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The Universe is a grand book which cannot be read until one first learns to 
comprehend the language and become familiar with the characters in which it is 

composed. It is written in the language of mathematics. 
Galileo Galilei

I dive down into the depth of the ocean of forms, 
hoping to gain the perfect pearl of the formless. 

Rabindranath Tagore

The perfection of chemistry might be secured and hastened by the training of the 
minds of chemists in the mathematical spirit [...]. Besides that mathematical study is 

the necessary foundation of all positive science, it has a special use in chemistry in 
disciplining the mind to a wise severity in the conduct of analysis: and daily 

observation shows the evil effects of its absence. 
Auguste Comte
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CHAPTER 1 

Mathematical Structural Descriptors of Molecules 
and Biomolecules: Background and Applications 

Subhash C. Basak* 

International Society of Mathematical Chemistry, 1802 Stanford Avenue, Duluth, MN 55811 and 
UMD-NRRI, 5013 Miller Trunk Highway, Duluth MN 55811, USA 

Abstract: Mathematical chemistry or more accurately discrete mathematical chemistry 
had a tremendous growth spurt in the second half of the twentieth century and the same 
trend is continuing now. This growth was fueled primarily by two major factors: 1) 
Novel applications of discrete mathematical concepts to chemical and biological 
systems, and 2) Availability of high speed computers and associated software whereby 
hypothesis driven as well as discovery oriented research on large data sets could be 
carried out in a timely manner. This led to the development of not only a plethora of 
new concepts, but also to various useful applications to such important areas as drug 
discovery, protection of human as well as ecological health, and chemoinformatics. 
Following the completion of the Human Genome Project in 2003, discrete mathematical 
methods were applied to the “omics” data to develop descriptors relevant to 
bioinformatics, toxicoinformatics, and computational biology. This chapter will discuss 
the major milestones in the development of concepts of mathematical chemistry, 
mathematical proteomics as well as their important applications in chemobioinformatics 
with special reference to the contributions of Basak and coworkers. 

Keywords: Graph theory, molecular graphs, networks, graph invariant, weighted 
pseudograph, graph theoretic matrices, adjacency matrix, distance matrix, 
topological indices, information theoretic indices, Wiener index, Hosoya index, 
Balaban index, connectivity indices, valence connectivity indices, E-state indices, 
mathematical chemodescriptor, quantum chemical descriptors, hierarchical 
quantitative structure-activity relationship (HiQSAR), differential QSAR 
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(MOA), new drug discovery, environmental protection, prediction of 
property/bioactivity, predictive toxicology, mutagenicity, 2-D gel electrophoresis, 
biodescriptor, mathematical proteomics, spectrum like descriptors, information 
theoretic proteomics descriptors, DNA sequence descriptor. 

INTRODUCTION 

“No human inquiry can be a science unless it pursues its path through 

mathematical exposition and demonstration” 

Leonardo da Vinci 

A contemporary trend in quantitative structure-activity relationships (QSARs), 
new drug discovery, and computational toxicology is the prediction of properties 
of chemicals from their structural descriptors [1-10]. This is conveniently 
expressed by the following equation: 

	 	 	  (1)	

where P is any physical, biological, medicinal or toxicological property of a 
chemical and S symbolizes the subset of its structural features related to the 
property under investigation. 

A perusal of recent published literature would show that various classes of 
calculated properties, viz., topological, geometrical, quantum chemical, 
substructural, are used routinely in predicting properties of interest. This field, 
quantitative structure-activity relationship (QSAR), had its modest beginning at 
the second half of the nineteenth century. In 1968, Crum-Brown and Fraser [11] 
reported that the structure of quaternary compounds was responsible for their 
“physiological activity.” Later, in 1993, Richet [12] observed that the 
toxicological activity of diverse organic chemicals was inversely related to their 
water solubility. 

In 1964, Hansch and Fujita [13] formulated the linear free energy related (LFER) 
method of QSAR combining hydrophobicity of molecules with their electronic 
[14] and steric [15] parameters derived from physical organic chemistry into a 
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multiparameter correlation approach. The linear solvation energy related (LSER) 
technique [16] also is in line with the LFER methodology. 

The common theme among the Richet’s rule and the LFER as well as LSER methods 
is that these are property-property relationships (PPRs), i.e., physicochemical 
properties of chemicals are used to predict their physical or biological properties. Such 
PPR or PAR (property-activity relationship) methods worked well in estimating 
toxicity and biological activity of chemicals which are congeneric. 

But both in drug design and prediction of toxicity of chemicals, however, we have to 
deal with structurally diverse (non-congeneric) chemicals. In many cases, 
physicochemical properties of most of the chemicals under investigation are not 
available. Currently, there are some methods for the calculation of hydrophobicity 
(logP, octanol/ water) of molecules from their structure. But that is not the case for 
many other properties. For example, the current list of industrial chemicals of the 
United States Environmental Protection Agency (USEPA), the well-known Toxic 
substances Control Act (TSCA) Inventory, has over 85,000 substances [17]. The 
majority of these chemicals have no physicochemical or useful toxicity data [18]. 

Also, modern drug discovery protocols that use high throughput screening (HTS) 
and combinatorial chemistry require fast screening of large and structurally 
diverse chemical databases which do not have many experimental property data. 
PPR techniques like the LFER and LSER methods have limited usefulness in such 
cases. A practical approach of addressing this quagmire is to use properties that 
can be derived algorithmically from molecular structure only. Graph theoretical 
invariants, substructures as well as geometrical (3-D) and quantum chemical 
indices fall in this category of properties [2-10]. One problem with quantum 
chemical indices is that for large sets of chemicals such descriptors could be very 
resource intensive [19]. Descriptors derived from molecular topology have been 
widely used in numerous QSAR studies [2-7, 9, 10]. 

MOLECULAR STRUCTURE 

“Ostensibly there is color, ostensibly sweetness, ostensibly bitterness, 
but actually only atoms and the void.” 
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Galen of Pergamon (AD 129–c. 200/c. 216 modern-day 
Bergama,Turkey), 

 in Nature and the Greeks, Erwin Schrodinger, 1954 

In structural chemistry, the term “molecular structure” does not always represent 
the same reality; on the contrary, it probably symbolizes a set of disjoint and non-
equivalent concepts [20]. The representation of a molecule by a particular method 
creates a “model object” which encodes the relationship among its constituents 
[21, 22]. The Greeks represented different fundamental forms of matter by 
mathematical objects like regular polyhedra: fire by tetrahedron, earth by the 
cube, air by the octahedron, and water by icosahedron [23]. Different methods of 
abstraction from the same reality lead to the formulation of the various model 
objects by different practitioners in the field. This is most probably the reason 
behind what chemists call the “molecular structure conundrum” [21]. 

Graph Theoretical Representation of Molecules 

Molecular structure is symbolized by graphs of different types, viz., simple graph, 
multigraph, pseudograph, etc. In a graph G = [V, E], V symbolizes the set of 
points and E is the binary relation on the set V [24]. 

In molecular graph models of chemical structure, the points represent the atoms 
and the bonds among the constituent atoms are symbolized by the binary relation. 
The points may represent either all atoms in the molecule or only the non-
hydrogen atoms, in the latter case the graph being called hydrogen-suppressed 
graph. Basak et al. [25] pointed out that many different types of molecules can be 
represented by weighted pseudographs. In mathematical chemistry and chemical 
graph theory, the common practice is to use hydrogen-suppressed graphs. But 
hydrogen-filled graphs are preferred to the hydrogen-suppressed ones when the 
hydrogen atoms play an important role in the chemistry of the molecule. 

Characterization of Molecular Graphs 

When molecular graphs represent molecules, graph invariants can be used to 
characterize them [26]. Invariants can be conveniently calculated from various graph 
theoretic matrices, e.g., distance matrix, adjacency matrix, etc. Fig. (1) gives the 
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labeled hydrogen suppressed graph of isopentane, its distance matrix, and shows 
how the Wiener index [27], W, can be calculated from the distance matrix. Hosoya 
[28] coined the term “topological index” for invariants of molecular graphs and 
showed that the topological index, W, can be calculated from the distance matrix 
D(G) of a molecular graph G as the sum of entries of the upper triangular submatrix. 

 

Figure 1: Hydrogen-suppressed graph and calculation of Wiener index for isopentane. 

Graph invariants like the Wiener index (Fig. (1)) quantify different aspects of 
molecular structure like shape, size, branching, etc. Currently available computer 
software, e.g., Dragon [29], MolconnZ [30], POLLY [31], APProbe [32], are 
capable of computing many Topological Indices (TIs) including connectivity 
indices [33, 34], electrotopological state indices [2], Triplet indices [35], 
neighborhood based information theoretic indices [36], and information theoretic 
indices developed by Bonchev and collaborators [37, 38]. 

For a detailed exposition of the use of experimental methods of property 
determination in the laboratory vis-à-vis theoretical approaches to property 
estimation using descriptor based QSARs, see refs. [21, 39]. 

STATISTICAL METHODS FOR QSAR MODEL DEVELOPMENT 

As indicated above, many descriptors can be calculated today using software, but 
the number of data points to be modeled is often much smaller than the number of 

Wiener Index, W

W dij
ij

 1 2/

where dij is the distance between vertices vi and vj in G1

36

W = 36 / 2 
= 18

 1 2 3 4 5 Row Sum

1 0 1 2 3 3 9 
2 1 0 1 2 2 6 
3 2 1 0 1 1 5 
4 3 2 1 0 2 8 
5 3 2 1 2 0 8 
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molecular descriptors. In such rank deficient situations, one has to use robust 
methods of statistical model building [40]. For scientifically correct approaches to 
model building, cross validation, and descriptor thinning, see refs. [40-42]. Some 
good examples of QSAR using both chemodescriptors and biodescriptors are 
available in refs. [43, 44]. 

Basak et al. carried out hierarchical QSAR [45-52] of various data sets of 
physical, biomedical, and toxicological properties using topostructural, 
topochemical, geometrical, and quantum chemical descriptors (Table 1). Results 
show that the addiction of quantum chemical indices makes very little or no 
difference in model quality after the use of TIs in model building. 

Table 1: Results of HiQSAR using topostructural, topochemical, 3-D and quantum chemical indices 

Description of Data Set and Property/ Activity Model Quality Enhancement by the 
inclusion of Quantum Chemical Descriptors 

Refs. 

Acute toxicity of benzene derivatives None [45] 

Dermal penetration of polycyclic aromatic 
hydrocarbons (PAHs) 

None [46] 

Mutagenicity of amines (heteroaromatic and 
aromatic) 

None [47] 

Mutagenicity/non-mutagenicity of 508 diverse 
compounds 

None [48] 

Cellular toxicity of halocarbons minimal [49] 

Mosquito repellency of aminoamides None [50] 

Blood: air and tissue: air partition coefficients for 
rat and human 

None [51] 

Aryl hydrocarbon receptor binding affinity of 
dibenzofurans 

None [52] 

Calculated topological indices and substructures of molecular graphs can be 
powerful tools for new drug discovery as shown in Fig. (2). 

For large virtual or real chemical libraries TIs can be used to create descriptor 
spaces quite fast and to cluster large data sets for the management of explosive 
data situation [53]. In the area of computational toxicology, calculated descriptors 
can be used in predicting property and toxicity endpoints related to the hazard 
assessment as well as prediction of modes of action (MOAs) of pollutants from 
their descriptors [10, 19, 21, 34, 36, 44-49, 51, 54]. 
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Figure 2: QSAR-assisted new drug discovery protocol. 

DIFFERENTIAL QSAR TO CHARACTERIZE MOLECULAR BASIS OF 
DRUG RESISTANCE 

In the development of drug resistance, e.g., the emergence of drug resistant 

malaria parasites [55], the target undergoes alterations because of exposure to the 

drug. QSAR developed for a group of 58 cycloguanil derivatives using calculated 

mathematical descriptors showed that only a couple of influential descriptors were 

common between the models for the dihydrofolate reductases (DHFRs) from 

sensitive and resistant Plasmodium falciparum [56]. Differential QSAR of this 

type can help in understanding the mode of alterations in ligand-target interactions 

involved in resistance development. Basak et al. [57] also used this novel method 

in the analysis of bioassay data for five different varieties of DHFRs, one from the 

wild and four from resistant mutant varieties of the malaria parasite. 
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SIMILARITY: BIRDS (AND CHEMICALS!) OF A FEATHER FLOCK 
TOGETHER 

“HAMLET: Do you see yonder cloud that’s almost in the shape of 
a camel? 

POLONIUS: By th’ mass and ‘tis like a camel indeed. 

HAMLET: Methinks it is like a weasel. 

POLONIUS: It is backed like a weasel. 

HAMLET: Or like a Whale 

POLONIUS: Very like a Whale 

William Shakespeare 

Toxicologists and pharmaceutical chemists use the concept of similarity widely 
[58]. When a promising drug candidate is discovered, the drug designer wants to 
know whether its analogs have similar biological properties. One method is to 
search databases like the Chemical Abstract Service (CAS) database containing 
approximately 71 million substances [59]. Such similarity search can be done 
efficiently using similarity methods based on molecular descriptors which can be 
computed fast. 

Most industrial chemicals in USEPA’s TSCA Inventory do not have experimental 
property/toxicity data necessary for their risk assessment [18]. USEPA uses 
QSAR derived from specific class of chemicals or the properties of selected 
analogs to carry out hazard assessment. One first looks for QSAR for the class 
which contains the chemical under investigation. If this does not work out, 
molecular similarity is used based on the notion that similar structures usually 
have similar properties [39, 60-62]. For example, if two chemicals have the same 
pharmacophore, many of their physical and biological properties may be 
analogous. But there are also some exceptions to this notion; e.g. benzene is a 
known carcinogen whereas toluene, with a structure very similar to that of 
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benzene, is non-carcinogenic. Bioisosteric chemicals have similar biological 
targets although they have very little apparent similarity in structure [63]. That 
one can choose and derive mutually different molecular similarity methods 
starting from the same set of computed indices makes the work of similarity 
scientists a difficult one [61, 64]. 

It was noted by Basak et al. that similarity relation is a tolerance relation [65, 66]. 
In selecting analogs for estimating property, because of the nature of the tolerance 
relation, the structure of the analogs become progressively dissimilar as we go 
further and further from the query molecule. Therefore, the researcher must be on 
guard about the utility of the selected analogs using the k-nearest neighbor (KNN) 
approach. Please see Basak et al. [58] for further information on this topic. For the 
estimation of specific property of interest using quantitative molecular similarity 
analysis (QMSA) techniques more effectively, Basak et al. [58] developed the 
method called the tailored QMSA (t-QMSA). Most QMSA methods mentioned 
previously have been called arbitrary or user-defined QMSA by Basak et al. [58, 
67-69]. The tailored similarity method, however, develops structure spaces for 
analog selection considering the property under investigation. 

MATHEMATICAL DESCRIPTORS OF NUCLEIC ACID SEQUENCES 

“If your chromosomes are XYY, 

And you are a naughty, naughty guy, 

Your crimes, the judge won’t even try, 

‘Cause you have a legal reason why 

He’ll raise his hands and gently sigh! 

“I guess for this you get a bye.” 

By Carl A. Dragstedt 

In: Perspectives in Biology and Medicine, Vol. 14, # 1, autumn, 1970 
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In the post-genomic era, a lot of data for DNA, RNA, and protein sequences are 
being generated continuously. We need methods for the characterization of 
sequences so that one can relate such sequences (structures) to their biological 
function. 

In line with the representation-mathematical characterization approach discussed 
earlier [21, 22] in the formulation of graph invariants for molecules, 
representation of sequences of bases in a DNA or RNA strand using graphical 
methods was initiated by various authors including Hamori and Ruskin [70], 
Gates [71], Nandy [72] and Leong and Morgenthaler [73]. For reviews on the 
topic, see Nandy et al. [74] and Randic et al. [75]. 

In the last few years, this field had a tremendous growth spurt in terms of the 
number of papers published on the topic. The present author, however, feels that a 
brief history of the development of this exciting field beginning in 1998 is 
necessary here. Dilip K. Sinha and Subhash C. Basak initiated the Indo-US 
Workshop on Mathematical Chemistry [76] in 1998 with the first event organized 
at the Visva Bharati University, Santiniketan, West Bengal, India. Raychaudhury 
and Nandy [77] presented a paper on mathematical characterization of DNA 
sequences using their graphical method [72]. This caught the attention of Basak 
who subsequently developed a research group on the mathematical 
characterization of DNA/RNA sequences using funding from the University of 
Minnesota Duluth-Natural Resources Research Institute (UMD-NRRI) and 
University of Minnesota. This led to the publication of the first couple of papers 
on DNA sequence invariants [78, 79]. The rest of the development of DNA/RNA 
sequence invariants and mathematical descriptors is self evident on the pages of 
numerous international journals. 

DESCRIPTORS FROM MATHEMATICAL PROTEOMICS 

Contemporary sequencing, microarray, proteomics, and related techniques 
generate a lot of information on sequences as well as cellular transcription, 
translation, and post-translational modification processes. 

The two-dimensional gel electrophoresis (2-DE) technique gives us information 
on the abundance, mass, and charge of proteins at a particular moment of time. It 
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is a daunting task to manage such a huge amount of information. Basak and 
coworkers [80-83] developed various mathematical proteomics approaches for the 
quantitative characterization of proteomics maps generated by the 2-DE methods. 

COMBINED USE OF CHEMODESCRIPTORS AND BIODESCRIPTORS 
FOR BIOACTIVITY PREDICTION 

Beneficial or deleterious property (P) or biological response (BR) generated by 
chemicals, is the consequence of ligand-target interactions. This may be expressed by: 

P or BR = f (S, B) (2) 

where P/BR represent the observed property or bioactivity and B symbolizes the 
biochemical part of the target system which is perturbed by the chemical to 
produce the effect. The factor S solely determines BR when the nature of B is 
practically the same from chemical to chemical. Under such circumstances, Eq. 2 
approximates to: 

BR = f (S) …. (3) 

Please note that Eq. 3 is identical with Eq. 1 above, the accepted paradigm of the 
field of QSAR 

But often chemical-biological interactions are not as simple as depicted by Eq 3 
and so in many cases the chemical structure of the ligand alone cannot predict the 
biological action of molecules effectively. This is more evident in complex 
biological responses such as chemical carcinogenesis where chemical structure 
alone has been found to be grossly inadequate for a reasonable prediction of 
bioactivity of chemicals. In such cases, the experts have recommended the use of 
some biological criteria along with structural criteria in developing estimation 
methods for cancer risk. Arcos [85], for example, suggested the use of specific 
biological data, e.g., degranulation of endoplasmic reticulum, peroxisome 
proliferation, unscheduled DNA synthesis, anti-spermatogenic activity, etc. as 
biological indicators of carcinogenesis. 

Basak and coworkers [8, 9, 43, 83, 84] reasoned that in the structural-functional 
pair of criteria for the prediction of bioactivity, calculated chemodescriptors can 
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represent the structural aspects and proteomics based biodescriptors mentioned 
above can be looked upon as functional criteria. In order to carry out this line of 
research, we needed substantial grant funding and collaboration of experimental 
proteomics research groups. Fortunately we got outstanding collaboration from 
Dr. Kevin Geiss of Wright Patterson Air Force Base and Dr. Frank Witzmann of 
Indiana University in the experimental areas and were supported in our 
mathematical proteomics research by the following US Air Force grants awarded 
to Subhash C. Basak as the principal investigator: 

1) Integration of biodescriptors and chemodescriptors for predictive 
toxicology: A mathematical/computational approach, US Air Force 
Office of Scientific Research, 11/2000 – 10/2001. 

2) Use of biodescriptors and chemodescriptors in predictive toxicology: 
A mathematical/computational approach, US Air Force Office of 
Scientific Research, 3/2002 – 2/2005. 

3) Predicting chemical toxicity from proteomics and computational 
chemistry: An integrated approach, US Air Force Office of Scientific 
Research, 7/2005 – 1/2008. 

In our earlier studies [49, 86], we reported HiQSAR of a set of 55 halocarbons on 
cell level toxicity. Because this group of chemicals is very important as synthetic 
chemistry agents and also as environmental pollutants, a subset of fourteen 
halomethanes, haloethanes, and ethylenes were chosen for the proteomics study. 
Six cell level toxicity data, viz., mitochondrial function (MTT), membrane 
integrity (LDH), total cellular thiols (SH), lipid peroxidation (LP), reactive 
oxygen species (ROS), and catalase activity (CAT), were determined for these 
chemicals. Proteomics analysis of the exposed cells was carried out by Dr. Frank 
Witzmann at the Indiana University and the data were provided to Dr. Subhash C. 
Basak’s group at the University of Minnesota. For QSAR modeling, we calculated 
the chemodescriptors by software mentioned above and included quantum 
chemical indices. For biodescriptors, we used map information content [81], 
spectrum like descriptors [82] and subsets of spots (SOS) deemed important by 
the toxicologists. The details of ridge regression results using the above chemo- 



Mathematical Structural Descriptors Advances in Mathematical Chemistry and Applications, Vol. 1, (Revised Edition)   15 

and biodescriptors are not given here for brevity. To give a brief summary, in 
terms of cross validated R2 using ridge regression, the results were: 1) MTT had 
best predictive model using a combination of chemodescriptors and map 
information content [81] calculated from halocarbon exposed proteomics patterns; 
2) LDH was best predicted by chemodescriptors and spectrum like descriptors 
[82]; 3) TI and SOS gave best results for SH toxicity data; 4) Chemodescriptors 
plus MIC gave best results for LP; 5) ROS was most effectively predicted by 
computed chemodescriptors with absolutely no improvements in model quality 
with the addition of all classes of biodescriptors; 6) CAT also was best predicted 
by the computed chemodescriptors with marginal improvement in the 
effectiveness of predictability with the addition of proteomics based quantitative 
biodescriptors and SOS selected by the toxicologist. So, it may be said that neither 
chemodescriptors nor biodescriptors alone had sufficient information capable of 
predicting all the six cell level toxicity data generated for the halocarbons. As 
more data is available over time, researchers can attempt such approaches on 
newer and larger data sets to compare the effectiveness of chemodescriptors 
versus biodescriptors in predictive pharmacology and toxicology. 

CONCLUSION 

“All generalizations are dangerous, even this one”. 

Alexandre Dumas 

At this juncture, after reviewing results of a large number of QSAR/QSTR studies 
using chemodescriptors and biodescriptors, we may ask ourselves: Quo Vadimus? 
We have seen that calculated chemodescriptors are capable of predicting 
physicochemical, pharmacological, and toxicological properties as well as toxic 
modes of action of chemicals. Research using biodescriptors of different types 
also shows that such descriptors derived from proteomics maps have reasonable 
power in discriminating among structurally and mechanistically related toxicants. 
Can we, at this stage, opt for either chemo- or biodescriptors alone? The answer is 
NO, as evident from our experience with the six cellular toxicity endpoints of 
halocarbons. This shows that in the foreseeable future in predictive pharmacology 
and toxicology we will need an integrated QSAR (I-QSAR) approach consisting 
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of both chemodescriptors and biodescriptors in order to obtain the best results, as 
shown in Fig. (3) below. 

Figure 3: Integrated QSAR, combining chemodescriptors and biodescriptors. 

This is analogous to the combination of structural and functional criteria proposed 
by Arcos [85] more than two decades ago for the assessment of chemical 
carcinogenesis; however, in the post-genomic era we can use more sophisticated 
genomics and proteomics data as the source of biodescriptors as opposed to the 
classical laboratory bioassay and test data. 

Applications of discrete mathematical techniques to chemistry had a great growth 
spurt around the middle of the twentieth century. More recently, such methods 
have been applied for the characterization of the “omics” data also, as evident 
from the results reviewed here. We reproduce the editorial by Dilip K. Sinha and 
Subhash C. Basak to point out this expanding “chemobioinformatics continuum.” 

GUEST EDITORIAL 

Fourth Indo-U.S. Workshop on Mathematical Chemistry, 

January 8-12, 2005, Pune, Maharashtra, India 

“The Fourth Indo-U.S. Workshop on Mathematical Chemistry with applications in 
drug design, risk assessment of chemicals, chemoinformatics, bioinformatics, 

TS  TC Geo QC

Chemoinformatics Bioinformatics 

DNA Descriptors 

Gene Expression 

Proteomics 

I-QSAR
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computational biology, and toxicology was held on January 8-12, 2005, in Pune, 
Maharashtra, India, under the joint sponsorship of the Natural Resources Research 
Institute (NRRI) of the University of Minnesota, Duluth, USA, and the University of 
Pune. This issue of the Journal of Chemical Information and Modeling contains 
papers presented at the workshop. The concept of the Indo-U.S. workshop series was 
originally conceived by Subhash Basak, a senior scientist at NRRI, and received 
enthusiastic support from Dilip K. Sinha, a mathematician and educator from India. 
Together, Basak and Sinha have remained the chairpersons of the biennial, 
international Indo-U.S. Workshop series from the USA and India, respectively. The 
first event of the series was held in 1998 at Visva Bharati University, India, where 
Dilip Sinha was the vice chancellor at that time; the second and third workshops 
were organized by NRRI on the campus of the University of Minnesota, Duluth. The 
success of the Fourth Indo-U.S. Workshop, with the participation of over 125 
participants from five continents, shows that the workshop series has established 
itself as one of the most important conferences in the field. The quality of the 
presented papers published in this volume after peer review demonstrates the high 
standard of scientific discourse taking place at the workshop. 

“Discrete mathematical chemistry has made important advances in 
the past 25 years. This has been fueled primarily by two factors: (a) 
the formulation of new concepts and (b) easy access to high-speed 
computers. Methods developed in this field have found applications in 
pharmaceutical drug design and hazard assessment of environmental 
pollutants. Interestingly, discrete mathematical concepts, originally 
developed for the characterization of chemical systems, are being 
extended to deal with the explosion of data in “omics” science, 
namely, genomics, proteomics, and so forth. A few of the 17 papers 
from the Fourth Indo-U.S. Workshop presentations published in this 
issue of JCIM are outstanding examples of this expanding chemo-
bioinformatics continuum.” 

“By Dilip K. Sinha, Chairperson (India), Indo-U.S. Workshop on 
Mathematical Chemistry Series; Subhash C. Basak, Chairperson (USA), 
Indo-U.S. Workshop on Mathematical Chemistry Series and President, 
International Society of Mathematical Chemistry” 
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Reprinted with permission from (J. Chem. Inf. Model. 2006, 46, 1-1, 1). 
Copyright (2006), American Chemical Society. 

Whereas different fields of science usually have their tight boundaries like silos, 
in today’s knowledge based interdisciplinary research environment often such 
boundaries are being shattered for the benefit of all. One important application of 
discrete mathematical methods to science is network analysis [86]. Many basic 
philosophical issues related to the applications of discrete mathematics to 
chemical and biological systems have been discussed by Basak [87] in an article 
published in HYLE. 
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CHAPTER 2 

Ordering Thinking in Chemistry 

Guillermo Restrepo* 

Laboratorio de Química Teórica, Universidad de Pamplona, Pamplona, Colombia 

Abstract: We give some basic mathematical ideas of partially ordered sets (posets), 
which frame into the mathematical way of thinking illustrated in the Erlangen 
Programme by Felix Klein. The programme entails extracting relevant variables to 
study, symbolising them and relating them through a function. We show several 
examples where the mathematical way of thinking, restricted to partial orders, is found 
in chemistry. The examples are: Geoffroy’s affinity table, benzene’s structure, posetic 
predictive methods, multicriteria situations and derivation of concepts. Finally we 
question the ranking process by showing how it disregards its underlying, and not 
always recognised, posetic nature. 

Keywords: Partial order, partially ordered sets, mathematical way of thinking, 
erlangen programme, posets, mathematical chemistry, ranking, affinity tables, 
benzene’s structure, posetic predictive methods, multicriteria approaches, formal 
concept analysis, mutagenicity, estimation of properties, philosophy of chemistry. 

INTRODUCTION 

Ordering is important in daily life routines as it pervades decision making 
processes [1]. We are always interested in making the best decision based on 
different attributes of the possible decisions to come up with an ordering of the 
possibilities. It has been found [2] that in a conversation, where several people 
talk about a particular subject, the order in which they discuss is important, for 
listeners report as their own memory what the first speaker reported more than 
what a subsequent speaker reported. 

Rudolf Arnheim, film theorist and perceptual psychologist, defined order as “the 
degree and kind of lawfulness governing the relations among the parts of an 
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entity” [3]. According to Lorand [4], Arnheim definition suggests that order i) 
resides in complex systems, for these systems have distinct parts; ii) is 
quantitative, i.e. one can talk about degrees of order; iii) consists of relations 
amongst the parts of the systems and iv) is lawful as it involves a law or 
principle governing the relations amongst the parts. Now, let us find the 
mathematical ideas behind Arnheim’s and Lorand’s assertions. The idea of sets 
is behind complex systems, where its constitutive parts are set elements. If total 
orders are taken as a reference, then one can establish measures of nearness to 
that total order; in that sense one can quantify the degree of order of a set. By 
total order is meant a set where each element of the set can be associated to a 
unique natural number. A more formal definition of total order is given below. 
The relations mentioned by Lorand correspond to mathematical relations, 
particularly to order relations as we will show below. Finally, lawful can be led 
to mathematics by relating it with a principle of ordering that depends on the 
context, i.e. given a set of elements, they can be ordered in manifold ways 
depending on the attributes of the elements considered for the ordering. A more 
formal definition of order is given below. 

Ordering has quite a lot of importance in different fields of knowledge and in 
particular applications, e.g. rankings. A ranking is a derived product of an 
ordering and its proliferation has led to find rankings of universities [5, 6], health 
systems [7], biodiverse ecosystems [8], scientific journals [9] and even scientists 
[10]. Ranking is present too in document retrieval processes [11, 12] and even in 
search engines exploring the World Wide Web such as the PageRank [13] of 
Google. 

In economy, for example, ordering is found in the arrangement of countries based 
on their public level of satisfaction regarding different public services [14]; in 
studies on diversity, it has been proven that the different diversity measures 
underlie a general order [15]. One of the aims of observational studies [16] is to 
measure the effect of a cause, e.g. a medical treatment; which yields an ordering 
on a control set and on a treatment set. 

In the following section we discuss in detail some orderings in chemistry, 
particularly those in which the authors have been active, and refer the reader to 
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important reviews on the subject. Such a section has also comments on recent 
works on the mathematical way of thinking, which are explained and combined 
with order ideas. 

MATHEMATICAL WAY OF THINKING 

In a recent paper [17] we argue that mathematical chemistry is the realisation of 
the mathematical way of thinking as discussed by Weyl [18]. This approach 
follows the functional thinking after Felix Klein’s [19] Erlangen Programme. The 
general idea is to look for variables, symbols and functions of the problem 
tackled; for the particular case of mathematical chemistry the three components of 
the thinking are looked for in events of chemical interest [20]. These components 
are related in the following way: i) by treating a chemical situation, the scientist 
looks for its characterisation through variables that are filtered and reduced to a 
small amount of relevant ones. The selected variables are then abstracted through 
their symbolisation, which finally leads to finding functions relating the selected 
variables. 

An example of the mathematical way of thinking, followed in several of the 
chapters of the current book, is the prediction of substances’ properties based on 
their molecular structure. Note the selection of the molecular structure as a 
relevant variable, for several other substances’ features could be selected, e.g. 
experimental properties as the initial QSAR approaches by Hansch [21]. The 
molecular structure can then be characterised by several ways, e.g. using 
molecular descriptors [22] or fingerprints [23]. At this point, the problem of 
predicting substances’ properties based on their molecular structure has led to the 
relevant variables: molecular descriptors and mutagenicity (if the property of 
interest is mutagenicity, for example). Then, one proceeds to the second step, 
which is the symbolisation of those variables, e.g. d1, d2, …, dn for the n 
descriptors and m for mutagenicity. Finally, the functional thinking is completed 
when a function of the form m = f (d1, d2, …, dn) is found. Some other examples 
of the chemical thinking are shown in reference [17]. 

As this particular chapter deals with order in chemistry, we now introduce some 
formal ideas of order theory. 
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Definition 1. A binary relation ≼ on a non-empty set X is called a partial order if: 

1. x ∈ X ⟹ x ≼ x. 

2. x, y ∈ X, x ≼ y and y ≼ x ⟹ x = y. 

3. x, y, z ∈ X, x ≼ y and y ≼ z ⟹ x ≼ z. 

Which makes ≼ a relation fulfilling reflexivity, antisymmetry and transitivity. The 
set X along with ≼ is called a partially ordered set (poset) and is denoted by (X, ≼). 

Definition 2. Given x, y ∈ X, they are called comparable if either x ≼ y or y ≼ x, 
otherwise they are incomparable. 

Definition 3. For any x, y ∈ X, y covers x (x is covered by y) if x ≼ y and there is 
no z ∈ X for which x ≼ z and z ≼ y. This is denoted by x ≼: y. 

Definition 4. Let H = (X, C) be a directed graph of (X, ≼), where C is the set of 
directed edges containing the cover pairs in X. H is called the Hasse diagram of 
the poset (X, ≼) if it is drawn in the Euclidean plane whose horizontal/vertical 
coordinate system requires that the vertical coordinate of x ∈ X be larger than the 
one of y ∈ X if y ≼: x. 

Some particular instances of order theory in chemistry are Geoffroy’s affinity 
table (see below), Ruch’s algebraic description of chirality [24-26]; Randić’s 
approaches to molecular structure [27], Halfon et al. ordering of substances in 
environmental chemistry [28]; Brüggemann’s further mathematical explorations 
of Halfon et al. approach [1, 29, 30] and Klein’s approaches to estimate 
substances’ properties [31-34]. An in-deep discussion on posets in chemistry is 
found in Ref. [35] and in the several papers of MATCH Communications in 
Mathematical and in Computer Chemistry, Volume 42 (2000). 

ORDER THEORY IN THE MATHEMATICAL WAY OF THINKING IN 
CHEMISTRY 

In the following discussion we show some examples of order theory meeting the 
mathematical way of thinking in chemistry. 
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Geoffroy’s Affinity Table 

Following Cartesian philosophy, in 17th century France, several scholars 
developed the vision of a rational, mathematized chemical knowledge, being 
Etienne-François Geoffroy (1672-1731) one of them. Geoffroy introduced the 
Table des differents rapports observés entre differentes substances (Fig. (1)). He 
wanted a table containing the different rapports (relations) of the “principal 
matters one is accustomed to work on in chemistry” [36]. The table soon became 
not only a collection of information but also a tool for predicting salts and their 
chemical reactions [17]. 

 

Figure 1: Table of affinities by Geoffroy 1718. 

The table is interpreted as follows: i) the top row has different substances 
employed in 17th-century chemistry; ii) below each of them, different substances 
are ordered according to their strength of affinity regarding the top substance. As 
an example, let us take the first column (left hand side), headed by acid spirits 
followed by fixed alkali salt, volatile alkali salt, absorbent earth and metallic 
substances. The column shows that fixed alkali salt reacts more favourably with 
acid spirits than the other substances down the column and that it displaces all 
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substances below it from their existing combination with acid spirits. The column 
shows that volatile alkali salt displaces absorbent earth and metallic substances 
from their combinations with acid spirits but does not displace fixed alkali from 
its combination with acid spirits. As pointed out in reference [17], Geoffroy found 
order amongst substances based on their reactivity with reference to a substance 
(top of the column). The chemical context [20], a relational one, is highlighted in 
the table as in the second column headed by acid of marine salt, silver reacts more 
favourably with the acid in question than mercury. This behaviour contrasts with a 
different context, e.g. nitrous acid (third column), where the order is reversed and 
mercury reacts more favourably with nitrous acid than silver [36, p. 136]. 

Geoffroy’s table meets the mathematical way of thinking as follows: 

1. Variables: chemical substances customarily employed in the 17th 
century. 

2. Symbols: those depicted in Fig. (1). 

3. Functions: order relationships shown in each column of Fig. (1). 

Fig. (2) shows an example of the function applied to the first column of Fig. (1). 

 

Figure 2: Order relation of the substances depicted in the left-hand-side column of Fig. (1) 
regarding their affinities towards acid spirits (top of the column); 1 indicates the greatest affinity, 4 
the lowest one. 

Benzene’s Structure 

In [32] Klein and Bytautas discuss how ordering of substances and their isomeric 
substituents were fundamental for finding the hexagonal symmetry of benzene 
molecules. The authors mention that Hässelbarth [37] proved that by counting the 
number of isomers at the different degrees of substitution, a wealth of the molecular 
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symmetry can be known. Posets come into play as the way of relating substances by 
substitutions, for example. Klein and Bytautas claim that those posets, although not 
drawn explicitly in Kekulé’s times (19th century), were relevant for the discussion on 
the molecular structure of benzene, i.e. a hexagon or a trigonal-prism structure. 
Geometrical aspects of molecules were normally disregarded in the 19th century and 
the inclination towards the hexagonal symmetry came finally with chemical reasons, 
e.g. chemical reactions by von Baeyer suggesting a better interpretation if the two 
substituted sites in the ortho isomer were geometrically adjacent or considering the 
number of naphthalene isomers [32]. Despite disregarding geometrical aspects of 
molecular structure that give place to symmetry, Klein and Bytautas show that 
symmetry considerations when treating the hexagon and the trigonal-prism lead to 
different numbers of isomers, which would have clearly differentiated both 
structures in favour of the hexagonal symmetry (Fig. (3)). However, 19th-century 
chemists were more akin to connectivity in atoms, more oriented towards graphs, 
than to geometrical assembles. 

 

Figure 3: Posets for substituted benzenes with A) hexagonal and B) trigonal-prismatic geometry. 
In A and B the molecular skeleton is represented by a hexagon and by a trigonal-prism, 
respectively, where the carbon bonded to the substituted hydrogen is represented by a black circle. 

A B
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These posets meet the mathematical way of thinking as follows: 

1. Variables: substituted sites, levels and number of isomers. 

2. Symbols: s, l and i. 

3. Functions: s ⟶ l ⟶ i. 

Each molecule is characterised by its number of substituted sites, thence the 
values s can take are {0, 1, …, 6}. A level is defined as the set of molecules in the 
poset having equal number of substituted sites, i.e. l = {x | x of the poset having  
l ∈ s substituted sites}. The cardinalities of the different values l can take are {1, 
1, 3, 3, 3, 1, 1} for the poset in Fig. (3)A and {1, 1, 4, 4, 4, 1, 1} for the poset in 
Fig. (3)B, with the levels arranged in increasing order according to their number 
of substituted sites. Finally, the function l ⟶ i assigns to the cardinality of each 
level a number of isomers with l substituted sites. 

Posetic Predictive Methods 

The kinds of posets shown in Fig. (3) have been further explored by Klein and 
coworkers [31-35], who have devised three estimative methods of the properties 
of the molecules in the poset by mathematical algorithms able to move in the 
network created for the posets. These methods are called average, cluster 
expansion and splinoid and are further discussed in Ref. [38, 39]. 

As an example, we explain the cluster expansion method that calculates the 
property P(x) of molecule x using features z(y) of all y comparable to x, with x, y 
∈ (X, ≼). 

, ⋅

≽

 

The expansion makes use of the number n(y, x) of ways in which configurational 
arrangements C’ ∈ y occur as substructures in a configuration C ∈ x. Parameters z(y) 
may be derived by a fitting procedure where the cluster expansion may be 
conveniently truncated to a limited sequence of non-zero cluster terms z(y), and so 
applied when the earlier terms alone give a good approximation for the property P. 
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These posets meet the mathematical way of thinking as follows: 

1. Variables: comparabilities, configurational arrangements, fitting 
parameters and property to be estimated. 

2. Symbols: x ≼ y, n, z and P. 

3. Functions: x ≼ y ⟶ n(y, x) ⟶ P(x). 

Some examples of application of these posetic approaches are in the estimation of 
properties of substituted benzenes, toluenes, cubanes [39] and hemoglobins [38], 
to name but a few cases. 

Multicriteria Situations 

In multicriteria analysis, important for decision making processes [40], the 
elements of a set are ordered based on their characterisation that considers several 
criteria or features of the elements. This approach has been further explored in the 
so-called Hasse diagram technique (HDT) [1,29,41], whose seeds are found in 
Halfon et al. studies [28]. 

In HDT, elements , ∈  are characterised by features , , … ,  
and , , … , , respectively;  is ordered lower than  ( ≼ ) if all 
its features are lower in magnitude than those of , or if at least one feature is 
lower for  while all others are equal, which gives place to comparabilities. If all 
features of  and  are equal, both objects are called equivalent. If at least one 
feature  satisfies  while the others are opposite ( ), 

 and  are incomparable. 

A recent application example of the HDT was the estimation of octanol/water 
partition coefficients of chlorophenols [42], where each chlorophenol, including 
phenol, was associated to a multi-indicator system by considering the five 
positions around the phenyl-group as components qi of a vector characterising 
each chlorophenol (the numbering system used is shown in Fig. (4) along with the 
derived poset). The value qi for the substance x is assigned as follows: 

1 if in the -th position a H atom is bonded
0 otherwise
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Hence, the characterisation of o-chlorophenol is (0, 1, 1, 1, 1), while (0, 1, 0, 1, 0) 
is the one of 1,3,5-trichloro-phenol. 

 

Figure 4: Poset of chlorophenols where the aromatic ring is represented by a hexagon and the 
carbon bonded to the substituted hydrogen is represented by a black circle. Top right phenol 
indicates the numbering convention used in the current chapter. 

Once building up the poset, linear extensions and heights are introduced as 
follows: let Li be a linear extension, i.e. a total order preserving all order relations 
in the poset. A total order is a poset where each couple of elements is comparable. 
In a finite set X, each linear extension has a least element. The height h(x, Li) of 
an element x regarding the linear extension Li is given by counting the number of 
elements in I(least, x) fulfilling least ≼	 y ≼	 x, being I(least, x) the interval 
corresponding to objects least and x (the interval is defined as ∈ 	|	 ≼
≼ , with least, x  X). The average height of x, hav(x), is calculated [43] as 

follows: 

∑ ,
 

with LT being the total number of linear extensions of the respective poset 
through the HDT. 

1

2
3

4

5
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Brüggemann et al. [42] devised a method to relate hav with the octanol/water 
partition coefficients (KOW) of chlorophenols in Fig. (4). In general, the model is 
of the form KOW = f(hav). 

This HDT approach meets the mathematical way of thinking as follows: 

1. Variables: comparabilities, average height and property to be 
estimated. 

2. Symbols: x ≼ y, hav and KOW. 

3. Functions: x ≼ y ⟶ hav(x) ⟶ KOW(x). 

Derivation of Concepts 

One of the successes of mathematical chemistry, exemplified in several chapters 
of the current book, has been the development of methodologies for QSAR 
(Quantitative Structure-Activity Relationships) or more generally speaking QSPR 
(Quantitative Property-Activity Relationships), which in several cases circumvent 
the high costs in time and resources of experimental tests, e.g. toxicity. QSPR 
methods are based on the mathematical description of the molecular structure 
associated to the substances under study [44-47], where mathematical models 
depending on descriptors characterising the molecular structure are devised. In 
reference [17] we show how this approach meets the mathematical way of 
thinking in chemistry. QSPR models look for relating structural features of 
molecules with their properties; however the contrary relation is not an easy task 
by using these approaches [48-50]. This is mainly caused by the complexity of the 
models, which are customarily algebraic combinations of molecular descriptors 
that do not allow a straightforward interpretation of the model. The interpretation 
is also difficult as the meaning of molecular descriptors is not always an easy task. 

These shortcomings have led several authors to develop alternative methods 
avoiding the numerical description of molecular structure (descriptors) and 
instead considering the graph associated to the structure as the molecular 
representation. One example of these approaches is the one by Bemis and Murcko 
[51], where the molecular structure is regarded as a framework made of ring 
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systems and linkers, disregarding side chains. In this methodology atom identitites 
are not considered, i.e. all atoms are regarded as equivalent ones (there is no 
distinction between N, O, C, etc.). Some other non-numerical characterisations of 
molecules are found in references [52, 53]. 

One approach to relate the aforementioned characterisations of molecular 
structure with properties and the reverse relation is through Formal Concept 
Analysis, a data analysis technique based on order theory, where elements to 
order are described by attributes. The technique was introduced by Wille [54] and 
a brief description of it is the following [55] (for more details, see references 
[54,56, 57]): 

i). The method starts with a context i.e. a matrix where rows are labelled 
with elements (in this case, molecules) and columns with attributes 
(non-numerical molecular characterisations and different scales of the 
property of interest). The entries of the matrix are 1s or 0s; 1 
indicating the presence of the attribute of the column for the attribute 
of the row and 0 the absence of the attribute for that element. 

ii). Based on the context, all possible concepts are found. A concept being 
a subset of elements (extent) uniquely characterised by a given subset 
of attributes (intent), which in turn uniquely describe the given set of 
elements. 

iii). The concepts are ordered by set inclusion of their extents and intents, 
which leads to a particular poset, a lattice. 

iv). Different implications i.e. relationships between attributes are 
obtained based on the order relations between concepts. 

v). Associations are also derived; in this case it is possible to calculate the 
probability of a statement relating attributes by taking advantage of 
the number of objects meeting the respective association. 

In Ref. [55] we applied FCA to the study of 95 heteroaromatic amines 
characterised by molecular frameworks and experimental mutagenicity scales for 
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the amines. The results are summarised in Fig. (5), where each node in the lattice 
contains two kinds of information: a set of mutagenicity scales (coloured boxes) 
and a set of frameworks. Once a node is selected, all those nodes found in a 
downward path give information about the node selected, e.g. if we are interested 
in the node marked with *, then the respective node shows that the molecular 
frameworks of two 6-ring systems connected by two atoms, two fused 6-ring 
systems and one 6-ring system are related to low-low mutagenicity, i.e. lowest 
mutagenicity. One of the associations found in the study shows that lowest 
mutagenicity is related to 6-ring systems with 83% probability [55]. 

 
Figure 5: Lattice of molecular frameworks and mutagenicity scales, where the node (a concept) 
marked with * is further explained in the text.  

This posetic approach meets the mathematical way of thinking as follows:  

1. Variables: molecular frameworks and mutagenicity.  

2. Symbols: fr and m.  

3. Functions: fr ⟶ m and m ⟶ fr.  

Another FCA application, this time to radionuclides used in diagnosis, is found in 
reference [58]. 

High-high
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Medium-high
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Low-high
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CONCLUDING REMARKS 

The examples of order theory in chemistry shown in the current chapter are a clear 
illustration of the presence of order theory in chemistry and of their different 
opportunities in mathematical chemistry. Perhaps the most important conclusion 
from this chapter is that by using the mathematical thinking in chemistry 
(particularly restricted to order theory) several chemical situations can be 
formalised. Hosoya [59] has claimed that all in all, chemists and mathematicians 
do not differ to a large extend in the kind of logic used. Something early 
recognised by Kant when stating that chemistry is the “paradigm for the method 
of critical philosophy”1. 

Through the chapter we have tried to make clear that it is not always possible to 
end up with a total order. As we have shown, incomparabilities are common in 
order studies, e.g. substituted benzenes in a particular level of Klein’s posets. A 
particular popular kind of total order is the already mentioned ranking, which as 
discussed by Solomon [15], Klein and Babić [31, 61] and Restrepo [62], entails a 
partial order. The point to stress, and the criticism to rankings, is the fact of 
disregarding the underlying poset, which makes the mapping of the poset onto the 
reals a subjective process. This subjectivity justifies the distress of several 
institutions and authors to rankings [63, 64]. Solomon [15], for example, has 
shown that the discrepancies in diversity measures used in ecology are due to the 
different linear extensions a poset resulting from abundance vectors may produce. 
In other words, each diversity measure may show a particular linear extension of 
the same poset. Klein and Babić [31, 61], point out that posets may be deeply 
related to experimental sciences through the measuring process, where 
ambiguities resulting from measurements might be explained as the result of 
measuring elements, which in reality must be considered as incomparable. Hence, 
the measuring method may force the incomparabilities to be comparable and, 
because of the different possibilities to do this [65, 66], the outcomes may be 
different, therefore “ambiguous”, in a systematically controlled way. All these 
examples make ponder on the reason and tendency of humans to map everything 

                                                            
1 This contrasts with Kant’s, unfortunately, famous assertion that “chemistry can become nothing more than systematic art 
or experimental doctrine, but never science proper”. In [60] we showed that Lavoisier and his systematization of a big part 
of 18th-century chemistry played an important role in Kant’s change of mind. 
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onto the reals [62]. As Klein [35] has pointed out, perhaps not everything is 
numerical in nature. Perhaps the urgency for mapping onto the reals distorts the 
object to study and it is better to look for other ways of understanding the object 
avoiding the reals. All in all, it is possible to do mathematics and understand 
phenomena not necessarily going to the kingdom of numbers [67]. 
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Abstract: Graph theory based descriptors of molecular structure play important role in 
QSPR/ QSAR models. This chapter reviews some attempts to optimize the 
characterization of molecular structure via an integrated representation that accounts in 
a systemic manner for the contributions of all substructures. In its simplest version this 
approach counts the subgraphs of all sizes, the resulted single number being shown to 
be a very sensitive measure of structural complexity. The most complete version builds 
(i) an ordered set of counts of subgraphs of increasing number of edges, (ii) weights 
each subgraph with the value of selected graph-invariant, building a weighted ordered 
set, and (iii) sums up all the subgraph contributions to produce the overall value of the 
graph-invariant. The invariants tested include vertex degrees, vertex distances, and the 
graph non-adjacency numbers, the corresponding overall topological indices being 
called overall connectivity, overall Wiener, overall Zagreb and overall Hosoya indices. 
Their properties are analyzed in detail in acyclic and cyclic graphs. It is shown that they 
all are reliable measures of molecular structural complexity, increasing in value with the 
basic complexifying patterns of branching and cyclicity of molecular skeleton. The 
structure-property models derived for 10 physicochemical properties of alkane 
compounds show considerable improvement compared to models derived from 
molecular connectivity indices. The latest extension of these ideas is demonstrated with 
extended connectivities, walk counts, and Bourgas indices, the latter of which are the 
first integrated measures of graph complexity and vertex centrality. 
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INTRODUCTION 

Molecules of chemical compounds exist in a stunning variety of shapes described 
by their 3D-geometrical structure. A simplified but very effective way to 
characterize molecular structure is based on graph theory [1, 2]. Although using a 
2D-representation, molecular graphs retain the most essential structural 
information of molecules - the manner in which the atoms are connected. This 
topological structure correlates amazingly well with the physicochemical 
properties (QSPR) and biological activities (QSAR) of chemical compounds [3-
5], a finding that stimulated greatly the development of chemical graph theory 
[6,7] since the beginning of the 1970s [8-11]. A large number of graph-invariants 
(called also topological indices or topological descriptors) have been identified 
and applied to the structural analysis of chemical properties [12-14]. The 
quantitative structure-activity relationships (QSAR) became a basic tool in the 
area of drug discovery [15, 16], a trend additionally reinforced with the 
development of the high-throughput methods for identifying lead compounds in 
drug design [17, 18]. The software tools created for calculating topological 
descriptors of molecules [19, 20] have also contributed to the rapid development 
of this area of applied graph theory. 

FROM SIMPLE GRAPH-INVARIANTS TO A MORE GENERAL 
REPRESENTATION OF MOLECULAR TOPOLOGY 

All seemingly chaotic development of the world of topological indices raises 
challenging questions for theoreticians. Is there a "best graph-invariant", a "magic 
bullet" that would capture in a single number the most essential topological 
features of molecules? If "yes", is there a "magic" mathematical function that 
would produce descriptor(s) highly correlating with physicochemical properties 
and biological activities of chemical compounds? 

It is natural in such a search to proceed from the most basic graph matrices - 
adjacency matrix A and distance matrix D. These matrices generate both local and 
global invariants. The simplest local invariants are the vertex degree ai - the 
number of the vertex nearest neighbors, and the node distance di - the sum of the 
distances from the given vertex i to all other vertices in the graph G (the distance 
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between a pair of vertices being defined as the number of edges along the shortest 
path connecting these vertices). Summing up the values of these local invariants 
over all vertices V, one defines the total adjacency, A, and the total distance, D, 
respectively: 
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While providing important information on the totality of connectivity and 
distances in the graph, these indices have the pitfall of being (highly) degenerate, 
i.e., providing the same value for different molecular structures. Thus, total 
adjacency has the same value for all molecular graphs having the same number of 
vertices and cycles, while the capacity of the total distance to discriminate isomers 
reduces rapidly with the increase of the number of atoms (Fig. (1)). 

 

Figure 1: Examples for the low discriminatory power of the total adjacency A of a graph, and the 
more discriminative but still degenerate Wiener number given in parenthesis. (The Wiener number 
[21, 22] is half of the total distance in undirected graphs). 

Different approaches have been used to reduce the degeneracy of topological 
indices. The earliest attempt of this kind was done by Morgan [23], who was 
searching for unique signature ID for molecules for the purposes of chemical 
documentation. The extended connectivity of Morgan is calculated by a simple 
iterative algorithm. The null iteration calculates vertex degrees, then in the first 
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iteration each vertex is assigned an extended connectivity index calculated as the 
sum of the degrees its nearest neighbors have in the null iteration, and this 
mechanism is repeated until obtaining the maximum possible diverse values of 
vertex extended connectivity allowed by the symmetry of the graph. Another 
definition (Razinger [24]) presents the kth extended connectivity of a vertex i as 
the sum over the ith row elements of the kth degree of adjacency matrix, Ak (eq. 
2a): 
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As illustrated in Fig. (2), the Morgan algorithm in some cases cannot reach an end 
and oscillates between two alternating assignments. Despite its failure to provide 
unique ID for each molecule, Morgan's approach contains a valuable idea - to create 
a more comprehensive topological representation of the molecular structure by 
extending local connectivity to a series of partially extended connectivities kEC(G): 
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The series ends in a term in which connectivity is extended till the most distant 
neighborhood of any vertex in the graph, which corresponds to the largest 
distance in graph G, k = d(max) = diam(G). Other realizations of this idea will be 
analyzed in the last Section. 

 

0 0 1 0 0  1  1 1 0 1 0  3  0 0 3 0 1  4 
0 0 1 0 0  1  1 1 0 1 0  3  0 0 3 0 1  4 

1A(G) =  1 1 0 1 0  3  2A(G) = 0 0 3 0 1  4  3A(G) =  3 3 0 4 0  10 
0 0 1 0 1  2  1 1 0 2 0  4  0 0 4 0 2  6 
0 0 0 1 0  1  0 0 1 0 1  3  1 1 0 2 0  4 

Figure 2: The Morgan iterative algorithm [23] recalculates at each step k the vertex degree of each 
vertex i as the sum of the degrees of the vertex nearest neighbors in the (k-1)th iteration step (eq. 
2a). Razinger's algorithm (eq. 2b) [24] calculates vertex extended connectivities as sums of the 
rows in the adjacency matrix kth powers. 
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A major source of the degeneracy of molecular topological indices is their 
definition as a sum of the values of the corresponding local (mostly vertex) graph-
invariant. A natural way of reducing this degeneracy is to probe a more sensitive 
mathematical operation. This has been done in the first and second Zagreb 
indices, M1 and M2, using squared degrees of all vertices, and products of vertex 
degrees of all pairs of adjacent vertices, respectively [25]. Randić modified the 
M2 index by using the inverse square root of the product of vertex degrees to 
define his highly discriminative branching index χ [26]: 
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An essential conceptual improvement of these attempts was advanced by Kier and 
Hall's molecular connectivity approach [27-29]. The latter generalized Randić's 
function (3c), renamed as first-order molecular connectivity, to a series of indices 
of increasing order t = 0, 1, 2, 3,. which includes a generalized product of degrees 
of a variable number of adjacent vertices: 
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The advantage of molecular connectivity (MC) concept is that it makes use of 
molecular fragments (or subgraphs in terms of graph theory) of increasing size, 
beginning with isolated vertices (t=0), edges (t=1), two-edge fragments (t=2), etc. 
This might be considered as a generalization of the pioneering ideas of 
Smolenskii [30] and Gordon [31], who first used molecular subgraphs for a 
systematic characterization of molecular properties. The Molecular Connectivity 
concept provided the basis for successful QSPR and QSAR models, and thus 
became an important component of drug discovery process [32]. As analyzed in 
occasion of the 25th anniversary of this concept [33], the great success of eq. (4) in 
modeling physicochemical properties and biological activities of chemical 
compounds does not result from the well discriminating branching index χ, but 
from the better representation of molecular topology using subgraphs of 
increasing size and shape. (The inverse-square-root function (eq. 4) was shown to 
provide slightly inferior statistics compared to some other exponent values in 
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modeling molecular properties). Several different molecular shapes, denoted as 
path, cluster, path-cluster, and cycle have also been discerned within molecular 
connectivity approach, improving further the statistics of QSPR/QSAR molecular 
connectivity models (Fig. (3)). 

 

Figure 3: Subgraphs of increasing sizes and variety of shapes used in molecular connectivity 
approach: a) vertices, b) edges, c) two-edge subgraphs, d) three-edge subgraphs: path and cluster, 
e) four edge subgraphs: path, path-cluster, cluster, and n-cycle. 

Another approach aimed at increasing the discriminating capacity of topological 
descriptors has been based on the mathematical framework of information theory 
[34, 35]. Redefined for a graph of V vertices, partitioned into k classes of V1, V2,., 
Vk vertices, this approach [36] makes use of the Shannon equation interpreted as 
equation for the mean and total information content I (G) and I (G), respectively: 
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Here, pi = Vi / V is the probability of a randomly selected graph vertex to belong 
to the class i having Vi vertices. A more complete representation of molecular 
topology can be achieved within this framework as a vector termed information-

 vertex                edge         two‐edge subgraph                    path 

          cluster                                 path‐cluster 

       3‐cycle                            4‐cycle                                   5‐cycle 
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theoretic superindex [36, 37]. The latter contains a set of diverse topological 
descriptors translated into the information theory language: 

SI = {Iorb, Ichr, IC, Iedge, ID, IZ} (6) 

where the six supervector components represent the information on vertex 
distribution into the orbits of the automorphisms group of the graph, into the 
graph chromatic classes, and into the centrically ordered classes, as well as the 
information on the edge degree distribution, the graph distances distribution 
according to their magnitudes, and the partition of the Hosoya number Z into 
classes of nonadjacent vertices. The superindex expresses in the language of 
information theory six different aspects of molecular topology, those of 
symmetry, chromaticity, centrality, connectivity, distances, and nonadjacency, 
and provides an extended basis for structure-property and structure-activity 
correlations. 

TOPOLOGICAL COMPLEXITY AS A GUIDE IN THE SEARCH FOR A 
GENERALIZED TOPOLOGICAL CHARACTERIZATION OF 
MOLECULAR STRUCTURE 

The idea of overall topological indices, describing more adequately molecular 
structure, crystalized in mid 1990s from the search for reliable measures of 
molecular complexity. The first attempts to measure complexity of systems 
(human body, living cell, molecules) have been done in the 1950s by a group of 
US scientists related to the journal "Bulletin of Mathematical Biophysics" (later 
renamed to "Bulletin of Mathematical Biology"). Applying the then-recently 
developed information theory, Dancoff et al. [38] proposed to use the information 
content of a system as a measure of its complexity. While different aspects of 
complexity have been considered, the topological information content Itop 
introduced by Rashevsky in 1955 combined the information on the chemical 
nature of atoms with the atom's equivalence based on identical neighborhood 
relationships [39]: 
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Here, N is the total number of atoms in the molecule, Ni is the number of atoms in 
class i having the same chemical nature and the same atomic neighborhoods at 
distance 1, 2,., dmax (See Fig. (4). The topological aspects of Rashevsky's index 
have been reformulated by Trucco [40] in terms of the orbits of the automorphism 
group of the graph. 

