quadcore-9950-PC 1
05-03-09 UCSC Quadcore-9800-PC 1

A third target instance J3

Sales
date cust prod quant
05-01-09 UCSC Quadcore-9950-PC 100
05-01-09 UCSC TFT-933SN-Wide 100
05-03-09 N1 Quadcore-9950-PC 1
05-03-09 N1 Quadcore-9800-PC 1

A fourth target instance J4

Sales
date cust prod quant
05-01-09 UCSC Quadcore-9950-PC 100
05-03-09 N1 Quadcore-9950-PC 1
05-03-09 N2 Quadcore-9800-PC 1

Schema mapping

∀xyzuvw (DirectCustomer(x,y,z) ∧ DirectOrder(x,u,v,w) → Sales(u, y, v, w))

∀xyzvw (Retail(x, y, v, w) → ∃N Sales(y, N, v, w))

Fig. 3.1 An example of a schema mapping

(iv) Join: ∀xyz(E(x, y) ∧ F(y, z)→ T(x, y, z))
(v) Decomposition: ∀xyz(P(x, y, z)→ R(x, y) ∧ T(y, z))

(vi) Combination of Join and Column Addition:
∀xyz(E(x, z) ∧ F(z, y)→ ∃w(R(x, y) ∧ T(x, y, z,w))).
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Observe that the above constraints have something striking in common, namely,
each of them is a tuple-generating dependency, whose antecedent consists of source
relations, and whose consequent consists of target relations. Recall that a tuple-
generating dependency (tgd) is a first-order sentence of the form

∀x(φ(x)→ ∃yψ(x, y)).

A source-to-target tuple-generating-dependency (s-t tgd), also known as a GLAV
(Global-and-Local-As-Views) constraint, is tgd whose antecedent refers only to a
source schema and whose consequent refers only to a target schema. Thus, the con-
straints in the preceding examples (i)–(vi) are GLAV constraints, and the same holds
true for the two constraints that specify the schema mapping in Fig. 3.1.

As it turns out, schema mappings defined by GLAV constraints strike a good
balance between expressive power and computational complexity. Indeed, they are
powerful enough to specify interesting relationships between schemas, while at the
same time they have tame algorithmic behavior, as we will soon see. For this reason,
the language of GLAV constraints is the most extensively studied schema-mapping
language to date.

Two important special cases of GLAV constraints are GAV (“Global-As-View”)
constraints and LAV (“Local-As-View”) constraints. A GAV constraint is a GLAV
constraint in which the consequent is a single atomic formula without existential
quantifiers. The constraints in the preceding examples (i), (ii), (iv), as well as the
first constraint in Fig. 3.1 are GAV constraints. Furthermore, the constraint in example
(v) is logically equivalent to a conjunction of two GAV constraints. Dually, a LAV
constraint is a GLAV constraint in which the antecedent is a single atomic formula.
The constraints in the preceding examples (i), (ii), (iii), (v), as well as the second
constraint in Fig. 3.1 are LAV constraints.

Besides GAV, LAV, and GLAV constraints, other classes of constraints have been
used in the context of schema mapping specification. In particular, second-order
tgds, which involve existential second-order quantification, turn out to be important
in the context of schema mapping composition, as we shall see in Sect. 3.6.

This use of constraints in the specification of schema mappings can be described as
dynamic as opposed to the more static traditional use of constraints. This is because
constraints are now being used to describe relationships that hold across instances, as
opposed to inside a single instance. Furthermore, there is another sense in which this
use of constraints is dynamic: GLAV constraints can be interpreted not only declar-
atively, as specifying intended relationships between instances of the two schemas,
but also procedurally, as providing a recipe for constructing a target instance on the
basis of a source instance. In fact, this explains the suggestive names we gave to the
constraints in the preceding examples (i)–(vi). We will discuss this in more detail in
the next section.

In Sects. 3.3 and 3.4, we will discuss in depth two important data inter-operability
tasks, namely, data exchange and data integration that are depicted in Fig. 3.2. Data
exchange is the problem, given a source instance, of materializing a suitable target
instance. Data integration is the problem of answering target queries on the basis of
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Target Schema TSource Schema S

Target instance 
to be materialized

Global schema TSource Schema S

Query Q

integrationDataexchangeData

Fig. 3.2 Diagrammatic depiction of the data exchange and data integration tasks

a source instance. Schema mappings play a crucial role in formalizing and studying
both these data inter-operability tasks.

3.3 Data Exchange: Moving Data from Source to Target

Data exchange, intuitively speaking is the problem, transforming data structured
according to one schema into data structured according to another schema. Although
it has a long history, the problem was first rigorously formalized and studied in [21],
where the basic concepts and results were established that we discuss below.

Formally, data exchange via a schema mapping M = (S,T,Σ) is the problem,
given a source instance I , of constructing a target instance J that is a solution for
I with respect to M [21]. In general, a source instance may have many solutions.
Indeed, suppose that Σ is a finite set of GLAV constraints. An inspection of the
syntax of GLAV constraints reveals that when more facts are added to a solution,
the result is still a solution (see also Structural Property 2 below). Consequently,
every source instance has infinitely many solutions. This raises the question: given
a source instance I , which is a “suitable” solution to materialize when solving the
data exchange problem? Universal solutions were introduced in order to capture
the preferred solutions in data exchange. The idea behind universal solutions is
simple: they contain no more and no less information than is necessary to satisfy the
constraints of the schema mapping. This is formally defined using the notion of a
homomorphism, that we encountered earlier.

3.3.1 Universal Solutions

Before we give the formal definition of universal solutions, we illustrate the idea with
an example. Consider the schema mapping given in Fig. 3.1, and let I be a source
instance consisting of the single fact

Retail(s1, 05-03-09,Quadcore-9950-PC, 1)
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The target instance J consisting of the single fact

Sales(05-03-09, xxx,Quadcore-9950-PC, 1)

is a solution for I . Intuitively, in the target instance J , the values ‘05-03-09’ and
‘xxx’ play a different role. The former has been copied from I , in order to satisfy
the constraints of the schema mapping. The latter is used to witness an existentially
quantified requirement imposed by the schema mapping, and the exact choice of
value is arbitrary. In a sense, ‘xxx’ plays the role of a placeholder for an unknown
value; such values are called null values. Another example is the target instance J1
given in Fig. 3.1, where N1 and N2 are null values, while all other values are taken
from adom(I). The definition of universal solution takes this distinction into account.

In Fagin et al. [21], it was assumed that the domain D from which values are drawn
consists of two types of values, constant values and nulls values. Here, to simplify
things, we will identify constant values with those values that occurred already in the
source instance, and null values with values that are fresh, i.e., that did not occur in the
source instance (note that this distinction is then relative to a given source instance).
A universal solution for a source instance I with respect to a schema mapping M is
a solution J for I with respect to M, such that, for every solution J ′ of I with respect
to M, there is a homomorphism h : J → J ′ that is constant on adom(I). Note that, in
the above example, the values ‘05-03-09’, ‘Quadcore-9950-PC’, and ‘1’ belong to
adom(I), but ‘xxx’ does not. In this case, J is in fact a universal solution for I with
respect to M. Indeed, it is clearly a solution and it can be homomorphically mapped
into any other solution by mapping ‘xxx’ to an appropriate value, while leaving all
other values unchanged.

Recall that, intuitively, the existence of a homomorphism h : I → J indicates that
I is “more general” than J or, equivalently, that J “contains more information” than
I . Thus, the above definition of universal solutions essentially says that universal
solutions are the most general solutions or, equivalently, that they contain a minimal
amount of information. We illustrate this intuition with one more example.

Let I, J1, J2, J3, J4 be the source and target instance given in Fig. 3.1. Then J1 is a
universal solution for I with respect to the depicted schema mapping. While J2 and J3
are solutions as well, they are not universal solutions. Intuitively, this is because they
contains the additional, unjustified information that the customer of one of the retail
transaction was UCSC, or that both retail transactions involved the same customer.
Finally, J4 is not even a solution for I .

♣ Universal solutions are not unique up to isomorphism; they are, however, unique up to
homomorphism equivalence. For example, consider the source instance I ′ consisting of the
fact Retail(s1, 05-03-09,Quadcore-9950-PC, 1). Let K1 be the target instance

Sales(05-03-09, xxx,Quadcore-9950-PC, 1)

Sales(05-03-09, yyy,Quadcore-9950-PC, 1)

and let K2 be the target instance consisting of just the first of these two facts. Both K1 and K2
are universal solutions for I ′; moreover, K1 and K2 are homomorphically equivalent, which
means that there are homomorphisms from K1 to K2, and from K2 to K1.
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In Fagin et al. [22], it was shown that if M is a schema mapping defined by a finite
set of GLAV constraints, then every source instance has a unique-up-to-isomomorphism
minimal universal solution, which is known as the core universal solution. This follows
from the fact every finite instance I has a core, that is, a unique-up-to-isomorphism minimal
homomorphically equivalent instance [34]. In fact, the core of I is a subinstance of I .

The concept of a core of a finite structure can be seen as playing an analogous role to the
concept of bisimulation contraction of a Kripke structure in modal logic (see [10]).

3.3.2 Constructing Universal Solutions Using the Chase

As we already mentioned earlier, there are two ways of thinking about GLAV con-
straints. First, GLAV constraints are declarative specifications of the relationships
between source and target relations. Second, they can also be interpreted procedu-
rally, as a recipe for computing a solution, or, in other words, as a call to action. For
example, the GLAV constraint

∀xyzvw(Retail(x, y, v,w)→ ∃N Sales(y,N, v,w))

can be read procedurally as follows: “for each triple (x, y, v,w) in the Retail relation,
choose a fresh value N and insert (y,N, v,w) in the Sales relation (if such a tuple
was not already present)”. This idea naturally leads to what is known as the chase
procedure. In essence, the chase procedure consists of repeatedly adding facts as
dictated by the constraints, until all constraints are satisfied. Several different variants
of the chase procedure have been introduced and studied over the year. Originally,
the chase procedure was used in the study of the implication problem for arbitrary
tuple-generating and equality-generating dependencies [6, 44], in which case it is a
recursive procedure that is not guaranteed to terminate. However, in the case of GLAV
constraints and due to the separation of source and target relations, there is no genuine
recursion. As a matter of fact, it turns out that, for every fixed schema mapping defined
by a finite set of GLAV constraints, whenever given a source instance I , the chase
terminates in polynomial time and yields a universal solution for I with respect to M
(the degree of the polynomial, however, depends on the schema mapping).

Let us say that a schema mapping admits universal solutions if every source
instance has a universal solution. The preceding discussion shows that GLAV schema
mappings possess this structural property (and moreover, universal solutions can be
computed in polynomial time):

Structural Property 1 Every schema mapping defined by a finite set of GLAV con-
straints admits universal solutions.

♣ The original use of the chase procedure as a technique for testing whether a given set
of constraints implies another constraint bears a close resemblance to the proof method of
semantic tableaux developed by Beth [13]. There, it is also the case that formulas are inter-
preted procedurally, as a call to action (e.g., when a tableau branch contains a conjunction,
we add each conjunct; when a tableau branch contains an existentially quantified formula,
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we add a substitution instance with a fresh value witnessing the existential claim, and so on).
Just as for semantic tableaux, sophisticated conditions have been identified that guarantee
termination of the chase procedure for restricted classes of tuple-generating dependencies.

3.3.3 Closure Under Target Homomorphisms

A universal solution (with respect to a GLAV schema mapping) not only is a most
general solution, but can also be viewed as a representation of the entire space
of all solutions. This follows from the second structural property of GLAV schema
mappings, which we will discuss next, namely, closure under target homomorphisms.

A schema mapping is closed under target homomorphisms if for every source
instance I , every pair of target instances J , J ′, and every homomorphism h : J → J ′
that is constant on adom(I), we have that if J is a solution for I , then also J ′ is a solution
for I . In other words, closure under target homomorphisms means that when more
information is added to a solution (by extending the solution with additional facts
and/or by replacing null values by other values), then the result is still a solution.
Note, however, that if more information is added to a universal solution, then the
resulting instance need not be a universal solution.

Structural Property 2 Every schema mapping defined by a finite set of GLAV con-
straints is closed under target homomorphisms.

The above structural property, in combination with the property of admitting
universal solutions, has three applications.

First, it implies that, for every source instance I and every universal solution J for
I , the set of all solutions of I is precisely the set of all target instances J ′ for which
there is a homomorphism h : J → J ′. In other words, the infinite set of all solutions
for I is “captured” by a single solution.

Second, it implies that each source instance has a core universal solution (we omit
the details).

Finally, it enables a natural approach to data exchange with multiple sources.
Thus far, we have focused on the case of data exchange with a single source. In gen-
eral, one may wish to combine data from different sources, and construct from it a
single target instance over a unified schema. In this case, for each source schema,
a schema mapping is needed that spells out the relationships between that source
schema and the target schema. Once these schema mappings are available, we can
apply the same techniques as before. To make this more precise, let us say that a
target instance J is a solution for a collection of source instances I1, . . . , In over
disjoint schemas S1, . . . ,Sn, if J is a solution for each source instance Ii with respect
to the corresponding schema mapping between Si and T. Let us say that J is a uni-
versal solution for the collection of source instances I1, . . . , In if it is a solution
and, for every solution J ′, there is a homomorphism h : J → J ′ that is constant on
adom(I1) ∪ · · · ∪ adom(In). If all the schema mappings involved are closed under
target homomorphisms, then a universal solution for I1, . . . , In can be constructed as
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follows: we construct a universal solution Ji for each source instance Ii (making sure
to always use a disjoint set of null values, not occurring in adom(Ik) for any k ≤ n).
Next, we take the union J = ⋃

i Ji of all the resulting target instances. Then J is
a solution for each source instance Ii, since it is a homomorphic extension of each
target instance Ji. Furthermore, it is not difficult to show that J is in fact a universal
solution for I1, . . . , In.

3.4 Data Integration: Answering Target Queries
Using Source Data

In the previous section, we discussed data exchange, the problem of transforming
source data into target data. In this section, we discuss data integration, which is a
different, but closely related, facet of data inter-operability. Here, the problem is to
answer target queries using source data. In other words, given a schema mapping and a
source instance, the problem is to compute answers to target queries (see [41] for a sur-
vey). Since a source instance can have many different solutions, we first have to make
precise the semantics of data integration, that is, what the intended answers of a target
query are. A natural way to define this semantics is via the notion of certain answers.

3.4.1 Certain Answers

Given source instance I , we can think of each solution of I as being, intuitively, a
different possible world. The certain answers of a target query, are the tuples that
are necessarily an answer to the query, no matter what possible world we choose.
More precisely, given a schema mapping M, a source instance I , and a query q over
the target schema, the set of certain answers of q in I with respect to M, denoted by
certq,M(I), is the intersection

⋂{q(J) | J is a solution of I}.

Example 3.1 Returning to the schema mapping and the source instance I from
Fig. 3.1, consider the following conjunctive query q over the target schema

q(x, y) = ∃uvwz Sales(u, v, x,w) ∧ Sales(u, v, y, z)

This query asks for all pairs of products (x, y), such that some customer bought x and
y (in some quantities) on the same date. It is not hard to see that, for every solution
J for I , the pair (Quadcore-9950-PC,TFT-933SN-Wide) belongs to q(J). In other
words, this tuple belongs to the certain answers of q in I with respect to the schema
mapping.

♣ The concept of certain answers, which has a strong modal-logic flavor, originated in
the study of incomplete databases [37]. An incomplete database can be thought of as a
specification of a set of possible worlds, where each possible world is a complete database.
Certain answers then naturally arise, and indeed they constitute the standard semantics for
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query answering over incomplete databases. Note that possible answers have also been
considered, but they play a less prominent role than the certain answers do, as the certain
answers provide the guarantee that they are returned by the query on every possible world.

Due to the inherent second-order quantification over solutions in this definition,
the certain answers to a first-order query is in general not computable. Indeed, the
satisfiability problem for first-order sentences on finite structures, which is known
to be undecidable, coincides with the problem of testing whether (the negation of)
a first-order sentence is true in all solutions of the empty instance with respect to
the empty schema mapping. Fortunately, for conjunctive queries, and, more gener-
ally, for unions of conjunctive queries, the problem of computing certain answers is
decidable. As shown in Fagin et al. [21], one way to compute certain answers is by
first constructing universal solutions.

Theorem 3.3 Let M be an arbitrary schema mapping, I a source instance, J a
universal solution for I, and q a k-ary conjunctive query. Then

certq,M(I) = q(J) ∩ adom(I)k .

In particular, if M is a schema mapping defined by a finite set of GLAV constraints and
q is a conjunctive query, then, given an instance I, the certain answers certq,M(I)
can be computed in polynomial time.

Proof Recall that a universal solution of a source instance I is a solution J for I
such that for every solution J ′ for I , there is a homomorphism h : J → J ′ that
is constant on adom(I). Also, recall that conjunctive queries are preserved under
homomorphisms. Putting these two facts together, it is not hard to show that if J is a
universal solution for I , then a tuple of values from adom(I) is a certain answer to a
conjunctive query q in I if and only if the tuple is an answer to q in J . Furthermore,
using an isomorphism invariance argument, it can be shown that if a tuple of values
is a certain answer to a query q, then the tuple must consist entirely of values from
adom(I).

It follows that the certain answers of a conjunctive query can be computed simply
by evaluating the query on an arbitrary universal solution (and disregarding the
answers that contain values outside adom(I)). Let M be a fixed schema mapping
defined by a finite set of GLAV constraints. Since universal solutions with respect to
M can be constructed in polynomial time and since every fixed conjunctive query can
be evaluated over polynomial time, it follows that for every fixed conjunctive query q,
the certain answers certq,M(I) can be computed in time polynomial in I (and, in fact,
a careful analysis shows that certq,M(I) is even computable in logarithmic space). ��

Thus, in Example 3.1, the certain answers of the query q(x, y) can be obtained
simply by evaluating the query on the universal solution J1 and keeping only those
tuples all of whose values are from the active domain of I .

Theorem 3.3 not only shows how to compute certain answers using universal
solutions, but also provides additional justification for the definition of universal
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solutions. Indeed, using the Chandra-Merlin Theorem, a target instance J is a uni-
versal solution of a source instance I if and only if Proposition 3 holds [21].

The pre-processing step of computing a universal solution in order to compute
certain answers can be avoided, however, by using another method that is based on
the idea of query rewriting.

3.4.2 Computing Certain Answers Via Query Rewriting

We now discuss how to compute certain answers by rewriting the target query q to
a source query q′ that, on input I , yields precisely the certain answers of q in I . We
say that a schema mapping M allows for CQ rewriting if for every conjunctive query
q over the target schema, there is a union of conjunctive queries q′ over the source
schema such that, for all source instance I , we have that q′(I) = certq,M(I).

Structural Property 3 Every schema mapping defined by a finite set of GLAV
constraints allows for CQ rewriting.

Example 3.2 Continuing from Example 3.1, it can be shown that the certain answers
of q on a source instance I are precisely the answers in q′(I), where q′ is the following
union of conjunctive queries over the source schema:

q′(x,y) = (∃cid1, cid2, name,addr1, addr2, date,n,m(
DirectOrder(cid1, date,x,n) ∧ DirectOrder(cid2, date,y,m)∧

DirectCustomer(cid1, name,addr1)∧
DirectCustomer(cid2, name,addr2)

))

∨(
x = y ∧ ∃sid,date,n Retail(sid,date,x,n)

)

Note that the Retail relation does not provide information about the name of the
buyer, and therefore, can only contribute identity pairs to the certain answers of q.

Structural Property 3 shows again, now via a different route, that, for fixed GLAV
schema mappings M and conjunctive queries q, certq,M(I) can be computed in
polynomial time, and, in fact, in logarithmic space. Moreover, it shows that the
certain answers of a conjunctive query can be obtained by evaluating a union of
conjunctive queries using any off-the-shelf database management system.

Different techniques have been developed for computing the source query q′ from
the target query q. In the special case of GAV schema mappings, there is a very simple
method which is known as unfolding. Essentially, this method consists of replacing
each occurrence of a target relation in q by a union of many conjunctive queries, one
for each left-hand side of a GAV constraints in which the relation R occurs on the
right. We omit the details but illustrate the method by means of an example.
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Example 3.3 Consider the schema mapping M defined by the GAV constraint

∀xyz(R(x, y, z)→ T(x, y))

as well as the GAV constraint ∀x(S(x, x) → T(x, x)), which, for convenience, we
will write here using a non-standard syntax as

∀xy(S(x, y) ∧ x = y→ T(x, y))

so as to make sure that there is no repetition of variables on in the right-hand
side. Consider the unary conjunctive query q(u) = ∃v T(u, v). Then unfolding
q with respect to M will cause the subexpression T(u, v) in q to be replaced
by the disjunction of ∃w R(u, v,w) (derived from the first GAV constraint) and
S(u, v) ∧ u = v (derived from the second GAV constraint). This yields q′(u) =
∃v((∃w R(u, v,w)) ∨ (S(u, v) ∧ u = v)), which is equivalent to the union of con-
junctive queries ∃vw Ruvw ∨ ∃v(S(u, v) ∧ u = v).

In the LAV case, query rewriting is less straightforward. Intuitively, this is because
it no longer suffices to treat each atomic formula in the query q independently. A single
application of a LAV constraint may account for several atomic formulas in the query,
and therefore it is necessary to consider all possible ways in which (i) the atomic
formulas in q can be partitioned into groups, and (ii) each group is mapped, in an
appropriate way, to the right-hand side of a single LAV constraint. In general, this
results in a union of exponentially many conjunctive queries. We omit the details, but
refer to [48], for the MiniCon algorithm, which is most well known query rewriting
algorithm for LAV schema mappings.

Finally, in the case of GLAV schema mappings, a combination of the above two
techniques can be used. In fact, every GLAV schema mapping can be “decomposed”
into a LAV schema mapping and a GAV schema mapping, and query rewriting can
be performed by successively applying, for instance, the MiniCon algorithm and the
unfolding technique.

To summarize, we have discussed two approaches to query answering: via
universal solutions and via query rewriting. Each has its own advantages. In scenarios
where the source data is not likely to change anymore, computing a universal
solution may be a sensible pre-processing step, enabling us to quickly evaluate
target queries afterwards. In scenarios where the source data keeps changing, it
may be better to use the query-rewriting approach instead.

♣ Query rewritings are intimately related to the concept of weakest preconditions in Hoare
logic [36]. Recall that, in Hoare logic, the weakest precondition of a postcondition P with
respect to a (possibly non-deterministic) program π is a necessary and sufficient condition
that needs to hold before execution of the program π , in order to guarantee that P holds after
the execution. For example, ifπ is the assignment statement x := 4 and P is the postcondition
x+y > 10, then the weakest precondition of P with respect to π is y > 6. In dynamic logics,
the notation [π ]φ is used to denote the weakest precondition of the postcondition φ with
respect to a program π . We can view a schema mapping as a non-deterministic program
that takes us from a given source instance I to any target instance that is a solution for I .
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If we view a target query as a postcondition, then Structural Property 3 can be viewed as
stating that, for every GLAV schema mapping M and target conjunctive query q, the weakest
precondition of q with respect to M is expressible by a union of conjunctive queries. As such,
Structural Property 3 may be compared to the use of reduction axioms in dynamic epistemic
logic [39].

3.5 Structural Characterizations of Schema Mapping
Languages

In the previous two sections, we saw that schema mappings defined by a finite
set of GLAV constraints satisfy a number of desirable structural properties that
have applications to data exchange and data integration. In this section, we turn
the tables around: we will present a number of results of abstract model theoretic fla-
vor that characterize schema mapping languages in terms of the structural properties
of schema mappings definable in these languages. These results are from [15, 16].

Before we can state these results, we need to give an abstract definition of a schema
mapping, which is based on the semantics Sem(M) of a (syntactically defined)
schema mapping M = (S,T,Σ) introduced in Sect. 3.2.

Definition 3.1 An (abstract) schema mapping is a triple M = (S,T,W), where
S and T are disjoint schemas, and W is a binary relation between S-instances and
T-instances, satisfying the following isomorphism-invariance condition: for every
two pairs of instances (I, J) and (I ′, J ′), if I ∪ J and I ′ ∪ J ′ are isomorphic (as S∪T-
instances) and (I, J) ∈W , then also (I ′, J ′) ∈W .

We say that J is a solution for I with respect to M if the pair (I, J) belongs to W .

Clearly, every schema mapping defined by finitely many GLAV constraints is a
schema mapping in the above abstract sense. The results from [15] that we will present
below characterize when an schema mapping is definable by finitely many GLAV
constraints, or finitely many GAV constraints, or finitely many LAV constraints.
These and several other variations of these results were reported in [15, 16]. Here, we
will limit ourselves to presenting the ones that are easier to prove and, in each case,
we will include a hint about the proofs. Also, in what follows, we will use the term
“GLAV schema mapping” for a schema mapping defined by a finite set of GLAV
constraints; the terms “GAV schema mapping” and “LAV schema mapping” have an
analogous meaning.

3.5.1 LAV Schema Mappings

We begin with a characterization of the class of LAV schema mappings. LAV schema
mappings, being a special case of GLAV schema mappings, possess the three struc-
tural properties that we discussed earlier: admitting universal solutions, closure under



3 Schema Mappings: A Case of Logical Dynamics in Database Theory 89

target homomorphisms, and allowing for CQ rewriting. In addition, LAV schema
mappings possess a structural properties that GLAV schema mappings, in general,
lack, namely, closure under union.

A schema mapping M is said to be closed under union if, for all source instances
I, I ′ and all target instances J, J ′, if J is a solution for I with respect to M and J ′ is a
solution for I ′ with respect to M, then J ∪ J ′ is a solution for I ∪ I ′ with respect to
M. Closure under union can be viewed as a form of modularity, since it allows for
a divide and conquer approach that makes it possible to construct a solution for a
large source instances out of solutions for smaller subinstances. It is not hard to show
that every LAV schema mapping is closed under union. Furthermore, the following
characterization holds.

Theorem 3.4 A schema mapping is definable by a finite set of LAV constraints if and
only if it admits universal solutions, is closed under target homomorphisms, allows
for CQ rewritings, and is closed under union.

The proof of this result makes extensive use of the Chandra-Merlin Theorem. In
particular, we consider all possible facts over the source schema, of which there are
only finitely many up to isomorphism, and for such fact F, we construct a LAV con-
straint, whose left-hand side is the fact F, and whose right-hand side is the canonical
query of a universal solution of the source instance consisting of the single fact F.
Using the various properties of the schema mapping (in particular, closure under
union, which tells us that the behavior of a schema mapping on an arbitrary source
instance is determined by its behavior on source instances consisting of a single fact),
it can be shown that the resulting set of LAV constraints defines the schema mapping
at hand.

3.5.2 GAV Schema Mappings

Next, let us consider the case of GAV schema mappings. GAV schema mappings,
being a special case of GLAV schema mappings, also possess the three structural
properties of admitting universal solutions, closure under target homomorphisms, and
allowing for CQ rewriting. In addition, GAV schema mappings possess a structural
properties that GLAV schema mappings, in general, lack, namely, namely closure
under intersection. A schema mapping M is said to be closed under intersection if for
every source instance I and every target instances J, J ′, if both J and J ′ are solutions
of I with respect to M, then J∩J ′ is a solution of I with respect to M. It can be shown
that every GAV schema mapping is closed under intersections (this follows from
closure under target homomorphism, in combination with the existence of “null-
free” universal solutions, i.e., universal solutions that only contain values from the
active domain of the source instance). Furthermore, the following characterization
holds.
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Theorem 3.5 A schema mapping is definable by a finite set of GAV constraints if
and only if it admits universal solutions, is closed under target homomorphisms,
allows for CQ rewriting, and is closed under intersection.

The proof of this result makes extensive use of allowing for CQ rewriting.
In particular, we consider all possible queries over the target instance consisting
of a single atomic formula (up to isomorphism, there are only finitely many). For
each such query q(x) = R(x), there is a union of q1(x) ∪ · · · ∪ qn(x) of conjunctive
queries over the source schema that computes the certain answers of q. For each
of these conjunctive queries qi(x) = ∃yφi(x, y), we construct a GAV constraint of
the form ∀xy(φi(x, y)→ R(x)), for each i ≤ n. Using the various properties of the
schema mapping, it can be shown that the (finite) set of all GAV constraints obtained
in this way defines the schema mapping at hand.

3.5.3 GLAV Schema Mappings

At this point, it may seem natural to expect that GLAV schema mappings are
characterized by the properties of admitting universal solutions, closure under target
homomorphisms, and allowing for CQ rewriting. Unfortunately, this turns out not to
be quite the case.

Example 3.4 The schema mapping defined by the first-order sentence ∃y∀x
(Px→ Rxy) admits universal solutions, is closed under target homomorphisms, and
allows for CQ rewriting, but is not definable by any finite set of GLAV constraints.

It should be pointed out that the schema mapping in the preceding Example 3.4 is
definable by the infinite set of all GLAV constraints of the form ∀x1 . . . xn(

∧
i P(xi)

→ ∃y ∧
i R(x, y)). This is not an accident, because it can be shown that every schema

mapping admitting universal solutions, closure under target homomorphisms and
allowing for CQ rewriting is definable by a possibly infinite set of GLAV constraints.
However, this is not a characterization, because not every schema mapping defined
by an infinite set of GLAV constraints admits (finite) universal solutions.

To obtain a structural characterization of GLAV schema mappings, we introduce
one further structural property, which can be viewed as a weakening of closure
under union. A schema mapping M is said to be n-modular, where n is natural
number, if whenever a target instance J is not a solution for a source instance I with
respect to M, there is a sub-instance I ′ ⊆ I such that |adom(I ′)| ≤ n and J is not
a solution for I ′ with respect to M. Intuitively, this means that, if J is a solution
for every small sub-instance of I , then J is a solution of I . It is not difficult to see
that every GLAV schema mapping is n-modular for some n. Specifically, n can be
taken to be the maximum number of existentially quantified variables in the GLAV
constraints that define the schema mapping. The property of n-modularity can be
naturally viewed as a generalization of closure under union, provided that n is at
least as large as the maximum arity of a relation in the source schema.
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Theorem 3.6 A schema mapping is definable by a finite set of GLAV constraints
if and only if it admits universal solutions, is closed under target homomorphisms,
allows for CQ rewritings, and is n-modular for some n > 0.

The proof is a generalization of the proof of Theorem 3.4, where, instead of
considering source instance containing a single fact, we consider source instances
whose active domain has size at most n.

From a model theoretic perspective, the structural property of allowing for CQ
rewriting looks rather “syntactic”. However, it is closely related to a semantic
property of reflecting source homomorphisms, which roughly states that every
homomorphism between two source instances extends to a homomorphism between
corresponding universal solutions. We refer to [15] for details. In Theorem 3.4 and in
Theorem 3.6, the condition of allowing for CQ rewriting can be replaced by reflect-
ing source homomorphisms. For Theorem 3.5 also, the condition of allowing for CQ
rewriting can be replaced by reflecting source homomorphisms, provided that the
schema mapping in question is first-order definable; we note that the proof of this
makes essential use of results proved by Rossman [51] to obtain his homomorphism
preservation theorem.

♣Example 3.4 suggests that we may be able to extend the language of GLAV constraints with
a form of quantifier alternation, while, at the same time, preserving the structural properties
of admitting universal solutions, closure under target homomorphisms, and allowing for CQ
rewriting. Indeed, it is possible to define a language of nested GLAV constraints that possess
all these properties.

Nested GLAV constraints are essentially GLAV constraints in which the consequent may
contain conjuncts that are themselves again nested GLAV constraints (with free variables).
Formally, we use two disjoint sets of variables, universal variables X and existential variables
Y , and then a nested GLAV constraint is defined as a first-order sentence that is generated
by the following grammar (which may generate intermediate formulas with free variables):

χ := α | ∀x1 . . . xn(β1 ∧ · · · ∧ βk → ∃y1 . . . xm χ1 ∧ · · · ∧ χ	) ,
where α is an atomic formula over the target schema, each xi ∈ X , each yi ∈ Y , each βi is an
atomic formula over the source schema containing only variables from X , and each variable
xi occurs in some βj . The first-order formula from Example 3.4 can be equivalently written
in this form as

∀x(Px→ ∃y Rxy ∧ ∀x′(Px′ → Rx′y)) .
Nested GLAV constraints are in fact incorporated in the schema mapping language used

in the data exchange prototype system Clio developed at the IBM Almaden Research Center
[26, 30, 35].

Every schema mapping defined by a finite set of nested GLAV constraints admits universal
solutions, is closed under target homomorphisms, and allows for CQ rewriting. In ten Cate
[15], we had conjectured that these three properties characterize the language of nested tgds.
This conjecture has been recently refuted [4]. It remains an open problem to find a structural
characterization of schema mappings definable by a finite set of nested tgds.
The language of nested GLAV constraints bears a noticeable syntactic similarity to the
language of flow formulas, which was introduced in van Benthem [9], in the study of infor-
mation flow [5], to characterize the first-order formulas that are preserved under Chu-space
transformations. One of the differences is that nested GLAV constraints do not contain dis-
junction. It remains an interesting question whether the apparent similarity between these
languages is indicative of a more fundamental relationship between schema mappings and
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Fig. 3.3 Diagrammatic depiction of the composition of schema mappings

formal frameworks such as that of information flow [5] studied in the literature on philosophy
of information.

3.6 Composing Schema Mappings

As seen in previous sections, schema mappings embody logical dynamics.
In particular, GLAV schema mappings provide a declarative specification for data
exchange that suggests an efficient procedural counterpart (namely, the chase proce-
dure) for performing data exchange. Up to this point, however, our study of schema
mappings has taken place in a static context, in the sense that each result presented
is about some (arbitrary but) fixed schema mapping. In this section, we will examine
schema mappings in a dynamic context in which schema mappings become mathe-
matical objects that can be manipulated, operated on, and transformed.

Schemas and schema mappings can be thought of as metadata, since they
contain information about data (for example, how data are organized and how they are
related). In practice, schemas and, with them, schema mappings do not remain sta-
tionary, but, instead, evolve over time. Furthermore, in real-life applications, schemas
and schemas mappings are large and complex objects. These and other related consid-
erations served as the motivation for Bernstein [11] to introduce a model management
framework for manipulating schemas, schema mappings, and other such metadata.
The main ingredient of Bernstein’s model management framework is a set of opera-
tors on schema mappings, that is, functions that take one or more schema mappings
as arguments and return some other schema mapping as value. Out of these opera-
tors, the composition operator turned out to be the most fundamental and extensively
studied one to date. In this section, we give a brief overview of some of the main
results concerning the composition of schema mappings; most of these results are
drawn from [23].

The composition of two schema mappings is depicted in Fig. 3.3. Suppose we are
given two consecutive schema mappings M1 and M2, that is, two schema mappings
of the form M1 = (S1,S2,Σ1) and M2 = (S2,S3,Σ2). Intuitively, the composition
of M1 and M2 is a schema mapping M3 between the schemas S1 and S3 that is
“equivalent” to the sequential application of M1 and M2. The first task at hand is to
make this intuition precise and give rigorous semantics for the composition operator
on schema mappings.
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We begin by considering the composition of abstract schema mappings. Let M1 =
(S1,S2,W1) and M2 = (S2,S3,W2) be two consecutive abstract schema mappings.
Thus, W1 is a binary relation between S1-instances and S2-instances, while W2 is a
binary relation between S2-instances and S3-instances. Consequently, W1 and W2
can be composed in the standard sense of composition of binary relations. In other
words, it is perfectly meaningful to form the (set-theoretic) composition W1 ◦W2,
which is the set of all pairs (I,K) such that I is an S1-instance, K is an S3-instance,
and there an S2-instance J such that (I, J) ∈ W1 and (J,K) ∈ W2. Moreover, it is
easy to see that the binary relation that W1 ◦W2 is invariant under isomorphisms,
because so are the binary relations W1 and W2.

If M1 = (S1,S2,W1) and M2 = (S2,S3,W2) are two consecutive abstract
schema mappings, then the composition of M1 and M2 is defined to be the schema
mapping M3 = (S1,S3,W1 ◦W2). In what follows, we will write M1 ◦M2 to denote
the composition of M1 and M2. The preceding remarks show that M1 ◦M2 is indeed
an abstract schema mapping with S1 as its source schema and S3 as its target schema.

♣ Bernstein [11] introduced the composition operator on schema mappings, but did not
provide formal semantics for it. The first rigorous semantics for the composition operator
were formulated by Madhavan and Halevy [43] and were based on the notion of the certain
answers of queries. In particular, the resulting notion of composition depended on the class
of queries considered, and was not unique. The semantics of composition we just presented
were introduced in Fagin et al. [23] and became the most widely adopted and used ones.

Recall that a syntactically specified schema mapping M = (S,T,Σ) can be
identified with the abstract schema mapping M = (S,T,Sem(M)), where Sem(M)
is the set of all pairs (I, J) of source and target instances such that (I, J) |= Σ (i.e.,
J is a solution for I with respect to M). Consequently, if M1 = (S1,S2,Σ1) and
M2 = (S2,S3,Σ2) are two consecutive schema mappings specified syntactically,
then the composition of M1 and M2 is the abstract schema mapping M1 ◦ M2 =
(S1,S3,Sem(M1) ◦ Sem(M2)). We also say that a syntactically specified schema
mapping M3 = (S1,S3,Σ3) is the composition of M1 and M2) if Sem(M3) =
Sem(M1) ◦ Sem(M2), which means that the abstract schema mapping associated
with M3 is the composition of M1 and M2. It is easy to see that, as a syntactic object,
the composition of two schema mapping is unique up to logical equivalence, that is
to say, if both M3 = (S1,S3,Σ3) and M4 = (S1,S3,Σ4) are compositions of M1
and M2, then Σ3 and Σ4 are logically equivalent.

The following questions arise naturally now concerning the interplay between
abstract schema mappings and syntactically specified ones. Suppose that M1 =
(S1,S2,Σ1) and M2 = (S2,S3,Σ2) are two consecutive schema mappings speci-
fied syntactically. What is a suitable language for expressing their composition? In
particular, is the composition of two arbitrary GLAV schema mappings again defin-
able by a finite set of GLAV constraints? Equivalently, are GLAV schema mappings
closed under composition? Note that if the composition M1 ◦ M2 of two GLAV
schema mappings M1 = (S1,S2,Σ1) and M2 = (S2,S3,Σ2) is a GLAV schema
mapping, then we can exchange data directly from S1 to S3 using the chase, and
without having to first exchange data from S1 to S2, and then from S2 to S3.
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♣ The study of composition permeates practically every area of mathematics. This has been
eloquently expressed by Lawvere and Schanuel [40], who wrote: “The notion of composition
of maps leads to the most natural account of fundamental notions of mathematics, from
multiplication, addition, and exponentiation, through the basic notions of logic.”

Closure under composition is a desirable property of classes of functions. For example,
the composition of two continuous functions from the real numbers to the real numbers is
a continuous function. Moreover, the composition of two differentiable functions from the
real numbers to the real numbers is a differentiable function as well. These fundamental
closure properties have played a key role in the development of real analysis. Recall also
that the notion of a category is based on closure under composition.

Let M1 be the schema mapping defined by the two GAV constraints:

∀smc(takes(s,m, c)→ student(s,m))

∀smc(takes(s,m, c)→ enrolls(s, c)),

where takes is a ternary relation symbol with information about students
(identified by a unique student identification number), majors, and courses. Sim-
ilarly, student is a binary relation symbol with information about students and
majors, while enrolls is a binary relation symbol with information about students
and courses. Let M2 be the schema mapping defined by the GLAV constraint

∀smc(student(s,m) ∧ enrolls(s, c)→ ∃grecord(s,m, c, g)),

where record is a 4-ary relation symbol containing information about students,
majors, courses, and grades. It is not too difficult to verify that the composition
M1 ◦M2 is defined by the GLAV constraint:

∀smcm′c′(takes(s,m, c) ∧ takes(s,m′, c′)→ ∃grecord(s,m, c′, g)).

Intuitively, the above GLAV constraint is a correct specification of the composition
of M1 and M2 because a student may have more than one majors (e.g., mathematics
and music) and may take courses under either major. The relation takes need not list
all combinations of courses and majors for each student, while the GLAV constraint
that defines M2 stipulates that all such combinations must appear in the relation
record. This explains the role of the self-join of takes in the antecedent of the
GLAV constraint that defines M1 ◦M2, as well as the occurrence of m and c′ in the
atom in the conclusion of that GLAV constraint.

We have just seen an example of a GAV schema mapping M1 and a GLAV schema
mapping M2 whose composition M1 ◦M2 is a GLAV schema mapping. It turns out
that this is not an isolated example, but an illustration of a general result about the
composition of a GAV schema mapping with a GLAV schema mapping. Moreover,
if both schema mappings are GAV, then their composition is also a GAV schema
mapping.

Theorem 3.7 Let M1 = (S1,S2,Σ1) and M2 = (S2,S3,Σ2) be two consecutive
schema mappings.
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1. If both M1 and M2 are GAV schema mappings, then their composition M1 ◦M2
is also a GAV schema mapping.

2. If M1 is a GAV schema mapping and M2 is a GLAV schema mapping, then then
their composition M1 ◦M2 is a GLAV schema mapping.

An immediate consequence of Theorem 3.7 is that if M1, . . . ,Mn,Mn+1 is a
sequence of consecutive schema mappings such that M1, . . . ,Mn are GAV schema
mappings and Mn+1 is a GLAV schema mapping, then the composition M1 ◦ · · · ◦
Mn ◦Mn+1 is a GLAV schema mapping.

As it turns out, closure under composition does not extend to schema mappings
belonging to some other combination of the classes of GAV, LAV, and GLAV schema
mappings. We begin with an informative example of a LAV schema mapping M1 =
(S1,S2,Σ1) and a GAV schema mapping M1 = (S2,S3,Σ1), whose composition is
not even first-order definable. The construction entails encoding 3-Colorability, a
well known NP-complete problem on graphs, as the composition of a LAV schema
mapping and a GAV schema mapping. Schema S1 consists of a unary relation V
denoting the nodes of a graph and a binary relation E denoting the edge relation of a
graph G = (V ,E). Let M1 be the schema mapping defined by the LAV constraints

∀x(V(x)→ ∃uC(x, u))
∀xy(E(x, y)→ F(x, y)),

and let M2 be the schema mapping defined by the GAV constraint

∀xy(F(x, y) ∧ C(x, u) ∧ C(y, v)→ D(u, v)).

Intuitively, C(x, u) means that the vertex x of the graph is colored with color u, the
relation F is simply used to copy the edge information from the source instance into
the intermediate instance, and the relation D captures when two colors are required
to be distinct. It can be shown that if I is the S1-instance consisting of the nodes and
the edges of a graph G = (V ,E), and if J is the S3-instance consisting of the facts
D(a, b),D(b, a),D(a, c),D(c, a),D(b, c),D(c, b), then the graph G is 3-colorable
if and only if J is a solution for I with respect to the composition M1 ◦ M2 of
M1 and M2. It is well known that no first-order formula defines 3-Colorability

on finite graphs; this can be proved using Ehrenfeucht-Fraïssé games. Actually, a
much stronger inexpressibility result for 3-Colorability is known. Specifically,
Dawar [19] has shown that 3-Colorability is not even expressible in finite-variable
infinitary logic. In particular, 3-Colorability is not expressible in least fixed-point
logic LFP, a powerful extension of first-order logic that embodies recursion and also
subsumes modal μ-calculus.

What is the “right” language for expressing the composition of two GLAV schema
mappings? The preceding discussion shows that GLAV schema mappings are not
closed under composition and that, in fact, we must go well beyond first-order logic
to find such a language. It can be shown that the composition of two GLAV schema
mappings is always expressible by a formula of existential second-order logic. As we
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are about to see, the “right” language for expressing the composition of two GLAV
schema mappings is a certain fragment of existential second-order logic, which we
will introduce by way of two examples.

To begin with, the composition M1◦M2 encoding 3-Colorability can be defined
by the existential second-order sentence

∃f ∀xy(V(x) ∧ V(y) ∧ E(x, y)→ D(f (x), f (y))).

This sentence contains most of the constructs of the fragment of existential
second-order logic needed for expressing the composition of two GLAV schema
mappings: it involves existentially quantified function symbols and its first-order
part resembles a (first-order) tuple-generating dependency, but also allows for terms
as arguments. The next example will point at additional constructs.

Let S1 be a schema containing a unary relation Emp listing employees of a
company, let S2 be a schema containing binary relation Mgr listing the manager of
each employee, and let S3 be a schema containing a similar binary relation Rep listing
employees and managers, as well as a unary relation SelfMgr listing all employees
who are their own manager. Let M1 be the schema mapping defined by the LAV
constraint

∀e(Emp(e)→ ∃m Mgr(e,m)),

and let M2 be the schema mapping defined by the LAV constraints

∀em(Mgr(e,m)→ Rep(e,m))
∀e(Mgr(e, e)→ SelfMgr(e)).

It can be shown that the composition M1 ◦ M2 of M1 and M2 is not definable by
any set of GLAV constraints, not even an infinite one; in particular, this implies that
the composition of two LAV schema mappings need be a GLAV schema mapping.
However, the composition M1◦M2 is defined by the existential second-order sentence

∃f (∀e(Emp(e)→ Rep(e, f (e))) ∧ ∀e(e = f (e)→ SelfMgr(e))).

Intuitively, this is a correct specification of the composition of M1 ◦M2 because if
a source instance contains a fact Emp(e), then M1 ◦M2 must require that the target
instance contains Rep(e,m) for a suitable value m. Moreover, either this must be
the case for some value m distinct from e or the target instance must be required to
contain the fact SelfMgr(e).

The preceding two existential second-order sentences are examples of
second-order tuple-generating dependencies or, in short, SO tgds. The precise defin-
ition of an SO tgd can be found in [23], where this class of formulas was introduced
and studied. The salient features of SO tgds are as follows: they are formulas of exis-
tential second-order logic with existentially quantified function symbols; moreover,
their first-order part resembles a conjunction of (first-order) tgds, but allows also for
terms as arguments and for atoms involving equalities between terms. Note that the
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first-order part of the SO tgd expressing 3-Colorability had no equality between
terms as a conjunct. In general, however, such equalities are indispensable in the
syntax of SO tgds.

Note that every GLAV constraint is logically equivalent to an SO tgd. In fact, it
can be shown that every nested GLAV constraint is logically equivalent to an SO tgd.
Moreover, a finite conjunction of SO tgds is logically equivalent to a single SO tgd.

The next result asserts that SO tgds are the “right” language for expressing the
composition of GLAV schema mappings, and that the theory of data exchange can
be extended to SO tgds.

Theorem 3.8 The following statements are true.

1. If M1 and M2 are two consecutive GLAV schema mappings, then their composition
M1 ◦M2 is defined by an SO tgd.

2. If M is a schema mapping defined by an SO tgd, then there are two consecutive
GLAV schema mappings M1 and M2 such that M = M1 ◦M2.

3. If M1 and M2 are two consecutive schema mappings defined by SO tgds, then
their composition M1 ◦M2 is defined by an SO tgd.

4. The chase procedure can be extended to SO tgds. As a result, every schema
mapping M defined by an SO tgd admits universal solutions. Moreover, given a
source instance I, a universal solution for I with respect to M can be constructed
in polynomial time in the size of I.

5. If M is a schema mapping defined by an SO tgd, then M allows for CQ rewriting.

The first two parts of Theorem 3.8 reveal that SO tgds are precisely the closure
of GLAV schema mappings under composition. The third part tells that SO tgds
are themselves closed under composition, while the fourth part tells that SO tgds
are chaseable, hence they admit universal solutions. Moreover, the chase procedure
for SO tgds is a polynomial-time algorithm for constructing universal solutions.
Consequently, if M is a schema mapping defined by an SO tgd and q is a target
conjunctive query, then the certain answers of q with respect to M can be computed
in polynomial time. This also follows from the last part of Theorem 3.8, which, in
turn, is a consequence of the second part of this theorem and the fact that GLAV
schema mappings allow for CQ-rewriting.

Schema mappings defined by SO tgds enjoy some, but, of course, not all structural
properties of GLAV schema mappings. In particular, schema mappings defined by SO
tgds are not, in general, closed under target homomorphisms. It is an interesting open
problem to give a structural characterization of schema mappings defined by SO tgds.

It should be noted that SO tgds have been incorporated in the Clio data exchange
system, which is now part of the IBM InfoSphere Data Architect enterprise data
modeling and integration tool. Composition of schema mappings is a case study of
not only logic in computer science, but also logic from computer science, since the
class of SO tgds represents a well-behaved fragment of second-order logic that was
identified during the pursuit of the “right” language for composing schema mappings.

As mentioned in the beginning of this section, composition is one of several
key operators on schema mappings proposed by Bernstein [11] in the context of
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the model management framework. Several other such operators have been also
investigated, including the inverse operator on schema mappings. Unlike for the
composition operator, both the semantics and the language for the inverse operator
are not completely settled. In particular, no definitive notion of inverse has emerged;
instead, several competing notions, each with its own advantages and disadvantages,
have been proposed. We refer the reader to the survey [3] and the chapter [24].
The latter discusses also applications of the composition operator and the inverse
operator to schema evolution, which is one of the most challenging problems in data
inter-operability.

3.7 Concluding Remarks

Schema mappings are the essential building blocks in formalizing and investigating
challenging data inter-operability tasks, such as data exchange and data integration. In
this chapter, we have attempted to demonstrate that schema mappings can be viewed
as a case of logical dynamics in action. In doing so, we focused on individual schema
mappings that relate two schemas. Schema mappings have also been used to model
the flow of data in a network of peers, where different peers use different schemas
to hold data [31, 32]. Different semantics have been explored for query answering
in such settings, including semantics based on epistemic logic [14, 42]. We believe
that there is room for more interaction between epistemic logic, logical dynamics,
and database theory, and we look forward to this happening in the near future.
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Chapter 4
On Dependence Logic

Pietro Galliani and Jouko Väänänen

Abstract Dependence logic extends the language of first order logic by means of
dependence atoms and aims to establish a basic theory of dependence and indepen-
dence underlying such seemingly unrelated subjects as causality, random variables,
bound variables in logic, database theory, the theory of social choice, and even quan-
tum physics. In this work we summarize the setting of dependence logic and recall
the main results of this rapidly developing area of research.

4.1 Introduction

The goal of dependence logic is to establish a basic theory of dependence and inde-
pendence underlying such seemingly unrelated subjects as causality, random vari-
ables, bound variables in logic, database theory, the theory of social choice, and even
quantum physics. There is an avalanche of new results in this field demonstrating
remarkable convergence. The concepts of (in)dependence in the different fields of
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humanities and sciences have surprisingly much in common and a common logic is
starting to emerge.

Dependence logic [29] arose from the compositional semantics of Wilfrid Hodges
[19] for the independence friendly logic [18, 25]. In dependence logic the basic
semantic concept is not that of an assignment s satisfying a formula φ in a model M,

M |=s φ,

as in first order logic, but rather the concept of a set S of assignments satisfying φ in
M,

M |=S φ.

Defining satisfaction relative to a set of assignments opens up the possibility to
express dependence phenomena, roughly as passing in propositional logic from one
valuation to a Kripke model leads to the possibility to express modality. The focus
in dependence logic is not on truth values but on variable values. We are interested
in dependencies between individuals rather than between propositions.

In [3] Johan van Benthem writes:

“Sets of assignments S encode several kinds of ‘dependence’
between variables. There may not be one single intuition.
‘Dependence’maymean functional dependence
(if two assignments agree in S onx, they also agree ony),
but also other kinds of ‘correlation’among value ranges.
...

Different dependence relations may have different mathematical
properties and suggest different logical formalisms.”

(4.1)

This is actually how things have turned out. For a start, using the concept of functional
dependence it is possible, as Wilfrid Hodges [19] demonstrated, to define composi-
tionally1 the semantics of independence friendly logic, the extension of first order
logic by the quantifier

∃x/yφ i.e. “there is an x, independently of y, such that φ”,

as follows: Suppose S is a team of assignments, a “plural state”, in a model M. Then

M |=S ∃x/yφ

if and only if there is another set S′ such that

M |=S′ φ

1 Before [19] it was an open question whether a compositional semantics can be given to indepen-
dence friendly logic.
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and the following “transition”-conditions hold:

• If s ∈ S, then there is s′ ∈ S′ such that if z is a variable other than x , then
s(z) = s′(z).
• If s′ ∈ S′, then there is s ∈ S such that if z is a variable other than x , then

s(z) = s′(z).
• If s, s′ ∈ S′ and s(z) = s′(z) for all variables other than y or x , then s(x) = s′(x).

In a sense, independence friendly logic is a logical formalism suggested by the
functional dependence relation, but its origin is in game theoretical semantics, not in
dependence relations. With dependence logic the situation is different. It was directly
inspired by the functional dependence relation introduced by Wilfrid Hodges.

Peter van Emde Boas pointed out to the second author in the fall of 2005 that
the functional dependence behind dependence logic is known in database theory
[2]. This led the second author to realize—eventually—that the dependence we are
talking about here is not just about variables in logic but a much more general
phenomenon, covering such diverse areas as algebra, statistics, computer science,
medicine, biology, social science, etc.

As Johan van Benthem points out in (4.1), there are different dependence intu-
itions. Of course the same is true of intuitions about independence. For some time it
was not clear what would be the most natural concept of independence. There was
the obvious but rather weak form of independence of x from y as dependence of x on
some variable z other than y. Eventually a strong form of independence was intro-
duced in [15], which has led to a breakthrough in our understanding of dependence
relations and their role.

We give an overview of some developments in dependence logic (Sect. 4.2) and
independence logic (Sect. 4.3). This is a tiny selection, intended for a newcomer,
from a rapidly growing literature on the topic. Furthermore, in Sect. 4.4 we discuss
conditional independence atoms and we prove a novel result—that is, that conditional
and non-conditional independence logic are equivalent. Finally, in Sect. 4.6 we briefly
discuss an application of our logics to belief representation.

4.2 Functional Dependence

The approach of [29] is that one should look for the strongest concept of dependence
and use it to define weaker versions. Conceivably one could do the opposite, start from
the weakest and use it to define stronger and strong concepts. The weakest dependence
concept—whatever it is—did not offer itself immediately, so the strongest was more
natural to start with. The wisdom of focusing in the extremes lies in the hope that the
extremes are most likely to manifest simplicity and robustness, which would make
them susceptible to a theoretical study.
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Let us start with the strongest form of dependence, functional dependence. We
use the vector notation �x for finite sequences x1, . . . , xn of variables.2 We add to first
order logic3 new atomic formulas

=(�y, �x), (4.2)

with the intuitive meaning

the �y totally determine the �x .

In other words, the meaning of (4.2) is that the values of the variables �y functionally
determine the values of the variables �x . We think of the atomic formulas (4.2) on a
par with the atomic formula x = y. In particular, the idea is that the formula (4.2) is
a purely logical expression, not involving any non-logical symbols, in particular no
function symbol for the purported function manifesting the functional dependence.

The best way to understand the concept (4.2) is to give it exact semantics: To this
end, suppose M is a model. Suppose S is a set of assignments into M (or a team as
such sets are called). We define:

Definition 4.1 The team S satisfies =(�y, �x) in M, in symbols

M |=S =(�y, �x)

if
∀s, s′ ∈ S(s(�y) = s′(�y)→ s(�x) = s′(�x)). (4.3)

One may ask, why not define the meaning of =(y, x) as “there is a function
which maps y to x”? The answer is that if we look at the meaning of =(y, x) under
one assignment s, then there always is a function f mapping s(y) to s(x), namely
the function {(s(y), s(x))}, and if we look at the meaning of =(y, x) under many
assignments, a team, then (4.3) is indeed equivalent to the statement that there is a
function mapping s(y) to s(x) for all s in the team.

A special case of =(�y, �x) is =(�x), the constancy atom. The intuitive meaning of
this atom is that the value of �x is constant in the team. It results from =(�y, �x) when
�y is the empty sequence.

Functional dependence has been studied in database theory and some basic prop-
erties, called Armstrong’s Axioms have been isolated [2]. These axioms state the
following properties of =(�y, �x):
(A1) =(�x, �x). Anything is functionally dependent of itself.
(A2) If =(�y, �x) and �y ⊆ �z, then =(�z, �x). Functional dependence is preserved by

increasing input data.

2 Or attributes, something that has a value.
3 The basic ideas can be applied to almost any logic, especially to modal logic.
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(A3) If �y is a permutation of �z, �u is a permutation of �x , and =(�z, �x), then =(�y, �u).
Functional dependence does not look at the order of the variables.

(A4) If =(�y, �z) and =(�z, �x), then =(�y, �x). Functional dependences can be transi-
tively composed.

The following result is well-known in the database community and included in
textbooks of database theory4:

Theorem 4.2 [2] The axioms (A1)–(A4) are complete in the sense that a relation
=(�y, �x) follows by the rules (A1)–(A4) from a set � of relations of the same form if
and only if every team which satisfies � satisfies =(�y, �x).
Proof Suppose =(�y, �x) does not follow by the rules from a set � of atoms. Let V
be the set of variables z such that=(�y, z) follows by the rules from �. Let W be the
remaining variables in � ∪ {=(�y, �x)}. Thus �x ∩ W �= ∅. Consider the model {0, 1}
of the empty vocabulary and the team

The variables in V The variables in W
0 0 . . . 0 0 . . . . . . 0
0 0 . . . 0 1 1 . . . 1

The atom =(�y, �x) is not true in this team, because �y ⊆ V and �x ∩W �= ∅. Suppose
then =(�v, �w) is one of the assumptions. If each v is in V , then so is each w so they
all get value 0. On the other hand, if some v is in W , it gets in this team two values,
so it cannot violate dependence. �

We now extend the truth definition (Definition 4.1) to the full first order logic
augmented by the dependence atoms =(�x, �y). To this end, let s(a/x) denote the
assignment which agrees with s except that it gives x the value a. We define for
formulas which have negation in front of atomic formulas only:

M |=S x = y ⇐⇒ ∀s ∈ S(s(x) = s(y)).
M |=S ¬x = y ⇐⇒ ∀s ∈ S(s(x) �= s(y)).
M |=S R(x1, . . . , xn) ⇐⇒ ∀s ∈ S((s(x1), . . . , s(xn)) ∈ RM).

M |=S ¬R(x1, . . . , xn) ⇐⇒ ∀s ∈ S((s(x1), . . . , s(xn)) /∈ RM).

M |=S φ ∧ ψ ⇐⇒M |=S φ and M |=S ψ.

M |=S φ ∨ ψ ⇐⇒ There are S1 and S2 such that
S = S1 ∪ S2,M |=S1 φ, and M |=S2 ψ.

M |=S ∃xφ ⇐⇒M |=S′ φ for some S′ such that
∀s ∈ S ∃a ∈ M(s(a/x) ∈ S′)

M |=S ∀xφ ⇐⇒M |=S′ φ for some S′ such that
∀s ∈ S ∀a ∈ M(s(a/x) ∈ S′)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.4)

It is easy to see that for formulas not containing any dependence atoms, that is,
for pure first order formulas φ,

4 See e.g. [26].
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M |={s} φ ⇐⇒ M |=s φ

and
M |=S φ ⇐⇒ ∀s ∈ S(M |=s φ),

where M |=s φ has its usual meaning. This shows that the truth conditions (4.4) agree
with the usual Tarski truth conditions for first order formulas. Thus considering the
“plural state” S rather than individual “states” s makes no difference for first order
logic, but it makes it possible to give the dependence atoms =(�x, �y) their intended
meaning.

What about axioms for non-atomic formulas of dependence logic? Should we
adopt new axioms, apart from the Armstrong Axioms [A1–A4]? There is a problem!
Consider the sentence

∃x∀y∃z(=(z, y) ∧ ¬z = x). (4.5)

It is easy to see that this sentence is satisfied by a team in a model M if and only M is
infinite. As a result, by general considerations going back to Gödel’s Incompleteness
Theorem, the semantic consequence relation

φ |= ψ ⇐⇒ ∀M∀S(M |=S φ→M |=S ψ)

is non-arithmetical. Thus there cannot be any completeness theorem in the usual
sense. However, this does not prevent us from trying to find axioms and rules which
are as complete as possible. This is what is done in [24], where a complete axiom-
atization is given for first order consequences of dependence logic sentences. The
axioms are a little weaker than standard first order axioms when applied to depen-
dence formulas, but on the other hand there are two special axioms for the purpose
of dealing with dependence atoms as parts of formulas in a deduction. Rather than
giving all details (which can be found in [24]) we give just an example of the use of
both new rules.

Suppose we are given ε, x, y and f , and we have already concluded, in the middle
of some argument, the following:

if ε > 0, then there is δ > 0 depending only on ε such that

if |x − y| < δ, then | f (x)− f (y)| < ε.

By merely logical reasons we should be able to conclude

There is δ > 0 depending only on ε such that

if ε > 0 and |x − y| < δ, then | f (x)− f (y)| < ε.

Note that “depending only on ε” has moved from inside the implication to outside of
it. The new rule of dependence logic, isolated in [24], which permits this, is called
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Dependence Distribution Rule. Neither first order rules nor Armstrong’s Axioms
give this because neither of them gives any clue of how to deal with dependence
atoms as parts of bigger formulas.

Here is another example of inference in dependence logic: Suppose we have
arrived at the following formula in the middle of some argument:

For every x and every ε > 0 there is δ > 0 depending only on ε

such that for all y, if |x − y| < δ, then | f (x)− f (y)| < ε.

On merely logical grounds we should be able to make the following conclusion:

For every x and every ε > 0 there is δ > 0

such that for all y, if |x − y| < δ, then | f (x)− f (y)| < ε,

and moreover, for any other x ′ and ε′ > 0 there is δ′ > 0

such that for all y′, if |x ′ − y′| < δ′, then | f (x ′)− f (y′)| < ε

and if ε = ε′, then δ = δ′.

The new rule, isolated in [24] which permits this step is called Dependence Elimi-
nation Rule, because the dependence atom “depending only on ε” has been entirely
eliminated. The conclusion is actually first order, that is, without any occurrence of
dependence atoms.

The first author [11] has given an alternative complete axiomatization, not for first
order consequences of dependence sentences, but for dependence logic consequences
of first order sentences. Clearly, more results about partial axiomatizations of the
logical consequence relation in dependence logic can be expected in the near future.

An important property of dependence logic is the downward closure [20]: If
M |=S φ and S′ ⊆ S, then M |=S′ φ. It is a trivial matter to prove this by induction
on the length of the formula. Once the downward closure is established it is obvious
that we are far from having a negation in the sense of classical logic. Intuitively,
dependence is a restriction of freedom (of values of variables in assignments). When
the team gets smaller there is even less freedom. This intuition about the nature of
dependence prevails in all the logical operations of dependence logic. Since depen-
dence formulas are easily seen to be representable in existential second order logic,
the following result shows that downward closure is really the essential feature of
dependence logic:

Theorem 4.3 [23] Let us fix a vocabulary L and an n-ary predicate symbol S /∈ L.
Then:

• For every L-formula φ(x1, ..., xn) of dependence logic there is an existential sec-
ond order L ∪ {S}-sentence �(S), closed downward with respect to S, such that
for all L-structures M and all teams X:

M |=X φ(x1, . . . , xn) ⇐⇒ M |= �(X). (4.6)
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• For every existential second order L ∪ {S}-sentence�(S), closed downward with
respect to S, there exists an L-formula φ(x1, . . . , xn) of dependence logic such
that (4.6) holds for all L-structures M and all teams X �= ∅.
This shows that dependence logic is maximal with respect to the properties of

being expressible in existential second order logic and being downward closed. This
theorem is also the source of the main model theoretical properties of dependence
logic. The Downward Löwenheim-Skolem Theorem, the Compactness Theorem and
the Interpolation Theorem are immediate corollaries. Also, when the above theorem
is combined with the Interpolation Theorem of first order logic, we get the fact that
dependence logic sentences φ for which there exists a dependence logic sentence ψ
such that for all M

M |= ψ ⇐⇒ M �|= φ

are first order definable. So not only does dependence logic not have the classical
negation, the only sentences that have a classical negation are the first order sentences.

4.3 Independence Logic

Independence logic was introduced in [15]. Before going into the details, let us look
at the following precedent:

In [3] Johan van Benthem suggested, as an example of an “other kind of correla-
tion” than functional dependence, the following dependence relation for a team S in
a model M:

∃a ∈ M∃b ∈ M({s(x) : s ∈ S, s(y) = a} �= {s(x) : s ∈ S, s(y) = b}). (4.7)

The opposite of this would be

∀a ∈ M∀b ∈ M({s(x) : s ∈ S, s(y) = a} = {s(x) : s ∈ S, s(y) = b}), (4.8)

which is a kind of independence of x from y, for if we take s ∈ S and we are told
what s(y) is, we have learnt nothing about s(x), because for each a ∈ M the set

{s(x) : s ∈ S, s(y) = a}

is the same. This is the idea behind the independence atom �x ⊥ �y: the values of
�x should not reveal anything about the values of �y and vice versa. More exactly,
suppose M is a model and S is a team of assignments into M . We define:
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Definition 4.4 A team S satisfies the atomic formula �x ⊥ �y in M if

∀s, s′ ∈ S∃s′′ ∈ S(s′′(�y) = s(�y) ∧ s′′(�x) = s′(�x)). (4.9)

We can immediately observe that a constant variable is independent of every
variable, including itself. To see this, suppose x is constant in S. Let y be any variable,
possibly y = x . If s, s′ ∈ S are given, we need s′′ ∈ S such that s′′(x) = s(x) and
s′′(y) = s′(y). We can simply take s′′ = s′. Now s′′(x) = s(x), because x is constant
in S. Of course, s′′(y) = s′(y). Conversely, if x is independent of every variable, it
is clearly constant, for it would have to be independent of itself, too. So we have

=(�x) ⇐⇒ �x ⊥ �x .

We can also immediately observe the symmetry of independence, because crite-
rion (4.9) is symmetrical in x and y. More exactly, s′′(y) = s(y) ∧ s′′(x) = s′(x)
and s′′(x) = s′(x) ∧ s′′(y) = s(y) are trivially equivalent.

Dependence atoms were governed by Armstrong’s Axioms. Independence atoms
have their own axioms introduced in the context of random variables in [14]:

Definition 4.5 The following rules are the Independence Axioms

1. �x ⊥ ∅ (Empty Set Rule).
2. If �x ⊥ �y, then �y ⊥ �x (Symmetry Rule).
3. If �x ⊥ �y�z, then �x ⊥ �y (Weakening Rule).
4. If �x ⊥ �x , then �x ⊥ �y (Constancy Rule).
5. If �x ⊥ �y and �x �y ⊥ �z, then �x ⊥ �y�z (Exchange Rule).

Note that xy ⊥ xy is derivable from x ⊥ x and y ⊥ y, by means of the Empty Set
Rule, the Constancy Rule and the Exchange Rule.

It may seem that independence must have much more content than what these
four axioms express, but they are actually complete in the following sense5:

Theorem 4.6 (Completeness of the Independence Axioms, [14]) If T is a finite set
of independence atoms of the form �u ⊥ �v for various �u and �v, then �y ⊥ �x follows
from T according to the above rules if and only if every team that satisfies T also
satisfies �y ⊥ �x.

Proof We adapt the proof of [14] into our framework. Suppose �x ⊥ �y follows seman-
tically from� but does not follow by the above rules. W.l.o.g.� is closed under the
rules. We may assume that �x and �y are minimal, that is, if �x ′ ⊆ �x and �y ′ ⊆ �y and at
least one containment is proper, then if �x ′ ⊥ �y ′ follows from � semantically, it also
follows by the rules. It is easy to see that if � |= u ⊥ u, then � � u ⊥ u.

Suppose �x = (x1, . . . , xl) and �y = (y1, . . . , ym). Let �z = (z1, . . . , zk) be the
remaining variables. W.l.o.g., l ≥ 1 and m ≥ 1, x1⊥ x1 /∈ �, and x1 /∈ {y1, . . . , ym}.

5 This was originally proved for random variables in [14] and then adapted for databases in [22].
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We construct a team S in a 2-element model M = {0, 1} of the empty vocabulary
as follows: We take to S every s : �x �y�z → M , which satisfies s(u) = 0 for u such
that u ⊥ u ∈ � and in addition

s(x1) = the number of ones in s[{x2, . . . , xl , y1, . . . , ym}]mod 2

Claim 1 �x ⊥ �y is not true in S. Suppose otherwise. Consider the following two
assignments in S:

x1 other xi y1 other yi other
s
s

1 0 1 0 0
0 0 0 0 0

If s′′ is such that s′′(�x) = s(�x) and s′′(�y) = s′(�y), then s′′ /∈ S. Claim 1 is proved.

Claim 2 S satisfies all the independence atoms in �. Suppose �v ⊥ �w ∈ S. If either
�v or �w contains only variables in Z , then the claim is trivial, as then either �v or �w
has in S all possible binary sequences. So let us assume that both �v and �w meet �x �y.
If �v �w does not cover all of �x �y, then S satisfies �v ⊥ �w, because we can fix parity on
the variable in �x �y which does not occur in �v �w. So let us assume �v �w covers all of
�x �y. Thus �v = �x ′ �y ′�z ′ and �w = �x ′′ �y ′′�z ′′, where �x ′ �x ′′ = �x and �y ′ �y ′′ = �y. W.l.o.g.,
�x ′ �= ∅ and �x ′ �y ′ �= �x �y. By minimality �x ′ ⊥ �y ′ ∈ � and �x ′′ ⊥ �y ∈ �. Since
�v ⊥ �w ∈ �, a couple of applications of the Exchange and Weakening Rules gives
�x ′ �y ′ ⊥ �x ′′ �y ′′ ∈ �. But then �x ′ �x ′′ ⊥ �y ′ �y ′′ ∈ �, contrary to the assumption. �

We can use the conditions (4.4) to extend the truth definition to the entire inde-
pendence logic, i.e. the extension of first order logic by the independence atoms. Can
we axiomatize logical consequence in independence logic? The answer is again no,
and for the same reason as for dependence logic: Recall that the sentence (4.5) char-
acterizes infinity and ruins any hope to have a completeness theorem for dependence
logic. We can do the same using independence atoms:

Lemma 4.7 The sentence

∃z∀x∃y∀u∃v(xy ⊥ uv ∧ (x = u ↔ y = v) ∧ ¬v = z) (4.10)

is true exactly in infinite models.

The conclusion is that the kind of dependence relation needed for expressing
infinity can be realized either by the functional dependence relation or by the inde-
pendence relation. Another such example is parity in finite models. The following two
sentences, the first one with a dependence atom and the second with an independence
atom, both express the evenness of the size of a finite model:

∀x∃y∀u∃v(=(u, v) ∧ (x = v ↔ y = u) ∧ ¬x = y)
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∀x∃y∀u∃v(xy ⊥ uv ∧ (x = v ↔ y = u) ∧ ¬x = y)

The fact that we could express, at will, both infinity and evenness by means of
either dependence atoms or independence atoms, is not an accident. Dependence
logic and independence logic have overall the same expressive power:

Theorem 4.8 The following are equivalent:

(1) K is definable by a sentence of the extension of first order logic by the dependence
atoms.

(2) K is definable by a sentence of the extension of first order logic by the indepen-
dence atoms.

(3) K is definable in existential second order logic.

Proof The equivalence of (1) and (3), a consequence of results in [8] and [31], as
observed in [20], is proved in [29]. So it suffices to show that (1) implies (2). We
give only the main idea. Sentences referred to in (1) have a normal form [29]. Here
is an example of a sentence in such a normal form

∀x∀y∃v∃w(=(x, v)∧ =(y, w) ∧ φ(x, y, v, w)),

where φ(x, y, v, w) is a quantifier free first order formula. This sentence can be
expressed in terms of independence atoms as follows:

∀x∀y∃v∃w(xv⊥y∧ yw⊥xv∧φ(x, y, v, w)). �

Note that independence, as we have defined it, is not the negation of dependence. It
is rather a very strong denial of dependence. However, there are uses of the concepts
of dependence and independence where the negation of dependence is the same as
independence. An example is vector spaces.

There is an earlier common use of the concept of independence in logic, namely
the independence of a set � of axioms from each other. This is usually taken to
mean that no axiom is provable from the remaining ones. By Gödel’s Completeness
Theorem this means the same as having for each axiom φ ∈ � a model of the
remaining ones �\{φ} in which φ is false. This is not so far from the independence
concept �y ⊥ �x . Again, the idea is that from the truth of �\{φ} we can say nothing
about the truth-value of φ. This is the sense in which Continuum Hypothesis (CH)
is independent of ZFC. Knowing the ZFC axioms gives us no clue as to the truth
or falsity of CH. In a sense, our independence atom �y ⊥ �x is the familiar concept
of independence transferred from the world of formulas to the world of elements of
models, from truth values to variable values.
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4.4 Conditional Independence

The independence atom �y ⊥ �x turns out to be a special case of the more general atom
�y ⊥�x �z, the intuitive meaning of which is that the variables �y are totally independent
of the variables �z when the variables �x are kept fixed (see [15]). Formally,

Definition 4.9 A team S satisfies the atomic formula �y ⊥�x �z in M if

∀s, s′ ∈ S(s(�x) = s′(�x)→ ∃s′′ ∈ S(s′′(�x �y) = s(�x �y) ∧ s′′(�z) = s′(�z))).

Some of the rules that this “conditional” independence notion obeys are

Reflexivity: �x ⊥�x �y,
Symmetry: If �y ⊥�x �z, then �z ⊥�x �y,
Weakening: If �yy′ ⊥�x �zz′, then �y ⊥�x �z,
First Transitivity: If �x ⊥�z �y and �u ⊥�z�x �y, then �u ⊥�z �y,
Second Transitivity: If �y ⊥�z �y and �z�x ⊥�y �u, then �x ⊥�z �u,
Exchange: If �x ⊥�z �y and �x �y ⊥�z �u, then �x ⊥�z �y�u.

Are these axioms complete? More in general, is it possible to find a finite, decid-
able axiomatization for the consequence relation between conditional independence
atoms?

The answer is negative. Indeed, in [16, 17] Hermann proved that the consequence
relation between conditional independence atoms is undecidable; and as proved by
Parker and Parsaye-Ghomi in [28], it is not possible to find a finite and complete
axiomatization for these atoms. However, the consequence relation is recursively
enumerable, and in [27] Naumov and Nicholls developed a proof system for it.

The logic obtained by adding conditional independence atoms to first order logic
will be called in this paper conditional independence logic. It is clear that it contains
(nonconditional) independence logic; and furthermore, as discussed in [15], it also
contains dependence logic, since a dependence atom =(�x, �y) can be seen to be
equivalent to �y ⊥�x �y. It is also easy to see that every conditional independence
logic sentence is equivalent to some �1

1 sentence, and therefore that conditional
independence logic is equivalent to independence logic and dependence logic with
respect to sentences.

But this leaves open the question of whether every conditional independence logic
formula is equivalent to some independence logic one. In what follows, building on
the analysis of the expressive power of conditional independence logic of [10],6

we prove that independence logic and conditional independence logic are indeed
equivalent.

In order to give our equivalence proof we first need to mention two other atoms,
the inclusion atom �x ⊆ �y and the exclusion atom �x | �y. These atoms correspond to
the database-theoretic inclusion [4, 9] and exclusion [5] dependencies, and hold in a

6 In that paper, conditional independence logic is simply called “independence logic”. After all, the
two logics are equivalent.
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team if and only if no possible value for �x is also a possible value for �y and if every
possible value for �x is a possible value for �y respectively. More formally,

Definition 4.10 A team S satisfies the atomic formula �x ⊆ �y in M if

∀s ∈ S∃s′ ∈ S(s′(�y) = s(�x))

and it satisfies the atomic formula �x | �y in M if

∀s, s′ ∈ S(s(�x) �= s′(�y)).

As proved in [10],

1. Exclusion logic (that is, first order logic plus exclusion atoms) is equivalent to
dependence logic;

2. Inclusion logic (that is, first order logic plus inclusion atoms) is not comparable
with dependence logic, but is contained in (nonconditional) independence logic;

3. Inclusion/exclusion logic (that is, first-order logic plus inclusion and exclusion
atoms) is equivalent to conditional independence logic (that is, first-order logic
plus conditional independence atoms �y ⊥�x �z).

Thus, if we can show that exclusion atoms can be defined in terms of (nonconditional)
independence atoms and of inclusion atoms, we can obtain at once that independence
logic contains conditional independence logic (and, therefore, is equivalent to it). But
this is not difficult: indeed, the exclusion atom �x | �y is equivalent to the expression

∃�z(�x ⊆ �z ∧ �y ⊥ �z ∧ �y �= �z).

This can be verified by checking the satisfaction conditions of this formula. But more
informally speaking, the reason why this expression is equivalent to �x | �y is that it
states that that every possible value of �x is also a possible value for �z, that �y and �z
are independent (and therefore, any possible value of �y must occur together with any
possible value of �z), and that �y is always different from �z. Such a �z may exist if and
only if no possible value of �x is also a possible value of �y, that is, if and only if �x | �y
holds.

Hence we may conclude at once that

Theorem 4.11 Every conditional independence logic formula is equivalent to some
independence logic formula.

In [10] it was also shown the following analogue of Theorem 4.3:

Theorem 4.12 Let us fix a vocabulary L and an n-ary predicate symbol S /∈ L.
Then:

• For every L-formula φ(x1, . . . , xn) of conditional independence logic there is an
existential second order L ∪ {S}-sentence �(S) such that for all L-structures M
and all teams X:
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M |=X φ(x1, . . . , xn) ⇐⇒ M |= �(X). (4.11)

• For every existential second order L∪{S}-sentence�(S) there exists an L-formula
φ(x1, . . . , xn) of conditional independence logic such that (4.11) holds for all
L-structures M and all teams X �= ∅.
Due to the equivalence between independence logic and conditional independence

logic, the same result holds if we only allow nonconditional independence atoms. In
particular, this implies that over finite models independence logic captures precisely
the NP properties of teams.

4.5 Further Expressivity Results

The results mentioned in the above section left open the question of the precise
expressive power of inclusion logic. This was answered in [14], in which a connection
was found between inclusion logic and positive greatest fixed point logic GFP+. In
brief, GFP+ is the logic obtained by adding to the language of first order logic the
operator

[gfpR,�xψ(R, �x)](�t),

which asserts that the value of �t is in the greatest fixed point of the operator O(R) =
{�a : ψ(R, �a)},7 and further requiring that no such operator occurs negatively.

Over finite models, it is known by [21] that this logic is equivalent to the better-
known least fixed point logic LFP, which captures PTIME over linearly ordered
models [21, 30]. Thus, the same is true of inclusion logic: more precisely,

Theorem 4.13 A class of linearly ordered finite models is definable in inclusion
logic if and only if it can be recognized in polynomial time.

As dependence logic is equivalent to existential second order logic over sentences,
it follows at once that there exists a fragment of dependence logic which also cap-
tures PTIME. Which fragment may it be? This is answered—in a slightly different
setting—by Ebbing, Kontinen, Müller and Vollmer in [7] by introducing the class of
D∗-Horn formulas and proving that they capture PTIME over successor structures.8

The complexity-theoretic properties of further fragments of these logics have
been studied in the papers [6] and [13], in which hierarchy theorems are developed
for the restrictions of these logics to dependencies of certain maximum lengths or
to maximum numbers of quantifiers. We will not however present here a complete
summary of these results, and we refer the interested readers to these papers for the
details.

7 In order to guarantee that such a fixed point exist, R is required to appear only positively in ψ .
8 That is, over finite structures with a built-in successor operator and two constants for the least and
greatest elements.
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Finally, yet another direction of investigation consists in the search for weak
dependency notions, which if added to the language of first order logic do not increase
its expressive power (with respect to sentences). This problem in studied in [12], in
which a fairly general class of such dependencies is found. One particularly interest-
ing result along these lines is that the contradictory negations of functional depen-
dence, inclusion, exclusion and (conditional or non-conditional) independence atoms
are all weak and do not increase the expressive power of first order logic. This is
somewhat surprising, since as we saw the corresponding non-negated atoms greatly
increase the expressivity of first order logic instead; and the study of the manner in
which applying the contradictory negation acts on dependence notions and on the
logics they generate is an intriguing and largely unexplored avenue of research.

4.6 Belief Representation and Belief Dynamics

Given a model M, a variable assignment s admits a natural interpretation as the
representation of a possible state of things, where, for every variable v, the value s(v)
corresponds to a specific fact concerning the world. To use the example discussed in
Chap. 7 of [11], let the elements of M correspond to the participants to a competition:
then the values of the variables x1, x2 and x3 in an assignment s may correspond
respectively to the first-, second- and the third-placed players.

With respect to the usual semantics for first order logic, a first order formula
represents a condition over assignments. For example, the formula

φ(x1, x2, x3) := (¬x1 = x2) ∧ (¬x2 = x3) ∧ (¬x1 = x3)

represents the (very reasonable) assertion according to which the winner, the second-
placed player and the third-placed player are all distinct.

Now, a team S, being a set of assignments, represents a set of states of things.
Hence, a team may be interpreted as the belief set of an agent α: s ∈ S if and only if
the agentα believes s to be possible. Moving from assignments to teams, it is possible
to associate to each formula φ and model M the family of teams {S :M |=S φ}, and
this allows us to interpret formulas as conditions over belief sets: in our example,
M |=S φ(x1, x2, x3) if and only if M |=s φ(x1, x2, x3) for all s ∈ S, that is, if
and only if our agent α believes that the winner, the second-placed player and the
third-placed player will all be distinct.

However, there is much that first order logic cannot express regarding the beliefs
of our agent. For example, there is no way to represent the assertion that the agent α
knows who the winner of the competition will be: indeed, suppose that a first order
formula θ represents such a property, and let s1 and s2 be any two assignments with
s1(x1) �= s2(x1), corresponding to two possible states of things which disagree with
respect to the identity of the winner. Then, for S1 = {s1} and S2 = {s2}, we should
have that M |=S1 θ and that M |=S2 θ : indeed, both S1 and S2 correspond to belief
sets in which the winner is known to α (and is respectively s1(x1) or s2(x1)). But
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since a team S satisfies a first order formula if and only if all of its assignments satisfy
it, this implies that M |=S1∪S2 θ ; and this is unacceptable, because if our agent α
believes both s1 and s2 to be possible then she does not know whether the winner
will be s1(x1) or s2(x1).

How to represent this notion of knowledge? The solution, it is easy to see, consists
in adding constancy atoms to our language: indeed, M |=S =(x1) if and only if for
any two assignments s, s′ ∈ S we have that s(x1) = s′(x1), that is, if and only if
all states of things the agent α consider possible agree with respect to the identity of
the winner of the competition. What if, instead, our agent could infer the identity of
the winner from the identity of the second- and third-placed participants? Then we
would have that M |=S =(x2x3, x1), since any two states of things which the agent
considered possible and which agreed with respect to the identity of the second-
and third-placed participants would also agree with respect to the identity of the
winner. More in general, a dependence atom=(�y, �x) describes a form of conditional
knowledge: M |=S =(�y, �x) if and only if S corresponds to the belief state of an agent
who would be able to deduce the value of �x from the value of �y.

On the other hand, independence atoms represent situations of informational
independence: for example, if M |=S x1 ⊥ x3 then, by learning the identity of the
third-placed player, our agent could infer nothing at all about the identity of the
winner. Indeed, suppose that, according to our agent, it is possible that A will win
(that is, there is a s ∈ S with s(x1) = A) and it is possible that B will place third (that
is, there is a s′ ∈ S such that s′(x3) = B). Then, by the satisfaction conditions of the
independence atom, there is also a s′′ ∈ S such that s′′(x1) = A and s′′(x3) = B:
in other words, it is possible that A will be the winner and B will place third, and
telling our agent that B will indeed place third will not allow her to remove A from
her list of possible winners.

Thus, it seems that dependence and independence logic, or at least fragments
thereof, may be interpreted as belief description languages. This line of investigation
is pursued further in [11]: here it will suffice to discuss the interpretation of the linear
implication9 φ � ψ , a connective introduced in [1] whose semantics is given by

M |=S φ � ψ ⇔ for all S′ such that M |=S′ φ it holds that M |=S∪S′ ψ.

How to understand this connective? Suppose that our agent α, whose belief state
is represented by the team S, interacts with another agent β, whose belief state is
represented by the team S′: one natural outcome of this interaction may be represented
by the team S∪ S′, corresponding to the set of all states of things that α or β consider
possible. Then stating that a team S satisfies φ � ψ corresponds to asserting that
whenever our agent α interacts with another agent β whose belief state satisfies φ,
the result of the interaction will be a belief state satisfying ψ : in other words, using

9 The name “linear implication” is due to the similarity between the satisfaction conditions of this
connective and the ones of the implication of linear logic. Another similarity is the following Galois
connection: θ |= φ �ψ ⇐⇒ θ ∨ φ |= ψ [1].
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the linear implication connective allows us to formulate predictions concerning the
future evolution of the belief state of our agent.

One can, of course, consider other forms of interactions between agents and fur-
ther connectives; and quantifiers can also be given natural interpretations in terms of
belief updates (the universal quantifier ∀v, for example, can be understood in terms
of the agent α doubting her beliefs about v). But what we want to emphasize here,
beyond the interpretations of the specific connectives, is that team-based seman-
tics offers a very general and powerful framework for the representation of beliefs
and belief updates, and that notions of dependence and independence arise naturally
under such an interpretation. This opens up some fascinating—and, so far, relatively
unexplored—avenues of research, such as for example a more in-depth investigation
of the relationship between dependence/independence logic and dynamic epistemic
logic (DEL) and other logics of knowledge and belief; and, furthermore, it suggests
that epistemic and doxastic ideas may offer some useful inspiration for the formula-
tion and analysis of further notions of dependence and independence.

4.7 Concluding Remarks

We hope to have demonstrated that both dependence and independence can be given
a logical analysis by moving in semantics from single states s to plural states S.
Future work will perhaps show that allowing limited transitions from one plural state
to another may lead to decidability results concerning dependence and independence
logic, a suggestion of Johan van Benthem.

Furthermore, we proved the equivalence between conditional independence logic
and independence logic, thus giving a novel contribution to the problem of charac-
terizing the relations between extensions of dependence logic.

Finally, we discussed how team-based semantics may be understood as a very gen-
eral framework for the representation of beliefs and belief updates and how notions
of dependence and independence may be understood under this interpretation. This
suggests the existence of intriguing connections between dependence and indepen-
dence logic and other formalisms for belief knowledge representation, as well as a
possible application for this fascinating family of logics.
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Chapter 5
Intensionality, Definability and Computation

Samson Abramsky

Abstract We look at intensionality from the perspective of computation. In
particular, we review how game semantics has been used to characterize the sequen-
tial functional processes, leading to powerful and flexible methods for constructing
fully abstract models of programming languages, with applications in program analy-
sis and verification. In a broader context, we can regard game semantics as a first step
towards developing a positive theory of intensional structures with a robust mathe-
matical structure, and finding the right notions of invariance for these structures.

5.1 Introduction

Our aim in this paper is to give a conceptual discussion of some issues concern-
ing intensionality, definability and computation. Intensionality remains an elusive
concept in logical theory, but actually becomes much more tangible and, indeed,
inescapable in the context of computation. We will focus on a particular thread of
ideas, leading to recent and ongoing work in game semantics. Technical details will
be kept to a minimum, while ample references will be provided to the literature.
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5.1.1 Computability Versus Computer Science

Computability theory [21, 68] is concerned with the computability (or, most often,
degree of non-computability) of extensional objects: numbers, sets, functions etc.
These objects are inherited from mathematics and logic. To define when such objects
are computable requires some additional structure: we say e.g. that a function is
computable if there exists an algorithmic process for computing it. Hence the notion
of computability relies on a characterization of algorithmic processes. This was,
famously, what Turing achieved in his compelling analysis [70].

Computer Science asks a broader question:

What is a process?

By contrast with the well-established extensional notions which provide the refer-
ence points for computability, there was no established mathematical theory of what
processes are predating computer science.

5.1.2 Why Processes Matter in Computer Science

Let us pause to ask why Computer Science asks this broader question about the nature
of informatic processes. The purpose of much of the software we routinely run is
not to compute a function, but to exhibit some behaviour. Think of communication
protocols, operating systems, browsers, iTunes, Facebook, Twitter, …. The purpose
of these systems is not adequately described as the computation of some function.

Thus we are led ineluctably to questions such as:

What is a process? When are two processes equivalent?

The situation is very different to that which we find in computability theory, where
we have

• A confluence of notions, whereby many different attempts to characterize the
notion of algorithmic process have converged to yield the same class of computable
functions [21, 68].
• A definitive calculus of functions: the λ-calculus [17, 19].

There has been active research on concurrency theory and processes for the past
five decades in Computer Science [31, 55, 56, 65, 66]. Many important concepts
and results have emerged. However, one cannot help noticing that:

• Hundreds of different process calculi, equivalences, logics have been proposed.
• No λ-calculus for concurrency has emerged.
• There is no plausible Church-Turing thesis for processes.
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This has been referred to as the ‘next 700’ syndrome, after Peter Landin’s paper
(from 1966!) on ‘The Next 700 Programming Languages’ [47]; for a discussion of
this syndrome, see [4]. Finding an adequate characterization of informatic processes
in general can plausibly be considered to be a much harder problem than that of
characterizing the notion of computable set or function. Despite the great achieve-
ments of Petri, Milner, Hoare et al., we still await our modern-day Turing to provide
a definitive analysis of this notion.

5.1.3 Prospectus

Our aim in this paper is to tell one limited but encouraging success story: the char-
acterization of sequential functional processes using game semantics, solving in
best possible terms the ‘full abstraction problem’ for PCF [54, 67]. This has led on
to many further developments, notably:

• Full abstraction and full completeness results for a wide range of programming
languages, type theories and logics [9–15, 32, 35, 44, 46].
• A basis for compositional program verification [8, 24].

There is much ongoing work [58–60], and this continues to be a flourishing field.1

In a broader context, we can regard game semantics as a first step towards devel-
oping a positive theory of intensional structures with a robust mathematical structure,
and finding the right notions of invariance.

5.2 Intensionality Versus Extensionality

The notions of intensionality and extensionality carry symmetric-sounding names,
but this apparent symmetry is misleading. Extensionality is enshrined in mathemat-
ically precise axioms with a clear conceptual meaning. Intensionality, by contrast,
remains elusive. It is a “loose baggy monster”2 into which all manner of notions
may be stuffed, and a compelling and coherent general framework for intensional
concepts is still to emerge.

Let us recall some basic forms of extensionality. For sets we have:

x = y ↔ ∀z. z ∈ x ↔ z ∈ y.

This says that a set is completely characterized by its members.
For functions we have:

1 See e.g. https://sites.google.com/site/galopws/ for a workshop series devoted to this topic.
2 Cf. Henry James on the Russian masters.

https://sites.google.com/site/galopws/
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f = g ↔ ∀x . f (x) = g(x).

This says that a function is completely characterized by the input-output corre-
spondence (i. e. the set of input-output pairs) which it defines.

The common idea underlying these principles is that mathematical entities can
be characterized in operational terms: mathematical objects should be completely
determined by their behaviour under the operations which can be applied to them.
In the case of sets, this operation is testing elements for membership of the set, while
in the case of functions, it is applying functions to their arguments.

The basic question we are faced with in seeking to make room for intensional
notions is this: is intensionality just a failure to satisfy such properties? Or is there
some positive story to tell?

We shall focus on the case of functions. Here we can say that the modern, exten-
sional view of functions as completely determined by their graphs of input-output
correspondences over-rode an older, intensional notion, of a function being given by
its rule. That older notion was never adequately formalized. Much of modern logic,
in its concern with issues of definability, can be seen as providing tools for capturing
the old intuitions in a more adequate fashion.

5.2.1 Intrinsic Versus Extrinsic Properties of Functions

We shall now draw a distinction which will be useful in our discussion. We say that
a property of functions

f : A→ B

is intrinsic if it can be defined purely in terms of f (as a set of input-output pairs)
and any structure pertaining to A and B.

This is, of course, not very precise. More formally, we could say: if it can be
defined using only bounded quantification over the structures A and B. But we shall
rest content with the informal rendition here. We believe that the distinction will be
quite tangible to readers with some mathematical experience.

5.2.2 Examples

• A and B are groups. A function f : A→ B is a group homomorphism if

f (xy) = f (x) f (y), f (e) = e.

In general, homomorphisms of algebraic structures are clearly intrinsic in the sense
we intend.
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• A and B are topological spaces. A function f : A→ B is continuous if f −1(U )
is open in the topology on A for every open subset U of B. Here the topology is
viewed as part of the structure.

5.2.3 A Non-example: Computability

Computability is not an intrinsic property of partial functions

f : N ⇀ N

in this sense. In order to define whether a function is computable, we need to refer to
something external; a process by which f is computed. A function is computable
if there is some algorithmic process which computes f . But what is an algorithmic
process?

Here of course we can appeal to Turing’s analysis [70], and to subsequent,
axiomatic studies by Gandy et al. [23, 69]. But note that, not only do we have to
appeal to some external notion of machine or algorithmic process, but there is no sin-
gle canonical form of external structure witnessing computability. Rather, we have a
confluence: all ‘reasonable’ notions lead to the same class of computable functions.
But this confluence still leaves us with an extrinsic definition, and moreover one in
which the external witness has no canonical form.

More concretely, suppose we are given some function

f : {0, 1}∗ −→ {0, 1}

i. e. a predicate on binary strings. To say that whether such a function is computable
is an extrinsic property of f simply means that we cannot say if f is computable just
by looking at its input-output graph and properties relating to the structure of {0, 1}∗
and {0, 1}. Clearly, we need something more, typically either:

• A suitable notion of machine, or
• An inductive definition given by some ‘function algebra’ or logical theory.

5.2.4 A Comparison Point: Regular Languages

One might reasonably ask what it would even mean to have an intrinsic (or, at least,
more intrinsic) way of defining computability. For this purpose, it is useful to consider
a much simpler notion which pertains to (sub-)computability in a non-trivial fashion,
and which does admit an intrinsic definition in our sense.

Such an example is provided by regular languages, i. e. those accepted by finite-
state automata [33].
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Let A be some finite alphabet. We write A∗ for the set of finite words or strings
over this alphabet. Given a language L ⊆ A∗, we define

s ≡L t ↔ ∀v ∈ A∗. sv ∈ L ↔ tv ∈ L .

Clearly, ≡L is an equivalence relation on A∗.
Theorem 5.1 (Myhill-Nerode [63, 64]) L is regular if and only if ≡L is of finite
index (i. e. has finitely many distinct equivalence classes).

Of course, computability is a much richer notion than regularity, and one may well
suppose that for metamathematical reasons, no intrinsic or quasi-intrinsic definition
of computability can be achieved—although we are not aware of any specific formal
result which implies this.

Still, the question seems worth asking: we suspect that a better understanding
of this issue may be important in addressing some fundamental questions in com-
putability and complexity. We shall return briefly to this point in the concluding
section.

5.3 From Functions to Functionals

The issues become clearer if we include functionals (functions which take functions
as arguments) in our discussion. This leads to the following hierarchy of types:

Type 0 : N
Type 1 : N ⇀ N

Type 2 : [N ⇀ N]⇀ N

...

In general, a type n+ 1 functional takes type n functionals as arguments. Of course,
more general types can also be considered.

Functionals are not so unfamiliar: e.g. the quantifiers!

∀, ∃ : [N→ B] → B

Here B is the set of truth-values; the quantifiers over the natural numbers are seen as
functionals taking natural number predicates to truth-values.

While it might seem that bringing functionals into the picture will merely compli-
cate matters, in fact when we consider higher-order functions, some intrinsic structure
emerges naturally, which is lacking when we only look at first-order functions over
discrete data.

When we compute with a function (or procedure) parameter P , we can immedi-
ately distinguish two paradigms.
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• Extensional paradigm: the only way we can interact with P is to call it with some
arguments, and use the results:

let m = P(n) in . . .

In any finite computation, we can only make finitely many such calls, and hence
‘observe’ a finite subset of the graph of the function defined by P:

{m1 = P(n1),m2 = P(n2), . . . ,mk = P(nk)}

• Intensional paradigm: we have access to the code of P . So we can compute such
things as the code itself (as a text string), or how many symbols appear in it, etc.
Examples: interpreters, program analyzers, and other programs which manipu-
late programs. Usually, though, in computer science we keep programs as data
(subject to manipulation) distinct from programs as code (performing manipula-
tions); it is generally seen as bad practice to mingle these two modes. By contrast,
computability theory does use codes of programs viewed as data in a pervasive
and essential fashion. We shall return to this contrast when we discuss fixpoint
theorems.

5.3.1 Intrinsic Structure of Computable Functionals

When we pass to functionals, some intrinsic structure begins to emerge. Firstly, there
is a natural ordering on partial functions:

f 
 g ↔ graph( f ) ⊆ graph(g).

Here graph( f ) is the set of input-output correspondences which—on the extensional
view—uniquely characterize f . If P is a program code, we can define graph(P) to
be the set of input-output correspondences defined by the (partial) function computed
by P .

We can view a function which takes codes of programs and returns numbers as
an (a priori intensional) functional. We say that such a function F is extensional if
F(P) = F(Q) whenever graph(P) = graph(Q), and hence defines a functional
F̂ : [N ⇀ N]⇀ N.

We have the following classical result:

Theorem 5.2 (Myhill-Sheperdson [62]) An extensional computable functional F̂
satisfies the following properties:

Monotonicity : f 
 g ⇒ F̂( f ) 
 F̂(g).
Continuity : For any increasing sequence of partial functions

f0 
 f1 
 f2 
 · · ·
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we have
F̂(

⊔

i

fi ) =
⊔

i

F̂( fi ).

Moreover, there is a sort of converse (which still needs to appeal to the usual notion
of computability for functions on the natural numbers).

5.3.2 Generalization to Domains

These ideas were elaborated into a beautiful mathematical theory of computation by
Dana Scott and others. Domains are partial orders with least elements and least upper
bounds of increasing sequences. The corresponding functions are the monotonic and
continuous ones.

A function f : D→ E is monotonic if, for all x, y ∈ D:

x 
 y =⇒ f (x) 
 f (y).

It is continuous if it is monotonic, and for all ω-chains (xn)n∈ω in D:

f
( ⊔

n∈ω
xn

)
=

⊔

n∈ω
f (xn).

Continuity serves as an ‘intrinsic approximation’ to computability: an intrinsic prop-
erty which is a necessary condition for computability. Indeed, one speaks of ‘Scott’s
thesis’, that computable functions are continuous [75]. Of course, this condition is
not sufficient, and hence does not offer a complete analysis of computability.

5.3.2.1 Examples

We consider functions f : {0, 1}∞ → B⊥. Here {0, 1}∞ is the domain of finite and
infinite binary sequences (or ‘streams’), ordered by prefix; while B⊥ = {tt, ff,⊥}
is the ‘flat’ domain of booleans with tt �⊥
 ff , representing computations which
either fail to halt, or return a boolean value.

We consider the following definitions for such functions:

1. f (x) = tt if x contains a 1, f (x) =⊥ otherwise.
2. f (x) = tt if x contains a 1, f (0∞) = ff , f (x) =⊥ otherwise.
3. f (x) = tt if x contains a 1, f (x) = ff otherwise.

Of these: (1) is continuous, (2) is monotonic but not continuous, and (3) is not
monotonic.

The conceptual basis for monotonicity is that the information in Domain Theory is
positive; negative information is not regarded as stable observable information. That
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is, if we are at some information state s, then for all we know, s may still increase to
t , where s 
 t . This means that if we decide to produce information f (s) at s, then
we must produce all this information, and possibly more, at t , yielding f (s) 
 f (t).
Thus we can only make decisions at a given information state which are stable under
every possible information increase from that state. This idea is very much akin to the
use of partial orders in Kripke semantics for Intuitionistic Logic [42], in particular
in connection with the interpretation of negation in that semantics.

The continuity condition, on the other hand, reflects the fact that a computational
process will only have access to a finite amount of information at each finite stage
of the computation. If we are provided with an infinite input, then any information
we produce as output at any finite stage can only depend on some finite observation
we have made of the input. This is reflected in one of the inequations corresponding
to continuity:

f
( ⊔

n∈ω
xn

)



⊔

n∈ω
f (xn)

which says that the information produced at the limit of an infinite process of infor-
mation increase is no more than what can be obtained as the limit of the information
produced at the finite stages of the process. Note that the “other half” of continuity

⊔

n∈ω
f (xn) 
 f

( ⊔

n∈ω
xn

)

follows from monotonicity.

5.3.3 The Fixpoint Theorem

Theorem 5.3 (The Fixpoint Theorem [49]) Let D be an ω-cpo with a least element,
and f : D → D a continuous function. Then f has a least fixed point lfp( f ).
Moreover, lfp( f ) is defined explicitly by:

lfp( f ) =
⊔

n∈ω
f n(⊥). (5.1)

This is a central pillar of domain theory in its use in the semantics of computation,
providing the basis for interpreting recursive definitions of all kinds [27, 76]. Note
however that the key fixpoint result for computability theory is the Kleene second
recursion theorem [36, 57], an intensional result, which refers to fixpoints for
programs rather than the functions which they compute. This theorem is strangely
absent from Computer Science, although it can be viewed as strictly stronger than the
extensional theorem above. This reflects the fact which we have already alluded to,
that while Computer Science embraces wider notions of processes than computability



130 S. Abramsky

theory, it has tended to refrain from studying intensional computation, despite its
apparent expressive potential. This reluctance is probably linked to the fact that it
has proved difficult enough to achieve software reliability even while remaining
within the confines of the extensional paradigm. Nevertheless, it seems reasonable
to suppose that understanding and harnessing intensional methods offers a challenge
for computer science which it must eventually address.

5.3.4 Trouble in Paradise

The semantic theory of higher-type functional computation we get from domain
theory seems compelling. But there is a problem: a mismatch between what the
semantic theory allows, and what we can actually compute in ‘natural’ programming
languages.

5.3.4.1 Example: Parallel or

We consider a (curried) function of two arguments

por : B⊥ → B⊥ → B⊥

por ⊥ tt = tt = por tt ⊥, por ff ff = ff

This is the ‘strong or’ of Kleene 3-valued logic.
This function lives in the semantic model, since it is monotonic and continuous,

but it is not definable in realistic languages—or those arising from logical calculi
(essentially, the λ-calculus). This is because a definable function of two arguments
must examine its arguments in some definite order; whichever it examines first, the
function will yield an undefined result if that argument is undefined. We can define
second order functions which can only be distinguished by their values at parallel
or; they will be observationally equivalent, i. e. equivalent in the operational sense,
since no experiment we can perform within the language by applying them to inputs
which can be defined in the language will serve to distinguish them. However, these
second-order functions will have different denotations in a model which includes
parallel or. Thus such a model—and in particular, the canonical domain-theoretic
model—introduces operationally unjustified distinctions.

Note that definability and higher types are crucially important here. This mis-
match between model and operational content is known as the failure of full abstrac-
tion [54, 67].
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5.3.5 Sequentiality

Consider the following functions, which are definable:

lsor(b1, b2) ≡ if b1 then tt else b2

rsor(b1, b2) ≡ if b2 then tt else b1

Note that

lsor(tt,⊥) = tt, lsor(⊥, tt) =⊥
rsor(tt,⊥) =⊥, rsor(⊥, tt) = tt

To get por, we need to run the processes for evaluating b1 and b2 in parallel. For
example, we could interleave the executions of these processes, running each one
step at a time. As soon as one of these returned the result tt, we could return tt as the
value of por. This means that we need to have access, not just to the purely exten-
sional information about the arguments—i. e. their values—but to their intensional
descriptions. This form of dovetailing is fundamental to many constructions in com-
putability theory [68], but is not available in logical calculi and functional languages
based on the λ-calculus. Indeed, contemporary functional programming languages
take an extensional view of data as one of their cardinal virtues [34, 71, 74].

This raises the question: How can we capture the notion of sequential functional?

5.3.6 Sequentiality Is Extrinsic

We need additional information to characterize those functionals which are sequen-
tial. The following remarkable result, due to Ralph Loader [50], shows that this is
unavoidable.

Theorem 5.4 (Loader) The set of functionals definable in Finitary PCF, the typed
λ-calculus over the booleans with conditionals and a term denoting ⊥, is not recur-
sive.

Note that, since the base type here is just the flat domain of booleans, the set of
functionals at any type is finite. Thus if we form the logical type theory over this
structure by closing under cartesian product and powerset, then all the logical types
over this structure will also be finite. If there were any form of intrinsic definition of
sequentiality, given in terms of some structure defined at each type even in full higher-
order logic, this finiteness would ensure that the notion of sequentiality was recursive.
By Loader’s theorem, we conclude that no such intrinsic definition can exist.3 This
rules out any hope of a reasonable intrinsic definition of the sequential functionals.

3 This argument is due to Gordon Plotkin (personal communication).
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So the best we can do is to characterize which are the sequential functional
processes—i. e. an intensional notion.

Attempts at such characterizations coming from a computability theory perspec-
tive were made by Kleene in his series of papers [37–41], and by Gandy and Pani
in unpublished work. The work of Berry and Curien on sequential algorithms on
concrete data structures [18], directly inspired by the full abstraction problem for
PCF, should also be mentioned.

A characterization of the sequential functional processes was eventually achieved
using the newly available tools of Game Semantics, developed in the 1990’s by the
present author, Radha Jagadeesan and Pasquale Malacaria, and by Martin Hyland
and Luke Ong [11, 35]. We shall now give a brief account of these ideas.

5.4 Game Semantics

We shall give a brief, informal introduction to game semantics, emphasizing concepts
and intuitions rather than technical details, for which we refer to works such as
[1, 11, 14, 35].

The traditional approach to denotational semantics, exemplified by domain the-
oretic semantics [27, 76], was to interpret the types of a programming language by
(possibly structured) sets, and the programs as functions. Game semantics funda-
mentally revises this ontology:

• Types of a programming language are interpreted as 2-person games; the Player is
the System (program fragment) currently under consideration, while the Opponent
is the Environment or context.
• Programs are strategies for these games.

So game semantics is inherently a semantics of open systems; the meaning of a
program is given by its potential interactions with its environment.

A key feature of game semantics as developed in computer science (and signifi-
cantly differentiating it from previous work on games in logic [30, 51]) is its com-
positionality. The key operation is plugging two strategies together, so that each
actualizes part of the environment of the other. The familiar game-theoretic idea of
playing one strategy off against another is a special case of this, corresponding to a
closed system, with no residual environment. This form of interaction exploits the
game-theoretic P/O duality.

5.4.1 Types as Games

• A simple example of a basic datatype of natural numbers:

N = {q · n | n ∈ N}
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( N ⇒ N ) ⇒ N ⇒ N

O q

P q

O q

P q

O n

P n

O m

P m + 2

Fig. 5.1 Strategy for λ f : N⇒ N.λx : N. f (x)+ 2

Note a further classification of moves, orthogonal to the P/O duality;the O-move
q is a question, the P-moves n are answers. This turns out to be important for
capturing control features of programming languages.
• Forming function or procedure types A⇒ B. We form a new game from disjoint

copies of A and B, with P/O roles in A reversed. Thus we think of A⇒ B as a
structured interface to the Environment; in B, we interact with the caller of the
procedure, covariantly, while in A, we interact with the argument supplied to the
procedure call, contravariantly.

5.4.2 Example

We consider the strategy corresponding to the term λ f : N⇒ N.λx : N. f (x)+ 2.
This term defines the procedure P( f, x) such that P( f, x) returns f (x)+ 2.

We show a typical play for the strategy corresponding to this term in Fig. 5.1.
This should be read as follows. Time flows downwards. Moves by Opponent

alternate with those of Player. Each column corresponds to one of the occurrences
of atomic types in the overall type of the term. Each of these will be a copy of the
simple game for natural numbers. In effect, we are playing on several game boards,
switching from one to another.

The play begins with the Opponent, or environment, requesting an output. The
strategy must call the function argument f , so it requests an output from this argu-
ment. Note that the variance rules dictate that, since the type of f occurs negatively
in the overall type, this opening move is indeed a Player move. The environment now
has to respond to this request. Typically, it will do so by requesting its input. Since
the strategy is realizing the function call f (x), the value of this input will be obtained
by the strategy from the natural number argument x , and thus the strategy requests
the value of this argument. When the evironment responds to this request with some
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N ⇒ N ( N ⇒ N ) × N ⇒ N

q

q q

q q

q

n

n n

n2 n2

n2 + 2

Fig. 5.2 Applying λ f : N⇒ N.λx : N. f (x)+ 2 to λx : N. x2

number n, the strategy copies this value to answer the request of the function argument
for its input. This copying of data is a key feature of game semantics, correspond-
ing to the logical flow of information. Indeed, purely logical strategies, i. e. those
corresponding to logical proofs, are typically made entirely from such ‘copy-cat’
processes [10].

After the function argument receives its input n, it will typically emit some output
m; the strategy for the term will now answer the original request from the environment
with the number m + 2.

We have simply described what the evident strategy corresponding to the above
λ-term will do. Of course, the purpose of a compositional game semantics is precisely
to allow this strategy to be constructed systematically as the denotation of the above
term in a syntax-directed fashion.

5.4.3 Composition

We now show how the key operation of plugging one strategy together with another,
corresponding to applying a procedure to its argument, or more generally to compos-
ing procedures, will proceed, again through an example. We apply the higher-order
procedure λ f : N⇒ N.λx : N. f (x)+ 2 to the argument λx : N. x2. A typical run
of the corresponding strategy is shown in Fig. 5.2.

Here the common parts of the two strategies are shown in the dashed boxes.
The key point is that type matching between function and argument guarantees that
the Opponent moves for one are Player moves for the other, and vice versa. This
intrinsic duality allows the interactive interpretation of composition to be defined
without requiring any additional structure. Thus when the strategy for the functional
plays its opening move in response to the environment request for an output, the other
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strategy sees this as the opening move of its environment, and responds accordingly.
The functional now sees this response as the next move of the nvironment, and so on.
With each of the strategies following their own scripts, we get a uniquely determined
path through the common part of the type, where they interact.

Note that the residual strategy, after we hide the part where the interac-
tion between function and argument occurs, is that corresponding to the function
λx . x2 + 2, consistent with the result of performing β-reduction syntactically. This
‘parallel composition plus hiding’ paradigm for composition of strategies [10] is a
fundamental component of game semantics.

5.4.4 Technical Notes

Once the ideas shown informally by example in the previous subsection are properly
formalized, games and strategies organize themselves into a very nice mathematical
structure—a cartesian closed category G [11, 35]. We can then use standard methods
of denotational semantics to give a compositional semantics for functional languages
such as PCF in G [27].

The key result is:

Theorem 5.5 (Abramsky-Jagadeesan-Malacaria and Hyland-Ong [11, 35]) Every
compact (even: recursive) strategy in G is definable by a PCF term.

This can be understood as a completeness theorem. It is saying, not only that
every sequential functional process can be interpreted as a strategy in the game seman-
tics, but that the ‘space’ of strategies corresponds exactly to the class of sequential
functional processes. In short, we have achieved a characterization, albeit at the
intensional level.

Note that similar results can be achieved for proof calculi for various logical
systems, leading to notions of full completeness [10, 15].

If we refer to strategies as in our examples in the previous sub-section, we can
get some intuition for how a result such as this is proved. The first move (by Player)
in the strategy corresponds to the head variable in the head-normal form of the
λ-term, or the last rule in a proof. Decomposing the strategy progressively uncovers
the defining term. This argument is formalized in [11, 35], and even axiomatized in
Abramsky [2].

There is an important caveat, which actually leads to a major positive feature
of game semantics. In order to achieve this completeness result, strategies must be
constrained, as we shall now explain.
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5.4.5 Constraints on Strategies

There are two main kinds of constraints which must be imposed on strategies in order
to capture exactly the sequential functional processes:

1. Strategies do not have perfect information about the previous computation his-
tory (play of the game). For example, consider a call

f t1t2

When it is evaluated (called) by f , t2 should not ‘know’ whether t1 has already
been evaluated—and vice versa. Note that if we had imperative state, the argu-
ments could use this to pass such information to each other. Thus this constraint
is a distinctive feature of purely functional computation.

2. Properly nested call-return flow of control. This is visibly a feature of the example
we discussed previously. It is often referred to as the ‘stack discipline’ [11], for
obvious reasons. It corresponds to the absence of non-local control features such
as jumps or exceptions. Again, this constraint is a distinctive feature of purely
functional computation.

Both these constraints can be formulated precisely (the first as ‘innocence’ or
‘history-freedom’, the second as ‘well-bracketing’), and shown to be closed under
composition and the other semantic constructions [11, 35]. The resulting cartesian
closed categories of games and constrained strategies yield the completeness results
as in Theorem 5.5.

5.4.6 Discussion

It should be noted that there is an important caveat to the result in Theorem 5.5.
We get a definability result—but strategies are much finer grained than functions.
They correspond to certain ‘PCF evaluation trees’ [11]. To get an equationally fully
abstract model, we must quotient the games model. This is unavoidable by Loader’s
Theorem, from which it follows that the fully abstract model, even for Finitary PCF,
is not effectively presentable.

What is the significance of the result? In retrospect, the real payoff is in other
cases—but the PCF result is the keystone of the whole development. Relaxing the
constraints which characterize functional computation leads to fully abstract models
for languages with (locally scoped) state, or control operators, or both [14]. This
picture of a semantic ‘cube’ or hierarchy of constraints has proved very fruitful as a
paradigm for exploring a wide range of programming language features.
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5.4.7 The Game Semantics Landscape

Game semantics has proved to be a flexible and powerful paradigm for construct-
ing highly structured fully abstract semantics for languages with a wide range of
computational features:

• (Higher-order) Functions and procedures [11, 35]
• Call by name and call by value [13, 32]
• Locally scoped state [12, 58]
• General reference types [9, 60]
• Control features (continuations, exceptions) [44, 45]
• Non-determinism, probabilities [22, 29]
• Concurrency [26, 43, 46]
• Names and freshness [6, 72].

In many cases, game semantics have yielded the first, and often still the only,
semantic construction of a fully abstract model for the language in question. More-
over, where sufficient computational features (typically state or control) are present,
then the observational equivalence is more discriminating, and game semantics cap-
tures the fully abstract model directly, without the need for any quotient. Intensions
become extensions!

More generally: the point of conceptual interest is to find positive reasons—
structural invariants—for non-expressiveness. This is a positive story for a form
of intensionality. Indeed, we can see here the beginnings of a structural theory of
processes.

5.4.8 Mathematical Aside

Categories of games and strategies have fascinating mathematical structure in their
own right. They give rise to:

• Constructions of free categories with structure of various kinds.
• Full completeness results characterizing the “space of proofs” for various logical

systems [10, 15].
• There are even connections with geometric topology, e.g. Temperley-Lieb and

other diagram algebras [5].

5.4.9 Algorithmic Game Semantics

We can also take advantage of the concrete nature of game semantics. A play is a
sequence of moves, so a strategy can be represented by the set of its plays, i.e. by a
language over the alphabet of moves, and hence by an automaton.
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There are significant finite-state fragments of the semantics for various interesting
languages, as first observed by Ghica and McCusker [3, 25]. This means we can
compositionally construct automata as (representations of) the meanings of open
(incomplete) programs, giving a powerful basis for compositional software model-
checking. There has been an extensive development of these ideas in the last few
years, by Ghica [24], Ong [7], Murawski [48], Tzevelekos et al. [61].

5.4.10 Other Aspects

It should also be noted that there are other strands in game semantics, which has
become a rich and diverse field. For example, there is work on clarifying the mathe-
matical structure of game semantics itself, and its relation to syntax and to categorical
structure. Examples include [20, 28, 52, 53, 77].

More broadly, we must emphasise that our subject in this paper has been the
characterisation of sequential, functional processes. We have argued that a consid-
erable measure of success has been achieved in answering this question. However,
finding a compelling answer to the general question of “What is a process?” which
we raised in the Introduction remains a major challenge of the field. It is likely that
new conceptual ingredients will be needed to enable further advances towards this
goal.

5.5 Conclusions: Some Questions and Dreams

• Can we use intensional recursion to give more realistic models of reflexive phe-
nomena in biology, cognition, economics, etc.?
Working with codes seems more like what biological or social mechanisms might
plausibly do, rather than with abstract mathematical objects in extenso.
• How does this relate to current interest in higher categories, homotopy type theory

etc. [16, 73], where equalities are replaced by witnesses? Do higher categories,
and the intensional type theories they naturally support, provide the right setting
for a systematic intensional view of mathematics and logic? What kind of novel
applications will these structures support?
• Can we develop a positive theory of intensional structures, and find the right notions

of invariance?
• The dream: to use this to give some (best-possible) intrinsic characterization of

computability, and of complexity classes.
• Could this even be the missing ingredient to help us separate classes? Well, we

can dream!



5 Intensionality, Definability and Computation 139

References

1. Abramsky S (1997) Semantics of interaction: an introduction to game semantics. In: Dybjer
P, Pitts A (eds) Semantics and logics of computation. Publications of the Newton Institute,
Cambridge University Press, pp 1–31

2. Abramsky S (1999) Axioms for definability and full completeness. In: Plotkin G, Tofte M,
Stirling C (eds) Proof, language and interaction: essays in honour of Robin Milner. MIT Press,
Cambridge, pp 55–75

3. Abramsky S (2001) Algorithmic game semantics. In: Schwichtenberg H, Steinbrüggen R (eds)
Proof and system-reliability: proceedings of the NATO advanced study institute. Kluwer Aca-
demic Publishers, Marktoberdorf, pp 21–47 (24 July–5 Aug 2001)

4. Abramsky S (2006) What are the fundamental structures of concurrency?: we still don’t know!.
Electron Notes Theoret Comput Sci 162:37–41

5. Abramsky S (2007) Temperley-Lieb algebra: from knot theory to logic and computation via
quantum mechanics. In: Chen G, Kauffman L, Lomonaco S (eds) Mathematics of quantum
computing and technology, Taylor and Francis, New York, pp 415–458

6. Abramsky S, Ghica DR, Murawski AS, Ong CHL, Stark IDB (2004) Nominal games and full
abstraction for the nu-calculus. In: Proceedings of the 19th annual IEEE symposium on logic
in computer science, pp 150–159

7. Abramsky S, Ghica DR, Murawski AS, Ong CHL (2003) Algorithmic game semantics and
component-based verification. In: SAVCBS 2003, specification and verification of component-
based systems, p 66

8. Abramsky S, Ghica D, Murawski A, Ong CHL (2004) Applying game semantics to compo-
sitional software modeling and verification. In: Conference on tools and algorithms for the
construction and analysis of systems. Lecture Notes in Computer Science, vol 2988. Springer,
pp 421–435

9. Abramsky S, Honda K, McCusker G (1998) A fully abstract game semantics for general
references. In: Proceedings of 13th annual IEEE symposium on logic in computer science, pp
334–344

10. Abramsky S, Jagadeesan R (1994) Games and full completeness for multiplicative linear logic.
J Symb Log 59(2):543–574

11. Abramsky S, Jagadeesan R, Malacaria P (2000) Full abstraction for PCF. Inf Comput
163(2):409–470

12. Abramsky S, McCusker G (1997) Linearity, sharing and state: a fully abstract game seman-
tics for idealized algol with active expressions. In: O’Hearn P, Tennent RD (eds) Algol-like
languages, Birkhauser, pp 317–348

13. Abramsky S, McCusker G (1998) Call-by-value games. In: Proceedings of computer science
logic, Springer, pp 1–17

14. Abramsky S, McCusker G (1999) Game semantics. In: Schwichtenberg H, Berger U (eds)
Computational logic: proceedings of the 1997 Marktoberdorf summer school, Springer, pp
1–55

15. Abramsky S, Mellies PA (1999) Concurrent games and full completeness. In: Proceedings of
14th symposium on logic in computer science, pp 431–442

16. Awodey S, Warren MA (2009) Homotopy theoretic models of identity types. Math Proc Camb
Phil Soc 146(1):45–55

17. Barendregt HP (1984) The lambda calculus: its syntax and semantics, vol 103. Studies in Logic
and the Foundations of Mathematics, North Holland

18. Berry G, Curien PL (1982) Sequential algorithms on concrete data structures. Theoret Comput
Sci 20(3):265–321

19. Church A (1941) The calculi of lambda-conversion, vol 6. Princeton University Press, Princeton
20. Curien PL, Faggian C (2012) An approach to innocent strategies as graphs. Inf Comput

214:119–155
21. Cutland N (1980) Computability: an introduction to recursive function theory. Cambridge

University Press, Cambridge



140 S. Abramsky

22. Danos V, Harmer RS (2002) Probabilistic game semantics. ACM Trans Comput Log 3(3):359–
382

23. Gandy R (1980) Church’s thesis and principles for mechanisms. In: Barwise J, Keisler HJ,
Kunen K (eds) The kleene symposium of studies in logic and the foundations of mathematics,
vol 101. Elsevier, Amsterdam, pp 123–148

24. Ghica DR (2009) Applications of game semantics: from program analysis to hardware syn-
thesis. In: Proceedings of 24th Annual IEEE Symposium on logic in computer science, pp
17–26

25. Ghica DR, McCusker G (2003) The regular-language semantics of second-order idealized
ALGOL. Theoret Comput Sci 309(1):469–502

26. Ghica DR, Murawski AS (2008) Angelic semantics of fine-grained concurrency. Ann Pure
Appl Log 151(2):89–114

27. Gunter CA (1992) Semantics of programming languages: structures and techniques. MIT press,
Cambridge

28. Harmer R, Hyland H, Mellies PA (2007) Categorical combinatorics for innocent strategies. In:
22nd annual IEEE symposium on logic in computer science, pp 379–388

29. Harmer R, McCusker G (1999) A fully abstract game semantics for finite nondeterminism. In:
14th annual IEEE symposium on logic in computer science, pp 422–430

30. Hintikka J, Sandu G (1997) Game-theoretical semantics. In: van Benthem J, ter Meulen A (eds)
Handbook of logic and language, Elsevier, Amsterdam, pp 361–410

31. Hoare CAR (1978) Communicating sequential processes. Commun ACM 21(8):666–677
32. Honda K, Yoshida N (1997) Game theoretic analysis of call-by-value computation: automata,

languages and programming, Springer, Berlin, pp 225–236
33. Hopcroft JE, Ullman JD (1979) Introduction to automata theory, languages, and computation.

Addison-Wesley, Cambridge
34. Hughes J (1989) Why functional programming matters. Comput J 32(2):98–107
35. Hyland JME, Ong CHL (2000) On full abstraction for PCF: I, II, and III. Inf Comput

163(2):285–408
36. Kleene SC (1938) On notation for ordinal numbers. J Symb Log 3(4):150–155
37. Kleene SC (1978) Recursive functionals and quantifiers of finite types revisited I. In: Fenstad

JE, Gandy RO, Sacks GE (eds) Generalized recursion theory II: proceedings of the 1977 Oslo
symposium of studies in logic and the foundations of mathematics, vol 94. Amsterdam, pp
185–222

38. Kleene SC (1980) Recursive functionals and quantifiers of finite types revisited II. In: Barwise
J, Keisler HJ, Kunen K (eds) The Kleene symposium of studies in logic and the foundations
of mathematics, vol 101. Elsevier, pp 1–29

39. Kleene SC (1982) Recursive functionals and quantifiers of finite types revisited III. In:
Metakides G (ed) Patras logic symposion: proceedings of studies in logic and the founda-
tions of mathematics, logic symposion held at Patras, Greece, vol 109. Elsevier, pp 1–40, Aug
18–22 1982

40. Kleene SC (1985) Unimonotone functions of finite types (recursive functionals and quantifiers
of finite types revisited IV). Recur Theory 42:119–138

41. Kleene SC (1991) Recursive functionals and quantifiers of finite types revisited V. Trans Am
Math Soc 325:593–630

42. Kripke S (1965) Semantical analysis of intuitionistic logic I. In: Formal systems and recursive
functions, studies in logic and foundations of mathematics, North Holland, pp 92–130

43. Laird J (2001) A game semantics of idealized CSP. Electron Notes Theor Comput Sci 45:232–
257

44. Laird J (2001) A fully abstract game semantics of local exceptions. In: 16th annual IEEE
symposium on logic in computer science, pp 105–114

45. Laird J (2003) A game semantics of linearly used continuations. In: Foundations of software
science and computation structures, Springer, pp 313–327

46. Laird J (2005) A game semantics of the asynchronousπ-calculus. CONCUR 2005-concurrency
theory, pp 51–65



5 Intensionality, Definability and Computation 141

47. Landin PJ (1966) The next 700 programming languages. Commun ACM 9(3):157–166
48. Legay A, Murawski A, Ouaknine J, Worrell J (2008) On automated verification of probabilistic

programs: tools and algorithms for the construction and analysis of Systems, pp 173–187
49. Lassez JL, Nguyen VL, Sonenberg E (1982) Fixed point theorems and semantics: a folk tale.

Inf Process Lett 14(3):112–116
50. Loader R (2001) Finitary PCF is not decidable. Theor Comput Sci 266(1):341–364
51. Lorenzen P (1960) Logik und agon. Atti Congr Int di Filosofia 4:187–194
52. Melliès PA (2006) Asynchronous games 2: the true concurrency of innocence. Theor Comput

Sci 358(2):200–228
53. Mellies PA (2012) Game semantics in string diagrams. In: 27th annual IEEE symposium on

logic in computer science, pp 481–490
54. Milner R (1977) Fully abstract models of typed λ-calculi. Theor Comput Sci 4(1):1–22
55. Milner R (1989) Communication and concurrency. Prentice-Hall, Upper Saddle River
56. Milner R (1999) Communicating and mobile systems: the pi calculus. Cambridge University

Press, Cambridge
57. Moschovakis YN (2010) Kleene’s amazing second recursion theorem. Bull Symb Log

16(2):189–239
58. Murawski A, Tzevelekos T (2009) Full abstraction for reduced ML: foundations of software

science and computational structures, pp 32–47
59. Murawski A, Tzevelekos T (2011) Algorithmic nominal game semantics. In: Proceedings of

the 20th European symposium on programming, Lecture Notes in Computer Science, vol 6602.
Springer, pp 419–438

60. Murawski AS, Tzevelekos N (2011) Game semantics for good general references. In: 26th
annual IEEE symposium on logic in computer science, pp 75–84

61. Murawski AS, Tzevelekos N (2012) Algorithmic games for full ground references. In: Proceed-
ings of the 39th international colloquium on automata, languages and programming, Lecture
Notes in Computer Science, vol 7392. pp 312–324

62. Myhill J, Shepherdson JC (1955) Effective operations on partial recursive functions. Math Log
Quart 1(4):310–317

63. Myhill JR (1957) Finite automata and the representation of events. Technical Report WADD
TR-57-624, Wright Patterson AFB

64. Nerode A (1958) Linear automaton transformations. Proc Am Math Soc 9(4):541–544
65. Petri CA (1962) Fundamentals of a theory of asynchronous information flow. In: IFIP Congress

1962, Amsterdam, pp 386–390
66. Petri CA (1966) Communication with automata, New York: Griffiss Air Force Base. vol. 1,

suppl. no. 1. Tech Rep RADC-TR-65-377
67. Plotkin GD (1977) LCF considered as a programming language. Theor Comput Sci 5(3):223–

255
68. Rogers H (1967) Theory of recursive functions and effective computability. McGraw Hill, New

York
69. Sieg W (2002) Calculations by man and machine: mathematical presentation. In: Gärdenfors P,

Wolenski J, Kijania-Placek K (eds) Proceedings of the 11th international conference on logic,
methodology and philsophy of science, Vol 1. Kluwer Academic Publishers, pp 247–262

70. Turing AM (1937) On computable numbers, with an application to the entscheidungs problem.
Proc Lond Math Soc 42(2):230–265

71. Turner D (1995) Elementary strong functional programming. In: Functional programming
languages in education, Springer, pp 1–13

72. Tzevelekos N (2007) Full abstraction for nominal general references. In: 22nd annual IEEE
symposium on logic in computer science, pp 399–410

73. Voevodsky V (2010) Univalent foundations project, NSF grant application
74. Wadler P (1992) The essence of functional programming. In: Proceedings of the 19th ACM

SIGPLAN-SIGACT symposium on principles of programming languages, pp 1–14



142 S. Abramsky

75. Winskel G (1987) Event structures. In: Brauer W, Reisig W, Rozenberg G (eds) Proceedings of
an advanced course on Petri nets: Applications and relationships to other models of concurrency,
advances in Petri nets 1986, Part II, LNCS, Bad Honnef, September 1986, vol 255. Springer,
pp 325–392

76. Winskel G (1993) The formal semantics of programming languages: an introduction. MIT
press, Cambridge

77. Winskel G (2012) Bicategories of concurrent games. In Foundations of Software Science and
Computational Structures, Springer Berlin Heidelberg, pp 26–41



Chapter 6
Comparing Theories: The Dynamics
of Changing Vocabulary

Hajnal Andréka and István Németi

Abstract There are several first-order logic (FOL) axiomatizations of special
relativity theory in the literature, all looking different but claiming to axiomatize
the same physical theory. In this chapter, we elaborate a comparison between these
FOL theories for special relativity. We do this in the framework of mathematical logic.
For this comparison, we use a version of definability theory in which new entities can
also be defined besides new relations over already available entities. In particular,
we build an interpretation (in Alfred Tarski’s sense) of the reference-frame oriented
theory SpecRel developed in the Budapest Logic Group into the observationally
oriented Signalling theory of James Ax published in Foundations of Physics. This
interpretation provides SpecRel with an operational/experimental semantics. Then
we make precise, “quantitative” comparisons between these two theories via using
the notion of definitional equivalence. This is an application of mathematical logic
to the philosophy of science and physics in the spirit of Johan van Benthem’s work.

6.1 Introduction

This chapter is about an application of logic to the methodology of science in the
spirit of van Benthem’s [8, 9].
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There are several axiomatizations of special relativity theory available in the
literature, all looking different but claiming to axiomatize the same physical theory.
Such are, among many others, the ones in Andréka et al. [4], Ax [6], Goldblatt [17],
Schelb [32], Schutz [33], Suppes [34]. These papers talk about very different kinds
of objects: [4] talks about reference frames, [6] talks about particles and signals, [17]
looks like a purely geometrical theory about orthogonality, the central notion of [34]
is the so-called Minkowski-metric, etc. While, as usual, one gets a better picture of
this area via a variety of different “eyeglasses”, the following questions arise. What
are the connections between these theories? Do they all talk about the same thing? If
they do, do they capture it to the same extent, or is one axiomatization more detailed
or accurate than some of the others? In this chapter we want to show how, in the
framework of mathematical logic, a concrete, tangible comparison/connection can
be elaborated between these theories for special relativity. We also want to show
what we can gain from such an investigation.

For this comparison, we have to use a form of logical definability theory in which
totally new kinds of entities can be defined as opposed to traditional definability
theory where only new relations can be defined over already available entities. The
existing methods of definability theory had to be modified and refined for the pur-
poses of the present situation. Thus, definability theory, too, profits from such an
application. In the present chapter, we elaborate in detail on one piece of comparing
relativity theories: we construct an interpretation of the relativity theory in [4] talking
about reference frames into the theory in [6] which talks about particles emitting and
absorbing signals. Then we construct an inverse interpretation and we discuss which
versions of the two theories are definitionally equivalent.1 Since this is a case-study
for applicability of the proposed method for connecting theories, we tried to give
all the detail needed. This is why some sections of the chapter may look somewhat
technical.

An insight of last century mathematical logic is that it is important to fix the
vocabulary of a first-order logic theory and stay inside the so obtained language
while working in a specific theory (see, e.g., [40]). The symbols in the vocabulary2

are the concepts that are not analyzed further in the given theory, they are thus called
basic (or primitive) concepts. But this is not a forever frozen state: we may decide to
analyze further the basic concepts of this vocabulary and we can do this in the form of
building an interpretation (in the sense of mathematical logic) into another language
the vocabulary of which consists of new basic concepts, and the interpretation gives
us the information of how the “old basic concepts” are built up from the “new basic
concepts” as refined ones. The interpretation we construct in this chapter thus refines
the basic concept of a reference frame in terms of just sending and receiving signals.
To refine further the basic concepts of this Signalling theory, we can interpret it to,
say, in a theory of electromagnetism, or in a quantum-mechanical theory.

1 A similar investigation for Newtonian gravitation, but not in the framework of mathematical logic,
can be found in [45].
2 Other names for vocabulary are signature and set of nonlogical constants.
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An interpretation of this kind may also be regarded as defining a so-called oper-
ational semantics for the basic concepts of the first theory. Starting with the Vienna
Circle, several authors suggest that a physical theory is a more complex object
than just a set of first-order logic (FOL for short) formulas. A physical theory, they
propose, is a FOL theory together with instructions for how to interpret the basic
symbols (or vocabulary) of this theory “in the real physical world”. (Following
Carnap [12], this is often called a “(partially) interpreted theory”.) We want to show
in Sect. 6.6 that such an “operational semantics” can be taken to be an interpretation
in the sense of mathematical logic.

Returning to our concrete example, an operational semantics should say something
about how we obtain or set up (in the real world) the reference frames for special
relativity theory. Usually, rigid meter-rods and standard clocks are used for this
purpose (e.g., [44]). However, as [36] points out, we cannot use these rigid meter-
rods in astronomy or cosmology. The interpretation we give in detail in this chapter
results also in an operational/experimental/observational definition for setting up a
reference frame by just relying on sending and receiving light-signals. This method
can be used, in principle, in the above mentioned astronomical scale.

Summing up, the first language in an interpretation has the theoretical concepts
while the basic concepts of the second language are the observational ones (for the
observational-theoretical duality see, e.g., [8, 13]). We can look at the same interpre-
tation “from the other direction”: In our example, we may imagine someone living in
a space-time, exploring his surroundings by sending and receiving signals, and dur-
ing this process, he devises so-called theoretical concepts which make thinking more
efficient. In particular, he may devise the concept of a reference frame, and even the
concept of quantities forming a field, as mental constructs having concrete definitions
in terms of observations. The tools of mathematical logic, and more closely those of
definability theory (interpretations are among them) can be used for modeling this
emergence of theoretical concepts.

A further aim of the present approach of comparing theories is shifting the empha-
sis from working inside a single huge theory to working in a modularized hierarchy
of smaller theories connected in many ways. Usually this approach is called theory-
hierarchy. We note that this is not so much a hierarchy as rather a category of theories,
technically the category of all FOL-theories as objects with interpretations as mor-
phisms of the category. This direction of replacing a huge theory with a category
of small theories is present in many parts of science [7]. In foundational thinking,
[14] emphasizes this. In computer science, it is present in the form of structured
programming. “Putting theories together” of Burstall and Goguen [11] refers to the
act of computing/generating colimits of certain diagrams in this category. Even in
such practical areas as using a huge medical data-base the need of modularizing
arises: it is necessary to “break up” the given data-base and generate many smaller
ones according to the query at hand [21, 22]. The interpretation going from special
relativity as formalized in [4] into the more observational Signalling theory of [6]
we build in the present chapter is but one morphism of this huge dynamic category
of FOL theories.
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The content of this chapter can also be viewed as preparing the ground for an
application of algebraic logic to relativity theory, as follows. The cylindric algebra of
a theory is an abstract representation of the structure of concepts expressible/definable
in that theory and a homomorphism between two cylindric algebras corresponds to
an interpretation between the corresponding theories. Hence the category of all FOL
theories is basically the same as the category of cylindric algebras as objects and
homomorphisms as morphisms. There are, for example, well known and understood
methods for how to compute colimits in this category of algebras.

There are still many questions and phenomena to be understood in this area of
application of logic. For example, what are the desirable or good properties of an
interpretation for being informative about the theories in one or other respect? Con-
sider for a second the definability/interpretability picture between scientific theories
(in FOL) in two versions: (1) in the framework of traditional definability theory, and
(2) in the new, extended theory of definability used in the present chapter. What are
the characteristic differences? We think it is useful to keep this picture/issue in mind.

In Sect. 6.2 we briefly recall the relativity theory SpecRel from [4], in Sect. 6.3
we recall Signalling theory SigTh from [6] and we try to give a basic feeling for it by
sketching the proof of the completeness theorem in [6]. Section 6.4 is an important
part of the present chapter, it contains an algorithm for how to set up a reference
frame in Signalling theory, this is an “operational semantics” for setting up reference
frames of Andréka et al. [4]. At the end of the section we outline how the same
method could be used for space-times other than special relativistic, e.g., for the
Schwarzshild space-time of a black hole. This algorithm is at the heart of the inter-
pretation elaborated in Sect. 6.6. Section 6.5 recalls the features of the more refined
definability theory that are needed for defining the interpretation of SpecRel0 into
SigTh. Section 6.7 rounds up the picture between SpecRel and SigTh by interpreting
SigTh in a slightly reinforced version of SpecRel and then giving more information
about connections between various concrete theories of special relativity. We end the
chapter with a conclusion.

6.2 Special Relativity

In this section we give a list of basic concepts and axioms of the FOL theory SpecRel

in [3–5, 23, 38].
The basic notions not analyzed further in SpecRel are “observers” having refer-

ence frames in which they represent the world-lines of bodies (or test particles), of
which signals (light-particles, or photons) are special ones. The world-line of a body
represents its motion, it is a function that describes the location of the body at each
instant. For representing “time” and “location”, observers use quantities, quantities
are endowed with addition and multiplication in order to be able to express whether
a motion is “uniform” or not. To make life simpler, we treat also observers as special
bodies. (Another, equivalent, option would be to treat them as entities of different
“kind”, or of different “sort”, than bodies and quantities.) The reference frame or
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world-view of an observer o gives the information which bodies b are present at time
t at location x, y, z; thus W(o, b, t,x, y, z) expresses that body b is present at t in
〈x, y, z〉, according to observer o. We treat quantities as entities of a different nature,
of a different kind, than bodies.

According to the above, the vocabulary of the language of SpecRel is the
following: we have two sorts, bodies B and quantities Q, we have two unary rela-
tions Obs,Ph of sort B, we have two binary functions +, � of sort Q, and we have
a six-place relation W the first 2 places of which are of sort B and the rest of sort Q.

Next, we list the five axioms of SpecRel. Concrete formulas and more intuition
can be found in, e.g., [3–5, 23, 38].

AxPh The world-lines of photons are exactly the straight lines of slope 1, in each
reference frame.

AxEv All observers coordinatize the same physical reality (i.e., the same set of
events).

AxSelf The “owner” of a reference frame sits tight (stays put) at the origin.
AxFd The quantities form a Euclidean field w.r.t. the operations +, �, this means

that Q,+, � form an ordered field in which each positive quantity has a square
root.

AxSym All observers use the same units of measurement: if two events are simul-
taneous for observers o, o′, then the spatial distance between them is the same
according to o, o′.

SpecRel0 := {AxPh,AxEv,AxSelf,AxFd} and
SpecRel := {AxPh,AxEv,AxSelf,AxFd,AxSym}.

SpecRel may seem to be a rather weak axiom system. However, this is not so. All
the well-known theorems/predictions of the (kinematics of) special relativity can be
proved even from SpecRel0. Below is a sample of theorems that can be proved from
SpecRel0 (for proofs, further theorems provable from SpecRel, and for extensions
see the references given earlier as well as [24, 39]):

• Each observer moves uniformly and slower than light in any other observer’s
world-view (i.e., the world-line of an observer is a straight line with slope less
than 1).
Assume that o, o′ are moving relative to each other.
• Events that are separated in o’s world-view in a direction of o′’s motion and

simultaneous according to o, are not simultaneous according to o′.
• Events that are simultaneous according to both o and o′ are exactly the ones that

are separated orthogonally to the direction of motion of o′.
• Assume that o and o′ use the same units of measurement, i.e., the spatial distance

between events that are simultaneous to both of them is the same according to
them. Then a-synchronicity, time-dilation and length-contraction between o and
o′ are exactly according to the known formula of special relativity, see e.g., [3,
p. 633].
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• The world-view transformations between observers in SpecRel0 are exactly the
bijections that preserve Minkowski-equidistance; these bijections are the so-called
Poincaré-transformations composed with dilations and field-automorphisms.
• The world-view transformations between observers in SpecRel are exactly the

bijections that preserve Minkowski-distance; these bijections are the so-called
Poincaré-transformations.

In SpecRel, a reference frame is a basic (or primitive) notion, just an “out-of-
the-blue” assigning space-and-time coordinates to events, which all together have to
satisfy some regularities (our axioms). The theory does not address the question of
how an observer sets up his reference frame. As already outlined in the introduction,
according to some authors, a physical theory (a theory about our physical reality),
should say something about the meaning (in the “real” physical world) of the basic
concepts, if not otherwise, then in natural language one could amend the theory
with a set of so-called operational rules about how the basic concepts (the reference
frames in our case) are set up (experimentally). Here usually meter-rods and wrist-
watches, or standard clocks, are used, see e.g., Taylor and Wheeler [44, Fig. 9, 135],
Szabo [36]. In Sect. 6.4 we give a more ambitious algorithm for setting up coordinate
systems.

6.3 James Ax’s Signalling theory

The intention of Ax’s theory is to give an axiom system for special relativity so that
its basic symbols and axioms are designed to be observational. The players of this
theory are experimenters that can “communicate with each other” by sending signals
to each other. Together, as a team the experimenters can “map” (or explore) space-
time, without having rigid meter rods or clocks. A definition of an introduced (or
defined) term in this first-order logic theory can be viewed as an experiment designed
to establish whether the defined term holds or not. The basic terms of space and time
are defined this way. (Indeed, in this theory one can define “rigid meter rods” and
“clocks” from signalling experiments.) The results of the experiments we make can
be built into axioms then (which are designed to be observational-oriented), and they
can tell us in what kind of space-time we live in. Euclidean? Special relativistic?
Hyperbolic space with relativistic time? Newtonian? General relativistic? Etc. All
this amounts to an implementation of Leibnizian relational notion of space and time.
We return to this subject in more detail in the next section.

We begin to describe Ax’s theory which we call Signalling theory SigTh. In the
vocabulary of SigTh we have two sorts, Par for “particles” (or experimenters, or
agents) and Sig for “signals” (or light-signals); and we have two binary relations
T, R between particles and signals. The intended meanings of aTσ and a R σ are
“a transmits (or emits, or sends out) σ”, and “a receives (or absorbs) σ”, respectively.
Ax [6] uses an impersonal terminology of particle physics, particles emit and absorb
signals. We are more attracted to a terminology of communication between active
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experimenters. These experimenters (players) of SigTh are somewhat analogous to
the observers of SpecRel. In this chapter when talking about Ax’s Signalling theory,
we will use the terms experimenter and particle interchangeably.

The “standard” (or intended) model we have in mind is the following: Let us fix
a Euclidean field F. Then Par is the set of all straight lines in F4 with slope less than
1, and Sig is the set of all directed finite segments (including the segments of length
zero) of straight lines with slope 1. A particle a transmits a signal σ iff the beginning
point of σ lies on a, and a receiving the signal σ means that the endpoint of σ lies
on a. Let us denote this structure by M(F).

The main result of Ax [6] is a finite set � of axioms, our SigTh, which charac-
terizes the class of standard models, i.e., the models of � are exactly the standard
models M(F) over some Euclidean field F (Theorem 1 in [6]). SigTh consists of
three groups of axioms, altogether it has 23 elements. Instead of listing these 23
axioms, in this chapter we will use Ax’s completeness theorem, since that implies
that a formula ψ is provable from SigTh iff ψ is true in all the standard models.

The question immediately arises: what does this theory SigTh have to do with
special relativity? Do we not lose much expressive power by using such meager
resources? Where do a-synchronicity, time-dilation, length-contraction come into
the picture in SigTh? Some answers are in the proof of Theorem 6.1 which we
briefly outline below. We will give more explicit answers to these questions in the
coming Sects. 6.4 and 6.6. In particular, we will show that everything we can say in
the language of SpecRel can be said in the Spartan language of SigTh, too. One of
the ideas for proving this can be traced back to Hilbert, as will be noted in Fig. 6.2.

To give a feeling for SigTh and the expressive power of its language, we briefly
outline the proof of Ax’s completeness theorem. Let’s begin by making a little elbow-
room for working. We will need to express things such as “two signals are received
by an experimenter at the same time”, and “signal σ was received by an experimenter
just when he transmitted signal γ ”. Since we have no notion of time in our language,
we have to express these notions just by using the basic concepts of transmitting
and receiving signals. Here comes how we can do this. The (open) formula “φ :=
∀a aTσ → aTγ ” is true in a standard model just when the beginning points of the
segments σ, γ coincide, we say that φ expresses this fact.3 Similarly, “∀a a R σ →
aTγ ” expresses that the endpoint of σ coincides with the beginning point of γ , etc.
Now can we express that two particles/experimenters meet? Well, they meet if there
is a signal that both of them transmit. From now on we will use similar statements
without translating them to the language of SigTh.

To begin outlining the idea of Ax’s completeness proof, let M be any model of
SigTh, and let e be any experimenter in this model. We will construct an isomorphism
between M and a standard model M(F) which takes e to the time-axis in M(F).
From now on, in this section e denotes this fixed experimenter.

3 In the formulas, the scope of a quantifier is till the end of the formula if not indicated otherwise.
Lower case Roman and Greek letters denote variables of sorts Par and Sig, respectively. Instead of
conjunction ∧ we will simply write a comma.
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We define the set Space of “places” or “locations” for experimenter e to consist
of those particles which are motionless w.r.t. e. For expressing that two particles are
motionless w.r.t. each other, any formula expressing this in the standard models will
do. Ax uses the following formula: e′ is motionless w.r.t. e exactly when e and e′ do
not meet (if they are not equal) and there are two other particles d, c which meet them
and each other in 5 distinct events. Ax then expresses the betweenness relation Bw
for such places as well as the equidistance relation Ed with suitable formulas. Having
all this, the first group of axioms in SigTh states Tarski’s axioms for axiomatizing
Euclidean geometry over the Euclidean fields (see [42]). From Tarski’s theorem
then Ax gets a Euclidean field F and an isomorphism between 〈F3,Bw,Ed〉 and
〈Space,Bw,Ed〉.

Having Space for our experimenter e, what is “time” for him? What are the
things that we mark with time? The events. And what are the events? In the present
vocabulary we take them to be “particle b emits/receives a signal σ”, more precisely
we take the equivalence classes of them described when we made the elbow-room
for this proof (e.g., particle b may send out signal σ in the same event when it sends
out another signal γ or when it receives γ ). Then our experimenter e’s time will be
the events that happened to e. For simplicity, we will represent events with special
signals, as explained below.

In the standard models, there are special signals that are received by everyone
who transmitted them, we call these signals events, we will denote them by variants
of ε:

Ev(ε) :⇔ ∀a aTε→ a R ε.

In the standard models, events are the light-like segments of zero length, so they
correspond to elements of F4. (These zero-length signals may look counter-intuitive
to some readers. It is just handy and not important that we use or have these at hand,
everything works with a slight modification if we omit these short signals from the
standard models.) We say that event ε happened to experimenter e, or in other words,
experimenter e participated in event ε, if e transmitted (and then also received) ε.
The events that happened to e will constitute e’s world-line.

We can then express simultaneity of events by using that the speeds of light-signals
are the same (see Fig. 6.1). Ax then states an axiom to the effect that signals make a
one-to-one correspondence between e’s world-line and the simultaneous events on
any given line in Space. This makes e’s world-line isomorphic to F, we take this
to be the time-axis.From now on it is more or less straightforward what we have to
include to SigTh in order to make M isomorphic to M(F). E.g., we can state that
for any event ε there is a simultaneous event ε′ on the world-line of e, and there
is a particle e′ that participates in ε′ and is motionless w.r.t. e. This concludes the
proof-idea.
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6.4 An Algorithm for Setting Up Coordinate Systems

The purpose of this section is twofold. Firstly, in Sect. 6.6 we want to give an
interpretation of SpecRel0 into SigTh, and for this we need concrete
formulas representing the proof-idea given in the previous section. For example, Ax
used Tarski’s theorem for getting the Euclidean field F, but we will need to exhibit
concrete formulas defining this F. Secondly, we want to make the previous proof-
idea into an algorithm for setting up coordinate systems (i.e., reference frames) with
the use of just light-signals and freely moving particles. This could also be viewed
as providing operational semantics to the basic notion of a coordinate system of
SpecRel.

What we give in this section will not be an algorithm in the strict sense, it will be
more like a recipe for how to design experiments/measurements for assigning coor-
dinates to events. These experiments will also be suitable for finding out/confirming
that we live in a special relativistic space-time (if we do). For this reason, we will try
to make the formulas “executable” when possible. There will be plenty of room for
improving on this aspect, the reader is invited to design more practical experiments.

Assume that we are given a model M of SigTh, and e is an experimenter in this
model. Just as in the previous section, this experimenter e is fixed throughout this
section. We are going to give e a recipe for defining a field F of quantities and for
assigning four quantities to each event. Such an assignment is called a coordinate
system (or reference frame). These coordinate systems will satisfy the axioms of
SpecRel0.

A location for e was defined as a particle that is motionless w.r.t. e. In the previous
section we recalled a formula, from [6], expressing whether e′ is motionless w.r.t.
e (in symbols, e′‖e). However, the algorithm suggested by that formula is not very
convenient since it involves deciding whether e meets e′ or not, and for this e has to
know all the events that happened and will happen to him. This is not very practical
as an experiment, since e may need to “wait” for an infinity of time before he could
know the result. Using the Affine Desargues Property (ADP for short, see, e.g., [17,
p. 20]) one can design a more realistic experiment which decides e′‖e “in a finite
time”, we are going to describe it now. We note that in the standard models M(F)
the ADP is true, because it is true in the affine space F4, for any field F.

For a while, it will be easier to think in 4-dimensional space-time than tracing
motion in 3-dimensional space. Geometrically, e′ is motionless w.r.t. e iff the world-
line of e′ is parallel to that of e. The conclusion of the ADP is that two lines are
parallel, but in the hypothesis part parallelism of two other sets of lines are used. We
are lucky: we have light-signals and their speeds are the same in both directions, thus
we can use parallelism of world-lines of two sets of light-signals in the hypothesis
part of the ADP. The experiment is depicted in geometrical form in the left-hand part
of Fig. 6.1. Here is the “non-geometrical” description of the experiment: Assume e
wants to decide whether e′ is motionless w.r.t. him or not. He asks a brother (another
experimenter) to throw towards him three “test” particles (“balls”) b1, b2, b3 at once
(in one event ε), b1 faster than b3 and b3 faster than b2 in such a way that when b1
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Fig. 6.1 On the left: Experiment for checking whether e′ is motionless w.r.t. e. In the middle:
Experiment to make sure that ε, ε′ are simultaneous w.r.t. e. On the right: Time-equidistance of
events ε1, . . . , ε4

meets e, the latter sends out a signal towards b2 that b2 reflects back and the reflected
signal reaches e just when b3 reaches e. (The brother and e have to experiment a
little while till finding the right velocities for such three particles.) After checking
that b1, b2, b3 have the desired property, e asks e′ to do the same: when b1 reaches
a′, he should send a signal towards b2 that reflects this signal back towards e′. If
the reflected signal reaches e′ just when b3 reaches e′, then e′ is motionless w.r.t. e;
otherwise e′ is not motionless w.r.t. e. It is best to imagine this experiment to take
place in outer space, far from heavy heavenly objects so that gravity and friction do
not bend the world-lines of the “balls”.4 From now on, we will use “locations” and
“places” as being particles/experimenters motionless w.r.t. our fixed experimenter e.

Two events ε, ε′ are defined to be simultaneous w.r.t. e iff there is a place e′
such that from e′ two signals can be sent at the same event towards the locations
of ε and ε′ respectively such that if these signals are sent back from ε and ε′ right
away, they will arrive back to e′ at the same event, see middle of Fig. 6.1. Formally:
ε ≡e ε′ :⇔ ∃e′‖e, σ1, . . . , σ4, ε1, ε2 Ev(ε1),Ev(ε2), (ε1, σ1, ε), (ε1, σ2, ε

′), (ε, σ3, ε2),

(ε′, σ4, ε2), e′Tε1, e′Tε2, where (ε, σ, γ ) means that ε, γ are the events of send-
ing and receiving σ , respectively, formally: (ε, σ, γ ) :⇔ (Beg(σ, ε),End(σ, γ ))
where Beg(σ, ε) expresses that σ, ε are sent out at the same event, formally:
Beg(σ, ε) :⇔ ∀b bTσ → bTε and a similar definition for End. (Note that if we
want a more experiment-friendly formula for Beg, then we can use the following:
Beg(σ, ε) ⇔ (∃b, c b �= c, bTσ, bTε, cTσ, cTε).) We even can provide instruc-
tions for where to look for such a place e′: it can be chosen to be the midpoint of the

4 Or, if we are content with more approximate measurements, we can imagine all this happening
on a big lake covered with smooth ice (but then we have to take space to be 2-dimensional).
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line-segment connecting the locations of ε and ε′. (We can use this experiment for
setting two clocks at the places of ε, ε′ which “tick simultaneously”).

We get an ordering on all the events from the fact that we send a signal earlier
than receiving it, namely ε is earlier than ε′ iff we can send a signal at ε to an event
from where it bounces back to ε′ (ε ≺ ε′ :⇔ [∃ε′′, σ1, σ2 (ε, σ1, ε

′′), (ε′′, σ2, ε
′)]).

For example, ε1 is earlier than ε2 in the middle part of Fig. 6.1. We note that, while
two events being simultaneous or not depends on which experimenter makes the
experiment deciding simultaneity, one event being earlier than another does not
depend on any experimenter.

Let’s see, what structure the set of events happening to e has. Let Timee denote
the world-line of e and let ε1, . . . , ε4 ∈ Timee. Besides the ordering, we also have
time-equidistance of events, since the speed of all signals is the same: the time
elapsed between ε1 and ε2 is the same as that between ε3 and ε4, iff there is a
place e′ to which we can send signals from ε1, ε2 resp., these bounce from e′ and
arrive back to e at ε3, ε4 respectively. See the right-hand part of Fig. 6.1. More pre-
cisely, this is the definition when ε1 ≺ ε3. When ε3 ≺ ε1, we get the definition
by interchanging the pairs ε1, ε2 and ε3, ε4. (Formally, Edte(ε1, ε2, ε3, ε4), ε1 ≺
ε3 :⇔ [∃e′‖e, σ1, . . . , σ4, ε, ε

′ Ev(ε),Ev(ε′), (ε1, σ1, ε), (ε, σ3, ε3), (ε2, σ2, ε
′),

(ε′, σ4, ε4), e′Tε, e′Tε′], and Edte(ε1, ε2, ε3, ε4), ε3 ≺ ε1 :⇔ Edte(ε3, ε4, ε1, ε2),

ε3 ≺ ε1.) Note that Edte(ε1, . . . , ε4) implies that ε1 happens earlier than ε2 iff
ε3 happens earlier than ε4. By using time-equidistance, we can define addition by
selecting a “zero” time o ∈ Timee as parameter, namely τ = τ1 + τ2 :⇔ +
(τ, τ1, τ2, a, o) :⇔ Edte(o, τ1, τ2, τ ). Now that we have addition, we do not stop
before having multiplication. For this we have to choose a unit time ι ∈ Timee,
distinct from o and happening later than o, as another parameter. For defining mul-
tiplication, we will need the collinearity relation on locations, we will get this by
noticing that the space-trajectories of signals are (3-dimensional) straight lines in
the standard models: Col(a1, a2, a3) iff exist signals σ1, σ2, σ3 and events ε1, ε2, ε3
such that (εi , σ1, ε j ), (ε j , σ2, εk), (εi , σ3, εk) and a1Tε1, a2Tε2, a3Tε3, for some
permutation i, j, k of 1, 2, 3.

We define τ1 � τ2 for the case when τ1 happened later than ι, and τ2 hap-
pened later than o. See the left-hand part of Fig. 6.2. (The other cases are simi-
lar, we leave them out.) Here is how we find out whether τ is τ1 � τ2: we find
two places b1 and b2 collinear with e and we find a particle p such that if b1
and b2 send towards e, simultaneously, at time zero, a light-signal and p, and
another light-signal and another particle q “with the same speed” as p, then these
four arrive (to e) at times ι, τ1, τ2, τ , respectively. Formally: τ = τ1 � τ2 :⇔ �

(τ, τ1, τ2, e, o, ι) :⇔ ∃b1‖e, b2‖e, ι′, τ ′2, σ1, σ2, p, q [Ev(ι′),Ev(τ ′2),Col(e, b1, b2),

o ≡e ι
′, o ≡e τ

′
2, b1Tι′, b2Tτ ′2, (ι′, σ1, ι), (τ

′
2, σ2, τ2), pTι′, pTτ1, qTτ ′2, qTτ, p‖q].

The reader will have noticed that the above definitions of addition and multipli-
cation on Timee are a special case of Hilbert’s coordinatization procedure, see e.g.,
[17, pp. 23–28] or [23, pp. 296–308].

By the above, we have a structure F(e, o, ι) = 〈Timee,+, �〉which is isomorphic
to our field F in the intended models M(F). We define the above structure to be
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Fig. 6.2 On the left: Experiment for computing τ1 � τ2. In the middle: distance between locations
e, b. On the right: Spatial coordinates of location b. In the picture, γx = δ(e, px). In this part points
represent (3-dimensional) locations, while in the previous pictures points represent (4-dimensional)
events

the field of quantities of our fixed experimenter e. We define the time-coordinate
of an arbitrary event ε as an element of this field, namely the unique event on e’s
world-line which is simultaneous with it (simultaneous according to e). Next, we
define three coordinates, three elements of this field, for each location b. From now
on, let Spacee denote the set of locations for e.

We begin by defining a geometric structure on Spacee, namely we will define
distance of locations, parallelism and orthogonality of (3-dimensional) spatial lines.

We define the distance of any two locations. Let b ∈ Spacee be arbitrary. We
define the distance of b from our fixed e as the event when a signal sent from
b at time zero arrives to e, see the middle part of Fig. 6.2. This definition cor-
responds to a convention that we measure spatial distances in light-years (if we
measure time in years). Having this, we get the distance between any two loca-
tions b1, b2 by measuring the distance between their parallel translated versions so
that b1 gets to e, i.e., δ(e, b) = ε :⇔ ∃ε′, σ [Ev(ε′), ε′ ≡e o, bTε′, (ε′, σ, ε), ε ∈
Timee], and δ(b1, b2) = ε :⇔ [ε = δ(e, b),pa(b1, b2, e, b),pa(b1, e, b2, b)]
where pa(b1, b2, b3, b4)means that the spatial lines defined by b1, b2 and b3, b4 are
parallel, we easily can express this by using the collinearity relation Col between
locations as defined earlier in this section.

We also need the orthogonality relation which is definable from the equidistance
of pairs of locations. We define orthogonality of two intersecting lines only. We
call the lines going through a, b and a, c orthogonal, if a �= b, a �= c and
there is a b′ �= b on the spatial line going through a, b such that the dis-
tances between a, b′ and a, b equal, and also those between c, b′ and c, b equal
(Ort(a, b, a, c) :⇔ ∃b′[Col(b′, a, b), δ(a, b′) = δ(a, b), δ(c, b′) = δ(c, b)]). By
now we defined a structure 〈Spacea,Col,pa,Ort〉 and we defined distance δ :
Space2

e −→ Timee.
Setting up a coordinate system needs three more parameters, the three space-axes.

Let ax, ay, az ∈ Spacee be such that e, ax, e, ay and e, az are pairwise orthogonal.
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We have everything for defining the usual spatial coordinates of the place b. See the
right-hand part of Fig. 6.2. The spatial coordinates of a location b are defined the
usual way by “projecting” b to the three coordinate axes, along lines parallel with
some of the axes, and measuring the distance of the projected points from the origin
(our experimenter e in our case). See the formula cor below.

We can now round up the definition of the coordinate system our experimenter e
is setting up. We already defined the time-coordinate of an event ε, and we define
the space-coordinates of ε to be the spatial coordinates just defined for the “location
of ε”, the latter being the unique particle participating in ε and motionless w.r.t. our
experimenter e. The formula cor(ε, τ, γx, γy, γz, e, o, ι, ax, ay, az) defined below
expresses that the coordinates of the event ε are τ, γx, γy, γz in the coordinate system
specified by e, o, ι, ax, ay, az .

cor(ε, τ, γx, γy, γz, e, o, ι, ax, ay, az) :⇔ ε ≡e τ, ∃b, px, py, pz ∈ Spacee[bTε,

pa(b, pz, e, az), pa(pz, px, e, ay),pa(pz, py, e, ax),Col(e, px, ax),Col(e, py, ay),

δ(pz, px) = γx, δ(pz, py) = γy, δ(b, pz) = γz .].

Since it can be proved that the associated coordinates are unique, we will also use
the functional form

cor(ε, e, o, ι, ax, ay, az) = (τ, γx, γy, γz) :⇔ cor(ε, τ, γx, γy, γz, e, o, ι, ax, ay, az).

By the above, we have defined coordinate systems to each particle e ∈ Par. Such
a coordinate system is defined by six parameters: e, o, ι, ax, ay, az . Before going
on, we show that the relativistic (or, in other words, Minkowski-) distance between
events can be defined in these coordinate systems. We call two events ε, ε′ time-like
separated iff there is a particle participating in both. For simplicity, we will define
relativistic distance between time-like separated events only. See Fig. 6.3.

The relativistic distance we are going to define will depend on experimenter e and
on the chosen zero o of its coordinate system. Let first ε � o be any event time-like
separated from o. Then μe,o(o, ε) = ξ iff there is an event ε′ which is simultaneous
with o both according to e and according to the unique observer participating in o, ε,
and there are signals from ε′ to ε and from ε′ to ξ , respectively. It can be checked that
in any standard model M(F), if o, ε, ξ are in the above described configuration, then
the “standard” Minkowski-distances between o, ε and o, ξ are the same.Conversely,
if these two distances agree then there exists an event ε′ as in Fig. 6.3. Let now
ε1, ε2 be any two time-like separated events, ε1 ≺ ε2. Then the relativistic distance
between ε1, ε2 is the same as that between the “parallel translations” o, ε of these,
where the “parallel translation” happens according to Fig. 6.3 (where for ε′′ it is
important only that it is connected to both o and to ε1 with a light-signal, e.g., it is
not important that o ≺ ε′′). If ε1 � ε2 then we define μe,o(ε1, ε2) = −μe,o(ε2, ε1).
We note that, while this relativistic distance strongly depends on the parameters e, o,
the relativistic equidistance relation we get from this does not depend on e, o any
more. So, let us define relativistic equidistance, or 4-equidistance, as
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Fig. 6.3 Relativistic distance ξ = μe,o(o, ε) = μe,o(ε1, ε2) between events ε1, ε2

Edr(ε1, ε2, ε3, ε4) :⇔ μe,o(ε1, ε2) = μe,o(ε3, ε4), for any e ∈ Par and event o

on e′s world-line.

Having defined the desired coordinate systems in SigTh, we conclude this section
with some remarks on what this method can give us, what it can be used for.

We asked earlier, in Sect. 6.3, where the paradigmatic effects—a-synchronicity,
time-dilation, length-contraction—of special relativity theory came into the picture
in Signalling theory. One answer is the following. We defined natural coordinate
systems to the particles. (These coordinate systems correspond to the observers
in SpecRel, this correspondence will be made explicit in Sect. 6.6.) Now, the
coordinate-transformations between these are so that the three paradigmatic effects of
special relativity (mentioned in Sect. 6.2) hold in a version where we can recalibrate
the units of measurement.

This section contains definitions only, definitions (with some parameters) in the
language of SigTh that in the standard models define coordinate systems for the
particles/experimenters. We can get an axiom system characterizing the standard
models (thus doing the job of SigTh) via using these definitions. Namely, we can
state as axioms that the coordinate systems defined for the experimenters have all
the good properties we want (e.g., the beginning and end-points of light-signals are
exactly those of the ordered segments of slope 1). This alternative axiom system
would be more complicated and less natural than SigTh of Ax [6], however, it would
be the result of a clear-cut method that can be used in many other situations, as
indicated below.

We can use the method of this section for exploring space-times other than the
special relativistic one, and for using signals of various different nature, too. We
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mention some examples briefly, we think that elaborating these examples would be
worthwhile.

We can use the method of setting up a coordinate system as described in this
section, for example, for a particle moving faster-than-light (FTL) in a special rel-
ativistic space-time. So, let us take as standard models the standard models M(F)
modified so that the particles are the lines with slope more than 1 (and not the ones
with slope less than 1). If we apply our method to these modified models, then the
FTL experimenter e will find that its space Spacee is a 3-dimensional Minkowski-
space MS := 〈F3,Bw,Edr〉, and not a Euclidean space 〈F3,Bw,Ed〉. He can
reach by signals directly, and check whether they are motionless w.r.t. him, only those
places/brothers that are time-like separated from him in terms of MS, but he can get
indirect information about the rest of places by communicating with these primarily
reachable brothers. By working through the details, we can get an axiom system
SigTh

ftl axiomatizing the signalling models of FTL experimenters that would be
quite analogous to Ax’s SigTh. The main difference would be that the first group of
axioms for 3-dimensional Euclidean space would be replaced by an analogous axiom
system for 3-dimensional Minkowski space. For this we can use the one devised by
Goldblatt in [17, Appendix A]. For a slightly different approach for including FTL
observers in this setting see [20].

However, communicating with directed signals (as in SigTh) between FTL exper-
imenters is rather restricted if we want to take the experiments to be executable (FTL
experimenters can get information this way only about the part of their space MS
which is in their “past” in terms of MS as a Minkowski-space). We can change the
nature of signals to be undirected (but otherwise letting their speed to be 1), imag-
ining that if two events are connected with a signal, then the information this signal
carries appears at both events “at once”. This is connected somehow to time-travel, a
subject strongly connected to FTL motion. The method given in the present section
is suitable for exploring space-time with undirected signals, too.

The method given in this section can also be used for giving meaning to two-
dimensional time. Time being 2-dimensional could simply mean that the events
happening with the experimenters can be best described by, say, the structure 〈F2,≺〉.
For example, one could assume that our experimenter lives in a world characterized

by the 2+2-dimensional Minkowski-metric
√

t2
1 + t2

2 − x2 − y2 and then apply our
method to see what kind of coordinate system he would set up for himself, and in
general, what kind of responses he would get to his experiments.

Finally, we can imagine using signals of infinite velocity, this way we can explore
the Newtonian space-time characterized by absolute time. Or, we can use bent signals
of general relativity. For example, we can explore the outer part of the Schwarzshild
black hole (the space-time outside the event horizon) with the same method. We
would take as experimenters a team of densely placed suspended observers (space-
ships in outer space using their drives to maintain their desired positions), constantly
checking positions by communicating with photons (as light-signals), and using
freely-falling spaceships (or astronauts) as messengers.
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6.5 Defining New Entities, Interpretations

Our aim is to clarify the connections between SpecRel and SigTh. Not only the
vocabularies of these two theories are disjoint, even on the intuitive level they speak of
different kinds of things. We can see that somehow photons and observers of SpecRel

correspond to signals and particles of SigTh, but what correspond to quantities in
SigTh? Quantities of SpecRel do not seem to enter the picture in SigTh. Yet, in
Sect. 6.4 we defined something that intuitively could correspond to quantities in
SigTh. In this section we recall some tools from mathematical definability theory
by which we can make explicit the way quantities arise in SigTh.

We briefly recall the tools that we will use in the next section for making connec-
tions between theories for special relativity in a very precise sense. We elaborated
these tools in [1, 23] for the specific purpose of establishing a strong connection
between two versions of special relativity theory, the so-called observer-independent
geometrical and the reference-frame oriented ones. We only recall the syntactic form
to be used in specifying a concrete interpretation together with some background intu-
ition. We elaborated a more extensive definability theory for this kind of connecting
theories that we do not recall here. We will say some words about it at the end of this
section. For simplicity, we will treat function symbols as special relation symbols.

In “traditional”, one-sorted definability theory, an interpretation of a theory Th′
in language L ′ into a theory Th in another language L is the following. For each
n-place relation symbol R of L ′ we assign a formula ϕR of L with at most n free
variables. (We think of ϕR as the “definition of R” in L .) This then defines a natural
translation function tr : L ′ −→ L by replacing each atomic formula R(v1, . . . , vn)

with ϕR(v1, . . . , vn). This is an interpretation of L ′ into L . This interpretation is
an interpretation of Th′ into Th iff Th proves the translated theory Th′, i.e.,

� Th |= tr(ψ) whenever Th′ |= ψ, for all ψ ∈ L ′.

On the semantic side, an interpretation of Th′ into Th “constructs” a model of Th′
inside each model of Th. Namely, it associates a model tr(M) of L ′ to each model
M of L in such a way that the universe of tr(M) is the same as that of M, and for
each assignment k of the variables into this universe we have

�� tr(M) |= ψ[k] if and only if M |= tr(ψ)[k], for each formula ψ in L ′.

In the new, “non-traditional” or “generalized” definability theory we will use a
notion of interpretation that does the same thing, except that the universe of tr(M)

will not necessarily be a subset of the universe of M, therefore its definition and the
property analogous to (��) above will be more involved. We will define new entities
as elements of new “sorts”. Using many-sorted FOL is not an essential feature of
this generalized definability theory, just it is convenient in many cases, as it is in our
present task.
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We illustrate the idea of defining new sorts with a simple example. The language
of affine planes in, e.g., [17] is two-sorted, we have two sorts Points,Lines and we
have a binary relation between them, the relation I of incidence (or membership)
between a point and a line. Another language in use for the same is one-sorted,
see, e.g., [43], we have one sort Points and we have a three-place relation Col of
“collinearity” between three points. Everyone can connect the two ways of thinking
about affine planes immediately: a line is the set of all points collinear with given
two distinct points. Thus a line � is a subset of the old universe, given two distinct
points p, q the line � going through them is defined by

�(p, q) := {x : Col(x, p, q)}.

But the new sort Lines stands for the set of all these subsets! We can specify one line
with the open formula Col(x, p, q) with one free variable x, but how can we define
the set of all lines? Well, we will define the set of the parameters p, q specifying the
individual lines: we identify the set of all lines with the set of pairs of distinct points.
Thus the formula defining the new sort Lines will have two free variables p, q and
it will state p �= q. We are almost there, except that different pairs of distinct points
may specify the same line, and we have to take this into account when talking about
equality of lines, i.e., when interpreting the equality symbol on the sort Lines. We
can do this again with a formula using 4 free variables p, q, p′, q ′ stating when the
lines specified by p, q and p′, q ′ coincide. In our case this formula can be taken to
be Col(p′, p, q) ∧ Col(q ′, p, q).

So far we have defined the universe of the new sort Lines and the equality relation
of this new sort by two formulas in the “old” language, i.e., in the language talking
about Points and Col. Having defined a universe means that we have variables
ranging over this universe (and we can quantify over them). In other words, we have
to introduce variables Var(Lines) of sort Lines. Then, in order to be able to use
the definition of the new sort Lines, we need to connect Var(Lines) to variables
used in the definition for Lines, i.e., to Var(Points). We can state this connection by
matching a variable � of sort Lines with variables denoting its “defining parameters”,
e.g., we can state that �p, �q denote parameters that define �. After this we can define
the incidence relation, too: I (x, �) :⇔ Col(x, �p, �q), where x is a variable of sort
Points and � is a variable of sort Lines.

Summing up: defining the new sort Lines goes by defining the variables
Var(Lines) of the new sort and matching them to the variables of the old sort
Var(Points) occurring in the defining formula of the sort Lines, defining the equality
on the sort Lines, and defining the non-logical symbol of incidence I which involves
the sort Lines. Thus we can interpret the 2-sorted language of affine planes into the
one-sorted one by the following data:
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var : � �→ 〈�p, �q〉 for � ∈ Var(Lines),

Lines(�) :⇔ �p �= �q ,

� = h :⇔ Col(�p, h p, hq),Col(�q , h p, hq),

I (x, �) :⇔ Col(x, �p, �q).

The above data then define a translation function tr from the 2-sorted language of
affine planes to their one-sorted language as follows:

tr(∃�ψ) := ∃�p, �q �p �= �q , tr(ψ),

tr(� = h) := Col(�p, h p, hq),Col(�q , h p, hq),

tr(I (x, �)) := Col(x, �p, �q),

the rest of the definition of tr is more or less straightforward.

The new feature in this translation function, over the traditional one, is that we
translate the quantifiers according to the defining formula and variable-matching of
the new sort and we translate equality on the new sort, too. Throughout, we will use
the above variable matching var : � �→ 〈�p, �q〉 without recalling it.

This translation is not only recursive and structural, it is also meaning preserving
in the sense analogous to (��). In more detail: let M = 〈P,Col〉 be a model of
the one-sorted language. We will construct its “translation”, a model tr(M) of the
two-sorted language. Let

U := {〈x, y〉 ∈ P × P : x �= y}, and let E ⊆ U ×U be defined by

E := {〈u, v〉 ∈ U ×U : Col(u1, v1, v2),Col(u2, v1, v2)}.

Assume that E is an equivalence relation on U , then define

tr(M) := 〈P, L , I 〉 where

L := U/E and

I := {〈x, u〉 ∈ P × L : Col(x, v1, v2) for some v ∈ u/E}.

Let VarP ,VarL denote the sets of variables in the 2-sorted language of the affine
planes and let Var′P := VarP ∪ (VarL × {1}) ∪ (VarL × {2}) be the variables of
the one-sorted language. Now, let k : VarP ∪ VarL −→ tr(M) be any evaluation of
the variables of the 2-sorted language, and let tr(k) : Var′P −→M be an evaluation
of the variables of the one-sorted language such that tr(k)(x) = k(x) if x ∈ VarP ,
and if � ∈ VarL then 〈tr(k)(�, 1), tr(k)(�, 2)〉 is an arbitrary element of k(�). Then
the following is true for each formula ψ of the 2-sorted language:

(��′) tr(M) |= ψ[k] if and only if M |= tr(ψ)[tr(k)].



6 Comparing Theories: The Dynamics of Changing Vocabulary 161

The above (��′) expresses that the translation function preserves meaning when we
talk about the 2-sorted model constructed inside the one-sorted model.

Now, such a translation tr is an interpretation from Th′ into Th iff, just as before,

(�′) Th |= tr(ψ) whenever Th′ |= ψ, for all ψ ∈ L ′.

Definitional equivalence of theories Th′,Th in different languages L ′,L is a
strong connection between them, much stronger than mutual interpretability requir-
ing that the two interpretations be inverses of each other, up to isomorphism. (Cf.
[23, Ex. 4.3.46, p. 266]).

Two theories Th′ and Th are said to be definitionally equivalent if they have a
common definitional extension. Here, two theories are said to be the same if they
prove the same formulas. But what is a definitional extension? In the one-sorted
case, definitional extension of Th is Th ∪ Δ where Δ is a union of definitions of
the form Δ(R) := {R(v1, . . . , vn)↔ ϕR(v1, . . . , vn)} with ϕR as above (�) (see,
e.g., [19, pp. 60–61]). For telling what definitional extension is in the many-sorted
case, we return to our previous example of defining the sort Lines. Let us write
δ(p, q) and ε(p, q, p′, q ′) for p �= q and Col(p′, p, q),Col(q ′, p, q) respectively,
for the formulas defining the “domain” and the “equality” on the new sort Lines.
The explicit definition of the sort Lines will also involve a new relation π fixing the
connection of the new sort to the old ones. Now,Δ(Lines, π) is defined to be the set
of the following sentences

∃p, q (π(p, q, �), π(p, q, �′))↔ � = �′,
∃� (π(p, q, �), π(p′, q ′, �))↔ ε(p, q, p′, q ′),
∃� (π(p, q, �))↔ δ(p, q).

We note that the intuitive meaning of π(p, q, �) is that “p, q are distinct points
lying on �”, or, “p, q code, or represent, line �”. So far it was the variable match-
ing that played this role and, intuitively, π(p′, q ′, �) is an explicit way of saying
ε(p′, q ′, �p, �q).

After having defined the new sort Lines, the definition Δ(I ) of the incidence
relation is the same as in the one-sorted case:

I (p, �)↔ ∃p′, q ′ (π(p′, q ′, �),Col(p, p′, q ′)).

Now, Th ∪ Δ(Lines, π) ∪ Δ(I ) is a definitional extension of Th, where Th is the
“one-sorted” theory of affine planes. A definitional extension of any theory Th is
Th ∪ Δ where Δ is a union of definitions of the above form. Instead of describing
the above in more detail, we refer to [1], [23, Sect. 4.3], [2, Sect. 6.3] where many
examples can also be found.

The notion of definitional equivalence is important for our purposes, and we
believe that it is an important one in understanding how we form our concepts. We
try to illustrate this with an example. We will see that the theory EFd of Euclidean
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fields and the theory SigTh of special relativity are mutually interpretable into each
other. However, they are not definitionally equivalent.5 Namely, SigTh and EFd

cannot have a common definitional extension because of the following two reasons.
(i) SigTh has to be an “information-losing” reduct of any definitional extension of
EFd, and (ii) any theory is an “information-preserving” reduct of any of its own
definitional extensions. We note that (ii) holds because the very idea of “definitional
extension” is an extension based on “information” contained in the unextended the-
ory; thus by forgetting this extra structure we lose nothing, we can recover it from
the unextended theory. We explain (i): In a definitional extension of EFd of which
SigTh is a reduct, we will define the new sort Par of experimenters together with
a projection function πP which ties the behavior of Par to EFd. Such a projec-
tion function will single out the experimenter whose world-line is the time-axis, in
other words, we can single out “the” motionless experimenter.6 Absolute motion!
However, the essence of relativity theory is that motion is relative. This is formalized
in the so called Special Principle of Relativity, which states that all the experimenters
are equivalent, we cannot tell which one is motionless and which one moves. Indeed,
any experimenter can be taken to any other experimenter by an automorphism, in any
model of SigTh. Thus, when making the reduct of a definitional extension of EFd

in order to obtain SigTh, we have to forget πP , otherwise we do not get the right
concept of experimenter. This is “information-loss” since we cannot recoverπP from
SigTh. This shows that “forgetting” is an important part in forming the concept of
experimenter in this case. “Less is more” in this case. Definitional equivalence keeps
track of these kinds of “forgetting”, while mutual interpretability may not do this.

We conclude this section with a few words about interpretations. We already
wrote about the philosophical importance of interpretations between theories in the
introduction. Here we write about more technical aspects. An interpretation tr from
theory Th′ to Th is a connection between them, and this connection imports some
properties of one theory to the other. For example, if Th is consistent, then Th′ is also
consistent. If tr is faithful and Th′ is undecidable, then Th is also undecidable, and
if Th′ and Th are mutually interpretable in each other, then an axiom system for Th
can be imported to Th′ via any two mutual interpretations. Definitional equivalence
induces a strong duality between Th′ and Th. For these kinds of application of
interpretations see, e.g., [15, 23, 28, 41]. The present chapter intends to show the
usefulness of interpretations in physical theories, e.g., defining operational semantics
for a physical theory. We note that definability theory is quite extensively used in
geometry, see, e.g., [17, Appendix B], [28–30, 43].

Versions of the general interpretability we use in this chapter appeared in various
different forms as early as in 1969, see [10, 19, 25–27, 31, 37]. Almost all of these
works use a syntactic device similar to ours, let’s call it explicit definitions, but

5 Similar observations apply to a slight variant SpecRel0 +Compl of SpecRel in place of SigTh

(cf. Theorem 6.2 in Sect. 6.7). This can be extended to the Newtonian theory in [2, Sect. 4.1, p. 423].
6 The easiest way of making this precise is that there are fields with no automorphisms at all, e.g., the
field of real numbers, and this means that the structure 〈Par, πP ,EFd〉will have no automorphism,
either.
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they all elaborate on different semantical aspects of this general definability. For
example, [10] characterizes when a functor of a given form is the semantical part
of an interpretation. Makkai [27], Makkai and Reyes [25] recast model theory in a
categorical form, where both the syntactical and semantical parts of an interpretation
are functors between pretoposes, and it is proved that both functors are equivalences
when one is. This theorem is called a conceptual completeness theorem. For the
model theoretical forms, meaning and impacts of this completeness theorem we
refer to [18]. (We refer specifically to [18, Sect. 6, item (3)] for connections with the
notion of general interpretability.) In [1, 23], it is shown that our form of explicit
definitions outlined in this section is not ad hoc in the sense that any sensible definition
can be brought to this form. Namely, a notion of implicit definability suggests itself
as a necessary condition for these new entities to be called “defined”, see, e.g.,
[23, Sect. 4.3.1] and [19]. An analogue of the Beth definability theorem ([23, Sect.
4.3.48]) states that if a sort of new elements is implicitly definable, then it is explicitly
definable, too. We note that the powerset of the universe of an infinite model is not
implicitly definable in the sense of [23, Sect. 4.3.1], while, say, the set of two-element
subsets of it is implicitly (and thus also explicitly) definable.

We hope that the content of this section is enough to give us a guiding intuition
for what comes in the rest of this chapter.

6.6 Reducing SpecRel to Signalling Theory: An Interpretation

In this section we define in detail an interpretation of SpecRel0 in SigTh. We have
to define (over SigTh) the new sorts Q and B, and the new operations and relations
+, �,Obs,Ph,W that involve these new sorts.

We begin with defining the new sort Q. In Sect. 6.4 we already defined a field
F(e, o, ι), that will provide the definition to our new sort Q and to+, �. However, that
definition had three parameters e, o, ι (the particle who was setting up his coordinate
system, the “beginning of the era”, and duration of one year). Up to isomorphism, we
get the same field no matter how we choose these 3 parameters, but their universes
strongly depend on the parameters (namely, the universe of F(e, o, ι) is the set of
events on e’s world-line). Which one should we take as the set of elements of sort
Q? The answer is: take neither one, take all of them! Intuitively, this means that we
take the disjoint union of all the fields belonging to the different parameters, and
then we define an equivalence relation on this set that relates the isomorphic images
of the same element. For this, in our explicit definition of the quantity sort we need
a uniform formula that defines the isomorphisms between the fields F(e, o, ι). One
such formula is given in [23, p. 305]. Here we give a simpler formula defining the
isomorphisms between the various incarnations of our field. We can give this simpler
formula because relativistic equidistance is available for us, while [23] used only the
betweenness relation.
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Fig. 6.4 The isomorphism ϕiso(e, o, ι, e′, o′, ι′) between F(e, o, ι) and F(e′, o′, ι′)

We are going to define the isomorphisms sought for between the fields F(e, o, ι).
See Fig. 6.4. Let e, o, ι, e′, o′, ι′ be suitable parameters for defining the fields (as in
Sect. 6.4). The isomorphism between them will take o to o′, ι to ι′ and it will take an
arbitrary ξ on the world-line of e to ξ ′ := ξ ′′/ι′′where ξ ′′, ι′′ are events on e′’s world-
line such that Edr(ξ, o, ξ ′′, o′) and Edr(ι, o, ι′′, o′), further / denotes the division
operation of the field belonging to e′, o′, ι′. Let ϕiso(ξ, ξ

′, e, o, ι, e′, o′, ι′) denote the
formula expressing the above. We denote the isomorphism as ϕiso(e, o, ι, e′, o′, ι′),
and we denote the unique ξ with the property ϕiso(ξ, ξ

′, e, o, ι, e′, o′, ι′) as ξ =
ϕiso(ξ

′, e, o, ι, e′, o′, ι′).
Let Fp(e, o, ι) express that e, o, ι are appropriate parameters for a field F(e, o, ι),

let U be the disjoint union of the universes of all the fields F(e, o, ι), and let E denote
the binary relation relating isomorphic elements, i.e.,

Fp(e, o, ι) :⇔ Ev(o),Ev(ι), o �= ι, o ≺ ι, eTo, eTι,

U := {〈ξ, e, o, ι〉 : Fp(e, o, ι), ξ ∈ F(e, o, ι)},
E := {〈(ξ, e, o, ι), (ξ ′, e′, o′, ι′)〉 : ϕiso(ξ, ξ

′, e, o, ι, e′, o′, ι′)}.

It can be shown that E is an equivalence relation on U , in each standard model
of SigTh. Our quantity sort will be U/E .

Recall that we are in the process of defining SpecRel0 over SigTh.
We are ready to define the quantity sort Q explicitly, by using the tools we intro-

duced in the previous section. If q is a variable of the (new) sort Q, then qξ , qe, qo, qι
denote the corresponding variables of the (old) sorts Sig and Par. We can think of
this variable matching as q denotes an equivalence block of E (i.e., an element of
U/E), and 〈qξ , qe, qo, qι〉 denotes an arbitrary (unknown) element in the equivalence
block q. Intuitively, q denotes an “abstract” quantity, and ϕiso(qξ , qe, qo, qι, e, o, ι)
is the corresponding “concrete” quantity in the field F(e, o, ι). Let us denote this last
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thing as

rep(q, e, o, ι) := ϕiso(qξ , e, o, ι, qe, qo, qι).

This situation is somewhat analogous to the concept of a manifold in general relativity
theory, the elements of the manifold are the “observer-independent” entities, and the
charts/observers associate concrete values to these. Below comes the definition of
the sort Q:

var : q �→ 〈qξ , qe, qo, qι〉 for q ∈ VarQ.

Q(q) :⇔ qeTqξ ,Ev(qξ ),Fp(qe, qo, qι),

q = q ′ :⇔ ϕiso(qξ , q ′ξ , qe, qo, qι, q ′e, q ′o, q ′ι ).

Note that this definition of the sort Q is analogous to the one given for the new sort
Lines in the example of affine planes in the previous section.

We get the definitions for +, � from writing up the definitions given in Sect. 6.4,
as follows. Recall the formula +(τ, τ1, τ2, e, o) from Sect. 6.4.

Now, here is the definition of addition of sort Q:

+(q, q1, q2) :=
+(qξ , ϕiso(q1ξ , qe, qo, qι, q1e, q1o, q1ι), ϕiso(q2ξ , qe, qo, qι, q2e, q2o, q2ι), qe, qo).

The formula defining multiplication of sort Q is obtained analogously.
The rest of this section (interpreting SpecRel0 in SigTh) will be relatively

straightforward.
We turn to defining the sort B. We will define the sort B of bodies as the union

of observers and photons. So first we define the entities that we will call photons.
A photon will be defined just as a signal σ that is not an event. The world-line of
this photon will be defined as the set of all events that lie on the 4-dimensional line
defined by the beginning and end points of σ . This way, many photons will share
the same world-line, just as in the case of affine planes many pairs of distinct points
define the same line, and we will define two photons to be equal if they share the same
world-line. An observer will be defined to be a coordinate system. We recall from
Sect. 6.4 that six parameters are required for defining a coordinate system, namely the
experimenter e, a “zero” o and a time-unit ι, and three locations ax, ay, az specifying
the space coordinate axes. These parameters have to satisfy the conditions below,
which we will denote by Op (Op refers to “observer parameters”):

Op(e, o, ι, ax, ay, az) :⇔ Fp(e, o, ι), e‖ax, e‖ay, e‖az,Ort(e, ax, e, ay),

Ort(e, ax, e, az),Ort(e, ay, e, az).

Two observers will be defined equal if they assign the same coordinates to all events.
We are ready to formalize these definitions by using the tools we introduced in

Sect. 6.5. Let VarB denote the set of variables of sort B. If b is a variable of sort B,
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then bσ , be, bo, bι, bx, by, bz will denote the corresponding variables of “old” sorts.
Intuitively, this body will be bσ if this is a “real”, non-degenerate signal (i.e., if bσ is
not an event), and if bσ is “degenerate” (i.e., if it is an event), then the body b will be
the observer 〈be, bo, bι, bx, by, bz〉. We are ready to define the new sort B together
with the unary formulas Ph(b) and Obs(b):

var : b �→ 〈bσ , be, bo, bι, bx, by, bz〉 for b ∈ VarB.

Ph(b) :⇔ ¬Ev(bσ ),

Obs(b) :⇔ Ev(bσ ),Op(be, bo, bι, bx, by, bz),

B(b) :⇔ Ph(b) ∨Obs(b),

We are going now to define the equality relation on this new sort B. For stating equality
of photons, first we express that three events are on one light-like line (λ(ε1, ε2, ε3)),
then we express that an event is on the world-line of a signal (wl(ε, σ )).

λ(ε1, ε2, ε3) :⇔
∧
{∃σ [(εi , σ, ε j ) ∨ (ε j , σ, εi )] : i, j ∈ {1, 2, 3}},

wl(ε, σ ) :⇔ ∃ε1, ε2 λ(ε, ε1, ε2),Beg(σ, ε1),End(σ, ε2).

Recall from Sect. 6.4 that the formula cor(ε, e, o, ι, ax, ay, az) = (τ, γx, γy, γz)

expresses that the coordinates of the event ε are τ, γx, γy, γz , in the coordinate system
specified by e, o, ι, ax, ay, az .

b = b′ :⇔
(¬Ev(bσ ),¬Ev(b′σ ),∀εwl(ε, bσ )↔ wl(ε, b′σ ))∨
(Ev(bσ ),Ev(b′σ ),∀ε cor(ε, be, bo, bι, bx, by, bz) = cor(ε, b′e, b′o, b′ι, b′x, b′y, b′z)).

It remains to define the world-view relation W. The intuitive meaning of the
formula W(m, b, t,x, y, z) will be that m is an observer, and the event at place
t,x, y, z in m’s coordinate system is on the world-line of b. Let m, b be variables
of sort B and let t,x, y, z be variables of sort Q. Assume that m is an observer, i.e.,
Ev(mσ ). Let us denote the concrete value of an abstract quantity q in m’s coordinate
system by

m(q) := rep(q,me,mo,mι).

We can now define W as follows:

W(m, b, t,x, y, z) :⇔ ∃ε cor(ε,m(t),m(x),m(y),m(z),me,mo,mι,mx,my,mz),

(¬Ev(bσ )→ wl(ε, bσ )), (Ev(bσ )→ beTε),Ev(mσ ).

By the above, we gave definitions for all the sort and relation symbols of the
language of SpecRel in the language of SigTh. This defines a translation function tr
between the two languages. Let=Q and=B stand for the equality relations between
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terms of sort Q and B, respectively. In the next theorem we state, without proof, that
we indeed obtained an interpretation.

Theorem 6.1 tr as given in this section is an interpretation of SpecRel0 into SigTh,
that is, the following are true:

SigTh |= “=Q and =B are equivalence relations”,

SigTh |= “the formulas defining +, �,Ph,Obs,W are invariant under =Q,=B”,

SigTh |= tr(ψ) f or all ψ ∈ SpecRel0.

Having defined the desired interpretation of SpecRel0 into SigTh, in the next
section we extend this interpretation to a definitional equivalence between a slightly
stronger version of SpecRel0 and SigTh.

6.7 Definitional Equivalence Between SpecRel
and Signalling Theory

In this section we investigate interpretability and definitional equivalence between
some of the FOL theories formalizing special relativity. We show that a slightly rein-
forced version of SpecRel0 is definitionally equivalent to SigTh. We mean inter-
pretability and definitional equivalence in the sense of the generalized definability
theory of Andréka et al. [1, 2], Madarász [23] outlined in Sect. 6.5.

The interpreted theory tr(SpecRel0) is stronger than the original one in the sense
that there are sentences ψ in the language of SpecRel0 such that SigTh |= tr(ψ)
while SpecRel0 �|= ψ . Such a sentence is, e.g., “all lines of slope less than 1 are
world-lines of observers”. We can express exactly how much more is true in the
translated models by amending SpecRel0 with some existence, extensionality, and
time-orientation axioms (see below) and showing that the so obtained theory is
definitionally equivalent with SigTh. This is what we are going to do now.

The formulas describing the “difference” between SpecRel0 and SigTh are as
follows. Formulas expressing that we have all kinds of possible observers (from
each point, in each direction, for each velocity less than the speed of light there is an
observer moving in that direction with that speed, each observer can re-coordinatize
its coordinate-system with any space-isometry, each observer can set the unit of its
clock arbitrarily), and otherwise we are as economic as possible (at most one photon
through any two distinct events, only one observer with the same coordinate-system,
only photons and observers as bodies, only one time-orientation for each observer).

These additional axioms, except the one about setting the clocks, are denoted as
AxThEx, AxCoord, AxExtOb, AxExtPh, AxNobody, Ax↑ in [3, Sect. 2.5]. Let
AxClock formulate that each observer can set the unit of its clock arbitrarily (in
the spirit of the above axioms). Let Compl denote the set of these axioms and let
SpecRel

+
0 denote the theory SpecRel0 amended with these formulas:
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Compl := {AxThEx,AxCoord,AxClock,AxExtOb,AxExtPh,AxNobody,Ax↑},
SpecRel

+
0 := SpecRel0 + Compl.

To state definitional equivalence between SpecRel
+
0 and SigTh, we now define an

interpretation Tr of SigTh into SpecRel
+
0 . We have to define the universes Par,Sig

of particles and signals and the relations T, R of transmitting and receiving, inside
SpecRel0. Intuitively, particles are defined to be observers, with two particles being
equal if their world-lines coincide:

var : a �→ ab for a ∈ VarPar,where ab ∈ VarB.

Par(a) :⇔ Obs(ab),

a = a′ :⇔ ∀t,x, y, z W(a, a′, t,x, y, z)↔ x = y = z = 0.

Signals are defined to be photons with two events on their world-lines representing
the beginning and end-points of the signal. We represent the two events with observers
meeting the photon. The following formulae express in SpecRel0 that “in b’s world-
view, p meets a at time t”, and “a, p, e meet in one event”, respectively:

Meet(b, p, a, t) :⇔ ∃x, y, z W(b, p, t,x, y, z),W(b, a, t,x, y, z),

meet(a, p, e) :⇔ ∃b, t Meet(b, a, p, t),Meet(b, a, e, t).

Now we are ready to interpret signals in SpecRel0:

var : σ �→ 〈σb, σp, σe〉 for σ ∈ VarSig,whereσb, σp, σe ∈ VarB.

Sig(σ ) :⇔ Ph(σp),Obs(σb),Obs(σe), ∃t ≤ t ′Meet(σb, σp, σb, t),Meet(σb, σp, σe, t ′).
σ = σ ′ :⇔ meet(σb, σ

′
b, σp),meet(σe, σ

′
e, σp),¬meet(σb, σp, σe)→ σp = σ ′p.

Finally,

aTσ :⇔ meet(ab, σb, σp),

a R σ :⇔ meet(ab, σe, σp).

The above define a translation function Tr as indicated in Sect. 6.5. We state in
the next theorem, without proof, that this Tr interprets SigTh in SpecRel

+
0 , and

moreover, together with the interpretation tr defined in the previous section it forms
a definitional equivalence between SpecRel

+
0 and SigTh. This is the main theorem

of this chapter.

Theorem 6.2 SigTh is definitionally equivalent to SpecRel0 + Compl, the pair
tr,Tr of interpretations forms a definitional equivalence between them.

We can read the above theorem as saying that what the theory SigTh tells about
special relativity is exactly what the theory SpecRel0 + Compl says. Since no
axiom in Compl follows from SpecRel0, we can conclude that SigTh tells more
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than SpecRel0, the amount of “more” is exactly Compl. However, we did not include
the axioms of Compl into SpecRel, because we do not need them in proving the
main predictions of relativity theory; we feel that they do not belong to the core of
the physical theory. Moreover, of the axioms of Compl, we consider only Ax↑ as
having a physically (or even philosophically) relevant content, namely it says that
“time is oriented”.

On the other hand, we will see that SpecRel has a content that SigTh does not
say about special relativity theory. This is the axiom AxSym of SpecRel. So, what
is the connection between AxSym and SigTh? Below we answer this question.

The interpretation tr we defined in the previous section does not interpret SpecRel

in SigTh, because tr(AxSym) does not follow from SigTh (i.e., it is not true in the
standard models M(F) of SigTh).7 The reason for this is the following. AxSym
states that any two observers use the same units of measurement. We can express in
the language of SigTh that “two observers use the same units of measurement”, and
this defines an equivalence relation on the set of all observers. For AxSym to be true,
we should select any one of the blocks of this equivalence relation (since AxSym
states that any two observers use the same units of measurements). But which one
should we select? The question might sound familiar. In the previous analogous case
(that concerned the various incarnations F(e, o, ι) of the field F) we took all the
classes “up to isomorphism”. However, in the present case there are no definable
bijections between the blocks of this equivalence relation.

We can get around this problem by adding to the models M(F) of SigTh a “unit of
measurement”. We can do this, e.g., the following way. We add a new basic two-place
relation symbol Tu (short for “Time unit”) of sort Sig to the language of Signalling
theory. In each standard model M(F) we interpret Tu as the set of pairs of events
with Minkowski-distance 1. (We note that these relations are not definable in M(F)
in the language of Signalling theory.) Let us denote the so expanded standard models
by M(F)+, and let SigTh

+ denote an axiom system for their theory (in the extended
language). Now, the interpretation we gave in this section can be extended to interpret
SpecRel in SigTh

+. Moreover, it also can be made into a definitional equivalence
between a stronger version of SpecRel and SigTh

+, that we obtain from SpecRel
+
0

by exchanging AxClock with AxSym:

Compl
− := {AxThEx,AxCoord,AxExtOb,AxExtPh,AxNobody,Ax↑},

To our minds, the following theorem clarifies the connection between AxSym
and SigTh. It says that the content of AxSym is to set the time-unit: the difference
between SigTh

+ and SigTh is that in SigTh
+ we can express Minkowski-distance,

while in SigTh we have only Minkowski equidistance.

Theorem 6.3 (i) SigTh
+ is definitionally equivalent to SpecRel+ Compl

−.
(ii) SigTh

+ is not definitionally equivalent to SigTh.

7 We note that SpecRel can be interpreted in SigTh in the way that we interpret SpecRel in the
field Q,+, �.
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The proof of part (i) of the above theorem goes by extending the interpretation
Tr to SigTh

+, this amounts to defining the new relation Tu in SpecRel; and also
making some (minor) changes in the definition of tr. The proof of part (ii) of the above
theorem goes by showing that the automorphism groups of members of SigTh and
SigTh

+ differ from each other, this technique is elaborated in, e.g., [19, 23].
We included AxSym into SpecRel as a tool for convenience, it seems to carry

no philosophical or physical importance. AxSym is only a simplifying assumption.
Concerning some of the other theories for special relativity, we mention that SigTh

is definitionally equivalent to Goldblatt’s theory for special relativity
in [17, Appendix A] amended with time-orientation. I.e., the two theories are almost
the same, the only difference is that SigTh assumes time-orientation while Gold-
blatt’s theory does not. The proof of this last statement can be put together from the
definitions and ideas in Sects. 6.4 and 6.6. Also, (a slight variant of) our SpecRel is
definitionally equivalent to (a slight variant of) Suppes’s axiomatization of special
relativity in [34, 35].

6.8 Conclusion

We intended to show in this chapter some results the methods of mathematical logic
can provide for other branches of science, in particular, for physics and the methodol-
ogy of science. Using the tools of definability theory of first-order logic, we compared
in detail two rather different axiom systems for special relativity theory. One of these,
SpecRel of Andréka et al. [5], is coordinate-system-, or reference frame-oriented,
while the other, SigTh of James Ax [6], uses meager resources and talks about par-
ticles emitting and absorbing signals. The two theories use disjoint languages and
talk about different kinds of entities. Yet, a precise comparison was made possible
by using mathematical logic, and we obtained the following: SigTh can express and
states everything that SpecRel does, except for the relativistic (Minkowski) distance
between events (implied by AxSym in SpecRel), while in addition it states time-
orientation for space-time together with some auxiliary simplifying axioms (Compl).
Informally,

SigTh = SpecRel− relativistic distance+ time-orientation+ auxiliaries,

and a little more formally

SigTh+ AxSym = SpecRel+ Compl
−
.

A byproduct of these investigations is a concrete operational semantics for special
relativity theory. We believe that interpreting one theory in another is a flexible
methodology for connecting physical theories with each other as well as with the
“physical reality”.
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Part II
Dynamics of Knowledge

and Belief Over Time



Chapter 7
Dynamic Epistemic Logics

Jan van Eijck

Abstract Dynamic epistemic logic, broadly conceived, is the study of rational social
interaction in context, the study, that is, of how agents update their knowledge and
change their beliefs on the basis of pieces of information they exchange in various
ways. The information that gets exchanged can be about what is the case in the world,
about what changes in the world, and about what agents know or believe about the
world and about what others know or believe. This chapter gives an overview of
dynamic epistemic logics, and traces some connections with propositional dynamic
logic, with planning and with probabilistic updating.

7.1 Introduction

Logic is broadly conceived in Johan van Benthem’s work as the science of informa-
tion processing in evolving contexts. In most logic textbooks, with [18] as a notable
exception, it is assumed that the reasoning processes that constitute the subject matter
of the discipline take place in the head of an ideal reasoner. The validity of an argu-
ment, such as a step of Modus Ponens establishes a fact with the help of another fact
plus an implication, and the agent performing these steps is kept out of the picture.

But in fact, the pieces of information that are put together by means of applications
of Modus Ponens can have many different sources, involving different agents, and
communication between them. Here is an early Chinese example that Johan is fond
of quoting:
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Someone is standing next to a room and sees a white object outside. Now another person
tells her that there is an object inside the room of the same colour as the one outside. After
all this, the first person knows that there is a white object inside the room. This is based on
three actions: an observation, then an act of communication, and finally an inference putting
things together.

To give a full account of what goes on here, one has to represent the state of
knowledge (or belief) of several agents, and model what goes on when they perceive
facts in the world, when information is exchanged between them, and when they act
on the world by making changes to it. This is what dynamic epistemic/doxastic logic
is all about.

7.2 Knowledge, Belief and Change

The original account of belief and knowledge in terms of possible states of affairs
or possible worlds is due to Hintikka [43], who proposed to analyze knowledge
and belief with the tools of modal logic. Knowing about a fact p boils down to the
ability to distinguish states of affairs where p is true from states of affairs where p is
false, and the key notion of epistemic logic is that of an indistinguishability relation
between possible worlds.

This analysis was taken up by cognitive scientists [34], computer scientists
[29, 30, 41] and game theorists [4, 12, 58], and gradually extended to include inter-
action between different agents. It turned out that the notion of common knowledge
plays a key part in the analysis of rational behaviour in games.

Dynamic epistemic/doxastic logic (see [23] for a textbook treatment) studies the
evolution of knowledge and belief in the context of change. This change can be of
various kinds:

• Changing beliefs about an unchanging world: in the Chinese room example the
world does not change, but the first person learns something new about what is the
case.
• Changing beliefs about a changing world: imagine a robot finding its way through

a maze. The robot moves through the maze to a different spot and observes what
it finds there. The change of location is a change in the states of affairs in the real
world, the new observation causes the robot to change its belief state.
• Incorporating or failing to incorporate information about change in the world: a

voter is taking part in an election process, but misses the communication about a
change in the rules of the voting game.

In epistemic logic this is all expressed qualitatively, but there is an obvious relation
to numerical ways of expressing rational belief. A change in belief could also be a
change in the probability estimation that something is the case. Changes in the world
may be thought of as being the result of indeterminate actions that occur with a
certain probability. See below, Sect. 7.12 for probabilistic extensions of DEL that
can cover such cases.
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The distinction between qualitative ways and quantitative ways of expressing
preference can also be found in game theory, where abstract strategic games are
expressed in terms of individual preference relations on outcomes, while concrete
strategic games use payoff functions that represent these preferences [55], and
in probability theory, where the well-known Cox axioms list three conditions on
‘degrees of belief’ that are sufficient for a map to quantitative probabilities [21].

7.3 The Dynamic Turn in Epistemic/Doxastic Logic

A pioneer chapter shifting the focus from the study of information states simpliciter
to information change is the work of Jan Plaza on the connection between pub-
lic announcement and the generation of common knowledge [59]. This was fol-
lowed up in a number of PhD theses under the supervision of Johan van Benthem:
[35, 38, 45].

In an ILLC report from 2000, Johan van Benthem analyzes the kind of infor-
mation update by means of world elimination that goes on in public announcement
as model relativization [13], connecting truth in a full model with truth in a model
relativized by some unary predicate. This explains why epistemic logic with public
announcement can be axiomatized by means of reduction axioms that spell out the
recursive definition of the relativization operation. The public announcement logic
of epistemic logic with a common knowledge operator added admits no such axiom-
atization: the recursive definition of restriction on a common knowledge formula
proceeds via relativized common knowledge.

A next key contribution is the proposal to view information updates themselves
as Kripke models representing the agent’s take on what happens when information
is updated [6–8]. This generalizes information updating to the whole class of multi-
agent Kripke models, not just multi-agent S5 models (an S5 model is a Kripke model
where all accessibity relations are equivalence relations).

Action models are in fact epistemic/doxastic perspectives on communicative
events. This epistemic/doxastic perspective on communication had already emerged
in the AI literature, where epistemic reasoning was integrated into the situation cal-
culus (essentially, a version of first order logic designed to describe changes in states
of affairs) by Bob Moore [54]. The study of noisy sensors in [5] provides an epis-
temic perpective on communication in the situation calculus, by analyzing noisy
observations as epistemic update events (S5 update models, in fact).

While action model update works for all Kripke models, multi-agent S5 updating
of multi-agent S5 models is an important special case. The product of an S5 model
with an S5 action model is again S5. The reason for this is that the S5 properties of
reflexivity, transitivity and euclideaness are preserved under the update operation of
restriction combined with product.

A sentence of first order logic is preserved under restriction and product if and
only if the sentence is universal Horn, where a universal Horn sentence of FOL is
the universal closure of a disjunction with at most one atom disjunct, and with the
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remaining disjuncts negations of atoms [52]. Reflexivity, transitivity and euclideaness
are universal Horn, but seriality is not. This explains why the update of a KD45
epistemic model with a KD45 action model (a model where the accessibility relations
are transitive, euclidean and serial) may yield a result that is not KD45. Information
update of belief models with belief action models has a glitch.

This was one of the motivations to explore combinations of information update
with information change as belief upgrade, in [2], followed by [9–11, 15]. The
information update format was extended still further in [37].

Taking an extensional view on the update mechanisms involved in knowledge
update, belief revision, belief change, and factual change, it turns out that these can
all be described in terms of PDL style operations. Indeed, all of these update formats
can be captured in a general logic of communication and change, and [16] proves a
technical result that adding such update mechanisms to the logic of epistemic PDL
(where the basic actions describe primitive epistemic/doxastic relations, and the PDL
operators construct more complex epistemic/doxastic relations) does not increase the
expressive power of the logic. This inspired further work on how PDL can be viewed
(or reinterpreted) as a logic of belief revision, in [27], and as a multi-agent strategy
logic, in [26].

However, this cannot be the whole story. This extensional view may illuminate
the bare bones of DEL, but it disregards the flesh. Updating is a process where agents
may follow specific update protocols, and it makes eminent sense to study possible
formats of update rules. Such connections with protocol dynamics were explored in
[64], and they led to interesting work on the use of DEL in planning [1].

Just as in matters of computation, it pays off to shift from an extensional to an
intensional view. Extensionally, all we can say about the object of computation is that
they are the recursive functions. Intensionally, we can say a lot more, by focussing
on the how of computation. Similarly with communication: the extensional view
disregards the inner workings of how information gets processed, and an intensional
view on DEL brings this to light.

7.4 Announcements and Updating

The cartoon in Fig. 7.1 illustrates what goes on when public announcements are
processed by perfectly rational agents, in this case logicians looking for something
to drink. It is assumed that they all know what they want to drink themselves, but are
uncertain about the wishes of the others. The cartoon tells the story of what happens
then.

The question “Does everyone want beer?” triggers the following instruction, say
for agent i (we use bi for “i wants beer” and�i for “i knows”, plus the usual boolean
connectives):

• If �i (b1 ∧ b2 ∧ b3) then i says “Yes”.
• If �i¬(b1 ∧ b2 ∧ b3) then i says “No”.
• Otherwise, i says “I don’t know”.
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Fig. 7.1 Three logicians, from http://spikedmath.com. Reproduced with permission

These answers themselves serve as updates:

• i says “Yes”: update with public announcement of �i (b1 ∧ b2 ∧ b3)

• i says “No”: update with public announcement of �i¬(b1 ∧ b2 ∧ b3).
• i says “I don’t know”: update with public announcement of

¬�i (b1 ∧ b2 ∧ b3) ∧ ¬�i¬(b1 ∧ b2 ∧ b3).

The updates are instructions to eliminate worlds. The update with¬�i (b1∧b2∧b3)∧
¬�i¬(b1∧b2∧b3) eliminates all worlds where�i (b1∧b2∧b3) or�i¬(b1∧b2∧b3)

holds.
To check a �iφ formula, one has to check whether φ holds in all i-accessible

worlds. If 1, 2, 3 are the three logicians standing or sitting next to each other in left-
to-right order, then a situation where 1 wants beer and 2, 3 do not can be represented
as • ◦ ◦. The space of possibilities is given by:

{◦ ◦ ◦, ◦ ◦ •, ◦ • ◦, • ◦ ◦, • ◦ •, • • ◦, • • ◦, • • •}.

How about the epistemic accessibilities? These accessibilities should express that
each agent initially only knows about her own state (thirsty for beer or not). If —
represents the accessibility of the first logician, then then the state ◦ ◦ ◦ should be
connected by a — line to ◦ • ◦, to ◦ ◦ •, and to ◦ • • (all states where the other

http://spikedmath.com
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Fig. 7.2 Initial situation when
three logicians enter a bar

◦◦◦

•◦◦◦•◦◦◦•

••◦◦•••◦•

•••

Fig. 7.3 After the
announcement of the first
logician

•◦◦

••◦•◦•

•••

logicians have different wants). Thus, initially, the space of possibilities together
with the epistemic accessibilities is given by the picture in Fig. 7.2, with • for “wants
beer”, solid lines for 1, dashed lines for 2 and dotted lines for 3, where 1, 2, 3 are the
three logicians standing or sitting next to each other. Note that states s and t in the
picture are linked by lines for agent i iff either in both of s, t agent i wants beer or
in both of s, t agent i does not want beer.

After the first logician says “I don’t know”, the possibilities where

�i (b1 ∧ b2 ∧ b3) or �i¬(b1 ∧ b2 ∧ b3)
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Fig. 7.4 After the
announcement of the
second logician

••◦

•••

are true, drop out. Note that these are precisely the possibilities where she does not
want a beer herself (Fig. 7.3).

After the second logician says “I don’t know”, all remaining possibilities where
she does not want beer drop out: see Fig. 7.4. Now the third logician resolves the
case by saying either “yes” or “no”, and if the bartender is also a perfect logician,
she knows in each case which of her customers to serve a beer.

The update process in the familiar muddy children example, where perfectly
rational children deduce from the assumption that at least one child has a muddy
forehead, and from the mud they see or fail to see on the foreheads of the other children
whether they themselves are muddy, is similar. Only the accessibility relations are
the converse of those in the thirsty logicians example: the thirsty logicians know what
they want to drink but do not know what the others want, while the muddy children
know about the muddiness of the others but not about their own muddiness.

7.5 Kripke Models and Action Model Update

The information update processes in the case of the three thirsty logicians, or of
the n muddy children, are special cases of a general procedure for updating epis-
temic models with action models due to Baltag, Moss, Solecki [7]. This handles the
communication between the drinking logicians, the muddy children, and much more
besides.

Let a finite set Ag of agents and a set Prop of propositions be given. Then the
class of Kripke models over Ag and Prop is given by:

Definition 7.1 A Kripke Model is a tuple (W, R, V ) where

• W is a non-empty set of worlds.
• R is a function that assigns to every agent a ∈ A a binary relation Ra on W .
• V is a valuation function that assigns to every w ∈ W a subset of Prop.

An action model is like a Kripke model for Ag and Prop, with the difference that
the worlds are now called actions or events, and that the valuation has been replaced
by a map pre that assigns to each event e a formula of a suitable epistemic language
called the precondition of e. Let us fix the language first:
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Definition 7.2 The multimodal language L over Ag and Prop is given by the
following BNF definition, where a ranges over Ag and p over Prop:

φ:: = p | ¬φ | φ ∧ φ | �aφ.

We assume the usual abbreviations for ∨,→,↔, ♦a .
The truth definition for this language is given by:

Definition 7.3 Let M = (W, R, V ) and w ∈ W in:

M |=w p iff p ∈ V (w)
M |=w ¬φ iff it is not the case that M |=w φ
M |=w ¬φ1 ∧ φ2 iff M |=w φ1 and M |=w φ2
M |=w �aφ iff for all v withwRav :M |=v φ.

Action models over this language are defined by:

Definition 7.4 An Action Model is a tuple (E,P,pre) where

• E is a non-empty set of events.
• P is a function that assigns to every agent a ∈ A a binary relation Ra on E .
• pre is a precondition function that assigns to every e ∈ E a formula from L .

From now on we call the regular epistemic models static models.
Updating a static model M = (W, R, V ) with an action model A = (E,P,pre)

is defined as follows:

Definition 7.5 The update of static model M = (W, R, V ) with an action model
A = (E,P,pre) succeeds if the set

{(w, e) | w ∈ W, e ∈ E,M, w |= pre(e)}

is non-empty. The update result is a new static model M⊗ A = (W ′, R′, V ′) with

• W ′ = {(w, e) | w ∈ W, e ∈ E,M, w |= pre(e)},
• R′a is given by {(w, e), (v, f )) | (w, v) ∈ Ra, (e, f ) ∈ Pa},
• V ′(w, e) = V (w).

If the static model has a set of distinctive states W0 and the action model a set
of distinctive events E0, then the distinctive worlds of M ⊗ A are the (w, e) with
w ∈ W0 and e ∈ E0. The distinctive states are the states that can turn out to be the
actual state of a static model. The distinctive events are the events that can turn out
to be the actual event of an event model.

Below is an example pair of a static model with an update action model. The static
model, on the left, pictures the result of a hidden coin toss, with three onlookers, Alice,
Bob and Carol. The model has two distinctive worlds, marked in grey; h in a world
means that the valuation makes h true, h in a world means that the valuation makes
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h false in that world. The value h true means that the coin is facing heads up. The
fact that both possibilities are distinctive means that both of these could turn out to
be the actual world.

The Ra relations for the agents are assumed to be equivalences; reflexive loops
for a, b, c at each world are omitted from the picture.

0 : h 1 : h

abc

0 : h 1 : �
bc

The static model on the left abbreviates two situations: the situation where the
coin is facing heads up and it is common kwowledge among a, b, c that no-one
knows this, and the situation where the coin is showing tails, and again it is common
knowledge among a, b, c that no-one knows this. Imagine a situation where one of
the agents tosses a coin under a cup and nobody has yet taken a look.

The action model on the right represents a test that reveals to a that the result of
the toss is h, while b and c learn that a has learned the answer (without learning the
answer themselves). Imagine the act of someone telling a the true value h, while b
and c consider this possible. The distinctive event of the update is marked grey. The
Pi relations are drawn, for two agents b, c. Reflexive loops are not drawn, so we do
not see the Pi relation for a. The result of the update is shown here:

(0,0) : h (0,1) : h (1,1) : h

bc abc

bc

The result of the update is that the distinction mark on the h world has disappeared,
that a now knows that the coin is showing heads, that b and c now know that a may
know the face of the coin, but that b and c do not know, and all of this is common
knowledge. In other words, the model makes each of the following formulas true in
its actual world:

�ah, ¬�bh, ¬�ch,
�a(�ah ∨�a¬h),�b(�ah ∨�a¬h),�c(�ah ∨�a¬h),
�a(¬�bh ∧ ¬�b¬h),�b(¬�bh ∧ ¬�b¬h),�c(¬�bh ∧ ¬�b¬h),
�a(¬�ch ∧ ¬�c¬h),�b(¬�ch ∧ ¬�c¬h),�c(¬�ch ∧ ¬�c¬h),
�a�b(�ah ∨�a¬h), . . .

The update operator, viewed abstractly, produces a restriction of a product of two
models. It is folklore from model theory that a sentence of first order logic is perserved
under restriction and product iff the sentence is universal Horn. A universal Horn
sentence of FOL is the universal closure of a disjunction with at most one atom
disjunct, while the remaining disjuncts are negations of atoms (see, e.g., [52]).
The classes of S5 models or S5n models (multi-modal logics where all modalities
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are S5) are univeral Horn: the formulas for reflexivity, symmetry and transitivity can
be written as Horn formulas. The classes of KD45 models or KD45n models are
not universal Horn, for the seriality requirement cannot be expressed as a universal
Horn sentence. Therefore, updating a static model where the accessibilities are KD45
with an update model where the accessibilities are KD45 does not guarantee a result
where the accessibilities are again KD45.

7.6 Logics of Public Announcement

The language of public announcement logic is the extension of L with an operator
[φ]ψ expressing that after public announcement of φ the formula ψ is true in the
resulting model.

Definition 7.6 If M = (W, R, V ) and φ ∈ L , then Mφ = (Wφ, Rφ, V φ) is given
by:

• Wφ = {w ∈ W |M |=w φ}.
• Rφ = λa.{(w, v) | w ∈ Wφ, v ∈ Wφ,wRav}.
• V φ is the restriction of V to Wφ .

Then:

M |=w [φ]ψ iff M |=w φ implies Mφ |=w ψ.

The logic of public announcements is now given by the reduction axioms from [59]:

Definition 7.7 The proof system for public announcement logic consists of the
axioms and rules for multi-modal S5 epistemic logic (see [19]), plus the following
reduction axioms:

Atoms 
 [φ]p↔ (φ→ p)

Partial functionality 
 [φ]¬ψ ↔ (φ→ ¬[φ]ψ)
Distribution 
 [φ](ψ1 ∧ ψ2)↔ ([φ]ψ1 ∧ [φ]ψ2)

Knowledge announcement 
 [φ]�aψ ↔ (φ→ �a[φ]ψ)

plus the rules of inference for announcement generalization, given by:

From 
 ψ infer 
 [φ]ψ.

These axioms provide a recursive definition of the effect of public announcement,
and they can be used to turn every formula from the enhanced language into an
equivalent L formula. This allows us to prove completeness of the logic by means
of a reduction argument.
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Such an easy complete axiomatization is no longer available when we add an
operator for common knowledge CBφ to the language, where CBφ expresses that φ
is common knowledge for the agents in B ⊆ A. The semantics is given by:

Definition 7.8 Common knowledge among B:

M |=w CBφ iff M |=w φ for all v with (w, v) ∈ (RB)
+,

where RB =⋃
a∈B Ra , and (RB)

+ denotes the transitive closure of RB .

Still, the reduction method applies, once we are able to express the semantic intu-
itions for achieving common knowledge by announcement. Introduce an operator
for relativized common knowledge, CB(φ,ψ), with semantics given by:

Definition 7.9 Relativized common knowledge among B:

M |=w CB(φ,ψ) iff M |=w ψ for all v with (w, v) ∈ (RφB)+,

where RφB = RB ∩ (W × {w ∈ W |M |=w φ}).
Intuitively, CB(φ,ψ) expresses that every φ-path through B accessibilities ends is
a state where ψ holds. Let EBφ abbreviate

∧
a∈B �aφ. Then EBφ expresses that φ

is general knowledge among the agents in B ⊆ A.

Definition 7.10 The proof system for public announcement logic with relativized
common knowledge consists of following axioms and rules:

Tautologies All instances of propositional tautologies

Knowledge Distribution 
 �a(φ→ ψ)→ (�aφ→ �aψ)

Common Knowledge Distrib 
 CB(φ, ψ → χ)→ (CB(φ,ψ)→ CB(φ, χ))

Mix 
 CB(φ, ψ)↔ EB(φ→ (ψ ∧ CB(φ,ψ)))

Induction 
 (EB(φ→ ψ) ∧ CB(φ,ψ → EB(φ→ ψ)))→ CB(φ, ψ)

plus the following inference rules:

Modus Ponens From 
 φ and 
 φ→ ψ infer 
 ψ.
�Necessitation From 
 φ infer 
 �aφ.

CNecessitation From 
 φ infer 
 CB(ψ, φ).

The completeness of this system is proved in [16]. To better understand what goes
on in the proof system, it is helpful to translate the statements of public announcement
with relativized common knowledge into propositional dynamic logic (PDL), and
to note that the above proof system essentially follows the usual PDL axioms. E.g.,
CB(φ,ψ) gets the following PDL translation:
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[(
⋃

a∈B

a; ?φ)+]ψ.

The connection with PDL will be worked out in the next section.

7.7 Connecting up with Epistemic PDL

PDL was designed as a general logic of (computational) action, as a generalization of
Floyd-Hoare logic [32, 44]. In Floyd-Hoare logic, one studies correctness statements
about programs, such as the following:

{N = gcd(x, y) ∧ x = y}
if x > y then x := x − y else y := y − x

{N = gcd(x, y)}.

Here the assertion {N = gcd(x, y) ∧ x = y} is called the precondition and the
assertion {N = gcd(x, y)} the postcondition for the conditional program statement.

The Hoare specification asserts that the loop step in Euclid’s GCD algorithm is
correct: if x and y store integer numbers that are different, then their GCD does not
change if you replace the largest number by the difference of the two numbers.

The general meaning of the Hoare triple {φ} π {ψ} is: if a state satisfies the
precondition φ, and program π is executed in that state, then any state that results
from this execution will satisfy the postcondition ψ .

Vaughan Pratt saw that such Hoare triples can be viewed as implications in a
logic where the program π appears as a modality [60]. The PDL guise of the Hoare
correctness statement

{φ} π {ψ}

is
φ→ [π ]ψ.

Hoare logic over programs for integer assignment is undecidable because it talks
about variable assignment in the language of first order logic. It has rules like pre-
condition strengthening and postcondition weakening:

N |= φ′ → φ {φ} π {ψ}
{φ′} π {ψ}

{φ} π {ψ} N |= ψ → ψ ′

{φ} π {ψ ′} .
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These use first order statements about natural numbers, which may be undecidable:

N |= φ′ → φ.

But an extra abstraction step makes the logic decidable again. The basic building
blocks for programs in Hoare logic are variable assignment statements x := E . Just
replace these by arbitrary atomic actions a, and stipulate that the interpretation of a
is some binary relation on an abstract set of states. Then PDL emerges as a general
program logic, with assertions (formulas) and programs defined by mutual recursion,
as follows (assume p ranges over a set of basic propositions Prop and a over a set
of basic actions Act):

Definition 7.11 PDL language:

φ:: = � | p | ¬φ | φ1 ∧ φ2 | [π ]φ
π :: = a |?φ | π1;π2 | π1 ∪ π2 | π∗.

This language is to be interpreted in multi-modal Kripke models M = (W, R, V ),
where W is a set of worlds or states, R is a function that assigns to every a ∈ Act
a binary relation Ra ⊆ W 2, and V is a valuation function that assigns to every
p ∈ Prop a subset of W .

Definition 7.12 Semantics of PDL. Let M = (W, R, V ). The interpretations [[φ]]M
of formulas are subsets of W , and the interpretations [[π ]]M are subsets of W 2. The
clauses for the propositional atoms and the Boolean operators are as usual, the clause
for [π ]φ is

{w ∈ W | if for all v with w[[π ]]Mv : v ∈ [[φ]]M},

and the clauses for the programs are given by:

[[a]]M = Ra

[[?φ]]M = {(w,w) ∈ W 2 | w ∈ [[φ]]M}
[[π1;π2]]M = [[π1]]M ◦ [[π2]]M
[[π1 ∪ π2]]M = [[π1]]M ∪ [[π2]]M
[[π∗]]M = ([[π ]]M)�.

Note the regular operations on relation on the righthand side: ◦ for relational compo-
sition, ∪ for union of relations, and � for Kleene star or reflexive transitive closure.
Thus, the complex modalities are handled by the regular operations on relations.

We employ the usual abbreviations: ⊥ is shorthand for ¬�, φ1 ∨ φ2 is shorthand
for ¬(¬φ1 ∧¬φ2), φ1 → φ2 is shorthand for ¬(φ1 ∧ φ2), φ1 ↔ φ2 is shorthand for
(φ1 → φ2) ∧ (φ2 → φ1), 〈π〉φ is shorthand for ¬[π ]¬φ, and [π+]φ is shorthand
for [π;π∗]φ.
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We now get that [π ]φ is true in world w of M if it holds for all v with
(w, v) ∈ [[π ]]M that φ is true in v, and the Hoare assertion φ1 → [π ]φ2 is true
in a world w if truth of φ1 in w implies that it holds for all v with (w, v) ∈ [[π ]]M
that φ2 is true in v.

Definition 7.13 The PDL language is completely axiomatized by the following PDL
rules and axioms [48, 61]:

Modus ponens and axioms for propositional logic

Modal generalisation From 
 φ infer 
 [π ]φ

Normality 
 [π ](φ→ ψ)→ ([π ]φ→ [π ]ψ)
Test 
 [?φ]ψ ↔ (φ→ ψ)

Sequence 
 [π1;π2]φ ↔ [π1][π2]φ
Choice 
 [π1 ∪ π2]φ ↔ ([π1]φ ∧ [π2]φ)
Mix 
 [π∗]φ ↔ (φ ∧ [π ][π∗]φ)
Induction 
 (φ ∧ [π∗](φ→ [π ]φ))→ [π∗]φ.

In the previous Section, we already saw specific instances of the Mix and Induction
axioms, in the proof system for public announcement logic with relativized common
knowledge.

When the PDL language was designed, the basic actions a were thought of as
abstract versions of basic programs (variable assignment statements, say). But noth-
ing in the formal design forces this interpretation. The basic actions could be anything.
PDL is a generic action logic for talking about actions as transitions from states of
the world to other states of the world.

In PDL, no constraints are imposed on what the actions are. These could be
changes in the world, but they could also be epistemic relations. Epistemic PDL
is just PDL, but with the understanding that the accessibility relations express the
knowledge or belief of agents.

Two extensions of the language are useful: an extension with a global modality
G and an extension with a converse operator .̌

Definition 7.14 Epistemic PDL Action Expressions:

π :: = a | G |?φ | π1;π2 | π1 ∪ π2 | π∗ | π .̌

Interpretation of the additions:

Definition 7.15 Semantics of G and ˇ:

[[G]] = W 2

[[πˇ]]M = ([[π ]]M)ˇ.

Thus, [G]φ expresses that everywhere in the model φ holds, and 〈G〉φ expresses
that φ holds somewhere.
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Definition 7.16 Proof system for epistemic PDL. Axioms and rules of PDL, plus
the following. Axioms expressing that G is an S5-operator:

Reflexivity 
 φ→ 〈G〉φ
Symmetry 
 φ→ [G]〈G〉φ
Transitivity 
 〈G〉〈G〉φ→ 〈G〉φ
Inclusion 
 〈G〉φ→ 〈π〉φ.

Axioms for converse expressing the equivalences that reduce converse over a complex
action to converse over atomic actions:

Ra ⊆ Raˇ 
 φ ↔ [a]〈aˇ〉φ
Raˇ ⊆ Ra 
 φ ↔ [aˇ]〈a〉φ
Reduction for G 
 〈Gˇ〉φ ↔ 〈G〉φ
Reduction for ?φ 
 〈?φˇ〉φ ↔ 〈?φ〉φ
Reduction for ; 
 〈(π1;π2)ˇ〉φ ↔ 〈π2ˇ;π1ˇ〉φ
Reduction for∪ 
 〈(π1 ∪ π2)ˇ〉φ ↔ 〈π1ˇ ∪ π2ˇ〉φ
Reduction for ∗ 
 〈(π∗)ˇ〉φ ↔ 〈(πˇ)∗〉φ.

It is well-known that adding global modality and converse to PDL does not change
its computational properties: the logic remains decidable, satisfiability remains
EXPTIME-complete [19, 42], and model checking is PTIME-complete [51]. Many
further variations on the set-up of PDL are possible, and we will explore some of
them below.

Note that it is not necessary to impose KD45 axioms for belief or S5 axioms for
knowledge. Instead, we interpret the atoms as proto epistemic accessibility relations,
and we construct the appropriate operators [27]. Let the interpretations of the atomic
actions a be an arbitrary binary relation Ra .

Define ∼a as (a ∪ aˇ)∗. This operator is interpreted as the relation

(Ra ∪ Raˇ)∗,

and this relation is symmetric, reflexive and transitive. Therefore,∼a is an appropriate
S5 operator for knowledge.

Some logicians (including Hintikka) have argued for dropping the symmetry
requirement, and propose to use an S4 modality for knowledge. The correspond-
ing epistemic PDL operator would be a∗.

To get a KD45 relation from an arbitrary binary relation Ra , consider:
(?[a]⊥; ?�) ∪ a; (aˇ; a)∗. Its interpretation S is the relation

{(x, x) | ¬∃z : (x, z) ∈ Ra} ∪ (Ra ◦ (Raˇ ◦ Ra)
∗).

Then S is serial, for let x be an arbitrary member of the state set A. If there is no
y ∈ A with (x, y) ∈ Ra we have (x, x) ∈ S. If there is such a y then (x, y) ∈ S. So
in any case there is a z ∈ A with (x, z) ∈ S.
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It is also easy to see that S is transitive and euclidean. Therefore (?[a]⊥; ?�) ∪
a; (aˇ; a)∗ can serve as a KD45 operator, and we have an appropriate way to interpret
KD45 belief in epistemic PDL.

Abbreviate this operator as �a . Observe that the interpretation of �a is included
in that of ∼a , so the following principle holds:

〈�a〉φ→ 〈∼a〉φ.

Contraposition gives:
[∼a]φ→ [�a]φ.

This expresses that individual knowledge implies individual belief.
Also, the interpretation of �a;∼a is included in that of∼a , so the following holds

as well:

[∼a]φ→ [�a][∼a]φ.

Therefore, this interpretation of belief also gives reasonable connections between
knowledge and belief in epistemic PDL.

Note that a relation Ra is S5 iff it holds that a and∼a have the same interpretation.
Similarly, a relation Ra is KD45 iff it holds that a and �a have the same interpretation.

The expressive power of epistemic PDL comes to the fore when we consider com-
mon knowledge and shared belief. An appropriate operator for common knowledge
between agents a and b is readily defined as

(a ∪ aˇ ∪ b ∪ bˇ)∗,

or equivalently as (∼a ∪ ∼b)
∗. This gives the equivalence relation with every state

that is reachable by means of arbitrary numbers of forward or backward a or b steps
in a single equivalence class, and this is how common knowledge was explained by
philosophers [49], sociologists [33], economists [4] and computer scientists [40].

This is another good reason for using epistemic PDL rather than a logic with
explicit modal operators for ∼a and �a . Logics with explicit knowledge and belief
modalities are naturally interpreted with respect to models where the correspond-
ing relations have the appropriate properties. But for the case of belief, there is no
guarantee that updating such models with ‘reasonable’ update models (where the
accessibilities satisfy the same belief properties) results in a new model in the same
class. If one uses epistemic PDL, there is no such problem. One can start with a
model where the relation of an agent a is KD45 (meaning that a and �a have the
same interpretation in that model), and after an update it may turn out that a and �a

no longer have the same interpretation. In such a model �a still is a KD45 operator,
so there is no problem in interpreting statements about belief.
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7.8 Adding Factual Change

Factual change was already added to update models in LCC, the logic of communi-
cation and change of [16], which is basically a system that extends epistemic PDL
with generic action update modalities, where the action update can also change the
facts of the world. See also [22].

Consider again the model where a has found out the value of the coin, while b
and c were onlookers.

0 : h 1 : h 2 : h

bc abc

bc

Here is a representation of the action of tossing the coin again, with a, b, c present,
but without showing the result to any of a, b, c. Explanation: if the coin is tossed
again, either the value of h does not change (expressed by�), or it flips from True to
False or vice versa (expressed by h := ¬h). Another way of representing this would
by generating a history of coin flips h1, h2, and so on.

0 : � 1 : h := ¬h
abc

After an update with this fact changing action above, we get:

(0, 0) : h (1, 0) : h (2, 0) : h

(0, 1) : h (1, 1) : h (2, 1) : h

bc

bc

bc abc

bc abc

abc abc abc
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This model looks complicated, but it is bisimilar to the following model, where
the coin may have fallen either way, and it is common knowledge that none of the
agents knows which side is up. And that’s intuitively right, for all players are aware
that nobody knows anything about how the coin has fallen this time.

0, : h 1: h
abc

Another example of a simple fact-changing update is the flip of a coin to its other
side, represented by the propositional substitution h := ¬h. For example, imagine a
situation where b and c are aware of the fact that a coin is flipped to its other side (say
by some trusted agent d), while a mistakenly believes that nothing has happened.
This is modelled by the following action model:

0: h : = ¬h 1 : �
a

bc abc

Note that we can no longer omit reflexive arrows, for this model is not reflexive
for the a relation.

Consider again the model where a has found out the value of the coin, while b
and c were onlookers. After an update with the fact changing action above, we get
the result in Fig. 7.5.

Now [�a][∼a]h is true in the actual situation: a believes that she knows that the
coin is showing heads. But [(∼b ∪ ∼c)

∗](¬[∼a]h ∧ ¬[∼a]¬h) is also true: b and
c have common knowledge that a does not know what the coin is showing. Nobody
knows what the coin is showing, but b and c know that a is mistaken about what she
knows. This kind of situation occurs very often in everyday life: something happens,
we mistake it for something else, and we end up with a false belief. This is one of
the ways in which knowledge can decrade to mere belief.

7.9 Adding Belief Change

We will now also add belief change. This was not yet present in LCC, but it is studied
extensively in Johan van Benthem’s subsequent work [14]. See also [25, 27]. As a
first example, consider the coin situation above, where a has been led astray by failing
to observe some change in the world.
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(0,0) : h (1,0) : h (2,0) : h

(0,1) : h (1,1) : h (2,1) : h

bc

bc

bc bc bc

abc abc abc

a a a

bc abc

bc abc

Fig. 7.5 A failure to observe a fact-changing event leading to false belief

Suppose a suddenly comes to believe that she was led astray. She (publicly)
updates her belief by accepting that every conceivable state of affairs might be the
true state of affairs. The action model for that is:

a :=∼a

The result of updating the epistemic model of Fig. 7.5 with this is again an S5
model (so we can omit reflexive loops): see Fig. 7.6.

We see that relational change extends the expressive power of the updates, for it
can add arrows, while action model update without relational change can only delete
arrows.

We will now formally state how to modify the update process to accommodate
both factual change and belief change. Let an action model with both kinds of changes
be a quintuple

A = (E,P,pre,Sub,SUB)

where E,P,pre are as before, Sub is a function that assigns a propositional binding
(or propositional substitution) to each e ∈ E , and SUB is a function that assigns a
relational binding to each e ∈ E . A propositional binding is a map from proposition
letters to formulas, represented by a finite set of links

{p1 �→ φ1, . . . , pn �→ φn}
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(0,0) : h (1,0) : h (2,0) : h

(0,1) : h (1,1) : h (2,1) : h

bc

bc

a a a

bc abc

bc abc

Fig. 7.6 A belief revision that creates an S5 model from a KD45 model

where the pk are all different, and where no φk is equal to pk . It is assumed that each
p that does not occur in a left-hand side of a binding is mapped to itself.

Similarly, a relational binding is a map from agents to program expressions,
represented by a finite set of links

{a1 �→ π1, . . . , an �→ πn}

where the a j are agents, all different, and where the π j are program expressions
from the PDL language. It is assumed that each a that does not occur in the left-hand
side of a binding is mapped to a. Use ε for the identity propositional or relational
substitution.

Definition 7.17 The update execution of static model M = (W, P, V ) with action
model A = (E,P,pre,Sub,SUB) is a tuple

M� A = (W ′, P ′, V ′)

where

• W ′ = {(w, e) |M, w � pre(e)}.
• P ′a is given by

{((w1, e1), (w2, e2)) |
there is a SUB(e1)(a) path from (w1, e1) to (w2, e2) in M⊗ A}.

• V ′(p) = {(w, e) ∈ W ′ |M, w � Sub(e)(p)}.
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The definition of P ′a refers to paths in the old style update product which is denoted
with ⊗.

Consider the suggestive upgrade 	aφ discussed in van Benthem and Liu [15] as a
relation changer (uniform relational substitution):

	aφ =def ?φ; a; ?φ ∪ ?¬φ; a; ?¬φ ∪ ?¬φ; a; ?φ.

This models a kind of belief change where preference links from φ worlds to ¬φ
worlds for agent a get deleted. It can be modelled as the following example of public
belief change.

Public Belief Change: Action model

G = ({e},P,pre,Sub,SUB)

where

• For all the i ∈ Ag, Pi = {(e, e)}.
• pre(e) = �.
• Sub(e) = ε.
• SUB(e) = {a �→ 	aφ, b �→ 	bφ}.

In a picture (reflexive arrows omitted):

a := �aφ ,b := �bφ

Note that our definition of � update implements point-wise relational substitu-
tions, which is a more powerful mechanism than merely upgrading the relations
uniformly everywhere in the model. This is illustrated by the following example.

Non-public Belief Change: Action model

G ′ = ({e0, e1},P,pre,Sub,SUB)

where

• For all i ∈ Ag, if i = b then Pi = {(e0, e0), (e1, e1)},
Pb = {(e0, e0), (e1, e1), (e0, e1), (e1, e0)}
• pre(e0) = pre(e1) = �.
• Sub(e0) = Sub(e1) = ε.
• SUB(e0) = {a �→ 	aφ}, SUB(e1) = ε.
Assume e0 is the actual event.



196 J. van Eijck

This changes the belief of a while b remains unaware of the change. In a picture
(reflexive arrows omitted, since this is an S5 model):

0 :a := �aφ 1 :�
b

Let PDL+ be the result of adding modalities of the form [A, e]φ to PDL, with the
following interpretation clause:

M, w |= [A, e]φ iff M, w |= pre(e) implies M� A, (w, e) |= φ.

Then the completeness result for LCC extends to a completeness result for PDL+.
This can be proved by a patch of the LCC completeness proof in [16] where the action
modalities are pushed through program modalities by program transformations.

7.10 Example: Navigation

Navigation problems provide a nice example of the interaction of information flow
and change in the world. Consider the case of a robot in a maze. Assume a grid where
the robot can move through a sequence of rooms, in some of the four directions North,
East, South and West, but some of these directions may be blocked. Assume that the
robot has a compass and a map, and that the robot can observe what its present
location looks like (which of the four exits is blocked), but not what the next room
looks like.

We can assume that the grid and its map look the same. Since the robot has a
compass, it knows how to orient the map. Therefore, as soon as the robot uses its
sensor it can distinguish the kind of room it is in. There are 15 possibilities:

↑,↓,→,←,�,↔,↑→,↑←,↓→,↓←,�↔,�→,�←,↔↑,↔↓ .

The possibility where the robot can get nowhere is ruled out: we assume the robot
is not locked in a room. Initially the robot knows it could be anywhere in the grid,
i.e., anywhere on the map. As soon as the robot senses it is in a room of (say) type
�↔, the update that the robot makes is with the observation

〈↑〉� ∧ 〈→〉� ∧ 〈↓〉� ∧ 〈←〉�.

This is to say: I am in a position where I can go North, East, South and West. This
rules out all possible locations on the map except for those of type �↔.

So we assume that the rooms are states in a Kripke model, and that the modalities
〈↑〉, 〈→〉, 〈↓〉 and 〈←〉 are available, for moving one step in the indicated directions.

We can use modal formulas to express some obvious constraints on the model.
The following formulas fix the relations between the directions:
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[↑]〈↓〉�
[↓]〈↑〉�
[→]〈←〉�
[←]〈→〉�.

Here are two equivalent ways to represent the knowledge of the robot. Either
assume that there is a basic proposition loc that is true in precisely one state, and
represent the uncertainty of the robot as a set of identical maps, each with the propo-
sition loc at a different place, or assume that there is just a single map, with a basic
proposition loc pointing at the actual location of the robot and a basic proposition
guess that is true at all places on the map that the robot has not yet ruled out as
possibilities for where it might be.

Assume the second representation. Then initialize the value of guess to the set of
all states on the map. The first update is when the robot uses its sensors to recognize
the type of state. Let φfit be an abbreviation of the following formula:

φfit :=
∧
{〈x〉� | x ∈ {↑,→,↓,←}, 〈x〉� is true }

∧∧
{[x]⊥ | x ∈ {↑,→,↓,←}, 〈x〉� is false }.

So if the robot finds itself in some type of location, and has not learned anything
yet, but knows that the map is accurate and well oriented, then it will put guess equal
to the set of locations that are of the same type as its current location. So the initial
thing that the robot learns is:

guess := φfit.

Now the robot can make a move, and learn from what it sees in the next location.
Making a move is changing the location in the maze. So if the robot moves North,
this is modelled as:

loc := 〈↓〉loc.

Explanation: the old location is now South of the new location, so to define the new
location in terms of the old, we must ‘look back’. If the robot moves South, this is
modelled as loc := 〈↑〉loc, if the robot moves East, this is modelled as loc := 〈←〉loc,
if the robot moves West, this is modelled as loc := 〈→〉loc. This was for modelling
the change in the actual world. Now let’s model what the robot learns about its
location by observing the new location. After moving South, the robot updates its
guess by means of:

guess := 〈↑〉guess ∧ φfit.

And so on for the other directions.
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In the other representation, where the robot maintains a set of maps, updating
consists of an update of loc as before, followed by a check loc→ φfit that eliminates
all maps where the new location does not agree with the new observation given
by φfit.

This was for the particular case of a maze, but it is clear that any kind of navigable
world can be represented as a Kripke model. An interesting case is a model with
non-functional accessibilities. If there are a-labelled arrows in different directions,
it means that the robot cannot distinguish between two ‘similar’ actions that result in
the robot ending up in different locations. In Kripke semantics, this just means that
the following action can be executed in more than one way.

loc := 〈aˇ〉loc.

For further information on the epistemics of navigation we refer to [56, 65].

7.11 Epistemic Planning and Protocol Languages

Navigation is a specific example of epistemic planning, for which the DEL framework
is well-suited, because one can take atomic planning acts as event model updates.
This generalizes the classical approach to planning in the presence of noisy sensors
[36]. We give a summary, taking our cues from [1, 3, 20, 50].

A planning domain is a state transition system Σ = (S, A, γ ) where S is a
finite or recursively enumerable set of states, A is a finite set of actions, and γ
is a partial computable function S × A ↪→ S (the state transition function). A
planning task can now be viewed as a triple (Σ, s0,G), where Σ = (S, A, γ ) is a
planning domain, s0 is a state in S, and G is a subset of S (the set of goal states).
A solution to a planning task is a finite sequence of actions a1, a2, . . . , an (a plan),
such that γ (a1, a2, . . . , an) is defined and ∈ G, where γ : A∗ ↪→ S is defined by
γ (a) = γ (s0, a), γ (a, a) = γ (γ (a), a) if γ (a) is defined, undefined otherwise.
Informally, a plan succeeds if using the state transition function γ starting from
(s0, a1) and following the plan, one can reach a goal state. An epistemic planning
task is a special case of this where the s0 is an epistemic state, the set A is a set
of finite action models, and the set of goal states is represented by an epistemic
formula φg .

An example of an epistemic plan for letting both a and b know that p without
revealing to a that b knows p and without revealing to b that a knows p is first
privately communicating p to a and then privately communicating p to b.

It is proved in [20] that the plan existence problem for three agent epistemic
planning with factual change is undecidable. This result is strengthened in [3]: even
without factual change, the plan existence problem for two agent epistemic planning
in an S5 setting is undecidable.
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For an intensional view of planning, we can use a version of PDL over action
models, to define plan protocols (for still another guise of PDL, as a multi-agent
strategy logic, see [26]).

Definition 7.18 The DEL protocol language for Ag and Prop is given by:

φ:: = p | ¬φ | φ ∧ φ | �aφ | [π ]φ
π :: = (A, e) | π ∪ π | π;π | π∗

where p ranges over Prop, a ranges over Ag, and (A, e) is an action model (without
factual change or belief change) for L with distinguished event e.

The truth conditions for the protocols π are given by:

Definition 7.19

M |=w [A, e]φ iff M |=w pre(e) implies M⊗ A |=(w,e) φ
M |=w [π1 ∪ π2]φ iff M |=w [π1]φ and M |=w [π2]φ
M |=w [π1;π2]φ iff M |=w [π1][π2]φ
M |=w [π∗]φ iff for any finite sequence π; . . . ;π M |=w [π; . . . ;π ]φ

It follows from results in [53] that the satisfiability problem for this protocol language
is undecidable. It is proved in [3] that the model checking problem for DEL protocols
is also undecidable. This follows from a reduction of the plan existence problem to the
model checking problem: an epistemic planning task ((M, w), A, φg) has a solution
iff M |=w ¬[A∗]¬φg holds.

7.12 Further Connections

An intriguing question about action model update that so far has only received a
partial answer is: When are two action updates the same? More precisely, let us say
that action models A and B are equivalent iff it holds for all static models M that
M⊗ A ↔− M⊗ B, where ↔− expresses the existence of a bisimulation that connects
each distinctive point from M⊗ A with a distinctive point from M⊗ B.

It turns out that action model bisimulation is not the appropriate structural notion
to cover equivalence. In [28] a notion of parametrized action emulation is defined
that characterizes action model equivalence. In [62, 63] this is replaced by a non-
parametrized action emulation relation, and it is shown that this characterizes action
model equivalence for canonical action models (action models with maximal con-
sistent subsets of an appropriate closure language as preconditions). The question
whether non-parametrized action emulation also characterizes action model equiva-
lence for arbitrary action models is still open.

Another intriguing issue is the proper connection between epistemic/doxastic
updating and probability theory. Useful overviews of logics of uncertainty are [57]
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and [39]. For the connection with DEL, see [17, 31, 46, 47] and the contribution of
Kooi and Demey in the present volume. These proposals do not equate knowledge
with certainty, but [24] does; this paper proposes a DEL logic (together with an
epistemic model checking program) where the following principles hold (Paφ is the
probability that agent a assigns to φ):

Certainty implies Truth Paφ = 1→ φ.

Positive Introspection into Certainty Paφ = 1→ Pa(Paφ = 1) = 1.

Negative Introspection into Certainty Paφ < 1→ Pa(Paφ < 1) = 1.

All these probabilistic versions of DEL incorporate Bayesian updating/learning; the
difference is in whether Bayesian updates get analyzed as belief revision or as knowl-
edge growth.

Acknowledgments Thanks to Guillaume Aucher, Alexandru Baltag, Johan van Benthem, Sonja
Smets, for illuminating discussion, feedback and encouragement.
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Chapter 8
Belief Revision and Dynamic Logic

Patrick Girard and Hans Rott

Abstract We explore belief change policies in a modal dynamic logic that explicitly
delineates knowledge, belief, plausibility and the dynamics of these notions. Taking
a Kripke semantics counterpart to Grove semantics for AGM as a starting point, we
analyse belief in a basic modal language containing epistemic and doxastic modal-
ities. We critically discuss some philosophical presuppositions underlying various
modelling assumptions commonly made in the literature, such as the limit assump-
tion and negative introspection for knowledge. Finally, we introduce in the language a
general dynamic mechanism and define various policies of iterated belief expansion,
revision, contraction and two-dimensional belief change operations.

8.1 Introduction

The history of belief revision is one in which researchers from various fields have
tackled the same problem from different perspectives, but it originated from phi-
losophy. After earlier work of Isaac Levi and William Harper, Carlos Alchourrón,
Peter Gärdenfors and David Makinson (often referred to by the acronym “AGM”)
initiated the formal study of belief change operations in the 1980s. They analyzed
belief change using three kinds of models: partial meet contractions and revisions (in
terms of maximal non-implying sets [1]), safe contractions and revisions (in terms
of minimal implying sets of sentences [2]), and entrenchment-based contractions
and revisions (based on the comparative retractability of sentences [25]). Grove [29]
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provided a possible worlds semantics for partial meet contraction. Iterated belief
change was addressed in the 1990s, with important contributions by Boutilier [16],
Darwiche and Pearl [17] and Nayak [37]. More recently, van Benthem [9], and Baltag
and Smets [4, 5] modelled epistemic and doxastic states and their transformations
on simple relational structures, introducing a new complexity due to the analysis of
higher-order belief and knowledge. The relevant problems were attacked in a plethora
of ways that may sometimes be differentiated by the degree of abstraction adopted.1

Influenced by van Benthem, we choose our level of abstraction in line with a modular
and minimalist attitude. This means that we only assume constraints on models when
they become necessary, with philosophical awareness, and we use formal languages
as simple as we can.

• Minimality: We try to keep the assumptions on models to be minimal, and we try
to keep our basic object language as simple as possible.
• Modularity: We analyse the key notions of knowledge and belief in terms of two

primitive relations representing indistinguishability and plausibility. We also break
down complex dynamic notions into simpler parts using the programmatic PDL
language.

8.2 Grove Systems of Spheres

In retrospect it looks as if AGM followed a purely syntactic approach to belief
revision. We think that this is not quite correct, for both belief sets and inputs for
belief change were essentially individuated only up to logical equivalence. Still it
was a very important step for the program of belief revision when Adam Grove [29]
provided a possible worlds semantics for AGM’s partial meet contractions. He used
systems of spheres to model belief change, closely following the seminal work of
Lewis [18] on counterfactuals. We summarise Grove’s semantics in some detail, and
later show how to adapt the notation and interpretation to our needs.

Given a language L , define a theory T over L as a set of L -sentences that are
logically closed, i.e., for which cl(T) ⊆ T . Here cl(·) is an operation that forms the
logical closure of a set of sentences from L . A possible world for L is an entity
that assigns, for each atom of L , a truth value 1 (for “true”) or 0 (for “false”).2 We
denote by W the set of all possible worlds, and by [[ϕ]] or [[T ]] the set of all possible
worlds that satisfy a sentence ϕ or a set of sentences T . For a set of worlds V , we
denote by Theory(V) the set of sentences true at each world in V .

1 This caused in turn a proliferation of acronyms such as DEL for ‘dynamic epistemic logic’ which
limits our freedom in using those that would naturally arise with our terminology throughout the
chapter. We thus use EDL to stand for ‘epistemic doxastic logic’. The reader should try not to get
confused by this choice.
2 Grove [29] himself used maximal consistent sets of sentences rather than possible worlds, but this
difference need not concern us here.
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A Grove system of spheres centered around a set B of possible worlds for L is
a set $B = {S|S ⊆ W} that satisfies the following conditions3:

1. $B is totally ordered by set-containment ⊆,
2. B ∈ $B ,
3. B ⊆ U for every U ∈ $B ,
4. The limit assumption: For any sentence ϕ, if there is a sphere S ∈ $B which

intersects [[ϕ]] , then there is a smallest sphere S′ ∈ $B which intersects [[ϕ]] .
A Grove system of spheres is called

5a. universal if in addition, W =⋃
$B; or

5b. strongly universal if in addition, W ∈ $B .

The term “universal” is taken over from Lewis [18, p. 16]. Grove originally
required his doxastic systems of spheres to be strongly universal. We choose to
deviate from this by requiring not even universality. We do not want to rule out that
an agent may consider some metaphysically possible worlds inconceivable.

Belief in a Grovean sphere system is identified with the innermost sphere B of
$B .4 More precisely, a belief set in Grove spheres is identified with the set of all
sentences Theory(B) that are true throughout the innermost sphere B in $B . The
belief set Theory(B) is the one to be revised with the AGM operators of expansion,
contraction and revision, which we will discuss below. We represent a Grove system
of spheres centered around a set B in the following way, shading the innermost
sphere as characterizing the belief set B:

The sphere formulation is in no way necessary, as Grove notes: “a system of
spheres is really an ordering on the set of worlds” [29, p. 160]. To see this, we can
reformulate Grove spheres in terms of a relation ≤ on W , which we call a Grove
relation. A Grove relation centered around a set B ⊆ W is a relation ≤B on W that
satisfies the following conditions5:

3 We choose the notation B as a mnemonic device for ‘belief’.
4 Grove does not talk about beliefs, but about theories, and his semantics is about theory change
broadly construed. However, his semantics is directly tailored to accommodate the AGM postulates,
so we focus exclusively on a doxastic interpretation of his system.
5 Unlike Grove, we read x ≤B y as “y is more plausible than x according to≤” and talk of maximal
worlds instead of minimal worlds. Katsuno and Mendelzon [32] is a seminal reference for the use
of ordering semantics within the belief revision community.
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1. ≤B is connected and transitive,
2. x ∈ W is ≤B-maximal iff x ∈ B.
3. The limit assumption for ≤B: For any sentence ϕ, if there are any worlds at which
ϕ is true, there are≤B-maximal worlds w at which ϕ is true, so {x ∈ [[ϕ]] |y ≤B
x for all y ∈ [[ϕ]] } is non-empty.

In a Grove relation, the set {w ∈ W |v ≤B w for all v ∈ W} is the belief set,
identified by the maximal elements in ≤B . We again refer to that set with B. We
represent Grove relations in the following way:

We have not drawn all arrows here, assuming that it is easy to see how the relations
are transitively closed (Later we shall be even more economical in our use of arrows).

Formally, the difference between Grove spheres and relations is almost only one
of taste, just requiring a Gestalt switch of the following kind:

1

2

3

4

5
�

1

2

3

4

5

We can be more specific about the connection between Grove spheres and order-
ings: A Grove ordering ≤B is obtained from a system of spheres $B by defining
v ≤B w (read: “v is at most as plausible as w”) iff for all S ∈ $B such that v ∈ S it
also holds that w ∈ S; the field WB of ≤B is

⋃
$B . Conversely, a system of Grove

spheres $B is obtained from a Grove ordering ≤B of W by collecting all sets S of
the form Sw = {v ∈ W : w ≤B v}.

This modelling importantly allows for ties between the plausibilities of possible
worlds, and this can of course be expressed in both ways of modelling. In the systems
of spheres modelling, this means that for two neighbouring spheres S and S′ in $B
with S ⊆ S′, the set S′ − S has in general more than just one element. Expressed in
orderings, this means that for many worlds w there may be any number of distinct
worlds v such that both v ≤B w and w ≤B v. The correspondence between systems
of spheres and weak orderings is not perfect, however. The (strong) universality of
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a system of spheres $B cannot be expressed by a weak ordering alone. This is why
we need to specify the field WB of ≤B . We also take into account inconsistent
belief states, represented by sphere systems $B that contain the empty sphere ∅ as
an element. But if a sphere in $B is empty, it generates the same weak ordering
≤B , in the sense just explained, as the sphere system $B−{∅}. We take the case of
empty innermost spheres seriously, because we want to address belief expansion in
Sect. 8.5.2. This requires representing trivialisation under expansion with information
inconsistent with current beliefs. As the equivalent of empty spheres is not available
in ordering semantics, we employ domain restriction in order to achieve similar
results.

We need to comment on the interpretation of Grove spheres, or Grove orderings,
understood as semantics for the classical AGM style belief revision. Semantically, a
whole Grovean system of spheres (or a Grove ordering, or any other model for AGM-
style one-shot belief revision) represents or, loosely speaking, is a single agent’s
belief state. In some way (though it is hard to say in what way exactly), it encodes
a first-person point of view: the set of worlds considered (doxastically) possible by
the agent, and their comparative plausibilities as judged by the agent. Like the AGM
approach, this modelling does not make room for belief at a certain possible world,
it only encodes the beliefs and conditional beliefs as they are present for a single
agent at the actual world (“here and now”).

Another philosophical point: one should not identify knowledge with the “outer
belief modality” in Grove spheres, i.e., with “irrevocable belief” in the sense of
Segerberg [46]. Knowledge is not the same as irrevocable belief. While knowledge
implies truth, irrevocable belief need not do so. Baltag and Smets’s [5, p. 16] claim
that the idea of identifying knowledge and irrevocable belief “can be traced back to
Stalnaker [47]” is not quite correct; Stalnaker just defines �ϕ as ¬ϕ > ϕ, without
any epistemic interpretation.6 Segerberg [46] uses this reading only “unofficially”
and alternatively speaks of doxastic commitment. Leitgeb and Segerberg [34, p. 176]
allow themselves some philosophical looseness, too, and use the slogan K stands
for “knowledge”, not for ‘knowledge’. Our feeling is that this identification is made
only for the sake of convenience, because it is then easy to define knowledge in
terms of (conditional) belief—something that epistemologists were never able to
achieve—, and it is easy to argue for positive and negative introspection concerning
knowledge—something that epistemologists have never wanted to achieve. If agents
were infallible, then irrevocable belief would come close to knowledge, because then
irrevocable belief would be guaranteed to be true. But human agents are not infallible,
even their most deeply rooted beliefs may turn out to be false. We will return to this
topic in Sect. 8.3.