 

Figure 4: Illustration of the topological information of Rashevsky [39]. The nine vertices are 
partitioned into 5 classes of one vertex (## 3,4,5,6,9) and two classes of two vertices ({1,2} and 
{7,8}) equivalent by both chemical nature and identical neighborhood. The average topological 
information of this molecule calculated by eq. (7) is 2.73 bits per atom. 

The next step down the road of measuring complexity was done by Mowshowitz, 
who analyzed in 1968 the relative complexity of undirected and directed graphs 
based on their topological information content [41]. Minoli in 1975 was the first 
to assess complexity of graphs without resorting to information theory. He 
constructed an index (eq. 8a) to measure the combinatorial complexity of graphs, 
based on the number of vertices, edges and paths of the graph [42]. To reduce 
strongly the degeneracy of the Minoli index, MI, Bonchev modified it replacing 
the number of graph paths Pi by the paths total length Li (eq. 8b) [43, 44]: 
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In 1980, and in more detail in 1987, Bonchev et al. used the number of spanning 
trees to measure complexity of cyclic graphs [45, 46], an approach also developed 
independently by Mallion et al. in 1983 and 1998 [47, 48]. In 1981, Bertz used the 
Shannon information equation to design a sensitive index of molecular structural 
complexity [49]. Instead of graph vertices and edges, the Bertz Index BI grouped 
all two-edge subgraphs n in equivalence classes of cardinality ni (eq. 9): 
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This allowed not only to reduce the complexity index degeneracy, but also to 
mirror some of the complexifying structural patterns. 

Following the founding study of Minoli [42], the criteria for a mathematical 
function to be a complexity measure have been further developed and discussed 
by different authors during the next 25 years [43, 50-55]. A point of agreement 
between all of them is that topological complexity measures should follow the 
complexifying structural patterns of branching [56-59] and cyclicity [60-63]. This 
will be illustrated in the next sections with examples of the latest and most 
comprehensive measures proposed since the beginning of the 1990s.  

In what follows we present the concept of overall topological indices, which 
develops further the ideas for a more complete topological characterization of 
molecular structure by accounting for subgraphs of increasing size weighted by 
some of the basic graph-invariants. It will be shown that this integrated approach 
orders molecular graphs according to their increasing complexity, and provides 
QSPR/QSAR models with high statistics. The latest of the indices shown derives 
overall graph complexity from centrality of the graph vertices, which in turn is 
defined from both their connectivity and distances. Other complexity measures 
sharing the property of detailed characterization of molecular topology will also 
be analyzed. 

THE CONCEPT FOR OVERALL TOPOLOGICAL DESCRIPTORS OF 
MOLECULAR STRUCTURE 

During the second part of the 1990s, Bonchev [64-66] and Bertz [67, 68] 

independently and almost simultaneously developed in detail the idea to use the 
total subgraph count, SC(G), as a measure of complexity of graph G. (The 
possibility of using the total subgraph count as a measure of molecular similarity 
has been briefly mentioned earlier by Bertz and Herndon [69]). Bertz applied the 
SC index to the synthesis planning in organic chemistry, while Bonchev 
represented the total subgraph count as an ordered set {SC} of counts of 
subgraphs having an increasing number of edges, and applied it to QSPR/QSAR. 
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The set begins with the number of isolated vertices V, regarded as a null-order 
index, 0SC, followed by the number of edges E, as a first-order index, 1SC, the 
two-edge subgraphs, as a second-order index, 2SC, etc.: 

0 1 2 ... ESCG SCG SCG SCG SCG     ; 0 1 2{ } { , , ,..., }ESCG SCG SCG SCG SCG   (10a,b) 

In addition to counting the subgraphs, Bonchev proposed [33, 65, 66, 70] to 
weight each of the subgraphs i with the value of its total adjacency Ai, defined as 
the sum of the entries of the subgraph adjacency matrix. By summing up the 
adjacencies Ai(

eGi) of all eth-order subgraphs eGi, with e = 0, 1, 2, 3, …, E, one 
defines the overall connectivity OC(G) of the graph G with its null-, first-, second, 
etc. order components eOC(G), and the overall connectivity vector {OC}: 

0 1 2 ... EOCG OCG OCG OCG OCG     ; 0 1 2{ } { , , ,..., }EOCG OCG OCG OCG OCG  (11a,b) 

The overall connectivity index was initially called topological complexity and 
defined in two versions, TC and TC1, differing in the vertex degrees used - those 
in the parent graph G or those in the subgraphs, respectively. The first approach 
was adopted as better from the point of view of systems theory and applied later 
as overall topological representation of molecular structure to other graph-
invariants. Included here were the overall Wiener index, OW(G) [71], the overall 
Zagreb indices, OM1 and OM2 [72], and the overall Hosoya topological index, 
OZ(G) [73]. As well known, the Wiener index W [21, 22] is the half-sum of all 
graph distances, dij, whereas the Hosoya Z(G) index [74] is the sum of all graph 
matchings (sets of edges without common vertices). Generalized definitions of the 
overall topological indices are given below, with graph-invariant X standing for 
any of the above listed invariants: subgraph count SC, connectivity C, Wiener 
index W, Zagreb indices M1 and M2, and Hosoya index Z. Besides the 
partitioning into ordered set according to the number of edges in the subgraphs, a 
more detailed grouping of subgraphs according to their specific shapes, such as 
paths, clusters, path-clusters, and cycles (proposed earlier by Kier and Hall in 
their classical molecular connectivity concept [27, 28]) was also adopted. 

Viewing the overall connectivity concept as an extension of the earlier ideas of 
Kier and Hall, (other extensions have been proposed, to mention just few here 
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[75, 76]) this concept was termed "next generation molecular connectivity" [33]. 
The genetic link between the two concepts was also extended beyond topological 
complexity, measured by overall topological indices. In order to account for the 
different chemical nature of molecular graph vertices for potential QSPR/QSAR 
applications, the simplest among a variety of ways is to follow the valence 
connectivity approach of Kier et al. [29, 77], as shown below in Definition 5. The 
overall valence connectivity index OVC introduced in this definition emerges thus 
as a measure of molecular complexity, which integrate the information on 
molecular topology with that on the elemental composition of molecules. 

Definition 1: The overall topological index OX(G) of any graph G is defined as 
the sum of the values of graph-invariant Xi(Gi) of all K subgraphs of G: 
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Definition 2: The eth-order overall topological index eOX(G) of any graph G is 
defined as the sum of the values of graph-invariant Xj (

eGj) of all eK subgraphs eGj 
 G that have e edges: 
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Definition 3: The eth-order overall topological index eOX(G) can be partitioned 
into a sum of terms, eOXk(G), representing the sum of the values of the vertex 
graph-invariant X in subgraphs of specified type k having the same number of e 
edges. For acyclic graphs (as in molecular connectivity approach of Kier et al. 
[27, 28], the subgraph types are path (k = p), cluster (k = c), and pathcluster (k = 
pc) type, while for cyclic graphs these are n-cycles with n being the cycle size: 
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Definition 4: The overall topological vector OXV(G) of any graph G is the 
sequence of all eOX(G)s listed in an ascending order of the number of edges e: 



Overall Topological Representation Advances in Mathematical Chemistry and Applications, Vol. 1, (Revised Edition)   53 

OXV(G) = OX {oOX, 1OX, 2OX, …, EOX} (15a) 

or in more detail for the type of graphs k  p (path) or k  c (cluster) or k  pc 
(path-cluster) or k  n-c (cycle of size n): 

OXV (G) = OX {oOX, 1OX, 2OX, 3OXp, 
3OXc, 

3OX3-c,…, EOXp, 
EOXc, 

EOXpc,
EOXn-c}  (15b) 

Definition 5: The overall valence connectivity index OVCv(G) of graph G is 
defined as the sum of the total valence adjacencies eAk

v (eGk) of all eK subgraphs 
eGk of G having e edges and N(i) vertices: 
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where ai
v is the valence term of Kier and Hall [29, 77] replacing the vertex degree 

ai. 

Definition 6: The average overall index per vertex, Xa(G), and the normalized 
overall index Xn(G), 0 Xn(G)  1 are defined as: 
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where KV stands for the complete graph having the same number of vertices V 
with G. 

Definition 7: Cumulative pth order overall indices, pX(G), are defined [78] as the 
sum of the values of the eX(G) indices (Definition 2) for e = 1, 2, …, p: 
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The overall indices defined by Definitions 1-4 and 6 were introduced for a more 
complete topological characterization of molecular structure. The rapid 
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development of network theory after the year 2000 [79-83] imposed some 
modification of the concept for applications to networks. Due to the very large 
size of the majority of networks, particularly those in biology and social sciences, 
the requirement to account for all subgraphs would lead for these networks to 
combinatorial explosion. The modification proposed in Definition 7 [78] limits 
the size of the subgraphs to such having no more than a predefined number of 
edges p, which for the complex networks having over a hundred nodes should not 
be larger than 3, thus making use of only first-, second-, and third-order overall 
complexity indices. This proved to be computationally feasible and sufficient for 
assigning different ID numbers to networks with the same number of nodes, since 
there is no degeneracy problem for large complex networks [78, 84]. The 
cumulative indices could also be used as additional descriptors in case of large 
molecules as well. 

FORMULAS FOR THE OVERALL TOPOLOGICAL INDICES OF SOME 
CLASSES OF GRAPHS 

Some classes of molecular structures, such as n-alkanes, monocyclic compounds, 
and others have a regular structure, which allows deriving analytical expressions 
for overall topological indices. Presented below are such expressions for 
subgraph count, SC, overall connectivity, OC, and overall Wiener OW indices 
[70, 71, 78]. The parameters used are the total number of vertices n, the total 
number of edges q, and the number of edges e in the given class of subgraphs. 
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To facilitate the application of the overall indices introduced in Section 3 as 
measures of the network topological complexity to complex networks, equations 
were derived for the first several terms of these indices for complete graphs as a 
function of the number of graph vertices n, thus enabling the calculation of the 
normalized complexity indices within the 0 to 1 range. 
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OVERALL TOPOLOGICAL INDICES CAPTURE THE PATTERNS OF 
INCREASING MOLECULAR COMPLEXITY 

Table 1 below presents the values of six overall topological indices, SC, OC, OW, 
OM1, OM2, and OZ for the acyclic graphs depicting in Fig. (5) the carbon 
skeleton of alkane molecules having 2 to 7 carbon atoms. The table shows that 
there are no degenerate overall indices values within the groups of isomeric 
alkanes, in contrast to the values of graph-invariants used in the design of overall 
indices. Thus, the total adjacency has the same value for all graphs with the same 
number of vertices, whereas for the set of 21 acyclic graphs the same Wiener 
number values are found for two pairs, two triplets, and even one quadruplet of 
structures. 

 

Figure 5. Acyclic graphs depicting hydrocarbon molecules with two to seven carbon atoms used 
for illustrating structural patterns of increasing complexity captured by the overall topological 
indices. 

Table 1 and Fig. (5) demonstrate that the patterns of increasing complexity in 
acyclic graphs having up to 7 vertices are mirrored adequately by increasing 
values of the overall descriptors of topological complexity (OI). These branching 

 1             2                   3                  4                       5 

    6                    7                    8                          9

 10                     11                    12                      13 

14                          15                         16                     17    

        18                       19                         20                       21 
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patterns analyzed in details earlier [56, 59] evidence that at a constant number of 
nodes n the complexity of acyclic graphs increases with the increase in: 

(i) Number of branches: linear < monobranched < dibranched < 
tribranched < tetrabranched. 

Examples (See Table 1): OI(21) > OI(17-20) > OI(14,15) > OI(13); 
OI(11,12) > OI(9,10) > OI(8); OI(7) > OI(6) > OI(5). 

Table 1: Overall complexity values of graphs 1 – 21, representing the carbon skeleton of alkane 
molecules with 2-7 atoms. Included are the subgraph count, SC, the overall connectivity, OC [70], 
the overall Wiener index, OW [71], the overall Zagreb indices OM1 and OM2 [72], and the overall 
Hosoya index, OZ [73]. All overall indices completely discriminate the molecules with the same 
number of atoms 

Graphs SC OC OW OM1 OM2 OZ 

1 3 4 1 1 1 4 

2 6 14 6 22 10 10 

3 10 32 21 56 26 21 

4 11 39 24 87 27 23 

5 15 60 56 110 60 40 

6 17 76 67 168 67 46 

7 20 100 80 292 68 52 

8 21 100 126 188 130 72 

9 24 127 154 277 149 84 

10 25 136 161 300 161 89 

11 28 164 188 404 172 100 

12 30 181 197 505 168 103 

13 28 154 252 294 272 125 

14 32 194 311 418 315 147 

15 34 214  333 468 351 159 

16 36 234 354 516 390 172 

17 37 246 384 584 366 173 

18 40 276 411 668 410 191 

19 41 284 414 762 370 185 

20 44 314 440 850 412 202 

21 49 369 510 1075 433 225 
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(ii) Branch centrality: 2M < 3M < 4M < …; 2,2MM < 3,3MM < … 

Here and below, branches of length 1 and 2 are denoted by letters M 
for methyl and E for ethyl, respectively. Examples: OI(10) > OI(9); 
OI(15 > OI(14); OI20) > OI(19). 

(iii) Branch length: 3M < 3E < … Example: OI(16) > OI(14,15). Also for 
the graphs of octane molecules: 2,3MMC6 < 2,3MEC5; 3,3MMC6 < 
3,3MEC5. 

(iv) Branch multiplicity (number of branches attached to a vertex): 
OI(19,20) > OI(17,18); OI(12) > OI(11). 2,3MMC4 < 2,2MMC4; 
2,3MMC5 < 2,2MMC5. 

(v) Branch clustering (grouping of vertices to closer located chain 
vertices): OI(2,5MMC6) < OI(2,4MMC6) < OI(2,3MMC6); 

Besides these five basic branching patterns, there are more complex cases in 
which two or more patterns are combined. The relative importance of branching 
factors in such cases varies with the increase of the number of atoms. The latter 
increases the role of branch centrality, which at higher number of atoms becomes 
dominant relative to branch multiplicity (e.g., 2,3MMC6 > 2,2MMC6, compared 
to 2,3MMC5 < 2,2MMC5). The branch multiplicity pattern holds only when a 
branch is shifted to a vertex with equivalent or higher centrality. Examples of two 
pairs of graphs of alkanes having eight carbon atoms: OI(3,3MMC6) > 
OI(3,4MMC6); OI(2,3,4MMMC5) > OI(2,2,4MMMC5). The branch centrality in 
larger graphs becomes a dominant factor even to the number of branches (first 
examples appear in alkanes having more than eight carbon atoms). 

All six overall indices given in Table 1 obey these five patterns of increasing 
complexity in series of acyclic graphs having the same number of vertices, with a 
single exception, OM2, which do not follow pattern (iv). When the number of 
graph vertices increases, there are no clear trends but more and more highly 
branched graphs with a smaller number of vertices become characterized by larger 
values of the overall indices than larger graphs with simpler topology. Thus, three 
of the indices examined (SC, OC, and OM1) have lower values for linear graph 
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corresponding to n-C7 alkane (#13 in Fig.(5)) than the most branched C6-graph 
(#12). The overall Wiener index reaches this value inversion for n-C8 with respect 
to 2,2,3MMMC4, while for OM2 and OZ indices such inversion occurs at higher 
numbers of carbon atoms. 

Complexity trends in cyclic molecules (discussed in detail earlier as "cyclicity 
rules” [60-62]) are briefly analyzed below with a representative sample of 16 
cyclic graphs having five vertices shown in Fig. (6). 

22 2523 24

26 28

31 32

36

33

3534
37

30

29

164(17)                          190(15)                     192(16)                               198(16)             

27

199(15)                        480(14)                          483(15)                             502(14)                   

510(14)                      542(14)                          1152(13)                        1221(13)     

1230(13)                 1257(13)                       2771(12) 2852(12)  

Figure 6: Illustration of complexity trends in structures containing cycles, as characterized by the 
overall Wiener index (the highly degenerate values of the original Wiener index are given for 
comparison in parentheses). 

Two basic complexity patterns are clearly manifested. The topological complexity 
of cyclic molecules increases with: 

(i) The number of cycles: 

OW(22-26) < OW(27-31) < OW(32-35) < OW(36,37) 
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(ii) The degree of connectedness of a pair of cycles: 

OW(27) < OW(28-30) < OW(31) 

This pattern which shows the increase in complexity in pairs of cycles connected 
by a common vertex, common edge and two common edges is of specific interest 
in comparing kinetics of reaction mechanisms [46, 84]. The subgraph count SC 
and overall connectivity OC increase in value with the number of cycles, while 
the pattern of increasing complexity with the stronger connectivity of two cycles 
is captured by the overall Wiener index only. 

A third pattern, that of complexity increasing with the increase in cycle size at a 
constant number of vertices is again identified by the overall Wiener index, e.g. 
when comparing tricyclic structures: OW(32, 33) < OW(34, 35). The same pattern 
is also observed in the bicyclic structures, although in these cases it acts jointly 
with pattern (ii): OW(27-29) < OW(30,31). More subtle cases again appear when 
several complexity factors are involved. Such is the case with the five monocyclic 
structures 22-26 for which the cycle size is intermingled with branching factors - 
number of branches and multiplicity of branches at the same vertex. The presence 
of acyclic branch(es) also mixes with cyclicity factors in tricyclic graphs OW (32) 
< OW(33-35), indicating again the need of more detailed complexity studies of 
molecules containing cycles. 

OVERALL TOPOLOGICAL INDICES (OI) PROVIDE A BASIS FOR 
HIGH STRUCTURE-PROPERTY AND STRUCTURE-ACTIVITY 
CORRELATIONS 

Using the carbon skeleton of alkane molecules as a basis for testing our integrated 
representation of molecular topology, we modeled ten alkane physicochemical 
properties by the overall topological indices OI. The properties modeled were 
boiling points [65], TB in oC; critical temperatures [85] Tc in oC; critical pressures 
[85] Pc in atm; critical volume Vc in [86] L/mole; molar volume Vm in cm3/mol 
[28]; molecular refraction Rm in cm3/mol [54]; surface tension [86] ST in dyn/cm; 
the heat of formation in gaseous state, Hf(g) in kJ/mol [87]; the heat of 
vaporization, Hv in kJ/mol [87]; the heat of atomization, Ha in kcal/mol [28]. 
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The values of the molecular connectivity indices were taken from Kier and Hall's 
monograph [28]. While complete details of the modeling, including the values of 
all parameters and properties used can be found in our previous publications [66, 
71, 78], 

Table 2 presents the performance of the different OIs by the standard deviation of 
the best five-parameter models obtained. The overall Wiener index OW and the 
two Zagreb Indices OM1 and OM2 were used, along with the composite overall 
connectivity index OC*, which includes all SC and OC terms defined by eqs. (12, 
13). They were compared with the best molecular connectivity χ model to 
demonstrate the level of improvement achieved by the overall topological indices, 
which are based on a more complete topological representation of molecular 
structure. 

Overall connectivity best models dominate in Table 2 with seven best 
performances and three second ones, followed by the overall Wiener best models 
showing two best performances, six second, and two third ones. The overall 
Zagreb indices perform less successful, with one best model (OM2, critical 
volume) and one second best model (OM1, heat of formation). The improvement 
against the best molecular connectivity models is considerable, e.g., the standard 
deviation sd of the heat of atomization was reduced 20-fold (0.30 vs. 5.80), the 
boiling point sd was cut to a half (1.60K vs. 3.31K), etc. 

The analysis of the specific parameters incorporated into molecular connectivity 
models reveals that the most significant term is oχ (the square root of the number 
of vertices), which is included in seven of the ten models. In contrast, only three 
of the properties (boiling point, molecular refraction, and critical volume) are 
found to be strongly size dependent in models with overall topological indices, as 
evidenced by the 0SC term, directly expressing the number of atoms (graph 
vertices). Three other properties (heat of atomization, molecular volume and 
critical pressure) are most significantly dependent on the number of edges (atom-
atom connectivity), which are represented by the first-order overall connectivity 
index 1OC. The heat of formation depends strongly on another, more intricate 
measure of atom-atom connectivity, expressed by the number of two-edge 
subgraphs 2SC. The remaining three properties examined (surface tension, heat of 
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vaporization and critical temperature) were found to depend either on the entirety 
of molecular subgraphs (SC) or on the entirety of their total adjacencies as 
characterized by the OC index. The second most significant terms in the overall 
indices models include one size term, and three terms related to the number of 
edges, whereas in the remaining six cases more complex topological indices are 
involved. 

Table 2: Standard deviations of the best five-parameter models of ten C3-C8 alkanes 
physicochemical properties with different overall topological descriptors, compared to those 
obtained by molecular connectivity indices 

Property Standard Deviation 

Boiling Point OC* < OW < OM2 < OM1 < χ 

1.60  1.70  2.71  2.76  3.31 

Heat of Formation OC* < OM1 < OW < χ < OM2 

1.02  1.08  1.33  1.37  1.55 

Heat of Vaporization OC* < OW = OM2 < OM1 < χ 

0.67  0.70  0.70  0.79  0.79 

Heat of Atomization OC* < OW < OM2 < OM1 < χ 

0.30  0.34  0.39  2.96  5.80 

Surface Tension OC* < OW < χ < OM1 < OM2 

0.17  0.18  0.22  0.23  0.27 

Molecular Refraction OC* < OW < χ < OM2 < OM1 

0.041  0.042  0.044  0.050  0.057 

Molar Volume OW < OC* < χ < OM1 < OM2 

0.23  0.33  0.36  0.45  0.57 

Critical Volume OM2 < OC* < OW < OM1 < χ 

0.0076  0.0079  0.0080  0.0081  0.0087 

Critical Pressure OC* < OW = OM1 < OM2 < χ 

0.37  0.40  0.40  0.43  0.50 

Critical Temperature OW < OC* < χ < OM1 < OM2 

3.23  3.25  4.76  4.82  5.13 
OC* (abbreviation for overall connectivity) is used for the set of all OC and SC terms. 

A comparison between the best model statistics of the octane properties models 
produced by the series of overall connectivity, overall Wiener, overall Zagreb 
indices and molecular connectivity is made in Table 3. The smaller set of 18 
compounds restricted to four the maximum number of variables to be included in 
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the overall Wiener models, but did not prevent the derivation of models with five 
parameters for the other four types of topological descriptors. The overall Wiener 
four-parameter model (data not shown) compared favorably with the other four-
parameter models of nine of the ten alkane properties examined [71]. However, 
the five-parameter models based on overall connectivity indices restored their 
dominance, and showed the best statistics for eight of the simulated properties. 
The classical molecular connectivity indices of Kier and Hall could not provide 
any best or second-best performing four- or five-variable model. 

Table 3: Standard deviations of the best 5-parameter models of ten C3-C8 alkane physico-
chemical properties with different overall topological descriptors compared to those obtained by 
molecular connectivity indices 

Property Standard Deviation 

Boiling Point OC* < OW < χ < OM1 < OM2 

0.55  0.61  0.73  0.78  1.40 

Heat of Formation OC* < OW < OM1 < OM2 < χ 

0.70  1.10  1.23  1.06  1.25 

Heat of Vaporization OC* < OW = OM1 < χ < OM2 

0.28  0.32  0.32  0.34  0.36 

Heat of Atomization OC* < OW < OM1 < OM2 < χ 

0.17  0.26  0.26  0.30  0.31 

Surface Tension OC* = OM1 < OW < χ < OM2 

0.09  0.09  0.10  0.13  0.22 

Molecular Refraction OC* < OW = OM1 < χ < OM2 

0.012  0.013  0.013  0.020  0.027 

Molar Volume OC* < OW < χ < OM1 < OM2 

0.27  0.34  0.35  0.36  0.45 

Critical Volume OM1 = OM2 < χ < OW < OC* 

0.0080  0.0080  0.0083  0.0084  0.0088 

Critical Pressure OW < OM1 < OM2 = χ < OC* 

0.15  0.17  0.20  0.20  0.23 

Critical Temperature OC* < OW < χ < OM1 < OM2 

0.86  0.87  1.12  1.46  2.65 
OC* (abbreviation for overall connectivity) is used for the set of OC and SC terms. The data for overall Wiener indices 
refer to four-variables models. 

There is an essential difference in the parameters dominating the C3-C8 models 
and those of the octane models. The higher-order indices, which capture more 
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details in the variations in molecular topology, have considerably higher weights 
in octane models than in the models that vary both size and topology. This 
indicates that models obtained for a single series of isomers cannot be a good 
basis for prediction of properties of chemical compounds. 

Some property-specific indices patterns were identified. Thus, the best C3-C8 
OM1 models for surface tension and critical temperature incorporated the same 
five variables: oOM1, 1OM1, 2OM1, 3OM1p and 5OM1p. Similar coupling of these 
two properties was found in the octane models, which included several more 
structure-specific indices: 1OM1, 2OM1, 3OM1c, 

6OM1p, and 6OM1pc. Other pairs 
of coupled properties were identified though with four, instead of five identical 
indices: boiling point and heat of vaporization, as well as molar volume and 
critical volume. Heat of atomization and heat of formation of isomeric octanes, 
which are linearly dependent in isomers, are also described by models involving a 
set of the same five indices: 1OM1, 3OM1c, 

4OM1c, 
5OM1p, and 5OM1c. This 

analysis confirms the capacity of overall topological indices to capture 
physicochemical properties that have common molecular mechanism. 

ALTERNATIVE APPROACHES TO A MORE COMPLETE 
TOPOLOGICAL REPRESENTATION OF MOLECULAR STRUCTURE 

Extended Connectivity and Its Overall Version 

The overall connectivity concept is not the only approach in the search for a more 
general representation of molecular topology. In this approach, different graph 
invariants, such as graph adjacency, distance, number of matchings, etc. are 
generalized by summing up their values in all subgraphs, including the graph 
itself considered as proper subgraph. 

An alternative approach could be developed by using the Morgan's extended 
connectivity algorithm [23,24], discussed in Section 1. Instead of using subgraphs 
of increasing size this algorithm recalculates vertex degrees in successive steps by 
using the degrees of each vertex in the layers of neighboring vertices at a distance 
k = 1, 2,., d(max). The sum of vertex extended connectivities (perhaps a more 
precise term would be extended vertex degree) for each distance k defines the 
graph kth order extended connectivity, kEC (eq. 2b), the initial vertex degrees 
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being thus considered as null-order degrees. In order to compare the complexity 
of graphs it seems reasonable to select the number of iteration steps so as to the 
same as in the path graph of the same size. thus, for all graphs of same number of 
vertices V, the number of Morgan's iteration is taken equal to V-1. As shown in 
Fig. (7), where all acyclic graphs having 3 to 7 vertices are shown with their 
extended connectivity vector, the k(max)EC-values reflect fairly well the increase in 
graph size and complexity. This alternative general representation of molecular 
topology leads to ordering of graphs rather close to that produced by the overall 
complexity indices. It captures similarly the complexity patterns of increasing 
number and length of branches, branches more central location and preferred 
attachment to the same vertex. We can treat the vector of kEC terms in the manner  
 

 

Figure 7: Acyclic graphs with 2-7 vertices, their kth-order series of extended connectivity indices 
kEC(G) (k = 0, 1, 2,., V-1), and their overall extended connectivity OEC(G). Both the maximal (V-1)th 
order extended connectivity and the OEC(G), demonstrate high sensitivity to complexifying structural 
patterns. Shown after the parenthesis is also the overall extended connectivity index of each graph 
averaged per vertex, which also captures precisely all the patterns of increasing complexity due to 
graph size and the manner in which the graph vertices are connected. 
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of overall topological indices concept and define the overall extended connectivity 
of graph G, OEC(G), as the sum over all k terms: 
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In Fig. (7), the overall version of extended connectivity indices demonstrates a 
discriminatory potential higher than that of the maximal kEC index and produces 
different values for the single pair of graphs 16 and 17 with degenerate k(max)EC -
value of 768. 

The Total Walk Count 

A very detailed description of molecular structure, and hence a very sensitive 
measure of molecular complexity, can also be reached by counting all walks w of 
different length l, an approach developed by Rücker and Rücker [88, 89]. A walk 
W in a graph G is an alternating sequence of vertices and edges, W = 
v0,e1,v1,e2,.,en,vn, such that for j = 1,., n, the vertices vj-1 and vj are the endpoints of 
the edge ej. Repetitions of vertices and edges in a walk are allowed. The length l 
of a walk is the total number of edges in it, repetitions included. The number of 
walks of length l between vertices i and j is given by the ij-element (Al)ij in the lth 
power of the adjacency matrix A. The sum over the row i entries in Al defines the 
vertex i walk count of length l. It is denoted for molecular graphs by Rücker and 
Rücker as atomic walk count of length l, awcl (i): 
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Summing up over all lengths l, defines the atomic walk count awcs(i) of atom i: 
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Alternatively, the sum of walk counts of length l of all atoms i defines the 
molecular walk count of length l, mwci: 
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The total walk count twc is defined from eqs. (37, 38) by summing over all atoms 
i or by summing over all lengths l, respectively: 
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An example illustrating the total walk count approach to the more complete 
representation of molecular topology, and the counts of the simplest walks of 
length 1, 2 and 3, is shown in Fig. (8) with the hydrogen depleted graph of 
isobutane molecule. 

 

Figure 8: The graph of isobutane molecule, all the walks in it, and the derived atomic, molecular 
and total walk counts. 

The comparison made in Table 4 indicates that while all four complexity 
measures order in a very similar manner the increasing complexity of acyclic 
graphs. Subgraph count SC and overall connectivity OC are slightly more 
discriminatory showing only a single degenerate pairs of values. The total walk 

1         4        3

2 

    l = 1 

 

                       {1‐4‐2‐4,1‐4‐3‐4,2‐4‐1‐4,2‐4‐3‐4,3‐4‐1‐4,3‐4‐2‐4} 
l = 3 

                {4‐1‐4‐2,4‐1‐4‐3,4‐2‐4‐1,4‐2‐4‐3,4‐3‐4‐1,4‐3‐4‐2} 

   {1‐4‐1‐4,2‐4‐2‐4,3‐4‐3‐4,4‐1‐4‐1,4‐2‐4‐2,4‐3‐4‐3} 

    awcs(1) = awcs(2) = awcs(3) = 1 + (2 + 1) + (1 + 2) = 7 

    awcs(4) = 3 + 3 + (3 + 6) = 15 

         {1‐4, 2‐4, 3‐4, 4‐1, 4‐2, 4‐3}  

         {1‐4‐2,1‐4‐3,2‐4‐1,2‐4‐3,3‐4‐1,3‐4‐2} 

         {1‐4‐1,2‐4‐2,3‐4‐3,4‐1‐4,4‐2‐4,4‐3‐4} 
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count also follows the basic patterns of increased complexity with the number of 
branches (M < MM < MMM < MMMM), branch length (M < E; 22MM < 
2M3E), centrality (2M < 3M < 4M; 22M < 33MM) and multiplicity at given 
branch site (23MM < 22MM). As discussed in analyzing the overall topological 
indices, when two or more complexifying factors act in opposing directions 
different complexity measures tends to produce conflicting ordering of isomeric 
compounds. In Table 4, such disagreements marked in bold indicate conflicts 
between centrality and multiplicity factors, for example in comparing 
2,3,4MMMC5 to 2,2,4MMMC5, for which twc favors branch multiplicity to 
vertex 2 rather than having branch in the more central position 3. Similar 
competition between the number of branches and their length is seen in the overall 
Wiener index (OW(3EC6) < OW(2,5MMC6)). 

Table 4: Comparison of the total walk count twc to three other complexity indices: subgraph count 
SC, overall connectivity OC, and overall Wiener OW 

# Compounds  twc SC OC OW 

22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

nC8 
2MC7 
3MC7 
4MC7 
25MMC6 
3EC6 
24MMC6 
22MMC6 
23MMC6 
34MMC6 
2M3EC5 
33MMC6 
224MMMC5 
234MMMC5 
3M3EC5 
223MMMC5 
233MMMC5 
2233MMMMC4 

 627 
764 
838 
856 
911 
928 
997 

1142 
1068 
1136 
1152 
1301 

1317 
1296 
1441 
1536 
1609 
2047 

36 
41 
44 
45 
47 
48 
51 

53 
53 
56 
57 
59 
62 
63 
64 
69 
71 
86 

224 
279 
312 
323 
348 
356 
393 
411 
414 
448 
459 
477 
519 

532 
532 
597 
618 
798 

 462 
572 
622 
636 

709 
683 
771 
781 
790 
837 
848 
859 

968 
981 
921 
1049 
1065 
1312 

Overall Bourgas Indices 

Several years ago an intriguingly simple way was found to characterize both 
graph centrality and complexity by local and overall descriptors of the same graph 
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invariant. The idea behind the approach came from the theory of complex 
dynamic networks. These networks are characterized among other common 
features by high connectivity and small diameter. The latter property was termed 
network "small-worldness" [79]. It was conjectured that graph (network) 
complexity increases with the ratio of the graph total adjacency A and total 
distance D. This simple graph descriptor was named first Bourgas complexity 
index, and denoted by B1. (The name small-world connectivity was also 
alternatively used.) The B1 descriptor was shown to present a good approximate 
and easily calculable measure of graph complexity [78, 90, 91]. The only pitfall of 
this descriptor is some degeneracy of calculated values of graphs of equal size and 
similar structure. A more discriminating complexity measure (termed second 
Bourgas complexity index, B2) was simultaneously proposed based on the 
individual ratios b(i) of degree a(i) and distance d(i) of all graph vertices i: 
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A third version B3(G) of these indices was defined [90, 92] as the information 
content of the B2(G) distribution in the set of all bi values: 
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  (41) 

The properties of these complexity indices were analyzed and analytical formulas 
were derived for several classes of graphs. It was also shown that the b(i) ratios 
emerged as new, adequate measure of network nodes centrality [78, 91], so that 
both complexity and centrality of a graph or network are described within the 
same topological framework. 

Here we present a very recent development of these ideas by constructing overall 
Bourgas complexity index, OB(G) [93]. 

Definition: The overall Bourgas complexity index is the sum of vertex 
degree/vertex distance ratios, b(i) = a(i)/d(i), for all vertices i in all k subgraphs to 
which the vertex belongs: 
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Fig. (9) illustrates the concept with the series of acyclic graphs having six vertices 
(isomeric C6 alkanes). The increase in complexity of these structures from the 
linear one to monobranched, to monobranched with a more central location of the 
branch, to symmetrical dibranched, and to dibranched with branches to the same 
vertex is matched by both B2 and OB descriptors. Similarly, the centrality of 
vertices in these graphs is precisely matched by the local b(i) and ob(i) indices to 
increase from terminal vertices to the most centrally located and having higher 
degree vertices in agreement with intuition. Yet, ob(i) is more discriminative, 
showing different values for the central and terminal vertices in the third and 
fourth structure compared to the 3/7 and 1/11 values for both produced by the b(i) 
descriptor. 

 

Figure 9: Molecular graphs of isomeric C6 alkanes illustrate the ability of the Bourgas complexity 
index B2 and its overall version OB (shown in bold) to increase with the increase in the number of 
branches, their more central location and their location at a higher degree vertex. Simultaneously, 
the respective vertex indices b(i) and ob(i) increase in value when shifting from a terminal to a 
central and higher vertex degree location. (The values of these indices for symmetrically located 
vertices are shown only once for avoiding overcrowding). 

The centrality measure OB(i) defined above by eq. (42a) may be regarded to some 
extent as weighted version of network subgraph centrality concept introduced by 
Estrada [94, 95], in which the larger the number of subgraphs a given vertex is 
involved in, the more central its location in the graph. 
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The Four Connectivity Matrices, Their Indices, 
Polynomials and Spectra 
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Abstract: The four connectivity matrices are presented: the vertex-product-connectivity 
matrix, the edge-product-connectivity matrix, the vertex-sum-connectivity matrix and 
the edge-sum-connectivity matrix. The half-sum of their matrix elements are the 
corresponding connectivity indices: the vertex-product-connectivity index, the edge-
product-connectivity index, vertex-sum-connectivity index and the edge-sum-
connectivity index. The suitability of these four forms of connectivity indices in 
developing structure-property relationships is illustrated on four sets of alkanes for 14 
experimental physico-chemical properties. Their polynomials and spectra are also 
given. The method used for constructing polynomials of the connectivity matrices 
considered is the Le Verrier-Fadeev-Frame method, that has been modified by 
Balasubramanian and Živković. 

Keywords: Connectivity matrix, connectivity index, vertex-product, edge-
product, vertex-sum, edge-sum, connectivity matrix spectra, connectivity matrix 
polynomial, matrix polynomial computation, Le Verrier-Fadeev-Frame method, 
structure-property relationship, inter-correlation, comparative correlational 
analysis, alkane data sets, branched alkanes, non-branched alkanes, physico-
chemical properties, boiling points, melting points, vaporization enthalpy, 
standard Gibbs energy of formation, refractive index, density, molar heat 
capacity. 

INTRODUCTION 

Milan Randić introduced the product-connectivity matrix in his paper entitled 
Similarity based on extended basis descriptors, published in 1992 [1] with the 
following text: “We start with the χ-matrix, which is based on the adjacency 
matrix, but instead of the binary entries 0 and 1 we assign the value of 1/(m,n) to  
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nonzero matrix elements, where m and n are the valencies of the vertices 
involved.” This result remained unknown. Thirteen years later the product-
connectivity matrix has been rediscovered [2-5], but Randić’s paper was not 
mentioned. In these reports the product-connectivity matrix has been discussed 
under different names, e.g., the weighted adjacency matrix [2], the degree-
adjacency matrix [3], the normalized adjacency matrix [4] and the Randić matrix 
[5]. We use the name the product-connectivity matrix to differ it from the related 
matrix that we call the sum-connectivity matrix [6]. Since we consider two forms 
of the product-connectivity matrix, one based on vertices and the other on edges, 
the first matrix is called the vertex-product-connectivity matrix and the other 
edge-product-connectivity matrix, respectively. 

The non-vanishing elements of the vertex-product-connectivity matrix are the 
vertex-product-connectivity indices. In 1975, Randić [7] introduced the vertex-
product-connectivity index and it has been since the most used molecular 
descriptor in QSPR and QSAR modeling. Todeschini and Consonni in their two 
Handbooks [8, 9] reviewed the uses of the vertex-product-connectivity index and 
related molecular descriptors in modeling properties and activities of various 
classes of molecules. Additionally, Todeschini and Consonni also discussed in 
their Handbooks the role of graph-theoretical matrices in deriving molecular 
descriptors (topological indices) [10, 11]. 

In 2010, we introduced the sum-connectivity matrix in parallel to the product-
connectivity matrix [12]. Its non-vanishing elements are the sum-connectivity 
indices [6] whose uses in the QSPR and QSAR modeling parallels that of the 
product-connectivity indices [13, 14]. Randić and his co-workers [15] introduced 
independently the sum-connectivity matrix, but named this matrix the distance-
weighted adjacency matrix. In the same report Randić et al. [15] also introduced 
the sum-connectivity index which they called the modified connectivity index. In 
their paper, they did not refer to our work. In this report we call this descriptor as 
the vertex-sum-connectivity index and the corresponding matrix vertex-sum-
connectivity matrix. Similarly, the sum-connectivity matrix based on edges is 
called here the edge-sum-connectivity matrix. Randić et al. in their paper also 
listed 13 matrices of interest in chemistry [15]. Most of these matrices are also 
included in our monograph Graph-Theoretical Matrices in Chemistry [16]. 
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In this report, we present four types of connectivity matrices, that is, the vertex-

product-connectivity matrix, the edge-product-connectivity matrix, the vertex-

sum-connectivity matrix and the edge-sum-connectivity matrix, respectively. We 

also give their polynomials and spectra. We use in this report the (chemical) 

graph-theoretical concepts and terminology [17-19]. 

PRODUCT-CONNECTIVITY MATRICES 

The vertex-Product-Connectivity Matrix 

The vertex-product-connectivity matrix of a molecular graph G, denoted by V = 

V(G), is a symmetric square matrix defined as: 

-1/2[ ( ) ( )]     if  vertices  and  are  adjacent 
( )        

0                  otherwise ij

d i d j i j
G

    


V  (1) 

where d(i) and d(j) are the degrees of vertices i and j. The vertex-product-

connectivity index vχ based on this matrix is given by: 

vχ = (1/2) 
i,j
 [V(G)]ij (2) 

As an example, we give below the vertex-product-connectivity matrix V(G1) of 

G1 depicting carbon skeleton of 1,1,2-trimethylcyclopropane. 

1

0 0.2887 0.3536 0.5 0.5 0

0.2887 0 0.4082 0 0 0.5774

0.3536 0.4082 0 0 0 0
( )

0.5 0 0 0 0 0

0.5 0 0 0 0 0

0 0.5774 0 0 0 0

G

 
 
 
 
   
 
 
 
  

V

 

The vertex-labeled graph G1 is shown in Fig. (1) and the vertex degrees in G1 in 

Fig. (2), respectively. 
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5

1

4

3

2

6

G1  

Figure 1: The vertex-labeled graph G1 representing the carbon skeleton of 1,1,2-
trimethylcyclopropane. 

1

4
1

2

3

1

G1  

Figure 2: The vertex-degrees in G1. 

The spectrum of this matrix is given by: 1.0000, 0.5132, 0, 0, -0.6921, -0.8212. 

The corresponding vertex-product-connectivity index vχ is 2.6279. 

The edge-Product-Connectivity Matrix 

The edge-product-connectivity matrix of a molecular graph G, denoted by E = 

E(G), is a symmetric square matrix defined as: 

-1/2[ ( ) ( )]   if  edges  and  are  adjacent 
( )        

 0                   otherwise 

i j i j

ij

d e d e e e
G

    


E  (3) 

where d(ei) and d(ej) are the degrees of edges i and j. The edge-product-

connectivity index eχ based on this matrix is given by 

eχ = (1/2) 
i,j
 [E(G)]ij (4) 

As an example, we give below the edge-product-connectivity matrix E(G1) of G1 

depicting carbon skeleton of 1,1,2-trimethylcyclopropane. The edge-degrees of G1 

are shown in Fig. (3). 
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Figure 3: The edge-degrees in G1. 

However, the edge-product-connectivity matrix of graph G, E(G), is the vertex-

product-connectivity matrix of the corresponding line graph L(G), V[L(G)]: 

E(G) = V[L(G)] (5) 

The line graph L(G) of a graph G is the graph generated from G in such a way 

that the edges in G are replaced by vertices in L(G). Two vertices in L(G) are 

connected if the corresponding edges in G are adjacent. In Fig. (4), we show the 

edge-labeled graph G1 and the corresponding vertex-labeled line graph L(G1), and 

in Fig. (5), the vertex-degrees in L(G1), respectively 

6

45

3

2

L(G1)

1

 

Figure 4: The vertex-labeled line graph L(G1). 

3

43

3

2

L(G1)

5

 

Figure 5: The vertex-degrees in L(G1). 

As an example, we give below the edge-product-connectivity matrix of L(G1) and 

the corresponding spectrum. 
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1

0 0.3162 0.2582 0.2236 0.2582 0.2582

0.3162 0 0.4082 0 0 0

0.2582 0.4082 0 0.2887 0 0
[L( )]

0.2236 0 0.2887 0 0.2887 0.2887

0.2582 0 0 0.2887 0 0.3333

0.2582 0 0 0.2887 0.3333 0

G

 
 
 
 
   
 
 
 
  

V

 

The spectrum of this matrix is given by: 1, 0.4082, -0.1225, -0.3333, -0.4083,  
-0.5441. The corresponding edge-product-connectivity index eχ is 2.9220. 

SUM-CONNECTIVITY MATRICES 

The vertex-Sum-Connectivity Matrix 

The vertex-sum-connectivity matrix of a molecular graph G, denoted by S = S(G), 
is a symmetric square matrix defined as: 

-1/2[ ( )+ ( )]     if  vertices  and  are  adjacent 
( )        

0                    otherwise ij

d i d j i j
G

    


S  (6) 

where d(i) and d(j) are the degrees of vertices i and j. The vertex-sum-connectivity 
index vε based on this matrix is given by: 

vε = (1/2) 
i,j
 [S(G)]ij (7) 

As an example, we give below the vertex-sum-connectivity matrix S(G1) of G1 
depicting carbon skeleton of 1,1,2-trimethylcyclopropane (see Figs. (1) and (2)). 

1

0 0.3780 0.4082 0.4472 0.4472 0

0.3780 0 0.4472 0 0 0.5

0.4082 0.4472 0 0 0 0
( )

0.4472 0 0 0 0 0

0.4472 0 0 0 0 0

0 0.5 0 0 0 0

G

 
 
 
 
   
 
 
 
  

S
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The spectrum of this matrix is given by: 1.0431, 0.4080, 0, 0, -0.6499, -0.8013, 
and the corresponding vertex-sum-connectivity index vε is 2.6278, respectively. 

The edge-Sum-Connectivity Matrix 

The edge-sum-connectivity matrix of a molecular graph G, denoted by C = C(G), 
is a symmetric square matrix defined as: 

-1/2[ ( )+ ( )]   if  edges  and  are  adjacent 
( )        

0                     otherwise 

i j i j

ij

d e d e e e
G

    


C  (8) 

where d(ei) and d(ej) are the degrees of edges i and j. As an example, we give 
below the edge-sum-connectivity matrix of L(G1). 

1

0 0.3780 0.3536 0.3333 0.3536 0.3536

0.3780 0 0.4472 0 0 0

0.3536 0.4472 0 0.3780 0 0
[ ( )]

0.3333 0 0.3780 0 0.3780 0.3780

0.3536 0 0 0.3780 0 0.4082

0.3536 0 0 0.3780 0.4082 0

L G

 
 
 
 
   
 
 
 
  

C

 

The edge-sum-connectivity index eε based on this matrix is given by: 

eε = (1/2) 
i,j
 [C(G)]ij (9) 

The spectrum of this matrix is given by: 1.3075, 0.4656, -0.1642, -0.4082,  
-0.5373, -0.6634, and the corresponding edge-sum-connectivity index eε is 
3.7615, respectively. 

COMPARISONS BETWEEN THE CONNECTIVITY INDICES 

In order to illustrate the dependence of vertex- and edge-connectivity indices on the 
size of compounds we computed the connectivity matrices and corresponding 
connectivity indices for the series of 10 acyclyc alkanes from C3 to C12 (Table 1). 
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The discriminating potency of the edge-connectivity indices compared with the 
vertex-connectivity indices was illustrated on the size-independent set of acyclyc 
isomers of C7 alkanes (Table 1). 

Table 1: The values of product- and sum- vertex-connectivity and the corresponding edge-
connectivity indices for 10 non-branched acyclyc alkanes (C3-C12) and 9 C7 isomers, together 
with the experimental melting and boiling points 

Alkane MP (°C) BP (°C) vχ eχ vε eε 

non-branched (C3-C12) 

n-propane -188 -42.05 1.1547 1.0000 1.1547 0.7071 

n-butane -137 -0.15 1.6547 1.4142 1.6547 1.1547 

n-pentane -129.5 36 2.1547 1.9142 2.1547 1.6547 

n-hexane -95 68.5 2.6547 2.4142 2.6547 2.1547 

n-heptane -90.5 98.5 3.1547 2.9142 3.1547 2.6547 

n-octane -57 125.68 3.6547 3.4142 3.6547 3.1547 

n-nonane -53.5 150.5 4.1547 3.9142 4.1547 3.6547 

n-decane -29.5 174 4.6547 4.4142 4.6547 4.1547 

n-undecane -26 195 5.1547 4.9142 5.1547 4.6547 

n-dodecane -9.5 216 5.6547 5.4142 5.6547 5.1547 

branched alkanes (C7) 

n-heptane -90.5 98.5 3.1547 2.9142 3.1547 2.6547 

2-methylhexane -118.5 90 3.0246 2.9319 3.0246 2.9190 

3-methylhexane -119 92 3.0491 2.8425 3.0491 2.8272 

2,2-dimethylpentane -123.7 79.2 2.8272 2.9267 2.8272 3.3442 

2,3-dimethylpentane -135 89.8 2.9328 2.8349 2.9328 3.0499 

2,4-dimethylpentane -123 80.5 2.8944 2.9663 2.8944 3.1971 

3,3-dimethylpentane -135 86.1 2.8656 2.7380 2.8656 3.1681 

3-ethylpentane -119 93.5 3.0737 2.7321 3.0737 2.7247 

2,2,3-trimethylbutane -25 80.9 2.7196 2.9071 2.7196 3.5413 
vχ is the vertex-product-connectivity index; eχ is the edge-product-connectivity index; vε is the vertex-sum-connectivity 
index; eε is the edge-sum-connectivity index. 

Results of correlational analysis between computed indices and experimental 
properties for these data sets are given in the first part of Table 2. High inter-
correlations (rij = 1.0) exist between all indices for C3-C12 alkanes, and, for C7 
alkanes, the same inter-correlations (rij ~ 1.0) are between all pairs of indices  
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Table 2: Inter-correlation coefficients between connectivity indices for different data sets and 
their correlation coefficients with experimental properties 

 vχ eχ vε eε 

non-branched alkanes(C3-C12), n = 10 

MP 0.9774 0.9747 0.9774 0.9758 

BP 0.9936 0.9922 0.9936 0.9928 
vχ  0.9999 1.0000 1.0000 
eχ   0.9999 1.0000 
vε    1.0000 

branched alkanes (C7), n = 9 

MP -0.3515 0.3049 -0.3515 0.3859 

BP 0.9106 -0.3511 0.9106 -0.9300 
vχ  -0.1631 1.0000 -0.9904 
eχ   -0.1631 0.2936 
vε    -0.9904 

branched acyclyc alkanes from [14, 20, 22], n = 137 

RT 0.9791 0.9532 0.9792 0.8584 

MP (n= 63) 0.4476 0.5125 0.4536 0.5518 

BP 0.9785 0.9633 0.9796 0.8755 
vχ  0.9574 0.9997 0.8196 
eχ   0.9638 0.9366 
vε    0.8299 

branched acyclyc alkanes between C6 and C10 from [20-22], n = 134 

vapH  0.9751 0.9195 0.9769 0.7090 

fG° (n = 130) 0.6422 0.6807 0.6431 0.7517 

nD
25 (n = 133) 0.8048 0.8149 0.8053 0.8302 

 (n = 133) 0.7903 0.7855 0.7891 0.8033 

Cp 0.9496 0.9698 0.9553 0.8736 

BP (from [20]) 0.9643 0.9400 0.9661 0.8200 

BP (from [21]) 0.9655 0.9344 0.9666 0.8113 
vχ  0.9250 0.9995 0.7233 
eχ   0.9363 0.9088 
vε    0.7397 

RI is the acronym for retention index values; MP and BP are the acronyms for melting and boiling point values; n denotes 
the total number of corresponding experimental values used in correlations. ΔvapH, fG°, nD

25,  and Cp denote: 
vaporization enthalpy at 300 K (kJ mol-1), the standard Gibbs energy of formation in the gas phase at 300 K (kJ mol-1), 
refractive index at 25 °C, density at 25 °C (kg m-3), and molar heat capacity at 300 K (J K-1 mol-1), respectively. The 
highest value of correlation coefficient in correlation of indices with experimental properties are given in bold. 
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except those pairs containing the edge-product connectivity index (eχ), whose 
inter-correlation with other three indices are below 0.3. Analogously, correlations 
of all indices for C3-C13 alkanes with melting and boiling points are mutualy 
(very) similar and high (> 0.97). For the set of C7 alkanes, where all molecules 
have the same number of bonds, all correlation coefficients with melting points 
are poor (< 0.4), and all those with boiling points are reasonably high (r > 0.9), 
except the correlation with eχ (r = 0.35). 

We included in Table 2 results of inter-correlational analysis of four connectivity 
indices studied here that were computed for a larger data set of 137 hadrocarbons 
(DS-137) taken from literature [14, 20, 22], and their correlation with three 
experimental properties of alkanes: reteintion index, melting and boiling point 
values. Additionally, we also give results of inter-correlational analysis between 
vertex- and edge-connectivity indices, as well as their correlation with six 
experimental properties of data sets of 134 alkanes (DS-137) [20-22]. Two sets of 
experimental values from literature were collected for boiling points in analysis 
on data set of 134 alkanes [20, 21], in order to test the dependence of correlation 
coefficients on the accuracy of experimental values used in comparative study. 
These both data sets [14, 21] were used in literature to test the applicability and 
suitability of topological descriptors in structure-property relationships. 

In both data sets the lowest inter-correlation is between the vertex-product- (vχ) 
and edge-sum- (eε) connectivity indices (r ~ 0.82 and 0.72, for DS-137 and DS-
134, respectively). Inter-correlation between all other pairs of indices is higher, 
having very high values (r > 0.91), with the highest value between the vertex-
product- and vertex-sum-connectivity indices (r > 0.999). 

Analysis of correlations between computed connectivity indices and experimental 
properties for data sets DS-137 and DS-134 clearly shows that in most cases (9 
out of 10), the highest correlation coefficients are obtained with the sum-
connectivity indices, i.e. five with the vertex-sum- (vε) and four with the edge-
sum- (eε) connectivity indices. 

From correlation of connectivity indices with boiling points on DS-134 it is 
evident that the level of correlation is not significantly dependent on the random 
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error caused by using different measurements of experimental data. For both BP 
values, i.e. those from ref. 20 and from ref. 21, corresponding correlation 
coefficients are similar, and for the best one (with vε) the difference is negligible 
(0.9661 versus 0.9666, respectively). 

CONNECTIVITY POLYNOMIALS 

An convenient method for computing the characteristic polynomial of any real 
and symmetric square matrix is the recursive approach by Le Verrier [23], 
Faddeev [24] and Frame [25] that was made very efficient by computer-based 
modifications of Balasubramanian [26] and Živković [27], respectively. Below we 
briefly delineate the modified Le Verrier-Faddeev-Frame method. 

The characteristic polynomial P(G;x) of a graph G is defined as: 

P(G;x) = det  xI – M  (10) 

where I is the N  N unit matrix and M is a real, symmetric matrix. In this report 
M is one of the connectivity matrices considered. 

The coefficient form of the characteristic polynomial is given by: 

P(G;x) = c0 x
N - 

1

N

i

cn x
N-n (11) 

The coefficients of the characteristic polynomial can be obtained by the expansion 
of the determinant (10): 

P(G;x) = c0 x
N – c1 x

N-1 – c2 x
N-2 - …- cN-1 x- cN (12) 

The polynomial coefficients can be computed using the following scheme: 

cn = 
1

1
( )



N

n ii
in

M  (13) 

where the diagonal form of the matrix Mn is given in terms of the diagonal forms 
of the initial matrix M and an auxiliary matrix Bn: 
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(Mn)ii = (M)ii (Bn)ii (14) 

Table 3: The computation of the vertex-product-connectivity polynomial of molecular graph G1 
given in Fig. (1), using the modified Le Verrier-Fadeev-Frame method 

(1) The spectrum of the matrix V(G1) 
{1, 0.5132, 0, 0, -0.6921, -0.8212} 

(2) c0 = 1 by definition  

(3) ii
1

( )
N

i
 V 1 ii

1
( )

N

i
 V  0 

c1 = 0 

(4) {(B1)ii = (V1)ii – (c1I)}i = 1,…,6 = {1, 0.5132, 0, 0, -0.6921, -0.8212} 
{(V2)ii = (V)ii (B1)ii}i = 1,…,6 = {1, 0.2634, 0, 0, 0.4790, 0.6744} 

c2 = ½ 2 ii
1

( )
N

i
 V 1.2084 

(5) {(B2)ii = (V2)ii – (c2I)}i = 1,…,6 = {-0.2084, -0.9450, -1.2084, -1.2084, -0.7294, -0.5340} 
{(V3)ii = (V)ii (B2)ii}i = 1,…,6 = {-0.2084, -0.4850, 0, 0, 0.5048, 0.4385} 

c3 = 1/3 3 ii
1

( )
N

i
 V 0.0833 

(6) {(B3)ii = (V3)ii – (c3I)}i = 1,…,6 = {-0.2917, -0.5683, -0.0833, -0.0833, 0.4215, 0.3552} 
{(V4)ii = (V)ii (B3)ii}i = 1,…,6 = {-0.2917, -0.2917, 0, 0, -0.2917, -0.2917} 

c4 = 1/4 4 ii
1

( )
N

i
 V -0.2917 

(7) {(B4)ii = (V4)ii – (c4I)}i = 1,…,6 = {0, 0, 0, 0, 0, 0} 
{(V5)ii = (V)ii (B4)ii}i = 1,…,6 = {0, 0, 0, 0, 0, 0} 

c5 = 1/5 5 ii
1

( )
N

i
 V 0 

(8) The vertex-product-connectivity polynomial of G1 
V(G1) = x6 – 1.2084 x4 – 0.0833 x3 + 0.2917 x2 

The diagonal form of the auxiliary matrix Bn is given by: 

(Bn)ii = (Mn)ii  (cn I)ii (15) 

The procedure ends when the B-matrix vanishes, i.e. when n = N: 

(BN)ii = (MN)ii  (cN I)ii (16) 

As an illustrative example, we compute the vertex-product-connectivity 
polynomial of the graph G1 (see Fig. (1)) using the above procedure. This is 
shown in Table 3. 
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In the same way other three polynomials are computed. The edge-product-
connectivity polynomial of G1 is given by: 

E(G1) = x6 – 0.8777 x4 – 0.2667 x3 + 0.0963 x2 + 0.0444 x + 0.0037 

Similarly, the polynomials of the vertex-sum-connectivity polynomial and edge-
sum-connectivity polynomial of G1 are given below: 

S(G1) = x6 – 1.1595 x4 – 0.1380 x3 + 0.2216 x2 

C(G1) = x6 – 1.4243 x4 – 0.6056 x3 + 0.1956 x2 + 0.1308 x + 0.0145 

We list below several properties of connectivity polynomals that are easily detectable 
(note symbol M stands for the connectivity matrices considered in this report): 

(1) The coefficients c0 and c1 are, respectively, always unity and zero. 
The c1 coefficient is equal to zero because of the relationship: 

c1 = 
1

tr 


 i

N

i

x M  (17) 

where tr M is the trace of a given connectivity matrix. 

(2) The coefficient c2 is equal to the half-sum of the squares of elements 
of a given connectivity matrix: 

c2 = 
, 1

21
( )

2 


N

i j
ijM  (18) 

(3) The last coefficient cN is equal to the determinant of a given 
connectivity matrix: 

cN = (-1)N det M (19) 

(4) The sum of squares of the elements in the Harary matrix is equal to 
the trace of the squared Harary matrix: 

, 1

2( )



N

i j
iiΜ = tr M2 (20) 
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CONCLUDING REMARKS 

The following four connectivity matrices are reviewed: vertex-product-
connectivity matrix, edge-product-connectivity matrix, vertex-sum-connectivity 
matrix and edge-sum-connectivity matrix. They are generated using degrees of 
vertices making up a simple graph. Half-sums of these four matrices give the four 
related connectivity indices, that is, vertex-product-connectivity index, edge-
product-connectivity index, vertex-sum-connectivity index and edge-sum-
connectivity index, respectively. 

The inter-correlations and the usefulness and suitability of all forms of 
connectivity indices in developing structure-property relationships, especially of 
newer edge- and sum- forms of connectivity indices, are illustrated and confirmed 
on four data sets of alkanes for 14 experimental physico-chemical properties. 

The corresponding connectivity polynomials are also generated using the time-
honored approach by Le Verrier (1840) [23] with adaptations from Frame (1949) 
[24], Fadeeva (1959) [25], Balasubramanian (1986) [26] and Živković (1990) [27]. 
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CHAPTER 5 

The Use of Weighted 2D Fingerprints in Similarity-
Based Virtual Screening 
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Abstract: The fingerprints that are widely used for similarity-based virtual screening 
typically encode the presence or absence of fragments, without any indication as to their 
relative importance. This chapter discusses the use of weighted fingerprints, where each 
fragment is associated with a weight denoting its degree of importance in quantifying the 
degree of similarity between a reference structure and a database structure. Extensive 
studies using the World of Molecular Bioactivity and MDL Drug Data Report databases 
show that weighting fragments according to their frequency of occurrence within a 
molecule can increase the effectiveness of screening, but that this is not the case when 
fragments are weighted according to their frequency of occurrence within a database. 

Keywords: Chemoinformatics, ECFC4 fingerprint, extended connectivity 
fingerprint counts fingerprint, fingerprint, fragment weighting scheme, frequency 
weighting, IDF weighting, information retrieval, inverse frequency weighting, 
ligand-based virtual screening,/MDL Drug Data Report/database, similarity-based 
virtual screening, similarity coefficient, similarity searching, TF weighting, virtual 
screening, weighting scheme,/World of Molecular Bioactivity/database. 

INTRODUCTION 

An important component of modern drug-discovery programmes is virtual 
screening [1-5]. This involves the use of computational methods to rank a 
chemical database in order of decreasing probability of bioactivity, so that 
chemical synthesis and biological testing programmes can focus on those classes 
of molecules that are most likely to be relevant to a drug discovery programme.  
 

*Corresponding author Peter Willett: Information School, 211 Portobello Street, Sheffield S1 4DP, UK; 
Tel: 0044-114-2222633; Fax: 0044-114-2780300; E-mail: p.willett@sheffield.ac.uk 

Copyright © Bentham Science Publishers Ltd. Published by Elsevier Inc. All rights reserved. 2015
10.1016/B978-1-68108-198-4.50005-9

Subhash C. Basak, Guillermo R est repo & José L. Vi llaveces (E d s)



The Use of Weighted 2D Fingerprints Advances in Mathematical Chemistry and Applications, Vol. 1, (Revised Edition)   93 

Database molecules are often represented by a fingerprint, a vector that encodes 
the presence or absence of a range of substructural fragments [6, 7], and one of 
the most common types of virtual screening involves the calculation of similarity 
measures based on such fingerprints [8-13]. Specifically, the fingerprint 
describing a reference structure that is known to exhibit the bioactivity of interest 
is compared with the fingerprints describing each of the database structures to 
identify those that are most similar, and that are hence the most likely to be active. 
The fragments encoded in a fingerprint can represent either two-dimensional (2D) 
or three-dimensional (3D) fragment substructures. Although the latter clearly 
provide a more detailed representation of molecular structure, 2D fingerprints, 
where the encoded fragments describe small patterns of atoms, bonds or rings [6, 
7], have been found to be effective in operation. They continue to be very widely 
used for virtual screening, and hence form the basis for the work reported here. 

Most types of fingerprints are binary in character, with each element of the vector 
denoting the presence (or absence) of a particular fragment substructure by the 
setting (or not setting) of one or more bits. However, this is not necessarily so, 
and the vector elements may instead contain a weight that reflects the importance 
of a particular fragment in determining the degree of similarity between a 
database structure, and the reference structure. Thus, a high-weight fragment 
occurring in both a reference structure and a database structure would contribute 
more to the overall degree of resemblance than would a low-weight fragment. 

Fragment weighting has been widely used in some machine learning approaches 
to virtual screening [14], e.g., substructural analysis involves calculating weights 
that represent probability of activity of a molecule that contains a specific 
fragment [15]. This is a powerful technique but one that requires the availability 
of extensive amounts of activity data to compute the probabilities. In similarity-
based virtual screening (hereafter SBVS), conversely, the only such information 
available is the knowledge that the solitary reference structure is active. There is, 
however, an additional source of information available to the search algorithm in 
SBVS, viz the frequencies of occurrence of the fragments encoded in the 
fingerprints describing the reference structure and the database structures. This 
chapter describes an extended series of experiments to determine how such 
frequency information can best be used to increase the effectiveness of screening 



94   Advances in Mathematical Chemistry and Applications, Vol. 1, (Revised Edition) Arif et al. 

[16, 17]. In the next section, we describe previous work on frequency-based 
weighting schemes, considering not only studies in SBVS but also in the design of 
text search engines, where such frequency information has long played a key role. 
We then briefly describe the experimental set-up we have used, before 
considering two types of weighting scheme: frequencies of occurrence within 
individual molecules, and frequencies of occurrence in a database as a whole. The 
chapter concludes with a summary of our major findings. 

PREVIOUS STUDIES 

The starting point for our work has been the extensive studies that have been 
carried out over many years in information retrieval (hereafter IR), which 
provides the technology for the search engines that are used to access the wealth 
of textual information now available on the World Wide Web [18, 19]. There are 
several ways in which IR is analogous to chemical virtual screening. For example, 
a textual document is indexed by a set of words selected from the much larger 
number that might possibly be used, and a chemical fingerprint encodes just those 
few fragments that are present in that molecule. Again, only a few documents in a 
text database are likely to be relevant to a user’s query, and only a few molecules 
in a chemical database are likely to have the same bioactivity as a reference 
structure. Finally, and related to the second point, the analogy between relevance 
and bioactivity means that performance measures developed for evaluating the 
effectiveness of IR systems (in terms of the numbers of relevant and non-relevant 
documents retrieved) can also be used for evaluating the performance of systems 
for virtual screening (in terms of the numbers of active and inactive molecules 
retrieved). Given these resemblances, which have been discussed in some detail 
by Willett [20], it seems reasonable to consider whether the extensive work that 
has been carried out on frequency-based weighting schemes in IR might be 
applicable to SBVS. 

Attempts to use frequency information in IR date back to the early Seventies 
when Spärck Jones carried out the first of a long series of experiments to 
investigate the extent to which word-frequency information could be used to 
enhance the effectiveness of retrieval systems [21, 22]. This work, and subsequent 
studies by Robertson [23, 24] and Salton [25, 26], demonstrated the effectiveness 



The Use of Weighted 2D Fingerprints Advances in Mathematical Chemistry and Applications, Vol. 1, (Revised Edition)   95 

of two types of weighting scheme, called idf (for inverse document frequency) and 
tf (for term frequency) weighting. In idf weighting, each word in a document (or 
query) is associated with its inverse frequency of occurrence in the database that 
is being searched, so that rare words have larger associated weights than do words 
that are used more commonly. In tf weighting, each word in a document (or 
query) is associated with its frequency of occurrence, so that the document 
representation indicates not just a term’s presence (or incidence) but also how 
often it is present (its occurrence). In the SBVS context, idf weighting makes the 
assumption that two molecules sharing a fragment that occurs only rarely in the 
database resemble each other more closely than if they share a commonly 
occurring fragment; and tf weighting makes the assumption that two molecules 
sharing multiple occurrences of a fragment in common resemble each other more 
closely than if they share just a single occurrence. Both of these assumptions seem 
entirely plausible. 

Of the two types, idf-like weighting has been less studied in chemoinformatics. 
Both Adamson and Bush [27] and Willett and Winterman [28] found that it was 
not helpful in small-scale property prediction experiments. For database 
searching, Moock et al. found that it was highly effective for similarity searching 
in a large reactions database [29], Abdo and Salim have included inverse 
frequency counts as part of a scoring function to model probabilities of bioactivity 
in their work on Bayesian inference networks for SBVS [30], whilst Downs et al. 
obtained equivocal results in searches of three Pfizer screening datasets [31]. 
There have been several studies of tf-like weighting. The first report was by 
Willett and Winterman, who found that occurrence-based fingerprints were 
significantly superior to incidence-based fingerprints in property prediction 
experiments on small QSAR and QSPR datasets [28], and this finding was 
confirmed in other subsequent property prediction studies [32-35]. A similar 
conclusion in the context of database searching was reported by Chen and 
Reynolds [36], although Fechner et al. [37] and Stiefl et al. [38] found little 
difference between the two types of fingerprint. 

The available evidence hence suggests that tf-like fingerprint weighting may 
enhance SBVS performance, when compared to conventional, incidence-based 
fingerprints, but that this may not be the case with idf-like weighting. That said, 



96   Advances in Mathematical Chemistry and Applications, Vol. 1, (Revised Edition) Arif et al. 

there is a fair degree of inconsistency in the results to date, and the experiments 
have often been limited in the sizes of the datasets used or in the extent to which 
the weighted and binary fingerprints differed. In the remainder of this chapter, we 
describe the experiments we have carried out to investigate these two types of 
weighting, which we shall refer to subsequently as frequency weighting (for tf) 
and inverse frequency weighting (for idf). 

METHODS 

The experimental set-up is typical of current work in SBVS. A bioactive reference 
structure is submitted, its similarity calculated with each of the database 
structures, the database ranked in order of decreasing similarity, and a cut-off 
applied to retrieve some fixed percentage of the top-ranked molecules. These 
nearest neighbours are then checked to determine whether they exhibit the same 
activity as the reference structure, and a measure of retrieval effectiveness 
determined. Two databases were used here: the MDL Drug Data Report database 
(hereafter MDDR, from Accelrys Inc. at http:/accelrys.com/) and the World of 
Molecular Bioactivity database (hereafter WOMBAT, from Sunset Molecular 
Discovery LLC at http:/sunsetmolecular.com/). There were 102,535 molecules in 
the MDDR dataset and 138,127 molecules in the WOMBAT dataset, as described 
in detail by Arif et al. [16]. 

Several activity classes were chosen for each of the two databases, as listed in 
Tables 1a and 1b for MDDR and WOMBAT, respectively. Each row of the table 
contains an activity class, the number of database molecules that have been listed 
as exhibiting that activity, and an indication of the class’s diversity. The diversity 
figures listed are the mean intra-class similarities when all the members of a class 
are compared with each other and the similarities calculated using Tripos Unity 
2D fingerprints and the Tanimoto coefficient (vide infra). 

For each activity class, ten disparate example molecules were chosen to act as 
reference structures for simulated virtual screening. The numbers of actives retrieved 
in these similarity searches were then averaged over the ten reference structures, 
using cut-offs of the top-1% and the top-5% of the similarity rankings. We also noted 
the numbers of distinct ring systems in the active molecules that were retrieved, rather 
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than just the number of active molecules, to assess the effectiveness of the various 
weighting schemes for scaffold-hopping applications [39, 40]. However, we found 
that the differences in screening effectiveness that were identified using the numbers 
of actives retrieved as the performance criterion mirrored closely the differences 
identified using the numbers of ring systems in those actives. We have hence 
included here the results only for the numbers of active molecules; full results are 
provided by Arif et al. [16, 17]. The MDDR and WOMBAT molecules were 
represented by ECFC4 circular substructure fingerprints (available from Accelrys Inc. 
at http:/www.accelrys.com), where ECFC denotes Extended Connectivity Fingerprint 
Counts. ECFC4 fingerprints encode circular substructures describing a central atom 
and all the atoms within a two-bond radius of it [41]: in our experiments, the integer 
codes representing a circular substructure were hashed to give a fixed-length 
fingerprint containing 1024 elements. The hashing results in very few collisions since 
ECFC fingerprints have a very low bit-density; and previous experiments have shown 
that the use of the 1024-element fingerprint results in only a minimal reduction in 
effectiveness compared to that obtained from the use of variable-length fingerprints 
where hashing is not used [42]. The fingerprint elements contained the weight 
associated with each fragment according to one of the various weighting schemes that 
are discussed in detail in the remainder of the chapter. Thus, an ECFC4 fingerprint 
can be considered as a vector, X (where X can denote either the reference structure or 
a database structure), with the i-th element denoting a fragment occurring fi times in a 
molecule (fi  0). The fi values may then be modified by the application of a 
weighting scheme to the fingerprint. 

Table 1: Activity classes used in the virtual screening experiments, chosen from the (a) MDDR 
and (b) WOMBAT databases 

Activity Class Active Molecules Mean Similarity 

5HT3 antagonists 752 0.35 

5HT1A agonists 827 0.34 

5HT reuptake inhibitors 359 0.35 

D2 antagonists 395 0.35 

Renin inhibitors 1125 0.57 

Angiotensin II AT1 antagonists 943 0.40 

Thrombin inhibitors 803 0.42 

Substance P antagonists 1246 0.40 
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Table 1: contd…. 

HIV protease inhibitors 750 0.45 

Cyclooxygenase inhibitors 636 0.27 

Protein kinase C inhibitors 453 0.32 

(a) 

Activity Class Active Molecules Mean Similarity 

5HT3 antagonists 220 0.38 

5HT1A antagonists 592 0.40 

D2 antagonists 910 0.37 

Renin inhibitors 474 0.59 

Angiotensin II AT1 antagonists 724 0.44 

Thrombin inhibitors 421 0.42 

Substance P antagonists 558 0.43 

HIV protease inhibitors 1128 0.44 

Cyclooxygenase inhibitors 965 0.32 

Protein kinase C inhibitors 142 0.57 

Acetylcholine esterase inhibitors 503 0.37 

Factor Xa inhibitors 842 0.39 

Matrix metalloprotease inhibitors 694 0.44 

Phosphodiesterase inhibitors 596 0.36 

(b) 

Given this representation, the similarity SXY between the vectors R and D, 
representing a reference structure and a database structure respectively, was 
computed using the full form of the widely used Tanimoto coefficient [43-45], 

22

i i
XY

i iii

S
rd

rddr


 


  
 (1) 

where the summations are over all of the elements in each fingerprint. 

INVERSE FREQUENCY WEIGHTING 

Inverse frequency weighting has been widely used in IR (see Previous Studies 
section), and we have used three IR weighting schemes here, as well as a further 
such weight that has previously been used specifically for chemoinformatics 
searching. 
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Considering each ECFC4 fingerprint as a vector, X, as described above, the 
inverse frequency weighting experiments used five different weighting schemes 
(w1-w5). The conventional, zero/one binary weight is represented by: 

w1: 1ix  . 

This binary weight encodes just the incidence of the i-th fragment, and is obtained 
by setting to unity all elements in X for which the corresponding fragment 
occurred one or more times. The following weights (w2-w5) all involve replacing 
the value of 1 for a fragment occurring in a molecule by a weight reflecting the 
fragment’s inverse frequency of occurrence in the database as a whole. 

Assume that the i-th fragment occurs in a total of Ti molecules (Ti  0) in the 
database and that the database comprises a total of N different molecules. Then 
the three IR-derived weights are as follows, where ln denotes natural logarithms. 

w2 : ln
1

i
i

N
x

T
    

 (2) 

w3 : ln 1i
i

N
x

T
   
 

 (3) 

0.5
w4 : ln

0.5
i

i

N
x

T

    
. (4) 

There are clear relationships between these four weights: w2 and w4 yield 
comparable weights except where a fragment occurs very infrequently across the 
whole database; while w3 is simply w1 augmented by an inverse frequency 
component. In addition to their successful origins in IR, the use of logarithmic 
inverse frequency functions is further supported by consideration of the fragment 
weighting schemes used in substructural analysis approaches to virtual screening. 
As noted previously, substructural analysis requires large amounts of activity 
information; however, Arif et al. demonstrate that the mathematical formulations 
of two of these weights reduce to functions involving ln(1/Ti) in the absence of 
such information [17]. 
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The final weight, w5, is rather different in form, and is that used by Moock et al. 
in their work on similarity searching of chemical reaction databases [29]: 

Max{ }
w5:

i
i

i

T
x

T
  (5) 

where Max{Ti} is the number of molecules containing the most frequently 
occurring fragment. 

Each of the five schemes, w1-5, can be applied to the reference structure and to 

each of the database structures, giving a total of 25 different combined weighting 

schemes that could be used for SBVS. Here, we have considered those schemes 

where both the reference structure and the database structures are weighted in the 

same manner; in addition, we have considered those where either the reference 

structure or the database structures are weighted using w1, i.e., the use of 

conventional binary weighting. This gives a total of 13 different combinations for 

evaluation. An individual combined weight is referred to subsequently as Wab, 

where a denotes the weight applied to the database structures’ fingerprints and b 

denotes the weight applied to the reference structure’s fingerprint. For example, 

W15 represents the searches (ten of them for each of the chosen activity classes) 

where the database structures use w1 (i.e., conventional binary weighting) and 

where the reference structures use the reaction searching weight, w5. 

A typical set of search results is shown in Table 2, for searches of the MDDR 

dataset in which the molecules comprising the top-1% of the ranked database are 

checked for activity and in which each of the columns in the main body of the 

table is headed by a three-letter abbreviation for the activity class. The results 

show the mean numbers of actives when averaged over the ten different reference 

structures for each of the eleven activity classes. The penultimate column gives 

the mean when averaged over all of the 110 searches for each weighting scheme 

Wab. The largest number of actives in each column is heavily-shaded, and 

elements that are within 5% of this largest value are lightly-shaded. The last 

column gives the total number of shaded elements for each combination of 
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weights, and has been included for the following reason. Table 1 demonstrates 

that there are large variations in the numbers of actives and in the inter-molecular 

similarities for each of the activity classes. Most obviously, the MDDR renin 

dataset contains many highly similar molecules, making it easy for all the 

weighting schemes to retrieve large numbers of actives, as clearly demonstrated 

by the column headed REN in Table 2. This could bias the results when the 

arithmetic mean is calculated, and hence the number of shaded cells has been 

included as this indicator is based solely upon the ranking of the various 

weighting schemes, and not upon the absolute numbers of actives. 

Table 2 exemplifies the results obtained using one combination of parameters 
(top-1% of MDDR). The results obtained for all combinations (MDDR or 
WOMBAT, top-1% or top-5%) are shown in Table 3, with the largest valued cells 
again being shaded. Inspection of Table 3 shows clearly that the best results, as 
denoted by the much greater prevalence of shaded cells in the upper part of the 
table, are generally obtained using weights of the form W1b, i.e., with the 
database structures unweighted and with the inverse frequency weights applied 
only to the fragments occurring in the reference structure. Overall, the best results 
are obtained using W13 (for the MDDR activity classes) or W11 (for the 
WOMBAT activity classes) based on the number of actives retrieved. Based on 
the ranks, W11 and W13 again perform well (although several other combinations 
of weights are comparable to W13 in the WOMBAT searches). The best overall 
performance would seem to occur with W11, i.e., not using weights for either the 
reference structure or the database structures. 

Inspection of Tables 1a and 2 suggests that W11 tends to perform well, when 
compared to W13, when the mean pair-wise similarities for the active molecules 
is low (i.e., when searches are being carried out for the more diverse activity 
classes). To confirm this observation, the MDDR and WOMBAT activity classes 
were divided into two sets: those with similarities in Table 1  0.40 
(homogeneous activity classes, i.e., where the molecules in a class are structurally 
similar) and those with similarities < 0.40 (heterogeneous activity classes, i.e., 
where the molecules in a class are structurally diverse). The ten searches for each 
activity class means that there are 50 MDDR homogeneous searches and 60 
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heterogeneous searches, and 70 WOMBAT searches for both homogeneous and 
heterogeneous. We have then taken all the top-1% searches using W11 and W13 
and compared the numbers of actives retrieved to see which of the two weighting 
schemes performed better. For each set of searches (W11 and W13) we have 
compared the results using both the Sign and Wilcoxon tests: the Sign test simply 
compares the number of searches where one of the measures was superior to the 
other, while the Wilcoxon test additionally takes account of the magnitude of the 
difference in each case. The significance of the differences in each case is 
assessed using a Z test [46]. For example, for the 50 MDDR homogeneous-class 
searches, W13 does better than W11 for 34 of the searches, W11 does better than 
W13 for 14 of the searches, and there is no difference in the remaining two 
searches. Both the Wilcoxon and Sign test show that W13 is significantly better  
(p <= 0.01) than W11 for these homogeneous activity classes. Conversely, both 
tests show that W11 is significantly better (p <= 0.001) for the MDDR 
heterogeneous classes. There are no significant differences for the WOMBAT 
homogeneous classes, while the Sign test (but not the Wilcoxon test) shows that 
W11 is better than W13 for the WOMBAT heterogeneous classes. 

Table 2: Mean numbers of actives retrieved in the top-1% of the rankings obtained from 10 
searches of each of the 11 MDDR activity classes, using inverse frequency weighting 

 5HT3 5HT1 5HT D2 REN ANG THR SUBP HIV COX PKC Mean Shaded 

W11 90.2 81.1 24.0 27.2 419.8 236.1 56.5 121.3 86.5 28.3 35.5 109.7 7 

W12 75.3 71.7 21.0 25.5 468.5 218.7 59.6 145.3 91.2 20.9 27.9 111.4 4 

W13 73.4 71.5 20.4 25.9 480.6 231.5 60.1 140.5 92.9 19.1 27.6 113.1 5 

W14 75.0 71.9 21.1 25.4 468.8 219.0 59.8 145.1 91.2 21.1 28.1 111.5 4 

W15 71.9 65.4 19.7 24.1 464.7 209.6 58.9 144.0 92.3 18.0 26.0 108.6 4 

W21 84.9 76.6 21.0 25.4 311.2 173.5 50.3 111.2 74.1 27.9 30.9 89.7 1 

W22 78.3 73.9 21.0 23.7 398.7 176.6 56.2 136.5 87.6 23.8 27.7 100.4 0 

W31 85.3 73.9 20.0 24.0 249.8 157.2 44.7 98.5 66.0 29.3 30.6 79.9 1 

W33 83.2 77.4 21.2 26.0 415.8 196.1 57.5 137.4 89.9 25.3 29.7 105.4 3 

W41 84.8 76.2 21.0 25.4 311.4 173.6 49.6 111.0 73.9 28.1 30.9 89.6 1 

W44 78.3 73.8 21.0 23.8 398.3 176.6 56.4 136.9 87.6 23.7 27.7 100.4 0 

W51 76.9 70.2 20.5 24.3 254.0 139.9 42.9 94.4 63.2 27.9 28.2 76.6 1 

W55 72.5 61.6 20.0 20.6 356.3 158.5 54.9 122.6 83.6 21.5 24.8 90.6 0 



The Use of Weighted 2D Fingerprints Advances in Mathematical Chemistry and Applications, Vol. 1, (Revised Edition)   103 

Table 3: Mean numbers of actives retrieved and numbers of shaded cells using inverse frequency 
weighting 

 MDDR WOMBAT 

 Top-1% Top-5% Top-1% Top-5% 

 Actives Cells Actives Cells Actives Cells Actives Cells 

W11 109.7 7 211.9 6 103.6 10 188.2 8 

W12 111.4 4 205.5 3 101.2 7 184.9 6 

W13 113.1 5 212.8 5 100.8 6 187.8 8 

W14 111.5 4 198.2 3 101.0 7 184.6 7 

W15 108.6 4 202.5 3 98.5 2 181.8 6 

W21 96.3 1 183.9 1 85.6 3 166.2 3 

W22 100.4 0 184.3 0 95.9 6 171.1 2 

W31 79.9 1 173.8 3 75.6 2 155.1 2 

W33 105.4 3 197.0 0 100.4 7 180.3 5 

W41 89.6 1 183.9 1 85.3 2 166.6 4 

W44 100.4 0 184.3 0 96.1 6 171.2 2 

W51 76.6 1 166.7 1 68.5 1 143.5 0 

W55 90.6 0 171.3 0 85.8 1 153.6 1 

The experiments discussed here have used just a single type of fingerprint, i.e., 
those based on the ECFC4 circular substructures. Arif et al. [17] report additional 
experiments that employed three other types of fingerprint: BCI keys (1052 
elements and available from Digital Chemistry Ltd.) are selected to maximise 
discrimination in substructure searching using a frequency-based selection 
algorithm; MDL keys (166 elements and available from Accelrys Inc.) encode 
common fragment substructures; and Sunset keys (560 elements and available 
from Sunset Molecular Discovery LLC) combine chemical substructure 
recognition with topologically-relevant pharmacophore patterns based on atom-
pairs. The conclusions that can be drawn from using these additional fingerprint 
types are broadly in line with those obtained with the ECFC4 fingerprints 
(although there are differences of detail occasioned by the very different statistical 
characteristics of the various molecular representations). 

It hence seems reasonable to conclude that W13 provides an effective weighting 
scheme when searching for structurally homogeneous sets of actives, but that W11 is 
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the method of choice for the more challenging, and pharmaceutically much more 
important, task of searching for structurally diverse sets of actives. A theoretical 
rationale for why the diversity of the actives could affect the relative performance of 
these two weighting schemes is outlined in the Appendix to this chapter. 

FREQUENCY WEIGHTING 

We now turn to frequency weighting where, as before, we consider each 
fingerprint as a vector, X, with the i-th fragment occurring fi times in a molecule. 
The experiments used the following five weighting schemes (w1-w5). First, the 
incidence weight: 

w1: 1ix   (6) 

Second, the occurrence weight is obtained by setting, 

w2: i ix f , (7) 

i.e., using the raw occurrence counts. w1 and w2 are the obvious weighting 
schemes, and the ones that are normally meant when binary and weighted 
fingerprints are referred to in the chemoinformatics literature. However, we also 
consider three further ways in which the occurrence frequencies can be used. The 
first two are standard normalisations in data analysis, and involve taking either the 
natural logarithm, 

w3: ln( )iix f  (8) 

or the square root, 

w4: i ix f  (9) 

of the frequency of occurrence. The final scheme, w5, expresses the raw 
occurrence frequency as a fraction of the frequency for the most frequently 
occurring fragment in the molecule, and then normalised to give a value between 
0.5 and 1. This approach has been tested here since it has been widely used in IR 
weighting studies [25, 26]: 
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w5: 0.5 0.5
max{ }

i
i

i

f
x

f
  . (10) 

The reference structure and each database structure can be weighted using each of 
these five weighting schemes, yielding a total of 25 possible different similarity 
measures. As with the inverse frequency weighting experiments, we have chosen 
to use those combinations where both the reference structure and the database 
structures were weighted using the same weighting scheme, together with all 
combinations involving w1 or w2 (i.e., involving simple binary weighting or raw 
frequency counts). This gives a total of 19 different combinations for evaluation. 
As before, Wab describes the combined weighting scheme used for SBVS, where 
a denotes the weight applied to the database structures’ fingerprints and b the 
weight applied to the reference structure’s fingerprint. 

The frequency weighting experiments have been analysed as described in the 
previous section for the inverse frequency weighting experiments, and the results 
in Table 4 for the numbers of retrieved actives are hence analogous to those 
shown in Table 3. Inspection of Table 4 shows that effective screening is obtained 
with the following weighting schemes: W12, W14, W44, W51 and W52, with 
W12 being probably the best overall. 

The results in Table 4 relate to the use of ECFC4 fingerprints. Arif et al. [16] 
report detailed experiments using two further fingerprints that provide occurrence 
information, these being the Sunset keys (vide supra) and Tripos holograms (997 
elements available from Tripos Inc.). There is some variation in the results 
obtained from the three different types of representation (and more so than when 
the different fingerprints were tested in the inverse frequency weighting 
experiments discussed in the previous section). When the Sunset keys were used, 
the best results were obtained with W14, W44, W51 and W55; while W22, W33 
and W44 were the weighting schemes of choice with the Tripos holograms. 
Taking the three fingerprints together, Arif et al. concluded that W44 gave the 
best overall screening performance, i.e., that the fingerprints should encode the 
square root of the raw occurrence counts for both the reference structure and the 
database structures. The effect of the w4 weight is to lessen the contribution of the 
more generic fragments that can occur relatively frequently within molecules, and 
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that thus yield high element values if the raw occurrence counts are used without 
some form of normalisation. 

Table 4: Mean numbers of actives retrieved and numbers of shaded cells using frequency 
weighting 

 MDDR WOMBAT 

 Top-1% Top-5% Top-1% Top-5% 

 Actives Cells Actives Cells Actives Cells Actives Cells 

W11 109.7 1 211.9 1 103.6 3 188.2 4 

W12 118.7 5 227.2 2 108.2 6 193.4 4 

W13 29.0 0 95.2 1 26.2 0 85.1 0 

W14 114.9 3 219.4 2 105.8 3 191.1 3 

W15 88.1 1 183.3 1 89.7 1 163.7 0 

W21 50.7 1 126.4 1 50.0 0 116.0 0 

W22 86.2 2 185.8 4 86.0 2 165.8 2 

W23 13.6 0 59.1 0 9.0 0 40.7 0 

W24 62.7 1 142.8 1 62.1 1 133.7 1 

W25 25.0 0 76.2 1 26.4 0 66.8 0 

W31 88.4 2 197.6 2 55.4 0 154.3 1 

W32 55.0 0 171.0 1 25.0 0 122.8 0 

W33 69.1 0 166.7 2 71.3 1 158.9 1 

W41 109.3 2 215.0 3 100.8 0 186.7 1 

W42 99.4 1 213.7 2 82.0 1 172.2 0 

W44 114.6 5 223.5 3 103.0 1 192.6 3 

W51 119.9 4 226.8 2 107.2 6 196.0 6 

W52 115.6 2 222.5 1 104.7 4 193.7 6 

W55 113.0 1 208.3 1 103.0 0 188.8 3 

Arif et al. present a detailed discussion of how even quite small variations in the 
weighting scheme can affect the magnitudes of the Tanimoto coefficients that are 
calculated during a screening experiment [16]. Their analysis reveals a complex 
pattern of relationships that means, for example, that if there is a large discrepancy in 
the weights computed using the weighting schemes for the reference structure and 
for the database structure then screening effectiveness is likely to be less than if the 
two weights are comparable in magnitude. 
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The Tanimoto coefficient is normally regarded as being symmetric in character, in 
that the two objects that are being compared in a similarity calculation are treated 
analogously. However, this will only be so if the two object descriptions are 
weighted in the same way, and it will be clear from the formulations of w1-w5 
that this is not always the case, with the result that there can be considerable 
differences in the magnitudes of the three components of the denominator of the 
Tanimoto expression. Thus, whereas the choice of the Tanimoto coefficient for 
virtual screening would normally be regarded as being non-problematic, the 
evidence here, as with the inverse frequency weights and as detailed in the 
Appendix, would suggest that the mathematical form of the coefficient may affect 
screening performance in ways that are far from obvious on first inspection. 

CONCLUSION 

Lead-discovery programmes in the pharmaceutical and agrochemical industries 
make extensive use of SBVS based on 2D fingerprints. The fingerprints are 
normally binary in character, encoding just the incidence of fragments in a 
molecule; however, they can also be weighted to reflect the relative degree of 
importance of different fragments in determining the degree of resemblance 
between two molecules. 

In this chapter, we have summarised the principal findings of a project to evaluate 
the effectiveness of two approaches to the weighting of fingerprints. Drawing on 
previous work in IR, we have studied both inverse frequency weighting, where 
fragments that occur infrequently throughout a database are assumed to be more 
important than common fragments that occur in many molecules, and frequency 
weighting, where fragments that occur multiple times within a molecule are assumed 
to be important than fragments that occur only once in a molecule. Our conclusions 
are threefold. First, whilst inverse frequency weighting seems intuitively reasonable, 
it is of little practical use: it appears to be effective only where the active molecules 
are structurally similar but offers few benefits in the normal environment where the 
actives are structurally diverse. Second, frequency weighting is often beneficial, as 
long as the weights applied to the reference structure and database structure 
fingerprints are broadly comparable in magnitude, with the best results being 
obtained by taking the square roots of the occurrence frequencies. Third, although 
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widely used, the effectiveness of the Tanimoto coefficient for virtual screening is 
crucially dependent on the precise weighting scheme that is used. As a consequence 
of this last finding, current work in our laboratory is investigating the use of other 
similarity coefficients for frequency-weighted SBVS. 

APPENDIX 

This appendix provides a theoretical rationale for why the search effectiveness of 

the inverse frequency weighting schemes W11 and W13 might be differentially 

affected by the structural diversity of the actives that are being sought in SBVS. 

Specifically, we believe that these differences arise from the nature of the 

Tanimoto coefficient. 

For W11 the coefficient has the usual form, i.e., 

22

i i

i iii

rd
rddr  


  

 (11) 

In a similarity search, a single reference structure is matched against each of the 

different database structures and hence the 2

ir term will be a constant, call it c 

in this context. When the actives are similar to each other, there are likely to be 

many fragments in common between the reference structure and the active 

database structures. This means that the i ird term will be large for the top-

ranked database structures; indeed, it may be comparable in magnitude to the 
2

id term, which would result in the coefficient using W11 being very 

approximately, 

i i

c

rd  (12) 

With a diverse set of actives the similarities are unlikely to be large on average, 

and thus the contribution from the matching fragments, i.e., the i ir d term, is 

likely to be small. The coefficient using W11 in this situation is hence very 

approximately 
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The form of the w3 weight means that fragments weighted using this scheme will 

have much higher weights than they will if weighted using w1, with the result that 

when W13 is used, i.e., when the reference structure fingerprint is weighted and 

the database structure fingerprint is unweighted, 2

ir will typically be much 

greater than 2

id . The Tanimoto coefficient will hence be approximately, 

2

i i

i i
i

rd
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As noted above, the 2

ir term in the denominator is a constant, and the Tanimoto 

coefficient is thus given by, 

i i

i ic

rd
rd




. (15) 

Consider what happens when the actives are structurally diverse. Here, the 

reference structure and the active database structures will generally have few 

fragments in common: the c term in the denominator will then be much larger 

than i ir d  and the coefficient will hence be approximately, 

i i

c

rd  (16) 

The approximations above are clearly gross; however, they do suggest that the 

Tanimoto similarities calculated using the W11 and W13 inverse frequency 

weighting schemes may be differentially affected by changes in the diversity of 

the sets of active molecules that are being sought in a similarity search. 
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IR = Information retrieval 
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TF = Term frequency 
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CHAPTER 6 

MOLGEN 5.0, A Molecular Structure Generator 
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Abstract: MOLGEN 5.x combines the efficiency of the molecular generator MOLGEN 
3.5 and the flexibility of MOLGEN 4.x. To achieve this, the software was 
reimplemented based on a totally new concept. The most visible new features are fuzzy 
molecular formula input and explicit use of atom state patterns. We describe the version 
MOLGEN 5.0 of this new series. 

Keywords: MOLGEN, structure generation, fuzzy molecular formula, atom state 
pattern, molecular graph, goodlist, badlist, backtracking, diophantine equation, 
orderly generation, molecular libraries, connectivity isomers, constitutions, 
molecular structure elucidation, substructure restriction, aromaticity detection. 

INTRODUCTION 

The program system MOLGEN is devoted to generating all structures (connectivity 

isomers, constitutions) that correspond to a given molecular formula, with optional 

further restrictions, e.g. presence or absence of particular substructures. 

MOLGEN arose from the idea to provide an efficient and portable tool for 
molecular structure elucidation in chemical industry, research, and education. 
Historically, up to version MOLGEN 3.5, the main intention was to generate 
structures as fast as possible. The result is one of the fastest generators for 
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molecular structures. However, applications showed that generator efficiency is 
not the only important topic for molecular structure elucidation. Thus, in the 
development of series MOLGEN 4.x [1, 2] the interface was organized in a much 
more flexible way. Now advanced restrictions can be passed to the generator that 
are obtained from spectroscopy. MOLGEN–MS and MOLGEN–QSPR [3, 4] are 
special versions that arose from these efforts. In generating huge libraries without 
advanced restrictions, the performance of MOLGEN 4.x is not comparable to that 
of MOLGEN 3.5. Series MOLGEN 5.x is now intended to combine the 
advantages of both approaches, i.e. the efficiency of MOLGEN 3.5 and the 
flexibility of MOLGEN 4.x. 

All MOLGEN versions provide the mathematical heart of a program system for 
structure elucidation, rendering all mathematically possible candidates that 
correspond to a given set of structural constraints. MOLGEN allows computing the 
complete set of structures corresponding to a given molecular formula or a set of 
molecular formulas. Often the molecular formula is sufficient as input, the generator 
will then use default values for the valences of all atoms included. Of course, it is 
possible to override defaults, by e.g. specifying particular atom valences. 

The generation is free of redundance, i.e. no structure is generated twice within a 
single run. Moreover, the construction is complete, which means that the full set 
of all possible structures is obtained that correspond to a given molecular formula 
and, optionally, further restrictions. For example, given the input 

C8H16O2 

each MOLGEN version will construct exactly 13,190 pairwise different 
structures. This example already shows that, in general, the number of structures 
corresponding to a given molecular formula is very large. Therefore it is often 
desirable to reduce the output by imposing additional restrictions. For this 
purpose, together with a molecular formula, substructures may be specified that 
must be contained in each isomer constructed, or that on the contrary are not 
allowed. For example, if together with molecular formula C8H16O2 a carboxyl 
group is prescribed, exactly 39 structures will be generated. If additionally the 
isopropyl group is excluded, then out of the 39 structures just 27 will remain. 
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Sometimes, compounds of interest are not described by a single molecular 
formula. For example, we may be interested in all chlorinated biphenyls, or even 
in all halogenated small alkanes with up to four carbon atoms. The present version 
MOLGEN 5.0 was developed to solve such problems. Solutions for these 
examples are presented in the applications section. 

An important issue is, of course, how far MOLGEN 5.0 will reach. The only 
noteworthy limitations are those of time and hardware, i.e. due to an astronomical 
number of solutions, the program may not be able to generate the complete set of 
structures for a molecular formula within a reasonable time or to store all 
structures on the given hard disk. 

MOLGEN 5.0 runs under Microsoft Windows (XP, Vista, 7, 8) and Linux 
operating systems. Generated structures are written in MDL SDfile (.sdf) or in the 
MOLGEN MB4 (.mb4) file format. Details on installation and hardware 
requirements can be found in the manual, to be obtained from 

http://www.molgen.de 

where the interested reader can also play with a restricted online version of MOLGEN 
5.0 and can download further publications related to the MOLGEN series. 

MOLGEN is unique in that it serves purposes different from those of other 
software packages, in particular from those of traditional combinatorial chemistry 
software. Both input to and output from MOLGEN differ from those of the latter 
software, a comparison with respect to performance, speed etc. is therefore 
impossible. From the mathematical point of view, MOLGEN’s salient feature is 
its use of sophisticated algebraic methods, in particular of group theory, in order 
to avoid the combinatorial explosion as far as possible. 

Methods 

In describing molecular structure we distinguish several levels of detail: 

Fuzzy Molecular Formula 

Instead of prescribing exact occurrence numbers for each chemical element (or 
more exactly for each atom type, cf. atom types subsection), for broader coverage 
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numerical intervals are allowed here. On the other hand, for each atom its state 
may be partially prescribed (valence, charge, hybridization, etc., see atom states 
subsection) in a fuzzy as in an exact molecular formula. 

(Exact) Molecular Formula 

For each element symbol with optionally restricted state, its exact occurrence 
number is given. 

Atom State Pattern 

For each non–H atom in the molecular formula, its state is fully defined, including 
the numbers of bonds of various types and the number of hydrogens attached to it. 

Molecular Graph 

The connections between atoms are described as covalent bonds. In mathematical 
terms, a molecular structure can be understood as a graph, not only with single 
bonds, but possibly with double, triple or aromatic bonds. 

The generation can be started from any of the levels, with a (set of) formula(s) 
provided by the user. Then, via backtracking, all corresponding molecular graphs 
are generated. 

By choice of the user, the generation can be interrupted on any level, e.g. in order 
to manually select atom state patterns before generating molecular graphs. 

Structures 

Fuzzy and Exact Molecular Formulas 

A molecular formula such as C5H10SO2 is entered as a string, e.g. 

C5H10SO2. 

The string contains the following information: 

 Atom types, which are chemical element symbols, 
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 Optional atom states, describing the environment of an atom within 
the molecular structure (e.g. its valence). For example, the formula 
above could be entered explicitly specifying the valence of S: 

C5H10S[val=2]O2, 

 Atom occurrences, i.e. the number of atoms of given type and state 
occurring in a structure. 

For a fuzzy molecular formula, each atom occurrence number may be 
replaced by an interval of numbers, e.g. C5H10SO0-2 could be specified 
by 

C5H10S[val=2]O0-2. 

Note that an element symbol may occur more than once as input for a formula, i.e. 
in different atom states, e.g. 

C2H4N[val=3]0-1N[val=5]0-1. 

Exercise. The interested reader is invited to enter these formulas in MOLGEN–
online via internet and the address 

http://www.molgen.de/?src=documents/molgenonline 

For example, enter C5H10SO2, click ‘Submit’ and after a few seconds you will 
see that this reduced version of MOLGEN 5.0 produced 4,560 structural formulas. 
Have a few of them displayed. 

After that you may enter C5H10S[val=2]O2 and find out that the same number of 
isomers is produced, and on inspection you will recognize that the default valence 
of sulfur used in MOLGEN 5.0 is 2. 

Then you may submit C5H10S[val=2]O0-2 or C5H10SO0-2, allowing 0, 1 or 2 
oxygen atoms, in which case the online version produces 5,371 molecular graphs. 

Atom types (element symbols): An element symbol is one or two letters. Usually 
an atom type is an element symbol from the Periodic Table of Elements. 
However, the user may define atom types not yet known to the system. Initially, 
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MOLGEN does not know anything about a user–defined atom type, therefore one 
has to specify at least its valence as an atom state (see below). As an example, 
C4H8Qs[val=2]3O will produce structures of formula C4H8Qs3O, where the user–
defined atom type Qs has valence 2. 

Atom states: Atom states describe the environment of an atom within the 
molecular structure. The following properties may be described: 

 The valence of an atom in the structure. This is the total number of 
covalent bonds that connect the atom to its neighbors (including bonds 
to H; a double bond is counted twice, etc.). Default valences are 
according to the octet rule. 

 The charge of an atom in the structure. 

 Specification of an atom as a radical center. 

 Isotope specification. 

 Hybridization (sp3, sp2, sp), where sp2 is further distinguished for 
atoms in nonaromatic (sp2_n) and aromatic neighborhood (sp2_a), 
and sp is further distinguished for atoms bearing a single and a triple 
(sp_st) versus atoms bearing two double bonds (sp_dd). 

 Number of H atoms adjacent to an atom. 

 Number of single bonds (to non–H atoms) adjacent to an atom. 

 Number of double bonds adjacent to an atom. 

 Number of triple bonds adjacent to an atom. 

 Number of aromatic bonds adjacent to an atom. 

Atom State Patterns 

A state pattern describes a molecular structure by listing the fully defined state of 
each atom as described in atom states subsection, including the number of 
attached hydrogens. 
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Each atom is listed separately. For coding atom states the following symbols are 
used: 

Hn   the number of attached hydrogens, 

=n   the number of adjacent double bonds, 

#n   the number of adjacent triple bonds, 

˜n   the number of adjacent aromatic bonds. 

If n = 0, the symbol H, =, #, or ˜ is omitted; if n = 1, the numeral 1 is omitted. This 
information together with an atom’s valence defines the number of adjacent single 
bonds. For example, 

CH#C#CH=CH=CH2CH 

is the state pattern corresponding to 3-ethynylcyclobutene, where 

CH# codes a C atom bearing one H and a triple bond, 

C# is a C atom bearing a triple bond and a single bond to a non–H 
atom, 

CH= is a C atom bearing one H, one double bond and one single bond 
to a non–H atom, 

CH2 is a C atom bearing two H and two single bonds to non–H atoms, 

CH is a C atom bearing one H and three single bonds to non–H atoms. 

For a chemist reader, the notions of atom states and atom state patterns may be 
new. In earlier versions of MOLGEN they were used internally. In MOLGEN 5.0, 
they are open to manipulation by the user. This is an advantage in certain 
situations, providing the opportunity to better specify very large runs or to avoid 
generation of unwanted isomers stemming from unrequested atom state patterns. 
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Examples: 

 mgen -sp CH#C#CH=CH=CH2CH 

generates two structures, 3-ethynylcyclobutene and 3-(2-propynyl)- 
cyclopropene, while 

 mgen -sp CH#C#C=CH=CH2CH2 

leads to three structures, 1-ethynylcyclobutene, 1-(2-
propynyl)cyclopropene, and (2-propyn-1-ylene)cyclopropane. 

Molecular Graphs 

MOLGEN 5.0 is based on a graphical interaction model of a molecule. Graph 
nodes represent atoms, lines represent covalent bonds. Element symbol and atom 
state are stored as node labels, the kind of interaction (single, double, triple, 
aromatic bond) is stored as bond label. 

We interpret bond labels as bond multiplicities. An atom’s valence is the sum of 
its bond multiplicities. However, for an aromatic atom, its valence is composed of 
the number of single bonds and the number of aromatic bonds plus one. For 
example, in naphthalene, C10H8, each peripheral C atom bears one hydrogen and 
is involved in two aromatic bonds, while each of the two central atoms has no 
hydrogen and is involved in three aromatic bonds. 

In a graphical representation, there is no explicit order of atoms specified. In order 
to handle structures without being restricted to a particular atom numbering, a 
massive use of group theory is necessary. Details can be found in Ref. [5, 6]. 

Aromaticity. MOLGEN 5.0 has a special bond type ‘aromatic’ for aromatic 
bonds. Consequently, cyclically conjugated double bonds forming an aromatic 
system are not generated. Rather, the corresponding structure is generated with 
the aromatic ring made of aromatic bonds. 

Therefore MOLGEN has a built–in aromaticity detector plus filter that is based on 
the famous 4n+2 π-electrons rule (Hückel rule). In the current version cyclically 
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conjugated rings of 6, 10, 14, etc. members are considered aromatic. In a future 
version, additional rings such as pyrrol, furan, thiophen, tropylium, 
cyclopentadienide etc. will be recognized as aromatic. 

For example, 

mgen C[sp2_n]10H8 -ringsize 6-10 

results in six molecular graphs, none of which corresponds to naphthalene, whereas 

mgen C[sp2_a]10H8 

produces four structures, among them naphthalene and azulene. Atom states 
sp2_n and sp2_a therein denote sp2 atoms in nonaromatic or aromatic systems, 
respectively (see atoms states subsection). 

If desired, aromaticity handling may be deactivated. Then, benzene is generated 
with single and double bonds instead of aromatic bonds. Thus, 1,2-
dimethylbenzene (o-xylene) will be generated twice, having either a single or a 
double bond connecting the substituted ring atoms. 

Restrictions 

For each level of generation, several restrictions may be formulated on the set of 
generated structures. 

Restrictions on Exact Molecular Formulas 

The following restrictions may be imposed on molecular formulas to be generated 
from a fuzzy molecular formula. Each number may be restricted by a minimal and 
maximal allowed value: 

 The total number of atoms in a molecular structure (including 
hydrogens). 

 The sum of valences over all atoms. This is double the number of bonds 
(bonds to H included, double and triple bonds counted as two and three 
bonds, respectively; aromatic bonds counted as described above). 
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 The mass of the molecular structure, i.e. the sum over atom masses. 

 Charge of the molecular structure, i.e. the sum over all atom charges. 

 Sum over all isotopic mass differences. 

 Total number of unpaired electrons in the molecular structure. 

 Atom sums, i.e. sums of occurrence numbers of atom types/states. 

The usage and strength of these restrictions is demonstrated by the following 
examples. 

Examples: 

 mgen C2H0-6F0-6Cl0-6Br0-6I0-6 -atoms 8 

generates ethane and all halogenated ethanes; 

 mgen C6H0-6Cl0-6 -sum H+Cl=6 

generates all C6H6 hydrocarbons and their chlorinated analogs; 

 mgen C1-10H4-22 -mass 70-80 

generates all hydrocarbons with a mass between 70 and 80; 

 mgen C1-10H4-22 -sum H–2C=2 

generates all alkanes up to the decanes; 

 mgen C1-10H4-22 -sum H–2C=0-2 

generates all alkanes plus monounsaturated alkenes plus saturated 
monocyclic hydrocarbons of up to ten carbon atoms. 

 The atom sum restriction can be used to allow alternative atom states 
for an element. In the following example generation is restricted to 
structures containing at most two nitrogen atoms of valence 3 or 5: 
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mgen C2H4N[val=3]0-2N[val=5]0-2 -sum N=0-2. 

Restrictions on Atom State Patterns 

The following restrictions influence the number and type of generated atom state 
patterns. Again each number may be restricted by a minimal and maximal allowed 
value: 

 Maximal allowed bond multiplicity (i.e. 1, 2, or 3). 

 Total number of single bonds (including bonds to hydrogens). 

 Total number of double bonds. 

 Total number of triple bonds. 

 Total number of aromatic bonds. 

 Number of bonds between atoms without counting bond multiplicity 
(including bonds to hydrogens). 

 Number of cycles in the molecular structure. This is the number of 
bonds that have to be broken in order to obtain an acyclic structure, 
e.g. naphthalene has two, not three cycles, cubane has five cycles. 

 Number of connected components of the molecular graph. By default 
connected graphs only are generated. 

Restrictions on Molecular Graphs 

In order to reduce the number of isomers generated, the following restriction is 
useful: 

-ringsize n[-m] Specify the allowed ring sizes. 

Any closed path in the molecular graph is considered a ring. For example, 
naphthalene contains rings of sizes 6 and 10, cubane has 4-, 6- and 8-membered 
rings. If a user allows 4-membered rings only, cubane will be missed. 



124   Advances in Mathematical Chemistry and Applications, Vol. 1, (Revised Edition) Gugisch et al. 

Both power and limitations of the options described hitherto are easily seen in the 
following example, where we try to restrict the molecular formula C6H5NO2 to 
nitrobenzene. 

Examples: 

 mgen C6H5NO2 

results in 444,199 structures, nitrobenzene not among them; 

 mgen C6H5N[val=5]O2 

gives 1,038,793 structures, among them nitrobenzene; 

 mgen C6H5N[val=5,d=2]O2 

renders 122,699 structures; 

 mgen C6H5N[val=5,d=2,h=0]O2 

results in 98,687 structures; 

 mgen C6H5N[val=5,d=2,h=0]O[d=1]2 

results in 3,893 structures; 

 mgen C6H5N[val=5,d=2,h=0]O[d=1]2 -cycles 1 

renders 1,436 structures; 

 mgen C6H5N[val=5,d=2,h=0]O[d=1]2 -ringsize 6-9 

gives 452 structures; 

 mgen C6H5N[val=5,d=2,h=0]O[d=1]2 -cycles 1 -ringsize 6-9 

results in 140 structures; 

 mgen C6H5N[val=5,d=2,h=0]O[d=1]2 -cycles 1 -ringsize 6 
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produces still 110 structures; 

 mgen C[sp2_n]6H5N[val=5,d=2,h=0]O[d=1]2 -cycles 1 -ringsize 6 

results in 10 structures, nitrobenzene not among them; 

 mgen C[sp2_n]0-6C[sp2_a]0-6H5N[val=5,d=2,h=0]O[d=1]2 -cycles 1 
-ringsize 6 -sum C=6 

results in 11 structures; 

 mgen C[sp2_a]6H5N[val=5,d=2]O2 

produces exactly one structure, nitrobenzene. 

The example demonstrates the demand for more powerful restrictions, i.e. for 
substructure restrictions. 

Structural Restrictions 

You can specify substructures as restrictions to MOLGEN. 

MOLGEN substructures support ‘Any’ atom type (element symbol A) and 
extended bond types like ‘single or aromatic’, ‘double or aromatic’, ‘single or 
double’, or ‘any bond’. For creating and editing substructures, any standard 
molecule editor supporting MOL files is suitable, for example Accelrys Draw or 
ACD Chemsketch. 

MOLGEN distinguishes ‘open’ and ‘induced’ substructures. In the induced case, 
if free valences on different atoms in a given substructure get connected to each 
other, this is considered a non–match. Thus, additional zero–length bridges within 
a substructure, or higher bond multiplicities, will cause a non–match. In the open 
case, however, such variations are recognized as a match. In mathematical terms, 
an induced substructure is an induced subgraph of the molecular graph, while an 
open substructure is a subgraph in general. 

Consider for example a substructure ‘general_cyclohexane.mol’ consisting of a 6–
membered ring of A atoms (‘Any’ type), all bonds are single. 
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Using general_cyclohexane.mol as open substructure, e.g. cyclohexane, 
cyclohexene, cyclohexa-1,3-diene, cyclohexa-1,4-diene, benzene, benzyne, 
piperidine, pyridine, bicyclo[2.2.0]hexane substructures, etc., will be considered 
matches of the substructure. 

Using general_cyclohexane.mol as induced substructure, e.g. cyclohexene, 
cyclohexa-1,3-diene, cyclohexa-1,4-diene, benzene, benzyne, pyridine, 
bicyclo[2.2.0]hexane substructures will be considered as non–matches. Piperidine 
and of course cyclohexane are recognized as matches. 

Given a substructure, you can restrict its occurrence number in the generated 
molecular graphs to a specific range. 

Examples: 

 mgen C8H11N -cycles 1-4 -ringsize 5-9 

results in 11,586 compounds, among them being substituted pyridines, 
dihydro- and tetrahydropyridines, piperidines, benzenes, 
cyclohexadienes, cyclohexenes, and cyclohexanes; 

 mgen C8H11N -cycles 1-4 -ringsize 5-9 -substr open 0 
general_cyclohexane.mol 

generates 6,290 compounds, none of which contains any 6–membered 
ring; 

 mgen C8H11N -cycles 1-4 -ringsize 5-9 -substr induced 0 
general_cyclohexane.mol 

leads to 10,857 compounds, among them pyridines, dihydro- and 
tetrahydropyridines, benzenes, cyclohexadienes and cyclohexenes, but 
no piperidines or cyclohexanes. So the piperidines and cyclohexanes 
filtered out amount to 729; 

 mgen C8H11N -cycles 1-4 -ringsize 5-9 -substr induced 1-4 
general_cyclohexane.mol 
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produces exactly 729 substituted piperidines and cyclohexanes, and 
this set is identical to the set filtered out above. 

Having another substructure ‘benzene.mol’ consisting of a 6–membered ring of 
carbon atoms, all bonds specified as aromatic, we can use it to restrict our 
generation to structures having at least one benzene substructure. 

However, using benzene.mol as induced substructure, dehydrobenzene (benzyne) 
or a zero–bridged benzene ring will not be considered a match, and consequently 
structures containing a benzyne but not a benzene will not be generated. Of 
course, structures containing both a benzene and a benzyne may occur. 

Using benzene.mol as open substructure, benzyne or a zero–bridged benzene ring 
will be considered a match, and consequently structures containing a benzyne but 
no benzene substructure will be generated. 

 mgen C6H5N[val=5]O2 -substr induced 1 benzene.mol 

results in 143 structures, each containing a benzene substructure, and 
nitrobenzene being among them; 

 mgen C6H5N[val=5]O2 -substr open 1 benzene.mol 

results in 312 structures, many of which contain a (presumably 
undesired) zero–bridged benzene ring; 

 mgen C6H5N[val=5,h=0]O2 -substr induced 1 benzene.mol 

renders 7 structures; 

 mgen C6H5N[val=5,d=2]O2 -substr induced 1 benzene.mol 

generates nitrobenzene as the only structure; 

 mgen C6H5N[val=5]O2 -substr induced 1 nitro.mol 

results in 685 structures, among them nitrobenzene; 
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 mgen C6H5N[val=5]O2 -substr induced 1 nitro.mol -cycles 1 

gives 197 structures; 

 mgen C6H5N[val=5]O2 -substr induced 1 nitro.mol -cycles 1  
-ringsize 6 

renders 14 structures; 

 mgen C6H5N[val=5]O2 -substr induced 1 nitro.mol -substr induced 1 
benzene.mol 

of course delivers nitrobenzene as the only structure. 

Recall that for the examples to work appropriately it is important that the bonds in 
‘benzene.mol’ are of type ‘aromatic’ and that the nitrogen in ‘nitro.mol’ has 
valence 5. 

Two SDfiles of ‘bad’ open substructures are shipped together with MOLGEN, 
named badlist.sdf and badlist2.sdf. The former contains 39 highly strained 
saturated and unsaturated small mono-, bi-, and polycyclic structures that we 
consider ‘not viable’ (Fig. 1). The latter is a collection of 14 ‘not viable’ bridged 
aromatic structures, shown in Fig. 2. Though such lists are, of course, somewhat 
arbitrary, they are useful for removing obviously unwanted structures, as 
demonstrated in the following examples. 

Examples: 

 mgen C6H6 

generates all 217 mathematically possible benzene isomers; 

 mgen C6H6 -badlist badlist.sdf 

results in no more than 66 isomers. 

Though 151 isomers are removed thereby, the remaining set still contains those 
isomers that are known compounds either themselves or as more or less 
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substituted derivatives, such as prismane, Dewar benzene, benzvalene, fulvene, 
bi-cyclopropenyl, etc. 

 mgen C6H5N[val=5]O2 -substr open 1 benzene.mol 

generates 312 structures (see above); 

 mgen C6H5N[val=5]O2 -substr open 1 benzene.mol -badlist 
badlist2.sdf 

results in nitrobenzene as the only product. 

Obviously, the user may edit these badlists or create one her/himself. 

Required and forbidden substructures are used in other structure generators as 
well, see for example [7]. 

The Backtracking Algorithm 

Restriction Sharpening 

Given, for example, a fuzzy molecular formula, a couple of restrictions are 
induced by simple logic. For example, the number of atoms may not get larger 
than the sum of maximal occurrence numbers of each element symbol, and it may 
not get less than the sum of minimal occurrence numbers. Or, if a substructure is 
prescribed to occur at least once, several minimal bounds are induced, e.g. on the 
number of single bonds, etc. in the molecule. Before starting the generation, such 
induced restrictions are automatically added to the set of restrictions. 

Further, the restrictions are highly intercorrelated. For example, the following 
formula holds for any molecular graph. 

atoms + cycles = bonds + connected components 

Thus, if two of the three quantities number of atoms, of bonds, and of cycles are 
prescribed e.g. for a connected molecular graph, there is no choice for the third. If 
there are minimal and/or maximal bounds on the numbers, some of the other 
bounds may be sharpened by applying this formula. 
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Figure 1: ‘Bad’ cyclic and unsaturated substructures contained in badlist.sdf. 

A couple of graph–theoretic intercorrelations are checked by MOLGEN 5.0 at 
several stages during the generation in order to keep the restrictions as sharp as 
possible. 
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Figure 2: ‘Bad’ bridged aromatic substructures contained in badlist2.sdf. Aromatic bonds are 
symbolized here by thick lines. 

During each level of backtracking, a couple of new properties get fixed. For 
example, when an exact molecular formula was generated starting from a fuzzy 
molecular formula, the number of atoms gets fixed. Each time after some 
properties of the molecule get fixed, the graph–theoretic intercorellations are 
checked again in order to sharpen the remaining restrictions. 

Whenever an inconsistency is recognized, for example if a lower bound gets 
larger than its corresponding upper bound, the current backtrack subtree is pruned. 
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From Fuzzy Formula to Exact Formulas 

For a given fuzzy formula the generator runs through all corresponding exact 
formulas and the restrictions are tested. 