6 Alexandru Baltag (p.c.) has reminded us that Stalnaker [47, p. 102] endorses a condition akin
to universality (see Stalnaker’s semantic condition (2)). Thus irrevocable belief must be true, and
our argument against its identification with knowledge is no longer applicable. This is correct,
but endorsing universality in this context means arguing that only metaphysical necessities can be
known, since no metaphysically possible world gets epistemically excluded. For this reason, we
strongly prefer not to require universality.
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Finally, even though Grove spheres are inspired by Lewis systems of spheres
[18], Lewis explicitly rejects the limit assumption. Lewis’ argument is about similar-
ity relations on worlds underlying counterfactual reasoning, but similar worries hold
for plausibility orders: there are no most similar worlds in which Franck Ribéry is
taller than 180 cm. Lewis’ semantics for counterfactuals does not depend on the limit
assumption. Likewise, we can define belief and conditional belief using sequences
of increasingly plausible worlds that do not require the limit assumption. Further-
more, there are AGM-inspired doxastic transformations of expansion, revision and
contraction that do not require the limit assumption. Hence, following our minimalist
attitude, we refrain to assume the limit assumption until necessary.7

8.3 Epistemic Doxastic Logic

In contrast to the use of Grove models within the AGM paradigm, we will model
knowledge and belief with Kripke structures. Thus what we call ‘epistemic doxastic
logic’ in this chapter (EDL for short) stands in the tradition of epistemic logic going
back at least as far as the seminal work of Hintikka [31]. More recently, epistemic
logic has been dynamified in the Dutch tradition and is now referred to as ‘dynamic
epistemic logic’ (DEL for short). The acronym DEL is sometimes used more gener-
ally to also include doxastic transformations (see for instance van Benthem [21]). We
use DEL in this general sense, and we reserve the acronym EDL for our own version
of DEL in this chapter. For us, EDL is the static core of our analysis of knowledge
and belief. We will introduce dynamics in the next section and adapt our terminology
accordingly.

In EDL, all theorizing begins with knowledge-at-a-possible-world-w or
belief-at-a-possible-world-w. So belief and knowledge are “local” in this way. A
whole EDL model does not represent some agent’s or several agents’ doxastic and
epistemic states. The worlds in an EDL model are ways our actual world might be,
metaphysically, not epistemically speaking.

One should not get confused by some “global” structures within EDL models. It
might look strange that within a cell of the epistemic partition of the worlds, there is
only one doxastic plausibility relation. In the local interpretation, which we believe
is the correct one, it would be more precise to say that within such a cell, every world
has the same plausibility relation assigned to it, and that this relation is assigned to
the cell rather than to every world within the cell only for notational convenience.

7 Our reservation to assume the limit assumption from the outset is not only driven by philosophical
concerns. To find an adequate axiomatisation of the limit assumption in our framework is not easy,
and presently we can only make an informed conjecture that, in the context of the other axioms we
are using, the axiom known as the ‘Löb’s axiom’ is exactly what we need. We will come back to
this point below.
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If possible worlds are considered as indices of evaluation, we might say that in our
modelling, the doxastic relation is really just as indexical as the epistemic relation.8

That the plausibility relation is the same at each world within a cell, however
has a very good justification. A plausibility relation is a formal encoding of the
agent’s doxastic state. The fundamental assumption is that agents fully know their
own doxastic attitudes.9 There has to be an equally fundamental EDL axiom that
captures this assumption. If we had just beliefs, the axiom should be something like
Bϕ → KBϕ. But since we work with plausibility relations that allow us to express
something like degrees of beliefs (entrenchments), we capture that agents are fully
aware of their degrees of belief.10

Such a fundamental axiom is an expression of full (epistemic) introspection of
doxastic attitudes. By viewing a global relation within a cell of the knowledge par-
tition just as an abbreviated way of specifying that this very relation is assigned to
each world within the cell, we can justify the use of global relations (restricted to
cells) by the above introspection principles, while still staying firmly on the ground
of the local tradition of DEL.

It does not make sense to look at an EDL model and ask what an agent believes
or knows in that model. One can only ask what an agent believes or knows at a
certain world in that model. The situation changes in pointed models that come with
a distinguished world. This is why Baltag, van Ditmarsch and Moss [6], for instance,
define an ‘epistemic state’ (p. 387) or a ‘doxastic state’ (p. 397) as tuples (M, s),
where M is a (relational/plausibility) model and s is a state or world.11 Unfortunately,
the authors do not comment at all on why they add a distinguished world. Summing
up, a pointed model represents the actual world, with all the actual beliefs being in
turn represented in terms of possible (conceivable) worlds. It thus makes sense to
ask what an agent believes or knows in a pointed model.

If our interpretation is right, it hardly makes sense to drop worlds from the model
as a result of some doxastic action. Worlds in EDL models are metaphysically pos-
sible worlds, not doxastically or epistemically possible worlds, as in Grove models.
But as DEL theorists point out, a doxastic or epistemic action normally changes
what is true in a world like any other action. Unlike the case of non-doxastic or non-
epistemic actions, the effects of doxastic and epistemic actions can be represented
in the model. The corresponding model transformation consists in manipulating the
relevant relations between possible worlds, that is, in actions like cutting links, refin-
ing partitions, or shifting plausibilities.12 This tension between world-elimination
and link-cutting is a salient one for us. We will come back to it in Sect. 8.4.1.

8 The indexical stance is represented in the models of Board [14, pp. 60–61], van Ditmarsch
[20, p. 237], and van Benthem [9, p. 138], while Baltag and Smets [3, p. 12] and [4, pp. 17–23]
prefer a presentation in terms of global plausibility relations.
9 Similar ideas of extending positive and negative introspection assumptions about belief were
advanced by Stalnaker [48, p. 145] [49, p. 189] and Board [14, pp. 60–61]. See Demey [19, p. 387]
on “uniform” epistemic plausibility models.
10 We will return to this point later, see the comment on definitions (8.2)–(8.4) in Sect. 8.3.2.
11 Similarly for van Ditmarsch’s [20, p. 237] ‘doxastic-epistemic state’.
12 Perhaps making some worlds “infinitely implausible”.
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The established tradition in modal logic as applied in computer science and game
theory is to model knowledge by an equivalence relation that represents indistin-
guishability for the agent. The idea is that an agent knows that ϕ if and only if ϕ is
true in all possible worlds that the agent cannot distinguish from the real world. We
should like to emphasize that this is decidedly not the ordinary notion of knowledge.
For knowledge in anything close to the ordinary, general sense, and the sense studied
by epistemologists, negative introspection is a paradigmatic non-theorem rather than
a theorem for epistemic logic.13 More often than we like, we fail to know because
we are wrong. In many such cases, we believe that we know p, but this belief is
wrong. Thus, we don’t know (because p is false), but don’t know that we don’t know
(an exemplification of an important kind of unknown unknowns). It is abundantly
clear that the Brouwerian principle ¬ϕ → K¬Kϕ and the interaction principle
BKϕ → Kϕ are invalid for the ordinary, general notion of knowledge,14 but they
come out as valid according to the standard DEL semantics. The notion of knowledge
that is modelled by S5 structures is the knowledge of agents that are infallible. But
humans are not. We can justify taking such structures only by restricting ourselves
to specific domains or contexts in which agents do not make any mistakes, i.e., in
which their doxastic possibilities do not rule out the actual world. Such contexts
are provided by certain fields of research in computer science and game theory. We
pretend that we are working in some such context and just ignore this problem as a
matter of idealisation.

We thus conceive of the combination of the epistemic and doxastic relations in
the following way. The epistemic relation creates a partition of the domain W , and
each equivalence class of the partition contains a Grove relation (or a system of
spheres). That we only have a single Grove relation (or a single system of spheres)
for each epistemic indistinguishability class reflects the idea that an agent has the
same doxastic state in each possible world within a cell of the knowledge partition.
So we assume that agents are fully knowledgeable about (have full introspection
concerning) their own doxastic states. If they were not, we would need to assign Grove
spheres to each world individually. We represent the doxastic epistemic structure of
a single agent as follows:

13 Even positive introspection for knowledge, the so-called KK thesis, has been much contested,
especially in the light of the success of externalist and reliabilist accounts in epistemology. Very
recently, some new defenders of KK have entered the scene, see Okasha [38] and Greco [28].
14 Lenzen [35] and, following Lenzen, Stalnaker [49] offer very strong arguments in favour of
defining Bϕ as ¬K¬Kϕ. In the light of this definition. Brouwer’s principle, which corresponds
to the symmetry of the accessibility relation, just means Bϕ → ϕ, i.e., infallibility! Lenzen [35,
p. 43], Lamarre and Shoham [33, pp. 415, 420] and Stalnaker [49, p. 179] advocate the principle
of strong belief Bϕ → BKϕ (the term “strong belief” is Stalnaker’s, Lamarre and Shoham use
the term “certainty”). Taken together with the strong belief principle, the interaction principle
BKϕ→ Kϕ implies the undesirable Bϕ→ Kϕ. – In his attempt to maintain negative introspection
for knowledge, Halpern [30] proposes to restrict the principle that knowledge implies belief to
nonmodal sentences.
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The domain is partitioned in two equivalence classes, and each “cell” contains
a Grove relation, with maximal elements shaded in gray. The maximal elements of
each cell are the states at which beliefs at a world in that very cell are to be evaluated.
All worlds within a cell refer to the same belief set. So we picture Grovean sphere
systems only within the cells of the knowledge partition (and each such cell contains
exactly one such system). We impose this as a (the one standard) constraint on the
interaction between the doxastic and epistemic relation, namely that the former is a
subrelation of the latter: ≤⊆∼.

The fact that we have Grove relations ≤ within each knowledge cell means that
the domain of such Grove relations is not the whole of W (i.e., that the relevant
Grove systems are not universal). The structural properties of Grove relations are
all restricted to each individual indistinguishability cell. There are no plausibility
comparison across cells. Hence, if we want to stick to the single relation modelling,
we have to use more complicated structures than Grove orderings.

A generalized Grove relation is a reflexive and transitive relation ≤ over W such
that the relation ∼, defined by

u ∼ v if and only if either u ≤ v or v ≤ u

is an equivalence relation.15 Notice that we do not assume the limit assumption for
the generalized Grove relation. This definition derives the epistemic relation from the
doxastic relation: Indistinguishability means comparability in terms of plausibility.
The definition guarantees that∼ contains≤. It is not required that generalized Grove
relations are connected over the whole of W . They may have, and typically do have
many belief sets (sets of doxastically possible worlds) on which systems of spheres
are centered—one such structure in each cell of the partition. So ≤ never makes
any plausibility comparisons across cells. But it is easily verified that each cell with
respect to ∼ is a Grove relation—without the limit assumption.

15 Given the transitivity of ≤, a condition equivalent to the transitivity of ∼ thus defined is the
requirement of weak connectedness of≤ both forwards and backwards, also known as “no branching
of ≤ to the left or to the right”:

If w ≤ u and w ≤ v, then either u ≤ v or v ≤ u (NBR)
If u ≤ w and v ≤ w, then either u ≤ v or v ≤ u (NBL)

This requirement is used by Baltag et al. [6, p. 396].
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8.3.1 EDL Language and Semantics

We define epistemic doxastic models (for single agents), or EDL models for short,
as structures M = 〈W ,∼,≤,<,V〉, with W a non-empty set of worlds, an V a
valuation function assigning sets of possible worlds to propositional variables. We
take ≤ to be a generalised Grove relation. We define ∼ as above, and take < as the
strict subrelation of ≤ in the usual way: w < v iff w ≤ v and v �≤ w.16 We read
w ≤ v as ‘v is at least as plausible as w’, and w < v as ‘v is (strictly) more plausible
than w’. To talk about EDL models, we use a basic EDL modal language with three
modalities corresponding to the three accessibility relations:

ϕ :: = p | ¬ϕ | (ϕ ∧ ψ) | [∼]ϕ | [≤]ϕ | [<]ϕ

As usual, we define dual diamond operators as, for example, 〈∼〉ϕ := ¬[∼]¬ϕ.
For the interpretation of the EDL language, we extend the valuation V to a valua-

tion [[ · ]]M assigning semantic values, or sets of possible worlds, to the sentences of
the EDL langauge. Hence, in each epistemic doxastic model M = 〈W , ∼, ≤, <, V〉,
semantic values [[ϕ]]M ⊆ W are given by:

[[p]]M = V(p)

[[¬ϕ]]M = W \ [[ϕ]]M
[[(ϕ ∧ ψ)]]M = [[ϕ]]M ∩ [[ψ]]M
[[[∼]ϕ]]M = {w ∈ W | if w ∼ v, then v ∈ [[ϕ]]M , for every v ∈ W}
[[[≤]ϕ]]M = {w ∈ W | if w ≤ v, then v ∈ [[ϕ]]M , for every v ∈ W}
[[[<]ϕ]]M = {w ∈ W | if w < v, then v ∈ [[ϕ]]M , for every v ∈ W}

For convenience, we sometimes use the more common notation M,w |= ϕ instead
of w ∈ [[ϕ]]M .

8.3.2 Knowledge and Belief in EDL

For reasons of simplicity and continuity with much of the literature, we assume that
agents know that ϕ in a world w just in case ϕ is true in all worlds v that they cannot
distinguish from w:

M,w |= Kϕ iff for all v such that v ∼ w,M, v |= ϕ.

16 The presence of ∼ and < is thus redundant, as they are definable in terms of ≤ in models, but
we keep them for reasons that will become clear later.
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In other words,
Kϕ := [∼]ϕ (8.1)

We thus have a semantics for Kϕ that is widely accepted in computer science and
game theory. As we explained above, we have philosophical scruples about it, but
we wish to keep the focus of this chapter on belief.

So much for the epistemic part. For doxastic operators, we need to do more work.
Our strategy is to derive the analysis of (various kinds of) belief by using the more
primitive modalities [≤] and [<]. Following a strategy that can be traced back to at
least Boutilier [15, p. 44], we have an intended semantics for belief that is in line
with the AGM tradition:

M,w |= Bϕ iff there is a u such that u ∼ w and for all v with u ≤ v, M, v |= ϕ.

Notice the epistemic constraint v ∼ w in the semantic definition of Bϕ, in order
to guarantee that beliefs are independently evaluated in each class of the epistemic
partition. Given our assumption of connectedness inside each epistemic class, this
semantics says that at some point along the plausibility order, ϕ is true for every
world at least as plausible. We can explicitly define this notion of belief in the EDL
language:

Bϕ := 〈∼〉[≤]ϕ (8.2)

The right-hand-side of Eq. (8.2) says that some worlds among the epistemically indis-
tinguishable worlds have [≤]ϕ, which is precisely the semantics of Bϕ. Assuming
the limit assumption would guarantee that ϕ is true in all maximal worlds in the
model, which is the more common definition of belief in the AGM tradition.

We can also express that a belief in ϕ is stronger or more entrenched than a belief
in ψ , which we denote by B(ψ ≺ ϕ).

B(ψ ≺ ϕ) := 〈∼〉(¬ψ ∧ [≤]ϕ) (8.3)

If we set ψ = ⊥ in definition (8.3), we recover definition (8.2). Another doxastic
notion that we can define is conditional belief of ϕ given ψ (cf., for instance, [4, 5,
12, 14]):

B(ϕ |ψ) := 〈∼〉ψ → 〈∼〉(ψ ∧ [≤](ψ → ϕ)) (8.4)

If we set ψ = � in definition (8.4), we again recover exactly definition (8.2). Notice
that we didn’t need to use the strict modality [<]ϕ to define belief so far. But if
we were to work over partial orders, we could use it to define belief, comparative
entrenchment of belief and conditional belief in the following way:

Bϕ := [∼](¬ϕ→ 〈<〉(ϕ ∧ [<]ϕ)) (8.5)

B(ψ ≺ ϕ) := [∼](¬ϕ→ 〈<〉((ϕ ∧ ¬ψ) ∧ [<]ϕ)) (8.6)

B(ϕ |ψ) := [∼]((ψ ∧ ¬ϕ)→ 〈<〉((ψ ∧ ϕ) ∧ [<](ψ → ϕ))) (8.7)
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Again, if we set ψ = ⊥ in definition (8.6) or ψ = � in definition (8.7), we recover
definition (8.5), as expected.

Finally, if we setψ = ¬ϕ in definition (8.4) or (8.7), we get the notion of irrevoca-
ble belief (Segerberg [46]), i.e., belief that is sustained even in the face of contradict-
ing evidence. Since 〈<〉(ϕ∧¬ϕ) cannot be true anywhere, B(ϕ | ¬ϕ) reduces to [∼]ϕ.
But this means that irrevocable belief reduces to knowledge-as-indistinguishability.
In contrast to Baltag and Smets [4, 5, pp. 14–15, 28], we have argued against such
an identification on Sect. 8.2, because even the strongest beliefs may be wrong. But
with the means used in this chapter we cannot express the difference.17

We can now address the idea that agents have full introspection of their doxastic
states. This is in fact built firmly into our notions of belief. Notice that the definitions
(8.2)–(8.7) of belief have either 〈∼〉 or [∼] as their main operator.18 Given our
semantics for the indistinguishability relations, it is clear that we get the characteristic
S5 axioms of positive and negative introspection with respect to [∼]. But given
definition (8.1), this means that if the agent has certain beliefs at a world w that can
be expressed by Bϕ, B(ψ ≺ ϕ) or B(ϕ|ψ), then, by the very definition of these
expressions, KBϕ, KB(ψ ≺ ϕ) or KB(ϕ|ψ), respectively, are also true at w.19

17 Here are a few hints how this situation could get remedied. The picture is basically that within
each indistinguishability cell (∼-cell), there is a single system of spheres $ that need not exhaust
this cell. In order to characterize

⋃
$B, we suggest to extend epistemic doxastic models by a

new relation� that helps representing non-universal systems of spheres (see Sect. 8.2—but now
everything happens within every single ∼-cell). � should be a serial, transitive and Euclidean
subrelation of the global indistinguishability relation∼ that specifies a unique set of “conceivable”
worlds within each set of indistinguishable worlds. Intuitively, u � v for worlds u and v means
that u ∼ v and v is within the relevant ∼-cell’s system of spheres. Thus, if u ∼ v and u� w, then
also v� w. We would also need to harmonise�with < (and ≤), by conditions like ‘If u ∼ v and
w � u but not w � v, then v < u’ and ‘If u ∼ v and there is no w such that w � u or w � v,
then neither u < v nor v < u.’ We would then use 〈�〉 and [�] rather than 〈∼〉 and [∼] in the
definitions (8.4) and (8.7) of conditional belief. Correspondingly, the notion of irrevocable belief
would reduce to [�]ϕ rather than [∼]ϕ. Knowledge that ϕ (in the indistinguishability sense) would
then imply irrevocable belief that ϕ, but not vice versa, as desired.
18 Definition (8.4) is an exception. But even on this definition, we have B(ϕ|ψ) → KB(ϕ|ψ). It
is easy to see this. Assume that M,w |= B(ϕ|ψ) for some w. For M,w |= KB(ϕ|ψ), we need to
show that M, v |= B(ϕ|ψ) for all v such that w ∼ v. By definition, M,w |= B(ϕ|ψ) means that
either M,w |= [∼]¬ψ or M,w |= 〈∼〉(ψ ∧ [≤](ψ → ϕ)). But the truth value of both of these
sentences are independent of the world v of evaluation, as long as w ∼ v. So either M, v |= [∼]¬ψ
or M, v |= 〈∼〉(ψ ∧ [≤](ψ → ϕ)), and thus M, v |= B(ϕ|ψ), as desired.
19 The modality ‘[≤]’ is referred to as “knowledge” by Lamarre and Shoham [33, p. 418], as
“knowledge according to the defeasibility analysis” by Stalnaker [49, Sect. 6], and as “safe belief”,
“defeasible knowledge” and “Stalnaker knowledge” by Baltag and Smets [4, see in particular
pp. 27–32]. In contrast to Kϕ and Bϕ, the truth value of [≤]ϕ is in general not constant within
a ∼-cell. The early chapter of Lamarre and Shoham is interesting: It disavows negative introspec-
tion for knowledge and finds strong belief (“certainty”) thatϕ to be equivalent with¬K¬Kϕ—points
we acclaim from a philosophical perspective. But it also finds knowledge that ϕ to be equivalent
with the conditional belief B(ϕ|¬ϕ)—a result we object to from a philosophical perspective. This
unexpected conjunction is connected with the fact that Lamarre and Shoham let not only knowledge,
but also conditional belief and conditional certainty vary from world to world, and thus disavow
negative introspection for conditional belief and conditional certainty, too.
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One advantage of our modular and minimalist approach is that we can express
precisely what we mean when we talk of knowledge and (comparative firmness of)
belief. We are very economical with the assumptions we impose on our models, and
we relegate them to explicit definitions in our language. We refrain as much as we
can to use background assumptions.

8.3.3 Axiomatisation of EDL

The axiomatisation of static EDL is based on standard propositional logic. Figure 8.1
shows the axioms for the static part of our modal logic in building blocks. We have the
standard set of S5 axioms for the knowledge-as-indistinguishability modality [∼].
For the non-strict plausibility relation [≤] which takes≤ as an accessibility relation,
we have the S4.3 axioms that correspond to connected relations. For strict plausi-
bility [<], we have K4 plus (Mod<). This latter axiom is interesting. As far as we
know, it has not been used in epistemic or doxastic logics so far, but van Benthem
[7, p. 200] has stated and analyzed it early on in the context of temporal logic. Being
a Sahlqvist formula (cf. Blackburn, de Rijke and Venema [13]), (Mod<) enforces
the modularity (or ‘almost-connectedness’ or ‘virtual connectivity’20) to the right of
the strict plausibility relation <: If u < v, u < w, u < z and v < w, then either
v < z or z < w. Finally, we need interaction principles between [∼], [≤] and [<].
These principles are there to counteract the modal undefinability of < in terms of
≤, as has been noted in van Benthem, Girard and Roy [10]. They guarantee that the
relation< is adequate under bulldozing (cf. Segerberg [45]) of the canonical model,
so that w < v iff w ≤ v and v �≤ w. In a similar fashion, it is well-known that we
cannot modally express that ∼ is the same as ≤ ∪ ≤−1, but the canonical model
can be adapted accordingly. Since the interaction principles are fairly strong, we are
not claiming that our axiomatisation is free of redundancies. We prefer to have fully
independent axiomatizations for each of our modal operators instead.

We have not assumed the limit assumption up until now, and we are still inclined
against endorsing it. However, should one insist to include it, we suggest to add the
so-called Löb axiom (Löb<), which corresponds to transitivity and converse well-
foundedness (and thus irreflexivity), as an optional extra. It is known to exclude
infinite chains and so is the natural counterpart to the limit assumption in ordering
semantics.21 While the limit assumption is not important in the static contexts of
(conditional and unconditional) belief, it will turn out to be necessary for many
important belief change operations on epistemic doxastic models.

20 The most descriptive term ‘modularity’ was suggested by Ginsberg [26, p. 49]; ‘almost-
connectedness’ is due to van Benthem [7, 8, pp. 194, 232], ‘virtual connectivity’ to Alchourón
and Makinson [2, p. 415]. Notice that there is also a different sense of ‘almost-connectedness’ in
the literature (see Doble et al. [22]).
21 See Blackburn, de Rijke and Venema [13, pp. 130–132]. It would be nice to have a more compact
axiomatisation of K4 plus (Mod<) and (Löb<). At this point, we can only conjecture that adding
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Fig. 8.1 Axiomatisation of static EDL. For the reader’s convenience, we have added a few variants
using the possibility operator ♦, since these are sometimes more intuitive

8.4 Epistemic Doxastic PDL Logic

Epistemic doxastic PDL logic, EDPDL for short, is a variant of the now well-
established PDL logic (propositional dynamic logic), whose first interpretation over
relational structures can be found in Pratt [41], and further elaborated in Fischer and
Ladner [24]. The original purpose of PDL was to provide a logic of programs in a
modal framework, taking programs as modal operators or binary relations between
states (transitions between states of a machine). The interpretation of PDL modalities
〈π〉ϕ according to [24] is: ‘π can terminate with ϕ holding on termination’. However,

(Footnote 21 continued)
Löb is sufficient to get a complete axiomatisation with the limit assumption, but we have to leave
open the problem of showing the logic to be (weakly) complete with respect to the relevant class
of frames.
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Fig. 8.2 Axiomatization of general PDL part

this interpretation is not what we are after. The part of PDL that is relevant to us
is the modal calculus of relation combination, which we exploit to formalise belief
change. Formally, we extend the language of EDL by adding the PDL operations of
test, choice and composition to the basic ingredients of our language:

π :: = ∼ | ≤ | < | ϕ? | π ∪ π ′ | π ; π ′
ϕ :: = p | ¬ϕ | (ϕ ∧ ψ) | [π ]ϕ

As usual, we define dual box operators [π ]ϕ := ¬〈π〉¬ϕ for each program π .
In this notation, the special modalities [π ]ϕ with π ∈ {∼,≤,<} are just the basic
modalities [∼]ϕ, [≤]ϕ and [<]ϕ of the previous section. In each epistemic doxastic
model M = 〈W ,∼,≤,<,V〉, semantic values [[ϕ]]M ⊆ W and [[π ]]M ⊆ W2 are
given by:

[[p]]M = V(p)

[[¬ϕ]]M = W \ [[ϕ]]M
[[(ϕ ∧ ψ)]]M = [[ϕ]]M ∩ [[ψ]]M
[[〈π〉ϕ]]M = {u ∈ W |u[[π ]]Mv and v ∈ [[ϕ]]M , for some v ∈ W}
[[∼]]M =∼
[[≤]]M =≤
[[<]]M =<
[[ϕ?]]M = {〈u, u〉|u ∈ [[ϕ]]M}

[[π1;π2]]M = {〈u, v〉|u[[π1]]Mw and w[[π2]]Mv, for some w ∈ W}
[[π1 ∪ π2]]M = [[π1]]M ∪ [[π2]]M

As usual, we also write u[[π ]]Mv for 〈u, v〉 ∈ [[π ]]M and M, u |= ϕ for u ∈ [[ϕ]]M .
Incorporating PDL in our axiomatisation is simple, especially since we are only
appealing to the fragment of PDL without the Kleene star. In line with our mod-
ular approach, the PDL operators or test, choice and composition are recursively
introduced (Fig. 8.2).
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8.4.1 Doxastic PDL Transformations

To formalise belief change, we use a special case of PDL-transformations as defined
in Girard, Seligman and Liu [27]. This latter chapter was directly motivated by Fact 19
from van Benthem and Liu [11]: every relation-changing operation that is definable in
PDL without iteration has a complete set of reduction axioms in dynamic epistemic
logic. We fully exploit this idea in the remainder of the chapter. For the details of the
general case of PDL-transformations, the reader should consult Sect. 1 of [27]. We
give here a self-contained specification of the special case of PDL-transformations
required for our purposes. Basically, a doxastic PDL-transformation � is a trans-
formation on models that has two components: (1) a domain restriction provided
by some sentence denoted |�|,22 and (2) PDL-definable transformations of the rela-
tions∼,≤ and<. Even though we feel unconfortable about world-elimination, as we
already explained, we will use domain restrictions to differentiate between expansion
and revision. We are very much aware of philosophical difficulties that may ensue,
and will treat them with care.

Given a model M = 〈W ,∼,≤,<,V〉 and a PDL-transformation �, the result of
transforming M with� is the model�M = 〈�W ,�(∼),�(≤),�(<),�V〉.�M is
computed by setting�W = [[|�|]]M and taking all relations�(∼),�(≤) and�(<)
that are defined explicitly for each particular program to be restricted to (�W)2.
Likewise the valuation �V is simply the valuation V restricted to the domain �W .

We also define computable translations ϕ� of sentences corresponding to PDL-
transformations on models:

p� = p
(¬ϕ)� = ¬ϕ�
(ϕ ∧ ψ)� = (ϕ� ∧ ψ�)
(〈π〉ϕ)� = 〈π�〉ϕ�

∼� = �(∼) ; |�|?
≤� = �(≤) ; |�|?
<� = �(<) ; |�|?
(ϕ?)� = (ϕ�)?
(π1 ; π2)

� = π�1 ; π�2
(π1 ∪ π2)

� = π�1 ∪ π�2

As demonstrated in [27], the translation ϕ� guarantees that the following lemma
holds:

Lemma 8.1 For each state u of �M and v of M, and for each sentence ϕ,

M, u |= ϕ� iff �M, u |= ϕ, and

u[[π�]]Mv iff v ∈ �W and u[[π ]]�Mv.

We represent PDL-transformations in the following way:

22 The accustomed reader will recognise this as something very much like a public announcement.
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Name of a PDL-transformation

� |�|
∼:= �(∼)
≤:= �(≤)
<:= �(<)

A well-known special case of a PDL-transformation is the public announcement
of a sentence ϕ, first studied by Plaza in 1989 and now republished in [40]:

Public Announcement

ϕ! ϕ

∼:=∼
≤:=≤
<:=<

In this representation, ‘∼ :=∼’ means that the relation ∼ is assigned to its
restriction to the new domain in the new model, i.e., ϕ!(∼) = ∼ ∩ (ϕ!W)2 =
∼ ∩ ([[ϕ]]M)2. Thus, all a public announcement does is to restrict the domain by
eliminating ¬ϕ-worlds. All relations are kept as they were, but restricted to the new
domain. To ease notation, we omit writing identity assignment such as ‘∼ :=∼’ in
transformations. We also omit writing the domain restriction when |�| = �. Thus
the public announcement transformation can be succinctly written as:

Public Announcement

ϕ! ϕ

With this established, we expand our language of doxastic epistemic PDL logic
with modalities [�]ϕ for each PDL-transformation� with the following semantics:

M,w |= [�]ϕ iff �M,w |= ϕ.

We stipulate that M,w |= [�]ϕ is vacuously true in case M,w �|= |�|.
A technical difficulty with PDL-transformations is that they may not always trans-

form models into new models of the right kind. A doxastic epistemic model M may
be transformed by a PDL-transformation� in such a way that�M is not a doxastic
epistemic model. To avoid this issue, we do not accept any possible doxastic PDL-
transformation, but instead provide a class of doxastic PDL-transformations that are
proper, in the sense that they always return doxastic epistemic model.
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8.5 AGM Operations

In this section we provide a class of PDL-transformations which are candidates of
unrestricted transformations in the style of Alchourrón, Gärdenfors and Makinson
(compare [1, 2, 17, 25, 29, 32]); we refer to them as “AGM operations” or “doxastic
transformations”. We base our selection on those given in Rott [42].23 We first study
the operations of belief expansion and belief revision, which can be nicely treated in
EDPDL logic. We then move to a study of the operation of belief contraction. Our
selection is partly for the sake of exposition, but we include standard DEL doxastic
change operations to be found in recent work such as van Benthem [9] or Baltag and
Smets [4].

8.5.1 Expansion and Revision

The operations of expansion and revision are about adding beliefs to belief states. We
start with three types of doxastic change, that we categorise as conservative, radical
and moderate. A conservative doxastic transformation by ϕ is one that only shifts
around maximal ϕ-worlds (or, in the case of contraction, ¬ϕ-worlds), and leaves the
ordering between the other worlds intact. A moderate doxastic transformation by ϕ
is one that shifts around all ϕ-worlds (or, in the case of contraction, ¬ϕ-worlds) in
a uniform way. A radical doxastic transformation by ϕ is one that only preserves
ϕ-worlds (or, in the case of contraction, almost only ¬ϕ-worlds).

We use the following abbreviations:

∼ϕ :: = (ϕ? ; ∼ ; ϕ?)
≤ϕ :: = (ϕ? ; ≤ ; ϕ?)
<ϕ :: = (ϕ? ; < ; ϕ?)
max ϕ :: = (ϕ ∧ [<]¬ϕ)

Notice that the sentence max ϕ is only true in the most plausible ϕ-worlds, i.e.,
ϕ-worlds such that all worlds more plausible, if there are any, satisfy ¬ϕ.24

8.5.2 Expansion

We start with expansion. Generally speaking, expanding one’s beliefs with ϕ is
to start believing ϕ without caring about consistency. If ϕ is not consistent with
what the agent believes, then her beliefs trivialise and she now believes ⊥. But it

23 Any PDL transformation which outputs a Grove relation would be formally legitimate. To
categorise this general class of transformations is still an open problem in GDDL, and we will not
address it here, as our main concern is with AGM motivated transformations.
24 Slightly abusing the term “maximality”, one could also experiment with putting max(ϕ) ::=
(ϕ ∧ ([<]¬ϕ ∨ [≤]ϕ)), but we will not pursue this idea in the present chapter.
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is important to note that her belief state does not trivialise. In the semantics using
Grovean systems of spheres, we can represent this nicely by adding an empty sphere
to $B . Unfortunately, no such picture is possible with the pure ordering approach.
We have to stipulate here that if ϕ is inconsistent with the beliefs supported by ≤,
which we write as¬[∼]〈≤〉ϕ, then the belief set that results from the expansion is the
trivial one, cl(⊥). We achieve this by introducing the domain restriction |[∼]〈≤〉ϕ|
in expansion transformations. Notice that this restriction doesn’t really restrict the
domain, because of our underlying assumption that the plausibility order is uniform
inside epistemic classes. So either all worlds in a class satisfy [∼]〈≤〉ϕ, or none do.
In the latter case, the agent ends-up believing ⊥.

We first look at conservative expansion. Conservative expansion by ϕ reorders
maximal ϕ-worlds and leaves the rest of the model intact. That is, the order stays
intact among the worlds that are not maximal ϕ-worlds (those that either do not
satisfy ϕ or for which there are strictly more plausible worlds that satisfy ϕ), and
it makes every maximal ϕ-world equally plausible to each other as well as strictly
more plausible than any other world:

Conservative expansion

CEϕ [∼]〈≤〉ϕ
≤:=≤¬max(ϕ) ∪ (∼; max ϕ?)
<:=<¬max(ϕ) ∪ (¬max ϕ? ; ∼ ; max ϕ?)

To say that beliefs of agents trivialise under expansion with information ϕ that
is inconsistent with their beliefs amounts to saying that M,w |= [CEϕ]B⊥ in case
M,w �|= [∼]〈≤〉ϕ. Notice that conservative expansion is not successful if we do not
assume the limit assumption. If there are no maximal ϕ-worlds, then nothing happens
to the doxastic structure.

Second, consider the operation of moderate expansion, which differs from the
conservative operation by reordering all ϕ-worlds instead of only the maximal ones.
Hence, moderate expansion preserves the order among the ϕ-worlds and among the
¬ϕ-world, and makes every ϕ-world strictly more plausible than every ¬ϕ-world.
In this case, the old maximal ϕ-worlds become the most plausible ones overall.
Formally, moderate expansion MEϕ is defined by:

Moderate expansion

MEϕ [∼]〈≤〉ϕ
≤:=≤ϕ ∪ ≤¬ϕ ∪ (¬ϕ? ; ∼ ; ϕ?)
<:=<ϕ ∪ <¬ϕ ∪ (¬ϕ? ; ∼ ; ϕ?)

Finally, radical expansion is an action which reduces to a domain restriction.
If ϕ is consistent with the agent’s beliefs, then we only keep the ϕ-worlds. Thus,
if there are maximal worlds that are ϕ-worlds, radical expansion deletes all ¬ϕ-
worlds; otherwise beliefs trivialise. This is all that is required, so relations are simply
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Three kinds of expansion
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MEp
p

p

REp
p

p

Fig. 8.3 Three kinds of expansion by p. Models are closed under transitivity and reflexivity

restricted as they were to the new domain. Formally, radical expansion REϕ is defined
by:

Radical expansion

REϕ ϕ ∧ [∼]〈≤〉ϕ

Figure 8.3 displays the three kinds of expansion acting on the same model. Every
expansion returns the same set of maximal states. The difference is in the ordering of
the remaining worlds. We have chosen a model in which some p-worlds are among the
maximal worlds. Radical expansion restricts the domain to p-worlds, exemplifying
the way in which it is radical compared to the other ones.

Now that we have precise definitions of expansion as doxastic transformation, we
can specify distinguished modalities for each of them: [CEϕ], [MEϕ], and [REϕ].
So for instance, the sentence [CEϕ]Bψ says that ψ is believed after moderately
expanding with ϕ. As we have no restriction on iterations of doxastic actions, we can
also express and analyse complex sentences such as the validities [CEp][REp]Bψ ↔
[REp]Bψ and [REp][REq]ψ ↔ [RE(p ∧ q)]ψ . In a multi-agent language, we
could also analyse higher-order beliefs about doxastic change. For instance, with s
= “Robert is a spy” and l = “Robert is a liar”, the sentence Br[REbs]Bbl expresses
that “Robert believes that Bernadette believes that Robert is a liar after radically
expanding her belief by the fact that Robert is a spy”.
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8.5.3 Revision

Revision is exactly like expansion, except that agents do not get trivial beliefs when
revising with information that was not consistent with their initial beliefs. Thus the
only difference between revision and expansion is in the way the beliefs are retrieved
from a plausibility ordering. For revisions, the standard rules apply, and thus an agent
simply cannot have an inconsistent belief set! We can accommodate this nicely
with conservative and moderate revision, but radical revision is problematic. We
can get two interpretations, but neither works properly as a revision. We start with
conservative and moderate revision:

Conservative revision

CRϕ ≤:=≤¬max(ϕ) ∪ (∼; max ϕ?)
<:=<¬max(ϕ) ∪ (¬max ϕ? ; ∼ ; max ϕ?)

Moderate revision
MRϕ ≤:=≤ϕ ∪ ≤¬ϕ ∪ (¬ϕ? ; ∼ ; ϕ?)

<:=<ϕ ∪ <¬ϕ ∪ (¬ϕ? ; ∼ ; ϕ?)

Moderate revision precisely corresponds to the lexicographic upgrade, and con-
servative revision to the elite change of van Benthem [9, p. 141]. We will see in
Sect. 8.5.4 that these operations can be regarded as the natural limiting cases of a
common idea (viz., that of bounded revision). However, there is an important dif-
ference. While moderate revision has no need whatsoever for the limit assumption,
conservative revision needs it badly. Like conservative expansion, conservative revi-
sion might not be successful without the limit assumption. If it is not met, then there
may not be any maximal ϕ-worlds and conservative revision may not effect anything.

We can give two interpretations of radical revision as described in Rott [42]. An
important aspect of radical revision by ϕ is that ¬ϕ-worlds can never be recovered.
One way of incorporating this is by using a domain restriction |ϕ| that removes ¬ϕ-
worlds from the model altogether. Another way is to have no domain restriction, like
in conservative and moderate revision, but cut every link between ϕ and ¬ϕ-worlds.

The first approach, in which we guarantee irrevocable revision with a domain
restriction, is the following doxastic transformation:

Radical revision, version 1

RRϕ ϕ

This version of radical revision by ϕ is the same as a public announcement of ϕ
as we’ve analysed above. In the terminology of van Benthem [9], radical revision is
a change under hard information, whereas conservative and moderate revisions are
two alternatives of change under soft information.
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The way in which this version of radical revision captures the irrevocability of
ϕ is by deleting all the ¬ϕ-worlds. This is indeed a radical way of guaranteeing
that¬ϕ-worlds cannot be recovered. This approach also captures success of revision
for Boolean sentences, but not without a price. The price to pay is that beliefs of
agents trivialise in ¬ϕ-worlds when radically revising by ϕ. Indeed, assume that
M,w |= ¬ϕ in some model M. Because of the domain restriction |ϕ|, we get that
M,w |= [RRϕ]B⊥. Success comes at the price of triviality, which is not what revision
operators have been invented for.

One way to make sure that belief sets do not trivialise under revision is to avoid
restricting the domain, as in conservative and moderate revision, with the following
transformation:

Radical revision, version 2

RRϕ ∼:=∼ϕ ∪ ∼¬ϕ
≤:=≤ϕ ∪ ≤¬ϕ
<:=<ϕ ∪ <¬ϕ

The way in which this version of radical revision is irrevocable comes from the
definition of our epistemic relation. We did not introduce a free transition as a basic
program. We have been using the relation ∼ instead. For instance, in moderate
revision, we can make sure that all ϕ-worlds become more plausible than¬ϕ-worlds
by re-defining < as <ϕ ∪ <¬ϕ ∪ (¬ϕ? ; ∼ ; ϕ?), where ∼ is used to create new
plausibility links in (¬ϕ? ; ∼ ; ϕ?). Now, in our second interpretation of radical
revision, once we cut links between ϕ and ¬ϕ-worlds, these links are no longer
recoverable! This is nice, but also comes with its own cost, again when radical
revision is evaluated in ¬ϕ-worlds.25

Let us highlight the problem about interpreting (possibly untruthful) public
announcement and radical revision with the help of an example. Take a very simple
model with two epistemically indistinguishable and equiplausible worlds w and v,
with p and q true at w, but false at v (Fig. 8.4). Consider a radical revision by p. If
radical revision goes by domain restriction, v simply vanishes, and we get that both
[RRp]Bp and K[RRp]Bp are true at w. However, if radical revision goes by a “link-
cutting” action then again [RRp]Bp is true at w, but false at v—surprisingly, even
[RRp]B¬p is true at v. Hence, since v ∼ w, K[RRp]Bp is false at w. Suppose that in
the initial situation the agent is actually located at v, but cannot distinguish v from w.
So all the agent knows or believes at the beginning is p↔ q. Now the agent receives
a public (but not truthful!) announcement that p and as a result performs some kind
of radical revision on p. What would happen? Metaphysically, world v would not

25 For complex sentences ϕ that involve doxastic operators, it is possible that ϕ becomes true
again at a¬ϕ-world after other doxastic transformations. The old ϕ-worlds are irrevocable. It is the
worlds that are irrevocable, not sentences. Only Boolean sentences (those without modalities) are
truly irrevocable. This is related to the consideration of the AGM success postulate: Only Boolean
sentences are guaranteed to be successful. If one revises by a sentence that says “p is true but you
don’t know it”, then one does not get success.
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p,q

w v

RR1 p

p,q

w

RR2 p

p,q

w v

Fig. 8.4 Small example illustrating a problem with radical revision. Models are closed under
reflexivity

cease to exist—this is what makes domain restriction strange.26 The agent would
(wrongly) believe that p, but of course she would not know that p. But she would
not know or believe that ¬p either – this is what makes link-cutting problematic.
Intuitively, while the beliefs have changed—and this is why [RRp]Bp should come
out true at v—, the knowledge has not increased. The agent located at v is still not
able to epistemically distinguish her world from w. None of our modellings have this
option.

The versions of revision we have been investigating are illustrated as operating
on the same initial model in Fig. 8.5.

8.5.4 Two-Dimensional Belief Change Operators

We continue our brief overview of revision operations in the framework of EDL with
two-dimensional change operations in the sense of Rott [44]. These models are meant
to increase the expressive power of purely qualitative, relational, thus non-numerical
models for belief change. The extent to which an input sentence ϕ is accepted,
is specified by a reference sentence ψ . The first two-dimensional belief change
operation we consider is bounded revision. The idea of bounded revision is to accept
ϕ as long asψ holds along with ϕ—and just a little longer. Bounded revision satisfies
(generalizations of) the semantically motivated postulates of Darwiche and Pearl
[17], as well as a “Same beliefs condition” according to which the posterior beliefs
of the agent should not depend on the reference sentence (although the posterior
belief state does). For further motivation we refer to [44]. Bounded revision BdRψϕ
is defined by:

It is not difficult to verify that bounded revision reduces to the unary operation of
conservative revision if the reference sentence ψ is fixed to ⊥, and that it reduces to
the unary operation of moderate revision if the reference sentence ψ is fixed to �.

26 How can we evaluate a sentence at a world v which has vanished in the course of the evaluation?
Above, we have stipulated that M,w |= [�]ϕ to be vacuously true in case M,w �|= |�|, in order to
avoid facing the main clause �M,w |= ϕ when w fails to be in �W of �M. But evidently, this is
not a solution to the problem of untruthful public announcements or radical revisions.
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Three kinds of revision
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Fig. 8.5 Three kinds of revision by p. Models are closed under transitivity and reflexivity

Bounded revision

BdRψϕ ≤:=≤ϕ∧[<](ϕ→ψ) ∪ ≤¬(ϕ∧[<](ϕ→ψ)) ∪
(¬(ϕ ∧ [<](ϕ→ ψ))? ; ∼ ; (ϕ ∧ [<](ϕ→ ψ))?)
<:=<ϕ∧[<](ϕ→ψ) ∪ <¬(ϕ∧[<](ϕ→ψ)) ∪
(¬(ϕ ∧ [<](ϕ→ ψ))? ; ∼ ; (ϕ ∧ [<](ϕ→ ψ))?)

In general, bounded revision requires the limit assumption, since for instance, if ϕ
and ψ are inconsistent with each other, minimal ϕ-worlds are needed to ensure the
success of the revision operation. By a deliberate choice of the reference sentence
ψ , however, one may in many cases make sure that there is a broad enough range
of worlds that satisfy ϕ ∧ [<](ϕ → ψ), and then the operation performs well even
if the model does not satisfy the limit assumption. Figure 8.6 gives an illustration of
bounded revision in a finite model.

Another interesting two-dimensional operation is revision by comparison (Fermé
and Rott [23]). It is motivated by the same concerns as bounded revision. But while
the idea of bounded revision is to accept ϕ as long as ψ holds along with it (and a
little longer), revision by comparison accepts ϕ with a strength that at least equals
that of the acceptance of ψ . In contrast to bounded revision, revision by comparison
does not satisfy the Darwiche-Pearl postulates. In its intended cases of application,
it is a revision operation, but it can also have the effects of a contraction operation
(see Sect. 8.5.5): If the reference sentence is too weak (more precisely, if the input
sentence is at least as surprising as the negation of the reference sentence), then the
revision fails, and instead a severe contraction with respect to the reference sentence
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Bounded revision
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Fig. 8.6 Bounded revision by p with respect to reference sentence q. Models are closed under
transitivity and reflexivity

is performed, provided that there are maximal nonmodels of the reference sentence.27

In at least one way of presenting it (namely by manipulations of prioritized belief
bases, cf. Rott [42]), revision by comparison is an extremely natural belief change
operation.

The definition of revision by comparison given in Fermé and Rott [23, p. 14] can
be represented in our framework as follows:

Revision by comparison

RbCψϕ ≤:=≤ϕ ∪ (¬[≤]ψ? ; ≤) ∪ (¬ϕ? ; ∼ ; [<]ψ?)
<:=<ϕ ∪ (¬[<]ψ? ; <) ∪ (¬ϕ? ; ∼ ; (ϕ ∧ [≤]ψ)?)

Figure 8.7 gives an illustration of revision by comparison in a finite model. We are
representing two cases, the successful one in which the input sentence gets accepted,
and the unsuccessful one in which the reference sentence gets withdrawn.

If we set the reference sentence to �, then revision by comparison reduces to a
unary revision operation that is more radical than moderate revision but somewhat
less radical than the revision operations we have called radical:

Radical revision, version 3

RR3ϕ ≤:=≤ϕ ∪ (¬ϕ? ; ∼)
<:=<ϕ ∪ (¬ϕ? ; ∼ ; ϕ?)

We deal with another interesting limiting case of revision by comparison obtained
by setting the input sentence to ⊥ in the next section.28

27 The limit assumption guarantees this. If, however, the limit assumption is not satisfied, revision
by comparison as defined below may fail to make the input sentence at least as firmly accepted as
the reference sentence.
28 Also compare Rott [43].
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Fig. 8.7 Revision by comparison by p with respect to stronger and weaker reference sentences q:
the successful case of a revision and the unsuccessful case reducing to a severe withdrawal of q.
Models are closed under transitivity and reflexivity

8.5.5 Contraction

The operation of contraction is about withdrawing beliefs from belief states. The main
idea is that a contraction by ϕ is effected by promoting the maximal ¬ϕ-worlds, and
possibly some more worlds, to the ranks of the maximal worlds (i.e., the maximal
�-worlds).

To be successful, each of the following operations requires the use of max¬ϕ,
and most of them require the use of max� as well. Thus the difficulty with belief
contraction is that we need to identify maximal states: the states where [<]ϕ or,
respectively, [<]⊥ hold. But without something like the limit assumption, there is
no guarantee that maximal states exist in models. We can still define the operations
with PDL-transformations, as we did for all other operations, but unless we have
some means of ensuring the existence of maximal worlds, contraction even with
atomic information might not be successful. Now, the way we have proposed to get
the limit assumption is by introducing the Löb axiom. We know that our logic is
sound over the appropriate class of frames in which there are maximal worlds, but
we do not know how to prove completeness. Setting this technical question aside
for future research, we proceed in this section assuming that models always have
maximal worlds, which we identify as those worlds in which max¬ϕ or [<]⊥ is
true.

Our first contraction operation is very simple. It has been studied by various
authors and is perhaps best known under the names severe withdrawal (Pagnucco
and Rott [39]) and mild contraction (Levi [36]). The incisions into sets of beliefs
induced by severe withdrawal are substantially greater than those induced by (iterable
generalisations of) AGM contraction functions.
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Severe withdrawal

SWϕ ≤:=≤ ∪ (∼; [<]ϕ?)
<:= (¬[<]ϕ? ; <)

Severe Withdrawal

p
p
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p
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Fig. 8.8 Severe withdrawal of p. Models are closed under transitivity and reflexivity

Notice that severe withdrawal has no need of identifying maximal�-worlds. But
if the limit assumption is not met, then there may be no maximal ¬ϕ-worlds and
severe withdrawal may weaken the beliefs of the agent without getting rid of ϕ.
Figure 8.8 gives an illustration of a successful severe withdrawal:

It is easy to check that a revision by comparison RbCψϕ reduces to a severe
withdrawal of the reference sentence, SWψ , if we substitute ⊥ for ϕ.29

The following three kinds of contraction are modelled in analogy to conserva-
tive, moderate and radical revision. In line with the basic AGM theory, the way the
corresponding contraction operations proceed is by putting the maximal ¬ϕ-worlds
and the maximal �-worlds on a par, in a maximal position. We now move to the
investigation of conservative, moderate and radical contraction (Fig. 8.9).

Conservative contraction, like conservative revision above, keeps most of the
structure intact and reorders maximal worlds. First, the order is preserved among the
non-maximal ¬ϕ-worlds. Second, the maximal ¬ϕ-worlds are upgraded on top of
non-maximal ϕ-worlds and made as plausible as the maximal �-worlds. Formally,
conservative contraction is the following doxastic transformation:

Conservative contraction

CCϕ ≤:=≤¬max(¬ϕ) ∪(∼; max¬ϕ?) ∪ (∼; max�?)
<:=<¬max(¬ϕ) ∪ ((¬max¬ϕ ∧ ¬max�)? ; ∼ ; max¬ϕ?)

Moderate contraction is defined in analogy to moderate revision, but it is hard to
come up with a motivation for it. Why should the idea of being open-minded about
ϕ result in a belief state that gives a lot of credit to ¬ϕ? We present it for reasons of
uniformity [42].

29 Notice that the transformation (¬[≤]ψ? ; ≤) ∪ (∼; [<]ψ?) is identical to the transformation
≤ ∪ (∼; [<]ψ?), because M,w |= [≤]ψ and w ≤ v taken together imply M, v |= [<]ψ .
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Three kinds of contraction
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Fig. 8.9 Four kinds of contractions with respect to p. Models are closed under transitivity and
reflexivity

Moderate contraction

MCϕ ≤:=≤¬ϕ ∪ ≤ϕ ∪((ϕ ∧ ¬max�)? ; ∼ ; ¬ϕ?)
∪(∼; max�?) ∪ (∼; max¬ϕ?)

<:=<ϕ ∪ <¬ϕ ∪((ϕ ∧ ¬max�)? ; ∼ ; ¬ϕ?)
∪((¬max¬ϕ ∧ ¬max�)? ; ∼ ; max�?)

We finally turn to radical contraction to which similar, and even stronger, cau-
tionary remarks concerning its reasonableness apply.

Radical contraction

RCϕ |¬ϕ ∨max�|
≤:=≤¬ϕ ∪(∼; max¬ϕ? ; ) ∪ (∼; max�?)
<:=<¬ϕ ∪((¬ϕ ∧ ¬max¬ϕ)? ; ∼ ; max�?)

8.6 Conclusion

We have explored AGM belief change policies in a modal dynamic logic that explic-
itly delineates knowledge, belief, plausibility and the dynamics of these notions.
Taking a Kripke semantics counterpart to Grove semantics for AGM as a starting
point, we used a basic modal language containing one epistemic modality [∼]ϕ and
two plausibility modalities [≤]ϕ and [<]ϕ, and defined several notions of belief. We
critically discussed the philosophical presuppositions underlying various modelling
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assumptions commonly made in the literature, such as negative introspection for
knowledge and the limit assumption. Then, we introduced PDL-transformations to
define various policies of iterated belief expansion, revision, contraction and two-
dimensional belief change operations. EDPDL thus formalises our minimalist and
modular attitude.
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Chapter 9
Temporal Aspects of the Dynamics
of Knowledge

Valentin Goranko and Eric Pacuit

Abstract Knowledge and time are fundamental aspects of agency and their
interaction is in the focus of a wide spectrum of philosophical and logical stud-
ies. This interaction is two-fold: on the one hand, knowledge evolves over time; on
the other hand, in the subjective view of the agent, time only passes when her knowl-
edge about the world changes. In this chapter we discuss models and logics reflecting
the temporal aspects of the dynamics of knowledge and offer some speculations and
ideas on how the interaction of temporality and knowledge can be systematically
treated.

9.1 Introduction

Knowledge and time are fundamental aspects of agency and their interaction is in
the focus of a wide spectrum of philosophical and logical studies. This interaction is
a two-way street. On the one hand, knowledge evolves over time as the agent may
learn new information, but also forgets previously known facts or their truth value
may change over time. On the other hand, one can argue that, in the subjective view
of the agent, time only passes when her knowledge about the world changes; and
this is certainly the case when the agent has a watch and continuously keeps herself
aware of the current time, but also when the agent has no other concept or measure
of time except as a succession of events.
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Each of these two concepts—knowledge and time—has been extensively formal-
ized and studied in various logical frameworks, respectively forming the families of
epistemic and temporal logics, since the 1960s, starting with the seminal works of
Hintikka [45] and Prior [54]. Adding a multi-agent perspective makes the interaction
between knowledge and time much more complex and versatile not only because
of the intrinsic complexity of multi-agent epistemics, but also because of the partial
information that individual agents have about the actual succession of events, and
the problems arising with the synchronization of their communication.

Studies in formal logic gradually started reflecting on that interaction and a variety
of logics combining knowledge and temporality started appearing in the 1980s. First,
these were temporal-epistemic (aka, epistemic-temporal) logics [29, 30, 40, 41, 43,
53], coming mainly from the field of distributed computing and looking at the purely
observable, explicit effect of the change of knowledge over time, but not at the reasons
for such changes. Later, dynamic-epistemic logics emerged with the idea to focus
on the causal aspects of the dynamics of knowledge, while leaving the temporality
implicit, simply as succession of epistemic updates [3, 12, 26]. A strong impetus for
new developments in logic reflecting the interaction between time, agents’ knowledge
and agents’ abilities came from multi-agent systems where the so called “alternating-
time temporal logic” [2] and numerous variations and extensions emerged in the early
2000s [36, 46, 60]. Another line of discussions related to issues that arise when
developing logics that combine knowledge and temporality is in chapters on modal
logics for reasoning about strategies and strategic analysis of multi-agent protocols
in game situations [15, 49, 51]. A few approaches for combining the temporal,
epistemic, and dynamic aspects have been recently proposed, too (see Sect. 9.6), but
no commonly embraced Unification Theory has emerged yet. In this chapter we do
not propose such theory, either, but rather offer some speculations on how it might
look, and make some steps towards it.

This chapter is devoted to Johan van Benthem’s influential contributions in this
area. They go back at least to the 1990s and were first presented as a systematic
research program in [9], later followed, inter alia, by [6, 10–13, 17] and culminated,
so far, in [14] and [16]. While we do not purport here to survey Johan’s work in this
area, we certainly derive inspiration from it to chart some follow-up developments.

9.2 Preliminaries

We provide here only some basics of epistemic and temporal models and logics. For
more details see the chapter [19] and the references at the end.
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9.2.1 Models and Logics of (Static) Knowledge

9.2.1.1 Relational Models

The models that we discuss in this chapter are all instances of a relational model.
Let At be a (finite) set of atomic sentences. A relational model (based on At) is a
tuple 〈W,R, V 〉 where W is a nonempty set whose elements are called possible
worlds or states; R is a set of relations on W , i.e., for each R ∈ R, R ⊆ W × W ;
and V : At→ ℘(W ) is a valuation function mapping atomic propositions to sets of
states. Elements p ∈ At are intended to describe ground facts about the situation being
modeled, such as “the red card is on the table”. The set W is intended to represent the
different possible “scenarios” (elements of W are called possible worlds or states).
The valuation function V associates with every ground fact the set of situations where
that fact holds.

9.2.1.2 Epistemic Models

A basic epistemic model is a relational model with a single relation R, hereafter
denoted as ∼, which represents the agent’s knowledge, in terms of its epistemic
uncertainties, as traditional in epistemic logic. The relation ∼ is the agent’s indis-
tinguishability relation, i.e., q ∼ q ′ means that the agent(s) is (are) not able to dis-
cern between the possible worlds q and q ′; thus, both worlds appear identical from
the agent’s perspective. The indistinguishability relations representing the epistemic
uncertainties are traditionally assumed to be equivalence relations. The knowledge
of the agent is then determined as follows: the agent knows a property O in the world
q if O is the case in all states indistinguishable from q for that agent.1

A multi-agent epistemic model involves an indistinguishability relation ∼i

for every agent i . Formally, a multi-agent epistemic structure is a tuple S =
〈A ,St , {∼i | i ∈ A }, V 〉 where A is the set of agents, St is the set of states
(possible worlds) and∼i is the indistinguishability relation over St associated with
the agent i , for each i ∈ A . Then, a multi-agent epistemic model (MAEM) is defined
by adding a valuation to a multi-agent epistemic structure.

9.2.1.3 Epistemic Logics

Basic epistemic logic. A simple propositional modal language is often used to
describe epistemic models. Let LE L be the (smallest) set of sentences generated
by the following grammar:

ϕ := p | ¬ϕ | ϕ ∧ ϕ | Kϕ

1 More generally, by varying the properties of the relation R, these models can also represent other
informational attitudes of the agent, such as beliefs.



238 V. Goranko and E. Pacuit

where p ∈ At (the set of atomic propositions). The additional propositional
connectives (→,↔,∨) are defined as usual and the dual of K, often denoted L, is
defined as follows: Lϕ := ¬K¬ϕ. The intended interpretation of Kϕ is “according
to the agent’s current (hard) information, ϕ is true” (more standardly “the agent
knows that ϕ is true”). Truth of the above language is defined as follows: Let
M = 〈W,∼, V 〉 be an epistemic model. For each w ∈ W , ϕ is true at state w,
denoted M ,w |= ϕ, is defined by induction on the structure of ϕ:

• M ,w |= p iff w ∈ V (p)
• M ,w |= ¬ϕ iff M ,w �|= ϕ
• M ,w |= ϕ ∧ ψ iff M ,w |= ϕ and M ,w |= ψ
• M ,w |= Kϕ iff for all v ∈ W , if w ∼ v then M , v |= ϕ �

Multi-agent epistemic logics. Besides the individual knowledge for each agent, the
multi-agent epistemic framework involves several very natural and important notions
of multi-agent knowledge and respective knowledge operators, for every non-empty
set of agents A. These operators with their intended interpretations are:

• KAϕ, saying ‘Every agent in the group A knows that ϕ’. When A = {i} we write
Ki instead of K{i}.
• DAϕ, saying ‘It is a distributed knowledge amongst the agents in the group A that
ϕ’, intuitively meaning that the collective knowledge of all agents in the group A
implies ϕ. For instance, if Kaϕ and Kb(ϕ → ψ) hold for some agents a and b,
then Ka,b(ϕ ∧ (ϕ→ ψ)) holds, and therefore Ka,bψ holds, too, by the closure of
knowledge under logical consequence.
• CAϕ, saying ‘It is a common knowledge amongst the agents in the group A that
ϕ’, intuitively meaning that not only every agent in A knows ϕ, but also that every
agent in A knows that every agent in A knows ϕ, and every agent in A knows that,
etc., ad infinitum.

The language of the multi-agent epistemic logic builds on the basic epistemic
logic by adding some or all of these operators and the formulae are defined by the
following recursive definition:

ϕ := p | ¬ϕ | ϕ ∧ ϕ | DAϕ | CAϕ,

where p ranges over At and A ranges over the set P+(A ) of non-empty subsets of A.
The individual knowledge Ki ϕ is definable as D{i }ϕ, and then the group knowledge
KAϕ is definable as

∧
i ∈A Ki ϕ.

The formal semantics of the multi-agent epistemic operators at a state in a multi-
agent epistemic model M = (A ,St , {∼i | i ∈ A }, V ) is given by the clauses:

(KA) M , q |= KAϕ iff M , q ′ |= ϕ for all q ′ such that q ∼E
A q ′, where ∼E

A=⋃
i∈A ∼i.

(CA) M , q |= CAϕ iff M , q ′ |= ϕ for all q ′ such that q ∼C
A q ′, where ∼C

A is the
transitive closure of ∼E

A .
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(DA) M , q |= DAϕ iff M , q ′ |= ϕ for all q ′ such that q ∼D
A q ′, where ∼D

A=⋂
i∈A ∼i.

For more a more detailed discussion on epistemic models and the relevant modal
logics see the chapter [19].

9.2.2 Temporal Models and Logics

Temporal reasoning stems from philosophical analysis of time and temporality, ini-
tiated in the Antiquity by Diodorus Chronos and Aristotle, but only formalized in
precise logical terms first by Arthur Prior in his historical work culminating with his
seminal book “Past, Present and Future” [54].

9.2.2.1 Temporal Models

There are various ontological assumptions for the nature of time, reflecting on the
types of time flows and models used to formalize temporal reasoning: instant-based or
interval-based, discrete or dense, continuous or not, endless or not, linear or branch-
ing, etc. The simplest formal model of time, aka temporal frame, is 〈T,〉 where T
is a nonempty set of time instants or moments and is a time precedence relation on
T , which is generally a partial order, often assumed linear or tree-like, i.e., every time
instant having a linearly ordered by  set of predecessors. More abstractly, one can
adopt time intervals (periods) or entire time histories as primitive temporal entities
and build models based on these, as demonstrated in [7].

In our context here, time is not an abstract flow of moments but rather a metaphor
for the discrete succession of events—explicit or implicit—that determine the time
instants and represents the passing of time. Such time flow can be linear, corre-
sponding to a single time line (trace, history, etc.) or branching, corresponding to
a non-deterministically evolving future of possible succession of events. Thus, the
only observable effect of time passing is a discrete transition of one ’snapshot’ of the
world to another.

Depending on whether one is more interested in the sequence of events causing
the passing of time or in the actual sequence of time states (‘snapshots’) of the
world, this concept of time formalizes in either event-based temporal structures
(sometimes called ‘protocols’) or in (temporal) transition systems. The former are
more prominent in theories of events and agency as well as in distributed computing,
whereas the latter are fundamental for the applications of temporal logics in computer
science for model verification. Event-based protocols will be introduced later, and
here we briefly present the basics of transition systems.
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9.2.2.2 Transition Systems and Computations in Them

Formally, these are simply relational frames, consisting of a set of states and transition
relations between them, possibly labelled by different types of actions. The states in
a transition system can be thought of as program states, control states, configuration
states, memory registers, etc. The actions can represent agents’ actions, autonomous
processes, or simply program instructions. Formally, a labeled transition system is a
structure T = 〈St , { a�−→}a∈Act 〉 consisting of a non-empty set St of states; a non-
empty set Act of actions or transitions, and a binary transition relation

a�−→⊆ St×St
associated with every action a ∈ Act . The intuition is that each a ∈ Act acts, possibly
non-deterministically, on states and produces successor states. We write s

a�−→ t to
indicate that the action a can transform the state s into the state t and say that s is an
a-predecessor of t , while t is an a-successor of s. The successor relation between
states generates a branching time discrete temporal structure. A labelled transition
system that involves only one type of action is called a simple transition system, or
just a transition system simpliciter. Then we omit the label and typically denote it by
(St , R),

A state may have various properties. For instance, a state of a transition system
modeling a computing process can be initial, accepting, safe or unsafe, critical or
terminal for a given process, etc. Such properties of states can be indicated by special
atomic propositions. The set of such propositions that are declared true at a given state
is the description of that state. A transition system where every state is assigned such
description is an interpreted transition system. Formally, this is a pair M = 〈T ,L 〉
where T is a transition system and L : St → 2At is a state description mapping
that assigns to every state s the set of atomic propositions from a fixed set At, that
are true at s. Abstractly, interpreted transition systems are simply relational models,
with valuation uniquely derived from the state description.

A path (run, execution) in a transition system T is a (finite or infinite) sequence of

states and actions transforming every state into its successor: s0
a0�−→ s1

a1�−→ s2 . . ..
Thus, a path is a linear time flow representing a possible time history.

A computation, or trace, in an interpreted transition system (T ,L ) is a (finite
or infinite) sequence of state descriptions and respective actions along a path:

L (s0)
a0�−→ L (s1)

a1�−→ L (s2) . . .. Thus, a computation, intuitively, is the observ-
able effect (the ‘trace’) of a path in a transition system. It can be regarded as a record
of all successive intermediate results of the computing process. The idea is that the
information encoded by the state descriptions includes all that is essential in the
computation, including the values of all important variables. However, agents typ-
ically can only observe part of the state description, which represents their current
information about the world. Usually, unless otherwise specified, we assume that the
transition relation R is serial, or total, i.e., every state has at least one R-successor.
When the actions are not important, one can represent paths and computations sim-
ply as sequences s0, s1, s2, . . . and respectively L (s0),L (s1),L (s2), . . ., or, more
abstractly, as mappings σ : N→ St , respectively σ : N→ 2At.
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9.2.2.3 Basic Temporal Logic

The basic temporal language Lt , essentially due to Prior, is a propositional bimodal
language, containing, besides a fixed set of atomic propositions and boolean connec-
tives, the temporal operators H,G respectively referring to “always in the past” and
“always in the future”. The set of formulae is recursively defined by:

ϕ = p | ¬ϕ | (ϕ ∧ ϕ) | Gϕ | Hϕ

The dual temporal connectives, referring to “sometime in the past” and “sometime
in the future”, are defined as usual:

Fϕ := ¬G¬ϕ, Pϕ := ¬H¬ϕ.

Temporal model is a tuple 〈T,, V 〉 where 〈T,〉 is a temporal frame and V is a
valuation. Truth of a temporal formula at an instant t in a temporal model M = 〈T,
, V 〉 is defined in a traditional modal logic style, assuming that  is the accessibility
relation associated with G and its converse � is associated with H :

• M, t |= Gϕ if M, s |= ϕ for every s ∈ T such that t  s.
• M, t |= Hϕ if M, s |= ϕ for every s ∈ T such that t � s.

Several additional temporal operators can be added, especially in a discrete setting,
such as “Nexttime” N , “Since” S, “Until” U , etc. For further general references on
temporality and temporal logics see [4, 7, 8].

9.3 From Static to Dynamic Reasoning about Knowledge:
Temporal-Epistemic Frameworks

The traditional temporal models implicitly assume complete and fixed, unchangeable
knowledge of all agents at all times. Furthermore, the epistemic models described
above are static, or rather timeless. They describe what the agents know and believe
in a fixed ‘snapshot of the world’. Thus, none of these reflects the deficiencies, nor
the dynamics, of knowledge over time.

There are various ways to relate models of time with knowledge and provide a
framework for logical reasoning about their interaction. The syntactic merger seems
easy: one can simply put together the desired repertoires of temporal and epistemic
operators in a common logical language. However, the conceptual modeling of their
interaction and the formal semantics capturing that interaction are the main chal-
lenges. In this chapter, we discuss further some known and some new ideas of how
that can be done. The relevant literature is rich and diverse, and we only mention
and briefly discuss some selected sources further in the text. A discussion on some
of these approaches can also be found in the chapter [19].
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• One of the general formal construction is fusion [33] of temporal and epistemic
models into temporal-epistemic models, where possible worlds are regarded both
as time instants and as epistemic alternatives. This construction is technically
simple and elegant but conceptually deficient because it neither reflects nor
explains the temporal dynamics of knowledge.
• Another generic formal approach is temporalization of a logical system [32], in

this case of the epistemic logic. Semantically, it is based on temporal-epistemic
models obtained by taking a temporal model and associating every time point in
it with an epistemic model.
• Protocol-based epistemic temporal models are refinements of the temporalization

construction, obtained as collections of epistemic models, related over time by
protocols assigning a model to every time instant. The protocols are directed trees
representing the possible sequences of events (or, actions) effecting the evolution
of knowledge.
• A more refined approach alternates adding temporal and epistemic layers. It starts

e.g., with a temporal model and then adds a ‘cloud’ of epistemic alternatives
representing the uncertainties for each agent at every moment of time. Further,
all epistemic alternatives are “temporalized” by adding time stamps to each of
them and then extended with full time lines, thus creating a bundle of interleaved
temporal models over epistemic states. Then the resulting models are endowed
with clouds of epistemic alternatives for each time moment, etc. The alternation
of adding epistemic alternatives and time lines until saturation or forever. The limit
of that construction is the intended temporal-epistemic model.
• A similar, yet somewhat technically different idea is implemented in Halpern and

Vardi’s interpreted systems (generalizing and extending “interpreted transition
systems” as defined earlier) [30, 31] built on sets of ‘runs’, each representing a
possible evolution in time of a system consisting of several processors running in
parallel, each having their own local state and all these local states composing into
a ‘global state’. Every agent can only observe its local component of the state and
this partial information creates the agent’s epistemic indistinguishability relation.
• Alternatively, one can start with an epistemic model and then add a temporal

structure to each of the possible worlds: Following this approach, a “possible
world” is no longer a primitive object in the model. The “possible worlds” of the
above model are constructed from more basic objects, such as events, local states
and moments. Thus, one can describe the different model transformations that are
intended to represent different “epistemic actions”. This is a “change-based” view
of knowledge dynamics.
• A global epistemic approach takes a class of pointed temporal models and adds

epistemic uncertainties between them (for each agent), producing an epistemic
‘super-model’.
• An epistemic analogue of STIT models, where the choice relation of an agent

is interpreted as his epistemic relation over possible alternative futures, which
changes dynamically over time as the future is gradually revealed. See [18] for an
initial discussion of this idea.
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In the rest of this section we present in more details and discuss some of these
approaches.

9.3.1 From Adding Epistemic Clouds to Fusion of Temporal
and Epistemic Models

There is a whole spectrum of possible extensions of a temporal model with an epis-
temic dimension, reflecting the agents’ awareness and knowledge of time and the
degree of synchrony between agents. The conceptually simplest approach is to start
with a temporal model—be it for linear or branching time—and to expand every time
instant in it with a ’cloud’ of epistemic alternatives for each agent. The resulting for-
mal models can be defined as 〈T,, {Wt }t∈T 〉where 〈T,〉 is a temporal model and
for each t ∈ T the set Wt is an epistemic model consisting of the alternative worlds
that some of the agents consider possible at moment t .

In order to give semantics of a temporal epistemic language in such models we
have to restrict it to formulae where temporal operators cannot be nested in epistemic
operators. The semantics is then a straightforward combination of the temporal and
purely epistemic semantic clauses. With such language one can reason about what
one will know tomorrow, sometime, or always, but not what one knows now about
what will be true tomorrow, sometime, or always. In order to interpret such state-
ments, and further nesting of temporal and epistemic operators, the models defined
above must be enriched with time stamps for every epistemically alternative world,
or with alternative time lines passing through them, and then adding epistemic clouds
for each instant on these alternative time lines, then arranging these in timelines, etc.
Eventually, in the limit of that construction we obtain a full fusion of temporal and
epistemic models: 〈A ,St ,, {∼i | i ∈ A }, V 〉, where the possible worlds incor-
porate the time instants and  represents time precedence over a possible timeline
in the model. Depending on how the epistemic alternatives relate to the temporal
knowledge of the agents, a variety of models can emerge here.

One extremity is a fully synchronous system where there is a global clock observ-
able by all agents at all times. In this case, all epistemic alternatives of a possible
world in the temporal model share the same time stamp. These alternatives can,
however, appear or disappear in time, as the agent learns or forgets. However, these
epistemic alternatives may, but need not, evolve over time which therefore renders it
possibly meaningless to reason about what the agent may know in the future or has
known in the past.

The other extremity is a fully asynchronous system where the agents have no
knowledge, or possibly not even concept, of time. In this case, their epistemic alter-
natives may have different time stamps, or no time stamps at all. One can imagine
that in this case agents have instantaneous knowledge at every time instant, but no
memory at all, and the evolution of their knowledge is exogenous for them.
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Finally, we note one particular construction of a temporal model with ‘epistemic
clouds’ based on partial observability: every agent can only observe the truth value
of some atomic propositions, which naturally creates the cloud of alternative pos-
sibilities for the actual world, of which it has a partial view. Note that this partial
observability can vary over time for each agent, thus creating more elaborate scenar-
ios about the dynamics of their knowledge.

9.3.2 Interpreted Systems as Temporal-Epistemic Models

Various proposals in the distributed systems literature of the 1980s [41, 43, 53]
gradually crystalized in Halpern and Vardi’s interpreted systems [40, 42], further
developed in [30]; see further references in the latter. Interpreted systems model the
evolution of the knowledge of one or several agents (processors) over time and are
technically very similar to the fusion of temporal and epistemic models discussed
above.

9.3.2.1 Interpreted Systems

Informally, an interpreted system is defined for a fixed set of agents A and builds
on a state space St consisting of (global) states, where a global state can be viewed
as a tuple of local states, one for each agent. More generally, a global state can be
regarded as an abstract entity, of which every agent only has a partial local view. This
allows for some parts of the state to be visible by several agents, and others—possibly
by none.

A basic concept in an interpreted system is a run: an infinite sequence of global
states from St ; formally, a mapping r:N → St . Generally, an interpreted system I
may comprise any non-empty set R of runs on its state space. Then, a pair (r, n),
where r ∈ R and n ∈ N is a (time) point on the run r . Thus, the set of points in I
is P(I ) = R × N . The point (r, n) corresponds to a unique state r(n); however,
different points may correspond to the same state.

The knowledge of every agent in an interpreted system is determined, as in pure
epistemic logic, in terms of its uncertainty. The agent’s uncertainty here is between
different time points, however, Halpern and Vardi reduce it to uncertainty between
states: two points t1 and t2 are indistinguishable for an agent i iff their corresponding
states have the same local component for i , i.e., iff i has the same local view on them.
This is denoted t1 ∼i t2, where∼i is the indistinguishability relation on R ×N for i .

Finally, an interpreted system involves labeling of the points with sets of atomic
propositions from a fixed set PROP . The label of a point is supposed to describe all
essential features of that point. Thus, formally, an interpreted system is a tuple:

I = 〈A ,St ,R , {∼i }i ∈A ,L 〉
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where A is the set of agents, St is the global state space, R is the set of runs, for
each i ∈ A the relation ∼i is an equivalence relation of indistinguishability on
P(I ) = R ×N for the agent i , and L : P(I )→ PROP is the labeling function.

Note that for any given agent i , a run is a sequence of local views, that is, of point
clusters with respect to ∼i .

Given an interpreted system I , we will refer to the relation {((r, n), (r, n+1)) ∈
P(I )× P(I ) | r ∈ R , n ∈ N } as the temporal relation induced in I .

A computation in the interpreted system I corresponding to the run r : St → N

is the observable—by an external observer who has full view of all states— effect
of that run: L (r(0)),L (r(1)), . . ..

Now, the dynamics of the knowledge of an agent can be modeled in terms of the
evolution of its local views in the course of a run or a computation. One can argue
that the local view and, respectively, the knowledge of an agent should be based
on the label of the current point, rather than on the point itself. This approach can
be implemented by assigning to every agent i a subset PROP i of observable for i
atomic propositions [30, 43].

9.3.2.2 Some Important Properties of Interpreted Systems

Following [42] one can identify some key properties of interpreted systems that
turn out to be crucial for the computational complexity of the problem of deciding
satisfiability in them. An interpreted system I = 〈A ,St ,R , {∼i }i ∈A ,L 〉 has the
property of:

• Unique initial state if r(0) = r ′(0) for all runs r, r ′ ∈ R .
• No forgetting if for every i ∈ A , if ((r, n) ∼i (r ′, n′)) then for all k ≤ n there

exists a k′ ≤ n′ such that ((r, k) ∼i (r ′, k′)).
• No learning if for every i ∈ A , if ((r, n) ∼i (r ′, n′)) then for all k ≥ n there

exists a k′ ≥ n′ such that ((r, k) ∼i (r ′, k′)).
• Synchrony if for every i ∈ A , if ((r, n) ∼i (r ′, n′)) then n = n′.

The property of Synchrony expresses the idea that the agents are able to perceive
time and have a common clock. No learning expresses that agents do not learn over
time, in the sense that if a coalition A of agents cannot distinguish two runs at a given
time, it will not be able to do so later on. Likewise, No forgetting means that if A at
a given time point can tell two different runs apart, it must have been able to do so
at any previous point in time.2

9.3.2.3 Temporal-Epistemic Logics Over Interpreted Systems

Based on the choice of language: single-agent or multi-agent, linear time or branching
time, including or not operators for common knowledge, as well as on the combi-

2 This is somewhat more complicated in the asynchronous case, see [42, 44] for discussion and
explanation.
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nations of the semantic properties listed above, Halpern and Vardi identify in [40]
and [42] a total of 96 temporal-epistemic logics and analyze the complexities of the
satisfiability problems in them. The languages of these logics and their semantics are
a fairly straightforward combination of the temporal and epistemic logics presented
in Sect. 9.2. For instance, the formulae of the multi-agent linear time temporal epis-
temic logic with the temporal operators X (“next”) and U (“until”) of the logic LTL
and individual and common knowledge (of all agents) operators are built as follows:

ϕ := p | ¬ϕ | (ϕ ∧ ϕ) | Xϕ | (ϕ Uϕ) | Ki ϕ | Cϕ

where i ∈ A . The essential semantic clauses are:

M , (r, n) |= Xϕ iff M , (r, n + 1) |= ϕ;
M , (r, n) |= ϕ Uψ iff M , (r, i) |= ψ for some i ≥ n such that M , (r, j) |= ϕ

for every n ≤ j < i ;
M , (r, n) |= Ki ϕ iff M , (r ′, n′) |= ϕ for every (r ′, n′) such that ((r, n) ∼i

(r ′, n′)).

For branching time logics, quantifiers over runs are added to the language, with
semantics:

M , (r, n) |= ∃ϕ iff M , (r ′, n′) |= ϕ for some r ′ such that r(n) = r ′(n′).

Some of the properties listed above can be expressed by suitable axioms. For
instance, No learning in linear-time interpreted systems corresponds to the axiom
XKi ϕ→ Ki Xϕ, whereas No forgetting corresponds to Ki Xϕ→ XKi ϕ. For more,
see [44] for the linear time logics and [48] for the branching time logics.

It turns out that when time and knowledge do not interact, or only weak forms of
interaction are imposed (e.g., only synchrony) then these temporal-epistemic logics
are computationally reasonably behaved, with EXPTIME complexity of their satisfi-
ability/validity problems [40, 42] and allow relatively simple tableau-based decision
procedures, even when the full epistemic repertoire, with common and distributed
knowledge for each group of agents, is added to the language [38, 39]. However,
most of these logics that involve more than one agent whose knowledge interacts
with time (e.g., who do not learn or do not forget)—turn out undecidable (with com-
mon knowledge), or decidable but with non-elementary time lower bound (without
common knowledge) [40, 42]. See [17] for a discussion of these issues. Even in the
single-agent case, the interaction between knowledge and time proved to be quite
costly (pushing the complexities of deciding satisfiability up to EXPSPACE and
2EXPTIME) (ibid.).
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9.3.3 Protocol Based Epistemic-Temporal Models: Modeling
Uncertainty About What Has Happened

This approach goes back to [53]; see also [52]. We fix a finite set of agents A and
a (possibly infinite) set of events Σ . There is a large literature addressing the many
subtleties surrounding the very notion of an event and when one event causes another
event. However, for this chapter we take the notion of event as primitive. What is
needed is that if an event takes place at some time t , then the fact that the event took
place can be observed by a relevant set of agents at t . Compare this with the notion of
an event from probability theory. If we assume that at each clock tick a coin is flipped
exactly once, then “the coin landed heads” is a possible event. However, “the coin
landed head more than tails” would not be an event, since it cannot be observed at
any one moment. As we will see, the second statement will be considered a property
of histories, or sequences of events. A Σ-history is a finite sequence of events from
Σ . We writeΣ∗ for the set ofΣ-histories. From now on we considerΣ fixed and call
the elements of Σ∗ just histories. For any history h, we denote by len(h) the length
of h and we write he for the history h followed by the event e. Given h, h′ ∈ Σ∗,
we write h  h′ if h is a prefix of h′, and h ≺e h′ if h′ = he for some event e.

There are several simplifying assumptions that we adopt. Since histories are
sequences of (discrete) events, we assume the existence of a global discrete clock.
The length of the history then represents the amount of time that has passed. Thus,
this implies that we are assuming a finite past with a possibly infinite future. Further-
more, we assume that at each clock tick, or moment, some event—which need not
be directly observable by any agent—takes place. Thus, we may include a special
event et representing a “clock tick”.

Definition 9.1 (ETL Models) Let Σ be a set of events and At a set of atomic
propositions. An epistemic temporal model (ETL model) is a tuple 〈A ,Σ,H, {∼i

}i∈A , V 〉 where A is a set of agents, H is a set of histories closed under prefixes,
for each i ∈ A , ∼i is an equivalence relation on H and V a valuation function
(V : At→ ℘(H)).

An ETL model describes how the agents’ knowledge evolves over time. Formally,
ETL models are very similar to interpreted systems, introduced in the previous section
(consult [50] for an extended discussion). The domain of an ETL model (set of
histories closed under non-empty prefixes) is called a protocol. Histories in a protocol
are the analogues of the global states in an interpreted system. In addition, the protocol
describes the temporal structure, with h′ such that h ≺e h′ representing the point
in time after e has happened in h. The relations ∼i represent the uncertainty of the
agents about how the current history has evolved. Thus, h ∼i h′ means that from
agent i’s point of view, the history h′ looks the same as the history h.

Assumptions about the domain of an ETL model corresponds to “fixing the play-
ground” where the agents will interact. In other words, the protocol not only describes
the temporal structure of the situation being modeled, but also any causal relation-
ships between events (eg., sending a message must always preceed receiving that
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message) plus the motivations and dispositions of the participants (eg., liars send
messages that they know—or believe—to be false). Thus the “knowledge” of agent
i at a history h in an ETL model is derived from both i’s observational powers (via
the ∼i relation) and i’s information about the “protocol” generating the histories in
the model.

Analogously to properties of interpreted systems, we identify the following key
properties of an ETL model: Let M = 〈Σ,H, {∼i }i∈A , V 〉 be an ETL model. M
satisfies:

• Synchronicity iff for all h, h′ ∈ H, if h ∼i h′ then len(h) = len(h′)
• Perfect Recall iff for all h, h′ ∈ H, e, e′ ∈ Σ with he, h′e′ ∈ H, if he ∼i h′e′,

then h ∼i h′
• Uniform No Miracles iff for all h, h′ ∈ H, e, e′ ∈ Σ with he, h′e′ ∈ H, if there

are h′′, h′′′ ∈ H with h′′e, h′′′e′ ∈ H such that h′′e ∼i h′′′e′ and h ∼i h′, then
he ∼i h′e′.

Note that the properties defined above only refer to the underlying frames of the
ETL models.

Remark 9.1 (Alternative Definition of Perfect Recall) Johan van Benthem gives an
alternative definition of Perfect Recall in [12]:

if he ∼i h′ then there is an event f with h′ = h′′ f and h ∼i h′′.

This property is equivalent over the class of ETL models to the above definition
of Perfect Recall and synchronicity. The formulation of Perfect Recall given in the
former definition above is closer to the one found in the computer science literature
on verifying multiagent systems (cf. [30]) and the game theory literature (cf. [21]).

ETL models describe how the agents’ knowledge changes during a given sequence
of events. The example in Fig. 9.1 illustrates the type of knowledge flow that ETL
models describe. Suppose that there is a deck of red and black cards. An agent is
observing the cards being placed on a table. Suppose that a red card is placed face
down on the table (the agent can see that there is a card on the table, but not the
color of the card). The next two cards that will be chosen by the dealer are a black
card followed by a red card. Furthermore, both cards will be placed faced up on the
table. An ETL model describing this situation runs as follows: There are four events
Σ = {Rd ,Ru,Bd ,Bu} where Rd is the event3 “a red card is placed on the table
face down”, Ru is the event “a red card is placed on the table face up” (similarly
for Bd and Bu). We are interested in describing how the agent’s knowledge changes
during the history h = RdBuRu . The set H is the set of Σ-histories of length ≤3
depicted in Fig. 9.1. The dotted lines represent agent i’s information cells. For a
history h, we write [h]i for equivalence class of h under ∼i . We make the following
observations about this model, to be followed by some analysis in later sections. First

3 To be more precise, Rd is an event type (similarly for the other events in Σ).
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Rd Ru Bu

Rd Ru Ru

Rd Bu Bu

Rd Bu Ru

Bd Bu Ru

Bd Bu Bu

Bd Ru Bu

Bd Ru Ru

R R R

Fig. 9.1 Epistemic temporal model of the card dealing

some notation, if h is a history and t ∈ N, we write ht for the initial segment of h of
length t and h(t) for the t th event in h. The actual history is h = RdBuRu .

• Restricting the set of “admissible” histories H allows the agent to incorporate
knowledge of the “rules of the game” into his information. For example, the agent
“knows” that the game proceeds by putting one card face down on the table fol-
lowed by two cards placed face up. Furthermore, we assume that the agent cannot
distinguish the two event Rd and Bd ; however she can distinguish between the
two events Ru and Bu (as well as between Ru and Rd , for example).
• After the first card is placed on the table face down, the agent does not know

whether the card is black or red. This follows since the equivalence class of h is
[h]i = {h′1 | h′ ∈ H}.
• On history h, after the first card is placed on the table (at moment 1), it is settled

that the next card will be black, but the agent does not know this. This follows
since h(2) = Bu (the next event will be that a black card is placed face up on the
table) and there is a h′ ∈ H such that h1 ∼i h′1 and h′(2) = Ru .
• After the second card is placed on the table, the agent learns that it is a black card.

This follows since [h2]i = {h′ ∈ H | h′(2) = Bu}.

9.3.4 Adding Epistemics to Temporal Models: Modeling
Uncertainty About What Will Happen

Let 〈T,〉 be a temporal model, e.g., T is a nonempty set of moments and  is
the predecessor relation on T . A full history h is a maximal linearly ordered set of
moments. Let H be the set of all full histories. For h ∈ H , we write h/m for
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the pair (h,m) where m ∈ h. Each pair h/m is associated with a set of atomic
propositions: the non-epistemic facts that are true at moment m given full history h.
Let Hm = {h | h is a full history with m ∈ h} be the set of full histories passing
through moment m.

At each moment m there is a relation ∼m
i representing i’s information uncertain-

ties at moment m. This is intended to be a “forward-looking” notion of knowledge
representing the information that agent i has about how the situation will evolve
from moment m onwards. For simplicity, we assume that each∼m

i is an equivalence
relation, though this is not crucial for what follows. We further suppose that there
is a distinguished moment 0 ∈ T representing the initial state of affairs. Then, ∼0

i
represents i’s initial uncertainty about all possible histories.

We have left open exactly which set of histories ∼m
i ranges over. There are two

natural choices. The first choice is to let ∼m
i ⊆Hm ×Hm . So, if h ∼m

i h′ then both
h and h′ are histories containing moment m. This builds in the assumption that the
agent correctly observes all actions leading up to this moment. In addition, we may
impose a stronger perfect recall condition:

• For all m and m′, if m  m′, then ∼m′
i is a refinement of ∼m

i . I.e., if h, h′ ∈ Hm′

and h ∼m′
i h′, then h ∼m

i h′.

Recall the example discussed in the previous section. There is a deck of red and
black cards, cards are being chosen one at a time and placed on a table in front of an
agent i . A branching time model of this situation looks as follows:

R B
m1

R B
m2

R B
m3

R B
m4

R B
m5

R B
m6

R B
m7

h1 h2 h3 h4 h5 h6 h7 h8

m0

There are eight moments T = {m0, . . . ,m7}. If we assume that for each m ∈ T ,
∼m

i =Hm ×Hm , then we have the following observations:

• At moment m1, the agent does not know whether the card chosen by the dealer is
red or black.
• At the pair h1/m1, the card chosen by the dealer is red, but the agent does not

know this. Indeed, the agent thinks that it may be black.
• At moment m3, the agent knows that the card chosen at moment m1 was black,

but does not know the card the dealer is currently holding.
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• At m1, it is not settled yet which card the dealer will choose during the next round
and the agent knows this.

Note that we assume that ∼m
i ⊆ Hm ×Hm , and so, the agent’s uncertainty at

moment m ranges only over the set of histories running through moment m. Alterna-
tively, we can assume that the agents uncertainty ranges over all histories: for each
m ∈ T , ∼m

i ⊆H ×H . A natural constraint here is:

• For all h, h′ if h ∼m
i h′ then there is some m′  m such that h, h′ ∈ Hm′ and

h ∼m′
i h′

This means that if the agent cannot distinguish between h and h′ at moment m, there
must be some earlier moment m′ such that both h and h′ run through m and the
agent could not distinguish h and h′ at that moment. The flow of knowledge can be
described as follows:

• At m1, we have ∼m1
i =H ×H .

• The equivalence classes of ∼m j
i with j = 2, 3 are{{h1, h2, h5, h6}, {h3, h4, h7, h8}

}

• The equivalence classes of ∼m j
i with j = 4, 5, 6, 7 are{{h1, h5}, {h2, h6}, {h3, h7}, {h4, h8}

}

Given these definitions, we make the following observations:

• At moment m1 on history h1, the card chosen by the dealer is red, but the agent
does not know this (this follows since h1 ∼m1

i h5).
• at moment m2 on history h1, the card chosen by the dealer is red and the agent

knows this (this follows since it is true on all the histories that are∼m2
i -equivalent

to h1 the red card is chosen at moment m2). Furthermore, the agent still does not
know that the card chosen at m1 was red (this follows since h1 ∼m2

i h5).

9.3.5 Comparing Modeling Formalisms

We conclude this section with some brief comparisons between the various epistemic
temporal constructions and models.

• Interpreted systems are a special kind of fusion of temporal and epistemic models,
and protocol-based models can be regarded as a special kind of interpreted systems,
where the runs are chains of histories along branches of the protocol-tree.
• The temporal models extended with uncertainties between histories are technically

closely related to STIT models, see [18] for an initial discussion. Indeed, one can
simply take a STIT model and treat the partition of all histories passing through
a given point determined by the possible choices of an agent as arising from the
epistemic indistinguishability relation between these histories for the agent. Note
that the standard additional requirement in STIT models, that every selection of
choices by all agents intersects in a single history, can now be interpreted as saying
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that the agents have a complete distributed knowledge about the entire actual future
(the ‘thin red line’).
We also note that there is an important distinction in the STIT literature between
“moments” and “instants”. The general idea is that instants represents the general
flow of time while moments are specific “realizations” of the instances. Formally,
an instant i is a partition of the moments such that every history intersects each
instant at exactly one moment (i.e., each i ∈ i, for all h ∈ H , |i ∩ h| = 1). For
example, in the above model m2 and m3 both occur at the first instant. We may
be interested in an agent’s knowledge at a particular instant: after the second card
flip, the agent knows the color of the card: at each moment in the second instant,
it is true that agent knows the color of the card.

9.4 Looking Inside the Dynamics of Knowledge:
Dynamic Epistemic Logic

The models introduced in the previous section each provide a “grand stage” where
histories of some social interaction unfold constrained by some underlying protocol.
Temporal-epistemic models present the observable effect of the dynamics of knowl-
edge over time but do not reflect the causes for that dynamics. In this section, we
introduce an alternative framework to reason about the dynamics of knowledge. The
focus in this section is on “epistemic actions” that transform models describing the
agents’ current information. A number of elegant logical systems have been devised
to reason about such epistemic actions (see [14] and the chapters [28] and [1] for
overviews).

Similar to the way relational structures are used to capture the information the
agents have about a fixed social situation, an event model describes the agents’ infor-
mation about which actual events are currently taking place. The temporal evolution
of the situation is then computed from some initial epistemic model through a process
of successive model updates, effected by a product construction between the epis-
temic model and the event model.

Definition 9.2 Suppose that LE L is the epistemic modal language. An event model
is a tuple 〈S,−→,pre〉, where S is a nonempty set of primitive events, for each
i ∈ A , −→⊆ S × S and pre : S→ LE L is the precondition function.

The only difference with a relational model is that the precondition function
assigns a single formula to each primitive event. The intuition is that pre(e) describes
what must be true in order for the event e to happen. Given two primitive events e and
f , e −→ f means “if event e takes place, then i thinks it is event f ”. The information
provided by an event model can be incorporated into a relational structure using the
following operation [3]:
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Definition 9.3 (Product Update) The product update M ⊗E of a relational model
M = 〈W, R, V 〉 and event model E = 〈S,−→,pre〉 is the relational model
〈W ′, R′, V ′〉 with:

1. W ′ = {(w, e) | w ∈ W, e ∈ S and M ,w |= pre(e)};
2. (w, e)R′(w′, e′) iff wRw′ in M and e −→ e′ in E ; and
3. for all p ∈ At, (s, e) ∈ V ′(p) iff s ∈ V (p). �

The following abstract example illustrates this operation. Suppose that, initially, the
agent knows that p is the case, but thinks that both q and ¬q are (epistemically)
possible. This epistemic model M is represented on the left in the picture below,
with an edge from state w to state v provided the agent cannot distinguish between
w and v. Suppose that p describes the actual event, but the agent (mistakenly) thinks
she observes q. This can be described by the following event model E . The result of
performing this action on the epistemic model M is calculated using Definition 9.3:

p,q

w

p,¬q

v

p

e1

q

e2

=

p,q

(w,e1)

p,¬q

(v,e1)

p,q

(w,e2)

The first thing to notice is that the model M ⊗ E is not an epistemic model since
the relation is not an equivalence relation. But this makes sense since the agent was
misinformed or uncertain about precisely what she observed.

9.4.1 Comparing ETL and DEL

Both ETL and DEL are logical frameworks that are intended to describe the flow
of information in a social interactive situation. Summarizing the results found in [6,
Sect. 3], this section shows how these two “competing” logical frameworks can be
rigorously compared. We will

(i) illustrate how DEL product update (Definition 9.3) may be used to generate
interesting ETL frames, and

(ii) describe the observational powers of the agents presupposed in the DEL setting.

The key observation is that by repeatedly updating an epistemic model with event
models, the machinery of DEL (i.e., Definition 9.3) in effect creates ETL models.
Note that an ETL model contains not only a description of how the agents’ infor-
mation changes over time, but also “protocol information” describing when each
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event can be performed. Thus, in rigorously comparing DEL with ETL models, the
protocol information must be made explicit.

Let E = {(E , e) | E an event model and e ∈ E } be the class of all pointed
event models. A DEL protocol (called a uniform protocol in [6]) is a set P ⊆ E

∗
closed under the (non-empty) initial segment relations.4 Given a DEL protocol P,
let σ denote an element of P, i.e., σ is a sequence of pointed event models. We
write σn for the initial segment of σ of length n ≤ len(σ ) and write σ(n) for the
nth component of σ . For example, if σ = (E1, e1)(E2, e2)(E3, e3) · · · (En, en), then
σ3 = (E1, e1)(E2, e2)(E3, e3) and σ(3) = (E3, e3). Given a sequence σ ∈ E

∗, we
abuse notation and write pre(σ(n)) for pre(en) where σ(n) = (En, en). Furthermore,
we write σ(n) −→i σ

′
(n) provided σ(n) = (E , e) and σ ′(n) = (E , e′) and e −→i e′ is

in E . Finally, let Ptcl(E) be the class of all DEL protocols, i.e., Ptcl(E) = {P | P ⊆
E
∗ is closed under initial segments}.

The main idea is to start from an initial (pointed) epistemic model and construct
an ETL model by repeatedly applying product updates.

Definition 9.4 Given a pointed epistemic model M ,w and a finite sequence of
pointed event models σ , we define the σ -generated epistemic model, (M ,w)σ as
(M ,w) ⊗ σ(1) ⊗ σ(2) ⊗ · · · ⊗ σ(len(σ )). We will write M σ for (M ,w)σ when the
state w is clear from context.

Definition 9.5 Let M ,w be a pointed epistemic model, and P a DEL protocol. The
ETL model generated by M and P, Forest(M ,P), represents all possible evolutions
of the system obtained by updating M with sequences from P. More precisely,
Forest(M ,P) = 〈Σ,H, {∼i }i∈A , V 〉, where 〈H, {∼i }i∈A , V 〉 is the union of all
models of the form M σ with σ ∈ P.

Since any DEL protocol P is closed under prefixes, for any epistemic model M ,
Forest(M ,P) is indeed an ETL model. Now, given a class of DEL protocols X, let

F(X) = {Forest(M ,P) |M an epistemic model and P ∈ X}

If X = {P} then we write F(P) instead of F({P}).
Note that not all ETL models can be generated by a DEL protocol. Indeed, such

generated ETL models satisfy synchronicity, perfect recall and uniform no miracles
(see Sect. 9.3.3 for definitions). The main result (Theorem 9.2 in this section is
a characterization of the ETL models that are generated by some (uniform) DEL
protocol. This is an improvement of an earlier characterization result from [12] and
provides a precise comparison between the DEL and ETL frameworks.

Suppose that H is an ETL frame, which satisfies synchronicity, perfect recall
and uniform no miracles. We can easily read off an epistemic frame with a set of
states W and relations Ri for each agent i ∈ A on W , to serve as the initial model,
where the histories of length 1 are the states and the uncertainty relations are simply

4 The preconditions of DEL also encode protocol information of a ‘local’ character, and hence they
can do some of the work of global protocols, as has been pointed out by van Benthem [12].
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copied. Furthermore, we can define a “DEL-like” protocol PH with the construction
given below in the proof of Theorem 9.2, consisting of sequences of event models
where the precondition function assigns to the primitive events sets of finite histories.
Intuitively, if e is a primitive event, i.e., a state in an event model, then pre(e) is the
set of histories where e can “be performed”. Thus, we have a comparison of the two
frameworks at the level of frames provided we work with a modified definition of an
event model. However, the representation theorem is stated in terms of models, so
we need additional properties. In particular, at each level of the ETL model we will
need to specify a formula of LE L as a pre-condition for each primitive event e (cf.
Definition 9.2). As usual, this requires that the set of histories preceding an event
e be bisimulation-closed (see [20] for a definition of bisimulations and [6] for the
precise definition needed here). However, as is well-known, bisimulation-invariance
alone is typically not enough to guarantee the existence of such a formula. More
specifically, there are examples of infinite sets that are bisimulation closed but not
definable by any formula of LE L (However, it will be definable by a formula of
epistemic logic with infinitary conjunctions—see [20] for a discussion). Thus, if the
set of histories at some level in which an event e can be executed is infinite, there
may not be a formula of LE L that defines this set to be used as a pre-condition for e.
Such a formula will exist under an appropriate finiteness assumption: at each level
there are only finitely many histories in which e can be executed,5 i.e., for each n,
the set {h | he ∈ H and len(h) = n} is finite.

One final assumption is needed since we are assuming that product update does not
change the ground facts. An ETL model H satisfies propositional stability provided
for all histories h in H , events e with he in H and all propositional variables P ,
if P is true at h then P is true at he. We remark that this property is not crucial for
the results in this section and can be dropped provided we allow product update to
change the ground facts (cf. [5]).

Theorem 9.2 (Representation Theorem) Let XDE L be the class of uniform DEL
protocols. An ETL model H is in F(XDE L) if and only if H satisfies proposi-
tional stability, synchronicity, perfect recall, uniform no miracles, and bisimulation
invariance.

Consult [6, Theorem 1] for the proof. Note that the finiteness assumption can be
dropped at the expense of allowing preconditions to come from a more expressive
language (specifically, infinitary epistemic logic). Alternatively, as remarked above,
we can define the preconditions to be sets of histories, instead of formulas of some
logical language.

In [25] Dégremont, Löwe, and Witzel provide an alternative merging approach
by mapping an epistemic model and a protocol of pointed models to an epistemic
temporal structure. The resulting epistemic temporal structure need not be synchro-
nous, so the authors argue that synchronicity is not an inherent property of DEL, but

5 Note that this property may be violated even in an ETL model generated from only finitely many
events.
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rather of the translation used in [6]. They provide a different translation that pro-
duces asynchronous ETL models and discuss a minimal temporal extension of DEL
that removes the ambiguities between the possible translations. In this context, they
discuss the question of which epistemic-temporal properties are intrinsic to DEL and
which ones are properties of the translation.

9.5 The Dynamics of Knowledge and Abilities
in Multi-Player Games

In this section we discuss a particular aspect of the dynamics of knowledge in
multi-agent systems, effected in the course of playing (abstract) multi-player games.
Games offer a variety on perspectives on this topic, and we refer the reader to the
chapter [23] for some of them. A most important specific issue arising in multi-player
games on which we focus here is the interaction between knowledge and abilities of
players to achieve their objectives in the play of the game. This interaction has two
equally important directions. On the one hand, the abilities of the players to guaran-
tee achievement of their objectives (i.e., to have a winning strategy) crucially depend
on their information about the game as such, and about the particular play of the
game. On the other hand, the players’ knowledge changes dynamically in the course
of playing the game. That dynamic interaction crucially affect the players’ abilities
in the play the game.

Building on [37], here we will outline a logical framework, capturing the dynamics
of the interplay between knowledge and abilities of players in multi-player games. In
order to avoid having to deal with fundamental issues of the concept of knowledge,
we hereafter prefer to use the more neutral, and at the same time more general, notion
of information, which refers not only to the knowledge or uncertainties, but also to
beliefs and confusions of the agents/players.

9.5.1 A Priori vs Empirical Information of Players

First, some brief terminological remarks. Traditionally, in Game Theory the notion of
‘incomplete information’ refers to the knowledge or uncertainties of the player about
the structure and rules of the game, while the notion of ‘imperfect’ information’ refers
to the knowledge or uncertainties of the player about the course of the play of the
game, e.g. about the state in which the game currently is, or the history of the play, or
the moves/actions taken by other players. Instead, we introduce the notions of ‘a priori
information’ and ‘empirical information’. Intuitively, a player’s a priori information
is the information (incl. knowledge, beliefs and uncertainties) that the player has
about the game as such, prior to the actual play of the game about its rules, protocol,
or structure. On the other hand,empirical information refers to the information that
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Fig. 9.2 Learning from expe-
rience

a player builds by way of observations, recollections, communication and reasoning
made during the course of play. The a priori information plays its role only at the
beginning of the game. Ultimately, it is the empirical information that determines
the players’ abilities in the game.

9.5.2 Some Examples

We now present several simple examples in order to illustrate the concepts of a priori
information and the empirical information of a player. In all examples that follow
we consider simple turn-based or concurrent games, played by two players, I and
II, consisting in them making series of moves. States in the game are labelled with
numbers, with 0 indicating the start state. Outcomes of the games are only qualitative,
expressed in terms of the truth of certain propositions.

Example 9.1 (Learning from experience) In the game on Fig. 9.2 Player I moves first
from state 0, then II moves, and then the game restarts from state 0. Player II has
incomplete a priori information about the game: he is not able to distinguish a priori
between states 1 and 2. For instance, that means that he cannot observe or recognize
the actions a or b of Player I. For convenience we will usually refer to Player I as
female and to Player II as male.

So, does Player II have the ability to eventually guarantee his desired outcome
ϕ? If his uncertainty persists throughout the game, then clearly not. However, if
Player II can observe the action of Player I and use some memory, he can learn from
his experience: after choosing an action at random at the first round of the game if
it does not lead to the desired outcome, then he can revise his strategy to achieve ϕ
in the next round, by playing the other action if Player I repeats the same action and
vice versa. Thus, the experience during the play can enrich the player’s information
and thus enhance his abilities.

Example 9.2 (Getting confused) In the game on Fig. 9.3 Player II has perfect a priori
information about the game.
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Fig. 9.3 Getting confused

Fig. 9.4 Learning by experiments

So, does II have the a priori ability to guarantee the desired outcome ϕ? Yes,
player II has a simple strategy for that. But, suppose that in the course of the actual
play of the game, player II turns out unable to observationally distinguish states 1
and 2 after player I made her move, e.g., by failing to observe player I’s action, or
due to malfunctioning sensors. If that happens, then Player II is no longer able to
guarantee outcome ϕ. Thus, the experience in the play of the game can be negative,
too and can lead to loss of information and abilities.

Example 9.3 (Learning by experiments) In the concurrent game on Fig. 9.4
essentially Player I determines the move from state 0, and thereafter II is in control.
Player II’s objective is to reach a ϕ-state but she cannot distinguish a priori states 2
and 3 and cannot observe the action of Player I at state 0. However, Player II has all
the information about the game which is provided on Fig. 9.4, except that he cannot
see the labels 1 and 2.

So, does II can guarantee reaching the outcome ϕ? A priori, not. However, by
performing a suitable experiment at the information set of states {2, 3} player II
can generate sufficient empirical information to enable himself distinguish between
these states, by following the strategy: play action a and observe the result. If that is
state 2, then play c, and if it is state 3 (which player II can distinguish from state 2),
then play a again, and then b.
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Remark 9.2 Note that the reasoning described in the last example can be naturally
regarded as ‘a priori reasoning’, as it may take place before any actual play of
the game. However, one should distinguish the results of ‘a priori reasoning’ in this
intuitive sense from the notion of ‘a priori information’ we use here. Since the results
of the ‘a priori reasoning’ in this example applies to possible plays of the game, this
information is ‘empirical information’ in the sense in which we use this term here.

In summary: players’ information changes dynamically during the play of the
game. The main problem arising here is: how to formally compute that dynamics?

9.5.3 Formalizing the a Priori and Empirical Information

Here we propose a formal modeling framework incorporating the a priori information
and computing the empirical information of the players.

The models upon which the framework is built are variation of the concurrent
game structures with incomplete information [2, 36, 46, 60]. The key extension to
these structures consists in two ‘information relations’ per player. The first, called
‘a priori information relation’ relates one state to another if the player considers the
second state a possible structural alternative for the first, i.e. a priori alternative in the
game structure. This relation can also be used to represent structural uncertainties and
beliefs. The second, called ‘empirical information relation’, relates a run, i.e., initial
segment of a play of the game, to (possibly) another one which the player considers a
possible ‘observational‘ or ‘empirical alternative’ to the first one. This relation can be
used to represent empirical uncertainties and beliefs arising in the course of the play.

9.5.3.1 Concurrent Game Structures

Definition 9.6 (Concurrent game structure) A concurrent game structure (CGS) is
a tuple 〈A , Q,Act , d,out 〉, where:

• A = {1, 2, . . . ,k} is a finite set of players.
• Q is a non-empty set of states.
• d : Q ×A −→ 2Act is a function that for every state q and a player i assigns the

subset of actions available to player i at state q.
The set of actions available to i at q will be denoted Act i (q).
A joint action at a given state q, denoted by σq (or simply by σ when q is fixed
by the context), is a tuple (α1, α2, . . . , αk), where αi ∈ Act i (q) for every i ≤ k,
consisting of a collection of actions, one for each player, that may be performed
at state q. Given a joint action σ = (α1, α2, . . . , αk), we write σ i to indicate αi .
We write Act (Q) for the set of all joint actions from states in Q.
• out : Q ×Act (Q)→ Q is the transition function, that maps a state q and a joint

action at q to a unique successor state in Q. The set of all successor states of q
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will be denoted by succ(q). Thus, q ′ ∈ succ(q) if there is a move vector σ such
that out (q, σ ) = q ′.

One can think of a CGS as capturing the structure and the rules of a game.

Definition 9.7 (Games, runs and plays) A game is a pair 〈S , q〉 consisting of a
CGS S with a set of states Q and an initial state q ∈ Q. Given a game G = 〈S , q〉,
a play of G is an infinite sequence λ = q0, σ0; q1, σ1; q2, σ2 . . . of alternating states
and joint actions applied at them, such that q0 = q and qi+1 = out (qi , σi ) for every
i ∈ N. A (finite) run in G is a finite initial segment of a play ending with a state:
q0, σ0; q1, σ1; . . . ; qn . One-state runs will be identified with the respective states.

A q-play (resp. q-run) is a play (resp. run) where q0 = q. We denote the set of
q-plays by Play(q) and the set of all q-runs by Run(q). We also denote the set of
all plays in S by Play(S ) and the set of all runs in S by Run(S ).

Example 9.4 The game on Fig. 9.4 defines a CIGS S = 〈A , Q,Act , d,out 〉,
where:

• A = {I, II}, Q = {0, . . . , 7}, Act = {a, b, c}.
• d : Q × A −→ 2Act and out : Q × Act (Q)→ Q are defined as on the figure,

e.g.:
d(0, I) = {a, b}, d(0, II) = {a}; out (0; (a, a)) = 1, out (0; (b, a)) = 2, etc.

Here are some plays in the game (S , 0):

• 0, (a, a); 1, (a, a); 3, (a, a); 1, (a, a); 3, (a, a) . . .
• 0, (a, a); 1, (a, c); 5, (a, a); 5, (a, a); 5, (a, a) . . .
• 0, (a, a); 1, (a, a); 3, (a, a); 1, (a, b); 4, (a, a); 4, (a, a) . . .
• 0, (b, a); 2, (a, a); 2, (a, a); 2, (a, c); 4, (a, a); 4, (a, a) . . .

9.5.3.2 Concurrent Informational Game Structures

Definition 9.8 (Concurrent informational game structure) A concurrent informa-
tional game structure (CIGS) is a tuple 〈S ; { a�i}i∈A , { e�i}i∈A 〉, where S =
〈A , Q,Act , d,out 〉 is a CGS and for every i ∈ A :

• a�i⊆ Q × Q is a a priori information relation for the player i;
• e�i⊆ Run(S ) × Run(S ) is an empirical information relation for the player i,

which coincides with
a�i when restricted to one-state runs.

The intuition: q1
a�i q2 holds if the player i considers the state q2 as a possible

a priori alternative of the state q1 in the game structure M . Likewise, ρ1
e�i ρ2 if

the player i considers the run ρ2 a possible alternative of the run ρ1 in M at its last
state. Initially, the empirical information of the player about a play is simply her a
priori information about the game. As the play progresses, the player may on one
hand gain some additional information about the structure of the game, and on the
other hand may acquire some uncertainties or wrong beliefs about the history and
the current state of the play. Here are some particular cases:
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• If
a�i is the equality, then the player i has a complete (a priori) information about

the game M . Likewise, if
e�i restricted to the runs of a given play in M is the

equality (i.e. does not associate any run of the play with any different run), then
the player i maintains a perfect empirical information throughout that play.
• If the player i has no wrong beliefs, but only uncertainties about the game, then

a�i
is an equivalence relation of a priori indistinguishability. Likewise, if the player i
has no wrong beliefs, but only uncertainties about the states of a play, then

e�i is
an equivalence relation of empirical indistinguishability.
• Furthermore, if the player can keep a count of the number of moves made in

the play, or has a ‘clock’ showing how many time units have passed since the
beginning of the play (where every time unit corresponds to one transition from a
state to a successor state), then

e�i can only relate runs of the same length (recall
the property of synchrony in temporal epistemic models). In general, however, it
is conceivable that a player may ‘forget’ the length of the current run.
• In many cases it is reasonable to assume that the games considered are ’tree-like’,

where every state is associated with a unique run. Then the relations
e�i can be

regarded as relations on states, rather than runs.

A more refined approach towards the different types of information and abilities
would be to distinguish purely observational information acquired in the course
of a play by only observing the current states through which the play goes from the
accumulative empirical information which also involves recollections and reasoning.

Example 9.5 The game on Fig. 9.4 defines a CIGS T = 〈S ; { a�i}i∈A , { e�i}i∈A 〉,
where S is the CGS defined in the previous example, and the a priori information
relations are defined as follows:

• a�I is the equality: {(q, q) | q ∈ Q};
• a�II= {(q, q) | q ∈ Q} ∪ {(1, 2), (2, 1)}.
The empirical relations:

• e�I is the equality of runs.
• e�II extends

a�II by relating every run to itself, but it also relates the run
0, (a, a); 1 with 0, (b, a); 2 and no other runs, because once the game is past
any of these 2 runs, the a priori uncertainty of player II disappears (assuming that
he has basic observational abilities and memory).

9.5.3.3 Computing the Empirical Information

Note that, while both sets of relations,
a� and

e� are part of the definition of a CIGS,
only the former should be assumed to be given explicitly a priori, while the latter is
to be computed in the course of the play. It is not possible to give a general rule of
how the empirical relations of the players are computed, as that would depend on
their observational abilities, memory, reasoning skills, etc. Computing the empirical
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information is one of the main problems in the development of this framework. Here
we only outline a conceptual proposal for a mechanism computing the empirical
information during the play of the game, as follows:

• Before the play begins, the empirical information of the players in the CIGS is
their a priori information. It determines an “a priori” multi-agent epistemic model
associated with the CIGS.
• Every transition in the CIGS generates an “information update model” à la DEL,

which represents the epistemic updates for the payers generated by that transition.
• That update model is applied to the current epistemic model associated with the

CIGS, to produce an updated epistemic model, which represents the empirical
information relations between all runs of length being at most the length of the
current history of the play.
• The players use the so obtained empirical information relations to determine their

next actions, possibly following an ’empirical strategy’ based on the empirical
information represented by these relations.
• The collective action determines the next transition, and the cycle repeats.

The procedure of computing the information update models is the engine of the
entire mechanism and depends on the abilities of the players to observe, memorize
and recall, communicate, reason, etc. Some simple cases of that procedure are being
developed in [35].

9.5.3.4 Logical Framework for Computing Empirical Strategic Abilities

Using the a priori and empirical relations, one can refine the notions of strategies
and strategic abilities of players, underlying the semantics of the Alternating-time
temporal logic ATL, [2] in order to distinguish between ‘objective’ abilities (what
the player can achieve if they had perfect information), ‘a priori’ abilities (what the
player can achieve based on her a priori information about the game), and ‘empirical’
abilities (what the player can achieve given that the player can take advantage of, or
suffer disadvantage from, experience of actual play). Furthermore, these can be used
to provide a formal semantics of an enrichment of ATL with incomplete information,
with separate operators for stating objective, a priori, and empirical abilities of players
and coalitions. For further detail on all these we refer the reader to [37] and the work
in preparation [35].

9.6 Putting the Temporal, Dynamic and Epistemic
Frameworks Together

Besides [17] and [6], a few other publications have appeared recently that propose
combining temporal, dynamic and epistemic frameworks. We briefly survey the more
popular of them here.
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In his Ph. D. thesis [57] and in the subsequent chapter [58] Sack combines tempo-
ral logic with public announcement logic (PAL) and dynamic epistemic logic (DEL).
Adding next-time and previous-time operators to PAL allows formalizing the muddy
children and the ’sum and product’ puzzles. He also discusses relationships between
the announcements and the new knowledge that agents acquire. Adding a full past-
time operator to DEL also helps obtaining a complete axiomatization. In [59] Sack
proposes a new version of temporal DEL (TDEL) with (mostly) unparametrized past
operators in a language with DEL-action signatures. This TDEL does not involve
protocols and the update modality semantics explicitly changes the epistemic tem-
poral structure.

In [47] Hoshi and Yap consider a version of temporal DEL (TDEL) with a
parametrized past operator. In order to axiomatize that extension, they develop
transformation a given model into a certain normal form. The authors suggest further
applications of such extensions of DEL to the theories of agency and learning.

In [55] Renne, Sack, and Yap introduce a new type of arrow in the DEL action
models in order to enable reasoning about epistemic temporal dynamics in multi-
agent systems that need not be synchronous. Their framework provides a new per-
spective on the work in [6], in particular, while in each of the two approaches the
epistemic temporal models generated by standard update frames necessarily satisfy
certain structural properties such as synchronicity, [55] discusses which these struc-
tural properties are due to the inherent structure of the update models themselves. In
the extended version [56] they relate DETL and TDEL and provide a completeness
theorem for DETL with respect to well-behaved epistemic temporal models.

In [27] van Ditmarsch, van der Hoek and Ruan discuss a relation between DEL
with the usual semantics on relational models, and a temporal epistemic logic with
semantics in interpreted systems à la [30]. In particular, from a given ‘epistemic state’,
i.e. pointed epistemic model and a DEL formula they construct an interpreted system
that satisfies the translation of the formula in the respective temporal epistemic logic.

9.7 Concluding Remarks

The dynamics of agents’ knowledge is a conceptually rich, deep and multi-faceted
topic. Here we have discussed only some aspects of that dynamics, mainly related to
its temporality rather than its causes and effects. Furthermore, we have focused on
the dynamics of knowledge rather than other informational attitudes, such as beliefs.
Consult [22, 24] and the chapter [34] for a discussion of the temporal aspects of
beliefs.

In summary, while a number of models and logics have been proposed in the
past. This chapter has shown that there is much more in common between these
different logical systems than once thought. Yet, a “Unified Theory” of the dynamics
of knowledge over time is still to be developed, if ever. However, our overall goal was
not to argue that any one framework is the “right model”, or even that there is a single
such “Unified Theory”, but rather that there is a coherent collection of logical systems
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each focused on modeling the dynamics of knowledge from a different perspective.
Actually, we are more inclined to believe that there is no unique model, not even
unique ‘right’ methodology for modeling that dynamics, but that the pluralism of
relevant approaches is its inherent valuable feature.

This pluralistic viewpoint of ours, together with the natural limitations of time and
space in which this chapter had to be placed, are our excuses for leaving untouched
a number of relevant studies and approaches, including: learning theory, interactive
epistemology, situation calculus, etc. We do, however, refer the unslaked reader to
Johan van Benthem’s recent collection of though-provoking essays on related topics
in [14, 16].
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Chapter 10
Logic and Learning

Nina Gierasimczuk, Vincent F. Hendricks and Dick de Jongh

Abstract Learning and learnability have been long standing topics of interests
within the linguistic, computational, and epistemological accounts of inductive infer-
ence. Johan van Benthem’s vision of the “dynamic turn” has not only brought renewed
life to research agendas in logic as the study of information processing, but likewise
helped bring logic and learning in close proximity. This proximity relation is exam-
ined with respect to learning and belief revision, updating and efficiency, and with
respect to how learnability fits in the greater scheme of dynamic epistemic logic and
scientific method.
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10.1 Learning and the Dynamic Turn in Logic

For well over a decade, Johan van Benthem has been pushing the agenda of the
dynamic turn in logic forward:

…over the past decades computer science has also begun to influence the research agenda of
logic. Traditionally, logic is about propositions and inference. Its account of this is declar-
ative, in terms of languages and semantic models that represent information. But inference
is in the first place an information-generating process, and just one among many at that.
[…]These days, in the same spirit, modern logic is undergoing a Dynamic Turn, putting
activities of inference, evaluation, belief revision or argumentation at centre stage, not just
their products like proofs or propositions. [6, p. 503]

The classical conception of logic as the study of propositions, valid arguments, and
information representation may be extended to logic as the study of inference broadly
conceived and of correct information processing. Once this step is made, logic may
serve as the gateway for studying, modelling and optimizing belief revision processes,
strategies in games, procedures for decision, deliberation and action, rational agent
interaction, and . . . learning [10].

The dynamic turn from deduction and representation to active inference and
information-generating processes comes from the influence computer science has
exercised on logic. But from computer science come also the first ideas of formal
learning theory. The concept of identification in the limit has been introduced as a
computational counterpart of the process of language acquisition [25]. It inspired
a group of mathematicians and computer scientists, and led to a number of results
concerning (learning of) recursively enumerable sets. This culminated in the book
Systems that Learn (Osherson et al. [44], later extended to Jain et al. [31]). From
the perspective of linguistics, a promising line was given by Angluin [2] to Gold’s
scheme bending it to learning recursive languages generated by traditional types of
grammars like context-free grammars.

In general, formal learning theory is about reliable processes for information
acquisition as Kevin T. Kelly, explains:

A learning problem specifies (1) what is to be learned, (2) a range of relevant possible
environments in which the learner must succeed, (3) the kinds of inputs these environments
provide to the learner, (4) what it means to learn over a range of relevantly possible environ-
ments, and (5) the sorts of learning strategies that will be entertained as solutions. A learning
strategy solves a learning problem just in case it is admitted as a potential solution by the
problem and succeeds in the specified sense over the relevant possibilities. A problem is
solvable just in case some admissible strategy solves it. [34, p. 1]

“Learning problem”, “possible environments”, “learner”, “success”, “strategies” and
“solvability” sound like computer science terms, but they feature prominently in the
dynamic turn of logic as well. And for good reason too. Formal learning theory takes
its point of departure with the problem of finding true or empirically adequate, gen-
eral theories from an ongoing stream of particular, empirical data. The basic idea is to
seek procedural justification in terms of reliable truth-tracking performance, rather
than in philosophical intuition or other more or less unregimented prescriptions for
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scientific inquiry—reliable or not. For example, one of the first publications in formal
learning theory involved Putnam’s computational critique of the learning power of
Carnap’s confirmation theory [47].1 Putnam’s thread has been taken up by Glymour,
Kelly, Schulte and again Osherson et al., and has been applied to more traditional
epistemological issues. Such issues include explications of empirical underdeter-
mination and simplicity, critiques of Bayesianism, Ockham’s razor, justification of
inductive inference, causal discovery, belief revision, and epistemic logic.

Many of these concerns and applications are congruent with the agenda of the
dynamic turn in logic. By way of example, the axioms of belief revision [20] may
be interpreted as prescriptions for methods of learning [35, 40] for which both their
respective learning powers and the relative merits in terms of efficiency and speed
may be assessed [32]. How belief revision fairs with respect to learning understood
as conditioning and lexicographic revision (central to dynamic epistemic logic) has
been investigated in [4, 22]. Similarly, the classical axioms of epistemic logic may
be viewed as epistemic learning goals. The learning problem to be settled is then
what sort of learners will be able to converge to, and in what sense, the validity of
these axioms. Bridging logic and learning is about adding a long-run perspective to
epistemic logic in which agents are taken to be mechanisms that learn over time. This
is achieved by merging branching alethic-temporal logic with possible environments,
learners, success, and strategies, all concepts from formal learning theory. On top of
the model of all branching empirical data streams a formal language is introduced
that includes epistemic modalities whose indices are learning mechanisms. The idea
is then to look for reflections between epistemic axioms in the logic and the structural
features of the learning mechanisms [27, 28]. Pursuing the line of formal languages
one can formulate conditions for limiting learning in dynamic epistemic and doxastic
logic [21].

In general, the connection between formal learning theory and dynamic epistemic
logic benefits both paradigms. On the one hand, learning theory receives the fine-
structure of well-motivated local learning actions and qualitative logical perspective,
which in the long run offers a chance of generic reasoning calculi about inductive
learning. On the other hand, dynamic epistemic logic gets a long-term ‘horizon’
which it missed, criteria for choosing appropriate update rules, and adequate learn-
ability conditions.

Logic and learning are now being brought into close proximity. A decade ago
these close encounters were already on the horizon of van Benthem’s vision of the
dynamic turn uniting logic, computation and learning:

1 The terms “identifiability”, “learnability”, and “solvability” are often used interchangeably in
formal learning theory. Preferring one over the others is usually determined by the wider, often
philosophical, methodological, or technical context. “Identifiability” is used in technical contexts,
concerned with choosing (identifying) one among many possibilities (e.g., Turing machines or
grammars). “Learnability” is a broader quasi-psychological notion often assumed to be (accurately)
modelled by identifiability. Finally, “solvability” occurs in more logic-oriented works, and denotes
the possibility of deciding on an issue, e.g., whether a hypothesis is true or false. Obviously, the
latter can also be viewed as a kind of identifiability.
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Update, revision, and learning form a coherent family of issues, going upward from short
term to long-term behaviour. [6, p. 510]

No better occasion than this to discuss how exactly these central concepts from
logic and learning fit together; belief revision and reliability, updating and efficiency,
epistemic logic in relation to expressibility and logic and scientific method.

10.2 Belief Revision and Learning

Consider the following scenario. An agent faces uncertainty about the actual state
of affairs. She wants to come up with a conjecture that (if not completely, then at
least substantially) describes the phenomenon she is confronted with. The progress
of this inquiry is driven not only by internal deliberations, but also by observations,
outcomes of experiments, those performed by herself and those communicated to
her by others. The incoming information triggers occasional changes in her beliefs.
It seems natural to assume that we, humans, are naturally equipped with cognitive
mechanisms that make such changes possible. The way to mathematically model
these mechanisms arises via adopting a high-level perspective of studying the long
term belief evolution and its effects—studying not only learning, but also the pos-
sible success of the learning process. In this context several simple questions have
been intensively researched. How to distinguish some policies of changing-ones-
mind as more “desirable” than others? How reliable are possible belief-revision and
knowledge-update policies?

Logical theories of belief revision construct models for belief states in ways that
make the latter amenable to changes triggered by appropriately represented infor-
mation. They propose ways in which the new information gets incorporated into and
changes an agent’s belief state. Several such theories have already been investigated
in light of inductive inference. Here are three note-worthy attempts, of which the
most recent one [4, 22] will be dealt with in more detail. Of the other two attempts
the first one uses formal learning theory to evaluate belief revision policies and is due
to [39, 40]. They rely on a first-order framework for inductive inquiry and within this
setting a special class of learners that mimic a belief-revising agent is introduced.
The belief revision procedure is that of the AGM paradigm [1], and thus contraction
driven. It has been demonstrated, among other things, that a revision method that
strongly resembles AGM revision is not universal, i.e., there are problems that are
solvable (learnable) in the limit, but cannot be solved by any AGM-learner. The sec-
ond approach [32, 33, 35] is concerned with the reliability of some belief revision
policies, this time for the possible worlds interpretations of belief, given by a variety
of authors [14, 15, 26, 43, 48]. The inductive inquiry framework adopted here is that
of prediction: the successive data received by the agent are true reports of successive
outcomes of some discrete, sequential experiment. The goal of learning is to arrive
at a sufficiently informative belief state that allows predicting how the sequence will
evolve in the unbounded future. The investigation of the learning power of the pro-
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cedures listed above indicates that the simple conditioning-based revision may be
found among the most powerful.

In the remainder of this section focus is on some examples of belief revision
methods and their convergence properties—the truth-tracking power. Before going
here attention is directed towards a specification of the basic setting. The remaining
part of this section summarises the results of [4, 22], the reader is referred to those
for more details and proofs.

10.2.1 Epistemic Spaces, Belief Revision, and Learning

An agent’s uncertainty is, as usual, represented by an epistemic space (S,�) con-
sisting of a set S of epistemic possibilities, or possible worlds, together with a family
of propositions � ⊆P(S). As in epistemic logic these propositions represent facts
or observables being true or false in any of the possible worlds under consideration.
The agent will receive information about a possible world (the actual one), and this
stream of data is modelled as an open-ended (infinite) sequence of propositions. For
now, abstract away from any time or memory restrictions, so it is assumed that the
information keeps on arriving indefinitely in a piecemeal fashion. Such an infinite
stream ε = (ε1, ε2 . . .) of successive propositions from� will be called a stream for
s ∈ S just in case the set {εn : n ∈ N} of all propositions in the stream coincides
with the set {P ∈ � : s ∈ P} of all propositions that are true in the given world.

Given such representation a learning method is a function L that on input of an
epistemic space (S,�) and a finite sequence of observations σ = (σ0, . . . , σn) out-
puts a hypothesis. The hypothesis is then a set of possible worlds, i.e., a proposition.
In other words, L((S,�), σ ) ⊆ S. Now we can define a condition of learning that
closely resembles identification in the limit.

Definition 10.1 Let us take an epistemic space (S,�).
A world s ∈ S is learnable in the limit by a method L if, for every observational

stream ε for s, there exists a finite stage n such that L((S,�), ε0, . . . , εk) = {s} for
all k ≥ n.

The epistemic space (S,�) is said to be learnable in the limit by L if all its worlds
are learnable in the limit by L .

Finally, the epistemic space (S,�) is learnable in the limit just in case there is a
learning method that can learn it in the limit.

The above notion of learning is additionally motivated by the fact that the epistemic
state resulting from a successful learning process need not be as strong as irrevocable
knowledge, i.e., the S5 type of knowledge. It rather matches the defeasible type of
knowledge proposed by Lehrer [37, 38] and others, formalized by Stalnaker [49]
and rediscovered in modal logics under the name of ‘safe belief’. The strength of
safety is in the guarantee that it provides: a safe belief is not endangered by new
veritistic observations. In other words, defeasible knowledge emerges when stability
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is reached. The need for such a notion appeared in many different frameworks:
from reaching an agreement in a conversational situation (see, e.g., [37, 38]) to
considerations in philosophy of science pertaining to infallible scientific knowledge
(see, e.g., [28]).

The above described learning method outputs conjectures aiming at one that
would uniquely describe the actual world. Such a definition does not however give
any insight into the details of the underlying deliberation process—what makes the
learning method choose one conjecture over another? To address this question we
will, in a manner of speaking, be ‘plugging-in a belief-revision engine’.

In order to make an epistemic space account for beliefs one may enrich it with
a plausibility order. The idea is that although remaining uncertain between several
options, the agent holds some of them most entrenched—those seem to her simply
more plausible or more probable, or more elegant than other options—and hence
she believes in what is true in all those best states. We set a plausibility space to be
(S,�,≤), where ≤ is a total preorder on S, called plausibility order.

Three qualitative belief revision policies have received substantial attention in
dynamic epistemic logic: conditioning, lexicographic revision, and minimal revi-
sion. In particular, the first may be related (via its eliminative nature) to public
announcement logic [46], the remaining two have been given a logical treatment and
a complete axiomatisation by van Benthem [8].

Definition 10.2 Take a plausibility space (S,�,≤) and a proposition p ∈ �. Below
we will call any s ∈ p, a ‘p-world’.

1. Conditioning of the plausibility space (S,�,≤) with the proposition p results in
removing all inconsistencies with p, i.e., the operation gives a new plausibility
space (S′,�′,≤′), where S′ includes only the p-worlds and �′ as well as ≤′ are
cut down to the new domain, S′.

2. Lexicographic revision of the plausibility space (S,�,≤) with the proposition
p results in keeping the same states in S but promoting all the p-worlds to be
more plausible than all those that are not p-worlds, and within the two clusters
the order remains unchanged.

3. Minimal revision of the plausibility space (S,�,≤)with the proposition p results
in promoting the most plausible p-worlds to be the most plausible overall, the
rest of the order remaining the same. As in the case of lexicographic revision, S
stays the same throughout the process.

A belief-revision method is then a function R that upgrades a plausibility state, i.e.,
it associates to any plausibility space (S,�,≤) and any sequence σ = (σ0, . . . , σn),
some new plausibility space R((S,�,≤), σ ) := (Sσ ,�σ ,≤σ ),with Sσ ⊆ S,�σ =
{P ∩ Sσ : P ∈ �}, and ≤σ is ≤ revised by method R under sequence σ .

Now we are ready to merge the learning function and the revision function into a
belief revision based learning method. First, take an epistemic space (S,�) together
with a prior-plausibility assignment given by some≤S . From the resulting plausibility
space and a belief revision function R obtain in a canonical way the learning method
L R , given by:
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Table 10.1 Universality of
belief revision policies under
different kinds of data

Conditioning Lexicographic Minimal

Positive Yes Yes No
Positive and negative Yes Yes No
Fair No Yes No

L R((S,�), σ ) := min R((S,�,≤S), σ ),

where min(S,�,≤) is defined to be the set of all the least elements of S with respect
to ≤ (if such least elements exist) or ∅, otherwise.

Definition 10.3 An epistemic space (S,�) is learnable in the limit by a belief-
revision method R if there exists some prior plausibility order ≤S such that (S,�)
is learnable in the limit by the canonical learning method L R(S,�,≤S).

Learning methods differ in their learning power. One may investigate the issue
of the learnability range by looking for the most powerful among them, those that
are universal—those that can learn any epistemic state that is learnable by any other
method.

10.2.2 Learning Power of Belief Revision

The results of universality of the aforementioned belief revision policies are sum-
marised in Table 10.1. For the sake of completeness, here we report on the universality
of learning by belief revision policies under three different conditions. The first one
is learning from streams of positive data, which for any possible worlds s enumer-
ate only propositions true in s. The second is learning from streams of positive and
negative data, where data streams enumerate propositions and negations of propo-
sitions true in s. Finally, fair streams represent unfriendly conditions—when some
observational errors may occur. For this, we give up soundness of data streams, i.e.,
the condition that in the data stream for a possible world s only the information
that is true in s can occur, and replace it by a “fairness” assumption: errors occur
only finitely often and are always eventually corrected. Unsurprisingly, this can be
destructive for conditioning. If erroneous observations are possible, then eliminating
worlds that do not fit the observations is risky business.

For the above-listed universality results a non-standard setting, allowing non-well-
founded plausibility orders, is essential, i.e., neither of those methods is universal
with respect to well-founded prior plausibility orders.2

2 In general some of the proofs require a construction of an appropriate prior plausibility order.
For this some classical learning-theoretic concepts and results are used, i.e., locking sequences
introduced by Blum and Blum [13], as well as finite tell-tale sets and the simple non-computable
version of Angluin’s theorem [2], see also the next section.
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The results summarized in this section and developed further in the original work
provide additional insight with respect to the motivation for belief-revision operators
in epistemic logic. In particular, the different capabilities conditioning and lexico-
graphic have to deal with errors lends formal justification to the intuition that the
intention of performing lexicographic revision means having less trust in the source
of information. On the other hand, the results on minimal revision challenge its popu-
lar characteristics as the safest revision policy. Moreover, the most popular approach
to modelling beliefs in possible worlds semantics, namely by guaranteeing the well-
foundedness of the underlying preorders turn out to be restrictive for learnability.

The above setting and its results are learning-theoretic in spirit, but they also
contribute to the study of truth-tracking and truth approximation within the dynamic
epistemic logic tradition. The inductive inference perspective leads to studying
new relevant features of iterated revision: data-retention, conservatism, history-
independence and ways in which these influence the learning process (see [4, 22]).
Note that some limit phenomena within iteration scenarios in doxastic-epistemic
logic have been studied before in the context of game theory, involving plausibility
changes in games in a learning process with active agents trying to both ‘learn’ and
‘teach’ (see [9]), and in the context of belief revision, where one can observe a trade-
off between initial plausibility order and plausibility order built up from local cues
during the learning process (see [5]).

10.3 Conclusive Update and Efficiency

In formal learning theory the particular way of learning is not prescribed but usually
supposed to obey certain computability constraints whereas in dynamic epistemic
logic there are intuitively clear, determinate manners in which models are updated
disregarding computability. It is interesting to compare the two aspects of determi-
nateness and computability. In the previous section we introduced the basic (non-
effective) version of convergence. In formal learning theory, learning is commonly
studied as an effective procedure and learners are taken to be recursive functions.

Let us see how this may work in the present setting. Again, consider the epistemic
space (S,�). Firstly, assume that it can consist of at most countably many possibil-
ities in S and countably many relevant propositions given in the set �. Moreover,
we will introduce the condition of uniform decidability of the epistemic space. An
epistemic space is uniformly decidable just in case there is a computable function f
that for each pair consisting of a possible world and a proposition decides whether
the proposition is true or false in the possible world.

Definition 10.4 An epistemic space (S,�) is uniformly decidable just in case there
is a computable function f : S ×�→ {0, 1} such that:

f (w, p) =
{

1 if s ∈ p,

0 if s /∈ p.
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In epistemic logic it is common to assume that checking whether or not an atomic
proposition holds within a possible world is treated as primitive and its complexity is
left out. Hence, the assumption of uniform decidability does not seem to be restrictive
with respect to the traditional setting. It does however seem non-trivial in the analysis
of some epistemic situations, e.g., scientific scenarios, where performing such an
atomic test may be hard. This simple and appealing condition is used to investigate
the properties of convergence to knowledge.

Since the overall number of possibilities is at most countable we can name them
with natural numbers. Similarly, the set of propositions � is countable. So, assume
that for an epistemic space (S,�), S = {s1, s2, s3, . . .} and� = {p1, p2, p3, . . .}. In
this context it is easy to see that the function f that gives the uniform decidability of
an epistemic space can may thought of as a number theoretic function f : N×N→
{0, 1}. Throughout this section unless specified otherwise, assume the epistemic
spaces to be uniformly decidable. Moreover, for sake of simplicity assume that in
S there are no multiple worlds that make exactly the same propositions true (this
assumption is not essential, see [23]).

In this new setting one may easily define the effective version of learnability in
the limit.

Definition 10.5 Take an epistemic space (S,�).
A world sm ∈ S is effectively learnable in the limit by a function L if L is

recursive and for every observational stream ε for s, there exists a finite stage n such
that L((S,�), ε0, . . . , εk) = {m} for all k ≥ n.

The epistemic space (S,�) is said to be effectively learnable in the limit by L if
L is recursive and all the worlds in S are learnable in the limit by L .

Finally, the epistemic space (S,�) is effectively learnable in the limit just in case
there is a recursive learning function that can learn it in the limit.

The remaining part of this section summarizes the results of Gierasimczuk [22],
Gierasimczuk and de Jongh [23], the reader should consult those for proofs and a
more detailed and rigorous presentation.

10.3.1 Conclusive Update

The above notion of learnability in the limit guarantees the existence of a method
that allows for convergence to a correct hypothesis. Observe, that the exact moment
at which a correct hypothesis has been reached is not known and in general can be
uncomputable. Things are different if we require learning to be conclusive, i.e., if
the learner is supposed to definitely decide on one answer after a finite amount of
information. We can think of this condition as of one in which the learning function
is allowed to answer only once—the gameshow case. Clearly, such a conjecture
has to be based on certainty. In other words, the learner must know that the answer
she gives is true as there is no chance of a change of mind later. In order to define
such convergence we will extend the range of learning function L by ↑, the answer
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corresponding to the output “I do not know”. In the definition below by ε�n we mean
the initial segment of ε of length n, i.e., the sequence (ε0, ε1, . . . , εn−1).

Definition 10.6 Learning function L is (at most) once defined on (S,�) iff for any
stream ε for any world in S and any n, k ∈ N such that n �=k it holds that L(ε�n)=↑
or L(ε�k)=↑.

Accordingly, define conclusive learnability3 in the following way (note the
important difference in the main condition when compared to Definition 10.5).

Definition 10.7 Take an epistemic space (S,�).
A world sm ∈ S is conclusively learnable in an effective way by a function L if L

is recursive, once-defined, and for every observational stream ε for s, there exists a
finite stage n such that L((S,�), ε0, . . . , εk) = {m}.

The epistemic space (S,�) is said to be conclusively learnable in an effective
way by L if L is recursive and all its worlds in S are conclusively learnable in an
effective way by L .

Finally, the epistemic space (S,�) is conclusively learnable in an effective way
just in case there is a recursive learning function that can conclusively learn it in an
effective way.

The necessary and sufficient condition for conclusive learnability (finite identifi-
ability) involves a modified, stronger notion of finite tell-tale [2], the definite finite
tell-tale set, (DFTT, for short) [36, 42]. Here we give a version adapted to our needs.

Definition 10.8 Let (S,�) be an epistemic space. A set Di ⊆ � is a definite finite
tell-tale set (DFTT) for si in S if:

1. Di is finite,
2. si ∈⋂

Di , and
3. for any s j ∈ S, if s j ∈⋂

Di then si = s j .

Theorem 10.1 An epistemic space (S,�) is conclusively learnable in an effective
way just in case there is a recursive function f : N→P<ω(�) such that for each
n ∈ N, f (n) is a finite definite tell-tale set for sn.

Hence, a possible world is conclusively learnable just in case it makes a finite con-
junction of propositions true that is not true in any other possible world.

10.3.2 Eliminative Power and Complexity

Following the idea of propositional update, knowing that one hypothesis is true
clearly means being able to exclude all other possibilities. This leads to the qualitative
notion of eliminative power of a proposition, which stands for the set of possibilities
that this proposition excludes.

3 We will use the name “conclusive learnability” interchangeably with “finite identifiability” which
is also sometimes referred to as “identification with certainty”.
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Definition 10.9 Consider a uniformly decidable epistemic space (S,�), and a
proposition x ∈ �. The eliminative power of x with respect to (S,�) is determined
by a function El(S,�) : �→P(N), such that:

El(S,�)(x) = {i |si /∈ x & si in S}.

Additionally, for X ⊂ � we write El(S,�)(X) for
⋃

x∈X El(S,�)(x).

In other words, function El(S,�) takes x and outputs the set of indices of all the
possible worlds in (S,�) that are inconsistent with x , and therefore, in the light
of x , can be “eliminated”. If one were to link this notion to the epistemic logic
terminology, eliminative power of a proposition is the complement of its extension
in the epistemic space. This idea applies in a similar way to any formula of any
(epistemic) modal language. We may now characterise finite identifiability in terms
of eliminative power.

Proposition 10.1 A set Di is a definite tell-tale of si in S iff

1. Di is finite, and
2. El(S,�)(Di ) = N− {i}.

We will now proceed to analyze the computational complexity of finding DFTTs.
In order to do so attention is restricted to finite collections of finite sets. One may
question the purpose of further reduction of sets that are already finite. As a matter of
fact, if a finite collection of finite sets is finitely identifiable, then each set is already
its own DFTT, but obviously finite sets can be much larger than their minimal DFTTs.
A simple observation to start with:

Proposition 10.2 Let (S,�) be such that S and � are both finite. For any si in S,
El(S,�){x | si ∈ x} can be computed in polynomial time w.r.t. the size of epistemic
space (i.e., card(�)× card(S)).

Then the computational problem of conclusive learnability of an epistemic space
is defined in the following way.

Definition 10.10 (Fin- Id Problem)
Instance: A finite epistemic space (S,�), a world si in S.
Question: Is si conclusively learnable within (S,�)?

Theorem 10.2 Fin- Id Problem is in P.

This result does not settle the issue of the efficiency of conclusive learning. In
this context an interesting notion is the minimality of DFTTs. Finding the minimal,
and even better, the minimal-size DFTTs may be viewed as the task of an efficient
teacher, who looks for an optimal sample that allows conclusive learning. There are
two nonequivalent ways in which DFTTs can be minimal. Call Di a minimal DFTT
of si in (S,�) just in case all the elements of the sets in Di are essential for finite
identification of si in (S,�), i.e., taking any element out of the set Di will decrease
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the set’s eliminative power with respect to (S,�), in such a way that it will no longer
be a DFTT. In other words, minimal DFTTs of a state contain sufficient information
to exclude other possibilities and involve no redundant data.

Definition 10.11 Take an epistemic space (S,�), and si in S. A minimal DFTT of
si in (S,�) is a Di , such that:

1. Di is a DFTT for si in (S,�), and
2. for all X ⊂ Di , X is not a DFTT for si in (S,�).

Proposition 10.3 Let (S,�) be a finitely identifiable finite epistemic space. Finding
a minimal DFTT of si in (S,�) can be done in polynomial time w.r.t.
card({x | si ∈ x}).

Note that a possible world may well have many minimal DFTTs of different cardi-
nalities. This is enough reason to introduce a second notion of minimality—minimal-
size DFTT. Minimal-size DFTTs are the minimal DFTTs of smallest cardinality.

Definition 10.12 Consider an epistemic space (S,�), and si in S. A minimal-size
DFTT of si in (S,�) is a Di , such that

1. Di is a DFTT for si in (S,�), and
2. there is no DFTT Di

′ for si such that card(Di
′) < card(Di ).

How hard is it to find minimal-size DFTTs? In order to answer this question we
will first specify the corresponding computational problem.

Definition 10.13 (Min- size DFTT Problem)
Instance: A finite epistemic space (S,�), a possible world si ∈ S and a positive

integer k ≤ card({p | si ∈ p}).
Question: Is there a DFTT Xi ⊆ Si of size ≤ k?

Theorem 10.3 The Min- size DFTT Problem is NP-complete.

10.3.3 Preset Learning and Fastest Learning

Attention is now devoted to learners who can be seen as taking a more prescribed
course of action by basing their conjectures on symptoms, i.e., on their knowledge of
(some) DFTTs. Of course, if an si has a DFTT, it will have many, usually infinitely
many DFTTs, e.g., each finite set of propositions true in si , which is a superset of a
DFTT for si is a DFTT for si as well. Hence, it is more useful to express the learner’s
access to DFTTs by means of a so-called dftt-function. Such a function, let us call it
fd f t t , is supposed to decide on an input of a finite set X ⊂ � and an i ∈ N, whether
it considers X to be a DFTT for si ( fd f t t (X, i) = 1) or not ( fd f t t (X, i) = 0). In
case of a finitely identifiable epistemic space (S,�) there exists a dftt-function that
recognizes for each i ∈ N at least one X as a DFTT for si ∈ S.
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A learner that uses such a dftt-function in the process of identification is called a
preset learner. Intuitively speaking, each time the learner receives a new input, and
all the answers before have been ↑, the learner looks for the first world that accounts
for the propositions listed in the sequence enumerated so far. Assume that this world’s
index is i . Then among the content of the sequence observed so far the learner looks
for a subset X for which fd f t t (X, i) = 1. If the learner finds one, it answers with i ,
otherwise it answers with another ↑. It has been shown that if an epistemic space is
finitely identifiable at all it is finitely identifiable by a preset learner; it is also the case
that the preset learners are exactly those learners that react solely to the set-theoretic
content of the information received, disregarding the order and multiplicity of the
information.

If a preset learner L is based on a dftt-function that recognizes all DFTTs for all Si ,
then the learner will make the proper conjecture always at the earliest possible stage
of inquiry. Refer to such a learner as a fastest learner. It is clear that the procedure
of the fastest learner is closely related to the DEL approach. There is an interesting
question whether the fastest learner is always a recursive one. In [23] it has been
shown that this is not the case.

Intuitively, fastest learner finitely identifies a world si as soon as objective ‘ambi-
guity’ between languages has been lifted. In other words, define the extreme case of
a finite learner who settles on the right language as soon as any DFTT for it has been
enumerated. We will characterize such a fastest learner as a preset learner based on
the collection of all DFTTs.

Take again a finitely identifiable epistemic space (S,�), and si in S. Now, consider
the collection Di of all DFTTs of si in (S,�). For any sequence of data σ , set (σ )
stands for the set of propositions occurring in σ .

Definition 10.14 (S,�) is finitely identifiable in the fastest way if and only if there
is a learning function L such that, for each ε and for each i ∈ N,

L(ε�n) = i iff ∃D j
i ∈Di (D

j
i ⊆ set(ε�n))&

¬∃Dk
i ∈Di (D

k
i ⊆ set(ε�n − 1)).

Refer to such L as a fastest learning function.

Theorem 10.4 There is a uniformly decidable epistemic space that is finitely iden-
tifiable, but for which no recursive function F exists such that for each i , F(i) is the
set of all minimal DFTTs for si .

Proposition 10.4 There is a uniformly decidable epistemic space that is finitely
identifiable, but for which no recursive function F exists such that for each i , F(i)
is the set of all minimal-size DFTTs for Si .

Time to turn to the more general question whether every finitely identifiable class
has a fastest learner. The answer is negative—there are finitely identifiable classes
of languages which cannot be finitely identified in the fastest way.



280 N. Gierasimczuk et al.

Theorem 10.5 There is a uniformly decidable epistemic space that is finitely iden-
tifiable, but is not finitely identifiable in the fastest way.

Theorem 10.5 shows that fastest finite identifiability is properly included in finite
identification and hence also in preset finite identification. Therefore, we have demon-
strated the existence of yet another kind of learning, even more demanding than finite
identification. Speaking in terms of conclusive update, our considerations show that
in some cases, even if computable convergence to certainty is possible, it is not com-
putable to reach that certainty the moment in which objective ambiguity disappears.

In the light of these discoveries about preset learning there is an additional com-
putational justification for introducing multi-agency to this setting. It is interesting to
switch the perspective from the single agent, learning-oriented view, to the two agent
game of learner and teacher (see [3, 24]). The responsibility of effective learning, in
the line with natural intuitions, is in the hands of the teacher, whose computational
task is to find samples of information that guarantee optimal learning. Intuitively, it
is not very surprising that the task of finding such minimal samples can be more diffi-
cult than the complexity of the actual learning. As such, computing the minimal(size)
DFTTs seems to go beyond the abilities of the learner and is not necessary in order
to be rational or successful. However, such a task is naturally performed by a teacher.

10.4 Epistemic Logic and Learning

This section devotes more attention to the syntactic counterparts of the logical
approach to learnability. The previously chosen semantics may be reflected in an
appropriate syntax for knowledge, belief, and their changes over time, both in
dynamic and temporal settings.

The approach to inductive learning in light of dynamic epistemic and epistemic
temporal logic is as follows: Take the initial class of sets to be possible worlds in
an epistemic model, which mirrors the learner’s initial uncertainty over the range
of sets. The incoming pieces of information are taken to be events that modify
the initial model. We will show that iterated update on epistemic models based on
finitely identifiable classes of sets is bound to lead to the emergence of irrevocable
knowledge. In a similar way identifiability in the limit leads to the emergence of safe
(truthful and stable) belief. From here we consider a general temporal representation
of learning in the limit. The relationship between dynamic epistemic logics and
temporal epistemic logics has been studied (see [11, 12]). Given this correspondence,
the study of convergence brings about new interesting problems.
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10.4.1 Learning and Dynamic Epistemic Logic

The uncertainty range of the agent is revised as new pieces of data (in the form of
propositions) are received. The information comes from a completely trusted source,
and as such causes the agents to eliminate the worlds that do not satisfy it. In learning
theory the truthfulness of incoming data is often assumed, and therefore, in principle,
it is justified to use propositional and epistemic update as a way to conduct inquiry
(for such interpretation of update see [7]). The following assumes basic knowledge
of dynamic epistemic logic (for an overview see Chap. 6 of this book).

Epistemic states may be transformed into epistemic models, and plausibility states
into doxastic models in order to deal with the epistemic languages. The initial learning
model is a simple single-agent epistemic model whose structure corresponds to the
initial epistemic space.

Definition 10.15 Let us take an epistemic space (S,�). For every proposition in
pn ∈ � we take a symbol pn ∈ Prop. Moreover, we will use the set Nom, which
contains a nominal symbol i for every i ∈ N. The initial learning model M(S,�) is
a triple:

〈W,∼, V 〉,

where W := S, ∼ := W × W , V : Prop ∪ Nom→ P(W ), such that si ∈ V (pn)
iff si ∈ pn in (S,�), and for any i ∈ Nom we set V (i) = {si }.

Similarly, every epistemic plausibility space (S,�,≤) can be straightforwardly
turned into an epistemic doxastic model M(S,�,≤) = 〈W,∼,≤, V 〉.

On such models, as on other epistemic models one may interpret epistemic
and doxastic logic languages in a standard way. Dynamic versions of such logics
include some additional operators that allow describing changes taking place within
a model. One particular logic of this type is public announcement logic (PAL, see
[46]), where basic epistemic logic is extended to account for update with a specific
‘ϕ-announcement’ expression, written as !ϕ.

Definition 10.16 (Syntax of LPAL) The syntax of epistemic language LPAL is
defined as follows:

ϕ := p | ¬ϕ | ϕ ∨ ϕ | Kaϕ | [A]ϕ
A := !ϕ

where p ∈ Prop, a ∈ A , where A is a set of agents.

Definition 10.17 (Semantics of LPAL) For the epistemic fragment LEL the inter-
pretation is as usual (see Chap. 6). The remaining clause of LPAL is as follows.

M ,w |= [!ϕ]ψ iff if M ,w |= ϕ then M | ϕ,w |= ψ

It has been shown that epistemic update performed on finitely identifiable class
of sets leads to irrevocable knowledge.

http://dx.doi.org/10.1007/978-3-319-06025-5_6
http://dx.doi.org/10.1007/978-3-319-06025-5_6
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Theorem 10.6 The following are equivalent:

1. An epistemic space (S,�) is finitely identifiable.
2. For every si ∈ S and every data stream ε for si there is an n ∈ N such that for

all m ≥ n, M(S,�), si |= [!(∧set(ε�m))] K i.

A similar in spirit, but more complex result may be obtained for identifiability in
the limit and doxastic version of public announcement logic whose language includes
the expression Baϕ, interpreted on epistemic doxastic models in the following way.

Definition 10.18 (Semantics of LDOX- PAL)

M ,w |= Baφ iff there is v ∈ W such that v ∼a w and v ≤a w
and for all s ∈ W such that s ≤a v and s ∼a w it holds that
M , s |= ϕ

Theorem 10.7 The following are equivalent:

1. (S,�) is identifiable in the limit.
2. There is a plausibility preorder ≤ ⊆ S × S such that for every si ∈ S and every

data stream ε for si there is n ∈ N such that for all m ≥ n, M(S,�,≤), si |=
[!(∧set(ε�m))]B i.

The results on the universality of lexicographic revision in [4, 22] allow drawing a
corollary that the above theorem will also hold for the dynamic logic of lexicographic
upgrade, in which case the update operator ! is replaced with ⇑. However, such
results for the dynamic logic of minimal upgrade (also known as elite change, with
the operator ↑) cannot be obtained.

On the grounds of different results from [4, 22], the plausibility preorder men-
tioned in Theorem 10.7 sometimes must be non well-founded, allowing models
without minimum words according to ≤. Decision is thus necessary as to how to
interpret the belief operator, Baϕ. Above, a more general, limiting interpretation of
belief operator has been introduced—the agent believes that φ in a world w just
in case she considers a more plausible world v such that all words that are more
plausible than v satisfy ϕ [22, Chap. 6]).

The last remark concerns the meaning of Ki (Bi) in the characterising formulas—
they stand for the knowledge (belief) of what is the actual state. Going back to our
original motivation, that of formal learning theory, it is contingent on what ones take
to being the right, finite, generatively complete description of the world. In terms of
propositional knowledge and belief this corresponds to the following: whatever is
true in the actual world I know (believe) that it is true and vice versa. In other words,
we may say: Ki iff for any p ∈ Prop such that si ∈ p we have that p ↔ K p, and
similarly for Bi.
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10.4.2 Learning and Temporal Logic

May one achieve a more complete description of learning in the limit with modal
logic? To that end, a logic that allows quantifying over time and over possible histories
is needed. Temporal logic offers such a view.4

First, consider what could serve as candidate for a temporal unfolding of an
possible world si in an epistemic space (S,�). Instead of viewing a world as a set
of atomic propositions, we can represent it as a set of (infinite) histories—possible
streams of observations that could take place provided si is the actual state. What
are the possible streams of information within si depends on, let us say, the “nature”
of the possibility. Are the events that it generates sequential, is it possible that they
permute, will some of them repeat, must everything that is true eventually occur?
The learning-theoretic paradigm considered here offers a particular set of answers
to those questions. Data streams of a given possibility si enumerate all and only the
propositions true in si , the order of propositions does not matter, and repetitions can
occur without restrictions.

Hence, thinking of the propositions true in si as events that might occur in si , build
a temporal structure describing possible future evolutions at si . The learning theo-
retic paradigm requires that those are finite prefices of certain infinite data streams.
The latter are infinite sequences of propositions true at si which enumerate all and
only those propositions, possibly with repetitions. The finite sequences that may be
observed are hence determined by a “protocol” that permits certain infinite streams
at si . Each possible word in our initial uncertainty range can be assigned such a
temporal representation. Note that for different possibilities we get mutually disjoint
protocols. However, in each point of time the agent observes only a finite sequence of
events and obviously such a finite prefix of an infinite data stream can be consistent
with more than one possibility. Observing such sequences would not give the agent
enough information to distinguish between the two worlds. In such case the agent
is uncertain between the two finite sequences not only with respect to how the finite
sequence will develop in the future, but also unsure as to the original possibility
that generated the sequence. The temporal forest is transformed into an epistemic
temporal forest, where the uncertainty relation of the agent will relate identical finite
sequences, and the valuation is copied from the initial epistemic space. The resulting
structure is an epistemic temporal model (see [18, 19, 45]) that represents all possible
evolution of a learning scenario. Below we will call such a structure For((S,�), P),
a forest built from an epistemic space (S,�) and a protocol P .

A relevant epistemic temporal language LETL∗ contains the following expres-
sions:

ϕ := p | ¬ϕ | ϕ ∨ ϕ | Kϕ | Fϕ | Aϕ

where p ranges over a countable set of proposition letters Prop. Kϕ reads: ‘the
agent knows that ϕ’. Symbol F stands for future, and we define G to mean ¬F¬.
Aϕ means: ‘in all infinite continuations conforming to the protocol, ϕ holds’.

4 This section overviews the approach given in [17, 22].
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LETL∗ is interpreted over epistemic temporal frames, H , and pairs of the form
(ε, h), the former being a maximal, infinite history in our trees, and the latter a finite
prefix of ε (see [41, 45]) in the usual way. The modality ‘A’ refers to the particular
infinite sequences that belong to the chosen protocol. It may be viewed as an operator
that performs a global update on the overall temporal structure, ‘accepting’ only those
infinite histories that conform to the protocol.

To give a temporal characterization of finite identifiability the following idea must
be expressed: In the epistemic temporal forest, for any starting, bottom node si it is the
case that for all infinite data streams in the future there will be a point after which the
agent will know that she started in si , which means that she will remain certain about
the part of the forest she is in. The designated propositional letters from PropNom
correspond to the partitions, which can also be viewed as underlying theories that
allow predicting further events.5 Formally, with respect to finite identifiability of
sets, the following theorem holds.

Theorem 10.8 The following are equivalent:

1. (S,�) is finitely identifiable.
2. For((S,�), P) |= i→ AFG Ki.

In order to give a temporal characterization of identifiability in the beliefs of the
learner must be expressed. Therefore, the temporal forests should include a plausibil-
ity ordering. Conditioning (update) is a universal learning method from truthful data.
In other words, in the case of identifiability in the limit, eliminating the worlds of an
epistemic plausibility model is enough to reach stable and true belief. This allows
for considering very specific temporal structures that result from updating a doxas-
tic epistemic model with purely propositional information.6 The epistemic temporal
models need to be extended with a doxastic preorder on infinite data streams, and the
epistemic temporal language needs to be extended with a doxastic counterpart, the
belief operator B, that works in a way similar to dynamic doxastic epistemic logic.

As in the case of finite identifiability we will now provide a formula of doxastic
epistemic temporal logic that characterises identifiability in the limit.

Theorem 10.9 The following are equivalent:

1. (S,�) is identifiable in the limit.
2. There exists a plausibility preorder ≤ ⊆ S × S s.t. For((S,�,≤), P) |= i→

AFG Bi.

The above results show that the two prominent approaches, learning theory and
epistemic modal-temporal logics, may be joined together to describe the notions of
belief and knowledge involved in inductive inference. Bridging the two approaches
benefits both sides. For formal learning theory, to create a logic for it is to provide

5 The characterisation involving designated propositional letters can be replaced with one that uses
nominals as markers of bottom nodes. For such an approach see Dégremont and Gierasimczuk [16].
6 For more complex actions performed on plausibility models in the context of the comparison
between dynamic doxastic and doxastic temporal logic see van Benthem and Dégremont [11].
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additional syntactic insight into the process of inductive learning. For logics of epis-
temic and doxastic change, it enriches their present scope with different learning
scenarios, i.e., not only those based on the incorporation of new data but also on
generalisation.

The temporal logic based approach to inductive inference gives a straightfor-
ward framework for analyzing various domains of learning on a common ground.
In terms of protocols, sets may be seen as classes of specific histories—their
permutation-closed complete enumerations. Functions, on the other hand, may be
viewed as ‘realities’ that allow only one particular infinite sequence of events. We can
think of many intermediate concepts that may be the object of learning. Interestingly,
the identification of protocols, that seems to be a generalization of the set-learning
paradigm provides what has been the original motivation for epistemic temporal
logic from the start: identifying the current history that the agent is in, including its
order of events, repetitions, and other constraints.

10.5 Logic, Learning, and Scientific Method

Logic and learning theory may also be bridged by considering the methodological
merits of learners for identifying classical axioms of epistemic logic. This means
treating epistemic axioms as learning goals and then considering the methodological
constraints on learners for converging to the truth of such axioms (Hendricks [27,
28] and Kevin T. Kelly’s chapter, Chap. 11). Axioms T, K, 4, 5 for instance, all
present different learning problems for definitions of knowledge based on limiting
convergence for both assessment and discovery methods. Assessment methods take
as inputs finite evidence sequences and hypothesis, and map them to onto truth or
falsity, while discovery methods conjecture hypotheses (sets of possible worlds) in
response to incoming evidence. It turns out that the validity of canonical axioms of
epistemic logic may be acutely sensitive to the methodological constraints enforced
on the methods of scientific inquiry whether based on assessment or discovery. A
method of scientific discovery may be consistent in the sense that it only conjectures
something consistent with current evidence, consistently expectant insofar as it con-
jectures something consistent with the evidence and expects to see more of the same,
or may be infallible in the sense that it only conjectures something which is entailed
by the evidence observed so far. Now, these different methodological constraints
come into play once one attempts to validate axioms of epistemic logic. No amount
of methodology is going to help validating the axiom of negative introspection
(5) and the reason is intuitively this: Not knowing means not having converged,
which does not entail—not even for the infallible learner—knowledge of lack of con-
vergence to the truth. Similarly, arguments since the times of American pragmatism
have conveyed that positive introspection and limiting convergence are irreconcilable
since positive introspection demands knowledge of the modulus of convergence to
knowledge yet limiting definition entails exactly this very modulus of convergence
may not be known—there just is a time, such that for each later time, the method has

http://dx.doi.org/10.1007/978-3-319-06025-5_11
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settled for the truth and will not oscillate again, but it may not necessarily be known
when this time will be. However, there is a way to circumvent this conclusion—and
thus eat the cake and have it. If the axiom of positive introspection is allowed a
diachronic interpretation such that the consequent of knowing that one knows either
happens later than the antecedent of knowing or would have obtained later even had
things been otherwise, then it is possible to validate the axiom 4 assuming that the
discovery method in question is consistently expectant [28, 29]. This result has two
significant horns: It demonstrates that axioms of epistemic logic may have a temporal
dimension of importance given the dichotomy between synchronic and diachronic
interpretations of the axioms, and that their very validity is contingent upon what
the method of inquiry decides to do. Additionally, methods of inquiry may work
together—assessment methods are definable in terms of discovery methods and vice
versa which turns out to being an important feature when considering the transmis-
sibility of knowledge from one agent to another [28]. This is all as it should be.
One of the important methodological benefits of treating agent indices of epistemic
logic as learning functions is to activate agents in such a way that they play crucial
roles in validating the epistemic axioms apparently describing the very rationality of
epistemic agency for single agents and multiple agents interacting [30].7

The same goes for other methodological recommendations to be found in con-
temporary literature of formal epistemology. Axioms of belief revision may like-
wise be interpreted as recommendations for learners and the question then becomes
how well these recommendations fare with respect to convergence to the truth—
sometimes they do quite well, sometimes they create truth-tracking disasters and
inductive amnesia [32, 35].

Combining logic and learning provides a stronghold for epistemological and
methodological agent-interactive studies. Such studies, earlier on reserved for either
epistemic logic or formal learning theory telling respectively their partial stories,
are now given a chance to make for the full story. Computational epistemology is
strictly speaking not about knowledge but about learning, but of course learning is
about knowledge acquisition. And there you have it as Johan van Benthem would
have it: learning as part of the dynamic turn in logic.
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Chapter 11
A Computational Learning Semantics
for Inductive Empirical Knowledge

Kevin T. Kelly

Abstract This chapter presents a new semantics for inductive empirical knowl-
edge. The epistemic agent is represented concretely as a learner who processes
new inputs through time and who forms new beliefs from those inputs by means
of a concrete, computable learning program. The agent’s belief state is represented
hyper-intensionally as a set of time-indexed sentences. Knowledge is interpreted as
avoidance of error in the limit and as having converged to true belief from the present
time onward. Familiar topics are re-examined within the semantics, such as inductive
skepticism, the logic of discovery, Duhem’s problem, the articulation of theories by
auxiliary hypotheses, the role of serendipity in scientific knowledge, Fitch’s para-
dox, deductive closure of knowability, whether one can know inductively that one
knows inductively, whether one can know inductively that one does not know induc-
tively, and whether expert instruction can spread common inductive knowledge—as
opposed to mere, true belief—through a community of gullible pupils.

11.1 Introduction

Science formulates general theories. Can such theories count as knowledge, or are
they doomed to the status of mere theories, as the anti-scientific fringe perennially
urges? The ancient argument for inductive skepticism urges the latter view: no finite
sequence of observations can rule out the possibility of future surprises, so universal
laws and theories are unknowable.

A familiar strategy for responding to skeptical arguments is to rule out skeptical
possibilities as “irrelevant” [8]. One implementation of that strategy, motivated by the
possible worlds semantics for subjunctive conditionals, is to ignore worlds “distant
from” or “dissimilar to” the actual world. If you are really looking at a cat on a
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mat under normal circumstances, you wouldn’t be a brain in a vat hallucinating a
non-existent cat if it weren’t there, so your belief is sensitive to the truth [26, 35].
Or if you were to believe that there is a cat on the mat, most worlds in which your
belief is false are remote worlds involving systematic hallucinations, so your belief
is safe [31, 37, 42].

So much for “ultimate”, brain-in-a-vat skepticism applied to particular perceptual
beliefs. But what about inductive skepticism concerning general scientific laws and
theories? Belief in such laws and theories does not seem “safe”. For example, if the
true law were not of the form Y = bX + a, would science have noticed that fact
already? Are all worlds in which the true law has the form Y = cX2+bX+a safely
bounded away from Y = bX + a worlds in terms of similarity—regardless how
small c is?1 One can formally ignore small values of c by the ad hoc assumption that
they are farther from the c = 0 world than are worlds in which c is arbitrarily close
to 0. But the resulting discontinuity in similarity is questionable and, in any event,
the conditional “if there were a quadratic effect, it would have been so large that we
would have noticed it already” is implausible, however one contrives to satisfy it. In
fact, the history of science teaches that we have been wrong on fundamental matters in
the past, due to pivotal but small effects (e.g., the relativistic corrections to classical
mechanics), and that we cannot guard against more such surprises in the future
[22]. So although subjunctive semantics appears to provide a plausible response to
ultimate, brain-in-a-vat skepticism concerning ordinary perceptual knowledge, it is
still overwhelmed by inductive skepticism, since, in that case, the nearby possibilities
are exactly the skeptical ones.

The best that one can expect of even ideally diligent, ongoing scientific inquiry is
that it detects and roots out error eventually. So if there is inductive knowledge, it must
allow for a time lag between the onset of knowledge and the detection and elimination
of error in other possible worlds. There is a venerable tradition, expounded by [5,
11, 16, 27, 32, 33] and subsequently developed by computer scientists and cognitive
scientists into a body of work known as computational learning theory [15], that
models the epistemic agent as a learner who processes information through time and
who stabilizes, eventually, to true, inductive beliefs.

Inductive learning is a matter of finding the truth eventually. It is natural to think
of inductive knowledge that φ as having learned that φ. Having learned that φ implies
that one has actually stabilized to true belief thatφ and that one would have converged
to true belief whether φ otherwise. The proposed semantics is more lenient—one has
knowledge that φ if and only if one has actually converged to true belief that φ
(as in having learned) and one would have avoided error whether φ otherwise—
one might simply suspend belief forever if the data are so unexpected that one no
longer knows what is going on. Allowance for suspension of belief agrees better

1 Nozick [26] and Roush [35] argue that we would have noticed the failure of known laws already
because, if a given uniformity weren’t true, some distinct uniformity would have been. But in the
polynomial example, all the regularities are law-like. Nor can one object that all linear laws are
closer to a linear law than any quadratic law is, since the knowledge claim in question is that the true
law is linear, so sensitivity forces one to move to non-linear laws. Vogel [38] presents additional
objections to tracking as an adequate account of inductive knowledge.
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with scientific practice. Moreover, it turns out to be necessary if the consequences
of known theories are to be knowable by the same standard.2

The semantics is not proposed as a true analysis of inductive knowledge in the tra-
ditional, exacting sense.3 There may be no such thing, and it may not matter whether
there is, since what matters in philosophy is not so much how we do talk, as how
we will talk, after shopping in the marketplace of ideas. In that spirit, the seman-
tics is proposed as a useful, unified, explanatory framework for framing problems
and conceptual issues at the intersection of inductive knowledge, inductive learn-
ing, information, belief, and time. Such issues include: the relation of learnability
to knowability, how deductive inference produces new inductive knowledge from
old, how inductive knowledge can thrive in a morass of inconsistency, why scientific
knowledge should allow for a certain kind of luck or “serendipity”, how one can
know that one knows, why one can’t know that one doesn’t know, how to know
your own Moore sentence, and how expert instruction can spread common inductive
knowledge through a population of passive pupils.

One common theme running through the development that follows is epistemic
parasitism. Inference is not an argument or a mere, formal relation. It is the execu-
tion of a procedure for generating new beliefs from old. If inference produces new
knowledge from old, it is because the inference procedure is guaranteed to produce
new beliefs that satisfy the truth conditions for knowledge from beliefs that already
do. Therefore, the semantics explains how, rather than merely assumes that, certain
patterns of inference turn old knowledge into new. The basic idea is that the new
knowledge is parasitic on the old because the inference pattern generates beliefs
whose convergence tracks the convergence of the given beliefs. A related theme is
the hyper-intensionality of belief. It is not assumed that the belief state of the agent
is deductively closed or consistent, or that the learning method of the agent follows
some popular conception of idealized rationality. Rather, rationality is something a
computable agent can only approximate, and the desirability of doing so should be
explained, rather than presupposed, by the semantics of learning and knowledge.

Inclusion of the entire learning process within models of epistemic logic is conso-
nant with the current trend in epistemic logic [4] toward more dynamic and potentially
explanatory modeling of the agent. Recently, there have been explicit studies of truth
tracking and safety analyses of knowledge [14] and of inductive learning within a
modal logical framework [10]. Earlier, Hendricks [13] proposed to develop learning
models for inductive knowledge, itself, and a rather different proposal was sketched,
informally, in [20].4 This chapter places learning semantics on a firm, formal basis.
For decades, Johan van Benthem has strongly encouraged the development of con-
nections between learning theory and epistemic logic, both personally and in print,
so it is a particular pleasure to contribute this study to his festschrift.

2 Alternatively, one could simply stipulate that the deductive consequences of inductive knowledge
are known [35], but then one would have no explanation why or how they are known, aside from
the stipulation.
3 An long list of improvements is provided just prior to the conclusion.
4 The differences are described, in detail, below.
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11.2 Syntax

Let G = {1, . . . , N } be indices for a group of N individuals. Let Latom = {pi : i ∈
N} be a countable collection of atomic sentences. Define the modal language LBIT
(belief, information, time) in the usual way, with the classical connectives, including
⊥, and the modal operators presented in the following table, where � is understood
to be a finite subset of LBIT. The unusually rich base language reflects Scotts’s [36]
advice to seek more interesting epistemic principles in interactions among modal
operators. In the following glosses, let t∗ be the time of the epistemic context at
which “i knows that φ” is assessed and let t ≥ t∗ be the time of evaluation, which
may lie in the future, due to the evaluation of a future tense operator. The aim is to
analyze convergent belief that φ was true at t∗, so one must keep a “clean copy” of
t∗ in the model in order to determine whether i believes at some later time t > t∗
that φ was true at t∗ [17].5

Time

@t φ At: it is true at t that φ.
Nφ Now: It is true at t∗ that φ.
〈F〉φ Future tense: it is true at t ′ ≥ t that φ.
˙〈F〉φ Future context tense: In epistemic context t∗∗ ≥ t∗, it is

true that φ.

Information and Belief

[ I ]i φ Information: information has been made available to i by
t∗ that φ is true at t∗.

[D]i φ Determination: it is determined by information available to
i at t∗ and by the method of i at t∗ that φ is true at t∗.

[B]i φ Virtual belief: the learning method of i at t∗ directs i to
believe that φ is true at t∗.
Methodology

〈M〉i φ Methodological feasibility: it is feasible for i that φ is true.
ψ 〈MD]→i,� φ Conditional methodological feasibility: given thatψ is true,

it is feasible for i to ensure that φ is true without altering
i’s learning disposition concerning the truth of the premises
in �.

Si � Inferential stability: if i modifies her method in a way that
holds her learning disposition with respect to statements in
� fixed, then her future beliefs concerning the statements
in� also remain unaltered—because i is insensitive to any
changes in her sensory inputs that might result when other
agents notice the changes to her method.

5 Alternatively, one could introduce first-order quantifiers over temporal variables, but it is concep-
tually vivid to treat tense as a modality freely permutable with other modalities.
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Let L@BIT denote the set of all LBIT sentences that are prefixed by an operator @t

for some t ∈ N. Extend LBIT with definitions as follows. For primitive operators [X],
〈Y〉, introduce the dual operators:

〈X〉φ := ¬[X]¬φ; [Y]φ := ¬〈Y〉¬φ.

A tilde above a box operator [X]i indicates the “whether” form of the operator, which
is defined as follows, unless noted otherwise:

[X̃]φ := [X]φ ∨ [X]¬φ.

Introduce the standard notation:

Bi := [B]i ; F := 〈F〉; G := [F];

and similarly for Ḟ, Ġ. Clean up notation in the following way:

Si δ := Si {δ};
ψ〈MD]→i,δ φ := ψ〈MD]→i,{δ} φ.

When �, � are finite subsets of LBIT and Xi is an arbitrary modal operator, let:

Xi� :=
∧

γ∈�
Xi γ;

�→ � :=
∧

δ∈�
δ→

∧

γ∈�
γ;

11.3 Computational Learning Models

Let E denote the set of possible external worlds. In a Kantian spirit, learning seman-
tics imposes no structure or restrictions whatever on E . Let T = N be interpreted as
discrete stages of inquiry. Let G = {1, . . . , N } be interpreted as a finite set of agents.
Agent i ∈ G is assumed to have some overall, discrete, physical sensory state at t
that will be called the agent’s current input at t . Think of S = N as code numbers
for possible inputs. Inputs are not assumed to have propositional meanings (they are
never assigned truth values), but their occurrence makes propositional information
available. Let S∗ be the set of all finite sequences of inputs, so each σ ∈ S∗ is a
possible input history.

It is assumed that each agent’s belief state is maintained by a learning function L
that returns a verdict (1 for “believe” and 0 for “don’t believe”) for each sentence φ
in L@BIT in light of the current input history σ:
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L : S∗ × L@BIT → {0, 1}.

Letφc(x, y) be the binary partial recursive function computed by the Turing machine
with Gödel index c.6 Learning function L is computable if and only if there exists
c ∈ N such that:

Lc(σ,φ) = φc(〈σ〉, �φ�)),

for all σ ∈ S∗ and φ ∈ L@BIT, where 〈.〉 is an effective encoding of S∗ into the
natural numbers and �.� is an effective Gödel numbering of L@BIT. Let C denote
the set of all c ∈ N such that φc(〈.〉, �.�)) is a learning function. Elements of C are
called learning methods.

Each learning method covers all future contingencies, but i’s learning method can
change from time to time, through maturation, education, or mishap. A joint method
trajectory is a function:

c : (G × T )→ C,

that assigns a learning method c ∈ C to each agent i ∈ G at each time t ∈ T . A
possible world is an arbitrary pair w = (ew, cw), such that ew ∈ E and cw is a joint
method trajectory. Let ci,w,t = cw(i, t). Let W denote the set of all possible worlds.

A preliminary computational learning model (pclm) for agents G is a quadruple
Mt∗ = (E, s, V, t∗) such that E is a non-empty set, t∗ ∈ T and:

s : (G ×W × T )→ S;
V : (Latom × T )→ Pow(W ).

The function V is the usual valuation function, according to which V (p, t) is the
proposition expressed by atomic sentence p at arbitrary time t . The distinguished
time t∗ is the time of the epistemic context under discussion [17]. Think of si,w,t =
s(i,w, t) as the input that w presents to i at t in w. Call s the input assignment function
and si the input assignment function for agent i . Define the input stream of i in w at
t and the input history of i in w up to, but not including t as follows:

si,w = (si,w,0, . . . , si,w,t , . . .);
si,w|t = (si,w,0, . . . , si,w,t−1).

One major aim of this study is to provide a precise semantics for learnability,
knowability, and the feasibility of knowing some things given that you know other
things. It is assumed that changing the method of learner i does not cause changes
to the external world or to the methods of the other agents. Therefore, the nearest

6 Lower-case φ is also standardly employed in logic as a sentential in logical axiom schemata.
Context readily disambiguates the two uses.
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world to w in which i uses method d at t is just the world w[d/ i, t] that results from
substituting method d for agent i’s method ci,w,t in w at t .7

Counterfactual shifts of method open the door to the medieval problem of informa-
tion concerning future contingents, for since s(i,w, t) depends on w, which specifies
i’s method trajectory ci,w, a crystal ball can send signals to i about the methods
employed by i or other agents in the future, so counterfactual changes of method in
the future could cause changes to past inputs. Learning semantics assumes that past
inputs are preserved under future method choices. A computational learning model
(clm) is, accordingly, a pclm that satisfies:

si,w|t = si,w[d/ i,t]|t, (11.1)

for all i ∈ G, d ∈ C , w ∈ W , and t ∈ T .

11.4 Information, Belief, and Determination

The input history si,w|t of i in w has no truth value—it is a temporal sequence of
sensory states—but it makes available to i in w at t the following, propositional
information8:

I(i,w, t) = {w′ ∈ W : si,w|t = si,w′ |t}.

In Kripke semantics for modal epistemic logic, available information is represented
in terms of the accessibility relation “w′ is possible in light of all the information
available to i in w at t”:

I i,t (w,w′)⇔ w′ ∈ Ii,w,t .

For fixed i and t , (W, Ii,t , V ) is a standard Kripke model. Since Ii,t is an equivalence
relation, the corresponding modal operator is S5, as is often assumed (e.g., [3]).
Making propositional information available via physical signals is not the same
thing as inserting that information directly into i’s beliefs—it is still up to i’s learning
function Lci,w,t to interpret the signals, to recover the information they afford, and to
incorporate it smoothly into i’s belief system.

7 I.e.:

(c[d/ i, t])(i ′, t ′) =
{

d if i ′ = i ∧ t ′ = t;
c(i ′, t ′) otherwise.

w[d/ i, t] = (ew, cw[d/ i, t]).

8 Cf. [23] for a similar proposal.
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Possibilities of error that are incompatible with the information currently available
will be deemed irrelevant to learning and knowledge. Furthermore, it does not seem
that i needs to have been informed of her own learning method—the method merely
has to determine success in light of available information. Accordingly, define the
determination assignment function9:

D(i,w, t) = {w′ ∈ Ii,w,t : ci,w,t∗ = ci,w′,t∗}.

Then Di,w,t = D(i,w, t) is the strongest proposition determined at t by the infor-
mation and by the learning strategy possessed by i in w at t∗. The induced binary
relation Di,t (w,w′) is again an equivalence relation that refines Ii,t (w,w′).

Belief is handled very differently, as the concrete, hyper-intensional outcome of
learning. The usual consistency, closure, or rationality assumptions are not imposed,
because they are false. The actual belief state of i in w at t is produced by i’s actual
learning method at t :

Bact(i,w, t) = {φ ∈ L@BIT : Lci,w,t (si,w|t,φ) = 1}.

However, in the long run, we are all dead and then we don’t believe anything, so we
never actually converge to the truth. An alternative account, in the spirit of Nozick
[26], is that agent i would converge to true belief if she were to continue to use her
current method forever:

Bctr(i,w, t) = {φ ∈ L@BIT : Lci,w,t∗ (si,w[ci,w,t∗/ i,t]|t,φ) = 1}.

However, that would make it impossible for i to know inductively that all humans are
mortal, since i would be immortal if she were literally to retain her current learning
disposition forever. Alternatively, one can focus on what i’s current learning method
directs i to believe in the future, just as one can speak of the outputs of an algorithm
on inputs larger than any concrete machine running the algorithm will ever receive
or of linguistic competence concerning sentences that will never be uttered due to
resource limitations:

B(i,w, t) = {φ ∈ L@BIT : Lci,w,t∗ (si,w|t,φ) = 1 ∧ φ ∈ LBIT}.

Refer to Bi,w,t = B(i,w, t) as the virtual belief state of i in w at t .

9 That idea is also sketched in [23]. It trivializes knowledge of one’s own learning method. See
the discussion in Sect. 11.17.4 below for a potential, contextualist remedy. Also, it fails to rule out
brain-in-a-vat worlds. See Sect. 11.17.1 for a discussion of making determination safe or sensitive.
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11.5 Learning Semantics

Let Mt∗ = (E, s, V, t∗) be a clm. Define the proposition ‖φ‖tMt∗ expressed by φ in
Mt∗ inductively as follows. In the base case:

‖p‖tMt∗ = V (p, t).

The connectives and⊥ have their standard, classical interpretations. For the temporal
operators, define:

‖〈F〉φ‖tMt∗ =
⋃

t ′≥t

‖φ‖t ′Mt∗ ;

‖ ˙〈F〉φ‖tMt∗ =
⋃

t ′≥t

‖φ‖t ′Mt ′ ;

‖Nφ‖tMt∗ = ‖φ‖t
∗

Mt∗ ;
‖@t ′ φ‖tMt∗ = ‖φ‖t

′
Mt∗ .

Operator F = 〈F〉 is a future tense operator that includes the present time. Its dual is
the “henceforth” operator G. Operator Ḟ = ˙〈F〉 is similar, except that it moves the
epistemic context forward. Operator N resets the time t of evaluation to the time t∗
of the epistemic context. Operator @t ′ resets the time of evaluation to the specified
time t ′.

Information and determination are defined propositionally, in the standard way,
and both are S5 operators, for reasons already discussed.

‖[ I ]i φ‖tMt∗ = {w ∈ W : Ii,w,t ⊆ ‖φ‖t∗Mt∗ };
‖[D]i φ‖tMt∗ = {w ∈ W : Di,w,t ⊆ ‖φ‖t∗Mt∗ }.

Virtual belief, on the other hand, is entirely hyper-intensional, as it should be. Note
that the time at which φ is believed to be true is always referred back to t∗, via the
@t∗ operator.

‖[B]i φ‖tMt∗ = {w ∈ W : @t∗ φ ∈ Bi,w,t }.

Methodological feasibility says that there is some method that i might have adopted
that would achieve φ at t∗ in w. It is used to express theses concerning learnability
and knowability.

‖〈M〉i φ‖tMt∗ = {w ∈ W : (∃c ∈ C) w[c/ i, t∗] ∈ ‖φ‖tMt∗ }.

Methodological feasibility does not say that i can guarantee or see to it that φ is true.
That stronger modality is expressed by 〈M〉i [D]i .
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The remaining two operators are more subtle, and work together as a team. To
motivate conditional feasibility, consider the familiar logical thesis that the knowl-
edge of i is closed under known consequence:

(Ki φ ∧ Ki (φ→ ψ))→ Ki ψ.

Granted, modus ponens is an easy inference to perform, but nothing like that thesis is
even remotely true. Perhaps it is intended as a regulative ideal or as an obligation, but
ideals are approachable and ought implies can, so the more proximate and concrete
question is whether satisfaction of the thesis is feasible, in the sense that there is an
inference procedure i could adopt that would guarantee that i knows that ψ given
that she knows both φ and φ→ ψ.

From the viewpoint of learning, effectively performing inferences amounts to an
effective modification h(c) of one’s learning program c. Think of � ⊆ L@BIT as a
finite set of premises. One examines the verdicts of c for sentences in � (including,
perhaps, past verdicts), and then one possibly reverses the verdicts of c concerning
some sentences (i.e., conclusions) outside of �. In that way, agent i can effectively
modify her learning program c without having access either to c, itself, or to its raw,
sub-cognitive, sensory inputs. Inference, therefore, makes sense as an evolutionary
strategy—given some reptilian learning wet-ware that is hard to modify genetically
without lethal effects, tack on some higher-level cognitive wet-ware that can inter-
cept and modify the learning wet-ware’s verdicts. That learning-theoretic conception
of inference is made precise as follows. First, the verdict of learning method c con-
cerning δ ∈ L@BIT in response to σ is the ordered pair:

vc(σ, δ) = (Ld(σ,@t∗ δ), Ld(σ,@t∗¬δ)).

Define c ≡� d to hold if and only if learning programs c, d have identical verdicts
for each δ ∈ � and σ ∈ S∗. Define c ≡�,σ d to hold if and only if learning programs
c, d have identical verdicts for each δ ∈ � and for each initial segment τ of input
history σ. Let h be a total recursive function that assumes values in C . Say that h
preserves premises in � if and only if h(c) ≡� c, for all c ∈ C . Say that h depends
only on premises in � if and only if:

c ≡�,σ d ⇒ vh(c)(σ,φ) = vh(d)(σ,φ).

for all c, d ∈ C , σ ∈ S∗, and φ ∈ L@BIT. Then h is an inference procedure with
premises in � if and only if h is a total recursive function with range included in C
that preserves premises in � and that depends only on premises in �.

Conditional feasibility expresses the existence of an inference procedure that guar-
antees the situation in the consequent, given the situation described in the antecedent.
Accordingly, let w ∈ ‖ψ〈MD]→i,� φ‖tMt∗ if and only if there exists inference pro-
cedure h with premises in � such that, for all u ∈ Ii,w,t∗ :
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u ∈ ‖ψ‖tMt∗ ⇒ u[h(ci,u,t )/ i, t] ∈ ‖φ‖tMt∗ .

The notation ψ〈MD]→i,� φ is mnemonic—existence of h is like 〈M〉i , the guarantee
is like [D]i , and the assumption that the antecedent holds is like a conditional.

Inference—even deductive inference—can be subtly treacherous in learning
semantics. Suppose that i contemplates changing her learning strategy c to d, which
generates exactly the same verdict on δ that c does, in every possible input situation.
Assumption (11.1) guarantees that d results in the same belief whether δ that c does
given the same inputs, but the change from c to d could modify or even shut off the
flow of future inputs to i because other agents detect the change in i (think of a poorly
blinded social psychology experiment). Furthermore, the change from c to d could
make δ false if the truth of δ depends on what some or all of the agents believe (e.g., i
is a major player in the market). Either way, i’s election to adopt inferential strategy
d could be empirically or semantically self-defeating, in the sense that premise δ of
the intended inference becomes untestable or false as a consequence of the inference
being performed. Happily, good experimental design can prevent one’s valid infer-
ences from being self defeating, so it is useful to have vocabulary expressing that
such preventive measures have successfully been carried out for some intended set
of premises �. It is too strong to say that the inputs to i would be exactly the same
whether i uses c or d, because i would presumably receive at least some information
concerning her own beliefs. It suffices that neither the truth of the premises in� nor
the verdicts of i concerning them is affected by the change. Define w ∈ ‖Si �‖tMt∗
to hold if and only if for all d ∈ C such that ci,w,t∗ ≡� d and for all u ∈ Di,w,t∗ ,
t ≥ t∗, and δ ∈ �, if we set u′ = u[d/ i, t∗] and c = ci,u,t∗(= ci,w,t∗), then:

u ∈ ‖δ‖t∗Mt∗ ⇔ u′ ∈ ‖δ‖t∗Mt∗ ;
vc(si,u |t, δ) = vd(si,u′ |t, δ).

That concludes the truth conditions for LBIT. Let � ⊆ LBIT. Define validity in a
model and logical validity as follows:

Mt∗ |= φ⇔ W = ‖φ‖t∗Mt∗ ;
|= φ⇔Mt∗ |= φ, for each clm Mt∗ .

Note that validity in a model initializes time to the model’s current epistemic context
time t∗. Finally, logical entailment and equivalence are defined as follows10:

φ |= ψ ⇔ |= (φ→ ψ);
φ ≡ ψ ⇔ |= (φ↔ ψ).

10 N.b. substitution of equivalents for equivalents under temporal operators does not preserve validity
[17]. For example, |= G(φ↔ φ) and φ ≡ Nφ, but �|= G(φ↔ Nφ).
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11.6 Example: Outcomes of a Repeated Experiment

clms accommodate a boggling range of learning situations, but a collection of very
elementary models suffices to illustrate many of the results that follow. Assume
that each agent i passively observes the successive values of a repeated experiment
whose outcomes are effectively coded as natural numbers. In the spirit of empiricism,
identify possible external worlds with infinite outcome sequences ε : N → N. Let
E0 denote the set of all such sequences. Define, for k ∈ N:

s0(i,w, t) = εw(t);
V0(pk, t) = {ε ∈ E0 : ε(t) = k} × CN ;

Nt∗ = (E0, s0, V0, t∗).

Temporal operators allow for compact expression of a range of increasingly complex
statements:

pk : the current outcome is k;
Gpk : the outcome will be k;
Fpk : the outcome is k from now on;

FG pk : the outcome will stabilize to value k;
GF pk : the outcome is k infinitely often.

A hypothesis φ is objective for i just in case i has the information available that
i cannot alter the truth value of φ by changing her learning method. Objectivity
simpliciter is objectivity for every agent.

Oi φ := [ I ]i (φ↔ [M]i φ);
OG φ :=

∧

i∈G

Oi φ.

A special feature of model Nt∗ is that objectivity implies inferential stability:

Nt∗ |= Oi φ→ Si φ, (11.2)

since inputs do not depend on methods at all, and neither does the truth of an objective
statement.

11.7 Example: Agency, Games, and Experimentation

The agents in model Nt∗ are isolated natural scientists who passively receive inputs
from a fixed experiment. But even a solipsistic scientist can choose how to inter-
act with nature, and communication among scientists can produce cascades of
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interactive, doxastic effects. Although LBIT has no vocabulary describing acts other
than belief, clms can represent arbitrarily complex social interactions involving
such acts. The trick is to locate agents’ diachronic strategies for non-doxastic actions
within the “external world” e ∈ E . Then, all of the valid theses of learning semantics
are valid for game-theoretic applications.

Here is one way to do it. Let X ⊆ N be a set of potential actions. Assuming that
the actions are observable by all of the agents, let S = X N . Then S∗ contains all
possible, finite play histories. Let A denote the set of all a ∈ N such that φa is a unary
total recursive function with range included in X . The disposition to act computed
by a looks at the current input history and chooses how to act:

Aa(σ) = φa(〈σ〉).

Since belief depends on inputs, one special way for actions to depend on inputs is
for them to depend on beliefs.

Dispositions to act can change through time, just as dispositions to believe can.
A joint disposition trajectory a : (G × T )→ A assigns a profile of dispositions to
the agents at each time. In purely social applications, the “external world” e can be
identified with a, so possible worlds are pairs w = (a, c). In experimental science,
one agent can represent nature and the rest of the agents can be used to model
socially distributed scientific inquiry. Each agent i receives as input the actions of
every agent (including herself). Let σ ∗ s denote the concatenation of signal s ∈ S
to finite sequence σ ∈ S∗. The joint input assignment is then definable in stages as
follows:

ṡi,(a,c)|0 = ();
ṡi,(a,c)|(t + 1) = ṡi,(a,c)|t ∗ (Aai,t+1(ṡi,(a,c)|t) : i ≤ N ).

In the long run, all the players of an infinite game are dead, as are the dispositional
properties of societies, economies, and terrestrial organisms. Hence, it may be more
natural to think of the agents as virtually studying one another’s and nature’s current
reactive dispositions, just as was done for belief11:

si,(a,c)|t∗ = ṡi,(a,c)|t∗;
si,(a,c)|(t∗ + t + 1) = si,(a,c)|t ∗ (Aai,t∗ (si,(a,c)|(t∗ + t)) : i ≤ N ).

Either way, requirement (11.1) is satisfied.
In extensive form games, each agent receives some utility in each world at each

time, as a result of what all the agents do. The utilities may also shift through time,
if we interpret the agents as playing different games from time to time. Evolving
utilities may be absorbed into the external world. The games just described assume
perfect information. Of course, s can easily be made to censor some actions.

11 The base case assumes that information gathered by means of earlier dispositions remains avail-
able.
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11.8 Correctness and Error

Define “i is in error that φ” as follows:

Ei φ := Bi φ ∧ N¬φ.

Error whether φ is defined according to the general definition of “whether” presented
in Sect. 11.2 above.

Ẽi φ := Ei φ ∨ Ei¬φ.

It follows that i cannot be in error whether φ unless i believes that φ or believes
that ¬φ. That definition is straightforward, if belief is deductively closed, but it is
very weak for hyper-intensional belief—e.g., belief that φ does not count as an error
whether ¬φ. However, in order to interpret successful learning whether φ, all that is
required is some unambiguous convention for i “getting φwrong”, and the proposed
convention suffices in a minimal way, by recording the learning function’s verdict
whether φ. Stronger, but finite, demands on deductive acumen would not alter the
results that follow, except to complicate their proofs. In a similar spirit, correctness
that φ is absence of error whether φ together with belief that φ and correctness
whether φ is defined as absence of error whether φ together with the verdict for φ:

Ci φ := ¬Ẽi φ ∧ Bi φ;
C̃i φ := ¬Ẽi φ ∧ B̃i φ.

Correctness whether φ could have been defined in the usual way as correctness that
φ or correctness that ¬φ, but that concept depends on whether i believes that ¬¬φ.
The proposed definition depends only on i’s verdict whether φ.12

11.9 Inductive Learning

In computational learning theory, inductive learning whether φ is understood as
guaranteed convergence of i’s current learning method to correct belief whether φ.
That is elegantly formalizable in LBIT as follows:

L̃i φ := [D]i FGC̃i φ.

The truth conditions for L̃i φ can be expressed entirely in terms of the proposition
‖φ‖t∗Mt∗ and the verdicts of i’s learning method: w ∈ ‖Li φ‖tMt∗ if and only if for all
u ∈ Di,w,t ,

12 Thanks to Ted Shear for this point.
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u ∈ ‖φ‖t∗Mt∗ ⇒
(

lim
t→∞ Lci,w,t∗ (si,u |t,@t∗ φ) = 1 ∧ (11.3)

lim
t→∞ Lci,w,t∗ (si,u |t,@t∗ ¬φ) = 0

)
;

u �∈ ‖φ‖t∗Mt∗ ⇒
(

lim
t→∞ Lci,w,t∗ (si,u |t,@t∗ ¬φ) = 1 ∧ (11.4)

lim
t→∞ Lci,w,t∗ (si,u |t,@t∗ φ) = 0

)
.

That is essentially equivalent to saying, in computational learning theory, that i’s
current method ci,w,t∗ decides φ in the limit [19], except that learning semantics
allows the data to depend on the learning method.

11.10 Inductive Learnability

Just as the theory of computability concerns what can be computed, rather than how
we actually compute, computational learning theory focuses on learnability—the
feasibility of learning—rather than on the actual psychology of learning. Learning
semantics affords at least four grades of feasibility:

〈M〉i [D]i φ |= [D]i 〈M〉i φ |= 〈M〉i φ |= 〈M〉i 〈D〉i φ. (11.5)

In the case of learnability, those concepts collapse to 〈M〉i L̃i φ—the last entails the
first, since L̃i begins with [D]i , which is an S5 operator:

〈M〉i [D]i L̃i φ ≡ [D]i 〈M〉i L̃i φ ≡ 〈M〉i L̃i φ ≡ 〈M〉i 〈D〉i L̃i φ. (11.6)

Concretely, w ∈ ‖〈M〉i L̃i φ‖tMt∗ if and only if there exists d ∈ C such that (11.3) and
(11.4) hold with d substituted for ci,w,t∗ in u, for all u ∈ Ii,w[d/ i,t∗],t . If φ satisfies
Oi φ in Nt∗ , one can also substitute Ii,w,t for Ii,w[d/ i,t∗],t , in which case the truth
conditions for learnability are essentially the same as the conditions for decidability
in the limit [19].13

Universal truths and existential truths about the future are inductively learnable in
the empirical model Nt∗—just believe the universal hypothesis until it is refuted and
believe its negation thereafter, and follow the dual strategy in the existential case:

Nt∗ |= 〈M〉i L̃i G pk; (11.7)

Nt∗ |= 〈M〉i L̃i F pk . (11.8)

But not every empirical hypothesis is inductively learnable. Kant [18] observed that
hypotheses like the finite or infinite divisibity of matter or the existence of a first

13 The differences concern mere conventions for coding the acceptance, rejection, or suspension of
belief of i with respect to φ.
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moment in time “outpace all possible experience”. In terms of learnablity, he was
right. Suppose that the laboratory returns a 1 whenever an allegedly fundamental
particle is split and returns a 0 when an attempted split fails. Then finite divisibil-
ity of matter can be expressed as FG p0 and infinite divisibility of matter can be
expressed as GF p1. Both hypotheses are evidently only remotely connected with
current experience. In fact, neither is inductively learnable in Nt∗ :

Nt∗ |= ¬L̃i FG pk; (11.9)

Nt∗ |= ¬L̃i GF pk . (11.10)

It suffices to show, via a standard, learning theoretic diagonal argument, that no c
satisfies convergence conditions (11.3) and (11.4).14

Learning semantics is a flexible framework for inductive learning and learnability
that allows one, for the first time, to rigorously iterate the learning operator, in order
to analyze such statements as that it is learnable whether someone else is learning
whether φ. But in order to provide the sharpest possible contrast between learning
semantics and traditional possible worlds semantics for epistemic logic, the focus of
this study is on the semantics of inductive knowledge, to which we now turn.

11.11 Inductive Knowledge

Agent i has learned whether [that] φ if and only if i is learning whether φ and,
henceforth, i correctly (virtually) believes whether [that] φ:

˜Ledi φ := GC̃i φ ∧ L̃i φ;
Ledi φ := GCi φ ∧ L̃i φ ≡ ˜Ledi φ ∧ φ.

Having learned inductively whether φ may sound odd, since the culmination of
inductive inquiry depends on what i’s current learning method would do in the
future. But such locutions are actually quite common: e.g., “I have quit smoking for
good”.

It is natural to suppose that inductive knowledge is having learned, but there
is a powerful argument to the contrary: learnability is not preserved under logical
consequence; for recall (11.7), (11.9), and (11.10) and note that Gφ entails both GFφ
and FGφ. Since having learned entails learnability, it follows that knowability is not
closed under logical consequence. And the examples sound bad: we would know
that the laws of quantum mechanics apply invariably, but it would be unknowable
that they apply infinitely often or all but finitely often. It sounds better to say that we
know the latter two statements because we know the first.

14 Proofs of selected theses are presented in the Appendix.
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Pursuing that idea, suppose that i’s only reason for believing that GFφ is that
she believes Gφ and suppose that her reason for believing Gφ is that it has stood
up to severe testing so far (a single counterexample would refute Gφ). It is a tradi-
tional theme in the philosophy of science that general theories are not testable until
they are articulated with auxiliary assumptions [9]. Semantically speaking, “articu-
lation” amounts to the substitution of a logically stronger, testable hypothesis for the
untestable hypothesis, itself. Thus, one may think of Gφ as a testable articulation of
GFφ, since it posits a particularly simple way in which GFφ might be true. Then
i stabilizes to true belief that GFφ as soon as i stabilizes to true belief that Gφ,
so the actual convergence requirement is met also for GFφ. But what if Gφ were
to be refuted, say at time t? Maybe i has plausible ideas about how to re-articulate
GFφ (e.g., as @t+1Gφ). In order to learn by such a strategy, i would require a full
contingency plan for re-articulating GFφ that somehow hits upon a true articulation
eventually in every possible world in which GFφ is true. But it has already been
shown that no such contingency plan exists for GFφ, since GFφ is not learnable.

Another venerable theme in the philosophy of science is that there is “no logic of
discovery” [12, 30], which means, roughly, that science need not have an explicit con-
tingency plan for what to propose when old hypotheses are refuted, so far as scientific
knowledge is concerned. The standard arguments for that conclusion are analogical
and historical.15 The argument from analogy is that a theorem is still a theorem no
matter how one came to conjecture it, so scientific knowledge likewise does not
depend on how one came to think up the hypothesis. The historical argument is that
major scientific findings have been hit upon by luck. For a celebrated example, the
chemist Kekulé claimed to discover the carbon ring structure of benzine by dreaming
of a snake biting its tail [2, 12]. It does not seem to count against Kekulé’s subse-
quent knowledge of that hypothesis that he possessed no systematic contingency
plan for dreaming up alternative molecular structures, had the ring hypothesis failed.
Scientists refer to luck that does not undermine scientific knowledge as serendipity.
Kekule’s dream was serendipitous in that sense, as is all luck in hitting upon a true
hypothesis. Since untestable hypotheses like GFφ cannot be learned, they can be
known only with serendipity. So allowance for serendipity, the practice of testing
testable articulations of untestable hypotheses, and the slogan that there is “no logic
of discovery” are both grounded in the closure of inductive knowability under logical
consequence, a fundamental, epistemological consideration.

Suppose that i is commanded by her thesis advisor to investigate GFφ by severely
testing Gφ. We know that i lacks a full logic of discovery for GFφ, since GFφ is not
learnable. Suppose, plausibly, that she has far less—if Gφ is ever refuted, she has no
idea what is going on, suspends belief forever whether GFφ, and switches to a more
lucrative career in finance. If her advisor was right (serendipity), then she has already
converged to true belief that GFφ and, since her belief that GFφ is based solely on
her belief that Gφ, she is also guaranteed to eliminate error with respect to GFφ
eventually. Her (actual) convergence to true belief that the untestable hypothesis is

15 A notable exception is [32].
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true is serendipitous, but her eventual avoidance of error is not lucky at all—it is
guaranteed by her commitment to suspend belief forever if GFφ is refuted.

In light of the preceding considerations, it is proposed that inductive knowledge
that φ is actual convergence to true belief that φ along with guaranteed, eventual
avoidance of error whether φ16:

K̃i φ := GC̃i φ ∧ [D]i FG¬Ẽi φ;
Ki φ := GCi φ ∧ [D]i FG¬Ẽi φ ≡ K̃i φ ∧ φ.

Thus, having learned whether φ is sufficient, but not necessary, for knowing whether
φ:

|= ˜Ledi φ→ K̃i φ; (11.11)

|= Ledi φ→ Ki φ. (11.12)

In fact, learning is equivalent to guaranteed, eventual arrival at knowledge—a nice
example of a plausible validity expressible in LBIT but not in the traditional, pure Ki

fragment.17

L̃i φ ≡ [D]i FK̃i φ. (11.13)

In terms of concrete learning methods, the first conjunct of K̃ φ is true in w at t if
and only if:

16 Hendricks [13] presents several concepts of empirical knowledge, the closest of which to the
following proposal is “realistic reliable true belief” or RRT knowledge. Hendricks’ informal gloss of
RRT knowledge (p. 181) amounts to the following idea in the present notation: Krrti φ := Gφ∧ L̃i φ

(the operator [D]i is dropped from the L̃i φ condition in the accompanying formal statement—
presumably unintentionally). RRT knowledge is very different from inductive knowledge as defined
here. First of all, RRT knowledge requires that Gφ, which would make it impossible for i to know,
for example, that she believes thatφ, if that belief state is transient. Learning semantics sidesteps that
difficulty by evaluating the proposition believed at the “now” of utterance. Second, RRT knowledge
does not require GBi φ, so RRT knowledge does not even imply belief that φ, much less stable
belief that φ—it may be years until the learning process succeeds. Finally, RRT knowledge does
imply learning whether φ, which implies that RRT knowability cannot be closed under deductive
consequence, as has just been explained. Hendricks’ claim that RRT knowledge validates the axioms
of modal system S4 (Proposition 11.3, p. 208) is therefore false. The discrepancy is explained by the
fact that, just prior to the proof of Proposition 11.3, Hendricks inadvertently modifies the concept
of RRT knowledge a second time (p. 194) to Gφ conjoined with the existence of a future time t ′
such that it is determined now that i believes that φ forever after t ′—whether or not φ is true.
17 Thesis (11.13) is invalid with Ḟ in place of F. It is crucial that the doxastic future under consid-
eration is virtual rather than actual.
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w ∈ ‖φ‖t∗Mt∗ ⇒ ((∀t ≥ t∗) Lci,w,t∗ (si,w|t,@t∗ φ) = 1 ∧ (11.14)

(∀t ≥ t∗) Lci,w,t∗ (si,w|t,@t∗ ¬φ) = 0);
w �∈ ‖φ‖t∗Mt∗ ⇒ ((∀t ≥ t∗) Lci,w,t∗ (si,w|t,@t∗ φ) = 0 ∧ (11.15)

(∀t ≥ t∗) Lci,w,t∗ (si,w|t,@t∗¬φ) = 1);

and the second conjunct is true in w at t if and only if for all u ∈ Ii,w,t :

u ∈ ‖φ‖t∗Mt∗ ⇒ lim
t→∞ Lci,w,t∗ (si,u |t,@t∗ ¬φ) = 0; (11.16)

u �∈ ‖φ‖t∗Mt∗ ⇒ lim
t→∞ Lci,w,t∗ (si,u |t,@t∗ φ) = 0. (11.17)

Note that (11.16) and (11.17) weaken the corresponding conditions (11.3) and (11.4)
for having learned.

11.12 Inductive Knowability

Learning semantics again affords at least four notions of inductive knowability, in
descending strength:

〈M〉i [D]i Ki φ |= [D]i 〈M〉i Ki φ |= 〈M〉i Ki φ |= 〈M〉i 〈D〉i Ki φ.(11.18)

The four conditions of knowability are all logically distinct, due to the actual con-
vergence condition for knowledge. But, due to that condition, the first three cannot
be adopted as general theses concerning inductive knowability; for, as theses, they
imply that i has the information that she has the power to make φ true immediately.

|= 〈M〉i Ki φ⇒ |= [ I ]i 〈M〉i φ. (11.19)

That leaves the weakest option, which requires only that it be feasible for i to make
it possible that she knows now—an idea consonant with serendipity:

〈MD〉i φ := 〈M〉i 〈D〉i K̃i φ (11.20)

≡ 〈M〉i 〈D〉i (GC̃i φ ∧ [D]i FG¬Ẽi φ) (11.21)

≡ 〈M〉i (〈D〉i GC̃i φ ∧ [D]i FG¬Ẽi φ); (11.22)

where the last equivalence is again due to [D]i being S5. Condition (11.22) expands
to the existence of d ∈ C such that for some u ∈ Ii,w,t :
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u[d/ i, t] ∈ ‖φ‖tMt∗ ⇒ ((∀t ≥ t∗) Ld(su,i |t,@t∗ φ) = 1 ∧ (11.23)

(∀t ≥ t∗) Ld(su,i |t,@t∗ ¬φ) = 0);
u[d/ i, t] �∈ ‖φ‖tMt∗ ⇒ ((∀t ≥ t∗) Ld(su,i |t,@t∗ φ) = 0 ∧ (11.24)

(∀t ≥ t∗) Ld(su,i |t,@t∗ ¬φ) = 1);

and for all u ∈ Ii,w,t :

u[d/ i, t] ∈ ‖φ‖tMt∗ ⇒ lim
t→∞ Ld(si,u |t,@t∗ ¬φ) = 0; (11.25)

u[d/ i, t] �∈ ‖φ‖tMt∗ ⇒ lim
t→∞ Ld(si,u |t,@t∗ φ) = 0. (11.26)

Conditions (11.23) and (11.24) are trivially satisfiable by dogmatically believing that
φ and conditions (11.25) and (11.26) are trivially satisfiable by skeptically suspend-
ing belief whether φ. But the conditions are not jointly trivial—the possibility of
having converged to the truth risks the possibility of error infinitely often, unless
one has an appropriate plan in place for when to suspend judgment, as Popper [30]
insisted. For example, weak knowability can fail when even the total input stream
does not determine the truth of φ in any world. In that case, say that φ is globally
underdetermined—venerable candidates include “the Absolute is lazy” and Poincare
[29] perfect trade-off between shrinking forces and geometry. The logical positivists
attempted to rule out globally underdetermined hypotheses by deeming them mean-
ingless, on empiricist grounds, but that leaves open the question whether freedom
from global underdetermination implies knowability. Learning semantics validates
something close to that in the empiricist model Nt∗ , as long as the input stream is
computable. Recall the strategy, discussed above, of guessing a testable articulation
ψ of φ, believing φ until ψ is refuted, and suspending judgment thereafter. It wit-
nesses the following, liberal knowability condition for objective hypotheses in Nt∗ :

Proposition 11.1 Suppose that w ∈ ‖OG φ‖t∗Nt∗ and there exists u ∈ Ii,w,t∗∩‖φ‖t∗Nt∗
with computable input stream si,u. Then w ∈ ‖〈MD〉i Ki φ ‖t∗Nt∗ .

As a corollary, we have the following knowability result, in contrast to the non-
learnability results (11.9) and (11.10) above18:

Nt∗ |= 〈MD〉i (Ki G pk ∧ Ki F pk ∧ Ki FG pk ∧ Ki GF pk). (11.27)

The restriction to Nt∗ and to objective φ rules out global underdetermination. The
assumption that si,w is computable is also crucial. For example, take the setting to be
Nt∗ restricted to worlds that present binary data. Add a new atomic sentence q with
the valuation V (q) = {w ∈ W : si,u = g}, where g is a fixed, total, non-computable,

18 Just let u satisfy si,u,t = si,w,t for t < t∗ and si,u,t = k for t ≥ t∗.
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binary-valued function. Call the resulting model Bt∗ . Then we have19:

w �∈ ‖〈MD〉i Ki q‖t∗Bt∗ . (11.28)

This short foray into the logic of inductive knowability illustrates that the proposed
semantics focuses attention precisely where it should—on concrete, methodological
considerations like computability and global underdetermination. Furthermore, it is
of interest that allowance for serendipitous knowledge allows not only for deduc-
tive closure of knowability, but also for a considerable broadening of the scope of
inductive knowability beyond that of learnability.20

11.13 Fitch’s Paradox

It has just been shown that, in learning semantics, the question of inductive knowabil-
ity raises concrete, familiar, methodological issues. Since traditional epistemic logic
makes no contact with learning, either in its syntax or in its models, it focuses atten-
tion on the more arcane problem of unknowability due to epistemic self-reference.
Although self-referential paradoxes are remote from the concrete business of sci-
ence, questions of genuine epistemological interest, such as whether it is possible
for science to know inductively that it does not know inductively, open the logical
floodgates to self-referential curiosities. Alas, one cannot simply ignore them. At
the very least, one must construct a firewall against them that does not trivialize the
principles of interest.

Consider, for example, the Moore sentence for φ, defined as follows:

Moi φ := φ ∧ ¬Ki φ.

The Moore sentence is not knowable in standard epistemic logic, for suppose that
i knows that Moi φ. Then, since knowledge is true, Moi φ is also be true, so ¬Ki φ
is true. But since Moi φ is known, so is conjunct φ of Moi φ, so Ki φ is true. Con-
tradiction. The proof requires only (i) that the conjuncts of a known conjunction are
known and (ii) that knowledge is true, both of which are valid in standard, possible
world semantics.

That is hardly surprising in itself, but it leads directly21 to Fitch’s paradox, the
statement that any agent for whom every truth φ is knowable is already omniscient.22

19 The restriction to binary sequences in (11.28) matters. If the range of inputs at each stage might
be infinite, then one can add an atomic sentence to Nt∗ that is knowable but true only in worlds that
are empirically infinitely uncomputable (cf. [19], 7.19).
20 Cf. Sect. 11.14.1 below for a formal discussion of deductive closure of inductive knowledge.
21 The ingenious step was taken by Church [7] in an anonymous referee report on Fitch’s manuscript.
22 It suffices that ♦i be the dual of an alethic necessity operator satisfying the rule of necessitation.
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(∀φ) (φ→ ♦i Ki φ)→ (∀φ) (φ→ Ki φ). (11.29)

For suppose that the consequent of (11.29) is false. Then (∃φ) Moi φ is true. But
Moi φ is not knowable. So Moi φ is a counterexample to the antecedent of (11.29).

Fitch’s paradox is not really paradoxical after the “gotcha” moment when one
realizes that denying the consequent yields a true Moore sentence. If “every truth” is
restricted to “every scientifically interesting, objective truth”, the paradox evaporates.
Nonetheless, there is a specialist literature devoted to refuting Fitch’s paradox, some
authors going so far as to blame proof by contraposition [41]. Therefore, it may
be of interest to revisit the question whether the Moore sentence is knowable in
learning semantics. The standard argument that Moi φ is not knowable assumes
that i knows the conjuncts of any conjunction i knows. That step evidently fails in
learning semantics, because even belief is not closed under deductive consequence.
But inferring φ, ψ from φ ∧ ψ is the easiest of inferences—one need only erase the
∧. It would, therefore, be more sporting to show that Moi φ is knowable by an agent
whose beliefs are conjunctively cogent in the sense that:

Cocoi (φ,ψ) := [ I ]i (Bi (φ ∧ ψ)↔ (Bi φ ∧ Bi ψ)).

Learning semantics yields a novel, positive verdict23:

Nt∗ |= (Oi φ ∧ ¬[D]i φ ∧ 〈MD〉i Ki φ) → (11.30)

→ 〈MD〉i (Ki Moi φ ∧ Cocoi (φ,¬Ki φ)).

Of course, some sort of aphasia is required to know one’s own Moore sentence, but the
aphasia now plausibly concerns learning, rather than a trivial, deductive inference.24

Suppose that i is irrecoverably dogmatic that φ. When an acquaintance accuses i of
not knowing that φ, even though φ is true (the evidence for φ is abundant), i takes a
detached interest in the accusation. Since i’s admitted dogmatism precludes her from
knowing that φ, the knowability of Moi φ reduces, for i , to that of φ, so i can know
Moi φ by basing her belief whether Moi φ on the evidence concerning φ. Since i is
dogmatically attached to φ, she can maintain conjunctive cogency by believing that
¬Ki φ exactly when she believes that Moi φ.

The preceding discussion notwithstanding, learning models still permit one to
construct self-referential monstrosities by “brute force”, using the valuation function:
e.g., an atomic sentence can be interpreted to say “i does not believe that she knows
me”. Such models trivially invalidate the thesis that it is feasible to know that one
knows what one knows. The real purpose of the doxastic stability operator Si is
to protect otherwise plausible theses of epistemic logic from that self-referential

23 Note that there is no temporal equivocation here between the time at which Moi φ is known and
the time at which φ is not known, as there is in solutions proposed in temporal dynamic epistemic
logic (e.g., [43]).
24 Alternative learning strategies within the same agent are a familiar theme in the epistemology
literature—e.g., [26].
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onslaught. Under the hypothesis that Si φ obtains, knowledge, learning and having
learned are preserved under counterfactual changes of method that do not modify
the agent’s current learning disposition with respect to φ.25

Proposition 11.2 Suppose that u ∈ ‖Si �‖t∗Mt∗ and d ≡� ci,u,t∗ and φ ∈ �. Then:

u ∈ ‖Ki φ‖t∗Mt∗ ⇒ u[d/ i, t∗] ∈ ‖Ki φ‖t∗Mt∗ , (11.31)

and similarly for K̃i , L̃i , ˜Ledi and Ledi .

11.14 Epistemic Logic Redux

The idea in traditional epistemic logic is to mine intuitions for principles stated
entirely in terms of Ki and then to solve backwards for conditions on the accessibility
relation that validate them. Modal semantics then serves as a silent bookkeeper that
faithfully manages the iteration of Ki , subject to those assumptions.26 Here is a
standard menu of potential principles one might impose:

N : Ki φ, if |= φ;
K : Ki (φ→ ψ)→ (Ki φ→ Ki ψ);
T : Ki φ→ φ;
B : φ→ Ki¬Ki¬φ;
4 : Ki φ→ Ki Ki φ;
0.2 : ¬Ki¬Ki φ→ Ki¬Ki¬φ;
0.3 : Ki (Ki φ→ Ki ψ) ∨ Ki (Ki ψ→ Ki φ);
0.4 : φ→ (¬Ki¬Kiφ→ ¬Ki φ);
5 : ¬Ki φ→ Ki¬Ki φ.

For example, principle T says that knowledge is true. In conventional possible worlds
semantics, that corresponds to the imposition of reflexivity on the model’s accessi-
bility relation. Learning semantics also validates T in its standard form, with an
explanation—knowledge requires that one has converged to correct belief:

T: |= Ki φ→ φ. (11.32)

The rest of the principles on the menu are plainly wrong for cognitively realistic
agents. The standard response is to re-interpret Ki vaguely in terms of abilities,
obligations, or ideals, but that changes the subject from knowledge to je ne sais quoi.

25 In the author’s opinion, finding a semantics for Si such that Si φ is both plausible and yet strong
enough to yield the following invariance property proved to be the crux of the entire subject.
26 In the preceding section, it was shown that this timid, non-explanatory strategy is still subject to
error.
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It is proposed, instead, to replace material implication→with conditional feasibility
〈MD]→i,φ. Then, thesis 4 says, plausibly, that there exists a computable inferential
procedure that turns knowledge that φ into knowledge that one knows that φ. The
question addressed in this section is which, if any, of the traditional candidate axioms
is valid under that interpretation, and under what restrictions, when Ki is interpreted,
without equivocation, as inductive knowledge.

11.14.1 Deductive Cogency

Let � be a finite set of premises and let � be a finite set of conclusions. Suppose
that� implies �, in light of i’s information. Maybe i knows neither� nor �. But is
there any concrete, inferential disposition i could set up in herself to guarantee that
if she knows the premises in� then she knows the conclusions in � as well? Yes, if
the premises are inferentially stable, for learning semantics validates the following
principle, for finite, disjoint �, � ⊆ LBIT and for arbitrary, finite superset �′ of �
that is disjoint from �:

FD: |= (
Si �

′ ∧ [ I ]i (�→ �) ∧ Ki �
) 〈MD]→i,�′ Ki �; (11.33)

When � = ∅ and � = {φ}, thesis (11.33) collapses to a feasible version of the rule
N of necessitation:

FN: |= [ I ]i φ 〈MD]→i,�′ Ki φ. (11.34)

When � = {ψ, ψ→ φ} and � = {φ}, thesis (11.33) collapses to a feasible version
of the standard axiom K:

FK: |= (
Si �

′ ∧ Ki ψ ∧ Ki (ψ→ φ)
) 〈MD]→i,�′ Ki φ. (11.35)

One may not infer rashly from FN and FK, as one may from the corresponding, tradi-
tional axioms N and K, that the knowledge of i is closed under logical consequence,
or even that it might be someday. The extension of knowledge by deductive inference
must proceed, as it does in the real world, by dint of concrete, cognitive exertion. An
inference method that witnesses thesis (11.33) is pure deductive inference—inferring
elements of � from premises �, and for no other reason. Then convergence to cor-
rect belief that � in the actual world results in convergence to true belief that � in
the actual world and guaranteed, eventual avoidance of error regarding the premises
in � results in guaranteed, eventual avoidance of error regarding the conclusions
in �. In that sense, pure deductive inference makes knowledge that � epistemically
parasitic on knowledge that�. If the parasitic relationship is disrupted, because i has
independent reasons for believing some conclusion γ ∈ �, then i might be disposed
to fall into error with respect to γ infinitely often in some possible worlds compatible
with current information. The validity of (11.33) is closely bound to allowance for
serendipity. It has already been shown in terms of G pk and GF pk that (11.33) fails
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for learning:

Thesis (33) is invalid with L̃i , ˜Ledi ,Ledi in place of Ki . (11.36)

Serendipity raises a cautionary moral about the role of deduction in natural sci-
ence. The world of science is a “dappled” pastiche of mutually incompatible models
and theories and missed connections [6]. Heisenberg and Schrödinger even bat-
tled over logically equivalent hypotheses, each of which was rigorously tested over
distinct domains of phenomena.27 When contradictions are found, scientists steer
around them until some other experts resolve them, as long as the claims in ques-
tion remain individually testable. When new logical connections are found between
formerly disparate research programs, caution is exercised regarding the drawing of
inferences from one program to the other until they are cross-checked by new data.
Learning semantics explains that logical conservatism. For suppose that there are two
independent research programs studying hypotheses φ and ψ, respectively, on the
basis of disparate sets of phenomena and then it is discovered by a mathematician that
ψ is a deductive consequence of φ. What to do? Inferring ψ from φ would generate
new knowledge that ψ from knowledge that φ if inquiry whether φ has culminated.
But if inquiry whether ψ has culminated in knowledge that ¬ψ, then inferring ψ
from φ would destroy knowledge that ¬ψ. The contrapositive inference from ¬ψ to
¬φ is fraught with a similar risk of destroying knowledge that φ. Hyper-intensional
refusal to fire either inference is guaranteed to preserve knowledge of whichever
hypothesis is known and leaves the door open to future empirical evidence to resolve
the conflict. So far as inquiry after the truth is concerned, deductive consistency may
be a hob-goblin, indeed.

11.14.2 Reflection

Suppose that i knows that φ. Evidently, she may fail to know that she knows that
φ—she may not even conceive of the question whether she knows that φ unless she
is challenged. Or φ may say “i does not believe that she knows me”. But inattention
and self-referential tricks aside, is i even capable of knowing that she knows, even
though no bell rings [16] when inductive inquiry succeeds? The prospects seem grim:

. . .[Learning in the limit] does not entail that [the learner] knows he knows the answer, since
[the learner] may lack any reason to believe that his hypotheses have begun to converge [24].

True, i cannot know infallibly that she knows some general truth infallibly, because
she cannot even know the general truth infallibly. But there is an easy and natural

27 For a version of the history, cf. [40]. Learning semantics allows for the possibility that each
scientist knew his own formulation of quantum mechanics at the same time he disputed the compet-
ing formulation. Even neighborhood semantics [36], which models belief as a set of propositions,
cannot model that situation.
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inferential strategy i can adopt to know inductively that she knows inductively that
φ, and so on, to arbitrary iterations. Define iterated knowledge by recursion:

Ki
0φ := φ;

Ki
k+1φ := Ki Ki

kφ.

Define the sets of sentences:

K k
i (φ) = {Ki

k′φ : k′ ≤ k};
Kω

i (φ) =
⋃

k∈N
K k

i (φ).

Then for each finite � containing φ and disjoint from Kω
i (φ), we have:28

F4∗: |= (Si � ∧ Ki φ) 〈MD]→i,� Kω
i (φ). (11.37)

As a consequence, we have the following, feasible version of the standard (infeasible)
reflection principle 4, for each k:

F4: |= (Si φ ∧ Ki φ) 〈MD]→i,φ Ki
k φ. (11.38)

A simple inferential strategy that witnesses (11.38) when k = 2 is for i to believe at
t that she knew that φ at t∗ if she never stopped believing that φ from t∗ until t and to
believe that she did not know that φ if the alternative case obtains. That inference is
intuitive: if i remembers that she retracted φ between t∗ and the current time t , then
the retraction shakes her confidence that she knew that φ already at t∗. Otherwise,
from i’s viewpoint, she had persuasive evidence for φ at t∗ and nothing in particular
has dissuaded her since then, so of course she thinks she knew that φ at t∗.

In contrast to the situation for deductive closure, learning that one is learning
is easy—learning implies that it is determined that one is learning and whatever is
determined can be learned by believing it no matter what and never believing its
negation. Having learned whether one has learned whether and having learned that
one has learned that are both valid by the same inferential strategy invoked to validate
(11.38). So we have:

Thesis (11.38) remains valid with K̃i , L̃i , ˜Ledi ,Ledi in place of Ki . (11.39)

28 Strictly speaking, one must restrict Kω
i (φ) to some finite K k

i (φ) for the statement to be well-
formed, but the proof of validity works for the unrestricted version.
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11.14.3 The Unknowable Unknown

For Plato [28], the least flattering epistemic condition is hubris—failure to know
that one does not know. The first step on the path of inquiry is to eliminate hubris.
Thereafter, one comes to know and to know that one knows. But is the fateful, first
step feasible? Learning semantics delivers a negative verdict for inductive knowledge,
even in the empiricist model Nt∗ .

F5′: Nt∗ �|= (Si φ ∧ ¬Ki φ) 〈MD]→i,φ Ki¬Ki φ. (11.40)

The convergence required for knowing that one knows parasitically tracks the con-
vergence of knowledge itself. But failure to know inductively may be witnessed only
by ugly surprises in the distant future, and the requirement to have converged already
to true belief that one will not be surprised in the future occasions the problem of
induction, with which we began. For example, suppose that i has seen enough evi-
dence to convince her that G pk until such time as some non-k input is received,
causing her to drop her belief that G pk . Call i’s learning method c. Method c yields
inductive knowledge that G pk in the constantly k world w in which G pk is true.
Now, suppose that i possesses some magical inferential technique h that guarantees i
knowledge now that she does not know that G pk if she does not know that G pk and
that the inferential technique does not alter i’s beliefs whether G pk . Then learning
method h(c) must be guaranteed to yield knowledge immediately that c does not
produce knowledge that G pk . Let wm be the “grue-like” world in which i receives
input k until stage m and k + 1 thereafter. Statement G pk is false in wm , so h(c)
stabilizes to belief that ¬Ki G pk immediately in wm , for every m. So h(c) converges
to¬Ki G pk in world w, since wm agrees empirically with w until m. But, ironically, i
knows that G pk in w because G pk is objective in Nt∗ and h holds i’s beliefs whether
φ fixed. So h(c) fails to avoid error in the limit whether ¬Ki G pk .

In fact, slight variants of the preceding argument suffice to invalidate the feasible
versions of all of the proposed axioms between .4 and 5, so among the standard
axioms, only T, FD, and F4 are valid in learning semantics:

FB: Nt∗ �|= (Si φ ∧ ¬φ) 〈MD]→i,φ Ki¬Ki φ;
F.2: Nt∗ �|= (Si φ ∧ ¬Ki¬Ki ¬φ) 〈MD]→i,φ Ki¬Ki φ;
F.3: Nt∗ �|= ((Si φ ∧ Si ψ ∧ Ki¬Ki φ) 〈MD]→i,φ,ψ Ki¬Ki ψ) ∨

∨ ((Si φ ∧ Si φ ∧ Ki¬Ki ψ) 〈MD]→i,φ,ψ Ki¬Ki φ);
F.4: Nt∗ �|= (Si φ ∧ ¬φ ∧ ¬Ki ¬φ) 〈MD]→i,φ Ki¬Kiφ.

It suffices to let φ = G pk and ψ = G pk′ , for distinct k, k′.
The same examples refute the corresponding versions of the preceding theses, for

knowing whether, having learned whether, and having learned that:

Theses (11.40), (FB–F.4) remain invalid with K̃i , ˜Ledi ,Ledi in place of Ki . (11.41)
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However, it is trivially feasible for i to be learning whether i is not learning whether
φwhen i is not learning whether φ—it suffices for i to believe that she is not learning
whether φ no matter what, since learning begins with operator [D]i :

F5L: |= (Si φ ∧ ¬L̃i φ) 〈MD]→i,φ L̃i¬L̃i φ. (11.42)

11.15 Joint Inductive Knowledge

Plato’s original question in the Meno [28] was not what knowledge is, but whether
virtue can be taught. Plato assumed that knowledge can be taught, but when knowl-
edge is inductive, that assumption raises an epistemological question. Evidently, a
knowledgable expert can exhibit her inductive knowledge to her pupils, and on a
good day, she might even induce true belief in them, but can she really transfer her
inductive knowledge to them? In a cooperative epistemic enterprise like education, it
is natural to assume that knowledge supervenes jointly on the learning strategies of
the pupils and of the instructor. In that spirit, this section presents an alternative, joint
version of learning semantics that is friendlier to cooperative epistemic efforts. In
the following section, it is shown how it is jointly feasible for the expert and a room
full of pupils to acquire common knowledge of the expert’s inductive knowledge.

Let w ∈ W , cw,t = (cw,1,t , . . . cw,N ,t ) and d ∈ C N . Then let u[d/t] denote the
result of substituting d for cw,t in w at t . A joint clm satisfies the following, joint
invariance postulate, for each i ∈ G, w ∈ W , d ∈ C N , and t ∈ T :

si,w|t = si,w[d/t ′]|t. (11.43)

Joint information and determination are defined as follows:

IG,w,t =
⋃

i∈G

Ii,w,t ;

DG,w,t = {u ∈ IG,w,t : cu,t = cw,t };

with corresponding operators:

‖[ I ]G φ‖tMt∗ = {w ∈ W : IG,w,t ⊆ ‖φ‖t∗Mt∗ };
‖[D]G φ‖tMt∗ = {w ∈ W : DG,w,t ⊆ ‖φ‖t∗Mt∗ }.

Joint information is weaker than individual information, but joint determination com-
pensates, somewhat, by holding everyone’s method fixed. Joint information and
determination are no longer guaranteed to be S5 operators, but they can be—e.g.,
everyone gets the same information—so it is useful to have a concise notation for
expressing that special case in the object language:
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‖IS5G‖t∗Mt∗ = {w ∈ W : (∀u ∈ IG,w,t∗) IG,u,t∗ = IG,u,t∗}.

Define joint inductive knowledge for i as before, but with joint determination in place
of personal determination:

KG,i φ := GCi φ ∧ [D]GFG¬Ẽi φ.

Joint methodological feasibility expresses the existence of a methodological coordi-
nation among the agents that brings about φ:

‖〈M〉G φ‖tMt∗ = {w ∈ W : (∃d ∈ C N ) w[d/t∗] ∈ ‖φ‖tMt∗ }.

To define joint conditional feasibility, let h = (h1, . . . , hN ) be an N -sequence of
total recursive functions taking values in C , let h(c) = (h1(c1), . . . , hN (cN )), and
let � be an N -sequence of finite subsets of LBIT. Say that h preserves premises in �

if and only if hi preserves premises in �i , for each i ∈ G and, similarly, say that h
depends only on premises in � if and only if hi depends only on premises in�i , for
each i ∈ G. Then h is a joint inference procedure if and only if h is an N -sequence
of total recursive functions taking values in C that preserves premises in � and that
depends only on premises in �. Finally, as before, let ‖ψ 〈MD]→G,� φ‖tMt∗ denote
the set of all w ∈ W for which there exists joint inference procedure h such that for
all u ∈ IG,w,t :

u ∈ ‖ψ‖tMt∗ ⇒ u[h/t∗] ∈ ‖φ‖tMt∗ .

It remains only to define a joint version of inferential stability. Define c ≡� d to
hold if and only if ci ≡�i di , for all i ∈ G. Let w ∈ ‖SG,i�‖tMt∗ hold if and only if

for all d ∈ C N such that cw,t∗ ≡� d and for all u ∈ DG,w,t∗ , t ≥ t∗, and δ ∈ �i , if
we set u′ = u[d/t∗] and ci = ci,u,t∗(= ci,w,t∗) then:

u ∈ ‖δ‖t∗Mt∗ ⇔ u′ ∈ ‖δ‖t∗Mt∗ ;
vci (si,u |t, δ) = vdi (si,u′ |t, δ).

Crucially, a joint version of Proposition 11.2 holds:

Proposition 11.3 Suppose that φ ∈ �i and u ∈ ‖SG,i�‖t∗Mt∗ and let d ∈ C N

satisfy d ≡� cu,t∗ . Then:

u ∈ ‖KG,i φ‖t∗Mt∗ ⇒ u[d/t∗] ∈ ‖KG,i φ‖t∗Mt∗ . (11.44)
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11.16 Common Inductive Knowledge

Given the joint perspective outlined in the preceding section and some basic assump-
tions about how the expert and pupils interact, it is jointly feasible for the expert and
her pupils to jointly acquire the expert’s inductive knowledge that φ. It suffices that
the pupils believe that φ if the expert does and suspend belief that φ otherwise. Each
pupil is then an epistemic parasite of the expert, just as the expert is an epistemic
parasite of herself when she infers deductive consequences of what she knows.29

Educated pupils and news media science reporters can serve, in turn, as experts,
resulting in a cascade of joint scientific knowledge through the population—as long
as, at the core, some expert has direct inductive knowledge based on experience.30

It is a further question whether the pupils and the expert can jointly know that
they know, know that they know that they know, etc, all the way to joint, common
inductive knowledge that φ. Define joint, mutual, inductive knowledge to level n as
follows:

KG
0 φ := φ;

KG
k+1 φ :=

∧

i∈G

KG,i KG
k φ.

Define common inductive knowledge that φ as the set of sentences:

Kω
G(φ) = {KG

k φ : k ∈ N}.

It is plausible that a completely trusted, infallible, public announcement that φ can
generate common knowledge that φ. It is less obvious that common inductive knowl-
edge is feasible in a room full of computationally bounded pupils who trust their
instructor. Learning semantics yields a positive verdict, based on epistemic para-
sitism and serendipity, in close analogy to the validity argument for F4.

The expert must communicate with the pupils in some way in order to instruct
them. It suffices that the pupils receive information sufficient to correctly believe
whether the expert believes that φ. Let e ∈ G be the teacher and let G− = G \ {e}
be the set of pupils. Define the operator “e teaches the pupils in G− whether φ” as
follows:

TG,e φ :=
∧

j∈G−
[ I ]GGC̃ j Be φ.

Now it is possible to state the joint feasibility of common inductive knowledge
thesis, which is valid if �e contains φ and �i is disjoint from Kω

G(φ), for all i ∈ G:

29 Indeed, the pupils can know consequences of what the expert knows by deriving them directly
from what the expert believes, by the same sort of argument.
30 More generally, the core expertise is grounded in a research group, but the story with respect to
the rest of the population is the same.
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FC: |= (
IS5G ∧ TG,e φ ∧ SG,e� ∧ KG,e φ

) 〈MD]→G,� Kω
G(φ). (11.45)

Although the FC principle concerns common inductive knowledge generated and
promulgated by a single expert, it sets the stage for a series of similar results that
involve common inductive knowledge generated through the cooperation of a team
of experts—a topic of current interest in social epistemology (e.g., [25]).

In dynamic epistemic logic, there are models in which public announcements
generate common knowledge of what has been announced [3]. But how do pub-
lic announcements result in anything more than common knowledge of the fact
that the announcement was made? Plausibly, common knowledge of what has been
announced is common inductive knowledge grounded in the community’s joint strat-
egy to disbelieve sources caught in inconsistencies or lies. One potential extension of
FC is to validate the possibility of common inductive knowledge of what is reported
in a public announcement in models that allow for false announcements.

A familiar assumption in game theory is that the agents have common knowledge
of rationality [1]. But how is such knowledge possible and where does it come
from? Standard possible worlds semantics has nothing to say, short of a veridical
public announcement that all players are rational, but learning semantics provides a
plausible, explanatory story. Recall the game-theoretic model described in Sect. 11.7
above. Violation of the kth level of mutual rationality is detectable by horizontal play
in a centipede game of corresponding length. If all of the agents have the disposition
to continue playing down at the first move in ever longer centipede games, learning
semantics provides a determinate, explanatory, account of how common knowledge
of rationality is jointly feasible in such a group. And if every agent is disposed to
cooperate by playing sideways for a while, the group can just as easily develop
inductive common knowledge of partial cooperation!31

11.17 Conclusion and Future Directions

Learning semantics provides a rich, consistent, and workable conceptual framework
for modeling interactions between, and iterations of, belief, information, and time,
and inductive versions of learning, learnability, having learned, knowing, knowabil-
ity, and common knowledge. The key feature of the semantics is an assignment of
concrete, computational learning methods to each agent at each time. That makes it
possible to define inductive learning and knowledge in terms of actual convergence
to the truth and guaranteed, eventual avoidance of error, on the basis of increasing
information through time.

Learning semantics has three important advantages over traditional possible
worlds models, for applications involving inductive knowledge and learning. (1)
It sidesteps inductive skepticism. (2) It imposes no logical or rational idealizations
on the agent’s belief states or learning procedures. (3) Its semantic arguments pro-

31 This application is due to Jennifer Jhun, personal communication.
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vide concrete, methodological explanations why some principles should be valid and
others invalid.

It has been shown that learning semantics validates a cognitively plausible ver-
sion of the familiar modal system S4 and plausibly refutes all of the standard axioms
that have been proposed for epistemic logic beyond S4, when material implication
is replaced with conditional feasibility. So the logical sky does not fall, after all,
when belief and learning are modeled in a cognitively plausible way. The valid
versions of the S4 axioms are explained by epistemic parasitism—the fact that an
inferred statement can inherit the convergence conditions essential for knowledge
from the convergence conditions possessed by known premises. The invalidity of the
remaining axioms is explained by the fact that no inferential procedure can detect
immediately that convergence might fail in the future, due to unforeseen surprises.
Epistemic parasitism also explains how a knowledgable teacher can convey her induc-
tive knowledge to her pupils, as opposed to merely instilling true belief in them, and
how inductive common knowledge can spread through a community of passive scien-
tific consumers. Generalization of that idea to inductive learning from the behavior of
other learners provides a new understanding of the feasibility of common knowledge
of rationality (or of irrational cooperation) in games. Learning semantics explains
the scope of learnability in terms of concrete, non-learnability arguments of the sort
that are familiar in computational learning theory. It also explains how allowance for
serendipity in inductive knowledge both broadens the scope of knowability beyond
that of learnability and guarantees that knowability (as opposed to knowledge, itself)
is closed under logical consequence. Finally, learning semantics provides a surpris-
ing, but plausible, explanation of how one can know one’s own Moore sentence
φ ∧ ¬Ki φ without ever failing to derive its conjuncts, and without equivocating on
the times at which they come to be known. Traditional possible worlds semantics is
irrevocably committed to the contrary conclusion.

The explanatory advantages of learning semantics come with a familiar, scientific
cost—any formal model of a complex process must abstract, to some extent, from
some potentially relevant details. But that is never an argument for giving up on
explanation entirely. Instead, one checks whether improvements in the fidelity of
one’s model result in greater explanatory scope. In that spirit, the chapter closes with
a tentative discussion of some potential refinements and extensions of the framework
developed above. A repeated theme in the ensuing discussion is the importance of
greater attention to the epistemic context.

11.17.1 Sensitivity and Safety

Learning semantics was designed to deal with inductive skepticism. It does noth-
ing to avert brain-in-a-vat skepticism—the entire input stream could be the same,
whether or not φ is true. Relevant alternatives semantics was designed to deal with
brain-in-a-vat skepticism, but cannot handle inductive skepticism. Therefore, rele-
vant alternatives semantics and learning semantics are not so much competitors as
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mutually essential partners: the former tosses out virulent but distant possibilities
of error that would preclude even convergence to the truth, and the latter eventually
weeds out the arbitrarily nearby possibilities of error we couldn’t have noticed yet.
Learning semantics would accommodate the full advantages of both approaches if
the key modality Di were re-interpreted in terms of sensitivity or safety. The change is
not entirely trivial, since the “fact” that Di is an S5 operator is appealed to repeatedly
in the preceding development, and each such appeal must be re-examined.

11.17.2 Inductive Statistical Knowledge

Most scientific hypotheses are probabilistic—even the variables of deterministic
equations are measured with random error. Such hypotheses can be tested, but a sta-
tistical test provides a guaranteed bound on chance of error only when the hypothesis
is rejected. So if general statistical hypotheses are knowable, they are knowable only
inductively.

A plausible semantics for inductive knowledge of statistical hypothesis φ is that i
believes that φwith high chance that remains high in the actual world and the chance
that i believes that φ goes to zero if φ is false. More ambitiously, one might require,
in addition, that the chance that i believes that φ converges monotonically to 1 in
the actual world. The interpretation of error probabilities requires some temporal
gymnastics, as it does in frequentist statistics itself. Chance is a kind of disposition
that governs future events. The fairness of a coin determines chances for sequences
of future flips. But the coin might be bent later, after which different chances govern
sequences of future events—the situation is much the same as it was for learning
dispositions. For the chance disposition operative at t , every outcome prior to t has
chance 0 or 1, depending on whether it actually occurred. Therefore, the chance that
a belief at t∗ based on a sample already taken by t∗ is either 0 or 1 according to
the chances operative at t∗. So non-trivial error probabilities must pertain to chances
operative at some reference time t∗∗ prior to sampling—e.g., when the experimental
design was originally put into motion. Then the truth of φ should also be assessed
with respect to the chances operative at t∗∗ rather than those operative at t∗.

Since epistemic parasitism pertains to convergence in probability as well as to
deterministic convergence, it is anticipated that all of the preceding arguments that
depend on epistemic parasitism should generalize to the statistical setting. Also,
assuming that successive samples are independent and identically distributed (i.i.d.),
successive samples probably provide a better approximation to the fixed, underlying
sampling distribution, so the positive results concerning learnability and knowability
are also expected to carry over. However, if the sampling distribution may change
from time to time, as in time series analysis, extra assumptions are required for
convergence in probability to the truth—e.g., that the process under study is periodic,
or is driven by hidden states that recur infinitely often [39]. Analyzing the connection
between such assumptions and statistical, inductive knowability is a scientifically
relevant, new direction for modal epistemic logic.
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Aside from its intrinsic interest, the extension of learning semantics to proba-
bilistic theories addresses a puzzle concerning the inductive knowability of future,
random outcomes. It is plausible that stochastic theories and models can be known
inductively, if inductive knowledge is possible at all. It is far less plausible that
random outcomes like coin tosses can be known in advance, even inductively. But
the non-statistical version of learning semantics underwrites such knowledge—just
make a lucky guess at the outcome (serendipity) and believe the guess until the flip is
observed, and drop it if it happens to be wrong [13]. The good news is that future coin
flips are no longer knowable in statistical learning semantics—the chance of correct
belief in the proposition φ that the toss will come up heads at future time t is the joint
probability p(Bi φ ∧ φ) ≤ p(φ) = 1/2. What about highly probable future events,
such as that your ticket will lose the lottery? They are knowable inductively if their
chances of occurring meet the standard for being “high” in the actual convergence
condition, but no probabilistic outcome with chance less than one is knowable on
the stricter version of the semantics that requires convergence to chance 1 of belief
in the actual world.

11.17.3 Questions and Coherence

In light of the aim to model belief more realistically, the logical consistency require-
ments necessary for knowledge whether φ were pared down to the bare minimum
required to recover an unambiguous verdict on φ for each agent. However, that goes
too far. Recall that scientist i can know that the true input sequence is ε by guessing
that it is ε until ε is refuted. Suppose that scientist i simultaneously believes every
hypothesis of the form “the input stream is exactly primitive recursive sequence
ε”, and is disposed to drop each such hypothesis when it disagrees with the data.
Suppose, by serendipity, that the true input stream ε is primitive recursive, so the
hypothesis corresponding to ε is true. Then i knows that the future will conform
to ε, even though i also believes every possible primitive recursive input stream
compatible with current information. That makes inductive knowledge too easy.
Furthermore, for someone as aphasic as i , the very concept of belief is called into
question. What would i predict to happen at the next stage? Certainly not what she
“knows” will happen, since she cannot pick her known theory out of the heap of her
alternative, incompatible beliefs. Science may be incoherent overall, but each of its
insular paradigms is coherent enough to generate consensus concerning determinate
predictions. So normal science within a paradigm is not trivial in the sense under
discussion, even though science may remain globally incoherent across paradigms
forever. That idea could be modeled in learning semantics by adding a question under
discussion (q.u.d.) to the epistemic context. The proposal is supported by the current
trend in linguistics toward explaining diverse discourse phenomena in terms of such
a question [34].

Knowledge of an answer to the q.u.d. requires that the beliefs of the scien-
tist pick out a unique answer, which rules out the easy knowledge just described.
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The advantages of hyper-intensionality are retained. Inconsistency across question
contexts is permitted and even contradictions within a context that do not result in
ambiguity concerning the answer selected are still permitted. The correct answer
may even be rejected under some logically equivalent formulation, as long as no
formulation of any alternative answer is accepted.

11.17.4 Feasibility Contextualism

Epistemic contextualists (e.g., [23]) hold that the standards for knowledge vary from
one context to another—e.g., raising a skeptical doubt shifts the epistemic context to
one in which the doubt becomes epistemically relevant, so one no longer knows what
one knew before the doubt was raised. The idea is appealing, because it does justice
both to the plausibility of ordinary knowledge claims and to the apparent force of
skeptical doubts. It also addresses a puzzle concerning the psychology of learning.
According to learning semantics, it is trivial to know one’s own method because the
modality Di holds it fixed and, in the joint version of learning semantics, it is trivial
to know what everyone else’s method is, because DG,i holds them all fixed. But,
according to epistemic contextualism, when the statement known concerns those
very methods, possible worlds involving alternative methods become relevant.

Another plausible, but distinct way in which epistemic standards plausibly depend
on context is the intrinsic feasibility of answering the question under discussion. For
if “knowledge” is a social encomium whose function is to motivate the overall truth-
conduciveness of socially distributed inquiry, then that encomium provides maximum
guidance over the full range of epistemic contexts if it is bestowed only when the
agent achieves the best standard of truth-conduciveness achievable with respect to
the question in context. Call that natural idea feasibility contextualism. For example,
concrete, cat-on-the-mat beliefs that can be decided by observation should be, so
such knowledge must be safe or sensitive. General laws cannot be known safely or
sensitively, but they are learnable, so knowledge should require that they have been
learned. More general, untestable theories are unlearnable, but can be known with
serendipity, so knowledge with serendipity suffices in that case.

Feasibility contextualism explains why scientists concerned with an inductive
question ignore general, philosophical arguments for inductive skepticism, even
though they remain fastidious concerning measurement and data analysis. When
general theories are at issue, epistemic standards adjust to accommodate knowledge
of them, so safety and sensitivity in the short run are no longer required, but error-
detection in the limit can still be optimized by catching the errors as soon as possible.
Feasibility contextualism also explains why scientists sometimes brand a hypothesis
as “metaphysical” if it is difficult to find a plausible, testable articulation of it. In such
cases, we simply run out of applicable senses of truth-conduciveness, so skepticism
is back on the table.

Furthermore, feasibility contextualism helps to resolve a residual puzzle about
prediction. It may seem that inductive knowledge, even of future, deterministic
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outcomes is too easy—just guess the outcome and wait to see what happens. But
it seems fine—exemplary, even—to deduce the same prediction from an induc-
tively known, universal law. There is a temptation to reach for dark, metaphysical
explanations—the law endows the prediction with some ontological “oomph” that
a bare prediction lacks. Here is a more concrete, linguistic explanation. When one
infers a prediction from a law, the law remains in context along with the prediction,
and when both the law and the prediction are in context, the operative standard for
knowledge is naturally understood to be the strongest standard applicable to both.
Thus, when the prediction is not inferred from a law, the standard of waiting for
sensitivity or safety holds sway, but in light of inferring the prediction from a law,
the operative standard is inductive. The idea also explains why the same jarring of
intuitions does not accompany the inference of “infinitely often” from “always”, for
in that case the weaker standard already applies to the conclusion.

11.17.5 Justification and Truth-Conduciveness

Scientists prefer unified, cross-testable, explanatory theories over dis-unified, untest-
able, ad hoc theories, a preference popularly known as Ockham’s razor. Learning
semantics, as developed above, does not explain that preference, because a serendip-
itous guess at a complex law can count as knowledge just as much as a serendipitous
guess at a simple one. But the addition of feasibility contextualism suggests such an
explanation.32

Suppose that the question under discussion is “what is the true form of the poly-
nomial law connecting X and Y ?” More precisely, assuming that there exists finite
set S ⊆ N such that the true law has form Y = fθ(X) = ∑

i∈S θi X i , with αi �= 0
for each i ∈ S, what is S? Assume that the data are arbitrarily small open rectangles
in the XY plane guaranteed to intersect the curve Y = fθ(X).33 Then there is an
important structural relationship between the question and the potential information
received by i : any information true of a simpler answer is also compatible with
the truth of every more complex answer, whereas some information received if a
complex answer is true rules out all simpler and incomparable answers. Instead of
viewing those properties as merely symptomatic of the simplicity order, take them
as definitive, relative to the question in context.34 The resulting concept of empiri-
cal simplicity assumes alternative guises, depending on the question in context and
on the space of possible, future, information states. If one is empirically hunting
for new particles or other objects, extra particles make the theory more complex.

32 For the details, cf. [21].
33 In the statistical setting sketched above, the data can be understood, more realistically, as data
points sampled independently from the joint distribution generated by the model Y = f (X) + e,
where e is a normally distributed random variable independent from X and Y that has mean 0 that
represents all stray sources of inaccuracy in measurement. Running up the sample size corresponds
to narrowing the rectangles in the non-statistical semantics.
34 That is an over-simplification, but it points in the right direction. Cf. [21] for a better proposal.
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If one is selecting among theories with free parameters and the parameterization is
well-behaved, additional parameters add extra complexity. If one compares theories
that entail different symmetry groups, breaking symmetry adds complexity. If one
compares theories with more or fewer causes, extra causes add complexity. And so
on. It follows from the general definition of empirical simplicity that every learning
method capable of inductively learning the true answer to the question can be forced
to believe in each successively more complex answer before ultimately converging
to the true one. That is an unavoidable, structural feature of the question’s semantics,
relative to the space of possible information states.

Truth conduciveness is efficient pursuit of the truth. Efficient pursuit entails that
one close with the quarry as directly as possible—a random walk or gratuitous aer-
obatic loops or U-turns during the approach stretch the very concept of pursuit.
Gratuitous doxastic loops and U-turns correspond to needless retractions and re-
visitations of former beliefs. Thus, retraction minimization is not a mere, pragmatic
afterthought—it is constitutive of the very concept of truth-conduciveness. There-
fore, feasibility contextualism implies that retractions prior to convergence should
be minimized, relative to the current question context. So parties to the question
context should forgive methods that change their minds from simpler to more com-
plex theories, since every learning method for the question can be forced to retract
that often prior to convergence—but they should forgive no more retractions than
those. It can also be shown that the only learning methods for the question that min-
imize worst-case retractions are those that follow Ockham’s razor, by selecting the
uniquely simplest theory compatible with available information. So Ockham’s razor
is explained by feasibility contextualism.

The preceding explanation assumes that a fairly rich question is in context, but
what if only the known law is in context? Think of the belief Y = fθ(X) as posing
the default, binary question “yes or no” unless a more refined question is in context.
There is a learning strategy that retracts at most once when the answer is Y = fθ(X)
(no, yes) and at most twice when the contrary answer is true (yes, no, yes). No tighter
bounds are feasible, so that performance is also optimally truth-conducive. The only
optimal methods are methods that wait for law forms simpler than Y = fθ(X)
to be refuted before yielding a positive verdict for Y = fθ(X). Thus, feasibility
contextualism still entails that Y = fθ(X) cannot be known unless it is believed in
accordance with Ockham’s razor.
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Proofs of Propositions

Proof of Proposition 11.1 Just let Ld(σ,ψ) return 1 if ψ = @t∗ φ and σ is an initial
segment of si,u,t and return 0 otherwise. ��
Proof of Proposition 11.2 Abbreviate:

c = ci,u,t∗ ;
x = u[d/ i, t∗].

Assume that φ ∈ � and that:

d ≡� c; (11.46)

u ∈ ‖Si�‖t∗Mt∗ ; (11.47)

u ∈ ‖Ki φ‖t∗Mt∗ . (11.48)

From (11.48) we have:

u ∈ ‖GCi φ‖t∗Mt∗ ; (11.49)

y ∈ ‖FG¬Ẽi φ‖t∗Mt∗ , for all y ∈ Di,u,t∗ . (11.50)

It suffices to show that:

x ∈ ‖GCi φ‖t∗Mt∗ ; (11.51)

y ∈ ‖FG¬Ẽi φ‖t∗Mt∗ , for all y ∈ Di,x,t∗ . (11.52)

From (11.46) to (11.47), we have that:

u ∈ ‖φ‖t∗Mt∗ ⇔ x ∈ ‖φ‖t∗Mt∗ ; (11.53)

u ∈ ‖G[B]i φ‖t∗Mt∗ ⇔ x ∈ ‖G[B]i φ‖t∗Mt∗ ; (11.54)

u ∈ ‖G〈B〉i φ‖t∗Mt∗ ⇔ x ∈ ‖G〈B〉i φ‖t∗Mt∗ . (11.55)

So requirement (11.51) follows from (11.49).
For requirement (11.52), let y ∈ Di,x,t∗ . Then si,y |t∗ = si,x |t∗ = si,u[d/ i,t∗]|t∗.

So si,y |t∗ = si,u |t∗, by (11.1). Let z = y[c/ i, t∗]. So si,z |t∗ = si,u |t∗, again by
(11.1) and, hence, z ∈ Di,u,t∗ . So it follows from (11.50) that:
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z ∈ ‖FG¬Ẽi φ‖t∗Mt∗ ; (11.56)

and from (11.46) to (11.47) that:

y ∈ ‖φ‖t∗Mt∗ ⇔ z ∈ ‖φ‖t∗Mt∗ ; (11.57)

y ∈ ‖FG[B]i φ‖t∗Mt∗ ⇔ z ∈ ‖FG[B]i φ‖t∗Mt∗ ; (11.58)

y ∈ ‖FG〈B〉i φ‖t∗Mt∗ ⇔ z ∈ ‖FG〈B〉i φ‖t∗Mt∗ . (11.59)

Requirement (11.52) follows directly from (11.56) to (11.59). ��
Proof of Proposition 11.3 Let d ∈ C N and let u ∈ W . Abbreviate:

c = ci,u,t∗ ;
x = u[d/t∗].

Assume that φ ∈ �i and that:

di ≡φ ci ; (11.60)

u ∈ ‖SG,i�‖t∗Mt∗ ; (11.61)

u ∈ ‖KG,i φ‖t∗Mt∗ . (11.62)

Proceed as in the preceding proof, with DG,u,t∗ , DG,x,t∗ in place of Di,u,t∗ , Di,x,t∗ .
The argument for requirement (11.51) is the same as before. For requirement (11.52),
let y ∈ DG,x,t∗ . So y ∈ Di,x,t∗ , for some i ∈ G. Then si,y |t∗ = si,x |t∗ = si,u[d/t∗]|t∗.
So si,y |t∗ = si,u |t∗, by (11.43). Let z = y[c/t∗]. So si,z |t∗ = si,u |t∗, again by (11.43)
and, hence, z ∈ Di,u,t∗ ⊆ DG,u,t∗ . Continue as in the preceding proof. ��

Proofs of Selected Statements

Proof of (11.7) and (11.8) Let w ∈ W be given. To witness the first claim, define
learning method c so that:

Lc(σ,φ) =
⎧
⎨

⎩

1 if φ = @t∗G pk and (∀t : t∗ ≤ t ≤ lh(σ)) σ(t) = k;
1 if φ = @t∗¬G pk and (∃t : t∗ ≤ t ≤ lh(σ)) σ(t) �= k;
0 otherwise.

The method that witnesses the second claim is similar, except that¬ and �= are moved
from the second clause to the first. ��
Proof of (11.9) and (11.10) The proof of the second statement is similar to that of the
first. For the first statement, suppose for contradiction that c satisfies (11.3) and (11.4).
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It suffices to construct ε ∈ E0 such that (*) both (11.3) and (11.4) are false in arbitrary
world w such that ew = ε. A purely learning theoretic argument suffices. Construct ε
by adding chunks in successive stages as follows, where c = h(cw′,i,t∗). At stage 0,
presentσ. Let n > 0. At stage 2n, present k until Lc returns 1 for @t∗FG pk . Learning
function Lc must return 1 for @t∗FG pk eventually, because if Lc never takes the
bait, you continue to present k and Lc fails to converge to belief that @t∗FG pk even
though it is true, contradicting the hypothesis. At that point, proceed to stage 2n+1.
At stage 2n+1, the demon presents k+1 until Lc returns 0 for @t∗FG pk . Learning
function Lc must return 0 for @t∗FG pk eventually, because if Lc never takes the
bait, you continue to present k + 1 and Lc fails to converge to belief that @t∗¬G pk

even though it is true, contradicting the hypothesis. At that point, proceed to stage
2n + 2. You pass through each stage, producing ε that satisfies (*). ��
Proof of (11.28) The proof follows [19, Proposition 7.15]. Suppose the contrary.
Then we can use the witnessing Ld and u ∈ Ii,w,t∗ to compute g(t), for t ≥ t∗ (for
t < t∗, use a lookup table). Say that finite input sequence σ of length t is t ′-dead if
and only if Ld(σ

′,@t∗ φ) = 0, for each extension σ′ of σ of length t ′. By (11.23),
g|(t + 1) is never t ′-dead, but by König’s Lemma and (11.26), there exists t ′ ≥ t + 1
such that every σ of length t + 1 that is distinct from g|t is t ′-dead. Then g|(t + 1) is
the unique sequence σ that is not t ′-dead. Return the last entry of that sequence. ��
Proof of (11.31) By hypothesis, φ is knowable in w at t∗. Since φ is knowable, let Lc

and world u ∈ Ii,w,t∗ witness that fact. Let Ld believe that φ in all circumstances and
believe, deny, or suspend belief for both¬Ki φ and Moi φwhenever Lc does the same
for φ. Since φ is assumed to be false in some world compatible with information,
i does not know that φ. Recall that in Nt∗ , (i) the inputs to i do not depend on i’s
learning method and (ii) the truth value of φ does not depend on i’s learning method.
Due to Ld ’s dogmatic belief that φ, the case hypothesis, and (i) and (ii), there is no
world in Ii,w,t∗ in which Kiφ is true, so we have that [ I ]i (Moi φ ↔ φ) is true in
w. So by (i) and (ii), agent i knows that Moi φ. By construction, i is conjunctively
cogent with respect to Moi φ. ��
Proof of (11.33) Let�,� be finite and mutually disjoint subsets of LBIT. Let� ⊆ �′
and �′ ∩ � = ∅. Define total recursive g such that:

g(c, 〈σ〉, �φ�)) =
⎧
⎨

⎩

1 if φ = @t∗γ ∧ γ ∈ � ∧ (∀δ ∈ �) Lc(σ,@t∗δ) = 1;
0 if φ = @t∗¬γ ∧ γ ∈ �;
Lc(σ,φ) otherwise.

The following lemma is a familiar consequence of the s-m-n theorem of recursive
function theory:

(∀ t.r. f )(∃ t.r. h)(∀c, x, y ∈ N) φh(c)(x, y) = f (c, x, y). (11.63)

Apply (11.63) to obtain total recursive h such that Lh(c)(σ,φ) = g(c, 〈σ〉, �φ�). By
the definition of h and the fact that �′ is disjoint from �, we have that:
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c ≡�′ h(c), (11.64)

for each c ∈ C , and that for all z ∈ W , t ∈ T and γ ∈ �:

Lh(c)(si,z |t,@t∗¬Ki
k γ) = 0; (11.65)

Lh(c)(si,z |t, @t∗Ki
k γ) = 1 ⇔ (∀δ ∈ �) Lh(c)(si,z |t ′,@t∗ δ) = 1. (11.66)

Suppose that u ∈ Ii,w,t∗ satisfies:

u ∈ ‖Si�
′‖t∗Mt∗ ; (11.67)

u ∈ ‖[ I ]i (�→ �)‖t∗Mt∗ ; (11.68)

u ∈ ‖Ki�‖t∗Mt∗ . (11.69)

Abbreviate:

c = ci,u,t∗ ;
x = u[h(c)/ i, t∗].

So from (11.64), (11.67) and (11.69), obtain via Proposition 11.2 that for each δ ∈ �:

x ∈ ‖Ki δ‖t∗Mt∗ . (11.70)

So for each δ ∈ �:

x ∈ ‖GCi δ‖t∗Mt∗ ; (11.71)

y ∈ ‖FG¬Ẽi δ‖t∗Mt∗ , for all y ∈ Di,x,t∗ . (11.72)

It suffices to show the following requirements, for each γ ∈ �:

x ∈ ‖GCi γ‖t∗Mt∗ ; (11.73)

y ∈ ‖FG¬Ẽi γ‖t∗Mt∗ , for all y ∈ Di,x,t∗ . (11.74)

Let γ ∈ �. For requirement (11.73), we have by (11.1) that x ∈ Ii,u,t∗ , so (11.68)
and (11.71) yield that:

x ∈ ‖γ‖t∗Mt∗ . (11.75)

So (11.71) and (11.75), together with properties (11.65)–(11.66), yield requirement
(11.73). For requirement (11.74), suppose that y ∈ Di,x,t∗ . So by (11.1), y ∈ Ii,u,t∗ .
So (*) together with (11.68) and (11.72) yield requirement (11.74). ��
Proof of statement (11.38) Define total recursive f as follows:
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f (c, 〈σ〉,g(ψ)) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if (∃k) ψ = @t∗Ki
kφ ∧

(∀t ′ : t∗ ≤ t ′ ≤ t)(ψ = @t∗Ki
kφ ∧ Lc(σ|t ′,φ) = 1);

0 if (∃k) ψ = @t∗Ki
kφ ∧

(∃t ′ : t∗ ≤ t ′ ≤ t)(ψ = @t∗Ki
kφ ∧ Lc(σ|t ′,φ) = 0);

0 if (∃k) ψ = @t∗¬Ki
kφ ∧

(∀t ′ : t∗ ≤ t ′ ≤ t)(ψ = @t∗Ki
kφ ∧ Lc(σ|t ′,φ) = 1);

1 if (∃k) ψ = @t∗¬Ki
kφ ∧

(∃t ′ : t∗ ≤ t ′ ≤ t)(ψ = @t∗Ki
kφ ∧ Lc(σ|t ′,φ) = 0);

Lc(σ,φ) otherwise.

Apply (11.63) to obtain h such that Lh(c)(σ,ψ) = f (c, 〈σ〉, �φ�), for all c ∈ N. Suppose
that � includes φ and is disjoint from Kω

i (φ). By the definition of h, we have that for
all c ∈ C:

c ≡� h(c); (11.76)

so h preserves �. Moreover, by construction, h depends only on �. Furthermore, for
all z ∈ W , t ∈ T , and k ∈ N:

Lh(c)(si,z |t,@t∗Ki
k φ) = 1 ⇔ (∀t ′ : t∗ ≤ t ′ ≤ t) Lh(c)(si,z |t ′,@t∗ φ) = 1; (11.77)

Lh(c)(si,z |t,@t∗¬Ki
k φ) = 1 ⇔ (∃t ′ : t∗ ≤ t ′ ≤ t) Lh(c)(si,z |t ′,@t∗ φ) = 0. (11.78)

Suppose that u ∈ Ii,w,t∗ satisfies:

u ∈ ‖Si�‖t∗Mt∗ ; (11.79)

u ∈ ‖Kiφ‖t∗Mt∗ . (11.80)

Abbreviate:

c = ci,u,t∗ ;
x = u[h(c)/ i, t∗].

From (11.76), (11.79) and (11.80), obtain via Proposition 11.2 that x ∈ ‖Ki φ‖t∗Mt∗
=

‖Ki
1 φ‖t∗Mt∗

. Therefore, x ∈ ‖φ‖t∗Mt∗
= ‖Ki

0 φ‖t∗Mt∗
. So we have the base case

x ∈ ‖K 1(φ)‖t∗Mt∗
.

Next, assume for induction that x ∈ ‖K k+1(φ)‖t∗Mt∗
. So:

x ∈ ‖Ki Ki
k φ‖t∗Mt∗ ; (11.81)

and, therefore:
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x ∈ ‖GCi Ki
k φ‖t∗Mt∗ ; (11.82)

y ∈ ‖FG¬ẼKi
k φ‖t∗Mt∗ , for all y ∈ Di,x,t∗ . (11.83)

For x ∈ ‖K k+2(φ)‖t∗Mt∗
, it suffices to show that: x ∈ ‖Ki Ki Ki

k φ‖t∗Mt∗
. For that, it

suffices, in turn, to show:

x ∈ ‖GCi Ki Ki
k φ‖t∗Mt∗ ; (11.84)

x ∈ ‖FG¬ẼKi Ki
k φ‖t∗Mt∗ , for all y ∈ Di,x,t∗ . (11.85)

Requirement (11.84) expands to the requirements:

x ∈ ‖Ki Ki
k φ‖t∗Mt∗ ; (11.86)

x ∈ ‖G[B]i Ki Ki
k φ‖t∗Mt∗ ; (11.87)

x ∈ ‖G〈B〉i Ki Ki
k φ‖t∗Mt∗ . (11.88)

Requirement (11.86) is just (11.81). Hence, (11.82) yields:

x ∈ ‖G[B]i Ki
k φ‖t∗Mt∗ ; (11.89)

x ∈ ‖G〈B〉i Ki
k φ‖t∗Mt∗ . (11.90)

Requirements (11.87)–(11.88) follow from (11.89) to (11.90) and properties (11.77)–
(11.78) of h.

For requirement (11.85), suppose that y ∈ Di,x,t∗ . It suffices to show that for all
y ∈ Di,x,t∗ :

y ∈ ‖GF[B]i¬Ki Ki
k φ‖t∗Mt∗ ⇒ y �∈ ‖Ki Ki

k φ‖t∗Mt∗ ; (11.91)

y ∈ ‖GF[B]i Ki Ki
k φ‖t∗Mt∗ ⇒ y ∈ ‖Ki Ki

k φ‖t∗Mt∗ . (11.92)

For requirement (11.91), suppose that:

y ∈ ‖GF[B]i¬Ki Ki
k φ‖t∗Mt∗ (11.93)

Then by property (11.78) of h, there exists t ≥ t∗ such that y �∈ ‖Bi φ‖tMt∗
, so by

property (11.77), we have that y �∈ ‖Bi Ki
k φ‖t∗Mt∗

. So y �∈ ‖Ki Ki
k φ‖t∗Mt∗

.
For requirement (11.92), suppose that:

y ∈ ‖GF[B]i Ki Ki
k φ‖t∗Mt∗ (11.94)

For the consequent y ∈ ‖Ki Ki
k φ‖t∗Mt∗

, it suffices, as usual, to show the requirements:
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y ∈ ‖GCi Ki
k φ‖t∗Mt∗ ; (11.95)

z ∈ ‖FG¬ẼKi
k φ‖t∗Mt∗ , for all z ∈ Di,y,t∗ . (11.96)

Requirement (11.96) is just (11.83), since Di,y,t∗ = Di,u,t∗ . Requirement (11.95)
expands to:

y ∈ ‖Ki
k φ‖t∗Mt∗ ; (11.97)

y ∈ ‖G[B]i Ki
k φ‖t∗Mt∗ ; (11.98)

y ∈ ‖G〈B〉i Ki
k φ‖t∗Mt∗ . (11.99)

For requirement (11.97), we have from (11.94) and property (11.77) of h that y ∈
‖GF[B]i Ki

k φ‖t∗Mt∗
. So y ∈ ‖Ki

k φ‖t∗Mt∗
, by (11.83). For requirement (11.98), note

that (11.94), along with property (11.77) of h implies that y ∈ ‖G[B]i φ‖t∗Mt∗
, which

implies requirement (11.98) in light of property (11.77) and requirement (11.99) in
light of property (11.78). ��
Proof of statement (11.39) For the Ledi case, follow the proof of (11.38) with Ledi in
place of Ki and C̃i in place of Ẽi . For the L̃i case, make corresponding substitutions
and ignore the actual convergence requirements. For the ˜Ledi case, add cases for
actual convergence to true belief that ¬φ. For the K̃i case, do the same, but retain C̃i
in place of Ẽi . ��
Proof of statement (11.40) Let w = (ε, c) be a world in Nt∗ . Let total recursive h
preserve belief whether φ = G pk . Let c∗ be as in the proof of statement (11.7). Let
c ∈ C N and let wε′ = (ε′, c[c∗/ i]t∗), for arbitrary ε′ ∈ E0. Let τ (t) = ε(t) for t < t∗
and let τ (t) = k for t ≥ t∗. Let τt (t ′) = τ (t ′) for t ′ ≥ t and let τt (t ′) = k + 1 for t ′ ≥ t .
It is easy to verify that for all t ≥ t∗:

wτ ∈ ‖Ki G pk‖t∗Nt∗ ; (11.100)

wτt ∈ ‖¬Ki G pk‖t∗Nt∗ . (11.101)

Since the truth of G pk does not depend on methods in Nt∗ , we have for all t ≥ t∗
that:

wτt ∈ Ii,w,t∗ ∩ ‖Si G pk‖t∗Nt∗ ∩ ‖¬Ki G pk‖t∗Nt∗ . (11.102)

So it suffices to show that wτt [h(c∗)/ i, t∗] �∈ ‖Ki¬Ki G pk‖t∗Nt∗
. For that it suffices to

show that at least one of the following statements holds:

wτt [h(c∗)/ i, t∗] �∈ ‖GCi¬Ki φ‖t∗Mt∗ ; (11.103)

wτt [h(c∗)/ i, t∗] �∈ ‖[D]i FG¬Ẽi¬Ki φ‖t∗Mt∗ . (11.104)
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Case 1: wτt [h(c∗)/ i, t∗] �∈ ‖GBi¬Ki G pk‖t∗Nt∗
, for some t ≥ t∗. So (11.103) holds,

in light of (11.101).
Case 2: wτt [h(c∗)/ i, t∗] ∈ ‖GBi¬Ki G pk‖t∗Nt∗

, for all t ≥ t∗. Then since τ |t = τt |t ,
for each t ≥ t∗, we have that wτ [h(c∗)/ i]≥t∗ ∈ ‖GBi¬Ki G pk‖t∗Nt∗

. Note that wτ ∈
Iwτt ,i,t

∗ by construction and (11.1). So (11.104) holds, in light of (11.100). ��
Invalidity of statements (FB–F.4) One merely has to check that the respective antecedents
of the various conditionals are satisfied by each world wτt in the proof of (11.40).
For (FB), observe that ¬φ is true in wτt , by construction. For (F.2), observe that c∗
suspends belief concerning ¬Ki¬φ. For (F.4), observe both that c∗ suspends belief
concerning ¬φ and that ¬φ is true in wτt . For (F.3), let w ∈ W and let total recursive h
preserve both φ and ψ. To refute the second disjunct of (F.3) in w, let c∗∗ follow the
strategy of c∗ with respect to φ, except that c∗∗ believes that ¬Ki ψ no matter what.
Then, due to c∗∗’s suspension of belief whether ψ at t∗, we have that c∗∗ witnesses the
truth of Ki¬Ki ψ in every world, so the argument for (11.40) establishes the falsehood
of the second disjunct of (F.3) in w. Reversing the roles of φ and ψ establishes that
the first disjunct of (F.3) is also false in w. ��
Proof of statement (11.45) Define total recursive fe just as in the proof of (11.38),
except that Ki

kφ is replaced with KG
kφ. For j ∈ G−, define total recursive f j just

like fe, but with the condition Lc(σ|t ′,Bi φ) = 1) in place of condition Lc(σ|t ′,φ) =
1). Apply (11.63) to each fi to obtain respective, total recursive function hi . Let
h = (h1, . . . , hN ).

Suppose that φ ∈ �e and that �i ∩ Kω
G = ∅, for each i ∈ G. By the definition of h,

we have that for all c ∈ C N :

c ≡� h(c); (11.105)

so h preserves �. By construction, h depends only on �. Furthermore, for all i ∈ G,
z ∈ W , t ∈ T , and k ∈ N:

Lh(c)(si,z |t,@t∗¬KG
k φ) = 1 ⇔ Lh(c)(si,z |t,@t∗KG

k φ) = 0; (11.106)

Suppose that u ∈ Ii,w,t∗ satisfies:

u ∈ ‖IS5G‖t∗Mt∗ ; (11.107)

u ∈ ‖TG,e φ‖t∗Mt∗ ; (11.108)

u ∈ ‖SG,e�‖t∗Mt∗ ; (11.109)

u ∈ ‖KG,e φ‖t∗Mt∗ . (11.110)

Abbreviate:
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c = ci,u,t∗ ;
x = u[h(c)/ i, t∗].

From (11.105), (11.109) and (11.110), obtain via Proposition 11.3 that:

x ∈ ‖KG,e φ‖t∗Mt∗ . (11.111)

Note that for j ∈ G− and z ∈ W we have by the definition of h that:

Lhe(ce)(si,z |t,@t∗KG
k φ) = 1⇔ (∀t ′ : t∗ ≤ t ′ ≤ t) Lhe(ce)(si,z |t ′,@t∗ φ) = 1;

(11.112)

Lh j (c j )(si,z |t,@t∗KG
k φ) = 1⇔ (∀t ′ : t∗ ≤ t ′ ≤ t) Lh j (c j )(si,z |t ′,@t∗BG,e φ) = 1;

(11.113)

Let y ∈ DG,x,t∗ ⊆ IG,x,t∗ . So y ∈ IG,u,t∗ by (11.43). Then by (11.108), we have for
all j ∈ G− that y ∈ ‖GC̃ j Be φ‖t∗Mt∗

. Hence, by (11.112)–(11.113), we have for all
i ∈ G, y ∈ DG,x,t∗ , and k ∈ N:

Lhi (ci )(si,y |t,@t∗KG
k φ) = 1⇔ (∀t ′ : t∗ ≤ t ′ ≤ t)

× Lhe(ce)(si,y |t ′,@t∗ φ) = 1; (11.114)

By (11.111), (11.106), and (11.114), we have that x ∈ ‖KG, j φ‖t∗Mt∗
, for all j ∈ G−,

so again by (11.111) we have x ∈ ‖KG
1 φ‖t∗Mt∗

, and hence, that x ∈ ‖φ‖t∗Mt∗
=

‖KG
0 φ‖t∗Mt∗

. Thus, we have the base case ‖K 1
G(φ)‖t

∗
Mt∗

.

Next, assume for induction that x ∈ ‖K k+1
G (φ)‖t∗Mt∗

and show that x ∈ ‖K k+2
G

(φ)‖t∗Mt∗
. By the induction hypothesis, we have, for each i ∈ G that:

x ∈ ‖KG,i KG
k φ‖t∗Mt∗ ; (11.115)

and, therefore:

x ∈ ‖GCi KG
k φ‖t∗Mt∗ ; (11.116)

y ∈ ‖FG¬ẼKG
k φ‖t∗Mt∗ , for all y ∈ DG,x,t∗ . (11.117)

For x ∈ ‖K k+2
G (φ)‖t∗Mt∗

, it suffices to show, for each i ∈ G, that: x ∈ ‖KG,i KG,i KG
k

φ‖t∗Mt∗
. For that, it suffices, in turn, to show:

x ∈ ‖GCi KG,i KG
k φ‖t∗Mt∗ ; (11.118)

x ∈ ‖FG¬ẼKG,i KG
k φ‖t∗Mt∗ , for all y ∈ DG,x,t∗ . (11.119)
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Requirement (11.118) expands to the requirements:

x ∈ ‖KG,i KG
k φ‖t∗Mt∗ ; (11.120)

x ∈ ‖G[B]i KG,i KG
k φ‖t∗Mt∗ ; (11.121)

x ∈ ‖G〈B〉i KG,i KG
k φ‖t∗Mt∗ . (11.122)

Requirement (11.120) is just (11.115). Hence, (11.116) yields:

x ∈ ‖G[B]i KG
k φ‖t∗Mt∗ ; (11.123)

x ∈ ‖G〈B〉i KG
k φ‖t∗Mt∗ . (11.124)

Requirements (11.121)–(11.122) follow from (11.123) to (11.124) and properties
(11.106) and (11.114) of h.

For reuirement (11.119), suppose that y ∈ DG,x,t∗ . It suffices to show that for all
y ∈ DG,x,t∗ :

y ∈ ‖GF[B]i¬KG,i KG
k φ‖t∗Mt∗ ⇒ y �∈ ‖KG,i KG

k φ‖t∗Mt∗ ; (11.125)

y ∈ ‖GF[B]i KG,i KG
k φ‖t∗Mt∗ ⇒ y ∈ ‖KG,i KG

k φ‖t∗Mt∗ . (11.126)

For requirement (11.125), suppose that y ∈ ‖GF[B]i¬KG,i KG
k φ‖t∗Mt∗

. Then by

properties (11.114) and (11.106) of h, we have that y �∈ ‖G[B]i KG
k φ‖t∗Mt∗

. So

y �∈ ‖KG,i KG
k φ‖t∗Mt∗

.
For requirement (11.126), suppose that:

y ∈ ‖GF[B]i KG,i KG
k φ‖t∗Mt∗ (11.127)

For the consequent y ∈ ‖KG,i KG
k φ‖t∗Mt∗

, it suffices, as usual, to show the require-
ments:

y ∈ ‖GCi KG
k φ‖t∗Mt∗ ; (11.128)

z ∈ ‖FG¬Ẽi KG
k φ‖t∗Mt∗ , for all z ∈ DG,y,t∗ . (11.129)

Requirement (11.129) is just (11.117), since DG,y,t∗ = DG,u,t∗ by (11.107).35

Requirement (11.128) expands to:

35 This is the proof’s only appeal to the S5 property for information.
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y ∈ ‖KG
k φ‖t∗Mt∗ ; (11.130)

y ∈ ‖G[B]i KG
k φ‖t∗Mt∗ ; (11.131)

y ∈ ‖G〈B〉i KG
k φ‖t∗Mt∗ . (11.132)

For requirement (11.130), we have from (11.127) and property (11.114) of h that
y ∈ ‖GF[B]i KG

k φ‖t∗Mt∗
. So y ∈ ‖KG

k φ‖t∗Mt∗
, by (11.117). For requirement (11.131),

note that (11.127), along with property (11.114) of h implies that y ∈ ‖G[B]i φ‖t∗Mt∗
,

which again, in light of property (11.114) implies requirement (11.131). Requirement
(11.132) is then immediate by property (11.106) of h. ��
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Chapter 12
Structures for Epistemic Logic

Nick Bezhanishvili and Wiebe van der Hoek

Abstract In this chapter we overview the main structures of epistemic and doxastic
logic. We start by discussing the most celebrated models for epistemic logic, i.e.,
epistemic Kripke structures. These structures provide a very intuitive interpretation
of the accessibility relation, based on the notion of information. This also naturally
extends to the multi-agent case. Based on Kripke models, we then look at systems that
add a temporal or a computational component, and those that provide a ‘grounded’
semantics for knowledge. We also pay special attention to ‘non-standard semantics’
for knowledge and belief, i.e., semantics that are not based on an underlying relation
on the sets of states. In particular, we discuss here neighbourhood semantics and
topological semantics. In all of these approaches, we can clearly point at streams of
results that are inspired by work by Johan van Benthem. We are extremely pleased
and honoured to be part of this book dedicated to his work and influences.

12.1 Introduction

Epistemic modal logic in a narrow sense studies and formalises reasoning about
knowledge. In a wider sense, it gives a formal account of the informational attitude
that agents may have, and covers notions like knowledge, belief, uncertainty, and
hence incomplete or partial information. As is so often the case in modal logic, such
formalised notions become really interesting when studied in a broader context.
When doing so, epistemic logic in a wider sense in fact relates to most of the other
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chapters in this book. What if we add a notion of time or action (Chap. 20): how
does an agent revise its beliefs (cf. Chap. 7), or update its knowledge (Chap. 6)?
And even if we fix one of the notions of interest, say knowledge, if there are many
agents, how can we ascribe some level of knowledge to the group, and how do we
represent knowledge of one agent about the knowledge (or ignorance, for that matter)
of another (cf. Sect. 12.2.1)? What are reasonable requirements on the interaction
between knowledge and strategic action (Chap. 14), and how is uncertainty dealt
with in more general, qualitative models of agency (Chap. 11)?

Hintikka, notably through [69], is broadly acknowledged as the father of modern
epistemic modal logic. Indeed, [69] gives an account of knowledge and belief based
on Kripke models. In a nutshell, crucial for this semantics is the notion of a set of states
or worlds, together with a binary relation for each agent, determining which worlds
‘look the same’, for the agent, or ‘carry the same information’. Many disciplines
realised the importance of the formalisation of knowledge, using Kripke semantics
(or a close relative of it). Examples of such disciplines are Artificial Intelligence
(notably Moore’s [91] on actions and knowledge) philosophy [70], game theory
(see Aumann’s formalisation of common knowledge, [4]. Aumann’s survey [5] on
interactive epistemology can easily be recast using a Kripke semantics), and agents
(the underlying semantics of the famous BDI approach by Rao and Georgeff for
instance [96] is based on Kripke models). For more references to those disciplines,
we refer to the chapters on the relevant topics in this book.

Another important aspect of this chapter is to review the neighbourhood and
topological semantics of epistemic and doxastic logic. Topological semantics of
modal logic originates from the ground-laying work of McKinsey and Tarski [87].
In recent years there has been a surge of interest in this semantics not least because
of its connection to epistemic and doxastic logic. van Benthem (not surprisingly) has
been in the centre of the recent developments in the area.

In short, the aim of this chapter is to explain some of the most popular semantic
structures used to model informational attitudes, and at several places we have plenty
of opportunity to point at van Benthem’s contribution to the field. In fact, Johan’s
work spins over the different semantics of epistemic logic that we discuss here. It
builds bridges between many different areas. Therefore, we cannot think of a better
place for publishing this chapter than a volume dedicated to Johan’s contributions.

The chapter is organised as follows. In Sect. 12.2, we briefly introduce a family
of modal epistemic languages that are interpreted on the structures to be discussed.
We also discuss the most popular axiom systems for multi-agent knowledge and
belief. Then, in Sect. 12.3, we introduce probably the most celebrated structures
for epistemic logic, i.e., epistemic Kripke structures. Based on Kripke models, we
then add a temporal or a computational component, and also provide a ‘grounded’
semantics for knowledge. In Sect. 12.4 we consider ‘non-standard’, or ‘generalised’
semantics for knowledge and belief, i.e., semantics that are not based on an underlying
relation on the sets of states. In particular, we discuss here neighbourhood semantics
and topological semantics. In Sect. 12.5, we conclude.
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12.2 Epistemic Logic: Language and Axiom Systems

Let us first agree on a formal language for reasoning about information of agents.

Definition 12.1 (A Suite of Modal Epistemic Languages) We assume a set At =
{p, q, p1, . . . } of atomic propositions, a set of agents Ag = {1, . . . ,m} and a set of
modal operators Op. Then we define the language L(At,Op,Ag) by the following
BNF:

ϕ := p | ¬ϕ | (ϕ ∧ ϕ) | �ϕ

where p ∈ At and � ∈ Op.

Abbreviations for the connective ∨ (‘disjunction’), → (‘implication’) and ↔
(‘equivalence’) are standard. Moreover the dual ♦ϕ of an operator �ϕ is defined as
¬�¬ϕ. Typically, the set Op depends on Ag. For instance, the language for multi-
agent epistemic logic is L(At,Op,Ag) with Op = {Ka | a ∈ Ag}, that is, we have a
knowledge operator for every agent. Kaϕ reads ‘agent a knows that ϕ’, so that Kaϕ∨
Ka¬ϕwould indicate that agent a knows whetherϕ (which should be contrasted with
the ‘propositional’ validity (Kaϕ ∨ ¬Kaϕ) and the ‘modal’ validity Ka(ϕ ∨ ¬ϕ)).
The dual of Ka is often written Ma . So for instance Maϕ ∧ Maψ ∧ ¬Ma(ϕ ∧ ψ)
says that agent a holds both ϕ and ψ to be possible, although he knows that ϕ and ψ
do not both hold. For a language in which one wants to study interaction properties
between knowledge and belief, we would have Op = {Ka, Ba | a ∈ Ag}. A typical
interaction property in such a language would be

Kaϕ→ Baϕ (12.1)

but of course not the other way around, since one would like the two notions of
knowledge and belief not to collapse: [76] for instance assume (12.1) and Baϕ →
Ka Baϕ as an axiom, but warn that ‘the interesting formula Baϕ → Ba Kaϕ is not
included in our system’, the reason for it being that knowledge and belief would
become the same. This lead [73] to study ‘how many’ interaction between the two
notions one can allow before they become the same: the latter study is in fact an
application of correspondence theory, a notion developed by van Benthem in his
PhD thesis [9], to which we will come back later (note also that Chap. 22 in this
volume is dedicated to this topic).

So what then are the properties of knowledge and belief proper, and how do the
two notions differ? To start with the latter question, in modal logic it is often assumed
that knowledge is veridical, where belief is not. In other words, knowledge satisfies
Kaϕ→ ϕ as a principle, while for belief, it is consistent to say that a believes certain
ϕ, although ϕ is in fact false. Of course, agent a will not consider this a possibility:
indeed, in the ‘standard’ logic for belief, we have that Ba(Baϕ → ϕ) is valid. The
axioms Taut and K� and the inference rules MP and Nec� form the modal logic K
(Table 12.1). For knowledge, one then often adds veridicality (T), and positive- (4)

http://dx.doi.org/10.1007/978-3-319-06025-5_22
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Table 12.1 Basic modal and epistemic and doxastic axioms

Basic modal properties Epistemic and Doxastic properties

Taut All instantiations of propositional tautologies D ¬�ϕ
K� �(ϕ→ ψ)→ (�ϕ→ �ψ) T �ϕ→ ϕ

MP From ϕ and ϕ→ ψ , infer ψ 4 �ϕ→ ��ϕ
Nec� From ϕ, infer �ϕ 5 ¬�ϕ→ �¬�ϕ

and negative introspection (5). For belief, veridicality is usually replaced by the
weaker axiom consistency (D). If there are m agents (i.e., m knowledge operators
K1, . . . , Km), the axioms of K + {T, 4} are referred to as S4m , the axioms of K +
{T, 4, 5} are referred to as S5m , and we call the agents in the latter case epistemic
agents. The arguably most popular logic for belief K + {D, 4, 5} is usually denoted
KD45m . In fact, agents that are veridical and negatively introspective must already
be positively introspective (and hence epistemic agents), i.e., K + {T, 5} � 4.

A normal modal logic is a set of formulas L containing all instances of axioms of
K and closed under the rules MP and Nec�. We write L � ϕ if ϕ is a theorem of L .

12.2.1 Multi-agent Notions

To speak with van Benthem, One is a lonely number [12], and the notions of knowl-
edge and belief become only more interesting in a multi-agent setting (and, as [12]
also argues, in a dynamic setting, but for this, we refer to Chap. 6). Let A ⊆ Ag be a
set of agents. One can then introduce an operator that says that everybody in A knows
something: E Aϕ = ∧

a∈A Kaϕ (instead of EAg, write E). Obviously, this does not
expand the logic’s expressivity, but it does indeed decrease the descriptive complex-
ity [50]: even in S5m , having the operator E A (if | A |≥ 4) makes the language more
succinct.

One could in a similar way, using disjunctions, define a notion of ‘somebody
knows’. However, arguably a more interesting (and logically stronger) notion is that
of distributed knowledge DAϕ in a group A of ϕ. For instance, if a knows that every
modal logician is interested in epistemic logic, and b knows that van Benthem is a
modal logician, then there is distributed knowledge among a and b that van Benthem
is interested in epistemic logic, even if none of the agents needs to know this.

Arguably the most interesting epistemic group notion is that of common knowl-
edge of a group. Common knowledge of ϕ is supposed to mean that everybody knows
ϕ, and moreover, everybody knows that, and everybody knows …. If our language
would allow for infinite formulas, common knowledge would be captured by the
infinite conjunction

Eϕ ∧ E Eϕ ∧ E E Eϕ ∧ . . . (12.2)

http://dx.doi.org/10.1007/978-3-319-06025-5_6
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Table 12.2 Axioms and inference rules for group-, common- and distributed knowledge

Everybody’s and common knowledge Distributed knowledge

E Eϕ ↔∧
a∈Ag Kaϕ D1

∨
a∈Ag Kaϕ→ Dϕ

KC C(ϕ→ ψ)→ (Cϕ→ Cψ) KD D(ϕ→ ψ)→ (Dϕ→ Dψ)
Mix Cϕ→ (ϕ ∧ ECϕ) T Dϕ→ ϕ

Ind C(ϕ→ Eϕ)→ (ϕ→ Cϕ) 5 ¬Dϕ→ D¬Dϕ
NecC From ϕ, infer Cϕ NecD From ϕ, infer Dϕ

Phrased negatively, ϕ is not common knowledge as long as somebody considers it
possible that somebody considers it possible that …somebody considers it possible
that ϕ is false. Common knowledge explains why social laws (like a green traffic
light) work: when approaching a green light, I not only know that I have right of way,
but I also know that you know this, and that you know that I know it, etc. In games,
common knowledge of rationality explains why certain strategies can be singled
out as being in equilibrium (see Chap. 14). The axioms for common knowledge are
KC,Mix, Ind and inference rule NecC from Table 12.2. If Lm is a logic with m
operators Ka , then adding the axioms E,KC,Mix, Ind and rule NecC is denoted
by LC

m . Similarly for L D
m for L with the axioms for distributed knowledge added.

Sometimes, the axiom Ind is replaced by the inference rule

From ϕ→ E(ψ ∧ Cϕ) infer ϕ→ Cψ. (RInd)

Axioms and inference rules for the epistemic group notions discussed here are given
in Table 12.2. They are usually added to S5m . Notions of common belief and dis-
tributed belief also exist: for those, one usually adds slightly weaker axioms.

As for instance explained by van Benthem in [14], we can define common knowl-
edge Cϕ also as a fixed point of the following operator:

ϕ ∧ Ex (12.3)

A fixed point ψ of this operator satisfies ψ = ϕ ∧ Eψ = ϕ ∧ E(ϕ ∧ Eψ) . . . in
which one recognises the Mix axiom. Moreover, the Ind axiom states that we have
a greatest fixed point, which can be obtained by iterated application of the operator
to
, giving ϕ∧ E
, ϕ∧ E(ϕ∧ E
), ϕ∧ E(ϕ∧ E(ϕ∧ E
)), etc., see Sect. 12.3.1
for more details.

Common knowledge is obviously the strongest epistemic notion discussed here,
while distributed knowledge is the weakest (see 12.4). As a consequence, common
knowledge will be typically obtained for ‘weak’ formulas ϕ only (even if everybody
in a group knows that Santa Claus does not exist, this does not have to be common
knowledge), while distributed knowledge may pertain to ‘strong’ statements (no
matter how large the group is, there is distributed knowledge about the fact whether
there are two members sharing their birthday). In terms of Fagin et al. [47], common
knowledge is what ‘any fool’ knows, while distributed knowledge characterises what

http://dx.doi.org/10.1007/978-3-319-06025-5_14
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Table 12.3 Axioms and inference rules for linear temporal logic with next and until

Next Next and until

K � �(ϕ→ ψ)→ ( �ϕ→ �ψ)

T2
�¬ϕ ↔ ¬ �ϕ T3 ϕUψ ↔ ψ ∨ (ϕ ∧ �(ϕUψ))

Nec � From ϕ, infer �ϕ RT From ϕ′ → ¬ψ ∧ �ϕ, infer ϕ′ → ¬(ϕUψ)

the ‘wise man’ knows. It is not difficult to see that when one adds the principles of
Table 12.2 to S5m , both the wise man and the fool are epistemic agents.

Cϕ ⇒ Eϕ ⇒ Kaϕ ⇒ Dϕ ⇒ ϕ (12.4)

12.2.2 Knowledge and Time

One of the most prominent themes in van Benthem’s work in the last two decades
is that of dynamics. There is a complete chapter (Chap. 6) in this volume dedicated
to Dynamic Epistemic Logic. A simple setting to study dynamics of epistemics is
obtained by combining temporal and epistemic logic (temporal logic is the subject
of Chap. 20). Popular temporal models of agency are linear time models or else
trees. For both, one can use Linear Time Logic (ltl) to reason about them. In the
latter case, properties of the tree are those true on all of its branches (in ctl, one
can quantify over branches as well). In ltl, one uses operators for �ϕ (‘in the next
state’), (‘always in the future’),♦ (‘some time in the future’) and U (where ϕUψ
denotes ‘ϕ holds untilψ is true’). When we want to refer to the memory of the agents,
also past-time operators are used, allowing for �ϕ (‘in the previous moment’), �
(‘always in the past’) and � (‘some time in the past’).

Some axioms for linear temporal time logic with future operators are given in
Table 12.3. Let us call the logic consisting of them LT L . The future operators ‘some
time’ and ‘always’ can be defined as♦ϕ = ¬ϕUϕ and ϕ = ¬♦¬ϕ, respectively.
Axiom T2 says that �is functional (this is the←-direction, saying there is at most
one next state) and serial (the→-direction, saying there is at least one next state). T3
defines until: ‘ϕ until ψ’ is equivalent to saying that ‘either ¬ψ , or ϕ holds while in
the next state, ϕ until ψ’. The rule RT explains how ¬(ϕUψ) can be inferred, and
this rule is reminiscent of the induction rule (RInd) for common knowledge (cf. [47,
Theorem 8.1.1(e)]).

Similarly to common knowledge, the until operator also allows a fixed point
definition as the least fixed point of ψ ∨ (ϕ ∧ ♦x). As always, things become more
interesting when we look at properties that relate the modalities (for knowledge and
time in this case) that we have. Typical mix properties for knowledge and time are
then for instance

Ka
�ϕ→ �Kaϕ & �Kaϕ→ Ka

�ϕ

(perfect recall (PR) & no surprise (NS))

http://dx.doi.org/10.1007/978-3-319-06025-5_6
http://dx.doi.org/10.1007/978-3-319-06025-5_20


12 Structures for Epistemic Logic 345

NS is sometimes called no learning: it expresses that everything that one will know
in the next state, is currently already known to hold next. Readers interested in these
notions should also consult Chap. 20 by Goranko and Pacuit in this volume.

12.3 Relational Epistemic Structures for Knowledge

We now present a semantics for our formal language, based on Kripke models.

12.3.1 Kripke Models

Definition 12.2 (Kripke models and epistemic models) A Kripke model M for
L(At,Op,Ag) is a tuple 〈S, R, V 〉 where S is a set of states, or worlds, R asso-
ciates each � ∈ Op with an accessibility relation R(�) ⊆ S × S. Rather than
(s, t) ∈ R(�) we write s R�t . Finally, V assigns to each atom p ∈ At a set of states
V (p) ⊆ S: those are the states in M where p is true. A tuple 〈S, R〉 is called a frame.
For M = 〈S, R, V 〉, we will sloppily write s ∈ M for s ∈ S. Truth of ϕ in a pair
M, s (with s ∈ M) is then defined as follows:

M, s |= p iff s ∈ V (p)
M, s |= ϕ ∧ ψ iff M, s |= ϕ and M, s |= ψ
M, s |= ¬ϕ iff not M, s |= ϕ
M, s |= �ϕ iff for all t such that s R�t,M, t |= ϕ.

For F = 〈S, R〉, the notion F |= ϕ is defined as ∀V,∀s, 〈S, R, V 〉, s |= ϕ. In that
case, we say that ϕ is valid in F . We write F |= L , if F |= ϕ for each ϕ ∈ L . If
there exists s ∈ S and a valuation V , such that 〈S, R, V 〉, s |= ϕ, then we say that
ϕ is satisfiable in F . If � is a set of formulas, we say � is satisfiable in F if there is
s ∈ S and a valuation V , such that 〈S, R, V 〉, s |= ϕ for each ϕ ∈ �. Validity of ϕ
on a model M is defined as M, s |= ϕ for all s ∈ M . The class of all Kripke models
〈S, R, V 〉 with m accessibility relations R(�) is denoted Km .

Let C be some class of models. If M |= ϕ for each M ∈ C, then we say that ϕ
is valid in C, and write C |= ϕ. Examples of classes of models are Km (all Kripke
models with m relations), S4m (models with m relations, all being reflexive and
transitive), KD��45m (all relations being serial, transitive and Euclidean) and S5m

(all relations are equivalence relations). Also, Um is the class of models where all m
relations are the universal relation. If Cm is a class of models for m agents, CC

m is the
class obtained by adding a relation RC , which is the transitive closure of the union
of the m relations. Likewise, CD

m has a relation RD which is the intersection of the
relations in the model.

If Op contains one modal operator for each agent, we often write Ra rather than
for instance RKa or RBa . When all the operators are epistemic operators Ka , we

http://dx.doi.org/10.1007/978-3-319-06025-5_20
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p

M1
a b

s1

Fig. 12.1 A simple two-agent one-atom scenario

M2

M3

a, b

a, b

M4

a

s2

s3

s4

b aa

b aa bM5

s5

Fig. 12.2 Four ‘different’ models Mi , si for p ∧ ¬Ka p ∧ ¬Kb p. States where p is true have a
thick circle

write ∼a for RKa , and we assume that ∼a is an equivalence relation. A model with
such relations is called an epistemic model, and will be denoted M = 〈S,∼, V 〉. A
pair M, s is also called a pointed Kripke model or pointed epistemic model. So S5m

represents the class of all epistemic models.
In epistemic models, the interpretation of s ∼a t is that ‘states s and t look similar

for a’, or ‘in s and t , agent a has the same information’, or, ‘given state s, agent a
considers it possible that the state is t’. These informal readings make it plausible
that ∼a is an equivalence relation indeed.

An extremely simple multi-agent scenario involving two agents a and b and one
atom p is given in Fig. 12.1. The pointed model M1, s1 models a situation where
it is given that “p, but a and b don’t know it”. Let us denote this scenario by σ .
Alternative models for the same scenario are given in Fig. 12.2. In our representation
of such a model, states in which p is true are denoted with a thick circle, and a line
between two states labeled with an agent means that the two states are similar for
that agent— we omit reflexive arrows which are supposed to be present in all states.

We already mentioned van Benthem’s pioneering work in Correspondence Theory
[9, 10]. This theory establishes a formal connection between first-order properties
of the accessibility relation on the one hand, and axioms or formula schemes, on
the other. For instance, the axiom T corresponds to reflexivity, 4 to transitivity and
5 corresponds to the underlying accessibility relation being Euclidean. Since a re-
lation that is reflexive, transitive and Euclidean is an equivalence relation, this then
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helps us establish that the logic S5m is sound and complete wrt epistemic models
(the doxastic logic KD45m is sound and complete wrt models where the accessibility
relations RBa are serial, transitive and Euclidean). See also Sect. 12.3.2, in particular
Theorem 12.1.

By way of illustration of a proof of correspondence, let us follow [13] to show
the correspondence between 4 and transitivity.

Fact 12.1 (Fact 1.1 [13]) F, s |= �p → ��p iff F’s accessibility relation R is
transitive at the point s: i.e., F, s |= ∀yz((s Ry & y Rz)⇒ s Rz).

Proof If the relation is transitive, �p→ ��p clearly holds under every valuation.
Conversely, let F, s |= �p → ��p. It means that this axiom holds for every
valuation V , so in particular when V (p) = {y | s Ry}. For this V , the antecedent
of the model formula holds at s, and hence so does ��p. By definition of V , this
implies that R is transitive.

Given an epistemic model 〈S,∼, V 〉, it turns out that the group epistemic notions
E,C and D can all be interpreted as modal operators with respect to some binary
relation that is defined in terms of the individual relations ∼a . More precisely, the
operator E is the necessity operator for the relation ∼E= ∪a∈Ag ∼a : in order for
Eϕ to be true at M, s, the formula ϕ needs to be true in all successors of s, no matter
which agent we choose.1 In Fig. 12.1 for instance, we have M1, s1 |= E Ma¬p
(both a and b know that a considers a ¬p-state possible) while M1, s1 |= ¬E Ma p
(since b considers it possible that a knows ¬p). One can also use correspondence
theory to see that D can be interpreted as the modal operator for a relation∼D , with
∼D ⊆ ∩a∈Ag ∼a . At the end of Sect. 12.3.2, we will argue that for completeness, one
can even replace the ‘⊆’ by ‘=’. In terms of Fig. 12.1 again, we have M1, s1 |= Dp.

For common knowledge, the corresponding property is not first order definable,
but van Benthem explains in [13] how it corresponds with a property in First-Order
Logic with Least Fixed Points, see also [22].

We briefly recall the semantics of modal μ-calculus (e.g., [35]), skipping some
well-known details. The formulas of modal μ-calculus are modal formulas extended
with the formulas of typeμxϕ and νxϕ for ϕ positive in x (i.e., if each occurrence of
x is under the scope of an even number of negations). Let 〈S, R〉 be a Kripke frame.
For each modal μ-formula ϕ and a valuation V , we define the semantics [[ϕ]]V of ϕ
by induction on the complexity of ϕ. If ϕ is a propositional variable, a constant, or
is of the form ψ ∧ χ , ψ ∨ χ , ¬ψ , �ψ or ♦ψ , then the semantics of ϕ is defined as
above. For each valuation V , we denote by V U

x a new valuation such that V U
x (x) = U

and V U
x (y) = V (y) for each propositional variable y �= x and U ∈ P(S).

Let ϕ be positive in x , then

[[μxϕ]]V =
⋂
{U ∈ P(S) : [[ϕ]]V U

x
⊆ U }. (12.5)

[[νxϕ]]V =
⋃
{U ∈ P(S) : [[ϕ]]V U

x
⊇ U }. (12.6)

1 For easy of readability, we give the group notions with A = Ag: cases for A ⊆ Ag are similar.
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We will skip the index V if it is clear from the context. Note that [[μxϕ]]V and
[[νxϕ]]V are, respectively, the least and greatest fixed points of the map fϕ,V :
P(S) → P(S) defined by fϕ,V (U ) = [[ϕ]]V U

x
. That ϕ is positive in x guaran-

tees that fϕ,V is monotone. Therefore, by the celebrated Knaster-Tarski theorem
these fixed points exist and are computed as in (12.5) and (12.6). The least and
greatest fixed points can also be reached by iterating the map fϕ,V . In particular,

for an ordinal α we let f 0
ϕ,V (∅) = ∅, f αϕ,V (∅) = fϕ,V ( f βϕ,V (∅)) if α = β + 1,

and f αϕ,V (∅) =
⋃
β<α f βϕ,V (∅), if α is a limit ordinal, and we let f 0

ϕ,V (S) = S,

f αϕ,V (S) = fϕ,V ( f βϕ,V (S)) if α = β+ 1, and f αϕ,V (S) =
⋂
β<α f β(S), if α is a limit

ordinal. Then [[μxϕ]]V = f αϕ,V (∅), for some ordinal α such that f α+1
ϕ,V (∅) = f αϕ,V (∅)

and [[νxϕ]]V = f αϕ,V (S), for some ordinal α such that f α+1
ϕ,V (S) = f αϕ,V (S).

Thus, we have two different ways of computing fixed point operators resulting
in the same semantics. As we will see in the next section this is no longer the case
in topological semantics. Now we have all the formal machinery for giving a fixed
point definition of common knowledge. We let

Cϕ = νx(ϕ ∧ Ex). (12.7)

A fixed point formula μxϕ (νxϕ) is called constructive if the least (greatest) fixed
point can be reached after countably many iterations of fϕ,V . Fontaine [49] gives a
syntactic description of all continuous fixed point formulas that form a sub-fragment
of all constructive formulas. Using this description it is easy to see that Cϕ is the con-
tinuous and hence in the constructive fragment of all fixed point formulas. Therefore,
in order to compute common knowledge we need only countably infinite iterations.

It is easy to see that Cϕ expresses the reflexive transitive closure, i.e., ‘some
ϕ-world is reachable in finitely many ∼E -steps’ [13, Example 6]. Next we will
compute common knowledge following our fixed point definition in some of the
models shown in Fig. 12.2. In M1 we have V (p) = {s1}. So if ϕ = p ∧ �a x ∧
�bx , then

f 0
ϕ,V (S) = [[ϕ]]V S

x

= V (p) ∩ [[�a x]]V S
x
∩ [[�bx]]V S

x

= {s1} ∩ S ∩ S = {s1}.

Then

f 1
ϕ,V (S) = {s1} ∩ [[�a x]]

V
f 0
ϕ,V (S)

x

∩ [[�bx]]
V

f 0
ϕ,V (S)

x

= {s1} ∩ [[�a x]]
V
{s1}
x
∩ [[�a x]]

V
{s1}
x

= {s1} ∩ ∅ ∩ ∅ = ∅.
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Finally, observe that fϕ,V (∅) = ∅. So we reached the least fixed point and [[Cp]] =
[[νxϕ]] = ∅.

Now consider the second model and the formula σ = ¬Ka p ∧ ¬Kb p. It is easy
to see that in M2 we have [[σ ]]V = S. Let ϕ = σ ∧ �a x ∧ �bx . Then f 0

ϕ,V (S) =[[ϕ]]V S
x
= [[σ ]]V ∩ [[�a x]]V S

x
∩ [[�b]]V S

x
= S ∩ S ∩ S = S. This means that S is

the greatest fixed point of fϕ,V . So [[Cσ ]] = [[νxϕ]] = S. We leave it up to the
reader to compute common knowledge of various formulas in other models depicted
in Fig. 12.2.

Note that M1, s1 |= Eϕ ↔ Cϕ, but also that M4, s4 |= E¬Kb p∧¬C¬Kb p. The
pointed epistemic model M2, s2 not only models the scenario σ : p∧¬Ka p∧¬Kb p
but also that this is common knowledge: M2, s2 |= Cσ . It is the only pointed model
Mi , si (i ≤ 5) with this property.

Correspondence properties make modal logic a flexible tool to model epistemic
and doxastic logics: once one has decided on the desired properties of the informa-
tional attitude, like negative introspection, the Kripke models obtained need just to
satisfy an additional property, like Euclideaness. It also helps provide a neat analysis
of informational group notions. There are also some drawbacks using Kripke models
for knowledge and belief: we will come back to this in Sect. 12.4.1.

12.3.2 Completeness

In this section we briefly recall soundness and completeness of some important modal
logics. Let L be a (normal) modal logic defined in Sect. 12.2. Recall that a (normal)
modal logic L is called sound wrt a class K of Kripke frames if F |= L for each
F ∈ K. Logic L is called complete wrt K if for each formula ϕ, if ϕ is L-consistent
(i.e., L ∪ {ϕ} �� ⊥), then there is F ∈ K such that ϕ is satisfied in F . A frame F is
called an L-frame if F |= L . It is easy to see that if L is sound and complete wrt
some class K, then it is sound and complete wrt the class of all L-frames. L is called
strongly complete wrt a class K of Kripke frames if for each set of formulas �, if �
is L-consistent (i.e., L ∪ � �� ⊥), then there is F ∈ K such that � is satisfied in F .

Recall also that a transitive frame F = 〈S, R〉, is called rooted if there exists
s ∈ S, called a root, such that for each s′ ∈ S with s′ �= s we have s Rs′. It is well
known that if a logic is sound a complete, then it is sound and complete wrt a class
of rooted L-frames.

A standard method for proving completeness of modal logics is via the canonical
model construction. We briefly review it here. In the next section we explain how this
construction is generalised to the topological setting. All the details can be found in
any modal logic textbook, e.g., [34] or [37].

Given a logic L , one considers the set SC of all maximal L-consistent sets of
formulas. A relation RC on SC is defined in the following way: for each �,
 ∈ SC ,
�RC

�
 if for each formula ϕ we have�ϕ ∈ � implies ϕ ∈ 
. Finally, the valuation
V C on SC is defined by � ∈ V C (p) if p ∈ �. The model MC = 〈SC , RC , V C 〉 is
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called the canonical model of L . Then one proves the Truth Lemma stating that for
each formula ϕ and � ∈ SC :

MC , � |= ϕ iff ϕ ∈ �.

Now suppose ϕ is L-consistent. Then by the Lindenbaum Lemma (see, e.g., [34,
37]), {ϕ} can be extended to a maximal consistent set �. By the Truth Lemma,
MC, � |= ϕ. Thus, we found a frame 〈SC , RC 〉 that satisfies ϕ. In order to finish the
proof we need to show that 〈SC , RC 〉 is an L-frame. If the latter is satisfied, then L
is called canonical. Therefore, canonical modal logics are Kripke complete.

It is a classical result of modal logic that if a normal modal logic L is axiomatised
by Sahlqvist formulas, then L is canonical, and hence Kripke complete, see e.g., [34]
or [37]. Together with the Sahlqvist-van Benthem correspondence result discussed
in the previous section, this theorem guarantees that every logic axiomatised by
Sahlqvist formulas is sound and complete wrt a first-order definable class of Kripke
frames. As a result we obtain that epistemic and doxastic logics S4m , S5m , KD45m

are all sound and complete with respect to corresponding classes of Kripke frames
discussed in the previous section.

We now summarise a number of completeness results for epistemic logics in the
following theorem. Proofs and extensions of them can be found in [47, Chap. 3.1],
and [88, Chap. 2] for epistemic logics, in [88, Chap. 1] and [33, Chap. 4] for normal
modal logics in general and in [53] for LT L . The set of models LIN is the set of all
linear orders: think of them as M = 〈N, Succ, V 〉, where x Succ y iff y = x + 1.

Theorem 12.1 In the following, m ≥ 1. Item 6 presents a logic and a semantics to
which it is sound and complete. All the other items present logics that are strongly
sound and complete with respect to the mentioned semantics:

1 Km and Km 5 S5m and S5m

2 S4m and S4m 6 S5C
m and S5C

m
3 KD45m and KD��45m 7 S5D

m and S5D
m

4 S51 and U1 8 LT L and LIN
Note that by (12.2), when only finite formulas are allowed, we will not be able to

find a strong completeness result for common knowledge: the set {Ep, E Ep, . . . } ∪
{¬Cp} is consistent, but not satisfiable. For logics with distributed knowledge, we
saw that in the canonical model, we only have RC

D ⊆ ∩a∈Ag RC
a . To also obtain

the converse, for any two sets � and 
 for which we have �(∩a∈Ag RC
a ) 
, but not

�RC
D
, one can replace 
 by n copies 
1, . . . ,
n , with �RC

i 
i . Of course, in
the context of for instance S5, one needs to take care that the relations remain an
equivalence relation, but this can be done: for a discussion see for instance [51].
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12.3.3 Expressivity and definability of Epistemic Models

Speaking with van Benthem’s [15, p. 32], one can ask: ‘When are two information
models the same?’ For instance, although all our five pointed models Mi , si verify
the same scenario σ , do they differ in some other sense?

Definition 12.3 ((Bi-)simulation) Let M = 〈S,∼, V 〉 and M ′ = 〈S′ ∼′, V ′〉 be two
epistemic models. A simulation between M and M ′ is a relation R ⊆ S × S′ such
that

Harmony If s Rs′ then for all p ∈ At, s ∈ V (p) iff s′ ∈ V ′(p).
Forth For all a ∈ Ag, if s ∼a t and s Rs′, then for some t ′ ∈ S′, t Rt ′ and s′ ∼′a t ′.

R is called a bisimulation if it moreover satisfies.

Back For all a ∈ Ag, if s′ ∼′a t ′ and s Rs′, then for some t ∈ S, t Rt ′ and s ∼a t .

If s Rs′ and R is a simulation, we say that M, s simulates M ′, s′; if R is a bisim-
ulation, we say that M, s and M ′, s′ are bisimilar.

As an example, note that M1, s1 simulates M3, s3, while M1, s1 and M5, s5 are
bisimilar. Roughly speaking, if M, s simulates M ′, s′, then ignorance (i.e., an Ma-
formula) is preserved from M, s to M ′, s′, and knowledge is preserved in the other
direction. A bisimulation preserves both.

Lemma 12.1 [15, Invariance Lemma] Let M and M ′ be finite models. Let L = L(At,
Op,Ag), with Op = {Ka | a ∈ Ag}. Then the following are equivalent:

(a) M, s and M ′, s′ are bisimilar,
(b) M, s and M ′, s′ satisfy the same formulas ϕ ∈ L.

Proof For (a)⇒ (b) one can follow a standard argument using induction on ϕ. For
the converse, let (b) be given and define x Rx ′ as x and x ′ satisfy the same formulas
from L. Clearly Atoms holds for R, and also, s Rs′. To show Forth, suppose x Rx ′
while x ∼a y for some agent a. Suppose there is no state y′ in S′ with y ∼a y′ for
which y Ry′ holds, i.e., for every y′ with y ∼a y′ there is a formula χ x+

y′− true in

x , but false in y′. Let χ be
∧
{y′|y∼a y′} χ

x+
y′−, then M, x |= χ while M ′, x ′ |= ¬χ ,

contradicting x Rx ′. Back is proven similarly.

This lemma implies that our pointed models M1, s1 and M2, s2 are not bisimilar,
since Ma Kb¬p is true in the first, but not in the second.

Where the invariance lemma says that ‘bisimulation has exactly the expressive
power of the modal language’ [11, p. 56] the following State Definition Lemma says
that every pointed epistemic model can be characterised by an epistemic formula in
the language with common knowledge.
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Lemma 12.2 [15, State Definition Lemma] For each finite pointed epistemic model
M, s there is a formula ϕ ∈ L(At,Op,Ag), with Op = {Ka | a ∈ Ag} ∪ {C} such
that the following are equivalent (where M ′ is finite):

(a) M ′, s′ |= ϕ,
(b) M, s is bisimilar to M ′, s′.

The conditions in both lemmas are necessary: finite epistemic states are not defin-
able up to simulation in the language with common knowledge, nor is bisimulation to
finite epistemic models definable in the language without common knowledge [40].

For later reference, we conclude this section by stating van Benthem’s character-
isation theorem for modal logic. The standard translation STx takes a modal formula
and returns a first-order formula using the clauses STx (p) = Px , it commutes with
the Boolean connectives and stipulates that STx (�ϕ) = ∀y(x R�y ⇒ STy(ϕ)).

Theorem 12.2 ([10]) The following are equivalent for first-order formulas �(x):

1. �(x) is invariant under bisimulation,
2. �(x) is equivalent to STx (ϕ) for some modal formula ϕ.

12.3.4 Epistemic Temporal Frames

van Benthem and Pacuit [18] formalise a notion of time using so-called epistemic
temporal frames F = 〈�,H,∼〉, where � is a set of events (say, possible moves
in a game) and H is a set of histories. For this chapter, F can be thought of as a
finitely branching rooted tree labeled with events. The histories are then nothing
else than strings of events. Figure 12.3 provides an example. Frame F in this figure

b

a

L R

LrLl Rl Rr

F

Fig. 12.3 An epistemic temporal frame F
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denotes a game where agent a can decide in node ε to move L or R, after which
b can move either l or r (so � = {L , R, l, r}). For epistemic temporal frames, the
indistinguishability relation is defined over histories, in F of Fig. 12.3 for instance,
we have L ∼b R (agent b does not know which move a starts with) and Ll ∼a Rl
(if b plays l, agent a forgets what his own initial move has been).

The semantic counterpart of no surprise (NS) would then say that for all finite
histories H, H ′ ∈ H and all events e ∈ � with He, H ′e ∈ H, if H ∼a H ′, then
He ∼a H ′e. The converse of this would guarantee PR. One might be tempted to
think that this converse ensures Ka

�ϕ → �Kaϕ, but this is not the case for ϕ
that refer to what is the case now (like, ‘it is 3 am’) or that refer to ignorance (like
‘a does not know that ψ’), knowledge of such properties may be given up, even
(or especially when) provided with more information (see [47, p. 130] for further
discussion). A bounded agent does not have perfect recall, but instead has a finite
bound on the number of preceding events which they can remember. van Benthem
and Pacuit [18] call an agent synchronised if H ∼a H ′ can only occur for histories
H and H ′ that have the same length (so the agent would know how many moves
have been played, or, more generally, know the time of the global clock). In F of
Fig. 12.3, both agents are synchronised, agent b does not satisfy no surprise (he cannot
distinguish the histories L and R, but if in both the same action (say l) is performed,
he can distinguish the result), while agent a does not satisfy perfect recall: he cannot
distinguish Ll and Rl, although he knew the difference between L and R.

Following the pioneering [61] of Halpern and Vardi on the complexity of reasoning
about knowledge and time, van Benthem and Pacuit highlight in [18] how several
choices in the formalism can have quite dramatic consequences for the decidability
and computational complexity (of the validity problem) of the underlying logic.
Choices that heavily influence the complexity, regard for instance the language (does
it include an operator for common knowledge, do we allow for temporal operators for
the past and for the future?), structural conditions on the underlying event structure
(what if we give up some conditions of an epistemic temporal frame, or look at
forests rather than trees?) and conditions on the reasoning abilities of the agents
(perfect recall, no surprise, synchronisation, bounded agents). Moreover, [18] marks
the start of a research paradigm that compares and links existing approaches to
epistemic logic (Kripke models, interpreted systems [47]), and ‘Parikh style’ logic
[95], time (history based structures [95], runs [47]), and dynamics, including pdl-
style logic [64] and dynamic epistemic logic (see Chap. 6). van Benthem further
helped clarify the link between interpreted systems, epistemic temporal logic and
dynamic epistemic logic in [25].

The chapter in this volume by Goranko and Pacuit presents a more comprehen-
sive survey of temporal epistemic frameworks. For examples of completeness results
regarding systems for knowledge and time, we refer to Theorem 12.3. For a gen-
eral discussion on completeness and complexity issues for such logics, and further
references, we refer to van Benthem and Pacuit’s [18].

http://dx.doi.org/10.1007/978-3-319-06025-5_6
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12.3.5 Interpreted Systems

In the 1980s, computer scientists became interested in epistemic logic. This line of
research flourished in particular by a stream of publications around Fagin, Halpern,
Moses and Vardi. Their important textbook [47] surveys their work on epistemic
logic over a period of more than ten years. The emphasis in this work is on
interpreted systems (is) as an underlying model for their framework, a semantics
that also facilitates reasoning about knowledge during computation runs in a natural
way. The key idea behind is is two-fold:

• It provides for a so-called grounded semantics of epistemic logic;
• It adds a dynamic and computational component to this through the notions of run

and protocol.

Where in an epistemic model the equivalence relations ∼a are given, in an inter-
preted system they are grounded in the notion of observational equivalence. To be
more precise (for formal definitions we refer to [47]), let La be a set of possible local
states for agent a. For example, when modeling a distributed computation, such a
local state could provide the value of the variables associated with processor a, or
in a card game it could be the enumeration of cards held by player a. Moreover, let
Le be a set of possible states for the environment. This state could have information
about a global clock, or keep track of whose turn it is in a card game. The set of
global states of an interpreted system with m agents is then G = Le× L1×· · ·× Lm .
If s = 〈se, s1, . . . , sm〉 ∈ G with sa we mean sa (a ∈ {e} ∪ Ag). An example of
an interpreted system is I of Fig. 12.4, where the environment is not modelled (it is
constant, say), Lx = {0, 1}, L y = {0, 1, 2} and Lz = N.

Two global states s = 〈se, s1, . . . , sm〉 and s′ = 〈s′e, s′1, . . . , s′m〉 are now defined
to be indistinguishable for agent i , written s ∼I

i s′, if i’s local state is the same in
both, i.e., if si = s′i . This is clearly an equivalence relation, and hence this notion
of interpreted system gives rise to knowledge of veridical and introspective agents.
In the most general case, we will not always consider the full cartesian product G but

x, z

x, z

〈0, 0, 0〉

〈0, 1, 0〉

〈0, 2, 0〉
I

y, z

y, z

x, z

x, z

x, y

〈1, 0, 0〉

〈0, 2, 1〉

x, y
x, y

Fig. 12.4 An interpreted system I
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some subset J ⊆ G of it. This represents situations where overall constraints of the
system prevent some global states from being part of the model.

A run over J ⊆ G is a function r : N → J . Intuitively, this captures a
computation, or a behaviour of the system. If r(m) = s, then ri (m) = si is the
local state of agent i in run r at time m. A pair (r,m) is called a point. An interpreted
system I is a pair 〈R, V I 〉, where R is a set of runs and V I (p) denotes for each
propositional variable p (‘x is 3’, or ‘i holds card diamond 9’) the set of global states
in which it is true. In other words, we assume that the truth of atoms does not depend
on ‘where we are in the run’, but only on the global state (in particular, if a run r
visits the same global state twice, i.e., r(m) = r(m + k), for some m, k ∈ n, then
the truth of atoms is the same in both points). Moreover, to quote [47, p. 112], ‘Quite
often, in fact, the truth of a primitive proposition q of interest depends, not on the
whole global state, but only on the component of some particular agent’. In such
cases, the valuation V I (q) respects the locality of q, which means that, if s ∼i s′,
then s ∈ V I (q) iff s′ ∈ V I (q). In such a case, the fact that i knows the truth of such a
property is common knowledge. To be more precise, suppose that there is a property
xi = 0, which is true exactly when in i’s local state, the variable xi is equal to 0.
Then, we have C(xi = 0→ Ki (xi = 0)).

It is easy to see that an interpreted system I = 〈R, V I 〉 gives rise to an epistemic
model MI = 〈S,∼, V 〉, by taking for S all the points generated by R, and where
(r,m) ∼i (r ′,m′) iff r(m) ∼I

i r ′(m′) and (r,m) ∈ V (p) iff r(m) ∈ V I (p) (so, ∼
and V defined over points (r,m) is determined by∼I and V I on global states r(m)).

If we now define I, r,m |= ϕ as MI , r(m) |= ϕ, we have an interpretation
for the individual and group epistemic notions discussed in Sect. 12.2.1. For full
interpreted systems, where G is the full cartesian product Le × L1 × · · · × Lm , we
have that common knowledge is constant over all runs. This is so since for every
two global states s = 〈se, s1, . . . , sm〉 and s′ = 〈s′e, s′1, . . . , s′m〉 there is a third
state t = 〈se, s1, s′2, . . . 〉 ‘epistemically connecting them’. The notion of a run in an
interpreted system also directly facilitates the interpretation of temporal formulas:
we define for instance I, r,m |= �ϕ as I, r,m + 1 |= ϕ.

For our example system I we assume to have propositional atoms like x = 0,
z = 9. We also identify three runs, r0, r1 and r2. In all of them, the variable z is
increased by 1 in each step, where z = 0 in (r0, 0) and (r2, 0) and z = 1 in (r1, 0). In
both r0 and r2, the values of 〈x, y〉 are a clockwise walk through the xy plane: 〈x, y〉
= 〈0, 0〉, 〈0, 1〉, 〈0, 2〉, 〈1, 2〉, 〈1, 1〉, 〈1, 0〉, 〈0, 0〉, …. In r2, the variables x and y are
both 0 at even places, and both 1 at odd places.

r0 : 〈0, 0, 0〉 〈0, 1, 1〉 〈0, 2, 2〉 〈1, 2, 3〉 〈1, 1, 4〉 〈1, 0, 5〉 〈0, 0, 6〉 . . .
r1 : 〈0, 0, 1〉 〈0, 1, 2〉 〈0, 2, 3〉 〈1, 2, 4〉 〈1, 1, 5〉 〈1, 0, 6〉 〈0, 0, 7〉 . . .
r2 : 〈0, 0, 0〉 〈1, 1, 1〉 〈0, 0, 2〉 〈1, 1, 3〉 〈0, 0, 4〉 〈1, 1, 4〉 〈0, 0, 4〉 . . .
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Let I01 consist of the runs r0 and r1 whereas I12 has the runs r1 and r2. We then
have, in I02, r, 〈0, 0, 0〉:

Kx x = 0 ∧ ¬Kx y = 0 ∧ E (x = 0↔ Kx x = 0) ∧ ¬Kx
�x = 1 ∧ Kz

�z = 1

In order to semantically characterise perfect recall in an interpreted system, let, for
an agent i , his local-state sequence at the point (r,m) be the sequence of local states
he has seen in run r up to time m, without consecutive repetitions. So, for the run
r0 above, the local state sequence for agent x at time 4 equals 〈01〉, for agent y it is
〈0, 1, 2, 1〉, and for z it is 〈0, 1, 2, 3, 4〉. We now say that i has perfect recall pr if
whenever (r,m) ∼i (r ′,m′), then i has the same local-state sequence at (r,m) and
(r ′,m′). In the system I02, agent z has perfect recall, but in I01, he has not. To see the
latter, we have (r0, 1) = 〈0, 1, 1〉 ∼z 〈0, 0, 1〉 = (r1, 0), whereas the state sequence
for z in (r0, 1) is 〈01〉 while in (r1, 0) it is 〈1〉. Indeed, it is easy to see that we have
I01, r0, 〈0, 0, 0〉 |= Kz

�y = 1 ∧ ¬ �Kz y = 1.
An interpreted system I = 〈R, V I 〉 satisfies sync if agents know what time it is,

i.e., if for all agents i , we have that (r,m) ∼i (r ′,m′) implies m = m′.

Theorem 12.3 We have the following (see [47, Chap. 8]).

1. Both S5m + LT L and S5C
m are sound and complete with respect to the set of all

interpreted systems INT m for m agents.
2. Both S5m + LT L and S5C

m are sound and complete with respect to the set of
synchronised interpreted systems INT sync

m .
3. S5m + LT L + PR is sound and complete with respect to the set of synchronised

interpreted systems with perfect recall INT sync,pr
m .

The first item of Theorem 12.3 suggests that the static, non-temporal validities
of interpreted systems are axiomatised by S5m , and hence that interpreted systems
are in some sense equivalent to Kripke models. This idea was taken up by Lomuscio
and Ryan in e.g., [82], roughly (the analysis in [82] is appropriately done at the
level of frames, we give here a summary on the level of models) as follows. In order
to link interpreted systems with S5m structures, [82] restricts itself to structures
(1) without dynamic component (i.e., systems without runs), (2) where the state
space is the full cartesian product G and (3) where the environment is not modelled
in a global state. This leads to a notion of hypercube, which is just L1×· · ·×L2, where
Li is as before, as is the agents’ accessibility relation. Call the set of hypercubes for m
agents Hm . From what we have said above, it follows that in a hypercube H , common
knowledge is constant, i.e., for all states s and t, we have H, s |= Cϕ iff H, t |= Cϕ (if
RC su, then R1〈t1, t2, . . . , tm〉〈t1, u2, . . . um〉 and R2〈t1, u2, . . . um〉〈u1, u2, . . . um〉,
hence RC tu). However, to show that this discriminates the validities in Hm from those
in S5m , one would need a universal modality. But we also have the following, which
shows that hypercubes behave different form S5m models (recall that distributed
knowledge Dϕ is true in a state s if ϕ holds in all t for which s RDt , where RD =∼1
∩ · · · ∩ ∼m):
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Observation 12.1 Let H ∈ H. Let i, j ∈ Ag. Recall that Miϕ = ¬Ki¬ϕ.

1 In H, we have RD is the identity, that is, sRDt iff s = t.
2 For all global sates s1, . . . , sm, there is a global state s with s ∼i si , for all i ≤ m.

From these semantic properties, we derive the following validities on hypercubes:

3 Hm |= ϕ ↔ Dϕ.
4 Hm |= Mi K jϕ→ K j Miϕ.

However, those validities do not transfer to S5m:

5 S5m �|= ϕ ↔ Dϕ.
6 S5m �|= Mi K jϕ→ K j Miϕ.

Proof Item 1 follows from the fact that s = 〈s1, . . . , sm〉RD〈t1, . . . tm〉 = t iff s1 =
t1& . . .&sm = tm iff s = t. This immediately implies item 3. For item 5, observe that
in M2, s2 of Fig. 12.2 it holds that p∧¬Dp. For item 2, take s = 〈s1

1, s2
2, . . . , sm

m〉 (i.e.,
take agent 1’s local state from s1, agent 2’s local state from s2, etc). Obviously, s ∼i si .
One can use a correspondence theory argument to show that this implies item 4
(see e.g., [82, Lemma 9]). For item 6, consider the model M1 in Fig. 12.1. We extend
this model to M ′1 as follows: it makes q true in the two right-most states. Then we have
M ′1, s1 |= Ma Kb¬q ∧ Mb Kaq, in other words, M ′1 �|= ¬Ka¬Kb¬q → Kb Ma¬q.

Observation 12.1 implies that hypercubes, the static part of interpreted systems,
are a special kind of S5m models, which verify some additional properties. In fact,
the following theorem (for its proof we refer to that of [82, Theorem 20]) shows that
Observation 12.1 in fact sums up everything that separates Hm from S5m :

Theorem 12.4 (Based on Theorem 20 of Lomuscio and Ryan [82]) Let HS5m ⊂
S5m be the set of S5m models M = 〈S,∼, V 〉 that satisfy:

1. ∀st ∈ S s(∼1 ∩ · · · ∩ ∼m)t iff s = t
2. ∀s1, . . . , sm ∈ S∃s ∈ S such that ∀i ∈ Ag s ∼i si .

Then the validities (of the language with operators Ki ,C and D) in HS5m and Hm

are the same.

So, the grounded semantics for knowledge, where it is explained where the
accessibility relations come from, when implemented through hypercubes, the static
counterpart of full interpreted systems, has as a consequence that we get the two
additional properties 3 and 4 of Observation 12.1 for knowledge, as compared to
S5m . Of course, on can give up the condition of full interpreted systems (in which
case property 4 would disappear), or think about different ways of groundedness in
the first place.

Many theories of multi-agent systems, which try to model notions like knowledge,
belief, intentions, commitments, obligations and actions of agents are embedded in
the philosophical brand of modal logic, in a way that is similar to what we discuss here
for the knowledge of agents. Computational groundedness was put forward (cf. [108])
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to make such theories more relevant to practitioners in multi-agent systems and
distributed artificial intelligence in general. It is therefore no surprise that attempts
to make such intentional notions (see also Chap. 11 of this volume) grounded are not
limited to the notion of knowledge only. For instance, Su and others [103] provided
a grounded model for the notions of knowledge, belief and certainty. Roughly, a
state in their models has an external and an internal part: the external part determines
what of the system is visible, and what is not visible, while the internal part specifies
for each agent his perception of the visible part of the environment state and the
plausible invisible parts of the invisible part of the environment state that the agent
thinks possible. Lomuscio and Sergot even use the notion of interpreted system to
show ‘how it can be trivially adapted to provide a basic grounded formalism for some
deontic issues’ [83, p. 3]. Their models are basically hypercubes, where each local
state Li is then partitioned in a set of green states (allowed states of computation)
and red states (disallowed states). This enables them to define a notion Oiϕ, with
the meaning that ‘in all the possible correctly functioning alternatives of agent i , ϕ
is the case’.

12.4 Generalised Structures for Knowledge

Kripke structures provide a very natural way to model uncertainty and (lack of)
information, and they are conceptually relatively easy. Depending on the kind of
uncertainty one wants to model, one can often employ correspondence theory and,
in a modular way, add additional constraints on the agents’ accessibility relations. But
there is also a criticism using this semantics, going in the other direction even if we
do not impose any additional constraints on those relations, do we not get properties
(of knowledge or belief) that are in fact too strong? This problem is known as the
logical omniscience problem, and neighbourhood semantics is developed partially
with the aim to address this. Finally, there is a stream of topological models for
epistemic languages, which have their own virtues.

12.4.1 Neighbourhood Semantics

So what are possible shortcomings of using relational models for knowledge and
belief? First of all, although this is not implied by the semantics, it is almost always
assumed that all agents are equal: their knowledge and beliefs all satisfy the same
properties. Indeed, in S5m we have, for all ϕ, that � Kaϕ iff � ϕ iff � Kbϕ. Van
Benthem and Liu are among the first to take seriously that ‘epistemic agents may
have different powers of observation and reasoning’ [17], and allow for a ‘diversity
of logical agents’. Secondly, if one wants to express that the beliefs of agent a are
correct by adding the axiom Baϕ → ϕ to a logical system, this property becomes
globally valid: every agent knows it, it would even become common knowledge, and
in a temporal setting it will hold forever. A first step to address this was made in [41].

http://dx.doi.org/10.1007/978-3-319-06025-5_11
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A more fundamental criticism against using normal modal logic to model infor-
mation of agents is known as logical omniscience. No agent is a perfect reasoner, so
no agent will know all tautologies (of S5, or even the weakest normal modal logic K ).
This observation questions the intuitive soundness of Nec. Indeed, security protocols
for communication or authentication that use cryptographic keys are based on the
assumption that agents are not able to oversee all the consequences of the underlying
theory (like inferring whether a given number is prime).

A similar criticism is sometimes used against axiom K: whereas an agent applying
K once seems rather innocent, having it as an axiom implies that the agent can apply
it as often as he likes. As an example, suppose that an agent knows what day of
the week is today, and that he also knows which day of the week it is on any given
day, if he would know this about the previous day. This would imply that the agent
knows which day of the week it is on 25 of August 6034! For a weaker notion like
belief such criticisms are even more compelling. It is argued that humans for instance
might well believe ϕ in ‘one frame of mind’ (e.g., ‘I pursuit an academic career’)
and something that is incompatible with it, in another (’I aim to become rich’).
Some formal manifestations of logical omniscience are the axiom K, the validity
�(ϕ ∧ ψ)↔ (�ϕ ∧�ψ), the inference rule Nec and, some argue, the derived rule
Eq: from ϕ ↔ ψ , infer �ϕ ↔ �ψ .

The idea that it should be possible to believe ϕ in one frame of mind and ¬ϕ in
another is one of the motivating requirements that lead to neighbourhood semantics.
Here, rather than states that are considered possible by the agent, we have sets of
states: each such set represents a possible frame of mind the agent can be in.

Definition 12.4 A neighbourhood model M = 〈S, N , V 〉 where S is a set of states
and N : Op → W → 22S

assigns a neighbourhood N�(s) ⊆ 2S to every state s,
for every operator � ∈ Op. As before, V (p) ⊆ S is the valuation function of the
model. The pair F = 〈S, N 〉 is a neighbourhood frame. Given a model M, defining
�ϕ�M (or simply �ϕ� if M is clear) to be �ϕ� = {s ∈ S | M, s |= ϕ}, the relevant truth
condition for modal operators is

M, s |= �ϕ iff for some T ∈ N�(s), T = �ϕ�.

In terms of knowledge: ϕ is known at s if the denotation of ϕ in M is one of the
neighbourhoods of s. Neighbourhood models are more general than relational Kripke
models: given M = 〈S, R, V 〉 one can define M = 〈S, N , V 〉 by

N�(s) = {U ⊆ S : R(s) ⊆ U }.

Then, for any s ∈ S, the models M, s and M, s satisfy the same formulas. The
other direction does not hold: indeed, under neighbourhood semantics, the property
(�ϕ ∧ �ψ) → �(ϕ ∧ ψ) is not valid. If a neighbourhood model M = 〈S, N , V 〉
is augmented, there does exist an equivalent relational model for it, where M is
augmented if for all s, (1) ∩T∈N� (s)T ∈ N (s), (2) T1 ∩ T2 ∈ N�(s) only if T1, T2 ∈
N�(s), and (3) If T1 ∈ N�(s) and T1 ⊆ T2, then T2 ∈ N�(s).
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One can ‘recover’ epistemic properties like veridicality and introspection in neigh-
bourhood semantics by putting further constraints on the neighbourhood function N .
Moreover, it is possible to use this semantics for multi-agent logics: the notion of
‘everybody knows’ for instance is then the modal operator for the neighbourhood
function NE = ∩a∈Ag Na . For common knowledge this can be done as well: we here
follow [81]. It is not difficult to see that

M, s |= Ka Kbϕ iff {t ∈ S | �ϕ� ∈ Nb(t)} ∈ Na(s) (12.8)

In order to manipulate such expressions, it is convenient to define an algebraic oper-
ator ◦ on neighbourhoods as follows. Let T ⊆ S.

T ∈ N1 ◦ N2(s) iff {t ∈ S | T ∈ N2(t)} ∈ N1(s) (12.9)

Equation (12.8) then becomes: M, s |= Ka Kbϕ iff �ϕ� ∈ Na ◦Nb(s). In this context,
it is best to interpret common knowledge as the infinite conjunction

Eϕ ∧ E(ϕ ∧ Eϕ) ∧ E(ϕ ∧ E(ϕ ∧ Eϕ)), . . . (12.10)

In normal modal logic (12.10) is equivalent to (12.2), but using a neighbourhood
semantics it is not! Let the special neighbourhood system E be defined by T ∈
E(s) iff s ∈ T . We then have N ◦ E = E ◦ N = N for every N . Keeping in
mind (12.10) define now a sequence of neighbourhood systems as follows.

N0 = NE and for any ordinal η, Nη = NE ◦ (
⋂

ζ<η

Nk ∩ E) (12.11)

We now assume that the systems Na in a model M are closed under supersets, i.e.,
T ∈ Na(s) and T ⊇ T ′ implies that T ′ ∈ Na(s). This notion is sometimes also
called monotony, and ‘makes for smoother theory’, quoting van Benthem et al. [23].
On such models, we have

Lemma 12.3 [81, Lemma 5] Let ξ and η be ordinals. If ξ < η, then Nη ⊆ Nξ .

By Lemma 12.3, for any s ∈ S the sequence Nη(s) is a decreasing sequence of sets.
Hence, there is a smallest ordinal os such that for all η ≥ os , Nη(s) = Nos (s). Now
take δ = sup{os | s ∈ S}: we have Nη = Nδ for all η ≥ δ. So the neighbourhood
system against which common knowledge is interpreted is NC = Nδ .

This semantics is characterised by an axiomatisation given by Lismont [80], sum-
marised in Table 12.4.

It is also possible to generalise the notion of bisimulation (to behavioural equiv-
alence) to neighbourhood models, as well as to have a suitable notion of standard
translation to a two-sorted first-order language, where the crucial clause for the trans-
lation is STx (�ϕ) = ∃T (xNT ∧ ∀y(T Ey ↔ ST y(ϕ))), where xNT iff T ∈ N (x)
and T Ey iff y ∈ T . With such an apparatus in place, [63] has been able to prove
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Table 12.4 The axioms and rules above are added to the propositional Taut and MP

Common Knowledge for neighbourhood models

E Eϕ ↔∧
a∈Ag Kaϕ FP Cϕ→ E(Cϕ ∧ ϕ)

Ind From φ→ Eϕ, infer Eϕ→ Cϕ Mon From φ→ ψ , infer �φ→ �ψ � �= E

a ‘van Benthem-style’ characterisation theorem for modal logic using a neighbour-
hood semantics. For completeness of modal logics wrt neighbourhood semantics we
refer to e.g., [38] and [62]. An example of a logic that is Kripke incomplete, but is
complete wrt neighbourhood frames can be found in [58].

Neighbourhood semantics are a very powerful tool for reasoning about games as
well, if a neighbourhood is interpreted as a set of states a player can enforce. van
Benthem et al. use this semantics to define their concurrent game logic ([23], and
Chap. 14 of this book). Interestingly, van Benthem and Pacuit [19] have given an
interpretation reminiscent of the notion of groundedness (see Sect. 12.3.5) to that
of neighbourhoods: rather than using neighbourhoods as a technical device to study
weak modal logics, they ‘concretely’ interpret a neighbourhood as an ‘evidence set’
of an agent who then can reason about the evidence, beliefs and knowledge—and
their dynamics—he entertains.

12.4.2 Topological Semantics

Next we will discuss topological semantics of epistemic and doxastic logic. Topolog-
ical semantics is closely related to Kripke and neighbourhood semantics. As we will
see below, the standard Kripke semantics of S4 corresponds to special (Alexandroff)
topological spaces. So topological semantics generalises the Kripke semantics of
epistemic logic. On the other hand, topological models coincide with the neighbour-
hood models of S4. Nevertheless, it is useful to think in topological terms as it gives
us an elegant and, at the same time, powerful mathematical machinery to investi-
gate non-standard models of epistemic logic. In topological models of intuitionistic
logic, open sets are treated as ‘observable properties’. In domain theory, Scott do-
mains are special posets equipped with the so-called Scott topology, where points
are interpreted as ‘pieces of information’ or ‘results of a computation’. Modal (epis-
temic) logic also provides a useful formalism to reason about (topological) spaces
connecting it to the area of spatial logic.

Topological semantics also brings concrete benefits to the semantics of epistemic
logic as observed by van Benthem and Sarenac [20]. (1) Topological products provide
a way of merging the knowledge of two agents with no new information arising. (2)
More importantly, they address Barwise’s criticism of the Kripke semantics as the two
ways of computing common knowledge, discussed in previous sections, no longer
coincide. (3) Topological products also address Barwise’s other criticism of Kripke
semantics about modelling shared epistemic situation. (4) Finally, in some important

http://dx.doi.org/10.1007/978-3-319-06025-5_14


362 N. Bezhanishvili and W. van der Hoek

cases (i.e., for distributed knowledge) topological interpretations of epistemic notions
nicely complement the relational interpretations.

12.4.2.1 Topological Spaces: Connection with Kripke
and Neighbourhood Frames

A topological space is a pair (X, τ ), where X is a non-empty set and τ ⊆ P(X)
contains X and ∅ and is closed under finite intersections and arbitrary unions. El-
ements of τ are called open sets. Complements of open sets are called closed sets.
An open set containing x ∈ X is called an open neighbourhood of x . The interior
of a set A ⊆ X is the largest open set contained in A and is denoted by Int(A). The
closure of A is the least closed set containing A and is denoted by A. In other words,
Int(A) = ⋃{U ∈ τ : U ⊆ A} and A = ⋂{F : X \ F ∈ τ, A ⊆ F}. It is easy to
check that A = X \ Int(X \ A).

A topological space (X, τ ) is called an Alexandroff space if τ is closed under
infinite intersections. It is easy to see that a topological space is Alexandroff iff every
point has a least open neighbourhood (the intersection of all its open neighbour-
hoods). It is also well known that Alexandroff spaces correspond to reflexive and
transitive Kripke frames. Indeed, given an Alexandroff space (X, τ ) one can define
a reflexive and transitive binary relation Rτ on X by putting x Rτ y iff x ∈ {y} (that
is, every open set that contains x also contains y). Conversely, suppose X is a set
with a reflexive and transitive relation R. We say that U ⊆ X is an upset if for each
x, y ∈ X , x Ry and x ∈ U imply y ∈ U . We define τR as the set of all upsets of
(X, R). Then (X, τR) is a topological space and R(x) = {y ∈ X : x Ry} is the least
open neighbourhood containing the point x . Thus, (X, τR) is Alexandroff. It is easy
to check that this correspondence is one-to-one. Therefore, reflexive and transitive
Kripke frames can be seen as particular examples of topological spaces. This
connection between reflexive and transitive orders and topologies is at the heart of
the translation between the plausibility and evidence models of dynamic epistemic
logic, see [19, Sect. 5] for details.

Now we will quickly review the connection between topological spaces and neigh-
bourhood frames. Let (X, N ) be a neighbourhood frame satisfying the following five
conditions:

1. for each x ∈ X we have U ∈ N (x) and U ⊆ V imply V ∈ N (x).
2. for each x ∈ X we have U, V ∈ N (x) implies U ∩ V ∈ N (x).
3. for each x ∈ X we have N (x) �= ∅.
4. for each x ∈ X we have U ∈ N (x) implies x ∈ U .
5. for each x ∈ X and U ∈ N (x) there exists V ∈ N (x) such that V ⊆ U and for

each y ∈ V we have V ∈ N (y).

Let (X, τ ) be a topological space. Then a set A is called a neighbourhood of x
if x ∈ A and there is an open neighbourhood U of x (i.e., U ∈ τ with x ∈ U )
such that U ⊆ A. Let Nτ (x) = {A : A is a neighbourhood of x}. Then it is
easy to check that (X, Nτ ) is a neighbourhood frame satisfying conditions (1)–(5).
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Conversely, if (X, N ) is such that it satisfies (1)–(5) we define a topology τN on X
by τN = {U : U ∈ N (x) for each x ∈ U }. Then (X, τN ) is a topological space.
Moreover, it is not difficult to check that this correspondence is one-to-one. We refer
to e.g., [74, Theorem 2.6] for all the details. We would like to mention that conditions
(1)–(5) are exactly those that correspond to the axioms of the modal logic S4 (see,
e.g., [38]). To be more precise the transitivity axiom (�p→ ��p) correspondence
to condition (5′) below.

5′. for each x ∈ X and U ∈ N (x) there exists V ∈ N (x) such that for each y ∈ V
we have U ∈ N (y).

But it is easy to show that a neighbourhood frame (X, N ) satisfies (1)–(5′) iff it
satisfies (1)–(5). Thus, topological spaces correspond to neighbourhood frames of
the modal logic S4.

12.4.2.2 Topological Models of Epistemic Logic

A triple M = (X, τ, ν) is a topological model if (X, τ ) is a topological space and ν
a map from the propositional variables to P(X). We assume that we work with the
modal language introduced in Definition 12.1. Truth of a formula ϕ in the model M
at a point x , written as M, x |= ϕ, is defined inductively as follows:

M, x |= p iff x ∈ ν(p)
M, x |= ϕ ∧ ψ iff M, x |= ϕ and M, x |= ψ
M, x |= ¬ϕ iff not M, x |= ϕ
M, x |= �ϕ iff ∃U ∈ τ such thatx ∈ Uand∀y ∈ U M, y |= ϕ.

Let [[ϕ]]ν = {x ∈ X : M, x |= ϕ}. We will skip the index if it is clear from the context.
It is easy to see that the last item is equivalent to [[�ϕ]] = Int([[ϕ]]). Moreover, as
♦ϕ = ¬�¬ϕ, we have that [[♦ϕ]] = [[ϕ]]. A pointwise definition of the semantics
of ♦ is as follows:

M, x |= ♦ϕ iff ∀U ∈ τ such that x ∈ U, ∃y ∈ Uwith M, y |= ϕ.

Note that if (X, τ ) is an Alexandroff space, then the above definition of the semantics
of formulas coincides with the one defined in Sect. 12.3.1 for Kripke models. Also if
we view topological models as particular examples of neighbourhood models, then
the above semantics coincides with the semantics of formulas in neighbourhood
models defined in Sect. 12.4.1. The notion of satisfiability and validity of formulas
in topological models as well as topological soundness and completeness of logics
is defined in the same way as in Sect. 12.4.1.

Let us look at an example of topological interpretations. Let R be the real line
where a topology τ on R is given by open intervals and their unions. Let also ν(p) =
[0, 1) = {r ∈ R : 0 ≤ r < 1}. We invite the reader to check that
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• [[�p]] = (0, 1),
• [[♦p]] = [0, 1],
• [[♦p ∧ ♦¬p]] = {0, 1},
• [[p ∧ ♦p ∧ ♦¬p]] = {0},
• [[¬p ∧ ♦p ∧ ♦¬p]] = {1}.

Now we briefly discuss why topological models are of interest from the epistemic
logic point of view. Topological semantics of modal logic precedes Kripke seman-
tics and dates back to the 1930s. Already back then topological models were used to
model knowledge in the context of intuitionistic logic (see e.g., [104]). Open sets can
be interpreted as ‘pieces of evidence’, e.g., about location of a point. This reflects on
the Brouwer-Heyting-Kolmogorov semantics, which informally defines intuitionis-
tic truth as provability and specifies the intuitionistic connectives via operations on
proofs. One could extend this reading to modal logic and give an epistemic interpre-
tation to �a p in a topological model as: there exists a piece of evidence for agent a
(i.e., an open set in a’s topology), which validates the proposition p. We point out
again that in [19] neighbourhood models are used to model the evidence of agents.
Thus, the topological/neighbourhood model setting does not just refine the analysis
of deduction or static attitudes, but also allows for a richer repertoire of dynamic
information-carrying events. As we will see below, topological models also give a
(nice) way to ‘naturally’ merge the knowledge of different agents (see van Benthem
and Sarenac [20] for more discussion on topologies as models of epistemic logic).

Finally, going a bit beyond epistemic logic, we remark that a related view of con-
necting topology to computer science proved to be very influential. In fact, many
topological concepts provide natural interpretations to important notions of com-
putability theory. For example, data type corresponds to a topological space, piece of
data to a point, semi-decidable property (observable property, affirmable property)
to an open set, computable function to a continuous map, etc. We refer to [1, 46,
100, 105] for a thorough investigation of this line of research.

12.4.2.3 Topo-bisimulations

Similarly to the relational semantics, in order to understand the expressive power
of modal languages on topological models one needs to define the corresponding
notion of a bisimulation. This has been done by van Benthem and Aiello in [2].

Definition 12.5 A topological bisimulation or simply a topo-bisimulation between
two topological models M = (X, τ, ν) and M ′ = (X ′, τ ′, ν′) is a non-empty relation
T ⊆ X × X ′ such that if xT x ′ then:

Harmony x ∈ ν(p) iff x ′ ∈ ν′(p), for each p ∈ P ,
Forth (x ∈ U ∈ τ)⇒ (∃U ′ ∈ τ ′) (x ′ ∈ U ′&(∀y′ ∈ U ′)(∃y ∈ U )(yT y′))
Back (x ′ ∈ U ′ ∈ τ ′)⇒ (∃U ∈ τ) (x ∈ U&(∀y ∈ U )(∃y′ ∈ U ′)(yT y′)).
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In other words T is a bisimulation if T -image and T -inverse image of an open set
is open. Two topological models are topo-bisimilar if there is a topo-bisimulation
between them.

Let us look at some examples. First note that if two topological models are based
on Alexandroff spaces, then a topo-bisimulation is the same as the standard Kripke
bisimulation (Definition 12.3) between the corresponding reflexive and transitive
Kripke models. Recall that a topology on the real line R is given by open inter-
vals and their unions. Let W = {s, s−, s+} and let � be the reflexive closure of
{(s, s−), (s, s+)}. Then (W,�) is the so-called 2-fork. Obviously the 2-fork is re-
flexive and transitive. So it corresponds to an Alexandroff space. It is now an easy
exercise to check that the relation T between R and W defined as: T (0, s), T (r, s−)
for each r ∈ R with r < 0 and T (r, s+) for each r ∈ R with r > 0, is a topo-
bisimulation. In fact, there is a deeper connection between these two structures. We
refer to [3, 21] for more details on the connection of the spatial logic of R and the
logic of the 2-fork.

Let Q be the set of rational numbers equipped with the topology induced from
the reals. That is, open sets of Q are intersections of R-open sets with Q. Now it is
easy to check that T ⊆ R × Q defined as: T (z, z) for each z ∈ Z, T (r, q) for each
r ∈ R and q ∈ Q with z < r, q < z + 1, for each z ∈ Z is a topo-bisimulation.

In the two cases above we assumed that ν(p) = ∅ for each p. Now consider an
example where this is not the case. Let R and R

′ be two isomorphic copies of the
reals, with v(p) = [0, 1] and v′(p) = (0′, 1′). Then there is no topo-bisimulation
between (R, ν) and (R′, ν′) relating 0 to any point r ′ ∈ R

′. To see this, note that by
the basic case of the topo-bisimulation, r ′ ∈ (0′, 1′). But then, by the forth condition,
for U ′ = (0′, 1′) there exists a neighbourhood U of 0 such that every point in U is
topo-bisimilar to some point in (0′, 1′). But this is impossible as each neighbourhood
of 0 contains a point t < 0. Then t cannot be topo-bisimilar to any point in (0′, 1′) as
t does not satisfy p. Thus, there is no topo-bisimulation between (R, ν) and (R′, ν′)
relating 0 to some point in R

′.
Similarly to bisimilar Kripke models, topo-bisimilar models satisfy the same

modal formulas. That is, if x ∈ X and x ′ ∈ X ′ and xT x ′, then M, x |= ϕ iff
M ′, x ′ |= ϕ, for each formula ϕ. The converse is true for finite models. The notion
of bisimilarity can also be expressed using games (see e.g., [2]).

The celebrated van Benthem’s characterisation theorem (Theorem 12.2), states
that on Kripke models modal logic is the bisimulation invariant fragment of first-
order logic. An analogue of this theorem for topo-bisimulations and the language Lt

(an analogue of the first-order language for topological spaces) was proved in [36].

12.4.2.4 Topological Completeness

Now we turn to deductive systems and the issues of axiomatisation and topological
completeness. Note that the interior and closure operators satisfy the following well-
known Kuratowski axioms (see e.g., [42]):
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1. Int(X) = X, ∅ = ∅,
2. Int(A ∩ B) = Int(A) ∩ Int(B), A ∪ B = A ∪ B.
3. Int(A) ⊆ A A ⊆ A.

4. Int(A) ⊆ Int(Int(A)), A ⊆ A.

It is easy to see that the above implies that S4 is sound with respect to topological
semantics. In fact, 1–4 above are the axioms of S4 translated into topological terms.
For completeness, we need to show that if ϕ is S4-consistent, then there exists a
topological model (X, τ, ν) satisfying ϕ. As we know (e.g., by the standard canonical
Kripke model argument), if ϕ is S4-consistent, then ϕ is satisfiable in a Kripke model
with a reflexive and transitive relation. As every reflexive and transitive Kripke frame
corresponds to an Alexandroff space, the completeness follows. van Benthem and his
collaborators, however, gave a different, elegant and more self-contained proof of this
result by introducing a topo-canonical model (a topological analogue of a canonical
Kripke model) [3, 16]. We will quickly sketch the basic idea of this construction.

The topo-canonical model of S4 (in fact, instead of S4 we can consider any logic
L over S4) is a triple MC = (XC, τC, νC), where XC is the set of all maximal
S4-consistent sets. Elements of τC are unions of the sets Uϕ = {� ∈ XC : �ϕ ∈ �}.
In other words, {Uϕ : ϕ is any formula} forms a basis for τC . Finally, we put
� ∈ νC(p) if p ∈ �. Then (XC, τC, νC) is a topological model. Moreover, the
Truth Lemma holds for this model. That is,

MC, � |= ϕ iff ϕ ∈ �.

Now ifϕ is S4-consistent, then by the Lindenbaum Lemma (see, e.g., [34, 37]) {ϕ}
can be extended to a maximal S4-consistent set�. By the Truth Lemma, MC, � |= ϕ,
which finishes the proof.

As mentioned above, the topo-canonical model construction can be defined for
any normal modal logic L extending S4. In analogy with the relational case, in the
topological setting too one can define the notion of canonicity. A logic L ⊇ S4 is
called topo-canonical if the topo-canonical model of L is based on a topological
space validating L . Topo-canonical logics have been thoroughly investigated in [30].

So S4 is sound and complete with respect to all topological spaces. However,
next question is whether one can find ‘good’ topological spaces for which S4 is
sound and complete. The classical result of McKinsey and Tarski [87] states that
S4 is sound and complete with respect to any dense-in-itself metrizable separable
space. This includes the real line R, and in general any Euclidean space R

n , the
Cantor space C, the space of rational numbers Q, etc. There is a number of different
proofs of completeness of S4 with respect to these structures, see e.g., [3, 16, 28,
71, 89, 90] for an overview. Here we only give a sketch of the basic idea underlying
most of these proofs. Strong completeness of S4 with respect to any dense-in-itself
metric separable space was recently shown in [77] and [79]. A full axiomatization
of the space of rational numbers Q in the language with topological and temporal
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modalities F and P was given in [98]. Recently, [72] gave a full axiomatization of
the real line R in the same language.

As S4 is sound with respect to all topological spaces, it is obviously sound with
respect to each of the topological spaces mentioned above. For completeness, assume
that ϕ is S4-consistent. Then as S4 has the finite model property (see e.g., [34, 37])
there exists a finite rooted, model M = (W, R, V ), with a root r , such that R is
reflexive and transitive and M, r |= ϕ. Sometimes it is useful to exploit here the
completeness of S4 with respect to other structures, say an infinite binary tree, etc.
As R is reflexive and transitive, (W, R) could be viewed as an Alexandroff space
and, thus, M is a topological model. Now let (X, τ ) be the topological space for
which we want to prove the completeness of S4 (e.g., R, Q, C, etc.). If we manage
to define a valuation ν on X so that M and (X, τ, ν) are topo-bisimilar, then as topo-
bisimilar points satisfy the same formulas, (X, τ, ν) will satisfy ϕ. In order to show
that such a valuation and bisimulation exist, it is sufficient to prove that there exists
a continuous and open map f : X → W . Recall that f is continuous if the inverse
f -image of an open set is open, and f is open if the direct f -image of an open set
is open. Suppose such a map exists. Then we define ν(p) = f −1(V (p)). Moreover,
the graph of this map will be a topo-bisimulation. Thus, the proof of completeness
is reduced to defining a continuous and open map. This is not an easy task and there
are many different constructions for different topological spaces. We refer to [16],
and the references therein, for the details on this and on the topological completeness
results obtained via this method.

So far we saw only one (epistemic) logical system associated with topological
semantics - the modal logic S4. In the next section we will discuss few different ways
of obtaining (epistemic) topological logics beyond S4. We want to reiterate that the
ideas and insights of van Benthem were instrumental in advancing these research
directions.

First we briefly discuss topological models with restricted valuations. When eval-
uating formulas in, for example, the real line R, instead of the whole powerset,
one could consider evaluating formulas as intervals and their finite (or countable)
unions. In the real plane one could take (unions) of convex sets, polygons, or rectan-
gles. Such evaluations, and corresponding logics have been studied in [3, 21, 107],
see also [16]. In particular, [21] shows that such restricted valuation can capture the
difference between dimensions of Euclidean spaces. This cannot be done with stan-
dard interpretations as the logic of any Euclidean space is S4. We refer to [75] for
a thorough study of the computational aspects of the logics arising from Euclidean
spaces.

12.4.2.5 Topological Products

Taking products is a natural way of combining two Kripke complete modal logics
[52]. The problem with this is that the resulting logic might become much more
complex than the original ones. For example, the logic S4 × S4 is undecidable
[55], whereas S4 is decidable. Moreover, when taking products of Kripke frames,
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the resulting frame always validates the extra axioms of commutativity (�1�2 p ↔
�2�1 p) and Church-Rosser (♦1�2 p → �2♦1 p). In [24] van Benthem and his
collaborators defined topological products of topological spaces. We briefly recall
this construction.

Let (X, τ ) and (X ′, τ ′) be topological spaces. Suppose A ⊆ X × X ′. We say that
A is horizontally open (in short, H-open) if for any (x, x ′) ∈ A, there exists U ∈ τ
such that x ∈ U and U × {x ′} ⊆ A. Vertically open sets (in short, V-open sets)
are defined similarly. We let τ1 and τ2 denote the collection of all horizontally and
vertically open subsets of X × X ′, respectively. It is easy to see that τ1 and τ2 are
topologies. Modal operators�1 and�2 in a product model M = (X × X ′, τ1, τ2, ν)

are interpreted as follows.

M, (x, x ′) |= �1ϕ iff ∃U ∈ τ1such thatx ∈ Uand∀y ∈ U,M, (y, x ′) |= ϕ.
M, (x, x ′) |= �2ϕ iff ∃U ∈ τ2such thatx ′ ∈ Uand∀z ∈ U,M, (x, z) |= ϕ.

Consider as an example (R × R, τ1, τ2), and let ν(p) = [0, 1) × {0}. Then it is
easy to see that

• [[�1 p]] = (0, 1)× {0},
• [[♦1 p]] = [0, 1] × {0},
• [[�2 p]] = ∅,
• [[♦2 p]] = [0, 1)× {0}.

This operation can be extended to a notion of a product of two topologically
complete modal logics. Given topologically complete uni-modal logics L and L ′,
their topological product is the bi-modal logic of the product frames X × X ′, where
X is a topological frame for L and X ′ for L ′, respectively.

Surprisingly enough, topological products turned out to be very well behaved.
[24] shows that the topological product of S4 with itself is the same as the logic
S4⊗ S4, S4 fusion S4, which is decidable. The fusion is just the smallest bi-modal
logic that contains S4-axioms for both modalities. Thus, no extra axiom is valid
on product topological spaces. The Church-Rosser and commutativity axioms can
be refuted on the product space R × R. Moreover, the logic S4 ⊗ S4 is sound and
complete with respect to the product space Q×Q. It is still an open question to find
an axiomatisation of the logic of R× R [78].

One could view topological products of epistemic logics as a new and interesting
way of merging the knowledge of two agents [20]. The fact that unlike relational
products, no new axiom is valid in the topological case, shows that when we ‘topo-
logically merge’ (via taking topological products of uni-modal epistemic logics) the
knowledge of two agents, no new information arises. Topological products have
other nice properties. Recall that in relational semantics the distributed knowledge of
agents (which describes what a group would know if its members decided to merge
their information) is expressed by taking the DA operator – the Box operator of
the intersection of the relations. In topological products one expresses distributed
knowledge by taking the interior of the join of the topologies. By the join of two
topologies we mean the least topology that contains both topologies. We note that in
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the topological case the join is not always very interesting e.g., for Q×Q, the join
of horizontal and vertical topologies is just the discrete topology (all sets are open).
We refer to [20] for all the details on this.

However, there is not always an analogy between relational and topological se-
mantics of epistemic logic. In fact, (in some way) topological models provide a richer
landscape for interpreting epistemic logic, than the relational semantics. In his well-
known chapter [7] Barwise underlined that a proper analysis of common knowledge
must distinguish the following three approaches:

1. countably infinite iteration of individual knowledge modalities,
2. the fixed point view of common knowledge as ‘equilibrium’,
3. agents having a shared epistemic situation.

The relational semantics of epistemic logic cannot properly distinguish these three
approaches (see Sect. 12.3.1), whereas topological semantics (topological products)
suits this purpose perfectly well. Recall that in the Kripke semantics the approxima-
tion of the common knowledge operator stabilises in κ ≤ ω steps. It was noted by van
Benthem and Sarenac [20] that this is no longer the case in topological semantics,
thus addressing Barwise’s criticism.

In topological models common knowledge as equilibrium is expressed by taking
the intersection of topologies. We will quickly sketch this argument. Let τ1 and τ2 be
two topologies. Here we do not need to assume that these topologies are the vertical
and horizontal topologies of a product space. Recall from the previous section that
Cϕ = νx(ϕ ∧ �1x ∧ �2x). Let ψ = ϕ ∧ �1x ∧ �2x . Then Cϕ = νxψ . As it
was also discussed in the previous section, [[Cϕ]]V = [[νxψ]]V = ⋃{U ∈ P(W ) :
U ⊆ [[ψ]]V U

x
}. Now observe that for each i = 1, 2 we have [[�i x]]V U

x
= Intτi (U ).

Hence, for i = 1, 2 we have U ⊆ [[�i x]]V U
x

iff U is τi -open. Thus, U ⊆ [[ψ]]V U
x

iff
U ⊆ [[ϕ]]V and U is τ1 and τ2-open. Therefore, [[Cϕ]]V = ⋃{U ⊆ [[ϕ]]V : U ∈
τ1 ∩ τ2} = Intτ1∩τ2([[ϕ]]). So topologically the common knowledge corresponds to
the interior of the intersection of the topologies.

It is proved in [20] that the (countably) infinite iterations of the individual knowl-
edge modalities may not be (horizontally or vertically) open. Hence, computing Cϕ
as fixed equilibrium and as countable iterations of ϕ ∧ E
 in topological mod-
els diverge. This fact captures the difference between (1) and (2) above. A similar
observation was made in [81, Proposition 4] for neighbourhood frames.

In a topological setting one can also analyse a ‘shared situation’ when there is
a new group concept τ that only accepts very strong collective evidence for any
proposition. This corresponds to adding the standard product topology on top of the
horizontal and vertical topologies. Thus, formally speaking, we have three operators,
the horizontal and vertical �1, �2 and also � of the standard product topology.
This again addresses Barwise’s critical comments on common knowledge in the
topological setting by showing that (3) can also differ from (1) and (2). It was proved
in [24] that the logic of such spaces is the ternary modal logic obtained by adding
the axiom�p→ (�1 p∧�2 p) to the three dimensional fusion logic S4⊗ S4⊗ S4.

Next we give an example that illustrates how to compute topologically com-
mon and shared knowledge. This example also shows that these two notions differ.
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Fig. 12.5 The cross-valuation on the product space

Consider the topological product R×R with horizontal and vertical topologies. Let
� be interpreted as the interior of the standard product topology. We let ν(p) be
the ‘cross’ or the ‘pair of orthogonal bow ties’ depicted in Fig. 12.5 (we leave it
up to the readers imagination to derive an appropriate name for this valuation). We
assume that ν(p) has no boundaries, but the point (0, 0) belongs to it. A very similar
example can be found in [16, 20, 24]. Obviously one could give a formal mathemat-
ical description of ν(p), but we prefer to stick with a picture that provides sufficient
intuition. Then it is easy to check that

• [[�1 p]] = [[�2 p]] = [[Cp]] = ν(p),
• [[�p]] = ν(p) \ {(0, 0)}.

Finally, we note that another epistemic logic S5 also admits topological semantics,
but a much more exotic one than S4. We say that a topological space is a clopen space
if every closed subset of it is also open. Examples of such spaces are discrete spaces
(every subset is open), and also the spaces with the trivial topology (only the empty
set and the whole space are open). We recall that S5 can be obtained from S4 by
adding the axiom p → �♦p or alternatively by adding the axiom ♦p → �♦p.
Translating this into topological terms, a topological space (X, τ ) validates S5 iff
A ⊆ Int(A) for each A ⊆ X . This is equivalent to the fact that every closed subset
of X is open. This means that S5 is sound with respect to clopen spaces. For the
topological completeness of S5 one can apply Kripke completeness of S5 and the
argument that was used in the topological completeness of S4, see [16] for the details.

For the topological completeness of other extensions of S4 such as the logic
S4.Grz we refer to [43] and [27]. Questions on modal definability of (classes) of
topological spaces were studied in [54]. Topological completeness of S4 with the
universal modality with respect to connected spaces was proved in [99] and further
generalised in [28]. Measure-theoretic semantics of this logic can be found in [48].

Another approach (similar in essence, but different in technicalities) to topolog-
ical interpretations of epistemic logic goes via the so-called subset spaces [92].



12 Structures for Epistemic Logic 371

This interpretation uses a bimodal language. This led to introducing topologic—the
axiomatic system (in this extended language) sound and complete wrt all topolog-
ical spaces [56, 57]. Completeness of topologic via canonical model construction
was proved in [39]. We will not discuss this approach here, but will instead refer
to an overview article [94] for all the details and references. Further generalisations
and stronger completeness results for topologic and multi-agent epistemic logics
of subset spaces have been obtained by Heinemann in [65–68]. However, Heine-
mann achieves this by adding more than ‘just’ several knowledge operators Ki to
subset space logic: they are definable from other operators that are added, and they
do not have the S5 properties of knowledge. Only recently, Wang ad Ågotnes [106]
gave a complete axiomatisation for multi-agent epistemic subset space logic as a
generalisation of the single agent case.

12.4.2.6 Topological Models of Doxastic Logic

In this section we discuss a different topological semantics of modal logic via the
derived set operator. As we will see below this semantics admits doxastic interpre-
tations, nicely complementing the epistemic semantics of the closure and interior
operators discussed in the previous section. We will again concentrate on the issues
of expressivity (bisimulations) and topo-completeness for this semantics.

Let (X, τ ) be a topological space. We recall that a point x is called a limit point
(limit points are also called accumulation points) of a set A ⊆ X if for each open
neighbourhood U of x we have (U \ {x}) ∩ A �= ∅. A point x ∈ A is called an
isolated point of A if x /∈ d(A). Let d(A) denote all limit points of A. This set is
called the derived set and d is called the derived set operator. For each A ⊆ X we
let t (A) = X \d(X \ A). We call t the co-derived set operator. Also recall that there
is a close connection between the derived set operator and the closure operator. In
particular, for each A ⊆ X we have A = A∪ d(A). Thus, the derived set operator is
more expressive than the closure operator, see [29] for a discussion on this. Unlike
the closure operator there may exist elements of A that are not its limit points. In
other words, in general A �⊆ d(A). To see this, consider the real line R and let
A = [0, 1] ∪ {2}. Then 2 /∈ d(A), but 2 ∈ A.

Let (X, τ ) be an Alexandroff space. That is, τ is the set of all upsets for some
reflexive and transitive relation R. By spelling out the definition of the derived set,
we observe that x ∈ d(A) for some A ⊆ X iff there is y ∈ A such that x �= y and
x Ry. So d(A) = {x ∈ X : ∃y ∈ A, such that x Ry & x �= y} (see [44] for more
details on the derived set operator in Alexandroff spaces).

Let M = (X, τ, ν) be a topological model. We now define a new semantics for�
and ♦ using the derived set operator. All the Boolean cases are the same as before,
the only difference is in the way the modal operators are interpreted.

M, x |= �ϕ iff ∃U ∈ τ such that x ∈ U and ∀y �= x with y ∈ U,M, y |= ϕ.
M, x |= ♦ϕ iff ∀U ∈ τ such that x ∈ U, ∃y �= x with y ∈ U and M, y |= ϕ.
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We again assume that [[ϕ]]ν = {x ∈ X : M, x |= ϕ}, and we skip the index if it is
clear from the context. It is easy to see that [[�ϕ]] = t ([[ϕ]]) and [[♦ϕ]] = d([[ϕ]]).

In this context too the main questions to ask are what are bisimulations for topo-
logical models with this new interpretation and what kind of completeness results
one can obtain. We first briefly address the bisimulation issue and then move to
completeness and doxastic interpretations. In fact, the notion of a d-bisimulation
of topological models is the same as a topo-bisimulation with the only difference
that in Definition 5 in the forth and back conditions we add y′ �= x ′ and y �= x .
We call these bisimulations d-bisimulations. The notion of d-bisimilarity is defined
similarly to topo-bisimilarity. Then one can prove that d-bisimilar points satisfy the
same modal formulas. Bezhanishvili et al. [29] defines d-morphisms and shows that
d-morphisms are functional d-bisimulations. (d-morphism is a continuous and open
map such that the inverse image of each point is a discrete space in the induced
topology. This definition turned out to be very useful as checking whether a map
between two topological spaces is a d-morphism is relatively easy.)

Fixed point operators have an interesting role to play in topological semantics of
derived set operator as well. For example, consider a simple formulaμx�x . We note
again that we interpret fixed point formulas in topological structures in the same way
as in Kripke structures (see Sect. 12.3.1). Then μx�x is valid in a topological space
X iff X is scattered. To see this, recall that X is scattered iff every non-empty subsets
U of X has an isolated point. That is, for U ⊆ X ,

U �= ∅ ⇒ U \ d(U ) �= ∅. (12.12)

It was noted in Esakia [43] that (a logical formulation) of (12.12) is equivalent
(over topological spaces and also over transitive Kripke frames) to the Gödel-Löb
axiom (�(�p→ p)→ �p). Now it is easy to see that (12.12) is equivalent to the
following, for U ⊆ X ,

U �= X ⇒ t (U ) �⊆ U. (12.13)

Thus, the only subset U of X such that t (U ) ⊆ U is the whole space X . Therefore,

X =
⋂
{U ⊆ X : t (U ) ⊆ U } =

⋂
{U ⊆ X : [[�x]]V U

x
⊆ U } = [[μx�x]].

(12.14)

So X is scattered iff μx�x is valid in X . As μx�x has no free variables, validity
and satisfiability for this formula are equivalent.

The fact that scatteredness of a space can be captured by fixed point formulas is not
very surprising as scatteredness is a topological analogue of dual well-foundedness
[43] and it was shown in [13] (see also [22]) that μx�x together with the transitivity
axiom expresses dual well-foundedness of a Kripke structure. A similar observation
in algebraic terms (for the so-called diagonalisable algebras) has been made already
in [60].
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Now we turn to the issue of soundness and completeness. First recall (see e..g.,
[42]) that the derived and co-derived set operator satisfy the following axioms.

1. t (X) = X, d(∅) = ∅,
2. t (S ∩ T ) = t (S) ∩ t (T ), d(S ∪ T ) = d(S) ∪ d(T ).
3. A ∩ t (A) ⊆ t (t (A)) d(d(A)) ⊆ A ∪ d(A).

Recall that wK 4 is a modal logic obtained form the basic modal logic K by adding
to it the following weak transitivity axiom (p ∧ �p) → ��p. The logic wK 4 is
sound and complete with respect to Kripke frames with weakly transitive relations,
where the relation is weakly transitive if x Ry, y Rz and x �= z imply x Rz [44].

The three properties of derived and co-derived set operators listed above imply
that wK 4 is sound with respect to topological semantics. In fact, Esakia [44] proved
thatwK 4 is also complete with respect to all topological spaces. A topological space
(X, τ ) is said to satisfy the TD-separation axiom (is a TD-space, for short) if every
point of X is the intersection of a closed and an open set. In fact, this condition is
equivalent to d(d(A)) ⊆ d(A), for each A ⊆ X [42]. This implies that K 4 is sound
with respect to TD-spaces. Esakia [44] showed that K 4 is also complete with respect
to TD-spaces. For topological d-semantics of the provability logic GL , polymodal
provability logic GL P , the logics of the rationals, real line and Euclidean spaces,
as well as the logics of all T0-spaces, Stone and spectral spaces and many more, we
refer to [8, 16, 29, 31, 32, 43–45, 71, 84–86, 97].

We close this section by reviewing topological completeness of the doxastic modal
logic KD45, see [102] and [94]. The fact, mentioned above, that in general A �⊆ d(A)
yields that the reflexivity axiom p→ ♦p (equivalently �p→ p) is not sound with
respect to this semantics, which makes this semantics suitable for doxastic logic.
Recall that Kripke frames of KD45 are serial, transitive and Euclidean. As we saw
above, the topological reading of the transitivity axiom gives us TD-spaces. It is
well known that the seriality axiom �p → ♦p is equivalent to ♦
. Translating
this into the topological terms we obtain the condition d(X) = X . This means that
every point of X is a limit point. Such spaces are called dense-in-itself. Finally, the
topological reading of the Euclidean axiom ♦p → �♦p results in the condition
d(A) ⊆ t (d(A)). It is easy to see that a set A is closed iff d(A) ⊆ A. Dualising this,
we obtain that a set A is open iff A ⊆ t (A). Thus, d(A) ⊆ t (d(A)) is equivalent to
d(A) being open.

The above leads to the following definition. A topological space (X, τ ) is called
a DSO-space2 if it is dense-in-itself TD-space such that d(A) is an open set for each
A ⊆ X . The discussion above shows that KD45 is sound with respect to DSO-spaces.
Next we give an example of a DSO-space. Let (N, τ ) be the set N of natural numbers
equipped with the topology τ = {∅, all cofinite sets}. Then it is not hard to check
that for each A ⊆ N we have:

2 DSO stands for Derived Sets are Open.
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d(A) =
{
∅, if A is finite,

N, if A is infinite.

This implies that (N, τ ) is a DSO-space.
Now we turn to the issue of completeness of KD45 with respect to DSO-spaces.

First note that with every weakly transitive frame (X, R)we can associate a topology
τR of all R-upsets. Observe that this topology will be the same as the topology of all
upsets of the reflexive closure of R. Indeed, A ⊆ X is an upset iff it is an upset for
the reflexive closure of R.

Let (X, R) be a KD45-frame (that is, serial, Euclidean, transitive). Note that
(X, τR) defined above, in general, is not a DSO-space. In fact, it is a DSO-space
iff there are no distinct points x, y ∈ X such that x Ry. To see this, note that if
such points exist, then d({y}) is not an upset: we have x ∈ d({y}), and x Ry, but
y /∈ d({y}) (use the definition of d on Alexandroff spaces in the beginning of this
section). So {y} is such that d({y}) is not open. Thus, (X, R) does not correspond
to a DSO-space. The converse direction is similar. Therefore, we cannot use directly
the Kripke completeness of KD45 for deriving its topological completeness, as we
did for S4. Nevertheless, one could still use Kripke completeness of KD45 to ob-
tain topological completeness. We sketch the proof. All the details can be found
in [94, 102].

Assume that ϕ is a KD45-consistent formula. Then, by Kripke completeness
of KD45, there exists a Kripke model (W, R, ν), where R is serial, transitive and
Euclidean relation such that (W, R, ν) satisfies ϕ. Now let us take a product of
this frame (seen as the Alexandroff space) with the DSO-space (N, τ ) discussed
above. Then one can show that N × W is a DSO-space (with the standard product
topology). Moreover, the second projection is a d-morphism, and hence its graph is a
d-bisimulation. Here we use the notion of a d-morphism between topological spaces
and Kripke frames [29]. A map between a topological space and Kripke frame is
called a d-morphism if it is continuous and open, the inverse image of an irreflexive
point is a discrete subspace and the inverse image of a reflexive point is a dense-in-
itself subspace. So N × W satisfies ϕ, which proves the completeness of KD45 for
DSO-spaces.

In fact, one can strengthen this result and give an alternative proof of completeness
avoiding products. [26] gives a characterisation of rooted KD45 frames. Using this
characterisation it is easy to see that there exists a d-morphism from (N, τ ) to any
rooted KD45-frame. This implies that if a formula ϕ is KD45-consistent, then it is
satisfied in a DSO-space (N, τ ). Thus, KD45 is sound and complete with respect to
not only all DSO-spaces, but also with respect to just (N, τ ).

In spite of the elegance of the derived set semantics for belief, it is also vulnerable
to some criticism. One of the main problems is the fact that Int(A) = A∩t (A). There-
fore, the derived set semantics for belief leads to the identification of knowledge with
true belief, which goes against the unanimous opinion of epistemologists, and the
numerous ‘Gettier-type’ counter-arguments [59]. Baltag et al. [6] and Özgün [93]
then propose an alternative topological semantics for belief, where the belief operator



12 Structures for Epistemic Logic 375

is interpreted as the closure of the interior operator (that is, [[�ϕ]] = Cl(Int[[ϕ]])),
and prove that KD45 is complete in this semantics with respect to extremally dis-
connected topological spaces. We recall that a topological space (X, τ ) is extremally
disconnected if the closure of every open set is again open. Also note that every DSO-
space is extremally disconnected, but not vice versa. Therefore, the latter semantics
is applicable to a wider class of models than Steinsvold’s semantics. Moreover, the
formalism of [6, 93] fits well with Stalnaker’s conception of ‘strong belief as subjec-
tive certainty’ [101], embodied in his axiom Bϕ → BKϕ, which is satisfied in that
setting. For more details on this new semantics of belief, topological belief revision
etc., we refer to [6, 93].

We hope that all these results illustrate that topological spaces provide interesting
and insightful semantics for both epistemic and doxastic modal logic.

12.5 Conclusion

In this chapter, we have focussed on modal logics for knowledge and belief, especially
their semantics. Starting with epistemic Kripke structures, we showed how Johan’s
results on correspondence theory often makes it possible to build an epistemic logic to
which one can add a number of appealing axioms. Correspondence theory then makes
it possible to quickly come up with classes of Kripke models wrt which those logics
are sound and complete. Also, using a Kripke model for knowledge, it is conceptually
simple to add relations to such a model that model time, or some other kind of
dynamics. Johan, with his collaborators, has contributed to this field by showing how
several of such dynamic epistemic logics are related. Their epistemic temporal frames
provide a broad class of structures to which one can related interpreted systems, and
logics for updates and revision.

Having a class of structures at hand, natural questions are when two structures are
different, and what can be expressed in that class. Johan’s characterisation theorem
gives an answer for the case of normal modal logics, we have shown in this chapter
how this theorem has been adapted or generalised to other classes of structures.

An important class of structures for epistemic logic is obtained by moving to
a so-called neighbourhood semantics, or the closely related semantics based on a
topology. Those semantics give an alternative and independent view on epistemic
logic. The latter for instance can discriminate three aspects of common knowledge,
which seem to be intertwined under the Kripke semantics.

Johan’s contribution to logics of knowledge and belief is to be found in the techni-
cal results he has provided in the field of modal logic in general and that of epistemic
logic in particular, but equally important are the themes he has consistently pursued:
knowledge and ignorance are mostly interesting in a multi-agent setting, they only
come to live in a dynamic context, and, while there is a multitude of schools studying
epistemic logic, a close analysis tells us that they have more in common than even
those schools themselves often tend to think!
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Chapter 13
Logic and Probabilistic Update

Lorenz Demey and Barteld Kooi

Abstract This chapter surveys recent work on probabilistic extensions of epistemic
and dynamic-epistemic logics (the latter include the basic system of public announce-
ment logic as well as the full product update logic). It emphasizes the importance of
higher-order information as a distinguishing feature of these logics. This becomes
particularly clear in the dynamic setting: although there exists a clear relationship
between usual Bayesian conditionalization and public announcement, the proba-
bilistic effects of the latter are in general more difficult to describe, because of the
subtleties involved in higher-order information. Finally, the chapter discusses some
applications of probabilistic dynamic epistemic logic, such as the Lockean thesis in
formal epistemology and Aumann’s agreement theorem in game theory.

13.1 Introduction

Epistemic logic and probability theory both provide formal accounts of information.
Epistemic logic takes a qualitative perspective on information, and works with a
modal operator K . Formulas such as Kϕ can be interpreted as ‘the agent knows
that ϕ’, ‘the agent believes that ϕ’, or, more generally speaking, ‘ϕ follows from the
agent’s current information’. Probability theory, on the other hand, takes a quantita-
tive perspective on information, and works with numerical probability functions P .
Formulas such as P(ϕ) = k can be interpreted as ‘the probability of ϕ is k’. In the
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present context, probabilities will usually be interpreted subjectively, and can thus
be taken to represent the agent’s degrees of belief or credences.

With respect to one and the same formula ϕ, epistemic logic is able to distinguish
between three epistemic attitudes: knowing its truth (Kϕ), knowing its falsity (K¬ϕ),
and being ignorant about its truth value (¬Kϕ∧¬K¬ϕ). Probability theory, however,
distinguishes infinitely many epistemic attitudes with respect to ϕ, viz. assigning it
probability k (P(ϕ) = k), for every k ∈ [0, 1]. In this sense probability theory can
be said to provide a much more fine-grained perspective on information.

While epistemic logic thus is a coarser account of information, it certainly has
a wider scope. From its very origins in Hintikka’s [34], epistemic logic has not
only been concerned with knowledge about ‘the world’, but also with knowledge
about knowledge, i.e. with higher-order information. Typical discussions focus on
principles such as positive introspection (Kϕ → K Kϕ). On the other hand, proba-
bility theory rarely talks about principles involving higher-order probabilities, such
as P(ϕ) = 1 → P(P(ϕ) = 1) = 1.1 This issue becomes even more pressing in
multi-agent scenarios. Natural examples might involve an agent a not having any
information about a proposition ϕ, while being certain that another agent, b, does
have this information. In epistemic logic this is naturally formalized as

¬Kaϕ ∧ ¬Ka¬ϕ ∧ Ka(Kbϕ ∨ Kb¬ϕ).
A formalization in probability theory might look as follows:

Pa(ϕ) = 0.5 ∧ Pa(Pb(ϕ) = 1 ∨ Pb(ϕ) = 0) = 1.

However, because this statement makes use of ‘nested’ probabilities, it is rarely used
in standard treatments of probability theory.

An additional theme is that of dynamics, i.e. information change. The agents’
information is not eternally the same; rather, it should be changed in the light of
new incoming information. Probability theory typically uses Bayesian updating to
represent information change (but other, more complicated update mechanisms are
available as well). Dynamic epistemic logic interprets new information as changing
the epistemic model, and uses the new, updated model to represent the agents’ updated
information states. Once again, the main difference is that dynamic epistemic logic
takes (changes in) higher-order information into account, whereas probability theory
does not.

For all these reasons, the project of probabilistic epistemic logic seems very inter-
esting. Such systems inherit the fine-grained perspective on information from prob-
ability theory, and the representation of higher-order information from epistemic

1 A notable exception is ‘Miller’s principle’, which states that P1(ϕ | P2(ϕ) = b) = b. The proba-
bility functions P1 and P2 can have various interpretations, such as the probabilities of two agents,
subjective probability (credence) and objective probability (chance), or the probabilities of one
agent at different moments in time—in the last two cases, the principle is also called the ‘principal
principle’ or the ‘principle of reflection’, respectively. This principle has been widely discussed in
Bayesian epistemology and philosophy of science [29, 32, 38, 40, 41].
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logic. Their dynamic versions provide a unified perspective on changes in first- and
higher-order information. In other words, they can be thought of as incorporating the
complementary perspectives of (dynamic) epistemic logic and probability theory,
thus yielding richer and more detailed accounts of information and information flow.

The remainder of this chapter is organized as follows. Section 13.2 introduces the
static framework of probabilistic epistemic logic, and discusses its intuitive inter-
pretation and technical features. Section 13.3 focuses on a rather straightforward
type of dynamics, namely public announcements. It describes a probabilistic ver-
sion of the well-known system of public announcement logic, and compares public
announcement and Bayesian conditionalization. In Sect. 13.4 a more general update
mechanism is introduced. This is a probabilistic version of the ‘product update’
mechanism in dynamic epistemic logic. Section 13.5, finally, indicates some appli-
cations and potential avenues of further research for the systems discussed in this
chapter.

13.2 Probabilistic Epistemic Logic

In this section we introduce the static framework of probabilistic epistemic logic,
which will be ‘dynamified’ in Sects. 13.3 and 13.4. Section 13.2.1 discusses the
models on which the logic is interpreted. Section 13.2.2 defines the formal language
and its semantics. Finally, Sect. 13.2.3 provides a complete axiomatization.

13.2.1 Probabilistic Kripke Models

Consider a finite set I of agents, and a countably infinite set Prop of proposition
letters. Throughout this chapter, these sets will be kept fixed, so they will often be
left implicit.

Definition 13.1 A probabilistic Kripke frame is a tuple F = 〈W, Ri , μi 〉i∈I , where
W is a non-empty finite set of states, Ri ⊆ W×W is agent i’s epistemic accessibility
relation, and μi : W → (W ⇀ [0, 1]) assigns to each state w ∈ W a partial function
μi (w) : W ⇀ [0, 1], such that

∑

v∈dom(μi (w))

μi (w)(v) = 1.

Definition 13.2 A probabilistic Kripke model is a tuple M = 〈F, V 〉, where F is
a probabilistic Kripke frame (with set of states W ), and V : Prop → ℘(W ) is a
valuation.

Note that in principle, no conditions are imposed on the agents’ epistemic
accessibility relations. However, as is usually done in the literature on (proba-
bilistic) dynamic epistemic logic, we will henceforth assume these relations to be
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equivalence relations (so that the corresponding knowledge operators satisfy the
principles of the modal logic S5).

The function μi (w) represents agent i’s probabilities (i.e. degrees of belief) at
state w. For example, μi (w)(v) = k means that at state w, agent i assigns probability
k to state v being the actual state. From a mathematical perspective, this is not the
most general approach: one can also define a probability space Pi,w for each agent
i and state w, and let μi (w) assign probabilities to sets in a σ -algebra on Pi,w,
rather than to individual states. In this way one can easily drop the requirement
that frames and models have finitely many states. This approach is taken in [28]
for static probabilistic epistemic logic, and extended to dynamic settings in [47].
However, because all the characteristic features of probabilistic (dynamic) epistemic
logic already arise in the simpler approach, in this chapter we will stick to this simpler
approach, and takeμi (w) to assign probabilities to individual states. These functions
are additively extended from individual states to sets of states, by putting (for any
set X ⊆ dom(μi (w))):

μi (w)(X) :=
∑

x∈X

μi (w)(x).

A consequence of our simple approach is that all sets X ⊆ dom(μi (w)) have
a definite probability μi (w)(X), whereas in the more general approach, sets X not
belonging to the σ -algebra on Pi,w are not assigned any definite probability at all. A
similar distinction can be made at the level of individual states. Because μi (w) is a
partial function, states v ∈ W−dom(μi (w)) are not assigned any definite probability
at all. An even simpler approach involves putting μi (w)(v) = 0, rather than leaving
it undefined. In this way, the function μi (w) is total after all. From a mathematical
perspective, these two approaches are equivalent. From an informal perspective,
however, there is a clear difference: μi (w)(v) = 0 means that agent i is certain
(at state w) that v is not the actual state, whereas μi (w)(v) being undefined means
that agent i has no opinion whatsoever (at state w) about v being the actual state.
Again, because all the characteristic features of probabilistic (dynamic) epistemic
logic already arise without this intuitive distinction, we will opt for the even simpler
approach, and henceforth assume that all probability functions are total.

To summarize: the approach adopted in this chapter is the simplest one possible,
in the sense that definite probabilities are assigned to ‘everything’: (i) to all sets (there
is no σ -algebra to rule out some sets from having a definite probability), and (ii) to
all states (the probability functions μi (w) are total on their domain W , so no states
are ruled out from having a definite probability).

We finish this subsection by mentioning two typical properties of probabilistic
Kripke frames.2 In the next subsection we will show that these properties correspond
to natural principles about the interaction between knowledge and probability.

Definition 13.3 Consider a probabilistic Kripke frame F and an agent i ∈ I . Then
F is said to be i-consistent iff for all states w, v: if (w, v) /∈ Ri then μi (w)(v) = 0.

2 See [33] for a further discussion of these and other properties, and their correspondence to
knowledge/probability interaction principles.
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Furthermore, F is said to be i-uniform iff for all states w, v: if (w, v) ∈ Ri then
μi (w) = μi (v).

13.2.2 Language and Semantics

The language L of (static) probabilistic epistemic logic is defined by means of the
following Backus-Naur form:

ϕ ::= p | ¬ϕ | ϕ1 ∧ ϕ2 | Kiϕ | a1 Pi (ϕ)+ · · · + an Pi (ϕ) ≥ b

—where p ∈ Prop, i ∈ I, 1 ≤ n < ω, and a1, . . . , an, b ∈ Q. We only allow
rational numbers as values for a1, . . . , an, b in order to keep the language countable.
As usual, Kiϕ means that agent i knows that ϕ, or, more generally, that ϕ follows
from agent i’s information. Its dual is defined as K̂iϕ := ¬Ki¬ϕ, and means that ϕ
is consistent with agent i’s information.

Formulas of the form a1 Pi (ϕ1) + · · · + an Pi (ϕn) ≥ b are called i-probability
formulas.3 Note that mixed agent indices are not allowed; for example, Pa(p) +
Pb(q) ≥ b is not a well-formed formula. Intuitively, Pi (ϕ) ≥ b means that agent i
assigns probability at least b to ϕ. We allow for linear combinations in i-probability
formulas, because this additional expressivity is useful when looking for a complete
axiomatization [28], and because it allows us to express comparative judgments such
as ‘agent i considers ϕ to be at least twice as probable as ψ’: Pi (ϕ) ≥ 2Pi (ψ). This
last formula is actually an abbreviation for Pi (ϕ) − 2Pi (ψ) ≥ 0. In general, we
introduce the following abbreviations:

∑n
�=1 a�Pi (ϕ�) ≥ b for a1 Pi (ϕ1)+ · · · + an Pi (ϕn) ≥ b,

a1 Pi (ϕ1) ≥ a2 Pi (ϕ2) for a1 Pi (ϕ1)+ (−a2)Pi (ϕ2) ≥ 0,∑n
�=1 a�Pi (ϕ�) ≤ b for

∑n
�=1(−a�)Pi (ϕ�) ≥ −b,∑n

�=1 a�Pi (ϕ�) < b for ¬(∑n
�=1 a�Pi (ϕ�) ≥ b),∑n

�=1 a�Pi (ϕ�) > b for ¬(∑n
�=1 a�Pi (ϕ�) ≤ b),∑n

�=1 a�Pi (ϕ�) = b for
∑n
�=1 a�Pi (ϕ�) ≥ b ∧∑n

�=1 a�Pi (ϕ�) ≤ b.

Note that because of its recursive definition, the language L can express the
agents’ higher-order information of any sort: higher-order knowledge (for example
Ka Kbϕ), but also higher-order probabilities (for example Pa(Pb(ϕ) ≥ 0.5) = 1),
and higher-order information that mixes knowledge and probabilities (for example,
Ka(Pb(ϕ) ≥ 0.5) and Pa(Kbϕ) = 1).

3 The agents’ probabilities are thus explicitly represented in the logic’s object language L . Other
proposals provide a probabilistic semantics for an object language that is itself fully classical (i.e. that
does not explicitly represent probabilities). See [26] for a recent overview of the various ways of
combining logic and probability.
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The formal semantics for L is defined as follows. Consider an arbitrary proba-
bilistic Kripke model M (with set of states W ) and a state w ∈ W . We will often
abbreviate [[ϕ]]M := {v ∈ W |M, v |= ϕ}. Then:

M,w |= p iff w ∈ V (p),
M,w |= ¬ϕ iff M,w �|= ϕ,
M,w |= ϕ ∧ ψ iff M,w |= ϕ and M,w |= ψ ,
M,w |= Kiϕ iff for all v ∈ W : if (w, v) ∈ Ri then M, v |= ϕ,
M,w |=∑n

�=1 a�Pi (ϕ�) ≥ b iff
∑n
�=1 a�μi (w)([[ϕ�]]M) ≥ b.

Furthermore, we also define:

• M |= ϕ iff M,w |= ϕ for all w ∈ W ,
• F |= ϕ iff 〈F, V 〉 |= ϕ for all valuations V on the frame F,
• |= ϕ iff F |= ϕ for all frames F.

As promised, we will now provide correspondence results for the frame properties
defined at the end of the previous subsection:

Lemma 13.1 Consider a probabilistic Kripke frame F. Then:

1. F is i -consistent iff F |= Ki p→ Pi (p) = 1,
2. F is i -uniform iff F |= (ϕ→ Kiϕ)∧ (¬ϕ→ Ki¬ϕ) for all i -prob. formulas ϕ.

From a technical perspective, this lemma indicates how the notion of frame corre-
spondence from modal logic [8, 9, 20] can be extended into the probabilistic realm.
From an intuitive perspective, this lemma sheds some new light on the various interac-
tions between epistemic and probabilistic information. Probabilistic epistemic logic
distinguishes between epistemic impossibility ((w, v) /∈ Ri ) and probabilistic impos-
sibility (μi (w)(v) = 0). For example, when a fair coin is tossed, an infinite series of
tails is probabilistically impossible, but epistemically possible [37, p. 384]. Item 1 of
Lemma 13.1 establishes a connection between the principle that knowledge implies
certainty, and the property of consistency (epistemic impossibility entails probabilis-
tic impossibility). Similarly, item 2 establishes a connection between the principle
that agents know their own probabilistic setup, and the property of uniformity (the
impossibility of epistemic uncertainty about probabilities).

13.2.3 Proof System

Probabilistic epistemic logic can be axiomatized in a highly modular fashion. An
overview is given in Fig. 13.1. The propositional and epistemic components shouldn’t
need any further comments. The probabilistic component is a straightforward trans-
lation into the formal language L of the well-known Kolmogorov axioms of
probability; it ensures that the formal symbol Pi ( · ) behaves like a real probability
function. Finally, the linear inequalities component is mainly a technical tool to
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1. propositional component

all propositional tautologies and the modus ponens rule

2. epistemic component

the S5 axioms and rules for the Ki -operators

3. probabilistic component

4. linear inequalities component

for any permutation

Fig. 13.1 Componentwise axiomatization of probabilistic epistemic logic

ensure that the logic is strong enough to capture the behavior of linear inequalities
of probabilities.

Using standard techniques the following theorem can be proved [28]:

Theorem 13.1 Probabilistic epistemic logic, as axiomatized in Fig. 13.1, is sound
and complete with respect to the class of probabilistic Kripke frames.

The notion of completeness used in this theorem is weak completeness (� ϕ iff
|= ϕ), rather than strong completeness (Γ � ϕ iff Γ |= ϕ). These two notions
do not coincide in probabilistic epistemic logic, because this logic is not compact;
for example, every finite subset of the set {Pi (p) > 0} ∪ {Pi (p) ≤ k | k > 0} is
satisfiable, but the entire set is not.

13.3 Probabilistic Public Announcement Logic

In this section we discuss a first ‘dynamification’ of probabilistic epistemic logic, by
introducing public announcements into the logic. Section 13.3.1 discusses updated
probabilistic Kripke models, and introduces a public announcement operator into
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the formal language to talk about these models. Section 13.3.2 provides a complete
axiomatization, and Sect. 13.3.3 focuses on the role of higher-order information in
public announcement dynamics.

13.3.1 Semantics

Public announcements form one of the simplest types of epistemic dynamics. They
concern the truthful and public announcement of some piece of information ϕ by
an external source. That the announcement is truthful means that the announced
information ϕ has to be true; that it is public means that all agents i ∈ I learn
about it simultaneously and commonly. Finally, the announcement’s source is called
‘external’ because it is not one of the agents i ∈ I (and will thus not be explicitly
represented in the formal language).

Public announcement logic [27, 31, 44] represents these announcements as
updates that change Kripke models, and introduces a dynamic public announcement
operator into the formal language to describe these updated models. This strategy
can straightforwardly be extended into the probabilistic realm.

Syntactically, we add a dynamic operator [! ·] · to the static language L , thus
obtaining the new language L !. The formula [!ϕ]ψ means that after any truthful
public announcement of ϕ, it will be the case that ψ . Its dual is defined as 〈!ϕ〉ψ :=
¬[!ϕ]¬ψ , and means that ϕ can truthfully and publicly be announced, and afterwards
ψ will be the case. These formulas thus allow us to express ‘now’ (i.e. before any
dynamics has taken place) what will be the case ‘later’ (after the dynamics has taken
place). These formulas are interpreted on a probabilistic Kripke model M and state
w as follows:

M,w |= [!ϕ]ψ iff if M,w |= ϕ then M|ϕ,w |= ψ ,
M,w |= 〈!ϕ〉ψ iff M,w |= ϕ and M|ϕ,w |= ψ .

Note that these clauses not only use the model M, but also the updated model M|ϕ.
The model M represents the agents’ information before the public announcement of
ϕ; the model M|ϕ represents their information after the public announcement of ϕ;
hence the public announcement of ϕ itself is represented by the update mechanism
M �→M|ϕ, which is formally defined as follows:

Definition 13.4 Consider a probabilistic Kripke model M = 〈W, Ri , μi , V 〉i∈I ,
a state w ∈ W , and a formula ϕ ∈ L ! such that M,w |= ϕ. Then the updated
probabilistic Kripke model M|ϕ := 〈Wϕ, Rϕi , μ

ϕ
i , V ϕ〉i∈I is defined as follows:

• Wϕ := W ,
• Rϕi := Ri ∩ (W × [[ϕ]]M) (for every agent i ∈ I ),
• μϕi : Wϕ → (Wϕ → [0, 1]) is defined (for every agent i ∈ I ) by



13 Logic and Probabilistic Update 389

μ
ϕ
i (v)(u) :=

{
μi (v)({u}∩[[ϕ]]M)
μi (v)([[ϕ]]M) if μi (v)([[ϕ]]M) > 0

μi (v)(u) if μi (v)([[ϕ]]M) = 0,

• V ϕ := V .

The main effect of the public announcement of ϕ in a model M is that all links
to ¬ϕ-states are deleted; hence these states are no longer accessible for any of the
agents. This procedure is standard; we will therefore focus on the probabilistic com-
ponents μϕi .

First of all, it should be noted that the case distinction in the definition ofμϕi (v)(u)
is made for strictly technical reasons, viz. to ensure that there are no ‘dangerous’
divisions by 0. In all examples and applications, we will be using the ‘interesting’
case μi (v)([[ϕ]]M) > 0. Still, for general theoretical reasons, something has to be
said about the case μi (v)([[ϕ]]M) = 0. Leaving μϕi (v)(u) undefined would lead to
truth value gaps in the logic, and thus greatly increase the difficulty of finding a
complete axiomatization. The approach taken in this chapter is to define μϕi (v)(u)
simply as μi (v)(u) in case μi (v)([[ϕ]]M) = 0—so the public announcement of ϕ
has no effect whatsoever on μi (v). The intuitive idea behind this definition is that an
agent i simply ignores new information if she previously assigned probability 0 to
it. Technically speaking, this definition will yield a relatively simple axiomatization.

One can easily check that if M is a probabilistic Kripke model, then M|ϕ is a
probabilistic Kripke model as well. We focus on μϕ(v) (for some arbitrary state
v ∈ Wϕ). If μi (v)([[ϕ]]M) = 0, then μϕi (v) is μi (v), which is a probability function
on W = Wϕ . If μi (v)([[ϕ]]M) > 0, then for any u ∈ Wϕ ,

μ
ϕ
i (v)(u) =

μi (v)({u} ∩ [[ϕ]]M)
μi (v)([[ϕ]]M)

,

which is positive because μi (v)({u} ∩ [[ϕ]]M) is positive, and at most 1, because
μi (v)({u} ∩ [[ϕ]]M) ≤ μi (v)([[ϕ]]M)—and hence μϕi (v)(u) ∈ [0, 1]. Furthermore,

∑

u∈Wϕ

μ
ϕ
i (v)(u) =

∑

u∈W

μi (v)({u} ∩ [[ϕ]]M)
μi (v)([[ϕ]]M)

=
∑

M,u|=ϕ

μi (v)(u)

μi (v)([[ϕ]]M)
= 1.

It should be noted that the definition of μϕi (v)—in the interesting case when
μi (v)([[ϕ]]M) > 0—can also be expressed in terms of conditional probabilities:

μ
ϕ
i (v)(u) =

μi (v)({u} ∩ [[ϕ]]M)
μi (v)([[ϕ]]M)

= μi (v)(u | [[ϕ]]M).

In general, for any X ⊆ Wϕ we have:

μ
ϕ
i (v)(X) =

μi (v)(X ∩ [[ϕ]]M)
μi (v)([[ϕ]]M)

= μi (v)(X | [[ϕ]]M).
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In other words, after the public announcement of a formula ϕ, the agents calculate
their new, updated probabilities by means of Bayesian conditionalization on the
information provided by the announced formula ϕ. This connection between public
announcements and Bayesian conditionalization will be explored more thoroughly
in Sect. 13.3.3.

Example 13.1 We finish this subsection by discussing a simple example. Consider
the following scenario. An agent does not know whether p is the case, i.e. she cannot
distinguish between p-states and ¬p-states. (In fact, p happens to be true.) Further-
more, the agent has no specific reason to think that one state is more probable than
any other; therefore it is reasonable for her to assign equal probabilities to all states.
This example can be formalized by the following model: M = 〈W, R, μ, V 〉,W =
{w, v}, R = W × W, μ(w)(w) = μ(w)(v) = μ(v)(w) = μ(v)(v) = 0.5, and
V (p) = {w}. (We work with only one agent in this example, so agent indices can
be dropped.) This model is a faithful representation of the scenario described above;
for example:

M,w |= ¬K p ∧ ¬K¬p ∧ P(p) = 0.5 ∧ P(¬p) = 0.5.

Now suppose that p is publicly announced (this is indeed possible, since p was
assumed to be actually true). Applying Definition 13.4 we obtain the updated model
M|p, with W p = W, R = {(w,w)}, and

μp(w)([[p]]M|p) = μp(w)(w) = μ(w)({w} ∩ [[p]]M)
μ(w)([[p]]M) = μ(w)(w)

μ(w)(w)
= 1.

Using this updated model M|p, we find that

M,w |= [!p](K p ∧ P(p) = 1 ∧ P(¬p) = 0
)
.

So after the public announcement of p, the agent has come to know that p is in fact
the case. She has also adjusted her probabilities: she now assigns probability 1 to p
being true, and probability 0 to p being false. These are the results that one would
intuitively expect, so Definition 13.4 seems to yield an adequate representation of
the epistemic and probabilistic effects of public announcements.

13.3.2 Proof System

Public announcement logic can be axiomatized by adding a set of reduction axioms
to the static base logic [27]. These axioms allow us to recursively rewrite formu-
las containing dynamic public announcement operators as formulas without such
operators; hence the dynamic language L ! is equally expressive as the static L .
Alternatively, reduction axioms can be seen as ‘predicting’ what will be the case
after the public announcement has taken place in terms of what is the case before the
public announcement has taken place.



13 Logic and Probabilistic Update 391

1. static base logic

probabilistic epistemic logic, as axiomatized in Fig. 13.1

2. necessitation for public announcement

3. reduction axioms for public announcement

Fig. 13.2 Axiomatization of probabilistic public announcement logic

This strategy can be extended into the probabilistic realm. For the static base
logic, we do not simply take some system of epistemic logic (usually S5), but rather
the system of probabilistic epistemic logic described in Sect. 13.2.3 (Fig. 13.1),
and add the reduction axioms shown in Fig. 13.2. The first four reduction axioms
are familiar from classical (non-probabilistic) public announcement logic. Note that
the reduction axiom for i-probability formulas makes, just like Definition 13.4, a
case distinction based on whether the agent assigns probability 0 to the announced
formulaϕ. The significance of this reduction axiom, and its connection with Bayesian
conditionalization, will be further explored in the next subsection.

Once again, standard techniques suffice to prove the following theorem [37]:

Theorem 13.2 Probabilistic public announcement logic, as axiomatized in Fig. 13.2,
is sound and complete with respect to the class of probabilistic Kripke frames.

13.3.3 Higher-Order Information in Public Announcements

In this subsection we will discuss the role of higher-order information in probabilistic
public announcement logic. This will further clarify the connection, but also the dis-
tinction, between (dynamic versions of) probabilistic epistemic logic and probability
theory proper.

In the previous subsection we introduced a reduction axiom for i-probability
formulas. This axiom allows us to derive the following principle as a special case:

(ϕ ∧ P(ϕ) > 0) −→ ([!ϕ]Pi (ψ) ≥ b↔ P(〈!ϕ〉ψ) ≥ bPi (ϕ)
)
. (13.1)
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The antecedent states that ϕ is true (because of the truthfulness of public announce-
ments) and that agent i assigns it a strictly positive probability (so that we are in the
‘interesting’ case of the reduction axiom). To see the meaning of the consequent more
clearly, note that � 〈!ϕ〉ψ ↔ (ϕ ∧ [!ϕ]ψ), and introduce the following abbreviation
of conditional probability into the formal language:

Pi (β |α) ≥ b := Pi (α ∧ β) ≥ bPi (α).

Principle (13.1) can now be rewritten as follows:

(ϕ ∧ P(ϕ) > 0) −→ ([!ϕ]Pi (ψ) ≥ b↔ P([!ϕ]ψ |ϕ) ≥ b
)
. (13.2)

A similar version can be proved for ≤ instead of ≥; combining these two we get:

(ϕ ∧ P(ϕ) > 0) −→ ([!ϕ]Pi (ψ) = b↔ P([!ϕ]ψ |ϕ) = b
)
. (13.3)

The consequent thus states a connection between the agent’s probability of ψ
after the public announcement of ϕ, and her conditional probability of [!ϕ]ψ , given
the truth of ϕ. In other words, after a public announcent of ϕ, the agent updates her
probabilities by Bayesian conditionalization on ϕ. The subtlety of principle (13.3),
however, is that the agent does not take the conditional probability (conditional
on ϕ) of ψ itself, but rather of the updated formula [!ϕ]ψ .

The reason for this is that [!ϕ]Pi (ψ) = b talks about the probability that the
agent assigns to ψ after the public announcement of ϕ has actually happened. If we
want to describe this probability as a conditional probability, we cannot simply make
use of the conditional probability Pi (ψ |ϕ), because this represents the probability
that the agent would assign to ψ if a public announcement of ϕ would happen—
hypothetically, not actually! Borrowing a slogan from van Benthem: “The former
takes place once arrived at one’s vacation destination, the latter is like reading a travel
folder and musing about tropical islands.” [11, p. 417]. Hence, if we want to describe
the agent’s probability of ψ after an actual public announcement of ϕ in terms of
conditional probabilities, we need to represent the effects of the public announcement
of ϕ on ψ explicitly, and thus take the conditional probability (conditional on ϕ) of
[!ϕ]ψ , rather than ψ .

One might wonder about the relevance of this subtle distinction between actual
and hypothetical public announcements. The point is that the public announcement
of ϕ can have effects on the truth value of ψ . For large classes of formulas ψ , this
will not occur: their truth value is not affected by the public announcement of ϕ.
Formally, this means that � ψ ↔ [!ϕ]ψ , and thus (the consequent of) principle
(13.3) becomes:

[!ϕ]Pi (ψ) = b↔ Pi (ψ |ϕ) = b

—thus wiping away all differences between the agent’s probability ofψ after a public
announcement of ϕ, and her conditional probability of ψ , given ϕ. A typical class
of such formulas (whose truth value is unaffected by the public announcement of ϕ)
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is formed by the Boolean combinations of proposition letters, i.e. those formulas
which express ontic or first-order information. Since probability theory proper is
usually only concerned with first-order information (‘no nested probabilities’), the
distinction between actual and hypothetical announcements—or in general, between
actual and hypothetical learning of new information—thus vanishes completely, and
Bayesian conditionalization can be used as a universal update rule to compute new
probabilities after (actually) learning a new piece of information.

However, in probabilistic epistemic logic (and its dynamic versions, such as prob-
abilistic PAL), higher-order information is taken into account, and hence the distinc-
tion between actual and hypothetical public announcements has to be taken seriously.
Therefore, the consequent of principle (13.3) should really use the conditional prob-
ability Pi ([!ϕ]ψ |ϕ), rather than just Pi (ψ |ϕ).4

Example 13.2 To illustrate this, consider again the model defined in Example 13.1,
and put ϕ := p ∧ P(¬p) = 0.5. It is easy to show that

M,w |= P(ϕ |ϕ) = 1 ∧ P([!ϕ]ϕ |ϕ) = 0 ∧ [!ϕ]P(ϕ) = 0.

Hence the probability assigned to ϕ after the public announcement is the condi-
tional probability P([!ϕ]ϕ |ϕ), rather than just P(ϕ |ϕ). Note that this example
indeed involves higher-order information, since we are talking about the probability
of ϕ, which itself contains the probability statement P(¬p) = 0.5 as a conjunct.
Finally, this example also shows that learning a new piece of information ϕ (via
public announcement) does not automatically lead to the agents being certain about
(i.e. assigning probability 1 to) that formula. This is to be contrasted with probability
theory, where a new piece of information ϕ is processed via Bayesian conditional-
ization, and thus always leads to certainty: P(ϕ |ϕ) = 1. The explanation is, once
again, that probability theory is only concerned with first-order information, whereas
the phenomena described above can only occur at the level of higher-order informa-
tion.5,6

4 Romeijn [45] provides an analysis that stays closer in spirit to probability theory proper. He argues
that the public announcement of ϕ induces a shift in the interpretation of ψ (in our terminology:
from ψ to [!ϕ]ψ , i.e. from [[ψ]]M to [[ψ]]M|ϕ), and shows that such meaning shifts can be modeled
using Dempster-Shafer belief functions. Crucially, however, this proposal is able to deal with the
case ofψ expressing second-order information (e.g. when it is of the form Pi (p) = b), but not with
the case of higher-order information in general (e.g. when ψ is of the form Pj (Pi (p) = b) = a, or
involves even more deeply nested probabilities) [45, p. 603].
5 Similarly, the success postulate for belief expansion in the (traditional) AGM framework [1, 30]
states that after expanding one’s belief set with a new piece of information ϕ, the updated (expanded)
belief set should always contain this new information. Also here the explanation is that AGM is
only concerned with first-order information. (Note that we talk about the success postulate for belief
expansion, rather than belief revision, because the former seems to be the best analogue of public
announcement in the AGM framework.)
6 The occurrence of higher-order information is a necessary condition for this phenomenon, but not a
sufficient one: there exist formulasϕ that involve higher-order information, but still |= [!ϕ]Pi (ϕ) = 1
(or epistemically: |= [!ϕ]Kiϕ).
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13.4 Probabilistic Dynamic Epistemic Logic

In this section we will move from a probabilistic version of public announcement
logic to a probabilistic version of ‘full’ dynamic epistemic logic. Section 13.4.1
introduces a probabilistic version of the product update mechanism that is behind
dynamic epistemic logic. Section 13.4.2 introduces dynamic operators into the formal
language to talk about these product updates, and discusses a detailed example.
Section 13.4.3, finally, shows how to obtain a complete axiomatization in a fully
standard (though non-trivial) fashion.

13.4.1 Probabilistic Product Update

Classical (non-probabilistic) dynamic epistemic logic models epistemic dynamics by
means of a product update mechanism [4, 5]. The agents’ static information (what is
the current state?) is represented in a Kripke model M, and their dynamic information
(what type of event is currently taking place?) is represented in an update model E.
The agents’ new information (after the dynamics has taken place) is represented
by means of a product construction M ⊗ E. We will now show how to define a
probabilistic version of this construction.

Before stating the formal definitions, we show how they naturally arise as proba-
bilistic generalizations of the classical (non-probabilistic) notions. The probabilistic
Kripke models introduced in Definition 13.2 represent the agents’ static information,
in both its epistemic and its probabilistic aspects. This static probabilistic informa-
tion is called the prior probabilities of the states in [17]. We can thus say that when
w is the actual state, agent i considers it epistemically possible that v is the actual
state ((w, v) ∈ Ri ), and, more specifically, that she assigns probability b to v being
the actual state (μi (w)(v) = b).

Update models are essentially like Kripke models: they represent the agents’ infor-
mation about events, rather than states. Since probabilistic Kripke models represent
both epistemic and probabilistic information about states, by analogy probabilistic
update models should represent both epistemic and probabilistic information about
events. Hence, they should not only have epistemic accessibility relations Ri over
their set of events E , but also probability functions μi : E → (E → [0, 1]). (Formal
details will be given in Definition 13.5.) We can then say that when e is the actually
occurring event, agent i considers it epistemically possible that f is the actually
occurring event ((e, f ) ∈ Ri ), and, more specifically, that she assigns probability b
to f being the actually occurring event (μi (e)( f ) = b). This dynamic probabilistic
information is called the observation probabilities in van Benthem et al. [17].

Finally, how probable it is that an event e will occur, might vary from state to
state. We assume that this variation can be captured by means of a setΦ of (pairwise
inconsistent) sentences in the object language (so that the probability that an event e
will occur can only vary between states that satisfy different sentences ofΦ). This will
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be formalized by adding to the probabilistic update models a set of preconditionsΦ,
and probability functions pre : Φ → (E → [0, 1]). The meaning of pre(ϕ)(e) = b
is that if ϕ holds, then event e occurs with probability b. In van Benthem et al. [17]
these are called occurrence probabilities.7

We are now ready to formally introduce probabilistic update models:

Definition 13.5 A probabilistic update model is a tuple E = 〈E, Ri , Φ,pre, μi 〉i∈I ,
where E is a non-empty finite set of events, Ri ⊆ E × E is agent i’s epistemic
accessibility relation,Φ ⊆ L ⊗ is a finite set of pairwise inconsistent sentences called
preconditions, μi : E → (E → [0, 1]) assigns to each event e ∈ E a probability
function μi (e) over E , and pre : Φ → (E → [0, 1]) assigns to each precondition
ϕ ∈ Φ a probability function pre(ϕ) over E .

All components of a probabilistic update model have already been commented
upon. Note that we use the same symbols Ri and μi to indicate agent i’s epistemic
and probabilistic information in a probabilistic Kripke model M and in a probabilistic
update model E—from the context it will always be clear which of the two is meant.
The language L ⊗ that the preconditions are taken from will be formally defined
in the next subsection. (As is usual in this area, there is a non-vicious simultaneous
recursion going on here.)

We now introduce occurrence probabilities for events at states:

Definition 13.6 Consider a probabilistic Kripke model M, a state w, a probabilistic
update model E, and an event e. Then the occurrence probability of e at w is defined
as

pre(w)(e) =
{

pre(ϕ)(e) if ϕ ∈ Φ and M,w |= ϕ
0 if there is no ϕ ∈ Φ such that M,w |= ϕ.

Since the preconditions are pairwise inconsistent, pre(w)(e) is always well-defined.
The meaning of pre(w)(e) = b is that in state w, event e occurs with probability b.
Note that if two states w and v satisfy the same precondition, then always pre(w)(e) =
pre(v)(e); in other words, the occurrence probabilities of an event e can only vary
‘up to a precondition’ (cf. supra).

The probabilistic product update mechanism can now be defined as follows:

Definition 13.7 Consider a probabilistic Kripke model M = 〈W, Ri , μi , V 〉i∈I and
a probabilistic update model E = 〈E, Ri , Φ,pre, μi 〉i∈I . Then the updated model
M⊗ E := 〈W ′, R′i , μ′i , V ′〉i∈I is defined as follows:

• W ′ := {(w, e) |w ∈ W, e ∈ E,pre(w)(e) > 0},
• R′i := {((w, e), (w′, e′)) ∈ W ′ × W ′ | (w,w′) ∈ Ri and (e, e′) ∈ Ri } (for every

agent i ∈ I ),

7 Occurrence probabilities are often assumed to be objective frequencies. This is reflected in the
formal setup: the function pre is not agent-dependent.
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• μ′i : W ′ → (W ′ → [0, 1]) is defined (for every agent i ∈ I ) by

μ′i (w, e)(w′, e′) := μi (w)(w′) · pre(w′)(e′) · μi (e)(e′)∑
w′′∈W
e′′∈E

μi (w)(w′′) · pre(w′′)(e′′) · μi (e)(e′′)

if the denominator is strictly positive, and μ′i (w, e)(w′, e′) := 0 otherwise,
• V ′(p) := {(w, e) ∈ W ′ |w ∈ V (p)} (for every p ∈ Prop).

We will only comment on the probabilistic component of this definition (all other
components are fully classical). After the dynamics has taken place, agent i calculates
at state (w, e) her new probability for (w′, e′) by taking the arithmetical product of
(i) her prior probability for w′ at w, (ii) the occurrence probability of e′ in w′, and
(iii) her observation probability for e′ at e, and then normalizing this product. The
factors in this product are not weighted (or equivalently, they all have weight 1)—
van Benthem et al. [17] also discusses weighted versions of this update mechanism,
and shows how one of these weighted versions corresponds to the rule of Jeffrey
conditioning from probability theory [36]. Finally, note that M ⊗ E might fail to
be a probabilistic Kripke model: if the denominator in the definition of μ′i (w, e)
is 0, then μ′i (w, e) assigns 0 to all states in W ′. We will not care here about the
interpretation of this feature, but only remark that technically speaking it is harmless
and, perhaps most importantly, still allows for a reduction axiom for i-probability
formulas (cf. Sect. 13.4.3).

13.4.2 Language and Semantics

To talk about these updated models, we add dynamic operators [E,e] to the static
language L , thus obtaining the new language L ⊗. Here, E,e are formal names for
the probabilistic update model E = 〈E, Ri , Φ,pre, μi 〉i∈I and event e ∈ E (recall
our remark about the mutual recursion of the dynamic language and the updated
models). The formula [E,e]ϕ means that after the event e has occurred, it will be
the case that ϕ. It has the following semantics:

M,w |= [E,e]ψ iff if pre(w)(e) > 0, then M⊗ E, (w, e) |= ψ.
Example 13.3 Consider the following scenario. While strolling through a flee mar-
ket, you see a painting that you think might be a real Picasso. Of course, the chance
that the painting is actually a real Picasso is very slim, say 1 in 100,000. You know
from an art encyclopedia that Picasso signed almost all his paintings with a very
characteristic signature. If the painting is a real Picasso, the chance that it bears
the characteristic signature is 97 %, while if the painting is not a real Picasso, the
chance that it bears the characteristic signature is 0 % (nobody is capable of imitating
Picasso’s signature). You immediately look at the painting’s signature, but determin-
ing whether it is Picasso’s characteristic signature is very hard, and—not being an
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expert art historian—you remain uncertain and think that the chance is 50 % that the
painting’s signature is Picasso’s characteristic one.

Your initial information (before having looked at the painting’s signature) can be
represented as the following probabilistic Kripke model: M = 〈W, R, μ, V 〉, where
W = {w, v}, R = W × W, μ(w)(w) = μ(v)(w) = 0.00001, μ(w)(v) = μ(v)(v) =
0.99999, and V (real) = {w}. (We work with only one agent in this example, so agent
indices can be dropped.) Hence, initially you do not rule out the possibility that the
painting in front of you is a real Picasso, but you consider it highly unlikely:

M,w |= K̂ real ∧ P(real) = 0.00001.

The event of looking at the signature can be represented with the following update
model: E = 〈E, R, Φ,pre, μ〉, where E = {e, f }, R = E × E , Φ = {real,¬real},
pre(real)(e) = 0.97, pre(real)( f ) = 0.03, pre(¬real)(e) = 0, pre(¬real)( f ) =
1, and μ(e)(e) = μ( f )(e) = μ(e)( f ) = μ( f )( f ) = 0.5. The event e represents
‘looking at Picasso’s characteristic signature’; the event f represents ‘looking at a
signature that is not Picasso’s characteristic one’.

We now construct the updated model M ⊗ E. Since M, v �|= real, it holds that
pre(v)(e) = pre(¬real)(e) = 0, and hence (v, e) does not belong to the updated
model. It is easy to see that the other states (w, e), (w, f ) and (v, f ) do belong
to the updated model. Furthermore, one can easily calculate that μ′(w, e)(w, e) =
0.0000003 andμ′(w, e)(w, f ) = 0.0000097, soμ′(w, e)([[real]]M⊗E) = 0.0000003
+ 0.0000097 = 0.00001, and thus

M,w |= [E,e]P(real) = 0.00001.

Hence, even though the painting in front of you is a real Picasso (in state w), after
looking at the signature (which is indeed Picasso’s characteristic signature!—the
event that actually happened was event e) you still assign a probability of 1 in 100,000
to it being a real Picasso.

Note that if you had been an expert art historian, with the same prior probabilities,
but with the reliable capability of recognizing Picasso’s characteristic signature—
let’s formalize this as μ(e)(e) = 0.99 and μ(e)( f ) = 0.01—, then the same update
mechanism would have implied that

M,w |= [E,e]P(real) = 0.00096.

In other words, if you had been an expert art historian, then looking at the painting’s
signature would have been highly informative: it would have led to a significant
change in your probabilities.

13.4.3 Proof System

A complete axiomatization for probabilistic dynamic epistemic logic can be found
using the standard strategy, viz. by adding a set of reduction axioms to static
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probabilistic epistemic logic. Implementing this strategy, however, is not entirely
trivial. The reduction axioms for non-probabilistic formulas are familiar from clas-
sical (non-probabilistic) dynamic epistemic logic, but the reduction axiom for i-
probability formulas is more complicated.

First of all, this reduction axiom makes a case distinction on whether a certain
sum of probabilities is strictly positive or not. We will show that this corresponds
to the case distinction made in the definition of the updated probability functions
(Definition 13.7). In the definition of μ′i (w, e), a case distinction is made on the
value of the denominator of a fraction, i.e. on the value of the following expression:

∑

v∈W
f ∈E

μi (w)(v) · pre(v)( f ) · μi (e)( f ). (13.4)

But this expression can be rewritten as

∑

v∈W
f ∈E
ϕ∈Φ

M,v|=ϕ

μi (w)(v) · pre(ϕ)( f ) · μi (e)( f ).

Using the definition of ki,e,ϕ, f (cf. Fig. 13.3), this can be rewritten as

∑

ϕ∈Φ
f ∈E

μi (w)([[ϕ]]M) · ki,e,ϕ, f .

Since E and Φ are finite, this sum is finite and corresponds to an expression in the
formal language L ⊗, which we will abbreviate as σ :

σ :=
∑

ϕ∈Φ
f ∈E

ki,e,ϕ, f Pi (ϕ).

This expression can be turned into an i-probability formula by ‘comparing’ it with
a rational number b; for example σ ≥ b. Particularly important are the formulas
σ = 0 and σ > 0: exactly these formulas are used to make the case distinction in
the reduction axiom for i-probability formulas.8

Next, the reduction axiom for i-probability formulas provides a statement in each
case of the case distinction: 0 ≥ b in the case σ = 0, and χ (as defined in Fig. 13.3)
in the case σ > 0. We will only explain the meaning of χ in the ‘interesting’ case

8 Note that E andΦ are components of the probabilistic update model E named by E; furthermore,
the values ki,e,ϕ, f are fully determined by the model E and event e named by E and e, respec-
tively (consider their definition in Fig. 13.3). Hence any i-probability formula involving σ is fully
determined by E, e, and can be interpreted at any probabilistic Kripke model M and state w.
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1. static base logic

probabilistic epistemic logic, as axiomatized in Fig. 13.1

2. necessitation for [E,e]

3. reduction axioms

using the following definitions:

Fig. 13.3 Axiomatization of probabilistic dynamic epistemic logic

σ > 0. If M,w |= σ > 0, then the value of (13.4) is strictly positive (cf. supra), and
we can calculate:

μ′i (w, e)([[ψ]]M⊗E) =∑
M⊗E,(w′,e′)|=ψ μ′i (w, e)(w′, e′)

=∑
w′∈W,e′∈E

M,w′|=〈E,e′〉ψ
μi (w)(w′)·pre(w′)(e′)·μi (e)(e′)∑
v∈W
f ∈E

μi (w)(v)·pre(v)( f )·μi (e)( f )

=
∑
ϕ∈Φ
f ∈E

μi (w)([[ϕ∧〈E,f〉ψ]]M)·ki,e,ϕ, f

∑
ϕ∈Φ
f ∈E

μi (w)([[ϕ]]M)·ki,e,ϕ, f
.

Hence, in this case (σ > 0) we can express that μ′i (w, e)([[ψ]]M⊗E) ≥ b in the
formal language, by means of the following i-probability formula:

∑

ϕ∈Φ
f ∈E

ki,e,ϕ, f Pi (ϕ ∧ 〈E, f〉ψ) ≥
∑

ϕ∈Φ
f ∈E

bki,e,ϕ, f Pi (ϕ).

Moving to linear combinations, we can express that
∑
� a�μ′i (w, e)([[ψ�]]M⊗E) ≥

b in the formal language using an analogous i-probability formula, namely χ (cf. the
definition of this formula in Fig. 13.3).
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We thus obtain the following theorem [17]:

Theorem 13.3 Probabilistic dynamic epistemic logic, as axiomatized in Fig. 13.3,
is sound and complete with respect to the class of probabilistic Kripke frames.

13.5 Further Developments and Applications

Probabilistic extensions of dynamic epistemic logic are a recent development, and
there are various open questions and potential applications to be explored. In this
section we discuss a selection of such topics for further research; more suggestions
can be found in [17] and [15, ch. 8].

We distinguish between technical and conceptual open problems.9 A typical tech-
nical problem that needs further research is the issue of surprising information. In
the update mechanisms described in this chapter, the agents’ new probabilities are
calculated by means of a fraction whose denominator might take on the value 0. The
focus has been on the ‘interesting’ (non-0) cases, and the 0-case has been treated as
mere ‘noise’: a technical artefact that cannot be handled convincingly by the system.
However, sometimes such 0-cases do represent very intuitive scenarios; for example,
one can easily think of an agent being absolutely certain that a certain proposition ϕ is
false (P(ϕ) = 0), while that proposition is actually true, and can thus be announced!
In such cases, the system of probabilistic public announcement logic described in
Sect. 13.3 predicts that the agent will simply ignore the announced information
(rather than performing some sensible form of belief revision). More can, and should
be said about such cases [2, 6, 46].

Another technical question is whether other representations of soft information
can learn something from the probabilistic approach to dynamic epistemic logic.
Probabilistic Kripke models represent the agents’ soft information via the probabil-
ity functions μi , and interpret formulas of the form Pi (ϕ) ≥ b. Plausibility models,
on the other hand, represent the agents’ soft information via a (non-numerical) plau-
sibility ordering ≤i , and interpret more qualitative notions of belief [7, 12, 15, 22].
In particular, if we use Min≤i (X) to denote the set of ≤i -minimal states in the set
X , then the formula Biϕ is interpreted in a plausibility model M as follows:10

M,w |= Biϕ iff for all v ∈ Min≤i (Ri [w]) : M, v |= ϕ.
The product update for probabilistic Kripke models described in Definition 13.7

takes into account prior probabilities (μi (w)(v) for states w and v), observation
probabilities (μi (e)( f ) for events e and f ), and occurrence probabilities (pre(w)(e)
for a state w and event e). One can also define a product update for plausibility
models; a widely used rule to define the updated plausibility ordering is the so-called
‘priority update’ [7, 15]:

9 In practice, this distinction will not always be clear-cut, of course.
10 As usual, Ri [w] denotes the set {v ∈ W | (w, v) ∈ Ri }.
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(w, e) ≤i (v, f ) iff e <i f or (e ∼=i f and w ≤i v).

The updated plausibility ordering thus gives priority to the plausibility ordering on
events, and otherwise preserves the original plausibility ordering on states as much
as possible. In analogy with the probabilistic setting, the plausibility orderings on
states and events can be called the ‘prior plausibility’ and ‘observation plausibility’,
respectively. However, the notion of occurrence probability does not seem to have a
clear analogue in the framework of plausibility models. van Benthem [16] defines a
notion of ‘occurrence plausibility’, which can be expressed as e ≤w f : at state w,
event e is at least as plausible as f to occur (this ordering is not agent-dependent;
recall Footnote 7). New product update rules thus have to merge three plausibility
orderings: prior plausibility, observation plausibility, and occurrence plausibility. van
Benthem [16] makes some proposals for such rules, but finding a fully satisfactory
definition remains a major open problem in this area.

An important conceptual issue that is currently actively being investigated, is
the exact relation between the quantitative (probabilistic) and qualitative perspec-
tives on soft information. A widespread proposal is to connect belief with high
probability, where ‘high’ means ‘above some treshold τ ∈ (0.5, 1]’; formally:
Biϕ ⇔ Pi (ϕ) ≥ τ . An immediate problem of this proposal is that belief is standardly
taken to be closed under conjunction, while ‘high probability’ is not closed under
conjunction (unless τ = 1). Despite this initial problem, there’s also a lot in favor
of this proposal. Plausibility models not only interpret a notion of belief, but also a
notion of conditional belief : Bαi ϕ means that agent i believes that ϕ, conditional on
α. The connection between belief and high probability can perfectly be extended to
conditional belief and high conditional probability:

Bαi ϕ ⇔ Pi (ϕ |α) ≥ τ. (13.5)

Furthermore, (conditional) belief and high (conditional) probability seem to display
highly similar dynamic behavior under public announcements. We saw in Sect. 13.3.3
that [!ϕ]Pi (ψ) ≥ τ can sometimes diverge in truth value from Pi (ψ |ϕ) ≥ τ ,
because of the presence of higher-order information. In exactly the same way (and
for the same reason), [!ϕ]Biψ and Bϕi ψ can diverge in truth value on plausibility
models. Furthermore, (conditional) belief and high (conditional) probability have
exactly the ‘same’ reduction axiom. This means that (13.6) (which is interpreted on
probabilistic Kripke models) and (13.7) (which is interpreted on plausibility models)
are intertranslatable, using principle (13.5) above:

[!ϕ]Pi (ψ |α) ≥ τ ↔
(
ϕ→ Pi (〈!ϕ〉ψ | 〈!ϕ〉α) ≥ τ

)
, (13.6)

[!ϕ]Bαi ψ ↔
(
ϕ→ B〈!ϕ〉αi 〈!ϕ〉ψ

)
. (13.7)

The significance of these observations is further discussed in [24].
Several fruitful applications of probabilistic dynamic epistemic logic can be

expected in the fields of game theory and cognitive science. In recent years, dynamic
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epistemic logic has been widely applied to explore the epistemic foundations of game
theory [10, 13, 18]. However, given the importance of probability in game theory
(for example, in the notion of mixed strategy), it is surprising that very few of these
logical analyses have a probabilistic component.11 Probabilistic dynamic epistemic
logic provides the required tools to explore the epistemic and the probabilistic aspects
of game theory.

For example, [21, 23] uses a version of probabilistic public announcement logic
to analyze the role of common knowledge and communication in Aumann’s well-
known agreeing to disgaree theorem. Classically, this theorem is stated as follows:
“If two people have the same prior, and their posteriors for an event [ϕ] are com-
mon knowledge, then these posteriors are equal” [3, p. 1236]. If we represent the
experiments (with respect to which the agents’ probabilities are called ‘prior’ and
‘posterior’) with a dynamic operator [EXP], then this version can be formalized as
(13.8), which is derivable in the underlying logical system:

[EXP]C(
P1(ϕ) = a ∧ P2(ϕ) = b

)→ a = b. (13.8)

However, this version does not say how the agents are to obtain this common knowl-
edge; it just assumes that they have been able to obtain it one way or another. The
way to obtain common knowledge is via a certain communication protocol, which
is described explicitly in the intuitive scenario that is used to motivate and explain
this theorem. Once this communication dynamics is made explicitly part of the story,
common knowledge of the posteriors need no longer be assumed in the formulation
of the agreement theorem, since it will now simply follow from the communica-
tion protocol. If we represent the communication protocol with a dynamic operator
[DIAL(ϕ)], this new version of the theorem can be formalized as (13.9):

[EXP][DIAL(ϕ)](P1(ϕ) = a ∧ P2(ϕ) = b
)→ a = b. (13.9)

The notion of common knowledge is thus less central to the agreement theorem
than is usually thought: if we compare (13.8) and (13.9), it is clear that common
knowledge and communication are two sides of the same coin; the former is only
needed to formulate the agreement theorem if the latter is not represented explicitly.

Another potential field of application is cognitive science. The usefulness of (epis-
temic) logic for cognitive science has been widely recognized [14, 35, 43]. Of course,
as in any other empirical discipline, one quickly finds out that real-life human cog-
nition is rarely a matter of all-or-nothing, but often involves degrees (probabili-
ties). Furthermore, a recent development in cognitive science is toward probabilistic
(Bayesian) models of cognition [42]. If epistemic logic is to remain a valuable tool
here, it will thus have to be a thoroughly ‘probabilized’ version. For example, prob-
abilistic dynamic epistemic logic has been used to model the cognitive phenomenon
of surprise and its epistemic aspects [25, 39].

11 The logic in [19] does have a probabilistic component, but this logic is fully static.
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13.6 Conclusion

In this chapter we have introduced probabilistic epistemic logic, and several of its
dynamic versions. These logics provide a standard epistemic (possible-worlds) analy-
sis of the agents’ hard information, and supplement it with a fine-grained probabilistic
analysis of their soft information. Higher-order information of any kind (knowledge
about probabilities, probabilities about knowledge, etc.) is represented explicitly.
The importance of higher-order information in dynamics is clear from our discussion
of the connection between public announcements and Bayesian conditionalization.
The probabilistic versions of both public announcement logic and dynamic epistemic
logic with product updates can be completely axiomatized in a standard way (via
reduction axioms). The fertility of the research program of probabilistic dynamic
epistemic logic is illustrated by the variety of technical and conceptual issues that
are still open for further research, and its (potential) use in analyzing theorems and
phenomena from game theory and cognitive science.
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Chapter 14
Belief as a Simplification of Probability,
and What This Entails

Hannes Leitgeb

Abstract There are concepts of belief on different scales of measurement. In
particular, it is common practice to ascribe beliefs to a person both in terms of a
categorical (all-or-nothing) concept of belief and in terms of a numerical concept
of degree of belief; the formal structure of categorical belief being the subject of
doxastic logic, the formal structure of degrees of belief being the topic of subjective
probability theory. How do these two kinds of belief relate to each other? We derive
an answer to this question from one basic norm: rational categorical belief ought to
be a simplified version of subjective probability, where the corresponding concept
of simplification can be made mathematically precise in terms of minimizing sums
of errors of the result of approximating the probability of a proposition by means
of belief or disbelief in the proposition. As it turns out, essentially (glossing over a
couple of details) the answer to our question is: a rational person’s set of doxasti-
cally accessible worlds must have a stably high probability with respect the person’s
subjective probability measure.

14.1 Introduction: Belief as a Simplification of Subjective
Probability

Rational belief can be expressed on different scales of measurement: in terms of
numerical degrees of belief, or plausibility orders, or categorical “all-or-nothing”
belief, or on a scale that lies somewhere in between the numerical and the ordinal
scale, or between the ordinal and the categorical one.

Let us just focus on numerical rational belief now, which we are going to iden-
tify with subjective probability, and rational categorical (“all-or-nothing”) belief,
which we identify with what is studied in doxastic logic and its standard possible
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worlds semantics. Belief in both senses ultimately concerns an attitude towards
propositions—sets of possible worlds—as these are the contents of belief, but at
the same time both of these attitudes are actually derivable from attitudes towards
the possible worlds themselves (at least if the underlying set of possible worlds is
finite, as we are going to assume throughout the chapter): for the probability P(X) of
a proposition X is just the sum of the probabilities of (the singletons of) the members
w of X , and a proposition X is believed if and only if it is a superset of a distinguished
set (say, BW ) of doxastically possible or accessible worlds w. So belief in the sense of
probability theory and belief in the sense of doxastic logic both incorporate ways of
reducing the complexity of an attitude towards 2|W | propositions to the complexity
of taking a stand on the smaller number |W | of members of the overall set W of
possible worlds; in both cases the acceptance of certain rationality postulates—the
principles of probability in the case of numerical belief, the principles of doxastic
logic in the case of categorical belief—has an effect of simplification.

And whatever one’s view on the exact relationship between degrees of belief and
categorical belief might be, it is very plausible that the concept of simplification will
play a role again when one aims to specify that very relationship—as the following
norm seems to be valid:

• Rational categorical belief ought to be a simplified version of subjective probability.

When arguing for this norm, we should distinguish between two possible cases
here, without having to commit ourselves to either of them. The cases concern the
difference between externally ascribing beliefs and internally having them.

Either there is actually just one phenomenon “out there”—one kind of rational
belief state—but we are able to talk about this phenomenon in terms of concepts of
belief on different scales. Then the norm above amounts to:

• If one is rational, then one ought to ascribe rational categorical beliefs and subjec-
tive probabilities to a person so that the ascribed system of categorical beliefs is a
simplified version of the ascribed probability measure.

This norm is plausible, if only to guarantee that one’s rational ascription of a per-
son’s categorical belief system ends up in some kind of harmony with one’s rational
ascription of the same person’s subjective probability measure; and this should be
the case in order to minimize the threat of “schizophrenic” situations in which the
categorical beliefs that one ascribes to a person would take her to be disposed to
act in one way but where the ascription of the same person’s subjective probability
function would take her to be disposed to act differently. So a belief ascriber ought
to obey the norm above in order for her different kinds of belief ascription to (more
or less) cohere.

The other possible case is that there are two distinct phenomena “out there”—for
instance, one and the same person having both a categorical belief system and a
separate degree of belief system as parts of her overall cognitive system—and by
‘categorical belief’ and ‘subjective probability’ we refer to these distinct systems,
respectively. Then the norm from before really means
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• If a person is rational, then her system of rational categorical beliefs ought to be a
simplified version of her subjective probability measure.

and again the norm sounds convincing: after all, a rational person’s categorical belief
states should end up in some kind of harmony with the same person’s subjective
probability measure in order to minimize the threat of “schizophrenic” situations
in which the person’s categorical beliefs would dispose her to act in one way but
where the same person’s subjective probability function would dispose her to act
differently. A believer ought to obey the norm above in order for her different kinds
of belief to (more or less) cohere. In either interpretation the norm seems valid.

Although the norms from above might sound like reductions of belief to probabil-
ity, they need not be interpreted as such: for instance, categorical belief might well be
more fundamental, in some sense, than degrees of belief, and if so, the norm above
would entail that a person’s degree of belief function ought be such that the given
belief system happens to be a simplification thereof. Or maybe neither of categorical
belief and degrees of belief is prior to the other, in which case the norm above merely
expresses a join constraint on both of them. Independently of how one views this
question of “priority”, the norm above does sound right.

This said, in whatever way the norms above are interpreted, they are all vague and
potentially ambiguous. The most urgent question being: what exactly does the term
‘is a simplified version of’ mean as used in the norms above?

Given a subjective probability measure P and a set BW of doxastically accessible
worlds (which determines rational categorical belief in the usual manner of possible
worlds semantics), and accepting that the numerical belief scale is more fine-grained
than the categorical belief scale and hence information is being lost by passing from
P to BW , how can we measure the “error” of using BW as one’s set of doxastically
possible worlds relative to the subjective probability measure P? Or in other words:
How can we measure the error of “digitalizing” the “analogue” information that is
contained in P in terms of the set BW ? Any satisfying answer to this question will
allow us to state a satisfying precisification of the norms above in the form

• It should be the case that the set BW of doxastically possible worlds minimizes
error relative to P .

Instead of ‘minimizes error relative to P’ we might just as well have said ‘maximizes
approximation of P’ or the like; never mind the exact wording.

In what follows, we will determine an answer to the question from before, and
we will present the precise norm on BW and P that derives from it. Section 14.2
will clarify the notion of minimizing error relative to P in one possible way; and
at the end of the section we will prove a theorem which will characterize the sets
of doxastically possible worlds that minimize error in that sense. Section 14.3 will
illustrate the theorem by means of a little example, and it will draw some conclusions
from this.1

1 In a different paper (H. Leitgeb, unpublished [5]), we approximate subjective probability in terms
of plausibility orders of possible worlds, that is, by belief on an ordinal scale; in this way, also
the dynamical aspects of belief can be taken into account. (The method of approximating probability



408 H. Leitgeb

14.2 The Explication of Simplification

Let W be a given non-empty and finite set of possible worlds; for instance, one might
think of W as the set of logically possible worlds for a given simple propositional
language with finitely many propositional letters. We will use ‘X ’, ‘Y ’, ‘Z ’ in order to
denote propositions, that is, subsets of W . By ‘P’ we will always denote a probability
measure over the power set of W . Whenever possible, we will suppress explicit
universal quantifiers over propositions and probability measures.

As a first approximation, we suggest to measure the error of simplifying P in terms
of choosing an “approximating” set X of doxastically possible worlds as follows:

ErrP (X) =
∑

Z :X⊆Z

errP (Bel(Z)) +
∑

Z :X∩Z=∅

errP (Dis(Z)).

In the first of the two sums, we consider all the propositions Z that one would end up
believing if X were one’s set of doxastically possible worlds—that is: all supersets
Z of X—and we sum up the individual errors (relative to P) of believing any such
Z ; these individual errors are denoted by ‘errP(Bel(Z))’. The second sum concerns
all the propositions Z that one would end up disbelieving if X were one’s set of
doxastically possible worlds—all propositions disjoint from X—and we sum up the
individual errors (relative to P) of disbelieving any such Z ; these individual errors
are denoted by ‘errP (Dis(Z))’. Adding up the values of these two sums yields the
overall error (relative to P) of taking X to be one’s set of doxastically possible worlds;
that overall error we denote by ‘ErrP(X)’.

We will say more about how to determine individual errors errP (Bel(Z)) and
errP (Dis(Z)) later in the chapter. Note that it would be possible to simplify the
sum above by identifying disbelieving Z with believing W \ Z , where W \ Z is the
set-theoretic complement of Z with respect to W : our only reason for not doing so
is that we do not need to—none of our arguments will rely on this identification.

The two crucial assumptions that are built into our proposal of measuring error
in terms of the sum above are: (i) being indifferent about a proposition Z—neither
believing nor disbelieving it—does not count as an error at all (for such Zs are simply
disregarded in the sum above); and (ii) individual errors are aggregated to an overall
or total error by adding them up. Neither of these assumptions is unproblematic, of
course. As far as (ii) is concerned, one might perhaps think of ErrP (X) as a kind of
expected epistemic (dis)utility of the act of choosing X to be one’s set of doxastically
possible worlds, in which case the summation of single (dis)utilities is a plausible
thing to do. (Famously, Hempel [2] and Levi [6] compute such overall expected
epistemic utilities, even though they do so differently.) As far as (i) is concerned, the
idea might be that if one does not take a stand on a proposition, then one may well

(Footnote 1 continued)
by belief in Leitgeb, unpublished, is completely different from the one that will be employed in the
next section.) Unfortunately, we will not be able to deal with this in the present chapter—sorry for
remaining on the static side here, Johan!
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be overly cautious, failing to take a risk, not doing anything, but one would not have
made a proper mistake—at least not in the usual sense of doing something wrong.
In any case, in what follows we will take these two assumptions for granted.

Now consider two sets X and Y , where X ⊆ Y : clearly then, by determining
overall errors as sketched above, ErrP(X) ≥ ErrP(Y ). In the extreme case, when
Y is identical to W , then if Y = W is a person’s set of doxastically possible worlds,
the person will end up believing only the tautological proposition W and disbelieving
the contradictory proposition ∅, neither of which will be an error—so presumably
ErrP(W ) will be just 0. Hence, if one’s sole aim were to minimize total error,
choosing W to be one’s set of doxastically possible worlds would be the way to go.

But that does not sound right: one might well rationally intend to be less cautious
than that. Therefore, our ultimate goal of finding the “best” approximation of P in
terms of a set BW of doxastically possible worlds cannot just consist in choosing the
set that minimizes overall error. And this is a well-known pattern: a rational person
should not just aim not to believe any falsehoods, she should also aim to believe
substantial truths; and although we are not in the business of comparing belief to
truth here, since our goal is really to compare belief to probability, the pattern remains
the same: the norms from the last section should not dictate a person to be overly
cautious; a brave believer should not be punished just for being brave.

This leads us to the following thought: whenever we intend to compare proposi-
tions in terms of the error (relative to a probability measure P) of choosing either of
them as one’s set of doxastically possible worlds, let us only consider propositions
that are rivals of each other in the following obvious sense:

Definition 14.1 X is a rival of Y iff X �⊆ Y , Y �⊆ X .

If X is a rival of Y , and hence Y is a rival if X , it is not the case that the set of believed
propositions according to X is a subset of the set of believed propositions according
to Y , nor vice versa; and it is not the case that the set of disbelieved propositions
according to X is a subset of the set of disbelieved propositions according to Y , nor
vice versa. Therefore it will at least not be settled from the start which of the two
will end up yielding a total error (relative to P) that is greater than or equal to the
total error of the other.

But that is still not good enough. Let us assume that we want to compare two rivals
X and Y in terms of the overall errors that they determine relative to some P; and
suppose that the cardinality of X , |X |, is small, whereas the cardinality |Y | of Y is
large: when determining ErrP (X) there will then be many more propositions Z for
which individual errors will be summed up than this will be the case for ErrP (Y )—
for there will be many more supersets of X than supersets of Y , and many more sets
will be disjoint from X than there will be sets disjoint from Y . In such a case, unless
compensated in some manner, X would seem to be disadvantaged to Y again, and
minimizing overall error might again lead to a general bias towards choosing one’s
set of doxastically possible worlds to be large (cautious) rather than small (brave).
And this would be so although X and Y are rivals in the sense introduced before.
Once again this is not what we intend.
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One way of addressing this problem would be to compare only propositions X
and Y of the same cardinality. But we will follow a slightly different path here.
Consider some rivals X and Y : if they are not of the same cardinality, we may still
introduce a partition π of W —a coarse-graining of the underlying space of worlds,
or formally: a set of pairwise disjoint subsets (“partition cells”) of W the union of
which is W again—so that the sets X \ Y , Y \ X , X ∩ Y , W \ (X ∪ Y ) remain
“separated”, that is, every partition cell of π is a subset of one of these four sets,
but where the number of partition cells that are subsets of X \ Y is identical to the
number of partition cells that are subsets of Y \ X , and consequently the number of
partition cells that are subsets of X is also identical to the number of partition cells
that are subsets of Y . By partitioning W in this way we will thus “make” X and Y
have the same cardinality. If we then also modify the definition of total error so that
only propositions Z are taken into account that “respect” that partition π—so that
Z does not “split” any of π’s partition cells—then the same number of sets Z will
be considered when determining the overall errors for X and Y , respectively, and
neither of X and Y will be disadvantaged anymore. That is the proposal that we are
going to put forward now in more formal terms.

Let us say that X respects a partition π (of W ) if and only if X is a union of
partition cells of π. Further down below we will apply a ternary notion of respecting:
X and Y respect a partition π (of W ) if and only if all of the sets X \Y , Y \ X , X ∩Y ,
W \ (X ∪ Y ) are unions of partition cells of π.

We can now adapt out original conception of overall error in the way that only
propositions are taken into account that respect a given partition:

Definition 14.2 For all partitions π of W , for all X that respect π:

Errπ,P (X) =
∑

Z : (i) Z respects π, (ii) X⊆Z

errP (Bel(Z)) +
∑

Z : (i) Z respects π, (ii) X∩Z=∅

errP (Dis(Z))

Next, for rivals X and Y , we regard X as a better simplification or approximation
of P than Y , when there is a partition of W according to which X and Y cover the
same number of partition cells and X leads to less overall error than Y relative to
P , but where there is no partition of W according to which X and Y cover the same
number of partition cells and Y leads to less overall error than X relative to P—a
kind of dominance conception of simplification.

Formally: When a proposition X respects a partition π, let us denote the number
of partition cells of π that are subsets of X by ‘|X |π’. We can then define:

Definition 14.3 If X is a rival of Y , then:
X produces fewer errors than Y (relative to P) iff

• there exists a partition π of W , such that X and Y respect π, |X |π = |Y |π , and
Errπ,P (X) < Errπ,P (Y );
• there does not exist a partition π of W , such that X and Y respect π, |X |π = |Y |π ,

and Errπ,P(Y ) < Errπ,P (X).

In this way the problem of comparing rivals of different cardinality can be circum-
vented.
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Finally, in order to determine for a given proposition Y which of its rivals X , if
any, produces fewer errors than Y in the sense just defined, we have to introduce
some assumptions on individual errors. The two principles P1 and P2 that we are
going to presuppose for that purpose are quite weak, and they make precise in what
sense, and to what extent (on an ordinal scale), a believed or disbelieved proposition
is affected by error relative to a probability measure:

P1: errP(Bel(Z)) < (≤) errP (Bel(Z ′)) iff P(Z) > (≥) P(Z ′).
P2: errP(Dis(Z)) < (≤) errP (Dis(Z ′)) iff P(Z) < (≤) P(Z ′).

The easiest way of thinking about these principles is this: If a proposition has prob-
ability 1, then believing it is not an error at all; there is no positive chance that one
could be wrong about this. If a proposition has a probability of less than 1, then
believing it does amount to an error of some extent, and the smaller the probability
of that proposition is, the larger is the error. If the probability of a proposition is 0—
and thus its probability has maximal distance from 1—then, presumably, believing
it amounts to the maximal possible error. And the same holds, mutatis mutandis, for
probability 0 and disbelief. Again none of this is sacrosanct, but at the same time this
method of determining errors of belief or disbelief in single propositions is certainly
not implausible.

Given these definitions of ‘rival’, ‘Errπ,P ’, ‘produces fewer errors than (relative
to P)’, and the two principles P1 and P2, we are ready to determine at least a partial
answer to our main question from the last section: how can we measure the “error”
of using BW as one’s set of doxastically possible worlds relative to the subjective
probability measure P?

In order to spell out this answer, we need one final concept:

Definition 14.4 X is P-stable iff for all w ∈ X : P({w}) > P(W \ X).

Non-empty P-stable sets X are such that even the smallest of their subsets have a
probability greater than the complement of X . This condition is similar to Snow’s [8]
and Benferhat et al.’s [1] “big-stepped probabilities” condition on strict total orders
of worlds to the effect that the probability of a singleton set of a world w is greater
than the sum of probabilities of all singleton sets of worlds w′ that are less preferred
than w in the strict total order. We have applied the same concept of P-stability (or
a slight variant of it) also in Leitgeb [3, 4],

Our usage of the term ‘stability’ is explained by the following fact: if X is
P-stable in the sense above (and X is non-empty) then P(X |Y ) > 1

2 for every Y that
has non-empty intersection with X and which, therefore, has also positive probabil-
ity. Thus, when a non-empty set X is P-stable, it retains a probability greater than
that of its complement as long as one conditionalizes P on a proposition Y that is
consistent with X (and for which, therefore, conditionalization is well-defined, that
is, where P(Y ) > 0). In other words: it is not easy to “get rid of” the high probability
of a P-stable set by means of probabilistic update. For that reason, this notion of
probabilistic stability is also closely related to Skyrms’ [7] notion of the resiliency
of the (subjective) probability of a proposition, which he applied successfully in his
theory of objective chance.
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One can show that P-stable sets are never rivals of each other; for every two
P-stable sets X and Y , X is a subset of Y or vice versa. And although P-stability
might seem to be a pretty restrictive notion, it is easy to see that there are in fact
lots of (non-empty) P-stable sets around: if P is defined on a finite sample space W ,
the least set of probability 1 is P-stable; much more importantly, for a given finite
W again, almost all probability measures P on W allow for a non-empty P-stable
proposition of probability less than 1: this qualification ‘almost all’ can be stated
precisely in terms of taking the Lebesgue measure of the set of standard geometrical
representations of such probability measures—the geometrical representations of all
probability measures P except for a set of Lebesgue measure 0 have the property that
there is a non-empty P-stable set X with P(X) < 1 (see Leitgeb [3] for the formal
details).

The following theorem makes it clear why we introduced this concept of
P-stability into the present context. The upshot will be: in the sense specified by
the theorem, it is the P-stable sets which are the best approximations of P.

Theorem 14.5

1. If X is P-stable, and X is a rival of Y , then X produces fewer errors than Y
relative to P.

2. If X is not P-stable, then there is a Y , such that X is a rival of Y , and it is not the
case that X produces fewer errors than Y relative to P.

3. Let (*) P be such that for all w ∈ W and for all Z with w �∈ Z, P({w}) �= P(Z):
If X is not P-stable, then there is a Y , such that X is a rival of Y , and Y produces
fewer errors than X relative to P.

Proof We start with some general considerations:
(i) If X and Y are rivals, then clearly there is partition π of W , such that X and

Y respect π, and |X |π = |Y |π: simply coarse-grain the sets X \ Y and Y \ X so that
both of them contain the same number of partition cells as subsets; on X ∩ Y and
W \ (X ∪ Y ) let the partition cells be singleton sets.

(ii) Whenever X and Y respect π, and |X |π = |Y |π , there is a bijection f of π,
such that f is the identity mapping on all partitions cell that are subsets of either of
X ∩Y and W \ (X ∪Y ), and where for all partition cells p ⊆ X \Y it holds that f (p)

is a partition cell that is a subset of Y \ X : this is because our assumptions entail that
|X |π = |X ∩ Y |π + |X \ Y |π , |Y |π = |X ∩ Y |π + |Y \ X |π , |X |π = |Y |π , and thus
|X \ Y |π = |Y \ X |π , which is why such a bijection exists.

(iii) If f is a bijection of π, define a mapping F from {Z : Z respects π} to itself
by means of: F(Z) = ∪p∈π:p⊆Z f (p). It is easy to see then that F is a bijection.

(iv) Whenever X and Y respectπ, f is a bijection ofπ that has the properties stated
in (ii), and F is defined from f as explained in (iii), then for every Z that respects π
the following is the case: X ⊆ Z iff Y ⊆ F(Z), and X ∩ Z = ∅ iff X ∩ F(Z) = ∅.
This follows immediately from the definition of F and the properties of f .

(v) Whenever X and Y respect π, and f is a bijection of π that has the properties
stated in (ii), then F (as defined in (iii)) maps the members of {Z : Z respects π, X ⊆
Z} bijectively to the members of {Z : Z respects π, Y ⊆ Z}, and it maps the members
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of {Z : Z respects π, X∩Z = ∅} bijectively to the members of {Z : Z respects π, Y∩
Z = ∅}. This follows by applying (iii) and (iv).

(vi) Whenever X and Y respect π, and f is a bijection of π that has the properties
stated in (ii), and F is defined as in (iii), then for every Z that respects π the following
is the case: F(Z) = F((Z∩(X \Y ))∪(Z∩(X∩Y ))∪(Z∩(Y \X))∪(Z∩(W \[X∪
Y ]))) = F(Z∩(X \Y ))∪F(Z∩(X∩Y ))∪F(Z∩(Y \X))∪F(Z∩(W \[X∪Y ])), by
X and Y respecting π and the properties of F and f , and F(Z ∩ (X \Y )) ⊆ (Y \ X),
F(Z ∩(X ∩Y )) = Z ∩(X ∩Y ), F(Z ∩(Y \ X)) ⊆ (X \Y ), F(Z ∩(W \[X ∪Y ])) =
Z ∩ (W \ [X ∪ Y ]), by the properties of F and f again.

Now we turn to the proofs of 1–3 which follow from applying (i)–(vi).
For (1): First of all, we show that there exists a partition π of W , such that X and

Y respect π, |X |π = |Y |π , and Errπ,P(X) < Errπ,P (Y ).
By assumption, X is a rival of Y . Hence by (i), there is partition π of W , such

that X and Y respect π, and |X |π = |Y |π . (**) But for all such partitions π, with
(ii), it follows that there is a bijection f of π, such that f is the identity mapping
on all partitions cell that are subsets of either of X ∩ Y and W \ (X ∪ Y ), and
where for all partition cells p ⊆ X \ Y : f (p) is a partition cell that is a subset of
Y \ X . Furthermore, since X \ Y is non-empty by the assumption that X and Y are
rivals, there is a world w ∈ X \ Y ; and because X is P-stable, by assumption again,
for all w ∈ X \ Y it holds that P({w}) > P(W \ X); since W \ X ⊇ Y \ X , it
follows that P({w}) > P(Y \ X) and hence also that P(X \ Y ) > P(Y \ X). With
(vi) this implies for all Z that respect π: If X ⊆ Z (and so with (iv) Y ⊆ F(Z))
then P(Z) ≥ P(F(Z)) and thus by P1, errP (Bel(Z)) ≤ errP (Bel(F(Z))). And
if X ∩ Z = ∅ (and so with (iv) Y ∩ F(Z) = ∅), then P(F(Z)) ≥ P(Z) and
thus by P2, errP (Dis(F(Z))) ≥ errP (Dis(Z)). Moreover, at least for Z = X \ Y
even the strict inequality errP(Bel(Z)) < errP (Bel(F(Z))) is satisfied. Taking
these findings together with (v), by the definition of overall error in terms of sums
of individual errors, it follows that Errπ,P(X) < Errπ,P (Y ).

Secondly, there does not exist a partition π of W , such that X and Y respect
π, |X |π = |Y |π , and Errπ,P(Y ) < Errπ,P (X): This follows from the previous
proof if considered from step (**) above, as what we showed there was that for
all partitions π of W , such that X and Y respect π, and |X |π = |Y |π , it holds that
Errπ,P(X) < Errπ,P (Y ).

So we have that X produces fewer errors than Y (relative to P), by the definition
of ‘produces fewer errors than’.

For (2): If X is not P-stable, then there must be a w ∈ X , such that P({w}) ≤
P(W \ X). Let Y be defined as [X \ {w}] ∪ [W \ X ] (= W \ {w}): It follows that
X is a rival to Y . Since X \ Y = {w}, the only partition π of W , such that X and Y
respect π, and |X |π = |Y |π is such that |X \ Y |π = |Y \ X |π = 1. Analogously to
(1) above, it follows for this partition π, from the fact that P(X \ Y ) = P({w}) ≤
P(W \ X) = P(Y \ X), that Errπ,P(X) ≥ Errπ,P (Y ). Hence, it is not the case that
X produces fewer errors than Y (relative to P).

For (3): Let P be as described in (*) (in claim 3 in the statement of the theorem
above), and assume X not to be P-stable: there must be a w ∈ X again, such
that P({w}) ≤ P(W \ X), and by (*) this must actually be a strict inequality:
P({w}) < P(W \ X). If Y is defined as in (2), then, analogously to what was shown
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before, there is just one partition π such that X and Y respect π and |X |π = |Y |π , but
now the stronger statement Errπ,P (X) > Errπ,P (Y ) follows. Therefore, Y produces
fewer errors than X (relative to P). �

Note that the main statement in (3) is a strengthening of (2) for the class of
probability measures that satisfies condition (*) in (3). For a given finite W , this
condition is actually satisfied by almost all probability measures P (what this means
can be made precise again in terms of the Lebesgue measure of geometrical repre-
sentatives of probability measures on W ).

In the final section, we are going to discuss and illustrate the consequences of this
theorem.

14.3 Conclusions: A Precise Norm on Belief and Probability

In the last section we answered our original question how could we measure the
“error” of using a set BW as one’s set of doxastically possible worlds relative to the
subjective probability measure P? The answer was: in terms of Errπ,P . Accordingly,
we defined a notion of produces fewer errors than . . . relative to P which enabled us
to compare different choices of such sets BW as far as the overall error was concerned
by which they are affected relative to P (taking into account certain salient partitions
π of the set of possible worlds).

Now what does the theorem from the last section tell us about how to choose
one’s set BW of doxastically possible worlds relative to a degree of belief function
P? Condition (*) in (3) holds for almost all probability measures on a given finite
W , as mentioned at the end of the last section; if P is one of these measures, then
the situation can be summarized as follows: If a set BW is P-stable, then by (1) BW

does better than any rival Y in terms of overall error. But if a set BW is not P-stable,
then one can do better in terms of overall error: for by (3) there is a rival of BW

that produces less error than BW if used as a simplification of P . Summing up: if
condition (*) is satisfied, choosing a set BW of doxastically possible worlds so that
it is P-stable is the only way of minimizing overall error amongst the rivals of BW .

Let us illustrate this in terms of an example:

Example 14.6 Let W = {w1, . . . , w8} be a set of eight possible worlds. Let P be the
probability measure on the power set algebra on W that is given by: P({w1}) = 0.54,
P({w2}) = 0.342, P({w3}) = 0.058, P({w4}) = 0.03994, P({w5}) = 0.018,
P({w6}) = 0.002, P({w7}) = 0.00006, P({w8}) = 0. Figure 14.1 depicts this finite
probability space.

The (non-empty) P-stable sets in this case are:

{w1}, {w1, w2}, {w1, . . . , w4}, {w1, . . . , w5}, {w1, . . . , w6}, {w1, . . . , w7}

only the last of which has probability 1.
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Fig. 14.1 An example
measure

Let π be the trivial partition of W in terms of singleton sets. Now consider, e.g.,

Errπ,P ({w1, w2}) =
∑

Z :{w1,w2}⊆Z

errP (Bel(Z)) +
∑

Z :{w1,w2}∩Z=∅

errP (Dis(Z)).

It holds that {w2, w3} is a rival of {w1, w2}, both sets trivially respect π, |{w1, w2}|π =
|{w2, w3}|π = 2, and

Errπ,P ({w2, w3}) =
∑

Z :{w2,w3}⊆Z

errP (Bel(Z)) +
∑

Z :{w2,w3}∩Z=∅

errP (Dis(Z)).

{w1, w2} is P-stable, while {w2, w3} is not, and indeed

Errπ,P ({w1, w2}) < Errπ,P ({w2, w3}),

as can be seen from comparing the errors for single Zs along the function F that was
defined (on the basis of an f ) in the proof of the theorem from the last section. For
instance: F({w1, w2, w5}) = {w3, w2, w5}, {w1, w2} ⊆ {w1, w2, w5}, {w2, w3} ⊆
{w3, w2, w5}, and

errP (Bel({w1, w2, w5})) < errP (Bel({w3, w2, w5}))

by P1 from the last section, because P({w1, w2, w5}) > P({w3, w2, w5}). Accord-
ingly, e.g., F({w3, w5}) = {w1, w5}, {w1, w2}∩{w3, w5} = ∅, {w2, w3}∩{w1, w5} =
∅, and

errP (Dis({w3, w5})) < errP (Dis({w1, w5}))

by P2 from the last section, since P({w3, w5}) < P({w1, w5}). Overall: {w1, w2}
produces fewer errors than {w2, w3} (relative to P).
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Here is another set X to consider: {w1, w2, w3}; this set is not P-stable. Now we
construct a set Y as described in (2) and (3) of the theorem from the last section:
e.g., since P({w3}) < P(W \ {w1, w2, w3}), let Y = [{w1, w2, w3} \ {w3}] ∪ [W \
{w1, w2, w3}] = W \ {w3}: X is a rival of Y , P(X \ Y ) < P(Y \ X), and if we use
the trivial partition π into singleton sets again, it holds that Errπ,P({w1, w2, w3}) >

Errπ,P(W \ {w3}). Y produces fewer errors than X (relative to P).
Amongst all P-stable sets, of course, none can produce fewer errors than the

largest P-stable set, that is, {w1, . . . , w7}. But this should not be interpreted in the
way that a rational person with degree of belief function P ought to have {w1, . . . , w7}
as her set of doxastically accessible worlds; for none of the other P-stable sets is a
rival of {w1, . . . , w7}, and so it would be misleading to compare the errors that they
produce with the error produced by {w1, . . . , w7}; taking {w1, . . . , w7} to determine
one’s belief would simply be the most cautious option that is available to an agent
who obeys the rationality requirements developed in this chapter, but that does not
in itself necessitate {w1, . . . , w7} to be the “right” choice.

Let us take stock: we searched for a precisification of the final norm of section
one,

• It should be the case that the set BW of doxastically possible worlds minimizes
error relative to P .

If this norm is made precise in terms of the concepts of the last section, then based
on the theorem from the last section, this leads us to the following precise norm for
a particular class of subjective probability measures:

• If P satisfies condition (*) in claim (3) from the theorem in the last section, it
should be the case that the set BW of doxastically possible worlds is P-stable.

And since condition (*) is almost always satisfied (for a given non-empty and
finite set W of possible worlds), the norm really amounts to:

• Almost always it should be the case that the set BW of doxastically possible worlds
is P-stable.

As mentioned before, this is not a reduction of belief (BW ) to probability (P). For
instance, if belief is, in some sense, prior to probability, then given any choice BW ⊆
W of doxastically possible worlds, the norm would entail that one ought to determine
a probability measure P on W , such that BW ends up being P-stable. The simplest
such P would assign positive probability to the (singletons of) members of X and
zero probability to the (singletons of) members of W \ X . But if BW is a proper
subset of W , one can show that infinitely many other measures P would do the job
as well. However, by far not all measures P would do so: that is, the norm above
does have bite even when belief is prior to probability.

Moreover, if neither belief nor subjective probability is prior to the other, then we
have found, and justified, an interesting and formally precise bridge norm between
belief and probability that imposes a rationality constraint on belief and degrees of
belief jointly. And it is a norm that derives ultimately from a specific understanding
of belief as a simplification of probability.
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Chapter 15
Logic and Game Theory

Giacomo Bonanno and Cédric Dégremont

Abstract Johan van Benthem has highlighted in his work that many questions
arising in the analysis of strategic interaction call for logical and computational
analysis. These questions lead to both formal and conceptually illuminating answers,
in that they contribute to clarifying some of the underlying assumptions behind cer-
tain aspects of game-theoretical reasoning. We focus on the insights of a part of
the literature at the interface of game theory and mathematical logic that gravitates
around van Benthem’s work. We discuss the formal questions raised by the perspec-
tive consisting in taking games as models for formal languages, in particular modal
languages, and how eliminative reasoning processes and solution algorithms can be
analyzed logically as epistemic dynamics, and discuss the role played by beliefs in
game-theoretical analysis and how they should be modeled from a logical point of
view. We give many pointers to the literature throughout the chapter.

15.1 Introduction

In the past twenty years the interface between game theory and logic has grown at
a fast pace. Johan van Benthem has been taking a very active part in developing
this relationship both directly, in terms of his writings, and indirectly, by seeding
ideas that have been inspiring developments at the interface between the two fields.
While we refer to [32], parts IV–VI, for a discussion of the use of game-theoretical
concepts to understand fundamental logical concepts, we are delighted to contribute
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to this volume in honor of Johan van Benthem by focusing on some of his insights
and contributions to game theory from a logical perspective.

These contributions have both a formal and conceptual aspect. They are formal
in that they show how models of strategic interaction and game-theoretical concepts
can be embedded in a broader formal context and analyzed from the perspective and
with the tools of mathematical logic. They are also conceptual in that they contribute
to clarifying some of the underlying assumptions behind certain aspects of game-
theoretical reasoning. The late Michael Bacharach was one of the first to appreciate
the usefulness of logic in reasoning about games:

Game theory is full of deep puzzles, and there is often disagreement about proposed solu-
tions to them. The puzzlement and disagreement are neither empirical nor mathematical
but, rather, concern the meanings of fundamental concepts (‘solution’, ‘rational’, ‘complete
information’) and the soundness of certain arguments (that solutions must be Nash equilib-
ria, that rational players defect in Prisoner’s Dilemmas, that players should consider what
would happen in eventualities which they regard as impossible). Logic appears to be an
appropriate tool for game theory both because these conceptual obscurities involve notions
such as reasoning, knowledge and counterfactuality which are part of the stock-in-trade of
logic, and because it is a prime function of logic to establish the validity or invalidity of
disputed arguments ([6], p. 21).

For example, the tools of modal logic have made it possible to give an explicit
formulation to concepts that were previously stated either informally or indirectly,
such as the notion of rationalizability [33, 79] as an expression of the notion of com-
mon belief in rationality (see [85] and, for an overview of the epistemic foundations
of game-theoretic solution concepts, [14]). The writings of Johan van Benthem have
been equally useful in pointing out new insights that modal logic can contribute to
the analysis of games.

This chapter is organized as follows. The next section has some background and
preliminaries that the reader might consider skipping at a first reading. In Sect. 15.3,
we discuss several ideas put forward by van Benthem: identifying modal languages
to reason about extensive games, showing how they can be interpreted and how
they can characterize important classes of games and strategically stable strategies.
We also show briefly how the approach bridges game theory and computational
analysis. Finally we point out how van Benthem’s ideas shed new light on the question
of under what conditions two games can be considered the same. In Sect. 15.4 we
present the ideas developed by van Benthem [23], showing how eliminative reasoning
processes and solution algorithms can be analyzed logically as principles of dynamic
epistemic logic and under what conditions the convergence of their iteration can
be analyzed in fixed-point modal languages. Section 15.5 discusses the role played
by revisable beliefs in game-theoretical analysis and how they should be modeled
from a logical point of view. Building on this, and following recent results by van
Benthem and Gheerbrant [26] we discuss how backward induction can be given
different interpretations and, especially, how all can be proven equivalent from the
perspective of fixed-point first-order languages.

Johan van Benthem’s own views on the relationship between logic and game
theory are expressed in [22].
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15.2 Preliminaries

15.2.1 Notation

Let S be a set and let A be a finite set and for each a ∈ A, let Ra ⊆ S×S. We let ℘(S)
be the power set of S and we let #S be the cardinality of S. We let R∗A be the reflexive
transitive closure of

⋃
a∈A Ra, so that sR∗At if and only if either s = t or there is a

finite A-path from s to t. We also write R∗ for R∗A when A is clear from the context.
ω is the set of natural numbers.

15.2.2 Game Theory

We assume some basic familiarity with the concept of a strategic game and of an
extensive game with (im)perfect information. We will define concepts formally but a
reader completely unfamiliar with game theory might like to consult an introduction
to game theory such as [75].

15.2.3 Basic Modal Logic

Let τ be a non-empty countable set. Let prop be a non-empty countable set (of
propositional letters). The basic modal language ML(τ, prop) is recursively defined
as follows:

ϕ ::= p | ¬ϕ |ϕ ∨ ϕ | 〈a〉ϕ

where p ranges over prop and a over τ . A model for ML(τ, prop) is a relational
structure M = 〈W , (Ra)a∈τ ,V〉 where W is a non-empty set, Ra ⊆ W × W and
V : prop→ ℘(W). (W , (Ra)a∈τ ) is called a τ -frame. We also write |M| = W .

Definition 15.1 (Semantics of ML(τ, prop)) We interpret ML(τ, prop) on pointed
relational models as follows:

M,w |= p iff w ∈ V(p)
M,w |= ¬ϕ iff it is not the case that M,w |= ϕ
M,w |= ϕ ∨ ψ iff M,w |= ϕ or M,w |= ψ
M,w |= 〈a〉ϕ iff there is some v with wRav and M, v |= ϕ
M,w |= [a]ϕ iff for all v such that wRav we have M, v |= ϕ

where p ∈ prop, a ∈ τ . We will write	 for p∨¬p and⊥ for¬	. Other connectives
(∧,→,↔) are defined in the usual way.

Given a model M = 〈W , (Ra)a∈τ ,V〉 and a formula ϕ ∈ ML(τ, prop) we write
||ϕ||M := {w ∈ W |M,w |= ϕ}. Whenever M is clear from the context, we simply
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write ||ϕ|| for ||ϕ||M. Given a class C of relational models, we write C |= ϕ whenever
for every M ∈ C and w ∈ |M| we have M,w |= ϕ and we say that ϕ is valid on C.
The same notion for classes of frames is defined by universally quantifying over the
possible valuations of (the relevant) propositional letters. Satisfiability is the dual,
existential counterpart to validity, that is, ϕ is satisfiable over C iff ¬ϕ is not valid
over C.

Definition 15.2 (Bisimulation) A local bisimulation between two pointed
relational models, (M,w) and (M′,w′), with M = 〈W , (Ra)a∈τ ,V〉 and M

′ =
〈W ′, (R′a)a∈τ ,V ′〉 is a binary relation Z ⊆ W × W ′ such that wZw′ and also for
any pair of worlds (x, x′) ∈ W ×W ′, whenever xZx′ then for all a ∈ τ :

1. x, x′ verify the same proposition letters.
2. if xRau in M then there exists u′ ∈ W ′ with x′R′au′ and uZu′.
3. if x′R′au′ in M

′ then there exists u ∈ W with xRau and uZu′.

We say that M,w and M
′,w′ are bisimilar (M,w↔M

′,w′) if there exists a local
bisimulation between M,w and M

′,w′. We say that M and M
′ are bisimilar (M↔M

′)
if there are w ∈ W and w′ ∈ W ′ such that (M,w)↔(M′,w′).

15.2.4 Epistemic Logic

An interesting special case of a modal logic as defined above is epistemic logic.
We only briefly recall the basic concepts of epistemic logic. For a more exhaustive
introduction to epistemic logic, the reader can consult, e.g., [55, ch. 2]. Relational
structures can compactly represent the information agents have about the world and
about the information possessed by the other agents.

Definition 15.3 An epistemic model is a relational structure (W ,N, (∼i)i∈N ,V)
where N is a finite set and for each i ∈ N , ∼i is a binary equivalence relation on W .

To explicitly talk about knowledge one may use the language of basic epistemic
logic.

Definition 15.4 (Syntax of LEL) The syntax of epistemic language LEL is recur-
sively defined as follows:

ϕ := p | ¬ϕ | ϕ ∨ ϕ | Kiϕ

where p ∈ prop, i ∈ N . We write 〈i〉ϕ for ¬Ki¬ϕ.

We also write LEL(N, prop), when we need to clarify the intended set N and the
intended set prop. The semantics of LEL is as expected and we only give the modal
truth clause.

M,w |= Kiϕ iff for all v such that w ∼i v we have M, v |= ϕ
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Table 15.1 EL (also called S5N ) axiom system

PL � ϕ if ϕ is a substitution instance of a tautology of propositional logic

For i ∈ N ,
Nec if � ϕ, then � Kiϕ

K � Ki(ϕ→ ψ)→ (Kiϕ→ Kiψ)

T � Kiϕ→ ϕ

4 � Kiϕ→ KiKiϕ

5 � ¬Kiϕ→ Ki¬Kiϕ

MP if � ϕ→ ψ and � ϕ, then � ψ

Table 15.2 Axiom system MEL CGFP � CGϕ→∧
i∈G Ki(ϕ ∧ CGϕ)

CGIR If � ϕ→∧
i∈G Ki(ϕ ∧ ψ) then � ϕ→ CGψ

Standard definitions such as truth sets, satisfiability and validity are of course
a special case of the ones given in the previous section. Epistemic logic is fully
axiomatized by the axiom system given in Table 15.1.

We write Ki[w] := {v ∈ W | w ∼i v}. For any non-empty group of agents
G ⊆ N we write R∗G[w] := {v ∈ W | w ∼∗G v}. Let ϕ be a formula of epistemic
logic. If R∗G[w] ⊆ ||ϕ|| then for any n ∈ ω and sequence i0, . . . , in−1 with range G,
Ki0 . . .Kin−1ϕ holds at w. If the conjunction of all such finite sequences is true at w,
it intuitively means that ϕ is common knowledge at w. But this conjunction is not
finitary. We can introduce a new formula CGϕ, for each G ⊆ N , with semantics

M,w |= CGϕ iff for all v such that w ∼∗G v we have M, v |= ϕ

We call the resulting logic LMEL (for multi-agent epistemic logic). LMEL is obviously
no longer compact, but the logic is still invariant under basic bisimulations [18].
Axiomatization. The set of formulas of LMEL valid over the class of all epistemic
models can be axiomatized by extending EL with the axioms in Table 15.2.

Fagin et al. [55, ch. 2] has a completeness proof for MEL.

15.2.5 Model Theory

We assume some basic familiarity with first-order logic (FO). For an introduction
see e.g., [52].

Given an operator: F : ℘(U)→ ℘(U) we say that:

1. F is monotone, if for all X,Y ⊆ U whenever X ⊆ Y we have F(X) ⊆ F(Y)
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2. F is inflationary, if X ⊆ F(X) for all X ⊆ U
3. F is deflationary, if F(X) ⊆ X for all X ⊆ U.

Given an arbitrary operator F : ℘(U) → ℘(U), let Finfl (Fdef ) be the
inflationary (respectively deflationary) operator associated with F, defined as fol-
lows: Finfl(X) = X ∪ F(X) (respectively Fdef (X) = X ∩ F(X)). Note that for an
inflationary (respectively a deflationary) operator F we have F = Finfl (respectively
F = Fdef ). If F has a least (greatest) fixed point, we denote it by lfp(F) (respectively
gfp(F)). Consider the sequence defined by:

X0 = ∅;Xλ = Finfl(
⋃

η<λ

Xη)

It can be shown that this sequence is inductive and stabilizes at some ordinal κ ≤ #U
(see [73]). Call ifp(F) = Xκ the inflationary fixed point of F. The deflationary fixed
point of F is defined analogously as the limit of the sequence

X0 = U;Xλ = Fdef (
⋂

η<λ

Xi)

Theorem 15.1 (Knaster-Tarski Every monotone operator F has a least fixed point
lfp(F) and a greatest fixed point gfp(F). Moreover,

lfp(F) =
⋂
{X ⊆ U |F(X) ⊆ X}

gfp(F) =
⋃
{X ⊆ U |X ⊆ F(X)}

Let R be an n-ary relation symbol, let x be an n-tuple of variables and let t be a
n-tuple of terms. We say that an occurrence of S is positive, if it is in the scope of
an even number of negations. We say that a formula ϕ(R, x) is positive in R if all
occurrences of R are positive.

• FO(LFP) is the extension of FO with least fixed points. Formally it extends
FO with the following formation rule: if ϕ(R, x) is a formula positive in R, then
[lfpR,xϕ(R, x)](t) is a formula. Where M |= [lfpR,xϕ(R, x)](a) iff a ∈ lfp(Fϕ).
• FO(IFP) is the extension of FO with inflationary fixed points. Formally it

extends FO with the following formation rule: if ϕ(R, x) is a formula, then
[ifpR,xϕ(R, x)](t) is a formula. Where M |= [ifpR,xϕ(R, x)](a) iff a ∈ ifp(Fϕ).

Theorem 15.2 (Main Theorem of [62]) For every FO(LFP) formula ϕ(R, x), there
is an FO(LFP) formula ϕ∗(R, x) which is equivalent on all finite structures to
[ifpR,xϕ(R, x)](t).
Corollary 15.3 [62] FO(LFP) = FO(IFP) over finite structures.
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Theorem 15.4 [70] For every FO(LFP) formula ϕ(R, x), there is an FO(LFP) for-
mula ϕ∞(R, x) which is equivalent on all structures to [ifpR,xϕ(R, x)](t).
Corollary 15.5 [70] FO(LFP) = FO(IFP) over all structures.

15.2.6 Computability and Computational Complexity

We assume that the reader is familiar with the concept of a Turing machine. Our
introduction will be somewhat informal and the reader is referred to [76] for a com-
plete presentation of these topics. We refer to a set of (encodings of) inputs as a
language. We say that a language L is recursive if there exists a Turing machine M
that halts on an input w and accepts it whenever w ∈ L, and halts and rejects the
input otherwise. We say that a language L is recursively enumerable if there exists
a Turing machine M that halts on an input w and accepts it whenever w ∈ L, and
either halts and rejects, or does not halt otherwise.

Besides computability, we are interested in those languages that can be recognized
by Turing machines using limited number of computation steps or limited amount
of working-tape cells. Somewhat informally speaking—for precise definitions, see
[76]—given a function f : ω → ω, let DTIME(f ) (respectively NTIME(f )) be the
class of languages which can be decided by a deterministic Turing machine in at
most f (n) steps (respectively by a non-deterministic Turing machine M such that all
branches in the computation tree of M on x are bounded by f (n)) for any input x of
size n with n ≥ n0 for some n0 ∈ ω. DSPACE(f ) (respectively NSPACE(f )) is the
class of languages which can be recognized by a deterministic Turing machine using
(respectively by a non-deterministic Turing machine M such that, on all branches in
the computation tree of M on x, it uses) at most f (n) cells of the working-tape, for
inputs of size n ≥ n0 for some constant n0 ∈ ω. We write

• PTIME =⋃
k∈ω DTIME(nk)

• EXPTIME =⋃
k∈ω DTIME(2nk)

• NP =⋃
k∈ω NTIME(nk)

• PSPACE =⋃
k∈ω SPACE(nk).

15.3 Games are Process Models

Games are process models: in two influential papers [19, 20] van Benthem proposes
using modal languages to represent the internal structure of dynamic (or extensive-
form) games. This starting point comes with important questions such as:

1. in what sense is a game a relational (epistemic, temporal) model for a modal
language?
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2. what classes of extensive forms can be modally characterized and in what lan-
guage?

3. what is the computational complexity of the satisfiability problem for logics over
epistemic temporal models?

4. what is the right notion of invariance for games?

15.3.1 Interpreting Epistemic-Temporal Languages Over Games

Modal languages can be naturally interpreted over dynamic games. In [19] van Ben-
them describes an extensive form as a tuple

〈
S, I,A, {Ra}a∈A , {∼i}i∈I

〉

where S is a set of states (the nodes of the game tree), I is the set of players, A is the
set of actions and, for every a ∈ A and i ∈ I , Ra and ∼i are binary relations on S.
If s is a decision node and (s, t) ∈ Ra then there is a transition from node s to node
t as a consequence of action a being taken by the player assigned to node s. Thus⋃

a∈A Ra constitutes the game tree and the set of nodes s ∈ S such that (s, t) ∈ Ra

for some t ∈ S and a ∈ A is the set of decision nodes. For every player i ∈ I ,
∼i is an equivalence relation representing the state of information of the player at
different stages of the game. As van Benthem notes (van Benthem [19], p. 229),
this is an extension of the traditional definition of an extensive-form game where the
uncertainty relation of player i is defined only on the set of decision nodes assigned
to player i. This issue of specifying the information of a player also at decision nodes
that belong to other players had earlier been studied in [13, 37, 82]. Finally, adding a
valuation V that associates with every propositional letter p ∈ prop the set of nodes
at which p is true, yields a model of the extensive-form game.

Among the atomic propositions van Benthem includes sentences such as turni,
which is true precisely at the decision nodes assigned to player i (where it is player
i’s turn to move). Given a model, one can associate with every uncertainty relation
∼i a modal operator Ki with the interpretation of Kiϕ as “player i knows ϕ” and
with the usual semantics (see Sect. 15.2.4). Similarly, with every transition relation
Ra one can associate a modal operator [a] with the interpretation of [a]ϕ as “after
action a it is the case that ϕ” with the expected semantics (cf. Sect. 15.2.3).

As usual, we can then try and determine which properties of our models can be
characterized, at the level of models, but also—and this is naturally where modal
logic’s strength lies—at the level of frames. For the reader unfamiliar with modal
logic, let us stress the difference: on the level of models, the modal language can
surely not distinguish between a state that has at most one a-successor and a state
that has many a-successors, unless these states satisfy different modal formulas. The
following result explains this fact:
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Theorem 15.6 (van Benthem [17]) A formula of first-order logic is equivalent to
the translation of a formula of modal logic iff it is invariant under bisimulations.

However, determinacy of actions can be captured on the level of frames:

〈a〉ϕ→ [a]ϕ

is valid on a class of frames iff these frames satisfy a-determinacy. In particular
〈a〉ϕ → [a]ϕ is valid a state w in some frame iff w has at most one a-successor in
that frame.

15.3.2 Perfect Recall and von Neumann Extensive Forms

As van Benthem points out, game-theoretical assumptions such as: (1) ‘all the nodes
in the same information set have the same possible actions’ and (2) ‘a player knows
when it his turn to move’ can be characterized by the formula

turni ∧ 〈a〉	 → Ki(turni ∧ 〈a〉	).

Of particular interest is van Benthem’s suggestion that the property of ‘perfect recall’
(defined below), which is traditionally incorporated in the definition of extensive
form, can be expressed by the formula

turni ∧ Ki[a]ϕ → [a]Kiϕ (vB)

which is very appealing, since it based on a simple commutation of the epistemic
operator and the dynamic operator.

It turns out that van Benthem’s two suggestions (to extend a player’s uncertainty
relation ∼i beyond player i’s decision nodes and to characterize the property of
perfect recall in terms of axiom (vB) are intimately connected and implicitly identify
the subclass of extensive forms known as multi-stage or von Neumann extensive
forms. Von Neumann extensive forms are defined (see [71], p. 52) by the property
that any two decision nodes that belong to the same information set of a player have
the same number of predecessors.

In order to make this more precise, we need a few definitions. Let Si denote the
nodes assigned to player i (player i’s decision nodes) and let R∗ = R∗A. The property
of perfect recall is defined as follows1:

For every player i ∈ I, for all nodes t, y, y′ ∈ Si and x ∈ S and for every
action a, if tRax, xR∗y and y ∼i y′ then there exist nodes t′ ∈ Si

and x′ ∈ S such that t ∼i t′, t′Rax′ and x′R∗y′.
(PR)

1 The following definition is Selten’s [84] reformulation of Kuhn’s [71] original property which was
stated in terms of pure strategies.
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Kuhn [71] interpreted this property as “equivalent to the assertion that each player is
allowed by the rules of the game to remember everything he knew at previous moves
and all of his choices at those moves”. Clearly, (PR) implies the following property,
which captures the notion that at any of his decision nodes player i remembers what
he knew at earlier decision nodes of his:

If t, y ∈ Si and tR∗y, then for every y′ such that y ∼i y′
there exists a t′ ∈ Si such that t ∼i t′and t′R∗y′. (KM)

If, following van Benthem’s suggestion, the uncertainty relation ∼i of player i is
extended from Si to the entire set S then it is natural to require that the memory
property (KM) be preserved by the extension, that is, one would require the extended
relation ∼i to satisfy the following property:

If tR∗y and y ∼i y′, then there exists a t′ such that t ∼i t′ and t′R∗y′. (KMEXT )

Then we have the following result (see [38], inspired by [19]):

Proposition 15.1 Fix an arbitrary extensive-form game G that satisfies property
(KM). Then

(a) there exists, for every player i, an extension of ∼i from Si to S that satisfies
(KMEXT ) if and only if G is a von Neumann extensive form,

(b) if G is a von Neumann extensive form then G satisfies (PR) if and only if axiom
(vB) is valid in G relative to an extended relation ∼i that satisfies (KMEXT ).2

When the extensive form is not von Neumann, then a syntactic characterization
of perfect recall is still possible, but it involves a slightly more complex axiom which
contains an additional operator (corresponding to the relation R∗: see [38]).

Another line of analysis is concerned with identifying the epistemic-temporal
properties characterizing certain types of epistemic updaters. For instance, product
updaters ([10], see also Chap. 6 in this volume), are typically characterized by a form
of perfect recall and a form of uniformity. We refer to [27, 30, 67] for more details
on this line of research.

15.3.3 Backward Induction in Logic

The preceding modal languages could (indirectly) characterize classes of extensive
forms of interest. Putting preferences and strategies into the picture, with correspond-
ing modalities: with sRσ t meaning that t is the continuation of s given that players
follow the strategy profile σ , van Benthem [29] shows how ‘backward induction’ as a
property of a relation (induced by a profile of strategies) can be modally characterized
by a simple PDL (see e.g., [54]) formula:

2 A formula is valid in extensive form G if is true at every s ∈ S in every model based on G.

http://dx.doi.org/10.1007/978-3-319-06025-5_6
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Proposition 15.2 [29] In generic extensive games, the relation σ is induced by the
unique backward induction profile iff it satisfies the following axiom for all i ∈ N:

(turni ∧ 〈σ ∗〉(end ∧ p))→ [movei]〈σ ∗〉(end ∧ 〈≤i〉p)

The formula is essentially saying that a player cannot unilaterally deviate from σ at
any stage in a way that can make her strictly better off. van der Hoek and Pauly [66]
has more about similar definability results in the logic literature. In Sect. 15.5, we
put this question in its broader mathematical perspective: that of fixed-point logics
interpreted on trees [26, 59] and also discuss backward induction from the perspective
of inductive reasoning and inductive belief update.

15.3.4 Existence of Extensive Games

If we reverse the perspective, instead of asking whether a given epistemic-temporal
property holds of an extensive game with imperfect information, that is if the formula
is true at a certain state in a certain epistemic-temporal model, we can ask whether we
can construct a strategic situation respecting a collection of constraints. The problem
is known in logic, and more generally theoretical computer science, as a satisfiability
problem. Let L be a modal language and let CP be the set of extensive temporal models
that satisfy a property P. (Note that P could also be a collection of such properties.)
Formally, the set of validities of L over CP is the set {ϕ ∈ L : CP |= ϕ}. The
satisfiability problem for a modal language L over a class of models CP, is to decide
given any formula ϕ ∈ L whether {M,w |M ∈ Cp,w ∈ |M|,M,w |= ϕ} �= ∅,
in which case the answer is positive. The following are important questions at the
interface of logic and computer science:

1. Is the set of validities of L over CP recursively enumerable?
2. If it is, is it recursive?
3. Is the satisfiability problem for L over CP in EXPTIME? Is it in PSPACE?
4. Is it complete for these classes?

The answer to the first question would be positive, if we could identify a complete
finite set of axioms. For a positive answer to the second question, on top of the previ-
ous axiomatization, we could show how to construct a model for any finite consistent
set S ⊆ L, of size bounded by some f (|S|). Negative answers to these questions can
be proved by reduction from acceptance problems for Turing machines or from recur-
ring tiling problems (see [64]). Interestingly, van Benthem and Pacuit [28] surveys
how—depending on different assumptions we are making about epistemic-temporal
agents (such as, e.g., perfect recall, no learning, synchronicity…)—the satisfiability
problem of epistemic-temporal languages will lie on either side of the decidability
border. One of the most important papers concerned with the assumptions that make
the satisfiability problem of epistemic-temporal languages undecidable is Halpern
and Vardi [63].
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The third and fourth questions come, in a sense, second: when one is certain that a
problem is algorithmically decidable, one can focus on exactly how many resources
(time and working tape space) are required to decide it. In [28] van Benthem and
Pacuit survey also such results and give pointers to the literature. Such results can
ultimately be interpreted as describing the computability and the difficulty of deciding
whether a list of game-theoretical assumptions are coherent with each other and
whether it is possible to find a game satisfying a list of desirable constraints. In
that sense the results discussed in the previous sections suggest that modal logics
interpreted over game structures are a natural way to allow for the application of
computational results to game theory.

Finally note that the satisfiability problem of the basic modal language is already
PSPACE-complete, hence not considered tractable. By contrast, checking if a for-
mula holds at some state in an epistemic-temporal model is tractable for the types
of modal logics we have considered so far: for the most expressive of them, PDL, it
can be done in a number of steps polynomial in the size of the formula and of the
model. In Sect. 15.4 we will see that the logical analysis of strategic reasoning calls
for more expressive fixed point logics, whose model-checking problem need not be
tractable over arbitrary structures.

15.3.5 When are Two Extensive Forms the Same?

Besides asking the question “what are appropriate formal languages for games?”,
van Benthem [19] also raises the important question “when are two extensive forms
the same?”. A related question is: when is a transformation of an extensive form
“inessential”? These are questions that could be explored further than they have
been in the literature, and two immediate approaches come to mind.

For the logician, if a language has been fixed, the question is about finding the right
notion of invariance. For modal languages, some adequate notion of bisimulation
is usually the answer. For first-order languages, their fixed-point extensions and
existential second-order languages, a winning strategy for Duplicator in some form
of Ehrenfeucht-Fraïssé games is the answer [53, 56]. Hence we could have such a
game to decide whether the difference between two games is essential or not. Johan
van Benthem has mentioned this idea in talks (mentioning also the converse direction:
interpreting languages over satisfiability games or over evaluation games, hence we
could have a formula describing, indirectly, another formula).

For the game-theorist, the classical approach has been quite different: the issue
being to define a different notion of game form, to show that every extensive form
can be mapped into the proposed game form and to declare two extensive forms
to be equivalent when they are mapped into the same “new” game form. This
was done in the literature by mapping extensive forms into reduced normal forms
[47, 68, 69, 86, 87] or into set-theoretic forms [36]. In both cases a corresponding
set of “inessential” transformations of extensive forms were identified. As [36] puts
it, these mappings offer a notion of descriptive, rather than strategic equivalence.
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Fig. 15.1 Equivalent powers
for 1 and 2 in each game
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Interestingly, [19, 20] proposes also another notion of equivalence based on play-
ers’ powers. For this purpose one needs to distinguish between terminal nodes and
outcomes. Thus to the standard definition of extensive form one would add a set of
outcomes W and a map f from the set of terminal nodes Z to W (if we take Z = W
and f to be the identity function, then we have the standard definition of extensive
form). We can then say that the set X ⊆ W of outcomes belongs to the powers of
player i if player i has a strategy3 that forces the play of the game to end at a ter-
minal node associated with an outcome in X. For example, in Fig. 15.1 we have two
different extensive forms (in particular, they have different sets of terminal nodes)
which share the same set of outcomes W = {w1,w2,w3} and the same powers for
each player (the powers of player 1 are {w1} and {w2,w3} and the powers of player
2 are {w1,w2} and {w1,w3}).4

Two extensive forms can then be defined to be “the same”, or equivalent, if the
powers of every player are the same in both. For example, the extensive forms of
Fig. 15.1 are equivalent. As van Benthem notes ([20], p. 13) this is a notion of
equivalence based on the associated “outcome-level normal form”. It should also be
noted that if instead of extensive forms one considers extensive-form games (obtained
by associating with every terminal node a payoff for each player) and one identifies
outcomes with payoff vectors, then the proposed equivalence coincides with the
equivalence based on the reduced normal form [68, 87]. Indeed, as van Benthem
notes ([19], p. 244, Proposition 6), the powers of the players remain the same under
the Thompson [87] transformations.

So far the analysis has been restricted to the powers of the players at the root of
the tree. However, one can similarly define the powers of a player at any node: the
set X ⊆ W of outcomes belongs to the powers of player i at node s if player i has a
strategy that forces any play of the game that goes through node s to end at a terminal
node associated with an outcome in X. van Benthem then defines a modal operator 〈i〉
for every player i with the intended interpretation of 〈i〉ϕ as “player i has the power to
bring aboutϕ”. Given a game G and a model M

G of G (obtained by adding a valuation
that specifies which atomic propositions are true at every node) the validation rule
for 〈i〉ϕ at node s is thus: M

G, s |= 〈i〉ϕ if M
G, t |= ϕ for every t ∈ X where X is one

of the powers of player i at s. This approach thus uses the so-called neighborhood

3 In the game theorist’s sense of the word, namely a function that assigns to every information set
of player i an action at that information set. van Benthem calls such objects ‘uniform strategies’.
4 The dotted line in the extensive-form on the right represents an information set of Player 1.
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semantics for modal logic [46], whose universal validities are all the principles of
the minimal modal logic except for distribution of 〈i〉ϕ over disjunctions. One can
then express interesting properties of games by means of this modal language. For
example, van Benthem notes that the “consistency” property, according to which if
X is a power of player i and Y is a power of player j at some node s then it must be
that X ∩ Y �= ∅, can be characterized by the formula 〈i〉ϕ→ ¬〈j〉¬ϕ.

This is an interesting perspective on extensive-form games that deserves to be
studied in more detail. In the logic literature, Coalition Logic [77], Game Logic [78],
Alternating-time Temporal Logic [2], STIT (for “seeing to it that”, [16])—and NCL
[44] have semantics in that spirit. The reader can consult the above references for
more information about them and consult [66] for a survey.

15.4 Reasoning in Games: Rational Dynamics

In order to determine reasonable and/or plausible outcomes for games under given
epistemic assumptions, one needs an adequate view of how players will reason from
their information to reach a decision. If reasoning is traditionally the object of logic,
it is so in an external way: a finite set of valid principles are proven to be everything
that agents need to draw all conclusions they need to draw about their environment.
If one is interested in the consequences of an agent’s current information, this is
the relevant level of analysis. In the context of strategic interaction this is generally
not enough, since we are also interested in the semantic processes corresponding to
how agents update their beliefs when they receive new information, make additional
assumptions and draw consequences, and even iterate such processes. In particular
we are interested in the convergence of such reasoning processes. This is the subject
matter of [23]: a logical approach to such reasoning processes, and the theoretical
limits of any such approach. In this section, we follow closely the analysis in this
chapter, factoring in our own, possibly different, way of looking at the topic.

Let us present the general program. As we have seen in the previous section, a
game can be seen as a relational model for a modal language. More generally the
epistemic aspects of a strategic situation can be described by a relational model that
encodes players’ preferences, players’ information, and the actions they can take.
A modal formula (of some sufficiently expressive language) can encode a notion of
rationality based on the previous notions. Now assuming the rationality of the players,
states in which the formula is not satisfied can be eliminated and the formula can be
recursively interpreted in such submodels. To each formula corresponds a mapping
on models, whose fixed-points we can hope to define in some fixed-point modal
language. Moreover, for any formula and any game we might ask which (profiles
of) strategies survives, given some assumptions about the epistemic model of the
given game. Conversely, we might ask whether there exists some epistemic model
satisfying certain properties such that a certain profile of strategies (or a certain
strategy) survive the inductive elimination process. All these questions are both
very natural from the point of view of mathematical logic and theoretical computer
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science, and the implementation of very natural questions in epistemic game theory.
We illustrate this with the example of iterative solution algorithm for strategic games.

15.4.1 Epistemic Models of Games

A strategic game is a formal representation of a multi-agent decision situation, in
which two or more agents have to make a decision, independently (rather than sequen-
tially), ‘that will influence one another’s welfare’ [74].

Definition 15.5 (Strategic game) A strategic game is a structure of the form

Γ = 〈N, (Ai)i∈N , (≥i)i∈N 〉.

where N is a non-empty finite set of players, for each i ∈ N , Ai is a non-empty finite
set of strategies and ≥i is a total preorder over A = ×j∈N Aj.

Note that a strategic game is not by itself a model for some epistemic logic, but
it can easily be made so. Let, for example, propi = Ai and let propΓ =⊔

i∈N Ai. In
[23] the result is called the full model over Γ and is defined as follows:

Definition 15.6 (Full epistemic model over Γ ) The full epistemic model over

Γ = 〈N, (Ai)i∈N , (≥′i)i∈N 〉

is the multi-agent S5(N) epistemic model

M(Γ ) = 〈W ,N, (∼i)i∈N , (≥i)i∈N ,V〉

expanding Γ with

W = ×i∈N Ai

((ai)i∈N , (bi)i∈N ) ∈∼i iff a(j) = b(j)
(ai)i∈N ∈ V(ak

j ) iff a(j) = ak
j

In words, the epistemic equivalence relation for j partitions the set of strategy profiles
depending on the strategy used by j in that profile. In [31] van Benthem et al. also
advocate the use of a modality for action freedom [≈i]ϕ with the box semantics
corresponding to the relation ≈i defined as follows:

a ≈i b iff a−i = b−i

—and very similar in spirit to (c)stit operators (see e.g., [16]) and NCL’s [i] operator
[44]—and coined by [31] ‘action freedom modality’ after a concept introduced in a
talk by Jeremy Seligman.
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The full epistemic model has notable non-epistemic properties, such as exactly
one strategy is played at each state:

∧

i∈N

(
∨

pi∈propi

pi ∧
∧

pi,pj∈propi,pi �=pj

¬(pi ∧ pj)) (ψΓ )

Fact 15.7 Let M(Γ ) be the full epistemic model for some strategic game Γ , we have
M(Γ ) |= ψΓ
Such models will also satisfy strategic introspection:

∧

i∈N

∧

pi∈propi

(pi → Kipi) (χΓ )

Fact 15.8 Let M(Γ ) be the full epistemic model for some strategic game Γ . For
every pi ∈ propi, we have M(Γ ) |= χΓ
But as far as higher-order knowledge is concerned, agents have very limited informa-
tion in full epistemic models. To see that, we say that a formulaϕ ∈ LMEL(N, propΓ )
is Γ -consistent if it is MEL(CG(ψΓ ) , CG(χΓ ))-consistent. The following is a vari-
ation on results in [18, 23].

Proposition 15.3 Let Γ be a strategic game. Any Γ -consistent existential formula
of the multi-agent epistemic language ϕ ∈ LMEL(N, propΓ ) can be satisfied at some
state in the full epistemic model M(Γ ).

Proof (Sketch of the proof.) Existential formulas are equivalent to disjunctions of
path formulas. Such a formula is satisfiable if such a path exists in M(Γ ) which
can be ensured by two conditions: every state on the path should be propositionally
satisfiable in M(Γ ) (this is what consistency with CG(ψΓ ) ensures) and transitions
should respect the epistemic grid structure of the game: i-transitions should preserve
i-atoms (this is what consistency with CG(χΓ )ensures). �

Note that the preceding result comes in different flavors: if the language is richer—
for example if it can express preferences or the intersection of basic relations—
satisfiability will only be guaranteed for sets of formulas that are consistent with
formulas of that language corresponding to the structural properties that any game
model will satisfy. In other words valid properties on all game models that are invari-
ant under the notion of bisimulation corresponding to a selected language, will need
to be accounted for. But the core idea is the same: existential formulas will find a
pointed full epistemic model in which they are satisfied.

However, in general, we might be interested in epistemic situations in which agents
have non-trivial higher-order information. The looser the notion of an epistemic
situation corresponding to a game—that is the less we would like to preserve of the
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epistemic structure of M(Γ )—the larger the collection of satisfiable sets of formulas.
As an example, in submodels that are preserving the grid-like structure of the game,
formulas that are inconsistent with the scheme

〈i〉〈j〉ϕ ↔ 〈j〉〈i〉ϕ

will not be satisfiable. At the opposite end of the scale, we could work with the
class of KD45-structures that preserve very minimal structural properties such as
coherence of strategies and strategic introspection. Any (Γ,KD45)-consistent set of
formulas would then be satisfiable.

15.4.2 Assuming Rationality

Now that we have fixed our models, let us go back to our initial question. How can we
model the reasoning processes of agents? Or, simply, to start with, how we can model
a single reasoning step? A reasoning should essentially transform an epistemic model
into another epistemic model. This is a very general statement. But there is also a
very rich diversity of epistemic updates that can be modeled in logics of epistemic
dynamics [7].

As far as the current analysis—following [23]—is concerned, we will for now
restrict attention to what is arguably the simplest and most natural type of update:
relativization. We restrict a model to the set of states that satisfy a certain formula. It is
probably in the context of epistemic analysis that relativization is easiest to interpret:
it is the result of a public announcement, whose reliability is not challenged by
the agents. In this case, the information is “hard information” [31]. Softer types
of information would in particular include information from only partially reliable
sources, information that the agents consider as revisable (more on this issue in
Sect. 15.5). But more than the result of a single step of eliminative reasoning, it
is interesting to know what happens to game models if we recursively iterate such
eliminative steps. Before we proceed, we will need a bit of notation. Given a relational
model M = 〈W , (Ra)a∈τ ,V〉 and a set A ⊆ W , let

M|A = 〈A, (R′a)a∈τ ,V ′〉

where R′a = Ra ∩ (A× A) and V ′(p) = V(p) ∩ A for each a ∈ τ and p ∈ prop. We
also write M|ϕ or Mϕ for M|||ϕ||M .

Public announcement logic [7, 58, 81] is an extension of basic epistemic logic
with public announcement operators 〈ϕ〉ψ with semantics

M,w |= 〈ϕ〉ψ iff M,w |= ϕ and M|ϕ,w |= ψ

Public announcement logic is actually exactly as expressive as basic epistemic logic.
Now given a formula ϕ and a game Γ , inductively define a sequence of models
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σ(Γ, ϕ) = (Mι)ι<γ as follows:

M0 = M(Γ );Mλ = (
⋂

η<λ

Mη)
ϕ

We can ask two questions:

1. Is ψ true at some state in Mι for some ι < γ ?
2. Isψ true at some state in Mκ for the least ordinal κ such that Mκ = (⋂β<κ Mβ)

ϕ?

Here appears another direction of the program of applying logical analysis to games.
In Sect. 15.3, modal logic was used to make explicit subphenomena of importance
for strategic interaction, to identify the (model-theoretic, computational) properties
of these logics that are relevant for game-theoretic analysis. Here the perspective is
somewhat different, we abstract away from solution algorithms to analyze reasoning
in games as a special case of reasoning about iterated relativization of relational
structures in general.

The first question is concerned with iterated relativization [72]: is it the case
that at any stage in the inductive sequence (that is at any step of the reasoning
process)ψ holds? (We will address this question subsequently). The second question
is concerned with the limit of iterated relativization. The first important observation
to make is the following:

Proposition 15.4 [23] Letϕ be a modal formula. The limit of iteratedϕ-relativization
is definable in modal iteration calculus, that is, in inflationary fixed-point modal logic.

Proof (Sketch of the proof.) [23] The idea of the proof is to consider the relativization
of ϕ to a fresh propositional variable X, (ϕ)X . Now M,w |= (ϕ)X iff M|V(X),w |= ϕ.
Hence the fixed-point of the deflationary induction for X ← (ϕ)X is the limit of
iterated ϕ-relativization. �

For arbitrary modal formulas, we cannot, in general, improve on this result and
find an equivalent formula in the weaker modal μ-calculus. Consider the modal
formula: ϕ(a, b) := 〈a〉	 ∨ (r ↔ [b]⊥) and consider labeled transition systems,
with labels in {a, b}.
Proposition 15.5 [60] (dfp X ← (ϕ(a, b))X) is not equivalent to any MSO-formula.

Proof (Sketch of the proof.) Grädel and Kreutzer [60] Define T(n,m) to be a tree
with two branches at the root: a branch consisting of n a-steps and a branch of m
b-steps. Let r be true at the root. The idea of the proof is that the root survives in the
deflationary fixed point of X ← (ϕ(a, b))X iff n ≥ m (see Fig. 15.2). But no finite
tree automaton can accept T(n,m) iff n ≥ m. On trees, this is equivalent to the fact
that there is no MSO-formula corresponding to (dfp X ← (ϕ(a, b))X). �

The undefinability of the limit of iterated relativization then follows from the fact
that the modalμ-calculus is a fragment of MSO. However, van Benthem [23] shows
the following:
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Fig. 15.2 T0 = T(3, 2), T1 = T(3, 2)|ϕ(a,b), T2 = T1|ϕ(a,b), T3 = T1|ϕ(a,b) = T3|ϕ(a,b)

Proposition 15.6 [23] If ϕ is existential, the ϕ-relativization mapping is monotone.

Hence, for an existential formula ϕ, the limit of iterated ϕ-relativization can be
defined in the modal μ-calculus. What does this tell us about games? It tells us that
reasoning about the limit of an assumption of rationality is equivalent to model check-
ing a formula of the modal μ-calculus whenever the formula encoding this concept
of rationality is existential, and that in general it is equivalent to model checking a
formula of the modal iteration calculus (We refer to [48] for a presentation of modal
iteration calculus and a comparison with the modal μ-calculus.). An important dif-
ference is that, while model-checking problem for the μ-calculus could be tractable
Dawar et al. [48] show that the combined (and expressive) complexity of MIC is
PSPACE-complete.

Let us now discuss the definability of iterated relativization. As suggested by
van Benthem [21] iterated relativization is expressible in the modal iteration calcu-
lus. Miller and Moss [72] define a logic of iterated relativization extending public
announcement with iterated public announcement operators 〈ϕ∗〉ψ with semantics:

M,w |= 〈ϕ∗〉ψ iff M,w |= 〈ϕ〉nψ for some n ∈ ω

and give a translation from the language of iterated relativization into the modal
iteration calculus. Moreover, [72] shows that the satisifiability problem of the logic is
highly undecidable (�1

1-complete) by reduction from the tiling problem for recurring
domino systems.

15.5 The Different Faces of Backward Induction

Backward induction (henceforth BI) in generic games of perfect information seems
at first a very simple solution algorithm with limpid epistemic foundations. If it
is common belief between Azazello and Behemoth that they will both play best-
responses to their beliefs at every subgame, then in particular Azazello believes that
Behemoth will play an action that maximizes his utility in subgames of length 1, hence
will play according to the BI solution. Iterating the argument seems to provide us
with the conclusion that BI play follows rationality and common belief of rationality.
For a formal defense of this claim, the reader should consult [4]. Even if this was the
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Fig. 15.3 A centipede game

end of the story, the logical analysis of this correspondence using fixed-point logics
[26, 59] would still be insightful, and we will return to it. But there is more to this
story. Consider the game in Fig. 15.3.

The BI solution (play T at every decision node) can be justified as follows: if 2
is rational, when the last node will be reached, 2 will play T . Since 1 expects 2 to
play rationally, 1 should expect 2 to play T at the last node, hence if 1 is rational,
1 should play T at the penultimate node. The arguments iterates and 1 is argued to
have a reason to play T at the first node, on the basis of common belief of rationality.
Now, backward induction and any theory of rational behavior in general should be

immune to deviation from it. That is, it must never be to one’s advantage to behave in a
manner that the theory deems irrational. But in order to check this, one must be able to
evaluate the effect of not conforming to the theory [83].

In particular a theory of rational behavior should have something to say about how
rational agents should revise their beliefs when they observe decisions which are
incompatible with the theory and how they should make decision after observing
such a deviation. Now look back at the example, and assume that 1 deviates from
the BI-path and plays P at the first node. What should 2 expect 1 would do in case
2 were to play P? We let the reader decide for herself or himself. Many results have
shown sufficient or insufficient assumptions on the belief revision procedure used
by the agents to guarantee BI compatible behavior. Our aim is not to survey them
(we refer to [80] for such a discussion). We will also not cover related conceptual
questions such as how beliefs should be modeled, what type of beliefs a player can
have on her future and current decisions, and what types of counterfactual reasoning
can be involved in strategic reasoning; and refer to [41, Sect. 4] for an overview in
the context of an analysis of the epistemic foundations of BI. Rather, our aim, in this
section, is to indicate how the question has triggered logical developments calling for
logical analysis of concepts we did not discuss so far: (counterfactual) beliefs—and
belief revision.

With this motivation in mind and drawing on both modal logic relational semantics
and semantic models developed in the context of AGM [1] style belief revision
theory (such as [61] spheres), Board [35] proposes a modal language interpreted over
plausibility-based structures. Independently, several authors in the logic literature
proposed similar models [8, 24, 51]. All these models have to do with the following
idea: besides (or instead of) an epistemic relation giving the information of an agent
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at every state of a model or at every history in a tree (or an extensive form), introduce
a plausibility pre-order≤i: where x ≤i y means x is at least as plausible as y from the
perspective of i. Belief operators can then be interpreted in different ways. Typically,
Biϕ (read “i believes that ϕ”) can be interpreted as meaning that all ≤i-minimal
elements in i’s information set are ϕ-states. As the reader might suspect, some form
of well-foundedness of the plausibility relation will then be a desirable feature for this
belief operator to be well-defined. Some authors only require existence of minimal
elements in cells of the information partition, which only calls for a local form of
well-foundedness. Other authors prefer the ≤i to be a state-dependent relation and
write y ≤i,x z giving them greater generality. This generally calls for additional
assumptions if certain forms of positive or negative introspection are desired. But,
throughout all these variations, the general idea remains the same.

We don’t need to be more formal for now and we will proceed as follows. We start
in Sect. 15.5.1 by illustrating the previous plausibility models with a foundational
problem for interactive epistemology (in the sense of [5]): agreements and conver-
gence to agreements. We also discuss a non-eliminative revision procedure: radical
upgrade. We then return in Sect. 15.5.3 to backward induction from where we left it
earlier and discuss the unifying analysis of BI in fixed-point logics developed in van
Benthem and Gheerbrant [26], Gheerbrant [59]. Section 15.5.4 discusses a sequence
of results by van Benthem and Gheerbrant [26] making explicit the link between
strategic reasoning as a non-eliminative revision procedure and the backward induc-
tion solution.

15.5.1 Plausibility Models for the Interactive Epistemologist

Let us record the definition of an epistemic plausibility model as discussed above.

Definition 15.7 (Epistemic Plausiblity Model, [8]) An epistemic plausibility model
M = 〈W , (≤i)i∈N , (∼i)i∈N ,V〉 has W �= ∅, for each i ∈ N , ≤i is a pre-order on W
and ∼i is a binary equivalence relation on W , and V : prop→ ℘(W).

Since we would like to define belief as truth in minimal states in an information
cell, we need to make sure that such minimal elements do exist. We call an epistemic-
plausibility model M = 〈W , (≤i)i∈N , (∼i)i∈N ,V〉 well-founded iff for every subset
X ⊆ W , X has minimal elements. Clearly this condition is sufficient to guarantee
that a belief operator Biϕ with semantics:

M,w |= Biϕ iff min≤i Ki[w] ⊆ ||ϕ||M

is well-defined. In such models the plausibility ordering really encodes prior beliefs,
while ∼i encodes the information of i, hence the above operator is really a posterior
belief operator (in the sense of [3] posteriors). Similarly to the probabilistic case, for
any n ∈ ω, it is possible to construct a pointed epistemic-plausibility model M,w
with common prior such that for all sequences σ of length k ≤ n over {1, 2} :
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M,w |= Kσ0 . . .Kσk (Bip ∧ ¬Bjp)

However, again similarly to the probabilistic case, two agents cannot ‘agree to dis-
agree’.