Generating exact formulas implements the following mathematical problem: 
Generate all partitions of n, which is the maximum allowed nominal molecular 
mass, into m+1 blocks, where m equals the number of different atom types in the 
fuzzy formula. Blocks correspond to the atom types, weighted by the 
corresponding nominal atomic mass. An additional block is for technical purposes 
to allow generation of formulas not only for a fixed atom weight, but for a range 
of allowed atom weights. 

Example: For the fuzzy formula C1-10H4-22 with molecular mass restricted to the 
range 70-80, all number partitions of 80 into three blocks are generated. The first 
block with weight 12 defines the number of carbon atoms, the second block with 
weight 1 defines the number of H atoms, and the third block with weight 1 fills 
the gap between the actual molecular weight and the maximal weight 80. 

The first block is restricted to appear 1 to 10 times in the partition, the second 
block is restricted to appear 4 to 22 times and the third block to appear 0 to 10 
times (as the difference between maximal and minimal molecular weight is 10). 

The implementation is straightforward, via backtracking. A couple of tests are 
executed before a molecular formula is written to the output or passed to the next 
level, they follow directly from graph theory and chemistry: 

 The sum of valences must be even. 

Let a denote the number of atoms including H atoms and b be half of the sum of 
valences, i.e. the sum of all bond multiplicities in any graph corresponding to the 
formula. Then 

 b must be greater than or equal to the maximum valence occurring in 
the formula, 

  must be fulfilled.  is the maximal allowed number 
of connected components (default is 1). 
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Further, all user–given restrictions on molecular formulas must be fulfilled: 

 All restrictions on the number of atoms. 

 All restrictions on the sum of valences. 

 All restrictions on charge, isotopes, unpaired electrons. 

 All atom sum restrictions. 

If all above tests are passed, the exact molecular formula is accepted and in turn 
used as input for the generation of state patterns. 

From Exact Formula to Atom State Patterns 

A system of linear equations is established, where the variables are restricted to 
nonnegative integer values. Usually, problems of this kind are hard to solve. 
However, MOLGEN contains its own algorithm called ‘solvediophant’ to solve 
these systems of equations. It is based on the mathematical concept of lattice 
basis reduction [8, 9]. 

Let , , and  be the numbers of aromatic, triple, and double bonds incident 
with non–H atom ,  its number of single bonds to non–H atoms, and hi the 
number of H atoms attached to it. Then the number of bonds in the molecule is 
equal to half of 

∑ 2 . 

The following restrictions are formulated as diophantine equations (all sums are 
over the non–H atoms): 

 The numbers of aromatic, triple, double, single bonds fulfill the 
corresponding restrictions. 

 The number of bonds, rings and connected components fulfill their 
restrictions. 

 The sum ∑ 2 	is even (as it is twice the number 
of bonds). 
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 The sums ∑ ,∑ ,∑ , ∑ 	are all even (as they are twice the 
number of aromatic, triple, double or single bonds between non–H 
atoms). 

 The sum ∑ 	is equal to the number of hydrogens. 

 If there are any aromatic atoms, then there are at least six aromatic 
atoms and six aromatic bonds. The number of aromatic atoms has to 
be even.1 

 The following equation must be fulfilled:  

atoms (incl. H) + cycles = bonds + connected components. 

 For each non–H atom, the sum of valences needs to be consistent with 
its valence : Set ∗ 0 if and only if 0	and put ∗ 	1 
else. Then 

∗ 3 2 1 1  =  

 In particular cases there are further constraints to be fulfilled. 

 A system of equations ensures that each state pattern is produced only 
once by the diophantic solver. We allow only such state patterns in which 
the list of atom states is sorted in lexicographically decreasing order. 

From State Pattern to Molecular Graphs 

The construction of all molecular graphs corresponding to a state pattern is done 
mainly using the same techniques as in MOLGEN 3.5, by orderly generation [10, 
11]. More details on how orderly generation is applied to molecular graphs can be 
found in [12] and were recently discussed in [13]. 

APPLICATIONS 

Molecular Libraries 

An interesting problem where we can sometimes take advantage of a fuzzy 
molecular formula is the generation of molecular libraries. The use of MOLGEN 5.0 

                                                            
1 Some details on the restrictions concerning aromaticity are omitted here. 
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makes life easy when we want, for example, to get information on the total set of 
structural formulas of molecular mass 100, atoms in {C,H,N,O} and containing at 
least one carbon atom. Enter the fuzzy formula together with the mass constraint 

mgen C1-8H0-16N0-6O0-4 -mass 100 

to quickly obtain 33,537 structural formulas. In Table 1 you find numbers of 
structures that correspond to the various molecular formulas, for several 
molecular masses  100. 

Table 1: Number of molecular and structural formulas for several molecular masses 

mass MF MG MGNAD BS MS 

20 
30 
40 
50 
60 
70 
80 
90 
100 

0 
2 
1 
1 
6 
6 
7 
11 
16 

0 
2 
5 
7 
47 
380 
1,645 
5,849 
33,627 

0 
2 
5 
7 
47 
380 
1,644 
5,818 
33,537 

0 
2 
5 
1 
25 
84 
100 
107 
710 

0 
2 
1 
1 
12 
31 
23 
28 
154 

Column MF contains the number of molecular formulas corresponding to the 
mass and the fuzzy formula. MG means the numbers of corresponding molecular 
graphs, the structural formulas. The filter for aromatic duplicates was turned off 
when these entries were calculated, so that, for example, the total number of 
structures of mass 100 turned out to be 33,627. In the online version this filter is 
on, resulting in 33,537 structural formulas. Therefore we give in column MGNAD 
the number of structural formulas without aromatic duplicates. Column BS 
contains the number of structures that are contained in the Beilstein database, 
while column MS refers to the number of compounds in the NIST mass spectral 
library. The table is part of tables published in [14], and so these numbers found 
in the databases are snapshots, they may have changed in the meantime. 
Nevertheless they are of interest in order to show the enormous difference 
between the mathematically possible numbers of compounds and the numbers of 
existing compounds, and the number of existing compounds whose mass spectra 
were recorded and made publicly available. 
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Exercise. Refine this table by manually evaluating the molecular formulas 
corresponding to mass 100, and obtain the isomer numbers online. Look up these 
molecular formulas in a database such as SciFinder or Reaxys to find out how 
many corresponding compounds are contained therein. Comparing the numbers 
keep in mind that database compounds may include stereoisomers, isotopomers, 
radical ions and various other compound categories that are not included in 
MOLGEN counts. 

Generate All Chlorinated Biphenyls 

Often a search space cannot be defined by a single molecular formula, but by a 
range of several related molecular formulas (a fuzzy molecular formula). A 
typical example is the generation of congeners. In MOLGEN 5.0 the generation of 
all chlorinated biphenyls is solved as follows: 

mgen C12H10 -bonds3 0 -bonds2 0 -bonds1 11 -cycles 2 -ringsize 6 

produces a single molecule, biphenyl, within about a second on a standard PC. 

mgen C12H0-10Cl0-10 -sum H+Cl=10 -bonds3 0 -bonds2 0 
 -bonds1 11 -cycles 2 -ringsize 6 

results in 210 molecules within 3 sec, i.e. the non–chlorinated parent biphenyl and 
the fully chlorinated decachlorobiphenyl, 3 mono- and 3 nonachlorinated, 12 di- 
and 12 octachlorinated, 24 tri- and 24 heptachlorinated, 42 tetra- and 42 
hexachlorinated, and 46 pentachlorinated biphenyls. 

In this example, of course, alternatively eleven runs on an exact molecular 
formula each could be performed, e.g. in MOLGEN 3.5. In the next example, 
however, such a semi–manual procedure would be a tedious exercise, to say the 
least. 

Halogenated Alkanes 

Generate all halogenated (as well as nonhalogenated) alkanes C1-C4, where 
halogenated means bearing at least one F, Cl, Br, or I substituent. 

mgen C1-4H0-10F0-10Cl0-10Br0-10I0-10 -sum H+F+Cl+Br+I–2C=2 
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generates 187,075 compounds, i.e. the alkanes methane, ethane, propane, butane, 
isobutane, and all their halogen derivatives, corresponding to altogether 1,776 
molecular formulas. This takes 35 sec on a standard PC. 

Molecular Structure Elucidation 

An important real case use of MOLGEN is molecular structure elucidation based on 
mass spectra. Molecular structure generation is crucial whenever the unknown 
chemical compound considered is not contained in the available databases. This kind 
of problem is carefully discussed in all detail in a PhD thesis [15], see also [16, 17]. 
The role of MOLGEN–MS is described and additional software that is useful in this 
context is mentioned. In particular, Section 6 contains examples of tentative 
identification of contaminants in groundwater of Bitterfeld, Germany. Mass spectra 
of 150 contaminants were obtained, of which 42 could be tentatively identified using 
the NIST database search alone. 32 of these compounds identified using NIST were 
confirmed using structure generation techniques. In addition, 20 further peaks were 
tentatively identified using structure generation techniques alone, resulting in a total 
of 62 tentative identifications. In another case, an unknown spectrum had the 
molecular formula C13H10ClNO that has more than 109 connectivity isomers, but 
substructures derived from the spectrum and generation using MOLGEN–MS 
reduced this number to just 36 candidates. Literature search on diclofenac and 
additional confirmation analysis further reduced this set to a known diclofenac 
phototransformation product that was also identified as the one responsible for the 
enhanced toxicity of the transformed diclofenac towards the green alga S. vacuolatus. 

For molecular structure elucidation based mainly on NMR spectra see [18] and 
later papers by these authors. 
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CHAPTER 7 

On Comparability Graphs: Theory and Applications 

Matthias Dehmer* and Lavanya Sivakumar 

Institute of Bioinformatics and Translational Research, UMIT, A-6060, Hall in Tyrol, Austria 

Abstract: In this paper, we review classical and recent developments on comparability 
graphs. Also, we demonstrate that comparability graphs are useful to analyze molecular 
graphs by presenting classical and new results. In fact, it turns out that the underlying 
model is quite general and, hence, could be used to analyze any kind of network data. 

Keywords: Comparability graphs, chemical graph, topological indices, molecular 
descriptor, structural complexity, graph entropy, Shannon information content, 
quantitative network analysis, information-theoretic measures, structural similarity, 
similarity measures, graph edit distance, similarity matrix, correlation matrix. 

INTRODUCTION 

During the last decades, properties of relational structures have been extensively 
investigated [1-5]. As a particular result, a theory for structurally investigating 
relational structures representing graphs has been established [3, 4, 6]. Highlights 
from this theory are for instance, graph colorings, graph minors and random graphs. 
After establishing the theoretical fundament of graph theory, it turned out that graphs 
are quite generic and, therefore, useful to explore complex systems in various 
disciplines meaningfully. In fact, modern application areas such as network biology 
[7], structural chemistry [8] and mathematical psychology [9] exist in which graphs 
and methods for their structural analysis have been proven useful. 

Graph analysis as a tool to analyze biological or chemical systems turned out to 
be of particular interest because intriguing facts of life in molecular and cell  
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biology could be explored [7, 10-12]. Also, the behavior of complex systems 
ranging from cell to social networks emerges from the unified activity of 
components interacting. This implies that a complex system can be modeled as a 
network, where the components are the vertices and the interactions between 
these components are the edges. 

To tackle the problem of analyzing such complex graph-based systems, there exist 
two major categories: descriptive and quantitative methods. It is worth mentioning 
that, particularly, quantitative techniques for graphs analysis such as descriptors and 
comparative methods turned out to be crucial [5, 13-16]. For instance, the use of 
structural graph descriptors [15-19] has had a tremendous impact in structural 
chemistry and related areas such as drug research [20] and medicinal chemistry [21]. 

In this paper, we do not only focus on developing techniques to analyze graphs 
quantitatively. In particular, we study graph representations called comparability 
graphs and comparative techniques for their analysis. Note that comparability 
graphs have been proven useful when interpreting structural data sets in 
chemistry, see [22-25]. Comparability graphs have been defined by using partial 
orders. If one defines such partial orders based on the underlying data set, deeper 
insights when studying properties of molecular structures such as their branching 
could already be obtained [22-25]. 

The article is organized as follows. In the first part, we present definitions, 
properties and mathematical characterizations of comparability graphs. The 
second part deals with applying comparability graphs as a tool for characterizing 
molecular and biological structures. We also discuss some new results in Section 
Numerical Results and Analysis. The paper ends with a summary and conclusion. 

COMPARABILITY GRAPHS 

Let 	 	 ;  be a graph with n vertices and let 	 	 ;  be a poset with a 
partial order	  defined on the vertex set . 

Definition 1. A graph G is said to be simple if it does not contain multiple edges or 
loops. 
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Throughout this chapter, we consider only simple graphs unless stated otherwise. 

Definition 2. A graph  is a comparability graph if there is a partial order  on V 
such that , 	 	  if and only if	 	 	  or 	 	 . 

Various theoretical characterizations of comparability graphs have been 
established in the literature [26-29]. Before reproducing some of these results, we 
state some definitions. 

Definition 3. A walk in a graph is a sequence of vertices , , … , , such that 
any two consecutive vertices in the sequence are adjacent. In addition, if  
then the walk is said to be closed. A closed walk is odd or even if the number of 
vertices in its sequence is odd or even, respectively. A closed walk is called a 
cycle, if all its vertices are distinct except that . 

Definition 4. A triangular chord of a closed walk , , … , , 	  is the 
edge (not belonging to the walk) connecting any two alternate vertices in the 
sequence of a walk. In other words, a walk is said to possess a triangular chord if 
any one of the following edges , , 0	 	 	 	 2 or ,  exist in 
the given graph. 

Definition 5. A chord of a cycle is the edge connecting any two nonconsecutive 
vertices of the cycle. 

Definition 6. A simple graph G is said to be a chordal graph, if every cycle (of 
length 	4) in G contains a chord. A chordal graph is also known as a 
triangulated graph. 

Definition 7. A graph  is perfect, if 	 	 , for every induced subgraph 
	 ⊂ 	 , where	  represents the vertex chromatic number (minimum number of 

colors required to label the vertices such that no two adjacent vertices receive 
same color) of H and  is size of the largest clique (set of pairwise adjacent 
vertices in a graph) in . 

Definition 8. An interval graph is a graph having an interval representation. That 
is, a family of intervals is assigned to the vertices so that vertices are adjacent if 
and only if the corresponding intervals intersect.  
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An early result has been proven by Gilmore et al. [27].  

Theorem 1 [27]. A graph G is a comparability graph if and only if each odd 
closed walk has at least one triangular chord. 

The following characterizations reveal the relation between comparability graphs, 
interval graphs and perfect graphs. 

Theorem 2 [30]. Any comparability graph, G, is a trivially perfect graph. That is, 
for all induced subgraphs H of G, the size of the maximum independent set of H is 
equal to the number of maximal cliques (complete subgraph) in H. 

It has been proven by Berge (1960) [28] that every comparability graph is a perfect 
graph. Alternatively, the same result can be arrived through one of the equivalent 
characterization of trivially perfect graphs which states that, trivially perfect graphs 
form a subclass of interval graphs and, hence, perfect graphs. Thus from the above 
theorem, it follows that the comparability graphs are perfect graphs. 

While characterizing the complements of interval graph, Ghouila-Houri [26] 
proved the following result. 

Theorem 3 [26]. The complement of an interval graph is a comparability graph 
with the partial order being the interval order. 

The above theorem plays an important role when characterizing interval graphs 
which is immediate from the following result. 

Theorem 4 [28]. The following conditions are equivalent for a graph G: 

(a) G has an interval representation (that is, G is an interval graph). 

(b) G is a chordal graph and the complement of G, ̅ , is a comparability 
graph. 

Directed Comparability Graphs 

Directed comparability graphs received considerable attention for solving 
problems such as registry allocation in parallel processing, scheduling problems 
and the analysis of flow networks and molecular networks [24, 31, 32]. By 
definition, a simple graph that admits a transitive orientation on its edges is a 
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comparability graph. Here, an orientation of a graph  is a digraph  obtained 
from G by choosing an orientation (either 	 → 	  or 	 → 	  and not both) for 
each edge , 	 	 . A digraph is transitive, if 	 → 	  and 	 → 	  implies 
	 → 	 . Each transitive orientation on  defines a poset  on the vertex set. 

Further, the vertices of a path in a transitive digraph induce a tournament. 

Another interesting property of directed comparability graphs is that they are 
hereditary. That means, every induced sub-digraph of a directed comparability 
graph is transitive. Using this hereditary property and Zorn’s lemma, the 
following result has been proven by Wolk [29]. 

Theorem 5 [29]. If every finite subgraph of an undirected graph G admits a 
transitive orientation, then G also possesses a transitive orientation. 

In this chapter, we concentrate on analyzing directed comparability graphs. 

APPLICATIONS 

An interesting branch of science is molecular engineering [20, 33, 34] where 
methods for designing new compounds, mixtures, etc., have been combined with 
the evaluation of their properties by means of quantitative structure property 
(QSPR) and quantitative structure activity (QSAR) relationships [35-37]. In 
particular, chemical graph theory has served as an efficient tool to quantify a 
chemical structure by converting it into a number. Special tools to tackle this 
problem are well known as molecular descriptors and topological indices, see [8, 
18, 19]. Numerous molecular descriptors have been proposed in the literature 
involving both combinatorial [38, 39] and information-theoretic techniques [19, 
40, 41]. Apart from quantifying a structure, establishing relations between 
molecular networks is also crucial. For example, this could be achieved by using 
existing similarity measures for graphs [14, 42] or by ordering the networks in 
terms of the complexity involved. Interestingly, comparability graphs have found 
useful to tackle the just mentioned problems [22-25, 43-46]. 

Note that the concept of partial ordering has been firstly applied to arrange/order 
molecular structures in terms of their structural complexity [22-25]. For instance, 
Bonchev et al. [22-25] ordered alkane isomers as well as condensed benzenoid 
hydrocarbon isomers by using comparability graphs. The set of rules for 
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branching and cyclicity from [44, 45] have been used to determine the underlying 
partial order. That is, by applying such rules to every pair of graph, a collection of 
directed, ordered graphs have been derived. This collection of directed graphs 
using certain criteria [44, 45] has been finally used to obtain the required 
comparability graph. Eventually, any two structures are said to be comparable if 
they lie on a directed path in this comparability graph, otherwise they are non-
comparable. Using such an ordering of the comparable graphs, optimal correlation 
samples have been chosen to determine the structural complexity, based on 
branching and cyclicity. 

Note that the comparability graph obtained by the above mentioned procedure 
also resembles the reaction graph introduced by Balaban [43, 47] to enumerate all 
intra-molecular rearrangements among a group of isomeric molecules. Randić 
[48, 49] proposed another structural representation called grid graph for ordering 
the molecular structures based on the values of selected structural descriptors 
arranged in a grid-like structure to study the regularity of molecules. However, the 
above mentioned techniques have only been applied to sets containing relatively 
small-sized isomers and, hence, the feasibility of these methods when using large 
arbitrary networks has not been explored so far. As another attempt, the concept 
of structural similarity has also been used to order molecular structures. For 
related work, see [46, 50-55]. In addition, the posets of directed graphs have been 
well studied in chemistry and have been established as an application for the study 
of correspondence in property values via the reaction networks. Here, each partial 
ordering of structures are represented as a Hasse diagram. As it is out of scope for 
our current discussion, we refer to more related work, see [56-58]. 

Structural Similarity of Comparability Graphs 

In the following, we state a method to combine the concept of comparability 
graphs (derived from topological descriptors applied to a collection of graphs) and 
graph similarity. The purpose is to gain additional structural insights when 
comparing the given comparability graphs using existing graph similarity (or 
distance) measures. For this, we consider a set of topological descriptors 	

, … ,  being evaluated on a set of graphs 	 , … , . As a result, a 
collection of comparability graphs  is derived using the values of the 
descriptors as follows. 
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Definition 9. Let 	 :	 	 ∈ 	 . Each 	 	 , , 	 ∈  is a simple 
directed graph with a common vertex set 	 1, … , , each vertex 
corresponding to a graph of G and the edge set 	 ⊆ 	 , is such that an edge 
from i to j exists if and only if 	 	 , for 	 	 . 

Note that the edge set E describes the relation between the graphs in terms of the 
descriptor. 

This kind of comparability graphs satisfies the following properties. 

Proposition 6. Every graph 	 ∈ 	is a directed, labeled graph with 	 | | 
vertices. Every  possesses a naturally induced hierarchy and, thus, represents 
a hierarchical structure manifesting the following properties on the “levels" of 
vertices: 

1. The root(s) of  (at level 1) contains the graph(s) possessing the 
maximum value of the descriptor among other graphs. 

2. Any vertex on level i has an outbound edge to all vertices on level j, 
∀	  

3. Any vertex on level i has an inbound edge from all vertices on level j, 
∀	  

4. If there exists more than one vertex on a particular level, all the 
vertices are connected as a bidirectional clique. That is, all the graphs 
having same value of the descriptor falls in one level of CGD thereby 
forming a tournament. 

Corollary 7. CGD is acyclic if for every pair of graphs , 	 	 , 	
	 	 	 	1	 	 	 	 	 . 

By the above proposition, we have characterized our comparability graphs. The 
next step is to find appropriate graph similarity measures for determining the 
structural similarity. Also, we determine the structural similarity between every 
pair of graphs in  to better understand the characteristics of the descriptors 
and their interrelatedness when applied to a given set of underlying graphs. 
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To tackle this problem concretely, we choose the well-known graph edit distance 
(GED) [13, 59] because it is easily interpretable. In general terms, GED is 
computed in two steps: Given two graphs, we firstly obtain a sequence of graph 
edit operations (such as adding/deleting vertices and edges) required to transform 
one graph into another. Second, define a cost function for each operation so that 
the cost for the edit operation sequence is the sum of the costs for all the 
operations in the sequence. Among all possible edit operation sequences, the least 
cost sequence is defined to be the GED between the two graphs. Details for 
implementing GED can be found in [60-62]. In our case, we need a special 
definition of GED since the two graphs have the same vertex set. 

Definition 10. The Graph Edit Distance, GED between any two labeled graphs 
	 	 ,  and 	 	 , 	is the symmetric difference between their edge 

sets E1 and E2, given by 

, 	 | ∪ 	 ∖ 	⋂ | (1)	

Numerical Results and Analysis 

We start this section by stating two definitions. 

Definition 11. Let GedM, also known as similarity matrix, denote an 	  
matrix where 

	 	 ; 	 ,  (2) 

where ∙,∙  is the graph edit distance between graphs. 

Definition 12. Let CorM, known as correlation matrix, denote an 	  matrix 
where 

	 	 , , (3)	

where ∙,∙  denotes the Pearson’s correlation coefficient. 

In this context, we firstly compute the GED between all pairs of comparability 
graphs in  and apply agglomerative clustering [63] to the resulting similarity 
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matrix. This relates to finding the groups of comparability graphs in which the 
graphs are similar, with respect to GED. Secondly, we compare the resulting 
dendograms with those obtained by determining the correlations between the 
descriptors, instead of calculating GED. 

For this purpose, we use special graph classes and concrete structural descriptors. 
In particular, we choose 32 graph measures where 20 of those are recently 
developed entropy-based measures [64] and the remaining 12 are classical 
measures (both entropy based and nonentropy measures). The reason why we 
particularly choose graph entropies is to explore differences between information-
theoretic and non-information-theoretic indices, e.g., how the measures in 
question capture structural information. As graph entropies, we choose [64] 

	 	 , :	 	 	 	 	 ; (4)	

and 

	 	 , :	 	 	 	 	 ; (5) 

where , , for 	 	1; 2, is the entropy measure defined by the eigenvalues 
of a molecular matrix . Let , , … ,  be the nonzero eigenvalues of M. 
Then, 

, 	
| |

∑ | |
log

| |

∑ | |
 

Note that numerous graph-theoretical matrices have been defined by using the 
structural properties of a molecular graph [65]. To perform our analysis, we only 
consider 10 different types of molecular matrices as stated in [64]. These matrices 
are defined using the adjacency between vertices, the degree of a vertex and/or the 
distance between two vertices of a graph. 

As stated before, to compare the results with other indices, we also choose the 
following classical measures from the literature namely, the Wiener Index, W 
[16], Randić connectivity index,  [15], Harary index,  [66], Compactness 
index,  [67], Mean Distance Deviation, MDD [68], Hyper-distance-path index, 
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HDP [19], Zagreb index Z1 [8], Topological information content, TIC [69], 
Bonchev-Trinajstic index, BT [45], Bertz complexity index, B [70], Balaban 
index, J [36], Balaban-like information index, U [37], 

	 , , , , , , 1, 	 , , , ,  (7) 

Now, we choose the datasets , ,  and , referred to as MS2265, C12Ring1, 
C12Ring2 and C15Trees, respectively [64, 71, 72]. These datasets contain both 
real and synthetic chemical structures. In particular, the set  contains real 
graphs, while each of the set , 	and  contains only synthetic isomers. The 
synthetic graphs have been generated by using the software Molgen [73]. Each of 
the datasets only contain the skeletons of the underlying chemical structures (all 
bond and atom types are considered equal), isomorphic structures have been 
filtered out [74]. Further, we choose a random sample of 100 graphs from each of 
these databases and each of the 32 descriptors (from 	⋃ ⋃	  are used to 
calculate the values using these graph collections. Thus, for each graph class,  
contains 32 comparability graphs each having 100 vertices each. 

In Fig. (1), we present the dendograms using the similarity matrix GedM and the 
correlation matrix CorM for the graphs from . 

From Fig. (1a), it is immediate that among all the entropy measures, the 

,
,

,
 for a given molecular matrix M, is very low since the pair 

of graphs enter into a cluster at the same level and, hence, they are highly similar. 
In addition, we infer that among the entropy-based measures from , the 
Balaban index J is very similar to the eigenvalue-based entropy measures ,  for 
distance-based matrices DP(G), IM1(G) and IM2(G). Also, J is highly dissimilar 
to the remaining descriptors. 

From the above observations, we infer that highly similar comparability graphs 
grouped within a cluster show that the underlying graphs from a collection  have 
a similar ordering. The comparability graphs from different clusters produce a 
considerably different ordering of the graphs from . In particular, the 
comparability graphs belonging to a cluster from the first level and a cluster from 
the last level possess an almost reverse ordering of the underlying graphs from . 
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Hence, we see that clustering technique of comparability graphs provides 
information about ordering the graphs. 

 

(A) Graph edit distance 

 

(B) Correlation matrix 

Figure 1: Cluster analysis of the matrices GedM and CorM for the graphs from . 

Next, we perform a comparative analysis between the similarity matrix  
(Fig. (1a)) and the correlation matrix (Fig. (1b)). First of all, we obtain that the 
comparability graphs of highly correlated descriptors are very similar. That is, if 
two descriptors D1 and D2 possess high correlation coefficient, then the graph edit 
distance between the corresponding comparability graphs are very low (i.e., very 
few edit operations are required to transform a given graph into the another one). 
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Thus, this implies that the comparability graphs are very similar. For example, the 
dark red region in the Fig. (1a) represents the comparability graphs of the 
descriptors that require more number of edit operations (at least 80% of the edges 
are modified) to transform one into another, while the same descriptors in  
Fig. (1b) show a very low correlation (or high negative correlation, less than -0.5) 
with the region colored by white and shades of light yellow. That is, the 
descriptors with negative correlation imply that the direction of most of the edges 
in the corresponding comparability graphs need to be changed and, hence, the 
graphs are highly dissimilar. 

Secondly, the entropy measure based on the matrices ) and  have 
identical comparability graphs. This leads us to rediscover, in support of [64], that 
the descriptors possess the maximum correlation value of 1. Additionally, the 
matrices  and  also have a very similar comparability graph. This fact 
is immediate from the dendograms where all these eight measures get assigned to 
the same cluster in the last but one level showing that these matrices are closely 
related to each other. 

Further when analyzing the performance of the descriptors, it is immediate that 

the Balaban J index, the entropy measures , , , , ,  outperform all the 

other measures as the distance between them is very high and they enter into a 

cluster at a very later stage (level 1 an level 3 in the dendogram). In general, the 

descriptors that enter a cluster at a particular level (with respect to the matrices 

CorM and GedM) are identical for the descriptors from , while it is very similar 

for the descriptors from ⋃  and . At the outset, we note that the 

dendograms of both the matrix clusters are not identical. However, the elements 

(descriptors) that enter into a cluster in the lower levels show an identical pattern. 

In Figs. (2), (3) and (4), we present the density plot along with the dendograms 
obtained by applying clustering techniques to the similarity matrix and the 
correlation matrix for the graphs in , and  respectively. As before, we 
deduce similar conclusions when the above analysis is performed on these 
collection of isomer structures. However, it is worth to note that, though the 
obtained dendograms are not identical, the elements that enter into a cluster in the 
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first few levels show an identical pattern. In addition, we note from Figs. (2a) and 
(4a) that the distribution of dendograms and the density plot are identical for  
and , and is much similar to . This can be understood and interpreted as a 
kind of measure of stability of the measures on various graph collections. 

 

(a) Graph Edit Distance 

 

(b) Correlation Matrix 

Figure 2: Cluster analysis of the matrices GedM and CorM for the graphs from . 
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Thus, we have presented the similarities and dissimilarities of the comparability 
graphs in a more descriptive way. From the definition, it is clear that the 
underlying undirected structure of a comparability graph is a complete graph, 
since every pair of graphs from G is compared and ordered with respect to the 
descriptor’s value. However such a representation does not reveal much 
information neither about the graphs nor the descriptors. Hence, the orientation 
(or the ordering) becomes mandatory and plays a crucial role in this analysis. 

 

(a) Graph Edit Distance 

 

(b) Correlation Matrix 

Figure 3: Cluster analysis of the matrices GedM and CorM for the graphs from . 
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Other Comparability Graphs 

In this section, we state another definition of a comparability graph for analyzing 
interrelations between network descriptors. 

Definition 13. Given a graph class  and a set of descriptors 	 , … ,  
computed for every graph ∈ 	 . Then, 	 ,  where 	 	  and 
	 ⊆ 	 	  such that there is an edge from  to  if and only if 

, for 	 	 . 

We see that the edge set E describes relations between the descriptors. Following 
this procedure, we obtain a collection of comparability graphs defined for each 
graph in . Clearly, such a comparability graph represents relations between the 
descriptors based on their values. In general, inferring such interrelations between 
network measures analytically is a challenging problem, see, e.g., [45, 75, 76]. 
Note that analytical relationships by means of inequalities between information 
theoretic network measures have been called information inequalities [75-77]. 
Hence, a natural question arises namely how to compare such comparability 
graphs representing relations between network measures and analytically proven 
inequalities? Clearly, numerical values can be easily computed between each pair 
of graphs. However, it is not straightforward to prove analytical relations by 
means of inequalities between all pairs of given network measures. Also, note that 
the advantage of mathematical relations between descriptors is that they often 
hold for a graph class, not only for a single graph. From these arguments, it is 
evident that this problem needs further investigation in the future. 

SUMMARY AND CONCLUSION 

In this article, we reviewed the concept of comparability graphs and their 
properties. For this, we stated some mathematical results to characterize 
comparability graphs. Afterwards, we have discussed the applicability of 
comparability graphs in chemoinformatics and sketched existing results. 

Also, we explored the relationship between the structural similarity of 
comparability graphs induced by using certain descriptors and the correlation of 
these descriptors. As a result, we found that highly correlated descriptors 
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correspond to comparability graphs which are structurally similar (with respect to 
a graph similarity measure). Some of our findings also led to rediscover some of 
our earlier result from [64] e.g., that highly non-correlated descriptors possess 
highly dissimilar comparability graphs. Apart from the presented results, we also 
studied various descriptors calculated by using the software DRAGON [78] and 
arrived at similar conclusions. 

 

(a) Graph Edit Distance 

 

(b) Correlation Matrix 

Figure 4: Cluster analysis of the matrices GedM and CorM for the graphs from . 
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In the future, we would like to explore this kind of comparability graph in depth. 
This would involve using other graph similarity measures and studying their impact 
when clustering the data. Also, we already sketched (see Section Other 
Comparability graphs) that this concept could be useful to study the relatedness 
between graph measures. A study to explore this problem is already in development. 
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ABBREVIATIONS AND NOTATIONS 

We have used standard definitions and notations from graph theory [28] and for 
other definitions of terms mentioned below, we refer to [64]. 

QSAR = Quantitative Structure Activity Relationships 

QSPR = Quantitative Structure Property Relationships 

 = Vertex chromatic number of a graph 

 = Size of the largest clique in a graph 

 = Pearson’s Correlation coefficient 

GED = Graph Edit Distance 

GedM = Similarity matrix 

CorM = Correlation matrix 

J = Balaban index 

U = Balaban-like information index 
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B = Bertz complexity index 

BT = Bonchev-Trinajstic index 

C = Compactness index 

H = Harary index 

HDP = Hyper-distance-path index 

MDD = Mean Distance deviation 

RC = Randic Connectivity index ´ 

T IC = Topological information content 

W = Wiener index 

Z1 = Zagreb index 

A(G) = Adjacency matrix of a graph G 

D(G) = Distance matrix of a graph G 

EA(G) = Extended-adjacency matrix of a graph G 

DP(G) = Distance-Path Matrix of a graph G 

MM(G) = Random-walk Markov matrix of a graph G 

VC(G) = Vertex-connectivity matrix of a graph G 

IM1(G), IM2(G) = Weighted structure function matrices of a graph G 
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CHAPTER 8 

Basic Concepts and Applications of Molecular 
Topology to Drug Design 
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Physical Chemistry, University of Valencia Avd, V.A. Estellés, s/n 46100-Burjassot, Valencia, 
Spain 

Abstract: This chapter deals with the use of molecular topology (MT) in the selection 
and design of new drugs. After an introduction of the actual methods used for drug 
design, the basic concepts of MT are defined, including examples of calculation of 
topological indices, which are numerical descriptors of molecular structures. The goal is 
making this calculation familiar to the potential students and allowing a straightforward 
comprehension of the topic. Finally, the achievements obtained in this field are detailed, 
so that the reader can figure out the great interest of this approach. 

Keywords: Molecular topology, drugs, drug design, topological indices, 
molecular structure, computer-aided drug discovery and development, virtual 
screening, chemical libraries, quantitative structure-activity relationships, 
quantitative structure-property relationships, molecular descriptors, connectivity 
indices, modeling, molecular design, molecular connectivity. 

INTRODUCTION 

It was Corvin Hansch [1] who introduced, at early sixties in the past century, an 

equation linking some experimental properties of molecules with physicochemical 

parameters taking into account their electronic and steric characteristics. This is 

generally considered as the birth of the so called quantitative structure-activity 

relationship (QSAR) methods. Since then, the development of these methods, 

which require the use of computer (in silico), has been extraordinary, so much so 

that today they are in regular use worldwide. 
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In the work of Hansch, the basic assumption was the existence of an intrinsic 
relationship between the experimental properties and the structure of the chemical 
compound. Of course, such a qualitative relationship was well known long time 
before Hansch, but his merit was to provide a quantitative measure of it (QSAR). 
This quantitative approach has resulted in the use of powerful computers capable 
of predicting the properties of compounds even before they are obtained in the 
laboratory or to design new ones with the desired properties. 

A significant advance in the field of QSAR was the introduction by Cramer in 
1988 of the Comparative Molecular Field Analysis (CoMFA). This method, based 
on the three-dimensional structure of the molecules, enabled the development of 
3D-QSAR [2] that started a new era both in the conceptual and practical 
viewpoints. In the case of drugs, the effects from different conformers, 
stereoisomers or enantiomers in 3D-QSAR models, permitted the comparison of 
molecular structures so that it was possible to disclose the structural arrangement 
of atoms responsible for the activity, known as the pharmacophore [3]. However, 
a common criticism to Cramer’s approach is that, given that the molecular fields 
are compared within a grid, the outcome can be closely dependent on the size of 
the grid; though there are solutions for this problem. 

Other 3D-QSAR approaches, such as Comparative Molecular Similarity Indices 
Analysis (CoMSIA) [4], Self Organizing Molecular Field Analysis (SomFA) [5], 
or GRID/GOLPE have also demonstrated significant efficacy in drug 
design/discovery. Some of these methods may be used to compare different sets 
of molecular descriptors. 

Along with the rapid development of computational science, a pull of new 
techniques based on formalisms such as molecular mechanics, molecular 
dynamics, docking, scoring and pharmacophore analysis, are now widely used in 
the area of drug discovery. These computational techniques have been proven to 
assist in the design of novel, more potent and specific drugs as they can visualize 
the mechanisms of ligand-receptor interactions. 

Molecular topology (MT), a discipline typically related to the QSAR methods, has 
demonstrated to be an excellent tool for a quick and accurate prediction of many 
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physicochemical and biological properties [6-8]. One of the most interesting 
advantages of MT is the straightforward calculation of molecular descriptors to 
work with. Within this mathematical formalism, a molecule is assimilated to a 
graph, where each vertex represents one atom and each edge one bond. Starting 
from the interconnections between the vertices, an adjacency topological matrix 
can be built up, whose ij elements take the values either one or zero, depending if 
the vertex i is connected or unconnected to the vertex j, respectively (Fig. (1)). 
The valence or degree of each vertex i is the number of edges converging on it, 
which is equal to the sum of the terms that are in the row (or column) 
corresponding to that vertex. The manipulation of this matrix gives origin to a set 
of topological indices or topological descriptors which characterize each graph 
and allow the developments of quantitative structure–property relationships 
(QSPR) [9–11] and QSAR [12–17] analysis as well. 

 

Figure 1: The chemical graph and adjacency matrix of isopentane. 

The use of MT within the framework of QSAR has grown in the last years in an 
exponential way. Altogether the topological scope covers over 20% of the overall 
papers on QSAR. A recent search, carried out with the Scifinder Scholar database, 
disclosed that about 3,466 papers out of 17,664 dealing on QSAR, were devoted 
to topological descriptors. Today there is an increasing number of authors 
applying MT to drug discovery and design, particularly in the field of anticancer 
compounds [18], D1 Dopaminergic antagonists [19], anti-convulsants [20], anti-
HIV compounds [21], tyrosinase inhibitors [22], MAO-A inhibitors [23], 
antimalarials [24], and immunosuppressive compounds [25]. In the current work, 
we focus on the contribution of molecular topology to QSAR studies obtained by 
our research group in the last years and its application to drug design/discovery. 
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METHODOLOGY AND APPLICATIONS 

The first to show that a molecule could be represented by a set of points (atoms) 
linked by edges (bonds), was the British mathematician James J. Sylvester in 
1874; these representations were called graphs. It is interesting that the word 
‘graph’ rose in a completely interdisciplinary context. In 1878 Sylvester published 
in Nature a paper entitled ‘Chemistry and Algebra’, where the word graph was 
used for the first time as a derivation of the term used by chemists of the end of 
the 19th century to refer to the molecular structure. 

Molecular Descriptors 

It is well known that a key issue to ensure the success of a QSAR approach is the 
selection of the adequate descriptors. Basak et al. [26] classified these descriptors 
into four categories: 

a. Topostructural indices (TS), which quantify information regarding the 
connectivity, adjacency, and distances between atoms or vertices 
according to graph theoretical nomenclature—ignoring their distinct 
chemical nature. 

b. Topochemical indices (TC), which are sensitive to both the pattern of 
connectedness of the atoms and their chemical and bonding 
characteristics. 

c. 3D or geometrical parameters (3D). 

d. Quantum chemical descriptors (QC), which encode electronic aspects 
of chemical structure. 

Today, it is known that topostructural and topochemical information can explain 
the main part of the predicted properties, and that the inclusion of three-
dimensional features results in slightly improved predictive models in many cases 
[27], which is a surprising feature. 

A complete review of topological descriptors is almost impossible due to the great 
quantity of such indices that are published in the literature and the number of 
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them that are introduced every year, which continues to grow more and more. In 
the following we discuss the most important indices used by our research group, 
described in increasing order of complexity. 

Discrete Invariants 

They are real (most natural) numbers calculated from what the chemists 
understand qualitatively as the chemical structure. N is the number of non-
hydrogen atoms, this is, the number of molecular graph vertices [28, 29] 
represented by Vk, where k represents the degree of the vertex, taking values of 3 
or 4, which applies to atoms having k bonds (or  except hydrogen atoms [29]. 
R is the branching number of number of single structural branches in the graph 
[29]. L is the length, i.e., the maximal distance between non-hydrogen atoms in 
terms of bonds, that is, the diameter of the molecular graph defined as max(dij) 
[29]. In other words, the graph diameter is the number of edges between the two 
most separated vertices in the graph, by the shortest path (topological distance). 
PRk, are pairs of ramifications at distance k, where k is between 0 and 3, i.e., they 
are the number of pairs of single branches at distance k in terms of bonds [29]. E 
= shape factor = nidi/L, were ni is the number of vertices situated at a di distance 
from the main path, which is the path linking the two vertices farther apart each 
other in the graph. The shape factor, E, evaluates the graph shape, i.e. the lower 
the E value, the more “linear” and elongated the graph is [30]. Fig. (2) shows the 
values of these descriptors for the molecule of 2,3-dimethylbutane. 

 

Figure 2: Discrete invariants of 2,3-dimethylbutane. 
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Some biological properties showed a curious dependence with these indices. For 
example, the relation between the plasma protein binding, PPB, and E for a group 
of cephalosporins was clearly nonlinear (see Fig. (3)). 

 

Figure 3: Relationship between plasma protein binding (PPB) vs. the shape factor E for a group of 
cephalosporins. 

From Fig. (3), it is clear that there are no molecules with small PPB rate and E 
values between 0.4 and 0.7, and the degree of PPB is below 35% for E > 0.86. 
Although PPB is a complex property in which other factors such as lipid solubility 
play an important role, these results point to a notable influence of molecular 
shape on the PPB rate for these drugs [30]. It is remarkable, however, that such a 
2D parameter as simple as E, can account for such a complex property. 

Connectivity Indices 

The first connectivity index, the branching index or Randić index [31], , was 
introduced by professor Milan Randić at Drake University in 1975. This 
descriptor is defined as the sum of the reciprocals of the square roots of products 
of the valences of the two vertices adjacent to each edge, extended to all edges of 
the graph. Fig. (4) shows the detailed calculation of the Randić index for 
isopentane. 
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Figure 4: Randić index, , for the isopentane. 

An example that illustrates the role of Randić index in describing structural 
features influencing non-specific drug action, is the relation observed between the 
log minimum blocking concentration (logMBC), related to 90% non-specific local 
anesthetic activity, and [6]. The simple  term was found to correlate closely 
with logMBC value, as follows: 

logMBC = 3.60 – 0.779 (1) 

r = 0.982, s = 0.409, N = 36  

Table 1 shows the results of prediction for each analysed compound. 

In 1976 Kier and Hall extended the Randić index, introducing the connectivity 
indices of order k [32] and type t. They are the first example of “family of 
indices” and the entire set can be calculated from the adjacency matrix. They are 
normally written as, kt, where k varies between 0 and n. Here the order is the 
number of connected non-hydrogen atoms that appear in a given sub-structure; in 
other words, the number of edges in the connected subgraph. Hence, the 
connectivity indices are defined as [6]: 
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where δi is the number of simple bonds (σ bonds only) of the atom i to non-
hydrogen atoms, Sj represents the jth sub-structure of order k and type t, knt is the 
total number of sub-graphs of order k and type t that can be identified in the 
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molecular structure. Types used are path (p), cluster (c) and path-cluster (pc). 
Upon the concepts defined in the Introduction, a sub-graph of type p is formed by 
a path, a sub-graph of type c is formed by a star (a graph in which all vertices are 
attached to a central one), while a pc sub-graph can be defined as every tree which 
is neither a path nor a star. As an example, Table 2 displays all the p, c and pc 
sub-graphs found in a simple molecular structure. 

Table 1: Local Anesthetic activity and  

Anesthetic logMBCexp logMBCcalc Anesthetic logMBCexp logMBCcalc 

Methanol 3.090 2.790 Quinoline 0.300 0.528 

Ethanol 2.750 2.470 8-Hydroxyquinoline 0.300 0.174 

Acetone 2.600 2.230 Heptanol 0.200 0.567 

2-Propanol  2.550 2.230 2-Naphthol  0.000 0.228 

Propanol  2.400 2.090 Methylanthranilate 0.000 -0.072 

Urethane 2.000 1.440 Octanol -0.160 0.186 

Ether 1.930 1.710 Thymol -0.520 0.052 

Butanol  1.780 1.710 o-Phenanthroline -0.800 -0.602 

Pyridine 1.770 1.650 Ephedrine Procaine -2.470 -2.743 

Hydroquinone 1.400 1.050 Lidocaine -1.960 -2.310 

Aniline 1.300 1.350 Diphenhydramine -2.800 -2.750 

Benzyl Alcohol  1.300 0.935 Tetracaine -2.900 -3.030 

Pentanol 1.200 1.330 Phenyltoloxamine -3.200 -2.740 

Phenol 1.000 1.350 Quinine -3.600 -3.850 

Toluene 1.000 1.350 Physostigmine -3.660 -2.520 

Benzimidazole 0.810 0.901 Caramiphen -4.000 -3.480 

Hexanol 0.560 0.949 Dibucaine -4.200 -4.970 

Nitrobenzene 0.470 0.651    

To take into account the presence of heteroatoms (atoms other than carbon) in the 
molecule, δv is used instead of δ, what allows encoding the influence of and 
lone-pair electrons [6]. 
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Here δi
v = Zv–H, where Zv is the number of valence electrons and H the number of 

hydrogen atoms bonded to the heteroatom. 

Table 2: Subgraphs within the 2-methylpropanol structure 

Type Order 1 Order 2 Order 3 Order 4 

  

  

Path   

   

Cluster    

Path-Cluster    

To illustrate the calculation of the connectivity indices up to order four, Fig. (5) 
shows the example of 2 methyl propanol. 

 

Figure 5: Kier and Hall connectivity indices for 2 methyl propanol. 
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0  = 3  (1)-1/2 + (3)-1/2+(2)-1/2 = 4.285  

v0    2/1v
iδ = 2  (1)-1/2 + (3)-1/2 + (2)-1/2 + (5)-1/2 = 3.732  

 



n

1s

2/1

sji
1 = 2  (1x3)-1/2 + (2x3)-1/2 +(2x1)-1/2 =2.27  

1v  





n

1s

2/1

s

v
j

v
i = 2  (1x3)-1/2 + (3x2)-1/2 + (2x5)-1/2 = 1.879  

2 =  



n

1s

2/1

skji = (1x3x1)-1/2 + (1x3x2)-1/2 + (1x3x2)-1/2 +(2x3x1)-1/2 = 1.802  

2v =  





n

1s

2/1

s

v
k

v
j

v
i = (3)-1/2 + (6)-1/2 + (6)-1/2 + (30)-1/2 =1.576  

 p
3  




n

1s

2/1

slkji = (6)-1/2 +(6)-1/2 =0.816  

 v
p

3  





n

1s

2/1

s

v
l

v
k

v
j

v
i = (30)-1/2 +(30)-1/2 =0.365  

c
3  




n

1s

2/1

slkji =(6)-1/2 =0.408  

v
c

3  =  





n

1s

2/1

s

v
l

v
k

v
j

v
i = (6)-1/2 =0.408  

c
4 =  




n

1s

2/1

smlkji = (6)-1/2 =0.408  

v
c

4  =  





n

1s

2/1

s

v
m

v
l

v
k

v
j

v
i = (30)-1/2 =0.183  



Molecular Topology & Drug Design Advances in Mathematical Chemistry and Applications, Vol. 1, (Revised Edition)   171 

It is useful the use of combinations of connectivity indices, as for instance the 
differences and quotients between valence and non-valence indices: vD t

k
t

k
t

k 

and 
v
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t

k

t
k

t
k




  [29,33] 

The connectivity indices are among the most widely used in QSAR [6, 34]. 

A good example of their excellent predictive capability is a work from Kier in 
which he applied the connectivity indices in predicting the sweet or bitter taste of 
a group of aldoximes [35]. He applied discriminant analysis including a training 
(molecules used to get the discriminant function) and test (external molecules) 
sets. The best linear discriminant function was the following two-variable 
equation: DF=1.21 1 – 3.88 4p – 3.27. 

Fig. (6) shows the results obtained for the training and test sets. 

 

Figure 6: Prediction of taste potency relative to sucrose of an aldoximes group by molecular 
connectivity from Kier’s results. 

Topological Charge Indices (TCI) 

In 1994 our team introduced the Topological Charge Indices (TCI), namely Gk 
and Jk, of order k for a given graph, where k ranges from 1 to 5, which are defined 
as [28]: 



172   Advances in Mathematical Chemistry and Applications, Vol. 1, (Revised Edition) Gálvez et al. 

 
1-N

1=

N

1+

)d,(cG
i

ij
j=i

jik k
 
and 1N

G
J


 k

k
 (4-5) 

Here N is the previously defined number of vertices in the graph-molecule, cij is 
the charge term between vertices i and j, which is defined as cij = mij – mji. ij 
represents the Krönecker delta symbol (ijif i = j and 0 otherwisedij is the 
topological distance between the vertices i and j. 

The variables mij and mji are the elements of the square N×N matrix M obtained as 
the product of two matrices A and Q, i.e. M = A·Q. Consequently: 


N

=

qm
1h

hjihij a
 

(6)
 

A is the adjacency matrix in which elements aih are 0 if i = h or one of the following 
values if i ≠ h: 1 if i is bonded to h via a single bond; 1.5 if the bond is aromatic; 2 if 
it is a double bond; and 3 if it is a triple one. Q is the inverse squared distance or 
Coulombian matrix. Its elements, qhj, are 0 if h = j; otherwise, qhj = 1/dhj

2, where dhj 
is the topological distance between vertices h and j. Thus, Gk represents the overall 
sum of the cij charge terms for every pair of vertices i and j at a topological distance 
k. The valence TCIs, Gk

v and Jk
v, are defined in a similar fashion, by substituting the 

matrix A by Av, the electronegativity-modified adjacency matrix. The elements of 
both matrices are identical except for the main diagonal of Av, which are obtained by 
replacing the zeroes in the main diagonal by the corresponding Pauling 
electronegativity values EN, normalized for chlorine electronegativity = 2. Hence, 
any other heteroatom will have the proportional value according to the Pauling’s 
scale. The G charge indices are obtained as the algebraic sum of the differences 
between the terms mij and mji, whereas the J indices are just J/N. It is interesting to 
realize that the Gk index represent the average charge transferred at a distance k 
between all pairs of atoms in the molecule, whilst the Jk index is the mean Gk value 
per atom. What is remarkable is that these charge transfers have been evaluated 
within a pure mathematical framework. 

To illustrate the calculation of the TCIs, Fig. (7) exhibits the example of 2-methyl 
propanol. 
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Figure 7: Non valence charge indices for 2-methyl propanol. 

As an example illustrating the high performance of TCIs, we show a study on 
xanthine-oxidase inhibition by 22 flavonoids, including flavones, flavonols, 
flavanones and chalcones, in which TCIs were employed to establish the 
structure-activity relationship model. Flavonoids were classified into four groups 
according to their activity on xanthine-oxidase (inactive, low, significant or high), 
and linear discriminant analysis (LDA) was used to classify each compound 
within a group. The results led to a very good one-index model, which was able to 
classify correctly as xanthine oxidase inhibitors not only the molecules in the 
training set but also those of an external test set of very heterogeneous 
compounds, such as allopurinol, caffeic acid, esculetin, and alloxantin [36]. 

Table 3 shows the classification functions obtained from LDA. The topological 
charge index J2 takes into account the average value of the charge transferred 
between atoms placed at a topological distance = 2. This means that the 
intramolecular charge transfers between atoms located at such distance play an 
important role in this property. A possible explanation is related to the presence of 
hydroxyl groups on the positions 5, 7, and 4’, which enhance the inhibitory effect, 
whereas the presence of methoxy groups clearly weaken such an effect. 
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Table 3: Classification functions obtained from linear discriminant analysis 

  Groups   

 Inactive Low Significant High 

J2 116.31 137.37 150.1 193.2 

constant -24.85 -34.11 -40.46 -66.13 

The key influence of the J2 index is clearly outlined in Table 4. Indeed, it is 
noteworthy that those compounds showing J2 values lower than 0.48 are either 
inactive or little active. Most of the compounds with J2 values between 0.48 and 
0.58 are significantly active, while compounds showing values above 0.60 are 
highly active. 

Table 4: Classification for each one of the compounds studied 

Flavonoid J2 PIG (%) Classexp Classcalc 

Training Set 

chalcone 0.341 0 inact. inact. 

4F-chalcone  0.417 0 inact. inact. 

flavone 0.486 3 inact. low 

flavanone 0.375 3.6 inact. inact. 

4(OCH3)-chalcone 0.399 4.8 inact. inact. 

2’(OH),4(OCH3)-chalcone 0.475 16.2 low low 

2’,4’(OH)2 -3’(OCH3)-chalcone 0.532 17.1 low signif. 

2’(OH),4’(OCH3)-chalcone 0.463 17.2 low low 

5,7(OH)2-flavanone  0.481 20.1 low low 

2’(OH)-chalcone 0.431 21.5 low inact. 

5,7,4’(OH)3-flavanone  0.538 28.7 signif. signif. 

2’(OH),4F-chalcone  0.497 30.3 signif. low 

2’,4’(OH)2-chalcone  0.484 39.8 signif. low 

4(OH)-chalcone 0.417 45.5 signif. inact. 

7(OH)-flavone 0.536 49.7 signif signif 

5,7(OH)2 -6,8,4’(OCH3)3-flavone  0.653 61.4 signif. high 

3,5,7,2’,4’(OH)5-flavone  0.72 70.1 high high 

5,7,4’(OH)3 -6,8(OCH3)2-flavone  0.676 72.7 high high 

5,7(OH)2 -6,4’(OCH3)2-flavone  0.636 77.8 high high 

5,7(OH)2-flavone  0.58 91.1 high signif 

3,5,7,3’,4’(OH)5-flavone  0.72 91.4 high high 
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Table 4: contd…. 

3,7,3’,4’(OH)4-flavone  0.689 91.8 high high 

Test Set  

allopurinol 0.648 - active high 

probenecid 0.327 - inact. inact. 

sulfinpyrazone 0.294 - inact. inact. 

caffeic acid 0.648 - active high 

esculetin 0.741 - active high 

TEI-6720  0.696 - active high 

alloxantin 0.667 - active high 

To test the efficacy of the discriminant function, a validation test with a set of 
compounds was carried out, including both, highly heterogeneous structures and 
significant inhibitory activity. All of them, namely allopurinol, caffeic acid, 
esculetin, TEI-6720 (2-(3-cyano-4-isobutoxyphenyl)-4-methyl-5-thiazolecarboxylic 
acid), and alloxantin, were correctly classified within the group of “high activity”. 
Likewise, other uricosuric but not inhibitor compounds, such as probenecid or 
sulfinpyrazone, were also correctly classified as such. 

The percent inhibition degree (PIG) on xanthine-oxidase, along with the J2 values 
and the classification obtained for each flavonoid studied, are shown in Table 4. 

Other Molecular Descriptors 

Among other widely used topological descriptors stand the Wiener path number 
W [37], kappa indices of molecular shape and flexibility index [38, 39], Balaban 
J index [40], electrotopological state indices [41], spectral moments, , [42], etc. 
The number of topological descriptors is actually very large and potentially much 
larger. Fortunately, there are a number of software programs that are 
commercially available to calculate them. Among these programs stand 
MOLCONNZ [43], DRAGON [44], POLLY [45], CODESSA [46], etc. 

Statistic Techniques 

Statistic tools are essential to get a good outcome in the QSAR equations. 
Although there are many choices available, two types of analysis are commonly 
used: The first is to predict quantitative properties (multilinear regression analysis, 
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MLRA) and the second to recognize the category to which the compound belongs 
to (linear discriminant analysis, LDA). 

Multilinear Regression Analysis (MLRA) 

Once calculated the indices, they are correlated to the biological/pharmacological 
experimental values to get a multilinear regression equation: 

iioi XAAP 
 (7) 

where Pi is the experimental property, Xi are the topological indices, and Ao and Ai 
are the regression coefficients of the equation obtained. 

The predictability, quality and robustness of the model can be verified by means 
of different types of criteria. Usually three strategies are adopted [47]: 

a) Internal validation or cross-validation with leave-one-out, LOO. To do 
this, one compound of the set is extracted, and the model is 
recalculated using as training set the remaining N – 1 compounds. The 
property is then predicted for the removed element. This process is 
repeated for all the compounds of the set, obtaining a prediction for 
everyone. From the residual values obtained, the standard error of 
estimates for the cross-validation, SEE(CV) and prediction coefficient, 
r2

cv, (Q
2) are determined. A more robust stability validation method is 

the leave-some-out, LSO [48] in which we proceed the same way but 
leaving out not one but several compounds. 

b) External validation. The model’s predictive capability is tested by its 
application over an external set of molecules. 

c) Data randomization or Y-scrambling. In order to evidence the possible 
existence of fortuitous correlations, a randomization test can be 
performed [49]. To do this, the values of the property of each 
compound are randomly permuted and linearly correlated with the 
topological descriptors. The process is repeated, as many times as 
compounds there are in the set. 
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Table 5: Chemical structures of the IGRs studied 

Butyl substituted phenols 

 

1 COMP01 (R=Cl) 
2 COMP02 (R=Br) 
3 COMP04 (R=NO2) 
4 COMP05 (R=cyano) 
5 COMP10 (R=CH3) 

6 COMP11 (R=OCH3) 
7 COMP13 (R=n-butyl) 
8 COMP31 
(R=morpholinocarbonyl) 

9 MON585 (R= ’-
dimethylbenzyl) 
 

10 BAYSIR8514 

 

11 CGA19255 12 DU19111 

13 DIFLUBENZURON 

 

14 CRD-9499 15 R20458 

 
 

16 TH6038 

 

17 HYDROPRENE 18 METHOPRENE 

19 MV678 

 

 
 

 
 

Example: Prediction of Potency of Insecticides Against Malaria Vectors [50]. 

MT was employed to predict the potency of insecticides active against malaria 
vector mosquito (Culex). The insect growth regulators are substances that alter 
and interfere with development processes and insect growth. The group was 
composed of a representative sample of the various classes of IGRs, as for 
instance the juvenile hormone active (JHAs) mimetics; among them stand 
methoprene 18, hydroprene 17 and others, several butyl phenols, ureas 
(diflubenzuron 13 among others) and a triazine (CGA 19255 11). Table 5 shows 
the respective chemical structures. 
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Insecticidal activity was expressed as LC50, which is the lethal dose in ppm 
causing 50% inhibition of adult emergence for larvae of Culex pipiens 
quinquefasciatus. The regression equation selected was: 

Log LC50 = -2.632 + 14.991 J3
v - 0.239 V4 (8) 

N= 19 r2=0.843 SEE=0.467 F=43.1  

J3
v takes into account the average charge transferred at a topological distance 

three per atom in the molecule. The fact that the index is weighted by the valence 
unveils the influence of heteroatoms such as N, O and Cl in the insecticidal 
activity. The second index, V4, is the simple sum of vertices (atoms different 
from hydrogen) with degree four. It includes quaternary carbons, carbonyl groups 
and carbons substituted on aromatic rings. These results are all the most consistent 
since the activity seems to depend on both, the charge transfers between donor 
and acceptor groups as well as of structural features such as steric hindrance or 
enhancement, encoded by the V4 index. 

Table 6 compares the experimental and calculated values for each compound. As 
can be seen, it is worth pointing out the good concordance between them. 