Theorem 15.9 [50] Common knowledge of disagreement is only possible in a model
that is either not well-founded or for which the assumption of a common prior fails.

Additionally it is possible to see that relativization via beliefs, that is, by public
announcement of the beliefs of the agents about some formula ϕ, will converge
to common knowledge of beliefs about ϕ, and hence, in well-founded models that
satisfy common prior, to agreement. ϕ-relativization, as we mentioned earlier, is an
eliminative type of update. It corresponds to the epistemic event in which all agents
accept ϕ as true information, whose reliability cannot be put into question. Van
Benthem [24] is concerned with softer types of updates, corresponding to information
that can possibly turn out to be wrong. One procedure discussed in [24] is radical
plausibility upgrade. It is more easily understood in the context of simple plausibility
models (without epistemic relations). Radical plausibility upgrade with ϕ simply
takes every ϕ-state in the plausibility ordering and puts them above all ¬ϕ-states.
Within these two classes, the ordering of states remain unchanged. Call the resulting
model M ⇑ϕ. It is possible to introduce a corresponding dynamic operator [⇑ϕ]ψ
with semantics

M,w |= [⇑ϕ]ψ iff M⇑ϕ,w |= ψ

The logic can be fully axiomatized by extending the axiomatization of some condi-
tional doxastic logic interpreted over plausibility models with dynamic axioms. We
refer to van Benthem [24] for details, but let us point out an important difference with
the logic of public announcement (PAL), that the reader might expect: PAL validates
the following axiom

[!p][!¬p]Bi⊥

for propositional letters. This is no longer true for radical upgrade. The opposite is
actually true

[⇑p][⇑¬p]¬Bi⊥

given any reasonable semantics of Bi, making radical plausibility upgrade a better
candidate for iteration.

15.5.2 Belief Revision Over Time

As we have seen before, one update, one revision is usually not giving the full story.
Much of our earlier analysis has a broader impact, now that we have semantics for
beliefs and an approach to belief revision. It would take us out of the scope of this
chapter to discuss such extensions in full details, but let us sketch some important
questions that arise now that we are working with belief revision rather than knowl-
edge update. First note that, in the same way that epistemic temporal models can be
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seen as generalizations (and, from a different perspective, as enrichments) of exten-
sive forms, doxastic temporal models are similarly interestingly related to extensive
games. Doxastic temporal logics interpreted over such models were introduced in
Friedman and Halpern [57] and Bonanno [39], representing time globally as a bundle
of possible histories where the beliefs of agents evolve as informational processes
unfold.

As a detour, we should note that plausibility models and probability-based
approaches are quite different in spirit. The plausibility structure is essentially
concerned with different layers the agent can fall back on, in case her initial beliefs
are defeated by new information, while probability approaches are concerned with
the relative likelihood of different alternatives. The latter offer a rich basis for fine-
grained decision-making rules, while the first one is robust to surprising information.
There are of course systems at the interface of the two—such as lexicographic proba-
bility systems [34]—that have proven useful for the analysis of epistemic foundations
of solution concepts (see e.g., [43]).

Now the dynamic approach discussed in the previous section can also be extended
to deal with sequences and repetition of belief revision. Van Benthem and Dégremont
[25], Dégremont [49] discuss the relation between the temporal and the dynamic
approach to belief update, and logics at their interface. Iterated scenarios as discussed
in Sect. 15.4 can be revisited for the more sophisticated type of updates we have just
discussed. Baltag and Smets [9] has some important pioneering results and Baltag
et al. [12], as well as Hendricks et al. [65], show their relevance for a logical approach
to learning theory.

15.5.3 Unifying Perspectives on Backward Induction:
Fixed-Point Logic on Trees

Our earlier analysis ended by mentioning the definability of backward induction over
trees in PDL. Again think of backward induction (henceforth BI), as a subset of the
successor relation on trees. Van Benthem and Gheerbrant [26], Gheerbrant [59] are
interested in the unification of characterization of BI using extensions of FO with
fixed points. The formula used in the previous result can be shown to correspond
to a local concept of rationality expressible in FO with transitive closure for binary
relations and the mentioned references have details. Van Benthem and Gheerbrant
prefer however a different notion of rationality they call CF2 (for confluence):

CF2 :
∧

i∈N

∀x∀y((turni(x) ∧ σ(x, y))→ (move(x, y) ∧ ∀z(move(x, z)

→ ∃u∃v(end(u) ∧ end(v) ∧ σ ∗(y, v) ∧ σ ∗(z, u) ∧ u ≤i v))))
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and show that the relation BI—or a more permissive one on arbitrary games, yet
equivalent on generic games—can be defined in FO(LFP) as a greatest-fixed point.
But first they prove the corresponding semantic result:

Theorem 15.10 [26, 59] BI is the largest subrelation of the move relation in a finite
game tree satisfying the two properties that (a) the relation has a successor at each
non-terminal node, and (b) CF2 holds.

Let X be a relational symbol not in the above vocabulary. Syntactically, the defin-
ability of their brand of (the relation) BI in FO(LFP) is as follows:

BI(x, y) = [gfpX,x,y(move(x, y) ∧
∧

i∈N

(turni(x)→ ∀z(move(x, z)

→ ∃u∃v(end(u) ∧ end(v) ∧ X∗(y, v) ∧ X∗(z, u) ∧ u ≤i v))))](x, y)

where X∗(y, v) means that there exists an X-path from the interpretation of y to the
interpretation of v, which is naturally definable in FO(LFP).

Interestingly inductively computing the interpretation of BI(x,y) [26, 59] in a
given game tree is essentially equivalent to inductively computing a backward induc-
tion type solution algorithm. This illustrates that both the static and the dynamic
perspective on games can ultimately be unified in the fixed point logic approach to
both of them.

15.5.4 Backward Induction and Iterated Plausibility Upgrade

Let us go back to the example represented in Fig. 15.3. If you expect players to
conform to BI at any stage of the game, you expect in particular that 1 will play T at
the first node. In general, the left to right ordering really corresponds to an ordering
in terms of plausibility given that you expect players to play according to BI. In van
Benthem and Gheerbrant’s [26] words “Backward Induction creates expectations for
players”. How it creates them, is something we have yet to see. It is very reasonable
to expect the BI procedure would generate such a plausibility ordering inductively.

Before we proceed, we will need a bit of notation and terminology. Assume
some finite extensive game. Let Z(x) be the set of terminal nodes that can still be
reached from x. Let Z1,Z2 be sets of terminal nodes of some finite tree. Given a total
ordering ≤ over the terminal nodes and its complement >, we write Z1 >∀∀ Z2 iff
for all z1 ∈ Z1 and z2 ∈ Z2 we have z1 > z2. Define Z1 ≤∀∀ Z2 similarly. Now call
Z1,Z2 ancestor-connected iff is there is a node x with two-children y and z such that
Z(y) = Z1 and Z(z) = Z2. Very roughly speaking, at x, the player who is to move
decides between the set Z1 and the set of Z2.

Van Benthem and Gheerbrant define a relation of plausibility over leaves of a finite
extensive game as a total ordering � of the terminal nodes. Given a set of terminal
nodes Z1, let Bi[Z1] := min�i Z1. Now consider the following notion of belief-based
dominance.
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Definition 15.8 ([26, 59]) Given a plausibility relation �i, we say that a move to a
node x for player i,�i dominates a move to a sibling y of x in beliefs if Bi(Z(x)) >∀∀
Bi(Z(y)). A move to x is said to be rational, if it is not dominated in beliefs by a
move to a sibling.

Now inductively evaluate formulas in larger subgames starting from subgames of
length 1. Assume the current subgame has a root x with at least two children z and y,
if z dominates y in belief z, then upgrade Z(z) over Z(y). Call this procedure iterated
radical upgrade of rationality in belief.

Theorem 15.11 [59] On finite games, the BI strategy is encoded in the final plausi-
bility ordering at the limit of iterated radical upgrade of rationality in belief.

A different approach, building on a similar semantic framework, is taken in [11].
It uses the concept of ‘stable true belief’. Essentially, a belief in ϕ is a true stable
belief, if it is known to be robust to truthful announcements (robust to non-trivializing
relativization). Their main result is that common stable true belief of rationality
implies the BI outcome. They provide a logical characterization of that result in the
sense that the previous theorem is a validity in some modal language. The reader
should consult Baltag et al. [11] for details. In general, this line of research has the
particularity of having a genuinely syntactic dimension to it. The idea of recasting
game-theoretic arguments in proof-theoretic terms is something that we have omitted:
the interested reader should consult [40, 45, 88].

15.6 Perspectives

We have seen that natural questions arising within game-theoretical analysis call for
logical and computational analysis. Van Benthem et al. [31] argue that the meaning
of this is certainly not only that some problems in game theory would require tools
from logic, model theory and computational complexity to be solved. Rather, for
van Benthem et al. [31], intelligent interaction, as constituted of informational
processes—such as revising beliefs, adjusting strategy, changing goals or preferences
—is the object of an emerging “more finely-structured theory of rational agency”,
that they think of as a “joint off-spring […] of logic and game theory” and call “the-
ory of play”. In that sense, the results and analyses we have discussed in the previous
sections, are elements of such a general theory of intelligent interaction, in which
game-theoretical, logical and computational methods are simultaneously called for.

15.7 Conclusion

Showing that many problems in strategic interaction are ultimately logical and com-
putational problems is one of the directions of Johan van Benthem’s explorations
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in the past decade. Not only are games natural models for modal logics, allowing
for enlightening characterization of classes of games or of relational structures that
generalize games. But it is also possible to model the reasoning procedures of agents
about games and, the convergence of these procedures. From a logical perspective,
the analysis of these problems resides within the expressive power of fixed point
logics. The logical analysis projects into computational analysis: from the computa-
tional perspective, the latter problems are much more demanding. Unlike properties
definable in modal logic, checking if a given fixed-point logic definable property
holds about a game is generally not tractable. And if we move to the satisfiability
problem, we find that we cross the computability border (if we have not crossed it
already by making dangerous assumptions about our models). Hence van Benthem’s
contribution to this direction of the interface between logic and games has really
been two-fold: on the one hand, isolating subphenomena of importance for strategic
interaction (such as belief revision) and making their principles explicit by logical
analysis; and, on the other hand, putting games into a broader mathematical picture,
giving a unifying logical point of view at which the correspondence between static
and dynamic approaches to games and their solution naturally appears as two faces
of the same mathematical object.
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Chapter 16
Knowledge Games and Coalitional Abilities

Thomas Ågotnes and Hans van Ditmarsch

Abstract We present our recent work on the interaction of knowledge and coalitional
abilities, on quantifying over information change, and on imperfect information
games wherein the actions are public announcements or questions with informa-
tive answers. Such case studies should be seen as an implementation of the general
programmatic ideas found in Johan van Benthem’s recent books Logical Dynamics
of Information and Interaction and Logic in Games.

16.1 Introduction

While the logic of knowledge, epistemic logic, has been studied for some time
[51, 65, 80, 95], the focus on the logical principles of the dynamics of knowl-
edge, i.e., of how knowledge changes in a multi-agent system, is more recent and is
currently an active research topic. These principles can be studied by combining epis-
temic logic and temporal or dynamic logic, or by modelling information-changing
actions and events and their epistemic preconditions and postconditions explicitly as
in dynamic epistemic logic [44]. Another currently active research topic in the area
of multi-agent systems is combining logic and game theory [66].

Already in [14] van Benthem pointed out various interesting research questions
on the intersection of epistemic logic and game theory, and this has grown into
a full-fledged research programme carried by an increasingly sizable community
[17, 18]. In many real games knowledge about the game plays a role, as in imperfect
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information games such as Bridge, while other games, like Cluedo, are games about
knowledge. In this paper, we survey some of our recent work in this area.

We first give a brief overview of epistemic logic including one of the most popular
dynamic epistemic logics, namely public announcement logic, as well as a brief
introduction to one of the most popular logical frameworks in the area of logics
for games, namely logics of coalitional ability. We also briefly review some key
game theoretical concepts. In Sect. 16.3 we discuss the combination of epistemic
logic and coalitional ability logics, and how it can be used to express knowledge
dynamics. Section 16.4 is on propositional quantification in epistemic logic, and
in particular quantifications involving coalitions of agents. This should be seen as
zooming in the general setting of Sect. 16.3 on more specific interaction between
coalitional ability and knowledge by restricting the actions of agents to be a well-
known type of information-changing actions: public announcements. Several variants
of resulting logics are discussed. In Sect. 16.5 we turn to the question of which among
her information-changing actions a rational agent would or should choose. This
presupposes a preference over epistemic states. Given that and a Kripke structure
we can induce different types of games: public announcement games (Sect. 16.5.1)
and question-answer games (Sect. 16.5.2). Section 16.6 presents some “real” games
involving dynamic knowledge. Such bottom-up input has fuelled the theoretical
development of the area in the past and we expect that many as yet unanswered very
concrete questions (what is an optimal strategy in Cluedo?) will continue to fuel the
further development. In the concluding section we review the topics we have treated
with respect to the extensive literature on logic and games and in particular the recent
[16, 18].

16.2 Background

16.2.1 Logic

We will consider several variants of propositional modal logic. Each variant has a
language, a class of models each with a state space, and a satisfaction relation |=
which is a binary relation between pointed models (consisting of a model and a state
in the domain of that model) and formulae. Expression M, s |= ϕmeans that ϕ is true
in the pointed model M, s, whereas |= ϕ means that ϕ is valid, i.e., that M, s |= ϕ
for all pointed models M, s. The model checking problem is the problem of deciding
whether M, s |= ϕ, when M, s, ϕ are given. The satisfiability problem is the problem
of deciding whether there exists a pointed model such that M, s |= ϕ, when ϕ is
given. We say that a logic is decidable if the satisfiability problem is decidable.

We henceforth assume that a set Θ of atomic propositions (or primitive proposi-
tions) and a set N = {1, . . . , n} of agents is given, and we will use the usual derived
propositional connectives without explicit introduction.
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instantiations of propositional tautologies
distribution
truth
positive introspection
negative introspection
modus ponens
necessitation of knowledge

Fig. 16.1 Axiomatisation of el

16.2.2 Epistemic Logic

Epistemic logic extends propositional logic with epistemic operators of the form Ki ,
where i is an agent. Formally, the language LE L of el is defined by the grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kiϕ

where i ∈ N and p ∈ Θ . We write K̂iϕ for the dual ¬Ki¬ϕ.
A Kripke model or epistemic model over N and Θ is a tuple M = (S, {∼1

, . . . ,∼n}, V ), where S is a set of states, for each agent i ∼i ⊆ S× S is an epistemic
indistinguishability relation that is assumed to be an equivalence relation, and V :
Θ → 2S maps primitive propositions to the states in which they are true. A pointed
Kripke structure is a pair (M, s) where s is a state in M . The interpretation of LE L

formulae in a pointed Kripke structure is defined as follows.

M, s |= p iff p ∈ V (s)
M, s |= Kiϕ iff for every t such that s ∼i t , M, t |= ϕ
M, s |= ¬ϕ iff not M, s |= ϕ
M, s |= ϕ ∧ ψ iff M, s |= ϕ and M, s |= ψ
We can add epistemic group operators to the language as well: EGϕ, CGϕ, and

DGϕmean that everyone in the group G ⊆ N knows ϕ, that ϕ is common knowledge
in G, and that ϕ is distributed knowledge in G, respectively. Formally, M, s |= XGϕ

iff M, t |= ϕ for all t such that s ∼X
G t , where: ∼E

G =
⋃

i∈G ∼i ,∼C
G is the transitive

closure of ∼E
G , and ∼D

G =
⋂

i∈G ∼i .
A sound and complete axiomatisation of all valid LE L formulae is shown in

Fig. 16.1. (We will use epistemic group operators in various semantic settings but
will not give axiomatizations involving those as well.)

The idea of modelling information change (as in belief revision) with dynamic
modal operators goes back to van Benthem [22]. The perhaps simplest logic of this
type, wherein epistemic operators are also explicit, is public announcement logic
(pal) [57, 86]. The language LP AL of pal extends the el language with public
announcement operators:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | [ϕ]ϕ
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axiom schemata and rules of EL
atomic permanence
announcement and negation
announcement and conjunction
announcement and knowledge
announcement composition

Fig. 16.2 Axiomatisation of pal

Expression 〈ϕ〉ψ is shorthand for the dual ¬[ϕ]¬ψ . The interpretation of the new
clause [ϕ]ψ is as follows:

M, s |= [ϕ]ψ iff M, s |= ϕ implies that M |ϕ, s |= ψ
where M |ϕ = (S′, {∼′1, . . . ,∼′n}, V ) is such that

S′ = {s′ ∈ S : M, s′ |= ϕ},
∼′i = ∼i ∩(S′ × S′) and
V ′(p) = V (p) ∩ S′.

The update of M by ϕ, M |ϕ, is the submodel of M obtained by removing states
where ϕ is false. Intuitively, [ϕ]ψ means that if ϕ is truthfully publicly announced,
then ψ will be true afterwards. A sound and complete axiomatisation of all valid
LP AL formulae is shown in Fig. 16.2.

We will sometimes make use of the positive fragment of LP AL [46], which
essentially consists of all formulae only containing negation immediately preceding
atomic propositions:

ϕ ::= p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | Kiϕ | [¬ϕ]ϕ

More sophisticated and general frameworks model more complex events than
public announcements [11, 34, 56, 77]. This includes the incorporation of factual
change into languages that express epistemic change [24, 43], preference-based
modelling of belief revision with dynamic modal operators [7, 12, 20, 39], the
integration of dynamic epistemic logics with temporal epistemic logics [25], and
various forms of quantification over propositional variables [2, 4, 10]. See [51, 80]
for further details about epistemic logic, and [44] for further details about dynamic
epistemic logic.

16.2.3 Game Theory

A strategic game is a quintuple G = 〈N , {Ai : i ∈ N }, S, o, {ui : i ∈ N }〉 where

• N is the finite set of players;
• for each i ∈ N , Ai is the set of strategies (or actions) available to i . We note that

A = ×i∈N Ai is the set of strategy profiles;
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• S is a set of possible outcomes;
• o : A→ S is the outcome function mapping strategy profiles to outcomes;
• for each i ∈ N , ui : S→ R is the payoff function for i , mapping each outcome to

a number.

When (a1, . . . , an) ∈ A, the notation (a1, . . . , an)[ai/a′i ] stands for the profile
wherein strategy ai is replaced by a′i . A (strategic) game form is a strategic game
without utilities, i.e., of the form 〈N , {Ai : i ∈ N }, S, o〉.1

When we are not interested in the outcomes per se, we will sometimes write
ui (a1, . . . , an) for ui (o(a1, . . . , an)), and we will sometimes define a game as a
tuple G = 〈N , {Ai : i ∈ N }, {ui : i ∈ N }〉 with the implicit convention that each
strategy profile gives a distinct outcome.

A profile (a1, . . . , an) is a (pure strategy) Nash equilibrium if and only if for all
i ∈ N , for all a′i �= ai , ui ((a1, . . . , an)[ai/a′i ]) ≤ ui (a1, . . . , an). A strategy for an
agent is weakly dominant if it is at least as good for that agent as any other strategy,
no matter which strategies the other agents choose.2 Formally, a strategy ai for
agent i is weakly dominant if and only if for all agents j , for all a′j , ui (a′1, . . . , a′n) ≤
ui ((a′1, . . . , a′n)[a′i/ai ]). Clearly, a strategy profile where all the strategies are weakly
dominant is a Nash equilibrium. A strategy for an agent is strictly dominated if there
exists another strategy for that agent that always is better. Formally, ai is strictly
dominated if and only if there is a strategy a′i �= ai such that for all agents j �= i , for
all a′j , ui (a′1, . . . , a′n) > ui ((a′1, . . . , a′n)[a′i/ai ]).

See, e.g., [83] for further details.

16.2.4 Logics of Coalitional Ability

Logics of coalitional ability usually have a modal coalition operator 〈G〉 for each
coalition G ⊆ N . A formula of the form 〈G〉ϕ typically means that G can make ϕ
true; that there is some joint action that the group G can do such that ϕ is guaranteed
to be true afterwards. The dual [G]ϕ, defined as ¬〈G〉¬ϕ, means that ϕ will be true
no matter what G does.

One of the most popular coalitional ability logics is Pauly’s Coalition Logic (cl)
[85]. The language of cl simply extends propositional logic with coalition operators.3

(where G ⊆ N , and p ∈ Θ):

1 We remind the reader that G ⊆ N typically names a group or coalition of agents, whereas G, i.e.
‘bold-G’, names a game (C for coalition clashes with C for common knowledge).
2 The literature differs in the definition of weakly dominant strategies. Another common definition
in addition requires that the strategy is strictly better against at least one combination of actions by
the other agents.
3 The notation for coalition operators varies in the literature. In [85], Pauly in fact uses [G]where we
use 〈G〉. Pauly’s interpretation of the operator uses a ∃∀ pattern, and since we also will discuss other
interpretations of the operator we choose to emphasise its existential nature and use the diamond
notation 〈G〉.



456 T. Ågotnes and H. van Ditmarsch

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈G〉ϕ

Coalition logic can be interpreted in concurrent game structures (cgss) [6]. A cgs

is a tuple
(S, V,ACT , d, δ)

where

• S is a finite set of states.
• V is the labeling function, assigning a set V (s) ⊆ Θ to each s ∈ S.
• ACT is a finite set of actions.
• For each player i ∈ N and state s ∈ S, di (s) ⊆ ACT is the non-empty set of

actions available to player i in s. D(s) = d1(s) × · · · × dn(s) is the set of joint
actions in s. If a ∈ D(s), ai denotes the i th component of a.
• δ is the transition function, mapping each state s ∈ S and joint action a ∈ D(s) to

a state δ(s, a) ∈ S.

Note that a concurrent game structure implicitly associates a strategic game form
G(s) = 〈N , {As

i : i ∈ N }, S, os〉with each state s: As
i = di (s) and os(a1, . . . , an) =

δ(s, (a1, . . . , an)).
The cl interpretation of the coalition modality is as follows:

M, s |= 〈G〉ψ iff there exists an action ai ∈ di (s) for each i ∈ G, such that for all
possible actions a j ∈ d j (s) for all j ∈ N \ G, M, δ(s, (a1, . . . , an)) |= ψ .

The semantics of coalition logic can alternatively be given in terms of effectivity
functions [85]. An effectivity function over a set of agents N and a set of states S is
a function E that maps any coalition G ⊆ N to a set of sets of states E(G) ⊆ 2S .
Intuitively, X ∈ E(G) means that G can make some choice that will ensure that the
outcome will be in X . Effectivity functions are implicit in strategic game forms. The
α-effectivity function EG of strategic game form G is defined as follows: X ∈ EG(G)
iff there exists an action ai ∈ Ai for each i ∈ G, such that for all possible actions
a j ∈ A j for all j ∈ N \ G, o(a1, . . . , an) ∈ X .

An effectivity function E is called playable [85] iff: X ∈ E(G) & X ⊆ Y ⇒
Y ∈ E(G) (outcome monotonicity); S \ X �∈ E(∅) ⇒ X ∈ E(N ) (N-maximality);
∅ �∈ E(G) (Liveness); S ∈ E(G) (Safety); G ∩ G ′ = ∅ & X ∈ E(G) & Y ∈
E(G ′) ⇒ X ∩ Y ∈ E(G ∪ G ′) (superadditivity). In [85] it is claimed that an
effectivity function E is the α-effectivity function of a strategic game form iff E
is playable; a property often referred to in the secondary literature. However, it has
recently been shown [59] that this claim is in fact not correct: there are playable
effectivity functions over infinite sets which are not α-effectivity functions of any
strategic game forms. In [59], Goranko also shows that effectivity functions that in
addition to being playable have the property X ∈ E(N ) ⇒ ∃x ∈ X, {x} ∈ E(N )
(E is a crown), called truly playable effectivity functions, correspond exactly to
α-effectivity functions.
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Fig. 16.3 Axiomatisation of cl

A coalition model [85] is a tuple M = 〈S, E, V 〉 where E gives a playable
effectivity function E(s) for each state s ∈ S, and V is a valuation function. The
interpretation of the coalition modality in a coalition model is as follows:

M , s |= 〈G〉ψ iff ϕM ∈ E(s)(G)

where ϕM = {t ∈ S :M , t |= ϕ}. It is easy to see that the two semantics coincide:
M, s |= ϕ iff Mα, s |= ϕ for all ϕ, where M = (S,Θ, V,ACT , d, δ) and Mα =
(S, Eα, V ) and Eα(s) = EG(s).

Figure 16.3 shows an axiomatisation of coalition logic [85]. It is sound and com-
plete, both for concurrent game structures and for coalition models (over playable
effectivity functions), and also for coalition models over truly playable effectivity
functions [59].

Alternating-time Temporal Logic (atl) [6] extends the coalition operators with a
temporal dimension. 〈G〉�ϕ, 〈G〉♦ϕ, 〈G〉 ϕ and 〈G〉ϕ1 U ϕ2 means that G has
a strategy to ensure that ϕ will be true in the next state, that ϕ will be true at some
state in the future, that ϕ will be true at all states in the future, and that ϕ1 will be
true until ϕ2 is true, respectively, no matter what the agents in N \ G do. A strategy
is a function that maps a sequence of states (a history) to an action for each agent
in G. Strategies are sometimes assumed to be memoryless, represented by mapping
single states to actions. Coalition logic can be seen as the next-time fragment of atl.
atl can also be seen as an extension of the popular branching-time temporal logic
Compuation-Tree Logic (ctl) [50].

In [14], van Benthem proposes an extension of propositional dynamic logic, inter-
preted over extensive form games, with forcing modalities of the form {G, i}ϕ. These
are true at a game node if player i has a strategy for playing game G from there on,
which forces a set of outcomes all which satisfy ϕ. These are called “game-internal”
versions of the coalition logic modalities, and they are even closer to the “sometime-
in-the-future” atl modality 〈G〉♦ϕ.

Another popular logical framework for coalitional ability is the logic of seeing to
it that, or stit logic [13]. cl and atl are more directly related to games than stit

logic. However, although conceptually and technically quite different, stit logic is
nevertheless closely related to cl and atl [31, 32, 94].
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16.3 Epistemics and Coalitional Ability

As much of the work related to games in the general area of modal logic has focussed
on logics of (coalitional) ability, extending such logics with an epistemic dimension
is a natural perspective on dynamical epistemics and games. For example, such
combinations allow us to express properties such as [67]:

• Kiϕ→ 〈i〉K jϕ: if agent j knows ϕ, she can communicate that fact to agent j
• Kiϕ∧¬K jϕ∧¬Kkϕ∧〈i, j〉(Kiϕ∧K jϕ∧¬Kkϕ): i can send private information

to j without revealing it to k
• 〈i〉ϕ → Kiψ : knowledge of ψ is a necessary epistemic precondition for making
ϕ true
• 〈i〉ϕ← Kiψ : knowledge of ψ is a sufficient epistemic precondition for making ϕ

true.

Combinations of logics of coalitional ability and epistemic logic were first studied
by van der Hoek and Wooldridge [67], who combine atl with epistemic logic. We
will here define a simple variant: coalition logic extended with epistemic operators,
henceforth called clk. The language LC L K of clk is defined by the following
grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | 〈G〉ϕ

Semantically, cgss extended with epistemic indistinguishability relations are
called concurrent epistemic game structures (cegss). Formally, an cegs is a tuple
(S, V,ACT , d, δ, {∼1, . . . ,∼n}) where (S, V,ACT , d, δ) is a cgs, each ∼i is an
equivalence relation on S and for all i , s and t :

s ∼i t ⇒ di (s) = di (t) (16.1)

The condition that the same actions must be available in indiscernible states,
i.e., that an agent knows which actions she has available, is commonly accepted [1,
70, 74]. The interpretation of the clk language in a cgs state is as expected (combine
the clauses for cl and el).

16.3.1 Adding Temporal Operators and Strategies

atel [67] extends clk to the full atl language, i.e., it adds temporal operators,
and also adds epistemic group operators CG , DG and EG . The interpretation of the
different operators in a state of a cegs is as before. Strategies are usually assumed to
be memoryless.4 However, as first discussed in [70], strategies are usually restricted
to be uniform in the sense that fi (s) = fi (t) whenever s ∼i t for any i, s, t . In [14]

4 One reason for this is that with perfect recall strategies and imperfect information the model
checking problem is assumed to be undecidable [6, 90].
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Fig. 16.4 Model M illustrating the difference between knowing de re and de dicto, for a single
agent. Only a fragment of the model is shown. Dotted lines denote epistemic accessibility (the
accessibility relation is assumed to be transitive), labelled arrows denote actions and transitions

epistemic forcing modalities are also considered, essentially modifying the definition
of the forcing modality (see Sect. 16.2.4) to quantify only over uniform strategies.
Many recent works relating strategies to knowledge have appeared [17, 42, 58]—we
consider this beyond the scope of our contribution.

16.3.2 Knowing That Versus Knowing How

As pointed out by Jamroga [70], adding the dimension of imperfect information
leads to several (often subtly) different “variants” of coalitional ability. First, there
is a difference between having the ability to achieve something in the cl/atl sense,
i.e., between there existing an action that is guaranteed to be successful, and know-
ing that you have that ability. Even though you know which actions are available
(ref. Eq. (16.1)), it might be that you consider it possible that the consequences
of the actions are different from what they actually are. But there is also another
important distinction.

Consider the following example (taken from [1]). An agent i is in front of a
three-digit combination-lock safe. The agent does not know the combination. The
correct combination is in fact 123. The example is modelled in Fig. 16.4. We have that
M, 123 |= 〈i〉open—the agent has the ability to open the safe—again, in the sense
that there exists an action (123) that will open the safe. But it is also in fact the case
that the agent knows this, M, 123 |= Ki 〈i〉open, because 〈i〉open holds also in every
other state that agent i considers possible by the same argument. More precisely, the
agent knows that she has the ability to open the safe. But, importantly, she does not
know how to open the safe: there is no action that will open the safe in every state she
considers possible. Following [74],5 we can define the following three, increasingly
stronger, variants of coalitional ability under incomplete information:

5 The de dicto/de re distinction is well known [88] in logic/language in general and has been known
in the area of reasoning about knowledge and action in ai for some time [81].
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Fig. 16.5 A submodel of the model in Fig. 16.4 (left), and a modification (right)

1. Having the ability to make ϕ true, without necessarily knowing it.
2. Knowing de dicto that you have the ability to make ϕ true: in every state you

consider possible you have the ability to make ϕ true (but not necessarily by
using the same action in different states).

3. Knowing de re that you have the ability to make ϕ true: there is an action that
will ensure that ϕ is true in every state you consider possible.

The first two are expressed in clk by 〈i〉ϕ and Ki 〈i〉ϕ, respectively. However, it
is claimed [74] that knowledge de re is not expressible in clk. While this is not
formally shown in [74] or elsewhere, it is indeed easy to see that it is true, even in
the single-agent case: in the model to the right in Fig. 16.5 the agent knows de re that
she can open the safe; in the model to the left she does not, but it is easy to show that
the two models satisfy exactly the same formulae—swapping the names of the two
actions in state 124 does not change the interpretation of formulae in that state.

Extending the language in order to be able to express knowledge de re has turned
out to be non-trivial, and many proposals have appeared and been studied [32, 64,
70–75, 84, 90]. A summary discussion of many of the proposed approaches can be
found in [71].

One approach that is quite flexible is Constructive Strategic Logic (csl) [71],
which extends atel in two main ways. First, formulae are interpreted in sets of states
rather than in single states. This makes it possible to define M, S |= 〈i〉ϕ, where S
is a set of states, to be true whenever there is an action/strategy that will achieve ϕ
in every state in S. Second, constructive knowledge operators Ki (and similar group
operators) are added to the language, with the interpretation that M, S |= Kiϕ iff
M, [S]∼i |= ϕ, where [S]∼i =

⋃
s∈S[s]∼i . Thus, M, {s} |= Ki 〈i〉ϕ iff in s i knows

de re that she can make ϕ true. For example, for the model M in Fig. 16.4 we have
that M, 123 |= ¬Ki 〈i〉open.

16.4 Quantification in Dynamic Epistemic Logic

On the one hand, logics of coalitional ability, like cl and atl, formalise reason-
ing about joint actions by agents in a given coalition. On the other hand, dynamic
epistemic logics like pal formalise actions that can be seen as external events
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with epistemic preconditions and postconditions. It is natural, then, to combine
these approaches by considering coalitional ability where actions are information
changing actions of the type described in dynamic epistemic logic such as public
announcements—after all, in many events agents take a part. Here, we consider two
variants of the coalition logic language but where actions are public announcements
(or other public events): the logics gal and cal. From the perspective of pal, this
corresponds to adding quantification over possible announcements to the logical lan-
guage. We begin by considering a basic extension of pal with quantification, a logic
called apal. Our targetted gal and cal can be seen as variations on the basic theme
set in this apal.

16.4.1 Arbitrary Public Announcement Logic

Interpreting the standard modal diamond so that ♦ϕ means “there is an announce-
ment after which ϕ” was suggested by van Benthem [23]. The result of extending
public announcement logic extended with such a diamond is called Arbitrary Public
Announcement Logic (apal) by Balbiani et al. [9], who also study the logic in detail.
One motivation for this type operator goes back to the Fitch paradox of knowabil-
ity [54].

Formally, the language LAP AL of apal is defined by adding a � modality to
LP AL , interpreted as follows (with the dual ♦ϕ ≡ ¬�¬ϕ):

M, s |= �ϕ iff for all ψ ∈ LE L , M, s |= [ψ]ϕ
The quantification ranges over the fragment without quantifiers rather than over the
full LAP AL language, in order to make the semantics well defined. Here we should
note that el is equally expressive as pal, so quantifying over pal (the quantifier-free
fragment) rather than el indeed has the same meaning. This logic apal is strictly
more expressive than pal, is axiomatisable and has various pleasing properties.
See [9, 10] for further details. However, the reason to introduce the logic is now,
subsequently, to introduce two versions of this logic with coalitional operators.

16.4.2 Group Announcement Logic

The interpretation of the apal modality as quantifying over “all possible announce-
ments” is somewhat inaccurate, given that some public events are not announcements
(a typical example is the ‘announcement’ of no child stepping forward in the muddy
children problem). In fact, the logic pal is a logic of publicly observed events, but
where these events should be seen as external to the modelled system. Now in pal

there is a trick to view the announcement made by an agent modelled in the system
(i.e., for which we have an agent name i in the Kripke model, with an associated
accessibility relation) as such an external event.
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When an agent in the system announces thatϕ is true, and it is common knowledge
that all announcements are truthful, it is not merely ϕ that is made public but also
that fact that the announcer knew ϕ at the moment the announcement was made.
The latter information is implicitly “announced” by the act of announcing ϕ. Thus,
public announcements made by agents in the system are of the form Kiϕ, where i is
the agent making the announcement. This backdoor makes it possible to introduce a
form of agency in dynamic epistemic logic, and thus coalitional operators.

Group Announcement Logic (gal) [4] has modal operators 〈i〉, where i is an
agent, quantifying over the announcements that can be made by i . A formula of the
form 〈i〉ϕ thus means that i can make some announcement such that ϕ becomes true.

This is naturally extended to group announcements. A group announcement for
a group G ⊆ N is a formula of the form

∧

i∈G

Kiϕi

where {ϕi : i ∈ G} are formulae. A group announcement is an action that can be
made collectively by the group, each member announcing (that she knows) some
formula (although “can” here does not say anything about how they agree on which
group announcement to make, it simply means that this is a possible outcome if
everyone announces something). Quantification over group announcements gives
an interpretation of coalition operators 〈G〉: 〈G〉ϕ means that G can make a group
announcement such that ϕ will become true. Note that there is a fundamental differ-
ence to the interpretation in coalition logic here, in addition to the fact that actions
are announcements, namely that the interpretation here does not take into account
that other agents can act at the same time. This point is further discussed in the next
section.

Formally, the languageLG AL of gal is defined by the following grammar, extend-
ing pal with coalition operators:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | [G]ϕ | [ϕ]ϕ

where i ∈ N , G ⊆ N . The dual 〈G〉ϕ is defined by abbreviation as ¬[G]¬ϕ. The
interpretation in pointed Kripke models is as for pal, extended with the following
clause:

M , s |= [G]ϕ iff for every set {ψi : i ∈ G} ⊆ LE L , M , s |= [∧i∈G Kiψi ]ϕ
and the interpretation of the dual becomes:

M , s |= 〈G〉ϕ iff there exists a set {ψi : i ∈ G} ⊆ LE L such that M , s |=
〈∧i∈G Kiψi 〉ϕ
As an example, the pal formula

〈Kiϕi 〉〈K jϕ j 〉(Kiψ ∧ K jψ ∧ ¬Kkψ)
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Fig. 16.6 Model M1 (left) and M2 (right)

expresses the fact that i can make the announcement ϕi after which j can make the
announcement ϕ j after which both i and j will both know some formulaψ but agent
k will not. In gal, however, this can be weakened to

〈i〉〈 j〉(Kiψ ∧ K jψ ∧ ¬Kkψ)

expressing the fact that i and j can make some announcements (in the same sequence)
achieving the goal. The gal formalism can potentially be useful to model check
security protocols, e.g., to answer questions of the type “does there exist a protocol
consisting of an announcement by i followed by an announcement by j achieving
the goal that i, j both know ψ but such that (eavesdropper) k remains ignorant.”

In gal the coalition operator has the following property [4]:

|= 〈G〉〈G〉ϕ ↔ 〈G〉ϕ (16.2)

This is significant, because it means that an alternative, equivalent, interpretation
of 〈G〉ϕ is that “G can make a sequence of announcements after which ϕ will
become true”. This seems like a type of property of interest, e.g., for model checking
communication and also for security protocols. However, it also might seem slightly
suspicious: doesn’t it mean that all communication protocols can be reduced to
a single message in each direction? This is true in one sense, but here we must
be careful to discern between the different variants of “ability” under incomplete
information that we discussed in Sect. 16.3.

A natural question is whether, given the intimate connection between knowledge
and action in gal, the mentioned variants of ability (in Sect. 16.3.2) actually are
different also in gal or whether they coincide. That they indeed are different is
illustrated in Fig. 16.6. We have that:

• We have that M1, s |= 〈i〉p ∧ ¬Ki 〈i〉p: agent i has the ability to make p come
true in state s, but she does not know it. This is trivial, as public announcements
do not change the value of factual propositions, and p was already true in s.
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axiom schemata and rules of EL
group and specific announcement
necessitation of announcement
necessitation of group announcement
deriving group announcement / R([G])

Fig. 16.7 Axiomatisation of gal. Θϕ denotes the set of atomic propositions occurring in ϕ

• Let ϕ = K j q∧ (¬K j p∨ K̂i (K j p∧¬K j q)). M2, s |= Ki 〈i〉ϕ: in this case, agent
i knows de dicto that she can make ϕ true. In particular, she can announce Ki q
in s, and Ki p in t . However, neither announcing Ki q in t nor Ki p in s makes ϕ
true, and there is in fact no announcement that i can make in s and t that will both
make ϕ true in s and in t . Thus, i does not know de re that she can make ϕ true.

Like for clk, the combination of coalition logic and epistemic logic, the proposi-
tion that i knows de dicto that she can make ϕ true can in gal be expressed by Ki 〈i〉ϕ.
As discussed in Sect. 16.3, knowledge de re is not expressible in clk. There are two
main differences between clk and gal: first, actions in gal are of a particular type,
namely truthful announcements, and hence action and knowledge are inter-related,
and, second, the interpretation of coalition modalities in cl(k) uses a double ∃∀
quantification, where the second quantifier ranges over all possible announcements
by “the other” agents. However, note that if we restrict the set of agents to only a sin-
gle agent, the ∃∀ pattern for a coalition operator 〈i〉 becomes just ∃ like in gal—and
knowledge de re is still not expressible in single-agent clk as shown in Sect. 16.3.

Consider:
〈i〉Kiϕ (16.3)

In single-agent clk it expresses the fact that agent i can choose some action after
which it is true that she knows ϕ. The meaning in gal is the same, with the restriction
that that action is a public announcement. It is therefore perhaps surprising that (16.3)
in fact expresses knowledge de re in the gal semantics: it is true exactly iff agent i
knows de re that she can make ϕ true ([4, Proposition 26]) (in both the single- and
multi-agent case). Note that this does not hold for clk, when general actions are
allowed: in the model in Fig. 16.4, proposition (16.3) with ϕ = open is true but as
discussed in Sect. 16.3 agent i does not know de re that she can open the safe.

Thus, when actions are truthful public announcements, knowledge de re of ability
can be expressed, unlike in the case of general actions. This is due to the intimate
connection between actions as public announcements and knowledge, and it also
depends on the S5 properties of knowledge.

Figure 16.7 shows a sound and complete [4, Theorem 15] axiomatisation of gal.
It is also known that the model checking problem for gal (and apal) is PSPACE-
complete [4, Theorem 15].

When it comes to expressiveness, it is known that gal is strictly more expressive
than el and pal in the case of more than one agent but equally expressive in the
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single-agent case, and that gal is not as expressive as apal (i.e., there are apal

formulae that cannot be expressed in gal). It is not known whether apal is strictly
more expressive than gal. An open question is if the logics are incomparable.

16.4.3 Coalition Announcement Logic

As mentioned, a fundamental difference between gal and cl is that the interpretation
of the coalition modalities in the former does not take into account that other agents
can act at the same time. In cl 〈G〉 is interpreted using a ∃∀ pattern (“there exist
actions for agents in G such that for all simultaneous actions for agents in N \G ...”),
while in gal 〈G〉 is interpreted like a normal modality, using the ∃ quantifier (“there
exist actions for G..”). A consequence is that gal is not a coalition logic; there are
valid cl formulae that are not valid in gal. For example, the superadditivity axiom
S (Fig. 16.3) is not valid in GAL.

Coalition Announcement Logic (cal) [2] is a variant of gal where 〈G〉ϕ means
that G can make a group announcement such that no matter what the agents outside G
announce at the same time, ϕ will be true. This brings us back full circle to coalition
logic.

The language of cal is the same as the language of gal. The interpretation of
the coalition operators is as follows:

M, s |= 〈G〉ϕ iff for every agent i ∈ G there exists a formula ψi ∈ LE L such
that for every formula ψ j ∈ LE L for each of the agents j �∈ G we have that
M, s |=∧

i∈G Kiψi ∧ [K1ψ1 ∧ · · · ∧ Knψn]ϕ
This interpretation gives a ∃∀ pattern of quantifiers. Note that in the definition the
second quantifier is over all possible formulae for agents outside G, but the use of the
“box” version of the public announcement operator ensures that only the formulae
actually known by those agents play a role. This gives the following interpretation
of the dual:

M, s |= [G]ϕ iff for all formulae ψi ∈ LE L for every agent i ∈ G there is a
formula ψ j ∈ LE L for each of the agents j �∈ G, such that M, s |= ∧

i∈G Kiψi

implies that M, s |= 〈K1ψ1 ∧ · · · ∧ Knψn〉ϕ
The logic cal is a coalition logic, in the sense that all formulae that are valid

in cl are valid also in cal (the axioms in Fig. 16.3 are valid in cal, and the rules
are validity preserving). Of course, cal and cl do not coincide; unlike the latter the
former has both public announcement operators and epistemic operators. However,
even the fragment of cl obtained by restricting the language to the cl language does
not coincide with cl; the following is valid in cal but not in cl (where p is an atomic
proposition).

〈G〉p↔ p P
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Valid properties of the interaction between coalition operators and public announce-
ment operators include:

〈K1ψ1 ∧ · · · ∧ Knψn〉ϕ→ 〈N 〉ϕ P AN
〈∅〉ϕ→ [K1ψ1 ∧ · · · ∧ Knψn]ϕ P A∅

Valid interaction properties of coalition operators and epistemic operators include
(for any i and G):

〈G〉K̂iϕ→ K̂i 〈G〉ϕ K G

This formula is not valid in clk, thus showing that cal and clk also are different.
The fact that cal “is” a coalition logic, means that the coalition operators can be

given a neighbourhood semantics. For simplicity, we consider the fragment without
the public announcement operators, i.e., the fragment obtained by restricting the
language to the clk language LC L K :

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | [G]ϕ

In order to be able to interpret epistemic operators, we must extend coalition models
with indistinguishability relations. An epistemic coalition model (ECM) is a tuple

M = (S, E, V, {∼1, . . . ,∼n}),

where (S, E, V ) is a coalition model and each∼i is an epistemic indistinguishability
relation. We can use ECMs to interpret coalition operators exactly as in coalition
logic:

M , s |= 〈G〉ϕ ⇔ ϕM ∈ E(s)(G)

(and as usual for the other operators including epistemic operators). We can thus
say that a pointed Kripke structure (M, s) and a pointed ECM (M , s′) are LC L K -
equivalent iff they satisfy the same formulae, i.e., if for all ϕ ∈ LC L K ,

M, s |= ϕ ⇔M , s′ |= ϕ (16.4)

In order to define an equivalent ECM from a Kripke structure, the state space
must be extended in order to account for states corresponding to model updates. Any
Kripke structure can be extended in a very simple way to a structure over which we
can define an equivalent effectivity function, without changing satisfiability at any of
the original states. Simply take the power model consisting of the union of all subsets
of the original Kripke model. Formally, the power model M̂ of a Kripke model M is
defined as follows. A submodel of a Kripke model M is a model where the states are a
subset of the states in M , and the valuation function and indistinguishability relations
are restrictions of those in M to the state space of the submodel. The power model
M̂ of M is obtained by taking the disjoint union of M and every proper submodel
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of M , after renaming the states of the proper submodels such that the state spaces
are disjoint. We say that two pointed Kripke models are LC L K -equivalent iff they
satisfy the same LC L K formulae. It is easy to see that for any model M and state s
in M , (M, s) and (M̂, s) are LC L K -equivalent.

Given a Kripke model M , we can now define the induced ECM M M as follows.
M M = (Ŝ, E, V̂ , {∼̂1, . . . , ∼̂n}) where M̂ = (Ŝ, V̂ , {∼̂1, . . . , ∼̂n}) is the power
model of M and

X ∈ E(s)(G)⇔
{
∃ϕ : ϕ M̂ ⊆ X and M̂, s |= 〈G〉ϕ G �= N

∀ϕ : ϕ M̂ ⊆ Ŝ \ X implies M̂, s �|= 〈∅〉ϕ G = N

for any G and s ∈ Ŝ. It can now be shown that for any s in M , (M, s) and (M M , s)
are LC L K -equivalent.

Interpretation of the full cal language, with announcement operators, in induced
power models is straightforwardly defined using submodels in the power model
instead of model updates. Thus, for any Kripke structure there is an ECM which
satisfies exactly the same cal formulae.

16.4.4 Open Problems

There are several open theoretical problems related to meta-logical properties of gal

and cal. First, let us look at gal. Decidability of gal is an open problem. It turns
out that apal is undecidable [55], but this result does not seem to be immediately be
adaptable to gal. While apal is more expressive than gal, it is not known whether it
is strictly more expressive, i.e., whether apal and gal is expressively incomparable.
Few meta-logical properties of cal have been studied. The complete axiomatisation
is an open problem. A complete characterisation of ECMs corresponding to Kripke
models is not known. Finally, the relative expressivity between gal and cal is not
completely understood. It may be that cal is definable in gal, but this has not been
proved. If so, this would provide an interesting outlook on van Benthem’s forcing
operators [14] (an implementation so to speak), as they are intimately tied up to
cal—as for gal, the operator here also quantifies over sequences of actions.

Many extensions of gal and cal are possible, e.g., with temporal modalities
in the style of atl, or with more sophisticated information-changing actions than
public announcements.

16.5 Dynamic Epistemic Games

Dynamic epistemic logic describes actions available to agents; their epistemic pre-
conditions and postconditions. Typically, an agent has several different actions avail-
able. Which action will she choose? That depends, of course, on her preferences over
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different resulting multi-agent epistemic states. Assuming such preferences, we have
a game theoretic scenario, as epistemic states typically would depend on the actions
of several agents [3]. The game-theoretic tool-chest can then be used to analyse
which actions rational agents should or would choose. Here, we discuss two par-
ticular types of games. First, public announcement games where actions are public
announcements, and, second, question-answer games, where actions are questions
another agent is obliged to answer. Both types of games are strategic form games,
and preferences are binary, represented as goal formulae.

16.5.1 Public Announcement Games

In [3] public announcement games (pags) are studied. These are strategic form games
where actions are public announcements interpreted in a given Kripke structure.
These games are implicit in a Kripke structure, under the additional assumption that
each agent has a—typically epistemic—goal formula representing the preferences
of the agent.

Formally, an epistemic goal structure (egs) is a tuple 〈M, {γ1, . . . , γn}〉where M
is a finite Kripke model and where for each agent i the γi ∈ LP AL is a goal formula.
A pointed epistemic goal structure is a tuple (egs, s)where s ∈ M . A strategic form
game, the state game G(egs, s), is associated with a state s of an epistemic goal
structure egs = 〈M, {γi , . . . , γn}〉 as follows.

• N = {1, . . . , n},
• Ai = {ϕi ∈ LP AL},
• ui (ϕ1, . . . , ϕn) =

{
1 if M, s |= 〈K 1ϕ1 ∧ · · · ∧ K nϕn〉γi

0 otherwise

where K iϕi = Kiϕ iff M, s |= Kiϕi , and K iϕi = ¬Kiϕ, otherwise.
Strategies are possible announcements, and an agent gets a positive payoff iff

her goal is satisfied after all agents make their announcement at the same time. An
example is shown in Fig. 16.8, the egs consists of the Kripke structure and the goal
formulae γAnn and γBill , and for each state in the Kripke structure the associated
state game is shown.

The observant reader will have noted that state games by definition have infinitely
many strategies, while the games in Fig. 16.8 shows only two strategies for each player
in each state game. However, two strategies ϕ andψ are equivalent for an agent i on a
Kripke model M when {[[Kiϕ]], [[¬Kiϕ]]} = {[[Kiψ]], [[¬Kiψ]]} (according to this
simplification, Anne announcing pA or¬pA in Fig. 16.8 is in fact the same strategy).
For a finite Kripke model there is always a finite number of equivalent strategies. If
the model is bisimulation contracted there are exactly 2m−1 non-equivalent strategies
for an agent with m equivalence classes.

State games are similar to Boolean games [61, 62] in that they have binary utilities
represented by logical formulae. However, we cannot simply analyse a pointed public
announcement game as a Boolean game, because (see Fig. 16.8) the agents typically
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γAnn = (KB pA ∨KB¬pA) → (KA pB ∨KA¬pB)
γBill = (KA pB ∨KA¬pB) → (KB pA ∨KB¬pA)

•¬pB,pA
t

Ann •pB,pA
s

Bill •pB,¬pA
u

pB

01 11
pA 01 11

pB

11 10
pA 01 11

pB

10 10
¬pA 11 11

Fig. 16.8 Epistemic goal structure and associated state games

don’t know the state game. In state s in the model in Fig. 16.8, Ann considers it
possible that the game in state t is actually being played. And state games in different
states might, e.g., have different Nash equilibria.

More sophisticated techniques must be used, and [3] explores two directions. First,
in the tradition of epistemic logic, we can look at what agents know. For example,
when do agents know that the state game has certain properties such as a Nash
equilibrium? Second, in the tradition of game theory, we can use solution concepts
developed particularly for games with incomplete information, such as Bayes-Nash
equilibria.

When it comes to knowledge of game properties, let us first consider the existence
of weakly dominant strategies. First, it might be the case that there is a weakly
dominant strategy for one of the players, without that player knowing it. This is
the case in state t in the model in Fig. 16.8, where pA is weakly dominant for Ann
without Ann knowing it (pA is not weakly dominant in the other state she considers
possible, s). But, second, the de re/de dicto disctinction (Sect. 16.3.2) again comes
into play as well. It might be that an agent knows that there is weakly dominant
strategy, without knowing which strategy is weakly dominant: different strategies
may be weakly dominant in the different states she considers possible.

However, when an agent’s goal is positive, i.e., the goal formula is in the positive
fragment (see Sect. 16.2.2), it can be shown [3, Corollary 11] that an agent always
has a weakly dominant strategy de re in any state game. Thus, with a positive goal,
the agent always knows what to do.

What about knowledge of Nash equilibria? While for weakly dominant strategies
it is enough that a single agent (the agent that can exectute the strategy) knows that
it is weakly dominant, a Nash equilibrium should be common knowledge to be an
realistic outcome. However, [3, Theorem 13] shows that common knowledge of non-
trival Nash equilibria is impossible, in the following sense: such equilibria must
consist of the trival announcement (the announcement � that does not change the
model) for every agent.
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a1
B a2

B a3
B a4

B
a1

A 22 32 21 31
a2

A 23 33 22 32
a3

A 12 22 22 32
a4

A 13 23 23 33

AA

a1
A : t, s u

a2
A : t, s u pA

a3
A : t, s pA u

a4
A : t, s pA u pA

AB

a1
B : u, s t

a2
B : u, s t pB

a3
B : u, s pB t

a4
B : u, s pB t pB

Fig. 16.9 Induced game for the egs in Fig. 16.8. Strategies for Ann and Bill, resp., shown to the
right. Payoffs are written without dividing by the number of states, for ease of presentation (the
equilibria do not depend on this). The Nash equilibria are underlined

Turning to “standard” solution concepts, [3] attempts to view an epistemic
goal structure as a single strategic form game. Given an epistemic goal structure
AG = 〈M, {γ1, . . . , γn}〉 with M = (S, {∼1, . . . ,∼n}, V ), the induced public
announcement game G(EGS) is defined as follows:

• N = {1, . . . , n}
• Ai is the set of functions ai : S→ LP AL with the following property:

– Uniformity: s ∼i t ⇒ ai (s) = ai (t)

• The payoffs are defined as follows. For any state s in AG, let G(AG, s) = (N , {As
i :

i ∈ N }, {us
i : i ∈ N }) be the state game associated with s (see above). Define, for

any (a1, . . . , an) ∈ A1 × · · · × An :

ui (a1, . . . , an) =
∑

s∈S us
i (a1(s), . . . , an(s))

|S|
These induced public announcement games are of course Bayesian games [63]. Nash
equilibria of the induced game are exactly the Nash equilibria of the Bayesian game
when defined from the egs in a natural way.

The game induced from the egs in Fig. 16.8 is shown in Fig. 16.9.
In the example in Fig. 16.8 the Nash equilibria of the induced game are “com-

posed” of Nash equilibria of the induced games: (a, b) is a Nash equilibrium iff
(a(s′), b(s′)) is a Nash equilbrium in the state game in s′ for every state s′. But this
is in general not the case: that (a, b) is a Nash equilibrium of the induced game
is neither sufficient nor necessary for (a(s′), b(s′)) to be a Nash equilibrium in all
state games. For positive goals, agents have weakly dominant strategies also in the
induced game [3, Corollary 17].

16.5.2 Question-Answer Games

Instead of a game where the strategic moves are announcements, we can also con-
ceive a deceptively similar (but in fact quite different) game where the strategies
are questions and where those questions are answered. Such question-answer games
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(qags) are studied in [5]. Instead of an announcement p (‘p is true’) one can be
asked the question ?p (‘Is p true?’) and if your answer is ‘yes’, then the effect of that
announcement and that question-answer combination, should be the same. Indeed, it
is, of course the same. The requirement that announcements are truthful corresponds
to the requirement that questions are answered truthfully. From here on, though, the
picture diverges quickly. For example, to a typical question there are three answers:
‘yes’, ‘no’, and ‘I don’t know’. Nothing like that comes close to anything found in
public announcement games. In public announcement games (over finite models),
an agent can make a most informative announcement—declaring the actual equiv-
alence class—and clearly knows what that most informative announcement is. But
although there is a question with a most informative answer, the agent asking the
question typically does not know which of all possible question elicits that answer.
Here we present a bit of such question-answer games and emphasize in what respect
they differ from public announcement games.

As an example, consider the Kripke model in Fig. 16.8. If the actual state is s,
i.e., when pA and pB are both true, Ann is uncertain about pB , and Bill is uncertain
about pA. In this model, given state s, Ann can make two different announcements:
announce Ka pA, which results in the model restriction to t and s, and announce �,
which does not result in a model restriction. Given the same model, and the same
actual state s, Ann can also ask two different questions: she can ask for the truth about
pB , the strategy pB?, or she can ask the trivial question, �?. Now, the partition in
fact is different: the answer to the first question is “yes” and the resulting restriction
the states s and u. The answer to the second, trivial, question if of course also “yes”.
But that is a different partition, of course, than in the public announcement game.

In a game of questions, the strategic options for the player asking consist of
the different informative answer she can receive in response from the other player.
So we have a dual form of game. Well, if it’s merely dual, we are quickly done.
Instead of players making simultaneous announcements, we have players posing
questions simultaneously and then answering each others’ questions (in whatever
order, simply assuming the obligation to answer the question truthfully). For the
induced game, just take some mirror image from the public announcement game
matrix, and there we have a question-answer game matrix. But it is not that simple.
Because, in the induced game, the strategies are conditional to the equivalence classes
of the questioning player, whereas the answers depend on the equivalence classes
of the answering player. If a player x has 2 equivalence classes, so can always
make 2 different announcements, whereas the player y has 3 equivalence classes,
so can always make 22 = 4 different announcements, then in the induced public
announcement game a has 2 · 2 = 4 induced strategies, whereas b has 3 · 4 = 12
strategies. On the other hand, in the “similar” question-answer game, a has 2 · 4 = 8
induced strategies, whereas b has 3·2 = 6 strategies. A completely different game. In
the three-state model example, Ann has four strategies in the induced game, namely,
in words: ‘If I know pA then I ask pB?, otherwise I ask pB?’, ‘If I know pA then I
ask pB?, otherwise I ask �?’, ‘If I know pA then I ask �?, otherwise I ask pB?’, ‘If
I know pA then I ask �?, otherwise I ask �?’.
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Fig. 16.10 Example with
three answers to a question •p,q

s
Ann,Bill

Bill

•¬p,q
u

Bill

•p,¬q
t

Bill •¬p,¬q
v

Let us look at an example wherein there are three answers to a question. Consider
two players Ann and Bill who are uncertain about propositions p and q. In fact, b is
utterly uncertain which of the four different valuations of p and q is the case, but a
knows a bit more, either a knows that q but is uncertain about p, or a knows that p is
true and q false, or a knows that p and q are both false. And these are the commonly
known options to both players. The model of initial uncertainty is therefore as shown
in Fig. 16.10.

What questions can Bill ask to Ann? Well, first, Bill can ask ‘q?’ to Ann. In that
case, either Ann answers ‘yes’ (I know that q is true) or Ann answers ‘no’ (I know
that q is false). Alternatively, Bill can ask ‘p?’ to Ann. Now, there are three possible
answers, namely, ‘yes’, ‘no’, and ‘don’t know’. On information theoretic grounds, the
second question should surely be preferred over the first one: as the answer partition
due to the second question is a refinement of the answer partition due to the first
question, an answer to the second question is always at least as informative as an
answer to the first. Although, clearly, when modelling this as a strategic question-
anwer game, both questions are simply different strategies in the game. Maybe Bill’s
goal is to prevent becoming informed, so there is no immediate relation to payoff
here.

The formal framework [5] for such games is as follows. In this case we assume
merely two agents (instead of n—of course there are more-than-two-agent settings
in which questions and answers make sense but the two-agent setting is the most
natural), Ann and Bill, an epistemic model M = (S, {∼Ann,∼Bill}, V ) and two
goal formulas γAnn and γBill . In order to achieve their goals, agent Ann asks a
question ϕ? to agent Bill, to which Bill is obliged to respond with ‘yes’ (I know that
ϕ), ‘no’ (I know that ¬ϕ), or ‘don’t know’ (I don’t know whether ϕ). And similarly
for Bill asking a question to Ann. We don’t want to keep saying that all the time,
so from now on we may refer to the two agents as i and j , where i �= j , and i may
be either Ann or Bill. We assume both agents ask their question simulaneously, and
that subsequently both agents answer the question simultaneously.

Executing the strategy ϕ for agent i can be thought of as follows. Agent i asks
ϕ? to j . If M, s |= K jϕ, then j answers (announces) “Yes, I know that ϕ”. If
M, s |= K j¬ϕ, then j answers “No, I know that ¬ϕ”. Otherwise, j answers “I
don’t know whether ϕ”. The resulting model restriction depends on both answers,
e.g., if Ann asks ϕ? to which Bill responds K Billϕ and Bill asks ψ? to which
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Ann responds K Ann¬ψ , the result is the restricted model M |(K Billϕ ∧ K Ann¬ψ).
We can capture these alternatives with a construct K iϕ, for ‘agent i answers the
question ϕ?’, defined as follows. Given an epistemic model M and a state s ∈ M ,
if M, s |= Kiϕ, then K iϕ ≡ Kiϕ; if M, s |= Ki¬ϕ, then K iϕ ≡ Ki¬ϕ; and else
K iϕ ≡ ¬(Kiϕ ∨ Ki¬ϕ). This is reminiscent of the resolution on ϕ in [21].

The state game or pointed question-answer game G((M, s), γAnn, γBill) associ-
ated with state s ∈ M of goals γAnn and γBill for agents Ann and Bill respectively,
is the strategic game defined by

• N = {Ann, Bill};
• for i = Ann, Bill, Ai = {ϕ? | ϕ ∈ L };
• for i = Ann, Bill, us

i (ϕ, ψ) =
{

1 if M, s |= 〈(K Billϕ ∧ K Annψ)〉γi

0 otherwise

The state independent perspective on question-answer games, named the induced
question-answer game, or simply question-answer game, is defined completely anal-
ogously to the induced public announcement game.

Given how we define strategies here, the notion for ‘strategy equivalence’ now
becomes as follows. Let a model M be given. Two strategies ϕ? andψ? for a pointed
question-answer game for M are the same (equivalent) for agent i (Anne, or Bill) if

{[[K jϕ]]M , [[K j¬ϕ]]M , [[¬(K jϕ ∨ K j¬ϕ)]]M } =
{[[K jψ]]M , [[K j¬ψ]]M , [[¬(K jψ ∨ K j¬ψ)]]M }

where j is the other agent. Note that it is common knowledge to Ann and Bill if two
strategies are the same, as we are comparing the denotations of formulas involving
ϕ and ψ in the model, independent of the actual state. In the example in Fig. 16.10
above, b’s question ?p is equivalent to the question ?¬p: they both result in the same
partition into three a-classes.

We finish this small introduction to this variant of public announcement game
by noting another difference between the two sorts of games. From a player’s per-
spective, there is such a thing as a most informative announcement (tell them all
you know). If all goals are positive, then the most informative announcement is
a weakly dominant strategy in all points of the public announcement game. And
because players know what their most informative announcement is, this is therefore
an equilibrium strategy of the induced public announcement game. But the question
that elicits the most informative answer from another player cannot be called the
most informative question from the questioning player’s point of view. In a different
state in the same equivalence class for that player, the question to elicit the most
informative answer may be a different question, as the responding player may be
in a different equivalence class there. So even when all goals are positive, induced
question-answer games may not have an equilibrium.
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16.5.3 Open Problems

There are many interesting directions to go in, and various such directions are
described in detail in the Chapter ‘Knowledge Games’ of [18]. On the logic side, we
can consider different types of actions, apart from public announcements, we can also
consider private announcements, and general action models. On the game theoretic
side, different types of games and frameworks can be considered: strategic games,
extensive games, even social choice [45] and mechanism design models [26]. The
representation of preferences can also be generalized in different directions: instead
of a single goal formula, we can consider sets of preferentially ordered goal formulae,
or weighted formulae [49, 69, 76, 92], or CP-nets [28–30], and many other choices.

16.6 Knowledge in Real Games: From Chess to Sudoku

The playground where logical dynamics, agency, and game theory interact seems
fairly large, as we have already seen, and there are many pieces of the puzzle we
haven’t mentioned yet. In multi-agent dynamics, the phenomena involving interac-
tion of different subgroups are more interesting than those involving single agents
and the set of all agents (the ‘public’) only. In the detailed dynamic scenarios in public
announcement and question answer games we found a challenging way in which the
moves in a game themselves are defined from a structure representing agents’ uncer-
tainty. However it may not have gone unnoticed that the dynamics were restricted to
those of a public kind: public announcements. In this section we review some games
that have a more challenging dynamics and report on the status quo of their analysis.
For this, we resort to ‘real’ games, i.e., games like bridge and chess that are played
for enjoyment. They are above the level of the ‘small’ (anything less than 20 states,
say) Kripke models illustrating epistemic dynamics and agent interaction, but they
are below the level of ‘large’ applied multi-agent systems with advanced knowledge
representation involving ontologies etc.

16.6.1 Chess

Let us start with chess. For someone trying to join the interests of game theory and
(multi-agent epistemic) logic, this is not the most interesting game. Two agents only,
whereas the interesting phenomena begin with more than two. Perfect knowledge,
whereas the interesting phenomena begin with imperfect knowledge. There are still
interesting higher-order epistemic phenomena in opponent modelling in two-person
perfect information games [48]. This is an interesting link between epistemic logic
and games, relating to epistemically motivated heuristics in search (as opposed to
information-theoretic heuristics), in view of bounded rationality.
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16.6.2 Bridge

There are many chess players among computer scientists and mathematicians and
there also seem to be many bridge players among them. Bidding in Bridge has
clearly epistemic aspects. First, there are four players, and not two, as in chess.
That seems more promising already. All moves are public. That’s more of a pity,
because the dynamics of public moves is that of public announcements—and for the
communicative complexities of public announcements it does not matter whether
the number of players is one, two, or twenty. (What matters are the static multi-
agent epistemic features of the announced information.) But bidding in Bridge seems
like subgroup dynamics. The messages in the bidding process are supposed to be
maximally informative for the other team player and minimally informative for the
opponent team. Are there ways to convey a general pattern of your knowledge or
ignorance, or even to indicate in a next bid that you have understood the message
sent by your team player in a prior bid? Bidding in bridge has been investigated
in [52, 93]. This work later developed into information based security protocols in
cryptography [53], including more-than-two-principal protocols (in this community,
a principal is an agent participating in a protocol). But the thing in Bridge is that
bids have to be public, even when their impact and intention is different for different
agents. We pursue our search for knowledge games.

16.6.3 Cluedo

Cluedo (for Americans, Clue), is a murder-mystery board game wherein six partying
guests are confronted with a dead body, and they are all suspected of the murder.
The game board depicts the different rooms of the house wherein the murder is
committed, and there are also a number of possible murder weapons. Six suspects
(such as Professor Plum), nine rooms, and six possible murder weapons. These
options constitute a deck of 21 cards, one of each kind is drawn and are considered
the real murderer, murder weapon, and murder room. The other cards are shuffled
(again), and distributed to the players. The game consists of moves that allow for the
elimination of facts about card ownership, until the first player to guess the murder
cards correctly has won.

The part of the game that interests us is when on the game board a room is reached
by a player who may then voice a suspicion, such as ‘I think Ms. Scarlett did it, with
a knife, in the kitchen’. This question is addressed to another player and interpreted
as a request to admit or deny ownership of these cards for that player. If the addressed
player doesn’t have any of the requested cards, she says so, but if a player holds at
least one of the requested cards, she is obliged to show exactly one of those to the
requesting player, and to that player only. The four other players cannot see which
card has been shown, but of course know that it must have been one of the three.
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Denying that you have Ms. Scarlett, or knife, or kitchen, is a public event of the
public announcement kind that we have already seen. But the show action is different.
One of the three requested cards must be in possession of that player, but the other
players do not know which one. So no particular deal of cards can be eliminated by
any player: it is not a straightforward model restriction as in the ‘I don’t have any
of these cards’ response. Let us illustrate what is going on by a simpler situation,
wherein there are only three cards red, white, and blue (r , w, and b) and three players
1, 2, and 3 each holding one card (and only knowing their card). Now, player 1 shows
player 2 her card. The informative transition is depicted below.

rwb rbw

wbr

bwrbrw

wrb

1

2

3

1

2

3

1

23

⇒

rwb rbw

wbr

bwrbrw

wrb

1

3

1

3

1

3

The name rwb at a node means that player 1 holds red, player 2 holds white,
and player 3 holds blue, rbw that player 1 holds red, player 2 holds blue, and player
3 holds white, etc. Consider for a moment that rwb is the actual deal and that 1
shows red. As 2 holds white, 2 learns from that action what the card deal is. So 2’s
uncertainty, depicted as the 2-link between rwb and bwr , will disappear. But this, of
course, will happen for any deal of cards. Also, 1 and 3 know that 2 will learn the
card deal. The structure on the right incorporates all this information (see [35] for a
detailed analysis of this phenomenon). Note that the number of distinct states in the
structure has not changed, only the accessibility relation for one of the agents, 2.

In the red/white/blue action only a single card can be shown. In the Cluedo action,
one of three cards is shown. This is a non-deterministic action, that may in principle
increase the complexity of the epistemic state representing the uncertainty of players
about the card deal and each other. An interesting observation about Cluedo is that
this does not happen in practice, but only barely so. This sort of complexity of
communication and uncertainty seems worthwhile to mention.

The complexity of a Kripke structure is determined by the number of its (non-
bisimilar) worlds. (The standard measure is the number of worlds and the number
of pairs in the acessibility relation, but for multi-S5 structures the latter is arguably
a bad measure, as this would make the universal relation the most complex one; and
anyway, to prove our point, the former is sufficient.) Suppose a player shows one of
three requested cards, in Cluedo. If showing that card had been public, it would be
a public announcement that one of your three cards is that card: a straightforward
model reduction. There are 21 cards, and three cards per player. There are

(21
3

)
ways

for a player to draw three cards from a pack of 21. If we assume a given card, then
from the remaining 20 the player still has to draw two cards:

(20
2

)
. Now

(21
3

)
divided
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by
(20

2

)
is 21·20·19

3·2·1 · 2·1
20·19 = 3

21 . The uncertainty between which of three cards is shown
means uncertainty (lots of links for the other players, but not for the showing and the
requesting player) between three models of that size, so the epistemic complexity of
the resulting model is 3· 3

21 = 9
21 < 1: complexity reduction. Now suppose the player

had not been asked to show one of three but one of eight cards: 8 · 3
21 = 24

21 > 1:
a complexity increase. In other words, had the Cluedo rules been slightly different,
the action of showing a card would have led to an increase and not to a decrease of
complexity. Does the complexity decrease explain why Cluedo is ‘playable’? Was
this in the mind of the designer of that game (in the 1940s)? Can we design games
based on complexity results for their dynamics?

There is yet another interesting aspect of the dynamic epistemics of Cluedo: you
can win because someone else loses. In this way, it is not the strongest one-liner
ever written, but let us explain. A move in Cluedo does not merely consist of asking
other players questions about card ownership, but there is also the option to make
an informed guess at what the murder cards are (and only the player whose turn it
is may make that guess). This, you are allowed to do only once in the game. Let us
now assume that all six Cluedo players are perfectly rational. Then, if you do not
announce at the end of your move what the murder cards are, you do not know what
they are yet—you have not eliminated a sufficient number of alternative card deals
processing the answers to the question. This an informative public announcement.
As a result of that, someone else may learn what the murder cards are. Let us give a
concrete example wherein this ‘ending your move’-aspect is an informative public
announcement:

Consider player 1, who starts the game, to reach the kitchen in her first move. She voices
the suspicion ‘I think that Scarlett has committed the murder in the kitchen with a knife’.
None of the other players can show a card. Player 1 confidently writes down an accusation,
checks the murder cards and announces that she has won.

Now, change the example a bit.

Same as above, except that player 1 does not announce a win. The other players now deduce
that player 1 holds at least one of the requested cards, because otherwise, she would have
known what the murder cards are and would have made the accusation. But she didn’t. So.

How about the game theory of Cluedo? The dynamic epistemic analysis of Cluedo
game moves makes it possible to compute the precise informative effects of game
actions: asking which of three cards another player has. If there is a measure for this
complexity reduction in relation to the goal of the game (knowledge of the murder
cards is an aspect of the valuation of a world in the Kripke model), and for each
player, this would define the payoff for a move. Thus, we would have an extensive
imperfect information game. It is not so clear what that measure is. This measure
is about comparing sizes of different partitions of domains. Games like Mastermind
face similar questions that are not satisfactorily answered, notwithstanding great
efforts to solve them [82]. In Cluedo it is not even clear if ‘asking for three cards that
you do not have’ is to be preferred over ‘asking for three cards of which you hold
one yourself’.
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Other strategic considerations in Cluedo are even harder to model. It is your move,
you know the murderer and the weapon but you still hesitate between the kitchen and
the conservatory. Unless you guess the murder cards now, some other player may do
so in the next round, and may win. Should you guess or not? The game of Pit, to be
summarily discussed next, offers some more insight.

Logical dynamics of Cluedo and similar ‘knowledge games’ consisting of infor-
mative actions, are studied in [33, 36, 37, 47, 89]. The last interestingly uses temporal
logics of knowledge for specification and verification of Cluedo, not explicit dynamic
epistemics.

16.6.4 Pit

Pit is one of the few other examples of card games with logical dynamics involving
subgroups of the public. In the Pit game (for trading pit—it’s a market simulation card
game) the players try to corner the market in coffee, wheat, oranges, or a number of
other commodities, and it is like the ‘Family Game’ in that each of these commodities
are distributed over the players in the form of cards, and the first player to gather a full
suit of cards (i.e., nine cards) of any commodity, wins. The game moves consist of
two players exchanging cards. This goes about as follows. A requirement to exchange
cards is that they are of the same suit. Players shout the number of cards they wish to
exchange, simultaneously, and two players shouting the same number may then make
a change. For example, John has 2 apples, 3 oranges, and some other cards, Mary has
2 oranges and yet other cards. John could have shouted 1, 2, or 3 (changing some but
not all of the cards of the same suit is also allowed), but goes for 2, and Mary goes for
2 as well. Shout, shout, ... And they make an exchange. John now has 5 orange cards!
Still not 9, but better than before. The exchange action is somewhat similar to the
move of showing a card in Cluedo: two players gain subgroup common knowledge,
in this case, of the new ownership of the exchanged cards. The other players only
learn that two players each have at least two cards of the same suit. This rules out
some card distributions. This exchanging of cards continues until somebody gathers
his suit of nine cards. This can, in principle, go on forever: it is an extensive game of
imperfect information, with infinite (but highly repetitive, there is much symmetry)
game tree branches. The game is investigated in [38, 41, 68, 87], where the first
two publications focus on game theory, the third on asynchronous protocols, and the
last on dynamic epistemics. In [38] some pure and mixed equilibria are given for a
one-round strategic game simplification of a Pit game for three players and six cards
(there is a clear direction how to generalize this to equilibria for the infinite version
of the (extensive) game, using the symmetry in the infinite branches.
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16.6.5 Sudoku

Unlike Cluedo and Pit, we assume that Sudoku does not need an introduction. Sudoku
is a single-person game. It is merely combinatorics and elimination. Still, it has an
interesting epistemic aspect that, we guess, surely the designers did not anticipate.
This is rather the single player of the game, the Sudoku solver, playing against
that designer. But again it reveals a truly dynamic epistemic aspect. Consider the
following interim status of a Sudoku puzzle—we are interested in the remaining
options for four relevant cells, the content of the other cells, blank in the figure, are
irrelevant (they can be initially given, already determined, or still undetermined, i.e.,
‘blank’ in the usual Sudoku sense):

67 67
67 267

So, in three of these four cells, 6 and 7 are the only remaining options and in the
fourth cell 2, 6, and 7 are the remaining options. This is an argument demonstrating
that that cell must contain the number 2. Suppose it is not 2. Then, there are two
ways for a 6 and a 7 to be in the same column, row, and 3 · 3 block, that would lead
towards solutions:

6 7
7 6

7 6
6 7

But a Sudoku puzzle always has a unique solution. So none of these two can be right.
Therefore, the cell must contain a 2:

67 67
67 2

This phenomenon is treated in [40] and in [96], and possibly in numerous other (also)
independent publications. It is a non-standard Sudoku move... Notice how epistemic
this rule is, in the same sense as the Cluedo game move that makes you win because,
on the assumption of perfect rationality, the other player did not declare a win.
Assuming that the game is well-designed and only has one solution, a reasonable
assumption, this elimination will eventually lead us to the solution. But if the designer
intended some (6, 7, 6, 7) combination but overlooked the other solution, putting 2 in
that place may result in no solution at all, instead of one of two. And this overlooking
happens. The French newspaper Le Monde of 4 June 2008 had a Sudoku with two
solutions. This did not result in indignant Letters to the Editor.
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16.7 Conclusions: Logic in Games

We presented some results on the fine distinctions of ‘de re’ and ‘de dicto’ knowledge
for individual agents and for coalitions; results on the power, knowledge, and ability
of coalitions; how in dynamic epistemic logic we can simulate a coalitional notion
of agency by quantifying over information change; and finally how various very
concrete knowledge games present problems going beyond our presented solutions
so far.

In a way, many of our proposals can be seen as implementations of the general pro-
gram recently outlined in [16, 18], not surprisingly so, as this general program goes
back a long way. In this contribution we only glanced at some other aspects involving
knowledge and games, such as the characterization of game theoretic objects.

Noting the similarity between models of modal logic and extensive form games,
van Benthem [14] suggests the use of propositional dynamic logic [60] for expressing
properties of such games. He also proposes the use of pdl extended with epistemic
operators to reason about extensive-form games extended with indistinguishability
relations over the states (a slight generalisation of the standard information sets used
in game theory to model imperfect information). This 2001 publication is also a
source for topics as diverse as the distinction between ‘knowledge de re’ and the
‘knowledge de dicto’ that we discussed in Sect. 16.3.2.

In [15] van Benthem shows that solution concepts for games can be characterised
using epistemic updates, such as iterative elimination of strictly dominated strategies
(the iesds algorithm). In [15], a Kripke model is obtained from a strategic form game
by assuming that an agent knows her own strategy, but considers all possibilities of
strategies chosen by other players to be open. This allows for an epistemic explana-
tion of that iesds algorithm. While the epistemic foundations for solution concepts,
including the role of common knowledge of rationality in the iesds algorithm, have
been studied by many [8, 15, 27, 91], van Benthem [15] provides a new dynamic
perspective.

van Benthem [15] also considers announcement of a stronger variant of rationality,
strong rationality. Strong rationality is true if the current action of the player is a
best response against at least one possible action of the opponent. It is argued in
[15] that repeated announcements of strong rationality for both players correspond
to Pearce’s game-theoretic algorithm of rationalizability. Further in [15], it is noted
that, in general, the use of epistemic actions to characterise game solutions may
be order dependent in the sense that the effect of sequences of different epistemic
assertions might depend on the order; [79] refines the approach in [15], in particular
by studying conditions under which a stable outcome is determined independently of
the order of the iterative information updates. The general approach in [15] is taken
further in van Benthem’s more recent [19]. This studies solutions for extensive form
games via epistemic updates in detail.

In the chapter ‘Knowledge Games’ of [18], the public announcement games and
question-answer games that we discussed in Sects. 16.5.1 and 16.5.2 are presented in
detail. Somewhat beyond the scope of our logics with quantification over information
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change with a coalitional interpretation—the group announcement logic and coalition
announcement logic—is the chapter on ‘Sabotage games’. Removing an arrow from
a model, any arrow, is yet another quantification on a different level from ‘take
any definable subset’ (as in APAL). Concerning the chapter ‘Forcing Powers’ that
presents the forcing modality in various incarnations, we mention again the possible
definability of forcing in the coalition announcement logic (CAL—Sect. 16.4.3) or
even already in group announcement logic, a challenging future case study. The
uniform forcing strategy suggested in that ‘Forcing Powers’ chapter seems, as ever, to
open up novel interactions between knowledge and games, that we have not addressed
in this contribution.

A topic we have left aside is how various strategy logics: (i) contribute to the
analysis of concrete knowledge games, (ii) as well as define (or indicate) versions
of the coalitional logics presented in Sect. 16.3, (iii) or define versions of group
announcement logic or coalition announcement logic within more restricted game
rules (given strategies). Interesting is also how different agent roles (‘types’) can fix
their strategies in the view of other agents, thus restricting search (and determining
outcomes) [78], or the role of observation expectations on strategies [42]. Strategies,
games, and logic are treated integrally in [17, 58, 78].
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Chapter 17
On Definitive Solutions of Strategic Games

Sergei Artemov

Abstract In his dissertation of 1950, Nash based his concept of the solution to a
game on the assumption that “a rational prediction should be unique, that the play-
ers should be able to deduce and make use of it”. We study when such definitive
solutions exist for strategic games with ordinal payoffs. We offer a new, syntactic
approach: instead of reasoning about the specific model of a game, we deduce prop-
erties of interest directly from the description of the game itself. This captures Nash’s
deductive assumptions and helps to bridge a well-known gap between syntactic game
descriptions and specific models which could require unwarranted additional epis-
temic assumptions, e.g., common knowledge of a model. We show that games without
Nash equilibria do not have definitive solutions under any notion of rationality, but
each Nash equilibrium can be a definitive solution for an appropriate refinement of
Aumann rationality. With respect to Aumann rationality itself, games with multiple
Nash equilibria cannot have definitive solutions. Some games with a unique Nash
equilibrium have definitive solutions, others don’t, and the criterion for a definitive
solution is provided by the iterated deletion of strictly dominated strategies.

17.1 Introduction

Some classical strategic games have definitive solutions which follow logically from
the game description and plausible principles of knowledge and rationality. Here is
a quote from Nash’s dissertation [19] which raises the issue of a deductive approach
to solving games:

To Johan.
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We proceed by investigating the question: what would be a rational prediction of the behavior
to be expected of rational[ly] playing the game in question? By using the principles that a
rational prediction should be unique, that the players should be able to deduce and make use
of it, [. . .] one is led to the concept of a solution [. . .].

Another quote from [19] explains this issue even further:

[. . .] we need to assume the players know the full structure of the game in order to be able
to deduce the prediction for themselves.

Some game theorists consider the aforementioned assumption, that the player can
deduce the strategies of other players, as rarely met. Perhaps the following quote
from Pearce [21] represents this skepticism fairly:

The rules of a game and its numerical data are seldom sufficient for logical deduction alone
to single out a unique choice of strategy for each player. To do so one requires either richer
information [. . .] or bolder assumptions about how players choose strategies.

Foundations for Nash’s approach have been widely studied from probabilistic
positions, and it is not feasible to provide a representative survey of the corresponding
literature within the limits of this chapter; we mention [8, 10, 21], just to name few.
There has also been a vast body of epistemic logic studies in the foundations of Game
Theory, cf. [12, 14] for some recent surveys.

In this chapter, we offer a logical analysis of Nash’s assumption that the player can
deduce the strategies of others. This concept is of a deductive logical character which
is represented by the notion of a definitive solution of a game as a strategy profile
s such that it logically follows from the game description, including the epistemic
and rationality assumptions, that each player plays s. Here “logically follows” can be
understood twofold: as a logical deduction by certain rules from a set of formalized
postulates, or as a logical entailment of a semantic nature on a class of models. Due
to the basic soundness and completeness theorems of logic, these two approaches are
theoretically equivalent and it is up to the user to choose which approach to follow.

Now dominant, the semantic approach can be traced to Aumann’s seminal “Agree-
ing to Disagree” paper [7] and the notion of Aumann structures that model both struc-
tural and epistemic sides of games. Though flexible and convenient, this semantical
approach was not quite foundationally satisfactory, first of all due to assumptions
that

1. a given model, including possible epistemic states of players, adequately repre-
sents the game, which is normally described syntactically, and

2. the model itself is common knowledge for the players.

As emphatically stressed by Aumann himself (cf. [9]), this created tension between
the syntactic character of the game description and model-theoretic tools of studying
games.

It does not appear problematic to assume that the rules of the game, let us call
them GAME, in plain English (or an appropriate logical-mathematical formalism), are
commonly known, but this yields, generally speaking, neither (1) nor (2), since there
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can be many different models for a given game description.1 Moreover, the standard
method of producing a model of a syntactic set �, the so-called canonical model
construction, generally speaking, offers an infinite model not necessarily equivalent
to the desired model M. So, in a general setting, when we assume GAME and then
study a specific model M of GAME, we lose information: if a property F holds in M,
it does not necessary follow from the game description GAME and could be an artifact
of the chosen model M. One way out of this predicament could be assuming M to be
the definition of the game. This, however, renders the game description implausible.
Aumann in [9] writes about this alternative: Your mother won’t understand if you try
to say it semantically.

How serious is this threat of non-categoricity? Many simple epistemic scenarios
are categorical and yield a specific model, e.g., for regular strategic games without
additional semantical constraints,2 the Muddy Children Puzzle, and others, the ini-
tial syntactic description is categorical and any model is equivalent (bisimilar) to the
intended model. However, it is easy to offer a slight modification of the Muddy Chil-
dren scenario which makes it non-categorical and the notion of the standard model
meaningless. So, if we intend to consider games with general epistemic conditions,
the categoricity consideration can become a serious matter.

The assumption about common knowledge of model M does not look plausible
either: epistemic scenarios in plain English can be publicly announced to a group of
players which makes GAME commonly known. However, publicly announcing even
a simple Aumann structure does not seem realistic.3

17.2 New Format of Reasoning About Games

We suggest a modification of the format of reasoning about epistemic scenarios and
games which retains the flexibility of the traditional model-theoretic approach and is
free of its aforementioned deficiencies. The usual format of reasoning about games is

1. to assume the set of game rules GAME, including epistemic conditions given
syntactically, in plain English or the usual logical-mathematical slang;

2. to pick a specific Aumann structure A that corresponds to GAME, often infor-
mally;

3. to tacitly assume ‘common knowledge of A’ and not bother about its justification
(whereas a straightforward rigorous formalization of common knowledge of A
requires tools outside A);

4. to reason about A using (3).

1 This phenomenon is well known to logicians as ‘non-categoricity’.
2 cf. Sect. 17.7.4.
3 This observation does not concern so-called computer knowledge when the programmer can
program specific models to each computer.
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The deficiency of this schema is obvious. Suppose you establish a property F using
(4). Can you claim that F follows from the rules of the game? In general, no. Since
A is a model of GAME, each fact that follows from GAME holds in A, but not the
other way around. It can easily happen that F holds in A, but F does not follow from
GAME. So this schema produces results about a specific model A of GAME with
an additional and difficult-to-motivate assumption of the common knowledge of A.
Sometimes this schema works fine, e.g., when A is the only model of GAME (up to
truth preserving bisimulations). However, such categoricity analysis is not normally
performed and it is easy to provide examples in which categoricity does not hold. If
step (1) in this schema is omitted and A itself is assumed to be the definition of the
game, then the categoricity objection becomes void, but the problem with common
knowledge of A persists.

We suggest the following format for studying games:

1. Assume the set of game rules GAME as above and common knowledge of GAME.
This can be arranged in the language of GAME that contains the common knowl-
edge modality C—we just assume C(P) for each postulate P of GAME.

2. Logically reason from GAME directly, e.g., to establish that a fact F follows from
the rules of the game. If GAME is categorical, then reasoning in a specific model
is equivalent to logical reasoning in GAME.

3. Use specific models of GAME, if needed, to check the consistency of GAME or
to establish that a certain F does not follow from GAME.

In this schema, both previous objections, possible non-categoricity of GAME, and
dubious assumptions about common knowledge of A, are eliminated. The categoric-
ity requirement is replaced by a much lighter condition: soundness of GAME in A,
i.e., that all postulates of GAME hold in A. Common knowledge of A is no longer
required and is replaced by the assumption of common knowledge of GAME. Addi-
tional bonuses of this approach include the possibility of utilizing logical intuition
and reasoning from GAME informally in the logic of knowledge; informal reason-
ing using the rules of the game is often quite efficient and produces shorter proofs
than rigorous model reasoning.4 Another attractive feature of this approach is greater
flexibility in using models A that can be chosen specifically to be counter-models
for F without a commitment that A is a full description of the game.

All logical reasoning in this chapter can be made completely formal within a
framework of multi-agent epistemic modal logic although we don’t see sufficient
incentive for doing so.5 We adopt the view that the reader possesses the robust
intuition of epistemic reasoning and that reference to the S5-based principles of
knowledge6 and to common knowledge is sufficient.

4 By the same token, we use rigorous yet informal reasoning to establish the Pythagorean theorem,
though such a proof could be completely formalized and derived in an axiomatic geometry.
5 We continue our analogy with the Pythagorean theorem: one could try to formalize its proof
completely only as a challenge or an exercise. A normal mathematically rigorous proof of it is not
formal.
6 Such as reflexivity and positive and negative introspection.
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17.3 Content

As a case study, we consider the class of finite strategic games with ordinal payoffs.
Since, for this class of games, the concept of mixed strategies and expected payoff
is not well-founded, we have to consider pure strategies only.

We observe that games without Nash equilibria lack definitive solutions under
any notion of rationality and that each Nash equilibrium can be a definitive solution
for an appropriate refinement of Aumann rationality.

We show that with respect to basic Aumann rationality, all games with two or
more Nash equilibria, and some games with a unique Nash equilibrium, do not have
definitive solutions either.

Perhaps some of these impossibility results do not come as a surprise for an
experienced game theorist. For example, Theorem 17.3 states that no game with
more than one Nash equilibrium under normal epistemic assumptions and Aumann
rationality can have a definitive solution. This corresponds to the intuition that choos-
ing between several Nash equilibria, in addition to Aumann rationality, in Pearce’s
words, “requires either richer information . . . or bolder assumptions about how play-
ers choose strategies”. However, there is a difference between empirically justified
intuition and a rigorous proof. In computer programming, experts have no illusions
that one could build a universal verifier which, for any given program P and input
I , automatically decides whether P terminates on I . Turing’s rigorous proof of this
fact, known as the undecidability of the halting problem theorem, provided a basis
for further fruitful studies of computability. If this chapter is successful, this could
be a step towards logical studies of consistency and impossibility in Game Theory.

Furthermore, we show that the criterion for Nash’s definitive solution in strate-
gic games with ordinal payoffs and Aumann rationality is provided not by Nash
equilibria, but rather by iterated deletion of strictly dominated strategies.

This chapter is an extended version of technical report [4] of 2010.

17.4 Logical Presentation of Strategic Games

We consider strategic games with n players 1, 2, . . . , n. A strategy profile

s = (s1, s2, . . . , sn)

is a collection of strategies si for players i = 1, 2, . . . , n. Each strategy profile s
uniquely determines the outcome in which each move is made according to s. We
assume that everyone who knows the game can calculate i’s payoff as determined by
s. A strategy profile s is a Nash equilibrium if, given strategies of the other players,
no player can profitably deviate (cf. [20] for rigorous definitions).

We assume that rules of the game are formally represented in an appropriate
logical language as a set of formulas GAME as follows. Strategy j of player i is
formally represented by a corresponding atomic sentence sj

i stating that
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player i has committed to strategy j.

For profile s = (s1, s2, . . . , sn), its formula representation will be s1 ∧ s2 ∧ . . . ∧ sn

which we will also call s. In this setting,

∧

k �=l

¬(sk
i ∧ sl

i)

means that player i chooses only one strategy, and

s1
i ∨ s2

i ∨ . . . ∨ smi
i

where s1
i , s2

i , . . . , smi
i is the list of propositions for all strategies for i, reflects the

assumption that one of these strategies has to be played. The fact that a profile
s = (s1, s2, . . . , sn) is at least as preferable as s′ = (s′1, s′2, . . . , s′n) for player i can
be represented by a special preference formula

s ≥i s′

and all these preferences are supposed to be common knowledge.
In principle, GAME may be a (possibly infinite) set of logical formulas with addi-

tional preference relations on strategy profiles, which contains a comprehensive game
description including its epistemic conditions. Note that GAME is not necessarily
consistent.

By “logically follows” we mean here a logical deduction denoted as “�”. This
notion is usually understood in logic as formal derivability. Our reasoning will not
be completely formalized (cf. footnotes 4 and 5), but we assume could be if needed.

We use special logical symbols, knowledge operators (cf. [16]) K1,K2, . . . ,Kn,
to denote knowledge of players 1, 2, . . . , n and assume the standard principles of
knowledge, cf. [16, 20], a.k.a. S5 principles. For example, stating

Ki(s
l
j)

says “i knows that j has chosen her strategy l”.
We will use the “everybody knows” modality E as the abbreviation

EF = K1F ∧K2F ∧ . . . ∧KnF.

Common Knowledge of F, CF, reflects a situation in which all propositions

Ki1Ki2 . . .Kim F

hold for any i1, i2, . . . , im.
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An informal account of Aumann’s notion of rationality can be found in [8].
Aumann states that for a rational player i,

there is no strategy that i knows would have yielded him a conditional payoff …larger than
that which in fact he gets.

Formal accounts of Aumann rationality based on epistemic models known as
Aumann structures can be found in [8, 13] and other sources. Here we will adopt a
syntactic formalization of Aumann rationality for strategic games.

A strategy profile s = (s1, s2, . . . , sn) is deemed possible by player i if for each
j �= i,

¬Ki(¬sj).

This definition reflects the assumption that players consider all of their strategies
possible whereas some of the other players’ choices could be ruled out as impossible
based on the rules and conditions of the game. Since we allow epistemic constraints
in GAMES, the notion of possibility should be relativized: s is deemed possible by i
at s′ if

s′ → “s is deemed possible by i ”.

In particular, s is possible for each i at s. Indeed, by laws of logic, Ki(¬sj)→¬sj,
hence sj→¬Ki(¬sj).

Let (s−i, x) denote the strategy profile obtained from s by replacing si by x. It
follows from definitions that

s is deemed possible by i iff (s−i, x) is deemed possible by i for every strategy x of i.

Definition 17.1 Let s = (s1, s2, . . . , sn)be a strategy profile. A formula Ri(s) stating
that player i is Aumann-rational at s is, by definition, the natural formalization of
the following: for any strategy x of i, x, there is a profile s′ deemed possible by i at s
such that

(s′−i, si) ≥i (s
′−i, x).

A formula
R(s) =

∧

i

Ri(s)

states that all players i = 1, 2, . . . , n are Aumann-rational at s.

Note that quantified sentences “for any x…” and “there is a profile s′…” are
represented by propositional formulas since there are only finite sets of possible x’s
and s’s and there is no need to invoke quantifiers over strategies or strategy profiles.

Definition 17.1 formalizes the most basic, Aumann rationality though there are
also other, more elaborate notions of rationality. However, we assume that any notion
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of rationality should be at least as strong as Aumann rationality on each profile.
Technically, if ri(s) is a formula representing some notion of rationality of i at s, then

ri(s)→Ri(s)

is assumed in the GAME.
In addition to the game rules we consider a solution predicate, a formula Sol(s)

that specifies the conditions under which strategy profile s is considered to be a
solution of the game. Given rationality predicates ri(s), i = 1, 2, . . . , n and

r(s) =
∧

i

ri(s), (17.1)

the typical cases of Sol(s) are

1. r(s) informally stating that s is a profile at which all players are rational;
2. Er(s) claiming that s is a profile at which players’ rationality is mutually known;
3. Cr(s) stating common knowledge of rationality at s.

We assume that a solution predicate Sol(s) contains condition 1 that all players are
rational, i.e., for each profile s,

GAME � Sol(s)→r(s).

Solution predicate 3 corresponds to the familiar assumption of common knowl-
edge of rationality.

The natural characteristic principle for the solution condition is if a profile is
played, then it ought to satisfy the solution constraints:

s→Sol(s) (17.2)

which may be more recognizable in its contrapositive form

¬Sol(s)→¬s,

meaning if s does not satisfy the solution constraints, then s is not played.
The familiar epistemic conditions: rationality, mutual knowledge of rationality

and common knowledge of rationality, mean the corresponding conditions on the
solution predicate.

Common knowledge of the game is formalized as common knowledge of each
principle from GAME:

if F ∈ GAME, then GAME � CF.

In particular, if GAME is commonly known, then
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GAME � E(GAME).

We say that GAME has common knowledge of the game and rationality property,
CKGR, if GAME is commonly known and the solution predicate Sol(s) contains
common knowledge of rationality

GAME � Sol(s)→Cr(s)

for rationality predicates r1(s), r2(s), . . . , rn(s) associated with the game and r(s)
being their conjunction as in (17.1).

Definition 17.2 A profile s is a solution of a game GAME if

GAME � s.

For a consistent GAME, a solution, if it exists, is unique. The definition reflects the
property that the rules of the game yield a unique strategy for each player.

For example, Prisoner’s Dilemma has a solution, and the Battle of Sexes does not
have a solution in pure strategies on the basis of Aumann rationality only.7

Definition 17.3 A strategy profile s is a definitive solution of the game if

GAME � E(s).

The definition states that the rules of the game yield a unique strategy for each player
and each player knows all these strategies. Each definitive solution is a solution.
Hence, the definitive solution, if it exists, is unique.

Lemma 17.1 For games with CKGR, each solution is a definitive solution.

Proof Indeed, since CKGR,

GAME � E(GAME).

By the rules of the (modal) logic of knowledge, from

GAME � s,

one could conclude
E(GAME) � E(s),

hence
GAME � E(s).

Informally, if the rules of the game yield a solution, and the rules are known to player
i in full, then i knows this solution. �

7 This obvious observation, technically speaking, follows from Theorem 17.3.
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If rationality of players is not known, it is easy to provide an example of a solution
which is not definitive. Consider Prisoner’s Dilemma in which players are rational
but do not know about each other’s rationality. By the domination argument, each
player plays ‘defect’ but none knows the choice of the other player.8

As another example of the notion of solution, consider the following War and
Peace dilemma, W&P, introduced in [3].

Imagine two neighboring countries: a big powerful B, and a small S. Each player can choose
to wage war or keep the peace. The best outcome for both countries is peace. However,
if both countries wage war, B wins easily and S loses everything, which is the second-best
outcome for B and the worst for S. In situation (warB, peaceS), B loses internationally, which
is the second-best outcome for S. In (peaceB,warS), B’s government loses national support,
which is the worst outcome for B and the second-worst for S.

The ordinal payoff matrix of this game is then

warS peaceS

warB 2,0 1,2

peaceB 0,1 3,3 .

There is one Nash equilibrium,

(peaceB, peaceS). (17.3)

Let us assume Aumann rationality and CKGR. We claim that strategy profile (17.3)
is the definitive solution to W&P. Indeed, S has a dominant strategy peaceS and as a
rational player, S has to commit to this strategy. This is known to B, since B knows
the game and is aware of S’s rationality. Therefore, as a rational player, B chooses
peaceB. This reasoning can be carried out by any intelligent player. Hence it follows
from the game description and CKGR that both players know solution (17.3) which
is, therefore, the definitive solution of W&P.

Here is another game, W&P2, with the same payoff matrix in which players follow
Aumann-Harsanyi rationality9 that rules out Aumann-irrational strategies and then
applies maximin10 to make a choice. We assume that the payoff matrix is mutually
known but players, though Aumann-Harsanyi-rational, are not aware of each other’s
rationality. In W&P2, S chooses peaceS since it is S’s dominant strategy. Since B
considers both strategies for S, warS and peaceS possible,11 both strategies for B,
warB and peaceB are Aumann-rational. Then B should follow the maximin strategy,
hence choosing warB. The resultant strategy profile

8 If player 1 knows that player 2 defects, then 1 knows that 2 is rational.
9 Which is equivalent to the knowledge-based rationality studied in [3].
10 Following Harsanyi’s principle from [18] Sects. 6.2 and 6.3, Postulate A1.
11 Otherwise, B would know that S is rational.
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(warB, peaceS) (17.4)

is a unique solution of this game, but not a definitive solution. Indeed, B does not
know S’s choice peaceS .

17.5 Formalizing Nash Reasoning

Theorem 17.1 A definitive solution of a game with rational players is a Nash equi-
librium.

Proof Consider a strategic game GAME with rationality predicates ri(x), i =
1, 2, . . . , n, and solution predicate Sol(x). Let s = (s1, s2, . . . , sn) be a definitive
solution of the game. We have to show that s is a Nash Equilibrium. Argue infor-
mally given GAME. We have

E(s),

and hence for each i, j,
Ki(sj)

and hence for any strategy s′j for j,

Ki(¬s′j).

Therefore, sj is the only strategy of j which is deemed possible by i.
Suppose s is not a Nash equilibrium, hence for some player i, the choice of strategy

si is less preferable to some other choice x given the other players’ strategies, so

s = (s−i, si) <i (s−i, x)

for some strategy x of player i. Therefore, we found a player i and a strategy x of i such
that for all profiles possible for i, (s−i, si) <i (s−i, x), i.e., i is not Aumann-rational
at s, i.e., ¬Ri(s).

Since s is the solution of GAME, s should satisfy the solution condition Sol(s)
which yields that all players are rational at s, i.e., r(s). Since r(s)→R(s), all players
should be Aumann-rational at s, R(s); a contradiction.12 �

The proof of Theorem 17.1 demonstrates not only that players cannot derive a
definitive solution from the rules of a game that does not have Nash equilibria, but
that the mere existence of such a solution known to all players is incompatible with
the rules of the game. In particular, this yields that no refinement of rationality, as

12 Note that a default assumption that GAME is consistent is necessary since for inconsistent games,
vacuously, each profile is a definitive solution.
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long as it respects Aumann rationality, can possibly lead to a definitive solution in
such a game.

Corollary 17.1 No game with rational players and without Nash equilibria has a
definitive solution under any notion of rationality.

Note that this Theorem requires rationality but not any degree of knowledge of
rationality. Roughly speaking, to spot that the solution is not a Nash equilibrium,
we don’t need players with knowledge of others’ rationality: if the solution were not
a Nash equilibrium in i’s coordinate, it would directly contradict the i-th player’s
rationality.

An analogue of Theorem 17.1 has been obtained by Aumann and Brandenburger
in [10]: Suppose that each player is rational, knows his own payoff function, and
knows the strategy choices of the others. Then the players’ choices constitute a Nash
equilibrium in the game being played. Theorem 17.1 differs from that in [10] on
several counts.

• The models of game and knowledge in [10] and this chapter are fundamentally
different. For Aumann and Brandenburger, a game is a probability distribution on
the set of strategy profiles (a belief system), and knowledge of F is probability 1
of the event F. In this chapter, we use a logic-based syntactic approach in which
knowledge is represented symbolically by modal operators interpreted as strict,
non-probabilistic knowledge. Since knowledge represented by modal operators
is intrinsically linked to metareasoning (here a logical deduction from the game
description, in accordance with Nash’s aforementioned description of 1950), this
logical model of game and knowledge allows us to draw impossibility conclusions
that do not appear to be within the scope of probabilistic methods.
• The notions of rationality in [10] and in this chapter are of a quite different nature.

In [10], rationality of i is maximization of i’s expected payoff and is determined
by the underlying belief system, whereas we allow as a rationality predicate any
predicate which is at least as strong as Aumann rationality.

For the rest of the chapter, we consider two extreme notions of rationality: the most
general Aumann rationality, and a highly specialized notion of bullet rationality.

17.6 On Stronger Notions of Rationality

In this section, we show that any Nash equilibrium can be a definitive solution for
an appropriate notion of rationality.

Theorem 17.2 Given a payoff matrix M and a Nash equilibrium e, not necessarily
unique, there is a notion of rationality such that the corresponding game with CKGR
has e as the definitive solution.
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Proof Let s = (s1, s2, . . . , sn)be an arbitrary strategy profile and e = (e1, e2, . . . , en)

a Nash equilibrium profile. A bullet e-rationality13 is, by definition, a set of pred-
icates Be

i (s) for i = 1, 2, . . . , n that hold at e and do not hold at any other strategy
profile:

Be
i (e) ∈ GAME and ¬Be

i (s) ∈ GAME for any s �= e. (17.5)

Informally, predicate Be
i (s) is used as a rationality of i predicate stating that

player i is rational only at profile e.

We define Be(s) as
Be(s) =

∧

i

Be
i (s).

Consider a strategic game GAME with

• payoff matrix M;
• bullet rationality Be

i (s) for i = 1, 2, . . . , n;
• common knowledge of the game and rationality, CKGR;
• no other constraints except those explicitly mentioned above.

First, we show that GAME is consistent. For this, it suffices to find a model and a
node at which all postulates of GAME hold. Consider the Aumann structure in which
epistemic states are all strategy profiles,

� = {s | s is a strategy profile}, s(s) = s,

knowledge partitions are singletons

Ki(s) = {s},

i.e., each profile is common knowledge in itself, standard truth relation ‘�’

s � sj
i iff the i-th strategy in profile s is j,

and rationality predicates as defined in (17.5):

ri(s) = Be
i (s).

We claim that all assumptions of GAME hold at node e of the game model. All
basic conditions on strategies and payoff preferences hold everywhere in the model.
Rationality conditions (17.5) holds at e by definition and Be(e) is common knowledge

13 The name is analogous to “bullet voting”, in which the voter can vote for multiple candidates but
votes for only one.
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at e. The solution predicate is, by assumption, CBe(s) and it holds at s = e. Therefore,
the solution condition s→Sol(s) also holds at s = e.

It is easy to see that all players are Aumann-rational at e, since for each player,
the possible strategies of others are those from e, and i cannot improve her payoff
by changing her own strategy because e is a Nash equilibrium. Therefore, for each
profile s,

Be(s)→R(s),

hence Be(s) is a legitimate rationality predicate.
Now we show that

GAME � e.

Indeed, since for each s �= e, GAME proves ¬Be(s) and GAME proves ¬CBe(s),

GAME � ¬Sol(s)

and
GAME � ¬s.

So, all profiles s different from e have been ruled out. However, GAME assumes that
each player has to choose a strategy: there should be at least one strategy profile
chosen:

GAME �
∨

s

s

and e is the only remaining candidate,

GAME �
∧

s �=e

¬s.

By propositional logic,
GAME � (

∧

s �=e

¬s)→e,

therefore
GAME � e.

By Lemma 17.1,
GAME � E(e),

hence e is the definitive solution. �

Such a “reverse engineered” bullet rationality is a technical notion which we do not
offer as a viable practical notion of rationality. However, bullet rationality represents
an epistemic condition which, when incorporated into the game description, can
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single out a given Nash equilibrium as a definitive solution. With a dash of good
will, bullet rationality may be regarded as a theoretical prototype of Pearce’s bolder
assumption about how players choose strategies [21] that leads to a definitive solution
in a multi-equilibrium situation.

Theorem 17.2 also has a nearby predecessor in [10] where it was stated that for any
Nash equilibrium s, there is a belief system in which each player assigns probability 1
to s. Theorem 17.2 conveys basically the same message with “probability 1” replaced
by the logical notion of strict knowledge which has helped to connect this result to
Nash’s notion of definitive solution.

17.7 Definitive Solutions for Aumann Rationality

Whereas Nash equilibria provide a general necessary condition for definitive solu-
tions, a question of sufficient conditions, i.e., when definitive solutions actually exist,
merits special analysis. Since tampering with the notion of rationality can render any
Nash equilibrium a definitive solution, it makes sense to consider the definitive solu-
tion problem for a fixed notion of rationality. For the rest of the chapter, we consider
games with basic Aumann rationality.

We first show that under Aumann rationality, a game with two or more Nash
equilibria cannot have a definitive solution.

17.7.1 Regular Form of Strategic Games

A regular strategic game is a strategic game described by the following (finite) set
of formulas GAME.

a. Conditions on strategy propositions sj
i stating ‘player i chooses strategy j.’ These

conditions express that each player i chooses one and only one strategy:

(s1
i ∨ . . . ∨ smi

i ) and¬(sj
i ∧ sl

i) for each j �= l.

b. A complete description of the preference relation for each player at each outcome.
c. Knowledge of one’s own strategy si→Ki(si).14

d. The solution condition s→ Sol(s) for each s where solution predicate Sol(s) is
the formula stating common knowledge of Aumann rationality at s, CR(s).

e. Common knowledge of a–d above.

For example, in the regular form of the War and Peace dilemma W&P, we can
demonstrate that (peaceB, peaceS) is a definitive solution. Indeed, it suffices to log-
ically derive peaceB ∧ peaceS from GAME of W&P and argue that this derivation
can be performed by any player, hence

14 This is the standard requirement of “measurability,” cf. [8].
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Ki[peaceB ∧ peaceS] for each i ∈ {B, S}.

Here is a derivation of peaceB ∧ peaceS from GAME of W&P (an informal version
of this derivation was presented in Sect. 17.4):

1. By (b) and (e), S knows that warS is a strictly dominated strategy for S, hence S
is not rational at all profiles with warS;

2. by (d), none of these profiles can be a solution, hence ¬warS;
3. by (a) and 2, peaceS;
4. by (e), B knows 1 and 2, which makes strategy warS impossible for B;
5. from 4, B is not rational at (warB, peaceS), hence by (d), ¬warB;
6. therefore (peaceB∧peaceS), and, by (e), this conclusion is known to both players.

This example was intended to illustrate that the regular form of strategic games is
sufficient for accommodating the usual epistemic reasoning in games.

17.7.2 Consistency Lemma

Lemma 17.2 A regular strategic game GAME is consistent with the knowledge of
any of its Nash equilibria: for each Nash equilibrium e,

GAME+ C(e) (17.6)

is consistent.

Proof It suffices to present an Aumann structure M in which, at some node, both
GAME and C(e) hold. As in the proof of Theorem 17.2, we define M as

� = {s | s is a strategy profile}, s(s) = s,

knowledge partitions are singletons

Ki(s) = {s},

the standard truth relation ‘�’

s � sj
i iff the i-th strategy in profile s is j,

and Aumann rationality predicates Ri(s).
By construction, M is omniscient, i.e., each fact which is true in a state is common

knowledge in this state:
s � F yields s � CF.

Let e = (e1, e2, . . . , en) be a Nash equilibrium of the game. We claim that
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e � GAME ∧ C(e).

Since model M is omniscient, it suffices to check that

e � GAME ∧ e.

Since e � e holds by definition of ‘� ,’ it remains to show that

e � GAME.

We will check conditions (a–e) one by one.

• (a), (b), and (c) hold at each node by definition of ‘� ′.
• for (d) it suffices to check that each player is Aumann-rational at e. Player i knows

all strategies of others, ej with j �= i, and deems any of i’s own strategies x possible.
However, by changing her strategy ei at e, i cannot improve her payoff since e is
a Nash equilibrium.
• (e) holds because model M is omniscient.

Alternatively, the consistency lemma (Lemma 17.2) can be also obtained by applying
Proposition 5.4 (B) from [13] which pursues different goals.

The aforementioned result from [10] stating that for any Nash equilibrium e, there
is a belief system in which each player assigns probability 1 to e, may be regarded
as a natural probabilistic version of Lemma 17.2.

In this chapter, we take one more step and draw impossibility conclusions from the
consistency lemma, thus connecting it with Nash’s definitive solutions programme
(cf. Sect. 17.7.3).

Corollary 17.2 A regular strategic game is consistent with playing any of its Nash
equilibria e: set GAME + e is consistent.

Proof Immediate from Lemma 17.2, since C(e)→e in GAME. �

17.7.3 No Definitive Solutions to Multi-equilibria Regular Games

Theorem 17.3 No regular strategic game with more than one Nash equilibrium can
have a definitive solution.

Proof Suppose otherwise, i.e., that some Nash equilibrium e is a definitive solution
of GAME

GAME � e

for some regular game that has another Nash equilibrium e′. By (a), two different
profiles are incompatible, hence
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GAME � ¬e′,

which yields that
GAME + e′

is inconsistent. This contradicts Corollary 17.2. �

Note that regular strategic games with some additional epistemic constraints can
single out one of multiple Nash equilibria as a definitive solution. For example, take
a regular game presented by GAME and let e be one of its multiple Nash equilibria.
Consider a new game GAME′ consisting of GAME with an additional condition that
e is common knowledge:

GAME′ = GAME + C(e).

By Lemma 17.2, GAME′ is consistent: it is easy to see that e is its definitive solution.

17.7.4 Definitive Solutions of Regular Games via IDSDS

In this Section, we observe that definitive solutions of regular strategic games with
ordinal payoffs are completely described by the procedure of the Iterated Deletion of
Strictly Dominated Strategies (IDSDS) rather then a unique Nash equilibrium. IDSDS
iteratively deletes strategies which are strictly dominated by other pure strategies.
Let S∞ denote the set of strategy profiles which survive IDSDS. By construction,
S∞ �= ∅.

The role of IDSDS has been well studied (cf. [1, 11, 13]) and Theorem 17.4
mainly connects these studies to the definitive solution framework.

Theorem 17.4 A strategic regular game with Aumann rationality has a definitive
solution s if and only if s is the only strategy profile that survives IDSDS.

Proof (Sketch). We use the terminology of [13]. By Lemma 17.1, it suffices to prove
the analogue of this theorem which speaks about “solution s” rather than “definitive
solution s”. Consider two cases.

Case 1 S∞ contains states with different profiles, say s1 and s2. Then such a game
does not have a definitive solution. Indeed, by Proposition 5.4 (B) from [13], there
are states ω1 and ω2 corresponding to profiles s1 and s2 such that

ωi � GAME + si for i = 1, 2.

Therefore, GAME + si are consistent for i = 1, 2. Since s1 and s2 are incompatible,

GAME �� si for i = 1, 2.
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Case 2 S∞ is a singleton, e.g., S∞ = {s}. We show that s is then the definitive
solution. By the completeness theorem for the background modal logic of knowledge
(normally, a multi-agent version of S5), it is sufficient to establish that

GAME → s (17.7)

holds at each node of each model (e.g., each Aumann structure). By Proposition
5.4 (A) from [13], for each state ω, if s(ω) �∈ S∞, then the statement of common
knowledge of rationality fails in ω, hence

ω �� s(ω)→Sol(s(ω))

and
ω �� GAME.

Consider an arbitrary node ω. If s(ω) ∈ S∞, then s(ω) = s, hence ω � s. If
s(ω) �∈ S∞, then, as above, ω �� GAME. In either case, (17.7) holds at ω.

Since (17.7) holds in each model,

GAME � s,

and, by Lemma 17.1,
GAME � E(s),

hence s is the definitive solution of GAME.
Case 2 can also be derived from [1] which shows that players will choose only

strategies that survive the iterated delition of strictly dominated strategies. �

17.8 Unique Nash Equilibrium Does not Yield a Definitive
Solution

Consider the following game

⎡

⎣
1, 2 1, 0 0, 1

0, 0 0, 2 1, 1

⎤

⎦

It has a unique Nash equilibrium (1, 2), but no definitive solution within the scope of
Aumann rationality, even if the game and rationality are commonly known. Indeed,
each strategy in this game is Aumann-rational and hence cannot be deleted by IDSDS.
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17.9 Discussion

We have seen that Nash’s definitive solution paradigm is not at all universal: in many
cases definitive solutions do not exist. For example, a direct count shows that though
75 % of generic regular 2 × 2 games have definitive solutions, the proportion of
solvable games quickly goes to 0 when the size of the game grows (the number of
players or the number of strategies for each player). Even when definitive solutions
exist, the notion of a Nash equilibrium does not provide sufficient criteria for them.
In a way, the results of this chapter support Aumann’s views [9]:

• Equilibrium is not the way to look at games. The most basic concept should be:
to maximize your utility given your information.
• The starting point for realization of this concept should be syntactic epistemic

logic.

In a game, one could expect epistemic and rationality conditions to be given,
hence a methodologically correct way would be to consider whether a game has a
definitive solution under given epistemic/rationality conditions.

For future work, one could apply similar methods for analyzing mixed strategies
and settings with belief rather than knowledge conditions.

It makes sense to further explore the role of proof-theoretical methods in epistemic
game theory. One possible avenue, along the lines of Johan van Benthem’s ‘rational
dynamics’ programme [11, 12], could be to add justifications—in particular, proofs
as objects—to the logical analysis of games. The focus of such research could be to
create a unified theory of reasoning and epistemic actions in the context of games.
There is no action without reasoning for rational agents; reasoning is itself a kind of
epistemic action, and takes other actions as inputs. A meaningful step in this direction
was made by Renne in [22] in which he suggests interpreting proof terms t in the
Logic of Proofs (cf. [2]) as strategies, so that t:A may be read as

t is a winning strategy on A.

In this light, the Logic of Proofs may thus be seen as a logic containing in-language
descriptions of winning strategies on its own formulas.

Other major issues in epistemic game theory that the Logic of Proofs could help to
address are awareness and the logical omniscience problem. The standard semantics
for the logics of proofs and justifications, Fitting models [17], is a more expressive
dynamic extension of Fagin-Halpern awareness models [15]; awareness models are
Fitting models corresponding to one fixed proof term [23]. A coherent general treat-
ment of the logical omniscience problem on the basis of proof complexity has been
offered in [5, 6].
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Chapter 18
Logical Player Types for a Theory of Play

R. Ramanujam

Abstract In theory of play, a player needs to reason about other players’ types that
could conceivably explain how play has reached a particular node of the extensive
form game tree. Notions of rationalizability are relevant for such reasoning. We
present a logical description of such player types and show that the associated type
space is constructible (by a Turing machine).

18.1 Reasoning About Games and in Games

. . . rationality is primarily a property of procedures of deliberation or other logical activities,
and only secondarily a property of outcomes of such procedures [10].

Game theory tries to analyse situations where there are elements of conflict and
cooperation among rational agents. The ultimate aim of the theory is to predict the
behaviour of rational agents and prescribe a plan of action that needs to be adopted
when faced with a strategic decision making situation. The theory therefore consists
of the modelling part as well as the various solution concepts which try to predict
the behaviour of such agents and prescribe what rational players should do. The
effectiveness of a particular solution concept depends on how precise and effective
the prescription turns out to be.

There are some fundamental problems in coming up with such a theory. Most
real world interactions are extremely complex and modelling the complete process
as a game may not be feasible. The usual approach to overcome this trouble is to
consider an abstraction of the situation and to model this abstract setting as a game.
Even though all the constituent elements of the situation cannot be preserved, the
abstraction tries to retain the most relevant ones. The other challenge is due to the fact
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Fig. 18.1 An extensive form game g0

a b

(3,0) g1

Fig. 18.2 Normal form game g1 d1 d2 d3

c1 (2,2) (2,1) (0,0)

c2 (1,1) (1,2) (4,0)

that game theory assumes that all players are rational whereas in many real world
interactions, people often tend to act irrationally.

For finite extensive form games of perfect information, backward induction (BI)
offers a solution that is simple and attractive as prediction of stable play. However,
this critically depends on reasoning being backward, or bottom-up on the tree from
the leaves to the root. In some games such as the famous example of the centipede
game, this solution is somewhat counter-intuitive.

In general, an extensive form game can have several Nash equilibria apart from
the one given by the backward induction solution. If this is the statement we make
about the game, how does the player reason in the game?

18.1.1 Surprise Moves and Forward Induction

The following example is given by [24]: it is a two-player extensive form game in
which the first player chooses a move a that ends the game or the move b that leads to
a normal form game g1, in which the players concurrently choose between {c1, c2}
and {d1, d2, d3}, respectively (Figs. 18.1 and 18.2).

The backward induction solution advises player 1 to choose a, so player 2 does
not expect to have any role. But suppose player 1 chooses b and the game does reach
g1. How should player 2 reason at this node? Should player 2 conclude that 1 is
irrational and chose arbitrarily, or should 2 treat the subgame as a new game ab initio
expecting rational play in the future?

Note that player 2 can ascribe a good reason for 1 to choose b: the expectation
that 2 would choose d3 in game g1. (In this case, 1 can be expected to play c2, and
then player 2’s best response would be d2).

Such issues have been discussed extensively in the literature, and many resolutions
have been suggested. Some of them go as follows:

• Players’ actions are to be based on substantive stable common belief in future
rationality [3, 16].
• Treat the first move of player 1 as a mistake, and either ignore past information or

update beliefs accordingly [18].
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• Players come in different types, and deviations from expected behaviour are inter-
preted according to players’ knowledge of each others’ type [5, 9].
• Players rationalize each other’s behaviour [23].

Among these the last requires an explanation: according to this view, a player, at
a game node, asks what rational strategy choices of the opponent could have led the
history to this node. In such a situation, she must also ask whether the node could
also have been reached by the opponent who does not only choose rationally herself,
but who also believes that the other players choose rationally as well. This argument
can be iterated, and leads to a form of forward induction [4, 24]. This leads to an
interesting algorithm that can be seen as an alternative to backward induction [25].

A small point is worth noting here: the way forward induction (FI) is formalized as
above, both BI and FI yield the same outcome [24] in extensive form games of perfect
information. The strategies would in general be different, and this is in itself important
for a theory of play. van Benthem [8] suggests an alternative viewpoint: rather than
looking for a normal form subgame as above, he suggests that any sufficiently abstract
representation of the subgame may result in FI yielding a different outcome. For
instance, if the players were computationally limited, they would have only a limited
view of a large subgame, and this is a very relevant consideration for a theory of play.

In general, how a player reasons in the game involves not only reasoning such
as the above, but also computational abilities of the player. As the game unfolds,
players have to record their observations, and a memory-restricted player needs to
select what to record [6, 11].

Aumann and Dreze [2] make a strong case for the focus of game theory to shift
from equilibrium computation to questions of how rational players should play. For
zero sum games, the value of the game is unique and rational players will play to
achieve this value. However, in the case of non zero sum games as mentioned above,
multiple Nash equilibria can exist. This implies that players cannot extract an advice
as to which strategy to employ from the equilibrium values. According to Aumann
and Dreze, for a game to be well defined, it is also necessary that players have an
expectation on what the other players will do. In estimating how the others will
play, a rational player should take into account that others are estimating how he
will play. The interactive element is crucial and a rational player should then play
so as to maximize his utility, given how he thinks the others will play. The strategy
specifications we introduce below are in the same spirit, since such a specification
will be interactive in the sense of [2].

18.1.2 Players Matter

van Benthem [8] offers a masterly analysis of the many issues that distinguish rea-
soning about games and reasoning in games. Briefly, he points out that even if we
consider BI as pre-game deliberation, there are aspects of dynamic belief revision
to be considered; then there is the range of events that occur during play: players’
observations, information received about other players, etc; then there is post-game
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reflection. As we move from deliberation to actual play, our interpretation of game
theory requires considerable re-examination. We leave the reader to the pleasure of
reading [8] for more on this, but pick up one slogan from there for discussion here:
the players matter.

Briefly, reasoning inside games involves reasoning about actual play, and about
the players involved. The standard game theoretic approach uses uniform algorithms
(such as BI and FI) to talk of reasoning during play (including the actuality of surprise
moves) and type spaces encode all hypotheses that players have about each other.
However, the latter is again of the pre-game deliberative kind (as in BI), and abstracts
all considerations of actual play into the type space. It is in this spirit that [24] talks of
completeness of type spaces for FI, whereas the van Benthem analysis is a (clarion)
call for dynamics in both aspects: dynamic decision making during play and a theory
of player types that’s dynamically constructed as well.

We suggest that this is a critical issue for logical foundations of game theory.
A node of a game tree is a history of play, and unless all players have a logical
explanation of how play got there, it is hard to see them making rational decisions
at that point. The rationale that players employ then critically depends on perceived
continuity in other players’ behaviour, which needs to be construed during the course
of play.

However, while this is easily said, it raises many questions that do not seem to
have obvious answers. What would be a logic in which such reasoning as proceeds
during play can be expressed? What would we ask of such a logic—that it provides
formulas for every possible strategy that a player might employ in every possible
game? That it be expressively complete to describe the (bewildering) diversity of
player types? That we may derive stable strategy profiles using an inference engine
underlying the logic? That we discover new strategies from the axioms and inference
rules of the logic?

Several logics have been studied in the context of reasoning about strategic ability.
[7] studies strategies in a dynamic logic, and in the context of alternating temporal
logics, a variety of approaches have been studied [1, 17, 19, 29]. While these logics
reason with the functional notion of strategy, a theory of play requires reasoning
about the dynamics of player types as well.

18.1.3 Logic and Automata for Player Types

In this article, we take a very simple and minimalistic approach to these questions.
We suggest that the logical language attempt to describe a universe of constructible
player types. Therefore, players in this framework are of definable types and con-
siderations of other players are also restricted to definable types. Rationalizability
becomes relative to the expressiveness of the underlying formalism; we can perhaps
call this notion ‘extensive form reasonability’. We are less interested in completeness
of the proposed language here, than in expressing interesting patterns of reasoning
such as the ones alluded to above.
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Our commitment is not only to simple modal logics to describe types, but also
to realizing types by automata.1 A number of reasons underlie this decision: for
one, resource limitations of players critically affect course of play and selection of
strategies. For another, automata present a nice tangible class of players that require
rationale of the kind discussed above2 and yet restrict the complexity that human
players bring in. Further, automata theory highlights memory structure in players,
and the selective process of observation and update.

Why is such an approach needed, or is indeed relevant, considering that an elegant
topological construction of type spaces is already provided by Perea [4, 24] and oth-
ers, with a completeness theorem as well? A crucial departure lies in the emphasis on
constructivity and computability of types and strategies (rather than their existence).
Moreover, if our attempt is not only to enrich the type space but also to provide
explanations of types, logical means seem more attractive. The price to pay lies, of
course, in the restrictive simplicity of the logics and automata employed, and is it
is very likely that such reasoning is much less expressive than the topological type
spaces.

This work continues the line of investigation initiated in [26]. A principal differ-
ence here is an explicit connection with the notion of extensive form rationalizability,
which is achieved by the use of belief-like operators in the space of types.

18.2 Types as Formulas

Let N denote the set of players, we use i to range over this set. For technical con-
venience, we restrict our attention to two player games, i.e. we take N = {1, 2}. We
often use the notation i and ı to denote the players where ı = 2 when i = 1 and
ı = 1 when i = 2. Let Act be a finite set of action symbols representing moves of
players, we let a, b range over Act.

Strategizing during play involves making observations about moves, forming
beliefs and revising them. Player types are constructed precisely in the same manner:

• Patterns of the form ‘when condition p holds, player 2 chooses a’ are observations
by player 1 and help to assign a basic type to player 2.
• Such a process clearly involves nondeterminism to accommodate apparently con-

tradictory behaviour, so a player needs to assign a disjunction of types to the other.
• The process of reasoning proceeds by case analysis: in situations such as x, the

other player is seen to play conservatively whereas in other situations such as y,
the type is apparently aggressive. Thus type construction is conjunctive as well.
• The planning of a player also includes how he responds to perceived opponent

startegies that lie within this plan. Therefore type definition includes such responses.

1 By automata, we refer only to finite state devices here, though probablistic polynomial time Turing
machines are a natural class to consider as well [13].
2 A surprise move by an opponent is perhaps much harder for an automaton to digest than for a
human player.



514 R. Ramanujam

• Rationalization: perceived behaviour can be explained by actual play being part of
a strategy that involves the future as well, and this is articulated as a belief by the
player about the opponent. Moreover, such beliefs include the opponent’s beliefs
about the player as well, and iterating the process builds a hierarchy of beliefs.

Above, we have spoken of the type of a player as it is ascribed by the opponent.
Note that the same reasoning works for ascribing types ‘from above’ to a player.
Such considerations lead us to the following syntax for player types.

18.2.1 Type Specifications

Let Pi = {pi
0, pi

1, . . .} be a (non-empty) countable set of observables for i ∈ N and
P = ∪i∈N Pi. The syntax of type specifications is given by:

Typei(Pi) := [ψ �→ a]i | σ1 + σ2 | σ1 · σ2

where ψ ∈ Past(Pi) and a ∈ Act. ψ is intended to be a past play formula, to be
defined below. Observe that since the atomic specifications are always indexed by
the player identity, a type specification unambiguously points to a player, denoted
by pl(σ ).

To complete the specification of types, we need to specify the syntax of PF(Pi)

which is given by a simple tense logic. For any countable set X, let PF(X) be sets of
play formulas given by the following syntax:

PF(X) := x ∈ X | ¬ψ | ψ1 ∨ ψ2 | 〈a〉ψ | ♦ψ | ♦-ψ | Biπ@ı

where a ∈ Act and π ∈ Typeı (Pı ∩ Pi).
Formulas in PF(X) are interpreted at game positions. The formula 〈a〉ψ talks

about an a-edge in the game tree after which ψ holds. The formulas ♦-ψ and ♦ψ
assert ψ some time in the past or future, respectively. The boolean fragment of
PF(X) is denoted by Bool(X). The “past tense” fragment of PF(X) uses only boolean
connectives and the ♦- modality, we denote this fragment by Past(X).

Let Act = {a1, . . . , am}, we also make use of the following abbreviation.

• nulli = [
 �→ a1]i + · · · + [
 �→ am]i.
where 
 = p ∨ ¬p for an observable p ∈ Pi. It will be clear from the semantics
(which will be defined shortly) that any type of player i conforms to nulli, or in other
words this is an empty specification. The empty specification is particularly useful
for assertions of the form “there exists a type” where the property of the type is not
of any relevance, and specifies a player type vacuously.

Before we proceed to the semantics, a remark on the two-layered syntax is in
order. In principle, they can be combined into one, but there are good reasons to keep
them separate: for one, note that negation is free in play formulas, but its scope in
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types is restricted to atomic types. This is deliberate, and has important implications
for reasoning. Another reason is that types are intended as invariants on the game
tree, though constructed locally, whereas play formulas are associated with game
positions. The latter point will be clarified by the semantics presented below, but
some preliminaries first.

18.2.2 Game Trees

Let T(Act) = (S,⇒, s0) be a finite Act-labelled tree rooted at s0 on the finite set
of vertices S while⇒ : (S × Act) → S is a partial function specifying the edges

of the tree. For a node s ∈ S, let
→
s= {s′ ∈ S | s

a⇒s′ for some a ∈ Act} and let
moves(s) = {a ∈ Act | ∃s′ ∈ S with s

a⇒s′}. An action “a” is said to be enabled at a

node s if a ∈ moves(s). A node s is called a leaf node (or terminal node) if
→
s= ∅.

For the rest of the paper we fix Act to be the finite set Act = {a1, . . . , am}, and refer
to T to denote the tree T(Act).

An extensive form game tree is a tuple T = (S,⇒, s0, λ)where T = (S,⇒, s0)

is a tree. The set S denotes the set of game positions with s0 being the initial game
position. The edge function⇒ specifies the moves enabled at a game position and the
turn function λ : S → N associates each game position with a player. Technically,
we need player labelling only at the non-leaf nodes. However, for the sake of uniform
presentation, we do not distinguish between leaf nodes and non-leaf nodes as far as
player labelling is concerned. For i ∈ N , let Si = {s | λ(s) = i}, and let frontier(T)
denote the set of all leaf nodes of T . When s is a game position in T , we denote the
subtree rooted at s by Ts.

A play in the game T starts by placing a token on s0 and proceeds as follows: at
any stage, if the token is at a position s and λ(s) = i, then player i picks an action
which is enabled for her at s, and the token is moved to s′ where s

a⇒s′. Formally a

play in T is a finite path ρ : s0a1s1 · · · aksk such that for all 0 ≤ j < k sj
aj⇒sj+1. A

maximal path is one in which sk ∈ frontier(T). Note that each leaf node t denotes a
play of the game which is the unique path from the root node s0 to t. Let Plays(T)
denote the set of all plays in the game tree T .

18.2.3 Strategies and Plans

A strategy for player i is a function μi which specifies an enabled move at every
game position of the player, i.e. μi : Si → Act which satisfies the condition: for all
s ∈ Si, μi(s) ∈ moves(s). For i ∈ N , we use the notation μi to denote strategies of
player i and τ ı to denote strategies of player ı . By abuse of notation, we will drop the
superscripts when the context is clear and follow the convention that μ represents
strategies of player i and τ represents strategies of ı . Let Ω i(T) denote the set of all
strategies for player i in the extensive form game tree T .
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A strategy can be viewed as a collection of what Rubinstein [28] calls plans of
action. The functional notion of strategy demands a choice for every player i node,
whereas a plans specifes what a player would do only at nodes reachable from those
the player had decided on earlier in the plan. This notion can be seen as an equivalence
class of (classical) strategies that are outcome-equivalent. When we consider the set
of plans for a player from every node of the game tree, we include all plans generated
by strategies.

A plan is then a subtree of T in which for each player i node, there is a unique
outgoing edge and for nodes belonging to player ı , every enabled move is included.
Formally we define a plan subtree as follows: For i ∈ N, a plan tree at node s
Tμ = (Sμ,⇒μ, s, λμ) associated with μ is the least subtree of T satisfying the
following property:

• s ∈ Sμ
• For any node s ∈ Sμ,

– if λ(s) = i then there exists a unique s′ ∈ Sμ and action a such that s
a⇒μs′.

– if λ(s) �= i then for all s′ such that s
a⇒s′, we have s

a⇒μs′.

A play ρ : s0a0s1 · · · is said to be consistent with strategy μ if for all j ≥ 0,
j : 0 ≤ j < k, we have sj ∈ Si implies μ(sj) = aj. A plan profile (μ, τ) consists of
a pair of plans, one for each player. (We use μ, τ etc to denote both strategies and
plans, the context making it clear which notion is in use.)

We say that a plan μ potentially reaches tree node s if s is in the subtree Tμ.
Let Ωi(s) denote the set of player i plans that potentially reach s. Given i, Ωı (s)
then denotes the set of opponent plans that potentially reach s. Thus Tτ ∈ Ωı (s)
iff there exists Tμ ∈ Ωi(s) such that the play (μ, τ) visits s. This is important for
rationalizability: a player conceives of what potential plans the opponent might be
using that are consistent with the play reaching node s. The setΩı (s) can be seen as
a belief set for player i, in the sense that these are the hypothetical plans that i can
attribute to ı to explain the history of play leading to node s.3

The idea is to use the above constructs to specify properties of player types. For
instance the interpretation of a player i specification [p �→ a]i where p ∈ Pi is to
choose move “a” at every player i game position where p holds. At positions where
p does not hold, the player chooses any enabled move. σ1 + σ2 says that the type of
player i conforms to the specification σ1 or σ2. The construct σ1 · σ2 says that the
type conforms to both specifications σ1 and σ2.

The construct Biπ@ı describes (a kind of) belief hierarchy: player i believes that
opponent behaviour corresponds to some complete plan π . Note that π , in turn,
could be referring to some type σ ′ of player i, and so on. In this sense, a player holds
a belief about opponent’s strategy choices, about opponents’ beliefs about other
agents’ choices, opponents’ beliefs about others’ beliefs etc. Since this is essentially
how type spaces are defined, these specifications offer a compositional means for
structuring type spaces.

3 This observation can be formalized by defining an indistinguishability relation ∼i on player i
nodes, but we do not pursue this here, since we do not attempt an axiomatization of the type space.
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18.2.4 Semantics

Let M = (T ,V) where T = (S,⇒, s0, λ) is an extensive form game tree and
V : S → 2P a valuation function. The truth of a formula ψ ∈ PF(P) at the state s,
denoted M, s |= ψ is defined as follows:

• M, s |= p iff p ∈ V(s).
• M, s |= ¬ψ iff M, s �|= ψ .
• M, s |= ψ1 ∨ ψ2 iff M, s |= ψ1 or M, s |= ψ2.
• M, s |= 〈a〉ψ iff there exists an s′ such that s

a⇒s′ and M, s′ |= ψ .
• M, s |= ♦ψ iff there exists an s′ such that s⇒∗s′ and M, s′ |= ψ .
• M, s |= ♦-ψ iff there exists an s′ such that s′ ⇒∗s and M, s′ |= ψ .
• M, s |= Biπ@ı iff there exists τ ∈ Ωı (s) such that (Tτ ,Vτ ), |= π .

Type specifications are interpreted on plan subtrees of T . We assume the presence
of two special propositions turn1 and turn2 that specify which player’s turn it is
to move. We also assume the existence of a special proposition leaf which holds
at the terminal nodes. Formally, we assume that the valuation function satisfies the
property:

• for all i ∈ N , turni ∈ V(s) iff λ(s) = i.
• leaf ∈ V(s) iff moves(s) = ∅.

Recall that a plan μ of player i is a subtree Tμ = (Sμ,⇒μ, s0, λμ) of T . Let
Vμ denote the restriction of the valuation function V to Sμ. For a type specification
σ ∈ Typei(Pi), we define the notion of μ conforming to σ (denoted (Tμ,Vμ) |= σ )
as follows:

• (Tμ,Vμ) |= [ψ �→ a]i iff for every player i node s ∈ Sμ, we have: (Tμ,Vμ), s |= ψ
implies moves(s) = {a}.
• (Tμ,Vμ) |= σ1 + σ2 iff (Tμ,Vμ) |= σ1 or (Tμ,Vμ) |= σ2.
• (Tμ,Vμ) |= σ1 · σ2 iff (Tμ,Vμ) |= σ1 and (Tμ,Vμ) |= σ2.

Above, ψ ∈ PF(Pi). Since s is an i node in a player i plan tree, it has a unique
outgoing edge and therefore moves(s) is a singleton set.

The belief formula is interpreted using potential rationalizable strategies. Here
player i, at node s, considers how the history of play might have reached s, and
postulates π as an explanation.4 The logic is very similar to that in [20] but for the
emphasis on rationalizability here.

We say that σ ∈ Typei(Pi) is satisfiable in T if there exists a plan μ such that
(Tμ,Vμ) |= σ . Let Sati(T) denote the set of player i’s type specifications that are
satisfiable in T . Further, given σ ∈ Typei(Pi) and a tree node s, let θi(σ, s) = {π |
for all plans μ such that (Tμ,Vμ) |= σ , if μ ∈ Ωi(s) there exists τ ∈ Ωı (s) such
that (Tτ ,Vτ ) |= π}. This set can be thought of as the beliefs of player i implied by
the type σ at the node s.

4 Note that Bi is a “model changing” operator and thus ‘dynamic’, in the spirit of [8].
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18.2.5 Types in Solution Concepts

The semantics of a player type is given as a set of the player’s plan subtrees of the given
game tree, based on observables. It is defined at every player i node, specifying player
i’s beliefs about opponents’ strategies that could have resulted in play reaching that
node. But since every opponent’s type specifies the opponent’s beliefs about others’
strategy choices, this results in a recursive structure and we can build a hierarchy of
types.

Note that the belief assertions can specify different strategic choices based on the
past, and thus talk of how a player may, during the game, revise her beliefs, a form
of dynamics.

This further suggests that we wish to derive types during play. Thus, rather than
types as being fixed for the class of games, we consider types that start perhaps as
heuristics, and grow during play. We take this up for discussion in Sect. 18.3.

Once we have the notion of types, it induces a notion of local equilibrium as
follows. Consider player 1’s response to player 2’s strategy τ : here, 1’s best response
is not to τ , but to every type π that τ satisfies. Symmetrically, 2’s best response is not
to a straegy μ of player 1 but to every type σ that μ satisfies. Thus we can speak of
the type pair (σ, π) being in equilibrium. We merely remark on this induced notion
here, one well worth developing further on in future.

18.3 Growing Types

We have suggested that our definition of player types has been guided by concerns of
constructibility and simplicity. Yet, we need to discuss how types as we have defined
relate to the topological type spaces considered by game theorists, especially since
forward induction is justified by the completeness of such spaces.

Let T(Act) = (S,⇒, s0) be an extensive form game. A type space over T is a
tuple G = (Ui, δi)i∈N where each Ui is a compact topological space, representing the
set of types for player i, and δi is a function that assigns to every type u ∈ Ui and tree
node s, a probability distribution δi(u, s) ∈ Δ(Ωı (s),Uı ). Note thatΩı (s) represents
the set of opponent strategies that potentially reach node s, Uı = Πj �=iUj is the set
of opponents’ type combinations, andΔ(X) is the set of probability distributions on
X with respect to the Borel σ -algebra.

In game theory, type spaces are typically defined for games of imperfect
information, and the definition above coincides with the standard one when the
information set for every player is a singleton. A natural question arises whether
the concept makes sense for games of perfect information. In the discussions on
forward induction, as for instance in [4, 24], the BI and FI solutions coincide, and
the analysis differentiates games with nontrivial information sets. However, as van
Benthem argues [8], there are other interpretations of forward induction that are rel-
evant for a theory of play: when the game tree is large, a player at a tree node s may
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be able to reason only about a small inital fragment of the subtree issued at s, and the
subsequent abstraction may be seen as imperfect information as well.5 Moreover,
rationalizing by the player i does induce an equivalence relation∼i on the tree nodes
in our analysis.

Note the similarity of our definition of types to the standard notion, without the
use of probability distributions. The use of equivalence relations between nodes is
an implicit form of qualitative expectations and we choose the simpler formalism
as it is more amenable to modal logics. With these observations, consider the type
space ‘induced’ in our framework.

Consider a model M = (T ,V) where T = (S,⇒, s0, λ) is an extensive form
game tree and V : S → 2P a valuation function. Then we define the logical type
space over T to be a tuple L = (Sati(T), θi)i∈N , where Sati(T) is the set of player
i type specifications satisfiable in the game, and θi : (Sati(T) × S)→ Satı (T) was
defined earlier. Recall that this set represents the beliefs that player i has about the
opponent implied by the type σ at the node s.

Now one can see the close correspondence between the two definitions, as well
as the differences. The type space G is globally defined, and can be seen as fixing
an encoding of all possible beliefs of players about opponent behaviour a priori. In
contrast, the type space L has more local structure, and is crucially determined by
the expressiveness of the logic. The topological structure of the type space in G is
replaced by logical structure in L. For instance, the types in L are downward closed:
if σ1 · σ2 is a type, then so are σ1 and σ2; it is closed under entailment: if σ1 is a
type and σ1 entails σ2, then σ2 is a type, and so on. There are other symmetries such
as: if π ∈ θi(σ, s) for some tree node s, then there exists a tree node t such that
σ ∈ θı (π, t). Characterizing this logical structure by a completeness theorem is an
important question, but we do not proceed further on this here.

At this juncture, our claim to ‘growing’ types can be explained. Consider the root

node s0 in the tree T . Notice that the beliefs of the players about each other refer only
to invariant properties in the game tree (as specified by the observables), and hence the
only definite assertions are about the present, namely the root node itself. However,
as play progresses, we have definite assertions about the past, as well as about the
choices thus eliminated, and we have sharper type formulas. This process may be
understood as a construction of the type space that proceeds top-down, starting from

the root node and enriching players’ beliefs based on observations as the game tree
gets pruned by play.6

While this is a general picture, we focus on a specific question: does this ‘con-

struction’ of a logical type require unbounded information? We now proceed to show

that the required information is in fact finite state, and hence can be checked by an
automaton. Further, we show that, in principle, a Turing machine can construct the
type space.

5 We refer the reader to [8] for a more detailed justification.
6 A formal characterization of this process as a recursive function on the tree is in progress, but
there are many technical challenges.
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18.4 Types as Automata

Once we consider types to be logical, a natural question is whether a given type is
consistent: we want a player to be a reasoner whose reasoning is coherent. It is this
question we address here.

Note that a type corresponds to a set of plans and beliefs in our framework. We
have spoken of a model in which a player records observations during play and
rationalizes opponents’ behaviour by considering what strategies might have led to
opponents playing in a particular way. The meaning we offer for constructibility of
such a type is a finite state automaton that ‘plays out’ such plans and rationalizes
course of play.

The use of automata for finite memory strategies dates back to the work of Büchi
and others [12] in the 1960’s, and a rich theory of automata based strategies for regu-
lar games of infinite duration has been developed in the last few decades [15]. In [26]
we apply this technique to develop a theory of structured strategies. Ramanujam and
Simon [27] links this theory to game logic [21], by suggesting that game composi-
tion and strategy composition are interdependent, and develops a logic of composing
game—strategy pairs. Ghosh [14] develops a similar framework as well. Paul et al.
[22] extends the logic of strategies to consider switching whereby a player switches
strategies during course of play, based on observations. This leads to a logical inter-
pretation of mixed strategies, as switching between pure strategies over repeated
play. We mention these lines of work here since the logical specification of types in
this paper closely follows and builds on these papers, and the automaton construction
below uses similar techniques. The crucial departure here is rationalization of course
of play reflected in beliefs.

However, the essential elements of a logical structure of strategies and that of
player types are the same, and these papers all emphasize top-down reasoning in
games, thus contributing to a theory of play. Strategies are seen not as complete
pre-selected plans that a player comes to a game with. A player is assumed to have
access to a library of local heuristics as partial strategies, and composes them during
course of play, selections depending on observations of events. In this sense, strategy
specifications are player types, but without the belief structure addressed here.

18.4.1 Subformulas

For a type specification σ , let SF(σ ) denote the subformula closure of σ . For ψ0 ∈
PF(P), the subformula closure SF(ψ0) of ψ0 and Σψ0 , the type vocabulary of ψ0,
are defined by simultaenous induction as follows. SF(ψ0) is the least set containing
ψ0 and closed under the following conditions:

• ¬ψ ∈ SF(ψ0) iff ψ ∈ SF(ψ0) (where ¬¬ψ is considered the same as ψ).
• if ψ1 ∨ ψ2 ∈ SF(ψ0) then {ψ1, ψ2} ⊆ SF(ψ0).
• if 〈a〉ψ ∈ SF(ψ0) then ψ ∈ SF(ψ0).
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• if ♦ψ ∈ SF(ψ0) then ψ ∈ SF(ψ0) and for every a ∈ Act, 〈a〉♦ψ ∈ SF(ψ0).
• if ♦-ψ ∈ SF(ψ0) then ψ ∈ SF(ψ0).
• If Biπ@ı ∈ SF(ψ0) then π ∈ Σψ0 .
• If σ ∈ Σψ0 and [ψ �→ a]i ∈ SF(σ ) then ψ ∈ SF(ψ0).

Fix a play formula ψ0 and let CL denote SF(ψ0), Σ denote Σψ0 .
Call R ⊆ CL an atom if it is ‘locally’ consistent and complete: that is, for every

ψ ∈ CL, ¬ψ ∈ R iff ψ �∈ R, for every ψ1 ∨ ψ2 ∈ CL, ψ1 ∨ ψ2 ∈ R iff ψ1 ∈ R
or ψ2 ∈ R, and for every ψ ∈ R, if ♦ψ ∈ CL then ♦ψ ∈ R, and if ♦-ψ ∈ CL then
♦-ψ ∈ R. Let AT denote the set of atoms.

For a type specification σ , let SFψ(σ) denote the past play subformulas in σ . Call
A ⊆ SFψ(σ) a type atom for σ if it is propositionally consistent and complete, as
above. Let T −AT denote the set of all type atoms (for all σ ∈ Σ).

An atom R is said to be initial if whenever ♦-ψ ∈ R thenψ ∈ R as well. Similarly,
R is said to be final if whenever ♦ψ ∈ R then ψ ∈ R as well. Initial and final type
atoms are defined similarly.

Let R and R′ be atoms. Define R −→a R′ iff the following conditions hold:

• For every 〈a〉ψ ∈ CL, if ψ ∈ R′ then 〈a〉ψ ∈ R.
• If ♦-ψ ∈ R then ♦-ψ ∈ R′.
• If ♦ψ ∈ R′ then ♦ψ ∈ R.

For type atoms C,C′, C −→ C′ holds when ♦-ψ ∈ C implies ♦-ψ ∈ C′.
Atoms and type atoms will be used to construct automata below.

18.4.2 Advice Automata

Clearly, every type specification defines a set of strategies. We now show that it is a
regular set, recognizable by a finite state device, which we call an advice automaton.

For a game T , a nondeterministic advice automaton for player i is a tuple A =
(Q, δ, o, I) where Q is the set of states, I ⊆ Q is the set of initial states, δ : (Q ×
W × Act)→ 2Q is the transition relation, and o : (Q×Wi)→ Act, is the output or
advice function.

The language accepted by the automaton is a set of plans of player i. Given a
plan subtree μ = (Wμ,−→μ, s0) of player i, a run of A on μ is a Q-labelled tree
T = (Wμ,−→μ, λ), whereλmaps each tree node to a state in Q as follows:λ(s0) ∈ I ,

and for any sk where sk
a−→μ s′k , we have λ(s′k) ∈ δ(λ(sk), sk, ak).

A Q-labelled tree T is accepted by the automaton A if for every tree node s ∈ Wi
μ,

if s
a−→T s′ then o(λ(s)) = a. A plan μ is accepted by A if there exists an accepting

run of A on μ.
The following lemma relates type specifications to advice automata.

Lemma 18.1 Given a player i ∈ N and a type specification σ , we can construct an
advice automaton Aσ such that (Tμ,Vμ) ∈ Lang(Aσ ) iff (Tμ,Vμ) |= σ .
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Proof The construction of automata is inductive, on the structure of specifications.
Note that the plan satisfying the type is implemented principally by the output func-
tion of the advice automaton.

We proceed by induction on the structure of σ . We construct automata for atomic
strategies and compose them for complex strategies.
(σ ≡ [ψ �→ a]): The automaton works as follows. Its states keep track of past

formulas satisfied along a play as game positions are traversed, and that the valuation
respects the constraints generated for satisfying ψ . The automaton also guesses a
move at every step and checks that this is indeed a when ψ holds; in such a case this
is the output of the automaton. Formally: Aσ = (Qσ , δσ , oσ , Iσ ), where

• Qσ = T −AT × Act.
• Iσ = {(C, x)|C is initial, V(s0) = (C ∩ Pσ ), x ∈ Act}.
• For a tree edge s

a−→ s′ in T we have:
δσ ((C, x), s, a) = {(C′, y)|C −→ C′,V(s′) = (C′ ∩ Pσ ), y ∈ Act}.
• o((C, x), s) =

{
a if ψ ∈ C
x otherwise

We now prove the assertion in the lemma that μ ∈ Lang(Aσ ) iff μ |=i σ .
(⇒) Suppose μ ∈ Lang(Aσ ). Let T = (W1

μ,W2
μ,−→T , λ) be the Q-labelled tree

accepted by Aσ . We need to show that for all s ∈ Wμ, we have ρs, s |= ψ implies
out(s) = a.

The following claim, easily proved by structural induction on the structure of ψ ,
using the definition of −→ on atoms, asserts that the states of the automaton check
the play requirements correctly. Below we use the notation ψ ∈ (C, x) to mean
ψ ∈ C.

Claim For all s ∈ Wμ, for all ψ ′ ∈ SFψ(σ), ψ ′ ∈ λ(s) iff ρs, s |= ψ ′.
Assume the claim and consider any s ∈ Wμ. From Claim 4, we have ρs, s |= ψ

implies ψ ∈ λ(s). By the definition of o, we have o(λ(s), s) = a.
(⇐) Suppose μ |=1 [ψ �→ a]. From the semantics, we have ∀s ∈ W1

μ, ρs, s |= ψ
implies out(s) = a. We need to show that there exists a Q-labelled tree accepted by
Aσ . For any s let the Q-labelling be defined as follows. Fix x0 ∈ Act.

• For s ∈ W1
μ, let λ(s) = ({ψ ′ ∈ SFψ(σ)|ρs, s |= ψ ′}, out(s)).

• For s ∈ W2
μ, let λ(s) = ({ψ ′ ∈ SFψ(σ)|ρs, s |= ψ ′}, x0).

It is easy to check that λ(s) constitutes an atom and the transition relation is
respected. By the definition of o, we get that it is accepting.
(σ ≡ σ1 · σ2): By the induction hypothesis there exist Aσ1 = (Qσ1 , δσ1 , oσ1 ,

Iσ1) and Aσ2 = (Qσ2 , δσ2 , oσ2 , Iσ2) which accept all strategies satisfying σ1 and σ2
respectively. To obtain an automaton which accepts all strategies which satisfy σ1 ·σ2
we just need to take the product of Aσ1 and Aσ2 .
(σ ≡ σ1 + σ2): We take Aσ to be the disjoint union of Aσ1 and Aσ2 . Since the

automaton is nondeterministic with multiple initial states, we retain the initial states
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of both Aσ1 and Aσ2 . If a run starts in an initial state of Aσ1 then it will never cross
over into the state space of Aσ2 and vice versa.

Note that an advice automaton generates a set of plans for a player. On the other
hand, a player’s beliefs refer to other plans in the game tree and hence checking play
formulas needs to work with the entire game tree. This is achieved by the following
‘global’ tree automaton construction.

18.4.3 Tree Automata

Fix k > 0. A game tree T = (S,⇒, s0, λ) is said to be k-ary, if for every node s, the

out-degree of s is k, that is, | →s | = k.
A nondeterministic k-tree automaton over a k-ary tree T = (S,⇒, s0, λ) is a tuple

B = (Q, δ, I,F), where Q is the set of automaton states, I,F ⊆ Q are the sets of
initial and final states, and δ ⊆ (Q × S × Qk) is the transition relation. A run of
B is a map ρ : S → Q such that for every tree node s, if the set of children of s
is {s1, . . . , sk)}, then (ρ(s), s, ρ(s1) . . . , ρ(sk)) ∈ δ. We say that ρ is an accepting
run if ρ(s0) ∈ I and for every leaf node s�, ρ(s�) ∈ F. The emptiness problem for
nondeterministic k-tree automata can be solved in polynomial time.

Given a M = (T ,V) and a play formula ψ0 the objective is to construct a tree
automaton B(M, ψ0) running over k-ary trees for some fixed k > 0. But the branch-
ing degree of nodes in M need not be uniform. However, since the automaton is
parameterized by T , we can always ‘normalize’ the model in the following sense.

Let m = maxms∈S| →s |. We can add ‘dummy’ edges from every node to leaf nodes
labelled by a symbol not in Act so that the branching degree is made uniform. A
tree automaton running on such a normalized tree would enter an accepting state
on encountering a dummy node, so in effect any path ending in a dummy node is
disregarded by the automaton and only plays that are present in M are checked for
consistency requirements. (The advice automata corresponding to type specifications
always output a ∈ Act, and hence the label on the dummy edges need not be checked
either.) Therefore, without loss of generality we can assume that the model M is an
m-ary tree.

Before we get to the tree automaton construction, we need one more step of
preparation. We need to work with deterministic advice automata, rather than the
nondeterministic ones we have associated with type specifications. For a game T ,
a deterministic advice automaton for player i is a tuple A = (Q, δ, o, q0) where
Q is the set of states, q0 ∈ Q is the initial state, δ : (Q × W × Act) → Q is
the transition fuction, and o : (Q × Wi) → 2Act is the output or advice function.
The notion of acceptance of a plan is modified so that the choice determined by
the strategy is present in the automaton output (rather than being the same). The
following proposition asserts that advice automata can be ‘determinized’.
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Proposition 18.1 Give a game T = (S,⇒, s0, λ) and a nondeterministic advice
automaton A on T, we can construct a deterministic advice automaton A′ such that
a plan μ is accepted by A iff it is accepted by A′.

We omit the proof since it is standard, achieved by a subset construction. For each
σ ∈ Σψ0 , let Aσ denote the deterministic advice automaton associated with it; let
A1, . . . ,Ak be the set of these automata, with the product state space (Q1 × . . .Qk).

18.4.4 Automaton Construction

Intuitively, the tree automaton works as follows. It keeps track of the atoms ofψ0 and
simulates the k advice automata in parallel, and when it encounters a player belief
Biπ@ı it checks that the output of the advice automaton Aπ is consistent. When it
branches, it guesses for each branch which future requirements need to be satisfied
along that particular branch. The acceptance condition checks that all final states are
at final atoms.

A state of the tree automaton is a tuple (s,R, (q1, b1) . . . , (qk, bk)) where s is a
tree node, R is an atom, qj is a state of the jth advice automaton, bj ∈ {0, 1} and the
following conditions are satisfied:

• V(s) = R ∩ P.
• For every ♦-ψ in SFσ , for σ ∈ Σ , ♦-ψ ∈ qσ iff ♦-ψ ∈ R.
• If Biπj@ı ∈ R then bj = 1.

Let Uψ0 denote the set of states.
The boolean flag bj marks the nodes reachable by following the advice output by

the automata for type specifications. When play moves away from the plan constituted
by the advice automaton, the flag is set to 0 and signals that the player belief is not
justified.

Formally, given the model M = (T ,V) where T = (S,⇒, s0, λ) is an extensive
form game tree, V : S → 2P a valuation function, and a play formula ψ0, the tree
automaton B(M, ψ0) is defined to be the tuple (Uψ0 ,Δ, I,F)where Uψ0 is as defined
above, and:

• I = {(s0,R, (q0
1, 1) . . . , (q0

k , 1)) | R is an initial atom, and q0
j is the initial state of

Aj}.
• F = {(s,R, (q1, b1) . . . , (qk, bk)) | R is a final atom, and s is a leaf node}.
• (x, s, y1, . . . ym) ∈ Δ if the following set of conditions are satisfied, where

x = (s,R, (q1, b1) . . . , (qk, bk)), and yi = (si,Ri, (qi
1, bi

1) . . . , (q
i
k, bi

k)):

– In the tree T , the moves at s are of the form (a1, s1), . . . , (am, sm).
– If 〈a〉ψ ∈ R, a = ai and ψ ∈ Ri for some i ∈ {1, . . . ,m}.
– If ♦ψ ∈ R, then ♦ψ ∈ Ri for some i ∈ {1, . . . ,m}.
– If λ(s) = pl(σj), 1 ≤ j ≤ k and bj = 1, then for all i ∈ {1, . . . ,m}, bi

j = 1 iff

ai ∈ o(qj, s), and qi
j = δj(qj, s, ai).
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– If λ(s) �= pl(σj), 1 ≤ j ≤ k and bj = 1, then for all i ∈ {1, . . . ,m}, bi
j = 1 iff

qi
j = δj(qj, s, ai).

Lemma 18.2 Given a model M and a play formulaψ0, we have that M, s0 |= ψ0 iff
Lang(B(M, ψ0)) �= ∅.
Proof (⇒): Suppose that M, s0 |= ψ0. We need to construct an accepting run of
B(M, ψ0). For a node s, let ν(s) = {ψ | M, s |= ψ}. Clearly ν(s) is an atom for
every s, ν(s0) is an initial atom, and ν(s�) is a final atom for every leaf node s�.

We define the run inductively. For the root node s0, we have: ρ(s0) = (s0, ν(s0),
(q0

1, 1) . . . , (q0
k , 1)), where q0

j is the initial state of the jth advice automaton. It is
easy to see that ρ(s0) ∈ I .

Inductively suppose that ρ(s) ∈ Uψ0 is defined and let the successors of s be

given by: s
ai⇒si, 1 ≤ i ≤ m. Define ρ(si) = (si, ν(si), (qi

1, bi
1), . . . , (q

i
k, bi

k)) where:
if λ(s) = pl(σj), 1 ≤ j ≤ k and bj = 1, then for all i ∈ {1, . . . ,m}, bi

j = 1 iff

ai ∈ o(qj, s), and qi
j = δj(qj, s). If λ(s) �= pl(σj), 1 ≤ j ≤ k and bj = 1, then for all

i ∈ {1, . . . ,m}, bi
j = 1 iff qi

j = δj(qj, s, ai).
We only need to verify that for each i, ρ(si) ∈ Uψ0 as well. The crucial condition

to check is that, if Biπj@ı ∈ R then bj = 1. This follows from the following claim:

Claim Let σj ∈ Σ , 1 ≤ j ≤ k. The plan subtree μ is accepted by the advice
automaton Aj iff for every node s present in the subtree μ, bj = 1 in the tuple ρ(s)
defined above.

The proof of the claim follows by another inductive construction, this time of an
accepting run of Aj. Note that for every player node, the flags are set to 1 along the
moves output by Aj, and for every opponent node, flags are set for all successors.
The flags continue to be 1 as long as Aj transitions are verified. Thus the 1-nodes
form a connected plan subtree accepted by the automaton.

(⇐): Suppose Lang(B(M, ψ0)) �= ∅. Let ρ be an accepting run of the tree
automaton that labels tree nodes by automaton states: for tree node s, we have:
ρ(s) = (s,R, (q1, b1) . . . , (qk, bk)).

Claim For every ψ ∈ CL and every s ∈ S, M, s |= ψ iff ψ ∈ R.

The proof is by a routine induction on the structure ofψ using the definition of the
automaton transition for verification of tense modalities and the advice automaton
claim above for the belief modality.

Thus we have:

Theorem 18.1 Checking consistency of given player type specifications on a game
tree is decidable.

An important problem for logical types is checking the consistency of type
specifications. Recall that we defined the logical type space over T to be a tuple
L = (Sati(T), θi)i∈N , where Sati(T) is the set of player i type specifications satis-
fiable in the game, and θi : (Sati(T) × S) → Satı (T) which associates with any
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player type specification σ and a tree node s, an opponent specification π such that
the resulting play visits s.

An important consequence of the preceding lemma is that membership in Sati(T)
is decidable, and hence we have the following theorem.

Theorem 18.2 For an extensive form game T = (S,⇒, s0, λ), the logical type
space over T is recursively enumerable.

18.4.5 Complexity

For a play formula ψ0, let |ψ0| denote the size of the formula. The states of the
tree automaton consist of the atoms of ψ0, the states of the deterministic advice
automata for types in the vocabulary of ψ0, and the tree model is also encoded in
the automaton. Since the number of type specifications in ψ0 is bounded by |ψ0|,
the size of the tree automaton is doubly exponential in |ψ0| and linear in the size
of M. Checking non-emptiness of the language of the automaton can be done in
time polynomial in the size of M. Thus, we get a total complexity (of checking a
play formula in a model, and hence checking consistency of types) that is doubly
exponential in |ψ0| and polynomial in the size of M.

18.5 Discussion

We have tried to present a logical specification of types that can provide a framework
for a theory of play. Specifically, in such a framework, one can specify patterns of
reasoning displayed by forward induction and a form of rationalizability, for perhaps
more general and partial solution concepts. The elements of such a logical language
need to be more closely examined, this paper should be considered in the light of a
preliminary attempt.

We need to delineate the expressiveness of the language precisely and thus expli-
cate the epistemic universe of player types within which reasoning is carried out.
For epistemic structures in the case of forward induction, complete type spaces can
be given using compact topological spaces [25]. Axiomatizing type spaces using
minimally structured logics such as the one presented here is an interesting question.
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Chapter 19
An Alternative Analysis of Signaling Games

Gabriel Sandu

Abstract Evaluation games for first-order logic have arisen from the work of
Hintikka in the 1970. They led to various applications to natural language phenomena
(pronominal anaphora) in a single framework which is now known as Game-
theoretical semantics (GTS). van Benthem [1, 2] observes that these games ana-
lyze the ‘logical skeleton’ of sentence construction: connectives, quantifiers, and
anaphoric referential relationships, and that logic is still the driver of the analysis
here. He emphasizes that GTS presupposes that the denotations of the basic lexical
items such as predicates and object names have been settled but there is still the
legitimate question of how to account for the linguistic conventions that settle the
meanings of these basic items. To this purpose, different kind of games, known as
signaling games have been developed from the 1960s stimulated by Lewis’ work on
conventions. This work has led to deeper connections with game-theory explored in
the work of the Dutch school. In this chapter I give an alternative analyis of signaling
games in terms of 2 player extensive game of imperfect information. The material
presented here extends Sandu [7].

19.1 The Stag Hunt

The Stag Hunt is the prototype of a social contract. Here is its description in one of
the standard textbooks on game theory:

Each of a group of hunters has two options: she may remain attentive to the pursuit of a stag,
or she may catch a hare. If all hunters pursue the stag, they catch it and share it equally;
if any of the hunters devotes her energy to catching a hare, the stag escapes, and the hare
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belongs to the defecting hunter alone. Each hunter prefers a share of the stag to a hare
[6, p. 20].

As pointed out by Skyrms [8], the Stag Hunt appears in Hume’s Treatise in the
scenario of two men who pull at the oars of a boat. They do it by an agreement or
convention though they have never given promises to each other. If both men row,
then the outcome is optimal for each of them. But if one decided not to row then they
don’t get anywhere [3, p. 490]. Skyrms mentions also that the same game appears in
Hume’s famous meadow draining problem:

Two neighbours may agree to drain a meadow, which they possess in common, because
it is easy for them to know each other’s mind, and each may perceive that the immediate
consequence of failing in his part is the abandonment of the whole project (Idem, p. 538).

The Stag Hunt is the topic of a whole book by Brian Skyrms: The Stag Hunt and
the Evolution of the Social Structure [8].

We notice that in Hume’s first example, the worst thing for each man is for him
to row when the other does not row; and in Hume’s second example the worst thing
is for a neighbour to drain when the other does not. Here is a representation of the
Stag Hunt as a 2-player cooperative strategic game:

Stag Hare
Stag (2, 2) (0, 1)
Hare (1, 0) (1, 1)

There are two equilibria: (Stag, Stag) and (Hare, Hare). But notice that, like in the
preceding examples, the worst thing for each hunter is for him to hunt the stag when
the other goes for the hare. On the other side, if one goes for the Hare, one does not
take any risk when the other hunter changes his option. For this reason the equilibrium
(Stag, Stag) is called a risk dominant equilibrium [8, p. 3].

Skyrms [8] sees Lewis signaling games as a variant of the Stag Hunt. I will follow
his analyis in the next section. Then I will reformulate Lewis signaling games in a
different way as win–lose games and draw some conclusions.

19.2 Lewis’ Signaling Problems

The motivation for Lewis’ work comes from Quine’s well known attack against
the logical empiricists’ conception according to which truths of logic are based
on conventions. Quine found this analyis circular, for he thought that conventions
presuppose already the use of language and logic. Lewis set himself the task to
provide an analysis of conventions which does not rely on such presuppositions.The
outcome (Lewis, [4]) is his well known notion of a signaling problem: a situation
which involves a communicator (sender) (C) and an audience (receiver) (A). C
observes one of several states m which he tries to communicate or “signal” to A,
who does not see m. After receiving the signal, A performs one of several alternative



19 An Alternative Analysis of Signaling Games 531

actions, called responses. Every situation m has a corresponding response b(m) that
C and A agree is the best response to take when m holds. Lewis argues that a word
acquires its meaning in virtue of its role in the solution of various signaling problems.
Skyrms [8] makes an interesting comparison between Lewis’ signaling problems and
the Stag Hunt. Here are some of the details.

To model a Lewisian signaling problem, one fixes the following elements:

• A set S of situations or states of affairs, a set� of signals, and a set R of responses.
• A function b : S→ R which maps each situation to its best response.
• An encoding function f : S → � employed by C to choose a signal for every

situation.
• A decoding function g : �→ R employed by A to decide which action to perform

in response to the signal it receives.

A signaling system is a pair ( f, g) of encoding and decoding functions which asso-
ciates with each state of affairs the action which is optimal for the state, that is,
g ◦ f = b. When such a signaling system is settled, each signal acquires a “mean-
ing”: the action which is associated with it.

We consider for illustration a signaling system with two states, s1 and s2, two
messages t1 and t2 and two actions a1 and a2. We know that a1 is the best action
for the state s1 and a2 is the best action for the state s2. It is obvious that in these
setting Sender has four strategies. We let f1 denote the function which sends si to
ti , f2 denote the (only) nontrivial permutation of f1, f3 and f4 denote the constant
function which always send the same message, t1 and respectively t2. As for the
Receiver, he has also four functions: g1 decodes ti into ai , g2 is the (only) nontrivial
permutation of g1, and g3 and g4 are the constant functions which always decode
every message to a1 and respectively a2. The following tables give the payoffs of the
players for each state:

s1 g1 g2 g3 g4

f1 (1, 1) (0, 0) (0, 0) (1, 1)
f2 (0, 0) (1, 1) (0, 0) (1, 1)
f3 (1, 1) (0, 0) (0, 0) (1, 1)
f4 (0, 0) (1, 1) (0, 0) (1, 1)

s2 g1 g2 g3 g4

f1 (1, 1) (0, 0) (1, 1) (0, 0)
f2 (0, 0) (1, 1) (1, 1) (0, 0)
f3 (0, 0) (1, 1) (1, 1) (0, 0)
f4 (1, 1) (0, 0) (1, 1) (0, 0)

In order to compute the Nash equilibria, we need to assign a probability dis-
tribution ν over the states. If ν is a uniform probability distribution, that is,
ν(s1) = ν(s2) = 1/2, then the resulting strategic game

g1 g2 g3 g4

f1 (1, 1) (0, 0) (1/2, 1/2) (1/2, 1/2)

f2 (0, 0) (1, 1) (1/2, 1/2) (1/2, 1/2)

f3 (1/2, 1/2) (1/2, 1/2) (1/2, 1/2) (1/2, 1/2)

f4 (1/2, 1/2) (1/2, 1/2) (1/2, 1/2) (1/2, 1/2)

has 6 equilibria: ( f1, g1), ( f2, g2), ( f3, g4), ( f4, g3), ( f3, g3), and ( f4, g4).
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However, only the first two equlibria are signaling systems: by deviating from each
of them, the two players are worse off. Lewis call them communicative equilibria.
The other 4 equilibria are such that by deviating from any of them the two players are
neither better off not worse off. Lewis calls them noncommunicative equilibria. The
analogy between communicative equilibria and noncommunicative equilibria, on one
side and the risk dominant equilibria and equilibria which are not risk dominated in
the Stag Hunt game should be obvious.

It seems that we have obtained at least a partial answer to the questions of what
conventions are and how they are maintained: they are equilibria in Lewis’ signaling
systems which in addition have the special property of being risk dominant (i.e., they
are strict). The others, the noncommunicative equilibria do not have this property.
Skyrms points out (p. 54) that we do not yet have an answer to the question of
how conventions are selected from the several risk dominant equilibria in the game.
Lewis himself was aware of the fact that the property of equilibria being strict does
not suffice for qualifying them as conventions. Strict equilibrium explains only why
there is an incentive not to unilaterally deviate but if, for instance, you expect me to
deviate, then you might believe to be better off by deviating as well. And if I believe
you have such beliefs, I might deviate too. In other words, Lewis saw the need to
back up the maintainance of conventions by a hierachy of interrelated beliefs which
are common knowledge. Skyrms (p. 54) is somehow skeptical about the formation
of such beliefs in the first place and offers interesting examples which show how
equilibria are de facto selected without the assumption of common knowledge.

There is one feature of the signaling systems that is worth noting. The two com-
municative equilibria do not depend on the probability distribution over the set of
states being uniform. In other words, any probability distribution over the set of
states will give rise to the same set of equilibria in the combined game (although
with different payoffs.) This is a problem to which we shall return. Meanwhile let us
also take note of the fact that when there are more than three states, (together with
the corresponding signals and optimal actions), then there are also partial signaling
systems, that is, pairs ( f, g) of strategies f of the Sender and strategies g of the
Receiver which are equilibria but which transmit only partial information: there is
only a partial match between states of affairs and the corresponding actions. Here is
an example where the Sender’s strategy f is

s1 −→ m1
f : s2 −→ m2

s3 −→ m3

the Receiver’s strategy g is
m1 −→ a1

g : m2 −→ a1
m3 −→ a3
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and the best actions are indicated in the matrix below:

a1 a2 a3

s1 (1, 1) (0, 0) (0, 0)
s2 (0, 0) (1, 1) (0, 0)
s3 (0, 0) (0, 0) (1, 1)

That is, alternatively: b(si ) = ai .

19.3 Signaling Games as Win–Lose Extensive Game
of Imperfect Information

We shall formulate Lewis’ signaling systems as a 2-player win–lose extensive game
of imperfect information played by the team of the Sender and Receiver (that we
shall call the team of Eloise and denote it by ∃) against Nature (∀). We fix a finite set
S of situations or states of affairs, a finite set� of signals, a finite set R of responses
and a function b : S→ R which maps each situation to its best response in the way
indicated above. The game tree is straightforward. Each of its maximal branches has
the form (x, z, y)where x ∈ S is a choice by Nature, z ∈ � is a choice by the Sender
and y ∈ R is a choice by the Receiver. For each such maximal branch the payoffs
are determined by the following rule:

• If y = b(x) then the team ∃ wins (payoff 1); otherwise ∀ wins.

The imperfect information comes from the following condition on the information
set of the Receiver:

• (x, z) and (x ′, z′) are equivalent (indistinguishable) for the Receiver whenever
z = z′.

Strategies are defined as usual. A strategy for Nature is any member of S. We prefer
to present the strategy of the team of Eloise as a pair of functions ( f, g) such that f :
S → � and g : � → R. That is, f is a strategy function for the Sender and g is
a strategy function for the Receiver. The fact that g is a unary function reflects the
uniformity condition typical for games of imperfect information: given the condition
above, the Receiver’s strategy g depends only on z and not on both x and z.

Now when Nature follows a strategy s ∈ S and the team of Eloise follows a
strategy ( f, g) a play of the game (s, f (s), g( f (s))) is completed, which is a win for
the team, if g( f (s)) = b(s) and a win for Nature, otherwise.

When the number of states in S equals the number of signals in �, it is easy to
see that there is a winning strategy for the team of Eloise, that is, a pair of functions
( f, g) which guarantees a win no matter what is the strategy employed by Nature.
In the particular case in which S consists of two states, s1 and s2, � consists of two
signals, t1 and t2, R consists of two actions, a1 and a2 and the function b is as usual,
the winning strategies are exactly the pairs ( f1, g1) and ( f2, g2) introduced in the
preceding section.
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19.4 Signaling Games as Win–Lose Strategic Games

We convert the extensive game from the previous section into a strategic game
� = (S∃, S∀, u∃, u∀). S∀, the set of strategies of Abelard is the set S; S∃, the set
of strategies of Eloise is the set of pairs ( f, g). The payoff functions u∃ and u∀ have
been already specified: u∃(( f, g), si ) = 1 iff g( f (si )) = b(si ); and 0 otherwise. For
Abelard: u∀(( f, g), si ) = 1 iff g( f (si )) �= b(si ) and 0 otherwise.

When there are only two states s1 and s2, the strategic game looks like this:

s1 s2

( f1, g1) (1, 0) (1, 0)
...

...
...

( f1, g4) (1, 0) (0, 1)
...

...
...

( f2, g1) (0, 1) (0, 1)
( f2, g2) (1, 0) (1, 0)

...
...

...

( f3, g3) (0, 1) (1, 0)
...

...
...

( f4, g4) (1, 0) (0, 1)

Notice how Lewis’ initial signaling game has received a different twist: The Sender
and the Receiver are now on the same side, and they try to coordinate no matter what
the state (of Nature) turns out to be. The strategy pairs ( f1, g1) and ( f2, g2) weakly
dominate all the other strategy pairs. Thus we can reduce the game to:

s1 s2

( f1, g1) (1, 0) (1, 0)
( f2, g2) (1, 0) (1, 0)

In this smaller game there are 4 equilibria. All of them return the same expected
utility to the players. The strategy pairs ( f3, g4), ( f4, g3), ( f3, g3), and ( f4, g4)which
are the “noncommunicative equilibria” in the Lewis signaling systems, are not equi-
libria in the present game. This is as expected: each of them is weakly dominated by
one of the strategies ( f1, g1), ( f2, g2).

Skyrms offers two main reasons why noncommunicative equilibria (i..e, those that
are not signaling systems) in Lewis signaling games do not qualify as conventions.
One of them, discussed earlier, is simply that such equilibria are not strict: a player
is not worse off by unilateral deviation from them. He gives interesting arguments
(p. 56) which support an additional reason: such equilibria never evolve because they
are evolutionary unstable.
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The account that emerged from our reformulation of signaling problems as
win–lose games is different: it is irrational for the Sender–Receiver team to play
such strategies. That is, in our account the strategies in question are not disregarded
for empirical reasons, but for game-theoretical ones.

19.5 Mixed Strategy Equilibria

We fix finite sets S, �, R and a function b : S → R which maps each situation
to its best response in the way indicated above. Let � = (S∃, S∀, u∃, u∀) be the
corresponding win–lose 2 player strategic game as specified in the previous section.

A mixed strategy ν for player p∈ {∃,∀} is a probability distribution over Sp, that
is, a function ν : Sp → [0, 1] such that

∑
τ∈Si

ν(τ ) = 1. ν is uniform over S′i ⊆ Si

if it assigns equal probability to all strategies in S′i and zero probability to all the
strategies in Si − S′i . Given a mixed strategy μ for ∃ and a mixed strategy ν for player
∀, the expected utility for player p is given by:

Up(μ, ν) =
∑

σ∈S∃

∑

τ∈S∀
μ(σ)ν(τ )u p(σ, τ ).

We can simulate a pure strategy σ with a mixed strategy which assigns to σ
probability 1. That is, when σ ∈ S∃ and ν is a mixed strategy for player ∀, we let

Up(σ, ν) =
∑

τ∈S∀
ν(τ )u p(σ, τ ).

Similarly if τ ∈ S∀ and μ is a mixed strategy for player ∃, we let

Up(μ, τ ) =
∑

σ∈S∃
μ(σ)u p(σ, τ ).

Von Neuman’s Minimax Theorem [10] tells us that every finite, two-person,
constant-sum game has an equilibrium in mixed strategies. As an immediate corol-
lary, we know that any two mixed strategy equilibria in a finite, two-person, constant-
sum game return the same payoffs to the two players. These two results garantee that
we can talk about the value of a strategic game �: it is the expected utility returned
to player (team) ∃ by any equilibrium in the relevant strategic game.

The next results will help us to identify equilibria.

Proposition 19.1 Let μ∗ be a mixed strategy for player ∃ and ν∗ a mixed strategy
for player ∀ in a finite strategic, two player win–loss game �. The pair (μ∗, ν∗) is
an equilibrium in � if and only if the following conditions hold:

1. U∃(μ∗, ν∗) = U∃(σ, ν∗) for every σ ∈ S∃ in the support of μ∗
2. U∀(μ∗, ν∗) = U∀(μ∗, τ ) for every τ ∈ S∀ in the support of ν∗
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3. U∃(μ∗, ν∗) ≥ U∃(σ, ν∗) for every σ ∈ S∃ outside the support of μ∗
4. U∀(μ∗, ν∗) ≥ U∀(μ∗, τ ) for every τ ∈ S∀ outside the support of ν∗.

The following result enables us to eliminate weakly dominated strategies.

Proposition 19.2 Let � = (S∃, S∀, u∃, u∀) be a strategic game as above. Then �
has an equilibrium (σ∃,σ∀) such that for each player p none of the strategies in the
support of σp is weakly dominated in �.

Definition 19.1 Let � = (S∃, S∀, u∃, u∀) be a strategic game as above. For σ,σ′ ∈
S∃, we say that σ′ is payoff equivalent to σ if for every τ ∈ S∀ : u∃(σ′, τ ) = u∃(σ, τ ).

A similar notion is defined for Abelard.
The following result allows us to eliminate payoff equivalent strategies.

Proposition 19.3 Let � = (S∃, S∀, u∃, u∀) be a strategic game. Then � has an
equilibrium (σ∃,σ∀) such that for each player p there are no strategies in the support
of σp which are payoff equivalent.

The proofs of Propositions 19.2 and 19.3 may be found in [5]. We apply these
results to Lewis signaling games.

We now go back to the win–lose strategic game in the previous section and consider
also mixed strategy equilibria. The three propositions above ensure that the initial
win–lose strategic game has the same value as the smaller game:

s1 s2

( f1, g1) (1, 0) (1, 0)
( f2, g2) (1, 0) (1, 0)

The equilibrium (( f1, g1), s1) corresponds to s1 being “played” with probability 1
and ( f1, g1)with probability 1; and analogously for the other equilibria (( f1, g1), s2),

(( f2, g2), s1) and (( f2, g2), s2). But there are many other mixed strategy equilibria,
all returning the same expected utility to the players (this follows from the general
properties of constant-sum games). In fact, for every probability distribution ν over
the set of states, (( f1, g1), ν) and (( f2, g2), ν) are mixed strategy equilibria (we
assimilate the pure strategy ( f1, g1) to the mixed strategy which assigns 1 to ( f1, g1)

and 0 to all the others). In other words, the existence of the “communicative equi-
libria” in the game does not depend upon the probability distribution over the set of
states. This reinforces our earlier conclusion.

19.6 Skyrms: Inventing the Code

19.6.1 The Emergence of Disjunction

Skyrms [9, p. 8] discusses an interesting example which is a variation of the signaling
game with the number of signals being equal to the number of states. There are four
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states: S = {S1, . . . , S4}, two Senders, and one Receiver. Both Senders see the state
they are in, and try to signal them to the Receiver. The first Sender has only two
signals, he can wave either a Red or Green flag, and so does the second who can
wave either a Yellow or a Blue flag. We denote the first set of signals by�1 = {R,G}
and the second one by �2 = {Y, B}. There are now three functions to encode the
two Senders and the Receiver’s strategies:

• An encoding function f1 : S → �1 employed by the first Sender to choose a
signal for every situation he might observe
• An encoding function f2 : S → �2 employed by the second Sender to choose a

signal for every situation he might observe
• A decoding function g : �1 × �2 → S employed by the Receiver to decode the

pair of signals he receives
• Finally the best action function b which associates with each state si its best action

b(si ) = ai . (Thus there are four actions.)

A signaling system will now be any triple ( f1, f2, g)which is such that the Receiver’s
function g can decode the two messages f1(s) and f2(s) he receives in such a way
that for each state s, g( f1(s), f2(s)) = b(s).

It is straightforward to represent this game as a finite 2 player win–lose game
played by Abelard (Nature) against the 3 player team of Eloise, consisting of two
Senders and one Receiver. Here is an example of a signaling system:

f1(s1) = f1(s2) = R f1(s3) = f1(s4) = G
f2(s1) = f2(s3) = Y f2(s2) = f2(s4) = B

As for the Receiver’s decoding function we have:

g1(R,Y ) = a1 g1(R, B) = a2 g1(G,Y ) = a3 g1(G, B) = a4

The strategic form of the game is now:

s1 s2 s3 s4

( f1, f2, g1) (1, 0) (1, 0) (1, 0) (1, 0)
...

...
...

...
...

As in the earlier case, for every probability distribution μ over the set of states there
is an equilibrium (σ1,μ) in the game such that σ1 assigns to ( f1, g1) probability 1
(and 0 to all the others). Notice how the complex signals like (R,Y ) arise out of the
simpler signals R and Y . Here (R,Y ) “means” s1 but the simpler message R means
either s1 or s2. Skyrms thinks that this signaling system provides an example of the
emergence of the meaning of logical connectives (disjunction).
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19.7 Less Signals Than States: The Indeterminacy of the Game

Lewis discusses only the case in which the number of signals equals the number of
states. In such a case, that is, when the cardinality of the set S of situations or states
of affairs is strictly less that the cardinality of the set � of signals, it is easy to see
that there is no equilibrium in the game � = (S∃, S∀, u∃, u∀) (we refer here to the
win–lose game). For suppose, for a contradiction, that there is one, say (( f, g), s).
The only outcomes of the game are 0 and 1. Obviously the outcome for the pair
(( f, g), s) cannot be (0, 1), for we can easily define a pair of strategies fi , gi such
that gi ( fi (s)) = 1. But this violates the condition:

u∃((( f, g), s)) ≥ u∃(( fi , gi ), s)

So we must have u∃((( f, g), s)) = 1 and u∀((( f, g), s)) = 0. But given that m < n,
the pair of functions ( f, g) cannot pair all states with their best actions. In other
words, there must exist distinct si and s j such that f (si ) = f (s j ) = t , for some
signal t . Then g( f (si )) = g( f (s j )). But given the constraints on the function b
we know that b(si ) �= b(s j ). Thereby u∃(( f, g), si ) �= u∃(( f, g), s j ), that is, either
u∃(( f, g), si ) = 0 or u∃(( f, g), s j ) = 0, i.e., u∀(( f, g), si ) = 1 or u∀(( f, g), s j ) = 1.
The former violates the condition

u∀((( f, g), s)) ≥ u∀(( f, g), si )

and the latter violates the condition

u∀((( f, g), s)) ≥ u∀(( f, g), s j )

Thus there is no equilibrium in the game � = (S∃, S∀, u∃, u∀). To avoid the indeter-
minacy, we move to mixed strategies. Recall the strategic form of the game

s1 · · · sn

( f1, g1) · · ·
( f2, g2) · · ·

... · · ·
( f p, gp) · · ·

where S∀ = {s1, . . . , sn}, S∃ =
{
( f1, g1), . . . , ( f p, gp)

}
and, fi : S → � and

gi : �→ R. The payoffs are determined as above.
In this game let B = {B ⊆ SM and | B |= m}. Given that m < n, for every

B ⊆ B, there exists at least one pair ( f, g) such that

A1 f � B : B → �M is one-one and onto
A2 g( f (s)) = b(s), for every s ∈ B
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In other words, when ( f, g) is played against s, the payoffs are (1, 0)whenever s ∈ B,
and (0, 1) when s /∈ B. That is, the Sender–Receiver team achieves coordination of
states with their best actions for all the states s in B.

For any B ⊆ B, let TB be the collection of all pairs ( f, g)which satisfy conditions
(A1) and (A2). We notice that all the members of TB are payoff equivalent. We
choose one member from each TB and collect them into a class TB. We apply the last
Proposition and reduce the game � to a smaller game �1 where the class of strategies
of Eloise is restricted to TB.

Finally we notice that any strategy outside the set TB is weakly dominated by
some strategy in TB. By the second Proposition above we reduce the game �1 to the
smaller game �2:

s1 · · · sn

( f1, g1) · · ·
( f2, g2) · · ·

... · · ·
( fr , gr ) · · ·

where every ( fi , gi ) belongs to the set TB. It is enough to find an equilibrium in this
game. We observe that

• Each pair ( fi , gi ) ∈ TB gives m times the payoff (1, 0) and (n − m) times the
payoff (0, 1).

Let μ the uniform probability distribution over TB and ν the uniform probability
distribution over S. It can be shown that (μ, ν) is an equilibrium and the value of the
game is m/n.

The conclusion is similar to the one for the case in which the number of signals
equals the number of states: it is irrational for the Sender–Receiver team to play a
strategy pair (including constant strategies) which coordinates on less than m states.
The main argument above shows that any such strategy is weakly dominated by some
strategy in TB.

There is a difference, however, between the two cases. In the first case, the exis-
tence of the equilibrium does not depend upon the probability distribution over the
set of states: we saw that for every probability distribution ν over the set of states,
(( f1, g1), ν) and (( f2, g2), ν) are mixed strategy equilibria which give the players the
same expected utility. In the present case this is no longer so. We prefer to illustrate
with an example where n = 3, and m = 2, but the point is perfectly general. By the
argument sketched above, the game for n = 3, and m = 2 has the same value as the
smaller game

s1 s2 s3

( f1, g1) (1, 0) (1, 0) (0, 1)
( f2, g2) (1, 0) (0, 1) (1, 0)
( f3, g3) (0, 1) (1, 0) (1, 0)
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We saw that the pair (μ, ν) is an equilibrium in this game, where μ is a uniform
distribution over ( f1, g1), ( f2, g2) and ( f3, g3); and ν is a uniform distribution over
s1, s2 and s3. Now it is true that the pair (μ, ν∗)whereν∗ is any probability distribution
over s1, s2 and s3, gives the players the same expected utility as the equilibrium (μ, ν).
To see this, suppose ν∗(s1) = p1, ν

∗(s2) = p2, and ν∗(s3) = p3. Then

U∃(μ, ν∗) = 1/3(p1 + p2)+ 1/3(p1 + p3)+ 1/3(p2 + p3) = 2/3

However, it is not any longer true in general that the pair (μ, ν∗) is an equilibrium in
the game, due to the fact of the cardinality of signals being smaller than the cardinality
of states. Here is a counter-example. Let ν∗ be the probability distribution such that
ν∗(s1) = 1/2, ν∗(s2) = ν∗(s3) = 1/4. Notice that

U∃(( f1, g1), ν
∗) = (1× 1/2× 1)+ (1× 1/4× 1) = 3/4.

Thus condition 1 of the first Proposition above is violated, and thereby (μ, ν∗) is not
an equilibrium.

19.8 Expressing the Win–Lose Extensive Game in IF Logic

When introducing Lewis signaling problems in the third section, we first gave a
description of a signaling problem in terms of a Sender sending a signal to the
Receiver who undertakes an appropriate action after receiving it. This description
has all the ingredients of a game of imperfect information. After that we modelled
such a problem, following Lewis, in terms of a strategic, cooperative game.

In this section we replace the description with a sentence in a formal language
interpreted by an appropriate extensive game of imperfect information. After that
we will convert the extensive game into a strategic game. The analogy between the
extensive game of imperfect information and the game in Sect. 19.4, as well as the
analogy between the corresponding strategic game and the game in Sect. 19.5 will
be obvious.

Consider the sentence ϕsig

∀x∃z(∃y/{x}){(S(x)→ (�(z) ∧ R(y) ∧ B(x, y)}

intended to say: for every state x there is a signal z and an action y which is the best
action for x . The slash indicates that the action y does not depend on x in a way to
be made more precise below. The language with slashed quantifiers is known in the
literature as Independence-Friendly language. Its properties are collected in Mann
et al. [5].

The model M

M = (M, SM , �M , RM , B M )
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interprets the nonlogical vocabulary of ϕsig . More exactly

M = {s1, . . . , sn, t1, . . . , tm, a1, . . . , an}
SM = {s1, . . . , sn}
�M = {t1, . . . , tm}
RM = {a1, . . . , an}
B M = {(s1, a1), . . . , (sn, an)}

The relation B M represents the best function. We consider the case in which m < n.
The sentence ϕsig and the model M determine an extensive game of imperfect

information G(ϕsig,M) played by two players, Abelard (the universal quantifier) and
Eloise (the existential quantifier). We can actually take Eloise to be a team consisting
of two players corresponding to the two existential quantifiers. A play of the game
G(ϕsig,M) is a sequence consisting of the following moves:

• Abelard chooses a ∈ M to be the value of the variable x ;
• The first player in Eloise’s team chooses b ∈ M to be the value of z
• The second player in Eloise’s team chooses c ∈ M to be the value of y.

Let w be the assignment w = {(x, a), (z, b), (y, c)}. The team of Eloise wins the
play if

M, w � (S(x)→ (�(z) ∧ R(y) ∧ B(x, y))

Otherwise Abelard wins.
A strategy for Abelard is any a ∈ M . A strategy for the team of Eloise is a pair

of functions ( f, g) such that f : M → M and g : M2 → M . However, given
the requirement that (∃y/ {x})(“when choosing a value for y the second player of
Eloise’s team does not know the value for x chosen by Abelard earlier in the game”)
the function g must be uniform in {x} :
• For any (partial) assignments w and w′, say w = {(x, a), (z, b)} and w′ ={

(x, a′), (z, b′)
}
, if b = b′ then g(b) = g(b′). In other words, we may take g

to be also a unary function.

Game theoretical truth, M, s |=+GT S ϕ, and game-theoretical falsity, M, s |=−GT S ϕ,
are defined by:

• M, s |=+GT S ϕ iff there is a winning strategy for Eloise in G(M, s,ϕ)
• M, s |=−GT S ϕ iff there is a winning strategy for Abelard in G(M, s,ϕ).

When m < n it can be shown that the game is non-determined: neither Abelard
nor the team of Eloise has a winning strategy. Thus we can say that, for one thing,
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signaling problems with less signals than states provide a nice concrete example of
an indeterminate IF sentence.1

19.9 Nash Equilibrium Semantics

We let T∃ be the set of pairs (h, k), say T∃ =
{
(h1, k1), . . . , (h p, kp)

}
and T∀ be the

set of strategies of Abelard, i.e. T∀ = M .
When a strategy (h, k) of Eloise is played against a strategy t of Abelard, a play

(history) of the extensive game of imperfect information G(ϕsig,M) results. It results
either in a win of Eloise or a win for Abelard, i.e. the payoffs of the players for each
pair (h, k), s) are determined. We can now change the extensive game G(ϕsig,M)

from the previous section into a strategic game �(ϕsig,M) which has the form:

s1 · · · sn t1 · · · tm a1 · · · an

(h1, k1) (1, 0) · · · (1, 0) (1, 0) · · · (1, 0)
(h2, k2) (1, 0) · · · (1, 0) (1, 0) · · · (1, 0)

...
...

...
...

...
...

...

(h p, kp) (1, 0) · · · (1, 0) (1, 0) · · · (1, 0)

This strategic game is not the game� from Sect. 19.8. We will show how to reduce
it to the strategic game � or rather to the game �2 from the same section which is
equivalent to it.

First notice that any two strategies r, r ′ ∈ �M ∪ RM are payoff equivalent for
Abelard. We pick one of them, say ti , ignore the rest, and reduce the game�(ϕsig,M)

to the smaller game �′:

s1 · · · sn ti
(h1, k1) (1, 0)
(h2, k2) (1, 0)

...
...

(h p, kp) (1, 0)

In virtue of the last Proposition in Sect. 19.7, we know that the values of � and �′
are identical.

In �′, let B = {B ⊆ SM and | B |= m}. The next observation is that, given that
m < n, for every B ⊆ B, there exists at least one pair (h, k) such that

B1 h � B : B → �M is one-one and onto
B2 k(h(s)) = s, for every s ∈ B

1 The significance of Lewis signaling games for the expressive power of IF logic is analyzed in
detail in F. Barbero and G. Sandu, “Signalling in Independence-Friendly Logic”, Logic Journal of
the IGPL, 2014, Doi 10.1093/jigpal/jzu004.
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In other words, when (h, k) is played against s ∈ M , the payoffs are (1, 0)whenever
s ∈ B, and (0, 1) when s /∈ B. Notice that conditions B1 and B2 are the same as our
earlier conditions (A1), (A2), except for h and k having the whole universe as their
domain.

For any B ⊆ B, let TB be the collection of all pairs (h, k)which satisfy conditions
(B1) and (B2). By the same reasoning as above, we reduce the game �′ to a smaller
game �′′ where the class of strategies of Eloise is restricted to TB.

We note that in the game �′′ any strategy si weakly dominates the unique strategy
ti . To see this, fix si and pick B ⊆ B, such that si /∈ B. Then let (h, k) be the unique
member of TB which satisfies (B1) and (B2). By our remarks following (B2), we
know that u∀((h, k), si ) = 1.

We apply the second Proposition above, eliminate the strategy ti and reduce the
game �′′ to the smaller game �′′′:

s1 · · · sn

(h1, k1)

(h2, k2)
...

(h p, kp)

Finally we notice that any strategy outside the set TB is weakly dominated by
some strategy in TB. Then we finally reduce the game �′′′ to the game

s1 · · · sn

(h1, k1) · · ·
(h2, k2) · · ·

... · · ·
(hr , kr ) · · ·

where every (hi , ki ) belongs to the set TB. This is the same as the game �2 in
Sect. 19.8.

19.10 Conclusions

We reformulated Lewis signaling games as win–lose extensive games of imper-
fect information in order to obtain an alternative account of conventions to Lewis’
signaling problems. Lewis’ signaling games made a distinction between strict (com-
municative) equilibria and nonstrict (noncommunicative) equilibria. Skyrms draws
an interesting comparison between Lewis’ account and the Stag Hunt game. He also
gives supplementary reasons why noncommunicative equilibria do not evolve (e.g.
they are not evolutionary stable). In our account noncommunicative strategies do not
form an equilibrium: it is irrational for the Sender–Receiver team to play them. In
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addition, for the case in which the number of signals equals the number of states, the
reformulation allows us to see that the communicative equilibria do not depend upon
the probability distributions of the relevant states. We extended the analysis to the
case in which there are less signals than states and realized that the strategies which
form an equilibrium are the ones where the Sender and the Receiver coordinate over
the maximal number of states. The value of the games in these cases can be nicely
connected with a probabilistic interpretation of IF logic.
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Part IV
Agency



Chapter 20
Them and Us: Autonomous Agents In Vivo
and In Silico

Peter Millican and Michael Wooldridge

Abstract The concept of agency is important in philosophy, cognitive science, and
artificial intelligence. Our aim in this chapter is to highlight some of the issues that
arise when considering the concept of agency across these disciplines. We discuss two
different views of agency: agents as actors (the originators of purposeful deliberate
action); and agents as intentional systems (systems to which we attribute mental
states such as beliefs and desires). We focus in particular on the view of agents
as intentional systems, and discuss Baron-Cohen’s model of the human intentional
system. We conclude by discussing what these different views tell us with respect to
the goal of constructing artificial autonomous agents.

20.1 Introduction

As we look around our world and try to make sense of what we see, it seems that we
naturally make a distinction between entities that in this chapter we will call “agents”,
and other objects. An agent in the sense of this chapter is something that seems to
have a similar status to us as a self-determining actor. When a child deliberates over
which chocolate to choose from a selection, and carefully picks one, we perceive
agency: there is choice, and deliberate, purposeful, autonomous action. In contrast,
when a plant grows from underneath a rock, and over time pushes the rock to one
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side, we see no agency: there is action, of a kind, but we perceive neither deliberation
nor purpose in the action.

The concept of agency is important for philosophers (who are interested in under-
standing what it means to be a self-determining being) and for cognitive scientists
and psychologists (who seek to understand, for example, how some people can come
to lack some of the attributes that we associate with fully realised autonomous agents,
and how to prevent and treat such conditions). However, the concept of agency is
also important for researchers in computer science and artificial intelligence, who
wish to build computer systems that are capable of purposeful autonomous action
(either individually or in coordination with each other). If such artificial agents are
to interact with people, then it must be helpful also to understand how people make
sense of agency.

The aim of this chapter is to survey and critically analyse various ways of con-
ceptualising agents, and to propose what we consider to be a promising approach.
Our discussion encompasses contributions from the literature on philosophy, cogni-
tive science, and artificial intelligence. We start by examining two different views of
agency:

• First-personal view. From this perspective, agents are purposeful originators of
deliberate action, motivated by conscious purposes.
• Third-personal view. From this perspective, agents are entities whose behaviour

can be predicted and explained through the attribution to them of beliefs, desires,
and rational choice.

Cutting across these perspectives is the issue of higher-order intentional reasoning,
by which an agent may adopt the third-personal view of other agents and adapt its
behaviour accordingly, based in part on the intentional states that it attributes to
those other agents. We shall see some evidence that such reasoning—a distinctive
characteristic of human beings in social groups—provides a plausible evolutionary
driver of our own brain size and conspicuous “intelligence”. Following a discussion
of the human intentional system and the condition of autism (drawing on work by
Simon Baron-Cohen), we turn to the question of agency in silico, and ask what lessons
can be learned with regard to the construction of artificial autonomous agents.

20.2 Agency from the First-Personal Perspective

We begin with the idea that agents are the conscious originators of purposeful de-
liberate action. As conscious beings ourselves, we naturally find this a compelling
viewpoint, and it has understandably spawned many centuries of discussion about
such thorny problems as free will, personal identity, and the relation between mind
and body. Even if we leave these old chestnuts aside, however, the view raises other
difficulties, which it will be useful to rehearse briefly.

First, there is the basic problem of how actions should be counted and individuated
(which also arises, though perhaps less severely, from the third-personal perspective).
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Consider the following classic example, due to Searle [31]. On 28 June 1914, the
19-year-old Yugoslav Nationalist Gavrilo Princip assassinated Archduke Franz Fer-
dinand of Austria, and thereby set in motion a chain of events that are generally
accepted to have led to World War I, and hence the deaths of millions of people.
This is, surely, one of the most famous deliberate actions in history. But if we try to
isolate exactly what action it was that Princip carried out, we run into difficulties,
with many different possibilities, including:

• Gavrilo squeezed his finger;
• Gavrilo pulled the trigger;
• Gavrilo fired a gun;
• Gavrilo assassinated Archduke Ferdinand;
• Gavrilo struck a blow against Austria;
• Gavrilo started World War I.

All six of these seem to be legitimate descriptions of what it was that Princip did, yet
we are naturally reluctant to say that he simultaneously performed a host of actions
through the simple squeezing of his finger. We would like to isolate some privileged
description, but can be pulled in different directions when we attempt to do so.
One tempting thought here is that the remote effects of what Princip did are surely
no part of his action: allowing them to be so would mean that people are routinely
completing actions long after they have died (as well as performing countless actions
simultaneously, e.g., moving towards lots of different objects as we walk). This line
of thought naturally leads us to identify the genuine action as the initiation of the
entire causal process in Princip’s own body—the part over which he exercised direct
control in squeezing his finger. But if we go that far, should we not go further?
Princip’s finger movement was caused by his muscles contracting, which was in turn
caused by some neurons firing, which was caused by some chemical reactions … and
so on. We seem to need some notion of basic or primitive action to halt this regress,
but if such primitive actions are at the level of neuronal activity, then they are clearly
not directly conscious or introspectible. This, however, makes them very doubtful
paradigms of deliberate action, especially from the first-personal perspective whose
focus is precisely on consciousness, and is therefore quite oblivious of the detailed
activity of our muscles and neurons.

(As an aside, notice that when we consider the notion of agency in the context
of computers, this threat of regress is, to some extent at least, mitigated. Com-
puter processors are designed using an explicit notion of atomic action—in the form
of an “atomic program instruction”—an indivisible instruction carried out by the
processor.)

In reaction to these difficulties, a quite different tempting thought is precisely to
appeal to our first-person experience, and to identify the genuine action with the
effect that we consciously intend. But here we can face the problems of both too
much, and too little, consciousness. For on the one hand, Princip plausibly intended
at least four of the six action descriptions listed above, and again, this route will
lead to posthumous action (since people routinely act with the conscious intention
of bringing about effects after their death, such as providing for their children—see
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[20, pp. 68–73] for the more general problem of trying to pin down the timing of
extended actions). On the other hand, a great many of the actions that we perform
intentionally are done without explicit consciousness of them, and the more expert
we become at a skill (such as driving, riding a bike, typing, or playing the piano), the
more likely we are to perform the actions that it involves with minimal consciousness
of what we are doing (and indeed trying to concentrate on what we are doing is quite
likely to disrupt our performance). Even when we do become fully conscious of
acting in such a context—for example, when I suddenly swerve away on seeing a
pedestrian fall into the road just ahead of my car—such activity is likely to precede
our consciousness of it, and its emergency, “instinctive” nature anyway makes it an
unlikely paradigm of conscious deliberate action.

In the face of these sorts of difficulties, many philosophers (notably Bratman [6])
have come to prefer an account of intentional action in terms of plans. Here, for
example, is the first approximate formulation by Mele and Moser:

A person, S, intentionally performs an action, A, at a time, t, only if at t, S has an action plan,
P, that includes, or at least can suitably guide, her A-ing [25, p. 43].

They go on to add further conditions, requiring that S have an intention which includes
action plan P, and also that S “suitably follows her intention-embedded plan P in
A-ing” [25, p. 52] (for present purposes we can ignore here the additional conditions
that Mele and Moser formulate to capture plausible constraints on evidence, skill,
reliability, and luck). But importantly, intentionality is consistent with S’s having
“an intention that encompasses, … subconsciously, a plan that guides her A-ing”
[25, p. 45, emphasis added]. Seeing actions as falling into a pattern guided by a plan
thus enables habitual or automatic actions to be brought into the account, whether
they are conscious or not.

All this somewhat undermines the all-too-natural assumption that the first-
personal point of view is specially privileged when it comes to the identification
of, and understanding of, action. And as we shall see later, such theories of human
action (e.g., Bratman’s) have already borne fruit in work towards the design of prac-
tical reasoning computer agents. But in fact there is nothing here that precludes the
idea that consciousness of what we are doing—and conscious reflection on it—plays
a major role in human life and experience. A cognitive model that explains action
in informational terms is perfectly compatible with the supposition that certain as-
pects of its operation may be available in some way to consciousness. For example,
Goldman [19] sketches the model of action proposed by Norman and Shallice [28]
and explains how conscious awareness “of the selection of an action schema, or a
‘command’ to the motor system” could play a role within it.

There might well, however, seem a threat here to our conception of human free
will, if consciousness of what we are doing is seen as post-hoc monitoring of un-
conscious cognitive processes that have already taken place by the time we become
aware of them. Such worries may be sharpened by recent research in neuropsychol-
ogy, in which observations using MRI scanners indicated that the mental sensation
of conscious decision can lag quite some time behind certain identifiable physio-
logical conditions that are strongly correlated with the decision ultimately made.
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Experiments carried out at the Max Planck Institute for Human Cognitive and Brain
Sciences in Germany suggested that it was possible to detect that a person had al-
ready made a choice, and what that choice was, up to 10 seconds before the person
in question was consciously aware of it [34]. Interpretation of such results is highly
controversial, and there is clearly more work to be done in this area. We have no
space to explore the issues here, but would end with four brief comments. First, we
see no significant conflict between the idea that our thought is determined by uncon-
scious “subcognitive” processes and the claim that we are genuinely free. To confine
ourselves to just one point from the familiar “compatibilist” arsenal of arguments,
the term “free choice” is one that we learn in ordinary life, and it would be perverse
to deny that paradigm cases of such choice (such as a child’s choosing a chocolate,
with which we started) are genuinely free—if these aren’t cases of free choice, then
we lose all purchase on the intended meaning of the term. Secondly, it is entirely
unsurprising that our conscious thinking should be found to correlate strongly with
certain events in the brain, and such correlation does not imply that “we” are not
really in control. On the contrary, neural processes are apparently the mechanism
by which we reason and make choices; that they determine our thoughts no more
implies that “we” are not really thinking those thoughts than the transfer of visual
signals along the optic nerve implies that “we” are not really seeing things (or, for
that matter, that the electronic activity of its components implies that a computer is
not really calculating things). Thirdly, we would resist any suggestion that the neu-
rophysiological evidence points towards epiphenomenalism—the theory according
to which mind and mental states are caused by physical (brain and body) processes,
but are themselves causally inert (crudely but vividly, this takes the conscious mind
to be a passenger in the body, under the illusion that it is a driver). If evolution has
made us conscious of what we do, then it is overwhelmingly likely that this has some
causal payoff, for otherwise it would be an outrageous fluke—utterly inexplicable
in terms of evolutionary benefit or selection pressure—that our consciousness (e.g.,
of pains, or sweet tastes) should correlate so well with bodily events [27, Sect. 5].
Finally, there could indeed be some conflict between our intuitive view of action and
the findings of neurophysiology if it turned out that even our most reflective decisions
are typically physiologically “fixed” at a point in time when we feel ourselves to be
consciously contemplating them. But given the implausibility of epiphenomenalism,
and the evident utility of conscious reflection in our lives, we consider this scenario
to be extremely unlikely (cf. [3, pp. 42–43]).

20.3 Agency from the Third-Personal Perspective

Returning to the motivation that introduced this chapter, suppose we are looking
around us, trying to make sense of what we see in the world. We see a wide range
of processes generating continual change, many of these closely associated with
specific objects or systems. What standpoints can we adopt to try to understand these
processes? One possibility is to understand the behaviour of a system with reference
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to what the philosopher Daniel Dennett calls the physical stance [12, p. 36]. Put
simply, the idea of the physical stance is to start with some original configuration,
and then use known laws of nature (physics, chemistry etc.) to predict how this
system will behave:

When I predict that a stone released from my hand will fall to the ground, I am using the
physical stance. […] I attribute mass, or weight, to the stone, and rely on the law of gravity
to yield my prediction [12, p. 37].

While the physical stance works well for simple cases such as this, it is of course not
practicable for understanding or predicting the behaviour of people, who are far too
complex to be understood in this way.

Another possibility is the design stance, which involves prediction of behaviour
based on our understanding of the purpose that a system is supposed to fulfil. Dennett
gives the example of an alarm clock [12, pp. 37–39]. When someone presents us with
an alarm clock, we do not need to make use of physical laws in order to understand
its behaviour. If we know it to be a clock, then we can confidently interpret the
numbers it displays as the time, because clocks are designed to display the time.
Likewise, if the clock makes a loud and irritating noise, we can interpret this as an
alarm that was set at a specific time, because making loud and irritating noises at
specified times (but not otherwise) is again something that alarm clocks are designed
to do. No understanding of the clock’s internal mechanism is required for such an
interpretation (at least in normal cases)—it is justified sufficiently by the fact that
alarm clocks are designed to exhibit such behaviour.

Importantly, adopting the design stance towards some system does not require
us to consider it as actually designed, especially in the light of evolutionary theory.
Many aspects of biological systems are most easily understood from a design per-
spective, in terms of the adaptive functions that the various processes perform in the
life and reproduction of the relevant organism, treating these processes (at least to
a first approximation) as though they had been designed accordingly. The same can
also apply to adaptive computer systems, whose behaviour is self-modifying through
genetic algorithms or other broadly evolutionary methods. Understanding such sys-
tems involves the design stance at two distinct levels: at the first level, their overt
behaviour—like that of biological systems—may be most easily predicted in terms
of the appropriate functions; while at the second level, the fact that they exhibit such
functional behaviour is explicable by their having been designed to incorporate the
relevant evolutionary mechanisms.

A third possible explanatory stance, and the one that most interests us here, is
what Dennett calls the intentional stance [11]. From this perspective, we attribute
mental states to entities and then use a common-sense theory of these mental states
to predict how the entity will behave, under the assumption that it makes choices in
accordance with its attributed beliefs and desires. The most obvious rationale for this
approach is that when explaining human activity, it is often useful to make statements
such as the following:

Janine believes it is going to rain.
Peter wants to finish his marking.
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These statements make use of a folk psychology, by which human behaviour is
predicted and explained through the attribution of attitudes, such as believing and
wanting, hoping, fearing, and so on (see, for example, [35] for a discussion of folk
psychology). This style of explanation is entirely commonplace, and most people
reading the above statements would consider their meaning to be entirely clear,
without a second thought.

Notice that the attitudes employed in such folk psychological descriptions are
intentional notions: they are directed towards some form of propositional content.
In the above examples, the propositional content is respectively something like “it
is going to rain” and “finish my marking”, but although it is surprisingly hard to pin
down how such content should be characterised or individuated (especially when
it involves the identification or possibly misidentification of objects from different
perspectives [26, Sect. 5]), we need not worry here about the precise details. Dennett
coined the term intentional system to describe entities

whose behaviour can be predicted by the method of attributing belief, desires and rational
acumen [11, p. 49].

The intentional stance can be contrasted not only with the physical and design
stances, but also with the behavioural view of agency. The behavioural view—most
famously associated with B. F. Skinner—attempts to explain human action in terms of
stimulus–response behaviours, which are produced via “conditioning” with positive
and negative feedback. But as Pinker critically remarks,

The stimulus-response theory turned out to be wrong. Why did Sally run out of the building?
Because she believed it was on fire and did not want to die. […] What [predicts] Sally’s
behaviour, and predicts it well, is whether she believes herself to be in danger. Sally’s beliefs
are, of course, related to the stimuli impinging on her, but only in a tortuous, circuitous way,
mediated by all the rest of her beliefs about where she is and how the world works [29, pp.
62–63].

In practice, then, the intentional stance is indispensable for our understanding of other
humans’ behaviour. But it can also be applied, albeit often far less convincingly, to a
wide range of other systems, many of which we certainly would not wish to admit as
autonomous agents. For example, consider a conventional light switch, as described
by Shoham:

It is perfectly coherent to treat a light switch as a (very cooperative) agent with the capability
of transmitting current at will, who invariably transmits current when it believes that we want
it transmitted and not otherwise; flicking the switch is simply our way of communicating
our desires [32, p. 6].

However, the intentional stance does not seem to be an appropriate way of under-
standing and predicting the behaviour of light switches: here it is far simpler to adopt
the physical stance (especially if we are manufacturing light switches) or the design
stance (if we are an ordinary user, needing to know only that the switch is designed
to turn a light on or off). By contrast, notice that, at least as sketched by Shoham,
an intentional explanation of the switch’s behaviour requires the attribution to it of
quite complex representational states, capable of representing not only the flowing
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or absence of current, but also our own desires (which, on this story, it acts to satisfy).
So even if this intentional account provides accurate prediction of the switch’s be-
haviour, it is wildly extravagant as an explanation: to attribute beliefs and desires to
a switch is already implausible, but to attribute to it higher-order beliefs and desires
is well beyond the pale.

20.4 Higher-Order Intentionality
Human beings are in the unusual position of being both intentional agents in the
first-personal sense and also fertile ascribers of third-personal intentionality to other
entities. Although above we have described the intentional stance as a third-person
explanatory framework, that stance is not of course employed only by people of
scientific inclination: indeed the intentional stance comes very naturally—and often
far too naturally [27, Sect. 1]—to people in general.

This human predilection for the intentional stance seems to be intimately bound
to our status as social animals. That is, the adaptive role of such intentional ascription
seems to be to enable us to understand and predict the behaviour of other agents in
society. In navigating our way through this complex social web, we become involved
in higher-order intentional thinking, whereby the plans of individuals (whether our-
selves or those we observe) are influenced by the anticipated intentional behaviour
of other agents. The value of such thinking is clear from its ubiquity in human life
and the extent to which we take it for granted in our communications. Take for ex-
ample the following fragment of conversations between Alice and Bob (attributed
by Baron-Cohen [2] to Pinker):

Alice: I’m leaving you.
Bob: Who is he?

The obvious intentional stance explanation of this scenario is simple, uncontrived,
and compelling: Bob believes that Alice prefers someone else to him and that she
is planning accordingly; Bob also wants to know who this is (perhaps in the hope
of dissuading her), and he believes that asking Alice will induce her to tell him. It
seems implausibly difficult to explain the exchange without appealing to concepts
like belief and desire, not only as playing a role in the agents’ behaviour, but also
featuring explicitly in their own thinking and planning.

Adoption of the third- (or second-) person intentional stance is also a key ingre-
dient in the way we coordinate our activities with each other on a day-by-day basis,
as Pinker illustrates:

I call an old friend on the other coast and we agree to meet in Chicago at the entrance of a
bar in a certain hotel on a particular day two months hence at 7:45pm, and everyone who
knows us predicts that on that day at that time we will meet up. And we do meet up. […] The
calculus behind this forecasting is intuitive psychology: the knowledge that I want to meet
my friend and vice versa, and that each of us believes the other will be at a certain place at
a certain time and knows a sequence of rides, hikes, and flights that will take us there. No
science of mind or brain is likely to do better [29, pp. 63–64].
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All of this involves a mix of first- and higher-order intentional ascription,
characterised by Dennett as follows:

A first-order intentional system has beliefs and desires (etc.) but no beliefs and desires
about beliefs and desires. [. . .] A second-order intentional system is more sophisticated; it
has beliefs and desires (and no doubt other intentional states) about beliefs and desires (and
other intentional states) — both those of others and its own [11, p. 243].

The following statements illustrate these different levels of intentionality:

1st order: Janine believed it was raining.
2nd order: Michael wanted Janine to believe it was raining.
3rd order: Peter believed Michael wanted Janine to believe it was raining.

In our everyday lives, it seems we probably do not use more than about three layers of
the intentional stance hierarchy (unless we are engaged in an artificially constructed
intellectual activity, such as solving a puzzle or complex game theory), and it seems
that most of us would probably struggle to go beyond fifth-order reasoning.

Interestingly, there is some evidence suggesting that other animals are capable
of and make use of at least some higher-order intentional reasoning. Consider the
example of vervet monkeys, which in the wild make use of a warning cry indicating
to other monkeys the presence of leopards (a threat to the monkey community):

Seyfarth reports (in conversation) an incident in which one band of vervets was losing ground
in a territorial skirmish with another band. One of the losing-side monkeys, temporarily out
of the fray, seemed to get a bright idea: it suddenly issued a leopard alarm (in the absence
of any leopards), leading all the vervets to take up the cry and head for the trees — creating
a truce and regaining the ground his side had been losing. […] If this act is not just a lucky
coincidence, then the act is truly devious, for it is not simply a case of the vervet uttering
an imperative “get into the trees” in the expectation that all the vervets will obey, since the
vervet should not expect a rival band to honor his imperative. So either the leopard call is […]
a warning — and hence the utterer’s credibility but not authority is enough to explain the
effect, or our utterer is more devious still: he wants the rivals to think they are overhearing
a command intended only for his own folk [10, p. 347].

One can, of course, put forward alternative explanations for the above scenario, which
do not imply any higher-order intentional reasoning. But, nevertheless, this anecdote
(amongst others) provides tentative support for the claim that some non-human ani-
mals engage in higher-order intentional reasoning. There are other examples: chim-
panzees, for example, seem to demonstrate some understanding of how others see
them, a behaviour that is indicative of such higher-order reasoning.

20.4.1 Higher-Order Intentionality and Species Intelligence
While there is evidence that some other animals are capable of higher-order inten-
tional reasoning to a limited extent, there seems to be no evidence that they are
capable of anything like the richness of intentional reasoning that humans routinely
manage. Indeed, it is tempting to take the widespread ability to reason at higher
orders of intentionality as a general indicator of species intelligence. This idea, as
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we shall see, can be given further support from Robin Dunbar’s work on the analysis
of social group size in primates [13].

Dunbar was interested in the following question: Why do primates have such
large brains (specifically, neocortex size), compared with other animals? Ultimately,
the brain is an (energetically expensive) information processing device, and so a
large brain would presumably have evolved to deal with some important informa-
tion processing requirement for the primate. But what requirement, exactly? Dunbar
considered a number of primates, and possible factors that might imply the need for
enhanced information processing capacity. For example, one possible explanation
could be the need to keep track of food sources in the primate’s environment. Another
possible explanation could be the requirement for primates with a larger ranging or
foraging area to keep track of larger spatial maps. However, Dunbar found that the
factor that best predicted neocortex size was the primate’s mean group size: the av-
erage number of animals in social groups. This suggests that the large brain size of
primates is needed to keep track of, maintain, and exploit the social relationships in
primate groups.

Dunbar’s research suggests a tantalising question: given that we know the average
human neocortex size, what does his analysis predict as being the average group size
for humans? The value obtained by this analysis is now known as Dunbar’s number,
and it is usually quoted as 150. That is, given the average human neocortex size and
Dunbar’s analysis of other primates, we would expect the average size of human
social groups to be around 150. Dunbar’s number would remain a curiosity but for
the fact that subsequent research found that this number has arisen repeatedly, across
the planet, in connection with human social group sizes. For example, it seems that
neolithic farming villages typically contained around 150 people. Of more recent
interest is the fact that Dunbar’s number has something to say about Internet-based
social networking sites such as Facebook. We refer the reader to [14] for an informal
discussion of this and other examples of how Dunbar’s number manifests itself in
human society.

If species neocortex size does indeed correlate strongly with social group size,
then the most likely evolutionary explanation seems to be precisely the need for,
and adaptive value of, higher-order intentional reasoning within a complex society.
Whether hunting in groups, battling with conflicting tribes, pursuing a mate (perhaps
against rivals), or gaining allies for influence and leadership (with plentiful potential
rewards in evolutionary fitness), the value of being able to understand and anticipate
the thinking of other individuals is obvious. We have already seen how higher-order
intentional reasoning plays an important role in relationships between humans, to the
extent that we routinely take such reasoning for granted in mutual communication.
This being so, it is only to be expected that larger social groups would make more
demands of such reasoning, providing an attractive explanation for the relationship
with neocortex size that Dunbar identified (cf. his discussion in [14, p. 30]). This is
further corroborated by evidence that higher-order intentional reasoning capabilities
are approximately a linear function of the relative size of the frontal lobe of the
brain [14, p. 181], which seems to be peculiar to primates, and is generally understood
as that part of the brain that deals with conscious thought.
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Fig. 20.1 Baron-Cohen’s model of human intentional systems [2, p. 32]

20.5 The Human Intentional System

In this section, we briefly review a model of the human intentional system. The
model was proposed by Baron-Cohen [2], an evolutionary psychologist interested
in understanding of what he calls “mindreading”—the process by which humans
understand and predict each other’s mental states. A particular interest of Baron-
Cohen’s is the condition known as autism, which we discuss in more detail below.

Baron-Cohen’s model of the human intentional system is composed of four main
modules—see Fig. 20.1. Broadly speaking, the model attempts to define the key
mechanisms involved in going from observations of processes and actions in the
environment, through to predictions and explanations of agent behaviour. The four
components of the model are as follows:

• the Intentionality Detector (ID);
• the Eye Direction Detector (EDD);
• the Shared Attention Mechanism (SAM); and
• the Theory of Mind Mechanism (ToMM).

The role of the Intentionality Detector (ID) is to:

[I]nterpet motion stimuli in terms of the primitive volitional mental states of goal and desire.
[…] This device is activated whenever there is any perceptual input that might identify
something as an agent. […] This could be anything with self-propelled motion. Thus, a
person, a butterfly, a billiard ball, a cat, a cloud, a hand, or a unicorn would do. Of course,
when we discover that the object is not an agent — for example, when we discover that
its motion is not self-caused, we can revise our initial reading. The claim, however, is that
we readily interpret such data in terms of the object’s goal and/or desire. […] ID, then, is
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BOX

Fig. 20.2 The SAM builds triadic representations, such as “you and I see that we are looking at
the same object” [2, p. 45]

very basic. It works through the senses (vision, touch, audition), […and it will] interpret
almost anything with self-propelled motion, or anything that makes a non-random sound, as
an agent with goals and desires [2, pp. 32–33].

The output of the ID takes the form of primitive dyadic (two-place) intentional
ascriptions, such as:

• She wants to stay dry.
• It wants to catch the wildebeest.

At broadly the same level as ID in Baron-Cohen’s model is the Eye Direction
Detector (EDD). In contrast to ID, which works on multiple types of perceptual
input, the EDD is focussed around vision. Its basic role is as follows:

EDD has three basic functions: it detects the presence of eyes or eye-like stimuli, it computes
whether eyes are directed towards it or toward something else, and it infers from its own
case that if another organism’s eyes are directed at something then that organism sees that
thing. The last function is important because it [makes it possible to] attribute a perceptual
state to another organism (such as “Mummy sees me”) [2, pp. 38–39].

Dyadic representations such as those above provide a foundation upon which
richer intentional acriptions might be developed, but they simply capture an attitude
that an agent has to a proposition, and in this they are of limited value for under-
standing multi-agent interactions. The purpose of the Shared Attention Mechanism
(SAM) is to build nested, triadic representations. Figure 20.2 illustrates a typical
triadic representation: “You and I see that we are looking at the same object”. Other
examples of triadic representations include:

• Bob sees that Alice sees the gun.
• Alice sees that Bob sees the girl.
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The Theory of Mind Mechanism (ToMM) is the final component of Baron-
Cohen’s model:

ToMM is a system for inferring the full range of mental states from behaviour — that is, for
employing a “theory of mind”. So far, the other three mechanisms have got us to the point
of being able to read behaviour in terms of volitional mental states (desire and goal), and to
read eye direction in terms of perceptual mental states (e.g., see). They have also got us to
the point of being able to verify that different people can be experiencing these particular
mental states about the same object or event (shared attention). But a theory of mind, of
course, includes much more [2, p. 51].

Thus, the ToMM goes from low-level intentional ascriptions to richer nested models.
It is the ToMM to which we must appeal in order to understand Bob’s question “Who
is he?” when Alice says “I’m leaving you.”

Baron-Cohen probably does not intend us to interpret the word “theory” in the
ToMM to mean a theory in any formal sense (e.g., as a set of axioms within some
logical system). However, this suggests an intriguing research agenda: To what extent
can we come up with a logical ToMM, which can model the same role as the ToMM
that we all have? While progress has been made on studying idealised aspects of
isolated components of agency, such as knowledge [15, 21], attempting to construct
an integrated theory of agency is altogether more challenging. We refer the reader
to [9, 37, 38] for discussion and detailed references.

20.5.1 Autism

It is illuminating to consider what the consequences would be if some of the
mechanisms of a fully-fledged intentional system were damaged or malfunction-
ing. Baron-Cohen hypothesises that the condition known as autism is a consequence
of impairments in the higher-order mechanisms of the human intentional system:
the SAM and/or ToMM. Autism is a serious, widespread psychiatric condition that
manifests itself in childhood:

The key symptoms [of autism] are that social and communication development are clearly
abnormal in the first few years of life, and the child’s play is characterized by a lack of the
usual flexibility, imagination, and pretense. […] The key features of the social abnormalities
in autism […] include lack of eye contact, lack of normal social awareness or appropriate
social behaviour, “aloneness”, one-sidedness in interaction, and inability to join a social
group [2, pp. 62–63].

Baron-Cohen argues that autism is the result of failures in the higher-order com-
ponents of the human intentional system described above, i.e., those mechanisms
that deal with triadic representations and more complex social reasoning: the SAM
and ToMM. He presents experimental evidence to support the claim that the ID and
EDD mechanisms are typically functioning normally in children with autism [2]. For
example, they use explanations such as “she wants an ice cream” and “he is going
to go swimming” to explain stories and pictures, suggesting that the ID mechanism
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is functioning (recall that the role of the ID mechanism is to interpret apparently
purposeful actions in terms of goals and desires). Moreover, they are able to interpret
pictures of faces and make judgements such as “he is looking at me”, suggesting
that the EDD mechanism is functioning. However, autistic children seem unable to
engage in shared activities, such as pointing to direct the gaze of another individual,
suggesting that the SAM is not functioning properly. Finally, experiments indicate
that autistic children have difficulty reasoning about the mental states of others, for
example, trying to understand what others believe and why. Baron-Cohen takes this
as a failure of the ToMM.

To evaluate Baron-Cohen’s theory, consider how individuals with an impaired
higher-order intentional system would behave. We might expect them to have dif-
ficulty in complex social settings and in predicting how others will react to their
actions, to struggle when attempting to engage in group activities; and so on. And
indeed, it seems these behaviours correlate well with the observed behaviours of
autistic children.

20.6 Agency and Artificial Intelligence

Our discussion thus far has been divorced from the question of how we might actually
build computer systems that can act as autonomous agents, and how far consideration
of the nature of human agency can yield insights into how we might go about doing
so. This question is of course central to the discipline of artificial intelligence—
indeed one plausible way of defining the aim of the artificial intelligence field is to
say that it is concerned with building artificial autonomous agents [30].

We start by considering the logicist tradition within artificial intelligence, which
was historically very influential. It dates from the earliest days of artificial intelli-
gence research, and is perhaps most closely associated with John McCarthy (the man
who named the discipline of artificial intelligence—see, e.g., [24] for an overview
of McCarthy’s programme). As the name suggests, logic and logical reasoning take
centre stage in the logicist tradition, whose guiding theme is that the fundamen-
tal problem faced by an agent—that of deciding what action to perform at any
given moment—is reducible to a problem of purely logical reasoning. Figure 20.3
illustrates a possible architecture for a (highly stylized!) logical reasoning agent
(cf. [16, pp. 307–328]):

• The agent has sensors, the purpose of which is to obtain information about the
agent’s environment. In contemporary robots, such sensors might be laser range
finders, cameras, and radars, and GPS positioning systems [36].
• The agent has effectors, through which it can act upon its environment (e.g., robot

arms for manipulating objects, wheels for locomotion).
• The two key data structures within an agent are a set Δ of logical formulae,

which represent the state of the agent, and a set of rules, R, which represent the
theory of the agent. The setΔ will typically include information about the agent’s
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Fig. 20.3 An artificial agent that decides what to do via logical reasoning

environment, and any other information recorded by the agent as it executes. The
rule set R will typically include both a background theory (e.g., information such
as “if an object is on top of a block, then that block is not clear”) and a theory of
rational choice for the agent.
• Transducers transform raw sensor data into the symbolic logical form of Δ. Sim-

ilarly, they map software instructions issued by the robot to commands for the
actuators and effectors of the robot.
• A general-purpose logical reasoning component enables the agent to apply rules

R to the agent’s database Δ to derive logical conclusions; we also assume this
component handles updating of Δ in the face of new sensor data, etc.

The agent continually executes a sense-reason-act loop, as follows:

• Sense: The agent observes its environment through its sensors, and after appropri-
ate processing by transducers, this provides potentially new information in logical
form; this new information is then incorporated into the agent’s representationΔ.
• Reason: The reasoning component of the agent then tries to prove a sequent of the

form Δ �R Do(α), where α is a term that will correspond to an action available
to the agent (e.g., an action with the robot arm). The idea is that, if the agent is able
to prove such a sequent, then assuming the agent’s representationΔ is correct, and



562 P. Millican and M. Wooldridge

the rules R have been constructed appropriately, then α will be the appropriate
(“optimal”) action for the agent to take.
• Act: At this point, the actionα selected during the previous phase stage is executed.

Thus, the “program” of the agent is encoded within its rules R. If these rules are
designed appropriately, and if the various subsystems of the agent are operating
correctly, then the agent will autonomously select an appropriate action to perform
every time it cycles round the sense-reason-act loop.

The idea of building an agent in this way is seductive. The great attraction is that
the rules R explicitly encode a theory of rational action for our agent. If the theory
is good, then the decisions our agent makes will also be good. However, there are
manifold difficulties with the scheme, chief among them being the following (see,
e.g., [4] for a detailed discussion):

• The problem of representing information about complex, dynamic, multi-agent
environments in a declarative logical form.
• The problem of translating raw sensor data into the appropriate declarative logical

form, in time for this information to be of use in decision-making.
• The problem of automating the reasoning process (i.e., checking whether Δ �R

Do(α)), particularly when decisions are required promptly.

Despite great efforts invested into researching these problems over the past half
century, they remain essentially unsolved in general, and the picture we paint above of
autonomous decision-making via logical reasoning does not represent a mainstream
position in contemporary artificial intelligence research. Indeed, in the late 1980s
and early 1990s, many researchers in artificial intelligence began to reject the logicist
tradition, and to look to alternative methods for building agents. (See [8] for a detailed
discussion of alternative approaches to artificial agency by Rodney Brooks, one of the
most prominent and outspoken researchers against the logicist tradition and behind
alternative proposals for building agents, and see [38] for a discussion and detailed
references.)

Before we leave the logicist tradition of artificial intelligence, it is interesting to
comment on the status of the logical representation Δ within an agent. Intuitively
understood, the database Δ contains all the information that the agent has gathered
and retained from its environment. For example, referring back to Fig. 20.3, we see
that the agent has within its representation Δ the predicate On(A, T able); and we
can also see that indeed the block labelled “A” is in fact on top of the table. It is
therefore very tempting to interpret Δ as being the beliefs of the agent, and thus
assert that the agent believes block “A” is on the table. Under this interpretation, the
presence of a predicate P(a, b) in Δ would mean “the agent believes P(a, b)”, and
we would be inclined to say the agent’s belief was correct if, when we examined the
agent’s environment, we found that the object a stood in relation P to object b (this
assumes, of course, that we know what objects/relations a, b, and P are supposed to
denote in the environment: the agent designer can presumably give us this mapping).
See Konolige [22] for a detailed discussion of this subject.
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20.6.1 A Refinement: Practical Reasoning Agents

The practical difficulties in attempting to realise the logicist vision of autonomous
agents have led researchers to explore alternatives, and such exploration can also
be motivated by the consideration that we don’t seem to make decisions in that
way! While there are surely occasions when many of us use abstract reasoning and
problem solving techniques in deciding what to do, it is hard to imagine many realistic
situations in which our decision-making is realised via logical proof. An alternative is
to view decision-making in autonomous agents as a process of practical reasoning:
reasoning directed towards action, rather than beliefs. That is, practical reasoning
changes our actions, while theoretical reasoning changes our beliefs [6]:

Practical reasoning is a matter of weighing conflicting considerations for and against
competing options, where the relevant considerations are provided by what the agent de-
sires/values/cares about and what the agent believes [7, p. 17].

Bratman [7] distinguishes two processes that take place in practical reasoning:
deliberation and means-ends reasoning. Deliberation is the process of deciding what
we want to achieve. As a result of deliberating, we fix upon some intentions: com-
mitments to bring about specific states of affairs. Typically, deliberation involves
considering multiple possible candidate states of affairs, and choosing between them.
The second process in practical reasoning involves determining how to achieve the
chosen states of affairs, given the means available to the agent; this process is hence
called means-ends reasoning. The output of means-ends reasoning is a plan: a recipe
that can be carried out by the agent, such that after the plan is carried out, the intended
end state will be achieved.

Thus, after practical reasoning is completed, the agent will have chosen some
intentions, and will have a plan that is appropriate for fulfilling these intentions.
Under normal circumstances, an agent can proceed to execute its chosen plans, and
the desired ends will result. The following practical syllogism provides a link between
beliefs, intentions, plans, and action:

If I intend to achieve φ and
I believe plan π will accomplish φ

Then I will do π.

This practical reasoning model has been hugely influential within the artificial
intelligence community (see, e.g., [1, 18]). A typical architecture for a practical
reasoning agent is illustrated in Fig. 20.4. The agent has three key data structures,
which, as in the logicist tradition, are symbolic/logical representations. The agent’s
beliefs are a representation of the agent’s environment; the agent’s goal represents
a state of affairs that the agent is currently committed to bringing about, and the
agent’s plan is a sequence of actions that the agent is currently executing. If the
agent’s beliefs are correct, and the plan is sound, then the execution of the plan will
result in the accomplishment of the goal [23].

Architectures of the type shown in Fig. 20.4 are often referred to as belief-desire-
intention (BDI) architectures. In this context, “desire” is usually considered as an
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TABLE

A
C

B

Beliefs:
On(A,Table) ^ On(C,A) ^ 
On(B,Table) ^ Clear(C)^ 
Clear(B) ^ Empty(Hand)

Intention/Goal:
On(A,Table) ^ On(B,A) ^ On(C,B)

Current Plan:
pickup(C); placeOn(C,Table); 
pickup(B); placeOn(B,A); 
pickup(C); placeOn(C,B)

sensors

R
E
A
S
O
N
E
R

effectors

Fig. 20.4 A practical reasoning agent

intermediate state: the agent has potentially many conflicting desires, but chooses
between them to determine the goal or intention that it will then fix on. In the BDI
model, the sense-reason-act decision-making loop is modified as follows [37]:

• Sense: Observe the environment, and update beliefs on the basis of observations.
• Option generation: Given the current beliefs and intentions of the agent, determine

what options are available, i.e., those states of affairs that the agent could usefully
commit to bringing about.
• Filtering: Given the current beliefs, desires, and intentions of the agent, choose

between competing options and commit to one. The chosen option becomes the
agent’s current intention.
• Means-Ends Reasoning: Given the current beliefs and intentions of the agent, find

a plan such that, when executed in an environment where the agent’s beliefs are
correct, the plan will result in the achievement of the agent’s intentions.
• Action: Execute the plan.

Various refinements can be made to this loop (e.g., so that an agent is not assumed to
execute the entire plan before observing its environment again) [37], and of course the
picture can be complicated considerably to take account of uncertainties and interac-
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tion with complex and changing situations (including game-theoretical consideration
of the planning and behaviour of other agents).

The practical reasoning/BDI paradigm suffers from many of the same difficulties
that beset the logicist paradigm. For example, the assumption of a logical represen-
tation of the agent’s beliefs implies the need for transducers that can obtain logical
representations from raw sensor data. In addition, the means-ends reasoning problem
is computationally complex for logical representations of even modest richness [18].
However, various refinements permit efficient implementations of the architecture;
perhaps the best known is the reactive planning class of architectures [5, 17]. The
basic idea in such architectures is that the agent is equipped with a collection of
plans, generated by the agent designer, which are labelled with the goals that they
can be used to achieve. The means-ends reasoning problem then reduces to the com-
paratively tractable problem of searching through the plan library to try to find a plan
that is suitable for the current intention.

Of course, one could now ask to what extent such an agent is genuinely
autonomous, when in a sense “all it is doing” is assembling and executing plans
made up of pre-compiled plan fragments. Such questions raise deep philosophical
issues that we cannot address fully now, but here is a sketch of a response. First, there
is much to be said for the idea that autonomy is a matter of degree: everything that we
do is subject to constraints of various sorts (of ability, cost, law, physical possibility
etc.), and all of these can vary in countless ways that extend or limit how far things
are “under our control”. Secondly, the autonomy attributable to a human—and by
extension a computer system—depends in part on how far the reasoning employed
in deciding on a course of action is “internal” to the agent: if the agent is performing
a complex calculation, taking into account the various constraints and aims within
a range of flexible possibilities, this demonstrates far more autonomy than an agent
that is simply following orders without any internal reasoning or selection of choices.
Thirdly, it follows that autonomy correlates quite strongly with the extent to which
application of the third-person intentional stance assists in deep understanding and
prediction of the system’s behaviour. Some researchers, inspired by the utility of this
view of such systems, have proposed the idea of agent-oriented programming, in
which intentional stance notions such as belief, desire, and intention are first-class
entities in a programming language for autonomous agents [33].

20.7 Conclusions

Our discussion has revealed many ways in which research on agency has led to a
convergence in our understanding of human and of artificial agents. In both, the
folk-psychological intentional stance—in terms of attributed beliefs and desires—
has clear predictive value, and in both, our attempts at a deeper understanding that
goes beyond folk psychology have led to plan-based models that shed light on our
own behaviour, and also point the way towards practical development of artificial
agents. Whether we should describe such an artificial system as a genuine “agent”
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and as having literal “beliefs” and “desires” is, of course, a matter for debate. But
when a system is sufficiently sophisticated that its behaviour can only feasibly be
understood or predicted in terms of belief-like, desire-like, and plan-like states and
the interplay between those (rather than purely in terms of simple execution of pre-
packaged instructions), we think there is a lot to be said for extending the boundaries
of our concepts accordingly. As Millican [27, Sect. 3–4] has argued in the case of
artificial intelligence, the development of such systems has faced us with a new
problem which is not anticipated by the established boundaries of our traditional
concepts. The concept of “agency”, like that of “intelligence” is open textured, and
how we mould it within this new context is largely a matter of decision, rather than
mere analysis of our pre-existing conceptual repertoire.

There are several possible avenues for future research. One interesting open prob-
lem remains the extent to which we can develop formal theories that can predict and
explain the behaviour of human agents; another is the extent to which we can link
such formal theories with computer programs, in order to provide an account of their
behaviour in terms of agentive concepts such as beliefs, desires, and rational choice.
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Chapter 21
Incorporating Action Models into
the Situation Calculus

Yongmei Liu and Hector J. Levesque

Abstract While both situation calculus and dynamic epistemic logics (DELs) are
concerned with reasoning about actions and their effects, historically, the emphasis
of situation calculus was on physical actions in the single-agent case, in contrast,
DELs focused on epistemic actions in the multi-agent case. In recent years, cross-
fertilization between the two areas has begun to attract attention. In this paper, we
incorporate the idea of action models from DELs into the situation calculus to de-
velop a general multi-agent extension of it. We analyze properties of beliefs in this
extension, and prove that action model logic can be embedded into the extended situ-
ation calculus. Examples are given to illustrate the modeling of multi-agent scenarios
in the situation calculus.

21.1 Introduction

While both situation calculus [19] and dynamic epistemic logics (DELs) [10] are
concerned with reasoning about actions and their effects, historically, the emphasis
of situation calculus was on physical actions in the single-agent case, in contrast,
DELs focused on epistemic actions in the multi-agent case. In recent years, cross-
fertilization between the two areas has begun to attract attention. In particular, van
Benthem [7] proposed the idea that situation calculus and modal logic meet and
merge. van Ditmarsch et al. [11] embedded a propositional fragment of the situation
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calculus into a DEL. Kelly and Pearce [12] incorporated ideas from DELs to handle
regression for common knowledge in the situation calculus. Baral [5] proposed to
combine results from reasoning about actions and DELs.

In a multi-agent setting, the agents in the domain may have different perspectives
of the actions. Baltag et al. [2, 3] introduced a construct called an action model
to represent these differences of perspectives. An action model consists of a set of
actions, a precondition for each action, and a binary relation on the set of actions
for each agent, which represents the agent’s ability to distinguish between the ac-
tions. Moreover, they defined an operation by which an action model may be used
to update a Kripke world to obtain a successor world modeling the effects of the
action execution. They proposed a logic, called action model logic, to reason about
action models and their effects on agents’ epistemic states. van Benthem et al. [8]
generalized the concept of action model to that of update model where each action
is also associated with a postcondition. So action models can model events which
bring about epistemic change, but update models can model events which can not
only change agents’ epistemic states but also the world state.

The situation calculus was first introduced by McCarthy and Hayes [16], and
historically, one of its major concerns was how to solve the frame problem, that is,
how to represent the effects of a world-changing action without explicitly specifying
which conditions are not affected by the action. Reiter [18] gave a solution to the
frame problem under some conditions in the form of successor state axioms. This
solution to the frame problem has proven useful as the foundation for the high-level
robot programming language Golog [15]. Scherl and Levesque [20, 21] extended
Reiter’s solution to cover epistemic actions in the single-agent case. Later, Shapiro
et al. [22] extended their work to the multi-agent case, but they only considered public
actions whose occurrence is common knowledge. In the last decade, Lakemeyer and
Levesque [13, 14] proposed a logic called ES, which is a fragment of the situation
calculus with knowledge. Recently, Belle and Lakemeyer [6] gave a multi-agent
extension of ES, but as [22], they only considered public actions. So up to now,
although there have been extensions of the situation calculus into the multi-agent
case, they are not able to account for arbitrary multi-agent scenarios.

In this chapter, we incorporate action models into the situation calculus to develop
a general multi-agent extension of it. We analyze properties of beliefs in this exten-
sion, and prove that action model logic can be embedded into the extended situation
calculus. Examples are given to illustrate the modeling of multi-agent scenarios in
the situation calculus.

The rest of the chapter is organized as follows. In the next section, we introduce
the situation calculus and action model logic. In Sect. 21.3, we present a multi-
agent extension of the situation calculus by incorporating action models. Section 21.4
analyzes properties of beliefs in the extended situation calculus, and Sect. 21.5 shows
that action model logic can be embedded into the multi-agent situation calculus. In
Sect. 21.6, we present two extended examples of modeling multi-agent scenarios in
the situation calculus. Finally, we conclude and describe some future work.
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21.2 Preliminaries

In this section, we introduce the situation calculus, and action model logic.

21.2.1 The Situation Calculus and Golog

The situation calculus [19] is a many-sorted first-order language suitable for describ-
ing dynamic worlds. There are three disjoint sorts: action for actions, si tuation for
situations, and object for everything else. A situation calculus language Lsc has the
following components: a constant S0 denoting the initial situation; a binary function
do(a, s) denoting the successor situation to s resulting from performing action a; a
binary predicate s � s′ meaning that situation s is a proper subhistory of situation
s′; a binary predicate Poss(a, s) meaning that action a is possible in situation s;
action functions; a finite number of relational and functional fluents, i.e., predicates
and functions taking a situation term as their last argument; and a finite number of
situation-independent predicates and functions.

The situation calculus has been extended to accommodate sensing and knowledge.
Assume that in addition to ordinary actions that change the world, there are sensing
actions which do not change the world but tell the agent information about the world.
A special binary function S R(a, s) is used to characterize what the sensing action
tells the agent about the world. Knowledge is modeled in the possible-world style
by introducing a special fluent K (s′, s), meaning that situation s′ is accessible from
situation s. Note that the order of the arguments is reversed from the usual convention
in modal logic. Then knowing φ at situation s is represented as follows:

Knows(φ(now), s)
de f= ∀s′.K (s′, s)⊃φ(s′),

where now is used as a placeholder for a situation argument. For example,

Knows(∃s∗.now = do(open, s∗), s)

means knowing that the open action has just been executed. When “now” only
appears as a situation argument to fluents, it is often omitted.

Scherl and Levesque [20] proposed the following successor state axiom for the K
fluent: (Throughout this paper, free variables are assumed to be universally quantified
from outside.)

K (s′, do(a, s)) ≡ ∃s∗.K (s∗, s) ∧ s′ = do(a, s∗) ∧ S R(a, s∗) = S R(a, s).

Intuitively, situation s′ is accessible after action a is done in situation s iff it is the
result of doing a in some s∗ which is accessible from s and agrees with s on the
sensing result.
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Based on the situation calculus, a logic programming language Golog [15] has
been designed for high-level robotic control. The formal semantics of Golog is spec-
ified by an abbreviation Do(δ, s, s′), which intuitively means that executing δ brings
us from situation s to s′. It is inductively defined on δ as follows, where we omit the
definition of procedures:

1. Primitive actions:
Do(α, s, s′) de f= Poss(α, s) ∧ s′ = do(α, s).

2. Test actions:
Do(φ?, s, s′) de f= φ[s] ∧ s = s′.
Here, φ is a situation-suppressed formula, i.e., a situation calculus formula with
all situation arguments suppressed, and φ[s] denotes the formula obtained from
φ by taking s as the situation arguments of all fluents mentioned in φ.

3. Sequence:

Do(δ1; δ2, s, s′) de f= (∃s′′).Do(δ1, s, s′′) ∧ Do(δ2, s′′, s′).
4. Nondeterministic choice of two actions:

Do(δ1 | δ2, s, s′) de f= Do(δ1, s, s′) ∨ Do(δ2, s, s′).
5. Nondeterministic choice of action arguments: Execute δ(x) with a nondetermin-

istically chosen argument x .

Do((π x)δ(x), s, s′) de f= (∃x)Do(δ(x), s, s′).
6. Nondeterministic iteration: Execute δ zero or more times.

Do(δ∗, s, s′) de f= (∀P).{(∀s1)P(s1, s1)∧
(∀s1, s2, s3)[P(s1, s2) ∧ Do(δ, s2, s3) ⊃ P(s1, s3)]} ⊃ P(s, s′).

Conditionals and loops are defined as abbreviations:

if φ then δ1 else δ2 fi
de f= [φ?; δ1] | [¬φ?; δ2],

while φ do δ od
de f= [φ?; δ]∗; ¬φ?.

For example, the following is a Golog program which nondeterministically moves
a block onto another, so long as there are at least two blocks on the table:

while (∃x, y)[ontable(x) ∧ ontable(y) ∧ x 
= y] do

(π u, v)move(u, v) od

21.2.2 Action Model Logic (AML)

In a nutshell, action model logic (AML) extends epistemic logic with reasoning about
epistemic actions which bring about epistemic change. We now present the syntax
and semantics of action model logic. We fix a finite set of agents A and a countable
set of propositional atoms P . We first define Kripke models.
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Definition 21.1 A Kripke model M is a triple (S, R, V ) where

• S is a set of states;
• For each agent i , Ri is a binary relation on S;
• For each t ∈ S, V (t) is a subset of the atoms.

A pointed Kripke model is a pair (M, s0) where M is a Kripke model and s0 is a
state of M .

Intuitively, a Kripke model represents the agents’ uncertainty about the current
world state. Here, S is the set of all possible world states; p ∈ V (t) means that
proposition p is true in state t ; and t Ri t ′ means that in state t , agent i thinks that t ′
might be the actual state.

An action model is a Kripke model of “actions”, which represents the agents’
uncertainty about the current action. The definition of an action model is similar to
that of a Kripke model except: a truth assignment is associated to each state in a
Kripke model, but a precondition is associated to each action in an action model.

Definition 21.2 An action model over a language L is a triple (A,→, pre) where

• A is a set of action points;
• For each agent i ,→i is a binary relation on A;
• For each action point e, pre(e) ∈ L is its precondition.

A pointed action model is a pair (N , e0) where N is an action model and e0 is an
action point of N .

Given a Kripke model and an action model, by the product update operation,
defined as follows, we obtain the new Kripke model resulting from executing the
action model in the given Kripke model.

Definition 21.3 Let M = (S, R, V ) be a Kripke model, and t0 ∈ S. Let N =
(A,→, pre) be an action model, and e0 ∈ A such that M, t0 |= pre(e0). The
product of (M, t0) and (N , e0), denoted by (M, t0) ⊗ (N , e0), is a pointed Kripke
model (M ′, t ′0) where M ′ = (S′, R′, V ′), and

• S′ = {(t, e) | t ∈ S, e ∈ A, and M, t |= pre(e)};
• t ′0 = (t0, e0);
• (t, e)R′i (t ′, e′) iff t Ri t ′ and e→i e′;
• For each (t, e) ∈ S′, V ′((t, e)) = V (t).

Intuitively, (t, e) is the world state resulting from executing action e in state t .
Note that e is an epistemic action: it does not change the world state, thus the truth
assignment associated to (t, e) is the same as that associated to t . In state (t, e), agent
i considers (t ′, e′) as a possible state if she considers t ′ as a possible alternative of t
and e′ as a possible alternative of e.

The language of action model logic extends the language of epistemic logic with a
construct [N , e0]φ, which intuitively means that formula φ holds after the execution
of the pointed action model (N , e0).
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Definition 21.4 The language Lam of action model logic is recursively defined as
follows:

1. Any propositional atom p ∈P is an AML formula.
2. If φ and ψ are AML formulas, so are ¬φ and (φ ∧ ψ).
3. If φ is an AML formula, so are Biφ and CE φ, where i ∈ A , E ⊆ A .
4. If φ is an AML formula and (N , e0) is a pointed action model with a finite domain

and such that for all action points e, pre(e) is an AML formula, so is [N , e0]φ.

The following is a complexity measure of AML formulas as presented in [10]:

Definition 21.5 The complexity measure c : Lam → N is inductively defined as
follows:

1. c(p) = 1;
2. c(¬φ) = 1+ c(φ);
3. c(φ ∧ ψ) = 1+max{c(φ), c(ψ)};
4. c(Biφ) = 1+ c(φ);
5. c(CE φ) = 1+ c(φ);
6. c([N , e0]φ) = (4+max{c(pre(e)) | e is an action point of N }) · c(φ).

We now present the semantics of action model logic:

Definition 21.6 Let M = (S, R, V ) be a Kripke model and t0 a state of M . We
interpret the formulas by induction on their complexity as follows:

1. M, t0 |= p iff p ∈ V (t0);
2. M, t0 |= ¬φ iff M, t0 
|= φ;
3. M, t0 |= φ ∧ ψ iff M, t0 |= φ and M, t0 |= ψ ;
4. M, t0 |= Biφ iff for all t such that t0 Ri t , M, t |= φ;
5. M, t0 |= CE φ iff for all t such that t0 RE t , M, t |= φ, where RE is the reflexive

transitive closure of the union of Ri for i ∈ E ;
6. M, t0 |= [N , e0]φ iff if M, t0 |= pre(e0), then (M, t0)⊗ (N , e0) |= φ.

A formula φ is valid if it is true in any pointed Kripke model.
We end this section with an example:

Example 21.1 [10] Two stockbrokers Ann and Bob are having a little break in a
Wall Street bar, sitting at a table. A messenger comes in and delivers a letter to Ann.
On the envelope is written “urgently requested data on United Agents”. Let atom p
mean that “United Agents is doing well”. Consider the following scenarios:

1. Bob sees that Ann reads the letter. From Bob’s point of view, Ann could learn p
or she could learn ¬p, and he cannot distinguish between these two actions. But
Ann can certainly distinguish between them. Thus we get the following action
model: read = (A,→, pre), where A = {0, 1}, pre(0) = ¬p, pre(1) = p,
→a is the identity relation, and→b is the total relation.
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2. Bob leaves the table; Ann may have read the letter while Bob is away. From
Bob’s point of view, there are 3 possibilities: Ann learns p, Ann learns ¬p, and
Ann learns nothing, and he cannot distinguish between these actions. Thus the
action model is: mayread = (A,→, pre), where A = {0, 1, t}, pre(0) = ¬p,
pre(1) = p, pre(t) = true, →a is the identity relation, and →b is the total
relation.

21.3 A Multi-agent Extension of the Situation Calculus

In this section, we present a multi-agent extension of the situation calculus by in-
corporating action models. Instead of Scherl and Levesque’s K fluent, we now use
a fluent B(i, s′, s), which means that agent i considers situation s′ accessible from
situation s. We introduce a special predicate A(i, a′, a, s), meaning that in situation
s, agent i considers action a′ as a possible alternative of action a.

We assume that there are two types of primitive actions: ordinary actions which
change the world, and epistemic actions which do not change the world but informs
the agent. We use the action precondition axiom to specify what the epistemic action
tells the agent about the current situation. For example, we may have an epistemic
action ison(i, x) which tells agent i that switch x is on. This is axiomatized as:

Poss(ison(i, x), s) ≡ on(x, s).

In particular, there is a special epistemic action nil, meaning that nothing happens,
with the axiom Poss(nil, s) ≡ true. Note that a sensing action which tells the agent
whether φ holds can be treated as the nondeterministic choice of two epistemic
actions: one is possible iff φ holds, and the other is possible iff ¬φ holds.

We propose the following successor state axiom for the B fluent:

B(i, s′, do(a, s)) ≡ ∃s∗∃a∗.B(i, s∗, s) ∧ A(i, a∗, a, s)∧
(Poss(a, s)⊃ Poss(a∗, s∗)) ∧ s′ = do(a∗, s∗).

Intuitively, for agent i , situation s′ is accessible after action a is performed in situation
s iff it is the result of doing some alternative a∗ of a in some s∗ accessible from s,
and executability of a in s implies that of a∗ in s∗. Note that when a is not possible
in s, we do not care whether a∗ is possible in s∗. In the multi-agent case, a domain
of application is specified by a basic action theory of the form:

D = � ∪Dap ∪Dss ∪Daa ∪Duna ∪DS0 ,where

1. � are the foundational axioms:

(F1) do(a1, s1) = do(a2, s2)⊃ a1 = a2 ∧ s1 = s2
(F2) (¬s � S0) ∧ (s � do(a, s′) ≡ s � s′)
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(F3) ∀P.∀s[I ni t (s)⊃ P(s)] ∧ ∀a, s[P(s)⊃ P(do(a, s))]⊃ (∀s)P(s), where

I ni t (s)
de f= ¬(∃a, s′)s = do(a, s′).

(F4) B(i, s, s′)⊃ [I ni t (s) ≡ I ni t (s′)].
Intuitively, I ni t (s) means s is an initial situation. A model of {F1, F2, F3}
consists of a forest of isomorphic trees rooted at the initial situations. F4 specifies
that initial situations can be B-related to only initial situations.

2. Dap is a set of action precondition axioms, one for each action function C , of
the form Poss(C(x), s) ≡ �C (x, s). This includes the precondition axioms for
epistemic actions.

3. Dss is a set of successor state axioms (SSAs) for fluents, one for each fluent F , of
the form F(x, do(a, s)) ≡ 	F (x, a, s). This includes the SSA for the B fluent.
The SSAs for ordinary fluents must satisfy the no-side-effect conditions, i.e., they
are not affected by epistemic actions.

4. Daa is a set of action alternative axioms, one for each action function C , of the
form A(i, a,C(x), s) ≡ ψC (i, a, x, s).

5. Duna is the set of unique names axioms for actions:

C(x) 
= C ′(y), and C(x) = C(y) ⊃ x = y,

where C and C ′ are distinct action functions.
6. DS0 is a set of sentences about S0.

In the rest of the paper, when we present a basic action theory, we will only present
relevant axioms from Dap ∪Dss ∪Daa ∪DS0 .

Example 21.2 Consider a simple blocks world. There is a single physical action:
move(x, y), moving block x onto block y. There are two fluents: clear(x, s), block
x has no blocks on top of it; on(x, y, s), block x is on block y. The following are the
action precondition and successor state axioms:

Poss(move(x, y), s) ≡ clear(x, s) ∧ clear(y, s) ∧ x 
= y

on(x, y, do(a, s)) ≡ a = move(x, y)∨
on(x, y, s) ∧ ¬(∃z)a = move(x, z),

clear(x, do(a, s)) ≡ (∃y)(∃z)a = move(y, z) ∧ on(y, x, s)∨
clear(x, s) ∧ ¬(∃y)a = move(y, x).

We now axiomatize in the situation calculus the letter example of Sect. 21.2.2.

Example 21.3

1. Bob sees that Ann reads the letter. We introduce an epistemic action read(e),
which means that Ann senses the truth value of p with result e while Bob is
observing her. The axioms are:



21 Incorporating Action Models into the Situation Calculus 577

Poss(read(e), s) ≡ (e = 1 ≡ p(s)),

A(i, a, read(e), s) ≡ (i = ann⊃ a = read(e)) ∧ (i = bob⊃∃e′.a = read(e′)).

So Ann can distinguish between read(1) and read(0), but Bob can’t.
2. Bob thinks Ann may have read the letter. We introduce an epistemic action

mread(e), which means that Ann senses the truth value of p with result e while
Bob is not sure about whether this happens. The axioms are:

Poss(mread(e), s) ≡(e = 1 ≡ p(s)),

A(i, a,mread(e), s) ≡(i = ann⊃ a = mread(e))∧
(i = bob⊃ a = nil ∨ ∃e′.a = mread(e′)),

A(i, a, nil, s) ≡(i = ann⊃ a = nil)∧
(i = bob⊃ a = nil ∨ ∃e′.a = mread(e′))

So Bob can’t distinguish between the three actions mread(1), mread(0), and nil.
Finally, we introduce some notation which will be used in the rest of the paper.

Let φ(s) be a formula with a single situation variable s.

1. Agent i believes φ:

Bel(i, φ(now), s)
de f= ∀s′.B(i, s′, s) ⊃ φ(s′).

2. Agent i truly believes φ:

TBel(i, φ(now), s)
de f= φ(s) ∧ Bel(i, φ(now), s).

3. Agent i believes whether φ holds:

BW(i, φ(now), s)
de f= Bel(i, φ(now), s) ∨ Bel(i,¬φ(now), s).

4. Let E be a subset of the agents. We let C(E , s′, s) denote the reflexive transitive
closure of ∃i ∈ E .B(i, s′, s), which can be defined with a second-order formula:

C(E , s′, s)
de f=

∀P.∀u P(u, u) ∧ ∀i ∈E , u, v, w[P(u, v) ∧ B(i, v, w) ⊃ P(u, w)] ⊃ P(s′, s).

5. The agents commonly know φ:

CKnows(φ(now), s)
de f= ∀s′.C(A , s′, s)⊃φ(s′),

where A is the set of all agents.
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21.4 Properties of Beliefs

In this section, we analyze properties of beliefs in our formalism. We begin with the
main property of beliefs. We use ψ0(a, s) to denote the following formula:

∀i.Bel(i, ∃s∗∃a∗.A(i, a∗, a, s)∧now = do(a∗, s∗)∧Poss(a∗, s∗)∧Dss [a∗, s∗], do(a, s)),

where Dss[a∗, s∗] denotes the instantiation of the SSAs for ordinary fluents wrt a∗
and s∗. This says that in the situation resulting from doing action a, each agent i
believes that some alternative of a was possible and has happened. We useψn+1(a, s)
to denote the following formula:

∀i.Bel(i, ∃s∗∃a∗.A(i, a∗, a, s) ∧ now = do(a∗, s∗)∧
Poss(a∗, s∗) ∧Dss[a∗, s∗] ∧
n(a

∗, s∗), do(a, s)).

Thus 
1(a, s) says that in the situation resulting from doing action a, each agent
i believes that some alternative a∗ of a was possible, has happened, and in the
resulting situation, each agent believes that some alternative of a∗ was possible and
has happened. By the SSA for the B fluent, it is straightforward to prove:

Theorem 21.1 For all n, D |= ∀a∀s.Poss(a, s)⊃
n(a, s) .

Proof We prove by induction on n.
Basis: n = 0. This directly follows from the SSA for the B fluent.
Induction step: Assume that D |= ∀a∀s.Poss(a, s)⊃
n(a, s). By the SSA for

the B fluent, we have

∀a∀s.Poss(a, s)⊃∀i.Bel(i, ∃s∗∃a∗.A(i, a∗, a, s) ∧ now = do(a∗, s∗)∧
Poss(a∗, s∗) ∧Dss[a∗, s∗], do(a, s)).

By the induction hypothesis, we have

∀a∀s.Poss(a, s)⊃∀i.Bel(i,∃s∗∃a∗.A(i, a∗, a, s) ∧ now = do(a∗, s∗)∧
Poss(a∗, s∗) ∧Dss[a∗, s∗] ∧
n(a

∗, s∗), do(a, s)),

which is ∀a∀s.Poss(a, s)⊃
n+1(a, s). �

Let φ(s) be a formula with a single situation variable s. We introduce an epistemic
action observeφ , which tells the agent thatφ holds in the current situation. The axiom
is: Poss(observeφ, s) ≡ φ(s). It is easy to prove the following propositions. By an
objective formula, we mean one which does not use the B fluent or the A predicate.

Proposition 21.1 Let φ be an objective formula. Suppose that agent i is an ob-
server of action observeφ in situation σ , i.e., D |= ∀a.A(i, a, observeφ, σ ) ≡ a =
observeφ . Then D |= φ(σ) ⊃ Bel(i, φ, do(observeφ, σ )).
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Proposition 21.2 Let φ be an objective formula. Suppose that agent i is a partial
observer of action observeφ in situation σ , i.e.,
D |= ∀a.A(i, a, observeφ, σ ) ≡ a = observeφ ∨ a = observe¬φ .
Then D |= φ(σ) ∧ ¬BW(i, φ, σ )⊃¬BW(i, φ, do(observeφ, σ )).

Proposition 21.3 Let φ be an objective formula. Suppose that agent i is oblivious
of action α in situation σ , i.e., D |= ∀a.A(i, a, α, σ ) ≡ a = nil.
Then D |= Poss(α, σ )⊃ [Bel(i, φ, σ ) ≡ Bel(i, φ, do(α, σ ))].

In the following, we show how we model some special types of actions and prove
the desired properties. We first consider public sensing and reading actions: we say a
sensing or reading action is public if its occurrence is common knowledge but only
the performer of the action gets to know the result. The axioms are as follows:

• senseφ(i, x, e) means agent i senses the truth value of φ(x) and gets result e;
• read f (i, x, y) means agent i reads the value of f (x) and gets result y.

1. Poss(senseφ(i, x, e), s) ≡ (e = 1 ≡ φ(x, s))
2. A( j, a, senseφ(i, x, e), s) ≡ ∃e′(a = senseφ(i, x, e′)) ∧ ( j = i ⊃ a = senseφ
(i, x, e))

3. Poss(read f (i, x, y), s) ≡ f (x, s) = y
4. A( j, a, read f (i, x, y), s) ≡ ∃y′(a = read f (i, x, y′)) ∧ ( j = i ⊃ a = read f

(i, x, y))

We let senseφ(i, x) denote senseφ(i, x, 1) | senseφ(i, x, 0), and read f (i, x) de-
note (πy)read f (i, x, y). It is easy to prove:

Proposition 21.4 D entails the following:

1. Do(senseφ(i, x), s, s1)⊃[B( j, s′, s1) ≡
∃s∗.B( j, s∗, s)∧Do(senseφ(i, x), s∗, s′)∧( j = i ⊃ φ(x, s) ≡ φ(x, s∗))]

2. Do(read f (i, x), s, s1)⊃ [B( j, s′, s1) ≡
∃s∗.B( j, s∗, s)∧Do(read f (i, x), s∗, s′)∧( j = i ⊃ f (x, s) = f (x, s∗))]

This is the same as Shapiro et al.’s extension of Scherl and Levesque’s SSA for the
K fluent to public sensing and reading actions in the multi-agent case [22]. So our
account of beliefs and actions subsumes theirs. As an easy corollary, we get

Proposition 21.5 Let φ be an objective formula. Then D entails the following:

1. Do(senseφ(i, x), s, s1)⊃BW(i, φ(x), s1)∧
( j 
= i ⊃Bel( j,BW(i, φ(x)), s1))

2. Do(read f (i, x), s, s1)⊃∃yBel(i, f (x) = y, s1)∧
( j 
= i ⊃Bel( j, ∃yBel(i, f (x) = y), s1))

Bacchus et al. [1] considered noisy sensors: when an agent reads the value of
f (x), she may get a value y such that | f (x, s) − y| ≤ b for some bound b. We
introduce an epistemic action nread f (i, x, y) for this purpose, and let nread f (i, x)
denote (πy)nread f (i, x, y). The axioms are:
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1. Poss(nread f (i, x, y), s) ≡ | f (x, s)− y| ≤ b
1. A( j, a, nread f (i, x, y), s) ≡ (∃y′)a = nread f (i, x, y′)∧

{ j = i ⊃ (∃y′).a = nread f (i, x, y′) ∧ |y − y′| ≤ b}
As desired, we have

Proposition 21.6 D |= Do(nread f (i, x), s, s′)⊃∃y.Bel(i, | f (x)− y| ≤ b, s′).

Delgrande and Levesque [9] considered unintended actions: an agent wants to
push button m, but she may push button n such that |m − n| ≤ b. We introduce a
physical action npush(i,m, n), meaning that agent i wants to push button m but ends
up pushing button n. We let npush(i,m) denote (πn)npush(i,m, n). The axioms
are:

1. Poss(npush(i,m, n), s) ≡ |m − n| ≤ b
2. on(n, do(a, s)) ≡ ∃i,m.a = npush(i,m, n)
3. A( j, a, npush(i,m, n), s) ≡ (∃m′, n′)a = npush(i,m′, n′)∧

{ j = i ⊃ (∃n′).a = push(i,m, n′)}
Proposition 21.7 D |= Do(npush(i,m), s, s′)⊃Bel(i, ∃n.|n−m| ≤ b∧on(n), s′).

Dynamic epistemic logics originated with public announcement logic, which rea-
sons about the epistemic change brought about by public communications [17]. We
have the following description for the action of publicly truthfully announcing φ:

1. Poss(pubφ, s) ≡ φ(s)
2. A(i, a, pubφ, s) ≡ a = pubφ

Proposition 21.8 Let φ be an objective formula. Then
D |= φ(s)⊃CKnows(φ, do(pubφ, s)).

21.5 The Embedding Theorem

In this section, we prove that action model logic can be embedded into the extended
situation calculus. We first define two functions: B, which maps a formula φ in
AML into a basic action theory encoding the action models involved in φ, and F ,
which maps a formula in AML and a situation term into a formula in the situation
calculus. We then prove that for any formula φ in AML, φ is valid in AML iff
B(φ) |= F (φ, S0).

Definition 21.7 Let φ be a formula in AML. We define two sets AM(φ) and
Prop(φ) recursively as follows:

1. AM(φ) is the set of action models N such that N appears in φ or there exist
an action model N ′ which occurs in φ and an action point e of N ′ such that
N ∈ AM(pre(e));
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2. Prop(φ) is the set of propositions p such that p appears in φ or there exist
an action model N ′ which occurs in φ and an action point e of N ′ such that
p ∈ Prop(pre(e)).

We define the vocabulary of our situation calculus language associated toφ as follows.
For each N ∈ AM(φ), we introduce an action cN (x), where x ranges over the action
points of N . For each p ∈ Prop(φ), we introduce a unary fluent p(s).

Definition 21.8 Let φ be a formula in AML, and s a situation term. We define a
situation calculus formula F (φ, s) by induction on the complexity of φ as follows:

1. F (p, s) = p(s);
2. F (¬ψ, s) = ¬F (ψ, s);
3. F (ψ ∧ η, s) = F (ψ, s) ∧F (η, s);
4. F (Biψ, s) = ∀s′.B(i, s′, s)⊃F (ψ, s′);
5. F (CEψ, s) = ∀s′.C(E , s′, s)⊃F (ψ, s′);
6. F ([N , e0]ψ, s) = F (pre(e0), s)⊃F (ψ, do(cN (e0), s)).

Note that we model the execution of a pointed action model (N , e0) with the
execution of the action cN (e0) in the situation calculus.

Definition 21.9 Let φ be a formula in AML. Let AM(φ) = {N1, . . . , Nm}, where
Nk = (Ak,→, pre), k = 1, . . . ,m. Without loss of generality, we assume that the
Ak’s are pairwise disjoint. We construct a basic action theory B(φ) as follows.

(A0) e 
= e′, where e and e′ are distinct action points;
(A1) Poss(cNk (x), s) ≡∨

e∈Ak
[x = e ∧F (pre(e), s)];

(A2) p(do(a, s)) ≡ p(s);
(A3) A( j, a, cNk (x), s) ≡ ∃y.a = cNk (y) ∧

∨
(e,e′)∈→ j

x = e ∧ y = e′;

Note that the reason we have A2 is that in action models, actions do not change
the world. A3 specifies that the value of the A predicate is set according to the
accessibility relations of the action models.

The following is the embedding theorem:

Theorem 21.2 For any formula φ in AML, φ is valid in AML iff B(φ) |= F (φ, S0).

To prove the embedding theorem, we first introduce a method to induce a Kripke
model from a structure of the situation calculus. For a structure L and a syntactic
object o, we let oL stand for the denotation of o in L . We say that a situation is at
level k if it results from performing a sequence of k actions in an initial situation.
Let L be a structure of the situation calculus, τ a situation of L , and φ(s) a situation
calculus formula with a free situation variable s. We use L , τ |= φ(s) to denote that
when s is interpreted as τ , L satisfies φ(s).

Definition 21.10 Let L be a structure of the situation calculus. Let τ be a level k
situation of L . We define a Kripke model Mτ

L = (S, R, V ) as follows:
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• S consists of all level k situations of L;
• For any t1, t2 ∈ S, t1 Ri t2 iff (i, t2, t1) ∈ BL ;
• For each t ∈ S, V (t) is the set of fluents p which are true at t in L .

We call Mτ
L the Kripke projection of L onto τ . Note that if τ1 and τ2 are at the same

level, then Mτ1
L = Mτ2

L .

The proof of the embedding theorem is involved. We now explain the general
idea of the proof. First, suppose B(φ) 
|= F (φ, S0). Let L be a model of B(φ) ∪
{¬F (φ, S0)}. We show that the pointed Kripke model (Mτ0

L , τ0) satisfies¬φ, where
τ0 = SL

0 , and Mτ0
L is the Kripke projection of L onto τ0. The other direction is more

complicated, and the reason is that for an action point e of an action model N , pre(e)
may involve action models. The precondition axiom for action CN is defined with
F (pre(e), s). When pre(e) involves action models, F (pre(e), s) refers to future
situations of s.

Now suppose φ is not valid. Let (M, t0) be a model of¬φ. We construct a model L
of D = B(φ) as follows. First, let L |= Duna∪{A0}. The initial situations of L are the
states of M , and L interprets S0 as t0. The situations of L form a forest of isomorphic
trees rooted at the initial situations, where the children of each situation one-to-one
correspond to the actions. We interpret the A predicate according to A3. We interpret
Poss and the fluents by induction on the level of situations. For initial situations,
we interpret the B and the p fluents according to M . Let τ be an initial situation.
For each action model N and action point e of it, we let L , τ |= Poss(cN (e), s)
iff M, τ |= pre(e). Assume we have interpreted Poss and all the fluents at level
k situations. We interpret the fluents at level k + 1 situations according to Dss . Let
τ be a level k + 1 situation. For each action model N and action point e of it, we
let L , τ |= Poss(cN (e), s) iff Mτ

L , τ |= pre(e). We show that L is a model of
B(φ) ∪ {¬F (φ, S0)}.

In the above outline of the proof, for the Lsc-structure L that we construct, we
have that the Kripke projection of L onto the initial situations—Mt0

L , is isomorphic
to M . The isomorphism of Kripke models will play an important role in our proof.
However, instead of requiring that two pointed Kripke models (M1, t1) and (M2, t2)
be isomorphic, we only require that their reductions be isomorphic, i.e., the resulting
pointed Kripke models are isomorphic after we remove the states of Mi not reachable
from ti for i = 1, 2. In the following, we define the concepts of isomorphism and
reduction of Kripke models and study their basic properties.

Let (M1, t1) and (M2, t2) be two pointed Kripke models. We let h : (M1, t1) ∼=
(M2, t2) denote that h is an isomorphism from (M1, t1) to (M2, t2), i.e.,

• h is a bijection from the states of M1 to those of M2, and h(t1) = t2;
• h preserves the accessibility relation, i.e., for any agent i and any two states t and

t ′ of M1, t Ri t ′ iff h(t)Ri h(t ′);
• h preserves the atoms, that is, for any atom p and state t of M1, p holds at t iff p

holds at h(t).
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Let (M, t0) be a pointed Kripke model, we use R(M, t0) to denote the pointed Kripke
model (M ′, t0), where M ′ is obtained from M by removing those states not reachable
from t0. It is easy to prove the following properties:

Proposition 21.9 Let h : R(M1, t1) ∼= R(M2, t2), and t a state of M1 reachable
from t1. Then R(M1, t) ∼= R(M2, h(t)).

Proof Since t is reachable from t1, the states of R(M1, t) are contained in those of
R(M1, t1). It suffices to prove that for any state t ′ of M1 reachable from t , h(t ′) is
reachable from h(t), which holds because h preserves the accessibility relation. �

Proposition 21.10 Let h : R(M1, t1) ∼= R(M2, t2). Then for any AML formula φ,
M1, t1 |= φ iff M2, t2 |= φ.

Proof See Appendix. �

In the above outline of proof, the Lsc-structure L we construct is a model of
D −Dap and it has a property defined as follows:

Definition 21.11 We say that an Lsc-structure L has property C1 if for any situation
τ , action model N and action point e of N , L , τ |= Poss(cN (e), s) iff Mτ

L , τ |=
pre(e).

In the following, we study properties of models of D − Dap with C1. We first
prove a proposition which shows that the execution of a pointed action model (N , e0)

can be modeled in the situation calculus with the execution of the action cN (e0).

Proposition 21.11 Let L be a model of D−Dap with C1, and τ0 a situation of L. Let
(M, t0) be a pointed Kripke model, and (N , e0) a pointed action model. Suppose that
h : R(M, t0) ∼= R(Mτ0

L , τ0) and M, t0 |= pre(e0). Then R((M, t0) ⊗ (N , e0)) ∼=
R(Mτ1

L , τ1) where τ1 is doL(cN (e0)
L , τ0).

Proof See Appendix. �

Next, we prove a lemma which shows that an AML formula φ can be modeled
by the situation calculus formula F (φ, s):

Lemma 21.1 Let L be a model of D−Dap with C1, and τ0 a situation of L. Suppose
h : R(M, t0) ∼= R(Mτ0

L , τ0). Then M, t0 |= φ iff L , τ0 |= F (φ, s).

Proof We prove by induction on the complexity of φ.

1. φ is p. Then M, t0 |= p iff p is true at t0 in M iff p is true at τ0 in L (since
R(M, t0) ∼= R(Mτ0

L , τ0)) iff L , τ0 |= p(s).
2. φ is ¬ψ . Then M, t0 |= ¬ψ iff M, t0 
|= ψ iff L , τ0 
|= F (ψ, s) (by induction

hypothesis) iff L , τ0 |= ¬F (ψ, s), i.e., L , τ0 |= F (¬ψ, s).
3. φ is ψ ∧ ψ ′. Similar to the above case.
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4. φ is Biψ . Let t be a state of M such that t0 Ri t . By Proposition 21.9, R(M, t) ∼=
R(Mτ0

L , h(t)). By induction hypothesis, M, t |= ψ iff L , h(t) |= F (ψ, s′). So
M, t0 |= Biψ iff for every t such that t0 Ri t , M, t |= ψ iff for every τ such that
(i, τ, τ0) ∈ BL , L , τ |= F (ψ, s′) iff L , τ0 |= ∀s′.B(i, s′, s)⊃F (ψ, s′), i.e.,
L , τ0 |= F (Biψ, s).

5. φ is CEψ . Similar to the above case.
6. φ is [N , e0]ψ . By induction hypothesis, M, t0 |= pre(e0) iff L , τ0 |= F
(pre(e0), s). By Proposition 21.11, if M, t0 |= pre(e0), then (M, t0)⊗(N , e0) ∼=
Mτ1

L , τ1, where τ1 = do(cN (e0)
L , τ0). By induction hypothesis, (M, t0) ⊗

(N , e0) |= ψ iff L , τ1 |= F (ψ, s). Thus M, t0 |= [N , e0]ψ iff if M, t0 |=
pre(e0) then (M, t0) ⊗ (N , e0) |= ψ iff if L , τ0 |= F (pre(e0), s) then
L , τ1 |= F (ψ, s) iff L , τ0 |= F (pre(e0), s)⊃F (ψ, do(cN (e0), s)), which
is F ([N , e0]ψ, s). �

The above lemma requires that L be a model of D − Dap with C1. The lemma
below shows that we can replace this requirement with the one that L is a model of
D .

Lemma 21.2 Let L be a model of D , and τ0 a situation of L. Suppose h :
R(M, t0) ∼= R(Mτ0

L , τ0). Then M, t0 |= φ iff L , τ0 |= F (φ, s).

Proof We prove by induction on the complexity of φ. Assume that the statement
holds for all formulas less complex than φ. Then for any situation τ and action
point e of action model N , since pre(e) is less complex than φ and R(Mτ

L , τ )
∼=

R(Mτ
L , τ ), we have that Mτ

L , τ |= pre(e) iff L , τ |= F (pre(e), s). By Dap, L , τ |=
Poss(cN (e), s) ≡ F (pre(e), s). Thus we have L , τ |= Poss(cN (e), s) iff Mτ

L , τ |=
pre(e). So L satisfies C1. By applying Lemma 21.1, we have M, t0 |= φ iff L , τ0
|= F (φ, s). �

Finally, we are ready to prove the embedding theorem:

Proof First, suppose B(φ) 
|= F (φ, S0). Let L be a model of B(φ)∪{¬F (φ, S0)}.
Let τ0 = SL

0 . Since R(Mτ0
L , τ0) ∼= R(Mτ0

L , τ0), by Lemma 21.2, Mτ0
L , τ0 |= φ iff

L |= F (φ, S0). Thus Mτ0
L , τ0 |= ¬φ. So φ is not valid.

Now suppose φ is not valid. Let (M, t0) be a model of ¬φ. We construct a model
L of D = B(φ) as follows. First, let L |= Duna ∪ {A0}. The initial situations of L
are the states of M , and L interprets S0 as t0. The situations of L form a forest of
isomorphic trees rooted at the initial situations, where the children of each situation
one-to-one correspond to the actions. Thus L satisfies the foundational axioms F1,
F2, and F3. We interpret the A predicate according to A3. We now interpret Poss
and the fluents by induction on the level of situations:

1. τ is an initial situation. The B fluent restricted to the initial situations is exactly
the same as the accessibility relation of M . For each unary fluent p, L interprets
p at τ as M does. For each action model N and action point e of it, we let
L , τ |= Poss(cN (e), s) iff M, τ |= pre(e).
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2. Assume we have interpreted Poss and all the fluents at level k situations. We
interpret the fluents at level k + 1 situations according to Dss . Let τ be a
level k + 1 situation. For each action model N and action point e of it, we
let L , τ |= Poss(cN (e), s) iff Mτ

L , τ |= pre(e). Recall that the Kripke model
Mτ

L = (S, R, V ) is defined as follows:

• S consists of all level k + 1 situations of L;
• For any t1, t2 ∈ S, t1 Ri t2 iff (i, t2, t1) ∈ BL ;
• For each t ∈ S, V (t) is the set of fluents p which are true at t in L .

By the SSA for B, it is easy to see that L satisfies F4: B(i, s, s′)⊃[I ni t (s) ≡
I ni t (s′)]. Also, L has property C1: for any situation τ , action model N and action
point e of N , L , τ |= Poss(cN (e), s) iff Mτ

L , τ |= pre(e). So L is a model of D−Dap

with C1. We now prove that L |= Dap. Since R(Mτ
L , τ )

∼= R(Mτ
L , τ ), by Lemma

21.1, Mτ
L , τ |= pre(e) iff L , τ |= F (pre(e), s). Thus L , τ |= Poss(cN (e), s) iff

L , τ |= F (pre(e), s). So L , τ |= Poss(cN (e), s) ≡ F (pre(e), s).
So we have proved that L is a model of B(φ). Obviously, we have R(M, t0) ∼=

R(Mt0
L , t0). By Lemma 21.2, M, t0 |= φ iff L |= F (φ, S0). Recall that (M, t0) is a

model of¬φ. So L is a model of B(φ)∪{¬F (φ, S0)}. Thus B(φ) 
|= F (φ, S0). �

21.6 Extended Examples

In this section, we present two extended examples of modeling multi-agent scenarios
in the situation calculus. In the first example, the role of each agent is not common
knowledge. The second one involves both physical and sensing actions.

Example 21.4 Ann senses the truth value of p. Bob and Carol are observing Ann.
But Ann doesn’t know the role of Bob or Carol. Bob and Carol do not know the role
of each other. We introduce an epistemic action obs(e, b, c), which means that Ann
senses the truth value of p with result e, and b = 1 (resp. c=1) iff Bob (resp. Carol)
is observing Ann. The axioms are as follows:

1. Poss(obs(e, b, c), s) ≡ (e = 1 ≡ p(s))
2. A(i, a, obs(e, b, c), s) ≡

[i = ann⊃ (∃b′, c′)a = obs(e, b′, c′)]∧
[i = bob⊃ (b = 0⊃ a = nil) ∧ (b = 1⊃ (∃e′, c′)a = obs(e′, b, c′))]∧
[i = carol ⊃ (c = 0⊃ a = nil) ∧ (c = 1⊃ (∃e′, b′)a = obs(e′, b′, c))]

3. A(i, a, nil, s) ≡ a = nil

The reason we have [i = ann⊃ (∃b′, c′)a = obs(e, b′, c′)] is that Ann knows
the sensing result but she doesn’t know the role of Bob or Carol. The reason we have
[i = bob ∧ b = 1⊃ (∃e′, c′)a = obs(e′, b, c′)] is that Bob is observing Ann but he
does not know the role of Carol.

Assume that DS0 contains p(S0) ∧ CKnows(∀i¬BW(i, p), S0). Then D entails
the following, where S1 = do(obs(1, 1, 1), S0).
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1. BW(ann, p, S1);
2. ¬BW(bob, p, S1);
3. Bel(bob,BW(ann, p), S1);
4. ¬Bel(ann,Bel(bob,BW(ann, p)), S1);
5. ¬Bel(carol,Bel(bob,BW(ann, p)), S1).

Example 21.5 We use a simplified and adapted version of Levesque’s Squirrel
World. Squirrels and acorns live in a one-dimensional world unbounded on both
sides. Each acorn and squirrel is located at some point, and each point can contain
any number of squirrels and acorns. Acorns are completely passive. Squirrels can do
the following actions:

1. le f t (i): Squirrel i moves left a unit;
2. right (i): Squirrel i moves right a unit;
3. pick(i): Squirrel i picks up an acorn, which is possible when he is not holding

an acorn and there is at least one acorn at his location;
4. drop(i): Squirrel i drops the acorn he is holding;
5. learn(i, n): Squirrel i learns that there are n acorns at his location. We use

smell(i) to denote (πn)learn(i, n).

A squirrel can observe the action of another squirrel within a distance of 4, but if the
action is a sensing action, the result is not observable. Initially, there are two acorns
at each point. There are three squirrels: Nutty, Edgy, and Wally. Initially, they are
all at point 0, holding no acorns, and have no knowledge of the number of acorns at
each point, and the above is common knowledge. There are three ordinary fluents:

1. hold(i, s): Squirrel i is holding an acorn in situation s;
2. loc(i, p, s): Squirrel i is at location p in situation s;
3. acorn(p, n, s): There are n acorns at location p in situation s.

For illustration, we only present some axioms of D :

1. Poss(pick(i), s) ≡ ¬hold(i, s)∧ ∃p, n(loc(i, p, s)∧ acorn(p, n, s)∧ n > 0)
2. loc(i, p, do(a, s)) ≡ a = le f t (i) ∧ loc(i, p + 1, s)∨

a = right (i)∧ loc(i, p− 1, s)∨ loc(i, p, s)∧ a 
= le f t (i)∧ a 
= right (i)
3. A( j, a, pick(i), s) ≡ ∃p, p′[loc(i, p, s) ∧ loc( j, p′, s)∧

(|p − p′| > 4⊃ a = nil) ∧ (|p − p′| ≤ 4⊃ a = pick(i))]
4. A( j, a, learn(i, n), s) ≡ ∃p, p′[loc(i, p, s) ∧ loc( j, p′, s)∧

(|p − p′| > 4⊃ a = nil) ∧ ( j = i ⊃ a = learn(i, n))
(|p − p′| ≤ 4 ∧ j 
= i ⊃ (∃n′)a = learn(i, n′))]

5. CKnows(∀i.loc(i, 0) ∧ ¬hold(i) ∧ ∀p, n¬Bel(i,¬acorn(p, n)), S0)

6. ∀p.acorn(p, 2, S0)

Let φ(s, s′) be a formula. We introduce the following abbreviation:

Bel(i, φ(now, prev), s)
de f= ∀s′.B(i, s′, s)⊃∃s∗∃a∗.s′ = do(a∗, s∗) ∧ φ(s′, s∗).
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We abbreviate Nutty, Edgy, and Wally with N, E, and W, respectively. Let δ1 =
smell(N ); pick(N ), δ2 = right (N ); drop(N ), δ3 = le f t (W )2; right (E)3, and
δ4 = smell(W ); pick(W ); le f t (W ); le f t (E). Then D entails the following:

1. Do(δ1, S0, s)⊃TBel(N , acorn(0, 1), s)∧
CKnows(hold(N ) ∧ ∃nTBel(N , acorn(0, n)), s).

2. Do(δ1; δ2, S0, s)⊃CKnows(∃n(acorn(1, n, prev)∧acorn(1, n+1, now)), s).
This says that the squirrels commonly know that there is one more acorn at point
1 now than previously.

3. Do(δ1; δ2; δ3, S0, s)⊃CKnows(loc(W,−2) ∧ loc(N , 1) ∧ loc(E, 3), s).
4. Do(δ1; δ2; δ3; δ4, S0, s)⊃TBel(N , hold(W ) ∧ loc(W,−3) ∧ loc(E, 2), s)∧

Bel(E,¬hold(W )∧loc(W,−2), s)∧Bel(W, loc(E, 3), s).
Note that now Edgy and Wally have incorrect beliefs about each other.

21.7 Conclusions

In this paper, by incorporating the idea of action models from DELs, we have devel-
oped a general multi-agent extension of the situation calculus. We analyzed properties
of multi-agent beliefs in the situation calculus, and showed that we can provide a
uniform treatment of special types of actions, such as public sensing and reading ac-
tions, noisy sensors and unintended actions, and public announcements. We showed
that action model logic can be embedded into the situation calculus, and hence any
multi-agent scenario which can be modeled in action model logic can be modeled
in the situation calculus. Since DELs are propositional, an advantage of our work
is the gain of more expressiveness and compactness in representation. We gave two
extended examples to illustrate the modeling of multi-agent scenarios in the situation
calculus.

There are a number of topics for future research. First of all, as mentioned in the
introduction, van Benthem et al. [8] generalized the concept of action model to that
of update model which can be used to model both epistemic and physical actions.
They proposed a logic, called the logic of communication and change (LCC), to
reason about update models. It would be interesting to explore if we can embed
LCC into the situation calculus. Secondly, as shown in the Squirrel World example,
because of unreliable sources of information, at certain points, agents may have
incorrect beliefs about the world and other agents. When incorrect beliefs lead to
inconsistent beliefs, belief revision is necessary for the agents to keep functioning
in the world. The DEL community has done extensive work on multi-agent belief
revision, and a good reference is [4]. The general idea is this: The semantic model
is a plausibility model, where for each agent, there is a plausibility order on the
set of states or actions. An agent believes φ if φ holds in the most plausible states.
When we update a plausibility model by an action plausibility model, give priority
to the action plausibility order. In the future, we would like to incorporate this line
of work into the situation calculus. Thirdly, while the focus of the current paper
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is on the representation side, in the future, we would like to investigate reasoning
in the multi-agent situation calculus. Finally, we would like to explore multi-agent
high-level program execution and develop interesting applications of it.
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Appendix

Proposition 21.10 Let h : R(M1, t1) ∼= R(M2, t2). Then for any AML formula φ,
M1, t1 |= φ iff M2, t2 |= φ.

Proof We prove by induction on the complexity of φ. The cases that φ is p, ¬ψ , or
ψ ∧ ψ ′ are easy. We prove the remaining cases:

1. φ is Biψ . Let t be a state of M such that t1 Ri t . By Proposition 21.9, R(M1, t) ∼=
R(M2, h(t)). By induction hypothesis, M1, t |= ψ iff M2, h(t) |= ψ . So
M1, t1 |= Biψ iff for every t such that t1 Ri t , M1, t |= ψ iff for every t ′ such that
t2 Ri t ′, M2, t ′ |= ψ iff M2, t2 |= Biψ .

2. φ is CEψ . Similar to the above case.
3. φ is [N , e0]ψ . Let t be a state of M reachable from t1. By Proposition 21.9,

R(M1, t) ∼= R(M2, h(t)). Let e be an action point of N . By induction hypothesis,
M1, t |= pre(e) iff M2, h(t) |= pre(e). Now suppose M1, t1 |= pre(e0). We
show that R((M1, t1)⊗ (N , e0)) ∼= R((M2, t2)⊗ (N , e0)). Let (t, e) be a state
of R((M1, t1) ⊗ (N , e0)). Then M1, t |= pre(e) and (t, e) is reachable from
(t1, e0). So M2, h(t) |= pre(e), and (h(t), e) is reachable from (t2, e0) (since
t2 = h(t1) and h preserves the accessibility relation). Hence (h(t), e) is a state
of R((M2, t2) ⊗ (N , e0)). Let g((t, e)) = (h(t), e). It is easy to show that g is
a bijection from the states of R((M1, t1) ⊗ (N , e0)) to those of R((M2, t2) ⊗
(N , e0)), g preserves the accessibility relation and the atoms. So if M1, t1 |=
pre(e0), then R((M1, t1) ⊗ (N , e0)) ∼= R((M2, t2) ⊗ (N , e0)). By induction
hypothesis, (M1, t1)⊗ (N , e0) |= ψ iff (M2, t2)⊗ (N , e0) |= ψ . Thus M1, t1 |=
[N , e0]ψ iff if M1, t1 |= pre(e0) then (M1, t1) ⊗ (N , e0) |= ψ iff if M2, t2 |=
pre(e0) then (M2, t2)⊗ (N , e0) |= ψ iff M2, t2 |= [N , e0]ψ . �

Proposition 21.11 Let L be a model of D−Dap with C1, and τ0 a situation of L. Let
(M, t0) be a pointed Kripke model, and (N , e0) a pointed action model. Suppose that
h : R(M, t0) ∼= R(Mτ0

L , τ0) and M, t0 |= pre(e0). Then R((M, t0) ⊗ (N , e0)) ∼=
R(Mτ1

L , τ1) where τ1 is doL(cN (e0)
L , τ0).

Proof To begin with, we show that for any state t of M reachable from t0 and
for any action point e of N , M, t |= pre(e) iff L , h(t) |= Poss(cN (e), s). Since
h : R(M, t0) ∼= R(Mτ0

L , τ0), by Proposition 21.9, R(M, t) ∼= R(Mτ0
L , h(t)). By

Proposition 21.10, M, t |= pre(e) iff Mτ0
L , h(t) |= pre(e). By C1, L , h(t) |=
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Poss(cN (e), s) iff Mτ0
L , h(t) |= pre(e). Thus M, t |= pre(e) iff L , h(t) |=

Poss(cN (e), s).
We define a function g from the states of R((M, t0)⊗ (N , e0)) to the situations

of L as follows: g((t, e)) = doL(cN (e)L , h(t)). We first show that g is an injection.
Suppose that doL(cN (e1)

L , h(t1)) = doL(cN (e2)
L , h(t2)). Then by F1, cN (e1)

L =
cN (e2)

L and h(t1) = h(t2). By Duna , eL
1 = eL

2 . By A0, e1 = e2. Since h is an
injection, t1 = t2.

We now show that g preserves the accessibility relation. Let (t1, e1) and (t2, e2)

be two states of R((M, t0) ⊗ (N , e0)). Then M, ti |= pre(ei ), i = 1, 2. So
L , h(ti ) |= Poss(cN (ei ), s). Thus (t1, e1) R′i (t2, e2) iff t1 Ri t2 and e1 →i e2

iff (i, h(t2), h(t1)) ∈ BL and L , h(t1) |= A(i, cN (e2), cN (e1), s) (by A3) iff
(i, g((t2, e2)), g((t1, e1))) ∈ BL (by the SSA for B). Next, we show that g pre-
serves the fluents. For any state (t, e) of R((M, t0) ⊗ (N , e0)), for any fluent p, p
is true at (t, e) iff p is true at t iff p is true at h(t) iff p is true at doL(cN (e)L , h(t)),
which is g((t, e)), by the SSA for p.

We now show that g is a function from the states of R((M, t0)⊗ (N , e0)) to those
of R(Mτ1

L , τ1). Let (t, e) be a state of R((M, t0)⊗ (N , e0)). Then (t, e) is reachable
from (t0, e0). Since g preserves the accessibility relation, g(t, e) is reachable from
g(t0, e0), which is τ1. Thus g(t, e) is a state of R(Mτ1

L , τ1).
Finally, we show that g is a surjection. Let ω1 be a situation of L that is reachable

from τ1 by a B-path. Since M, t0 |= pre(e0), L , τ0 |= Poss(cN (e0), s). By A3
and the SSA for the B fluent, there exist an action point e of N reachable from e0
and a situation ω0 of L reachable from τ0, such that ω1 = doL(cN (e)L , ω0) and
L , ω0 |= Poss(cN (e), s). Since h : R(M, t0) ∼= R(Mτ0

L , τ0), there exists a state t
of M reachable from t0 such that h(t) = ω0. Thus M, t |= pre(e), (t, e) is reachable
from (t0, e0), and ω1 = g((t, e)). �
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Chapter 22
Roles, Rigidity, and Quantification
in Epistemic Logic

Wesley H. Holliday and John Perry

Abstract Epistemic modal predicate logic raises conceptual problems not faced in
the case of alethic modal predicate logic: Frege’s “Hesperus-Phosphorus” problem—
how to make sense of ascribing to agents ignorance of necessarily true identity
statements—and the related “Hintikka-Kripke” problem—how to set up a logical
system combining epistemic and alethic modalities, as well as others problems,
such as Quine’s “Double Vision” problem and problems of self-knowledge. In this
paper, we lay out a philosophical approach to epistemic predicate logic, imple-
mented formally in Melvin Fitting’s First-Order Intensional Logic, that we argue
solves these and other conceptual problems. Topics covered include: Quine on the
“collapse” of modal distinctions; the rigidity of names; belief reports and unarticu-
lated constituents; epistemic roles; counterfactual attitudes; representational versus
interpretational semantics; ignorance of co-reference versus ignorance of identity;
two-dimensional epistemic models; quantification into epistemic contexts; and an
approach to multi-agent epistemic logic based on centered worlds and hybrid logic.

22.1 Introduction

In Modal Logic for Open Minds, van Benthem [10] remarks on the step from modal
propositional logic to modal predicate logic: “it is important to perform this extension
also from a practical point of view. Knowing objects like persons, telephone num-
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bers, or even rules and methods is crucial to natural language and human agency”
(124). Indeed, talking about such knowledge, as well as beliefs and other cognitive
attitudes, is also crucial. In ordinary discourse, we freely combine talk about atti-
tudes with predication, quantification, modals, tense, and other constructions. Here
are some examples, not all of which are exactly pieces of ordinary discourse, but all
of which seem readily intelligible, together with straightforward formalizations—
formalizations that we argue below won’t quite do:

(1) Elwood believes that JvB wrote Modal Logic for Open Minds.

(1 f ) Be W ( j,m)

(2) There is someone who Elwood believes wrote MLOM.

(2 f ) ∃x Be W (x,m)

(3) There is a book that Elwood believes JvB wrote.

(3 f ) ∃y(Bk(y) ∧ Be W ( j, y))

(4) Elwood believes that JvB is J.F.A.K. van Benthem.

(4 f ) Be j = j ′

(5) Elwood believes that JvB couldn’t have been a computer, but could have been a
computer scientist.

(5 f ) Be(¬♦C( j) ∧ ♦C S( j))

(6) There is someone who Elwood believes couldn’t have been a computer, but could
have been a computer scientist.

(6 f ) ∃x Be(¬♦C(x) ∧ ♦C S(x))

Syntactically, these formalizations combine predicates, variables, names, identity,
quantifiers, alethic modal operators, and epistemic modal operators. The progress of
logic has involved seeing how to build on the semantics for earlier items on the list to
treat items later on the list. In this paper, we will consider to what extent the addition
of epistemic operators requires departing from the semantics that works well for the
previous items on the list—or whether we can get away with the following.

Conservative Approach: add epistemic modal operators with minimal departures
from a base semantics for alethic modal predicate logic, e.g., without changing
the semantics of singular terms or the nature of possible worlds.1

1 We do not mean to suggest that there is a consensus on the proper semantics for alethic modal
predicate logic. What we have in mind here is the standard development of Kripke-style semantics
for modal predicate logic (see, e.g., [12]). To the extent that we support the Conservative Approach
so understood, one might expect that epistemic operators could be smoothly introduced into alethic
modal predicate logic developed in other ways as well. As another point of qualification, we are
not arguing for conservativeness with respect to the question of relational versus neighborhood
semantics for epistemic logic (see [3]).
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There is a difficulty with the Conservative Approach, however, which we will call the
problem of the cognitive fix. This difficulty has led a number of writers to abandon
the Conservative Approach. Some have concluded that the “possible worlds” needed
for epistemic logic differ from those needed for alethic modal logic. Some have
concluded that names cannot be treated as “rigid designators” in epistemic logic,
as they are in alethic modal logic. Some have supposed that the individuals we talk
about in epistemic logic are not quite the same as the ones we talk about in alethic
modal logic. In this essay, however, we defend the Conservative Approach.

In Sect. 22.2 we discuss the problem of the cognitive fix, its history, and how
we propose to handle it. After introducing the formal framework in Sects. 22.3 and
22.4 we show how our approach resolves a related problem, the so-called Hintikka-
Kripke Problem [4, 42, 46] for combined alethic-epistemic modal logic. In Sect. 22.5
we show how we deal with quantification into epistemic contexts, and in Sect. 22.6
we extend the framework to multi-agent epistemic logic. Finally, in Sect. 22.7 we
conclude with a speculation about how our semantics for static epistemic predicate
logic may lead to new directions in dynamic epistemic predicate logic.

In recent years, there has been a wealth of applications of epistemic logic, mostly
using propositional languages. While many applications do not need the bells and
whistles of variables and quantifiers, others do. This is the point in the quote above
from van Benthem, who in addition to doing pioneering work in modal propositional
logic has made notable contributions to modal predicate logic [7–9]. As he explains at
the end of the chapter on Epistemic Logic in Modal Logic for Open Minds, “extending
our whole framework to the predicate-logical case is a task that mostly still needs
to be done—and who knows, it may be done by you!” (144). This is the kind of
encouragement from Johan that has launched so many research projects. While we
don’t pretend to have completed the task, we hope that something here will spark
ideas in Johan that will lead to further progress.

22.2 The Problem of the Cognitive Fix

Although the problems to be dealt with in this paper fall under the province of both
linguists and philosophers, our project is one of philosophical logic, not natural
language semantics or pragmatics. One of the projects of the philosophical logician
is to design formal languages that are unambiguous, clear, and explicit, but that
can also capture important kinds of claims about the world expressible in natural
language—and that do so in philosophically illuminating ways. Our question in this
paper is whether the philosophical logician can design such a language to formalize
a class of claims of special interest to philosophers and epistemologists: claims about
what agents believe and know. One of the chief obstacles to such a formal analysis,
the problem of the cognitive fix, dates back to at least Frege and Russell.
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22.2.1 Frege, Russell and the Problem of the Cognitive Fix

In their development of ideas and options for the foundations of first-order logic,
Frege and Russell were not much concerned about necessity and possibility, what
we will call the alethic modalities. But they were motivated by puzzles about the
way names, variables, and identity work in the context of discourse about knowledge
and belief, what we will call the epistemic modalities. How does the “cognitive
significance” of ‘a = a’ differ from that of ‘a = b’? How can George IV know that
the author of Waverley wrote Waverley, yet be ignorant of the fact that Scott wrote
Waverley, given that Scott is the author of Waverley? It seems that an agent can know
or believe something about an individual, thought about in one way, or, as we shall
say, relative to one “cognitive fix”, while not believing the same thing of the same
individual—and perhaps even believing the opposite—relative to another cognitive
fix.2 These differing cognitive fixes seem to enter into the truth-conditions of reports
about what people know and believe. For example, consider:

(7) Elwood believes that the author of De Natura Deorum was a Roman.
(8) Elwood believes that the author of De Fato was a Roman.

It seems that (7) might be true, while (8) is false, in spite of the fact that Cicero
authored both of the works mentioned. In “On Sense and Reference”, Frege [28]
treated the problem with his theory of indirect reference: in epistemic contexts such
as these, the embedded sentence and its parts do not have their customary reference,
but rather refer to their customary sense. Hence (7) and (8) do not really report a
relation between Elwood and Cicero, the person designated by the descriptions.

In “On Denoting” Russell [59] used his theory of descriptions to reach a similar
conclusion. For example, (7) is rendered as follows, using intuitive abbreviations:

(9) Be ∃x(Au(x, DeN ) ∧ ∀y(Au(y, DeN )→ x = y) ∧ Rom(x)).

With Russell’s treatment, as with Frege’s, (7) and (8) contain no reference to Cicero
when properly understood. Since there is no reference to Cicero, we cannot sub-
stitute the apparently co-referring descriptions; for they do not actually co-refer.
On Russell’s account, the descriptions both denote Cicero. However, sameness of
denotation does not support substitution of terms salva veritate in general, but only
in “extensional” contexts, unlike belief contexts. Although their philosophical tools
were quite different, it is generally agreed that Frege and Russell were recogniz-
ing a real phenomenon. At least on one permissible reading, the de dicto reading,
statements like (7) and (8) do not report relations between Elwood and Cicero, and
substitution of the singular terms that designate Cicero may fail to preserve truth.

Russell, however, also allowed a second reading of these sentences, where the
quantifier takes wide scope:

(10) ∃x(Au(x, DeN ) ∧ ∀y(Au(y, DeN )→ x = y) ∧ Be Rom(x)).

2 Wettstein [65] uses ‘cognitive fix’ in a more demanding sense, requiring not merely a way of
thinking about an object, but also accurate beliefs about what distinguishes the object from others.
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On this reading, (7) and (8) assert a relation between Elwood and Cicero, and the
substitution of the descriptions will preserve truth. The reading Russell is getting at
here, the de re reading, has also been widely, but not universally, recognized. In a
de re belief report, a relation is asserted between the believer and the object about
which she has a belief, and substitution of co-designative terms preserves truth.

The de re reading seems natural when names are used rather than descriptions:

(11) Elwood believes that Cicero was a Roman.
(12) Elwood believes that Tully was a Roman.

However, it is not at all obvious that this is correct. Names like ‘Cicero’ and ‘Tully’
give rise to the problem with which Frege begins “On Sense and Reference” [28].
The statement ‘Cicero = Cicero’ seems trivial, while the statement ‘Cicero = Tully’
contains valuable information; they have different cognitive significance. If Elwood
is a rather desultory student, who has heard of Cicero in Philosophy class, where
he was not identified as a Roman, and has heard of Tully in Classics, where he was
clearly identified as a Roman, then Elwood might not know that Cicero was Tully.
For him, ‘Cicero = Tully’ might contain just the information he will need on his
midterm. Before he gets it, it seems that (11) might be false, while (12) is true.

Frege is usually understood to have treated names as having senses that pick
out their referents by conditions they uniquely fulfill, what Carnap [15] was to call
“individual concepts”. So for Frege names behave like descriptions in epistemic
contexts, referring to their customary senses. In a perfect language, the sense of a
proper name would be established by the rules of the language. But Frege realized
that for ordinary proper names this may not be so; the relevant sense may be clear
from context, perhaps constructed from the speaker’s beliefs or generally accepted
beliefs about the object. It is the sense of the proper name, not the individual picked
out, that individuates the proposition referred to by the that-clause in a belief report;
thus, Frege does not allow for de re belief ascriptions in any straightforward way.

Russell thought that statements like (11) and (12) would report de re beliefs, so
long as ‘Cicero’ and ‘Tully’ were taken to be “logically proper names”. As his views
developed, however, he came to doubt that any ordinary names were logically proper
names. To assign a logically proper name, he thought, we have to be acquainted
with the thing named, and he came to think that we are acquainted only with our
own sense data, the properties and relations that obtain among our sense data, and
perhaps our selves. All our beliefs about ordinary objects are de dicto; such objects
are not known by acquaintance but only by description [60]. For Russell, there are
de re beliefs, but not about tables and chairs and other people.3

Thus, neither Frege nor Russell would countenance the formalizations (1 f )–(6 f )
of (1)–(6).

3 It seems that this leaves Russell without a solution to the problem of the cognitive fix, relative to
logically proper names. For a discussion of this issue, see [66].
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22.2.2 Quine on the Collapse of Modal Distinctions

Perhaps 1953 was the nadir of modal logic in philosophy. Quine argued in his “Three
Grades of Modal Involvement” [55] that the whole enterprise was based on a mistake.
His argument basically transfers the problem of the cognitive fix from the epistemic
realm to the alethic, concluding that if we must have alethic modalities, they should
be limited to the de dicto, without quantification into alethic contexts.

Granting—only for the sake of argument—that analyticity made sense, Quine
could understand necessity and possibility as properties of sentences, being analytic
and being synthetic. If we think it is analytic, and hence necessary, that philosophers
are thoughtful, and we are thoughtful philosophers, we should express this as

(13) ‘Philosophers are thoughtful’ is necessary.

That’s the “first grade” of modal involvement: modality expressed as predicates
of sentences. The second grade of modal involvement, to which less thoughtful
philosophers sink, blurs the use-mention distinction; they say things like:

(14) Necessarily, the heaviest philosopher in the room is thoughtful;
(15) Possibly, the heaviest object in the room is thoughtful;

or, in logical symbols:

(16) �(the heaviest philosopher in the room is thoughtful);
(17) ♦(the heaviest object in the room is thoughtful).

If we restrict the aspiring modal logician to statements like this, we will have allowed
her what we might think of as de dicto alethic modality. The modal operator blocks
the ordinary interpretation of the material inside, much like quotation would.

Nothing in the theory of necessity as analyticity allows us to make sense of the
third grade of modal involvement, that is, de re alethic modality, as would be required
to make sense of “quantifying in”:

(18) ∃x �(x is thoughtful).

And in fact, Quine thinks that this makes no sense, at least if we retain an orthodox
interpretation of predication, identity, names, variables, and quantifiers.

The basic problem with the move to (18), Quine thought, is that it requires the
aspiring modal logician to give unequal treatment to singular and general terms.
Surely she must insist on extensional opacity: “Russell was a human” can be nec-
essary, while “Russell was a featherless biped” is contingent, even if actually all
and only humans are featherless bipeds. How we designate a class is crucial for the
modal status of a sentence. But to make sense of quantification into modal contexts,
the modal logician must maintain that it makes sense for an open sentence like

(19) �(x is thoughtful)
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to be true of an object absolutely, not relative to some description or other. For the
alethic modalities at least, she must insist that how we designate individuals doesn’t
matter. She should, then, accept referential transparency and substitutivity:

If t and t ′ are co-designative singular terms, substitution of t for t ′ preserves truth,
even in alethic modal contexts.

But combining extensional opacity and referential transparency won’t work, or so
Quine maintained. He used a version of what is now called “the slingshot” to argue
that if we accept both doctrines, then the modalities “collapse”: all sentences with
the same truth value have the same modal status—all necessary or all contingent.

Assume that

(A) van Benthem is a human.
(D) van Benthem is a logician.

are both true, but (A) is necessary while (D) is contingent. So (A) and (D) have
different modal statuses. Then it seems we should grant that (B) has the same modal
status as (A), and (C) has the same modal status as (D):

(B) {x | x = ∅& van Benthem is a human } = {∅}.
(C) {x | x = ∅& van Benthem is a logician } = {∅}.
The only way (B) could be false is if van Benthem were not a human. Assuming (A)
is necessary, that’s impossible, so (B) must also be necessary. It’s sufficient for (C)
to be false that van Benthem not be a logician. Assuming (D) is contingent, that’s
indeed possible, so (C) must also be contingent. But note that (B) and (C) differ
only in that co-referential expressions are substituted one for the other on the left
side of the identity sign. So by substitutivity, the sentences that result from prefixing
‘Necessarily’ to (B) and (C) must have the same truth value, i.e., (B) and (C) must
have the same modal status, and hence so must (A) and (D). The modalities collapse.

Føllesdal [27] identified a flaw in Quine’s argument.4 The aspiring modal logician
need not claim that all co-referential singular terms are intersubstitutable in alethic
modal contexts, only that some are; and the step from (B) to (C) will only work if
the class abstracts on the left sides of the identity signs are among them.

What would make a class of singular terms such that co-referential terms in the
class are always substitutable for each other in alethic modal contexts? It would be
so if each term is a rigid designator in Kripke’s [41] sense, designating the same
object in every possible world (where the object exists). But we can also explain why
it would be so in a more general way. Consider the following:

(20) H(Cicero);
(21) � H(Cicero).

The standard semantics for (20) tells us that it is true if and only if the open sentence
‘H(x)’ is true of the individual designated by ‘Cicero’, whether ‘Cicero’ is treated

4 See [53] for a fuller account of the slingshot and Føllesdal’s treatment of it.
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as a hidden description or a logically proper name. Let us say that if ‘Cicero’ is a
modally loyal term, then the semantics for (21) is such that (21) is true iff the open
sentence ‘� H(x)’ is true of that same individual. The same goes for � H(Tully),
assuming ‘Tully’ is also a modally loyal term designating the same individual. And
an analogous point holds for any other sequence of�’s and♦’s applied to H(Cicero).
To have the desired loyalty, the individual supplied for each sentence needs to be
the same; and no further conditions that can vary with co-referential terms can be
brought into the truth-conditions for sentences that are formed by adding operators.

There are at least two ways terms can be modally loyal. Føllesdal’s [27] “genuine
names” are loyal because they are not hidden descriptions or some other complex
names built up from general terms with descriptive content. Kripke [41] argued that
ordinary names, like ‘Cicero’ and ‘Tully’, are genuine in this sense.

A second source of loyalty, which could be called sequestering, can be illustrated
by Kaplan’s [40] operator ‘Dthat’. ‘Dthat’ converts descriptions into what Kaplan
calls “terms of direct reference”. On a standard theory of descriptions, ‘theφ’ denotes
the unique object, if there is one, that is φ. According to Kaplan, the singular term
‘Dthat(the φ)’ directly refers to the object denoted by ‘the φ’. Whatever may be
suggested by ‘directly’, the cash value in alethic modal contexts is this: it is the
object denoted by ‘the φ’ that needs to satisfy the open sentence that results from
replacing all ocurences of ‘Dthat(theφ)’ in the original sentence by the same variable;
and this is all that ‘Dthat(the φ)’ makes available; in particular, the relevance of the
condition of being a φ is exhausted in determining the reference and plays no further
role in the semantics of modal sentences in which ‘Dthat(the φ)’ occurs.

Genuine names and sequestered descriptions suggest a solution to Quine’s argu-
ment. Substitutivity holds for some singular terms, but not all. The class abstracts at
the beginning of (B) and (C) are not among the singular terms for which substitutiv-
ity holds. The class abstracts are not genuine names or sequestered descriptions, but
rather complex names whose semantics is based on that of general terms.5

5 What if we amend (B) and (C) so that they begin with sequestered terms? Extending ‘Dthat’ to
class abstracts, we have:

(A) van Benthem is a human.
(B′) Dthat({x | x = ∅& van Benthem is a human }) = {∅}.
(C′) Dthat({x | x = ∅& van Benthem is a logician }) = {∅}.
(D) van Benthem is a logician.

Could Quine still argue that (A) and (B′), and (C′) and (D), have the same modal status? (D) is
clearly contingent; the multi-talented van Benthem could have been a computer scientist. Is (C′)
contingent? The result of applying Dthat to a description or class abstract is supposed to be a rigid
designator, or more generally, a modally loyal term in the sense defined above. Thus, evaluating

�Dthat({x | x = ∅& van Benthem is a logician }) = {∅}
amounts to checking for every possible world whether ‘y = {∅}’ is true there, where y is assigned
the object that is designated by ‘Dthat({x | x = ∅& van Benthem is a logician })’ in the actual world
(or the world of the context of utterance). Since the object designated by ‘Dthat({x | x = ∅& van
Benthem is a logician })’ in the actual world is {∅}, the check succeeds, so (C′) is necessary. Hence
(C′) and (D) do not have the same modal status; so the modalities do not collapse.
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22.2.3 Names in Epistemic Logic

While it no doubt remains for alethic modal logic to reach its zenith, Quine’s attempts
to undermine it are but a dim memory of older philosophers. Modally loyal names
are ubiquitous, both syntactically simple genuine names, functioning basically like
variables except with reference fixed in the Lexicon,6 and complex but sequestered
singular terms, as in Kaplan’s [40] Demonstratives.

It is widely held, however, that modally loyal names, understood as they are in
alethic logic, do not work for epistemic logic. Alethic modal logic can perhaps ignore
the problem of the cognitive fix. But cognition is the stuff that reports of belief and
knowledge seem to be about, and the problem won’t go away.

The problem is perhaps clearer in the case of sequestered terms than in that of
genuine names. The beliefs that might motivate a competent speaker to say or write

(22) Dthat(the author of Satan in the Suburbs) resigned from UCLA.

might differ from the beliefs that would motivate him to say or write

(23) Dthat(the author of Marriage and Morals) resigned from UCLA.

Someone might be in a position to sincerely and confidently utter the second, without
having any idea about the first. The features of sequestering that allow the aspiring
alethic modal logician to evade Quine’s argument do not seem to automatically help
the aspiring epistemic logician with the problem of the cognitive fix.

Even with genuine names, the problem of the cognitive fix doesn’t go away. When
we are talking about Cicero’s modal properties, it doesn’t seem to matter whether
we call him ‘Cicero’ or ‘Tully’. But as we saw above, it seems to matter a lot when
we are talking about what people know and believe.

The apparent mismatch between the alethic and epistemic modalities comes out
in the contrast between the following:

(24) If it is necessary that Tully was a Roman, then it is necessary that Cicero was
a Roman.

(24 f ) �Rom(T ully)→ �Rom(Cicero)

(25) If Elwood believes that Tully was a Roman, then Elwood believes that Cicero
was a Roman.

(25 f ) Be Rom(T ully)→ Be Rom(Cicero)

Under the standard interpretation of alethic modality, (24)/(24 f ) is valid. If Tully
was a Roman in every possible world, then so was Cicero. But intuitively, (25) is
not valid. Perhaps Tully is a Roman in every world compatible with what Elwood
believes, for Elwood realizes that Tully was a Roman. But if he doesn’t believe

6 In what follows we consider approaches that assimilate proper names in natural language to
constants in a formal modal language. We do not have room to discuss alternative approaches, e.g.,
that assimilate names to predicates [13] or variables [20].
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that Tully is Cicero, and doesn’t believe that Cicero was a Roman, it seems there
are worlds, compatible with what he believes, in which Cicero isn’t a Roman. But
Cicero is Tully. So how can (25) be false? There are two main schools of thought.

One approach is to deny the disanalogy between (24) and (25) and claim that
(25) is also valid. If Elwood believes that Tully was a Roman, then he believes that
Cicero was too. Epistemic contexts are transparent for names. According to a view
in the philosophy of language that we will call the the Heroic Pragmatic theory,7

if one says, “Elwood believes that Tully was a Roman, but Elwood doesn’t believe
that Cicero was a Roman”, then one says something false. But one may nevertheless
convey something true; the choice of ‘Tully’ for the first clause and ‘Cicero’ for the
second may convey a Gricean implicature that is true, namely that Elwood wouldn’t
use the name ‘Cicero’ to express his belief. By denying the disanalogy between (24)
and (25), the Heroic Pragmatist supports the Conservative Approach of Sect. 22.1 for
extending alethic to epistemic modal logic, but we think at too high an intuitive cost.

The other approach, more common among philosophical logicians, accepts the
intuitive disanalogy between (24) and (25), and rejects the Conservative Approach.
While the syntax of epistemic modal logic may parallel that of alethic modal logic,
as (25 f ) parallels (24 f ), the semantics cannot. According to the second approach,
although ‘Cicero = Tully’ is true in all possible worlds, in order to invalidate (25 f ) we
must allow ‘Cicero = Tully’ to be false in some doxastic possibility. We will call this
the Special Semantics theory, since it claims that we must modify our semantics when
we move from alethic to epistemic modal logic. Some explain this by claiming that in
epistemic contexts, names are not rigid designators (see Sect. 22.4.1). Others explain
it by a difference between doxastic/epistemic possibilities and possible worlds.

Both approaches accept an assumption that we reject about how the philosophical
logician should translate natural language reports into the modal language.

Complement = Operand Hypothesis: in epistemic logic, as in alethic modal
logic, the formula to which the modal operator is applied—the operand—is the
formalization of the sentence embedded in the ‘that’-clause—the complement sen-
tence—in the natural language belief/knowledge ascription.

Consider the relation between (24) and (24 f ). To form the antecedent of the latter, we
attach the alethic operator ‘�’ to the formalization of the sentence embedded in the
that-clause of the former, ‘Tully was a Roman’: �Rom(T ully); similarly with the
consequent. This is a natural step, and goes with thinking of ‘�’ as being basically
a translation of the natural language phrase ‘it is necessary that’ (or ‘necessarily’).

It is then natural to follow the same procedure with epistemic operators, as we
did in going from (25) to (25 f ). But in doing so, we build in an assumption that is
not part of the formal framework of modal logic. In doing epistemic modal logic, we
want to use the apparatus of modal logic to analyze belief reports. It does not follow
that the sentence operated upon, in the analysis, needs to be the same as the sentence
embedded in the ‘that’-clause in the natural language ascription. This assumption,
though natural, is on our view incorrect. This assumption, which one can think of as

7 See, for example, [5, 62].
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a form of syntactic conservatism, has to be rejected in order to maintain, in a way
that takes account of intuitions, our approach of semantic conservatism.

The reason is that natural language reports of belief and knowledge are not fully
explicit. On our view, they are not only about objects, but also about the cognitive
fixes via which those objects are cognized. One can represent such cognitive fixes
with bits of language (names or definite descriptions), mental particulars (ideas or
notions), or entities to which these somehow correspond. Frege’s Sinne and Carnap’s
individual concepts are examples of the latter. This is the course we follow. But the
entities we choose are what we call agent-relative roles (cf. [51]).

We assume only that in every case of cognition about an object, there is some
relation that holds between the cognizer and the object—the object plays some role
vis-a-vis the cognizer—in virtue of which this is the object cognized. Carnap’s indi-
vidual concepts are supposed to provide the same way of thinking about the object
for any agent. But in the general case, this requirement is too strong.

Here is a variation of an example from Quine [56] that makes this clear.
Suppose Ralph knows that the shortest spy is a spy. It doesn’t seem that this would

make the FBI interested in him. But there is a stronger condition that would make the
FBI interested, which we could express by saying: there is someone Ralph knows
to be a spy, or, to make the structure a bit more explicit, there is someone such that
Ralph knows that he is a spy. But surely we can’t say that just because Ralph knows
that the shortest spy is a spy, because anyone who knows English knows that.

Suppose that Ralph sees his neighbor Ortcutt on the beach, but doesn’t recognize
him (so he wouldn’t say “that man is Ortcutt”). Ralph sees Ortcutt take papers from
a bag marked ‘CIA’ and hand them to an obvious Bolshevik. Here the relevant agent-
relative role is being the man seen.8 Ortcutt plays this role relative to Ralph. It is in
virtue of his playing this role that Ralph’s thought—the one he might express with
“that man is a spy”—is about Ortcutt. Roles correspond to cognitive fixes.

The police arrive, and they take Ortcutt into custody, but Ralph still doesn’t recog-
nize him. After interviewing Ralph, one policeman reports to the other: “Ralph
believes that Ortcutt is a spy”. The name ‘Ortcutt’ is associated by the police with
a certain role, being the person identified on the mug sheets as ‘Ortcutt’. But that
role is not the one that the police are claiming to play a role in Ralph’s cognitive
economy. Clearly, their interest in his testimony is due to the fact that Ortcutt was the
man Ralph was seeing. As we construe the policeman’s remark, he says that Ralph
had a belief about a certain man, Ortcutt, via the role, being the man seen.

As this suggests, on our view roles are “unarticulated constituents” of the reports.
That is, there is no morpheme in the report that refers to them, but they figure in the
truth-conditions of what is said. This means, in effect, that to carry out a formalization
you need a story (context) and not just a sentence. The classic example motivating
the idea of unarticulated constituents is an utterance of “It is raining”, made in Palo
Alto, by way of calling off a tennis match scheduled there [50]. No morpheme refers
to Palo Alto, but clearly it is the fact that it is raining in Palo Alto that makes the
utterance true. While the classic example has proven quite controversial, no doubt

8 Cf. Lewis [44, p. 543] on watching as a “relation of acquiantance”.
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because of the complexity of weather phenomena of all sorts, the same idea was
applied to belief reports in [19].9

Thus, on our view, singular terms employed in complement sentences of
belief-reports have two functions. Their semantic function is to identify the objects
the belief is about. Typically, they also have the pragmatic function of providing evi-
dence about which cognitive fixes, or roles, are relevant. On this much, we agree with
the Heroic Pragmatists. We disagree, however, in the way we think cognitive fixes are
relevant. The Heroic Pragmatist sees them as triggers for Gricean implicatures. We
see them as semantic parameters of the whole belief report. In our formalization of
belief-reports, two kinds of information will be fully explicit: the objects the beliefs
are about, and the cognitive fixes on such objects that are involved in the beliefs.

Thus we see virtue in each of the approaches we don’t take. On the one hand, the
Heroic Pragmatic approach sees correctly that the semantic job of the names in the
complement sentence is to refer to the objects believed about. On the other hand, the
Special Semantics approach sees correctly that the terms in doxastic operand sen-
tences are not modally loyal (or rigid) in the way that names are in alethic operand
sentences. However, each approach is wrong about something too. The Heroic Prag-
matic approach does not give cognitive fixes their rightful semantic place. The Spe-
cial Semantics approach assumes that non-transparency requires non-rigid names,
whereas in our formalization below, the names will occur in transparent positions,
but not within the scope of a doxastic operator; the opacity will be due to thinking
of objects via the roles they play, which can differ from world to world.

What, then, should be said about (25) and (25 f )? Let’s first look at the sort of case
that leads one to think they are invalid. Remember our desultory student Elwood,
who knows from his Classics class that Tully was a Roman, and who has heard of
Cicero in his Philosophy class, but hasn’t learned that he was a Roman there.

On the picture of proper names we have in mind, when people use names they
exploit causal/historical networks that support conventions for using the name to
refer to objects—typically objects that are the sources of the networks [52]. Let r1
be the role of being the person at the source of the ‘Tully’ network exploited by
Elwood, and let r2 be the role of being the person at the source of the ‘Cicero’
network exploited by Elwood.10 Although in the actual world, Cicero (= Tully) plays
both of these roles, in other worlds compatible with what Elwood believes, different
individuals may play these roles—the networks may have different sources.

9 While our strategy is based on the approach of Crimmins and Perry [19], those authors took
cognitive fixes to be notions and took notions to be unarticulated constituents of belief-reports.
Subsequently Perry has developed an account that is basically similar, but takes cognitive fixes
to be notion-networks, basically intersubjective routes through notions. Of course, traditionally
cognitive fixes have been taken to be individual concepts. We believe that the concept of a role
provides a general framework into which all of these candidates can be fit.
10 Cf. Lewis [44, p. 542]: “If I have a belief that I might express by saying “Hume was noble”, I
probably ascribe nobility to Hume under the description “the one I have heard of under the name of
‘Hume’ ”. That description is a relation of acquaintance that I bear to Hume. This is the real reason
why I believe de re of Hume that he was noble”.
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Let z1 be what we call a role-based (object) variable, whose interpretation (rela-
tive to a current assignment) in any world w is the object that plays role r1 in w, and
let z2 be another role-based variable, whose interpretation in any w is the object that
plays r2 in w. Suppose someone utters “Elwood believes that Tully was a Roman,
but Elwood doesn’t believe that Cicero was a Roman”, where the unarticulated role
associated with the use of ‘Tully’ is r1 and the unarticulated role associated with the
use of ‘Cicero’ is r2. Then we claim that the truth of the report imposes the follow-
ing conditions on the actual world and the space of Elwood’s doxastic alternatives
(where �d ϕ means that ϕ is true in all of Elwood’s doxastic alternatives):

(26) T ully = z1 ∧�d Rom(z1) ∧ Cicero = z2 ∧ ¬�d Rom(z2).

In other words, Tully is the person who plays role r1 in the actual world, and in all
worlds v compatible with what Elwood believes, the person who plays r1 in v is a
Roman; but while Cicero is the person who plays role r2 in the actual world, there
is some world u compatible with what Elwood believes such that the person who
plays r2 in u is not a Roman. Since this can happen, (26) can be true. This does not
require any possible world compatible with what Elwood believes in which Cicero
(= Tully) is not Tully (= Cicero). It simply requires that there are worlds, compatible
with what he believes, in which the object that plays role r1 does not play role r2.

The examples above involve two kinds of roles exploited in thinking about things:
perceptual roles and name-network roles. Both kinds of roles afford ways of finding
out more about an object; they are what Perry calls epistemic roles [52].11 The idea
that an agent’s believing of an object (de re) that it has a property requires, as with
(26), that the object be the unique player of some epistemic role for the agent in
the actual world, such that in all worlds compatible with the agent’s beliefs, the
player of the role in that world has the property in question, is closely related to the
accounts of de re belief proposed by Kaplan [39] and Lewis [44, Sect. 8], which have
been influential in linguistics (cf. [17]). When we add the idea that belief reports
involving names have such roles as unarticulated constituents, we can make sense of
the difference between (24) and (25) (see Sect. 22.4).

Accounts of de re belief in the style of Kaplan and Lewis are not without chal-
lenges. Ninan [47] has argued that such accounts do not generalize to handle other
attitudes such as imagination; and Yalcin [67] has argued that it is difficult to make
such accounts compatible with semantic compositionality. We will briefly discuss
the first problem in Sect. 22.3.1. For a critical discussion of compositionality taking
into account unarticulated constituents, we refer to Crimmins [18, Chap. 1].

On our view, belief reports get at important cognitive aspects of agents, and
keeping track of them helps us understand agents’ behavior. First and foremost, in
this paper we are interested in using a formal language to describe these aspects of
agents, not in doing the formal semantics of natural language belief reports. This is in
line with how epistemic logic is used in theoretic computer science and AI, as a tool
to model the information that agents have and how they update it, not the meanings
of English sentences containing the words ‘knows’ and ‘believes’.

11 Cf. Lewis [45, 10f] on “relations of epistemic rapport” or “relations of acquaitance”.
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The same can be said of quantified epistemic logic. Although our examples will
be drawn from philosophy rather than computer science or AI, notions of de re belief
and “double vision” can be applied to computers as well as humans (cf. [6]); once
again, one may be interested in the phenomena themselves, rather than in English talk
about them. With this distinction in mind, even the Heroic Pragmatist about belief
talk could agree with much of the formal modeling to follow, if he does not disagree
with the basic picture of agents acquiring information about objects via the roles
these objects play for the agents. For the purpose of modeling agents themselves,
whether we take facts about roles to be involved in the semantics or the pragmatics
of belief talk is not crucial.

In the next section we introduce the formal framework with which we will imple-
ment these ideas, Fitting’s [24, 25, Sect. 5] First-Order Intensional Logic (FOIL).

22.3 Formal Framework

Our formal language is a slight variant of that of Fitting’s [25, Sect. 5] FOIL.12

Definition 22.1 (Language) Fix a set {n1, n2, . . . } of constant symbols (or names);
two disjoint sets {x1, x2, . . . } and {r1, r2, . . . } of object variables and role variables;
and for every m ∈ N, a set {Qm

1 , Qm
2 , . . . } of m-place relation symbols. The terms t

and formulas ϕ of our language are generated by the following grammar (i, k ∈ N):

t ::= ni | xi

ϕ ::= Qk
i (t1, . . . , tk) | t = t ′ | P(t, ri ) | ¬ϕ | (ϕ ∧ ϕ) | �a ϕ | �d ϕ | ∀xiϕ | ∀riϕ.

We will often replace the subscripts on variables with suggestive letters or words (or
drop them altogether) and write out italicized English names in place of n1, n2, . . . .
We define ∃yϕ as ¬∀¬yϕ for y an object or role variable, and sometimes we use �
to represent both �a and �d . For the new symbols, we give the following readings:

P(t, ri ) “tplays role ri for the agent”;
�a ϕ “it is alethically necessary thatϕ”;
�d ϕ “it is doxastically necessary for the agent thatϕ”.

In Sect. 22.6, we extend the language to describe the beliefs of multiple agents. Of
course, one could also introduce an epistemic necessity operator �e for knowledge
(see [34, 35] for discussion of additional issues raised by knowledge).

12 There are a few small differences. First, Fitting allows relation symbols Q (but not =) to apply
to what we call role variables—his intensional variables—whereas to simplify the definition of the
language (to avoid typing relations), we do not; this is why we do not count role variables among
the terms t in Definition 22.1. Second, we include constant symbols in the language, whereas for
convenience Fitting does not. Third, we have a bimodal language with �a and �d , whereas Fitting
has a monomodal language with �. Finally, where we write P(t, ri ), Fitting would write D(ri , t).
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Our models are a standard kind of modal models with constant domains.13

Definition 22.2 (Constant Domain Models) A (constant domain) model for the
language of Definition 22.1 is a tuple M = 〈W, Ra, Rd , D, F, V 〉 such that:

(1) W is a non-empty set of worlds;
(2) Ra is a binary alethic accessibility relation on W ;
(3) Rd is a binary doxastic accessibility relation on W ;
(4) D is a non-empty set of objects;
(5) F is a non-empty set of roles, which are partial functions from W to D;
(6) V is a valuation function such that for a relation symbol Qk

i and world w,
V (Qk

i ,w) is a set of k-tuples of objects; and for a name ni , V (ni ,w) is an
object, for which we assume the following:

(a) Ra-rigidity of names – for all w, v ∈ W , if wRav, then V (ni ,w) = V (ni , v);
(b) Rd -rigidity of names – for all w, v ∈ W , if wRdv, then V (ni ,w) = V (ni , v).

For w ∈ W , the pair M ,w is a pointed model.

Instead of stating (a) and (b), we could simply require that for all names ni and
worlds w, v ∈ W , V (ni ,w) = V (ni , v). However, for the purposes of our discussion
in Sect. 22.4, it helps to distinguish (a) and (b); for according to a common view, we
should assume only the Ra-rigidity of names, not the Rd -rigidity of names.

Functions from W to D are traditionally thought of as individual concepts, whereas
we think of the partial functions from W to D in F as representing agent-relative
roles.14 The distinction is not just terminological. The role view leads us to reject
constraints on F that have been proposed assuming the individual concept view (in
Sect. 22.5), and it leads to important differences in the multi-agent case (in Sect. 22.6).

It would be natural to assume that Ra is a reflexive relation—perhaps even an
equivalence relation—while Rd is a serial relation. But nothing here will turn on
properties of the relations, so we prefer to define the most general model classes.

The next step in introducing the semantics is to define variable assignments.

Definition 22.3 (Variable Assignment) Given a model M , a variable assignment μ
maps each object variable xi to some μ(xi ) ∈ D and each role variable ri to some
μ(ri ) ∈ F . For d ∈ D, let μ[xi/d] be the assignment such that μ[xi/d](xi ) = d and
for all other x j , μ[xi/d](x j ) = μ(x j ). For f ∈ F , μ[ri/ f ] is defined analogously.

We can now define the interpretations of the two types of terms in our language.

13 These models are almost the same as those for “contingent identity systems” in [48] (cf. [37]) and
[54], but for a few differences: we follow Fitting in allowing F to contain partial functions; Parks
does not deal with constants; and while Priest does deal with constants, he treats them as non-rigid.
The differences between our models and Fitting’s [24, 25] are that we deal with constants, and
Fitting defines V so that predicates can apply not only to elements of D, but also to elements of F
(cf. [37]).
14 We are not suggesting that all there is to a role is a partial frunction from W to D; but such a
function captures an important aspect of a role, namely the players of the role across worlds.



606 W. H. Holliday and J. Perry

Definition 22.4 (Interpretation of Terms) The interpretation [t]M ,w,μ of a term t
in model M at world w with respect to assignment μ is an object given by:

[ni ]M ,w,μ = V (ni ,w);
[xi ]M ,w,μ = μ(xi ).

It follows from Definition 22.4 and parts (a) and (b) of Definition 22.2 that

for all ni and w, v ∈ W , if wRav, then [ni ]M ,w,μ = [ni ]M , v,μ;
for all ni and w, v ∈ W , if wRdv, then [ni ]M ,w,μ = [ni ]M , v,μ.

This is the sense in which a name ni is a rigid designator. Given the first point, we
can call ni an “alethically rigid designator”, and given the second point, we can call
ni a “doxastically rigid designator”. We will return to these points in Sect. 22.4.

Finally, we are ready to state the truth definition for our version of FOIL.

Definition 22.5 (Truth) Given a pointed model M ,w, an assignment μ, and a for-
mula ϕ, we define M ,w �μ ϕ (ϕ is true in M at w with respect to μ) as follows:

M ,w �μ Qk
i (t1, . . . , tk) iff 〈[t1]M ,w,μ , . . . , [tk]M ,w,μ〉 ∈ V (Qk

i ,w);
M ,w �μ t = t ′ iff [t]M ,w,μ =

[
t ′
]
M ,w,μ ;

M ,w �μ P(t, ri ) iff μ(ri ) is defined at w and [t]M ,w,μ = μ(ri )(w);
M ,w �μ ¬ϕ iff M ,w �μ ϕ;
M ,w �μ (ϕ ∧ ψ) iff M ,w �μ ϕ and M ,w �μ ψ;
M ,w �μ ∀xiϕ iff for all d ∈ D, M ,w �μ[xi /d] ϕ;
M ,w �μ ∀riϕ iff for all f ∈ F, M ,w �μ[ri / f ] ϕ;
M ,w �μ �a ϕ iff for all v ∈ W , if wRav then M , v �μ ϕ;
M ,w �μ �d ϕ iff for all v ∈ W , if wRdv then M , v �μ ϕ.

For a complete axiomatization of FOIL, we refer the reader to [25, Sect. 5].15

Despite having only a single domain D of objects, we can capture the idea of
world-relative varying domains with the standard device of a one-place existence
predicate E, thinking of V (E,w) as the non-empty domain of objects that exist in
world w. We can then define the actualist quantifier by ∀a xϕ := ∀x(Ex → ϕ).16

Instead of using role variables r1, r2, . . . , a number of authors use what we call
role-based object variables z1, z2, . . .

17 These are treated in the same way by an
assignment μ, so that μ(zi ) = μ(ri ) ∈ F , but their interpretations differ:18

15 Some minor changes must be made, e.g., since we include constants in the language (recall note
12), but we will not go into the details here.
16 One may then wish to add the assumption that for all f ∈ F , if f (w) = d, then d ∈ V (E,w), i.e.,
if an object d plays a role for the agent in w, then d exists in w, validating P(t, ri )→ ∃a x t = x .
17 See, for example, [1, 14, 48] and [54, Sect. 8].
18 We did not define the interpretation of role variables in Definition 22.4, since we do not officially
count them as terms (recall note 12), and they only appear in the P(t, ri ) clause in Definition 22.5,
where the assignment μ takes care of them directly; but the definition would be [ri ]M,w,μ = μ(ri ).
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[ri ]M ,w,μ = μ(ri );
[zi ]M ,w,μ = μ(zi )(w).

Hence ri picks out a role, whereas zi picks out the object that plays that role, which
may vary between worlds. The truth clause for quantification with z variables is:

M ,w �μ ∀ziϕ iff for all f ∈ F, M ,w �μ[zi / f ] ϕ.

One complication with this approach is that if we allow F to contain partial functions,
then μ(zi ) may be undefined at w, in which case [zi ]M ,w,μ is undefined. Hence we
have to deal with evaluating atomic formulas containing undefined terms. Typically
authors who use such variables assume that F is a set of total functions.19

Let us see how we can translate a language with z variables into our language.

Definition 22.6 (Z-translation and abbreviation) For an atomic formula At (t1, . . . ,
tn) (including identity formulas), possibly containing x variables and z variables
(instead of r variables), let z be the sequence of z variables contained therein (in
order of first occurrence); let I be the set of indices of these variables; and let x be
the sequence of x variables obtained from z by replacing each zi with xi� , where i� is
the least j ≥ i such that x j is not in At (t1, . . . , tn) and j �= k� for any zk preceding
zi in z. Define the Z-translation:

Z(At (t1, . . . , tn)) = ∃x(∧
i∈I

P(xi� , ri ) ∧ At (t1, . . . , tn)zx),

where ∃x abbreviates a string of quantifiers and ϕz
x indicates simultaneous substitu-

tion of each element of x for the corresponding element of z, and

Z(¬ϕ) = ¬Z(ϕ);
Z((ϕ ∧ ψ)) = (Z(ϕ) ∧ Z(ψ));
Z(∀xiϕ) = ∀xi Z(ϕ);
Z(∀ziϕ) = ∀ri Z(ϕ);
Z(�ϕ) = �Z(ϕ).

If α = Z(β), then we call β a Z-abbreviation of α.

For example, our formula from Sect. 22.2.3,

(26) T ully = z1 ∧�d Rom(z1) ∧ Cicero = z2 ∧ ¬�d Rom(z2),

is the Z -abbreviation of

(27) ∃x1(P(x1, r1) ∧ T ully = x1) ∧�d ∃x1(P(x1, r1) ∧ Rom(x1))∧
∃x2(P(x2, r2) ∧ Cicero = x2) ∧ ¬�d ∃x2(P(x2, r2) ∧ Rom(x2)),

which is equivalent to

19 The exception among the authors referenced in note 17 is Carlson, who allows F to contain
partial functions and uses a three-valued semantics to deal with undefined terms.
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(28) P(T ully, r1) ∧�d ∃x1(P(x1, r1) ∧ Rom(x1))∧
P(Cicero, r2) ∧ ¬�d ∃x2(P(x2, r2) ∧ Rom(x2)).

We will use Z -abbreviations repeatedly in order to compare our formalizations
of belief ascriptions with those of other authors whose systems use z variables.20

There has been much discussion in the literature on quantified modal logic about
whether quantifiers should take regular object variables xi or what we called role-
based object variables zi (see [29, 30, Sect. 13]). We think both types of quantification
are useful.21 In Sect. 22.5, we will suggest that trying to make quantification with z
variables also do the normal work of quantification with xi variables forces one to
postulate otherwise unnatural constraints on the functions assigned to zi variables.

There is another important point about variables and quantifiers that will apply
throughout. For simplicity, the belief reports we consider are cases of role provision,22

where the relevant roles are clear from context, so we formalize the report with an
open formula with free role variables to which the relevant roles are assigned by a
context-sensitive assignment μ. In other cases of role constraint, there may not be
any unique roles clear from context, although context supplies a set of relevant roles,
so we formalize the report by prefixing role quantifiers; e.g., (28) goes to

(29) ∃r1[P(T ully, r1) ∧�d ∃x1(P(x1, r1) ∧ Rom(x1))] ∧
∃r2[P(Cicero, r2) ∧ ¬�d ∃x2(P(x2, r2) ∧ Rom(x2))].

Then we can think of the set F of roles over which the quantifiers range as context
sensitive, so that a change of context can be represented by a change of models
from M = 〈W, Ra, Rd , D, F, V 〉 to M = 〈W, Ra, Rd , D, F ′, V 〉 as in dynamic
epistemic logic. Or we could put many sets of roles in one model and superscript the
role variables so that, e.g., r i

k and r j
k range over sets μ(i) and μ( j) of roles, where

the context-sensitive assignment μ also maps numbers (superscripts) to sets of roles,
as in Aloni’s approach with z-variables at the end of Sect. 22.5. Then the quantifiers
in a sentence could range over distinct role sets. Role provision could be seen as the
special case of role constraint where the cardinality of the relevant set of roles is 1.

22.3.1 Extension for Counterfactual Attitudes

The framework presented so far is designed to handle doxastic/epistemic attitudes.
As noted in Sect. 22.2.3, Ninan [47] has raised a challenge for accounts of these

20 Remember that in (27) and (28), we read �d ϕ as “it is doxastically necessary that ϕ” or “in all
worlds compatible with the agent’s beliefs, ϕ”. The whole of (27) gives the condition that the truth
of the belief report imposes on the actual world and the space of the agent’s doxastic alternatives,
so we would not read the second conjunct as “the agent believes that there exists …”.
21 Belardinelli and Lomuscio [6] include both x and z variables in their multi-agent quantified
epistemic logic. Instead of distinguishing two types of variables, we could instead distinguish
two types of quantifiers, in the tradition of Hintikka’s [33] distinction between ∃y and Ey. By
understanding ∃z quantification in terms of agent-relative roles, we are following Perry [51].
22 This point is inspired by Crimmins and Perry [19] on notion provision vs. notion contraint.
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attitudes in the style of Kaplan and Lewis, on the grounds that they do not generalize
to handle “counterfactual attitudes” like imagining, wishing, and dreaming.

To see the problem, let us return to the example of Ralph and Ortcutt from
Sect. 22.2.3. Now Ralph looks at Ortcutt on the beach and imagines that no one
ever saw that man. We might report this as

(30) Ralph imagines that no one ever saw Ortcutt.

Ninan suggests that the truth-conditions of (30) should be stated in terms of what is
true in the worlds compatible with what Ralph is imagining. By analogy with our
treatment of the Tully-Cicero case in (28), we might try to formalize (30) as (31),
relative to an assignment μ such that μ(r) is the role of being the man seen:

(31) P(Ortcutt, r) ∧�i ∃x(P(x, r) ∧ Never Seen(x)),

where �i ϕ means that ϕ holds in all worlds compatible with Ralph’s imagining. But
(31) won’t work, because it should be false throughout our intended model; since
μ(r) is supposed to be the role of being the man seen, no one who plays that role in
a world can be in the extension of the Never Seen predicate in that world.

The reason that the schema for belief, represented in (28), does not work for
imagination is that the schema for belief commits us to the following.

Doxastic Match Hypothesis: for an agent to believe of an object o via a role r
that it has a property, the agent must also believe of o via r that it plays r.

As a corollary, if the agent does not have any true beliefs about the roles that o
plays in his life, then the agent cannot have any de re beliefs about o. We think this
hypothesis is plausible for a suitably general notion of “belief” (positive doxastic
attitude), but Ninan is right to reject the analogous hypothesis for imagination.

Imaginative Match Hypothesis: for an agent to “imagine of” object o via role r
that it has a property, the agent must also imagine of o via r that it plays r.

The example above, where Ralph sees Ortcutt and imagines that no one ever saw
that man, is a counterexample to the Imaginative Match Hypothesis. It is not clear,
however, whether Ralph can see Ortcutt and believe that no one ever saw that man.

Inspired by Lewis [45], Ninan’s solution to the problem of counterfactual attitudes
is (roughly) the following: we can stipulate that an object in a given “imagination
world” v is supposed to represent Ortcutt, rather than finding the object as the player
in v of a role that Ortcutt plays in the actual world. On this view, to check at a
world whether Ralph is imagining that Ortcutt has a given property, we simply check
whether the stipulated representatives of Ortcutt across Ralph’s imagination worlds
have that property. But there is an additional subtlety, arising due to “double vision”
cases. Suppose that for Ralph, Ortcutt plays both the roles of being the man seen and
being the man called ‘Bernard Ortcutt’. Now Ralph looks at Ortcutt on the beach
and says: “I’m imagining a situation in which that guy (Ralph points at the man on
the waterfront) is distinct from Bernard Ortcutt, and in which I never saw that guy,
and in which Ortcutt never goes by the name ‘Bernard Ortcutt’ ” [47]. For handling
this kind of case, Ninan generalizes the proposal stated above: we can stipulate that
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one object in an imagination world v represents Ortcutt relative to one role (being
the man seen), while a different object in v can represent Ortcutt relative to another
role (being the man called ‘Bernard Ortcutt’).

Let us sketch how Ninan’s treatment of counterfactual attitudes can be accom-
modated in the framework of FOIL. For simplicity, in Sect. 22.3 we did not define
the full language of FOIL as presented by Fitting. In the full language, there are
intensional predicates that we can apply to function variables. Previously we called
function variables ‘role variables’, but let us now consider adding partial functions to
F in our models that are not thought of as roles. We introduce a two-place intensional
predicate Stip such that for function variables r and s,23 Stip(r, s) is a formula. Intu-
itively, think of the truth of Stip(r, s) at world w relative to an assignment μ as telling
us the following about the function μ(s): in every world v, μ(s)(v) is the individual
in v that “represents” μ(r)(w), relative to role μ(r), “by stipulation”.24 In essence,
Ninan proposes truth-conditions for (30) that are equivalent to that of

(32) P(Ortcutt, r) ∧ ∃s(Stip(r, s) ∧�i ∃x(P(x, s) ∧ Never Seen(x))).

In other words, Ortcutt plays the role of being the man seen for Ralph, and in every
world compatible with what Ralph imagines, the thing that by stipulation represents
Ortcutt relative to that role has the property of never being seen. It is easy to see how
this approach will also handle Ralph’s double vision case above.

In what follows, we will return to the simpler treatment of belief that assumes the
Doxastic Match Hypothesis. However, it is noteworthy that the FOIL framework has
the flexibility to model attitudes for which such a hypothesis is not reasonable.

22.4 Names in Alethic and Epistemic Logic

In this section, we discuss the treatment of names in alethic and epistemic/doxastic
logic. In Sect. 22.4.1, we begin by discussing a problem about names that has lead
some to reject standard semantics for epistemic/doxastic predicate logic as incoher-
ent. In Sect. 22.4.4, we will propose a solution to this problem based on the ideas of
Sect. 22.2.3.

22.4.1 The “Hintikka-Kripke Problem”

Consider the difference between the following:

23 We could have two sorts of function variables, r1, r2, . . . for roles and s1, s2, . . . for non-role
functions. Or we could indicate the difference between role functions and non-role functions by a
one-place predicate Role whose extension contains only functions to be thought of as roles.
24 According to this intuitive understanding, the extension of Stip should be a functional relation:
if Stip(r, s) holds, then Stip(r, s′) should not hold for any s′ �= s.
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(33) Hesperus = Phosphorus, but it’s not necessary that Hesperus = Phosphorus.
(34) Hesperus = Phosphorus, but Elwood doesn’t believe that Hesperus =

Phosphorus.

Following Kripke [41], (33) should be formalized by a sentence in our formal
language that is unsatisfiable. By contrast, following Hintikka [32], (34) should
be formalized by a sentence that is satisfiable. Translating (33) as

(35) Hesperus = Phosphorus ∧ ¬�a Hesperus = Phosphorus,

if we assume the Ra-rigidity of names from Definition 22.2, then (35) is unsatisfiable,
as desired. Similarly, if we translate (34) as

(36) Hesperus = Phosphorus ∧ ¬�d Hesperus = Phosphorus

and assume the Rd-rigidity of names, then (36) is also unsatisfiable—but we want
our formalization of (34) to be satisfiable. This has been called the “Hintikka-Kripke
Problem” [42]. To solve it, we have two choices: give a different formalization of (34)
or give up Rd -rigidity. The second seems to have become common among logicians
working on epistemic predicate logic, following Hintikka’s [34] view that “in the
context of propositional attitudes even grammatical proper names do not behave
like ‘logically proper names’ ”. For example, in their textbook on first-order modal
logic, Fitting and Mendelsohn [26] write that “the problem, quite clearly, lies with
the understanding that these names are rigid designators. We see that, although they
are rigid within the context of an alethic reading of �, they cannot be rigid under
an epistemic reading of �”. This suggests that we should not assume the R-rigidity
of names when R is an epistemic/doxastic accessibility relation (also see [54]). The
question is how we are supposed to understand the failure of Rd -rigidity. As Linksy
[46] writes:

Hence, these names do not denote the same thing in all doxastically possible worlds; that
is, they are not doxastically rigid designators. How are we to make this situation intelligible
to ourselves? Hesperus (= Phosphorus) is (are?) two objects in the world described by the
sentences [true at some world]. It is not just that ‘Hesperus’ and ‘Phosphorus’ are names
of different objects, for that is easily enough understood. The problem is that in this world
Hesperus (= Phosphorus) is not Phosphorus (= Hesperus). That cannot be understood at all.

Let us call this the impossible worlds explanation of the failure of Rd -rigidity, which
leads Linsky to believe that there are problems with analyzing belief ascriptions
in terms of the semantics of � that do not arise for alethic necessity (also see [4],
which is even more critical). By contrast, Aloni [1, pp. 9–10] interprets the failure
of Rd -rigidity in the weaker way that Linsky mentions:

[I]n different doxastic alternatives a proper name can denote different individuals. The failure
of substitutivity of co-referential terms (in particular proper names) in belief contexts does
not depend on the ways in which terms actually refer to objects (so this analysis is not in
opposition to Kripke’s (1972) theory of proper names), it is simply due to the possibility that
two terms that actually refer to one and the same individual are not believed by someone to do
so.... Many authors...have distinguished semantically rigid designators from epistemically
rigid designators—the former refer to specific individuals in counterfactual situations, the
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latter identify objects across possibilities in belief states—and concluded that proper names
are rigid only in the first sense.25 [emphasis added]

The emphasized claim is in the tradition of Stalnaker [63]: “If a person is ignorant
of the fact that Hesperus is Phosphorus, it is because his knowledge fails to exclude a
possible situation in which, because causal connections between names and objects
are different, one of those names refers to a different planet, and so the statement,
‘Hesperus is Phosphorus’ says something different than it actually says”.

However, there are two problems with appealing to Stalnaker’s idea in support
of making (36) satisfiable by giving up Rd -rigidity: first, the appeal leads to serious
problems about how to understand the valuation function V in modal models and
about how Rd and Ra are related, as discussed in Sect. 22.4.2; second, Stalnaker’s idea
is inadequate to explain other attributions of ignorance, as discussed in Sect. 22.4.3.
After explaining these problems, we will solve the Hintikka-Kripke problem in the
way suggested by our discussion in Sect. 22.2.3: give a different formalization of (34).

22.4.2 Representational Versus Interpretational Semantics

Those who give up Rd -rigidity allow models in which, e.g., wRdv, V (Hesperus,w)
= V (Phosphorus,w), but V (Hesperus, v) �= V (Phosphorus, v). One might
think that this simply reflects Stalnaker’s idea that ‘Hesperus’ and ‘Phosphorus’
refer to different things in v but the same thing in w. The problem is that this blurs
an important distinction about how to understand the valuation V . This distinc-
tion is closely related to Etchemendy’s [22] distinction between representational
and interpretational semantics for classical logic, but here applied to models for
modal logic.

When we switch from one model M = 〈W, R, D, F, V 〉 to another model M ′ =
〈W, R, D, F, V ′〉 that differs only with respect to its valuation function, one way to
think of this switch is as a change in how we interpret the language. Intuitively, V
may interpret the predicate white so that its extension V (white,w) in any world
w is the set of things in w that are white, while V ′ may interpret white so that its
extension V ′(white,w) in any world w is the set of things in w that are green.

When we switch from one world w to another world v within the same model
M = 〈W, R, D, F, V 〉 (so w, v ∈ W ), the extension V (white,w) of the predicate
white in w may differ from the extension V (white, v) of white in v. If this is so,
then the set of white objects in w differs from the set of white objects in v. Similarly,
if V ′(white,w) differs from V ′(white, v), then the set of green objects in w differs
from the set of green objects in v. We could also have V (white,w) �= V (white, v)
but V ′(white,w) = V ′(white, v), in which case w and v differ with respect to which
objects are white, but they are the same with respect to which objects are green.

The point is that we think of the difference between V (white,w) and V (white, v)
as reflecting a difference in how the worlds w and v are, not a difference in how we

25 The last of the quoted sentences occurs in footnote 7 of [1].
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interpret the language—whereas we can think of the difference between V (white,w)
and V ′(white,w) as reflecting a difference in how we interpret the language.

Exactly the same points apply to names. If we think of the difference between
V (white,w) and V (white, v) as reflecting a difference in how the worlds w and v
are, not a difference in how we interpret the language, then we should also think
of any difference between V (Hesperus,w) and V (Hesperus, v) as reflecting a
difference in how the worlds w and v are, not a difference in how we interpret the
language. (Though of course we can think of V (Hesperus,w) �= V ′(Hesperus,w)
as reflecting a difference in how we interpret the language.) This brings us back
to Linsky’s question of how we are to make intelligible that V (Hesperus,w) =
V (Phosphorus,w) but V (Hesperus, v) �= V (Phosphorus, v). For in this case v
is not merely a world in which words refer to different things; it is a metaphysically
impossible world.

Here is a crucial point: assuming that V (Hesperus,w) = V (Phosphorus,w)
but V (Hesperus, v) �= V (Phosphorus, v), we cannot have wRav, for otherwise
we violate the Ra-rigidity of names and (35) becomes satisfiable, which no one
wants. Hence it is not the case that wRav, so v is an impossible world (relative to
w). This shows that v cannot simply be understood as a world largely like w but in
which ‘Hesperus’ refers to something different than in w—for such a world should
be metaphysically possible (relative to w). The upshot is that one cannot explain the
failure of Rd -rigidity in the weaker way proposed at the end of Sect. 22.4.1.

A defender of that proposal might reply that the problem is instead with trying to
combine alethic and doxastic operators in one system, as we have. But why should
such a combination be problematic? We take it to be a virtue of our approach below
that it allows such a combination for a full solution of the Hintikka-Kripke problem.

Although Stalnaker’s idea from Sect. 22.4.1 cannot be implemented in standard
modal semantics simply by giving up Rd -rigidity, it may be possible to implement
with a more complicated two-dimensional framework. However, we will not inves-
tigate that possibility until Sect. 22.4.5, since in Sect. 22.4.3 we will raise a problem
for the idea itself.

22.4.3 Ignorance of Co-reference Versus Ignorance of Identity

The problem is that ignorance of co-reference and ignorance of identity can come
apart. Before explaining this idea, let us formally represent ignorance of co-reference.
Suppose that our language contains not only names n1, n2, . . . of objects, but also
names ‘n1’, ‘n2’, . . . of those names. Moreover, suppose that the object names
n1, n2, . . . are also elements of the domain D of our models—they are also objects—
and let us require that V (‘ni ’,w) = ni for all names ni and worlds w. Finally, suppose
we have a two place naming predicate N such that V (N ,w) is the set of pairs 〈ni , d〉
such that speakers in world w use ni to name object d. With this setup, we can state
the point from Sect. 22.4.2 about how to understand the V function as follows:



614 W. H. Holliday and J. Perry

〈ni , d〉 ∈ V (N ,w) need not imply V (ni ,w) = d or vice versa.

In other words, how speakers in different worlds in our model use names in the
language is one thing, reflected by V (N ,w); and how we who build the model are
interpreting the names of the language is another, reflected by V (ni ,w).

Now we can easily represent a world w in which an agent does not believe that
‘Hesperus’ and ‘Phosphorus’ co-refer by including a world v such that wRdv and:

• {o∈ D | 〈Hesperus, o〉 ∈ V (N ,w)} = {o∈ D | 〈Phosphorus, o〉 ∈ V (N ,w)};
• {o ∈ D | 〈Hesperus, o〉 ∈ V (N , v)} �= {o ∈ D | 〈Phosphorus, o〉 ∈ V (N , v)}.
In such a case, even given that V (Hesperus, u) = V (Phosphorus, u) for all u ∈
W , the following are both satisfied at w:

(37) ∀x(N (‘Hesperus’, x)↔ N (‘Phosphorus’, x));
(38) ¬�d ∀x(N (‘Hesperus’, x)↔ N (‘Phosphorus’, x)),

so we have a case of ignorance of co-reference.
Before explaining how to formalize ignorance of identity, we will show how

ignorance of co-reference and ignorance of identity can come apart.

Example 22.1 (The Registrar) The county registrar goes fishing regularly with his
old friend Elwood. Unknown to the registrar, however, Elwood’s identical twin,
Egbert, occasionally substitutes for him on these fishing trips. Since the trips are
mostly silent, Egbert has no problem keeping the deception from the registrar. The
registrar regularly says things like “Hey Elwood, pass me a beer”, while talking to
Egbert.

It seems fair to say,

(39) Although Egbert is not Elwood, the registrar believes that Egbert is Elwood.

Traditionally, (39) would be rendered as

(40) Egbert �= Elwood ∧�d Egbert = Elwood.

The truth of (40) requires that Egbert = Elwood be true in all worlds compatible
with what the Registrar believes. Its truth therefore requires that names are not “dox-
astically rigid” designators. At first blush, this seems to mean that only impossible
worlds are compatible with what the registrar believes. In the spirit of Aloni, we
might seek to avoid this unfortunate result by adopting the following analysis.

Co-Reference Mistake Analysis: the satisfiability of (40) is simply due to the
possibility that two terms that actually refer to different individuals are believed
by the registrar to co-refer, that is, to refer to the same individual.

The problem with this analysis becomes clear when we consider the rest of the story.

Example 22.1 (The Registrar Continued) The registrar, being the registrar, knows
that Elwood has a brother, whom he thinks he has never met, although he sends
him an invoice for his taxes each year, and often follow-up reminders. Based on his
records, the registrar knows that ‘Elwood’ and ‘Egbert’ refer to different people.
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Hearing the registrar say to Egbert, “Hey Elwood, your brother better pay his
taxes”, someone in on the deception might explain to a third party:

(41) Although the registrar knows that ‘Elwood’ and ‘Egbert’ refer to different
people, he believes that Egbert is Elwood.

What (41) shows is that the Co-Reference Mistake Analysis doesn’t work. The
truth of (39) cannot always be understood in terms of false belief about co-reference,
because the truth of (41) cannot be so understood. In Sect. 22.4.4, we will explain
how, on our account, (41) can nonetheless be a reasonable and true thing to say.

22.4.4 The “Hintikka-Kripke Problem” Resolved

In Sect. 22.4.1, we noted two ways to respond to the Hintikka-Kripke Problem: give
up Rd -rigidity or give a different formalization of (34). Having seen the problems
with the first, let us consider the second. When someone says “Elwood does not
believe that Hesperus is Phosphorus”, our formalization of the claim is not

(42) ¬�d Hesperus = Phosphorus.

In fact, it is not clear that (42) is the correct formalization of any natural language
belief ascription. As Lewis [43, p. 360] said in another context, “why must every
logical form find an expression in ordinary language?” Relatedly, consider:

(43) Hesperus = Hesperus → �d Hesperus = Hesperus.
(44) Hesperus = Phosphorus → �d Hesperus = Phosphorus.

In our framework, (43) and (44) are valid, but this does not mean that we would
claim in natural language that “If Hesperus is Phosphorus, then Elwood believes that
Hesperus is Phosphorus”. For the function of belief ascriptions involving names in
natural language is not just to say something about how the objects named show up
across doxastic alternatives, which is all that (44) manages to capture.

Before handling the Hesperus and Phosphorus case, let us treat the story of Elwood
and Egbert from Example 22.1, using ideas from Sect. 22.2.3. Recall:

(39) Although Egbert is not Elwood, the registrar believes that Egbert is Elwood.

In the context of Example 22.1, we propose to analyze (39) as follows. Elwood is
playing a number of epistemic roles in the registrar’s life, but the role that is contex-
tually salient in Example 22.1 is being the source of a cluster of memories—about
his old friend and fishing buddy (r f ). Egbert is also playing a number of epistemic
roles in the registrar’s life, but the role that is contextually salient in Example 22.1 is
being the person seen and talked to (rs). Consider a model M , assignment μ, and
role variables r f and rs such that for all worlds w in M , μ(r f )(w) is the player of
role r f in w, and μ(rs)(w) is the player of role rs in w. Then using Z -abbreviation
(Definition 22.6), we formalize (39) in the style of (26) in Sect. 22.2.3, instead of (40):
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(45) Egbert �= Elwood ∧ Elwood = z f ∧ Egbert = zs ∧ �d z f = zs .

If we translate (39) as (45), we can maintain the Conservative Approach of Sect. 22.1:
there is no need to claim that names in doxastic logic are not “doxastically rigid”
or that “doxastically possible worlds” are not plain possible worlds. Moreover, (45)
can be true even if the registrar believes that ‘Elwood’ and ‘Egbert’ do not co-refer:

(46) �d ¬∃x1(N (‘Elwood’, x1) ∧ N (‘Egbert’, x1)).

Hence we can also handle the second part of the registrar story in (41).
Let us now return to the classic case of Hesperus and Phosphorus:

(47) Elwood does not believe that Hesperus is Phosphorus.

One might utter (47) in a variety of contexts. Suppose Elwood has never heard the
words ‘Hersperus’ and ‘Phosphorus’, but he likes to look at the planet Venus early in
the evening and at the same planet early in the morning, not realizing it is the same
one. In this case, it would be natural to utter (47). Take a model M , assignment μ,
and role variables re and rm such that for any world w in M , μ(re)(w) is the star that
Elwood likes to look at in the evening in w, and μ(rm)(w) is the star that Elwood
likes to look at in the morning in w. Using Z -abbreviation, we translate (47) as:

(48) Hesperus = ze ∧ Phosphorus = zm ∧ ¬�d ze = zm .

Another context in which (47) makes sense is one where Elwood has heard of Hes-
perus and Phosphorus in Astronomy class, but since he wasn’t paying attention, he
has no idea what they are. Here the roles that Hesperus/Phosphorus plays in his life
are simply being the source of the ‘Hesperus’ network exploited by Elwood (recall
Sect. 22.2.3) and being the source of the ‘Phosphorus’ network exploited by Elwood.
In this case, we translate (47) with a sentence of the same form as (48), only using
role variables associated with these different roles in our model. What this shows is
that the role-based analysis subsumes Stalnaker’s [63, 85f] analysis (recall Sect. 22.4)
in those contexts where Stalnaker’s analysis works. But the role-based analysis also
works in cases like the Elwood-Egbert story, where Stalnaker’s does not.

Finally, since (48) can be true at a world where

(49) �a Hesperus = Phosphorus

is true, belief attributions as in (47) do not pose a problem for a combined epistemic-
alethic modal logic. The Hintikka-Kripke Problem is no longer a problem.

22.4.5 Two-Dimensional Epistemic Models

Recall Aloni’s [1, p. 9] idea, similar to Stalnaker’s [63], that Hesperus-Phosphorus
style cases arise because of the “possibility that two terms that actually refer to one
and the same individual are not believed by someone to do so”. In Sect. 22.4.2, we
argued that this idea cannnot be correctly implemented in standard modal semantics.
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Let us now return to the suggestion that it may be implementable in a two-dimensional
epistemic framework (cf. [61] and references therein).

Definition 22.7 (2D Constant Domain Models) A 2D (constant domain) model for
the language of Definition 22.1 is a tuple M = 〈W, Ra,Rd , D, F,V〉where W , Ra ,
D, and F are defined as in Definition 22.2; Rd is a binary relation on W ×W ; for any
relation symbol Qk

i and worlds w, v ∈ W , V(Qk
i ,w, v) is a set of k-tuples of objects;

for any name ni and worlds w, v ∈ W , V(ni ,w, v) is an object. We assume the general
rigidity condition for names that for all w, v, u ∈ W , V(ni ,w, v) = V(ni ,w, u).

For the sake of generality, we have defined Rd as a kind of 2D accessibility
relation, following Israel and Perry [38] and Rabinowicz and Segerberg [57]. This
raises the question of what 〈w, v〉Rd〈w′, v′〉 is supposed to mean intuitively. However,
here we will consider the class of models such that if 〈w, v〉Rd〈w′, v′〉, then w′ = v′
and 〈x, v〉Rd 〈w′, v′〉 for all x ∈ W . Hence all we need to know is whether the second
coordinates are related, written as vRdv′. Take vRdv′ to mean that everything the
agent believes in v is compatible with the hypothesis that v′ is his actual world.

For a name ni , take V(ni ,w, v) = d to mean that if we consider w as the actual
world, then ni (as used by speakers in w) names d in world v. Suppose w is a
world in which the heavenly body that people see in the evening, that they call
‘Hesperus’, etc., is the same as the heavenly body that they see in the morning, that
they call ‘Phosphorus’, etc. Hence if we consider w as actual, then we will have
V(Hesperus,w, v) = V(Phosphorus,w, v) for all worlds v ∈ W , regardless of
how language is used (or whether there are any language users) in v. However, if
we consider as actual a world w′ in which the heavenly body that people see in
the morning, that they call ‘Hesperus’, etc., is not the same as the heavenly body
that they see in the morning, that they call ‘Phosphorus’, etc., then we will have
V(Hesperus,w′, v) �= V(Phosphorus,w′, v) for all worlds v ∈ W .26

Variable assignments are defined as in Definition 22.3, but the interpretation of a
name is now given relative to a pair of worlds instead of a single world.

Definition 22.8 (Interpretation of Terms) The interpretation [t]M ,w, v,μ of a term t
in a 2D model M at world v, with world w considered as actual, is an object given
by:

[ni ]M ,w, v,μ = V (ni ,w, v);
[xi ]M ,w, v,μ = μ(xi ).

Definition 22.9 (2D Truth) Given a 2D model M with w, v ∈ W , an assignment μ,
and a formula ϕ, we define M ,w, v �μ ϕ as follows:

26 One may try to apply a similar strategy to predicate symbols in order to model agents who do
not believe/know that two (necessarily) co-extensive predicates are co-extensive.
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M ,w, v �μ Qk
i (t1, . . . , tk) iff 〈[t1]M ,w, v,μ , . . . , [tk]M ,w, v,μ〉 ∈ V(Qk

i ,w, v);
M ,w, v �μ t = t ′ iff [t]M ,w, v,μ =

[
t ′
]
M ,w, v,μ ;

M ,w, v �μ P(t, ri ) iff μ(ri ) is defined at v and [t]M ,w, v,μ = μ(ri )(v);
M ,w, v �μ ¬ϕ iff M ,w, v �μ ϕ;
M ,w, v �μ (ϕ ∧ ψ) iff M ,w, v �μ ϕ and M ,w, v �μ ψ;
M ,w, v �μ ∀xiϕ iff for all d ∈ D, M ,w, v �μ[xi /d] ϕ;
M ,w, v �μ ∀riϕ iff for all f ∈ F, M ,w, v �μ[ri / f ] ϕ;
M ,w, v �μ �a ϕ iff for all v′ ∈ W , if vRav′ then M ,w, v′ �μ ϕ;
M ,w, v �μ �d ϕ iff for all w′, v′ ∈ W , if 〈w, v〉Rd〈w′, v′〉

then M ,w′, v′ �μ ϕ.

Given our assumed constraints on Rd , we can re-write the last clause as27

M ,w, v �μ �d ϕ iff for all v′ ∈ W , if vRdv′ then M , v′, v′ �μ ϕ.

To see how this is supposed to solve the Hintikka-Kripke problem, consider

(50) �a n1 = n2 ∧�d n1 �= n2.

We have M ,w,w �μ �a n1 = n2 ∧�d n1 �= n2 iff both of the following hold:

• for all x ∈ W , if wRa x then M ,w, x �μ n1 = n2;
• for all y ∈ W , if wRd y then M , y, y �μ n1 �= n2.

Clearly we can construct a model satisfying these conditions, so (50) is satisfiable.
There is much to be said about the 2D approach, but we will limit ourselves to two

points. First, there is a way of understanding the 2D treatment of names in epistemic
contexts as a special case of the role-based treatment. In particular, with every name
ni we can associate a role fi such that

fi (v) = V(ni , v, v).

Then if we map role variables r1 and r2 to f1 and f2, respectively, (50) will have the
same truth value at any pair of worlds as its role-based translation:

(51) �a n1 = n2∧P(n1, r1)∧P(n2, r2)∧�d ∃x1∃x2(P(x1, r1)∧P(x2, r2)∧x1 �= x2).

Note, however, that there may be many other roles that the objects named by n1 and
n2 play, besides f1 and f2. In effect, the 2D framework restricts us to just those roles.

This leads to the second point: it is not clear how the 2D framework can handle
the case of the registrar in Example 22.1 in Sect. 22.4.3 without bringing in roles.
In our world w, the registrar believes that ‘Egbert’ and ‘Elwood’ refer to different
people, so for any world v compatible with his beliefs, Egbert �= Elwood should
be true at v considered as actual. But then�d Egbert �= Elwood will be true at w, so
if this is the two-dimensionalists’ formalization of ‘the registrar believes that Egbert
is not Elwood’, then they face the problem raised in Sect. 22.4.3: in the context of

27 Compare this to the “fixedly actually” operator of Davis and Humberstone [21].
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Example 22.1 it seems true to say instead that ‘the registrar believes that Egbert is
Elwood’.

In what follows we return to the 1D framework. There are good reasons for
multi-dimensionality to deal with terms like ‘now’ and ‘actually’, but it seems that
roles are still needed to deal with belief attributions involving names.28 In Sect. 22.5,
we shall see how roles are also useful in formalizing belief attributions involving
quantification.

22.5 Quantification into Epistemic Contexts

Having shown how a role-based analysis of attitude ascriptions resolves the Hintikka-
Kripke Problem, we will now apply the analysis to quantification into epistemic
contexts, comparing it to the analyses of Carlson [14] and Aloni [1].

First, consider the following sentence:

(52) “The police do not know who a certain person is” [14, p. 232].

How should we translate (52) into our formal language? As suggested in Sect. 22.2.3,
we cannot answer this question simply by looking at the sentence out of context.

In our view, there seem to be two readings of (52), which are natural in different
contexts. First, suppose the police pride themselves on keeping track of everyone in
the area. However, someone has slipped through the cracks: Jones, whom the police
do not know anything about. In this case, it makes sense to utter (52), understood as

(53) ∃x1¬∃z1�e x1 = z1,

the Z-abbreviation of

(54) ∃x1¬∃r1�e ∃x2(P(x2, r1) ∧ x1 = x2),

where we write �e in place of �d for epistemic necessity.
Second, suppose Jones now plays the role for the police of being the suspect

chased. However, for all the police know, they could be chasing Smith instead of
Jones. In this case, it makes sense to utter (52), now understood as

(55) ∃z1¬∃x1�e x1 = z1,

the Z-abbreviation of

(56) ∃r1¬∃x1�e ∃x2(P(x2, r1) ∧ x1 = x2).29

Which translation is better depends on the context in which (52) is uttered.
Can we translate (52) with only z variables? Carlson [14] tries to do so with

28 To deal in the 1D framework with an agent who does not believe, e.g., that something con-
tains water iff it contains H20, we would need to generalize the notion of role so that properties
(understood extensionally, intensionally, or hyper-intensionally) can play roles for an agent.
29 Note that (55)/(56) does not require the existence of anyone who actually plays r1. We can express
a reading that requires the existence of a role-player with: ∃z1(∃x1z1 = x1 ∧ ¬∃x2�e x2 = z1).
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(57) ∃z1¬∃z2�e z1 = z2,

where ∃z1 and ∃z2 both quantify over the same set of functions. He allows z variables
to be mapped to partial functions and uses a three-valued semantics such that (57)
is satisfiable in his framework. However, with only one kind of variable in that
framework, there is no way to make a distinction like the one we have made between
(53) and (55). Moreover, the intuitive meaning of (57) is not at all clear.

An advantage of having quantification over both objects and functions is that when
one tries to do all the work with just quantification over functions, one is tempted
to impose otherwise unnatural constraints on the set of functions. For example,
Carlson [14] and Aloni [1] propose two conditions on the set F of functions, which
they interpret as individuating functions and individual concepts, respectively: an
existence condition and a uniqueness condition.

Definition 22.10 (Existence Condition) In M = 〈W, Ra, Rd , D, F, V 〉, F satisfies
the existence condition iff for all w ∈ W , d ∈ D, there is some f ∈ F with f (w) = d.

When we think of the functions in F as agent-relative roles, the existence condition
is not plausible. For it is built in to the idea of agent-relativity that there may be an
object that does not play any role in the cognitive life of our agent in a world.

Let us consider Aloni’s argument for the existence condition. First, consider:

(58) If the president of Russia is a spy, then there is someone who is a spy.

Translating (58) as

(59) S(p)→ ∃zS(z),

Aloni [1] notes that if we do not assume the existence condition on F , then (59) is not
valid, whereas the translation of (58) should be valid. Hence we should assume the
existence condition. However, this is too quick, because we have two options: assume
the existence condition or give a different translation of (58). In the framework of
Sect. 22.3, there is a clear candidate for the latter:

(60) S(p)→ ∃x S(x),

where ∃x quantifies over D. Unlike (59), (60) is valid in our framework. We take
(60) to be the appropriate translation of (58). The existence assumption seems to be
an artifact of trying to make ∃z do all the work of two types of quantification.

Definition 22.11 (Uniqueness Condition) In M = 〈W, Ra, Rd , D, F, V 〉, F sat-
isfies the uniqueness condition iff for all w ∈ W , f, f ′ ∈ F , if f �= f ′, then
f (w) �= f ′(w).

When we think of functions in F as agent-relative roles, the uniqueness condition
is not plausible. For it is built in to the idea of roles that there can be an object in a
world that plays multiple roles in the cognitive life of our agent.

Without uniqueness, we can easily handle ascriptions of ignorance such as:

(61) “There is someone who might be two different people as far as the police know”
[14, p. 237].
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Imagine, for example, that although the same person was both the thief and the
getaway driver, for all the police know, different people played these roles—it was a
two man job. Corresponding to (61), we have the satisfiable sentence

(62) ∃z1∃z2(z1 = z2 ∧ ¬�e z1 = z2).

As one can easily check with Z -translation, (62) is true in the case where the same
person plays the role of the thief and the role of the driver in the actual world, but in
some world compatible with what the police know, there are two people involved.

Although the most natural way of making (62) satisfiable violates uniqueness,
Carlson manages to make (62) satisfiable while requiring uniqueness. He does so
by mapping z1 and z2 to the same partial function, which is defined at the world of
evaluation but undefined at some epistemically accessible world. As Carlson [14,
p. 238] puts it, “[(62)] in our interpretation does not imply that …[z1 and z2] …pick
out two different properly cross-identified individuals in some alternative, only that
they fail to refer to one and the same individual somewhere”.

The problem with Carlson’s analysis is that it does not generalize to capture other
cases, such as the following elaboration of the heist example above:

(63) Someone who was at the crime scene might be two people as far as the police
know, but the police know that whoever was there was a gangster.

It seems that any good formalization of (63) should imply the following:

(64) ∃z1∃z2(z1 = z2 ∧ ¬�e z1 = z2 ∧�e (Gz1 ∧ Gz2)).

However, (64) is unsatisfiable in Carlson’s system. For if z1 and z2 are mapped to
functions that are undefined at some epistemically accessible world, as required for
z1 = z2 ∧ ¬�e z1 = z2 to be true for Carlson, then �e (Gz1 ∧ Gz2) is not true. By
contrast, since we reject uniqueness, (64) is satisfiable in our framework.

Aloni observes that without uniqueness, the following are not equivalent:

(65) ¬∃z1(z1 = Ortcutt ∧�d Spy(z1)).
(66) ∃z1(z1 = Ortcutt ∧ ¬�d Spy(z1)).

Indeed, without uniqueness, the truth of (66) is compatible with the falsity of (65).
And without existence, the truth of (65) is compatible with the falsity of (66).

Given the non-equivalence of (65) and (66), Aloni [1] concludes that formal sys-
tems without the uniqueness condition “predict a structural ambiguity for sentences
like ‘Ralph does not believe Ortcutt to be a spy’, with a wide scope reading asserting
that Ralph does not ascribe espionage to Ortcutt under any (suitable) representation,
and a narrow scope reading asserting that there is a (suitable) representation under
which Ralph does not ascribe espionage to Ortcutt. This ambiguity is automatically
generated by any system” that does not satisfy uniqueness, but Aloni doubts that
there is any such ambiguity in natural language.

But the fact that (65) and (66) are not equivalent in a given formal system does
not mean that the system “predicts a structural ambiguity” for the English sentence

(67) Ralph does not believe Ortcutt to be a spy.
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Linguists predict ambiguities in English. Logical systems do not. (Repeating Lewis
[43], “why must every logical form find an expression in ordinary language?”)

On our view, the correct formalization of (67) depends on the context. Suppose
we just had a long conversation about Ralph’s only next door neighbor, Ortcutt,
when you utter (67). Although Ortcutt plays several roles in Ralph’s life, in this case
the contextually salient role is being the next door neighbor. Consider a model M ,
assignment μ, and role variable rn such that for any world w in M , μ(rn)(w) is
Ralph’s next door neighbor in w. Using Z -abbreviation, we formalize (67) as

(68) Ortcutt = zn ∧ ¬�d Spy(zn).

Of course, (66) follows from (68). Now suppose the conversation turns to Ralph’s
beliefs about the man he sees on the beach, who unbeknownst to Ralph is Ortcutt.
At this point, we might wonder whether in uttering (67) you had in mind the full
strength of (65), from which it follows that Ralph does not believe of the man he sees
on the beach—via the role rb, say—that he is a spy. The coherence of wondering
this suggests that it is not a problematic result that (65) and (66) are not equivalent.

While Aloni’s framework requires both the existence and uniqueness conditions
for any fixed set F of functions, it also allows that different sets of functions may
serve as the domain of quantification in different contexts. To formalize this idea in
the style of Aloni [1] with a language of z variables, expand the set of terms to include
for all i ∈ N a set {zi

1, zi
2, . . . } of variables associated with context i ; second, redefine

a model to be a tuple M = 〈W, Ra, Rd , D,F, V 〉 such that F ⊆ P(DW ) and for
all F ∈ F, M = 〈W, Ra, Rd , D, F, V 〉 satisfies Definition 22.2; third, redefine an
assignment to be a function π like μ in Definition 22.3 but extended so that for all
i ∈ N, π(i) ∈ F; finally, redefine the clause for quantification with z variables:

M ,w �π ∀zi
jϕ iff for all f ∈ π(i), M ,w �π[zi

j / f ] ϕ.

Hence for each context i , zi variables are associated with their own domain of
quantificationπ(i) ∈ F.30 We can recover the semantics of Sect. 22.3 by requiring
that |F| = 1.

As suggested at the end of Sect. 22.3, one can easily generalize the FOIL semantics
to allow many sets of roles, only we would use superscripts on role variables.

30 Aloni considers it an advantage of this more general semantics that we can have

(69) M ,w �π ∃ziϕ(zi ) ∧ ¬∃z jϕ(z j ),

as if there is a shift in context mid-formula. Instead of doing this with one of Aloni’s models, we could
consider two regular models M = 〈W, Ra, Rd , D,π(i), V 〉 and M ′ = 〈W, Ra, Rd , D,π( j), V 〉,
each associated with a different context, such that

(70) M ,w �μ ∃zϕ(z) and M ′,w �μ′ ¬∃zϕ(z).
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22.6 Multiple Agents and Points of View

In distinguishing roles from individual concepts, we emphasized the agent-relativity
of roles. We will now make this relativity more explicit by extending our framework
to a multi-agent language and multi-agent models. Typically the move from single to
multi-agent epistemic logic is a matter of subscripting operators and relations by agent
labels. We will take a different approach in two ways. First, instead of introducing
many doxastic operators, we will introduce many “point of view” operators. Second,
instead of subscripting these operators with agent labels, we will subscript them by
terms of our language, so that agents will be individuals in our domain.31

Definition 22.12 (Multi-Agent Language) Given the same sets of basic symbols as
in Definition 22.1, the multi-agent language is generated by the grammar (i, k ∈ N):

t ::= ni | xi

ϕ ::= Qk
i (t1, . . . , tk) | t = t ′ | P(t, ri ) | ¬ϕ | (ϕ ∧ ϕ) | �a ϕ | �d ϕ | ∀xiϕ | ∀riϕ | povtϕ.

The only addition are the “point of view” operators povt , with the intended reading:

povtϕ “from the point of view of t , ϕ”
(or more technically, “centering on t , ϕ”).

The unsubscripted P predicate and �d operator can now be read as:

(Footnote 30 continued)

Aloni’s motivation for considering (69) is the following kind of reasoning:

(I) Ralph believes that the man with the brown hat is a spy.
(II) The man with the brown hat is Ortcutt.

(III) So Ralph believes of Ortcutt that he is a spy.
(IV) Ralph believes that the man seen on the beach is not a spy.
(V) The man seen on the beach is Ortcutt.

(VI) So Ralph does not believe of Ortcutt that he is a spy.

Aloni concludes that

(71) ∃z1(z1 = o ∧�d S(z1)) ∧ ¬∃z2(z2 = o ∧�d S(z2))

should be satisfiable, which it is in her semantics. However, it seems to us to be a mistake to conclude
(VI) on the basis of (IV) and (V). Instead, by analogy with (I)-(III), one should conclude

(VI′) So Ralph believes of Ortcutt that he is not a spy.

Then we can express the compatibility of (III) and (VI′) by the satisfiable sentence

(72) ∃z1(z1 = o ∧�d S(z1)) ∧ ∃z2(z2 = o ∧�d¬S(z2)).

This is not to say, however, that there are not other good motivations for the more general semantics.
31 Thus, we have a term-modal logic in the sense of [23].
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P(t, ri ) “t plays role ri (for the agent at the center)”;
�d ϕ “it is doxastically necessary (for the agent at the center) that ϕ”.

Thus, intuitively, povt�d ϕ indicates that for individual t , it is doxastically necessary
that ϕ; and povt P(t

′, ri ) indicates that for individual t , t ′ plays role ri .32 Note that
allowing variables to occur as subscripts of the point of view operators significantly
increases the language’s expressive power, since these variables may then be bound
by quantifiers. As a simple example, in this framework (as in those of [31] and [23])
one can express the likes of “someone believes ϕ”, using ∃x povx�d ϕ.

Definition 22.13 (Multi-Agent Model) A multi-agent constant domain model for the
language of Definition 22.12 is a tuple M = 〈W, Ra,Rd , D,F, V 〉 such that:

• W , Ra , D, and V are as in Definition 22.2;
• Rd is a binary relation on W × D;
• F is a set of partial functions from W × D to D.

The only difference between these models and those of Definition 22.2 is that the
doxastic relation Rd and role functions in F now apply to Lewis’s [44] “centered
worlds”, which are pairs of a possible world and an individual—the center.33 For the
doxastic relation, given any w,w′ ∈ W and c, c′ ∈ D, we take 〈w, c〉Rd〈w′, c′〉 to
mean that it is compatible with individual c’s beliefs in w that she is individual c′
in w′ (as in [64, p. 70]), allowing an agent to have uncertainty both about the world
and about her own identity. Since the relevant agent is given by the center c of the
first centered world 〈w, c〉, we only need one Rd relation to represent the beliefs of
multiple agents. Finally, for the roles, given any f ∈ F, w ∈ W , and c ∈ D, we take
f (w, c) to be the object that plays role f in world w for the individual c.

A variable assignment μ now maps role variables ri to elements of F.

Definition 22.14 (Truth) Given a multi-agent model M , w ∈ W , c ∈ D, assign-
ment μ, and formula ϕ, define M ,w, c �μ ϕ as follows (with other clauses as in
Definition 22.5):

M ,w, c �μ P(t, ri ) iff μ(ri ) is defined at 〈w, c〉 and [t]M ,w,μ = μ(ri )(w, c);
M ,w, c �μ �a ϕ iff for all w′ ∈ W , if wRaw′ then M ,w′, c �μ ϕ;
M ,w, c �μ �d ϕ iff for all w′ ∈ W, c′ ∈ D, if 〈w, c〉Rd〈w′, c′〉

then M ,w′, c′ �μ ϕ;
M ,w, c �μ povtϕ iff M ,w, [t]M ,w,μ �μ ϕ.

32 In English, to say “from the point of view of t , ϕ”, might suggest that t believes ϕ, but this it not
the intended reading of povtϕ, as its formal truth definition below makes clear.
33 While we take a centered world to be any element of W × D, one may wish to only admit pairs
〈w, c〉 such that c is an agent (in some distinguished set Agt ⊆ D) and c exists in w (using the
existence predicate of Sect. 22.3, c ∈ V (E,w)), but for simplicity we do not make these assumptions
here. Also for simplicity, we are not putting explicit times into the centered worlds. Adding a
temporal dimension to our framework would expand its range of application to further interesting
issues.
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Hence povt can be thought of as a “center shifting” operator. Like the similar @s

operators of hybrid logic (see [2]), the povt operators are normal modal operators
validating the K axiom (povt (ϕ → ψ) → (povtϕ → povtψ)) and necessitation
rule (if ϕ is valid, so is povtϕ), plus self-duality (povtϕ ↔ ¬povt¬ϕ). One can
define the agent-indexed �d tϕ := povt�d ϕ and Pt (t ′, ri ) := povt P(t

′, ri ), but there
are logical reasons not to take these defined operators as primitive.34

Let us begin by analyzing Perry’s [49] case of the man Heimson who believes he
is Hume, with an added twist of “double vision”. Suppose that Hume plays two roles
in Heimson’s life: first, Hume is the author of the books labeled ‘David Hume’ on
Heimson’s shelf, a role we will assign to the role variable ra (for author); second,
Hume is a pen pal of Heimson’s (here taken to be a contemporary of Hume) who signs
his letters with the name ‘D.H.’, a role we will assign to rpp (for pen pal). Finally,
Heimson is the person who Heimson finds out about by introspection, proprioception,
etc., playing the self-role that we will assign to rsel f .35 The catch is that Heimson is
confused about his own identity in such a way that we can say:

(73) Heimson believes that he is Hume and that D.H. lives far away.

We can formalize (73) as follows:36

(77) povHeimson

[
P(Heimson, rsel f ) ∧ P(Hume, ra) ∧ P(D.H., rpp)∧

�d ∃x∃y∃z(P(x, rsel f ) ∧ P(y, ra) ∧ P(z, rpp) ∧ x = y ∧ F A(z))
]
.

34 By the truth definition, we have M ,w, c �μ �d tϕ iff for all w′ ∈ W , c′ ∈ D, if
〈w, [t]M,w,μ〉Rd 〈w′, c′〉, then M ,w′, c′ �μ ϕ. The problem with taking the �d t operators as prim-
itive instead of �d is that we would then lose important results of modal correspondence theory. For
example, requiring that Rd be reflexive (thinking of it now as an epistemic accessibility relation)
would not guarantee the validity of �d tϕ→ ϕ, since the reflexivity of Rd would not guarantee that
〈w, [t]M,w,μ〉Rd 〈w, c〉. But reflexivity would guarantee the validity of �d ϕ→ ϕ, as desired.
35 One may want to define the self-role such that for all worlds w and agents c, fsel f (w, c) = c.
36 A similar analysis applies to other well-known problems in the theory of reference, such as
Castañeda’s [16] puzzle about the first person. Surely through most of his life after 1884, Samuel
Clemens believed that he wrote Huckelberry Finn. But one can imagine that in his dotage, Clemens
held a copy of the book in his hand, saw that it was written by Mark Twain, but couldn’t remember
that ‘Mark Twain’ had been his pseudonym and had no inclination to say “I wrote this”. Castañeda
made the point, with many similar examples, that even in the latter case, we could say

(74) Samuel Clemens believes that he wrote Huckelberry Finn.

since he is Mark Twain, and he believes that Mark Twain wrote Huckelberry Finn. However, in the
sense in which it was true through much of his life that he believed he wrote Huckelberry Finn, at
this moment late in his life, it is not. There is a reading of (74) on which it is false.

In the case we are imagining, Samuel Clemens plays (at least) two roles in Samuel Clemens’
life, the self-role rsel f and the role rMT of being the source of the ‘Mark Twain’ name-network that
is exploited by the use of that name on the book he holds in his hands. Given this, we can distinguish
between the two readings of (74), the first false and the second true, as follows:

(75) povSamuel [P(Samuel, rsel f ) ∧�d ∃x(P(x, rsel f ) ∧Wrote(x, H F))];
(76) povSamuel [P(Samuel, rMT ) ∧�d ∃x(P(x, rMT ) ∧Wrote(x, H F))].
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Let us now see how this framework allows us to analyze multi-agent belief ascrip-
tions. Building on Example 22.1 from Sect. 22.4.3, suppose that the registrar is look-
ing at Egbert and gathers from Egbert’s grin that he thinks there is a fish on the
hook:

(78) The registrar believes that Egbert believes there is a fish on the hook.

Where rs is assigned the role of being the person seen, we can translate (78) as:

(79) povregistrar

[
P(Egbert, rs) ∧�d ∃x2(P(x2, rs) ∧ povx2

�d ∃x3 F O H(x3))
]

We take it that (78) entails:

(80) The registrar believes that someone believes there is a fish on the hook.

With a de re reading, we formalize (80) as

(81) povregistrar∃x1∃r
[
P(x1, r) ∧�d ∃x2(P(x2, r) ∧ povx2

�d ∃x3 F O H(x3))
]
.

Many other interesting multi-agent belief ascriptions can be handled in this way.
Let us look at one more famous example, due to Richard [58]. A man m sees a woman
w in a phone booth. As he watches her from his office window, he sees that an out-
of-control steamroller is headed toward the phone booth. He waves wildly to warn
her. At the same time, he is talking on the phone to a friend. She tells him of a strange
man who is waving wildly to her, apparently believing she is in danger. Of course,
unknown to m, he is talking to the very woman he his seeing, without realizing it.
In this case, m might tell w over the phone, “I believe you are not in danger”, while
at the same time agreeing with her that “The man waving at you believes you are in
danger”. How is this coherent? The answer from Crimmins and Perry [19] is that the
choice of words in the subject position of the belief reports (‘I’ or ‘the man waving
at you’) can affect what is the relevant role via which the subject is said to believe
something of the object: the first belief attribution is true iff m believes of w via the
role rphoned that she is not in danger, while the second is true iff m believes of w
via the role rseen that she is in danger. Mapping variables rphoned and rseen to these
roles, we can describe m’s doxastic state as follows:

(82) povm

[
P(w, rphoned) ∧�d ∃x1(P(x1, rphoned) ∧ ¬I nDanger(x1))

]
;

(83) povm

[
P(w, rseen) ∧�d ∃x1(P(x1, rseen) ∧ I nDanger(x1))

]
;

(84) povm

[
P(w, rphoned) ∧�d ∃x1

(
P(x1, rphoned) ∧ ¬I nDanger(x1)∧∃!x2(

Waving At (x2, x1)∧ povx2

[
P(x1, rseen) ∧�d ∃x3(P(x3, rseen) ∧

I nDanger(x3))
]))]

.

We leave it to the reader to further explore the possibilities for formalizing multi-
agent belief ascriptions in this framework. We also leave it to future work to inves-
tigate the differences between FOIL and the logic over our multi-agent models.
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22.7 Conclusion

We began this paper with the idea that epistemic predicate logic faces a problem
that alethic predicate logic does not: the problem of the cognitive fix. As we saw,
this problem requires a different solution than the solution, based on modally loyal
names, to the problems that Quine raised for alethic predicate logic. However, we
have argued that the solution to the problem of the cognitive fix is not to treat names,
worlds, or individuals differently in epistemic logic than in alethic logic. The solution
does not require giving up what we called the Conservative Approach.

Instead, the solution requires giving up the idea that translating belief ascriptions
into modal logic follows the simple pattern of translating necessity claims, what
we called the Complement = Operand Hypothesis. We argued for an alternative
approach to formalizing belief reports, based on making explicit the unarticulated
constituents of such reports. Taking these unarticulated constituents to be the roles
that the objects of belief play in the cognitive life of the believer, we carried out the
formalizations in a version of Fitting’s First-Order Intensional Logic. We applied
the idea of agent-relative roles to the Hintikka-Kripke Problem for alethic-epistemic
logic, to quantification into epistemic contexts, and to multi-agent belief ascriptions.

The move from individual concepts to agent-relative roles also opens up new
ways of thinking about the dynamics of knowledge and belief. One can easily add
to our framework the basic machinery of dynamic epistemic logic [11]: when an
agent learns ϕ, update the model by cutting doxastic/epistemic accessibility links to
¬ϕ-worlds. But now we can consider not only the dynamics of the relations, but also
the dynamics of roles. When an agent makes an observation of the world, it is not
just that she receives information that rules out epistemic possibilities; in addition,
the objects that she observes come to play various roles in her cognitive life, making
it possible for her to have new thoughts about those objects. A dynamic epistemic
predicate logic that allows the accessibility relations Rd to change should not freeze
the set F of functions in place. While Fregean senses may be static, agent-relative
roles are not. Perhaps it is not only the dynamics of ruling out, but also the dynamics
of roles that belongs on the agenda of logical dynamics.
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Chapter 23
Stit Logics, Games, Knowledge, and Freedom

Roberto Ciuni and John Horty

Abstract This chapter has two main goals: highlighting the connections between
Stit logics and game theory and comparing Stit logics with Matrix Game Logic, a
Dynamic Logic introduced by van Benthem in order to model some interesting epis-
temic notions from game theory. Achieving the first goal will prove the flexibility
of Stit logics and their applicability in the logical foundations of game theory, and
will lay the groundwork for accomplishing the second. A comparison between Stit
logics and Matrix Game Logic is already offered in recent work by van Benthem and
Pacuit. Here, we push the comparison further by embedding Matrix Game Logic into
a fragment of group Stit logic, and using the embedding to derive some properties
of Matrix Game Logic—in particular, undecidability and the lack of finite axiom-
atizability. In addition, the embedding sheds light on some open issues about the
so-called “freedom operator” of Matrix Game Logic.

23.1 Introduction

Johan van Benthem’s career has been about research—often ground breaking,
transformative research—but also, and especially in recent years, about building
bridges and establishing conversations: across disciplines, between research commu-
nities, and among researchers from different nations and cultures. At a stage when
so many others of his stature would be content with focusing inward, solidifying
results, and protecting their territory, Johan has been looking in fresh directions,
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breaking down barriers, and seeking to involve others in a common enterprise.
In twenty years time, logic will be a stronger, more integrated discipline because
of his ambassadorial work; in fifty years, it will be stronger still.

This chapter contributes to one of the many conversations that Johan has
begun—in this case, between those working in the tradition of Stit Logics, and those
working with the different picture of agency underlying Dynamic Logic and Dynamic
Epistemic Logic, a theory to which Johan himself has made seminal contributions.

Stit logics—which we here characterize, collectively, as STIT—were originated
by Nuel Belnap and his many collaborators in a series of papers culminating with
the monograph [3]; the framework was then connected to issues in decision theory,
deontic logic, and cooperative game theory in [24]. STIT takes its name from the
phrase “seeing to it that,” which the theory interprets as a modal operator, known as
the “stit operator,” capturing the idea that an agent i sees to it that φ just in case φ is
true at all states, or courses of events, compatible with a particular choice made by i .
The main semantic ingredient of the theory is, accordingly, the notion of the choices
available to an agent, which STIT characterizes—in a purely extensional way—as
sets of states, or courses of events. Acting is then interpreted as selecting some such
sets and excluding others. Beside this, STIT has two eye-catching features: it does
not include labels for actions, which in turn find no expression in the language, and
it assumes an independence condition according to which any choice of any agent is
compatible with any choice of any other agent.

STIT has its roots in the field of formal philosophy, and has been applied to clarify
some crucial conceptual issues in the theory of action and ethics—for example,
connections between moral responsibility and the principle of “could have done
otherwise” [3], the rigorous formulation of criteria for consequentialist theories of
action [24], the judicial notion of mens rea [12], and the attribution of individual
responsibility in cases of group agency [18]. However, in the twenty some years
since its introduction,1the applications of STIT have slowly shifted to theoretical
computer science and related areas, particularly the logical foundations of multi-
agent systems, artificial intelligence, and game theory.

This shift has opened interesting issues. STIT and game theory talk different
jargons and have been directed toward different targets. Though there are game-
theoretical roots in STIT, a clear display of the connections between STIT and games
has not been undertaken.2 Also, the arena of formalisms for the logical foundations
of games and multi-agent systems is very rich, and an analysis of the relations with
prominent formalisms in this family constitutes a fascinating area of applications for
STIT.

In the present chapter, we touch on both of these issues. First, we try to clarify the
potential of STIT as a logical foundation for game theory by describing its adequacy
for modeling certain game-theoretic notions. And second, we compare STIT with

1 Belnap and Perloff [4] and von Kutschera [27] are usually regarded as the two papers that,
independently, lay the foundations of STIT.
2 See, however, the important earlier work by Kooi and Tamminga [25], Tamminga [29], and Turrini
[5].
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Matrix Game Logic, that is a Dynamic Logic first introduced by van Benthem in [6]
and developed in his later [7] and [8]; in this comparitive project, we continue, and
hope to advance, the conversation initiated by van Benthem and Pacuit [11].3

The chapter proceeds as follows. Section 23.2 introduces structures and semantics
for a particular Stit logic together with a Hilbert style axiomatization, and reviews
some interesting validities and formal properties. Section 23.3 focuses on a com-
parison between STIT and strategic games, and tries to fill the gap between these
two areas; some interesting points of comparison are the possibility of reading STIT
game-theoretically, and of isolating a “STIT component” within games. Sections 23.4
and 23.5 compare STIT with Matrix Game Logic. Section 23.5 contains the most
novel result of the chapter: a mutual embedding between Matrix Game Logic and a
particular STIT for group agency, with a consequent property transfer. Section 23.6
presents some conclusions.

23.2 STIT

STIT logics and stit operators abound, and the choice among them largely depends
on one’s purposes. We will rely here on the so-called “Chellas stit”4 and we interpret
our logic on Choice Kripke frames, with no temporal ordering on states of evaluation:
more complex operators and the temporal dimension of agency are not needed for
the comparisons we draw in later sections of this chapter.5

Choice Kripke Frames. Formally, a Choice Kripke frame—a CKF, for short—is a
triple 〈W, Ags, {∼C

i | i ∈ Ags}〉 where:

• W is a non-empty set {w,w′, w′′ . . .} of states
• Ags is a finite, non-empty set {1, . . . , n} of individual agents
• For each agent i ∈ Ags, the relation ∼C

i ⊆ W × W is a choice-equivalence
relation

3 Others have also tried to developed unified perspectives encompassing STIT and dynamic logics.
See for instance Herzig and Lorini [20], which presents a dynamic logic of agency in the tradition
of Propositional Dynamic Logics. In this framework, a basic stit operator can be defined as an
existential quantifier over the actions of a given agent.
4 This particular operator was first isolated, and given this name, by Horty and Belnap [22]; the
name reflects the fact that the operator captures, in the different framework of stit semantics, ideas
introduced much earlier by Chellas [15]. A comparison between Chellas’s early work on agency
and the later STIT can be found in Chellas [16], and also in Horty and Belnap [22].
5 STIT is traditionally interpreted on branching-time structures (see [3] and [24]) where moments
are linearly ordered toward the past but are not linearly ordered toward the future. In such structures,
choices are sets of histories, and histories are in turn sets of moments which are (1) maximal with
respect to inclusion and (2) linearly ordered toward the future. However, the most widespread stit
operators do not express any temporal dimension, and thus the indeterministic framework can be
replaced by Kripke frames where no temporal order is imposed. Such frames are used by Balbiani,
Herzig, and Troquard et al. [1], and by Herzig and Schwarzentruber [21]; and we follow them in
the present chapter.
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satisfying the following conditions:

(R1) ∼C
i is an equivalence relation

(R2) for all (w1, . . . , wn) ∈ W n ,
⋂

i∈Ags{w | w ∼C
i wi } �= ∅.

If w ∼C
i w′, we say that w is choice-equivalent with w′ for agent i , and we let

[w]i be the equivalence class including the states which are choice-equivalent with
w—that is, [w]i = {w′ | w ∼C

i w′}. Condition R2 guarantees the independence
condition mentioned earlier, that all the choices of all the different agents are com-
patible. This is a very demanding condition, but it turns to be a key element for the
game-theoretical reading of STIT, which in turn forms the bridge between STIT and
Matrix Game Logic; we return to this issue in Sect. 23.3.2. Also, R2 implies that
W × W ⊆∼C

i ◦ ∼C
j , for all distinct pairs of indices i and j between 1 and n, and

thus it corresponds to a strong form of confluence—this is why we will refer to R2
as to strong confluence property.

We define a restricted Choice Kripke frame—a CKF+, for short—as a CKF
satisfying the further condition:

(R3) For every state w, [w]1 ∩ · · · ∩ [w]n = {w}.
R3 states that the combination of the choices of all the agents at w consists in w
itself: the combined choices of all the agents are enough to determine a unique state
of the world.6 Also, we define

(D1) For every state w, [w]i =
⋂

j∈i [w] j , where i = Ags/{i}.
We refer to i as the anti-group of i—the group including all agents except i .

D1 defines the choice of i’s anti-group at w as the intersection of the choices of its
members at w.7

In what follows, we will confine ourselves to CKF+’s, which will make the com-
parison with strategic games easier.8 To illustrate, Fig. 23.1 on the next page exem-
plifies a CKF+: The two columns represent the choices [w′]1 and [w′′′]1 of agent 1,
while the rows represent the choices [w′]2 and [w]2 of agent 2. A moment’s con-
sideration is enough to see that R1–R3 are satisfied by the structure represented by
the figure; also, in the frame represented by Fig. 23.1, 1 = {2} and 2 = {1}, the
construction of the anti-groups trivially follows D1.

6 In case this condition seems too strong, it is helpful to think of one of the agents as “nature,” which
removes any remaining indeterminacy once all the more ordinary agents have made their choices;
this tactic was mentioned in [24, p. 91].
7 D1 just encodes a special case of the game-theoretical principle of additivity, which characterizes
the construction of all groups in group STIT; see condition R4 in Sect. 23.5.
8 Actually, the correspondence between games and consequentialist CKF+’s (see below for a
definition) can also be established without imposing condition R3; see, for example, van Benthem
and Pacuit [11] and Tamminga [29]. However, the condition makes the proof of such a correspon-
dence much more straightforward and general. In addition the proofs which do not use R3 essentially
rely on consideration about language, while the correspondence result which uses R3, established
by Turrini in [5], relies only on the structures in question.
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w
�

w′
�

w′′
�

w′′′�
[w′]

[w′]

2

[w]2

1 [w′′]1

Fig. 23.1 A CKF+ with two agents, 1 and 2 and two choices per agent

Language and Semantics. In addition to the set Ags of agents, assume a denumerable
set of atomic formulas. Our language LCSTIT then has the Backus-Naur form

φ ::= p | ¬φ | φ1 ∧ φ2 | [i]φ | �φ,

where p is atomic, where φ1 and φ2 are arbitrary formulas, and where i ∈ Ags; the
other Boolean connectives are defined as usual on the basis of ¬ and ∧. The symbol
[i] is the Chellas stit operator, so that [i]φ should be taken to mean that the agent i sees
to it that φ—that is, that the truth of φ is guaranteed by a choice due to i . Its dual is the
symbol 〈i〉, so that 〈i〉φ should be understood as meaning that φ is consistent with the
choice exerted by i . Finally, the symbol� is the usual universal modality, so that�φ
should be taken to mean that φ holds in all the possible states. Its dual is the symbol
♦, so that ♦φ should be taken to mean that φ holds in some of the possible states.

The formulas in LCSTIT are evaluated on Choice Kripke Models—CKM+, for
short—where a CKM+M is a pair 〈K , V 〉, with K a CKF+ and V a function from
atomic formulas into sets of states at which they are true. The satisfaction relation
|= for formulas in LCSTIT can then be defined as follows:

M , w |= p iff w ∈ V (p)
M , w |= ¬φ iff M , w �|= φ
M , w |= φ ∨ ψ iff M , w |= φ orM , w |= ψ
M , w |= [i]φ iff for all w′, ifw′ ∈ [w]i then M , w′ |= φ
M , w |= �φ iff for all w′ ∈ W,M , w′ |= φ.

Truth in a CKM+, in a CKF+, and in all CKF+’s is defined by the usual universal
quantifications; and as usual, we will take | φ |M= {w |M , w |= φ} as the set of
states from the model M satisfying φ. Figure 23.2 represents a CKM+ built from
the CKF+ depicted in Fig. 23.1. It is easy to see that [1]φ is true atw′ andw but false
at w′′′ and w′′, while [2]φ is true at w and w′′ but false at w′ and w′′′.
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w
� φ

w ′
� φ

w′′
� φ

w′′′�¬φ[w′]

[w′]

2

[w]2

1 [w′′]1

Fig. 23.2 A CKM based on Fig. 23.1

23.2.1 Axiomatics and Interesting Validities

Axiomatics. The axiomatization of CSTIT consisting of

(S5) S5’s axioms for � and each [i]
(MA) �φ → [i]φ
(IA)

∧
i∈Ags ♦[i]φi → ♦

∧
i∈Ags[i]φi

together with Modus Ponens and the Rule of Necessitation for � and every stit
operator [i] is sound and complete relative to CKF+’s.9 The S5 properties follow
from that fact the fact that [w]i is an equivalence class, for every agent i ; this tells
us also that CSTIT is a multi-modal S5—a very nice one, in fact, as we shall see
below. IA is the well-known axiom of independence of agents, which states that any
combination of independently possible actions, one for each agent, is jointly possi-
ble. Notice that its validity for all the agents 1, . . . , n in Ags implies its validity for
any smaller interaction of agents.10 This is, as we mentioned earlier, a very strong
principle and a key feature of STIT; we discuss it further in Sect. 23.3.2, after high-
lighting the connections between STIT and game theory.

Interesting Valid Formulas. Balbiani, Herzig, and Troquard [1] show that IA can be
replaced by the axiom ♦φ → 〈i〉∧ j∈i 〈 j〉φ (more precisely, IA is provable from
the new axiom, S5 and MA). If we contrapose the two-agent version of the axiom in
[1], we get a principle of Triviality of Coercion,

(TC) [i][ j]φ→ �φ (for i �= j),

which states that one agent can guarantee that another agent guarantees a certain
proposition only if that proposition is itself trivial.11 Figure 23.3 helps check the

9 See Balbiani, Herzig, and Troquard et al. [1] for discussion. This axiomatization is due to Xu [31],
where, however, the Chellas stit was replaced by the deliberative stit, and completeness is proved
relative to trees endowed with choices and agents.
10 Thus, for instance, the validity of IA implies the validity of ♦[i]φ∧♦[ j]φ → ♦([i]φ∧ [ j]φ)—
see [1, p. 391].
11 TC also plays a role in replacing IA with the new axiom in [1]: the two-agent version of
IA (♦[i]φ ∧ ♦[ j]φ → ♦([i]φ ∧ [ j]φ)) is derivable by TC, S5 and MA by Modus Ponens and
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w
�

[1][2]φ

w′
�

[1][2]φ

w′′
� [2]φ

w′′′�

[2]φ[w′]2

[w]2

[w]1 [w′′]1

Fig. 23.3 [1][2]φ → �φ. [1][2]φ holds at w, from which it follows by our semantics that [2]φ
holds at both w and w′, and then, by applying again the semantic clauses, that φ holds both at w
and w′′ and at w′ and w′′′. The fact that [1][2]φ holds somewhere thus implies that φ is true at all
states in the model

validity of the principle. Of course, the equivalence�φ ↔ [1][2]φ is provable from
TC, MA and axiom 4 (included in S5); this allows us to define � as an abbreviation
of [1][2]. Also worth mentioning is the Permutation Principle

(PP) [i][ j]φ ↔ [ j][i]φ
which follows by TC, MA and axiom 4.12

Formal Properties of STIT and group CSTIT. CSTIT has very convenient formal
properties, some of which are surprising in a multi-modal S5. First, the axiomatization
above is complete with respect to CKF. Since R3 is not expressible in LCSTIT, the
system does not distinguish the frames satisfying the condition, and thus it proves
complete also relative to CKF+’s.

Also, CSTIT is decidable and finitely axiomatizable.13 This is trivial if we
confine our attention to a two-agent CSTIT; in this case, the STIT property
of strong confluence reduces to the confluence property of S52 (“squared S5”),
which is decidable and finitely axiomatizable.14 The interesting virtue of STIT
is that it keeps these properties even when more than two operators are at stake.
The key issue is indeed strong confluence, which in turn reduces all the conflu-
ences of arbitrary length to the confluence ∼C

i ◦ ∼C
i , with [i] and [ j] arbitrary.

This has two interesting consequences: (1) It implies that CSTIT with n > 2

(Footnote 11 continued)
Necessitation of �, while the k-agent version can be proved by induction on the k − 1 case and
♦φ → 〈k〉∧1≤i<k〈i〉φ, for k > 1 ([1, pp. 392–393]).
12 Balbiani et al. [1] also introduces a third (and more compact) axiomatic system for CSTIT,
consisting of S5 for [i] agency operators, the definition�φ ↔ [1][2]φ and the formula 〈i〉〈 j〉φ→
〈k〉∧m∈k〈m〉φ. S5 for �, MA, the axiom ♦φ → 〈i〉∧ j∈i 〈 j〉φ—and hence IA—are provable
from these new axioms by Modus Ponens and Necessitation. See [1, pp. 394 and 397].
13 These results were first established by Xu [30]; see also Balbiani et al. [1].
14 Balbiani et al. [1, p. 395] prove that the logic of two-agent Chellas stit is nothing but S52.
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agents does not yield the product logic S5n , so that, for example, CSTIT with
3 agents is not S53 (“cube S5”); the implicit virtue here is clear, since any
product S5n with n > 2 is undecidable and not finitely axiomatizable.15 (2) It
implies that CSTIT does not encode grid structure enough to become undecid-
able.

STIT’s view on agency and the many fashions of STIT. Our presentation has
emphasized the distinctive marks of STIT mentioned in Sect. 23.1—the extensional
view on choices, acting as state selection, the absence of action types in PDL or DEL
style, and the independence of agents. CSTIT is not the only STIT logic available,
but most STIT logics share these features.16

None of this tells us exactly how the stit operator is to be read. Here we just briefly
mention two prominent readings. The first is the original reading due to Belnap and
Perloff, and is today the most widespread among philosophers; according to this
reading, “seeing to it that” captures the contribution of the agents to a change in the
causal structure of the world.17 The second points at a game-theoretical interpretation
of STIT, and is suggested by [24] and other research in the computer science side of
STIT; here the idea is to focus on what an agent guarantees, or “sees to,” by following
a winning strategy.

Comparing such readings here would go beyond the scope of the chapter; we
note only that the former focuses on agency as a factor of change in spatial regions
of the universe, while the second stresses the choice-making dimension of agency.
The two readings thus suggest different applications and questions: Belnap’s reading
naturally calls for a specification of what “causal contribution” to a change is, and
consequently requires also a picture of what the causal structure of the world is;
by contrast, the game-theoretical reading highlights the logical dynamics of choice-
making and multi-agent interaction, and can be adapted to the different structures
provided by game theory, such as, for example, extended game forms or strategic
games.

An interesting point of Belnap’s reading is that it naturally calls for representing
agency in time, since causation presupposes a temporal dimension.18 The CKF’s are
not enough to this purpose, and thus it is no surprise that Belnap and colleagues use
branching-time structures endowed with a set of agents and a choice function (the

15 See Hirsch et al. [23].
16 A noticeable exception is the combinations of STIT and actions explored by Xu [32].
17 If we follow Belnap’s reading, deliberative stit may prove more suitable than the Chellas stit,
since the former does not allow for trivial truths to be seen to by any agent; the Chellas stit allows
for this and does not seem to fit equally well the idea of a causal contribution to a change in the
world.
18 Such a component proves relevant also if we wish to represent the sequential aspect of choice-
making in extended game forms, since a sequence of choice-making acts presuppose a temporal
dimension.
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so-called “BT + AC structures”),19 which are indeed intended to capture the notion
of an indeterministic causal change in the world.20

Finally, STIT traditionally does not define choices in relational terms, but
rather in functional ones: the standard option is to introduce a choice function
Ch(i) : Ags �−→ ℘(W ) which partitions W and such that for every state w ∈ W ,⋂{Ch(i, w) | i ∈ Ags} �= ∅. It is the easy to see that our relation∼C

i can be defined
in terms of Ch(i) and vice versa. We use this interchangeability in Sect. 23.3, and
we also define for every state w ∈ W ,

⋂{Ch(i, w) | i ∈ Ags} = {w}, in analogy
with R3 and Ch(i, w) =⋂

j∈i Ch( j, w) for every w ∈ W —in analogy with D1.

23.3 STIT and Strategic Games

Although STIT was first presented as a theory of the contribution of agents to changes
in the causal structure of the world, it was soon applied to problems concerning
choice-making, and much of the current research is in keeping this direction; this
applies especially the application of STIT in the logical foundations of multi-agent
systems. The reason for such a shift is that STIT presents some interesting connections
with game theory, which is the most widespread framework of reference in studies
on multi-agent systems.21 Here, we consider some of these connections, focusing on
strategic games. This is an indispensable move for the formal comparison between
STIT and Matrix Game Logic in Sect. 23.4, and also helps clarify some features of
STIT which have been debated, such as the independence of agents.

23.3.1 Bridging Two Worlds

A strategic game G is a five-tuple 〈W, Ags, {ai | i ∈ Ags}, o, {�i | i ∈ Ags}〉,
where W and Ags are as in CKF’s; for each i ∈ Ags, ai is an action available to

19 To be more precise, the temporal component of BT + AC structures are trees. Along the years,
other temporal components of indeterministic time for choices and agents have been introduced;
see, for instance, the XSTIT frames due to Broersen [12], the bundled choice trees of Ciuni and
Zanardo [19], and the Temporal Kripke STIT models of Lorini [28].
20 Display of a temporal order is necessary to define the so-called ‘stit operators for non-
instantaneous agency’, that is operators that express a temporal hiatus between choice and result.
Examples of such operators are the fused xstit in Broersen [12], and the operators introduced in
Ciuni and Mastop [18] and Ciuni and Zanardo [19]. A hiatus between choices and results can be also
expressed by combining autonomous operators for agency and for temporal distinctions. Broersen
follows this line in [13] and [14], as does Lorini [28]. A very complex stit operator is the original
“achievement stit” due to Belnap and Perloff [4] which captures the cross-temporal dimension of
agency by expressing the notion that a result holds at m due to a previous choice of i ; variants of
the achievement stit are proposed by Zanardo [33] and Ciuni [17].
21 One should not forget that game-theoretical ideas were very important in STIT since its very
beginning. This is clear from [3, pp. 283, 343–344], where the matrix representation of games
is mentioned and independence of agents is explained with it, and where a comparison between
extended game forms and BT + AC is briefly drawn.
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agent i . We call Ai the set of actions {ai , a′i , . . .} available to i .22 Each sequence
{a1, . . . , an} ∈ Πi∈Ags Ai is a action profile; such an action profile can also be
denoted as (ai , ai ), which separates the action performed by the particular agent i
from the actions performed by all the other agents from i .

The function o : Πi∈Ags Ai �−→ W maps each action profile into a resulting state
in W , according to the standards in the definition of a strategic game. Notice that
each set in Πi∈Ags Ai represents a possible combination of actions in the game; as
a consequence, all actions of any agent i are compatible with all the actions of any
other agent j from i ; also, o is total, and thus this compatibility is represented at
the level of the outcomes. We generalize the signature of o in two different ways.
First, we let it take two arguments, so that o(ai , ai ) defines the outcome as resulting
from a pair consisting of the action of the particular agent i , in the first place, taken
together with the actions of all the other agents, from i , in the second. Second, we
denote the outcomes of ai as o(ai ), where o(ai ) = {w | w = o(ai , ai ) for some
ai ∈ Ai } where Ai = � j∈i A j . It is then clear that while the outcomes of action
profiles are single states, the outcomes of the actions of individual agents are sets of
states.

Finally, for each i ∈ Ags, the relation �i is a reflexive preference ordering
between outcomes of action profiles. The reading of o(ai , ai ) �i o(a′i , ai ) is the
standard one: agent i weakly prefers the state resulting from action profile (ai , ai ) to
that resulting from action profile o(a′i , ai ). The preference relation is easily extended
to (outcomes of) actions of a given agent.

In order to draw our comparisons, we first extend CKF+’s with preference
relations {�i | i ∈ Ags}, thus obtaining consequentialist CKF+’s, or CCKF+’s for
short. More exactly, a CCKF+ C is a pair 〈K , {�i | i ∈ Ags}〉, where K is a CKF+.
A model built from a CCKF+—that is, a consequentialist CKM+, or a CCKM+, for
short—is obtained by supplementing the CCKF+ with an evaluation function V in
the standard way.

Turrini [5] has proved an interesting correspondence between strategic games and
CCKF+’s in their functional version (see end of Sect. 23.2). Relying of the definition
of the choice function Ch(i), he first introduces the notion of a choice structure ChG

in a game G as follows: X ∈ ChG (i) if and only if there is an action ai such that
{o(ai , ai ) | ai ∈ � j∈i A j } = X . He then proves:

Proposition 23.1 (Representation Theorem) For every (functional) CCKF+
C = 〈W, Ags,Ch, {�i | i ∈ Ags}〉, there is a strategic game G such that
Ch(i) = ChG (i), and vice versa.23

22 Since we do not deal with the sequential aspect of choice-making here, we prefer to use the term
‘action’ rather than ‘strategy’.
23 This result, established as Theorem 1 in [5], is actually stated there for full groups of agents
(“coalitions” in the standard game-theoretical terminology) and their anti-groups. Notice that the
result in [5] naturally extends to CKF+’s without preference relation and strategic game forms,
which obtain from games by dropping the preference relation.
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The result can be adapted to our relational CCKF+’s with no risk of loss, due to the
definition of the function of choice at the end of Sect. 23.2.24

Turrini’s observation has three interesting consequences. First, it implies that for
every CCKF+ C = 〈W, Ags, {∼C

i | i ∈ Ags}, {�i | i ∈ Ags}〉 we can construct
the corresponding choice structure of a game (call it G C for short); the converse
also holds: the CCKF+ C G C

built on the choice structure G C is in turn nothing
but C . There is then a correspondence between CCKF+’s and choice structures
of games. Second, the choices of i in a CCKF+ C are actually the outcomes of
some action of i in the game with the corresponding choice structure G C , or more
exactly:

For every CCKF+ C , w ∼C
i w
′ iff w,w′ ∈ o(ai ) for some action ai ∈ Ai in the

strategic game whose choice structure corresponds to CCKF+.

We can express this also by saying that Ch(i) = ChG (i) = {o(ai ) | ai ∈
Ai } in G C . By R3 and D1, this allows to express (outcomes of) action profiles as
intersections [w]i ∩ [w′]i of a choice of i and one of her anti-group: w = o(ai , ai )

iffw = [w]i ∩ [w′]i (for somew′ ∈ W and every CCKF+ C ). Finally, proposition 1
also guarantees that CCKF+ can represent a number of game-theoretical notions; the
most paradigmatic examples is that of weak dominance:

Definition 23.1 (Weak Dominance in a CCKF+).
[w]i ≥i [w′]i iff [w]i ∩ [w′′]i �i [w′]i ∩ [w′′]i for each w′′ ∈ W , and [w]i ∩
[w′′′]i �i [w′]i ∩ [w′′′]i for some w′′′ ∈ W —with� being defined as usual as strict
preference.

This idea, which corresponds to the standard game-theoretical definition of weak
dominance,25 was first introduced into STIT by [24], and has been the main focus of
consequentialist work in the STIT tradition.26 However, CCKF+’s can also model
other interesting notions of action preference, such as:

Definition 23.2 (Best Choices in a CCKF+).
[w]i is a best choice for i given [w′]i iff [w]i ∩ [w′]i �i [w′′]i ∩ [w′]i for each
w′′ ∈ W .

which displays a clear correspondence with the game-theoretical notion of a best
action.27

24 Thus, from every game G we can construct the corresponding CCKF+ C G =
〈W G , AgsG , {∼CG

i | i ∈ Ags}, {�CG
i | i ∈ Ags}〉, where w ∼CG

i w′ iff w′ ∈ [w′]i for
[w]i ∈ ChG .
25 o(ai ) is a weakly dominant action iff o(ai , ai ) �i o(a′i , ai ) for all a′i ∈ Ai and all ai ∈ Ai .
26 See, for example, Kooi and Tamminga [25], Turrini [5], and Tamminga [29].
27 o(ai ) is a best action of i iff o(ai , ai ) �i o(a′i , ai ) for all a′i ∈ Ai .
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23.3.2 Some Conceptual Insights

Proposition 1 and the related facts are revealing in many different respects. Though
philosophers know STIT mainly under the causative reading, the theory may be
naturally used for modeling game-theoretical notions: its strong ties with game theory
allow us to trade notions defined in STIT with notions defined in games, and vice
versa. In a nutshell, we can give STIT a game-theoretical reading without loosing
any relevant feature of the framework, leading to some interesting consequences.

Game-theoretical Reading of stit. First, if we trade the notion of ‘choice’ with that
of ‘outcome of some action’, it is clear that ‘seeing to it that’ equates with ‘displaying
a winning action’. For take a CCKF+ C G C

built on a game structure G C . Due to
proposition 1, for every choice [w]i defined in C G C

, there is some action ai ∈ Ai

such that for every w′ ∈ W , w′ ∈ o(ai ) iff w′ ∈ [w]i . Thus, [i]φ is true at w iff φ
is true at all the states w′ which are in the same outcome o(ai ) as w. But any such
states will also be in (the outcome of) some action of the rest of the agents; as a
consequence, the fact that [i]φ holds at w implies that, for every ai ∈ Ai , there is
some state w′′ ∈ o(ai ) where φ holds. As a consequence, i cannot see to it that ¬φ.
In other words, if i sees to it that φ, i is performing a winning action to the effect
that φ.

STIT, Games and Independence. The independence condition—R2 from
Sect. 23.2—may sound strong and even surprising if we cast STIT against the
background of the physical world and our role in its changes: from an intuitive
standpoint, it is very infrequent that we are beyond any possibility of being deprived
of our choices by others. However, the principle makes good sense if we read STIT
game-theoretically. If we trade, once again, choices for outcomes of actions, R2
will amount to the assumption highlighted at the beginning of Sect. 23.3.1: each
action profile (1) includes one action per agent,28 and (2) correspond to one state.
Independence is nothing but this, and thus proves a very game-theoretically oriented
feature of STIT. The logical principles IA and TC, likewise in Sect. 23.2.1, follow
from R2 and the truth-clause of [i].
Independence and non-winning actions. There is an interesting feature of STIT
which is not usually highlighted: in principle, you can have condition R2 without
having an operator for agency which coincides with ‘displaying a winning action’.
This may become clear by analogy with strictly competitive games. In such games,
the outcome function o may be defined according to the points (1) and (2) above,
exactly as we just did for strategic games in general. At the same time, these games
are characterized by the fact that no agent has a winning action: all actions of all the
different agents are compatible, but no action of a single agent can ensure a given
result: any relevant result in such games depend on the interaction of the different
agents. One can have quite the same in a STIT setting, if the truth-clause of the stit
operator is weakened; for instance, the probabilistic STIT presented by Broersen in

28 This also explains why the function Ch(i) is defined as a partition (see end of Sect. 23.2).
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[10] and [9] retains the independence of agents at the level of the frames, but defines
an operator which equates with displaying the choice that comes with the highest
chance of success in getting the given result (and the latter is clearly compatible with
failure in ensuring the result).

Independence, continued. Game theory goes much further than giving formal
expression to the notion of “winning action,” as strictly competitive games prove.
Recent work in STIT logic shows that its potential is not confined to that notion.
At the same time, it suggests that adapting STIT to a broader set of game-theoretical
notions is compatible with retaining the independence of agents. Approaching some
phenomena of game theory without imposing independence is clearly possible and
equally sound. For instance, van Benthem and Pacuit [11] suggests dropping the
totality of the outcome function o in order to model the game-theoretical notion
of a correlation, where there is some form of dependence between some agent’s
choices. This suggestion is in line with a general tradition of Dynamic Logics in
modeling game-theoretical notions. The suggestion is very reasonable, but if the
temporal aspect of choice-making is acknowledged, STIT provides a natural alter-
native: agents are independent when it comes to their simultaneous choices, but the
present choice of one agent may limit the choices available to others at subsequent
moments.29

Preferences and Ought. The consequentialist CKF+’s are a further proof of the
entwinement of STIT and game theory. Indeed, CCKF+’s have their origins in the
application of STIT to a consequentialist perspective on action, which was first
carried by Horty in [26] and [24]. Roughly speaking, a consequentialist perspective
evaluates what an agent ought to do on the ground of the value that can be attached to
the consequences of the agent’s choices; if we read such consequences as the sets of
states extending each choices, we will define our framework by assigning values to
states and—indirectly—to choices, exactly as we did with the preference relations.

There is one point, however, where the analysis of [24] significantly differs from
the present CCKF+: in [24] the values (or preferences) are agent-independent, that
is the values it imposes does not vary with the agent in question.30 Here, we relaxed
this condition and allowed for preferences to be agent-relative. This relaxation shows
the match between the consequentialist perspective implicit in game theory and the
perspective encoded in the STIT analyses based on [24]. Also, we need to go to
agent-relative preferences if we wish to model other game-theoretical notions which
are “intrinsically multi-agent”. Think of the notion of a Nash Equilibrium: it implies
a consideration of the preferences of all different agents, and keeping preferences
agent-independent would make such a consideration trivial. The same applies to
other phenomena, like the removal of strictly dominated strategies.

29 This is no proof that STIT can deal with correlation as intended by [11], but is a general sign of
the adaptability of STIT relative to the issue of independence.
30 Also, notice that the “utilitarian STIT frames” introduced by [24] are grounded on branching-time
structures. In such frames, the value attached to a history is not only agent-independent, but also
moment-independent, that is it does not vary with time. This reminds the definition of preferences
and priorities in standard rational-choice theory.
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The main modal operator in [24] is the so-called “dominance ought operator”⊙[i]—where
⊙[i]φ should be taken to mean that, if i exerts any of her weakly

dominant choices, then φ is the case. The operator clearly models a notion of weak
dominance. An interesting point is that allowing for agent-relative preferences, as we
do here, also allows for the definition of alternative operators meaning, for example,
that, if i exerts one of her best choices, then φ is the case, or if i exerts one choice
of her in the Nash Equilibrium, then φ is the case. Finally, as in the work of Kooi
and Tamminga [25] and Tamminga [29], we can consider the choices of i relative
to the utility they have for j , and define an operator meaning, intuitively, that, if i
exerts any choice of her that is weakly dominant for j , then φ is the case. This work,
which opens the interesting issue of modeling the notion of “acting in the interest of
someone else,” was elaborated by Turrini [5] to apply also to notions of dominance
taking into account the interests of other groups, or coalitions.

23.4 STIT and Matrix Game Logic: Ex Interim Knowledge

Matrix Game Logic—or MGL, for short—made its first appearance in van Benthem
[6], in order to model the notion of iterated removal of strictly dominated strategies.
The logic was later enriched with a notion of “freedom” that deserves attention, since
it is thought to capture the margin of action that a combined choice of all the other
agents leaves to a particular agent i . van Benthem and Pacuit [11] contains a very
interesting comparison between STIT and MGL, and proves that there is an embed-
ding of the former into the latter. Here, we continue the comparison with a mutual
embedding between MGL’s operator for ex interim knowledge—e.i.-knowledge, for
short—and the Chellas stit. More important, we push the comparison further and
show that a mutual embedding holds between MGL’s operator for freedom and
a Chellas stit for the agency of anti-groups. This determines interesting property
transfers, sheds some light on the freedom operator, and allows some interesting
considerations on the applications of STIT.

23.4.1 Matrix Game Logic for Epistemic Notions and STIT:
A Formal Comparison

A matrix game frame, or MGF, is a structure MG = 〈G , {∼i | i ∈ Ags}, {≈i | i ∈
Ags}〉, specified as follows. G is a game, as defined in Sect. 23.3.1.31 For each agent i ,
∼i is an equivalence relation which represents the ex interim (e.i.-) uncertainty of i :
ifw ∼i w

′, then i is uncertain whetherw orw′ is the actual state after i performs her
action (see more details below). Finally,≈i is the “freedom relation for i”: w ≈i w

′

31 In its original version, MGL sees action profiles themselves as states. Thus, W and o are not
included in the original definition of a MGF. Here we consider situations where there is no action-
profile gap, which can be in turn seen as situations where the function o is total and no restriction
is imposed on the construction of action profiles. In this case, MGF’s can be defined as in the text.
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just in case w′ is in the outcome o(ai ) which also includes w; in other words, the
relation models the “margin of freedom” of i—what i is free to achieve by changing
her action, while the given action of its anti-group i is kept fixed. A matrix game
model, or MGM, obtains by extending a MGF with an evaluation function V in the
standard way.

Figure 23.4 exemplifies a MGF with two agents. Here, a1 is the action 1 performs
at w or w′. The thin box represents the class of states which are e.i.-equivalent
with w; i is uncertain where state w or w′ are the actual state of the world, since
the latter crucially depends on what action 2 performs, and—coherently with the
characterization of e.i.-knowledge in games, see below—i has only e post knowledge
of this. The thick box represents the states which are “freedom equivalent” with w:
w itself, which results from (a1, a2) and w′′, which results from switching from a1
to a′1 while keeping the same action of 2—that is, a2. Let us set aside the freedom
relation for now and focus on the e.i.-uncertainty relation ∼i .
Games, Ex interim Knowledge, and Perfect Information. Typically, the
game-theoretical literature distinguishes three kinds of knowledge: ex ante knowl-
edge is knowledge of the rules of the game, ex interim knowledge is the knowledge
one has after performing an action, e post knowledge is knowledge of what actions
others play and what state results from the game. The games we consider here presup-
pose perfect information. In such games, agents are not uncertain about the state of



646 R. Ciuni and J. Horty

the world, they know their own preferences and those of other agents, and they have
common knowledge of rationality. Since what results from i’s action is determined
by the rules of the game, and since agents have no uncertainty about the states they
are in before the game-round, it is easy to see that in games with perfect information
e.i.-knowledge is essentially knowledge of what one does.

The epistemic fragment EGML. For the time being, let us drop the freedom relations
≈i from MGM’s, thus obtaining epistemic MGM’s, or EMGM’s. We will likewise
refer to the epistemic fragment of MGL, or EMGL, as that logic whose only operators
are the agent-relative e.i.-knowledge operators Ki , with i ∈ Ags, and defined as
follows:

MG E , w |= Kiφ iff for all w′ ∼i w, MG E , w′ |= φ
where MG E is an EMGM. Figure 23.5 gives an intuitive grasp of the truth-clause of
Kiφ. As is clear from van Benthem [6] and [8], and van Benthem and Pacuit [11], the
∼i relation satisfies strong confluence—we have, that is, W ×W ⊆∼i ◦ ∼ j for all
distinct pairs of indices i and j (between 1 and n). This is a plausible principle for e.i.-
knowledge. In game theory, for each agent i e.i.-knowledge is basically knowledge
of what is due to the action i performs. Suppose ai is the action in question and
consider any statesw,w′ ∈ o(ai ). Of course, we have w ∼i w

′: i knows that, due to
her action, some state in o(ai ) results from the game round, but she does not know
which does. This crucially depends on the action i plays, which is something i knows
only e post, that is, when the result is settled. Thus, if w,w′ ∈ o(ai ) then w ∼i w

′.
But also the converse holds. Suppose w ∈ o(ai ) and w′ /∈ o(ai ). In performing ai , i
also gets e.i.-knowledge of what states she is selecting away. Hence, w �i w

′. As a
consequence, we havew ∼i w

′ iffw,w′ ∈ o(ai ). Strong confluence and equivalence
are the only conditions defining ∼i , and thus, by Proposition 1, we know that

For every EMGM MG E , w ∼i w
′ iff w ∼C

i w
′ in C MG E

where C MG E
is the CCKF+ corresponding to the given EMGM MG E

(with Ch(i) = {o(ai ) | ai ∈ Ai } for every i). We can therefore define the following
truth-preserving translation τ :

τ([i]φ) = Kiφ

which in turn guarantees a mutual embedding between CSTIT and EMGL.32

This comes with very convenient properties: indeed, it now follows from the similar
properties of CSTIT that EMGL is decidable and finitely axiomatizable, no matter
the number of agents.

Strong confluence also allows us to introduce � as short for K j Ki , exactly
as we did with [ j][i], and guarantees an interesting principle: Ki K jφ → �φ.

32 The translation τ above is already defined in and [8] and [11]. However, it does not define a
mutual embedding there, since the full MGL is considered, and as we shall see, CSTIT is a proper
fragment of it.
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The analysis of e.i.-knowledge above suffices to explain why: if i has e.i.-knowledge
of what follows from the action of another agent j , this means that what results from
j’s action was trivial.

Ex Interim Knowledge and Best Actions between Matrix Game Logic and STIT.
A strategy, or action, ai of agent i is strictly dominated if there is another strategy—
or action—a′i such that o(ai ) ≺i o(a′i )—that is, a′i is strictly preferred to ai by i ,
no matter what action ai is performed by i . Since no agent would play a strictly
dominated strategy, in foreseeing the moves of the other players, we may remove
their strictly dominated strategies. This will create a sub-game and change the range
of the agents’ preferences; new strictly dominated strategies will emerge and will
once again be removed, and so on, step-by-step. This is the procedure of iterated
removal of strictly dominated strategies.

An example of iterated removal of strictly dominated strategies is given by
Figs. 23.6 and 23.7. The pairs of numbers denotes utilities of the two agents.
It is clear that agent 1 will not play a′′2 , since it is a strictly dominated strategy for her.
This action will then be removed, thus generating the sub-game in Fig. 23.7.
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The iterated removal of strictly dominated strategies would then continue by remov-
ing a′′2 , then a′1, and then a′2, thus generating three further sub-games. The last one is
constituted by w1 alone, which is the Nash Equilibrium of the initial game. Follow-
ing a tradition in game theory, MGL explains iterated removal of strictly dominated
strategies in epistemic terms: considerations about rationality, interests and strate-
gies of others lead us to remove some strategies from an initial EMGM, and thus
transform it in a sub-EMGM where other strategies become dominated. Becoming,
model transformation, rationality: all this naturally calls for Dynamic Logic, and
EMGL has been an answer to the call. An interesting consequence of the embedding
above is that STIT can also capture these dynamics.

We cannot describe this in detail here, but we give the basic ingredients. First, we
confine ourselves to finite EMGM’s and CCKF+’s—that is frames where each agent
has a finite number of actions available. By the definition of action profiles and the
outcome function, this suffices to guarantee a finite number of states. The notions
involved are those of best action and the epistemic notions of e.i.-knowledge, strong
rationality and weak rationality. Let us consider these in order.

Best actions are represented by van Benthem [6] as atoms b1, b2, b3, …. They are
agent-indexed and defined by the truth-clause: C MG E

, w |= bi iff there is an action
ai ∈ Ai such that w ∈ o(ai , ai ) and o(ai , ai ) �i o(a′i , ai ) for all a′i ∈ Ai . In other
words, the atom bi is to be interpreted as meaning that i is performing her best
action, and it is true at all and only those states which are in the outcome of some
best action of i .33 An extension of LCSTIT with the same propositional constants
is straightforward, and thus also this notion can be expressed by STIT. The notion
of a best action is in turn indispensable to define the notions of strong and weak
rationality.

Strong Rationality is expressed by the sentence ¬Ki¬bi (‘i does not know that she
is not performing one of her best actions’). Basically, then, i is strongly rational
if she knows she has at least one best action over the whole game; and note that
Ki satisfies negative introspection, and thus we have ¬Ki¬bi ↔ Ki¬Ki¬bi . Van
Benthem proves that for every agent i , sentences of strong rationality hold in at least
some state of a finite EMGM, though the same may fail for infinite EMGM or even
for sub-EMGM.

Given our translation τ and the extensions with atoms, STIT can express strong
rationality by ¬[i]¬bi , now taken to mean that i does not prevent herself from
performing a best action. This reading points out at the purely agentive side of strong
rationality: in a game-theoretical context, rational agents do not play actions different
from their best ones.34

33 It may seem that introducing linguistic atoms b1, b2, b3, . . . to express the notion of a best
action is a kind of trick. However, the move makes sense if the goal is not providing an analysis of
the notion, but simply to give us linguistic means to express the fact that such an action is being
performed.
34 Theorem 6 in [6] is easily adapted to finite CCKF+’s.
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Weak rationality actually leads to the “dynamic” part of EMGL. While strong
rationality consists in not choosing a strategy that is strictly dominated in the whole
given EMGM, weak rationality consists in not choosing a strategy that is strictly
dominated in the sub-EMGM in question. The difference can be appreciated by
considering those cases where agents do not know that their current action is best
relative to the whole game, but where they do know that such an action has no bet-
ter alternative, where alternatives are now limited to the sub-EMGM considered.
This also requires “relative best actions”—that is atoms b∗1, b∗2, b∗3, …. Where W ∗
is the set of states of the sub-EMGM into account, the truth-clause for these new
atoms is: w∗ |= b∗i iff there is an action ai ∈ Ai with w∗ ∈ o(ai , ai ) and such that
o(ai , ai ) �i o(a′i , ai ) for all a′i ∈ Ai and o(ai ), o(a′i ), o(ai ) ⊆ W ∗. In other words,
bi states that i is performing her best action relative to the actions which have not
been removed.

Weak rationality is expressed by¬Ki¬b∗i . The sentence in turn proves interesting
since it is false at any state which extends the outcome of a strictly dominated strategy
of i . Remarkably, given a state w in the solution zone for strictly dominated strategy
removal, repeating assertions of weak rationality stabilizes at a sub-game which
include w and whose domain is in that solution zone, an observation due to van
Benthem [6, Theorem 7].

If we extend STIT with atoms for relative best actions, we get that weak
rationality of i is expressed by ¬[i]¬b∗i : if i is rational, then she does not pre-
vent herself from performing a relative best action. Also, it is easy to see that van
Benthem’s result, mentioned just above, can be straightforwardly adapted to STIT.
The interesting point is that, where w is in the solution zone for strictly dominated
strategies in a given game, the iterated removal of strictly dominated strategies stabi-
lizes at a sub-game which includes w and solves the game if we iterate the choice of
not preventing ourselves from playing our best action—where “iterating the choice”
here means that we apply it at any sub-game resulting in the removal process.

A very brief conceptual insight. The mutual embedding has shown a surprising virtue
of STIT: though designed to express purely agentive notions, in some situations it can
also express interesting epistemic notions, such as e.i.-knowledge, strong and weak
rationality. Thus, STIT also shows potential relative to certain notions which are
crucial in the epistemic foundations of game theory. In particular, STIT can capture
some crucial notions in iterated removal of strictly dominated strategies. The crucial
issue here is what exact notions can be expressed by STIT. The ability to express
strong rationality does not prove a striking result, once the mutual embedding between
CSTIT and EMGL is considered. The interesting point is rather the expression of
weak rationality. Indeed, such a notion seems to witness the dynamic character of the
iterated removal process, and the surprising point is that STIT can frame some of
this character, though it has not been designed to capture those dynamics of model-
transformation which are captured by Dynamic Logics. At the same time, we need
to be aware of the limits of such connections. The possibility of connecting e.i.-
knowledge and seeing to it is confined to strategic games with perfect information:
if an agent i could be wrong about the current state of the world, she could also be
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Fig. 23.8 [≈1]φ is true at w (and w′′)
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Fig. 23.9 What follows from having K1[≈1]φ true at w (we include the e.i.-uncertainty relation
here)

confused about the results of her action, and thus she could see to it that φ without
having e.i.-knowledge of φ. In this situation, the gap between the agentive dimension
encoded by STIT and the epistemic dimension encoded by Ki resurfaces, and the
latter must be explicitly introduced in the logic. Also, the ability to capture some
dynamic features of the iterated removal process does not guarantee the possibility
of capturing any dynamic aspect of action and game-theoretical interaction.

23.5 Matrix Game Logic, Freedom and STIT

Let us now return to ‘full’ MGL and the ‘freedom relations’, which, as we recall, are
defined as follows: w ≈i w

′ iff w,w′ ∈ o(ai ) for some action ai of i . The definition
of the “freedom operator” is where the new relation comes in:

MG , w |= [≈i ]φ iff for all w′ ≈i w, then MG , w′ |= φ.
Here, [≈i ]φ should be taken to mean that i is left free to achieve φ, by i’s current
action. Figure 23.8 above provides an example.

Figure 23.8 is based on Fig. 23.4, but it omits labels for action profiles and the
column representing the e.i.-knowledge of 1 at w and w′. What is left from Fig. 23.4
is then the margin of freedom of i atw andw′′. [≈1]φ is true atw since it is true at all
the states which are freedom-equivalent to w—namely, w itself and w′′. The same
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holds if we evaluate the formula at w′′. Figure 23.9 on the previous page extends
Fig. 23.8 with the e.i.-knowledge of i at w (represented by the left column) and w′′
(represented by the right column). The figure provides an easy way to check the
validity of Ki [≈i ]φ → �φ below.

The new freedom operator carries a lot of information: it calls upon the action
of i , as is clear from the definition of ≈i , and tells us what options the current
action of i’s leaves to i . This involves much more than talking about the individual
agent i and what action she performs, of course: it also implies reference to a more
complex concept, which hints at the way some of i’s actions interact with those of
i . As a consequence [≈i ] is a complex operator, and a systematic investigation of its
properties may prove difficult.

Two clear features are that [≈i ] is an S5 operator and that it satisfies a strong
confluence axiom in combination with Ki —that is, W × W ⊆ ∼i ◦ ≈i . These
observations are established by van Benthem and Pacuit in [8] and [11], and illustrated
in Fig. 23.9. As a result, we have the principle:

Ki [≈i ]φ → �φ.

This is an interesting principle: it states that only in case φ is trivial can the agent i
e.i.-know whether she is free to achieve φ; knowledge of what is not excluded by the
choice of an agent’s own anti-group is trivial, and so not interesting. The validity of
the formula is easily checked with the help of Fig. 23.9: here, Ki [≈i ]φ is true at w.
By this and the semantics of Ki , we have that [≈i ]φ is true atw andw′. Since [≈i ]φ
is true at w, we have that [≈i ]φ is true at w′′, and since [≈i ]φ is true at w′, we have
that [≈i ]φ is true at w′′′. [≈i ]φ is then true at all the states of the model represented
by Fig. 23.9. By this and the semantics of [≈i ], we have that φ is true at every state
of the model. As a consequence, we have �φ true at all of them.

Other questions remain open. Can [≈i ], [≈ j ] be turned into stit operators? What
about a confluence property involving freedom operators only? Is MGL decidable
and finitely axiomatizable? These questions have not yet been settled in the literature.
We do this below, but in order for us to show the result, we need to extend CSTIT to
group CSTIT first.

A STIT logic for Groups. MGL is a proper extension of EMGL. Since there is a
mutual embedding between the latter and CSTIT, we have that CSTIT is a proper
fragment of MGL. However, the relation may change (and indeed changes) if we
consider group CSTIT, which allows us to talk, among the other things, of groups,
singletons, and anti-groups.35 Let us start from a full group STIT and then isolate
the anti-group fragment. In STIT, a group is a set of agents; then, the set of all the
groups definable in a frame for group STIT is nothing but the power set ℘(Ags) of
the set Ags of (individual agents).

35 Group STIT was already present at the beginning of STIT; see Belnap [3] and Horty [24].
Both Belnap and Horty assume additivity; see [3, Definition 10–3], and [24, Definition 2.10]. Neither
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A (relational) group CKF+—henceforth, a GCKF+—is a triple 〈W, Ags, {∼C
I |

I ⊆ Ags}〉, where W and Ags are as in CCKF+, and ∼C
I is a group choice-

equivalence relation between states in W , such that:

(R1′) ∼C
I is an equivalence relation

(R2′) for all (w1, . . . , wk) ∈ W k and J1, . . . , Jk ∈ ℘(Ags), if l �= m implies
Jl ∩ Jm = ∅, then

⋂
i∈{1,...,k}{w | w ∼C

Ji
wi } �= ∅

(R3′) ∼C
Ags= I dW

(R4) ∼I = ∼J ∩ ∼I/J where J ⊆ I
(R5) ∼C

I ⊆ ∼C
J if J ⊆ I.

Here, R2′ is the group version of the strong confluence (notice the restriction to
disjoint groups), while R3′ is grand group determinism: the grand group can deter-
mine a unique state of the world (I dW being the identity relation on W , standardly
defined: I dW = {{w,w′} | w,w′ ∈ W and w = w′})36 and R4 is additivity the
choice of a group is the intersection of the choices of its disjoint subgroups.37 R3′
is clearly the group version of R3, while R4 allows to understand D1 as a special
case of additivity. R5 is the so-called coalition monotonicity which holds that, if
agents (and groups) join their efforts, they improve their result; the condition mirrors
the standard assumptions about coalition effectivity functions in game theory. An
individual agent i is here taken as a special case of groups, namely the singleton {i},
we keep the individual notation for the sake of readability. An analog to Proposition
1, above, also applies to GCKF+’s—indeed the actual statement of Theorem 1 in
Turrini [5] is about coalitions. Finally, the new operator [I ] is just the group version
of [i], so that: [I ]φ is true at w in a model for CGKF+ iff φ is true at every state
w′ ∼C

I w.
The principles R1′, R2′, R3′ and R5 correspond to the following principles:

(P1) S5 axioms for [I ];
(P2) [I ][J ]φ → �φ, where I ∩ J = ∅
(P3) φ ↔ [Ags]φ
(P5) [J ]φ → [I ]φ if J ⊆ I.

And, as the reader will notice, many distinctive features of individual STIT
are transferred to the group level, though with restrictions: for instance, we have

(Footnote 35 continued)
Belnap nor Horty assume condition R3′ below—that the joint agency of all the agents may determine
a unique outcome—although, as mentioned earlier, Horty [24, p. 91] considers models that satisfy
this condition. Basically, the conditions we present here build on those presented in Horty [24]
by adding the standard game-theoretical condition of coalitional monotonicity. The latter can be
actually derived by R2′, but we present it here as a basic condition in order to conform with the
standard presentation of group STIT.
36 The principle is also called “Rectangularity” in Turrini [5].
37 The standard condition in game theory is actually superadditivity, which allows for the choice of
I to be a subset of the choices of I ’s members; the condition is actually a consequence of coalition
monotonicity. However, we prefer to include R4 in order to comply with the standard choice in
group STIT, and also because it makes the construction of groups conceptually easier.
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[I ][J ]φ → �φ if I ∩ J = ∅, but otherwise the principle may fail. Also, it is
easy to show that ♦[I ]φ ∧ ♦[J ]ψ → ♦([I ]φ ∧ [J ]ψ) holds if I �= J . Herzig
and Schwarzentruber have proved that group CSTIT with strictly more than two
agents is undecidable and is not finitely axiomatizable; see [21, Theorems 22 and
23]. This is primarily due to the fact that strong confluence fails if I ∩ J �= ∅; if—
additionally—the groups I and J overlap without being subsets one of another, then
the logic can be mapped into S5n , with n the number of agents in the group STIT in
question. Since all extensions of S53 are undecidable and not finitely axiomatizable
so is group CSTIT with three or more agents.38

STIT, Anti-groups and Freedom. Let us call anti-group CSTIT that fragment
of group CSTIT where only agents in Ags and their anti-groups are included.
Some interesting connections between individual agents and anti-groups are easily
captured:

(R2′′) W ×W ⊆ ∼C
i ◦ ∼C

i
for every i ∈ Ags

(R5′) ∼C
j
⊆ ∼C

i for all j �= i

R2′′ holds since an agent and her anti-group satisfy by definition the disjointness
proviso in R2′; R5′ holds because, by definition, any agent will be a subgroup of the
anti-group of any other agent. As a consequence,

(P2′) [i][i]φ→ �φ
(P5′) [i]φ→∧

j �= i [ j]φ
hold. The most interesting connection, however, is with MGL’s ≈i . Indeed, since
the correspondence result in Sect. 23.3 extends to group STIT and coalitional games
(see above), we have that: w ∼C

i
w′ iff w,w′ ∈ o(ai ) for some action ai of i . From

this, it follows that the relation∼C
i

in GCKF+ is nothing but the relation≈i in MGM.
We thus have:

For every MGMMG , w ≈i w
′ iff w ∼C

i
w′ in C MG

and we can therefore define a truth-preserving translation τ ′ such that

τ ′([i]φ) = Kiφ

τ ′([i]φ) = [≈i ]φ

where C MG is the GCKF+ corresponding to the given MGM MG (with Ch(i) =
{o(ai ) | ai ∈ Ai } for every i). There is therefore a mutual embedding between anti-
group CSTIT and MGL. This answers one question we asked earlier: [≈i ] can indeed
be interpreted as a stit operator. And with this answer comes both bad news and good
news.

38 Again, see Hirsch et al. [23] for these results concerning S5n .
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Bad news. The bad news is that we can now conclude that the “full” MGL39 is
undecidable and not finitely axiomatizable. This follows from the mutual embedding,
together with the fact that anti-group CSTIT with strictly more than two agents has
these properties, which transmit to MGL.40

Good news. The good news is that we can gain insight into the properties of [≈i ] via
established results about group stit operators—particularly those concerning i . For
instance, we can now see that Kiφ → ∧

j∈i [≈ j ]φ holds, from P5′′ and τ ′. This is
an interesting principle: it states that, if i has e.i.-knowledge that φ, then she is not
excluding that any other agent j achieves φ. If we dig into the conditions that define
the e.i.-knowledge and freedom relations, it is evident that this principle is sensible:
the agent i can have e.i.-knowledge that φ because her current action removes the
possibility of achieving “non-φ” states. Thus, j also has a margin to achieve φ with
her current action, while it is excluded that she achieves¬φ with any of her available
actions.

The mutual embedding also helps us understand the issue of strong confluence.
Contrary to what happens with Ki , the freedom operator [≈i ] does not satisfy the
strong confluence property: [≈i ][≈ j ]φ → �φ does not hold, since [i][ j]φ →
�φ does not hold in group CSTIT with more than two agents, since, in that case,
i ∩ j �= ∅. This failure implies that there are cases where φ is not trivial and
yet i has a margin of freedom to let j have a margin of freedom to achieve φ—or
equivalently: the current choice of i’s anti-group does not imply that j’s anti-group
achieves ¬φ. Transmission of freedom, it turns out, is not trivial, after all!

For analogous reasons,
∧

i∈Ags ♦[≈i ]φi → ♦∧
i∈Ags[≈i ]φi also fails in MGL:

even though two different agents 1 and 2 are left free to achieveφ1 andφ2 respectively,
their results may be incompatible. Thus, agents are not independent in their margins
of freedom. This sounds plausible: after all, the margins of freedom that one agent
has depend on what the current choice of the other agents is.

23.6 Conclusions

In this chapter we have accomplished two main tasks. First, we have highlighted
the ties between STIT and the basic settings of game theory. This has involved
demonstrating the possibility of reading STIT game-theoretically and expressing
game-theoretical notions in STIT’s terms. The connection thus established proves a
very good hint at the flexibility and richness of STIT theory.

39 Here we mean MGL as defined in this chapter, not the full logic defined in van Benthem [8],
which also includes an operator for preferences.
40 See our observation above on the conditions for undecidability and failure of finite axiomatizabil-
ity in group CSTIT. Of course, decidability and finite axiomatizability are restored if we confine
to MGL with only two agents, so that Ags = {1, 2}. In that case, 1 = 2 and 2 = 1. The anti-groups
thus collapse into different agents, and MGL with two agents actually collapse into EMGL with
two agents—which is indeed decidable and finitely axiomatizable, since EMGL is, no matter the
cardinality of Ags. Thus, the case with two agents does not hold much interest.
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Second, we have considered the MGL logic of games, a form of Dynamic Logic,
and have furthered the comparison begun by van Benthem and Pacuit [11] between
STIT and MGL. This comparison has led, we believe, to some interesting results.
First, as noted in that earlier work, the “epistemic fragment” of MGL has a mutual
embedding with the logic CSTIT for individual agency; thus, STIT has the potential
to capture the notions of ex interim knowledge and the assertions of weak and strong
rationality. Also, decidability and finite axiomatizability transmit from CSTIT and
the fragment of MGL.

It was established here, however, that full MGL, including the “freedom operator,”
has a mutual embedding with a group version of CSTIT which includes arbitrarily
many individual agents and their anti-groups. This suffices to secure that full MGL
is undecidable and not finitely axiomatizable.

However, the embedding also allows us to explore issues about the freedom
operator—which is conceptually very rich—“through the mirror” of STIT. This helps
us to notice that the freedom operator does not obey independence (for reasons which
are explained by the very setting of group STIT), and shows an interesting relation
between the ex interim knowledge of an agent and the margin of freedom left to all
other agents.

This proves STIT to be illuminating, not only for its own sake, but also as a tool
for developing formal and conceptual perspectives on other frameworks for agency.
A thorough comparison with Dynamic Epistemic Logic in the style of Baltag, Moss,
and Solecki [2] could be a further interesting step in bridging STIT and the dynamic
framework. The ground for this has been provided in [11]. The merging of the
two methodologies could prove extremely fruitful in the modeling of multi-agent
situations where it is crucial to express whether the information update in the doxastic
state of agent i has been brought about by i herself or passively received by other
agents.

Acknowledgments This work was carried out while Roberto Ciuni was a Humboldt
Postdoctoral Fellow working on the project ‘A Tempo-Modal Logic for Responsibility Attribut-
ion in Many-Step Actions’ (2011–2013). We wish to thank Alexandru Baltag and Yan Zhang for
very helpful comments on earlier versions of this work.

References

1. Balbiani P, Herzig A, Troquard N (2008) Alternative axiomatics and complexity of deliberative
STIT theories. J Philos Logic 37(4):387–406

2. Baltag A, Moss LS, Solecki S (1998) The logic of public announcements, common knowledge
and private suspicions. In: Proceedings TARK, Morgan Kaufmann Publishers, Los Altos, pp
43–56. (updated versions through 2004)

3. Belnap N, Michael P, Ming X (2001) Facing the future: agents and choices in our indeterminist
world. Oxford University Press, Oxford

4. Belnap N, Perloff M (1988) Seeing to it that: a canonical form for agentives. Theoria 54:175–
199



656 R. Ciuni and J. Horty

5. van Benthem J (2007) Rational dynamics and epistemic logic in games. Int Game Theory Rev
9(1):13–45

6. van Benthem J (2011) Logical dynamics of information and interaction. Cambridge University
Press, Cambridge

7. van Benthem J (forthcoming) Logic in games. The MIT Press, Cambridge (MA)
8. van Benthem J, Pacuit E (forthcoming) Connecting logics for choice and change. In: Müller

Thomas (ed) Volume in honour of Nuel Belnap. Springer, Berlin (outstanding logicians series)
9. Broersen J (2011) A deontic epistemic stit logic distinguishing modes of Mens Rea. J Appl

Logic 9(2):137–152
10. Broersen J (2011) Modeling attempt and action failure in probabilistic stit logic. In: Proceedings

of twenty-second international joint conference on artificial intelligence (IJCAI 2011), pp 792–
797

11. Broersen J (2011) Probabilistic stit logic. In: Proceedings 11th european conference on sym-
bolic and quantitative approaches to reasoning with uncertainty (ECSQARU 2011). Lecture
notes in artificial intelligence, vol 6717. Springer, Berlin, pp 521–531

12. Broersen J, Herzig A, Troquard N (2006) Embedding ATL in strategic STIT logic of agency.
J Comput 16(5):559–578

13. Broersen J, Herzig A, Troquard N (2006) From coalition logic to STIT. Electron Notes Theoret
Comput Sci 157:23–35

14. Chellas B (1969) The logical form of imperatives. PhD thesis, Philosophy Department, Stanford
University

15. Chellas B (1992) Time and modality in the logic of agency. Studia Logica 51:485–517
16. Ciuni R (2010) From achievement stit to metric possible choices, logica 2009 yearbook. College

Publications, London, pp 33–46
17. Ciuni R, Mastop R (2009) Attributing distributed responsibility in stit logic. In: Xiandong H,

Horty J, Pacuit E (eds) Logic rationality, interaction (lecture notes in computer science, vol
5834. Springer, Berlin, pp 66–75

18. Ciuni R, Zanardo A (2010) Completeness of a branching-time logic with possible choices.
Studia Logica 96(3):393–420

19. Herzig A, Lorini E (2010) A dynamic logic of agency I: STIT, abilities and powers. J Logic
Lang Inform19(1):89–121

20. Herzig A, Schwarzentruber F (2008) Properties of logics for individual and group agency. In:
Areces C, Goldblatt R (eds) Advances in modal logic, vol VII. College Publications, London,
pp 133–149

21. Hirsch R, Hodkinson I, Kurucz A (2002) On modal logics between K×K×K and S5×S5×S5.
J Symbol Logic 67(1):221–234

22. Horty J (1996) Agency and obligation. Synthese 108(2):269–307
23. Horty J (2001) Agency and deontic logic. Oxford University Press, Oxford
24. Horty J, Belnap N (1995) The deliberative stit: a study of action, omission, and obligation. J

Philos Logic 24(6):583–644
25. Kooi B, Tamminga A (2008) Moral conflicts between groups of agents. J Philos Logic 37:1–21
26. von Kutschera F (1986) Bewirken. Erkenntnis 24(3):253–281
27. Lorini E (2013) Temporal STIT logic and its application to normative reasoning. J Appl Non-

Class Logics 23(4):372–399
28. Tamminga A (2013) Deontic logic for strategic games. Erkenntnis 78(1):183–200
29. Turrini P (2012) Agreements as norms. In: Ågotnes T, Broersen J, Elgesem D (eds) DEON

2012, LNAI 7393. Springer, Berlin, pp 31–45
30. Xu M (1994) Decidability of deliberative stit theories with multiple agents. In: Gabbay D,

Ohlbach H (eds) Proceedings of the first international conference in temporal logic. Springer,
Berlin, pp 332–348

31. Xu M (1998) Axioms for deliberative stit. J Philos Logic 27:505–552
32. Xu M (2010) Combinations of STIT and actions. J Logic Lang Inform 19(4):485–503
33. Zanardo A (2013) Indistinguishability, choices and logics of agency. Studia Logica 101(6):

1215–1236



Chapter 24
The Logic of Best Actions from a Deontic
Perspective

Olivier Roy, Albert J. J. Anglberger and Norbert Gratzl

Abstract This chapter re-visits Johan van Benthem’s proposal to study the logic of
“best actions” in games. After introducing the main ideas behind this proposal, this
chapter makes three general arguments. First, we argue that the logic of best action
has a natural deontic rider. Second, that this deontic perspective on the logic of best
action opens the door to fruitful contributions from deontic logic to the normative
foundation of solution concepts in game theory. Third, we argue that the deontic
logic of solution concepts in games takes a specific form, which we call “obligation
as weakest permission”. We present some salient features of that logic, and conclude
with remarks about how to apply it to specific understandings of best actions in
games.

24.1 Logic of Best Actions in Games

The term “logic of best action” was coined by Johan van Benthem in a number of
recent papers at the intersection of modal logic and game theory [7–10]. Roughly,
the goal is to study the logical properties of actions and strategies that are deemed
“best” by some solution concepts for games, for instance backward induction or
equilibrium play.
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This idea is part of a broader endeavor of looking at “intelligent interaction”
from a logical point of view. Indeed, the classical components of a game, actions,
preferences and beliefs, have been the subject of extensive logical investigations.
Preference logic has a long history. Its connection to game-theoretic concepts has
gained considerable momentum in recent years [11, 21]. The logical, combinatoric
and computational properties of actions and strategies have also attracted the attention
of logicians [5, 12, 20, 34]. And last but not least, the so-called epistemic programme
in game theory has brought to the fore the importance of knowledge and beliefs in
games, and has a long-standing relationship with epistemic logic [9, 18].

Inasmuch as these classical components are in themselves interesting for logicians,
put together they articulate solution concepts, which raise logical questions of their
own. A solution concept is a proposal as to which action the player will or should
choose in specific game-playing situations. Nash equilibrium is probably the most
well-known, and also the most widely used solution concept in game theory. This
is surely not the only solution concept on the market, though, and may not be the
most interesting for logicians. Recursive solutions, involving the iteration of a given
procedure, also raise many interesting logical questions, for instance regarding the
existence, nature and complexity of fixed-points of such procedures. We will look at
the example of backward induction shortly, but the recent interest in the dynamics
of iterated strict and weak dominance is also a case at hand [1, 6, 31].

There is by now a large literature on logical characterizations of solution concepts.
We discuss a number of recent contributions in what follows. Our running exam-
ple will be the logical characterization of backward induction. We use that example
because it brings out all the paradigmatic elements of recent logical approaches to
game-theoretic solution concepts. With this in place we then briefly survey some
other logical characterizations of other solution concepts. The goal here is not to sur-
vey the field thoroughly. This would be beyond the scope of this chapter. Rather, we
want to highlight the distinction between these logical characterizations and what we
call the more minimalistic approach of the logic of best action. The reader interested
in a thorough survey of logical characterizations of solution concepts can look at
van der Hoek and Pauly [22] for an overview of the first wave of such characteriza-
tions, and the work and references in [12, 28, 38] for a good idea of subsequent takes.

24.1.1 Solution Concepts in Rich Logical Languages:
The Case of Backward Induction

In this section we present van Benthem and Gheerbrant’s [10] logical characterization
of backward induction. This will allow us to highlight the key elements of what we call
a characterization in rich logical languages, and to contrast it later on with the more
minimalistic approach of the logic of best action. Since we use backward induction
as an illustrative example, we will not give precise definitions of this algorithm, nor
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n0: Ann

n1: Bob

n2: Ann

n7: (4,4)n6: (5,2)

s3 p3

n5: (0,3)

s2 p2

n4: (1,1)

s1 p1

Fig. 24.1 An extensive game. Each non-terminal node represents a choice point for one of the
players. Ann moves first (n0). If she passes then Bob is to play (n1), followed by Ann if he passes as
well (n2). The actions available at each node are the edges branching to other nodes. Each terminal
node is associated with a payoff (x, y) for each player, with x and y respectively Ann’s and Bob’s

of the underlying game-theoretical notions like game trees, strategies and reachable
nodes. The reader interested in these can consult [32] for the details.

Backward induction is an algorithm that computes a solution concept for games
in extensive forms called sub-game perfect equilibrium. Games in extensive form
are often represented as trees, for instance in Fig. 24.1. They explicitly encode the
temporal structure of the play. For simplicity we only consider here games where no
two terminal nodes give equal payoff for a player. This can be lifted, at the cost of
somewhat complicating the backward induction algorithm. See e.g. [10].

A sub-game perfect equilibrium is a combination of strategies, one for each player,
in which at any node in the tree, following that strategy never leads to choosing a
strategy that is strictly dominated on the assumption that the others are following
their sub-game perfect equilibrium strategy subsequently. In Fig. 24.1, (s1, s3) and s2
are, respectively, Ann’s and Bob’s unique sub-game perfect equilibrium strategies.
By contrast, the profile (s1, p3) and s2 is also an equilibrium of this game, but it is
not sub-game perfect. At n2 Ann chooses p3 even though she could have done better
by going for s3 instead.

The backward induction algorithm computes this solution by inductively exclud-
ing actions from the set of potentially available ones. It starts by considering the set
S0 of all actions as available. This is our basic case. In our example this is simply the
set of all si and pi for i = 1, 2 or 3. The inductive step proceeds as follows. Suppose
Sk is defined. Then Sk+1 is Sk minus all actions that are strictly dominated by another
action in Sk . An action in Sk , i.e. a move from node n to n′, is strictly dominated
if there is another action, from n to n′′, also in Sk such that all terminal nodes that
are reachable from n′′ by actions still available give a higher payoff for the player
who is to play at n than all terminal nodes that are reachable from n′. In our exam-
ple, as is often the case, the move from S0 to S1, i.e. the first round of elimination,
only removes actions that lead directly to terminal nodes. Here only p3, because it
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gives only 4 to Ann, while she gets 5 by playing s3. No other action is strictly dom-
inated. The key point is that this makes n7 no more reachable at subsequent steps.
In particular, p2 becomes then strictly dominated in S1, because n6 is the only
terminal node reachable from n2 in that restricted set of actions, and this gives Bob
2, as opposed to the 3 he would get by playing s2. By the same reasoning p1 is elim-
inated at the third round, reaching {s1, s2, s3}, where no action is strictly dominated,
and which is also the sub-game perfect equilibrium of that game. There is of course
an epistemic story to tell about this procedure, in terms of rationality and common
belief in rationality at future nodes [2, 3]. We leave that aside for now.

In extensive games of perfect information, backward induction and sub-game
perfect equilibrium are two sides of the same coin. The solution concept singles out
a subset of the set of possible actions. In relational terms, closer to a modal logician’s
perspective on the matter, it identifies a sub-relation of the move/edge relation in the
game tree. But this sub-relation is precisely the one reached when the backward
induction algorithm terminates or, in other words, it is the fixed point of recursively
ruling out sub-game dominated moves.

This is the starting point of van Benthem and Gheerbrant’s [10] logical analysis
of backward induction. Logically speaking, a transition from node n to move m is in
part of a player’s subgame-perfect equilibrium strategy if and only if it satisfies the
formula (BI-LFP(FO)) below.

νS·(move(n,m) ∧∧
i
(turni (n)→ ∀z(move(n, z)

→ ∃u, v(end(u) ∧ end(v) ∧ S∗(y, v) ∧ S∗(y, v) ∧ πi (u) ≤ πi (v)))))
(BI-LFP(FO))

This formula belongs to LFP(FO), i.e. First-Order Logic augmented with Fixed-Point
operators, here ν, for a largest fixed point.1 Its essential feature is that the computation
of this fixed point follows precisely (as a theorem) the backward induction algorithm
just presented. Starting with the full set of actions it moves to more and more precise
approximations until it stops at the set of actions that precisely corresponds to the
sub-game perfect equilibrium strategy.

This characterization of backward induction in first-order logic with fixed-points
takes many forms when one moves to propositional modal languages. For instance,
in one containing operators [move] and [≤i ] for the move and player i’s preference
relations, the fixed-point or algorithmic counterpart of sub-game perfect equilibrium
becomes a confluence property. It is the unique strategy profile/sub-relation of the
move relation σ that satisfies (BI-ML) below. The original result is from [13]. The
correspondance with BI-LFP(FO) is proved in [10].

(turni ∧ 〈σ ∗〉(end ∧ p))→ [move]〈σ ∗〉(end ∧ 〈≤i 〉p) (BI-ML)

1 The relation S in this formula is the sub-relation of move that will correspond to sub-game perfect
equilibrium. It is a one-step relation in the tree, with its usual reflexive-transitive closure S∗. The
other predicates used in this formula are meant to identify which player is to choose at a given node
(turni ), whether a node is terminal (end) and to make payoff comparisons.
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Alternatively, one can capture sub-game perfect equilibrium in propositional lan-
guages with dynamic operators, modeling the backward induction process in terms of
absolute deletion of strategies or of forming more and more precise, but
nonetheless revisable expectations about the player’s choices. Details on both point
of views, and more, can be found in [10, 19].

24.1.2 Solution Concepts in Rich Logical Languages:
More Examples and General Perspective

The crucial point about the characterizations of backward induction that we have
just presented is that they embed the logic of that solution concept in a language
expressive enough to talk about its constituents, namely actions, outcomes or ter-
minal nodes, and preferences. By “the logic of that solution concept” we mean the
valid formulas containing explicit operators for the sub-game perfect equilibrium
actions. Such validities are but a small fragment of the logic within which the char-
acterizations above are developed. For instance, the first-order fixed point logic in
which BI-LFP(FO) is defined, also contains validities regarding the move relation
(S), preference or utility comparisons (≤), and the status of the nodes (turni (n),
end(u)). For instance, the logic contains the following valid formula, expressing the
fact that no player is to play at terminal nodes:

∀x(
end(x)↔ ¬(

∨

i∈A
turni (x)

))

Most contemporary logical characterizations of solution concepts for games fol-
low this methodology, i.e. they embed the logic of the solution concept at hand in
rich logical languages. A good example of that is the deontic logic for strategic
games developed by Kooi and Tamminga [27, 38]. This logic falls in the broad
family of stit-based deontic systems, where the notion of agency occupies a central
place [4, 23]. In Horty’s work [23, 24], for instance, the non-deontic fragment of
the logical language crucially contains modalities for actions and/or agency. These
are the well-known stit operators, describing what the agents can achieve at each
moment. The deontic operators themselves are interpreted on so-called consequen-
tialist models, where the possible outcomes of one’s actions are comparable along
a given scale, ordinal or quantitative. In this framework deontic operators are thus
much akin to modalities taking about preferences or relative goodness, or a specific
pattern thereof, for instance strict dominance. Kooi and Tamminga [27] have shown
that this combination of agentive and preferential modalities can be fruitfully brought
to the analysis of game-theoretic scenarios, and especially to understand better the
structure of conflicting obligations that arise in cases like the Prisonners’ Dilemma.
In subsequent work Tamminga [38] has shown that the resulting logic is expressive
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enough to define Nash equilibria in strategic games. Analogous results, although not
cast in the framework of stit theory, can be found in [11, 22]. See also [30] for quite
an original extension of the stit approach to obligations in games, and [28] for a
characterization of solution concepts also using epistemic tools.

For the present chapter the important point is the following: these constitute suc-
cessful instances of logical characterizations of game-theoretic solution concepts—
for instance Nash equilibrium—within a rich modal language—for instance one
capable of expressing notions of preferences, dominance, and agency.

24.1.3 Solution Concepts in Minimalistic Logical Languages:
The Logic of Best Action

These characterizations in richer languages describe indirectly the core logical and
computational properties of the solution concepts themselves.2 Once one has shown
that, say, sub-game perfect equilibrium is definable in a language that talks about
actions and preferences, at the axiomatic level one can forget about this solution con-
cept and focus entirely on the core principles for the action and preference fragments.
The resulting proof system does contain validities about sub-game perfect equilib-
rium, but to recover them one needs to identify instances of usually quite complex
formulas provided by the characterization results. This is an exercise that, to our
knowledge, has rarely been engaged in. The situation is similar on the computational
side. The complexity of the satisfiability and the model checking problems for these
rich logics provide upper and lower bounds for the specific cases involving solution
concepts. To be sure, these can be informative. But they do not answer the question
of how difficult these specific cases are.

There are thus good logical and computational reasons to look at “best actions in
games” in a minimalistic logical environment, that is to study the logic of what is
deemed “best” according to given solution concepts, in isolation from the fine-grained
apparatus used to talk about preferences, actions and beliefs. At the logical level, such
logic would highlight the core validities involving these solution concepts. We indeed
saw that, in extensive games, solution concepts can be seen as sub-relations of the
move relation.3 From that point of view, the question of the “core logical validities”
is one of identifying, if possible, the complete logic of that specific sub-relation. To
go back to the example of sub-game perfect equilibrium, the question is whether
one can completely axiomatize the set of validities pertaining to operators [B I ]
interpreted on that specific sub-relation of the total move relation, as opposed to
embedding them in richer logical systems. Doing this also promises computational
insights on the difficulty of checking for consistency of statements about, say, sub-

2 This is not to say that they are not illuminating, quite the contrary. A good example is the
characterizations in [11, 21], that highlight the ceteris paribus character of equilibrium solutions.
3 The same holds mutatis mutandis for games in strategic form.
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game perfect equilibria (satisfiability), or of computing equilibria in given games
(model checking).

But beyond that, there is also a general, conceptual motivation for investigating the
logic of best actions in games coming from the normative interpretation of solution
concepts, and more generally of game theory. Viewed this way, the “logic of best
action” programme is a natural addition to deontic logic. This is what we argue now.

24.2 Logics of Best Action as Deontic Logics

We have already mentioned that solution concepts can be given either a descriptive or
a normative interpretation. According to the first, to say that action a of a given game
is compatible with a given solution concept is to say that this is what players will
or might play in that game. It is well-known that solution concepts fare rather badly
under this interpretation [17]. According to the normative interpretation, solution
concepts are rather recommendations about what players should or may choose in
a given game. Alternatively, they can be seen as descriptions of what ideal agents
would/might choose.

Under the normative interpretation, solution concepts thus make recommenda-
tions to the players. They circumscribe the set of actions that should or may be
played. In the game in Fig. 24.1, for instance, sub-game perfect equilibrium, in its
normative interpretation, recommends Ann to choose s1 at the beginning of the game,
Bob to choose s2 if he is to play, and Ann again to choose s3 if n3 is reached. Of
course, it is controversial whether these are normatively valid recommendations,
especially given the fact that in this game they lead to a non-pareto optimal outcome.
We come back to that point in a moment.

Once one makes this move to the normative interpretation of solution concepts,
operators for “best action” get a natural deontic reading. Under their usual inter-
pretation, “best action” operators are normal modal operators interpreted on the
sub-relation of the move relation that corresponds to a given solution concept:

(Best) [best]ϕ is true at a node/state s whenever all actions available at s
compatible with the solution concept at hand lead to ϕ-state.

Under the normative interpretation, actions singled out by a given solution concept
are, roughly, actions that the players should choose. Substituting this in the formu-
lation above we get:

(Best-Should) [best]ϕ is true at a node/state s in a given tree whenever all actions
that should be taken at s lead to ϕ-nodes.
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Best action operators, from that point of view, are thus describing what the players
should do at a given node in the tree. They are deontic operators. This congeniality
with deontic formulas is even more salient if we think of solution concepts as singling
out the set of actions A∗ that would be played in ideal scenarios. Our clause above
then becomes essentially the classical Kripke semantics for deontic operators [29].

(Best-DEON) [best]ϕ is true at a node/state s in a given tree whenever only
ϕ-nodes/states are reachable by actions in the ideal set A∗

Studying the logic of best action generated by a given solution concept, from that
perspective, is entering the deontic arena, and this raises interesting logical questions.
How do such logics compare with existing deontic systems? Are these logics of best
action prone to the known deontic paradoxes, by now the canonical rite of passage
for deontic systems? These are questions that we come back to later on.

24.2.1 Arguments for a Deontic Perspective
on the Logic of Best Actions

At this point the reader might legitimately wonder why one should look at the logic
of best action from a deontic perspective. In the previous section we have argued
that this perspective is natural once one takes the normative interpretation of solution
concepts. But beyond naturalness, what kind of concrete contributions can one expect
from this move to the deontic arena? We argue now that it can contribute to the
philosophical debate concerning the normative status of solution concepts for games
in two ways. The deontic logic of best action can be used to analyze normative
conflicts that bear on agents in games, and it can be used to check for internal
consistency and plausibility of the system of recommendations that stem from given
solution concepts.

Let us first emphasize the classical difficulty faced by the normative interpretation
of solution concepts. Look again at Fig. 24.1. The sub-game perfect equilibrium
profile is not Pareto optimal. There are other combinations of strategies, for instance
the one where both Ann and Bob always pass, that yield a strictly better payoff for
both of them. In view of this, one may ask on what ground should the players, or
what kind of reasons are there for them to play their sub-game perfect equilibrium.

The classical debate on that question usually opposes those who think that solution
concepts like sub-game equilibrium yield the intuitively wrong recommendations in
such cases to those who resort to classical decision-theoretic foundations, possibly
supplemented by some epistemic conditions. The former think that games like the
one in Fig. 24.1 constitute a decisive counter-example. It seems clear to them that
players should not, or at the very least that it is not the case that they should play
according to sub-game perfect equilibrium in that game. What they should do is to
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reach a Pareto optimal outcome. So, they conclude, sub-game perfect equilibrium is
not normative [16].

Recent work in the so-called epistemic programme in game theory has pointed
out, however, that in extensive games with perfect information sub-game perfect
equilibrium is what utility maximizers would play under the common belief of future
rationality [2, 3]. But maximization of expected utility, they argue, has an independent
normative appeal. We know from classical representation theorems from Ramsey,
de Finetti and Savage4 that players who do not maximize expected utility will make
incoherent decisions. If one agrees that such incoherence should be avoided then,
at least under the common belief that the players will maximize expected utility
at future nodes, playing according to this solution concept is what players should
do [36].

In our view, this debate is a symptom of a deeper normative conflict, which can
be fruitfully analyzed in deontic logic. The epistemic or decision-theoretic view on
games emphasizes the normative appeal of maximization of expected utility. From
an individual point of view, there are good reasons, namely avoiding incoherence,
to maximize expected payoffs. Pareto optimality has a more collective character. It
enjoins promoting everyone’s goodness when this can be done without requiring any
one individual to sacrifice her own. Games like the one in Fig. 24.1 are ones where
these two kinds of reason, individual and general, speak in favor of incompatible
actions. This is a normative conflict.

Deontic logicians have proposed a great number of approaches to deal with such
conflicts. To take a recent example, consider Horty’s “conflict account” [25]. This
view tolerates conflicting obligations. In certain cases, perhaps like Ann’s in the
game of Fig. 24.1, it states that the conflict is the correct description of the normative
situation in which the agent is in. At the first node of the game in Fig. 24.1, Ann ought
to skip (not pass) at n0, and she ought to pass. It does not follow, still under Horty’s
account, that Ann has the contradictory obligation to pass and not to pass. Obliga-
tions do not “agglomerate” when the result would be inconsistent. Horty argues in
fact that the account he proposes gives just the right balance between tolerance of
conflicts and preservation of consistency, and that it furthermore meets many of the
traditional objections that have been raised against the possibility of conflict between
obligations.

We will not present the details of this view here, nor do we argue that it gives
the correct answer to the question of how to balance individual and collective con-
siderations in games. For now it is enough to observe that there are sophisticated
accounts of how to deal with normative conflicts in the deontic logic literature.
These accounts, given the bridge provided by the logic of best action viewed from a
deontic perspective, can yield fresh insights into a classical debate at the foundation
of the theory of games. Instead of viewing Ann’s cases in Fig. 24.1 as epitomizing
the debate between individualist and collectivist views on rational play in games,
one should rather acknowledge that Ann is facing a normative conflict, and try to
propose solutions that take that fact into account.

4 Cf. [26] for a general presentation.
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The deontic perspective on the logic of best action can also be used to study the
internal consistency and plausibility of specific systems of recommendations that
given solution concepts give rise to. Deontic conflicts arise when different normative
sources generate opposing reasons for action. But even granting that a single solution
concept carries genuine normative force, i.e. that the recommendations it makes are
plausible, it can still happen that, as a whole, the normative system they give rise
to is counter-intuitive. The classical deontic paradoxes [29] are a case in point. Are
the recommendations stemming from, say, sub-game perfect equilibrium immune to
such counter-intuitive consequences? We will argue below that there are very general
reasons to think that this is not the case. If this argument is correct, deontic systems
of rational recommendations in games meet an important standard on the deontic
logic side.

Systems of norms can also give rise to inconsistent sets of recommendations in
specific situations. Admissibility5 and common knowledge thereof is a good illus-
tration. There are games where it makes recommendations to the players that are
individually perfectly intuitive, yet mutually inconsistent [37]. Such cases, we think,
can cast doubts on the normative plausibility of this solution concept. These inconsis-
tencies, clearly highlighted by a deontic analysis, are as important for the normative
foundation of solution concepts as those that arise from alleged counter-intuitive
examples like Fig. 24.1 for sub-game perfect equilibrium.

We are thus advocating here a systemic view of the normative interpretation of
solution concepts, one in which the logic of best action, under a deontic interpretation,
plays a key role. Of course to do this one needs to be more precise about how to
extract deontic operators from best action formulas. Note that Best-DEON leaves
us full flexibility in that respect. Best actions might be seen as obligatory, or just as
well as permitted. We will argue now for a specific way to extract deontic operators
from best actions, one that moves us away from the “normal” setting suggested by
Best-DEON above.

24.3 The Specific Structure of Obligations and Permissions
from Best Actions

Taking a deontic perspective on the logic of best action in games can thus yield
important contributions in the debate on the normative status of solution concepts.
In this section we turn to the deontic operators that would stem from this logic, and
argue that they should be non-normal.

In many cases there will be more than one strategy profile that is deemed best
according to a given solution concept. In pure coordination games (Fig. 24.2), for
instance, neither strict nor weak dominance rule out any pure strategies. All actions

5 That is not choosing weakly dominated strategies or, equivalently, maximizing expected utility
under cautious beliefs. Cf. [33] for this equivalence.
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Ann

Bob
L     R

T 1 , 1 0 , 0
B 0 , 0 1 , 1

Fig. 24.2 A coordination game

for either player are “best”. In technical terms, the “best” sub-relation of the move
relation is simply the whole move relation.

Two conclusions about the structure of obligations and permissions should be
drawn from cases where there is not a unique best solution. First, the players should,
or ought to pick a strategy among those that are deemed best according to the solution
concept at hand. For one thing, they ought not to play strategies that fall outside the
set of best ones. But strategies are mutually exclusive alternatives. Each player can
only play one of them. So it makes no sense to think of the players as being required
to choose all or even many “best” strategies. This would be a blatant violation of the
ought-can principle. All they ought to choose is a best action.

Second, there is no further ground, as far as “best action” is concerned, to restrict
further the set of actions among which the players are rationally required to choose.
To be sure, other considerations, for instance morality or prudence, could be used
as additional “filters” for the set of actions that are deemed best [15]. But purely in
terms of the solution concept at hand, no best action can be excluded from the set
of those among which the players should choose. In particular, it is not the case that
the players ought to play one specific action among the best ones.

So as far as best actions are concerned, it is plausible to think that all the players
ought to do is play one of them. They ought not to choose outside the set of what is
best, but they are not required to choose any specific best action either.

What about permissions from best actions? The case of multiple best actions
yields the dual picture, although not the dual operator, as we shall see presently. By
the dual picture we mean the following. When there are multiple best actions, the
players may play any of them, but no other. These and only these are individually
permitted, although in the general case none is obligatory. Putting all this together
we get:

(O/P-Best) A player ought to play a best action. All specific best actions are
permitted, although none is obligatory.

This understanding of obligation and permissions stemming from best actions in
games gives rise to what we called elsewhere “obligations as weakest permissions”
[35]. Under (O/P-Best) there is a unique set of obligated actions, namely the set of
best actions itself. Viewing sets of actions as action types, “best” is the unique type
of action an agent ought to perform. No logically weaker action type, i.e. one that
is implied by being a “best” action, is obligatory, nor is any action type inconsistent
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with and/or independent of being a best action. Agents ought not, after all, to perform
actions that are not best. But no logically stronger action type is obligatory either, at
least as far as the criterion for best action alone is concerned. These are all permitted,
and only those are permitted. And it seems plausible that every action type the
extension of which is a combination/union of best actions should also be permitted,
with the whole set of best actions as upper bound.

So we are thus advocating a very specific reading of obligations and permissions
stemming from best action recommendations in games. Under this reading the unique
action type/set of actions that is obligatory is the one singled out by the solution
concept one is working with. To go back to the example of backward induction, what
the agents ought to do, given that solution concept, is to play a strategy that is part of
a sub-game perfect equilibrium. Any such strategy is permitted. But in cases where
there are many of them, none is obligatory. The only thing that the agent ought to do
is to pick one.

Obligations, in this reading, become the weakest permitted action type available
to the agents. “Weakest” here means logically weakest, in the sense that any other
permitted action type entails it. If the trivial or tautological action type is permitted,
then this will always automatically be the only obligated one. So the logic of such
obligations and permission, which we now turn to, cannot be normal, in the technical
sense, on pain of trivialization.

24.4 The Logic of Obligation as Weakest Permission:
An Overview

In this section we present the logical system that results from taking obligations as
weakest permission. We argued in the previous section that this reading of deontic
operators is particularly well-suited for rational recommendations in games, i.e. for
recommendations stemming from solution concepts.

Before we look at the technical details it should be emphasized that the argument
we gave in the last section applies to any system of obligations and permissions
stemming from solution concepts. It is not tied to a specific one, for instance sub-
game perfect equilibrium in the tree or Nash equilibrium in the matrix. It applies just
as well to recommendations to each individual player—for instance, “Ann should
maximize her expected utility”—as to recommendations to groups of players—for
instance “Ann and Bob should achieve a Pareto-optimal outcome”. In both cases, if
the argument above is correct, obligations stemming from solution concepts will be
weakest permissions.

For that reason we present the deontic logic of obligation as weakest permission
in an abstract way, without mention of the agent(s) to whom these normative notions
apply, or the specific source from which they stem. Our deontic operators are not
“indexed” by specific agents and/or solution concepts. This is not to say that we
think such specific cases are not interesting. Quite the contrary. In the next section
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and in the conclusion of this chapter we do give some more specific examples of how
this abstract logic can be instantiated. But we think that already at this level some
interesting logical principles arise.

The language LD we work with is a usual propositional deontic logic extended
with an alethic modality.

Definition 24.1 Let p be an element of a given, countable set of atomic propositions.
Then LD is defined as follows:

ϕ := p | ¬ϕ | ϕ ∧ ϕ | ♦ϕ | Pϕ | Oϕ

Formulas of the form Oϕ and Pϕ read, respectively, “ϕ is obligatory” and “ϕ is
permitted”. ♦ϕ is the alethic modality, to be read “it is possible for the agent to
choose a ϕ-action”, with �ϕ its usual dual operator.

In this language both O and P are primitive operators. The reason for this is
that under the interpretation of obligation and permissions we want to give, the two
notions turn out not to be duals.

When obligations are weakest permissions, on pain of trivialization the P operator
cannot be a normal modality.6 Recall that we argued that, from the perspective of
best action, an action (type) is obligatory just in cases where it is permitted and no
logically weaker proposition is permitted. But if P was normal then by necessitation
P would be a theorem, with  being any tautology.7 Since there is no logically
weaker proposition than , the tautology would be the only proposition that is ever
obligatory. Hardly an interesting deontic system.

We are interpreting the deontic modalities using neighborhood semantics, by now
the normal way to abnormality.

Definition 24.2 A frame F is a quadruple 〈H, Alt, n P , nO 〉 where:

• H is a set of actions;
• Alt is an equivalence relation on H .
• n P and nO are neighborhood functions assigning a set of sets of actions to each

element of H .

H is the set of all possible actions the agents could perform. We will see a concrete
example of that in the next section. Alt partitions the set of all possible actions
into different decision problems. The deontic modalities are interpreted using two
neighbourhood functions n P and nO .

Definition 24.3 Let V be a valuation function for the atomic propositions in LD .
Then for the propositions and boolean connectives the truth conditions are the usual.
For modal formulas truth is defined as follows:

6 A normal modal operator is one that satisfies the K axiom, i.e. that distributes over material
implication, and the rule of necessitation. See [14] for details.
7 We are here taking P as a “box”, i.e. not as dual of O , which is in line with the interpretation
we want to give to the two notions. But if one insists on them being dual, then P comes out as a
theorem whenever one assumes that obligations are always consistent.
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• M, h |= ♦ϕ iff there is an h′ such that Alt (h, h′) and M, h′ |= ϕ.
• M, h |= Pϕ iff ||ϕ|| ∈ n P (h).
• M, h |= Oϕ iff ||ϕ|| ∈ nO(h).

We thus evaluate formulas of LD at specific actions (h). This might require the reader
to suspend some well-engrained habits regarding truth as states/possible worlds in
modal logic. To help fix intuitions one should keep in mind the standard translation of
modal formulas into first-order ones [14]. Under this translation atomic propositions
become (unary) predicates of objects. Here the objects are actions, and the predicates
(p, q,...) are “true at an action” whenever that action has that property (according to
the valuation). This idea extends easily to the conjunctions and negations. But this
is not to say that the notion of a state or a situation the agent is in has completely
disappeared from this interpretation. As mentioned earlier, one can view equivalence
classes under Alt as a description of the decision problem the agent is facing, or the
situation she is in.

The intended interpretation of obligations as weakest permissions translates into
constraints on the neighborhood function. For P we remain very liberal. We only
impose the following, which ensures that obligations are well-defined, at least in the
finite case.

If X,Y ∈ n P (h) then X ∪ Y ∈ n P (h) (Consistency)

The real action happens at the level of obligations, which are required to be weakest
permissions. To be precise, we require that obligations be the weakest feasible per-
missions. That is, obligations are the logically weakest types of action that can be
performed in a given decision problem, which in our case corresponds to a cell of
the partition induced by Alt . At the level of frames this translates into the following
two conditions.

If X ∈ nO(h) then X ∈ n P (h) (Ought-Perm)

If X ∈ nO(h) then for all Y ∈ n P (h),Y ∩ Alt[h] ⊆ X ∩ Alt[h] (Weakest-Perm)

The first condition simply states that obligated actions are permitted. The second is
the key constraint. It makes an action type obligatory only if no weaker action type
is both permitted and feasible. This is the reading of obligation we argued earlier
makes most sense when looking at the recommendations stemming from best actions
in games. We finally impose the classical “ought implies can” requirement,

If X ∈ nO(h) then there is an h′ ∈ X such that Alt (h, h′) (Ought-Can)

In what follows we work with what we call “uniform” frames. These are frames
where obligations and permissions remain constant within situations or decision
problems, i.e. each equivalence class according to Alt . This is certainly the case
from obligations stemming from best actions. In each decision problem there is a
single set of permitted actions, and a single action type that is obligatory, namely the
“best” ones.

For all h, h′ ∈ H if Alt (h, h′) then n P (h) = n P (h
′) and nO(h) = nO(h

′)
(Uniform)
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Table 24.1 The axiom system for deontic frames. Here D is either O or P

All propositional tautologies and S5 for ♦
For P:

(Union-closure) (Pϕ ∧ Pψ)→ P(ψ ∨ ϕ)
Interaction axioms

(Ought-Perm) Oϕ→ Pϕ
(Ought-Can) Oϕ→ ♦ϕ
(Weakest-Perm) Oϕ→ (Pψ → �(ψ → ϕ))

(UniformityD) Dϕ→ �(Dϕ)
Modus Ponens, (Nec) for ♦ and the following: (RD) From ϕ ↔ ψ infer Dϕ ↔ Dψ

Definition 24.4 A deontic frame is a frame that satisfies (Consistency),
(Ought-Perm), (Weakest-Perm), (Ought-Can) and (Uniform).

From now on when we talk about frames we always mean deontic frames.
Validities in deontic frames already unveil interesting principles relating deontic

notions to each other and with alethic modalities.

Theorem 24.1 The axioms and rules in Table 24.1 are sound and complete with
respect to the class of deontic frames.

The proof of this theorem is a standard completeness proof for neighborhood system.
All the axioms are canonical for their frame condition. The key one is of course
Weekest-Perm, which precisely captures the homonymous frame condition. The
reader can consult [35] for details. It should be emphasized again here that this
is a general logic for obligation as weakest permission. We argued above that recom-
mendations from solution concepts should take this form. But of course the specific
logic of such solution concepts will be much richer, including additional princi-
ples capturing the behavior of the understanding of “best” at hand. The system just
presented is simple because it is abstract.

The logical system shows its specificity in the formulas that it does not validate.
For one thing, the usual duality between O and P , i.e. Oϕ ↔ ¬P¬ϕ is not valid
on that class of frames. The right-to-left direction obviously fails. That ¬ϕ is not
permitted does not imply at all that ϕ is permitted, which is a pre-requisite for it to be
obligatory. Failures of the converse direction are slightly more subtle, as they always
involve permitted actions that are not available in the current decision problem.
Indeed, one can show that the left-to-right direction of the dual is valid if and only if
all permitted actions in a given decision problem are feasible alternatives. There is a
similar interplay between alethic and deontic notions when one looks at the classical
K axiom.

O(ϕ→ ψ)→ (Oϕ→ Oψ) (K)

This formula is not valid in general, but it characterizes the class of deontic frames
where Alt is the universal relation, i.e. where all possible actions are feasible alter-
natives, or the “root” of the tree in extensive games.
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Finally, it should be noted that this logic allows for counter-examples to three of
the most well-known deontic paradoxes: the contrary to duty paradox (first formula
below), Ross’s paradox (second formula below) and the good samaritan paradox
(third formula below).

Fact 24.1 None of the following formulae are valid:

• O¬ϕ→ O(ϕ→ ψ)

• Oϕ→ O(ϕ ∨ ψ)
• (Oϕ ∧�(ϕ→ ψ))→ Pψ

We provide a counter-example to the first formula below. The other can be found in
[35]. For now is it important to remark the following. Avoiding such paradoxes is
usually the main motivation for moving to non-normal deontic logic. But this is not
the case here. Our motivation is more basic: A normal deontic logic for obligations
and permissions, under the present interpretation, would trivialize the logic, making
only tautologies obligatory. The understanding of obligations that we propose here
does avoid some of the well-known paradoxes, but this is a welcome consequence
of the fact that we are forced into non-normality, rather than an explanation for it.

This avoidance of deontic paradoxes is also good news from the perspective of the
normative interpretation of solution concepts given above. We argued above that all
recommendations from best actions in games are best seen as giving rise to a system
of norms where obligations are weakest permissions. Inasmuch as this argument
is correct, none of these systems of recommendations are likely to fall within the
classical deontic paradoxes.

24.4.1 Best Actions in Games as Weakest Permissions

We now apply the idea of reading obligations from best actions as weakest permission
to the specific case of recommendations from sub-game perfect equilibrium in the
game pictured in Fig. 24.1. The driving idea of this implementation is to take this
solution concept to issue negative prescriptions. In this case a dominated action, and
more generally a strategy that is not a sub-game perfect equilibrium, is one that one
ought not to play.

Let HAnn be the set of all actions for Ann in Fig. 24.1, i.e. HAnn = {si , pi } for
i ∈ {1, 3}. Suppose we are considering the obligations and permissions that Ann has
at the root of the tree (n0), i.e. where all of her actions are still available, so that Alt
is the universal relation. At that point we say that only s1 and s3 are compatible with
sub-game perfect equilibrium. So Ann ought not to play anything else. We thus set,
for all ai ∈ HAnn , n Ann

O (ai ) = {{s1, s3}}. The set of permitted action types n Ann
P (ai )

will then be defined as the downward closure of n Ann
O (ai ), excluding the impossible

(empty) action: n Ann
p (ai ) = {{s1}, {s3}, {s1, s3}}. This makes, in particular, every

individual “best” action permitted, but none of them obligatory. This is a deontic



24 The Logic of Best Actions from a Deontic Perspective 673

frame. It is uniform and it satisfies the ought-can principle as well consistency and
Weakest-Perm.

General properties of the logic of obligations as weakest permission can be seen
to hold in this example too. The right-to-left direction of the dual, for instance, is not
valid in this deontic frame. Suppose our language contains atomic propositions for
the specific actions of Ann (si , pi for i = 1, 3), and take a model based on the frame
above, with the natural valuation for these atomic propositions. In this model ¬p3,
the proposition expressing the fact that Ann is not passing at the third node, is true
at p1, s1 and s3. The set of these actions is not in n Ann

p (ai ) for any ai . So ¬PAnn¬p3

is valid in that model. But since {p3} �∈ n Ann
O (ai ) = {{s1, s3}}, we don’t get OAnn p3

either.
The contrary to duty paradox, O¬ϕ→ O(ϕ→ ψ), also fails here. Take the same

model as in the previous paragraph. Ann ought not to pass: OAnn¬(p1∨ p3) is valid
in that model. But it is not the case that Ann ought to make following implication
true: (p1 ∨ p3) → . This implication is true everywhere in our model, but HAnn

itself is not in n Ann
O (ai ).

One can abstract from that particular example. For any finite game G one can
define the deontic frame F i

G based on a solution concept S as follows. H = �i Si ,
the set of all strategy profiles, Alt[h] = H × H . nO(h) = {{h′ ∈ S}} and n P (h) =
{X ⊆ {h′ ∈ S} : X �= ∅}. In this definition permitted action types are all those that
cannot be executed outside the given solution concept. The only thing an agent ought
to do in this construction is to play a best strategy.

24.5 Conclusions

In this chapter we have made three conceptual arguments regarding the logic of best
action in games. We have argued first that it should be seen as a deontic logic. We
have then argued that viewed this way, the logic of best action in games promises
an interesting interplay between deontic logic and the foundation of the normative
interpretations of solution concepts. Finally, we have argued that the deontic logic of
best action in games should be developed in what we called “obligations as weakest
permissions”, which is, we have shown, an interesting, non-normal logical system.

It is worth emphasizing again that the logic of obligation as weakest permission
provides, in our view, the generic structure of recommendations from solution con-
cepts. The validities just mentioned reflect the way we constructed deontic frames
from games and solution concepts, rather than intrinsic properties of, say, sub-game
perfect equilibrium. Using another choice rule, for instance iterated weak dominance,
would have resulted in the same deontic principles. The core of the proposal here is
conceptual. Once one views rational recommendations in games in terms of weakest
permissions, a view which we argued is natural, we are in the realm of the logic
sketched above.
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To study the deontic logic of best actions for concrete solution concepts one
would, we think, have to generalize the language to binary deontic operators.
These are operators of the form O(ϕ, ψ) interpreted as “given ϕ, she ought to
play a ψ-action”. Such operators are well-known from the deontic logic literature.
They seem particularly natural for game solutions, which are very often depen-
dent on the context where the game is played. This context, in turn, is usually
described in terms of what the players believe about and expect of each other.
So O(ϕ, ψ) would be read as “given that i believes that ϕ, she ought to play a
ψ-strategy”.

Once this epistemic parameter is made explicit, divergences in the recommen-
dations from concrete solution concepts start to appear [36]. Let us mention one
example. Both iterated weak and strict dominance are solution concepts that are not
“upward monotonic”. A strategy that is strictly dominated in small games might no
longer be strictly dominated when one moves to a larger game. The same story can
be told epistemically. A strategy that is strictly dominated given one’s belief that
ones opponent will play, say, A, might no longer be dominated upon suspending
that belief. Formally, this means that the following would not be valid in the specific
deontic logic of strict or weak dominance.

�|= O(ϕ, ψ)→ O(χ,ψ) when ϕ→ χ

Strict dominance, on the other hand, is downward monotonic. It is preserved under
taking sub-games or refinement of the agents’ information. So we would have the
following for OSD , the deontic logic of conditional best actions, given strict domi-
nance.

|= OSD(χ,ψ)→ OSD(ϕ, ψ) when ϕ→ χ

This principle would not be valid for weak dominance, which is notorious for also
failing downward monotonicity.

�|= OW D(χ,ψ)→ OW D(ϕ, ψ) when ϕ→ χ

We leave the development of these specific systems for future work. For now we
hope to have convinced the reader that the logic of best action, in itself and viewed
from a deontic perspective, not only raises interesting logical questions, but can also
make fundamental contributions to our the understanding of the normative character
of solution concepts in games, and more generally to the norms and obligations that
are inherent in any intelligent interaction.
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Chapter 25
When are Two Arguments the Same?
Equivalence in Abstract Argumentation

Dov Gabbay and Davide Grossi

[…] actual reasoning may be more like weaving a piece of cloth
from many threads than forging a chain with links in linear
mathematical proof style […]

van Benthem [7, p. 83]

Abstract In abstract argumentation arguments are just points in a network of attacks:
they do not hold premisses, conclusions or internal structure. So is there a meaningful
way in which two arguments, belonging possibly to different attack graphs, can be
said to be equivalent? The paper argues for a positive answer and, interfacing methods
from modal logic, the theory of argument games and the equational approach to
argumentation, puts forth and explores a formal theory of equivalence for abstract
argumentation.

25.1 Introduction

Abstract argumentation [14] is the theory of structures 〈A,�〉—called attack graphs
—as models of the sort of conflict that occurs in argumentation, where arguments
(set A) interact by attacking one another (through the binary ‘attack’ relation �).
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On the one hand, this has proven to be a prolific abstraction from which to study
structural properties of sets of arguments that form ‘justified’ or ‘rational’ positions in
an argumentation (cf. [2, 3] for recent overviews). On the other hand, this perspective
leaves the internal structure of arguments unspecified and arguments are nothing but
points in a network of attacks. When looking at similarities between arguments from
this point of view, issues such as having the same premisses and conclusions, or
exhibiting the same logical structure, become immaterial.

However even at this level of abstraction there is a telling sense in which two
arguments a and a′ belonging to two (possibly different) graphs 〈A,�〉 and 〈A′,�′〉
can be said to be ‘the same’, or to be equivalent, namely if they ‘behave’ in the same
way in the two graphs. Put otherwise, a and a′ can be said to be equivalent if they
interact in similar ways with the other arguments in their respective graphs. This
point of view suggests a way of comparing arguments which is independent of their
content, and which instead stresses the role they play in an argumentation through
their interaction with other arguments.

Suggestively, this ‘behavioral’ view of the notion of equivalence of arguments
ties in well with Toulmin’s view of a theory of argumentation as something that is
“field-invariant”:

What features of our arguments should we expect to be field-invariant: which features will
be field-dependent? We can get some hints, if we consider the parallel between the judicial
process, by which the questions raised in a law court are settled, and the rational process,
by which arguments are set out and produced in support of an initial assertion. […] One
broad distinction is fairly clear. The sorts of evidence relevant in cases of different kinds will
naturally be very variable. […] On the other hand there will be, within limits, certain broad
similarities between the orders of proceedings adopted in the actual trial of different cases,
even when these are concerned with issues of very different kinds. […] When we turn from
the judicial to the rational process, the same broad distinction can be drawn. Certain basic
similarities of pattern and procedure [our emphasis] can be recognized, not only among
legal arguments but among justificatory arguments in general, however widely different the
fields of the arguments, the sort of evidence relevant, and the weight of the evidence may
be. [30, pp.15–17]

The paper aims at developing a theory of equivalence of arguments based on struc-
tural similarities of pattern and procedure. To this aim, the paper pushes further the
application of modal logic techniques to abstract argumentation already argued for
in a number of recent works (cf. [11, 16, 20–22]). It builds on the view of attack
graphs 〈A,�〉 as Kripke frames and presents a systematic exploration of the idea
that argument equivalence can be expressed as equality of (fragments) of the modal
theory of each argument. This idea naturally relates to the modal invariance notion of
bisimulation [4]1 and with the theory of argument games, that is, ‘argumentation pro-
cedures’ modeled as two-player zero-sum games played on attack graphs.2 Inspired
by insights from [5, 8], we will look at a power-based notion of argument equivalence:
two arguments can be said to be equivalent when the powers of the proponent and
opponent in the argument games for the two arguments are, in some precise sense,

1 The relevance of bisimulation in abstract argumentation was first emphasized in [20, 21].
2 Cf. [24] for a recent overview of argument games.
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the ‘same’. Finally, we will see how this game-theoretic view of argumentation and
argument equivalence ties in with the equational view of argumentation put forth in
[15, 17, 18].

Structure of the paper. In Sect. 25.2 we concisely introduce the key concepts
of abstract argumentation which will be used in the paper. Section 25.3 provides
some modal logic preliminaries and Sect. 25.4 applies modal equivalence to define
a notion of equivalence for arguments, with respect to Dung’s grounded extension.
Section 25.5 elaborates on that definition proposing a strategic variant of it based
on the powers that a proponent and an opponent have in an argument game for
the grounded extension. Section 25.6 relates the construction of winning strategies
in such argument games to the equational approach to argumentation, and brings
the three strands of the paper—the modal, the game-theoretic and the equational—
together. Finally, conclusions follow in Sect. 25.7.

25.2 Preliminaries on Abstract Argumentation

The present section introduces the necessary preliminaries on abstract argumentation
which set the stage of our investigations.

25.2.1 Attack Graphs

We start by the key notion of [14]:

Definition 25.1 (Attack graph) An attack graph—or Dung framework—is a tuple
A = 〈A,�〉 where:

• A is a non-empty set—the set of arguments;
• �⊆ A2 is a binary relation—the attack relation.

The set of all attack graphs on a given set A is denoted A(A). The set of all attack
graphs is denoted A. With a � b we indicate that a attacks b, and with X � a we
indicate that ∃b ∈ X s.t. b � a. Similarly, a � X indicates that ∃b ∈ X s.t. b � a.
An attack graph such that, for each a ∈ A the cardinality | {b | a � b} | of the set
of the attackers of a is finite, is called finitary.3 Given an argument a, we denote by
RA (a) the set of arguments attacking a: {b ∈ A | b � a}.
These relational structures (see Fig. 25.1 for an example) are the building blocks of
abstract argumentation theory. Once A is taken to represent a set of arguments (or
‘pieces of evidence’ or ‘information sources’), and � an ‘attack’ relation between
arguments (so that a � b means “a attacks b”), the study of these structures provides

3 This property is known in modal logic as image-finiteness of the accessibility relation of a Kripke
frame [9, Chap. 2].
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a

b

c

a

b

d e

Fig. 25.1 Two attack graphs. The one on the left represents a full opposition between, for instance,
two contradictory arguments. The one on the right represents an argumentation where two opposite
arguments (a and b) both attack a same argument (c) which in turn defends a final argument (e) by
attacking its attacker (d)

very general insights on how competing arguments interact and structural properties
of subsets of A can be taken to formalize how collections of arguments form ‘justi-
fiable’ positions in an argumentation.

25.2.2 Characteristic Functions of Attack Graphs

The formulation of all main argumentation theoretic properties makes use of two
functions that can be naturally associated to each attack graph.

25.2.2.1 Characteristic Functions

The first one is a function called in [14] characteristic function, which we will call
here the defense function.

Definition 25.2 (Defense function) Let A = 〈A,�〉 be an attack graph. The
defense function dA : ℘(A) −→ ℘(A) for A is so defined:

dA (X) =
{

x ∈ A | ∀y ∈ A : if y � x then X � y
}
.

Given a set of arguments X , the n-fold iteration of dA is denoted dn
A for 0 ≤ n < ω

and its infinite iteration is denoted dωA . For a given X , an infinite iteration generates
an infinite sequence, or stream, d0

A (X),d
1
A (X),d

2
A (X), . . .. A stream is said to

stabilize if and only if there exists 0 ≤ n < ω such that dn
A (X) = dn+1

A (X). Such
set dn

A (X) is then called the limit of the stream. When clear from the context we
will drop the reference to A in dA .

Intuitively, for a given A , function dA encodes for each set of arguments X , which
other arguments the set X is able to defend within A .
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The second function was first introduced in [27, 28] and further studied in [14].
It is not known with a specific name in the literature. We call it here the neutrality
function.

Definition 25.3 (Neutrality function) Let A = 〈A,�〉 be an attack graph. The
neutrality function nA : ℘(A) −→ ℘(A) for A is so defined:

nA (X) =
{

x ∈ A | not X � x
}

The definitions of n-fold iteration, stream, and stabilization are like in Definition
25.2.

Intuitively, given A , function nA encodes for each set X of arguments in A , the
arguments about which X is neutral in the sense of not attacking any of those argu-
ments.

Example 25.1 (Defense and neutrality in Fig. 25.1) The functions applied to the
symmetric graph on the left of Fig. 25.1 yield the following equations:

d(∅) = ∅ n(∅) = {a, b}
d({a}) = {a} n({a}) = {a}
d({b}) = {b} n({b}) = {b}
d({a, b}) = {a, b} n({a, b}) = ∅.

25.2.2.2 Properties of the Defense Function

We list here two properties of the defense function which will be used in the devel-
opment of the paper.

The first one, monotonicity, expresses the property that larger sets of arguments are
able to defend larger sets of arguments. This is enough to guarantee the existence of
least and greatest fixpoints of the defense function, by the Knaster-Tarski theorem.4

The second one, continuity, expresses the property that in finitary graphs (i.e.,
graphs where arguments have at most a finite number of attackers, recall Definition
25.1), what is defended by a series of larger and larger sets of arguments is equiva-
lent to the union of what each of those sets defends. As we will see later, continu-
ity enables the possibility of studying processes of computation of argumentation-
theoretic notions as iterated applications of the defense function.

Fact 25.1 (Monotonicity) Let A = 〈A,�〉 be an attack graph. Function nA is
monotone, i.e., for any X,Y ⊆ A:

X ⊆ Y =⇒ dA (X) ⊆ dA (Y ).

4 The reader is referred to [12] for a detailed presentation of this result.
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Table 25.1 Some of the key notions of abstract argumentation theory from Dung [14]

X is conflict-free in A iff X ⊆ nA (X)
X is self-defended in A iff X ⊆ dA (X)
X is admissible in A iff X ⊆ nA (X) and X ⊆ dA (X)
X is a complete set in A iff X ⊆ nA (X) and X = dA (X)
X is the grounded set in A iff X = lfp.dA

Fact 25.2 (Continuity [14]) Let A be a finitary attack graph. If A is finitary,
then dA is continuous for any X ⊆ A, i.e., for any directed set D ∈ ℘(℘(A)):
dA (

⋃
X∈D X) =⋃

X∈D dA (X).

Proof [Right to left] Trivial. [Left to right] Assume a ∈ dA (
⋃

X∈D X). By
image-finiteness there exists X ∈ D s.t. it contains all arguments that attack some of
a’s attackers. Hence a ∈⋃

X∈D dA (X). �

25.2.3 Solving Attack Graphs

By ‘solving’ an attack graph we mean selecting a subset of arguments that enjoy some
characteristic structural property. The idea behind Dung’s semantics for argumenta-
tion is precisely that some structural properties of attack graphs can capture intuitive
notions of justifiability of arguments or, if you wish, of standard of proof—what in
argumentation are usually called extensions. Therefore, the study of structural prop-
erties of attack graphs delivers very general insights on how competing arguments
interact and how collections of them form ‘tenable’ or ‘justifiable’ argumentative
positions.

Table 25.1 recapitulates the basic notions of abstract argumentation which we
will be touching upon in the paper. They are all formulated either as fixpoints (X =
f (X)) or post-fixpoints (X ⊆ f (X)) of the defense and neutrality functions, or as
combinations of the two.

Intuitively, conflict-freeness demands that the set of arguments at issue is not able
to attack itself—it is neutral with respect to itself. Self-defense requires that the set
of arguments is able to defend itself. An admissible set is then a set of arguments
which is conflict-free and is able to defend all its attackers. So, as the name suggests,
admissible sets can be thought of as ‘admissible’ positions within an attack graph. By
considering those admissible sets which also contain all the arguments they are able
to defend—viz., the admissible sets that are fixpoints of the defense function—we
obtain the notion of complete set. It formalizes the idea of a fully exploited admissible
position, that is, a position which has no conflicts, and which consists exactly of all
the arguments that can be successfully defended. The grounded set represents what
all complete extensions have in common. In a way, it formalizes what at least must
be accepted as ‘reasonable’ within the graph.
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Example 25.2 (Extensions in Fig. 25.1) Consider the graph on the right of Fig. 25.1.
The grounded extension is ∅. There are two complete extensions: {a, d} and {b, d}.
An example of a conflict-free set which is not admissible is {c, e}.

25.2.4 Computing the Grounded Set

We now look at a process of computation of the grounded set. This will be related
later to the notion of argument equivalence to be developed, and the availability of
winning strategies for the proponent in argument games.

We will focus on finitary graphs (recall Definition 25.1). The case of non-finitary
graphs is briefly discussed in Remark 25.1.

Theorem 25.1 (Computation of grounded extensions [14]) Let A be a finitary
attack graph:

lfp.dA =
⋃

0≤n<ω

dn
A (∅) (25.1)

Proof First, we prove that
⋃

0≤n<ω d
n
A (∅) is a fixpoint by the following equations:

dA

⎛

⎝
⋃

0≤n<ω

dn
A (∅)

⎞

⎠ =
⋃

0≤n<ω

dA (d
n
A (∅))

=
⋃

0≤n<ω

dn
A (∅)

where the first equation holds by the continuity of dA , and the second since, by
monotonicity, d0

A (∅),d1
A (∅), . . . is non-descending. Second, we proceed to prove

that
⋃

0≤n<ω d
n
A (∅) is indeed the least fixpoint. Suppose, towards a contradiction

that there exists Y s.t.: ∅ ⊂ Y = dA (Y ) ⊂
⋃

0≤n<ω d
n
A (∅). It follows that ∅ ⊂

Y = dA (Y ) ⊂ dn
A (∅) for some 0 ≤ n < ω. But, by Fact 25.1, we have that

dn
A (∅) ⊆ dn

A (Y ). Contradiction. �
Remark 25.1 (Non-finitary graphs) For infinite graphs which are not finitary, The-
orem 25.1 could be generalized by ordinal induction:

d0
A (∅) = ∅

dα+1
A (∅) = dA (d

α
A (∅))

dλA =
⋃

α<λ

dαA (∅) (for λ arbitrary limit ordinal).



684 D. Gabbay and D. Grossi

a b c d e

Fig. 25.2 A linear well-founded attack graph. The greatest and smallest fixpoint of the defense
function coincide here: {a, c, e}. The set of arguments not belonging to the greatest fixpoint is {d, b}.
Note, in particular, that while b is defended by set {a, b, c, d, e} (namely by d), it is not defended by
the set of arguments that is defended by {a, b, c, d, e}. So it does not belong to the greatest fixpoint
of the defense function

By the monotonicity of dA it can then be shown that there exists an ordinal α of
cardinality at most |A| such that: lfp.dA = dαA (∅).5

25.2.4.1 Smallest and Greatest Fixpoints of the Defense Function

We have seen that the smallest fixpoint of the defense function dA defines the so-
called grounded extension of an attack graph. What about the largest: gfp.dA ? We
will confine our discussion to finitary graphs.

The arguments that belong to gfp.dA are those which can always be defended by
some other argument that can also in turn be defended. The dual of Theorem 25.1
offers a good perspective from which to appreciate the notion:

gfp.dA =
⋂

0≤n<ω

dn
A (A)

i.e., the set consisting of arguments that are defended by the set of all arguments,
and by the set that is defended by the set of all arguments and so on: dA (A) ∩
dA (dA (A)) ∩ . . . (see Figs. 25.2 and 25.3 for examples).

25.3 Attack Graphs and Modal Logic

The section recapitulates and slightly extends (in particular w.r.t. frame languages)
the modal logic approach to abstract argumentation put forth in [20, 21].

25.3.1 Attack Graphs and Kripke Models

Once an attack graph is viewed as a Kripke frame, the addition of a function assigning
names to sets of arguments—a labeling or valuation function—yields a Kripke model
(or a state transition system).