Linear Discriminant Analysis 

As expressed before, the goal of the linear discriminant analysis, LDA, is to find a 
linear combination of variables allowing the discrimination between two or more 
categories or objects. 

In our case, the “objects” are molecules. The final equation has the form: 

iio XAADF 
 (9) 

Where DF is the value of the discriminant function related to a particular activity, 
Xi are the topological indices, and Ao and Ai are the regression coefficients relating 
one and others. 

Although there are several choices, the simplest approach is the disjunctive, in 
which two sets of compounds are considered: One with proven pharmacological 
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activity which constitute the “active” set and another one comprised of inactive 
compounds. The selection of the descriptors is based on the Fisher-Snedecor 
parameter, and the classification criterion is the shortest Mahalanobis distance 
(i.e. the distance of each case from the mean of all cases used in the regression 
equation). The quality of the discriminant function is evaluated by Wilks’  [49]. 

Table 6: Results obtained by multilinear regression analysis with IGRs 

Compound Log LC50exp J3
v V4 Log LC50calc 

COMP01 -0.032 0.2515 6 -0.292 

COMP10 0.326 0.2812 6 0.152 

COMP02 -0.222 0.2534 6 -0.264 

COMP04 -0.444 0.2272 6 -0.657 

COMP05 0.218 0.3020 7 0.227 

COMP11 -0.244 0.2587 6 -0.185 

COMP13 -0.620 0.2551 6 -0.238 

COMP31 0.456 0.2737 7 -0.198 

MON585 -1.699 0.2540 8 -0.732 

BAYSIR8514 -2.699 0.1111 7 -2.636 

CGA19255 -0.456 0.1915 4 -0.715 

DU19111 -2.699 0.1059 8 -2.953 

DIFLUBENZURON -3.301 0.1133 7 -2.603 

CRD-9499 -1.523 0.1538 4 -1.281 

R20458 -1.398 0.1260 4 -1.697 

TH6038 -1.886 0.1076 7 -2.689 

HYDROPRENE -1.000 0.1246 2 -1.242 

METHOPRENE -2.000 0.1272 3 -1.440 

MV678 -1.699 0.1246 3 -1.479 

The discriminant ability of the selected function is evaluated by: 

a) The Classification matrix, in which each case is classified into a group 
according to the classification function. The number of cases classified 
into each group and the percentage of correct classifications are shown. 
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b) The Jack-knifed classification matrix, in which each case is classified 
into a group according to the classification functions computed from 
all the data except the case being classified. 

c) The use of an External test set, which entails the use of an external 
compound set to check the validity of the selected discriminant 
functions. 

Example: Prediction of Quinolone Activity against Mycobacterium Avium [51]. 

In this example, a QSAR study using a database of 158 quinolones previously 
tested against Mycobacterium avium-M. intracellular (MAV) complex, was 
carried out. The goal was to find new active compounds against the MAV 
complex. Topological indices were used as structural descriptors and LDA was 
employed as statistical technique. Using a MIC cut-off of 32 mg/mL, the 
following equation was obtained in such a way that the compound was classified 
as active if DF >0 (MIC below 6 mg/mL), inactive if DF<0 (MIC above 32) or 
uncertain (MIC between 6 and 32): 

DF= -2.6+20.13ch -12.94c +42.54c
v +25.6 6ch -2.2G3

v +2.4G4
v (10) 

Statistical parameters were as follows: n=5 114, F=5 30.79, Wilk’s = 0.37. The 
indices 4c and 4c

v represent the quaternary ramifications, 3ch and 6ch reflect the 
presence of cycles of three and six atoms, respectively, and G3

v and G4
v furnish 

information about the transfer of intramolecular charges between atoms separated 
by distances of 3 and 4, respectively. The 3ch index made a marked contribution 
to the positivity of the equation, reflecting the role of the cyclopropyl substituent 
on nitrogen N-1 to anti-MAV activity. Sixty-one out of 77 quinolones with 
cyclopropyl substitutions were active in vitro, and all of them showed positive DF 
values. 

A good example of the discriminating capacity of the model was the result 
obtained with two quinolones that had the same molecular weight and large 
structural similarities but very different anti-MAV complex activities. The DF 
function value was 0.9765 for PD139586, which is active in vitro, and  
DF = -1.2546 for PD138362, which is inactive (see Fig. (8)). 
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Figure 8: Structures of quinolones PD139586 and PD138362. 

Later on LDA was applied to 24 commercial quinolones that had not been used to 
define the model and whose MICs were subsequently determined in vitro. From 
them, seven quinolones were classified as active, nine as inactive and eight as 
uncertain, what, as can be seen in Table 7, fits very well with the MIC 
experimental results. It is to emphasize the correct prediction of seven active 
quinolones which had low in vitro MICs, and specially the correct prediction of 
three of them (moxifloxacin, sparfloxacin and gatifloxacin), which exhibited 
MICs below 1 g/mL (see Table 7). 

Table 7: Comparison of predictions of activity by molecular topology and LDA analysis versus 
experimental MICs 

LDA Analysis Results 

Quinolone M value Class MICexp Quinolone M value Class MICexp 

Moxifloxacin 3.9 Active  0.2 Pefloxacin 1.13 N.C.  10 

Sparfloxacin 5.06 Active 0.4 Norfloxacin -0.95 N.C.  11.4 

Gatifloxacin 4.54  Active  0.9 Enoxacin -1.78 Inactive  13.7 

Temafloxacin -0.21 N.C.  1 Acrosoxacin -0.68 N.C.  23.5 

Levofloxacin 0.77 N.C.  2.1 Rufloxacin 0.51 N.C.  31 

Ofloxacin 0.77 N.C.  2.5 Irloxacin -3.63 Inactive  47.2 

Trovafloxacin 1.69 Active  2.7 Pipemidic acid -1.97 Inactive >250 

Ciprofloxacin 7.2 Active 2.8 Flumequine -1.96  Inactive >250 

Lomefloxacin -1.28 Inactive 4.5 Piromidic acid -4.43  Inactive  >250 

Clinafloxacin 2.16 Active  5 Nalidixic acid -3.65 Inactive  >250 

Grepafloxacin 3.85 Active  5.4 Cinoxacin -2.24 Inactive  >250 

Fleroxacin -0.18 N.C.  8.1 Oxolinic acid -3.25 Inactive  >250 
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Pharmacological-Activity Distribution Diagrams (PDDs) 

A very practical tool for better visualizing the discrimination between the active 
and inactive compounds is the pharmacological distribution diagram (PDDs) [52]. 
These diagrams are histogram-like plots in which the compounds are grouped into 
intervals of the predicted value of the property under analysis (P). The diagrams 
are arranged so that the number of compounds in each interval of P is determined 
for each group. The Expectancy (E) of finding a molecule with a desired value of 
P is obtained so that for each arbitrary interval of whatever function, it is defined 
an expectancy of activity as: Ea = a / (i + 1), where a is the quotient between the 
number of active compounds in this interval and the overall number of active 
compounds; likewise, i represents the ratio of inactive compounds. The 
expectancy of inactivity is then obtained as: Ei = i / (a + 1). For a given equation, 
it is straightforward to see the zones in which the overlapping between Ea and Ei 
is minimal, and thereby deciding if the equation studied can be useful or not for 
the selection and molecular design. This also permits to determine the intervals of 
the property where the probability of finding new active compounds is maximal 
and those regions in which the probability of inactivity is minimal. 

Example: Topological virtual screening to find out new active compounds in 
ulcerative colitis by inhibiting NF-B [53]. 

In this case study, MT was used to find out new compounds active in ulcerative 
colitis by inhibiting nuclear factor kappa beta (NF-B), one of the standard 
mechanisms of action related to the disease. Different topological indices were 
used as structural descriptors, and their relation to biological activity was 
determined by using LDA. 

A topological model consisting of two discriminant functions was built up. The first 
function was mechanistic, i.e. focused on the discrimination between NF-B active 
and inactive compounds, and the second one was not mechanistic, i.e. just 
distinguishing between compounds active and inactive on ulcerative colitis in general. 

The model was then applied sequentially to a large database of compounds with 
unknown activity. 28 of such compounds were predicted to be active and selected 
for in vitro and in vivo testing. 
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The first equation, corresponding to DF1, distinguished compounds that were 
predicted to have NF-B inhibitory activity. The five-variable equation was: 

DF1 = 0.633 G1 + 24.29 0C -3.62 2D + 2.09 4Dp + 0.288 V3 – 30.94 

N=95 F= 9.5 λ=0.354. (11) 

where DF1 is the discriminant function, G1 is the first order TCI, C and D 
represent quotients and differences between connectivity indices and V3 the 
number of vertices with valence three. 

According to Eq. 11, a compound is classified as active if DF1>0, otherwise it is 
considered inactive. By applying this criterion to the DF1 training set (95 
compounds), 40 out of 51 experimentally active compounds were correctly 
classified as such (78% accuracy), whereas 40 out of 44 experimentally inactive 
compounds were also well classified (91% accuracy). 

 

Figrue 9: Pharmacological distribution diagram for NF-κB inhibitors obtained using the 
discriminant function DF1. (The black color represents the compounds with inhibitor activity and 
the white color, the compounds without it). 

To establish the adequate range of activity, the PDD obtained with DF1 was built 
up. Observing Fig. (9), one can see that all compounds show DF1 values within 
the range 4.5>DF1>-3.8. Moreover, there is little overlapping between 
compounds with probability of activity above 40% and below 60%. These 
percentages match the DF1 values in Eq. 11, in the range 0.4>DF1>-0.4. 
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Therefore, a compound will be selected as NF-ĸB inhibitor if it stands in the range 
4.5>DF1> 0.4 and as inactive if it is in the range -0.4>DF1>-3.8. Outside these 
intervals, the classification is uncertain and the compound is considered as “not-
classified” (outlier, NC). 

As pointed before, the second equation, DF2, was employed to discriminate 
compounds showing a general profile of activity in ulcerative colitis. The selected 
four-variable equation was: 

DF2 = 3.15 SEige -10.28 GATS6p - 261.66 X3A - 0.06 D/Dr05 + 52.73 

N=31 F=13.3 λ= 0.328. (12) 

where SEige is defined as eigenvalue sum from the electronegativity weighted 
distance matrix; GATS6p as Geary autocorrelation - lag 6/weighted by atomic 
polarizabilities; X3A as the average connectivity index chi-3 and finally, D/Dr05 
as the distance/detour ring index of order 5. 

The PDD for this equation (Fig. (10)), shows that all the compounds present DF2 
values in the range 8>DF2>-10. Hence, a compound is selected as active if it lies 
in the range: 8>DF2> 0.89 and as inactive if the range is -0.49>DF2>-10. Outside 
these ranges any compound is taken as uncertain (NC). 

 

Figure 10: Pharmacological distribution diagram for ulcerative colitis active drugs obtained using 
the discriminant function DF2. (Black color represents the compounds with anti-ulcerative colitis 
activity and the white color, the compounds without it). 
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Based on the models described above, a virtual screening study was carried out on 
a database of heterogeneous drug molecules. A library (MicroSource Pure Natural 
Products Collection) consisting of 800 natural products and the Merck index 
database (about 12,000 compounds) were screened for that purpose. The 
composition of the library is at the MicroSource Discovery Systems website 
(http://www.msdiscovery.com). 

Based upon these models, it was expected that some 28 compounds might be 

active against UC by NF-ĸB inhibition. Almost all of them were commercially 

available and hence were selected for future in vitro and in vivo tests which would 

strengthen the model’s predictive capability. Table 8 illustrates the DF1 and DF2 

values, as well as the classification for each compound from the PDDs. Five 

compounds (cromolyn sodium, rotenone, 10-hydroxycamptothecin, methylorselli-

nate and 2-methoxyresorcinol) were classified as active by DF2 but not by DF1; 

two compounds (rosmarinic acid and Ro 41-0960) were classified as active by 

DF1 but inactive by DF2 and two more (calcein and (+)-dibenzyl L-tartrate) were 

classified as active by DF1 but as outliers by DF2. The compounds selected were 

those passing at least one of the filters, either the NF-ĸB inhibition or the general 

profile, because both represent a good choice. 

As shown in Table 8, most of the compounds selected had been described 

previously as anti-inflammatory in the literature (10-hydroxycamptothecin, 

purpurin, physcion, methyl orsenillate, aconitic acid, genkwanin, uvaol, cromolyn 

sodium, hesperidin and rosmarinic acid) and one of them, namely ursolic acid, is 

described to show also anti-ulcerative properties. 

Those not previously reported as active –or at least not found as such- were 

selected for testing. Our recent results, (work in press) confirm that several of the 

selected compounds were significantly active at in vivo and/or in vitro tests 

related UC. 

The results described here for ulcerative colitis demonstrate, once more, that MT 

is an excellent way to search for new drugs. 
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Table 8: Values of DF1, DF2, probability of activity and classification of the potential anti UC 
compounds, selected from the Merck Index database and the MicroSource Pure Natural Products 
Collection. Compounds’ therapeutic profile from the literature are also included 

Compound DF1
Prob 

(activ.) %
Class. DF2 

Prob 

(activ.)

% 

Class. 
Activity/Therapeutics 

category 

Aconitic acid 2.90 95 A 2.97 95 A Anti-inflammatory 

Ajmalinediacetate 1.16 77 A 4.86 99 A - 

Alizarin -3-methylininodiacetic acid 1.86 87 A 4.33 99 A Red staining  

Apigenin 1.64 84 A 2.6 94 A Anti-inflammatory 

Calcein 2.21 90 A 13.9 100 NC Fluorescent dye  

Carapin 2.51 93 A 3.04 96 A - 

Cromolyn sodium 0.33 58 NC 1.19 78 A Anti-inflammatory 

(+)-Dibenzyl L-tartrate 0.62 65 A -12.7 0 NC - 

Emodic acid 2.69 94 A 4.44 99 A - 

Evernic acid 1.42 81 A 7.09 99 A - 

Fissinolide 2.38 92 A 4.39 99 A - 

Folicacid 1.65 84 A 3.9 98 A - 

Genkwanin 0.57 64 A 2.59 93 A Anti-inflammatory  

Haematommic acid 2.22 90 A 5.62 100 A Antioxidant 

Hesperidin 2.20 90 A 6.08 100 A Anti-inflammatory 

10-Hydroxycamptothecin 0.37 59 NC 2.57 93 A Anti-inflammatory 

Lonchocarpic acid 1.06 75 A 2.49 93 A Antimicrobial 

3-Methylorsellinic acid 0.99 73 A 6.65 100 A - 

Methylorsellinate 0.14 54 NC 6.38 100 A Anti-inflammatory 

2-Methoxyresorcinol 0.31 58 NC 1.94 88 A - 

Physcion 1.17 76 A 2.91 95 A - 

Purpurin 1.79 86 A 1.59 84 A Anti-inflammatory 

Pyrocatechuic acid 2.21 90 A 3.24 97 A - 

Ro 41-0960 1.75 85 A -0.46 40 I - 

Rosmarinic acid 1.99 88 A -8.03 0 I Anti-inflammatory 

Rotenone 0.26 57 NC 1.53 83 A - 

Ursolic acid 2.66 94 A 3.33 97 A Anti-ulcer 

Uvaol 2.98 95 A 3 96 A Anti-inflammatory 

Molecular Selection and Drug Design 

Our strategy for searching new drugs consists of different approaches: 
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Molecular Selection by Virtual Screening on Databases 

A mathematical model, constituted by one or more equations with their 
corresponding thresholds and intervals of effectiveness is used to screen a 
structural database, and the selected structures are searched in the literature to 
check their predicted activity. The compounds described to be active, stand for the 
model validation as a proof of concept. The compounds not reported as active, are 
proposed for lab assays. Compounds selected as active but not showing activity in 
vitro, i.e. false positives, as well as those actually active, i.e. true positives, are 
used to refine the model. For more details see Refs. [54, 55]. 

Virtual Combinatorial Syntheses and Computational Screening 

In this case, the model is used to track a virtual library consisting of molecular 
structures resulting from combinatorial chemistry, so that the structures selected 
are synthesized and tested. For specific details consult references [56, 57]. 

Molecular Design of New Structures 

In 1985 and 1988 our group presented two doctoral thesis dealing on the use of 
topological descriptors in drug design/discovery [58]. The results were published 
in a follow-up paper [59]. The principal idea therein was the possibility to use 
topological indices in a reverse way as compared to the conventional: i.e. 
obtaining “tailor-made” molecular structures from topological indices. This goal 
was supported by the fact that topological indices are not simply structure-related 
descriptors, but they are rather a pure algebraic description of the structure itself. 
The method enables for molecular construction from the scratch or, alternatively, 
the use of a scaffold (referred to as base structure) to which the carbon-carbon 
substructures and functional groups, can be attached. 

The substructural fragments were acyclic and their bond orders were between one 
and three. The fragments and functional groups were computationally assembled 
to the base structure on the previously defined attachment sites. These could be 
attached by each one of their available atoms, in such a way that the formation of 
multiple bonds and cyclic structures was possible. For each new compound 
designed, the models’ outcome decided whether it was potentially active or not. 
The models were arranged according to a previous QSAR study based on Randić-
Kier-Hall type indices. For more detail see Ref. [60]. 
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Table 9 displays the results of the search of new biological/pharmacological activities 
for different compounds, most of them can be considered as new hits or leads. 

Table 9: New biological activities discovered through virtual screening. For details see the 
references in the last column 

Found Activity Selected Drugs Refs. 

Cytostatic 6-azuridine, quinine [61] 

Antibacterial 
1-Chloro-2,4-dinitrobenzene, 3-Chloro-5-nitroindazole, 1-Phenyl-3-methyl-2-

pyrazolin-5-one, neohesperidin, amaranth, mordant brown 24, hesperidin, morine, 
niflumic acid, silymarine, fraxine 

[62] 

Antifungal 
Neotetrazolium chloride, benzotropine mesilate, 3-(2-Bromethyl)-indole, 1-

Chloro-2,4-dinitrobenzene 
[63] 

Hypoglycaemic 
3-Hydroxybutyl acetate 

4-(3-Methyl-5-oxo-2-pyrazolin-1-yl) benzoicacid 
1-(Mesitylene-2-sulfonyl) 1H-1,2,3-triazole 

[64] 

Antivirals 
(anti-Herpes) 

3,5-dimethyl-4-nitroisoxazole, nitrofurantoin, 1-
(pyrrolidinocarbonylmethyl)piperazine, nebularine, cordycepin, adipicacid, 

thymidine,  thymidine, inosine, 2,4-diamino-6-(hydroxymethyl)pteridine, 7-
(carboxymethoxy)-4-methylcoumarin, 5-methylcytidine 

[56] 

Antineoplastic Carminic acid, tetracycline, piromidic acid, doxycycline [65] 

Antimalarial 
Monensin, nigericin, vinblastine, vincristine, vindesine, 

ethylhydrocupreine, quinacrine, salinomycin 
[66, 67] 

Antitoxoplasma 

Cefamandolenafate 
Prazosin 

Andrographolide 
Dibenzothiophenesulfone 

2-Acetamido-4-methyl-5 thiazolesulfonylchloride 

[68] 

Antihystaminic 

Benzydamine 
4-(1-Butylpentyl)pyridine 

N-(3-Bromopropyl)phtalimide 
N-(3-Chloropropyl)phtalimide 

N-(3-Chloropropyl)piperidine hydrochloride 
5-Bromoindole 

[69] 

Bronchodilator 

Griseofulvin, anthrarobin, 

9,10-Dihydro-2-methyl-4H-benzo 5,6cyclohept1,2-d oxazol-4-ol, 2-
Aminothiazole, Maltol, esculetin, 

fisetin, hesperetin, 4-methyl-umbellipheryl-4-guanidine benzoate 

[70] 

Analgesics 
2-(1-propenyl)phenol, 2',4' dimethylacetophenone, p- chlorobenzohydrazide, 1-(p- 

chlorophenyl) propanol, 4-benzoyl-3-methyl-1-phenyl-2-pyrazolin-5-one 
[60,71] 

NSAIDs 
1,3-bis(benzyloxycarbonyl)-2-methyl-2-thiopseudourea, 4,6-dichloro-2-

methylthio-5-phenylpyrimidine, 2-chloro-2',6'-acetoxylidide, trans-1,3-diphenyl-2-
propen-1-ol 

[55] 



Molecular Topology & Drug Design Advances in Mathematical Chemistry and Applications, Vol. 1, (Revised Edition)   189 

Particularly relevant is the discovery of a novel anticancer lead compound, 
namely MT477 (see Fig. (11)), which showed very potent activity in vitro and  
in vivo against human cell carcinoma [72]. Moreover, MT477 is a novel 
thiopyrano [2,3-c] quinoline with a high activity against protein kinase C (PKC) 
isoforms. MT477 interfered with PKC activity as well as phosphorylation of Ras 
and ERK1/2 in H226 human lung carcinoma cells. It also induced poly-caspase-
dependent apoptosis. 

Another antineoplastic compound obtained by molecular topology was MT103, 
(Fig. 11), which is an isoborneol derivative, with a promising profile predicted to 
slow tumor growth through pro-apoptotic signaling and protein kinase C 
inhibition. It was found that MT103 inhibited the growth of a wide variety of 
cancer cell types as verified by the NCI-60 cancer cell line panel. MTT cell 
viability assay showed that MT103 inhibited 50% of the growth of HOP-92, 
ACHN, NCI-H226, MCF-7, and A549 cancer cell lines at much lower 
concentrations than that required for HUVECs and human fibroblasts [73]. 

In the field of malaria our research group have found two ionophores (monensin 
and nigericin) that inhibited completely the parasite development at the liver 
stage. The liver stage of Plasmodium is a very interesting drug target because it 
precedes the emergence of blood stages that cause the symptoms and 
complications of malaria. Drugs that inhibit parasite maturation within 
hepatocytes could be used for short-term prophylaxis in areas of endemicity 
(refugees, travellers, etc.). For more details see the ref. [67]. 

About the Alzheimer’s disease, MT has also demonstrated to be very efficient in the 
search of novel drug treatments. In a study carried out by Medisyn Technologies in 
collaboration with Mount Sinai School of Medicine, eight compounds were patented 
as very efficient anti-beta amyloid and as anti-oligomeric [74]. The chemical 
structures of some of these compounds are shown in Fig. 11. 

CONCLUSION 

The results outlined in this review, clearly demonstrate that the QSAR approach 
based on molecular topology is a powerful tool for the prediction of properties 
and the design and selection of new drugs. Moreover, MT is based strictly on a 
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mathematical layout of molecular structure, thereby bypassing any geometrical or 
physical profile, what is also an important asset of the approach and makes of it a 
new paradigm. Another important advantage of MT is that, contrary to most drug 
design methods, it does not need a previous knowledge of the mechanism of 
action of the target drugs, which, considering the extremely huge number of 
possible structures potentially active as drugs, is a very important asset. 

 

Figure 11: Chemical structure of anticancer, antimalarial and anti-Alzheimer drugs designed by MT. 

The reason why MT works so well is unknown up to date; it remains as an open 
question and it is probably a good challenge to take over in the future. 
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ABBREVIATIONS 

CoMFA = Comparative molecular field analysis 

CoMSIA = Comparative molecular similarity indices analysis 

CV = Cross-validation 

E = Expectancy 

HIV = Human immunodeficiency virus 

JHA = Juvenile hormone active 

LOO = Leave-one-out 

LSO = Leave-some-out 

LDA = Linear discriminant analysis 

MBC = Minimum blocking concentration 

MIC = Minimum inhibitory concentration 

MT = Molecular topology 

MAO = Monoamine oxidase 

MLRA = Multilinear regression analysis 

MAV = Mycobacterium avium 

NC = not-classified 

NF-ĸB = Nuclear factor kappa beta 

PIG = Percentage inhibition degree 

PDD = Pharmacological distribution diagram 

PPB = Plasma protein binding 
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PKC = Protein kinase C 

QSAR = Quantitative structure-activity relationships 

QSPR = Quantitative structure–property relationships 

QC = Quantum chemical 

SomFA = Self Organizing Molecular Field Analysis 

SEE = Standard error of estimates 

TCI = Topological Charge Indices 
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CHAPTER 9 

Conceptual Density Functional Theory of Chemical 
Reactivity 

Pratim K. Chattaraj1,* and Debesh R. Roy1,2 

1Department of Chemistry and Center for Theoretical Studies, Indian Institute of Technology, 
Kharagpur 721302, India and 2Department of Applied Physics, S. V. National Institute of 
Technology, Surat 395007, India 

Abstract: A rudimentary treatment of density functional theory (DFT) is presented in 
this article. Various global and local reactivity descriptors are defined within the broad 
framework of conceptual DFT. A theory of chemical reactivity is developed in terms of 
these descriptors and the associated electronic structure principles. 

Keywords: Density Functional Theory (DFT), chemical reactivity, 
electronegativity, chemical potential, chemical hardness, chemical softness, 
polarizability, electrophilicity index, Fukui function, local softness, local hardness, 
philicity, electronegativity equalization principle, HSAB principle, maximum 
hardness principle, minimum polarizability principle, minimum electrophilicity 
principle, minimum magnetizability principle, electrophilicity equalization principle, 
Quantum Fluid Dynamics (QFD), Time Dependent Density Functional Theory 
(TDDFT), Quantum Fluid Density Functional Theory (QFDFT). 

INTRODUCTION 

In classical mechanics all the properties are functions of 3N coordinates (qi, i=1–
3N) and 3N canonically conjugate momenta (pi, i=1–3N), for an N – particle 
system. A knowledge of the {qi} and {pi} at t=0 will provide the same for later 
time by solving a classical equation of motion, as an initial value problem and 
hence the future behavior of the system can be analyzed. In the corresponding 
quantum version the properties are obtained as the expectation values of the 
associated linear hermitian operators over the wave functions, 1 2 3( , ,..., )Nq q q .  
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These wave functions are well-behaved functions of {qi} and are obtained through 
the solution of the pertinent Schrödinger equation as a boundary value problem. 

Problems associated with the solution of the Schrödinger equation and the 
interpretation of the wave functions of the many-particle systems prompted 
researchers to explore classical interpretation of quantum mechanics since we live 
and perceive in a 3-D classical world. The most famous approach in this direction 
is the density functional theory (DFT) [1-4]. 

For an N-electron system the density ( )r   is defined as 

*
1, 2 3 1, 2 3 4 3( ) ( ..., ) ( ..., ) ....N N Nr N q q q q q q dq dq   


 (1) 

This probability density function is connected to the ordinary electron density 
function measured by crystallographers. Being a 3-D quantity even for an N-
particle system, it allows us to visualize it as well as various models developed 
using it. 

A functional is a correspondence which assigns a definite (real) number to each 
function (or curve) belonging to some class (i.e. a function of a function). Let 

( , ( ), ( ))F x y x y x  be a continuous function. Then, the expression 

[ ] ( , ( ), ( ))
b

a

J y F x y x y x dx   (2) 

where y(x) ranges over the set of all continuously differentiable functions defined, 
on the interval [a,b], defines a functional J[y]. 

Let us consider J[y] as a functional with the form  
b

a

dxyyxF ),,(  and is defined on 

the set of functions y(x) whose first derivatives are continuous in [a, b] and satisfy 
the boundary conditions y(a)=A, y(b)=B. Then J[y] will have an extremum for a 
given function y(x), with a necessary condition that y(x) satisfies Euler’s equation: 

0
][

 yy F
dx

d
F

y

yJ




 (3) 
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In DFT ( )r   is considered as the basic variable. For an N- electron system, 
external potential ( )v r


 completely fixes the Hamiltonian Ĥ  and hence N and 

( )v r


 determine all properties of the ground state. 

Hohenberg and Kohn proved two theorems which show that ( )r   contains all 
information [1]. 

(1) The external potential ( )v r


 is determined, within a trivial additive constant, 
by the electron density ( )r   and also 

  Nrdr


)(  (4a) 

Therefore, ( )r   provides Ĥ  and hence  (ground state) which in turn gives all 
electronic properties. 

Proof. Reductio ad absurdum 

Let there are two external potentials ( )v r


 and ( )v r


 differing by more than a 
constant, each giving the same ( )r   for its ground state. Then we would have 
two Hamiltonians Ĥ  and  whose ground state densities were the same although 
the normalized wavefunctions   and   are different. 

Take   to be a trial function for the Ĥ  problem, 

Then 

 |ˆ|0 HE 
 

 |ˆˆ||ˆ| HHH
   rdrvrvrE


)]()()[(0   (4b) 

where 0E  and 0E   are ground state energies for the H  and H   problems 
respectively. 

Now, take   as a trial function for the Ĥ   problem, 

Therefore, 
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 |ˆ|0 HE 
 

 |ˆˆ||ˆ| HHH
 

 

  rdrvrvrE


)]()()[(0  … (4c) 

Adding Eqs. (3) and (4) we have, 0 0 0 0E E E E    

a contradiction, hence there cannot be two different v  that give the same   for 
the ground state. 

   gives N and ( )v r


 and hence   and all ground state properties. 

Energy functional [ ] [ ] [ ] [ ]v ne eeE T V V       

( ) ( ) [ ]HKr v r dr F  
  

 

where FHK[ρ] is a universal functional of   [as it does not depend on v ] 

[ ] [ ] [ ]HK eeF T V     
1 ( ) ( )

[ ] [ ]
2 | | XC

r r
T drdr E

r r

  


  
 

   
   (4d) 

(2) For a trial density ( )r   [ ( ) 0r r  
   and ( )r dr N 

  ] 0 [ ]vE E    from 
the usual variational principle. 

where 0E  is the ground state energy for the respective H and [ ]vE   is the energy 
functional for the trial density  . Now,   determines its own v , H ,   (can be 
taken as trial function for the problem with external potential v ). 

 ˆ| | ( ) ( ) [ ] [ ] [ ]HK v vH r v r dr F E E        
        (5) 

where [ ]HKF   is a universal functional (known as the Hohenberg-Kohn 
functional) of   (as it does not depend on v ) and is given by 

[ ] [ ] [ ]HK eeF T V       
1 ( ) ( )

[ ] [ ]
2 | | XC

r r
T drdr E

r r


  

 
      

    (6) 

Here, [ ]T  , [ ]eeV   and [ ]XCE   are kinetic energy functional, electron-electron 
interaction and exchange-correlation energy functional respectively. 
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Now, the electron density   must satisfy the stationary principle 

{ [ ] [ ( ) ]} 0vE r dr N     
 

 (7) 

to provide the Euler-Lagrange Equation (ELE): 

[ ] [ ]
( )

( ) ( )
v HKE F

v r
r r

   
 

  


   (8) 

where  is the chemical potential. 

The exact form for FHK[ρ] is not known. In the Kohn-Sham picture it is written as 
[2] 

[ ] [ ] [ ] [ ]HK s XCF T J E       (9a) 

where Ts[ρ] and J[ρ] are the kinetic energy functional of the reference system and 
classical Coulombic interaction energy respectively, given by 

21
[ ] | |

2

N

s i i
i

T        (9b) 

1 ( ) ( )
[ ]

2 | |

r r
J drdr

r r

 



 

   
   (9c) 

The associated ELE is 

[ ]s
eff

T
v

 


   (10) 

where effv  is the KS effective potential which is given by 

[ ][ ]
( ) ( ) XC

eff

EJ
v r v r

  
 

  
 

 

( )
( ) ( )

| | xc

r
v r dr v r

r r

 
  


  

 
 (11) 

There are various approximations for the exchange correlation potential ( )xcv r


, 
e.g., local density approximation (e.g., VWN [5] etc.) in which it vxc depends only 
on the electron density  , generalized gradient approximation (e.g., PW91 [6], 
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PBE [7] etc.) where vxc depends on both   and its gradient  . Various hybrid 
exchange correlation potentials are also developed, e.g., B3LYP [8], PBE0 [9] etc. 
which are essentially a mixing of exchange and local/ non-local correlation 
functionals. 

This ELE takes the following form (Kohn-Sham Equation): 

21
[ ]

2 eff i i iv        (12) 

where the density and the energy are given by 

2( ) | ( , ) |
N

i
i s

r r s   
 (13) 

1 ( ) ( )
[ ] ( ) ( )

2 | |

N

i XC xc
i

r r
E drdr E v r r dr

r r


   

   
      
 

   
 

(14) 

Now let us consider the change in energy from one ground state to another. Then 
we have 

[ , ]E E N v   

( )
( )v N

E E
dE dN dv r dr

N v r



         


 


 
 

( ) ( )dN r dv r dr   
  

 (15) 

[ ]E E   ( ) ( )
( ) ( )

v

E E
dE d r dr dv r dr

r v r 

 
 
   

    
   
 

   
    (16) 

 
( )

v

E

r

 

 

  
 

 Constant (17) 

( )
( ) ( )

N

E E
r

v r v r

  
 
   

    
   


   (18) 



202   Advances in Mathematical Chemistry and Applications, Vol. 1, (Revised Edition) Chattaraj and Roy 

Similarly,  

( )
( )v N

d dN dv r dr
N v r

 

         


 


 
2 ( ) ( )dN f r dv r dr  

  
 (19) 

( )
( )

( ) vN

r
f r

v r N

           



 

 Maxwell’s relation (20) 

where η is the hardness and ( )f r


 is the Fukui function [2]. 

The equation (20) is similar to the Maxwell’s relation and can be interpreted 
either as the change of the electron density ( )r

  at each point r


 with changed N 
(total number of electrons) or as the sensitivity of chemical potential of a system 
to an external perturbation at a particular point r


. 

Any flow of a substance takes place from the phase of higher μ to the phase of 
lower μ. 

Here electron flows from B to A if 0 0
B A  . Therefore, the associated energies 

are 

0 0 0 0 2( ) ( ) ...A A A A A A A AE E N N N N        (21) 

0 0 0 0 2( ) ( ) ...B B B B B B B BE E N N N N        (22) 

0 0 0 0 2( ) ( )A B A B A B A BE E E E N N             (23) 

where 0 0
B B A AN N N N N      

Upto the 1st order, if 0 0
B A  , a positive ∆N ( )eB A



  will stabilize the 
system. 

Minimization of (EA+EB) with respect to ∆N provides A = B, where 

0 2 ....A
A A A

A v

E
N

N
  

 
      

 (24) 
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0 2 ....B
B B B

B v

E
N

N
  

 
      

 (25) 

and we have the expressions for ∆N and ∆E as follows: 

0 0

2( )
B A

A B

N
 
 


 


 (26) 

0 0 2( )

4( )
B A

A B

E
 
 


  


 (27) 

Conceptual density functional theory (DFT) [2-4] has been quite successful in 
providing theoretical bases for popular qualitative chemical concepts like 
electronegativity [10], hardness [11, 12] and electrophilicity [13, 14]. In terms of 
several global and local chemical reactivity and selectivity descriptors a complete 
theory of chemical reactivity has been envisaged. These descriptors and the 
associated electronic principles are presented below: 

Global Reactivity Descriptors 

These descriptors describe the reactivity of the molecule as a whole. 

Electronegativity (χ) and Chemical Potential (μ) 

In order to understand the nature of a chemical bond, Pauling introduced the concept 
of electronegativity [15] as, ‘the power of an atom in a molecule to attract electrons 
to itself’. Based on thermodynamical data the calculated electronegativity values of 
atoms by Pauling follow the general intuition in chemistry. 

Later on, the concept of ‘absolute’ electronegativity which is independent of 
molecular environment has come into picture as proposed by Mulliken [16]. This 
‘absolute’ electronegativity of any atom or molecule can be expressed in terms of 
two experimentally measurable quantities, ionization potential (I) and electron 
affinity (A) as follows: 

2

I A 
  (28) 
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According to density functional theory (DFT) [2-4], the Lagrange multiplier 
associated with the normalization constraint is identified as the chemical potential 
(μ), viz., 

( )

[ ]
( )

( )
v r

E F
v r

r

  
 

 
   
  


  (29) 

where E and ( )v r


 are the total energy and external potential respectively. 
Therefore 

( ) ( )( ) ( )v r v rv r v r

E E E
dr

N N

   
 

                        
  


 (30) 

Using the finite difference approximation of 
( )v r

E

N

 
   

, μ may be expressed in 

terms of I and A as: 

2

I A  
     (31) 

Using Koopmans’ theorem μ and χ can be expressed as:  

 1

2 HOMO LUMO       (32) 

Chemical Hardness (η) and Softness (S) 

It is found that, in many cases electronegativity alone cannot account for the 
stability of a molecule. To account for the stability of a molecule and the direction 
of acid-base reactions Pearson [17] introduced two parameters, ‘hardness’ and 
‘softness’ in chemistry. 

For an N-electron system, the second derivative of energy with respect to N, 
keeping external potential ( )v r


 fixed, is considered to be a measure of the 

chemical hardness [18]: 

2

2
( )( )

1 1

2 2 v rv r

E

N N


           

 (33) 
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which would be always positive due to the convex nature of E vs. N curve. 

In the Koopmans’ framework, η can be expressed as: 

 1

2 LUMO HOMO     (34) 

The inverse of hardness [19] can be defined as softness: 

( )

1

2
v r

N
S

 
 

     
 (35) 

The softness is closely associated with the polarizability of a system. A larger 
(more polarizable) chemical system is softer and vice versa. 

As χ and η measure the response of the system when N varies at constant ( )v r


, 
the response function [20] does that job when ( )v r


 changes for a fixed N. For 

weak electric and magnetic fields it is provided by polarizability and 
magnetizability respectively. 

Polarizability () 

The linear response of the electron density in the presence of an infinitesimal 
electric field F is defined as electric dipole polarizability and it represents a 
second order variation in energy 

 
ba FF

E
ba 


2

,  zyxba ,,,   (36) 

A soft molecule is more polarizable compared to the corresponding harder 
counterpart. Similarly the magnetizability can be defined. 

Electrophilicity Index (ω) 

Maynard et al. [21] have shown that the reaction rate of fluorescence decay 
experiment on human immunodeficiency virus type-1 (HIV-1) nucleocapsid 
protein p7 (N Cp7) when interacting with some electrophilic agents, e.g., 
azodicarbonamide (ADA), N-ethylmaleimide (NEM) etc. gives an almost linear 
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response with the square of electronegativity (χ) to the chemical hardness (η) 
ratio. The quantity χ2/η is related to the capacity of an electrophile to promote a 
soft (covalent) reaction. 

Prompted by the work of Maynard and co-workers [21], Parr et al. defined 
electrophilicity index (ω) [13] as: 

2 2

2 2

 
 

   (37) 

which measures the stabilization in energy when the system acquires an additional 

electronic charge ∆N from the environment. 

This descriptor has been shown to provide valuable insights into various quantitative–

structure-activity/ property/ toxicity – relationship (QSAR/QSPR/QSTR) models [22]. 

Local Reactivity Descriptors 

They take care of the site selectivity of an atom in a molecule. 

Electron Density ( r ( )


) 

The most important local descriptor is the electron density ( )r   itself, in the DFT 

framework. Electron density ( )r   is given as [2, 3]: 

( )
( )

( )
N

E
r

v r

 


 
  
 


  (38) 

Fukui Function ( ( )f r


) 

The Fukui function (FF) [23] is one of the widely used local reactivity descriptors 
in modeling chemical reactivity and site selectivity. Fukui function (FF) is defined 
as [23]: 

   ( )v r N

f r
N v r

 

           


 , (39) 
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such that ( ) 1f r dr 
 

. 

In equation (39), the discontinuity on the slope of ( )r   vs. N curve at integral N, 

provides three types of Fukui functions which account for nucleophilic, 

electrophilic and radical attacks respectively, at a particular reaction site. These 

three functions can be expressed in a different form by the use of finite difference 

and frozen core approximations as follows [23]: 

       1
( )

N N LUMO
v r

f r r r r
N

   





       

     [for nucleophilic attack]  (40a) 

       1
( )

N N HOMO
v r

f r r r r
N

   





       

     [for electrophilic attack]  (40b) 

         
0

0
1 1

( )

1 1

2 2N N HOMO LUMO
v r

f r r r r r
N

     

        

      [for radical attack] (40c) 

Equations (40a) to (40c) provide a correspondence between the local parameters 

and the frontier orbital theory of chemical reactivity [24]. A large value of f  , 

f  , or 0f  at any site indicates the probability of respective attacks at that site 

which would correspond to a large change in chemical potential. 

The condensed Fukui functions are proposed by Yang et al. [25], considering a 

finite difference method and the Mulliken population analysis (MPA) scheme 

as: 

)()1( NqNqf kkk 

 
[for nucleophilic attack] (41a) 

)1()(  NqNqf kkk  
[for electrophilic attack] (41b) 

  2)1()1(  NqNqf kk

o

k  
[for radical attack] (41c) 

where kq is the electronic population of atom k in a molecule. 
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Local Softness ( ( )s r


) 

In “frontier-controlled” reactions, where frontier orbital densities play an 
important role, the tendency of a particular site to be involved is given by a local 
softness parameter. Local softness ( )s r


 is defined as [19]: 

 
( )v r

s r



 
    


 (42) 

which is related to the global softness S as: 

  rdrsS


  (43) 

Local softness is related to FF as follows: 

     
( ) ( )( ) v r v rv r

r N
s r f r S

N

 
 

                   


 

 (44) 

Both global and local softnesses may also be expressed as appropriate number 
fluctuations [19]. 

Local Hardness ( ( )r 
) 

The local hardness ( )r 
 is defined as [26]: 

 
( )

1

2
v r

r


 

  
  


 (45) 

which is related to the global hardness as: 

( ) ( )r f r dr  
  

 (46) 

which is not a simple integral over ( )r 
 as in the case of the local softness [eq. 43]. 

The definition (45) of local hardness is ambiguous [27] because of the inter-
dependence between ( )r   and ( )v r


 according to DFT [1]. The situation may 



Conceptual Density Functional Theory Advances in Mathematical Chemistry and Applications, Vol. 1, (Revised Edition)   209 

improve in an appropriate ensemble like an isomorphic ensemble [28]. While 
local softness is an electronic reactivity index, the local hardness may be 
considered to be a nuclear reactivity index and hence together they will take care 
of variations in N and ( )v r


 which will encompass all possible situations [29]. 

Philicity ( ( )r 
) 

Chattaraj et al. [30] proposed the generalized concept of philicity which contains 
almost all information regarding the global as well as local reactivity and 
selectivity, specially the electrophilic/nucleophilic power of a given atomic site in 
a molecule. This quantity may be considered as the local variant of the global 
electrophilicity index, called philicity ( ( )r 

) and is defined as [30]: 

( )r dr  
 

 (47) 

Philicity is obtained through the resolution of the identity associated with the 
normalization of Fukui function [23,24], ( )f r


, as: 

( ) . ( )r f r   
 (48) 

where α = +, -, and 0 refer to nucleophilic, electrophilic and radical reactions 
respectively. Corresponding condensed-to-atom variants may be written for the 
kth atomic site in a molecule as 

.k kf
    (49) 

In eq. (48) any normalized-to-one quantity (e.g. the shape function, 
( ) ( ) /r r N 
 

) may be used. But FF is preferred owing to the explicit 
information of electron addition/removal in it. 

Electronic Structure Principles 

The global and local reactivity descriptors are better appreciated through various 
related electronic structure principles, such as Sanderson’s electronegativity 
equalization principle [31], hard and soft acids and bases (HSAB) principle 
[17,32], maximum hardness principle (MHP) [33,34], minimum polarizability 
principle [35], minimum magnetizability principle (MMP) [36], etc. 
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Electronegativity Equalization Principle (EEP) 

The difference in electronegativity plays a major role in chemical reactions. 
Electrons are transferred from a species of lower electronegativity to a species of 
higher electronegativity until both possess equal electronegativity values. 

Sanderson postulated that [31], during molecule formation the electronegativities of 
the constituent atoms become equal, yielding a molecular electronegativity (χM) 
which is roughly the geometric mean of the electronegativities of the isolated atoms, 

0 0 0 1 ( ...)( ...) a b c
M A B C        (50) 

where a, b, c are the numbers of atom of a given element (A, B, C, etc.). 

As an application of the electronegativity equalization principle (EEP), Parr and 
Pearson [18] derived Eqs. (26) and (27) to measure the amount of charge transfer 
∆N and the energy change ∆E associated with the formation of A:B complex from 
acid A and base:B. 

These expressions are very useful in understanding the acid-base reaction 
mechanism. It is important to note that the electronegativity difference drives the 
electron transfer whereas the hardness sum provides a resistance to it. Therefore 
both χ and η are to be considered in analyzing these processes. 

Hard-Soft-Acid-Base (HSAB) Principle 

Pearson introduced the hard-soft-acid-base (HSAB) principle [17, 32] which in 
general can describe a variety of acid-base reactions. This principle is stated as, 
‘hard acids prefer to coordinate with hard bases and soft acids prefer to coordinate 
with soft bases for both their thermodynamic and kinetic properties’. 

In order to quantify the concept of hardness and softness Pearson proposed [37] a 
relation that correlates the stability of a molecule with the hardness and softness, 
as well as the inherent strengths of acids and bases. The stability constant of a 
reaction is given by, 

log A B A BK S S     (51) 
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where A and B are the inherent strengths of acids and bases whereas SA and SB 
are the softness factors. It is expected that A, B would be related to χA, χB. 

Maximum Hardness Principle (MHP) 

Pearson’s HSAB principle has been analyzed and it has been argued [38] that the 
hard-hard reactions are governed by the charge-controlled interactions and the 
soft-soft interactions are of the covalent type. Various studies on the chemical 
reactivity suggest that soft molecules are more reactive compared to the 
corresponding harder counterparts. Hence, isomeric molecules with higher 
chemical hardness are found to be more abundant compared to the molecules with 
lower hardness values. This fact leads to the principle of maximum hardness. The 
maximum hardness principle (MHP) is stated [33, 34] as ‘there seems to be a rule 
of nature that molecules arrange themselves so as to be as hard as possible’. 

Minimum Polarizability Principle (MPP) 

As a consequence of the maximum hardness principle (MHP) [33, 34] and an 
inverse relationship [39] between hardness and polarizability, a minimum 
polarizability principle (MPP) is stated as [35], ‘the natural direction of evolution 
of any system is towards a state of minimum polarizability’. 

Various physicochemical properties like molecular vibrations, internal rotations, 
chemical reactions, aromaticity, atomic shell structure, excited states, dynamical 
problems etc. are analyzed with the use of both MHP and MPP [4, 14]. 

Minimum Electrophilicity Principle (M-El-P) 

The minimum electrophilicity principle [40] is stated as ‘Electrophilicity will be a 
minimum (maximum) when both chemical potential and hardness are maxima 
(minima)’. In order to analyze the possible connection between the extremal values 
of electrophilicity (ω) and stability it has been shown [40] that the extremum on the 
electrophilicity occurs during chemical reactions, molecular vibrations and internal 
rotations at the points for which the following condition is satisfied 






















2
  (52) 
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where λ can be a reaction coordinate (reaction), bond length (stretching), bond 
angle (bending) or dihedral angle (internal rotation). 

Since μ is negative and η is positive, the extremum of electrophilicity occurs 

when the slopes of the variations of μ and η are of opposite signs. Therefore the 

extrema in chemical potential and hardness will ensure extremum in ω. In general 

μ and η are maxima for the equilibrium geometry implying the minimum value 

for ω. In those cases the stability would be related to the minimum value of ω. 

Minimum Magnetizability Principle (MMP) 

Magnetizability of a system can be expressed in terms of its diamagnetic (dm) and 
paramagnetic (pm) components as follows: 

Total dm pm     (53) 

Very recently, a new electronic structure principle, viz. the minimum 

magnetizability principle (MMP) [36] has been proposed to extend the domain of 

applicability of the conceptual density functional theory (DFT) in explaining the 

magnetic interactions and magnetochemistry. This principle is stated as, “a stable 

configuration/conformation of a molecule or a favorable chemical process is 

associated with a minimum value of the magnetizability”. It is also established 

that a soft molecule can be easily polarizable and magnetizable than a hard one. 

Electrophilicity Equalization Principle (El-E-P) 

It is known that during the interaction of an electrophile with a nucleophile, the 

electrophilicity of the former is reduced (via electronic charge transfer and/or 

other related processes, from the nucleophile to the electrophile), and that of the 

latter is increased until they are equalized to a final value in between the two. This 

principle is stated as “The electrophilicity gets equalized during molecule 

formation, and the final equalized electrophilicity may be expressed as the 

geometric mean of the isolated atom values [41].” An important outcome of this 

result is that the local electrophilicity [30, 40] may alternatively be considered to 

be constant everywhere and is equal to its global variant. 
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Dynamical Situations 

In order to tackle the time-dependent problems within a density based quantum 
mechanical framework we start with the Quantum Fluid Dynamics (QFD) 
approach using the time dependent Schrödinger equation (TDSE) for a single 
particle. 

Substituting the following polar form 

( , ) /( , ) ( , ) is r tr t R r t e 
  

 

in the TDSE: 

2
2

2
V i

m t

  
       

   (54) 

and separating out the real and the imaginary parts we obtain an equation of 
continuity: 

.( ) 0v
t

 
 




 (55) 

and an Euler-type equation of motion, 

( . ) ( )qu

v
m v v V V

t
         

  
 (56) 

where Vqu is the quantum potential. 

In order to follow the behaviour of various reactivity descriptors in a time 
dependent situation and also to analyze the dynamical variants of the above 
mentioned electronic structure principles a quantum fluid density functional 
theory (QFDFT) [42] has been made use of which is obtained by combining QFD 
and time dependent (TD) DFT [43] to have the following equations 

0).( 

 

t
 (57a) 
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and 
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where   is the velocity potential, ][G  contains kinetic and exchange-
correlation energy functionals and ),( trvext


 is the total external potential 

including )(rv


. 

The above equations may be alternatively written in the form of the following 
generalized nonlinear Schrödinger equation (GNLSE) [42], 

t

tr
itrtrveff 
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where the effective potential takes the form as 
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where TNW and EXC are the non-Weizsäcker part of the kinetic energy and the 
exchange-correlation energy functionals respectively. The 3-D complex valued 
hydrodynamical function ),( tr


  may be written in the following polar form: 

1));,(exp(),(),( 2/1  itritrtr
   (59a) 

2|),(|),( trtr


  (59b) 

   reimimretrj ),(


 (59c) 

The TD processes chosen for this purpose are: (I) Ion-atom collision and (II) 
Atom-field interaction. The GNLSE is solved for problems I and II with pertinent 

( , )extv r t


. 

Fig. (1) represents the dynamical profiles of various global reactivity parameters, 
viz., chemical potential (μ), hardness (η) and polarizability (α) during a collision 
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process between a proton and a He-atom in its ground and different excited states. 
As shown in the Fig. 1a, the TD chemical potential divides the collision process 
into three regimes [35, 44], viz., approach, encounter and departure. In the 
encounter regime the actual chemical process takes place where the hardness 
maximizes and polarizability minimizes which may be thought of as the 
dynamical variants of the MHP and the MPP respectively (Figs. 1b and 1c). 
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Figure 1: Dynamical profiles of a) chemical potential (μ), b) hardness (η) and c) polarizability (α) 
during a collision process between a proton and a He -atom in its ground state and also in different 
excited states. Reproduced with permission from ref. [32(c)]. Copryright 2003 American Chemical 
Society. 

Since proton is a hard acid and the hardness decreases and polarizability increases 

with electronic excitation [45], a dynamical variant of the HSAB principle is also 

observed [32] which in turn helps analyzing the regioselectivity in a chemical 

reaction [46]. 

For the problem II the external field may be an electric field or may be a generic 

field simulating the presence of another reactant or a reagent or a solvent. While 

chemical potential (first order effect) oscillates in phase with that of electric field 

for a moderate field strength, a relatively higher field intensity is needed to obtain 

an in-phase oscillation in hardness. 

The nature of the oscillations in   depends on those of μ and η. The interplay 

between the central nuclear Coulomb field and the axial external electric field 

governs the overall reactivity dynamics for both the electronic states [47]. 
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Important insights into chaotic ionization of Rydberg atoms in presence of 

external field may also be obtained from these studies [48]. 

CONCLUSIONS 

Conceptual density functional theory is developed here to understand the 
chemical reactivity in static and dynamic situations. Various reactivity descriptors 
and the associated electronic structure principles are now better understood. 
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ABBREVIATIONS AND SYMBOLS OF SOME IMPORTANT QUANTITIES 

A  = Electron affinity  

 = Polarizability  

B3LYP  = Becke three-parameter Lee-Yang-Parr functional  

[/N]  = Variation of hardness with electron number  

DFT  = Density functional theory  

HOMO   = Highest occupied molecular orbital energy  

LUMO  = Lowest unoccupied molecular orbital energy  

Exc  = Exchange-correlation energy functionals  

FF  = Fukui function  

fk
 (=+,-,0) = Condensed Fukui function  
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F[]  = Hohenberg-Kohn-Sham universal functional  

( )


f r   = Fukui function  

 = Hardness  

GNLSE  = Generalized nonlinear Schrödinger equation  

HOMO  = Highest occupied molecular orbital  

HSAB  = Hard and soft acids and bases  

I  = Ionization potential  

LUMO  = Lowest unoccupied molecular orbital  

 = Chemical potential  

MHP  = Maximum hardness principle  

MPP  = Minimum polarizability principle  

N  = Number of electrons  

PW91 = Perdew and Wang 91 

PBE = Perdew, Burke and Ernzerhof 

PBE0 = Perdew, Burke and Ernzerhof 0 

QFD  = Quantum fluid dynamics  

QSAR  = Quantitative structure-activity relationship  

QSPR  = Quantitative structure-property relationship  

QSTR  = Quantitative structure-toxicity relationship  

( )


ρ r   = Electron density  
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S  = Softness  

( )


s r   = Local softness  

tF  = Thomas-Fermi kinetic energy density  

TNW  = Non-Weizsäcker part of the kinetic energy  

VWN = Vosko-Wilk-Nusair 

Vqu = Quantum potential 

( , )


extv r t   = Time dependent external potential  

( )


v r   = External potential  

( , )

r t   = 3-D hydrodynamical wave function  

 = Electronegativity  

 = Electrophilicity index  

k
  = Condensed philicity  

( )


ω r  = Philicity  
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Applications in Drug Design and Environmental 
Toxicology 
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Abstract: In the chapter we present a short overview of QSAR (Quantitative Structure-
Activity Relationship) modeling. The QSAR paradigm grounds on an assumption that 
properties of a compound depend on its chemical structure. In its final form a QSAR 
model is expressed as a mathematical relationship between molecular structure and 
property. A model is built on existing knowledge, i.e., on a set of compounds with 
known structures and known properties. The QSAR models are widely used in rational 
drug design and in the environmental toxicology. As examples we present a case study 
of QSAR modeling in searching for new anti-tuberculosis drugs and the predictions of 
five toxicological endpoints with the internet available program CAESAR. 

Keywords: QSAR modeling, topological, electro-topological, quantum chemical 
descriptors, anti-tuberculosis drugs, fluoroquinolones, environmental sciences, 
oecd principles for validation of qsar models, caesar programs for bio-
concentration factor, mutagenicity, carcinogenicity, skin sensitization, 
developmental toxicity. 

INTRODUCTION 

QSAR is an acronym for Quantitative Structure-Activity Relationship. The 
paradigm grounds on an assumption that properties of a compound depend on its 
chemical structure. In its final form a QSAR model is expressed as a 
mathematical relationship between molecular structure and property. A model is 
built on existing knowledge, i.e. on a set of compounds with known structures and 
known properties. The developing of a QSAR model has four basic steps. The 
first step is building up the data set, the second one is the determination of  
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molecular structures and molecular descriptors, the third one is the construction of 
models using the mathematical (chemometrical) methods, and the fourth one is 
the testing and validation of them. The QSAR model is mostly used in two areas: 
in rational drug design and in chemical regulation for evaluation of toxicological 
and eco-toxicological parameters of compounds. 

The collection and checking of data (chemical structures and properties) are 
crucial parts of QSAR modeling. It is to emphasize that the quality of the data 
determines the quality of the final model. The data used for modeling should be 
obtained under the same laboratory conditions and using the same experimental 
protocols. With the special care the molecular structures should be checked. 
Databases usually consist of miscellaneous information including substances like 
metals, salts, organic compounds, or mixtures. Solely the organic compounds can 
have different isomeric, tautomeric or enantiomeric forms. When compiling the 
data set we must be aware of these pitfalls. In short, the compilation of data is an 
important and time consuming work, which usually takes more than a half of the 
total time used for model development. 

The second step is structure determination. One has to decide how molecules will 
be considered in the model. It is obvious that there is a certain hierarchy in 
description of a molecule. A molecule can be considered as collection of 
fragments, or represented by two-dimensional, or three-dimensional structures. 
Three-dimensional structure is determined by positions of all atoms, which 
constitute a molecule. Molecular structures form a basis for calculation of 
descriptors. An insight on structural descriptors is given in the section below. 
Nowadays a variety of computer software packages are available to calculate 
descriptors and hundreds of them can be easily calculated. A selection of the most 
relevant descriptors represents a basic problem in the developing QSAR models. 

In the third step the modeling method must be selected. The most applied method 
is multi-dimensional linear regression. Recently, the more advanced methods as 
the principal component analysis, partial least square, Ridge regression, artificial 
neural networks of different architectures and learning algorithms have become 
part of QSAR modeling. These methods are often applied in combination with 
algorithms for descriptor selection. One of such algorithms is the genetic 
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algorithm. Basically, it is an analysis of an ensemble of models with an algorithm, 
which mimics the natural evolution. Some other methods consider all descriptors 
giving different importance (weights) to the descriptors. In most of the QSAR 
models, the property to model is expressed as a continuous variable, as for 
example dose of activity. Alternatively, the property can be given as affiliation to 
a particular class of activity. For classification problems, a variety of methods are 
available, e.g. linear discriminate analysis, support vector machine, artificial 
neural networks of specific architectures, etc. 