5 A proof of this statement in the general setting of complete partial orders can be found in [31,
Corollary 3.7].
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a

b

c

Fig. 25.3 A 3-cycle attack graph. Here the smallest fixpoint of the defense function is ∅ and the
greatest fixpoint is {a, b, c}

Definition 25.4 (Attack models) Let P be a set of atoms. An attack model is a tuple
M = 〈A ,V 〉 where A = 〈A,�〉 is an attack graph and V : P −→ ℘(A) is a
valuation function. A pointed attack model is a pair 〈M , a〉 with a ∈ A. The set of
attack models is M.

Attack models are nothing but attack graphs together with a way of ‘naming’ sets
of arguments or, to put it otherwise, of ‘labeling’ arguments.6 So, the fact that an
argument a belongs to the set V (p) in a given model M reads in logical notation
as (A ,V ), a |= p. By using the language of propositional logic we can then form
‘complex’ labels ϕ for sets of arguments stating, for instance, that “a belongs to both
the sets called p and q”: (A ,V ), a |= p ∧ q.

In order to formalize argumentation-theoretic statements more than just proposi-
tional expressivity is needed. Let us mention a couple of examples: “there exists an
argument in a set named ϕ attacking argument a” or “for all attackers of argument
a there exist some attackers in a set named ϕ”. These are statements involving a
bounded quantification and they can be naturally formalized by a modal operator ♦
whose reading is: “there exists an attacking argument such that …”. This takes us to
modal languages.

25.3.2 The ‘Being Attacked’ Modality

Interpret now the basic modal language on argumentation models as follows:

M , a |= ♦ϕ ⇐⇒ ∃b ∈ A : a � b and M , b |= ϕ

6 It might be worth noticing that this is a generalization of the sort of labeling functions studied in
argumentation theory (cf. [2, 10]).
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An argument a belongs to the set called ♦ϕ iff some argument b is accessible via the
inverse of the attack relation and b belongs to ϕ or, more simply, iff a is attacked by
some argument in ϕ.

This is enough expressivity to express the defense and neutrality functions in
modal logic K. The two functions dA and nA correspond to the functions denoted
in L by the modal expressions �♦ and, respectively, ¬♦ on a given graph A .

Lemma 25.1 (Defense and neutrality in modal logic) Let A be an attack graph
and V a valuation function.

〈A ,V 〉, a |= �♦ϕ ⇐⇒ a ∈ dA ([[ϕ]]〈A ,V 〉)
〈A ,V 〉, a |= ¬♦ϕ ⇐⇒ a ∈ nA ([[ϕ]]〈A ,V 〉).

Proof (Sketch of proof) For �♦ we have these equivalences:

[[�♦ϕ]]〈A ,V 〉 = {a | ∀b : if a � b then b � [[ϕ]]〈A ,V 〉}
= dA ([[ϕ]]〈A ,V 〉).

The first equation holds by construction, the second and third are application of the
the semantics of �♦ and Definition 25.2. The reasoning for ¬♦ϕ is analogous.7 �

In general, emphasizing the modal nature of dA and nA has the advantage of
allowing us to use available modal principles in reasoning about argumentation-
theoretic notions. All the theorems of logic K concerning �♦- and ¬♦-formulae
can legitimately be seen as theorems of abstract argumentation. Here we list a few
very simple theorems of K which carry interesting readings in terms of abstract
argumentation theory.

Fact 25.3 The following are theorems of K:

�♦⊥ ↔ �⊥ (25.2)

�♦ϕ ↔ ¬♦¬♦ϕ (25.3)

�♦�♦⊥ ↔ �♦⊥∨�♦�♦⊥. (25.4)

Formula 25.2 uses the trivial modal fact that ♦⊥ ↔ ⊥ to express that the set of
arguments defended by the empty set corresponds to the set of arguments that have
no attackers (dead ends). This equivalence will be constantly used in the remainder of
the paper. Formula (25.3) is the modal counterpart of the equivalence of the defense
function and the 2-fold iteration of the neutrality function, i.e., for any X and graph
A : dA (X) = nA (nA (X)). Formula (25.4) states that, for any A , the finite union
of subsequent iterations of dA over ∅ is equivalent to the longest iteration.

7 More generally, the claim is a direct consequence of the existence of a homomorphism from
the term algebra Term = 〈L ,∧,¬,⊥,♦〉 of language L (without universal modality) to the
complex algebra SetA = 〈2A,∩,−,∅, f 〉 where f : ℘(A) −→ ℘(A) such that f (A) =
{a ∈ A | ∃b ∈ A : a � b} [9, Chap. 5].
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In the remainder of the paper, in order to concisely express the nth iteration of
�♦ (resp., ¬♦) we will write (�♦)n (resp., (¬♦)n).

Remark 25.2 (Frame language) When interested in the application of the
characteristic functions solely to the set of all arguments, or to the empty set of
arguments, all is needed to express d and n is a limited fragment of the language L
introduced above. The fragment is defined by the following BNF:

ϕ:: = ⊥ | ¬ϕ | ϕ ∧ ϕ | ♦ϕ

This is a so-called frame language,8 which does not use propositional atoms. In
fact, this language does not need models to be interpreted, but simply attack graphs
(Definition 25.1). It therefore expresses properties of pointed attack graphs: 〈A , a〉.
This will be the language we will be working with when defining a notion of argument
equivalence with respect to the grounded set.

25.3.2.1 The Grounded Set in Modal Logic

As a consequence of Theorem 25.1 and Lemma 25.1—showing that d can be repre-
sented as �♦—the grounded extension can, in any finitary graph A , be expressed
by the following infinite but countable disjunction (cf. Eq. (25.1)):

∨

0≤n<ω

(�♦)n⊥ (25.5)

Clearly, in a finite A we will have a finite integer n where the stream dωA (∅) reaches
its limit, and we could then express the grounded extension by a finite disjunction∨

0≤i≤n(�♦)i⊥ or simply as (�♦)i⊥.
Similarly, it is worth observing that the greatest fixpoint of dA for a given A is

expressed by the following infinite conjunction:

∧

0≤n<ω

¬(♦�)n⊥ (25.6)

i.e., it is neither the case that the current argument is attacked by a dead end, nor that
it is attacked by an argument whose attackers are attacked by a dead end, and so on.

Remark 25.3 (Being attacked by the grounded set) Notice that arguments not
belonging to the greatest fixpoint of d, i.e., satisfying ¬∧

0≤n<ω ¬(♦�)n♦⊥, are
arguments attacked by the grounded set, i.e., arguments satisfying

∨
0≤n<ω ♦(�♦)n⊥.

Remark 25.4 (Infinite attack graphs and the mu-calculus) In the general case, in
order to express the grounded extension modally it is necessary to resort to the

8 See Blackburn et al. [9, Chap. 3.1].
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expressivity of the mu-calculus, where the grounded extension can be expressed by
the following formula:

μp.�♦p (25.7)

denoting precisely the smallest fixpoint of function�♦, i.e., in a given A , the modal
rendering of dA (Lemma 25.1). Similarly, νp.�♦p denotes the largest fixpoint. We
refer the reader to [19, 21] for more information on the application of the modal
mu-calculus to abstract argumentation.

25.3.2.2 Other Argumentation-Theoretic Notions in Modal Logic

We have shown how to express the grounded extension by a formula of the basic
frame language. It must be clear that, from a modal point of view, the grounded
extension is therefore a property of a pointed frame 〈A , a〉, that is, the property of
an argument in a graph.

How are the other notions of Table 25.1 to be formalized? In [21] it has been
shown that logic K with the universal modality 〈U〉 suffices to express conflict-
freeness, self-defense, admissibility and complete extensions. But in this case, the
full modal language (with at least one atom p) is required:

V (p) is conflict-free ⇐⇒〈A ,V 〉, a |= [U](p→ ¬♦p)

V (p) is self-defended ⇐⇒〈A ,V 〉, a |= [U](p→ �♦p)

V (p) is admissible ⇐⇒〈A ,V 〉, a |= [U](p→ ¬♦p) ∧ [U](p→ �♦p)

V (p) is a complete set ⇐⇒〈A ,V 〉, a |= [U](p→ ¬♦p) ∧ [U](p↔ �♦p).

These notions are therefore properties of pointed models 〈M , a〉, that is, prop-
erties of arguments in a graph where a set of arguments has been labeled. In the
remainder of the paper we will be concerned only with frame properties and will
therefore be working with the frame language.

25.4 A Modal Notion of Argument Equivalence

The section develops a modal notion of argument equivalence characterizing the
status of an argument in terms of a special family of modal formulae it satisfies.
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25.4.1 When are Two Arguments Equivalent
w.r.t. the Grounded Set?

Let us start by recalling a few observations from Sect. 25.3. For any graph A , the
set of arguments is partitioned in the set of arguments belonging to lfp.dA (the
grounded set), those not belonging to gfp.dA (i.e., the arguments attacked by the
grounded set, recall Remark 25.3), and the arguments belonging to gfp.dA ‘−lfp.dA
(i.e., the arguments neither belonging to the grounded set nor being attacked by it).9

Figures 25.2 and 25.3 offer good examples for the identification of this tripartition.
So, from the point of view of the grounded set, what matters in a graph A is the

status of an argument with respect to the three above sets, and hence with respect
to membership to lfp.dA and gfp.dA . A natural refinement of this idea in finitary
graphs is to understand the status of an argument not only in terms of its membership
to lfp.dA and gfp.dA , but also in terms of ‘when’ it enters those sets, in the sense of
which are the stages in the fixpoint computation to which the argument belongs,10

i.e., at which n the argument comes to belong to dn
A (∅) and at which it ceases to

belong to dn
A (A). This suggests the following definition of status of an argument:

Definition 25.5 (Status) Let A = 〈A,�〉 be an attach graph. The status of a ∈ A
is defined as, for 1 ≤ n < ω:

T(a) = {
(�♦)n⊥ | A , a |= (�♦)n⊥} ∪ {

(�♦)n� | A , a |= (�♦)n�}
(25.8)

Recall the modal principle: (�♦)n� ↔ ¬♦(�♦)n⊥. So, the status of an argument
is the subset of its modal theory in the frame language which consists of formulae
corresponding to iterations of the defense function over ∅ (i.e., ⊥) and over the set
of all arguments (i.e., �).

To familiarize ourselves with the notion of argument status, let us mention this
simple fact following from Theorem 25.1:
Fact 25.4 Let A be a finitary graph:

a ∈ lfp.dA ⇐⇒ T(a) = {
(�♦)m⊥ | ∃n : n ≤ m < ω

} ∪ {
(�♦)n� | 1 ≤ n < ω

}

a ∈ −gfp.dA ⇐⇒ T(a) = {
(�♦)m� | ∃n : 1 ≤ m ≤ n

}

a ∈ gfp.dA − lfp.dA ⇐⇒ T(a) = {
(�♦)n� | 1 ≤ n < ω

}
.

We can then say that two arguments are equivalent w.r.t. the grounded set (notation,
A , a ≡d A ′, a′) if and only if they have the same status:

A , a ≡d A ′, a′ ⇐⇒ T(a) = T(a′) (25.9)

9 It is worth observing that this three-set partition corresponds to the labeling of arguments as “in”
(i.e., belonging to the extension at issue), “out” (i.e, being attacked by the extension at issue), and
“undecided” (i.e., neither of the above) of the labeling-based semantics of argumentation [2, 10].
10 It is worth stressing that this is a refinement of the common understanding of ‘status of an
argument’ in the literature on argumentation theory.
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a b a′

b′

c′

Fig. 25.4 Arguments a and a′ have the same status: T(a) = ∅ = T(a′)

a b a ′

b′

c′

d′ e′

Fig. 25.5 Arguments b and c′ have different statuses: T(b) = {(�♦)n⊥ | 1 ≤ n < ω} ∪
{(�♦)n� | 1 ≤ n < ω}, while T(c′) = {(�♦)n⊥ | 2 ≤ n < ω} ∪ {(�♦)n� | 1 ≤ n < ω}. Both
belong to the grounded sets of the respective graphs

Intuitively, two arguments are equivalent if and only if they belong to exactly the
same stages of iteration of the defense function applied to the empty set, and to the
same stages of iteration of the defense function applied to the set of all arguments.
Figures 25.4 and 25.5 give an illustration of the definitions of status and status equiv-
alence.

25.4.2 Status Equivalence and Frame Bisimulation

We recall the standard definition of the notion of frame bisimulation11:

Definition 25.6 (Frame bisimulation [4]) Let A = 〈A,�〉 and A ′ = 〈A′,�′〉
be two attack graphs. A (frame-)bisimulation between A and A ′ is a non-empty
relation Z ⊆ A × A′ such that:

Zig: if aZa′ and a � b for some b ∈ A, then a′ � b′ for some b′ ∈ A′ and bZb′;
Zag: if aZa′ and a′ � b′ for some b′ ∈ A then a � b for some b ∈ A and bZb′.
When a frame bisimulation exists linking a ∈ A and a′ ∈ A′we write A , a � A ′, a′.
Intuitively, a bisimulation is a process-like view of equivalence between attack
graphs that links the walks along the attack relation—one might say the dialogues

11 See [9, Chap. 2].
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(cf. Sect. 25.5)—that one can do on one graphs to corresponding walks that one can
do on the other.

By applying standard results from modal logic we can show that frame bisimu-
lation implies status equivalence: two bisimilar arguments are also equivalent with
respect to their status.

Fact 25.5 (� ⊆ ≡d ) Let 〈A , a〉 and 〈A ′, a′〉 be two pointed attack graphs:

A , a � A ′, a′ =⇒ A , a ≡d A ′, a′

Proof The claim is a direct consequence of Formula (25.9) and the fact that the basic
modal language is bisimulation invariant (cf. [9]).

25.5 Status Equivalence and Argument Games

The picture of argumentation we have given so far is of a static kind, but argumen-
tation calls intuitively for a process of interaction between arguers. In fact, although
notions like the grounded extension formalize different static views of what makes a
set of arguments a ‘justifiable’ or good position in an argumentation, these views can
be made dynamic through two-player zero-sum games. Many researchers in the last
two decades have focused on ‘dialogue games’ for argumentation, i.e., games able to
adequately establish whether a given argument belongs or not to a given extension.12

The sort of results that drive this literature are called adequacy theorems and have,
roughly, the following form: argument a has property S (e.g., belongs to the grounded
extension) if and only if the proponent has a winning strategy in the dialogue game
for property S (e.g., the dialogue game for the grounded extension) starting with
argument a.

In this section we will see how the notion of bisimulation between arguments ties
in with the theory of argument games.

25.5.1 Argument Games

The section recapitulates key definitions and results pertaining to an adequate game
for the grounded extension.

25.5.1.1 Game for the Grounded Extension

Let us fix some further auxiliary notation before starting. Let a ∈ A<ω ∪ Aω be
a finite or infinite sequence of arguments in A, which we will call a dialogue. To

12 The contributions that started this line of research is [13]. Cf. [24] for a recent overview.
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Table 25.2 Winning conditions for the game for grounded given a terminal dialogue a

Length of a : P wins if : O wins if :
�(a) < ω t(a) = O t(a) =P

�(a) = ω Never Always

denote the nth element, for 1 ≤ n < ω, of a dialogue a we write an , and to denote
the dialogue consisting of the first n elements of a we write a|n . The last argument
of a finite dialogue a is denoted h(a). Finally, the length �(a) of a is n−1 if a|n = a,
and ω otherwise. We start with the formal definition:

Definition 25.7 (Argument game for grounded [13]) The game for the grounded
extension is a function D which for each attack graph A yields a structure D(A ) =
〈N , A,t,m,p〉 where:

• N = {P,O}—the set of players consists of proponent P and opponent O .
• A is the set of arguments in A .
• t : A<ω −→ N is the turn function. It is a (partial13) function assigning one

player to each finite dialogue in such a way that, for any 0 ≤ m < ω and a ∈ A<ω,
if �(a) = 2m then t(a) = O , and if �(a) = 2m + 1 then t(a) = P . i.e., even
positions are assigned to O and odd positions to P .
• m : A<ω −→ ℘(A) is a (partial) function from dialogues to sets of arguments

defined as: m(a) = RA (h(a)). I.e., the available moves at a are the arguments
attacking the last argument of a. The set of all dialogues compatible with m—the
legal dialogues of the game—is denoted D. Dialogues a for which m(a) = ∅ or
such that �(a) = ω are called terminal, and the set of all terminal dialogues of the
game is denoted T .
• p : T −→ N is the payoff function given in Table 25.2, which associates a

player—the winner—to each terminal dialogue.

The game is played starting from a given argument a. When a is explicitly given we
talk about an instantiated game (notation, D(A )@a).

The two players play the game by alternating each other (O starts) and navigating
the attack graph along the ‘being attacked’ relation. The winning conditions state
that P wins whenever she manages to state an argument to which O cannot reply,
i.e., an argument with no attackers. Notice the asymmetry in the winning conditions
of the payoff function for P and O .

25.5.1.2 Adequacy

The different ways in which proponent and opponent can play an argument game are
called strategies:

13 The function is partial because only sequences compatible with the move function m below need
to be considered.
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a

d

b

c

a

d b

c

Fig. 25.6 An attack graph (left) and its dialogue game for grounded (right). Positions are labeled
by the player whose turn it is to play. P wins the terminal dialogue abc but loses the terminal
dialogue ad. O has a winning strategy that makes him win in one move

Definition 25.8 (Strategies) Let D(A ) = 〈N , A,t,m,p〉, a ∈ A and i ∈ N . A
strategy for i in the instantiated game D@a is a function: σi : {a ∈ D − T | a0 =
a andt(a) = i} −→ A s.t. σi (a) ∈ m(a). The set of terminal dialogues compatible
with σi is defined as follows: Tσi = {a ∈ T | a0 = a and∀n ≤ �(a) ift(a|n) =
i then an+1 = σi (a|n)}.
A strategy tells i which argument to choose, among the available ones, at each non-
terminal dialogue a in D@a. So, in the game for grounded, a strategy σP will
encode the proponent’s choices in dialogues of odd length, while σO will encode
the opponent’s choices in dialogues of even length. Observe that, in a game for
grounded, a strategy σP and a strategy σO—i.e., a strategy profile in the game-
theory terminology—together determine one terminal dialogue or, in other words,
TσP ∩ TσO is a singleton.

What matters of a strategy is whether it guarantees the player that plays according
to it to win the game. This brings us to the notion of winning strategy:

Definition 25.9 (Winning strategies and arguments) Let D(A ) = 〈N , S,t,m,p〉,
a ∈ A and i ∈ N . A strategy σ is winning for i in D(A )@a if and only if for all
a ∈ Tσ it is the case that p(a) = i . An argument a is winning for i iff there exists
a winning strategy for i in D(A )@a. The set of winning positions of D for i is
denoted Wini (D(A )). An argument a is winning for i in k rounds (k ≥ 0) iff there
exists a winning strategy σi in D@a such that for all a ∈ Tσi , �(a) + 1 ≤ k, that
is, i can always win in at most k rounds using σi . The set of winning positions in k
rounds is denoted Wink

i (D).

Dialogue games are two-player zero-sum games with perfect information (and pos-
sibly infinite horizon).14 See Fig. 25.6 for the illustration of a finite dialogue game.

Now all ingredients are in place to study the property we are interested in, viz.
the adequacy of the game of Definition 25.7 with respect to the grounded extension.
We first prove a slightly stronger result: an argument a belongs to the kth iteration of
the defense function on the empty set of arguments, if and only if P has a winning
strategy in the game initiated at a, which she can carry out in at most 2(k−1) rounds.

14 These games are determined by the Gale-Stewart theorem since it can always be decided whether
a dialogue is winning for P , i.e., the winning positions for P are an open set (cf. [23, Chap. 6]).
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Lemma 25.2 (Strong adequacy of the game for grounded [13]) Let D(A ) be the
dialogue game for grounded on graph A and a ∈ A, for 1 ≤ k < ω:

a ∈ dk
A (∅)⇐⇒ a ∈ Win2(k−1)

P (D(A )).

Proof We proceed by induction:
[B] The following equivalences prove the induction base:

a ∈ dA (∅)⇐⇒ �b : b � a [Definition 25.2]
⇐⇒ a ∈ Win0

P (D(A )) [Definition 25.9]

[S] If a ∈ dn
A (∅) ⇐⇒ a ∈ Win2(n−1)

P (D(A )) (IH) then we claim: a ∈
dn+1

A (∅) ⇐⇒ a ∈ Win2n
P (D(A )). [Left to right] Assume a ∈ dn+1

A (∅). This
means that ∀b : b � a, ∃c : c � b and such that c ∈ dn

A (∅) which, by IH, is

equivalent to c ∈ Win2(n−1)
P (D(A )). So, by Definition 25.7, for any O’s move b

at position a, P has a counter-argument c from which she has a winning strategy
forcing a win in at most 2(n − 1) rounds. Hence, by Definition 25.9, P can win the
game at a in 2(n−1)+2 rounds, i.e., a ∈ Win2n

P (D(A )). [Right to left] Assume
a ∈ Win2n

P (D(A )). This means that, for any O’s move b at a, P has a counter-
argument c from which she has a winning strategy forcing a win in at most 2n − 2
rounds. By IH, this is equivalent with c ∈ dn

A (∅) and by Definition 25.2 we conclude

that a ∈ dn+1
A (∅). This completes the proof.

As a consequence, an argument belongs to the grounded extension of an argumenta-
tion framework if and only if the proponent has a winning strategy for the dialogue
game for grounded (in that argumentation framework) instantiated at that argument.

Theorem 25.2 (Adequacy of the game for grounded) Let D(A ) = 〈N , S,t,m,p〉
be the dialogue game for grounded on a finitary graph A and a ∈ A:

a ∈ lfp.dA ⇐⇒ a ∈ WinP (D(A )).

Proof The claim is proven by the following series of equivalences:

a ∈ WinP (D(A ))⇐⇒a ∈
⋃

1≤k<ω

Win2(k−1)
P (D(A ))

⇐⇒a ∈
⋃

1≤k<ω

dk
A (∅)

⇐⇒a ∈ lfp.dA

The first equivalence holds by the winning conditions of Definition 25.7 and Def-
inition 25.9: P wins if and only if she can force the game to reach an unattacked
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argument in an even number of steps. The second equivalence holds by Lemma 25.2
and the third one by Theorem 25.1.

Theorems like Theorem 25.2 play a significant role in the development of a formal
theory of argumentation. Firstly, they guarantee that the argument game at issue is a
sound (if the proponent has a winning strategy then the the argument is grounded) and
complete (if the argument is grounded, then the proponent has a winning strategy)
proof procedure with respect to the corresponding semantics. Secondly, literature in
argumentation (e.g., [1]) has pointed out—convincingly in our view—that Dung’s
extensions can be soundly viewed as abstract models of standards of proof in debates,
and that argument games are a viable abstraction of procedural rules, or protocols,
for debates. (cf. [29]). Viewed in this light, adequacy is then the property of debate
protocols successfully implementing a given standard of proof, like the grounded
extension.15

25.5.2 Strategic Equivalence of Arguments
and Status Equivalence

When can two arguments in two attack graphs be considered equivalent from the
point of view of the above game? Intuitively, we might say that the two arguments
are equivalent if the proponent (respectively, the opponent) has a winning strategy
that allows her (respectively, him) to win the game in at most the same number of
rounds. More precisely:

Definition 25.10 (Strategic equivalence of arguments) Two pointed attack graphs
〈A , a〉 and 〈A ′, a′〉 are strategically equivalent if and only if the two following
conditions are met:

(i) For 0 ≤ n < ω, if P can always win D(A )@a in at most 2n rounds, then
she can always win D(A ′)@a′ in at most the same number of rounds, and vice
versa;

(ii) For 0 ≤ n < ω, if O can always win D(A )@a in at most 2n + 1 rounds, then
he can always win D(A ′)@a′ in at most the same number of rounds, and vice
versa.

In other words, two arguments are strategically equivalent whenever they support the
same ‘powers’ for the proponent and the opponent, that is, whenever they support
winning strategies (for the proponent or the opponent) that can force a win in the
game for grounded in at most the same number of rounds.

Example 25.3 Let us get back to Fig. 25.5. Consider arguments a and a′. These are
strategically equivalent: O has a winning strategy for the arguments, on both graphs,

15 We use the word “implement” here in the technical sense in which it is typically used in game
theory [25, Chap. 10] or social software [26].



696 D. Gabbay and D. Grossi

guaranteeing him a win in at most 1 round. Consider now arguments b and c′. P
has a winning strategy on both games. But while she always wins in 0 rounds from
b, she always wins in 2 rounds playing from c′. So, b and c′ are not strategically
equivalent.

Now, capitalizing on Lemma 25.1 and 25.2, this notion of strategic equivalence
can be shown to be just a game-theoretic variant of the notion of status equivalence:

Theorem 25.3 Let 〈A , a〉 and 〈A ′, a′〉 be two pointed attack graphs: A , a ≡d
A ′, a′ if and only if 〈A , a〉 and 〈A ′, a′〉 are strategically equivalent.

Proof Define the following set:

W (a) =

⎧
⎪⎪⎨

⎪⎪⎩

{
(�♦)n⊥ | a ∈ Win2(n−1)

P (D(A )), for 1 ≤ n < ω
}

∪{
(�♦)n� | �b : a � b and b ∈ Win2(n−1)

P (D(A )), for 1 ≤ n < ω
}

First of all, observe that, for any n, if ∃b : a � b and b ∈ Win2(n−1)
P (D(A ) then O

has a winning strategy in a that forces a win in 2(n − 1) + 1 rounds (in symbols,
a ∈ Win2n−1

O (D(A ))), and vice versa. So, by Lemma 25.1 and 25.2, it is not difficult
to see that 〈A , a〉 and 〈A ′, a′〉 are strategically equivalent if and only if W (a) =
W (a′) (recall that (�♦)n� ↔ ¬♦(�♦)n⊥). By the definition of W , Definition 25.5
and Lemma 25.1 it then follows directly that T(a) = T(a′).

We have thus shown that the modally defined notion of status equivalence for the
grounded extension has a natural strategic variant based on the argument game for that
extension. As a direct consequence of Fact 25.5 we also obtain that if two arguments
are frame bisimilar, then they are strategically equivalent.

Getting back to the Toulmin’s quote by which we opened the paper, Theorem 25.3
establishes an equivalence of arguments in terms of a procedural equivalence relating
the ways proponent and opponent are able to argue with respect to the argument at
issue. Two arguments in two different argumentations can be said to be equivalent
whenever the powers—intended as the availability of a strategy to force a win in a
fixed number of rounds—of the proponent and the opponent in the two graphs are the
same. This ties in well with power-based notions of game equivalence as put forth,
for instance, in [5, 8].

25.6 Games and Equations

In this final section we look at one more perspective on argument equivalence, based
on the equational semantics of abstract argumentation [15].
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25.6.1 The Equational Approach to Abstract Argumentation

Let us start with a few preliminaries. The equational approach to—or equational
semantics of—argumentation consists in extracting from a given finite attack graph
A = 〈A,�〉 a system of equations:

f (a1) = 1−max({ f (b) | a1 � b})
f (a2) = 1−max({ f (b) | a2 � b})
. . . . . .

f (an) = 1−max({ f (b) | an � b})

where a1, . . . , an is an enumeration of the arguments in A, and f : A −→ [0, 1]
is a function from the sets of arguments to the real values between 0 and 1.16 Intu-
itively, 0 represents a form of rejection of the argument, 1 a form of acceptance, and
intermediate values a form of undecidedness.

As shown in [15], each solution f to one such system of equations defines a
set of arguments {a ∈ A | f (a) = 1} corresponding to a complete extension (see
Table 25.1) of the underlying attack graph. The solution fg such that

{
a | fg(a) = 1

}

is minimal corresponds therefore to the grounded extension, i.e., to lfp.dA . So, the
equational perspective looks at how values of acceptance or rejection propagate
within the attack graph stabilizing into steady states—the solutions—that have a
nice correspondence with Dung’s theory.

Example 25.4 Consider the graph on the left of Fig. 25.1. The corresponding system
of equations is:

f (a) = 1−max({ f (b)})
f (b) = 1−max({ f (a)})

This gives three solutions: f ′(a) = 1 and f ′(b) = 0, f ′′(a) = 0 and f ′′(b) = 1,
f ′′′(a) = 0.5 and f ′′′(b) = 0.5. The latter minimizes the set

{
a | fg(a) = 1

}
and

corresponds therefore to the grounded extension.

25.6.2 Playing Argument Games Through Equations

We now look at how to build winning strategies for the proponent in an argument
game using solutions to the system of equation of a given attack graph.

Let A be an attack graph. Consider its argument game D(A )@a for grounded at
argument a and the equational theory for A corresponding to its grounded extension.
Consider a strategy for P with the following property:

16 Other systems making use of different mathematical functions instead of 1−max(.) are discussed
in [15]. See also [17] for an extensive exposition of the equational approach to argumentation.
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σ ∗P (a) ∈
{
a | fg(a) = max({b | b ∈ R(h(a))})} fort(a) =P (25.10)

Intuitively, the strategy consist in P maximizing at each of her choice nodes the
value fg among the arguments attacking the last argument in the dialogue. In other
words, P uses the information encoded by fg to pick her arguments.

We can show that if the set of dialogues generated by σ ∗P are all of even length
smaller than 2n then P can force a win in at most 2n rounds and vice versa:

Theorem 25.4 (Equationally defined winning strategies) Let D(A )@a be the argu-
ment game for grounded on A instantiated at a, for 0 ≤ n < ω:

∀a ∈ Tσ ∗P : �(a) = 2m ≤ 2n ⇐⇒ a ∈ Win2n
P

Proof (Sketch) [Right to left] If a ∈ Win2n
P then P can force a win in at most 2n

rounds. By its definition (Formula (25.10)), σ ∗P must be a winning strategy. So, for
any response σO , p(σ ∗P , σO ) = P and hence the length �(σ ∗P , σO ) must be even.
Suppose now towards a contradiction that �(σ ∗P , σO ) > 2n. P would then need in
one case more than 2n rounds to win the game, against the assumption. [Left to

right] Similar.

One might say that σ ∗P is some kind of ‘canonical’ strategy for P . As a direct
corollary we obtain: σ ∗P is a winning strategy if and only if fg(a) = 1. That is, a
strategy that maximizes fg at each choice node is winning for P if and only if the
fg value of the first argument is 1, i.e., if and only if a belongs to the grounded set.
Similarly, it directly follows that if two arguments are strategically equivalent, then
σ ∗P is winning (in a given number of rounds) for the first argument if and only if it
is winning (in the same number of rounds) for the second.

25.6.3 Bisimulation, Status Equivalence, Strategic Equivalence
and Equational Semantics

The equational semantics of abstract argumentation helps us in bringing together all
the results handled in the paper, highlighting a wealth of interconnections between
the modal, the strategic and the equational views of abstract argumentation theory.

Concretely, we have seen that frame bisimulation implies the status equivalence
of two arguments in two attack graphs, which is in turn equivalent to their strategic
equivalence in argument games seen as equivalence of ‘powers’ of strategies of the
proponent and the opponent. All these different types of equivalences force arguments
to obtain the same values in terms of Dung’s semantics (i.e., one belongs to the
grounded set if and only if the other also does) and Gabbay’s equational variants
(i.e., the value of fg is the same for both arguments), as well as guaranteeing that
equationally defined strategies for the proponent are winning on the first graph only
if they are winning on the second, and vice versa. Figure 25.7 depicts these relations
diagrammatically.
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, a ′, a′

Fact 5

,a ≡d
′,a′

Theorem 3

,a str.equiv. to ′,a′

Fact 4

σ ,a σ∗ ′,a′wins in wins in

Theorem 4

a ∈ lfpd a′∈ lfpd ′

Gabbay (2012)

fg(a)= fg(a′)= 1

⇐⇒

⇐⇒

Fig. 25.7 A diagram relating the notions of frame bisimulation, status equivalence, strategic equiv-
alence, sameness of values according to Dung’s grounded semantics, sameness of value according
to Gabbay’s equational semantics for the grounded set, and equivalence of ‘powers’ of equationally
defined winning strategies

25.7 Conclusions

The paper has touched upon several strands of research at the interface of Dung-
style abstract argumentation, modal logic, games and equational systems. From this
interdisciplinary vantage point the paper has advocated a notion of equivalence of
arguments abstracting from their content and based on the way they ‘behave’ with
respect to the other arguments in the attack graph with respect to some external
criterion of ‘justifiability’, which in this paper has been assumed to be the grounded
extension.

First of all, the paper has shown how modal logic puts at disposal a number
of notions and tools that can be readily used to provide an analysis of this sort of
equivalence of arguments based on their abstract patterns of interaction. Argument
equivalence has been based on the notion of modal equivalence, and thereby related to
the notion of (frame) bisimulation. This strengthens the many links between abstract
argumentation and modal logic that have been object of several recent studies (e.g.,
[11, 16, 19–22]).

Second, the paper has shown how this static view of equivalence has a natural
dynamic and strategic counterpart in argument games. In this view equivalent argu-
ments are such that they support strategies for the proponent and opponent having
the ‘same powers’ where power is intended as the possibility to guarantee a win
in at most a given number of rounds of the game. This, together with the previous
modal perspective, brings argumentation close to the thriving body of research into
games and logical dynamics [6, 8], and offers the picture of a theory that goes well
beyond its more ‘traditional’ boundaries of the static study of justification criteria
for arguments

Finally, Gabbay’s equational approach [15, 17] to abstract argumentation has been
used in relation to argument games as a method for constructing winning strategies
for the proponent, thereby providing a sort of ‘canonical’ characterization of strate-
gies viewed as local maximizers of the values provided by solutions to the equa-
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tional systems of the graphs. This lays an interesting bridge between the modal and
game-theoretic view of abstract argumentation and the rich body of techniques made
available by the equational view.
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Chapter 26
Three Etudes on Logical Dynamics
and the Program of Natural Logic

Lawrence S. Moss

Abstract This chapter has three discussions related to one of Johan van Benthem’s
longstanding interests, the areas of interaction of logic and linguistics. We review
much of what is known on the landscape of syllogistic logics. These are logics which
correspond to fragments of language. The idea in this area is to have complete and
decidable systems. Next we present a very simple form of dynamic logic, essentially a
logic of two worlds with a back-and-forth arrow between them. This is then related to
an issue in dynamic semantics, the logic of “and then”. Our last discussion is related to
an area which van Benthem again did so much to stimulate, the area of monotonicity
reasoning in language. We connect the topic to reasoning in elementary mathematics.
We formalize a monotonicity calculus following van Benthem and Sánchez Valencia,
and we interpret this on hierarchies of preorders rather than sets.

26.1 Introduction

26.1.1 Overview of Natural Logic

Johan van Benthem has been a leading figure in work at the border of logic and
linguistics which aims to craft logical systems which capture aspects of inference in
natural language. His work on this topic overlaps with the main line of this volume,
logical dynamics: he was the most forceful proponent of using dynamic logics in con-
nection to model cognitive transitions, and of using dynamic versions of predicate
logic and modal logic in connection with linguistic phenomena, and most recently
of the uses of dynamic epistemic and doxastic logics in connection with strate-
gic reasoning. Although many people work on dynamic logic in connection with
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programming language semantics, I think it is fair to say that Johan van Benthem
is the key connection between dynamic logic and fields like linguistics, cognitive
science, and economics. His proposals, insights, and experiences have always been
an inspiration to me.

The topic of this chapter in our tribute book concerns a strand of his work
connected to language that is not exactly the main line of work mentioned above,
but yet is fairly close. I refer to his work on natural logic. The ultimate goal is a
logical system (or many of them) which is strong enough to represent the most com-
mon inferential phenomena in language and yet is weak enough to be decidable.
The logical system should be tuned to the phenomena the way the Kripke semantics
of modal logic is tuned to relations.

This chapter is not the place to go into all of van Benthem’s contributions to logic
and language, but in addition to mentioning the main lines of work and what I think
is of lasting importance about them, I want to offer some études: simple versions
of more complex phenomena that could be interesting. They come mainly from my
teaching, and I would like to think that they could be useful to others.

The subject of natural logic might be defined as “logic for natural language,
logic in natural language.” As mentioned in van Benthem [3], his work on logic and
semantics led to the realization that the “proposed ingredients” of a logical system
for linguistic reasoning would consist of several “modules”:

(a) Monotonicity Reasoning, i.e., Predicate Replacement,
(b) Conservativity, i.e., Predicate Restriction, and also
(c) Algebraic Laws for inferential features of specific lexical items.

All of these topics are prominent in his work starting perhaps with generalized
quantifiers and conservativity (b) in the 1980s. We shall have something to say about
all of them.

In a sense, point (c) on “algebraic” laws of specific lexical items might be covered
by syllogistic reasoning; turning things around, the principles of syllogistic reason-
ing in an enriched setting can indeed start to look like algebraic laws. Syllogistic
reasoning deals with very simple sentences; to a linguist its subject matter would not
count as syntax in any serious sense. However, it is possible to go beyond the very
limited fragment of the classical syllogistic and add transitive verbs, relative clauses,
and adjectives. One still has a very limited syntax, but at least the resulting fragment
has recursion (and so it is infinite). We commence with a discussion of what must be
the smallest logical system in existence, the system where all of the sentences are of
the form All X are Y ; no other sentences are considered. Focusing on such a small
fragment allows us to raise the general issues of logic very clearly and succinctly.

Our second étude concerns dynamic logic itself. I would like to offer a particularly
easy way into the subject and into modal logic itself. Just as the syllogistic logic of
All is arguably the simplest logical system, the logics in Sect. 26.3 are arguably the
simplest modal and dynamic logics.

The last, and most sustained topic of the chapter has to do with the natural logic
program initiated by [1, 2], and elaborated in [10]. (So this use of natural logic is
somewhat narrower than what I have in mind in this contribution.) It develops a formal
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approach to monotonicity on top of categorial grammar (CG). This approach makes
sense because the semantics of CG is given in terms of functions, and monotonicity
in the semantic sense is all about functions. The success story of the natural logic
program is given by the monotonicity calculus, a way of determining the polarity of
words in a given sentence. Here is what this means, based on an example. Consider
a very simple sentence:

Every dog barks (26.1)

Also, consider the following order statements:

old dog ≤ dog ≤ animal
barks loudly ≤ barks ≤ vociferates

(26.2)

Think of these as implications: every old dog is a dog, every dog is an animal, etc.
Suppose one is reasoning about a situation where (26.1) holds, and also has the
inequalities in (26.2) as background information. Then it follows that every old dog
barks and also that every dog vociferates. It would not necessarily follow that
every animal barks and also that every dog barks loudly. That is, the inferences
from (26.2) go “down” in the second argument and “up” in the second. We indicate
this by writing every dog↓ barks↑. We also have other similar findings:

no dog↓ barks↓
not every dog↑ barks↓
some dog↑ barks↑
most dogs× bark↑

The × in the last line indicates that there is no inference either way in the first
argument of most. It is clear from these examples that the “direction of inference” is
not determined by the words involved, but rather by aspects of the syntactic structure;
however, something having to do with the particular determiners must in addition be
involved. By the polarity of a word occurrence we mean the up and down arrows.
Johan van Benthem’s seminal idea in this area was to propose a systematic account
of polarity, an account which works on something closer to real sentences than to
logical representations. We present a version of it in Sect. 26.4.

26.2 The Simplest Fragment “of All”

We begin our contribution with the simplest logical fragment whatsoever.
The sentences are all of the form All p are q. So we have a very impoverished
language, with only one kind of sentence. But we’ll have a precise semantics, a
proof system, and a soundness/completeness theorem which relates the two.
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Syntax and semantics

Our syntax is extremely small. We start with a collection P of unary atoms (for
nouns). We write these as p, q, . . ., Then the sentences of this first fragment A are
the expressions

All p are q

where p and q are any atoms in P.
The semantics is based on models. A model M for this fragment A is a structure

M = (M, [[ ]])

consisting of a set M , together with an interpretation [[p]] ⊆ M for each noun p ∈ P.
The main semantic definition is truth in a model:

M |= All p are q iff [[p]] ⊆ [[q]]

We read this in various ways, such as M satisfies All p are q, or All p are q is true
in M.

From this definition, we get two further notions: If � is a set of sentences, we say
that M |= � iff M |= ϕ for every ϕ ∈ �. Finally, we say that � |= ϕ iff whenever
M |= �, also M |= ϕ. We read this as � logically implies ϕ, or � semantically
implies ϕ, or that ϕ is a semantic consequence of �.

With the syntax and semantics in place, we turn to the proof system for A. A proof
tree over a set � is a finite tree T whose nodes are labeled with sentences, and each
node is either an element of �, or comes from its parent(s) by an application of one
of the two rules below:

All p are p
All p are n All n are q

All p are q

� � ϕ means that there is a proof tree T over � whose root is labeled ϕ.
The soundness of the system is trivial, and so we shall prove the completeness.

Let � be a set of sentences in the fragment. Define u ≤� v to mean that

� � All u are v. (26.3)

The rules of the logic imply that ≤� is always a preorder: reflexive and transitive.
Suppose that � |= All p are q. Consider the model M whose universe is the set

P of nouns in the fragment, and with

[[u]] = {v : v ≤ u}.

It is easy to check that with this definition, all sentences in � hold in the model.
Returning to our overall task, we now see that [[p]] ⊆ [[q]] in our model. But p ∈ [[p]],
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Fig. 26.1 Some systems of natural logic

via a one-point tree. So p ∈ [[q]] as well. This means that p ≤ q, and that means that
� � All p are q, as desired.

26.2.1 More on Syllogistic Logics

Quite a bit more is now known about syllogistic logics, and at this point there is the
makings of a landscape of such logics.

This section presents logical systems modeled on syllogistic inference that attempt
to model aspects of natural language inference. Most of these are listed in the chart
in Fig. 26.1, but to keep the chart readable I have left off several of them.

The chart mostly consists of logical languages, each with an intended semantics.
For example, FOL at the top is first-order logic. (Very short explanations of the
systems appear to the right of the vertical line.) In the chart, the lines going down mean
“subsystem,” and sometimes the intention is that we allow a translation preserving the
intended semantics. So all of the systems in the chart may be regarded as subsystems
of FOL with the exception of S≥.
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The smallest system in the chart is A, a system even smaller than the classical
syllogistic. Its only sentences are All p are q where p and q are variables. It is our
intent that these variables be interpreted as plural common nouns of English, and
that a model M be an arbitrary set M together with interpretations of the variables
by subsets of M .

The next smallest system in the chart is S, a system still even smaller than the
classical syllogistic. It adds sentences Some p are q to A.

Moving up, S≥ adds additional sentences of the form there are at least as many
p as q. The additions are not expressible in FOL, and we indicate this by setting S≥
on the “outside” of the “Peano–Frege Boundary.”

The language S† adds full negation on nouns to S. For example, one can say All
p are q with the intended reading “no p are q.” One can also say All p are q ,
and this goes beyond what is usually done in the syllogistic logic. The use of the
† notation will be maintained throughout these notes as a mark of systems which
contain complete noun-level negation.

Moving up the chart we find the systems R, RC, R†, and RC†. The system
R extends S by adding verbs, interpreted as arbitrary relations. (The ‘R’ stands
for ‘relation.’) This system and the others in this paragraph originate in [9]. So R
would contain Some dogs chase no cats, and the yet larger system RC would
contain relative clauses as exemplified in All who love all animals love all cats.
The languages with the dagger such as S† and R† are further enrichments which
allow subject nouns to be negated. This is rather un-natural in standard speech, but it
would be exemplified in sentences like Every non-dog runs. The point: the dagger
fragments are beyond the Aristotle boundary in the sense that they cannot be treated
by the relatively simpler syllogistic logics. The only known logical systems for them
use variables in a key way. The line marked “Aristotle” separates the logical systems
above the line, systems which can be profitably studied on their own terms without
devices like variables over individuals, from those which cannot. The chart contin-
ues with the addition of comparative adjective phrases with the systems RC(tr)
and RC†(tr).

As a methodological point, we greatly prefer logical systems which are decidable,
and in fact we would like to clarify the relationship of deduction in language and
computational complexity theory. There are many decidable fragments of first-order
logic, and even of second-order logic, but sadly these do not seem to be of very
great relevance for representing linguistic inference. However, as the chart shows,
there are many decidable logics for natural language inference, both of the purely
syllogistic variety and those which also use variables.

26.3 Prolegomena to Dynamic Semantics

Dynamic semantics is the central thrust of this book, so surely it will be introduced
in many of the individual articles. Nevertheless, I would like to offer an introduction
that I think is (a) one of the simplest possible, and thus may be useful for didactic
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purposes; and (b) connected to an issue in natural language semantics, the difference
between and and and then.

Ronnie is a rat1 who is very interested in what he sees around him. His owners
own a company that manufactures two-chambered rat houses. Each day, they put him
in a different house. He runs back and forth all day long. At any given time, Ronnie
is very interested in what he finds in the room he currently is in, and also what he
sees in the room he is not in. For example, here is one of the houses.

1: food , maze 2: food ,
treadmill

(26.4)

In room 1, there is food and a maze (and no treadmill); in room 2, there is food and
a treadmill (and no maze).

He’s a good reasoner, and so he needs a logical language in which to make
assertions. The atomic sentences of this language should correspond to the presence
of objects familiar to Ronnie. We’ll write these atomic sentences as water , food,
maze, etc.

Ronnie himself does not have access to the room numbers in the various houses.
They are written on the outside, and he is stuck indoors. All that he can do is talk (in a
particular room) about what is in the current room, what is in the other room, and
more complicated variations on these assertions. By “more complicated variations”
we mean combinations using the standard sentential connectives¬,∧,∨,→, and↔,
and (crucially) a modal operator ∗ that can be read as “in the other room.” We want
the language to work as illustrated below:

English L(∗)
there is water in the room water
there is food in the other room, and a maze in this room (∗food) ∧ maze
after switching rooms twice, the room has a maze ∗∗maze

Here is how we can formalize this sort of reasoning. We add a new operator ∗ to
basic propositional logic, and we read this operator as “switch”. The resulting static
switching language L(∗) has complex sentences in it like

∗(treadmill → ∗¬maze).

This would say that in the other room from where he currently is, if there is a treadmill,
then in the other room (from there), there is no maze.

Models

A model for L(∗) is an ordered pair M = (R1, R2) of sets of atomic sentences. We’ll
draw them as graphs the way we have been doing. So what we drew as (26.4) above

1 This material is adapted from [7].
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is technically the ordered pair

({food,maze}, {food, treadmill}).

The picture and the formal representation have the same content: in room 1, there
is food and a maze (and no treadmill); in room 2, there is food and a treadmill
(and no maze).

For the most part, the semantics is classical: for atomic p, i ‖− p iff p ∈ i
(remember that technically the rooms of houses are sets of atomic propositions).
The exception is the ∗ operator. It works as follows:

1 ‖−∗ϕ iff 2 ‖−ϕ (26.5)

2 ‖−∗ϕ iff 1 ‖−ϕ.

Now the main semantic notions for this logic are as follows:

ϕ is satisfiable means ϕ is true in some room of some house

� |=G ϕ means for all houses M,
if all sentences in � are true in both rooms of M,
then ϕ is also true in both rooms

� |=L ϕ means for all houses M,
if all sentences in � are true in a given room i of M,
then ϕ is also true in this same room i

In modal terms, we are studying Kripke models whose accessibility relation is a
transposition.

Remark 26.1 Here is an important point about our semantics of the binary connec-
tives ∧, ∨,→, and↔ in in this logic. We consider some particular model, call it M.
Let us consider an example of the semantics, say 1 ‖− (∗p)∧q. To evaluate this, we
check whether this sentence is true in M or not, we check to see if 1 ‖−∗p and also
if 1 ‖− q. It is tempting to think that after we see whether 1 ‖−∗p, we are in room
2 rather than room 1. So on this view, we should ask about 1 ‖−∗p and 2 ‖− q.
Indeed, this reflects the intuitions about moving between the rooms of a rat house
with which we began this section. However natural this is, this is nevertheless not
how the semantics actually works. The point of our later discussion is to reformulate
the semantics to reflect this more “dynamic” process of evaluation.

To get an idea for what is going on with the two different semantic notions, note
that p |=G ∗p but p �|=L ∗p. That is if we assume that p is true in both rooms of a
given house, then ∗p will also be true in both rooms. This verifies that p |=G ∗p.
To see that p �|=L ∗p, consider a house where p is true in exactly one room.

It is not hard to check the following facts. First, the notions of |=L ϕ and
|=G ϕ coincide. Second, consider the axiom system presented below. It defines a
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Hilbert-style proof system.

Axioms All tautologies
(Involution) ϕ→ ∗∗ϕ
(Determinacy) ∗¬ϕ ↔ ¬∗ϕ
(Normality) ∗(ϕ→ ψ)→ (∗ϕ→ ∗ψ)

Rules (Modus Ponens) From ϕ and ϕ→ ψ, infer ψ
(Switch Rule) From ϕ, infer ∗ϕ.

When hypotheses are used, we have

ϕ1, . . . , ϕn |=G ψ iff ϕ1, . . . , ϕn � ψ.

The basic idea is that in the proof system, we can convert every sentence ϕ into a
disjunction of state descriptions: conjunctions of the form

+ p1 ∧ · · · ∧ + pn ∧ ∗+ p1 ∧ · · · ∧ ∗+ pn

where each + is either nothing or a negation sign, and p1, . . . , pn are the atomic
propositions in ϕ. It is also possible to formulate a natural deduction proof system
�N D for this logic, using specialized introduction and elimination rules for reasoning
about the other room. When one does this, we get a correspondence with the local
notion of validity:

ϕ1, . . . , ϕn |=L ψ iff ϕ1, . . . , ϕn �N D ψ.

26.3.1 Dynamic Semantics of “and Then”

So far, the point of this first part of our étude is that it gives what appears to be the
simplest modal setting, so simple that the complete analysis of the logic is a minor
variation on propositional logic, even simpler perhaps than what goes on with modal
logics like S5. But we are not so interested in this chapter with the further study
of L(∗). Instead, we wish to reconsider our semantics of the conjunction, adding
a dynamic reading. So this would be appropriate for symbolizing the English “and
then” operation. We’ll write this using the semicolon ;. We don’t want ϕ ; ψ to
be equivalent to ϕ ; ψ , since the former says “from where we start, ϕ is true, and
from wherever we end up in verifying that assertion, ψ will then be true.” However,
we have an important architectural change to the semantics of our logic. Instead of
defining a relation i |= ϕ, we need a relation of beginning and ending,

i[ϕ] j
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meaning “if we start in room i , we can verify ϕ and we would end up in room j .”
The main clauses here are

i[p] j if i = j and p ∈ i
i[∗ϕ] j if (3− i)[ϕ] j
i[ϕ ; ψ] j if for some k, i[ϕ]k and then k[ψ] j
i[ϕ ∧ ψ] j if i[ϕ] j and i[ψ] j.

(26.6)

For example, in our model from (26.4)

1[∗treadmill ; ¬maze]2.

Indeed, we get a few equivalences:

ϕ ; (ψ ; χ) ↔ (ϕ ; ψ) ; χ
∗(ϕ ; ψ) ↔ ∗ϕ ; ψ
p ; ϕ ↔ p ∧ ϕ
∗p ; ϕ ↔ ∗(p ∧ ϕ)
(ϕ ∨ ψ) ; χ ↔ (ϕ ; χ) ∨ (ψ ; χ)
ϕ ; (ψ ∨ χ)↔ (ϕ ; ψ) ∨ (ϕ ; χ).

The third and fourth properties are just for atomic p, or more generally for sentences
with an even ∗-height. (It should also be noted that this semantics is deterministic:
if i[ϕ] j and i[ϕ]k, then j = k.)

With a little more work, one can see that the laws above are complete: all sentences
may be written without ; using the laws, and so these laws together with our earlier
ones are a complete set for the fragment.

One could and should go further, all the way to dynamic logic itself. In that setting,
we would have not only sentences but also programs. The programs in this fragment
would be ∗, the test programs ?ϕ for sentences ϕ, and programs obtained from these
by composition. The sentences are then of the form [π ]ϕ, where π is a program. It
is possible to motivate dynamic logic from this simple example. The point for us is
that modeling the expression and then is a way into all of this material.

26.4 Monotonicity and Polarity Explained
by an Example from Algebra

Phenomena related to monotonicity and polarity in language have their subtleties
to be sure, but they are also easy to explain via examples. Consider the following
sentences.

1. Some bears↑ dance↑.
2. No bears↓ dance↓.
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3. Most bears dance↑.
4. Not every bear↑ dances↓.
5. John sees every bear↓.
6. Mary sees no bear↓.
7. Any bear↓ in Hawaii would prefer to move to Alaska.
8. If any bear↓ dances, Harry will be happy.
9. If you play loud enough music, any bear↓ will start to dance.

10. Doreen didn’t see any bears↓ in her dorm room.

Here is an explanation of the arrow notations. Suppose we are in a situation in which
one of these sentences is true, and the arrow points up. If we replace that word by a
“bigger” word, the sentence again is true (in the same situation). Similarly, replacing
a word marked with a downward arrow with a “smaller” word again preserves truth.
What we mean by “bigger” and “smaller” for nouns can be explained by subsets; for
example brown bear≤bear≤animal. We shall call these ↑ and ↓ notations polarity
indicators. One might think from many examples that every noun occurrence in a
sentence has one of the two polarities ↑ or ↓, sentence (3) above shows that this is
not to be.

It is clear from our examples that the words in a sentence have something to do
with these polarity indicators. But the polarity indicators are not properties of words
alone; they’re properties of words in a context.

Furthermore, this phenomenon is not particular to nouns in the first place. One
can do the same thing with other categories: from every dog↓ barks↑ and barks
≤ vociferates, we conclude that every dog↓ vociferate↑. From two ≤ three, we
conclude that at most two≤ at most three, and also that at least three≤ at least
two (notice the difference). And then we want to mark polarities on determiners,
as in:

(at least three)↑ people in town have (at most four)↑ cousins
if (at least two)↓ people read this example, I will be happy.

The last issue we wish to bring up has to do with the word any. Looking back at
examples (7–10) above, we can see that as a rule, any means every when both have
the polarity ↑, and any means some when both have the polarity ↓. (Sadly, there is
more to say on any, but for this chapter, we shall operate under these assumptions.)

The basic issue in van Benthem’s program of natural logic was to give an account
of how all of this works: what is the relation of monotonicity and polarity? How can
we determine the polarity of words and sub-expressions inside a sentence? How can
we devise a logical system that takes monotonicity and polarity into account?

We shall return to a general discussion on these matters after we make a digression
into algebra, where things are simpler. But as a transition, let me quote Bernardi’s
explanation of the matter:
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The differences between monotonicity and polarity could be summarized in a few words by
saying that monotonicity is a property of functions . . .. On the other hand, polarity is a static
syntactic notion which can be computed for all positions in a given formula. This connection
between the semantic notion of monotonicity and the syntactic one of polarity is what one
needs to reach a proof theoretical account of natural reasoning and build a natural logic [4].

26.4.1 Monotonicity in Elementary Mathematics

This issue of monotonicity in language is simplified somewhat when we move to a
simpler setting, monotonicity in elementary mathematics. Consider a function on the
reals such as

f (v,w, x, y, z) = x − y

2z−(v+w)
. (26.7)

Suppose we fix numerical values for the variables v, w, x , y, z, and then suppose we

also increase x a bit to some number x ′ ≥ x . Does the value of f go up or down?
That is, which is true:

f (v,w, x, y, z) ≤ f (v,w, x ′, y, z) or f (v,w, x ′, y, z) ≤ f (v,w, x, y, z)

A moment’s thought shows that the first option is the correct one.
Next, suppose we fix values but this time move y up to some number y′. This time,

the value goes down. We also can study z, v, and w the same way. We could summarize
all of the observations by writing

f (v↑,w↑, x↑, y↓, z↓).

The arrows are indicators of polarity.
The example in (26.7) oversimplifies things because each variable occurs only

once in the expression on the right. Really we would like to think about functions like
g(x, y) = (x− y)/2x . And then we would want to decorate the different occurrences
of variables with polarity indicators: g(x, y) = (x↑ − y↓)/2x↓ .

At this point, we turn the expressions of algebra into a formal language, and we
use a syntax with higher-type operations. That is, we start with a single base type, r
(for reals). We take our variables v,w, x, y, z to have type r . And then we have typed
constants

plus : r → (r → r) minus : r → (r → r)
times : r → (r → r) div2 : r → (r → r).

(26.8)

Please note that we have curried the syntax: instead of two-place functions of type
r × r → r , we have functions from type r to functions of type r → r . Also, div2 is
not supposed to be the usual division. The idea is that div2(x)(y) should be x ÷ 2y ,
not x/y. This complication is to make everything monotone, and I hope it’s not too
confusing.



26 Three Etudes on Logical Dynamics 717

We get terms in Polish notation:

minus : r → (r → r) x : r
minus x : r → r y : r

minus x y : r .

To fit trees like this on a page, let’s drop the types. The function f involved in our
basic example of (26.7) is then typed as

div2

minus x
minus x y
minus x y

div2 minus x y

minus z
minus z

plus v
plus v w
plus v w

minus z plus v w
div2 minus x y minus z plus v w .

Can we determine the polarities of the variables from the tree? The first algorithm
to do this is due to van Benthem; it was then explored in Sanchez.

We would like to present this using two colors. Instead, we do it using explicit
down-arrows ↓ for the negative nodes. We won’t show up-arrows ↑ in order to
simplify the notation. So we go from the root to the leaves, either leaving nodes
unmarked, or marking them↓. The overall root is unmarked. (However, to understand
the overall algorithm, we’ll need to understand what would happen if we started with
the root marked↓.) The rule for propagating the↓ notation is that we maintain arrows
up the tree, except that the right children of nodes marked minus and div2 flip arrows.
The end result would be

div2

minus x
minus x y↓

minus x y
div2 minus x y

(minus)↓ z↓

(minus z)↓

plus v
plus v w
plus v w

(minus z plus v w)↓
div2 minus x y minus z plus v w . (26.9)

This agrees with what we saw before:

f (v↑,w↑, x↑, y↓, z↓).

Let us try to understand why this is the case. For each of our types σ , we have
a semantic space [[σ ]]. The definition is by recursion on σ : [[r ]] = R (the real
numbers), and

[[σ → τ ]] = [[σ ]] → [[τ ]] (26.10)

(the set of all functions from [[σ ]] to [[τ ]]). Each of our constants gets a semantics,
and we have

[[plus]] ∈ [[r→ (r → r)]],
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and similarly for the other operators. Every term with variables gets a semantics

[[t (v1, . . . , vn)]] ∈
n︷ ︸︸ ︷

([[r ]] × [[r ]] × · · · [[r ]])→ [[r ]].

Lemma 26.1 (van Benthem) Let t (v1, . . . , vn) be a term in which each variable
occurs exactly once. Suppose we run the algorithm starting with the root colored
with one of the two colors. Then [[t (v1, . . . , vn)]] is a monotone function of the leaves
with the same color, and an antitone function of the leaves with the opposite color.

The proof is by induction on the term t (v1, . . . , vn).
However, this makes the determination of polarities an external feature of the

syntax tree, something determined by an algorithm. We might like to have it work
“in situ.” Instead of using an algorithm, we’ll take polarity-marked function symbols
to be the lexical items (“letters”) in a categorial grammar; later, we’ll do the same
thing with polarity-marked words of English.

To see what this means, we’ll complicate our type system a little. Instead of
having sets as our semantic spaces [[τ ]], we add some structure and take preorders:
sets together with a reflexive and transitive order. We use letters like P and Q for
preorders. As opposed to (26.10), we’ll take [[σ → τ ]] to be the set of monotone
(order-preserving) functions from [[σ ]] to [[τ ]]. This set is itself a preorder, using the
pointwise order:

f ≤ g in [[σ → τ ]] iff for all x ∈ [[σ ]], f (x) ≤ g(x) in [[τ ]]. (26.11)

Finally, in addition to forming new types by using function spaces, we’ll also use
opposite. For any preorder P, −P is the preorder with the same points as P but with
x ≤ y in −P iff y ≤ x in P.

This means that we now have [[r ]] = (R,≤), [[−r ]] = −[[r ]] = (R,≥), [[r →
r ]] = the monotone functions from (R,≤) to itself; [[r → −r ]] = the antitone
functions from (R,≤) to itself; [[−r → −r ]] = the antitone functions from (R,≤)
to itself (again, but with the opposite order). And now we revise our declarations in
(26.8), as follows:

v+ : r
...

z+ : r
plus+ : r → (r → r)
minus+ : r → (−r → r)
times+ : r → (r → r)
div2+ : r → (−r → r)

v− : −r
...

z− : −r
plus− : −r → (−r →−r)
minus− : −r → (r →−r)
times− : −r → (−r →−r)
div2− : −r → (r →−r).

We interpret them in the obvious way: for example,

[[minus+]](x)(y) = x − y = [[minus−]](x)(y).
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Probably the important ones to look at are the typings of minus+ and minus−; our
remarks hold also for div2+ and div2−, mutatis mutandis. For minus+, note that
for fixed x , [[minus+]](x) is an antitone function from R to itself: if y ≤ y′, then
x − y′ ≤ x − y. Thus each [[minus+]](x) is an element of the preorder [[−r → r ]].
And if x ≤ x ′, then [[minus+]](x) ≤ [[minus+]](x′) in [[−r → r ]]. To see this, note
that for y ∈ [[−r ]], x − y ≤ x ′ − y. The same considerations apply to minus−.

At this point, we can go back and build terms out of our new syntax. For example:

div2+

minus+ x+
minus+ x+ y−

minus+ x+ y−

div2+ minus+ x+ y−

minus− z−
minus− z−

plus+ v+

plus+ v+ w+

plus+ v+ w+

minus− z− plus+ v+ w+

div2+ minus+ x+ y− minus− z− plus+ v+ w+ . (26.12)

Compare this with (26.9). I have omitted the types, but the important one is the type
at the root, which is r . In fact, the only way to derive

div2 minus x y minus z plus v w : r

with any polarity indicators is the one in (26.12). The difference between our work
in (26.9) and (26.12) is that the second presentation didn’t depend on an algorithm,
the polarities appear on the lexical items (the function symbols and variables).

What is missing at this point is a soundness result like Lemma 26.1. We’ll get this
after we revisit the system in the linguistic direction.

26.4.2 Higher-Order Terms Over Preorders
and the Context Lemma

After our detour into monotonicity in algebra, we reconsider the project of grafting
monotonicity and polarity information into the sentences derived from categorial
grammars. The work below is self-contained, but it would be best appreciated by
someone who is familiar with the basic architecture of categorial grammar; see van
Benthem [2], for example.

Fix a set T0 of basic types. Let T1 be the smallest superset of T0 closed in the
following way:

1. If σ, τ ∈ T1, then also (σ, τ ) ∈ T1.
2. If σ ∈ T1, then also −σ ∈ T1.

Let ≡ be the smallest equivalence relation on T1 such that the following hold:

1. −(−σ) ≡ σ .
2. −(σ, τ ) ≡ (−σ,−τ).
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3. If σ ≡ σ ′, then also −σ ≡ −σ ′.
4. If σ ≡ σ ′ and τ ≡ τ ′, then (σ, τ ) ≡ (σ ′, τ ′).
Definition 26.1 T = T1/≡. This is the set of types over T0.

The operations σ �→ −σ and σ, τ �→ (σ, τ ) are well-defined on T . We always
use letters like σ and τ to denote elements of T , as opposed to writing [σ ] and [τ ].
That is, we simply work with the elements of T1, but identify equivalent types.

Definition 26.2 Let T0 be a set of basic types. A typed language over T0 is a collec-
tion of typed variables v : σ and typed constants c : σ , where σ in each of these is an
element of T . We generally assume that the set of typed variables includes infinitely
many of each type. But there might be no constants whatsoever. We use L to denote
a typed language in this sense.

Let L be a typed language. We form typed terms t : σ as follows:

1. If v : σ (as a typed variable), then v : σ (as a typed term).
2. If c : σ (as a typed constant), then c : σ (as a typed term).
3. If t : (σ, τ ) and u : σ , then t (u) : τ .

Frequently we do not display the types of our terms.

Monotone functions on preorders, again

If P and Q are preorders, we let [P,Q] be the preorder of all monotone functions
from P to Q. For a set X , we write X for the flat preorder on X : x ≤ y iff x = y.
We also write P×Q for the obvious product.

Proposition 26.1 For all preorders P, Q, and R, and all sets X:

1. For each p ∈ P, the function appp : [P,Q] → Q given by appp( f ) = f (p) is
an element of [[P,Q],Q].

2. [P×Q,R] ∼= [P, [Q,R]].
3. [X,�] ∼= P(X).
4. −(−P) = P.
5. [P,−Q] = −[−P,Q].
6. [−P,−Q] = −[P,Q].
7. If f : P→ Q and g : Q→ R, then g ◦ f : P→ R.
8. If f : P→−Q and g : Q→−R, then g ◦ f : P→ R.
9. −(P×Q) ∼= −P×−Q.

10. X ∼= −X.
11. −[X,P] ∼= [X,−P].
Semantics

For the semantics of our higher-order language L we use models M of the fol-
lowing form. M consists of an assignment of preorders σ �→ [[σ ]] on T0, together
with some data which we shall mention shortly. Before this, extend the assignment
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σ �→ [[σ ]] to T1 by

[[(σ, τ )]] = [[[σ ]], [[τ ]]]
[[−σ ]] = −[[σ ]].

An easy induction shows that if σ ≡ τ , then [[σ ]] = [[τ ]]. So we have [[P]]σ for
σ ∈ T . We use Pσ to denote the set underlying the preorder [[σ ]].

The rest of the structure of a model M consists of an assignment [[c]] ∈ Pσ for
each constant c : σ , and also a typed map f ; this is just a map which to any typed
variable v : σ gives some f (v) ∈ Pσ .

Ground Terms and Contexts

A ground term is a term with no free variables. Each ground term t : σ has a
denotation [[t]] ∈ Pσ defined in the obvious way:

[[c]] = is given at the outset for constants c : σ
[[t (u)]] = [[t]]([[u]]).

A context is a typed term with exactly one variable, x . (This variable may be of
any type.) We write t for a context. We’ll be interested in contexts of the form t (u).
Note that if t (u) is a context and if x appears in u, then t is a ground term; and
vice-versa.

In the definition below, we remind you that subterms are not necessarily proper.
That, is a variable x is a subterm of itself.

Definition 26.3 Fix a model M for L. Let x : ρ, and let t : σ be a context. We
associate to t a set function

ft : Pρ → Pσ

in the following way:

1. If t = x , so that σ = ρ, then fx : Pσ → Pσ is the identity.
2. If t is u(v) with u : (τ, σ ) and v : τ , and if x is a subterm of u, then ft is

app[[v]] ◦ fu . That is, ft (u) is

a ∈ Pρ �→ fu(a)([[v]]).

3. If t is u(v) with u : (τ, σ ) and v : τ , and if x is a subterm of v, then ft is [[u]] ◦ fv.
That is, ft is

a ∈ Pρ �→ [[u]]( fv(a)).

The idea of ft is that as a ranges over its interpretation space Pρ , ft (a) would
be the result of substituting various values of this space in for the variable, and then
evaluating the result.
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Notice that we defined ft as a set function and wrote ft : Pρ → Pσ ; it is not
immediately clear that ft is monotone. This is the content of the following result.

Lemma 26.2 (Context Lemma) Let t be a context, where t : σ and x : ρ. Then ft

is an element of [[[ρ]], [[σ ]]].
This Context Lemma is the main technical result on this system. It is a refor-

mulation of van Benthem’s result, Lemma 1. We’ll see some examples in the next
section.

The Context Lemma also allows one to generalize our work from the applicative
(AB) grammars to the setting of categorial grammar (CG) using the Lambek Calculus.
In detail, one generalizes the notion of a context to one which allows more than
one free variable but requires that all variables which occur free have only one
free occurrence. Suppose that x1 : ρ1, . . . , xn : ρn are the free variables in such a
generalized context t (x1, . . . , xn) : σ . Then t defines a set function ft : ∏i Pρi →
Pσ . A generalization of the Context Lemma then shows that ft is monotone as a
function from the product preorder

∏
i [[ρi ]]. So functions given by lambda abstraction

on each of the variables are also monotone, and this amounts to the soundness of the
introduction rules of the Lambek Calculus in the internalized setting.

26.4.3 An Example Grammar

We present a small example to illustrate the ideas. First, we describe a language L
corresponding to this vocabulary. We take our set T0 of basic types to be {t, pr}.
(These stand for truth value and property. In more traditional presentations in the
Montague grammar/categorial grammar tradition, the type pr might be (e, t), where
e is a type of entities.)

Here are the constants of the language L and their types:

1. We have typed constants

every↑ : (−pr, (pr, t))
some↑ : (pr, (pr, t))
no↑ : (−pr, (−pr, t))
any↑ : (−pr, (pr, t))
if : (−t, (t, t))

every↓ : (pr, (−pr,−t))
some↓ : (−pr, (−pr,−t))
no↓ : (pr, (pr,−t))
any↓ : (−pr, (−pr,−t)).

2. We fix a set of unary atoms corresponding to some plural nouns and lexical verb
phrases in English. For definiteness, we take cat, dog, animal, runs, and walks.
Each unary atom p gives two typed constants: p↑ : pr and p↓ : −pr .

3. We also fix a set of binary atoms corresponding to some transitive verbs in English.
To be definite, we take chase, see. Every binary atom r gives four type constants:
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r↑1 : ((pr, t), pr)

r↓1 : ((−pr,−t),−pr)

r↑2 : ((−pr, t), pr)

r↓2 : ((pr,−t),−pr).

This completes the definition of our typed language L.
These notations ↑ and ↓ are mnemonic; we could do without them.
As always with categorial grammars, a lexicon is a set of pairs consisting of words

in a natural language together with terms. We have been writing the words in the
target language in italics, and then terms for them are written in sans serif. It is very
important that the lexicon allows a given word to appear with many terms. As we
have seen, we need every to appear with every↑ and every↓, for example. We still
are only concerned with the syntax at this point, and the semantics will enter once
we have seen some examples.

Examples of Typed Terms and Contexts

Here are a few examples of typed terms along with their derivations.

every↑ : (−pr, (pr, t)) man↓ : −pr

every↑man↓ : (pr, t) walks↑ : pr

every↑man↓walks↑ : t

some↑ : (pr, (pr, t)) man↑ : pr

some↑man↑ : (pr, t) walks↑ : pr

some↑man↑walks↑ : t

no↑ : (−pr, (−pr, t)) man↓ : −pr

no↑man↓ : (−pr, t) walks↓ : −pr

no↑man↓walks↑ : t .

We similarly have the following terms:

some↑(dog↑)(chase↑1 (every↑(cat↓))) : t
some↑(dog↑)(chase↑2 (no↑(cat↓))) : t
no↑(dog↓)(chase↓2 (no↑(cat↑))) : t
no↑(dog↓)(chase↓1 (every↓(cat↑))) : t.

All four different typings of the transitive verbs are needed to represent sentences of
English.

Here is an example of a context: no↑(x : −pr)(chase↓1 (every↓(cat↑))) : t .
So x is a variable of type −pr . In any model, this context gives a function from



724 L. S. Moss

interpretations of type −pr to those of type −t . The Context Lemma would tell
us that this function is a monotone function. Turning things around, it would be an
antitone function from interpretations of type −pr to those of type −t .

If.

We have taken if to be of type (−t, (t, t)). We also have

every↓ : (pr, (−pr,−t)) dog↑ : pr

every↓ dog↑ : (−pr,−t) walks↓ : −pr

every↓ dog↑walks↓ : −t

and then we get

if : (−t, (t, t))

....
every↓ dog↑walks↓ : −t

if : (−t, (t, t))every↓ dog↑walks↓ : (t, t)

....
some↑ cat↑ runs↑ : t

if every↓ dog↑walks↓, some↑ cat↑ runs↑ : t (26.13)

We do not need a negative version if↓.

Any.

The current approach enables a treatment of any that has any mean the same thing as
every when it has positive polarity, and the same thing as some when it has negative
polarity. For example, here is a sentence intended to mean everything which sees
any cat runs:

every↑ : (−pr, (pr, t))

....
see↓2 (any↓(cat↓)) : −pr

every↑(see↓2 (any↓(cat↓))) : (pr, t) runs↑ : pr

every↑(see↓2 (any↓(cat↓))(runs↑) : t .

The natural reading is for any to have an existential reading. Another context for
existential readings of any is in the antecedent of a conditional. In the other direction,
consider

any↑(cat↓)(see↓1 (any↑(dog↓))) : t.

The natural reading of both occurrences is universal. By the same token, in more
involved syntactic contexts, our grammar is inevitably going to make the wrong
predictions, since the actual facts about the meaning of any are not built in to this
framework.
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Standard models

Up until now, we have only given one example of a typed language L. Now we
describe a family of models for this language. The family is based on sets with
interpretations of the unary and binary atoms. To make this precise, let us call a
pre-model a structure M0 consisting of a set M together with subsets [[p]] ⊆ M for
unary atoms p and relations [[r]] ⊆ M × M for binary atoms r.

Every pre-model M0 now gives a bona fide model M of L in the following way.
The underlying universe M gives a flat preorder M. We take [[pr ]] = [M,�] ∼=
P(M). We also take [[t]] = �.

We interpret the typed constants p↑ : pr corresponding to unary atoms by

[[p↑]](m) = T iff m ∈ [[p]].

(On the right we use the interpretation of p in the model M.) Usually we write p↑
instead of [[p]].

The constants p↓ : −pr are interpreted by the same functions.
The interpretations of every↑, some↑, and no↑ are given as follows (taking the

set X to be the universe M of M): Define

every ∈ [−[X,�], [[X,�],�]]
some ∈ [[X,�], [[X,�],�]]

no ∈ [−[X,�], [−[X,�],�]]

in the standard way:

every(p)(q) =
{

T if p ≤ q
F otherwise

some(p)(q) = ¬every(p)(¬ ◦ q)

no(p)(q) = ¬some(p)(q).

It is routine to verify that these functions really belong to the sets mentioned above.
Each of these functions belongs to the opposite preorder as well, and we therefore
also have

every ∈ [[X,�], [−[X,�],−�]]
some ∈ [−[X,�], [−[X,�],−�]]

no ∈ [[X,�], [[X,�],−�]].

And the interpretations of every↓, some↓, and no↓ are the same functions.
We interpret any↑ the same way as every↑, and any↓ the same way as some↑.
Recall that the binary atom r gives four typed constants r↑1 , r↓1 , r↑2 , and r↓2 . These

are all interpreted in models in the same way, by
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r∗(q)(m) = q({m′ ∈ M : [[r ]](m,m′)}).

It is clear that for all q ∈ [[(pr, t)]] = [[M,�],�], r∗(q) is a function from M to
{T,F}. The monotonicity of this function is trivial, since M is flat.

Using the Logic

We now discuss how the system works. Suppose we take as background asser-
tions like

amble ≤ walk ≤ moves
poodle ≤ dog ≤ animal.

These kinds of assertions are something one might glean from a source such as
WordNet. In addition, we might appeal to real-world knowledge in some form and
assert that

at least three ≤ at least two ≤ some.

Suppose we would like to carry out an inference like

at least three dogs amble
at least two animals move

We parse the first sentence in our grammar. The system is small enough that there
would be only one parse, and it is

at least three↑ : (pr, (pr, t)) dogs↑ : pr

at least three↑ dogs↑ : (pr, t) amble↑ : pr

at least three↑ dogs↑ amble↑ : t

So using our parse and the Context Lemma (three times), we infer

at least two↑ animals↑move↑ : t.

Finally, we drop the ↑ signs to get the desired conclusion.
For another example, suppose we wish to assume that if every dog walks, some

cat runs and infer if every dog ambles, some cat moves. We have already seen
a parse of the assumption in (26.13). We parse to infer polarities:

if every↓ dog↑walks↓, some↑ cat↑ runs↑ : t.

Our desired inference would then follow from the Context Lemma.
Incidentally, formal reasoning about monotonicity is finding its way into compu-

tational systems for linguistic processing (cf. [6] and [8]).
For more on this topic, see Icard and Moss [5]. That chapter is the beginning of

what we hope will be a sustained development, mixing the monotonicity calculus with
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the typed lambda calculus. There are many interesting results and questions which
are (at this early time) open, but the topic deserves a different kind of treatment from
what we are aiming for in this chapter.

26.5 Conclusion

My aim in these études is to show that logical dynamics involves a variety of tech-
niques, that it really has something to say about language, and finally that much of
it can be presented in very elementary terms.

I am grateful to Johan for his continuing inspiration on all of these matters, and
for stimulating discussion on these études.
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Chapter 27
From Good to Better: Using Contextual
Shifts to Define Preference in Terms
of Monadic Value

Sven Ove Hansson and Fenrong Liu

Abstract It has usually been assumed that monadic value notions can be defined in
terms of dyadic value notions, whereas definitions in the opposite direction are not
possible. In this paper, inspired by van Benthem’s work, it is shown that the latter
direction is feasible with a method in which shifts in context have a crucial role. But
although dyadic preference orderings can be defined from context-indexed monadic
notions, the monadic notions cannot be regained from the preference relation that they
gave rise to. Two formal languages are proposed in which reasoning about context
can be represented in a fairly general way. One of these is a modal language much
inspired by van Benthem’s work. Throughout the paper the focus is on relationships
among the value notions “good”, “bad”, and “better”. Other interpretations like “tall”
and “taller” are equally natural. It is hoped that the results of this paper can be relevant
for the analysis of natural language comparatives and of vague predicates in general.

27.1 Introduction

The Chinese character (like, prefer) appears frequently in many ancient
texts. For instance, in The Analects of Confucius, when attitudes and behavioural man-
ners were being discussed, we see (fond of learning),

(love virtues), (love beauty) and (love music), etc.
Interestingly, if the character is read as hǎo, with the third tone in Chinese
pinyin, it simply means “good”. These two parallel usages of the same character
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are common in the modern Chinese language, too. Nevertheless, it seems that
the Mohists (approx. 479–221 B.C.) were the first to make general observations
concerning :

This can be translated into English as follows:

Moreover reading a book is not a book, but to like reading books is to like books. A cockfight
is not a cock, but to like cockfights is to like cocks. … These are cases in which ‘something
is so though the instanced is not this thing.’ (NO 16. Cf. [9, pp. 489–490].1)

Here “something is so though the instanced is not this thing” is one of the four cases
of making inferences discussed in the Canons. The above two sentences involving

are used as examples to illustrate it. However no investigation of the logical
properties of such cases seems to be available in the Canons.

In the West, studies of the logical aspects of value can be traced back to Aristotle’s
discussion in Book III of the Topics of the general properties of desirability, better-
ness, and other value concepts. Most of his discussion is devoted to issues that fall
outside of the domain covered by modern preference logic, but some of the principles
that Aristotle proposed are directly translatable into modern logical language, such
as the following:

Also, A is more desirable if A is desirable without B, but not B without A ([1, p. 165];
Topics III:2).

This is directly related to the modern discussion of the postulate

p > q ↔ p &¬q > q &¬p

and its variants.2 However, the systematic study of the logic of value expressions
began with the seminal books by Halldén [11] and by von Wright [22]. Just like
Aristotle’s text, both of these were devoted primarily to comparative concepts.
(Aristotle’s treatise begins with the words: “The question which is the more desir-
able, or the better, of two or more things, should be examined upon the following
lines.”)

Natural languages contain two major classes of non-numerical value predicates.
The monadic (one-place) predicates express classificatory notions, i.e. they assign a
value property to a single object of evaluation. Examples are “good”, “bad”, “best”,
“very bad”, “almost worst”, “fairly good”, etc. The dyadic (two-place) predicates
express comparative notions such as “better” (>), “equally good as” (≈), and “at
least as good as” (≥).

1 Here we follow Graham’s numbering of the Canons. He made a hybrid text from Xiaoqu and part
of Daqu under the title “Names and Objects” (abbreviated “NO”) We also use his translations.
2 Halldén [11, p. 28], von Wright [22, pp. 24–25, 40, 60]. For further references see Hansson [13,
pp. 89–90].
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Preference logic, the logic of the dyadic predicates, is the most well-developed part
of the logic of value concepts. It can be divided into two branches. One branch treats
the objects of preferences as primitive and mutually exclusive entities. A preference
for x over y is then equal to a preference for x without y over y without x , for the
simple reason that all non-identical objects of evaluation are taken to be mutually
exclusive.3 These are exclusionary preferences [13]. Most of the discussion on the
logic of exclusionary preferences has been devoted to the following two properties:

x≥ y ∨ y≥ x (completeness)

x≥ y≥ z → x≥ z (transitivity)4

and to various weakened versions of the latter such as:

x> y> z → x> z (quasi-transitivity)

x1> x2> · · · > xn → ¬(xn> x1) (acyclicity).

In the other branch of preference logic, the objects of preferences are potentially
compatible states of affairs that are represented by sentences and therefore com-
binable through truth-functional operations. These are combinative preferences. In
addition to the properties relevant for exclusionary preferences, a large number of
additional properties can be applied to combinative preferences, such as:

(p∨q)≥r → p≥r

p≥q → (p∨q)≥q

p≥q → ¬q≥¬p.

The logic of monadic value predicates, taken by themselves, has not attracted much
attention since there seem to be relatively few general principles to discover. For the
two most studied of these predicates, namely good (G) and bad (B), the following
principles appear to be credible:

¬(Gp & Bp) (mutual exclusiveness)

¬(Gp & G¬p) (non-duplicity of “good”)

¬(Bp & B¬p) (non-duplicity of “bad”)

Gp→ B¬p

Bp→ G¬p.

Whereas the logic of “good” and “bad”, as such, does not seem to offer many interest-
ing developments, a much more interesting logic can be developed if we introduce
the dyadic and the monadic predicates into one and the same framework. This is
intuitively plausible, since our classificatory and comparative concepts appear to be
closely connected to each other. This was implicitly recognized already by Aristo-
tle, when he said that “if one thing exceeds while the other falls short of the same

3 In the logic of exclusionary preferences we use the letters x, y, z . . . to denote the objects of
evaluation. When the objects of evaluation have sentential structure we use the letters p, q, r . . . .
4 To simplify the notation, we contract series of two-place predicate expressions, thus writing
x≥ y≥ z for x≥ y & y≥ z, and similarly x> y≈ z for x> y & y≈ z, etc.
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standard of good, the one which exceeds is the more desirable” (Topics, III:3), which
can be interpreted as a statement that:

Gp & ¬Gq → p>q

Other plausible connections between the monadic and dyadic predicates include:

Gp & Bq → p>q

p>q → Gp ∨ Bq (closeness)

Gp & q≥ p→ Gq (positivity of “good”)

Bp & p≥q → Bq (negativity of “bad”).

Are the connections between the monadic and the dyadic predicates so close that one
of the two classes of predicates can be defined in terms of the other? Several proposals
have been put forward to define “good” and “bad” in terms of the dyadic predicates.
The oldest of these proposals is Brogan’s [5] definition of “good” as “better than its
negation” and “bad” as “worse than its negation”, i.e.:

G N p↔ p>¬p (negation-related good)

BN p↔ ¬p> p (negation-related bad).

This proposal has been taken up by many other writers on the logic of value concepts.5

An alternative approach was developed by Chisholm and Sosa [7] who identified a
set of indifferent sentences, namely those that are neither better nor worse than their
negations. Then “a state of affairs is good provided it is better than some state of
affairs that is indifferent, and…a state of affairs is bad provided some state of affairs
that is indifferent is better than it” [7, p. 246]. In formal terms:

G I p↔ (∃q)(p>q≈¬q) (indifference-related good)

BI p↔ (∃q)(¬q≈ q> p) (indifference-related bad)6

Unfortunately, neither the negation-related nor the indifference-related definitions
have plausible properties for all types of preference relations. There are important
types of preference relations for which G N does not satisfy the above-mentioned
property of positivity, and neither does BN satisfy the corresponding property of
negativity. The same applies to G I and BI , and in addition there are preference

5 See Mitchell [18, pp. 103–105], Halldén [11, p. 109], von Wright [22, p. 34] and [23, p. 162], and
Åqvist [3].
6 Other variants of the same basic approach replace Chisholm and Sosa’s indifferent sentences by
tautologies [8, p. 37], or contradictions [23, p. 164]. This approach gives rise to the following formal
definitions:

G� p↔ p> � (tautology-related good)

B� p↔ � > p (tautology-related bad)

G⊥ p↔ p> ⊥ (contradiction-related good)

B⊥ p↔ ⊥ > p (contradiction-related bad)

However, the interpretation of what it means for something to be better or worse than a tautology
or (in particular) a contradiction is quite problematic.
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relations for which G I and BI do not satisfy the even more elementary postulates
mutual exclusiveness and non-duplicity of “good” and “bad” [13, pp. 123–124].
The following definition was introduced in order to make the monadic predicates
definable in a wider category of preference relations:

GC p↔ (∀q)(q≥�p→ q>¬q) (canonical good)

BC p↔ (∀q)(p≥�q → ¬q>q) (canonical bad)

(≥� is the ancestral of ≥, i.e. p ≥�q holds if and only if either p ≥ q or there is a
series r1, . . . , rn of sentences such that p ≥ r1 ≥ · · · ≥ rn ≥ q.)

It has been shown that whenever ≥ satisfies reflexivity, then GC and BC satisfy
the required postulates for a plausible interpretation of “good” and “bad” (including
mutual exclusivity, closeness, non-duplicity of both postulates, positivity of “good”,
and negativity of “bad”).7 Furthermore, this pair of predicates is a generalization
of the negation-related pair G N and BN in the following sense: If the preference
relation is such that G N satisfies positivity and BN satisfies negativity, then G N and
BN coincide with GC and BC . In the other cases GC and BC still satisfy positivity
and negativity. They are therefore a useful replacement for G N and BN when the
latter are not plausible [13, p. 123].

These attempts to logically reduce the two categories, monadic and dyadic value
predicates, to one basic category, all go in the same direction: Monadic predicates
are defined in terms of the dyadic ones, not the other way around. This is somewhat
problematic from a philosophical point of view since the monadic predicates seem
to be more suitable as primitive concepts than the dyadic ones. (Leibniz’ failed
attempts to eliminate relational expressions from a regimented language are among
the clearest expressions of that intuition, see Hill [15].) Also, moral judgements are
often expressed in terms of absolute predicates, e.g. good or bad.

Linguistic evidence also points in the direction of reducing dyadic terms to
monadic ones, rather than the other way around. The English “better” seems to orig-
inate from a comparative form of a Proto-Indo-European adjective meaning “good”,
and the French “meilleur” from a comparative form of a Proto-Indo-European word

meaning “strong”. The Chinese (better) reads directly as “more
or further good”, which is a combination of a comparative “more” and an absolute
“good”. As these examples illustrate, in a wide range of languages the compara-
tive form of adjectives is derived from the absolute form, not the other way around.
In a survey of 123 languages, no instance of the opposite relationship between the
two forms was found [21]. This discrepancy between logical primacy and apparent
conceptual primacy makes it particularly interesting to investigate whether the oppo-
site definitional direction is possible, i.e. whether the dyadic value concepts can be
defined in terms of the monadic ones.

7 An even weaker property than reflexivity, namely ancestral reflexivity (p≥� p), is sufficient for
this result.
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27.2 Context-Indexed Value Predicates

In an important article, van Benthem [4] developed an account of value terms in which
he reversed the usual relationship between monadic and dyadic value predicates.
Instead of defining “good” in terms of “better”, he defined “better” in terms of
“good”. In order to do this he had to cut a Gordian knot—instead of the format
“x is good” he used the format “x is good among Z”, for some set Z of objects,
to express the monadic value concept. This format is based on what he calls “the
vital observation concerning adjectives such as ‘big’ (or ‘hot’ or ‘good’)”, namely
“that they are context-dependent”. In order to express this conception of the monadic
value predicates, we will write G Z x for “x is good among Z” and BZ x for “x is
bad among Z”. G Z and BZ will be called context-indexed value predicates, and Z
is their context index (index of comparative context).

Contexts, in a wider sense of the word, can differ both extensionally and intension-
ally. When comparing the three horses Amulet, Blackie, and Cosmo we can think of
them as riding horses, and then consider Blackie to be a bad horse among the three.
Alternatively, we can think of them as draught horses and then consider him to be a
good horse among the three. However, this type of difference is not treated by van
Benthem in this framework.8 The contexts for comparisons that he refers to are purely
extensional, i.e. they refer to the reference group (set of objects under evaluation)
and nothing else. “We are not concerned with verdicts like ‘a great philosopher, not
a great husband’, which involve a shift in meaning” (p. 195). Using such extensional
contexts, he defines dyadic predicates in terms of monadic predicates referring to the
smallest context that includes both comparanda, thus:

x is α-er than y if and only if: In the context {x, y}, x is α while y is not α [4, p. 195].

In preference logic, it is universally taken for granted that worseness is nothing else
than converse betterness. Therefore, van Benthem’s recipe can be interpreted in two
ways depending on whether we read x> y as “x is better than y” or as “y is worse
than x”9:

x > y if and only if G{x,y}x and ¬G{x,y}y (27.1)

x > y if and only if B{x,y}y and ¬B{x,y}x (27.2)

These two definitions are not equivalent. To see that, let x be good and not bad in
the context {x, y}, and let y be neither good nor bad in the same context. Then x> y
holds according to definition (27.1) but not according to definition (27.2). This seems
to be speak in favour of definition (27.1), since we would expect x> y to hold in this
case. But next, let x be neither good nor bad in the context {x, y}, and let y be bad but
not good in the same context. Then x> y holds according to definition (27.2) but not
according to definition (27.1), which seems to speak in favour of definition (27.2).

8 For an attempt to deal with some such differences, see Hansson [14]. See also Stalnaker [20].
9 This also applies to many other adjectives, hence we would say that x is longer than y if and only
if y is shorter than x .
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The following observation specifies conditions under which the two definitions are
equivalent:

Observation 27.1 Let G{x,y} and B{x,y} satisfy Mutual exclusiveness. Then defini-
tions (27.1) and (27.2) of betterness are equivalent if and only if:

If G{x,y}x ∨ B{x,y}x then G{x,y}y ∨ B{x,y}y. (Polarization10)

Proof For one direction, let G{x,y} and B{x,y} satisfy Mutual exclusiveness and Polar-
ization. Then only the following five options are possible:

(a) G{x,y}x , ¬B{x,y}x , G{x,y}y, and ¬B{x,y}y
(b) ¬G{x,y}x , B{x,y}x , ¬G{x,y}y, and B{x,y}y
(c) G{x,y}x , ¬B{x,y}x , ¬G{x,y}y, and B{x,y}y
(d) ¬G{x,y}x , B{x,y}x , G{x,y}y, and ¬B{x,y}y
(e) ¬G{x,y}x , ¬B{x,y}x , ¬G{x,y}y, and ¬B{x,y}y.

It can easily be verified that the definitions (27.1) and (27.2) yield the same result in
all these cases.

For the other direction, let it be the case that G{x,y} and B{x,y} satisfy Mutual exclu-
siveness, but Polarization does not hold. Then one of the following four situations is
the case:

(f) G{x,y}x , ¬B{x,y}x , ¬G{x,y}y, and ¬B{x,y}y
(g) ¬G{x,y}x , B{x,y}x , ¬G{x,y}y, and ¬B{x,y}y
(h) ¬G{x,y}x , ¬B{x,y}x , G{x,y}y, and ¬B{x,y}y
(i) ¬G{x,y}x , ¬B{x,y}x , ¬G{x,y}y, and B{x,y}y

It can easily be verified that the definitions (27.1) and (27.2) yield different results
in all these cases. �

As we will now show with two examples, Polarization is far from uncontroversial
as a condition on goodness and badness. First, suppose that three measures have been
proposed as means to become a better piano player:

take piano lessons (x),
drink half a glass of water every day at exactly 3 a.m. (y), and
have three fingers amputated on each hand (z).

In the context {x, z} it is quite clear that x is good and z is bad. It should also be clear
that x is good in the context {x, y}. But what about y in the context {x, y}? According
to Polarization it has to be either good or bad. But since it is quite inefficient for the
purpose it would be strange to regard it as good in a context that contains x . It would
also seem strange to treat it as bad, i.e. to assign to it the same position in {x, y} that
z has in {x, z}. A neutral position may seem more appropriate.

10 The term “polarization” indicates that if x and y differ in terms of goodness and badness in the
context {x, y}, then they are at opposite sides of the value scale, i.e. one of them is good and the
other is bad.
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In the other example we will assume that Ann’s recommended daily calorie intake
is 2,000 kcal. For each n, let kn denote that she eats n kcal each day. We can then
assume that k1999 is good in the context {k2000, k1999} (and so is of course k2000).
Equally obviously, k0 is bad in the context {k2000, k0}. For sufficiently high m (below
2,000) we expect km to be good in the context {k2000, km}, but for sufficiently low
values of m it will be bad. It would then be reasonable to think that somewhere on
this scale we can find a value or range of values that are neither good nor bad. This
however, is prohibited by Polarization. Generally speaking, if there is an option x and
a continuum of options from y0 to yn , such that y0 is bad in the context {x, y0} and yn

is good in the context {x, yn}, then according to Polarization it holds for each ym on
the scale between y0 and yn that ym is either good or bad in the context {x, ym}, i.e.
there is no neutral position on the value scale. Due to Observation 27.1, this always
holds if the value scale corresponds to a preference relation > that represents both
betterness according to (27.1) and worseness according to (27.2).

This problem can be solved, however, if we replace (27.1) and (27.2) by a uni-
fied definition that takes both goodness and badness into account. As explained in
Hansson [12, 13], “good” and “bad” should preferably not be seen as independent
concepts. (It would be no good idea, for instance, to combine G I , as defined above,
with BN .) Instead, the appropriate formal entity is a pair of a predicate for “good”
and a predicate for “bad”, such as 〈GC , BC 〉, 〈G N , BN 〉, or 〈G I , BI 〉. Given such a
pair of (context-indexed) predicates for “good” and “bad” we can then replace (27.1)
and (27.2) by the following combined criterion:

x > y if and only if either G{x,y}x & ¬G{x,y}y or B{x,y}y & ¬B{x,y}x (27.3)

Indifference and weak preference can be defined in the same vein:

x ≈ y if and only if G{x,y}x ↔ G{x,y}y and B{x,y}x ↔ B{x,y}y (27.4)

x ≥ y if and only if either :
(i) G{x,y}x, (ii) B{x,y}y, or (iii) ¬G{x,y}x & ¬G{x,y}y & ¬B{x,y}x & ¬B{x,y}y

(27.5)

These definitions give rise to the standard relationships between strict preference,
weak preference, and indifference:

Observation 27.2 Let 〈G, B〉 be a pair of monadic predicates that satisfies mutual
exclusiveness. Let>,≈, and≥ be the relations that are defined from 〈G, B〉 through
definitions (27.3), (27.4), and (27.5). Then:

1. x≥ y ↔ x> y ∨ x≈ y
2. x≈ y ↔ x≥ y & y≥ x
3. x> y ↔ x≥ y & ¬(y≥ x)

Proof In this proof we suppress the context index of G{x,y} and B{x,y}. For Part 1
we have:
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x> y ∨ x≈ y
iff (Gx & ¬Gy) ∨ (By & ¬Bx) ∨ ((Gx ↔ Gy) & (Bx ↔ By)) ((27.3) and (27.4))
iff (Gx & ¬Gy) ∨ (By & ¬Bx) ∨ (Gx & Gy) ∨ (Bx & By) ∨
∨ (¬Gx & ¬Gy & ¬Bx & ¬By) (mutual exclusiveness)

iff Gx ∨ By ∨ (¬Gx & ¬Gy & ¬Bx & ¬By)
iff x ≥ y (27.5)

For Part 2 we have:
x≥ y & y≥ x
iff (Gx ∨ By ∨ (¬Gx & ¬Gy & ¬Bx & ¬By))&

& (Gy ∨ Bx ∨ (¬Gx &¬Gy &¬Bx &¬By)) (27.5)
iff (Gx & Gy) ∨ (Bx & By) ∨ (¬Gx & ¬Gy & ¬Bx & ¬By)

(mutual exclusiveness)
iff (Gx & Gy & ¬Bx & ¬By) ∨ (Bx & By & ¬Gx & ¬Gy) ∨
∨ (¬Gx & ¬Gy & ¬Bx & ¬By) (mutual exclusiveness)

iff (Gx ↔ Gy) & (Bx ↔ By)
iff x ≈ y (27.4)

For Part 3 we have:
x≥ y & ¬(y≥ x)
iff (Gx ∨ By ∨ (¬Gx & ¬Gy & ¬Bx & ¬By)) & ¬Gy & ¬Bx & (Gx ∨ Gy ∨

Bx∨By)) (27.5)
iff (Gx & ¬Gy) ∨ (By & ¬Bx) (mutual exclusiveness)
iff x > y (27.3)

�

27.3 Properties of the Derived Preference Relations

In his 1982 article, van Benthem introduced a series of properties for monadic pred-
icates, and derived from them the standard properties of strict preference. In what
follows the monadic properties are expressed for an arbitrary predicate H , that may
be equal to a context-indexed G or B. Following van Benthem, by a difference pair
for H in a particular context Z we mean a pair of two objects x and y such that
HZ x & ¬HZ y. van Benthem’s properties are as follows:

No reversal:
If HZ x & ¬HZ y then there is no context V such that HV y & ¬HV x .

Upward difference:
If Z ⊆ V and H has a difference pair in Z , then H has a difference pair in V .

Downward difference:
If x and y form a difference pair for H in V , and {x, y} ⊆ Z ⊆ V , then H has a difference
pair in Z .
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Observation 27.3 [4] Let H be a predicate that satisfies No reversal, Upward dif-
ference, and Downward difference. Let > be the relation derived from H through
definition (27.1). Then it satisfies:

¬(x> x) (irreflexivity)
x> y> z→ x> z (quasi-transitivity)
x> z→ x> y ∨ y> z (virtual connectivity)

Proof See van Benthem [4, pp. 196–197]. �

The following observation shows that van Benthem’s three axioms for monadic
predicates are also sufficient to ensure that a relation that is obtained from “good” and
“bad” through definition (27.5) satisfies the standard properties for a weak preference
relation.

Observation 27.4 Let 〈G, B〉 be a pair of context-indexed monadic predicates and
let ≥ be the dyadic predicate obtained from them through definition (27.5). Then:

1. ≥ satisfies completeness
2. If 〈G, B〉 satisfies mutual exclusiveness and both G and B satisfy No reversal,

Upward difference, and Downward difference, then ≥ satisfies transitivity.

Proof Part 1 follows truth-functionally from definition (27.5).
Part 2: Let > be the strict part of ≥. We are first going to show that x ≥ y ↔

¬(y> x). First let y> x . Then part 3 of Observation 27.2 yields ¬(x ≥ y). For the
other direction, let¬(x≥ y). Then part 1 of the present observation yields y≥ x , and
part 3 of Observation 27.2 yields y > x . Combining the two directions, we obtain
x≥ y ↔ ¬(y> x) as desired.

From this it follows that transitivity is equivalent with x > z → x > y ∨ y> z
(virtual connectivity). In order to show that virtual connectivity holds, let x > z. It
follows from definition (27.3) that either G{x,z}x & ¬G{x,z}z or B{x,z}z & ¬B{x,z}x .

Case i, G{x,z}x & ¬G{x,z}z: We can distinguish between eight subcases:

(a) G{x,y,z}x & G{x,y,z}y & G{x,y,z}z
(b) G{x,y,z}x & G{x,y,z}y & ¬G{x,y,z}z
(c) G{x,y,z}x & ¬G{x,y,z}y & G{x,y,z}z
(d) G{x,y,z}x & ¬G{x,y,z}y & ¬G{x,y,z}z
(e) ¬G{x,y,z}x & G{x,y,z}y & G{x,y,z}z
(f) ¬G{x,y,z}x & G{x,y,z}y & ¬G{x,y,z}z
(g) ¬G{x,y,z}x & ¬G{x,y,z}y & G{x,y,z}z
(h) ¬G{x,y,z}x & ¬G{x,y,z}y & ¬G{x,y,z}z
Subcases (a) and (h) are impossible due to Upward difference. Subcases (e) and (g)
are impossible due to No reversal. In subcases (c) and (d) it follows from Downward
difference that either G{x,y}x &¬G{x,y}y or¬G{x,y}x & G{x,y}y, and then from No
reversal that G{x,y}x & ¬G{x,y}y. It then follows from definition (27.3) that x > y.
In subcases (b) and (f), y> z follows in the same way.

Case ii, B{x,z}z & ¬B{x,z}x : We can distinguish between the following eight
subcases to be inspected:
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(a) B{x,y,z}x & B{x,y,z}y & B{x,y,z}z
(b) B{x,y,z}x & B{x,y,z}y & ¬B{x,y,z}z
(c) B{x,y,z}x & ¬B{x,y,z}y & B{x,y,z}z
(d) B{x,y,z}x & ¬B{x,y,z}y & ¬B{x,y,z}z
(e) ¬B{x,y,z}x & B{x,y,z}y & B{x,y,z}z
(f) ¬B{x,y,z}x & B{x,y,z}y & ¬B{x,y,z}z
(g) ¬B{x,y,z}x & ¬B{x,y,z}y & B{x,y,z}z
(h) ¬B{x,y,z}x & ¬B{x,y,z}y & ¬B{x,y,z}z
Subcases (a) and (h) are impossible due to Upward difference. Subcases (b) and (d)
are impossible due to No reversal. In subcases (e) and (f) it follows from Downward
difference that either B{x,y}x &¬B{x,y}y or¬B{x,y}x & B{x,y}y, and from No reversal
that¬B{x,y}x & B{x,y}y. It then follows from definition (27.3) that x> y. In subcases
(c) and (g), y> z follows in the same way. �

According to Observation 27.4, we can derive a standard preference relation ≥ from
a pair 〈G, B〉 of context-indexed monadic value predicates. (We will leave it to a later
investigation whether weaker properties for 〈G, B〉 correspond to weaker properties
for ≥.) An interesting question is whether the pair 〈G, B〉 can be regained from ≥,
thus making the monadic and the dyadic representations of value interchangeable.
There are useful such “back-and-forth” definitions in some other areas. One example
is that in belief change, certain properties of belief contraction give rise (through the
Levi identity) to certain properties of belief revision, which in their turn (through
the Harper identity) give rise to the same properties of belief contraction that we
began with, cf. Alchourrón et al. [2] Perhaps more to the point, the same type of
connection holds between choice functions and preference relations [19]. However,
the following example shows that a return path to the original monadic pair is not in
general available.

Let the context-indexed pairs 〈G, B〉, 〈G ′, B ′〉, and 〈G ′′, B ′′〉 have the following properties:

G{x,y}x , G{x,y}y, ¬B{x,y}x , and ¬B{x,y}y.
¬G ′{x,y}x , ¬G ′{x,y}y, ¬B ′{x,y}x , and ¬B ′{x,y}y.
¬G ′′{x,y}x , ¬G ′′{x,y}y, B ′′{x,y}x , and B ′′{x,y}y.

Then 〈G, B〉, 〈G ′, B ′〉, and 〈G ′′, B ′′〉 all give rise through (27.5) to the same preference
relation ≥ (such that x ≈ y). Therefore, the monadic pair cannot be reconstructed from the
preference relation that it gives rise to.

The basic underlying reason for this is of course that in order to determine what is
“good” we do not only need to be able to compare different alternatives in terms of
their goodness but also to determine how much goodness is required for something
to be good (and similarly for “bad”). The second part of this information is not in
general encoded in the preference relation itself. In order to encode it we need to
introduce one or several reference points in the alternative set.

One possibility is to require that each index set contains an identifiable baseline, a
“neutral element” with reference to which goodness can be determined. Let nV ∈ V
be the neutral element assigned to the index set V . Then we can follow the model



740 S. O. Hansson and F. Liu

from indifference-related good and bad as explained in Sect. 27.1, and let any element
x ∈ V be good if and only if it is good in the smaller context {x, nV }, i.e:

GV x if and only if G{x,nV }x

With the help of this construction, the goodness predicate can be reconstructed from
the preference relation. The badness predicate can be reconstructed in the same way,
most plausibly with the same baseline element, so that we have:

BV x if and only if B{x,nV }x

In this way, the monadic pair and the preference relation become interchangeable,
with the help of the baseline element of the index set. The details of this approach
remain to be developed.

27.4 Reasoning About Contexts

In the preceding sections, our focus has been on the relationship between the monadic
and dyadic value notions, e.g. “good” and “bad” respectively “better”. Following van
Benthem’s proposal, we have studied the formal properties of the dyadic preference
relations that can be derived from a monadic value predicate with a context index.
However, in van Benthem’s seminal paper [4], the research agenda was more gen-
eral. He was concerned not only with the value notions, but also with other notions
expressible with monadic predicates in natural languages, for instance “tall”, “small”,
“hot”, etc. His general topic is the interplay between comparative judgements and the
context-dependence of monadic judgements. This raises a natural and more general
question: can a formal language be constructed that represents this interplay also for
other types of judgements than value judgements?

Consider the following two examples in natural language:

(i) Alice is tall.
(ii) Alice was born on the 2nd of June in 1980.

One difference between these sentences is that (i) may not hold when our context
shifts. Alice may be tall in one comparative context (such as that of her sisters) but
not in another (such as that of her basketball team). The same applies to many other
predicates such as “big”, “hot”, and “good”. We will call them context-dependent
predicates, and the properties that they represent are context-dependent properties.
In contrast, (ii) exemplifies context-independent properties. Predicates expressing
them are context-independent predicates.

As we have mentioned earlier, van Benthem’s recipe for defining comparative
concepts in terms of monadic ones is as follows:

x is α-er than y if and only if: In the context {x, y}, x is α while y is not α [4, p. 195].
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Can this recipe be applied in any way to context-independent predicates? In order
to answer that question we need to divide the context-independent predicates into
two subcategories. Some of them, such as “dead”, “ordained”, and “pregnant”, rep-
resent all-or-nothing properties. In English, such predicates are typically expressed
by adjectives that do not have any comparative form. To the extent that it is at all
meaningful to say that Anne is more pregnant than Beatrice it can only mean that
Anne is pregnant while Beatrice is not. This applies irrespective of context. It applies
for instance even in the context {Anne, Beatrice, Connie} where Connie is pregnant
with triplets (but nevertheless not “more pregnant” than Anne) and in the context
{Anne, Beatrice, David} where David lacks the physiological capacity to become
pregnant (but is nevertheless not “less pregnant” than Beatrice who has that capac-
ity). With this interpretation, van Benthem’s recipe is applicable to this subcategory
of context-independent predicates.

The other subcategory consists of those context-independent predicates, such
as “anemic”, asthmatic”, and “snow-covered”, that represent properties coming in
degrees. van Benthem’s definition strategy does not work for them. Peter who has
90 g Hb/l and Robert who has 120 are both anemic. In the context {Peter, Robert}
as well as in any other context we would say that both are anemic. Therefore, the
monadic predicate cannot be used to derive the comparative predicate “more anemic
than”, although there could be no doubt that Peter is more anemic than Robert. The
reason for this is that even though the property expressed by the predicate comes in
degrees there is a context-independent and reasonably well-defined limit specifying
when an object does at all have the property in question. When a person with mild
asthma is discussed in a context consisting of herself and ten other patients who all
have more severe asthma, we do not stop calling her “asthmatic” (whereas a person
who is called “tall” in other contexts will not be called “tall” in the context of her
basketball team in which she is the shortest member). The failure of van Benthem’s
definition strategy for these predicates is problematic since it seems to indicate that
his recipe cannot be used for all comparatives.

But let us focus on the cases in which the construction can be used. We will
propose in outline two formal approaches into which it can be incorporated. The first
of these is a simple extension of predicate logic, context-indexed predicate logic. It
treats the context as inherent in the property and therefore assumes that predicates
have an implicit index of context that can be written out in formal representations.
Instead of writing T x for “x is tall” we write TAx for “x is tall in the context A” (with
the assumption that x ∈ A and that A is a subset of the set of terms). A predicate
T is context-independent if and only if TAx ↔ TB x for all sets of terms (contexts)

A and B that contain x . For each monadic predicate T there is a dyadic predicate
>

T
defined according to van Benthem’s definition:

>

T (a, b) if and only if T{a,b}a & ¬T{a,b}b

The other formal approach is a van Benthem-style modal logic that treats the context
as inherent in the evaluation rather than in the property itself. Contexts are represented
by sets of worlds. (See Stalnaker [20] for a justification of this representation of
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contexts.) Thus, instead of evaluating a proposition in relation to a possible world
(the actual one) it is evaluated in relation to the combination of that world and a
set of possible worlds surrounding it. For an example, consider Singh who finished
conservatory a few years ago and now has a fairly well-paid job as a tutti player in
a regional orchestra. How should we evaluate the statement “Singh is a successful
musician”? If we think of alternative possible worlds in which he has great difficulties
in earning a living as a musician, we would hold this statement to be true, but if we
include comparisons with worlds in which he is a famous soloist we would probably
not. This can be expressed as a difference between evaluations relative to the pairs
〈s, X1〉 and 〈s, X2〉, where s is the actual world and X1 and X2 are different sets of
worlds.

To develop such a model it is useful to have three non-empty and disjoint sets of
proposition letters, P , Q and�. The elements of P are context-dependent proposition
letters, those of Q context-independent proposition letters, and those of� nominals.
Nominals are sentences, introduced for technical reasons, that hold in exactly one
world. (Some of the propositions in P and Q can be expressed with predicates,
but that option will not be developed here.) A modal context language with basic
resources for context-dependent expressions is given by the following Backus–Naur
Grammar clause:

φ ::= pi | qi | j | ¬φ | φ & ψ | Eφ | <in>φ | <up>φ | <dn>φ.

Hence all proposition letters pi ∈ P , qi ∈ Q, and j ∈ � are well-formed formulas.
The set of well-formed formulas is closed under negation and conjunction. The
language contains four modalities E ,<in>,<up> and<dn>; adding one of these
symbols in front of a well-formed formula gives a well-formed formula. We use the
diamond versions of the modalities. Their box versions Uφ, [in]φ, [up]φ, and [dn]φ
can be introduced in the usual way, for instance, Uφ is an abbreviation of ¬E¬φ.

The modality E refers to possibility, widely conceived. Eφ holds at a state s in
the context X if and only if φ is true at some state t in some context Y . This extends
the standard meaning of the operator E as an existential modality in modal logic.
<in> refers to possibility within the present context, i.e. <in>φ holds relative to s
and X if and only if there is some state t ∈ X such that φ holds relative to t and X ,
thus <in> acts as a (context-limited) existential modality.

Next, <up> and <dn> represent changes in context. In an evaluation relative
to the actual world s and the context X , <up>φ holds if and only if there is some
superset X ′ of X such that φ holds relative to s and X ′. Similarly, <dn>φ holds if
and only if there is some subset X ′ of X such that φ holds relative to s and X ′. Hence
the modality <in> represents changes in the actual state but not in the context,
whereas <up> and <dn> represent changes in context but not in the actual state,
and E represents changes both in context and in the actual state.
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In order to interpret the above language we introduce a modal context model

M = 〈W,�,V〉

W is a set of possible states (possible worlds). Capital letters X,Y, Z . . . denote
subsets of W . The elements of W are denoted s, t . . . , and one of these elements
is the actual state of the world (the actual world). � is the set of (possibly context-
dependent) propositions. V is an evaluation function that, depending on the context
X and the actual state s assigns a subset of W to each proposition. To any nominal j ,
V assigns a singleton subset of W , independently of the state and the context. For any
context-independent proposition letter qi , V assigns a subset of W that depends on
the state of the world but is the same independently of the context. More precisely,
the following holds for all s, s′, t, t ′ ∈ W and X, X ′ ⊆ W and all pi ∈ P , qi ∈ Q,
and j ∈ �:

(i) V(〈X, s, pi 〉) ⊆ P(W )

(ii) V(〈X, s, qi 〉) = V(〈X ′, s, qi 〉) ⊆ P(W )

(iii) V(〈X, s, j〉) = V(〈X ′, s′, j〉) ⊆ P(W )

(iv) If {t, t ′} ⊆ V(〈X, s, j〉) then t = t ′.

Given a modal context model M, a context X , and a state s in X (representing the
actual state of the world), we can evaluate any formula to see whether it is true at that
state in that context. The truth-conditions for formulas in this language are defined
recursively as follows:

(1) M, X, s |= pi iff s ∈ V(〈X, s, pi 〉).
(2) M, X, s |= qi iff s ∈ V(〈X, s, qi 〉).
(3) M, X, s |= j iff s ∈ V(〈X, s, j〉).
(4) M, X, s |= ¬φ iff it is not the case that M, X, s |= φ.
(5) M, X, s |= φ & ψ iff M, X, s |= φ and M, X, s |= ψ.
(6) M, X, s |= Eφ iff there are some t and Y s.t. M,Y, t |= φ.

(7) M, X, s |= <in>φ iff there is some t ∈ X s.t. M, X, t |= φ.
(8) M, X, s |= <up>φ iff there is some Y s.t. X ⊆ Y and M,Y, s |= φ.
(9) M, X, s |= <dn>φ iff there is some Y s.t. s ∈ Y ⊆ X and M,Y, s |= φ.

This version of the modal context language does not contain predicates. Therefore it
cannot be used to represent the relationship between sentences such as “i is tall” and
“ j is tall”, and consequently it cannot represent properties such as van Benthems’s
No reversal, Upward difference and Downward difference that all refer to pairs
of such sentences. However, closely analogous properties can be expressed with-
out adding predicates to the language. Instead we can use sentences representing
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indexical propositions. The modal context language turns out to be quite suitable to
represent such propositions. Consider the (indexical) sentence “It is hot here today”
that was recently uttered by one of the authors when he was in Stockholm. Such a
sentence can be true in a comparison of the state in which it was uttered to other states
in which the utterer is in Sweden, but nevertheless false in a comparison involving a
larger context including states of the world in which the utterer is in a country close
to the Equator. Let this sentence be expressed by a context-dependent proposition
φ. Let s be the present state of the world in which it is 30 ◦C in Stockholm when
the sentence is uttered, and let t be a state in which it is 25 ◦C. There can then be a
context X1 (e.g. representing states in which he experiences Swedish summer days)
and another context X2 (e.g. representing states in which he experiences summer
days anywhere in the world) such that (1) relative to X1, φ is true in both s and t
and (2) relative to X2, φ is true in s but false in t . However, we can plausibly assume
that there is no context X3 relative to which φ is false in s but true in t . Our claim
that there is no such context is closely related to the No reversal property proposed
by van Benthem. In formal terms it can be expressed as follows11:

NR:
p &<in>(¬p & j)→ ¬<up><dn>(¬p &<in>(p & j))

For Upward Difference, again consider the same propositionφ (“It is hot here today”)
and again let X1 represent the states in which the utterer experiences Swedish summer
days. Furthermore we assume that X1 contains the actual state s in which it is 30 ◦C
and φ holds relative to the current context, and it also contains some other state u
in which it is 22 ◦C and φ does not hold relative to the current context. Thus X1
contains a difference pair. Let X2 be any context that includes X1. We then have
strong intuitive reasons to assume that X2 contains a difference pair. To see this, first
suppose that X2 contains some state v that is hotter than the hottest state in X1 and
that v is also unsurpassed in hotness within X2. Then φ should hold in v relative to
X2. Let w be the state in X2 that has the lowest temperature. Then w is at least as
cold as the coldest state in X1. The presence of v in X2 should if anything strengthen
our unwillingness to call w hot. We can therefore conclude that X2 has a difference
pair consisting of v and w. Next suppose instead that X2 contains some state that is
colder than the coldest state in X1. We can then show with an analogous argument
that X2 should have a difference pair in this case as well. Such examples confirm
the plausibility of Upward difference. It can be expressed as follows in the formal
language:

UD:

<in>p &<in>¬p→ [up](<in> p &<in ¬p)

11 The subformula <up><dn> is used as a means to reach (any) other reachable context while
remaining in the same actual state. Its plausibility for this purpose depends on conditions that we will
not discuss further here, namely (i) <up><up>φ ↔ <up>φ, (ii) <dn><dn>φ ↔ <dn>φ,
and (the somewhat more questionable) <up><dn>φ ↔ <dn><up>φ.
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For Downward difference, consider again the same sentence φ and the same contexts
X1 (in which the utterer experiences Swedish summer days) and X2 (in which he
experiences summer days anywhere in the world). Then clearly X2 includes X1.
Furthermore let the two states s (in which he experiences 30 ◦C in Stockholm) and
u (in which he experiences 22 ◦C in Stockholm) be included in X1 and consequently
also in X2. Suppose that φ holds in s relative to X2 but does not hold in u relative to
X2. It is a highly intuitive conclusion that X1 contains both some state in which φ
holds and some other state in which it does not hold. (More precisely: X1 contains
both some state in which φ holds relative to X1 and some other state in which φ does
not hold relative to X1.) In formal terms this can be expressed as follows:

DD:

<in>(p & j1)&<in>(¬p & j2)→ [dn](<in> j1 &<in> j2 → <in>p &<in>¬p))

What we have presented in this section is just a first step towards a systematic study of
modal context logic. The connections between intuitions for comparative predicates
and indexical propositions that we have started to investigate need more detailed
consideration. Another important topic is the full characterization in this framework,
syntactically and semantically, of plausible properties for context-dependent propo-
sitions. The ideas on shifts in context presented by van Benthem in his seminal 1982
paper have opened up several highly interesting areas of investigation.

27.5 Conclusion and Future Work

In the value-theoretical literature it has usually been assumed that monadic value
notions can be defined in terms of dyadic value notions, whereas definitions in the
opposite direction are not possible. Building on crucial insights in van Benthem [4],
we have shown that the latter direction is feasible with a method in which shifts
in context have a crucial role. But these definitions are not reversible, i.e. we can
define dyadic preference orderings from context-indexed monadic predicates, but
these monadic predicates cannot be regained from the preference relation that they
gave rise to. Although we have interpreted these results as referring to the value
notions “good”, “bad”, and “better”, other interpretations like “tall” and “taller” are
equally natural. Therefore these results can be relevant for studies of natural language
comparatives and of vague predicates in general.

Several issues have emerged in our analysis that we would like to return to in
the future. Firstly, concerning interdefinability, a similar picture appeared in Liu [16]
where one can derive preference relations from priority graphs, but in the other direc-
tion one can only obtain a “representation” from the preference relation, which need
not be the original priority graph. This shows a clear analogy. Connections may exist
between contexts and priority graphs, and this is a topic for future investigations.
Secondly, on a more technical side, other (modal) logics have been proposed to char-
acterize the notion of context. For instance, Buvac et al. [6] extended propositional
logic with a new modality ist(κ, φ), which expresses that the sentence φ holds in the
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context κ . In their work, each context has its own vocabulary, i.e. a set of proposi-
tional atoms which are meaningful in that context. They also provided a complete and
decidable proof system. We would like to further develop our system and compare
it to theirs and possibly to others. Finally, studies in preference change have made
some progress in recent years (e.g. [10] and [17]). The results we have obtained here
suggest that preference change can be explored in a richer setting including context
and monadic notions of good and bad. Moreover, context shifts might be a good
locus for studying triggers or reasons for preference change. We leave these issues
for future occasions.
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Chapter 28
Arguing About Dynamic Meaning

Martin Stokhof

Abstract Whether, and if so in what sense, dynamic semantics establishes the need
to move away from standard truth-conditional semantics, is a question that has been
discussed in the literature on and off. This paper does not attempt to answer it, it
merely wants to draw attention to an aspect that has hitherto received little attention
in the discussion, viz., the question what role we assign to the use of formal systems
in doing natural language semantics.

28.1 What Dynamics?

The question whether dynamic semantics constitutes a move away from static seman-
tics, and if so, what that move involves and how it should be justified, has been
discussed on and off since the first dynamic approaches appeared in the early 1980s.

Some have argued that the introduction of dynamic notions in semantics is super-
fluous and that whatever is treated by dynamic theories using their characteristic con-
ceptual apparatus can be treated with equal descriptive adequacy by static semantics,
and with greater explanatory success because it draws on more standard conceptual
resources.

But ever since the advent of theories of dynamic interpretation and dynamic
meaning, their proponents have tried to make the case that this development does
constitute a legitimate, even necessary move beyond the truth conditional conception
of meaning of the logical and philosophical traditions that had been one of the sources
of inspiration of formal semantics in the late sixties, early seventies of the twentieth
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century. Let us briefly review a couple of examples of the arguments that were
employed.

Hans Kamp, in his seminal paper ‘A Theory of Truth and Semantic Representation’
[20] which introduced the framework of discourse representation theory (DRT),
claimed that in addition to the truth-conditional concept of meaning, which focusses
on the reference relation between expressions and external entities, there is a second
conception, stemming from psychology, linguistics, and artificial intelligence, that is
concerned with the articulation of ‘the structure of the representations which speakers
construct in response to verbal inputs.’ Noting that these two conceptions, stemming
as they do from quite diverse disciplinary traditions, had been separated for quite
some time, Kamp states that:

This separation has become an obstacle to the development of semantic theory, impeding
progress on either side of the line of division it has created. The theory presented here is an
attempt to remove this obstacle.

So the aim of DRT is to combine referential and representational notions of meaning.
In DRT this is done basically by making semantic interpretation a two-step process.
When processing a sequence of utterances or a text, the listener/reader creates a
formal representation of its content by building a so-called ‘discourse representation
structure’ (DRS), in which score is kept of what is being talked about, what is
being said about the various entities, and how various pieces of information are
related to each other. This complex representation then is assigned a truth conditional
interpretation by defining an embedding of the DRS in a model theoretic structure,
i.e., into the kind of model that is familiar from standard truth conditional semantics.

In this way both the representational and the referential aspects of meaning are
being accounted for within DRT. What is important to note in the context of the
questions that are central to this paper is that there is not one, unified concept of
meaning that accounts for both aspects. Rather there are two different processes
that are integrated, not conceptually, but at the level of the overall theory. One is the
incremental build-up of a representation, and the other process is the non-incremental,
‘in one fell swoop’ embedding of the resulting representation in a model. The former
is, sensu strictu, not a process of semantic interpretation. The latter is, but it is quite
a standard one, at least in terms of the semantic concepts it employs. So, it seems
appropriate to call DRT ‘a dynamic theory of interpretation’, rather than a semantic
theory that incorporates a dynamic concept of meaning.

In a similar way, one of the main sources of inspiration and motivation of Heim’s
file change semantics (FCS; cf. [18, 19]), which was developed to give a non-
quantificational account of definite and indefinite expressions, is a procedural take
on how such expressions function: not by referring to something in the world, but by
making available so-called ‘discourse referents’ (a notion that goes back to work by
Karttunen in the late sixties of the last century). And Heim, like Kamp, ends up with
a combination of a dynamic component that builds representations, so-called ‘files’,
and a static, truth conditional semantics that interprets them:

Roughly, the model of semantics that I am going to present will embody the following
assumptions. The grammar of a language generates sentences with representations on various
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levels of analysis, among them a level of ‘logical form’. Each logical form is assigned a ‘file
change potential’, i.e., a function from files into files. […] The system moreover includes an
assignment of truth conditions to files. Note that logical forms themselves are not assigned
truth conditions, only files are. Only in an indirect way, i.e., via the files they affect, will
logical forms be associated with truth conditions.

Thus FCS, like DRT, postulates a division of labour in semantics: semantic interpre-
tation is (minimally) a two-step process. Assuming that the assignment of logical
forms is part of the syntactic component of the grammar, the semantic component
consists of two parts. First, it associates with each logical form an operation on a
specific type of representation, the files. Thus a logical form itself is associated with
a dynamic construct, viz., a file change potential, which, however, is not directly
semantic in nature: it constructs a new file from an input file, but these files are them-
selves not semantic objects. They need to be interpreted and that is what the second
component does: it assigns static truth conditions to files. So the dynamic aspects
are accounted for in an indirect manner. It is not meaning as such that is dynamic,
but rather the process of interpretation.

This indirect approach sets such theories as DRT and FCS apart from approaches
that attempt to deal with dynamic aspects directly, by building them right into the
concept of meaning itself. An example of a theory that introduces a concept of mean-
ing that is different from the traditional, truth-conditional one, is update semantics,
as developed by Veltman [31–33]. In the opening paragraph of ‘Defaults in Update
Semantics’, Veltman refers to the standard definition of validity in terms of truth
preservation, and then goes on to characterise his own approach, that of update
semantics, as follows:

The slogan ‘You know the meaning of a sentence if you know the conditions under which
it is true’ is replaced by this one: ‘You know the meaning of a sentence if you know the
change it brings about in the information state of anyone who accepts the news conveyed by
it.’ Thus, meaning becomes a dynamic notion: the meaning of a sentence is an operation on
information states.

Similar quotes can be culled from other papers, e.g., [13, 15, 17]. In the latter paper, it
is emphasised that the dynamics of meaning may affect various aspects of a situation,
not just the information states of the speech participants, thus proposing that meaning
be analysed in term of ‘context change potentials’. This is of some importance as
it signals that these later systems progress beyond the initial conception in crucial
respects. And it also (partly) explains why in a footnote that occurs in the passage
just quoted Veltman relates the dynamic conception of meaning, not just to the work
of Kamp and Heim, but also to earlier work by Stalnaker, which focusses very much
on information update.

As for Heim and Kamp’s work, as we just saw there is a subtle, yet principled
distinction between the concept of dynamic interpretation of DRT and FCS, and the
dynamic semantics of which Veltman’s update semantics is a specimen. The differ-
ence, as we indicated, resides in the concept of meaning itself. As for Stalnaker’s work
of the 1970s [25, 26], that is motivated in yet other ways, it seems. Stalnaker is pri-
marily concerned with the analysis of assertion and presupposition, and focusses on
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the role these play in conversations of a particular kind, viz., information exchanges.
Cf. the following quote from ‘Assertion’:

[…] acts of assertion affect, and are intended to affect, the context, in particular the attitudes
of the participants in the situation

Thus, assertion as a speech act is a dynamic entity. But the concept of meaning, in
particular, the concept of the content of an assertion, remains a static entity.1 For
Stalnaker, what an assertion contributes in terms of content is a proposition, i.e., a
set of possible worlds, and the context changing effect is accounted for, not at the
level of meaning, but at the level of speech acts.

Thus what we have here is a third kind of dynamic theory. The work of Kamp
and Heim can be characterised as concerned with dynamic interpretation of linguis-
tic structures. The approach of Veltman c.s. is involved with the development of a
dynamic conception of meaning. And Stalnaker employs a static notion of meaning
in what is basically a speech act level account of dynamics. Thus what we have
here are three different notions of what ‘dynamics’ in the context of natural lan-
guage meaning might mean: dynamic assignment of static meanings, in the Heim
and Kamp case; dynamic meaning as such, as in Veltman’s update semantics; and
dynamic employment of static meanings, as exemplified by Stalnaker’s approach.
If one would look closer at the literature, one would presumably find even more
variations than these three, but in order to set the stage for the main question, this
should suffice.

That main question is whether, and if so in what sense, these are really rival
theories. There are empirical issues involved here, of course, and conceptual ones,
but first let’s look at the issue from a theoretical perspective.

It would appear that the differences between theories of dynamic interpretation
and theories of dynamic semantics are centred around methodological questions
concerning the internal organisation of grammar. The issue of representationalism
and compositionality is a good example of such a methodological consideration.
DRT and FCS adopt a level of representation in grammar that is different from
both syntactical structure and meaning proper, and that mediates between form and
meaning. Having such an intermediate level of representation in the grammar implies
that a strong form of compositionality (often referred to as ‘surface compositionality’)
no longer applies: it is not (structured) expressions that are interpreted directly, i.e.,
‘as is’, but representations that are built from them in an incremental way.

The differences between dynamic semantics and the Stalnakerian approach are
not concerned with the organisation of grammar, but rather seem to focus on the
concept of meaning as such. Consider the difference between a dynamic approach,
such as Veltman’s, and Stalnaker’s account of information change. The difference is
subtle, but real, nevertheless. It basically comes down to this: is information change
something that is brought about using an expression that has a static meaning, or
does it reside in the meaning of the expression itself? Dynamic semantics takes the
latter route, and it does so unequivocally. Cf. the following quote from [15]:

1 Of course, the content of an assertion itself is a context-dependent entity, in many cases, but that
does not turn it into a dynamic one.
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The general starting point of the kind of semantics that dynamic predicate logic is an instance
of, is that the meaning of a sentence does not lie in its truth conditions, but rather in the way it
changes (the representation of) the information of the interpreter. The utterance of a sentence
brings us from a certain state of information to another one. The meaning of a sentence lies
in the way it brings about such a transition.

The difference with Stalnaker’s view is that the latter regards information change
as an external effect of the use of expressions that have meanings that themselves
are perfectly static. Information change is a pragmatic effect brought about by static
semantic means. In that respect the Stalnakerian view builds on a standard hierarchi-
cal view on the relation between semantics and pragmatics that goes straight back
to their traditional semiotic characterisations. The dynamic view departs from that
view in two ways. It no longer subscribes to semantics as the study of the relation
between language and the world, with the associated referential and truth-conditional
conception of meaning. And consequently, it draws the line between semantics and
pragmatics differently.

From this perspective DRT, FCS, and their kin are something of a mixed bag.
They ‘side’, so to speak, with dynamic theories in regarding dynamic aspects as
part of semantics, but they locate them in the process of building representations.
These are then interpreted in a standard, truth conditional way, and in that respect
these approaches are more Stalnakerian than Veltmanian. Dynamic semantics can be
regarded as a kind of straightening out of these issues: by redefining semantics (and
implicitly redefining pragmatics) it eliminates the need for the kind of representations
that are characteristic of DRT and sundry systems. One of the original motivations
for the development of dynamic predicate logic was exactly this: the elimination of
what was regarded as an unnecessary and insufficiently motivated complication in the
grammar.2 This centred essentially around the wish to maintain a particular, strong
form of compositionality. But of course one might argue that there are independent
reasons for having those kinds of representations as part of the semantics (and thus for
turning strong compositionality from a methodological principle into an empirical
issue).

Be that as it may, one core issue now appears to be whether natural language mean-
ing is better modelled in the standard way, i.e., in terms of a static truth-conditional
concept of meaning combined with a pragmatic theory that accounts for dynamic
effects such as information change, or in the dynamic way, by constructing meaning
in terms of context change potential.

One may try to answer that question in two ways: by an appeal to empirical
considerations, and by conceptual arguments. From the empirical perspective, one
might reason that the standard picture is standard for good reasons, and one would
need to change sides only if there are there empirical phenomena concerning natural
language that really can only be accounted by embracing a dynamic picture. From
the conceptual perspective, things appear to be less constrained: when one tries to
determine what counts as a convincing conceptual consideration, empirical adequacy
is an obvious necessary condition, but it does leave room for other considerations.

2 Cf. Groenendijk and Stokhof [15, Sect. 5.2].
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Perhaps it leaves too much room, as it is not obvious that if from the empirical
perspective all things are equal when it comes to the static–dynamic choice, there
are indeed any decisive conceptual considerations to base a choice on.

28.2 A Step Back

But before we enter into considerations concerning a choice, we’d better ask a
preliminary question: does it really matter? Is there a difference between these two
conceptions that is worth investigating to begin with?

One of the decisive steps forward in the development of dynamic semantics for
natural language was made from a logical perspective. In a number of papers,3 van
Benthem established dynamic semantics as a subject matter in its own right by
identifying a proper meta-theoretical framework for studying its properties. Where
Boolean algebra provides the general mathematical framework in which standard
semantics can be formulated and important meta-properties can be studied, van
Benthem showed that relational algebra plays a similar role for dynamic theories. It
provides a general framework in which concrete dynamic theories can be studied and
compared. As a general meta-theoretical framework it is not confined to dynamic sys-
tems used in natural language semantics but also provides the tools to study similar
approaches in logic itself, in cognition, artificial intelligence and the like. This kind
of inquiry into the formal, meta-logical properties that are characteristic of various
dynamic systems was taken up by a number of authors.4

One example to illustrate the kind of concerns that are at stake here. A central
question is what exactly distinguishes static and dynamic systems from each other.
One way to go about answering that question is by providing a formal characterisation
of what makes a system static. Usually this is done in terms of formal properties of the
updates, i.e., the operations that take states into states, that the system makes available.
It turns out that there are several ways to do so, with slightly different consequences
for what counts as static and what not. In a recent study [23] Rothschild and Yalcin
have traced the history of these attempts in great detail, so what follows is just a very
brief illustration, and the reader is urged to consult the Rothschild and Yalcin paper
for further details.

van Benthem provided a first definition of staticness.5 According to this charac-
terisation a system is static if its updates are eliminative and (finitely) distributive. If
states are sets of some kind, these properties come down to the following: an elimi-
native update results in a state that is a subset of the state to which it is applied, and
a distributive one is an update that works ‘point-wise’, i.e., its effect can be defined

3 Among others, [2, 3], and the papers collected in [4].
4 For natural language semantics we should mention, among others, Vermeulen [34], Visser [35].
Cf. also [10] for a computational perspective on deduction in dynamic semantics, and [7] for a more
recent overview.
5 In van Benthem [1].
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in terms of its effects on the singleton elements of the state on which it operates.
Both properties are needed to maintain staticness. An illustration is provided in [14]
where it is shown that Veltman’s update semantics is dynamic because its updates
are not distributive, while maintaining eliminativity, where for DPL it is the other
way around: the updates of that system are distributive, but lack eliminativity.

A generalisation was provided by Veltman [33]: where the van Benthem
characterisation has Boolean algebra as its backdrop, Veltman uses the more general
concept of an information lattice. Staticness is the defined in terms of the properties
of the lattice: if a system’s information lattice satisfies idempotence, persistence,
strengthening, and monotonicity, it is static.

Rothschild and Yalcin take this meta-theoretical approach another step further.
They focus on what they call ‘conversation systems’, which abstract away as much
as possible from particular features of the language under consideration and its asso-
ciated semantics, and talk only about states and the operations on states that the
semantics induces. A general characterisation of staticness is then given as follows:
a conversation system is static if and only if the associated state system satisfies
idempotence and commutativity. They show that this characterisation encompasses
both that of van Benthem and that of Veltman, and that it can be used to prove the
non-staticness of various systems, such as FCS, DPL, and update semantics.

That different characterisations can be found in the literature is explained by how
close one stays to a specific system or set of systems, with less general characteri-
sations allowing for more fine-grained analyses. A case in point: as we just saw, the
original van Benthem characterisation of staticness in terms of eliminativity and dis-
tributivity allows us to not only classify both DPL and update semantics as non-static,
but also to differentiate them in an informative way. Using the more general approach
of Rothschild and Yalcin that possibility disappears: from their perspective both sys-
tems are non-static because they are both neither idempotent nor commutative. But
this is, of course, the usual trade-off between generality and specificity.

Be that as it may, for our present purposes what is important is that as far as
formal systems and their properties are concerned there is substance to the distinction
between static and dynamic systems. However, that still leaves the question open
whether from the point of view of the semantics of natural language the distinction
makes sense as well. That we can describe natural language meaning both in a static
as well as in a dynamic manner, using the appropriate formal systems, and that such
descriptions differ in the meta-logical properties of the systems, employed, does not
imply that we need to do so. So the question remains, but we can be certain that it
concerns a substantial distinction.

28.3 Fact or Fiction?

As should be clear from the way in which various theories in the broad realm of
‘dynamics’ are introduced and motivated, there is general agreement that when we
observe language in its actual use it is abundantly clear that this has dynamic effects.
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This is not something that anybody would want to deny. The ‘dynamic wave’ that
started in the 1980s then marks, minimally, an increased attention for such dynamic
aspects. In that sense all the various approaches discussed above are part of the same
development. But what is under discussion is, first of all, to what extent these dynamic
effects need to be accounted for in a linguistic theory, and, second, if so, in what
manner. The first question is answered positively by many,6 on the basis of quite
comparable argumentation. It is to the second one that answers starts to diverge.

So it is particularly the latter question, i.e., the question where and how in an overall
account of language it is that we should account for the dynamic effects of language
use, that is central to many of the discussions in the literature. Obviously, this is
closely connected to the question where we are to draw the line between semantics and
pragmatics. Now suppose we start with the traditional semiotic characterisation of
semantics and pragmatics, with semantics being concerned with the relation between
language and the world, and pragmatics with the use of language. One reason that this
is a good starting point is that it is a relatively theory-independent description, one that
is stated in terms that are neutral and descriptive. Now, by phrasing the phenomena
in question as ‘effects of language use’ we might seem to have settled already on an
answer. For if we go by the semiotic characterisation, it would seem obvious that
dynamic effects, described as effects of language use, should be accounted for in
pragmatics. This seems indeed to be one way of settling the matter.

Of course, it’s not always that straightforward, if only because there are many
alternative ways of describing what semantics and pragmatics are concerned with.
By way of illustration, let us look at the following passage from a recent paper [22]
by Karen Lewis:

Dynamic contents encode (some of) the effects of an utterance on an arbitrary input context.
By contrast, static contents do not encode any updates to the context. On a static view, the
effect(s) of content on the context has to be explained pragmatically. These are fundamentally
different sorts of explanations. Semantics describes facts about natural language. Pragmat-
ics, on the other hand, describes facts about rational agents who engage in co-operative
activities. [emphasis in original, ms]

Clearly, Lewis has in mind a particular conception of semantics and pragmatics,
and of the associated the division of labour between the two, that is different from
the traditional one. First pragmatics. On the one hand the description given here is
much broader than the traditional one, as it does not mention language or language
use and language users, but talks about agents in general. On the other hand, if we
narrow down ‘agents’ to language users, we get a conception that is much narrower
as these language users are now restricted to rational ones that engage in cooperative
activities. Of course, language users do, at least sometimes, act as rational agents,
and they do, again at least in some situations, engage in cooperative activities. But it
will hardly do to try to force any aspect of language use into that restricted mould.

6 It is a testimony to the impact of the generative tradition, though, that even today many authors
would seem to work with a more or less principled distinction between ‘language-as-a-system’ and
‘language-as-use’, which echoes the competence—performance distinction that Chomsky used to
define the proper domain of linguistics as a scientific endeavour. Cf. [30] for further discussion.
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Rather, the conception of pragmatics that is at stake here is one that goes back to
Grice, who used it in the execution of a quite specific, philosophically motivated
program. Thus this conception of pragmatics is not one that we can appeal to in
order to classify a certain set of phenomena, in this case the effects of language use
that dynamic theories are concerned with, without an independent motivation of why
pragmatics should be (only) this.

Then semantics. The crucial question here is whether the characterisation of
semantics that Lewis uses, viz., ‘semantics describes facts about natural language’, is
sufficiently specific to rule out a dynamic conception of natural language meaning.
Taken literally, it does not seem to do so. If we analyse the meaning of a certain
expression in natural language as consisting in a context-change potential, in what
way do we go beyond describing ‘facts about natural language’? As was already
noted, it is not that there is some theory-independent way of identifying what those
facts are, that we can appeal to in order to answer this question.

It appears that we need additional considerations if we are to conclude, as Lewis
intends to, that the dynamic effects that we are concerned with here can not be part
of semantics, but must be accounted for in pragmatics. Adopting a classical, truth-
conditional and static semantics as that which ‘describes facts about natural language’
will do the job. And it is a way of looking at things that has a venerable ancestry,
given that it is the most prominent account of the ‘language–world’ relationship that
the semiotic conception claims semantics is concerned with. But, and this is crucial,
it can hardly be appealed to as an argument. It is a stipulation, one that may be
justified in a number of ways to be sure, but it is not in and by itself a move that has
argumentative force.7

So, it seems we’re stuck: an appeal to prior characterisations of what semantics
and pragmatics are is unlikely to be both sufficiently restrictive and theory-neutral to
allow us to reach a decision as to whether the relevant effects of language use should
be accounted in one or the other. And per implication that means that along these
lines we will not be able to adjudicate the question whether dynamic semantics is a
bona fide theory of natural language semantics. So what are we to do?

One obvious suggestion would be that we have been barking up the wrong tree
all along in looking for conceptual-methodological arguments to decide the issue,
and that we rather should go back ‘zu den Sachen selbst’. After all, natural language
is an empirical phenomenon, and so is its semantics. Therefore, shouldn’t we be
able to conclude on empirical grounds that dynamic semantics is on the right track,
or that static semantics is the empirically adequate characterisation of what natural
language meaning is?

To be sure, in the conceptual-methodological considerations that one can find in
the literature, empirical arguments are deemed relevant as well. And that appears
only natural if only because the theoretically motivated preference for dealing with

7 And we would do well to note that it is not that even if we accept the semiotic characterisation of
semantics as a neutral starting point: what ‘the world’ is, is left underspecified in that characterisa-
tion, and there seems to be no a priori way of ruling out that information states of language users
are part of ‘the world’.
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certain phenomena in semantics, or rather in pragmatics, comes with the obligation
to show that it actually can be done in that way. And that needs to be shown, then. But
do note that there is a matter of fact here only if we have fixed the format of a semantic
and a pragmatic theory. Which means that we turn around in circles: we can appeal
to empirical considerations only if we assume we have reached consensus on the
conceptual issues. And the latter, it seems, can not be obtained solely by conceptual
considerations but time and again steers us towards the empirical.

The question of empirical adequacy has been discussed in the literature in some
detail.8 But what is important to note is that apparently it is not easy to come up
with ‘hard evidence’, i.e., with a phenomenon of which we can show that it can, or
can not, be accounted for in a particular way. In fact, if we look back at, e.g., the
discussion between Kamp and Groenendijk and Stokhof in the late 1980s, we note
that the argument was never about empirical coverage per se, but about accounting
for a set of empirical phenomena in a particular way.

Another illustration of the fact that empirical and theoretical motivations come as
a mixture, is provided by Cresswell in [9]. He takes DPL as his point of departure
and then develops an alternative, in the sense of a theory that has the same empirical
coverage as DPL, that is static, i.e., truth-conditional. The details need not concern us
here, what is relevant for our discussion is the way in which Cresswell characterises
his own enterprise:

My purpose in these last two sections has not been to adjudicate between the use of double
assignments, as in Groenendijk and Stokhof, and ‘namely’ variables [which are the new
logical tool that Cresswell introduces, MS] , but simply to point out that the translation
scheme shows that there is no empirical difference between the two approaches.

This is quite representative of a lot of work that has been done in this area. One
takes a fixed set of phenomena, a given account of them (static or dynamic), and
then develops an alternative account (dynamic or static) that has the same empirical
coverage. That is interesting and revealing, but the key question in the present context
is: what does it tell us about the choice between dynamic and static accounts of
meaning? Does it tell us anything at all?

According to Cresswell it does. In the passage just quoted, he continues to draw
the following conclusion:

And since the use of free variables does not constitute a departure from the standard truth-
conditional account of meanings, then neither do the empirically equivalent dynamic theories
of semantics.

But that seems a non sequitur. As was mentioned above, one of the main elements
in the development of dynamic predicate logic was to show that DPL and DRT
account for exactly the same facts. Yet, neither proponents of DRT nor those of DPL
subsequently claimed that therefore the two theories are somehow the same. On the
contrary, the very fact that both theories were able to account for the same phenomena
focussed the discussion on their conceptual differences, and on the justification of

8 Beside the older literature that has been referred to above, cf. e.g. the more recent [8, 11, 21, 24];
and [22] (already mentioned).
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their respective conceptual and methodological assumptions.9 In other words, when
comparing theories we can not look just at their empirical coverage, we also need to
take into account their conceptual apparatus.

But then it seems we are indeed back at square one. Conceptual considerations
seem to be unable adjudicate because the relevant concepts—of semantics, mean-
ing, pragmatics, and the like—are intrinsically theory-dependent. And empirical
considerations don’t really help us out because obviously empirical equivalence (or
empirical difference for that matter) simply does not say enough. So we are in a
conundrum.

In such a case, it is best to take a step back, and to take a closer look at what kind of
enterprise we are dealing with here. That involves a lot of issues and a great number
of considerations, The issues are complex and we can not hope to do justice to all
of them. So in what follows we just want to point to a particular aspect that hitherto
has received little or no attention in the discussion: the role of formal systems.

28.4 Another Take

What appears to be a central, though not too often explicitly thematised, factor in
how one adjudicates the issue, concerns how one views the role of formal systems in
natural language semantics,10 By ‘formal system’ we mean here minimally a formal
language plus an explicit model-theoretic and/or a proof-theoretic account of its
logic. The ‘logic’ part can be more or less extensive, depending on what the system
is meant to capture.11 It should be noted that especially in linguistic applications,
the specification of the logic is often subdued, which explains the tendency to phrase
these issues in terms of the role of ‘formal languages’, rather than ‘formal systems’.

Let us start with natural language semantics. As we have argued elsewhere [29],
there are (minimally) two main perspectives on the role that formal systems have
to play in natural language semantics. One perspective is that a formal system is
primarily a tool, something that is used in formulating and evaluating a theory. But
there is an earlier, and arguably still dominant perspective on which a formal system
is viewed as a model for a natural language with its semantics. Here the central
features of the formal language employed are supposed to model similar features of
the natural language that is being described. On this view, the task of the semanticist is
twofold: first to find a formal language which has the required properties; and second,

9 As was already mentioned earlier, compositionality played a key role in that discussion, and it is
interesting to note that there are indeed good arguments that compositionality is not an empirical
issue, but a methodological principle. Cf. [16] for more discussion.
10 Similar considerations apply to formal systems in other domains, e.g., in the kind of naturalistic
philosophical analysis that is exemplified in dynamic epistemic logic. We can not go into these
matters here, but cf. e.g. [6] for discussion.
11 Another explanation is that in the early days of generative grammar, natural languages were
primarily studied from a syntactic point of view, often in terms of structural properties familiar
from the theory of formal languages.
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to devise a systematic relation between natural language and formal language so that,
in the relevant respects, the latter can be seen as going proxy for the former.

It is interesting to note that Stalnaker, in [27], construes a major difference between
DRT and DPL precisely in these terms: the latter, but not the former, models nat-
ural language. Now, contrary to the suggestion in [27, p. 4], it is obvious that the
proponents of dynamic semantics do intend these to be part of a semantic theory of
natural language, i.e., to be combined with a systematic account of how syntactic
structures are mapped onto representations in a formal language. To give just one
example, Dynamic Montague Grammar [13] closely follows the lead of Montague’s
original set-up and gives an explicit definition of the mapping that takes natural lan-
guage expressions (or rather, their derivation trees) into expressions of intensional
logic, which then is interpreted in a dynamic way. From that perspective, Stalnaker’s
claim (loc. cit) that:

Dynamic predicate logic, on the other hand [i.e., in contrast to DRT, MS], is only indirectly
relevant to any natural language. It defines an artificial language with new kinds of dynamic
variable binding operations, obviously different from anything in natural language, but pre-
sumably intended to model, approximately, some of the devices used in natural language.

is decidedly odd. First of all, as the references just given show, dynamic semantics
is explicitly intended to be part of a systematic theory. And secondly, the use of
an artificial language with elements that lack direct counterparts in natural language
applies to all formal semantic theories that implement indirect interpretation, be they
static or dynamic. It definitely applies to DRT as much as it does to DPL, but it also
applies to static theories, including those that implement Stalnakerian ideas.

But the quoted passage is also interesting for another reason, viz., because of the
view on the role of formal systems it appears to assume, or, rather, the ambivalence
with regard to this role. On the one hand, Stalnaker maintains that the extended vari-
able binding of the existential quantifier in DPL is ‘obviously different from anything
in natural language’. This is true, but in a rather trivial sense. On the other hand, the
introduction of these devices is ‘presumably intended to model, approximately, some
of the devices used in natural language’. Forget about the ‘approximately’ for the
moment, what is interesting is that apparently, for Stalnaker there is a tension in using
a concept or structural property of a formal system that has no direct counterpart in
natural language to model some aspect of that very same natural language. But this
is confusing, as it appears to put unrealistic constraints on the relationship between
a formal system and what it models, in this case a natural language.

Different views on to the role of formal systems are connected with different
views on what a semantic theory should do, on what the relation is between a seman-
tic theory and what it is a theory of, viz., the semantics of natural language. The
modelling approach constructs the explanatory force of a semantic theory in terms
of the successful modelling of (part of) natural language semantics by means of a
formal system. The other main perspective, which views formal systems as tools,
defines the task of a semantic theory as describing relevant aspects of the semantics
of a natural language, and on the basis of such descriptions providing explanations
of various regularities. On this view, the use of formal systems is akin to their role
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in other sciences, such as biology, or physics.12 Here the primary criteria are expe-
dience, in addition to economy, elegance and simplicity, but not similarity, in terms
of structure and concepts. If we view semantic theory as a descriptive-explanatory
enterprise, we would allow the theorist in principle the use of any formal system
that gets the job done. Descriptive adequacy is the first and most important criterion.
Of course, when two or more equivalent descriptions are available, other consider-
ations become relevant, but similarity, it seems, is never a pre-condition, and hence
not a principled consideration to judge semantic theories.

This appears uncontroversial. But there is a danger lurking here as well, for it
would seem to follow, on this view of what the task of a semantic theory is, that we
should be able to identify the facts and features that we intend to describe indepen-
dently of the means that we bring to the task at hand. As we have seen above, that
is a dangerous assumption: there may be facts in the sense of their being system-
atic patterns in judgements about entailment, or synonymy, or analyticity, but there
certainly are no facts that can be classified as ‘semantic’ or ‘pragmatic’ independent
from conceptual and methodological assumptions. And that implies that the key issue
is whether the choice of a formal system can be made in terms that are not informed,
one way or another, by such assumptions.

Of course, the alternative modelling approach is not better on this score, on the
contrary. If we assume that the formal system that we use in our semantic or pragmatic
analyses somehow models the relevant aspects of natural language because they share
core features, we risk to loose any explanatory force. For this type of modelling can
be considered adequate only if we have independent access to the relevant features:
we can only judge whether some formal system accurately models aspects of natural
language if we can compare them in the relevant respects. And that means that we
have to be able to access the features of the formal system and those of natural
language independently from each other.

With a formal system that is, of course, not a problem. We can investigate such a
system and ascertain its properties. And we can, of course, simply design a system
in such a way that it has the properties we want. In the case of a natural language,
however, the situation is completely different. If a natural language is an empirical
phenomenon then it is what it is, and has the properties that it has, quite independent
from our access of them, and even quite independent of their accessibility.

Given this asymmetry, the use of formal systems in an descriptive–explanatory
role in natural language analysis is puzzling. To put it bluntly: what is the point?
If we need to have independent access to the relevant features of natural language
that we want to model with a formal system in order to be able to decide whether
the formal system is an adequate model, then what do we stand to gain? The answer
here is not ‘Nothing’, since we can use formal systems as models in useful ways:
to provide concise overviews of features that we are interested in, to come up with
‘perspicuous presentations’ of them. But one thing such models can not be, and that
is descriptions with explanatory power.

12 Of course, there are many differences as well, but these are not relevant for the main point that
is at stake here.
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To summarise: it seems that a formal system is regarded either as a tool or as a
model, i.e., it is used either to describe or to express13 features of natural language. In
the first case the internal conceptual structure of the tool is of secondary importance
(which is not to say that it is of no importance at all): what counts is whether it gets the
job done, and it is first and foremost on those grounds that particular conceptions are
justified (with other considerations coming in only as secondary). That is a pragmatic
justification, one that comes without much ontological implications: that we can
successfully describe a certain range of phenomena using a certain concept does
not commit us to the existence of anything corresponding to the concept, not even
after dutiful application of considerations of economy and simplicity. On the second
view, however, the modelling one, this is essentially different: there the conceptual
structure of the formal system is supposed to align with that of the natural language.
But, and this is the crucial point, it can do so only by design, so to speak. We already
need to have a good grip on the nature of what we want to model in order to be able
to find a system that ‘fits’. But explanatory value such a fit does not have, at least
not as long as there are no independently, empirically motivated constraints on the
formal systems that we can regard as candidate models.

So, if natural language semantics is an empirical discipline, one which has
descriptive-explanatory goals, the proper perspective on the role that formal sys-
tems might play is a thoroughly pragmatic one. Formal systems are tools, selected
first and foremost for their ability to get the job done, i.e., for the descriptive power
that they provide. The tools in and of themselves don’t need to have any essential
characteristics in common with what they are applied to.

28.5 So What?

The consequence of these considerations for the issue that is at stake in this paper,
viz., how to decide whether dynamic semantics is correct in claiming that natural
language meaning is a dynamic concept, is straightforward: we can’t decide the
issue in a remotely theory-independent way. This is illustrated by the simple, but
significant observation that the description of dynamic effects can be done in static
terms, but the modelling of something dynamic has to be done in terms of something
that is itself dynamic. These two perspectives are mutually exclusive since, as we
argued above, they do not depend on any ‘fact-of-the-matter’, but represent choices
to do things one way rather than another.

This does not make all discussion pointless, of course. Not all formal systems
have the same descriptive power, so if we want to describe certain dynamic effects in
static terms we still need to find the right system to do that. Analogously, if we want
to model these effects we need a dynamic system that has the right dynamic features.
Within each of these two settings there is ample room for discussion, as there can

13 Or ‘show’; cf. [28] for an extensive analysis of how the universalism of Wittgenstein’s early
work, with its associated distinction between ‘saying’ and ‘showing’, is connected with the two
conceptions of the role of formal systems in natural language analysis outlined here.
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be better and worse tools, and we need to go into the empirical details in order to
be able to decide which is which. It is between these settings that discussion loses
its point. There is no answer to the question whether natural language meaning ‘is’
dynamic, or not: we simply lack a theory-independent concept of natural language
meaning that we can refer to in our attempts to decide the issue one way or another.
If we ignore this, conceptual muddles and misguided discussions will be the result.

Such considerations as the above apply in a wider context that the question of
dynamic meaning. They are not confined to natural language semantics, but also apply
in other contexts, such as the application of logic in the analysis of philosophical
concepts, in cognitive science, and so on. A classical example is provided by the
study of modal concepts. Here we can use modal logics to model the properties of
modal concepts„ but many of their features can also be described using a non-modal
tool, such as first order logic. In this case too, basically the same considerations
as outlined above apply. This is not an empirical issue, or one that can be decided
on conceptual grounds. Ultimately is a a matter of choice, If we fail to see that,
we end up in fruitless debates, or, to use van Benthem’s poignant phrase, ‘system
imprisonment’14:

Nevertheless, I am worried by what I call the ‘system imprisonment’ of modern logic.
It clutters up the philosophy of logic and mathematics, replacing real issues by system-
generated ones, and it isolates us from the surrounding world. I do think that formal languages
and formal systems are important, and at some extreme level, they are also useful, e.g., in
using computers for theorem proving or natural language processing. But I think there is a
whole further area that we need to understand, viz., the interaction between formal systems
and natural practice.

I read van Benthem here as arguing for a pragmatic stance that is akin in spirit to
the one outlined in this paper. Indeed, there is a lot that we still need to understand
about the role that formal systems can, and cannot, play in an adequate account of
our ‘natural practices’, i.e., in coming to an understanding of the ways in which
we reason, use language, and so on. But if we can agree that a pragmatic attitude
provides a better starting point than the essentialistic perspective that has informed
too much of our discussions thus far, we have gained something.
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Chapter 29
Logic of and for Language, and Logic
of and for Mind

Hans Kamp

Abstract This is a largely informal and increasingly speculative reflection on the
implications and the importance of formal semantics and formal logic, not just
because they throw light on the subject matters with which they deal, but also because
of their power to make those who become acquainted with them better speakers and
better agents. The earlier parts of the paper rehearse some familiar formal points
about model-theoretic accounts of the semantics of natural languages and then ask
in what ways treatments can be tested against the intuitions of competent speak-
ers. It is argued that model-theoretic accounts are testable even when speakers have
firm judgements only about some of the sentences of the language fragment treated
by the theory; and, further, that once a speaker who has verified the treatment to
his satisfaction against those judgements of which he feels certain, the theory may
help him to deepen his understanding of his language and thus also to improve as a
speaker. I then go on to argue that a similar dynamics governs our interaction with
axiomatic theories of non-linguistic aspects of human behaviour, such as knowledge
or action: We may convince ourselves that such a theory is right by observing that
it agrees with the judgements about aspects of the formalized concepts about which
we are confident and then let the theory guide us to a better understanding of other
aspects of those concepts; and that may change us as agents. These considerations
suggest that there is more in common between formal treatments of the semantics of
natural language and formal logics of aspects of cognition and action than is usually
assumed.
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29.1 Formal Languages as Tools for Sharpening our
Understanding of Your Mother’s Tongue

To really understand the meaning of a sentence, it has often been suggested, is to
know what follows from it. That sounds rather circular. For the suggestion makes
sense only when knowing what follows from a sentence isn’t just knowing what other
sentences follow from it, but also knowing what those sentences mean. But then . . .?

Nevertheless the suggestion has been immensely useful, definitely for more than
a century, and probably for much longer. Given the apparent threat of circularity, it
is worth asking oneself why.

The way logic was used in the analysis of language throughout the first two thirds
of the 20-th century shows us an answer. Some of the statements we encounter in
philosophy and mathematics are hard to process. In some sense we understand them
when we hear or read them, but in another sense, which in mathematics, science or
philosophy matters crucially, we don’t, or it dawns on us after a while that we don’t,
or didn’t. In such situations it is often useful to have a logical formalism at hand
that we can use to highlight and profile those aspects of the sentence meaning that
thus far we didn’t see or appreciate enough: By ‘translating’, or ‘symbolizing’, the
sentence into the formalism we bring features of its meaning into focus which we
did not recognize clearly enough, but which are essential if we are to recognize those
inferences (and non-inferences) that matter in the given philosophical, mathematical
or scientific context. A classical example is the power of quantification theory to
reveal the import and importance of quantifier scope. I still quite vividly remember
the functional analysis class I attended as an undergraduate at Leiden University,
in which several weeks were spent on explaining the difference between continuity
and uniform continuity. We weren’t taught any symbolic logic then and my first
serious encounter with the predicate calculus did not occur until 3 years later, when
I already was a graduate student in Amsterdam. In retrospect, it was quite clear
that the difference between continuity and uniform continuity was just a matter of
scope—the difference between ‘for all x and for all ε there is a δ such that . . .’ and
‘for all ε there is a δ such that for all x . . .’. If we had been attuned to this distinction
in those terms, I am sure that we could have proceeded much faster: A familiarity
with a formalism such as the Predicate Calculus helps us to understand better the
language which we use in any case to express the things we want to say.

That the Predicate Calculus is a formalism that can help us in this way is at
least in part explained by the fact that it was the result of a careful, deep and astute
analysis of how we can express, with great accuracy, mathematical and philosophical
propositions in the language we have. Learning the Predicate Calculus is therefore to a
large extent learning how to say things in it that we do know how to say in our mother’s
tongue—learning how our ways of saying those things in our mother’s tongue can
be rendered in the formalism. But even so, learning how to use such a formalism in
this way—finding the correct representations in it for new sentences of the natural
language we speak, which had not crossed our path and which resist immediate
understanding—can be a true challenge. But—and this is what is remarkable—the
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challenge can often be met: we can find a formalization for a new sentence, and once
we have found it we can first convince ourselves that it is the right formalization
for this sentence and then exploit our knowledge of the formal properties of the
formalism to get a better grip on the meaning of the sentence than we had to start
with.

How this kind of two-way interaction between natural language and formal logic
is possible is, it seems to me, one of the great mysteries of human cognition. (If
ever there were true cases of the Paradox of Analysis,1 these are prime examples;
each application of a logical formalism to clarify or sharpen our understanding of a
sentence we somehow understand well enough to find a symbolization for it, and to
persuade ourselves that it is correct, is an instance of this paradox.)

This is the way that formal logic was used during the first and a good part of
the second half of the last century—often with remarkable success—and in which it
is still used today—and still often beneficially—within philosophy. But the results
aren’t fruitful invariably. In fact, the risk of things going wrong is real and prominent
enough to make us want to find better ways of controlling our use of formal logics
in the exploration of meaning—ways of demystifying the successes and guarding
against the failures.

29.2 Logics as Specification Formalisms in Model-theoretic
Semantics

The decisive break-through—this point is overly familiar but it needs an explicit
statement here—was Montague’s seminal work on the semantics of natural lan-
guages, in which he found a way of applying to the analysis of natural language
the model-theoretic method that Tarski and his school had developed for formal lan-
guages such as Predicate Logic. When talking about this work today, it is important
to give visibility to the magnitude of its achievement by stressing the strength of the
then prevailing prejudice according to which such an enterprise must be doomed to
failure. We have come to take it for granted that natural language meaning can be
analysed in this way and that such analyses can advance our understanding of the
languages to which we apply them. After all this is what Montague has shown us.
But if anything was taken for granted at the time when he did his work, it was that
it couldn’t be done.

It is also important, however, to stress how natural the idea was of treating the
semantics of human languages in the same way that one already knew how to do in

1 The Paradox of Analysis was originally formulated in connection with the notion of conceptual
analysis as propagated in the work of G. E. Moore. The ‘paradox’ is this: suppose I want to clarify
a concept C and propose an analysis (or ‘explanatory definition’) A for it. Then my proposal meets
the following predicament: either (i) C is understood well enough to make it possible to see that
A is a correct analysis of it; but in that case the analysis cannot tell anything about C that wasn’t
already known; or (ii) A does tell us something about C that wasn’t yet known; but then it isn’t
possible to verify that A is a correct analysis of C. See e.g. [1, 10, 22].
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dealing with the semantics of the languages of formal logic. I remember Montague
commenting more than once in private conversation in 1965 on what he saw as an
oddity of formal logic as it was taught then [and in particular as it was presented in
his own text book (written jointly with Donald Kalish, see [19])]: ‘Everything in that
book’, he said, ‘is spelled out in painstaking formal detail—the syntax of proposi-
tional and predicate logic and the method of proof. But we say nothing explicit about
how you go from English sentences and English arguments to their symbolisations.
That is taught by example; somehow the student must catch on.’ It was in a way that
gap which Montague then, shortly afterwards, proceeded to fill when he produced
his path-breaking papers on natural language semantics.

I say ‘in a way’ because Montague saw his work on natural language semantics
emphatically not as showing how the sentences of the fragments of English that are
analysed in his papers can be translated into some formal language. In his papers
on natural language, the natural language fragment is related directly to the models
they specify, by a function that assigns to syntactically well-formed expressions
semantic objects that are connected with those models—the ‘semantic values’ that
are ‘denoted’ by those expressions in those models. Translation into some other
formal language is a by-product of the way in which this function is defined; but this
by-product shouldn’t, he insisted, be confused with what he took to be the central
task of a theory of meaning: showing how natural language expressions project onto
their semantic values, by virtue of the meanings of their words and their own intrinsic
grammatical structure.

And yet you cannot really avoid the by-product. For—first point—you need a
precise way of talking about the models that are part of a model-theoretic account
of meaning and about the semantic values associated with those models. And that
talk is possible only in a highly regimented language, a formalism that is designed
for the task. In fact, specifying such a formalism and specifying the models for the
natural language fragment that is being treated are two sides of a single coin. If
the formalism is to be truly up to its task, then it must describe those models and the
objects associated with them transparently: the syntactic structure of its expressions
must reflect the structure of the models and associated semantic objects as close
and directly as possible. The second point has to do with the use that Montagovian
accounts make of these formalisms. The formalism is used to specify ‘canonical’
descriptions for the semantic values of the well-formed expressions from the language
or language fragment dealt with in the account, and in particular for the semantic
values of its sentences. And the semantic values of sentences are like propositions or
truth conditions in that for any given sentence A, the semantic value of A determines
for any model M from the model class proffered by the account whether A is true in
M or false. (From now on I will refer to the formalism that a given model-theoretic
account uses for the purposes just indicated as its specification formalism and to
the language or language fragment for which it provides a semantics as its object
language.)

What has been said in the last paragraph about the part that specification for-
malisms play in model-theoretic treatments of meaning has the following implica-
tion. Suppose we want to find out what the treatment has to say about entailment
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relations between sentences of its object language. Suppose, more specifically, that
we want to know the treatment’s verdict on whether sentence A entails sentence B.
Given the model-theoretic definition of entailment as preservation of truth, A will
entail B according to the treatment iff the semantic values of A and B are such that
if in any model M , A is true according to the semantic value assigned to A, then
B is true in M according to the semantic value assigned to B. But this is nothing
other than that the proposition-like object that is the semantic value of A entails the
proposition-like object that is the semantic value of B. Or, to put the same point in
slightly different terminology: Let us call a term τ of the specification formalism
that the account uses to specify the semantic value of an expression α of the object
language the logical form of α and denote this value as ‘τ (α)’. Then the account has
it that A entails B iff τ (A) entails τ (B). In other words, entailment between object
language sentences is reduced to entailment between their logical forms. So the log-
ical form assignment that is part of the proposed model-theoretic account delivers
an entailment-preserving translation from the object language into the specification
formalism.

I have been going over this thoroughly familiar ground at such length because
I wanted to bring out the inevitability with which model-theoretic accounts of seman-
tics generate assignments of logical forms to expressions of their object languages.
Insisting, as Montague does, that the point of such accounts is to articulate semantic
relations between object language expressions and entities ‘in the world’ and that the
specification formalism is just a tool that is needed to do that, makes no difference
as far as that is concerned.

But nevertheless it is important to keep in mind why Montague insisted that the
point of his account of natural language semantics was that of describing semantic
relations between expressions and models, and not that of providing a semantics
for the object language through translation into some other language for which the
semantics has been cleared in advance. His reason for insisting was his conviction
that there is no fundamental difference between natural languages and the artificial
languages of symbolic logic; both are amenable to a semantic analysis that relates
grammatically well-formed expressions to models. What specification languages are
being used as part of what is needed to state these relations is immaterial to that
general point.

29.3 Using Natural Languages as Specification Formalisms

In fact, there is no a priori reason why there couldn’t be an account in which the
role of specification formalism is assigned to some natural language or suitable frag-
ment thereof. And as a matter of fact, proposals to this effect are well-documented.
First, there is the long tradition of Davidsonian truth theory, in which a natural lan-
guage is used at the meta-level to specify the truth-conditional semantics of the same
or some other natural language [16, 17]. (Davidsonian Truth Theory shuns mod-
els, so it cannot be described as a model-theoretic treatment of natural language in
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which a natural language is used as specification formalism; but for the issue at hand
this distinction between model theory and truth theory does not matter.) A second
proposal to this effect is the one, going back to Boolos,2 to use English (or some other
natural language) as specification formalism when stating the semantics of second
order logic. Essential to the natural language fragment used for this purpose is that it
include plurals, which, it is contended, are optimally suited to capture the semantics
of the second order quantification that distinguishes second from first order logic.3

The arguments given in support of these two proposals are different. The principal
motivation for Davidsonian Truth Theory is that it captures what goes on when a
speaker S with natural language L′ interprets the language L of some other speaker
S′ (or the language of some group of people or speech community). An important
special case of this is supposed to be that in which L′ is superficially the same as
L, and where there is a presumption that they are the same language in more than
superficial appearance. A Davidsonian Truth Theory of this type, it is suggested,
captures what is involved when S accepts S′ as a speaker of the same language that
he speaks himself.

The justification that is given for a Boolos-like approach to second order logic
is that the student of second order logic, in his capacity of a competent speaker
of his mother tongue—let us assume for the sake of argument that that language
is English—has a full command of it, including its various constructions involving
plurals, and that because of this, English is the perfect tool for analysing the semantics
of formal systems involving second order quantification (and I suppose for analysing
the semantics of natural languages as well).

These arguments in favour of the proposals are often accompanied by objections
to approaches of the kind exemplified by Montague’s work, which employ logical
formalisms as specification languages. The charge of these criticisms is either that
these formalisms lack the foundation that their use as specification languages pre-
supposes, or else that they distort the semantics of the object language.4 The best, it
is implied, that can be expected of accounts that use such specification formalisms is
that they don’t get things wrong. But any hope that we could learn something from
such an account about a language L we already have must be idle. For either we
know L well enough to be able to verify that the account is correct; but then, what
could the account teach us that we do not already know. Or else we do not know L

2 See e.g. [11–13].
3 More recently there have been concerted efforts to turn Boolos’ insights into explicit semantic
accounts of second order logic in which the meta-language, in which the truth definition of Second
Order Logic is stated, is inspired by the way plurals enable us to say things that would otherwise
have to be said by referring to sets or mereological complexes. This branch of logic and semantics
is usually referred to as ‘Plural Logic’. For a recent contribution see e.g. [24].
4 Specific charges of these sorts have been levelled at semantic accounts of modalities in terms
of possible worlds. On the one hand the notion of a ‘possible world’ is said to be ill-defined
or incoherent, which disqualifies specification formalisms that refer to possible worlds. On the
other hand there is the objection that specification formalisms that analyse modalities in terms of
possible worlds try to capture the meaning of essentially non-extensional notions (the modalities)
in extensional terms (i.e. in terms of possible worlds). Such accounts therefore cannot fail to distort
the semantics of the object language.
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this well. But then we have no basis for trusting the account and so have no reason
to put any trust in the lessons it might seem to offer us.

For what I want to say here, it is the critical part of these proposals that matters
most—the charge that model-theoretic accounts which make use of formal languages
as specification formalisms must be either unverifiable or uninformative. These crit-
icisms seem to me to manifest a pessimism that I do not share and that I think isn’t
shared by most of the ‘language and logic’ community. (This must be true in partic-
ular of those who apply Montague’s methods to the analysis of natural languages.
If they did share the pessimism, they wouldn’t be doing what they are engaged in
much of the time.)5

29.4 Formal Semantics of Natural Language and the Paradox of
Analysis

One way to describe this clash of convictions and intuitions is in terms of the Paradox
of Analysis. Both the criticisms of the model-theoretic method fielded by the advo-
cates of Truth Theory and the confidence in our own language mastery that forms
the basis of Boolos’ proposal to use English in a formal explication of second order
logic imply that where linguistic meaning is at issue, there is no room for instances
of the Paradox. Those at whom the criticisms are targeted, on the other hand, and
among them in particular those who believe that the semantics of plurals can be
clarified through the use of logical systems as specification formalisms, demonstrate
their conviction that progress is possible in ways that are paradoxical in the sense
the Paradox is designed to bring out into the open.

To articulate the controversies in these terms is to acknowledge that the advocates
of the methods of formal semantics have a predicament: How is it possible to find
out things about your own language through the application of such methods? There
is no simple answer to this query. (Explanations of how there can be instances of the
Paradox of Analysis can never be simple. That’s after all why it is called a paradox.)
But let me try. The reason why we often seem to be in a position to ascertain that a cer-
tain logical analysis of a certain construction (or group of interacting constructions)
of our language is correct is that we have a sufficiently firm grasp of the semantics of

5 In the case of Plural Logic the skepticism towards formal specification formalisms comes hand
in hand with a curious optimism about our competence as native speakers: that our untutored grasp
of the use of plurals in the language or languages we speak is good enough to justify the use of
such a natural language to explicate the semantic foundations of higher order logic. This optimism
I share even less. Here is one reason (I know it is not conclusive): Boolos [11] presents a translation
algorithm from second order logic into English in which second order quantification translates into
constructions involving plurals. My own experience with this algorithm is that when I try to apply
it to any but the simplest formulas of second order logic, my head invariably spins out of control; I
cannot get a grasp of the English sentence obtained as a translation. What I feel I desperately need
in order to make sense of it is a further, formal analysis of it. But if I understand Boolos correctly,
that is just the wrong thing to ask for.
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simple instances of those constructions: We understand the truth conditions of simple
sentences containing them. If the analysis makes verifiably correct predictions about
these simple cases, then that may be all that is needed to justify our confidence that
the analysis is correct. And once we have reached that point, we are in a position to
use the analysis to improve our understanding of more complicated instances of the
constructions, and the more complicated interactions between them.

This is no different, I think, from the way in which formal arithmetic helps us
to understand what the numbers are. By the time children learn decimal notation
and the routines for adding and multiplying which exploit that notation in school,
they already have a solid grasp of (at least) a range of the smaller natural numbers—
starting with 1 and extending, say, and with gaps perhaps, to 1,000. Catching on to
the decimal notation means on the one hand being able to use it to describe numbers
that are familiar already, and perhaps also to see how the notation can be used to
capture what is already known about arithmetical operations, such as counting things,
and addition. But at some point the understanding of how decimal notation works
takes over, as it were. It now conceptually functions as a kind of foundation to
understanding the number system and not just as a formal device that can be used to
navigate within a structure that is known independently.

In the case of natural language these limitations can take at least two different
forms: (i) that of an incomplete grasp of the rules of syntax which permit in principle
the formation of grammatical sentences of arbitrary length and complexity; and, more
importantly for present purposes, (ii) that of an incomplete grasp of how complex
syntactic structures are mapped onto meanings, so that even for certain strings that
we do recognise as grammatical sentences we cannot get their meaning properly into
focus. The revolution in the theory of language that was brought about in the fifties
and sixties of the last century, largely through the work of Chomsky6 and that of
Montague, has encouraged the conviction that first language acquisition is a matter
of zeroing in on its general syntactic generation or admission principles and on the
related semantic rules once and for all. On this conception there is no room for a
partial mastery of those rules, which enables the speaker to apply them reliably to
fairly simple strings, but not to strings of greater complexity.7

But formal semantics and logic can improve our understanding of what complex
expressions of our language mean. That is why teaching introductory logic—when
it is done in the right way and falls into the right minds—can be so useful: it can be
a stepping stone for the student to better understanding his own language. After all,
being good at logic is to a large extent a matter of being clear about the semantics of the

6 See in particular [14, 15].
7 Chomsky has always been well aware of the fact that natural languages admit strings as grammatical
that are too complex for human processing and makes an emphatic distinction between competence
and performance to account for this fact. But the limitations that a speaker may demonstrate because
of performance constraints—e.g. to fail to recognise a certain string as grammatical although it is
grammatical by the very principles she has internalised, or to fail to assign the correct interpretation
to a string that she has recognised as a grammatical sentence—must be sharply distinguished from
the partial mastery spoken of here. Limited performance and partial mastery of a language are very
different things.
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language you speak. My own (admittedly subjective) experience with work in formal
semantics tells me that the same is true there. Here too, exposure to contributions
to semantic theory can improve our capabilities as speakers. (Unfortunately, if I am
right, then quite large doses of the medicine are needed before any effects will show
in either case. But perhaps I am a little too pessimistic on this point.)

29.5 Model-theoretic Semantics as a Theory of Natural
Language Entailment

The reason, I suggested above, why formal semantic analyses can teach us something
about our own language is that they permit a kind of bootstrapping: we can convince
ourselves that the given analysis is right for the comparatively simple cases for
which our understanding is good enough, and then use the analysis to improve our
understanding of more complex cases. But what form can ‘verifying the analysis
of the simple cases’ take? Here Montague may be cited once more. For Montague
the empirical import of the model-theoretic treatment of a fragment FrL of a natural
language L consists in the predictions it makes about entailment relations between
the sentences of FrL . It is assumed that speakers of L can judge which L-sentences
follow from which, and thus can test the treatment’s entailment predictions against
this evidence. (It is perhaps not all that clear that this is the only way in which
empirical adequacy of such treatments can be tested. But that is a question that
doesn’t need an answer here.)

If it is true, as suggested above, that even competent speakers of a language
may have a limited understanding of the meaning of its expressions and that this
understanding is restricted to its simpler expressions, then their native ability to
judge which sentences follow from which will of necessity be limited as well. This
does not necessarily compromise Montague’s criterion. For the range of reliable
entailment judgements may nevertheless be extensive enough to allow for adequate
testing. And when a model-theoretic treatment has passed those tests, it can then take
on its role as instrument for sharpening and extending the speaker’s intuitions about
entailment relations involving sentences which so far had been out of reach.

In what follows I will adopt Montague’s criterion and focus on this inferential
aspect of linguistic meaning—i.e. on the entailment relations between the sentences
of a language L. The question to what extent such a narrowing of focus is justified
brings us back to the one implicit in the opening paragraph of this essay: What is
the relation between entailment and linguistic meaning? So far I have made no real
effort to answer that question. But in a way the model-theoretic method, which has
been our central topic so far, contains at least a partial answer to it: The semantic
values that applications of the method assign to expressions of the object language
can on the one hand be thought of as capturing their meanings, while on the other
hand they determine which sentences of the object language are entailed by which:
entailment is defined as logical consequence; A entails B iff the class of models in
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which A is true according to the semantic value assigned to A is included in the class
of models in which B is true, according to the semantic value assigned to B.8

N. B. The thesis that judgements about entailments are our only means for verify-
ing whether a model-theoretic account of some natural language fragment is empiri-
cally correct points towards a question that is of considerable conceptual importance
but that appears to be technically hard: Is it possible to recapture the semantic values
that such an account assigns to the expressions of its object language just from the
entailment relation it defines? An answer to this question will be important in that
it will tell you something about the extent to which semantic values are theoretical
constructs, which could be chosen this way or that without making a difference to
what follows from what. If I am right, then there is a strong sense on the part of most
working semanticists that there just isn’t much flexibility on this point—that you
‘can’t get the entailments right if you do not get the semantic values right as well’.
But as things stand, I do not know of any formal results that bear on the question.

Let me summarize and repeat: The model-theoretic method comes with the
assumption that there is a clear connection between meaning and entailment in
one direction: When all meanings are fixed, in the form of semantic values, then
so is the entailment relation, which is identified with the semantic relation of logical
consequence. About the converse relation—can semantic values be recovered once
entailment relations are known?—we are still very much in the dark.

29.6 Entailment in Natural Language: Model Theory or Proof
Theory?

So far much of the discussion has hovered around the question whether you can
perceive a relation of entailment between A and B if you don’t know what A and
B mean. The tenor has been that that isn’t possible, either because knowing what a
sentence means just is being able to recognise entailments involving it, or because

8 In a reaction of Johan van Benthem to an earlier draft of this contribution he expressed his doubts
that intuitions about entailments are our only means of checking the empirical adequacy of model-
theoretic treatments. I would like, especially in reaction to that remark, to state my own conviction
here that, yes, I also believe that there are other ways of verifying such treatments. One rests on our
ability to understand the descriptions that are typically provided by such treatments for the models
of their model classes. Those descriptions usually enable us to tell, when we are confronted with
an actual or imaginary situation and a sentence that is presented as a description of it, what model
or models from the formally specified model class corresponds to this situation. In such cases we
can check correctness of the treatment by comparing the truth value that the treatment assigns to
the sentence in the relevant model with our own speaker’s judgement whether or not the sentence
is true in the given real or imagined situation.

There may be further ways in which model-theoretic treatments can be put to the test, but
for me this is the most prominent one; and also, I suspect, the one most closely connected with
the semanticists’ hunch that empirically adequate model-theoretic treatments of natural language
fragments have little room for manoeuvre in assigning semantic values to the expressions belonging
to these fragments.
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if you do not know the meaning of A and B, there just isn’t anything for you to
apply your ability to perceive entailments to. But is there really such a tight connec-
tion between entailment and meaning? The history of logic in the Western world,
going back to Aristotle’s theory of the syllogism, suggests otherwise. It suggests that
entailment relations are a matter of form—that you can verify that A entails B by
observing that their syntactic forms are related in the right way. And making such
an observation is possible even when you lack a complete grasp of the meaning of A
and B, in that sense in which we do not ‘grasp the meaning of’ a formula of predicate
logic with uninterpreted predicates—such as, say, (∃x)P(x) or (∃x)(P(x)&Q(x)),
but the choice is arbitrary—because we have no way of telling for any real situation
in which we might find ourselves whether the formula is true of it; the question isn’t
even well-defined. Of course, to see that the forms of (∃x)P(x) or (∃x)(P(x)&Q(x))

are related in such a way that the second cannot but entail the first must presumably
involve some kind of awareness that the formal relation between them is such that
would the second be true the first would be true as well. But a full semantic under-
standing, of the kind that is possible only when it is known what particular properties
are denoted by P and Q, is neither available nor needed.

One of the driving motivations of the episode of modern logic which started with
Frege and Peano and found its apotheosis in the Unified Science program that issued
from the Vienna Circle was the conviction that all cases of entailment could in last
analysis be explained in terms of relations of form. That such a reduction should
be possible in general is far from obvious. Just consider two simple examples. The
premise ‘x is red’ entails the conclusion ‘x is not green’ and the premise ‘x is a cube
and y is a face of x’ entails ‘y is a square’; see (1a, b). But are these entailments a
matter of form? Not obviously. At least not if we take the form of ‘x is red’ to be
‘P(x)’ and the form of ‘x is not green’ ‘¬Q(x)’, or take that of ‘x is a cube and y
is a face of x’ to be ‘P(x) & R(x ,y)’ and that of ‘y is a square’ to be ‘Q(y)’.

(1) a. x is red |= x is not green
b. x is a cube and y is a face of x |= y is a square
c. P(x) |= ¬Q(x)
d. P(x) & R(x , y) |=Q(y)
e. P(x), ¬(P(x) & Q(x)) |= ¬Q(x).

To maintain that on closer analysis these entailments are a matter of form too we
have to dig deeper. For instance, we can define ‘cube’, ‘face’ and ‘square’ in terms
of fundamental concepts of geometry and substitute the definientia for P , R and Q
in (1d). That still won’t turn premise and conclusion of (1d) into expressions whose
forms are related by logical entailment. But we get such a relation when we extend
the premise with a conjunction of axioms that capture the essential properties of the
fundamental geometrical notions in terms of which ‘cube’, ‘face’ and ‘square’ have
been defined. Note well, however, that this reduction is acceptable only because we
can argue that the added premise has a special status—that it can be established as
true once and for all, and independently of the question whether there is an entailment
relation between the particular premise and conclusion that make up the argument
in (1b).
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The case of (1a) is similar but also different. In order to account for this case
as an entailment by form alone it is necessary to appeal to the fact that red and
green are mutually exclusive predicates and add the formal expression of this fact
as an additional premise, as in (1e). Premises and conclusion are evidently related
by a purely formal relation of entailment and the extra premise ¬(P(x) & Q(x)) can
be justified on account of having a special status. (It can be seen as a ‘Meaning
Postulate’, which is true analytically.)

This way of reducing entailments to relations of syntactic form involving addi-
tional premises—the so-called ‘Axiomatic Method’—has been immensely fruitful
in mathematics, philosophy and the mathematical sciences. But for all its success, it
isn’t obvious that all cases of entailment can be reduced to purely formal relations in
this way.9 But there is another point that matters more for what is at issue here: Even
if all cases of entailment can be reduced to relations of form, this need not mean that
speakers of a language L can recognise entailments between sentences of L only by
seeing them as standing in such a formal relation.

29.7 Recognition of Entailment and Mental Representation of
Content

Is it possible for speakers to recognise entailment relations without recognising them
as relations of form? I do not know. The question is a hard one, and quite possibly
one of the hardest of all challenges for Cognitive Science. The reason why it is such
a hard question, and why there is little possibility of answering it at the present time,
is that it is tied to fundamental issues of mental representation and those are issues
about which we are still very much in the dark—far, far more than we should. We
aren’t much closer to an answer to the question how information is represented in
the human mind now than we were 30 years ago, and until we are very much closer
than we are today, hypotheses about how speakers can have intuitions about what is
entailed by what must remain mere guesswork.

But of course this is not to deny that what information we have must be mentally
represented in some form or other. This must be so in particular for information at
the level of conscious awareness. For how else would it be possible for us to make
the systematic and sophisticated use of the different bits of information at this level
that we can and do make of it, in deliberating, planning and so on, or just in putting
our thoughts into words or grasping the meaning of the words of others? So it seems
safe to assume this much at least: That conscious information is registered by the
mind in the form of some kind of representational format (or formats). Moreover, let
us assume that this is so in particular for the information carried by sentences of the

9 For some this question may have become a matter of terminology: two sentences simply won’t
count as standing in a relation of entailment unless their relation can be explicated in terms of form
along the lines indicated. My own intuitions go against this. The truth conditions of many sentences
of natural languages are fixed with enough definiteness, I believe, to make the question which of
them are related by entailment a meaningful one independently of any formal reduction.
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languages that people speak. And let us also make the further assumption that it is
such mental representations that are the vehicles of semantic understanding: that an
agent understands the meaning of an expression from a language she speaks if and
only if she associates a mental content representation with it, and that, finally, it is
the content representation that she associates with a given expression, or utterance
of that expression, that identifies the meaning she attaches to it.

If we make these assumptions, there is another one which more or less imposes
itself as well: When a speaker S judges that a sentence A entails some other sentence
B, then that judgement will typically involve S’s mental representations of those
sentences: A is judged to entail B because a relation of entailment is perceived
between the mental representations of A and B. But nothing more can be said about
what it is like to perceive an entailment relation between mental representations
until more is known about those representations themselves—whether they are like
sentences of some Language of Thought or what the Language of Thought might
exactly be like.10 In this essay I will not make any assumptions about the form of
mental representation. So there is nothing specific that I will be in a position to
say about exactly what perceiving entailments between sentences of the languages
we speak consists in (over and above the bare assumption that it is part of being a
competent speaker of your language that there is a fair number of such judgements you
can make). In particular, there is no basis for assuming that perceiving an entailment
relation between mental representations is to perceive a formal relation in the sense
of formal logic.

Let us sum up to where we have got:

1. Perception of entailments between sentences of some public language is often
based on perceiving entailment relations between mental representations for
those sentences.11 This latter relation may, for all we have said, be a formal one,
but as things stand we have no basis for making this assumption.

2. A model-theoretic treatment T à la Montague of some fragment FrL of a natural
language L will assign, for any model M , M-related semantic values to the
expressions of FrL , and in particular truth-conditions to the sentences of FrL .
But it will also, inevitably, determine ‘logical forms’ for the sentences of FrL ,
expressed in the formalism that T uses to specify semantic values.

3. It may be possible for a speaker S of FrL to persuade herself of the empiri-
cal adequacy of T by verifying that the predictions T makes about entailment
relations between certain sentences of FrL match the judgements she is able to
independently make herself. This doesn’t require her to be capable of making
independent judgements about entailments between all sentences of FrL , and

10 The standard reference is [18]. For views more directly responsible for these remarks see [20,
21].
11 I say ‘often’ because I do not want to exclude cases where we compute entailments by applying
some formal account of meaning that assigns logical forms to premises and conclusion, and thereby
provides ways of formally deriving the conclusion from the premises, without any direct appeal to
the content representations of those sentences that may be in the mind of the agent who carries out
the formal deduction. More on this point later on.
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not even between all sentences she can understand (i.e. for which she has or
can readily determine mental representations). All that is needed is that she can
come up with a reasonable number of such judgements.

4. When S has verified T in this way to her satisfaction and on that basis has
come to accept it as true, then T may help S to improve her understanding of L
there where so far it had been lacking. In particular, it can help her to perceive
entailment relations in cases where thus far she could not.

29.8 Improving Language Skills Through Model-theoretic
Semantics

So far so good. But how exactly can T help S to determine whether a sentence A
from L entails a sentence B from L? Here are three possibilities. Two of these can
be regarded as external, and the third as internal. We start with the two external
possibilities.

(External)
T can help S to determine whether A entails B:

i. by enabling S to deduce from the truth conditions which T assigns to A and
those which it assigns to B that whenever the former are satisfied the latter are
satisfied as well.

ii. by enabling S to deduce the logical form that T assigns to B from the logical
form it assigns to A. (This presupposes of course that T ’s specification formalism
comes equipped with some kind of proof theory.)

In addition to these external ways in which T could assist S—in which it serves
as a kind of toolbox, but without necessarily changing S’s linguistic competence
as such—there is, I believe, also a third possibility. As I have been hinting more
than once, I believe that it is possible for a speaker of L to learn something from a
model-theoretic treatment of L or part of it qua speaker of L (and not just in her role
of theoretician interested in the semantic properties of L as an object of linguistic
study). In other words, it is possible that T will make S into a better speaker of L. In
particular:

(Internal)
T can help S to determine whether A entails B:

iii. because of her exposure to T , S can now associate mental representations with A
and B and recognise that these representations stand in a relation of entailment,
but her recognition of this relation requires no further direct appeal to T .

There is more to be said about each of these three possibilities. And we will have
more to say later on about the second one. But at this point I want to stress a much
simpler and more obvious point: The situation of a speaker S of L who is confronted
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with a model-theoretic treatment T of some part of L involves three distinct modes of
content representation: (i) the language L; (ii) S’s mental representations of content
(and in particular her content representations of well-formed expressions of L); and
(iii) the specification formalism of T . This triad is reminiscent of the ‘Semiotic Trian-
gle’. Two of the vertices, the public language and the mode of mental representation,
are the same for the two triangles. But there is a difference in their third vertices. In
the Semiotic Triangle the third vertex consists of the referents of the representations
belonging to language or thought; in our triad it consists of canonical descriptions
that the theory T makes available for such referents.12

The reason why I mention this analogy is that, just as the referents of the third
vertex of the Semiotic Triangle are related both to the expressions of the public lan-
guage and to the mental representations of its speakers, so the canonical descriptions
of the third vertex of our triad are related both to the expressions of L and to the
mental representations of S. In the light of what has been said so far, however, there
would seem to be one important difference between the two cases: In discussions of
the Semiotic Triangle it is usually assumed that there are one or more direct channels
that connect the mind with reality, so that there are two reference relations that com-
mute with the correspondence relation between linguistic expressions and mental
representations.13 In contrast, the things that have thus far been said about our triad
suggest that here the only way in which mental representations are connected with
the canonical descriptions of the specification formalism is via the expressions of L:
T specifies canonical descriptions of the semantics of expressions of L, S associates
mental representations with expressions of L, and when two and two are put together
we get canonical specifications for the semantics of mental representations. (So we
only get the first of the two equations of the last footnote, and this equation functions
as a definition of refmen , rather than as a contingent claim about an independently
grounded mapping function.)

But how clear is this difference between our triad and the Semiotic Triangle?
Suppose S has accepted T and adopted it as a reliable guide to the semantics of L.
Then we should expect that she will connect the logical forms that T provides for
certain sentences from L not only with those sentences themselves but also with her
own mental representations for those sentences. In this way she will be able to relate
T not only to her understanding and use of L, but also as bearing on her deployment
of those mental representations in cognitive processes that do not involve an overt
use of language. And when this point is reached, there will be a direct connection
between T and S’s mental representations, one that completes the diagram of our
triad in the same way that the Semiotic Triangle ‘diagram’ is complete, by filling in
that part of it that by the looks of it, our triad was missing.

12 A classical reference is [23].
13 ‘Commute’ in the following sense: if reflin is the reference relation for expressions from the
public language and refmen the reference relation for mental representations, and mrep is a 1–1
correspondence relation between well-formed expressions of the public language and mental
representations of their content, then refmen = ref lin ◦mrep−1 and reflin = refmen ◦mrep.
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If this is right, then the practice of formal semantics can not only teach us some-
thing about linguistic meaning and, sometimes, thereby turn us into better users of
our own language; it can also teach us things about our non-linguistic cognitive
competence, enable us to improve it and to demonstrate that by better and surer
performances in which we display this competence.

29.9 Natural Language and Johan van Benthem

It is at this point that we can at last make contact with the aims of the present book.
This book is a volume in honour of Johan van Benthem. But its aim is not only to make
visible to all and sundry the breadth and depth of his contributions to science and
philosophy, but also to sketch out, to the best of our ability, the various directions in
which those contributions are pointing. But what, the readers of this particular essay
may have been asking themselves with growing bemusement, does this essay have
to contribute to that general goal? I’ll try to explain.14

In a recent paper, van Benthem observes that he ‘left natural language a long time
ago’ [9]. There may be some sense in which that is sort of true. In the early parts of his
career, going back to the 1970s and 1980s, many of his contributions were unequiv-
ocal contributions to natural language semantics and syntax. (I am thinking here in
particular of his work on quantifiers, on the language of time and on Categorial Gram-
mar and the Lambek Calculus as formalisations of the logic of the syntax–semantics
interface. See e.g. [2, 3, 5].) The influence of that work is still very much present
among those working on the syntax and semantics of natural languages today. Since
those early days van Benthem has—this much is true—turned increasingly to issues
that one might be inclined to classify as belonging to formal and philosophical logic
or as belonging to the theory of representation, manipulation and communication of
information, rather than as issues in natural language semantics. But is it really true
that these more recent ‘non-linguistic’ contributions aren’t contributions to natural
language? The reflections above suggest that we should think twice before agreeing.

The point of those reflections was that once we accept that the knowledge and use
of a natural language must involve mental representations of linguistic meaning or
content, we must acknowledge that formal accounts of natural language meaning—
of the kind that formal semanticists following Montague’s method have been at pains
to articulate—may qualify not just as theories of and guidelines to the meaning and
use of public languages, but also as theories of and guidelines to aspects of cognition
that, inasmuch as they are connected to language at all, are that only in the indirect
sense that they make use of the same mental representation formats. But once we have
arrived at this view of the import of theories that are developed as, and unambiguously
present themselves as, analyses of natural language phenomena, we can’t help asking
whether, conversely, contributions to our understanding of apparently non-linguistic

14 Here is a small selection of van Benthem’s seminal contributions to logic that—I suggest—are
relevant to various aspects of cognition: [4, 6–8].
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cognitive behaviour could not, in their turn, be seen as contributions to the theory of
natural language.

Our earlier considerations in this paper have already primed us to two ways in
which this might be so. These two ways correspond to a distinction that has been in
the background of much that I have been saying, but the time has come to make it
explicit. The distinction is perhaps easiest to explain in connection with propositional
attitudes such as beliefs and desires. People (a) entertain propositional attitudes, (b)
they often express those attitudes in words and (c) they also use language to describe
the attitudes they attribute to others (and sometimes to their former—and, in a suitably
reflective mood, even their current—selves). This should, I think, be treated as a
genuinely three-fold distinction and not as a binary one, as it often seems to be made
out to be in the literature. Propositional attitudes are thoughts with propositional
content. Entertaining some propositional attitude—holding a certain belief, say, or
harbouring a certain desire—must therefore involve a representation of the content
of that attitude, for the same reasons that mental content representations must be
involved in all ‘meaningful’ use that we make of language. A person can express the
contents of such representations overtly, in a language in which she communicates
with others. This is what we do when we ‘speak our minds’ and it is something that
we often do just for our own benefit, as a way of making sure that we really know what
it is we believe or desire. Such ‘speaking one’s mind’ is quite different, however,
from what we do when we use our public language to describe the propositional
attitudes we attribute to others, i.e. when we produce an ‘attitude report’. (There is of
course a sense in which we ‘speak our mind’ also when we make attitude reports, but
then the thought we express is not the one (or ones) our report describes. What we
express is our belief that the attributee has the attitude or attitudes we are ascribing
to him.) On the whole the linguistic forms we typically use to describe the attitudes
of others (and sometimes of ourselves) are notably different from those we use when
we evince our own thoughts. But there are obviously also close connections between
these two ways in which language can be used in relation to mental content, and it is
one of the challenges for the semantics of attitude reports to articulate exactly what
these connections are. This is not the place to go into the details of this, however. I
mention the distinction (between the linguistic forms used in attitude reporting and
those used in the plain linguistic expression of attitudes) only because it underscores
the difference between the corresponding ways in which we correlate language with
thought when we express our own opinions or wants and when we try to find the
right words for what we take to be the thoughts of others.

This difference, moreover, is not restricted to expressions and descriptions of
attitudinal states, it applies equally to changes of mind—that is, changes from one
attitudinal state to another. On the one hand people will often articulate their thought
processes while they are changing their minds; they will, when in the course of
revising a belief—or of abandoning a desire or forming a new one, or when they
conceive of a plan in order to realise a desire already in place—use words to express
where their mind is going, and how it is getting there. (Such talk is dynamic in that
it comes in step with the changing attitudes of which it is the running expression.)
And on the other hand our attitude reports, too, are as often as not descriptions of
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how attributees change their mind, and not just of the attitudinal states that they are
in at one particular time. (Much of the literature on attitude reports oddly ignores
reports of attitude changes, but in real life these are perfectly natural and also quite
common: it is often that and how people change their minds that we find particularly
interesting and worth commenting on.)

29.10 Logic as the Study of Human Cognition and Human
Behavior

There are all manner of reasons why people change their minds. Among them are
internal processes of deliberation, such as: the kinds of practical reasoning that are
involved in the making of plans; or the reasoning that is responsible for our reactions
to the public announcement of various kinds of information (including information
of which we already had private knowledge) and other kinds of reasoning about the
knowledge and ignorance of other agents; or reasoning about the possible moves
by other players in various socio-economic situations, in which we see ourselves as
competitors with others, or, alternatively, as members of a collaborating collective
that is working towards a common goal. This is evidently just a selection from a
much larger range of possible internal causes of mind changes. And in addition there
are of course all sorts of external causes of such changes, some of which will set in
motion the internal cognitive processes that are then the more direct triggers of the
attitudinal change in question. In fact, it is a selection in two quite different respects.
On the one hand it selects from the various mental processes that produce mental
state changes. On the other it is a way of pointing to just some of the areas in which
van Benthem’s work has been especially influential for our understanding of the
mind and its ways of interacting with the outside world and where it has opened up
new vistas.

In all these instances, the logics developed and investigated by van Benthem and
others can be seen as models of certain aspects of human behaviour, and of human
cognitive behaviour as a crucial part of it. And as models of cognitive behaviour they
can, I venture to say, have an impact at two different levels: an impact on us as theorists
of human reasoning and other forms of cognitive processing, and an impact on us as
‘private citizens’, as cognitive agents in our own right. As theorists of reasoning and
other forms of cognitive information processing we can learn from those logical mod-
els how, at a carefully chosen level of abstraction, certain cognitive processes func-
tion, or ought to function if they are to function optimally. As cognitive agents we may,
under the influence of the lessons we can learn from those logical models, become
more conscious, more conscientious and more proficient in executing such processes.

This last suggestion parallels what I said earlier about the potential dual impact of
model-theoretic treatments of the languages we speak—the impact on us as linguists
and the impact on us as speakers. And as in the case of model-theoretic semantics I
venture even one further step. About model-theoretic accounts of natural language
meaning I suggested that their impact at the ‘private’ level need not be restricted
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to our competence as speakers, but may extend beyond that to our competence at
non-verbal cognitive tasks. Likewise, I am now suggesting with regard to the logical
models we are discussing at this point that their ‘private’ impact need not be restricted
to our competence at those non-verbal tasks which they are meant to model in the
first instance, but that it may extend also to our verbal competence. Moreover, the
impact of such models on our verbal competence may be of two different kinds,
corresponding to the two ways we can use language to relate to mental representations
of content—to verbally express those representations, and to describe them as part
of our verbal reports of mental states and events.15

All this must have come across as highly speculative, and increasingly so. The
thought that we can become better speakers and better cognitive agents by immersing
ourselves into the achievements of formal semantics cannot but have struck many as
a display of naive optimism about the reformability of man by science that harks back
to the 19th century, and which even beats that earlier incarnation by a good many
lengths. The thought that logical models of cognition can have a similar impact
on us as cognitive agents may have provoked a heightened incredulity. And to top
it all, I ended with the suggestion that by studying logical analyses of non-verbal
information processing we can become better speakers. There is little that I can offer
in reply to the sceptic who wants to dismiss this as the wishful thinking of someone
with a deep need to see our scientific engagement with language and cognition as
a road to self-improvement and not just to scientific enlightenment. True, these are
the reflections of my own impressions and hunches; and it would be disingenuous
to try and sell them as anything else. But I’d like to add that as time has gone by
these impressions have grown firmer and the hunches stronger. That surely won’t
convince anyone who isn’t of the same persuasion to start with. But this is all I can
say. I realise that I have been sticking out my neck quite a long way. But I will just
leave it where it is.

15 There is of course also a third way in which exposure to logical models of cognition can affect
our command of language. New scientific theories come almost inevitably with new terms, or new
uses of existing words, and it is part of learning what the theory has to say about its subject matter
that its students must assimilate those new terms and new meanings; for only in this way will they
be able to talk, and think, about what the theory has to say. In this way the theorist’s vocabulary
is extended with new elements to articulate new facts and hypotheses about this particular subject
matter. But in that respect theories about human behaviour and cognition don’t differ from theories
on any other subject matter—astrophysics, nano-chemistry, population genetics, what have you.

It should have been clear at this point, but let it be stressed once more, that the impact of
logical models that is spoken of in the text is not of this sort. It is an impact on our linguistic core
competence—on our command of that part of our language which we share with all other competent
adult speakers, and not just with some select handful, with whom we share a special profession or
hobby (be it entomology, chemical engineering, trading in financial products, a passion for cricket
or, for that matter, cognitive science).
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29.11 On the Borderline of Linguistics and Cognition:
Sub-lexical Semantics and Ontology

Let us come down from these heights of vertiginous speculation to a less subjective
level. Whether the study of language or cognition can improve us as human beings
is one thing. What the study of language can teach us about non-verbal cognition or
the study of non-verbal cognition can teach us about language is another. Answers
to these last two questions are not easy to come by either. And that is so in particular
for the question what work like van Benthem’s, which does reveal to us the structural
and logical properties of apparently non-verbal aspects of human cognition, can tell
us about human language: What can a semanticist learn from work of this kind?

I am in no doubt that there are answers to this question of which I am not aware.
But let me mention one that I am aware of. It has to do with two perspective shifts that
have occurred within formal semantics over the past decade or two: (a) a shift from
the compositional to the lexical part of what constitutes linguistic meaning and (b) the
shift from a lexicalist perspective, in which words are the smallest units of linguistic
meaning, to a ‘root-based’ perspective, according to which words have internal struc-
ture, involving ‘roots’ and sub-lexical functional constituents. Both of these shifts
have redirected our focus to the lower echelons of the meaning-constituting process,
and more particularly to the meanings of the smallest meaningful units, on which
the whole compositional edifice rests. With this shift towards lexical and sub-lexical
semantics has come an increased awareness of the importance of ontology—in that
broad sense of the term in which ontology isn’t just about what sorts of things there
are, but also about the distinctive properties of the different sorts of entities, and about
the fundamental relations that those entities stand in to each other, and also those
in which they stand to entities of other sorts. There has been a growing awareness
that in order to understand the meanings of many words we need to be able to say
much about the sorts of things they refer to and about the properties and relations that
are constitutive of those sorts. The work on sub-lexical structure has reinforced this
conviction. At the sub-lexical level ontological information is not only needed for
the semantic specification of the smallest meaningful parts. Some of the operations
which combine sub-lexical meaning constituents into the meanings of words also
involve detailed ontological assumptions.

Much of recent ontology research has focussed on topics such as time, space,
or mereology (primarily part-whole relations and relations of material constitution).
That these parts of ontology are indispensable to natural language semantics has
become a lieu commun. But the same is equally true of those parts of ontology that
have to do with human cognition and its afferent and efferent interactions with the
world (that is, with perception and action). For the vocabulary that we use to express
what we think, or describe what we take to be on the minds of others, and how we
see the world as acting on ourselves and on others, and how we act, or they act, on
the world—all that vocabulary depends on sortal distinctions in the cognitive domain
(and on the properties and relations involving the different sorts from that domain)
just as so much of our other vocabulary depends on sortal distinctions, properties
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and relations within the realms of space, time, motion or mereology. It is about this
cognition-related part of ontology that there is much we can learn from the logical
analyses of which I have been speaking. And that is so in particular when the analysis
includes a model-theoretic component, which is the case for nearly all of the analyses
I have in mind. For the definition of the models will have to make all ontological
commitments of the analysis explicit.

One conclusion from these last considerations is that it isn’t as easy to ‘get out
of language’ as van Benthem may have thought it is. But of course, if that is what
he thinks, then that is just a case of underestimating the outer reaches of one’s own
work. A second conclusion, which echoes some of what I have already said, is
that semanticists should, no less than logicians or philosophers, expose themselves
to current work in logic, and that to a far greater extent than appears to be the
case at present. And to that purpose they should acquire, and should make sure
that the generations of semanticists after them acquire, the formal knowledge and
sophistication without which such work is inaccessible.16
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Chapter 30
Logic and Complexity in Cognitive Science

Alistair M. C. Isaac, Jakub Szymanik and Rineke Verbrugge

Abstract This chapter surveys the use of logic and computational complexity theory
in cognitive science. We emphasize in particular the role played by logic in bridging
the gaps between Marr’s three levels: representation theorems for non-monotonic
logics resolve algorithmic/implementation debates, while complexity theory probes
the relationship between computational task analysis and algorithms. We argue that
the computational perspective allows feedback from empirical results to guide the
development of increasingly subtle computational models. We defend this perspec-
tive via a survey of the role of logic in several classic problems in cognitive science
(the Wason selection task, the frame problem, the connectionism/symbolic systems
debate) before looking in more detail at case studies involving quantifier processing
and social cognition. In these examples, models developed by Johan van Benthem
have been supplemented with complexity analysis to drive successful programs of
empirical research.

30.1 Introduction

How can logic help us to understand cognition? One answer is provided by the
computational perspective, which treats cognition as information flow in a computa-
tional system. This perspective draws an analogy between intelligent behavior as we
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observe it in human beings and the complex behavior of human-made computational
devices, such as the digital computer. If we accept this analogy, then the behavior of
cognitive systems in general can be investigated formally through logical analysis.
From this perspective, logical methods can analyze:

1. the boundary between possible and impossible tasks;
2. the efficiency with which any possible task can be solved; and
3. the low-level information flow which implements a solution.

This chapter will survey some examples of the application of logical techniques in
each of these areas.

In general, we will see a back-and-forth between logical analysis and empirical
findings. This back-and-forth helps to bridge the gap between the normative and
descriptive roles of logic. For example, one may believe that people should perform
a certain way on a given task because that is the “logical” or “rational” thing to do.
We observe that they do not, in fact, perform as predicted. This does not change
our assessment that human behavior can be described in terms of logical operations,
but it changes our analysis of which task exactly humans perform in response to a
particular experimental setup. The Wason selection task provides an example of this
sort (Sect. 30.2.1).

Likewise, suppose we analyze the complexity of a task and determine that it has
no efficient solution. If we observe humans apparently solving this task, we use this
analysis as evidence that they are in fact solving a different, simpler problem. More
generally, complexity analysis can make predictions about the relationship between,
for example, input size and solution speed for particular tasks. These predictions can
be compared with empirical evidence to determine when subjects switch from one
algorithm to another, as in the counting of objects in the visual field or quantifier
processing (Sect. 30.5.3).

Given the ubiquity of logic and its flexibility as a tool for analyzing complex
systems, we do not presume to cover all possible roles of logic in cognitive science.1

However, focusing on the computational perspective highlights two properties of
logical analysis essential for cognitive science: it can clarify conceptual debates
by making them precise, and it can drive empirical research by providing specific
predictions. After some additional background on the computational perspective
and Marr’s levels of analysis, we conclude this section with a brief discussion of the
influence of Johan van Benthem and an outline of the remainder of the chapter.

1 For more references on the interface between logic and cognition, see also the 2007 special
issue of Topoi on “Logic and Cognition”, ed. J. van Benthem, H. Hodges, and W. Hodges; the
2008 special issue of Journal of Logic, Language and Information on “Formal Models for Real
People”, ed. M. Counihan; the 2008 special issue of Studia Logica on “Psychologism in Logic?”, ed.
H. Leitgeb, including [8]; and the 2013 special issue of Journal of Logic, Language and Information
on “Logic and Cognition” ed. J. Szymanik and R. Verbrugge.
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30.1.1 The Computational Perspective

The Church-Turing Thesis states that all computation, in the intuitive sense of a
mechanical procedure for solving problems, is formally equivalent to computation
by a Turing machine. This is a conceptual claim which cannot be formally proved.
However, all attempts so far to explicate intuitive computability, many of them inde-
pendently motivated, have turned out to define exactly the same class of problems.
For instance, definitions via abstract machines (random access machines, quantum
computers, cellular automata, genetic algorithms), formal systems (the lambda calcu-
lus, Post rewriting systems), and particular classes of function (recursive functions)
are all formally equivalent to the definition of Turing machine computability. These
results provide compelling support for the claim that all computation is equivalent
to Turing computation (see, for example, [27]).

If we accept that the human mind is a physical system, and we accept the Church-
Turing Thesis, then we should also accept its psychological counterpart:

The human mind can only solve computable problems.

In other words, cognitive tasks comprise computable functions. From an abstract
perspective, a cognitive task is an information-processing task:

Given some input (e.g. a visual stimulus, a state of the world, a sensation of pain), produce
an appropriate output (e.g. perform an action, draw a conclusion, utter a response).

Generally, then, cognitive tasks can be understood as functions from inputs to out-
puts, and the psychological version of the Church-Turing Thesis states that the only
realistic candidates for information-processing tasks performed by the human mind
are computable functions.

Not everyone accepts the psychological version of the Church-Turing Thesis. In
particular, some critics have argued that cognitive systems can do more than Turing
machines. For example, learning understood as identifiability in the limit [59] is not
computable (see [72] for an extensive discussion). Another strand of argumentation
is motivated by Gödel’s theorems. The claim is that Gödel’s incompleteness results
somehow demonstrate that the human mind cannot have an algorithmic nature. For
example, Lucas [78] claimed: “Gödel’s theorem seems to me to prove that Mechanism
is false, that is, that minds cannot be explained as machines”. He gives the following
argument: A computer behaves according to a program, hence we can view it as a
formal system. Applying Gödel’s theorem to this system we get a true sentence which
is unprovable in the system. Thus, the machine does not know that the sentence is true
while we can see that it is true. Hence, we cannot be a machine. Lucas’ argument was
revived by Penrose [93] who supplemented it with the claim that quantum properties
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of the brain allow it to solve uncomputable problems. Lucas’ argument has been
strongly criticized by logicians and philosophers (e.g. [6, 96]), as has Penrose’s
(e.g. [39]).

If identifiability in the limit is the correct analysis of learning, or if the arguments
from Gödel’s theorems are correct, then we must accept the possibility of “hyper-” or
“super-Turing” computation, i.e. the physical realization of machines strictly more
powerful than the Turing machine. Examples of such powerful machines have been
explored theoretically, for instance Zeno machines (accelerated Turing machines),
which allow a countably infinite number of algorithmic steps to be performed in finite
time (see [119] for a survey), or analog neural networks, which allow computation
over arbitrarily precise real values (e.g. [108, 109]). However, no plausible account of
how such devices could be physically realized has been offered so far. Both Penrose’s
appeal to quantum properties of the brain and Siegelmann’s arbitrarily precise neural
networks fail to take into account the noise inherent in any real-world analog system. 2

In general, any physical system, including the brain, is susceptible to thermal noise,
which defeats the possibility of the arbitrarily precise information transfer required
for hyper-computation.

However, there are two more interesting reasons to endorse the psychological
version of the Church-Turing Thesis than simple physical plausibility. The first is its
fruitfulness as a theoretical assumption. If we assume that neural computability is
equivalent to Turing computability, we can generate precise hypotheses about which
tasks the human mind can and cannot perform. The second is the close concordance
between the computational perspective and psychological practice. Experimental
psychology is naturally task oriented, because subjects are typically studied in the
context of specific experimental tasks. Furthermore, the dominant approach in cog-
nitive psychology is to view human cognition as a form of information processing
(see e.g. [118]). The natural extension of this information processing perspective
is the attempt to reproduce human behavior using computational models. Although
much of this work employs Bayesian or stochastic methods3 (rather than logic-based
formalisms), it is predicated on the assumption of the psychological version of the
Church-Turing Thesis.

2 Siegelmann repeatedly appeals to a result in Siegelmann and Sontag [107] when arguing in
later papers that analog neural networks do not require arbitrary precision (and are thus physically
realizable). In particular, their Lemma 4.1 shows that for every neural network which computes over
real numbers, there exists a neural network which computes over truncated reals (i.e. reals precise
only to a finite number of digits). However, the length of truncation required is a function of the
length of the computation—longer computations require longer truncated strings. Consequently, if
length of computation is allowed to grow arbitrarily, so must the length of the strings of digits over
which the computation is performed in a truncated network. Thus, one still must allow computation
over arbitrarily precise reals if one is considering the computational properties of analog neural
networks in general, i.e. over arbitrarily long computation times.
3 For an overview, see the 2006 special issue of Trends in Cognitive Sciences (vol. 10, no. 7) on
probabilistic models of cognition, or [129].
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30.1.2 Marr’s Levels

If we assume the psychological version of the Church-Turing Thesis, what does it
tell us about how to analyze cognition? Marr [79] proposed a general framework for
explanation in cognitive science based on the computational perspective. He argued
that any particular task computed by a cognitive system must ultimately be analyzed
at three levels (in order of decreasing abstraction):

1. the computational level (the problem solved or function computed);
2. the algorithmic level (the algorithm used to achieve a solution); and
3. the implementation level (how the algorithm is actually implemented in neural

activity).

Considerations at each of these levels may constrain answers at the others, although
Marr argues that analysis at the computational level is the most critical for achieving
progress in cognitive science. Combining Marr’s arguments with those of Newell
[90], Anderson [1] defends the Principle of Rationality, which asserts that the most
powerful explanation of human cognition is to be found via analysis at the compu-
tational level under the assumption that task performance has been optimized on an
evolutionary timescale, and not via analysis of underlying mechanisms.

However, Marr’s three-level system can only be applied relative to a particu-
lar computational question. For instance, a particular pattern of neural wiring may
implement an algorithm which performs the computational function of detecting
edges at a particular orientation. But of each neuron in that pattern, we can ask what
is its computational function (usually, to integrate over inputs from other neurons)
and how is this function implemented (electrochemical changes in the cell). Like-
wise, we may take a detected edge as an informational primitive when analyzing a
more high-level visual function, such as object identification. Nevertheless, the most
obvious examples of computational-level analysis concern human performance on
behavioral tasks, and the obvious target for implementation-level analysis is neural
wiring. Algorithmic analysis via complexity theory can then play the crucial role of
bridging the gap between these two domains.

30.1.3 The Contributions of Johan van Benthem

Johan van Benthem’s research intersects with cognitive science at many places,
several of which are discussed elsewhere in this volume. The present chapter focuses
on two specific contributions of Johan van Benthem’s which, when supplemented
with complexity analysis, have generated fruitful programs of empirical research:
his analysis of quantifiers as automata (Sect. 30.5.2) and his models of interactive
social reasoning (Sects. 30.6.1, 30.6.2).

The remainder of this chapter surveys applications of logic in cognitive science
which are not directly connected to the specifics of Johan van Benthem’s research.
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Nevertheless, our aim in crafting this survey has been to illustrate a theme which can
be found throughout Johan van Benthem oeuvre, namely an ecumenical approach to
formal systems, emphasizing commonality and fine structure rather than conflict and
divergence. Where some would seek to defend the advantages of one system over
others, Johan van Benthem’s seeks to find ways in which apparent competitors are
at essence the same (commonality) or, if they do differ, exactly how they differ, and
whether or not intermediary systems might lie in between (fine structure). The theme
of commonality emerges in our discussions of the Wason selection task (Sect. 30.2.1)
and the symbolic/connectionist debate (Sect. 30.3.2). We emphasize the fine structure
approach in our discussions of non-monotonic logics and hierarchies of complexity.

Our discussion is organized around Marr’s three levels. After arguing for the
importance of logic at the computational level through the famous examples of the
Wason selection task and the frame problem (Sect. 30.2), we survey the role logic
can play in bridging the gap between the algorithmic and implementation levels
(Sect. 30.3). We then pause to introduce the basics of computational complexity
theory and the P-Cognition Thesis (Sect. 30.4), before investigating the role that
complexity analysis can play in bridging the gap between the computational and
algorithmic levels through the examples of quantifier processing (Sect. 30.5) and
social reasoning (Sect. 30.6).

30.2 The Computational Level: Human Behavior

A number of results from experimental psychology seem to indicate that humans
do not behave in accordance with the recommendations of classical logic. Yet logic
forms the foundation for norms of ideal rationality. Even fallacies of probabilistic
or decision-theoretic reasoning often rest on violations of basic logical principles.
Consider, for example, the conjunction fallacy: after reading a short passage about
Linda which describes her as a social activist in college, 85 % of subjects rated the
proposition that “Linda is a bank teller and is active in the feminist movement” as
more probable than the proposition that “Linda is a bank teller” [133]. This is a fallacy
because the axioms of probability ensure that P(A&B) ≤ P(A) for all A and B,
where this constraint itself follows from the basic axiom A∧B → A of propositional
logic. Do results such as these demonstrate that humans are fundamentally irrational?

We argue that the apparent irrationality of human behavior does not undermine
the use of logic in cognitive science, rather it provides evidence for the correct com-
putational analysis of the task being performed. We examine the example of the
Wason selection task, where apparently irrational behavior drove the development
of increasingly sophisticated computational models. After discussing this specific
example, we’ll look at the frame problem, a more general challenge to the computa-
tional perspective. This problem motivated the development of non-monotonic logic
as a means of providing a formal analysis of human reasoning. This tool will also
prove useful when we examine the relationship between algorithm and implementa-
tion in Sect. 30.3.
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30.2.1 Is Human Behavior Logical?

The Wason selection task [137, 138] is very simple. Subjects are shown four cards
and told that all cards have a number on one side and a letter on the other. The
faces visible to the subject read D, K , 3, and 7. The subject is then told “Every card
which has a D on one side has a 3 on the other” and asked which cards they need
to turn over to verify this rule. From a classical standpoint, the claim has the basic
structure of the material conditional “D is on one side→ 3 is on the other side”,
and the correct answer is to turn over cards D and 7. However, the most common
answers (in order of decreasing frequency) are (1) D and 3; (2) D; (3) D, 3, and 7;
and (4) D and 7. The classically correct answer ranks fourth, while the first-ranking
answer includes an instance of the logical fallacy of affirming the consequent: judging
that 3 is relevant for determining whether the conditional is true. Wason’s robust and
frequently reproduced result seems to show that most people are poor at modus tollens
and engage in fallacious reasoning on even very simple tasks. Are we really this bad
at logic? Even worse, Cheng and colleagues [20] suggest people may continue to
do poorly at the task even when they have taken an introductory logic class! Does
this imply that human behavior does not decompose into logical steps? Or that our
neural wiring is somehow qualitatively different from the logical structure that can
be found in typical computational devices?

As it turns out, there are complexities in the data. The original selection task
involved an abstract domain of numbers and letters. When the problem is rephrased in
terms of certain types of domain with which subjects are familiar, reasoning suddenly
improves. For example, Griggs and Cox [60] demonstrate that if cards have ages on
one side and types of drink on the other, subjects perform nearly perfectly when the
task is to determine which cards to turn over to ensure that the rule “if a person is
drinking beer, then that person is over 19 years old” is satisfied. This study builds
upon earlier work by Johnson-Laird et al. [70], demonstrating a similar phenomenon
when the task involves postal regulations.

What exactly is different between Wason’s original setup and those involving
underage drinking and postal regulations, and how should this difference affect our
computational model? Johnson-Laird et al. [70] and Griggs and Cox [60] concluded
that humans are better at logical reasoning in domains with which they are familiar:
since the original Wason task involves an abstract domain of letters and numbers,
subjects are confused and fail to reason correctly. Cosmides [28] and Cosmides and
Tooby [29] argue that the results tell us something about cognitive architecture. In
particular, they conjecture that questions about postal regulations and drinking laws
trigger a “cheater detection module.” The proposed module is said to be hard-wired
to reason effectively in contexts where free-riders might undermine social structure,
but provides no logical support for domain-general reasoning.

Stenning and van Lambalgen [117] propose an illuminating new logical analysis
of the Wason selection task. They point out that Wason’s assertion that there is
only one correct answer is too quick, as it assumes a single interpretation of an
ambiguous task. Subjects who interpret the described rule as stating some other kind
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of dependency between D’s and 3’s than that captured by the material conditional
are not necessarily making an error. The key here is in figuring out the relevant
difference between versions of the task on which subjects perform in accordance
with classical rules and versions (such as the original) on which they do not. Is
it because the latter are abstract and the former concrete? Because the latter are
unfamiliar and the former familiar? Because the latter are domain-general while the
former involve cheater detection? Stenning and van Lambalgen’s novel suggestion
here is that the crucial difference is in whether the subject interprets the task as merely
checking satisfaction of instances or as actually determining the truth of a rule. In
the case of familiar deontic rules, their truth is not at issue, only whether or not they
are being satisfied. The deontic nature of these rules means that turning cards over
cannot falsify the rules: underage drinking is still wrong, even if one discovers that
it occurs. This strictly limits interpretation of the task to checking whether the rule
has been satisfied. In contrast, the original version of the task may be interpreted as
involving either a descriptive or a prescriptive rule, greatly increasing the cognitive
burden on the subject.

None of these analyses of the Wason selection task abandons logic. Johnson
Laird et al. [70] and Griggs and Cox [60] shift logical reasoning from innate abil-
ity to learned behavior in familiar domains. Cosmides and Tooby [29] locate logical
reasoning within the hard wiring of domain-specific modules. Stenning and van Lam-
balgen [117] identify logical structure with neural structure and argue that apparent
violations of logical principles are a side effect of task ambiguity.

30.2.2 The Frame Problem and Non-monotonic Logics

The Wason selection task was designed to probe classical deductive reasoning, but
deduction does not exhaust logical inference. In a complex and changing world,
cognitive agents must draw conclusions about their circumstances on the basis of
incomplete evidence. Crucially, this evidence is defeasible, which means that con-
clusions drawn from it may be defeated by later evidence. For example, suppose I
wake up in a strange place and hear voices around me speaking in Chinese; I might
conclude that I am in a Chinese restaurant. When I feel the surface on which I lie
gently undulating, however, I might revise my conclusion, deciding instead that I
have been shanghaied and am currently a passenger on a Chinese junk. Although
my evidence has increased, my conclusions have changed. Modeling this type of
reasoning requires a non-monotonic framework.

Typically, a non-monotonic logic supplements an underlying classical logic with
a new, non-monotonic connective and a set of inference rules which govern it. The
rules describe a logic of defeasible inference, inferences which are usually safe, but
which may be defeated by additional information. For example, from the fact that
this is a bird, I can usually conclude that this can fly. This inference can be defeated,
however, if I learn that this is a penguin. Symbolically, we want our system to ensure
that Bird(x)⇒ Fly(x), but Bird(x)∧ Penguin(x) �⇒ Fly(x). Concepts which formalize
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this defeasibility include circumscription [80], negation as failure [24], and default
reasoning [98].

The original motivation for non-monotonic logic came from consideration of a
particular type of defeasible reasoning, namely reasoning about a changing world.
When an event occurs, humans are able to reason swiftly and effectively about both
those features of the world which change and those which do not. The problem of how
to keep track of those features of the world which do not change is called the “frame
problem” [81]. The frame problem comes in both a narrow and a broad version (see
the discussion in [33]). The broad version concerns the potential relevance of any
piece of information in memory for effective inference, and has troubled philosophers
of cognitive science since at least [42]. The original, narrow problem, however, has
been effectively solved by non-monotonic logic (see [105] for a complete history
and detailed treatment).

The basic idea is easy to see. If we allow ourselves default assumptions about the
state of the world, we can easily reason about how it changes. For example, we might
assume as a default that facts about the world do not change unless they are explicitly
addressed by incoming evidence. Learning that you ate eggs for breakfast does not
change my belief that my tie is blue. Without the basic assumption that features of
the world not mentioned by my incoming evidence do not change, I would waste
all my computational resources checking irrelevant facts about the world whenever
I received new information (such as checking the color of my tie after learning what
you had for breakfast). This consideration inspired McCarthy’s assertion that, not
only do “humans use …‘non-monotonic’ reasoning,” but also “it is required for
intelligent behavior” [80].

A more sophisticated form of default reasoning is found in systems which employ
“negation as failure”. Such a system may derive ¬A provided it cannot derive A.
Negation as failure is frequently implemented in systems using Horn clauses, such as
logic programming. Horn clauses state conditional relations such that the antecedent
is a (possibly empty) conjunction of positive literals and the consequent is a single
positive literal or falsum. In general, the semantics for systems involving negation as
failure involve fixed points, e.g. finding the minimal model which satisfies all clauses
(for a survey, see [40]).

Kraus et al. [71] provide a unified approach to a hierarchy of non-monotonic logics
of varying strengths. Their insight was to generalize the semantics of [106], which
used a preference (“plausibility”) ordering over worlds as a model for non-monotonic
inference. Kraus et al. [71] realized that increasingly strict constraints on this seman-
tic ordering correspond to increasingly powerful sets of syntactic rules, and used this
insight to define the systems C ⊆ CL ⊆ P ⊆ M, where C (“cumulative reason-
ing”) is the weakest non-monotonic system they consider and M (“monotonic”) is
equivalent to standard propositional logic. Intermediary systems are characterized
semantically by added constraints on the plausibility ordering over worlds and syn-
tactically by the addition of stronger inference rules. For example, models for C are
sets of worlds ordered by a relation ≺ which is asymmetric and well-founded. C is
strengthened to the system CL by adding the inference rule Loop:
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α0 ⇒ α1, α1 ⇒ α2, . . . , αk−1 ⇒ αk, αk ⇒ α0

α0 ⇒ αk
(Loop)

Semantically, models for CL add the constraint that≺ be transitive, i.e. form a strict
partial order. Kraus et al. [71] show that systems which use Horn clauses collapse
the distinction between CL and P.

In solving the frame problem, non-monotonic logics have proved their power for
modeling defeasible inference at the computational level. As we shall see in the next
section, they are also powerful tools for analyzing the structure of the implementation
level.

30.3 Between Algorithm and Implementation

How are computations performed in the brain? The answer which has dominated
neuroscience since the late nineteenth century is the neuron hypothesis of Ramón
y Cajal. He was the first to observe and report the division of brain tissue into
distinct cells: neurons. More importantly, he posited a flow of information from axon
to dendrite through this web of neural connections, which he denoted by drawing
arrows on his illustrations of neural tissue. From the computational perspective, it is
natural to identify this flow of information from neuron to neuron as the locus of the
computation for solving cognitive tasks.

It is worth noting that this is not the only game in town. A plausible alternative to
the neuron hypothesis comes from the dynamical systems perspective, which asserts
that the behavior of a family of neurons cannot be reduced to signals communicated
between them. Instead, this perspective asserts that computations should be modeled
in terms of a dynamical system seeking basins of attraction. Neuroscientists such
as Freeman [44, 45] find support for this view in observed neural dynamics, while
philosophers such as van Gelder [51, 52] have argued that the dynamical systems
perspective constitutes a substantive alternative to the computational perspective of
Sect. 30.1.1. With the recent interest in embodied and extended theories of mind, the
dynamical systems perspective has become ubiquitous (e.g. Gärdenfors, this volume;
see [23] for a survey). In the context of the present discussion, however, we treat it
not as an alternative to computationalism, but as a substantive hypothesis within the
computational paradigm.

Logic provides an abstract symbolic perspective on neural computation. As such,
it can never be the whole story of the implementation level (which by definition
involves the physical instantiation of an algorithm). Nevertheless, logic can help
bridge the gap between the implementation and algorithmic levels by analyzing
structural similarities across different proposed instantiations. For example, if we
subscribe to the neuron hypothesis, it is natural to look for logic gates in the wiring
between neurons. But we may also look for logic gates in the wiring between fami-
lies of neurons, or equivalent structure in the relations between basins of attraction
in a dynamical system. Logical analysis can distinguish the commonalities across
implementation-level hypotheses from their true disagreements.
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30.3.1 Logical Neurons

The classic work of McCullogh and Pitts [82] proved the first representation theo-
rem for a logic in an artificial neural network. In general, a representation theorem
demonstrates that for every model of a theory, there exists an equivalent model within
a distinguished subset. In this case, the “theory” is just a time-stamped set of propo-
sitional formulas representing a logical derivation, and the distinguished subset in
question is the set of neural networks satisfying a particular set of assumptions, for
example, neural firing is “all or none”, the only delay is synaptic delay, and the
network does not change over time. McCulloch and Pitts show the opposite direc-
tion as well: the behavior of any network of the specified type can be represented
by a sequence of time-stamped propositional formulas. The propositions need to be
time-stamped to represent the evolution of the network through time: the activations
of neurons at time t are interpreted as a logical consequence of the activations of
neurons at time t − 1.

McCulloch and Pitts had shown how neurons could be interpreted as performing
logical calculations, and thus, how their behavior could be described and analyzed by
logical tools. Furthermore, their approach was modular, as they demonstrated how
different patterns of neural wiring could be interpreted as logic gates: signal junctions
which compute the truth value of the conjunction, disjunction, or negation of incom-
ing signals. The applications of this result are limited by its idealizing assumptions,
however. As neurophysiology has enriched our understanding of neural behavior, the
hypothesis of synchronized computations cascading through a structurally unchang-
ing network has become too distant from neural plausibility to resolve debates about
implementation in the brain.

Nevertheless, logical methods continue to provide insight into the structure of
neural computation. In the face of an increasingly complex theory of neurophysiol-
ogy, two obvious research projects present themselves. The first focuses on realistic
models of individual neurons. Sandler and Tsitolovsky [103], for example, begin with
a detailed examination of the biological structure of the neuron, then develop a model
of its behavior using fuzzy logic. A second project focuses on artificial neural net-
works designed to mimic brain dynamics as closely as possible. For example, Vogels
and Abbott [136] ran a number of simulations on large networks of integrate-and-fire
neurons. These artificial neurons include many realistic features, such as a resting
potential and a reset time after each action potential is generated. After randomly
generating such networks, Vogels and Abbott [136] investigated their behavior to see
if patterns of neurons exhibited the characteristics of logic gates. They successfully
identified patterns of activation corresponding to NOT, XOR, and other types of logic
gate within their networks.

The idealizing assumptions of these models continue to temper the conclusions
which can be drawn from them. Nevertheless, there is a trend of increasing fit between
mathematical models of neural behavior and the richness of neurophysiology, and
logic continues to guide our understanding of neurons as computational units. But
from the standpoint of cognitive science, an explanatory question remains: are these
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computational units the right primitives for analyzing cognition? More generally, is
there some in principle difference between an analysis offered in terms of neural
networks and one offered in terms of logical rules?

30.3.2 The Symbolic Versus Connectionist Debate

In an influential paper, Fodor and Pylyshyn [43] argued that (i) mental representations
exhibit systematicity; (ii) representations in neural networks do not exhibit system-
aticity; therefore (iii) the appropriate formalism for modeling cognition is symbolic
(not connectionist). Systematicity here is just the claim that changes in the meaning
of a representation correspond systematically to changes in its internal structure (e.g.
from my ability to represent “John loves Mary,” it follows that I can also represent
“Mary loves John”). Fodor and Pylyshyn claim that the only case in which represen-
tations in a neural network do exhibit systematicity is when the network is a “mere”
implementation of a symbolic system.4

It is important to notice what is at stake here: if cognitive tasks manipulate repre-
sentations, then the appropriate analysis of a cognitive task must respect the properties
of those representations. The claim that explanations in cognitive science must be
in terms of symbolic systems does not, however, restrict attention to the computa-
tional level. Paradigmatic examples of the symbolic approach in cognitive science
such as [21] investigate the role of particular algorithms for solving information
processing tasks (such as extracting syntactic structure from a string of words).
Nevertheless, the claim is that somewhere between abstract task specification and
physical implementation, explanatory power breaks down, and neural networks fall
on the implementation side of this barrier.

The response from connectionist modelers was violent and univocal: Fodor and
Pylyshyn [43] had simply misunderstood the representational properties of neural
networks. Responses elucidated how representations in neural networks are “distrib-
uted” or “subsymbolic.” Smolensky [113, 114], van Gelder [49, 50], Clark [22], and
many others all emphasized the importance of acknowledging the distinctive prop-
erties of distributed representations in understanding the difference between neural
networks and symbolic systems. Yet it is difficult to put one’s finger on just what
the essential feature of a distributed representation is which makes it qualitatively
different from a symbolic representation. Since the late 1990s, the supposed distinc-
tion has largely been ignored as hybrid models have risen to prominence, such as
the ACT-R architecture of Anderson and Lebiere [2], or the analysis of concepts
in Gärdenfors [47]. These hybrid models combine neural networks (for learning)
and symbolic manipulation (for high-level problem solving). Although pragmati-

4 However, they do not indicate how such implementational networks avoid their general critique,
see [18].
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Fig. 30.1 Neural network
for non-monotonic reasoning
about birds
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cally satisfying, the hybrid approach avoids rather than resolves questions about the
essential difference between symbolic and distributed representations.

Is there some in principle difference between subsymbolic computation by neural
networks over distributed representations and symbolic computation by Turing (or
equivalent) machines? The representation theorem of McCullogh and Pitts [82] dis-
cussed above suggests differently, namely that logical theories and neural networks
are essentially the same, i.e. their computational and representational properties are
equivalent. Can this result be extended to a larger class of neural networks? The trick,
it turns out, is to treat neural computation as non-monotonic.

It should be easy to see that some particular non-monotonic theories may be
represented by neural networks. Consider the system discussed above for reasoning
about birds: two input nodes (one for Bird(x) and one for Penguin(x)) and an output
node (for Fly(x)) are all we need to model this system with a simple neural network
(Fig. 30.1). So long as there is an excitatory connection from Bird(x) to Fly(x) and
at least as strong an inhibitory connection from Penguin(x) to Fly(x), this network
will produce the same conclusions from the same premises as our non-monotonic
theory. But this is just a specific case; a representation theorem for non-monotonic
logics in neural networks would show us that for every non-monotonic theory, there
is some neural network which computes the same conclusions. Such a theorem would
demonstrate a deep computational equivalence between non-monotonic logics and
neural networks.

As it turns out, representation theorems of this form have been given by several
logicians coming from a variety of backgrounds and motivations. Balkenius and
Gärdenfors [5] consider the inferential relationship between a fixed input to a neural
network and its “resonant state,” i.e. the stable activation state it reaches given that
input. Partitioning the state space of these networks into schemata, informational
components closed under conjunction, disjunction, and complementation, they show
that the relation between input schemata and the corresponding resonant state satisfies
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the axioms of a non-monotonic logic. Hölldobler and collaborators [64, 65] prove a
representation theorem for logic programs, demonstrating that for any logic program
P , a three-layer, feed-forward network can be found which computes P . Pinkas
[94] provides similar results for a wider class of neural networks and penalty logic.
Penalty logic is a non-monotonic logic which weights conditionals with integers
representing the “penalty” if that conditional is violated. Reasoning in penalty logic
involves identifying the set of propositions which minimizes the overall penalty for a
set of these weighted conditionals. Blutner [14] generalizes the work of Balkenius and
Gärdenfors [5] using a strategy similar to that of Pinkas. He proves a representation
theorem for weight-annotated Poole systems, which differ from penalty logic in that
they weight consistent sets of sentences with a positive value, the number of possible
“hypotheses” (sentences) which agree with them minus the number which disagree.

These results shed some light on the formal relationship between neural networks
and symbolic systems, but they also serve a practical purpose. In practical applica-
tions, an algorithm for constructing a neural network from a set of non-monotonic
inference rules has computational value because it can efficiently find the fixed point
which maximizes satisfaction of those rules. Unfortunately, this computational effi-
ciency can only be achieved on a case by case basis (we discuss this point in more
detail in Sect. 30.4.2). Furthermore, the practical motivations behind this research
directed attention towards networks with very simple nodes and favored proofs by
construction, which identify individual nodes with atomic propositions. As a reso-
lution to the connectionism / symbolic systems debate, then, these results need to
be supplemented in two ways: first, by extension to more realistic neural networks;
second, by extension to the case of truly distributed representations. We conclude
this section by discussing results which address these two worries.

Stenning and van Lambalgen [117] see themselves as following the tradition
of Hölldobler, but focusing on neural networks which plausibly represent actual
structure in the brain. They identify the work of d’Avila-Garcez and colleagues [30] as
a crucial step in this direction, extending results of the kind discussed in the previous
paragraphs to networks made of nodes with sigmoid activation functions, which more
realistically model the behavior of actual neurons. Building on this work, and with
the goal of providing a neurally plausible algorithm for their analysis of the Wason
selection task, Stenning and van Lambalgen prove a representation theorem for three-
valued logic programs in coupled neural networks. Three-valued logic programs can
assign three distinct truth values to proposition letters: true, false, or “undecided.”
Here, undecided plays a role similar to negation as failure, though using three truth
values allows for greater flexibility than two. Coupled neural networks are sheets of
linked isomorphic networks, such that each node in the first network has a link to a
corresponding node in the second network.

Theorem 30.1 ([117]). If P is a 3-valued logic program and CN(P) is the associated
coupled neural network, then the least fixed-point model of P corresponds to the
activation of the output layer of CN(P).

Stenning and van Lambalgen’s [117] goal is neural plausibility, and they motivate
their coupled neural networks by appealing to the extensive evidence for isomorphic
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mappings between layers of neurons in many parts of the human brain. Nevertheless,
it is not clear that any of these mappings exhibit the logical structure postulated by
Stenning and van Lambalgen, nor whether this is the appropriate level of neural detail
at which to model behavior on the Wason selection task.

Leitgeb identifies himself with the tradition originating with Balkenius and Gär-
denfors [5], yet aims to establish a broader class of results. The theorems discussed so
far typically address the relationship between a particular non-monotonic logic and
a particular type of neural network. In contrast, Leitgeb [73, 74] proves a sequence
of representation theorems for each system introduced by Kraus et al. [71] in dis-
tinguished classes of neural networks. These results involve inhibition nets with
different constraints on internal structure, where an inhibition net is a spreading acti-
vation neural network with binary (i.e. firing or non-firing) nodes and both excitatory
and inhibitory connections. Leitgeb [75] extends these results, proving representation
theorems for the same logics into interpreted dynamical systems.

At the most abstract level, a dynamical system is a set of states with a transition
function defined over them. An interpretation I of a dynamical system is a mapping
from formulas in a propositional language to regions of its state space. Leitgeb
gets closure under logical connectives via the same strategy as [5], by assuming an
ordering ≤ over informational states. If SI is an interpreted dynamical system, then
SI |= φ ⇒ ψ iff s is the resonant state of SI on fixed input I(φ) and I(ψ) ≤ s.
Call the set of all such conditionals T SI, then

Theorem 30.2 ([75]). If SI is an interpreted dynamical system, then the theory T SI

is closed under the rules of the [71] system C.

Theorem 30.3 ([75]). If T⇒ is a consistent theory closed under the rules of C, then
there exists an interpreted dynamical system SI such that T SI = T⇒.

Unlike the other results discussed here, Leitgeb takes pains to ensure that his rep-
resentation theorems subsume the distributed case. In particular, the interpretation
function may map a propositional formula to a set of nodes, i.e. distributing its repre-
sentation throughout the network. From a philosophical standpoint, this result should
raise questions for the debate between symbolic and connectionist approaches. Leit-
geb has shown that any dynamical system performing calculations over distributed
representations may be interpreted as a symbolic system performing non-monotonic
inference. This result appears to show that there is no substantive difference in the
representational power of symbolic systems and that of neural networks. If there is
such a difference, the key to articulating it may be embedded somewhere in Leit-
geb’s assumptions. The key step here is the ordering over informational states of
the network; it is an open question whether the states of actual networks to which
connectionists attribute representational properties satisfy such an ordering. Conse-
quently, there is work yet to be done in providing a full resolution to the symbolic
systems / connectionism debate.

Even if there is no substantive difference between the representational capacities
of symbolic systems and those of neural networks, there may be other principled
differences between their computational powers, for instance their computational
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efficiency. We turn next to this question, and to other applications of complexity
analysis in cognitive science.

30.4 Computational Complexity and the Tractable Cognition
Thesis

The Church-Turing Thesis provides a distinction between those problems which are
computable and those which are not. Complexity theory supplements the compu-
tational perspective with more fine-grained distinctions, analyzing the efficiency of
algorithms and distinguishing those problems which have efficient solutions from
those which do not. Efficiency considerations can help bridge the gap between com-
putational and algorithmic levels of analysis by turning computational hypotheses
into quantitative empirical predictions. Before looking at some specific examples
in Sects. 30.5 and 30.6, we first introduce the basic complexity classes and defend
the Tractable Cognition Thesis, which grounds the use of complexity analysis in
cognitive science.

30.4.1 Tractable Problems

Some problems, although computable, nevertheless require too much time or memory
to be feasibly solved by a realistic computational device. Computational complexity
theory investigates the resources (time, memory, etc.) required for the execution of
algorithms and the inherent difficulty of computational problems [3, 92]. Its particular
strength is that it can identify features which hold for all possible solutions to a query,
thereby precisely distinguishing those problems which have efficient solutions from
those which do not.

This method for analyzing queries allows us to sort them into complexity classes.
The class of problems that can be computed relatively quickly, namely in polynomial
time with respect to the size of the input, is called PTIME (P for short). A problem is
shown to belong to this class if one can show that it can be computed by a deterministic
Turing machine in polynomial time. NPTIME (NP) is the class of problems that can
be computed by nondeterministic Turing machines in polynomial time. NP-hard
problems are problems that are at least as difficult as any problem belonging to NP.
Finally, NP-complete problems are NP-hard problems that belong to NP, hence they
are the most difficult NPTIME problems.

Of course, this categorization is helpful only under the assumption that the com-
plexity classes defined in the theory are essentially different. These inequalities are
usually extremely difficult to prove. In fact, the question whether P �= NP is con-
sidered one of the seven most important open mathematical problems by the Clay
Institute of Mathematics, who have offered a $1,000,000 prize for its solution. If we
could show for any NP-complete problem that it is PTIME-computable, we would
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have demonstrated that P = NP. Computer science generally, and computational
complexity theory in particular, operate under the assumption that these two classes
are different, an assumption that has proved enormously fruitful in practice.

Intuitively, a problem is NP-hard if there is no efficient algorithm for solving it.5

The only way to deal with it is by using brute-force methods: searching through all
possible combinations of elements over a universe. Importantly, contrary to common
suggestions in the cognitive science literature (e.g. [19]), computational complexity
theory has shown that many NP-hard functions cannot be efficiently approximated
[4]. In other words, NP-hard problems generally lead to combinatorial explosion.

If we identify efficiency with tractability, computational complexity theory pro-
vides a principled method for distinguishing those problems which can reasonably be
solved from those which cannot. The following thesis was formulated independently
by Cobham [25] and Edmonds [35]:

The class of practically computable problems is identical to the PTIME class, that is, the
class of problems which can be computed by a deterministic Turing machine in a number of
steps bounded by a polynomial function of the length of a query.

This thesis is accepted by most computer scientists. For example, Garey and Johnson
[48] identify discovery of a PTIME algorithm with producing a real solution to a
problem:

Most exponential time algorithms are merely variations on exhaustive search, whereas poly-
nomial time algorithms generally are made possible only through the gain of some deeper
insight into the nature of the problem. There is wide agreement that a problem has not been
“well-solved” until a polynomial time algorithm is known for it. Hence, we shall refer to a
problem as intractable, if it is so hard that no polynomial time algorithm can possibly solve it.

The common belief in the Cobham-Edmonds Thesis stems from the practice of
programmers. NP-hard problems often lead to algorithms which are not practically
implementable even for inputs of not very large size. Assuming the Church-Turing
Thesis and P �= NP, we come to the conclusion that this has to be due to intrinsic
features of these problems and not to the details of current computing technology.

The substantive content of the Cobham-Edmonds thesis will become more clear if
we consider some examples. Many natural problems are computable in polynomial
time in terms of the length of the input, for instance calculating the greatest common
divisor of two numbers or looking something up in a dictionary. However, the task
of deciding whether a given classical propositional formula is satisfiable (SAT) is
NP-complete [26].

Thus, even very simple logics can give rise to extremely difficult computational
problems. Descriptive complexity theory deals with the relationship between logical

5 The intuitive connection between efficiency and PTIME-computability depends crucially on
considering efficiency over arbitrarily large input size n. For example, an algorithm bounded by

n
1
5 log log n could be used practically even though it is not polynomial (since n

1
5 log log n > n2 only

when n > ee10
, [61]). Conversely, an algorithm bounded by n98466506514687 is PTIME-computable,

but even for small n it is not practical to implement. We return to these considerations in the
following sections.
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definability and computational complexity. The main idea is to treat classes of finite
models over a fixed vocabulary as computational problems: what strength of logical
language is needed to define a given class of models? The seminal result in descrip-
tive complexity theory is Fagin’s theorem, establishing a correspondence between
existential second-order logic and NP:

Theorem 30.4 ([37]). �1
1 captures NP.

This means that for every property ϕ, it is definable in the existential fragment of
second-order logic, �1

1 , if and only if it can be recognized in polynomial time by a
non-deterministic Turing machine [68].

What do we know about the computational complexity of reasoning with non-
monotonic logics? It turns out that typically the computational complexity of non-
monotonic inferences is higher than the complexity of the underlying monotonic
logic. As an example, restricting the expressiveness of the language to Horn clauses
allows for polynomial inference as far as classical propositional logic is concerned.
However, this inference task becomes NP-hard when propositional default logic or
circumscription is employed. This increase in complexity comes from the fixed-point
constructions needed to provide the semantics for negation as failure and other non-
monotonic reasoning rules. In general, determining minimality is NP-hard (see [16],
for a survey).

But now we face a puzzle. We were attracted to non-monotonic logics because
they appeared to bridge the gap between neurally plausible computational devices and
formal languages. Yet the Cobham-Edmonds thesis appears to show that computing
properties defined in a non-monotonic language is an intractable task. In order to
resolve this puzzle, we will need to examine the relationship between complexity
considerations and computational devices.

30.4.2 The Invariance Thesis

The most common model of computation used in complexity analysis is the Turing
machine, yet Turing machines have a radically different structure from that of modern
digital computers, and even more so from that of neural networks. In order to justify
the application of results from complexity theory (e.g. that a particular problem is
intractable) in cognitive science, we need to demonstrate that they hold independent
of any particular implementation.

The Invariance Thesis (see e.g. [36]) states that:

Given a “reasonable encoding” of the input and two “reasonable machines,” the complexity
of the computation performed by these machines on that input will differ by at most a
polynomial amount.

Here, “reasonable machine” means any computing device that may be realistically
implemented in the physical world. The situation here is very similar to that of the
Church-Turing Thesis: although we cannot prove the Invariance Thesis, the fact that
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it holds for all known physically implementable computational devices provides
powerful support for it. Of course, there are well-known machines which are ruled
out by the physical realizability criterion; for example, non-deterministic Turing
machines and arbitrarily precise analog neural networks are not realistic in this sense.
Assuming the Invariance Thesis, a task is difficult if and only if it corresponds to a
function of high computational complexity, independent of the computational device
under consideration, at least as long as it is reasonable.

It is worth discussing in a little more detail why neural networks fall within the
scope of the Invariance Thesis. Neural networks can provide a speed-up over tra-
ditional computers because they can perform computations in parallel. However,
from the standpoint of complexity theory, the difference between serial and parallel
computation is irrelevant for tractability considerations. The essential point is this:
any realistic parallel computing device only has a finite number of parallel channels
for simultaneous computation. This will only provide a polynomial speed-up over a
similar serial device. In particular, if the parallel device has n channels, then it should
speed up computation by a factor of n (providing it can use its parallel channels with
maximum efficiency). As the size of the input grows significantly larger than the
number of parallel channels, the advantage in computational power for the parallel
machine becomes less and less significant. In particular, the polynomial speed-up of
parallel computation provides a vanishingly small advantage on NP-hard problems
where the solution time grows exponentially. Therefore, the difference between sym-
bolic and connectionist computations is negligible from the tractability perspective
(see [102], particularly Sect. 6.6, for extended discussion).

These considerations should clarify and mitigate the significance of the repre-
sentation theorems discussed in Sect. 30.3.2. How can we reconcile these results
with the observation in Sect. 30.4.1 that fixed-point constructions are NP-hard? We
provide a possible answer to this in the next section when discussing, for instance,
the Fixed Parameter Tractability Thesis. Simply put, it may be the case that even
though the general problem of reasoning with non-monotonic logics is intractable,
in our everyday experience we only deal with a specific instance of that problem
which, due to properties such as bounds on input size or statistical properties of the
environment, yields tractable reasoning. Approaches such as those discussed in the
next section allow us to rigorously describe properties of intractable problems that
can reduce their general complexity. Then we may study whether the instances of
the general problem that people routinely solve indeed constitute an easy subset of
the more general problem.

30.4.3 The P-Cognition Thesis and Beyond

How can complexity considerations inform our theory of cognition? The general
worry that realistic agents in a complex world must compute effective action despite
limited computational resources is the problem of bounded rationality [110].

http://dx.doi.org/10.1007/978-3-319-06025-5_6
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Simon [105] argued that bounded agents solve difficult problems with rough
heuristics rather than exhaustive analyses of the problem space. In essence, rather
than solve the hard problem presented to her by the environment, the agent solves an
easier, more tractable problem which nevertheless generates an effective action. In
order to apply this insight in cognitive science, it would be helpful to have a precise
characterization of which class of problems can plausibly be computed by a realistic
agent. The answer suggested by complexity theory is to adapt the Cobham-Edmonds
Thesis:

The class of problems which can be computed by a cognitive agent is approximated by the
PTIME class, i.e. bounded agents can only solve problems with polynomial time solutions.

As far as we are aware, a version of the Cobham-Edmonds Thesis for cognitive
science was first formulated explicitly in print by Frixione [46]6 and later dubbed the
P-Cognition Thesis by van Rooij [102]. The P-Cognition Thesis states that a cognitive
task is easy if it corresponds to a tractable problem, and hard if it corresponds to an
intractable one.

The P-Cognition Thesis can be used to analyze which task an agent is plausi-
bly solving when the world presents her with an (apparently) intractable problem.
For example, Levesque [76] argues that the computational complexity of general
logic problems motivates the use of Horn clauses and other tractable formalisms to
obtain psychologically realistic models of human reasoning. Similarly, Tsatsos [132]
emphasizes that visual search in its general bottom-up form is NP-complete. As a
consequence, only visual models in which top-down information constrains visual
search space are computationally plausible. In the study of categorization and sub-
set choice, computational complexity serves as a good evaluation of psychological
models [100].

Nevertheless, one might worry that the “worst-case scenario” attitude of com-
putational complexity theory is inappropriate for analyzing the pragmatic problem-
solving skills of real-world cognitive agents. Computational complexity is defined
in terms of limit behavior. It answers the question: as the size of the input increases
indefinitely, how do the running time and memory requirements of the algorithm
change? The results of this analysis do not necessarily apply to computations with
fixed or bounded input size.7

Our response to this worry is twofold. First, complexity analysis proves its value
through the role it plays in fruitful ongoing programs of empirical research, such
as those we discuss in Sects. 30.5 and 30.6. Second, there are natural extensions to
computational complexity theory which avoid this criticism, yet rest on the same
fundamental principles elucidated here. In the remainder of this section, we briefly
survey some of these extensions.

Some problems are NP-hard on only a small proportion of possible inputs.
Average-case complexity analysis studies the complexity of problems over randomly
generated inputs, thereby allowing algorithms to be optimized for average inputs on

6 See also [89].
7 However, see [102].
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problems for which only extraordinary inputs require exhaustive search (see e.g. [77]
Chap. 4). But average-case complexity theory extends and supplements worst-case
analysis; it does not, in general, replace it. For example, when deciding between
competing tractable algorithmic hypotheses, average-case analysis can be used to
compare their respective time-complexities with accuracy and reaction time data
obtained via experimentation [57, 102]. This research does not undermine the use
of complexity analysis in cognitive science, it supports and refines it.

Another extension of complexity theory which adds fine structure to the analysis
of realistic agents divides a problem into parameters which can be independently
analyzed for their contributions to its overall complexity. Such an analysis is useful,
for example, if the intractability of a problem comes from a parameter which is usually
very small, no matter how large the input (see [101] for examples). This way of
thinking leads to parametrized complexity theory as a measure for the complexity of
computational cognitive models. van Rooij [102] investigates this subject, proposing
the Fixed-Parameter Tractability Thesis as a refinement of the P-Cognition Thesis.
The FPT Thesis posits that cognitive agents can only solve problems which are
tractable modulo the fixing of a parameter which is usually small in practice, and
thereby subsumes many apparently “intractable” task analyses under the general
P-Cognition perspective.

The proof of any formal analysis in empirical research is its success in driving
predictions and increasing theoretical power. In the remainder of this chapter, we
demonstrate the power of complexity analysis for driving research on quantifier
processing and social cognition.

30.5 Between Computation and Algorithm: Quantifier
Efficiency

Computational complexity theory has been successfully employed to probe the inter-
action between Marr’s computational and algorithmic levels. Given a formal task
analysis, complexity theory can make predictions about reaction time; conversely,
abrupt changes in reaction time can provide evidence for changes in the algorithm
employed on a task. For example, it is known that reaction time increases linearly
when subjects are asked to count between 4 and 15 objects. Up to 3 or 4 objects
the answer is immediate, so-called subitizing. For judgments involving more than
15 objects, subjects start to approximate: reaction time is constant and the num-
ber of incorrect answers increases dramatically [32]. Results such as this allow a
fine-grained analysis of the algorithmic dynamics underlying a computational task.

This section illustrates how complexity theory can guide empirical research on
algorithmic dynamics through the example of natural language quantifiers. Johan
van Benthem’s analysis of quantifiers in terms of finite state automata, when com-
bined with complexity analysis, has produced a lively research program on quantifier
processing, confirmed by empirical data on reaction times and neuroimaging.
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30.5.1 Complexity and Natural Language

In Sect. 30.4.1 we saw how descriptive complexity can be used to analyze formal lan-
guages, but what about natural language? Some of the earliest research combining
computational complexity with semantics can be found in Ristad’s [99] The Lan-
guage Complexity Game. Ristad carefully analyzes the comprehension of anaphoric
dependencies in discourse. He considers a few approaches to describing the meaning
of anaphora and proves their complexity. Finally, he concludes that the problem is
inherently NP-complete and that all good formalisms accounting for it should be
NP-complete as well.

More recently, Pratt-Harmann [95] shows that different fragments of natural lan-
guage capture various complexity classes. More precisely, he studies the computa-
tional complexity of satisfiability problems for various fragments of natural language.
Pratt-Hartmann [95] proves that the satisfiability problem for the syllogistic fragment
is in PTIME, as opposed to the fragment containing relative clauses, which is NP-
complete. He also describes fragments of language of even higher computational
complexity, with non-copula verbs or restricted anaphora. Finally, he identifies an
undecidable fragment containing unrestricted anaphora. Thorne [130] observes that
the computational complexity of various fragments of English is inversely propor-
tional to their frequency.

This work appears to challenge the P-Cognition Thesis. For, suppose that satis-
fiability is NP-complete, or even uncomputable, for fragments of natural language.
Then it appears that we are forced not only to abandon the P-Cognition Thesis,
but even to abandon the Church-Turing Thesis. This would imply that cognition
involves super-Turing computation. As discussed above, this conclusion contradicts
all available evidence on physical systems. While it does not defeat the possibility
of formal analysis, since there is an extensive mathematics of super-Turing com-
putation, it does complicate, and maybe defeat, the experimental investigation of
the mind, which depends upon bounded and finite methods developed in continu-
ity with the rest of empirical science. Complexity analysis provides a constructive
way to move forward here. The negative results of Ristad [99] and Pratt-Hartmann
[95] suggest that the brain is not solving the complete satisfiability problem when
interpreting sentences of natural language. This motivates the search for polyno-
mial time heuristics that might plausibly compute interpretations of sentences of
natural language. For example, Pagin [91] tries to explain compositionality in terms
of computational complexity, cognitive burden during real-time communication, and
language learnability. He argues that compositionality simplifies the complexity of
language communication.
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30.5.2 Johan van Benthem’s Semantic Automata

Johan van Benthem [7] was one of the first to emphasize and explore the tight
connection between computation and meaning in natural language (see also [8]). He
proposed treating “linguistic expressions as denoting certain ‘procedures’ performed
within models for the language” [7].

Johan van Benthem formalized this proposal by identifying generalized quantifiers
with automata. These semantic automata operate over sequences of elements from
a universe, which they test for the quantified property. If they accept the sequence,
the quantificational claim is true, if they reject it, the claim is false.

Before looking at some examples, let us recall the definition of a generalized quan-
tifier. Intuitively, a generalized quantifier characterizes relations between properties
over a universe; for example, “every A is B” makes a claim about the relationship
between objects with property A and objects with property B. We can organize
quantifiers by the number and arity of the properties required to define them. More
formally:

Definition 30.1 Let t = (n1, . . . , nk) be a k-tuple of positive integers. A generalized
quantifier of type t is a class Q of models of a vocabulary τt = {R1, . . . , Rk}, such
that Ri is ni -ary for 1 ≤ i ≤ k, and Q is closed under isomorphisms, i.e. if M and
M
′ are isomorphic, then M ∈ Q iff M

′ ∈ Q.