The last step includes testing and validating the models. The questions are: how to 
test a model and how to express the quality of a model? Today, a basic concept is 
accepted that a model should be tested with an independent test set. An 
independent test set means a set that was never used in the model developing 
procedure. Before the start of the modeling development a test set is excluded 
from the compiled data set. Again, different strategies are possible. Usually, a 
random selection is performed, or, alternatively, the objects for the test set are 
selected equivocally from the entire model’s domain [1]. When the model is 
presented in its final form it is tested with this test set. The quality of a model is 
usually expressed as the correlation coefficient between predicted and measured 
values. The correlation coefficients r2 and q2, which are often used in leave-out 
testing strategies, are defined as follows [2]. 
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where e
iy and p

iy  are respectively experimental and predicted values for the object 
i, the bared symbols represent the mean values. When the model is used for 
classification its performance is usually expressed as a ratio between correct and 
false classified objects. In binary classification, i.e. the response can be positive or 
negative, the model responses can be understood as true positive (TP), true 
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negative (TN), false positive (FP), or false negative (FN). The models are 
evaluated with parameters precision (P), specificity (Sp) and sensitivity (Se), 
which are defined as: 

P=(TP+TN)/(TP+TN+FP+FN), Se=TP/(TP+FN), Sp=TN/(TN+FP) (2) 

STRUCTURAL DESCRIPTORS 

Descriptors are numerical parameters, which describe a chemical structure in the 
model. Today several hundreds of descriptors are in use. Considering the nature 
of descriptors they can be classified as physico-chemical or structural ones. From 
physico-chemical descriptors the most used parameters are: octanol/water 
partition coefficients (log P, log D), refractivity index, molecular weight, or 
different spectroscopic data. These descriptors can be determined experimentally, 
what further means that they are known only for existing material. This is a 
disadvantage because in the research we often treat hypothetical structures. The 
advantage of calculated descriptors is obvious, structural descriptors can be 
determined solely on the basis of molecular structure. The question of how to 
represent or encode a chemical structure in a numerical fashion is central for 
chemical informatics. An ideal representation should be: unique, uniform, 
reversible, and invariant on translation and rotation of the structure. Unique means 
that different structures have different representations, uniform means that the 
representation has the same dimension for all structures; reversibility means that 
the structure can be reconstructed from the representation; and invariance means 
that the representation should not be influenced if the structure is rotated or 
translated in space. No representation fulfills all of the four requirements 
simultaneously. For example, the basic geometrical representation when a 
molecule is represented with coordinates of all its atoms is unique and reversible, 
but not uniform and invariant. The representation of a structure with a set of 
descriptors is unique, which means that these descriptors are different for different 
structures (this is true only after limitation. Some descriptors may have the same 
values for different structures, i.e. they may be degenerate). In most cases the 
representation is uniform and invariant but not reversible, i.e. the structure cannot 
be determined from descriptors [3]. 
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To understand the strategy for developing descriptors we must clarify the concept 
of ‘molecular structure’. If we talk about ‘chemical structure’, we must consider a 
hierarchy for the description. At the two-dimensional (2-D) level, we describe the 
structure with atoms and bonds between them (‘structural formulas’). At the 
three-dimensional (3-D) level, we describe the structure with positions of all 
atoms. The step from 2-D to 3-D poses a problem. Rigid molecules are rare, 3-D 
structures may be different for molecules in crystalline form, in solution, in gas 
phase, or in an environment of proteins. Often 3-D structures are determined 
theoretically and they are different when the different theoretical approximations 
are applied. In the determination of 3-D structures it is often assumed that 
molecules are isolated (in vacuo). In reality, molecules are embedded in an 
environment, which in biological systems often consists of proteins or other bio-
molecules. At the next level, the structures are optimized in their environment, 
sometimes such optimization is referred as 4-dimensionional representation. 

Fragments as Descriptors 

Structural fragments can be used as descriptors. In this description a structure is 
encoded as a multi-dimensional vector where the binary vector components 
indicate the presence or absence of a particular fragment. In their pioneer work, 
Free and Wilson represent molecular structures as a sum of constitutional 
fragments and correlate the representation with activity [4]. The basic idea is that 
a property (activity, toxicity, etc.) is due to particular molecular fragments. In 
drug design, one searches for fragments (pharmacophores) which are most 
relevant for particular activity or property. The examples are presented in 
references [5, 6] where a property for general drug-likeness is considered. In an 
advanced approach the fragments can be combined with fragment (substructure or 
pharmacophore) descriptors, which include the information on physico-chemical 
properties of fragments [7]. An efficient encoding of chemical structures in a 
unique and reversible way still represents a problem in chemical informatics. In 
reference [8] authors propose the algorithm for reading of fragments directly from 
SMILES codes. In environmental toxicology the fragments (structural alerts) are 
applied for study of toxicological properties, as for example mutagenicity and 
carcinogenicity [9]. It is an intention to create a database of structural alerts, 
which are responsible for activity. Originally, the database was compiled on the 
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basis of experts’ knowledge [10]; in later approaches statistical tools have been 
implemented [11-13]. 

One-Dimensional Descriptors 

They provide the basic information about molecules, like number of atoms, 
molecular weight, or lipophilic properties. Lipophilic parameters (log P and log 
D) counts under the most used descriptors in QSAR. They were introduced to 
QSAR modeling in the first pioneer works by Hansch [14]. Log P is expressed as 
a ratio of the solubility in octanol and water of the substance under study and it 
describes the readiness of a molecule to prefer the polar (water) or non-polar 
(octanol) environment. Similarly, log D is expressed as a ratio of both solubilities 
given as function of the solute’s acidity pH. They were introduced as descriptors 
under the assumption that lipophilicity determines the transport of a drug from the 
site of application to the cell inside and thus basically determines the bio-activity 
of a compound. Log P (log D) can be measured or calculated theoretically using 
one of the many commercial and free programs. When using the calculated log P 
(log D) as descriptor one must be aware that in some cases the predicted values 
depend on the applied software [15]. With the consideration of pioneer works in 
QSAR modeling one has to mention two other empirical constants: Hammet and 
Taft substituent constants, which describe the electronic and steric properties of 
molecules. As further physico-chemical constants used as descriptors, one should 
mention water solubility, refractivity index and other partitioning coefficients, 
such as partitioning coefficients between blood and tissue, etc. 

Two-Dimensional Descriptors – Topological Indices 

Topological indices are deduced from two-dimensional representations of 
molecular structure (‘structural formulas’), which show topological properties of 
molecules, i.e. how atoms are inter-connected, but they do not show metric 
properties, i.e. lengths and angles between bonds. In the language of 
mathematicians, molecules are graphs where atoms are vertices and bonds are 
edges. The topology is completely described with the adjacency matrix, which 
describes how atoms are connected. A further important quantity is the 
topological distance between two atoms. It is the shortest distance going from one 
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atom to another following the molecular structure. Usually, the topological 
distances are collected in the distance matrix D. 

The first topological index was proposed by Wiener and Plat about 60 years ago. 
Wiener index is defined as a half-sum of all elements of matrix D. After Wiener’s 
contribution, the idea has been extended and has resulted in many different 
indices such as hyper-Wiener index, Zagreb index, Szeged index. All these 
indices are expressed as counts of distances and are therefore integer numbers. 
The next class of topological indices is made by connectivity indices. In 1975 the 
connectivity index was proposed by Randić as a sum over weighted edges – bonds 
[16]. 
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νi is the degree of the vertex i, i.e. the number of edges connected to the vertex. 
Afterwards, other connectivity indices were introduced, e.g. Kier and Hall (Kappa 
index), and Balaban index (J): 
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where b is the number of bonds (edges) and μ is the cyclomatic number of the 
graph, which is defined as the number of edges in a cyclic graph that must be 
deleted from the graph to transform it into an acyclic one. 

Another class of topological indices is that of information content indices, which 
has its origin in informational theory. Following this theory, a graph is considered 
as an ensemble A of subset Ai. Each subset Ai is defined by a particular 
equivalence relation, where pi is the probability that a randomly selected element 
of A occurs in subset Ai. Similarly to the definition of entropy, the mean 
information content (IC) is defined as: 

 ii ppIC 2log
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For the practical application of information theory to molecular graphs, the crucial 
question is the definition of equivalent relationship. An example of an equivalent 
relationship is that of two vertices that are equivalent if they possess topologically 
equivalent first neighborhoods [17]. Considering different equivalence 
relationships, numerous information content indices are defined. Some examples 
for calculation of informational content indices are shown in reference [18]. 

An important topic in structure activity relationship is stereoisomerism. In 
attempts to include chirality in the description of structures, one usually 
introduces an extra factor, which multiplies the original topological index. 
Chirality is addressed in reference [19]. For further reading about topological 
indices the reference [20] is recommended. 

Two-Dimensional Descriptors – Electrotopological Descriptors 

The electrotopological indices encode, besides the topology, the basic electronic 
properties of atoms. Kier and Hall introduced E-state indices, which include 
information about the valence [21] of an atom and also information about 
neighboring atoms. The electrons are assigned as core electrons, or valence 
electrons, which are further assigned as σ, π or lone pairs electrons. 

)(),(  ofnumberpairsloneofnumberZ v   (6) 

In this description hydrogen electrons are not considered. The intrinsic state of an 
atom is defined as: 
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L being the principal quantum number (2 for second raw elements, 3 for third raw 
elements, etc.), Z the atomic number and Zv the valence electron number. 

E-state of an atom is defined as an intrinsic state (I), modified by intrinsic states 
of neighboring (all) atoms in the molecule (ΔI). 
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Where dij is the topological distance and the exponent k measures the importance 
of distance; usually k is equal 2. 

In reference [22] authors introduced ETA (Extended Topochemical Atom) 
indices. The ETA scheme includes several parameters, which are defined in 
following expressions: 
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PN is the period number, x and y are weights for σ and π bonds and are defined 
for a particular classes of chemicals. With these quantities the different ETA 
indices are defined as for example: 
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The composite index (13) 

Eigenvalues of Topological Matrices 

Eigenvalues represent one of the matrix invariants. In applications of matrix 
algebra to physics and theoretical chemistry, eigenvalues find different important 
interpretations. In the up-rising time of quantum mechanics, Hückel presented one 
of the first quantum mechanical models of molecules where molecules were 
described with matrices. The basis for such matrices was the adjacency matrix, in 
which the nonzero elements were replaced by empirical parameters. The 
eigenvalues of matrices were considered as molecular orbital energies, and 
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eigenvectors of the matrix as molecular orbitals, which describe the quantum 
mechanical states of electrons [23]. Later, eigenvalues of adjacency matrices have 
been introduced as descriptors. Lovasz and Pelikan proposed a leading eigenvalue 
of adjacency matrix as branching index [24]. In further applications the elements 
of matrices are weighted with different physico-chemical constants, like 
resonance integrals, or dipole moment. An overview of different approaches on 
how to use eigenvalues as descriptors is given in reference [25]. 

Three-Dimensional Descriptors - Quantum Chemical Descriptors 

Quantum mechanics is widely applied in chemistry. It provides methods for 
optimization of geometrical parameters and thus for determination of 3D 
molecular structures. The further task is the calculation of quantum chemical 
descriptors, which in some cases can put insight into particular chemical 
mechanisms [26]. Exact quantum chemical treatment, i.e. solving Schrödinger 
equation for electrons in Coulomb field of nuclei is not possible for real word 
molecules, indeed, the exact solution of Schrödinger equation exists only for 
hydrogen atom. The reason for this fact lies in the interaction between electrons. 
In chemistry, two approximations are mostly applied: Hartree-Fock (HF) 
approximation and electron density functional approximation. Hartree-Fock 
approximation is a very well elaborated method used for the treatment of many-
fermion systems. Here, the electron-electron interaction is approximated with an 
average electronic potential, which is calculated in an iterative way. The basic 
natural law, which requires the change of the wave function’s sign when two 
electrons are interchanged, appears in the HF equation as exchange potential. 
Results of the calculation are orbital energies and molecular orbitals. The 
configuration of the electronic states is determined with the occupation of orbitals. 
This serves as a basis for calculation of charge distributions in molecules. Hartree-
Fock calculations are computer intensive and, in spite of the fast development of 
computers, the technique still remains limited to medium size molecules. To work 
out the electronic structure of large numbers of molecules, which are compiled in 
large scale data bases, semi-empirical methods are often used, like CNDO, 
MNDO, MINDO, AM1 or PM approximations [27]. The idea of this 
approximation is to replace the complicated electronic potential with empirical 
parameters. The density functional approximation follows a different philosophy. 
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Here, electrons are represented by a cloud of electron density, which is calculated 
directly using the Kohn-Sham equation [27]. Some results of quantum chemical 
calculations, which are mostly used as descriptors, are orbital energies, and from 
them the HOMO and LUMO play a special role. HOMO is the highest occupied 
molecular orbital and it is based on Koopmas’ theorem related to ionization 
potential (IP), while LUMO is the lowest unoccupied molecular orbital and is 
related to electron affinity (EA). 

IP = - EHOMO and EA = - ELUMO (14) 

Further descriptors deduced from orbital energies are Mulliken electronegativity 
(ME) and electronic hardness (N) defined as: 

ME = (IP+EA)/2 and N = (IP-EA)/2 (15) 

To extend the set of descriptors, lower and higher molecular orbital energies can 
be taken into consideration [28]. Molecular orbitals can be used to calculate the 
charge on particular atoms and the charge distribution of molecules as a whole. 
Charges on particular atoms and multipole moments (dipole moment, quadrupole 
moment, etc.) are often taken as descriptors. Often one takes the maximal or 
minimal charge on particular atoms, which are regarded as important for the 
mechanism of activity. Alternatively, the electron-electron repulsion energy 
calculated at a quantum chemical level, or two-electron integrals, which describe 
particular interactions, can be taken as descriptors [29]. At the end, it is to 
emphasize that quantum chemical results depend on the method of calculation 
[30]. Therefore, it is recommended that all molecules, which are used in QSAR 
models, are treated within the same quantum chemical approximation. 

Three-Dimensional Descriptors - Geometrical Descriptors 

They are deduced from three-dimensional molecular structure, which is defined 
through positions of all atoms in the molecule. In the crystalline form of a given 
material, its three-dimensional structure can be measured by X-ray diffraction 
measurements. When the material is in gaseous phase or in solution, its 3D 
structure may be different. In QSAR studies, 3D structures are mostly determined 
theoretically by applying molecular mechanics or quantum chemical methods to 
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minimize the total molecular energy. To the class of 3-D descriptors belong mass 
distribution descriptors such as moments of inertia and gravitation index, shape 
indices, surface area indices and van der Waals indices. 

Usually, a large number of descriptors are calculated. For a selection of relevant 
descriptors different methods such as genetic algorithms, heuristic selection, 
clustering, etc., can be applied [31]. Alternatively, all descriptors can be 
considered, but in such a case the role of each descriptor in the model is evaluated 
by a weight. Descriptors of a model may indicate the mechanism of activity of the 
target studied. For example, strong dependence on topological indices indicates 
more steric interactions; or strong dependence on orbital energies indicates 
importance of charge transfer mechanisms. Alternatively, a molecular structure 
can be encoded in a spectrum like object, which is a descriptor vector. An 
example is the ‘spectrum-like representation of molecular structures’ where 
positions of atoms are projected on three perpendicular planes and the projections 
are converted to spectral forms. Alternatively, the positions of atoms can be 
transformed to a reciprocal space where the components in such a space can be 
taken as descriptors (3D-MoRSE code) [33]. In reference [32] authors compared 
models built with topological indices, geometric+electrostatic indices, and 
spectrum like representations and found that the latter method outperformed the 
others. In references [34, 35] authors analyzed the role of different types of 
descriptors in modeling mutagenicity. They compared the models built with 
topostructural (TS), topochemical (TC), three-dimensional (3D), quantum 
chemical (QC) descriptors and combinations of descriptors [35]. According to 
their quality, which was evaluated with the statistical parameters, the models can 
be ordered into a series: TS+TC > TS+TC+3D > TS+TC+3D+QC > 
TS+TC+3D+QC+logP > 3D > TC > TS > QC. The results reported in references 
[34, 35] are similar; the lowest correlation coefficients are obtained under 
consideration of QC descriptors. 

Regarding molecular geometry, it can be optimized in the environment of 
receptor, if a protein interaction is under study. The environment, which causes an 
additional electrostatic field and includes hydrogen donors or acceptors, 
influences the optimization procedure. This approach is often applied in drug 
discovery, particularly in the case when the targeting bio-molecule is known 
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(sometimes these approaches are addressed as 4- or 5-dimensional 
representations). 

QSAR IN DRUG DISCOVERY 

It is well known that the most revolutionary drugs were discovered by chance. It 
is a challenging idea to attack this problem systematically using computational 
tools; QSAR modeling is part of this strategy. We have witnessed a fast 
development of computational software and hardware, which supports the 
development in computational chemistry and pharmacy. The research strategy is 
focused on the following tasks: collecting of data and maintaining of databases, 
computational treatment of chemical structures and calculation of descriptors, 
QSAR modeling, collecting the information on biological targets and maintaining 
of target (protein) databanks, modeling the drug-target interaction [36]. 
Nowadays, large databanks, gathering data on structures, physico-chemical 
properties and biological activities of molecules, are publicly available. Some 
examples are ZINK, PubChem, NIH/CADD, etc. On the other hand, the variety of 
currently available chemometric tools can assist the searching for new drug 
candidates. 

As case studies we present the QSAR modeling of anti-tubercular activity. The 
compounds of interest are fluoroquinolones. Some of the fluoroquinolones are 
potent antibiotics; however, the search for new more active analogues with less 
side effect is still on-going. Reference [37] presents QSAR models built on three 
data sets of flouroquinolones, which were compiled from NIAID database, 
available from the Internet. The modeled activity was expressed as the MIC 
(minimal inhibitory concentration expressed as mg ml-1) value. For the structures, 
a set of descriptors were calculated with DRAGON and CODESSA software [38]. 
To select the most relevant descriptors, the descriptor set was filtered considering 
the correlation between descriptors and activity and inter-correlation between 
descriptors. Ten descriptors, appearing in most of the models, belong to the 
topological, electrotopological and constitutional classes. The study reported in 
reference [39] shows that electrotopological descriptors are more important in 
comparison to quantum chemical ones. Models were also tested with leave-one-
out procedure and with the test set. In the further study [40] a combinatorial 
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library of 5,590 compounds was generated by applying the virtual combinatorial 
synthetic pathway. The library was filtered in the first step with Lipinski-Veber 
rules to select the drug-like candidates. The remaining candidates were evaluated 
with QSAR models keeping the 15 candidates with the highest activity. A similar 
study is reported in reference [41], where authors developed QSAR models for 
activity against Mycobacterium smegmatis and Mycobacterium fortuitum with a 
set of 117 and 110 compounds, respectively. A pool of 1,056 descriptors was 
calculated with the Life Sciences Molecular Design Suite. It turned out that the 
topological and fragment descriptors play the most important role. Furthermore, 
authors created a virtual library of 5,280 compounds, which was screened by 
Lipinski rules and QSAR models. At the end, after the docking study in 
environment of the gyraze, they proposed seven candidates and one ‘winner’. In 
[42] authors studied the data set of 71 compounds using different modeling 
techniques like Ridge regression, principle component analysis and partial least 
squares. They calculated a comprehensive set of descriptors using POLLY, 
Triplet and MolconnZ programs, which are classified as topological, 
topochemical, and geometrical ones, respectively. The best models were found 
with topochemical descriptors followed by models with topostructural ones; both 
types of descriptors outperformed models built from 3D descriptors. In [43] 
authors report the QSAR study on quinoxaline compounds using a Partial Least 
Squares method. A pool of constitutional, physicochemical, electrostatic and 
topological descriptors was employed. The most robust model was found with 
constitutional descriptors. In [44] authors analyzed a large diverse data set of 
4,100 compounds, which were classified as active or non-active. The structure 
was represented with a large number of descriptors, which were calculated with 
DRAGON and ADRIANA software. Descriptors were classified into 22 classes, 
however, the number of used descriptors exceeds 1,000, therefore the roles of 
individual descriptors cannot be evaluated. For classification, authors applied 
random forest and associative neural networks. The sensitivity, specificity, and 
precision of models for test set are Sn=0,75, Sp = 0.75, P=0.76, respectively. 

QSAR IN ENVIRONMENTAL TOXICOLOGY 

QSAR plays an important role in chemical regulation. For the risk assessment 
several toxicological, eco-toxicological and physico-chemical data must be known 
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and in some cases QSAR can be used as an alternative method to expensive tests. 
Currently, there are more than 85,000 compounds in commerce in USA and EU 
and this number is growing rapidly by nearly 3,000 substances per year. For about 
15% of these compounds, the reliable data necessary for risk assessment are 
known. In EU market the situation is similar. The Institute for Health and 
Consumer Protection reported that toxicity data are available for 15% - 70% of 
High Production Chemicals for different toxicological endpoints. The new 
European chemical legislation REACH (Registration, Evaluation, and 
Authorization of Chemicals) made a roadmap for registration of chemicals, which 
must be done for all chemicals on European market [45]. REACH recommends 
the using of QSAR methods as alternative method for gathering missing data for 
risk assessment, and for classification and labeling of compounds. QSAR models, 
which are used in regulatory processes, must meet some criteria. The prediction 
must be reliable, or at least, estimation on reliability must be provided. The 
models used for regulatory purposes must be transparent in such a way that the 
experts could eventually rebuild them. To establish a platform for discussions 
about the QSAR models, the OECD adopted the document: Principles for 
validation of (Q)SAR models used for regulatory purposes [46], which basically 
consists of five principles. 

Principle 1: Defined endpoint. Endpoint refers to any physicochemical, 
biological or environmental effect. The intent of this principle is to 
ensure transparency in the endpoint being predicted, since a given 
endpoint could be determined by different experimental protocols and 
under different experimental conditions. 

Principle 2: Unambiguous algorithm. The aim of this principle is to 
ensure the transparency of modeling algorithms. 

Principle 3: Definite applicability domain. QSAR models are inevitably 
associated with limitations in terms of the types of chemical structures, 
physicochemical properties and mechanisms of actions. This principle 
seeks for determining the kind of structures, properties and mechanisms 
of action where a given QSAR model yields accurate results. 
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Principle 4: Measure of goodness-of-fit, robustness and predictivity. This 
principle expresses the need to provide two types of information: the 
internal performance of a model (as expressed as goodness-of-fit and 
robustness) and the predictivity of model using an appropriate test set. 

Principle 5: Mechanistic interpretation, when possible. The intent of this 
principle is to ensure that there is an assessment of the possibility of a 
mechanistic association between the descriptors used in a model and the 
endpoint being predicted, and that any association is documented. 

CAESAR MODELS 

CAESAR [47] is a project funded by the European Commission dedicated to 
developing in silico models for prediction of five endpoints relevant for REACH 
legislation. The endpoints are: bioconcentration in fish, mutagenicity, 
carcinogenicity, developmental toxicity and skin sensitization. The models were 
developed according to the OECD principles for (Q)SAR models on high quality 
data sets compiled following the OECD or US EPA standards. For developing 
models, advanced computational techniques were used including programs for 
calculation of molecular descriptors and techniques for descriptor selection. The 
models are publicly available in the Internet and they require as input only the 
SMILES code of molecular structures. For the bioconcentration factor the 
prediction is expressed as a real number, for the other four endpoints the 
prediction is in form of binary classifications. Besides classifications, CAESAR 
provides two additional pieces of information: a comment if the descriptors are 
out of the range and six compounds belonging to the training set for each 
prediction, which are the most similar to the evaluated one. 

Bioconcentration Factor 

The bioconcentration factor (BCF) describes the readiness of chemicals to 
concentrate in organisms when the compounds are present in the environment. It 
is a required eco-toxicological parameter for chemical regulation, for example 
REACH requires the BCF for all compounds produced or imported over 100 tons 
per year. 
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The CAESAR model for BCF is based on a database of 378 compounds [48]. The 
data set consists of the following chemical classes: alkanes, alkenes, mono and 
diaromatic hydrocarbons, polycyclic aromatic hydrocarbons, polychlorinated 
dibenzofurans, polychlorinated dibenzodioxins, polychlorinated biphenyls, 
chloroalkanes, chloroalkenes, and halogenated aromatic compounds. The 
CAESAR model was built with a radial basis function for neural networks using 
eight descriptors including log P, topological, electrotopological and geometrical 
ones. In most BCF models the log P plays the fundamental role. Indeed, the BCF 
is strongly correlated with log P, which means that lipophilic compounds strongly 
tend to accumulate in organisms. The model was tested showing a correlation 
coefficient r = 0.8 for the test set. One can find more details in reference [49]. 

Mutagenicity 

Mutagenicity is the ability of substances to cause cell mutation. It is directly 

connected to carcinogenicity and developmental toxicity. One of the in vitro tests 

for determination of mutagenicity is the Ames test performed on Salmonella [50]. 

The CAESAR model is built on a large data set of 4,204 compounds with their 

Ames test results, which were extracted from an original set reported by Kazius  

et al. [51]. Compounds belong to diverse chemical classes. In reference [51] 

authors identified eight toxicophores, which may be indicators on mutagenicity 

(aromatic nitro, aromatic amine, three-membered heterocycle, nitroso, 

unsubstituted heteroatom-bonded heteroatom, azo-type, aliphatic halide, 

polycyclic aromatic system). The modeling technique is a hybrid system 

combining a support vector algorithm for classification and a rule based system 

checking for structural alerts. The mutagenicity is binary expressed as non-

positive or positive. For all structures the descriptor pool was calculated with the 

MDL software; the BestFirst algorithm from WEKA was applied to select the 25 

most relevant descriptors. Among them are log P, two topological indices (the 

cyclomatic number and the Bonchev-Trinajstić mean information content), one 

electro-topological index (the minimum E-state value for all atoms) and 21 counts 

of particular E-state fragments. The achieved accuracy was 82%, which was close 

to 85% of reliability of the experimental Ames test; false negative rate was 10%. 

Further details are described in reference [52]. 
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Carcinogenicity 

Carcinogenicity is one of the toxicological endpoints required in chemical 
regulation. Carcinogenesis is a very complex biological process, which indeed 
includes many different mechanisms. Therefore, it is not expected that a QSAR 
model can explain the mechanism of carcinogenesis. QSAR models are just tools 
giving insight about carcinogenicity based on the similarity of particular 
compounds to non-carcinogenic or carcinogenic compounds. 

The details of CAESAR carcinogenicity models are reported in [53]. The models 
were built on a set of 805 non-congeneric compounds extracted from the 
Carcinogenic Potency Data base (CPDBAS). In terms of chemical classification 
the compounds belong to diverse chemical classes. The Hybride Selection 
Algorithm developed from BioChemics Consulting SAS (BCX) was applied to 
select eight descriptors from a set of 254 MDL descriptors. Furthermore, a cross 
correlation matrix, multicolinearity and fisher ratio technique was applied to 
select 12 descriptors from a set of 835 DRAGON descriptors. As modeling 
technique for classification the counter propagation artificial neural networks 
were applied. A compound was classified as non-carcinogenic (or non-positive) 
when the results obtained in mice and rat tests were negative, and in contrary, it 
was classified as carcinogenic when at least one test showed positive response. 

Developmental Toxicity 

Developmental toxicity (DT) is an endpoint required for risk assessment. A 

detailed description of its tests is given in OECD documentation [54]. These tests 

are some of the most expensive ones and for a single substance several thousand 

animals must be sacrificed. Alternative methods for assessment of DT include 

(Q)SAR methods, intelligent strategies and priority setting [55, 56]. 

The details of CAESAR program for DT are presented in reference [57]. In the 

CAESAR model, a compound is binary classified as non-developmental toxicant 

if it belongs to the FDA category A or B, or, as developmental toxicant, if it 

belongs to the FDA category C or D. Two models are implemented, the first one 

is the application of a random forest algorithm (13 descriptors), and the second 
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one is the adaptive fuzzy partition algorithm (six descriptors). The model is built 

on Arena data set, which includes 292 compounds, from which 41% show some 

evidence on developmental toxicity and 59% does not [58]. The data set was 

developed by combining data from Teratogen Information System (TERIS) and 

the Food and Drug Administration data. Regarding chemical classification, the 

compounds belong to diverse chemical classes. Descriptors were calculated with 

DRAGON, T.E.S.T. and MDL programs. At the end six or 13 molecular 

descriptors were selected using the WEKA (Waikato Environment for Knowledge 

Analysis) software. The selected descriptors belong to topological and electro-

topological classes. Most of them are eigenvalues of topological matrices 

weighted with physico-chemical parameters, or E-state indices related to 

particular fragments. The accuracy for leave-one-out cross validation test for 

random forest and adaptive fuzzy partition algorithm was 77% and 72%, 

respectively. 

Skin Sensitization 

Skin sensitization is the ability of a substance to induce allergic reaction after skin 

contact. For the experimental determination of skin sensitization the OECD 

recommends the Bühler test on guinea pigs [59] or the mice local lymph node 

assay [60]. The CAESAR models were constructed on a data set of 209 

compounds selected from the Gerberick data set of 211 compounds [61]. The 

compounds are classified regarding the local lymph node assay into extreme 

sensitizers, strong sensitizers, moderate sensitizers, weak sensitizers, or no 

sensitizers. In terms of chemical classification they belong to aldehydes, ketones, 

aromatic amines, quinones, and acrylates, which may be active due to different 

mechanisms. From a pool of 502 descriptors, which were calculated with 

DRAGON, the seven descriptors were selected using a combination of genetic 

algorithm and stepwise regression. Selected descriptors belong to constitutional 

and topological classes. The binary classification model was built with adaptive 

fuzzy partition algorithm and for test set the accuracy of 90% was achieved. 

Additionally, a model based on adaptive fuzzy partition has been presented. The 

details of CAESAR model for skin sensitization are given in reference [62]. 
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Figure 1: CAESAR prediction for BCF for 1,4,7-trimethylimidazo[4,5-c]pyridin-2 amine. 



242   Advances in Mathematical Chemistry and Applications, Vol. 1, (Revised Edition) Marjan Vračko 

As an example we present the predictions of five endpoints for 1,4,7-

trimethylimidazo[4,5-c]pyridin-2-amine. Fig. (1) shows the prediction of its BCF 

and the six most similar compounds from the training set; for each of them the 

predicted and experimental values are reported. The correlation coefficient 

between experimental and predicted values for the six compounds is r = 0.600. 

Fig. (2) shows the prediction for mutagenicity of 1,4,7-trimethylimidazo[4,5-

c]pyridin-2-amine. The CAESAR prediction gives the six most similar 

compounds regarding the target substance together with their similarity indices 

and their predicted and experimental classification. Carcinogenicity prediction is 

shown in Fig. (3); the compound is predicted as 15.1% positive (carcinogenic) 

and 84.9% as non-positive (non-carcinogenic). The predictions for the six most 

similar compounds are: TP = 4, FN = 1, TN = 1. Fig. (4) shows the prediction for 

skin sensitization. The compound is predicted as 96.5% active (skin sensitizer) 

and as 3.5% inactive (non-sensitizer). The confusion matrix is TP=3, FP=1, 

FN=1, TN=1. Fig. (5) shows the developmental toxicity. The compound is 

predicted as toxic. The confusion matrix for the most similar six compounds to 

the target substance is: TP=3, FP=1, FN=0, TN=2. 

CONCLUDING REMARKS 

In the chapter we present different aspects of structural descriptors. It is to 

emphasize that in a selected QSAR model the descriptors carry the entire 

information about molecular structures. This further means that the descriptors 

together with the training set, define the domain of the model and the similarity 

relationships among structures. In some cases they may indicate the mechanism of 

the predicted property (activity), as shown in the presented case study on drug 

research. The second example shows five predictions performed with the 

CAESAR programs for the same structure. Figs. (1 to 5) show for each prediction 

the six most similar compounds from the actual training set. ‘The six most similar 

compounds’ can give an insight into the mechanism of property (activity) and also 

show how good the predicted compound fits into domain of the model. 
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Figure 2: CAESAR prediction of mutagenicity for 1,4,7-rimethylimidazo[4,5-c]pyridin-2 amine. 
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Figure 3: CAESAR prediction for carcinogenicity for 1,4,7-trimethylimidazo[4,5-c]pyridin-2 
amine. 
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Figure 4: CAESAR prediction for skin sensitization for 1,4,7-trimethylimidazo[4,5-c]pyridin-2 
amine. 
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Figure 5: CAESAR prediction for developmental toxicity for 1,4,7-trimethylimidazo[4,5-
c]pyridin-2 amine. 
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Abstract: Mathematical chemistry or more accurately discrete mathematical chemistry 
had a tremendous growth spurt in the second half of the twentieth century and the same 
trend is continuing in the twenty first century. This continual growth was fueled 
primarily by two major factors: 1) Novel applications of discrete mathematical concepts 
to chemical and biological systems, and 2) Availability of high speed computers and 
relevant software whereby hypothesis driven as well as discovery oriented research on 
large data sets could be carried out. This led to the development of not only a plethora 
of new concepts, but also to various useful applications. This chapter will discuss the 
major milestones in the development of hierarchical QSARs for the prediction of 
physical as well as biological properties of various classes of chemicals by the Basak 
group of researchers using mathematical descriptors and different statistical methods. 
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1. INTRODUCTION

“Knowledge is of no value unless you put it into practice”. 

Anton Chekhov 

Quantitative structure-activity/property relationships (QSARs/QSPRs) are 
mathematical models which attempt to predict biomedicinal activity/toxicity/ 
physicochemical properties of chemicals from their structures or assorted physical 
properties or substituent constants derived from experimental data as independent 
variables [1-6]. A contemporary trend in QSAR/QSPR is the use of properties 
which can be calculated from structure without the input of any other data [2-4]. 
The major reason behind this is that for the majority of candidate chemicals, both 
in new drug discovery protocols and hazard assessment of environmental 
pollutants, experimental properties needed for QSAR formulation are not 
available [4-7]. The various pathways for the development of structure-activity 
relationship (SAR) and property-activity relationship (PAR) models either from 
calculated molecular descriptors or from experimentally derived properties as 
independent variables may be expressed by Fig. 1 below: 

Figure 1: Composition functions for structure-activity relationship (SAR) and property-activity 
relationship (PAR). 
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Use of calculated descriptors and experimental properties in PAR/SAR/QSAR 
may be illuminated through a formal exposition of the structure-property 
similarity principle—the central paradigm of the field of structure activity 
relationship [8]. Fig. 1 depicts the determination of an experimental property, e.g., 
measurement of octanol-water partition coefficient of a chemical, as a function 
: →  which maps the set C of compounds into the real line . A non-

empirical QSAR may be looked upon as a composition of a description function 
: →  mapping each chemical structure of C into a space of non-empirical 

structural descriptors (D) and a prediction function : →  which maps the 
descriptors into the real line. One example can be the use of electrotopological 
state indices for the development of QSARs [9]. When ∘  is 
within the range of experimental errors, we say that we have a good non-empirical 
QSAR model. On the other hand, the property-activity relationship (PAR) is the 
composition of : →  which maps the set  into the molecular property 
space  and : →  mapping those molecular properties into the real line . 
Property-activity relationship seeks to predict one property (usually a complex 
property) or bioactivity of a molecule in terms of other (usually simpler or easily 
determined experimentally) properties. For example, in the estimation of 
bioconcentraton factor using connectivity indices by Sabljic and Protic [10], it is a 
theoretically based PAR approach. On the other hand, the structure toxicity 
relationship (SAR) of narcotic industrial chemicals by Veith et al., [11] in fathead 
minnow (Pimephales promelas) is actually a mixed PAR model because the 
authors stated that log P (octanol-water) data consisted of a mixture of measured 
and fragment based calculated values. PAR models using only calculated property 
(e.g. all calculated partition coefficient, log P) are represented in the mapping: 
∘ ∘ : → , which is a composition of , : →  mapping the 

descriptor space into the molecular property space (e.g. calculation of log P from 
fragments using the additivity rule), and , as described in Fig. 1. 

2. THE TORTUOUS HISTORY OF QSAR: FROM 1868 TO THE
PRESENT TIME 

Everything should be made as simple as possible, but not simpler. 

— Albert Einstein 
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Crum-Brown and Fraser [12] reported their seminal observation in 1968 that the 
structure of quaternary compounds was related to their “physiological activity”. 

In the next phase, the emphasis shifted from structure to physicochemical 
properties of molecules as the factors underlying their biological activity. About 
two decades after Crum-Brown and Fraser’s initial observation, Richet [13] 
observed in 1893 that the toxicological activity of different classes of organic 
compounds was inversely related to their water solubility. Also, in the 1890s and 
at the turn of the century, Meyer [14] and Overton [15] made the pioneering 
observation that the biological activity of narcotic chemicals and nonspecific 
compounds like general anesthetics were related to their partition coefficients 
between polar and nonpolar solvents. From the thermodynamic point of view 
Ferguson [16] and Mullins [17] proposed that the thermodynamic activities of 
various narcotic chemicals in blood are approximately equal when they had equal 
observable biological effects. 

Regarding observed associations between physicochemical properties and 
biological activities of chemicals Molinengo and Orsetti [18] pointed out: “These 
correlations between physical properties of the molecules and their 
pharmacological activity have been taken as evidence that in certain cases 
biological activity is unrelated to molecular structure”. They pointed out that the 
principle of nonspecificity of drug action is often contradicted by various 
pharmacological data, e.g., oils and other substances with a very high oil-water 
partition coefficient and a low water solubility, are not hypnotic; the liposoluble 
camphor is a central nervous system (CNS) stimulant. Such data indicate that the 
'nonspecificity' principle is useful only for chemicals having molecular structure 
capable of eliciting the particular biological effect being studied. For example, 
barbiturates cause a depression of spinal reflexes. But methylation of both of the 
nitrogen atoms, which may increase its lipophilicity, transforms these molecules 
into excitatory drugs [18]. 

As discussed by Basak [4, 6], in the 1960s, Corwin Hansch’s group [19] 
formulated the linear free energy relationship (LFER) method of QSAR which 
was a multi-parameter approach involving lipophilicity as well as electronic [20] 
and steric [21] parameters originating from physical organic chemistry. The linear 
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solvation energy relationship (LSER) approach [22], related to the LFER 
methodology, is also dependent on experimental data. 

As pointed out by Basak [6], the commonality among the approaches from 
Richet’s rule to the LFER as well as LSER techniques is that these are 
fundamentally property-property relationships (PPRs) where physical and 
biological properties of molecules are predicted from a set of their measured 
physicochemical properties. Such PPR or PAR methods worked well in 
estimating toxicity and biological activity of congeneric sets of chemicals, but are 
difficult to apply when the data set under investigation is structurally diverse [23]. 

It may be mentioned here that both for LFER and LSER approaches attempts have 
been made to calculate the parameters (independent variables of models) from 
molecular structure alone. Calculation of octanol-water partition coefficient from 
structure is a well-known case [1]. The use of calculated quantum chemical 
descriptors instead of those derived from physical organic chemistry is also 
common [1]. Hickey and Passino-Reader [24] put forward a “rule of thumb” 
approach for the calculation of LSER descriptors. Famini and Wilson [25] 
proposed the use of the semiempirical MNDO method of quantum chemistry for 
the estimation of solvatochromic descriptors. 

As described by Basak et al., [4, 6, 26, 27], both in new drug discovery and 
hazard assessment of chemicals we face situations where very few or no 
experimental properties of chemicals under investigation are known. A reasonable 
alternative under such circumstances is the use of those descriptors for QSAR 
formulation which can be calculated directly from chemical structure. With this 
end in view Basak group of researchers developed the hierarchical QSAR 
(HiQSAR) approach [6, 27] where topological, geometrical, and quantum 
chemical descriptors are used for model building in a graduated manner. 

3. CALCULATION OF MOLECULAR DESCRIPTORS FOR QSAR

3.1. Definitions of Graph Theoretic Terms and Basic Concepts 

"The difference between the right word and the almost right word is 
the difference between lightning and a lightning bug”. 
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Mark Twain 

Mathematicians may flatter themselves that they possess new ideas 
which mere human language is as yet unable to express. 

James C. Maxwell 

The field of discrete mathematical chemistry or mathematical chemistry has 
emerged as an important discipline during past half century or so [4, 6, 27]. A 
major part of this discipline consists of concepts derived from chemical graph 
theory and molecular topology where various authors use different terminologies 
for the same concept. Therefore, it is useful for the reader if the definitions of the 
terms which will be used in this article are given at the outset. 

A graph G is defined as an ordered pair consisting of two sets V and E, G = [V, E], 
where V represents a finite nonempty set of points, and E is a binary relation, 
sometime symbolized also by R, defined on the set V. The elements of V are 
called vertices and the elements of E are called edges. Such an abstract graph is 
commonly visualized by representing elements of V as points and by connecting 
each pair (u, v) of elements of V with a line if and only if (u, v) ϵ E. The vertex v 
and the edge e are incident with each other, as are u and e. Two vertices in G are 
called adjacent if (u, v) ϵ E. A walk of a graph is a sequence beginning and ending 
with vertices in which vertices and edges alternate and each edge is incident with 
vertices immediately preceding and following it. A walk of the form v0, e1, v1, e2, 
…, vn joins vertices v0 and vn. The length of a walk is the number of edges in the 
walk. A walk is closed if v0 = vn; otherwise it is open. A closed walk with n points 
is a cycle if all its points are distinct and n ≥ 3. A path is an open walk in which all 
vertices are distinct. A graph G is connected if every pair of its vertices is 
connected by a path. A graph G is a multigraph if it contains more than one edge 
between at least one pair of adjacent vertices, otherwise G is a simple graph. The 
distance d (u, v) between vertices u and v in G is the length of the shortest path 
connecting u and v. The degree of vertex v, denoted by δv, is equal to the number 
of edges incident with v. The eccentricity e (u) of a vertex u in G is defined as e 
(u) = max d (u, v), where u, v ϵ V. The radius, ρ, of a graph is given by ρ = min e 
(u), for all u ϵ V. For a vertex v ϵ V, the first order neighborhood, r1(v), is a subset 
of V such that r1(v) = { u ϵ V| d(u, v) =1)}. The first-order closed neighborhood of 
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v, N 1(v), is defined as N1(v) = (v) U r1 (v) = r0(v) U r1 (v), where {v} is the one 
point set consisting of v only and may be taken as r0(v). If ρ is the radius of a 
graph, one can construct Ni(u), i = 1, 2, …, ρ, for each vertex u ϵ V. Two graphs, 
G1 and G2, are said to be isomorphic if there exists a one-to-one mapping of the 
vertex set of G1 onto that of G2 such that adjacency is preserved. Automorphism is 
the isomorphism of a graph G with itself. 

In a molecular graph, V represents the set of atoms and E or R represents the set of 
bonds present in the molecule. It should be noted, however, that the set E is not 
limited to covalent bonds only. In fact, elements of E may symbolize any type of 
bond, viz., covalent, ionic, or hydrogen bond, etc. It was pointed out by Basak et al., 
[28] that weighted pseudographs, which contain both self-loops (an edge by which a 
vertex is connected to itself) and multiple bonds between at least one pair of vertices, 
constitute a versatile model for the representation of a wide range of chemical 
species. In depicting a molecule by a connected graph G = [V, E], V may contain 
either all atoms present in the empirical formula or only non-hydrogen atoms. 
Hydrogen-filled graphs are preferable to hydrogen-depleted graphs when hydrogen 
atoms are involved in critical steric or electronic interactions or when hydrogen 
atoms have different physicochemical properties due to differences in their bonding 
neighborhoods. 

3.2. Methods for the Calculation of Topological Indices 

In many cases, the following is the sequence of steps in the representation and 
characterization of molecules using molecular topological methods: 

a) Representation of the molecule by a chemical graph of choice

b) Development of various matrices, viz., adjacency matrix, distance
matrix, etc. from the molecular graph

c) Extraction of invariants from the matrices as numerical molecular
descriptors

For details of the above three steps see [3, 4, 6, 27-29]. The first chapter by Basak 
[6] in this volume of the eBook has discussed these steps in some details. So, 
these are not repeated here for brevity. 
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In the formulation of information theoretic topological indices, an appropriate set 
of elements are extracted from the molecular graph model and the set is then 
partitioned using a properly defined equivalence relation. An equivalence relation 
is reflexive, symmetric, and transitive relation defined on a set and partitions the 
set into mutually disjoint subsets [30]. Subsequently, Shannon’s [31] relation is 
used for the calculation of information theoretic indices [6, 32, 33]. During the 
past four decades, Basak et al., [34-36] used different types of equivalence 
relations in the calculation of various classes of information theoretic indices 

3.3. Software for Calculation of Topological Indices, Atom Pairs and 
Quantum Chemical Descriptors 

In their research, Basak et al., have been using molecular descriptors calculated 
by MolconnZ [37], POLLY [38], an in-house software [39] developed for the 
calculation of Triplet indices [40] and APProbe [41], the last one being capable of 
calculating atom pairs (APs) [42] from molecular graphs. Quantum chemical 
descriptors were calculated using Sybyl v. 6.2 [43], MOPAC v 6.00 [44] and 
Gaussian [45]. 

Basak et al., [6] divided the topological indices (TIs) into two major groups: 
Topostructural (TS) indices and topochemical (TC) indices. TS descriptors are 
topological indices which are calculated from skeletal graph models of molecules 
which do not distinguish among different types of atoms in a molecule or the 
various types of chemical bonds, e.g.; single bond, double bond, triplet bond, etc. 
Thus, TS descriptors quantify information regarding the connectivity, adjacency, 
and distances between vertices of molecular graphs, ignoring their distinct 
chemical nature. TC indices, on the other hand, are sensitive to both the pattern of 
connectedness of the vertices (atoms), as well as their chemical/bonding 
characteristics. Therefore, the TC indices are more complex than the TS 
descriptors. 

Over the years Basak and coworkers have used different combinations of TS, TC, 
3-D, and quantum chemical indices. Table 1 below gives a typical list of 
molecular descriptors used by Basak group of researchers in the formulation of 
QSARs. The set of bonding connectivity indices, e.g., hχb (bonding path 
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connectivity index of order h = 0-6 and other indices of this bonding class) were 
defined for the first time by Basak et al., [28]. 

Table 1: Symbols, definitions and classification of topological indices 

Topostructural (TS) 

IW
D Information index for the magnitudes of distances between all possible pairs of 

vertices of a graph 

IW
D Mean information index for the magnitude of distance 

W Wiener index = half-sum of the off-diagonal elements of the distance matrix of a 
graph 

ID Degree complexity 

HV Graph vertex complexity 

HD Graph distance complexity 

IC Information content of the distance matrix partitioned by frequency of occurrences of 
distance h 

M1 A Zagreb group parameter = sum of square of degree over all vertices 

M2 A Zagreb group parameter = sum of cross-product of degrees over all neighboring 
(connected) vertices 

h Path connectivity index of order h = 0-10 
hC Cluster connectivity index of order h = 3-6 
hPC Path-cluster connectivity index of order h = 4-6 
hCh Chain connectivity index of order h = 3-10 

Ph Number of paths of length h = 0-10 

J Balaban’s J index based on topological distance  

nrings Number of rings in a graph 

ncirc Number of circuits in a graph 

DN2Sy Triplet index from distance matrix, square of graph order, and distance sum; 
operation y = 1-5 

DN21y Triplet index from distance matrix, square of graph order, and number 1; operation y 
= 1-5 

AS1y Triplet index from adjacency matrix, distance sum, and number 1; operation y = 1-5 

DS1y Triplet index from distance matrix, distance sum, and number 1; operation y = 1-5 

ASNy Triplet index from adjacency matrix, distance sum, and graph order; operation y = 1-
5 

DSNy Triplet index from distance matrix, distance sum, and graph order; operation y = 1-5 
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DN2Ny Triplet index from distance matrix, square of graph order, and graph order; operation 
y = 1-5 

ANSy Triplet index from adjacency matrix, graph order, and distance sum; operation y = 1-
5 

AN1y Triplet index from adjacency matrix, graph order, and number 1; operation y = 1-5 

ANNy Triplet index from adjacency matrix, graph order, and graph order again; operation y 
= 1-5 

ASVy Triplet index from adjacency matrix, distance sum, and vertex degree; operation y = 
1-5 

DSVy Triplet index from distance matrix, distance sum, and vertex degree; operation y = 1-
5 

ANVy Triplet index from adjacency matrix, graph order, and vertex degree; operation y = 1-
5 

kp0 Kappa zero 

kp1-kp3 Kappa simple indices 

Topochemical (TC) 

O Order of neighborhood when ICr reaches its maximum value for the hydrogen-filled 
graph 

Oorb Order of neighborhood when ICr reaches its maximum value for the hydrogen-
suppressed graph 

IORB Information content or complexity of the hydrogen-suppressed graph at its maximum 
neighborhood of vertices 

ICr Mean information content or complexity of a graph based on the rth (r = 0-6) order 
neighborhood of vertices in a hydrogen-filled graph 

SICr Structural information content for rth (r = 0-6) order neighborhood of vertices in a 
hydrogen-filled graph 

CICr Complementary information content for rth (r = 0-6) order neighborhood of vertices 
in a hydrogen-filled graph 

hb Bond path connectivity index of order h = 0-6 
hb

C Bond cluster connectivity index of order h = 3-6 

hb
Ch Bond chain connectivity index of order h = 3- 6 

hb
PC Bond path-cluster connectivity index of order h = 4-6 

hv Valence path connectivity index of order h = 0-10 
hv

C Valence cluster connectivity index of order h = 3-6 

hv
Ch Valence chain connectivity index of order h = 3-10 

hv
PC Valence path-cluster connectivity index of order h = 4-6 
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JB Balaban’sJ index based on bond types 

JX Balaban’sJ index based on relative electronegativities 

JY Balaban’sJ index based on relative covalent radii 

AZVy Triplet index from adjacency matrix, atomic number, and vertex degree; operation y 
= 1-5 

AZSy Triplet index from adjacency matrix, atomic number, and distance sum; operation y 
= 1-5 

ASZy Triplet index from adjacency matrix, distance sum, and atomic number; operation y 
= 1-5 

AZNy Triplet index from adjacency matrix, atomic number, and graph order; operation y  
= 1-5 

ANZy Triplet index from adjacency matrix, graph order, and atomic number; operation y 
 = 1-5 

DSZy Triplet index from distance matrix, distance sum, and atomic number; operation y 
 = 1-5 

DN2Zy Triplet index from distance matrix, square of graph order, and atomic number; 
operation y = 1-5 

nvx Number of non-hydrogen atoms in a molecule 

nelem Number of elements in a molecule 

fw Molecular weight 

si Shannon information index 

totop Total Topological Index t 

sumI Sum of the intrinsic state values I 

sumdelI Sum of delta-I values 

tets2 Total topological state index based on electrotopological state indices 

phia Flexibility index (kp1* kp2/nvx) 

Idcbar Bonchev-Trinajstić information index 

IdC Bonchev-Trinajstić information index 

Wp Wiener p 

Pf Platt f 

Wt Total Wiener number 

knotp Difference of chi-cluster-3 and path/cluster-4 

knotpv Valence difference of chi-cluster-3 and path/cluster-4 

nclass Number of classes of topologically (symmetry) equivalent graph vertices 

NumHBd Number of hydrogen bond donors 

NumHBa Number of hydrogen bond acceptors  
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SHCsats E-State of C sp3 bonded to other saturated C atoms 

SHCsatu E-State of C sp3 bonded to unsaturated C atoms 

SHvin E-State of C atoms in the vinyl group, =CH- 

SHtvin E-State of C atoms in the terminal vinyl group, =CH2 

SHavin E-State of C atoms in the vinyl group, =CH-, bonded to an aromatic C 

SHarom E-State of C sp2 which are part of an aromatic system 

SHHBd Hydrogen bond donor index, sum of Hydrogen E-State values for -OH, =NH, -NH2, 
-NH-,-SH, and #CH 

SHwHBd Weak hydrogen bond donor index, sum of C-H Hydrogen E-State values for 
hydrogen atoms on a C to which a F and/or Cl are also bonded 

SHHBa Hydrogen bond acceptor index, sum of the E-State values for -OH, =NH, -NH2, -
NH-, >N, -O-, -S-, along with -F and -Cl 

Qv  General Polarity descriptor 

NHBinty Count of potential internal hydrogen bonders (y = 2-10) 

SHBinty E-State descriptors of potential internal hydrogen bond strength (y =2-10) 

ka1-ka3 Kappa alpha indices 

Electrotopological State index values for atom types: 
SHsOH, SHdNH, SHsSH, SHsNH2, SHssNH, SHtCH, SHother, SHCHnX, 
HmaxGmax, Hmin, Gmin, Hmaxpos, Hminneg, SsLi, SssBe, Sssss, Bem, 
SssBH,SsssB, SssssBm, SsCH3, SdCH2, SssCH2, StCH, SdsCH, SaaCH, SsssCH, 
SddC, StsC, SdssC, SaasC, SaaaC, SssssC, SsNH3p, SsNH2, SssNH2p, SdNH, 
SssNH, SaaNH, StN, SsssNHp, SdsN, SaaN, SsssN, SddsN, SaasN, SssssNp, 
SsOH, SdO, SssO, SaaO, SsF, SsSiH3, SssSiH2, SsssSiH, SssssSi, SsPH2, SssPH, 
SsssP, SdsssP, SsssssP, SsSH, SdS, SssS, SaaS, SdssS, SddssS, SssssssS, SsCl, 
SsGeH3, SssGeH2, SsssGeH, SssssGe, SsAsH2, SssAsH, SsssAs, SdsssAs, 
SsssssAs, SsSeH, SdSe, SssSe, SaaSe, SdssSe, SddssSe, SsBr, SsSnH3, SssSnH2, 
SsssSnH, SssssSn, SsI, SsPbH3, SssPbH2, SsssPbH, SssssPb 

Geometrical (3-D) 
3DW 3D Wiener number based on the hydrogen-suppressed geometric distance matrix 
3DW H 3D Wiener number based on the hydrogen-filled geometric distance matrix 

VW Van der Waal’s volume 

Quantum Chemical (QC) 

EHOMO Energy of the highest occupied molecular orbital 

EHOMO-1 Energy of the second highest occupied molecular 

ELUMO Energy of the lowest unoccupied molecular orbital 

ELUMO+1 Energy of the second lowest unoccupied molecular orbital 

Hf Heat of formation 

 Dipole moment 
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4. HIERARCHICAL QSAR DEVELOPMENT AND VALIDATION 

4.1. The Major Pillars of QSAR: 3Ds- Data Quality, Descriptor Relevance, 
and Data Fitting 

“In God we trust; all others bring data”. 

W. Edwards Deming 

"For a successful technology, reality must take precedence over 
public relations, for nature cannot be fooled”. 

Richard P. Feynman 

The following are the prerequisites for the development of QSAR models: 

a) Reasonably large and good quality bioassay or physicochemical 
property data (dependent variable) for a set of chemicals, 

b) For the same set of chemicals, a collection of experimental data or 
relevant molecular descriptors (independent variables) which can 
adequately quantify aspects of molecular structure related to the 
physical property/biological activity, and 

c) Proper methods of data fitting to models and their validation 

A survey of modern QSAR literature would show that both experimentally 
determined physical properties [1] and substituent constants derived from test data 
as well as calculated molecular descriptors [2-6, 10-11, 22, 23, 25-27, 46-59] have 
been used for the formulation of QSARs. 

4.2. Statistical Methods 

It is not enough to do your best; you must know what to do, and then 
do your best. 

W. Edwards Deming 

शैले शैले न मािण ं मौ कं न गजे गजे । 
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साधवो निह सव  च नं न वने वने ॥ 

shaile shaile na maanikyam mauktikam na gaje gaje 

Saadhavo naahi sarvatra chandanam na vane vane 

(In Sanskrit) 

Not all mountains contain gems in them, nor does every elephant has 
pearl in it, noble people are not found everywhere, nor is sandalwood 

found in every forest. 

Chanakya 

While building a scientifically interpretable and technically sound QSAR model, 
the researcher needs to keep in mind some specific issues. First and foremost of 
them is checking whether a specific method is applicable, or ideally, determining 
the best method to model a specific QSAR scenario. For example, in a regression 
setup where the number of descriptors (p) is much larger than number of samples 
(n) i.e. p >> n, the estimate of the coefficient vector is not unique. This is also the 
case when predictors in the study are heavily correlated with one another to the 
extent that the ‘design matrix’ becomes rank-deficient. Both of these situations 
are highly relevant to the QSAR paradigm. In many contemporary QSAR studies, 
the number of initial predictors typically is in hundreds or thousands, while more 
often than not, mostly to mitigate experimental cost, the experimenter can collect 
only tens or hundreds of samples. This effectively makes the problem high-
dimensional (p >> n) in nature. Also, when a large number of descriptors on a set 
of chemicals are used to model their activity, it is only natural that some 
predictors within a single class or predictors in different classes are highly 
correlated to one another. Such situations can either be tackled by attempting to 
pick important variables through model selection or ‘sparsity’-type approaches 
(e.g. forward selection, LASSO [60], adaptive LASSO [61]), or finding a lower-
dimensional transformation that preserves most of the descriptor information, e.g. 
Principal Component Analysis (PCA), envelope methods [62]. A third option here 
would be using machine learning methods, or even combining several models to 
improve predictions [63]. 
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One can check the generalizability of a model, i.e. its ability to give competent 
predictions on ‘similar’ datasets (we shall discuss how this similarity is defined 
through applicability domains in a while) through validation on out-of-sample test 
datasets. For a small set of compounds, this is obtained by doing leave-one-out 
cross-validation, while for datasets with a larger number of compounds, a more 
computationally economical way is doing k-fold cross-validation: split the dataset 
randomly into k (previously fixed) equal subsets, take each subset in turn as test 
set and other compounds as training sets and obtain predictions. Comparing cross-
validation with the somewhat prevalent approach of external validation, i.e. 
choosing a single train-test split of compounds, we observe that in external 
validation the splits are chosen with the help of the experimenters’ knowledge or 
some ad-hoc criterion, while in cross-validation the splits are chosen randomly, 
thus intuitively providing a more unbiased estimate of the generalizability of the 
QSAR model. Furthermore, Hawkins et al., [64] proved theoretically that 
compared to external validation, cross-validation is a better estimator of the actual 
predictive ability of a statistical model for small datasets, while for large sample 
size both perform similarly. Quoting the authors, “The bottom line is that in the 
typical QSAR setting where available sample sizes are modest, holding back 
compounds for model testing is ill-advised. This fragmentation of the sample 
harms the calibration and does not give a trustworthy assessment of fit anyway. It 
is better to use all data for the calibration step and check the fit by cross-
validation, making sure that the cross-validation is carried out correctly”. 

Special care should be taken when combining conventional modelling with the 
additional step of variable selection dimension reduction. An intuitive, but wrong, 
procedure in this scenario would be to perform the first stage of pre-processing 
first, selecting important variables or determining the optimal transformation, and 
then use the transformed data/selected variables to build the predictive models and 
obtain predictions for each train-test split. The reason this is not appropriate is that 
the data is split only after the variable selection/dimension reduction step, thus 
essentially this method ends up using information from the holdout 
compound/split to predict activity of these very samples. This Naïve cross-
validation procedure causes synthetic inflation of the cross-validated q2, hence the 
predictive ability of the model [65, 66] (See Fig. 2). A two-step procedure 
(referred in Fig. 2 as ‘Two-deep CV’) helps navigate this situation. Instead of 
doing the pre-model building step first and then taking multiple splits for out-of-
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sample prediction, for each split of the data the initial steps are performed only 
using the training set of compounds each time. Since calculations on two different 
splits are not dependent on each other, the increased computation load due to 
repeated variable selection can be tackled using parallel processing. 

Figure 2: Difference between naïve and two-deep cross validation (C V). 

4.3. Applicability Domain of QSAR Models 

The final important issue one needs to handle while developing a QSAR model is 
that of defining applicability domain (AD) of the model. This is a required 
criterion of any valid implementable QSAR model according to OECD principles 
[67]. There are several methods of defining the AD of any statistical model, and 
these can be roughly put into two categories: explicitly attempting to define the 
active predictor space through some method like bounding box, PCA or convex 
hulls; and distance-based methods that calculate the similarity of a new compound 
to the set of compounds which have been used to build the training model. To 
obtain predictions for any incoming test sample using the model developed, the 
first set of methods are used to ensure that the compound belongs to the so-called 
‘active subspace’: which essentially means we are doing interpolation, not 
extrapolation [68, 69]. For the distance-based approach, a pre-defined statistic is 
calculated to quantify the proximity of the new compound to the training set, and
based on whether that statistic is above or below a certain cutoff, predictions for 
that compound are obtained [68, 70]. 
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4.4. Hierarchical QSAR of Congeneric and Diverse Sets: An Example with 
Chemical Mutagens 

"Computers are incredibly fast, accurate, and stupid. Human beings 
are incredibly slow, inaccurate, and brilliant. Together they are 
powerful beyond imagination”. 

Albert Einstein 

In the 1990s, Basak group formulated the principle of hierarchical HiQSAR 
approach [46-53] and applied it in the prediction of physical property as well as 
bioactivity/toxicity of chemicals at the levels of enzymes, receptors, cells, and 
whole organisms. In this approach, one uses more complex and resource intensive 
descriptors only if they result in significant improvement in the quality of the 
predictive model as compared to the simpler indices. We begin by building QSAR 
models using only the TS descriptors, followed by the creation of additional 
models based on the successive inclusion of the hierarchically ranked descriptor 
classes (Fig. 3). By comparing the resulting models, the contribution of each 
descriptor class is elucidated. In addition, the hierarchical approach enables us to 
determine whether or not the higher level descriptors are necessary in predicting 
the property or activity under consideration. In situations where the complex 
descriptors are not useful, we can avoid spending the resource required for their 
calculation. The full hierarchical QSAR scheme involving TS, TC, 3-D, and the 
different levels of quantum chemical indices as well as biodescriptors [54-59] 
derived from proteomics patterns are shown in Fig. 3 below. In this chapter, 
however, our discussion will be restricted to the chemodescriptors only. 

The work by Majumdar et al., [71] implemented some of the important points 
described above, viz., the importance of feature selection, relevance of integrating 
recent methodological research taken from the omics area into the QSAR 
paradigm, and two-fold cross-validation. In this chapter, we discuss the QSAR 
models for predicting mutagenicity of the homogeneous set of 95 aromatic and 
heteroaromatic amines using a combination of TS+TC+3-D + QC descriptors and 
predictive models of a diverse set of 508 chemical compounds built hierarchically 
using 5 types of descriptors: TS, TC, 3D, QC, and atom pairs: the total number of  
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Figure 3: Hierarchical use of chemodescriptors and biodescriptors in QSAR. 

predictors for the 508 set being 2,525. A machine learning method called 
Interrelated Two-way clustering (ITC), originally developed for application in 
gene microarray data [72], is used for variable selection, and resulting predictors 
are fed into a ridge regression model to get final predictions. The ITC algorithm 
involves the following steps: 

i. Predictors are clustered into separate groups, say , , … , , which
are substituted by several types of descriptors in QSAR;

ii. After that samples are clustered into two classes using each group,
Say ,  and , ; 1,2, … , ;

iii. All possible intersections of the 2k clusters are taken. For example, for
k = 2 the intersections are:

, ⋂ , ; 	 , ⋂ , ; 	 , ⋂ , ; 	 , ⋂ ,  

iv. These are divided into heterogeneous groups: pairs of intersections
with no common elements, e.g. ,  and ,
above;

Complexity Cost

Biodescriptors

Relativistic ab initio

Solvation state ab initio

In vacuuo ab initio

Geometrical/ Chirality parameters

Topochemical indices

In vacuuo semi-empirical

Topostructural indices



Current Landscape of Hierarchical QSAR Advances in Mathematical Chemistry and Applications, Vol. 1, (Revised Edition)   269 

v. For each , , cosine distances of subvectors with predictors
from this heterogeneous group are calculated with the two model
vectors: one with  zeros and  ones, and another with  ones and 
zeros. Each distance vector is sorted in decreasing order, top one-third of
predictors are taken from each of these vectors and are merged.

The algorithm is then repeated with selected predictors, and terminated when 90% 
of total number of samples is covered by the largest heterogeneous group, or 
maximum number of iterations reached. This is done because through the 
algorithm the groups become more and more similar, so sample classifications 
using them become more and more similar, thus heterogeneous groups cover an 
increasing proportion of total number of samples. 

Two-deep cross-validation is used to obtain misclassification percentages. The 
findings obtained can be summarized into two points: 

1. The prediction performances were almost same as those obtained in a
previous study [49] that used the full set of predictors, demonstrating
the utility of variable selection;

2. There is a significant improvement in model performance when TC
predictors are added to a model built on only TS predictors, but beyond
that, inclusion of 3D and QC predictors do not improve the model
quality, although these are more computationally intensive to calculate.

The above findings were reinforced by results in a subsequent paper [73]. Apart 
from the ITC + ridge regression framework used in the previous paper [71], this 
study also introduces a new method of dimension reduction called envelope method 
into QSAR modelling, and combines it with linear discriminant analysis in a binary 
classification scenario. The methods are used on two datasets: the first one being the 
structurally diverse 508 mutagen data and the second one is a homogeneous dataset 
comprised of 95 aromatic and heteroaromatic amines mutagens [74]. Table 2 and 3 
summarize the findings obtained from this analysis. The benefits of adding 3D and 
QC descriptors are visible only for envelope + LDA analysis on the 508 compound  
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Table 2: Comparison of performances of model 1 (RR and ITC+RR) for diverse and congeneric 
datasets 

Dataset 
used 

Predictive 
model 

Type of 
predictor used 

No. of 
predictors 

Correct 
classification 

% 
Sensitivity Specificity 

508 
compound 
diverse 
dataset 

Ridge 
regression 
[49] 

TS 103 53.14 52.34 53.97 

TS+TC 298 76.97 83.98 69.84 

TS+TC+3D+QC 307 77.17 84.38 69.84 

ITC+ RR 

TS 103 66.34 73.83 58.73 

TS+TC 298 73.23 77.34 69.05 

TS+TC+3D 301 74.80 77.34 72.22 

TS+TC+3D+QC 307 72.05 76.17 67.86 

TS+TC+AP [71] 2620 78.35 84.38 72.22 

95 amines 
congeneric 
dataset 

Ridge 
regression 
 

TS 108 83.16 75.47 88.42 

TS+TC 266 84.21 77.36 92.86 

TS+TC+3D 269 84.21 77.36 92.86 

TS+TC+3D+QC 275 84.21 77.36 92.86 

ITC + RR 

TS 108 88.42 92.45 83.33 

TS+TC 266 89.47 92.45 85.71 

TS+TC+3D 269 88.42 92.45 83.33 

TS+TC+3D+QC 275 85.26 88.68 80.95 

Table 3: Comparison of performances of model 2 (Envelope LDA) diverse and congeneric datasets 

Dataset 
used 

Type of predictor 
used 

No. predictors 
Correct 
classification % 

Sensitivity Specificity 

508 
compound 
diverse 
dataset 

TS 103 57.09 65.63 48.41 

TS+TC 298 60.24 69.92 46.43 

TS+TC+3D 301 61.02 71.09 50.79 

TS+TC+3D+QC 307 64.37 69.14 59.52 

95 amines 
congeneric 
dataset 

TS 108 81.05 92.86 71.70 

TS+TC 266 80.00 83.33 77.36 

TS+TC+3D 269 80.00 83.33 77.36 

TS+TC+3D+QC 275 71.58 78.57 66.04 

dataset. We also observe that for the smaller, homogeneous dataset, adding other 
classes of descriptors on top of a model built using only TS descriptors does not  
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improve out-of-sample predictions, while a considerable jump in correct 
classification percentage, sensitivity and specificity is observed in all the cases TC 
descriptors are added in a TS-only model on the 508 compound dataset. This lends 
support to the ‘Diversity begets diversity principle’ [75], according to which there is 
a possible tradeoff between model complexity and composition of the dataset at 
hand: it is enough to use one single type of predictors to model ‘well-behaved’, 
homogeneous set of compounds, while a more diverse set of compounds requires a 
diverse collections of predictors to be used in modelling for the purpose of obtaining 
plausible prediction performance. Distinction between the two datasets is visible in 
pairwise plots of first 3 principal components in Fig. 4. The distinction of two 
classes is quite clear for the 95 compound data (right column of Fig. 4), but not for 
the diverse 508 compound data (left column). 

DISCUSSION AND CONCLUSION 

He who loves practice without theory is like the sailor who boards 
ship without a rudder and compass and never knows where he may 

cast. 

Leonardo da Vinci 

The objectives of this paper were three-fold: a) Investigate the use of HiQSAR 
approach developed by Basak et al., [46-59] in the development of models for the 
prediction of mutagenicity of chemicals from their calculated descriptors, b) 
Study the relative niches of the congenericity versus diversity begets diversity 
principles [73], and c) Test the ability of different robust statistical methods in 
model development in rank deficient scenarios. 

For, the congeneric 95 aromatic and heteroaromatic mutagens the addition of TC, 
3-D, and quantum chemical indices after the use of TS descriptors did very little 
improvement in model quality. This is in line with our previous studies using 
HiQSAR approach [46-53] for various physicochemical, biomedical, and 
toxicological properties. The contrast in the results using TS and TC descriptors is 
also revealing. Whereas for the congeneric set of amines TS descriptors alone 
gave good quality models (Tables 2 and 3), TC descriptors were very helpful 
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(Table 2) in augmenting model quality for the 508 set. As discussed earlier, Basak 
et al., [6, 27] coined the term “topostructural” for those topological indices which 
were defined on simple skeletal graphs that encode information regarding the size, 
shape, complexity, branching, etc. of molecular graphs ignoring, at the same time, 
chemically important features of vertices like atom types, bonding pattern, 
electron distribution. That such indices explain most of the variance in 
mutagenicity of the amines indicates that the variance in the dependent variable is 
determined by the general features of molecular constitution. On the other hand, 
for the 508 diverse set of mutagens (Table 2) the TC indices make a significant 
improvement in model quality indicating an important role of molecular 
electronic character over and above the general structural features of the 
chemicals under investigation. Further investigation with other sets of congeneric 
and structurally diverse sets of chemicals are needed to understand the relative 
utility of the congenericity principle versus the diversity begets diversity principle 
in the general scheme of QSAR development. 

Since the 1980s Basak and coworkers have been active in the exploration of 
various statistical methods in harnessing the collective power of calculated 
molecular descriptors, easily calculated topological indices in particular, in the 
selection of analogs and formulation of QSARs [76-81]. When regressions using 
individual descriptors failed for diverse sets of chemicals, Basak et al., [28] began 
using robust statistical methods like PCA to extract useful information from the 
diverse collection of indices. Sometime methods like VARCLUS procedure of 
SAS [82, 83] was used to extract useful information. Subsequently, as more and 
more descriptors and software for their calculation became available and the 
situation became rank deficient, we started using appropriate methods [84] like 
principal components regression (PCR), partial least square (PLS), and ridge 
regression (RR) in QSAR model building. More recently, we tried interrelated 
two-way clustering or ITC [72] and in this paper used the envelope method [62] 
in QSAR formulation. 

From the first formulation of graph theoretic indices or topological indices in 
1947 by Wiener [85], many topological indices have been devised by 
mathematical chemists [3, 9, 27, 29, 32-36, 76, 86-88]. They have worked well in 
their specialized, local domains for which they were devised. But when they are 
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compared with one another using a diverse data set and the PCA methodology 
[28], many of the indices, intuitively asserted to be mutually different, were 
loaded to the same PC. Here we give the results from our PCA study on the on the 
90 indices calculated by POLLY [38] for the diverse set of 3,692 chemicals [28]: 
a) PC1 was highly correlated (0.96 > r > 0.69) with the size and shape of the 
molecular graph; b) Higher order information theoretic indices (IC, CIC, and 
SIC), quantifying molecular complexity, were highly correlated with PC2 with 
average correlation r = 0.8; c) PC3 was correlated highly with cluster (0.55 < r 
<0.69) and path/cluster (0.27< r <0.59) connectivity indices; because these 
indices have traditionally been associated with branching in a molecular graph, 
this PC was interpreted as reflecting molecular branching; d) PC4 was clearly 
correlated with cyclic terms of the molecular connectivity indices. As more and 
more molecular descriptors are available, we need to do such studies with 
augmented sets of indices to find out which subsets of them are useful for QSAR 
and other purposes. 

The era of “big data” has arrived [89]. The different aspects chemistry, computer 
aided drug design, and predictive toxicology/environmental ecotoxicology will be 
guided by big data and real time analytical/predictive tools associated with them 
[90, 91]. While discussion is going on about the 4Vs-- volume, velocity, variety 
and veracity-- of big data [92], proper data analytical tools are needed for the 
recognition of the interesting and latent relationships among the huge amount of 
data that is being generated in the virtual screening arena [93]. We hope some of 
the statistical methods that Basak and coworkers have been exploring since the 
1980s will help in shedding some light in this area. The fifth V in the data area, 
value or price of computation, has been proposed by Basak et al., [89]. The 
HiQSAR studies of Basak and coworkers are intimately connected with this V #5. 
In a HiQSAR study on a set of halocarbons, a group of chemicals important for 
both organic synthesis and environmental toxicology, Basak et al., [94] used TS, 
TC, 3-D and different quantum chemical indices, viz., semiempirical AM1, and ab 
initio STO-3G, 6-31G(d), 6-311G, 6-311G(d), and cc-pVTZ level descriptors. 
While a combination of TS and TC indices gave a reasonable model (R2

cv = 0.81; 
s. e = 0.57), the addition of AM1, and ab initio STO-3G, 6-31G(d), 6-311G, and 6-
311G(d) indices did not make any improvement in model quality. But the addition 
of cc-pVTZ indices improved the correlation (R2

cv = 0.92; SE = 0.38). Under such 



Current Landscape of Hierarchical QSAR Advances in Mathematical Chemistry and Applications, Vol. 1, (Revised Edition)   275 

circumstances one will have to use their judgement whether such expensive 
calculations are called for or one will be satisfied with the TS and TC type indices 
which can be calculated fast and work well in many cases. Basak et al., [95, 96] 
found that topological indices are capable of developing good quality QSARs for 
physicochemical, biomedical, and toxicological properties of both congeneric and 
diverse sets of chemicals. Some studies with anticancer 2-phenylindoles [97], 
active against breast cancer cells, and boron-containing dipeptide proteasome 
inhibitors [98] indicate that TS and TC based QSARs compare well with those 
developed using comparative molecular field analysis (CoMFA) methods. 

In this age of high-performance computing, the landscape of predictive analytics 
is undergoing rapid changes and developments. To satisfy all OECD requirements 
of a valid QSAR model, namely a definite endpoint, a clear algorithm, specified 
applicability domain, measures of model performance and interpretation [66], we 
need to leverage these new methods as well as adapt to their theoretical 
framework. While statistical models often provide clear interpretability of 
predictor effects owing to their well-defined mathematical structures, and can be 
used to model complex scenarios like temporal dependency, off-the-shelf machine 
learning tools tend to perform better when prediction is the main goal. Finally, 
opening up to the applications of latest methods being developed and adhering to 
strict data- analytic procedures has the potential of developing more 
interdisciplinary collaborations, a wider audience, and, most importantly, a better 
understanding of the underlying scientific processes. 
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Abstract: A review of methods employed for the assessment of druglikeness using 2D 
structural and atom type descriptors is presented. These methods are classified as Drug-
like Filters (DLFs) and Druglike Indices (DLIs), depending on the characterization of 
druglikeness, using known drug and non-drug databases. The DLF methods specify a 
set of rules based on calculated property distributions, whereas the DLI methods aim to 
assess druglikeness through a single number derived from multiple descriptors. A 
review of ranges calculated from property profiles of known drugs is given, along with 
a careful re-assessment for twenty five descriptors based on an analysis of a recent drug 
database. A discussion of future direction for the development and utility of these 
approaches is presented. 

Keywords: Lead-likeness, drug likeness, structural descriptors, drug like index, 
atom type diversity, relative drug-likeness potential, ALOGP, UALOGP, druglike 
descriptors, chembridge database, drugs database, drug properties, atom 
classification, structural diversity, lead optimization. 

INTRODUCTION 

Tapping the knowledge in available drug databases is clearly a vital aspect of new 
drug discovery, aiding in various phases of pre-clinical drug discovery, starting 
from generating hits and lead identification to lead optimization and pre-clinical 
candidate selection. Though the chemical constitution of a drug will always be 
unique in some respect, analysis of structural descriptors at atomic, moiety and  
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molecular levels enabled several useful characterizations of drugs, leading to 
metrics of druglikeness. The present chapter reviews various developments in the 
assessment of druglikeness since the seminal publications of Lipinski [1], and 
presents some new developments in the analysis of drug properties, especially at 
the atomic level. Such assessments employed a multiplicity of approaches [1-30], 
which can be broadly classified into two categories: Drug-like filters (DLF) and 
Drug-like indices (DLI). The former approach specifies a set of property ranges or 
preferences based on distributions of physico-chemical and structural properties 
of drugs through an analysis of drug databases, which form a DLF. The latter 
approach employs a fitting procedure using drug and non-drug databases, and 
structural descriptors to derive a DLI, which is a single index for the assessment 
of relative druglikeness. 

DEVELOPMENT OF DRUG-LIKE FILTERS (DLFS) FROM 
STRUCTURAL DESCRIPTORS 

The first DLF, the Ro5 (Rule of 5) developed by Lipinksi and co-workers [1] is 
specific with regard to the upper bounds of four important properties considered 
and how they are computationally assessed, based on an analysis of orally 
absorbed drugs. Ro5 is satisfied for a given molecule when, (i) calculated Log P 
less than 5, (ii) number of H-bond donors is less than 5 (iii) number of H-bond 
acceptors is less than 10 and (iv) molecular weight is less than 500. Of these, we 
note that, log P assessment is dependent on the method used and a lower value of 
4.15 is indicated when Moriguchi Log P method is used [1], though better 
methods exist for accurate calculations of Log P such as ALOGP and CLOGP 
[see e.g., 31-33]. Ro5 filter, however, does not apply when substrates for 
transporters, natural products and biological drugs are analyzed. Subsequent 
property profiling of drug databases led to important extensions and inclusion of 
additional properties in the creation of DLFs, such as molar refractivity, atom 
counts [3] and PSA [28-30] for such rule-based assessments. 

Ghose et al. [3, 4] showed that property ranges also depended on the class of 
drugs, and compiled ranges for a number of properties, including topological, 
physicochemical and other structural descriptors. Ghose et al. [3] worked out the 
ranges of properties occupied by 80% and 50% of known drugs, and showed that 
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molecular weight and calculated Log P of many drugs exceed the Ro5 limits by 
their estimates. Thus, the Log P range (based on ALOGP98 calculations [31, 32]) 
is shown to be -0.4 to 5.6, exceeding Ro5 limit of 5.0. Based on these ranges, over 
20% of anti-hypertensive drugs exceed the Ro5 limit on molecular weight. DLF 
developed by Ghose et al. [3] has the following properties (i) Log P between -0.4 
and 5.6; (ii) Molar Refractivity between 40 and 130; (iii) Molecular weight 
between 160 and 480; (iv) total number of atoms between 20 and 70; (v) 
structurally a combination of several of the following groups: phenyl, heterocyclic 
ring, aliphatic amine, alcoholic hydroxyl, a carboxy ester, a keto group; and (vi) 
absence of reactive group(s) that causing instability in physiological buffer. 

 

Figure 1: (a) ALOGP98, (b) AMR89, (c) MW, and (d) NATS ranges covering different fractions 
of Drugs and non drugs, as defined in Viswanadhan et al. [6]. The middle bright colored part 
covers 50% of each database. Dark colored extensions on either side constitute another 30%, 
covering 80% range, and another 15% is added by further light colored extensions, covering 95% 
range. From top, ranges based on GVW criteria [3] are shown, followed by the ranges obtained by 
Viswanadhan et al. [6] (VRB ranges). Lipinski range cutoff is shown as a bright red line for 
calculated Log P and MW. 

Recently, Viswanadhan et al. [6] analyzed property preferences at atomic and 
molecular levels for drugs, leads, and nondrugs, to be considered for library 
design and lead optimization in drug discovery, using several drug and non-drug 
databases [34-36]. Fig. (1) shows a comparison of DLFs by Ghose et al. [3] and 
Viswanadhan et al. [6], with respect to four physicochemical properties. Work by 
Viswanadhan et al. [6] shows that the 95% LogP (by the ALOGP98 method [31, 
32]) range is 2.2 to 6.1, while the Ro5 excludes at least 10% of orally absorbed 
known drugs, over a decade ago. The absence of lower limit for log P in Ro5 may 
additionally cause the inclusion of highly hydrophilic compounds as druglike, as 
the rules permit up to fifteen polar atoms in a molecule. Interestingly, non-drugs 
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also strongly overlap the ranges shown for drugs and this requires some 
explanation. Of the several commercially available compound databases available 
in ZINC [34], Viswanadhan et al. [6] chose the Chembridge database [36], which 
is quite large (>230000 compounds) with a diverse collection of synthesizable 
organic compounds. Two independent random sets of 10000 molecules each, 
which pass the filters as described below, were utilized for assessment. These sets 
were filtered to exclude highly lipophilic (calculated log P > 8.0) and highly 
hydrophilic compounds (calculated log P < -5.0), similar to earlier analyses [3]. 
Also excluded were compounds which are unusually small (< 100 MW or < 14 
atoms or < 10 heavy atoms) or large (> 800 MW or > 100 atoms), polymers, 
peptides, quaternary ammonium, multiple acids and phosphates. This additional 
filtering excluded entries which are not of particular interest as small molecule 
drug candidates, which would be of interest to synthetic and medicinal chemists 
needing guidance for compound acquisition and screening (virtual or real high 
throughput screening). Among other developments, a few of the significant 
analyses may be mentioned. Bemis and Murcko [17] identified and analyzed 
molecular frameworks and side chains found in drugs. Kutchikian et al. [21] 
developed a method for de novo generation of druglike molecules. Hann et al. 
[23] analyzed molecular complexity and its impact on the probability of finding 
leads for drug discovery. Recent studies identified distinct physicochemical 
profiles of different drug classes, e.g., respiratory drugs, marketed vs. 
development drugs etc. [24, 25]. 

Unlike heteroatom counts, Polar Surface Area (PSA) is a direct, single number 
measure of overall polar character and is also shown to be useful in the 
assessment of oral absorption [28]. Egan et al. [28] proposed an elliptical filter, in 
a two dimensional plot of Log P and PSA. This construct is consistent with earlier 
work [29-30] that identified upper limits of PSA for oral absorption as 140 Å2 or 
120 Å2. 

Through several observations and careful analyses, Leeson [2] makes a strong 
case for lowering lipophilicity of small molecule as a means for attaining a small 
(~5%) improvement in attrition, which could double the output of new medicines 
and reduce compound-related toxicological attrition. 
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Table 1: Drug like descriptors, their optimal values and preferred range 

Descriptors Best Value 
Preferred 

Range 
Phenacetin Gabapentin 

Number of Non-H atoms 22 17 – 27 13 12 

Number of SSSR 3 1 – 3 1 1 

Molecular Cyclized Degree (MCD) 11 7 – 13 19 20 

Number of Non-H Rotatable Bonds 6 4 – 9 4 3 

Number of Non-H Polar Bonds 6 5 - 10 5 3 

Number of Terminal Methyl Groups 0 0 – 1 4 3 

Number of N-H Donors 1 0 – 1 1 1 

Number of O-H Donors 0 0 – 0 0 1 

Number of Hydrogen Bond Donors 1 0 – 2 1 2 

Number of Hydrogen Bond Acceptors 3 2 – 4 3 3 

Number of O & N Atoms 4 3 – 6 3 4 

Number of 2 Degree Acyclic Atoms 1 1 – 3 3 2 

Number of 3 Degree Acyclic Atoms 0 0 – 1 1 1 

Number of non substituted ring atoms 8 4 – 9 4 5 

Number of substituted ring atoms 6 3 – 7 2 0 

Number of one level bonding pattern 0 0-1 1 1 

Number of two level bonding pattern 0 0-0 0 0 

Number of three level bonding pattern 0 0-0 0 0 

Number of Building Blocks 2 2 – 4 3 3 

Number of Aromatic Systems 1 0 – 1 1 0 

Number of Cyclic Building Blocks 1 1 – 1 1 1 

Number of Linkers 0 0 – 0 0 0 

Number of Caps 2 1 – 3 2 2 

Maximum SSSR size 6 5 – 6 6 6 

Maximum Cap Size 1 1 – 4 4 4 

Druglike Index (DLI) 77.61 68.06 

DRUGLIKE INDEX (DLI) FROM STRUCTURAL DESCRIPTORS 

The first set of efforts to quantify druglikeness as a single number measure 
employed non-linear approaches such as neural networks [4-16, 18, 20-21] using 
molecular descriptors such as atom pair frequencies [8], whole molecule 
properties [9], ALOGP atom types [10], and ISIS keys [14]. Among the earliest 
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methods of calculating DLI were the approaches of Sadowski and Kubinyi [10], 
and Ajay and Murcko [14], using neural networks. Sadowski and Kubinyi’s [10] 
method employed ALOGP atom types [31,32] as descriptors, to construct a feed 
forward neural network, trained based on the back propagation with a momentum 
scheme. The method developed by Ajay and Murcko [14], used a similar 
procedure with ISIS keys as structural descriptors. In another of the earliest 
approaches, Xu and Stevenson [9] performed an analysis of structural diversity in 
drugs using selected descriptors, and computed their distributions in known drugs. 
Based on these distributions, a drug-like compound cluster center is formed. The 
cluster centers are used to rank compounds in any library in terms of their “drug-
like” indices (DLI) The DLI was defined using the following equation, where n 
refers to number of descriptors. 

( ( ))
1

n
nDLI Score Descriptor i

i
 


 (1) 

The drug-like cluster center is developed from the distributions of 25 selected 
structural descriptors, identified in Table 1 [9]. The curve of relative population 
versus the DLI value is used as a simple means to assess the structural diversity 
and druglikeness of a library. Table 1 also shows the cluster center (best value) 
and preferred range (minimal range occupied by 50% of known drugs) calculated 
from the distribution of these properties in a recent drug database (Drugs_all 
database taken from reference 6).  

Phenacetin Gabapentin 

  

Figure 2: Structures of Phenacetin and Gabapentin. 

Hutter [8] developed a unique approach for DLI, based on the distribution of atom 
types and their pair-wise combinations in known drugs and non-drugs. A 
statistical analysis of the occurrence probabilities of atom types was used to 
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derive a DLI score. Although any kind of fitting is not done, drugs were predicted 
with an accuracy of over 70%. This work highlighted the significance employing 
atom types and their pairs as descriptors for the assessment of druglikeness and 
DLI calculations. Furthermore, Hutter and coworkers also described ways to 
gradually filter molecules for druglikeness using a multiplicity of approaches [22]. 

STRUCTURAL DESCRIPTORS FOR THE ANALYSIS OF 
DRUGLIKENESS: ATOM TYPE DIVERSITY 

Recent work on characterization of intrinsic structural diversity [6] was based on 
the concept that atom classification is hierarchical, with elemental types at the 
primary level. ALOGP [31, 32], and UALOGP [6] classifications constituted 
secondary and tertiary levels of finer differentiation. UALOGP [6] representation 
considered hydrogen atoms implicitly, i.e., only heavy atoms were used for 
assessment. Three structural diversity measures were defined for a molecule with 
NHATS heavy atoms. 

P1=Number of element types / NHATS (1) 

P2=Number of heavy atom types / NHATS (2) 

P3=Number of united atom types / NHATS (3) 

Here, the P’s define the atom type diversity based on elemental types (equation 2, 
P1), ALOGP [23] heavy atom types (equation 3, P2) and united atom (UALOGP 
[6]) types (equation 4, P3). Atom type diversity (ATD) was defined as the product 
of P1, P2 and P3, times 100 (a scale factor). 

ATD = P1.P2.P3 X 102 (4) 

This definition ensured equal weight to each level of atom classification. 
Viswanadhan et al. [6] showed that the profiles of ATD are distinct for drugs and 
non-drugs. Their analysis indicates that drugs are seen to have higher ATD scores, 
though ~50% of drugs have ATD scores below 5. For non-drugs, this percentage is 
much higher (> 80%). For non-drugs, scores greater than 7 are much rarer (4 % for 
non-drugs vs. 25% for drugs). Thus, drugs are seen to be significantly richer with 
regard to atom type diversity [6]. The average ATD values for non-drugs and drugs 
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are 3.59 and 5.78 respectively. Using this parameter, Viswanadhan et al. [6] also 
showed that leads are structurally more diverse than drugs. As examples, drugs 
shown in Fig (2) may be considered, which includes Phenacetin and Gabapentin. 
Phenacetin, one of the oldest drugs introduced in 1887, was used as an analgesic but 
later discontinued due to its potential for carcinogenicity [37] and it was replaced by 
a safer alternative Paracetamol which is a metabolite of this drug. The oral drug 
Gabapentin [38] was originally developed for the treatment of epilepsy, and 
currently it is widely used to relieve pain, and neuropathic pain. Gabapentin was 
originally approved by the U.S. Food and Drug Administration (FDA) in 1994 for 
use as an adjunctive medication to control partial seizures. In 2002, an indication 
was added for treating postherpetic neuralgia other painful neuropathies, and nerve-
related pain. These molecules have relatively ATD values of 9.8 and 9.7. 

ATOMIC LEVEL ASSESSMENT OF DRUGLIKENESS 

In order to quantitatively elucidate druglikeness at the atomic level, Viswanadhan et 
al. [6] undertook a comprehensive analysis of atom types in known drugs, leads and 
a representative set of non-drugs. The starting point for this analysis was ALOGP, an 
atom type representation [31, 32], developed and validated for calculation molecular 
properties such as lipophilicity and molar refractivity, and also for QSAR 
applications. The latest version of this representation contains 44 carbon types, 10 
hydrogen types, 9 oxygen types, 2 selenium types, 6 types for each of the halogens, 
5 sulfur types, 1 type each for silicon and boron, and 6 phosphorus types. A more 
elaborate united atom representation (UALOGP), with implicit hydrogens was 
developed from this, for a detailed characterization of druglikeness [6]. 

Tables 2 and 3 show the distributions of atom types, for the drug and non-drug 
datasets of Viswanadhan et al. [6]. These types are defined in Table 4. Table 2 (a) 
shows the distribution of ALOGP atom types in different fractions of the drug 
database. Table 2(b) shows the distribution profile of UALOGP united atom 
types. Tables 3(a) and 3(b) show similar distribution profiles of atom types for the 
non-drug database. From these tables, it is easy to delineate what percentage 
range of a database contains a given atom type. For example, 15 atom types are 
not found in the drug database. Type 24 (benzene type carbon without an R-group 
attached) is found in 80% of the database, making it the most abundant heavy 
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atom type in drugs, followed by the types 6 (methylene linker carbon attached to a 
carbon and a heteroatom), 25, 26 (benzene type carbon with an attached R group) 
and 58 (carbonyl oxygen) which are found in 60 to 70% of all drugs. Type 58 is 
the most abundant hetero atom type in the drug database. From Table 2(b) it is 
seen that the type 24a (70 - 80%) is the most abundant carbon type followed by 
type 6a observed in 50 - 60 % of the drug database. Here type 6b (the alpha 
carbon subtype) is present in less than 10% of the drug database. This type 6a is 
one of the most abundant type observed in the non-drug database (6a is found in 
80 - 90% while type 6b is found in 10-20% of the non-drug database). 

Table 2(a): Distribution of atom types in the Drugs_all database. Atom types (original ALOGP) 
found in different database fractions or percentages 

Percent of the 
Database Atom Types Found 

0% 64 65 92 93 98 101 102 103 104 112 113 114 115 116 119 

0 - 10% 

7 10 12 13 14 15 18 19 20 21 22 23 29 30 31 32 33 34 35 36 37 39 42 43 44 54 55 61 63 66 
67 68 69 70 71 76 77 78 81 82 83 84 85 86 87 88 90 91 94 95 96 97 99 100 106 108 109 
110 111 117 118 120 

10 – 20% 4 9 11 16 17 27 28 38 41 49 53 57 59 73 74 89 107 

20 – 30% 3 5 48 62 75 

30 – 40% 56 60 

40 – 50% 8 46 72 79 

50 – 60% 1 2 40 51 52 

60 – 70% 6 25 26 58 

70 – 80% 24 

80 – 90% 47 50 

90 - 100%  

Table 2(b): United (hydrogen-filled) atom types found in different percentages (fractions) of the 
Drugs all drug database considered 

Percent of 
the Database Atom Types Found 

0% 1e 1f 7b 8c 8d 8e 8f 16b 16c 16d 16e 16f 21b 24b 27c 33b 36a  

0 - 10% 
1b 1d 2e 2f 3b 3d 3e 3f 6b 7a 9a 9b 15a 15b 18a 18b 21a 27a 27b 33a 36b 36c 37a 37b 67a 
67b 73a 73b 74a 79b 106a 106b 

10 – 20% 2b 2d 3a 3c 8b 16a 57a 72b 74b 

20 – 30% 1c 2a 5a 
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Table 2(b): contd… 

30 – 40% 1a 2c 72a 79a 

40 – 50% 8a 56a 

50 – 60% 6a 

60 – 70%  

70 – 80% 24a  

80 – 90%  

90 - 100%  

Table 3(a): Distribution of atom types across the non-drug database: Atom types (original 
ALOGP) found in different database fractions or percentages 

Percent of 
the Database Atom Types Found 

0% 
23 63 64 65 77 78 80 86 87 88 91 92 93 95 96 97 98 99 100 101 102 103 104 106 109 
111 112 115 116 117 118 119 120 

0 - 10% 
4 7 9 10 11 12 13 14 15 16 17 18 19 20 21 22 29 30 32 35 36 37 38 39 41 42 43 44 55 57 
61 62 66 67 69 70 74 76 81 82 83 85 89 90 94 108 110 

10 – 20% 31 33 34 54 56 68 84 

20 – 30% 49 51 59 71 73 107 

30 – 40% 3 

40 – 50% 27 28 48 

50 – 60% 1 5 8 46 53 60 79 

60 – 70% 75 

70 – 80% 26 40 52 72 

80 – 90% 2 6 24 25 47 50 58 

90 - 100%  

Table 3(b): United (hydrogen-filled) atom types found in different percentages (fractions) of the 
non-drug database considered 

Percent of the 
Database Atom Types Found 

0% 
1d 1e 1f 5b 7b 8b 8c 8d 8e 8f 9a 15b 16b 16c 16d 16e 16f 21b 24b 27c 30b 33b 36a 
37b 67b 74a 106a 106b 

0 - 10% 
2e 2f 3a 3e 3f 7a 9b 15a 16a 18a 18b 21a 30a 36b 36c 37a 42a 57a 66a 67a 73a 74b 
79b  

10 – 20% 1b 3b 3c 3d 6b 8b 27a 33a 56a 73b 

20 – 30% 1a 1c 2d 
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Table 3(b): contd… 

30 – 40% 2a 2b 27b 

40 – 50% 8a 72a 

50 – 60% 5a 72b 79a 

60 – 70% 2c 

70 – 80%  

80 – 90% 6a 24a  

90 - 100%  

Types 47 and 50 (hydrogen attached to a hetero atom) are highly abundant (80-90%) 
in both the databases. The most abundant donors are type 72 (carboxamide NH – 40-
50%), and alcohol oxygen (type 56 - 30-40%), followed by phenolic oxygen (type 
57 – 10-20%). Type 72 is more frequent (70-80%) in non-drugs relative to drugs 
(40-50%). The type 56 is less frequent (10-20%) in the non-drugs. Subtype 2c 
(C0sp3, with one hetero-atom attached to its next carbon) is found abundantly (60-
70%) among non-drugs, whereas only 30-40% of drug database contains 2c. The 
subtype 72b is more frequent (50-60%) in non-drugs relative to drugs (10-20%), 
while the type 57 (oxygen as in phenolic hydroxyl) is less frequent (0-10%) in non-
drugs. Among halogens, types 89(Cl attached to C1Sp2) is most abundant in drugs 
and type 84 (F attached to C1Sp2) is most abundant in non-drugs though these types 
occur only in 10-20% of the compounds studied. Understandably, Br and I are 
highly infrequent in drugs, as they significantly increase molecular weight, leading 
to undesirable characteristics such as poor intestinal absorption. 

Analysis Drug Properties at the Atomic Level 

The foregoing observations, led to the extension of the concept of druglikeness to 
atom types as well [6]. Viswanadhan et al. [6] defined Relative Druglikeness 
Potential (RDPi) of each atom type as foll 

RDPi=pi,d / pi,n (5) 

where i refers to the atom type, pi,d is the percentage occurrence of type i in the 
drug database and pi,n is the percentage occurrence of type i for the nondrug 
database (an approximation for expectation value, based on a typical distribution 
in commercial small molecule collections). Values of RDPi > 1 indicate preferred 
types in drugs, while values <1 indicates the opposite. Viswanadhan et al. [6] 
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used a representative collection of 10000 molecules from Chembridge collection 
[36] to define non-drug set, that satisfies the preliminary filters used to define the 
set of small molecule drugs. To obtain more robust estimates of RDPi values, we 
have calculated these values based on 4 different random samples of the 
Chembridge database satisfying the preliminary filters mentioned above. 

Table 4: Statistical properties of atom types calculated for drugs. Distribution and description of 
atom types using all atom (ALOGP98) and united atom (UALOGP) representations are shown, 
along with mean occurrence per drug, percentage occurrence, and Relative Druglikeness Potential 
(RDPi) values (equation 6) 

Atom 
Type* 

Description Mean Occurrence 
Value (S.D.) 

Percentage 
Occurrence X 102  

RDPi 

C in 

1 :CH3R,CH4 1.0(1.3) 2.5 1.35 

1a C0sp3, having no X attached to next C 0.6(1.1) 1.4 1.61 

1b α – C 0.1(0.3) 0.2 1.00 

1c C0sp3, having 1 X attached to next C 0.4(0.8) 0.9 1.18 

1d C0sp3, having 2 X attached to next C 0.0(0.2) 0.0 0.0 

1e C0sp3, having 3 X attached to next C 0.0(0.1) 0.0 0.0 

2 :CH2R2 1.8(2.3) 4.2 0.9 

2a C0sp3, having no X attached to next C 0.8(1.6) 1.8 1.2 

2b α – C 0.2(0.5) 0.5 0.8 

2c C0sp3, having 1 X attached to next C 0.6(1.0) 1.5 0.8 

2d C0sp3, having 2 X attached to next C 0.1(0.4) 0.3 0.6 

2e C0sp3, having 3 X attached to next C 0.0(0.1) 0.0 0.0 

2f C0sp3, having 4 X attached to next C 0.0(0.1) 0.0 0.0 

3 :CHR3 0.5(1.0) 1.2 1.5 

3a C0sp3 having no X attached to next C 0.3(0.8) 0.6 3.3 

3b α – C 0.1(0.3) 0.2 0.8 

3c C0sp3, having 1 X attached to next C 0.1(0.4) 0.3 1.3 

3d C0sp3, having 2 X attached to next C 0.0(0.2) 0.1 1.0 

3e C0sp3, having 3 X attached to next C 0.0(0.1) 0.0 0.0 

3f C0sp3, having 4 X attached to next C 0.0(0.1) 0.0 0.0 

4 :CR4 0.2 (0.5) 0.5 2.8 

5 :CH3X 0.4 (0.8) 1.1 0.9 

6 :CH2RX 1.4 (1.7) 3.4 0.7 

6a C1sp3, C0sp2 1.3 (1.7) 3.2 0.7 
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Table 4: contd… 

6b α – C 0.1 (0.3) 0.2 0.6 

7 :CH2X2 0.0 (0.2) 0.1 0.3 

7a Any of C2sp3, C1sp2, C0sp 0.0 (0.2) 0.1 0.3 

8 :CHR2X 0.9(1.3) 2.3 1.6 

8a  C1sp3, C0sp2 0.7(1.2) 1.7 1.5 

8b  α – C 0.2(0.5) 0.5 2.2 

8c C0sp3, having 1 X attached to next C 0.0(0.1) 0.0 0.0 

8d C0sp3, having 2 X attached to next C 0.0(0.1) 0.0 0.0 

8e C0sp3, having 3 X attached to next C 0.0(0.0) 0.0 0.0 

8f C0sp3, having 4 X attached to next C 0.0(0.0) 0.0 0.0 

9 :CHRX2 0.1 (0.3) 0.3 0.0 

9a C2sp3, C1sp2, C0sp 0.1 (0.3) 0.3 0.0 

9b Attached H’s when C is α – C 0.0 (0.1) 0.0 0.0 

10 :CHX3 0.0 (0.1) 0.0 0.0 

11 :CR3X 0.2 (0.4) 0.4 2.2 

12 :CR2X2 0.0 (0.2) 0.1 0.0 

13 :CRX3 0.0 (0.2) 0.1 1.0 

14 :CX4 0.0 (0.0) 0.0 0.0 

15 : =CH2 0.0 (0.2) 0.1 0.0 

15a C1sp3, C0sp2 0.0 (0.2) 0.1 0.0 

15b C3sp3, C2-3sp2, C1-3sp 0.0 (0.0) 0.0 0.0 

16 : =CHR 0.3(0.9) 0.8 2.7 

16a  C1sp3, C0sp2 0.2(0.7) 0.5 1.9 

16b attached H’s when C is an α – C 0.1(0.4) 0.3 2.3 

16c C0sp3, having 1 X attached to next C 0.0(0.0) 0.0 0.0 

16d C0sp3, having 2 X attached to next C 0.0(0.0) 0.0 0.0 

16e C0sp3, having 3 X attached to next C 0.0(0.0) 0.0 0.0 

17 :=CR2 0.2 (0.6) 0.5 3.2 

18 :=CHX 0.1(0.2) 0.1 1.0 

18a C2sp3, C1sp2, C0sp 0.0(0.2) 0.1 1.0 

18b C3sp3, C2-3sp2, C1-3sp 0.0(0.1) 0.0 0.0 

19 :=CRX 0.1 (0.4) 0.2 1.7 

20 :=CX2 0.0 (0.1) 0.0 0.0 

21 :≡CH 0.0 (0.1) 0.0 0.0 

21a C2sp3, C1sp2, C0sp 0.0(0.1) 0.0 0.0 

21b C3sp3, C2-3sp2, C1-3sp 0.0(0.0) 0.0 0.0 
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22 :≡CR,R=C=R 0.0 (0.2) 0.0 0.0 

23 :≡CX 0.0 (0.0) 0.0 0.0 

24 :R- -CH- -R 4.1 (3.6) 9.8 1.0 

25 :R- -CR- -R 1.3 (1.3) 3.0 0.9 

26 :R- -CX- -R 1.4 (1.5) 3.3 1.3 

27 :R- -CH- -X 0.2(0.5) 0.4 0.5 

27a C2sp3, C1sp2, C0sp 0.0(0.2) 0.1 0.5 

27b C3sp3, C2-3sp2, C1-3sp 0.1(0.5) 0.3 0.5 

28 :R- -CR- -X 0.1 (0.4) 0.3 0.5 

29 :R- -CX- -X 0.1 (0.3) 0.2 1.7 

30 :X- -CH- -X 0.0 (0.2) 0.1 0.3 

31 :X- -CR- -X 0.1 (0.3) 0.2 0.6 

32 :X- -CX- -X 0.0 (0.2) 0.1 1.0 

33 :R- -CH∙∙∙X 0.0 (0.2) 0.1 0.5 

34 :R- -CR∙∙∙X 0.0 (0.2) 0.1 0.5 

35 :R- -CX∙∙∙X 0.0 (0.1) 0.0 0.0 

36 :Al-CH=X    

36a C2sp3, C1sp2, C0sp 0.0 (0.1) 0.0 0.0 

36b C3sp3, C2-3sp2, C1-3sp 0.0 (0.1) 0.0 0.0 

36c α- C 0.0 (0.0) 0.0 0.0 

37 :Ar-CH=X 0.0 (0.1) 0.0 0.0 

37a C3sp3, C2-3sp2, C1-3sp 0.0 (0.1) 0.0 0.0 

37b α-C 0.0 (0.0) 0.0 0.0 

38 :Al-C(=X)-Al 0.1 (0.5) 0.4 1.3 

39 :Ar-C(=X)-R 0.1 (0.3) 0.2 1.7 

40 :R-C(=X)-X, R-C≡X, X=C=X 0.8 (0.9) 2.0 1.0 

41 :X-C(=X)-X 0.1 (0.4) 0.4 2.7 

42 :X- -CH∙∙∙X 0.1 (0.2) 0.1 0.0 

43 :X- -CR∙∙∙X 0.0 (0.2) 0.0 0.2 

44 :X- -CX∙∙∙X 0.0 (0.1) 0.0 0.0 

H attached to 

46 :C0sp3 having no X attached to next C 3.5 (5.9) 8.5 1.4 

47 :C1sp3,C0sp2 9.0(5.9) 21.5 0.8 

48 :C2sp3, C1sp2, C0sp 0.3(0.7) 0.7 0.9 

49 :C3sp3, C2-3sp2, C1-3sp 0.3(0.6) 0.6 0.7 

50 :heteroatom 2.5(1.9) 6.0 2.0 
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51 :α-Cd 1.3(1.7) 3.1 0.9 

52 :C0sp3, having 1 X attached to next C 2.5(3.1) 5.9 0.9 

53 :C0sp3, having 2 X attached to next C 0.3(1.0) 0.8 0.7 

54 :C0sp3, having 3 X attached to next C 0.0(0.2) 0.1 0.5 

55 :C0sp3, having 4 or more X attached 
to next C 

0.0 (0.0) 0.0 0.0 

O in 

56 :Aliphatic -OH 0.6 (1.1) 1.4 4.4 

57 :phenol, enol, carboxyl OH 0.2(0.5) 0.4 1.3 

58 : =O 1.1 (1.1) 2.6 1.1 

59 :Al-O-Al 0.2 (0.5) 0.5 1.2 

60 :Al-O-Ar, Ar2O, R∙∙∙O∙∙∙R, R-O-C=X 0.5 (0.8) 1.2 0.9 

61 :- -O 0.1 (0.4) 0.1 0.1 

62 :O- 0.5 (1.0) 1.3 0.0 

63 :R-O-O-R 0.0 (0.1) 0.0 0.0 

Se in 

64 :Any-Se-Any 0.0 (0.0) 0.0 0.0 

65 :=Se 0.0 (0.0) 0.0 0.0 

N in 

66 :Al-NH2 0.1 (0.2) 0.1 0.0 

67 :Al2NH 0.1 (0.2) 0.1 0.3 

68 :Al3N 0.0 (0.2) 0.1 1.4 

69 :Ar-NH2, X-NH2 0.1 (0.3) 0.2 0.0 

70 :Ar-NH-Al 0.1 (0.2) 0.1 0.7 

71 :Ar-NAl2 0.1 (0.3) 0.1 0.4 

72 :RCO-N<, >N-X=X 0.6 (0.8) 1.4 0.8 

72a H attached to heteroatom 0.4 (0.6) 0.9 1.1 

72b Without H 0.2 (0.5) 0.5 0.6 

73 Ar2NH, Ar3N, Ar2N-Al, R∙∙∙N∙∙∙R 0.2 (0.4) 0.4 1.0 

73a H attached to heteroatom 0.1 (0.3) 0.2 1.7 

73b Without H 0.1 (0.3) 0.2 0.8 

74 R ≡ N, R= N- 0.1 (0.4) 0.3 0.3 

74a H attached to heteroatom 0.0 (0.1) 0 0.0 

74b Without H 0.1 (0.4) 0.3 0.3 

75 :R- -N- -R,R- -N- -X 0.4 (0.8) 0.9 0.6 

76 :Ar-NO2. R- -N(- -R)- -O, RO-NO 0.0 (0.2) 0.1 0.3 
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Table 4: contd… 

77 :Al-NO2 0.0 (0.0) 0.0 0.0 

78 :Ar-N=X, X-N=X 0.0 (0.1) 0.0 0.0 

79 :N+ 0.5 (0.6) 1.1 0.4 

79a H attached to heteroatom 0.4 (0.6) 1.0 0.3 

79b  Without H 0.0 (0.2) 0.1 0.0 

F attached to 

81 :C1sp3 0.0 (0.1) 0.0 0.0 

82 :C2sp3 0.0 (0.1) 0.0 0.0 

83 :C3sp3 0.1 (0.5) 0.2 1.0 

84 :C1sp2 0.1 (0.3) 0.2 0.6 

85 :C2-4sp2, C1sp, C4sp3, X 0.0 (0.1) 0.0 0.0 

Cl attached to 

86 :C1sp3 0.0 (0.2) 0.0 0.0 

87 :C2sp3 0.0 (0.1) 0.0 0.0 

88 :C3sp3 0.0 (0.1) 0.0 0.0 

89 :C1sp2 0.1 (0.5) 0.3 1.4 

90 :C2-4sp2, C1sp, C4sp3, X 0.0 (0.1) 0.0 0.0 

Br attached to 

91 :C1sp3 0.0 (0.1) 0.0 0.0 

93 :C3sp3 0.0 (0.0) 0.0 0.0 

94 :C1sp2 0.0 (0.2) 0.1 0.3 

95 :C2-4sp2, C1sp, C4sp3, X 0.0 (0.0) 0.0 0.0 

I attached to 

96 :C1sp3 0.0 (0.0) 0.0 0.0 

97 :C2sp3 0.0 (0.0) 0.0 0.0 

98 :C3sp3 0.0 (0.0) 0.0 0.0 

99 :C1sp2 0.0 (0.3) 0.1 0.0 

100 :C2-4sp2, C1sp, C4sp3, X 0.0 (0.0) 0.0 0.0 

halide ions 

101 :fluoride ion 0.0 (0.0) 0.0 0.0 

102 :chloride ion 0.0 (0.0) 0.0 0.0 

103 :bromide ion 0.0 (0.0) 0.0 0.0 

104 :iodide ion 0.0 (0.0) 0.0 0.0 

S in 

106 :R-SH 0.0 (0.1) 0.0 0.0 

106a H attached to heteroatom 0.0 (0.1) 0.0 0.0 
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Table 4: contd… 

106b Without H 0.0 (0.0) 0.0 0.0 

107 :R2S, RS-SR 0.1 (0.4) 0.3 0.9 

108 :R=S 0.0 (0.1) 0.0 0.0 

109 :R-SO-R 0.0 (0.1) 0.0 0.0 

110 :R-SO2-R 0.1 (0.3) 0.2 1.7 

Si in 

111 :Si 0.0 (0.0) 0.0 0.0 

B in 

112 :>B- 0.0 (0.0) 0.0 0.0 

P in 

115 :ylids 0.0 (0.0) 0.0 0.0 

116 :R3-P=X 0.0 (0.0) 0.0 0.0 

117 :X3-P=X (phosphate) 0.0 (0.1) 0.1 0.0 

118 :PX3 (Phosphite) 0.0 (0.0) 0.0 0.0 

119 :PR3 (Phosphine) 0.0 (0.0) 0.0 0.0 

120 :C-P(X)2=X (phosphonate) 0.0 (0.1) 0.0 0.0 

The original ALOGP atom types [23] are identified, for each corresponding 
subset of UALOGP types. bR represents any group linked through carbon; X 
represents any heteroatom (O, N, S, P, Se, and halogens); Al and Ar represent 
aliphatic and aromatic groups, respectively; “=” represents a double bond; “≡” 
represents a triple bond; “- -” represents a aromatic bonds as in benzene or 
delocalized bonds such as the N_O bond in a nitro group; “.. ” represents aromatic 
single bonds as the C_Nbond in pyrrole. The C--N bond order in pyridine may be 
considered as 2 while we have one such bond and 1.5 when we have two such 
bonds. 

Table 4 shows the atom type distribution for the combined drug database, using 
both the united atom and all atom representations. The parameters given for each 
atom type are (i) mean occurrence per molecule, (ii) percent occurrence in the 
database, (iii) RDPi (relative druglikeness parameter) for each atom type. 

Atom type druglikeness (RDPi) analysis provides insight on those types which are 
more likely to be preferred in a drug molecule over a non-drug. Among heavy 
atoms, atom type 56 (hydroxyl oxygen) has the highest RDPi value of 7 reflecting 
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its crucial role as a donor / acceptor in drug molecules. United atom type 3a 
(C0sp3 carbon having no heteroatom attached to its next C) is found to occur 
frequently among carbon atoms in drugs, with an RDPi value 3.3. This saturated 
carbon type plays the role of bridgehead for many types of rings such as 
cyclohexane, piperidine, pyrrolidine etc., which are quite common among drugs. 
Among other carbon types with high druglikeness values, 1a, 4, 8 (and subtypes 
8a and 8b), 11, 16 (and subtypes 16a and 16b), 17, and 29 have higher values of 
RDPi. These results underscore the importance of non-aromatic, unsaturated 
carbon types in drugs relative to non-drugs. Though carbon atom type 4 is 
relatively infrequent, it is modestly preferred in drugs (RDPi = 2.8). A number of 
atom types are highly infrequent in drugs and less preferred. These are assigned 
an RDPi value of ~0. These represent tri-substituted nitrogen types with two or 
three attached aliphatic groups. 

Among hetero atoms, types 56, 57 (hydroxyl oxygens), 58 (carbonyl oxygen) and 
59 (ether oxygen) have higher RDPi values, and among nitrogen types, 73a (tri-
substituted nitrogen) stands out. Among halogen types, 83 and 89 appear more 
druglike. Among sulfur types, 110 (SO2 type) stands out. 

Recent studies from the lab of Bickerton and co-workers, describe a measure of 
drug-likeness based on the concept of desirability, termed as QED, the 
Quantitative Estimate of Drug-likeness [19]. The QED uses common physico-
chemical properties to compare drugs like Lipinski's rule of five and facilitates the 
ranking of compounds in an intuitive and transparent way. However, in addition 
to the descriptors used by Lipinski, QED also considers the number of aromatic 
rings, the number of rotatable bonds, the polar surface area, and toxic groups. The 
desirability function has been derived based on a non-redundant data set 
comprising of 771 approved drugs from ChEMBL DrugStore database. QED 
method also highlights limitations of Lipinski's criteria [1] in effectively 
evaluating new drug candidates. Drugs that fail Ro5 [1] have drug-likeness 
measures that overlap with drugs that satisfy QED criteria. 

FUTURE DIRECTION 

Measures of druglikeness combine a number of features common to drugs, though 
the selection of those features is critical for success. Delineating these and 
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employing them for a more readily usable and interpretable measure of druglikeness 
is an important research endeavor. Future work in this area will include development 
of better lead likeness and druglikeness scores as well as new parameters (such as 
Atom Type Diversity) to focus on specific features of compounds which are a result 
of optimization process that always precedes drug discovery. 
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NATS = Number of Atoms 
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Abstract: Diseases caused by parasites have an overwhelming impact on public health 
throughout the world, particularly in the tropics and subtropics. Malaria and 
leishmaniasis are two such widely known neglected parasitic diseases. The current 
global situation indicates more than one million deaths from these two diseases every 
year despite several efforts by WHO to combat them. Vectors for carrying and 
transmitting these parasites are arthropods. Use of insect repellents is a vital 
countermeasure in reducing these arthropod-related diseases. However, despite access 
to many available drugs for treatment of these diseases, their growing resistance poses 
serious concerns and necessitates development of novel countermeasures. The present 
chapter discusses how the in silico methodologies can be utilized to develop 
pharmacophore models to identify novel antimalarials, antileishmanial, and insect 
repellents. The models presented in this chapter not only provided important molecular 
insights to better understand the “interaction pharmacophores” but also guided 
generation of templates for virtual screening of compound databases to identify novel 
bioactive agents. The pharmacophore models presented here demonstrated a new 
computational approach for organizing molecular characteristics that were both 
statistically and mechanistically significant for potent activity and useful for 
identification of novel analogues as well. 
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INTRODUCTION 

Diseases caused by protozoal parasites have an overwhelming impact on public 

health throughout the world, particularly in the tropics and subtropics. Malaria 

continues to be highlighted as the most severe of human parasitic diseases by the 

WHO, responsible for about one million deaths every year [1]. Malaria infection 

in humans is caused primarily by four parasitic species: P. falciparum, P.vivax,  

P. ovale, and P. malariae. Although P. vivax and P. falciparum are the two most 

widely distributed species, P. falciparum alone is responsible for over 95% of 

deaths worldwide. Development of curative antimalarial agents is difficult due to 

various developmental stages of the parasite within the host. Over the last few 

decades, the two mainstays of anti-malarial chemotherapy, CQ and 

pyrimethamine/sulfadoxine, have been significantly compromised in many 

regions of the world due to spread of drug-resistant parasites. Thus, efforts to 

control the disease met with decreasing success. To overcome the problem, a 

range of newer drugs and combinations have gradually been introduced that 

include, mefloquine (1984), artemisinins (1994), artemether/lumefantrine (1999), 

atovaquone/proguanil (1999), chlorproguanil/dapsone (2003), and more recently 

the general ACT but all of them have some issues for limiting their use [2]. 

Search for novel antimalarial drugs and drugs that can reverse resistance of the 

currently available drugs, particularly chloroquine continue to remain important 

goals for antimalarial discovery. Although artemisinin analogues such as 

artesunate and arteether were quite effective, particularly against the drug-

resistant P. falciparum, observations of drug-induced and dose-related 

neurotoxicity in animals have raised concern about safety of these compounds for 

human use [3-5]. Thus, more extensive efforts for discovery of new less toxic and 

more affordable antimalarial drugs are clearly necessary. Although the genome 

sequence of P. falciparum was completed in 2002, eliminating many barriers for 

performing several state-of-the-art molecular and biological researches in malaria, 

new therapies have not yet resulted from the genome-dependent experiments, 

though a wealth of new information have been produced about the basic biology 

of the parasites [2]. These genome-dependent experiments are likely to aid 

discovery of new antimalarial therapeutics. 
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The leishmaniasis is another neglected tropical disease that shows a grim picture, 
identified by WHO as an increasing major health problem in the world [6]. 
Leishmaniasis represents a spectrum of diseases resulting from different species 
belonging to the genus Leishmania, a protozoal parasite transmitted by the bite of 
the phlebotomine sand fly. Clinical manifestations of the infection range from 
cutaneous and mucocutaneous to visceral leishmaniasis. An estimated 12 million 
people are currently afflicted worldwide with leishmaniasis and 1.5 to 2 million 
new cases added each year [6]. The visceral manifestation of the disease is often 
fatal if untreated which alone recently claimed an estimated 100,000 lives in 
Sudan outbreaks [7]. Non-availability of satisfactory chemotherapeutic agents and 
failure to develop an effective vaccine are considered to be two stumbling blocks 
in the combat of this disease [8]. The current chemotherapy of leishmaniasis relies 
heavily upon the use of pentavalent antimony compounds that require parenteral 
administration of high doses and a lengthy course of treatment resulting in marked 
increase of serious side effects and decreasing efficacy. Two pentavalent 
antimonial drugs, sodium stibogluconate (Pentostam) and meglumine antimonate 
(Glucantime) are the current choice of treatments for leishmaniases and had been 
the choice for past 50 years. Such heavy metal pharmacology is found to have 
severe side effects including nausea, diarrhea, convulsions, and even 
cardiotoxicity [9]. The treatments are not only not ideal due to these adverse side 
effects but also responsible for rapid development of clinical resistance within a 
few weeks and co-infections of leishmaniasis-AIDS together with high costs for 
long term treatments [10-13]. More importantly, prospects for antileishmanial 
vaccines remain unclear in the near future [11, 14-16]. Thus, there is clearly a 
need for discovery and development of less toxic drugs that are effective against 
all forms of leishmaniases. 

Insects, broadly known as arthropods, are the vectors for both malaria and 
leishmaniasis and also responsible for many other lethal human diseases including 
African trypanosomiasis, dengue fever, filariasis, and viral encephalitis [17]. In 
terms of disease transmission, mosquitoes and sand flies are among the world’s 
most notorious insect vectors [17]. Since mosquitoes feed on blood, this insect 
species cause more human suffering than any other organism. Malaria results 
from infection carried by mosquitoes. Mosquitoes also can transmit the 
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arboviruses responsible for yellow fever, dengue hemorrhagic fever, epidemic 
polyarthritis, and several forms of encephalitis. Although it took many years to 
search for the vector of leishmanaisis, it was finally established in 1921 that the 
transmission of this disease to humans occurs through sand flies belonging to the 
genus Phlebotomus [18]. 