Therefore, formally speaking:

∀ = {(M, A) | A = M}.
∃ = {(M, A) | A ⊆ M and A �= ∅}.

every = {(M, A, B) | A, B ⊆ M and A ⊆ B}.
most = {(M, A, B) | A, B ⊆ M and card(A ∩ B) > card(A − B)}.

Dn = {(M, A) | A ⊆ M and card(A) is divisible by n}.

The first two examples are the standard first-order universal and existential quan-
tifiers, both of type (1). They are classes of models with one unary predicate such
that the extension of the predicate is equal to the whole universe in the case of the
universal quantifier and is nonempty in the case of the existential quantifier. Quan-
tifiers every and most of type (1, 1) are familiar from natural language semantics.
Their aim is to capture the truth-conditions of sentences of the form: “Every A is
B” and “Most A’s are B.” In other words, they are classes of models in which these
statements are true. The divisibility quantifier of type (1) is a familiar mathematical
quantifier.

Johan van Benthem’s insight was to identify quantifier complexity with constraints
on the type of automata required to verify quantifier claims over an arbitrary universe.
Figures 30.2, 30.3, and 30.4 illustrate examples of these automata for some familiar
quantifiers. Johan van Benthem was able to prove the following:
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q0 q1

correct

incorrect

correct, incorrect

Fig. 30.2 This finite automaton checks whether every sentence in the text is grammatically correct.
It inspects the text sentence by sentence, starting in the accepting state (double circled), qo. As long
as it does not find an incorrect sentence, it stays in the accepting state. If it finds such a sentence,
then it already “knows” that the sentence is false and moves to the rejecting state, q1, where it stays
no matter what sentences come next

q0 q1 q2 q3

true true true true

false false false

Fig. 30.3 This finite automaton recognizes whether at least 3 sentences in the text are false. This
automaton needs 4 states. It starts in the rejecting state, q0, and eventually, if the condition is
satisfied, moves to the accepting state, q3. Furthermore, notice that to recognize “at least 8” we
would need 9 states, and so on

q0 q1

0

1

1
0

Fig. 30.4 Finite automaton checking whether the number of “1”s is even

Theorem 30.5 ([7]). A monadic quantifier Q is first-order definable if and only if
it can be recognized by a finite automaton without cycles.

But this does not exhaust the class of finite automata. Finite automata with cycles
can identify properties which depend on divisibility of the cardinality of the uni-
verse, such as whether the universe has an even or odd number of elements (see
Fig. 30.4). Consequently, they are definable in first-order logic supplemented with
special divisibility quantifiers, Dn , for each natural number n.

Theorem 30.6 ([88]). A monadic quantifier Q is definable in the divisibility logic
(i.e. F O(Dn)n<ω) iff it can be recognized by a finite automaton.

However, for recognizing some higher-order quantifiers such as “less than half” or
“most,” we need computability models that make use of internal memory. Intuitively,
to check whether sentence (1) is true we must identify the number of correct sentences
and hold it in working memory to compare with the number of incorrect sentences.

(1) Most of the sentences in this chapter are grammatically correct.

Mathematically speaking, such an algorithm can be realized by an automaton sup-
plemented with a push-down stack, a last-in / first-out form of memory.
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Theorem 30.7 ([7]). A quantifier Q of type (1) is definable in the arithmetic of
addition iff it can be recognized by a push-down automaton.

30.5.3 From Automata to Psycholinguistics

Johan van Benthem’s formal identification of generalized quantifiers with automata
can be used to generate empirical predictions about natural language processing. For
example, Szymanik [120, 121] investigate whether the cognitive difficulty of quan-
tifier processing can be assessed on the basis of the complexity of the corresponding
minimal automata. He demonstrates that the computational distinction between quan-
tifiers recognized by finite automata and those recognized by push-down automata
is psychologically relevant: the more complex the automaton, the longer the reaction
time and the greater the recruitment of working memory in subjects asked to solve the
verification task. Szymanik and Zajenkowski [123] show that sentences with the Aris-
totelian quantifiers “some” and “every,” corresponding to two-state finite automata,
were verified in the least amount of time, while the proportional quantifiers “more
than half” and “less than half” triggered the longest reaction times. When it comes to
the numerical quantifiers “more than k” and “fewer than k,” corresponding to finite
automata with k + 2 states, the corresponding latencies were positively correlated
with the number k. Szymanik and Zajenkowski [124, 128] explore this complexity
hierarchy in concurrent processing experiments, demonstrating that during verifica-
tion, the subject’s working memory is qualitatively more engaged while processing
proportional quantifiers than while processing numerical or Aristotelian quantifiers.

This work builds on recent neuroimaging research aimed at distinguishing the
quantifier classes identified by van Benthem in terms of the neural resources they
exploit. For example, McMillan and colleagues [83], in an fMRI study, show that
during verification all quantified sentences recruit the right inferior parietal cortex
associated with numerosity, but only proportional quantifiers recruit the prefrontal
cortex, which is associated with executive resources such as working memory. These
findings were later strengthened by evidence on quantifier comprehension in patients
with focal neurodegenerative disease ([84]; see [67] for a survey of related results).
Moreover, Zajenkowski and colleagues [140] compares the processing of natural
language quantifiers in a group of patients with schizophrenia and a healthy control
group. In both groups, the difficulty of the quantifiers was consistent with com-
putational predictions. In general, patients with schizophrenia had longer reaction
times. Their performance differed in accuracy only on proportional quantifiers, how-
ever, confirming the predicted qualitative increase in difficulty for quantifiers which
require memory, and explainable in terms of the diminished executive control in
schizophrenics.

In the next step, Szymanik [122] studied the computational complexity of multi-
quantifier sentences. It turns out that there is a computational dichotomy between
different readings of reciprocal sentences, for example between the following:



812 A. M. C. Isaac et al.

(2) Most of the parliament members refer indirectly to each other.
(3) Boston pitchers were sitting alongside each other.

While the first sentence is usually given an intractable NP-hard reading in which all
pairs of parliament members need to be checked, the second one is interpreted by a
PTIME-computable formula. This motivates the conjecture that listeners are more
likely to assign readings that are simpler to compute. The psychological plausibility
of this conjecture is still awaiting further investigation; however, there are already
some interesting early results [104].

Szymanik [122] also asked whether multi-quantifier constructions could be com-
putationally analyzed by extending van Benthem’s framework. Threlkeld and Icard
[116] give a positive answer by showing that if two quantifiers are recognizable by
finite automata (push-down automata) then their iteration must also be recognizable
by a finite automaton (push-down automaton). For instance, there are finite automata
which recognize whether the following sentences are true:

(4) Some dots and every circle are connected.
(5) Every dot and some circles are connected.

This opens the road for further investigations into the delicate interplay between
computability, expressibility, and cognitive load (see e.g. [126]).

The above results demonstrate how the P-Cognition Thesis can drive experimental
practice. Differences in performance, such as in reaction times, can support a com-
putational analysis of the task being performed [123]. Furthermore, one can track
the changes in heuristics a single agent employs as the problem space changes [131].

30.6 The Complexity of Intelligent Interaction

Johan van Benthem begins his “Cognition as Interaction” [10] with a plea to cognitive
scientists to move away from their myopic focus on single agents:

It is intelligent social life which often shows truly human cognitive abilities at their best and
most admirable. But textbook chapters in cognitive science mostly emphasise the apparatus
that is used by single agents: reasoning, perception, memory or learning. And this emphasis
becomes even stronger under the influence of neuroscience, as the only obvious thing that
can be studied in a hard scientific manner are the brain processes inside individual bodies.
Protagoras famously said that “Man is the measure of all things”, and many neuroscientists
would even say that it’s just her brain. By contrast, this very brief chapter makes a plea for the
irreducibly social side of cognition, as evidenced in the ways in which people communicate
and interact. Even in physics, many bodies in interaction can form one new object, such as
a Solar system. This is true all the more when we have a meeting of many minds!

We could not agree more. In this section we discuss how computational constraints
can be taken seriously in the study of multi-agent social interactions. After exam-
ining a case study in detail, which illustrates how shifting from a global to a local
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perspective in a multi-agent reasoning scenario can reduce the complexity of repre-
sentations, we’ll briefly survey the role that games can play as an empirical testing
ground for logical models of social reasoning.

30.6.1 Plausible Epistemic Representations

Other chapters in this volume extensively discuss epistemic logics, and in partic-
ular Dynamic Epistemic Logic, DEL (see [12] for a recent survey). We argue that
although these logics can describe the epistemic reasoning in social interactions in
an elegant way, they postulate cognitively implausible representations. This leads
to discussion of a recent proposal for more computationally plausible models for
epistemic reasoning which repurposes models developed by van Benthem for repre-
senting quantifiers.

Let us start with a classic example: the Muddy Children puzzle. Three kids are
playing outside. When they come back home, their father says: (1) “At least one of
you has mud on your forehead.” Then, he asks the children: (I) “Can you tell for
sure whether you have mud on your forehead? If yes, announce your status.” The
children commonly know that their father never lies and that they are all sincere and
perfect logical reasoners. Each child can see the mud on others but cannot see his or
her own forehead. After the father asks (I) once, the children are silent. When he asks
the question a second time, however, suddenly all, in this case two, muddy children
respond that they know they have mud on their foreheads. How is that possible?

DEL models the underlying reasoning with Kripke structures characterizing the
agents’ uncertainty. Let us give the three children names: a, b, and c, and use propo-
sitional letters ma , mb, and mc to express that the corresponding child is muddy. Pos-
sible worlds correspond to distributions of mud on children’s foreheads, for example,
w5 : ma stands for a being muddy and b and c being clean in world w5. Two worlds
are joined with an edge labelled with i , for agent i ∈ {a, b, c}, if i cannot distin-
guish between the two worlds on the basis of his information; for clarity we drop the
reflexive arrows for each state. The standard epistemic modeling (see e.g. [34, 38])
is depicted in Fig. 30.5; the boxed state stands for the actual world, in this case, all
three children are muddy.

Now, let us recall how the reasoning process is modeled in this setting. The first
public announcement has the form: (1) ma ∨ mb ∨ mc, and after its announcement,
(1) becomes common knowledge among the children. As a result, the children per-
form an update, that is, they eliminate worldw8 in which (1) is false. Then the father
asks for the first time: (I) who among them knows his status. The children reason as
follows. In world w6, c knows that he is dirty (there is no uncertainty for c between
this world and any other world in which he is clean). Therefore, if the actual world
werew6, agent c would know his state and announce it. The situation is similar for a
and b inw5 andw7, respectively. The silence of the children after (I) is equivalent to
the announcement that none of them know whether they are muddy. Hence, all agents
eliminate those worlds that do not make such an announcement true:w5,w6, andw7.
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(1) (I) (I)

Fig. 30.5 The classical modeling of the Muddy Children puzzle. Arrows indicate the dynamic
update to the model after the corresponding announcement

When (I) is announced a second time, it is again clear that if one of w2, w3, or w4
were the actual world, the respective agents would have announced their knowledge.
The children still do not respond, so at the start of the next round everyone knows –
and in fact it is common knowledge – that the actual situation cannot be any of w2,
w3, or w4. Hence, they all eliminate these worlds leaving just the possibility w1. All
uncertainty disappears and they all know at the same time that they are dirty.

In spite of its logical elegance, the proposed solution is problematic from the
standpoint of the Tractable Cognition Thesis. DEL flexibly models epistemic sce-
narios from a global perspective, but this power comes at a price: the relevant logics
turn out to be very complex. First of all, DEL postulates exponential representations.
Not only is it intuitively implausible that actual agents generate such exponential
models of all possible scenarios, it is computationally intractable. The core of the
problem is DEL’s global perspective, shared with other modal logics, which assesses
complexity from the modeler’s point of view [115]. In fact, what we need is a new
local perspective, a study of epistemic reasoning from the perspective of the agents
involved. Such a shift in perspective can lead to logics and representations that are
much more cognitively plausible [31, 55, 56]. Let’s see how this applies to the Muddy
Children puzzle.

In Essays in Logical Semantics, van Benthem [7] proposes not only computa-
tional semantics but also a geometrical representation for generalized quantifiers in
the form of number triangles. Gierasimczuk and Szymanik [56] use number trian-
gles to develop a new, concise logical modeling strategy for multi-agent scenarios,
which focuses on the role of quantitative information in allowing agents to suc-
cessfully converge on qualitative knowledge about their situation. As an example,
let us consider a generalization of the Muddy Children puzzle by allowing public
announcements based on an arbitrary generalized quantifier Q, for example, “Most
children are muddy.”

As we restrict ourselves to finite universes, we can represent all that is relevant
for type (1) generalized quantifiers in a number triangle, which simply enumerates
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(0,0)

(1,0) (0,1)

(2,0) (1,1) (0,2)

(3,0) (2,1) (1,2) (0,3)

(4,0) (3,1) (2,2) (1,3) (0,4)

–

–

+

– + +

– + + +

– + + + +

Fig. 30.6 Number triangle representing the quantifier “at least 1”

all finite models of type (1). Let U be the universe of discourse, here all the father’s
children, and let A be the subset of muddy children. The node labeled (k, n) stands
for a model in which |U − A| = k and |A| = n. Now, every generalized quantifier of
type (1) can be represented by putting “+” at those (k, n) that belong to Q and “–” at
the rest. For example, the number triangle representation of the quantifier “at least 1”
is shown in Fig. 30.6. Number triangles play a crucial role in generalized quantifier
theory. Gierasimczuk and Szymanik [56] interpret the pairs (k, n) as possible worlds.

Gierasimczuk and Szymanik illustrate how the number triangle may be used to
derive a more concise solution for the Muddy Children puzzle. As before, we consider
three agents a, b, and c. All possibilities with respect to the size of the set of muddy
children are enumerated in the fourth level of the number triangle. Let us also assume
at this point that the actual situation is that agents a and b are muddy and c is clean.
Therefore, the real world is (1, 2), one child is clean and two are muddy:

Now, let us focus on what the agents observe. Agent a sees one muddy child and
one clean child. The same holds symmetrically for agent b. Their observational state
can be encoded as (1, 1). Accordingly, the observational state of c is (0, 2). In general,
if the number of agents is n, each agent can observe n − 1 agents. As a result, what
agents observe is encoded in the third level of the number triangle:

Each of the agents faces the question whether he is muddy. For example, agent
a has to decide whether he should extend his observation state (1, 1) to the left
state (2, 1) (a decides that he is clean) or to the right state (1, 2) (a decides that
he is muddy). The same holds for agent b. The situation of agent c is similar: his
observational state is (0, 2), which has two potential extensions, namely (1, 2) and
(0, 3). In general, note that every observational state has two possible successors.

Given this representation, we can now analyze what happens in the Muddy Chil-
dren scenario. Figure 30.7 represents the process, with the initial model at the top.
First, the announcement is made: “At least one of you is muddy.” This allows
elimination of those possible states, i.e. those on the bottom row, that are not in
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Fig. 30.7 Modeling of the
Muddy Children puzzle based
on number triangles
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the quantifier (i.e. intersecting with the “−”s in Fig. 30.6). In this case, (3, 0) is
eliminated. The resulting model is the second from the top. Then the father asks:
“Can you tell for sure whether or not you have mud on your forehead?” In our graph,
this question means: “Does any of you have only one successor?” All agents com-
monly know that (3, 0) has just been eliminated. Agent a considers it possible that
the actual state is (2, 1), i.e. that two agents are clean and one is muddy, so that
he himself would have to be clean. But then he knows that there would have to be
an agent whose observational state is (2, 0)—there has to be a muddy agent that
observes two clean ones. For this hypothetical agent, the uncertainty disappeared
just after the quantifier announcement (for (2, 0) there is only one successor left).
So, when it becomes clear that no one knows and the father asks the question again,
the world (2, 1) gets eliminated and the only possibility for agent a is now (1, 2)
via the right successor of (1, 1), and this indicates that he has to be muddy. Agent
b is in exactly the same situation. They both can announce that they know. Since c
witnessed the whole process, he now knows that the only way for them to know was
to be in (1, 1), and therefore he concludes (1, 2) as well.

In general, if there are n agents, we need levels n and n + 1 of the triangle to
enumerate all possible scenarios (up to isomorphism). Therefore, the total size of the
initial model is 2n+1. As a result, the proposed representation is exponentially more
succinct than the standard DEL approach, which requires on the order of 2n states.
Strategies such as this are attractive when modeling the representations employed
by realistic cognitive agents. Computational concerns constitute a plausibility test
on such proposed representations.

Classic epistemic logic usually assumes an exponential representation including
all possibilities (see e.g. [34]). The representation proposed here exploits a crucial
feature of generalized quantifiers, namely closure under isomorphism, in order to
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increase the informational power of a message relative to the observational powers
of the agents. Such informational “shortcuts” can be extremely powerful, yet have
so far rarely been taken into account in the epistemic literature.

30.6.2 Games and Social Cognition

There is a close relationship between epistemic logics and extensive form games.
Sequences of DEL models such as those depicted in Fig. 30.5 can be strung together
to form a single model for Epistemic Temporal Logic [13, 66]. These models can be
pictured as branching tree structures, and a distinguished subset of them, if supple-
mented with a preference ordering over end states, are equivalent to extensive form
games [69]. These close formal relations reflect the fact that DEL is well-suited for
modeling the higher-order reasoning (e.g. involving my belief about your belief about
my belief, etc.) required to explain game-theoretical arguments [135]. An important
concept common to both epistemic logic and game theory is backward induction, the
process of reasoning backwards from the end of the game to determine a sequence of
optimal actions [9]. Backward induction can be understood as an inductive algorithm
defined on a game tree. The backward induction algorithm tells us which sequence of
actions will be chosen by agents that want to maximize their own payoffs, assuming
common knowledge of rationality. In game-theoretical terms, backward induction
calculates subgame perfect equilibria for finite extensive form games.

Games have proved a powerful tool for studying the evolution of cooperation and
of social cognition [15, 111, 112, 139]. Games also play a pivotal role in designing
experiments for studying social cognition in actual use [17], recently with a particular
focus on higher-order social cognition, e.g. the matrix game [63], the race game [58,
62], the road game [41, 97], and the Marble Drop game [85–87].

But how well do games capture the actual dynamics of mental computation dur-
ing social reasoning? There are natural ways to view games as models of cogni-
tive processes [9], yet we might wonder how well the normative analysis of these
processes in traditional game theory captures the flexible dynamics of actual human
reasoning. Johan van Benthem’s [8], for instance, points out that it is not the realiza-
tion of perfect solutions, but rather the human ability to use interaction to dynamically
recover from mistakes, which is most impressive:

As Joerg Siekmann once said, the most admirable moments in a mathematics seminar are
not when someone presents a well-oiled proof, but when he discovers a mistake and recovers
on the spot. Logic should understand this dynamic behaviour, which surely involves many
more mechanisms than inference …. And on that view, logic is not the static guardian of
correctness, as we still find it defined in most textbooks, but rather the much more dynamic,
and much more inspiring immune system of the mind!

These considerations motivate a closer look at the fit between game-theoretic strate-
gies and actual human reasoning.

In this spirit, many studies have proven that the application of higher-order social
reasoning among adults is far from optimal (see, for example, [63, 134]). However,
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Meijering and colleagues [85, 87] report an almost perfect performance by subjects
whose reasoning processes have been facilitated by step-wise training, which pro-
gresses from simple decisions without any opponent, through games that require
first-order reasoning (“he plans to go right at the next trapdoor”), to games that
require second-order reasoning (“he thinks that I plan to go left at the last trapdoor”).
Surprisingly, an eye-tracking study of the subjects solving the game suggests that
backward induction is not necessarily the strategy that participants used; they seemed
instead to favour a form of “forward reasoning plus backtracking” [86].

Another application of formal methods in this spirit has been implemented by
Ghosh et al. [53] and Gosh and Meijering [54]. They formulate all reasoning strategies
on an experimental task in a logical language and compare ACT-R models based on
each strategy with the subject’s actual performance in a sequence of games on the
basis of reaction times, accuracy, and eye-tracking data. These comparisons allowed
them to develop a “cognitive computational model” with similar task performance
to that of the human subjects. As a final example, consider the recent work of [125].
The authors successfully used structural properties of the game, namely types of turn
alternation and pay-off distributions, to predict the cognitive complexity of various
trials. This complexity analysis accurately predicted changes in subjects’ reaction
times during game play.

These examples confirm Johan van Benthem’s point: it is not static solution con-
cepts, but dynamic algorithm switching, which characterizes realistic game play. Yet,
far from being immune to logical analysis, such dynamic strategic reasoning can be
formalized and explored through logical methods.

30.7 Conclusion

We have examined a number of applications of logical methods in cognitive science.
These methods assume the computational perspective, which treats cognitive agents
as realistic machines solving information processing tasks. The value of the com-
putational perspective is in its fruitfulness as a research program: formal analysis
of an information processing task generates empirical predictions, and breakdowns
in these predictions motivate revisions in the formal theory. We have illustrated this
back-and-forth between logical analyses and empirical results through a number of
specific examples, including quantifier processing and higher-order social reasoning.

We have also emphasized the role that logical methods can play in clarifying
concepts, with a particular focus on the role of non-monotonic logics in bridging
Marr’s algorithmic and implementation levels and the role of complexity theory
in bridging his computational and algorithmic levels. Typically, formal methods
generate “in principle” results, such as the boundary between logical and illogical
solutions, tractable and intractable problems, or monotonic and non-monotonic rea-
soning. However, these in principle results do not constitute brittle hypotheses to
be confirmed or disconfirmed: it is not the case that humans are simply “logical”
or “illogical.” Rather, such results form a bedrock on which a nuanced analysis of
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fine structure can be built. An apparent strict boundary between logical and illogical
becomes an array of types of logic, an apparent strict boundary between tractable
and intractable becomes a hierarchy of algorithmic types which differentially recruit
processing resources. It is this fine structure which allows the subtle and fruitful
interplay between logical and empirical methods.

There are morals here for both sides of the logical/empirical coin. Logicians
can strengthen the relevance of their analyses for science by embracing complex-
ity analysis. Not just formal semantics and logics of agency, but all logical models
of cognitive behavior (temporal reasoning, learning, mathematical problem solving,
etc.) can strengthen their relevance for empirical methods by embracing complex-
ity analysis and the fine structure of the complexity hierarchy which rests upon it.
Likewise, empirical scientists should recognize the degree of nuance a formal analy-
sis can bring to empirical predictions: not just which task can be solved, but how
quickly, and using what resources may all be predicted by an algorithmic analysis.
The theme which unites these two facets of cognitive science is that representa-
tions matter. The content and structure of representations constrain performance on
cognitive tasks. Both experiments and logical models probe the nature of these rep-
resentations, and it is in converging on a single analysis through the back-and-forth
of theoretical/empirical interaction that cognitive science progresses.
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Chapter 31
Computational Complexity and Cognitive
Science: How the Body and the World
Help the Mind be Efficient

Peter Gärdenfors

Abstract Computational complexity has been developed under the assumption that
thinking can be modelled by a Turing machine. This view of cognition has more
recently been complemented with situated and embodied cognition where the key
idea is that cognition consists of an interaction between the brain, the body and
the surrounding world. This chapter deals with the meaning of complexity from a
situated and embodied perspective. The main claim is that if the structure of the world
is taken into account in problem solving, the complexity of certain problems will be
reduced in relation to Turing machine complexity. For example, search algorithms
can be simplified if the visual structure of the world is exploited. Another case is the
logical problem of language acquisition, claiming that children cannot learn language
simply by considering the input. It is argued that this problem will not arise if it is
taken into account that children’s learning of grammatical features often exploits
world knowledge.

31.1 The Notion of Complexity in Cognitive Science

Cognitive science comes in three flavours [6, pp. 83–84], [11]. The historically first is
classical computationalism. The basic tenets are that the brain is a computer (Turing
machine) and that all thinking is manipulation of symbols (e.g. [8, 9]). The second
is connectionism (associationism). Here the central tenets are that the brain can be
seen as a neural network and that thinking can be described as parallel distributed
processing in such a network [25]. The third is situated and embodied cognition
where the key idea is that cognition consists of an interaction between the brain,
the body and the surrounding world. Thinking is not encapsulated in the brain but it
leaks out into the world [6].
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Classical computationalism entails that all cognitive science can be reduced to
the study of computers and the algorithms that are run on them. Isaac et al. (this
volume) formulate this idea crisply: “The human mind can only solve computable
problems”. Since the 1950’s there has been a rapid development of computer science
and its relation to logical formalisms. One problem area concerns the complexity of
different kinds of computation. A difference between the analysis of algorithms and
computational complexity theory is that an analysis of an algorithm for a particular
problem can determine which amount of resources is used to solve the problem,
whereas complexity theory asks a more general question about the minimal resources
required among all possible algorithms that could be used to solve the same problem.
The paper by Isaac et al. (this volume) is an overview of the consequences for
cognitive science of the results concerning complexity and logical formalisms.

However, if one takes a different perspective on cognition, considerations con-
cerning complexity will be of a different nature. The focus of this article will be the
relation between complexity theory and situated and embodied cognition.

In order to bring out the contrast between the different kinds of cognitive science
in relation to complexity, I want to highlight two assumptions of classical computa-
tionalism:

(1) All computation is (sequential) manipulation of symbols.
(2) The algorithms are run in a system (a computer or a brain) that is separated from

the world—once the inputs are given to an algorithm it runs independently of
what happens outside the system.

31.2 Complexity in Neural Networks

The second flavour of cognitive science is connectionism. In this tradition, Assump-
tion (1), that all computation is manipulation of symbols, is abandoned. The neurons
in a neural network are seen as processing information on the “subsymbolic” [27]
or “subconceptual” [12] level. In general, connectionism kept Assumption (2), that
computation is performed in a system that is separated from the world. In most appli-
cations, the neural network is given an input—in the form of a vector of values to its
input layer—that is then processed by the system resulting in an output—a vector of
values in its output layer.

However there are exceptions: In robotics, the reactive systems studied by Brooks
[2] and others consist of comparatively simple processors, not necessarily parallel,
that are in a constant interaction with the world. The research on reactive systems can
be seen as precursors of the movement towards situated cognition. In these systems, it
is no longer meaningful to separate input and output since they function as feedback
loops, directly involving the surrounding world in its computations. Brooks [2] denies
that a reactive system needs any internal representations at all. He takes the stance
that robots do not need a model of the world to determine what to do next because
they can simply sense it directly. He says that the world is its own best representation
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and that an efficient system should exploit this. However, his position has met with
criticism (e.g. [18, 32]), even within the situated cognition camp.

As a part of the debate between classical computationalists and connectionists, it
has been shown that all neural networks can be simulated by traditional computers
(Turing machines) and vice versa. Hence many of the classical computationalists have
claimed that the debate is a red herring. However, in these results complexity issues
are eschewed.1 Even though a Turing machine can simulate any neural network, it
does not follow that the complexity of the algorithm for the Turing machine is of the
same order as the one followed by the neural network.

Nowadays the area of complexity results concerning computation with neural
networks is flourishing. A comprehensive survey is presented by Sima and Orpo-
nen [26]. They summarize the situation as that “a complexity theoretic taxonomy of
neural networks has evolved, enriching the traditional repertoire of formal com-
putational modes and even pointing out new sources of efficient computation”
(p. 2728). However, one conspicuous lacuna in their survey is that the results they
consider do not at all account for the learning dynamics of neural networks. This is,
in my opinion, a serious limitation, since one of the main computational advantages
of neural networks is that they can learn, albeit slowly, from the input they are pre-
sented with. Modelling such learning becomes much more difficult with classical
symbolic computing.2

Isaac et al. (this volume) also discuss computation in neural networks, although
their focus is on how systems for non-monotonic reasoning may be implemented.
In particular they relate results in [20, 21] showing that any system performing
computations over distributed representations may be interpreted as a classical com-
putational system performing non-monotonic reasoning. These results support the
view that anything that can be computed with a neural network can also be computed
in a classical system.

31.3 Complexity in Situated Cognition

Next I turn to complexity issues in relation to situated cognition. The proponents
of this position would claim that the brain is not made for checking the logical
consistency of sentences or for handling any other NP-complete problem, but for
surviving and reproducing in an environment that is partly predictable and partly
unpredictable. The primary duty of the brain is to serve the body (the brain is a
butler, not a boss). It does not function in solitude, but is largely dependent on the
body it is employed by and the environment it is interacting with. In contrast, when

1 For example, it is surprising that Marr [22] did not at all mention computational complexity in
his description of the three levels of computation.
2 There are attempts, however, in the work on adaptive Turing machines.
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the brain is seen as a Turing machine, it has become customary to view it as an
isolated entity, in accordance with Assumption (2) above.3

In addition to the two assumptions, the traditional complexity argument presumes
that the problem is expressed in a representation where the primitive elements (the
predicates) are independent of each other. This goes back to the ideals of logical
positivism, in particular Carnap’s [3] attempt to “reconstruct” the world in terms of
atomic predicates. The position of situated cognition is, in contrast, that cognitive
processes exploit (and mimic) the structures of the world itself, in particular the
spatial layout of information.

Furthermore, situated cognition, at least partly, accepts the position that the world
is its own best representation. As we saw, this is a central tenet of reactive systems
[2]. Consequently, the brain does not need to construct detached representations of
everything it interacts with.4 Hence, situated cognition gives up both Assumptions
(1) and (2) of classical computationalism. The position is succinctly formulated
by Clark [6, p. 148]: “Structured, symbolic, representational, and computational
views of cognition are mistaken. Embodied cognition is best studied by means of
noncomputational and nonrepresentational ideas and explanatory schemes involving,
e.g. the tools of Dynamical Systems theory”.

In situated cognition, the visual system is not merely seen as an input device to
the brain and the hand as enacting the will of the brain, but the eye-hand-brain is a
coordinated system that functions as a feedback loop. For many tasks, it turns out that
we solve problems more efficiently with our hands than with our brains. A simple
example is the computer game Tetris where you are supposed to quickly turn, with the
aid of the keys on the keyboard, geometric objects that come falling over a computer
screen in order to fit them with the pattern at the bottom of the screen. When a new
object appears, one can mentally rotate it to determine how it should be turned before
actually touching the keyboard. However, expert players turn the object faster with
the aid of the keyboard than they turn an image of the object in their brains [19].
This is an example of what has been called interactive thinking. The upshot is that a
human who is manipulating representations in the head is sometimes a cognitively
less efficient system than somebody interacting directly with the represented objects.

Clark [6, pp. 219–220] presents a fascinating example of a situated interaction
between an organism and the world. It has been suggested that some aquatic animals,
such as tunas and dolphins are simply not strong enough to propel themselves at
the speeds they are observed to reach. Triantafullou and Triantafullou [29, p. 69]
paradoxically claim that “it is even possible for a fish’s swimming efficiency to
exceed 100 %”. The reason tunas and dolphins can be so efficient is that they in
their swimming create and exploit swirls and vortices in the water that improve their
propulsion and ability to manoeuver. In brief, the tunas and dolphins swim with the
water, not in the water. The analogy I want to bring out is that our brains can be very

3 This assumption is the basis for all sci-fi novels about a brain in the vat.
4 In contrast to [2], the position does not deny, however, that the brain employs some detached
representations, for example, when it is planning [13].
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efficient, even with their limited resources, since they think with the world, not in
the world.

It should be pointed out that ideas related to those of embodied and situated
cognition that have become popular in the last decades have several predecessors.
One example is the “ecological” psychology of Gibson [15] who rejected the idea
that cognition is information processing and instead claimed that organisms could
“pick up” all the necessary visual information directly from the environment and so
that no computation was needed. Another tradition is the cybernetic movement in
the middle of the 20th century (e.g. [31]) that studied feedback loops between an
agent and the environment, again without exploiting any symbolic representations.

As far as I know, no strict account of the complexity of cognitive processes has
been developed within the tradition of situated cognition. One reason for this is
that it is difficult to develop formal models of how a situated approach influences
complexity issues since we often do no know enough about what in the world the
brain exploits directly and what it represents for itself.

One toy example, dear to researchers in classical AI, is how to determine whether
a block x is above a block y in a tower of blocks (a typical robotics problem in the
early days). In classical computation, this problem would be represented by a set of
atomic statements of the type on(a, b), on(b, c), on(c, d)… and formulas expressing
that the relation “above” is the transitive closure of “on”. All this would be put
into an inference engine that can determine the truth or falsity of above(x, y). The
computational complexity of this problem is of the order n2, where n is the number
of blocks in the tower.

In contrast to the classical internal computation, a model within situated cognition
would take into account that in the real world the blocks are spatially organized along
the vertical dimension. The transitivity of the relation “above” is built into this spatial
organization and need not be expressed in axioms, let alone be computed. A robot
can simply visually scan the blocks from the bottom and see whether it encounters
x or y first to determine the truth or falsity of above(x, y). The complexity of this
procedure is of the order n, where n is the number of blocks, that is, it is linear in the
number of blocks. The upshot is that the geometric structure of the external word
reduces the complexity of the problem. This toy (sic) problem, illustrates in what
sense the structure of the world helps offloading a cognitive system.5

More generally, one can consider the complexity of visual search problems.
Tsotsos [30, p. 428] distinguishes between two variants: bounded search in which
the visual target is explicitly provided in advance and unbounded search in which the
target is defined only implicitly, for example, by specifying relationships it must have
with other visual stimuli. He proves that unbounded visual search is NP-complete,
while bounded visual search has linear complexity.

These theoretical results can be compared with the empirical results from Treisman
[28] and her colleagues. In the experiments, two types of stimuli were used:

5 In the terminology of Barwise and Shimojima’s [1] “surrogate reasoning”, this example is a “free
ride” provided by the geometric constraints. However, the authors do not consider the reduction in
complexity provided by “free rides”.
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disjunctive where the target can be identified by only one feature, such as color
or orientation, and conjunctive where the target requires that more than one feature
is identified. Both types are cases of bounded search in Tsotso’s [30] terminology.
Treisman [28] finds that conjunctive displays are identified in a response time that is
linear with the number of items in the scene, just as predicted by Tsotsos’ complexity
result. However, for disjunctive stimuli, the target is found immediately—it simply
“pops out”—independently of the number of items present. In this case, the human
visual system somehow finds a solution that is more efficient in terms of complexity
than what is predicted by Tsotsos’ theoretical results.

31.4 Other Problems Relating to Complexity
and Situated Cognition

In this section I will discuss complexity issues related to two well-known enigmas
for classical computationalism in terms of situated cognition.

The first is the frame problem [7, 23]. Within the early AI community, it was
hoped that if we could represent the knowledge necessary to describe the world and
the possible actions in a suitable symbolic formalism, then by coupling this world
description with a powerful inference machine one could construct an artificial agent
capable of planning and problem solving. It soon turned out, however, that describing
actions and their consequences in a symbolic form leads to a combinatorial explosion
of the logical inferences that are needed. In other words, the complexity of the
problem became insurmountable.

The crux is that symbolic representations are not well suited for representing
causal connections or dynamic interactions in the world. Various escape routes were
tried, but the frame problem persisted in one form or another. As a consequence, the
entire program of building planning agents based on purely symbolic representations
more or less came to a stall.

At the other extreme one finds the reactive systems that were presented earlier.
Such systems are able to solve problems in the immediate environment without any
symbolic representations simply by being directly situated in the world. On the other
hand, reactive systems cannot form any plans that go beyond what is given in the
environment.

Nowadays, many robotic systems take a middle road. They build up represen-
tations from their experience of the world, for example by constructing maps of
their environment. Often, the representations are of a non-symbolic form. Some
robots build on hybrid forms of representations, mixing symbols with maps and
other non-symbolic forms (e.g. [4]). However, there exists no principled theory of
how the computationally most efficient mixture between inner representations and
immediate reactions to the environment is to be determined for a planning system.
The problem is still in the hands of the engineers. Again, a suitable theory of the
complexity of the problem is lacking.
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A second enigma in the classical tradition is Chomsky’s [5] poverty of stimulus
argument, which claims that the grammar of a natural language cannot be learned
by children because of the limited data available to them. In a more general form,
this has become known as the logical problem of language acquisition, claiming that
children cannot learn language simply by considering the input.6 The argument can
be structured as follows:

• All languages contain grammatical patterns that cannot be learned by children
using positive evidence alone.

• Children are only presented with positive evidence for these patterns.
• Children learn the correct grammars for their native languages.

As a consequence, Chomsky argues, learning the grammar of a language must depend
on some sort of innate linguistic capacity that provides additional knowledge to the
children. In brief, language is too complex to be 100 % learned. Note that the logical
problem of language acquisition presumes analogues of the assumptions (1) and (2),
in particular that language processing is done independently of the world.7

From the perspective of situated cognition, a similar argument to the one presented
in the previous section can be applied here. The key idea is that the child does not
learn a language in the world, it learns it with the world, in particular together with
other humans.

First of all, note that the problem of language acquisition, at least in Chomsky’s
version, does not concern how a language is learned, but how the grammar of a
language is acquired. Formulating the problem in this fashion builds on the additional
assumption that the grammar of a language is independent of its semantics (let alone,
its pragmatics). However, outside the Chomskian congregation, this assumption is
denied. Cognitive linguistics, for example, builds on the idea that the syntax of
language is constrained, if not determined, by its semantics. And as soon as one
then allows some connection between the semantics of a language and the world
the language user is situated in, learning a grammar will, at least to some extent, be
dependent on one’s knowledge about the world.

Several experiments about language learning have shown how the learning
of grammatical features exploits world knowledge (e.g. [10, 24]). For example
Ramscar and Yarlett [24] show that children’s world knowledge generates expecta-
tions about grammatical patterns. When such expectations are violated, for instance
by an irregular plural form, the input can indeed function as negative evidence. In
this way the argument from the poverty of stimulus is blocked.

Furthermore, a sentence is not just taken as input to the grammar crank in the
child’s brain and then determined to be grammatical or not—a sentence is used in a

6 Several researchers have used Gold’s [16] theorem to support this argument, but, as Johnson [17]
shows, this result has little bearing on how people actually learn languages.
7 Chomsky’s early work concerned the relations between different kinds of formal automata and the
(formal) languages they could identify. This is a typical problem of computationalism that builds
on Assumptions (1) and (2). Chomsky seems, more or less, to have stuck to these assumptions
throughout his career.
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particular context. And the use of a sentence may provide constraints for its structure.
Here, I do not wish to speculate on how the constraints can be specified. Suffice it to
notice that such constraints will block the poverty of stimulus argument, at least in
its current form.

31.5 Conclusion

In conclusion, Assumptions (1) and (2) of classical computationalism have been
taken over implicitly in many other areas. Once they are brought out into the open,
however, they are seen to be invalid for many kinds of cognitive problems. The main
argument of this paper is that once we give up these assumptions, many problems
that have seemed hopelessly complex for the classical computationalist may become
more manageable, if a connectionist or situated perspective on cognition is adopted
instead. And evolution is a tinkerer with limited resources: rest assured that if one
solution to a problem is cheaper than another, evolution will, in the long run, select
the cheap one.

Still, humans have evolved symbolic language. In my opinion [13, 14], the main
reason for this is that it has improved our planning capacities. There are situations
involving reasoning with numbers, reasoning with cases or reasoning with condi-
tional assumptions where symbolic structures are required. My point in this paper
is simply that there are cases of problem solving where less complex methods than
those offered by symbolic thinking are sufficient and therefore more efficient.

Humans have also speeded up the evolutionary selection processes: We have cre-
ated cultures and artefacts that greatly improve our problems solving capacities. We
have invented pencil and paper, libraries and smartphones that offload our memories,
allow us to share knowledge, and amplify our calculations. Tunas and dolphins create
structures in the water that improve their swimming. Humans create structures in the
world that improve their thinking. As Clark [6, p. 180] puts it: “Our brains make
the world smart so that we can be dumb in peace! Or to look at it another way, it is
the human brain plus these chunks of external scaffolding that finally constitutes the
smart, rational inference engine we call mind”.

It must be pointed out, though, that the theory of situated cognition still lacks a
rigor that would make it possible to develop a parallel to the theory of complexity
that exists for classical computationalism and to some extent also for connectionism.
Barwise and Shimojima’s [1] ideas about constraint projection is perhaps a first
step in that direction. I can only hope that a more precise theory will be formulated
that will allow comparisons with the results concerning the complexity of situated
processes.
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Chapter 32
Dynamic Versus Classical Consequence

Denis Bonnay and Dag Westerståhl

Abstract The shift of interest in logic from just reasoning to all forms of information
flow has considerably widened the scope of the discipline, as amply illustrated in
Johan van Benthem’s recent book Logical Dynamics of Information and Interaction.
But how much does this change when it comes to the study of traditional logical
notions such as logical consequence? We propose a systematic comparison between
classical consequence, explicated in terms of truth preservation, and a dynamic notion
of consequence, explicated in terms of information flow. After a brief overview of
logical consequence relations and the distinctive features of classical consequence,
we define classical and dynamic consequence over abstract information frames. We
study the properties of information under which the two notions prove to be equiva-
lent, both in the abstract setting of information frames and in the concrete setting of
Public Announcement Logic. The main lesson is that dynamic consequence diverges
from classical consequence when information is not persistent, which is in partic-
ular the case of epistemic information about what we do not yet know. We end by
comparing our results with recent work by Rothschild and Yalcin on the conditions
under which the dynamics of information updates can be classically represented. We
show that classicality for consequence is strictly less demanding than classicality for
updates.

Johan van Benthem’s recent book Logical Dynamics of Information and Interaction
[8] can be seen as a passionate plea for a radically new view of logic. To be sure,
the book is not a philosophical discussion of what logic is but rather an impressive

D. Bonnay (B)
Département de Philosophie, Université Paris Ouest, 200 avenue de la République,
92000 Nanterre, France
e-mail: denis.bonnay@u-paris10.fr

D. Westerståhl
Department of Philosophy, Stockholm University, SE-106 91 Stockholm, Sweden
e-mail: dag.westerstahl@philosophy.su.se

A. Baltag and S. Smets (eds.), Johan van Benthem on Logic 837
and Information Dynamics, Outstanding Contributions to Logic 5,
DOI: 10.1007/978-3-319-06025-5_32, © Springer International Publishing Switzerland 2014



838 D. Bonnay and D. Westerståhl

series of illustrations of what logic can be, with presentations of numerous logical
languages and a wealth of meta-logical results about them. The view is called simply
Logical Dynamics, and contrasted with more traditional views of logic, and also with
the earlier view from e.g. [5], now called Pluralism, in which logic was seen as the
study of consequence relations.

According to Logical Dynamics, logic is not only about reasoning, about what
follows from what, but about all aspects of information flow among rational agents.
Not just proof and inference, but observations, questions, announcements, commu-
nication, plans, strategies, etc. are first-class citizens in the land of Logic. And not
only the output of these activities belong to logic, but also the processes leading up
to it.

This is a fascinating and inspiring view of logic. But how different is it from a
more standard view? In particular, what does it change for the analysis of logical
consequence, which had been the focus of traditional logical enquiry? This paper
attempts some answers to the latter question, with a view to get clearer about the
former.

32.1 Introduction

… in line with the thrust of this book, I see a discipline as a dynamic activity, not as any of its
static products: proofs, formal systems, or languages. Logic is a stance, a modus operandi,
and perhaps a way of life. That is wonderful enough. [8, p. 302]

Logicians will surely recognize this: doing logic is approaching your subject from
a certain stance, a certain view of what the interesting questions are, what tools to
use, what kind of abstractions are called for. The stance itself may be hard to put
into words but is recognizable to the practitioners. Logical Dynamics is not really
recommending a new stance towards logic, it seems to us. The novelty lies in what
is taken to be its subject matter.

A rough object versus meta level distinction is helpful: According to Logical
Dynamics, many more object languages can and should be studied with logical
methods than has traditionally been the case. But the form that this study takes is
still of the familiar kind: (a) you introduce a formal language in which a particular
variety of information flow can be expressed; (b) you provide a formal semantics
and a deductive apparatus and see what can be proved from a choice of axioms;
(c) you establish facts about these things: expressive power, definability, complete-
ness, decidability, the structure of proofs, computational complexity, relations to
other languages, etc. Indeed, this is precisely what a large part of Logical Dynamics
of Information and Interaction is devoted to.

Reflection on logic from this perspective raises intriguing questions. What is it
about a certain form of information flow that makes it apt for investigation by logical
methods? What characterizes the syntactic constructs—the logical constants—used
in the various object languages? Here we focus on just one aspect: the variety of
consequence relations that emerge.
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In fact, this variety is so great that it may in the end be just confusing to use
the label “consequence relation” for all of them. Some have rather little to do with
‘what follows from what’ in any usual sense. But a distinction between two important
kinds can be made: dynamic and classical relations. Very roughly: in order to draw
the conclusion in the dynamic case, it may matter how the information from the
premisses was processed. For example, during that process some information may
get lost. For classical consequence, on the other hand, only the actual information
contained in the premisses matters.

In particular, we are interested in how this distinction applies at the meta level.
In contrast with the object level, where there seems to be no end to the variety of
information-related activities that can be explored, the goals of meta level logical
study seem rather fixed. One wants to know facts about the object level phenomena,
that is, one wants the truth about them. Moreover, these truths are mathematical in
a wide sense, and the only way you are allowed to assert a mathematical truth is
to prove it. So the consequence relations operating at this level concern reasoning
towards truth. This already separates them from a host of consequence relations
resulting from object level phenomena. Does it in fact narrow the options down to
just classical ones?1

To get a feeling for the issues involved here, and the variety of consequence
relations on the market, let us look at a few examples.

• Non-monotonicity 1
One way in which non-monotone consequence relations arise is when trying to
model various kinds of reasoning under uncertainty, default reasoning, abductive
reasoning, etc., where a conclusion is drawn tentatively, in awareness that it may
have to be abandoned in the light of further evidence. There is no claim that
the conclusion really follows from the premisses, and hence no real clash with
classical consequence. Such reasoning is what everyone—even the logician—
often has to resort to in daily life. But obviously it is never accepted in mathematics
as conclusive grounds for a claim, and likewise not in metalogical reasoning. A
number theorist may perhaps say that Goldbach’s Conjecture is likely to be true,
with reference to the so far observed even numbers greater than 2, but never that
it is true (unless she has a proof).
• Non-monotonicity 2

A different motive for rejecting monotonicity is proposed by relevant (or rele-
vance) logicians. The idea is that adding an irrelevant premiss is not allowed. One
question here concerns whether relevant logic is thought to be, in the terminology
of John Burgess, descriptive (of the practice of mathematicians) or prescriptive
(wanting to reform that practice; see [3] and [21]). In any case, relevantists would
seem to claim that relevance is or should be practiced at the meta level too.

But relevantists do aim at reasoning towards truth. And no one could argue that
adding ‘unnecessary’ premisses, say in the form of a Weakening rule, threatens to

1 That is, classical in the sense just introduced. An intuitionistic consequence relation may well be
classical in this sense.
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lead from true premisses to false conclusions. To understand a relevantist stand on
monotonicity, we need to be precise about which consequence relation is under
discussion. Say that some relevant logic Rel is presented as a natural deduction
system for deriving sequents of the form � � φ. Then, if we define monotonicity

� �Rel φ iff there is a finite �0 ⊆ � s.t. �0 � φ is derivable in Rel,

will hold. Thus, for example, {p, q} �Rel p (since {p} � p and {p} is a finite
subset of {p, q}), even though {p, q} � p may not be derivable. So a natural
classical consequence relation extends the non-monotone relevantist one, in a way
that can never be harmful, by anybody’s lights, for reasoning towards truth.
• Substructural logic

Weakening is a structural rule, and much recent work in logic rejects or modifies
various such rules, e.g. in Linear Logic. But most of this work is not about truth at
all. For a clear example, consider the Lambek Calculus (see e.g. [4]). Here Weak-
ening, Contraction, and Permutation fail, for the obvious reason that the calculus
aims to describe natural language syntax. Adding words, permuting words, or con-
tracting two occurrences of the same word, may destroy well-formedness. This
has nothing to do with truth, and indeed nicely illustrates the difference between
consequence relations that logicians study, and the ones they may use in their own
reasoning.
• Contraction-free reasoning about truth

Consider a language for talking about truth: it contains a truth predicate, all
instances of Tarski’s T-schema, and some means for self-reference. With clas-
sical logic this leads to inconsistency. It has long been noted that proof-theoretic
derivations of the Liar or Curry’s Paradox rely on the Contraction rule,2 and it has
been suggested that dropping Contraction is a natural way to avoid paradoxes; for
a recent proposal, see [22].

This is a case where the difference between dynamic and classical consequence
seems to matter. From a classical point of view, no one could seriously think that
Contraction (as described in note 2) is an invalid rule. That would be like some-
one blaming your proof of a theorem B for using an assumption A twice (say, an
earlier proved lemma), without explicitly saying so. First, you could retort that
since A has been proved, you could easily repeat that proof twice in your proof
of B. But really, the right answer is that the complaint makes no sense. When you
claim that B follows from A (and possibly other assumptions), A and B are not
tokens, although you need to use tokens of them when writing up the proof. They
are types, or propositions. And with these abstract objects it makes no sense to ask
how many copies of them you are using.

2 See e.g. [9]. We here intend a rule of the type “If �,φ,φ � ψ then �,φ � ψ”. The validity of this
rule need not entail the validity of, say, φ→ (φ→ ψ) � φ→ ψ.
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But these considerations do not apply to a dynamic notion of consequence. An
additional order is introduced: you process one thing before another thing, and
then of course there is no guarantee that the usual structural rules will hold. Even
if propositions are still types (not tokens), their processing happens in time, as it
were.3

• Public announcement
Our concern here, however, is not reasoning about truth, but reasoning with the
aim of arriving at true propositions. Is there a role for dynamics here? Dynamic
phenomena can themselves be expressed in richer logical languages. The clearest
example is perhaps Public Announcement Logic (PAL) (introduced in [16]; see
[8], ch. 3, for an overview). Here an announcement, when it can be made, changes
the information state: situations where the announcement is false are discarded
(‘hard update’). Of course you cannot go around announcing anything: the claim
has to be true in the current situation. What the announcement changes is agents’
knowledge. In other words, this kind of reasoning only makes a difference when
it is (also) about knowledge itself.

Although many non-classical consequence relations studied by logicians are irrel-
evant to our present concern with reasoning towards truth, the dynamic idea of conse-
quence seems very different from the classical one. But note that rendering dynamic
phenomena in a richer language like PAL is a reduction of dynamic consequence to
classical consequence. That is, various dynamic consequence relations are express-
ible in PAL and similar logics, but PAL validity itself is classical. This is in fact part
of the program in Logical Dynamics of Information and Interaction. The following
quote is illustrative:

Non-monotonicity is like a fever: it does not tell you which disease causes it. [8, p. 297]

Explicitly accounting for update phenomena in a richer language reveals the causes
of non-monotonicity, but in a classical framework. The question is raised (but not
answered) in the book whether this sort of reduction is always possible. That would
be a very strong vindication of classical logic.

Our project in the rest of this paper is more modest. First, we specify precisely in
what sense classical consequence is related to truth preservation (Sect. 32.2). Then
we compare classical and dynamic consequence in an update-friendly framework,
both abstractly (Sect. 32.3) and in the concrete setting of PAL (Sect. 32.4), and show
when the two notions of consequence coincide. Finally, we consider (Sect. 32.5) a
recent result in [18] on the conditions under which updates themselves are classical,

3 Zardini presents a formal system without Contraction containing a ‘naive theory of truth’ and
shows that his consequence relation satisfies truth preservation in the following form (simplified):
if �,φ � ψ, then � � Tr(〈φ〉)→ Tr(〈ψ〉), where 〈φ〉 names φ in the theory. By contrast, Field in
[12] seems to agree with our point about Contraction and Permutation [12, pp. 10–11], but argues
for an approach that rejects Excluded Middle (is ‘paracomplete’) as well as truth preservation in
Zardini’s sense. But note that this is a special version of truth preservation, tied to the occurrence
of a truth predicate, and to the meaning of the conditional. As we will see in the next section, since
Field’s preferred consequence relation appears to be reflexive and transitive, there is a clear sense
in which it necessarily preserves truth.
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and show that classicality of updates is a strictly stronger requirement than classicality
of consequence.

32.2 Classical Consequence and Truth Preservation

Following the remarks on Contraction and Permutation above, we take, in this section,
consequence relations to hold between sets of sentences (the premisses) and sentences
(the conclusion). The classical idea of logical consequence is as necessary (in some
sense) truth preservation. There is no question that such reasoning is safe if your
goal is arriving at the truth. But there are many different consequence relations that
enforce truth preservation, for example, intuitionist as well as classical (in the sense
of accepting excluded middle etc.) ones. So let us point out what they all have in
common.

To begin, there may seem to be two ways to think about truth and truth preservation.
One is in terms of truth at a point (think: possible world). The other is about truth
in an interpretation. But at the current abstract level, they are really equivalent.

To see this, fix a language L with its set SentL of sentences. For truth at a point,
suppose π : SentL → ℘(X) maps sentences to subsets of a set X of points, i.e.
π(φ) is the set of points at which φ is true. Now consequence as necessary truth
preservation (relative to π) is defined by

(1) � �π φ iff
⋂
ψ∈� π(ψ) ⊆ π(φ)

For the other approach to truth, let a valuation v assign truth values 1 or 0 to
sentences, so we can take v to be a subset of SentL . Say that a sequent (�,φ) is true
in v iff whenever � ⊆ v, we have φ ∈ v. Note that sentence truth is a special case:
φ is true in v iff φ ∈ v iff (∅,φ) is true in v. For any set K of valuations we have a
corresponding notion of truth-preserving consequence:

(2) � �K φ iff for all v ∈ K , (�,φ) is true in v.

To see that these approaches are equivalent, let π be given as above, and for each
a ∈ X , let va = {φ : φ is true at a} = {φ : a ∈ π(φ)}, and K = {va : a ∈ X}. Then:

(3) �π= �K

Conversely, if K is any set of valuations, let π(φ) = {v ∈ K : φ ∈ v}. Then again we
obtain (3).

Since the two formats are equivalent, let us choose one: �K . Now stipulate that
an arbitrary relation � between sets of sentences and sentences is classical iff it is
reflexive and transitive in the following sense:

(R) If φ ∈ �, then � � φ.

(T) If � � φ, and for all ψ ∈ �,� � ψ, then � � φ.

Note that (R) and (T) entail monotonicity:4

4 Another version of transitivity is Cut, in one of these two formulations:
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(M) If � � φ and � ⊆ �, and � � φ.

Now our point is this: reflexivity plus transitivity is exactly what constitutes nec-
essary truth preservation in the above sense. This is a well-known fact, but let us
spell it out.

Proposition 32.1 � is classical if and only if �=�K , for some K . In fact, we can
take K = Val(�), so � is classical if and only if �=�Val (�).
Proof It is obvious that each �K satisfies (R) and (T). In the other direction, suppose
� is classical. It is easy to verify from the definitions that �⊆�V al (�). To prove
the converse inclusion, suppose � 
� φ. Define the valuation v as follows: for any
sentenceψ in L , v(ψ) = 1 iff� � ψ. By (R), v(�) = 1, and by assumption, v(φ) = 0.
So it is enough to show that v ∈ Val(�). Suppose � � ψ and v(�) = 1; we must
show that v(ψ) = 1. But it follows from (T) and the definition of v that � � ψ, and
we are done. ��

To repeat, this is well-known. For example, in view of (3), Proposition 32.1 is a
reformulation of a representation theorem in [8, p. 297].5 But the result is relevant to
our discussion. Any instance of, say, non-monotonicity guarantees with respect to any
class of interpretations, that you will deduce a false conclusion from true premisses.
That is just the trivial direction of Proposition 32.1. The slightly less trivial direction
says that if you have Reflexivity and Transitivity, there is always at least one class
of interpretations with respect to which you can construe your consequence relation
as necessary truth preservation.6

Finally, let us emphasize again that adhering to truth-preservational consequence
relations is perfectly compatible with intuitionistic or (most forms of) relevant conse-
quence. That choice depends on whether you regard particular rules, such as¬¬φ � φ
or φ,¬φ � ψ, as valid.7

(Footnote 4 continued)
(C1) If � � ψ and �,ψ � φ, then �,� � φ.
(C2) If � � ψ and �,ψ � φ, then � � φ.

If all sets are finite, we have (cf. [20, pp. 17–18]): (R)+(T)⇔ (C1)+(R)+(M)⇔ (C2)+(R)+(M).
5 Also in [4, p. 247], and Prop. 7.4 in [5]. We are not sure who first made observation contained in
Proposition 32.1. It appears in [19], presented without proof as a familiar fact, but apparently it goes
back at least to [15]. The above proof (as well as a generalization of the result to multiple-conclusion
logics) is given in [20] and in [14]. Indeed, Proposition 32.1 is a cornerstone in the abstract theory of
consequence relations and propositional connectives expounded and elaborated in [14], especially
chs. 1.1 and 3.
6 We may note that the thesis of Logical Pluralism in [2] is in fact that logic studies classical
consequence relations defined as in (1) (they call the points cases). In particular, they observe
(though with some hesitation) that relevant consequence relations should be monotone.
7 That, for example, intuitionistic propositional logic consequence �IL is classical in our sense
means that Proposition 32.1 holds for it, i.e. �IL is determined by Val(�IL). Since �IL⊆�CL,
Val(�IL) extends Val(�CL) by allowing valuations that are not Boolean. More precisely, if M is
any Kripke model for IL and w ∈ |M |, the corresponding valuation vM

w (φ), consisting of the true
sentences in M ,w, is equal to Val(�IL) (by completeness), and vM

w is Boolean for ∧ and ∨, but
not necessarily for ¬ or→, since one may have e.g. φ 
∈ vM

w and ¬φ 
∈ vM
w .
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32.3 Two Views About Consequence

Judging from the previous section, analyzing consequence in terms of truth preser-
vation for propositions does not seem to leave many options open. However, taking
the intuitions of the dynamic perspective seriously, the picture becomes more com-
plex. When asking whether something follows from some piece of information, one
may ask whether it follows from information already secured and fully available, or
whether it follows from information received along the way, which may not have been
preserved. The first question corresponds to the classical notion of consequence: we
look at where we are but not how we got there. In other words, we are not interested
in how information has been received, but only in what follows from the information
that we have. The second question corresponds to a thoroughly dynamic approach to
consequence: rather than looking at where we are, we look at how we got there. In
other words, we are interested in the information we received, which may end up not
being what we have kept. Indeed, these two notions are likely to come apart because
even hard information may not be preserved. Upon learning something which I did
not know, I cease not to know it; I did receive new information, which allowed
me to make some new inferences (e.g. that this something is true), but not all that
information is being preserved.

We will now try to capture these two intuitions by means of formal definitions in
an abstract dynamic setting.8 Given a set of formulas L , an abstract frame for L is
a structure

F = (�, {[φ]}φ∈L)

where� is a set and each [φ] : �→ � is a partial function. Elements of� are to be
construed as information states and each [φ] represents the effect of updating a given
information state with the information that φ. Functionality expresses the fact that
information updates are deterministic: the future state of information is completely
determined by the past information state and the extra information that has been
received. Partiality expresses the fact that not every piece of information is compatible
with every information state: the (true) information that ¬p is not compatible with
the (truthful) announcement that p. Let the language L be fixed, together with a class
of abstract frames F representing the relevant possible informational scenarios.9 The
thoroughly dynamic notion of consequence may be captured by what is known as
Update to Test consequence:

8 Technically speaking, in such a setting, there would be more possible definitions of dynamic
consequence than the two we are going to discuss—see [5] for more on this abstract stage setting,
and an investigation into some more possibilities. But we take these two to be representative of the
alternative between an essentially classical approach to consequence and an essentially dynamic
one.
9 Our definitions are relativized to a class F. Alternatively, we could have defined absolute notions by
considering the greatest frame encompassing all possible informational scenarios. The relativized
notions will help us make precise the role played by some technical assumptions.
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Definition 32.1 (Update to Test consequence) φ1, . . . ,φn �F
U T ψ iff for every F ∈

F, range([φn] ◦ . . . ◦ [φ1]) ⊆ fix([ψ]).
(Here range assigns to every function inF its range and fix its set of fixed points.) This
captures the dynamic notion because we ask whether we are in a fixed point for [ψ]
after shifting our information state along [φ1], . . . , [φn]. By contrast, the classical
notion will be stated by considering an information state in which [φ1], . . . , [φn]
steadily hold; this is known in the dynamic literature as Test to Test consequence:

Definition 32.2 (Test to Test consequence) φ1, . . . ,φn �F
T T ψ iff for every F ∈ F,

fix([φ1]) ∩ . . . ∩ fix([φn])} ⊆ fix([ψ]).
Indeed, this notion of consequence is classical in the sense of Sect. 32.2: it satisfies
(R) and (T).

Comparing these two notions, �F
U T ⊆�F

T T but the converse inclusion does not
hold in general. As suggested earlier, it is bound to fail whenever information is
not preserved. So when do classical and dynamic consequence come together? The
intuitive answer is that they do so when the information represented behaves classi-
cally: received information is persistent, it gets into the current informational state
and stays there.

To express this formally, a few definitions are needed. An abstract frame F =
(�, {[φ]}φ∈L) is idempotent iff for all σ ∈ �, for all φ ∈ L , σ[φ] = σ[φ][φ].10

It is commutative iff for all σ ∈ � and all φ,ψ ∈ L , σ[φ][ψ] = σ[ψ][φ]. It is f-
commutative iff for allσ ∈ � and allφ,ψ ∈ L , ifσ[φ] = σ, thenσ[φ][ψ] = σ[ψ][φ].
So f -commutativity is a restricted version of commutativity, which only works for
f ixed points and in the f orward direction.11

Idempotence and f-commutativity are conveniently made into a package deal:

Proposition 32.2 An abstract frame F = (�, {[φ]}φ∈L) is idempotent and
f-commutative iff for all φ ∈ L, for any (possibly empty) sequence φ1, . . . ,φn of
formulas in L,

[φ][φ1] . . . [φn] = [φ][φ1] . . . [φn][φ]

Proof From Left to Right: The proof is by induction on the length of the sequence
of formulas. For the empty sequence, this is idempotence. Consider a sequence
φ1, . . . ,φn,φn+1 and let σ ∈ � be such that σ[φ][φ1] . . . [φn][φn+1] exists. By

10 Here and below we use the arrow-like notation σ[φ] = σ′, rather than the functional [φ](σ) = σ′,
to indicate that σ′ is the result of updating σ with (the information that) φ:

σ
φ−→ σ′

Note that [φ][ψ] is the same as [ψ]◦[φ]. Note also that [φ]may be undefined for someσ. Throughout
the paper, we take equalities σ[φ] = σ′[ψ] to mean that σ[φ] is defined iff σ′[ψ] is, and that, when
they are defined, they are equal.
11 As pointed out to us by Seth Yalcin, f-commutativity can also be understood as a property of
persistence of truth at a state.
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induction hypothesis, [φ][φ1] . . . [φn] = [φ][φ1] . . . [φn][φ]. Hence we may apply
f-commutativity at σ[φ][φ1] . . . [φn] = σ′ for φ and φn+1:

σ′[φ][φn+1] = σ′[φn+1][φ]

Replacing σ′[φ] by σ′ in the left-hand side yields

σ[φ][φ1] . . . [φn][φn+1] = σ[φ][φ1] . . . [φn][φn+1][φ]

as required.
From Right to Left: Idempotence is the case when the sequence is empty. As to
f-commutativity, let σ ∈ � be such that σ[φ] = σ and suppose σ[φ][ψ] exists.
(Note that if we instead suppose σ[ψ][φ] exists, so does σ[ψ], and hence, since
σ[φ] = σ, σ[φ][ψ] exists.) By hypothesis, σ[φ][ψ] = σ[φ][ψ][φ]. Since σ[φ] = σ,
σ[φ][ψ][φ] = σ[ψ][φ], hence σ[φ][ψ] = σ[ψ][φ] as required. ��

The equality
[φ][φ1] . . . [φn] = [φ][φ1] . . . [φn][φ]

intuitively means that the information that φ is persistent, in the sense that, once
received, it still holds after updating in turn with φ1, . . . ,φn . Proposition 32.2 then
says that, taken together, idempotence and f-commutativity precisely amount to infor-
mation always being persistent. It will come as no surprise that our two notions of con-
sequence coincide on the class of idempotent and f-commutative abstract frames:12

Proposition 32.3 An abstract frame F is such that�{F }U T = �{F }T T iff F is idempotent
and f-commutative.

Proof If a frame F is such that �U T = �T T (suppressing F in the notation), then
it is idempotent and f-commutative: Since �T T satisfies (R), so does �U T . Take
φ,φ1, . . . ,φn ∈ L , σ ∈ � and consider σ[φ][φ1] . . . [φn], assuming it is defined.
By (R), φ,φ1, . . . ,φn �U T φ. By definition of �U T , this means that range([φn] ◦
. . . ◦ [φ1] ◦ [φ]) ⊆ fix([φ]). Hence σ[φ][φ1] . . . [φn] = σ[φ][φ1] . . . [φn][φ], and the
result follows from Proposition 32.2.
If a frame is idempotent and f-commutative, then �U T=�T T : First, it is always the
case that �U T⊆�T T , so all we need to prove is �U T⊇�T T . Assume φ1, . . . ,φn �T T

ψ, and let σ′ ∈ range([φn] ◦ . . . ◦ [φ1]). There is σ ∈ � such that σ[φ1] . . . [φn] =
σ′. Using idempotence and f-commutativity we see that σ[φ1] . . . [φn][φi ] =
σ[φ1] . . . [φn], i.e. σ[φ1] . . . [φn] ∈ fix([φi ]), for every i ∈ {1, . . . , n}. Since
φ1, . . . ,φn �T T ψ, this implies that σ[φ1] . . . [φn] ∈ fix([ψ]). Thus φ1, . . . ,φn �U T

ψ as required. ��

12 This result generalizes Proposition 2.3 in [11] by providing necessary as well as sufficient
conditions for the equivalence to hold.
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32.4 Classic and Dynamic Consequence in PAL

Proposition 32.2 provides an abstract characterization of the properties of informa-
tion that make classical and dynamic consequence coincide. This abstract perspective
can be made concrete by looking at specific forms of information update expressed in
specific logical languages. This is the representation step advocated by van Benthem
in [8]. We take such a step in the present section, and instantiate the two consequence
relations within the logic of public announcements, PAL, where information updates
are truthful public announcements.13

Technically, PAL expresses updates by means of an announcement operator [!_],
which goes together with epistemic modalities Ki and a common knowledge modal-
ity C . Sets of models for PAL provide us with concrete versions of the abstract frames
we were considering. More precisely, a concrete frame K is a set of multi-modal
pointed S5-models M ,w, which is closed under submodels and change of desig-
nated world. (Putting the two conditions together, if M ,w ∈ K and M ′ ⊆M , then
M ′,w′ ∈ K , for w ∈ |M | and w′ ∈ |M ′|.) Closure under submodels guarantees
that updates can be performed. The necessity to allow for changes in the designated
world will become clear later.

Any concrete frame K generates an abstract frame

FK = (K , {[φ]}φ∈L)

where [φ] records the effect of updating with φ. Thus, [φ](M ,w) is M |φ,w if
M ,w � φ and undefined otherwise, where M |φ is M restricted to the worlds in
|M | in which φ is true. Given a class of concrete frames K, we write FK for the class
of abstract frames generated by frames in K. A PAL formula φ is valid on a concrete
frame K iff it is true in every pointed model in K , and it is valid on a class K of
concrete frames (notation: �K) iff it is valid on every frame in K. Also, observe that,
for each M ,w ∈ K ,

M ,w ∈ fix([ψ])⇔ for all w′ ∈ |M |, M ,w′ � ψ
⇔M � ψ

We can now see the interplay between consequence relations and their concrete
representations through the following two equivalences. First, as the label has it,
Update to Test consequence is the abstract version of testing after updating:

Proposition 32.4 �K [!φ1] . . . [!φn]Cψ iff φ1, . . . ,φn �FK

U T ψ.

13 Not all information updates are of this kind, e.g. because what we often get is ‘soft’ information
that might be overridden. We leave a systematic investigation of the behavior of classical and
dynamic consequence in these wider contexts to future research.
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This correspondence is known,14 but we give a detailed proof here so as to make
fully explicit what the assumptions are.

Proof From Left to Right: Assume that �K [!φ1] . . . [!φn]Cψ. Let FK ∈ FK and
M ,w ∈ K be such that M ,w ∈ range([φn] ◦ . . . ◦ [φ1]). We need to show that
M ,w ∈ fix([ψ]), that is, M � ψ. Let w′ ∈ |M |. Since K is closed under change
of designated world, M ,w′ ∈ K . Moreover, because the effect of an update does
not depend upon which world is designated, M ,w′ ∈ range([φn] ◦ . . . ◦ [φ1]). By
hypothesis, this guarantees that M ,w′ � Cψ, hence in particular that M ,w′ � ψ,
as required.

From Right to Left: Assume that φ1, . . . ,φn �FK

U T ψ. Let K ∈ K and M ,w ∈
K ; we need to show that M ,w � [!φ1] . . . [!φn]Cψ. That is, if the updates can
be performed, ψ is common knowledge once they have been performed. So let
M ′ = (. . . (M |φ1) . . .)|φn . Thus, M ′,w ∈ K , and by definition of FK, M ′,w ∈
range([φn] ◦ . . . ◦ [φ1]). Therefore, by our initial assumption, M ′,w ∈ fix([ψ]), so
M ′ � ψ, which implies in turn that M ′,w � Cψ. ��

Note that the left to right direction of the proof requires that frames are closed
under change of designated world. If that were not the case, there could be a ¬ψ
world in the model which is not reachable from the designated world so that Cψ
holds even though the model is not a fixed point for updating with ψ. Since that part
of the proof only uses the facticity of C , this also shows that �K [!φ1] . . . [!φn]Cψ
implies �K [!φ1] . . . [!φn]ψ, which is a valid rule in PAL.

Second, Test to Test consequence is the abstract version of a classical notion of
consequence:

Proposition 32.5 �K (Cφ1 ∧ . . . ∧ Cφn)→ Cψ iff φ1, . . . ,φn �FK

T T ψ.

Proof The left to right direction is similar to the previous proof. Assume that
�K (Cφ1 ∧ . . . ∧ Cφn) → Cψ. Let FK ∈ FK and M ,w ∈ K be such that
M ,w ∈ fix([φi ]), 1 ≤ i ≤ n. We need to show that M ,w ∈ fix([ψ]), i.e. M � ψ.
Let w′ ∈ |M |. Since K is closed under change of designated world, M ,w′ ∈ K .
And since M � φi , we have M ,w′ � Cφi for 1 ≤ i ≤ n. So by hypothesis,
M ,w′ � Cψ, from which it follows that M ,w′ � ψ.

Right to Left: Assume φ1, . . . ,φn �FK

T T ψ. Let K ∈ K and M ,w ∈ K be such
that M ,w � Cφ1 ∧ . . . ∧ Cφn . We need to show that M ,w � Cψ. Let M ∗ be
the submodel of M consisting of all those worlds that are connected to w. It is
sufficient to show that M ∗,w � Cψ. (Recall that the accessibility relations are
equivalence relations.) Since K is closed under submodels, M ∗,w ∈ K . Because
M ∗ � Cφ1∧. . .∧Cφn and all worlds in M ∗ are connected to w, M ∗,w ∈ fix([φi ]),
1 ≤ i ≤ n. Hence, by our initial assumption, M ∗,w ∈ fix([ψ]), which means that
ψ is true everywhere in M ∗, so M ∗,w � Cψ. ��

14 In [7] van Benthem, states that “modulo a few details, dynamic validity amounts to PAL validity”
(p. 192). We spell out these details here.
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Let Prop be the set of purely propositional formulas. It is well known that for
such formulas classical consequence and its dynamic version coincide.

Proposition 32.6 Ifφ1, . . . ,φn,ψ ∈ Prop, then�K [!φ1] . . . [!φn]Cψ iff �K (Cφ1∧
. . . ∧ Cφn)→ Cψ.

Viewed from our perspective, Proposition 32.6 holds because of the special properties
of propositional formulas with respect to updates. Propositional formulas generate
idempotent and f-commutative frames. In the light of Proposition 32.3, together
with Propositions 32.4 and 32.5, this readily implies Proposition 32.6. But this also
suggests a more general question. Proposition 32.6 describes sufficient conditions
for the concrete version of Proposition 32.3, which gives sufficient and necessary
conditions. So, more generally, for which sublanguages of full modal logic do we
have for every K that �K [!φ1] . . . [!φn]Cψ iff �K (Cφ1 ∧ . . . ∧ Cφn) → Cψ?
Proposition 32.3 says that we need to characterize the class of modal formulas that
generate idempotent and f-commutative frames.

We shall consider this question for formulas of modal logic without common
knowledge. This covers PAL without common knowledge by virtue of the reduc-
tion axioms. Let us say that a formula φ is persistent iff, for all concrete frames
K , FK restricted to Prop ∪ {φ} (i.e. (K , {[ψ]}ψ∈Prop∪{φ})) is idempotent and f-
commutative. On the face of it, generating idempotent and f-commutative frames is
a property of sets of formulas. But giving a definition for formulas rather than sets
thereof is adequate, because a set � ⊇ Prop of formulas generates idempotent and
f-commutative frames iff every formula in � is persistent in the sense just defined.
(Testing persistence against propositional formulas is sufficient because the effect of
updating with a non-propositional formula can always be mimicked using a suitably
interpreted propositional formula.) Our question about formulas for which classical
and dynamic consequence coincide may then be thus phrased:

Question 32.1 What is the class of persistent modal formulas?

Persistence can be analyzed into two more familiar features, corresponding respec-
tively to f-commutativity and idempotence. A formula φ is globally preserved under
submodels iff for any M and M ′with M ′ ⊆M , if M � φ, then M ′ � φ. A formula
φ is successful if for any M ,w, if M ,w � φ, then M |φ,w � φ. Global preservation
under submodels is indeed equivalent to the fact that, for any ψ, if M ,w ∈ fix([φ])
and M ′,w = [ψ](M ,w) then M ′,w ∈ fix([φ]). Successfulness is equivalent in
turn to the fact that range([φ]) ⊆ fix([φ]). (By the reasoning used in the proof of
Proposition 32.4 success at a world makes for success at every world.)

Thus, Question 32.1 actually asks for a characterization of the class of modal for-
mulas that are both successful and globally preserved under submodels. By Corol-
lary 6.4 in [17], a formula is globally preserved under submodels iff it is globally
equivalent to a universal modal formula.15 The long sought-after characterization of

15 A formulaφ is globally equivalent to a universal modal formula if there is a formulaψ constructed
using only (negations of) atoms, conjunction, disjunction and K such that for all M , M � φ iff
M � ψ.
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successful formulas was provided in [13] where it is shown that, in S5, all unsuccess-
ful formulas are look-alikes of the infamous Moore formula p ∧ ¬K p. Note that if
we were talking about local, instead of global, preservation under submodels,16 we
would be done. As shown in [1], a formula is locally preserved under submodels iff
it is locally equivalent to a universal formula (we will take the liberty to say ‘locally
universal’), and universal formulas are always successful. However, matters are more
complicated when global preservation is concerned: in S5, the Moore formula is triv-
ially globally preserved under submodels, since it is not globally satisfiable, but it is
not successful.

Limiting ourselves from now on to a modal language with only one epistemic
modality (as we in effect did in the previous paragraph), we provide a partial answer
to Question 32.1. In order to do so, Carnapian disjunctive normal forms for modal
formulas prove useful. (This strategy is inspired by [13].)

Definition 32.3 A formula δ is in normal form iff it is a disjunction of conjunctions
of the form δ = α∧�β1 ∧ . . .∧�βn ∧ ♦γ1 ∧ . . .∧ ♦γm , where α and each γi are
conjunctions of literals and each β j is a disjunction of literals.

For the limited class of modal formulas such that their disjunctive normal form
consists of only one disjunct, Question 32.1 gets a rather satisfactory answer.

Proposition 32.7 Let δ be a conjunction in normal form. In S5, δ is persistent iff δ
is locally universal.

Proof From Left to Right: We prove the contrapositive. Assume δ is not locally
universal. Either δ is globally satisfiable (meaning that there is a M such that M � δ)
or it is not. If δ is not globally satisfiable, note first that it still is locally satisfiable
(meaning that there is a M ,w such that M ,w � δ), or δ would be locally equivalent
to p ∧ ¬p, which is universal. Being locally but not globally satisfiable, it readily
follows that δ is not successful, hence not persistent, and we are done. So we assume
that δ is globally satisfiable. There has to be a γi such that α∧�β1∧ . . .∧�βn 
� γi ,
since otherwise δ would be equivalent to α ∧ �β1 ∧ . . . ∧ �βn , which is locally
universal. It follows that

(*) α ∧ β1 ∧ . . . ∧ βn ∧ ¬γi is satisfiable.

Take a model M such that M � δ. By (*), it is possible to extend M to a model
M ∪ {w} such that M ∪ {w},w � α ∧ β1 ∧ . . . ∧ βn ∧ ¬γi and M ∪ {w} � δ. But
then M ∪ {w}|(α ∧ β1 ∧ . . . ∧ βn ∧ ¬γi ) 
� δ, so δ is not globally preserved under
submodels.
From Right to Left: it is known that locally universal formulas are successful, see
e.g. [6]. Moreover, by the result in [1], universal formulas are locally preserved under
submodels, and a fortiori globally so. ��

16 φ is locally preserved under submodels iff M ′ ⊆ M , w ∈ |M ′|, and M ,w � φ implies
M ′,w � φ.
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Thus, for conjunctions in normal form, classical and dynamic notions of
consequence are equivalent exactly when the information which comes into play
is stable, in the sense of being locally preserved under submodels. We leave it as
an open question whether this result carries over: is it the case that, in S5, for any
formula φ, φ is persistent iff φ is locally universal?

32.5 Classical Consequence Versus Classical Update

In the last two sections we studied the conditions under which abstract and con-
crete frames behave classically with respect to dynamic consequence. Rothschild
and Yalcin in [18] recently asked similar questions, concerning the conditions under
which abstract frames behave classically with respect to updates themselves. Com-
paring results will prove instructive. The main lesson of Proposition 32.7 is that some
non-propositional formulas pass the classicality test for consequence. Could it be so
for updates as well? The answer is not immediate. Intuitively, being classical with
respect to updates is more demanding than being classical only with respect to the
visible effects of these updates on the consequence relation.

Following Rothschild and Yalcin, being classical with respect to updates means
that informational states and propositional contents can be represented by sets of
worlds, in such a way that updating with φ is taking the intersection of the current
informational state with the set of φ-worlds. When this is so, the abstract frame is
said to be static:17

Definition 32.4 (Rothschild and Yalcin) An abstract frame (�, {[φ]}φ∈L) is static
iff there are functions f : L → ℘(�) and g : � → ℘(�) such that for any σ ∈ �,
g(σ[φ]) = g(σ) ∩ f (φ).

A result similar to Proposition 32.3 ensues.

Proposition 32.8 (Rothschild and Yalcin) An abstract frame is static iff it is idem-
potent and commutative.

Clearly, commutativity implies f-commutativity, but the converse is not true, even
assuming idempotence. Actually, idempotence and f-commutativity correspond to a
weaker notion of being static where g(σ[φ]) = g(σ)∩ f (φ) is replaced by g(σ[φ]) ⊆
g(σ) ∩ f (φ) in Definition 32.4.

Going concrete, we shall say that a modal formula φ is strongly persistent iff, for
all concrete frames K , FK restricted to Prop ∪ {φ} is idempotent and commu-
tative. (Just as with ‘persistent’, the definition of ‘strongly persistent’ can be given
for formulas rather than sets of formulas, and for similar reasons.) Here is a full
characterization of the strongly persistent formulas.

17 This exact definition was to be found in an early version of [18]. The definition in the final version
is slighly more complex, but the extra complexity is irrelevant to our present purpose.
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Proposition 32.9 Let φ be any modal formula. In S5, φ is strongly persistent iff φ
is equivalent to a propositional formula.

Proof The direction from right to left is immediate. We prove the other direction.18

Consider an arbitrary strongly persistent formula φ. First, we note that it is sufficient
to prove the following:

(*) If M ,w � φ and M ,w ≡Prop M ′,w′, then M ′,w′ � φ,

where ≡Prop is elementary equivalence restricted to propositional formulas. To see
this, let φProp be the set of propositional consequences of φ. We claim that

(**) φProp � φ
By compactness, φ is then equivalent to a propositional formula. To prove (**),
assume M ′,w′ � φProp and show M ′,w′ � φ. Let Propw′ be the set of propositional
formulas that are true in M ′,w′. Propw′ ∪ {φ} is consistent, since otherwise there
would be propositional formulasψ1, . . . ,ψn in Propw′ such thatφ � ¬(ψ1∧. . .∧ψn),
i.e. φ � ¬ψ1 ∨ . . . ∨ ¬ψn , contradicting the fact that M ′,w′ � φProp. So there is
M ,w with M ,w � Propw′ and M ,w � φ. M ,w � Propw′ means that M ,w ≡Prop

M ′,w′ so (*) applies and we have M ′,w′ � φ, as required.19

We now prove (*), assuming that φ is strongly persistent. Consider two structures
M ,w and M ′,w′ in a concrete frame K with M ,w � φ and such that M ,w ≡Prop

M ′,w′. Since they are S5-models, we may also assume without loss of generality that
there are no two different worlds satisfying exactly the same propositional formulas
in M or M ′.

Since M ,w � φ, [φ] is defined on M ,w in FK . Let Propw be the conjunction
of propositional atoms and negations thereof that are true in M ,w. (The proof does
not go through if there is an infinite number of atoms.) [Propw] is also defined on
(M ,w)[φ]. By commutativity, (M ,w)[φ][Propw] = (M ,w)[Propw][φ]. Hence, by
idempotence,

(***) (M ,w)[φ][Propw] = (M ,w)[φ][Propw][φ]
Since M ,w ≡Prop M ′,w′, [Propw] is defined on M ′,w′ too. Moreover, we have
(M ′,w′)[Propw] = (M ,w)[φ][Propw], since the result of a successful announce-
ment of Propw is always the same one-world structure. Also, it follows from
(***) that (M ′,w′)[Propw] = (M ′,w′)[Propw][φ]. But then, by commutativity,
(M ′,w′)[φ][Propw] is defined, which implies that M ′,w′ � φ. This completes the
proof. ��

In the context of PAL, classicality with respect to consequence only and clas-
sicality with respect to updates in general end up being two very different things.

18 Our proof of Proposition 32.9 is inspired by a simplified proof of Proposition 32.8 by Johan van
Benthem (private correspondence). Whether there is deeper connection still remains to be seen. Is
there a sense in which the possibility of a classical representation forces the equivalence to purely
propositional formulas?
19 The first part of the proof is well-known from model theory, relying only on compactness and
the fact that φProp is closed under disjunction; see [10], Lemma 3.2.1.
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In the second case, only propositional formulas pass the test. Requiring classicality
with respect to updates in general really means dealing with announcements that are
deprived of epistemic content. By contrast, in the first case, universal formulas do
pass the test. Requiring classicality with respect to consequence is compatible with
information that has epistemic content, as long as this epistemic content is about
knowledge rather than doubts.

32.6 Conclusion

What does logical dynamics tell us about logical consequence? Our focus has been on
properties of content and how they should be represented. Such questions are familiar
in formal semantics, regarding whether certain phenomena (anaphora, presupposi-
tions, etc.) should be given a classical account in terms of propositions interpreted
as sets of possible worlds or dynamically represented in terms of context change
potentials. Debates regarding logical consequence typically take a different form.
The focus is on the validity of inference rules, and the model-theoretic definition
of logical consequence most often remains classical. But, in principle, there is no
telling apart the question of content and the question of validity: some rules may be
valid only with respect to some particular types of contents. From the dynamic per-
spective, this becomes clear with the splitting of logical consequence into a classical
and a dynamic notion. The broadest notion is the dynamic one, which is about what
follows from the information received. In this context, classicality for logical con-
sequence emerges as a property of content: when information is persistent, dynamic
consequence boils down to the standard semantic definition in terms of preservation
of truth and satisfies the classical structural rules.

This new take on logical consequence is also a new take on the dynamic versus
classical dispute in semantics. The dispute has several faces: dynamic or classi-
cal what? Asking the question about updates is not the same as asking the ques-
tion about logical consequence. Rothschild and Yalcin conclude their paper [18] by
asking about classes of semantic systems which would lie between the static sys-
tems and the information-sensitive systems. Our static systems (the idempotent and
f-commutative frames) constitute such a class: they may be information-sensitive
for updates, but they are information-insensitive for logical consequence. This sug-
gests a fully parametric approach: given a certain kind of manifestation of content
(through logical consequence, updates of common ground, but also possibly other
manifestations, such as, say, presupposition accommodation), what are the properties
of content that make a classical analysis possible or force a dynamic account?
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Chapter 33
Dynamic Epistemic Logic as a Substructural
Logic

Guillaume Aucher

Abstract Dynamic Epistemic Logic (DEL) is an influential logical framework for
reasoning about the dynamics of beliefs and knowledge. It has been related to older
and more established logical frameworks. Despite these connections, DEL remains,
arguably, a rather isolated logic in the vast realm of non-classical logics and modal
logics. This is problematic if logic is to be viewed ultimately as a unified and unifying
field and if we want to avoid that DEL goes on “riding off madly in all directions”
(a metaphor used by van Benthem about logic in general). In this article, we show
that DEL can be redefined naturally and meaningfully as a two-sorted substructural
logic. In fact, it is even one of the most primitive substructural logics since it does not
preserve any of the structural rules. Moreover, the ternary semantics of DEL and its
dynamic interpretation provides a conceptual foundation for the Routley & Meyer’s
semantics of substructural logics.

33.1 Introduction

Dynamic Epistemic Logic (DEL) is an influential logical framework for reasoning
about the dynamics of beliefs and knowledge, which has drawn the attention of
a number of researchers ever since the seminal publication of [11]. A number of
contributions have linked DEL to older and more established logical frameworks:
it has been embedded into (automata) PDL [34, 40], it has been given an algebraic
semantics [8, 9], and it has been related to epistemic temporal logic [6, 32] and the
situation calculus [31, 38]. Many of these links have been established by van Benthem
himself. Despite these connections, DEL remains, arguably, a rather isolated logic
in the vast realm of non-classical logics and modal logics. This is problematic if
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logic is to be viewed ultimately as a unified and unifying field and if we want to
avoid that DEL goes on “riding off madly in all directions” (a metaphor used by van
Benthem [28, 30] about logic in general). In this article, we will show that DEL can
be redefined naturally and meaningfully as a two-sorted substructural logic. In fact,
it is even one of the most primitive substructural logics since it does not preserve any
of the structural rules.

Substructural logics will also benefit from this interaction with DEL. The well-
known semantics for substructural logics is based on a ternary relation introduced
by Routley and Meyer for relevance logic in the 1970s [59–62]. However, the intro-
duction of this ternary relation was originally motivated by technical reasons, and
it turns out that providing a non-circular and conceptually grounded interpretation
of this relation remains problematic [18]. As we shall see, the ternary semantics of
DEL provides a conceptual foundation for Routley & Meyer’s semantics. In fact, the
dynamic interpretation induced by the DEL framework turns out to be not only mean-
ingful, but also consistent with the interpretations of this ternary relation proposed
in the substructural literature.

The article is structured as follows. In Sect. 33.2 we recall the core of DEL viewed
from a semantic perspective. In Sect. 33.3 we briefly recall elementary notions of rel-
evance and substructural logics and we observe that the ternary relation of relevance
logic can be interpreted as a sort of update. In Sect. 33.4 we proceed further to define
a substructural language based on this idea. This substructural language extends the
DEL language with operators stemming from the Lambek calculus (a substructural
logic), but we show that these different substructural operators actually correspond
to the DEL operators of [3, 4]. This allows us to show that DEL is a (two-sorted)
substructural logic. In this section we also formally relate these operators to the
dynamic inferences introduced by van Benthem [23]. In Sect. 33.5 we conclude and
give some personal views about the future of DEL and logical dynamics.

33.2 Dynamic Epistemic Logic

Dynamic epistemic logic (DEL) is a relatively recent non-classical logic [11] which
extends ordinary modal epistemic logic [45] by the inclusion of event/action models
(called Lα-models in this article) to describe actions, and a product update operator
that defines how epistemic models (called L -models in this article) are updated as
the consequence of executing actions described through event models (see [10, 30,
37] for more details). So, the methodology of DEL is such that it splits the task
of representing the agents’ beliefs and knowledge into three parts: first, one repre-
sents their beliefs/knowledge about an initial situation; second, one represents their
beliefs/knowledge about an event taking place in this situation; third, one represents
the way the agents update their beliefs/knowledge about the situation after (or during)
the occurrence of the event. Following this methodology, we also split the exposition
of the DEL framework into three sections.
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33.2.1 Representation of the Initial Situation: L -Model

In the rest of this article, AT M is a countable set of propositional letters called
atomic facts which describe static situations, and AGT := {1, . . . , m} is a finite set
of agents.

Definition 33.1 (Language L and L -structure) We define the language L induc-
tively as follows:

L : ϕ :: = p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | � jϕ

where p ranges over AT M and j over AGT . We define ⊥ := p ∧ ¬p for a chosen
p ∈ AT M and we also define � := ¬⊥. The formula ♦ jϕ is an abbreviation for
¬� j¬ϕ, the formula ϕ→ ψ is an abbreviation for¬ϕ∨ψ, and the formula ϕ↔ ψ
is an abbreviation for (ϕ→ ψ) ∧ (ψ→ ϕ).

A L -structure is defined inductively as follows, with ϕ ranging over L :

X :: = ϕ | (X, X)

We abusively write ϕ ∈ X when the formula ϕ ∈ L is a substructure of X .

A (pointed) L -model (M , w) represents how the actual world represented by w
is perceived by the agents. Atomic facts are used to state properties of this actual
world.

Definition 33.2 (L -model) A L -model is a tuple M = (W, R1, . . . , Rm, I )
where:

• W is a non-empty set of possible worlds,
• R j ⊆ W ×W is an accessibility relation on W , for each j ∈ AGT ,
• I : W → 2AT M is a function assigning to each possible world a subset of AT M .

The function I is called an interpretation.

We write w ∈ M for w ∈ W , and (M , w) is called a pointed L -model (w often
represents the actual world). We denote by C the set of pointed L -models. If w, v ∈
W , we write wR j v or (M , w) R j (M , v) for (w, v) ∈ R j , and R j (w) denotes the set
{v ∈ W | wR j v}.

Intuitively, wR j v means that in world w agent j considers that world v might
correspond to the actual world. Then, we define the following epistemic language
that can be used to describe and state properties of L -models:

Definition 33.3 (Truth conditions of L ) Let M be a L -model, w ∈M andϕ ∈ L .
M , w |= ϕ is defined inductively as follows:
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M , w |= p iff p ∈ I (w)

M , w |= ¬ψ iff not M , w |= ϕ
M , w |= ϕ ∧ ψ iff M , w |= ϕ and M , w |= ψ
M , w |= ϕ ∨ ψ iff M , w |= ϕ or M , w |= ψ
M , w |= � jϕ iff for all v ∈ R j (w),M , v |= ϕ

We write M |= ϕ when M , w |= ϕ for all w ∈M , and |= ϕ when for all L -model
M , M |= ϕ. A L -formula ϕ is said to be valid if |= ϕ. We extend the scope of the
relation |= to also relate pointed L -models to structures:

M , w |= X, Y iff M , w |= X and M , w |= Y

Let C be a class of pointed L -models, let X, Y be L -structures. We say that X
entails Y in the class C , written X

C
Y , when the following holds:

X
C

Y iff for all pointed L -model (M , w) ∈ C, if for all ϕ ∈ XM , w |= ϕ,

then there is ψ ∈ Y such that M , w |= ψ.

We also write X |= Y for X
C

Y , where C is the class of all pointed L -models.

The formula � jϕ reads as “agent j believes ϕ”. Its truth conditions are defined
in such a way that agent j believes ϕ is true in a possible world when ϕ holds in all
the worlds agent j considers possible.

Example 33.1 Assume that agents A, B and C play a card game with three cards:
a white one, a red one and a blue one. Each of them has a single card but they
do not know the cards of the other players. At each step of the game, some of the
players show their/her/his card to another player or to both other players, either
privately or publicly. We want to study and represent the dynamics of the agents’
beliefs/knowledge in this game. The initial situation is represented by the pointed
L -model (M , w) of Fig. 33.1.

In this example, AGT := {A, B, C} and AT M := {r j , b j , w j | j ∈ AGT }where
r j stands for ‘agent j has the red card’, b j stands for ‘agent j has the blue card’ and
w j stands for ‘agent j has the white card’. The boxed possible world corresponds
to the actual world. The propositional letters not mentioned in the possible worlds
do not hold in these possible worlds. The accessibility relations are represented by
arrows indexed by agents between possible worlds. Reflexive arrows are omitted
in the figure, which means that for all worlds v ∈ M and all agents j ∈ AGT ,
v ∈ R j (v). In this model, we have for example the following statement: M , w |=
(wB ∧¬�AwB)∧�C¬�AwB . It states that player A does not ‘know’ that player B
has the white card and player C ‘knows’ it.
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Fig. 33.1 Cards example

33.2.2 Representation of the Event: Lα-Model

The language Lα was introduced in [12]. The propositional letters pψ describing
events are called atomic events and range over AT Mα = {pψ

∣∣ ψ ranges over L }.
The reading of pψ is “an event of precondition ψ is occurring”.

Definition 33.4 (Language Lα and Lα-structure) We define the language Lα

inductively as follows:

Lα : α :: = pψ | ¬α | α ∧ α | α ∨ α | � jα

where ψ ranges over L and j over AGT . We define ⊥ := pψ ∧ ¬pψ for a chosen
ψ ∈ L and we define � := ¬⊥. The formula ♦ jα is an abbreviation for ¬� j¬α,
the formula α → β is an abbreviation for ¬α ∨ β, and the formula α ↔ β is an
abbreviation for (α→ β) ∧ (β → α).

A Lα-structure is defined inductively as follows, with β ranging over Lα:

Sα : Xα :: = β | (Xα, Xα)

We abusively write α ∈ Xα when the formula α ∈ Lα is a substructure of Xα.

A pointed Lα-model (E , e) represents how the actual event represented by e is
perceived by the agents. Intuitively, f ∈ R j (e) means that while the possible event
represented by e is occurring, agent j considers possible that the possible event
represented by f is actually occurring.

Definition 33.5 (Lα-model, [11]) A Lα-model is a tuple E = (Wα, R1, . . . , Rm, I )
where:
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• Wα is a non-empty set of possible events,
• R j ⊆ Wα ×Wα is an accessibility relation on Wα, for each j ∈ AGT ,
• I : Wα → L is a function assigning to each possible event a formula of L . The

function I is called the precondition function.

Let P be a subset of L . A P-complete Lα-model is a Lα-model which satisfies
moreover the following condition:

• I (e) ∈ P , for each e ∈ Wα (P-complete)

We write e ∈ E for e ∈ Wα, and (E , e) is called a pointed Lα-model (e often
represents the actual event). We denote by Cα the set of pointed Lα-models, by
C P
α the set of pointed P-complete event models. If e, f ∈ Wα, we write eR j f or

(E , e)R j (E , f ) for (e, f ) ∈ R j , and R j (e) denotes the set { f ∈ Wα | eR j f }.
The truth conditions of the language Lα are identical to the truth conditions of

the language L :

Definition 33.6 (Truth conditions of Lα) Let E be a Lα-model, e ∈ E andα ∈ Lα.
E , e |= α is defined inductively as follows:

E , e |= pψ iff I (e) = ψ
E , e |= ¬α iff not E , e |= α
E , e |= α ∧ β iff E , e |= α and E , e |= β
E , e |= α ∨ β iff E , e |= α or E , e |= β
E , e |= � jα iff for all f ∈ R j (e),E , f |= α

Let C be a class of pointed Lα-models, let Xα, Yα be Lα-structures. We say that
X entails Y in the class C , written Xα C

Yα, when the following holds:

Xα C
Yα iff for all pointed Lα-model (E , e) ∈ C,

if for all α ∈ XαE , e |= α, then there is β ∈ Yα such that E , e |= β.

We also write Xα |= Yα for Xα Cα
Yα, where Cα is the class of all pointed

Lα-models.

Example 33.2 Let us resume Example 33.1 and assume that players A and B
show their card to each other. As it turns out, C noticed that A showed her
card to B but did not notice that B did so to A. Players A and B know this.
This event is represented in the Lα-model (E , e) of Fig. 33.2. The boxed possi-
ble event e corresponds to the actual event ‘players A and B show their red and
white cards respectively to each other’ (with precondition rA ∧ wB), f stands for
the event ‘player A shows her white card’ (with precondition wA) and g stands for the
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Fig. 33.2 Players A and B show their cards to each other in front of player C

atomic event ‘players A shows her red card’ (with precondition rA). The following
statement holds in the example of Fig. 33.2:

E , e |= prA∧wB ∧
(
♦A prA∧wB ∧�A prA∧wB

) ∧ (
♦B prA∧wB ∧�B prA∧wB

)

∧ (
♦C pwA ∧ ♦C prA ∧�C

(
pwA ∨ prA

))
. (33.1)

It states that players A and B show their cards to each other, players A and B
‘know’ this and consider it possible, while player C considers possible that player A
shows her white card and also considers possible that player A shows her red card,
since he does not know her card. In fact, that is all that player C considers possible
since he believes that either player A shows her red card or her white card.

The Lα-model of Fig. 33.3 corresponds to a ‘public announcement’ or ‘public
display’ of the fact that agent A has the red card. In particular, the following statement
holds in the example of Fig. 33.3:

E , e |= prA ∧�A prA ∧�B prA ∧�C prA

∧�A�A prA ∧�A�B prA ∧�A�C prA

∧�B�A prA ∧�B�B prA ∧�B�C prA

∧�C�A prA ∧�C�B prA ∧�C�C prA

∧ . . .
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Fig. 33.3 Public announcement Lα-model of rA

It states that player A shows her red card and that players A, B and C ‘know’ it,
that players A, B and C ‘know’ that each of them ‘know’ it, etc…in other words,
there is common knowledge among players A, B and C that player A shows her red
card.1

E , e |= prA ∧�∗AGT prA .

33.2.3 Update of the Initial Situation by the Event:
Product Update

The DEL product update of [11] is defined as follows. This update yields a new
L -model (M , w)⊗(E , e) representing how the new situation which was previously
represented by (M , w) is perceived by the agents after the occurrence of the event
represented by (E , e).

Definition 33.7 (Product update) Let (M , w) = (W, R1, . . . , Rm, I, w) be a
pointed L -model and let (E , e) = (Wα, R1, . . . , Rm, I, e) be a pointed Lα-model
such that M , w |= I (e). The product update of (M , w) and (E , e) is the pointed
L -model (M ⊗ E , (w, e)) = (W⊗, R⊗1 , . . . , R⊗m , I⊗, (w, e)) defined as follows:
for all v ∈ W and all f ∈ Wα,

• W⊗ = {(v, f ) ∈ W ×Wα |M , v |= I ( f )},
• R⊗j (v, f ) = {(u, g) ∈ W⊗ | u ∈ R j (v) and g ∈ R j ( f )},
• I⊗(v, f ) = I (v).

Example 33.3 As a result of the event described in Example 33.2, the agents update
their beliefs. We get the situation represented in the L -model (M , w) ⊗ (E , e) of
Fig. 33.4. In this L -model, we have for example the following statement:

(M , w)⊗ (E , e) |= (wB ∧�AwB) ∧�C¬�AwB .

1 We write E , e |= �∗AGTα when for all f ∈
(

⋃
j∈AGT

R j

)∗
(e), E , f |= α. See for example [41]

for a detailed study of the operator �∗AGT of common knowledge.
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Fig. 33.4 Situation after the update of the situation represented in Fig. 33.1 by the event represented
in Fig. 33.2

It states that player A ‘knows’ that player B has the white card but player C believes
that it is not the case.

33.3 Substructural Logics

Substructural logics are a family of logics lacking some of the structural rules of clas-
sical logic. A structural rule is a rule of inference which is closed under substitution
of formulas. The structural rules for classical logic are given in Fig. 33.5 (U, X, Y, Z
denote L -structures). While (Weakening) and (Contraction) are often dropped like
in relevance logic and linear logic, the rule of (Associativity) is often preserved. We
shall see in this article that DEL invalidates all of them.

Fig. 33.5 Structural rules of classical logic
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33.3.1 A Substructural Language

Our exposition of substructural logics is based on [39, 57, 58]. The logical frame-
work presented in [57] is much more general and studies a wide range of substructural
logics: relevance logic, linear logic, lambek calculus, display logic, etc…For what
concerns us in this article, we will only introduce a fragment of this general frame-
work. The semantics of this fragment is based on the ternary relation of the frame
semantics for relevant logic originally introduced by Routley & Meyer [59–62].
Another semantics proposed independently by Urquhart [63–65] at about the same
time will be discussed at the end of this section.

Definition 33.8 (Language LSub and LSub-structure) The language LSub is
defined inductively as follows:

LSub : ϕ :: = � | ⊥ | p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | �ϕ |
ϕ ⊃ ϕ | ϕ ⊂ ϕ | ϕ ◦ ϕ

where p ranges over AT M .
A LSub-structure is defined inductively as follows, with ϕ ranging over LSub:

X :: = ϕ | (X, X) | (X; X)

Definition 33.9 (Point set, plump accessibility relation) A point set P = (P,�) is
a set P together with a partial order � on P . The set Prop(P) of propositions on
P is the set of all subsets X of P which are closed upwards: that is, if x ∈ X and
x � x ′ then x ′ ∈ X . We abusively write x ∈P for x ∈ P .

• A binary relation S is a positive two–place accessibility relation on the point set
P iff for any x, y ∈ P where xS y, if x ′ � x then there is a y′ � y, where
x ′S y′. Similarly, if xS y and y � y′ then there is some x ′ � x , where x ′S y′.
• A ternary relation R is a three-place accessibility relation iff whenever Rxyz and

z � z′ then there are y′ � y and x ′ � x , where Rx ′y′z′. Similarly, if x ′ � x then
there are y′ � y and z′ � z, where Rx ′y′z′, and if y′ � y then there are x ′ � x
and z′ � z, where Rx ′y′z′.
• A ternary relation R is a plump accessibility relation on the point set P if and

only if for any x, y, z, x ′, y′, z′ ∈P such that Rxyz, if x ′ � x , y′ � y and z � z′,
then Rx ′y′z′.

Our definition of LSub-model corresponds to the definition of a model in [57,
Chap. 11] stripped out from all its truth sets. These other features are not needed for
what concerns us here.

Definition 33.10 (LSub-model) A LSub-model is a tuple MR = (P,S ,R,I )

where:

• P = (P,�) is a point set;
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• S ⊆P ×P is a positive two–place accessibility relation on P;
• R ⊆P ×P ×P is a three–place accessibility relation on P;
• I : P → 2AT M is an interpretation function.

We abusively write x ∈ MR for x ∈ P , and (MR , x) is called a pointed
LSub-model.

Note that in the above definition, there could be multiple positive two–place
accessibility relations S1, . . . ,Sn corresponding to multiple modalities�1, . . .�n .
We refrain from defining LSub-models in their full generality in order to ease the
readability of the article.

Definition 33.11 (Truth conditions of LSub) Let MR be a LSub-model, x ∈MR
and ϕ ∈ LSub. The relation MR , x ϕ is defined inductively as follows:

MR, x � always
MR, x ⊥ never
MR, x p iff p ∈ I (x)

MR, x ¬ϕ iff not MR, x ϕ

MR, x ϕ ∧ ψ iff MR, x ϕ and MR, x ψ

MR, x ϕ ∨ ψ iff MR, x ϕ or MR, x ψ

MR, x �ϕ iff for all y ∈MR, where xS y,MR, y ϕ

MR, x ϕ ⊃ ψ iff for all y, z ∈P where Rxyz, if MR, y ϕ then MR, z ψ

MR, x ψ ⊂ ϕ iff for all y, z ∈P where Ryxz if MR, y ϕ then MR, z ψ

MR, x ϕ ◦ ψ iff there are y, z ∈P such that Ryzx,MR, y ϕ and MR, z ψ

We extend the scope of the relation to also relate points to LSub-structures:

MR, x X, Y iff MR, x X and MR, x Y
MR, x X; Y iff there are y, z ∈MR such that Ryzx,MR, y X and MR, z Y

We say that MR validates a LSub-structure X when for all x ∈MR , MR, x X .
Let X be a structure and let ϕ ∈ LSub. We say that X entails ϕ, written X ϕ,
when the following holds:

X ϕ iff for all pointed LSub-model (MR, x), if MR, x X, then MR, x ϕ.

Note that unlike many substructural logics, we use a Boolean negation. We list
below some key inferences of substructural logics, more precisely of the Lambek
Calculus:

ϕ;ψ χ iff ϕ ψ ⊃ χ (33.2)

ϕ ψ ⊃ χ iff ϕ ◦ ψ χ (33.3)

ϕ ◦ ψ χ iff ψ χ ⊂ ϕ (33.4)
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ϕ ψ ⊃ χ iff ψ χ ⊂ ϕ (33.5)

33.3.1.1 Urquhart’s Semantics

The Urquhart’s semantics for relevance logic was developed independently from the
Routley & Meyer’s semantics in the early 1970s. An operational frame is a set of
points P together with a function which gives us a new point from a pair of points:

� :P ×P →P. (33.6)

An operational model is then an operational frame together with a relation
which indicates what formulas are true at what points. The truth conditions for the
implication ⊃ are defined as follows:

x ϕ ⊃ ψ iff for each y, if y ϕ then x � y ψ. (33.7)

As one can easily notice, an operational frame is a Routley and Meyer frame
where Rxyz holds if and only if x � y = z. Hence, the ternary relation R of the
Routley and Meyer semantics is a generalization of the function � of the Urquhart’s
semantics. Because it is a relation, it allows moreover to apply x to y and yield either
a set of outcomes or no outcome at all.

33.3.2 Updates as Ternary Relations

The ternary relation R of the Routley & Meyer semantics was introduced originally
for technical reasons: any 2-ary (n-ary) connective of a logical language can be given
a semantics by resorting to a 3-ary (resp. n+1-ary) relation on worlds. Subsequently,
a number of philosophical interpretations of this ternary relation have been proposed
and we will briefly recall some of them at the end of this section (see [18, 50,
58] for more details). However, one has to admit that providing a non-circular and
conceptually grounded interpretation of this relation remains problematic. In this
article, we propose a new dynamic interpretation of this relation, inspired by the
ternary semantics of DEL.

First, one should observe that the DEL product update⊗ of Definition 33.7 can be
seen as a partial function F from a pair of pointed L -model and pointed Lα-model
to another pointed L -model:

F : C × Cα → C (33.8)

There is a formal similarity between this abstract definition of the DEL product
update and the function � of Eq. (33.6) introduced by Urquhart in the early 1970s
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for providing a semantics to the implication of relevance logic. This similarity is
not only formal but also intuitively meaningful. Indeed, the intuitive interpretation
of the DEL product update operator is very similar to the intuitive interpretation
of the function � of Urquhart. Points are sometimes also called “worlds”, “states”,
“situations”, “set-ups”, and as explained by Restall:

We have a class of points (over which x and y vary), and a function � which gives us new
points from old. The point x � y is supposed, on Urquhart’s interpretation, to be the body of
information given by combining x with y. [58, p. 363]

and also, keeping in mind the truth conditions for the connective ⊃ of Eq. (33.7):

To be committed to A ⊃ B is to be committed to B whenever we gain the information that
A. To put it another way, a body of information warrants A ⊃ B if and only if whenever
you update that information with new information which warrants A, the resulting (perhaps
new) body of information warrants B. (my emphasis) [58, p. 362]

From these two quotes, it is natural to interpret the DEL product update ⊗ of
Definition 33.7 as a specific kind of Urquhart’s function � (Eq. (33.6)). Moreover,
as explained by Restall, this substructural “update” can be nonmonotonic and may
correspond to some sort of revision:

[C]ombination is sometimes nonmonotonic in a natural sense. Sometimes when a body
of information is combined with another body of information, some of the original body
of information might be lost. This is simplest to see in the case motivating the failure of
A B ⊃ A. A body of information might tell us that A. However, when we combine it with
something which tells us B, the resulting body of information might no longer warrant A
(as A might with B). Combination might not simply result in the addition of information. It
may well warrant its revision. (my emphasis) [58, p. 363]

Our dynamic interpretation of the ternary relation is consistent with the above
considerations: sometimes, updating beliefs amounts to revise beliefs. As it turns
out, belief revision has also been extensively studied within the DEL framework and
DEL has been extended to deal with this phenomenon [1, 2, 14, 15, 26, 36, 46].

More generally, an update can be seen as a partial function F from a pair of
pointed L -model and pointed Lα-model to a set of pointed L -model:

F : C × Cα →P(C ). (33.9)

Equivalently, an update can be seen as a ternary relation R defined on C ∪
Cα between three pointed models ((M , w), (E , e), (M f , w f )) where (M , w) is a
pointed L -model, (E , e) is a pointed Lα-model and (M f , w f ) is another pointed
L -model:

R ⊆ C × Cα × C . (33.10)

The ternary relation of Eq. (33.10) then resembles the ternary relation of the Rout-
ley & Meyer semantics. This is not surprising since the Routley & Meyer seman-
tics generalizes the Urquhart semantics (they are essentially the same, since as we
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explained it in the previous section, an operational frame is a Routley & Meyer frame
where Rxyz holds if and only if x� y = z). Viewed from the perspective of DEL, the
ternary relation then represents a particular sort of update. With this interpretation
in mind, Rxyz reads as ‘the occurrence of event y in world x results in the world
z’ and the corresponding conditional α ⊃ ϕ reads as ‘the occurrence in the current
world of an event satisfying property α results in a world satisfying ϕ’.

The dynamic reading of the ternary relation and its corresponding conditional
is very much in line with the so-called “Ramsey Test” of conditional logic. The
Ramsey test can be viewed as the very first modern contribution to the logical study
of conditionals and much of the contemporary work on conditional logic can be
traced back to the famous footnote of Ramsey [55]. Roughly, it consists in defining
a counterfactual conditional in terms of belief revision: an agent currently believes
that ϕ would be true if ψ were true (i.e. ψ ⊃ ϕ) if and only if he should believe ϕ
after learning ψ. A first attempt to provide truth conditions for conditionals, based
on Ramsey’s ideas, was proposed by Stalnaker. He defined his semantics by means
of selection functions over possible worlds f : W × 2W → W . As one can easily
notice, Stalnaker’s selection functions could also be considered from a formal point
of view as a special kind of ternary relation, since a relation R f ⊆ W ×2W ×W can
be canonically associated to each selection function f . Moreover, like the ternary
relation corresponding to a product update (Eq. (33.10)), this ternary relation is ‘two-
sorted’: the antecedent of a conditional takes value in a set of worlds (instead of a
single world).2 So, the dynamic reading of the ternary semantics is consistent with
the dynamic reading of conditionals proposed by Ramsey.

This dynamic reading was not really considered and investigated by substructural
logicians when they connected the substructural ternary semantics with conditional
logic [18]. On the other hand, the dynamic reading of inferences has been stressed to a
large extent by van Benthem [27, 30] (we will come back to this point in Sect. 33.4.2),
and also by Baltag and Smets who distinguished dynamic belief revision from static
(standard) belief revision [13–15]. What distinguishes dynamic belief revision from
static belief revision is that the latter is a revision of the agent’s beliefs about the
state of the world as it was before an event, and the former is a revision of the state
of the world as it is after the event. Note, however, that this important distinction
between static belief revision and dynamic belief revision collapses in the case of
relevant logic, because in that case we only deal with propositional formulas. This
shows again that a dynamic interpretation of the ternary semantics of substructural
logic is consistent with the interpretations proposed by substructural logicians.

To summarize our discussion, the DEL product update provides substructural
logics with an intuitive and consistent interpretation of its ternary relation. This
interpretation is consistent in the sense that the intuitions underlying the definitions
of the DEL framework are coherent with those underlying the ternary semantics of
substructural logic, as witnessed by our quotes and citations from the substructural
literature.

2 Note that Burgess [35] already proposed a ternary semantics for conditionals, but his truth condi-
tions and his interpretation of the ternary relation were quite different from ours.
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33.3.2.1 Other interpretations of the ternary relation

One interpretation, due to Barwise [16] and developed by Restall [56], takes worlds to
be ‘sites’ or ‘channels’, a site being possibly a channel and a channel being possibly
a site. If x, y and z are sites, Rxyz reads as ‘x is a channel between y and z’. Hence,
if ϕ ⊃ ψ is true at channel x , it means that all sites y and z connected by channel
x are such that if ϕ is information available in y, then ψ is information available in
z. Another similar interpretation due to Mares [49] adapts Israel and Perry’s theory
of information [54] to the relational semantics. In this interpretation, worlds are
situations in the sense of Barwise and Perry’s situation semantics [17] and pieces
of information—called infons—can carry information about other infons: an infon
might carry the information that a red light on a mobile phone carries the information
that the battery of the mobile phone is low. In this interpretation, the ternary relation
R represents the informational links in situations: if there is an informational link in
situation x that says that an infon σ carries the information that the infon π also holds,
then if Rxyz holds and y contains the infon σ, then z contains the infon π. Other
interpretations of the ternary relation have been proposed in [18], with a particular
focus on their relation to conditionality.

33.4 DEL is a Substructural Logic

In this section, we will extend the languages L and Lα of Sect. 33.2 with the
substructural operators ◦,⊃ and ⊂. We will also provide a substructural semantics
for this language based on the idea to view an update as a ternary relation of a
substructural frame (LSub-model). This idea is motivated and intuitively grounded
in the analysis of the previous section.

33.4.1 An Extended DEL Language

Our language extends both the language L and the language Lα of Sect. 33.2. Like
our semantics, it is two-sorted: it contains both formulas of L and formulas of Lα.

Definition 33.12 (Language LR ) The language LR is two-sorted and is defined
by a double induction as follows:

L 1
R : ϕ :: = p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | � jϕ | α ⊃ ϕ | ϕ ◦ α

L 2
R : α :: = pψ | ¬α | α ∧ α | α ∨ α | � jα | ϕ ⊂ ϕ

where p ranges over AT M , ψ ranges over L 1
R and j over AGT . The abbreviations

ϕ→ ψ,ϕ↔ ψ and α→ β,α↔ β are defined as in Definitions 33.1 and 33.4.
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Definition 33.13 (LR-structure and LR-sequent) The LR-structures are defined
inductively as follows:

S1 : X :: = ϕ | (X, X) | (X; Xα)

S2 : X :: = ϕ | (X, X)

where ϕ ranges over LR and Xα ranges over Lα-structures. A LR -sequent is a
Lα-sequent or an expression of the form X Y , where X ∈ S1, Y ∈ S2.

Definition 33.14 (DEL product update model) The DEL product update model is
the tuple M⊗ = (P,R1, . . . ,Rm,R⊗,I ) where:

• P := (C ∪ Cα,�) where � is the bisimilarity relation;
• R j ⊆ P ×P is a positive two-place accessibility relation on P for each j ∈

AGT such that for all x, y ∈P , where x = (Mx , wx ) and y = (My, wy):

x ∈ R j (y) iff Mx =My and wx ∈ R j (wy)

• R⊗ :=
{
(x, y, z) ∈ C × Cα × C

∣∣ x ⊗ y = z
}

is a plump ternary relation on P;
• I (x) := I (x), for all x ∈ C ∪ Cα.

The DEL product update model is a LSub-model where points are pointed
L -models and pointed Lα-models. The ternary relation R⊗ is defined and motivated
by the explanations of the previous section. Note that the accessibility relations R j of
L -models and Lα-models are seen in this definition as positive two-place accessi-
bility relations R j . The truth conditions are the same as the ones for LR -models:

Definition 33.15 (Truth conditions of LR ) Let M⊗ be the DEL product update
model, x ∈ M⊗ and ϕ ∈ LR . The relation M⊗, x ϕ is defined inductively as
follows:

M⊗, x p iff p ∈ I (x)

M⊗, x ¬ϕ iff not M⊗, x ϕ

M⊗, x ϕ ∧ ψ iff M⊗, x ϕ and M⊗, x ψ

M⊗, x ϕ ∨ ψ iff M⊗, x ϕ or M⊗, x ψ

M⊗, x � jϕ iff for all y ∈P such that xR j y,M⊗, y ϕ

M⊗, x α ⊃ ψ iff for all y, z ∈P such that R⊗xyz, if M⊗, y α then M⊗, z ψ

M⊗, x ψ ⊂ ϕ iff for all y, z ∈P such that R⊗yxz, if M⊗, y ϕ then M⊗, z ψ

M⊗, x ϕ ◦ α iff there are y, z ∈P such that R⊗yzx,M⊗, y ϕ and M⊗, z α

We extend the scope of the relation to also relate points to LR -structures:

M⊗, x X, Y iff M⊗, x X and M⊗, x Y
M⊗, x X; Y iff there are y, z ∈MR such that Ryzx,M⊗, y X and M⊗, z Y
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Let C ⊆ C ∪ Cα be a class of pointed L -models or Lα-models, and let X ϕ
be a LR -sequent. We say that X entails ϕ in the class C , written X C ϕ, when the
following holds:

X C ϕ iff for allx ∈ C, if M⊗, x X then M⊗, x ϕ.

We also write X ϕ for X C∪Cα
ϕ.

Naturally, the truth conditions for coincide with the truth conditions for |= if
we only consider epistemic or event formulas:

Proposition 33.1 Let M⊗ be the DEL product update model, ϕ ∈ L and x ∈M⊗
such that x ∈ C . Then, M⊗, x ϕ iff x |= ϕ. Let α ∈ Lα and let y ∈ M⊗ such
that y ∈ Cα. Then, M⊗, y α iff y |= α.

Remark 33.1 The frame semantics of substructural logic is very abstract and general
and it provides a rich framework which captures a wide range of logics, such as arrow
logic [23, Chap. 8], action frames and domain space (see [57, Example 11.12–11.15]
for more details). But the epistemic temporal models of ETL [53] (which have been
related to DEL in [32, 33]) can also be viewed as models of the ternary semantics of
substructural logic [5].

33.4.2 DEL Operators are Substructural Operators

In this section, we will show that the DEL operators introduced in [3, 4] correspond to
the substructural operators ◦,⊃ and⊂. We will also relate the work of van Benthem
on dynamic inference with the DEL–sequents of [3, 4, 7].

33.4.2.1 Dynamic Inferences and DEL–sequents

Dynamic Inferences
In the so-called ‘dynamic turn’, van Benthem was interested in various dynamic
styles of inference where propositions are procedures changing information states.
These dynamic styles of inference differ greatly from the classical Tarskian valid
inferences because the latter are supposed to transmit and preserve truth. Among
various dynamic styles of inference (such as the so-called test-test, update-update or
update-test consequence [21, 23, 51]), he studied the concrete following one, which
can be defined within the DEL framework:

Definition 33.16 (Dynamic inference [25]) Let ϕ0,ϕ1, . . . ,ϕn,ψ ∈ L . We define
the dynamic inference ϕ0,ϕ1, . . . ,ϕn |= ψ as follows:
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ϕ1, . . . ,ϕn |= ϕ iff for all pointed L -model (M , w), and public announcement
Lα-models (E1, e1), . . . , (En, en) of ϕ1, . . . ,ϕn

respectively, (M , w)⊗ (E1, e1)⊗ . . .⊗ (En, en) |= ϕ.

van Benthem noticed that various dynamic styles of inference obey structural
rules of inference which are non-classical. For example, all the structural rules of
classical logic of Fig. 33.5 fail for dynamic inference, but the structural rules below
characterize completely the dynamic inference [25] (below,−→ϕ stands forϕ1, . . . ,ϕn

and
−→
ψ stands for ψ1, . . . ,ψn , where ϕ1, . . . ,ϕn,ψ1, . . . ,ψn ∈ L ):

if −→ϕ |= ϕ then ψ,−→ϕ |= ϕ (Left-Monotonicity)

if −→ϕ |= ϕ and −→ϕ ,ϕ,
−→
ψ |= ψ then −→ϕ ,

−→
ψ |= ψ (Left-Cut)

if −→ϕ |= ϕ and −→ϕ ,
−→
ψ |= ψ then −→ϕ ,ϕ,

−→
ψ |= ψ (Cautious Monotonicity)

DEL–sequents
In [3], I introduced what I called DEL–sequents. They are a particular sort of

dynamic inference and are defined as follows:

Definition 33.17 (DEL–sequent [3]) Let ϕ,ϕ f ∈ L and α ∈ Lα. We define the
logical consequence relation ϕ,α ϕ f as follows:

ϕ,α ϕ f iff for all pointed L -model (M , w), all Lα-model (E , e) such that
M , w |= I (e),M , w |= ϕ and E , e |= α, it holds that (M , w)⊗
(E , e) |= ϕ f .

In [7], DEL–sequents are generalized to take into account sequences of events
and not only ‘one-shot’ occurrence of events. Several generalized DEL–sequents are
introduced in [7] but they are all reducible to the following one:

Definition 33.18 (Generalized DEL–sequent [7]) Let ϕ0, . . . ,ϕn ∈ L , let α1, . . . ,

αn ∈ Lα and let ψ ∈ L . Then,

ϕ0,α1,ϕ1, . . . ,αn,ϕn |= ψ
iff

if for all pointed L -model (M , w), and Lα-models (E1, e1), . . . , (En, en)

such that for all i ∈ {1, . . . , n},Ei , ei |= αi , (M , w)⊗ (E1, e1)⊗ . . .⊗ (Ei , ei )

is defined and makes ϕi true, then it holds that (M , w)⊗ (E1, e1)⊗ . . .⊗
(En, en) |= ψ.

As one can easily notice, dynamic inferences can be translated into DEL–sequents
if we resort to the common knowledge/belief operator�∗AGTϕ (see for example [41]
for a definition and a detailed study of this operator):
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Proposition 33.2 Let ϕ0,ϕ1, . . . ,ϕn,ϕ ∈ L . Then, the following holds:

ϕ1, . . . ,ϕn |= ϕ iff �, pϕ1 ∧�∗AGT pϕ1 , . . . ,�, pϕn ∧�∗AGT pϕn ,� |= ϕ ∧�∗AGTϕ

Thus, DEL–sequents are more expressive than dynamic inferences, and also more
abstract because they ‘operate’ at a deeper level, a semantical one. It is this more
general and abstract approach towards dynamic styles of inference that will allow us
to relate more precisely and closely DEL with substructural logics, and explain to
a certain extent why the substructural phenomena occurring in dynamic inferences
and observed by van Benthem arise.

33.4.2.2 DEL–sequents for Progression, Regression and Epistemic Planning

Substructural logics and dynamic logics of information flow are long-standing inter-
ests of van Benthem [22, 23, 25, 27, 29, 30]. Recently again in [29], he expressed
some worries about interpreting the Lambek Calculus (the paradigmatic substruc-
tural logic) as a base logic of information flow while trying to connect the operators
◦,⊃ and ⊂ of substructural logic to some sort of DEL operators. Indeed, the DEL
operators usually rely on the regular algebra of sequential composition, choice and
iteration which are of a quite different nature. Recently, I introduced some DEL
operators called progression, regression and epistemic planning [3, 4], the opera-
tor of regression being a natural generalization of the standard and original action
modality [E , e]ϕ of DEL [11]. It turns out that these operators can all be identified
with connectives of the substructural language LR . We first briefly recall their def-
initions below and then we give our correspondence results between the two kinds
of operators.

Progression
The operator of progression is denoted⊗ in [3]. In [4, Definition 41], a constructive
definition of this operator is provided using characteristic formulas (called “Kit Fine”
formulas). Here, we provide an alternative and non–constructive definition of the
progression of ϕ by α, denoted ϕ⊗ α:

Theorem 33.1 Let (M f , w f ) be a pointed L -model and let ϕ ∈ L and α ∈ Lα.
Then,

M f , w f |= ϕ⊗ α iff there is a pointed L -model (M , w) and a pointed
Lα-model (E , e) such that (M , w)⊗ (E , e) � (M f , w f ),

M , w |= ϕ and E , e |= α

Proof It follows from Lemmata 43 and 44 of [3].

Epistemic Planning
The operator of epistemic planning is denoted �P in [4]. It is defined relatively
to a finite set P of formulas/preconditions/atomic events. In [4, Def. 34.14–34.15],
a constructive definition of this operator is provided using characteristic formulas
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(called “Kit Fine” formulas). As it turns out, an alternative and non–constructive
definition of the epistemic planning from ϕ to ϕ f , denoted ϕ�P ϕ f , exists as well:

Theorem 33.2 ([4]) Let ϕ,ϕ f ∈ L and let P be a finite subset of L . Then, for all
P-complete Lα-model (E , e), it holds that

E , e |= ϕ�P ϕ f iff
there is (M , w) such that M , w |= ϕ,

M , w |= I (e) and (M , w)⊗ (E , e) |= ϕ f .

The dual of the operator ϕ�P ϕ f is defined by:

ϕ[�]Pϕ f := ¬(ϕ�P ¬ϕ f ). (33.11)

Theorem 33.2 entails that ϕ[�]Pϕ f can be alternatively defined as follows: for
all P-complete Lα-model (E , e), it holds that

E , e |= ϕ[�]Pϕ f iff for all (M , w) such that M , w |= ϕ, if (33.12)

M , w |= I (e) then (M , w)⊗ (E , e) |= ϕ f

Example 33.4 In the situation depicted in the L -model of Fig. 33.1, agent B does
not know that agent A has the red card and does not know that agent C has the blue
card: M , w |= (♦BrA ∧♦B¬rA)∧ (♦BbC ∧ ♦B¬bC ). Our problem is therefore the
following:

What sufficient and necessary property (i.e. ‘minimal’ property) an event should
fulfill so that its occurence in the initial situation (M , w) results in a situation
where agent B knows the true state of the world, i.e. agent B knows that agent A
has the red card and that agent C has the blue card?

The answer to this question obviously depends on the kind of atomic events we
consider. In this example, the events P = {pbC , prA , pwB } under consideration are
the following. First, agent C shows her blue card (pbC ), second, agent A shows her
red card (prA ), and third, agent B herself shows her white card (pwB ). Answering this
question amounts to compute the formula (M, w)�P�B (rA ∧ bC ∧ wB). Applying
the algorithm of [4, Definition 34.15], we obtain that

(M , w) �P �B (rA ∧ bC ∧ wB)↔ �B(pbC ∨ prA )is valid.

In other words, this result states that agent B should believe either that agent A
shows her red card or that agent C shows her blue card in order to know the true state
of the world. Indeed, since there are only three different cards which are known by
the agents and agent B already knows her card, if she learns the card of (at least) one
of the other agents, she will also be able to infer the card of the third agent.

Regression
The operator of regression is denoted � in [3]. In [4, Definition 41], a constructive
definition of this operator is provided using characteristic formulas (called “Kit Fine”
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formulas) by adapting and translating the reduction axioms of [11]. As it turns out,
an alternative and non–constructive definition of the regression of ϕ f by α, denoted
α� ϕ f , exists as well:

Theorem 33.3 Let α ∈ Lα and ϕ f ∈ L . Then, for all L -model (M , w), it holds
that

M , w |= α� ϕ f iff
there is (E , e) such that E , e |= α,

M , w |= I (e) and (M , w)⊗ (E , e) |= ϕ f

Note that we could define a dual operator of α� ϕ f as follows:

α[�]ϕ f = ¬
(
α� ¬ϕ f

)
(33.13)

Then, the counterpart of Theorem 33.3 for this dual operator is as follows:

M , w |= α[�]ϕ f iff
for all (E , e) such that E , e |= α,

if M , w |= I (e) then (M , w)⊗ (E , e) |= ϕ f
(33.14)

As shown in [4, Sect. 6], the operator α[�]ϕ f is a generalization of the origi-
nal and more standard DEL operator [E , e]ϕ almost exclusively used in the DEL
literature [11].

Correspondence between DEL and Substructural Operators
As one can easily notice, there is a strong similarity between the operations of
progression, epistemic planning and regression and the operations of substructural
logic, more precisely of the Lambek Calculus. In fact, there exists a rigorous mapping
between them, as the following theorem shows:

Theorem 33.4 Let P be a finite subset of L , let x = (M , w) ∈ C and let y =
(E , e) ∈ C P

α be a P-complete pointed event model. Let ϕ,ψ ∈ L and let α ∈ Lα.
Then,

M⊗, x ϕ ◦ α iff x |= ϕ⊗ α
M⊗, x α ⊃ ϕ iff x |= α[�]ϕ
M⊗, y ψ ⊂ ϕ iff y |= ϕ[�]Pψ

Moreover, for all α,α1, . . . ,αn ∈ Lα, for all ϕ,ψ,ϕ0,ϕ1, . . . ,ϕn ∈ L , we have:

ϕ;α ψ iff ϕ,α ψ
(((ϕ0;α1),ϕ1); . . . ;αn),ϕn ψ iff ϕ0,α1,ϕ1, . . . ,αn,ϕn |= ψ

The key Theorem 42 of [3] relates DEL–sequents and the operator of progression:
for all ϕ,ϕ f ∈ L and α ∈ Lα, it holds that

ϕ,α ϕ f iff ϕ⊗ α |= ϕ f . (33.15)



876 G. Aucher

Fig. 33.6 Correspondence between DEL and substructural operators

As it turns out, this theorem is also valid in any substructural logic: it corresponds
to the theorem of Eq. (33.2). More generally, all the theorems of the non-associative
Lambek calculus hold in our DEL setting if we use the translation given in Fig. 33.6.
In particular, we have the following results which are the counterparts of Eqs. (33.3),
(33.4) and (33.5) in our setting:

Corollary 33.1 Let P be a finite subset of L . For all ϕ,ϕ f ∈ L and α ∈ Lα, it
holds that

ϕ;α ϕ f iff ϕ α[�]ϕ f (33.16)

ϕ α[�]ϕ f iff ϕ⊗ α ϕ f (33.17)

ϕ⊗ α ϕ f iff α
C P
α
ϕ[�]Pϕ f (33.18)

ϕ α[�]ϕ f iff α
C P
α
ϕ[�]Pϕ f (33.19)

33.5 Conclusion

We proved in this article that DEL is a two-sorted substructural logic. Also, we argued
in Sect. 33.3.2 that our embedding of DEL within the framework of substructural
logic is intuitively consistent, in the sense that in this embedding the intuitions under-
lying the DEL framework are coherent with the intuitive interpretations proposed for
the ternary semantics of substructural logics. This may explain to a certain extent why
some substructural phenomena arise in the dynamic inferences of Sect. 33.4.2.1. As
observed by van Benthem, “it seemed that structural rules address mere symptoms
of some underlying phenomenon” [30, p. 297]. I claim that these “symptoms” are
caused at a deeper semantic level by the fact that an update, and in that case the DEL
product update, can be represented by the ternary relation of substructural logics.

In a certain sense, this article is in line with the approach of van Benthem [28,
30] and contributes to relate even more closely the research programs of Logical
Pluralism [19] and Logical Dynamics [30]. Roughly, the informal idea underpinning
the connection between these two logical paradigms is to consider different reasoning
styles and their corresponding consequence relations as the result of different sorts
of updates induced by various informational tasks (such as observation, memory,
questions and answers, dialogue, or general communication). We showed in this
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article that this approach is not only meaningful from an intuitive point of view,
but it can also be realized at a formal level if the ternary relation of substructural
logic is interpreted intuitively as a sort of update. So, we hope that our embedding
will strengthen the connections between the two areas of research represented by
Logical Pluralism (and substructural logics) on the one hand and Logical Dynamics
on the other hand. In fact, our point of view is also very much in line with the claim of
Gärdenfors and Makinson [44, 48] that non-monotonic reasoning and belief revision
are “two sides of the same coin”: as a matter of fact, non-monotonic reasoning is a
reasoning style and belief revision is a sort of update. Likewise, the formal connection
in this case also relies on a similar idea based on the Ramsey test.

In this article, we focused our attention on the DEL product update. It is, however,
a particular kind of update operator and the ternary relation of substructural logics
could actually be a representation of any sort of update, including the various revi-
sion and update operators which have been studied in the logics of “common sense
reasoning” of artificial intelligence and philosophical logic, such as conditional logic
[52], default and non-monotonic logics [42, 47], belief revision theory [43], etc…
Different kinds of updates, induced by different informational tasks, define different
kinds of reasoning styles. If one adheres to our interpretation of the ternary relation,
the dynamic notion of update then becomes the foundational concept of substructural
logics.

This observation gives rise, in turn, to a research thread where updates are the
central objects of study and where we can (re-)analyze various updates within the
generic and abstract logical framework of substructural logics. This research thread is
of course very much in line with van Benthem’s long standing interest in information
and logical dynamics, but also with his interest in modal correspondence theory, the
area of logic where he first contributed [20, 24]. For example, we could elicit a
number of axioms and inference rules that define specific properties of updates,
some being possibly satisfied by the DEL product update. In other words, we could
develop a correspondence theory for analyzing and studying the notion of update
similar to the correspondence theory developed by van Benthem [20, 24] for modal
logic. A basic correspondence theory with a complete characterization of the DEL
product update in terms of axioms and inference rules is given in [5].
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Chapter 34
Arrows Pointing at Arrows: Arrow Logic,
Relevance Logic, and Relation Algebras

J. Michael Dunn

Time flies like an arrow; fruit flies like a banana.
Groucho Marx

Abstract Richard Routley and Robert K. Meyer introduced a ternary relational
semantics for various relevance logics in the early 1970s. Johan van Benthem and Yde
Venema introduced “arrow logic” in the early 1990s and about the same time I showed
how a variation of the Routley–Meyer semantics could be used to provide an interpre-
tation of Tarski’s axioms for relation algebras. In this paper I explore the relationships
between the van Benthem–Venema semantics for arrow logics, and the Routley–
Meyer semantics for relevance logic, and conclude with a comparison between van
Benthem’s version of the semantics for arrow logic aimed at relation algebras, and
my own version of the Routley–Meyer semantics which I used to give a represen-
tation of relation algebras (but at a type level higher than Tarski’s original intended
interpretation of an element as a relation, for me it is a set of relations). In the process
I show how van Benthem’s semantics for arrow logic can be just slightly tweaked
(just one additional constraint) so as to give a representation of relation algebras.

34.1 Introduction

Traditionally, logic is thought of as timeless, static, situated in Plato’s world of the
forms, unmoving like Rodin’s statue of The Thinker. But thinkers such as Johan
van Benthem have emphasized the temporal/dynamic aspects of logic.1 This has

1 van Benthem’s work has been broadly influential and stands out among those working on
temporal and dynamic aspects of logic. I won’t try to mention many others but will content
myself with Aristotle and his sea battle tomorrow, [28] (who I believe introduced the phrase
“dynamic logic”), and Arthur Prior [30] for his ground breaking work on modality and temporal
logic.
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taken many different forms, even in van Benthem’s own work, but one of the most
interesting, to me at least, has been what he in [4] has labeled “arrow logic”. My
interest could be viewed as self-serving, because it stems from strong connections
that I see between arrow logic and the Anderson and Belnap’s relevance logic.

Arrow logic has a somewhat complex history (with many contributors) but Johan
van Benthem and Yde Venema seem to be the originators. This paper will focus on
[5], but it will not examine the iteration operator which is what is added to arrow
logic to make it dynamic arrow logic.2 Related material may also be found in Chap. 8
of [6]. I have also found [39] very useful. The first occurrence of arrow logic seems
to be in Venema’s dissertation [38]. His report [37] is highly relevant to 34.5 below
and also to my [15], but I only became aware of this after the present paper was at
press.

The semantics of both arrow logic and relevance logic find themselves within the
general frame (pun intended) of modal logic. [21] used what has come to be called
a Kripke frame to define the modal connectives of necessity � and possibility ♦.
The original idea of Kripke was to use a structure (G, K , R) where K is a non-
empty set of “possible worlds,” G ∈ K is the “actual world,” and R is the relation
of “relative possibility” (or “accessibility”) between worlds. Researchers soon saw
that one did not need to pick out a distinguished world G in assessing the validity of
a formula (or inference), but simply let each world take its turn, and so the idea of
a frame developed as just a structure (K , R). Researchers also saw that there were
various ways to interpret the components of a frame, so to give just one example K
might be thought of as a set of moments in time, and R might be thought of as the
temporal order. And they also saw that varying the requirements on R could become
an “economic stimulus package” for modal logicians.3

In this paper I explore the relationships between the van Benthem–Venema seman-
tics for arrow logics, and the Routley–Meyer semantics for relevance logic, and
conclude with a comparison between van Benthem’s version of the semantics for
arrow logic aimed at relation algebras, and my own version of the Routley–Meyer
semantics aimed at the same target.

34.2 Arrow Logic

Arrow logic arises from the very nice idea of constructing a logic that captures the
“modal” properties of graph arrows (as opposed to worlds). As I have already sug-
gested one of the astonishing things about the Kripke semantics for modal logic
is that the “worlds” have taken on various forms: times, information states, spatial

2 Bimbó and Dunn’s [7], and Chaps. 4 and 7 of [8] might be useful for this purpose.
3 Kripke’s work grew in a kind of hothouse environment around 1960 when many researchers more
or less independently came up with ideas closely related to what many of us still call the Kripke
semantics for modal logic. See [11] and [18] for fascinating history.
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temporal coordinates, even impossible and/or incomplete worlds, etc. Arrow logic is
a multi-modal logic—i.e., a modal logic having several different modalities. It also
is structurally different from basic modal logic in that while one of those modali-
ties (“converse”) is unary and can be modeled with a binary accessibility relation,
another of those modalities uses a binary relation (“composition”) which requires
a ternary accessibility relation. And to complete the picture there is even a nullary
operation (“identity”) which requires a unary relation (property, or set). Arrow dia-
grams (directed graphs) might seem a somewhat narrow, even nerdish application.
But arrow logic is not just the logic of white boards, it is also about what those
diagrams stand for, and that can be essentially anything relational. In particular as
[25, p. 5] aptly puts it, “Arrow logic is the modal logic of transitions,” and transitions
are certainly a key part of actions.

An arrow frame is a structure (A,C, F, I ), where A is a non-empty set, C ⊆
A3, F ⊆ A2, I ⊆ A.4 van Benthem calls the members of A “arrows,” and thinks of
Cxyz as meaning “arrow x is the composition of y and z,” Fxy as meaning “arrow
y is the converse (flip) of x ,” and I x as x is an “identity arrow”. See the diagram:

An important point is that an arrow a is not just an ordered pair (γ, δ). There can
be more than one arrow a that leads from point γ to point δ,5 and not every ordered
pair (γ, δ) is associated with an arrow. Arrow frames can be interpreted as sets of
ordered pairs, but they are more abstract that that.

The basic language for an arrow logic contains the unary connectives of negation
¬ and �, and the binary connectives of conjunction ∧ and •. The connective � is
to be understood as a kind of converse, and the connective • is to be understood as a
kind of multiplication of relations, as we shall explain. A model adds a valuation V
to a frame which assigns a subset V (p) of A to each propositional letter p. This then
induces the following inductive definition as to when a sentence holds at an arrow x .

x |= p iff x ∈ V (p)
x |= ¬ϕ iff not x |= ϕ

4 van Benthem actually uses C3, R2, and I 1. We do not bother to use the superscripts to denote
degree, and we use F for “flip” instead of R (“reverse”?) because we do not want any confusion
with the Routley–Meyer ternary relation R.
5 A cautionary and picky note regarding the reading in abstract arrow logic of Cxyz: x is not the
composition of y and z. There can be more than one arrow from the beginning of y to the end of z
And similarly for Fxy: y is not the converse of x—there can be more than one arrow from the end
of y to the beginning of x .
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x |= ϕ� iff ∃y such that Fxy and y |= ϕ
x |= ϕ ∧ ψ iff x |= ϕ and x |= ψ
x |= ϕ • ψ iff ∃y, z such that Cxyz and y |= ϕ and z |= ψ
x |= I d iff I x .

van Benthem [5] gives axioms for the minimal arrow logic (we call it MAL) for
these frames:
(ϕ1 ∨ ϕ2) • ψ ↔ (ϕ1 • ψ) ∨ (ϕ2 • ψ)
ϕ • (ψ1 ∨ ψ2)↔ (ϕ • ψ1) ∨ (ϕ • ψ2)

(ϕ1 ∨ ϕ2)
� ↔ ϕ1

� ∨ ϕ2
�.

Implicitly van Benthem is assuming the usual definitions of∨,→, and↔ in terms
of conjunction and negation, and some usual complete set of axioms for classical
propositional calculus, as well as the usual rule of modus ponens for→. Complete-
ness for MAL follows from Jónsson and Tarski’s [19, 20] representation of Boolean
algebras with operators, since identifying provably equivalent formulas in the usual
way we obtain a Boolean algebra with operators corresponding to • and �.

van Benthem [5, p. 17] then goes on to note that:
(2.1) ¬(ϕ�)→ (¬ϕ) � corresponds to the frame condition ∀x∃yFxy,
(2.2) (¬ϕ) � → ¬(ϕ�) corresponds to the frame condition ∀x, y, z(Fxy and

Fxz implies y = z).
He notes that these two conditions together make the binary relation F into “a

unary function r of “reversal,” and that
(2.3) ϕ� � ↔ ϕ corresponds to the idempotence of r : r(r(x)) = x .
He then says “Let us assume this much henceforth in our arrow frames.” We shall

call these standard arrow frames and the logic they determine standard arrow logic
(SAL). van Benthem goes on to discuss some further correspondences and says:
“Obviously, there are many further choices here, and ‘Arrow Logic’ really stands for
a family of modal logics, whose selection may depend on intended applications.”
Certainly among the further choices one that cries out for attention is a set of choices
that will characterize relation algebras. van Benthem in fact goes on to list 5 more
correspondence principles that concern axioms for relation algebras:

Axiom Corresponding Frame Condition
(2.4) (ϕ • ψ)� = ψ� • ϕ� ∀xyz : Cxyz ⇒ Cr(x)r(z)r(y)
(2.5) ϕ • ¬(ϕ� ∨ ψ)→ ¬ϕ ∀xyz : Cxyz ⇒ Czr(y)x
(2.6) I d → I d � ∀x : I x ⇒ I r(x)
(2.7) I d • ϕ→ ϕ ∀xyz : (I y and Cxyz)⇒ x = z
(2.8) ϕ • (ψ • χ)↔ (ϕ • ψ) • χ ∃x(Cxyz and Cyuv)⇔ ∃w(Cxuw and Cwvz).

van Benthem [5, p. 19] expresses some hesitation about this last axiom, and [6]
does the same, but I think more clearly, or at least more quotably:

Correspondence analysis reveals a natural border line in what is expressed by principles like
the above. Some of them are purely universal, making no demands on the supply of arrows,
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whereas others are existential. The former, rather than the latter, seem to form the true logical
core of any field.

I will say more about this in the last section of the paper.

34.3 Routley and Meyer’s Semantics for Relevance Logic

We will be comparing van Benthem’s arrow logic with the Routley–Meyer semantics
for relevance logic. Routley and Meyer published “Semantics of Entailment I, II, III”
[33–35] in the years 1972 and 1973.6 Routley and Meyer use a frame (K , R, ∗, 0), K
is a set, 0 ∈ K , R ⊆ K 3, and ∗ is a unary operation on K of period two, i.e., for
a ∈ K , a∗∗ = a a is called an “involution.” Routley and Meyer call the members of
K “set ups,” and put various constraints on a frame, but we shall not explore these in
detail now. We do though note that they defined a binary relation a ≤ b7 as R0ab
and gave R properties that assure that ≤ is a quasi-order (reflexive and transitive).

Routley and Meyer assume a basic language that contains the unary connective∼
of De Morgan negation (which is weaker than the Boolean negation ¬ used in arrow
logic), and the binary connectives of conjunction ∧, disjunction ∨, and (relevant)
implication→ . They take a valuation v to be a function that assigns to each pair
(p, a) (p an atomic sentence) a member of {T, F}. From this they inductively define
a function I that assigns to each pair (ϕ, a) (ϕ an arbitrary formula) a member of
{T, F}.

But there is an important restriction. They require the Hereditary Condition on
atomic sentences: if a ≤ b and v(p, a) = T , then v(p, b) = T . It can then be shown
by induction that it extends as well to compound formulas. The Hereditary Condition
is needed to show that v(ϕ→ ϕ, 0) = T . For the sake of a ready comparison to the
clauses for arrow logic above, we assign to each atomic sentence a set V (p) ⊆ K , and
for an arbitrary formula ϕ we write x |= ϕ rather than I (ϕ, x) = T . The Hereditary
Condition then just amounts to requiring that V (p) is a cone, i.e., if a ∈ V (p) and
a ≤ b, then b ∈ V (p).

The Routley–Meyer evaluation clauses can now be stated as follows:

x |= p iff x ∈ V (p)
x |= ∼ ϕ iff not x∗ |= ϕ
x |= ϕ ∧ ψ iff x |= ϕ and x |= ψ
x |= ϕ ∨ ψ iff x |= ϕ or x |= ψ
x |= ϕ→ ψ iff ∀y, z, if Rxyz and y |= ϕ then z |= ψ.

6 And “Semantics of Entailment IV” [36] written in 1972 but published in 1982. As with the
“Kripke semantics,” there were a lot of “competitors” in the early 1970s with essentially the same,
or very similar ideas, including (in alphabetical order) Charlewood, Fine, Gabbay, Maksimova, and
Urquhart. I believe the label “Routley–Meyer” has stuck because of their persistence and skill in
exploring and promoting this framework.
7 They actually use the notation < but because the relation turns out to be reflexive it has become
standard to use ≤.
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There has been some controversy and complaint over the abstract character of the
Routley–Meyer semantics. See [10] and somewhat ironically [3, p. 995], which says:

There appears to be an over-application of the Henkin method in intensional logic, generating
facile possible-worlds semantics. For instance, could it be that the Routley semantics lacks
explanatory power, due to lack of potential falsification?

I do not see the problem with very general mathematical theories, and in fact
the Jónsson-Tarski [19, 20] theory of “Boolean algebras with operators” ends up
having many different applications, some of which they foresaw, e.g., Tarski’s cylin-
dric algebras, and others of which were only seen with hindsight, e.g., the Kripke
semantics for modal logic. Gaggle theory (see [8, 13]) was constructed intentionally
to abstract both the Routley–Meyer semantics and the Kripke semantics (and the
representation theorem for Boolean algebras with operators of [19, 20] so as to give
a very general approach to the semantics of substructural logics (including relevance
logics). And I think, and here is the irony, that van Benthem was careful not to embed
any particular logic into arrow logic. But I completely agree with van Benthem if
he is suggesting that there must be concrete interpretations of the abstract semantics
in order to make the general theory interesting.

One way to view Rxyz is as “relative relative possibility” (the repetition is not a
typo). I in fact suggested this to Routley and Meyer after reading an early draft of
their first paper on the semantics of entailment. They say ([35], p. 206):

Consider a natural English rendering of Kripke’s binary R. x Ry “says that ‘world’ y is
possible relative to world x .” An interesting ternary generalization is to read x Ryz to say
that ‘worlds’ y and z are compossible (better, maybe, compatible) relative to x . (The reading
is suggested by Dunn.)

Another way to view the ternary relation grows out of an early suggestion by Peter
Woodruff that it be interpreted as an indexed set of binary accessibility relations.
We can replace the ternary relation R on a Routley–Meyer frame with a function
assigning to each world x a binary accessibility relation Rx and if we have a multi-
modal logic with a necessity operator �x for each x ∈ K we can define y |=�xϕ iff
∀z(y Rx z ⇒ z |= ϕ). This is very reminiscent of Pratt’s dynamic logic except Pratt
had two types: indices were programs, and worlds were worlds. But here we have
only one type which can play the different roles of indexing the necessity operator
or being a world (evaluation point).

I have more recently exploited Woodruff’s construction as a duality between data
(static) and computation (dynamic). The basic idea is that propositions can be viewed
as either sets of states or as the set of actions these states index. See Dunn [16] for
a general explanation, and [14, 15, 17] for concrete applications. Barwise [1] had
a formally similar idea, which was of two ‘sites’ being connected by a ‘channel.’
He did not rule out the case where channels might also be sites. See Restall [31]
for more on the relationship between Barwise’s channels and the Routley–Meyer
ternary accessibility relation. See [2] for a variety of other interpretations of the
ternary relation.
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34.4 The Obvious Similarities, and Apparent Differences

We start with the frames. Both (A,C, F, I ) and (K , R, ∗, 0) have a non-empty set
A, K and a ternary relation C, R on that set. Both F and ∗ are binary relations—
though the last is a function. But we saw that in a standard arrow frame F is required
to be an involution and can be denoted by the function symbol τ . We shall say
more about that. This leaves I and 0 to correspond to each other. We shall say
more about that too. Perhaps the most striking similarity (and the biggest difference
from the usual Kripke semantics for modal logic) is that both languages have a binary
connective, and both use a ternary frame in the truth clause for the connective, though
of course they use it in different ways.

There are a number of striking differences, both in the logical connectives, and in
the frames. We shall examine these one by one and show, using known results, how
in each case the difference can be reinterpreted so as to not make a difference at all.
Incidentally, when I said “known results” I might have put it more clearly by saying
“scattered results.” In fact I think that there are very few of us who would know all
of the “relevant” literature (pun intended). I was fortunate to have grown up in this
environment, which is one of the reasons that I am writing this paper. I now present
what the American talk show host David Letterman would call his “Top Ten List,”
and in each case provide a “fix.”

Difference 1. van Benthem formulates arrow logic without disjunction, and with
connectives for the material conditional and material equivalence not present in
relevance logic.

Fix 1. ϕ∨ψ can be defined in the usual way as¬(¬ϕ∧¬ψ), and once (Fix 2) we
add Boolean negation to the Routley–Meyer framework the material conditional and
material equivalence can be defined in this expanded language of relevance logic in
the usual way.

A crucial difference of vocabulary has to do with the two kinds of negation. The
van Benthem negation is “Boolean” whereas the Routley–Meyer negation is merely
“De Morgan” and utilizes the famous ∗ operator to do a kind of “bait and switch”
requiring that ϕ be false, not at x , but rather at x∗.

Difference 2. The Routley–Meyer framework is missing a Boolean negation.
Fix 2. Fortunately there is a well-known way to add Boolean negation to relevance

logic. Meyer [26] has shown how to convert an arbitrary one of their models into an
equivalent “Boolean” model. The main trick is to add a new element 0′ and define
a new ∗′ that is like ∗ but with 0′∗′ = 0′, and a new relation R′ that is like R but
requiring R′0′ab iff R′a0′b iff a = b, and also R′ab0′iff a = b∗.We can now add a
Boolean negation ¬ with the evaluation clause

x |= ¬ϕ iff not x |= ϕ .
We still have the Hereditary Condition since ≤ becomes simply =.

Difference 3. The van Benthem framework is missing a De Morgan negation.
Fix 3. Meyer has suggested adding in effect ∗ as a unary connective in relevance

logic, defining x |= �ϕ iff x∗ |= ϕ, remarking that in effect it already exists in
Boolean relevance logic since we can define it as ¬ ∼ ϕ. He then observes that
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De Morgan negation need not be taken as a primitive but can be defined as ∼ ϕ =
¬�ϕ. Star is much like converse, so the same trick allows us to define a De Morgan
negation connective within arrow logic, ∼ ϕ = ¬(ϕ�).

Difference 4. The van Benthem framework is missing a relevant implication
connective.

Fix 4. It has been known since my 1966 dissertation (cf. [12]) that instead of
having→ as primitive, one can instead take as primitive a binary connective ◦ that
I called “cotenability” at the time, but which has since been called “intensional
conjunction” and now most commonly “fusion”.8 One can then define ϕ → ψ =
∼ (ψ◦ ∼ ϕ). One can do the same thing with van Benthem’s • now using the De
Morgan negation we found hidden in his framework with Fix 3. One can add a clause
to the definition of a model that y |= ϕ → ψ iff ∀z, x, if Cxyz and z |= ϕ then
x |= ψ, thus transliterating the Routley–Meyer clause.

Difference 5. The Routley–Meyer framework is missing the • connective.
Fix 5. You guessed it. We can do the reverse of Fix 4 and defineϕ•ψ =∼ (ψ→

∼ ϕ).
Difference 6. Routley–Meyer require that V (p) is a cone whereas van Benthem

does not.
Fix 6. Fix 2 has already taken care of this since it makes the Hereditary Condition

vacuous.
Difference 7. A van Benthem frame contains the binary relation F whereas a

Routley–Meyer frame does not.
Fix 7. Define Fxy iff x∗ = y. It is easy to see that x |=�ϕ iff ∃y such that Fxy

and y |= ϕ, i.e., x∗ = y and y |= ϕ. i.e., x∗ |= ϕ.
Difference 8. A Routley–Meyer frame contains the operator ∗ whereas a van

Benthem frame does not.
Fix 8. This is in fact a real but small difference. As we saw above van Benthem

seems to accept frame conditions which make F an idempotent operation, and these
in effect make F an operation, which he denotes as r. More importantly it is well-
known that the ∗ operator can be replaced with a binary “compatibility” relation (see
[14, 24, 32]). We might as well denote this by F .

Difference 9. An arrow frame has the set I ⊆ K , whereas a Routley–Meyer frame
has only the element 0 ∈ K .

Fix 9. It has also become common to replace the single 0 with a set of
“zeroes” Z .9

Difference 10. The language of arrow logic has a 0-ary connective I d whereas
the language of relevance logic does not.

Fix 10. It has become common to consider relevance logics conservatively
extended by the propositional constant t , which is interpreted as denoting the set Z .

8 In the linear logic community it is “multiplicative conjunction.”
9 I don’t know the when/where/who about how this originated, but I know that for me this was
important in the representation of algebras of relevance logic, because the set Z corresponds to the
identity element. See e.g., [15].
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34.5 Relation to Relation Algebras, or Hindsight
is Better than 20–20 Vision

Dunn [15] contains a representation of relation algebras using Routley–Meyer
frames.10 It appeared in an edited volume in memory of Alonzo Church, which
began as a volume to be published in 1993 in honor of Alonzo Church on the occa-
sion of his 90th birthday. Church was still alive back in 1992 when I turned in my
contribution. I published it informally in the Indiana University Logic Group Preprint
Series [14]. I mention these dates to show that I came up with the representation at
about the same time that van Benthem and Venema were creating arrow logic. They
had similar motivations in wanting to use the language of relation algebras but to
interpret a variable as a set of frame elements, that can then themselves be viewed
as relations. As I said in [15]:

An ideal representation of relation algebras would send the elements into relations, but [22]
has shown that such a representation is impossible. It turns out that we are in one sense close
to such an ideal representation, but we are off a type level. Elements are not carried into
relations, but into sets of relations. … Peter Woodruff suggested early on that the ternary
relation Rαβγ that arises in the Routley–Meyer semantics for relevance logic should be
viewed as an “indexed” binary accessibility relation ... An equivalent idea, with slightly
different metaphysical overtones is to view β as itself a binary relation. More accurately
we view β as something like the Fregean “object correlate” of a binary relation. By thus not
literally identifying β with a set of ordered pairs, but rather thinking of it as determining a
set of ordered pairs, we avoid unnecessary set theoretic problems about what happens when
one has e.g., Rβββ.

In the Introduction of [15] I cited [4] (as well as [29] and [1]) as a kind of advertisement
for relation algebras, saying that they “have received renewed attention in recent years
because of an interest in a more dynamic conception of logic, which incorporates
‘actions’, i.e., relations between states.” But I admit to not having seen the close
connection to arrow logic at the time.

But I want now to explain the relationship between the Routley–Meyer semantics
I adapted for relation algebras, and the arrow-logic approach to relation algebras. I
should mention that my aim was to develop the frames I needed by stages so as to
make clear their relationship to Routley and Meyer’s work. Having this different
motivation led to frame requirements that do not always match the requirements
that van Benthem suggests for an arrow logic valid in relation algebras. But as we
shall see they are equivalent, with one very small difference. The frames I used were
structures (U, R,� , Z). One immediate difference then is that in my representation
of relation algebras I used a unary operator for converse, whereas arrow logic uses
a binary relation instead. But as I suggested above this can be finessed by redoing
the Routley–Meyer semantics with a binary relation of compatibility. In [15] it
was proved that every relation algebra is isomorphic to a relation algebra defined

10 The reader might also want to look at [9, 23, 27] for other relationships between relevance logic
and relation algebras.
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on subsets of an associative assertional frame on which is defined an involution
satisfying tagging and antilogism. I briefly explain the italicized terms:

Definition 34.1 (i) A frame is associative iff ∃x(Rabx and Rxcd)⇔ ∃x(Raxd and
Rbcx). In a notation introduced by Routley–Meyer this is often written as R2(ab)cd
⇔ R2a(bc)d, which makes transparent why such a frame is called associative.
(ii) A frame is assertional iff ∃z ∈ Z(Rzab) iff a = b iff ∃z ∈ Z(Razb).
(iii) An involution is a unary operation on U such that for all a ∈ U, a�� = a.
(iv) An involution satisfies tagging iff Rabc⇒ Rb�a�c�.
(v) And finally an involution satisfies antilogism iff Rabc⇔ Rc�ab�.

Theorem 34.1 Relation algebra frames satisfying conditions (i)–(v) as defined
above are equivalent to arrow frames satisfying van Benthem’s conditions (2.1–2.8)
plus ∃z(I z and Cxzx).

Proof The proof will take up the rest of this section. There are some small but notable
differences between these frame conditions and those of van Benthem listed above.
We have already discussed how van Benthem’s (2.3) is equivalent to taking � to be
an involution. And it is an easy “transliteration” to see that Associativity is the same
as van Benthem’s frame condition (2.8), and that Tagging is the same as his frame
condition (2.4).

So we are left with his frame conditions (2.5–2.7).
(2.5) Cxyz ⇒ Czr(y)x transliterates with Ryzx ⇒ Ry�xz. This last can

be shown using first Tagging, and then Antilogism/Involution: Ryzx implies
Rz�y�x� implies Ry�xz.

(2.6) I x ⇒ I r(x) transliterates as z ∈ Z ⇒ z� ∈ Z . Assume z ∈ Z . Since
z = z, it follows from the Routley–Meyer frame being Assertional that ∃i ∈ Z , Rizz.
By Tagging, Rz�i�z�, and then by Antilogism (and Involution) Rzz�i . So since
the frame is Assertional, z� = i ∈ Z .

(2.7) (I y and Cxyz) ⇒ x = z. This transliterates with (y ∈ Z and Ryzx) ⇒
x = z. This clearly follows from a frame being Assertional.

We have thus obtained (after transliteration) all of the arrow frame conditions
(2.1–2.8) from the Routley–Meyer relation algebra frame conditions (i)–(v). But
now what about the reverse? We can assume from what has been said already that
(i), (iii), and (iv) are taken care of.

We still have to consider (ii). There are really 4 parts to a frame being Assertional:

(1) ∃z ∈ Z(Rzab)⇒ a = b
(2) ∃z ∈ Z(Razb)⇒ a = b
(3) a = b⇒ ∃z ∈ Z(Rzab), or equivalently (3′) ∃z ∈ Z(Rzaa)
(4) a = b⇒ ∃z ∈ Z(Razb), or equivalently (4′) ∃z ∈ Z(Raza)

It is easy to show that we can do with just (1) and (3). We show that (1) implies
(2). Suppose Razb with z ∈ Z .By Tagging we get Rz�a�b�. But we have already
showed that Z is closed under converse, and so by (1) a� = b�, and so by (1)
a = b. We next show that (4′) follows from (3′). If (3′), then as a special case we



34 Arrows Pointing at Arrows 891

have ∃z ∈ Z , Rza�a� then by Tagging (and Involution) Raz�a. But since Z is
closed under converse z� is the desired member of Z .

As already noted, (1) is essentially the same as the transliteration of (2.7) (change
x = z to z = x), and we have shown that (2) follows from (1).

But what about (3) and (4)? We have also shown that (3) implies (4). But
there seems to be no way to derive (3) or (4) from transliterations of the arrow frame
conditions (2.1–2.8). And when one looks at the axiom I d •ϕ→ ϕ that corresponds
to (2.7) one sees immediately why. There is just→ and not↔. The converse axiom
ϕ→ I d • ϕ is also true of relation algebras, and it requires ∃z ∈ Z(Rzaa), which
can easily be seen to be equivalent to (3). It seems that van Benthem was perhaps just
giving the flavor of the frame conditions that correspond to the axioms of a relation
algebra, rather than giving the complete list.11 Venema [37] is explicit about giving
a complete list, and does have the transliteration of (3’).

We next tackle (v) and show that Antilogism can be derived from (2.5). We must
show Rabc ⇔ Rc�ab�. Left to right: (2.5) says Rabc implies Ra�cb, but then
by Tagging and Involution Rc�ab�. Right to left: Tagging (with Involution) says
that Rc�ab� implies Ra�cb, and (2.5) says that this last implies Rabc.

Remark Define Ri = {(x, y) : Rxiy}. [14, 15] points out that this can be seen as
giving a derivative representation where the subsets I of the a frame are interpreted as
sets of relations, i.e., relational databases. The operations are interpreted as operations
on such databases. Complement, meet, and join are just the corresponding operations
on sets (as with Stone’s representation of a Boolean algebra), and converse and
roughly speaking relative product are interpreted pointwise in terms of the concrete
relations of converse and relative product on the concrete relations Ri . The reader
is referred to [14, 15] for details. The only tricky part is that the sets of relations
{Ri }i∈I are required to be closed downward under inclusion, so if i ∈ I and R ⊆ Ri

then ∃ j ∈ I such R = R j . This works out OK with converse but we must build it
into “relative product.”

34.6 Conclusion

van Benthem was wise in urging that there are various interpretations of abstract
arrow models. The same is true of Routley–Meyer frames, though the aim of their
first implementation was to give a semantics for relevant logic. van Benthem was
rightly conservative in associating any particular postulates with arrow logic, whereas
Routley–Meyer were targeted on frames that gave completeness theorems for the
relevance logic R of relevant implication and E of entailment (though they also
studied frame requirements for related logics). We have explored transliterating the
respective frames and the models on them. Once one gets used to the transliterations,
the main differences between the frames for the relevance logic R and the frames for

11 He is also missing the frame conditions (2) and (4) corresponding to ϕ↔ ϕ • I d, but that is ok
since as we have seen (2) follows from (1), and (4) from (2). This axiom is in fact redundant in
relation algebras.
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relation algebras have to do with the fact that unlike the frames for relation algebras,
R requires Raaa (Total Reflexivity) and Rabc⇒ Rbac (Commutativity), whereas
on the other side the relation algebra frames require Rabc⇒ Rb�a�c� (Tagging),
which is not a requirement on a Routley–Meyer frame for R. But by taking a couple
of steps forward in terms of requirements on an arrow frame, and a couple of steps
backwards on the requirements on a Routley–Meyer frame, we have made them meet
in the middle.

This answers a question implicitly left open by van Benthem. The question is: can
we represent relation algebras using arrow frames? This question was not explicitly
stated, but is clearly suggested by his giving correspondences between various axioms
of relation algebras and requirements on an arrow frame. By our transliterations
above we have shown that the answer is yes if we only add ∃z(I z&Cxzx)—the
transliteration of ∃z ∈ Z , Rzxx . The proof requires showing the existence of a
maximal filter, and van Benthem’s preference for universally quantified formulas
(no existential quantifiers) explains his reluctance to deal with postulates such as
this.12 The existence of such maximal filters is also required for Associativity, and it
is made clear in [15] how the “Squeeze Lemma” implicit in Routley–Meyer (see [12]),
makes more or less automatic the fulfillment of postulates such as these (including
Associativity).
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Chapter 35
Situation Theory Reconsidered

Jeremy Seligman

Abstract We recall a largely forgotten intellectual project: that of providing a formal
theory of situations that does justice to informal ideas about situations and informa-
tion flow with the ‘situation theory’ community of the late 1980s and early 1990s.
Instead of defending specific desiderata, and in the spirit of Barwise’s ‘Branch
Points’, we record some difficulties that defined the project by posing a series of
twelve questions. Drawing on the theory of channels and information flow (Barwise
and Seligman, late 1990s), with some modifications and extensions, we provide a
version of situation theory that answers some of these questions. One of the main
extensions is to allow probabilistic constraints. We also consider a more recent pro-
posal by van Benthem to capture many of situation theory’s insights using a modal
logic closely related to dependency logic and use this as an alternative but comparable
way of answering our questions.

Zuang Zhou was wandering when he saw a peculiar kind of magpie. ‘What kind of bird is
that!’ he exclaimed. ‘Its wings are enormous but they get it nowhere; its eyes are huge but
it can’t even see where it’s going!’ Then he hitched up his robe, strode forward, cocked his
crossbow and prepared to take aim. As he did so, he spied a cicada that had found a lovely
spot of shade. Behind it, a praying mantis, stretching forth its claws, prepared to snatch the
cicada. The peculiar magpie was close behind, ready to make off with the praying mantis.
Zhuang Zhou, shuddering at the sight, said, ‘Ah! - things do nothing but make trouble for
each other—one creature calling down disaster on another!’ He threw down his crossbow,
turned about and hurried from the park, but the park keeper [taking him for a poacher] raced
after him with shouts of accusation. ‘Mountain Tree’ Zhuangzi1

In the late 1980s and early 1990s, at the time I was a graduate student, a research
project out of Stanford, specifically the newly created Centre of Studies in Language
and Information (CSLI), inspired and promoted by Jon Barwise and John Perry,

1 The translation from this third century B.C. Chinese text is abridged with modifications from
Thesaurus Linguae Sericae http://tls.uni-hd.de/home_en.lasso
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created a minor whirlpool of intellectual excitement that influenced me greatly and
many of my peers. The project was that of Situation Theory: the attempt to provide a
formal theory of information based on the concept of a ‘situation’. The above quota-
tion captures for me the essential insight that lay behind this work: when reasoning
and acting in the world we do so within a limited context; when we change perspec-
tive different information is available and this makes a significant difference. Our
conceptual boundaries can always be expanded, or even contracted, and since logic,
inference and rational activity in general takes place within a conceptually bounded
space, an appreciation of the fragility and versatility of our concepts is essential for
an understanding of the capacity and application of reason.

van Benthem has had a persistent interest in the continuation of these ideas, has
written on the subject on several occasions [13–15] and has prompted me, on many
occasions, to do more to represent this line of thought to a wider community. I have
not succeeded to meet his expectations, partly because my own interests have shifted,
to some extent, but mostly because it is very hard. ‘Situation Theory’ (henceforth: ST)
is somewhat of a misnomer. There never was a theory in any very precise sense of the
word, only a more-or-less shared idea about what such as theory should achieve—a
vague set of desiderata together with a conviction that there should be nothing vague
about it. ST should provide a set of conceptual primitives on the basis of which the
older absolute metaphysics and theory of language and logic, would be replaced
by an alternative that took seriously the essential role that context, or ‘situatedness’
plays in our thinking. Jon Barwise, in particular, had a vision of ST in which ‘theory’
should be understood in the sense of ‘set theory’. It would serve as a foundation
for the information sciences in the way that set theory serves as a foundation for
mathematics.

Yet there was also a revisionary aspect to the project. At the time the dominant
approaches to providing a systematic semantic theory were those of Donald Davidson
(mostly within the philosophical community) and Richard Montague (within the
logico-linguistic community). While differing in important philosophical details,
these approaches shared a global perspective on language and its relationship to
non-linguistic reality, in which ‘reference’ and ‘truth’ play a central role. Language
refers to certain aspects of reality in a largely context-independent way, allowing us
to describe it truly or falsely, and logic is a matter of monitoring which inferences
are sure to be truth-preserving, notwithstanding a serious interest in context by such
philosophers as David Kaplan and John Perry, who drew our attention to those aspects
of language, such as demonstratives and indexicals, that depend essentially on the
context of use. The ST project aimed to push these insights further, inserting context
into the picture at every point. Reference occurs in and is influenced by contextual
factors, and what we take to be true descriptions are never true simplicter but true
about some specific part of reality.2 Or to put it in the jargon of the time, the concepts

2 John Barwise later came to associate this essential aboutness of descriptive language with the
views of the English philosopher J. Austin, expressed mostly clearly in [3] and called the resulting
notion of proposition ‘austinian’. This was an essential ingredient of Barwise and Etchemendy’s
account on the Liar Paradox in [8].
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of reference and truth need to be ‘situated’. So, instead of propositions, which are
true or false by definition, the focus of situation theory should be ‘infons’—units of
information - that may or may not be ‘supported’ by small parts of the world, known as
‘situations’. Likewise, in place of universally valid laws of logic and natural science,
ST aimed to make a place for ‘constraints’ that held locally but not necessarily
everywhere. Even the basic division of the world into objects, properties and relations,
was taken to be relative to a ‘scheme of individuation’ - something that we impose
on the world—allowing for different ways of doing this.

There were several fully articulated theories that made some progress towards
this goal. Perhaps the most well-known is the use of non-well-founded set theory,
as developed by Peter Aczel [1] and others, to model situations as sets of ‘infons’:
the basic units of information. The locality of a situation is thereby understood
in a purely informational sense: the information supported by a situation is just the
information it contains, and its identity is determined extensionally: distinct situations
are distinguished by supporting different infons. The use of a universe of sets as a
general modelling tool and, in particular, the use of the∈ relation to represent a ‘part’
or ‘component’ is unsurprising; the innovation here was to extend this representation
of parts to allow for circularity. This enabled Barwise and Etchemendy, in [8], to
give a very smooth situation-theoretic account of The Liar and other self-referential
propositions. This was extended by Aczel, Lunnon and others [2, 21, 28] to a theory of
‘structure objects’ in which the relation of membership from set theory is generalised
to that of a structural component, with associated operators for substitution and
abstraction. The focus of the structured-object models of situation theory (henceforth:
SOST) was on the provision of a highly ‘intensional’ account of situations, infons,
propositions and properties, in which syntactic structure is mirrored in the semantics,
allowing for very precise control over identities, such as whether or not the infon
that a = b is the same as the infon that b = a. As such, it was a victim of its own
success. There were simply too many choices to be made, and little sense of having
reached explanatory bedrock.

For me, another weakness of the SOST models was that they ignored what I
find to be the most interesting part of the project: to account for the role of different
representational perspectives in our reasoning and how shifting from one perspective
to another opens up new vistas. For this one needs some story about how information
in very different systems of representation can be related. A central example for
researchers at the time, which has been pursued in great depth subsequently, is the
relationship between diagrammatic and sentential reasoning. When we represent
information diagrammatically, certain inferences are more easily made; others are
more difficult. Likewise, the significance of signs (natural and artificial) depends
on their particular context. A pile of stones on the bank of a river indicates where
it is safe to ford; smoke rising from some point on the horizon means that there is
a fire there. The provision of a systematic account of such regularities was also a
desideratum of the situation theory project but was overlooked in the SOST models.

All of this was motivation for the development of the theory of classification
and channels in [12], in which Barwise and I attempted to provide an account of
information flow that is more or less independent of an account of information con-
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tent. van Benthem, in [13], makes a useful distinction that will help to make this
point clearer. The defining feature of information-as-range is the elimination of
possibilities. When you pick a card from a pack without showing it to me, I know
only that it is one of 54 possible cards. If I then learn that it is red, this number is
cut in half. The information that I have gained can be identified with this reduction
of possibilities. Identifying the informational content of a sign with the range of
possibilities consistent with it was the approach taken by Bar-Hillel and Carnap in
their seminal [4]. It is also implicit in the Tarskian approach to semantics and the
ubiquitous concept of a ‘Californian proposition’: a set of possible worlds.

Information-as-range is to be distinguished from information-as-correlation, the
second of van Benthem’s categories, according to which the informational content of
an event is given by other events with which it is correlated. The mercury aligned with
‘70◦’ on the thermometer indicates that the air temperature is 70◦F because of the
correlation between the temperature and the height of the mercury. The correlation,
in this case, is due to certain laws of natural science, the particular construction of
the thermometer with its helpful gradations, the physical proximity of the mercury
bulb to the surrounding air, the relative kinetic stability of the air, the origin of the
instrument (America, where the Fahrenheit scale is commonly used) and many other
contingencies. In situation theoretic parlance, the correlation is due to a ‘constraint’
that holds in the situation being described. Science typically studied correlations
from a probabilistic or statistical point of view. This is considered in Sect. 35.2.5,
below.

From a slightly more abstract perspective, we can see that information-as-range
occurs wherever there is a classification of things into types. By knowing the type or
types of an unknown thing, or ‘token’, one has some, albeit incomplete, information
by having eliminated those other things that are not of the same type. Information-as-
correlation occurs when there is a systematic relationship between things of different
types. In [12] this is captured by the concept of a ‘channel’, in which the types and
tokens of one classification are related to those of another. The theory of classification
and channels from [12] is therefore very much in alignment with van Benthem’s
distinction.

Yet despite these thematic connections and a number of common examples, much
was left unsaid about the relationship between [12] and the earlier project of situa-
tion theory. This paper will explore some more explicit connections in more detail,
including an elaboration of van Benthem’s approach as an alternative interpretation
of ST.

35.1 Twelve Questions About Situation Theory

Situation theory begins with the idea that reality is composed of situations which
differ in the information they support. The smallest unit of information is called an
infon, which is the situation theoretic analogue of an atomic proposition. From the
very start, it is worth noting that situations, as constituents of reality, most naturally
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fall within the scope of metaphysics, whereas the issue of what information they
do or do not support is at least partly epistemological. The development of the
theory is characterised by conflicting intuitions from these two traditional domains
of philosophy. We write

s |= σ

to mean that situation s supports infon σ. For example, suppose σ is the information
that I am typing. This is supported by the situation s that I am currently part of,
or rather one such situation because I participate in many simultaneously, some of
which contain others. We write

s � t

to mean that situation s is part of situation t, taking this to be a partial order (reflexive,
transitive and antisymmetric). Situations are subject to certain constraints that bind
together infons more or less strongly. Given infons σ and τ , we write

σ ⇒ τ

for the constraint that σ involves τ . For example, the constraint

〈〈I am typing slowly〉〉 ⇒ 〈〈I am typing〉〉

would relate situations supporting the antecedent infon to those supporting the con-
sequent infon quite strongly, whereas the constraint

〈〈I am typing ‘slowly’〉〉 ⇒ 〈〈you are reading ‘slowly’〉〉

is a little more tenuous. The relationship between the three relations �, |= and⇒
raises a number of questions, none of which were answered definitively by the early
pioneers of ST.

35.1.1 Parts and Persistence

Question 1 Do situations support all the information supported by their parts?3

A positive answer to this question amounts to acceptance of the following principle:

Persistence : if s � t and s |= σ then t |= σ.

Resistance to Persistence comes from two sources. Firstly, if one takes ‘support’ in
something like the ordinary epistemic sense, then it is surely defeasible. The infon

3 Considered by Barwise in [6] as Choice 6.



900 J. Seligman

〈〈Emily ate the last cookie〉〉 may be supported by a situation in the kitchen with
biscuit crumbs, a red-faced girl and an empty cookie jar, but may no longer be
supported by a larger situation, including her brother hiding in the pantry. Secondly,
even setting aside issues of defeasibility, certain kinds of information do not seem to
persists at all. The infon 〈〈everyone is dancing〉〉 may be supported by a situation at
my Greek friend’s wedding but not by a larger situation that includes the activities
of, say, the whole human population at the time of the wedding.4 A defence of
Persistence against the first problem is available to those holding a firmly realist
interpretation of ‘support’ who can insist that the situation in the kitchen, no matter
what the weight of evidence, does not support the infon 〈〈Emily ate the last cookie〉〉
because Emily did not eat it. This interpretation was favoured by Barwise and Perry
from [9] on. To defend Persistence against the second problem requires that the
information that everyone is dancing in the two situations cannot be the same infon,
the hidden ambiguity is a consequence of the change of meaning of ‘everyone’ in the
two cases. There are a number of ways of implementing this idea. We could include
the situation explicitly in the infon, so that 〈〈everyones is dancing〉〉 is the information
that everyone is dancing in s. The connection between 〈〈everyones is dancing〉〉 and
〈〈everyonet is dancing〉〉 would then need to be explained, perhaps by a constraint:
〈〈everyones is dancing〉〉 ⇒ 〈〈everyonet is dancing〉〉when t � s (but not vice versa).5

Persistence can also be expressed in terms of the ‘information containment’ order,
defined as s � t iff for all infons σ, if s |= σ then t |= σ. With this, Persistence is
the requirement that each part of a situation is informationally contained within it:
that � implies �.

Question 2 Can different situations support exactly the same infons?

A negative answer amounts to acceptance of the following principle:

Extensionality : s = t if for everyσ, s |= σ iff t |= σ.

As its namesake in set theory suggests, the principle allows us to model a situation by
the set of infons it supports. It is implied by Persistence together with its converse,
which would then also permit modelling � as the subset relation. Such models
became the main focus of attempts to develop a theory of situations in the late
1980s and early1990s. Perhaps surprisingly, Extensionality is not the last word on
the identity of situations. The existence of situations that support information about
themselves, such as the above-mentioned 〈〈everyones is dancing〉〉 raises a problem:

4 Persistence is studied in classical model theory as the question of which formulas are satisfied in
a model whenever they are satisfied in a submodel.
5 Alternatively, we could include a ‘parameter’ dom for the domain of quantification to give a
parametric infon 〈〈everyonedom is dancing〉〉, allowing the value of the parameter to be ‘anchored’
in the context of a particular situation. Then s supports this infon iff it supports that everyone
in dom[s] is dancing, where dom[s] is a set of individuals anchored to dom by s. This would
allow persistence to hold for non-parametric infons but fail for parametric ones. Of course, one
could also make similar a distinction between logically simple infons and complex ones, involving
quantification, with varying persistence properties. These and other ideas were explored at the time.
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if this is the only infon that s supports, and moreover, there is a situation t that only
supports 〈〈everyonet is dancing〉〉. Then both s = t and s �= t are compatible with
Extensionality.6

A negative to Question 2 implies that there is something more to the individuation
of situations than merely the infons they support. One motivation for thinking this
is to allow for different representational perspectives, or ‘schemes of individuation’,
discussed most explicitly by Barwise in [7] and one of the main motivations for
our [12]. Given that information presupposes a dividing-up of the world into types,
objects, properties, and other ontological paraphernalia, there is at least the possibility
that any one way of doing this is inadequate in some respects, perhaps even incoherent
if extended beyond its normal area of application.7 So if the infons are supplied by
a particular representational perspective, but the situations and their division into
parts transcends this perspective, one would not expect the � and � orders to line
up perfectly.8

There are many more questions one could pose about the mereology of situations,
which we will just summarise briefly as follows:

Question 3 What is the mereology of situations? Is there a largest situation? Is there
a smallest one? Given any two situations, must there be a third that contains them
both as parts? Or are there incompatible situations, which are not part of any common
situation? If so, how can we interpret such incompatibility?

Instead of charting the many possible answers, let us distinguish two. On an
actualist view of situations, the only situations that exist are the ones that make up

6 The move to non-well-founded set theory is motivated by such considerations. If a situation s is
modelled as the set of infons it supports and if those infons are modelled also as sets in such a way
that the things they are about occur as hereditary members, related to the infon by the transitive
closure ∈∗ of the membership relation, then we have that s ∈∗ 〈〈everyones is dancing〉〉 ∈ s and so
a counterexample to the well-foundedness of ∈. This can easily be avoided, as pointed out by Paul
King [20] and others, by choosing to model the component structure of infons in a way that does not
require them to be hereditary members, but such a sidestep doesn’t really help. The more important
issue concerning the identity of situations, mentioned above, is independent of the way in which
they are modelled. Nonetheless, the study of non-well-foundedness reveals various solutions in the
form of strengthened principles of individuation, such as Peter Aczel’s Anti-foundation Axiom in
[1], which was subsequently used to obtain the SOST models of situation theory mentioned in the
introduction.
7 Barwise gives the example of the Cantorian conception of set. A more quotidian example is
our system of directions: up, down, left, right. When extended around the surface of the earth,
incoherence is less than a hemisphere away. See Gupta [18]. Schemes will be discussed more in
Sect. 35.1.3, below.
8 A line of reasoning that purports to undermine this attempt at conceptual relativism goes as
follows. In making the objection to identifying � and � explicit we reveal its rather awkward
presupposition: that situations are individuated and even ordered in a way that is independent of
any scheme of individuation. This smacks of blind faith or incoherence. Yet this attack can be
undermined by considering that the way of individuating situations and ordering them into parts
need only be different from the way presupposed by |= and�. When considering multiple schemes
of individuation one would have to distinguish between multiple � relations. Then the distinction
between � and� is just that of the ordering given by two schemes: an internal one and an external
one.
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the actual world, not those that might have existed or ones that we imagine in works
of fiction. On this view, it is difficult if not impossible to make sense of incompatible
situations. Yet, there need not be a largest situation. The view of the world as open-
ended, allowing ever bigger situations without limit is one that is familiar, by analogy
with the universe of sets, and which forms the basis of Barwise’s and Etchemendy’s
solution to the Liar paradox in [8].

On a possibilist view of situations, there is no sharp distinction drawn between
situations that are part of the actual world and those that are not. Rather, actuality is an
indexical notion, just as it is in David Lewis’ metaphysics of possible worlds. On this
view, there are many incompatible situations, corresponding to different eventualities,
and so no largest situation. There may be (many) maximal situations: situations that
are not part of any larger situation. These could be thought of as different possible
worlds, although, as on the actualist view, such maximal situations are not required.
Without maximal situations we would have a universe of possibilia without possible
worlds. With a possibilist view of situations one can of course provide a reductionist
account of necessity, as is done by Lewis and others with possible worlds, and this
may be considered the principle motivation for the view.

35.1.2 Constraints and Information Flow

Some of the tension created by Persistence and its converse was relieved by dis-
tinguishing between information supported by a situation and information that is
‘carried’ by means of constraints. We have already seen the example of the con-
straint between my typing slowly and my typing: if I am doing one then I must be
doing the other. This is represented by the constraint

〈〈I am typing slowly〉〉 ⇒ 〈〈I am typing〉〉

Yet the issue of how this constraint is related to the support of infons by situations
is vexed. We will talk of a constraint ‘holding’ at or of a situation to mean that
the constraint applies there. If the constraint σ ⇒ τ holds in situation s, which also
supports the infon σ, then infon τ is said to be carried by s. Here we are presupposing
that information carried by a situation (about another situation) is somehow explicitly
indicated by a constraint, but it is helpful to frame this as a question, thus:

Question 4 Is all information carried by a situation indicated by a constraint? In
other words, if a situation s carries the information τ about situation t, must there
be a constraint σ ⇒ τ such that s |= σ with the appropriate relationship between s
and t?

We write s |=t τ to mean that situation s carries the information τ about situation t,
and σ⇒

s,t
τ to mean that the constraint σ ⇒ τ relates situations s to t. Then a positive

answer to Question 4 is given by the principle:
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Indication : s |=t τ iff there is aσ such that s |= σ andσ⇒
s,t
τ

But the definition of carrying invites another obvious question:

Question 5 Is information that is carried by a situation also supported by it?

In the case of our example of typing slowly a positive answer is attractive. One can-
not type slowly without typing and so, any situation in which there is some slow
typing going on is also a situation in which there is some typing. More generally,
constraints of this kind capture the internal logic of the infons themselves, indepen-
dent of contingencies and context, and without offering a firm definition, we can
call them analytic constraints. We will use σ⇒

s
τ to mean that σ ⇒ τ is an analytic

constraint that holds in situation s. So a positive answer to Question 5 for analytic
constraints therefore amounts to the principle:

Analytic Involvement : if s |= σ andσ⇒
s
τ then s |= τ

It is less clear that information carried by virtue of the inferences of classical logic are
also supported by a situation. One central reason for denying this is the assumption
that situations have bounded subject matter. The situation of my typing on my laptop
has nothing to do with events in China in 223 B.C.E. so it would be strange indeed for
it to support the information that the assassin Jing Ke either did or did not succeed in
killing the king of Qin. But it is not only irrelevant tautologies that are problematic.
My typing slowly also entails that I am typing either slowly or fast, and even that
either I or you are typing. But it would be odd to insists that the situation that involves
my typing must also include facts about you.9 Since the ST’s origins in Barwise’s
treatment of the naked infinitives [5], partial logic has been a close ally. Yet, no
definitive answer as to the rules of such a logic has been given.

So, when asked about constraints in general, Question 5 should be answered
negatively. Indeed, the distinction between information supported and information
carried is a central tenet of situation theory, and its consequence is information flow
between situations. The constraint that my typing the word ‘slowly’ involves your
reading the same word relates two situations: one situation s in which I am typing
and a geographically and temporally remote situation t in which you are reading.
The holding of this constraint requires that if s supports 〈〈I am typing ‘slowly’〉〉 then
t supports 〈〈you are reading ‘slowly’〉〉. Information about t is carried by s, by virtue
of some sort of informational connection between the two situations. This is the
phenomenon van Benthem calls ‘information as correlation’, which is captured by
the principle:

Involvement : if s |= σ andσ⇒
s,t
τ then t |= τ

9 This sort of observation led to some parallels between research on situation theory and relevant
logic, summarisd in [22].
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Involvement follows from Carrying, as does Analytic Involvement, if in addition we
accept the reduction of one to the other:

Analytic Reduction : σ⇒
s
τ iffσ⇒

s,s
τ

To get some purchase on these principles, situation theorists aimed to understand not
only the abstract properties of constraints but also the metaphysics needed to under-
write them. As they involve some sort of conditional relationship between infons,
an obvious place to look is the possible-worlds semantics for conditions developed
by Lewis and others. But ST was ideologically opposed to possible worlds, wanting
an account closer to home, by appealing to the basic concepts of the theory: situa-
tions, infons and support.10 In searching for an answer, the earlier situation theorists
were inspired by classical information theory, as introduced by Claude Shannon,
and appealed to the concept of a communication channel between the two situations.
Such a channel is not a matter of logic or anything to do with the information content
as such, but is rather a contingent correlation between two situations, by which an
agent with access to one situation may thereby gain information about the other. The
most fundamental question left open by early work in ST is the following:

Question 6 What is a channel? How are channels related to constraints? And what
is the consequence for the relationship between information carried and information
supported?

A rough answer is that a channel provides a connection between two situations
s and t that somehow underwrites constraints so that they obey the Involvement
principle. An agent who is ‘attuned’ to the constraint can thereby gain information
about one situation from information accessed at another.11 There is an apparent
ambiguity in talk of channels, between a passive understanding, whereby a channel
is an abstraction from the telegraph wire that links a sender to a receiver, which is
a precondition for communication between them, and a more active understanding,
whereby a channel is an abstraction of the message-sending activity than occurs in
those wires. We will try to stick to the latter interpretation, recognising that the former
is a part of it.

Channels, in the latter, more inclusive sense, were also the focus of Fred Dretske’s
more-or-less simultaneous attempt to naturalise epistemology in [16] which took
channels to form part of the natural fabric of the world, created by ordinary nomic
dependancies. Agents exploit these channels to gain information about the world
around them and so to act in advantageous ways. Many of his examples are about
microorganisms that show an astonishing ability to use the natural regularities of
their environment to do things that one might otherwise have thought involve repre-
sentation and inference.

10 van Benthem’s account, to be discussed in Sect. 35.3.3 has this flavour.
11 Such talk of information access and processing was commonplace in discussions of situation
theory at the time but never made formally precise. A good discussion is by Israel and Perry in [19].
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Crucial to Dretske’s project were two properties of channels. Firstly, that informa-
tion does not degrade: that if a situation carries the information that σ and this in turn
carries the information that τ , then the original situation also carries the information
that τ . This he called the Xerox Principle. There are various ways of implementing
or violating this idea in situation theory, depending on whether this is taken to be a
principle about the existence of channels or of their reliability.

Question 7 If a channel connects s to t and another channel connects t to u, then is
there a channel that connects s to u? And if so, what constraints does it licence? In
particular, does σ⇒

s,u
υ follow from σ⇒

s,t
τ and τ⇒

t,u
υ?

The second property of channels, is that they may in fact fail. Error is possible.
Dretske likens the carrying of information to other concepts that are both absolute, in
the sense of not admitting degrees, but also depend on some presupposed standard.
His example is the concept ‘flat’ which implies that there are no deviations from the
level: no ‘bumps’. Of course every real surface, however flat, still has bumps when
looked at closely, which is to say that whether or not a surface is flat depends on how
closely you look. What varies is what counts as a ‘bump’ ([17], p. 366).

Struggling to deal with these two properties of channels and information flow led
to my work with Barwise, especially [10–12], in which we considered various mod-
els for channels that accounted for the Xerox principle and yet also the possibility of
error. As a stop-gap in the development of the theory, many early situation theorists
appealed to the concept of a ‘background condition’, borrowed from experimental
science, in which one expects observations to conform to the predictions of a certain
law only when the conditions of the experiment are controlled to ensure that other
factors that may influence the experiment are controlled. For example, an experi-
menter may try to ensure that the laboratory is at a constant temperature throughout
the experiment, or that it is conducted in a vacuum.

We will adopt the notation [B]σ⇒ τ for a constraint that depends on a background
condition B, without settling the matter as to what such a condition is, and merely
state our final question about constraints and channels:

Question 8 Can channels fail and if so how? How, if at all, is this dependent on the
satisfaction of a ‘background condition’?

35.1.3 Infons and Schemes of Individuation

The mainstay of research in situation theory left most of the questions we have
considered to one side and focussed on developing the theory as a viable tool for
formal semantics and other applications. This required a more detailed account of the
structure of infons. The ontology most commonly used was similar, if not identical
to that used in standard mathematical logic. One starts with a stock of individuals
and relations and uses these to construct basic infons of a positive and negative type.
For example, given a relation r and suitable objects a and b, we have the basic infons
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〈〈r, a, b;+〉〉 and 〈〈r, a, b;−〉〉

meaning that a does stand in relation r to b and, respectively, that it does not. The
two infons are said to have polarity+ and− respectively, and infons that only differ
in their polarity are said to be dual to each other.

Question 9 Can a situation support both an infon and its dual? Can it support neither?

Situation theorists were more or less in agreement on this one. Situations may support
neither an infon nor its dual, but cannot support both. An explanation for this is that the
notion of ‘support’ has a hidden modality: to say that s |= 〈〈I am typing;+〉〉 is to say
that, given how things are in s, I must be typing, and to say that s |= 〈〈I am typing;−〉〉
is to say that, given how things are in s, I cannot be typing. The failure of s to support
either infon of the pair is simply a result of the lack of information in s to determine
which is the case; but to suppose that s supports both is an outright contradiction.12 Yet
the force of these modalities is similar to that of the ‘analytic constraints’ considered
in the last subsection. And this raises the prospect that behind talk of polarities,
constraints of some kind play a role.

Many other more complicated ways of constructing infons were discussed in the
literature, resulting in a rich ontology of types, roles, abstract objects, and other
paraphernalia. But similar such complications need to be introduced in any theory
aiming to provide a useful tool to linguists or other semanticists wanting to express
subtle grammatical and logical distinctions. These will not be the focus of this paper
and so I will just package them in the following rather open-ended question:

Question 10 Are there general ways of combining infons into more complex infons?
How is the structure of such compounds related to the constraints in which they
participate? (In particular: are there negations and disjunctions of infons, quantified
infons, etc. and what logic do they have?)

Information arises whenever there is some classification of things into different
types: these are in and those are out. This was the basis of Carnap and Bar-Hillel’s
early discussion of information in the ‘semantic’ sense in [4]. With the logical atomist
world of objects, properties and relations, it is an easy step to identify information
content with a set of possible configurations of those parts. Carnap did this with ‘state
descriptions’: conjunctions of atomic propositions or their negations, one for each
atomic proposition. For him, the content of some piece of information was the set of
state descriptions compatible with the information itself: ‘information-as-range’, in
van Benthem’s phrase. A drawback of this approach is that it assumes some particular
division of the world into objects, properties and relations and uses this to interpret all
others. Setting aside the question of how we arrive at such a fundamental ontology,
there are worries as to whether this best reflects the wide variety of representational

12 By ‘outright’ contradiction, I mean a contradiction in the metalanguage, in which we are explain-
ing what ‘support’ means. However attractive impossible situations might be to someone of para-
consistent leanings, he or she must therefore come up with a different explanation for ‘supports’,
at least when talking to a classical logician.
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means of conveying information. Much of the information we process in daily life
is not obviously in this form, and there is even some doubt as to whether the objects
and properties we spend much of our time worrying about can meet the demands
of logic.13 We freely exchange information in the form of loosely worded remarks
that resist being pinned down to propositional form and even with quite different
forms of representation, such as diagrams, gestures and the like. Furthermore, if
information-processing is taken to be present in all forms of life, and even non-life,
as Dretske’s examples suggest, we must be considerably more liberal in what counts
as information content.

Thoughts in this direction led early situation theorist to propose that situations
and infons are relative to a ‘scheme of individuation’. The central insight was that
the world and those who interact with it enter into a collaboration when it comes
to the production of information. The same situation can be seen from different
perspectives, using different conceptual, or rather ‘informational’ resources, and yet
when those resources are applied, the facts are determined one way or the other. To
say that information is supported is to presuppose one of those perspectives, but this
should not thereby exclude others or require that they be interpretable using present
resources. Contemporary logicians are familiar with the idea that a language is just
something one concocts on the fly to model a particular scenario. We have come a
long way from the ‘universal science’ of Carnap and now distance ourselves from the
project of producing a universal language. Yet there is still a reluctance to address the
consequences of this humility for the relationship between logic and metaphysics.

Question 11 What, then, is a ‘scheme of individuation’? Can one situation be
‘viewed’ from the perspective of more than one scheme?

Barwise provided one answer to this question in [7], p. 252, by associating each
situation with its own set of objects and relations, and consequently infons, which it
may or may not support by it. By attributing the scheme to a situation, he removes
the possibility of a positive answer to the second part of the question. Also, his
proposal retains the division into objects and properties, which buys into a particular
way of organising information content that we might want to resist. Instead, I will
suggest only that a situation supplies a set of ‘issues’. Each issue α gives rise to
two infons: 〈〈α;+〉〉 and 〈〈α;−〉〉. And these may or may not be supported by the
situation. The internal logic of these issues and how it relates to constraints and the
flow of information will be left open for now.

Finally, in a self-reflective mode, one can ask about the perspective we are cur-
rently taking on situations, infons, constraints, and so forth. It would appear that we
are using a ‘theorists’ scheme of individuation to talk about situation theory itself.
The idea that situation theory could be its own metatheory is an attractive one and one
that draws further on Barwise’s analogy with set theory. There were some negative
results, e.g. Plotkin’s [23], which produced the equivalent of Russell’s paradox for
‘naive’ situation theory. On the other had, Barwise and Etchemedies work on the

13 Objects of interest to us, such as trees, cites and other people typically have rather unclear
boundaries and their properties are vague.
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Liar paradox in [8] gives a concrete model version of situation theory that models
some (but perhaps not all) central semantic concepts of the theory itself.

Question 12 To what extent can situation theory express the facts and constraints of
situation theory itself? For example, are there infons with content s |= σ and which
situations support it?

I intend to return to many of the questions posed here in Sect. 35.3. But before
that, we will need to review and develop some theory from [12].

35.2 Logic and Information Flow in Classifications
and Channels

The following is a rather dense and rapid development of the theory of information
flow and channels from [12] so as to make it suitable for Sect. 35.3, in which the
theory is used to interpret concepts from situation theory. It departs from [12] in a few
minor but crucial ways. A major consideration motivating this newer approach was
to be able to model information flow in systems described probabilistically, using
the criterion that exceptions to a constraint occur with zero probability, which does
not of course mean that they do not occur. The starting point is a general account of
‘classification’ and its relationship to logic.

35.2.1 Logic of Classification

A classification A = 〈A ∧,A ∨, |=A 〉 consists of a set A∨ of tokens, a set A∧ of types
and a binary relation |=A between them. We conceive of the types as classifying the
tokens into kinds. Example abound but, as the notation suggests, a central motivating
example comes from logical semantics, in which the types are formulas and the tokens
are models. Another important example, is that of a topological space, in which the
tokens are points and the types are open sets; here points are classified according
to their proximity to each other in the sense of proximity given by the topology.14

Yet the most important example for the interpretation of ST, is that of a system:
some interacting coalition of physical, biological or sociological processes that has
a determinate concept of ‘state’ and ‘event’.15 Any system event classifies the states
into those that are compatible with the event’s occurrence and those that are not.
Every classification A has a ‘natural’ logic induced by the classification relation.

14 The logical and topological interpretation may coincide when, for example, the space is the
Stone space of the Boolean algebra of logically equivalent formulas. This was used in [26] to use
classifications in the analysis of the logic of diagrammatic reasoning.
15 We are restricted here to a classical notion of state; quantum processes are quite different.
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We write Γ �A Δ to mean that every token a that is of every type in Γ is of at least
one type in Δ, giving a range of inference patterns:

α �A β if a |=A α then a |=A β

α,β �A if a |=A α then a �|=A β

�A α,β if a �|=A α then a |=A β

Let [Γ ;Δ] be the set of tokens a for which are described positively by Γ and
negatively by Δ, i.e., a |=A α for every α ∈ Γ and a �|=A α for every α ∈ Δ. The
members of [Γ ;Δ] are counterexamples to the inference from Γ to Δ and so:

Fact 1 Γ �A Δ iff [Γ ;Δ] = ∅
If A is a semantic classification then �A is of course the standard (multiple conclu-
sion) consequence relation. More generally, we define a local logic L = 〈NL,�L〉
on A (henceforth: ‘logic on A ’) to consist of a set NL of normal tokens and a con-
sequence relation �L between sets of types. Here we think of �L being defined in
some other way than �A , e.g., by a proof system in the case that types are formulas,
and NL also being an independently specified class, e.g., some operant background
condition in the case that tokens are states of a system. Now some familiar properties
of logics can be formulated16:

L is sound : IfΓ �L Δ then NL ∩ [Γ ;Δ] = ∅.
L is complete : If NL ∩ [Γ ;Δ] = ∅ thenΓ �L Δ.

Fact 2 The natural logic LA = 〈A∨,�A 〉 on classification A is both sound and
complete.

So too is the trivial logic TA with the empty set of normal tokens and Γ �TA Δ for
all Γ,Δ. In fact, given any consequence relation �, the logic 〈∅,�〉 is sound. This
may seem a little strange, but we will show in Sect. 35.2.5 that there are interesting
examples.

The logics on a classification A form a complete lattice Log(A ) under the order:
L1 � L2 iff �L1⊆�L2 and NL2 ⊆ NL1 . The sound-and-complete logics also form a
complete lattice Log∗(A ) but is not in general a sub-lattice of Log(A ). Its bottom
element is LA and its top element is TA .

The following principles are all satisfied by natural logics (where Σ̄ = A ∧ \Σ):

16 In [12] ‘local logic’ refers only to what we are calling sound local logics; there a logic L is ‘sound’
iff NL = A ∨, so that a ‘sound and complete’ logic is just a the natural logic of a classification.
Present purposes dictate a slightly more general approach, but many of the results of [12] carry
through.
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I Identity α �L α
W Weakening if Γ �L Δ then Γ, Γ ′ �L Δ,Δ

′
C Cut if Γ �L α,Δ and Γ,α �L Δ then Γ �L Δ

SCl Strong Cut (left) if Γ �L α,Δ for all α ∈ Σ and Γ,Σ �L Δ then Γ �L Δ

SCr Strong Cut (right) if Γ �L Σ,Δ and Γ,α �L Δ for all α ∈ Σ then Γ �L Δ

P Partition if Γ,Σ �L Σ̄,Δ for all Σ then Γ �L Δ.
SP Strong Partition if (for some Σ) Γ, Γ ′ �L Δ

′,Δ for all Γ ′ ∪Δ′ = Σ then Γ �L Δ.

Fact 3 If L satisfies I, W and P then it satisfies all of the rest.

Many of these principles are familiar to the logician. The exceptions are Partition and
Strong Partition, which are also related to familiar ideas in logic but are somewhat
disguised. Note that the converse to Partition says if the set of tokens [Γ ;Δ] is non-
empty, so there are some tokens described positively by Γ and negatively by Δ,
which is a form of consistency, then there is a way of extending Γ to Σ such that
[Σ; Σ̄] is also non-empty. Or, in other words, the ‘consistent’ pairing of Γ and Δ
can be extended to a ‘maximally consistent’ pairing. When applied to standard logic-
based classifications, Partition is of course no more than the familiar Lindenbaum
Lemma. Strong Partition is a generalisation of both Partition and Cut, showing their
common structure. Taking Σ to be A ∧ we get Partition; taking it to be a singleton,
we get Cut.

We can also reason in a more interactive way by defining logics between classi-
fications A and B. For some mixed set Γ of types from A ∧ and B∧ (assumed, for
now to be disjoint), we write ΓA for those that are in A ∧ and ΓB for those that are
in B∧. Then the natural logic between A and B can be defined by Γ �A +B Δ

iff for all a ∈ A ∨ and b ∈ B∨, if a is of every type in ΓA and b is of every type
in ΓB then either a is of one of the types in ΔA or b is of one of the types in ΔB .
Two observations are immediate. Firstly, �A +B , as the notation suggests, is just the
natural logic of the sum A +B.17 Secondly, it is not so interesting.

Fact 4 Γ �A +B Δ iff ΓA �A ΔA and ΓB �B ΔB

In other words, there is no interaction between the two component logics. Other logics
in Log(A +B), which we call distributed logics, are potentially more interesting.
For such a logic L, NL is a non-trivial relation between tokens of A and tokens of
B, representing some informational connection between them. It is sound iff the
following condition holds:

if NL(a, b) and Γ �A+B Δ and a |=A α for every α ∈ ΓA and b |=A β for every
α ∈ ΓB then either a |=A α for some α ∈ ΔA or b |=A β for some β ∈ ΔB.

Such a logic exploits the connection represented by NL to reason about the two
classifications in parallel.

17 Concretely, A +B is the classification of pairs of tokens 〈a, b〉with a ∈ A ∨ and b ∈ B∨ of types
from the disjoint union A ∧ +B∧ such that 〈a, b〉 |=A+B α iff a |=A α, and 〈a, b〉 |=A+B β iff
a |=A β. More abstractly, it is the sum in the category of classifications and infomorphisms, to be
introduced in Sect. 35.2.2.
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Returning to the primary example of the classification of states by events, a local
logic L can be understood as a local pattern of regularity in the system’s behaviour.
The constraints �L represent dependencies between events which, if the logic is
sound, are found whenever the system’s state is in NL . Unsound logics allow some
departure from conformity, interesting examples of which will be considered in a
little bit later (Sect. 35.2.5). A distributed logic represents local patterns of interaction
between two systems: ways in which they are partly co-ordinated. This is a first step
toward a model of information flow.

35.2.2 Logic and Information Flow

An infomorphism from A to B is a pair of functions f ∧ :A ∧ → B∧

and f ∨ :B∨ → A ∨ such that f ∨(b) |=A α iff b |=B f ∧α for each b ∈ B∨

and α ∈ A ∧. Infomorphisms arise naturally in both the logical (semantic) and
topological examples of classification. If A and B are both classifications of models
by formulas, of two different languages, say, then any interpretation of the language
of A in that of B gives rise to an infomorphism . The image ϕ is of course
the interpretation of A -formula φ in the language of B and the image f ∨M of B
model M is the model of A constructed by interpreting the primitives of the language
in the way their images are interpreted in M.18 Take, for example, the interpretation
of arithmetic in set theory. ϕ is a sentence in the language of set theory that interprets
the arithmetic sentence φ, and f ∨M is a model of arithmetic constructed from a
particular model M of set theory. In the topological setting, infomorphisms are just
continuous functions.

In our main example, infomorphisms represent dependancies between systems. If
the system represented by B is in state b then the system represented by A will be in
state f ∨b, so that if eventα occurs in system A , event f ∧αwill occur in system B. Of
course, the nature of the dependency may have many sources. The systems could be
remotely located but more-or-less simultaneously evolving, with the infomorphism
representing the instantaneous (or near-instantaneous) determination of system A
by system B. A particular case of this is where system A is a subsystem of system
B. Or the systems may be temporally distant, with the infomorphism representing
the deterministic persistence of information over time. Each past state of the system
b resulted in present system f ∨b, whereas each present event α corresponds to a past
event f ∧α.

Classifications under infomorphisms, as abstract mathematical objects, have been
extensively studied as the category of Chu spaces over Set with binary values, or
Chu(Set,2).19 Among other properties (typically more interesting to those working

18 Not every infomorphism is an interpretation, in the usual sense, since there is no requirement of
compositionally.
19 A number of papers by Vaughan Pratt, such as [24], explore the state-event interpretation of Chu
spaces.
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−→
f L The right image under f Γ �−→

f L
Δ iff f ∧−1[Γ ] �L f ∧−1[Δ]

in Log(B) of logic L in Log(A ) NfL = f ∨−1[NL].←−
f L The left image under f Γ �←−

f L
Δ iff f ∧[Γ ] �L f ∧[Δ]

in Log(A ) of logic L in Log(B) N←−
f L
= f ∨[NL].

on Chu spaces), this category is cartesian closed, and this simple fact is used to prove
many of the properties we will be interested in. In particular, it gives us the existence
of the limits and co-limits of diagrams.

Moreover, infomorphisms can be used to relate the logics on one classifica-
tion to those on another. In fact, each infomorphism induces order-

homomorphisms
−→
f : Log(A ) → Log(B) and

←−
f : Log(B) → Log(A ), defined

as follows.20

Fact 5 Given , and L1 ∈ Log(A ), L2 ∈ Log(B),

If L1 is sound then
−→
f L1 is sound; conversely, if f ∧surjective.

If L1 is complete then
−→
f L1 is complete; conversely, if f ∧surjective.

If L2 is sound then
←−
f L2 is sound; conversely, if f ∧injective and f ∨

surjective.

If L2 is complete then
←−
f L2 is complete, if both f ∧ and f ∨ are surjective;

conversely, if f ∧ is injective.

In particular, when restricted to sound and complete logics,
←−
f : Log∗(B) →

Log∗(A ) is a homomorphism and
−→
f : Log∗(A )→ Log∗(B) is also a homomor-

phism if f ∧ and f ∨ are surjective.

This brief study of the properties of soundness and completeness, as logics are
propagated across infomorphisms, is enough to provide a representation of sound
and complete logics:

Fact 6 A logic is sound and complete iff it is a left image of a natural logic.

Proof If L on A is sound and complete, then let B be the restriction of A to normal
tokens, i.e., such that B∧ = A ∧ and B∨ = NL . Then the infomorphism

with f ∧ the identity and f ∨ the inclusion, is such that L =←−f LB. The converse follows
from Facts 2 and 5.

This shows that it would be possible to do without the extra layer of structure we added
when moving from classifications to local logics, by paying sufficient attention to
infomorphisms. However, for unsound and incomplete logics, a little more is needed.

20←−f and
−→
f may not preserve lattice joins and meets.
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van Benthem [14] provides another perspective on the ‘flow’ properties of info-
morphisms, by defining a two-sorted language for describing classifications and then
asking which formulas in this language are preserved by infomorphisms. Using our
present notation, van Benthem’s language is the language of predicate logic with
variables a for tokens, α for types, and a single binary relation |=. Of these formu-
las, the ones that are preserved by arbitrary infomorphisms, are what he calls flow
formulas:

φ ::= a |= α | a �|= α | (φ ∧ φ) | ∃aφ | ∀αφ

Notice in particular that the formula expressing that a (finite) constraint does not
hold in the natural logic of a classification can be expressed by a flow formula, e.g.
α1,α2 �� β1,β2 is expressed by

∃a (a |= α1 ∧ a |= α2 ∧ a �|= β1 ∧ a �|= β2)

35.2.3 Information Flow Along a Channel

When two classifications have different complementary concerns because they are
about different things or use very different ways of classifying similar things one
should not expect that either one can be infomorphically related to the other. In the
case of logical semantic classifications, we may have two very different languages
and two very different classes of models. Nonetheless, one classification may convey
information about the other, in the sense of information-as-correlation. To represent
the correlation, one can interpret each in a more expressive theory using a pair of
interpretations. Generalising, we define a binary channel between A and
B to be a pair of infomorphisms and . The classification [c]
is called the core of the channel.

When the classifications are concrete systems, the relationship between a subsys-
tem and the system of which it is a part can be represented by an infomorphism.
Likewise, the relationship between subsystems can be represented by a channel. Or,
put conversely, to represent the informational connections between two systems we
can see them as subsystems of something larger. The sense in which they are parts
may be taken in a literal mereological sense or something more epistemic, in which
the two systems are merely represented within a third system. More concretely still,
if we consider a communication channel such as a telegraph wire, we can model
events at the source and receiver within distinct classifications S and R. The wire
connecting the two then determines a correlation between them models as a channel

in which cS
∨(a) and cR

∨(a) are the states of the source and receiver when
the channel is in state a and events σ and ρ of the source and receiver correspond to
channel events cS

∧(σ) and cR
∧(ρ).

Information flow along a channel can then be expressed by pushing logics between
the connected classifications using the homomorphisms −→cB

←−cA :Log(A )→ Log(B)
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and −→cA
←−cB : Log(B)→ Log(A ). The image along channel c of a logic L on B is

the logic −→cA
←−cBL on A .

Fact 7 A logic is sound iff it is a channel image of a natural logic.

Proof We construct a classification Cla(L)with the same types as A but with tokens
〈Γ,Δ〉 for which Γ �L Δ, and such that 〈Γ,Δ〉 |=Cla(L) α iff α ∈ Γ and α �∈ Δ.

We then define a channel whose core [cL] has again the same types
as A and the same classification relation, but restricted to tokens in NL . The maps
cLA

∧ and cLCla(L)
∧ are both identity and cLA

∨ is the inclusion NL ⊆ A ∨. Finally,
cL[cL]∨(a) = 〈a+, a−〉 where a+ = {α | a |=A α} and a− = {α | a �|=A α}. It
can then be checked that if L in Log(A ) is sound then L = −−→cLA

←−−−−cLCla(L)LCla(L). The
converse follows from Facts 2 and 5.

Channels can be composed: given and the channel
is defined using the push-out channel of and . In
diagrams21:

Note that the composition of two binary channels gives, in addition to a new binary
channel, an infomorphism (cd)B from the intermediate classification B to the core
of the new channel. We can push the natural logic from this intermediate classification

to the core, to get the logic
−−−→
(cd)BLB which can then be used for reasoning about

the relationship between A and C . Composition thus occurs by ‘absorbing’ into
the new channel the informational content of the intermediate classification B and
how it connects A and C . For a concrete example, think again of the case of a
telegraphic communication, in which both sender and receiver are represented as
system classifications, as is the wire that connects them. One channel connects the
sender to the wire and a second connects the wire to the receiver. When these are
composed we get a channel connecting sender to receiver, in which all relevant
information about the wire has been absorbed.

The construction can be generalised to combine any system of channels to pro-
duce a unique channel between any two classifications of the given channel. More
precisely, given classifications A0, . . . ,An and a chain of channels for
0 ≤ i < n, we can repeat this step, pushing of the logics LA1 , . . . ,LAn−1 on to the
core and combine them with the lattice join in Log([c0 . . . cn−1]) to get

Lcd =
n−1∨

i=0

−−−−−−−→
(cici+1)Ai+1LAi+1

21 Specifically, (cd)A = p[c]cA and (cd)B = p[d]cB.
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This core logic can be added to logics pushed from A to C or vice versa. So, for
example, given L ∈ Log(C ), we get−→cA (Lcd∨←−cC L) in Log(A ). The logic represents
those inferences that are possible within the system. For example, 〈1,α〉, 〈3,β〉 �
〈4, γ〉 in Log([c0 . . . cn−1]) represents the inference from α in A1 and β in A3 to γ
in A4. The tokens of the core can be seen as sequences a1, . . . , an of tokens in the
component classifications, so, given sound component logics, the inference implies
that if a1 |= α, a3 |= β then a4 |= γ.

35.2.4 Logic in Channels: Core Logics and Distributed Logics

More generally, a channel between classifications {Ai}i∈I is a family of infomor-
phisms which we can think of as a model of informational rela-
tionships between the component classifications {Ai}i∈I . It can be composed with

any other channel to form 22 which models any
interaction between the two systems. Logics on component classifications can be
pushed from any one classification Ai to any other Aj using the homomorphism←−cj
−→ci :Log(Ai)→ Log(Aj). Thinking again of the case in which the classifications

model concrete systems, an observation of one component Ai provides information
about it, the simplest kind of which is that some event α ∈ Ai

∧ has occurred. Sup-
pose for example that the lighting in a house is wired in a complicated way so that
each light is controlled by a number of switches, some in different rooms, and that
each room is classified according to simply observable features: the light being on
or off, a switch being down or up, etc. Now suppose that a light turns on in the
bedroom. What information is conveyed by this event? If it is represented by type
α in classification Ai, in which the events occurring in the bedroom are classified,
then conclusions about the hallway, represented in classification Aj, say, are given
by pushing the logic Lα across to Aj to obtain ←−cj

−→cj Lα. Furthermore, the natural
logic L[c] of the channel core, which represents constraints relating the component
classifications, such as are induced by the wiring of the house, can be factored into
this process, so that information from the occurrence of α in Ai can be combined
with L[c] as −→cj Lα ∨ L[c] and then pushed to Aj as←−cj (

−→cj Lα ∨ L[c]).23

Distributed logics can also be studied in this more general setting to obtain logics
that explicitly represent the interaction between classifications. The sum A +B is
the core of the sum channel which involves minimal interaction between
the two classifications, and the logic LA +B is just the join (−→σA LA ∨ −→σBLB).24

More generally, minimal interaction among a family of classifications, {Ai}i∈I is

22 I + J is the disjoint union of I and J . The construction of cd is a generalisation of the binary

case. Just take the co-limit of
23 Indeed, any core logic L ∈ Log([c]), such as that is given by the construction of a channel from
a chain, can be factored into the pushing process in a similar way.
24 σA

∧ and σB
∧ are the inclusions of A ∧ and B∧ in the disjoint union A ∧ +B∧. And σA

∨ and
σB

∨ are the projections of A ∨ ×B∨ to A ∨ and B∨, respectively.
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modelled by the sum channel with core
∑

i∈I Ai. As in the binary case, we define
Log(

∑
i∈I Ai) to be the class of distributed logics over the family {Ai}i∈I .

Given channels c and d between classifications {Ai}i∈I , an infomorphism
is a channel morphism from c to d iff fdi = cj for all i ∈ I . For any

channel c over the family there is a unique channel morphism c+ from sum
∑

i∈I Ai

to c (by the limit properties of sums), and so a uniquely defined distributed logic←−c+L[c], which we call the natural distributed logic of c. Using Fact 7 it is then easy
to show:

Fact 8 Every distributed logic satisfying WIP is the natural distributed logic of some
channel.

35.2.5 Normality Reconsidered

An important class of logics fail to satisfy the Partition rule and so cannot be studied
using the concept of a natural logic. Suppose P = 〈Ω,E,μ〉 is a probability space
with outcomes Ω , events E and probability measure μ :E → [0, 1]. Let P be the
a classification with P∧ = E, P∨ = Ω and |=P =∈. Then we can define �μ as
Γ �μ Δ iff μ([Γ ;Δ]) = 0, which states that the probability of a counterexample
is 0. Since many systems are better modelled probabilistically, this class of conse-
quence relations is perhaps more important than those considered so far. Moreover,
to build a bridge between logical conceptions of information flow and ideas from
communication theory, they are essential; see Seligman [27].

The relation �μ satisfies WIC and even a countable version of SC but may not
satisfy P. If, for example,Ω is the real interval [0, 1], E and the set of its measurable
subsets and μ is any distribution that assigns singletons zero probability (e.g., the
uniform distribution), then for all Γ ′,Δ′ such that Γ ∪Δ =P∧, either [Γ ;Δ], if all
singletons {x} are inΔ, or there is a singleton inΓ ′, and in both cases μ([Γ ;Δ]) = 0,
which means thatΓ ′ �μ Δ′ but not∅ �μ ∅, so violating P. Moreover, there is no non-
empty set N of reals with respect to which �m u is sound. Although �μ [0, x), (x, 1],
x is in neither [0, x) nor (x, 1] and so is a counterexample. The only sound logic
with this consequence relation is therefore the rather curious logic 〈∅,�μ〉, whose
completion is the trivial logic TA .

To provide a more satisfactory treatment of �μ, we will need to look elsewhere.
The central idea is to shift to a classification of sets of tokens as either possible (in the
sense of having positive probability) or not. So we define the extension classification
δA to have the same types as A , but sets of tokens from A as tokens, i.e. δA ∨ =
powA ∨. Then X |=δA α iff a |=A α for every a ∈ X. An extended logic on A is a
logic in Log(δA ). Now, letting Lμ = 〈Nμ,�μ〉 where Nμ is the set of X ⊆P∨ such
that μ(X) > 0, we have that

Fact 9 Lμ is a sound and complete extended logic on P .
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The infomorphism is defined by mapping each token a of A to the
singleton {a} and with the identity on types. It can be used to push any logic L on δA

to the logic
−→
δA L on A . In the case of Lμ the result is just the logic 〈∅,�μ〉 since no

singleton has positive probability. We therefore have an example of a vacuously sound
logic on A , which is not complete, but which is the image of an interesting sound

and complete logic on the extended classification δA . In the opposite direction,
←−
δA

is an embedding of the lattice Log(A ) in Log(δA ), showing that the concept of
extended logics generalises that of a logic.

Each infomorphism can also be extended to an infomorphism

called the image extension of f by defining δf
∨X to be the image

of X under f ∨, i.e. the set {f ∨x | x ∈ X}. ( δf
∧ is just f ∧ again.) Then the following

diagram commutes:

The logic homomorphisms
←−−
δf δB :Log(B)→ Log(δA ) and

−→
δf
←−
δA :Log(A )→

Log(δB) can be used to push logics on A and B to extended logics on B and A .
The generalisation to extended logics preserves all of the nice features of logics

and their infomorphisms studied so far, in that similar constructions are possible,
allowing the metaphor of information flow within a network of infomorphisms to be
realised also in the movement of probabilistic logics.25

35.2.6 The Natural Logic of a Channel

More extended logics can be defined without the help of a probability function,
using any channel. For any channel we define the extension channel

by taking δci to be the image extension of ci. This ensures that
ciδAi = δ[c]δci, which is to say that the following diagram commutes:

25 There is a lot to investigate about extension logics, such as the relationship to structural properties.
Here I conjecture that a logic satisfies WIC iff it is the image of a sound and complete extension
logic perhaps with some additional properties.
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The natural logic Lc of channel c is the result of pushing the natural logic of
each component classification Ai first up to its extensions δAi and then along the
infomorphism δci to the core [δc] of the channel extension and taking lattice meets,
to produce, in Log(δc), the logic

Lc =
∧

i∈I

−→
δci
←−
δAi LAi

It is worth looking at a concrete example of this construction in more detail. Consider
again a probability classification P over [0, 1] for which μ(X) = 0 iff X is a null
set,26 and let An be the classification with the same types as P but whose tokens

are the intervals Im,n =
[

m
n+1 ,

m+1
n+1

)
, for m = 0, . . . , n − 1, and In,n =

[
n

n+1 , 1
]

and with |=An =⊆. For example, A2 has tokens [0, 1
3 ), [ 13 , 2

3 ) and [ 23 , 1) and, e.g.,
[0, 1

3 ) |=A2 α iff [0, 1
3 ) ⊆ α. The classifications An provide an approximation to

P in a sense that can be made precise by constructing a channel
whose natural logic Lμ. To define c, let [c] be P itself and let each cn be the identity
on types and map each real x (in P∨) to the unique interval Im,n that contains it.
Now the natural logic Lc is defined so that Γ �LP Δ iff Γ �LδAn

Δ for all n. But
�LδAn
=�LAn

, and so Γ �LP Δ iff there is no Im,n such that Im,n ⊆ [Γ ;Δ]. And
μ[Γ ;Δ] > 0 iff there is some such interval. So �Lc=�m u. Moreover, by Fact 5, Lc

is sound and complete, and so by Fact 9, Lc = Lμ. Thus:

Fact 10 Lμ is the natural logic of a channel.

By calling the natural logic of a channel ‘natural’ we are promoting it in a way that
deserves some justification. This comes from thinking of classifications as represent-
ing the space of events in a system and a channel as representing the way in which
a number of systems are related. If we suppose that the states of the component
systems are all possible, then the normal sets of tokens in the channel’s core, are
those that correspond to possible occurrences in its components. For an inference
Γ � Δ about the channel core to have a genuine counterexample, it must come from
the existence of a violating state in one of the components and not merely one of its
own connection states.

Reflecting on this explanation, we see that it involves an implicit assumption that
the components are independent: that they can be in one or other state without any
effect on the states of the other components. Stronger logics on the channel will arise
from greater interaction between the components.

Another issue that arises is the relationship between the ‘natural distributed logic’
of a channel (defined at the end of Sect. 35.2.4) and its ‘natural logic’. This can be
explained with the following commutative diagram:

26 Null in the underlying measure, which we can assume to be, e.g. Borel measure, so that the
singletons and countable unions of them are all null. Typical probability measures, such as the
uniform distribution, or any normal distribution are all of this kind.
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The ‘natural distributed logic’ of c is defined as ←−c+L[c], which is the result of
pushing the natural logic of the channel’s core to the sum, so as to distribute it
for reasoning about the channel’s components. What we are calling the ‘natural
logic’ of c, the logic Lc, is an extended logic and so lives in Log(δ[c]). But it
too can be distributed for reasoning about the components, by pushing it along

the channel morphism δc+ to get the distributed natural logic
←−
δc+Lc, which is an

extended distributed logic, living in Log(δ(
∑

i∈I Ai)).
The natural logic of a channel arises from regarding the components as defining

what is possible in the core. Fixing the state of the component classifications does
not always completely determine the state of the core, so allowing a degree of non-
determinism, and this is reflected in the natural logic.

35.2.7 Logical Operators

The abstract setting we have been using makes it easy to give criteria for the existence
of various logical operations. Given a logic L on A , we say that unary operation ¬
and binary operations ∧,∨, and→ on the set of types A ∧, are Gentzen negation,
conjunction, disjunction and implication, respectively, for L iff

Γ �L Δ,¬α iff α, Γ �L Δ

¬α, Γ �L Δ iff Γ �L Δ,α
Γ �L Δ, (α ∧ β) iff Γ �L Δ,α andΓ �L Δ,β
(α ∧ β), Γ �L Δ iff α,β, Γ �L Δ

Γ �L Δ, (α ∨ β) iff Γ �L Δ,α,β
(α ∨ β), Γ �L Δ iff α, Γ �L Δ andβ, Γ �L Δ

Γ �L Δ, (α→ β) iff α, Γ �L Δ,β
(α→ β), Γ �L Δ iff Γ �L Δ,α andβ, Γ �L Δ

35.3 Reconstructing Situation Theory

In this final section, I will attempt to apply the theory developed above to restate
some of the founding intuitions of situation theory in a new form, taking a stand on
various issues raised in Sect. 35.1. I’ll then do the same with van Benthem’s model
from [13].
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35.3.1 Situations as Local Logics

The proposal is to model a situation s as a local logic. As such, we are considering
the partiality of situations to be based on a degree of non-determinism. We can think
of the tokens of the underlying classification [s] of the situation as being determinate
possibilities, representing possible ways in which the situation may be connected
to other situations and thereby interact with them. The types represent potential
information about the situation. As such, each type α models an issue that may or
may not be settled, positively or negatively, by s. Then we interpret27

s |= 〈〈α;+〉〉 :: �s α

s |= 〈〈α;−〉〉 :: α �s

Consider our concrete example of the classification of states of a system by events
that occur within it; a situation s is then a local pattern of regularity in the behaviour
of the system when its state lies within the region Ns. If s is sound and complete, then
s |= 〈〈α;+〉〉 just in case the occurrence of α is already determined: no state in Ns

is compatible with α not occurring. Likewise, s |= 〈〈α;−〉〉 just in case it is already
determined that α cannot occur: no state in Ns is compatible with α occurring.
This interpretation is in line with the modal character of the |= relation noted in
Sect. 35.1.3. Question 9 is answered in the expected way: it is not possible for a
situation to support both an infon and its dual but it may support neither.

The next step is to model analytic constraints in a similar way:

〈〈α;+〉〉⇒
s
〈〈β;+〉〉 :: α �s β

〈〈α;+〉〉⇒
s
〈〈β;−〉〉 :: α,β �s

〈〈α;−〉〉⇒
s
〈〈β;+〉〉 :: �s α,β

〈〈α;−〉〉⇒
s
〈〈β;−〉〉 :: α,β �s α

These constraints, on our concrete interpretation, concern the relative co-occurrence
of event. In fact, the situation s contains more information than is expressed by
the binary involvement relation. As a simple example, the impossibility of the co-
occurrence of α,β and γ, namely α,β, γ �s cannot be reduced to facts of the form
σ⇒

s
τ . In answer to Question 5, we get as a consequence the Analytic Involvement

principle: if s |= σ and σ⇒
s
τ then s |= τ .

Incomplete situations are ones in which not all of the potentially available informa-
tion about the co-occurrence of events is represented as constraints. This possibility
is due to the epistemic character of situations, which may contain less than all the

27 A potential for confusion here is to mistake the |= of situation theory with the relation |=[s] of
the classification [s] but we trust that any difficulties can be resolved in context. Of course, the
classification of situations by the infons they support is another classification, of which the situation
theoretic |= is the classification relation.



35 Situation Theory Reconsidered 921

information. This is a second source of the lack of bivalence in ST: for example,
even if the state of the system is totally determined, so that Ns is a singleton, it may
still be that neither s |= 〈〈α;+〉〉 nor s |= 〈〈α;−〉〉.

Finally, unsound situations are also of interest. A lack of soundness breaks the
modal force of the constraints. If s is unsound, then it may be that s |= 〈〈α;+〉〉 even
though there is a possible state of the system in Ns that is not compatible with α’s
occurrence. What does this mean? I do not have a general answer to this question,
but in some cases, we can make sense of it. Consider the examples of Sect. 35.2.5, in
which constraints are defined to hold when the probability of a counterexample is 0.
Since being infinitely improbably and being impossible are not the same28 there is
a gap of exactly this kind, so suggesting an interpretation of unsound situations: the
tokens that lie in Ns but that are not of type αwhen s |= 〈〈α;+〉〉 are those that, while
possible in some objective sense, are taken to be so unlikely that they are disregarded.

For constraints between situations s and t, we look to local logics on the classifi-
cation [s] + [t]. Given such a logic / situation u, we can therefore interpret:

[u : σ⇒
s,t
τ ] :: σs⇒u τt

where σs and τt are the obvious u-infon correlates of σ and τ (which are infons
of s and t, respectively.)29 So the primary definition of constraint in the current
setting is that of a conditional constraint, in which the ‘background’ condition for
constraints relating information in s to information in t is supplied by a third situation,
u. Of course, the framework of local logics suggests an extension of the notation we
introduced in Sect. 35.1 involving many situations and the full two-sided�, of which
⇒
s,t

is just a special case.

Much of in Sect. 35.3.1 was devoted to a discussion of how local logics can be
pushed along infomorphisms in an interrelated web of classifications. This serves as
a basis for a long and detailed answer to Question 6 about the existence of channels
and how they underwrite constraints. We will focus here on the simplest case. For
any binary channel the logics s and t can be combined via c
to get the natural distributed logic←−c+L[c] on the sum [s] + [t]. This, then, provides a
direct answer to Question 6 which can be represented by:

[c : σ⇒
s,t
τ ] :: [←−c+L[c] : σ⇒s,t τ ]

Moreover, by the composition of channels, we get a version of the Xerox principle,
in answer to Question 7: If [c : σ⇒

s,t
τ ] and [d : τ⇒

t,u
υ] then [cd : σ⇒

s,u
υ]

Aside from answering Question 6 about the nature of channels, the theory of
information flow articulated in [12] and recapitulated in Sect. 35.2 is intended to say

28 as every reader of Douglas Adam’s Hitchhiker’s Guide knows.
29 The sum [s] + [t] is defined as a limit by infomorphisms and
and these are used to find the ‘correlates’, e.g. 〈〈α;+〉〉 corresponds to 〈〈ιs∧(α);+〉〉.
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something about the possibility of error, our Question 8. In part, this is addressed by
the concept of a conditional constraint, with its explicit dependence on the ‘back-
ground condition’ supplied by a channel. But this is only half the story. At the heart
of our interpretation is the definition of support: s |= 〈〈α;+〉〉 iff �s α. But the extent
to which this gives accurate information about the tokens of s depends both on the
normal tokens of s and whether it is sound. We must also consider carefully the appli-
cation of reasoning about situations in the abstractly probabilistic setting, modelled
by the ‘natural logic’ of a channel, from Sect. 35.2.6. It is difficult to reduce this level
of analysis to concepts that we have taken from situation theory: support, involve-
ment, and the like. Nonetheless, we have seen in Sect. 35.2 that a wide range of local
logics can be defined by projecting the natural logic of a classification along info-
morphisms, and so to this extent, explicit consideration of normality can be replaced
by the algebra of these projections. To put this in the language of situation theory,
the ‘background condition’ u of [u : σ⇒ τ ] can be derived by pushing the informa-
tion from a possibly remote situation v along a network of connections. A simple
example of this is the definition of the distributed logic of a channel c as ←−c+L[c]
that we just used to explain the role of a channel in conditionalising constraints. A
suggestion then, is to augment the concepts of situation theory with those of these
information-pushing operations.

35.3.2 Perspectives as Infomorphisms

By considering the source of the logic of a situation as coming from the information
network in which it resides, we presuppose that there is such a network, that the
world is to be modelled as such a network, and so that there are not only situations
but the infomorphisms that link them. Or, to put it more accurately, that there are
classifications and interpretations of them within other classifications. All of this
has to be part of our model. Because of this the present framework goes a fair
way beyond the tacit realism of early proponents of situation theory. Instead of a
world of situations built from a scheme of individuation, with the possibility of
different schemes of individuation as a promissory note, our model builds in the
notion of a ‘perspective’ at the ground level. An infomorphism is just a model of the
interpretation of one classification in another, or, in other words, the seeing of one
classification in terms of another. Thus, in answer to Question 11, we have no need
of an additional layer of relativism: it lies at the core.

That said, it would be good to have some account of infon structure: how more
complex items of information are related to their parts. To gesture at an answer to
Question 10, we can mention the way in which logic operators on types can be defined
implicitly by their Gentzen conditions, as explained in Sect. 35.2.7. But this is only
one of many ways in which information can be structured. Rather than providing
a final answer to this question, the present approach to situation theory leaves it to
more detailed consideration of specific systems of representation. The hope is that
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the concept of a local logic is sufficiently flexible to account for any such system or
that it can be appropriately extended.30

Likewise, we have not yet touched on the mereology of situations and its
relationship to information flow, as queried in Questions 1, 2, and 3. The present
interpretation resists any absolute judgement as to whether one situation is part of
another by focusing instead on the informational relationships between them. No
global perspective is assumed from the vantage point of which one could make sense
of parts and wholes. Nonetheless, when modelling particular systems that are con-
ceptualised in this way, their mereological structure induces channels. Whenever
situations s and t are parts of situation u, the way in which they are included can be

represented by infomorphisms and , which is of course a channel,
but not one that is distinguished from other channels in an informationally significant
way.

On the matter of the individuation of situations, it is clear that by taking a situation
to be a local logic, there is more to it than merely the infons it supports, which would
give us a negative answer to Question 2, rejecting the principle of Extensionality.
But from this negative answer a number of new questions emerge. Can two distinct
situations carry the same information? Is it even possible for Extensionality to hold
given a sufficiently rich and interconnected network of information? Is every sit-
uation the image of a natural logic? This last question is especially interesting as
a positive answer suggests a complete reduction of situations to classifications and
their interpretation by infomorphisms. This offers a potential answer also to Question
12, concerning the possibility of situation theory being its own metatheory. To make
sense of this we would have to ask how to interpret the concepts of classification and
infomorphism in terms of situations, infons and the like. Perhaps a more fruitful line
would be to ask whether the theory of classification and infomorphisms can be its
own metatheory. Here the example of Category Theory provides some insight but
further consideration of this idea will have to be left for another occasion.

35.3.2.1 Some Alternatives/Additions

With the decision to model situations as local logics and perspectives as infomor-
phisms, we have seen that the pertinent question becomes: which logics and which
infomorphisms? Each classification merely records what is classified as what and
there are many ways of identifying logical structure within. One significant way of
doing this, as we have seen, is to define a logic on one classification by means of
an interpretation of it in another, that is to say, by pushing logical structure along
infomorphisms. Suppose we have one situation s, based on a classification [s]within
which many other situations are interpreted. We can record these interpretations as
infomorphisms, where t is a situation (logic) based on classification [t].
Take for example, the case of a faithful representation. Situation s is one in which

30 It was the realisation that the theory of [12] was unable to account for probabilistic structure that
led to the present variant.
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we the doctor examining the X-rays of Jackie’s leg and situation t is the situation of
the leg itself, classified into the types ‘broken’ and ‘unbroken’. These are mapped
by ts into visually distinct types of X-ray picture, with the possible X-rays mapped
to possible states of the leg.

An alternative comes from thinking of how situations are identified from the
outside, by means of informational connections, which we are modelling as info-
morphisms. So suppose we have a situation s and another situation t, together with
an infomorphism . Situation t is represented inside s by means of this
informorphism as the logic

←−
ts s, the left image of s along ts. This is the information

that s possesses about t, so we define

s |= 〈〈t |= σ;+〉〉 as
←−
ts s |= σ

s |= 〈〈t |= σ;−〉〉 as
←−
ts s |= σ

s |= (σ ⇒ τholds in t) as σ ⇒ τ holds in
←−
ts s

The corresponding Indication Principle therefore also applies: if s |= (t |= σ) and
s |= (σ ⇒ τ holds in t) then s |= (t |= τ ). But the relationship between s |= (t |= σ)
and t |= σ is more complicated, in general. What is at issue is the relationship
between the two logics t and

←−
ts s. To model the requirement that ts gives information

about t, as opposed to any other logic that shares [t], we suppose that
←−
ts s ≤ t and

from this it follows that s |= (t |= σ) implies t |= σ (but not vice versa).31

A third perspective comes from thinking of the logic of a situation as determined by
the informational relationships between a classification s and other classifications,
as represented by a set C of infomorphisms. We define In(C, s) to be the set of
infomorphisms in C that point to A , i.e. those of the form for some B.
This set forms a channel with core A and so determines the natural channel logic
LIn(C,s) on s. Thus we can say that

In C, s |= σ iff LIn(C,s) |= σ

All that changes in these various approaches to modelling situations, is the source of
the local logic used to determine which infons are supported and which constraints
are satisfied. As such, aspects of both the ‘information as range’ and ‘information as
correlation’ are involved.

35.3.3 Using van Benthem’s Constraint Logic

van Benthem in [13] introduces a model of situations and constraints, which we
will now summarise, with some slight changes in notation and terminology. The

31 Notice that in s |= (t |= σ), the infon σ is an infon of the classification [t] not of [s]. In fact, the
subexpression (t |= σ) does not denote an infon at all.
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starting point is to think of a situation as something that can be in one of a range
of ‘local states’. Each issue is interpreted as a predicate of local states. A ‘global
state’ is an assignment of local states to situations, so that a particular global state
determines exactly how the issues are resolved by each situation. But not all global
states are possible. This restriction permits a modal understanding of both support
and information flow.

So, first define a constraint frame to be a structure F = 〈S,L,G〉 that consists of
a set S of situations, a set L of local states, a set G of functions assigning a local state
to each site, each of which is called a global state.32 Each situation can be in one of
a range of local states and a global state specifies the local state of each situation,
but not all assignments of local states to situations are possible, only those in the set
G. van Benthem defines the following language for describing global states:

φ ::= α(s) | ¬φ | (φ ∧ φ) | [s]φ | Uφ

where s is a tuple of situation names and α is a predicate. When two situation names
st occur together, we can understand this as referring to the composite situation made
up of the situations named by s and t.

The language is interpreted in a constraint model M = 〈F, V 〉 where F =
〈X,L,G〉 is a constraint frame and V is a valuation function that assigns a sub-
set of X to each situation name and a set of sets of local states to each predicate.
Then, given any state g in G, a satisfaction relation � can be defined by:

M, g � α(s) iff g(V (s)) ∈ V (α)
M, g � [s]φ iff M, g′ � φ for all h ∼s g
M, g � Uφ iff M, h � φ for all h ∈ G

where the functions V and g are lifted to tuples in the obvious way,33 so that α(s)
states that the (composite) situation s whose local state (i.e. the set of local states of
its consistent situations) is of type α. The relation ∼s on G is defined by:

g ∼s1,...,sn h iff gV (si) = hV (si) for each i.

Thus the modal formula [s]φ says that φ holds in all global states in which situation
s has the same local state configuration as it does in the current global state, or, in
other words, that s “settles the truth” of φ.

van Benthem comments that the resulting logic is decidable and is axiomatised
as a normal model logic with S5 axioms for [s] and U together with Uφ→ [s]φ and
[s]φ→ [t]φ whenever t ⊆ s.34 Moreover, it is an equivalent to the first-order logic

32 Compare Rosenschien’s notion of ‘physical information’ in [25], which was designed for the
purpose of comparing local and global description of information content when designing robots.
33 More precisely, V (s1, . . . , sn) = 〈V (s1), . . . , V (sn)〉 and g(x1 . . . xn) = 〈g(x1), . . . , g(xn)〉.
34 Here ‘t ⊆ s’ is just the syntactic requirement that names in the string t also occur in the string s.
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of dependency in the sense that the two are mutually effectively interpretable (van
Benthem [13], p.8).

Likewise, we can interpret many of the concepts of situation theory as follows.
The first matter to decide is how to represent an infon. The ‘predicates’ α apply to
local states of situations and so serve as the obvious candidates for issues and so we
can give a contextual definition of σs, for each infon σ in the situation s:

〈〈α;+〉〉s :: α(s)

〈〈α;−〉〉s :: ¬α(s)

This is sufficient to interpret all statements about infons, concerning their support
and participation in constraints:

s |= σ :: [s]σs

s |=t τ :: [s]τt

σ⇒
s
τ :: U(σs → τs)

σ⇒
s,t
τ :: U(σs → τt)

With this interpretation, we can answer some of the questions of Sect. 35.1. Firstly,
note that the interpretation takes a situation to support that information that it carries
about itself. This is a nice connection between the two concepts. But it fact, since the
issues are predicates of local states, this can be simplified. The following is valid:

s |= σ ↔ σs

And as a consequence, it is clear, in answer to Question 9 that the following are both
valid:

¬(s |= 〈〈α;+〉〉 ∧ s |= 〈〈α;−〉〉) s |= 〈〈α;+〉〉 ∨ s |= 〈〈α;−〉〉

Interestingly, however, the possibility of a gap emerges with information ‘carrying’
in general as s |=t 〈〈α;+〉〉 ∨ s |=t 〈〈α;−〉〉 is invalid. And more generally still, there
are many examples of formulas φ whose ‘truth’ is not guaranteed to be settled by a
situation.

Next, our interpretation has taken a stance on Analytic Reduction, explicitly
accepting it.35 Question 5 for all constraints is answered by validities corresponding
to one half of the Indication Principle and the Carrying Principle:

35 There are two relevant differences between analytic and general constraints. One is that analytic
constraints carry information about the situation itself, as captured by this equivalence. But this other
is that there is a different source for their modal force of analytic constraints. A fuller treatment of
them should replace U with another modal operator with a wider range of gobal state functions.
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σ⇒
s,t
τ ∧ s |= σ → s |=t τ and s |=t τ → t |= τ

Interestingly, again, the other half of the Indication Principle does not hold in the
current interpretation. It is possible for s |=t τ without there being any infon σ such
that σ⇒

s,t
τ . This is because the carrying relation is determined only by the interaction

of the global and local states for s and t, plus the interpretation of τ itself; what it is
about s that ‘settles the truth’ of t |= τ need not be explicitly defined by some infon.

The Xerox principle of Question 7 is validated by

σ⇒
s,t
τ ∧ τ⇒

t,u
υ → σ⇒

s,u
υ

Or, to put it more vividly and in terms of information carrying:

s1 |= σ1 ∧ σ1 ⇒s1,s2
σ2 ∧ . . . ∧ σn−1 ⇒sn−1,sn

σn → s1 |=sn σn

A background condition B can be incorporated as an arbitrary formula of the
language, so allowing great flexibility in what can be expressed,

[B : σ⇒
s,t
τ ] :: U(B ∧ σs → τt)

This provides one way of answering Question 8 on background conditions and how
constraints may fail, given a modified relationship between constraints and informa-
tion carried:

B ∧ [B : σ⇒
s,t
τ ] ∧ s |= σ → s |=t τ

Note that B need not describe the state of situation s itself; it could, for example,
be the formula β(u) where u is some other situation, appropriately related to s and
t. This suggests a way of introducing channels into constraint models, namely as
situations that provide background conditions for constraints:

[β(u) : σ⇒
s,t
τ ]

If this constraint holds, we can consider u to be a channel between s and t that
licences the constraint σ ⇒ τ when its local state is of type β. This is considerably
more flexible than the model of channels given in Sect. 35.2, which requires a tighter
relationship between the three situations. In particular, it requires that the local states
of s and t are functionally dependant on that of u. Further exploration of the notion
of functional dependence in this setting would therefore be useful in drawing further
comparisons between the two models.36 Another way of modelling channels and

36 van Benthem notes (p. 6) that this is related to Beth’s theorem in first-order logic that any implicit
definition, e.g., of the local state of s in terms of the local state of u, relative to a theory can be given
an explicit definition.
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so addressing Question 6 is to augment the model with relations between situations
(or sites), as discussed in [13], p.19., and adding modal operators for them. Further
comparison between these two methods is needed.

Although constraint logic does not describe part-whole relationships between
situations, there is a natural way of adapting it to do so. The language already has
the ability to refer to tuples of situations, which we can regard as a composite of its
components, and also a situation of sorts. This suggests the following slight change.
Call the situations in the set X of a constraint frame ‘basic situations’ and consider
composite situation names to be equivalent up to reordering and repetition, so that
they can be regarded as denoting sets of basic situations. We therefore define an
unordered constraint model to be a structure M = 〈F, v〉 where F = 〈X,L,G〉 is
again a constraint frame but the valuation V assigns subsets of X to each situation
name and sets of such subsets to each predicate. We add the symbol � to the language
and define

M, g � s � t iff V (s) ⊆ V (t)

Where V (s) = {V (s) | s ∈ s}. When we add � to the language, we must
strengthen the axioms to include

s � t → ([s]φ→ [t]φ)

and add axioms to express that � is reflexive, transitive and respects concatenation:

s � s
s � t ∧ t � u → s � u
s � st ∧ t � st
s � u ∧ t � u → st � u

Since s � t ∧ t � s is only true when s and t have the same denotation, we can
abbreviate this as s = t and add axioms to ensure that this is a congruence37:

s = t → φ(s)↔ φ(t)

This provides a mereology for situations in answer to Question 3 but in a somewhat
question-begging way. Any doubt about the mereological structure obtained can be
translated into a doubt about which subsets of X are to be counted as situations.
For example, if we wish to question the existence of the largest situation, which is
modelled by X itself, we could restrict V accordingly. Nonetheless, the model of
situation theory obtained is in all cases an ‘actualist’ metrology, since each situation
is a part of the whole system, and its local state is merely the restriction of the global
state to that part.

37 It is not yet clear to me whether or not the translation into the guarded fragment of first-order
predicate logic, given by van Benthem, can be extended to the language with �.
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Also since the valuation function V is unconstrained, nothing is implied about
the relationship between � and �, and so in answer to Questions 1 and 2 we get a
failure of both Persistence and Extensionality.38 Persistence is expressed by

s � t ∧ s |= σ → t |= τ

which is only valid (for σ positive and negative) on trivial models in which V assigns
each predicate to either all local states or none of them. This is a consequence of
the bivalence of support mentioned above. Once again, the corresponding statement
about carrying information is valid:

s � t ∧ s |=u σ → t |=u σ

And when we take u = s we get the valid principle:

s � t ∧ s |= σ → t |=s σ

For our earlier example of non-persistence, 〈〈everyone is dancing〉〉, this seems to get
things about right. The situation at the wedding supports that everyone is dancing
and any larger situation, although it may not itself support that everyone is dancing,
still carries this information about the situation at the wedding.

That Extensionality does not hold in general can be seen by considering two
separate, perhaps even disjoint, but equinumerous subsets s and t of X that have been
assigned the same local states by the current global state and all ∼s- and ∼t-similar
ones. This would result in the satisfaction of σs, tσ for all infons σ but also s �= t.39

Finally, concerning schemes of individuation (Questions 11 and 12) constraint
logic, like any logic is built from an inductively specified formal language, which
represents a single way of representing information, no matter how expressively rich.
There are ways in which we could incorporate changing perspectives, for example
by dividing the basic vocabulary of predicates into subsets or looking at other ways
of carving out ‘fragments’ of the language, or by considering different constraint
logical languages with interpretations between them, perhaps even internalising this
idea as is done in interpretability logic. These are all additions to the present theory
that would require further work.

38 One could add the relation � to the language in a fairly straightforward way, but it clearly has a
second-order interpretation and I suspect that this would add greatly to the complexity of the logic.
39 In fact there are two kinds of equivalence between distinct situations that may be considered in
these models. The first is necessary local-state equivalence, whereby g(s) = g(t) for all g ∈ G. Such
situations have perfectly synchronised identical local states and so support the same infons. The
second concerns the predicates used to classify the local states. Even if s and t have quite different
local states, they may still satisfy the same predicates and so support the same infons.
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35.4 Conclusion

The two proposals for reconstructing situation theory have many similar features as
well as profound differences in orientation.

In addition to a largely overlapping series of answers to our twelve questions,
there is a more direct mathematical relationship between the two in the form of a
partial interpretation of each in the other.

A constraint model can be regarded as a channel in which the model as a whole
serves as the core and the component classifications are specified by individual
situations. More precisely, given F = 〈X,L,G〉 and M = 〈F, V 〉, we defined a
channel as follows. Each situation name s ∈ S determines a
classification As whose tokens are local states (L) and whose types are predicates,
with w |= α iff w ∈ V (α) (for w ∈ L). The core classification [c] has global states
(G) as tokens and formulas of the language of constraint logic as types. Then the
equations cs

∧(α) = α(s) and cs
∨(g) = g(V (s)) ensure that cs is an infomorphism.

With this representation, the two interpretations of |= and⇒ coincide. This can be
extended to a representation of the part-whole structure of an unordered constraint
model only if some of the above-mentioned issues concerning Persistence are first
resolved.40

Conversely, we can take a limit of any network of classifications and infomor-
phisms to produce a channel c whose components {Ax}x∈X are all the classifications
and whose defining infomorphisms commute with all those in the network. This
channel can then be represented as a constraint model, whose set of basic situations
X is the index set of the channel, whose local state set L is the disjoint union of the
token sets of all the classifications (i.e., the set of pairs 〈x, a〉 for each token a of Ax),
and whose global function set G is defined to be the set of functions gd : X → L
such that g(x) = cx

∨(d) for each token d of [c]. For predicates, we can take the
types of [c] with V (α) the set of 〈x, a〉 such that a |=Ax c∧α. Since there is no part-
whole structure to the information network, there is nothing here to represent. Indeed,
this is implied by the above construction, according to which each classification is
represented by a basic situation.

A full study of such representations would be of interest.
Beyond these connections, there lies an interesting difference in orientation. The

model of situations as local logics, which in turn are induced by pushing the natural
logics of classifications along infomorphisms takes differences in perspective as
fundamental. Information content and flow is modelled as emerging from the process
of interpretation. The account of situations based on constraint models takes the same
phenomena to result from the interplay between the local and global states of a system.
Much can be learned from further investigation into these differences.

40 For example, if for each situation s there is a function Ps on the set of predicates and the valuation
V is restricted so that for x ⊆ y, y ∈ V (Psα) iff x ∈ V (α) then we recover Persistence in the form:
s � t ∧ s |= σ → t |= Psσ. And then we can represented the part-whole relationship by the

informorphism defined by ιs,t∧(α) = Psα and ιs,t∨(g) = g(V (s)).
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Moreover, van Benthem’s [13] has many more features of interest. In particular,
he shows how constraint models can be combined with the apparatus of dynamic
epistemic logic to bring agents and actions into the picture. At one point (p. 6), he
suggest that agents be viewed as situations. This echoes an old idea from the early
days of situation theory, during which time everything was by default a situation. Yet
there is now a chance that some good sense could be made of this fascinating idea.
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Chapter 36
Unified Correspondence
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Correspondence Theory may be applied to any kind of semantic
entity.
(J. van Benthem, Correspondence theory, Handbook of
Philosophical Logic, p. 381).

Abstract The present chapter is aimed at giving a conceptual exposition of the
mathematical principles underlying Sahlqvist correspondence theory. These princi-
ples are argued to be inherently algebraic and order-theoretic. They translate naturally
on relational structures thanks to Stone-type duality theory. The availability of this
analysis in the setting of the algebras dual to relational models leads naturally to
the definition of an expanded (object) language in which the well-known ‘minimal
valuation’ meta-arguments can be encoded, and of a calculus for correspondence of
a proof-theoretic style in the expanded language, mechanically computing the first-
order correspondent of given propositional formulas. The main advantage brought
about by this formal machinery is that correspondence theory can be ported in a
uniform way to families of nonclassical logics, ranging from substructural logics to
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36.1 Introduction

Correspondence theory has been one of van Benthem’s core interests since early in
his career, and is the field to which his most celebrated result in mathematical logic—
the van Benthem Characterization Theorem—belongs. Throughout his subsequent
career, he has been pointing out various correspondence phenomena embedded in
his many research interests, which he collected e.g. in [5–7]. Most recently, [8] ties
in with his current interests in information flow. van Benthem has always been eager
to point out unexplored research directions, and these chapters are no exception.
The correspondence phenomena he identified are often fringe phenomena, in the
sense that they are clearly recognizable as instances of correspondence, but are not
embedded in a systematic theory, see especially [5]. We are now in a position to bring
the fringe to the core and build a unifying theory around these scattered instances.
Clearly, such an encompassing theory cannot be unfolded in the scope of the present
chapter; our objectives are more modest, and are:

(a) to give a conceptual exposition of the mathematical principles underlying the
correspondence mechanism, and how these principles work uniformly across
different logics and also across different semantics for the same logic;

(b) to give pointers to the recent literature, and to mention the most important direc-
tions in which correspondence theory has been extended;

(c) to give a second reading to van Benthem’s fringe examples, to show how the
general principles identified in item (a) are still at work in these examples, and
to point at ways in which the general theory accounts for them.

36.2 Correspondence via Duality

Relational semantics for modal logic provides a very clear understanding of what
modal axioms mean in many different contexts of application, and is the essential
reason why modal logic has become the successful formalism it is. With the intro-
duction of Kripke semantics in the early 1960s, modal logic found itself in a very
special position among non-classical logic, thanks to the fact that relational struc-
tures can be used both as semantics for modal logic and for classical first-order logic.
This common semantic ground immediately elicited a whole research programme
in the model theory of modal logic, focusing on its expressivity. A high point of this
programme was of course van Benthem’s theorem characterizing modal logic as the
bisimulation invariant fragment of first-order logic [4].

A host of simple but insightful connections started to pop up between modal
axioms which have been previously and independently studied (e.g. in formal philos-
ophy), and basic properties of relational structures, such as reflexivity or transitivity.
These connections are established via the notion of local validity of a modal formula
in a relational structure, i.e., of that formula being satisfied at a given state for every
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valuation. The style of argument used to establish each of these connections is fairly
uniform, so let us briefly review how this is done by way of one such example.

Example 36.1 The following are equivalent for any relational structure F = (W, R)
and any w ∈ W :

1. The modal formula �p → ��p is true in F at w under all assignments
V (p) ⊆ W ;

2. F satisfies the first-order formula α(x) expressing the inclusion R[R[x]] ⊆
R[x] whenever the free variable x is interpreted as w.1

Proof For the interesting direction, i.e., assume 1 and prove 2, we need to assume
that there are states v and v s.t. wRv and vRv, and show that wRv. Consider the
assignment V ∗(p) := R[w]; this is the smallest assignment of p under which the
antecedent of �p → ��p is true. Hence, by modus ponens w must satisfy also
the conclusion ��p under the same assignment, which implies that v satisfies �p
under V ∗, which implies that v ∈ V ∗(p) = R[w].
The Sahlqvist formulas, introduced by Sahlqvist [45] and further developed by van
Benthem [4] and others, form the best known class of modal formulas whose syntactic
shape makes it possible for similar proof arguments to succeed.

New perspective. So what is special about the ‘Sahlqvist shape’, and how can we
systematically recognize and reproduce it in the syntax of other, non-modal logics?
The aim of the present chapter is illustrating that the answers to these questions
are inherently algebraic and order-theoretic. Taking this perspective has the advan-
tage of endowing correspondence results with greater generality between logics and
enhanced portability to different semantics. Such a claim of course requires elaborate
justification, and it is our hope that the reader will be convinced of this by the end
of the chapter. For now, let us say the following: modal logic, like all propositional
logics, can be interpreted into algebras in a canonical way, in the same sense in
which first-order logic is interpreted into relational structures in a canonical way. On
the other hand, the interpretation of modal formulas into relational structures seems
to offer some degrees of choice; for instance, one could use either the forward or
backward direction of the relations to interpret the modal operators. The relational
models alone do not seem to provide enough justification to establish that the usual
interpretation of modal formulas into relational structures is canonical in the informal
sense. This looks like a fundamental asymmetry between the algebraic and relational
semantics of modal logic. Symmetry is restored, in a sense, if we allow Stone duality
(between complete atomic modal algebras and Kripke frames) to enter the picture:
indeed, the relational interpretation of modal formulas is uniquely identified as the
dual characterization of its interpretation on algebras. Hence, its being canonical can
be derived as a consequence of this strong link, and of the canonicity of the algebraic
interpretation. This is pictured in Fig. 36.1(b).

This discussion provides a general illustration of how, thanks to duality, the advan-
tages of the algebraic perspective on modal logic can be transferred to Kripke frames.

1 For x ∈ W we let R[x] = {v ∈ W | Rxv}, and for X ⊆ W we let R[X ] =⋃{R[x] | x ∈ X}.
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(a) (b)

Fig. 36.1 From a model-theoretic (a) to a duality-based (b) approach to correspondence

But more specifically, the link between the relational and the algebraic interpretation
of modal logic directly invests correspondence theory: indeed, thanks to it, we will
be able to show that the Sahlqvist-style correspondence mechanism is driven by
properties which naturally live in the algebraic side of diagram (b).

Finally, having been able to recognize modal correspondence theory as part of
the logical fallout of the specific duality between the algebraic and the set-based
semantics of modal logic, it will also become clear that correspondence theory is by
no means unique to modal logic, and is uniformly available in great generality to all
(classes of) propositional logics for which such dualities are available. Before being
able to motivate these conclusions, let us take a step back, and resume the example
we started with.

Example, continued. The proof in Example 36.1 gives an illustration of the so-
called minimal valuation argument: assuming that a modal formulaϕ→ ψ is locally
valid at a given state w, we instantiate with the minimal valuation which satisfiesϕ at
w. In fact, this argument is a special case of a more general reasoning pattern, which
is typically employed when proving the equivalence of the following statements:

(1) for every assignment V , if F , V,w � ϕ then F , V,w � ψ;
(2) for every assignment V ∗ ranging in a given subclass K , if F , V ∗,w � ϕ then

F , V ∗,w � ψ.

The equivalence between (1) and (2), for a suitable choice of K , is the crucial require-
ment on which the local correspondence mechanism is grounded. Indeed, (1) is just
a reformulation of ϕ → ψ being locally valid at a given state w. If K is a class of
assignments V ∗ mapping each proposition variable to a subset of W which admits
a uniform description (for instance, in the case of our example above, K can be
taken as the set of all the assignments such that either V (p) = ∅ or V (p) = R[v]
for some v ∈ W ), and if further there are only finitely many members of K rele-
vant for any given state w, then (2) can be further manipulated2 into an equivalent
condition in the language to which this uniform description belongs. This is done
by orderly substituting the predicate variables (ranging over arbitrary subsets) with

2 This aspect of the story deserves a separate account, which will be given in Sect. 36.6.
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formal descriptions, in the target language, of definable subsets. So, for instance, if
these uniform descriptions are expressible in the first-order language of F (as is the
case of the example above), then the equivalent condition will yield a local first-order
correspondent of ϕ → ψ; if the descriptions are expressible in the first-order lan-
guage of F enriched with fixed points (as is the case of the Löb formula), then we
will have local correspondence with first-order logic with least fixed points. Thus, in
each context, this uniform descriptions for the assignments in K targets the language
we want to establish modal correspondence with, which explains why we will refer
to the class K which we choose in each particular context as the class of domesticated
assignments, as opposed to the arbitrary assignments, which roam wildly and for
which no such description is available.