Since international travel has grown enormously in recent years, the scope for 
transmission of these two diseases has also increased all over the world [1, 6]. To 
counter the transmission, quest to repel insects, particularly mosquitoes and sand 
flies, continued including research on mosquito behavior and control but still safe 
and effective insect repellents have not yet been found. Although DEET is the 
leading commercially available repellent for over fifty years now [19a], it has several 
disadvantages that include short duration in hot sultry climates, and strong plasticizer 
properties (softens or mars many plastic items or painted surfaces). Moreover, DEET 
is only effective against mosquitoes and has limited activity against flies [19b, 19c]. 
However, developing an ideal repellent agent that should repel multiple species, 
remain effective for 8-10 hours, does not cause irritation to the skin or mucous 
membranes, have no systemic toxicity, should be resistant to abrasion and rub-off, 
and be greaseless and odorless is still a distant dream. At present, no available insect 
repellent meets all of these criteria. Efforts to find a compound with such attributes 
face numerous challenges and variables that affect the inherent repellency of a 
potential chemical. Repellents do not all share a single mode of action, and 
surprisingly little is known about how repellents act on the target proteins of the 
insects. Furthermore, different species of mosquitoes react differently to the same 
repellent. Thus, understanding the physico-chemical requirements for repellent 
properties, how a repellent interacts with the target proteins is important for 
successful discovery new arthropod repellents. Because the biochemical steps 
leading to a desired repellent effect, especially interactions with the three-
dimensional molecular structure of the receptor(s) are unclear, various efforts have 
been made to develop a general structural framework with high probability for 
repellent activity to guide the synthesis work [20]. The ability of the insect repellents 
to interact with the recognition sites in receptors results from a combination of steric 
and electronic properties. Study of stereoelectronic properties of insect repellents can 
provide valuable information not only to better understand the mechanism of 
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repellent action but also provide the structural requirements for repellent activity to 
generate a reliable pharmacophore model to design of more effective repellents. In 
addition, three-dimensional (3D) pharmacophore model generations can be useful 
for identification of potential repellents through utilization of 3D database queries 
for search of compound databases. 

Discovery and development of new therapeutics are expensive and complex 
processes with ever changing technologies. On an average, it takes about 10 years 
and approximately five to six million U.S. dollars to bring a new effective 
chemical entity from the bench of discovery to the market [21, 22]. Therefore, any 
technology that can improve the efficiency of the process is considered highly 
valuable to the pharmaceutical industry. 

With the advent of modern computers with high speed, astronomical memory and 
graphic tools, accomplishing computations and visualization of structures ranging 
from small to large bio-molecules including proteins have become more efficient 
with greater precision. The graphic tools in modern computers have not only 
made possible visualization of three-dimensional structures of large protein 
molecules, but allowed interactive virtual docking experiments between potential 
drug molecules and the binding sites of proteins. The current advances in these 
methodologies have direct applications ranging from accurate ab initio quantum 
chemical calculations of stereo-electronic properties, generation of three-
dimensional pharmacophores, and performance of database searches to identify 
bioactive agents [22]. 

Increasing costs for pharmaceutical development have resulted in the emergence 
of in silico screening or virtual screening of databases to identify potential new 
compounds in recent years [22-24]. Virtual screening is a process of intelligent 
use of computing to analyze large databases of chemical compounds to identify 
potential drug candidates. The process can serve as a complimentary tool to HTS 
for rapid and effective experimental assay of large pool of compounds. Screening 
compounds by this method is essentially a knowledge-based approach and thus 
implicitly requires certain information about the nature of the receptor binding site 
or the nature of ligand that is expected to bind effectively at the active site. 
However, the type of procedure followed in virtual screening for compound 
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databases depends upon availability of information as input and requirement for 
the output. Thus, if three-dimensional structure of the target enzyme or the protein 
is available, small molecule docking procedures can be adopted to perform 
structure-based virtual screening for identification of an ideal ligand. If the three-
dimensional structure of the target protein is unknown, feature based 
pharmacophore models can be constructed from activity data of known 
compounds and the developed model template can be used for virtual screening to 
identify potential new hits. Pharmacophores may also be developed from other 
molecular properties, such as the ADME properties, toxicity data, lipophilicity, 
and drug-related properties. Identification of new active compounds using  
in silico pharmacophores has shown remarkable success in recent years [25-29]. 

In this chapter, recent in silico stereo-electronic and pharmacophore modeling 
studies of antimalarials, antileishmanials, and insect repellents are reviewed along 
with our efforts to identify novel active compounds. The goal is to provide a 
perspective for how information on three dimensional electronic profiles can 
further facilitate identification, design and synthesis of new lead antimalarial, 
antileishmanial and insect repellent compounds. 

Concept of pharmacophores is one of the most important steps for understanding the 
interaction between a receptor and its ligand. In silico “three dimensional 
pharmacophore is as an ensemble of steric and electronic features those are 
necessary for optimal interaction with a specific receptor to trigger or inhibit its 
biological response” [25]. Literature survey reveals that Paul Ehrlich probably first 
offered the definition of a pharmacophore in early 1900s as “a molecular framework 
that carries (phoros) the essential features responsible for a drug’s (pharmacon) 
biological activity” [30]. This definition remained almost the same until Peter Gund 
provided a remarkably similar definition as “a set of structural features in a molecule 
that is recognized at a receptor site and is responsible for that molecule’s biological 
activity” in 1977 [27]. Peter Gund is one of the pioneers in pattern searching based 
on functional features (pharmacophores) for compound databases to identify new 
compounds that may share the same functional features and developed the first 3D 
searching software, Molpad [27]. A more modern definition of a three dimensional 
pharmacophore is a geometric distribution of chemical features, such as hydrogen 
bond acceptor, hydrogen bond donor, aliphatic and aromatic hydrophobic functions, 
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and ring aromatic hydrophobicity in the three dimensional space surrounding a 
molecule which can define its specific biological activity [26, 28, 29, 31, 32]. For 
example, two antimalarial compounds having different chemical structures may 
share the same pharmacophore (Fig. (1)). 

 

Figure 1: Example of 3D pharmacophore model: Defining feature requirements in a molecular 
structure for antimalarial activity. 

RESULTS AND DISCUSSIONS 

Discussions on stereo-electronic profiles and pharmacophore models for 
antimalarials, antileishmanials, and insect repellents presented here are based on 
the following two considerations: 

(a) Quantum chemically calculated stereo-electronic properties and 
quantitative structure-activity relationships for mechanistic insights 
and guidance for generation of feature-based three-dimensional 
molecular “interaction pharmacophores”. 

(b) Chemical features and activity relationships for generation of three-
dimensional pharmacophore models as tools for virtual screening of 
compound databases in order to identify potential new compounds. 

The implicit assumptions [25, 26] for both the above two considerations are: 

a) The structures used in the model are responsible for the biological 
activity, not its metabolite. 
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b) The conformation of the model is the bioactive conformation. 

c) The binding site is the same for all molecules in the proposed model. 

d) Biological activity is accounted only in terms of thermodynamic 
equilibrium, particularly by enthalpic energy considerations, assuming 
entropy for the molecules to be similar. 

e) Kinetics of the processes are ignored. 

f) Transport properties, diffusion and solvent effects are largely avoided. 

Stereo-Electronic Considerations 

Since the ability of a bioactive molecule to interact with recognition sites of 
receptors results from a combination of steric and electronic properties [25], study 
of their stereo-electronic properties can provide valuable information not only to 
better understand the mechanism of action but also enable viewing intrinsic 
“interaction pharmacophore” profiles for aiding design and synthesis of more 
potent analogues. Quantum chemical methods can provide accurate estimate of 
stereo-electronic properties as well as assessment of interactions between 
bioactive molecules and receptors [31-33]. 

Antimalarial Compounds 

Despite non-availability of affordable, safe and effective therapeutics for 
treatment of severe malaria, importance of the disease and efforts to eradicate it 
have led to a huge inventory of antimalarial compounds [34] though largely 
ineffective. Most of the earlier quantum chemical studies, particularly in the 
1990s on antimalarials were focused on artemisinin and artemisinin-like 
compounds for understanding mainly the mechanism of action in order to find an 
effective alternative to the drug resistant CQ [35-38] and to understand its 
mechanism of action at the molecular level to address the concern about its 
observed neurotoxicity in animals [39]. However, the good news is that no human 
neurotoxicity was observed so far, it was found to be confined only in dogs, rats, 
and monkeys with dose dependent intramuscularly injected derivatives of 
artemisinins, artemether and arteether [39]. In continuation of efforts for 
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understanding the molecular electronic nature of the artemisinins, Fig. (2a), and 
the role of electronic properties toward neurotoxicity, we evaluated the stereo-
electronic discriminators that differentiate between analogues with higher and 
lower experimental neurotoxicities [40] by performing quantum chemical 
calculations on artemisinin and eight of its derivatives [5]. We observed the least 
neurotoxic compounds to be more polar with an electric field pointing away from 
the endoperoxide bond, have a higher positive potential on the electron density 
surface (van der Waals surface) of all the carbon-containing ring C, a more stable 
peroxide bond to cleavage, a less negative electrostatic potential by the 
endoperoxide, and a single negative potential region extending beyond the 
electron density surface of the molecule, Fig. (2b). In general, the observed 
stereo-electronic attributes, Fig. (2b), related to the peroxide bond such as dipole 
moment and electric field, lower energy requirement for breaking the peroxide 
bond, more intrinsic nucleophilicity of the peroxide bond, and less electrophillic 
ring “C” showed links toward neurotoxicity of artemisinins [5]. 

 

Figure 2: (a) Chemical structure of artemisinin and its eight derivatives. (b) Molecular electrostatic 
potential maps of artemisinin and the eight derivatives. (c) Table showing experimental neurotoxicity and 
several calculated stereo-electronic properties of artemisinin and its eight derivatives. 
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In 2000, Girones et al. [41] calculated kinetic energy based molecular quantum 
similarity measures to correlate the antimalarial activity of various artemisinin 
derivatives. Interaction of artemisinin with hydroxypropyl--cyclodextrin 
(HPBCD) was investigated by Illapakurthy et al. [42] who reported significant 
increase in phase solubility of these compounds in HPBCD. In our laboratory, we 
demonstrated [43] by a combined NMR and molecular modeling study that both 
artelinic acid and artesunic acid form complexes with natural cyclodextrin and 
thus, a possible alternative formulation scheme for these compounds with 
increased aqueous solubility while retaining its antimalarial activity. Quantum 
chemical calculations and automated docking simulations by Tonmunphean et al. 
[44] indicated significant effects of stereoisomer on the binding mode and activity 
of these compounds. In another study to reflect on the mechanism of action of 
stereoisomerism of these compounds, we reported an analysis of -artelinic acid 
using a combination of NMR, ab inito quantum chemical (HF-6-31G**), and 
cyclic voltammetry methods and compared with two other artemisinin analogs,  
-artelinic acid and -arteether [45]. Our results indicated the importance of non-
bonded interactions between specific protons and the ether oxygen atom in the 
neighborhood of the anomeric carbon atom in the two isomers to be responsible 
for different efficacies. In addition, we also explored the stereo-electronic and 
pharmacophore properties of several peroxide containing antimalarial trioxanes 
[46] and tetraoxanes [47]. The “interaction- pharmacophores” observed in the two 
above studies indicated the crucial presence of at least one hydrogen bond 
acceptor region in the trioxane or tetraoxane moiety for potent activity. Docking 
calculations with heme were found to be consistent with the above observation as 
the proximity of the heme iron to the oxygen atom of the trioxane or the 
tetraoxane moiety favored potent activity. Electron transfer from the oxygen of 
trioxane or the tetraoxane moiety was documented to be crucial for activity [46, 
47]. The computed stereo-electronic properties of peroxy ketals showed a 
negative electrostatic potential region beyond van der Waals surface away from 
the peroxide moiety suggesting the compounds to be less toxic and should be 
safer [46]. Although these features suggested less likelihood for neurotoxicity of 
the peroxy ketals, the compounds showed poor antimalarial efficacy compared to 
the artemisinins, indicating a possible tradeoff between neurotoxicity and 
antimalarial efficacy in peroxide containing compounds [46]. 
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With the completion of Plasmodium falciparum genome project and emergence of 
structure-based drug design methodologies, drug development efforts have largely 
shifted to targeting specific proteins in the parasite that are unique yet critical for 
its growth and survival [48]. Since P. falciparum is of prokaryotic origin, its 
apicoplast contains metabolic pathways that differ significantly from those found 
in the human host and thus, targeting the fatty acid biosynthesis pathways of 
malaria parasite has been a focus for antimalarial therapeutics research in recent 
years. Eukaryotes rely on type I FAS to survive whereas, the prokaryotes do not 
contain type I FAS but rely on a type II FAS for the de novo production of fatty 
acids [48]. The initiating steps of P. falciparum type II FAS depend upon the acyl 
carrier protein (PfACP) and two other enzymes, malonyl coenzyme A: ACP trans-
acylase (PfMCAT) catalyzing the formation of malonyl-ACP from malonyl-
coenzyme A (malonyl-CoA) and ß-ketoacyl-ACP synthase III (PfKASIII) 
catalyzing the condensation of malonyl-ACP and acetyl-CoA, forming a  
ß-ketoacyl-ACP product. This reaction is identical to that catalyzed by the bacterial 
FabH, an orthologue of the malarial PfKASIII, being pursued for antimicrobial 
targets in recent years [49]. TLM and its analogues were the first compounds 
studied as inhibitors of the type II FAS of Mycobacterium tuberculosis, 
Staphlococcus aureus, and Pastuerella multocida [50]. Since TLM was 
documented to selectively target type II FAS both in vitro and in vivo and the 
analogues have little or no toxicity [51], these compounds were used as starters for 
evaluation against malaria [48]. We developed the first “interaction- 
pharmacophore” model for inhibition of KASIII from TLM, Fig. (3a), by 
performing sequentially the semi-empirical (AM1) and ab initio HF self-consistent 
field (Hartree - Fock SCF) quantum chemical calculations. Initially, a 
conformational search analysis on TLM was performed using the systematic 
conformational search techniques in SPARTAN [52] at the AM1 [53] single point 
level to obtain the population of low energy conformers. Next, we performed 
Monte Carlo “simulated annealing” approach as implemented in SPARTAN to 
generate trial conformations by way of random bond and ring torsions. To begin 
with the simulation, the molecule was considered to be in a high temperature 
system i.e., it had sufficient energy to move from low to high energy 
conformations. This is important because often the global minimum conformation 
remains hidden by many local minima. As more conformations are explored, the 
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temperature is decreased, making the molecule less able to move out of low energy 
conformations. Thus, when the search is completed, the molecule is most likely to 
be in the lowest energy conformation found up to that point. The global minimum-
energy of the conformers identified by both the above methods are compared and 
assessed. Following this procedure, the lowest and the most abundant (highest 
population density) energy conformer was selected for complete geometry 
optimization by using HF/6-31G** basis sets comprising both d & p orbital 
polarized functions as the optimal choice in Gaussian98 [54] running on a SGI 
Octane workstation. The electronic properties such as molecular electrostatic 
potentials and orbital energies were calculated on the optimized geometry of the 
molecule. 

Molecular electrostatic potentials (MEPs) were sampled over the entire accessible 
surface of the molecule (surface of a constant 0.002 e/au3 electron density 
corresponding roughly to a van der Waals contact surface), providing a measure 
of charge distribution from the point of view of an approaching reagent. The 
regions of positive electrostatic potential indicate excess positive charge, i.e., 
repulsion for the positively charged test probe, while regions of negative potential 
indicate areas of excess negative charge, i.e., attraction of the positively charged 
test probe. These iso surface values provide an indication of overall molecular 
size and of location of negative or positive electrostatic potentials. For example, 
in the present study, the MEPs encoded onto a surface of constant electron density 
(0.002 e/au3) portrays both steric and MEP characteristics of the molecules. This 
encoding is done by the use of color, colors toward the blue representing one 
extreme value of a property (most electrophilic being deepest blue) and colors 
toward the red representing the other extreme (deepest red being the most 
nucleophilic). Isopotential surfaces extending outward from the van der Waals 
surface of each molecule at -20.0, -10.0, and -5.0 kcal/mol were also generated to 
indicate the electron density profiles beyond molecular surface. 

The three-dimensional MEP map of the 6-31G** optimized TLM superimposed 
onto total electron density, Fig. (3b), reveals that the center for the most negative 
potential (red region) lies in the vicinity of the sulfur and the carbonyl oxygen 
atoms of the molecule, whereas the center for most positive potential (blue region) 
lies by the adjacent methyl groups of the sulfur atom and to a lesser extent by the 



Role of In Silico Stereoelectronic Properties Advances in Mathematical Chemistry and Applications, Vol. 1, (Revised Edition)  315 

ethylene hydrogen atoms. However, on examination of the three-dimensional 
MEP profiles of TLM beyond the edge of van der Waals surface at -20.0, -10.0, 
and -5.0 kcal/mol, Fig. (3b), roughly corresponding to 1.45 A (-5.0 kcal/mol) to 
1.35 A (-20.0 kcal/mol) away from the edge of the molecular surface, indicates a 
progressively large negative potential region extending laterally from the carbonyl 
oxygen to the sulfur atom and a small localized negative potential region by the 
hydroxyl oxygen atom. The large extended negative potential region from the 
carbonyl oxygen to the sulfur atom in TLM at -5.0 kcal/mol, Fig. (3b), may be 
regarded as a nucleophilic suction-pump acting as a magnet for the electrophilic 
part of the receptor. Since this potential is approximately 1.45 A away from the 
molecular surface, this feature is likely to be recognized first by the receptor to 
promote long range interactions between them. Electrostatic potential 
characteristics are considered to be key features of molecules through which it 
recognizes its receptor at longer distances to promote interaction between them 
[55]. The electrostatic interactions are considered to be the driving force toward 
formation of non-covalent Michaelis type of complexes with the receptor.  
 

 

Figure 3: Shows how the pharmacophore model was developed from the optimized (a) structure 
of thiolactomycin (TLM), (b) electrostatic potential profiles, (c) feature based pharmacophore of 
TLM, and (d) 3D shape-based template of TLM pharmacophore for virtual screening of database 
to identify new inhibitors and antimalarials. 
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The positive potential appears to be spread over a large region by the ethylene 
hydrogen atoms in TLM rendering this portion of the molecule to be hydrophobic. 
Widely distributed weak positive electrostatic field regions on the accessible 
molecular surface are believed to be an indication of hydrophobicity of a 
molecule [56]. Therefore, these electrostatic potential features provided the 
intrinsic reactivity profile or the ‘interaction pharmacophore model’ of TLM 
which later guided us to develop a feature-based pharmacophore model for virtual 
screening of databases to identify new PfKASIII inhibitors as potential candidates 
for antimalarial therapeutics [48]. Fig. (3d) shows how we have developed the 
pharmacophore model from the optimized structure of TLM and eventually used 
it as a 3D shape template for virtual screening of database to identify new 
inhibitors and antimalarials. 

Antileishmanial Compounds 

Amongst earlier studies to account for the role of molecular electronic properties 

toward antileishmanial activity, Werbovetz et al. [57] reported that electrophilic 

compounds such as phenyl arsenoxide and 4-chloro-3,5-dinitro-α,α,α-

trifluorotoluene (chloralin) can inhibit the assembly of leishmanial tubulin. In 

other studies, diospyrin, was shown to have significant inhibitory effect on the 

growth of leishmania donovani promastigotes due to catalytic activity of DNA 

topoisomerase I of the parasite [58]. Mukhopadhyay et al. [59] and Croft et al. 

[60] reported S-adenosylmethionine decarboxylase to demonstrate the inhibition 

of growth of leishmania donovani promastigotes (strain UR6) in a dose dependent 

manner. However, no stereo-electronic studies were reported in published 

literatures on these compounds. One of the earlier attempts to design new 

antileishmanials based on structure-activity relationships was by Bell et al. [61] 

who identified several aromatic diamidines and di-imidazolines having potent 

activity with reduced toxicity relative to pentamidine against leishmania mexicana 

amazonensis. 

Thus, although efforts were made in the past to identify, design and synthesize 

new antileishmanial compounds, no reports were found in the published literature 

which devoted on stereo-electronic properties and “interaction-pharmacophore” 
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profiles of known antileishmanials for understanding the molecular mechanism of 

activity to aid discovery of novel antileishmanial compounds. Toward this effort, 

we published a few studies focusing on the stereo-electronic properties of 

antileishmanial macrocyclic bisbenylisoquinoline derivatives [62] and 

camptothecins [63]. The first study was designed to assess the role of calculated 

stereo-electronic properties of five bisbenzylisoquinoline, gyrocarpine, 

daphnandrine, obaberine, pheanthine, and malekulatine toward antileishmanial 

activity using ab initio (3-21G*/4-31G*-HF) quantum chemical methods. The 

results on the antileishmanial macrocyclic bisbenylisoquinoline derivatives 

indicated [62] that the ability to form a cavity at the macrocyclic ring, preference 

for a specific orientation of lone-pair electrons of the ether-oxygen atoms, 

electrostatic potential profiles by the oxygen atoms, and similarity of the lowest 

unoccupied molecular orbital (LUMO) isosurface at the cavity were associated 

with potent antileishmanial activity [62]. Although no single stereo-electronic 

property could account for all the experimental activity data of three different 

strains of leishmania in the study, specific conformational preference for the 

ether-oxygen atoms in the cavity of macrocyclic rings and the resulting electronic 

property arising out of it probably played an important role in the complex 

mechanism of antileishmanial action in these alkaloids [62]. In the camptothecin 

study [63], we made attempts to rationalize the potent antileishmanial activity of 

methylenedioxy camptothecins which were known to act specifically against the 

pathogenic protozoan leishmania donovani in vitro, and also for generation of 

cleavable complexes in the presence of DNA and purified mamamalian 

topoisomerase I. We investigated the role of molecular electronic properties of 

camptothecin and four of its 10,11-methylenedioxy analogues [63] and observed a 

difference in the delocalization of positive potential between methylenedioxy 

camptothecins and camptothecin, and attributed the difference to increased 

affinity of the compounds for DNA in addition to both geometric and electronic 

differences of the E ring [63]. We concluded that one or both of these factors may 

contribute to the superior biological activity of the methylenedioxy camptothecin 

analogues. 
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Insect Repellents 

Lack of literature information on molecular electronic structures of known insect 
repellents and efforts to better understand the mechanism of insect repellency 
properties prompted us to study the stereo-electronic properties of DEET to start 
with followed by thirty of its analogs [64]. In continuation of this study, we 
further investigated the molecular similarity and differences of stereo-electronic 
properties of DEET together with its analogues, natural insect juvenile hormone, 
and a synthetic insect juvenile hormone mimic, undecen-2-yl carbamate) [20], 
results of which later guided us to develop a pharmacophore model used for 
virtual screening of compound databases [65]. 

The stereo-electronic property study on known repellents involved quantum 

chemical calculations ranging from AM1 semi-empirical calculations to 

conformational search for the lowest and most abundant energy conformer of JH, 

JH-mimic, and fifteen DEET compounds [20]. We performed complete geometry 

optimization for each of the lowest and most abundant energy conformer using ab 

initio quantum chemical methods. Similarity analyses of stereo-electronic 

properties including the structural parameters, atomic charges, dipole moments, 

molecular electrostatic potentials, highest occupied molecular orbital (HOMO) 

and lowest unoccupied molecular orbital (LUMO) energies were performed on all 

the above molecules. Similarity of stereo-electronic profiles of the amide/ester 

moiety, negative electrostatic potential regions beyond the van der Waals surface, 

and a large distribution of hydrophobic regions in the compounds [20] were 

observed to be the three important similarity features that probably have similar 

interactions with the JH receptor. The similarity of electrostatic profiles beyond 

the van der Waals surface was attributed to the molecular recognition process 

with the JH receptor at a distance [20]. This feature similarity between the 

compounds was suggested by us to be a display of electrostatic bio-isosterism of 

the amide group in the DEET compounds, JH, and the JH-mimic and we 

hypothesized it as a model for molecular recognition at the JH receptor [20]. The 

insect repellent property of DEET and its analogues was proposed to be a 

probable conflict for complementary binding interactions with the JH- receptor 

binding sites [20]. 
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In summary, the above computed stereo-electronic property studies, particularly 

the electrostatic potential profiles beyond van der Waals surfaces for the 

antimalarial, antileishmanial, and the insect repellents were found to be 

reasonably well correlated with the observed experimental activity of the agents. 

More importantly, the calculated stereo-electronic profiles provided the 

foundation to guide our later development of feature based pharmacophore 

models for identification of new compounds as described in the following section. 

Chemical Feature Based Pharmacophores 

Despite many efforts for discovery of improved therapeutics for malaria, 

leishmaniasis, and insect repellents, little success has been made to discover truly 

effective non-toxic compounds based on alternative structure theory that will not 

likely to develop rapid resistance. For past several decades, efforts have only led 

to the development of derivatives of preexisting chemical structures. Compounds 

from new chemical classes have barely been explored. In pursuit of these 

objectives, we adopted an in silico strategy to develop pharmacophore models 

from published literature data and use the generated models to identify potentially 

active compounds of novel chemical classes through virtual screening of 

compound databases. The advantage of the pharmacophore is that it transcends 

the structural class and captures features those are responsible for the intrinsic 

activity of potential therapeutics of new chemical classes or chemo-types from 

searches of compound databases [28, 29, 31]. Quantitative methods that attempt 

to identify arrangements of atom features in space in relation to an experimental 

biological activity are commonly referred to as 3D – QSAR (three dimensional 

quantitative structure-activity relationships) pharmacophore generation methods. 

There are several approaches used for developing 3D-QSAR models of bioactive 

compounds that include 3D-QSAR molecular conformation based alignment rule, 

statistical techniques such as partial least squares (PLS) to identify relationships 

between structural descriptors and biological activity [66], 3D-QSAR-CoMFA 

[67], 3D-QSAR-VolSurf/Grid [68], and 3D-QSAR-CATALYST [69] methods. In 

this section, the focus of discussion will be the efforts for developing feature 
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based pharmacophores utilizing the 3D-QSAR- CATALYST procedure [69] and 

utilization of the models for virtual screening of compound databases to identify 

potential antimalarial, antileishmanial, and insect repellent agents. 

In recent years, virtual screening of databases using pharmacophores has been 

successfully applied to identify many novel ligands for a variety of proteins and 

enzymes [22]. The novel inhibitors discovered have very little similarity with 

other known inhibitors and a majority of the leads is found to have potent 

activities in low micromolar level [22, 23]. Successful pharmacophore based 

virtual screening of databases using the CATALYST methodology resulted in 

identification of many novel potent compounds against several targets such as, 

serine protease chymase [70], antigen α41 [71], EDG3 [72] mesangial cell 

proliferation [73], and rat 5α-reductase [74]. Even without the knowledge of 3D 

structure of the biological target, this methodology has been quite successful for 

example, identification of α1- adrenoreceptor antagonists, LTD4 receptor 

antagonists, corticotrophin-releasing hormone antagonists, Na+/bile acid co-

transpoters [74], mesangial cell proliferation inhibitors [73], discovery of new 

11beta-hydroxysteroid dehydrogenase type 1 inhibitors [75] and new P450 

inhibitors [76] to name a few. 

However, similar efforts for identification of new antimalarials, antileishmanials 
and insect repellents were not found in literature [28, 29, 65]. 

Antimalarial Compounds 

Since crystal structures of majority of target proteins or enzymes of antimalarial 

drugs were unknown, we focused on in silico approaches to develop 

pharmacophore models from known active antimalarial compounds. The strategy 

not only helped us to identify many new antimalarial agents but also provided 

insights for possible interactions with the unknown target receptors at the active 

site. One of our first successful virtual screening efforts was the identification of 

new antimalarial agents by developing a pharmacophore from a set of known CQ 

resistance reversal agents [77, 78]. 
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First, we developed a pharmacophore model from the known CQ-reversal agents 

and then cross-validated it by mapping its features on a series of other CQ-

reversal agents such as, chloropheniramine, cyproheptadine, ketotefin, pizotyline, 

azatadine, loratadine, verapamil, and penfluridol. Mapping of the pharmacophore 

onto six well known CQ-resistance reversal agents showed excellent consistency 

[77, 78]. Next, we performed a database search using the pharmacophore for 

potential new CQ-reversal agents from our in-house WRAIR - Chemical 

Information System [63] database of over 290,000 compounds. The search 

resulted in identification of several 2,4-diamino-3*,4*-dichloro-6-quinazolinesul-

fonanilide analogues as promising candidates for further studies. The lead 

identified compound was observed to be a potent antimalarial in the RP mouse 

malaria presumptive causal prophylactic test as well as in MM in vivo mouse 

malaria test [77]. 

In our next effort, we have applied the methodology to develop a pharmacophore 

for proton-pump inhibitors from four benzimidazoles, namely, omeprazole, 

lansoprazole, rabeprazole and pantoprazole which are clinically used as proton 

pump inhibitors [79]. The generated pharmacophore model was used for search of 

new compounds from our in-house database and identified 128 compounds that 

have similar features. Three of these compounds were observed to have 

efficacious antimalarial properties in mouse malaria in vivo [79]. 

In continuation of these efforts, we developed another pharmacophore model, Fig. 

(4a) from a series of indolo[2,1-b]quinazoline-6,12-diones (tryptanthrins) which 

exhibited remarkable in vitro antimalarial activity (below 100 ng/mL) and low 

cytotoxicity against sensitive and multidrug-resistant Plasmodium falciparum 

malaria [28]. However, although these compounds possessed outstanding in vitro 

activity and reasonably well tolerated toxicity for promising antimalarial 

candidates, the compounds did not display in vivo activity, probably due to poor 

bioavailability and aqueous solubility. Nonetheless, the pharmacophore model 

that we developed for this series of compounds was found to be very useful for 

identification of a variety of different classes of antimalarials and provided a 
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fairly reliable foundation for 3D database searches, Fig. (4a). The pharmacophore 

was found to map well onto many well-known antimalarial drugs such as, 

quinine, hydroxychloroquine, Fig. (4b), and also rhodamine dyes, and chalcones 

[28]. Interestingly, the observed mapping of this pharmacophore model onto 

quinine, Fig. (4b-A) led us to believe that like quinine, the tryptanthrins may 

target heme polymerase from the P. falciparum tropozoites. Since the target 

protein for antimalarial activity of the tryptanthrins was unknown, we evaluated 

six substituted 4-azaindolo[2,1-b]quinazoline-6,12-dione analogues of the 

tryptanthrins for hemin binding affinity by 1H NMR methods, x-ray 

crystallography, and ab initio quantum chemical calculations [80] and found the 

evidence for heme-tryptanthrin stacking organization in all these analogues. The 

observation was also consistent for the proposed interactions with hemin 

determined separately by NMR experiments [80]. 

 

Figure 4: (a) Pharmacophore for antimalarial activity of the tryptanthrins. (b) Mapping of the 
pharmacophore onto eight commonly used antimalarial drugs in the United States: (A) quinine, 
(B) mefloquine, (C) primaquine, (D) hydroxychloroquine, (E) sulfadoxine, (F) doxycycline, (G) 
chloroquine, and (H) pyrimethamine. 
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Using the pharmacophore as a search template for virtual screening of the in-
house database led to successful identification of five new aminoquinazoline 
derivatives as promising candidates for further study, as these compounds were 
found to be potent both in vitro and in vivo in mouse malaria screening tests [28]. 
Thus, the pharmacophore model that we developed from the tryptanthrins was not 
only useful for identification of novel class of antimalarials but also provided a 
possible mechanism of antimalarial action with the target, the heme protein. 

Our first effort of application of structure-based drug design methodologies 
following the completion of the P. falciparum genome project was focused on the 
specific proteins in parasites that are unique yet critical for cellular growth and 
survival. With a direct role in the regulation of cellular proliferation, the cyclin- 
dependent proteins kinases (CDKs) were attractive drug targets for discovery of 
new antimalarial chemotherapies and therefore, we targeted the malarial CDK. 
Primarily, three plasmodial CDKs (PfPK5, PfPK6 and Pfmrk) were being 
investigated. There are several inhibitors for CDKs that were reported to possess 
antiparasitic activity when assayed with the malarial parasites in vitro [81]. We 
developed a new pharmacophore model from known inhibitors targeting 
specifically the malarial Pfmrk [29] and used the model template for searching the 
in-house chemical database to identify new potential inhibitors. The procedure 
resulted in the discovery of sixteen potent Pfmrk inhibitors [29]. The predicted 
inhibitory activity of some of these Pfmrk inhibitors from the molecular model 
agree exceptionally well with the experimental inhibitory values from the in vitro 
CDK assay [29]. Statistically, the most significant model obtained by us was 
found to contain two hydrogen-bond acceptor functions and two hydrophobic 
sites including one aromatic-ring hydrophobic site [29]. Although the model was 
not developed from X-ray structural analysis of the known CDK2 structure, it was 
found to be consistent with the structure-functional requirements for binding of 
the CDK inhibitors in the ATP binding pocket. Mapping of the pharmacophore on 
known CDK inhibitors that were tested in our Pfmrk assay such as, (a) indirubin, 
(b) staurosporine, (c) kenpaullone, (d) WR032428, and (e) WHI-P180 were 
observed to be consistent with the model [29]. Despite complexity of the malarial 
CDK activity, predicted Pfmrk inhibition from the developed pharmacophore 
model was quite robust and can be useful for further design of selective Pfmrk 
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inhibitors and assessing the subtle differences in structure-function information 
between Pfmrk and other CDKs [82]. 

In another recent effort on structure-based drug discovery of antimalarials, we 
developed a phamacophore model for malarial PfKASIII inhibitory activity and 
successfully utilized it to identify several PfKASIII inhibitors [48] from 
calculated stereo-electronic profiles of one known related inhibitor, TLM. We 
utilized the electrostatic potential profile, Fig. (3b) of TLM for developing the 
model. The large extended negative electrostatic potential regions by the carbonyl 
oxygen atom and sulfur atom in TLM were considered as centers for two 
hydrogen bond acceptors and the region by the ethylene hydrogen atoms (weak 
electrostatic potential region) as the hydrophobic site in the molecule. A 
preliminary model for inhibition of KASIII was constructed, Fig. (3c) using these 
features on the optimized geometry of TLM and converting the molecular 
structure of TLM into a 3D shape with the features, a combined template was 
generated, Fig. (3d). This shape based pharmacophore template was used to 
conduct the in silico screen of our in-house multi-conformer chemical database in 
an iterative manner which resulted in the identification of several new PfKASIII 
inhibitors [48]. Thus, a combined approach of stereo-electronic and 
pharmacophore profile generations from known inhibitors could be useful for 
discovery novel inhibitors. 

In another recent effort, we developed a pharmacophore model for chalcones from 

the data of an in-house chalcone project and identified several new antimalarial 

agents through database searches, which was also helpful in the design of a few 

new potent antimalarials [83-85]. Chalcones are known to rapidly metabolize by 

liver microsomes but chalcones analogues with modified enone linker were found 

to have significant improvement in metabolic stability. Our goal was to identify 

compounds that share the antimalarial properties of the chalcones, but lacking the 

enone structure. However, despite understanding the structural basis for 

antimalarial activity of the chalcones, its pharmacophore for activity remained 

unknown. We developed the first pharmacophore model for chalcones to obtain 

both structural and functional requirements for antimalarial activity. The model 

enabled identification of several new antimalarial agents and facilitated the design 
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of novel analogues [83]. The generated pharmacophore contained an aromatic and 

an aliphatic hydrophobic site, one hydrogen bond donor site, and a ring aromatic 

feature distributed over a three dimensional space [84]. The activity of the 

compounds estimated by the pharmacophore was found to correlate well with 

those determined experimentally. Two of the identified compounds were found to 

be highly potent in vitro against all five strains of P. falciparum tested. Moreover, 

one compound showed significant potency in a malaria-infected mouse model 

[84]. The model was also reported to be useful for design of novel antimalarials 

[85]. The study therefore demonstrated how the chemical features of a set of 

diverse chalcones and chalcone-like compounds could be organized to develop a 

pharmacophore for antimalarial activity and be utilized for discovery and design 

of novel antimalarials. 

Yet, in another recent study, we [86] developed a pharmacohore model of the 
antimalarials, 4(1H)-quinolones, known to be highly effective in inhibiting the 
replication of P. falciparum along with synergism to the well known antimalarial 
atovaquone (Malarone). We not only developed a model for antimalarial activity 
of the quinolones consisting of two aliphatic hydrophobic functions and one 
aromatic ring hydrophobic function but went beyond the pharmacophore to 
calculate mathematical descriptors directly from the identified molecular 
structures and reasonably well predicted the antimalarial activity of the 
compounds [86]. 

Antileishmanial Compounds 

Several antimalarial indolo[2,1-b]quinazoline-6,12-dione (tryptanthrin) 
derivatives which were originally screened for our malaria study also exhibited 
antileishmanial activity at concentrations below 100 ng/ml when tested against 
Leishmania donovani amastigotes in vitro in our laboratory [87]. We reported a 
quantitative structure-activity relationship study between the in vitro 
antileishmanial activity, a 3D phramacophore for antileishmanial activity and 
molecular electronic properties of 27 analogs of indolo [2,1-b]quinazoline-6,12-
dione (tryptanthrins) [87]. The procedure adopted in the study was a combination 
of semi-empirical AM1 quantum chemical, cyclic voltammetry and 
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pharmacophore generation based on 3D-QSAR-CATALYST methods. A modest 
to a fairly accurate correlation was observed between activity and the calculated 
molecular properties such as the molecular density, octanol-water partition 
coefficient, lowest unoccupied molecular orbital energies, and redox potentials 
measured by cyclic voltammetry experiments. The generated pharmacophore was 
a reasonably well predictive model for antileishmanial activity of the tryptanthrins 
[87]. The carbonyl group of the 5-member ring in the indolo[2,1-b]quinazoline-
6,12-dione skeleton and the electron transfer ability to this oxygen atom were 
attributed to be crucial for antileishmanial activity of these compounds. The 
validity of the model could be extended to structurally different class of potent 
antileishmanial compounds through virtual screening of databases and in vitro 
toxicity studies on the identified compounds in both macrophage and neuronal 
lines for favorable properties thus, opening new chapters for further 
antileshmanial chemotherapeutic study [87]. 

Werbovetz et al. previously demonstrated antileishmanial activity of several 
dinitroaniline sulfonamides against Leishmania parasites [88-90]. In continuation 
of the efforts and to further explore the functional features responsible for 
antileishmanial activity of dinitroaniline sulfonamides, we reported a three-
dimensional pharmacophore model for antileishmanial activity of the compounds 
[14]. The pharmacophore contained an aliphatic hydrophobic group, an aromatic 
hydrophobic group, an aromatic functionality and a hydrogen-bond acceptor in 
specific regions of space [14]. It was used for search of databases of drug-like 
compounds, particularly commercial databases. From a search of 55,000-
compound Maybridge database, we found several compounds that fit to the 
pharmacophore. Nineteen of the most promising compounds were tested for 
antileishmanial activity. Two compounds were found to be highly potent (IC50 
values under 5 M) and another five compounds were moderately active (IC50 
values between 20 and 40 M) [14]. Unlike the dinitroaniline sulfonamides, the 
active compounds were not found to display antimitotic effects against 
Leishmania [14]. However, despite not possessing the expected mechanism of 
action, the active compounds were found to be potently antileishmanial in vitro 
and found to affect the integrity of the parasite mitochondrion. Thus, our 
pharmacophore based screening approach could provide novel active compounds 
to open up new scope for further study for chemotherapy of leishmaniasis. 
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Insect Repellents 

In pursuit of our goal to discover novel arthropod repellents and to better 
understand the mechanism of insect repellency of DEET and DEET-like 
repellents, we performed a three-dimensional quantitative structure-activity 
(QSAR) study and developed a pharmacophore model for potent repellent activity 
from a set of eleven known diverse insect repellents using the CATALYST 
methodology [65]. The generated model contained three hydrophobic sites and a 
hydrogen-bond acceptor site in specific locations around the three dimensional 
space of the compounds which were found to be crucial for potent repellent 
activity [65]. 

The pharmacophore showed an excellent correlation (correlation = 0.9) between 
the experimental protection time afforded by the compounds in the training set 
and their predicted protection time. The validity of the pharmacophore model 
goes beyond the list in the training set and is found to map quite well onto a 
variety of other insect repellents, including a highly potent repellent compound 
that was extracted from the hair of Gaur, an animal frequently seen in South East 
Asia, Fig. (6b). By mapping this model onto one of the identified potent analogue, 
we generated a three-dimensional shape based template that allowed a search our 
in-house compound database to discover four new potential insect repellent 
candidates [65]. A U.S. patent (# 7,897,162) on the model and discovery of new 
arthropod repellents was issued recently [91]. 

CONCLUDING REMARKS 

The calculated stereo-electronic property of the antimalarial, antileishmanial, and 
the insect repellent agents presented in this chapter provided important molecular 
electronic insights to guide our understanding of the “interaction 
pharmacophores” and generation of the phramacophore models which were 
crucial for identification of new bioactive agents. 

The 3D-QSAR pharmacophores on known antimalarial, antileishmanial, and insect 
repellent compounds demonstrated a new computational approach for organizing the 
molecular characteristics from a set of structurally diverse compounds to a model 
that were both statistically and mechanistically significant for potent activity and 
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useful for identification of novel analogues. The models were also useful for 
unraveling the possible rationale for target-specificity of the compounds. Because 
the target proteins for many these known agents may remain unknown, developing 
pharmacophores could be very useful not only to identify new potent compounds but 
also to obtain insights about the possible mode of interaction at the active site. 
Furthermore, the in silico models can also be very useful for design of more 
efficacious novel therapeutic agents. Overall, the in silico approaches presented here 
can maximize the efficiency for discovery of these agents. 
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ABBREVIATIONS 

CQ = Chloroquine 

DDT = Dichlorodiphenyltrichloroethane 

AIDS = Acquired immune deficiency syndrome 

DEET = N,N-Diethyl-m-toluamide 

WHO = World Health Organization 

ACT = Artemisinin Combination Therapy 
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HTS = High Throughput Screening 

ADME = Absorption, distribution, metabolism and excretion 

HPBCD = Hydroxypropyl--cyclodextrin 

NMR = Nuclear magnetic resonance 

FAS = Fatty Acid Synthase 

PfACP = Plasmodium falciparum acyl carrier protein 

ACP = Acyl carrier protein 

PfKASIII = ß-ketoacyl-ACP synthase III 

TLM = Thiolactomycin 
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CHAPTER 14 

Molecular Taxonomy 

Ray Hefferlin* 

Physics Department, Southern Adventist University, Collegedale, Tennessee 37315, USA 
Abstract: This chapter is for those in the field of mathematical chemistry who would 
like to practice their skills on other than normal molecules; for colleagues in the physics 
community with a curiosity about periodicities of particles from molecules to strings; 
and for specialists in informatics. Similarities are shown to exist in the constructions of 
periodic systems for five orders of particles. 

Keywords: Mathematical chemistry, molecules, periodicity, periodic systems, 
periodic tables, atoms, sub-atomic particles, fundamental particles, strings, 
mesons, baryons, quarks, photons, isotopic spin, strangeness, nuclei, nuclear 
molecules, magic numbers, Pascal’s triangle. 

INTRODUCTION 

This chapter is written to pique curiosity about developments at the intersection of 

chemistry, physics, and informatics — periodic systems of molecules, where 

molecules are understood to mean objects composed of atoms or of sub-atomic 

particles. We consider fundamental particles (manifestations of strings); mesons 

and baryons (formed of quarks); nuclei (structured from nucleons); and 

molecules, as commonly understood, (constituted of atoms). In each case, a 

periodic system emerges. The periodic chart of the elements is well-known; 

structurally simpler charts, in non-science use, are calendars, tables of 

conjugations and declensions, and multi-verse hymns and folk songs. The 

underlying designs of periodic systems, and some of their successes, are featured. 
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STRINGS AND THEIR PERIODICITIES 

There’s plenty of room at the bottom 

(prophetically speaking of microscopic machines, 

but also applicable to strings) 

Richard Feynman 

What is String Theory? 

String theory postulates that quarks, leptons, neutrinos, mesons, baryons, and 
the forces between them (mediated by gauge bosons) are all manifestations of 
the frequencies, or energies, of individual strings which vibrate and move about 
[1]. They do so in four-dimensional space-time, or on curled-up spaces having 
any one of several dimensions beyond the fourth. These spaces are located at 
every event in space-time. The two kinds of motions imply a spectrum of string 
frequencies, and therefore of energies, and hence of masses. Many of the 
masses can be associated with the scores of fundamental particles that have 
been found from analysis of experimental data. The strings are incredibly small, 
somewhere near to 10–35 meters. 

What is Chung’s Classification of the Possible String Energies? 

Chung [2-4] has presented us with though-provoking, and elegant, periodic tables 
of quarks, leptons, neutrinos, mesons, baryons, and gauge bosons. His work is not 
what is known as the Standard Model, but just the same, we might consider it as a 
part of Fundamental Particle Chemistry. A short, approximate, version of his 
presentations will now be given. 

He begins with the photon (which mediates the electromagnetic interaction), one-
half the pion (the pion mediates the strong interaction), the ZL

o (which mediates 
the weak left-handed non-conservation), the XR and XL (which mediate the weak 
CP right-handed and left-handed non-conservations, and the ZR

o (which mediates 
the weak right-handed non-conservation). The photon has dimension 5, and the 
energies of the other, dimension 6 through 10, bosons are each a constant factor 
(1/α2) greater than the one of the dimensionality below it. 
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Chung posits that strings may be on a torus of dimensionality 5, a smaller torus of 
dimensionality 6 looping the torus of dimension 5, a still smaller torus of 
dimensionality 7 looping the torus of dimension 6, and so on. The strings may 
also have “excited” states when the string is (on) a loop around the torus of a 
given dimension. The excited states are designated with the loop number. The 
higher the dimensionality and the higher the loop number, the higher the energy. 
Sub particles (e.g., sub quarks) with given masses exist on the loops. There may 
be more than one manifestation of any given particle, and a number indicates the 
dimension in (on) which each is found. 

Some elementary particles and hadrons live on the tori of various dimensionalities 
but have loop numbers zero. The other particle masses were derived from sums 
and products of the sub particle masses by some sort of fitting algorithm; this is 
the only role that sub particles play. The results are enshrined in two periodic 
systems. The first is for strings manifested as gauge bosons, quarks, leptons and 
neutrinos, and it is shown in Table 1. In the table, the force-mediating bosons, 
described two paragraphs above; the u and d quarks; and the e, υe, υμ, and υτ 
leptons (all are in boldface) have accepted energies; the numbered d, u, s, c, b, and 
t sub quarks and the numbered sub leptons are used to compute other quark and 
lepton energies. The charge superscripts, such as those on e– and e+, are omitted as 
the two masses are approximately equal. The energies of some entries in the quark 
column are related to energies of other particles, e.g. 3μ. The energies of the 
muon, tauon, and hidden muon are calculated by the equations: 

μ = e + μ7 … (1) 

τ = e + τ7 … (2) 

μ’ = e + μ7 + μ8… (3) 

e is the electron (or, to this degree of precision, positron) mass/energy. The hidden 
muon is called such to avoid disturbing the standard model, which allows for just 
three leptons; according to Chung, it has just recently been discovered. According to 
Chung, this table is periodic because of similarities of entities in the same rows of 
various columns. The second periodic table, Table 2, is of strings manifested as 
hadrons. The mesons are π, K, and η’; D, formed from one c quark and one or 
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another of d, u, or s; ηc(1s) formed from two c quarks; B, formed from one b quark 
and one or one b quark and one or another of d, u, or s; and , formed from two b 
quarks. The baryons are the proton, Ω, Ξ, and Λb. The charge superscripts are 
omitted and p is the same, to this precision in mass, as the neutron. 

Table 1: The periodic table of string manifestations as quarks, leptons, and gauge bosons in terms 
of increasing dimensionality and hence mass-energy 

Torus 
Dimension 

Quark/Lepton Loop 
Number 

Gauge Boson Quark Lepton 

5 0 Photon u υe 

6 0 (½)π1/2 d e 

7 0 ZL
o 3μ υμ 

7 1  d7 and u7 μ7 

7 2  s7 τ7 

7 3  c7  

7 4  b7  

7 5  t7  

8 0 XR μ’ υτ 

8 1  b8 μ8 

8 2  t8  

9  XL   

10  ZR
o   

Table 2: The periodic table of string manifestations as mesons and baryons in terms of increasing 
dimensionality and mass-energy 

Torus 
Dimension 

Baryon Loop Number Meson Baryon 

5 0   

6 0 π  

6 1 K  

7 0   

6 2 η’ p 

6 3 D Ω 

6 4 ηc(1s) Ξ 

6 5 B  

6 6  Λb 

6 7   
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QUARKS AND THEIR PERIODICITIES 

At an early stage of quark theory there were three quarks: d, u, and s. These three 
quarks were reverse-engineered from data for the particles shown in the meson 
and baryon diagrams shown above — they were not observed in any experiment. 
Two quarks (d for down and u for up) have charges Q = –1/3 and +2/3, in units of 
the electron charge e. Their average charge is <Q> = +1/6; their hypercharge Y is 
2<Q> = +1/3; and their isotopic spin components are I3 = –1/2 and +1/2. The third 
quark, s (for strange), has a charge of –1/3, so <Q> = –1/3, Y = –2/3, and I3 = 0. 
Plotting the appropriate values on I3,Y coordinates gives the elegant d, u, and s 
quark triangle. Reversing the charges for antiquarks gives their triangle (Fig. (1)). 

 

Figure 1: Quarks and antiquarks plotted on the isotopic spin component (horizontal axis) and 
strangeness (vertical axis). Antiquarks are designated with a bar above their names. With 
permission of PERIODIC SYSTEMS OF MOLECULES AND THEIR RELATION TO THE SYSTEMATIC 

ANALYSIS OF MOLECULAR DATA, Edwin Mellin Press [5]. 

Continuing particle discoveries forced the realization that more quarks are 
necessary to explain them, so the c (charm), t (top), and b (bottom) quarks were 
invented. The c quark can be drawn above Fig. (1) on its own axis, forming a 
tetrahedron. A t or b quark can be substituted for it, or in principle for a d or u 
quark, and that is why Fig. (1) is a valid periodic system. 

HADRON PERIODICITIES 

In a simple view of the the standard model, the left side of Fig. (1) is subjected to 
a double iterative affine transformation to produce the periodic system of baryons, 
Fig. (2). The procedure is: 
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1. Draw the quark triangle at the left side of Fig. (1), 

2. Superimpose an identical triangle with its center on vertex d, 

3. Identify the vertices of the new triangle as dd at top left, du at top 
right, and ds at the bottom, 

4. Repeat the process for the u and s vertices of the original triangle, 
forming a larger triangle concentric with the original triangle, 

5. At vertex dd of the triangle formed in step 4, again draw the original 
triangle of step 1 so that its center is on vertex dd, 

6. Repeat the process for the du (which is the same as ud), uu, ds (same 
as sd), us (same as su), and ss vertices of the larger triangle, forming a 
still larger concentric triangle, 

7. Identify the vertices of the new triangle as ddd at top left; ddu, dud, 
and udd next at right, and so on. 

 

Figure 2: Schematic of the three quarks d, u, and s, taken three at a time as explained in the text. 
The vertices are ddd, uuu, and sss clockwise from upper left. Violation of the uncertainty principle 
is avoided by the introduction of a news quantum number, color. Only if each quark has one of the 
three primary colors, resulting in the combination being white, can it be observed as a hadron. The 
six hadrons in the center are dus, dsu, uds, usd, sdu, and sud. 

Group theory dictates that this 27-particle diagram be decomposed into a decuplet 
with 10 particles, two octets with eight particles each, and a singlet with one 
particle. Adding the c quark to Fig. (1) creates more complex geometrical shapes 
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for new baryons [6]. It is possible to substitute still heavier quarks into these 
shapes, thus rendering them true periodic systems [7]. 

Superposing the right side of Fig. (1) onto each vertex of the left side produces a 
hexagon, and more than one such hexagon is used to represent the numerous 
mesons that have been found experimentally [8]. It awes the author that usage of 
the triangles in Fig. (1) can so effectively reproduce the previously constructed 
meson and baryon diagrams. 

NUCLEAR PERIODICITY 

Given the nuclear magic numbers, we can ask “Can we construct a periodic 
system based on them?” Indeed, it can be done by cutting the Segré chart (Fig. 
(3)) in both axial directions, just after the magic numbers (because each nucleus 
occupies a tiny square on the chart). We obtain large squares and rectangles of 
various sizes and shapes. Recognizing that magic-number nuclei are special in 
that they are more stable than their neighbors, we orient the pieces of paper such 
that the edges containing magic number nuclei are on the front right side, on the 
front left side, or both, of each piece. Finally, we stack the squares and rectangles 
in such a way that those sides are aligned, as shown in Fig. (4). This is the “cut 
and stack” construction, which will be encountered later as one way to form a 
periodic system of chemical molecules. The procedure ignores the valley of 
stability, which tracks its way through some of the layers. Though aesthetically 
pleasing, this system has yet to facilitate any forecasts of nuclear properties. 

 

Figure 3: The Segré chart seen in three dimensions and at an angle. The negative binding energy 
increases in the upward direction; the valley of stability becomes the stability peninsula. From [9], 
with permission. 
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Figure 4: The periodic system for nuclei. Nuclei with magic numbers of protons or neutrons close 
nucleon shells, just as rare-gas atoms close atomic shells. The spreads of protons and neutrons are 
shown by numbers on the edges of the blocks. Passing a magic number causes the nuclei to enter a 
new period, just as is the case with atoms in the chart of the elements. The shaded regions show 
where the valley (or peninsula) of stability crosses the layers. 

Nuclear molecules, where the nuclei are in close proximity, have been observed. 
Examples are 6Be+6Be [10] and 12C+12C [11]. These species have such strong 
force fields that pair production takes place between the two nuclei. 

ATOMIC PERIODICITIES 

Fig. (5), a popular cartoon by Harris, imagines an early attempt to classify 
elements. The heroic efforts made since that hypothetical conversation have 
culminated in over a hundred two- or three-dimensional periodic tables [12,13]. 
They include chemotopology [14], artificial intelligence [15], reduced potential 
curves [16], quantum computation (outside the scope of this chapter), information 
theory [17], and group dynamics [18,19]. It must be kept in mind that quantum 
computational usually produces data one atom at a time, and so the approach is 
equivalent to constructing the periodic system from experimentation. Group 
theory seems to be the only hope for producing a complete chart of the elements 
based on pure theory. 
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Figure 5: Two Greek philosophers discuss the first periodic chart of the elements, by Sydney 
Harris (used with permission). 

Extrapolations of the chart to still heavier atoms than those of period 7 have been 
proposed [20,21], one speculative proposal going on to element 2,022 [22]. 
Contrariwise, it has been claimed on two grounds (not related to quantum 
computation) that there is an upper limit to Z, the atomic number [23, 24]. 

Parenthetically, it is of interest that these magic numbers have been found, ex post 
facto, to exist in Pascal’s triangle [25]. They have been recognized as arc lengths 
between formula-derived radii of the golden-rectangle logarithmic spiral [26] and 
also as turning points of the boundaries of the domain of stable isotopes on a plot 
of proton-neutron ratio vs. atomic number [26]. 

MOLECULAR PERIODICITIES 

Fig. (6), the companion to Fig. (5), shows what could have been the first 
perception of a diatomic molecule. Heroic and more or less successful efforts 
have been made since that supposed conversation to classify molecular 
compounds through identifying those that are similar by: 

a) Using correlation methods [27]. 

b) Associating them with chosen independent variables such as the 
period and group numbers of the constituent atoms [28, 29]. 
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c) Plotting them on a graph with “donors” and “acceptors” [30], or atom 
symbols such as C and H for alkanes [31,32], as axes. 

d) Cutting the (Z1,Z2) plane of diatomic molecules parallel to each 
axis, just after atomic numbers,  and stacking the resulting squares 
and rectangles (the “cut and stack” method) so that the magic-
number molecules lie on one or two of  two faces of the stack [33]. 

e) Considering the atomic chart as a matrix and forming the Kronecker 
product to produce the periodic system of diatomic molecules [34]. 

f) Partitioning them by the use of topological indices [35]. 

g) Classifying them with notations such as that of CAS. 

h) Applying group theory [36,37]. 

Most of these proposals have been bolstered with efforts to predict properties of 
molecules. Complete reviews of molecular periodic systems can be found in [38, 39 
(Fig. 7 of the chapter is in error and the correct figure will be sent upon request.)]. 

 

Figure 6: Two later Greek philosophers, fluent in English, discuss the beginning of an attempt to 
construct a periodic system of diatomic molecules formed from the chart shown in Fig. (5). Used 
by permission of Melissa Hefferlin. 



346   Advances in Mathematical Chemistry and Applications, Vol. 1, (Revised Edition) Ray Hefferlin 

SUMMARY 

Since this chapter was intended to showcase periodic systems, it is proper to list 
here the various protocols for constructing such systems: 

1. The “cut and stack” method begins with a two-dimensional map of 
objects, cuts this map at (really, just after) the magic numbers, and 
stacks the resulting quadrangles. This method has no theoretical basis: 

 A system of nuclei (See Section on Nuclear Periodicity). 

 Mollecular periodic system (Molecular Periodicity, item d). 

2. The superposition scheme begins with a two dimensional map of 
objects, superposes the center points of a copy of this map (or its 
inverse) upon each object, and identifies the resulting larger map with 
combinations of the original objects. It was not the intention of the 
proposing investigator to use this scheme, though afterwards it serves 
as an excellent tool for additional understanding. The investigators, 
using their own schemes, have made very successful predictions: 

 Meson octets, and the baryon decuplet and octet, begin with quark 
maps (See Hadron Periodicities). 

 Kong’s periodic systems of molecules begins with the element 
chart (Molecular Periodicities, item b). 

3. The Kronecker-product procedure considers a map of object as a 
matrix, performs an outer product of the matrix with itself n times, 
and recognizes the product matrix as the projection of a (2n+2)-
dimensional structure. This procedure encompasses several previously 
constructed periodic systems and has allowed some successful 
forecasts of spectroscopic constants with precisions and accuracies of 
less than 10 percent: 

 The Kronecker product periodic system of diatomic (triatomic) 
molecules (Molecular Periodicities, item e). 
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4. a: The group-dynamic protocol uses a group (chain) which conforms 
to some known behaviors of objects and creates multiplets of them; 
the ensemble of similar multiplets constitutes a system: 

 The triangles and tetrahedra for three and four quarks (See Quarks 
and their Periodicitie); any one quark in a triangle or tetrahedron 
may be replaced by a heavier one. 

 The periodic chart of the elements (Atomic Periodicities, last 
sentence of first paragraph). 

4. b: This protocol allows moving up into periodic systems in the next 
higher space(s): 

 Meson octets, and the baryon decuplet and octet (Hadron 
Periodicities). 

o any one diagram may be repeated for excited states of the 
baryons. 

o if a heavier quark is substituted for a lighter one, different 
hadrons appear. 

 Periodic systems of diatomic (triatomic) molecules (Molecular 
Periodicities, item h). 
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