Having indicated that the equivalence between (1) and (2) is the crux of the matter,
let us take a closer look at it. It is immediate that (1) always implies (2). It is also
clear that the converse direction is false in its full generality, and our being able to
prove it depends on our being able to find, for a given arbitrary assignment V such
that w ∈ [[ϕ]]V (where [[ϕ]]V denotes the extension of ϕ in F under the assignment
V ), a domesticated assignment V ∗ such that w ∈ [[ϕ]]V ∗ and [[ψ]]V ∗ ⊆ [[ψ]]V .
The latter requirement is typically achieved by assuming that the extension function
induced byψ is monotone, and defining V ∗ so that V ∗(p) ⊆ V (p) for all the relevant
proposition variables. Therefore, the two sufficient requirements on V ∗ in order for
the equivalence between (1) and (2) to go through are:

w ∈ [[ϕ]]V ∗ and V ∗(p) ⊆ V (p). (36.1)

In all the different contexts in which (both the scattered instances of and the sys-
tematic) correspondence results hold, the general strategy to find this domesti-
cated assignment V ∗ can be described as follows3: for each relevant variable p
and every w ∈ [[ϕ]]V , the required domesticated V ∗ is defined by stipulating
V ∗(p) := [[α]]V ⊆ V (p) for some suitable (modal) formula α. It is often the
case that α does not belong to the original language. To fix ideas, let us review what
happens in the proof that (2) implies (1) when ϕ→ ψ is the formula �p → ��p
in the Example 36.1: fix an arbitrary V such that w ∈ [[�p]]V ; then the following
chain of equivalences holds:

w ∈ [[�p]]V iff {w} ⊆ �R V (p)

iff {w} ⊆ (R−1[V (p)c])c
iff {w} ∩ R−1[V (p)c] = ∅

iff R[{w}] ∩ V (p)c = ∅

iff R[w] ⊆ V (p). (36.2)

3 It is certainly not the only way to describe the correspondence mechanism, but it is useful for our
purposes.
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The above chain of equivalences effectively rewrites our assumptions into a workable
choice of domesticated valuation: indeed, it says that a valuation satisfies the
antecedent of our given formula at w iff it assigns p to a superset of R[w]. This
immediately implies that the set of valuations satisfying the antecedent of our given
formula at w (ordered pointwise) has a minimum, given by the valuation V ∗ assigning
V ∗(p) := R[w] and ∅ to all the other variables. This valuation clearly satisfies both
requirements in clause (36.1), which as discussed, are sufficient condition for the
equivalence between (1) and (2) to be established.

But, more interestingly, for which α can we identify the set R[w] as [[α]]V ?
Or more precisely, how should we expand our base language (and hence also our
original assignments V ) so that we get V ∗(p) = [[α]]V ? This example shows that
we certainly need to expand our language with at least the following two types of
syntactic ingredients:

(a) ingredients which enable us to speak about singletons;
(b) ingredients which enable us to speak about direct R-images of subsets.

As to (b), it is well known that, for every subset X (which might be in particular a
singleton), the assignment X �→ R[X ] provides the interpretation for the backward-
looking diamond �, which is interpreted by the semantic diamond associated with
R−1. This is a well known situation in modal tense logic, where the backward-looking
modalities belong to the base language; for the modal languages in which this is not
the case, the backward-looking modalities will be added to the expanded language.

As to (a), the most convenient way for us to speak about singletons is to introduce a
special sort of variables h, i, j,k, . . . in the extended modal language, which are to be
interpreted as singletons; we call them nominals, after the analogous devices adopted
in hybrid logic. In Sects. 36.3 and 36.4, the expanded language will be discussed more
formally and generally. For the moment, we only remark that nominals, interpreted
as singletons, make it possible to encode local satisfaction of modal formulas as
global satisfaction of certain inequalities, as follows:

F , V,w � ϕ iff F , Vj:=w � (j ≤ ϕ), (36.3)

where Vj:=w is the extended j-variant of V sending j to {w}, and for every valuation
V and formulas ψ and χ we write F , V � ψ ≤ χ to indicate that [[ψ]]V ⊆ [[χ]]V .

Given both types of syntactic ingredients, we can stipulate in the example above
V ∗(p) := [[α]]V for α = �j. Notice that the introduction of this language expansion
is harmless w.r.t. our target language: the standard translation of formulas in the
language expanded with both nominals and backward-looking modalities falls within
the basic first-order frame language. But more interestingly, which advantages does
this expanded language bring to us?

Firstly, we have gained a better calculus: for instance, the equivalence between
the beginning and the end of the (rather clumsy) chain of set-theoretic equivalences
(36.2) above can be justified in one line as the following instance of the well known
tense axiomatics:

j ≤ �p iff �j ≤ p. (36.4)
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Secondly and more importantly, we have defined a formal setting in which the
computation of the minimal valuation is internalized at the level of a suitable object
language. Indeed, the left-to-right direction of (36.4) provides us with the minimal
valuation V ∗(p) which is expressed in the extended language as �j. This enables
us to proceed to a full mechanization of the minimal valuation argument. Indeed,
after computing the needed minimal valuation as above, the actual instantiation with
this valuation is facilitated and justified by the following version of Ackermann’s
lemma [2]:

Lemma 36.1 Let α,β(p), γ(p) be formulas of a (modal) language L+ over the set
of variables PROP; let p ∈ PROP such that p does not occur free inα, β is negative
in p and γ is positive in p, then the following are equivalent for every L+-Kripke
frame F:

(a) F � (α ≤ p⇒ β(p) ≤ γ(p));
(b) F � β(α/p) ≤ γ(α/p).

Proof For every formula ϕ and valuation V , let [[ϕ[p]]]V be the unary operation on
P(W ) sending X ∈ P(W ) to [[ϕ]]V ′ where V ′ is the p-variant of V sending p to X .

As to the direction from (a) to (b): assume contrapositively that [[β(α/p)]]V �⊆
[[γ(α/p)]]V for some valuation V . Let V ∗ be the p-variant of V such that V ∗(p) :=
[[α]]V . Then, because the variable p does not occur in α, we have [[α]]V ∗ =
[[α]]V = V ∗(p), which proves that F , V ∗ � α ≤ p. However, for every for-
mula ξ, the following chain of equalities holds: [[ξ(p)]]V ∗ = [[ξ[p]]]V ∗(V ∗(p)) =
[[ξ[p]]]V ∗([[α]]V ) = [[ξ(α/p)]]V . This and the contrapositive assumption prove that
F , V ∗ �� β(p) ≤ γ(p).

Conversely, assume that F � β(α/p) ≤ γ(α/p), and let V be such that [[α]]V ⊆
V (p). Then, since β and γ are respectively negative and positive in p, we have:
[[β(p)]]V ⊆ [[β(α/p)]]V ⊆ [[γ(α/p)]]V ⊆ [[γ(p)]]V , which proves that F , V �
β(p) ≤ γ(p).

The proof of the direction (a)⇒ (b) in the lemma above encodes the minimal val-
uation argument in a very general way. This provides us with a crucial step towards
mechanizing the correspondence process via the elimination of variables, as we can
now simply appeal to the lemma instead of making an ad hoc minimal valuation
argument. Notice also that the lemma does not depend on the particular choice of
language L+.4 Besides the assumptions of monotonicity/antitonicity of the interpre-
tation of formulas, the only requirement encoded in the proof is that the minimal
valuation be defined in terms of the resources of L+.

Towards a calculus for correspondence. Using the resources of the expanded lan-
guage, and the stipulations made in clauses (36.3) and (36.4), it is not difficult to
check the soundness on Kripke frames of the following chain of equivalences:

4 In fact, it works also when F is an ordered algebra where the operations interpret the
L+-connectives.
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∀p[�p ≤ ��p] iff ∀p∀j[j ≤ �p⇒ j ≤ ��p]
iff ∀p∀j[�j ≤ p⇒ j ≤ ��p]
iff ∀j[j ≤ ���j] (Lemma 36.1)

iff ∀j[��j ≤ �j].

indeed, thanks to the above stipulations on the interpretation of nominals, the con-
dition F � �p ≤ ��p can be equivalently rewritten as F � ∀j[j ≤ �p ⇒ j ≤
��p]; by the stipulations on the additional modal operators, this clause can equiva-
lently be rewritten as F � ∀j[�j ≤ p⇒ j ≤ ��p]. Hence, by Ackermann’s lemma
applied to α := �j, β(p) := j, γ(p) := ��p, we get that F � ∀j[j ≤ ���j],
which can be rewritten as F � ∀j[��j ≤ �j].

To sum up, what we are heading towards is introducing a formal (object) language
and a syntactic machinery in which the semantic ‘minimal valuation’ meta-argument
given in Example 36.1 can be encoded. This small copernican revolution can be
traced back to [37]. As to the benefits it brings: once we are dealing with syntax,
we are free to interpret these strings of symbols and transformation rules in all
sorts of models which happen to soundly interpret them; for instance, atomistic5

tense Boolean algebras, and more specifically, the complex algebras, i.e. the modal
algebras dually associated with relational structures, are obvious sound models. In
the latter, nominals would then be interpreted as atoms of the algebra, and it is easy
to see that the first equivalence is sound precisely because of atomicity. In fact,
thanks to duality, the soundness of the chain of equivalences above w.r.t. complex
algebras is the equivalent counterpart of the soundness proof on frames. Interpreting
∀j[��j ≤ �j] on complex algebras, where j ranges over the singletons, we readily
obtain the well known first-order condition

∀x(R[R[x]] ⊆ R[x]),

which standardly abbreviates the usual transitivity condition.
But there is more. In fact, we can do just as well with much more general algebras

than the complex algebras of Kripke frames. All we need of an algebraic model for
this (very simple) proof to be sound is its being a poset endowed with a pair of adjoint
operations �  �, and its being join-generated by some designated subset J (which
will provide the interpretation for nominals). Of course, for the sake of finding a
suitable environment for classes of logics, we need to assume more: in particular,
we want to assume the existence of a rich enough algebraic environment, able to
provide interpretation to logical connectives; certain complete (distributive) lattice
expansions which we will introduce below are adequate for most purposes. This
enables us to explore the full domain of applicability of correspondence arguments,
which turns out to be much wider than classical modal logic.

5 A lattice is atomistic if every element is the supremum of a set of atoms.



36 Unified Correspondence 941

This concludes the informal presentation of the view on correspondence theory
pursued in the present chapter. In the following section, we will expand on some of
the technical details supporting this perspective.

36.3 A Calculus for Correspondence

Let us start by formally introducing the expanded syntax we mentioned in the previous
section: it will include the backward-looking box corresponding to the diamond taken
as a primitive operator, as well as a denumerably infinite set of sorted variables NOM
called nominals, the elements of which will be denoted with i, j, possibly indexed.

The formulas of L+ are given by the following recursive definition:

ϕ:: = ⊥ | p | j | ϕ ∨ ψ | ¬ϕ | ♦ϕ | �ϕ,

where p ∈ PROP and j ∈ NOM. The derived connectives ∧, �, →, −, . . . are
defined in the standard way. In order to formalize the correspondence arguments,
we will have to expand L+ to accommodate inequalities and quasi-inequalities. To
be precise, if ϕ,ϕ1, . . . ,ϕn,ψ,ψ1, . . . ,ψn ∈ L+ then ϕ ≤ ψ is an inequality and
ϕ1 ≤ ψ1& · · ·&ϕn ≤ ψn ⇒ ϕ ≤ ψ is a quasi-inequality. Disjunctions ϕ ≤ ψ

&

χ ≤ ξ between inequalities will be sometimes considered.
Formulas, inequalities and quasi-inequalities not containing any propositional

variables (but possibly containing nominals) will be called pure. As we will see next,
these can be readily translated into the first-order frame correspondence language;
hence we aim to introduce rules for a calculus of syntactic transformations of quasi-
inequalities, by means of which quasi-inequalities in L+ can be transformed into
pure ones, so as to preserve logical equivalence. In order to motivate this calculus,
let us introduce the intended interpretation of the expanded language.

A valuation for L+ on a Kripke frame F = (W, R) is any map V from the set
PROP ∪ NOM of propositional variables and nominals into the powerset P(W ),
such that each i ∈ NOM is assigned to the singleton subset {x} for some x ∈ W .
A model for L+ is a tuple M = (F , V ) such that F is a Kripke frame and V is a
valuation for L+. For any such model, the satisfaction relation for formulas in L+ is
recursively defined as follows (here we report only the new connectives):

M,w � i iff V (i) = {w},
M,w � �ϕ iff for every v, if vRw then M, v � ϕ.

The local satisfaction relation extends to inequalities and quasi-inequalities as fol-
lows:

M,w � ϕ ≤ ψ iff if M,w � ϕ then M,w � ψ,
M,w � (&n

i=1ϕi ≤ ψi )⇒ ϕ ≤ ψ iff if M,w � ϕi ≤ ψi for 1 ≤ i ≤ n
then M,w � ϕ ≤ ψ.
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From the clauses above, the global satisfaction relation for inequalities and
quasi-inequalities is defined in the usual way, by universally quantifying over w;
namely,

M � ϕ ≤ ψ iff for any w, if M,w � ϕ then M,w � ψ,
M � (&n

i=1ϕi ≤ ψi )⇒ ϕ ≤ ψ iff for any w, if M,w � ϕi ≤ ψi for1 ≤ i ≤ n
then M,w � ϕ ≤ ψ.

For every model M = (F , V ) and every ϕ ∈ L+, the symbol [[ϕ]]M denotes as
usual the set of states of M at whichϕ is satisfied. When there could be no confusion
about F , the symbol [[ϕ]]V will alternatively be used.

As mentioned in Sect. 36.2, local satisfaction of formulas can be encoded as a
special case of the global satisfaction of inequalities, as reported in the following
proposition:

Proposition 36.1 For any Kripke frame F , any valuation V for L+ and any ϕ ∈ L,

F , V,w � ϕ iff F , V ′ |= j ≤ ϕ and V ′(j) = {w},

with V ′ ∼j V and j a nominal not occurring in ϕ.

The Ackermann lemma (Lemma 36.1) implies that the following rules are sound
and invertible w.r.t. the standard Kripke semantics:

∀p[(α ≤ p & &1≤i≤n(γi (p) ≤ δi (p)))⇒ ϕ(p) ≤ ψ(p)]
(LA)

&1≤i≤n(γi (α/p) ≤ δi (α/p))⇒ ϕ(α/p) ≤ ψ(α/p)

∀p[ϕ(p) ≤ ψ(p)]
(⊥)

ϕ(⊥/p) ≤ ψ(⊥/p)

subject to the restrictions thatα is p-free, and thatϕ and the δi are negative in p, while
ψ and the γi are positive in p. Notice that the rule (⊥) can be regarded as the special
case of (LA) in which α := ⊥. Likewise, a mirror-image version of Lemma 36.1
implies that the following rules are sound and invertible w.r.t. the standard Kripke
semantics:

∀p[(p ≤ α& &1≤i≤n(γi (p) ≤ δi (p)))⇒ ϕ(p) ≤ ψ(p)]
(RA)[&1≤i≤n(γi (α/p) ≤ δi (α/p))⇒ ϕ(α/p) ≤ ψ(α/p)]

∀p[ϕ(p) ≤ ψ(p)]
(�)

ϕ(�/p) ≤ ψ(�/p)

subject to the restrictions that α is p-free, and that ϕ and the δi are positive in p,
while ψ and the γi are negative in p. In addition to this, the following proposition is
an immediate consequence of the stipulations above:

Proposition 36.2 For every model M = (F , V ) for L+, every j ∈ NOM, and all
ϕ,ψ,χ ∈ L+,
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1. F , V � ϕ ≤ ψ iff F , V |= ∀j[j ≤ ϕ ⇒ j ≤ ψ], for any nominal j not
occurring in ϕ ≤ ψ.

2. F , V � ϕ ∨ χ ≤ ψ iff F , V � ϕ ≤ ψ and F , V � χ ≤ ψ.
3. F , V � ϕ ≤ χ ∨ ψ iff F , V � ϕ − χ ≤ ψ, where ϕ − χ := ϕ ∧ ¬χ =
¬(¬ϕ ∨ χ).

4. F , V � ♦ϕ ≤ ψ iff F , V � ϕ ≤ �ψ.
5. F , V � j ≤ ♦ψ iff F , V |= ∃i[j ≤ ♦i & i ≤ ψ], for any nominal i not

occurring in j ≤ ♦ψ.
6. F , V � ψ ≤ ¬ϕ iff F , V � ϕ ≤ ¬ψ.
7. F , V � ¬ϕ ≤ ψ iff F , V � ¬ψ ≤ ϕ.

The proposition above essentially says that the following rules are sound and
invertible w.r.t. the standard Kripke semantics:

ϕ ≤ ψ
(FA)∗∀j[j ≤ ϕ⇒ j ≤ ψ]

ϕ ∨ χ ≤ ψ
(∨-�)

ϕ ≤ ψ χ ≤ ψ
ϕ ≤ χ ∨ ψ

(∨RR)
ϕ− χ ≤ ψ

♦ϕ ≤ ψ
(♦LA)

ϕ ≤ �ψ
j ≤ ♦ψ

(jCJP)†
∃i(j ≤ ♦i&i ≤ ψ)

ϕ ≤ ¬ψ
(¬RGA)

ψ ≤ ¬ϕ
¬ϕ ≤ ψ

(¬LGA)¬ψ ≤ ϕ

∗where the introduced nominal j does not occur in derivation so far.
†where the introduced nominal i does not occur in derivation so far.

It is easy to show that the calculus admits derived invertible rules such as the
following:

ϕ ≤ χ ∧ ψ
(∧-�)

ϕ ≤ χ ϕ ≤ ψ
ϕ ∧ χ ≤ ψ

(∧LR)
ϕ ≤ χ→ ψ

ϕ ≤ �ψ
(�RA)

�ϕ ≤ ψ
�ϕ ≤ ¬j

(¬jCMP)†

∃i(�¬i ≤ ¬j & ϕ ≤ ¬i)

The calculus introduced above can be used to derive first-order correspondents of
formulas, inequalities, and quasi-inequalities; formal derivations in this calculus can
be semantically interpreted as ‘minimal valuation’ meta-arguments, which justifies
the statement that this calculus indeed mechanizes these meta-arguments. Several
algorithms have been introduced in the literature (see, e.g., [18, 22, 30]) which spec-
ify how these derivations should proceed; these algorithms are also shown to be
successful for classes of formulas which significantly extend the class of Sahlqvist
formulas. Reporting in detail on these algorithms and their properties is certainly
beyond the aims of this chapter; however we conclude the present section by dis-
cussing examples, since we believe that this, rather than the extensive theory, will
give the reader a better idea on how to proceed in practice.

Example 36.2 In [39] Goranko and Vakarelov show that the formula p ∧�(♦p→
�q) → ♦��q, which falls in their class of Inductive formulas, has a first-order
frame correspondent which does not correspond to any Sahlqvist formula in the
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basic modal language. For the sake of a smoother application of the rules introduced
above, we rewrite this formula as an inequality and proceed as follows:

∀p∀q(p ∧�(♦p→ �q) ≤ ♦��q)
iff∀p∀q∀j(j ≤ p ∧�(♦p→ �q)⇒ j ≤ ♦��q) (FA)
iff∀p∀q∀j(j ≤ p & j ≤ �(♦p→ �q)⇒ j ≤ ♦��q) (∧RA)
iff∀q∀j(j ≤ �(♦j→ �q)⇒ j ≤ ♦��q) (LA)
iff∀q∀j(�(�j ∧ ♦j) ≤ q⇒ j ≤ ♦��q) (�RA), (∧LR), (�RA)
iff∀j(j ≤ ♦���(�j ∧ ♦j)). (LA)

Note that the last application of (LA) yields an empty & in the antecedent. Now
the last quasi-inequality is pure, and translates, after some slight simplification, into
the expected first-order local frame condition ∃y(Rxy ∧ ∀z(R2 yz → ∃v(Rvz ∧
Rvx ∧ Rxv))).

36.4 Algebraic Soundness of the Calculus for Correspondence

Discrete Stone duality for Kripke frames guarantees that the interpretation of the
expanded language on Kripke frames systematically translates to complete atomic
modal algebras.

L+-valuations on Kripke frames translate as assignments on the dual algebras,
under which, nominals are interpreted as atoms. Inequalities and quasi-inequalities
are interpreted in algebras using their natural lattice order, and satisfaction and valid-
ity naturally carry over to algebras as well. In particular, it is not difficult to show
that both Lemma 36.1 and Proposition 36.2 hold if Kripke frames are replaced by
complete atomic modal algebras, which again means that the calculus for correspon-
dence defined in the previous section is sound w.r.t. the algebraic duals of Kripke
frames. However, this is neither surprising nor does it give us anything more than we
had before.

The algebraic perspective starts to become interesting when noticing that, as we
had mentioned in Sect. 36.2, almost all the rules of the calculus for correspondence
are sound w.r.t. a significantly larger class of algebras than complete atomic modal
algebras:

Definition 36.1 A perfect distributive lattice (cf. [27, Definition 2.9]) is a complete
lattice C such that the set J∞(C) of the completely join-prime elements6 is join-
dense in C (meaning that a = ∨{ j ∈ J∞(C) | j ≤ a} for every a ∈ C) and the set
M∞(C) of the completely meet-prime elements is meet-dense in C (meaning that
a =∧{m ∈ M∞(C) | a ≤ m} for every a ∈ C).

6 An element c of a complete lattice is completely join-prime if c �= ⊥ and, for every subset S of
the lattice, c ≤∨

S iff c ≤ s for some s ∈ S, and is completely meet-prime if c �= � and, for every
subset S of the lattice, c ≥∧

S iff c ≥ s for some s ∈ S.
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Analogously to the duality between complete atomic Boolean algebras and sets, a
Stone-type duality holds between perfect distributive lattices and posets, as a conse-
quence of which, perfect distributive lattices can be equivalently characterized (cf.
[33, Definition 2.14]) as those lattices each of which is isomorphic to the lattice
P↑(X) of the upward-closed subsets of some poset X . In particular, the role atoms
had in the Boolean algebra setting is taken over, in this generalized duality, by the
completely join-prime elements.

Definition 36.2 (Perfect distributive lattice with operators) (cf. [32]) A distributive
lattice with operators (DLO) A is perfect if its lattice reduct is a perfect distributive
lattice and every additional operation is, in each coordinate, either completely join-
or meet-preserving or completely join- or meet-reversing.

So for instance, the unary additional operations in a DLO need to satisfy at least one
property in the following array: for every S ⊆ A,

♦(
∨

S) =∨{♦s | s ∈ S} �(∧ S) =∧{�s | s ∈ S}
�(

∨
S) =∧{�s | s ∈ S} �(∧ S) =∨{�s | s ∈ S}. (36.5)

It is not difficult to show that both Lemma 36.1 and all items of Proposition 36.2, with
the exception of item 7, hold if F is replaced by a suitable perfect DLO (suitable
in the sense that it has the appropriate array of operations and in particular, in it,
the connective ¬ is interpreted e.g. as intuitionistic negation), and L+-valuations on
frames are replaced with L+-assignments on perfect DLOs which map nominals to
completely join-prime elements.

For instance, item 1 of Proposition 36.2 is sound because, by definition, in a
perfect DLO every element is the join of the set of completely join-prime elements
below it; item 5 is sound because the following equivalence holds in every perfect
DLO (A,♦): for every j ∈ J∞(A) and every a ∈ A,

j ≤ ♦a

= ♦(∨{i ∈ J∞(A) | i ≤ a}) (definition of perfect DLO)

= ∨{♦i ∈ J∞(A) | i ≤ a} (♦ is completely ∨ −preserving)

iff j ≤ ♦i for some i ∈ J∞(A)s.t. i ≤ a. ( j is completely join-prime)

By general order-theoretic facts (see e.g. [31]), all the operations of a perfect DLO
admit right or left residuals in each coordinate, or are adjoints7; this immediately
proves items 2, 3, 4 and 6. This means that all the rules of the calculus given in the
previous section, with the exception of (¬LGA), are sound and invertible w.r.t. perfect
DLOs. In fact, soundness and invertibility w.r.t. perfect DLOs can be shown for a

7 Notice for instance that the defining clause of the least upper bound, i.e. a ∨ b ≤ c iff a ≤ c and
b ≤ c for all a, b, c ∈ A can be equivalently restated by saying that ∨ : A× A→ A is left adjoint
to the diagonal map � : A → A × A defined by the assignment a �→ (a, a). Likewise, ∧ is the
right adjoint of �. This is why we refer to the corresponding rules as �-rules. More on adjoints
and residuals can be found in the appendix.
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few more rules: for instance, thanks to the fact that in a perfect DLO every element
is not only the join of the set of completely join-prime elements below it, but is also
the meet of the set of completely meet-prime elements above it, the language L+
can be further expanded by adding a new sort of variables l,m,n · · · ∈ CONOM,
referred to as co-nominals, ranging over the completely meet-prime elements, and
it can be easily shown that the following facts hold in every perfect DLO A, which
can be added to (the DLO-version of) the list of Proposition 36.2: for all a, b ∈ A,

8. a ≤ b iff for every m ∈ M∞(A), if b ≤ m then a ≤ m;
9. a ≤ b iff for every j ∈ J∞(A) and every m ∈ M∞(A), if j ≤ a and b ≤ m

then j ≤ m;

these equivalences imply that the following rules are sound and invertible w.r.t.
perfect DLOs:

ϕ ≤ ψ
(UA)∀m[ψ ≤ m⇒ ϕ ≤ m]

ϕ ≤ ψ
(ULA)∀j∀m[(j ≤ ϕ & ψ ≤ m)⇒ j ≤ m]

It can also be shown that the derived rules (∧RA), (∧LR), (�RA), and (¬jCMP)
introduced in the previous section are sound and invertible w.r.t. DLOs, except that
they cannot be soundly derived anymore, but need to be added to the calculus as
primitive rules, and their soundness and invertibility should be proved from first
principles. Indeed, they can be shown to be sound and invertible for � taken as a
primitive connective, the implication→ and subtraction − respectively interpreted
by means of the Heyting and the dual Heyting implications, and ¬i in (¬jCMP)
replaced by m ∈ CONOM. In which case, the following rules can also be shown to
be sound and invertible on perfect DLOs, using the fact that the Heyting implication
is completely join-reversing in its first coordinate and completely meet-preserving
in its second one, and the dual Heyting implication is completely join-preserving in
its first coordinate and completely meet-reversing in its second one:

ϕ→ χ ≤ m
(→Appr)

∃j∃n[j ≤ ϕ & χ ≤ n & j→ n ≤ m]
j ≤ χ− ψ

(−Appr)
∃i∃m[i ≤ χ & ψ ≤ m & j ≤ i−m]

By now, the reader may have realized that the way rules are introduced easily and
uniformly generalizes to any additional operation in a DLO, and applies also to the
algebraic interpretation of logical languages outside the scope of modal logic, such
as for instance the substructural logics, many-valued logics, and so on. For instance,
the following rules for the substructural fusion ◦ and its two right residuals /◦ and
\◦, and for fission � and its two left residuals /� and \� can be shown to be sound and
invertible on DLOs:

ϕ ◦ χ ≤ ψ
(◦R)

ϕ ≤ ψ/◦χ
χ ≤ ϕ\◦ψ

ϕ ≤ χ � ψ
(�R)

ϕ/�χ ≤ ψ
ψ\�ϕ ≤ χ
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j ≤ χ ◦ ψ
(◦Appr)

∃i∃h[i ≤ χ & h ≤ ψ & j ≤ i ◦ h]
ϕ � χ ≤ m

(�Appr)
∃n∃l[χ ≤ n & ϕ ≤ l & n � l ≤ m]

ϕ/◦χ ≤ m
(/◦Appr)

∃n∃j[ϕ ≤ n & j ≤ χ & n/◦j ≤ m]
ϕ\◦χ ≤ m

(\◦Appr)
∃j∃n[j ≤ ϕ & χ ≤ n & j\◦n ≤ m]

j ≤ χ/�ψ (/�Appr)
∃i∃m[i ≤ χ & ψ ≤ m & j ≤ i/�m]

j ≤ χ\�ψ (\�Appr)
∃m∃i[χ ≤ m & i ≤ ψ & j ≤ m\�i]

Duality, relational structures and target correspondence language. Just in the
same way in which the duality between complete atomic Boolean algebras and sets
can be expanded to a duality between complete atomic modal algebras and relational
structures consisting of sets endowed with arrays of relations, the duality between
perfect distributive lattices and posets can be expanded to a duality between perfect
DLOs and relational structures F = (W,≤, . . .), consisting of posets endowed with
arrays of relations. Each relation in the array induces (and up to isomorphism is
induced by) one additional operation in the usual way, i.e., n-ary operations corre-
spond to n+1-ary relations. Examples of such structures can be found in Sect. 36.11,
where more details and references are provided. The only important detail for the
sake of the present discussion is that the complex algebras F+ for these frames can
be defined as in the classical setting, with the notable difference that they are based on
the (perfect distributive) lattice P↑(W ) of the upward-closed subsets of (W,≤). This
is unsurprising, and perfectly fits with the well-known fact that the valuations for e.g.
intuitionistic logic are to be persistent. As in the case of classical modal logic, these
relational structures are both models for the extended propositional (modal) language,
and for the first-order language(s) which are naturally interpreted on them, and which
will be our target correspondence languages. The only remaining open issue is then
to establish a standard translation of pure formulas and quasi-inequalities of the
extended propositional language L+ into these first-order correspondence languages.
How? Because of space constraints we will not give full details, which are straightfor-
ward and can be found in [22]; instead, we restrict our attention to the interpretation
of the variables in NOM and CONOM in the dual relational structures, and justify
why this interpretation gives rise to first-order definable conditions on any structure
F = (W,≤, . . .). Duality is crucial to establish this interpretation. Indeed, there is
only one solution which takes all the following facts into account:

(a) on perfect distributive lattices, nominals and co-nominals are respectively inter-
preted as completely join- and meet-prime elements;

(b) the complex algebra of F = (W,≤, . . .) is based on the perfect distributive
lattice P↑(W );

(c) the collections of all completely join- and meet-prime elements of P↑(W ) are
respectively8

{x↑ | x ∈ W } and {W \ x↓ | x ∈ W };

8 As usual, x↑ denotes the subset {y | y ∈ W and x ≤ y}, and x↓ denotes the subset {y | y ∈ W
and y ≤ x}.
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(d) the unique homomorphic extension V̂ of each L+-valuation on F is to be an
L+-valuation on F+;

(e) it should be that case that, for all models (F , V ) and all ϕ,ψ ∈ L+,

F , V � ϕ ≤ ψ iff F+, V̂ � ϕ ≤ ψ.

The only way to define the interpretation of j ∈ NOM and m ∈ CONOM which takes
all these facts into account is to stipulate that L+-valuations V on F assign variables
j ∈ NOM to elements in {x↑ | x ∈ W } and variables m ∈ CONOM to elements in
{W \ x↓ | x ∈ W }. As was the case in the classical setting, the interpretations of
nominals and co-nominals are clearly definable in the most restricted correspondence
language which the structures F are models of.

Stepping back from this discussion, we note two points: duality was crucial in
establishing the connection of clearest practical value to our current agenda, namely
being able to translate the pure fragment of the extended language L+ into the target
first-order correspondence language. However, the reasoning used in establishing
this connection illustrates a methodological point about dualities, namely, that they
can be used not only as a proof tool, but also as a defining tool. For instance, in more
general settings than the ones presented so far, like lattice based logics, the algebraic
semantics is clear but one might be in the dark as to what an appropriate relational
semantics might be, both as regards an appropriate class of relational structures and
as to the appropriate interpretation of the propositional language in such a class.
This is where duality can be used as a defining tool: firstly, relational structures can
be extracted, as it were, from perfect lattices [27]; secondly, the interpretation of
the propositional formulas in algebras transfers via the duality to these extracted
structures. To mention a related but different example, in [43, 44] duality is used
to semantically identify the intuitionistic counterparts of public announcement logic
and of the logic of epistemic actions and knowledge.

36.5 Four Conclusions and a Question

Conclusion 1: thanks to the algebraic insights facilitated by duality, correspondence
theory can be developed uniformly for more than modal-like logics; as we have illus-
trated, also substructural logics, intuitionistic logic and its fragments, MV-logics, as
well as distributive and intuitionistic modal logic, and more in general, all the logics
the algebraic semantics of which is given by DLOs can be encompassed. Also,
μ-calculus (see Sect. 36.8.3), monotone modal logic [23] and their lattice-based
extensions are examples of logics which can be uniformly treated by this theory.

Conclusion 2: the algebraic and algorithmic developments for correspondence can
and have been merged. This now allows for algebraic canonicity to be treated either
independently from correspondence in the style of [36], or via correspondence as in
[22]. And there is more: as discussed at the end of the previous subsection, even in
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vastly more general settings, concrete relational structures can be extracted from the
algebras. Therefore, even in these rarified algebraic settings, speaking of correspon-
dence theory does not amount to merely establishing an elaborate social convention,
or a manner of speaking, by means of which we can pretend that relational models
which are not really there virtually manifest themselves by means of their algebraic
ghosts. On the contrary, the obtained correspondence theory makes sense, on the
extracted relational structures, in the traditional way.

Conclusion 3: for the sake of the present chapter, we have distilled the main fea-
tures of the algebraic-algorithmic approach into a more informal presentation of a
calculus for correspondence, the set of rules of which can be modified, expanded or
reduced, so that the calculus can be adapted to different logical languages, and so
that it can be proven sound w.r.t. different semantics; however, the underlying math-
ematical principles which drive this calculus (as well as the algorithms, and more
in general, all the Sahlqvist-style correspondence arguments) remain stable across
the different settings, and are: the Ackermann lemma in any of its many forms, the
residuation/adjunction properties of the operations interpreting the logical connec-
tives, and the approximation properties of the ‘states’ (or co-states) of the relational
semantics, which generate (and co-generate) their dual complex algebras.

Conclusion 4: The computation process of first-order correspondents can be neatly
divided in two stages: a first stage, in which quasi-inequalities are transformed into
pure ones, and a second stage, where pure quasi-inequalities are interpreted in the
given classes of relational structures. Different relational semantics might then yield
different interpretations of the same pure quasi inequality, and some instances of
this will be discussed in Sect. 36.9. The definition of this syntactic calculus and the
possibility of soundly interpreting it in a generalized algebraic environment (which
can then be translated, in a second stage, into several concrete relational semantics)
gives some mathematical flesh to van Benthem’s insight that “Correspondence The-
ory may be applied to any kind of semantic entity”.

Question: How powerful is this algebraic-algorithmic procedure? In the case of clas-
sical modal logic it is state of the art, and covers syntactically characterized classes
of formulas which significantly extend the Sahqvist class (viz. Inductive, Recursive,
see [39]). But can we claim that, in all the other (e.g. lattice-based) cases, the algo-
rithmic procedure is just as powerful? The answer to this question requires being
able to recognize Sahlqvist, Inductive, Recursive classes for each logical language
to which the algorithmic correspondence applies. In Sect. 36.7 we suggest a way in
which this can be done.
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36.6 The van Benthem Formulas

One aspect of the discussion in Sect. 36.2 still needs to be justified, which concerns
how to extract the correspondent of a given modal formula, provided the equivalence
between clauses (1) and (2) holds (which are reported below); before moving on to
what we have promised to do at the end of the previous section, in the present section
we discuss this aspect briefly. As mentioned early on in Sect. 36.2, suppose that, for
a certain subclass of valuations K , the following are equivalent:

(1) F , V,w � ϕ(p1, . . . , pn) for every assignment V ;
(2) F , V ∗,w � ϕ(p1, . . . , pn) for every assignment V ∗ ∈ K .

Suppose moreover that each member V ∗ ∈ K and 1 ≤ i ≤ n, the subset V ∗(pi ) can
be defined (possibly parametrically) by a formula αi (w, v) in some extension L ′ of
the frame correspondence language L0. Here we typically think of L ′ as L0 itself or
some language in between L0 and L2 such as first-order logic with least fixed points,
or perhaps a first-order logic with branching quantifiers such as information friendly
logic.

Let � be the set of all L ′-formulas STx (ϕ)(α1(w, v), . . . ,αn(w, v)) obtained
by substituting in STx (ϕ) the predicate symbols P1, . . . Pn with the L ′-formulas
α1(w, v), . . ., αn(w, v) corresponding to the valuations in K . Clearly, ∀PSTx (ϕ) |=
�[x := w], where P is the vector of all predicate symbols occurring in STx (ϕ).
But also, because of the equivalence between (1) and (2) assumed above, � |=
∀PSTx (ϕ)[x := w]. If� is finite, then

∧
� is clearly an L ′ local frame correspondent

for ϕ.
Even if � is infinite, we can still find an L ′ equivalent, provided L ′ is compact:

Since � |= ∀PSTx (ϕ)[x := w] we have � |= STx (ϕ)[x := w], and we may
then appeal to the compactness of L ′ to find some finite subset �′ ⊆ � such that
�′ |= STx (ϕ)[x := w].

We claim that �′ |= ∀PSTx (ϕ)[x := w]. Indeed, let M be any L1-model
such that M |= �′[x := w]. Since the predicate symbols in P do not occur in
�′, every P-variant of M also models �′, and hence also STx (ϕ). It follows that
M |= ∀PSTx (ϕ)[x := w]. Thus we may take

∧
�′ as a local first-order frame

correspondent for ϕ.
The case in which L ′ = L0 and K is the class of all parametrically L0-definable

valuations was studied by van Benthem in [4]. Under these assumptions, the class
of formulas for which the equivalence between (1) and (2) holds was named the van
Benthem formulas in [17]. All the well known syntactically characterized classes of
first-order definable modal formulas (Sahlqvist, Inductive, etc.) are encompassed by
the van Benthem formulas. However, in its full generality, the class of van Benthem
formulas is of little practical use. Indeed, for infinite sets �, the above argument,
relying on compactness as it does, does not enable us to explicitly calculate a cor-
respondent for a given formula ϕ, or devise an algorithm which produces frame
correspondents for each member of a given class of modal formulas. One therefore
typically concentrates on cases in which the class K can be described by L ′-formulas
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of uniform shape and hence of bounded complexity. In [23] an account of classical
correspondence is given in terms of a hierarchy of such classes K .

36.7 Characterizing the Sahlqvist Formulas Across
Different Logics

As discussed at the end of Sect. 36.5, being able to measure the effectiveness of
the algebraic-algorithmic approach across different logics requires being able to
recognize Sahlqvist, Inductive, Recursive classes for each logical language to which
the algorithmic correspondence applies. In the following subsection, we give a very
portable definition of Sahlqvist formulas, or rather inequalities, that is general enough
to be applied unchanged across a wide variety of logics. In Sect. 36.7.2, we contrast
this briefly with other definitions in the literature.

36.7.1 The Sahlqvist Inequalities: A General Purpose Definition

Given a logic with DLOs as algebraic semantics, what should ‘morally’ be the class
of Sahlqvist formulas for this logic? As glimpsed above, the reduction strategy for
Sahlqvist formulas is based on the order-theoretic properties of adjunction and resid-
uation possessed by the operations interpreting the connectives. More specifically, it
is the order of alternation of connectives with these properties over certain variable
occurrences which is of crucial importance, since it enables the input clause to be
transformed into an equivalent one satisfying the restrictions under which (LA) or
(RA) can be applied. Our answer will accordingly be couched in these terms.

To fix ideas, let us consider a logical signature containing classical negation (like
that of basic modal logic) but otherwise undefined. (Negated) Sahlqvist formulas in
such a signature can be described in terms of their generation trees, as illustrated in
Fig. 36.2. Namely, the nodes in the upper part are labelled with connectives inter-
preted by means of left residuals or�-adjoints. The lower parts of branches ending in
positive variables are labelled with connectives interpreted by means of right adjoints.
This is the basic Sahlqvist shape that we are going to reproduce across signatures.

To port this shape to signatures without classical negation, we will have to intro-
duce some bookkeeping machinery and the following auxiliary definitions and nota-
tion: we work with the usual notion of a generation tree of a formula. A signed
generation tree (see e.g., [33]) associates with each node in a generation tree a sign,
+ or −, in such a way that children of nodes labelled with connectives which are
order preserving (order reversing) in the appropriate coordinate have the same (oppo-
site) sign as their parent. The positive (negative) generation tree of ϕ, denoted +ϕ
(−ϕ), is thus obtained by signing the root in the generation tree of ϕ with+ (−) and
propagating the signs.
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Fig. 36.2 The basic Sahlqvist
shape

Definition 36.3 (Order types and critical branches) An order type over n ∈ N is an
n-tuple ε ∈ {1, ∂}n . For any formula ϕ(p1, . . . pn), any order type ε over n, and any
1 ≤ i ≤ n, an ε-critical node in a signed generation tree of ϕ is a (leaf) node +pi

with εi = 1 or −pi with εi = ∂. An ε-critical branch in the tree is a branch from an
ε-critical node.

We are now ready to reproduce the Sahlqvist shape in non-classical settings. For
definiteness’ sake we work in the distributive setting, and consider a signature which
provides a representative sample of connectives commonly encountered in the lit-
erature, taken from intuitionistic logic, Distributive Modal logic (cf. [22, 33]), and
substructural logic.

Definition 36.4 Nodes in generation trees are classified according to Table 36.1. A
branch in a signed generation tree∗s, ∗ ∈ {+,−}, is excellent if it is the concatenation
of two paths P1 and P2, one of which may possibly be of length 0, such that P1 is
a path from the leaf consisting (apart from variable nodes) only of SRA-nodes, and
P2 consists (apart from variable nodes) only of �-adjoint and SLR-nodes.

Definition 36.5 For any order type ε, the signed generation tree of a formula ϕ is
ε-Sahlqvist if every ε-critical branch is excellent. An inequality ϕ ≤ ψ is ε-Sahlqvist
if the trees +ϕ and −ψ are both ε-Sahlqvist. An inequality is Sahlqvist if it is ε-
Sahlqvist for some ε.

Notice that, according to Definition 36.5, the generation trees of the two sides of
an ε-Sahlqvist inequality reproduce the pattern illustrated in Fig. 36.2, modulo the
order type ε.

We wish to stress the methodology that Definition 36.5 aims at exemplifying.
This definition is intended to serve as a template applicable to any signature via a
classification of connectives such as the one of Table 36.1. The place of any given
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Table 36.1 Classification of nodes

logical connective in this classification is not inherent to the connective; rather, it
entirely depends on the order-theoretic properties of the interpretation of the given
connectives, relative to a specific semantics, and is hence bound to change when
switching to a different interpretation. For instance, the classification of Table 36.1
is relative to the usual interpretation of logical connectives in the setting of distributive
lattices. When interpreted in general lattices, +∨ and −∧ do not fall into the SRR
category anymore, because their standard interpretations in general lattices are not
residuated.

In essence, Definition 36.5 gives us a winning strategy which guarantees the suc-
cess of our calculus, as well as of algorithms like ALBA, SQEMA and indeed the
Sahlqvist-van Benthem algorithm. Success consists in eliminating all occurring vari-
ables by means of applications of the Ackermann rules (LA) or (RA). The Sahlqvist
shape guarantees that, for every variable, input inequalities can be transformed into
a shape to which an Ackermann rule is applicable. The order type ε tells us which
occurrences of a given variable p we need to ‘display’, i.e., get to occur in inequal-
ities of the form p ≤ α or α ≤ p as prescribed by (LA) or (RA). The Sahlqvist
shape guarantees that this is always possible. Indeed, going down a critical branch,
we can surface the subtree containing the SRA part of the critical branch, by applying
approximation rules9 to the SLR-nodes and�-rules (see footnote 7) to the�-adjoint
nodes. Then the SRA-nodes on the remainder of this branch can be stripped off by
means of the residuation/adjunction rules, thus surfacing the variable occurrence
and simultaneously calculating the minimal valuation for it. Finally, notice that the
remaining occurrences of p are of the opposite order type: this guarantees that they
have the right polarity to receive the calculated minimal valuations, as prescribed by
(LA) or (RA).

Example 36.3 The Dunn axioms for positive modal logic�p∧♦q ≤ ♦(p∧q) and
�(p ∨ q) ≤ �p ∨♦q, as well their intuitionistic counterparts ♦(p→ q) ≤ �p→
♦q and ♦p→ �q ≤ �(p→ q) are all Sahlqvist inequalities. Specifically, the first
inequality is ε-Sahlqvist with ε(p) = 1 and ε(q) = 1, the second is ε-Sahlqvist with

9 The approximation rules are those which introduce new nominals or co-nominals. All the other
rules introduced so far, except (LA), (RA), (�), and (⊥), are collectively referred to as residua-
tion/adjunction rules.
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Table 36.2 Universal and choice nodes

ε(p) = ∂ and ε(q) = ∂, and neither is ε-Sahlqvist for any other order type. The third
and fourth inequalities are both ε-Sahlqvist with ε(p) = 1 and ε(q) = ∂, and again
neither is ε-Sahlqvist for any other order type.

The Löb inequality �(�p → p) ≤ �p is not ε-Sahlqvist for any order type,
because in the positive generation tree of the left hand side both positive and nega-
tive occurrences of p have the properly SRR-node + → as ancestor, making their
corresponding branches non-excellent.

In similar way, the Frege inequality p → (q → r) ≤ (p → q) → (p → r) is
not ε-Sahlqvist for any order type, because both positive and negative occurrences of
q have properly SRR-nodes+→ as ancestors, making their corresponding branches
non-excellent.

36.7.2 Other Approaches to Syntactic Characterization

Definitions of Sahlqvist-like classes generally come in two flavours: positive, or con-
structive, definitions that tell one how the formulas in the class can be built up, and
negative definitions which define a class by banning certain alternations of connec-
tives. While not being explicitly constructive, the definition offered in the previous
subsection is clearly positive. We would like to contrast it with the negative definition
used in [33]. This definition classifies the connectives of Distributive Modal Logic
(DML) as Choice and Universal, according to the Table 36.2. A signed generation
tree is then declared to be ε-Sahlqvist if on no ε-critical branch there is a choice
node with a universal node as ancestor.10 The notion of a Sahlqvist inequality is then
further defined exactly as in Definition 36.5. Comparing Tables 36.1 and 36.2 will
also make it clear that, in terms of adjunction and residuation, Choice and Universal
have the following meaning:

Choice = Not a right adjoint

Universal = Neither a left residual nor a �-adjoint.

Thus, when restricted to the signature of DML, this definition and Definition 36.5
are equivalent. However, generalizing the Choice-Universal style definition does
become problematic once binary connectives like the intuitionistic implication→ is

10 This has been slightly paraphrased in order to exploit the terminology already introduced above.
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involved. Indeed, the Heyting implication is not a right adjoint, and is neither a left
residual nor a�-adjoint, and hence+ → is both Choice and Universal. Now, applying
the Choice-Universal style definition, inequalities such as p→ �p ≤ ♦�p, which
cannot be solved, would be classified as ε-Sahlqvist with ε(p) = 1. One way to
remedy this is to declare the ancestor relation to be reflexive, rendering an occurrence
of a choice-and-universal node a violation of the rule prohibiting choice nodes in the
scope of universal ones. A more elegant solution, we maintain and hope the reader
would agree, would be to adopt a definition in the style of the previous subsection.

36.8 Three Moves Towards a Unified Correspondence Theory

The present section is aimed at discussing how three recent directions in correspon-
dence theory can be encompassed in the algebraic-algorithmic approach, based on the
recognition that all these directions are predicated on the same basic order-theoretic
principles we have discussed in the previous sections. The first generalization, pre-
sented in Sect. 36.8.1, concerns correspondence settings in which the target language
is first-order logic with least (or more in general extremal) fixed points (FO+LFP).
In Sect. 36.8.2, various syntactic generalizations of the Sahlqvist class will be dis-
cussed, which are obtained by relaxing the requirements of Definition 36.5. Finally,
Sect. 36.8.3 focuses on a recent research line in which van Benthem has been active,
which extends algorithmic correspondence theory to propositional logics expanded
with fixed points, such as the modal mu-calculus.

36.8.1 Expanding the Target Language with Fixed Points

When trying to reduce an inequality with the calculus of correspondence, one reason
of failure is that it is not possible to obtain a form to which (LA) or (RA) is applicable,
and particularly because any obtainable α (as in the formulation of these rules) is not
p-free. Consider for example the Löb inequality �(�p → p) ≤ �p. Let us apply
the calculus to it:

∀p[�(�p→ p) ≤ �p]
iff ∀p∀i∀m[(i ≤ �(�p→ p) & �p ≤ m)⇒ i ≤ m]
iff ∀p∀i∀m[(�i ≤ �p→ p & �p ≤ m)⇒ i ≤ m]
iff ∀p∀i∀m[(�i ∧�p ≤ p & �p ≤ m)⇒ i ≤ m].

We would have been able to apply (LA), had it not been for the p occurring on the
left hand side of �i ∧ �p ≤ p. So this is how far we can get and no further, and
with good reason: the Löb inequality has no first-order frame correspondent, as is
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well known. However, the Ackermann lemma can be strengthened to the following
version:

Lemma 36.2 Let α(p), β(p), and γ(p) be formulas of a language L+ interpreted
on perfect DLOs, with α(p) and β(p) positive in p and γ(p) negative in p. Then
the following are equivalent for every perfect DLO C and variable assignment v:

1. C, v |= β(μp.α(p)/p) ≤ γ(μp.α(p))/p);
2. there exists some v′ ∼p v such that C, v′ |= α(p) ≤ p, and C, v′ |= β(p) ≤

γ(p),

where μp.α(p) is the least fixed point of α(p).

Proof We begin by noting that, since we are working in a complete lattice, least fixed
points of monotone (term) functions exist by the Knaster-Tarski theorem. As regards
‘1⇒ 2’, let v′(p) := v(μp.α(p)). As regards ‘2⇒ 1’, C, v′ |= α(p) ≤ p implies
that v′(p) is a pre-fixed point of α(·),11 and hence μp.α(p) ≤ v′(p). Therefore,
β(μp.α(p)/p) ≤ β(v′(p)) ≤ γ(v′(p)) ≤ γ(μp.α(p)/p).

Lemma 36.2 justifies the following rule:

∀p[(α(p) ≤ p & &1≤i≤nβi (p) ≤ γi (p))⇒ ϕ ≤ ψ]
&1≤i≤nβi (μp.α(p)/p) ≤ γi (μp.α(p)/p)⇒ ϕ ≤ ψ (RLA)

where α, βi , and γi are as in the lemma, and ϕ and ψ are negative and positive in p,
respectively. Back to the Löb inequality, we can now apply RLA to eliminate p:

iff ∀i∀m[�(μp.(�i ∧�p)) ≤ m⇒ i ≤ m]
iff ∀i[i ≤ �(μp.(�i ∧�p))]
iff ∀i[�i ≤ μp.(�i ∧�p)].

Under duality with Kripke frames, the condition above translates as ∀w[R[w] ⊆
μX.(R[w] ∩ (R−1[Xc])c)], which gives the expected condition of transitivity and
converse well foundedness.

As another example, consider the van Benthem inequality �♦� ≤ �(�(�p→
p)→ p):

∀p[�♦� ≤ �(�(�p→ p)→ p)]
iff ∀p∀i∀m[(i ≤ �♦� & �(�(�p→ p)→ p) ≤ m)⇒ i ≤ m]
iff ∀p∀i∀m∀n[(i ≤ �♦� & �n ≤ m & �(�p→ p)→ p ≤ n)⇒ i ≤ m]
iff ∀p∀i∀j∀m∀n[(i ≤ �♦� & �n ≤ m & j ≤ �(�p→ p) & j→ p ≤ n)⇒ i ≤ m]
iff ∀p∀i∀j∀m∀n[(i ≤ �♦� & �n ≤ m & �j ≤ �p→ p & j→ p ≤ n)⇒ i ≤ m]

11 Here α(·) is obtained from the term function α by leaving p free and fixing all other variables to
the values prescribed by v.
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iff ∀p∀i∀j∀m∀n[(i ≤ �♦� & �n ≤ m & �j ∧�p ≤ p & j→ p ≤ n)⇒ i ≤ m]
(∗) iff ∀i∀j∀m∀n[(i ≤ �♦� & �n ≤ m & j→ μp.(�j ∧�p) ≤ n)⇒ i ≤ m]

iff ∀i∀j∀n[(i ≤ �♦� & j→ μp.(�j ∧�p) ≤ n)⇒ ∀m[�n ≤ m⇒ i ≤ m]]
iff ∀i∀j∀n[(i ≤ �♦� & j→ μp.(�j ∧�p) ≤ n)⇒ �i ≤ n]
iff ∀i∀j[i ≤ �♦� ⇒ ∀n[j→ μp.(�j ∧�p) ≤ n⇒ �i ≤ n]]
iff ∀i∀j[i ≤ �♦� ⇒ �i ≤ j→ μp.(�j ∧�p)]
iff ∀i∀j[i ≤ �♦� ⇒ i ≤ �(j→ μp.(�j ∧�p))]
iff ∀j[�♦� ≤ �(j→ μp.(�j ∧�p))].

In the equivalence marked with (∗), the Right Ackermann lemma has been applied
with α(p) := �j ∧ �p and β(p) := j → p being positive in p, and γ(p) := n
being negative in p.

Correspondence with FO+LFP has been studied in [7, 8, 11, 20] and other
chapters. It is not possible here to do justice to this work, but that is not the aim of
the current chapter.

36.8.2 Syntactic Generalizations of the Sahlqvist Class

The class of Sahlqvist formulas is, quite rightly, considered to be the paradigmatic
syntactically definable class of modal formulas admitting first-order correspondents.
This pre-eminent status can, however, blind one to the fact that there is much inter-
esting and systematic correspondence theory that can be done with formulas that lie
strictly outside this class. There is indeed life beyond the Sahlqvist formulas. Some
of this work is orthogonal to the Sahlqvist theme, in the sense that the arguments
bear no obvious resemblance to the minimal valuation strategy: here we are think-
ing, for example, of the modal reduction principles interpreted over transitive frames,
which all have first-order correspondents [3]. In the present section we will, how-
ever, be looking at classes of formulas that represent the natural generalization of the
Sahlqvist formulas, in the sense that they are obtained by taking the order-theoretic
insights underlying the Sahlqvist ‘winning strategy’ (see discussion following Defi-
nition 36.5) to their natural boundaries of applicability.

A very noticeable feature of Definition 36.5 is the fact that nodes lower down
on critical branches need to be syntactically right adjoint, not, e.g., syntactically
right residual. For unary connectives, residuation and adjunction are equivalent
notions (see appendix), so this imposes no restriction, but for connectives of higher
arity it does. For example, the Löb inequality �(�p → p) ≤ �p, considered in
Sect. 36.8.1, is not Sahlqvist, for in the generation tree+�(�p→ p) both the leaves
+p and −p have the properly SRR node +→ as ancestor, and hence for no choice
of order type ε will the ε-critical paths be excellent. The Löb formula belongs to the
class of so-called Recursive or Regular formulas, introduced in [38], which all have
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frame correspondents in FO+LFP (see also [20]). We will not burden the reader
with precise definitions here, but the intuition is that one firstly relaxes the definition
of an excellent branch (Definition 36.4) to that of a good branch by also allowing
the occurrence of SRR nodes (and not just of SRA nodes) in the lower part of criti-
cal branches. Merely substituting the “good” for “excellent” in the definition of the
Sahlqvist inequalities (Definition 36.5) would be too liberal, however, for that would
allow inequalities like ♦(�p � p) ≤ ♦p, on which the calculus of correspondence
fails entirely, since we cannot bring them into a shape to which even the recursive
Ackermann lemma is applicable. To ensure that the calculus works, it is enough to
add the further requirement that at most one ε-critical branch may pass through any
given properly SRR-node; this yields precisely the ε-Recursive inequalities.

But here the reader may very well protest that we have promised extensions of
the Sahlqvist class for which first-order correspondence holds, while the Recur-
sive formulas are only guaranteed to have correspondents in FO+LFP. Indeed, the
Recursive inequalities as a generalization of the Sahlqvist class is still too liberal. In
order to guarantee first-order correspondence, the ordinary non-recursive Ackermann
lemma will have to be applicable for each variable elimination. In order to ensure
this, one needs to impose upon the variables in Recursive inequalities a partial order-
ing, and demand not only that at most one ε-critical branch pass through any given
properly SRR-node, but also that if an ε-critical branch passes through a properly
SRR-node, all variables occurring on other branches passing through it have to be
strictly less (according to the ordering) than the variable on the critical branch. This
gives rise to the classes of Inductive formulas and inequalities, for formal definitions
of which the reader is referred to [21, 22, 38]. As an example, the Frege inequality
p→ (q → r) ≤ (p→ q)→ (p→ r) from the implicative fragment of intuition-
istic logic is Inductive; however, it is not Sahlqvist, as shown in Example 36.3. For
an ALBA reduction of this inequality see [22, Example 7.5].

36.8.3 Correspondence for Propositional Logics with Fixed Points

In the generalized setting of Sect. 36.8.1, fixed points have been added to the target
language so as to be able to extend the correspondence methodology up to classes
of formulas, pre-eminently exemplified by the Löb’s formula, for which minimal
valuations exist but are not elementarily definable. However, once fixed points are
brought into the correspondence picture on the target side, it is natural to extend
the correspondence program to settings in which fixed points belong also to the
source language, like the modal mu-calculus; the extra expressivity of the source
language will be safely accommodated by the expanded target language. In this vein,
in [8], van Benthem and his collaborators syntactically characterized a certain class
of formulas in the language of modal mu-calculus as the counterpart of the Sahlqvist
class (hence named the class of Sahlqvist mu-formulas), on the basis of the minimal
valuation methodology, via an extension of the classical model-theoretic proof. In
[15], a correspondence result theoretically independent from [8] has been given for
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logics with fixed points on a weaker than classical base (thus applicable e.g. also
to intuitionistic modal mu-calculus, or to certain substructural logics expanded with
fixed points). In [15], the results in [8] are encompassed into the algebraic-algorithmic
unified correspondence theory, and Sahlqvist mu-formulas are recognized in essence
as Recursive formulas (see Sect. 36.8.2) on the basis of the approach outlined in
Sects. 36.7.1 and 36.8.2. The chapter [15] is rather technical; however, thanks to the
insights developed so far in the present exposition, and particularly on the existing
tight connection between the minimal valuation argument and (the recursive and
non-recursive versions of) the Ackermann lemma, we are now in a position to give
an informal account of these results, as well as of their relationship with results in [8].

Concretely, embedding the Sahlqvist-type theorem of [8] into the algebraic-
algorithmic correspondence theory requires:

(a) extending (the distributive/intuitionistic/non-distributive versions of) the calculus
for correspondence with dedicated approximation and adjunction/residuation
rules (see footnote 9, p. 21) capable of transforming systems of mu-inequalities
into equivalent systems of mu-inequalities in Ackermann shape12;

(b) giving a (distributive/intuitionistic/non-distributive) counterpart of the class of
Sahlqvist mu-formulas as defined in [8] in the style of Definition 36.5;

(c) motivating the definitions in (b) by giving surjective projections from the non-
classical languages involved to the classical, which preserve and reflect Sahlqvist
status. An analogous projection has been given in [22] between DML and clas-
sical modal logic.

Due to space constrains we will only address (a) and (b). As to (a), notice pre-
liminarily that the calculus for correspondence introduced in Sect. 36.3 is already
enough to perform the elimination of predicate variables on a restricted class of
mu-formulas/inequalities,13 as in the following example (cf. [8, Example 5.3]):

∀p[νX.�(p ∧ X) ≤ p]
iff ∀p∀i∀m[(i ≤ νX.�(p ∧ X) & p ≤ m)⇒ i ≤ m] (ULA)

(∗) iff ∀i∀m[(i ≤ νX.�(m ∧ X)⇒ i ≤ m] (LA)

iff ∀m[νX.�(m ∧ X) ≤ m]. (FA inverse)

Indeed, the application of the rule (LA) is sound because the term function γ(p) =
νX.�(p ∧ X) is monotone in p. However, this calculus is certainly not power-
ful enough to be successful over the whole class of (intuitionistic counterparts of)
Sahlqvist mu-formulas in [8]. In [15], an enhancement of the calculus has been

12 Notice that, thanks to the very general way in which the various versions of Ackemann’s lemma
have been stated, the corresponding Ackermann rules apply without changes to logical languages
with fixed points.
13 Namely, the one formed by those inequalities such that, for some order type ε, all ε-critical
branches are excellent (cf. Definition 36.4) or good (cf. Sect. 36.8.2) according to the letter of these
notions, and hence no fixed point binders occur in ε-critical branches.
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defined by firstly adding approximation rules, of which the following are special
instances (cf. [15] for the complete account):

i ≤ μX.ϕ(X,ψ/!x, z)
(μ+-A)∃j[i ≤ μX.ϕ(X, j/!x, z) & j ≤ ψ]

νX.ϕ(X,ψ/!x, z) ≤ m
(ν+-A)∃n[νX.ϕ(X,n/!x, z) ≤ m & ψ ≤ n]

i ≤ μX.ϕ(X,ψ/!x, z)
(μ−-A)∃n[i ≤ μX.ϕ(X,n/!x, z) & ψ ≤ n]

νX.ϕ(X,ψ/!x, z) ≤ m
(ν−-A)∃j[νX.ϕ(X, j/!x, z) ≤ m & j ≤ ψ]

where, in (μ+-A) (resp., (μ−-A)) the associated term function of ϕ(X, x, z) is com-

pletely
∨

-preserving in (X, x) ∈ C×C (resp., in (X, x) ∈ C×C
∂), and in (ν+-A)

(resp., (ν−-A)) the associated term function ofϕ(X, x, z) is completely
∧

-preserving
in (X, x) ∈ C × C (resp., in (X, x) ∈ C × C

∂), for any perfect DLO C of the
appropriate signature. Moreover, in each rule the variable x is assumed not to occur
in ψ. The notation ϕ(!x) means that the variable x has a unique occurrence in ϕ.

Some motivating intuitions and examples illustrating the functioning and applica-
bility of these rules, as well as of the adjunction-rules below, are given in the ensuing
discussion.

Secondly, adjunction rules for fixed point binders have been added, of which the
following are special instances (cf. [15] for the complete account):

μX.(A(X) ∨ B(p)) ≤ χ
(μ-Adj)

p ≤ νX.(E(X) ∧ D(χ/p))

χ ≤ νX.(E(X) ∧ D(p))
(ν-Adj)

μX.(A(X) ∨ B(χ/p)) ≤ p

where, in each rule,

A(X) =
∨

i∈I

δi (X), B(p) =
∨

j∈J

δ′j (p), E(X) =
∧

i∈I

βi (X)andD(p) =
∧

j∈J

β′j (p)

with I and J finite sets of indexes, each δi and δ′j interpreted as a unary left adjoint
(typically, δi and δ′j are concatenations of diamonds over a variable), and each βi

and β′j interpreted as a unary right adjoint (typically, βi and β′j are boxed atoms).
Finally, δi  βi and δ′j  β′j for each i and j .

Notice that, unlike the rules for propositional connectives, the rules above are
contextual, i.e., dependent on assumptions on the formulas in the scope of the fixed
point binder. This reflects the fact that the semantic interpretations of fixed point
binders do not have intrinsic order-theoretic properties, but at most preserve those
of the term functions associated with the formulas in their scope.

In [15], rules generalizing the ones above are proven to be sound w.r.t. the natural
algebraic/relational semantics of (intuitionistic) modal mu-calculus. Thanks to these
rules, inequalities we could previously not treat, such as p ≤ νX [�(X ∧ (q →
⊥)) ∨ (♦p ∧ ♦q)] (cf. [8, Example 5.4]) can be reduced as follows:
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∀p∀q[p ≤ νX [�(X ∧ (q →⊥)) ∨ (♦p ∧ ♦q)]]
iff ∀p∀q∀i∀m[(i ≤ p & νX [�(X ∧ (q →⊥)) ∨ (♦p ∧ ♦q)] ≤ m)⇒ i ≤ m] (ULA)

iff ∀q∀i∀m[νX [�(X ∧ (q →⊥)) ∨ (♦i ∧ ♦q)] ≤ m⇒ i ≤ m] (RA)

iff ∀q∀i∀m∀j[(j ≤ q & νX [�(X ∧ (j→⊥)) ∨ (♦i ∧ ♦q)] ≤ m)⇒ i ≤ m] (ν−-A)

iff ∀i∀m∀j[νX [�(X ∧ (j→⊥)) ∨ (♦i ∧ ♦j)] ≤ m⇒ i ≤ m] (RA)

iff ∀i∀j[i ≤ νX [�(X ∧ (j→⊥)) ∨ (♦i ∧ ♦j)]]. (UA inverse)

In the application of (ν−-A) above, ϕ(X, !x, z) is�(X ∧ (x →⊥))∨ z, and ψ is q.
Moreover, the following alternative reduction is now possible for the inequality

νX.�(p ∧ X) ≤ p, treated as the first example of the present subsection:

∀p[νX.�(p ∧�X) ≤ p]
iff ∀p∀i∀m[(i ≤ νX.�(p ∧�X) & p ≤ m)⇒ i ≤ m] (ULA)

iff ∀p∀i∀m[μX.�(�X ∨ i) ≤ p & p ≤ m)⇒ i ≤ m] (ν − Adj)

iff ∀i∀m[μX.�(�X ∨ i) ≤ m⇒ i ≤ m] (RA)

iff ∀i[i ≤ μX.�(�X ∨ i)]. (UA inverse)

The application of (ν-Adj) is performed modulo distributing modal connectives.
Notice that, by unfolding the least fixed point μX.�(�X ∨ i), the clause ∀i[i ≤
μX.�(�X ∨ i)] can be rewritten as ∀i[i ≤∨

κ≥1 �κi], which immediately translates
on Kripke frames into the well known condition expressing the reflexivity of the
transitive closure of the relation interpreting �.

As to (b), the class of ε-Recursive inequalities, in the intuitionistic modal mu-
language, has been syntactically defined in [15] closely following the approach of
Definition 36.5; this class is the intuitionistic counterpart of the class of Sahlqvist mu-
formulas defined in [8]. Analogously to Definition 36.5, the definition of ε-Recursive
inequalities is grounded on a classification of the nodes in the signed generation trees
of formulas similar to the specification given in Table 36.3. However, as was men-
tioned early on, the fixed point binders escape to some extent the order-theoretic
classification, since their interpretation does not enjoy inherent order-theoretic prop-
erties, but rather preserves, in some cases, those of the term function in its scope. To
take this fact into account, we firstly group nodes according to categories (we use
the names skeleton and PIA for these categories, also appearing in [8], to explicitly
establish a connection with the model-theoretic analysis conducted there), and sec-
ondly, we group nodes within each category according to their contextually relevant
order-theoretic properties.

The shape of the ε-Recursive inequalities is in essence the Sahlqvist/Inductive/
Recursive shape introduced and discussed in Sect. 36.7.1; as to the similarities, the
outer skeleton is exactly the same as the outer part of a Sahlqvist formula; more-
over the PIA part is defined in such a way that, when restricted to the binder-free
fragment, it gives the inner part of the ε-Recursive formulas (cf. Sect. 36.8.2). The
complete definition of the PIA part incorporates extra conditions regulating the rela-
tive positions of free fixed point variables and variables which we want to solve for;
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Table 36.3 Skeleton and PIA nodes

these conditions ensure that formulas in the scope of binders have the appropriate
order-theoretic properties guaranteeing the applicability of the μ- and ν-adjunction
rules. The inner skeleton essentially arises by the introduction of fixed point binders
into the outer part of a Sahlqvist formula. As to the differences, this introduction
blocks the application of �-rules (and more generally also the possibility of apply-
ing rules to single connectives), leaving us with only μ- and ν-approximation rules.
Hence all the nodes are reclassified according to the properties which they enjoy
and which are now relevant. Similar to the PIA formulas, inner skeletons incorpo-
rate extra conditions regulating the relative positions of free fixed point variables
and variables which we want to solve for; these conditions ensure that formulas in
the scope of binders have the appropriate order-theoretic properties guaranteeing the
applicability of theμ- and ν-approximation rules. The shape of the inequalities in this
class provides a winning strategy analogous to the one described for the Sahlqvist
inequalities in Sect. 36.7.1. Again, the order type ε tells us which occurrences of a
given variable we need to ‘display’. The ε-Recursive shape guarantees that this is
always possible. Indeed, going down a critical branch, we can surface the subtree
containing the PIA part of the critical branch by applying approximation rules to the
Skeleton nodes. Then adjunction/residuation rules such as (μ-Adj) and (ν-Adj) are
applied to display the critical occurrences of variables in the subtrees containing the
PIA parts, and to simultaneously calculate the minimal valuation for them. Finally,
notice that the remaining occurrences of variables are of the opposite order type:
this guarantees that they have the right polarity to receive the calculated minimal
valuations, as prescribed by (LA), (RA) or their recursive counterparts.

The analysis of PIA-formulas conducted in [8] can be summarized in the slo-
gan “PIA formulas provide minimal valuations”. In this respect, the crucial model-
theoretic property possessed by PIA-formulas is the intersection property, isolated
by van Benthem in [6]. The order-theoretic import of this property is clear: if a
formula has the intersection property then the term function associated with it is
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completely meet preserving. In the complete lattice setting in which we find our-
selves, this is equivalent to it being a right adjoint; this is exactly the order-theoretic
property guaranteeing the soundness of adjunction/residuation rules like (μ-Adj) and
(ν-Adj).14

36.9 Correspondence Across Different Semantics

In Sect. 36.7 we saw that it is possible to uniformly implement the ‘correspondence
calculus’ for different logics, and how, accordingly, the definitions of syntactic classes
like the Sahlqvist class could be ported to these logics. In the current section we
shift our focus to consider the related question of what happens when we keep the
logical language and the order-theoretic properties of the connectives fixed, while
varying the relational semantics. In terms of Fig. 36.1b this means that we maintain
the algebraic interpretation of the logic while imposing different dualities. The key
point we wish to illustrate is that the calculus of correspondence is sound in the
setting of perfect distributive lattice expansions, and hence that the elimination of
propositional variables can proceed largely independently of any considerations on
the dual relational structures; the outcome of the reduction/elimination process can
be then further translated so as to fit different relational environments.

We take as our running example Pierce’s law ((p → q) → p) → p, which
was considered in [5, Sect. 3.2] where correspondence is studied for this and other
formulas belonging to the implicative fragment of intuitionistic logic. The calculus
of Sect. 36.3 gives us the following reduction, which is sound on perfect Heyting
algebras (i.e., perfect distributive lattices expanded with the right residual→ of ∧):

∀p∀q[(p→ q)→ p ≤ p]
iff ∀p[(p→⊥)→ p ≤ p]
iff ∀p∀j∀m[(j ≤ (p→⊥)→ p & p ≤ m)⇒ j ≤ m] (36.6)

iff ∀j∀m[j ≤ (m→⊥)→ m⇒ j ≤ m]
iff ∀m[(m→⊥)→ m ≤ m].

Thus, the propositional variables have been eliminated, and we can interpret the
result on intuitionistic frames (i.e. posets), via the well known duality between per-
fect Heyting algebras and intuitionistic frames. Recall that, in intuitionistic frames,
variables (and consequently all formulas) are evaluated to upward-closed subsets (up-
sets), and that in particular [[ϕ→ ψ]] = ((([[ϕ]]c ∪ [[ψ]])c)↓)c = ([[ϕ]] ∩ [[ψ]]c)↓c,
where Sc and S↓ denote the set theoretic complement and downward closure of the
subset S, respectively. All this fits with the duality between perfect Heyting alge-
bras and intuitionistic frames, according to which the algebra elements correspond
to up-sets of frames, and in particular the meet prime elements correspond to the

14 We must warn the reader that this account, and in particular the formulation of the additional
rules, is slightly oversimplified. Complete details can be found in [15].
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complements of principal down-sets, which we denote by w↓c. So, translating the
outcome obtained above via this duality yields:

∀m[(m→⊥)→ m ≤ m] iff ∀w[((w↓c ∩∅
c)↓c ∩ w↓cc)↓c ⊆ w↓c]

iff ∀w[w↓ ⊆ ((w↓c ∩∅
c)↓c ∩ w↓)↓] iff ∀w[w↓ ⊆ ((w↓c)↓c ∩ w↓)↓]

iff ∀w[w ∈ ((w↓c)↓c ∩ w↓)↓] iff ∀w∃v[w ≤ v & v ∈ (w↓c)↓c ∩ w↓)]
iff ∀w∃v[w ≤ v & v ≤ w & v ∈ (w↓c)↓c] iff ∀w[w ∈ (w↓c)↓c]
iff ∀w[w /∈ (w↓c)↓] iff ∀w∀v[v /∈ w↓ ⇒ w �≤ v]
iff ∀w∀v[v �≤ w ⇒ w �≤ v] iff ∀w∀v[w ≤ v ⇒ v ≤ w].

Thus, as discussed in [5, Example 78], we see that Pierce’s law takes us to classi-
cal propositional logic, by constraining the ordering on intuitionistic frames to be
discrete.

Pierce’s law (as well as any other axiom in the implicative fragment of intuitionis-
tic logic) can be alternatively interpreted on ternary frames, as they are defined e.g. in
[42], where a Kripkean semantics is employed for the non-associative Lambek calcu-
lus, and a restricted Sahlqvist theorem is proven. A ternary frame (cf. [42, Definition
1]) is a structure (W, R) such that W is a nonempty set and R is a ternary relation
on W . For all X,Y ⊆ W , let R[Y, X ] = {z | ∃x∃y[x ∈ Y & y ∈ X & R(xyz)]}.
Implication can be interpreted on ternary frames as follows: for all X,Y ⊆ W ,

X =⇒ Y = {z | ∀x∀y[(R(yxz) & x ∈ X)⇒ y ∈ Y ]} = R[Y c, X ]c.
Valuations send proposition letters to arbitrary subsets of the universe of ternary
frames. Thus, the complex algebra of the ternary frame (W, R) can be defined as
the perfect algebra (P(W ),∪,∩,W,∅,=⇒), and this assignment can be extended
to a fully fledged discrete Stone-type duality for BAOs, in the style of e.g. [47]. In
particular,=⇒ as defined above is order-reversing (in fact, completely join-reversing)
in its first coordinate and order-preserving (in fact, completely meet-preserving) in
its second coordinate15 (see Sect. 5 and references therein for more details). Thus, the
very same reduction performed in (36.6) is sound also w.r.t. the complex algebras of
ternary frames defined above, or equivalently, w.r.t. ternary frame semantics. Relying
on this duality, the final clause of (36.6) can be interpreted on ternary frames as follows
(we abuse notation and write wc for {w}c = W \ {w}):
∀m[(m→⊥)→ m ≤ m] iff ∀w[R[wcc, R[∅c,wc]c]c ⊆ wc]
iff ∀w[w ∈ R[{w}, R[W,wc]c]] iff ∀w∃x∃y[R(xyw) y ∈ R[W,wc]c & x = w]
iff ∀w∃y[R(wyw) & y ∈ R[W,wc]c] iff ∀w∃y[R(wyw) ∀x∀z[R(xzy)⇒ z = w]].

Notice that, in the more familiar case in which the operation •, uniquely identifying
=⇒, coincides with meet, the ternary relation which dually represents the binary
map given by (U, V ) �→ U ∩ V is R = {(x, x, x) | x ∈ W }; in this case, X =⇒ Y
reduces to the classical Xc ∪ Y , and the first-order clause above is always true.

15 In fact, =⇒ can be uniquely identified as the right residual of • (fusion), given by Y • Z := {x |
∃y∃z[y ∈ Y & z ∈ Z & R(x, y, z)]}.

http://dx.doi.org/10.1007/978-3-319-06025-5_5
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A second example. The inequality (p ∧ q) → r ≤ (p → r) ∨ (q → r), in the
intuitionistic language, is reduced by the calculus as follows:

∀p∀q∀r [(p ∧ q)→ r ≤ (p→ r) ∨ (q → r)]
∀i∀m∀p∀q∀r [(i ≤ (p ∧ q)→ r & (p→ r) ∨ (q → r) ≤ m)⇒ i ≤ m]
∀i∀m∀p∀q∀r [(i ≤ (p ∧ q)→ r & (p→ r) ≤ m & (q → r) ≤ m)⇒ i ≤ m]
∀i∀j∀k∀m∀p∀q∀r [(i ≤ (p ∧ q)→ r & (j→ r) ≤ m & j ≤ p & (k→ r) ≤ m & k ≤ q)

⇒ i ≤ m]
∀i∀j∀k∀m∀r [(i ≤ (j ∧ k)→ r & (j→ r) ≤ m & (k→ r) ≤ m)⇒ i ≤ m]
∀i∀j∀k∀m∀r [(i ∧ (j ∧ k) ≤ r & (j→ r) ≤ m & (k→ r) ≤ m)⇒ i ≤ m]
∀i∀j∀k∀m[((j→ (i ∧ j ∧ k)) ≤ m & (k→ (i ∧ j ∧ k)) ≤ m)⇒ i ≤ m]
∀i∀j∀k∀m[(j→ (i ∧ j ∧ k)) ∨ (k→ (i ∧ j ∧ k)) ≤ m⇒ i ≤ m]
∀i∀j∀k[i ≤ (j→ (i ∧ j ∧ k)) ∨ (k→ (i ∧ j ∧ k))]
∀i∀j∀k[i ≤ (j→ (i ∧ j ∧ k))

&

i ≤ (k→ (i ∧ j ∧ k))]
∀i∀j∀k[i ∧ j ≤ k

&

i ∧ k ≤ j].

For reasons analogous to those discussed in the previous example, this reduction is
sound w.r.t. several classes of algebras based on perfect distributive lattices (and hence
w.r.t. the classes of set-based structures dual to each of these), which include, but
are not limited to, perfect (i.e. complete and atomic) Boolean algebras (hence sets),
perfect Heyting algebras (hence posets) and the perfect BAO of the previous example
(hence ternary frames as in the previous example). When interpreted according to
the first or third option, or equivalently on sets or ternary frames, the last line in the
reduction above becomes:

∀w∀v∀v[{w} ∩ {v} ⊆ {v} &{w} ∩ {v} ⊆ {v}],

which always holds, as was expected, since the inequality treated above is classically
(but not intuitionistically) valid. When interpreted in perfect Heyting algebras, or
equivalently on posets, the last line in the reduction above can be further translated
into

∀w∀v∀v[w↑ ∩ v↑ ⊆ v↑ &

w↑ ∩ v↑ ⊆ v↑],

which is equivalent to the condition that every principal up-set be linearly ordered.
Indeed, it is clear that, if in a poset there are states w, v, v such that w ≤ v and w ≤ v
but v � v and v � v, then neither inclusion in the condition above holds for these
states; conversely, reasoning by cases should convince the reader that if in a poset
every principal up-set is linearly ordered, then the displayed condition holds. For
instance, if v � v and v � v, and w↑ ∩ v↑ �= ∅ �= w↑ ∩ v↑, let us assume that
w↑ ∩ v↑ �⊆ v↑, i.e. that there exists some x ∈ w↑ ∩ v↑ such that v � x , and let
y ∈ w↑ ∩ v↑. Then y � x , but since x, y ∈ w↑, the assumption implies that x ≤ y,
and hence y ∈ v↑, as desired.
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Intuitionistic correspondence via Gödel translation. So far in the present section,
we have seen that the purely syntactic encoding of correspondence arguments is
particularly advantageous in those situations (common to many nonclassical logics)
in which a given logical language is interpreted on more than one type of set-based
structures; indeed, the soundness of a given algorithmic reduction depends exclu-
sively on the order-theoretic properties of the interpretation of the logical connectives,
and, provided these properties are satisfied in each interpretation, the same reduc-
tion will yield first-order correspondents in relational structures of different types.
Sometimes, as in the case of intuitionistic modal logic, the availability of different
relational semantics for a given logic reflects itself in the fact that the category of
perfect algebras naturally associated with the logic in question is dually equivalent
to each category of relational structures supporting the interpretation of that logic.
However, in some cases, the roles of algebras and relational structures might be
reversed, in the sense that more than one category of algebras might be dually asso-
ciated with one and the same category of relational structures. This is the case in
e.g. the category of posets and p-morphisms, which is dually equivalent to both the
category of perfect Heyting algebras and complete homomorphisms via Birkhoff
duality, and to a suitable full subcategory of perfect modal algebras and complete
homomorphisms via the Jónsson-Tarski duality. Notice that, for every poset (W,≤),
the inclusion map P↑(W ) ↪→ (P(W ), [≤]) satisfies the clauses of the Gödel assign-
ment, i.e. U �→ U = [≤]U and (U → V ) �→ (U → V ) = [≤](U c ∪ V ) for every
U, V ∈ P↑(W ), which implies the well known fact that an intuitionistic formula is
valid on a given poset (W,≤) if its Gödel translation is. On the syntactic side, the
Sahlqvist/Inductive shape of formulas in the language of intuitionistic logic is pre-
served under the Gödel translation. In the light of these observations it is natural to
ask to what extent intuitionistic correspondence arguments can be subsumed by clas-
sical correspondence arguments via the Gödel translation. This question, formulated
as vaguely as we have, can be reformulated more concretely in ways which—more
importantly for our purposes here—lend themselves to be investigated with the tools
of the unified correspondence theory outlined in the present chapter.

One such reformulation is: can the reduction steps for the intuitionistic language
which are sound on perfect Heyting algebras be simulated by suitable reduction
steps for the target modal language of the Gödel translation and which are sound on
perfect BAOs? And is the Gödel translation itself, as it were, such a simulation? This
would be the case, in a sense, if the minimal valuations calculated in performing the
reduction steps on an intuitionistic inequality and on its Gödel translation were always
semantically identical. In general, one cannot expect this to hold, as the minimal
valuation provided by the calculus in the classical setting need not be persistent, as
required by the intuitionistic notion of validity. However, running the calculus on the
Gödel translation of the inequality in the example above proves instructive; below,
� stands for [≤] and � for 〈≥〉.
∀p∀q∀r [�((�p ∧�q)→ �r) ≤ �(�p→ �r) ∨�(�q → �r)]
∀i∀m∀p∀q∀r [(i ≤ �((�p ∧�q)→ �r) & �(�p→ �r) ∨�(�q → �r) ≤ m)

⇒ i ≤ m]
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∀i∀m∀p∀q∀r [(i ≤ �((�p ∧�q)→ �r) & �(�p→ �r) ≤ m & �(�q → �r)

≤ m)⇒ i ≤ m]
∀i∀j∀k∀m∀p∀q∀r [(i ≤ �((�p ∧�q)→ �r) & �(j→ r) ≤ m

& j ≤ �p & �(k→ r) ≤ m & k ≤ �q)⇒ i ≤ m]
∀i∀j∀k∀m∀p∀q∀r [(i ≤ �((�p ∧�q)→ �r) & �(j→ r) ≤ m

& �j ≤ p & �(k→ r) ≤ m & �k ≤ q)⇒ i ≤ m]
∀i∀j∀k∀m∀r [(i ≤ �((��j ∧��k)→ �r) & �(j→ r) ≤ m & �(k→ r) ≤ m)

⇒ i ≤ m]
∀i∀j∀k∀m∀r [�(�i ∧ (��j ∧��k)) ≤ r & �(j→ r) ≤ m & �(k→ r) ≤ m)

⇒ i ≤ m]
∀i∀j∀k∀m[(�(j→ �(�i ∧��j ∧��k)) ≤ m & �(k→ �(�i ∧��j ∧��k))

≤ m)⇒ i ≤ m]
∀i∀j∀k∀m[(�(j→ �(�i ∧��j ∧��k)) ∨�(k→ �(�i ∧��j ∧��k)) ≤ m)

⇒ i ≤ m]
∀i∀j∀k[i ≤ �(j→ �(�i ∧��j ∧��k)) ∨�(k→ �(�i ∧��j ∧��k))]
∀i∀j∀k[i ≤ �(j→ �(�i ∧��j ∧��k))

&

i ≤ �(k→ �(�i ∧��j ∧��k))]
∀i∀j∀k[�i ∧ j ≤ �(�i ∧��j ∧��k)

&�i ∧ k ≤ �(�i ∧��j ∧��k)].

The minimal valuation computed above assigns p to �j = 〈≥〉{w} = w↑; analo-
gously, q is mapped by the same valuation to�k = v↑, and r to�(�i∧(��j∧��k)).
The assignment for r can be rewritten as follows:

�(�i ∧ (��j ∧��k)) = (w↑ ∩ ((v↑c)↓)c ∩ ((v↑c)↓)c)↑ = (w↑ ∩ v↑ ∩ v↑)↑
= w↑ ∩ v↑ ∩ v↑.

So, in this case, the minimal valuation provided by the reduction of the Gödel transla-
tion in the boolean setting is exactly the same as that provided by the reduction of the
original inequality in the intuitionistic setting. This example is of course not enough
to justify any general claims, but it does suggest a line for further investigation,
namely the identification of classes of intuitionistic formulas for which the corre-
spondence arguments are subsumed by the correspondence arguments of their Gödel
translations in the strongest sense, as discussed above. As an initial observation in
this direction we note that whenever the algorithm solves for positive occurrences of
variables (cf. discussion on signed generation trees before Definition 36.5), as in the
example above, these variable occurrences will surface, if at all, on the right-hand
side of inequalities; this, together with the fact that the Gödel translation prefixes all
variables with a�, implies that the minimal valuations provided by the algorithm will
be (the extensions of) finite disjunctions of �-terms. The latter are always upward
closed, as required by the intuitionistic semantics.

Things do not work out so nicely for all intuitionistic Sahlqvist formulas, as
revisiting our first example in the current section, the Pierce inequality, will show.
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This inequality is ε-Sahlqvist for ε(p) = ∂ and ε(q) = 1 and for no other order type
ε. Running the correspondence algorithm on its Gödel translation yields:

∀p∀q[�(�(�p→ �q)→ �p) ≤ �p]
∀p[�(�(�p→ �⊥)→ �p) ≤ �p]
∀i∀m∀p[(i ≤ �(�(�p→ �⊥)→ �p) & �p ≤ m)⇒ i ≤ m]
∀i∀m∀n∀p[(i ≤ �(�(�p→ �⊥)→ �p) & �n ≤ m & p ≤ n)⇒ i ≤ m]
∀i∀m∀n[(i ≤ �(�(�n→ �⊥)→ �n) & �n ≤ m)⇒ i ≤ m]
∀i∀n[i ≤ �(�(�n→ �⊥)→ �n)⇒ ∀m[�n ≤ m⇒ i ≤ m]]
∀i∀n[i ≤ �(�(�n→ �⊥)→ �n)⇒ i ≤ �n]
∀n[�(�(�n→ �⊥)→ �n) ≤ �n].

The minimal valuation provided by the above reduction assigns p to a co-atom, i.e.
to a set of type W \ {w}, which need not be upward-closed. There are probably
other, less naïve ways in which the intuitionistic correspondence argument for the
Pierce axiom can be simulated classically via its Gödel translation, but we leave this
question open.

Finally, notice that the preservation of the intuitionistic Sahlqvist or Inductive
classes under the Gödel translation is a very restricted phenomenon. This preserva-
tion occurs thanks mainly to the lack of order-theoretic variety in the intuitionistic
signature. Namely, the interpretation of each binary connective in the intuitionistic
signature is either a right residual or a right adjoint; in other words, the intuition-
istic signature does not include any ‘pure diamond-type’ connective. As soon as
pure diamond-type connectives are added, this transfer breaks down: for instance,
Sahlqvist inequalities in the language of intuitionistic modal logic are not preserved
under the Gödel translation. Indeed, the Gödel-translation of the Sahlqvist inequality
�♦p ≤ ♦p yields�♦[≤]p ≤ ♦[≤]p, which is not Sahlqvist, and actually—by van
Benthem’s classification of the modal reduction principles [3]—it does not even have
a first-order frame correspondent.

36.10 Conclusions

Unified correspondence. As van Benthem has aptly remarked, our “algebraic analy-
sis is a combinatorial formalization of essentials of correspondence reasoning.”
Indeed, classical correspondence arguments have been mechanized, and transformed
into chains of equivalent rewritings of quasi-inequalities in the extended language
L+. The language L+ can be captured by the monadic second-order frame language.
The chains of equivalent rewritings aim at transforming quasi-inequalities in L+
into equivalent quasi-inequalities in a fragment of L+ which can be captured by
the first-order frame language. In this process, minimal valuation arguments, which
are pivotal for local correspondence, are encoded as applications of the Ackermann
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rule. To support the claim that these rewritings encode correspondence arguments
as desired, the soundness of the rewriting rules needs to be verified. This has been
done, via duality theory, in an algebraic setting. This move to algebras, per se, is
not indispensable as long as the classical setting is concerned. However, the alge-
braic setting brings about a crucial advantage: it makes it possible to identify the
properties really underlying the correspondence mechanism. And it turns out that no
property exclusive to the classical setting is needed. This observation paves the way
for rolling out correspondence theory, in great uniformity, to a wide variety of logics,
including e.g. classical and intuitionistic modal mu-calculus (see [15]), polyadic and
hybrid modal logics (see [19, 24]), monotone modal logic [23], modal logics with
propositional quantifiers [13] or graded modalities [28], and substructural logics (see
also below). This is what we understand as unified correspondence. In this setting,
it is possible, e.g., to give a general purpose definition of Sahlqvist formulas (cf.
Sect. 36.7) simultaneously applicable to several languages, and purely based on the
order-theoretic behaviour of the interpretations of logical connectives.

Dropping distributivity. We wish to stress that the soundness of the approximation
rules introduced in section 4 depends on the perfect lattices being completely join-
generated by the set of their completely join prime elements, which implies that the
perfect lattices in which these rules are sound are necessarily distributive. However,
more general approximation rules can be introduced, which are sound on (non-
distributive) perfect lattices. Hence, correspondence theory in the style illustrated
in the present chapter covers also logics with algebraic semantics based on general
lattices, for instance substructural logics (cf. [21] for complete details).

Complexity. While we hope that the reader is convinced that the calculus of corre-
spondence facilitates simple, perspicuous and uniform derivations, we do not claim
that it improves upon the computational complexity of other methods like the tra-
ditional Sahlqvist-van Benthem algorithm. Still, a few remarks on complexity are
perhaps in order. When restricted to the class of Sahlqvist formulas, or to any other
class of formulas on which it is guaranteed to succeed, the calculus of correspondence
yields an algorithm for computing the first-order correspondents of the members of
this class. It is not difficult to see that this algorithm’s runtime complexity is poly-
nomial in the size of the input formula. More sophisticated versions of the calculus
could involve more costly computations like testing for monotonicity of terms (as
opposed to mere syntactic positivity), and can take us to the full complexity of the
underlying logic or beyond (see e.g., [16]). When applied to arbitrary formulas, the
calculus of correspondence is only a semi-algorithm, as is to be expected, since the
question whether a formulas has a first-order frame correspondent is undecidable
[14]. Some considerations relevant to implementation and computational optimiza-
tion are treated in [34] and Chap. 13 of [30].

Constructive canonicity. Perhaps the most important classical applications of cor-
respondence is its connection to canonicity. Indeed, it has been appropriately argued
[46] that the correspondence machinery can be extended and made applicable also in
the context of descriptive frames, where it leads to canonicity results. Such results are
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often stated as persistence results (validity can be moved from a descriptive frame to
its underlying Kripke frame); however, when seen from the dual, algebraic side, they
can be stated as transfer results, namely that validity transfers from an algebra to
its canonical extension. Formulated in this way, canonicity requires a rich metathe-
ory for which the ultrafilter theorem (depending on the axiom of choice) must be
available. However, there is a method for building canonical extensions ‘without
ultrafilters’ in a constructive way. The idea in [36] is to exploit a Galois connections
induced by an abstract ‘containment’ relation between filters and ideals, and to define
the canonical extension as the resulting algebra of Galois-stable subsets. Indeed, in
the presence of the axiom of choice, this construction is isomorphic to the canoni-
cal extension defined via duality. However, the canonical extension defined in [36]
has an autonomous life also in a constructive (topos-theoretically valid) metatheory,
and moreover, it has a rich enough internal structure that the transfer results for
Sahlqvist-type equations can be proved in two steps, without relying on any corre-
spondence result. Thus, canonicity (the alter ego of correspondence) is meaningful
also in a purely constructive context.

Inverse correspondence. We focused on the question of finding first-order (or
FO+LFP) correspondents for modal formulas. In this way we ‘cover’ only a frag-
ment of the first-order (or FO+LFP) correspondence language, so it is natural
to reverse direction and ask which first-order (or FO+LFP) frame conditions are
modally definable. The more specific question of characterizing the first-order for-
mulas which are frame correspondents of Sahlqvist formulas was answered by Mar-
cus Kracht [41] and more generally for the inductive formulas by Stanislav Kikot
[40]. Analogous questions for intuitionist modal logic or when correspondence with
FO+LFP is sought are still open.

Step-by-step construction of finitely generated free algebras, and correspon-
dence methods. The step-by-step construction of finitely generated free algebras
is gaining more and more attention, viz. [1, 12, 25, 35]. The case of equations of
rank 1 has been thoroughly investigated in connection with research issues relevant
to coalgebraic logic; interestingly, preliminary results show that, in order to extend
these results beyond rank 1, the correspondence machinery is needed in the setting of
the so-called step frames [10], two-sorted Kripke frames modelling partially defined
modalities. Possible developments of this line of investigation invest proof-theoretic
questions related to the subformula property [9].

36.11 Appendix

36.11.1 Distributive Complex Algebras and Frames

An element c �= ⊥ of a complete lattice C is completely join-irreducible iff c =∨
S

implies c ∈ S for every S ⊆ C; moreover, c is completely join-prime if c �= ⊥ and,
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for every subset S of the lattice, c ≤ ∨
S iff c ≤ s for some s ∈ S. An element

c �= ⊥ of a complete lattice is an atom if there is no element y in the lattice such that
⊥ < y < c. An element c �= � of a complete lattice is completely meet-irreducible
iff c = ∧

S implies c ∈ S for every S ⊆ C; moreover, c is completely meet-prime
if c �= � and, for every subset S of the lattice, c ≥ ∧

S iff c ≥ s for some s ∈ S.
An element c �= � of a complete lattice is a co-atom if there is no element y in the
lattice such that c < y < �.

If c is an atom (resp. a co-atom), then c is completely join-prime (resp. meet-
prime), and if c is completely join-prime (resp. meet-prime), then c is completely
join-irreducible (resp. meet-irreducible). If C is frame distributive (i.e. finite meets
distribute over arbitrary joins) then the completely join-irreducible elements are
completely join-prime, and if C is a complete Boolean lattice, then the completely
join-prime elements are atoms. The collections of all completely join- and meet-
irreducible elements of C are respectively denoted by J∞(C) and M∞(C).

Definition 36.6 A perfect lattice is a complete lattice C such that J∞(C) join-
generates C (i.e. every element of C is the join of elements in J∞(C)) and M∞(C)
meet-generates C (i.e. every element of C is the meet of elements in M∞(C)). A
perfect distributive lattice is a perfect lattice such that J∞(C) coincides with the set
of all completely join-prime elements of C and M∞(C) coincides with the set of all
completely meet-prime elements of C; a perfect Boolean lattice is a perfect lattice
such that J∞(C) coincides with the set of all the atoms of C (or M∞(C) coincides
with the set of all the co-atoms of C).

Complete atomic modal algebras are those modal algebras A the lattice reducts
of which is a perfect Boolean lattice and moreover, their ♦ operation preserves
arbitrary joins, i.e. ♦(

∨
S) = ∨

s∈S ♦s for every S ⊆ A. Discrete Stone duality
between complete atomic modal algebras and their complete homomorphisms and
Kripke frames and their bounded morphisms is defined on objects by mapping any
Kripke frame F = (W, R) to its complex algebra F+ = (P(W ), 〈R〉), where
〈R〉X = R−1[X ] = {w ∈ W : ∃x(x ∈ X & wRx)} for every X ∈ P(W ), and every
complete atomic modal algebra A = (B,♦) to its atom structure A+ = (J∞(B), R),
where x Ry iff x ≤ ♦y for all atoms x, y ∈ J∞(B). As a consequence of this duality,
the Stone representation theorem holds for complete atomic modal algebras, which
states that these can be equivalently characterized as the modal algebras each of
which is isomorphic to the complex algebra of some Kripke frame.

Likewise, a Stone-type duality (extending the finite Birkhoff duality) holds
between perfect distributive lattices and their complete homomorphisms and posets
and monotone maps, which is defined on objects as follows: every poset X is asso-
ciated with the lattice P↑(X) of the upward-closed subsets of X , and every perfect
lattice C is associated with (J∞(C),≥) where ≥ is the reverse lattice order in C,
restricted to J∞(C). As a consequence of this duality, perfect distributive lattices
can be equivalently characterized (see e.g. [32]) as those lattices each of which is
isomorphic to the lattice P↑(X) of the upward-closed subsets of some poset X .

As was mentioned early on, just in the same way in which the duality between
complete atomic Boolean algebras and sets can be expanded to a duality between
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complete atomic modal algebras and Kripke frames, the duality between perfect
distributive lattices and posets can be expanded to a duality between perfect DLOs
and posets endowed with arrays of relations, each of which dualizes one additional
operation in the usual way, i.e., n-ary operations give rise to n + 1-ary relations,
and the assignments between operations and relations are defined as in the classical
setting. We are not going to report on this duality in full detail (we refer e.g. to [22,
33, 47]), but we limit ourselves to mention that, for instance, the DLOs endowed
with four unary operators as in (36.5) are dual to the relational structures F =
(W,≤, R♦, R�, R�, R�) such that (W,≤) is a nonempty poset, R♦, R�, R�, R�
are binary relations on W and the following inclusions hold:

≥ ◦ R♦ ◦ ≥ ⊆ R♦ ≤ ◦ R� ◦ ≥ ⊆ R�
≤ ◦ R� ◦ ≤ ⊆ R� ≥ ◦ R� ◦ ≤ ⊆ R�.

The complex algebra of any such relational structure F (cf. [33, Sect. 2.3]) is

F+ = (P↑(W ),∪,∩,∅,W, 〈R♦〉, [R�], 〈R�], [R�〉),

where, for every X ⊆ W ,

[R�]X := {w ∈ W | R�[w] ⊆ X} = (R−1
� [Xc])c

〈R♦〉X := {w ∈ W | R♦[w] ∩ X �= ∅} = R−1
♦ [X ]

[R�〉X := {w ∈ W | R�[w] ⊆ Xc} = (R−1
� [X ])c

〈R�]X := {w ∈ W | R�[w] ∩ Xc �= ∅} = R−1
� [Xc].

Here (·)c denotes the complement relative to W , while R[x] = {w | w ∈
W and x Rw} and R−1[x] = {w | w ∈ W and wRx}. Moreover, R[X ] = ⋃{R[x] |
x ∈ X} and R−1[X ] =⋃{R−1[x] | x ∈ X}.

Adjunction and Residuation

Let P and Q be partial orders. The maps f : P → Q and g : Q → P form an adjoint
pair (notation: f  g) iff for every x ∈ P and y ∈ Q, f (x) ≤ y iff x ≤ g(y).
Whenever f  g, f is the left adjoint of g and g is the right adjoint of f . Adjoint
maps are order-preserving. If a map admits a left (resp. right) adjoint, the adjoint is
unique and can be computed pointwise from the map itself and the order.

Proposition 36.3 1. Right adjoints (resp. left adjoints) between complete lattices
are exactly the completely meet-preserving (resp. join-preserving) maps;

2. right (resp. left) adjoints on powerset algebras P(W ) are exactly the maps
defined by assignments of type X �→ [R]X = (R−1[Xc])c (resp. X �→ 〈R〉X =
R−1[X ]) for some binary relation R on W .
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3. For any binary relation R on W , the left adjoint of [R] is the map 〈R−1〉, defined
by the assignment X �→ R[X ].

Proof 1. See [26, Proposition 7.34].
2. For a left adjoint f : P(W ) −→ P(W ), define R as follows: for every x, z ∈ W ,
x Rz iff x ∈ f ({z}). For a right adjoint g : P(W ) −→ P(W ), define R as follows:
for every x, z ∈ W , x Rz iff x �∈ g(W \ {z}).
The notion of adjunction can be made parametric and generalized to n-ary maps in
a component-wise fashion: an n-ary map f : Pn → P on a poset P is residuated if
there exists a collection of maps {gi : Pn → P | 1 ≤ i ≤ n} s.t. for every 1 ≤ i ≤ n
and for all x1, . . . , xn, y ∈ P ,

f (x1, . . . , xn) ≤ y iff xi ≤ gi (x1, . . . , xi−1, y, xi+1, . . . , xn).

The map gi is the i-th residual of f . Residuated maps are order preserving in each
coordinate, and for each 1 ≤ i ≤ n, the residual gi is order-preserving in its i th coor-
dinate and order-reversing in all other coordinates. The facts stated in the following
example and proposition are well known in the literature in their binary instance (cf.
[31, Sect. 3.1.3]):

Example 36.4 For every (n + 1)-ary relation S on W and every (X1, . . . , Xn) ∈
P(W )n , let

S[X1, . . . , Xn] := {y ∈ W | ∃x1 · · · ∃xn[
n∧

i=1

xi ∈ Xi ∧ S(x1, . . . , xn, y)]}.

The n-ary operation on P(W ) defined by the assignment (X1, . . . , Xn) �→ S[X1,

. . . , Xn] is residuated and its i-th residual is the map gi : P(W )n → P(W ) which
maps every n-tuple (X1, . . . , Xi−1,Y, Xi+1, . . . , Xn) to the set {w ∈ W | αi

S(w)},
where αi

S(w) is the following first-order formula:

∀x1 · · · ∀y · · · ∀xn[(
∧

k∈ni

xk ∈ Xk & S(x1, . . . ,w, . . . , xn, y))⇒ y ∈ Y ],

and moreover ni = {1, . . . , n} \ {i}.
Proposition 36.4 If f : Pn → P is residuated and {gi : Pn → P | 1 ≤ i ≤ n} is
the collection of its residuals, then:

1. if P is a complete lattice, then f preserves arbitrary joins in each coordinate;
2. if P is a powerset algebra, f coincides with the map defined by the assignment

S[X1, . . . , Xn] as in Example 36.4, for some (n + 1)-ary relation S on W .



974 W. Conradie et al.

References

1. Abramsky S (2005) A Cook’s tour of the finitary non-well-founded sets. In: We will show
them: essays in honour of Dov Gabbay, pp 1–18

2. Ackermann W (1935) Untersuchung über das Eliminationsproblem der mathematischen logic.
Mathematische Annalen 110:390–413

3. van Benthem J (1976) Modal reduction principles. J Symbolic Logic 41(2):301–312
4. van Benthem J (1983) Modal logic and classical logic. Bibliopolis, Napoli
5. van Benthem J (2001) Correspondence theory. In: Gabbay DM, Guenthner F (eds) Handbook

of philosophical logic, vol 3. Kluwer Academic, Dordrecht, pp 325–408
6. van Benthem J (2005) Minimal predicates, fixed-points, and definability. J Symbolic Logic

70(3):696–712
7. van Benthem J (2006) Modal frame correspondence and fixed-points. Studia Logica 83:133–

155
8. van Benthem J, Bezhanishvili N, Hodkinson I (2012) Sahlqvist correspondence for modal

mu-calculus. Studia Logica 100:31–60
9. Bezhanishvili N, Ghilardi S (2013) Bounded proofs and step frames. In: Logic group preprint

series, no 306. Utrecht University
10. Bezhanishvili N, Ghilardi S, Jibladze M (2013) Free modal algebras revisited: the step-by-step

method. In: Leo Esakia on duality in modal and intuitionistic logics. Outstanding contributions
to Logic, vol 4, 2014. Springer

11. Bezhanishvili N, Ghilardi S (2013) Bounded proofs and step frames. In: Proceedings of Auto-
mated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX 2013), pp 44–58

12. Bezhanishvili N, Kurz K (2007) Free modal algebras: a coalgebraic perspective. In: Proceedings
of CALCO 2007, pp 143–157

13. Bull RA (1969) On modal logic with propositional quantifiers. J Symbolic Logic 34:257–263
14. Chagrov A, Chagrova LA (2006) The truth about algorithmic problems in correspondence

theory. In: Governatori G, Hodkinson I, Venema Y (eds) Advances in modal logic, vol 6.
College Publications, London, pp 121–138

15. Conradie W, Fomatati Y, Palmigiano A, Sourabh S Sahlqvist correspondence for intuitionistic
modal mu-calculus (To appear in Theoretical Computer Science)

16. Conradie W, Goranko V (2008) Algorithmic correspondence and completeness in modal logic
III: semantic extensions of the algorithm SQEMA. J Appl Non-class Logics 18:175–211

17. Conradie W, Goranko V, Vakarelov D (2005) Elementary canonical formulae: a survey on
syntactic, algorithmic, and model-theoretic aspects. In: Schmidt R, Pratt-Hartmann I, Reynolds
M, Wansing H (eds) Advances in modal logic, vol 5. Kings College, London, pp 17–51

18. Conradie W, Goranko V, Vakarelov D (2006) Algorithmic correspondence and completeness
in modal logic I: the core algorithm SQEMA. Logical Methods Comput Sci 2(1:5):1–26

19. Conradie W, Goranko V, Vakarelov D (2006) Algorithmic correspondence and completeness
in modal logic. II. Polyadic and hybrid extensions of the algorithm SQEMA. J Logic Comput
16:579–612

20. Conradie W, Goranko V, Vakarelov D (2010) Algorithmic correspondence and completeness
in modal logic. V. Recursive extensions of SQEMA. J Appl Logic 8:319–333

21. Conradie W, Palmigiano A Algorithmic correspondence and canonicity for non-distributive
logics (Submitted)

22. Conradie W, Palmigiano A (2012) Algorithmic correspondence and canonicity for distributive
modal logic. Ann Pure Appl Logic 163:338–376

23. Conradie W, Palmigiano A, Sourabh S Algebraic modal correspondence: Sahlqvist and beyond
(Submitted)

24. Conradie W, Robinson C An extended Sahlqvist theorem for hybrid logic (In preparation)
25. Coumans D, van Gool S On generalizing free algebras for a functor. J Logic Comput
26. Davey BA, Priestley HA (2002) Lattices and order. Cambridge Univerity Press, Cambridge
27. Dunn JM, Gehrke M, Palmigiano A (2005) Canonical extensions and relational completeness

of some substructural logics. J Symbolic Logic 70(3):713–740



36 Unified Correspondence 975

28. Fine K (1972) In so many possible worlds. Notre Dame J Formal Logic 13:516–520
29. Frittella S, Palmigiano A, Santocanale L Characterizing uniform upper bounds on the length of

D-chains in finite lattices via correspondence theory for monotone modal logic (In preparation)
30. Gabbay DM, Schmidt RA, Szałas A (2008) Second-order quantifier elimination: foundations,

computational aspects and applications. Vol 12 of studies in logic: mathematical logic and
foundations. College Publications, London

31. Galatos N, Jipsen P, Kowalski T, Ono H (2007) Residuated lattices: an algebraic glimpse at
substructural logics. Elsevier, Amsterdam

32. Gehrke M, Jónsson B (1994) Bounded distributive lattices with operators. Math Japon 40
33. Gehrke M, Nagahashi Y, Venema H (2005) A Sahlqvist theorem for distributive modal logic.

Ann Pure Appl Logic 131:65–102
34. Georgiev D (2006) An implementation of the algorithm SQEMA for computing first-order

correspondences of modal formulas, master’s thesis. Sofia University, Faculty of mathematics
and computer science

35. Ghilardi S (1995) An algebraic theory of normal forms. Ann Pure Appl Logic 71:189–245
36. Ghilardi S, Meloni G (1997) Constructive canonicity in non-classical logics. Ann Pure Appl

Logic 86:1–32
37. Goranko V, Vakarelov D (2001) Sahlqvist formulas in hybrid polyadic modal logics. J Logic

Comput 11:737–754
38. Goranko V, Vakarelov D (2002) Sahlqvist formulas unleashed in polyadic modal languages.

In: Wolter F, Wansing H, de Rijke M, Zakharyaschev M (eds) Advances in modal logic, vol 3.
World Scientific, Singapore, pp 221–240

39. Goranko V, Vakarelov D (2006) Elementary canonical formulae: extending Sahlqvist theorem.
Ann Pure Appl Logic 141(1–2):180–217

40. Kikot S (2009) An extension of Kracht’s theorem to generalized Sahlqvist formulas. J Appl
Non-class Logics 19:227–251

41. Kracht M (1993) How completeness and correspondence theory got married. In: de Rijke M
(ed) Diamonds and defaults. Kluwer Academic, Dordrecht, pp 175–214

42. Kurtonina N (1998) Categorical inference and modal logic. J Logic Lang Inform 7:399–411
43. Kurz A, Palmigiano A (2013) Epistemic updates on algebras. Logical Methods Comput Sci

9(4). doi:10.2168/LMCS-9(4:17)2013
44. Ma M, Palmigiano A, Sadrzadeh M (2013) Algebraic semantics and model completeness for

intuitionistic public announcement logic. Ann Pure Appl Logic 165(4):963–995
45. Sahlqvist H (1975) Correspondence and completeness in the first and second-order semantics

for modal logic. In: Kanger S (ed) Proceedings of the 3rd Scandinavian logic symposium,
Uppsala 1973. Springer, Amsterdam, pp 110–143

46. Sambin G, Vaccaro V (1989) A new proof of Sahlqvist’s theorem on modal definability and
completeness. J Symbolic Logic 54:992–999

47. Sofronie-Stokkermans V (2000) Duality and canonical extensions of bounded distributive
lattices with operators, and applications to the semantics of non-classical logics I. Studia Logica
64(1):93–132

http://dx.doi.org/10.2168/LMCS-9(4:17)2013


ADDENDUM I
Reflections on the Contributions

Reading this book, one quickly realizes that the number of substantial contributions
found in its 1,000 pages defies any attempt at integrative summary, let alone, detailed
response on my part. Moreover, I do not see myself as the leader of this talented
interdisciplinary flock, but rather as one of a swarm of birds exploring a landscape.
Each bird may take turns at the head when the swarm is in full flight, but occasionally,
we also perch on branches in a non-hierarchical easy comradery. This dynamic
perching is what artist Nina Gierasimczuk has captured in her nice image of all the
contributors that appears on the next page. I hope they will all find their perches with
ease.

The authors and their topics do deserve serious responses, but this may well have
to be my project for the year to come. Instead, for now, I have tried to also read
the chapters in another intellectual mode that I have always found congenial, not
that of agreeing or disagreeing with specific claims, but that of being inspired. The
reflections that follow were what resulted, though the reader will see a clear continuity
with the themes mentioned in my scientific autobiography. After all, minds as well
as bodies can only resonate with their eigenfrequencies.

My reflections follow the sequence and grouping of chapters in the book, not
because this is a unique natural order of things, but because, to me, the topics in this
book are highly interconnected. One can start at any end, and find oneself in the midst
of things instantaneously. In the passages to come, I will just start with one topic that
occupies me, and then get the ball rolling naturally from one basic theme to another.
This deep entanglement of themes also reflects another conviction of mine, namely,
that there is no natural border line between approaching the topics underlying this
book from the perspectives of mathematics, computation, philosophy, or even other
disciplines such as linguistics or cognitive science. For instance, usually, I just do not
feel a sharp transition in looking at a mathematical result about a fundamental theme
like information and agency and a philosophical analysis of that same topic. The
various stances form a natural continuum of intellectual pleasures, and sometimes
even simple necessities, in seeing topics relevant to logical dynamics in their full
intellectual breadth.

A. Baltag and S. Smets (eds.), Johan van Benthem on Logic 977
and Information Dynamics, Outstanding Contributions to Logic 5,
DOI: 10.1007/978-3-319-06025-5, © Springer International Publishing Switzerland 2014
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Mathematical and Computational Perspectives

The chapters in this part may be seen as dealing with wide-ranging tools, but at the
same time, they deal with broad issues connected to these tools, that run through the
whole area of information and agency.

The first of these issues is which notion (or notions) of process lies behind games
and interactive agency in general. My own work has mostly approached this issue
indirectly, by looking at semantic levels of guarded process equivalence such as
bisimulation and the associated invariances for modal languages.1 Erich Grädel and
Martin Otto show the power of this modal invariance approach, which extends much
further than most people realize, namely, at least into the guarded fragment of first-
order logic and its fixed point extensions. And a focus on structural ‘sameness’
returns in various chapters in other parts. But when one looks at the model theory in
the Grädel and Otto chapter, one striking feature is its connections with combinatorial
features of size and complexity, and also, with the use of concrete computing devices
such as automata that represent constructive definitions of relevant processes. The
encounter between modal logic and automata theory is something that was entirely
absent from modal logic in my formative years, even though in hindsight, one can say
that the invention of propositional dynamic logic in the 1970s heralded its arrival.
Yde Venema demonstrates the elegant mixture of ideas that results when model
theory meets automata theory, and presents a little gem: an (at least, to me) ele-
gant and comprehensible proof of the Janin and Walukiewicz invariance theorem
that the bisimulation-invariant fragment of monadic second-order logic is the modal
μ-calculus.2 Automata will also return in other parts of the book as concrete models
for agents or their strategies.

Another broad topic involved with processes and automata is that of induction,
recursion, and fixed point logics. While these systems have so far been mostly studied
in computer science, and are not yet part of the classical mathematical foundations
of modal logic, I feel that they should. Recursion is everywhere, from ‘reflective
equilibrium’ in philosophy to strategic equilibria in game theory, or iterative patterns
in language and cognitive behavior.3 And recursion and process structure is just one
aspect of taking a computational perspective. Another is the difficulty or complexity
of tasks, since this is what determines whether the process makes sense in the realm
of agency. Several chapters in this part have complexity issues in the background,
that bring to light a fine-structure of the actual performance of logical systems that
goes unnoticed with standard presentations. Many people flatter themselves that
they can understand a formal system without understanding its actual complexity
in performance. Do we understand a natural language when we grasp its semantic
meaning system, but have no idea what it would take to actually use it? I do not think
so, and I do not think so for logical reasoning systems either.

1 This mathematical idea occurs just as well in philosophy, in thinking about ‘identity criteria’.
2 I hope that something similar is possible for the fixed-point extension of the guarded fragment.
3 If I had the power of changing basic logic curricula, I would probably add fixed point logics to
the standard predicate-logical fare that students get.
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In a very stark practical form, issues of complexity are central to the treatment of
database theory by Balder ten Cate and Phokion Kolaitis, the closer to polynomial
the better, but I also enjoyed that chapter for its closeness of logical model theory and
the syntax of databases relevant to today’s practice. Personally, I have always felt
that, beyond its practical uses, database theory is a concrete laboratory for process
and information representation.4 One thing that intrigues me here is the essential
role of syntax. While I was brought up as a student to believe that syntax is just a
nuisance or a concession to human frailty, while the real essences are semantic, this
prejudice is under pressure. Syntax is close to important structure of information
that gets washed out in semantic models, and also, syntax is close to specifying
automata, so that it gives essential procedural information about what we mean, and
what we do.5 Another aspect of databases that is central to much of this book is the
notion of dependence. I fully agree with Pietro Galliani and Jouko Väänänen that
this deserves a sharp and separate focus in logic, since it is a notion with attractive
formal structure that unifies across information, computation, games and interac-
tive agency. Incidentally, their chapter also makes connections between dependence
logic and dynamic-epistemic logic, providing one of the many instances of system
rapprochement in this book.

But I was not done yet with my earlier issues of syntax and process struc-
ture. Samson Abramsky’s inspiring analysis of computation in a rich higher-order
type-theoretic and categorial framework reminds me of that other main tradition in
logic, that of proof theory and category theory. Much of the work I have done is
about model-theoretic logics of processes, whereas Abramsky’s perspective might
be described as logic as process. I hope that, when I have come to a full understand-
ing of what he is achieving in his framework, I will also have a better view of the
difference between the two process aspects of logic, which has long intrigued me,
but also baffles me a bit. This distinction between “of” and “as” is another running
thread through this book, and I will draw attention to it in several later parts.

Finally, let me turn to what to some readers may seem to be an outlier, Hajnal
Andréka and Ístvan Németi’s analysis of relativity theories in a logical framework.
To me, this chapter about theories in empirical science represents many strands in
the above. It is in the empirical sciences, rather than pure mathematics, that different
conceptions of information meet, as well as associated notions of process. Just think
for a moment about the notions of signal and measurement that are crucial to relativity
theory, and you will quickly see the point. And there are further links, such as the
discussion of relative interpretation (a notion on which I worked with David Pearce in
the 1980s) which is about sameness of theories, and hence sameness of informational
and process structure. This chapter also reflects a conviction of mine, arising from
breaking with all that I was taught as a student in courses on the philosophy of science.
I now think that there is no significant border line between the worlds of science and

4 Already in my 1989 paper on ‘Semantic Parallels’, I pointed out connections between abstract
data types and theories as structured bodies of knowledge in the philosophy of science.
5 Syntax also triggers complexity in ever new ways, witness the large new decidable fragment of
first-order logic discovered by ten Cate and Segoufin as reported by Grädel and Otto.
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of common sense daily behavior. Indeed, if we view science as a very successful
species of general human behavior, then we can profit from its providing a sort of
restricted cognitive and conceptual lab for our general concerns about information-
driven agency in logical dynamics.

This is a very long passage, and I have not even begun to summarize all topics
in this part. Let me just say that many topics raised here will return later in perhaps
unlikely places, witness the use of “semantic automata” in the part on language and
cognition. Computational complexity, too, will return in later chapters on cognition.
Likewise, automata models for fixed point logics are closely related to evaluation
games and their winning strategies, which will return in the part on games. Vice
versa, many later topics of this book would also make sense in this part. For instance,
several later chapters will be concerned with non-monotonic reasoning, but as we all
know from the case of logic programs, databases are an excellent testing ground for
such logics too.

But let me end by returning to the first issue that I raised in connection with
this part, the appropriate notion of process. One way of thinking about Abramsky’s
program is as a search for a stable notion of process that would be adequate to
modern computing. Now this ties in with a general issue that has long occupied
me. The logical dynamics program seems to presuppose some very broad notion of
information-driven distributed social interactive computation. What sort of mathe-
matical structure can we expect for this notion of distributed behavior, and will its
universal model (if there is one) have anything like the classical elegance of Turing’s
original analysis of sequential computing?

Dynamics of Knowledge and Belief Over Time

The chapters in this second part show what has become of the simple epistemic
and doxastic logics I used to know when starting in the 1970s. The current world
of logics for knowledge acquisition, belief change, and learning is fast developing,
and many things seem to be crystallizing out in the process, even though there
are also important remaining choices of a most convenient stable formalism. One
persistent framework exploits the natural fit between epistemic logic and dynamic
logic of actions whose state of the art is exemplified in Jan van Eijck’s chapter. This
simple and perspicuous combination makes sense from a logical dynamics standpoint
where information and action belong together, but it also shows up in more surprising
places, such as the recent informational mechanisms that update process structure
in the chapter by Patrick Girard and Hans Rott, or notions of group information like
common knowledge where the actors in ‘epistemic PDL’ seem to become complex
information processing agents. I wonder whether we will also need other natural
systems, with stronger fixed point logics for both components.

The paper by Girard and Rott also addresses another issue that intrigues me: the
duality between two approaches to understanding update and agency. One is the
construction of dynamic-epistemic logics with explicit mechanisms for the relevant
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tasks, the other is the formulation of, often philosophically motivated, postulates on
update or belief change, as in AGM belief revision theory. I would like to understand
the interplay of these constructive and postulational approaches much better. The
contrast seems a very general one having to do with the standards of adequacy for
any formal analysis.

Several chapters in this part then take what is obviously a further natural step,
also given my own past interests in temporal structure. Update mechanisms describe
the next step in some dynamical system, but we also want to understand the system
evolution over time. In our field, this is not just a matter of routine mathematical
technique taking difference equations to solvable differential equations: there are
serious connection problems. One technical issue is linking dynamic-epistemic logics
to epistemic temporal logics of various sorts that have been proposed in philosophy,
computer science, and game theory. Valentin Goranko and Eric Pacuit map out the
candidates and the issues in a way that leaves me nothing to add, except for noting
that many popular frameworks seem to be converging, from epistemic temporal logic
to interpreted systems. But equally basic is seeing that temporal structure is not just
a matter of rolling out local dynamics: there may be genuine procedural information
about the evolution of a process that is sui generis. I do not think that we have a good
general understanding of the logic of protocols that govern long-term behavior. One
concrete area where this theme becomes especially conspicuous is learning theory,
and Nina Gierasimczuk, Vincent Hendricks and Dick de Jongh show abundantly
how learning theory both meshes with and enriches dynamic-epistemic logic. To me,
learnability in the long run seems a very natural counterpart to our usual concerns
about logical systems, including the earlier-mentioned complexity, and I hope that
this theme will penetrate more into the consciousness of logicians. Kevin Kelly’s
chapter is along the same lines, but adds many surprising connections to temporal
logics, and the philosophical literature on inquiry that I find fascinating. I had long
admired his book “The Logic of Reliable Inquiry”, and seeing it so close to my own
concerns comes as a pleasant surprise, making me realize the importance to logic of
the philosophy of science in completely new ways.

Moving from time to space, the chapter by Wiebe van der Hoek and Nick
Bezhanishvili reminds us of the importance of generalized topological and neigh-
borhood models for my enterprise. I have worked with these on many occasions,
but an issue of general import remains. In topological models, there are two major
families of examples: trees, close to process evolution, and Euclidean spaces. The
spatial view of information is very powerful, too, and I still have not managed to
absorb it organically into my thinking.

The final intriguing theme in this part is the combination of logic and probability.
While these are often seen as rivals in formal philosophy or some areas of computer
science, their combination seems increasingly natural to me. Sometimes this is just
a matter of adding richer probabilistic fine-structure to qualitative logical notions,
but sometimes, making our very universe of objects probabilistic is needed to get the
deep results, such as the existence of equilibria in strategic games. Lorenz Demey and
Barteld Kooi show how combinations of dynamic-epistemic logic and probability
make sense both in theory and practice, distinguishing the subtly different notions
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of prior probability, observation probability, and occurrence probability (a notion of
process information that also underlies learning theory). But even then issues remain
about the border line between the two components. One thing that has occupied me
for a while now is the manifold roles of numbers in probability theory. They perform
what are in fact extremely different jobs: indicating strengths of belief, giving global
summaries of past experience, but also, they help us weigh and glue factors in update
or learning rules. I wonder whether one can find truly qualitative versions of all
these roles that work well in non-numerical scenarios. In particular, update gluing
may involve forms of relation merge that resemble aggregation procedures in social
choice. One telling case study at the level of static attitudes is Hannes Leitgeb’s paper
on how qualitative belief and numerical probability can be related in a mathematically
precise way based on a notion of stability with respect to making errors, and I am
sure that any reader of his paper will be able to formulate the follow-up questions
about the information dynamics.

Games

The chapters in the part on logic and game theory are a natural continuation of
an interest in information dynamics and information-driven action. Games are a
natural microcosm for about everything on the agenda of philosophical logic, and
when viewing games as a model for modern computation, also for the agenda of
computational logic. To me, they are also our best current model for the social
intelligence that seems typical for human cognition. Logicians and game theorists
seem congenial communities, and the chapter by Giacomo Bonanno and Cédric
Dégremont shows many instances of that. There are many logics of games, but
what would be a best logical framework for games seems a matter of continuing
discussion, even in my new book “Logic in Games”. I have come to think in terms
of a Theory of Play that would combine features of a game as a global process
structure with modeling players and their relevant habits, and it is surprising to see
how game theorists often think the same way when charting what actually happens
in the course of play. While I have tended to focus on individual players here, the
chapter by Thomas Ågotnes and Hans van Ditmarsch provides a welcome extension
to the realm of coalitions and groups, one of the most striking features of working
in an interactive setting. Moreover, while most work on logics of games has been
monopolized by semantic perspectives, proof theory has a natural role as well, and
the chapter by Sergei Artemov re-examines basic intuitions of the founders of game
theory in terms of the reasoning leading to strategic equilibrium. In doing so Artemov
uses his framework of justification logic, itself a beautiful example of the virtues of
combining features of epistemic logic with more fine-grained notions of evidence
coming from proof theory. Not all different temperaments lead to happy marriages,
but it is good to see that some do.

Many of the earlier computational themes return in the realm of games. The
chapter by Ramaswamy Ramanujam shows how automata can serve as concrete
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models of players or their strategies, and his use of a logic for specifying player types
may be just what is needed to tame the potential explosion of options in my proposed
Theory of Play. I have the feeling that much of the current sophisticated work on
automata, games, and strategies in computational logic (witness also the chapters
by Abramsky and Venema) has a much broader significance for our understanding
of intelligent interaction in general, even though, sadly, I am not the person who is
able to write an authoritative book on this fast-growing line of research in the logical
foundations of computing.

While all this is mainly about applying logic to games, there is also a converse
direction entangled with it, the use of games to elucidate major features of logic.
In terms of two prepositions, in addition to logic of games, there is logic as games.
The chapter by Gabriel Sandu comes from the latter tradition, namely, the semantics
of IF logics of independence (and, ex silentio, dependence) in terms of games with
imperfect information caused by limited observation and memory. Sandu takes the
game-theoretic connection seriously, and develops a link with signaling games, one
of the most natural counterparts to our interest in information dynamics. But one
can come to logic in other ways as well. Ågotnes and van Ditmarsch present their
‘knowledge games’ played over epistemic models that uncover a lot of procedural
information lying hidden inside what look like static structures. This perspective may
well affect our understanding of knowledge, not just as a static attitude, but also as
a procedural notion. Overall, despite having written a 550 page book in the area, I
am still intrigued by the entanglement of logic of games and logic as games, whose
structure might well be the DNA of our field: logic gets applied to games and agency,
but it may also get transformed in the process.

Agency

Games are one species of general agency, and I do not wish to claim that it is the
only format for making sense of social behavior. The broader area of agency is again
one where logicians, philosophers, and computer scientists meet naturally. Peter
Millican and Michael Wooldridge raise the crucial issue of what are agents, merging
computational and philosophical perspectives, and made me realize that I should
think much harder on what I am doing. They contrast several models of agents, and
tie logic to the intentional stance, asking where this makes sense and where not. As
for technical frameworks, Hector Levesque and Yongmei Liu make a connection that
had long eluded me, between the situation calculus, one of the major computational
paradigms for agency in AI, and dynamic-epistemic logic. I wish this insight had
reached me earlier, so that I could have discussed it with John McCarthy at Stanford,
one of the most creative and open minds I have known over the years.

More in the philosophical tradition, several chapters in this part remind me of
things that need to be done. Wesley Holliday and John Perry discuss epistemic
predicate logic, and how to model knowledge of objects in a way that does justice to
the philosophical state of the art. This has shaken my prejudice that adding predicate
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logic to the propositional systems in the bulk of my work is merely a routine issue
of no particular priority in the larger scheme of things. I now see that these are
highly natural issues, and much needs to be done. The authors also suggest that,
in this richer setting, we need a dynamics of roles for agents, in addition to the
dynamics of information. That might realize one of my longstanding desires, to find
significant interfaces between my work and that of the Stanford situation theorists.
Another philosophical-computational framework that has long intrigued me is STIT
logic of agency, based on choice and control of options over time. Roberto Ciuni
and Jon Horty explain STIT in a way that is totally accessible to people outside
of the framework, and extend an incipient junction with logics of games that I had
studied with Eric Pacuit. Thanks to them, I am now beginning to see how there are
the makings of a solid bridge here, when focusing on higher level concepts such as
choice, freedom, and knowledge.

Higher-level concepts also take me to what I see as the double role of logic,
providing either more, or less conceptual zoom. We often think of logical analysis as
providing more detail, perhaps even formalizing arguments down to a rock-bottom
level where a computer could check all individual steps. But the opposite direction
is often just as prominent, where logic provides high-level concepts that hover far
above the details of some reasoning practice, and capture essential global features. In
fact, this is how I see the common use of deontic concepts such as “may” or “must”:
they encapsulate complex considerations into one label that lends itself to reasoning.
Oliver Roy, Albert Anglberger and Norbert Gratzl zoom out on the role of deontics,
and discuss logics for best action in game-theoretic and social scenarios. I would
hope that there is actually a stable qualitative level lying above the details of decision
theory and game theory where we can make perfect sense of the way in which
we really see all of our life’s choices: in terms of entangled informational-evaluative
notions of duty, best action, but also, I would think, of the powerful pervasive notions
of hope and fear.

Finally, another arena of agency close to logic that comes with vivid intuitions and
concrete experiences is that of argumentation. This area has long been the exclusive
preserve of informal argumentation theorists, who were often inspired by severe
critics of formal logic (in its pre-dynamic 1950s mode) such as Toulmin or Perelman.
Davide Grossi and Dov Gabbay present modern mathematical network models for
basic styles of argumentation, and show how these models fit very naturally with the
methodology of bisimulation and modal logic used in much of this book. In doing
so, they also address something that has long baffled me when comparing my own
work with that of Dov: how to relate dynamic logics of information and action with
the more dynamical-systems oriented approach of argumentation networks and their
temporal evolution.
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Language and Cognition

Over the years, many people have chided me for losing my interest in natural lan-
guage that was so prominent in the 1980s. And indeed, I have strayed from that path
since the mid-1990s, as described in my scientific autobiography. But it is becoming
increasingly clear that, under the surface, there is continuity. In this part, Lawrence
Moss discusses my early work on the monotonicity calculus and natural logic, which
was an attempt at seeing tractable and cognitively independent subsystems of rea-
soning inside the monolith called first-order logic, and he also connects it to modern
dynamic semantics. This reminds me that the logics of agency in my current work
give theoretical laws at a meta-level, whereas there is a perfectly natural matching
question how these things are expressed in natural language, and which reasoning
modules then make sense.6 One case study in making my past and current life coher-
ent again is the analysis by Sven Ove Hansson and Fenrong Liu of my early work
on comparatives based on context-dependent unary predicates. I suddenly see that
my interest in preference aspects of agency may be connected to these basic ways
in which we use evaluative terms in natural language, while their discussion of the
dynamics of context shifting seems a natural complement to the pure information
dynamics in most of the logics found in this book.

There are also more general philosophical questions to be asked about what is
happening here. Natural language is not just another perspective on agency: it is
an empirical phenomenon, and logic of natural language has a challenging status,
being descended from the realm of pure thought to deal with the realities of life
on Earth. Martin Stokhof engages in rethinking of what formal semantics can hope
to achieve, and in particular, what is the role of its beloved tool of formal sys-
tems. In the process, he raises important issues about the status of various blends of
dynamic semantics, making me realize, amongst other things that the approach found
in dynamic-epistemic logics is closer to Stalnaker’s pragmatics than that of my close
Amsterdam colleagues.7 Hans Kamp offers further reflection on the role of logic
and semantics vis-à-vis natural language, focusing on the role played by inferential
intuitions about valid consequences, and what our systems achieve. I cannot do full
justice to this here, but one issue that struck me is his claim concerning beneficial
bootstrapping: teaching logical structures can improve linguistic appreciation and
performance. I feel this is very true, and it resonates with my feeling that we need to
understand, not natural language and formal logic as separate systems, but precisely
the creative process of hybridization that goes on between the two in areas such as
scientific language, but really also, in everyday life.

The final two chapters in this part are about cognition in general. Alistair Isaac,
Jakub Szymanik and Rineke Verbrugge discuss current research at the interface of

6 Larry also discusses natural logic in mathematics, which may look like a strange excursion. It is
not to me, given what I have said about the thin borderline between common sense and science.
7 I have approached these issues in terms of a pervasive ‘implicit/explicit’ distinction in styles of
logical modeling, since I feel that it occurs far beyond the dynamics arena, including the contrast
between epistemic logics and another highlight of my Amsterdam home, intuitionistic logic.
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logic, computation, and cognition. This sort of picture of what is happening on the
ground is light-years away from unreflected distinctions between normative versus
descriptive that only obscure what is in fact an intriguing and rich interface. Of course,
the normative descriptive distinction continues to make sense, but the boundary
may not lie conveniently in between disciplines. Reading the piece has clarified my
somewhat timid thinking about empirical complexity and social interaction. The
chapter also injects new ideas into the mainstream models of agency in this book,
such as much sparser information representations than the lush epistemic models I
normally work with.8 I also see with interest that my early work on natural logic and
semantic automata makes a return here, also in the work of my Stanford students.9

Peter Gärdenfors takes a different perspective here, minimizing computation and
logic in favor of rich situated environments that allow simple agents to thrive. This
situated stance is close to what my Stanford colleagues like Barwise and Perry
advocated in the early 1980s, and it reinforces my suspicion that the days of situation
theory are not over yet.

Styles of Reasoning

The chapters in the final part on styles of reasoning address a theme that really plays
throughout this book, the meeting of different logical paradigms. Denis Bonnay and
Dag Westerståhl discuss what the logical dynamics program implies in terms of the
core business of traditional logic, and determine when natural dynamic consequence
relations behave classically.10 This chapter made me realize that some features of
the logical dynamics program are less clear than I had thought. In particular, while I
extend the agenda of logic at an object-level, at a meta-level the laws that govern this
extended repertoire of informational actions work entirely in a setting of classical
consequence. Incidentally, I now think that there is also room for an architecture
with a plurality of consequence relations from a cognitive point of view, where
the dynamic notions may be closer to what happens in real life, while classical
consequence governs the abstract information representations that we retain over
time. Guillaume Aucher takes this interface much further, working at the abstract
level of ternary models for information structure found in relevant logic, and in my
own earlier work on categorial grammar. He finds abstract laws of dynamic-epistemic
update that greatly generalize my own attempts at abstract correspondence analysis in
this area. In doing so he makes a big step toward connecting up two ways of thinking
about information and action that always seemed quite disjoint to me: the semantic
dynamic logic approach and the resource-based proof-theoretic approach. Still in

8 What also strikes me is the guiding role of mathematical results, such as the representation of
neural networks by default logics due to Gärdenfors, Gabbay, van Lambalgen, and Leitgeb.
9 I need to reevaluate the different boxes in which I have stored the fragments of my life!
10 They relate this to interesting recent work by Rothschildt and Yalcin on what makes a system
‘dynamic’ which is in the line of my old work on abstract update operators in the 1980s.
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this same sphere of ideas, Michel Dunn analyzes connections between relevance
logic and my earlier work on ‘arrow logics’ capturing the essence of abstract state
transitions in decidable fragments of the complete algebra of binary relations. I am
sure that much more can and will be done along the lines he has drawn here. Relevant
information and resource semantics has also been proposed as an appropriate level
for connecting up with the basic insights in situation theory of distributed situations
related by information channels. Jeremy Seligman revisits situation theory in the
light of modal and dynamic logics, and through his eyes I can see once more, how
suddenly things are moving and getting clearer here.

The final chapter by Willem Conradie, Silvio Ghilardi and Alessandra Palmigiano
closes a circle in this book, and in my research, going back to the topic of my
dissertation. It proposes a powerful algebraic generalization of modal correspondence
techniques that promises to cover most of the systems in this book, including fixed
point logics, unveiling their connections, and revealing new logical vocabulary that
may transform our idea of the syntax-semantics interface in formal systems for
logical dynamics. Once again, I see this as the indispensability of engaging in pure
mathematical thinking behind the concrete system building in the area of agency.

This final part of the book may seem to illustrate the attitude that most authors
ascribe to me (correctly): the search for unity and translation, or at least compatibility,
between formal frameworks. In one sense, this is what I want, since I hope that the
area and its logical structure are stable, and it would be nice to arrive at a sort of
Church Thesis for agency telling us that we have found the stable essentials of the
notion. But on the other hand, I am also aware of the dangers of unification and peace
in terms of creative impulses and sheer intellectual vigor. Competition is as good for
us as cooperation, and academic life definitely has features of both war and peace. I
am not sure how to think of this book then, whether as a harbinger of world peace,
or just of a ceasefire in the area. But I do know that my thinking on what I myself
and others are doing has greatly changed after reading it.

In summary, I thank the authors for all that they have contributed. When the birds
leave Nina’s tree again, and spiral upward to the sky, I only hope to be part of their
flight to the next foreign lands.



ADDENDUM II
The Life of Logic, a Scientific Autobiography

How does one end up as a logician? Choice problems have been a constant companion
in my life, starting in my gymnasium days. I loved classical languages and history,
but also mathematics and the sciences. In those days, one had to choose one type or
the other eventually, but I managed to beat the system. I did my official school exam
in the ‘beta’ science track, but with the help of extra lessons after classes, I also took a
parallel national exam in the ‘alpha’ language track. With those two degrees in hand,
I still found myself without any preference for a field of study at the university, so I
took physics, since people told me it is the hardest discipline, and best for keeping
your brain active while waiting for inspiration to strike. And then I ran into logic. A
fellow student who had observed that I always managed to talk myself into a corner
in discussions suggested I should read a logic book to find out what was wrong with
me. As it happened, it was a 19th century text by William Stanley Jevons, which had
been translated into a popular Dutch pocket book series. That chance encounter set
my course: I was intrigued by the subject, and switched to studying mathematics and
philosophy, as the two obvious companion disciplines.

Well, this is the official story. I did have one very specific burning ambition at age
18, to become a literary author. I had collected all my heartfelt short stories and sent
them to a well-known Dutch publisher. The answer was that there was a little merit,
and a lot of adolescent immaturity, and I was advised to submit again in some 20
years. I got the point. Disappointments guide our lives more firmly than fond hopes.

My interest in logic had some features of a spiritual conversion. I remember the
feeling of enlightenment coming from realizing that there are mathematical patterns
behind the daily stream of our language and reasoning. That feeling was much rein-
forced by the organized religion behind this spiritual experience. Reading Nagel and
Newman’s book Gödel’s Proof was like entering a world of holy gospel.

My life as a student was at the intersection of philosophy and mathematics. The
logic students and teachers formed a truly interdisciplinary team, and I was lucky to
see a golden generation in action, with people such as Dick de Jongh, Hans Kamp,
Anne Troelstra, Wim Blok, Peter van Emde Boas, and others, including my supervisor
Martin Löb. And there was of course that mysterious thing called the international
community. I still remember the feeling of anticipation and then fulfillment when
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picking up a blue airmail envelope from a logician in the United States or New
Zealand. Vanished pleasures! For me, modal logic was the ideal bridge between
philosophy and mathematics, combining the best of both: mathematical challenge
and conceptual motivation. I well remember the excitement of those early days,
with lots of new questions floating around each week. Of course, there was also the
intense pressure of having to start doing creative work on a par with these formidable
others. One such experience that I remember vividly concerns my proof (by proving
theorems logicians are really trying to prove themselves) that the McKinsey Axiom
is not first-order definable on modal frames. In that period, I once had to spend a
week in an Amsterdam hospital in the aftermath of surgery, and as I was lying there in
a somewhat depressing third-class ward, on a low-budget student insurance policy,
thinking about the abstractions of modal logic was my escape. One evening, the
crucial uncountable frame and the Löwenheim-Skolem argument that was the core
of my first published JSL paper suddenly appeared before my eyes.

My student generation was equally remarkable. These were the days of Liberation
in the air, the barriers of rank between students and professors were down, and we all
expected a golden new age for the whole planet Earth, which was uniformly inhabited
by kind and reasonable people anyway. Looking back, many things that would seem
unusual now seemed perfectly normal then. I hitchhiked extensively, starting alone
and picking up companions on the way, from Holland to lots of countries, on a
minimal budget, including North Africa, Iran, Afghanistan, India, Nepal, and the
Soviet Union. My parents wanted to know where I was going, but I told them I did
not know my destination exactly, there was nothing for us to discuss anyway, but
they could write me poste restante in Tehran, Kabul, or Kathmandu. And it worked:
I found letters from my mother waiting for me, and sent terse postcards in return
(one has to limit oneself to essentials when communicating with anxious parents).
My current academic trips to what are considered exotic countries are very pale
copies of these student travels, whose adventures (good and also bad) have formed
me for life.

My dissertation topic of modal correspondence theory was also a reflection of my
Amsterdam environment. I did not want to do proof theory or intuitionism (these
were the old topics my professors did, I wanted to be myself in this new age), but I
did want to bridge between the mathematics and the philosophy in my environment.
Correspondence theory was a way of employing techniques from classical logic
to understand modal logic, then still the paradigm of a philosophically motivated
system. My experience in that work continues to determine my general attitudes in
research: developing modal and classical logic in tandem, and in the same spirit,
being wary of ideological choices between logical systems, but also, appreciating
that small languages qua expressive power can be beautiful, and being able to analyze
phenomena at different levels of zoom. I think it is such broad themes that define a
field, rather than specific formal systems or subfields, and I was happy to see later
that creative mathematicians and philosophers of my acquaintance feel the same way.
My supervisor Löb was not very supportive in all this, since he disliked modal logic
and constantly worried whether it was respectable. Still, I learnt a lot from him in
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many other ways, and what I did not get from him, I got through the support of Dick
de Jongh, and at a crucial moment in writing my dissertation also Anne Troelstra.

Varied personal experiences with research continued of course. Lots of topics in
the dissertation revealed their true sense only much later, such as the discovery of
bisimulation and proving what is now called Van Benthem’s Theorem, then a side
comment on the modal language used on models rather than frames. There were also
major disappointments, such as having proved the Sahlqvist correspondence theorem
independently, but running into an anonymous JSL referee who happened to know
that some Norwegian guy had an unpublished thesis with this result. End of the
story. I felt an early urge to collect my work into a book, and was invited by a Polish
colleague to publish it with Ossolineum around 1979. The book never appeared
there, it came out in 1983 as Modal Logic and Classical Logic with Bibliopolis in
Naples, but not every story needs to be told here. I did get an advance for the book
in Poland which was deposited for me in a bank in Warsaw, and annual statements
duly arrived. I may have been the only one in my generation to have a capitalist nest
egg in a communist country.

After this period, I thought the modal phase should be closed. I looked around for
new topics, and for a while, I tried the philosophy of science. I liked some things that
I saw, especially the logical analysis of empirical theories, opening my eyes to the
fact that there is more to science from a logical perspective than pure mathematics.
But I found Sneed’s work, the major formal paradigm at that time, largely definition-
mongering without very exciting questions, so eventually, I gave up. By the way,
interests fade in my life, not because I come to despise their topics or practitioners,
but the initial love degenerates into a mild appreciation that is not enough for action.

My next enterprise was the logic of time, where I had become enamored of
developing an alternative interval paradigm, rather than points, as primitive entities.
At Jaakko Hintikka’s invitation, I wrote up my lecture notes into a book The Logic
of Time, which brought together structure theory of intervals with techniques from
modal logic. This idea was in the air around 1980, and many people proposed it. I
remember attending a colloquium by a speaker at Stanford, who was announced as a
brilliant leader in Artificial Intelligence having revolutionized our understanding of
time, and then telling us something that sounded much like my work. I considered
speaking up, but did not: why be the European spoil-sport who points out in bad
English that he already had these ideas in an obscure book in some insignificant
country? But that evening, I decided to call the speaker in his hotel room, and he said
he had just heard my name over dinner. Jon Barwise had told him that people should
stop giving talks about temporal logic before they had read van Benthem’s book.
Sometimes (but do not get your hopes up too much) life deals us sweet surprises.
The Logic of Time has been one of my most widely read publications, far beyond the
impact of my modal logic, and I have heard back from readers in the most diverse
walks of life, from Dutch high school students to Austrian architects. The book is out
of fashion now, and major handbook articles on temporal logic do not even mention
it. But I am sure that the interval paradigm will make a comeback: it always has, it
is just too natural to die. By the way, my later interest in logics of space is a natural
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continuation of this work, and in particular, editing the Handbook of Spatial Logics
in 2007 was a labor of love.

Most of my work in the 1980s was on logic and natural language. This connection
was already in the air in my student days. A group of us physics students would go to
the faculty of Humanities to take classes in Chomsky’s new formal grammar, with the
side benefit of being able to watch the gorgeous fashion show at lunchtime when the
literary students took their break. Even hardcore scientists have occasional longings
for a better, more beautiful life. One day I had learned that the Dutch language has
infinitely many sentences, and I rushed to my landlady [I lived in a tiny student room
under her wings] to tell her about this wonderful insight. When she heard the trivial
proof by recursion on “(Mary thinks that John thinks that)* the weather is bad”, she
was very disappointed, and told me not to be silly. But the feeling that “there is gold in
them there hills”, as Austin said about natural language, persisted, and significantly,
logicians that I admired such as Hans Kamp and Jon Barwise had moved in that
direction. While my initial reaction to Montague grammar had been mainly like that
to Sneed: a grand machine with too many definitions and too few real results, things
were changing now, and I jumped in.

Topics that intrigued me were not formalizing fragments of natural language, but
general themes such as the power of human languages for describing reality, with a
focus on their quantifier repertoire. I joined the small band of logicians working on
generalized quantifiers, and went for questions of expressive power in definability
and semantic universals about shared conceptual structures across natural languages.
Eventually, I developed an interest in natural logic of reasoning close to the linguis-
tic surface, resulting in the ‘monotonicity calculus’, and procedural-computational
views of linguistic interpretation, that led to my work on ‘semantic automata’. You
can find all these themes in my book Essays in Logical Semantics of 1986, written
toward the end of my period in Groningen, and the informal start of the ILLC in
Amsterdam.

Despite what I just said about Montague Grammar, the general machinery behind
the complex syntax of natural language did come to intrigue me. I opted for categorial
grammar in the elegant version proposed by Lambek in 1958, and really brought to
the world’s attention in the dissertation of Wojciech Buszkowski. One of my early
discoveries turned out to be another disappointment. I found a truly beautiful cor-
respondence between categorical derivations and special linear terms in the lambda
calculus, but then learnt that it was a special case of the well-known Curry-Howard
isomorphism. All that had been revealed was my ignorance of basic proof theory.
I made up for this by entering a proof-theoretic phase concentrating on grammar,
recognizing power, and related topics, and developed a wide-ranging theory of lan-
guage in a categorical perspective, which you can see in my book Language in Action.
Categories, Lambdas and Dynamic Logic of 1991. This work also sits at a cusp with
the more general idea of resources and substructural rules, as occurring in relevant
logic and linear logic, that are still so prominent in logic today. Some of my work
even had some practical impact, such as a simple numerical invariant for pruning the
search space of Lambek derivations that I once saw running on a TNO computer with
a banner streaming on the screen computing successive ‘van Benthem counts’. Pure
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theorists may brag about the virgin uselessness of their work, but the experience of
having an actual use can be very powerful.

Herman Hendriks claims that each of my books has an odd chapter that predicts
the next line. The dynamic logic in my title was certainly significant, and I shifted my
interest away from natural language. Even so, I did edit the Handbook of Logic and
Language with Alice ter Meulen in 1997, as a public service to the field at a time when
the partisan fights of earlier phases were abating, and the true achievements became
visible. By the way, historically, churches and sects have been very successful forms
of organization, so I do not want to belittle the power of partisanism.

Moving from language, my interest became the general notion of information.
I was struck by the many conceptual parallels in the study of natural language,
computer science, AI, and philosophy, and my paper ‘Semantic Parallels in Natural
Language and Computation’ at the 1987 Granada Logic Colloquium contains a host
of these, many of which became separate research lines. These include the abstract
analysis of intuitionistic and modal information models, substructural characteriza-
tions of styles of inference and update, and other things that still occupy me, such
as the connection between proof-theoretic combination of pieces of evidence and
model-theoretic views of information. These concerns return in the Handbook of the
Philosophy of Information that I edited with Pieter Adriaans in 2008. Some occur
in the editorials, and many more in the chapter on ‘Logic and Information’ with
Maricarmen Martinez, where we try to come to grips with the variety of notions of
information in logic, semantic, proof-theoretic, and also correlation- and channel-
based as in the situation theory of Jon Barwise, John Perry, and their school.

But information should not be studied on its own. One powerful idea in computer
science that has always appealed to me is the dictum of ‘no representation without
process’. One should know the process a representation is made for, a point that is
still underappreciated in natural language semantics and large areas of philosophy.
So, along with my interest in information came an interest in computation. By that
time, the importance of bisimulation as a view of process equivalence (rediscovered
independently in the early 1980s) had become clear to me, and so, around 1990,
a return to modal logic made sense. I started doing work on dynamic logics of
computation and action in general, and have kept working along these lines, taking
my earlier modal work to the area of fixed point logics for induction and recursion.

One aspect of my taking computation seriously was an interest in computational
complexity, the mathematics of difficulty of tasks. I have come to believe that com-
plexity is an essential aspect in truly understanding the topics we usually study, and
this interest led to a new look at the undecidability or decidability of logical sys-
tems. I became interested in the exact reasons for the usual commonplaces such as
‘predicate logic is undecidable’. Does this really tell us that core reasoning with
quantifiers is complex, or might there be historical accidents of formulation? This is
the line that led to the discovery of decidable core logics of relational algebra (‘arrow
logic’) and of predicate logic based on generalized semantics, but also, in another
manifestation, the Guarded Fragment of first-order logic, a large decidable realm far
beyond basic modal logic. My general feeling is that we should always distinguish
between true contents of logical systems and ‘wrappings’, accidents of set-theoretic
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formulations or other fashions. Then there may be much more decidability and even
lower complexity in logic than is usually thought. I once gave a talk on my new
‘geometric’ semantics for predicate logic at the Berkeley logic seminar, and Leon
Henkin told me that they still had discussions in the 1950s about what should be the
right formulation of first-order semantics. Over dinner, Henkin added that he would
have loved to see me debate with Tarski. Well, we shall never know.

All this set the stage for the main theme of this book, that of logical dynamics
as an integrated view of the nature of logic as a dual study of statics and dynamics.
There is no need for me to repeat this here, since it has been explained in various
pieces at the beginning of this book. One of the earliest moments I felt that I was on
to something big occurred in 1991 when preparing for an invited lecture on logic and
information flow at the Congress of Logic, Methodology and Philosophy of Science
in Uppsala. However, I was quickly put back on the ground. On the eve of my lecture,
there was a party at Dag Prawitz’ house in Stockholm, and I managed to lose my
way and miss the last train. There was of course no way I would go back to my
distinguished colleague and confess that I could not even remember a few simple
travel instructions. So I found a bench at the station and prepared for sleeping out,
as I had done so often as a traveling student. All around me were somewhat shady
characters, drunks and addicts, but I hung on to my spot. Around 1:30, I suddenly
woke from my fitful slumbers: the police were sweeping the station clean, and turning
us out into the street, with long subsequent hours of deep cold and discomfort. I found
an early morning bus to Uppsala, and gave my talk, but the intellectual epiphany had
disappeared.

The progress of my ideas on logical dynamics is easy to follow in books. Exploring
Logical Dynamics collected many themes and results, with major developments
coming out of collaborations with colleagues like Hajnal Andréka and Istvan Németi
and Jan Bergstra, a new habit that I acquired in this period, perhaps in line with the
logical dynamics idea. Another prominent feature was the work done by my Ph.D.
students, who enabled me to see much further than I could have done on my own
(perhaps they also did some of the more dangerous missions). You will see many of
the themes I mentioned earlier, now as threads in one overarching endeavor.

Conspicuously missing, however, was the theme of multi-agent interaction, which
only entered after I became influenced by students like Willem Groeneveld, Jelle
Gerbrandy, Hans van Ditmarsch, and (though it is hard to think of him as having
been a student) Alexandru Baltag. Dynamic-epistemic logic was born around 2000
(the current ascriptions to Plaza, whose work was totally unknown then, are a form of
overblown courtesy that distorts the historical record), and I became an enthusiastic
participant. I had a traveling talk called ‘Update Delights’ in 1999, and still remember
an invited lecture at the ESSLLI Summer School in Birmingham where the chair
pointed out that my title was a rare instance of a two-word expression in English that
is three-way ambiguous. My book Logical Dynamics of Information and Interaction
from 2011 tells the story as I see it now, with logic as a theory of agency where
pure information and knowledge update based on observations, inferences and acts
of communication such as questions needs to be in balance with agents’ beliefs and
how they correct themselves. Much of our quality resides in learning from errors,
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and the point is that logic can incorporate this essential feature. In addition, the book
reflects another growing conviction of mine, that just dealing with pure information
may not be a natural boundary. In all we do, information is in balance with how we
evaluate the world, and again logic is up to the task of describing this.

Of course, there are also persistent technical strands from my earlier work in
all this, such as the central role of modal logic and dynamic logic, and the use of
mathematical notions in logic to demystify mysterious innovations. For instance,
the down-to-earth analysis of update as relativization was one of my points at Jelle
Gerbrandy’s thesis defense. Another point at that defense were connections between
dynamic-epistemic logic and Process Algebra which have not panned out yet as I
hoped. And in recent years, I have taken up modal frame correspondence analysis of
dynamic-epistemic logics, returning to themes and techniques from my dissertation.

My most recent book is Logic in Games, and I see its emphasis on the social
process of intelligent interaction (a phrase with a nice Mozartesque ring that I once
coined for a strategic European funding program) as a fitting ending to the logical
dynamics trilogy. Games in logic had always been on my radar, ever since I read
the Luce and Raiffa classic Games and Decisions as a student, and then started
out as a young teacher in the 1970s telling my students about Lorenzen dialogues
and Hintikka evaluation games. But a deeper interest only started at the time of my
Spinoza Award project in 1996, a sort of oeuvre award of the Dutch national science
organization that allowed me to pursue new lines by offering a substantial sum of
money for 5 years that I was free to spend. I chose three: computational logic, didactic
innovation in logic, and logic and games, where we first entered into serious contacts
with game theorists, a congenial mathematical community. Incidentally, spending
the money turned out to be not totally free. When the award was announced, I had
quickly computed that it sufficed for buying one of the smaller Florida keys, and I
felt that buying an island for logic in the Caribbean might be the best investment in
perpetuity that anyone could make for our field. But that was one step too far for our
national science foundation, who refused to think big like our seafaring ancestors.

Logic and games have been a natural match ever since people started thinking
about argumentation in Greek and Chinese antiquity, and in my book, I show how
dynamic-epistemic logics can analyze the structure of games in innovative ways,
leading toward a love child of logic and game theory that might be called a Theory
of Play. But I also study the manifold current uses of games to understand logic,
and these two themes, ‘logic of games’ and ‘logic as games’ form two intertwined
strands in my book, which also presents many hybrids between them. I now see this
entanglement of strands as the DNA of logic, but how the duality works exactly is
still a mystery to me.

What is next? One thing that just seems to be happening naturally these days is a
return to philosophy. I feel that the sort of logics I am pursuing now might transform
the logic-philosophy interface that has been a bit dormant after the roaring 1960s and
1970s, and one project is a book on epistemology called The Music of Knowledge
with Alexandru Baltag and Sonja Smets. Another influence that I feel is one that was
entirely absent in my student days: the importance of empirical facts about human
reasoning, as they are coming to light these days in cognitive (neuro-)science. I feel
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that logical theorizing should balance ‘intuitions’ with reality checks, but facts still
scare me a bit, and I am mainly content with admiring those of my current students
who seem equally at home in mathematical logic and cognitive psychology. My 2006
paper ‘Logic and Psychology: Do the Facts Matter?’ shows my cautious, and hence
ambiguous, enthusiasm in this realm. One way in which I may face the facts is in a
return to my old interests in natural language, where the logical dynamics perspective
suggests very different views of what we can, and perhaps should, study by way of
key expressions and phenomena. I now believe that the usual emphasis on successful
communication is too limited, and that there is much more to the dynamic stability
of language with fallible users that has escaped our attention so far. But sometimes,
there are even more brute facts than that. Nowadays, I often show students in logic
classes frequency tables of words in English or Chinese text corpora, to see which
expressions really occur a lot. Fortunately, many logical items score very well.

Finally, I am still intrigued by many technical issues, of which the interface of
logic and probability is probably the most urgent right now. Looking at the realities
of research in formal philosophy, but also many other fields adjoining logic, this
combination seems inevitable, also for deep theoretical reasons. The way I see it
now, the mind works on an analogy with the body. Our conscious span of bodily
control is in a tiny physical zone, around one meter say, with the bulk behavior
of atoms and molecules underneath, and that of astronomical constellations above
us. Likewise, our neat little world of conscious deliberation, communication, and
decision is just a tiny slice in between the statistics of neural nets in our bodies
and the statistics of the crowds and societies of which we form part. I would love
to understand these interfaces better, and it may involve deep connections between
logic and probability beyond those we already know. To do this well, I may well
have to go back to the physics studies of my early student days—something which
my sons have been urging me to do anyway while I still have the brain power.

Was logic a good choice? An interviewer of the Dutch national radio once asked
me, off the record after a public broadcast on logic, why someone like me had
not gone into really interesting subjects like physics or literature instead of this
very narrow topic that he found small-minded, being self-centered around our own
thinking. But logic has been good for me. It fit with the needs of a young boy
who could not choose between the humanities and the sciences, and it put me at
an intellectual crossroads between disciplines that keeps opening new vistas, with
congenial colleagues at Amsterdam, Stanford, and now also China. And in addition
to the delights of research, it sometimes afforded moments of transcendence. I once
gave a talk on logic in Ayacucho, high in the Andes, for an audience of mathematicians
who only spoke Spanish (and perhaps Quechua), so I talked in Dutch and a friend of
mine translated. And my friend told me that at one moment he felt his own personality
had disappeared, since the audience was obviously understanding what I was saying
through him while he did not. That is the power of resonance afforded by logic.

Of course, there are only few logicians, so I have always tried to work in
environments where I would be the average rather than the exception, such as the
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ILLC in Amsterdam, CSLI at Stanford, or the ESSLLI Summer Schools. Moreover,
there have always been enough students sharing my constellation of interests, that
circle around colleagues in different fields like electrons, hard to detect at first, but
crucial to keeping the whole process working together. In fact, students have been an
integral part of my intellectual development, and all my recent books testify to that
role. As I said, they enable one to see and achieve much more, as a sort of extended
eyes and ears (though not in the sense of the ancient Persian imperial court).

But I should not over-systematize or rationalize my life’s choices. In addition to
all the rational factors outlined here, I also owe an enormous debt of gratitude to mere
chance, or at least circumstances beyond my control. I got my first university job
because my professor Löb saw something in me, and I was recalled to Amsterdam
in 1986 because my old teachers were willing to take a chance against prevailing
currents of thought in mathematical logic. I met many people who influenced me in
totally unpredictable productive ways, such as my Dutch high school friend Frans
Zwarts or new friends like Jon Barwise or Dov Gabbay. I found highly creative
students who chose to study with me though their talents would have taken them
anywhere, and their opinions and needs often affected the course of my own work.
Sometimes, I think that is all there is to life in general: a beautiful accident.



ADDENDUM III
Bibliography of Johan van Benthem

Books

1977 Modal Correspondence Theory, dissertation, Universiteit van Amsterdam,
Instituut voor Logica en Grondslagenonderzoek van de Exacte Wetenschappen,
148 p.

1982 Logica, Taal en Betekenis, Spectrum, Utrecht. With authors’ collective
GAMUT.

1983 The Logic of Time, Reidel, Dordrecht (Synthese Library 156). Revised and
expanded edition published in 1991.

1985 Modal Logic and Classical Logic, Bibliopolis, Napoli (Indices 3) and
Humanities Press, Atlantic Heights.

1985 A Manual of Intensional Logic, CSLI Lecture Notes 1, Center for the Study
of Language and Information, Stanford.

1986 Essays in Logical Semantics, Reidel, Dordrecht, Studies in Linguistics and
Philosophy 29.

1987 Situations, Language and Logic, Reidel, Dordrecht, Studies in Linguistics
and Philosophy 34. With J-E Fenstad, P-K Halvorsen and T. Langholm.

1988 A Manual of Intensional Logic, CSLI Publications, Stanford and The
University of Chicago Press, Chicago.

1991 Language in Action: Categories, Lambdas and Dynamic Logic, North-
Holland, Amsterdam (Studies in Logic 130). Paperback reprint with new Appen-
dix, The MIT Press, 1995.

1991 Logic, Language and Meaning, The University of Chicago Press. Expansion
and revision of GAMUT 1982.

1991 Logica voor Informatici, Addison-Wesley, Amsterdam. With co-authors
H. van Ditmarsch, J. Ketting, W. Meyer Viol.

1996 Exploring Logical Dynamics, Studies in Logic, Language and Information,
CSLI Publications and Cambridge University Press.

2001 Logic in Games, Lecture Notes and Book Preversion, ILLC Amsterdam.
2001 Logic in Action, Spinoza Project, ILLC Amsterdam. With Paul Dekker, Jan

van Eijck, Maarten de Rijke, and Yde Venema.

A. Baltag and S. Smets (eds.), Johan van Benthem on Logic 999
and Information Dynamics, Outstanding Contributions to Logic 5,
DOI: 10.1007/978-3-319-06025-5, © Springer International Publishing Switzerland 2014



1000 ADDENDUM III: Bibliography of Johan van Benthem

2002 Introducción a la Lógica, Eudeba, Buenos Aires, Spanish translation of
GAMUT 1991.

2003 Logica voor Informatica, revised and expanded edition of LVI 1991. With
Hans van Ditmarsch and Josje Lodder.

2005 Hoe Wiskunde Werkt, ILLC/KdV/IIS, with Robbert Dijkgraaf.
2009 Logica in Actie, Open University, Heerlen, SDU Academic Service: http://

www.sdu.nl/catalogus/25999. With Hans van Ditmarsch, Jan van Eijck and Jan
Jaspars.

2009–2012 A Door to Logic, Chinese translation of selected papers, 4 volumes
(“Modal Logic, Information and Computation”, “Modal Correspondence The-
ory”, “Logic, Language and Cognition”, “Logic, Philosophy and Methodology”),
Science Press, Beijing.

2010 Modal Logic for Open Minds, CSLI Publications, Stanford.
2011 Logical Dynamics of Information and Interaction, Cambridge University

Press, Cambridge UK.
2012 Logic in Action, Open Source Textbook, http://www.logicinaction.org/ with

Hans van Ditmarsch, Jan van Eijck, Jan Jaspars and collaborators in Amsterdam,
Beijing, Seville, and Stanford.

2014 Logic, Language and Meaning, Chinese edition, Commercial Press, Beijing.
2014 Logic in Games, The MIT Press, Cambridge (Mass.).

To appear
The Music of Knowledge, Dynamic-Epistemic Logic and Epistemology. With co-

authors Alexandru Baltag and Sonja Smets.

Edited Books

1985 Generalized Quantifiers in Natural Language, Foris, Dordrecht (GRASS,
vol. 4); with A. ter Meulen.

1988 Categories, Polymorphism and Unification, Centre for Cognitive Science
(University of Edinburgh) and Institute for Language, Logic and Information
(University of Amsterdam); with E. Klein.

1988 Categorial Grammar, John Benjamins, Amsterdam and Philadelphia; with
W. Buszkowski and W. Marciszewski.

1990 Semantics and Contextual Expression, Foris, Dordrecht, (GRASS, vol. 11);
with R. Bartsch and P. van Emde Boas.

1996 Proceedings 10th International Congress on Logic, Methodology and
Philosophy of Science. Florence 1995, volumes “Logic and Scientific Methods”,
“Structures and Norms in Science”, Kluwer Academic Publishers, Dordrecht;
with M. Dalla Chiara, K. Doets and D. Mundici.

1996 Logic and Theory of Argumentation, Royal Dutch Academy, Amsterdam;
with F. van Eemeren, R. Grootendorst and F. Veltman.

http://www.sdu.nl/catalogus/25999
http://www.sdu.nl/catalogus/25999
http://www.logicinaction.org/


ADDENDUM III: Bibliography of Johan van Benthem 1001

1997 Handbook of Logic and Language, http://mitpress.mit.edu/catalog/item/
default.asp?tid=8458&ttype=2. North-Holland, Amsterdam and The MIT Press;
with Alice ter Meulen.

2001 Proceedings 8th Conference on Theoretical Aspects of Rationality and
Knowledge, Morgan Kaufmann Publishers, San Francisco.

2002 Words, Proofs, and Diagrams, CSLI Publications, Stanford; with D. Barker-
Plummer, D. Beaver, D. Israel, P. Scotto di Luzio.

2006 The Age of Alternative Logics, Springer, Dordrecht; with G. Heinzmann,
M. Rebuschi and H. Visser.

2006 Handbook of Modal Logic, http://www.lsc.liv.ac.uk/~wolter/hml/http://
www.elsevier.com/wps/find/bookdescription.cws_home/708884/description.
Elsevier, Amsterdam; with Patrick Blackburn and Frank Wolter.

2007 A Meeting of the Minds, Proceedings LORI Workshop Beijing August 2007,
King’s College Publications, London; with Ju Shier and Frank Veltman.

2007 Handbook of Spatial Logics, http://www.dit.unitn.it/~aiellom/hsl. Springer,
Dordrecht; with Marco Aiello and Ian Pratt-Hartmann.

2007 Foundations of the Formal Sciences V: Infinite Games. Studies in Logic,
College Publications, London; with Stefan Bold, Benedikt Löwe, Thoralf Räsch.

2007 Logic at a Cross-Roads: Logic and its Interdisciplinary Environment, Allied
Publishers, Mumbai; with A. Gupta and R. Parikh.

2007 Logics for Interaction, Augustus de Morgan Workshop 2005, Texts in Logic
and Games, Amsterdam University Press; with Dov Gabbay and Benedikt Löwe.

2008 Logic and Intelligent Interaction, Proceedings Workshop ESSLLI XV,
University of Hamburg; with Eric Pacuit, 153 p.

2008 Handbook of the Philosophy of Information, http://www.illc.uva.nl/HPI/.
Elsevier Science Publishers, Amsterdam; with Pieter Adriaans.

2009 Wat Cognitiewetenschappers Bezielt; with B. Mols en P. Hagoort, NWO.
2010 Handbook of Logic and Language, Second Edition, Elsevier Science Direct,

Amsterdam; with Alice ter Meulen.
2011 “Logic at the Cross-Roads”, Vol. 1 + 2: Proof, Computation, and Agency and

Games, Norms and Reasons, Springer; with A. Gupta and E. Pacuit.
2011 Logic and Philosophy Today, College Publications, London, Studies In

Logic, Vol’s. 29 and 30; with Amitabha Gupta.
2013 Logic Across the University. Foundations and Applications, College Publi-

cations, London, Studies in Logic, Vol. 47; with Fenrong Liu.

To appear

2014 Reasoning with Strategies; Birkhäuser Verlag Basel. (With Sujata Ghosh and
Rineke Verbrugge.)

2014 A Formal Epistemology Reader, Springer, Dordrecht. (With Horacio Arló-
Costa and Vincent Hendricks.)

http://mitpress.mit.edu/catalog/item/default.asp?tid=8458&ttype=2
http://mitpress.mit.edu/catalog/item/default.asp?tid=8458&ttype=2
http://www.lsc.liv.ac.uk/~wolter/hml/
http://www.elsevier.com/wps/find/bookdescription.cws_home/708884/description
http://www.elsevier.com/wps/find/bookdescription.cws_home/708884/description
http://www.dit.unitn.it/~aiellom/hsl
http://www.illc.uva.nl/HPI/


1002 ADDENDUM III: Bibliography of Johan van Benthem

Articles in Journals

1973

1 Bestaan Denkwetten? Algemeen Nederlands Tijdschrift voor Wijsbegeerte 65,
120–125.

1974

2 Hintikka on Analyticity. Journal of Philosophical Logic 3, 419–431.
3 Semantic Tableaus, Nieuw Archief voor Wiskunde 22, 44–59.

1975

4 A Set-Theoretical Equivalent of the Prime Ideal Theorem for Boolean Algebras,
Fundamenta Mathematicae 89, 151–153.

5 A Note on Modal Formulae and Relational Properties, Journal of Symbolic Logic
40, 55–58.

1976

6 Modal Reduction Properties, Journal of Symbolic Logic 41, 301–312.
7 Modal Formulas are either Elementary or not �−�-Elementary, Journal

of Symbolic Logic 41, 436–438.
8 Enkele Opmerkingen over Zelfreferentie en Zelfweerlegging, Algemeen Neder-

lands Tijdschrift voor Wijsbegeerte 68, 250–270.

1977

9 Tense Logic and Standard Logic, Logique et Analyse 20, 41–83.

1978

10 Four Paradoxes, Journal of Philosophical Logic 7, 49–72.
11 Ramsey Eliminability, Studia Logica 37:4, 321–336.
12 Two Simple Incomplete Modal Logics, Theoria 44:1, 25–37.
13 Transitivity Follows from Dummett’s Axiom, Theoria 44:2, 117–118. (With

Willem Blok.)

1979

14 Canonical Modal Logics and Ultrafilter Extensions, Journal of Symbolic Logic
44:1, 1–8.

15 Minimal Deontic Logics, Bulletin of the Section of Logic 8:1, 36–42.
16 What is Dialectical Logic? Erkenntnis 14, 333–347.
17 Syntactic Aspects of Modal Incompleteness Theorems, Theoria 45:2, 63–77.

1980

18 Some Kinds of Modal Completeness, Studia Logica 39:2/3, 125–141.



ADDENDUM III: Bibliography of Johan van Benthem 1003

1981

19 Historische Vergissingen? Kanttekeningen bij de Fregeaanse Revolutie in de
Logica, Kennis en Methode 5:2, 94–116.

20 Fundering of Ondermijning? Nieuw Archief voor Wiskunde 29:3, 254–284.

1982

21 The Dynamics of Interpretation, Journal of Semantics 1, 3–20. (With Jan van
Eijck.)

22 The Logical Study of Science, Synthese 51, 431–472.
23 Later than Late: on the Logical Origin of the Temporal Order, Pacific Philosoph-

ical Quarterly 63, 193–203.

1983

24 Logical Semantics as an Empirical Science, Studia Logica 42:2/3, 299–313.
25 Halldén Completeness by Glueing of Kripke Frames, Notre Dame Journal of

Formal Logic 24, 426–430. (With Lloyd Humberstone.)
26 Determiners and Logic, Linguistics and Philosophy 6:4, 447–478.

1984

27 Questions about Quantifiers, Journal of Symbolic Logic 49:2, 443–466.
28 Tense Logic and Time, Notre Dame Journal of Formal Logic 25:1, 1–16.
29 Foundations of Conditional Logic, Journal of Philosophical Logic 13, 303–349.
30 A Mathematical Characterization of Interpretation between Theories, Studia Log-

ica 43:3, 295–303. (With David Pearce.)
31 Possible Worlds Semantics: a Research Program that Cannot Fail? Studia Logica

43:4, 379–393.
32 Analytic/Synthetic: Sharpening a Philosophical Tool, Theoria 50:2/3, 106–137.

1985

33 Situations and Inference, Linguistics and Philosophy 8, 3–9.
34 The Variety of Consequence, According to Bernard Bolzano, Studia Logica 44:4,

389–403.

1986

35 Tenses in Real Time, Zeitschrift für mathematische Logik und Grundlagen der
Mathematik 32, 61–72.

36 Partiality and Non-Monmotonicity in Classical Logic, Logique et Analyse 29,
225–247.

37 The Relational Theory of Meaning, Logique et Analyse 29, 251–273.

1987

38 Meaning: Interpretation and Inference, Synthese 73:3, 451–470.

1988

39 A Note on Jónsson’s Theorem, Algebra Universalis 25, 391–393.



1004 ADDENDUM III: Bibliography of Johan van Benthem

40 Vragen om Typen, GLOT 10:3, 333–352.
41 Logical Syntax, Theoretical Linguistics 14, 119–142.

1989

42 Notes on Modal Definability, Notre Dame Journal of Formal Logic 30:1, 20–35.
43 Polyadic Quantifiers, Linguistics and Philosophy 12:4, 437–464.
44 Logical Constants across Varying Types, Notre Dame Journal of Formal Logic

30:3, 315–342.

1990

45 Categorial Grammar and Type Theory, Journal of Philosophical Logic 19,
115–168.

46 Kunstmatige Intelligentie: Een Voortzetting van de Filosofie met Andere Mid-
delen, Algemeen Nederlands Tijdschrift voor Wijsbegeerte 82, 83–100.

47 Computation versus Play as a Paradigm for Cognition, Acta Philosophica Fennica
49, 236–251.

1991

48 Editorial Information Sciences, Journal of Logic, Language, and Information 1,
1–4.

49 Language in Action, Journal of Philosophical Logic 20, 1–39.
50 General Dynamics, Theoretical Linguistics 17: 1/2/3, 151–201.

1992

51 Logic as Programming, Fundamenta Informaticae 17:4, 285–317.
52 Modeling the Kinematics of Meaning, Proceedings Aristotelean Society 1992,

105–122.

1993

53 Modal Frame Classes Revisited, Fundamenta Informaticae 18: 2/3/4, 307–317.
54 The Elusive Locus of Logicality, guest editorial, Journal of Logic and Compu-

tation 3:5, 451–453.
55 Reflections on Epistemic Logic, Logique et Analyse 34 (vol. 133–134), 5–14.

1994

56 Modal Logic, Transition Systems and Processes, Journal of Logic and Compu-
tation 4:5, 811–855. (With Jan van Eijck and Vera Stebletsova.)

1995

57 Logic of Transition Systems, Journal of Logic, Language and Information 3:4,
247–283. (With Jan Bergstra.)

58 Directions in Generalized Quantifier Theory, Studia Logica 55:3, 389–419. (With
Dag Westerståhl.)



ADDENDUM III: Bibliography of Johan van Benthem 1005

59 Back and Forth Between Modal Logic and Classical Logic, Bulletin of the
Interest Group in Pure and Applied Logics 3, August 1995, 685–720. London and
Saarbruecken.

1996

60 Logica in Beweging: de Dynamiek van Redeneren en Betekenis, Handelingen
KNAW, 6.1.96, Afdeling Letterkunde, Amsterdam.

61 Wat is Mis met de Filosofie? Ergo Cogito 5, Historische Uitgeverij Groningen,
27–36.

62 Space, Time and Computation: Trends and Problems, editorial, special issue on
Spatial and Temporal Reasoning, International Journal of Applied Intelligence
6:1, 5–9. (With Frank Anger, Rita Rodriguez and Hans Guesgen.)

1997

63 Logic, Language and Information: The Makings of a New Science? guest edito-
rial, Journal of Logic, Language and Information 6:1, 1–3.

64 Cognitive Actions in Focus, guest editorial (with co-editor Yoav Shoham), special
TARK issue, Journal of Logic, Language and Information 6:2, 119–121.

65 Modal Foundations for Predicate Logic, Bulletin of the IGPL 5:2, 259–286,
London and Saarbruecken (R. de Queiroz, ed., Proc’s WoLLIC, Recife 1995).

66 Modal Deduction in Second-Order Logic and Set Theory. Part I, Logic and
Computation 7:2, 251–265. (With Giovanna d’Agostino, Angelo Montanari and
Alberto Policriti.)

1998

67 Programming Operations that are Safe for Bisimulation, Studia Logica 60:2
(Logic Colloquium. Clermont-Ferrand 1994), 311–330.

68 Logische Dynamiek, Themanummer ANTW 90:1, 54–70.
69 Modal Logics and Bounded Fragments of Predicate Logic, Journal of Philosoph-

ical Logic 27:3, 1998, 217–274. (With H. Andréka and I. Németi.)
70 Modal Deduction in Second-Order Logic and Set Theory, II, Studia Logica 60,

387–420. (With Giovanna d’Agostino, Angelo Montanari and Alberto Policriti.)
71 Points on Time, discussion note, ENRAC Electronic Newsletter 4:10, Reasoning

about Action and Change, Linköping: http://www.ida.liu.se/ext/etai/rac/notes/
1998/03/debet.html.

1999

72 Wider Still and Wider: Resetting the Bounds of Logic, in A. Varzi, ed., The
European Review of Philosophy, CSLI Publications, Stanford, 21–44.

73 Temporal Patterns and Modal Structure, in A. Montanari, A. Policriti and Y.
Venema, eds., Special issue on Temporal Logic, Logic Journal of the IGPL 7:1,
7–26.

74 Modality, Bisimulation and Interpolation in Infinitary Logic, Annals of Pure and
Applied Logic 96, 29–41.

http://www.ida.liu.se/ext/etai/rac/notes/1998/03/debet.html
http://www.ida.liu.se/ext/etai/rac/notes/1998/03/debet.html


1006 ADDENDUM III: Bibliography of Johan van Benthem

75 Interpolation, Preservation, and Pebble Games, Journal of Symbolic Logic 64:2,
881–903. (With Jon Barwise.)

76 The Range of Modal Logic, Journal of Applied Non-Classical Logics 9:2/3 (issue
in Memory of George Gargov), 407–442.

2000

77 Information Transfer Across Chu Spaces, Logic Journal of the IGPL 8:6, Nov
2000, 719–731.

2001

78 Games in Dynamic Epistemic Logic, in G. Bonanno and W. van der Hoek, eds.,
Bulletin of Economic Research 53:4, 219–248 (Proceedings LOFT-4, Torino).

79 Action and Procedure in Reasoning, Cardozo Law Review 22, 1575–1593.

2002

80 Logic in Action, 5 jaar later, Alg. Ned’s Tijdschrift voor Wijsbegeerte 2, 146–150.
81 Extensive Games as Process Models, in M. Pauly and P. Dekker, eds., special

issue of Journal of Logic, Language and Information 11, 289–313.

2003

82 A Modal Walk through Space, Journal of Applied Non-Classical Logic 12:3/4,
319–363. (With Marco Aiello.)

83 Connecting the Different Faces of Information, editorial guest-edited volume,
Journal of Logic, Language and Information 12:4. (With Robert van Rooij.)

84 Conditional Probability Meets Update Logic, Journal of Logic, Language and
Information 12:4, 409–421.

85 Logic Games are Complete for Game Logics, Studia Logica 75, 183–203.
86 Logic and the Dynamics of Information, Minds and Machines 13:4, special issue

(L. Floridi, ed.), 503–519.
87 Euclidean Hierarchy in Modal Logic, Studia Logica 75, 327–344. (With G.

Bezhanishvili and M. Gehrke.)
88 Reasoning About Space: The Modal Way, Logic and Computation 13:6,

889–920. (With Marco Aiello and Guram Bezhanishvili.)

2004

89 A Mini-Guide to Logic in Action, Philosophical Researches 2004, Suppl., 21–30,
Beijing, Chinese Academy of Sciences.

90 What One May Come to Know, Analysis 64:282, 95–105.
91 Diversity of Logical Agents in Games, Philosophia Scientiae 8:2, 163–178. (With

Fenrong Liu.)

2005

92 Minimal Predicates, Fixed-Points, and Definability, Journal of Symbolic Logic
70:3, 696–712.



ADDENDUM III: Bibliography of Johan van Benthem 1007

93 Guards, Bounds, and Generalized Semantics, Journal of Logic, Language and
Information 14, 263–279.

2006

94 Epistemic Logic and Epistemology: the State of their Affairs, Philosophical
Studies 128, 49–76.

95 Modal Frame Correspondences and Fixed-Points, Studia Logica 83:1, 133–155.
96 Where is Logic Going, and Should It? Topoi 25, 117–122.
97 Logics of Communication and Change. Information and Computation 204:11,

1620–1662. (With Jan van Eijck and Barteld Kooi.)
98 Epistemic Logic and Epistemology: the State of their Affairs, Chinese translation

of [94] by F. Liu, World Philosophy 6, pp 73–83.

2007

99 Rationalizations and Promises in Games, Philosophical Trends, ‘Supplement
2006’ on logic, Chinese Academy of Social Sciences, Beijing, 1–6.

100 Introduction, Topoi 26:1–2, special issue on Logic and Psychology, with
co-editors Helen and Wilfrid Hodges.

101 Multimodal Logics of Products of Topologies, Studia Logica 84, 369–392.
(With Guram Bezhanishvili, Balder ten Cate, and Darko Sarenac.)

102 Rational Dynamics and Epistemic Logic in Games, International Game Theory
Review 9:1, 13–45. Erratum reprint, Volume 9:2, 377–409.

103 Dynamic Logic of Belief Revision, Journal of Applied Non-Classical Logics
17:2, 129–155.

104 Dynamic Logic of Preference Upgrade, Journal of Applied Non-Classical
Logics 17:2, 157–182. (With Fenrong Liu.)

105 A New Modal Lindström Theorem, Logica Universalis 1, 125–138.

2008

106 Editorial, Synthese 160:1, 1–4 (With Vincent Hendricks and John Symons).
107 Logic and Reasoning: do the Facts Matter? Studia Logica 88, 67–84.
108 Tell It Like It Is: Information Flow in Logic, Journal of Peking University

(Humanities and Social Science Edition), No. 1, 80–90.
109 Inference in Action, Publications de l’Institut Mathématique, Nouvelle Série

82:96, Beograd, 3–16.
110 Abduction at the Interface of Logic and Philosophy of Science, Theoria 22/3,

271–273.
111 Merging Observation and Access in Dynamic Epistemic Logic, Studies in Logic

1:1, 1–16.
112 The Many Faces of Interpolation, Synthese 164:3, 451–460.
113 Modal Logic and Invariance, Journal of Applied Non-Classical Logics 18:2–3,

153–173. (With Denis Bonnay.)
114 Modeling Simultaneous Games in Dynamic Logic, Synthese (KRA) 165:2, 247–

268. (With Sujata Ghosh and Fenrong Liu.)
115 Constanten, of Variabelen, van het Logisch Denken, ANTW 100:4, 296–304.



1008 ADDENDUM III: Bibliography of Johan van Benthem

116 Logical Pluralism Meets Logical Dynamics? The Australasian Journal of Logic
6, 28 pages. December 17, 2008.

2009

117 Everything Else Being Equal: A Modal Logic for Ceteris Paribus Preferences,
Journal of Philosophical Logic 38:1, 83–125. (With Patrick Girard and Olivier
Roy.)

118 The Information in Intuitionistic Logic, Synthese 167:2, 251–270.
119 Merging Frameworks for Interaction, Journal of Philosophical Logic on-line,

January 16, 2009. (With Jelle Gerbrandy, Tomohiro Hoshi and Eric Pacuit.)
Paper version: JPL 38:5 (2009), 491–526.

120 Logic and Intelligent Interaction, Editorial, special issue of Knowledge, Ratio-
nality and Action. Synthese 169:2, 219–221. (With Thomas Ågotnes and Eric
Pacuit.)

121 Lindström Theorems for Fragments of First-Order Logic, Logical Methods in
Computer Science 5:3, 1–27. (With Balder ten Cate and Jouko Väänänen.)

122 Dynamic Update with Probabilities, Studia Logica 93:1, 67–96. (With Jelle
Gerbrandy and Barteld Kooi.)

2010

123 Temporal Logics of Agency, Editorial, Journal of Logic, Language and Infor-
mation 19:4, 1–5. (With Eric Pacuit.)

124 Game Solution, Epistemic Dynamics, and Fixed-Point Logics, Fundamenta
Informaticae 100, 19–41. (With Amélie Gheerbrant.)

125 The Dynamics of Awareness, Knowledge, Rationality and Action, Springer
on-line. (With Fernando Velazquez.) Synthese 177:1, 5–27.

126 A Logician Looks at Argumentation Theory, Cogency 1:2, Universidad Diego
Portales, Santiago de Chile.

127 McCarthy Variations in a Modal Key, Artificial Intelligence 175:1, 428–439.
John McCarthy’s Legacy, Leora Morgenstern and Sheila A. McIlraith, eds.

128 Logic and Philosophy Today: Editorial Introduction, Journal of Indian Council
of Philosophical Research XXVII:1 and 2, 1–7. (With Amitabha Gupta.)

129 Categorial versus Modal Information Theory, Linguistic Analysis 36:1–4,
533–544.

130 Joachim Lambek: the Beauty of Mathematics in Language, Linguistic Analysis
36: 1–4, i–viii (with Michael Moortgat).

131 Russian Translation of
“Where is Logic Going, and Should It?” (Topoi, 2006, #96), Vox 9, electronic
journal of philosophy, Moscow, http://vox-journal.org/html/issues/vox9.

2011

132 Toward a Theory of Play: A Logical Perspective on Games and Interaction,
GAMES 2:1, 52–86; doi:10.3390/g2010052. (With Eric Pacuit and Olivier Roy.)

133 Introduction to ‘Logic and Philosophy of Science: in the Footsteps of E.W.
Beth’, Synthese 179:2, 203–206. (With Theo Kuipers and Henk Visser.)

http://vox-journal.org/html/issues/vox9
http://dx.doi.org/10.3390/g2010052


ADDENDUM III: Bibliography of Johan van Benthem 1009

134 Russian translation of ‘A Miniguide to
Logic in Action’, VOX 10 (http://vox-journal.org/html/issues/145, Philosophi-
cal Institute, Russian Academy of Sciences, Moscow.

135 Dynamic Logic of Evidence-Based Beliefs, Studia Logica 99:1, 61–92. (With
Eric Pacuit.)

136 Logic in a Social Setting, Episteme 8:3, 227–247.
137 Models of Reasoning in Ancient China, Studies in Logic 4:3, 57–81. (With

Fenrong Liu and Jeremy Seligman.)

2012

138 Toward a Dynamic Logic of Questions, Journal of Philosophical Logic 41:4,
633–669. (With Stefan Minica.)

139 The Logic of Empirical Theories Revisited, Synthese 186:3, 775–792.
140 Logic and Psychology: Do the Facts Matter? Chinese translation, Journal of

Hubei University (Philosophy and Social Sciences) 39:3, 1–9.
141 Sahlqvist Correspondence for Modal Mu-Calculus. Studia Logica 100, 31–60.

(With Nick Bezhanishvili and Ian Hodkinson.)
142 The Nets of Reason, Argument and Computation 3:2/3, 83–86.

2014

143 Evidence and Plausibility in Neighborhood Structures. Annals of Pure and
Applied Logic 165:1, 106–133. (With David Fernandez Duque and Eric Pacuit.)

144 Natural Language and Logic of Agency, Journal of Logic, Language and Infor-
mation 23:3, 367–382.

145 Modeling Reasoning in a Social Setting, Studia Logica 102:2, 235–265.
146 Priority Structures in Deontic Logic, Theoria 80:2, 116–152. (With Davide

Grossi and Fenrong Liu.)

To Appear

Where is Logic Going?, preface to a collection of discussion pieces, Studies in
Logic. (With Fenrong Liu.)

Articles in Books

1980

1 Points and Periods, in Ch. Rohrer, ed., Time, Tense and Quantifiers, Niemeyer
Verlag, Tübingen, 39–58.

1981

2 Tense Logic, Second-Order Logic and Natural Language, in U. Mönnich, ed.,
Aspects of Philosophical Logic, Reidel, Dordrecht, 1–20.

http://vox-journal.org/html/issues/145


1010 ADDENDUM III: Bibliography of Johan van Benthem

3 Why is Semantics What? in J. Groenendijk, T. Janssen and M. Stokhof, eds.,
Formal Methods in the Study of Language, Math. Centre Tract 135, Amsterdam,
29–49.

1982

4 Recht en Redeneren, in A. Soeteman and P. W. Brouwer, eds., Logica en Recht,
Tjeenk Willink, Zwolle, 61–70.

1983

5 Five Easy Pieces, in A. ter Meulen, ed., Studies in Model-Theoretic Semantics,
Foris, Dordrecht (GRASS series, vol. 1), 1–17.

6 Higher-Order Logic, in D. Gabbay and F. Guenthner, eds., Handbook of Philo-
sophical Logic, vol. I., Reidel, Dordrecht, 275–329. (With Kees Doets.)

1984

7 Correspondence Theory, in D. Gabbay and F. Guenthner, eds., Handbook of Philo-
sophical Logic, Vol. II., Reidel, Dordrecht, 167–247.

8 The Logic of Semantics, in F. Landman and F. Veltman, eds., Varieties of Formal
Semantics, Foris, Dordrecht (GRASS series, vol. 3), 55–80.

1985

9 Themes from a Workshop, in J. van Benthem and A. ter Meulen, eds., Generalized
Quantifiers in Natural Language, Foris, Dordrecht (GRASS 4), 161–169.

10 Semantics of Time, in J. Jackson and J. Michon, eds., Time, Mind and Behaviour,
Springer, Heidelberg, 266–278.

1986

11 A Linguistic Turn: New Directions in Logic, in R. Marcus et al., eds., Proceedings
7th International Congress of Logic, Methodology and Philosophy of Science.
Salzburg 1983, North-Holland, Amsterdam, 205–240.

12 The Ubiquity of Logic in Natural Language, in W. Leinfellner and F. Wuketits,
eds., The Tasks of Contemporary Philosophy, Hölder-Pichler-Tempsky Verlag,
Wien, 177–186.

13 Het Categoriale Wereldbeeld, in C. Hoppenbrouwers et al., eds., Proeven van
Taalwetenschap, TABU, Groningen, 1–18.

1987

14 Semantic Automata, in D. de Jongh et al., eds., Studies in the Theory of Gen-
eralized Quantifiers and Discourse Representation, Foris, Dordrecht (GRASS
series, vol. 8), 1–25.

15 Towards a Computational Semantics, in P. Gärdenfors, ed., Generalized Quanti-
fiers: Linguistic and Logical Approaches, Reidel, Dordrecht, 31–71.

16 Verisimilitude and Conditionals, in T. Kuipers, ed., What is Closer-to-the-Truth?,
Rodopi, Amsterdam, 103–128.



ADDENDUM III: Bibliography of Johan van Benthem 1011

17 Categorial Grammar and Lambda Calculus, in D. Skordev, ed., Mathematical
Logic and its Applications, Plenum Press, New York, 39–60.

1988

18 Categorial Equations, in E. Klein and J. van Benthem, eds., Categories, Poly-
morphism and Unification, Edinburgh and Amsterdam, 1–17.

19 The Lambek Calculus, in R. Oehrle, E. Bach and D. Wheeler, eds., Categorial
Grammars and Natural Language Structures, Reidel, Dordrecht, 35–68.

20 Strategies of Intensionalization, in I. Bodnar, A. Maté and L. Pólos, eds., A
Filozofiai Figyelo Kiskonyvtara, Kezirat Gyanant, Budapest, 41–59.

21 Semantic Type Change and Syntactic Recognition, in G. Chierchia, B. Partee
and R. Turner, eds., Properties, Types and Meaning, vol. I, Reidel, Dordrecht,
231–249.

22 Games in Logic, in J. Hoepelman, ed., Representation and Reasoning, Niemeyer
Verlag, Tübingen, 3–15, 165–168.

23 New Trends in Categorial Grammar, in W. Buszkowski et al., eds., Categorial
Grammar, John Benjamin, Amsterdam/Philadelphia, 23–33.

24 The Semantics of Variety in Categorial Grammar, in W. Buszkowski et al., eds.,
Categorial Grammar, John Benjamin, Amsterdam, 37–55.

1989

25 Time, Logic and Computation, in J. W. de Bakker, W.-P. de Roever and G.
Rozenberg, eds., Linear Time, Branching Time and Partial Order in Logics and
Models for Concurrency, Springer, Berlin, 1–49.

26 Semantic Parallels in Natural Language and Computation, in H-D Ebbinghaus
et al., eds., Logic Colloquium. Granada 1987, North-Holland, Amsterdam, 331–
375.

27 Reasoning and Cognition, in H. Schnelle and N-O Bernsen, eds., Logic and
Linguistics. Research Directions in Cognitive Science, L. Erlbaum, Hove (UK),
185–208.

28 Logical Semantics, in H. Schnelle and N-O Bernsen, eds., Logic and Linguistics.
Research Directions in Cognitive Science, L. Erlbaum, Hove (UK), 109–126.

1990

29 What is Extensionality? in J. Kelemen et al., eds., Annales Universitatis Scien-
tiarum Budapestinensis De Rolando Eötvös Nominatae XXII–IIII,
213–220.

1991

30 Beyond Accessibility: New Semantics for Modal Predicate Logic, in M. de Rijke,
ed., Modal Logic Colloquium, Dutch Network for Language, Logic and Infor-
mation, 1–14.

31 Linguistic Universals in Logical Semantics, in D. Zaefferer, ed., Semantic
Universals and Universal Semantics, Foris, Berlin (GRASS series), 17–36.



1012 ADDENDUM III: Bibliography of Johan van Benthem

32 Generalized Quantifiers and Generalized Inference, in J. van der Does and J. van
Eijck, eds., Quantification in the Netherlands, ‘Semantic Parallels Project’, CWI,
Amsterdam.

1992

33 Fine-Structure in Categorial Semantics, in M. Rosner and R. Johnson, eds., Com-
putational Linguistics and Logical Semantics, Cambridge UP, 127–157.

1993

34 Beyond Accessibility: Functional Models for Modal Logic, in M. de Rijke, ed.,
Diamonds and Defaults, Kluwer, Dordrecht, 1–18.

35 Quantifiers and Inference, in M. Krynicki, M. Mostowski and L. W. Szczerba,
eds., Quantifiers, vol. II, Kluwer Academic Publishers, Dordrecht, 1–20.

36 Logic and the Flow of Information, in D. Prawitz, B. Skyrms and D. Westerståhl,
eds., Proceedings 9th International Congress of Logic, Methodology and Phi-
losophy of Science. Uppsala 1991, Elsevier Science Publishers, Amsterdam,
693–724.

1994

37 The Landscape of Deduction, in K. Dosen and P. Schröder-Heister, eds., Sub-
structural Logics, Clarendon Press, Oxford, 357–376.

38 Dynamic Arrow Logic, in J. van Eijck and A. Visser, eds., Logic and Information
Flow, The MIT Press, Cambridge (Mass.), 15–29.

39 General Dynamic Logic, in D. Gabbay, ed., What is a Logical System?, Oxford
University Press, Oxford, 107–139.

40 A New World Underneath Standard Logic, in K. Apt, L. Schrijvers and N. Temme,
eds., From Universal Morphisms to Megabytes: A Baayen Space Odyssey, Centre
for Mathematics and Computer Science (CWI), Amsterdam, 179–186.

1995

41 Temporal Logic, in D. Gabbay, C. Hoggar and J. Robinson, eds., Handbook of
Logic in Artificial Intelligence and Logic Programming, 4, Oxford University
Press, Oxford, 241–350.

42 NNIL, A Study in Intuitionistic Propositional Logic, in A. Ponse, M. de Rijke
and Y. Venema, eds., Modal Logic and Process Algebra, CSLI Lecture Notes,
Stanford, 289–326. (With Albert Visser, Dick de Jongh and Gerard Renardel de
Lavalette.)

43 Submodel Preservation Theorems in Finite-Variable Fragments, in A. Ponse,
M. de Rijke and Y. Venema, eds., Modal Logic and Process Algebra, CSLI
Lecture Notes, Cambridge UP, 1–11. (With Hajnal Andréka and Istvan Németi.)

1996

44 Quantifiers in the World of Types, in Jaap van der Does and Jan van Eijck, eds.,
Quantifiers, Logic and Language, CSLI Lecture Notes 54, Stanford, 47–62.



ADDENDUM III: Bibliography of Johan van Benthem 1013

45 Complexity of Contents versus Complexity of Wrappings, in M. Marx,
M. Masuch and L. Pólos, eds., Arrow Logic and Multimodal Logic, Studies in
Logic, Language and Information, CSLI Publications, Stanford (and Cambridge
University Press), 203–219.

46 Dynamics, a chapter in J. van Benthem and A. ter Meulen, eds., Handbook of
Logic and Language, Elsevier Science Publishers, Amsterdam, 587–648. (With
Reinhard Muskens and Albert Visser.)

47 Inference, Methodology and Semantics, in P. Bystrov and V. Sadofsky, eds.,
Philosophical Logic and Logical Philosophy, Essays in Honour of Vladimir
Smirnov, Kluwer Academic Publishers, Dordrecht, 63–82.

48 Bisimulation: The Never-Ending Story, in J. Tromp, ed., A Dynamic and Quick
Intellect. Liber Amicorum Paul Vitányi, CWI, Amsterdam, 23–27.

49 Modal Logic as a Theory of Information, in J. Copeland, ed., Logic and Reality.
Essays on the Legacy of Arthur Prior, Clarendon Press, Oxford, 135–168.

50 Logic and Argumentation Theory, in F. van Eemeren, R. Grootendorst, J. van
Benthem and F. Veltman, eds., Proceedings Colloquium on Logic and Argumen-
tation, Royal Dutch Academy of Sciences, Amsterdam, 27–41.

1997

51 Modal Quantification over Structured Domains, in M. de Rijke, ed., Advances in
Intensional Logic, Kluwer, Dordrecht, 1–28. (With Natasha Alyeshina.)

1998

52 Proofs, Labels, and Dynamics in Natural Language, in U. Reyle and H-J Ohlbach,
eds., Festschrift for Dov Gabbay, 31–41, Kluwer Academic Publishers, Dor-
drecht.

53 Shifting Contexts and Changing Assertions, in A. Aliseda-Llera, R. van Glabbeek
and D. Westerståhl, eds., Computing Natural Language, 51–65.

1999

54 Modal Foundations for Predicate Logic, in Ewa Orlowska, ed., Logic at Work,
To the Memory of Elena Rasiowa, Physica Verlag, Heidelberg, 39–54.

55 Logical Constants, Computation and Simulation Invariance, in Th. Childers, ed.,
The Logica 98 Yearbook, Institute of Philosophy, Czech Academy of Sciences,
11–19.

2000

56 Linguistic Grammar as Dynamic Logic, in V. M. Abrusci and C. Casadio, eds.,
Dynamic Perspectives in Logic and Linguistics, Bulzoni, Roma, 7–17.

57 Reasoning in Reverse, Preface to “Abduction and Induction, their Relation and
Integration”, P. Flach and A. Kakas, eds., Kluwer, Dordrecht, ix-xi.

58 Explaining Language by Economic Behaviour, in A. Rubinstein, Economics and
Language, Cambridge University Press, 93–107.



1014 ADDENDUM III: Bibliography of Johan van Benthem

2001

59 Modal Logic in Two Gestalts, in M. de Rijke, H. Wansing and M. Zakharyashev,
eds., Advances in Modal Logic II, Uppsala 1998, CSLI Publications, Stanford,
73–100.

60 Higher-Order Logic, reprint with addenda, in D. Gabbay, ed., Handbook of Philo-
sophical Logic, vol. I., second edition, Kluwer, Dordrecht, 189–243.

61 Correspondence Theory, reprint with addenda, in D. Gabbay, ed., Handbook of
Philosophical Logic, vol. III., second edition, Kluwer, Dordrecht, 325–408.

62 Nonstandard Reasoning, International Encyclopedia of the Behavioral and
Social Sciences, volume 16, 10696–10699, Elsevier, Colchester, UK.

2002

63 Invariance and Definability: Two Faces of Logical Constants, in W. Sieg,
R. Sommer, and C. Talcott, eds., Reflections on the Foundations of Mathematics.
Essays in Honor of Sol Feferman, ASL Lecture Notes in Logic 15, 426–446.

64 Mathematical Logic and Natural Language, in B. Löwe, W. Malzkorn, and
T. Rasch, eds., Foundations of the Formal Sciences II: Applications of Math-
ematical Logic in Philosophy and Linguistics, Kluwer, Dordrecht, 25–38.

65 Modal Logic, in D. Jacquette, ed., A Companion to Philosophical Logic, Black-
well, Oxford, 391–409.

66 Logical Patterns in Space, in D. Beaver et al., eds. Words, Proofs, and Diagrams,
CSLI Publications, Stanford, 5–25. (With Marco Aiello.)

67 Action and Procedure in Reasoning, in M. MacCrimmon and P. Tillers, eds., The
Dynamics of Judicial Proof, Physica Verlag, Heidelberg, 243–259.

2003

68 Rational Dynamics and Epistemic Logic in Games, in S. Vannucci, ed., Logic,
Game Theory and Social Choice III, University of Siena, Department of Political
Economy, 19–23.

69 Logic for Concurrency and Synchronization, guest preface, R. de Queiroz, ed.,
Trends in Logic, Kluwer, xvii.

70 Logic and Game Theory: Close Encounters of the Third Kind, in G. Mints and R.
Muskens, eds., Games, Logic, and Constructive Sets, CSLI Publications, Stan-
ford, 3–22.

71 Fifty Years: Changes and Constants in Logic, in V. Hendricks and J. Malinowski,
eds., Trends in Logic, 50 Years of Studia Logica, Kluwer, Dordrecht, 35–56.

72 Categorial Grammar at a Cross-Roads, in G-J Kruijff and R. Oehrle, eds.
Resource-Sensitivity, Binding, Anaphora, Kluwer, Dordrecht, 3–21.

73 Is there still Logic in Bolzano’s Key? in E. Morscher, ed., Bernard Bolzanos
Leistungen in Logik, Mathematik und Physik, Bd.16, Academia Verlag, Sankt
Augustin 2003, 11–34.

74 Structural Properties of Dynamic Reasoning, in Meaning: the Dynamic Turn,
J. Peregrin, ed., Elsevier, Amsterdam, 2003, 15–31.



ADDENDUM III: Bibliography of Johan van Benthem 1015

2004

75 The Inexhaustible Content of Modal Boxes, in A. Troelstra, ed., Liber Amicorum
for Dick de Jongh, 16 p. ILLC Amsterdam, ISBN 90 5776 1289.

76 De Kunst van het Vergaderen, in Wiebe van der Hoek, ed., Liber Amicorum
‘John-Jules Charles Meijer 50’, 5–7, Onderzoeksschool SIKS, Utrecht.

77 Probabilistic Features in Logic Games, invited presentation, Open Court Sym-
posium, APA Chicago. In D. Kolak and J. Symons, eds., Quantifiers, Questions,
and Quantum Physics, Springer Verlag, New York, 189–194.

2005

78 The Categorial Fine-Structure of Natural Language, in C. Casadio, P.J. Scott,
R.A.G. Seely, eds., Language and Grammar: Studies in Mathematical Linguistics
and Natural Language, CSLI Publications Stanford (CSLI Lecture Notes 168),
3–29.

79 An Essay on Sabotage and Obstruction, in D. Hutter, ed., Mechanizing Mathe-
matical Reasoning, Essays in Honor of Jörg Siekmann on the Occasion of his
69th Birthday, Springer Verlag, 268–276.

80 Formal Methods in Philosophy, in V. Hendricks and J. Symons, eds., Formal
Philosophy, Automatic Press, New York and London.

81 Open Problems in Logic and Games, in S. Artemov, H. Barringer, A. d’Avila
Garcez, L. Lamb and J. Woods, eds., Essays in Honour of Dov Gabbay, King’s
College Publications, London, 229–264.

82 A Note on Modeling Theories, in Confirmation, Empirical Progress and Truth
Approximation. Essays in Debate with Theo Kuipers, R. Festa, A. Aliseda and
J. Peijnenburg, eds., Poznan Studies in the Philosophy of the Sciences and the
Humanities, Rodopi Amsterdam, 403–419.

83 The Geometry of Knowledge, in J-Y Béziau, A. Costa Leite and A. Facchini, eds.,
Aspects of Universal Logic, Centre de Recherches Sémiologiques, Université de
Neuchatel, 1–31. (With Darko Sarenac.)

2006

84 Open Problems in Update Logic. D. Gabbay, S. Goncharov and M. Zakharyashev,
eds., Mathematical Problems from Applied Logic I, Springer, 137–192.

85 The Epistemic Logic of IF Games. R. Auxier and L. Hahn, eds., The Philosophy
of Jaakko Hintikka, Schilpp Series, Open Court Publishers, Chicago, 481–513.

86 A New Modal Lindström Theorem. H. Lagerlund, S. Lindström and R. Sliwinski,
eds., Modality Matters, University of Uppsala, 55–60.

87 Preference Logic, Conditionals, and Solution Concepts in Games. H. Lagerlund,
S. Lindström and R. Sliwinski, eds., Modality Matters, University of Uppsala,
61–76. (With Sieuwert van Otterloo and Olivier Roy.)

88 Logical Construction Games. Acta Philosophica Fennica 78, T. Aho and A-V
Pietarinen, eds., Truth and Games, Essays in Honour of Gabriel Sandu, 123–138.

89 Alternative Logics and Classical Concerns, in J. van Benthem, G. Heinzmann,
M. Rebuschi and H. Visser, eds., The Age of Alternative Logics, Springer,
Dordrecht, 1–7.



1016 ADDENDUM III: Bibliography of Johan van Benthem

90 A Mini-Guide to Logic in Action, updated version, in F. Stadler and M. Stöltzner,
eds., Time and History, Ontos Verlag, Frankfurt, 419–440.

91 One is a Lonely Number: on the Logic of Communication, in Z. Chatzidakis,
P. Koepke and W. Pohlers, eds., Logic Colloquium ’02, ASL and A.K. Peters,
Wellesley MA, 96–129.

92 Logic in Philosophy, in D. Jacquette, ed., Handbook of the Philosophy of Logic,
Elsevier, Amsterdam, 65–99.

93 Modal Logic, a Semantic Perspective, in J. van Benthem, P. Blackburn and F.
Wolter, eds., Handbook of Modal Logic, Elsevier, Amsterdam, 1–84.

2007

94 Cognition as Interaction, in G. Bouma, I. Krämer and J. Zwarts, eds., Cognitive
Foundations of Interpretation, KNAW Amsterdam, 27–38.

95 Editorial, A Meeting of the Minds, Proceedings LORI Workshop Beijing August
2007, King’s College Publications, London. (With Ju Shier and Frank Veltman.)

96 What is Spatial Logic?, editorial, Handbook of Spatial Logics, Springer, Dor-
drecht, 1–11. With co-editors Marco Aiello and Ian Pratt-Hartmann.

97 Modal Logics of Space, in M. Aiello et al., eds., Handbook of Spatial Logics,
Springer, Dordrecht, 217–298. (With Guram Bezhanishvili.)

98 Five Questions on Philosophy of Mathematics, in V. Hendricks and H. Leitgeb,
eds., Philosophy of Mathematics, Five Questions, Automatic Press, Copen-
hagen.

99 Five Questions on Games, in V. Hendricks and P. Guldborg Hansen, eds., Game
Theory, Five Questions, Automatic Press, Copenhagen.

100 Logic Games, From Tools to Models of Interaction, in A. Gupta, R. Parikh
and J. van Benthem, eds., Logic at the Crossroads, Allied Publishers, Mumbai,
283–317.

2008

101 Modal Fixed-Point Logic and Changing Models, in A. Avron, N. Dershowitz
and Rabinovich, eds., Pillars of Computer Science: Essays Dedicated to Boris
(Boaz) Trakhtenbrot on the Occasion of his 85th Birthday, Springer, Berlin,
146–165. (With Daisuke Ikegami.)

102 Games that Make Sense: Logic, Language and Multi-Agent Interaction, in
K. Apt and R. van Rooij, eds., Proceedings KNAW Colloquium on Games and
Interactive Logic, Texts in Logic and Games, Amsterdam University Press,
197–209.

103 Computation as Conversation, in S. Cooper, B. Löwe and A. Sorbi., eds., New
Computational Paradigms, Changing Conceptions of What is Computable,
Springer, New York, 35–58.

104 Information Is What Information Does, editorial, Handbook of the Philosophy
of Information, Elsevier, Amsterdam. (With Pieter Adriaans.)

105 The Logical Stories of Information, in Handbook of the Philosophy of Informa-
tion, Elsevier, Amsterdam, 217–280. (With Maricarmen Martinez.)



ADDENDUM III: Bibliography of Johan van Benthem 1017

106 Man Muss Immer Umkehren, in C. Dégremont, L. Keiff, H. Rueckert, eds.,
Dialogues, Logics and Other Strange Things: Essays in Honour of Shahid Rah-
man, College Publications, London.

107 A Brief History of Natural Logic, in M. Chakraborty, B. Löwe, M. Nath Mitra,
S. Sarukkai, eds., Logic, Navya-Nyaya and Applications, Homage to Bimal
Krishna Matilal, College Publications, London 2008, 21–42.

2009

108 Logic and Philosophy in the Century That Was, in F. Stoutland, ed., Philosoph-
ical Probings: Essays on Von Wright’s Later Work, Automatic Press, Roskilde,
163–167.

109 Preface to new printing of E. W. Beth, Door Wetenschap tot Wijsheid, Amsterdam
Academic Archive. (With Henk Visser.)

110 Editor’s Preface, Wiebefest 2009, Department of Computing, University of
Liverpool. (With John-Jules Meijer, Cees Witteveen, and Mike Wooldridge.)

111 Preface, in L. Kurzen and F. Velazquez-Quesada, eds., Logical Dynamics for
Information and Preferences, Seminar Yearbook, ILLC, Amsterdam, vii–viii.

112 Argumentation in the Lense of Artificial Intelligence, Preface, in I. Rahwan
and G. Simari, eds., Argumentation in Artificial Intelligence, Springer, 2009,
vii–viii.

113 Preface, in U. Wybraniec-Skardowska, ‘Polish Logic, a few Lines from a Per-
sonal Perspective’, ILLC prepublications, Amsterdam.

114 Actions that Make Us Know, in J. Salerno, ed., New Essays on the Knowability
Paradox, Oxford University Press, Oxford, 129–146.

115 For Better of for Worse: Dynamic Logics of Preference, in T. Grüne-Yanoff and
S-O Hansson, eds., Preference Change, Springer, Dordrecht, 57–84.

2010

116 A Logician Takes a Look at Argumentation Theory, Chinese translation of
the same paper from Cogency, Yearbook, Philosophy Department, Tsinghua
University.

117 A Brief History of Natural Logic, Chinese translation of the same paper from
2008, Values and Culture, Beijing Normal University Publications, 152–167.

118 Logic, Rational Agency, and Intelligent Interaction, in C. Glymour, W. Wei
and D. Westerståhl, eds., Logic, Methodology and Philosophy of Science XIII
Beijing 2007, College Publications, London, 137–161.

119 Logic, Mathematics, and General Agency, in P. E. Bour, M. Rebuschi and L.
Rollet, eds., Construction, College Publications, London, 281–300.

120 Frame Correspondence in Modal Predicate Logic, in S. Feferman and W. Sieg,
eds., Proofs, Categories and Computations, College Publications, London.

121 In Praise of Strategies, In J. van Eijck and R. Verbrugge, eds., Foundations
of Social Software, Studies in Logic, College Publications, 283–317.



1018 ADDENDUM III: Bibliography of Johan van Benthem

2011

122 Belief Update as Social Choice, in P. Girard, O. Roy and M. Marion, eds.,
Dynamic Formal Epistemology, Springer, Dordrecht, 151–160.

2012

123 In Praise of Strategies, reprint with addenda, J. van Eijck and R. Verbrugge,
eds., Games, Actions, and Social Software, Lecture Notes in Computer Science
7010, Springer, Heidelberg, 96–116.

124 Dynamic Logic in Natural Language, in G. Russell and D. Graff Fara, eds., The
Routledge Companion to Philosophy of Language, Routledge, New York and
London, 652–666.

125 CRS and Guarded Logics, in H. Andréka, M. Ferenczi and I. Németi, eds.,
Cylindric-like Algebras and Algebraic Logic, Bolyai Society Mathematical
Studies 22, Mathematical Institute, Hungarian Academy of Sciences, Budapest,
273–301.

2013

126 Reasoning about Strategies, in B. Coecke, L. Ong and P. Panangaden, eds.,
Computation, Logic, Games, and Quantum Foundations. The Many Facets
of Samson Abramsky, Springer Lecture Notes in Computer Science 7860, 333–
347.

127 Two Logical Faces of Belief Revision, in R. Trypuz, ed., Krister Segerberg on
Logic of Actions, Outstanding Logicians Series, Springer, Dordrecht, 281–300.

2014

128 Connecting Logics of Choice and Change, in Th. Mueller, Nuel Belnap on Inde-
terminism and Free Action, Outstanding Logicians Series, Springer, Dordrecht.
(With Eric Pacuit.)

129 Logica en Recht: Naar een Rijkere Relatie, in M. Groenhuijsen, E. Hondius and
A. Soeteman, eds., Het Recht in het Geding, Boom Juridische Uitgevers, Den
Haag, 71–83.

To Appear

Deontic Logic and Changing Preferences, in D. Gabbay, J. Horty, R. van der
Meyden, X. Parent and L. van der Torrre, eds., Handbook of Deontic Logic and
Normative Systems, (with Fenrong Liu).
Dynamic Logics of Belief Change, in H. van Ditmarsch, J. Halpern, W. van der
Hoek and B. Kooi, eds., Handbook of Logics for Knowledge and Belief, College
Publications (with Sonja Smets).
Modal Logic, Internet Encyclopedia of Philosophy.



ADDENDUM III: Bibliography of Johan van Benthem 1019

Reviews

1978

1 Systems of Intensional and Higher-Order Modal Logic (D. Gallin) Mededelingen
Wiskundig Genootschap.

1979

2 Filosofische Grondslagen van de Wiskunde (D. van Dalen) Algemeen Nederlands
Tijdschrift voor Wijsbegeerte 71:1, 58–64.

3 Investigations in Modal and Tense Logics (D. Gabbay), Critical Notice, Synthese
40, 353–373.

4 Inleiding tot de Symbolische Logica (H. Hubbeling and H. de Swart) Algemeen
Nederlands Tijdschrift voor Wijsbegeerte 71:2, 125–127.

5 Filosoferen (S. Ysseling and R. de Kwant), Algemeen Nederlands Tijdschrift voor
Wijsbegeerte 71:2, 129–131.

1980

6 Analyticiteit (H. Perrick). Algemeen Nederlands Tijdschrift voor Wijsbegeerte
72:2, 119–122.

7 Complementarity in Mathematics (W. Kuyk), Algemeen Nederlands Tijdschrift
voor Wijsbegeerte 72:3, 200–202.

8 Juristische Logik als Argumentationslehre (Ch. Perelman), Algemeen Nederlands
Tijdschrift voor Wijsbegeerte 72:4, 269–273.

9 Checking Landau’s “Grundlagen” in the AUTOMATH System (L. van Benthem-
Jutting), Mededelingen Wiskundig Genootschap.

1981

10 Outline of a Nominalist Theory of Propositions (P. Gochet), Algemeen Neder-
lands Tijdschrift voor Wijsbegeerte 73:1, 61–63.

11 De Dialoog van Galilei (M. Finocchiaro), Kennis en Methode 5:3, 273–283.

1982

12 The Continuing Story of Conditionals (“Ifs”; W. Harper et al., eds.) Studies in
Language 6:1, 125–136.

1983

13 The Logic of Natural Language (F. Sommers), Philosophical Books 24:2,
99–102.

14 Bernard Bolzano: Leben und Wirkung (C. Christian, ed.), Archives Interna-
tionales d’Histoire des Sciences 33, 360–361.

15 Argumentation. Approaches to Theory Formation (E. Barth and J. Martens, eds.),
Algemeen Nederlands Tijdschrift voor Wijsbegeerte 75:4, 380–381.



1020 ADDENDUM III: Bibliography of Johan van Benthem

1984

16 On When a Semantics is not a Good Semantics (J. Copeland), Journal of Symbolic
Logic 49:3, 994–995.

17 The Lattice of Modal Logics (W. Blok), Journal of Symbolic Logic 49:4,
1419–1420.

1986

18 The Logic of Aspect (A. Galton), The Philosophical Review 95:3, 434–437.
19 A Companion to Modal Logic (G. Hughes and M. Creswell), Journal of Symbolic

Logic 51:3, 824–826.
20 Boolean Semantics for Natural Language (E. Keenan and L. Faltz) Language

62:4, 112–115.
21 Building Models by Games (W. Hodges), Mededelingen Wiskundig Genootschap

1986, 368–370.

1989

22 Logicheskije Metodi Analiza Nauchnowo Znanija (V. A. Smirnov), Studia Logica
48:1, 135–136.

23 Logicheskaja Semantika i Filosofskije Osnovanija Logiki (E. D. Smirnova),
Studia Logica 48:1, 136–137.

1990

24 Handbook of Philosophical Logic, vol. IV (D. Gabbay and F. Guenthner, eds.),
Language 66:2 (1989), 396–400.

1991

25 Knowledge in Flux. Modelling the Dynamics of Epistemic States (P. Gärdenfors),
Studia Logica. 49:4, 421–424.

1999

26 Information Flow (J. Barwise and J. Seligman), Journal of Logic, Language and
Information 8:3, 390–397. (With David Israel.)

2007

27 Quantifiers in Language and Logic (S. Peters and D. Westerståhl), Notre Dame
Philosophical Reviews.

2013

28 Bernard Bolzano’s “Wissenschaftslehre”, Topoi 3:2, 301–303.



ADDENDUM III: Bibliography of Johan van Benthem 1021

General Publications

1977

1 De Logica van Zinovjev, Rusland-Bulletin 2:1, 3–9.

1978

2 Logica en Argumentatietheorie, Spectator 7:5/6, 263–276.

1979

3 In Alle Redelijkheid, inaugural lecture, Onderzoeksbulletin 4, Filosofisch Insti-
tuut, Rijksuniversiteit Groningen, 25 p.

4 Logische Theorie en Wiskundige Praktijk, Euclides 55:6, 249–254.

1981

5 Logische Lijnen in de Zeventiger Jaren, Wijsgerig Perspectief 22:1, 1–29.

1983

6 Tijd, Taal en Logica, Wijsgerig Perspectief 24:3, 78–81.

1984

7 Aan de Rede van Barbarije, Kennis en Methode 8:2, 125–136.

1986

8 Die linguistische Wende in der Logik, Information Philosophie, Mai 1986,
18–28.

9 Taal en Informatie: naar Nieuwe Toepassingen, Forum der Letteren 27, 174–187.
10 Rekenen met Taal, inaugural lecture, Mathematisch Instituut, University of Ams-

terdam.
11 Aan de Rede van Barbarije, in P. Meeuse, Harmonie als Tegenspraak, De Bezige

Bij, A’dam, 219–235.

1989

12 The Lure of Information and Computation, Universiteit en Hogeschool 36:1,
65–74.

1992

13 Bouwwerk Zonder Funderingen, in: Redactie Wetenschappen NRC, De Mond
Vol Tanden, Prometheus, Amsterdam, 119–126.

1993

14 Is Informatica een Wetenschap? Automatiseringsgids 27:10, 11–13.

1994

15 Wat is er Mis met de Filosofie? Epimedium 58, Filosofisch Instituut, Utrecht,
4–9.



1022 ADDENDUM III: Bibliography of Johan van Benthem

16 Logica in Veelvoud, RADAR 1994, ARAMITH uitgevers, Bloemendaal,
364–373.

1996

17 Logica in Beweging, Lezingenboekje Uitreiking Spinoza Premie, NWO, Den
Haag.

1997

18 Wat Cultuurbeleid van Wetenschapsbeleid Kan Leren, Boekman Cahier 31,
38–45, Boekman Stichting, Amsterdam.

1998

19 Van Grondslagenonderzoek naar Informatiewetenschap, KNAW, Afdeling Gees-
teswetenscappen, Amsterdam.

20 De Boeken in Mijn Leven, Amsterdamse Boekengids 14, 37–38.
21 Internationalism is a State of Mind, Reizigers, UvA Yearbook 98, Vossius Press,

Amsterdam.
22 E.W. Beth: het Geheim van Wetenschappelijk Succes, in P. Klein, ed., “Een Beeld

van de Akademie: 1808–1998”, KNAW, Amsterdam, 187–188.

1999

23 Boeken Top Drie, Natuur en Techniek 67:11, 48.

2000

24 Instroom Blues, Nieuw Archief voor Wiskunde 5:1/3, p. 263. Also Euclides,
December 2000.

2001

25 Interdisciplinariteit en Monogamie, Grensgevallen, Instituut I2O, Universiteit
van Amsterdam.

2002

26 Science and Society in Flux, prize-winning essay at the Hollandsche Maatschap-
pij van Wetenschappen, in A. Verrijn-Stuart et al., eds., The Future of the Sciences
and Humanities, Amsterdam University Press, Amsterdam, 63–90.

27 De Multidisciplinaire Universiteit: Losse Gedachten van een Zwerver, in B. de
Reuver and R. de Klerk, eds., Feestbundel Karel van Dam, SCO Kohnstamm
Instituut, Amsterdam, 65–71.

2003

28 De Kunst van het Kennis Maken, Opening Academisch Jaar, Amsterdam Uni-
versity Press, Amsterdam.

29 Wat Drijft Informatica Onderzoekers? Programmaboek ICT-Kennis Congres
2003, NWO, Den Haag.



ADDENDUM III: Bibliography of Johan van Benthem 1023

30 Het ABC van Communicatie, Verslag KNAW (Dutch Academy of Arts and
Sciences), Afdeling Natuurkunde, 24 november 2003.

2004

31 Reidansende Eiwitten, Boekman Cahier 59/59, 165–166, Amsterdam.

2005

32 De Kunst van het Kennis Maken, BLIND, electronisch interdisciplinair tijd-
schrift, http://www.ziedaar.nl/editions/3/.

33 Echte versus Virtuele Realiteiten: de Speelse Logica van Kaarten en Vergaderen,
BRES Planète 232, 24–28.

34 Leer het Brein Kennen, with J. Jolles, R. de Groot, H. Dekkers, C. de Glopper,
H. Uijlings and A. Wolff-Albers, OECD and KNAW, Amsterdam.

35 Talentenkracht/Talent Power, Freudental Instituut, Utrecht. With Jan de Lange
and Robbert Dijkgraaf.

36 ‘L’Art et la Logique de la Conversation. “Dossier Logique”, Éditions Pour la
Science, Paris, 68–73.

2006

37 Informatiestroom voor Oplettende Mensen, in B. Mols, ed., Het Raadsel van
Informatie, Boom, Meppel, 11–26.

38 Een Man uit Eén Stuk, Liber Amicorum Professor Bob Hertzberger, 13–14,
FNWI, UvA.

39 Verdriet en Vorm vanuit een Hoger Standpunt, Liber Amicorum for Sijbolt
Noorda, Amsterdam University Press, UvA.

40 Brain Lessons, Neuropsych Publishers, Maastricht, J. Jolles, R. de Groot,
H. Dekkers, C. de Glopper, H. Uijlings and A. Wolff-Albers.

2007

41 Eenheid van Cognitie, Boekje Talentenkracht Publieksdag, Ouwehands Dieren-
park, Freudental Instituut Utrecht.

42 Interview, in Game Theory: 5 Questions, V. Hendricks and P. Hansen, eds., Auto-
matic Press, Copenhagen, 9–19.

43 Adios a la Soledad, Azafea, University of Salamanca, 21–33.
44 Patterns of Intelligent Interaction: Games, Action, and Social Software, NIAS

Newsletter May 2007, Wassenaar.
45 Intelligent Systems: The Man Inside the Machine, Festschrift for Jaap van den

Herik 60, MICC, University of Maastricht, 164–167.
46 Een Stroom van Informatie: Logica op het Grensvlak van Alfa, Beta en Gamma’,

Natuurkundige Voordrachten, Nieuwe Reeks 85, Genootschap Diligentia, Den
Haag, 115–123.

2008

47 De Beste Boeken volgens Johan van Benthem, Academische Boekengids 67,
Maart.

http://www.ziedaar.nl/editions/3/


1024 ADDENDUM III: Bibliography of Johan van Benthem

48 Een Postzegel vol Logica, De Gids, Maart 2008, 191–205.
49 Interview, in Philosophy of Computing and Information: 5 Questions, L. Floridi,

ed., Automatic Press, Copenhagen, 9–19.
50 Interview, in Epistemology: 5 Questions, V. Hendricks and D. Pritchard, eds.,

Automatic Press, Copenhagen, 39–46.
51 E.W. Beth. A Centenary Celebration, KNAW Amsterdam. (With Paul van Ulsen

and Henk Visser.)

2009

52 Voorwoord, in B. Mols, Geestdrift. Wat cognitiewetenschappers bezielt, NWO,
Den Haag, 2–3. (With Peter Hagoort.)

53 Alledaags Gesprek is Toppunt van Prestatie, interview, in B. Mols, Geestdrift.
Wat Cognitiewetenschappers Bezielt, NWO, Den Haag, 36–41.

54 Interview: Logic, Language, Cognition, The Reasoner 3:12, December 2009.
55 A Stamp Full of Logic, Farsi translation, Mathematics Education Journal, Iran.

2010

56 The Journal Synthese, Chinese Social Sciences Today, 5 May, p. 17. (With Vincent
Hendricks and John Symons.)

57 Dialogue on Logic, Language and Cognition–Interview with Johan van Benthem,
Guo Meiyun and Liu Xinwen, Philosophical Trends 3, 62–71.

58 Computation, Conversation, and Celebration, in T. Janssen and L. Torenvliet,
eds., Lectori Salutem, festschrift on the occasion of the retirement of Peter van
Emde Boas, ILLC, University of Amsterdam, 1–5.

59 Preface, Logic and Interactive Rationality Yearbook 2009, D. Grossi,
L. Kurzen and F. Velazquez-Quesada, eds., ILLC, Amsterdam, vii.

60 Interview, in Epistemic Logic: 5 Questions, V. Hendricks and O. Roy, eds., Auto-
matic Press, Copenhagen, 35–46.

61 Opencourse Logic in Action, De Nieuwe Wiskrant 30:1, 41–48, with Jan Jaspars.
Ook in Wiskunde en Onderwijs 37:145, 2011, 28–39.

2011

62 Intelligentna interakcja: trendy dynamiczne w dziesiejszej logice, Polish trans-
lation of #46, Group in Logic, University of Opole.

63 Preface, Logic and Interactive Rationality Yearbook 2010, D. Grossi,
S. Minica, B. Rodenhauser and S. Smets, eds., ILLC, Amsterdam, vi.

2012

64 Preface, Logic and Interactive Rationality Yearbook 2011, A. Baltag,
D. Grossi, A. Marcoci, B. Rodenhäuser and S. Smets, eds., ILLC, Amsterdam,
1.

65 Dynamic Logic in Natural Language, in Th. Graf, D. Paperno, A. Szabolcsi,
and J. Tellings, eds., Theories of Everything: In Honor of Ed Keenan. UCLA
Working Papers in Linguistics 17, 4 p., Creative Commons License http://
creativecommons.org/licenses/by-nc/3.0/.

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/


ADDENDUM III: Bibliography of Johan van Benthem 1025

66 Johan Frederik Staal, Levensberichten en Herdenkingen, KNAW, Amsterdam,
71–75.

2013

67 The UvA Meets China, Amsterdam University Press. (With Anouk Tso.)

2014

68 Interview, in Tr. Lupher and Th. Adajian, eds., Five Questions on the Philosophy
of Logic, Automatic Press, Copenhagen.

69 Preface, Dynamics Yearbook 2013, Amsterdam, Beijing and Berkeley.

Conference Proceedings

1979

1 Partial Logical Consequence, Abstracts 6th International Congress of Logic,
Methodology and Philosophy of Science, Hannover, Section 5.

1991

2 Natural Language: from Knowledge to Cognition, in E. Klein and F. Veltman,
eds., ESPRIT Symposium, Brussels, Springer Verlag, Berlin, 159–171.

1997

3 Two Dynamic Strategies, Proceedings 11th Amsterdam Colloquium, ILLC Ams-
terdam. (With A. ter Meulen.)

1998

4 Process Operations in Extended Dynamic Logic, invited lecture, Proceedings LICS
98, Indianapolis, IEEE Publications, Los Alamitos, 244–250.

2001

5 Preface of the General Chair, Temporal Representation and Reasoning, TIME-
2001, IEEE Computer Society, Los Alamitos, p. ix.

6 Logics for Information Update, Proceedings TARK VIII, Morgan Kaufmann, Los
Altos, 51–88.

2004

7 Reduction Axioms for Epistemic Actions, Proceedings Advances in Modal Logic
2004, Computer Science Department, University of Manchester. Report UMCS-
04 9-1, Renate Schmidt, Ian Pratt-Hartmann, Mark Reynolds, Heinrich Wansing,
eds., 197–211. (With Barteld Kooi.)



1026 ADDENDUM III: Bibliography of Johan van Benthem

2005

8 Common Knowledge in Update Logics, in R. van der Meyden, ed., Proceedings
TARK 10, Singapore, 253–261. (With Jan van Eijck and Barteld Kooi.)

2006

9 Dynamic Update with Probabilities, W. van der Hoek and M. Wooldridge, eds.,
Proceedings LOFT 2006, Liverpool. (With Jelle Gerbrandy and Barteld Kooi.)

10 The Tree of Knowledge in Action, Proceedings AiML Melbourne 2006. (With
Eric Pacuit.)

2007

11 Dynamic Epistemic Logic and Epistemic Temporal Logic, Proceedings TARK
Namur, 2007, 72–81. (With Jelle Gerbrandy and Barteld Kooi.)

12 Lindström Theorems for Fragments of First-order Logic, Proceedings of LICS
2007, 280–292. (With Balder ten Cate and Jouko Väänänen).

13 Modeling Simultaneous Games with Concurrent Dynamic Logic; in J. van Ben-
them, S. Ju and F. Veltman, eds., A Meeting of the Minds, Proceedings LORI
Workshop Beijing, College Publications, London, 243–258. (With Fenrong Liu
and Sujata Ghosh.)

2008

14 Decisions, Actions, and Games, a Logical Perspective; in Proceedings of the
Third Indian Conference on Logic and Applications ICLA 2009, R. Ramanujam
and Sundar Sarukkai, Eds., Springer Lecture Notes in AI 5378, 1–22.

15 Multi-Agent Belief Dynamics: Bridges between Dynamic Doxastic and Dox-
astic Temporal Logics, in G. Bonanno, W. van der Hoek and B. Löwe, eds.,
Proceedings LOFT. (With Cédric Dégremont).

2009

16 Toward a Dynamic Logic of Questions, in J. Horty and E. Pacuit, eds., Proceed-
ings LORI II Chongqing, Springer Lecture Notes in AI 5834, 28–42. (With Stefan
Minica.)

2010

17 Logic Between Expressivity and Complexity, in J. Giesl and R. Hähnle, eds.,
Proceedings IJCAR 2010, LNAI 6173, Springer, Heidelberg, 122–126.

18 Deontics = Betterness + Priority, in G. Governatori and G. Sartor, eds., Proceed-
ings Deontic Logic in Computer Science, DEON 2010, Fiesole, Italy. Lecture
Notes in Computer Science 6181, Springer, 50–65. (With Davide Grossi and
Fenrong Liu.)

2011

19 Exploring a Theory of Play, invited lecture, in K. R. Apt, ed., Proceedings TARK
Groningen, ACM Digital Library, 12–16.



ADDENDUM III: Bibliography of Johan van Benthem 1027

2012

20 Foundational Issues in Logical Dynamics, invited lecture, in Th. Bolander
et al., eds., Advances in Modal Logic, Copenhagen 2012, College Publications,
London, 95–96.

21 Evidence Logic: A New Look at Neighborhood Structures, in Th. Bolander
et al., eds., Advances in Modal Logic, Copenhagen 2012, College Publications,
London, 97–118. (With David Fernandez Duque and Eric Pacuit.)


	Contents
	Preface by Johan van Benthem
	Acknowledgements
	On the Trails of Logical Dynamics:a bird’s-eye view of this volume,by Alexandru Baltag and Sonja Smets
	Part I Mathematical and Computational Perspectives
	1 The Freedoms of (Guarded) Bisimulation
	1.1 Introduction
	1.2 Bisimulation: Behavioural and Structural Equivalence
	1.2.1 Ehrenfeucht--Fraïssé, Back-and-forth, Zig-zag, Pebble Games: Games Model-Theorists Play
	1.2.2 Bisimulation in Modal Model Theory
	1.2.3 Tree Models and Robust Decidability of Modal Logics
	1.2.4 Expressive Completeness

	1.3 Guarded Bisimulation: A Systematic Lifting  to Higher Dimension
	1.3.1 Guardedness and the Guarded Fragment
	1.3.2 Guarded Bisimulation and Model Theory
	1.3.3 Guarded Bisimulation Invariance
	1.3.4 Decidability and Complexity for GF and Its Extensions
	1.3.5 Guarded Model Constructions
	1.3.6 Expressive Completeness

	1.4 Guarded Negation Bisimulation
	1.4.1 Homomorphisms and Bisimulation
	1.4.2 Towards a (Finite) Model Theory of Guarded Negation

	1.5 Summary
	References

	2 Expressiveness Modulo Bisimilarity:  A Coalgebraic Perspective
	2.1 Introduction
	2.2 Coalgebra and Modal Logic
	2.2.1 Coalgebra
	2.2.2 Coalgebraic Logics
	2.2.3 Predicate Liftings

	2.3 Coalgebra Automata and MSO
	2.3.1 One-Step Syntax and Semantics
	2.3.2 Coalgebra Automata
	2.3.3 MSO As a Coalgebraic Fixpoint Logic

	2.4 One-Step Adequacy
	2.4.1 The General Case
	2.4.2 The Case of Kripke Models

	2.5 Main Result
	2.6 Conclusion
	References

	3 Schema Mappings: A Case of Logical  Dynamics in Database Theory
	3.1 Background: Relational Database Theory
	3.1.1 Database Schemas and Instances
	3.1.2 Database Queries
	3.1.3 First-Order Queries and Domain Independence
	3.1.4 Query Evaluation and Query Containment
	3.1.5 Conjunctive Queries and Homomorphisms
	3.1.6 Database Constraints

	3.2 Schema Mappings
	3.3 Data Exchange: Moving Data from Source to Target
	3.3.1 Universal Solutions
	3.3.2 Constructing Universal Solutions Using the Chase
	3.3.3 Closure Under Target Homomorphisms

	3.4 Data Integration: Answering Target Queries  Using Source Data
	3.4.1 Certain Answers
	3.4.2 Computing Certain Answers Via Query Rewriting

	3.5 Structural Characterizations of Schema Mapping  Languages
	3.5.1 LAV Schema Mappings
	3.5.2 GAV Schema Mappings
	3.5.3 GLAV Schema Mappings

	3.6 Composing Schema Mappings
	3.7 Concluding Remarks
	References

	4 On Dependence Logic
	4.1 Introduction
	4.2 Functional Dependence
	4.3 Independence Logic
	4.4 Conditional Independence
	4.5 Further Expressivity Results
	4.6 Belief Representation and Belief Dynamics
	4.7 Concluding Remarks
	References

	5 Intensionality, Definability and Computation
	5.1 Introduction
	5.1.1 Computability Versus Computer Science
	5.1.2 Why Processes Matter in Computer Science
	5.1.3 Prospectus

	5.2 Intensionality Versus Extensionality
	5.2.1 Intrinsic Versus Extrinsic Properties of Functions
	5.2.2 Examples
	5.2.3 A Non-example: Computability
	5.2.4 A Comparison Point: Regular Languages

	5.3 From Functions to Functionals
	5.3.1 Intrinsic Structure of Computable Functionals
	5.3.2 Generalization to Domains
	5.3.3 The Fixpoint Theorem
	5.3.4 Trouble in Paradise
	5.3.5 Sequentiality
	5.3.6 Sequentiality Is Extrinsic

	5.4 Game Semantics
	5.4.1 Types as Games
	5.4.2 Example
	5.4.3 Composition
	5.4.4 Technical Notes
	5.4.5 Constraints on Strategies
	5.4.6 Discussion
	5.4.7 The Game Semantics Landscape
	5.4.8 Mathematical Aside
	5.4.9 Algorithmic Game Semantics
	5.4.10 Other Aspects

	5.5 Conclusions: Some Questions and Dreams
	References

	6 Comparing Theories: The Dynamics  of Changing Vocabulary
	6.1 Introduction
	6.2 Special Relativity
	6.3 James Ax's Signalling theory
	6.4 An Algorithm for Setting Up Coordinate Systems
	6.5 Defining New Entities, Interpretations
	6.6 Reducing SpecRel to Signalling Theory: An Interpretation
	6.7 Definitional Equivalence Between SpecRel  and Signalling Theory
	6.8 Conclusion
	References

	Part II Dynamics of Knowledge and Belief Over Time
	7 Dynamic Epistemic Logics
	7.1 Introduction
	7.2 Knowledge, Belief and Change
	7.3 The Dynamic Turn in Epistemic/Doxastic Logic
	7.4 Announcements and Updating
	7.5 Kripke Models and Action Model Update
	7.6 Logics of Public Announcement
	7.7 Connecting up with Epistemic PDL
	7.8 Adding Factual Change
	7.9 Adding Belief Change
	7.10 Example: Navigation
	7.11 Epistemic Planning and Protocol Languages
	7.12 Further Connections
	References

	8 Belief Revision and Dynamic Logic
	8.1 Introduction
	8.2 Grove Systems of Spheres
	8.3 Epistemic Doxastic Logic
	8.3.1 EDL Language and Semantics
	8.3.2 Knowledge and Belief in EDL
	8.3.3 Axiomatisation of EDL

	8.4 Epistemic Doxastic PDL Logic
	8.4.1 Doxastic PDL Transformations

	8.5 AGM Operations
	8.5.1 Expansion and Revision
	8.5.2 Expansion
	8.5.3 Revision
	8.5.4 Two-Dimensional Belief Change Operators
	8.5.5 Contraction

	8.6 Conclusion
	References

	9 Temporal Aspects of the Dynamics  of Knowledge
	9.1 Introduction
	9.2 Preliminaries
	9.2.1 Models and Logics of (Static) Knowledge
	9.2.2 Temporal Models and Logics

	9.3 From Static to Dynamic Reasoning about Knowledge: Temporal-Epistemic Frameworks
	9.3.1 From Adding Epistemic Clouds to Fusion of Temporal and Epistemic Models
	9.3.2 Interpreted Systems as Temporal-Epistemic Models
	9.3.3 Protocol Based Epistemic-Temporal Models: Modeling Uncertainty About What Has Happened
	9.3.4 Adding Epistemics to Temporal Models: Modeling Uncertainty About What Will Happen
	9.3.5 Comparing Modeling Formalisms

	9.4 Looking Inside the Dynamics of Knowledge:  Dynamic Epistemic Logic
	9.4.1 Comparing ETL and DEL

	9.5 The Dynamics of Knowledge and Abilities  in Multi-Player Games
	9.5.1 A Priori vs Empirical Information of Players
	9.5.2 Some Examples
	9.5.3 Formalizing the a Priori and Empirical Information

	9.6 Putting the Temporal, Dynamic and Epistemic Frameworks Together
	9.7 Concluding Remarks
	References

	10 Logic and Learning
	10.1 Learning and the Dynamic Turn in Logic
	10.2 Belief Revision and Learning
	10.2.1 Epistemic Spaces, Belief Revision, and Learning
	10.2.2 Learning Power of Belief Revision

	10.3 Conclusive Update and Efficiency
	10.3.1 Conclusive Update
	10.3.2 Eliminative Power and Complexity
	10.3.3 Preset Learning and Fastest Learning

	10.4 Epistemic Logic and Learning
	10.4.1 Learning and Dynamic Epistemic Logic
	10.4.2 Learning and Temporal Logic

	10.5 Logic, Learning, and Scientific Method
	References

	11 A Computational Learning Semantics  for Inductive Empirical Knowledge
	11.1 Introduction
	11.2 Syntax
	11.3 Computational Learning Models
	11.4 Information, Belief, and Determination
	11.5 Learning Semantics
	11.6 Example: Outcomes of a Repeated Experiment
	11.7 Example: Agency, Games, and Experimentation
	11.8 Correctness and Error
	11.9 Inductive Learning
	11.10 Inductive Learnability
	11.11 Inductive Knowledge
	11.12 Inductive Knowability
	11.13 Fitch's Paradox
	11.14 Epistemic Logic Redux
	11.14.1 Deductive Cogency
	11.14.2 Reflection
	11.14.3 The Unknowable Unknown

	11.15 Joint Inductive Knowledge
	11.16 Common Inductive Knowledge
	11.17 Conclusion and Future Directions
	11.17.1 Sensitivity and Safety
	11.17.2 Inductive Statistical Knowledge
	11.17.3 Questions and Coherence
	11.17.4 Feasibility Contextualism
	11.17.5 Justification and Truth-Conduciveness

	References

	12 Structures for Epistemic Logic
	12.1 Introduction
	12.2 Epistemic Logic: Language and Axiom Systems
	12.2.1 Multi-agent Notions
	12.2.2 Knowledge and Time

	12.3 Relational Epistemic Structures for Knowledge
	12.3.1 Kripke Models
	12.3.2 Completeness
	12.3.3 Expressivity and definability of Epistemic Models
	12.3.4 Epistemic Temporal Frames
	12.3.5 Interpreted Systems

	12.4 Generalised Structures for Knowledge
	12.4.1 Neighbourhood Semantics
	12.4.2 Topological Semantics

	12.5 Conclusion
	References

	13 Logic and Probabilistic Update
	13.1 Introduction
	13.2 Probabilistic Epistemic Logic
	13.2.1 Probabilistic Kripke Models
	13.2.2 Language and Semantics
	13.2.3 Proof System

	13.3 Probabilistic Public Announcement Logic
	13.3.1 Semantics
	13.3.2 Proof System
	13.3.3 Higher-Order Information in Public Announcements

	13.4 Probabilistic Dynamic Epistemic Logic
	13.4.1 Probabilistic Product Update
	13.4.2 Language and Semantics
	13.4.3 Proof System

	13.5 Further Developments and Applications
	13.6 Conclusion
	References

	14 Belief as a Simplification of Probability,  and What This Entails
	14.1 Introduction: Belief as a Simplification of Subjective Probability
	14.2 The Explication of Simplification
	14.3 Conclusions: A Precise Norm on Belief and Probability
	References

	Part III Games
	15 Logic and Game Theory
	15.1 Introduction
	15.2 Preliminaries
	15.2.1 Notation
	15.2.2 Game Theory
	15.2.3 Basic Modal Logic
	15.2.4 Epistemic Logic
	15.2.5 Model Theory
	15.2.6 Computability and Computational Complexity

	15.3 Games are Process Models
	15.3.1 Interpreting Epistemic-Temporal Languages Over Games
	15.3.2 Perfect Recall and von Neumann Extensive Forms
	15.3.3 Backward Induction in Logic
	15.3.4 Existence of Extensive Games
	15.3.5 When are Two Extensive Forms the Same?

	15.4 Reasoning in Games: Rational Dynamics
	15.4.1 Epistemic Models of Games
	15.4.2 Assuming Rationality

	15.5 The Different Faces of Backward Induction
	15.5.1 Plausibility Models for the Interactive Epistemologist
	15.5.2 Belief Revision Over Time
	15.5.3 Unifying Perspectives on Backward Induction:  Fixed-Point Logic on Trees
	15.5.4 Backward Induction and Iterated Plausibility Upgrade

	15.6 Perspectives
	15.7 Conclusion
	References

	16 Knowledge Games and Coalitional Abilities
	16.1 Introduction
	16.2 Background
	16.2.1 Logic
	16.2.2 Epistemic Logic
	16.2.3 Game Theory
	16.2.4 Logics of Coalitional Ability

	16.3 Epistemics and Coalitional Ability
	16.3.1 Adding Temporal Operators and Strategies
	16.3.2 Knowing That Versus Knowing How

	16.4 Quantification in Dynamic Epistemic Logic
	16.4.1 Arbitrary Public Announcement Logic
	16.4.2 Group Announcement Logic
	16.4.3 Coalition Announcement Logic
	16.4.4 Open Problems

	16.5 Dynamic Epistemic Games
	16.5.1 Public Announcement Games
	16.5.2 Question-Answer Games
	16.5.3 Open Problems

	16.6 Knowledge in Real Games: From Chess to Sudoku
	16.6.1 Chess
	16.6.2 Bridge
	16.6.3 Cluedo
	16.6.4 Pit
	16.6.5 Sudoku

	16.7 Conclusions: Logic in Games
	References

	17 On Definitive Solutions of Strategic Games
	17.1 Introduction
	17.2 New Format of Reasoning About Games
	17.3 Content
	17.4 Logical Presentation of Strategic Games
	17.5 Formalizing Nash Reasoning
	17.6 On Stronger Notions of Rationality
	17.7 Definitive Solutions for Aumann Rationality
	17.7.1 Regular Form of Strategic Games
	17.7.2 Consistency Lemma
	17.7.3 No Definitive Solutions to Multi-equilibria Regular Games
	17.7.4 Definitive Solutions of Regular Games via IDSDS

	17.8 Unique Nash Equilibrium Does not Yield a Definitive Solution
	17.9 Discussion
	References

	18 Logical Player Types for a Theory of Play
	18.1 Reasoning About Games and in Games
	18.1.1 Surprise Moves and Forward Induction
	18.1.2 Players Matter
	18.1.3 Logic and Automata for Player Types

	18.2 Types as Formulas
	18.2.1 Type Specifications
	18.2.2 Game Trees
	18.2.3 Strategies and Plans
	18.2.4 Semantics
	18.2.5 Types in Solution Concepts

	18.3 Growing Types
	18.4 Types as Automata
	18.4.1 Subformulas
	18.4.2 Advice Automata
	18.4.3 Tree Automata
	18.4.4 Automaton Construction
	18.4.5 Complexity

	18.5 Discussion
	References

	19 An Alternative Analysis of Signaling Games
	19.1 The Stag Hunt
	19.2 Lewis' Signaling Problems
	19.3 Signaling Games as Win--Lose Extensive Game  of Imperfect Information
	19.4 Signaling Games as Win--Lose Strategic Games
	19.5 Mixed Strategy Equilibria
	19.6 Skyrms: Inventing the Code
	19.6.1 The Emergence of Disjunction

	19.7 Less Signals Than States: The Indeterminacy of the Game
	19.8 Expressing the Win--Lose Extensive Game in IF Logic
	19.9 Nash Equilibrium Semantics
	19.10 Conclusions
	References

	Part IV Agency
	20 Them and Us: Autonomous Agents In Vivo  and In Silico
	20.1 Introduction
	20.2 Agency from the First-Personal Perspective
	20.3 Agency from the Third-Personal Perspective
	20.4 Higher-Order Intentionality
	20.4.1 Higher-Order Intentionality and Species Intelligence

	20.5 The Human Intentional System
	20.5.1 Autism

	20.6 Agency and Artificial Intelligence
	20.6.1 A Refinement: Practical Reasoning Agents

	20.7 Conclusions
	References

	21 Incorporating Action Models into  the Situation Calculus
	21.1 Introduction
	21.2 Preliminaries
	21.2.1 The Situation Calculus and Golog
	21.2.2 Action Model Logic (AML)

	21.3 A Multi-agent Extension of the Situation Calculus
	21.4 Properties of Beliefs
	21.5 The Embedding Theorem
	21.6 Extended Examples
	21.7 Conclusions
	References

	22 Roles, Rigidity, and Quantification  in Epistemic Logic
	22.1 Introduction
	22.2 The Problem of the Cognitive Fix
	22.2.1 Frege, Russell and the Problem of the Cognitive Fix
	22.2.2 Quine on the Collapse of Modal Distinctions
	22.2.3 Names in Epistemic Logic

	22.3 Formal Framework
	22.3.1 Extension for Counterfactual Attitudes

	22.4 Names in Alethic and Epistemic Logic
	22.4.1 The ``Hintikka-Kripke Problem''
	22.4.2 Representational Versus Interpretational Semantics
	22.4.3 Ignorance of Co-reference Versus Ignorance of Identity
	22.4.4 The ``Hintikka-Kripke Problem'' Resolved
	22.4.5 Two-Dimensional Epistemic Models

	22.5 Quantification into Epistemic Contexts
	22.6 Multiple Agents and Points of View
	22.7 Conclusion
	References

	23 Stit Logics, Games, Knowledge, and Freedom
	23.1 Introduction
	23.2 STIT
	23.2.1 Axiomatics and Interesting Validities

	23.3 STIT and Strategic Games
	23.3.1 Bridging Two Worlds
	23.3.2 Some Conceptual Insights

	23.4 STIT and Matrix Game Logic: Ex Interim Knowledge
	23.4.1 Matrix Game Logic for Epistemic Notions and STIT:  A Formal Comparison

	23.5 Matrix Game Logic, Freedom and STIT
	23.6 Conclusions
	References

	24 The Logic of Best Actions from a Deontic Perspective
	24.1 Logic of Best Actions in Games
	24.1.1 Solution Concepts in Rich Logical Languages:  The Case of Backward Induction
	24.1.2 Solution Concepts in Rich Logical Languages:  More Examples and General Perspective
	24.1.3 Solution Concepts in Minimalistic Logical Languages:  The Logic of Best Action

	24.2 Logics of Best Action as Deontic Logics
	24.2.1 Arguments for a Deontic Perspective  on the Logic of Best Actions

	24.3 The Specific Structure of Obligations and Permissions  from Best Actions
	24.4 The Logic of Obligation as Weakest Permission:  An Overview
	24.4.1 Best Actions in Games as Weakest Permissions

	24.5 Conclusions
	References

	25 When are Two Arguments the Same? Equivalence in Abstract Argumentation
	25.1 Introduction
	25.2 Preliminaries on Abstract Argumentation
	25.2.1 Attack Graphs
	25.2.2 Characteristic Functions of Attack Graphs
	25.2.3 Solving Attack Graphs
	25.2.4 Computing the Grounded Set

	25.3 Attack Graphs and Modal Logic
	25.3.1 Attack Graphs and Kripke Models
	25.3.2 The `Being Attacked' Modality

	25.4 A Modal Notion of Argument Equivalence
	25.4.1 When are Two Arguments Equivalent  w.r.t. the Grounded Set?
	25.4.2 Status Equivalence and Frame Bisimulation

	25.5 Status Equivalence and Argument Games
	25.5.1 Argument Games
	25.5.2 Strategic Equivalence of Arguments  and Status Equivalence

	25.6 Games and Equations
	25.6.1 The Equational Approach to Abstract Argumentation
	25.6.2 Playing Argument Games Through Equations
	25.6.3 Bisimulation, Status Equivalence, Strategic Equivalence and Equational Semantics

	25.7 Conclusions
	References

	Part V Language and Cognition
	26 Three Etudes on Logical Dynamics  and the Program of Natural Logic
	26.1 Introduction
	26.1.1 Overview of Natural Logic

	26.2 The Simplest Fragment ``of All''
	26.2.1 More on Syllogistic Logics

	26.3 Prolegomena to Dynamic Semantics
	26.3.1 Dynamic Semantics of ``and Then''

	26.4 Monotonicity and Polarity Explained  by an Example from Algebra
	26.4.1 Monotonicity in Elementary Mathematics
	26.4.2 Higher-Order Terms Over Preorders  and the Context Lemma
	26.4.3 An Example Grammar

	26.5 Conclusion
	References

	27 From Good to Better: Using Contextual  Shifts to Define Preference in Terms  of Monadic Value
	27.1 Introduction
	27.2 Context-Indexed Value Predicates 
	27.3 Properties of the Derived Preference Relations
	27.4 Reasoning About Contexts
	27.5 Conclusion and Future Work
	References

	28 Arguing About Dynamic Meaning
	28.1 What Dynamics?
	28.2 A Step Back
	28.3 Fact or Fiction?
	28.4 Another Take
	28.5 So What?
	References

	29 Logic of and for Language, and Logic  of and for Mind
	29.1 Formal Languages as Tools for Sharpening our Understanding of Your Mother's Tongue
	29.2 Logics as Specification Formalisms in Model-theoretic Semantics
	29.3 Using Natural Languages as Specification Formalisms
	29.4 Formal Semantics of Natural Language and the Paradox of Analysis
	29.5 Model-theoretic Semantics as a Theory of Natural Language Entailment
	29.6 Entailment in Natural Language: Model Theory or Proof Theory?
	29.7 Recognition of Entailment and Mental Representation of Content
	29.8 Improving Language Skills Through Model-theoretic Semantics
	29.9 Natural Language and Johan van Benthem
	29.10 Logic as the Study of Human Cognition and Human Behavior
	29.11 On the Borderline of Linguistics and Cognition: Sub-lexical Semantics and Ontology
	References

	30 Logic and Complexity in Cognitive Science
	30.1 Introduction
	30.1.1 The Computational Perspective
	30.1.2 Marr's Levels
	30.1.3 The Contributions of Johan van Benthem

	30.2 The Computational Level: Human Behavior
	30.2.1 Is Human Behavior Logical?
	30.2.2 The Frame Problem and Non-monotonic Logics

	30.3 Between Algorithm and Implementation
	30.3.1 Logical Neurons
	30.3.2 The Symbolic Versus Connectionist Debate

	30.4 Computational Complexity and the Tractable Cognition Thesis
	30.4.1 Tractable Problems
	30.4.2 The Invariance Thesis
	30.4.3 The P-Cognition Thesis and Beyond

	30.5 Between Computation and Algorithm: Quantifier  Efficiency
	30.5.1 Complexity and Natural Language
	30.5.2 Johan van Benthem's Semantic Automata
	30.5.3 From Automata to Psycholinguistics

	30.6 The Complexity of Intelligent Interaction
	30.6.1 Plausible Epistemic Representations
	30.6.2 Games and Social Cognition

	30.7 Conclusion
	References

	31 Computational Complexity and Cognitive Science: How the Body and the World  Help the Mind be Efficient
	31.1 The Notion of Complexity in Cognitive Science
	31.2 Complexity in Neural Networks
	31.3 Complexity in Situated Cognition
	31.4 Other Problems Relating to Complexity  and Situated Cognition
	31.5 Conclusion
	References

	Part VI Styles of Reasoning
	32 Dynamic Versus Classical Consequence
	32.1 Introduction
	32.2 Classical Consequence and Truth Preservation
	32.3 Two Views About Consequence
	32.4 Classic and Dynamic Consequence in PAL
	32.5 Classical Consequence Versus Classical Update
	32.6 Conclusion
	References

	33 Dynamic Epistemic Logic as a Substructural Logic
	33.1 Introduction
	33.2 Dynamic Epistemic Logic
	33.2.1 Representation of the Initial Situation: mathcalL-Model
	33.2.2 Representation of the Event: mathcalLα-Model
	33.2.3 Update of the Initial Situation by the Event:  Product Update

	33.3 Substructural Logics
	33.3.1 A Substructural Language
	33.3.2 Updates as Ternary Relations

	33.4 DEL is a Substructural Logic
	33.4.1 An Extended DEL Language
	33.4.2 DEL Operators are Substructural Operators

	33.5 Conclusion
	References

	34 Arrows Pointing at Arrows: Arrow Logic, Relevance Logic, and Relation Algebras
	34.1 Introduction
	34.2 Arrow Logic
	34.3 Routley and Meyer's Semantics for Relevance Logic
	34.4 The Obvious Similarities, and Apparent Differences
	34.5 Relation to Relation Algebras, or Hindsight  is Better than 20--20 Vision
	34.6 Conclusion
	References

	35 Situation Theory Reconsidered
	35.1 Twelve Questions About Situation Theory
	35.1.1 Parts and Persistence
	35.1.2 Constraints and Information Flow
	35.1.3 Infons and Schemes of Individuation

	35.2 Logic and Information Flow in Classifications  and Channels
	35.2.1 Logic of Classification
	35.2.2 Logic and Information Flow
	35.2.3 Information Flow Along a Channel
	35.2.4 Logic in Channels: Core Logics and Distributed Logics
	35.2.5 Normality Reconsidered
	35.2.6 The Natural Logic of a Channel
	35.2.7 Logical Operators

	35.3 Reconstructing Situation Theory
	35.3.1 Situations as Local Logics
	35.3.2 Perspectives as Infomorphisms
	35.3.3 Using van Benthem's Constraint Logic

	35.4 Conclusion
	References

	36 Unified Correspondence
	36.1 Introduction
	36.2 Correspondence via Duality
	36.3 A Calculus for Correspondence
	36.4 Algebraic Soundness of the Calculus for Correspondence
	36.5 Four Conclusions and a Question
	36.6 The van Benthem Formulas
	36.7 Characterizing the Sahlqvist Formulas Across  Different Logics
	36.7.1 The Sahlqvist Inequalities: A General Purpose Definition
	36.7.2 Other Approaches to Syntactic Characterization

	36.8 Three Moves Towards a Unified Correspondence Theory
	36.8.1 Expanding the Target Language with Fixed Points
	36.8.2 Syntactic Generalizations of the Sahlqvist Class
	36.8.3 Correspondence for Propositional Logics with Fixed Points

	36.9 Correspondence Across Different Semantics
	36.10 Conclusions
	36.11 Appendix
	36.11.1 Distributive Complex Algebras and Frames

	References

	ADDENDUM I Reflections on the Contributions
	ADDENDUM II The Life of Logic, a Scientific Autobiography
	ADDENDUM III Bibliography of Johan van Benthem



